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Preface

So, ultimately, in order to understand nature it may be necessary to have a deeper understanding
of mathematical relationships. But the real reason is that the subject is enjoyable, and although we
humans cut nature up in different ways, and we have different courses in different departments, such
compartmentalization is really artificial, and we should take our intellectual pleasures where we find
them. Richard Feynman, The Laws of Thermodynamics.

Why a preface you may ask? Isn’t that just a mere exposition of a raison d’être of an
author’s choice of material, preferences, biases, teaching philosophy etc.? To a large extent I
can answer in the affirmative to that. A preface ought to be personal. Indeed, what you will
see in the various chapters of these notes represents how I perceive computational physics
should be taught.

This set of lecture notes serves the scope of presenting to you and train you in an algorith-
mic approach to problems in the sciences, represented here by the unity of three disciplines,
physics, mathematics and informatics. This trinity outlines the emerging field of computa-
tional physics.

Our insight in a physical system, combined with numerical mathematics gives us the rules
for setting up an algorithm, viz. a set of rules for solving a particular problem. Our under-
standing of the physical system under study is obviously gauged by the natural laws at play,
the initial conditions, boundary conditions and other external constraints which influence the
given system. Having spelled out the physics, for example in the form of a set of coupled
partial differential equations, we need efficient numerical methods in order to set up the final
algorithm. This algorithm is in turn coded into a computer program and executed on available
computing facilities. To develop such an algorithmic approach, you will be exposed to several
physics cases, spanning from the classical pendulum to quantummechanical systems. We will
also present some of the most popular algorithms from numerical mathematics used to solve
a plethora of problems in the sciences. Finally we will codify these algorithms using some of
the most widely used programming languages, presently C, C++ and Fortran and its most
recent standard Fortran 20031. However, a high-level and fully object-oriented language like
Python is now emerging as a good alternative although C++ and Fortran still outperform
Python when it comes to computational speed. In this text we offer an approach where one
can write all programs in C/C++ or Fortran. We will also show you how to develop large
programs in Python interfacing C++ and/or Fortran functions for those parts of the program
which are CPU intensive. Such an approach allows you to structure the flow of data in a high-
level language like Python while tasks of a mere repetitive and CPU intensive nature are left
to low-level languages like C++ or Fortran. Python allows you also to smoothly interface your
program with other software, such as plotting programs or operating system instructions.

1 Throughout this text we refer to Fortran 2003 as Fortran, implying the latest standard. Fortran 2008 will
only add minor changes to Fortran 2003.
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A typical Python program you may end up writing contains everything from compiling and
running your codes to preparing the body of a file for writing up your report.

Computer simulations are nowadays an integral part of contemporary basic and applied re-
search in the sciences. Computation is becoming as important as theory and experiment. In
physics, computational physics, theoretical physics and experimental physics are all equally
important in our daily research and studies of physical systems. Physics is the unity of theory,
experiment and computation2. Moreover, the ability "to compute" forms part of the essen-
tial repertoire of research scientists. Several new fields within computational science have
emerged and strengthened their positions in the last years, such as computational materials
science, bioinformatics, computational mathematics and mechanics, computational chemistry
and physics and so forth, just to mention a few. These fields underscore the importance of sim-
ulations as a means to gain novel insights into physical systems, especially for those cases
where no analytical solutions can be found or an experiment is too complicated or expensive
to carry out. To be able to simulate large quantal systems with many degrees of freedom
such as strongly interacting electrons in a quantum dot will be of great importance for future
directions in novel fields like nano-techonology. This ability often combines knowledge from
many different subjects, in our case essentially from the physical sciences, numerical math-
ematics, computing languages, topics from high-performace computing and some knowledge
of computers.

In 1999, when I started this course at the department of physics in Oslo, computational
physics and computational science in general were still perceived by the majority of physi-
cists and scientists as topics dealing with just mere tools and number crunching, and not as
subjects of their own. The computational background of most students enlisting for the course
on computational physics could span from dedicated hackers and computer freaks to people
who basically had never used a PC. The majority of undergraduate and graduate students
had a very rudimentary knowledge of computational techniques and methods. Questions like
’do you know of better methods for numerical integration than the trapezoidal rule’ were not
uncommon. I do happen to know of colleagues who applied for time at a supercomputing
centre because they needed to invert matrices of the size of 104×104 since they were using
the trapezoidal rule to compute integrals. With Gaussian quadrature this dimensionality was
easily reduced to matrix problems of the size of 102×102, with much better precision.

Less than ten years later most students have now been exposed to a fairly uniform introduc-
tion to computers, basic programming skills and use of numerical exercises. Practically every
undergraduate student in physics has now made a Matlab or Maple simulation of for example
the pendulum, with or without chaotic motion. Nowadays most of you are familiar, through
various undergraduate courses in physics and mathematics, with interpreted languages such
as Maple, Matlab and/or Mathematica. In addition, the interest in scripting languages such
as Python or Perl has increased considerably in recent years. The modern programmer would
typically combine several tools, computing environments and programming languages. A typ-
ical example is the following. Suppose you are working on a project which demands extensive
visualizations of the results. To obtain these results, that is to solve a physics problems like ob-
taining the density profile of a Bose-Einstein condensate, you need however a program which
is fairly fast when computational speed matters. In this case you would most likely write a

2 We mentioned previously the trinity of physics, mathematics and informatics. Viewing physics as the trinity
of theory, experiment and simulations is yet another example. It is obviously tempting to go beyond the
sciences. History shows that triunes, trinities and for example triple deities permeate the Indo-European
cultures (and probably all human cultures), from the ancient Celts and Hindus to modern days. The ancient
Celts revered many such trinues, their world was divided into earth, sea and air, nature was divided in animal,
vegetable and mineral and the cardinal colours were red, yellow and blue, just to mention a few. As a curious
digression, it was a Gaulish Celt, Hilary, philosopher and bishop of Poitiers (AD 315-367) in his work De
Trinitate who formulated the Holy Trinity concept of Christianity, perhaps in order to accomodate millenia of
human divination practice.
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high-performance computing program using Monte Carlo methods in languages which are
tailored for that. These are represented by programming languages like Fortran and C++.
However, to visualize the results you would find interpreted languages like Matlab or script-
ing languages like Python extremely suitable for your tasks. You will therefore end up writing
for example a script in Matlab which calls a Fortran or C++ program where the number
crunching is done and then visualize the results of say a wave equation solver via Matlab’s
large library of visualization tools. Alternatively, you could organize everything into a Python
or Perl script which does everything for you, calls the Fortran and/or C++ programs and
performs the visualization in Matlab or Python. Used correctly, these tools, spanning from
scripting languages to high-performance computing languages and vizualization programs,
speed up your capability to solve complicated problems. Being multilingual is thus an advan-
tage which not only applies to our globalized modern society but to computing environments
as well. This text shows you how to use C++ and Fortran as programming languages.

There is however more to the picture than meets the eye. Although interpreted languages
like Matlab, Mathematica and Maple allow you nowadays to solve very complicated problems,
and high-level languages like Python can be used to solve computational problems, compu-
tational speed and the capability to write an efficient code are topics which still do matter.
To this end, the majority of scientists still use languages like C++ and Fortran to solve sci-
entific problems. When you embark on a master or PhD thesis, you will most likely meet
these high-performance computing languages. This course emphasizes thus the use of pro-
gramming languages like Fortran, Python and C++ instead of interpreted ones like Matlab
or Maple. You should however note that there are still large differences in computer time be-
tween for example numerical Python and a corresponding C++ program for many numerical
applications in the physical sciences, with a code in C++ or Fortran being the fastest.

Computational speed is not the only reason for this choice of programming languages. An-
other important reason is that we feel that at a certain stage one needs to have some insights
into the algorithm used, its stability conditions, possible pitfalls like loss of precision, ranges
of applicability, the possibility to improve the algorithm and taylor it to special purposes etc
etc. One of our major aims here is to present to you what we would dub ’the algorithmic
approach’, a set of rules for doing mathematics or a precise description of how to solve a
problem. To device an algorithm and thereafter write a code for solving physics problems
is a marvelous way of gaining insight into complicated physical systems. The algorithm you
end up writing reflects in essentially all cases your own understanding of the physics and
the mathematics (the way you express yourself) of the problem. We do therefore devote quite
some space to the algorithms behind various functions presented in the text. Especially, in-
sight into how errors propagate and how to avoid them is a topic we would like you to pay
special attention to. Only then can you avoid problems like underflow, overflow and loss of
precision. Such a control is not always achievable with interpreted languages and canned
functions where the underlying algorithm and/or code is not easily accesible. Although we
will at various stages recommend the use of library routines for say linear algebra3, our
belief is that one should understand what the given function does, at least to have a mere
idea. With such a starting point, we strongly believe that it can be easier to develope more
complicated programs on your own using Fortran, C++ or Python.

We have several other aims as well, namely:

• We would like to give you an opportunity to gain a deeper understanding of the physics
you have learned in other courses. In most courses one is normally confronted with simple
systems which provide exact solutions and mimic to a certain extent the realistic cases.
Many are however the comments like ’why can’t we do something else than the particle in

3 Such library functions are often taylored to a given machine’s architecture and should accordingly run faster
than user provided ones.
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a box potential?’. In several of the projects we hope to present some more ’realistic’ cases
to solve by various numerical methods. This also means that we wish to give examples of
how physics can be applied in a much broader context than it is discussed in the traditional
physics undergraduate curriculum.

• To encourage you to "discover" physics in a way similar to how researchers learn in the
context of research.

• Hopefully also to introduce numerical methods and new areas of physics that can be stud-
ied with the methods discussed.

• To teach structured programming in the context of doing science.
• The projects we propose are meant to mimic to a certain extent the situation encountered

during a thesis or project work. You will tipically have at your disposal 2-3 weeks to solve
numerically a given project. In so doing you may need to do a literature study as well.
Finally, we would like you to write a report for every project.

Our overall goal is to encourage you to learn about science through experience and by asking
questions. Our objective is always understanding and the purpose of computing is further
insight, not mere numbers! Simulations can often be considered as experiments. Rerunning
a simulation need not be as costly as rerunning an experiment.

Needless to say, these lecture notes are upgraded continuously, from typos to new input.
And we do always benefit from your comments, suggestions and ideas for making these notes
better. It’s through the scientific discourse and critics we advance. Moreover, I have bene-
fitted immensely from many discussions with fellow colleagues and students. In particular I
must mention my colleague Torgeir Engeland, whose input through the last years has consid-
erably improved these lecture notes.

Finally, I would like to add a petit note on referencing. These notes have evolved over
many years and the idea is that they should end up in the format of a web-based learning
environment for doing computational science. It will be fully free and hopefully represent a
much more efficient way of conveying teaching material than traditional textbooks. I have not
yet settled on a specific format, so any input is welcome. At present however, it is very easy
for me to upgrade and improve the material on say a yearly basis, from simple typos to adding
new material. When accessing the web page of the course, you will have noticed that you can
obtain all source files for the programs discussed in the text. Many people have thus written
to me about how they should properly reference this material and whether they can freely
use it. My answer is rather simple. You are encouraged to use these codes, modify them,
include them in publications, thesis work, your lectures etc. As long as your use is part of the
dialectics of science you can use this material freely. However, since many weekends have
elapsed in writing several of these programs, testing them, sweating over bugs, swearing in
front of a f*@?%g code which didn’t compile properly ten minutes before monday morning’s
eight o’clock lecture etc etc, I would dearly appreciate in case you find these codes of any
use, to reference them properly. That can be done in a simple way, refer to M. Hjorth-Jensen,
Computational Physics, University of Oslo (2012). The weblink to the course should also be
included. Hope it is not too much to ask for. Enjoy!
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Part I

Introduction to programming and numerical

methods



The first part of this text aims at giving an introduction to basic C++ and Fortran pro-
gramming, including numerical methods for computing integrals, finding roots of functions
and numerical interpolation and extrapolation. It serves also the aim of introducing the first
examples on parallelization of codes for numerical integration.



Chapter 1

Introduction

In the physical sciences we often encounter problems of evaluating various properties of a
given function f (x). Typical operations are differentiation, integration and finding the roots of
f (x). In most cases we do not have an analytical expression for the function f (x) and we cannot
derive explicit formulae for derivatives etc. Even if an analytical expression is available, the
evaluation of certain operations on f (x) are so difficult that we need to resort to a numerical
evaluation. More frequently, f (x) is the result of complicated numerical operations and is
thus known only at a set of discrete points and needs to be approximated by some numerical
methods in order to obtain derivatives, etc etc.

The aim of these lecture notes is to give you an introduction to selected numerical methods
which are encountered in the physical sciences. Several examples, with varying degrees of
complexity, will be used in order to illustrate the application of these methods.

The text gives a survey over some of the most used methods in computational physics
and each chapter ends with one or more applications to realistic systems, from the structure
of a neutron star to the description of quantum mechanical systems through Monte-Carlo
methods. Among the algorithms we discuss, are some of the top algorithms in computational
science. In recent surveys by Dongarra and Sullivan [1] and Cipra [2], the list over the ten
top algorithms of the 20th century include

1. The Monte Carlo method or Metropolis algorithm, devised by John von Neumann, Stanis-
law Ulam, and Nicholas Metropolis, discussed in chapters 11-14.

2. The simplex method of linear programming, developed by George Dantzig.
3. Krylov Subspace Iteration method for large eigenvalue problems in particular, developed

by Magnus Hestenes, Eduard Stiefel, and Cornelius Lanczos, discussed in chapter 7.
4. The Householder matrix decomposition, developed by Alston Householder and discussed

in chapter 7.
5. The Fortran compiler, developed by a team lead by John Backus, codes used throughout

this text.
6. The QR algorithm for eigenvalue calculation, developed by Joe Francis, discussed in chap-

ter 7
7. The Quicksort algorithm, developed by Anthony Hoare.
8. Fast Fourier Transform, developed by James Cooley and John Tukey.
9. The Integer Relation Detection Algorithm, developed by Helaman Ferguson and Rodney

10. The fast Multipole algorithm, developed by Leslie Greengard and Vladimir Rokhlin; (to
calculate gravitational forces in an N-body problem normally requires N2 calculations. The
fast multipole method uses order N calculations, by approximating the effects of groups of
distant particles using multipole expansions)

The topics we cover start with an introduction to C++ and Fortran programming (with
digressions to Python as well) combining it with a discussion on numerical precision, a point

3
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we feel is often neglected in computational science. This chapter serves also as input to
our discussion on numerical derivation in chapter 3. In that chapter we introduce several
programming concepts such as dynamical memory allocation and call by reference and value.
Several program examples are presented in this chapter. For those who choose to program in
C++ we give also an introduction to how to program classes and the auxiliary library Blitz++,
which contains several useful classes for numerical operations on vectors and matrices. This
chapter contains also sections on numerical interpolation and extrapolation. Chapter 4 deals
with the solution of non-linear equations and the finding of roots of polynomials. The link
to Blitz++, matrices and selected algorithms for linear algebra problems are dealt with in
chapter 6.

Therafter we switch to numerical integration for integrals with few dimensions, typically
less than three, in chapter 5. The numerical integration chapter serves also to justify the
introduction of Monte-Carlo methods discussed in chapters 11 and 12. There, a variety of
applications are presented, from integration of multidimensional integrals to problems in
statistical physics such as random walks and the derivation of the diffusion equation from
Brownian motion. Chapter 13 continues this discussion by extending to studies of phase tran-
sitions in statistical physics. Chapter 14 deals with Monte-Carlo studies of quantal systems,
with an emphasis on variational Monte Carlo methods and diffusion Monte Carlo methods.
In chapter 7 we deal with eigensystems and applications to e.g., the Schrödinger equation
rewritten as a matrix diagonalization problem. Problems from scattering theory are also dis-
cussed, together with the most used solution methods for systems of linear equations. Finally,
we discuss various methods for solving differential equations and partial differential equa-
tions in chapters 8-10 with examples ranging from harmonic oscillations, equations for heat
conduction and the time dependent Schrödinger equation. The emphasis is on various finite
difference methods.

We assume that you have taken an introductory course in programming and have some
familiarity with high-level or low-level and modern languages such as Java, Python, C++,
Fortran 77/90/95, etc. Fortran1 and C++ are examples of compiled low-level languages, in
contrast to interpreted ones like Maple or Matlab. In such compiled languages the computer
translates an entire subprogram into basic machine instructions all at one time. In an in-
terpreted language the translation is done one statement at a time. This clearly increases
the computational time expenditure. More detailed aspects of the above two programming
languages will be discussed in the lab classes and various chapters of this text.

There are several texts on computational physics on the market, see for example Refs. [3–
10], ranging from introductory ones to more advanced ones. Most of these texts treat however
in a rather cavalier way the mathematics behind the various numerical methods. We’ve also
succumbed to this approach, mainly due to the following reasons: several of the methods
discussed are rather involved, and would thus require at least a one-semester course for an
introduction. In so doing, little time would be left for problems and computation. This course
is a compromise between three disciplines, numerical methods, problems from the physical
sciences and computation. To achieve such a synthesis, we will have to relax our presentation
in order to avoid lengthy and gory mathematical expositions. You should also keep in mind
that computational physics and science in more general terms consist of the combination of
several fields and crafts with the aim of finding solution strategies for complicated problems.
However, where we do indulge in presenting more formalism, we have borrowed heavily from
several texts on mathematical analysis.

1 With Fortran we will consistently mean Fortran 2008. There are no programming examples in Fortran 77 in
this text.
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1.1 Choice of programming language

As programming language we have ended up with preferring C++, but all examples discussed
in the text have their corresponding Fortran and Python programs on the webpage of this text.

Fortran (FORmula TRANslation) was introduced in 1957 and remains in many scientific
computing environments the language of choice. The latest standard, see Refs. [11–14], in-
cludes extensions that are familiar to users of C++. Some of the most important features of
Fortran include recursive subroutines, dynamic storage allocation and pointers, user defined
data structures, modules, and the ability to manipulate entire arrays. However, there are sev-
eral good reasons for choosing C++ as programming language for scientific and engineering
problems. Here are some:

• C++ is now the dominating language in Unix and Windows environments. It is widely
available and is the language of choice for system programmers. It is very widespread for
developments of non-numerical software

• The C++ syntax has inspired lots of popular languages, such as Perl, Python and Java.
• It is an extremely portable language, all Linux and Unix operated machines have a C++

compiler.
• In the last years there has been an enormous effort towards developing numerical libraries

for C++. Numerous tools (numerical libraries such as MPI [15–17]) are written in C++ and
interfacing them requires knowledge of C++. Most C++ and Fortran compilers compare
fairly well when it comes to speed and numerical efficiency. Although Fortran 77 and C are
regarded as slightly faster than C++ or Fortran, compiler improvements during the last
few years have diminshed such differences. The Java numerics project has lost some of its
steam recently, and Java is therefore normally slower than C++ or Fortran.

• Complex variables, one of Fortran’s strongholds, can also be defined in the new ANSI C++
standard.

• C++ is a language which catches most of the errors as early as possible, typically at compi-
lation time. Fortran has some of these features if one omits implicit variable declarations.

• C++ is also an object-oriented language, to be contrasted with C and Fortran. This means
that it supports three fundamental ideas, namely objects, class hierarchies and polymor-
phism. Fortran has, through the MODULE declaration the capability of defining classes, but
lacks inheritance, although polymorphism is possible. Fortran is then considered as an
object-based programming language, to be contrasted with C++ which has the capability
of relating classes to each other in a hierarchical way.

An important aspect of C++ is its richness with more than 60 keywords allowing for a
good balance between object orientation and numerical efficiency. Furthermore, careful pro-
gramming can results in an efficiency close to Fortran 77. The language is well-suited for
large projects and has presently good standard libraries suitable for computational science
projects, although many of these still lag behind the large body of libraries for numerics
available to Fortran programmers. However, it is not difficult to interface libraries written in
Fortran with C++ codes, if care is exercised. Other weak sides are the fact that it can be easy
to write inefficient code and that there are many ways of writing the same things, adding to
the confusion for beginners and professionals as well. The language is also under continuous
development, which often causes portability problems.

C++ is also a difficult language to learn. Grasping the basics is rather straightforward,
but takes time to master. A specific problem which often causes unwanted or odd errors is
dynamic memory management.

The efficiency of C++ codes are close to those provided by Fortran. This means often that
a code written in Fortran 77 can be faster, however for large numerical projects C++ and
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Fortran are to be preferred. If speed is an issue, one could port critical parts of the code to
Fortran 77.

1.1.0.1 Future plans

Since our undergraduate curriculum has changed considerably from the beginning of the fall
semester of 2007, with the introduction of Python as programming language, the content of
this course will change accordingly from the fall semester 2009. C++ and Fortran will then
coexist with Python and students can choose between these three programming languages.
The emphasis in the text will be on C++ programming, but how to interface C++ or Fortran
programs with Python codes will also be discussed. Tools like Cython (or SWIG) are highly
recommended, see for example the Cython link at http://cython.org.

1.2 Designing programs

Before we proceed with a discussion of numerical methods, we would like to remind you of
some aspects of program writing.

In writing a program for a specific algorithm (a set of rules for doing mathematics or a
precise description of how to solve a problem), it is obvious that different programmers will
apply different styles, ranging from barely readable 2 (even for the programmer) to well doc-
umented codes which can be used and extended upon by others in e.g., a project. The lack of
readability of a program leads in many cases to credibility problems, difficulty in letting oth-
ers extend the codes or remembering oneself what a certain statement means, problems in
spotting errors, not always easy to implement on other machines, and so forth. Although you
should feel free to follow your own rules, we would like to focus certain suggestions which
may improve a program. What follows here is a list of our recommendations (or biases/preju-
dices).

First about designing a program.

• Before writing a single line, have the algorithm clarified and understood. It is crucial to
have a logical structure of e.g., the flow and organization of data before one starts writing.

• Always try to choose the simplest algorithm. Computational speed can be improved upon
later.

• Try to write a as clear program as possible. Such programs are easier to debug, and al-
though it may take more time, in the long run it may save you time. If you collaborate with
other people, it reduces spending time on debugging and trying to understand what the
codes do. A clear program will also allow you to remember better what the program really
does!

• Implement a working code with emphasis on design for extensions, maintenance etc. Focus
on the design of your code in the beginning and don’t think too much about efficiency
before you have a thoroughly debugged and verified program. A rule of thumb is the so-
called 80−20rule, 80 % of the CPU time is spent in 20 % of the code and you will experience
that typically only a small part of your code is responsible for most of the CPU expenditure.
Therefore, spend most of your time in devising a good algorithm.

• The planning of the program should be from top down to bottom, trying to keep the flow as
linear as possible. Avoid jumping back and forth in the program. First you need to arrange

2 As an example, a bad habit is to use variables with no specific meaning, like x1, x2 etc, or names for
subprograms which go like routine1, routine2 etc.

http://cython.org
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the major tasks to be achieved. Then try to break the major tasks into subtasks. These can
be represented by functions or subprograms. They should accomplish limited tasks and
as far as possible be independent of each other. That will allow you to use them in other
programs as well.

