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Preface

So, ultimately, in order to understand nature it may be necessary to have a deeper understanding
of mathematical relationships. But the real reason is that the subject is enjoyable, and although we
humans cut nature up in different ways, and we have different courses in different departments, such
compartmentalization is really artificial, and we should take our intellectual pleasures where we find
them. Richard Feynman, The Laws of Thermodynamics.

Why a preface you may ask? Isn’t that just a mere exposition of a raison d’étre of an
author’s choice of material, preferences, biases, teaching philosophy etc.? To a large extent I
can answer in the affirmative to that. A preface ought to be personal. Indeed, what you will
see in the various chapters of these notes represents how I perceive computational physics
should be taught.

This set of lecture notes serves the scope of presenting to you and train you in an algorith-
mic approach to problems in the sciences, represented here by the unity of three disciplines,
physics, mathematics and informatics. This trinity outlines the emerging field of computa-
tional physics.

Our insight in a physical system, combined with numerical mathematics gives us the rules
for setting up an algorithm, viz. a set of rules for solving a particular problem. Our under-
standing of the physical system under study is obviously gauged by the natural laws at play,
the initial conditions, boundary conditions and other external constraints which influence the
given system. Having spelled out the physics, for example in the form of a set of coupled
partial differential equations, we need efficient numerical methods in order to set up the final
algorithm. This algorithm is in turn coded into a computer program and executed on available
computing facilities. To develop such an algorithmic approach, you will be exposed to several
physics cases, spanning from the classical pendulum to quantum mechanical systems. We will
also present some of the most popular algorithms from numerical mathematics used to solve
a plethora of problems in the sciences. Finally we will codify these algorithms using some of
the most widely used programming languages, presently C, C++ and Fortran and its most
recent standard Fortran 200. However, a high-level and fully object-oriented language like
Python is now emerging as a good alternative although C++ and Fortran still outperform
Python when it comes to computational speed. In this text we offer an approach where one
can write all programs in C/C++ or Fortran. We will also show you how to develop large
programs in Python interfacing C++ and/or Fortran functions for those parts of the program
which are CPU intensive. Such an approach allows you to structure the flow of data in a high-
level language like Python while tasks of a mere repetitive and CPU intensive nature are left
to low-level languages like C++ or Fortran. Python allows you also to smoothly interface your
program with other software, such as plotting programs or operating system instructions.

I Throughout this text we refer to Fortran 2003 as Fortran, implying the latest standard. Fortran 2008 will
only add minor changes to Fortran 2003.
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A typical Python program you may end up writing contains everything from compiling and
running your codes to preparing the body of a file for writing up your report.

Computer simulations are nowadays an integral part of contemporary basic and applied re-
search in the sciences. Computation is becoming as important as theory and experiment. In
physics, computational physics, theoretical physics and experimental physics are all equally
important in our daily research and studies of physical systems. Physics is the unity of theory,
experiment and computatior@. Moreover, the ability "to compute" forms part of the essen-
tial repertoire of research scientists. Several new fields within computational science have
emerged and strengthened their positions in the last years, such as computational materials
science, bioinformatics, computational mathematics and mechanics, computational chemistry
and physics and so forth, just to mention a few. These fields underscore the importance of sim-
ulations as a means to gain novel insights into physical systems, especially for those cases
where no analytical solutions can be found or an experiment is too complicated or expensive
to carry out. To be able to simulate large quantal systems with many degrees of freedom
such as strongly interacting electrons in a quantum dot will be of great importance for future
directions in novel fields like nano-techonology. This ability often combines knowledge from
many different subjects, in our case essentially from the physical sciences, numerical math-
ematics, computing languages, topics from high-performace computing and some knowledge
of computers.

In 1999, when I started this course at the department of physics in Oslo, computational
physics and computational science in general were still perceived by the majority of physi-
cists and scientists as topics dealing with just mere tools and number crunching, and not as
subjects of their own. The computational background of most students enlisting for the course
on computational physics could span from dedicated hackers and computer freaks to people
who basically had never used a PC. The majority of undergraduate and graduate students
had a very rudimentary knowledge of computational techniques and methods. Questions like
’do you know of better methods for numerical integration than the trapezoidal rule’ were not
uncommon. I do happen to know of colleagues who applied for time at a supercomputing
centre because they needed to invert matrices of the size of 10* x 10* since they were using
the trapezoidal rule to compute integrals. With Gaussian quadrature this dimensionality was
easily reduced to matrix problems of the size of 107 x 10?, with much better precision.

Less than ten years later most students have now been exposed to a fairly uniform introduc-
tion to computers, basic programming skills and use of numerical exercises. Practically every
undergraduate student in physics has now made a Matlab or Maple simulation of for example
the pendulum, with or without chaotic motion. Nowadays most of you are familiar, through
various undergraduate courses in physics and mathematics, with interpreted languages such
as Maple, Matlab and/or Mathematica. In addition, the interest in scripting languages such
as Python or Perl has increased considerably in recent years. The modern programmer would
typically combine several tools, computing environments and programming languages. A typ-
ical example is the following. Suppose you are working on a project which demands extensive
visualizations of the results. To obtain these results, that is to solve a physics problems like ob-
taining the density profile of a Bose-Einstein condensate, you need however a program which
is fairly fast when computational speed matters. In this case you would most likely write a

2 We mentioned previously the trinity of physics, mathematics and informatics. Viewing physics as the trinity
of theory, experiment and simulations is yet another example. It is obviously tempting to go beyond the
sciences. History shows that triunes, trinities and for example triple deities permeate the Indo-European
cultures (and probably all human cultures), from the ancient Celts and Hindus to modern days. The ancient
Celts revered many such trinues, their world was divided into earth, sea and air, nature was divided in animal,
vegetable and mineral and the cardinal colours were red, yellow and blue, just to mention a few. As a curious
digression, it was a Gaulish Celt, Hilary, philosopher and bishop of Poitiers (AD 315-367) in his work De
Trinitate who formulated the Holy Trinity concept of Christianity, perhaps in order to accomodate millenia of
human divination practice.
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high-performance computing program using Monte Carlo methods in languages which are
tailored for that. These are represented by programming languages like Fortran and C++.
However, to visualize the results you would find interpreted languages like Matlab or script-
ing languages like Python extremely suitable for your tasks. You will therefore end up writing
for example a script in Matlab which calls a Fortran or C++ program where the number
crunching is done and then visualize the results of say a wave equation solver via Matlab’s
large library of visualization tools. Alternatively, you could organize everything into a Python
or Perl script which does everything for you, calls the Fortran and/or C++ programs and
performs the visualization in Matlab or Python. Used correctly, these tools, spanning from
scripting languages to high-performance computing languages and vizualization programs,
speed up your capability to solve complicated problems. Being multilingual is thus an advan-
tage which not only applies to our globalized modern society but to computing environments
as well. This text shows you how to use C++ and Fortran as programming languages.

There is however more to the picture than meets the eye. Although interpreted languages
like Matlab, Mathematica and Maple allow you nowadays to solve very complicated problems,
and high-level languages like Python can be used to solve computational problems, compu-
tational speed and the capability to write an efficient code are topics which still do matter.
To this end, the majority of scientists still use languages like C++ and Fortran to solve sci-
entific problems. When you embark on a master or PhD thesis, you will most likely meet
these high-performance computing languages. This course emphasizes thus the use of pro-
gramming languages like Fortran, Python and C++ instead of interpreted ones like Matlab
or Maple. You should however note that there are still large differences in computer time be-
tween for example numerical Python and a corresponding C++ program for many numerical
applications in the physical sciences, with a code in C++ or Fortran being the fastest.

Computational speed is not the only reason for this choice of programming languages. An-
other important reason is that we feel that at a certain stage one needs to have some insights
into the algorithm used, its stability conditions, possible pitfalls like loss of precision, ranges
of applicability, the possibility to improve the algorithm and taylor it to special purposes etc
etc. One of our major aims here is to present to you what we would dub ’'the algorithmic
approach’, a set of rules for doing mathematics or a precise description of how to solve a
problem. To device an algorithm and thereafter write a code for solving physics problems
is a marvelous way of gaining insight into complicated physical systems. The algorithm you
end up writing reflects in essentially all cases your own understanding of the physics and
the mathematics (the way you express yourself) of the problem. We do therefore devote quite
some space to the algorithms behind various functions presented in the text. Especially, in-
sight into how errors propagate and how to avoid them is a topic we would like you to pay
special attention to. Only then can you avoid problems like underflow, overflow and loss of
precision. Such a control is not always achievable with interpreted languages and canned
functions where the underlying algorithm and/or code is not easily accesible. Although we
will at various stages recommend the use of library routines for say linear algebra@, our
belief is that one should understand what the given function does, at least to have a mere
idea. With such a starting point, we strongly believe that it can be easier to develope more
complicated programs on your own using Fortran, C++ or Python.

We have several other aims as well, namely:

* We would like to give you an opportunity to gain a deeper understanding of the physics
you have learned in other courses. In most courses one is normally confronted with simple
systems which provide exact solutions and mimic to a certain extent the realistic cases.
Many are however the comments like "why can’t we do something else than the particle in

3 Such library functions are often taylored to a given machine’s architecture and should accordingly run faster
than user provided ones.
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a box potential?’. In several of the projects we hope to present some more ‘realistic’ cases
to solve by various numerical methods. This also means that we wish to give examples of
how physics can be applied in a much broader context than it is discussed in the traditional
physics undergraduate curriculum.

* To encourage you to "discover" physics in a way similar to how researchers learn in the
context of research.

* Hopefully also to introduce numerical methods and new areas of physics that can be stud-
ied with the methods discussed.

* To teach structured programming in the context of doing science.

* The projects we propose are meant to mimic to a certain extent the situation encountered
during a thesis or project work. You will tipically have at your disposal 2-3 weeks to solve
numerically a given project. In so doing you may need to do a literature study as well.
Finally, we would like you to write a report for every project.

Our overall goal is to encourage you to learn about science through experience and by asking
questions. Our objective is always understanding and the purpose of computing is further
insight, not mere numbers! Simulations can often be considered as experiments. Rerunning
a simulation need not be as costly as rerunning an experiment.

Needless to say, these lecture notes are upgraded continuously, from typos to new input.
And we do always benefit from your comments, suggestions and ideas for making these notes
better. It’s through the scientific discourse and critics we advance. Moreover, I have bene-
fitted immensely from many discussions with fellow colleagues and students. In particular I
must mention my colleague Torgeir Engeland, whose input through the last years has consid-
erably improved these lecture notes.

Finally, I would like to add a petit note on referencing. These notes have evolved over
many years and the idea is that they should end up in the format of a web-based learning
environment for doing computational science. It will be fully free and hopefully represent a
much more efficient way of conveying teaching material than traditional textbooks. I have not
yet settled on a specific format, so any input is welcome. At present however, it is very easy
for me to upgrade and improve the material on say a yearly basis, from simple typos to adding
new material. When accessing the web page of the course, you will have noticed that you can
obtain all source files for the programs discussed in the text. Many people have thus written
to me about how they should properly reference this material and whether they can freely
use it. My answer is rather simple. You are encouraged to use these codes, modify them,
include them in publications, thesis work, your lectures etc. As long as your use is part of the
dialectics of science you can use this material freely. However, since many weekends have
elapsed in writing several of these programs, testing them, sweating over bugs, swearing in
front of a f*@?%g code which didn’t compile properly ten minutes before monday morning’s
eight o’clock lecture etc etc, I would dearly appreciate in case you find these codes of any
use, to reference them properly. That can be done in a simple way, refer to M. Hjorth-Jensen,
Computational Physics, University of Oslo (2012). The weblink to the course should also be
included. Hope it is not too much to ask for. Enjoy!
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Part 1

Introduction to programming and numerical
methods



The first part of this text aims at giving an introduction to basic C++ and Fortran pro-
gramming, including numerical methods for computing integrals, finding roots of functions
and numerical interpolation and extrapolation. It serves also the aim of introducing the first
examples on parallelization of codes for numerical integration.



Chapter 1
Introduction

In the physical sciences we often encounter problems of evaluating various properties of a
given function f(x). Typical operations are differentiation, integration and finding the roots of
f(x). In most cases we do not have an analytical expression for the function f(X) and we cannot
derive explicit formulae for derivatives etc. Even if an analytical expression is available, the
evaluation of certain operations on f(x) are so difficult that we need to resort to a numerical
evaluation. More frequently, f(x) is the result of complicated numerical operations and is
thus known only at a set of discrete points and needs to be approximated by some numerical
methods in order to obtain derivatives, etc etc.

The aim of these lecture notes is to give you an introduction to selected numerical methods
which are encountered in the physical sciences. Several examples, with varying degrees of
complexity, will be used in order to illustrate the application of these methods.

The text gives a survey over some of the most used methods in computational physics
and each chapter ends with one or more applications to realistic systems, from the structure
of a neutron star to the description of quantum mechanical systems through Monte-Carlo
methods. Among the algorithms we discuss, are some of the top algorithms in computational
science. In recent surveys by Dongarra and Sullivan [1] and Cipra [2]], the list over the ten
top algorithms of the 20th century include

1. The Monte Carlo method or Metropolis algorithm, devised by John von Neumann, Stanis-

law Ulam, and Nicholas Metropolis, discussed in chapters [[THI4l

The simplex method of linear programming, developed by George Dantzig.

3. Krylov Subspace Iteration method for large eigenvalue problems in particular, developed
by Magnus Hestenes, Eduard Stiefel, and Cornelius Lanczos, discussed in chapter[Zl

4. The Householder matrix decomposition, developed by Alston Householder and discussed
in chapter[7]

5. The Fortran compiler, developed by a team lead by John Backus, codes used throughout
this text.

6. The QR algorithm for eigenvalue calculation, developed by Joe Francis, discussed in chap-

ter[7

The Quicksort algorithm, developed by Anthony Hoare.

Fast Fourier Transform, developed by James Cooley and John Tukey.

The Integer Relation Detection Algorithm, developed by Helaman Ferguson and Rodney

The fast Multipole algorithm, developed by Leslie Greengard and Vladimir Rokhlin; (to

calculate gravitational forces in an N-body problem normally requires N2 calculations. The

fast multipole method uses order N calculations, by approximating the effects of groups of

distant particles using multipole expansions)

N

L »®

The topics we cover start with an introduction to C++ and Fortran programming (with
digressions to Python as well) combining it with a discussion on numerical precision, a point
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we feel is often neglected in computational science. This chapter serves also as input to
our discussion on numerical derivation in chapter [3] In that chapter we introduce several
programming concepts such as dynamical memory allocation and call by reference and value.
Several program examples are presented in this chapter. For those who choose to program in
C++ we give also an introduction to how to program classes and the auxiliary library Blitz++,
which contains several useful classes for numerical operations on vectors and matrices. This
chapter contains also sections on numerical interpolation and extrapolation. Chapter [4] deals
with the solution of non-linear equations and the finding of roots of polynomials. The link
to Blitz++, matrices and selected algorithms for linear algebra problems are dealt with in
chapter[6l

Therafter we switch to numerical integration for integrals with few dimensions, typically
less than three, in chapter [5l The numerical integration chapter serves also to justify the
introduction of Monte-Carlo methods discussed in chapters and There, a variety of
applications are presented, from integration of multidimensional integrals to problems in
statistical physics such as random walks and the derivation of the diffusion equation from
Brownian motion. Chapter[13]continues this discussion by extending to studies of phase tran-
sitions in statistical physics. Chapter [14] deals with Monte-Carlo studies of quantal systems,
with an emphasis on variational Monte Carlo methods and diffusion Monte Carlo methods.
In chapter [7l we deal with eigensystems and applications to e.g., the Schrédinger equation
rewritten as a matrix diagonalization problem. Problems from scattering theory are also dis-
cussed, together with the most used solution methods for systems of linear equations. Finally,
we discuss various methods for solving differential equations and partial differential equa-
tions in chapters with examples ranging from harmonic oscillations, equations for heat
conduction and the time dependent Schrodinger equation. The emphasis is on various finite
difference methods.

We assume that you have taken an introductory course in programming and have some
familiarity with high-level or low-level and modern languages such as Java, Python, C++,
Fortran 77/90/95, etc. Fortra and C++ are examples of compiled low-level languages, in
contrast to interpreted ones like Maple or Matlab. In such compiled languages the computer
translates an entire subprogram into basic machine instructions all at one time. In an in-
terpreted language the translation is done one statement at a time. This clearly increases
the computational time expenditure. More detailed aspects of the above two programming
languages will be discussed in the lab classes and various chapters of this text.

There are several texts on computational physics on the market, see for example Refs. [3-
101, ranging from introductory ones to more advanced ones. Most of these texts treat however
in a rather cavalier way the mathematics behind the various numerical methods. We've also
succumbed to this approach, mainly due to the following reasons: several of the methods
discussed are rather involved, and would thus require at least a one-semester course for an
introduction. In so doing, little time would be left for problems and computation. This course
is a compromise between three disciplines, numerical methods, problems from the physical
sciences and computation. To achieve such a synthesis, we will have to relax our presentation
in order to avoid lengthy and gory mathematical expositions. You should also keep in mind
that computational physics and science in more general terms consist of the combination of
several fields and crafts with the aim of finding solution strategies for complicated problems.
However, where we do indulge in presenting more formalism, we have borrowed heavily from
several texts on mathematical analysis.

1 With Fortran we will consistently mean Fortran 2008. There are no programming examples in Fortran 77 in
this text.
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1.1 Choice of programming language

As programming language we have ended up with preferring C++, but all examples discussed
in the text have their corresponding Fortran and Python programs on the webpage of this text.

Fortran (FORmula TRANSslation) was introduced in 1957 and remains in many scientific
computing environments the language of choice. The latest standard, see Refs. [11H14], in-
cludes extensions that are familiar to users of C++. Some of the most important features of
Fortran include recursive subroutines, dynamic storage allocation and pointers, user defined
data structures, modules, and the ability to manipulate entire arrays. However, there are sev-
eral good reasons for choosing C++ as programming language for scientific and engineering
problems. Here are some:

* C++ is now the dominating language in Unix and Windows environments. It is widely
available and is the language of choice for system programmers. It is very widespread for
developments of non-numerical software

* The C++ syntax has inspired lots of popular languages, such as Perl, Python and Java.

» It is an extremely portable language, all Linux and Unix operated machines have a C++
compiler.

* In the last years there has been an enormous effort towards developing numerical libraries
for C++. Numerous tools (numerical libraries such as MPI [15H17]]) are written in C++ and
interfacing them requires knowledge of C++. Most C++ and Fortran compilers compare
fairly well when it comes to speed and numerical efficiency. Although Fortran 77 and C are
regarded as slightly faster than C++ or Fortran, compiler improvements during the last
few years have diminshed such differences. The Java numerics project has lost some of its
steam recently, and Java is therefore normally slower than C++ or Fortran.

* Complex variables, one of Fortran’s strongholds, can also be defined in the new ANSI C++
standard.

* C++ is alanguage which catches most of the errors as early as possible, typically at compi-
lation time. Fortran has some of these features if one omits implicit variable declarations.

* C++ is also an object-oriented language, to be contrasted with C and Fortran. This means
that it supports three fundamental ideas, namely objects, class hierarchies and polymor-
phism. Fortran has, through the MODULE declaration the capability of defining classes, but
lacks inheritance, although polymorphism is possible. Fortran is then considered as an
object-based programming language, to be contrasted with C++ which has the capability
of relating classes to each other in a hierarchical way.

An important aspect of C++ is its richness with more than 60 keywords allowing for a
good balance between object orientation and numerical efficiency. Furthermore, careful pro-
gramming can results in an efficiency close to Fortran 77. The language is well-suited for
large projects and has presently good standard libraries suitable for computational science
projects, although many of these still lag behind the large body of libraries for numerics
available to Fortran programmers. However, it is not difficult to interface libraries written in
Fortran with C++ codes, if care is exercised. Other weak sides are the fact that it can be easy
to write inefficient code and that there are many ways of writing the same things, adding to
the confusion for beginners and professionals as well. The language is also under continuous
development, which often causes portability problems.

C++ is also a difficult language to learn. Grasping the basics is rather straightforward,
but takes time to master. A specific problem which often causes unwanted or odd errors is
dynamic memory management.

The efficiency of C++ codes are close to those provided by Fortran. This means often that
a code written in Fortran 77 can be faster, however for large numerical projects C++ and
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Fortran are to be preferred. If speed is an issue, one could port critical parts of the code to
Fortran 77.

1.1.0.1 Future plans

Since our undergraduate curriculum has changed considerably from the beginning of the fall
semester of 2007, with the introduction of Python as programming language, the content of
this course will change accordingly from the fall semester 2009. C++ and Fortran will then
coexist with Python and students can choose between these three programming languages.
The emphasis in the text will be on C++ programming, but how to interface C++ or Fortran
programs with Python codes will also be discussed. Tools like Cython (or SWIG) are highly
recommended, see for example the Cython link athttp://cython.org.

1.2 Designing programs

Before we proceed with a discussion of numerical methods, we would like to remind you of
some aspects of program writing.

In writing a program for a specific algorithm (a set of rules for doing mathematics or a
precise description of how to solve a problem), it is obvious that different programmers will
apply different styles, ranging from barely readable|q (even for the programmer) to well doc-
umented codes which can be used and extended upon by others in e.g., a project. The lack of
readability of a program leads in many cases to credibility problems, difficulty in letting oth-
ers extend the codes or remembering oneself what a certain statement means, problems in
spotting errors, not always easy to implement on other machines, and so forth. Although you
should feel free to follow your own rules, we would like to focus certain suggestions which
may improve a program. What follows here is a list of our recommendations (or biases/preju-
dices).

First about designing a program.

» Before writing a single line, have the algorithm clarified and understood. It is crucial to
have a logical structure of e.g., the flow and organization of data before one starts writing.

» Always try to choose the simplest algorithm. Computational speed can be improved upon
later.

* Try to write a as clear program as possible. Such programs are easier to debug, and al-
though it may take more time, in the long run it may save you time. If you collaborate with
other people, it reduces spending time on debugging and trying to understand what the
codes do. A clear program will also allow you to remember better what the program really
does!

* Implement a working code with emphasis on design for extensions, maintenance etc. Focus
on the design of your code in the beginning and don’t think too much about efficiency
before you have a thoroughly debugged and verified program. A rule of thumb is the so-
called 80— 20rule, 80 % of the CPU time is spent in 20 % of the code and you will experience
that typically only a small part of your code is responsible for most of the CPU expenditure.
Therefore, spend most of your time in devising a good algorithm.

* The planning of the program should be from top down to bottom, trying to keep the flow as
linear as possible. Avoid jumping back and forth in the program. First you need to arrange

2 As an example, a bad habit is to use variables with no specific meaning, like x1, x2 etc, or names for
subprograms which go like routinel, routine2 etc.
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the major tasks to be achieved. Then try to break the major tasks into subtasks. These can
be represented by functions or subprograms. They should accomplish limited tasks and
as far as possible be independent of each other. That will allow you to use them in other
programs as well.

Try always to find some cases where an analytical solution exists or where simple test
cases can be applied. If possible, devise different algorithms for solving the same problem.
If you get the same answers, you may have coded things correctly or made the same error
twice.

When you have a working code, you should start thinking of the efficiency. Analyze the
efficiency with a tool (profiler) to predict the CPU-intensive parts. Attack then the CPU-
intensive parts after the program reproduces benchmark results.

However, although we stress that you should post-pone a discussion of the efficiency of

your code to the stage when you are sure that it runs correctly, there are some simple guide-
lines to follow when you design the algorithm.

Avoid lists, sets etc., when arrays can be used without too much waste of memory. Avoid
also calls to functions in the innermost loop since that produces an overhead in the call.
Heavy computation with small objects might be inefficient, e.g., vector of class complex
objects

Avoid small virtual functions (unless they end up in more than (say) 5 multiplications)
Save object-oriented constructs for the top level of your code.

Use taylored library functions for various operations, if possible.

Reduce pointer-to-pointer-to....-pointer links inside loops.

Avoid implicit type conversion, use rather the explicit keyword when declaring construc-
tors in C++.

Never return (copy) of an object from a function, since this normally implies a hidden
allocation.

Finally, here are some of our favorite approaches to code writing.

Use always the standard ANSI version of the programming language. Avoid local dialects
if you wish to port your code to other machines.

Add always comments to describe what a program or subprogram does. Comment lines
help you remember what you did e.g., one month ago.

Declare all variables. Avoid totally the IMPLICIT statement in Fortran. The program will
be more readable and help you find errors when compiling.

Do not use GOTO structures in Fortran. Although all varieties of spaghetti are great culi-
naric temptations, spaghetti-like Fortran with many GOTO statements is to be avoided.
Extensive amounts of time may be wasted on decoding other authors’ programs.

When you name variables, use easily understandable names. Avoid v1 when you can
use speed_of_light . Associatives names make it easier to understand what a specific
subprogram does.

Use compiler options to test program details and if possible also different compilers. They
make errors too.

Writing codes in C++ and Fortran may often lead to segmentation faults. This means in
most cases that we are trying to access elements of an array which are not available.
When developing a code it is then useful to compile with debugging options. The use of
debuggers and profiling tools is something we highly recommend during the development
of a program.






Chapter 2
Introduction to C++ and Fortran

Abstract This chapters aims at catching two birds with a stone; to introduce to you essential
features of the programming languages C++ and Fortran with a brief reminder on Python
specific topics, and to stress problems like overflow, underflow, round off errors and even-
tually loss of precision due to the finite amount of numbers a computer can represent. The
programs we discuss are tailored to these aims.

2.1 Getting Started

In programming language we encounter data entities such as constants, variables, re-
sults of evaluations of functions etc. Common to these objects is that they can be rep-
resented through the type concept. There are intrinsic types and derived types. Intrinsic
types are provided by the programming language whereas derived types are provided by
the programmer. If one specifies the type to be for example INTEGER (KIND=2) for Fortran
or short int/int in C++, the programmer selects a particular date type with 2 bytes
(16 bits) for every item of the class INTEGER (KIND=2) or int. Intrinsic types come in two
classes, numerical (like integer, real or complex) and non-numeric (as logical and charac-
ter). The general form for declaring variables is data type name of variable and Table
[2.Tllists the standard variable declarations of C++ and Fortran (note well that there be may
compiler and machine differences from the table below). An important aspect when declar-
ing variables is their region of validity. Inside a function we define a a variable through the
expression int var or INTEGER :: var . The question is whether this variable is available
in other functions as well, moreover where is var initialized and finally, if we call the function
where it is declared, is the value conserved from one call to the other?

Both C++ and Fortran operate with several types of variables and the answers to these
questions depend on how we have defined for example an integer via the statement int var.
Python on the other hand does not use variable or function types (they are not explicitely
written), allowing thereby for a better potential for reuse of the code.

1 For more detailed texts on C++ programming in engineering and science are the books by Flowers [[18]
and Barton and Nackman [19]]. The classic text on C++ programming is the book of Bjarne Stoustrup [20].
The Fortran 95 standard is well documented in Refs. [114H13] while the new details of Fortran 2003 can be
found in Ref. [14]. The reader should note that this is not a text on C++ or Fortran. It is therefore important
than one tries to find additional literature on these programming languages. Good Python texts on scientific
computing are [21]122].

2 Qur favoured display mode for Fortran statements will be capital letters for language statements and low
key letters for user-defined statements. Note that Fortran does not distinguish between capital and low key
letters while C++ does.
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Table 2.1 Examples of variable declarations for C++ and Fortran . We reserve capital letters for Fortran
declaration statements throughout this text, although Fortran is not sensitive to upper or lowercase letters.
Note that there are machines which allow for more than 64 bits for doubles. The ranges listed here may
therefore vary.

type in C++ and Fortran bits range
int/INTEGER (2) 16 —32768to 32767

unsigned int 16 0 to 65535

signed int 16 —32768to 32767

short int 16 —32768to 32767

unsigned short int 16 0 to 65535

signed short int 16 —32768to 32767

int/long int/INTEGER(4) 32 —21474836480 2147483647
signed long int 32 —21474836480 2147483647
float/REAL(4) 32 10*t0 10738
double/REAL(8) 64 1032210 10e+308

The following list may help in clarifying the above points:

type of variable validity

local variables defined within a function, only available within the
scope of the function.

formal parameter If it is defined within a function it is only available within
that specific function.

global variables Defined outside a given function, available for all func-
tions from the point where it is defined.

In Table 2.1] we show a list of some of the most used language statements in Fortran and
C++.

In addition, both C++ and Fortran allow for complex variables. In Fortran we would declare
a complex variable as COMPLEX (KIND=16):: x, y which refers to a double with word length
of 16 bytes. In C++ we would need to include a complex library through the statements

#include <complex>
complex<double> x, y;

We will discuss the above declaration complex<double> x,y; in more detail in chapter[3]

2.1.1 Scientific hello world

Our first programming encounter is the ’classical’ one, found in almost every textbook on
computer languages, the 'hello world’ code, here in a scientific disguise. We present first the
C version.

http://folk.uio.no/mhjensen/compphys/programs/chapter02/cpp/programl.cpp

/* comments in C begin like this and end with x/
#include <stdlib.h> /* atof function x/
#include <math.h> /* sine function x/

#include <stdio.h> /* printf function x/

int main (int argc, charx argv[])

{
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2.1 Getting Started

Fortran

C++

Program structure

PROGRAM something
FUNCTION something(input)

SUBROUTINE something(inout)

main ()
double (int) something(input)

Data type declarations

REAL 4) x,y
REAL(8) :: x, ¥
INTEGER :: %, ¥
CHARACTER :: name

float x, y;
double x, y;
int x,y;
char name;

REAL(8), DIMENSION(dim1,dim2) :: x double x[dim1][dim2];
INTEGER, DIMENSION(dim1,dim2) :: x int x[dim1][dim2];

LOGICAL :: x

TYPE name struct name {

declarations declarations;

END TYPE name }

POINTER :: a double (int) *a;

ALLOCATE new;

DEALLOCATE delete;
Logical statements and control structure

IF (a == b) THEN if (a==Dh)

b=0 { b=0;

ENDIF }

DO WHILE (logical statement)
do something

while (logical statement)
{do something

ENDDO }

IF (a>=Db ) THEN if (a>=Db)
b=0 { b=0;

ELSE else

a=0 a=0; }

ENDIF

SELECT CASE (variable) switch(variable)
CASE (variable=valuel) {

do something case 1:

CASE (...) variable=valuel;
do something;
break;
END SELECT case 2:
do something; break; ...
}
DO i=0, end, 1 for(i=0; i<= end; i++)
do something { do something ;
ENDDO }

Table 2.2 Elements of programming syntax.

double r, s; /* declare variables x/

r = atof(argv[l]); /* convert the text argv[1] to double %/

s = sin(r);

printf("Hello, World! sin(%g)=%g\n", r, s);
return 0; /* success execution of the program x/

11

The compiler must see a declaration of a function before you can call it (the compiler

checks the argument and return types). The declaration of library functions appears in so-

called header files that must be included in the program, for example #include <stdlib.h.
We call three functions atof, sin, printf and these are declared in three different
header files. The main program is a function called main with a return value set to an integer,
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returning O if success. The operating system stores the return value, and other programs/u-
tilities can check whether the execution was successful or not. The command-line arguments
are transferred to the main function through the statement

int main (int argc, charx* argv[])

The integer argc stands for the number of command-line arguments, set to one in our case,
while argv is a vector of strings containing the command-line arguments with argv([0]
containing the name of the program and argv([1l], argv[2], ... are the command-line args,
i.e., the number of lines of input to the program.

This means that we would run the programs as mhjensen@compphys:./myprogram.exe 0.3.
The name of the program enters argv[0] while the text string 0.2 enters argv[1l]. Here we
define a floating point variable, see also below, through the keywords float for single pre-
cision real numbers and double for double precision. The function atof transforms a text

(argv[1l]) to a float. The sine function is declared in math.h, a library which is not automat-
ically included and needs to be linked when computing an executable file.

With the command printf we obtain a formatted printout. The printf syntax is used for
formatting output in many C-inspired languages (Perl, Python, awk, partly C++).

In C++ this program can be written as

// A comment line begins like this in C++ programs
using namespace std;
#include <iostream>
#include <cstdlib>
#include <cmath>
int main (int argc, charx argv[])
{
// convert the text argv[1] to double using atof:
double r = atof(argv[l]);
double s = sin(r);
cout << "Hello, World! sin(" << r << ")=" << s << endl;
// success
return 0;

}

We have replaced the call to printf with the standard C++ function cout. The header
file iostream is then needed. In addition, we don’t need to declare variables like r and S
at the beginning of the program. I personally prefer however to declare all variables at the
beginning of a function, as this gives me a feeling of greater readability. Note that we have
used the declaration using namespace std;. Namespace is a way to collect all functions
defined in C++ libraries. If we omit this declaration on top of the program we would have to
add the declaration std in front of cout or cin. Our program would then read

// Hello world code without using namespace std
#include <iostream>
#include <cstdlib>
#include <cmath>
int main (int argc, charx argv[])
{
// convert the text argv[1] to double using atof:

double r = atof(argv[1l]);

double s = sin(r);

std::cout << "Hello, World! sin(" << r << ")=" << s << endl;
// success

return 0;

}




2.1 Getting Started 13

Another feature which is worth noting is that we have skipped exception handlings here.
In chapter[Blwe discuss examples that test our input from the command line. But it is easy to
add such a feature, as shown in our modified hello world program

// Hello world code with exception handling
using namespace std;
#include <cstdlib>
#include <cmath>
#include <iostream>
int main (int argc, charx argv[])
{
// Read in output file, abort if there are too few command-line arguments
if( argc <=1 ){
cout << "Bad Usage: " << argv[0] <<
" read also a number on the same line, e.g., prog.exe 0.2" << endl;
exit(l); // here the program stops.
}
// convert the text argv[1] to double using atof:
double r = atof(argv[l]);
double s = sin(r);
cout << "Hello, World! sin(" << r << ")=" << s << endl;
// success
return 0;

}

Here we test that we have more than one argument. If not, the program stops and writes to
screen an error message. Observe also that we have included the mathematics library via the
#include <cmath> declaration.

To run these programs, you need first to compile and link them in order to obtain an
executable file under operating systems like e.g., UNIX or Linux. Before we proceed we give
therefore examples on how to obtain an executable file under Linux/Unix.

In order to obtain an executable file for a C++ program, the following instructions under
Linux/Unix can be used

c++ -c -Wall myprogram.c
C++ -0 myprogram myprogram.o

where the compiler is called through the command c++. The compiler option -Wall means
that a warning is issued in case of non-standard language. The executable file is in this case
myprogram. The option -c is for compilation only, where the program is translated into ma-
chine code, while the -0 option links the produced object file myprogram.o and produces the
executable myprogram .

The corresponding Fortran code is

http://folk.uio.no/mhjensen/compphys/programs/chapter®2/Fortran/programl.f90

PROGRAM shw
IMPLICIT NONE
REAL (KIND =8) :: r ! Input number
REAL (KIND=8) :: s ! Result

! Get a number from user
WRITE(*,*) 'Input a number: '
READ (*,*) r

! Calculate the sine of the number
s = SIN(r)

! Write result to screen
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WRITE(*,*) 'Hello World! SINE of ', r, ' =', s
END PROGRAM shw

The first statement must be a program statement; the last statement must have a corre-
sponding end program statement. Integer numerical variables and floating point numerical
variables are distinguished. The names of all variables must be between 1 and 31 alphanu-
meric characters of which the first must be a letter and the last must not be an underscore.
Comments begin with a ! and can be included anywhere in the program. Statements are writ-
ten on lines which may contain up to 132 characters. The asterisks (*,*) following WRITE
represent the default format for output, i.e., the output is e.g., written on the screen. Sim-
ilarly, the READ(*,*) statement means that the program is expecting a line input. Note also
the IMPLICIT NONE statement which we strongly recommend the use of. In many Fortran 77
programs one can find statements like IMPLICIT REAL*8(a-h,0-z), meaning that all variables
beginning with any of the above letters are by default floating numbers. However, such a
usage makes it hard to spot eventual errors due to misspelling of variable names. With IM-
PLICIT NONE you have to declare all variables and therefore detect possible errors already
while compiling. I recommend strongly that you declare all variables when using Fortran.
We call the Fortran compiler (using free format) through

f90 -c -free myprogram.f90
f90 -o myprogram.x myprogram.o

Under Linux/Unix it is often convenient to create a so-called makefile, which is a script
which includes possible compiling commands, in order to avoid retyping the above lines every
once and then we have made modifcations to our program. A typical makefile for the above
cc compiling options is listed below

# General makefile for c¢ - choose PROG = name of given program

# Here we define compiler option, libraries and the target
CC= c++ -Wall
PROG= myprogram

# Here we make the executable file
${PROG} : ${PROG}.0
${CC} ${PROG}.o0 -0 ${PROG}

# whereas here we create the object file

${PROG}.0 : ${PROG}.cpp
${CC} -c ${PROG}.cpp

If you name your file for 'makefile’, simply type the command make and Linux/Unix ex-
ecutes all of the statements in the above makefile. Note that C++ files have the extension

.Cpp
For Fortran, a similar makefile is
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# General makefile for F90 - choose PROG = name of given program

# Here we define compiler options, libraries and the target
F90= f90
PROG= myprogram

# Here we make the executable file
${PROG} : ${PROG}.0
${F90} ${PROG}.o0 -0 ${PROG}

# whereas here we create the object file

${PROG}.0 : ${PROG}.f90
${F90} -c ${PROG}.f

Finally, for the sake of completeness, we list the corresponding Python code

http://folk.uio.no/mhjensen/compphys/programs/chapter®2/python/programl.py

#!/usr/bin/env python

import sys, math

# Read in a string a convert it to a float

r = float(sys.argv[1l])

s = math.sin(r)

print "Hello, World! sin(%g)=%12.6e" % (r,s)

where we have used a formatted printout with scientific notation. In Python we do not need
to declare variables. Mathematical functions like the sin function are imported from the math
module. For further references to Python and its syntax, we recommend the text of Hans
Petter Langtangen [22]. The corresponding codes in Python are available at the webpage of
the course. All programs are listed as a directory tree beginning with programs/chapterxx.
Each chapter has in turn three directories, one for C++, one for Fortran and finally one for
Python codes. The Fortran codes in this chapter can be found in the directory programs/chap-
ter02/Fortran.

2.2 Representation of Integer Numbers

In Fortran a keyword for declaration of an integer is INTEGER (KIND=n) , n = 2 reserves 2
bytes (16 bits) of memory to store the integer variable wheras n = 4 reserves 4 bytes (32 bits).
In Fortran, although it may be compiler dependent, just declaring a variable as INTEGER ,
reserves 4 bytes in memory as default.

