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1 Motivation

Introduction to use of computers in physics for problems

• that are not solvable analytically

• that are not solvable analytically by elementary means.

Support

• in mathematical analysis (symbolic mathematics, numerics)

• in the analysis of results (statistics, visualization)

Numerically oriented mainly in problems of statistical physics

/ field theory, astrophysics etc. Computer-aided symbolic math

mainly in small-scale problems. Strengths and weaknesses largely

complementary.

We shall learn (i) a few important strategies and survival-rules,

(ii) and discuss a few elementary algorithms – mainly by way of

examples from physics and related areas.

Do use libraries (IMSL, NAG, Numerical Recipes); don’t re-invent

the wheel. But don’t use these tools completely in the “black box

mode”. Main emphasis is to teach methods and mature use of

available tools.
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1.1 Literature, Sources

• Literature

– Numerical Recipes in C/Fortran/Pascal,

W. Press et al. (Cambridge University Press)

– Einführung in die Numerische Analysis,

J. Stoer und R. Bulirsch (Springer)

– Physics by Computer,

W. Kinzel und G. Reents (Springer)

– Computational Physics,

M. Thijssen (Cambridge University Press)

– Mathematica,

S. Wolfram (Cambridge University Press)

– The Art of Computational Science,

P. Hut and Jun Makino (http://www.artcompsci.org)

– Perspectives of Nonlinear Dynamics,

E. Atlee Jackson, Cambridge Univ. Press

– Order and Chaos in Dynamical Astronomy,

G. Contopoulos, Springer

– A practical guide to computer simulations,

Alexander K. Hartmann (http://arxiv.org/abs/cond-

mat/0111531)

• Algorithms in the web (public domain, source codes)

– ftp://ftp.uni-stuttgart.de

– http://www.netlib.org

– http://www.gams.nist.gov

– http://www.gnu.org
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• Commercial Libraries:

– NAG (numerical)

– IMSL (numerical)

• Symbolic Mathematics:

– MAPLE

– MATHEMATICA

– MATLAB

3



2 Computers and Numbers

2.1 Components of a Computer

• CPU: active element

(instruction-set, register architecture & cycle–time)

– executes programs stored in memory

– words in memory contain instruction code and

address of operands

– program counter: special register, contains address of next

executable instruction

– normally just incremented, exception: conditional execution,

loops, goto’s etc.

• register: special memory integrated into CPU for data and

addresses (1 register = 1 word)

– number of registers typically small (8 ... 64)

• memory: fast mass storage for programs and data, hierar-

chically organized

– Cache (close to processor and very fast,

mostly on CPU chip)

– normal memory (RAM) connected via FSB (front side bus)

533 MHz ≈ 2 GB/s

– approx. size today (2004): 512 MB - several GB for PCs,

≈ 1 TB = 1024 GB for mainframes

• chipset and data bus: controls CPU-memory and memory-

PCI bus connection (e.g. E7505, i870, 440BX)

– FSB (Front Side Bus) CPU-memory connection (North

Bridge)

4



– PCI (Periph. Component Interconnect) memory - exter-

nal connection e.g. graphics card, hard disk, network (South

Bridge)

• external connection: hard disk storage, other devices

(CD/DVD/tape), network connection, e.g. via PCI-X bus 133

MHz ≈ 500 MB/s

• I/O: monitor, keyboard, mouse

5



Example 2.1:

scalar product

a · b =
n−1
∑

i=0
aibi

compute and store in data register D2. Assembler-Code:

CLR D2 clear data register 2

MOVE.W 998,D0 dimension n of vectors in 998 and 999 (2 byte)

MOVE.L #1000,A1 starting address 1000 of a to addressreg. 1

MOVE.L #2000,A2 starting address 2000 of b to addressreg. 2

LOOP: MOVE.W (A1)+,D1 a-component from (A1) to datareg. 1, increment A1

MUL (A2)+,D1 mult. b-component from (A2) with a component ->D1

ADD.W D1,D2 sum in D2

SUB.W #1,D0 reduce dimension

BNZ LOOP to LOOP, if things left to do

MOVE.W MOVE.L means moving word or long word (2 words).

Timing:

ADD.W D0,D1 4 cycles

ADD.W (A1),D0 8 cycles (memory access needed)

ADD.L (A1),D0 14 cycles (memory access needed twice)

ADD.L 123456,D0 22 cycles

MULU D0,D1 70 cycles (max.) for unsigned integer mult.

6



2.2 Data Representation

Units

• bit: binary digit, smallest information unit {0,1}, {a,b}, {low,

high} voltage.

• byte: 1 byte = 8 bit, 1kB = 1024 byte , 1MB = 1024kB, 1

GB = 1024 MB etc.

• word: machine dependent today mostly 32 bit (Intel Pentium,

AMD), or 64 bit (Intel Itanium, AMD Opteron)

Data representation usually bit-wise or binary. Smallest

addressable unit in memory: 1 byte. Computer word of length n

can encode 2n different objects.

Numerical

• CHARACTER (Letters numbers and special characters)

coded in a byte; for character codes (e.g.. ASCII)

char ∈ {0, ..., 255}

• INTEGER (integer numbers) For computer word of length

n:

(i) pos. int. number N ∈ {0, 1, 2, . . . , 2n − 1}
(ii) int. number: Z ∈ { − 2n−1, . . . , 0, 1, 2, . . . , 2n−1 − 1}
e.g.: n = 16

−32768 ≤ Z ≤ 32767 0 ≤ N ≤ 65535

e.g.: n = 32

−2147463648 ≤ Z ≤ 2147463647 0 ≤ N ≤ 4294967295
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• FLOATING POINT (Decimals) Organization depends on

word length. For 32 bit:

f = (d0, d1, d2, . . . , d23) · 2e
≡ (d0 · 20 + d1 · 2−1 + d2 · 2−2 + . . . + d23 · 2−23) · 2e .

with e an 8 bit integer, e = e0− 127, and e0 = 0 and e0 = 255

represent f = 0 and f = ∞; so for finite non-zero f −126 ≤
e ≤ 127. Convention: d0 ≡ 1 for normalization. thus d0 free as

sign bit.

– largest representable f

fmax = (1, 1, 1, 1, . . . , 1) · 2127 ' 3.40 · 1038 .

– smallest representable f

fmin = (1, 0, 0, . . . , 0) · 2−126 ' 1.18 · 10−38

– machine precision εm: smallest Increment of mantissa

εm = 2−23 ' 1.19 · 10−7, consequence:

1 + ε = 1

for ε < εm !

For 64 bit words: bits d0, . . . , d52 for mantissa and 11 re-

maining bits for exponent. This gives fmax ' 1.8 · 10308,

fmax ' 2.23 · 10−308 and εm ' 2.2 · 10−16
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Consequences: Numerical mathematics is not mathematics

• Not every sum representable (same for products, differences,

quotients)

• Can have

a + b = a

for b 6= 0.

• addition commutative but not necessarily associative. For ε <

εm we have

−1 + (1 + ε) = 0

but

(−1 + 1) + ε = ε

• Rounding errors !

2.3 Precision, errors, stability

Computation with rounding errors εr in each floating-point oper-

ation. Estimate: εr = ±εm, (accumulation diffusively , Nop steps)

εtot = O(
√

Nop εm)

At 108 floating–point operationen/sec in a program of 1 h CPU-

time

εtot ∼ 6 · 105 εm

With εm ' 10−7 this can be insufficient !

Estimate could even be overly optimistic for two reasons:

(i) rounding errors can be much larger than relative order εm!

(ii) errors can be amplified!

9



Example 2.2

Solution of ax2 + bx + c = 0:

x1,2 =
−b±

√
b2 − 4ac

2a

If ac� b2, so b2− 4ac = b2 due to finite machine prec., computer

gives x1 = 0 instead of

x1 =
−b + b

√

1− 4ac/b2

2a
' −b + b(1− 2ac/b2 + . . .)

2a
' −c

b

which can be O(1) !

Example 2.3

Compute integral

yn =
∫ 1

0
dx

xn

x + a
Seemingly clever idea: recursive evaluation via

yn =
∫ 1

0
dx
xn−1(x + a)− axn−1

x + a
=

1

n
− ayn−1

and initial condition y0 = ln[(1+a)/a]. For a > 1 this is an unsta-

ble algorithm (error amplification). Double-precision arithmetic

gives for a = 5: y22 ' −0.192, ..y27 ' 624.5, i.e. blatant nonsense

(Details depend on compiler machine ..).

Way out: backward iteration is stable ! Error in (unknown initial

condition vanishes after sufficiently many backward steps.
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• ⇒: Survival-rule 1: keep stability in mind. Obvious or mathe-

matically correct (even elegant) things can produce utter nonsense

(and fast).

• ⇒: Survival-rule 2: See whether your results make sense. Check

computation in simpler limiting cases for which you know the re-

sults.
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3 Practical Hints

This section was inspired by “A practical guide to

computer simulations”, by A.K. Hartmann, H. Rieger,

http://arxiv.org/cond-mat/0111531, and is a short ex-

traction of important pieces from there.

3.1 Software Engineering

Never just start writing code! Think:

• What is the input?

• Which results you want to obtain?

• Which quantities are needed for further analysis?

• Can you define objects, stand-alone modules?

• Foresee later extensions (data space, names!)

• Which parts of the algorithm can be solved by standard pro-

ceures, e.g. from libraries?

Designing and Testing:

• Data Strcuture

• Task Structure

12



• Provide error messages and short documentation printout for

wrong or no inputs. Think about the innocent user. Provide

messages of progress.

• Documenting the code. Brief comments are better than no

comments. Long comments are even better. Headers for sub-

routines and functions.

• Testing the code. Do test for known solutions. Check plausi-

bility of results (order of magnitude, sign, steady behaviour).

Object-Oriented Software Development:

• Objects and Methods

• Data Capsuling

Object Oriented Programming Languages (like e.g. C++) are

not equivalent to Object Oriented Programming!

Traditional Code can be written in C++, and object-oriented pro-

gramming style can be used in classic languages such as Fortran,C.

Programming Style:

• Split the code into modules, in different files.

13



• Separate data structures in header files (.h).

• Use meaningful names which relate to objects or their function.

Do not use too short names.

• Use indentation and proper line spacing to ease code reading

• Avoid goto-jumping

• Do use global variables only with great care and only if it is a

huge economical gain, generally avoid them

Survival Rule 3: one letter variable names plus zero comments

= spaghetti code!

3.2 Programming Tools

Elements of Programming:

• Source Code with Macros (.cc .C .F) ⇐ C-Preprocessor

• Clean Source Code (.cc .c .f)⇐ Compiler

• Header Files (.h .f) (User and System)

• Object Code (.o)⇐ Loader or Linker

• Object Libraries, Shared Object Libraries (.a .so) (User and

System)

• Executable File (e.g. a.out)

14



• Running the Code (./a.out , take care of path!)

• Using Input / Output Redirection (./a.out ¡ in ¿ out )

3.2.1 Macros and Directives

Macros are processed in the pre-processing stage of a compiler. It

is defined by

#define name definition

Macros can be used in a very powerful way, very much like a small

programming language processed by the compiler pre-processor.

A often used simple function of macros is to define them via a

compiler option (see below) and then e.g.:

#ifdef SINGLE

(1) . . .

#endif

#ifdef PARALLEL

(2) . . .

#endif
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If the compiler is invoked with the -D option, like gcc -DSINGLE

... the Macro is defined such that the first portion of code is

compiled only.

Survival Rule 4: Use Macros with care. Debugging and error

search may be more complicated, because not all of your code

is actually compiled!

3.2.2 Pre-Processors and Compilers

The C-Preprocessor (cpp) can be used also for Fortran-Programs,

to process Macros. It is usually included in standard Compilers such

as gcc, g++, g77, cc, c++, f77, f90. Some Unix Compilers from

special companies can be useful (e.g. Intel or Pallas Compilers, ifc,

pgf). Many Computer vendors have their own compiler versions

and names (IBM: xlf...). Modern compilers automatically include

the loader or linker step, if not told otherwise.

Compilers provide a large number of options, of which the most

important are:

• -c Compile, but do not load/link.

• -o name of executable file, to avoid a.out

• -lname search for libname.a in search path

• -L define directories to search for libraries

• -I define directories to search for header files

• -D define pre-processor macro

• -On define code optimising level

16



• -fast fastest possible optimisation (machine and compiler

dep.)

• -g useful for debugging (generally conflicts with -O!!)

3.2.3 Makefiles

make is a magical Unix command, which evaluates rules from a file

named Makefile. With make -fname you can use any other file

name rather than Makefile.

Makefiles are unique in the sense that they do not support se-

quential logics. First all rules of a Makefile are evaluated and then

action taken. The order of rules has little relevance. Makefiles

are best studied by starting from simple examples. They assist

in keeping track of a large number of files and subroutines. By

evaluating the dates of last changes they are acting only on

recently changed objects.

A Makefile rule is coded by

target: sources

〈TAB〉 command(s)

The first line defines the dependencies. The second and possible

continuation lines MUST start with a 〈TAB〉

17



An example:

simulation.o: simulation.c simulation.h

〈TAB〉 cc -c simulation.c

It means that whenever simulation.c or simulation.h have

been changed simulation.o has to be recompiled. By typing just

the command make in the UNIX line this job will automatically

be done. A Makefile can use variables (similar to shell variables),

and can contain several targets, e.g.

CC=gcc

simulation.o: simulation.c simulation.h

〈TAB〉 $(CC) -c simulation.c

myprog: simulation.o

〈TAB〉 $(CC) -o simulation.out simulation.o

By typing make myprog the Makefile first checks whether

simulation.o needs an update, and then creates a new

simulation.out if necessary. Here the use of a variable CC has

been demonstrated, which can be used to select different compilers

at the beginning of a Makefile. Variables from Unix shells can be

inherited to Makefiles, but note the different syntax.

3.2.4 Unix Shells

On top of the Unix Operation System (usually called the kernel

program) various other so-called shell programs are running, which

provide convenient functions for the user. The most common ones

18



are bash (Bourne Again Shell) and tcsh (C like shell). Both shells

provide useful commands, a script programming language and so-

called in-line command editing functions. Unfortunately the syntax

of everything differs between them (variable usage, aliases, program

statements for scripts...). When typing ps you can find out what

is your present shell.

3.2.5 Graphics

A most easy to start yet powerful graphics program is called

gnuplot. You can do a virtually infinite number of tasks with

it, it has a good online help, and it can be used to plot mathemat-

ical functions, plot data from files, do arithmetic operations with

data, convert into different file formats, even to create movies...

Here only some basic functionalities are demonstrated to give a

start. After typing gnuplot in the Unix shell command window

one gets the gnuplot> prompt:

gnuplot> plot sin(x)

plots the function with some default values for the data ranges.

gnuplot> plot ’name’ using 1:2 with lines

plots the first and second column of data from a file.

gnuplot> plot ’name’ u 1:2 w l

is a shortcut.

gnuplot> plot ’name’ u 1:($2+$3) w l,

’’ u :(sqrt($4)) w p

plots from the file the sum of column 2 and 3 as a function of

column 1 (with a line) and plots the square root of column 4 as a

function of line number, from the same file.

gnuplot> plot ’name’ u 1:2 w l, x**2

19



plots the data from the file and the function x**2.

gnuplot> save ’name’

saves all parameters in a gnuplot command file, which then can

be used by

gnuplot> load ’name’

to reproduce exactly what one had before. A few useful exam-

ples of parameter set commands (many more to be found in

gnuplot> help

are:

gnuplot> set logscale x

gnuplot> set nologscale y

gnuplot> set xrange [0:100]

gnuplot> set ylabel "string"

3.2.6 Mathematica

Mathematica is a convenient symbolic algebra software package,

which also can do extensive numerical calculations (arbitrary

precision, but not fast) and good graphics. Mathematica can be

called by math to get an inline command prompt (like in gnuplot),

or by mathematica to get a collection of X-Windows (Graphical

User Interface, GUI). In these X-Windows there are command

functions, help functions, and a command window in which one

can write and evaluate expressions. There are books and literature

on Mathematica, the help facility is extended, and there is a lot of

online information at http://mathworld.wolfram.com/.
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The command window is used to type some tasks or operations,

and evaluate them, for which we give here just a very small set of

examples:

Solve[x^3-10x^2+21x-10==0,x]

By pressing SHIFT+ENTER the expression is evaluated.

Other examples:

Plot[Sin[x], {x, 0, Pi}]

Integrate[x^n,{x,0,1}]

Solve[x^2+x+1==0,x]//N

The last example first solves the quadratic equation analytically,

and then evaluates the complex numbers with limited precision

(N=numeric), as it would be done by a normal computer code.

With

n=2

Clear[n]

values can be assigned to variables; after setting n=2 any occurrence

of n will be automatically substituted by the value of 2, until the

variable is cleared with the Clear command. Note that “=” assigns

values to variables, while “==” is used to define mathematical

equations.
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Rather than typing Mathematica commands, templates from the

X-Command Panel can be selected with the mouse, and filled in-

teractively. With the Pull-Down Menu File you can the save the

results obtained so far in a file (.nb), which is called a Mathe-

matica Notebook. This can be printed nicely, sent to someone else

by e-mail, and reused in Mathematica later. Here are some more

complex examples how to create solutions of the Volterra-Lotka

system, and how to create the plots shown above.
In[1]= NDSolve[{u’[t]==u[t](1-v[t]),v’[t]==0.5 v[t](u[t]-1),u[0]==1,v[0]==3},

{u,v},{t,0,40}]
Out[1]= {u -> InterpolatingFunction[{{0., 40.}}, <>],

v -> InterpolatingFunction[{{0., 40.}}, <>]}}
In[2] = Plot[{Evaluate[u[t] /. %1], Evaluate[v[t] /. %1]}, {t,0,40}]

[...]

In[nn] = ParametricPlot[ {{Evaluate[{u[t], v[t]} /. %1]},
{Evaluate[{u[t], v[t]} /. %2]}, {Evaluate[{u[t], v[t]} /.

%3]},
{Evaluate[{u[t], v[t]} /. %4]}}, {t,0,40}]

Explanation: the NDSolve command creates an object, which con-

tains the numerical interpolation of the solution of the ODE given

to NDSolve. This object has to be evaluated, before it can be plot-

ted. While Plot creates a standard function plot, Parametric

Plot can be used to plot the trajectories of the Volterra-Lotka

system. After [...] I have assumed, that four different objects have

been created before by NDSolve for different values of the initial

condition v(0) = 2, 3, 4, 5. The number after the percent sign is

used in the ParametricPlot line to refer to these different solu-

tion, by setting %n equal to the Out[n] number of the previous

lines in the mathematica notebook.
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Further useful mathematica commands for matrix operations and

linear algebra:

M={{ 0,1 },{1,2}}
v={1,4,7,6,5,3}
creation of an object containing a 2x2 matrix or a 6 element vector

M = Table[1/(i+j-1),{i,10},{j,10}]
create an object containing a 10x10 matrix, whose elements are

given by the formula 1/(i + j − 1).

Evaluate[Eigenvectors[M]]//N

numeric evaluation of eigenvectors of M

Eigenvalues[M]

get eigenvalues of M

eigen = Eigenvalues[M]

v2=eigen[[2]]

create object eigen containing eigenvalues of M and then take sec-

ond element of eigen and assign it to variable v2

Inverse[M]

Norm[M]

M.Inverse[M]

M.v

v.v

diverse matrix operations such as getting the inverse, the norm,

matrix multiplication of M with its inverse matrix, matrix-vector

multiplication, scalar product.
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4 Modeling Physics Problems

4.1 The Two-Body Problem

4.1.1 Elementary Facts

Newton’s Equation for the relative motion of two bodies under

their mutual gravitational force is

r̈ =
d2r

dt2
= −GM

r2

r

r

Here G is the gravitational constant, M = m1 +m2 the sum of the

masses of the two bodies (note that the Hamiltonian of the relative

motion leads to µr̈ = −Gm1m2r/r
3, with the reduced mass µ =

m1m2/M , and we have divided this by µ). r = |r| is the distance

between the two bodies, v = |v| the relative velocity. This second

order ordinary differential equation (ODE) can be transformed into

two coupled first order ODEs by

ṙ = v ; v̇ = −GM
r2

r

r

We will prove that the angular momentum vector j and the Runge-

Lenz vector e are constants.

d

dt
j =

d

dt
(r xv) = v xv + r x v̇ = −GM

r3
(r x r) = 0 .