• Try always to find some cases where an analytical solution exists or where simple test
cases can be applied. If possible, devise different algorithms for solving the same problem.
If you get the same answers, you may have coded things correctly or made the same error
twice.

• When you have a working code, you should start thinking of the efficiency. Analyze the
efficiency with a tool (profiler) to predict the CPU-intensive parts. Attack then the CPU-
intensive parts after the program reproduces benchmark results.

However, although we stress that you should post-pone a discussion of the efficiency of
your code to the stage when you are sure that it runs correctly, there are some simple guide-
lines to follow when you design the algorithm.

• Avoid lists, sets etc., when arrays can be used without too much waste of memory. Avoid
also calls to functions in the innermost loop since that produces an overhead in the call.

• Heavy computation with small objects might be inefficient, e.g., vector of class complex
objects

• Avoid small virtual functions (unless they end up in more than (say) 5 multiplications)
• Save object-oriented constructs for the top level of your code.
• Use taylored library functions for various operations, if possible.
• Reduce pointer-to-pointer-to....-pointer links inside loops.
• Avoid implicit type conversion, use rather the explicit keyword when declaring construc-

tors in C++.
• Never return (copy) of an object from a function, since this normally implies a hidden

allocation.

Finally, here are some of our favorite approaches to code writing.

• Use always the standard ANSI version of the programming language. Avoid local dialects
if you wish to port your code to other machines.

• Add always comments to describe what a program or subprogram does. Comment lines
help you remember what you did e.g., one month ago.

• Declare all variables. Avoid totally the IMPLICIT statement in Fortran. The program will
be more readable and help you find errors when compiling.

• Do not use GOTO structures in Fortran. Although all varieties of spaghetti are great culi-
naric temptations, spaghetti-like Fortran with many GOTO statements is to be avoided.
Extensive amounts of time may be wasted on decoding other authors’ programs.

• When you name variables, use easily understandable names. Avoid v1 when you can
use speed_of_light . Associatives names make it easier to understand what a specific
subprogram does.

• Use compiler options to test program details and if possible also different compilers. They
make errors too.

• Writing codes in C++ and Fortran may often lead to segmentation faults. This means in
most cases that we are trying to access elements of an array which are not available.
When developing a code it is then useful to compile with debugging options. The use of
debuggers and profiling tools is something we highly recommend during the development
of a program.





Chapter 2

Introduction to C++ and Fortran

Abstract This chapters aims at catching two birds with a stone; to introduce to you essential
features of the programming languages C++ and Fortran with a brief reminder on Python
specific topics, and to stress problems like overflow, underflow, round off errors and even-
tually loss of precision due to the finite amount of numbers a computer can represent. The
programs we discuss are tailored to these aims.

2.1 Getting Started

In programming languages1 we encounter data entities such as constants, variables, re-
sults of evaluations of functions etc. Common to these objects is that they can be rep-
resented through the type concept. There are intrinsic types and derived types. Intrinsic
types are provided by the programming language whereas derived types are provided by
the programmer. If one specifies the type to be for example INTEGER (KIND=2) for Fortran
2 or short int/int in C++, the programmer selects a particular date type with 2 bytes
(16 bits) for every item of the class INTEGER (KIND=2) or int. Intrinsic types come in two
classes, numerical (like integer, real or complex) and non-numeric (as logical and charac-
ter). The general form for declaring variables is data type name of variable and Table
2.1 lists the standard variable declarations of C++ and Fortran (note well that there be may
compiler and machine differences from the table below). An important aspect when declar-
ing variables is their region of validity. Inside a function we define a a variable through the
expression int var or INTEGER :: var . The question is whether this variable is available
in other functions as well, moreover where is var initialized and finally, if we call the function
where it is declared, is the value conserved from one call to the other?

Both C++ and Fortran operate with several types of variables and the answers to these
questions depend on how we have defined for example an integer via the statement int var.
Python on the other hand does not use variable or function types (they are not explicitely
written), allowing thereby for a better potential for reuse of the code.

1 For more detailed texts on C++ programming in engineering and science are the books by Flowers [18]
and Barton and Nackman [19]. The classic text on C++ programming is the book of Bjarne Stoustrup [20].
The Fortran 95 standard is well documented in Refs. [11–13] while the new details of Fortran 2003 can be
found in Ref. [14]. The reader should note that this is not a text on C++ or Fortran. It is therefore important
than one tries to find additional literature on these programming languages. Good Python texts on scientific
computing are [21,22].
2 Our favoured display mode for Fortran statements will be capital letters for language statements and low
key letters for user-defined statements. Note that Fortran does not distinguish between capital and low key
letters while C++ does.

9
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Table 2.1 Examples of variable declarations for C++ and Fortran . We reserve capital letters for Fortran
declaration statements throughout this text, although Fortran is not sensitive to upper or lowercase letters.
Note that there are machines which allow for more than 64 bits for doubles. The ranges listed here may
therefore vary.

type in C++ and Fortran bits range

int/INTEGER (2) 16 −32768to 32767
unsigned int 16 0 to 65535
signed int 16 −32768to 32767
short int 16 −32768to 32767
unsigned short int 16 0 to 65535
signed short int 16 −32768to 32767
int/long int/INTEGER(4) 32 −2147483648to 2147483647
signed long int 32 −2147483648to 2147483647
float/REAL(4) 32 10−44 to 10+38

double/REAL(8) 64 10−322 to 10e+308

The following list may help in clarifying the above points:

type of variable validity

local variables defined within a function, only available within the
scope of the function.

formal parameter If it is defined within a function it is only available within
that specific function.

global variables Defined outside a given function, available for all func-
tions from the point where it is defined.

In Table 2.1 we show a list of some of the most used language statements in Fortran and
C++.

In addition, both C++ and Fortran allow for complex variables. In Fortran we would declare
a complex variable as COMPLEX (KIND=16):: x, y which refers to a double with word length
of 16 bytes. In C++ we would need to include a complex library through the statements

#include <complex>

complex<double> x, y;

We will discuss the above declaration complex<double> x,y; in more detail in chapter 3.

2.1.1 Scientific hello world

Our first programming encounter is the ’classical’ one, found in almost every textbook on
computer languages, the ’hello world’ code, here in a scientific disguise. We present first the
C version.

http://folk.uio.no/mhjensen/compphys/programs/chapter02/cpp/program1.cpp

/* comments in C begin like this and end with */

#include <stdlib.h> /* atof function */

#include <math.h> /* sine function */

#include <stdio.h> /* printf function */

int main (int argc, char* argv[])

{

http://folk.uio.no/mhjensen/compphys/programs/chapter02/cpp/program1.cpp
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Fortran C++

Program structure

PROGRAM something main ()
FUNCTION something(input) double (int) something(input)
SUBROUTINE something(inout)

Data type declarations

REAL (4) x, y float x, y;
REAL(8) :: x, y double x, y;
INTEGER :: x, y int x,y;
CHARACTER :: name char name;
REAL(8), DIMENSION(dim1,dim2) :: x double x[dim1][dim2];
INTEGER, DIMENSION(dim1,dim2) :: x int x[dim1][dim2];
LOGICAL :: x
TYPE name struct name {
declarations declarations;
END TYPE name }
POINTER :: a double (int) *a;
ALLOCATE new;
DEALLOCATE delete;

Logical statements and control structure

IF ( a == b) THEN if ( a == b)
b=0 { b=0;
ENDIF }
DO WHILE (logical statement) while (logical statement)
do something {do something
ENDDO }
IF ( a>= b ) THEN if ( a >= b)
b=0 { b=0;
ELSE else
a=0 a=0; }
ENDIF
SELECT CASE (variable) switch(variable)
CASE (variable=value1) {
do something case 1:
CASE (. . .) variable=value1;
. . . do something;

break;
END SELECT case 2:

do something; break; . . .
}

DO i=0, end, 1 for( i=0; i<= end; i++)
do something { do something ;
ENDDO }

Table 2.2 Elements of programming syntax.

double r, s; /* declare variables */

r = atof(argv[1]); /* convert the text argv[1] to double */

s = sin(r);

printf("Hello, World! sin(%g)=%g\n", r, s);

return 0; /* success execution of the program */

}

The compiler must see a declaration of a function before you can call it (the compiler
checks the argument and return types). The declaration of library functions appears in so-
called header files that must be included in the program, for example #include <stdlib.h.

We call three functions atof, sin, printf and these are declared in three different
header files. The main program is a function called main with a return value set to an integer,
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returning 0 if success. The operating system stores the return value, and other programs/u-
tilities can check whether the execution was successful or not. The command-line arguments
are transferred to the main function through the statement

int main (int argc, char* argv[])

The integer argc stands for the number of command-line arguments, set to one in our case,
while argv is a vector of strings containing the command-line arguments with argv[0]

containing the name of the program and argv[1], argv[2], ... are the command-line args,
i.e., the number of lines of input to the program.

This means that we would run the programs as mhjensen@compphys:./myprogram.exe 0.3.
The name of the program enters argv[0] while the text string 0.2 enters argv[1]. Here we
define a floating point variable, see also below, through the keywords float for single pre-
cision real numbers and double for double precision. The function atof transforms a text
(argv[1]) to a float. The sine function is declared in math.h, a library which is not automat-

ically included and needs to be linked when computing an executable file.
With the command printf we obtain a formatted printout. The printf syntax is used for

formatting output in many C-inspired languages (Perl, Python, awk, partly C++).
In C++ this program can be written as

// A comment line begins like this in C++ programs

using namespace std;

#include <iostream>

#include <cstdlib>

#include <cmath>

int main (int argc, char* argv[])

{

// convert the text argv[1] to double using atof:

double r = atof(argv[1]);

double s = sin(r);

cout << "Hello, World! sin(" << r << ")=" << s << endl;

// success

return 0;

}

We have replaced the call to printf with the standard C++ function cout. The header
file iostream is then needed. In addition, we don’t need to declare variables like r and s
at the beginning of the program. I personally prefer however to declare all variables at the
beginning of a function, as this gives me a feeling of greater readability. Note that we have
used the declaration using namespace std;. Namespace is a way to collect all functions
defined in C++ libraries. If we omit this declaration on top of the program we would have to
add the declaration std in front of cout or cin. Our program would then read

// Hello world code without using namespace std

#include <iostream>

#include <cstdlib>

#include <cmath>

int main (int argc, char* argv[])

{

// convert the text argv[1] to double using atof:

double r = atof(argv[1]);

double s = sin(r);

std::cout << "Hello, World! sin(" << r << ")=" << s << endl;

// success

return 0;

}
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Another feature which is worth noting is that we have skipped exception handlings here.
In chapter 3 we discuss examples that test our input from the command line. But it is easy to
add such a feature, as shown in our modified hello world program

// Hello world code with exception handling

using namespace std;

#include <cstdlib>

#include <cmath>

#include <iostream>

int main (int argc, char* argv[])

{

// Read in output file, abort if there are too few command-line arguments

if( argc <= 1 ){

cout << "Bad Usage: " << argv[0] <<

" read also a number on the same line, e.g., prog.exe 0.2" << endl;

exit(1); // here the program stops.

}

// convert the text argv[1] to double using atof:

double r = atof(argv[1]);

double s = sin(r);

cout << "Hello, World! sin(" << r << ")=" << s << endl;

// success

return 0;

}

Here we test that we have more than one argument. If not, the program stops and writes to
screen an error message. Observe also that we have included the mathematics library via the
#include <cmath> declaration.
To run these programs, you need first to compile and link them in order to obtain an

executable file under operating systems like e.g., UNIX or Linux. Before we proceed we give
therefore examples on how to obtain an executable file under Linux/Unix.

In order to obtain an executable file for a C++ program, the following instructions under
Linux/Unix can be used

c++ -c -Wall myprogram.c

c++ -o myprogram myprogram.o

where the compiler is called through the command c++. The compiler option -Wall means
that a warning is issued in case of non-standard language. The executable file is in this case
myprogram. The option -c is for compilation only, where the program is translated into ma-
chine code, while the -o option links the produced object file myprogram.o and produces the
executable myprogram .

The corresponding Fortran code is

http://folk.uio.no/mhjensen/compphys/programs/chapter02/Fortran/program1.f90

PROGRAM shw

IMPLICIT NONE

REAL (KIND =8) :: r ! Input number

REAL (KIND=8) :: s ! Result

! Get a number from user

WRITE(*,*) 'Input a number: '

READ(*,*) r

! Calculate the sine of the number

s = SIN(r)

! Write result to screen

http://folk.uio.no/mhjensen/compphys/programs/chapter02/Fortran/program1.f90
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WRITE(*,*) 'Hello World! SINE of ', r, ' =', s

END PROGRAM shw

The first statement must be a program statement; the last statement must have a corre-
sponding end program statement. Integer numerical variables and floating point numerical
variables are distinguished. The names of all variables must be between 1 and 31 alphanu-
meric characters of which the first must be a letter and the last must not be an underscore.
Comments begin with a ! and can be included anywhere in the program. Statements are writ-
ten on lines which may contain up to 132 characters. The asterisks (*,*) following WRITE
represent the default format for output, i.e., the output is e.g., written on the screen. Sim-
ilarly, the READ(*,*) statement means that the program is expecting a line input. Note also
the IMPLICIT NONE statement which we strongly recommend the use of. In many Fortran 77
programs one can find statements like IMPLICIT REAL*8(a-h,o-z), meaning that all variables
beginning with any of the above letters are by default floating numbers. However, such a
usage makes it hard to spot eventual errors due to misspelling of variable names. With IM-
PLICIT NONE you have to declare all variables and therefore detect possible errors already
while compiling. I recommend strongly that you declare all variables when using Fortran.

We call the Fortran compiler (using free format) through

f90 -c -free myprogram.f90

f90 -o myprogram.x myprogram.o

Under Linux/Unix it is often convenient to create a so-called makefile, which is a script
which includes possible compiling commands, in order to avoid retyping the above lines every
once and then we have made modifcations to our program. A typical makefile for the above
cc compiling options is listed below

# General makefile for c - choose PROG = name of given program

# Here we define compiler option, libraries and the target

CC= c++ -Wall

PROG= myprogram

# Here we make the executable file

${PROG} : ${PROG}.o

${CC} ${PROG}.o -o ${PROG}

# whereas here we create the object file

${PROG}.o : ${PROG}.cpp

${CC} -c ${PROG}.cpp

If you name your file for ’makefile’, simply type the command make and Linux/Unix ex-
ecutes all of the statements in the above makefile. Note that C++ files have the extension
.cpp

For Fortran, a similar makefile is
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# General makefile for F90 - choose PROG = name of given program

# Here we define compiler options, libraries and the target

F90= f90

PROG= myprogram

# Here we make the executable file

${PROG} : ${PROG}.o

${F90} ${PROG}.o -o ${PROG}

# whereas here we create the object file

${PROG}.o : ${PROG}.f90

${F90} -c ${PROG}.f

Finally, for the sake of completeness, we list the corresponding Python code

http://folk.uio.no/mhjensen/compphys/programs/chapter02/python/program1.py

#!/usr/bin/env python

import sys, math

# Read in a string a convert it to a float

r = float(sys.argv[1])

s = math.sin(r)

print "Hello, World! sin(%g)=%12.6e" % (r,s)

where we have used a formatted printout with scientific notation. In Python we do not need
to declare variables. Mathematical functions like the sin function are imported from the math
module. For further references to Python and its syntax, we recommend the text of Hans
Petter Langtangen [22]. The corresponding codes in Python are available at the webpage of
the course. All programs are listed as a directory tree beginning with programs/chapterxx.
Each chapter has in turn three directories, one for C++, one for Fortran and finally one for
Python codes. The Fortran codes in this chapter can be found in the directory programs/chap-
ter02/Fortran.

2.2 Representation of Integer Numbers

In Fortran a keyword for declaration of an integer is INTEGER (KIND=n) , n = 2 reserves 2
bytes (16 bits) of memory to store the integer variable wheras n = 4 reserves 4 bytes (32 bits).
In Fortran, although it may be compiler dependent, just declaring a variable as INTEGER ,
reserves 4 bytes in memory as default.

In C++ keywords areshort int, int, long int, long long int. The byte-length is
compiler dependent within some limits. The GNU C++-compilers (called by gcc or g++)
assign 4 bytes (32 bits) to variables declared by int and long int. Typical byte-lengths
are 2, 4, 4 and 8 bytes, for the types given above. To see how many bytes are reserved for a
specific variable, C++ has a library function called sizeof(type) which returns the number
of bytes for type .

An example of a program declaration is

Fortran: INTEGER (KIND=2) :: age_of_participant

http://folk.uio.no/mhjensen/compphys/programs/chapter02/python/program1.py
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C++: short int age_of_participant;

Note that the (KIND=2) can be written as (2). Normally however, we will for Fortran pro-
grams just use the 4 bytes default assignment INTEGER .

In the above examples one bit is used to store the sign of the variable age_of_participant
and the other 15 bits are used to store the number, which then may range from zero to
215− 1= 32767. This should definitely suffice for human lifespans. On the other hand, if we
were to classify known fossiles by age we may need

Fortran: INTEGER (4) :: age_of_fossile
C++: int age_of_fossile;

Again one bit is used to store the sign of the variable age_of_fossile and the other 31 bits are
used to store the number which then may range from zero to 231−1= 2.147.483.647. In order
to give you a feeling how integer numbers are represented in the computer, think first of the
decimal representation of the number 417

417= 4×102+1×101+7×100,

which in binary representation becomes

417= an2n+an−12
n−1+an−22

n−2+ · · ·+a020,

where the coefficients ak with k = 0, . . . ,n are zero or one. They can be calculated through
successive division by 2 and using the remainder in each division to determine the numbers
an to a0. A given integer in binary notation is then written as

an2n+an−12
n−1+an−22

n−2+ · · ·+a020.

In binary notation we have thus

(417)10= (110100001)2,

since we have

(110100001)2 = 1×28+1×27+0×26+1×25+0×24+0×23+0×22+0×22+0×21+1×20.

To see this, we have performed the following divisions by 2

417/2=208 remainder 1 coefficient of 20 is 1
208/2=104 remainder 0 coefficient of 21 is 0
104/2=52 remainder 0 coefficient of 22 is 0
52/2=26 remainder 0 coefficient of 23 is 0
26/2=13 remainder 0 coefficient of 24 is 0
13/2= 6 remainder 1 coefficient of 25 is 1
6/2= 3 remainder 0 coefficient of 26 is 0
3/2= 1 remainder 1 coefficient of 27 is 1
1/2= 0 remainder 1 coefficient of 28 is 1

We see that nine bits are sufficient to represent 417. Normally we end up using 32 bits as
default for integers, meaning that our number reads

(417)10= (00000000000000000000000110100001)2,

A simple program which performs these operations is listed below. Here we employ the
modulus operation (with division by 2), which in C++ is given by the a%2 operator. In Fortran
we would call the function MOD(a,2) in order to obtain the remainder of a division by 2.
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http://folk.uio.no/mhjensen/compphys/programs/chapter02/cpp/program2.cpp

using namespace std;

#include <iostream>

int main (int argc, char* argv[])

{

int i;

int terms[32]; // storage of a0, a1, etc, up to 32 bits

int number = atoi(argv[1]);

// initialise the term a0, a1 etc

for (i=0; i < 32 ; i++){ terms[i] = 0;}

for (i=0; i < 32 ; i++){

terms[i] = number%2;

number /= 2;

}

// write out results

cout << `` Number of bytes used= '' << sizeof(number) << endl;

for (i=0; i < 32 ; i++){

cout << `` Term nr: `` << i << ``Value= `` << terms[i];

cout << endl;

}

return 0;

}

The C++ function sizeof yields the number of bytes reserved for a specific variable. Note
also the for construct. We have reserved a fixed array which contains the values of ai being
0 or 1, the remainder of a division by two. We have enforced the integer to be represented by
32 bits, or four bytes, which is the default integer representation.

Note that for 417 we need 9 bits in order to represent it in a binary notation, while a
number like the number 3 is given in an 32 bits word as

(3)10 = (00000000000000000000000000000011)2.

For this number 2 significant bits would be enough.
With these prerequesites in mind, it is rather obvious that if a given integer variable is

beyond the range assigned by the declaration statement we may encounter problems.
If we multiply two large integers n1×n2 and the product is too large for the bit size allocated

for that specific integer assignement, we run into an overflow problem. The most significant
bits are lost and the least significant kept. Using 4 bytes for integer variables the result
becomes

220×220= 0.

However, there are compilers or compiler options that preprocess the program in such a way
that an error message like ’integer overflow’ is produced when running the program. Here
is a small program which may cause overflow problems when running (try to test your own
compiler in order to be sure how such problems need to be handled).

http://folk.uio.no/mhjensen/compphys/programs/chapter02/cpp/program3.cpp

// Program to calculate 2**n

using namespace std;

#include <iostream>

int main()

{

int int1, int2, int3;

// print to screen

cout << "Read in the exponential N for 2^N =\n";

// read from screen

http://folk.uio.no/mhjensen/compphys/programs/chapter02/cpp/program2.cpp
http://folk.uio.no/mhjensen/compphys/programs/chapter02/cpp/program3.cpp
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cin >> int2;

int1 = (int) pow(2., (double) int2);

cout << " 2^N * 2^N = " << int1*int1 << "\n";

int3 = int1 - 1;

cout << " 2^N*(2^N - 1) = " << int1 * int3 << "\n";

cout << " 2^N- 1 = " << int3 << "\n";

return 0;

}

// End: program main()

If we run this code with an exponent N = 32, we obtain the following output

2^N * 2^N = 0

2^N*(2^N - 1) = -2147483648

2^N- 1 = 2147483647

We notice that 264 exceeds the limit for integer numbers with 32 bits. The program returns
0. This can be dangerous, since the results from the operation 2N(2N−1) is obviously wrong.
One possibility to avoid such cases is to add compilation options which flag if an overflow or
underflow is reached.

2.2.1 Fortran codes

The corresponding Fortran code is

http://folk.uio.no/mhjensen/compphys/programs/chapter02/Fortran/program2.f90

PROGRAM binary_integer

IMPLICIT NONE

INTEGER i, number, terms(0:31) ! storage of a0, a1, etc, up to 32 bits,

! note array length running from 0:31. Fortran allows negative indexes as well.