In C++ keywords areshort int, int, long int, long long int. The byte-length is
compiler dependent within some limits. The GNU C++-compilers (called by gcc or g++)
assign 4 bytes (32 bits) to variables declared by int and long int. Typical byte-lengths
are 2, 4, 4 and 8 bytes, for the types given above. To see how many bytes are reserved for a
specific variable, C++ has a library function called sizeof(type) which returns the number
of bytes for type .

An example of a program declaration is

Fortran: INTEGER (KIND=2) :: age_of participant
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C++: short int age of participant;

Note that the (KIND=2) can be written as (2). Normally however, we will for Fortran pro-
grams just use the 4 bytes default assignment INTEGER .

In the above examples one bit is used to store the sign of the variable age of participant
and the other 15 bits are used to store the number, which then may range from zero to
215_ 1 = 132767 This should definitely suffice for human lifespans. On the other hand, if we
were to classify known fossiles by age we may need

Fortran: INTEGER (4) :: age of fossile
C++: int age of fossile;

Again one bit is used to store the sign of the variable age of fossile and the other 31 bits are
used to store the number which then may range from zero to 231 — 1= 2.147.483647. In order
to give you a feeling how integer numbers are represented in the computer, think first of the
decimal representation of the number 417

417=4x10°+1x 10+ 7 x 10°,
which in binary representation becomes
417=an2"+ay_12" 1+ an 22" 2+ +ap2°,

where the coefficients ay with k=0,...,n are zero or one. They can be calculated through
successive division by 2 and using the remainder in each division to determine the numbers
an to ap. A given integer in binary notation is then written as

an2"+an_12" 1+ a2, 22" 24 +ap2°
In binary notation we have thus
(417)10 = (11010000},
since we have
(11010000), =1 x 284 1x 2/ +0x 224+ 1x 22+ 0x 2* +0x 224 0x 224+ 0x 22+ 0x 28+ 1 x 20

To see this, we have performed the following divisions by 2

417/2=208 remainder 1 coefficient of 20 is 1
208/2=104 remainder 0 coefficient of 21 is 0
104/2=52 remainder 0 coefficient of 22 is 0
52/2=26 remainder O coefficient of 23 is 0
26/2=13 remainder O coefficient of 2* is 0
13/2=6 remainder 1 coefficient of 2° is 1

6/2=3 remainder 0 coefficient of 26 is 0
3/2=1 remainder 1 coefficient of 27 is 1
1/2=0 remainder 1 coefficient of 28 is 1

We see that nine bits are sufficient to represent 417. Normally we end up using 32 bits as
default for integers, meaning that our number reads

(417)10= (00000000000000000000000110100301

A simple program which performs these operations is listed below. Here we employ the
modulus operation (with division by 2), which in C++ is given by the a%2 operator. In Fortran
we would call the function MOD(a,?2) in order to obtain the remainder of a division by 2.
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http://folk.uio.no/mhjensen/compphys/programs/chapter02/cpp/program2.cpp

using namespace std;
#include <iostream>

int main (int argc, charx argv[])
{
int i;
int terms[32]; // storage of a0@, al, etc, up to 32 bits
int number = atoi(argv[1]);
// initialise the term a0, al etc
for (i=0; i <32 ; i++){ terms[i] = 0;}
for (i=0; i < 32 ; i++){
terms[i] = number%2;
number /= 2;

}
// write out results

cout << °° Number of bytes used= '' << sizeof(number) << endl;

for (i=0; i < 32 ; i++){
cout << °7 Term nr: °° << i << ""Value= ' << terms[i];
cout << endl;

}

return 0;

}

The C++ function sizeof yields the number of bytes reserved for a specific variable. Note
also the for construct. We have reserved a fixed array which contains the values of g being
O or 1, the remainder of a division by two. We have enforced the integer to be represented by
32 bits, or four bytes, which is the default integer representation.

Note that for 417 we need 9 bits in order to represent it in a binary notation, while a
number like the number 3 is given in an 32 bits word as

(3)10 = (000000000000000000000000000001311

For this number 2 significant bits would be enough.

With these prerequesites in mind, it is rather obvious that if a given integer variable is
beyond the range assigned by the declaration statement we may encounter problems.

If we multiply two large integers nj x np and the product is too large for the bit size allocated
for that specific integer assignement, we run into an overflow problem. The most significant
bits are lost and the least significant kept. Using 4 bytes for integer variables the result
becomes

220220 -0,

However, there are compilers or compiler options that preprocess the program in such a way
that an error message like 'integer overflow’ is produced when running the program. Here
is a small program which may cause overflow problems when running (try to test your own
compiler in order to be sure how such problems need to be handled).

http://folk.uio.no/mhjensen/compphys/programs/chapter02/cpp/program3.cpp

// Program to calculate 2x%xn
using namespace std;
#include <iostream>

int main()
{
int intl, int2, int3;
// print to screen
cout << "Read in the exponential N for 2”N =\n";
// read from screen
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cin >> int2;
intl = (int) pow(2., (double) int2);

cout << " 27N * 2°N = " << intl*xintl << "\n";

int3 = intl - 1;

cout << " 27Nk (2”N - 1) = " << intl * int3 << "\n";
cout << " 2”°N- 1 = " << int3 << "\n";

return 0;

}
// End: program main()

If we run this code with an exponent N = 32, we obtain the following output

2”N * 2°N = 0
2”°N*(2"N - 1) = -2147483648
2”°N- 1 = 2147483647

We notice that 254 exceeds the limit for integer numbers with 32 bits. The program returns
0. This can be dangerous, since the results from the operation 2N(2V — 1) is obviously wrong.
One possibility to avoid such cases is to add compilation options which flag if an overflow or
underflow is reached.

2.2.1 Fortran codes

The corresponding Fortran code is

http://folk.uio.no/mhjensen/compphys/programs/chapter®2/Fortran/program2.f90

PROGRAM binary_integer
IMPLICIT NONE
INTEGER i, number, terms(0:31) ! storage of a0, al, etc, up to 32 bits,
! note array length running from 0:31. Fortran allows negative indexes as well.

WRITE(*,*) 'Give a number to transform to binary notation'
READ (*,*) number
! Initialise the terms a0, al etc

terms = 0
! Fortran takes only integer loop variables
DO i=0, 31

terms (i) = MOD(number,2) ! Modulus function in Fortran
number = number/2
ENDDO
! write out results
WRITE(*,*) 'Binary representation '

DO i=0, 31
WRITE(*,*)"' Term nr and value', i, terms(i)
ENDDO

END PROGRAM binary_integer

and

http://folk.uio.no/mhjensen/compphys/programs/chapter®2/Fortran/program3.f90

PROGRAM integer_exp
IMPLICIT NONE
INTEGER :: intl, int2, int3
! This is the begin of a comment line in Fortran 90
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! Now we read from screen the variable int2
WRITE(*,*) 'Read in the number to be exponentiated’
READ (*,*) int2

intl=2x**xint2

WRITE(*,%x) '2”N*2”N', intlxintl

int3=intl-1

WRITE(*,%) '2”N*(2”N-1)', intlxint3

WRITE(*,*) '2”N-1', int3

END PROGRAM integer_exp

In Fortran the modulus division is performed by the intrinsic function MOD (number, 2) in case
of a division by 2. The exponentation of a number is given by for example 2**N instead of the
call to the pow function in C++.

2.3 Real Numbers and Numerical Precision

An important aspect of computational physics is the numerical precision involved. To design a
good algorithm, one needs to have a basic understanding of propagation of inaccuracies and
errors involved in calculations. There is no magic recipe for dealing with underflow, overflow,
accumulation of errors and loss of precision, and only a careful analysis of the functions
involved can save one from serious problems.

Since we are interested in the precision of the numerical calculus, we need to understand
how computers represent real and integer numbers. Most computers deal with real numbers
in the binary system, or octal and hexadecimal, in contrast to the decimal system that we
humans prefer to use. The binary system uses 2 as the base, in much the same way that the
decimal system uses 10. Since the typical computer communicates with us in the decimal sys-
tem, but works internally in e.g., the binary system, conversion procedures must be executed
by the computer, and these conversions involve hopefully only small roundoff errors

Computers are also not able to operate using real numbers expressed with more than a
fixed number of digits, and the set of values possible is only a subset of the mathematical
integers or real numbers. The so-called word length we reserve for a given number places a
restriction on the precision with which a given number is represented. This means in turn,
that for example floating numbers are always rounded to a machine dependent precision,
typically with 6-15 leading digits to the right of the decimal point. Furthermore, each such
set of values has a processor-dependent smallest negative and a largest positive value.

Why do we at all care about rounding and machine precision? The best way is to consider
a simple example first. In the following example we assume that we can represent a floating
number with a precision of 5 digits only to the right of the decimal point. This is nothing but
a mere choice of ours, but mimicks the way numbers are represented in the machine.

Suppose we wish to evaluate the function

~ 1-cos(x)
"0 =—nm

3

for small values of x. If we multiply the denominator and numerator with 1+ cos(x) we obtain
the equivalent expression .
SIiN(X
f(x) = _sin®)_ :
1+ cos(x)

If we now choose x = 0.006 (in radians) our choice of precision results in

sin(0.007) ~ 0.59999x 1072,
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and
€0s(0.007) ~ 0.99998

The first expression for f(X) results in

1-0.99998 02x1074

— _ _ -2
() = 0.59999x 102 0.59999x 102 0-33334x 1075,

while the second expression results in

f() — 059999x 10 2 0.50999 102
T 14099998  1.99998

= 0.30000x 1072,

which is also the exact result. In the first expression, due to our choice of precision, we
have only one relevant digit in the numerator, after the subtraction. This leads to a loss of
precision and a wrong result due to a cancellation of two nearly equal numbers. If we had
chosen a precision of six leading digits, both expressions yield the same answer. If we were
to evaluate x ~ 71, then the second expression for f(X) can lead to potential losses of precision
due to cancellations of nearly equal numbers.

This simple example demonstrates the loss of numerical precision due to roundoff errors,
where the number of leading digits is lost in a subtraction of two near equal numbers. The
lesson to be drawn is that we cannot blindly compute a function. We will always need to
carefully analyze our algorithm in the search for potential pitfalls. There is no magic recipe
however, the only guideline is an understanding of the fact that a machine cannot represent
correctly all numbers.

2.3.1 Representation of real numbers

Real numbers are stored with a decimal precision (or mantissa) and the decimal exponent
range. The mantissa contains the significant figures of the number (and thereby the precision
of the number). A number like (9.906251¢ in the decimal representation is given in a binary
representation by

(100111100, =1x 224+ 0x 224+ 0x 2 +1x 2241 x 27 +1x 22+ 1x 234 0x 24+ 1x 275,

and it has an exact machine number representation since we need a finite number of bits to
represent this number. This representation is however not very practical. Rather, we prefer
to use a scientific notation. In the decimal system we would write a number like 9.90625in
what is called the normalized scientific notation. This means simply that the decimal point is
shifted and appropriate powers of 10 are supplied. Our number could then be written as

9.90625= 0.990625x 10",
and a real non-zero number could be generalized as
X ==4r x 10",

with a r a number in the range 1/10<r < 1. In a similar way we can represent a binary number
in scientific notation as
X=4+qx 2™

with a g a number in the range 1/2 < q < 1. This means that the mantissa of a binary number
would be represented by the general formula
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(0.a1a »...an)2=a-1x 2714 a o X 27244 anpx2 "

In a typical computer, floating-point numbers are represented in the way described above, but
with certain restrictions on q and m imposed by the available word length. In the machine,
our number X is represented as

x = (—1)% x mantissax 2°xPonent

where S is the sign bit, and the exponent gives the available range. With a single-precision
word, 32 bits, 8 bits would typically be reserved for the exponent, 1 bit for the sign and 23
for the mantissa. This means that if we define a variable as

Fortran: REAL (4) :: size_of fossile
C++: float size of fossile;

we are reserving 4 bytes in memory, with 8 bits for the exponent, 1 for the sign and and 23
bits for the mantissa, implying a numerical precision to the sixth or seventh digit, since the
least significant digit is given by 1/2?%~ 10~’. The range of the exponent goes from 2128 =
2.9 % 1039 to 2127 = 3.4 x 10°8, where 128 stems from the fact that 8 bits are reserved for the
exponent.

A modification of the scientific notation for binary numbers is to require that the leading
binary digit 1 appears to the left of the binary point. In this case the representation of the
mantissa q would be (1.f); and 1 < < 2. This form is rather useful when storing binary
numbers in a computer word, since we can always assume that the leading bit 1 is there.
One bit of space can then be saved meaning that a 23 bits mantissa has actually 24 bits. This
means explicitely that a binary number with 23 bits for the mantissa reads

(1.3.,18.,2. .. a,23)2 =1x 20+ a 1 X 2714— a o X 272—1— -4 a X 2723.
As an example, consider the 32 bits binary number
(10111110111101000000000000000300

where the first bit is reserved for the sign, 1 in this case yielding a negative sign. The exponent
m is given by the next 8 binary numbers 01111101resulting in 125 in the decimal system.
However, since the exponent has eight bits, this means it has 28 — 1 = 255 possible numbers
in the interval —128< m< 127, our final exponent is 125— 127= —2 resulting in 272, Inserting
the sign and the mantissa yields the final number in the decimal representation as

22 (1 ) P41x2 1 41x2241x2340x2 4+ 1x 2*5) = (~0.476562510

In this case we have an exact machine representation with 32 bits (actually, we need less than
23 bits for the mantissa).

If our number X can be exactly represented in the machine, we call X a machine num-
ber. Unfortunately, most numbers cannot and are thereby only approximated in the machine.
When such a number occurs as the result of reading some input data or of a computation, an
inevitable error will arise in representing it as accurately as possible by a machine number.

A floating number x, labelled fl(x) will therefore always be represented as

fl(x) = x(1£ &), (2.1)

with x the exact number and the error |&| < |eu|, where &y is the precision assigned. A num-
ber like 1/10 has no exact binary representation with single or double precision. Since the
mantissa
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l(aja 2...an),

is always truncated at some stage n due to its limited number of bits, there is only a limited
number of real binary numbers. The spacing between every real binary number is given by
the chosen machine precision. For a 32 bit words this number is approximately &y ~ 10~/ and
for double precision (64 bits) we have &y ~ 1016 orin terms of a binary base as 2728 and 2752
for single and double precision, respectively.

2.3.2 Machine numbers

To understand that a given floating point number can be written as in Eq. (2.1), we assume
for the sake of simplicity that we work with real numbers with words of length 32 bits, or four
bytes. Then a given number X in the binary representation can be represented as

n
X= (1.&1&2 ...ap3ad 24 25... )2 x 2",

or in a more compact form
X=rx2"

with 1 <r <2 and —126< n < 127since our exponent is defined by eight bits.

In most cases there will not be an exact machine representation of the number x. Our
number will be placed between two exact 32 bits machine numbers Xx_ and X, . Following the
discussion of Kincaid and Cheney [23]] these numbers are given by

X_ = (1.6L16L2...6L23)2 X 2n’

and
Xy = ((1.6L1<’JL2 ... 6L23))2 + 2723) x 2"

If we assume that our number X is closer to X_ we have that the absolute error is constrained
by the relation

1 1
X=X < S —x =5 x on-23_pn-24

A similar expression can be obtained if X is closer to X;. The absolute error conveys one
type of information. However, we may have cases where two equal absolute errors arise from
rather different numbers. Consider for example the decimal numbers a= 2 and a= 2.001 The
absolute error between these two numbers is 0.001 In a similar way, the two decimal numbers
b= 2000and b = 2000001give exactly the same absolute error. We note here that b= 2000001
has more leading digits than b.

If we compare the relative errors

—a b—b
|a|a|a| _10x1023 PP _10,106

bl
we see that the relative error in b is much smaller than the relative error in a. We will see
below that the relative error is intimately connected with the number of leading digits in the
way we approximate a real number. The relative error is therefore the quantity of interest in
scientific work. Information about the absolute error is normally of little use in the absence
of the magnitude of the quantity being measured.
We define then the relative error for x as

|X—X,| on-24 -
] rx2an
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Instead of using x_ and Xx; as the machine numbers closest to X, we introduce the relative

error
X—X|

X

—24
<2

with X being the machine number closest to X. Defining

o XX
T x

we can write the previous inequality
fl(x) = x(1+ &)

where |&| < ey = 2724 for variables of length 32 bits. The notation fl(x) stands for the machine
approximation of the number x. The number €&y is given by the specified machine precision,
approximately 10~ for single and 1016 for double precision, respectively.

There are several mathematical operations where an eventual loss of precision may ap-
pear. A subraction, especially important in the definition of numerical derivatives discussed
in chapter [3]is one important operation. In the computation of derivatives we end up sub-
tracting two nearly equal quantities. In case of such a subtraction a=b—c, we have

fl(a) = fl(b) — fl(c) = a(l+ &),
or
fl(a) =b(1+ &) —c(l+ &),

meaning that

fl(a)/a=1+ &0 — &°

- b a C a7

and if b~ c we see that there is a potential for an increased error in the machine representa-
tion of fl(a). This is because we are subtracting two numbers of equal size and what remains

is only the least significant part of these numbers. This part is prone to roundoff errors and if
ais small we see that (with b~ c)

Ea = a(gb — &),

can become very large. The latter equation represents the relative error of this calculation.
To see this, we define first the absolute error as

[fl(a) —al,

whereas the relative error is

[fl(a) -4

- S ga.

a
The above subraction is thus
fi(a)—a] _ [fI(b)—f(c)—(b—0)|
a a ’

yielding
|fl(a) —a| |bg,—cel
a N a
An interesting question is then how many significant binary bits are lost in a subtraction
a=b—cwhen we have b~ c. The loss of precision theorem for a subtraction a=b— c states
that [23]]: if b and ¢ are positive normalized floating-point binary machine numbers with b > ¢
and
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2 '<1--<278 (2.2)

olo

then at mostr and at least s significant binary bits are lost in the subtraction b— c. For a proof
of this statement, see for example Ref. [23]].

But even additions can be troublesome, in particular if the numbers are very different in
magnitude. Consider for example the seemingly trivial addition 1+ 108 with 32 bits used to
represent the various variables. In this case, the information contained in 10 8 is simply lost
in the addition. When we perform the addition, the computer equates first the exponents of
the two numbers to be added. For 108 this has however catastrophic consequences since in
order to obtain an exponent equal to 10°, bits in the mantissa are shifted to the right. At the
end, all bits in the mantissa are zeros.

This means in turn that for calculations involving real numbers (if we omit the discussion
on overflow and underflow) we need to carefully understand the behavior of our algorithm,
and test all possible cases where round-off errors and loss of precision can arise. Other cases
which may cause serious problems are singularities of the type 0/0 which may arise from
functions like sin(x)/x as X — 0. Such problems may also need the restructuring of the algo-
rithm.

2.4 Programming Examples on Loss of Precision and Round-off Errors

2.4.1 Algorithms for e *

In order to illustrate the above problems, we discuss here some famous and perhaps less
famous problems, including a discussion on specific programming features as well.
We start by considering three possible algorithms for computing e *:

1. by simply coding

[oe] Xn
eX=73% (-1~
e n!
2. or to employ a recursion relation for
<] o) Xn
eﬁX: %S,]: Z)(_l)n_
n= n= n!
usin
g . X
=—5-1 n’
3. or to first calculate -
expx = z S
n=0
and thereafter taking the inverse
X _ 1
expx

Below we have included a small program which calculates

eX= S (—1)”)(—n
&

for x-values ranging from O to 100in steps of 10. When doing the summation, we can always
define a desired precision, given below by the fixed value for the variable TRUNCATION=
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1.0E — 10, so that for a certain value of x > O, there is always a value of n = N for which the
loss of R‘recision in terminating the series at n= N is always smaller than the next term in the
series % The latter is implemented through the while{...} statement.

http://folk.uio.no/mhjensen/compphys/programs/chapter02/cpp/programé.cpp

// Program to calculate function exp(-x)
// using straightforward summation with differing precision
using namespace std;

#include <iostream>

// type float: 32 bits precision

// type double: 64 bits precision
#define TYPE double

#define PHASE(a) (1 - 2 x (abs(a) % 2))
#define TRUNCATION 1.0E-10

// function declaration

TYPE factorial(int);

int main()
{
int n;
TYPE x, term, sum;
for(x = 0.0; x < 100.0; x += 10.0) {

sum = 0.0; //initialization
n =0;
term = 1;

while(fabs(term) > TRUNCATION) {
term = PHASE(n) * (TYPE) pow((TYPE) x,(TYPE) n) / factorial(n);
sum += term;

n++;
} // end of while() loop
cout << 7 x ="' << x << 77 exp = 7 << exp(-x) << 77 series = ' << sum;
cout << *° number of terms = " << n << endl;

} // end of for() loop

return 0;

} // End: function main()

// The function factorial()
// calculates and returns n!

TYPE factorial(int n)
{
int loop;
TYPE fac;
for(loop = 1, fac = 1.0; loop <= n; loop++) {
fac *= loop;
}
return fac;
} // End: function factorial()

There are several features to be note. First, for low values of X, the agreement is good,
however for larger x values, we see a significant loss of precision. Secondly, for x =70 we
have an overflow problem, represented (from this specific compiler) by NaN (not a number).
The latter is easy to understand, since the calculation of a factorial of the size 171!is beyond
the limit set for the double precision variable factorial. The message NaN appears since the
computer sets the factorial of 171 equal to zero and we end up having a division by zero in
our expression for e,

3 Note that different compilers may give different messages and deal with overflow problems in different
ways.
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X exp(—X) Series Number of terms in series
0.0 0.100000E+01 0.100000E+01 1
10.0 0.453999E-04  0.453999E-04 44
20.0 0.206115E-08  0.487460E-08 72
30.0 0.935762E-13 -0.342134E-04 100
40.0 0.424835E-17 -0.221033E+01 127
50.0 0.192875E-21 -0.833851E+05 155
60.0 0.875651E-26 -0.850381E+09 171
70.0 0.397545E-30 NaN 171
80.0 0.180485E-34 NaN 171
90.0 0.819401E-39 NaN 171
100.0 0.372008E-43 NaN 171

Table 2.3 Result from the brute force algorithm for exp(—x).

The overflow problem can be dealt with via a recurrence formulzﬂ for the terms in the sum,
so that we avoid calculating factorials. A simple recurrence formula for our equation

n
nX

exp(—x) = 5 &= 3 (U
n= n=0 '
is to note that X
S = _S’lflﬁv

so that instead of computing factorials, we need only to compute products. This is exemplified
through the next program.

http://folk.uio.no/mhjensen/compphys/programs/chapter02/cpp/program5.cpp

// program to compute exp(-x) without factorials
using namespace std;

#include <iostream>

#define TRUNCATION 1.0E-10

int main()

{
int loop, n;
double x, term, sum;

for(loop = 0; loop <= 100; loop += 10){

x = (double) loop; // initialization
sum = 1.0;

term = 1;

n =1;

while(fabs(term) > TRUNCATION){

term x= -x/((double) n);

sum += term;

n++;
} // end while loop
cout << “Tx ='' << X << “'exp = ' << exp(-Xx) << “‘series = *° << sum;
cout << "“number of terms = " << n << endl;

} // end of for loop

} // End: function main()

4 Recurrence formulae, in various disguises, either as ways to represent series or continued fractions, are
among the most commonly used forms for function approximation. Examples are Bessel functions, Hermite
and Laguerre polynomials, discussed for example in chapter[5l
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X exp(—x) Series Number of terms in series
0.000000 0.10000000E+01 0.10000000E+01 1
10.000000 0.45399900E-04 0.45399900E-04 44
20.000000 0.20611536E-08 0.56385075E-08 72
30.000000 0.93576230E-13 -0.30668111E-04 100
40.000000 0.42483543E-17 -0.31657319E+01 127
50.000000 0.19287498E-21 0.11072933E+05 155
60.000000 0.87565108E-26 -0.33516811E+09 182
70.000000 0.39754497E-30 -0.32979605E+14 209
80.000000 0.18048514E-34 0.91805682E+17 237
90.000000 0.81940126E-39 -0.50516254E+22 264
100.000000 0.37200760E-43 -0.29137556E+26 291

Table 2.4 Result from the improved algorithm for exp(—Xx).

In this case, we do not get the overflow problem, as can be seen from the large number of
terms. Our results do however not make much sense for larger values of X. Decreasing the
truncation test will not help! (try it). This is a much more serious problem.

In order better to understand this problem, let us consider the case of x= 20, which already
differs largely from the exact result. Writing out each term in the summation, we obtain the
largest term in the sum appears at n =19, with a value that equals —43099804 However, for
n=20we have almost the same value, but with an interchanged sign. It means that we have an
error relative to the largest term in the summation of the order of 43099804« 10 10~ 4 x 102,
This is much larger than the exact value of 0.21x 10 8. The large contributions which may
appear at a given order in the sum, lead to strong roundoff errors, which in turn is reflected
in the loss of precision. We can rephrase the above in the following way: Since exp(—20) is
a very small number and each term in the series can be rather large (of the order of 1(%,
it is clear that other terms as large as 10°, but negative, must cancel the figures in front of
the decimal point and some behind as well. Since a computer can only hold a fixed number
of significant figures, all those in front of the decimal point are not only useless, they are
crowding out needed figures at the right end of the number. Unless we are very careful
we will find ourselves adding up series that finally consists entirely of roundoff errors! An
analysis of the contribution to the sum from various terms shows that the relative error made
can be huge. This results in an unstable computation, since small errors made at one stage
are magnified in subsequent stages.

To this specific case there is a simple cure. Noting that exp(x) is the reciprocal of exp(—x),
we may use the series for exp(X) in dealing with the problem of alternating signs, and simply
take the inverse. One has however to beware of the fact that exp(x) may quickly exceed the
range of a double variable.

2.4.2 Fortran codes

The Fortran programs are rather similar in structure to the C++ program.

In Fortran Real numbers are written as 2.0 rather than 2 and declared as REAL (KIND=8)
or REAL (KIND=4) for double or single precision, respectively. In general we discorauge the
use of single precision in scientific computing, the achieved precision is in general not good
enough. Fortran uses a do construct to have the computer execute the same statements more
than once. Note also that Fortran does not allow floating numbers as loop variables. In the
example below we use both a do construct for the loop over x and a DO WHILE construction
for the truncation test, as in the C++ program. One could altrenatively use the EXIT state-
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ment inside a do loop. Fortran has also if statements as in C++. The IF construct allows the
execution of a sequence of statements (a block) to depend on a condition. The if construct
is a compound statement and begins with IF ... THEN and ends with ENDIF. Examples of
more general IF constructs using ELSE and ELSEIF statements are given in other program
examples. Another feature to observe is the CYCLE command, which allows a loop variable
to start at a new value.

Subprograms are called from the main program or other subprograms. In the C++ codes
we declared a function TYPE factorial(int);. Subprograms are always called functions
in C++. If we declare it with void is has the same meaning as subroutines in Fortran,. Sub-
routines are used if we have more than one return value. In the example below we compute
the factorials using the function factorial . This function receives a dummy argument n.
INTENT(IN) means that the dummy argument cannot be changed within the subprogram.
INTENT(OUT) means that the dummy argument cannot be used within the subprogram un-
til it is given a value with the intent of passing a value back to the calling program. The
statement INTENT(INOUT) means that the dummy argument has an initial value which is
changed and passed back to the calling program. We recommend that you use these options
when calling subprograms. This allows better control when transfering variables from one
function to another. In chapter 3] we discuss call by value and by reference in C++. Call by
value does not allow a called function to change the value of a given variable in the calling
function. This is important in order to avoid unintentional changes of variables when trans-
fering data from one function to another. The INTENT construct in Fortran allows such a
control. Furthermore, it increases the readability of the program.

http://folk.uio.no/mhjensen/compphys/programs/chapter02/Fortran/program4.f90

! In this module you can define for example global constants
MODULE constants
! definition of variables for double precisions and complex variables
INTEGER, PARAMETER :: dp = KIND(1.0DO)
INTEGER, PARAMETER :: dpc = KIND((1.0D0,1.0D0))
! Global Truncation parameter
REAL(DP), PARAMETER, PUBLIC :: truncation=1.0E-10
END MODULE constants

! Here you can include specific functions which can be used by
! many subroutines or functions

MODULE functions

CONTAINS
REAL (DP) FUNCTION factorial(n)
USE CONSTANTS
INTEGER, INTENT(IN) :: n
INTEGER :: loop

factorial = 1.0_dp
IF ( n> 1) THEN
DO loop =2, n
factorial=factorialxloop
ENDDO
ENDIF
END FUNCTION factorial

END MODULE functions
! Main program starts here
PROGRAM exp_prog

USE constants

USE functions
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IMPLICIT NONE
REAL (DP) :: x, term, final_sum
INTEGER :: n, loop_over_x

! loop over x-values
DO loop_over_x=0, 100, 10
x=1loop_over_x
! initialize the EXP sum
final_sum= 0.0_dp; term = 1.0_dp; n =0
DO WHILE ( ABS(term) > truncation)

term = ((-1.0_dp)x**n)*(x*x*xn)/ factorial(n)
final_sum=final_sum+term
n=n+1

ENDDO

! write the argument x, the exact value, the computed value and n
WRITE(*,*) x ,EXP(-x), final_sum, n
ENDDO

END PROGRAM exp_prog

The MODULE declaration in Fortran allows one to place functions like the one which calculates
the factorials. Note also the usage of the module constants where we define double and
complex variables. If one wishes to switch to another precision, one just needs to change
the declaration in one part of the program only. This hinders possible errors which arise if
one has to change variable declarations in every function and subroutine. In addition we
have defined a global variable truncation which is accessible to all functions which have the

USE constants declaration. These declarations have to come before any variable declara-
tions and IMPLICIT NONE statement.

http://folk.uio.no/mhjensen/compphys/programs/chapter®2/Fortran/program5.f90

! In this module you can define for example global constants
MODULE constants
! definition of variables for double precisions and complex variables
INTEGER, PARAMETER :: dp = KIND(1.60DO)
INTEGER, PARAMETER :: dpc = KIND((1.0D0,1.0D0))
! Global Truncation parameter
REAL(DP), PARAMETER, PUBLIC :: truncation=1.0E-10
END MODULE constants

PROGRAM improved_exp
USE constants
IMPLICIT NONE
REAL (dp) :: x, term, final_sum
INTEGER :: n, loop_over_x

! loop over x-values, no floats as loop variables
DO loop_over_x=0, 100, 10
x=loop_over_x
! initialize the EXP sum
final_sum=1.0 ; term=1.0 ; n =1
DO WHILE ( ABS(term) > truncation)
term = -term+x/FLOAT(n)
final_sum=final_sum+term
n=n+1
ENDDO
! write the argument x, the exact value, the computed value and n
WRITE(*,*) x ,EXP(-x), final_sum, n
ENDDO

END PROGRAM improved_exp
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2.4.3 Further examples

2.4.3.1 Summing 1/n

Let us look at another roundoff example which may surprise you more. Consider the series

which is finite when N is finite. Then consider the alternative way of writing this sum

S|
S = nZN n
which when summed analytically should give s, = s;. Because of roundoff errors, numerically
we will get s, # 51! Computing these sums with single precision for N =1.000.000results in 5, =
14.35736while s, = 14.39269 Note that these numbers are machine and compiler dependent.
With double precision, the results agree exactly, however, for larger values of N, differences
may appear even for double precision. If we choose N = 108 and employ double precision, we
get 59 = 18.997896482991535hile s, = 18.997896479461850Gnd one notes a difference even
with double precision.

This example demonstrates two important topics. First we notice that the chosen precision
is important, and we will always recommend that you employ double precision in all calcu-
lations with real numbers. Secondly, the choice of an appropriate algorithm, as also seen for
€%, can be of paramount importance for the outcome.

2.4.3.2 The standard algorithm for the standard deviation

Yet another example is the calculation of the standard deviation ¢ when o is small compared
to the average value X. Below we illustrate how one of the most frequently used algorithms
can go wrong when single precision is employed.

However, before we proceed, let us define 0 and X. Suppose we have a set of N data points,
represented by the one-dimensional array X(i), for i = 1,N. The average value is then

ZiNzlx(i)

X =
N 9

while

Let us now assume that

x(i) =i+10C,

and that N = 127, just as a mere example which illustrates the kind of problems which can
arise when the standard deviation is small compared with the mean value X.

The standard algorithm computes the two contributions to o separately, that is we sum
5iX(i)? and subtract thereafter Xy;X(i). Since these two numbers can become nearly equal
and large, we may end up in a situation with potential loss of precision as an outcome.

The second algorithm on the other hand computes first x(i) — X and then squares it when
summing up. With this recipe we may avoid having nearly equal numbers which cancel.
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Using single precision results in a standard deviation of g = 40.0572013%or the first and
most used algorithm, while the exact answer is 0 = 36.80579758a number which also results
from the above second algorithm. With double precision, the two algorithms result in the
same answer.

The reason for such a difference resides in the fact that the first algorithm includes the
subtraction of two large numbers which are squared. Since the average value for this exam-
ple is X = 10006300, it is easy to see that computing ¥;x(i)2—X¥;X(i) can give rise to very
large numbers with possible loss of precision when we perform the subtraction. To see this,
consider the case where i = 64. Then we have

X&, — X4 = 100352
while the exact answer is
X3, — X4 = 100064!

You can even check this by calculating it by hand.
The second algorithm computes first the difference between x(i) and the average value.
The difference gets thereafter squared. For the second algorithm we have for i = 64

and we have no potential for loss of precision.
The standard text book algorithm is expressed through the following program, where we
have also added the second algorithm

http://folk.uio.no/mhjensen/compphys/programs/chapter02/cpp/programé.cpp

// program to calculate the mean and standard deviation of
// a user created data set stored in array x[]
using namespace std;
#include <iostream>
int main()
{
int i;
float sum, sumsg2, xbar, sigmal, sigma2;
// array declaration with fixed dimension
float x[127];
// initialise the data set
for ( i=0; i < 127 ; i++){
x[i] = i + 100000.;
}
// The variable sum is just the sum over all elements
// The variable sumsq2 is the sum over x"2
sum=0. ;
sumsqg2=0. ;
// Now we use the text book algorithm
for ( i=0; i < 127; i++){
sum += x[i];
sumsg2 += pow((double) x[i],2.);
}
// calculate the average and sigma
xbar=sum/127.;
sigmal=sqrt((sumsqg2-sumkxbar)/126.);
/%
*x Here comes the second algorithm where we evaluate
*x separately first the average and thereafter the
*x sum which defines the standard deviation. The average
*x has already been evaluated through xbar
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sumsqg2=0. ;
for ( i=0; i < 127; i++){
sumsg2 += pow( (double) (x[i]-xbar),2.);

}

sigma2=sqrt(sumsq2/126.);

cout << "xbar = °° << xbar << ““sigmal = ' << sigmal << " 'sigma2 = °° << sigma2;
cout << endl;

return 0;

}// End: function main()

The corresponding Fortran program is given below.

http://folk.uio.no/mhjensen/compphys/programs/chapter02/Fortran/programé.f90

PROGRAM standard_deviation
IMPLICIT NONE
REAL (KIND = 4) :: sum, sumsq2, xbar

REAL (KIND = 4) :: sigmal, sigma2
REAL (KIND = 4), DIMENSION (127) :: x
INTEGER :: i
x=0;
DO i=1, 127

x(i) = i + 100000.
ENDDO

sum=0.; sumsq2=0.
! standard deviation calculated with the first algorithm
DO i=1, 127

sum = sum +x(1)

sumsq2 = sumsq2+x(1)x*x*2
ENDDO
! average
xbar=sum/127.
sigmal=SQRT( (sumsq2-sumx*xbar)/126.)
! second algorithm to evaluate the standard deviation
sumsq2=0.
DO i=1, 127
sumsg2=sumsq2+(x (1) -xbar) 2
ENDDO
sigma2=SQRT(sumsq2/126.)
WRITE(*,*) xbar, sigmal, sigma2

END PROGRAM standard_deviation

2.5 Additional Features of C++ and Fortran

2.5.1 Operators in C++

In the previous program examples we have seen several types of operators. In the tables
below we summarize the most important ones. Note that the modulus in C++ is represented
by the operator % whereas in Fortran we employ the intrinsic function MOD. Note also that
the increment operator ++ and the decrement operator - - is not available in Fortran . In
C++ these operators have the following meaning

++X; or Xx++; has the same meaning as Xx X + 1;
--X; or X--; has the same meaningas x = x - 1;
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Table lists several relational and arithmetic operators. Logical operators in C++ and

arithmetic operators relation operators
operator effect operator effect
— Subtraction > Greater than
+ Addition >=  Greater or equal
* Multiplication < Less than
Division <= Less or equal
% or MOD Modulus division|] ==  Equal
—— Decrement = Not equal
++ Increment

Table 2.5 Relational and arithmetic operators. The relation operators act between two operands. Note that
the increment and decrement operators ++ and —— are not available in Fortran .

Fortran are listed in [2.6l while Table shows bitwise operations.

Logical operators

C++ Effect

Fortran

0 False value
1  True value

x&& y Logical AND

Ix  Logical negation

x|ly Logical inclusive OR x.OR.y

.FALSE.
.TRUE.
.NOTx

x.AND.y

Table 2.6 List of logical operators in C++ and Fortran .

Bitwise operations

i>>n Bitwise shift right

C++ Effect Fortran
~1 Bitwise complement NOT()
i&j Bitwise and IAND(,j)
i~j Bitwise exclusive or IEOR(,j)
i|j Bitwise inclusive or  IOR(,j)

i<<j Bitwise shift left ISHFT(,j)

ISHFT(,-j)

Table 2.7 List of bitwise operations.

C++ offers also interesting possibilities for combined operators. These are collected in

Table[2.8]
Expression meaning |expression meaning
a+=b; a=a+b;|a-=Db; a
a x=b; a = *x b; /=b; a
a%=b; a=a%b;| a«=Db; a=
a»=Db; a=a»b;| ad& b; a
al|=b; a=a | b;l an=b; a

Table 2.8 C++ specific expressions.

Finally, we show some special operators pertinent to C++ only. The first one is the ? oper-

ator. Its action can be described through the following example

=a - b;
=a/ b;
a « b;
=a & b;
=a A b;
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A = expressionl ? expression2 : expression3;

Here expressionl is computed first. If this is "true"” (# 0), then expression?2 is computed and
assigned A. If expressionl is "false", then expression3 is computed and assigned A.

2.5.2 Pointers and arrays in C++.

In addition to constants and variables C++ contain important types such as pointers and
arrays (vectors and matrices). These are widely used in most C++ program. C++ allows also
for pointer algebra, a feature not included in Fortran . Pointers and arrays are important
elements in C++. To shed light on these types, consider the following setup

int name defines an integer variable called name. It is given an address in
memory where we can store an integer number.