To prove the constancy of

e =
v x j

GM
− r

r
.

we use the vector identity (A xB) xC = B(AC)−A(BC):

j x r

r3
=

(r xv) x r

r3
=

v

r
− r

(rv)

r3
=
d

dt

(r

r

)

.

24



which produces

d

dt
e =

d

dt





v x j

GM



− d

dt

(r

r

)

= −r x j

r3
− d

dt

(r

r

)

= 0 .

It is useful to look at the expression

er + r =
r(v x j)

GM
=

(r xv)j

GM
=

j2

GM
and define an angle f = φ− φ0, which is the angle opened by the

vectors e and r:

er cos f + r =
j2

GM

r(f) =
(j2/GM)

1 + e cos f
,

which is the well known solution of a conic section with the orbital

plane.

4.1.2 Elementary Numerical Solution

For numerical studies the equations should be first transformed

to dimensionless equations; we use s = r/R0, w = v/V0, V0 =
√

GM/R0, τ = t/T0, T0 =
√

R3
0/GM , where R0 can be an ar-

bitrary scaling radius, which should be selected according to the

given problem (e.g. initial separation). Then we get

ds

dτ
= w ;

dw

dτ
= − s

s3

Since the solution is known to be an ellipsis around the coordinate

centre, these equations can be used to test numerical integration.

For an elementary approach to solve our ODE on the computer we

start at time t = t0 with initial values r0, v0 and substitute the

derivatives by first order differential quotients, i.e.

ds

dτ
=

s1 − s0

τ1 − τ0
+O(h)
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with h = τ1 − τ0 and analogous for dw/dτ . Generally, if sn =

s(τn),with step size h = τn − τn−1 we get

sn = sn−1 + wn−1h +O(h2)

wn = wn−1 −
h

s3
n−1

sn−1 +O(h2)

This is called an Euler forward algorithm, and it is an explicit

procedure, because the right hand sides only depend on old values

at the previous time. If we use such an integrator for a known

solution, and monitor a constant of motion (energy, eccentricity,

angular momentum) the error can be followed by determining

εn(h) = |En−E0|/|E0| (where En = (v2
n/2)−1/rn is e.g. the total

energy of the system at the n-th step). Plotting εn (for some fixed

arbitrary n, say n = 5 or n = 2) as a function of h in a double

logarithmic plot we can reconfirm, to what order our procedure is

accurate. This is an important non-trivial test of our code, before

applying it to non-trivial or non-stationary problems.

Theoretically the error (i.e. the change of conserved quantities

like, should scale with O(h2) per integration step (this is denoted

as the local error). But the number of steps we need to cover

one physical time unit (e.g. one full orbit) is O(h); therefore the

error after integrating one (or few) orbits (denoted as the global

error) should scale in our case with O(h).

Note: To avoid renaming of variables r, v to s, w in practice we

say very often “we set G = M = 1” and then continue to use r, v

as variables instead of s, w. From this point onwards this will be

also the case here.
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4.1.3 Leap Frog or Verlet: the next step

With acceleration a and jerk b = ȧ the ansatz is

r(t + ∆t) = r(t) + v(t)∆t +
1

2
a(t)∆t2 +

1

6
b(t)∆t3 +O(∆t4)

r(t−∆t) = r(t)− v(t)∆t +
1

2
a(t)∆t2 − 1

6
b(t)∆t3 +O(∆t4)

we get by summation

r(t + ∆t) = 2r(t)− r(t−∆t) + a(t)dt2 +O(∆t4)

which looks nice, since it is simple and two orders more accurate

than the simple Euler above. a(t) can be determined from r(t) by

Newton’s law (see above). It is very common in molecular dynam-

ics, see e.g. http://www.fisica.uniud.it/~ercolessi/md/md/node21.html, and L.

Verlet, Phys. Rev. 159, 98 (1967); Phys. Rev. 165, 201 (1967). How-

ever, the determination of v with the same order is not achieved

in the same way. Look at

v(t) = (r(t + ∆t)− r(t−∆t)) /(2∆t)− 1

6
b(t)∆t2 +O(∆t3)

This is an implicit equation, since b(t) must be a function of v(t);

neglecting this term we get v only with an error O(∆t2). The best

compromise is here the leap-frog, which uses

r(t + ∆t) = r(t−∆t) + 2v(t)∆t +O(∆t3)

v(t) = v(t− 2∆t) + 2a(t−∆t)∆t +O(∆t3)

That this algorithm works well we can see from another notation

more clearly. Let’s start with r0 = r(t0), v0 = v(t0), and r1/2 =

r0 + v0h/2 (h = 2∆t). The above system of equations transforms

to

v1 = v0 + a1/2h +O(∆t3)
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r3/2 = r1/2 + v1h +O(∆t3)

This algorithm is one order more accurate than Euler, and remains

fully explicit (all an are known from rn) and it has another nice

property, which is the exact time reversibility. It means that the

drift in conserved quantities, present e.g. in Euler’s algorithm, is

reduced to machine accuracy with a sufficiently small h. Interest-

ingly, one can find a description of the leap-frog algorithm in R. P.

Feynman, R. B. Leighton and M. Sands, The Feynman Lectures

on Physics, Vol. 1, Addison-Wesley, 1963, Chapter 9 (“Newton’s

Laws of Dynamics”).

The time symmetry of the leap frog is closely related to having a

separable Hamiltonian in a conservative system.

Example: Use H = T (p) + U(q), with p = v, and q = r, and

show that the Hamiltonian equations, discretized to O(∆t3) are

equivalent to the leap-frog shown above.

Example: We apply a time transformation |U(q)|−1dτ = dt, and

the Poincaré transform of the Hamiltonian

Γ = |U(q)|−1(T (p) + U(q)−E)

with constant total energy E = T + U = const.. The time trans-

formation is called a regularising transformation of the two-body

problem, why? Evaluate Γ to see this.

Γ is not separable, however

Λ = ln(1 + Γ) = ln(T (p)−E)− ln |U(q)|

is separable. With the new Hamiltonian equations

p′ = −∂Λ

∂q
= − 1

1 + Γ
· ∂Γ

∂q
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q′ =
∂Λ

∂p
=

1

1 + Γ
· ∂Γ

∂p

t′ =
∂Λ

∂p0
=

1

1 + Γ
· ∂Γ

∂p0

or evaluated including the time transformation:

p′ = − 1

|U |
∂U

∂q

q′ =
1

T −E · p

t′ =
1

T −E
this can be used to construct a time transformed leap frog such as

v1 = v0 +
h

|U(r1/2)|
a1/2

r3/2 = r1/2 +
h

(T − E)
v1

t3/2 = t1/2 +
h

(T − E)

which has amazing properties (see S. Mikkola and S.J. Aarseth, A

Time Transformed Leap Frog, Celest. Mechan. and Dyn. Astron-

omy 84, 343, 2002).

4.2 Population Dynamics

•Malthus (1798)

dN

dt
= (b− d)N = rN (4.1)

with b and d birth and death rates, N population.
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Dimensions: [r] = [t−1]. dimensionless time: τ = rt

dN

dτ
= N

Solution: exponential growth

N(τ ) = N0e
τ

Fully dimensionless formulation, n(τ ) = N(τ )/N0 gives universal

growth law without free parameter

n(τ ) = eτ

Malthus’ law hasN ∗ = 0 as (unique, unstable) stationary solution.

• Excursion Stationary solutions — linear stability

For
dN

dt
= f(N) (4.2)

a solution N ∗ is stationary, if f(N ∗) = 0. (Linear) stability is

checked by expanding N(t) = N ∗ + n(t) with |n(t)| � 1:

dn

dt
= f ′(N ∗)n +O(n2) (4.3)

so n(t) ' n(0) exp[f ′(N ∗)t].

N ∗stable ⇔ f ′(N ∗) < 0 (4.4)

• Verhulst (1836): Malthus unrealistic (unlimited growth). Fi-

nite capacity K (food, space, etc.) Ṅ > 0 for N < K and Ṅ < 0

for N < K ⇒ logistic growth

dN

dt
= rN(1−N/K) (4.5)

Stationary solutions: (i) N ∗ = 0, (unstable), (ii) N ∗ = K stable.

30



-0.4

-0.2

0

0.2

0.4

0 0.2 0.4 0.6 0.8 1 1.2 1.4

d 
N

/d
 t

N/K

*

-0.4

-0.2

0

0.2

0.4

0 2 4 6 8 10

d 
(N

/A
) 

d 
ta

u

N/A

Figure 1: (a):Qualitative analysis of Verhulst-dynamics. (b): qualitative analysis of the
more complex case for K/A = 10, rA/B = 0.5.

Follows directly from qualitative analysis: plot dN
dt vs. N . Ex: do

a formal stability analysis.

Dimensions: [r] = [t−1], [K] = [N ] ⇒ dimensionless quantities

τ = rt, n = N
K

dn

dτ
= n(1− n) (4.6)

No free parameter in dimensionless formulation. Solve by sep. of

variables):

n(τ ) =
n0e

τ

1 + n0(eτ − 1)
(4.7)

Integration constant n0 from initial condition n(0) = n0. Dimen-

sionful quantities by back-substitution.

• More complex case:

dN

dt
= f(N) = rN(1−N/K)− BN 2

A2 +N 2
(4.8)

(all parameters pos.). Last contribution exhibits ‘threshold be-

haviour’, i.e., it is significant only for N > Nc ' A. Models pop-

ulation dynamics of a species, preyed upon by a predator species,

provided its population is of critical size (e.g., certain larvae-species,

preyed upon by woodpeckers, if there are sufficiently many larvae

around.)
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For a recent reference on these and related issues see: M. Scheffer,

S. Carpenter, J. A. Foley, C. Folke, and B. Walker, Catastrophic

shifts in ecosystems, Nature, 413 591 (2001).

4.3 Interacting Populations

Mutual interaction of reproduction rates. Any two populations can

be in different relation with each other.

• predator – prey

• competition

• symbiosis

• Volterra-Lotka System Lets start with simplest case: 2 in-

teracting populations, e.g., in predator – prey relation

dN1

dt
= N1(a− bN2)

dN2

dt
= N2(cN1 − d) (4.9)

All parameters a, b, c, d positive. Meaning: Malthusian growth for

N1 without N2, extinction of N2 (predator) without prey (N1)

to feed on. Approximately describes, e.g., hare-lynx populationen

in the woods of Canada. Other example: Sardines/predator fish.

Rem.: Economic interest can be in the predator (lynx skins) or in

the prey population (sardines); of interest: prediction of population

sizes, influence of hunting/fishing. Dimensionless formulation from

dN1

dt
= aN1(1−

b

a
N2)

dN2

dt
= dN2(

c

d
N1 − 1)
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⇒ u1 = c
dN1, u2 = b

aN2 τ = at, and α = d
a are suitable dimen-

sionless quantities, with dynamics

du1

dτ
= u1(1− u2)

du2

dτ
= αu2(u1 − 1) (4.10)

⇒ Instead of 4 just 1 (!) free parameter in the dynamics. Stationary

points:(i) u∗1 = u∗2 = 0, (ii) u∗1 = u∗2 = 1.

• Excursion Stability analysis for the multi-dimensional case

Given an ODE–system of the form

du

dt
= f(u) , (4.11)

or in components (u) = (u1, u2)

dui
dt

= fi(u) .

Stationary points are solutions of f(u) = 0. Linearized equation

for a solution of the form u(t) = u∗ + v(t) (|v(t)| � 1) reads

dv

dt
= ∇f(u∗)v +O(v2). (4.12)

Here A = ∇f(u∗) is a matrix with components

Aij =
∂fi
∂uj

∣

∣

∣

∣

∣

∣

∣

u∗

Formal solution of linearized equation is

v(t) = eAt v(0)

It contains components growing in time, if A has eigenvalues λα
with positive real part, Re(λα) > 0. ⇒ u∗ unstable. Conversely,
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if Re(λα) < 0 for all α, then u∗ is stable. (Rem.: Expand v(0) in

basis of eigenvectors of A)

• Back to Volterra Lotka System: Stability of stationary solutions.

(i) u∗1 = u∗2 = 0 ⇒
A =







1 0

0 −α







is diagonal; stationary sol. unstable.

(ii) u∗1 = u∗2 = 1 ⇒
A =







0 −1

α 0







Eigenvalues are λα = ±i√α, i.e. purely imaginary; stationary

solution is marginally stable: general solution of linearized equation

v(t) = c1e
+i
√
αtv1 + c2e

−i√αtv2 ;

has oscillatory character. Here v1,2 are eigenvectors of A corre-

sponding to eigenvalues ±i√α.

• Qualitative Analysis

Qualitative Analysis of ODE-systems

(i) phase portrait: plot of ‘director field’

f(u1, u2) =







u1 (1−u2)

αu2 (u1−1)







in (u1, u2)–plane; and plot of isoclines (zeros of u̇1 and u̇2) in

(u1, u2)–plane.

⇒ Either limit-cycles or (marginally stable) family of closed orbits.

(ii) Discussion/Solution of equation for trajectories in (u1, u2)–

plane.
du2

du1
= α

u2 (u1−1)

u1 (1−u2)
(4.13)
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Figure 2: Phase portrait and isoclines of Volterra-Lotka System for α = 0.5 (abscissa u1,
ordinate u2)

Solve by separation of variables

1−u2

u2
du2 = α

u1−1

u1
du1 ;

gives

u2 − ln u2 + α(u1 − ln u1) = H

with integration constant H given by initial conditions. Describes

closed trajectories, i.e. solutions of VL-system are periodic.

(Argument: define x = u1 − ln u1, and y = u2 − ln u2; in these

variables u2 − ln u2 + α(u1 − ln u1) = H is straight line!. Both

x and y are ≥ 1. For given x, y always 2 possible values for u1

resp. u2; the 4 possible combinations of these branches correspond

to the 4 quadrants of the trajectory)

• Complexity and Stability: The Volterra-Lotka System has

a non-trivial marginally stable stationary point, irrespective of pa-

rameters. In more complex systems of more than 2 interacting

predator-prey populations, stationary situations are usually un-

stable.
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Figure 3: (a) Solution of Volterra-Lotka System for α = 0.5 and initial condition u1(0) =
1,u2(0) = 3. (b) Trajectories for various initial conditions: u1(0) = 1 and u2(0) = 2, 3, 4
and 5.

Example 3.1

System of K predator- and K prey-species (all parameters posi-

tive):

dNi

dt
= fi(N,P) = Ni





ai −
∑

j
bijPj







dPi
dt

= gi(N,P) = Pi







∑

j
cijNj − di







This system has apart from the trivial (unstable) fixed point

N∗ = P∗ = 0 a non-trivial one, for which ai =
∑

j bijP
∗
j and

di =
∑

j cijN
∗
j . The stability matrix A = ∇(f

g

)

evaluated at the

stationary point has block structure

A =





































0 (−N ∗i bij)

(P ∗i cij) 0





































(4.14)

with 0 a K ×K block matrix of zeros and non-vanishing matrix

elements of the other block matrices given by ∂fi
∂Pj

(upper right) and
∂gi
∂Nj

(lower left) at the fixed point.
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As tr A =
∑

α λα = 0 there are only 2 possibilities for the fixed

point: (i) marginal stability (all eigenvalues are imaginary), (ii)

fixed point is unstable (if eigenvalue with Re(λα) < 0 exists, an-

other with Re(λα) > 0 must also exist). The marginal situation

will not be generic: any small perturbation of matrix elements will

as a rule create real parts in eigenvalues. I.e..: Complexity generates

instability in this case!
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5 Linear Algebra

5.1 Introduction

Problems of linear algebra mainly of two kinds

(a) Solving linear equations

(b) Eigenvalue/eigenvector-problems

Linear Equations: Solution of

Ax = b

where A is a N ×M matrix, x ∈ RM and b ∈ RN

The following cases have to be discriminated

• N = M : solution x usually unique; exception, detA = 0 (row-

or column degeneracy). Such a system of equations is called

singular. Numerically problematic: almost singular cases (dan-

ger of rounding-errors) at very large dimensions.

Tasks Ax = b, Axj = bj, j = 1, ..., k, A−1, detA

• N > M : More equations than unknowns (system over-

determined); in general no solution. Instead determination of

best approximation (linear least squares problem)

min
x
||Ax− b||2 ⇔ AtAx = Atb
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• N < M : Fewer equations than unknowns (system under-

determined); either no solution at all, or no unique solution.

General solution in the latter situation (obtained by singular

value decomposition) is of the form

x = xp + xn

with xp a special solution of the system and xn an arbitrary

linear combination of vectors from the null-space of A (the

M −N -dim space of vectors for which Axa = 0).

Examples

for the occurrence of systems of linear equations in physics

• Compute non-trivial stationary solutions of complex predator-

prey system: a = BP∗, d = CN∗

• One dimensional quantum systems with piecewise constant

potentials (as good approximation for quasi-one-dimensional

semiconducting hetero-structures).

– Bound states: solutions of homogeneous linear systems;

non-trivial solutions for detA = 0 ⇔ quantization-

condition.

– Scattering solutions: solutions of inhomogeneous linear

equations. reflection and transmission coefficients ⇔ con-

ductivity properties.

• Best decomposition of an ‘experimental signal’ in terms of

linear superposition of known elementary signals f(t) =
∑

k xkφk(t) in quadratic mean.

• Rate equations for nuclear reactions in stellar interior

• Numerical solution of partial differential equations
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• Eigenvalue/eigenvector-problems

Solution of

Ax = λx

where A is an N ×N matrix, x eigenvalue, λ eigenvector

Special cases: A real-symmetric, general real, complex, tri-

diagonal,.... with specially adapted algorithms

Examples for eigenvalue/eigenvector-problems in physics

• Solution of linear ODEs with constant coefficients

• Stability analysis for stationary points of dynamical systems.

• Coupled vibrations ẍµ = −∑

νKµνxν. Ansatz xµ = vµe
iωt

leads to ω2v = Kv (eigenmodes of crystals (phonon-

dispersion relation), of houses/bridges and other constructions

(Tacoma bridge disaster), etc.)

• Linear variational methods in quantum mechanics: variational

approximation of ground-state wave-functions ψ0 as linear

combination of finite (orthonormal) class of states ψ0 =
∑

k xkφk

• Eigenvalue problems of quantum mechanics: direct matrix rep-

resentations of operators, truncation of eigenvalue problem

For both problem-classes there are excellent libraries: LINPACK,

EISPACK, LAPACK (for C), IMSL/NAG-routines. But take care

of problems with bad condition!

Excursion: norms and condition number

||x|| =
√

√

√

√

∑

i
x2
i
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||A|| =
√

√

√

√

∑

i,j
x2
ij

||Ax|| ≤ ||A|| · ||x||
cond(A) = ||A|| · ||A−1||

bad condition number of a matrix means cond(A)� 1. Note that

if one looks at A(x + ∆x) = b + ∆b we find

||∆x||
||x|| ≤ cond(A)

||∆b||
||b||

Matrices with large condition numbers are numerically more

difficult to invert, they are close to a singular matrix in the sense

of the norm. It means that small variations of b create large

variations in the solution of the linear equations x. Note that there

are many different norm definitions, the 2-norm here serves as an

example.

Example: Determine condition numbers of the matrix {aij} =

1/(i + j − 1), of diagonal matrices, of the matrices used in the

Volterra-Lotka problems.

5.2 Linear Equations

Here brief discussion of three important algorithms

• Gauß-Jordan elimination

• LU-Decomposition

• Cholesky Decomposition (for positive definite matrices)
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5.2.1 Gauß-Jordan Elimination

Solution of a linear system of equations

Ax = b

or simultaneously for several right hand sides.

Axj = bj j = 1, . . . , K

Last problem is equivalent to solving the matrix equation

AX = B with A N ×N , X and B N ×K.