WRITE(*,*) 'Give a number to transform to binary notation'

READ(*,*) number

! Initialise the terms a0, a1 etc

terms = 0

! Fortran takes only integer loop variables

DO i=0, 31

terms(i) = MOD(number,2) ! Modulus function in Fortran

number = number/2

ENDDO

! write out results

WRITE(*,*) 'Binary representation '

DO i=0, 31

WRITE(*,*)' Term nr and value', i, terms(i)

ENDDO

END PROGRAM binary_integer

and

http://folk.uio.no/mhjensen/compphys/programs/chapter02/Fortran/program3.f90

PROGRAM integer_exp

IMPLICIT NONE

INTEGER :: int1, int2, int3

! This is the begin of a comment line in Fortran 90

http://folk.uio.no/mhjensen/compphys/programs/chapter02/Fortran/program2.f90
http://folk.uio.no/mhjensen/compphys/programs/chapter02/Fortran/program3.f90
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! Now we read from screen the variable int2

WRITE(*,*) 'Read in the number to be exponentiated'

READ(*,*) int2

int1=2**int2

WRITE(*,*) '2^N*2^N', int1*int1

int3=int1-1

WRITE(*,*) '2^N*(2^N-1)', int1*int3

WRITE(*,*) '2^N-1', int3

END PROGRAM integer_exp

In Fortran the modulus division is performed by the intrinsic function MOD(number,2) in case
of a division by 2. The exponentation of a number is given by for example 2**N instead of the
call to the pow function in C++.

2.3 Real Numbers and Numerical Precision

An important aspect of computational physics is the numerical precision involved. To design a
good algorithm, one needs to have a basic understanding of propagation of inaccuracies and
errors involved in calculations. There is no magic recipe for dealing with underflow, overflow,
accumulation of errors and loss of precision, and only a careful analysis of the functions
involved can save one from serious problems.

Since we are interested in the precision of the numerical calculus, we need to understand
how computers represent real and integer numbers. Most computers deal with real numbers
in the binary system, or octal and hexadecimal, in contrast to the decimal system that we
humans prefer to use. The binary system uses 2 as the base, in much the same way that the
decimal system uses 10. Since the typical computer communicates with us in the decimal sys-
tem, but works internally in e.g., the binary system, conversion procedures must be executed
by the computer, and these conversions involve hopefully only small roundoff errors

Computers are also not able to operate using real numbers expressed with more than a
fixed number of digits, and the set of values possible is only a subset of the mathematical
integers or real numbers. The so-called word length we reserve for a given number places a
restriction on the precision with which a given number is represented. This means in turn,
that for example floating numbers are always rounded to a machine dependent precision,
typically with 6-15 leading digits to the right of the decimal point. Furthermore, each such
set of values has a processor-dependent smallest negative and a largest positive value.

Why do we at all care about rounding and machine precision? The best way is to consider
a simple example first. In the following example we assume that we can represent a floating
number with a precision of 5 digits only to the right of the decimal point. This is nothing but
a mere choice of ours, but mimicks the way numbers are represented in the machine.

Suppose we wish to evaluate the function

f (x) =
1− cos(x)

sin(x)
,

for small values of x. If we multiply the denominator and numerator with 1+cos(x) we obtain
the equivalent expression

f (x) =
sin(x)

1+ cos(x)
.

If we now choose x= 0.006(in radians) our choice of precision results in

sin(0.007)≈ 0.59999×10−2,
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and
cos(0.007)≈ 0.99998.

The first expression for f (x) results in

f (x) =
1−0.99998

0.59999×10−2 =
0.2×10−4

0.59999×10−2 = 0.33334×10−2,

while the second expression results in

f (x) =
0.59999×10−2

1+0.99998
=

0.59999×10−2

1.99998
= 0.30000×10−2,

which is also the exact result. In the first expression, due to our choice of precision, we
have only one relevant digit in the numerator, after the subtraction. This leads to a loss of
precision and a wrong result due to a cancellation of two nearly equal numbers. If we had
chosen a precision of six leading digits, both expressions yield the same answer. If we were
to evaluate x∼ π , then the second expression for f (x) can lead to potential losses of precision
due to cancellations of nearly equal numbers.

This simple example demonstrates the loss of numerical precision due to roundoff errors,
where the number of leading digits is lost in a subtraction of two near equal numbers. The
lesson to be drawn is that we cannot blindly compute a function. We will always need to
carefully analyze our algorithm in the search for potential pitfalls. There is no magic recipe
however, the only guideline is an understanding of the fact that a machine cannot represent
correctly all numbers.

2.3.1 Representation of real numbers

Real numbers are stored with a decimal precision (or mantissa) and the decimal exponent
range. The mantissa contains the significant figures of the number (and thereby the precision
of the number). A number like (9.90625)10 in the decimal representation is given in a binary
representation by

(1001.11101)2 = 1×23+0×22+0×21+1×20+1×2−1+1×2−2+1×2−3+0×2−4+1×2−5,

and it has an exact machine number representation since we need a finite number of bits to
represent this number. This representation is however not very practical. Rather, we prefer
to use a scientific notation. In the decimal system we would write a number like 9.90625in
what is called the normalized scientific notation. This means simply that the decimal point is
shifted and appropriate powers of 10 are supplied. Our number could then be written as

9.90625= 0.990625×101,

and a real non-zero number could be generalized as

x=±r×10n,

with a r a number in the range 1/10≤ r < 1. In a similar way we can represent a binary number
in scientific notation as

x=±q×2m,

with a q a number in the range 1/2≤ q< 1. This means that the mantissa of a binary number
would be represented by the general formula
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(0.a−1a−2 . . .a−n)2 = a−1×2−1+a−2×2−2+ · · ·+a−n×2−n.

In a typical computer, floating-point numbers are represented in the way described above, but
with certain restrictions on q and m imposed by the available word length. In the machine,
our number x is represented as

x= (−1)s×mantissa×2exponent,

where s is the sign bit, and the exponent gives the available range. With a single-precision
word, 32 bits, 8 bits would typically be reserved for the exponent, 1 bit for the sign and 23
for the mantissa. This means that if we define a variable as

Fortran: REAL (4) :: size_of_fossile
C++: float size_of_fossile;

we are reserving 4 bytes in memory, with 8 bits for the exponent, 1 for the sign and and 23
bits for the mantissa, implying a numerical precision to the sixth or seventh digit, since the
least significant digit is given by 1/223≈ 10−7. The range of the exponent goes from 2−128=

2.9×10−39 to 2127= 3.4×1038, where 128 stems from the fact that 8 bits are reserved for the
exponent.

A modification of the scientific notation for binary numbers is to require that the leading
binary digit 1 appears to the left of the binary point. In this case the representation of the
mantissa q would be (1. f )2 and 1 ≤ q < 2. This form is rather useful when storing binary
numbers in a computer word, since we can always assume that the leading bit 1 is there.
One bit of space can then be saved meaning that a 23 bits mantissa has actually 24 bits. This
means explicitely that a binary number with 23 bits for the mantissa reads

(1.a−1a−2 . . .a−23)2 = 1×20+a−1×2−1+a−2×2−2+ · · ·+a−n×2−23.

As an example, consider the 32 bits binary number

(10111110111101000000000000000000)2,

where the first bit is reserved for the sign, 1 in this case yielding a negative sign. The exponent
m is given by the next 8 binary numbers 01111101resulting in 125 in the decimal system.
However, since the exponent has eight bits, this means it has 28−1= 255possible numbers
in the interval −128≤m≤ 127, our final exponent is 125−127=−2 resulting in 2−2. Inserting
the sign and the mantissa yields the final number in the decimal representation as

−2−2
(

1×20+1×2−1+1×2−2+1×2−3+0×2−4+1×2−5
)
= (−0.4765625)10.

In this case we have an exact machine representation with 32 bits (actually, we need less than
23 bits for the mantissa).

If our number x can be exactly represented in the machine, we call x a machine num-
ber. Unfortunately, most numbers cannot and are thereby only approximated in the machine.
When such a number occurs as the result of reading some input data or of a computation, an
inevitable error will arise in representing it as accurately as possible by a machine number.

A floating number x, labelled f l(x) will therefore always be represented as

f l(x) = x(1± εx), (2.1)

with x the exact number and the error |εx| ≤ |εM |, where εM is the precision assigned. A num-
ber like 1/10 has no exact binary representation with single or double precision. Since the
mantissa
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1.(a−1a−2 . . .a−n)2

is always truncated at some stage n due to its limited number of bits, there is only a limited
number of real binary numbers. The spacing between every real binary number is given by
the chosen machine precision. For a 32 bit words this number is approximately εM ∼ 10−7 and
for double precision (64 bits) we have εM ∼ 10−16, or in terms of a binary base as 2−23 and 2−52

for single and double precision, respectively.

2.3.2 Machine numbers

To understand that a given floating point number can be written as in Eq. (2.1), we assume
for the sake of simplicity that we work with real numbers with words of length 32 bits, or four
bytes. Then a given number x in the binary representation can be represented as

x= (1.a−1a−2 . . .a−23a−24a−25. . .)2×2n,

or in a more compact form
x= r×2n,

with 1≤ r < 2 and −126≤ n≤ 127since our exponent is defined by eight bits.
In most cases there will not be an exact machine representation of the number x. Our

number will be placed between two exact 32 bits machine numbers x− and x+. Following the
discussion of Kincaid and Cheney [23] these numbers are given by

x− = (1.a−1a−2 . . .a−23)2×2n,

and
x+ =

(
(1.a−1a−2 . . .a−23))2+2−23)×2n.

If we assume that our number x is closer to x− we have that the absolute error is constrained
by the relation

|x− x−| ≤
1
2
|x+− x−|=

1
2
×2n−23= 2n−24.

A similar expression can be obtained if x is closer to x+. The absolute error conveys one
type of information. However, we may have cases where two equal absolute errors arise from
rather different numbers. Consider for example the decimal numbers a= 2 and a= 2.001. The
absolute error between these two numbers is 0.001. In a similar way, the two decimal numbers
b= 2000and b= 2000.001give exactly the same absolute error. We note here that b= 2000.001
has more leading digits than b.

If we compare the relative errors

|a−a|
|a| = 1.0×10−3,

|b−b|
|b| = 1.0×10−6,

we see that the relative error in b is much smaller than the relative error in a. We will see
below that the relative error is intimately connected with the number of leading digits in the
way we approximate a real number. The relative error is therefore the quantity of interest in
scientific work. Information about the absolute error is normally of little use in the absence
of the magnitude of the quantity being measured.

We define then the relative error for x as

|x− x−|
|x| ≤ 2n−24

r×2n =
1
q
×2−24≤ 2−24.
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Instead of using x− and x+ as the machine numbers closest to x, we introduce the relative
error

|x− x|
|x| ≤ 2n−24,

with x being the machine number closest to x. Defining

εx =
x− x

x
,

we can write the previous inequality

f l(x) = x(1+ εx)

where |εx| ≤ εM = 2−24 for variables of length 32 bits. The notation f l(x) stands for the machine
approximation of the number x. The number εM is given by the specified machine precision,
approximately 10−7 for single and 10−16 for double precision, respectively.

There are several mathematical operations where an eventual loss of precision may ap-
pear. A subraction, especially important in the definition of numerical derivatives discussed
in chapter 3 is one important operation. In the computation of derivatives we end up sub-
tracting two nearly equal quantities. In case of such a subtraction a= b− c, we have

f l(a) = f l(b)− f l(c) = a(1+ εa),

or
f l(a) = b(1+ εb)− c(1+ εc),

meaning that

f l(a)/a= 1+ εb
b
a
− εc

c
a
,

and if b≈ c we see that there is a potential for an increased error in the machine representa-
tion of f l(a). This is because we are subtracting two numbers of equal size and what remains
is only the least significant part of these numbers. This part is prone to roundoff errors and if
a is small we see that (with b≈ c)

εa ≈
b
a
(εb− εc),

can become very large. The latter equation represents the relative error of this calculation.
To see this, we define first the absolute error as

| f l(a)−a|,

whereas the relative error is
| f l(a)−a|

a
≤ εa.

The above subraction is thus

| f l(a)−a|
a

=
| f l(b)− f (c)− (b− c)|

a
,

yielding
| f l(a)−a|

a
=
|bεb− cεc|

a
.

An interesting question is then how many significant binary bits are lost in a subtraction
a= b− c when we have b≈ c. The loss of precision theorem for a subtraction a= b− c states
that [23]: if b and c are positive normalized floating-point binary machine numbers with b> c
and
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2−r ≤ 1− c
b
≤ 2−s, (2.2)

then at most r and at least ssignificant binary bits are lost in the subtraction b−c. For a proof
of this statement, see for example Ref. [23].

But even additions can be troublesome, in particular if the numbers are very different in
magnitude. Consider for example the seemingly trivial addition 1+10−8 with 32 bits used to
represent the various variables. In this case, the information contained in 10−8 is simply lost
in the addition. When we perform the addition, the computer equates first the exponents of
the two numbers to be added. For 10−8 this has however catastrophic consequences since in
order to obtain an exponent equal to 100, bits in the mantissa are shifted to the right. At the
end, all bits in the mantissa are zeros.

This means in turn that for calculations involving real numbers (if we omit the discussion
on overflow and underflow) we need to carefully understand the behavior of our algorithm,
and test all possible cases where round-off errors and loss of precision can arise. Other cases
which may cause serious problems are singularities of the type 0/0 which may arise from
functions like sin(x)/x as x→ 0. Such problems may also need the restructuring of the algo-
rithm.

2.4 Programming Examples on Loss of Precision and Round-off Errors

2.4.1 Algorithms for e−x

In order to illustrate the above problems, we discuss here some famous and perhaps less
famous problems, including a discussion on specific programming features as well.

We start by considering three possible algorithms for computing e−x:

1. by simply coding

e−x =
∞

∑
n=0

(−1)nxn

n!

2. or to employ a recursion relation for

e−x =
∞

∑
n=0

sn =
∞

∑
n=0

(−1)nxn

n!

using

sn =−sn−1
x
n
,

3. or to first calculate

expx=
∞

∑
n=0

sn

and thereafter taking the inverse

e−x =
1

expx

Below we have included a small program which calculates

e−x =
∞

∑
n=0

(−1)nxn

n!
,

for x-values ranging from 0 to 100 in steps of 10. When doing the summation, we can always
define a desired precision, given below by the fixed value for the variable TRUNCATION=
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1.0E−10, so that for a certain value of x > 0, there is always a value of n = N for which the
loss of precision in terminating the series at n= N is always smaller than the next term in the
series xN

N! . The latter is implemented through the while{. . .} statement.

http://folk.uio.no/mhjensen/compphys/programs/chapter02/cpp/program4.cpp

// Program to calculate function exp(-x)

// using straightforward summation with differing precision

using namespace std;

#include <iostream>

// type float: 32 bits precision

// type double: 64 bits precision

#define TYPE double

#define PHASE(a) (1 - 2 * (abs(a) % 2))

#define TRUNCATION 1.0E-10

// function declaration

TYPE factorial(int);

int main()

{

int n;

TYPE x, term, sum;

for(x = 0.0; x < 100.0; x += 10.0) {

sum = 0.0; //initialization

n = 0;

term = 1;

while(fabs(term) > TRUNCATION) {

term = PHASE(n) * (TYPE) pow((TYPE) x,(TYPE) n) / factorial(n);

sum += term;

n++;

} // end of while() loop

cout << `` x ='' << x << `` exp = `` << exp(-x) << `` series = `` << sum;

cout << `` number of terms = " << n << endl;

} // end of for() loop

return 0;

} // End: function main()

// The function factorial()

// calculates and returns n!

TYPE factorial(int n)

{

int loop;

TYPE fac;

for(loop = 1, fac = 1.0; loop <= n; loop++) {

fac *= loop;

}

return fac;

} // End: function factorial()

There are several features to be noted3. First, for low values of x, the agreement is good,
however for larger x values, we see a significant loss of precision. Secondly, for x = 70 we
have an overflow problem, represented (from this specific compiler) by NaN (not a number).
The latter is easy to understand, since the calculation of a factorial of the size 171! is beyond
the limit set for the double precision variable factorial. The message NaN appears since the
computer sets the factorial of 171 equal to zero and we end up having a division by zero in
our expression for e−x.

3 Note that different compilers may give different messages and deal with overflow problems in different
ways.

http://folk.uio.no/mhjensen/compphys/programs/chapter02/cpp/program4.cpp
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x exp(−x) Series Number of terms in series
0.0 0.100000E+01 0.100000E+01 1

10.0 0.453999E-04 0.453999E-04 44
20.0 0.206115E-08 0.487460E-08 72
30.0 0.935762E-13 -0.342134E-04 100
40.0 0.424835E-17 -0.221033E+01 127
50.0 0.192875E-21 -0.833851E+05 155
60.0 0.875651E-26 -0.850381E+09 171
70.0 0.397545E-30 NaN 171
80.0 0.180485E-34 NaN 171
90.0 0.819401E-39 NaN 171

100.0 0.372008E-43 NaN 171

Table 2.3 Result from the brute force algorithm for exp(−x).

The overflow problem can be dealt with via a recurrence formula4 for the terms in the sum,
so that we avoid calculating factorials. A simple recurrence formula for our equation

exp(−x) =
∞

∑
n=0

sn =
∞

∑
n=0

(−1)nxn

n!
,

is to note that
sn =−sn−1

x
n
,

so that instead of computing factorials, we need only to compute products. This is exemplified
through the next program.

http://folk.uio.no/mhjensen/compphys/programs/chapter02/cpp/program5.cpp

// program to compute exp(-x) without factorials

using namespace std;

#include <iostream>

#define TRUNCATION 1.0E-10

int main()

{

int loop, n;

double x, term, sum;

for(loop = 0; loop <= 100; loop += 10){

x = (double) loop; // initialization

sum = 1.0;

term = 1;

n = 1;

while(fabs(term) > TRUNCATION){

term *= -x/((double) n);

sum += term;

n++;

} // end while loop

cout << ``x ='' << x << ``exp = `` << exp(-x) << ``series = `` << sum;

cout << ``number of terms = " << n << endl;

} // end of for loop

} // End: function main()

4 Recurrence formulae, in various disguises, either as ways to represent series or continued fractions, are
among the most commonly used forms for function approximation. Examples are Bessel functions, Hermite
and Laguerre polynomials, discussed for example in chapter 5.

http://folk.uio.no/mhjensen/compphys/programs/chapter02/cpp/program5.cpp
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x exp(−x) Series Number of terms in series
0.000000 0.10000000E+01 0.10000000E+01 1

10.000000 0.45399900E-04 0.45399900E-04 44
20.000000 0.20611536E-08 0.56385075E-08 72
30.000000 0.93576230E-13 -0.30668111E-04 100
40.000000 0.42483543E-17 -0.31657319E+01 127
50.000000 0.19287498E-21 0.11072933E+05 155
60.000000 0.87565108E-26 -0.33516811E+09 182
70.000000 0.39754497E-30 -0.32979605E+14 209
80.000000 0.18048514E-34 0.91805682E+17 237
90.000000 0.81940126E-39 -0.50516254E+22 264

100.000000 0.37200760E-43 -0.29137556E+26 291

Table 2.4 Result from the improved algorithm for exp(−x).

In this case, we do not get the overflow problem, as can be seen from the large number of
terms. Our results do however not make much sense for larger values of x. Decreasing the
truncation test will not help! (try it). This is a much more serious problem.

In order better to understand this problem, let us consider the case of x= 20, which already
differs largely from the exact result. Writing out each term in the summation, we obtain the
largest term in the sum appears at n= 19, with a value that equals −43099804. However, for
n=20we have almost the same value, but with an interchanged sign. It means that we have an
error relative to the largest term in the summation of the order of 43099804×10−10≈ 4×10−2.
This is much larger than the exact value of 0.21×10−8. The large contributions which may
appear at a given order in the sum, lead to strong roundoff errors, which in turn is reflected
in the loss of precision. We can rephrase the above in the following way: Since exp(−20) is
a very small number and each term in the series can be rather large (of the order of 108,
it is clear that other terms as large as 108, but negative, must cancel the figures in front of
the decimal point and some behind as well. Since a computer can only hold a fixed number
of significant figures, all those in front of the decimal point are not only useless, they are
crowding out needed figures at the right end of the number. Unless we are very careful
we will find ourselves adding up series that finally consists entirely of roundoff errors! An
analysis of the contribution to the sum from various terms shows that the relative error made
can be huge. This results in an unstable computation, since small errors made at one stage
are magnified in subsequent stages.

To this specific case there is a simple cure. Noting that exp(x) is the reciprocal of exp(−x),
we may use the series for exp(x) in dealing with the problem of alternating signs, and simply
take the inverse. One has however to beware of the fact that exp(x) may quickly exceed the
range of a double variable.

2.4.2 Fortran codes

The Fortran programs are rather similar in structure to the C++ program.
In Fortran Real numbers are written as 2.0 rather than 2 and declared as REAL (KIND=8)

or REAL (KIND=4) for double or single precision, respectively. In general we discorauge the
use of single precision in scientific computing, the achieved precision is in general not good
enough. Fortran uses a do construct to have the computer execute the same statements more
than once. Note also that Fortran does not allow floating numbers as loop variables. In the
example below we use both a do construct for the loop over x and a DO WHILE construction
for the truncation test, as in the C++ program. One could altrenatively use the EXIT state-
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ment inside a do loop. Fortran has also if statements as in C++. The IF construct allows the
execution of a sequence of statements (a block) to depend on a condition. The if construct
is a compound statement and begins with IF ... THEN and ends with ENDIF. Examples of
more general IF constructs using ELSE and ELSEIF statements are given in other program
examples. Another feature to observe is the CYCLE command, which allows a loop variable
to start at a new value.