&name is the address of a specific place in memory where the integer
name is stored. Placing the operator & in front of a variable yields
its address in memory.

int xpointer defines an integer pointer and reserves a location in memory for
this specific variable The content of this location is viewed as the
address of another place in memory where we have stored an
integer.

Note that in C++ it is common to write int* pointer while in C one usually writes
int xpointer. Here are some examples of legal C++ expressions.

name = 0x56; /* name gets the hexadecimal value hex 56. */
pointer = &name; /* pointer points to name. */
printf("Address of name = %p",pointer); /* writes out the address of name. */
printf("Value of name= %d",*pointer); /* writes out the value of name. */

Here’s a program which illustrates some of these topics.

http://folk.uio.no/mhjensen/compphys/programs/chapter02/cpp/program7.cpp

1 using namespace std;

2 main()

3 A

4 int var;

5 int xpointer;

6

7 pointer = &var;

8 var = 421;

9 printf("Address of the integer variable var : %p\n",&var);

10 printf("Value of var : %d\n", var);

11 printf("Value of the integer pointer variable: %p\n",pointer);
12 printf("Value which pointer is pointing at : %d\n",+*pointer);
13 printf("Address of the pointer variable : %p\n",&pointer);

14}
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Line Comments

4 e Defines an integer variable var.

5 e Define an integer pointer - reserves space in memory.

7 e The content of the adddress of pointer is the address of var.

8 e The value of var is 421.

9 o Writes the address of var in hexadecimal notation for pointers %p.
10 e Writes the value of var in decimal notation%d.

The ouput of this program, compiled with g++, reads

Address of the integer variable var : Oxbfffeb74
Value of var: 421

Value of integer pointer variable : Oxbfffeb74
The value which pointer is pointing at : 421
Address of the pointer variable : Oxbfffeb70

In the next example we consider the link between arrays and pointers.

int matr[2] defines a matrix with two integer members —-matr[0] ogmatr[1].
matr is a pointer to matr[0Q].
(matr + 1) is a pointer to matr[1].

http://folk.uio.no/mhjensen/compphys/programs/chapter02/cpp/program8.cpp
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1 using namespace std;
2 #included <iostream>
3 int main()

4 {

5 int matr[2];

6 int *xpointer;

7 pointer = &matr[0];

8 matr[0] = 321;

9 matr[l] = 322;

10 printf("\nAddress of the matrix element matr[1l]: %p",&matr[0]);
11 printf("\nValue of the matrix element matr[1l]; %d",matr[0]);

12 printf("\nAddress of the matrix element matr[2]: %p",&matr[1l]);
13 printf("\nValue of the matrix element matr[2]: %d\n", matr[1]);
14 printf("\nValue of the pointer : %p",pointer);

15 printf("\nValue which pointer points at : %d",*pointer);

16 printf("\nValue which (pointer+1l) points at: %d\n",*(pointer+l));
17 printf("\nAddress of the pointer variable: %p\n",&pointer);

18 }

You should especially pay attention to the following

Line

5 e Declaration of an integer array matr with two elements
6 e Declaration of an integer pointer

8-9 e Values are assigned to the array matr.

7 e The pointer is initialized to point at the first element of the array matr.

The ouput of this example, compiled again with g++, is
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Address of the matrix element matr[l]: Oxbfffef70
Value of the matrix element matr[1l]; 321
Address of the matrix element matr[2]: Oxbfffef74
Value of the matrix element matr[2]: 322

Value of the pointer: Oxbfffef70

The value pointer points at: 321

The value that (pointer+l) points at: 322
Address of the pointer variable : Oxbfffef6c

2.5.3 Macros in C++

In C we can define macros, typically global constants or functions through the define state-
ments shown in the simple C-example below for

printf ("ONE=%d, TWO0=%d, THREE=%d",ONE,TWO,THREE);

1. #define ONE 1

2. #define TWO ONE + ONE
3. #define THREE ONE + TWO
4.

5. main()

6. {

7.

8.

}

In C++ the usage of macros is discouraged and you should rather use the declaration
for constant variables. You would then replace a statement like #define ONE 1 with

const int ONE = 1;. There is typically much less use of macros in C++ than in C. C++
allows also the definition of our own types based on other existing data types. We can do this
using the keyword typedef, whose format is: typedef existing_type new_type_name ;,
where existing type is a C++ fundamental or compound type and new type name is the
name for the new type we are defining. For example:

typedef char new_name;
typedef unsigned int word ;
typedef char x test;
typedef char field [50];

In this case we have defined four data types: new name, word, test and field as char, unsigned
int, char* and char[50] respectively, that we could perfectly use in declarations later as any
other valid type

new_name mychar, anotherchar, *ptcl;
word myword;

test ptc2;

field name;

The use of typedef does not create different types. It only creates synonyms of existing types.
That means that the type of myword can be considered to be either word or unsigned int,
since both are in fact the same type. Using typedef allows to define an alias for a type that is
frequently used within a program. It is also useful to define types when it is possible that we
will need to change the type in later versions of our program, or if a type you want to use has
a name that is too long or confusing.

In C we could define macros for functions as well, as seen below.
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1. #define MIN(a,b) ( ((a) < (b)) ? (a) : (b))
2. #define MAX(a,b) ( ((a) > (b)) ? (a) : (b))
3. #define ABS(a) ( ((@a) <0) ? -(a) : (a) )
4. #define EVEN(a) ( (a) 2 =071 : 0 )

5. #define TOASCII(a) ( (a) & Ox7f )

In C++ we would replace such function definition by employing so-called inline functions.
The above functions could then read

inline double MIN(double a,double b) (return (((a)<(b)) ? (a):(b));)
inline double MAX(double a,double b)(return (((a)>(b)) ? (a):(b));)
inline double ABS(double a) (return (((a)<0) ? -(a):(a));)

where we have defined the transferred variables to be of type double. The functions also
return a double type. These functions could easily be generalized through the use of classes
and templates, see chapter[6] to return whather types of real, complex or integer variables.

Inline functions are very useful, especially if the overhead for calling a function implies a
significant fraction of the total function call cost. When such function call overhead is sig-
nificant, a function definition can be preceded by the keyword inline. When this function is
called, we expect the compiler to generate inline code without function call overhead. How-
ever, although inline functions eliminate function call overhead, they can introduce other
overheads. When a function is inlined, its code is duplicated for each call. Excessive use of
inline may thus generate large programs. Large programs can cause excessive paging in
virtual memory systems. Too many inline functions can also lengthen compile and link times,
on the other hand not inlining small functions like the above that do small computations,
can make programs bigger and slower. However, most modern compilers know better than
programmer which functions to inline or not. When doing this, you should also test various
compiler options. With the compiler option —O3 inlining is done automatically by basically all
modern compilers.

A good strategy, recommended in many C++ textbooks, is to write a code without inline
functions first. As we also suggested in the introductory chapter, you should first write a as
simple and clear as possible program, without a strong emphasis on computational speed.
Thereafter, when profiling the program one can spot small functions which are called many
times. These functions can then be candidates for inlining. If the overall time comsumption is
reduced due to inlining specific functions, we can proceed to other sections of the program
which could be speeded up.

Another problem with inlined functions is that on some systems debugging an inline func-
tion is difficult because the function does not exist at runtime.

2.5.4 Structures in C++ and TYPE in Fortran

A very important part of a program is the way we organize our data and the flow of data
when running the code. This is often a neglected aspect especially during the development
of an algorithm. A clear understanding of how data are represented makes the program
more readable and easier to maintain and extend upon by other users. Till now we have
studied elementary variable declarations through keywords like int or INTEGER, double or
REAL(KIND(8) and char or its Fortran equivalent CHARACTER. These declarations could also
be extended to general multi-dimensional arrays.

However, C++ and Fortran offer other ways as well by which we can organize our data in
a more transparent and reusable way. One of these options is through the struct declaration
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of C++, or the correspondingly similar TYPE in Fortran. The latter data type will also be
discussed in chapter|[6l

The following example illustrates how we could make a general variable which can be
reused in defining other variables as well.

Suppose you would like to make a general program which treats quantum mechanical prob-
lems from both atomic physics and nuclear physics. In atomic and nuclear physics the single-
particle degrees are represented by quantum numbers such orbital angular momentum, total
angular momentum, spin and energy. An independent particle model is often assumed as the
starting point for building up more complicated many-body correlations in systems with many
interacting particles. In atomic physics the effective degrees of freedom are often reduced to
electrons interacting with each other, while in nuclear physics the system is described by neu-
trons and protons. The structure single_particle_descript contains a list over different
quantum numbers through various pointers which are initialized by a calling function.

struct single_particle_descript{
int total_states;
intx n;
intx lorb;
intx m_1;
int* jang;
intx spin;
doublex energy;
charx orbit_status

+s

To describe an atom like Neon we would need three single-particle orbits to describe the
ground state wave function if we use a single-particle picture, i.e., the 1s, 2s and 2p single-
particle orbits. These orbits have a degeneray of 2(2| + 1), where the first number stems
from the possible spin projections and the second from the possible projections of the orbital
momentum. Note that we reserve the naming orbit for the generic labelling 1s, 2s and 2p
while we use the naming states when we include all possible quantum numbers. In total
there are 10 possible single-particle states when we account for spin and orbital momentum
projections. In this case we would thus need to allocate memory for arrays containing 10
elements.

The above structure is written in a generic way and it can be used to define other variables
as well. For electrons we could write struct single_particle_descript electrons; and
is a new variable with the name electrons containing all the elements of this structure.

The following program segment illustrates how we access these elements To access these
elements we could for example read from a given device the various quantum numbers:

for ( int i = 0; i < electrons.total_states; i++){
cout << °° Read in the quantum numbers for electron i: " << i << endl;
cin >> electrons.n[i];
cin > electrons.lorb[i];
cin >> electrons.m_1[i];
cin >> electrons.jang[i];
cin >> electrons.spin[i];

}

The structure single_particle_descript can also be used for defining quantum num-
bers of other particles as well, such as neutrons and protons throughthe new variables
struct single_particle_descript protonsand struct single_particle_descript neutrons.
The corresponding declaration in Fortran is given by the TYPE construct, seen in the fol-
lowing example.

TYPE, PUBLIC :: single_particle_descript
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INTEGER :: total_states

INTEGER, DIMENSION(:), POINTER :: n, lorb, jang, spin, m_1
CHARACTER (LEN=10), DIMENSION(:), POINTER :: orbit_status
REAL(8), DIMENSION(:), POINTER :: energy

END TYPE single_particle_descript

This structure can again be used to define variables like electrons, protons and neutrons
through the statement TYPE (single_particle_descript) :: electrons, protons, neutrons.
More detailed examples on the use of these variable declarations, classes and templates will

be given in subsequent chapters.

2.6 Exercises

2.1. Set up an algorithm which converts a floating number given in the decimal representa-
tion to the binary representation. You may or may not use a scientific representation. Write
thereafter a program which implements this algorithm.

2.2. Make a program which sums

1.

and

The program should read N from screen and write the final output to screen.

2. Compare Syp 0g Sdown for different N using both single and double precision for N up to
N = 10%%. Which of the above formula is the most realiable one? Try to give an explanation
of possible differences. One possibility for guiding the eye is for example to make a log-log
plot of the relative difference as a function of N in steps of 10" with n=1,2,...,10. This
means you need to compute 10g10(|(Sup(N) — Sdown(N))/Sdown(N)|) as function of logio(N).

2.3. Write a program which computes
f(x) = x—sinx,

for a wide range of values of x. Make a careful analysis of this function for values of X near
zero. For X~ 0 you may consider to write out the series expansions of sinx
VR S '
S|nx—x—§+§—ﬁ+...
Use the loss of precision theorem of Eq. (2.2) to show that the loss of bits can be limited to at

most one bit by restricting X so that _
posix 1
x —2
One finds then that x must at least be 1.9, implying that for |x| < 1.9 we need to carefully
consider the series expansion. For |X| > 1.9 we can use directly the expression X — sinx.
For |x| < 1.9 you should device a recurrence relation for the terms in the series expansion

in order to avoid having to compute very large factorials.

2.4. Assume that you do not have access to the intrinsic function for expx. Write your own
algorithm for exp(—x) for all possible values of X, with special care on how to avoid the loss of
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precision problems discussed in the text. Write thereafter a program which implements this
algorithm.

2.5. The classical quadratic equation ax’ 4+ bx+ ¢ = with solution
X = (—bi Vb2 — 4ac) /2a,

needs particular attention when 4ac is small relative to b®. Find an algorithm which yields
stable results for all possible values of a, b and c. Write thereafter a program and test the
results of your computations.

2.6. Write a Fortran program which reads a real number X and computes the precision in bits
(using the function DIGIT(x))for single and double precision, the smallest positive number
(using TINY(x)), the largets positive number (using the function HUGE(x)) and the number of
leading digits (using the function PRECISION(x)). Try thereafter to find similar functionalities
in C++ and Python.

2.7. Write an algorithm and program which reads in a real number x and finds the two nearest
machine numbers X_ and X, the corresponding relative errors and absolute errors.

2.8. Recurrence relations are extremely useful in representing functions, and form expedient
ways of representing important classes of functions used in the Sciences. We will see two such
examples in the discussion below. One example of recurrence relations appears in studies of
Fourier series, which enter studies of wave mechanics, be it either in classical systems or
quantum mechanical ones. We may need to calculate in an efficient way sums like

F(x) = i)ancos(nx), (2.3)

where the coefficients ay are known numbers and X is the argument of the function F(). If we
want to solve this problem right on, we could write a simple repetitive loop that multiplies
each of the cosines with its respective coefficient a, like

for ( n=0; n < N; n++){
f += an*xcos(n*x)

}

Even though this seems rather straightforward, it may actually yield a waste of computer
time if N is large. The interesting point here is that through the three-term recurrence relation

cogn— 1)x— 2cogx)cognx) + cogn+ 1)x= 0, (2.4)

we can express the entire finite Fourier series in terms of cogx) and two constants. The
essential device is to define a new sequence of coefficients by, recursively by

bn = (2cogx))bn—1 — bpi2+an n=0,...N—1,N, (2.5)

defining by 1 =bni2+..--- =0 for all n > N, the upper limit. We can then determine all the b,
coefficients from a, and one evaluation of 2cogx). If we replace a, with by, in the sum for F(x)
in Eq. (Z.3) we obtain

F(x) = bn [cogNX) — 2co (N — 1)x)cogx) + cog (N — 2)x)] +
bn-_1[cog (N — 1)x) — 2cog (N — 2)x)cogx) + cos(N — 3)x)] + ...
b, [cog2x) — 2c0(x) + 1] + by [cog(X) — 2c0og(X)] + bo. (2.6)
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Using Eq. (2.4) we obtain the final result
F (X) = b — bicogx), (2.7)

and bg and b; are determined from Eq. (2.3). The latter relation is after Chensaw. This method
of evaluating finite series of orthogonal functions that are connected by a linear recurrence
is a technique generally available for all standard special functions in mathematical physics,
like Legendre polynomials, Bessel functions etc. They all involve two or three terms in the
recurrence relations. The general relation can then be written as

Fr1(X) = on(X)Fn(X) + Ba(X)Fn-1(%)-

Evaluate the function F(x) = Zw:o ancognx) in two ways: first by computing the series of
Eq. (reffour-1) and then using the equation given in Eq. (2.3). Assume that ap = (n+2)/(n+1),
set e.g., N = 1000and try with different x-values as input.

2.9. Often, especially when one encounters singular behaviors, one may need to rewrite the
function to be evaluated in terms of a taylor expansion. Another possibility is to used so-called
continued fractions, which may be viewed as generalizations of a Taylor expansion. When
dealing with continued fractions, one possible approach is that of successive substitutions.
Let us illustrate this by a simple example, namely the solution of a second order equation

X2 —4x—1=0, (2.8)

which we rewrite as 1

X=—"1,
44X
which in turn could be represented through an iterative substitution process

1
Xn+1 = m7
with Xg = 0. This means that we have
1
Xl = Za
« 1
2 = )
4+3
« 1
3= )
44 ﬁ

and so forth. This is often rewritten in a compact way as

Xn = X0+ al
IR TE e —

Xt ——ag—
Bt gT

or as
o 2L B2 33
X1+ Xo+ X3+
Write a program which implements this continued fraction algorithm and solve iteratively
Eq. (2.8). The exact solution is x = 0.23607 while already after three iterations you should

obtain x3 = 0.236111
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2.10. Many physics problems have spherical harmonics as solutions, such as the angular
part of the Schrodinger equation for the hydrogen atom or the angular part of the three-
dimensional wave equation or Poisson’s equation.

The spherical harmonics for a given orbital momentum L, its projection M for -L <M <L
and angles 0 € [0,71] and @ € [0,27] are given by

Y"(6,0) = \/%Pﬁ” (cog8)) exp(iM @),

The functions P["' (cog0) are the so-called associated Legendre functions. They are normally
determined via the usage of recurrence relations. Recurrence relations are unfortunately
often unstable, but the following relation is stable (with x = cog0))

(L=M)PY(x) =x(2L - )RY 1 (x) = (L+M—1)PY 5(x),
and with the analytic (on closed form) expressions
PY (%) = (—)M(2M — D)1t (1—x2)M/2,

and
P 1(X) =x(2M + 1)RY (x),

we have the starting values and the equations necessary for generating the associated Leg-
endre functions for a general value of L.

1. Make first a function which computes the associated Legendre functions for different val-
ues of L and M. Compare with the closed-form results listed in chapter [5l

2. Make thereafter a program which calculates the real part of the spherical harmonics

3. Make plots for various L = M as functions of 8 (set ¢ = 0) and study the behavior as L is
increased. Try to explain why the functions become more and more narrow as L increases.
In order to make these plots you can use for example gnuplot, as discussed in appendix

4. Study also the behavior of the spherical harmonics when 0 is close to 0 and when it ap-
proaches 180 degrees. Try to extract a simple explanation for what you see.

2.11. Other well-known polynomials are the Laguerre and the Hermite polynomials, both
being solutions to famous differential equations. The Laguerre polynomials arise from the
solution of the differential equation

2 d A 10+
<W‘d—x+;‘ % >$<X>—°’

where | is an integer| > 0and A a constant. This equation arises for example from the solution
of the radial Schrodinger equation with a centrally symmetric potential such as the Coulomb
potential. The first polynomials are

Zo(x) =1,
AX)=1-x,
Lo(X) = 2—dx+ X,
Z5(X) = 6— 18x+ 92— x°,

and
Za(x) =x* — 16 4+ 72 — 96x + 24.

They fulfil the orthogonality relation
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/jo e XL (x)%dx=1,
and the recursion relation
(N+1)Zh1(X) = (2n+ 1 —X).Z(X) — nZh-1(X).
Similalry, the Hermite polynomials are solutions of the differential equation

PH(x) _, dH(

e 0L (- DHE =0,

which arises for example by solving Schrodinger’s equation for a particle confined to move in
a harmonic oscillator potential. The first few polynomials are

Ho(x) =1,
Hi(x) = 2x,
Ho(X) = 4x% — 2,
Hs(x) = 8¢ — 12,

and
Ha(x) = 16x* — 482 4 12.

They fulfil the orthogonality relation
/ e Hn(X)2dx = 2"l /7T,
and the recursion relation
Hnt1(X) = 2XHn(X) — 2nHn_1(X).

Write a program which computes the above Laguerre and Hermite polynomials for different
values of n using the pertinent recursion relations. Check your results agains some selected
closed-form expressions.






Chapter 3
Numerical differentiation and interpolation

Abstract Numerical integration and differentiation are some of the most frequently needed
methods in computational physics. Quite often we are confronted with the need of evaluat-
ing either the derivative f’ or an integral [ f(x)dx The aim of this chapter is to introduce
some of these methods with a critical eye on numerical accuracy, following the discussion
in the previous chapter. The next section deals essentially with topics from numerical dif-
ferentiation. There we present also the most commonly used formulae for computing first
and second derivatives, formulae which in turn find their most important applications in the
numerical solution of ordinary and partial differential equations. We discuss also selected
methods for numerical interpolation. This chapter serves also the scope of introducing some
more advanced C++ programming concepts, such as call by reference and value, reading
and writing to a file and the use of dynamic memory allocation. We will also discuss several
object-oriented features of C++, ending the chapter with an analogous discussion of Fortran
features.

3.1 Numerical Differentiation

The mathematical definition of the derivative of a function f(x) is

df) . f(x+h)—f(x)
dx _HLno h

where h is the step size. If we use a Taylor expansion for f(x) we can write

21
f(x+h) = f(x)+hf’(x)+%+...
We can then obtain an expression for the first derivative as
f'(x) = w +0(h),

Assume now that we will employ two points to represent the function f by way of a straight
line between x and x+ h. Fig. illustrates this subdivision.
This means that we can represent the derivative with
f(x+h)— f(x)

f3(0 = ~ L+ O(h)

45
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where the suffix 2 refers to the fact that we are using two points to define the derivative and
the dominating error goes like O(h). This is the forward derivative formula. Alternatively, we
could use the backward derivative formula

£(%) = w +O(h).

If the second derivative is close to zero, this simple two point formula can be used to ap-
proximate the derivative. If we however have a function like f(x) = a+bx?, we see that the
approximated derivative becomes

f5(x) = 2bx+ bh,

while the exact answer is 2bx. Unless h is made very small, and b is not too large, we could
approach the exact answer by choosing smaller and smaller values for h. However, in this
case, the subtraction in the numerator, f(x+h) — f(X) can give rise to roundoff errors and
eventually a loss of precision.

A better approach in case of a quadratic expression for f(X) is to use a 3-step formula where
we evaluate the derivative on both sides of a chosen point Xy using the above forward and
backward two-step formulae and taking the average afterward. We perform again a Taylor
expansion but now around Xp & h, namely

hZf// h3 frr
f(x=xo+h) = f(x0) £hf' + ¢ +0(hh, (3.1)
which we rewrite as
h2f// h3f///
fih=foEhf + 5 + 6 +O(h4).
Calculating both fiy, and subtracting we obtain that
fh _ ffh hZf/// 3
I —

and we see now that the dominating error goes like h? if we truncate at the second derivative.
We call the term h?f” /6 the truncation error. It is the error that arises because at some stage
in the derivation, a Taylor series has been truncated. As we will see below, truncation errors
and roundoff errors play an important role in the numerical determination of derivatives.

For our expression with a quadratic function f(x) = a+ bx’ we see that the three-point
formula f; for the derivative gives the exact answer 2bx. Thus, if our function has a quadratic
behavior in X in a certain region of space, the three-point formula will result in reliable first
derivatives in the interval [—h,h]. Using the relation

fn—2fo+ f_n = h?f” + O(h%),

we can define the second derivative as

fn—2fo+ f_pn
' = e + O(hz).
We could also define five-points formulae by expanding to two steps on each side of Xg.
Using a Taylor expansion around X in a region [—2h, 2h] we have

fion = fo2hf +2n2f" +

3¢/
—4h3f +O(h%). (3.2)

Using Egs. (3.1) and (3.2), multiplying fy and f_p by a factor of 8 and subtracting (8, — fon) —
(8f 1, — f o) we arrive at a first derivative given by
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Y

Xo —2h X —h X0 Xo+h X +2h X

Fig. 3.1 Demonstration of the subdivision of the x-axis into small steps h. Each point corresponds to a set of
values X, f(x). The value of x is incremented by the step length h. If we use the points X and Xp+h we can draw
a straight line and use the slope at this point to determine an approximation to the first derivative. See text
for further discussion.

f on—8f p+8f,— foy
12h

féc = + O(h4)a
with a dominating error of the order of h* at the price of only two additional function eval-
uations. This formula can be useful in case our function is represented by a fourth-order
polynomial in X in the region [—2h,2h]. Note however that this function includes two addi-
tional function evaluations, implying a more time-consuming algorithm. Furthermore, the
two additional subtraction can lead to a larger risk of loss of numerical precision when h be-
comes small. Solving for example a differential equation which involves the first derivative,
one needs always to strike a balance between numerical accurary and the time needed to
achieve a given result.

It is possible to show that the widely used formulae for the first and second derivatives of
a function can be written as

g _ 0 Rl
- f0+;1 PEETLE (3.3)
and (2j+2)
fo—2fo+fn ., .2 fo 2
rz _f0+21;(2j+2)!h , (3.4)

and we note that in both cases the error goes like O(h?). These expressions will also be used
when we evaluate integrals.
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To show this for the first and second derivatives starting with the three points f_,, = f(xg—
h), fo = f(Xo) and f;, = f(xp+ h), we have that the Taylor expansion around X = Xy gives

w i) 0 ()
anf_n+agfot+anfh=a_ hzo 0 ( h)J-l-aofo-l-ah Z)(.)—'(h)J, (3.5)
=L =

where a_p, ag and ay are unknown constants to be chosen so that a_nf_n, +agfo+anf is the
best possible approximation for f} and fg. Eq. (3.5) can be rewritten as

anf_n+agfo+anfnh=[a_n+ap+an fo
h2f // 0 f(J _
1)]
+ZZ J, 1)'a h+an.

+lan—anhfo+[an+an

To determine fj, we require in the last equation that

anp+ap+an=0,

ahtan= 1
—h+ah = h
and
an+ap=0.
These equations have the solution
fe a1
h an oh'
and
a =0,
yielding
I 2j+1)
fo— f_p f o
ot - he!.
2h J; (2j+1)
To determine f{/, we require in the last equation that
an+ag+an=0,
—a ht+anh=0,
and
2
a,h + ah = F .
These equations have the solution
1
&h - ah = - Fv
and
2
ag = F )
yielding _
fr— 260+ f_p o £(2j+2)

=fl+2y 2 —n
he °+j;QHa!
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3.1.1 The second derivative of exp(X)

As an example, let us calculate the second derivatives of exp(x) for various values of x. Fur-
thermore, we will use this section to introduce three important C++-programming features,
namely reading and writing to a file, call by reference and call by value, and dynamic memory
allocation. We are also going to split the tasks performed by the program into subtasks. We
define one function which reads in the input data, one which calculates the second derivative
and a final function which writes the results to file.

Let us look at a simple case first, the use of printf and scanf. If we wish to print a variable
defined as double speed_of_sound; we could for example write

double speed_of_sound;

printf (" “speed_of_sound = %lf\n'', speed_of_sound);

In this case we say that we transfer the value of this specific variable to the function
printf. The function printf can however not change the value of this variable (there is no
need to do so in this case). Such a call of a specific function is called call by value. The crucial
aspect to keep in mind is that the value of this specific variable does not change in the called
function.

When do we use call by value? And why care at all? We do actually care, because if a called
function has the possibility to change the value of a variable when this is not desired, calling
another function with this variable may lead to totally wrong results. In the worst cases you
may even not be able to spot where the program goes wrong.

We do however use call by value when a called function simply receives the value of the
given variable without changing it.

If we however wish to update the value of say an array in a called function, we refer to this
call as call by reference. What is transferred then is the address of the first element of the
array, and the called function has now access to where that specific variable ’lives’ and can
thereafter change its value.

The function scanf is then an example of a function which receives the address of a vari-
able and is allowed to modify it. Afterall, when calling scanf we are expecting a new value
for a variable. A typical call could be scanf(‘‘slf\n’’, &speed_of_sound);.

Consider now the following program

1 using namespace std;
2 # include <iostream>
3 // begin main function
4 int main(int argc, char argv[])
{
int a;
int x*b;
a = 10;
b = new int[10];
9 for( int i = 0; i < 10; i++){
10 b[i] = 1i;
11 3}
12 func(a,b);
13  return 0;
14 } // end of main function
15 // definition of the function func
16 void func(int x, int xy)

o ~NO U

17 {
18 x +=7;
19 xy += 10;

20 y[6] += 10;
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return;
} // end function func

There are several features to be noted.

Lines 5 and 6: Declaration of two variables a and b. The compiler reserves two locations
in memory. The size of the location depends on the type of variable. Two properties are
important for these locations - the address in memory and the content in the

Line 7: The value of a is now 10.

Line 8: Memory to store 10 integers is reserved. The address to the first location is stored
in b. The address of element number 6 is given by the expression (b + 6).

Line 10: All 10 elements of b are given values: b[0] = 0, b[1] =1, ..... ,b[9]=09;

Line 12: The main() function calls the function func() and the program counter transfers
to the first statement in func(). With respect to data the following happens. The content
of a (= 10) and the content of b (a memory address) are copied to a stack (new memory
location) associated with the function func()

Line 16: The variable x and y are local variables in func(). They have the values -x = 10, y
= address of the first element in b in the main() program.

Line 18: The local variable x stored in the stack memory is changed to 17. Nothing happens
with the value a in main().

Line 19: The value of y is an address and the symbol *y stands for the position in memory
which has this address. The value in this location is now increased by 10. This means that
the value of b[0] in the main program is equal to 10. Thus func() has modified a value in
main().

Line 20: This statement has the same effect as line 9 except that it modifies element b[6]
in main() by adding a value of 10 to what was there originally, namely 6.

Line 21: The program counter returns to main(), the next expression after func(a,b);. All
data on the stack associated with func() are destroyed.

The value of a is transferred to func() and stored in a new memory location called x. Any
modification of x in func() does not affect in any way the value of a in main(). This is called
transfer of data by value. On the other hand the next argument in func() is an address
which is transferred to func(). This address can be used to modify the corresponding value
in main(). In the programming language C it is expressed as a modification of the value
which y points to, namely the first element of b. This is called transfer of data by refer-
ence and is a method to transfer data back to the calling function, in this case main().

C++ allows however the programmer to use solely call by reference (note that call by ref-
erence is implemented as pointers). To see the difference between C and C++, consider the
following simple examples. In C we would write

int n; n =8;
func(&n); /* &n is a pointer to n */
void func(int =i)
{
*1 = 10; /* n 1s changed to 10 */

}

whereas in C++ we would write

int n; n =8;
func(n); // just transfer n itself
void func(int& i)

{
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i =10; // n is changed to 10

}

Note well that the way we have defined the input to the function func(int& i) or func(int =i)
decides how we transfer variables to a specific function. The reason why we emphasize the
difference between call by value and call by reference is that it allows the programmer to
avoid pitfalls like unwanted changes of variables. However, many people feel that this re-
duces the readability of the code. It is more or less common in C++ to use call by reference,
since it gives a much cleaner code. Recall also that behind the curtain references are usually
implemented as pointers. When we transfer large objects such a matrices and vectors one
should always use call by reference. Copying such objects to a called function slows down
considerably the execution. If you need to keep the value of a call by reference object, you
should use the const declaration.

In programming languages like Fortran one uses only call by reference, but you can flag
whether a called function or subroutine is allowed or not to change the value by declaring for
example an integer value as INTEGER, INTENT(IN) :: 1i.The local function cannot change
the value of i. Declaring a transferred values as INTEGER, INTENT(OUT) :: i. allows the
local function to change the variable i.

3.1.1.1 Initializations and main program

In every program we have to define the functions employed. The style chosen here is to
declare these functions at the beginning, followed thereafter by the main program and the
detailed tasks performed by each function. Another possibility is to include these functions
and their statements before the main program, meaning that the main program appears at
the very end. I find this programming style less readable however since I prefer to read a
code from top to bottom. A further option, specially in connection with larger projects, is
to include these function definitions in a user defined header file. The following program
shows also (although it is rather unnecessary in this case due to few tasks) how one can split
different tasks into specialized functions. Such a division is very useful for larger projects and
programs.

In the first version of this program we use a more C-like style for writing and reading to
file. At the end of this section we include also the corresponding C++ and Fortran files.

http://folk.uio.no/mhjensen/compphys/programs/chapter®3/cpp/programl.cpp

/ *

*% Program to compute the second derivative of exp(x).

*k Three calling functions are included

*% in this version. In one function we read in the data from screen,
*% the next function computes the second derivative

Kok while the last function prints out data to screen.

*/

using namespace std;

# include <iostream>

void initialize (double *, double %, int x);
void second_derivative( int, double, double, double *, double x);
void output( double *, double %, double, int);

int main()

{
// declarations of variables
int number_of_steps;
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double x, initial_step;
double *h_step, *computed_derivative;
// read in input data from screen
initialize (&initial_step, &x, &number_of_steps);
// allocate space in memory for the one-dimensional arrays
// h_step and computed_derivative
h_step = new double[number_of_steps];
computed_derivative = new double[number_of_steps];
// compute the second derivative of exp(x)
second_derivative( number_of_steps, x, initial_step, h_step,
computed_derivative);
// Then we print the results to file
output(h_step, computed_derivative, x, number_of_steps );
// free memory
delete [] h_step;
delete [] computed_derivative;
return 0;
} // end main program

We have defined three additional functions, one which reads in from screen the value of x, the
initial step length h and the number of divisions by 2 of h. This function is called initialize.
To calculate the second derivatives we define the function second_derivative. Finally, we
have a function which writes our results together with a comparison with the exact value to
a given file. The results are stored in two arrays, one which contains the given step length h
and another one which contains the computed derivative.

These arrays are defined as pointers through the statement

‘double *h_step, xcomputed_derivative;

A call in the main function to the function second_derivative looks then like this

‘second,derivative( number_of_steps, x, intial_step, h_step, computed_derivative);

while the called function is declared in the following way

void second_derivative(int number_of_steps, double x, double xh_step,double
xcomputed_derivative);

indicating that double <+h_step, double +computed_derivative; are pointers and that
we transfer the address of the first elements. The other variables int number_of_steps, double x;
are transferred by value and are not changed in the called function.
Another aspect to observe is the possibility of dynamical allocation of memory through the
new function. In the included program we reserve space in memory for these three arrays in
the following way

h_step = new double[number_of_steps];
computed_derivative = new double[number_of_steps];

When we no longer need the space occupied by these arrays, we free memory through the
declarations

delete [] h_step;
delete [] computed_derivative;

3.1.1.2 The function initialize
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// Read in from screen the initial step, the number of steps
// and the value of x

void initialize (double =*initial_step, double *x, int *number_of_steps)
{
printf("Read in from screen initial step, x and number of steps\n");
scanf("%slf %Lf %d",initial_step, x, number_of_steps);
return;
} // end of function initialize

This function receives the addresses of the three variables

void initialize (double *initial_step, double *x, int *number_of_steps)

and returns updated values by reading from screen.

3.1.1.3 The function second_derivative

// This function computes the second derivative

void second_derivative( int number_of_steps, double x,
double initial _step, double xh_step,
double *computed_derivative)

int counter;
double h;
// calculate the step size
// initialize the derivative, y and x (in minutes)
// and iteration counter
h = initial_step;
// start computing for different step sizes
for (counter=0; counter < number_of_steps; counter++ )
{
// setup arrays with derivatives and step sizes
h_step[counter] = h;
computed_derivative[counter] =
(exp(x+h) -2.xexp(x)+exp(x-h))/(hxh);
h = hx0.5;
} // end of do loop
return;
} // end of function second derivative

The loop over the number of steps serves to compute the second derivative for different
values of h. In this function the step is halved for every iteration (you could obviously change
this to larger or smaller step variations). The step values and the derivatives are stored in the
arrays h_step and double computed_derivative.

3.1.1.4 The output function

This function computes the relative error and writes the results to a chosen file.

The last function here illustrates how to open a file, write and read possible data and then
close it. In this case we have fixed the name of the file. Another possibility is obviously to read
the name of this file together with other input parameters. The way the program is presented
here is slightly unpractical since we need to recompile the program if we wish to change the
name of the output file.
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An alternative is represented by the following C++ program. This program reads from

screen the names of the input and output files.

http://folk.uio.no/mhjensen/compphys/programs/chapter®3/cpp/program2.cpp

#include <stdio.h>
#include <stdlib.h>
int col:

{
FILE *inn, x*out;
int c;
if( argc < 3) {
10 printf("You have to read in :\n");
11 printf("in_file and out_file \n");
12 exit(1l);
13 inn = fopen( argv[l], "r");} // returns pointer to the in_file
14 if( inn == NULL ) { // can't find in_file

1
2
3
4
5 int main(int argc, char xargv[])
6
7
8
9

15 printf("Can't find the input file %s\n", argv[1l]);
16 exit(1l);
17 }

18 out = fopen( argv[2], "w"); // returns a pointer to the out_file
19 if( out == NULL ) { // can't find out_file

20 printf("Can't find the output file %s\n", argv[2]);
21 exit(1l);
22}

. program statements

23 fclose(inn);
24 fclose(out);
25 return 0;

}
This program has several interesting features.
Line Program comments
5 e The function main() takes three arguments, given by argc. The vari-

able argv points to the following: the name of the program, the first and
second arguments, in this case the file names to be read from screen.

7 e C++ has a data type called FILE. The pointers inn and ?out?point to
specific files. They must be of the type FILE.

10 e The command line has to contain 2 filenames as parameters.

13-17 e The input file has to exit, else the pointer returns NULL. It has only read
permission.

18-22 e This applies for the output file as well, but now with write permission
only.

23-24 e Both files are closed before the main program ends.

The above represents a standard procedure in C for reading file names. C++ has its own

class for such operations.

http://folk.uio.no/mhjensen/compphys/programs/chapter®3/cpp/program3.cpp

/%

K% Program to compute the second derivative of exp(x).

K% In this version we use C++ options for reading and

*k writing files and data. The rest of the code is as in

** programs/chapter3/programl.cpp

*k Three calling functions are included

Kk in this version. In one function we read in the data from screen,
*k the next function computes the second derivative
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*k while the last function prints out data to screen.

*/

using namespace std;

# include <iostream>

# include <fstream>

# include <iomanip>

# include <cmath>

void initialize (double x, double *, int x);

void second_derivative( int, double, double, double *, double x);
void output( double *, double %, double, int);

ofstream ofile;

int main(int argc, charx argv[])
{
// declarations of variables
char xoutfilename;
int number_of_steps;
double x, initial_step;
double *h_step, *computed_derivative;
// Read in output file, abort if there are too few command-line arguments
if( argc <=1 ){

cout << "Bad Usage: " << argv[0] <<
" read also output file on same line" << endl;
exit(1l);
}
else{
outfilename=argv[1];
}

ofile.open(outfilename);
// read in input data from screen
initialize (&initial_step, &x, &number_of_steps);
// allocate space in memory for the one-dimensional arrays
// h_step and computed_derivative
h_step = new double[number_of_steps];
computed_derivative = new double[number_of_steps];
// compute the second derivative of exp(x)
second_derivative( number_of_steps, x, initial_step, h_step,
computed_derivative);
// Then we print the results to file
output(h_step, computed_derivative, x, number_of_steps );
// free memory
delete [] h_step;
delete [] computed_derivative;
// close output file
ofile.close();
return 0;
} // end main program

The main part of the code includes now an object declaration ofstream ofile which is in-
cluded in C++ and allows the programmer to open and declare files. This is done via the
statement ofile.open(outfilename);. We close the file at the end of the main program
by writing ofile.close();. There is a corresponding object for reading inputfiles. In this
case we declare prior to the main function, or in an evantual header file, ifstream ifile
and use the corresponding statements ifile.open(infilename); and ifile.close(); for
opening and closing an input file. Note that we have declared two character variables
charx outfilename; and charx infilename;. In order to use these options we need to in-
clude a corresponding library of functions using # include <fstream>.
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One of the problems with C++ is that formatted output is not as easy to use as the printf
and scanf functions in C. The output function using the C++ style is included below.