Gauß-Jordan (GJ) elimination operates on the scheme of coeffi-

cients




















a11 . . . a1N x11 . . . x1K b11 . . . b1K
... . . . ... ... . . . ... ... . . . ...

aN1 . . . aNN xN1 . . . xNK bN1 . . . bNK





















(5.15)

and is based on the following elementary operations:

• Exchange of rows of A and B does not change the solution

X .

• Replacing a row of A and B by a linear combination of itself

and another row does not change the solution X

• Permutation of columns of A does not change the solution,

if simultaneously the same permutation is performed on the

rows of X .
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GJ elimination uses a combination of these operations, chosen such

that A is transformed into the identity matrix. Let GJE have pro-

ceeded to the point that aij = δij for j < k, as indicated below;


















































1 0 . . . a1k . . . . . . a1N

0 1 . . . a2k . . . . . . a2N
... . . . ... ...

0 . . . akk . . . akj . . . akN
... ... ... ...

0 . . . aik . . . aij . . . aiN
... ... ... ...

0 . . . aNk . . . . . . aNN



















































(we refer here to the transformed scheme of coefficients); the next

step of the GJE scheme reads

• Without pivoting:

akj −→ akj/akk , (j ≥ k)

aij −→ aij − akjaik/akk , i 6= j, (j ≥ k)

For the solution of linear equations these transformations must

be extended to B:

bkj → bkj/akk , 1 ≤ j ≤ K and

bij → bij − bkjaik/akk , 1 ≤ i 6= j ≤ K

• With pivoting (needed to improve numerical stability by avoid-

ing division by small numbers (danger of amplifying errors)

in the first part of a GJ step): (i) Search l ≥ k for which

|alk| = maxk≤i≤N |aik|. (largest (in modulus) element in the

k-th column below the diagonal) (ii) Exchange rows l and k,

(iii) then continue as without pivoting.

Rem.: here we described only column pivoting; one may search

both in columns and in rows (permutation of columns requires
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performing a permutation of rows of X (see (iii) above) which has

to be reversed in the end.

• Effort of GJ algorithm scales like N 3/3 +N 2K for K (general)

right hand sides; need to know all right hand sides in advance; for

matrix inversion (r.h.s. = I) effort scales as N 3.

5.2.2 LU-Decomposition

• Gaussian Elimination with Back-substitution: It is

within the GJ scheme not strictly necessary to proceed up to the

point, where A has been turned into the identity matrix. It would

suffice to transform A into upper triangular form (requires less op-

erations !). A linear system, in which the matrix or coefficients has

(upper) triangular form can simply be solved by recursion (back-

substitution). Suppose we have the system Ax = b with aij = 0

for i > j, then one solves (recursively).

xN = bN/aNN

xN−1 =
1

aN−1,N−1
(bN−1 − aN−1,NxN)

... ...

xi =
1

ai,i
(bi −

∑

j>i
aijxj)

Analogously for lower triangular matrix.

• LU decomposition: The recursive solution strategy is the ba-

sis of the method of solving linear equations by LU-decomposition.

For that purpose, decompose the quadratic coefficient-matrix A

into a product of a lower triangular matrix L and an upper trian-

gular matrix U

LU = A (5.16)
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A linear system Ax = b would then be solved in two steps:

Ly = b

Ux = y

each requiring 1
2
N 2 per r.h.s.

Owing to the triangular nature of the matrices L and U the system

of equations to be solved for the decomposition LU = A is of the

form
min(i,j)
∑

k=1
LikUkj = aij , 1 ≤ i, j ≤ N

We have N 2 eqs. for N 2 +N unknowns ! Normalization through

Lii = 1 , 1 ≤ i ≤ N

In detail thus
















1
L21 1
L31 L32 1
...

LN1 LN2 . . . 1

































U11 U12 . . . U1N

U22 . . . U1N

...
. . .

UN−1,N−1 UN−1,N

UNN

















=

















a11 a1N

...
...

aN1 aNN

















solution recursively by LU Crout-algorithm:

U11 ⇐ U11 = a11

Li1 ⇐ Li1U11 = ai1 i = 2, . . . , N

U12 ⇐ U12 = a12

U22 ⇐ L21U12 + U22 = a22

Li2 ⇐ Li1U12 + Li2U12 = ai2 i = 3, . . . , N
...

So you first solve for 1st column of U , then for 1st column of L,

then for 2nd column of U , then for 2nd column of L, etc.
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Algorithm :

for j=1,2,..., N do

{ for i=1,...,j do

Uij = aij −
i−1
∑

k=1
LikUkj ; (5.17)

for i=j+1,...,N do

Lij =
1

Ujj





aij −
j−1
∑

k=1
LikUkj





 ; (5.18)

}

Rem.:

• Scaling as Gaussian Elimination with Back-substitution

N 3/6 +N 2/2K. However: need not know all right hand sides

at the beginning!

• Using LU-decomposition one computes the determinant of a

matrix as

detA =
N
∏

i=1
Uii

• For solving lin. eqs., Crout’s algorithm must be supplemented

by routines for the solution of the intermediate equations .

• published algorithms (see NumRec) use the fact that the ma-

trices L and U can be stored in the original matrix (which is

overwritten.)

• For LU decomposition, too, pivoting is required (see eq.

(5.18).
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5.2.3 Cholesky-Decomposition

Cholesky-Decomposition is a variant of LU decomposition for pos-

itive definite matrices A.

• A matrix A is called positive definite, if
∑

ij
aijxixj > 0 for all x 6= 0

• Every real-symmetric matrix of the form A = LLt is positive

definite, as
∑

ij aijxixj =
∑

ijk Lik(L
t)kjxixj =

∑

k (
∑

iLikxi)
2. Con-

versely, every real-symmetric positive definite matrix can be ex-

pressed as LLt; Cholesky-decomposition provides just such a rep-

resentation, in which L is lower triangular (and the corresponding

transpose Lt is upper triangular).

• Evaluation recursively à la Crout

L11 ⇐ L2
11 = a11

Li1 ⇐ Li1L11 = ai1 i = 2, . . . , N

L22 ⇐ L2
21 + L2

22 = a22

Li2 ⇐ Li1L21 + Li2L22 = ai2 i = 3, . . . , N
...

• Application Generation of Gaussian random numbers with

given correlations (needed, e.g., in option-pricing theory according

to Black-Scholes), solution of linear systems with positive definite

coefficient-matrix.

If one needs Gaussian random numbers yi with yi = 0 and yiyj =

Cij, one can generate these by linear combination of independent

Gaussian random numbers xi with xi = 0 and xixj = δij via

yi =
∑i
k=1Likxk with Cholesky-decomposition C = LLt. Ex.:

Check this.
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5.3 Eigenvalue problems

We discuss by way of example

• Coupled vibrations/Lattice vibrations

• Linear variational methods of QM

We shall hardly discuss algorithms (only give sketchy hints con-

cerning the underlying ideas) and encourage to use boxed routines

(LINPACK, EISPACK, LAPACK, BLAS).

5.3.1 Algorithms

Let us briefly discuss numerical methods for diagonalizing matri-

ces. The methods in use depend on (and are optimized for) the type

of matrix to be diagonalized (real-symmetric, complex-hermitean,

general real/complex). There are methods which compute eigen-

values only or both eigenvalues and eigenvectors.

We shall here briefly describe the real-symmetric case. Such ma-

trices can be diagonalized by real orthogonal transformations P

(with P tP = PP t = 1l),

diag(λα) = P tAP ⇔ A = Pdiag(λα)P
t

with P as column matrix of eigenvectors of A.

• Jacobi Method(Jacobi, 1836)

The Jacobi-Method uses a sequence of elementary rotation-
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matrices P(pq) of the form

P(pq) =











































1
. . .

c . . . s
... 1 ...

−s . . . c
. . .

1











































to diagonalize a given matrixA. Apart from the entries in rows and

columns p and q, P(pq) is a unit matrix; the (p, p), (p, q), (q, p) and

(q, q) elements of P(pq) constitute a rotation matrix in the (p, q)-

plane, i.e. c and s are the sine and cosine of a suitably chosen

angle.

The elementary transformation

A′ = P t
(pq)AP(pq)

affects only rows and columns p and q; elementary algebra gives

a′rp = a′pr = carp − sarq , r 6= p, q

a′rq = a′qr = carq + sarp , r 6= p, q

a′pp = c2app + s2aqq − 2scapq

a′qq = s2app + c2aqq + 2scapq

a′pq = (c2 − s2)apq + sc(app − aqq)
(5.19)

The idea of the elementary (p, q)-Jacobi-transformation is to make

the new (p, q)-off-diagonal element a′pq vanish. This is accomplished

by choosing the rotation angle

cot 2φ =
c2 − s2

2sc
= −app − aqq

2apq
.
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Convergence of the Jacobi-method follows from the observation

that the sum of all off-diagonal elements squared S =
∑

r 6=s |ars|2
decreases in each elementary rotation

S′ = S − 2|apq|2

In actually performing the elementary steps, formulations are

always chosen to guarantee maximally available numerical stabil-

ity. Successive Jacobi-rotations are defined by choosing indices in

cyclic fashion (P(12), P(13), P(14), . . . P(1N), P(23), . . .).

• Givens-Householder Reduction to Tridiagonal Form

and QL/QR Algorithm

Jacobi’s method is simple and robust, but not the fastest. To-

day the methods used consist of a combination of algorithms, the

first step of which is a transformation of matrices to tridiagonal

form, which are then diagonalized via the (non-elementary!) QR-

algorithm.

• Givens-Householder transformations: transformation of a matrix

to tridiagonal form through a (finite) sequence of orthogonal trans-

formations

Ai+1 = P t
iAiPi ,

where each of the Pi has the following structure

P = 1l− 2wwt ⇔ Pnm = δnm − 2wnwm with |w| = 1

Rem.: P 2 = 1l, P t = P ⇒ P orthogonal; Px = x − 2ww · x
amounts to a reflection of x across the plane orthogonal to w (see

figure).

Elementary Householder-transformations are organized such that

w is correlated with the vector x to be transformed (a row/column-

vector of Ai); specifically they are chosen in such a way that all
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P x

x

w

w x.

Figure 4: Operation of P = 1l−2wwt on x. The scalar product w ·x gives just the distance
of the tip of x from the plane orthogonal to w.

except one component is made to vanish after the transformation.

With a unit-vector e1 and

w =
x∓ |x|e1

|x∓ |x|e1|
one obtains

Px = x−2
w(|x|2 ∓ |x|x1)

|x∓ |x|e1|
= x−2

(x∓ |x|e1)(|x|2 ∓ |x|x1)

2(|x|2 ∓ 2|x|x1)
= ±|x|e1 ,

i.e. a vector with a component only in the e1-direction.

First step of Householder-reduction: With x = (a21, a31, . . . , an1)
t

and the (n − 1) dimensional unit-vector e1 = (1, 0, 0, . . .)t one

constructs an (n − 1) × (n − 1) Householder-submatrix (n−1)P1

and

P1 =





















1 0 0 . . . 0

0
... (n−1)P1

0




















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Using this matrix one obtains

P1A =





























a11 a12 a13 . . . a1n

k

0
... (n−1)P1

(n−1)A

0





























and finally

P1AP1 =





























a11 k 0 . . . 0

k

0
... (n−1)P1

(n−1)A (n−1)P1

0





























,

where (n−1)A is the (n− 1)× (n− 1) sub-matrix of A made of the

last (n−1) rows and columns ofA, and k = ±|(a21, a31, . . . , an1)
t|.

Second step of Householder-reduction with

P2 =





























1 0 0 0 . . . 0

0 1 0 0 . . . 0

0 0
... ... (n−2)P2

0 0





























affects only the transformed sub-matrix aus. and so on... In all,

n − 1 Householder transformations are sufficient to bring the

matrix to tridiagonal form.

Rem. 1: The actual implementation of the algorithm utilizes the

fact that Householder-matrices are constructed in terms of suitably

chosen normalized vectors w, hence no matrix-matrix multiplica-

tions need be performed, and matrix-vector multiplications only

are required (reduces the algorithmic effort by a power of N !).
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Rem. 2: If a matrix is real but not symmetric, one can transform it

by a similarly constructed sequence of Householder-tansformations

into upper Hessenberg form (which has a single non-vanishing sub-

diagonal !). Example for N = 4:

H =





















h11 h12 h13 h14

h21 h22 h23 h24

0 h32 h33 h34

0 0 h43 h44





















• QR/QL Algorithm

This algorithm is based on the following theorem: every real-

symmetric matrix A can be written as a product of an orthogonal

matrix Q and an upper triangular matrix R (in analogy to the

polar representation of complex numbers z = eiφ|z|.

A = QR

For a general matrix one constructsQ as a product of Householder-

matrices, which successively eliminate columns below the main di-

agonal. If one considers the matrix

A′ = RQ

obtained by the reverse order of multiplication, the orthogonality

of Q entails R = QtA, hence

A′ = QtAQ ,

that is, A′ is obtained from A via an orthogonal transformation. A

QR-transformation defined in this way conserves matrix properties

such as symmetry, tridiagonal or Hessenberg form. The same idea

can be performed in a manner that replaces the upper triangular

matrix R by a lower triangular matrix L. (QL-transformation) :
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A = QL, A′ = LQ = QtAQ. The QL algorithm is based on a

sequence of QL-transformations

As = QsLs , As+1 = LsQs = Qt
sAsQs (5.20)

(Rem.: Convince yourself of the fact that the As = QsLs defines

a system of equations that can be solved recursively under the

assumption that Ls is lower triangular and Qs is orthogonal.)

The above transformations have the following properties (without

proof.): (i) If the eigenvalues of A are non-degenerate, then As

converges to a matrix of lower triangular form (and its diagonal

elements are the eigenvalues of A). (ii) If A has a p-fold degenerate

eigenvalue λi, then As will converge to a matrix, which is of lower

triangular form except for a p×p-block (whose eigenvalues converge

to λi).

The computational effort is O(Nn3) per QL-transformation for

a general n × n matrix, but only O(n2) for a tridiagonal matrix

or a Hessenberg matrix. This is the reason for introducing the

first phase of Householder transformations that transform general

matrices to tridiagonal or Hessenberg form, respectively.

Numerical Recipes Routines

• JACOBI: Jacobi Diagonalization. Declaration:

void jacobi(double **a, int n, double d[],

double **v, int *nrot)

On input: a is the matrix to be diagonalized, n its dimension;

on output: d holds the eigenvalues, v is the column matrix of

corresponding eigenvectors of a and nrot gives the number of

Jacobi-rotations used.

• TRED2: Householder-Reduction of a real symmetric matrix to
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tridiagonal form. Declaration:

void tred2(double **a, int n, double d[],

double e[])

On input: a is the matrix to be diagonalized, n its dimension;

ont output: d holds diagonal elements, e (in its last n-1 en-

tries) the subdiagonal elements of the tridiagonal matrix pro-

duced in the reduction, and a holds accumulated product of

transformation matrices used to produce the tridiagonal form.

• TQLI: Variant of the QL algorithm for computing eigenvalues

and eigenvectors of a symmetric tridiagonal matrix. Eigen-

values of a full real symmetric matrix can be computed, if

the product of Householder transformation matrices by which

the full matrix is reduced to tridiagonal form is accumulated.

Declaration:

void tqli(double d[], double e[], int n, double

**z)

On input: d and e hold diagonal elements and subdiagonal

elements of the tridiagonal matrix, n its dimension, and z is

either the identity matrix or the matrix a that is produced

by TQLI; on output: d holds the eigenvalues and z either the

eigenvectors of the tridiagonal matrix or the eigenvectors of

and a depending on choice of and z.

• BALANC,ELMHES,HQR sequence of routines for diagonalizing

non-symmetric real matrices, consisting of a ’conditioning-

routine’, reduction to Hessenberg form, QR algorithm for

Hessenberg matrices. Declarations:

void balanc(double **a, int n)

void elmhes(double **a, int n)

void hqr(double **a, int n, double wr[], double
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wi[])

HQR produces only eigenvalues; on input: meaning of a and n

as before; on output wr and wi hold real and imaginary parts

of the eigenvalues of a.

• Broader spectrum of routines: LAPACK, EISPACK, NAG, IMSL
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5.3.2 Linear Variational Methods of QM

Are used for computing spectra and eigenstates of Hamiltonoper-

ators

H =
p2

2m
+ V (r)

with complicated potentials, V (x), for which the eigenproblem is

not analytically solvable.

Examples

• Anharmonic oscillator (1D):

V (x) =
1

2
mω2x2 + λx4 , λ > 0

• Double-well potential (1D):

V (x) = −1

2
mΩ2x2 + λx4 , λ > 0

• Lennard-Jones interaction between noble gas atoms (3D):

V (r) = ε







1

(r/σ)12
− 1

(r/σ)6







Determine eigenstates as stationary points of the energy-functional

E[ψ] =
〈ψ|Hψ〉
〈ψ|ψ〉 (5.21)

In lowest order of a small variation δψ one has (with E = E[ψ])

δE = E[ψ+δψ]−E[ψ] =
〈δψ|Hψ〉 − E 〈δψ|ψ〉

〈ψ|ψ〉 +
〈ψ|Hδψ〉 −E 〈ψ|δψ〉

〈ψ|ψ〉 .

This expression vanishes for arbitrary δψ if and only if,

Hψ = Eψ ,
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i.e., if ψ is an eigenstate of H and E the corresponding eigenvalue.

• Approximative solutions of eigen-problems are obtained by con-

sidering the variational problem in finite-dimensional sub-spaces

of the Hilbert space H.

One investigates stationarity of the energy functionals within a

subspace of H spanned by a finite family {ϕk} of states:

E[x] =
∑

nm x
∗
nxmHnm

∑

nm x∗nxmSnm

with

Hnm = 〈ϕn|Hϕm〉 , Snm = 〈ϕn|ϕm〉
Stationarity w.r.t. variations of Re[xn] and Im[xn] (alternatively

w.r.t. xn and x∗n) holds, if

Hx = ESx . (5.22)

(Proof.: Eq. for zeros of partial derivatives w.r.t. the x∗n). This is

a so-called generalized eigenvalue-problem. It becomes a normal

one, if the system {ϕk} of states is orthonormal.

• Routines exist which transform generalized eigenvalue problems

into normal ones. These are based on the following: one defines

z = S1/2x. This is used to transform the above generalized problem

(5.22) into the normal eigenvalue problem

H ′z = Ez with H ′ = S−1/2HS−1/2 .

Rem.: Alternatively one may multiply (5.22) by S−1 to obtain

a different normal problem H̃x = Ex, albeit with an operator

H̃ = S−1H that is in general non-hermitean, and so requires more

complicated numerical algorithms for its diagonalization than her-

mitean ones. The variational procedure just described is linear :

one varies linear combinations of a given family of functions. Quite
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popular also are non-linear methods, which usually consider but

one non-linearly parameterized state (Ritz’ variational principle).

• Variational approximation of the ground state is always an ap-

proximation from above.

Example 1 Anharmonic oscillator: as family of states one chooses

a few low-energy eigen-states of the undisturbed problem • 1st

step: formulation of a dimensonsless problem. From

H =
p2

2m
+

1

2
mω2x2 + λx4 = H0 + λx4

one gets

H = h̄ω[
1

2
Π2 +

1

2
Q2 + λ̃Q4] ,

where Π = p/
√
mωh̄ and Q = x/x0 with x0 =

√

h̄/mω are di-

mensionless momentum and position operators with commutation-

relation [Π, Q] = −i, and λ̃ = λx4
0/h̄ω.

The eigen-problem of the unperturbed operator can be solved

(i) either by solving the Schrödinger equation corresponding to

the dimensionless unperturbed problem (harmonic oscillator with

µ = h̄ = ω = 1), or (ii) algebraically by introducing raising- and

lowering-operators.

• (i) The Schrödinger-way:

The unperturbed dimensionless Hamilton operator is

H̃0 =
1

2
[Π2 +

1

2
Q2] = −1

2

∂2

∂Q2
+

1

2
Q2

The orthonormal eigenfunctions of this (differential) operator are

ϕn(Q) =
1

√√
π 2nn!