Subprograms are called from the main program or other subprograms. In the C++ codes
we declared a function TYPE factorial(int);. Subprograms are always called functions
in C++. If we declare it with void is has the same meaning as subroutines in Fortran,. Sub-
routines are used if we have more than one return value. In the example below we compute
the factorials using the function factorial . This function receives a dummy argument n.
INTENT(IN) means that the dummy argument cannot be changed within the subprogram.
INTENT(OUT) means that the dummy argument cannot be used within the subprogram un-
til it is given a value with the intent of passing a value back to the calling program. The
statement INTENT(INOUT) means that the dummy argument has an initial value which is
changed and passed back to the calling program. We recommend that you use these options
when calling subprograms. This allows better control when transfering variables from one
function to another. In chapter 3 we discuss call by value and by reference in C++. Call by
value does not allow a called function to change the value of a given variable in the calling
function. This is important in order to avoid unintentional changes of variables when trans-
fering data from one function to another. The INTENT construct in Fortran allows such a
control. Furthermore, it increases the readability of the program.

http://folk.uio.no/mhjensen/compphys/programs/chapter02/Fortran/program4.f90

! In this module you can define for example global constants

MODULE constants

! definition of variables for double precisions and complex variables

INTEGER, PARAMETER :: dp = KIND(1.0D0)

INTEGER, PARAMETER :: dpc = KIND((1.0D0,1.0D0))

! Global Truncation parameter

REAL(DP), PARAMETER, PUBLIC :: truncation=1.0E-10

END MODULE constants

! Here you can include specific functions which can be used by

! many subroutines or functions

MODULE functions

CONTAINS

REAL(DP) FUNCTION factorial(n)

USE CONSTANTS

INTEGER, INTENT(IN) :: n

INTEGER :: loop

factorial = 1.0_dp

IF ( n > 1 ) THEN

DO loop = 2, n

factorial=factorial*loop

ENDDO

ENDIF

END FUNCTION factorial

END MODULE functions

! Main program starts here

PROGRAM exp_prog

USE constants

USE functions

http://folk.uio.no/mhjensen/compphys/programs/chapter02/Fortran/program4.f90
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IMPLICIT NONE

REAL (DP) :: x, term, final_sum

INTEGER :: n, loop_over_x

! loop over x-values

DO loop_over_x=0, 100, 10

x=loop_over_x

! initialize the EXP sum

final_sum= 0.0_dp; term = 1.0_dp; n = 0

DO WHILE ( ABS(term) > truncation)

term = ((-1.0_dp)**n)*(x**n)/ factorial(n)

final_sum=final_sum+term

n=n+1

ENDDO

! write the argument x, the exact value, the computed value and n

WRITE(*,*) x ,EXP(-x), final_sum, n

ENDDO

END PROGRAM exp_prog

The MODULE declaration in Fortran allows one to place functions like the one which calculates
the factorials. Note also the usage of the module constants where we define double and
complex variables. If one wishes to switch to another precision, one just needs to change
the declaration in one part of the program only. This hinders possible errors which arise if
one has to change variable declarations in every function and subroutine. In addition we
have defined a global variable truncation which is accessible to all functions which have the
USE constants declaration. These declarations have to come before any variable declara-

tions and IMPLICIT NONE statement.

http://folk.uio.no/mhjensen/compphys/programs/chapter02/Fortran/program5.f90

! In this module you can define for example global constants

MODULE constants

! definition of variables for double precisions and complex variables

INTEGER, PARAMETER :: dp = KIND(1.0D0)

INTEGER, PARAMETER :: dpc = KIND((1.0D0,1.0D0))

! Global Truncation parameter

REAL(DP), PARAMETER, PUBLIC :: truncation=1.0E-10

END MODULE constants

PROGRAM improved_exp

USE constants

IMPLICIT NONE

REAL (dp) :: x, term, final_sum

INTEGER :: n, loop_over_x

! loop over x-values, no floats as loop variables

DO loop_over_x=0, 100, 10

x=loop_over_x

! initialize the EXP sum

final_sum=1.0 ; term=1.0 ; n = 1

DO WHILE ( ABS(term) > truncation)

term = -term*x/FLOAT(n)

final_sum=final_sum+term

n=n+1

ENDDO

! write the argument x, the exact value, the computed value and n

WRITE(*,*) x ,EXP(-x), final_sum, n

ENDDO

END PROGRAM improved_exp

http://folk.uio.no/mhjensen/compphys/programs/chapter02/Fortran/program5.f90
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2.4.3 Further examples

2.4.3.1 Summing 1/n

Let us look at another roundoff example which may surprise you more. Consider the series

s1 =
N

∑
n=1

1
n
,

which is finite when N is finite. Then consider the alternative way of writing this sum

s2 =
1

∑
n=N

1
n
,

which when summed analytically should give s2 = s1. Because of roundoff errors, numerically
we will get s2 6= s1! Computing these sums with single precision for N= 1.000.000results in s1 =

14.35736while s2 = 14.39265! Note that these numbers are machine and compiler dependent.
With double precision, the results agree exactly, however, for larger values of N, differences
may appear even for double precision. If we choose N = 108 and employ double precision, we
get s1 = 18.9978964829915355while s2 = 18.9978964794618506, and one notes a difference even
with double precision.

This example demonstrates two important topics. First we notice that the chosen precision
is important, and we will always recommend that you employ double precision in all calcu-
lations with real numbers. Secondly, the choice of an appropriate algorithm, as also seen for
e−x, can be of paramount importance for the outcome.

2.4.3.2 The standard algorithm for the standard deviation

Yet another example is the calculation of the standard deviation σ when σ is small compared
to the average value x. Below we illustrate how one of the most frequently used algorithms
can go wrong when single precision is employed.

However, before we proceed, let us define σ and x. Suppose we have a set of N data points,
represented by the one-dimensional array x(i), for i = 1,N. The average value is then

x=
∑N

i=1x(i)
N

,

while

σ =

√
∑i x(i)2− x∑i x(i)

N−1
.

Let us now assume that
x(i) = i +105,

and that N = 127, just as a mere example which illustrates the kind of problems which can
arise when the standard deviation is small compared with the mean value x.

The standard algorithm computes the two contributions to σ separately, that is we sum

∑i x(i)
2 and subtract thereafter x∑i x(i). Since these two numbers can become nearly equal

and large, we may end up in a situation with potential loss of precision as an outcome.
The second algorithm on the other hand computes first x(i)− x and then squares it when

summing up. With this recipe we may avoid having nearly equal numbers which cancel.
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Using single precision results in a standard deviation of σ = 40.05720139for the first and
most used algorithm, while the exact answer is σ = 36.80579758, a number which also results
from the above second algorithm. With double precision, the two algorithms result in the
same answer.

The reason for such a difference resides in the fact that the first algorithm includes the
subtraction of two large numbers which are squared. Since the average value for this exam-
ple is x = 100063.00, it is easy to see that computing ∑i x(i)

2− x∑i x(i) can give rise to very
large numbers with possible loss of precision when we perform the subtraction. To see this,
consider the case where i = 64. Then we have

x2
64− xx64 = 100352,

while the exact answer is
x2

64− xx64 = 100064!

You can even check this by calculating it by hand.
The second algorithm computes first the difference between x(i) and the average value.

The difference gets thereafter squared. For the second algorithm we have for i = 64

x64− x= 1,

and we have no potential for loss of precision.
The standard text book algorithm is expressed through the following program, where we

have also added the second algorithm

http://folk.uio.no/mhjensen/compphys/programs/chapter02/cpp/program6.cpp

// program to calculate the mean and standard deviation of

// a user created data set stored in array x[]

using namespace std;

#include <iostream>

int main()

{

int i;

float sum, sumsq2, xbar, sigma1, sigma2;

// array declaration with fixed dimension

float x[127];

// initialise the data set

for ( i=0; i < 127 ; i++){

x[i] = i + 100000.;

}

// The variable sum is just the sum over all elements

// The variable sumsq2 is the sum over x^2

sum=0.;

sumsq2=0.;

// Now we use the text book algorithm

for ( i=0; i < 127; i++){

sum += x[i];

sumsq2 += pow((double) x[i],2.);

}

// calculate the average and sigma

xbar=sum/127.;

sigma1=sqrt((sumsq2-sum*xbar)/126.);

/*

** Here comes the second algorithm where we evaluate

** separately first the average and thereafter the

** sum which defines the standard deviation. The average

** has already been evaluated through xbar

*/

http://folk.uio.no/mhjensen/compphys/programs/chapter02/cpp/program6.cpp
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sumsq2=0.;

for ( i=0; i < 127; i++){

sumsq2 += pow( (double) (x[i]-xbar),2.);

}

sigma2=sqrt(sumsq2/126.);

cout << "xbar = `` << xbar << ``sigma1 = `` << sigma1 << ``sigma2 = `` << sigma2;

cout << endl;

return 0;

}// End: function main()

The corresponding Fortran program is given below.

http://folk.uio.no/mhjensen/compphys/programs/chapter02/Fortran/program6.f90

PROGRAM standard_deviation

IMPLICIT NONE

REAL (KIND = 4) :: sum, sumsq2, xbar

REAL (KIND = 4) :: sigma1, sigma2

REAL (KIND = 4), DIMENSION (127) :: x

INTEGER :: i

x=0;

DO i=1, 127

x(i) = i + 100000.

ENDDO

sum=0.; sumsq2=0.

! standard deviation calculated with the first algorithm

DO i=1, 127

sum = sum +x(i)

sumsq2 = sumsq2+x(i)**2

ENDDO

! average

xbar=sum/127.

sigma1=SQRT((sumsq2-sum*xbar)/126.)

! second algorithm to evaluate the standard deviation

sumsq2=0.

DO i=1, 127

sumsq2=sumsq2+(x(i)-xbar)**2

ENDDO

sigma2=SQRT(sumsq2/126.)

WRITE(*,*) xbar, sigma1, sigma2

END PROGRAM standard_deviation

2.5 Additional Features of C++ and Fortran

2.5.1 Operators in C++

In the previous program examples we have seen several types of operators. In the tables
below we summarize the most important ones. Note that the modulus in C++ is represented
by the operator % whereas in Fortran we employ the intrinsic function MOD. Note also that
the increment operator ++ and the decrement operator -- is not available in Fortran . In
C++ these operators have the following meaning

++x; or x++; has the same meaning as x = x + 1;

--x; or x--; has the same meaning as x = x - 1;

http://folk.uio.no/mhjensen/compphys/programs/chapter02/Fortran/program6.f90
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Table 2.5 lists several relational and arithmetic operators. Logical operators in C++ and

arithmetic operators relation operators
operator effect operator effect
− Subtraction > Greater than
+ Addition >= Greater or equal
∗ Multiplication < Less than
/ Division <= Less or equal

% or MOD Modulus division == Equal
−− Decrement ! = Not equal
++ Increment

Table 2.5 Relational and arithmetic operators. The relation operators act between two operands. Note that
the increment and decrement operators ++ and −− are not available in Fortran .

Fortran are listed in 2.6. while Table 2.7 shows bitwise operations.

Logical operators
C++ Effect Fortran
0 False value .FALSE.
1 True value .TRUE.
!x Logical negation .NOT.x

x&& y Logical AND x.AND.y
x||y Logical inclusive OR x.OR.y

Table 2.6 List of logical operators in C++ and Fortran .

Bitwise operations
C++ Effect Fortran
~i Bitwise complement NOT(j)
i&j Bitwise and IAND(i,j)
i^j Bitwise exclusive or IEOR(i,j)
i|j Bitwise inclusive or IOR(i,j)
i<<j Bitwise shift left ISHFT(i,j)
i>>n Bitwise shift right ISHFT(i,-j)

Table 2.7 List of bitwise operations.

C++ offers also interesting possibilities for combined operators. These are collected in
Table 2.8.

Expression meaning expression meaning
a += b; a = a + b; a -= b; a = a - b;

a *= b; a = a * b; a /= b; a = a / b;

a %= b; a = a % b; a «= b; a = a « b;

a »= b; a = a » b; a &= b; a = a & b;

a |= b; a = a | b; a ∧= b; a = a ∧ b;

Table 2.8 C++ specific expressions.

Finally, we show some special operators pertinent to C++ only. The first one is the ? oper-
ator. Its action can be described through the following example
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A = expression1 ? expression2 : expression3;

Here expression1 is computed first. If this is "true" (6= 0), then expression2 is computed and
assigned A. If expression1 is "false", then expression3 is computed and assigned A.

2.5.2 Pointers and arrays in C++.

In addition to constants and variables C++ contain important types such as pointers and
arrays (vectors and matrices). These are widely used in most C++ program. C++ allows also
for pointer algebra, a feature not included in Fortran . Pointers and arrays are important
elements in C++. To shed light on these types, consider the following setup

int name defines an integer variable called name. It is given an address in
memory where we can store an integer number.

&name is the address of a specific place in memory where the integer
name is stored. Placing the operator & in front of a variable yields
its address in memory.

int *pointer defines an integer pointer and reserves a location in memory for
this specific variable The content of this location is viewed as the
address of another place in memory where we have stored an
integer.

Note that in C++ it is common to write int* pointer while in C one usually writes
int *pointer. Here are some examples of legal C++ expressions.

name = 0x56; /* name gets the hexadecimal value hex 56. */
pointer = &name; /* pointer points to name. */
printf("Address of name = %p",pointer); /* writes out the address of name. */
printf("Value of name= %d",*pointer); /* writes out the value of name. */

Here’s a program which illustrates some of these topics.

http://folk.uio.no/mhjensen/compphys/programs/chapter02/cpp/program7.cpp

1 using namespace std;

2 main()

3 {

4 int var;

5 int *pointer;

6

7 pointer = &var;

8 var = 421;

9 printf("Address of the integer variable var : %p\n",&var);

10 printf("Value of var : %d\n", var);

11 printf("Value of the integer pointer variable: %p\n",pointer);

12 printf("Value which pointer is pointing at : %d\n",*pointer);

13 printf("Address of the pointer variable : %p\n",&pointer);

14 }

http://folk.uio.no/mhjensen/compphys/programs/chapter02/cpp/program7.cpp
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Line Comments

4 • Defines an integer variable var.
5 • Define an integer pointer – reserves space in memory.
7 • The content of the adddress of pointer is the address of var.
8 • The value of var is 421.
9 • Writes the address of var in hexadecimal notation for pointers %p.
10 • Writes the value of var in decimal notation%d.

The ouput of this program, compiled with g++, reads

Address of the integer variable var : 0xbfffeb74

Value of var: 421

Value of integer pointer variable : 0xbfffeb74

The value which pointer is pointing at : 421

Address of the pointer variable : 0xbfffeb70

In the next example we consider the link between arrays and pointers.

int matr[2] defines a matrix with two integer members – matr[0] og matr[1].

matr is a pointer to matr[0].

(matr + 1) is a pointer to matr[1].

http://folk.uio.no/mhjensen/compphys/programs/chapter02/cpp/program8.cpp

1 using namespace std;

2 #included <iostream>

3 int main()

4 {

5 int matr[2];

6 int *pointer;

7 pointer = &matr[0];

8 matr[0] = 321;

9 matr[1] = 322;

10 printf("\nAddress of the matrix element matr[1]: %p",&matr[0]);

11 printf("\nValue of the matrix element matr[1]; %d",matr[0]);

12 printf("\nAddress of the matrix element matr[2]: %p",&matr[1]);

13 printf("\nValue of the matrix element matr[2]: %d\n", matr[1]);

14 printf("\nValue of the pointer : %p",pointer);

15 printf("\nValue which pointer points at : %d",*pointer);

16 printf("\nValue which (pointer+1) points at: %d\n",*(pointer+1));

17 printf("\nAddress of the pointer variable: %p\n",&pointer);

18 }

You should especially pay attention to the following

Line

5 • Declaration of an integer array matr with two elements
6 • Declaration of an integer pointer
7 • The pointer is initialized to point at the first element of the array matr.
8–9 • Values are assigned to the array matr.

The ouput of this example, compiled again with g++, is

http://folk.uio.no/mhjensen/compphys/programs/chapter02/cpp/program8.cpp
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Address of the matrix element matr[1]: 0xbfffef70

Value of the matrix element matr[1]; 321

Address of the matrix element matr[2]: 0xbfffef74

Value of the matrix element matr[2]: 322

Value of the pointer: 0xbfffef70

The value pointer points at: 321

The value that (pointer+1) points at: 322

Address of the pointer variable : 0xbfffef6c

2.5.3 Macros in C++

In C we can define macros, typically global constants or functions through the define state-
ments shown in the simple C-example below for

1. #define ONE 1

2. #define TWO ONE + ONE

3. #define THREE ONE + TWO

4.

5. main()

6. {

7. printf("ONE=%d, TWO=%d, THREE=%d",ONE,TWO,THREE);

8. }

In C++ the usage of macros is discouraged and you should rather use the declaration
for constant variables. You would then replace a statement like #define ONE 1 with
const int ONE = 1;. There is typically much less use of macros in C++ than in C. C++

allows also the definition of our own types based on other existing data types. We can do this
using the keyword typedef, whose format is: typedef existing_type new_type_name ;,
where existing_type is a C++ fundamental or compound type and new_type_name is the
name for the new type we are defining. For example:

typedef char new_name;

typedef unsigned int word ;

typedef char * test;

typedef char field [50];

In this case we have defined four data types: new_name, word, test and field as char, unsigned
int, char* and char[50] respectively, that we could perfectly use in declarations later as any
other valid type

new_name mychar, anotherchar, *ptc1;

word myword;

test ptc2;

field name;

The use of typedef does not create different types. It only creates synonyms of existing types.
That means that the type of myword can be considered to be either word or unsigned int,
since both are in fact the same type. Using typedef allows to define an alias for a type that is
frequently used within a program. It is also useful to define types when it is possible that we
will need to change the type in later versions of our program, or if a type you want to use has
a name that is too long or confusing.

In C we could define macros for functions as well, as seen below.
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1. #define MIN(a,b) ( ((a) < (b)) ? (a) : (b) )

2. #define MAX(a,b) ( ((a) > (b)) ? (a) : (b) )

3. #define ABS(a) ( ((a) < 0) ? -(a) : (a) )

4. #define EVEN(a) ( (a) %2 == 0 ? 1 : 0 )

5. #define TOASCII(a) ( (a) & 0x7f )

In C++ we would replace such function definition by employing so-called inline functions.
The above functions could then read

inline double MIN(double a,double b) (return (((a)<(b)) ? (a):(b));)

inline double MAX(double a,double b)(return (((a)>(b)) ? (a):(b));)

inline double ABS(double a) (return (((a)<0) ? -(a):(a));)

where we have defined the transferred variables to be of type double. The functions also
return a double type. These functions could easily be generalized through the use of classes
and templates, see chapter 6, to return whather types of real, complex or integer variables.

Inline functions are very useful, especially if the overhead for calling a function implies a
significant fraction of the total function call cost. When such function call overhead is sig-
nificant, a function definition can be preceded by the keyword inline. When this function is
called, we expect the compiler to generate inline code without function call overhead. How-
ever, although inline functions eliminate function call overhead, they can introduce other
overheads. When a function is inlined, its code is duplicated for each call. Excessive use of
inline may thus generate large programs. Large programs can cause excessive paging in
virtual memory systems. Too many inline functions can also lengthen compile and link times,
on the other hand not inlining small functions like the above that do small computations,
can make programs bigger and slower. However, most modern compilers know better than
programmer which functions to inline or not. When doing this, you should also test various
compiler options. With the compiler option −O3 inlining is done automatically by basically all
modern compilers.

A good strategy, recommended in many C++ textbooks, is to write a code without inline
functions first. As we also suggested in the introductory chapter, you should first write a as
simple and clear as possible program, without a strong emphasis on computational speed.
Thereafter, when profiling the program one can spot small functions which are called many
times. These functions can then be candidates for inlining. If the overall time comsumption is
reduced due to inlining specific functions, we can proceed to other sections of the program
which could be speeded up.

Another problem with inlined functions is that on some systems debugging an inline func-
tion is difficult because the function does not exist at runtime.

2.5.4 Structures in C++ and TYPE in Fortran

A very important part of a program is the way we organize our data and the flow of data
when running the code. This is often a neglected aspect especially during the development
of an algorithm. A clear understanding of how data are represented makes the program
more readable and easier to maintain and extend upon by other users. Till now we have
studied elementary variable declarations through keywords like int or INTEGER, double or
REAL(KIND(8) and char or its Fortran equivalent CHARACTER. These declarations could also
be extended to general multi-dimensional arrays.

However, C++ and Fortran offer other ways as well by which we can organize our data in
a more transparent and reusable way. One of these options is through the struct declaration
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of C++, or the correspondingly similar TYPE in Fortran. The latter data type will also be
discussed in chapter 6.

The following example illustrates how we could make a general variable which can be
reused in defining other variables as well.

Suppose you would like to make a general programwhich treats quantummechanical prob-
lems from both atomic physics and nuclear physics. In atomic and nuclear physics the single-
particle degrees are represented by quantum numbers such orbital angular momentum, total
angular momentum, spin and energy. An independent particle model is often assumed as the
starting point for building up more complicated many-body correlations in systems with many
interacting particles. In atomic physics the effective degrees of freedom are often reduced to
electrons interacting with each other, while in nuclear physics the system is described by neu-
trons and protons. The structure single_particle_descript contains a list over different
quantum numbers through various pointers which are initialized by a calling function.

struct single_particle_descript{

int total_states;

int* n;

int* lorb;

int* m_l;

int* jang;

int* spin;

double* energy;

char* orbit_status

};

To describe an atom like Neon we would need three single-particle orbits to describe the
ground state wave function if we use a single-particle picture, i.e., the 1s, 2s and 2p single-
particle orbits. These orbits have a degeneray of 2(2l + 1), where the first number stems
from the possible spin projections and the second from the possible projections of the orbital
momentum. Note that we reserve the naming orbit for the generic labelling 1s, 2s and 2p
while we use the naming states when we include all possible quantum numbers. In total
there are 10 possible single-particle states when we account for spin and orbital momentum
projections. In this case we would thus need to allocate memory for arrays containing 10
elements.

The above structure is written in a generic way and it can be used to define other variables
as well. For electrons we could write struct single_particle_descript electrons; and
is a new variable with the name electrons containing all the elements of this structure.

The following program segment illustrates how we access these elements To access these
elements we could for example read from a given device the various quantum numbers:

for ( int i = 0; i < electrons.total_states; i++){

cout << `` Read in the quantum numbers for electron i: `` << i << endl;

cin >> electrons.n[i];

cin > electrons.lorb[i];

cin >> electrons.m_l[i];

cin >> electrons.jang[i];

cin >> electrons.spin[i];

}

The structure single_particle_descript can also be used for defining quantum num-
bers of other particles as well, such as neutrons and protons throughthe new variables
struct single_particle_descript protons and struct single_particle_descript neutrons.
The corresponding declaration in Fortran is given by the TYPE construct, seen in the fol-

lowing example.

TYPE, PUBLIC :: single_particle_descript
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INTEGER :: total_states

INTEGER, DIMENSION(:), POINTER :: n, lorb, jang, spin, m_l

CHARACTER (LEN=10), DIMENSION(:), POINTER :: orbit_status

REAL(8), DIMENSION(:), POINTER :: energy

END TYPE single_particle_descript

This structure can again be used to define variables like electrons, protons and neutrons

through the statement TYPE (single_particle_descript) :: electrons, protons, neutrons.
More detailed examples on the use of these variable declarations, classes and templates will
be given in subsequent chapters.

2.6 Exercises

2.1. Set up an algorithm which converts a floating number given in the decimal representa-
tion to the binary representation. You may or may not use a scientific representation. Write
thereafter a program which implements this algorithm.

2.2. Make a program which sums

1.

sup =
N

∑
n=1

1
n
,

and

sdown=
n=1

∑
n=N

1
n
.

The program should read N from screen and write the final output to screen.
2. Compare sup og sdown for different N using both single and double precision for N up to

N = 1010. Which of the above formula is the most realiable one? Try to give an explanation
of possible differences. One possibility for guiding the eye is for example to make a log-log
plot of the relative difference as a function of N in steps of 10n with n = 1,2, . . . ,10. This
means you need to compute log10(|(sup(N)− sdown(N))/sdown(N)|) as function of log10(N).

2.3. Write a program which computes

f (x) = x− sinx,

for a wide range of values of x. Make a careful analysis of this function for values of x near
zero. For x≈ 0 you may consider to write out the series expansions of sinx

sinx= x− x3

3!
+

x5

5!
− x7

7!
+ . . .

Use the loss of precision theorem of Eq. (2.2) to show that the loss of bits can be limited to at
most one bit by restricting x so that

1− sinx
x
≥ 1

2
.