// function to write out the final results
void output(double xh_step, double *computed_derivative, double x,
int number_of_steps )
{
int i;
ofile << "RESULTS:" << endl;
ofile << setiosflags(ios::showpoint | ios::uppercase);
for( i=0; i < number_of_steps; i++)
{
ofile << setw(15) << setprecision(8) << logl0O(h_step[i]);
ofile << setw(15) << setprecision(8) <<
1log10(fabs (computed_derivative[i]-exp(x))/exp(x))) << endl;
}
} // end of function output

The function setw(15) reserves an output of 15 spaces for a given variable while setprecision(8)
yields eight leading digits. To use these options you have to use the declaration # include <iomanip>.

Before we discuss the results of our calculations we list here the corresponding Fortran
program. The corresponding Fortran example is

http://folk.uio.no/mhjensen/compphys/programs/chapter®@3/Fortran/programl.f90

! Program to compute the second derivative of exp(x).
! Only one calling function is included.
! It computes the second derivative and is included in the
! MODULE functions as a separate method
! The variable h is the step size. We also fix the total number
! of divisions by 2 of h. The total number of steps is read from
! screen
MODULE constants

! definition of variables for double precisions and complex variables

INTEGER, PARAMETER :: dp = KIND(1.0DO)

INTEGER, PARAMETER :: dpc = KIND((1.0D0,1.0D0))
END MODULE constants

! Here you can include specific functions which can be used by
! many subroutines or functions

MODULE functions
USE constants
IMPLICIT NONE
CONTAINS
SUBROUTINE derivative(number_of_steps, x, initial_step, h_step, &
computed_derivative)
USE constants
INTEGER, INTENT(IN) :: number_of_steps
INTEGER :: loop
REAL (DP), DIMENSION(number_of_steps), INTENT(INOUT) :: &
computed_derivative, h_step
REAL(DP), INTENT(IN) :: initial_step, x
REAL(DP) :: h
! calculate the step size
! initialize the derivative, y and x (in minutes)
! and iteration counter
h = initial_step
! start computing for different step sizes
DO loop=1, number_of_steps
! setup arrays with derivatives and step sizes
h_step(loop) = h
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computed_derivative (loop) = (EXP(x+h)-2.*xEXP(x)+EXP(x-h))/(hxh)
h = hx0.5
ENDDO
END SUBROUTINE derivative

END MODULE functions

PROGRAM second_derivative
USE constants
USE functions
IMPLICIT NONE
! declarations of variables
INTEGER :: number_of_steps, loop
REAL(DP) :: x, initial_step
REAL (DP), ALLOCATABLE, DIMENSION(:) :: h_step, computed_derivative
! read in input data from screen
WRITE(*,*) 'Read in initial step, x value and number of steps'
READ (*,*) initial_step, x, number_of_steps
! open file to write results on
OPEN(UNIT=7,FILE='out.dat"')
! allocate space in memory for the one-dimensional arrays
! h_step and computed_derivative
ALLOCATE (h_step (number_of_steps),computed_derivative (number_of_steps))
! compute the second derivative of exp(x)
! initialize the arrays
h_step = 0.0_dp; computed_derivative = 0.0_dp
CALL derivative(number_of_steps,x,initial_step,h_step,computed_derivative)

! Then we print the results to file

DO loop=1, number_of_steps
WRITE(7,'(E16.10,2X,E16.10)"') LOG1lO(h_step(loop)),&
L0G10 ( ABS ( (computed_derivative (loop)-EXP(x))/EXP(x)))

ENDDO

! free memory

DEALLOCATE( h_step, computed_derivative)

! close the output file

CLOSE(7)

END PROGRAM second_derivative

The MODULE declaration in Fortran allows one to place functions like the one which calcu-
lates second derivatives in a module. Since this is a general method, one could extend its
functionality by simply transfering the name of the function to differentiate. In our case we
use explicitely the exponential function, but there is nothing which hinders us from defin-
ing other functions. Note the usage of the module constants where we define double and
complex variables. If one wishes to switch to another precision, one needs to change the dec-
laration in one part of the program only. This hinders possible errors which arise if one has to
change variable declarations in every function and subroutine. Finally, dynamic memory allo-
cation and deallocation is in Fortran done with the keywords ALLOCATE( array(size)) and
DEALLOCATE(array). Although most compilers deallocate and thereby free space in memory
when leaving a function, you should always deallocate an array when it is no longer needed.
In case your arrays are very large, this may block unnecessarily large fractions of the memory.
Furthermore, you should always initialize arrays. In the example above, we note that Fortran
allows us to simply write h_step = 0.0_dp; computed_derivative = 0.0_dp, which means
that all elements of these two arrays are set to zero. Coding arrays in this manner brings us
much closer to the way we deal with mathematics. In Fortran it is irrelevant whether this
is a one-dimensional or multi-dimensional array. In chapter[6] where we deal with allocation
of matrices, we will introduce the numerical libraries Armadillo and Blitz++ which allow for
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similar treatments of arrays in C++. By default however, these features are not included in
the ANSI C++ standard.

3.1.1.5 Results

In Table 3.1] we present the results of a numerical evaluation for various step sizes for the
second derivative of exp(x) using the approximation f} = % The results are compared
with the exact ones for various X values. Note well that as the step is decreased we get

X h=01 h=001 h=0.001 h=0.0001h=0.0000001 Exact
0.0 1.000834 1.000008 1.000000 1.000000 1.010303 1.000000
1.0 2.720548 2.718304 2.718282  2.718282 2.753353  2.718282
2.0 7.395216 7.389118 7.389057  7.389056 7.283063  7.389056
3.0 20.102280 20.085704 20.085539 20.085537 20.250467 20.085537
4.0 54.643664 54.598605 54.598155 54.598151 54.711789 54.598150
5.0 148.536878 148.414396 148.413172 148.413161 150.635056 148.413159

Table 3.1 Result for numerically calculated second derivatives of exp(x) as functions of the chosen step size
h. A comparison is made with the exact value.

closer to the exact value. However, if it is further decreased, we run into problems of loss of
precision. This is clearly seen for h=0.0000001 This means that even though we could let the
computer run with smaller and smaller values of the step, there is a limit for how small the
step can be made before we loose precision.

3.1.2 Error analysis

Let us analyze these results in order to see whether we can find a minimal step length which
does not lead to loss of precision. Furthermore In Fig. [3.2]we have plotted

5—|0910< >,

as function of logip(h). We used an intial step length of h= 0.01 and fixed x = 10. For large
values of h, that is —4 < logio(h) < —2 we see a straight line with a slope close to 2. Close to
logio(h) =~ —4 the relative error starts increasing and our computed derivative with a step size
logio(h) < —4, may no longer be reliable.

Can we understand this behavior in terms of the discussion from the previous chapter? In
chapter[2l we assumed that the total error could be approximated with one term arising from
the loss of numerical precision and another due to the truncation or approximation made,
that is

" "
computed 'exact

U
exact

Etot = Eapproxt Ero-
For the computed second derivative, Eq. (3.4), we have
£ — fh - 2fO“" f*h i fé2j+2) h2j
0 — - . ’
h2 & (2j+2)!

and the truncation or approximation error goes like
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Fig. 3.2 Log-log plot of the relative error of the second derivative of exp(x) as function of decreasing step
lengths h. The second derivative was computed for x= 10in the program discussed above. See text for further
details

W
£ ~ ——h*.
approx 12
If we were not to worry about loss of precision, we could in principle make h as small as
possible. However, due to the computed expression in the above program example

fn—2fo+ f_p _ (fh— fo) + (f_n— fo)

fy = =20 s ,

we reach fairly quickly a limit for where loss of precision due to the subtraction of two nearly
equal numbers becomes crucial. If (f., — fp) are very close, we have (fi, — fo) = eu, where
lem| < 1077 for single and |&y| < 10~° for double precision, respectively.

We have then

1) = (fn—fo) +(f-n—Tfo) | _ 2em
o h2 =
Our total error becomes
2em féA) 2
|Etot] < 2 + ﬁh . (3.6)

It is then natural to ask which value of h yields the smallest total error. Taking the derivative
of |&wot| with respect to h results in
1/4
he 24¢gy /
i)

With double precision and x = 10 we obtain
ha 104

Beyond this value, it is essentially the loss of numerical precision which takes over. We note
also that the above qualitative argument agrees seemingly well with the results plotted in Fig.
and Table The turning point for the relative error at approximately h~ 10 4 reflects
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most likely the point where roundoff errors take over. If we had used single precision, we
would get h~ 102, Due to the subtractive cancellation in the expression for f” there is a
pronounced detoriation in accuracy as h is made smaller and smaller.

It is instructive in this analysis to rewrite the numerator of the computed derivative as

(fn— fo) + (f_n— fo) = (exp(x+h) — expx) + (exp(x— h) — expx),

as
(fn— fo) + (f-n— fo) = exp(x) (exp(h) + exp(~h) — 2),

since it is the difference (exp(h)+exp(—h) — 2) which causes the loss of precision. The results,
still for x = 10 are shown in the Table [3.21 We note from this table that at ha x10~8 we have

h exp(h) +exp(—h) exp(h) +exp(—h) —2

10 T 2.0100083361116070 1.0008336111607230x10 2
102 2.0001000008333358 1.0000083333605581 x10 4
103 2.0000010000000836 1.0000000834065048x10 6
1074 2.0000000099999999 1.0000000050247593x10°8
10~% 2.0000000001000000 9.9999897251734637 x10~11
1078 2.0000000000010001 9.9997787827987850x10 13
107 2.0000000000000098 9.9920072216264089x10 15
108 2.0000000000000000 0.0000000000000000 x 10°
10~2 2.0000000000000000 1.1102230246251565 %1016
1010 2.0000000000000000 0.0000000000000000 x 10°

Table 3.2 Result for the numerically calculated numerator of the second derivative as function of the step
size h. The calculations have been made with double precision.

essentially lost all leading digits.

From Fig. we can read off the slope of the curve and thereby determine empirically
how truncation errors and roundoff errors propagate. We saw that for —4 < logig(h) < —2,
we could extract a slope close to 2, in agreement with the mathematical expression for the
truncation error.

We can repeat this for —10< logig(h) < —4 and extract a slope which is approximately equal
to —2. This agrees again with our simple expression in Eq. (3.6).

3.2 Numerical Interpolation and Extrapolation

Numerical interpolation and extrapolation are frequently used tools in numerical applications
to physics. The often encountered situation is that of a function f at a set of points X;...Xn
where an analytic form is missing. The function f may represent some data points from ex-
periment or the result of a lengthy large-scale computation of some physical quantity that
cannot be cast into a simple analytical form.

We may then need to evaluate the function f at some point X within the data set X;...Xn,
but where x differs from the tabulated values. In this case we are dealing with interpolation.
If X is outside we are left with the more troublesome problem of numerical extrapolation.
Below we will concentrate on two methods for interpolation and extrapolation, namely poly-
nomial interpolation and extrapolation. The cubic spline interpolation approach is discussed
in chapter[ol
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3.2.1 Interpolation

Let us assume that we have a set of N+ 1 points yp = f(Xp),y1 = f(X1),...,yn = f(xn) where
none of the X values are equal. We wish to determine a polynomial of degree n so that

Au(x) = f(x) =y, i=01,...,N (3.7)
for our data points. If we then write Py on the form
PN(X) = a0+ a1 (X —Xo) +@2(X—Xo) (X—X1) + -+ +an(X = X0) ... (X = XN-1), (3.8)
then Eq. results in a triangular system of equations
a = f(x)

apt+ ai(x1—Xo) =f(xq)
ao+ a1(X2 — Xo)+ az(X2 — Xo) (X2 —X1) = f(x2)"

The coefficients ag,...,an are then determined in a recursive way, starting with ag,as,....
The classic of interpolation formulae was created by Lagrange and is given by

_ S iy, 3.9
F’N(X)—i;’;llxi_xkyl- (3.9)

If we have just two points (a straight line) we get

X— X— X
Pi(x) = Xyt !

= 1 0,
X1—Xoy Xo—le

and with three points (a parabolic approximation) we have

x=X)x=x1) ~ (X=X)(X=Xp) ~ (X=X1)(X—Xp)

P = e e—x) "2 Ta o) 0a—x) " o —xa) (0]

Yo

and so forth. It is easy to see from the above equations that when X = % we have that f(x) =
f(x) It is also possible to show that the approximation error (or rest term) is given by the
second term on the right hand side of

(3.10)

The function wn41(X) is given by
ont1(X) =an(X—Xg) ... (X—XN),

and £ = £(X) is a point in the smallest interval containing all interpolation points xj and x.
The program we provide below is however based on divided differences. The recipe is quite
simple. If we take X = Xg in Eq. (3:8), we then have obviously that ag = f(Xg) = yo. Moving ag
over to the left-hand side and dividing by Xx— Xy we have

f(x) — f(xo)

= =a+ay(X—X1)+ -+ an(X—X1)(X—X2) ... (X—Xn-1),

where we hereafter omit the rest term
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(N+1)
f(NTg!)(x— X1)(X—X2) ... (X—XN)-
The quantity | |

is a divided difference of first order. If we then take X = X3, we have that a; = fg;. Moving a;
to the left again and dividing by X — X1 we obtain

fox — f
ST 0yt an(X—Xp) ... (X— XN_1).
X—X1
and the quantity
fox — fo1
forx = ———
01x X—xg

is a divided difference of second order. We note that the coefficient
ap = foy,

is determined from foy by setting X = X;. We can continue along this line and define the divided

difference of order k-+ 1 as

f o —f _
for 1o — oL..(k 1))2<_Xk01...(k l)k7 (3.11)

meaning that the corresponding coefficient ay is given by

a = for. (k-1k-
With these definitions we see that Eq. (3.10) can be rewritten as

an1(X) FNTY(E)
(N+1)!

f(x) =a0+ ) Nfor k(X—X0)...(X—Xc-1) +
1

If we replace Xg,Xg,...,% in Eq. (311D with X11,X42,...,X, that is we count from i+ 1 to k
instead of counting from O to k and replace x with X, we can then construct the following
recursive algorithm for the calculation of divided differences

in+1---Xk - inXi+l---Xk—1

fy x =
XiXi41---Xk X — X;

Assuming that we have a table with function values (Xj, f(Xj) =Y;) and need to construct the
coefficients for the polynomial Py(x). We can then view the last equation by constructing the
following table for the case where N = 3.

Xo Yo
onX1
X1 Y1 fxoxlxz
fX1X2 onX1X2X3 :
X2 Y2 fxixoxs
froxs
X3 Y3

The coefficients we are searching for will then be the elements along the main diagonal.
We can understand this algorithm by considering the following. First we construct the unique
polynomial of order zero which passes through the point Xg, yp. This is just ag discussed above.
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Therafter we construct the unique polynomial of order one which passes through both Xgyo
and X;y1. This corresponds to the coefficient a; and the tabulated value fyx, and together with
ag results in the polynomial for a straight line. Likewise we define polynomial coefficients for
all other couples of points such as fyx, and fy,x,. Furthermore, a coefficient like az = fy,x;x,
spans now three points, and adding together fyx, we obtain a polynomial which represents
three points, a parabola. In this fashion we can continue till we have all coefficients. The
function we provide below included is based on an extension of this algorithm, knowns as
Neville’s algorithm. The error provided by Neville’s algorithm is based on the truncation

error in Eq. (3.10).

http://folk.uio.no/mhjensen/compphys/programs/chapter03/cpp/programé.cpp
/*
*x The function
*k polint()
*x takes as input xa[0O,..,n-1] and ya[0O,..,n-1] together with a given value
*x 0of x and returns a value y and an error estimate dy. If P(x) is a polynomial
*x of degree N - 1 such that P(xa_i) = ya_i, i = 0,..,n-1, then the returned
*x value is y = P(x).
*/
void polint(double xa[], double ya[], int n, double x, double *y, double x*dy)
{
int i, m, ns = 1;
double den,dif,dift,ho,hp,w;
double xc,x*d;

dif = fabs(x - xa[0]);

c = new double [n];

d = new double [n];

for(i =0; i < n; i++) {
if((dift = fabs(x - xa[i])) < dif) {

ns = i;

dif = dift;
}
c[il
d[i]

ya[il;
ya[il;

}
*xy = ya[ns--];
for(m = 0; m< (n - 1); m++) {
for(i =0; i <n -m; i++) {
ho = xa[i] - x;
hp = xa[i + m] - Xx;

w =c[i+ 1] - d[i];
if((den = ho - hp) < ZER0O) {
printf("\n\n Error in function polint(): ");
printf("\nden = ho - hp = %4.1E -- too small\n",den);
exit(1l);
}
den = w/den;
d[i] = hp * den;
c[i] = ho * den;
}
*y += (xdy = (2 * ns < (n - m) ? c[ns + 1] : d[ns--]));
}
delete [] d;
delete [] c;

} // End: function polint()

When using this function, you need obviously to declare the function itself.


http://folk.uio.no/mhjensen/compphys/programs/chapter03/cpp/program4.cpp
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3.2.2 Richardson’s deferred extrapolation method

Here we present an elegant method to improve the precision of our mathematical truncation,
without too many additional function evaluations. We will again study the evaluation of the
first and second derivatives of exp(x) at a given point x=£. In Egs. (3.3) and (3.4) for the first
and second derivatives, we noted that the truncation error goes like O(hZJ).

Employing the mid-point approximation to the derivative, the various derivatives D of a
given function f(x) can then be written as

D(h) = D(0) + a;h® + aoh® +- agh®+ ...,

where D(h) is the calculated derivative, D(0) the exact value in the limit h — O and & are
independent of h. By choosing smaller and smaller values for h, we should in principle be
able to approach the exact value. However, since the derivatives involve differences, we may
easily loose numerical precision as shown in the previous sections. A possible cure is to apply
Richardson’s deferred approach, i.e., we perform calculations with several values of the step
h and extrapolate to h = 0. The philososphy is to combine different values of h so that the
terms in the above equation involve only large exponents for h. To see this, assume that we
mount a calculation for two values of the step h, one with h and the other with h/2. Then we
have
D(h) = D(0) +a;h®+ ash* +agh®+ ...,

and 2 4 6
an” | &t ant,

4 16 64
and we can eliminate the term with a; by combining

D(h/2) = D(0) +

D(h/2)—D(h) ah®  5agh®
— 3 PO-— =5

D(h/2) + (3.12)
We see that this approximation to D(0) is better than the two previous ones since the error
now goes like O(h%). As an example, let us evaluate the first derivative of a function f using a
step with lengths h and h/2. We have then

fn—f_n
2h

= fo+0(h?),

fry2— f_n2
h
which can be combined, using Eq. (3.12) to yield

= fo+O(h*/4),

—fh+8fh2—8f pp+fn
6h -

where the elements in the first column represent the given approximations
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DY = D(hy/2).

This means that D(10) in the second column and row is the result of the extrapolation based on
DE)0> and Dél>. An element Dr(1|~f) in the table is then given by

© _n® . D1 —Dins
D =D + 1 (3.13)
with m> 0.

In Table [3.T] we presented the results for various step sizes for the second derivative of
exp(x) using fy = % The results were compared with the exact ones for various X
values. Note well that as the step is decreased we get closer to the exact value. However,
if it is further increased, we run into problems of loss of precision. This is clearly seen for
h = 0.000001 This means that even though we could let the computer run with smaller and
smaller values of the step, there is a limit for how small the step can be made before we loose
precision. Consider now the results in Table where we choose to employ Richardson’s
extrapolation scheme. In this calculation we have computed our function with only three
possible values for the step size, namely h, h/2 and h/4 with h = 0.1. The agreement with
the exact value is amazing! The extrapolated result is based upon the use of Eq. (3.13). An

X h=0.1 h=0.05 h=0.025 Extrapolat Error
0.0 1.00083361 1.00020835 1.00005208 1.00000000 0.00000000
1.0 2.72054782 2.71884818 2.71842341 2.71828183 0.00000001
2.0 7.39521570 7.39059561 7.38944095  7.38905610 0.00000003
3.0 20.10228045 20.08972176 20.08658307 20.08553692 0.00000009
4.0 54.64366366 54.60952560 54.60099375 54.59815003 0.00000024
5.0 148.53687797 148.44408109 148.42088912 148.41315910 0.00000064

Table 3.3 Result for numerically calculated second derivatives of exp(x) using extrapolation. The first three
values are those calculated with three different step sizes, h, h/2 and h/4 with h= 0.1. The extrapolated result
to h =0 should then be compared with the exact ones from Table

alternative recipe is to use our function for the polynomial extrapolation discussed in the
previous subsection and calculate the derivatives for several values of h and then extrapolate
to h= 0. We will use this method to obtain improved eigenvalues in chapter[7l

Other methods to interpolate a function f(x) such as spline methods will be discussed in
chapter[6l

3.3 Classes in C++

In Fortran a vector (this applies to matrices as well) starts with 1, but it is easy to change
the declaration of vector so that it starts with zero or even a negative number. If we have a
double precision Fortran vector which starts at —10 and ends at 10, we could declare it as
REAL(KIND=8) :: vector(-10:10). Similarly, if we want to start at zero and end at 10 we
could write REAL(KIND=8) :: vector(0:10). Fortran allows us to write a vector addition
a=Db+casa = b + c. This means that we have overloaded the addition operator in order to
translate this operation into two loops and an addition of two vector elements a; = bj + ;.

The way the vector addition is written is very close to the way we express this relation
mathematically. The benefit for the programmer is that our code is easier to read. Further-
more, such a way of coding makes it more likely to spot eventual errors as well.
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In Ansi C and C++ arrays start by default from i = 0. Moreover, if we wish to add two
vectors we need to explicitely write out a loop as

for(i=0 ; i < n ; i++) {
alil=b[i]+c[i]

}

However, the strength of C++ over programming languages like C and Fortran 77 is the
possibility to define new data types, tailored to some particular problem. Via new data types
and overloading of operations such as addition and subtraction, we can easily define sets of
operations and data types which allow us to write a vector or matrix addition in exactly the
same way as we would do in Fortran. We could also change the way we declare a C++ vector
(or matrix) element g;, from aJi] to say a(i), as we would do in Fortran. Similarly, we could also
change the default range from 0:n—21to 1:n.

To achieve this we need to introduce two important entities in C++ programming, classes
and templates.

The function and class declarations are fundamental concepts within C++. Functions are
abstractions which encapsulate an algorithm or parts of it and perform specific tasks in a
program. We have already met several examples on how to use functions. Classes can be
defined as abstractions which encapsulate data and operations on these data. The data can
be very complex data structures and the class can contain particular functions which operate
on these data. Classes allow therefore for a higher level of abstraction in computing. The
elements (or components) of the data type are the class data members, and the procedures
are the class member functions.

Classes are user-defined tools used to create multi-purpose software which can be reused
by other classes or functions. These user-defined data types contain data (variables) and
functions operating on the data.

A simple example is that of a point in two dimensions. The data could be the X and y
coordinates of a given point. The functions we define could be simple read and write functions
or the possibility to compute the distance between two points.

The two examples we elaborate on below demonstrate most of the features of classes.
We develop first a class called Complex which allows us to perform various operations on
complex variables. We extend thereafter our discussion of classes to define a class Vector
which allows us to perform various operations on a user-specified one-dimesional array, from
declarations of a vector to mathematical operations such as additions of vectors. Later, in our
discussion on linear algebra, we will also present our final matrix and vector class.

The classes we define are easy to use in other codes and/or other classes and many of the
details which would be present in C (or Fortran 77) codes are hidden inside the class. The
reuse of a well-written and functional class is normally rather simple. However, to write a
given class is often complicated, especially if we deal with complicated matrix operations. In
this text we will rely on ready-made classes in C++ for dealing with matrix operations. We
have chosen to use the libraries like Armadillo or Blitz++, discussed in our linear algebra
chapter. These libraries hide many low-level operations with matrices and vectors, such as
matrix-vector multiplications or allocation and deallocation of memory. Such libraries make
it then easier to build our own high-level classes out of well-tested lower-level classes.

The way we use classes in this text is close to the MODULE data type in Fortran and we
provide some simple demonstrations at the end of this section.
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3.3.1 The Complex class

As remarked in chapter 2l C++ has a class complex in its standard template library (STL).
The standard usage in a given function could then look like

// Program to calculate addition and multiplication of two complex numbers

using namespace std;

#include <iostream>

#include <cmath>

#include <complex>

int main()

{
complex<double> x(6.1,8.2), y(0.5,1.3);
// write out x+y
cout << x + y << x*y << endl;
return 0;

}

where we add and multiply two complex numbers x = 6.1+18.2 and y = 0.5+ 11.3 with the
obvious results z=Xx+y=6.6+19.5and z=X-y= —7.61+112.03. In Fortran we would declare
the above variables as COMPLEX(DPC) :: x(6.1,8.2), y(0.5,1.3).

The libraries Armadillo and Blitz++ include an extension of the complex class to opera-
tions on vectors, matrices and higher-dimensional arrays. We recommend the usage of such
libraries when you develop your own codes. However, writing a complex class yourself is a
good pedagogical exercise.

We proceed by splitting our task in three files.

* We define first a header file complex.h which contains the declarations of the class. The
header file contains the class declaration (data and functions), declaration of stand-alone
functions, and all inlined functions, starting as follows

#ifndef Complex_H

#define Complex_H

// various include statements and definitions

#include <iostream> // Standard ANSI-C++ include files
#include <new>

#include ....

class Complex

{...

definition of variables and their character
+

// declarations of various functions used by the class

#endif

* Next we provide a file complex.cpp where the code and algorithms of different functions
(except inlined functions) declared within the class are written. The files complex.h and
complex.cpp are normally placed in a directory with other classes and libraries we have
defined.

* Finally,we discuss here an example of a main program which uses this particular class.
An example of a program which uses our complex class is given below. In particular we
would like our class to perform tasks like declaring complex variables, writing out the real
and imaginary part and performing algebraic operations such as adding or multiplying two
complex numbers.

#include "Complex.h"
. other include and declarations
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int main ()
{
Complex a(0.1,1.3); // we declare a complex variable a
Complex b(3.0), c(5.0,-2.3); // we declare complex variables b and c

Complex d = b; // we declare a new complex variable d

cout << "d=" << d << ", a=" << a << ", b=" << b << endl;

d = axc + b/a; // we add, multiply and divide two complex numbers

cout << "Re(d)=" << d.Re() << ", Im(d)=" << d.Im() << endl; // write out of the real

and imaginary parts

}

We include the header file complex.h and define four different complex variables. These
are a=0.1+11.3, b=3.0+10 (note that if you don’t define a value for the imaginary part
this is set to zero), c=5.0—12.3 and d = b. Thereafter we have defined standard algebraic
operations and the member functions of the class which allows us to print out the real and
imaginary part of a given variable.

To achieve these features, let us see how we define the complex class. In C++ we could
define a complex class as follows

class Complex

{
private:
double re, im; // real and imaginary part
public:
Complex (); // Complex c;
Complex (double re, double im = 0.0); // Definition of a complex variable;
Complex (const Complex& c); // Usage: Complex c(a); // equate two complex variables

Complex& operator= (const Complex& c); // ¢ = a; // equate two complex variables, same
as previous

~Complex () {} // destructor

double Re () const; // double real_part = a.Re();

double Im () const; // double imag_part = a.Im();

double abs () const; // double m = a.abs(); // modulus

friend Complex operator+ (const Complex& a, const Complex& b);

friend Complex operator- (const Complex& a, const Complex& b);

friend Complex operator* (const Complex& a, const Complex& b);

friend Complex operator/ (const Complex& a, const Complex& b);

};

The class is defined via the statement class Complex. We must first use the key word
class, which in turn is followed by the user-defined variable name Complex. The body of the
class, data and functions, is encapsulated within the parentheses {...};.

Data and specific functions can be private, which means that they cannot be accessed from
outside the class. This means also that access cannot be inherited by other functions outside
the class. If we use protected instead of private, then data and functions can be inherited
outside the class. The key word public means that data and functions can be accessed from
outside the class. Here we have defined several functions which can be accessed by functions
outside the class. The declaration friend means that stand-alone functions can work on pri-
vately declared variables of the type (re, im). Data members of a class should be declared
as private variables.

The first public function we encounter is a so-called constructor, which tells how we de-
clare a variable of type Complex and how this variable is initialized. We have chosen three
possibilities in the example above:

1. A declaration like Complex c; calls the member function Complex() which can have the
following implementation

Complex:: Complex () { re = im = 0.0; }
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meaning that it sets the real and imaginary parts to zero. Note the way a member function
is defined. The constructor is the first function that is called when an object is instantiated.
2. Another possibility is

Complex:: Complex () {}

which means that there is no initialization of the real and imaginary parts. The drawback
is that a given compiler can then assign random values to a given variable.
3. A call like Complex a(0.1,1.3); means that we could call the member function as

Complex:: Complex (double re_a, double im_a)
{ re = re_a; im = im_a; }

The simplest member function are those we defined to extract the real and imaginary part
of a variable. Here you have to recall that these are private data, that is they are invisible for
users of the class. We obtain a copy of these variables by defining the functions

double Complex:: Re () const { return re; }} // getting the real part

double Complex:: Im () const { return im; } // and the imaginary part
\end{lstlistingline}

Note that we have introduced the declaration \verb?const}. What does it mean?

This declaration means that a variable cannot be changed within a called function.

If we define a variable as

\verb?const double p = 3;? and then try to change its value, we will get an error when we
compile our program. This means that constant arguments in functions cannot be changed.
\begin{lstlisting}

// const arguments (in functions) cannot be changed:

void myfunc (const Complex& c)

{ c.re =0.2; /* ILLEGAL!! compiler error... x/ }

If we declare the function and try to change the value to 0.2, the compiler will complain by
sending an error message. If we define a function to compute the absolute value of complex
variable like

double Complex:: abs () { return sqrt(rexre + imxim);}

without the constant declaration and define thereafter a function myabs as

double myabs (const Complex& c)
{ return c.abs(); } // Not ok because c.abs() is not a const func.

the compiler would not allow the c.abs() call in myabs since Complex: :abs is not a constant
member function. Constant functions cannot change the object’s state. To avoid this we de-
clare the function abs as

double Complex:: abs () const { return sqrt(rexre + imxim); }

3.3.1.1 Overloading operators

C++ (and Fortran) allows for overloading of operators. That means we can define algebraic
operations on for example vectors or any arbitrary object. As an example, a vector addition
of the type ¢ = a+ b means that we need to write a small part of code with a for-loop over
the dimension of the array. We would rather like to write this statement as ¢ = a+b; as this
makes the code much more readable and close to eventual equations we want to code. To
achieve this we need to extend the definition of operators.

Let us study the declarations in our complex class. In our main function we have a state-
ment liked = b;, which means that we call d.operator= (b) and we have defined a so-called
assignment operator as a part of the class defined as
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Complex& Complex:: operator= (const Complex& c)

{
re = c.re;
im = c.im;
return xthis;
}

With this function, statements like Complex d = b; or Complex d(b); make a new object d,
which becomes a copy of b. We can make simple implementations in terms of the assignment

Complex:: Complex (const Complex& c)
{ xthis = c; }

which is a pointer to "this object", *this is the present object, so *this = c; means setting
the present object equal to ¢, that is this->operator= (c);.
The meaning of the addition operator + for complex objects is defined in the function

Complex operator+ (const Complex& a, const Complex& b);

The compiler translates ¢ = a + b; into ¢ = operator+ (a, b);. Since this implies the call
to a function, it brings in an additional overhead. If speed is crucial and this function call is
performed inside a loop, then it is more difficult for a given compiler to perform optimizations
of a loop. The solution to this is to inline functions. We discussed inlining in chapter[2l Inlining
means that the function body is copied directly into the calling code, thus avoiding calling the
function. Inlining is enabled by the inline keyword

inline Complex operator+ (const Complex& a, const Complex& b)
{ return Complex (a.re + b.re, a.im + b.im); }

Inline functions, with complete bodies must be written in the header file complex.h. Consider
the case c = a + b; thatis, c.operator= (operator+ (a,b)); Ifoperator+, operator=and
the constructor Complex(r,1i) all are inline functions, this transforms to

c.re = a.re + b.re;
c.im = a.im + b.im;

by the compiler, i.e., no function calls
The stand-alone function operator+is a friend of the Complex class

class Complex

{

friend Complex operator+ (const Complex& a, const Complex& b);

};

so it can read (and manipulate) the private data parts re and im via

inline Complex operator+ (const Complex& a, const Complex& b)
{ return Complex (a.re + b.re, a.im + b.im); }

Since we do not need to alter the re and im variables, we can get the values by Re() and Im(),
and there is no need to be a friend function

inline Complex operator+ (const Complex& a, const Complex& b)
{ return Complex (a.Re() + b.Re(), a.Im() + b.Im()); }

The multiplication functionality can now be extended to imaginary numbers by the follow-
ing code
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inline Complex operator* (const Complex& a, const Complex& b)

{

return Complex(a.rexb.re - a.imxb.im, a.imxb.re + a.rexb.im);

}

It will be convenient to inline all functions used by this operator. To inline the complete
expression ax*b;, the constructors and operator= must also be inlined. This can be achieved
via the following piece of code

inline Complex:: Complex () { re = im = 0.0; }
inline Complex:: Complex (double re_, double im_)

{ ...}

inline Complex:: Complex (const Complex& c)

{ ...}

inline Complex:: operator= (const Complex& c)
{ ...}

// e, ¢, d are complex

e = cxd;

// first compiler translation:

e.operator= (operatorx (c,d));

// result of nested inline functions

// operator=, operatorx, Complex(double,double=0):
e.re = c.rexd.re - c.imxd.im;

e.im = c.imxd.re + c.rexd.im;

The definitions operator- and operator/ follow the same setup.
Finally, if we wish to write to file or another device a complex number using the simple
syntax cout << c;, we obtain this by defining the effect of << for a Complex object as

ostream& operator<< (ostream& o, const Complex& c)
{ 0 << ||(|| << C.Re() << "N e C.Im() << ||)

; return o;}

3.3.1.2 Templates

The reader may have noted that all variables and some of the functions defined in our class
are declared as doubles. What if we wanted to make a class which takes integers or floating
point numbers with single precision? A simple way to achieve this is copy and paste our class
and replace double with for example int.

C++ allows us to do this automatically via the usage of templates, which are the C++
constructs for parameterizing parts of classes. Class templates is a template for producing
classes. The declaration consists of the keyword template followed by a list of template ar-
guments enclosed in brackets. We can therefore make a more general class by rewriting our
original example as

template<class T>
class Complex

{
private:
T re, im; // real and imaginary part
public:
Complex (); // Complex c;
Complex (T re, T im = 0); // Definition of a complex variable;
Complex (const Complex& c); // Usage: Complex c(a); // equate two complex variables

Complex& operator= (const Complex& c); // ¢ = a; // equate two complex variables, same
as previous
~Complex () {} // destructor
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T Re () const; // T real_part = a.Re();

T Im () const; // T imag_part = a.Im();

T abs () const; // T m = a.abs(); // modulus

friend Complex operator+ (const Complex& a, const Complex& b);
friend Complex operator- (const Complex& a, const Complex& b);
friend Complex operator* (const Complex& a, const Complex& b);
friend Complex operator/ (const Complex& a, const Complex& b);

}

What it says is that Complex is a parameterized type with T as a parameter and T has to be a
type such as double or float. The class complex is now a class template and we would define
variables in a code as

Complex<double> a(10.0,5.1);
Complex<int> b(1,0);

Member functions of our class are defined by preceding the name of the function with the
template keyword. Consider the function we defined as

Complex:: Complex (double re_a, double im_a)

We could rewrite this function as

template<class T>
Complex<T>:: Complex (T re_a, T im_a)
{ re = re_a; im = im_a; }

The member functions are otherwise defined following ordinary member function definitions.

To write a class like the above is rather straightforward. The class for handling one-
dimensional arrays, presented in the next subsection shows some of the additional possibili-
ties which C++ offers. However, it can be rather difficult to write good classes for handling
matrices or more complex objects. For such applications we recommend therefore the usage
of ready-made libraries like Blitz++ or Armadillo.

Blitz++ http://www.oonumerics.org/blitz/ is a C++ library whose two main goals are
to improve the numerical efficiency of C++ and to extend the conventional dense array model
to incorporate new and useful features. Some examples of such extensions are flexible stor-
age formats, tensor notation and index placeholders. It allows you also to write several op-
erations involving vectors and matrices in a simple and clear (from a mathematical point
of view) way. The way you would code the addition of two matrices looks very similar to
the way it is done in Fortran. From a computational point of view, a library like Armadillo
http://arma.sourceforge.net/, which contains much of the array functionality included in
Blitz++, is preferred. Armadillo is a C++ linear algebra library that aims towards a good bal-
ance between speed and ease of use. It includes optional integration possibilities with popular
linear algebra packages like LAPACK and BLAS, see chapter[6l for further discussions.

3.3.2 The vector class

Our next next example is a very simple class to handle one-dimensional arrays. It demon-
strates again many aspects of C++ programming. However, most likely you will end up
using a ready-made array class from libraries like Blitz++ or Armadillo discussed above.
Furthermore, as was the case for the complex class, C++ contains also its own class for one-
dimensional arrays, that is a vector class. At the end however, we recommend that you use
libraries like Armadillo.
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Our class Vector has as data a plain one-dimensional array. We define several functions
which operate on these data, from subscripting, change of the length of the array, assignment
to another vector, inner product with another vector etc etc. To be more specific, we define the
following usage of our class,that is the way the class is used in another part of the program:

* Create vectors of a specified length defining a vector as Vector\ v(n); Via this statement
we allocate space in memory for a vector with n elements.

* Create a vector with zero length by writing the statement Vector v;

* Change the dimension of a vector v to a given length n by declaring v.redim(n) ;. Note
here the way we use a function defined within a class. The function here is redim.