Hn(Q)e−Q
2/2
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where the Hn(Q) are the so-called Hermite polynomials. These

functions satisfy

H̃0 ϕn(Q) = (n +
1

2
) ϕn(Q)

We have the scalar product

〈ϕn|ϕm〉 =
∫

dQϕn(Q)ϕm(Q) = δn,m

The Hermite-polynomials are defined recursively:

H0(Q) = 1 ; H1(Q) = 2Q

H ′n(Q) = 2nHn−1(Q)

2QHn(Q) = 2nHn−1(Q) +Hn+1(Q)

(with Hk(Q) ≡ 0 ∀k<0 to start the recursion). To evaluate the

matrix-elements of the operator Q,

Qn,m = 〈ϕn|Q ϕm〉 =
∫

dQ ϕn(Q)Q ϕm(Q)

we can use the second recursion relation. Inserting definitions of

the ϕn, the recursion relation, and orthogonality of the φn one gets

Qnm = 〈ϕn|Q ϕm〉 =
1√
2
(
√
n + 1 δn,m−1 +

√
n δn,m+1)

for the matrix elements of the dimensionless position operator. The

matrix elements of a power Qk are obtained by multiplying the Q-

matrix k times with itself.

• (ii) The algebraic way:

One introduces so-called raising and lowering operators a† and a

as follows:

Q =
1√
2
(a + a†) , Π =

1√
2i

(a− a†) , [a, a†] = 1 .
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With these

H = h̄ω[a†a +
1

2
+
λ̃

4
(a + a†)4] .

• 2nd step: The variational family of states is chosen to consist of

eigen-states ϕn of the undisturbed problem with

aϕn =
√
nϕn−1 a†ϕn =

√
n + 1ϕn+1 .

In this basis the undisturbed problem is diagonal,

(H0)nm = h̄ω(n + 1/2)δnm .

The matrix-representation of the dimensionless position-operator

in this basis is non-diagonal:

Qnm = 〈ϕn|Qϕm〉 =
1√
2
(
√
n + 1 δn,m−1 +

√
n δn,m+1)

Exercise: Compute the matrix-representation of Q4.

• 3rd step: One can now give the matrix-representation of H ,

which is truncated at a maximum value nmax = N , and numer-

ically diagonalized. By variation of N one obtains information

about the precision. It is largest for the lowest lying eigen-states.

• Results: For N = 20 the (dimensionless) ground-state en-

ergy at λ̃ = 0.1 is correct already in its first 9 digits E0 =

0.559146327 . . . h̄ω.

One notes that the higher eigenvalues do not converge as fast as

the lower ones. For E10 a 30-dimensional Hilbert-space is still in-

sufficient to produce a good approximation.

Example 2: Double-well potential. The double-well potential de-

scribes a number of physically interesting situations (the motion of

nitrogen in NH3, important for NH3-maser, atomic tunneling sys-

tems in glasses, which dominate glassy low temperature physics,
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Figure 5: Anharmonic Oscillator: Behaviour of a few dimensionless eigenvalues (Ei,
i =0,1,2,3,8,9, note that the index is shifted in the plot axis by one) as function of the
dimension N (plot axis n) of the matrix-approximation for λ̃ = 1.0
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Figure 6: Double-Well Potential: Behaviour of a few dimensionless eigenvalues as function
of the dimension N of the matrix-approximation for λ̃ = 1.0 and Ω̃ = Ω/ω = 4.
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reaction centers in proteins, etc... The double-well potential

H =
p2

2m
− 1

2
mΩ2x2 + λx4

is treated in a fashion analogous to that used for the anharmonic

oscillator. One is at liberty to freely choose the frequency of a

hypothetical undisturbed harmonic problem.

H =
p2

2m
+

1

2
mω2x2−1

2
m(Ω2+ω2)x2+λx4 = H0−

1

2
m(Ω2+ω2)x2+λx4

Here eigenvalues of negative energy in nearly degenerate pairs are

observed (tunneling doublets). The degeneracy is exponential in Ω.

Example 3: The method can be generalized to arbitrary hamil-

tonians of the form.

H =
p2

2m
+

∑

k
vkx

k

Exercise: Fill out the details.
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5.3.3 Coupled Vibrations

The analysis of coupled harmonic vibrations is another case which

is conveniently analyzed in terms of eigenvectors and eigenvalues

of the so-called dynamic matrix.

• General case The general formulation is as follows. Denoting

by uµ the components of deviations from a set of reference positions

(for a system of N particles one would have 1 ≤ µ ≤ 3N), the

equations of motion of a harmonic system quite generally read

mµüµ = −∑

ν
Kµνuν (5.23)

(the masses would be equal in triples). Defining
√
mµuµ = xµ one

obtains

ẍµ = −∑

ν
Dµνxν

with Dµν = Kµν/
√
mµmν. The system of ODEs is solved in terms

of eigenvectors of the dynamic matrix D by making the ansatz

xµ(t) = vµe
±iωt

which leads to the eigenvalue equation

ω2vµ =
∑

ν
Dµνvν .

The general solution is then a superposition of eigen-solutions

uµ(t) =
1
√
mµ

∑

α
vαµ[aαe

iωαt + bαe
−iωαt]

with coefficients fixed by initial conditions uµ(0) and u̇µ(0). (⇒
linear equations for the coefficients aα and bα)

Note that for the whole thing to make sense, the eigenvalues of

D must be positive (more precisely, non-negative), otherwise the

solutions would not be small vibrations. Another way to see this
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is to note that the initial set of equations of motion derives from a

Lagrangian

L = T − V =
∑

µ

mµ

2
u̇2
µ −

1

2

∑

µν
Kµνuµuν

with a potential energy that has a quadratic (harmonic) minimum

at uµ = 0.

• Translationally invariant interactions

In the case of translationally invariant interactions (no forces arise,

if all particles are moved by the same amount), the equations of

motion are of the form

miüia = −∑

jb
Kab
ij (uib − ujb) (5.24)

(the index µ of the general formulation is now split into particle

index i (1 ≤ i ≤ N) and Cartesian index a (1 ≤ a ≤ 3). As above

one introduces xia = uia
√
mi and obtains an equation of the form

ẍia = −∑

jb
Dab
ij xjb

with

Dab
ii = − 1

mi

∑

j(6=i)
Kab
ij Dab

ij =
1

√
mimj

Kab
ij

Dynamic matrices arising from translationally invariant interac-

tions always have d zero eigenvalues with corresponding eigenvec-

tors describing homogeneous translations of the system in one of

the d possible Cartesian directions.

• Harmonic Approximation

Interacting systems do not normally have quadratic interaction po-

tentials giving rise to harmonic vibrations. For low energies – small

excursions of particles from stable equilibrium positions – one can

nevertheless approximate the interaction energy of an interacting
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many body system by a quadratic form, thereby describing the

overall motion of the system by coupled vibrations.

Consider a system with translationally invariant interactions, de-

pending on distance only,

V ({ri}) =
1

2

∑

ij
φ(|ri − rj|) .

One considers small deviations about stable equilibrium positions

positions Ri: ri = Ri + ui, and expands up to second order in the

deviations

φ(|ri − rj|) = φ(|Ri −Rj|) +
∑

a
∂aφ(|Ri −Rj|) (uia − uja)

+
1

2

∑

ab
∂a∂bφ(|Ri −Rj|) (uia − uja)(uib − ujb)

with

∂aφ(|Ri −Rj |) =
∂

∂Ra

φ(|R|)
∣

∣

∣

|Ri−Rj |
∂a∂bφ(|Ri −Rj|) =

∂2

∂Ra∂Rb

φ(|R|)
∣

∣

∣

|Ri−Rj |
.

Note that for φ depending only on distance as assumed here, we
have

∂aφ(|Ri −Rj |) = φ′(|Ri −Rj |)
Ria −Rja

|Ri −Rj |

∂a∂bφ(|Ri −Rj |) = φ′′(|Ri −Rj |)
(Ria −Rja)(Rib −Rjb)

|Ri −Rj |2

+
φ′(|Ri −Rj |)
|Ri −Rj |

(

δab −
(Ria −Rja)(Rib −Rjb)

|Ri −Rj |2
)

(5.25)

(Note that the expressions at second order simplify if equilibrium

positions are such that all forces on particles (and not just their

sum) are individually zero, hence φ′(|Ri −Rj|) = 0.)

Inserting this expansion into V ({ri}) and noting that the first order

contribution vanishes, as the expansion is about a stable stationary

point of the potential energy, one obtains

V ({ri}) ' const.+
1

4

∑

ij

∑

ab
∂a∂bφ(|Ri−Rj|) (uia−uja)(uib−ujb) .
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The equations of motion then are

miüia = −∑

jb
∂a∂bφ(|Ri−Rj|) (uib−ujb) ≡ −

∑

jb
Kab
ij (uib−ujb) ,

which is the form we have given for translationally invariant inter-

actions above.

• Lattice Vibrations

Let us consider lattice vibrations as another special case. In such a

situation the number of degrees of freedom is O(1023), so there is

no way to solve equations of motion by diagonalizing the dynamic

matrix directly.

For lattice vibrations, one can use the simplifying feature that every

point of a regular lattice has the same neighbourhood (apart from

boundary effects), so one might anticipate that the problem should

be reducible to solving something of the order of complexity of the

equation of motion for a single representative site. This is indeed

the case.

We shall (for simplicity) assume that our lattice has periodic

boundary conditions (i.e. it would be a closed ring in one dimen-

sion, a torus in two dimensions, and a 3-torus in 3-dimensions).

This simplifies the mathematics, but it doesn’t affect the physics

in the large system limit.

For the sake of definiteness, we consider a simple cubic lattice con-

taining N = L × L× L particles, i.e. it has L lattice spacings in

each Cartesian direction. We denote the lattice constant by `.

The equations of motion for the deviations of particle positions

from their regularly spaced equilibrium positions {Ri} are

miüia = −∑

jb
Kab[Ri −Rj] (uib − ujb) ,

where the force constants Kab must be of the form (5.25) and so

depend on (ij) only through the difference vectors Ri −Rj .
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We take a lattice of identical particlesmi = m. With
√
muia = xia

and Dab[Ri −Rj ] = Kab[Ri −Rj ]/m one gets

ẍia = −∑

jb
Dab[Ri −Rj ] (xib − xjb) ,

The system is harmonic, so it will have solutions of the form

xia(t) = viae
±iωt. The coefficients via must then solve

ω2via =
∑

jb
Dab[Ri −Rj ] (vib − vjb) .

Due to the full translational invariance of the system, the spatial

behaviour of each of these solutions is also harmonic, i.e. it is of

the form

via = eae
ik·Ri

Inserting this ansatz into the above equation and multiplying by

e−ik·Ri, one obtains the 3× 3 eigenvalue-equation

ω2ea =
∑

b
D̂ab[k] eb (5.26)

with

D̂ab[k] =
∑

j
Dab[Ri −Rj ](1− e−ik·(Ri−Rj))

It is important to realize that due to the full translational invariance

of the problem this sum is independent of i!

Clearly, the eigenvalues ω2 and the eigenvectors e in (5.26) will be

functions of k. The range of allowed values for k is fixed by the

periodic boundary conditions. Going by L lattice spacings in any

of the Cartesian directions should reproduce the solution, i.e.

ka =
2π

L`
na with integer na and − L

2
≤ na <

L

2
That is, we have N = L × L × L different k values and a 3 × 3

eigenvalue problem for each k value, thus in total 3N eigenvalues

as expected.
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Let us consider the simplest situation, where only nearest neigh-

bour terms contribute to D̂ab(k). For a simple cubic lattice, where

nearest neighbours are located in the 3 Cartesian directions, the

only expression compatible with (5.25) is

D̂ab[k] = 2Dδab (3− cos(kx`)− cos(ky`)− cos(kz`)) .

Contributions non-diagonal in the Cartesian indices a, b can arise

only from terms that go beyond nearest-neighbour interactions. In

this simple case therefore, the three eigenvalues ω2(k) for each k

are degenerate. One has the freedom to organize the eigenvectors

e(k) in such a way that one is longitudinal with e ‖ k and the

two other are transversal with e ⊥ k.

Actually one finds that in the long wavelength limit, the modes

are either transverse or longitudinal also in the more general case

where interactions beyond nearest-neighbour exist.

The long wavelength limit |ka`| � 1 of the eigenvalues is notable;

by expanding the cosines above one obtains

ω2(k) ' D`2(k2
x + k2

y + k2
z) = D`2k2 ,

so

ω(k) '
√
D`2 k

This is precisely the scaling that is known for the relation be-

tween angular frequency and wave-vector of sound waves, giving

the sound velocity c as

c =
√
D`2 .
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Figure 7: Left panel: Phonon dispersion relation for the simple case treated here. The
point Γ denotes the origin of k-space. The four branches exhibit the phonon dispersion
ω(k) for straight lines in k-space. The labels on the horizontal axis denote the endpoints
k`, of the respective branches. Each ω(k) in the present simplified setting is threefold
degenerate. Right panel: Realistic phonon dispersion relations for Copper (face-centered
cubic lattice) for comparison; note that longitudinal (L) and transversal (T) branches
have different frequencies
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6 Solving Ordinary Differential Equations (ODEs)

6.1 Introduction

ODEs provide one of the commonly used ways to formulate dy-

namic laws of physics. Their ubiquitous use in physics is due to the

fact that local dynamical laws can be formulated either in terms

of a few well established fundamental physical principles or via

comparatively simple plausibility arguments and intuition. Global

dynamical behaviour (≡ the solution of ODEs for given initial con-

ditions!) on the other hand is usually beyond the grasp of simple

intuition.

Examples

• Newton’s equation of motion:

miẍi = Fi({xj}, t)

Forces occurring in many-body problems can be given in terms

of fundamental laws (gravitation, electrodynamic interaction

..) and so suffice to formulate equations of motion; their solu-

tion for given initial conditions on the other hand is hardly to

be found via simple arguments.

• Master Equations for stochastic processes:

dp(n, t)

dt
=

∑

n′
[W (n, n′)p(n′, t)−W (n′, n)p(n, t)]

Here n denotes one of the (discrete) states of a system, p(n, t)

its probability at time t, and W (n, n′) the rate for transitions

n′ → n. Example: occupation probability of atomic levels in a

gas or solid. Transition rates determined by interactions (ex-

change of photons, phonons)... and computable
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• Population dynamics, kinetics of chemical reactions (s. Ch. 4)

dNi

dt
= fi({Nj})

with Ni size of population (or population density) or concen-

tration of (chemical) species i. Gives adequate description of

kinetics, as long as interactions are not dominated by slow

spatial exchange processes: for interactions to occur, reaction

partners must be close to each other; requires time, if reac-

tions modify reaction partners (prey gets eaten !)⇒ reaction-

diffusion processes (partial differential equations, PDEs)

Formally, the examples just described constitute initial value

problems. Unique solutions are obtained by specifying initial con-

ditions of functions sought (and except for first order ODEs) of

their derivatives. In other situations the specification might consist

in giving boundary conditions for functions and derivatives at two

ends of an interval; this is a common situation when computing

eigenvalues and functions of differential operators.

6.2 Elementary Algorithms

It is sufficient to consider systems of 1st order ODEs. To see this,

note that an ODE of higher order (we shall assume that it can be

transformed into the so-called normal form)

y(n) = f({y(k)}k=0,...,n−1, x)

can be transformed into a system of 1st order equations by defining

y0 = y , y′k = yk+1 , k = 0, . . . , n− 2 ,

which results in

y′0 = y1
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y′1 = y2
... = ... (6.27)

y′n−2 = yn−1

y′n−1 = f({yk}k=0,...,n−1, x)

Writing this in vectorial form, one has

y′ = f(y, x) . (6.28)

• Existence and Uniqueness

of solutions of initial value problems (6.28) with y(x0) = y0 in

a neighbourhood of x0,y0 is granted, if f(y, x) obeys a Lipschitz

condition in some vector norm || · ||

||f(y, x)− f(z, x)|| ≤ λ||y − z||

for all arguments y, z and x in a neighbourhood of x0,y0. Some-

times the stronger condition that f is steady, sufficiently often dif-

ferentiable, or even analytic (infinitely often differentiable) are im-

posed, which usually brings about similarly strong properties of

the solution y(x).

• For simplicity, we shall in the sequel, when discussing algorithms

restrict our attention to a single ODE of 1st order

y′ = f(y, x) (6.29)

You are encouraged to convince yourself of the fact that the gen-

eralization to systems of 1st order equations is indeed simple.

• All integration routines are based on discretising coordinates. We

shall denote by h the step-width of the discretization, and define

xn = x0 + nh, and yn = y(xn).
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6.2.1 Euler-Integration

The simplest integration routine, Euler integration, estimates the

change of the unknown function over a discretization-interval in

terms of the first derivative

y′(xn) = f(yn, xn)

Euler’s algorithm (first order Taylor expansion) then results in

yn+1 = yn + h f(yn, xn) +O(h2)

This results in a local error O(h2) for each elementary step of size

h. If it is desired to propagate the solution via Euler-steps across

a finite interval [a, b] ≡ [x0, xN ], the number N of steps required

scales like N = (b − a)/h with the discretization step-width h.

The global error incurred by integrating from a to b (i.e. the error

of yN) thus scales like O(h), viz. linearly with step-width h.

6.2.2 Taylor-Expansion Method

The precision of an integration routine can be boosted, by evaluat-
ing yn+1 starting from yn via a Taylor-expansion carried to higher
order.

yn+1 = yn + h

[

f(yn, xn) +
h

2
f ′(yn, xn) + . . . +

hp−1

p!
f (p−1)(yn, xn) + . . .

]

+O(hp+1)

Here f (k)(yn, xn) denotes the kth derivative of f w.r.t. x, evaluated

in xn. Noting that x appears both explicitly and implicitly through

the x dependence of y; one gets

f (1)(yn, xn) = fx(yn, xn) + fy(yn, xn) y
′(xn)

= fx(yn, xn) + fy(yn, xn) f(yn, xn)

f (k)(yn, xn) = f (k−1)
x (yn, xn) + f (k−1)

y (yn, xn) y
′(xn)

= f (k−1)
x (yn, xn) + f (k−1)

y (yn, xn) f(yn, xn)
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with fx(yn, xn) = ∂
∂xf(y, x)|yn,xn and similarly for the partial

derivative w.r.t. y

The local error of the Taylor-expansion algorithm of order p is

O(hp+1), the global error O(hp). The main disadvantage of this

approach is that it requires recursively computing possibly high

partial derivatives of f(y, x)

• Euler’s-method is nothing but the p = 1 case of the Taylor-

expansion algorithm.

6.2.3 Runge-Kutta Methods

The Taylor-expansion algorithm and its special case, Euler’s

method are so-called one-step methods: they propagate a solution

in a single step across a discretization interval of length h.

The idea and aim of Runge-Kutta methods is to approximate

Taylor-expansion methods, however, by replacing evaluations of

higher derivatives of f in terms of evaluations at intermediate steps.

• Illustration on the 2nd order method: Second order, i.e.

curvature, information is contained in variation of the first order

derivative along the discretization interval. This observation is ex-

ploited by setting

yn+1 = yn + h [α1f(yn, xn) + α2f(ŷn, x̂n)]

with ”intermediate coordinates”

x̂n = xn + β1h , ŷn = yn + β2hf(yn, xn)

and by choosing the constants αi and βi such that the Taylor-

expansion method at order h2 is recovered, i.e. such that

R = α1f(yn, xn) + α2f(ŷn, x̂n)

= α1f(yn, xn) + α2f(yn + β2hf(yn, xn), xn + β1h)
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and

T = f(yn, xn) +
h

2
f ′(yn, xn)

coincide up to order h (independently of the function f). We have

(defining f ≡ f(yn, xn) fx ≡ fx(yn, xn) etc)

R = (α1 + α2)f(yn, xn) + α2h(β2f fy + β1fx) +O(h2)

and

T = f(yn, xn) +
h

2
(f fy + fx) +O(h2)

Equating coefficients at orders 0 and 1 in h gives

h0 : α1 + α2 = 1

h1 : α2β2 = α2β1 =
1

2
and grants that Taylor and RK integration across an elementary

discretization interval independently of the function f and its

derivatives agree up to order h2. Choosing α2 = γ as free param-

eter, one obtains β1 = β2 = 1
2γ

and thus the

• Algorithm

xn+1 = xn + h ; yn+1 = yn +

h



(1− γ)f(yn, xn) + γf



yn +
h

2γ
f(yn, xn), xn +

h

2γ









For γ = 1/2 this algorithm is called Runge-Kutta algorithm of 2nd

order (RK2) in the narrow sense. Elementary computational steps

are arranged as follows:

• Runge-Kutta of 2nd order (RK2)

k1 = h f(yn, xn) , k2 = h f(yn + k1, xn + h)

yn+1 = yn +
1

2
(k1 + k2) , xn+1 = xn + h
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In the limit γ → 0 (while keeping h� γ) one recovers the Euler-

algorithm; the case γ = 1 defines the so-called Euler-Cauchy algo-

rithm. The following Figure illustrates the precision of the Euler

and RK2 algorithms using the simple ODE y′ = y, with y(0) = 1

as initial condition.