One finds then that x must at least be 1.9, implying that for |x| < 1.9 we need to carefully
consider the series expansion. For |x| ≥ 1.9 we can use directly the expression x− sinx.

For |x| < 1.9 you should device a recurrence relation for the terms in the series expansion
in order to avoid having to compute very large factorials.

2.4. Assume that you do not have access to the intrinsic function for expx. Write your own
algorithm for exp(−x) for all possible values of x, with special care on how to avoid the loss of
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precision problems discussed in the text. Write thereafter a program which implements this
algorithm.

2.5. The classical quadratic equation ax2+bx+ c= with solution

x=
(
−b±

√
b2−4ac

)
/2a,

needs particular attention when 4ac is small relative to b2. Find an algorithm which yields
stable results for all possible values of a, b and c. Write thereafter a program and test the
results of your computations.

2.6. Write a Fortran program which reads a real number x and computes the precision in bits
(using the function DIGIT(x))for single and double precision, the smallest positive number
(using TINY(x)), the largets positive number (using the function HUGE(x)) and the number of
leading digits (using the function PRECISION(x)). Try thereafter to find similar functionalities
in C++ and Python.

2.7. Write an algorithm and programwhich reads in a real number x and finds the two nearest
machine numbers x− and x+, the corresponding relative errors and absolute errors.

2.8. Recurrence relations are extremely useful in representing functions, and form expedient
ways of representing important classes of functions used in the Sciences. We will see two such
examples in the discussion below. One example of recurrence relations appears in studies of
Fourier series, which enter studies of wave mechanics, be it either in classical systems or
quantum mechanical ones. We may need to calculate in an efficient way sums like

F(x) =
N

∑
n=0

ancos(nx), (2.3)

where the coefficients an are known numbers and x is the argument of the function F(). If we
want to solve this problem right on, we could write a simple repetitive loop that multiplies
each of the cosines with its respective coefficient an like

for ( n=0; n < N; n++){

f += an*cos(n*x)

}

Even though this seems rather straightforward, it may actually yield a waste of computer
time if N is large. The interesting point here is that through the three-term recurrence relation

cos(n−1)x−2cos(x)cos(nx)+ cos(n+1)x= 0, (2.4)

we can express the entire finite Fourier series in terms of cos(x) and two constants. The
essential device is to define a new sequence of coefficients bn recursively by

bn = (2cos(x))bn−1−bn+2+an n= 0, . . .N−1,N, (2.5)

defining bN+1 = bN+2+ .. · · ·= 0 for all n> N, the upper limit. We can then determine all the bn

coefficients from an and one evaluation of 2cos(x). If we replace an with bn in the sum for F(x)
in Eq. (2.3) we obtain

F(x) = bN [cos(Nx)−2cos((N−1)x)cos(x)+ cos((N−2)x)]+

bN−1 [cos((N−1)x)−2cos((N−2)x)cos(x)+ cos((N−3)x)]+ . . .

b2
[
cos(2x)−2cos2(x)+1

]
+b1 [cos(x)−2cos(x)]+b0. (2.6)



2.6 Exercises 41

Using Eq. (2.4) we obtain the final result

F(x) = b0−b1cos(x), (2.7)

and b0 and b1 are determined from Eq. (2.3). The latter relation is after Chensaw. This method
of evaluating finite series of orthogonal functions that are connected by a linear recurrence
is a technique generally available for all standard special functions in mathematical physics,
like Legendre polynomials, Bessel functions etc. They all involve two or three terms in the
recurrence relations. The general relation can then be written as

Fn+1(x) = αn(x)Fn(x)+βn(x)Fn−1(x).

Evaluate the function F(x) = ∑N
n=0ancos(nx) in two ways: first by computing the series of

Eq. (reffour-1) and then using the equation given in Eq. (2.5). Assume that an = (n+2)/(n+1),
set e.g., N = 1000and try with different x-values as input.

2.9. Often, especially when one encounters singular behaviors, one may need to rewrite the
function to be evaluated in terms of a taylor expansion. Another possibility is to used so-called
continued fractions, which may be viewed as generalizations of a Taylor expansion. When
dealing with continued fractions, one possible approach is that of successive substitutions.
Let us illustrate this by a simple example, namely the solution of a second order equation

x2−4x−1= 0, (2.8)

which we rewrite as

x=
1

4+ x
,

which in turn could be represented through an iterative substitution process

xn+1 =
1

4+ xn
,

with x0 = 0. This means that we have

x1 =
1
4
,

x2 =
1

4+ 1
4

,

x3 =
1

4+ 1
4+ 1

4

,

and so forth. This is often rewritten in a compact way as

xn = x0+
a1

x1+
a2

x2+
a3

x3+
a4

x4+...

,

or as

xn = x0+
a1

x1+

a2
x2+

a3
x3+

. . .

Write a program which implements this continued fraction algorithm and solve iteratively
Eq. (2.8). The exact solution is x = 0.23607while already after three iterations you should
obtain x3 = 0.236111.
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2.10. Many physics problems have spherical harmonics as solutions, such as the angular
part of the Schrödinger equation for the hydrogen atom or the angular part of the three-
dimensional wave equation or Poisson’s equation.

The spherical harmonics for a given orbital momentum L, its projection M for −L ≤M ≤ L
and angles θ ∈ [0,π ] and φ ∈ [0,2π ] are given by

YM
L (θ ,φ) =

√
(2L+1)(L−M)!

4π(L+M)!
PM

L (cos(θ ))exp(iMφ),

The functions PM
L (cos(θ ) are the so-called associated Legendre functions. They are normally

determined via the usage of recurrence relations. Recurrence relations are unfortunately
often unstable, but the following relation is stable (with x= cos(θ ))

(L−M)PM
L (x) = x(2L−1)PM

L−1(x)− (L+M−1)PM
L−2(x),

and with the analytic (on closed form) expressions

PM
M (x) = (−1)M(2M−1)!!(1− x2)M/2,

and
PM

M+1(x) = x(2M+1)PM
M (x),

we have the starting values and the equations necessary for generating the associated Leg-
endre functions for a general value of L.

1. Make first a function which computes the associated Legendre functions for different val-
ues of L and M. Compare with the closed-form results listed in chapter 5.

2. Make thereafter a program which calculates the real part of the spherical harmonics
3. Make plots for various L = M as functions of θ (set φ = 0) and study the behavior as L is

increased. Try to explain why the functions become more and more narrow as L increases.
In order to make these plots you can use for example gnuplot, as discussed in appendix
3.5.

4. Study also the behavior of the spherical harmonics when θ is close to 0 and when it ap-
proaches 180 degrees. Try to extract a simple explanation for what you see.

2.11. Other well-known polynomials are the Laguerre and the Hermite polynomials, both
being solutions to famous differential equations. The Laguerre polynomials arise from the
solution of the differential equation

(
d2

dx2 −
d
dx

+
λ
x
− l(l +1)

x2

)
L (x) = 0,

where l is an integer l ≥ 0 and λ a constant. This equation arises for example from the solution
of the radial Schrödinger equation with a centrally symmetric potential such as the Coulomb
potential. The first polynomials are

L0(x) = 1,

L1(x) = 1− x,

L2(x) = 2−4x+ x2,

L3(x) = 6−18x+9x2− x3,

and
L4(x) = x4−16x3+72x2−96x+24.

They fulfil the orthogonality relation
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∫ ∞

−∞
e−x

Ln(x)
2dx= 1,

and the recursion relation

(n+1)Ln+1(x) = (2n+1− x)Ln(x)−nLn−1(x).

Similalry, the Hermite polynomials are solutions of the differential equation

d2H(x)
dx2 −2x

dH(x)
dx

+(λ −1)H(x) = 0,

which arises for example by solving Schrödinger’s equation for a particle confined to move in
a harmonic oscillator potential. The first few polynomials are

H0(x) = 1,

H1(x) = 2x,

H2(x) = 4x2−2,

H3(x) = 8x3−12,

and
H4(x) = 16x4−48x2+12.

They fulfil the orthogonality relation

∫ ∞

−∞
e−x2

Hn(x)
2dx= 2nn!

√
π,

and the recursion relation
Hn+1(x) = 2xHn(x)−2nHn−1(x).

Write a program which computes the above Laguerre and Hermite polynomials for different
values of n using the pertinent recursion relations. Check your results agains some selected
closed-form expressions.





Chapter 3

Numerical differentiation and interpolation

Abstract Numerical integration and differentiation are some of the most frequently needed
methods in computational physics. Quite often we are confronted with the need of evaluat-
ing either the derivative f ′ or an integral

∫
f (x)dx. The aim of this chapter is to introduce

some of these methods with a critical eye on numerical accuracy, following the discussion
in the previous chapter. The next section deals essentially with topics from numerical dif-
ferentiation. There we present also the most commonly used formulae for computing first
and second derivatives, formulae which in turn find their most important applications in the
numerical solution of ordinary and partial differential equations. We discuss also selected
methods for numerical interpolation. This chapter serves also the scope of introducing some
more advanced C++ programming concepts, such as call by reference and value, reading
and writing to a file and the use of dynamic memory allocation. We will also discuss several
object-oriented features of C++, ending the chapter with an analogous discussion of Fortran
features.

3.1 Numerical Differentiation

The mathematical definition of the derivative of a function f (x) is

d f(x)
dx

= lim
h→0

f (x+h)− f (x)
h

where h is the step size. If we use a Taylor expansion for f (x) we can write

f (x+h) = f (x)+h f ′(x)+
h2 f ′′(x)

2
+ . . .

We can then obtain an expression for the first derivative as

f ′(x) =
f (x+h)− f (x)

h
.+O(h),

Assume now that we will employ two points to represent the function f by way of a straight
line between x and x+h. Fig. 3.1 illustrates this subdivision.

This means that we can represent the derivative with

f ′2(x) =
f (x+h)− f (x)

h
+O(h),

45
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where the suffix 2 refers to the fact that we are using two points to define the derivative and
the dominating error goes like O(h). This is the forward derivative formula. Alternatively, we
could use the backward derivative formula

f ′2(x) =
f (x)− f (x−h)

h
+O(h).

If the second derivative is close to zero, this simple two point formula can be used to ap-
proximate the derivative. If we however have a function like f (x) = a+bx2, we see that the
approximated derivative becomes

f ′2(x) = 2bx+bh,

while the exact answer is 2bx. Unless h is made very small, and b is not too large, we could
approach the exact answer by choosing smaller and smaller values for h. However, in this
case, the subtraction in the numerator, f (x+ h)− f (x) can give rise to roundoff errors and
eventually a loss of precision.

A better approach in case of a quadratic expression for f (x) is to use a 3-step formula where
we evaluate the derivative on both sides of a chosen point x0 using the above forward and
backward two-step formulae and taking the average afterward. We perform again a Taylor
expansion but now around x0±h, namely

f (x= x0±h) = f (x0)±h f ′+
h2 f ′′

2
± h3 f ′′′

6
+O(h4), (3.1)

which we rewrite as

f±h = f0±h f ′+
h2 f ′′

2
± h3 f ′′′

6
+O(h4).

Calculating both f±h and subtracting we obtain that

f ′3 =
fh− f−h

2h
− h2 f ′′′

6
+O(h3),

and we see now that the dominating error goes like h2 if we truncate at the second derivative.
We call the term h2 f ′′′/6 the truncation error. It is the error that arises because at some stage
in the derivation, a Taylor series has been truncated. As we will see below, truncation errors
and roundoff errors play an important role in the numerical determination of derivatives.

For our expression with a quadratic function f (x) = a+ bx2 we see that the three-point
formula f ′3 for the derivative gives the exact answer 2bx. Thus, if our function has a quadratic
behavior in x in a certain region of space, the three-point formula will result in reliable first
derivatives in the interval [−h,h]. Using the relation

fh−2 f0+ f−h = h2 f ′′+O(h4),

we can define the second derivative as

f ′′ =
fh−2 f0+ f−h

h2 +O(h2).

We could also define five-points formulae by expanding to two steps on each side of x0.
Using a Taylor expansion around x0 in a region [−2h,2h] we have

f±2h = f0±2h f ′+2h2 f ′′± 4h3 f ′′′

3
+O(h4). (3.2)

Using Eqs. (3.1) and (3.2), multiplying fh and f−h by a factor of 8 and subtracting (8 fh− f2h)−
(8 f−h− f−2h) we arrive at a first derivative given by
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✲

f (x)

x

✻

x0−2h x0−h x0 x0+h x0+2h

Fig. 3.1 Demonstration of the subdivision of the x-axis into small steps h. Each point corresponds to a set of
values x, f (x). The value of x is incremented by the step length h. If we use the points x0 and x0+hwe can draw
a straight line and use the slope at this point to determine an approximation to the first derivative. See text
for further discussion.

f ′5c =
f−2h−8 f−h+8 fh− f2h

12h
+O(h4),

with a dominating error of the order of h4 at the price of only two additional function eval-
uations. This formula can be useful in case our function is represented by a fourth-order
polynomial in x in the region [−2h,2h]. Note however that this function includes two addi-
tional function evaluations, implying a more time-consuming algorithm. Furthermore, the
two additional subtraction can lead to a larger risk of loss of numerical precision when h be-
comes small. Solving for example a differential equation which involves the first derivative,
one needs always to strike a balance between numerical accurary and the time needed to
achieve a given result.

It is possible to show that the widely used formulae for the first and second derivatives of
a function can be written as

fh− f−h

2h
= f ′0+

∞

∑
j=1

f (2 j+1)
0

(2 j +1)!
h2 j , (3.3)

and
fh−2 f0+ f−h

h2 = f ′′0 +2
∞

∑
j=1

f (2 j+2)
0

(2 j +2)!
h2 j , (3.4)

and we note that in both cases the error goes like O(h2 j). These expressions will also be used
when we evaluate integrals.
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To show this for the first and second derivatives starting with the three points f−h = f (x0−
h), f0 = f (x0) and fh = f (x0+h), we have that the Taylor expansion around x= x0 gives

a−h f−h+a0 f0+ah fh = a−h

∞

∑
j=0

f ( j)
0

j!
(−h) j +a0 f0+ah

∞

∑
j=0

f ( j)
0

j!
(h) j , (3.5)

where a−h, a0 and ah are unknown constants to be chosen so that a−h f−h+a0 f0 +ah fh is the
best possible approximation for f ′0 and f ′′0 . Eq. (3.5) can be rewritten as

a−h f−h+a0 f0+ah fh = [a−h+a0+ah] f0

+[ah−a−h]h f ′0+[a−h+ah]
h2 f ′′0

2
+

∞

∑
j=3

f ( j)
0

j!
(h) j [(−1) ja−h+ah

]
.

To determine f ′0, we require in the last equation that

a−h+a0+ah = 0,

−a−h+ah =
1
h
,

and
a−h+ah = 0.

These equations have the solution

a−h =−ah =−
1
2h

,

and
a0 = 0,

yielding

fh− f−h

2h
= f ′0+

∞

∑
j=1

f (2 j+1)
0

(2 j +1)!
h2 j .

To determine f ′′0 , we require in the last equation that

a−h+a0+ah = 0,

−a−h+ah = 0,

and

a−h+ah =
2
h2 .

These equations have the solution

a−h =−ah =−
1
h2 ,

and

a0 =−
2
h2 ,

yielding

fh−2 f0+ f−h

h2 = f ′′0 +2
∞

∑
j=1

f (2 j+2)
0

(2 j +2)!
h2 j .
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3.1.1 The second derivative of exp(x)

As an example, let us calculate the second derivatives of exp(x) for various values of x. Fur-
thermore, we will use this section to introduce three important C++-programming features,
namely reading and writing to a file, call by reference and call by value, and dynamic memory
allocation. We are also going to split the tasks performed by the program into subtasks. We
define one function which reads in the input data, one which calculates the second derivative
and a final function which writes the results to file.

Let us look at a simple case first, the use of printf and scanf. If we wish to print a variable
defined as double speed_of_sound; we could for example write

double speed_of_sound;

.....

printf(``speed_of_sound = %lf\n'', speed_of_sound);

In this case we say that we transfer the value of this specific variable to the function
printf. The function printf can however not change the value of this variable (there is no
need to do so in this case). Such a call of a specific function is called call by value. The crucial
aspect to keep in mind is that the value of this specific variable does not change in the called
function.

When do we use call by value? And why care at all? We do actually care, because if a called
function has the possibility to change the value of a variable when this is not desired, calling
another function with this variable may lead to totally wrong results. In the worst cases you
may even not be able to spot where the program goes wrong.

We do however use call by value when a called function simply receives the value of the
given variable without changing it.

If we however wish to update the value of say an array in a called function, we refer to this
call as call by reference. What is transferred then is the address of the first element of the
array, and the called function has now access to where that specific variable ’lives’ and can
thereafter change its value.

The function scanf is then an example of a function which receives the address of a vari-
able and is allowed to modify it. Afterall, when calling scanf we are expecting a new value
for a variable. A typical call could be scanf(‘‘%lf\n’’, &speed_of_sound);.

Consider now the following program

1 using namespace std;

2 # include <iostream>

3 // begin main function

4 int main(int argc, char argv[])

{

5 int a;

6 int *b;

7 a = 10;

8 b = new int[10];

9 for( int i = 0; i < 10; i++){

10 b[i] = i;

11 }

12 func(a,b);

13 return 0;

14 } // end of main function

15 // definition of the function func

16 void func(int x, int *y)

17 {

18 x += 7;

19 *y += 10;

20 y[6] += 10;
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21 return;

22 } // end function func

There are several features to be noted.

• Lines 5 and 6: Declaration of two variables a and b. The compiler reserves two locations
in memory. The size of the location depends on the type of variable. Two properties are
important for these locations – the address in memory and the content in the

• Line 7: The value of a is now 10.
• Line 8: Memory to store 10 integers is reserved. The address to the first location is stored

in b. The address of element number 6 is given by the expression (b + 6).
• Line 10: All 10 elements of b are given values: b[0] = 0, b[1] = 1, ....., b[9] = 9;
• Line 12: The main() function calls the function func() and the program counter transfers

to the first statement in func(). With respect to data the following happens. The content
of a (= 10) and the content of b (a memory address) are copied to a stack (new memory
location) associated with the function func()

• Line 16: The variable x and y are local variables in func(). They have the values – x = 10, y
= address of the first element in b in the main() program.

• Line 18: The local variable x stored in the stack memory is changed to 17. Nothing happens
with the value a in main().

• Line 19: The value of y is an address and the symbol *y stands for the position in memory
which has this address. The value in this location is now increased by 10. This means that
the value of b[0] in the main program is equal to 10. Thus func() has modified a value in
main().

• Line 20: This statement has the same effect as line 9 except that it modifies element b[6]
in main() by adding a value of 10 to what was there originally, namely 6.

• Line 21: The program counter returns to main(), the next expression after func(a,b);. All
data on the stack associated with func() are destroyed.

• The value of a is transferred to func() and stored in a new memory location called x. Any
modification of x in func() does not affect in any way the value of a in main(). This is called
transfer of data by value. On the other hand the next argument in func() is an address
which is transferred to func(). This address can be used to modify the corresponding value
in main(). In the programming language C it is expressed as a modification of the value
which y points to, namely the first element of b. This is called transfer of data by refer-

ence and is a method to transfer data back to the calling function, in this case main().

C++ allows however the programmer to use solely call by reference (note that call by ref-
erence is implemented as pointers). To see the difference between C and C++, consider the
following simple examples. In C we would write

int n; n =8;

func(&n); /* &n is a pointer to n */

....

void func(int *i)

{

*i = 10; /* n is changed to 10 */

....

}

whereas in C++ we would write

int n; n =8;

func(n); // just transfer n itself

....

void func(int& i)

{
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i = 10; // n is changed to 10

....

}

Note well that the way we have defined the input to the function func(int& i) or func(int *i)

decides how we transfer variables to a specific function. The reason why we emphasize the
difference between call by value and call by reference is that it allows the programmer to
avoid pitfalls like unwanted changes of variables. However, many people feel that this re-
duces the readability of the code. It is more or less common in C++ to use call by reference,
since it gives a much cleaner code. Recall also that behind the curtain references are usually
implemented as pointers. When we transfer large objects such a matrices and vectors one
should always use call by reference. Copying such objects to a called function slows down
considerably the execution. If you need to keep the value of a call by reference object, you
should use the const declaration.

In programming languages like Fortran one uses only call by reference, but you can flag
whether a called function or subroutine is allowed or not to change the value by declaring for
example an integer value as INTEGER, INTENT(IN) :: i. The local function cannot change
the value of i. Declaring a transferred values as INTEGER, INTENT(OUT) :: i. allows the
local function to change the variable i.

3.1.1.1 Initializations and main program

In every program we have to define the functions employed. The style chosen here is to
declare these functions at the beginning, followed thereafter by the main program and the
detailed tasks performed by each function. Another possibility is to include these functions
and their statements before the main program, meaning that the main program appears at
the very end. I find this programming style less readable however since I prefer to read a
code from top to bottom. A further option, specially in connection with larger projects, is
to include these function definitions in a user defined header file. The following program
shows also (although it is rather unnecessary in this case due to few tasks) how one can split
different tasks into specialized functions. Such a division is very useful for larger projects and
programs.

In the first version of this program we use a more C-like style for writing and reading to
file. At the end of this section we include also the corresponding C++ and Fortran files.

http://folk.uio.no/mhjensen/compphys/programs/chapter03/cpp/program1.cpp

/*

** Program to compute the second derivative of exp(x).

** Three calling functions are included

** in this version. In one function we read in the data from screen,

** the next function computes the second derivative

** while the last function prints out data to screen.

*/

using namespace std;

# include <iostream>

void initialize (double *, double *, int *);

void second_derivative( int, double, double, double *, double *);

void output( double *, double *, double, int);

int main()

{

// declarations of variables

int number_of_steps;

http://folk.uio.no/mhjensen/compphys/programs/chapter03/cpp/program1.cpp
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double x, initial_step;

double *h_step, *computed_derivative;

// read in input data from screen

initialize (&initial_step, &x, &number_of_steps);

// allocate space in memory for the one-dimensional arrays

// h_step and computed_derivative

h_step = new double[number_of_steps];

computed_derivative = new double[number_of_steps];

// compute the second derivative of exp(x)

second_derivative( number_of_steps, x, initial_step, h_step,

computed_derivative);

// Then we print the results to file

output(h_step, computed_derivative, x, number_of_steps );

// free memory

delete [] h_step;

delete [] computed_derivative;

return 0;

} // end main program

We have defined three additional functions, one which reads in from screen the value of x, the
initial step length h and the number of divisions by 2 of h. This function is called initialize.
To calculate the second derivatives we define the function second_derivative. Finally, we
have a function which writes our results together with a comparison with the exact value to
a given file. The results are stored in two arrays, one which contains the given step length h
and another one which contains the computed derivative.