* Create a vector as a copy of another vector by simply writing Vector v(w);

* To extract the length of the vector by writing const int n = v.size();

» To find particular value of the vector double e = v(i);

* or assign a number to an entry via v(j) = e;

* We would also like to set two vectors equal to each other by simply writingw = v;

» or take the inner product of two vectors as double a = w.inner(v); or alternatively
a = inner(w,Vv);

» To write out the content of a vector could be done by via v.print(cout);

This list can be made longer by adding features like vector algebra, operator overloading etc.
We present now the declaration of the class, with our comments on the various declara-
tions.

class Vector

{
private:
doublex A; // vector entries
int  length; // the length ofthe vector
void allocate (int n); // allocate memory, length=n
void deallocate(); // free memory
public:
Vector (); // Constructor, use as Vector v;
Vector (int n); // use as Vector v(n);
Vector (const Vector& w); // us as Vector v(w);
~Vector (); // destructor to clean up dynamic memory
bool redim (int n); // change length, us as v.redim(m);

Vector& operator= (const Vector& w);// set two vectors equal v = w;
double operator() (int i) const; // a = v(i);
double& operator() (int i); // v(i) = a;

void print (std::ostream& o) const; // v.print(cout);
double inner (const Vector& w) const; // a = v.inner(w);
int size () const { return length; } // n = v.size();

};

The class is defined via the statement class Vector. We must first use the key word class,
which in turn is followed by the user-defined variable name. The body of the class, data and
functions, is encapsulated within the parentheses ...;.

Data and specific functions can be private, which means that they cannot be accessed from
outside the class. This means also that access cannot be inherited by other functions outside
the class. If we use protected instead of private, then data and functions can be inherited
outside the class. The key word public means that data and functions can be accessed from
outside the class. Here we have defined several functions which can be accessed by functions
outside the class.

The first public function we encounter is a so-called constructor, which tells how we declare
a variable of type Vector and how this variable is initialized
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Vector v; // declare a vector of length 0
// this actually means calling the function

Vector::Vector ()
{ A = NULL; length = 0; }

The constructor is the first function that is called when an object is instantiated. The variable
A is the vector entry which defined as a private entity. Here the length is set to zero. Note
also the way we define a method within the class by writing Vector: :Vector (). The general
form is < return type> name of class :: name of method(<list of arguments>.

To give our vector v a dimensionality h we would write

Vector v(n); // declare a vector of length n
// means calling the function
Vector::Vector (int n)
{ allocate(n); }
void Vector::allocate (int n)
{
length = n;
A = new double[n]; // create n doubles in memory

}

Note that we defined a Fortran-like function for allocating memory. This is one of nice features
of C++ for Fortran programmers, one can always define a Fortran-like world if one wishes.
Moreover,the private function allocate operates on the private variables length and A. A
Vector object is created (dynamically) at run time, but must also be destroyed when it is no
longer in use. The destructor specifies how to destroy the object via the tilde symbol shown
here

Vector::~Vector ()
{

deallocate();
}

// free dynamic memory:
void Vector::deallocate ()
{

delete [] A;
}

Again we have define a deallocation statement which mimicks the Fortran way of removing
an object from memory. The observant reader may also have discovered that we have sneaked
in the word 'object’. What do we mean by that? A clarification is needed. We will always refer
to a class as user defined and declared variable which encapsulates various data (of a given
type) and operations on these data. An object on the other hand is an instance of a variable
of a given type. We refer to every variable we create and use as an object of a given type. The
variable A above is an object of type int.

The function where we set two vectors to have the same length and have the same values
can be written as

// v and w are Vector objects

Vo= w;

// means calling

Vector& Vector::operator= (const Vector& w)
// for setting v = w;

{

redim (w.size()); // make v as long as w




3.3 Classes in C++ 75

int i;
for (i = 0; i < length; i++) { // (C++ arrays start at 0)
A[i] = w.A[i]; // fill in teh vector w

}

return xthis;
}
// return of xthis, i.e. a Vector&, allows nested operations
U=V =u.vec = V_vec;

where we have used the redim function

v.redim(n); // make a vector v of length n

bool Vector::redim (int n)
{
if (length == n)
return false; // no need to allocate anything
else {
if (A !'= NULL) {
// "this" object has already allocated memory
deallocate();
}
allocate(n);
return true; // the length was changed
}
}

and the copy action is defined as

Vector v(w); // take a copy of w

Vector::Vector (const Vector& w)

{
allocate (w.size()); // "this" object gets w's length
*this = w; // call operator =

}

Here we have defined this to be a pointer to the current (“this”) object, in other words this
is the object itself.

void Vector::print (std::ostream& o) const

{
int i;
for (i = 1; i <= length; i++)
0 << "(" << 1 << ")=" << (*xthis) (i) << '\n';
}

double a = v.inner(w);

double Vector::inner (const Vector& w) const
{
int i; double sum = 0;
for (i = 0; i < length; i++)
sum += A[i]*w.A[i];
// alternative:
// for (i = 1; i <= length; i++) sum += (xthis)(i)*w(1i);
return sum;

}

// Vector v
cout << v;
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ostream& operator<< (ostream& o, const Vector& v)
{ v.print(o); return o; }

// must return ostream& for nested output operators:
cout << "some text..." << w;

// this is realized by these calls:
operator<< (cout, "some text...");
operator<< (cout, w);

3 Numerical differentiation and interpolation

We can redefine the multiplication operator to mean the inner product of two vectors:

double a = v*w; // example on attractive syntax

class Vector

{

// compute (*xthis) * w
double operator* (const Vector& w) const;

+

double Vector::operatorx (const Vector& w) const

{

return inner(w);

}

// have some Vector u, v, w; double a;
U=V + axw;
// global function operator+
Vector operator+ (const Vector& a, const Vector& b)
{

Vector tmp(a.size());

for (int i=1; i<=a.size(); i++)

tmp(i) = a(i) + b(i);

return tmp;
}
// global function operatorx
Vector operator* (const Vector& a, double r)
{

Vector tmp(a.size());

for (int i=1; i<=a.size(); i++)

tmp (i) = a(i)=r;

return tmp;
}
// symmetric operator: rxa
Vector operator* (double r, const Vector& a)
{ return operatorx(a,r); }

3.3.2.1 Classes and templates in C++

We can again use templates to generalize our class to accept other types than just doubles.
To achieve that we use templates, which are the native C++ constructs for parameterizing

parts of classes, using statements like

template<class T>
class Vector
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Tx A;
int length;
public:
T& operator() (int i) { return A[i-1]; }

}

In a code which uses this class we could declare various vectors as Declarations in user code:

Vector<double> a(10);
Vector<int> i(5);

where the first variable is double vector with ten elements while the second is an integer
vector with five elements.

Summarizing, it is easy to use the class Vector and we can hide in the class many details
which are visible in C and Fortran 77 codes. However, as you may have noted it is not easy
to write class Vector. One ends often up with using ready-made classes in C++ libraries
such as Blitz++ or Armadillo unless you really need to develop your own code. Furthermore,
our vector class has served mainly a pedagogical scope, since C++ has a Standard Template
Library (STL) with vector types, including a vector for doing numerics that can be declared
as

std::valarray<double> x(n); // vector with n entries

However, there is no STL for a matrix type. We end therefore with recommending the use
of ready-made libraries like Blitz++ or Armadillo or the matrix class discussed in the linear
algebra chapter, see chapter[6l

We end this section by listing the final vector class, with both header file and the definitions
of the various functions. The major part of the listing below is obvious and is not commented.
The usage of the class could be as follows:

Vector vl;

// Redimension the vector to have length n:

int nl = 3;

vl.redim(nl)

cout << "vl.getlength: " << vl.getlLength() << endl;

// Extract the length of the vector:
const int length = vl.getlLength();

// Create a vector of a specific length:
int n2 = 5;

Vector v2(n2);

cout << "v2.getlength:

<< v2.getlLength() << endl;

// Create a vector from an existing array:

int n3 = 3;

doublex array = new double[n3];

Vector v4(n3, array);

cout << "v4.getlength: " << v4.getlLength() << endl;

// Create a vector as a copy of another one:
Vector v5(vl);
cout << "v5.getlength:

<< v5.getlLength() << endl;

// Assign the entries in a vector:
v5(0) = 3.0; // or alternatively v5[0] = 3.0;
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v5(1)
v5(2)

2.5; // or alternatively v5[1]
1.0; // or alternatively v5[2]

]
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// Extract the ith component of a vector:
int i = 2;

double value = v5(1);

cout << "value: " << value << endl;

// Set a vector equal another one:
Vector vb6 = Vv5;

cout << "try redim.v6: " << v6.redim(l) << endl;
cout << "v6.getLength: " << v6.getLength() << endl;

// Take the inner product between two vectors:
double dot = v6.inner(v5); // alternatively: double dot = inner(vé6,v5);
cout << "dot(v6,v5): " << dot << endl;

// Get the euclidean norm to a vector:
double norm = v6.12norm();
cout << "norm of v6: " << norm << endl;

// Normalize a vector:
v5.normalize();

// Dump a vector to the screen:
v5.print(std::cout << "v5: " << endl);

// Arithmetic operations with vectors using a
// syntax close to the mathematical language
Vector w = vl + axv2;

We list here the header file first.
http://folk.uio.no/mhjensen/compphys/programs/chapter®3/cpp/Vector.h

#ifndef VECTOR_H
#define VECTOR_H

#include <cmath>
#include <iostream>

/*****************************************************************************/

/* VECTOR CLASS */
[/ 3Kk ok sk sk ok ok o ok sk sk ok ok o ok sk sk ok ok ok ok sk sk ok ok ok o ok sk sk sk ok ok ok ok ok sk sk sk ok ok ok ok ok sk sk sk ok ok ok ok sk sk ok sk sk ok ok sk sk sk ok sk ok ok ok ok /

/**

* @file Vector.h

* @class Vector

* @rief Class used for manipulating one-dimensional arrays.

*

* Contains user-defined operators to do computations with arrays in a style
* close to mathematical equations.

*

K%/

class Vector{
private:
int length; // Number of entries.
double =*vec; // Entries.

public:
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/**

* @brief Constructor. Creates a vector initializing its elements to zero
* @param int _length. The number of entries in the array.

*k/

// Default constructor

Vector();

VAT

* @brief Constructor. Creates a vector initializing its elements to zero
* @param int length. The number of entries in the array.

*k/

// Constructor

Vector(int _length);

/**

* Constructor. Creates a vector to hold a given array.

* @param int _length. Number of entreis in the array.

* @param const doublex a. Constant pointer to a double array.
*k/

// Constructor

Vector(int _length, const double xarray);

/**

* Copy constructor.

*

*k/

// copy constructor
Vector(const Vector&);

/**

* Destructor.
*k/

// Destructor
~Vector();

/*x Get the number of elements in an array.
* @return the length of the array.

*k/

// Get the length of the array.

int getlLength() const;

// Return pointers to the data: Useful for sending data
// to Fortran and C

const doublex getPtr() const;

doublex getPtr();

double inner(const Vector&) const;

//Normalize a vector, i.e., create an unit vector
// Normalize a vector

void normalize();

void print(std::ostream&) const;

VAT

* Change the length of a vector
*%/
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bool redim(int nl);

/KKK KKK KKK KKK KKK KKK KKK KKK KKK KKK KKK K KKK KK K K K K oK oK ok ok ok ok ok ok ok
/% (USER-DEFINED) OVERLOADED OPERATORS x*/

/*************************************************** */

// Member arithmetic operators (unary operators)
// Vector quantities: u, v, w. Scalar: a

// Copy-assignment (assignment by copy) operator
Vector& operator =(const Vector&); // v = w

// Add-assignment (assigment by addition) operator
Vector& operator+=(const Vector&); // v +=w

// Substraction-assignment (assignment by substraction) operator
Vector& operator-=(const Vector&); // v -=w

// Multiplication-assignment (assignment by multiplication) operator
Vector& operatorkx=(double); // v %= a

// Division-assignment (assignment by division) operator
Vector& operator/=(double); // v /= a

const double& operator[](int i) const;
double& operator[](int i);

const double& operator()(int i) const;
double& operator()(int 1i);

bool indexOk(int i) const;

// Get the euclidian norm (12norm)
double 12norm() const;

// Unary operator +

friend Vector operator+(const Vectoré&); // u=+v

// Unary operator -

friend Vector operator-(const Vector&); // u=-v

/**

* Addition of two vectors:

*k/

friend Vector operator+(const Vector&, const Vector&); // u=v +w
/*%

* Substraction of two vectors:

*k/

friend Vector operator-(const Vector&, const Vector&); // u=v - w
/**

* Product between two vectors:

*k/

friend Vector operatorx(const Vector&, const Vector&); // u=v x w
/ **

* Premultiplication by a floating point number:

*k/

friend Vector operatorx(double, const Vector&); // u = axv

/%%

* Postmultiplication by a floating point number:

*k/

friend Vector operatorx(const Vector&, double); // u = vxa

/*%

* Matrix-vector product:

*k/

friend Vector operatorx(const Matrix&, const Vector&); // u = Axv
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/*%

* Division of the entries of a vector by a scalar.

*k/

friend Vector operator/(const Vector&, double); // u = v/a
// dot product

friend double inner(const Vector&, const Vector&);

/%%

* print the entries of a vector to screen

*k/

friend std::ostream& operator<<(std::ostream&, const Vector&); // cout << v
// Note: This function does not need access to the data

// member. Therefore, it could have been declared as a not friend.

}

/KKK KKK KKK KKK KKK KKK KKK KKK KKK KKK KA A A A A A A A A K K K K oo o ok oK oK oK ok KKKk KK KK KKKk %/
/% INLINE FUNCTIONS */

/****************************************************************** */

// Destructor
inline Vector::~Vector(){delete[] vec;}

// Get the number of entries in a vector
inline int Vector::getLength() const {return length;}

/*%

* @return a constant pointer to the array of data.

* This function can be used to interface C++ with Fortran/C.
*%/

inline const doublex Vector::getPtr() const {return vec;}

/*%

* @return a pointer to the array of data.

* This function can be used to interface C++ with Fortran/cC.
*x/

inline doublex Vector::getPtr(){return vec; }

// Subscript. If v is an object of type Vector, the ith
// component of v can be accessed as v[i] closer to the
// ordinary mathematical notation instead of v.vec[i].
// The return value "const double&" is equivalent to
// "double", with the difference that the first approach
// 1s preferible when the returned object is big.
inline const double& Vector::operator[](int i) const{

#ifdef CHECKBOUNDS_ON

indexOk(1i);

#endif

return vec[il];
} // read-only the ith component of the vector.
// const at the end of the function declaration means
// that the caller code can just read, not modify

// Subscript. (DANGEROUS)
inline double& Vector::operator[](int 1i){
#ifdef CHECKBOUNDS_ON
index0k(1i);
#endif
return vec[i];
} // read-write the ith coordinate

81
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// Alternative to operator[]
inline const double& Vector::operator()(int i) const{
#ifdef CHECKBOUNDS_ON
index0k(i);
#endif
return vec[i];
} // read-only the ith component of vec

// Subscript (DANGEROUS). If v is an object of type Vector, the ith
// component of v can be accessed as v(i) closer to the
// ordinary mathematical notation instead of v.vec(1i).
inline double& Vector::operator()(int i){
#ifdef CHECKBOUNDS_ON
indexOk(1i);
#endif
return vec[i];
} // read-write the ith component of vec

/******************************************************************/
/% (Arithmetic) Unary operators */
/******************************************************************/
// Unary operator +

inline Vector operator+(const Vector& v){ // u =+ v

return v;

}

// Unary operator -
inline Vector operator-(const Vector& v){ // u
return Vector(v.length) -v;

}

]
'
<

#endif

Finally, we list the source codes not included in the header file (all function which are not
inlined)

http://folk.uio.no/mhjensen/compphys/programs/chapter03/cpp/Vector.cpp

#include "Vector.h"

/%%

* @file Vector.cpp

* @class Vector

* @brief Implementation of class used for manipulating one-dimensional arrays.
*x/

// default constructor
Vector::Vector(){
length = 0;
vec = NULL;
}

// constructor
Vector::Vector(int _length){
length = _length;
vec = new double[_length];
for(int i=0; i<_length; i++)
vec[i] = 0.0;

}

// Declare the array to be constant because it is passed
// as a pointer. Hence, it could be modified by the calling code.
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Vector::Vector(int _length, // length of the array
const double xarray){ // one-dimensioal array
length = _length;
vec = new double[length];
for(int i=0; i<length; i++)
vec[i] = arrayl[il];

}

// copy constructor
Vector::Vector(const Vector& w){
vec = new double[length = w.lengthl];
for(int i=0; i<length; i++)
vec[i] = w[i]; // This possible because we have overloaded the operator[]

// A more straigforward way of implementing this constructor is:
// vec = new double[length=w.length];
// *xthis = w; // Here we use the assignment operator=

}

// normalize a vector
void Vector::normalize(){
double tmp = 1.0/12norm();
for(int i=0;i<length; i++)
vec[i] = vec[i]xtmp;

}
void Vector::print(std::ostream& os) const{
int i;
for(i=0; i<length; i++){
0s << "(" << 1 << ") =" << vec[i] << "\n";
}
}

// change the length of a vector
bool Vector::redim(int _length){
if(length == _length)
return false;
else{
if(vec !'= NULL){
delete[] vec;
}
length = _length;
vec = new double[length];
return true;
}
}

bool Vector::indexOk(int i) const{

if(i<0 || i>=length){
std::cerr << "vector index check; index i=" << i
<< " out of bounds 0:" << length-1
<< std::endl;
return false;

}

else
return true; // valid index!

}

/3K ok sk sk ok ok o K Kok ok ok o K sk oK ok ok K K oK ok ok ok K K sk sk ok ok o KK K KoK ok ok ok K Kok Kok ok K R K ok k /)
/* DEFINITION OF OPERATORS */
[/ 3Kk ok sk sk ok ok o ok sk sk ok ok ok ok sk sk ok ok o ok sk sk ok ok ok ok sk sk sk sk ok ok ok ok sk sk sk ok ok ok ok sk sk sk ok sk ok ok ok ok ok /
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Vector& Vector::operator=(const Vector& w){ // v = w
if(this != &w){ // beware of self-assignment v=v
if(length !'= w.length)
std::cout << "Bad vector sizes" << std::endl;
for(int i=0; i<length; i++)
vec[i] = w[i]; // closer to the mathematical notation than w.vec[i]
}
return xthis;
} // assignment operator

Vector& Vector::operator+=(const Vector& w){ // v +=w
if(length != w.length) std::cout << "Bad vector sizes" << std::endl;
for(int i=0; i<length; i++)
vec[i] += w[i]; // This is possible because we have overloaded the operator[]
return xthis;
} // add a vector to the current one

Vector& Vector::operator-=(const Vector& w){ // v -=w
if(length != w.length) std::cout << "Bad vector sizes" << std::endl;
for(int i=0; i<length; i++)
vec[i] -= w[i];// This possible because we have overloaded the operator[]

return xthis;

}

Vector& Vector::operatorx=(double scalar){ // v *= a
for(int i=0; i<length; i++)
vec[i] *= scalar;
return xthis;

}

Vector& Vector::operator/=(double scalar){ // v /= a
for(int i=0; i<length; i++)
vec[i] /= scalar;
return xthis;

}

/******************************************************************/
/* (Arithmetic) Binary operators */
/******************************************************************/

// Sum of two vectors

Vector operator+(const Vector& v, const Vector& w){ // u =v + w
// The copy constructor checks the lengths
return Vector(v) += w;

} // vector plus vector

// Substraction of two vectors

Vector operator-(const Vector& v, const Vector& w){ // u=v - w
// The copy constructor checks the lengths
return Vector(v) -= w;

} // vector minus vector

// Multiplication between two vectors
Vector operatorx(const Vector& v, const Vector& w){ // u =vVv x w
if(v.length != w.length) std::cout << "Bad vector sizes!" << std::endl;
int n = v.length;
Vector tmp(n);
for(int i=0; i<n; i++)
tmp[i] = v[ilxw[i];
return tmp;
} // vector times vector
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// Postmultiplication operator
Vector operatorx(const Vector& v, double scalar){ // u
return Vector(v) *= scalar;

v*a

}

// Premultiplication operator.
Vector operatorx(double scalar, const Vector& v){ // u = axv
return vxscalar; // Note the call to postmultiplication operator defined above

}

// Multiplication (product) operator: Matrix times vector
Vector operatorx(const Matrix& A, const Vector& v){ // u = Axv
int m A.getRows () ;
int n = A.getColumns();

if(A.getColumns() != v.getLength()){
std::cerr << "Bad sizes in: Vector operatorx(const Matrix& A, const Vector& v)";

}

Vector u(m);
for(int i=0; i<m; i++){
for(int j=0; j<n; j++){
ulil += A[Lil[j1=vIil;
}
}
return u;

}

// Division of the entries in a vector by a scalar

Vector operator/(const Vector& v, double scalar){
if(!scalar) std::cout << "Division by zero!" << std::endl;
return (1.0/scalar)x*v;

}

// compute the dot product between two vectors
double inner(const Vector& u, const Vector& v){ // dot product
if(u.length != v.length){
std::cout << "Bad vector sizes in: double inner(const Vector& u, const Vector& v)" <<
std::endl;
}
double sum = 0.0;
for(int i=0; i<u.length; i++)
sum += u[i]*xv[i];
return sum;

}

double Vector::inner(const Vector& v) const{ // dot product double a = u.inner(v)
if(length != v.length)
std::cout << "Bad vector sizes in: double Vector::inner(const Vector& v) const" <<
std::endl;
double sum = 0.0;
for(int i=0; i<v.length; i++)
sum += vec[i]*v.vec[i];
return sum;

}

// compute the eucledian norm
double Vector::12norm() const{
double norm = fabs(vec[0]);
for(int i=1; i<length; i++){
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double vi = fabs(vec[i]);
if(norm < 100 && vi < 100){

norm = sqrt(normknorm + vixvi);
}else if(norm > vi){

norm x= sqrt(1.0 + pow(vi/norm,2));

}else{
norm = vixsqrt(1.0 + pow(norm/vi,2));
}
}
return norm;

}

// dump the components of a vector to screen

std::ostream& operator<<(std::ostream& s, const Vector& v){ // output operator
v.print(s);
return s;

}

3.4 Modules in Fortran

In the previous section we discussed classes and templates in C++. Classes offer several
advantages, such as

» Allows us to place classes into structures
* Pass arguments to methods

» Allocate storage for objects

e Implement associations

* Encapsulate internal details into classes
e Implement inheritance in data structures

Classes contain a new data type and the procedures that can be performed by the class. The
elements (or components) of the data type are the class data members, and the procedures
are the class member functions. In Fortran a class is defined as a MODULE which contains an
abstract data TYPE definition. The example we elaborate on here is a Fortran class for defining
operations on single-particle quantum numbers such as the total angular momentum, the
orbital momentum, the energy, spin etc.

We present the MODULE single_particle_orbits here and discuss several of its feature
with links to C++ programming.

! Definition of single particle data

MODULE single_particle_orbits

TYPE, PUBLIC :: single_particle_descript
INTEGER :: total_orbits
INTEGER, DIMENSION(:), POINTER :: nn, 11, jj, spin
CHARACTER*10, DIMENSION(:), POINTER :: orbit_status, &

model_space

REAL (KIND=8), DIMENSION(:), POINTER :: e

END TYPE single_particle_descript

TYPE (single_particle_descript), PUBLIC :: all_orbit, &
neutron_data, proton_data
CONTAINS

! various member functions here
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SUBROUTINE allocate_sp_array(this_array,n)
TYPE (single_particle_descript), INTENT(INOUT)
INTEGER , INTENT(IN) :: n

IF (ASSOCIATED (this_array%nn) ) &

DEALLOCATE (this_array%nn)

ALLOCATE (this_array%snn(n))

IF (ASSOCIATED (this_array%ll) ) &
DEALLOCATE (this_arraysll)

ALLOCATE (this_array%sll(n))

IF (ASSOCIATED (this_array%jj) ) &
DEALLOCATE (this_array%jj)

ALLOCATE (this_array%jj(n))

IF (ASSOCIATED (this_array%spin) ) &
DEALLOCATE (this_array%sspin)

ALLOCATE (this_array%spin(n))

IF (ASSOCIATED (this_array%e) ) &

DEALLOCATE (this_array%e)

ALLOCATE (this_array%se(n))

IF (ASSOCIATED (this_array%orbit_status) ) &
DEALLOCATE (this_array%orbit_status)
ALLOCATE (this_array%sorbit_status(n))

IF (ASSOCIATED (this_array%model_space) ) &
DEALLOCATE (this_array%smodel_space)

ALLOCATE (this_array%smodel_space(n))

blank all characters and zero all other values

DO i= 1, n
this_array%model_space(i)=
this_array%orbit _status(i)= "' '
this_array%e(i)=0.
this_array%snn(i)=0
this_array%sl1(i)=0
this_array%jj(i)=0
this_array%nshell(i)=0
this_array%itzp(i)=0

ENDDO

SUBROUTINE deallocate_sp_array(this_array)

TYPE (single_particle_descript), INTENT(INOUT)
DEALLOCATE (this_array%nn)

DEALLOCATE (this_array%ll)

DEALLOCATE (this_array%jj)

DEALLOCATE (this_array%spin)

DEALLOCATE (this_array%e)

DEALLOCATE (this_array%orbit_status); &
DEALLOCATE (this_array%model_space)

END SUBROUTINE deallocate_sp_array
! Read in all relevant single-particle data

SUBROUTINE single_particle_data
IMPLICIT NONE
CHARACTER*100 :: particle_species

READ (5,*) particle_species
WRITE(6,*) ' Particle species: '
WRITE(6,*) particle_species
SELECT CASE (particle_species)
CASE ('electron')
CALL read_electron_sp_data

11 this_array

: this_array
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CASE ('proton&neutron')
CALL read_nuclear_sp_data
END SELECT
END SUBROUTINE single_particle_data

END MODULE single_particle_orbits

The module ends with the END MODULE single_particle_orbits statement. We have defined
a public variable TYPE, PUBLIC :: single_particle_descript which plays the same role
as the struct type in C++. In addition we have defined several member functions which
operate on various arrays and variables.

An example of a function which uses this module is given below and the module is accessed
via the USE single_particle_orbits statement.

|
PROGRAM main

USE single_particle_orbits
IMPLICIT NONE
INTEGER :: i

READ(5,*) all_orbit%total_orbits
IF( all_orbit%stotal_orbits <= 0 ) THEN
WRITE(6,*) 'WARNING, NO ELECTRON ORBITALS' ; STOP
ENDIF
Setup all possible orbit information
Allocate space in heap for all single-particle data
CALL allocate_sp_array(all_orbit,all_orbit%total_orbits)
Read electron single-particle data

DO i=1, all_orbit%total_orbits
READ (5,*) all_orbit%nn(i),all_orbit%ll, &
all_orbit%jj(i),all_orbit%spin(i), &
all_orbit%orbit_status(i), &
all_orbit%model_space(i), all_orbit%e(i)
ENDDO

further instructions

deallocate all arrays

CALL deallocate_sp_array(all_orbit)

END PROGRAM main

Inheritance allows one to create a hierarchy of classes in which the base class contains the
common properties of the hierarchy and the derived classes can modify and specialize these
properties. Specifically, a derived class contains all the class member functions of the base
class and can add new ones. Further, a derived class contains all the class member functions
of the base class and can modify them or add new ones. The value in using inheritance is to
avoid duplicating code when creating classes which are similar to one another. Fortran does
not support inheritance, but several features can be faked in Fortran! Consider the following
declarations:

TYPE proton_sp_orbit
TYPE (single_particle_orbits), PUBLIC :: &
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proton_particle_descript
INTEGER, DIMENSION(:), POINTER, PUBLIC :: itzp
END TYPE proton_sp_orbit

To initialize the proton sp orbit TYPE, we could now define a new function

SUBROUTINE allocate_proton_array(this_array,n)

TYPE (single_particle_descript), INTENT(INOUT) :: this_array
INTEGER , INTENT(IN) :: n
IF (ASSOCIATED (this_array%itzp) ) &
DEALLOCATE (this_array%sitzp)
CALL allocate_sp_array(this_array,n)
this_array%itzp(i)=0

END SUBROUTINE allocate_proton_array

and

SUBROUTINE dellocate_proton_array(this_array)

TYPE (single_particle_descript), INTENT(INOUT) :: this_array
DEALLOCATE (this_array%sitzp)

CALL deallocate_sp_array(this_array)

END SUBROUTINE deallocate_proton_array

and we could define a MODULE

MODULE proton_class
USE single_particle_orbits
TYPE proton_sp_orbit
TYPE (single_particle_orbits), PUBLIC :: &
proton_particle_descript
INTEGER, DIMENSION(:), POINTER, PUBLIC :: itzp
END TYPE proton_sp_orbit
INTERFACE allocate_proton
MODULE PROCEDURE allocate_proton_array, read_proton_array
END INTERFACE
INTERFACE deallocate_proton
MODULE PROCEDURE deallocate_proton_array
END INTERFACE

CONTAINS
! various procedure

END MODULE proton_class

PROGRAM with_just_protons
USE proton_class

TYPE (proton_sp_orbit ) :: proton_data
CALL allocate_proton(proton_data)

CALL deallocate_proton_array(prton_data)

We have a written a new class which contains the data of the base class and all the pro-
cedures of the base class have been extended to work with the new derived class. Interface
statements have to be used to give the procedure uniform names.

We can now derive further classes for other particle types such as neutrons, hyperons etc
etc.
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3.5 How to make Figures with Gnuplot

We end this chapter with a practical guide on making figures to be included in an eventual
report file. Gnuplot is a simple plotting program which follows the Linux/Unix operating
system. It is easy to use and allows also to generate figure files which can be included in a
IATEX document. Here we show how to make simple plots online and how to make postscript
versions of the plot or even a figure file which can be included in a IATEX document. There
are other plotting programs such as xmgrace as well which follow Linux or Unix as operating
systems. An excellent alternative which many of you are familiar with is to use Matlab to read
in the data of a calculation and vizualize the results.
In order to check if gnuplot is present type

which gnuplot

If gnuplot is available, simply write
gnuplot

to start the program. You will then see the following prompt
gnuplot>

and type help for a list of various commands and help options. Suppose you wish to plot data
points stored in the file mydata.dat. This file contains two columns of data points, where
the first column refers to the argument X while the second one refers to a computed function
value f(x).

If we wish to plot these sets of points with gnuplot we just need to write

gnuplot>plot ’'mydata.dat’ using 1:2 w 1
or
gnuplot>plot ’'mydata.dat’ w 1

since gnuplot assigns as default the first column as the x-axis. The abbreviations w 1 stand for
‘with lines’. If you prefer to plot the data points only, write

gnuplot>plot ’'mydata.dat’ w p

For more plotting options, how to make axis labels etc, type help and choose plot as topic.
Gnuplot will typically display a graph on the screen. If we wish to save this graph as a
postscript file, we can proceed as follows

gnuplot>set terminal postscript
gnuplot>set output ’'mydata.ps’
gnuplot>plot ’'mydata.dat’ w 1

and you will be the owner of a postscript file called mydata.ps, which you can display with
ghostview through the call

gv mydata.ps

The other alternative is to generate a figure file for the document handling program IATEX.
The advantage here is that the text of your figure now has the same fonts as the remaining
IATEX document. Fig. [3.2] was generated following the steps below. You need to edit a file
which ends with .gnu. The file used to generate Fig.[3.2lis called derivative.gnu and contains
the following statements, which are a mix of IATEX and Gnuplot statements. It generates a
file derivative.tex which can be included in a IATEX document. Writing the following



3.5 How to make Figures with Gnuplot 91

set terminal pslatex

set output "derivative.tex"

set xrange [-15:0]

set yrange [-10:8]

set xlabel "log$_{10}(h)s$"

set ylabel "$\epsilon$"

plot "out.dat" +title "Relative error" w 1

generates a IATEX file derivative.tex. Alternatively, you could write the above commands in
a file derivative.gnu and use Gnuplot as follows

gnuplot>load ’'derivative.gnu’
You can then include this file in a IATEX document as shown here

\begin{figure}

\begin{center}

\input{derivative}

\end{center}

\caption{Log-log plot of the relative error of the second
derivative of $e”x$ as function of decreasing step
lengths $h$. The second derivative was computed for
$x=10$ in the program discussed above. See text for
further details\label{fig:lossofprecision}}

\end{figure}

Most figures included in this text have been generated using gnuplot.

Many of the above commands can all be baked in a Python code. The following example
reads a file from screen with x and y data, and plots these data and saves the result as a
postscript figure.

#!/usr/bin/env python

import sys
from Numeric import =*
import Gnuplot

g = Gnuplot.Gnuplot(persist=1)

try:
infilename = sys.argv[1]
except:
print "Usage of this script", sys.argv[0], "infile", sys.argv[l]; sys.exit(1)
# Read file with data
ifile = open(infilename, 'r')
# Fill in x and y
x=1[];y=1I]
for line in ifile:
pair = line.split()
x = float(pair[0]); y = float(pair[1])
file.close()
convert to a form that the gnuplot interface can deal with
= Gnuplot.Data(x, y, title='data from output file', with='1lp"')
.xlabel('loglo(h)"') # make x label
.ylabel('logl0(|Exact-Computed|)/|Exact]|")
.plot(d) # plot the data

i
#
d
g
g
g
g.hardcopy(filename="relerror.ps",terminal="postscript", enhanced=1, color=1)
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3.6 Exercises

3.1. We want you to compute the first derivative of
f(x) =tan (x)

for x = /2 with step lengths h. The exact answer is 1/3. We want you to code the derivative
using the following two formulae
f(x+h)—f(x)

foe(X) = ————— +0(h), (3.14)

and
fh—f

o= L 01 o(h?), (3.15)

with fip = f(x=£h).

1. Find mathematical expressions for the total error due to loss of precision and due to the nu-
merical approximation made. Find the step length which gives the smallest value. Perform
the analysis with both double and single precision.

2. Make thereafter a program which computes the first derivative using Eqs. (3.14) and
as function of various step lengths h and let h — 0. Compare with the exact answer.

Your program should contain the following elements:

* A vector (array) which contains the step lengths. Use dynamic memory allocation.

» Vectors for the computed derivatives of Eqs. (3.14) and for both single and double
precision.

* A function which computes the derivative and contains call by value and reference (for
C++ users only).

¢ Add a function which writes the results to file.
€ =1logio (

as function of logio(h) for Egs. (3.14) and (3.15) for both single and double precision. Plot

the results and see if you can determine empirically the behavior of the total error as

function of h.

3. Compute thereafter
/ /
Teompute™ feract

/
exact

3.2. Modify your program from the previous exercise in order to include both Richardson’s
deferred extrapolation algorithm from Eq. and Neville’s interpolation algorithm dis-
cussed in program4.cpp in this chapter. You will need to write a program for Richardson’s
algorithm. Discuss and comment your results.

3.3. Use the results from your program for the calculation of derivatives to make a table
of the derivatives as a function of the step length h. Write thereafter a program which reads
these results and performs a numerical interpolation using Lagrange’s formula from Eq.
up to a polynomial of degree five. Compare the tabulated values with those obtained using
Lagrange’s formula. Compare also these results with those obtained using Neville’s algorithm
and comment your results.

3.4. Write your own C++ class which allows for operations on complex variables, such as
addition, subtraction, multiplication and division.

3.5. Write a C++ class which allows for treating one-dimensional arrays for integer, real
and complex variables. Use your complex class from the previous exercise. Use this class to
perform simple vector addition and vector multiplication operations.
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3.6. Write a C++ class which sets up various approximations to the derivatives and repeat
exercise 3.1 using this class.

3.7. Write a C++ class which sets up the position for a given particle in arbitrary dimensions.
Write thereafter a program which uses this class in order to set up the electron coordinates
for the ten electrons in the neutral neon atom. This is a three-dimensional system. Calculate

also the distance |rj| = y/X? +y?+ 7 (modulus of the position from the mass center, where the
mass center is defined as the the atomic nucleus) of a given electron i to the atomic nucleus.

Extend the class so that it can be used to calculate the modulus of the relative distance
between two electrons

Fi=ril =/ 06 = )2+ (= )2+ (3 — 7)2

3.8. Use the class from the previous exercise to write a program which reads in the position
of all planets in the solar system, using the sun as the center of mass of the system. Let this
program calculate the distance from the sun to all planets, and the relative distance between
all planets.

3.9. Use and extend the vector class discussed in this chapter to compute the 1 and 2 vector
norms given by
[IX[[1 = [Xa|+ X2l + -+ [Xal,

1 1
IX|]2 = (%[> + %)+ -+ [xal?) 2 = (X"x) 2.

Add to the vector class the possibility to calculate an arbitrary norm p

1
[IXITp = (IXa|P+ [X2[P+ -+ [xa[P) P,

where p> 1.

Write thereafter a program which checks numerically the the so-called Cauchy-Schwartz.
For any X and y being real-valued or complex-valued quantities, the inner product space
satisfies

XTy[ < IIx[[2IYl[2,

and the equality is obeyed only if X and y are linearly dependent. Your program should be able
to read from file two tabulated vectors, or, alternatively let the program set them up.






Chapter 4
Non-linear Equations

Abstract In physics we often encounter the problem of determining the root of a function
f(x). Especially, we may need to solve non-linear equations of one variable. Such equations
are usually divided into two classes, algebraic equations involving roots of polynomials and
transcendental equations. When there is only one independent variable, the problem is one-
dimensional, namely to find the root or roots of a function. Except in linear problems, root
finding invariably proceeds by iteration, and this is equally true in one or in many dimensions.
This means that we cannot solve exactly the equations at hand. Rather, we start with some
approximate trial solution. The chosen algorithm will in turn improve the solution until some
predetermined convergence criterion is satisfied. The algoritms we discuss below attempt to
implement this strategy. We will deal mainly with one-dimensional problems.

In chapter[6] we will discuss methods to find for example zeros and roots of equations. In
particular, we will discuss the conjugate gradient method.

4.1 Particle in a Box Potential

You may have encountered examples of so-called transcendental equations when solving the
Schrédinger equation (SE) for a particle in a box potential. The one-dimensional SE for a
particle with mass mis

% d?u
~ o de +V(X)u(x) = Eu(x), (4.1)
and our potential is defined as
[ -VW0<x<a
Vi) = { 0 x>a (4.2)

Bound states correspond to negative energy E and scattering states are given by positive
energies. The SE takes the form (without specifying the sign of E)

d?u(x) 2m
dX(Z)Jr?(Vm—E)u(x):O X< a, (4.3)
and & )
u(x) 2m
v + ?Eu(x) =0 x>a (4.4)

If we specialize to bound states E < 0 and implement the boundary conditions on the wave

function we obtain
u(r) = Asin(v/2m(Vo — |E|)r /h) r<a, (4.5)
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and
u(r) = Bexp(—+/2m|E|r /h) r>a, (4.6)

where A and B are constants. Using the continuity requirement on the wave function atr =a
one obtains the transcendental equation

V2m(Vo — |E]) cot(1/2ma(Vo — [E|)/R) = —/2mE]. 4.7)

This equation is an example of the kind of equations which could be solved by some of the
methods discussed below. The algorithms we discuss are the bisection method, the secant
and Newton-Raphson’s method.