RK2 uses two function evaluations per discretization interval (in-

stead of one for Euler’s integration). If a certain precision ε at the

end of a finite interval’s [a, b] is desired, one needs h = O(ε) for

Euler-integration, and needs O(ε−1) function evaluations. For RK2

the requirement is h2 = O(ε); with two function evaluations per

discretization interval this needs 2×O(ε−1/2) function evaluations

(at ε = 10−4 this is a gain by a factor 50, at ε = 10−8 by a factor

5000!).
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Figure 8: Euler integration over a unit interval, for step-widths h = 1,1/2, 1/3 . . . , 1/10,
compared with exact solution ex (crosses).

Runge-Kutta algorithms of higher order are similarly constructed.
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Figure 9: 2nd order Runge-Kutta integration, over a unit interval, for step-widths h =
1,1/2, 1/3 . . . , 1/10, compared with exact solution ex (crosses).

The details are somewhat messy, however. Thus we state (without

proof) the Runge Kutta Algorithm of 4th order.
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• Runge-Kutta of 4th Order (RK4)

k1 = h f(yn, xn)

k2 = h f(yn +
k1

2
, xn +

h

2
)

k3 = h f(yn +
k2

2
, xn +

h

2
)

k4 = h f(yn + k3, xn + h)

yn+1 = yn +
k1

6
+
k2

3
+
k3

3
+
k4

6
, xn+1 = xn + h

It requires 4 evaluations per discretization interval, and wins two

orders of h in precision compared to RK2; i.e. the gain of efficiency

of RK4 relative to RK2 is like that of RK2 relative to Euler.

6.3 Generalized Runge-Kutta Algorithms

Let ξj = y(xn + hcj), j = 1, 2, . . . , ν, and c1 = 0. Then

ξ1 = yn

ξ2 = yn + ha21f(ξ1, xn)

ξ3 = yn + ha31f(ξ1, xn) + ha32f(ξ2, xn + hc2)
... ...

ξν = yn + h
ν−1
∑

i=1
aν,if(ξi, xn + hci)

yn+1 = yn + h
ν
∑

i=1
bif(ξi, xn + hci)

The matrix A = (aji) (j, i = 1, . . . , ν) is called the RK matrix,

while the vectors b = (bi), c = (ci) are called the RK weights and

RK nodes, respectively. If A is a lower triangular matrix all of the

above equations are recursively explicitly computable, hence this
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is an ERK (explicit Runge-Kutta method). In full generality A

can be fully occupied, which then represents implicit Runge-Kutta

methods (IRK), which can be only solved in multiple steps (itera-

tions). Some of the IRK methods have a counterpart in numerical

integration methods (quadratures).

Any RK scheme can be described by a RK tableau by

c A

bT

such as

0
1
2

1
2

1
2

0 1
2

1 0 0 1
1
6

1
3

1
3

1
6

for the previously described RK4 algorithm. Other popular RK2

algorithms are

0
1
2

1
2

0 1

0
2
3

2
3
1
4

3
4

0

1 1
1
2

1
2
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Generally the consistency condition, that agreement with a Taylor

series of the required order is enforced, is not sufficient to uniquely

determine all coefficients (as we have seen in second order directly).

ν-stage ERK methods of order u exist only for ν ≤ 4. To obtain

order five one needs six stages and matters become considerably

worse for higher orders.

6.4 Adaptive Step-size Control; Bulirsch-Stoer Algorithm

• Adaptive Step-size Control

Further efficiency is gained by choosing step-widths large, where

functions are smooth, and small, only when higher derivatives be-

come large. Drawback: the user no longer controls him/her-self, at

which points the r.h.s – the function f(y, x) – is evaluated.

• Bulirsch-Stoer Algorithm

The Bulirsch-Stoer algorithm integrates the ODE using a sequence

of successively smaller step-widths (e.g. by factors of 2) and extrap-

olates the results to h = 0.

The underlying idea is either Richardson-Extrapolation, or extrap-

olation of a polynomial of given order that can be fitted through

the results obtained for different h

The idea of Richardson-Extrapolation is as follows: Let y(h) de-

note the value of the solution computed at a certain point using a

discretization step of size h. Let us assume that we use RK4 and

have a dominant error of order h4, and let us further assume that

for the case in question the subdominant error is of order h6:

y(h) = y(0) + c4h
4 + c6h

6 + . . . .

one then has

y(h/2) = y(0) +
1

16
c4h

4 +
1

64
c6h

6 + . . .
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and thereby

y1(h) ≡ 1

15
[16 y(h/2)− y(h)] = y(0) + c′6h

6 + . . .

with c′6 = −c6/16; so two powers of h have been gained. If one

knows the next to leading order of the error in this expression, one

can iterate further.

We are not going to discuss these algorithms in detail, and just

quote names (and declarations) of the pertinent Numerical Recipes

routines

Numerical Recipes Routines

• rk4: 4th order Runge-Kutta routine, to propagate the solution

of a system of 1st order ODEs across an elementary discretiza-

tion interval (so-called ‘stepper’ routine). Declaration:

void rk4(double y[], double dydx[], int n,

double x, double h, double yout[], void

(*derivs)(double, double [], double []))

Here y is a vector containing the solution at the start of the

interval, n denotes the dimension of the problem, x is the

independent variable, h is the discretization width, yout the

solution vector at x+h, and derivs is the routine computing

the vector of right hand sides at given x and y.

• rkdumb: 4th order Runge-Kutta routine, to propagate the

solution of a system of nvar 1st order ODEs across a fi-

nite interval [x1,x2] using nstep elementary steps, so

h=(x2-x1)/nsteps (using the rk4 routine). Declaration:

void rkdumb(double vstart[], int nvar,

double x1, double x2, int nstep, void

(*derivs)(double, double [], double []))
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• odeint: General driver for integrating ODEs with local

control of precision. The user defines initial step-width h1,

and minimal step-width hmin (the latter may be zero) and

the desired precision eps; routine may be used with adaptive

step-size control rkqs and rkck, or with Bulirsch-Stoer algo-

rithm (bsstep (which calls mmid and pzextr) as ‘stepper’

routines. Declaration:

void odeint(double ystart[], int nvar,

double x1, double x2, double eps, double

h1, double hmin, int *nok, int *nbad, void

(*derivs)(double, double [], double []), void

(*rkqs)(double [], double [], int, double *,

double, double,double [], double *, double *,

void (*)(double, double [], double [])))

6.5 Duffing-Oscillator as Example

The Duffing-Oscillator is a bistable damped, and periodically

driven system. Initially it was conceived and realized as electronic

circuit. However, it also describes the classical dynamics of charged

defects in a dielectric crystal, which is bound in a double-well po-

tential and driven by microwave fields. The damping is realized by

the heat-bath of phonons.

The ODE describing the dynamics of the Duffing Oscillator reads

ẍ(t) + rẋ(t) = x(t)− x(t)3 + a cos(ωt)

For certain parameters, this system shows chaotic dynamics, i.e.,

the solutions exhibits a sensitive dependence on initial conditions.

This entails sensitivity against rounding errors of the numerics. We

look at the system for such a set of parameters, r = 0.15, a = 0.3
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and ω = 1. Numerical integration is done after transforming to a

system of 1st order ODEs via x1(t) = x(t), x2(t) = ẋ1(t), giving

ẋ1(t) = x2(t)

ẋ2(t) = −rx2(t) + x1(t)− x1(t)
3 + a cos(ωt) .

The system is not autonomous, as the r.h.s explicitly depends on

time t. By introducing yet another function x0(t) = ωt and an

ODE ẋ0(t) = ω defining it, the system can be transformed into an

autonomous system for three functions. Rem.: In fact, at least 3

dimensions are needed for an autonomous dynamical system to be

chaotic (Poincaré-Bendixson Theorem).

Note that RK4 integration at few steps and correspondingly large

h is quickly becoming unreliable; by decreasing h one can push the

reliability region to later times – albeit slowly: Halving h doesn’t

double the reliability region. Adaptive step-width control seems

more reliable than Bulirsch-Stoer. The last figure shows a phase

space plot — i.e.. ẋ(t) versus x(t) — computed with the finest

RK4 grid of 6400 steps.

• Local stability analysis

The sensitivity of the Duffing-Oszillator dynamics may be under-

stood by generalizing the stability, analysis of stationary points

to an analysis that holds locally along the trajectory of the dy-

namical problem. Let us briefly describe this for a system of the

form

y′(x) = f(y, x)

Consider a small local perturbation y(x) → y(x) + δy(x) of the

solution locally at x. At linear order of the perturbation, one ob-

tains

δy′ = ∇f(y, x) δy
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Figure 10: RK4 integration of Duffing-ODE with 200-400 and 800-1600 steps.
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where A = ∇f(y, x) is the matrix with components aij =

∂fi/∂yj|y,x. According to our original argument concerning sta-

bility of stationary points, the small perturbation would grow, if

A = ∇f(y, x) has eigenvalues with positive real part.
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Figure 13: Real part of the largest eigen value of the stability matrix for the solution of
Duffing’s ODE (full line) and plots of solutions using 800 (long dashes) and 1600 steps
(short dashes).

For the Duffing-Oscillator (with t as independent variable and x1 =

x and x2 = ẋ as unknown Functions) one obtains

∇f(x, t) =







0 1

1− 3x2
1 −r







with eigenvalues λ1,2 = −r
2
±

√

r2

4
+ 1− 3x2

1; they are either

complex-conjugate with negative real part (−r/2) and thus give

a locally stable solution, or real, where λ1 > 0 for 1 − 3x2
1 > 0,

resulting in local instability of the solution.

One observes for Duffing’s oscillator that discrepancies between

solutions with different discretization always arise in regions with

Re(λ1) > 0, whereas differences become smaller when Re(λ1) < 0.

One also notes that instability is correlated with small x-values.

87



This is intuitively clear: x = 0 is a mechanically unstable maximum

of the potential in which the particle is moving.

Rem.: The eigenvalues of the local stability matrix are closely

related – though not identical – with the so-called Ljapunov expo-

nents of the dynamical system. Differences arise from the fact that

Ljapunov exponents are defined through the growth of the norms

|δy| of small perturbations.

6.6 Numerov-Algorithm

We discuss an algorithm adapted to ODEs of the form

y′′(x) + k(x)y(x) = 0 .

ODEs of this type frequently arise in physics; the most prominent

example being the time-independent Schrödinger equation in one

dimension, for which

k(x) =
2m

h̄2 (E − V (x)) ,

or the radial equation for spherically symmetric problems. Here

one would have yl(r) = r Rl(r), with Rl the radial part of the

wave function in an angular momentum eigenstate with quantum-

number l. The equation for yl(r) then has the above structure with

k(r) = kl(r) =
2m

h̄2





E − V (r)− h̄
2 l(l + 1)

2mr2





 .

Numerov’s algorithm uses Taylor-expansion ideas and the partic-

ular structure of the ODE in question. With yn = y(xn) we have

yn±1 = yn ± h y′n +
h2

2
y′′n ±

h3

3!
y(3)
n +

h4

4!
y(4)
n ± . . .
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and thus a ‘recursion’

yn+1 + yn−1 = 2yn + h2y′′n +
h4

12
y(4)
n +O(h6) .

One now utilizes the ODE to express y(4)
n

y′′n = −knyn =⇒ y(4)
n = −(knyn)

′′

= −kn+1yn+1 + kn−1yn−1 − 2knyn
h2

+O(h2)

(6.30)

and inserts into the above recursion. This immediately gives the

Numerov-Algorithm


1 +
1

12
h2kn+1



 yn+1 = 2



1− 5

12
h2kn



 yn−


1 +
1

12
h2kn−1



 yn−1+O(h6)

Starting from two initial values y0 and y1 it allows to propagate

the solution with O(h6) precision per integration step!

• Application

Stationary states of 1-D Schrödinger equation.

Normalizable solutions exist only for special values of the energy,

E = Eα. If E is not one of these special values, the solution of

S-DE will diverge for x→ ±∞.

For a system with symmetric potential V (x) = V (−x), the eigen-

states are either symmetric or anti-symmetric themselves. Initial

values for the recursion thus are chosen as

y0 = y(0) 6= 0 , y1 = y(h) = y0 −
h2

2
k0y0 for symmetric eigenstates

y0 = y(0) = 0 , y1 = y(h) 6= 0 for anti-symmetric eigenstates

The choice of y0 for the symmetric states or of y1 for the anti-

symmetric states is irrelevant, as these choices only affect normal-

ization of the states.
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6.7 Molecular Dynamics

Molecular dynamics (MD) is a method to investigate properties of

many-body systems (galaxies, solids, liquids, gases, etc.). Interest is

in macroscopic properties (equations of state, correlation functions,

phase-transitions . . . ).

MD describes dynamics at the classical level (quantum effects enter

only through the formulation of force-laws, but are otherwise not

made explicit). Thus the main task of MD is to solve Newton’s

equation of motion for interacting N -body systems.

mir̈i = Fi =
∑

j(6=i)
fij , 1 ≤ i ≤ N

Special requirements for integration routines and program-

organization are due to the large number N of particles often

involved in typical MD problems. Algorithms of RK-type, pos-

sibly supplemented by adaptive step-size control or of Bulirsch-

Stoer-type are not useful, because computationally too demanding

(repeated evaluation of forces). Luckily sophistication and high ac-

curacy are not necessarily required (essential information is not so

much in precise trajectories, but rather in statistical properties of

observables measured along these trajectories. Integration routines

(see below) are therefore mostly of single-step type.
• Literature: D.C. Rapaport: The Art of Molecular Dynamics
Simulation, (Cambridge University Press, 1995); with access to
source codes:

http://www.cup.cam.uk/onlinepubs/ArtMolecular/ArtMoleculartop.html

• Relation to Statistical Mechanics

is via the ergodic hypothesis: Given an observable G which de-

pends on the coordinates rN of the N -particle system. Then the
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expectation value (average) of G in thermal equilibrium is given

by the Gibbs-Boltzmann-average

〈

G(rN)
〉

=
∫

drN G(rN) e−βU(rN )

∫

drN e−βU(rN )

with U(rN) denoting potential and interaction energies of the par-

ticles. In equilibrium this average coincides with the empirical time-

average taken along a trajectory of the full system

〈

G(rN)
〉

=
1

M

M
∑

µ=1
G(rN(tµ)) .

6.7.1 Lennard-Jones Systems

Let us discuss limitations and power of MD for the case of a simple

interacting many-body system. Such a system may be described by

the Hamilton function

H =
∑

i

p2
i

2m
+

∑

i<j
φ(rij)

with an interaction potential φ(rij) depending on distance (we as-

sume that there are no angle-dependent forces – i.e. no covalent

bonds – between particles). A popular choice for the interaction

potential is the so called Lennard-Jones potential

φ(r) = 4ε





(σ

r

)12
−

(σ

r

)6


 .

It describes for instance the interaction of noble gas atoms pretty

well. E.g., for Argon the parameters are σ = 3.4 A, and ε =

120k
B

K/Atom = 120 · 1.3810−16 erg/Atom. The potential φ has

a minimum at rm = 21/6σ with φ(rm) = −ε. At short distances it

is strongly repulsive and weakly attractive at large distances. (Van

der Waals forces).
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Figure 14: Lennard-Jones Potential in natural units.

• Equations of motion

For such a system the equations of motion read

mr̈i =
48ε

σ

∑

j(6=i)















σ

rij







14

− 1

2







σ

rij







8








rij
σ

These are transformed into a system of dimensionless equations by

introducing a dimensionless time τ and a dimensionless coordinate

ρ

τ =

√

√

√

√

ε

mσ2
t , ρ =

r

σ
.

It reads
d2ρi
dτ 2

= 48
∑

j(6=i)



ρ−14
ij −

1

2
ρ−8
ij



 ρij .

• Units and orders of magnitude

For Argon (39.95 g/mol ⇔ 6.63 · 10−23 g/atom) the rescaled unit

time τ = 1 corresponds to a real-time interval t = 2.1 · 10−12 s. If

Na is the number of atoms under consideration, the volume at a

typical density of Na/L
3=0.94 g/cm3 = 0.94/6.63 ·1023atoms/cm3

corresponds to a simulation volume of length L = N 1/3
a · 4.2A'
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N 1/3
a · 1.22 σ. Manageable orders of magnitude: Na = 1000, inte-

gration over 100 000 discretization intervals of length ∆τ ' 5·10−3

corresponds to a simulation time of t = 1 ns and a simulation

volume of box-length L= 40 A !. This demonstrates that it is by

no means easy to reach macroscopic orders of magnitude with this

method. On the positive side, MD has the advantage of allowing

access to arbitrarily detailed microscopic information during a sim-

ulation (far beyond what is typically within reach of experimental

techniques). MD-simulations and experimental studies have in a

certain sense complementary strengths and weaknesses.

6.7.2 Integration Methods

• Selection Criteria

Everything requiring multiple evaluation of forces per integration

step is practically out of the question (too demanding), as evalu-

ating all forces is an O(N 2
a ) process. One would only go for it, if

the discretization interval could thereby be enlarged by the same

factor. Because of the strongly repulsive part of the LJ- interac-

tion (and many other potentials) this does not make sense beyond

a certain upper bound ∆τ . The repulsive part of the potential is

mainly responsible for the chaotic nature of (true!) MD. It implies

that even the highest conceivable numerical precision will at some

point lead to results which are unreliable in details of trajectories

(this describes precisely the natural situation: molecular chaos).⇒
one does not put big effort into numerical precision, rather one tries

to ensure that conservation theorems (total energy/momentum)

are respected and certain statistical properties (Liouville-theorem,

correlations) are reproduced with sufficient precision. Two simple

algorithms are mainly at our disposal, the Verlet- and Leapfrog
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algorithms (see previous chapters).

• Initial Condition

As the dynamics of molecular systems is chaotic, system properties

are becoming independent of initial positions after a relatively short

integration time. It is common practice to choose a regular initial

placement of particles (e.g. on a quadratic lattice in 2D, or a face-

centered cubic (FCC) lattice in 3 D), and generate random initial

velocities — typically from a Gaussian distribution for each velocity

component (i.e. from a Maxwell-Boltzmann distribution) — with

the constraint
∑

i ṙi = 0 imposed, thereby choosing a reference

frame in which the center of mass of the system. is at rest. The

kinetic energy will eventually be used to fix the temperature (see

below).

• Boundary Conditions

Periodic, to reduce the influence of walls. The relative number of

atoms, close to walls scales with particle number Na = nLd as

N (d−1)/d
a ; for macroscopic numbers Na = O(1023) this is a minute

fraction of Na, not however, for Na = 100; ⇒ periodic boundary

conditions and & elementary simulation cell large compared to

range of interaction.

• Computation of Forces

The computation of forces requires O(N 2
a ) operations and is the

most demanding part of a MD simulation. For potentials of finite

range (can be forced by judicious truncation) partitioning the full

volume into interaction-volumina in such a way, that only parti-

cles in neighbouring interaction-volumina can interact, the com-

plexity of MD can be reduced from O(N 2
a ) to O(Na) per time

step! Attention: Truncating the potential modifies the system!

One should truncate in such a way as to ensure that both φ(r) and
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Figure 15: Periodic boundary conditions ⇔ periodically repeated simulation cell. Interac-
tion radii around two selected particles are indicated.