These arrays are defined as pointers through the statement

double *h_step, *computed_derivative;

A call in the main function to the function second_derivative looks then like this

second_derivative( number_of_steps, x, intial_step, h_step, computed_derivative);

while the called function is declared in the following way

void second_derivative(int number_of_steps, double x, double *h_step,double

*computed_derivative);

indicating that double *h_step, double *computed_derivative; are pointers and that
we transfer the address of the first elements. The other variables int number_of_steps, double x;

are transferred by value and are not changed in the called function.
Another aspect to observe is the possibility of dynamical allocation of memory through the

new function. In the included program we reserve space in memory for these three arrays in
the following way

h_step = new double[number_of_steps];

computed_derivative = new double[number_of_steps];

When we no longer need the space occupied by these arrays, we free memory through the
declarations

delete [] h_step;

delete [] computed_derivative;

3.1.1.2 The function initialize
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// Read in from screen the initial step, the number of steps

// and the value of x

void initialize (double *initial_step, double *x, int *number_of_steps)

{

printf("Read in from screen initial step, x and number of steps\n");

scanf("%lf %lf %d",initial_step, x, number_of_steps);

return;

} // end of function initialize

This function receives the addresses of the three variables

void initialize (double *initial_step, double *x, int *number_of_steps)

and returns updated values by reading from screen.

3.1.1.3 The function second_derivative

// This function computes the second derivative

void second_derivative( int number_of_steps, double x,

double initial_step, double *h_step,

double *computed_derivative)

{

int counter;

double h;

// calculate the step size

// initialize the derivative, y and x (in minutes)

// and iteration counter

h = initial_step;

// start computing for different step sizes

for (counter=0; counter < number_of_steps; counter++ )

{

// setup arrays with derivatives and step sizes

h_step[counter] = h;

computed_derivative[counter] =

(exp(x+h)-2.*exp(x)+exp(x-h))/(h*h);

h = h*0.5;

} // end of do loop

return;

} // end of function second derivative

The loop over the number of steps serves to compute the second derivative for different
values of h. In this function the step is halved for every iteration (you could obviously change
this to larger or smaller step variations). The step values and the derivatives are stored in the
arrays h_step and double computed_derivative.

3.1.1.4 The output function

This function computes the relative error and writes the results to a chosen file.
The last function here illustrates how to open a file, write and read possible data and then

close it. In this case we have fixed the name of the file. Another possibility is obviously to read
the name of this file together with other input parameters. The way the program is presented
here is slightly unpractical since we need to recompile the program if we wish to change the
name of the output file.
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An alternative is represented by the following C++ program. This program reads from
screen the names of the input and output files.

http://folk.uio.no/mhjensen/compphys/programs/chapter03/cpp/program2.cpp

1 #include <stdio.h>

2 #include <stdlib.h>

3 int col:

4

5 int main(int argc, char *argv[])

6 {

7 FILE *inn, *out;

8 int c;

9 if( argc < 3) {

10 printf("You have to read in :\n");

11 printf("in_file and out_file \n");

12 exit(1);

13 inn = fopen( argv[1], "r");} // returns pointer to the in_file

14 if( inn == NULL ) { // can't find in_file

15 printf("Can't find the input file %s\n", argv[1]);

16 exit(1);

17 }

18 out = fopen( argv[2], "w"); // returns a pointer to the out_file

19 if( out == NULL ) { // can't find out_file

20 printf("Can't find the output file %s\n", argv[2]);

21 exit(1);

22 }

... program statements

23 fclose(inn);

24 fclose(out);

25 return 0;

}

This program has several interesting features.

Line Program comments

5 • The function main() takes three arguments, given by argc. The vari-
able argv points to the following: the name of the program, the first and
second arguments, in this case the file names to be read from screen.

7 • C++ has a data type called FILE. The pointers inn and ?out?point to
specific files. They must be of the type FILE.

10 • The command line has to contain 2 filenames as parameters.
13–17 • The input file has to exit, else the pointer returns NULL. It has only read

permission.
18–22 • This applies for the output file as well, but now with write permission

only.
23–24 • Both files are closed before the main program ends.

The above represents a standard procedure in C for reading file names. C++ has its own
class for such operations.

http://folk.uio.no/mhjensen/compphys/programs/chapter03/cpp/program3.cpp

/*

** Program to compute the second derivative of exp(x).

** In this version we use C++ options for reading and

** writing files and data. The rest of the code is as in

** programs/chapter3/program1.cpp

** Three calling functions are included

** in this version. In one function we read in the data from screen,

** the next function computes the second derivative

http://folk.uio.no/mhjensen/compphys/programs/chapter03/cpp/program2.cpp
http://folk.uio.no/mhjensen/compphys/programs/chapter03/cpp/program3.cpp
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** while the last function prints out data to screen.

*/

using namespace std;

# include <iostream>

# include <fstream>

# include <iomanip>

# include <cmath>

void initialize (double *, double *, int *);

void second_derivative( int, double, double, double *, double *);

void output( double *, double *, double, int);

ofstream ofile;

int main(int argc, char* argv[])

{

// declarations of variables

char *outfilename;

int number_of_steps;

double x, initial_step;

double *h_step, *computed_derivative;

// Read in output file, abort if there are too few command-line arguments

if( argc <= 1 ){

cout << "Bad Usage: " << argv[0] <<

" read also output file on same line" << endl;

exit(1);

}

else{

outfilename=argv[1];

}

ofile.open(outfilename);

// read in input data from screen

initialize (&initial_step, &x, &number_of_steps);

// allocate space in memory for the one-dimensional arrays

// h_step and computed_derivative

h_step = new double[number_of_steps];

computed_derivative = new double[number_of_steps];

// compute the second derivative of exp(x)

second_derivative( number_of_steps, x, initial_step, h_step,

computed_derivative);

// Then we print the results to file

output(h_step, computed_derivative, x, number_of_steps );

// free memory

delete [] h_step;

delete [] computed_derivative;

// close output file

ofile.close();

return 0;

} // end main program

The main part of the code includes now an object declaration ofstream ofile which is in-
cluded in C++ and allows the programmer to open and declare files. This is done via the
statement ofile.open(outfilename);. We close the file at the end of the main program
by writing ofile.close();. There is a corresponding object for reading inputfiles. In this
case we declare prior to the main function, or in an evantual header file, ifstream ifile

and use the corresponding statements ifile.open(infilename); and ifile.close(); for
opening and closing an input file. Note that we have declared two character variables
char* outfilename; and char* infilename;. In order to use these options we need to in-
clude a corresponding library of functions using # include <fstream>.
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One of the problems with C++ is that formatted output is not as easy to use as the printf
and scanf functions in C. The output function using the C++ style is included below.

// function to write out the final results

void output(double *h_step, double *computed_derivative, double x,

int number_of_steps )

{

int i;

ofile << "RESULTS:" << endl;

ofile << setiosflags(ios::showpoint | ios::uppercase);

for( i=0; i < number_of_steps; i++)

{

ofile << setw(15) << setprecision(8) << log10(h_step[i]);

ofile << setw(15) << setprecision(8) <<

log10(fabs(computed_derivative[i]-exp(x))/exp(x))) << endl;

}

} // end of function output

The function setw(15) reserves an output of 15 spaces for a given variable while setprecision(8)
yields eight leading digits. To use these options you have to use the declaration # include <iomanip>.

Before we discuss the results of our calculations we list here the corresponding Fortran
program. The corresponding Fortran example is

http://folk.uio.no/mhjensen/compphys/programs/chapter03/Fortran/program1.f90

! Program to compute the second derivative of exp(x).

! Only one calling function is included.

! It computes the second derivative and is included in the

! MODULE functions as a separate method

! The variable h is the step size. We also fix the total number

! of divisions by 2 of h. The total number of steps is read from

! screen

MODULE constants

! definition of variables for double precisions and complex variables

INTEGER, PARAMETER :: dp = KIND(1.0D0)

INTEGER, PARAMETER :: dpc = KIND((1.0D0,1.0D0))

END MODULE constants

! Here you can include specific functions which can be used by

! many subroutines or functions

MODULE functions

USE constants

IMPLICIT NONE

CONTAINS

SUBROUTINE derivative(number_of_steps, x, initial_step, h_step, &

computed_derivative)

USE constants

INTEGER, INTENT(IN) :: number_of_steps

INTEGER :: loop

REAL(DP), DIMENSION(number_of_steps), INTENT(INOUT) :: &

computed_derivative, h_step

REAL(DP), INTENT(IN) :: initial_step, x

REAL(DP) :: h

! calculate the step size

! initialize the derivative, y and x (in minutes)

! and iteration counter

h = initial_step

! start computing for different step sizes

DO loop=1, number_of_steps

! setup arrays with derivatives and step sizes

h_step(loop) = h

http://folk.uio.no/mhjensen/compphys/programs/chapter03/Fortran/program1.f90
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computed_derivative(loop) = (EXP(x+h)-2.*EXP(x)+EXP(x-h))/(h*h)

h = h*0.5

ENDDO

END SUBROUTINE derivative

END MODULE functions

PROGRAM second_derivative

USE constants

USE functions

IMPLICIT NONE

! declarations of variables

INTEGER :: number_of_steps, loop

REAL(DP) :: x, initial_step

REAL(DP), ALLOCATABLE, DIMENSION(:) :: h_step, computed_derivative

! read in input data from screen

WRITE(*,*) 'Read in initial step, x value and number of steps'

READ(*,*) initial_step, x, number_of_steps

! open file to write results on

OPEN(UNIT=7,FILE='out.dat')

! allocate space in memory for the one-dimensional arrays

! h_step and computed_derivative

ALLOCATE(h_step(number_of_steps),computed_derivative(number_of_steps))

! compute the second derivative of exp(x)

! initialize the arrays

h_step = 0.0_dp; computed_derivative = 0.0_dp

CALL derivative(number_of_steps,x,initial_step,h_step,computed_derivative)

! Then we print the results to file

DO loop=1, number_of_steps

WRITE(7,'(E16.10,2X,E16.10)') LOG10(h_step(loop)),&

LOG10 ( ABS ( (computed_derivative(loop)-EXP(x))/EXP(x)))

ENDDO

! free memory

DEALLOCATE( h_step, computed_derivative)

! close the output file

CLOSE(7)

END PROGRAM second_derivative

The MODULE declaration in Fortran allows one to place functions like the one which calcu-
lates second derivatives in a module. Since this is a general method, one could extend its
functionality by simply transfering the name of the function to differentiate. In our case we
use explicitely the exponential function, but there is nothing which hinders us from defin-
ing other functions. Note the usage of the module constants where we define double and
complex variables. If one wishes to switch to another precision, one needs to change the dec-
laration in one part of the program only. This hinders possible errors which arise if one has to
change variable declarations in every function and subroutine. Finally, dynamic memory allo-
cation and deallocation is in Fortran done with the keywords ALLOCATE( array(size)) and
DEALLOCATE(array). Although most compilers deallocate and thereby free space in memory
when leaving a function, you should always deallocate an array when it is no longer needed.
In case your arrays are very large, this may block unnecessarily large fractions of the memory.
Furthermore, you should always initialize arrays. In the example above, we note that Fortran
allows us to simply write h_step = 0.0_dp; computed_derivative = 0.0_dp, which means
that all elements of these two arrays are set to zero. Coding arrays in this manner brings us
much closer to the way we deal with mathematics. In Fortran it is irrelevant whether this
is a one-dimensional or multi-dimensional array. In chapter 6, where we deal with allocation
of matrices, we will introduce the numerical libraries Armadillo and Blitz++ which allow for
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similar treatments of arrays in C++. By default however, these features are not included in
the ANSI C++ standard.

3.1.1.5 Results

In Table 3.1 we present the results of a numerical evaluation for various step sizes for the
second derivative of exp(x) using the approximation f ′′0 =

fh−2 f0+ f−h
h2 . The results are compared

with the exact ones for various x values. Note well that as the step is decreased we get

x h= 0.1 h= 0.01 h= 0.001 h= 0.0001 h= 0.0000001 Exact
0.0 1.000834 1.000008 1.000000 1.000000 1.010303 1.000000
1.0 2.720548 2.718304 2.718282 2.718282 2.753353 2.718282
2.0 7.395216 7.389118 7.389057 7.389056 7.283063 7.389056
3.0 20.102280 20.085704 20.085539 20.085537 20.250467 20.085537
4.0 54.643664 54.598605 54.598155 54.598151 54.711789 54.598150
5.0 148.536878 148.414396 148.413172 148.413161 150.635056 148.413159

Table 3.1 Result for numerically calculated second derivatives of exp(x) as functions of the chosen step size
h. A comparison is made with the exact value.

closer to the exact value. However, if it is further decreased, we run into problems of loss of
precision. This is clearly seen for h= 0.0000001. This means that even though we could let the
computer run with smaller and smaller values of the step, there is a limit for how small the
step can be made before we loose precision.

3.1.2 Error analysis

Let us analyze these results in order to see whether we can find a minimal step length which
does not lead to loss of precision. Furthermore In Fig. 3.2 we have plotted

ε = log10

(∣∣∣∣∣
f ′′computed− f ′′exact

f ′′exact

∣∣∣∣∣

)
,

as function of log10(h). We used an intial step length of h = 0.01 and fixed x = 10. For large
values of h, that is −4< log10(h) < −2 we see a straight line with a slope close to 2. Close to
log10(h)≈−4 the relative error starts increasing and our computed derivative with a step size
log10(h)<−4, may no longer be reliable.

Can we understand this behavior in terms of the discussion from the previous chapter? In
chapter 2 we assumed that the total error could be approximated with one term arising from
the loss of numerical precision and another due to the truncation or approximation made,
that is

εtot = εapprox+ εro.

For the computed second derivative, Eq. (3.4), we have

f ′′0 =
fh−2 f0+ f−h

h2 −2
∞

∑
j=1

f (2 j+2)
0

(2 j +2)!
h2 j ,

and the truncation or approximation error goes like
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Fig. 3.2 Log-log plot of the relative error of the second derivative of exp(x) as function of decreasing step
lengths h. The second derivative was computed for x= 10 in the program discussed above. See text for further
details

εapprox≈
f (4)0

12
h2.

If we were not to worry about loss of precision, we could in principle make h as small as
possible. However, due to the computed expression in the above program example

f ′′0 =
fh−2 f0+ f−h

h2 =
( fh− f0)+ ( f−h− f0)

h2 ,

we reach fairly quickly a limit for where loss of precision due to the subtraction of two nearly
equal numbers becomes crucial. If ( f±h− f0) are very close, we have ( f±h− f0) ≈ εM, where
|εM| ≤ 10−7 for single and |εM | ≤ 10−15 for double precision, respectively.

We have then ∣∣ f ′′0
∣∣=
∣∣∣∣
( fh− f0)+ ( f−h− f0)

h2

∣∣∣∣≤
2εM

h2 .

Our total error becomes

|εtot| ≤
2εM

h2 +
f (4)0

12
h2. (3.6)

It is then natural to ask which value of h yields the smallest total error. Taking the derivative
of |εtot| with respect to h results in

h=

(
24εM

f (4)0

)1/4

.

With double precision and x= 10we obtain

h≈ 10−4.

Beyond this value, it is essentially the loss of numerical precision which takes over. We note
also that the above qualitative argument agrees seemingly well with the results plotted in Fig.
3.2 and Table 3.1. The turning point for the relative error at approximately h≈ 10−4 reflects
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most likely the point where roundoff errors take over. If we had used single precision, we
would get h≈ 10−2. Due to the subtractive cancellation in the expression for f ′′ there is a
pronounced detoriation in accuracy as h is made smaller and smaller.

It is instructive in this analysis to rewrite the numerator of the computed derivative as

( fh− f0)+ ( f−h− f0) = (exp(x+h)−expx)+ (exp(x−h)−expx),

as
( fh− f0)+ ( f−h− f0) = exp(x)(exp(h)+exp(−h)−2),

since it is the difference (exp(h)+exp(−h)−2) which causes the loss of precision. The results,
still for x= 10 are shown in the Table 3.2. We note from this table that at h≈ ×10−8 we have

h exp(h)+exp(−h) exp(h)+exp(−h)−2
10−1 2.0100083361116070 1.0008336111607230×10−2

10−2 2.0001000008333358 1.0000083333605581×10−4

10−3 2.0000010000000836 1.0000000834065048×10−6

10−4 2.0000000099999999 1.0000000050247593×10−8

10−5 2.0000000001000000 9.9999897251734637×10−11

10−6 2.0000000000010001 9.9997787827987850×10−13

10−7 2.0000000000000098 9.9920072216264089×10−15

10−8 2.0000000000000000 0.0000000000000000×100

10−9 2.0000000000000000 1.1102230246251565×10−16

10−10 2.0000000000000000 0.0000000000000000×100

Table 3.2 Result for the numerically calculated numerator of the second derivative as function of the step
size h. The calculations have been made with double precision.

essentially lost all leading digits.
From Fig. 3.2 we can read off the slope of the curve and thereby determine empirically

how truncation errors and roundoff errors propagate. We saw that for −4 < log10(h) < −2,
we could extract a slope close to 2, in agreement with the mathematical expression for the
truncation error.

We can repeat this for−10< log10(h)<−4 and extract a slope which is approximately equal
to −2. This agrees again with our simple expression in Eq. (3.6).

3.2 Numerical Interpolation and Extrapolation

Numerical interpolation and extrapolation are frequently used tools in numerical applications
to physics. The often encountered situation is that of a function f at a set of points x1 . . .xn

where an analytic form is missing. The function f may represent some data points from ex-
periment or the result of a lengthy large-scale computation of some physical quantity that
cannot be cast into a simple analytical form.

We may then need to evaluate the function f at some point x within the data set x1 . . .xn,
but where x differs from the tabulated values. In this case we are dealing with interpolation.
If x is outside we are left with the more troublesome problem of numerical extrapolation.
Below we will concentrate on two methods for interpolation and extrapolation, namely poly-
nomial interpolation and extrapolation. The cubic spline interpolation approach is discussed
in chapter 6.
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3.2.1 Interpolation

Let us assume that we have a set of N+1 points y0 = f (x0),y1 = f (x1), . . . ,yN = f (xN) where
none of the xi values are equal. We wish to determine a polynomial of degree n so that

PN(xi) = f (xi) = yi , i = 0,1, . . . ,N (3.7)

for our data points. If we then write PN on the form

PN(x) = a0+a1(x− x0)+a2(x− x0)(x− x1)+ · · ·+aN(x− x0) . . . (x− xN−1), (3.8)

then Eq. (3.7) results in a triangular system of equations

a0 = f (x0)

a0+ a1(x1− x0) = f (x1)

a0+ a1(x2− x0)+ a2(x2− x0)(x2− x1) = f (x2)

. . . . . . . . . . . .

.

The coefficients a0, . . . ,aN are then determined in a recursive way, starting with a0,a1, . . . .
The classic of interpolation formulae was created by Lagrange and is given by

PN(x) =
N

∑
i=0

∏
k6=i

x− xk

xi− xk
yi . (3.9)

If we have just two points (a straight line) we get

P1(x) =
x− x0

x1− x0
y1+

x− x1

x0− x1
y0,

and with three points (a parabolic approximation) we have

P3(x) =
(x− x0)(x− x1)

(x2− x0)(x2− x1)
y2+

(x− x0)(x− x2)

(x1− x0)(x1− x2)
y1+

(x− x1)(x− x2)

(x0− x1)(x0− x2)
y0

and so forth. It is easy to see from the above equations that when x= xi we have that f (x) =
f (xi) It is also possible to show that the approximation error (or rest term) is given by the
second term on the right hand side of

f (x) = PN(x)+
ωN+1(x) f (N+1)(ξ )

(N+1)!
. (3.10)

The function ωN+1(x) is given by

ωN+1(x) = aN(x− x0) . . . (x− xN),

and ξ = ξ (x) is a point in the smallest interval containing all interpolation points x j and x.
The program we provide below is however based on divided differences. The recipe is quite
simple. If we take x = x0 in Eq. (3.8), we then have obviously that a0 = f (x0) = y0. Moving a0

over to the left-hand side and dividing by x− x0 we have

f (x)− f (x0)

x− x0
= a1+a2(x− x1)+ · · ·+aN(x− x1)(x− x2) . . . (x− xN−1),

where we hereafter omit the rest term
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f (N+1)(ξ )
(N+1)!

(x− x1)(x− x2) . . . (x− xN).

The quantity

f0x =
f (x)− f (x0)

x− x0
,

is a divided difference of first order. If we then take x= x1, we have that a1 = f01. Moving a1

to the left again and dividing by x− x1 we obtain

f0x− f01

x− x1
= a2+ · · ·+aN(x− x2) . . . (x− xN−1).

and the quantity

f01x =
f0x− f01

x− x1
,

is a divided difference of second order. We note that the coefficient

a1 = f01,

is determined from f0x by setting x= x1. We can continue along this line and define the divided
difference of order k+1 as

f01...kx =
f01...(k−1)x− f01...(k−1)k

x− xk
, (3.11)

meaning that the corresponding coefficient ak is given by

ak = f01...(k−1)k.

With these definitions we see that Eq. (3.10) can be rewritten as

f (x) = a0+ ∑
k=1

N f01...k(x− x0) . . . (x− xk−1)+
ωN+1(x) f (N+1)(ξ )

(N+1)!
.

If we replace x0,x1, . . . ,xk in Eq. (3.11) with xi+1,xi+2, . . . ,xk, that is we count from i + 1 to k
instead of counting from 0 to k and replace x with xi , we can then construct the following
recursive algorithm for the calculation of divided differences

fxi xi+1...xk =
fxi+1...xk− fxixi+1...xk−1

xk− xi
.

Assuming that we have a table with function values (x j , f (x j ) = y j) and need to construct the
coefficients for the polynomial PN(x). We can then view the last equation by constructing the
following table for the case where N = 3.

x0 y0

fx0x1

x1 y1 fx0x1x2

fx1x2 fx0x1x2x3

x2 y2 fx1x2x3

fx2x3

x3 y3

.