In order to find the solution for Eq. (4.7), a simple procedure is to define a function

f(E) = \/2m(Vo — |E|) cot(y/2ma(Vo — |E|)/R) + /2m|E]. (4.8)

and with chosen or given values for a and Vy make a plot of this function and find the ap-
proximate region along the E — axiswhere f(E) = 0. We show this in Fig. for Vo = 20 MeV,
a=2fm and m= 938MeV. Fig. ATl tells us that the solution is close to |E| ~ 2.2 (the binding

100

50

f(E) [MeV]0

-50

-100

E| [MeV]

Fig. 4.1 Plot of f(E) in Eq. as function of energy |E| in MeV. Te function f(E) is in units of megaelectron-
volts MeV. Note well that the energy E is for bound states.

energy of the deuteron). The methods we discuss below are then meant to give us a numer-
ical solution for E where f(E) = 0 is satisfied and with E determined by a given numerical
precision.

4.2 Iterative Methods

To solve an equation of the type f(x) = 0 means mathematically to find all numbers $1 so that
f(s) = 0. In all actual calculations we are always limited by a given precision when doing

1 In the following discussion, the variable Sis reserved for the value of X where we have a solution.
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numerics. Through an iterative search of the solution, the hope is that we can approach,
within a given tolerance €, a value X which is a solution to f(s) =0 if

Xo—$S <€, (4.9)

and f(s) = 0. We could use other criteria as well like

—S
’XO <e, (4.10)

S

and |f(Xg)| < € or a combination of these. However, it is not given that the iterative process
will converge and we would like to have some conditions on f which ensures a solution. This
condition is provided by the so-called Lipschitz criterion. If the function f, defined on the
interval [a,b] satisfies for all X; and X, in the chosen interval the following condition

|f(X1)—f(X2)|§k|X1—X2|, (4.11)

with k a constant, then f is continuous in the interval [a,b]. If f is continuous in the interval
[a,b], then the secant condition gives

f(x1) — f(x2) = f'(&)(x1—x2), (4.12)
with xp,%, within [a,b] and & within [X;,xp]. We have then
[f(x1) — F(x2)| < |f'(&)][x1— Xzl (4.13)

The derivative can be used as the constant k. We can now formulate the sufficient conditions
for the convergence of the iterative search for solutions to f(s) =0.

1. We assume that f is defined in the interval [a,b].
2. f satisfies the Lipschitz condition with k < 1.

With these conditions, the equation f(x) = 0 has only one solution in the interval [a,b] and it
converges after niterations towards the solution sirrespective of choice for Xg in the interval
[a,b]. If we let x, be the value of x after n iterations, we have the condition

K
|S— Xn| < m|x1—x2|. (4.14)

The proof can be found in the text of Bulirsch and Stoer. Since it is difficult numerically to
find exactly the point where f(s) = 0, in the actual numerical solution one implements three
tests of the type

1.
[Xn— 5| < €, (4.15)

and

If(s)| <9, (4.16)

3. and a maximum number of iterations Nmaxiter in actual calculations.
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4.3 Bisection

This is an extremely simple method to code. The philosophy can best be explained by choosing

aregion in e.g., Fig.[Z.I]which is close to where f(E) =0. In our case |E| ~ 2.2. Choose a region

[a,b] so that a= 1.5 and b= 3. This should encompass the point where f = 0. Define then the
point

a+b

C= ——

5
and calculate f(c). If f(a)f(c) < O, the solution lies in the region [a,c] = [a,(a+b)/2]. Change
then b < ¢ and calculate a new value for c. If f(a)f(c) > 0, the new interval is in [c,b] =
[(@a+b)/2,b]. Now you need to change a < c and evaluate then a new value for c. We can
continue to halve the interval till we have reached a value for ¢ which fulfills f(c) =0 to a
given numerical precision. The algorithm can be simply expressed in the following program

(4.17)

fb = f(b);
// check if your interval is correct, if not return to main
if ( faxfb > 0) {
cout << “"\n Error, root not in interval'' << endl;
return;
}
for (j=1; j <= iter_max; j++) {
c=(a+b)/2;
fc=f(c)
// 1f this test is satisfied, we have the root c
( (abs(a-b) < epsilon ) || fc < delta ); return to main
( faxfc < 0){
b=c ; fb=fc;

if
if

}
else{
a=c ; fa=fc;

Note that one needs to define the values of d, € and iter_max when calling this function.

The bisection method is an almost foolproof method, although it may converge slowly to-
wards the solution due to the fact that it halves the intervals. After n divisions by 2 we have a
possible solution in the interval with length

1
> lb—al, (4.18)

and if we set xp = (a+b)/2 and let X, be the midpoints in the intervals we obtain after n
iterations that Eq. (£.14) results in

1
[s—%| < 51 [b—al, (4.19)

since the nth interval has length |b—a|/2". Note that this convergence criterion is independent
of the actual function f(x) as long as this function fulfils the conditions discussed in the
conditions discussed in the previous subsection.

As an example, suppose we wish to find how many iteration steps are needed in order to
obtain a relative precision of 1012 for x, in the interval [50,63], that is
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|[s— Xn|
Ei

<1012 (4.20)

It suffices in our case to study s> 50, which results in

|s—Xnl 12
———— <10 4.21
50 = ) ( )
and with Eq. (4.19) we obtain 3
1 —12
ShTIEg <10°%? (4.22)

meaning n > 37. The code for the bisection method can look like this

/%

** This function

*+ calculates a root between x1 and x2 of a function
**x pointed to by (xfunc) using the method of bisection
*+ The root is returned with an accuracy of +- xacc.
*/

double bisection(double (*func)(double), double x1, double x2, double xacc)
{

int i

double dx, f, fmid, xmid, rtb;

f = (xfunc)(x1);

fmid = (*xfunc) (x2);

if(fxfmid >= 0.0) {
cout << "\n\nError in function bisection():" << endl;
cout << "\nroot in function must be within" << endl;
cout << "x1 ='' << x1 << ""and x2 T << x2 << endl;
exit(1l);

}

rtbh = f < 0.0 ? (dx = x2 - x1, x1) : (dx = x1 - x2, x2);

for(j = 0; j < max_iterations; j++) {
fmid = (*xfunc)(xmid = rtb + (dx *= 0.5));
if (fmid <= 0.0) rtb=xmid;
if(fabs(dx) < xacc || fmid == 0.0) return rtb;

}

cout << "Error in the bisection:" << endl; // should never reach this point

cout "Too many iterations!" << endl;

}

// End: function bisection

In this function we transfer the lower and upper limit of the interval where we seek the
solution, [X1,Xo]. The variable xacc is the precision we opt for. Note that in this function the test
f(s) < d is not implemented. Rather, the test is done through f(s) =0, which is not necessarily
a good option.

Note also that this function transfer a pointer to the name of the given function through
double(*xfunc) (double).

4.4 Newton-Raphson’s Method

Perhaps the most celebrated of all one-dimensional root-finding routines is Newton’s method,
also called the Newton-Raphson method. This method is distinguished from the previously
discussed methods by the fact that it requires the evaluation of both the function f and its
derivative f’ at arbitrary points. In this sense, it is taylored to cases with e.g., transcendental
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equations of the type shown in Eq. where it is rather easy to evaluate the derivative. If
you can only calculate the derivative numerically and/or your function is not of the smooth
type, we discourage the use of this method.

The Newton-Raphson formula consists geometrically of extending the tangent line at a
current point until it crosses zero, then setting the next guess to the abscissa of that zero-
crossing. The mathematics behind this method is rather simple. Employing a Taylor expansion
for x sufficiently close to the solution s, we have

X)?

ugzozfuy+@—mvuy+§i——

50+ (4.23)

For small enough values of the function and for well-behaved functions, the terms beyond
linear are unimportant, hence we obtain

f(x)+ (s—x)f'(x) ~ 0, (4.24)
yielding
f(x)
SAREX— ——. 4.25
7 ( )
Having in mind an iterative procedure, it is natural to start iterating with
f(%n)
=Xn— . 4.26
Xl =X~ 5 x) ( )

This is Newton-Raphson’s method. It has a simple geometric interpretation, namely X1 is
the point where the tangent from (X, f (X)) crosses the x—axis. Close to the solution, Newton-
Raphson converges fast to the desired result. However, if we are far from a root, where the
higher-order terms in the series are important, the Newton-Raphson formula can give grossly
inaccurate results. For instance, the initial guess for the root might be so far from the true
root as to let the search interval include a local maximum or minimum of the function. If an
iteration places a trial guess near such a local extremum, so that the first derivative nearly
vanishes, then Newton-Raphson may fail totally. An example is shown in Fig. [4.2]

It is also possible to extract the convergence behavior of this method. Assume that the
function f has a continuous second derivative around the solution s. If we define

f(Xn)

- — 4.27
7 (%) S, (4.27)

€ntl=Xn+1 —S=Xn—
and using Eq. (4.23) we have

—enf’(xn) +€8/2f"(&) _ &/21"(8)
f/(xn) - f/(Xn) .

€n+1=6n+ (4.28)
This gives
et _ 1 [FE) _ 1]f(9)]
el 2[F(x)[>  2[f"(9)?

(4.29)
when x, — S. Our error constant k is then proportional to |f”(s)|/|f'(s)|? if the second derivative
is different from zero. Clearly, if the first derivative is small, the convergence is slower. In
general, if we are able to start the iterative procedure near a root and we can easily evaluate
the derivative, this is the method of choice. In cases where we may need to evaluate the
derivative numerically, the previously described methods are easier and most likely safer to
implement with respect to loss of numerical precision. Recall that the numerical evaluation
of derivatives involves differences between function values at different X.
We can rewrite the last equation as
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20 I
f(x) = x— 2cogx)
C=Xg - - ..
c=X:
15 | ? -

0 2 4 6 8 10

Fig. 4.2 Example of a case where Newton-Raphson’s method does not converge. For the function f(x) =
X—2c09X), we see that if we start at x =7, the first iteration gives us that the first point where we cross the
X—axis is given by X;. However, using X; as a starting point for the next iteration results in a point X which
is close to a local minimum. The tangent here is close to zero and we will never approach the point where
f(x)=0.

lens1] = Clen|?, (4.30)

with C a constant. If we assume that C ~ 1 and let &, ~ 1078, this results in .1 ~ 1076, and
demonstrates clearly why Newton-Raphson’s method may converge faster than the bisection
method.

Summarizing, this method has a solution when f” is continuous and sis a simple zero of f.
Then there is a neighborhood of sand a constant C such that if Newton-Raphson’s method is
started in that neighborhood, the successive points become steadily closer to s and satisfy

|s—Xnt1| <Cls— Xn|2a

with n > 0. In some situations, the method guarantees to converge to a desired solution from
an arbitrary starting point. In order for this to take place, the function f has to belong to
C?(R), be increasing, convex and having a zero. Then this zero is unique and Newton’s method
converges to it from any starting point.
As a mere curiosity, suppose we wish to compute the square root of a number R, i.e., VR
Let R> 0 and define a function
f(x) =x*—R.

The variable x is a root if f(x) = 0. Newton-Raphson’s method yields then the following itera-
tive approach to the root

1 R
Xny1 = > (Xn+ %) ) (4.31)

a formula credited to Heron, a Greek engineer and architect who lived sometime between
100 B.C. and A.D. 100.

Suppose we wish to compute v/13= 3.6055513and start with xg = 5. The first iteration gives
X1 = 3.8, Xo = 3.6105263 x3 = 3.6055547and x4 = 3.6055513 With just four iterations and a not
too optimal choice of Xy we obtain the exact root to a precision of 8 digits. The above equation,
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together with range reduction, is used in the intrisic computational function which computes
square roots.

Newton’s method can be generalized to systems of several non-linear equations and vari-
ables. Consider the case with two equations

f1(x1,x2) =0
5 4.32
fa(x1,x2) =0 (*-32)
which we Taylor expand to obtain
0= fi(xg+hy,xo+hp) = f1(x1,X2) + df1/0x1 +hpd /% + ... (4.33)

0= fz(X1+h1,X2+h2) = fz(Xl,Xz)+h15f2/5X1+h25f2/5X2+...'

Defining the Jacobian matrix J we have

J_ (9f1/dx1 (9f1/0X2
J= (0f2/0x1 0f2/0x2) ' (4.34)

we can rephrase Newton’s method as

A _ (), (e
(4+)-CE)+ () (439

MY o F104.0)
(@)‘ ) (au&@>' (4.36)

We need thus to compute the inverse of the Jacobian matrix and it is to understand that
difficulties may arise in case Jis nearly singular.

It is rather straightforward to extend the above scheme to systems of more than two non-
linear equations.

The code for Newton-Raphson’s method can look like this

where we have defined

/*

*x This function

*x calculates a root between x1 and x2 of a function pointed to
*x by (xfuncd) using the Newton-Raphson method. The user-defined
*x function funcd() returns both the function value and its first
*x derivative at the point X,

**x The root is returned with an accuracy of +- xacc.

*/

double newtonraphson(void (xfuncd)(double, double %, double x), double x1, double x2,
double xacc)

{
int i
double df, dx, f, rtn;

rtn = 0.5 x (x1 + x2); // initial guess
for(j = 0; j < max_iterations; j++) {
(xfuncd) (rtn, &f, &df);
dx = f/df;
rtn -= dx;
if((x1 - rtn) * (rtn - x2) < 0.0) {
cout << "\n\nError in function newtonraphson:" << endl ;
cout << "Jump out of interval bracket" << endl;
}

if (fabs(dx) < xacc) return rtn;
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cout << "Error in function newtonraphson:" << endl;
cout << "Too many iterations!" << endl;

}

// End: function newtonraphson

We transfer again the lower and upper limit of the interval where we seek the solution, [Xg,X2]
and the variable xacc. Firthermore, it transfers a pointer to the name of the given function
through double (*func) (double).

4.5 The Secant Method

For functions that are smooth near a root, the methods known respectively as false position
(or regula falsi) and secant method generally converge faster than bisection but slower than
Newton-Raphson. In both of these methods the function is assumed to be approximately linear
in the local region of interest, and the next improvement in the root is taken as the point
where the approximating line crosses the axis.

The algorithm for obtaining the solution for the secant method is rather simple. We start
with the definition of the derivative

f(Xn) — f(Xn-1)

' (Xn) =
() Xn — Xn-1

and combine it with the iterative expression of Newton-Raphson’s

f(%n)
Xni1=Xn— f,(xr;),
to obtain
Xn— Xn-1
Xnt1=Xn— F(Xn) m , (4.37)

which we rewrite to
f(Xn)Xn—1— f(Xn—1)%n

f(%n) — f(Xn-1)
This is the secant formula, implying that we are drawing a straight line from the point
(Xn—1, f(Xn—1)) to (Xn, f(Xn)). Where it crosses the x — axis we have the new point Xp;1. This
is illustrated in Fig. [4.3]

In the numerical implementation found in the program library, the quantities Xn—1,Xn, Xn+1
are changed to a, b and c respectively, i.e., we determine ¢ by the point where a straight line
from the point (a, f(a)) to (b, f(b)) crosses the x— axis that is

Xi1 = (4.38)

f(b)a— f(a)b
C=———F"—F—. 4.39
b (@ (®:39
We then see clearly the difference between the bisection method and the secant method. The
convergence criterion for the secant method is

|ent1| ~ Alen|?, (4.40)

with o ~ 1.62. The convergence is better than linear, but not as good as Newton-Raphson’s
method which converges quadratically.

While the secant method formally converges faster than bisection, one finds in practice
pathological functions for which bisection converges more rapidly. These can be choppy, dis-
continuous functions, or even smooth functions if the second derivative changes sharply near
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100

50

f(E) [MeV]0

-50

-100

E| [MeV]

Fig. 4.3 Plot of f(E) Eq. (£.8) as function of energy |E|. The point c is determined by where the straight line
from (a, f(a)) to (b, f (b)) crosses the x— axis

the root. Bisection always halves the interval, while the secant method can sometimes spend
many cycles slowly pulling distant bounds closer to a root. We illustrate the weakness of this
method in Fig. [£.4lwhere we show the results of the first three iterations, i.e., the first point
is ¢ = X3, the next iteration gives ¢ = Xp while the third iterations ends with ¢ = x3. We may
risk that one of the endpoints is kept fixed while the other one only slowly converges to the
desired solution.

f(xX)=25¢—x%/2-2 ——
120 - C=X{ - .-
C=Xo
100 L C:)Qg P A
80 -

Fig. 4.4 Plot of f(x) = 25¢* —x?/2 — 2. The various straight lines correspond to the determination of the point
c after each iteration. c is determined by where the straight line from (a, f(a)) to (b, f(b)) crosses the x— axis
Here we have chosen three values for c, X1, Xo and X3 which refer to the first, second and third iterations
respectively.
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The search for the solution s proceeds in much of the same fashion as for the bisection
method, namely after each iteration one of the previous boundary points is discarded in favor
of the latest estimate of the root. A variation of the secant method is the so-called false
position method (regula falsi from Latin) where the interval [a,b] is chosen so that f(a)f(b) <
0, else there is no solution. This is rather similar to the bisection method. Another possibility
is to determine the starting point for the iterative search using three points (a, f(a)), (b, f(b))
and (c, f(c)). One can thenuse Lagrange’s interpolation formula for a polynomial, see the
discussion in the previous chapter.

4.5.1 Broyden’s Method

Broyden’s method is a quasi-Newton method for the numerical solution of nonlinear equations
in k variables.

Newton’s method for solving the equation f(x) = 0 uses the Jacobian matrix and deter-
minant J, at every iteration. However, computing the Jacobian is a difficult and expensive
operation. The idea behind Broyden’s method is to compute the whole Jacobian only at the
first iteration, and to do a so-called rank-one update at the other iterations.

The method is a generalization of the secant method to multiple dimensions. The secant
method replaces the first derivative f’(xn) with the finite difference approximation

fxn) = f(*n-1)

f'(%n)  ————=
O0) Xn—Xn—1
and proceeds using Newton’s method
1
Xn+1 = Xn— 57— f(Xn).
+ /(%)

Broyden gives a generalization of this formula to a system of equations F(x) = O, replacing
the derivative f’ with the Jacobian J. The Jacobian is determined using the secant equation
(using the finite difference approximation):

In- (% = Xn-1) = F (%) = F (Xn-1).

However this equation is underdetermined in more than one dimension. Broyden suggested
using the current estimate of the Jacobian J,_1 and improving upon it by taking the solution to
the secant equation that is a minimal modification to J,_1 (minimal in the sense of minimizing
the Frobenius norm ||Jy— Jy-1||r))

A Fn - JnflA Xn

Ax!
[ A%n]|2 "

Jh=Jdh-1+

and then apply Newton’s method
XrH,]_ = Xn - \]rTlF (Xn)

In the formula above X, = (x1[n],...,X[n]) and Fn(X) = (f1(X¢[N], ..., %[N]); .., fc(Xa[n], ..., %[n])) are
vector-columns with k elements for a system with k dimensions. We obtain then

xl[n] —xl[n— 1] fl(xl[n], ...,xk[n]) — fl(xl[n— 1],...,xk[n— 1])
AXp = and AR, =
Xk[N] — X [n— 1] fu(xa[n],...,x[n]) — fk(xa[n—1],...,x[n—1))
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Broyden also suggested using the Sherman-Morrison formula to update directly the inverse
of the Jacobian
Axn— 3, LA,

St=30+ 2
noo AT L AR,

T -1
(Ax%3 3, 7)
This method is commonly known as the "good Broyden’s method". Many other quasi-Newton
schemes have been suggested in optimization, where one seeks a maximum or minimum by
finding the root of the first derivative (gradient in multi dimensions). The Jacobian of the
gradient is called Hessian and is symmetric, adding further constraints to its upgrade.

4.6 Exercises

4.1. Write a code which implements the bisection method, Newton-Raphson’s method and
the secant method.
Find the positive roots of
X% — 4xsinx + (2sinx)? = 0,

using these three methods and compare the achieved accuracy number of iterations needed
to find the solution. Give a critical discussion of the methods.

4.2. Make thereafter a class which includes the above three methods and test this class
against selected problems.

4.3. We are going to study the solution of the Schrodinger equation (SE) for a system with a
neutron and proton (the deuteron) moving in a simple box potential.

We begin our discussion of the SE with the neutron-proton (deuteron) system with a box
potential V(r). We define the radial part of the wave function R(r) and introduce the definition
u(r) =rR(R) The radial part of the SE for two particles in their center-of-mass system and with
orbital momentum | = 0 is then

h? d2u(r)
T ane +V(r)u(r) = Eu(r),
with
Mp+ My’

where mp and my, are the masses of the proton and neutron, respectively. We use here m= 938
MeV. Our potential is defined as

—\W0<r<a
V(r)_{ 0 r>a

Bound states correspond to negative energy E and scattering states are given by positive
energies. The SE takes the form (without specifying the sign of E)

d?u(r) m
T(Z)‘Fﬁ(Vo-FE)U(r):O r<a,
and &2 0
u(r m
W—FﬁEU(I’)—O r>a.

We are now going to search for eventual bound states, i.e., E < 0. The deuteron has only one
bound state at energy E = —2.223MeV. Discuss the boundary conditions on the wave function
and use these to show that the solution to the SE is



4.6 Exercises 107
u(r) = Asin(kr) r<a,

and
u(r) = Bexp(—pr) r>a,

where A and B are constants. We have also defined

k= /m(Vo— [EN)/R,

and
B = /mE|/R

Show then, using the continuity requirement on the wave function that at r =ayou obtain the
transcendental equation
kcot(ka) = — 3. (4.41)

Insert values of Vj = 60MeV and a=145fm (1 fm = 1071® m) and make a plot plotting
programs) of Eq. (£.47) as function of energy E in order to find eventual eigenvalues. See if
these values result in a bound state for E.

When you have localized on your plot the point(s) where Eq. (4.41) is satisfied, obtain a
numerical value for E using the class you programmed in the previous exercise, including the
Newton-Raphson’s method, the bisection method and the secant method. Make an analysis
of these three methods and discuss how many iterations are needed to find a stable solution.

What is smallest possible value of Vg which gives a bound state?






Chapter 5
Numerical Integration

Abstract In this chapter we discuss some of the classical methods for integrating a func-
tion. The methods we discuss are the trapezoidal, rectangular and Simpson’s rule for equally
spaced abscissas and integration approaches based on Gaussian quadrature. The latter are
more suitable for the case where the abscissas are not equally spaced. The emphasis is on
methods for evaluating few-dimensional (typically up to four dimensions) integrals. In chapter
[Tl we show how Monte Carlo methods can be used to compute multi-dimensional integrals.
We discuss also how to compute singular integrals. We end this chapter with an extensive dis-
cussion on MPI and parallel computing. The examples focus on parallelization of algorithms
for computing integrals.

5.1 Newton-Cotes Quadrature

The integral
b
|=/ f(x)dx (5.1)
a

has a very simple meaning. If we consider Fig. the integral | simply represents the area
enscribed by the function f(x) starting from x = a and ending at x=b. Two main methods will
be discussed below, the first one being based on equal (or allowing for slight modifications)
steps and the other on more adaptive steps, namely so-called Gaussian quadrature methods.
Both main methods encompass a plethora of approximations and only some of them will be
discussed here.

In considering equal step methods, our basic approach is that of approximating a function
f(x) with a polynomial of at most degree N — 1, given N integration points. If our polynomial
is of degree 1, the function will be approximated with f(x) ~ ap+ aix. The algorithm for these
integration methods is rather simple, and the number of approximations perhaps unlimited!
* Choose a step size
b—a
N

where N is the number of steps and a and b the lower and upper limits of integration.
* With a given step length we rewrite the integral as

h:

b -a+h -a+2h b
/af(x)dx:/ f(x)dx-+ Fdx+... [ fxdx

a a+h b—h

109
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Y

a a+h a+2h a+3h b X

Fig. 5.1 The area enscribed by the function f(x) starting from x=ato x=Db. It is subdivided in several smaller
areas whose evaluation is to be approximated by the techniques discussed in the text. The areas under the
curve can for example be approximated by rectangular boxes or trapezoids.

» The strategy then is to find a reliable polynomial approximation for f(x) in the various
intervals. Choosing a given approximation for f(x), we obtain a specific approximation to
the integral.

+ With this approximation to f(X) we perform the integration by computing the integrals over
all subintervals.

Such a small measure may seemingly allow for the derivation of various integrals. To see this,
we rewrite the integral as

b a+2h a+4h b
/ f(x)dx:/ F(x)dx+ f(x)dx+.../ F(x)dx
a a a+2h b—2h

One possible strategy then is to find a reliable polynomial expansion for f(x) in the smaller
subintervals. Consider for example evaluating

~a+2h
/ F(x)dx,
a
which we rewrite as
a+2h Xo+h
/ f(x)dx= / f(x)dx (5.2)
a Xo—h

We have chosen a midpoint Xy and have defined Xy = a+ h. Using Lagrange’s interpolation
formula from Eq. (3.9), an equation we restate here,
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N _
—izjgxxi_xx‘;yi,

we could attempt to approximate the function f(x) with a first-order polynomial in X in the
two sub-intervals X € [Xxg—h,Xo] and X € [Xg,Xo+ h]. A first order polynomial means simply that
we have for say the interval X € [Xg,Xp + N]

X=X fixg+h)+ X= (%+h)

f00 ~ P = X0 — (Xo+h)

f(xo0),

and for the interval X € [xg— h, Xg]

~ _ x=(0=h X—Xo
f(x) = PL(x) = mf(xo)+mf(xo—h)-

Having performed this subdivision and polynomial approximation, one from xg —h to xg and
the other from Xg to Xg+h,

-a+2h X0 Xo+h
/ F(x)dx— f(x)dx+/ F(x)dx
Ja Jxo—h Xo

we can easily calculate for example the second integral as

Xo+h Xo+h _ Xx— (xo+h) )
dx~ f +h)+————=f1 d
/ / < X0+h (o) Xo— (Xo+h) o) ) e
which can be simplified to

/xﬁh f(x)dx~ /X:“h (X_XO f(xo+h)— wf(m)) dx

% h

resulting in

Xo+h h
[ 100d= 5 (100 h)+ 100) +O(F).

Here we added the error made in approximating our integral with a polynomial of degree 1.
The other integral gives

X0 h 3
[ 1x)dx=3 (1(x0) + (10~ )+ O(K®)
and adding up we obtain

+h
/Xox°h f(x)dx= 2(f(x0+h)+2f(xo)+ f(xo—h)) +0(h?), (5.3)
which is the well-known trapezoidal rule. Concerning the error in the approximation made,
O(h®) = O((b—a)3/N3), you should note the following. This is the local error! Since we are
splitting the integral from a to b in N pieces, we will have to perform approximately N such
operations. This means that the global error goes like ~ O(h?). To see that, we use the trape-
zoidal rule to compute the integral of Eq. (5.1)),

| — /‘bf(x)dX: h(f(a)/2+ f(a+h)+ f(a+2h)+---+ f(b—h) + fp/2), (5.4)

with a global error which goes like O(h?).
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Hereafter we use the shorthand notations f_,, = f(xo—h), fo = f(xg) and fn = f(xo+h). The
correct mathematical expression for the local error for the trapezoidal rule is

h3

_—§®
12()

/:’ f(x)dx— b;za[f(a) + (b)) =

and the global error reads

[ 10ax- (1) = -2 @),

where T, is the trapezoidal result and ¢ € [a,b].
The trapezoidal rule is easy to implement numerically through the following simple algo-
rithm

¢ Choose the number of mesh points and fix the step.

 calculate f(a) and f(b) and multiply with h/2

» Perform a loop over n=1to n—1 (f(a) and f(b) are known) and sum up the terms
f(a+h)+ f(a+2h)+ f(a+3h)+---+ f(b—h). Each step in the loop corresponds to a
given value a+ nh.

» Multiply the final result by h and add hf(a)/2 and hf(b)/2.

A simple function which implements this algorithm is as follows

http://folk.uio.no/mhjensen/compphys/programs/chapter05/cpp/trapezoidal.cpp

double trapezoidal_rule(double a, double b, int n, double (*func)(double))
{
double trapez_sum;
double fa, fb, x, step;
int j;
step=(b-a)/((double) n);
fa=(xfunc)(a)/2. ;
fb=(xfunc) (b)/2. ;
TrapezSum=0. ;
for (j=1; j <= n-1; j++){
x=j*step+a;
trapez_sum+=(xfunc) (x);
}
trapez_sum=(trapez_um+fb+fa)*step;
return trapez_sum;
} // end trapezoidal_rule

The function returns a new value for the specific integral through the variable trapez_sum.
There is one new feature to note here, namely the transfer of a user defined function called
func in the definition

void trapezoidal_rule(double a, double b, int n, double xtrapez_sum,
double (xfunc)(double) )

What happens here is that we are transferring a pointer to the name of a user defined func-
tion, which has as input a double precision variable and returns a double precision number.
The function trapezoidal rule is called as

trapezoidal_rule(a, b, n, &yFunction )
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in the calling function. We note that a, b and n are called by value, while trapez_sum and
the user defined function MyFunction are called by reference.

The name trapezoidal rule follows from the simple fact that it has a simple geometrical
interpretation, it corresponds namely to summing up a series of trapezoids, which are the
approximations to the area below the curve f(x).

Another very simple approach is the so-called midpoint or rectangle method. In this case
the integration area is split in a given number of rectangles with length h and height given
by the mid-point value of the function. This gives the following simple rule for approximating
an integral

b N
| = /a f(Rax=hy 0x172) (5.5)

where f(X_1/>) is the midpoint value of f for a given rectangle. We will discuss its truncation
error below. It is easy to implement this algorithm, as shown here

http://folk.uio.no/mhjensen/compphys/programs/chapter®5/cpp/rectangle.cpp

double rectangle_rule(double a, double b, int n, double (xfunc)(double))
{
double rectangle_sum;
double fa, fb, x, step;
int j;
step=(b-a)/((double) n);
rectangle_sum=0.;
for (j = 0; j <=n; j++){
X = (j+0.5)*step+; // midpoint of a given rectangle
rectangle_sum+=(*xfunc) (x); // add value of function.
}
rectangle_sum *= step; // multiply with step length.
return rectangle_sum;
} // end rectangle_rule

The correct mathematical expression for the local error for the rectangular rule Ri(h) for

element i is
" 0 R(h) = h3f<2>5
[ 10ax=R() =~ 12 (&)

and the global error reads

[ 0 Ru() = 2 Brerg),

where Ry is the result obtained with rectangular rule and & € [a,b).

Instead of using the above first-order polynomials approximations for f, we attempt at
using a second-order polynomials. In this case we need three points in order to define a
second-order polynomial approximation

f(X) ~ Po(x) = ag + arx+aC.
Using again Lagrange’s interpolation formula we have

_ (X=x0)(x=x1) (X—X0) (X —X2) (X—X1)(X—X2)
P = G mx) e =) 2 a0 =20 ™t T o —x) (0%

Inserting this formula in the integral of Eq. (5.2) we obtain

)yo-

—+h h .
/h f(X)dx= 3 (fo-+4fo+ ) +O(),
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which is Simpson’s rule. Note that the improved accuracy in the evaluation of the deriva-
tives gives a better error approximation, O(h®) vs. O(h®) . But this is again the local error
approximation. Using Simpson’s rule we can easily compute the integral of Eq. (5.1) to be

|:/hHde:g(Nm+4ﬂa+m+zwa+2m+~~+4ﬂb—m+¢wv (5.6)

with a global error which goes like O(h4). More formal expressions for the local and global
errors are for the local error

Abmmdx—E%f{m@+4f«a+byzy+mbnz—g%ﬂ®gy

and for the global error
b b—a, ,
_ — " A4
| 100x=8(1) = =221 9E),
with & € [a,b] and S, the results obtained with Simpson’s method. The method can easily be
implemented numerically through the following simple algorithm

* Choose the number of mesh points and fix the step.

 calculate f(a) and f(b)

» Perform a loop over n=1to n—1 (f(a) and f(b) are known) and sum up the terms
4f(a+h) +2f(a+2h) +4f(a+3h) +---+4f(b—h). Each step in the loop corresponds
to a given value a+ nh. Odd values of n give 4 as factor while even values yield 2 as
factor.

e Multiply the final result by g

In more general terms, what we have done here is to approximate a given function f(x) with
a polynomial of a certain degree. One can show that given n+ 1 distinct points Xg, ..., X, € [@,b]
and n+ 1 values Yo,...,Yn there exists a unique polynomial Py(x) with the property

Pixj))=y; j=0,...,n

In the Lagrange representation discussed in chapter[3] this interpolating polynomial is given

by
n
Pn = %Ikyka
K=

with the Lagrange factors

o kX

i Zk
see for example the text of Kress [24]] or Burlich and Stoer [25] for details. If we for example
set n=1, we obtain
X—X1 X=X Y1—Yo_, Y1Xo+YoXi
Pi(X) = Yo +¥y1 = X—
) yXo—Xl yX1—Xo X1—Xo X1—Xo

which we recognize as the equation for a straight line.
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The polynomial interpolatory quadrature of order n with equidistant quadrature points
Xx = a+kh and step h= (b—a)/n is called the Newton-Cotes quadrature formula of order n.
General expressions can be found in for example Refs. [24]25]].

5.2 Adaptive Integration

Before we proceed with more advanced methods like Gaussian quadrature, we mention
breefly how an adaptive integration method can be implemented.

The above methods are all based on a defined step length, normally provided by the user,
dividing the integration domain with a fixed number of subintervals. This is rather simple
to implement may be inefficient, in particular if the integrand varies considerably in certain
areas of the integration domain. In these areas the number of fixed integration points may
not be adequate. In other regions, the integrand may vary slowly and fewer integration points
may be needed.

In order to account for such features, it may be convenient to first study the properties
of integrand, via for example a plot of the function to integrate. If this function oscillates
largely in some specific domain we may then opt for adding more integration points to that
particular domain. However, this procedure needs to be repeated for every new integrand
and lacks obviously the advantages of a more generic code.

The algorithm we present here is based on a recursive procedure and allows us to automate
an adaptive domain. The procedure is very simple to implement.

Assume that we want to compute an integral using say the trapezoidal rule. We limit our-
selves to a one-dimensional integral. Our integration domain is defined by x € [a,b]. The algo-
rithm goes as follows

* We compute our first approximation by computing the integral for the full domain. We label
this as |9, It is obtained by calling our previously discussed function trapezoidal_rule as

‘IO = trapezoidal_rule(a, b, n, function); '

* Inthe next step we split the integration in two, with ¢ = (a+b)/2. We compute then the two
integrals 1Y) and |(*R)

‘IlL = trapezoidal_rule(a, ¢, n, function); [

and

‘IlR = trapezoidal_rule(c, b, n, function); [

With a given defined tolerance, being a small number provided by us, we estimate the
difference |11 +1(1R) _1(0)| < tolerance If this test is satisfied, our first approximation is
satisfactory.

» If not, we can set up a recursive procedure where the integral is split into subsequent
subintervals until our tolerance is satisfied.

This recursive procedure can be easily implemented via the following function

// Simple recursive function that implements the

// adaptive integration using the trapezoidal rule

// It is convenient to define as global variables

// the tolerance and the number of recursive steps

const int maxrecursions = 50;

const double tolerance = 1.0E-10;

// Takes as input the integration limits, number of points, function to integrate
// and the number of steps
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void adaptive_integration(double a, double b, double xIntegral, int n, int steps, double
(*xfunc) (double))
if ( steps > maxrecursions){
cout << 'Too many recursive steps, the function varies too much' << endl;
break;
}
double ¢ = (a+b)*0.5;
// the whole integral
double IO = trapezoidal_rule(a, b,n, func);
// the left half
double I1L = trapezoidal_rule(a, c,n, func);
// the right half
double I1R = trapezoidal_rule(c, b,n, func);
if (fabs(I1L+I1R-I0) < tolerance ) integral = I10;
else
{
adaptive_integration(a, c, integral, int n, ++steps, func)
adaptive_integration(c, b, integral, int n, ++steps, func)
}
}

// end function adaptive_integration

The variables integral and steps should be initialized to zero by the function that calls the
adaptive procedure.

5.3 Gaussian Quadrature

The methods we have presented hitherto are taylored to problems where the mesh points X;
are equidistantly spaced, X differing from X; 1 by the step h. These methods are well suited
to cases where the integrand may vary strongly over a certain region or if we integrate over
the solution of a differential equation.

If however our integrand varies only slowly over a large interval, then the methods we
have discussed may only slowly converge towards a chosen precisio. As an example,

I :/1bx2f(x)dx,

may converge very slowly to a given precision if b is large and/or f(x) varies slowly as function
of X at large values. One can obviously rewrite such an integral by changing variables tot=1/x
resulting in

|:/b1 f(t1)dt,

-1

which has a small integration range and hopefully the number of mesh points needed is not
that large.

However, there are cases where no trick may help and where the time expenditure in
evaluating an integral is of importance. For such cases we would like to recommend methods
based on Gaussian quadrature. Here one can catch at least two birds with a stone, namely,
increased precision and fewer integration points. But it is important that the integrand varies
smoothly over the interval, else we have to revert to splitting the interval into many small
subintervals and the gain achieved may be lost.

The basic idea behind all integration methods is to approximate the integral

! You could e.g., impose that the integral should not change as function of increasing mesh points beyond the
sixth digit.
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| = /ab f(x)dx~ im f(xi),

where w and X are the weights and the chosen mesh points, respectively. In our previous
discussion, these mesh points were fixed at the beginning, by choosing a given number of
points N. The weigths w resulted then from the integration method we applied. Simpson’s
rule, see Eq. would give

w:{h/3,4h/3,2h/3,4h/3,...,4h/3,h/3},
for the weights, while the trapezoidal rule resulted in
w:{h/2,h,h,....,h;h/2}.

In general, an integration formula which is based on a Taylor series using N points, will
integrate exactly a polynomial P of degree N — 1. That is, the N weights w, can be chosen to
satisfy N linear equations, see chapter 3 of Ref. [3]. A greater precision for a given amount
of numerical work can be achieved if we are willing to give up the requirement of equally
spaced integration points. In Gaussian quadrature (hereafter GQ), both the mesh points and
the weights are to be determined. The points will not be equally spacecﬂ The theory behind
GQ is to obtain an arbitrary weight w through the use of so-called orthogonal polynomials.
These polynomials are orthogonal in some interval say e.g., [-1,1]. Our points X are chosen in
some optimal sense subject only to the constraint that they should lie in this interval. Together
with the weights we have then 2N (N the number of points) parameters at our disposal.

Even though the integrand is not smooth, we could render it smooth by extracting from it
the weight function of an orthogonal polynomial, i.e., we are rewriting

N
| — /ab f(x)dx— /abW(x)g(x)dxz 3 @(x). (5.7)

where g is smooth and W is the weight function, which is to be associated with a given
orthogonal polynomial. Note that with a given weight function we end up evaluating the
integrand for the function g(x;).