φ′(r) remain continuous. Can be achieved by φ(r) → φtrunc(r) =

φ(r) − φ(rc) − φ′(rc)(r − rc) . Truncation of strongly decreasing

potentials (like LJ potential) is less error prone than in the case

of very long-range potentials (gravitational or electrostatic). If –in

electrostatic case– both charge types are there they will neutralize

each other for length scales large compared to the Debye length

λD =

√

√

√

√

√

ε0kT

e2n

where T , n are the average temperature and particle density of

the lightest particles (e.g. electrons) and ε0, k, e the dielectric

vacuum constant, Boltzmann’s constant and elementary charge,

respectively. The effective shielding of large scale charges for length

scales larger than the Debye length can be described by an effective

potential, which is the classic potential (∝ 1/r), multiplied by

an exponential cutoff exp(−r/λD). For more details compare

http:www.ha.physik.uni-muenchen.de/ okester/Vorlesung/Vorlesung ionsource3.pdf.

For gravitating systems there is no shielding effect (only one

polarity), hence any truncation is difficult and error prone.
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• Stability

Both algorithms show good stability against drift in energy. The

following figure shows a MD simulation of soft spheres in 2D —

φ(r) = φLJ(r)− φLJ(rmin) for r ≤ rmin and φ(r) = 0 for r > rmin,

i.e. there is no attractive part of the potential.
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Figure 16: Soft spheres in 2D: Na = 400, Density is n = 0.8 (particles per dimensionless
unit square), T = 1.0, micro-canonic simulation. Shown are total and kinetic energy as
functions of MD-time (upper and lower left), and pressure evaluated via the virial theorem
(right), Leapfrog-Integration with ∆t = 0.005, Output every 100 time-steps

• Rem.: The constancy of the total energy is one aspect that

should be verified in a micro-canonic simulation; it would be lost

if discretization errors are too large.

6.7.3 Measurements – Thermodynamic Functions – Structure

By monitoring positions and velocities during an MD-run one can

measure kinetic and potential energies and thereby make contact

with thermodynamic concepts.

• Kinetic and potential energies:

Ek =
m

2

∑

i
ṙ2
i =

ε

2

∑

i





dρi
dτ





2

Eu =
∑

i<j
u(rij) = 4ε

∑

i<j

[

ρ−12
ij − ρ−6

ij

]
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The respective second expressions are obtained for the Lennard-

Jones system after introducing dimensionless coordinates and times

(the latter are directly accessible during the simulation.)

• Temperature

Temperature T follows from the equi-partitioning law: every (trans-

lational) degree of freedom contributes k
B
T/2 to the average ki-

netic energy. In D dimensions⇒ 〈Ek〉 = NaD
2

k
B
T or

k
B
T =

m

NaD

∑

i

〈

ṙ2
i

〉

=
ε

NaD

∑

i

〈





dρi
dτ





2〉

The combination T̃ =
k
B
T

ε defines the natural dimensionless

temperature-scale for MD.

• Adjusting Temperature

In order to realize an MD-run at predefined average temperature,

one has to rescale velocities in an initialization phase in such a way

as to obtain the desired temperature. A measurement of the average

kinetic energy will give a temperature Tm via k
B
Tm = m

NaD

∑

i

〈

ṙ2
i

〉

.

By (repeatedly) rescaling velocities according to

ṙi ←− ṙi
√

T/Tm

one adjusts to the desired kinetic energy and thus to the desired

temperature T (this has to be done repeatedly during the initial-

ization phase – one has to await equilibration after each rescaling

before starting the next – and later on ‘once in a while to correct

numerical drift’.

• Pressure

Pressure in an interacting many body systems can be defined via

the viral theorem (see e.g. Becker: Theorie der Wärme) as follows

pV = NakB
T +

1

D

〈

∑

i
riFi

〉

.
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In this expression the Fi comprise forces the particles except for

those exerted by the walls of the container. Using Fi =
∑

j(6=i) fij
and fij = −fji, one obtains

pV = NakB
T +

1

D

〈

∑

i<j
rijfij

〉

,

thus for a LJ potential in dimension less units

pV

ε
= NaT̃+

48

D

〈

∑

i<j

(

ρ−12
ij − ρ−6

ij

)

〉

=
1

D

〈

∑

i
ρ̇2
i + 48

∑

i<j

(

ρ−12
ij − ρ−6

ij

)

〉

.

• Density

The local density is given by

n(r) =
∑

i
〈δ(r− ri)〉 .

For a homogeneous system in equilibrium it is independent of r;

as Na =
∫

drn(r), one has n(r) = n = Na/V

• Structure

Of greater interest than density is the conditional probability den-

sity g(r), to find a particle at ‘distance’ r from a given other one

g(r) =
1

n

∑

i(6=0)
〈δ(r−(ri−r0))〉

=
1

nNa

∑

i6=j
〈δ(r−(ri−rj))〉

=
2V

N 2
a

∑

i<j
〈δ(r−(ri−rj))〉

Here homogeneity of the system was used in the second line (par-

ticle 0 is nothing special) and n = Na/V in the third line; finally

the summation is formulated for pairs. In isotropic systems g(r) is

a function of distance r = |r| only (radial distribution function),

so

4πn g(r) r2dr
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gives the mean number of particles at a distance r from a given

particle. This is the way g(r) is evaluated in MD-simulations.

Of direct experimental interest is the so-called structure-factor

S(k), defined via the Fourier transform of g(r)

S(k) = 1 + 4πn
∫

rg(r) exp(−ik · r)r2dr .

The structure-factor is directly proportional to the differential

cross-section for elastic neutron scattering with momentum trans-

fer k. This provides a feed-back channel between experiment and

results of MD simulations.

6.7.4 Ensembles

• Micro-canonical Ensemble (NVE):

Straightforward integration of the equations of motion should

conserve energy, if the Hamilton function is not explicitly time-

dependent (s. Fig 15 above). The statistical ensemble is called

micro-canonical. Energy is constant, all micro-states at a given

energy are equally probable. Kinetic (and potential) energy

and thus temperature are fluctuating in time. Besides energy,

volume V and particle number Na are trivially kept constant;

thus the acronym NVE-Ensemble.

• Canonical Ensemble (NVT):

Of greater theoretical interest is the statistical ensemble in

which coupling to a heat bath leads to a state of constant

temperature. This is the ensemble, the micro-states of which

are distributed according to the classical Boltzmann-Gibbs-

distribution

p({pi, ri}) =
1

Z e−βH({pi,ri}) .
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Due to the exchange of energy with the heat-bath the energy of

such a system is not conserved. The constancy of temperature

required in the canonical ensemble may be reached in two ways

– Isocinetic Simulations: By rescaling velocities in

every time step of the simulation. In the Leapfrog-

Algorithm, in which velocities are evaluated at interme-

diate time steps, the rescaling-factor would be computed

from
∑

i[
1
2(ṙi,n−1/2 + ṙi,n+1/2)]

2.

– Nosé-Hoover Thermostat:

Here temperature is adjusted via an additional variable

s, that realizes a time dependent damping (with positive

damping coefficient, if the kinetic energy is too large and

a negative one, if it is too small. The equations of motion

then read

r̈i =
1

m
Fi − 2





ṡ

s



 ṙi

d

dt





ṡ

s



 =
1

Ms



m
∑

i
ṙ2
i − 3NakB

T





The second equation describes the fact that the damp-

ing coefficient increases, as long as the kinetic energy is

larger as that defined via temperature and decreases, if it

is smaller. The parameter Ms defines the time-scale of the

temperature-regulation dynamics. Taking the expectation

value of the second equation, the l.h.s. vanishes in equilib-

rium (expectation of a time derivative !), so the equilibrium

expectation of the kinetic energy coincides with that de-

fined via temperature in the canonical ensemble.

Formally the Nosé-Hoover Thermostat is obtained by in-

troducing a local rescaling of time, given in differential form
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by dτ = s(t)dt. The equations of motion just given are

then the Euler-Lagrange equations for the Lagrange func-

tion

L =
1

2
ms2 ∑

i





dri
dτ





2

− ∑

i<j
u(rij)

+
1

2
Ms





ds

dτ





2

− 3NakB
T ln s

when transformed back to the physical time variable t.

• Constant Pressure (NPT):

Volume and pressure are conjugate variables in a similar way

as energy and temperature. To keep pressure (besides temper-

ature) constant, one has to regulate volume. This is accom-

plished just as for temperature either by strict rescaling of all

lengths after every integration step or by a feedback mecha-

nism analogous to the one of the Nosé-Hoover thermostat. The

second possibility is based on introducing rescaled coordinates

ρi = ri/V
1/3 (on top of rescaled local times for temperature

regulation). The Lagrange function generating the required ad-

justment of volume is

L =
1

2
ms2V 2/3 ∑

i





dρi
dτ





2

− ∑

i<j
u(V 1/3ρij)

+
1

2
Ms





ds

dτ





2

+
1

2
Mv





dV

dτ





2

− 3NakB
T ln s− PV
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7 Discrete Dynamical Systems and Chaos

7.1 Motivation

One encounters discrete dynamics when treating continuous pro-

cesses on the computer (usually by discretizing them), in itera-

tive numerical solutions of nonlinear equations (Newton’s method)

or when describing processes whose dynamics is discrete to begin

with.

Historically perhaps first in population dynamics: Evolution of a

population (density) x from generation to generation:

xn+1 = f(xn)

Simplest ansatz: Number of births/deaths proportional to popu-

lation density leads to Malthusian (exponential) growth or dying

out. For ρ as net-reproduction rate we have f(x) = ρx; in discrete

steps

xn+1 = ρxn =⇒ xn = ρnx0

For ρ < 1 the solution asymptotically converges to x → x∞ = 0,

while for ρ > 1 there is unstable exponential growth. Note that ρ =

f ′(x); we will later see that f ′(x) is used to determine the stability

of fixed points of discrete functions. If there is a limiting mechanism

(Verhulst): At large x the net-reproduction rate decreases: ρ →
ρ(1− βx). Leads to

xn+1 = ρxn(1− βxn)
For ρ not too large, this leads to a stable (see below) asymptotic

population density x∞ = (ρ − 1)/βρ. Verhulst dynamics was ini-

tially conceived as ODE in continuous time

dx

dt
= rx(1− bx)
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Unlike the discrete version, the continuous version always has a

stable asymptotic behaviour x→ x∞ = 1/b

x(t) =
x0e

rt

1 + bx0(ert − 1)

Discrete Dynamics can be entirely different, e.g. chaotic ! This

is not possible for continuous dynamics in IR1 and IR2, compare

Poincaré-Bendixson theorem given below.

A discrete form of Verhulst-dynamics is obtained, when integrating

the ODE using the Euler method: xn ≡ x(n∆t) gives

xn+1 = (1 + r∆t)xn − br∆tx2
n

i.e. the above discrete dynamics, when identifying ρ = (1 + r∆t)

and β = br∆t/(1 + r∆t). One finds that the discrete version of

the dynamics is qualitatively different from the continuous one it

is supposed to approximate if r∆t becomes large. In particular,

the discrete version shows a very rich spectrum of behaviours on

variation of parameters (period-doubling, chaotic behaviour,. . . ).

The more predictable nature of continous dynamics, at least in

1D and 2D, is illustrated by the

Theorem of Poincaré-Bendixson (1D, 2D):

Let D be a closed bounded region of the x-y plane and

ẋ = f(x, y)

ẏ = g(x, y)
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be a dynamical system in which f and g are continuously differ-

entiable. If a trajectory of the dynamical system is such that it

remains in D for all t ≥ 0 then the trajectory must be

• (i) a closed orbit,

• (ii) approach a periodic orbit (closed orbit, limit cycle) or

• (iii) approach a fixed point (equilibrium point) as t→∞.

Consequences: if the region D contains no fixed point, and a

trajectory remains in D, then it approaches the periodic solution

(limit cycle) for t→∞.

Very often it is possible to show that all orbits are directed inwards

at a certain boundary ∂D of D, which is consequently called a

trapping region. Example would be the Lorentz dynamical system,

in which one can show:

div(v) =
dẋ

dx
+
dẏ

dy
+
dż

dz
< 0

globally, where div(v) is the trace of the Jacobian, or the di-

vergence of the stream in x, y, z-space. This result means that

every volume contracts under the Lorentz dynamical equations.

In other words, every volume is a trapping region. However, since

the Lorentz system is 3D the Poincaré-Bendixson theorem does

not apply, and there exist solutions which neither converge to the

fixed point nor to a periodic orbit. Since nevertheless the solution

is bounded, it must follow an attractor which has a dimension

larger than unity but smaller than 3 (which is called the strange

attractor).
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Apart from obtaining discrete dynamics by discretizing the con-

tinuous version, there are other ways which are often used in the

study of continuous dynamical systems, like (i) Poincarè-maps

(looking at phase space points of a dynamical system only when

they penetrate a low-dimensional manifold, such as the x − y

plane for a system evolving in IR3), or (ii) so called stroboscopic

maps, where one looks at the system only at equidistant time

steps (e.g. in case of the Duffing-oscillator at integer multiples of

the period of the driving force). Both maps will look simple if the

underlying dynamics is simple (such as periodic) and will exhibit

more complicated structure if the underlying dynamics is complex.

The fascination of discrete dynamics has quite often been lying

in the facts that (i) extremely simple dynamical rules are able to

exhibit very rich behaviour, which (ii) exhibits universal properties

shared by large classes of seemingly different systems and that

(iii) visualization of their dynamic behaviour has a strong esthetic

appeal.

7.2 Discrete Dynamics

We start by introducing some useful definitions and concepts for

discussing (discrete) dynamical systems in general, and then the lo-

gistic and standard maps as special cases of dissipative and Hamil-

tonian systems respectively are presented.

Given the discrete dynamics

xn+1 = f(xn) .
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Orbit: The set of points x0 = (x0, x1, x2, . . .) is called orbit or

trajectory of x0.

Fixed point: A point x∗ is called fixed point of the dynamics, if

x∗ = f(x∗) .

p Periodic orbit: An orbit which has xn+p = xn for all n is

called periodic orbit. The smallest p with this property is called

period. A fixed point is an orbit of period one.

p-fold iterated map: is the map

f (p)(xn) = f (f (f (. . . f(xn) . . .)))

Fixed point of f (p): Any p-periodic orbit defines a fixed point

of f (p), since f (p)(xn) = xn+p = xn.
1

Stability: A fixed point x∗ of a map is called stable, if it attracts

points from its environment. Necessary and sufficient condition is

|f ′(x∗)| < 1

For xn close to x∗ and δn = xn − x∗. Taylor expansion gives

|δn+1| = |xn+1 − x∗| = |f(xn)− x∗| = |δn||f ′(x∗) +O(δn)| .

Note: The criterion is different from that formulated for continu-

ous dynamics!

In a similar vein, a periodic orbit is stable, if
1The notation should not be confused with our notation for high derivatives.
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∣

∣

∣

∣

∣

∣

d

dx
f (p)(xk)

∣

∣

∣

∣

∣

∣

< 1

for each point xk of the orbit, i.e. if the corresponding fixed

point of f (p) is stable. Indeed, the derivative is the same for each

point x0 . . . xp of the orbit. Using the chain rule for f (p)(x) =

f
(

f (p−1)(x)
)

one obtains

d

dx
f (p)(x0) = f ′(f (p−1)(x0))

d

dx
f (p−1)(x0) = f ′(xp−1)

d

dx
f (p−1)(x0)

= f ′(xp−1) f ′(xp−2)
d

dx
f (p−2)(x0) = . . . =

p−1
∏

k=0

f ′(xk)

Corollary: The p points of any p-periodic orbit of f are either

all stable or all unstable.

• How many periodic orbits does one have for given f? This is

answered by

Super-Stability: A fixed point x∗ of a map is called super-stable,

if

|f ′(x∗)| = 0

For xn close to x∗ and δn = xn − x∗, Taylor expansion gives

|δn+1| = |xn+1 − x∗| = |f(xn)− x∗| = |δ2
n||f ′′(x∗) +O(δn)| .

Note: In the vicinity of superstable points convergence is faster.

Singer’s theorem: For smooth functions f : [0, 1]→ [0, 1] with

f(0) = f(1) = 0, which have only a single maximum xm in the

interval [0, 1], there exists at most one stable periodic orbit , if
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Figure 17: Logistic map for r = 0.225, r = 0.3 and r = (1 +
√

6)/4 (from bottom to top).
Intersections with the diagonal are fixed points of the dynamics. The last r-value is the
one, for which the fixed point becomes unstable.

their Schwarzian derivative is everywhere negative, i.e. if

S [f ] = f ′′′/f ′ − 3

2
(f ′′/f ′)2 < 0

throughout the interval. It is trivially granted for parabolic

(quadratic) functions. Note that the Schwarzian is
(

1/
√
f ′
)′′

.

7.3 The Logistic Map

We consider the deterministic dynamics given by the logistic map

xn+1 = fr(xn) ≡ 4rxn(1− xn)

The function fr(x) has a maximum of height r at x = 1/2, and

f ′r(x) = 4r(1− 2x) .

• The point x = 0 is always fixed point of fr; x
∗ = 0 is stable

for r < 1/4.
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Figure 18: First, second and fourth iterate for r = 0.89 (left). The parameter r is chosen
such that period 4 is stable; one notes that the 4. iterate has exactly 4 stable fixed points
– the 4 points of the period-4 orbit. Start of the period-4 dynamics for this r-value (right).

• For r > 1/4, x∗ = 0 is unstable; however there is another fixed

point x∗ = x∗(r) = 1− 1
4r ; it is stable, as long as r < r0 = 3/4.

• At r = r0 the fixed point x∗(r) becomes unstable, as

f ′r(x
∗(r)) → −1. At this r-value a stable period-2 orbit ap-

pears.

• Between r = r0 and r = r1 = (1 +
√

6)/4 the period-2 orbit is

stable. The two points of the period-2 orbit bifurcate continu-

ously from the fixed point that becomes unstable. At r = r0

one has d
dx
f (2)
r (x∗) = f ′(x∗)2 = +1. The derivative d

dx
f (2)
r (xk)

evaluated at the points of the orbit decreases monotonously

from +1 to -1, when r → r1

• At r1 a stable orbit of period 4 appears, and so on.

• To summarize: P1: There is an infinite sequence of parameter

values rn, at which an orbit of period 2n becomes unstable

and a stable orbit of (twice) the original period 2n+1 appears.

P2: Exactly two points belonging to the period 2n+1 orbit
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branch of from each point of the original period 2n orbit. P3:

Between rn−1 and rn, the derivative d
dx
f (2n)
r (xk) decreases from

1 to -1. In particular there are parameter values r′n at which

the derivative is zero. An orbit having this property is called

super-stable . For the logistic map one must have xk = 1/2

being a point of the orbit.

• The rn and the r′n converge like

rn ∼ r∞ + cδ−n resp. r′n ∼ r∞ + c′δ−n

to r∞ ' 0.8924.. with δ = 4.66920... The constant δ is one of

the so-called Feigenbaum constants and its value is universally

the same for period doubling-cascades (and not just restricted

to the logistic map).

Further properties of the logistic map:

• For r > r∞, i.e., beyond the period doubling-cascade, the dy-

namics becomes chaotic. Orbits appear to be irregular within one

or several “bands”. Orbits depend sensitively on initial condi-

tions: For two infinitesimally close initial points, orbits diverge at

an exponential rate, characterized by the so-called Ljapunov expo-

nent λ. One defines:

lim
ε→0

ε−1|f (n)(x0 + ε)− f (n)(x0)| ∼ eλn , n� 1

It follows from the product representation of f (n) (see before, sta-

bility of p-fold iterated map):

λ = lim
n→∞

1

n

n−1
∑

k=0
log |f ′(xk)| ,

If λ > 0 we have a chaotic region, otherwise there is a stable

periodic orbit.
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• There is a decreasing sequence of parameter values r̃n marking a

cascade of divisions of the collection of bands, making the chaotic

attractor (on which the long time dynamics lives). At r̃n the attrac-

tor consisting of 2n chaotic bands divides into 2n+1 bands, each of

the original bands dividing in two. The r̃n–sequence also converges

according to a law described by Feigenbaum’s constant δ to r∞.