The coefficients we are searching for will then be the elements along the main diagonal.
We can understand this algorithm by considering the following. First we construct the unique
polynomial of order zero which passes through the point x0,y0. This is just a0 discussed above.
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Therafter we construct the unique polynomial of order one which passes through both x0y0

and x1y1. This corresponds to the coefficient a1 and the tabulated value fx0x1 and together with
a0 results in the polynomial for a straight line. Likewise we define polynomial coefficients for
all other couples of points such as fx1x2 and fx2x3. Furthermore, a coefficient like a2 = fx0x1x2

spans now three points, and adding together fx0x1 we obtain a polynomial which represents
three points, a parabola. In this fashion we can continue till we have all coefficients. The
function we provide below included is based on an extension of this algorithm, knowns as
Neville’s algorithm. The error provided by Neville’s algorithm is based on the truncation
error in Eq. (3.10).

http://folk.uio.no/mhjensen/compphys/programs/chapter03/cpp/program4.cpp

/*

** The function

** polint()

** takes as input xa[0,..,n-1] and ya[0,..,n-1] together with a given value

** of x and returns a value y and an error estimate dy. If P(x) is a polynomial

** of degree N - 1 such that P(xa_i) = ya_i, i = 0,..,n-1, then the returned

** value is y = P(x).

*/

void polint(double xa[], double ya[], int n, double x, double *y, double *dy)

{

int i, m, ns = 1;

double den,dif,dift,ho,hp,w;

double *c,*d;

dif = fabs(x - xa[0]);

c = new double [n];

d = new double [n];

for(i = 0; i < n; i++) {

if((dift = fabs(x - xa[i])) < dif) {

ns = i;

dif = dift;

}

c[i] = ya[i];

d[i] = ya[i];

}

*y = ya[ns--];

for(m = 0; m < (n - 1); m++) {

for(i = 0; i < n - m; i++) {

ho = xa[i] - x;

hp = xa[i + m] - x;

w = c[i + 1] - d[i];

if((den = ho - hp) < ZERO) {

printf("\n\n Error in function polint(): ");

printf("\nden = ho - hp = %4.1E -- too small\n",den);

exit(1);

}

den = w/den;

d[i] = hp * den;

c[i] = ho * den;

}

*y += (*dy = (2 * ns < (n - m) ? c[ns + 1] : d[ns--]));

}

delete [] d;

delete [] c;

} // End: function polint()

When using this function, you need obviously to declare the function itself.

http://folk.uio.no/mhjensen/compphys/programs/chapter03/cpp/program4.cpp
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3.2.2 Richardson’s deferred extrapolation method

Here we present an elegant method to improve the precision of our mathematical truncation,
without too many additional function evaluations. We will again study the evaluation of the
first and second derivatives of exp(x) at a given point x= ξ . In Eqs. (3.3) and (3.4) for the first
and second derivatives, we noted that the truncation error goes like O(h2 j).

Employing the mid-point approximation to the derivative, the various derivatives D of a
given function f (x) can then be written as

D(h) = D(0)+a1h
2+a2h

4+a3h6+ . . . ,

where D(h) is the calculated derivative, D(0) the exact value in the limit h→ 0 and ai are
independent of h. By choosing smaller and smaller values for h, we should in principle be
able to approach the exact value. However, since the derivatives involve differences, we may
easily loose numerical precision as shown in the previous sections. A possible cure is to apply
Richardson’s deferred approach, i.e., we perform calculations with several values of the step
h and extrapolate to h = 0. The philososphy is to combine different values of h so that the
terms in the above equation involve only large exponents for h. To see this, assume that we
mount a calculation for two values of the step h, one with h and the other with h/2. Then we
have

D(h) = D(0)+a1h
2+a2h

4+a3h6+ . . . ,

and

D(h/2) = D(0)+
a1h2

4
+

a2h4

16
+

a3h6

64
+ . . . ,

and we can eliminate the term with a1 by combining

D(h/2)+
D(h/2)−D(h)

3
= D(0)− a2h4

4
− 5a3h6

16
. (3.12)

We see that this approximation to D(0) is better than the two previous ones since the error
now goes like O(h4). As an example, let us evaluate the first derivative of a function f using a
step with lengths h and h/2. We have then

fh− f−h

2h
= f ′0+O(h2),

fh/2− f−h/2

h
= f ′0+O(h2/4),

which can be combined, using Eq. (3.12) to yield

− fh+8 fh/2−8 f−h/2+ f−h

6h
= f ′0−

h4

480
f (5).

In practice, what happens is that our approximations to D(0) goes through a series of steps

D(0)
0

D(1)
0 D(0)

1

D(2)
0 D(1)

1 D(0)
2

D(3)
0 D(2)

1 D(1)
2 D(0)

3
. . . . . . . . . . . .

,

where the elements in the first column represent the given approximations
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D(k)
0 = D(h/2k).

This means that D(0)
1 in the second column and row is the result of the extrapolation based on

D(0)
0 and D(1)

0 . An element D(k)
m in the table is then given by

D(k)
m = D(k)

m−1+
D(k+1)

m−1 −D(k)
m−1

4m−1
(3.13)

with m> 0.
In Table 3.1 we presented the results for various step sizes for the second derivative of

exp(x) using f ′′0 =
fh−2 f0+ f−h

h2 . The results were compared with the exact ones for various x
values. Note well that as the step is decreased we get closer to the exact value. However,
if it is further increased, we run into problems of loss of precision. This is clearly seen for
h = 0.000001. This means that even though we could let the computer run with smaller and
smaller values of the step, there is a limit for how small the step can be made before we loose
precision. Consider now the results in Table 3.3 where we choose to employ Richardson’s
extrapolation scheme. In this calculation we have computed our function with only three
possible values for the step size, namely h, h/2 and h/4 with h = 0.1. The agreement with
the exact value is amazing! The extrapolated result is based upon the use of Eq. (3.13). An

x h= 0.1 h= 0.05 h= 0.025 Extrapolat Error
0.0 1.00083361 1.00020835 1.00005208 1.00000000 0.00000000
1.0 2.72054782 2.71884818 2.71842341 2.71828183 0.00000001
2.0 7.39521570 7.39059561 7.38944095 7.38905610 0.00000003
3.0 20.10228045 20.08972176 20.08658307 20.08553692 0.00000009
4.0 54.64366366 54.60952560 54.60099375 54.59815003 0.00000024
5.0 148.53687797 148.44408109 148.42088912 148.41315910 0.00000064

Table 3.3 Result for numerically calculated second derivatives of exp(x) using extrapolation. The first three
values are those calculated with three different step sizes, h, h/2 and h/4 with h= 0.1. The extrapolated result
to h= 0 should then be compared with the exact ones from Table 3.1.

alternative recipe is to use our function for the polynomial extrapolation discussed in the
previous subsection and calculate the derivatives for several values of h and then extrapolate
to h= 0. We will use this method to obtain improved eigenvalues in chapter 7.

Other methods to interpolate a function f (x) such as spline methods will be discussed in
chapter 6.

3.3 Classes in C++

In Fortran a vector (this applies to matrices as well) starts with 1, but it is easy to change
the declaration of vector so that it starts with zero or even a negative number. If we have a
double precision Fortran vector which starts at −10 and ends at 10, we could declare it as
REAL(KIND=8) :: vector(-10:10). Similarly, if we want to start at zero and end at 10 we
could write REAL(KIND=8) :: vector(0:10). Fortran allows us to write a vector addition
a= b+c as a = b + c. This means that we have overloaded the addition operator in order to
translate this operation into two loops and an addition of two vector elements ai = bi + ci.

The way the vector addition is written is very close to the way we express this relation
mathematically. The benefit for the programmer is that our code is easier to read. Further-
more, such a way of coding makes it more likely to spot eventual errors as well.
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In Ansi C and C++ arrays start by default from i = 0. Moreover, if we wish to add two
vectors we need to explicitely write out a loop as

for(i=0 ; i < n ; i++) {

a[i]=b[i]+c[i]

}

However, the strength of C++ over programming languages like C and Fortran 77 is the
possibility to define new data types, tailored to some particular problem. Via new data types
and overloading of operations such as addition and subtraction, we can easily define sets of
operations and data types which allow us to write a vector or matrix addition in exactly the
same way as we would do in Fortran. We could also change the way we declare a C++ vector
(or matrix) element ai , from a[i] to say a(i), as we would do in Fortran. Similarly, we could also
change the default range from 0 : n−1 to 1 : n.

To achieve this we need to introduce two important entities in C++ programming, classes
and templates.

The function and class declarations are fundamental concepts within C++. Functions are
abstractions which encapsulate an algorithm or parts of it and perform specific tasks in a
program. We have already met several examples on how to use functions. Classes can be
defined as abstractions which encapsulate data and operations on these data. The data can
be very complex data structures and the class can contain particular functions which operate
on these data. Classes allow therefore for a higher level of abstraction in computing. The
elements (or components) of the data type are the class data members, and the procedures
are the class member functions.

Classes are user-defined tools used to create multi-purpose software which can be reused
by other classes or functions. These user-defined data types contain data (variables) and
functions operating on the data.

A simple example is that of a point in two dimensions. The data could be the x and y
coordinates of a given point. The functions we define could be simple read and write functions
or the possibility to compute the distance between two points.

The two examples we elaborate on below demonstrate most of the features of classes.
We develop first a class called Complex which allows us to perform various operations on
complex variables. We extend thereafter our discussion of classes to define a class Vector

which allows us to perform various operations on a user-specified one-dimesional array, from
declarations of a vector to mathematical operations such as additions of vectors. Later, in our
discussion on linear algebra, we will also present our final matrix and vector class.

The classes we define are easy to use in other codes and/or other classes and many of the
details which would be present in C (or Fortran 77) codes are hidden inside the class. The
reuse of a well-written and functional class is normally rather simple. However, to write a
given class is often complicated, especially if we deal with complicated matrix operations. In
this text we will rely on ready-made classes in C++ for dealing with matrix operations. We
have chosen to use the libraries like Armadillo or Blitz++, discussed in our linear algebra
chapter. These libraries hide many low-level operations with matrices and vectors, such as
matrix-vector multiplications or allocation and deallocation of memory. Such libraries make
it then easier to build our own high-level classes out of well-tested lower-level classes.

The way we use classes in this text is close to the MODULE data type in Fortran and we
provide some simple demonstrations at the end of this section.
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3.3.1 The Complex class

As remarked in chapter 2, C++ has a class complex in its standard template library (STL).
The standard usage in a given function could then look like

// Program to calculate addition and multiplication of two complex numbers

using namespace std;

#include <iostream>

#include <cmath>

#include <complex>

int main()

{

complex<double> x(6.1,8.2), y(0.5,1.3);

// write out x+y

cout << x + y << x*y << endl;

return 0;

}

where we add and multiply two complex numbers x = 6.1+ ı8.2 and y = 0.5+ ı1.3 with the
obvious results z= x+ y= 6.6+ ı9.5 and z= x ·y= −7.61+ ı12.03. In Fortran we would declare
the above variables as COMPLEX(DPC) :: x(6.1,8.2), y(0.5,1.3).

The libraries Armadillo and Blitz++ include an extension of the complex class to opera-
tions on vectors, matrices and higher-dimensional arrays. We recommend the usage of such
libraries when you develop your own codes. However, writing a complex class yourself is a
good pedagogical exercise.

We proceed by splitting our task in three files.

• We define first a header file complex.h which contains the declarations of the class. The
header file contains the class declaration (data and functions), declaration of stand-alone
functions, and all inlined functions, starting as follows

#ifndef Complex_H

#define Complex_H

// various include statements and definitions

#include <iostream> // Standard ANSI-C++ include files

#include <new>

#include ....

class Complex

{...

definition of variables and their character

};

// declarations of various functions used by the class

...

#endif

• Next we provide a file complex.cpp where the code and algorithms of different functions
(except inlined functions) declared within the class are written. The files complex.h and
complex.cpp are normally placed in a directory with other classes and libraries we have
defined.

• Finally,we discuss here an example of a main program which uses this particular class.
An example of a program which uses our complex class is given below. In particular we
would like our class to perform tasks like declaring complex variables, writing out the real
and imaginary part and performing algebraic operations such as adding or multiplying two
complex numbers.

#include "Complex.h"

... other include and declarations
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int main ()

{

Complex a(0.1,1.3); // we declare a complex variable a

Complex b(3.0), c(5.0,-2.3); // we declare complex variables b and c

Complex d = b; // we declare a new complex variable d

cout << "d=" << d << ", a=" << a << ", b=" << b << endl;

d = a*c + b/a; // we add, multiply and divide two complex numbers

cout << "Re(d)=" << d.Re() << ", Im(d)=" << d.Im() << endl; // write out of the real

and imaginary parts

}

We include the header file complex.h and define four different complex variables. These
are a = 0.1+ ı1.3, b = 3.0+ ı0 (note that if you don’t define a value for the imaginary part
this is set to zero), c= 5.0− ı2.3 and d = b. Thereafter we have defined standard algebraic
operations and the member functions of the class which allows us to print out the real and
imaginary part of a given variable.

To achieve these features, let us see how we define the complex class. In C++ we could
define a complex class as follows

class Complex

{

private:

double re, im; // real and imaginary part

public:

Complex (); // Complex c;

Complex (double re, double im = 0.0); // Definition of a complex variable;

Complex (const Complex& c); // Usage: Complex c(a); // equate two complex variables

Complex& operator= (const Complex& c); // c = a; // equate two complex variables, same

as previous

~Complex () {} // destructor

double Re () const; // double real_part = a.Re();

double Im () const; // double imag_part = a.Im();

double abs () const; // double m = a.abs(); // modulus

friend Complex operator+ (const Complex& a, const Complex& b);

friend Complex operator- (const Complex& a, const Complex& b);

friend Complex operator* (const Complex& a, const Complex& b);

friend Complex operator/ (const Complex& a, const Complex& b);

};

The class is defined via the statement class Complex. We must first use the key word
class, which in turn is followed by the user-defined variable name Complex. The body of the
class, data and functions, is encapsulated within the parentheses {...};.

Data and specific functions can be private, which means that they cannot be accessed from
outside the class. This means also that access cannot be inherited by other functions outside
the class. If we use protected instead of private, then data and functions can be inherited
outside the class. The key word public means that data and functions can be accessed from
outside the class. Here we have defined several functions which can be accessed by functions
outside the class. The declaration friend means that stand-alone functions can work on pri-
vately declared variables of the type (re, im). Data members of a class should be declared
as private variables.

The first public function we encounter is a so-called constructor, which tells how we de-
clare a variable of type Complex and how this variable is initialized. We have chosen three
possibilities in the example above:

1. A declaration like Complex c; calls the member function Complex() which can have the
following implementation

Complex:: Complex () { re = im = 0.0; }
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meaning that it sets the real and imaginary parts to zero. Note the way a member function
is defined. The constructor is the first function that is called when an object is instantiated.

2. Another possibility is

Complex:: Complex () {}

which means that there is no initialization of the real and imaginary parts. The drawback
is that a given compiler can then assign random values to a given variable.

3. A call like Complex a(0.1,1.3); means that we could call the member function as

Complex:: Complex (double re_a, double im_a)

{ re = re_a; im = im_a; }

The simplest member function are those we defined to extract the real and imaginary part
of a variable. Here you have to recall that these are private data, that is they are invisible for
users of the class. We obtain a copy of these variables by defining the functions

double Complex:: Re () const { return re; }} // getting the real part

double Complex:: Im () const { return im; } // and the imaginary part

\end{lstlistingline}

Note that we have introduced the declaration \verb?const}. What does it mean?

This declaration means that a variable cannot be changed within a called function.

If we define a variable as

\verb?const double p = 3;? and then try to change its value, we will get an error when we

compile our program. This means that constant arguments in functions cannot be changed.

\begin{lstlisting}

// const arguments (in functions) cannot be changed:

void myfunc (const Complex& c)

{ c.re = 0.2; /* ILLEGAL!! compiler error... */ }

If we declare the function and try to change the value to 0.2, the compiler will complain by
sending an error message. If we define a function to compute the absolute value of complex
variable like

double Complex:: abs () { return sqrt(re*re + im*im);}

without the constant declaration and define thereafter a function myabs as

double myabs (const Complex& c)

{ return c.abs(); } // Not ok because c.abs() is not a const func.

the compiler would not allow the c.abs() call in myabs since Complex::abs is not a constant
member function. Constant functions cannot change the object’s state. To avoid this we de-
clare the function abs as

double Complex:: abs () const { return sqrt(re*re + im*im); }

3.3.1.1 Overloading operators

C++ (and Fortran) allows for overloading of operators. That means we can define algebraic
operations on for example vectors or any arbitrary object. As an example, a vector addition
of the type c = a+ b means that we need to write a small part of code with a for-loop over
the dimension of the array. We would rather like to write this statement as c = a+b; as this
makes the code much more readable and close to eventual equations we want to code. To
achieve this we need to extend the definition of operators.

Let us study the declarations in our complex class. In our main function we have a state-
ment like d = b;, which means that we call d.operator= (b) and we have defined a so-called
assignment operator as a part of the class defined as
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Complex& Complex:: operator= (const Complex& c)

{

re = c.re;

im = c.im;

return *this;

}

With this function, statements like Complex d = b; or Complex d(b); make a new object d,
which becomes a copy of b. We can make simple implementations in terms of the assignment

Complex:: Complex (const Complex& c)

{ *this = c; }

which is a pointer to "this object", *this is the present object, so *this = c; means setting
the present object equal to c, that is this->operator= (c);.

The meaning of the addition operator + for complex objects is defined in the function

Complex operator+ (const Complex& a, const Complex& b);

The compiler translates c = a + b; into c = operator+ (a, b);. Since this implies the call
to a function, it brings in an additional overhead. If speed is crucial and this function call is
performed inside a loop, then it is more difficult for a given compiler to perform optimizations
of a loop. The solution to this is to inline functions. We discussed inlining in chapter 2. Inlining
means that the function body is copied directly into the calling code, thus avoiding calling the
function. Inlining is enabled by the inline keyword

inline Complex operator+ (const Complex& a, const Complex& b)

{ return Complex (a.re + b.re, a.im + b.im); }

Inline functions, with complete bodies must be written in the header file complex.h. Consider
the case c = a + b; that is, c.operator= (operator+ (a,b)); If operator+, operator= and
the constructor Complex(r,i) all are inline functions, this transforms to

c.re = a.re + b.re;

c.im = a.im + b.im;

by the compiler, i.e., no function calls
The stand-alone function operator+ is a friend of the Complex class

class Complex

{

...

friend Complex operator+ (const Complex& a, const Complex& b);

...

};

so it can read (and manipulate) the private data parts re and im via

inline Complex operator+ (const Complex& a, const Complex& b)

{ return Complex (a.re + b.re, a.im + b.im); }

Since we do not need to alter the re and im variables, we can get the values by Re() and Im(),
and there is no need to be a friend function

inline Complex operator+ (const Complex& a, const Complex& b)

{ return Complex (a.Re() + b.Re(), a.Im() + b.Im()); }

The multiplication functionality can now be extended to imaginary numbers by the follow-
ing code
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inline Complex operator* (const Complex& a, const Complex& b)

{

return Complex(a.re*b.re - a.im*b.im, a.im*b.re + a.re*b.im);

}

It will be convenient to inline all functions used by this operator. To inline the complete
expression a*b;, the constructors and operator= must also be inlined. This can be achieved
via the following piece of code

inline Complex:: Complex () { re = im = 0.0; }

inline Complex:: Complex (double re_, double im_)

{ ... }

inline Complex:: Complex (const Complex& c)

{ ... }

inline Complex:: operator= (const Complex& c)

{ ... }

// e, c, d are complex

e = c*d;

// first compiler translation:

e.operator= (operator* (c,d));

// result of nested inline functions

// operator=, operator*, Complex(double,double=0):

e.re = c.re*d.re - c.im*d.im;

e.im = c.im*d.re + c.re*d.im;

The definitions operator- and operator/ follow the same setup.
Finally, if we wish to write to file or another device a complex number using the simple

syntax cout << c;, we obtain this by defining the effect of << for a Complex object as

ostream& operator<< (ostream& o, const Complex& c)

{ o << "(" << c.Re() << "," << c.Im() << ") "; return o;}

3.3.1.2 Templates

The reader may have noted that all variables and some of the functions defined in our class
are declared as doubles. What if we wanted to make a class which takes integers or floating
point numbers with single precision? A simple way to achieve this is copy and paste our class
and replace double with for example int.

C++ allows us to do this automatically via the usage of templates, which are the C++
constructs for parameterizing parts of classes. Class templates is a template for producing
classes. The declaration consists of the keyword template followed by a list of template ar-
guments enclosed in brackets. We can therefore make a more general class by rewriting our
original example as

template<class T>

class Complex

{

private:

T re, im; // real and imaginary part

public:

Complex (); // Complex c;

Complex (T re, T im = 0); // Definition of a complex variable;

Complex (const Complex& c); // Usage: Complex c(a); // equate two complex variables

Complex& operator= (const Complex& c); // c = a; // equate two complex variables, same

as previous

~Complex () {} // destructor
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T Re () const; // T real_part = a.Re();

T Im () const; // T imag_part = a.Im();

T abs () const; // T m = a.abs(); // modulus

friend Complex operator+ (const Complex& a, const Complex& b);

friend Complex operator- (const Complex& a, const Complex& b);

friend Complex operator* (const Complex& a, const Complex& b);

friend Complex operator/ (const Complex& a, const Complex& b);

};

What it says is that Complex is a parameterized type with T as a parameter and T has to be a
type such as double or float. The class complex is now a class template and we would define
variables in a code as

Complex<double> a(10.0,5.1);

Complex<int> b(1,0);

Member functions of our class are defined by preceding the name of the function with the
template keyword. Consider the function we defined as

Complex:: Complex (double re_a, double im_a)

We could rewrite this function as

template<class T>

Complex<T>:: Complex (T re_a, T im_a)

{ re = re_a; im = im_a; }

The member functions are otherwise defined following ordinary member function definitions.
To write a class like the above is rather straightforward. The class for handling one-

dimensional arrays, presented in the next subsection shows some of the additional possibili-
ties which C++ offers. However, it can be rather difficult to write good classes for handling
matrices or more complex objects. For such applications we recommend therefore the usage
of ready-made libraries like Blitz++ or Armadillo.

Blitz++ http://www.oonumerics.org/blitz/ is a C++ library whose two main goals are
to improve the numerical efficiency of C++ and to extend the conventional dense array model
to incorporate new and useful features. Some examples of such extensions are flexible stor-
age formats, tensor notation and index placeholders. It allows you also to write several op-
erations involving vectors and matrices in a simple and clear (from a mathematical point
of view) way. The way you would code the addition of two matrices looks very similar to
the way it is done in Fortran. From a computational point of view, a library like Armadillo
http://arma.sourceforge.net/, which contains much of the array functionality included in
Blitz++, is preferred. Armadillo is a C++ linear algebra library that aims towards a good bal-
ance between speed and ease of use. It includes optional integration possibilities with popular
linear algebra packages like LAPACK and BLAS, see chapter 6 for further discussions.

3.3.2 The vector class

Our next next example is a very simple class to handle one-dimensional arrays. It demon-
strates again many aspects of C++ programming. However, most likely you will end up
using a ready-made array class from libraries like Blitz++ or Armadillo discussed above.
Furthermore, as was the case for the complex class, C++ contains also its own class for one-
dimensional arrays, that is a vector class. At the end however, we recommend that you use
libraries like Armadillo.

http://www.oonumerics.org/blitz/
http://arma.sourceforge.net/
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Our class Vector has as data a plain one-dimensional array. We define several functions
which operate on these data, from subscripting, change of the length of the array, assignment
to another vector, inner product with another vector etc etc. To be more specific, we define the
following usage of our class,that is the way the class is used in another part of the program:

• Create vectors of a specified length defining a vector as Vector\ v(n); Via this statement
we allocate space in memory for a vector with n elements.

• Create a vector with zero length by writing the statement Vector v;

• Change the dimension of a vector v to a given length n by declaring v.redim(n);. Note
here the way we use a function defined within a class. The function here is redim.