The weight function W is non-negative in the integration interval x € [a,b] such that for
any n> 0, the integral fa? [x|"W (x)dx is integrable. The naming weight function arises from the
fact that it may be used to give more emphasis to one part of the interval than another. A
quadrature formula

N
/abW(x)f(x)dxz_me(xi), (5.8)

with N distinct quadrature points (mesh points) is a called a Gaussian quadrature formula if
it integrates all polynomials p € P,n_1 exactly, that is

b N
[, woptox= 3 apix) (5.9
i=
It is assumed that W(X) is continuous and positive and that the integral

/; "Wx)dx

2 Typically, most points will be located near the origin, while few points are needed for large x values since
the integrand is supposed to vary smoothly there. See below for an example.
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exists. Note that the replacement of f — Wgis normally a better approximation due to the
fact that we may isolate possible singularities of W and its derivatives at the endpoints of the
interval.

The quadrature weights or just weights (not to be confused with the weight function) are
positive and the sequence of Gaussian quadrature formulae is convergent if the sequence Qy

of quadrature formulae
b

Qu(f) =+ Q(f) = [ 1(xdx

a

in the limit N — . Then we say that the sequence

if there exits a constant C such that N
lea%(”)l <c,
i=

for all N which are natural numbers.
The error for the Gaussian quadrature formulae of order N is given by

b N 2N b
[ oot 3 w0 = it [ Wooiaooax

k=1

where gy is the chosen orthogonal polynomial and £ is a number in the interval [a,b]. We
have assumed that f € CN [a,b], viz. the space of all real or complex 2N times continuously
differentiable functions.

In science there are several important orthogonal polynomials which arise from the solu-
tion of differential equations. Well-known examples are the Legendre, Hermite, Laguerre and
Chebyshev polynomials. They have the following weight functions

Weight function Interval Polynomial
W(x)=1 xe€[-1,1 Legendre

W(x) = e _o<x<o Hermite
W(x)=x9e* 0<x<ow Laguerre

W(x) =1/(vV1—x%) —1<x<1 Chebyshev

The importance of the use of orthogonal polynomials in the evaluation of integrals can be
summarized as follows.

* As stated above, methods based on Taylor series using N points will integrate exactly a
polynomial P of degree N — 1. If a function f(X) can be approximated with a polynomial of
degree N—1

f (%) = P-1(),

with N mesh points we should be able to integrate exactly the polynomial Py_;.

* Gaussian quadrature methods promise more than this. We can get a better polynomial
approximation with order greater than N to f(x) and still get away with only N mesh points.
More precisely, we approximate

f(X) ~ PZNfl(X),

and with only N mesh points these methods promise that
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[ 109dx= [ Pav-a(x)dx— N;l Pov-1(x) 0,

The reason why we can represent a function f(x) with a polynomial of degree 2N — 1 is due
to the fact that we have 2N equations, N for the mesh points and N for the weights.

The mesh points are the zeros of the chosen orthogonal polynomial of order N, and the
weights are determined from the inverse of a matrix. An orthogonal polynomials of degree N
defined in an interval [a,b] has precisely N distinct zeros on the open interval (a,b).

Before we detail how to obtain mesh points and weights with orthogonal polynomials, let
us revisit some features of orthogonal polynomials by specializing to Legendre polynomials.
In the text below, we reserve hereafter the labelling Ly for a Legendre polynomial of order N,
while Py is an arbitrary polynomial of order N. These polynomials form then the basis for the
Gauss-Legendre method.

5.3.1 Orthogonal polynomials, Legendre

The Legendre polynomials are the solutions of an important differential equation in Science,
namely

C(1-x*)P—n¥P+ (1—x2)%( <(1—x2)3—';> =0.

Here C is a constant. For m = 0 we obtain the Legendre polynomials as solutions, whereas
m # 0 yields the so-called associated Legendre polynomials. This differential equation arises
in for example the solution of the angular dependence of Schrodinger’s equation with spher-
ically symmetric potentials such as the Coulomb potential.

The corresponding polynomials P are

_ 1 ¢
~ 2K A

which, up to a factor, are the Legendre polynomials Lx. The latter fulfil the orthogonality
relation

L (X) (X% — 1)k k=0,1,2,...,

/71"‘ (L (X)dx= 5 8. (5.10)
and the recursion relation
(J4+1)Ljr2(x) + jLj—1(x) — (2] + 1)xLj(x) = 0. (5.11)

It is common to choose the normalization condition
Ln(1) =1

With these equations we can determine a Legendre polynomial of arbitrary order with input
polynomials of order N—1and N — 2.
As an example, consider the determination of Ly, L; and L,. We have that

Lo(X) =C,
with ¢ a constant. Using the normalization equation Lo(1) = 1 we get that

Lo (X) =1
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For L;(x) we have the general expression
L1(x) =a+bx,

and using the orthogonality relation

/11Lo(x>L1<x>dx= 0,
we obtain a= 0 and with the condition L;(1) = 1, we obtain b= 1, yielding
L1(x) = x.
We can proceed in a similar fashion in order to determine the coefficients of L,
La2(X) = a+bx+c@,

using the orthogonality relations

/711 Lo(X)La(x)dx = 0,

and 1
[ LaLz0odx=0.
-1
and the condition Ly(1) = 1 we would get

La(x) = % (3x*—1). (5.12)

We note that we have three equations to determine the three coefficients a, b and c.
Alternatively, we could have employed the recursion relation of Eq. (5.11), resulting in

2L5(x) = 3xLa(X) — Lo,

which leads to Eq. (5.12).

The orthogonality relation above is important in our discussion on how to obtain the
weights and mesh points. Suppose we have an arbitrary polynomial Qy_; of order N—1and a
Legendre polynomial Ly(X) of order N. We could represent Qn_1 by the Legendre polynomials
through

N-1
Qn-1(%) = > akkk(x), (5.13)
&o

where Qi’s are constants.
Using the orthogonality relation of Eq. (5.10) we see that

1 N-1 .1
'/71LN(X)QN,1(x)dx: > /71LN(x)akLk(x)dx: 0. (5.14)

We will use this result in our construction of mesh points and weights in the next subsection.
In summary, the first few Legendre polynomials are
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La(x) = (5~ 3¢)/2,

and
La(x) = (35¢* —30x2+3)/8.

The following simple function implements the above recursion relation of Eq. (5.11). for com-
puting Legendre polynomials of order N.

// This function computes the Legendre polynomial of degree N

double Legendre( int n, double x)
{
double r, s, t;
int m;
r=0; s=1.;
// Use recursion relation to generate pl and p2
for (m=0; m < n; m++ )
{
t=r;, r=s,;
s = (2«m+1)*xxxr - mxt;
s /= (m+l);
} // end of do loop
return s;
} // end of function Legendre

The variable srepresents Lj;1(x), while r holds Lj(x) and t the value Lj_1(X).

5.3.2 Integration points and weights with orthogonal polynomials

To understand how the weights and the mesh points are generated, we define first a polyno-
mial of degree 2N — 1 (since we have 2N variables at hand, the mesh points and weights for N
points). This polynomial can be represented through polynomial division by

Pon—1(X) = Ln(X)Pu—1(X) + Qn-1(X),

where Py_1(X) and Qn-_1(X) are some polynomials of degree N — 1 or less. The function Ly(X)
is a Legendre polynomial of order N.

Recall that we wanted to approximate an arbitrary function f(x) with a polynomial Poy_1 in
order to evaluate

1 1
/ F(x)dx ~ / Pon_1(X)dX.
-1 -1
We can use Eq. (5.14) to rewrite the above integral as
1 1 1
[ Pens00ax= [ (LuGORY-200 + Qu-a(9)dx= [ Qu-a(dx
due to the orthogonality properties of the Legendre polynomials. We see that it suffices to

evaluate the integral over [ El Qn-1(X)dxin order to evaluate [ El Pon-1(X)dx In addition, at the
points xx where Ly is zero, we have

Pon—1(Xc) = Qn—1(X«) k=0,1,...,N—1,

and we see that through these N points we can fully define Qy_1(X) and thereby the integral.
Note that we have chosen to let the numbering of the points run from 0 to N — 1. The reason
for this choice is that we wish to have the same numbering as the order of a polynomial of
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degree N — 1. This numbering will be useful below when we introduce the matrix elements
which define the integration weights w;.
We develope then Qy-1(X) in terms of Legendre polynomials, as done in Eq. (5.13),

N-1

On_1(X) = ZJ aiLi(x). (5.15)

Using the orthogonality property of the Legendre polynomials we have

1 N-1 1
/71QN,1(x)dx: i; a /71L0(X)Li (x)dx = 2a0o,

where we have just inserted Lo(x) = 1! Instead of an integration problem we need now to
define the coefficient dp. Since we know the values of Qy_1 at the zeros of Ly, we may rewrite

Eq. (5.19) as

N-1 N-1

_ = ol = ol k=0,1,...,N—1. 5.16
On-1(Xk) i; iLi (%) iZO iLik ( )

Since the Legendre polynomials are linearly independent of each other, none of the columns
in the matrix Ly are linear combinations of the others. This means that the matrix Lj; has an
inverse with the properties

L2 =T,
Multiplying both sides of Eq. (5.16) with Zz'\‘;ol LJTi1 results in

N-1
Z}(Lil)kiQN—l(Xi) = 0. (5.17)
i=
We can derive this result in an alternative way by defining the vectors
Xo Qo
X1 ai
f(k = a = s
XN-1 aN-1
and the matrix
Lo(x) Li(X) ... Ln-1(Xo)
|: _ Lo(Xl) L1(X1) . LN,1(X1)

We have then
yielding (if L has an inverse)

which is Eq. (5.17).
Using the above results and the fact that

1 1
/ Pon—1(X)dx = / Qn-1(x)dx,
1 1

we get
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/PZNl x)dx= /QNl x)dx = 20!0—ZZJ HoiPan-1(%).

If we identify the weights with 2(L~%)g;, where the points X are the zeros of Ly, we have an
integration formula of the type

1 N-—1
'/71 Pon—1(X)dx = i; WPon-1(X)

and if our function f(X) can be approximated by a polynomial P of degree 2N — 1, we have

finally that
-1 -1 N-1
/ f(x)dx:z/ Pov 1(X0X= 5 P 1(%)
-1 Ja £

In summary, the mesh points X; are defined by the zeros of an orthogonal polynomial of degree
N, that is Ly, while the weights are given by 2(L™1)g;.

5.3.3 Application to the case N =2

Let us apply the above formal results to the case N = 2. This means that we can approximate
a function f(x) with a polynomial P3(X) of order 2N —1 = 3.

The mesh points are the zeros of Ly(x) = 1/2(3x? — 1). These points are Xy = —1/+/3 and
X1 = 1/\/§

Specializing Eq.

N-1
QNfl(Xk):_%C!iLi(Xk) k=0,1,...,N—1.

to N = 2 yields

Q1(x) =ap— 01%,

and

Qu(x1) = a0+ al%,

since Lo(x=+1/v/3) = 1land L1(x=+1/v3) = +1//3.
The matrix Ly defined in Eq. is then

with an inverse given by

[1oV3 ( 7 f@)
2 11
The weights are given by the matrix elements 2(L0k)’1. We have thence wp=1and w; = 1.
Obviously, there is no problem in changing the numbering of the matrix elements i,k =
0,1,2,...,N—1toi,k=1,2,...,N. We have chosen to start from zero, since we deal with poly-
nomials of degree N — 1.
Summarizing, for Legendre polynomials with N = 2 we have weights

w:{1,1},
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and mesh points

X {_i i}
V33
If we wish to integrate
/1 F(x)dx,
-1

with f(x) = X%, we approximate

1o R
I:/xdxz wx .
-1 i;) %

The exact answer is 2/3. Using N = 2 with the above two weights and mesh points we get

1 ! 1.1 2
= [ XPdx= F=s4Z=12
./71)( X=3 Wi =3+3 3

the exact answer!

If we were to emply the trapezoidal rule we would get

1 b—a 1-(-1
| = / XPdx= — (@)%+(b)?) /2= %) ((-1)2+(1)?) /2=1
J-1

With just two points we can calculate exactly the integral for a second-order polynomial since
our methods approximates the exact function with higher order polynomial. How many points
do you need with the trapezoidal rule in order to achieve a similar accuracy?

5.3.4 General integration intervals for Gauss-Legendre

Note that the Gauss-Legendre method is not limited to an interval [-1,1], since we can always

through a change of variable
b+a

t—tax
2 27

rewrite the integral for an interval [a,b]

b _b-a l _((b—a)x b+a
Af(t)dt_ . 1f( S+ )dx

/Om F(t)dt,

we can choose new mesh points and weights by using the mapping

If we have an integral on the form

. m
Ki :tan{z(1+xa)} ,
and
m W
4 cog (’Zr(l—i-xa)) ’
where X and ) are the original mesh points and weights in the interval [—1,1], while % and
@) are the new mesh points and weights for the interval [0, o).
To see that this is correct by inserting the the value of x; = —1 (the lower end of the interval

[—1,1]) into the expression for X. That gives % = 0, the lower end of the interval [0,). For
Xi = 1, we obtain X; = . To check that the new weights are correct, recall that the weights

m:
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should correspond to the derivative of the mesh points. Try to convince yourself that the
above expression fulfills this condition.

5.3.5 Other orthogonal polynomials

5.3.5.1 Laguerre polynomials

If we are able to rewrite our integral of Eq. (5.7) with a weight function W(x) = xYe* with
integration limits [0, ), we could then use the Laguerre polynomials. The polynomials form
then the basis for the Gauss-Laguerre method which can be applied to integrals of the form

| = / f(x)dx= / x?e *g(x)dx.
0 0
These polynomials arise from the solution of the differential equation

(dZ d A 10+1)

X x R )-ﬂx):ov

where | is an integer | > 0and A a constant. This equation arises for example from the solution
of the radial Schrodinger equation with a centrally symmetric potential such as the Coulomb
potential. The first few polynomials are

ZLo(X) = 2— X+ X,
Z3(X) = 6— 18x+ 9 —x°,

and
Za(x) =x* — 16 4 72 — 96x 4 24.

They fulfil the orthogonality relation
/ e Zh(x)2dx= 1,
0

and the recursion relation

(N+1)Zh1(X) = (2n+ 1 —X).Zh(X) — nZh-1(X).

5.3.5.2 Hermite polynomials

In a similar way, for an integral which goes like

I:lif(x)dx:lie’XZg(x)dx

we could use the Hermite polynomials in order to extract weights and mesh points. The
Hermite polynomials are the solutions of the following differential equation

d?H (x) dH(x)
e 2 dx

+(A—1)HX) =0.
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A typical example is again the solution of Schrodinger’s equation, but this time with a har-
monic oscillator potential. The first few polynomials are

Hi(x) = 2x,
Ho(x) = 4x% — 2,
Hs(x) = 8 — 12,

and
Ha(x) = 16x* — 48 4 12.

They fulfil the orthogonality relation

/ e X Hn(x)2dx= 2"n! /T,
and the recursion relation
Hn+1(X) = 2XHn(X) — 2nH,-1(X).

5.3.6 Applications to selected integrals

Before we proceed with some selected applications, it is important to keep in mind that since
the mesh points are not evenly distributed, a careful analysis of the behavior of the integrand
as function of X and the location of mesh points is mandatory. To give you an example, in
the Table below we show the mesh points and weights for the integration interval [0,100]
for N = 10 points obtained by the Gauss-Legendre method. Clearly, if your function oscillates

Table 5.1 Mesh points and weights for the integration interval [0,100] with N = 10 using the Gauss-Legendre
method.

i Xi @
1 1.305 3.334
2 6.747 7.473
3 16.030 10.954
4 28.330 13.463
5 42.556 14.776
6 57.444 14.776
7 71.670 13.463
8 83.970 10.954
9 93.253 7.473
10 98.695 3.334

strongly in any subinterval, this approach needs to be refined, either by choosing more points
or by choosing other integration methods. Note also that for integration intervals like for
example X € [0,»], the Gauss-Legendre method places more points at the beginning of the
integration interval. If your integrand varies slowly for large values of X, then this method
may be appropriate.

Let us here compare three methods for integrating, namely the trapezoidal rule, Simpson’s
method and the Gauss-Legendre approach. We choose two functions to integrate:
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/100 exp(—x)
1

X

3 1
—d
/o 24 %2 X

A program example which uses the trapezoidal rule, Simpson’s rule and the Gauss-Legendre
method is included here. For the corresponding Fortran program, replace programl.cpp with
program1.f90. The Python program is listed as programl1.py.

dx,

and

http://folk.uio.no/mhjensen/compphys/programs/chapter05/cpp/programl.cpp

#include <iostream>

#include "lib.h"

using namespace std;

// Here we define various functions called by the main program
// this function defines the function to integrate

double int_function(double x);

// Main function begins here

int main()
{
int n;
double a, b;
cout << "Read in the number of integration points" << endl;
cin >> n;

cout << "Read in integration limits" << endl;
cin >> a >> b;
// reserve space in memory for vectors containing the mesh points
// weights and function values for the use of the gauss-legendre
// method
double *x = new double [n];
double *w = new double [n];
// set up the mesh points and weights
gauss_legendre(a, b,x,w, n);
// evaluate the integral with the Gauss-Legendre method
// Note that we initialize the sum
double int_gauss = 0.;
for (int i = 0; i < n; i++){
int_gauss+=w[i]*int_function(x[i]);
}
// final output
cout << "Trapez-rule =
<< endl;
cout << "Simpson's rule =
<< endl;
cout << "Gaussian quad = " << int_gauss << endl;
delete [] x;
delete [] w;
return 0;
} // end of main program
// this function defines the function to integrate
double int_function(double x)
{
double value = 4./(1.+x*Xx);
return value;
} // end of function to evaluate

<< trapezoidal_rule(a, b,n, int_function)

<< simpson(a, b,n, int_function)

To be noted in this program is that we can transfer the name of a given function to integrate.
In Table we show the results for the first integral using various mesh points, while Table
displays the corresponding results obtained with the second integral. We note here that,
since the area over where we integrate is rather large and the integrand goes slowly to zero
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Table 5.2 Results for j'llooexp(—x) /Xdx using three different methods as functions of the number of mesh
points N.

N Trapez Simpson Gauss-Legendre
10 1.821020 1.214025 0.1460448
20 0.912678 0.609897 0.2178091
40 0.478456 0.333714 0.2193834
100 0.273724 0.231290 0.2193839
1000 0.219984 0.219387 0.2193839

for large values of X, both the trapezoidal rule and Simpson’s method need quite many points
in order to approach the Gauss-Legendre method. This integrand demonstrates clearly the
strength of the Gauss-Legendre method (and other GQ methods as well), viz., few points are
needed in order to achieve a very high precision.

The second table however shows that for smaller integration intervals, both the trapezoidal
rule and Simpson’s method compare well with the results obtained with the Gauss-Legendre
approach.

Table 5.3 Results for f03 1/(2+x2)dx using three different methods as functions of the number of mesh points
N.

N Trapez Simpson Gauss-Legendre
10 0.798861 0.799231 0.799233
20 0.799140 0.799233 0.799233
40 0.799209 0.799233 0.799233
100 0.799229 0.799233 0.799233
1000 0.799233 0.799233 0.799233

5.4 Treatment of Singular Integrals

So-called principal value (PV) integrals are often employed in physics, from Green’s functions
for scattering to dispersion relations. Dispersion relations are often related to measurable
quantities and provide important consistency checks in atomic, nuclear and particle physics.
A PV integral is defined as

b X .
I(x):f/_’/ V) _ jim [/X gdthr/b dtw],
Ja t—X &0t |Ja t—X x+e t—X

and arises in applications of Cauchy’s residue theorem when the pole X lies on the real axis
within the interval of integration [a,b]. Here & stands for the principal value. An important
assumption is that the function f(t) is continuous on the interval of integration.

In case f(t) is a closed form expression or it has an analytic continuation in the complex
plane, it may be possible to obtain an expression on closed form for the above integral.

However, the situation which we are often confronted with is that f(t) is only known at
some points t; with corresponding values f(tj). In order to obtain |(x) we need to resort to a
numerical evaluation.

To evaluate such an integral, let us first rewrite it as

b X—A b X+A
2 [Cat W :/ dtw-i-/ dtw—i—@/ at! O
a t—X a t—X A tT—X Jx—A t—Xx
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where we have isolated the principal value part in the last integral.
Defining a new variable u=t — X, we can rewrite the principal value integral as
4 f(u+x)

la(X) =2 » du y

(5.18)

One possibility is to Taylor expand f(u+X) around u= 0, and compute derivatives to a certain
order as we did for the Trapezoidal rule or Simpson’s rule. Since all terms with even powers
of u in the Taylor expansion dissapear, we have that

Nmax ol A2n+l
X) ~ f X)——m————.
) n; (2n+1)(2n+ 1)

To evaluate higher-order derivatives may be both time consuming and delicate from a
numerical point of view, since there is always the risk of loosing precision when calculating
derivatives numerically. Unless we have an analytic expression for f(u+Xx) and can evaluate
the derivatives in a closed form, the above approach is not the preferred one.

Rather, we show here how to use the Gauss-Legendre method to compute Eq. (5.18). Let
us first introduce a new variable s= u/A and rewrite Eq. as

1 f(As+x)
S—.

hx)=2 [ d (5.19)
_1 S

The integration limits are now from —1 to 1, as for the Legendre polynomials. The principal
value in Eq. is however rather tricky to evaluate numerically, mainly since computers
have limited precision. We will here use a subtraction trick often used when dealing with
singular integrals in numerical calculations. We introduce first the calculus relation

+1ds
[0
-1 S
It means that the curve 1/(s) has equal and opposite areas on both sides of the singular point

s=0.
If we then note that f(x) is just a constant, we have also

+1 +1
W[, 5=/, =0

Subtracting this equation from Eq. (5.19) yields

+1 +1 _
|A(x):gZ dsf(L:X): dsmes)f(x)’ (5.20)
-1 -1

and the integrand is no longer singular since we have that lims_,o(f(s+x) — f(x)) = 0 and for
the particular case s= 0 the integrand is now finite.
Eq. (5.20) is now rewritten using the Gauss-Legendre method resulting in

Hd f(As+x N f(As+x —f( X)

i = 21 : (5.21)

where § are the mesh points (N in total) and ¢« are the weights.

In the selection of mesh points for a PV integral, it is important to use an even number of
points, since an odd number of mesh points always picks § = 0 as one of the mesh points. The
sum in Eq. will then diverge.

Let us apply this method to the integral
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¢

+1
=2 dtr. (5.22)
-1
The integrand diverges at x =t = 0. We rewrite it using Eq. (5.20) as
+1 o +1d_1
2 [ aE :/ - (5.23)
-1 t -1 t
since & = €° = 1. With Eq. (5.21) we have then
g1 N di1
/ ey s (5.24)
-1 t & ti

The exact results is 2.11450175075... With just two mesh points we recall from the previous
subsection that w; = wp = 1 and that the mesh points are the zeros of L(x), namely x; = —1/ V3
and X =1/ V/3. Setting N = 2 and inserting these values in the last equation gives

l(x=0) = V3 (el/ V3_ gl ﬁ) — 2.1129772845
With six mesh points we get even the exact result to the tenth digit
ls(x=10) =2.11450175075!

We can repeat the above subtraction trick for more complicated integrands. First we mod-
ify the integration limits to +c and use the fact that

/w dk _ 0 dk o odk o
wk—k  Jok—ko  Jo k—ko

A change of variable u= —k in the integral with limits from —o to 0 gives

* dk 0 —du ® dk ® dk ® dk
—ook_ko © —U—ko 0 k_kO 0 _k_ko 0 k_ko
It means that the curve 1/(k—kp) has equal and opposite areas on both sides of the singular

point kg. If we break the integral into one over positive k and one over negative k, a change of
variable k — —k allows us to rewrite the last equation as

© dk
[ o
0 k2—K§
We can use this to express a principal values integral as

= f(kdk _ 1 (f(k) — f(ko))dk
0o k¥—Kk3 _/0 k2= K2 ; (5.25)

where the right-hand side is no longer singular at k = kg, it is proportional to the derivative
df/dk and can be evaluated numerically as any other integral.

Such a trick is often used when evaluating integral equations, as discussed in the next
section.




5.5 Parallel Computing 131

5.5 Parallel Computing

We end this chapter by discussing modern supercomputing concepts like parallel computing.
In particular, we will introduce you to the usage of the Message Passing Interface (MPI) li-
brary. MPI is a library, not a programming language. It specifies the names, calling sequences
and results of functions or subroutines to be called from C++ or Fortran programs, and the
classes and methods that make up the MPI C++ library. The programs that users write in
Fortran or C++ are compiled with ordinary compilers and linked with the MPI library. MPI
programs should be able to run on all possible machines and run all MPI implementetations
without change. An excellent reference is the text by Karniadakis and Kirby II [[17].

5.5.1 Brief survey of supercomputing concepts and terminologies

Since many discoveries in science are nowadays obtained via large-scale simulations, there
is an ever-lasting wish and need to do larger simulations using shorter computer time. The
development of the capacity for single-processor computers (even with increased processor
speed and memory) can hardly keep up with the pace of scientific computing. The solution to
the needs of the scientific computing and high-performance computing (HPC) communities
has therefore been parallel computing.

The basic ideas of parallel computing is that multiple processors are involved to solve a
global problem. The essence is to divide the entire computation evenly among collaborative
processors.

Today’s supercomputers are parallel machines and can achieve peak performances almost
up to 10'° floating point operations per second, so-called peta-scale computers, see for ex-
ample the list over the world’s top 500 supercomputers at www.top500.0rg. This list gets
updated twice per year and sets up the ranking according to a given supercomputer’s perfor-
mance on a benchmark code from the LINPACK library. The benchmark solves a set of linear
equations using the best software for a given platform.

To understand the basic philosophy, it is useful to have a rough picture of how to clas-
sify different hardware models. We distinguish betwen three major groups, (i) conventional
single-processor computers, normally called SISD (single-instruction-single-data) machines,
(ii) so-called SIMD machines (single-instruction-multiple-data), which incorporate the idea of
parallel processing using a large number of processing units to execute the same instruc-
tion on different data and finally (iii) modern parallel computers, so-called MIMD (multiple-
instruction- multiple-data) machines that can execute different instruction streams in parallel
on different data. On a MIMD machine the different parallel processing units perform op-
erations independently of each others, only subject to synchronization via a given message
passing interface at specified time intervals. MIMD machines are the dominating ones among
present supercomputers, and we distinguish between two types of MIMD computers, namely
shared memory machines and distributed memory machines. In shared memory systems the
central processing units (CPU) share the same address space. Any CPU can access any data in
the global memory. In distributed memory systems each CPU has its own memory. The CPUs
are connected by some network and may exchange messages. A recent trend are so-called
ccNUMA (cache-coherent-non-uniform-memory- access) systems which are clusters of SMP
(symmetric multi-processing) machines and have a virtual shared memory.

Distributed memory machines, in particular those based on PC clusters, are nowadays the
most widely used and cost-effective, although farms of PC clusters require large infrastuc-
tures and yield additional expenses for cooling. PC clusters with Linux as operating systems
are easy to setup and offer several advantages, since they are built from standard commodity
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hardware with the open source software (Linux) infrastructure. The designer can improve
performance proportionally with added machines. The commodity hardware can be any of
a number of mass-market, stand-alone compute nodes as simple as two networked comput-
ers each running Linux and sharing a file system or as complex as thousands of nodes with
a high-speed, low-latency network. In addition to the increased speed of present individual
processors (and most machines come today with dual cores or four cores, so-called quad-
cores) the position of such commodity supercomputers has been strenghtened by the fact
that a library like MPI has made parallel computing portable and easy. Although there are
several implementations, they share the same core commands. Message-passing is a mature
programming paradigm and widely accepted. It often provides an efficient match to the hard-
ware.

5.5.2 Parallelism

When we discuss parallelism, it is common to subdivide different algorithms in three major
groups.

* Task parallelism:the work of a global problem can be divided into a number of inde-
pendent tasks, which rarely need to synchronize. Monte Carlo simulations and numerical
integration are examples of possible applications. Since there is more or less no commu-
nication between different processors, task parallelism results in almost a perfect mathe-
matical parallelism and is commonly dubbed embarassingly parallel (EP). The examples in
this chapter fall under that category. The use of the MPI library is then limited to some few
function calls and the programming is normally very simple.

* Data parallelism: use of multiple threads (e.g., one thread per processor) to dissect loops
over arrays etc. This paradigm requires a single memory address space. Communication
and synchronization between the processors are often hidden, and it is thus easy to pro-
gram. However, the user surrenders much control to a specialized compiler. An example of
data parallelism is compiler-based parallelization.

* Message-passing: all involved processors have an independent memory address space.

The user is responsible for partitioning the data/work of a global problem and distribut-
ing the subproblems to the processors. Collaboration between processors is achieved by
explicit message passing, which is used for data transfer plus synchronization.
This paradigm is the most general one where the user has full control. Better parallel
efficiency is usually achieved by explicit message passing. However, message-passing pro-
gramming is more difficult. We will meet examples of this in connection with the solution
eigenvalue problems in chapter[7land of partial differential equations in chapter[10l

Before we proceed, let us look at two simple examples. We will also use these simple
examples to define the speedup factor of a parallel computation. The first case is that of the
additions of two vectors of dimension n,

z=ax+ By,

where o and (3 are two real or complex numbers and z,x,y € R" or € C". For every element
we have thus

z = ax + Byi.
For every element z we have three floating point operations, two multiplications and one

addition. If we assume that these operations take the same time At, then the total time spent
by one processor is
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T, = 3nAt.

Suppose now that we have access to a parallel supercomputer with P processors. Assume
also that P < n. We split then these addition and multiplication operations on every processor
so that every processor performs 3n/P operations in total, resulting in a time Tp = 3nAt/P
for every single processor. We also assume that the time needed to gather together these
subsums is neglible

If we have perfect parallelism, our speedup should be P, the number of processors avail-
able. We see that this is the case by computing the relation between the time used in case
of only one processor and the time used if we can access P processors. The speedup $p is

defined as
S = E _3nAt
T T 3nAt/P -

a perfect speedup. As mentioned above, we call calculations that yield a perfect speedup for
embarassingly parallel. The efficiency is defined as

S(P)

’T(P):T-

Our next example is that of the inner product of two vectors defined in Eq. (6.5),

n
c=> Xyj.
=1

We assume again that P < nand define | =n/P. Each processor is assigned with its own subset
of local multiplications Cp = ) ,XpYp, where p runs over all possible terms for processor P. As
an example, assume that we have four processors. Then we have

n/4 n/2
L= Xyj, Co= XiYi,
=1 j=n/4+1
3n/4 n
C3 = XiYi, Cyp= XjYij-
j=n/2+1 j=3n/4+1

We assume again that the time for every operation is At. If we have only one processor, the

total time is T; = (2n— 1)At. For four processors, we must now add the time needed to add

C1+ Cp + C3+ C4, which is 3At (three additions) and the time needed to communicate the local

result cp to all other processors. This takes roughly (P — 1)At;, where Atc need not equal At.
The speedup for four processors becomes now

&—Tl— (2n—1)At _ 4n-2
T (n/2-1)At+3At+3Atc  10+n’

if At = Atc. For n= 100 the speedup is §; = 3.62< 4. For P processors the inner products yields
a speedup

(2n—1)
(21 4+P—-2))+(P-1)y’

with y = At./At. Even with y= 0, we see that the speedup is less than P.

The communication time At; can reduce significantly the speedup. However, even if it is
small, there are other factors as well which may reduce the efficiency np. For example, we
may have an uneven load balance, meaning that not all the processors can perform useful
work at all time, or that the number of processors doesn’t match properly the size of the

S =
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problem, or memory problems, or that a so-called startup time penalty known as latency may
slow down the transfer of data. Crucial here is the rate at which messages are transferred

5.5.3 MPI with simple examples

When we want to parallelize a sequential algorithm, there are at least two aspects we need
to consider, namely

» Identify the part(s) of a sequential algorithm that can be executed in parallel. This can be
difficult.

» Distribute the global work and data among P processors. Stated differently, here you need
to understand how you can get computers to run in parallel. From a practical point of view
it means to implement parallel programming tools.

In this chapter we focus mainly on the last point. MPI is then a tool for writing programs
to run in parallel, without needing to know much (in most cases nothing) about a given ma-
chine’s architecture. MPI programs work on both shared memory and distributed memory
machines. Furthermore, MPI is a very rich and complicated library. But it is not necessary to
use all the features. The basic and most used functions have been optimized for most machine
architectures

Before we proceed, we need to clarify some concepts, in particular the usage of the words
process and processor. We refer to process as a logical unit which executes its own code,
in an MIMD style. The processor is a physical device on which one or several processes are
executed. The MPI standard uses the concept process consistently throughout its documen-
tation. However, since we only consider situations where one processor is responsible for one
process, we therefore use the two terms interchangeably in the discussion below, hopefully
without creating ambiguities.

The six most important MPI functions are

e MPI Init - initiate an MPI computation

* MPI Finalize - terminate the MPI computation and clean up

* MPI Comm size - how many processes participate in a given MPI computation.

e MPI Comm rank - which rank does a given process have. The rank is a number between 0
and size-1, the latter representing the total number of processes.

* MPI Send - send a message to a particular process within an MPI computation

* MPI Recv - receive a message from a particular process within an MPI computation.

The first MPI C++ program is a rewriting of our 'hello world’ program (without the com-
putation of the sine function) from chapter[2l We let every process write "Hello world" on the
standard output.

http://folk.uio.no/mhjensen/compphys/programs/chapter®5/program2.cpp

// First C++ example of MPI Hello world
using namespace std;

#include <mpi.h>

#include <iostream>

int main (int nargs, charx args[])
{
int numprocs, my_rank;
// MPI initializations
MPI_Init (&nargs, &args);
MPI_Comm_size (MPI_COMM_WORLD, &numprocs);
MPI_Comm_rank (MPI_COMM_WORLD, &my_rank);
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cout << "Hello world, I have rank " << my_rank << " out of " << numprocs << endl;
// End MPI
MPI_Finalize ();
return 0;

}

The corresponding Fortran program reads

PROGRAM hello
INCLUDE "mpif.h"
INTEGER:: numprocs, my_rank, ierr

CALL MPI_INIT(ierr)

CALL MPI_COMM_SIZE (MPI_COMM_WORLD, numprocs, ierr)

CALL MPI_COMM_RANK(MPI_COMM_WORLD, my_rank, ierr)
WRITE(*,*)"Hello world, I've rank ",my_rank," out of ",numprocs
CALL MPI_FINALIZE((ierr)

END PROGRAM hello

MPI is a message-passing library where all the routines have a corresponding C+ +-bindings@
MPI_Command_name or Fortran-bindings (function names are by convention in uppercase, but can
also be in lower case) MPI_COMMAND_NAME

To use the MPI library you must include header files which contain definitions and decla-
rations that are needed by the MPI library routines. The following line must appear at the top
of any source code file that will make an MPI call. For Fortran you must put in the beginning
of your program the declaration

‘ INCLUDE 'mpif.h’ ‘

while for C++ you need to include the statement

‘#include "mpi.h"

These header files contain the declarations of functions, variabels etc. needed by the MPI
library.

The first MPI call must be MPI_INIT, which initializes the message passing routines, as
defined in for example

INTEGER :: ierr
CALL MPI_INIT(ierr)

for the Fortran example. The variable ierr is an integer which holds an error code when
the call returns. The value of ierr is however of little use since, by default, MPI aborts the
program when it encounters an error. However, ierr must be included when MPI starts. For
the C++ code we have the call to the function

‘MPI_Init(int *argc, char xargv)

where argc and argv are arguments passed to main. MPI does not use these arguments in any
way, however, and in MPI-2 implementations, NULL may be passed instead. When you have
finished you must call the function MPI_Finalize. In Fortran you use the statement

‘ CALL MPI_FINALIZE(ierr) ‘

3 The C++ bindings used in practice are the same as the C bindings, although reading older texts like [15H17]
one finds extensive discussions on the difference between C and C++ bindings. Throughout this text we will
use the C bindings.
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while for C++ we use the function MPI_Finalize().
In addition to these calls, we have also included calls to so-called inquiry functions. There
are two MPI calls that are usually made soon after initialization. They are for C++,

‘ MPI_COMM_SIZE ((MPI_COMM_WORLD, &numprocs)

and

‘CALL MPI_COMM_SIZE (MPI_COMM_WORLD, numprocs, ierr)

for Fortran. The function MPI_COMM_SIZE returns the number of tasks in a specified MPI com-
municator (comm when we refer to it in generic function calls below).

In MPI you can divide your total number of tasks into groups, called communicators. What
does that mean? All MPI communication is associated with what one calls a communicator
that describes a group of MPI processes with a name (context). The communicator desig-
nates a collection of processes which can communicate with each other. Every process is
then identified by its rank. The rank is only meaningful within a particular communicator. A
communicator is thus used as a mechanism to identify subsets of processes. MPI has the flex-
ibility to allow you to define different types of communicators, see for example [[16]]. However,
here we have used the communicator MPI_COMM_WORLD that contains all the MPI processes that
are initiated when we run the program.

The variable numprocs refers to the number of processes we have at our disposal. The func-
tion MPI_COMM_RANK returns the rank (the name or identifier) of the tasks running the code. Each
task (or processor) in a communicator is assigned a number my_rank from O to numprocs- 1.

We are now ready to perform our first MPI calculations.

5.5.3.1 Running codes with MPI

To compile and load the above C++ code (after having understood how to use a local cluster),
we can use the command

mpicxx -02 -o program2.x program2.cpp

and try to run with ten nodes using the command

mpiexec -np 10 ./program2.x

If we wish to use the Fortran version we need to replace the C++ compiler statement mpicc
with mpif90 or equivalent compilers. The name of the compiler is obviously system dependent.
The command mpirun may be used instead of mpiexec. Here you need to check your own system.

When we run MPI all processes use the same binary executable version of the code and
all processes are running exactly the same code. The question is then how can we tell the
difference between our parallel code running on a given number of processes and a serial
code? There are two major distinctions you should keep in mind: (i) MPI lets each process
have a particular rank to determine which instructions are run on a particular process and (ii)
the processes communicate with each other in order to finalize a task. Even if all processes
receive the same set of instructions, they will normally not execute the same instructions.We
will discuss this point in connection with our integration example below.

The above example produces the following output
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Hello world, I’'ve rank
Hello world, I’'ve rank
Hello world, I’'ve rank
Hello world, I’'ve rank
Hello world, I’'ve rank
Hello world, I’'ve rank
Hello world, I’'ve rank
Hello world, I’'ve rank
Hello world, I’'ve rank
Hello world, I’'ve rank

out of 10 procs.
out of 10 procs.
out of 10 procs.
out of 10 procs.
out of 10 procs.
out of 10 procs.
out of 10 procs.
out of 10 procs.
out of 10 procs.
out of 10 procs.