• Structures in chaos: Plotting the attractor, i.e. N

points xn, . . . , xn+N from the asymptotic of the orbits

(1/2, fr(1/2), . . . , xn, . . . , xn+N , . . .), one observes characteristic

structures. For various p these are the traces x(r) = f (p)
r (1/2)

as functions of r. For certain values rp one finds that these traces

cross the value 1/2. For such values rp a super-stable orbit of period

p exists. In a window around rp these orbits are also stable, giv-

ing rise to regular windows in chaos. On increasing the parameter

r, each of these orbits decays through a period-doubling cascade

described by the same universal Feigenbaum parameter δ. Such

cascades exist for every p ∈ IN.

• Particularly well discernible is the period 3 cascade. Period 3 it-

self does not appear through period doubling but by a so called tan-

gent bifurcation (together with an unstable period 3 orbit). Shortly

before the period-3 orbit appears one has chaotic dynamics with

intermittently regular behaviour in striking similarity to what hap-

pens in turbulent systems.
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Table 1: Top: Bifurcation values of parameter cn = 4rn, at which f (2n) gets a derivative
smaller than -1, hence its fixed point becomes unstable, and f (2n+1) starts having two
stable fixed points.
Bottom: Bifurcation values of parameter c′n = 4r′n, at which f (2n) gets a derivative equal
to zero, hence its fixed point is superstable.

n cn n cn
1 3.00 5 3.568759
2 3.449499 6 3.569692
3 3.544090 7 3.569891
4 3.564407 8 3.569934

∞ 3.569946

n c′n n c′n
0 2.00 5 3.569244
1 3.236068 6 3.569793
2 3.498562 7 3.569913
3 3.554641 8 3.569939
4 3.566667 ∞ 3.569946

7.4 Periodically Kicked Rotator

The 2nd discrete dynamical system we are taking a (qualitative)

look at is the so-called periodically kicked rotator. In contrast to

the system described by the logistic map, the kicked rotor is a

driven Hamiltonian system, defined by the Hamilton function

H =
1

2I
L2 +

k

2π
cos(ϕ)

∑

n∈IN
δ(t− nτ )

Here I is the moment of inertia, L angular momentum (conjugate

to the angle-variable ϕ), k, the strength of the kicks and τ the

period of kicking. For small k the dynamics is regular; for large k

it becomes chaotic.

Even for strong perturbations, we shall find regions in phase space

for which the motion is regular, as described by Kolmogorov-

Arnold-Moser (KAM) theory for perturbed integrable (k = 0)

systems.
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The periodically kicked rotator is also considered to constitute a

(simplified) model for the dynamics of particles in accelerators (cy-

clotrons). We shall see that the dynamics of the model can also be

related to an entirely different problem, the search for ground-

states in a system of harmonically coupled particles in a periodic

potential (Frenkel-Kontorova-Model).

In its quantum version, the model has been of central interest in

the development of the theory of quantum chaos .

Hamilton’s equation of motion read

ϕ̇ =
∂H

∂L
=
L(t)

I

L̇ = −∂H
∂ϕ

=
k

2π
sin(ϕ)

∑

n∈IN
δ(t− nτ )

It follows that L(t) and thus ϕ̇(t) are constant between kicks. This

suggests to study the dynamics only stroboscopically from kick to

kick.

By integrating the equations of motion across a kick one obtains

(as ε→ 0)

L(nτ+ε)−L(nτ−ε) =
k

2π
sin(ϕ(nτ )) ϕ(nτ+ε)−ϕ(nτ−ε) = 0 ,

i.e. L is discontinuous but ϕ remains continuous. Writing Ln =

L(nτ + ε) and ϕn = ϕ(nτ + ε) = ϕ(nτ − ε), one obtains

Ln = Ln−1 +
k

2π
sin(ϕn)

ϕn = ϕn−1 +
τ

I
Ln−1

or with pn = τLn/I and κ = kτ/I

pn = pn−1 +
κ

2π
sin(ϕn)

ϕn = ϕn−1 + pn−1
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Figure 19: Attractor and Ljapunov-exponent of the dynamics on the attractor. In regions,
where the Ljapunov-exponent is positive, the dynamics is chaotic, in regions where it is
negative, stable periodic orbits exist.
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Rem.: Only pnmod(2π) and ϕnmod(2π) are relevant for the dy-

namics. This two-dimensional discrete system is also called the

(Chirikov-) standard-map.

The following figures show phase-space plots of periodically kicked

rotator. Shown are pn and ϕn evaluated modulo 2π (and further

scaled into the unit interval). For 50 random initial conditions,

the dynamics is followed for 1000 time steps; depending on initial

conditions one obtains either regular or, for sufficiently large κ,

chaotic behaviour. The larger κ the larger the fraction of initial

conditions leading to chaotic behaviour.

For κ = 0 the system is integrable. The phase-space plot consists

of horizontal families of discrete points or continuous lines depend-

ing on whether p0/2π is rational or irrational. This behaviour is

found (in a weakly distorted fashion) also for κ = 0.1. Orbits given

by continuous (distorted) ‘horizontal’ lines are so-called KAM-tori,

which constitute barriers for chaotic motion. At κ = 0.8 one ob-

serves chaotic regions in phase space, but also KAM-tori. The last

KAM-tori disappear at κc = 0.971635 . . ., and ‘diffusive’ behaviour

in phase-space becomes possible.

• Relation to ground-state search for a system of har-

monically interacting particles in a periodically corru-

gated potential (Frenkel-Kontorova Model): The stan-

dard map describing the periodically kicked rotators are also ob-

tained in the problem of the ground-state search for a system of

harmonically interacting particles in a periodically corrugated po-

tential. Let

U({xi}) =
∑

i
[V (xi) +W (xi − xi−1]
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Figure 20: Phase-pace plot for κ = 0.0 and 0.1.
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Figure 21: Phase-pace plot for κ = 0.5 and 0.8.
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Figure 22: Phase-pace plot for κ = 1.0 and 1.3.
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with

V (xi) =
k

2π
[1− cos(xi)] W (xi − xi−1) =

1

2
(xi − xi−1 − σ)2 ,

i.e. the single-particle potential V is 2π-periodic, whereas the in-

teraction W is harmonic between nearest neighbours, favouring

a distance σ. The necessary condition describing a ground-state

configuration is ∂U
∂xn

= 0, so

xn − xn−1 − σ − (xn+1 − xn − σ) +
k

2π
sin(xn) = 0

Remarkably the ‘misfit-parameter’ σ does not appear to play a role

in these equations! Introducing pn = xn+1 − xn, one obtains the

equations describing (meta-stable) ground-states as

pn = pn−1 +
k

2π
sin(xn)

xn = xn−1 + pn−1

which are exactly those describing the dynamics of the periodically

kicked rotator. Starting from x0, p0 one may produce a ground-

state configuration that corresponds to a dynamical trajectory of

the rotator. One characterizes the ground-states as commensurate,

incommensurate or chaotic (glassy).
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8 Random Numbers

Random numbers (RNs) are large sets of numbers with given

statistical properties. There is no such thing as a single random

number!

Random Numbers are being used in physics, chemistry, biology,

mathematics and many other disciplines to simulate stochastic pro-

cesses. Examples

• Classical stochastic processes: Brownian motion, diffusion, par-

ticle transport (in heterogeneous environments), . . .

• Stochastic processes in biology: chemotaxis, transport of ions

through membranes, binding kinetics of substances to proteins,

. . .

• Interacting systems of statistical physics,measuring equations

of state, determining phase diagrams, characterizing non-

equilibrium/relaxation phenomena, . . .

• Interacting fields, QCD, lattice gauge theory, cross-sections

for elementary particle scattering events, masses of particles

(baryons, mesons), . . .

• Simulation of quantum mechanical processes, (light) scatter-

ing, absorption of ionizing radiation , . . .

Sources of random numbers

• Throwing dice

• Tables (Edited, e.g. by RAND Corp.)

• From radioactive decay data (time between ’ticks’ of a Geiger

counter)
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• Computer generated pseudo random numbers

It is the last method which is currently the method of choice to

generate random numbers in sufficient quantity and quality.

Quality is indeed one of the most important issues for computer

generated random numbers, because they are generated by deter-

ministic algorithms; so tests are required to show that they have

the right statistical properties (desired distribution, independence

(absence of correlations)); in fact computer generated random num-

bers can at best approximate these desired properties.

There are established tests for quality of random numbers (e.g.

Kolmogorov-Smirnov, ..) but we shall not discuss them in this lec-

ture (see good Statistics books on this issue)

8.1 Generation of Homogeneously Distributed RNs

Algorithms for generating RNs are usually starting out from meth-

ods to generate uniformly distributed RNs. Most programming

languages/computer-systems (compilers) include subroutines for

that task.

• A note of caution: the collection of system routines for generat-

ing RNs with bad statistical properties is quite large and contains

famous examples (the most infamous being the RANDU-generator

of IBM (see below))

8.1.1 System-Provided Generators

The GNU-C compiler offers a pair of routines. The declarations are

• void srand(unsigned int) for initialization.

The integer argument iseed specifies which particular se-
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quence of random numbers is going to be generated when call-

ing the (second) function rand().

• int rand(void) for generating homogeneously dis-

tributed random numbers i of type integer in the range

0 ≤ i ≤ 2147483647 = 231 − 1=RAND MAX..

Through the definition frand()=rand()/(RAND MAX + 1.) (

preferably in a #define statement) one obtains a random number

generator that generates real RNs r in the range 0 ≤ r < 1

8.1.2 Linear Congruential Generators (LCGs)

The system-provided generators quite often produce random num-

bers of inferior quality. This is related to the fact that they are

usually so-called Linear congruential generators (LCGs) which gen-

erate RNs, starting from a seed I0, via

Ij+1 = (aIj + c) (mod m) ,

where a, c andm are given parameters of the generator. The period

of such generators cannot be larger than m; with ‘unfortunate’

choices for a and c it can turn out considerably shorter.

The Ij are clearly not random, being generated by a simple deter-

ministic map; this become obvious also by looking at the ‘return-

map’ in which Ij+1 is plotted vs. Ij. The dynamics is chaotic (for

a > 1, the Ljapunov-exponent is λ = ln a) but clearly not random.

Besides being chaotic, it is also mixing: an order Ij, I
′
j of two RNs

is not preserved under iteration.

LCGs have sequential correlations. If subsequent triples

(Ij, Ij+1, Ij+2) (more generally k-tuples) are plotted as points in
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Figure 23: (a) Blow-up of part of the return-map of the generators with a = 106,m = 6075
and c = 1283 from NumRec; the straight line corresponds to Ij+1 = Ij. (b) Triple statistics
for that generator.

IRk, they always lie on k − 1 dimensional hyper-planes. This was

proven by Marsaglia for LCGs in general. The number of different

hyper-planes is at most m1/k; with an unfortunate choice of the

parameters of the random number generator it can be significantly

smaller. (Note that for m = 231 − 1, even the maximum theo-

retical number of planes for triples m1/3 = O(210) is not all that

impressive, and could be seen with a naked eye when viewed from

the right angle! The IBM RANDU generator had only 11 planes for

triples; the generator was often copied and modified, and in the

process not always improved!

Some examples of random number generators, given is (m, a, c, I0):

• RANDU used by IBM 1970 in FORTRAN: (231, 216 + 3 =

65539, 0, 1). RANDU was widely used but is “really horrible”

(Donald Knuth). It does not have the maximum possible pe-

riod, among other problems.

• ANSIC used by ANSI C function rand()

(231, 1103515245, 12345, 12345). Lower bits of bad statis-

tical quality. Has been superseded by

• DRAND48 used by many Unix implementations drand48()

123



(248, 1575931494, 11, 12345).

There are many more different linear and non-linear random num-

ber generators; look for example in the Web for the Mersenne

twister’s, based on Mersenne’s prime numbers. It is claimed to

be of period 219937−1, which is a number which exceeds by far the

number of particles in the universe...

8.1.3 Portable Generators

Portable generators are written in a higher programming language

and mostly of LCG-type or derived from LCG tye generators

• float ran0(long *idum): Park-Miller generator

The Park-Miller generator produces integer RNs according to

a simplified LCG-principle:

Ij+1 = aIj (modm) mit a = 75 ,m = 231−1 = 2147483647

The difficulty of the implementation is to avoid overflow or

other exceptions due to multiplication of large numbers. This is

accomplished through the so-called Schrage algorithm, based

on the decomposition m = aq + r, where q = [m/a] and

square brackets denote the integer part of the contents. In

NumRec, this generator with q = 127773 and r = 2386 is

implemented as ran0, with integer values finally converted to

float. Initialization requires a negative idum. (Rem.: as the

generator has no offset, it must exhibit sequential correlations:

for small Ij, Ij+1 will be small as well.) It is not recommended

to use ran0 by itself in serious applications.

• float ran1(long *idum): Park-Miller generator with mix-

ing via a table
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Combines the ran0 generator with a mixing algorithm via a

table.

– Initialization upon calling with idum< 0. After a warmup-

phase a table of length NTAB is filled with RNs generated

by ran0.

– Further calls ran0(&idum) use ran0 to compute a random

address in the table, read and return the table entry as

RN and refill that table entry with a new RN generated

by ran0.

The generator has good statistical properties, as long as se-

quences of RNs are required which are shorter than m =

231 − 1 = 2147483647 ∼ 109.

• float ran2(long *idum): Park-Miller generator with mix-

ing via a table

Function is as in ran1, however different generators for com-

puting random table addresses and for filling table entries are

used. The period is estimated to be O(1018). The generator

has good statistical properties

• Other generators:

– float ran3(long *idum) after D. Knuth. from Num-

Rec. (not based on LCG principle); Initialization by call

with neg. idum.

– home-made ‘quick and dirty’ LCGs; suggestions for pa-

rameters a, b, m can be found in NumRec. Statistical

properties are often mediocre; generators are however sim-

ple and can easily be coded in-line and thus be made fast;

sufficient for simple ’randomization problems’.
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8.2 Generation of RNs with Prescribed Probability Density

One is often interested in RNs which are not uniform over an inter-

val but follow a prescribed probability density. Two main methods

will be discussed: (i) the transformation-method (a special vari-

ant being known as Box-Muller algorithm for generating Gaussian

RNs), and (ii) the rejection-method.

8.2.1 Transformation-Method

This method is based on a standard identity for the transformation

of probability density functions (PDFs). Let p(x) denote a PDF

for the realizations x of a random variable X and let x = x(y) be

a (monotoneous) function of y; then

p(x)dx = p(x(y))

∣

∣

∣

∣

∣

∣

dx

dy

∣

∣

∣

∣

∣

∣

dy .

This defines the PDF for y via

ρ(y) = p(x(y))

∣

∣

∣

∣

∣

∣

dx

dy

∣

∣

∣

∣

∣

∣

.

This identity suggests a method to generate RNs y with prescribed

PDF ρ(y) != f(y), starting from homogeneously distributed RNs

x in [0,1) with p(x) ≡ 1. One simply has to require that
∣

∣

∣

∣

∣

∣

dx

dy

∣

∣

∣

∣

∣

∣

= f(y) .

Assuming for simplicity dx
dy
> 0, one obtains the ODE

dx

dy
= f(y)

and by integration

x = F (y) =
∫ y

ymin
dy′f(y′) ⇐⇒ y = F−1(x)
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That is, F is the integral of f and is the probability distribution

(in German also: kumulierte Wahrscheinlichkeitsdichte) of y, with

initial condition F (ymin) = 0 leading to F (ymax) = 1. (The case
dx
dy < 0 is treated analogously, requiring just a change of initial

conditions when integrating the ODE.)

RNs with PDF f(y) are thus generated by generating homoge-

neously distributed RNs x in [0,1), and using these to compute

the y’s according to y = F−1(x). The geometrical interpretation

of this map is indicated in the following figure.

For this method to be sufficient it is necessary to have a simple

way to compute the inverse function F−1 of the y-distribution.

x

y

f(y)

F(y)xn

y
n

Figure 24: Transformation-method for generating RNs with density f(y).

8.2.2 Example: Exponentially Distributed RNs

To generate RNs with exponential PDF ρ(y) = e−y, one uses the

transformation

y = − ln(1− x) ⇐⇒ x = e−y

• Exponentially distributed RNs, NumRec routine: float

expdev(long *idum)

The exponential distribution occurs as distribution of waiting

times between independent Poissonian random events (occur-

ring randomly at a given rate, such as in radioactive decay).
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ρ(y) = e−y is the PDF of waiting times y for a process with a

rate of 1 event per unit time.

8.2.3 Gaussian RNs – Box-Muller Algorithm

The identity for transforming PDFs given above generalizes

to joint PDFs of several random variables. Let x1, x2, . . . , xn
be distributed according to the PDF p(x1, x2, . . . , xn) and let

x1 = x1(y1, y2, . . . , yn), x2 = x2(y1, y2, . . . , yn), . . . , xn =

xn(y1, y2, . . . , yn) be n functions of the n variables y1, y2, . . . , yn.

Then

ρ(y1, y2, . . . , yn) = p(x1, x2, . . . , xn)

∣

∣

∣

∣

∣

∣

∣

∂(x1, x2, . . . , xn)

∂(y1, y2, . . . , yn)

∣

∣

∣

∣

∣

∣

∣

is the PDF of the yi, where ∂(x1,x2,...,xn)
∂(y1,y2,...,yn)

denotes the Jacobi-

determinant of the transformation {yi} → {xj}.
A special case of this identity entails the Box-Muller method for

generating Gaussian (or normally) distributed RNs. Starting from

pairs of independent uniformly distributed RNs (x1, x2) in [0,1),

one defines

y1 =
√
−2 ln x1 cos(2πx2)

y2 =
√
−2 ln x1 sin(2πx2)

with inverse transformation

x1 = exp







−1

2
(y2

1 + y2
2)







x2 =
1

2π
arctan





y2

y1





The Jacobi-determinant of this transformation is

∂(x1, x2)

∂(y1, y2)
= −









e−y
2
1/2√
2π

















e−y
2
2/2√
2π









,
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so

ρ(y1, y2) = ρ(y1) ρ(y2) with ρ(y) =
e−y

2/2

√
2π

The yi so defined are independent and normally distributed with

mean 〈yi〉 = 0 and variance 〈y2
i 〉 − 〈yi〉2 = 1.

• Normally distributed RNs in NumRec: float gasdev(long

*idum)

Normally distributed RNs frequently appear in science as a

consequence of the Central Limit Theorem: If {xi} is a col-

lection of independent RNs of mean 0 and variance 12, then

y =
1

N

N
∑

i=1
xi

is normally distributed in the limit of large N — indepen-

dently of the nature of the individual distributions of the xi.

8.2.4 Rejection-Method

The rejection method is a variant of the transformation-method.

Unlike the latter it does not, however, require that the inverse

F−1 of the distribution corresponding to the PDF f(y) is readily

obtainable.

Instead, one only requires that a function f̃ (y) majoring f(y), i.e.

f̃ (y) > f(y), exists with indeterminate integral (Stammfunktion)

F̃ (y) =
∫ y

ymin
dy′f̃ (y′)

for which — on choosing the integration constant such that

F̃ (ymin) = 0 giving, say, F̃ (ymax) = A — the inverse function

F̃−1(y) be readily computable. The rejection method is then based

on the geometrical argument illustrated in the following figure.
2It is sufficient that the variances of the xi-distributions all be finite so that variables can be rescaled.
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1. Generate RNs x homogeneously distributed in [0, A), i.e. with

p(x) = 1/A. For x = F̃ (y) ⇔ y = F̃−1(x) then, y is dis-

tributed according to the PDF

ρ(y) = p(x(y))

∣

∣

∣

∣

∣

∣

dx

dy

∣

∣

∣

∣

∣

∣

=
1

A
f̃ (y) .

2. For each x (and thus for each y) generated this way, one gener-

ates a second RN x′ homogeneously distributed in the interval

[0, f̃(y)). One accepts y as random number if x′ < f(y), that

is, with probability f(y)/f̃ (y); otherwise y is rejected and a

new x is sampled. The y’s that are finally accepted are thus

distributed according to f(y)

For reasons of efficiency one should make sure that the majorizing

function f̃(y) is always rather close to f(y); otherwise to many

attempts get rejected.

x

y

f(y)

F(y)
~

accept

reject

~

f(y)

Figure 25: Rejection-method for generating RNs with density f(y).