O NUUNOOOOWREFEHO

The output to screen is not ordered since all processes are trying to write to screen simul-
taneously. It is then the operating system which opts for an ordering. If we wish to have an
organized output, starting from the first process, we may rewrite our program as follows

http://folk.uio.no/mhjensen/compphys/programs/chapter®5/program3.cpp

// Second C++ example of MPI Hello world
using namespace std;

#include <mpi.h>

#include <iostream>

int main (int nargs, charx args[])
{
int numprocs, my_rank, 1i;
// MPI initializations
MPI_Init (&nargs, &args);
MPI_Comm_size (MPI_COMM_WORLD, &numprocs);
MPI_Comm_rank (MPI_COMM_WORLD, &my_rank);
for (i = 0; 1 < numprocs; i++) {
MPI_Barrier (MPI_COMM_WORLD);
if (i == my_rank) {
cout << "Hello world, I have rank " << my_rank << " out of " << numprocs << endl;
fflush (stdout);
}
}
// End MPI
MPI_Finalize ();
return 0;

}

Here we have used the MPI_Barrier function to ensure that every process has completed its set
of instructions in a particular order. A barrier is a special collective operation that does not
allow the processes to continue until all processes in the communicator (here MPI_COMM_WORLD)
have called MPI_Barrier. The output is now

Hello world, I’'ve rank
Hello world, I’'ve rank
Hello world, I’'ve rank
Hello world, I’'ve rank
Hello world, I’'ve rank
Hello world, I’'ve rank
Hello world, I’'ve rank

out of 10 procs.
out of 10 procs.
out of 10 procs.
out of 10 procs.
out of 10 procs.
out of 10 procs.
out of 10 procs.

OO Uk WN KEF O
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Hello world, I’'ve rank 7 out of 10 procs.
Hello world, I’'ve rank 8 out of 10 procs.
Hello world, I’'ve rank 9 out of 10 procs.

The barriers make sure that all processes have reached the same point in the code. Many
of the collective operations like MPI_ALLREDUCE to be discussed later, have the same property;
viz. no process can exit the operation until all processes have started. However, this is slightly
more time-consuming since the processes synchronize between themselves as many times as
there are processes. In the next Hello world example we use the send and receive functions
in order to a have a synchronized action.

http://folk.uio.no/mhjensen/compphys/programs/chapter®5/program4.cpp

// Third C++ example of MPI Hello world
using namespace std;

#include <mpi.h>

#include <iostream>

int main (int nargs, charx args[])
{
int numprocs, my_rank, flag;
// MPI initializations
MPI_Status status;
MPI_Init (&nargs, &args);
MPI_Comm_size (MPI_COMM_WORLD, &numprocs);
MPI_Comm_rank (MPI_COMM_WORLD, &my_rank);
// Send and Receive example
if (my_rank > 0)
MPI_Recv (&flag, 1, MPI_INT, my_rank-1, 100, MPI_COMM_WORLD, &status);
cout << "Hello world, I have rank " << my_rank << " out of " << numprocs << endl;
if (my_rank < numprocs-1)
MPI_Send (&my_rank, 1, MPI_INT, my_rank+1l, 100, MPI_COMM_WORLD);

// End MPI
MPI_Finalize ();
return 0;
}

The basic sending of messages is given by the function MPI_SEND, which in C++ is defined as

‘MPI_Send(void «buf, int count, MPI_Datatype datatype, int dest, int tag, MPI_Comm comm)

while in Fortran we would call this function with the following parameters

‘CALL MPI_SEND(buf, count, MPI_TYPE, dest, tag, comm, ierr).

This single command allows the passing of any kind of variable, even a large array, to any
group of tasks. The variable buf is the variable we wish to send while count is the number of
variables we are passing. If we are passing only a single value, this should be 1. If we transfer
an array, it is the overall size of the array. For example, if we want to send a 10 by 10 array,
count would be 10x 10= 100since we are actually passing 100 values.

We define the type of variable using MPI_TYPE in order to let MPI function know what to
expect. The destination of the send is declared via the variable dest, which gives the ID
number of the task we are sending the message to. The variable tag is a way for the receiver
to verify that it is getting the message it expects. The message tag is an integer number
that we can assign any value, normally a large number (larger than the expected number of
processes). The communicator comm is the group ID of tasks that the message is going to. For
complex programs, tasks may be divided into groups to speed up connections and transfers.
In small programs, this will more than likely be in MPI_COMM_WORLD.
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Furthermore, when an MPI routine is called, the Fortran or C++ data type which is passed
must match the corresponding MPI integer constant. An integer is defined as MPI_INT in C++
and MPI_INTEGER in Fortran. A double precision real is MPI_DOUBLE in C++ and MPI_DOUBLE_PRECISION
in Fortran and single precision real is MPI_FLOAT in C++ and MPI_REAL in Fortran. For further
definitions of data types see chapter five of Ref. [16].

Once you have sent a message, you must receive it on another task. The function MPI_RECV
is similar to the send call. In C++ we would define this as

MPI_Recv( void xbuf, int count, MPI_Datatype datatype, int source, int tag, MPI_Comm comm,
MPI_Status *status )

while in Fortran we would use the call

CALL MPI_RECV(buf, count, MPI_TYPE, source, tag, comm, status, ierr)}.

The arguments that are different from those in MPI_SEND are buf which is the name of the
variable where you will be storing the received data, source which replaces the destination in
the send command. This is the return ID of the sender.

Finally, we have used MPI_Status~status; where one can check if the receive was completed.
The source or tag of a received message may not be known if wildcard values are used in the
receive function. In C++, MPI Status is a structure that contains further information. One
can obtain this information using

MPI_Get_count (MPI_Status *status, MPI_Datatype datatype, int *xcount)}

The output of this code is the same as the previous example, but now process 0 sends a
message to process 1, which forwards it further to process 2, and so forth.

Armed with this wisdom, performed all hello world greetings, we are now ready for serious
work.

5.5.4 Numerical integration with MPI

To integrate numerically with MPI we need to define how to send and receive data types. This
means also that we need to specify which data types to send to MPI functions.
The program listed here integrates

1 4
m= dx——
/o 14-x2

by simply adding up areas of rectangles according to the algorithm discussed in Eq. (5.5),
rewritten here

o N
| :/a f(x)dx~ hi;f(xifl/Z)a

where f(x) = 4/(1+x?). This is a brute force way of obtaining an integral but suffices to
demonstrate our first application of MPI to mathematical problems. What we do is to subdi-
vide the integration range x € [0,1] into n rectangles. Increasing n should obviously increase
the precision of the result, as discussed in the beginning of this chapter. The parallel part
proceeds by letting every process collect a part of the sum of the rectangles. At the end of
the computation all the sums from the processes are summed up to give the final global sum.
The program below serves thus as a simple example on how to integrate in parallel. We will
refine it in the next examples and we will also add a simple example on how to implement the
trapezoidal rule.
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http://folk.uio.no/mhjensen/compphys/programs/chapter®5/program5.cpp

1 // Reactangle rule and numerical integration using MPI send and Receive
2 using namespace std;

3 #include <mpi.h>

4 #include <iostream>

5 int main (int nargs, charx args[])

6 {

7 int numprocs, my_rank, i, n = 1000;

8 double local_sum, rectangle_sum, x, h;

9 // MPI initializations

10 MPI_Init (&nargs, &args);

11 MPI_Comm_size (MPI_COMM_WORLD, &numprocs);

12 MPI_Comm_rank (MPI_COMM_WORLD, &my_rank);

13 // Read from screen a possible new vaue of n
14 if (my_rank == 0 && nargs > 1) {

15 n = atoi(args([1]);

16 }

17 h =1.0/n;

18 // Broadcast n and h to all processes

19 MPI_Bcast (&n, 1, MPI_INT, O, MPI_COMM_WORLD);
20 MPI_Bcast (&h, 1, MPI_DOUBLE, O, MPI_COMM_WORLD);
21 // Every process sets up its contribution to the integral
22 local_sum = 0.;

23 for (i = my_rank; i < n; i += numprocs) {

24 X = (i+0.5)xh;

25 local_sum += 4.0/ (1.0+x%X);

26}

27 local_sum *= h;

28 if (my_rank == 0) {

29 MPI_Status status;

30 rectangle_sum = local_sum;

31 for (i=1; i < numprocs; i++) {

32 MPI_Recv(&local_sum,1,MPI_DOUBLE,MPI_ANY_SOURCE,500,MPI_COMM_WORLD,&status);
33 rectangle_sum += local_sum;

34 }

35 cout << "Result: " << rectangle_sum << endl;

36 } else

37 MPI_Send(&local_sum,1,MPI_DOUBLE,0,500,MPI_COMM_WORLD);
38 // End MPI

39 MPI_Finalize ();

40 return 0;

41 }

After the standard initializations with MPI such as

MPI_Init, MPI_Comm_size, MPI_Comm_rank,

MPI_COMM_WORLD contains now the number of processes defined by using for example
mpirun -np 10 ./prog.x

In line 14 we check if we have read in from screen the number of mesh points n. Note that in
line 7 we fix n=100Q however we have the possibility to run the code with a different number
of mesh points as well. If my_rank equals zero, which correponds to the master node, then we
read a new value of n if the number of arguments is larger than two. This can be done as
follows when we run the code

mpiexec -np 10 ./prog.x 10000
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In line 17 we define also the step length h. In lines 19 and 20 we use the broadcast function
MPI_Bcast. We use this particular function because we want data on one processor (our master
node) to be shared with all other processors. The broadcast function sends data to a group of
processes. The MPI routine MPI_Bcast transfers data from one task to a group of others. The
format for the call is in C++ given by the parameters of

‘MPI,BcaSt (&n, 1, MPI_INT, 0, MPI_COMM_WORLD);. ‘

In case we have a floating point variable we need to declare

‘MPI_Bcast (&, 1, MPI_DOUBLE, 6, MPI_COMM_WORLD); ‘

The general structure of this function is

‘MPLBcast( void *buf, int count, MPI_Datatype datatype, int root, MPI_Comm comm) ‘

All processes call this function, both the process sending the data (with rank zero) and all
the other processes in MPI_COMM_WORLD. Every process has now copies of n and h, the number
of mesh points and the step length, respectively.

We transfer the addresses of n and h. The second argument represents the number of
data sent. In case of a one-dimensional array, one needs to transfer the number of array
elements. If you have an h x mmatrix, you must transfer nx m. We need also to specify whether
the variable type we transfer is a non-numerical such as a logical or character variable or
numerical of the integer, real or complex type.

We transfer also an integer variable int root. This variable specifies the process which
has the original copy of the data. Since we fix this value to zero in the call in lines 19 and 20,
it means that it is the master process which keeps this information. For Fortran, this function
is called via the statement

CALL MPI_BCAST(buff, count, MPI_TYPE, root, comm, ierr).

In lines 23-27, every process sums its own part of the final sum used by the rectangle rule.
The receive statement collects the sums from all other processes in case my_rank==0, else an
MPI send is performed.

The above function is not very elegant. Furthermore, the MPI instructions can be simplified
by using the functions MPI_Reduce or MPI_Allreduce. The first function takes information from all
processes and sends the result of the MPI operation to one process only, typically the master
node. If we use MPI_Allreduce, the result is sent back to all processes, a feature which is useful
when all nodes need the value of a joint operation. We limit ourselves to MPI_Reduce since it is
only one process which will print out the final number of our calculation, The arguments to
MPI_Allreduce are the same.

The MPI_Reduce function is defined as follows

MPI_Reduce( void *senddata, voidx resultdata, int count, MPI_Datatype datatype, MPI_Op, int
root, MPI_Comm comm)

The two variables senddata and resultdata are obvious, besides the fact that one sends the
address of the variable or the first element of an array. If they are arrays they need to have the
same size. The variable count represents the total dimensionality, 1 in case of just one variable,
while MPI_Datatype defines the type of variable which is sent and received. The new feature is
MPI_Op. MPI_Op defines the type of operation we want to do. There are many options, see again
Refs. [15417] for full list. In our case, since we are summing the rectangle contributions from
every process we define MPI_0p=MPI_SUM. If we have an array or matrix we can search for the
largest og smallest element by sending either MPI_MAX or MPI_MIN. If we want the location as
well (which array element) we simply transfer MPI_MAXLOC or MPI_MINOC. If we want the product
we write MPI_PROD. MPI_Allreduce is defined as
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MPI_Allreduce( void *senddata, void* resultdata, int count, MPI_Datatype datatype, MPI_Op,
MPI_Comm comm)

The function we list in the next example is the MPI extension of programl.cpp. The dif-
ference is that we employ only the trapezoidal rule. It is easy to extend this code to include
gaussian quadrature or other methods.

It is also worth noting that every process has now its own starting and ending point. We
read in the number of integration points n and the integration limits a and b. These are called
a and b. They serve to define the local integration limits used by every process. The local
integration limits are defined as

local_a a + my_rank x(b-a)/numprocs
local_b = a + (my_rank-1) =*(b-a)/numprocs.

These two variables are transfered to the method for the trapezoidal rule. These two methods
return the local sum variable local_sum. MPI_Reduce collects all the local sums and returns the
total sum, which is written out by the master node. The program below implements this. We
have also added the possibility to measure the total time used by the code via the calls to
MPI_Wtime.

http://folk.uio.no/mhjensen/compphys/programs/chapter®5/programé.cpp

// Trapezoidal rule and numerical integration using MPI with MPI_Reduce
using namespace std;

#include <mpi.h>

#include <iostream>

// Here we define various functions called by the main program

double int_function(double );
double trapezoidal_rule(double , double , int , double (x*)(double));

// Main function begins here
int main (int nargs, charx args[])
{
int n, local_n, numprocs, my_rank;
double a, b, h, local_a, local_b, total_sum, local_sum;
double time_start, time_end, total_time;
// MPI initializations
MPI_Init (&nargs, &args);
MPI_Comm_size (MPI_COMM_WORLD, &numprocs);
MPI_Comm_rank (MPI_COMM_WORLD, &my_rank);
time_start = MPI_Wtime();
// Fixed values for a, b and n
a=0.0; b=1.0; n=1000;
h = (b-a)/n; // h is the same for all processes
local_n = n/numprocs; // make sure n > numprocs, else integer division gives zero
// Length of each process' interval of
// integration = local_nxh.
local_a = a + my_rankxlocal_nxh;
local_b = local_a + local_nxh;
total_sum = 0.0;
local_sum = trapezoidal_rule(local_a, local_b, local_n, &int_function);
MPI_Reduce(&local_sum, &total_sum, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);
time_end = MPI_Wtime();
total_time = time_end-time_start;
if ( my_rank == 0) {
cout << "Trapezoidal rule = " << total_sum << endl;
cout << "Time = " << total_time << " on number of processors: " << numprocs << endl;

}
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// End MPI
MPI_Finalize ();
return 0;

} // end of main program

// this function defines the function to integrate
double int_function(double x)
{
double value = 4./(1.+xx*x);
return value;
} // end of function to evaluate

// this function defines the trapezoidal rule
double trapezoidal_rule(double a, double b, int n, double
{
double trapez_sum;
double fa, fb, x,
int j;
step=(b-a)/((double) n);
fa=(xfunc)(a)/2. ;
fb=(xfunc) (b)/2. ;
trapez_sum=0.;
for (j=1; j <= n-1; j++){
x=j*step+a;
trapez_sum+=(xfunc) (x);
}
trapez_sum=(trapez_sum+fb+fa)x*step;
return trapez_sum;
} // end trapezoidal_rule

step;

143

(xfunc) (double))

An obvious extension of this code is to read from file or screen the integration variables. One
could also use the program library to call a particular integration method.

5.6 An Integration Class

We end this chapter by presenting the usage of the integral class defined in the program
library. Here we have defined two header files, the Function.h and the Integral.h files. The
program below uses the classes defined in these header files to compute the integral

/0 ' exp(x) cos(x).

<cmath>
<iostream>
"Function.h"
"Integral.h"

#include
#include
#include
#include

using namespace std;
class ExpCos: public Function{
public:
// Default constructor

ExpCos () {}

// Overloaded function operator().

// Override the function operator() of the parent class.

double operator()(double x){
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return exp(x)*cos(x);
}
};

int main(){
// Declare first an object of the function to be integrated
ExpCos f;
// Set integration bounds
double a = 0.0; // Lower bound
double b = 1.0; // Upper bound
int npts 100; // Number of integration points

// Declared (lhs) and instantiate an integral object of type Trapezoidal
Integral xtrapez = new Trapezoidal(a, b, npts, f);

Integral *midpt = new MidPoint(a, b, npts, f);

Integral *gl = new Gauss_Legendre(a,b,npts, f);

// Evaluate the integral of the function ExpCos and assign its
// value to the variable result;

double resultTP = trapez->evaluate();

double resultMP = midpt->evaluate();

double resultGL = gl->evaluate();

// Print the result to screen

cout << "Result with trapezoidal : " << resultTP << endl;

cout << "Result with mid-point : " << resultMP << endl;

cout << "Result with Gauss-Legendre: " << resultGL << endl;
}

The header file Function.h is defined as

http://folk.uio.no/mhjensen/compphys/programs/chapter05/cpp/Function.h

/**

* @file Function.h

* Interface for mathematical functions with one or more independent variables.

* The subclasses are implemented as functors, i.e., objects behaving as functions.
* They overload the function operator().

*

* Example Usage:
// 1. Declare a functor, i.e., an object which
// overloads the function operator().
class Squared: public Function{
public:
// Overload function operator()
double operator()(double x=0.0){
return xxx;

}

}

int main(){
// Instance an object Functor
Squared f;

// Use the instance of the object as a normal function
cout << f(3.0) << endl;

}

@endcode

*

*x/
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#ifndef FUNCTION_H
#define FUNCTION_H

#include "Array.h"

class Function{
public:

//! Destructor
virtual ~Function(){}; // Not needed here.

/**

* @brief Overload the function operator().

*

* Used for evaluating functions with one independent variable.
*

*k/

virtual double operator()(double x){}

/**
* @brief Overload the function operator().
*
* Used for evaluating functions with more than one independent variable.
*k/
virtual double operator()(const Array<double>& x){}
};
#endif

The header file Integral.h contains, with an example on how to use it, the following state-
ments

http://folk.uio.no/mhjensen/compphys/programs/chapter05/cpp/Integral.h

#ifndef INTEGRAL_H
#define INTEGRAL_H

#include "Array.h"
#include "Function.h"
#include <cmath>

class Integral{
protected: // Access in the subclasses.
double a; // Lower limit of integration.
double b; // Upper limit of integration.
int npts; // Number of integration points.
Function &f; // Function to be integrated.

public:

/**
@brief Constructor.

@param lower_. Lower limit of integration.

@param upper—_. Upper limit of integration.

@param npts_. Number of points of integration.

@param f_. Reference to a functor representing the function to be integrated.
*k/

Integral(double lower_, double upper_, int npts_, Function &f_);

* X X X X X

//! Destructor
virtual ~Integral(){}
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/**

* @brief Evaluate the integral.

* @return The value of the integral in double precision.
*k/

virtual double evaluate()=0;

// virtual forloop
}; // End class Integral

class Trapezoidal: public Integral{
private:
double h; // Step size.

public:
VAT
* @brief Constructor.

@param lower_. Lower limit of integration.

@param upper_. Upper limit of integration.

@param npts_. Number of points of integration.

@param f_. Reference to a functor representing the function to be integrated.
*k/

Trapezoidal (double lower_, double upper_, int npts_, Function &f_);

EEE R R

//! Destructor
~Trapezoidal(){}

/ k*
* Evaluate the integral of a function f using the trapezoidal rule.
* @return The value of the integral in double precision.
*k/
double evaluate();
}; // End class Trapezoidal

class MidPoint: public Integral{
private:
double h; // Step size.

public:
VAT
* @brief Constructor.
*
@param lower_. Lower limit of integration.
@param upper—_. Upper limit of integration.
@param npts_. Number of points of integration.
@param f_. Reference to a functor representing the function to be integrated.
*k/
MidPoint (double lower_, double upper_, int npts_, Function &f_);

EE SR

//! Destructor
~MidPoint () {}

/**

* Evaluate the integral of a function f using the midpoint approximation.
*

* @return The value of the integral in double precision.

*k/

double evaluate();
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}

class Gauss_Legendre: public Integral{
private:
static const double ZERO = 1.0E-10;
static const double PI = 3.14159265359;
double h;

public:
/**
* @brief Constructor.

@param lower_. Lower limit of integration.

@param upper—_. Upper limit of integration.

@param npts_. Number of points of integration.

* @param f_. Reference to a functor representing the function to be integrated.
*k/

Gauss_Legendre (double lower_, double upper_, int npts_, Function &f_);

EE R R

//! Destructor
~Gauss_Legendre(){}

/*%
* Evaluate the integral of a function f using the Gauss-Legendre approximation.
*
* @return The value of the integral in double precision.
*k/
double evaluate();
+i
#endif

5.7 Exercises

5.1. Use Lagrange’s interpolation formula for a second-order polynomial

X=X)x=x1) = (X=X)(X=X)  (X—X1)(X—Xp)

200 = b 0 06”2 a0 0 o) (06 )

)

and insert this formula in the integral
+h +h
/ F(x)dx ~ / Po(x)dx
—h —h

and derive Simpson’s rule. You need to define properly the values Xg, X1 and X2 and link them
with the integration limits Xg — h and Xy + h. Simpson’s formula reads

+h
/ f(x)dx=
J-h

Write thereafter a class which implements both the Trapezoidal rule and Simpson’s rule. You
can for example follow the example given in the last section of this chapter. You can look up
the header file for this class at/http://folk.uio.no/mhjensen/compphys/programs/chapter05/cpp/Integral.hl

(fn+4fo+ f_p) +O(h®).

wl =

5.2. Write a program which then uses the above class containing the Trapezoidal rule and
Simpson’s rule to implement the adaptive algorithm discussed in section Compute the
integrals
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Discuss strategies for choosing the integration limits using these methods

5.3. Add now to your integration class the possibility for extrapolating h — 0 using Richard-
son’s deferred extrapolation technique, see Eq. (3.13) and exercise 3.2 in chapter[3l

5.4. Write a class which includes your own functions for Gaussian quadrature using Legen-
dre, Hermite and Laguerre polynomials. You can write your own functions for these methods
or use those included with the programs of this book. For the latter see for example the
programs in the directory programs/chapter05. The functions are called gausslegendre.cpp,
gausshermite.cpp and gausslaguerre.cpp.

Use the Legendre and Laguerre polynomials to evaluate again

" . 1

| = / xexp(—x)sinx = ~.
Jo 2

5.5. The task here is to integrate a six-dimensional integral which is used to determine the
ground state correlation energy between two electrons in a helium atom. The integral appears
in many quantum mechanical applications. However, if you are not too familiar with quantum
mechanics, you can simply look at the mathematical details. We will employ both Gauss-
Legendre and Gauss-Laguerre quadrature. Furthermore, you will need to parallelize your
code. You can use your class from the previous problem.

We assume that the wave function of each electron can be modelled like the single-particle
wave function of an electron in the hydrogen atom. The single-particle wave function for an
electron i in the 1s state is given in terms of a dimensionless variable (the wave function is
not properly normalized)

i =Xi&+Yiey+ 7€,

as

Yrs(ri) =e 1,

=\ X+ +7

We will fix o = 2, which should correspond to the charge of the helium atom Z = 2.
The ansatz for the wave function for two electrons is then given by the product of two
so-called 1swave functions as

where a is a parameter and

W(ry,rp) = e anra),

Note that it is not possible to find a closed-form solution to Schrodinger’s equation for two
interacting electrons in the helium atom.

The integral we need to solve is the quantum mechanical expectation value of the correla-
tion energy between two electrons which repel each other via the classical Coulomb interac-
tion, namely L

re—ro

1

— [ dridrpe 2atni) =
> /700 |r1—r2|

(

Note that our wave function is not normalized. There is a normalization factor missing, but
for this project we don’t need to worry about that.

This integral can be solved in closed form and the answer is 571°/16%. Can you derive this
value?
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1. Use Gauss-Legendre quadrature and compute the integral by integrating for each variable
X1,Y1,21,%2,Y2,2 from —oo to co. How many mesh points do you need before the results con-
verges at the level of the third leading digit? Hint: the single-particle wave function e %" is
more or less zero at r; ~? (find the appropriate limit). You can therefore replace the integra-
tion limits —oo and o with —? and ?, respectively. You need to check that this approximation
is satisfactory, that is, make a plot of the function and check if the abovementioned limits
are appropriate. You need also to account for the potential problems which may arise when
|I’1 — I’2| =0.

2. The Legendre polynomials are defined for x € [—1,1]. The previous exercise gave a very
unsatisfactory ad hoc procedure. We wish to improve our results. It can therefore be useful
to change to another coordinate frame and employ the Laguerre polynomials. The Laguerre
polynomials are defined for x € [0,%) and if we change to spherical coordinates

dridry = r2dryrdrodcog 61 )dcog 6:)d@d gy,

with
1 1

f2 r2+r2—2rir,coqB)

and
cog ) = cog 61 )cos 6>) + sin(61)sin(62)co 1 — ¢»))

we can rewrite the above integral with different integration limits. Find these limits and
replace the Gauss-Legendre approach in a) with Laguerre polynomials. Do your results
improve? Compare with the results from a).

3. Make a detailed analysis of the time used by both methods and compare your results.
Parallelize your codes and check that you have an optimal speed up.






Part 11
Linear Algebra and Eigenvalues



This part of the text aims at giving an overview over several methods to solve linear al-
gebra and eigenvalue problems. These methods span from standard Gaussian elimination to
iterative eigenvalue solvers for large eigenvalue problems. Furthermore, several technicali-
ties which pertain to handling arrays, their memory allocation and deallocation, classes for
handling arrays and links to professional software packages such as LAPACK and BLAS will
also be discussed. Parallelization of both eigenvalue solvers and linear algebra problems are
also discussed.



Chapter 6
Linear Algebra

Abstract This chapter introduces several matrix related topics, from the solution of linear
equations, computing determinants, conjugate-gradient methods, spline interpolation to effi-
cient handling of matrices

6.1 Introduction

In this chapter we deal with basic matrix operations, such as the solution of linear equations,
calculate the inverse of a matrix, its determinant etc. The solution of linear equations is an
important part of numerical mathematics and arises in many applications in the sciences.
Here we focus in particular on so-called direct or elimination methods, which are in principle
determined through a finite number of arithmetic operations. Iterative methods will also be
discussed.

This chapter serves also the purpose of introducing important programming details such
as handling memory allocation for matrices and the usage of the libraries which follow these
lectures.

The algorithms we describe and their original source codes are taken from the widely used
software package LAPACK [26]], which follows two other popular packages developed in the
1970s, namely EISPACK and LINPACK. The latter was developed for linear equations and
least square problems while the former was developed for solving symmetric, unsymmetric
and generalized eigenvalue problems. From LAPACK’s website http://www.netlib.org|it is
possible to download for free all source codes from this library. Both C++ and Fortran ver-
sions are available. Another important library is BLAS [27]], which stands for Basic Linear
Algebra Subprogram. It contains efficient codes for algebraic operations on vectors, matrices
and vectors and matrices. Basically all modern supercomputer include this library, with effi-
cient algorithms. Else, Matlab offers a very efficient programming environment for dealing
with matrices. The classic text from where we have taken most of the formalism exposed here
is the book on matrix computations by Golub and Van Loan [28]. Good recent introductory
texts are Kincaid and Cheney [23] and Datta [29]. For more advanced ones see Trefethen and
Bau III [30], Kress [24] and Demmel [31]]. Ref. [28] contains an extensive list of textbooks
on eigenvalue problems and linear algebra. LAPACK [26] contains also extensive listings to
the research literature on matrix computations. For the introduction of the auxiliary library
Blitz++ [32]], which allows for a very efficient way of handling arrays in C++ we refer to the
online manual at http://www.oonumerics.org. A library we highly recommend is Armadillo,
see http://arma.sourceforge.org. Armadillo is an open-source C++ linear algebra library
aiming towards a good balance between speed and ease of use. Integer, floating point and
complex numbers are supported, as well as a subset of trigonometric and statistics functions.
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Various matrix and vector operations are provided through optional integration with BLAS
and LAPACK.

6.2 Mathematical Intermezzo

The matrices we will deal with are primarily square real symmetric or hermitian ones, assum-
ing thereby that an n x n matrix A € R™" for a real matrix} and A € C™" for a complex matrix.
For the sake of simplicity, we take a matrix A € R*** and a corresponding identity matrix |

a1l a12 813 a14 1000
| @21 a2 az3 azs ~|o100
A= 331 A32 ag3 A4 '=1lo010]" (6.1)
A41 @42 843 844 0001

where a; € R. The inverse of a matrix, if it exists, is defined by
AL A=I

In the following discussion, matrices are always two-dimensional arrays while vectors are
one-dimensional arrays. In our nomenclature we will restrict boldfaced capitals letters such
as A to represent a general matrix, which is a two-dimensional array, while a&; refers to a
matrix element with row number i and column number j. Similarly, a vector being a one-
dimensional array, is labelled x and represented as (for a real vector)

X1
X2
X3
Xaq

XeR" «—

with pertinent vector elements x; € R. Note that this notation implies X, € R**! and that the
members of X are column vectors. The elements of x; € R4 are row vectors.

Table [6.2] lists some essential features of various types of matrices one may encounter.
Some of the matrices we will encounter are listed here

Table 6.1 Matrix properties

Relations [Name matrix elements
A=AT symmetric aj = aji

-1
A = (AT) "[real orthogonal |y aikajk = Yk =
A=A" real matrix aj = &j
A=AT hermitian aj = ajj

-1 . " "
A= (A Hunitary |5t = Sidia =)

1. Diagonal if & =0 fori # j,

1 A reminder on mathematical symbols may be appropriate here. The symbol R is the set of real numbers.
Correspondingly, N, Z and C represent the set of natural, integer and complex numbers, respectively. A symbol
like R" stands for an n-dimensional real Euclidean space, while C[a,b] is the space of real or complex-valued
continuous functions on the interval [a,b], where the latter is a closed interval. Similalry, C"[a, b] is the space
of mtimes continuously differentiable functions on the interval [a, b]. For more symbols and notations, see the
main text.
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2. Upper triangular if g = 0 for i > j, which for a 4 x 4 matrix is of the form

11 Q12 13 14
0 ax apzazs
0 0 azgzass
0O O O an

3. Lower triangular if a; = 0 fori < j

a1 0 0 O
aprap 0 0
azgragzags O
41 Q42 Q43 Au4

4. Upper Hessenberyg if aj = 0 for i > j+ 1, which is similar to a upper triangular except that
it has non-zero elements for the first subdiagonal row

a1 12 13 14
A1 A2 A3 A4
0 agzazzass
0 O agzaus

5. Lower Hessenberg if g =0fori < j+1

ail a2 0 O
agragpazs 0
ag1 ag2 a3z aAz4
a1 A42 A43 44

6. Tridiagonal if aj =0 for |[i —j| > 1

ail a2 0 O
agragpazs 0
0 agzazzass
0 O agzaus

There are many more examples, such as lower banded with bandwidth p for a; =0fori> j+p,
upper banded with bandwidth p for a;j = 0 for i < j+ p, block upper triangular, block lower
triangular etc.

For a real nx n matrix A the following properties are all equivalent

If the inverse of A exists, A is nonsingular.
The equation AXx = 0 implies x =0.

The rows of A form a basis of R".

The columns of A form a basis of R".

A is a product of elementary matrices.

0 is not an eigenvalue of A.

ook W=

The basic matrix operations that we will deal with are addition and subtraction
A:BiC:>aij:bijicij, (6.2)

scalar-matrix multiplication

vector-matrix multiplication
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n
y:Ax:>yi:Za4jxj, (6.3)
=1
matrix-matrix multiplication
n
A=Bc:a”- = ZbikaJ’, (6.4)
k=1

transposition

A:BT:>a4-j = bj,
and if A € C™", conjugation results in

_T —

A=B =g i = b jis
where a variable Z= X— 1y denotes the complex conjugate of z= Xx+1y. In a similar way we
have the following basic vector operations, namely addition and subtraction

X=y+z=X =Yi*7,

scalar-vector multiplication

vector-vector multiplication (called Hadamard multiplication)
X=YZ— X =Yiz,

the inner or so-called dot product

n

c=y'z=c=3 yjz, (6.5)
=

with c a constant and the outer product, which yields a matrix,
A=yz' = aj =viz, (6.6)

Other important operations are vector and matrix norms. A class of vector norms are the
so-called p-norms
1
[IXITp = (IXa|P+ [x2[P+ -+ [xa[P) P,

where p > 1. The most important are the 1, 2 and « norms given by

(X2 = [xa|+ [xa| +--- + [xal,

1 1
[X[]2 = (X0 [2+ [%o| 2+ -+ xa]?) 2 = (xTx) 2,

and
|X[[e0 = max x|,

for 1 <i < n. From these definitions, one can derive several important relations, of which the
so-called Cauchy-Schwartz inequality is of great importance for many algorithms. For any X
and y being real-valued or complex-valued quantities, the inner product space satisfies

XTy[ < [Ix[[2IYl[2,

and the equality is obeyed only if X and y are linearly dependent. An important relation which
follows from the Cauchy-Schwartz relation is the famous triangle relation, which states that
for any x and y in a real or complex, the inner product space satisfies
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X+ yll2 < [Ix[l2+[Iyll2-

Proofs can be found in for example Ref. [28]]. As discussed in chapter 2l the analysis of the
relative error is important in our studies of loss of numerical precision. Using a vector norm
we can define the relative error for the machine representation of a vector X. We assume that
fl(x) € R" is the machine representation of a vector x € R". If x # 0, we define the relative

error as
L1 =x

1]
Using the o-norm one can define a relative error that can be translated into a statement on
the correct significant digits of fl(x),

1O = X]foo

& 10*',
[1X]|eo

where the largest component of fl(x) has roughly | correct significant digits.
We can define similar matrix norms as well. The most frequently used are the Frobenius

norm
m n
Al =3 lai
i=1j=

[|AX]|p
[Ix[[p °
assuming that X # 0. We refer the reader to the text of Golub and Van Loan [28] for a further
discussion of these norms.

The way we implement these operations will be discussed below, as it depends on the
programming language we opt for.

and the p-norms

[Allp=

6.3 Programming Details

Many programming problems arise from improper treatment of arrays. In this section we
will discuss some important points such as array declaration, memory allocation and array
transfer between functions. We distinguish between two cases: (a) array declarations where
the array size is given at compilation time, and (b) where the array size is determined dur-
ing the execution of the program, so-called dymanic memory allocation. Useful references on
C++ programming details, in particular on the use of pointers and memory allocation, are
Reek’s text [33] on pointers in C, Berryhill’s monograph [34] on scientific programming in
C++ and finally Franek’s text [35] on memory as a programming concept in C and C++.
Good allround texts on C++ programming in engineering and science are the books by
Flowers [18] and Barton and Nackman [[19]. See also the online lecture notes on C++ at
http://heim.ifi.uio.no/~hpl/INF-VERK4830. For Fortran we recommend the online lec-
tures at http://folk.uio.no/gunnarw/INF-VERK4820. These web pages contain extensive
references to other C++ and Fortran resources. Both web pages contain enough material,
lecture notes and exercises, in order to serve as material for own studies.
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SEGMENTATION
FAULT.

g

Fig. 6.1 Segmentation fault, again and again! Alas, this is a situation you will most likely end up in, unless
you initialize, access, allocate and deallocate properly your arrays. Many program development environments
such as Dev C++ atwww.bloodshed.net! provide debugging possibilities. Beware however that there may be
segmentation errors which occur due to errors in libraries of the operating system. (Drawing: courtesy by
Victoria Popsueva 2003.)

6.3.1 Declaration of fixed-sized vectors and matrices

In the program below we discuss some essential features of vector and matrix handling where
the dimensions are declared in the program code.

In line a we have a standard C++ declaration of a vector. The compiler reserves memory to
store five integers. The elements are vec[0], vec[l],....,vec[4]. Note that the numbering
of elements starts with zero. Declarations of other data types are similar, including structure
data.

The symbol vec is an element in memory containing the address to the first element vec[0]
and is a pointer to a vector of five integer elements.

In line b we have a standard fixed-size C++ declaration of a matrix. Again the elements
start with zero, matr[0][0], matr[O][1], ..... , matr[0][4], matr[1][0O],.... This se-
quence of elements also shows how data are stored in memory. For example, the element
matr[1][0] follows matr[0][4]. This is important in order to produce an efficient code and
avoid memory stride.

There is one further important point concerning matrix declaration. In a similar way as for
the symbol vec, matr is an element in memory which contains an address to a vector of three
elements, but now these elements are not integers. Each element is a vector of five integers.
This is the correct way to understand the declaration in line b. With respect to pointers this
means that matris pointer-to-a-pointer-to-an-integer which we can write *xmatr. Furthermore
xmatr is a-pointer-to-a-pointer of five integers. This interpretation is important when we want
to transfer vectors and matrices to a function.

In line ¢ we transfer vec[] and matr[]1[] to the function sub_1(). To be specific, we trans-
fer the addresses of vec[] and matr[][] to sub 1().
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In line d we have the function definition of subfunction(). The int vec[] is a pointer to an
integer. Alternatively we could write int «vec. The first version is better. It shows that it is a
vector of several integers, but not how many. The second version could equally well be used
to transfer the address to a single integer element. Such a declaration does not distinguish
between the two cases.

The next definition is int matr[]1[5]. This is a pointer to a vector of five elements and the
compiler must be told that each vector element contains five integers. Here an alternative
version could be int (xmatr)[5] which clearly specifies that matr is a pointer to a vector of five
integers.

int main()

{
int k,m, row = 3, col = 5;
int vec[5]; // line a

int matr[3]1[5]1; // line b
// Fill in vector vec
for (k = 0; k < col; k++) vec[k] = k;
// fill in matr
for (m = 0; m < row; m++){
for (k = 0; k < col ; k++) matr[m][k] = m + 10xk;
}
// write out the vector
cout << °° Content of vector vec:
for (k = 0; k < col; k++){
cout << vec[k] << endl;

<< endl;

}

// Then write out the matrix
cout << *° Content of matrix matr:'' << endl;
for (m = 0; m < row; m++){

for (k = 0; k < col ; k++){

cout << matr[m][k] << endl;

}
}
subfunction(row, col, vec, matr); // line ¢
return 0;

} // end main function

void subfunction(int row, int col, int vec[], int matr[][5]1); // line d

{
int k, m;
// write out the vector
cout << °° Content of vector vec in subfunction:'' << endl;

for (k = 0; k < col; k++){
cout << vec[k] << endl;

}