For generating RNs with unimodal PDF (one maximum) one may

choose a non-normalized Lorentz-curve as

f̃ (y) =
c0

1 + (y − y0)2/a2
0

as majorizing function; its peak height at y0 is c0, its full width at

half maximum (FWHM) is 2a0. The indeterminate integral is

F̃ (y) = a0c0 arctan((y − y0)/a0) + c
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and is easily inverted. The task is to choose the parameters a0, c0
and y0 such that f(y) is majorized as tightly as possible. If the

y-domain is finite, y is determined from

x = F̃ (y)− F̃ (ymin)

which on inversion gives

y = y0 + a0 tan





x

a0c0
+ arctan(

ymin − y0

a0
)



 .

The variable x must be chosen homogeneously distributed in

[0, F̃ (ymax)− F̃ (ymin)).

The rejection method (with majorizing functions of this type) is

used to generate RNs with a variety of different PDFs, among them

• Binomially distributed RNs, NumRec: float bnldev(float

q, int n, long *idum),

defined on the integers {0, 1, . . . , n}

pq,n,j =







n

j





qj(1− q)n−j

gives the probability of j successes in n trials for probability q

of success in a single trial.

• Poissonian RNs, NumRec: float poidev(float x, long

*idum),

defined on the positive integers,

px,j =
xje−x

j!

The parameter x defines the mean: 〈j〉 = x. The Poisson

distribution gives the probability for the occurrence of j events

per unit interval for a Poisson process with rate x (alternatively

in an interval x for a rate-1 process), and formally as the limit

q = x
n

and n→∞ of the Binomial distribution.
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• Gamma distributed RNs, NumRec: float gamdev(int a,

long *idum)

defined on the positive real numbers.

pa(x) =
xa−1e−x

Γ(a)

The parameter a defines the mean: 〈x〉 = a. The Gamma

distribution (with integer parameter a) describes the proba-

bility that the waiting time up to the a-th event in a rate-1

Posisson-process is x.
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9 Monte Carlo Simulation

Monte Carlo simulation is a method to simulate stochastic pro-

cessses or the stochastic composition of systems in chemistry biol-

ogy, physics and other disciplines with the help of random numbers

Random numbers are being used

• to directly simulate (imitate) stochasticity of processes .

Brownian motion, diffusion, dendritic growth (diffusion limited

aggregation), dynamics of stock-prices, of neural nets, scatter-

ing of light, . . .

• to generate a heterogeneous medium, in which processes are

then studied which may or may not themselves be stochastic,

ground-water aquifers (transport of pollutants therein), al-

loys (electrical transport, dynamical properties, magnetism),

population dynamics (spread of epidemics, fire in woods),

percolation-problems, . . .

• to compute expectations of functions or random variables

Monte Carlo integration (the result aimed for is non-random),

statistical mechanics,. . .

9.1 Monte Carlo Integration: Evaluation of Integrals and Ex-

pectations

The Monte Carlo method may be used as a tool for integrating

functions, or for evaluating averages of functions of random vari-

ables.

Let p(x) denote a PDF for random-vectors x in a volume V . The

expectation of the Function f over p is defined as

〈f〉 =
∫

V
dx p(x) f(x) .
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By the law of large numbers, the expectation 〈f〉 is approximated

by the empirical mean: DrawingN points {xi} at random accord-

ing to the PDF p(x) one obtains the empirical mean and second

moment as

fN =
1

N

N
∑

i=1
f(xi) , f 2

N =
1

N

N
∑

i=1
f(xi)

2 .

The empirical mean is an estimator of the expectation. An estima-

tor of the error is

σN(f) =

√

√

√

√

√

√

f 2
N − fN

2

N − 1
.

Note that for finite N , both the empirical mean fN and the empir-

ical error σN(f) are random-variables themselves. Direct compu-

tation shows that the empirical error is a measure for the expected

fluctuations of the empirical mean,
〈

σ2
N(f)

〉

=
1

N − 1
[f 2
N − fN

2
] ≈ 1

N
[
〈

f 2
〉

− 〈f〉2]

Hence, we have

〈f〉 =
∫

V
dx p(x) f(x) = fN ± σN(f)

Rem.:

• The empirical error decreases only like N−1/2 with the sample

sizeN . That is MC is worse than all other integrators discussed

so far!

• On the positive side, note that the method is robust and simple

to use.

• A special case is obtained for homogeneously distributed x,

p(x) = V −1. This gives rise to the estimate
∫

V
dx f(x) = V (fN ± σN(f))

for ordinary integrals.
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9.1.1 Importance Sampling: Metropolis Algorithmus

The method for integrating functions which we just described is

very inefficient if significant contributions to the integral come only

from a small subset of the volume V , where p(x) differs significantly

from zero — a region which may, moreover, be of a shape which is

not easily characterized. A MC integrator based on homogeneously

distributed random vectors will be useless, as it keeps adding terms

to the integral which are insignificantly small (this phenomenon

occurs quite frequently in high-dimensional integration)

In such a situation one uses the idea of Importance Sampling,

which we shall encounter again below when discussing problems of

statistical mechanics.

The basic idea is simple: Suppose we want to evaluate an integral

of the form

〈f〉 =
∫

V
dx p(x) f(x)

for a PDF which is significantly different from zero only in certain

parts of V , for which, moreover a simple analytical characteriza-

tion is not available. In such a situation, neither a transformation-

method nor a rejection-method could be efficiently constructed to

generate random numbers following the PDF p(x) in question. In

such a situation one constructs a stochastic process which has

p(x) as its equilibrium distribution.

The stochastic process will be constructed as a so-called Markov-

process, i.e. a process without memory that is completely charac-

terized by a matrix of W (x,x′) of transition rates between states

(for transitions x′ → x)

In terms of the transition rates, a master equation of the following
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form

∂p(x, t)

∂t
=

∑

x′
[W (x,x′)p(x′, t)−W (x′,x)p(x, t)]

can be formulated. It is a continuity-equation for probability densi-

ties: The change of the probability density at x is the net result of

inflowing and outflowing probability currents. (In the continuum

case, the x′–sum in the above equation is to be read as an integral.)

In equilibrium the right hand side of the master equation vanishes.

One now constructs matrix of transition rates in such a way that

the probability density p(x) is the equilibrium density, satisfying

in particular the special condition of detailed balance : in that case

the right hand side of the master equation vanishes term by term,

so that for all x and x′ the condition

W (x,x′)p(x′) = W (x′,x)p(x)

holds.

A canonical proposal for the generation of appropriate matrices of

transition rates is due to Metropolis, Rosenbluth, Rosenbluth,

Teller and Teller . It constructs W as product of a proposal-

probability and an acceptance-rate as follows

W (x,x′) = γΘ(δ − |x− x′|) min











1,
p(x)

p(x′)











W (x′,x) = γΘ(δ − |x− x′|) min











1,
p(x′)

p(x)











The proposal-probability γΘ(δ − |x− x′|) for moves in either di-

rection restricts allowed moves to stay below a certain maximum

distance, but have an otherwise uniform probability to be proposed.

The factor γ can be absorbed in the time scale. One checks by ex-

plicit calculation that the Metropolis et al. proposal does satisfy a
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detailed balance condition with respect to the probability density

p(x) .

• The folllowing fact is crucial: as long as W is constructed such

that every state can be reached from every other state via finitely

many transitions, the equilibrium density is unique . Thus, the

Metropolis-algorithm converges to an equilibrium characterized by

p(x). Thus, the desired integral can – after a suitable equilibration

phase – be evaluated via

〈f〉 =
∫

V
dx p(x) f(x) ' 1

N

N
∑

i=1
f(xi)

with xi generated via the Metropolis-algorithm.

9.1.2 Random Walk

Random motion of particles on a hypercubic d-dimensional lattice:

In each time-step ∆t the walker takes a step to a neighbouring site

at a distance ∆x in of the 2d possible directions with probability

p = 1
2d. For an ensemble of random walkers let u(x, t) denote

the probability to be on the site x at time t; the follwing master

equation holds for the ensemble of walkers

u(x, t + ∆t)− u(x, t) =
1

2d

2d
∑

i=1
[u(x + ∆xi, t)− u(x, t)]

Dividing by ∆t and assuming the scaling D∆t = 1
2d
|∆xi|2 resp.

|∆xi| =
√

2dD∆t, one obtains a diffusion equation in the limit

∆t→ 0 :

∂tu(x, t) = D∆u(x, t)

Its solution for initial condition (x, t0) = δ(x− x0) and boundary

condition u→ 0 for |x| → ∞ is a broadening Gaussian probability
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density function,

u(x, t) =
1

(4πD(t− t0)d/2
exp





− |x− x0|2
4D(t− t0)





 .

The mean square displacement from the starting point follwos the

diffusion law
〈

(x− x0)
2
〉

= 2dD(t− t0)
Simulating on a lattice with finite lattice constant, one will see

diffusive behaviour only at large length and time scales. Only in

that limit will the probability density function be isotropic, despite

the underlying hypercubic lattice.

The diffusion scaling may alternatively understood by considering

the position of the random walker after N elementary steps taken

as a sum of independent increments ∆xi, where ∆xi = ±∆xeµ
µ = 1, . . . , d with equal probability (2d)−1, or for a single compo-

nent of the increment, ∆xiµ = 0 with prob. 1 − 1/2d and ±∆x

with prob. 1/2d.

Then the (random) location after N steps is

x(N∆t) =
N
∑

i=1
∆xi

As the distribution of increments does not single out a direction,

one has

〈xµ(N)〉 = 0 ;

because of to the independence of increments for i 6= j then

〈

x2
µ(N∆t)

〉

=
N
∑

i,j=1
〈∆xiµ∆xjµ〉 =

N
∑

i=1

〈

∆x2
iµ

〉

=
N

d
∆x2 =

N∆t

d

∆x2

∆t

A continuum description is obtained by taking increments and time

steps as infinitesimal, so that N∆t = t − t0. To obtain a finite
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variance for finite makroskopic time difference reqires ∆x2

∆t
= O(1)

für ∆t ∼ N−1 → 0.

Yet another way to rationalize the scaling comes from the central

limit theorem, which states that a sum of N independent incre-

ments, if scaled by 1/
√
N

S(N∆t) =
1√
N

x(N∆t) =
1√
N

N
∑

i=1
∆xi

converges to a Gaussian distributed random variable in the limit

of large N .
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Figure 26: Determining p(x) = C exp(−β(x − x0)
2) for β = 0.2 and x0 = 2.0 using a

Metropolis algorithm; shown is a symmetrized result, as transitions left/right are rare, to
suppress fluctuations of the total weights of left vs. right peak for the simulation of the
given size.

9.1.3 Discrete Systems as Example

A typical example are spin systems as a models of magnetisation

phenomena. The simplest model is the Ising model, defined by the

energy function

H(S) = −J ∑

(i,j)
SiSj − h

∑

i
Si .
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The Si can take the values ±1. The coupling J is a so-called ex-

change coupling, h represents an external magnetic field. If J > 0,

ferromagnetic order is preferred, if J < 0 it is anti-ferromagnetic

order. By (i, j) we denote nearest neighbour pairs on a regular

lattice.

The Ising model can be solved analytically in d = 1 by means of

the transfer matrix method (i.e. free energy and expectations of

observables can be evaluated in closed form). In d = 2, a solution

has so far been obtained only without field (h = 0). In d ≥ 3,

no analytic solution is known, but approximate results have been

obtained in various ways.

To check the quality of approximations, one simulates the system

using Monte Carlo methods.

For N spins one has 2N possible spin configurations of the system.

The numerical evaluation of the partition sum is therefore plagued

by very much the same problems as the general continuum case

discussed earlier. Randomly chosen spin configurations with Si =

±1 having equal a-priori probability have an energy

H(S) = O(1/
√
N )

due to the central limit theorem (on a cubic lattice with N ver-

tices in d dimensions one has dN pairs (i, j), and SiSj = ±1 with

equal probability.) Thermodynamically relevant states, however,

have energies H(S) = −O(N); as in the continuum case there

is an energy difference O(N) between thermodynamic and ran-

dom states, (the latter are thermodynamically relevant in the high

temperature limit, T →∞).

Using the Metropolis-Algorithm one constructs a stochastic pro-

cess, which converges to equilibrium with spin-configurations S
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distributed according to the Gibbs-Boltzmann distribution

p(S) =
e−βH(S)

∑

S e−βH(S)
.

Quantities of Interest

• Partition sum

ZN =
∑

S
e−βH

• Free energy (per spin)

fN = −(βN)−1 lnZN

• Internal energy (per spin)

u =
d

dβ
(βf)|h =

1

N
〈H(S)〉

Here 〈(. . .)〉 denotes the average over the Gibbs-Boltzmann

distribution

• Magnetization (per spin)

m = − d

dh
fN |β =

1

N

∑

i
〈Si〉

• Specific heat

c =
d

dT
u|h = −k

B
β2 d

dβ
u|h =

k
B
β2

N

[〈

H(S)2
〉

− 〈H(S)〉2
]

≥ 0

The specific heat is related to fluctuations in energy and so

must be positive.

• Susceptibility

χ =
d

dh
m|β =

β

N

∑

i,j
[〈SiSj〉 − 〈Si〉 〈Sj〉] =

β

N

〈





∑

i
(Si − 〈Si〉)





2〉

≥ 0

The susceptibility is related to fluctuations in magnetization

and so must be positive as well.
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• Correlation functions: On a microscopic level one looks at cor-

relations between spins. The correlation function

G(r) = 〈SiSi+r〉 − 〈Si〉 〈Si+r〉 ∼
e−r/ξ

rd−2+η
r � 1

is characterized by two quantities, the correlation length ξ,

which determines the scale on which correlations decay (expo-

nentially), and an exponent η quantifying power law correc-

tions (see below). One notes that the susceptibility is basically

a sum of correlation functions.

Evaluation of expectations within a Monte Carlo simulation using

the Metropolis algorithm.

W (S′,S) = Θ(1− |S− S′|) min
{

1, e−β∆H
}

with

∆H = H(S′)−H(S)

Properties of the system

• In d ≥ 2 and in the thermodynamic limitN →∞, the system

(at h = 0) exhibits a phase transition from a disordered phase

with m = 0 into an orderd phase with non-zereo spontaneous

magnetisationm = ±m0(T ). On the square lattice the critical

point is at

sinh(2βcJ) = 1⇔ βcJ = 0.4406868 . . .⇔ Tc
J

= 2.269185 . . .

• In the vicinity of the critical point (Tc, h = 0) various thermo-

dynamic functions exhibit algebraic singularities, which can be

characterized by critical exponents. With t = (T − Tc)/Tc we

have (for |t| � 1)
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– Specific heat

c ∼ ln |t|
a behaviour which is often characterized by writing c ∼
|t|−α with α = 0(ln).

– Magnetization

m ∼ (−t)β with β =
1

8

– Susceptibility

χ ∼ |t|−γ with γ =
7

4

– Magnetization at Tc

m(Tc, h) ∼ sgn (h)|h|1/δ with δ = 15

– Correlation length

ξ ∼ |t|−ν with ν = 1

– Critical correlation function: At criticality the correlation

length is infinite, and the correlation function exhibits slow

algebraic decay of the form

G(r)|Tc
∼ 1

rd−2+η
with η =

1

4

Remarkable properties of critical exponents

Critical exponents have two remarkable properties :

1. They are universal in the sense that they depend only on very

few details of the system under study: (i) the spatial dimension,

(ii) the dimension of the ‘order parameter’ — the quantitiy

that characterizes the ordered phase; here the magnetization,
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which in the case at hand is a scalar, so one-dimensional. Mag-

nets exist, in which the magnetization can point anywhere in

a plane oder into any spatial direction; the order parameter

dimensions would be 2 resp. 3 in these cases, (iii) whether the

interaction has long or short range (criterium for short range

is
∑

j |Jij| <∞). All other aspects are irrelevant (e.g. . lattice

type).

2. The critical exponents are not all independent, rather for con-

tinuous phase transitions as described above they (almost) al-

ways satisfy the following 4 scaling relations

α + 2β + γ = 2 Rushbrooke

β(δ − 1) = γ Widom

ν(2− η) = γ Fisher

2− dν = α Josephson

The generally accepted theoretical understanding of these proper-

ties has been provided through the renormalization goup theory of

critical phenomena (K. Wilson, 1970, Nobelpreis 19xx).

9.1.4 Aspects of the Simulation

(i) Simulation with cyclic boundray conditions to reduce surface

effecs. In d = 2 this means that the lattice is wrapped on a

torus.

(ii) Realization in C: Spins of a L×L lattice stored in an array int

S[L-1][L-1]. To compute corrdinates of nearest neigbours,

C offers the modulo-operation: neighbouring spins of S[i][j]

are S[i±1 % L][j] and S[i][j±1 % L].
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(iii) Elementary step: spin reversion of a single spin: Si → S ′i =

−Si. Energy change for Metropolis decision

∆H = H(S′)−H(S) = 2Si





J
∑

j∈n(i)
Sj + h







Here n(i) denotes the set of nearest neighbours of i. In d = 2

the positive energy changes (für J > 0) can only be ∆H =

2[2J + h] and ∆H = 2[4J + h]. Instead of computing p∆ =

exp{−β∆H} for the acceptance criterion for ∆H > 0 each

time anew, one stores the two possible values and uses ∆H

just as an index pointing to the right probability.

(iv) In the vicinity of Tc and for T > Tc one rather computes the

absolute value of the magnetization 〈| ∑i Si|〉 – this allows to

use the statistics of configuration, even if during a simulation

the system has switched between states of negative and pos-

itive magnetization (the times it takes for such transition are

often negligibly short.

(v) The evaluation of thermodynamic functions in the vicinity of

Tc requires a finite-size scaling analysis. E. g. for the suscepti-

bility one has (h = 0)

χL(T ) =

∣

∣

∣

∣

∣

∣

T − Tc
Tc

∣

∣

∣

∣

∣

∣

−γ
F



L1/νT − Tc
Tc





Plotting χL(T )
∣

∣

∣

∣

T−Tc
Tc

∣

∣

∣

∣

γ
vs. L1/ν T−Tc

Tc
will for properly chosen

values of Tc, γ and ν result in curves which will fall on top of

each other for different system sizes. An estimate of Tc can be

obtained from the ‘pseudo-critical’ temperature Tmax(L), for

which at given L a maximum of χL(T ) is observed. FSS holds

that

Tmax(L) = Tc + aL−1/ν L� 1 .
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A plot of Tmax(L) vs. 1/La should for large L produce a

straigth line, if a = 1/ν is properly chosen; this allows to

locate Tc and to determine ν.

9.1.5 Estimation of Errors – The Role of Dynamics and critical Slowing Down

The Metropolis–Algorithm generates spin configurations which are

not independent within a time step of one Monte Carlo step per

spin (MCS) In fact, one observes temporal correlations of the type

C(t) =
1

N

∑

i
[〈Si(t0)Si(t0 + t)〉 − 〈Si(t0)〉 〈Si(t0 + t)〉 ∼ e−t/τ

(times being measured in units of 1 MCS gemessen). Here τ is called

relaxation time (of the spin-correlation function). This quantity is

important in judging the true statistical error of the Monte Carlo

evaluation of expectations. We have

〈f(S)〉 =
1

K

K
∑

k=1
f(s(k) ±O











√

√

√

√

√

√

f 2 − f 2

Keff











with fn = 1
K

∑K
k=1 f

n(s(k), where Keff is the number of effectively

independent configurations in the sample of K measurements. It

is reasonably estimated to be Keff = K/τ .

A problem here is that the relaxation time τ itself diverges at the

critical point Tc like

τ ∼
∣

∣

∣

∣

∣

∣

T − Tc
Tc

∣

∣

∣

∣

∣

∣

−zν

where z ' 2.1 for the Ising model in d = 2. This phenomenon

is known as critical slow-down (kritische Verlangsamung) of the

dynamics. As a consequence simulations near Tc must be carried

out for ever longer times, in order to obtain results with reasonably

small errors.
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