• Create a vector as a copy of another vector by simply writing Vector v(w);

• To extract the length of the vector by writing const int n = v.size();

• To find particular value of the vector double e = v(i);

• or assign a number to an entry via v(j) = e;

• We would also like to set two vectors equal to each other by simply writing w = v;

• or take the inner product of two vectors as double a = w.inner(v); or alternatively
a = inner(w,v);

• To write out the content of a vector could be done by via v.print(cout);

This list can be made longer by adding features like vector algebra, operator overloading etc.
We present now the declaration of the class, with our comments on the various declara-

tions.

class Vector

{

private:

double* A; // vector entries

int length; // the length ofthe vector

void allocate (int n); // allocate memory, length=n

void deallocate(); // free memory

public:

Vector (); // Constructor, use as Vector v;

Vector (int n); // use as Vector v(n);

Vector (const Vector& w); // us as Vector v(w);

~Vector (); // destructor to clean up dynamic memory

bool redim (int n); // change length, us as v.redim(m);

Vector& operator= (const Vector& w);// set two vectors equal v = w;

double operator() (int i) const; // a = v(i);

double& operator() (int i); // v(i) = a;

void print (std::ostream& o) const; // v.print(cout);

double inner (const Vector& w) const; // a = v.inner(w);

int size () const { return length; } // n = v.size();

};

The class is defined via the statement class Vector. We must first use the key word class,
which in turn is followed by the user-defined variable name. The body of the class, data and
functions, is encapsulated within the parentheses ...;.

Data and specific functions can be private, which means that they cannot be accessed from
outside the class. This means also that access cannot be inherited by other functions outside
the class. If we use protected instead of private, then data and functions can be inherited
outside the class. The key word public means that data and functions can be accessed from
outside the class. Here we have defined several functions which can be accessed by functions
outside the class.

The first public function we encounter is a so-called constructor, which tells how we declare
a variable of type Vector and how this variable is initialized
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Vector v; // declare a vector of length 0

// this actually means calling the function

Vector::Vector ()

{ A = NULL; length = 0; }

The constructor is the first function that is called when an object is instantiated. The variable
A is the vector entry which defined as a private entity. Here the length is set to zero. Note
also the way we define a method within the class by writing Vector::Vector (). The general
form is < return type> name of class :: name of method(<list of arguments>.

To give our vector v a dimensionality n we would write

Vector v(n); // declare a vector of length n

// means calling the function

Vector::Vector (int n)

{ allocate(n); }

void Vector::allocate (int n)

{

length = n;

A = new double[n]; // create n doubles in memory

}

Note that we defined a Fortran-like function for allocating memory. This is one of nice features
of C++ for Fortran programmers, one can always define a Fortran-like world if one wishes.
Moreover,the private function allocate operates on the private variables length and A. A
Vector object is created (dynamically) at run time, but must also be destroyed when it is no
longer in use. The destructor specifies how to destroy the object via the tilde symbol shown
here

Vector::~Vector ()

{

deallocate();

}

// free dynamic memory:

void Vector::deallocate ()

{

delete [] A;

}

Again we have define a deallocation statement which mimicks the Fortran way of removing
an object from memory. The observant reader may also have discovered that we have sneaked
in the word ’object’. What do we mean by that? A clarification is needed. We will always refer
to a class as user defined and declared variable which encapsulates various data (of a given
type) and operations on these data. An object on the other hand is an instance of a variable
of a given type. We refer to every variable we create and use as an object of a given type. The
variable A above is an object of type int.

The function where we set two vectors to have the same length and have the same values
can be written as

// v and w are Vector objects

v = w;

// means calling

Vector& Vector::operator= (const Vector& w)

// for setting v = w;

{

redim (w.size()); // make v as long as w
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int i;

for (i = 0; i < length; i++) { // (C++ arrays start at 0)

A[i] = w.A[i]; // fill in teh vector w

}

return *this;

}

// return of *this, i.e. a Vector&, allows nested operations

u = v = u_vec = v_vec;

where we have used the redim function

v.redim(n); // make a vector v of length n

bool Vector::redim (int n)

{

if (length == n)

return false; // no need to allocate anything

else {

if (A != NULL) {

// "this" object has already allocated memory

deallocate();

}

allocate(n);

return true; // the length was changed

}

}

and the copy action is defined as

Vector v(w); // take a copy of w

Vector::Vector (const Vector& w)

{

allocate (w.size()); // "this" object gets w's length

*this = w; // call operator =

}

Here we have defined this to be a pointer to the current (“this”) object, in other words this
is the object itself.

void Vector::print (std::ostream& o) const

{

int i;

for (i = 1; i <= length; i++)

o << "(" << i << ")=" << (*this)(i) << '\n';

}

double a = v.inner(w);

double Vector::inner (const Vector& w) const

{

int i; double sum = 0;

for (i = 0; i < length; i++)

sum += A[i]*w.A[i];

// alternative:

// for (i = 1; i <= length; i++) sum += (*this)(i)*w(i);

return sum;

}

// Vector v

cout << v;
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ostream& operator<< (ostream& o, const Vector& v)

{ v.print(o); return o; }

// must return ostream& for nested output operators:

cout << "some text..." << w;

// this is realized by these calls:

operator<< (cout, "some text...");

operator<< (cout, w);

We can redefine the multiplication operator to mean the inner product of two vectors:

double a = v*w; // example on attractive syntax

class Vector

{

...

// compute (*this) * w

double operator* (const Vector& w) const;

...

};

double Vector::operator* (const Vector& w) const

{

return inner(w);

}

// have some Vector u, v, w; double a;

u = v + a*w;

// global function operator+

Vector operator+ (const Vector& a, const Vector& b)

{

Vector tmp(a.size());

for (int i=1; i<=a.size(); i++)

tmp(i) = a(i) + b(i);

return tmp;

}

// global function operator*
Vector operator* (const Vector& a, double r)

{

Vector tmp(a.size());

for (int i=1; i<=a.size(); i++)

tmp(i) = a(i)*r;

return tmp;

}

// symmetric operator: r*a

Vector operator* (double r, const Vector& a)

{ return operator*(a,r); }

3.3.2.1 Classes and templates in C++

We can again use templates to generalize our class to accept other types than just doubles.
To achieve that we use templates, which are the native C++ constructs for parameterizing
parts of classes, using statements like

template<class T>

class Vector
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{

T* A;

int length;

public:

...

T& operator() (int i) { return A[i-1]; }

...

};

In a code which uses this class we could declare various vectors as Declarations in user code:

Vector<double> a(10);

Vector<int> i(5);

where the first variable is double vector with ten elements while the second is an integer
vector with five elements.

Summarizing, it is easy to use the class Vector and we can hide in the class many details
which are visible in C and Fortran 77 codes. However, as you may have noted it is not easy
to write class Vector. One ends often up with using ready-made classes in C++ libraries
such as Blitz++ or Armadillo unless you really need to develop your own code. Furthermore,
our vector class has served mainly a pedagogical scope, since C++ has a Standard Template
Library (STL) with vector types, including a vector for doing numerics that can be declared
as

std::valarray<double> x(n); // vector with n entries

However, there is no STL for a matrix type. We end therefore with recommending the use
of ready-made libraries like Blitz++ or Armadillo or the matrix class discussed in the linear
algebra chapter, see chapter 6.

We end this section by listing the final vector class, with both header file and the definitions
of the various functions. The major part of the listing below is obvious and is not commented.
The usage of the class could be as follows:

Vector v1;

// Redimension the vector to have length n:

int n1 = 3;

v1.redim(n1);

cout << "v1.getlength: " << v1.getLength() << endl;

// Extract the length of the vector:

const int length = v1.getLength();

// Create a vector of a specific length:

int n2 = 5;

Vector v2(n2);

cout << "v2.getlength: " << v2.getLength() << endl;

// Create a vector from an existing array:

int n3 = 3;

double* array = new double[n3];

Vector v4(n3, array);

cout << "v4.getlength: " << v4.getLength() << endl;

// Create a vector as a copy of another one:

Vector v5(v1);

cout << "v5.getlength: " << v5.getLength() << endl;

// Assign the entries in a vector:

v5(0) = 3.0; // or alternatively v5[0] = 3.0;
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v5(1) = 2.5; // or alternatively v5[1] = 2.5;

v5(2) = 1.0; // or alternatively v5[2] = 1.0;

// Extract the ith component of a vector:

int i = 2;

double value = v5(1);

cout << "value: " << value << endl;

// Set a vector equal another one:

Vector v6 = v5;

cout << "try redim.v6: " << v6.redim(1) << endl;

cout << "v6.getLength: " << v6.getLength() << endl;

// Take the inner product between two vectors:

double dot = v6.inner(v5); // alternatively: double dot = inner(v6,v5);

cout << "dot(v6,v5): " << dot << endl;

// Get the euclidean norm to a vector:

double norm = v6.l2norm();

cout << "norm of v6: " << norm << endl;

// Normalize a vector:

v5.normalize();

// Dump a vector to the screen:

v5.print(std::cout << "v5: " << endl);

// Arithmetic operations with vectors using a

// syntax close to the mathematical language

Vector w = v1 + a*v2;

We list here the header file first.

http://folk.uio.no/mhjensen/compphys/programs/chapter03/cpp/Vector.h

#ifndef VECTOR_H

#define VECTOR_H

#include <cmath>

#include <iostream>

/*****************************************************************************/

/* VECTOR CLASS */

/*****************************************************************************/

/**

* @file Vector.h

* @class Vector

* @brief Class used for manipulating one-dimensional arrays.

*

* Contains user-defined operators to do computations with arrays in a style

* close to mathematical equations.

*

**/

class Vector{

private:

int length; // Number of entries.

double *vec; // Entries.

public:

http://folk.uio.no/mhjensen/compphys/programs/chapter03/cpp/Vector.h
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/**

* @brief Constructor. Creates a vector initializing its elements to zero

* @param int _length. The number of entries in the array.

**/

// Default constructor

Vector();

/**

* @brief Constructor. Creates a vector initializing its elements to zero

* @param int length. The number of entries in the array.

**/

// Constructor

Vector(int _length);

/**

* Constructor. Creates a vector to hold a given array.

* @param int _length. Number of entreis in the array.

* @param const double* a. Constant pointer to a double array.

**/

// Constructor

Vector(int _length, const double *array);

/**

* Copy constructor.

*

**/

// copy constructor

Vector(const Vector&);

/**

* Destructor.

**/

// Destructor

~Vector();

/** Get the number of elements in an array.

* @return the length of the array.

**/

// Get the length of the array.

int getLength() const;

// Return pointers to the data: Useful for sending data

// to Fortran and C

const double* getPtr() const;

double* getPtr();

double inner(const Vector&) const;

//Normalize a vector, i.e., create an unit vector

// Normalize a vector

void normalize();

void print(std::ostream&) const;

/**

* Change the length of a vector

**/
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bool redim(int n1);

/****************************************************/

/* (USER-DEFINED) OVERLOADED OPERATORS */

/****************************************************/

// Member arithmetic operators (unary operators)

// Vector quantities: u, v, w. Scalar: a

// Copy-assignment (assignment by copy) operator

Vector& operator =(const Vector&); // v = w

// Add-assignment (assigment by addition) operator

Vector& operator+=(const Vector&); // v += w

// Substraction-assignment (assignment by substraction) operator

Vector& operator-=(const Vector&); // v -= w

// Multiplication-assignment (assignment by multiplication) operator

Vector& operator*=(double); // v *= a

// Division-assignment (assignment by division) operator

Vector& operator/=(double); // v /= a

const double& operator[](int i) const;

double& operator[](int i);

const double& operator()(int i) const;

double& operator()(int i);

bool indexOk(int i) const;

// Get the euclidian norm (l2norm)

double l2norm() const;

// Unary operator +

friend Vector operator+(const Vector&); // u = + v

// Unary operator -

friend Vector operator-(const Vector&); // u = - v

/**

* Addition of two vectors:

**/

friend Vector operator+(const Vector&, const Vector&); // u = v + w

/**

* Substraction of two vectors:

**/

friend Vector operator-(const Vector&, const Vector&); // u = v - w

/**

* Product between two vectors:

**/

friend Vector operator*(const Vector&, const Vector&); // u = v * w

/**

* Premultiplication by a floating point number:

**/

friend Vector operator*(double, const Vector&); // u = a*v

/**

* Postmultiplication by a floating point number:

**/

friend Vector operator*(const Vector&, double); // u = v*a

/**

* Matrix-vector product:

**/

friend Vector operator*(const Matrix&, const Vector&); // u = A*v
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/**

* Division of the entries of a vector by a scalar.

**/

friend Vector operator/(const Vector&, double); // u = v/a

// dot product

friend double inner(const Vector&, const Vector&);

/**

* print the entries of a vector to screen

**/

friend std::ostream& operator<<(std::ostream&, const Vector&); // cout << v

// Note: This function does not need access to the data

// member. Therefore, it could have been declared as a not friend.

};

/*******************************************************************/

/* INLINE FUNCTIONS */

/*******************************************************************/

// Destructor

inline Vector::~Vector(){delete[] vec;}

// Get the number of entries in a vector

inline int Vector::getLength() const {return length;}

/**

* @return a constant pointer to the array of data.

* This function can be used to interface C++ with Fortran/C.

**/

inline const double* Vector::getPtr() const {return vec;}

/**

* @return a pointer to the array of data.

* This function can be used to interface C++ with Fortran/C.

**/

inline double* Vector::getPtr(){return vec; }

// Subscript. If v is an object of type Vector, the ith

// component of v can be accessed as v[i] closer to the

// ordinary mathematical notation instead of v.vec[i].

// The return value "const double&" is equivalent to

// "double", with the difference that the first approach

// is preferible when the returned object is big.

inline const double& Vector::operator[](int i) const{

#ifdef CHECKBOUNDS_ON

indexOk(i);

#endif

return vec[i];

} // read-only the ith component of the vector.

// const at the end of the function declaration means

// that the caller code can just read, not modify

// Subscript. (DANGEROUS)

inline double& Vector::operator[](int i){

#ifdef CHECKBOUNDS_ON

indexOk(i);

#endif

return vec[i];

} // read-write the ith coordinate
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// Alternative to operator[]

inline const double& Vector::operator()(int i) const{

#ifdef CHECKBOUNDS_ON

indexOk(i);

#endif

return vec[i];

} // read-only the ith component of vec

// Subscript (DANGEROUS). If v is an object of type Vector, the ith

// component of v can be accessed as v(i) closer to the

// ordinary mathematical notation instead of v.vec(i).

inline double& Vector::operator()(int i){

#ifdef CHECKBOUNDS_ON

indexOk(i);

#endif

return vec[i];

} // read-write the ith component of vec

/******************************************************************/

/* (Arithmetic) Unary operators */

/******************************************************************/

// Unary operator +

inline Vector operator+(const Vector& v){ // u = + v

return v;

}

// Unary operator -

inline Vector operator-(const Vector& v){ // u = - v

return Vector(v.length) -v;

}

#endif

Finally, we list the source codes not included in the header file (all function which are not
inlined)

http://folk.uio.no/mhjensen/compphys/programs/chapter03/cpp/Vector.cpp

#include "Vector.h"

/**

* @file Vector.cpp

* @class Vector

* @brief Implementation of class used for manipulating one-dimensional arrays.

**/

// default constructor

Vector::Vector(){

length = 0;

vec = NULL;

}

// constructor

Vector::Vector(int _length){

length = _length;

vec = new double[_length];

for(int i=0; i<_length; i++)

vec[i] = 0.0;

}

// Declare the array to be constant because it is passed

// as a pointer. Hence, it could be modified by the calling code.

http://folk.uio.no/mhjensen/compphys/programs/chapter03/cpp/Vector.cpp
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Vector::Vector(int _length, // length of the array

const double *array){ // one-dimensioal array

length = _length;

vec = new double[length];

for(int i=0; i<length; i++)

vec[i] = array[i];

}

// copy constructor

Vector::Vector(const Vector& w){

vec = new double[length = w.length];

for(int i=0; i<length; i++)

vec[i] = w[i]; // This possible because we have overloaded the operator[]

// A more straigforward way of implementing this constructor is:

// vec = new double[length=w.length];

// *this = w; // Here we use the assignment operator=

}

// normalize a vector

void Vector::normalize(){

double tmp = 1.0/l2norm();

for(int i=0;i<length; i++)

vec[i] = vec[i]*tmp;

}

void Vector::print(std::ostream& os) const{

int i;

for(i=0; i<length; i++){

os << "(" << i << ") = " << vec[i] << "\n";

}

}

// change the length of a vector

bool Vector::redim(int _length){

if(length == _length)

return false;

else{

if(vec != NULL){

delete[] vec;

}

length = _length;

vec = new double[length];

return true;

}

}

bool Vector::indexOk(int i) const{

if(i<0 || i>=length){

std::cerr << "vector index check; index i=" << i

<< " out of bounds 0:" << length-1

<< std::endl;

return false;

}

else

return true; // valid index!

}

/**********************************************************/

/* DEFINITION OF OPERATORS */

/**********************************************************/
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Vector& Vector::operator=(const Vector& w){ // v = w

if(this != &w){ // beware of self-assignment v=v

if(length != w.length)

std::cout << "Bad vector sizes" << std::endl;

for(int i=0; i<length; i++)

vec[i] = w[i]; // closer to the mathematical notation than w.vec[i]

}

return *this;

} // assignment operator

Vector& Vector::operator+=(const Vector& w){ // v += w

if(length != w.length) std::cout << "Bad vector sizes" << std::endl;

for(int i=0; i<length; i++)

vec[i] += w[i]; // This is possible because we have overloaded the operator[]

return *this;

} // add a vector to the current one

Vector& Vector::operator-=(const Vector& w){ // v -= w

if(length != w.length) std::cout << "Bad vector sizes" << std::endl;

for(int i=0; i<length; i++)

vec[i] -= w[i];// This possible because we have overloaded the operator[]

return *this;

}

Vector& Vector::operator*=(double scalar){ // v *= a

for(int i=0; i<length; i++)

vec[i] *= scalar;

return *this;

}

Vector& Vector::operator/=(double scalar){ // v /= a

for(int i=0; i<length; i++)

vec[i] /= scalar;

return *this;

}

/******************************************************************/

/* (Arithmetic) Binary operators */

/******************************************************************/

// Sum of two vectors

Vector operator+(const Vector& v, const Vector& w){ // u = v + w

// The copy constructor checks the lengths

return Vector(v) += w;

} // vector plus vector

// Substraction of two vectors

Vector operator-(const Vector& v, const Vector& w){ // u = v - w

// The copy constructor checks the lengths

return Vector(v) -= w;

} // vector minus vector

// Multiplication between two vectors

Vector operator*(const Vector& v, const Vector& w){ // u = v * w

if(v.length != w.length) std::cout << "Bad vector sizes!" << std::endl;

int n = v.length;

Vector tmp(n);

for(int i=0; i<n; i++)

tmp[i] = v[i]*w[i];

return tmp;

} // vector times vector
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// Postmultiplication operator

Vector operator*(const Vector& v, double scalar){ // u = v*a

return Vector(v) *= scalar;

}

// Premultiplication operator.

Vector operator*(double scalar, const Vector& v){ // u = a*v

return v*scalar; // Note the call to postmultiplication operator defined above

}

// Multiplication (product) operator: Matrix times vector

Vector operator*(const Matrix& A, const Vector& v){ // u = A*v

int m = A.getRows();

int n = A.getColumns();

if(A.getColumns() != v.getLength()){

std::cerr << "Bad sizes in: Vector operator*(const Matrix& A, const Vector& v)";

}

Vector u(m);

for(int i=0; i<m; i++){

for(int j=0; j<n; j++){

u[i] += A[i][j]*v[j];

}

}

return u;

}

// Division of the entries in a vector by a scalar

Vector operator/(const Vector& v, double scalar){

if(!scalar) std::cout << "Division by zero!" << std::endl;

return (1.0/scalar)*v;

}

// compute the dot product between two vectors

double inner(const Vector& u, const Vector& v){ // dot product

if(u.length != v.length){

std::cout << "Bad vector sizes in: double inner(const Vector& u, const Vector& v)" <<

std::endl;

}

double sum = 0.0;

for(int i=0; i<u.length; i++)

sum += u[i]*v[i];

return sum;

}

double Vector::inner(const Vector& v) const{ // dot product double a = u.inner(v)

if(length != v.length)

std::cout << "Bad vector sizes in: double Vector::inner(const Vector& v) const" <<

std::endl;

double sum = 0.0;

for(int i=0; i<v.length; i++)

sum += vec[i]*v.vec[i];

return sum;

}

// compute the eucledian norm

double Vector::l2norm() const{

double norm = fabs(vec[0]);

for(int i=1; i<length; i++){
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double vi = fabs(vec[i]);

if(norm < 100 && vi < 100){

norm = sqrt(norm*norm + vi*vi);

}else if(norm > vi){

norm *= sqrt(1.0 + pow(vi/norm,2));

}else{

norm = vi*sqrt(1.0 + pow(norm/vi,2));

}

}

return norm;

}

// dump the components of a vector to screen

std::ostream& operator<<(std::ostream& s, const Vector& v){ // output operator

v.print(s);

return s;

}

3.4 Modules in Fortran

In the previous section we discussed classes and templates in C++. Classes offer several
advantages, such as

• Allows us to place classes into structures
• Pass arguments to methods
• Allocate storage for objects
• Implement associations
• Encapsulate internal details into classes
• Implement inheritance in data structures

Classes contain a new data type and the procedures that can be performed by the class. The
elements (or components) of the data type are the class data members, and the procedures
are the class member functions. In Fortran a class is defined as a MODULE which contains an
abstract data TYPE definition. The example we elaborate on here is a Fortran class for defining
operations on single-particle quantum numbers such as the total angular momentum, the
orbital momentum, the energy, spin etc.

We present the MODULE single_particle_orbits here and discuss several of its feature
with links to C++ programming.

! Definition of single particle data

MODULE single_particle_orbits

TYPE, PUBLIC :: single_particle_descript

INTEGER :: total_orbits

INTEGER, DIMENSION(:), POINTER :: nn, ll, jj, spin

CHARACTER*10, DIMENSION(:), POINTER :: orbit_status, &

model_space

REAL(KIND=8), DIMENSION(:), POINTER :: e

END TYPE single_particle_descript

TYPE (single_particle_descript), PUBLIC :: all_orbit, &

neutron_data, proton_data

CONTAINS

! various member functions here
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SUBROUTINE allocate_sp_array(this_array,n)

TYPE (single_particle_descript), INTENT(INOUT) :: this_array

INTEGER , INTENT(IN) :: n

IF (ASSOCIATED (this_array%nn) ) &

DEALLOCATE(this_array%nn)

ALLOCATE(this_array%nn(n))

IF (ASSOCIATED (this_array%ll) ) &

DEALLOCATE(this_array%ll)

ALLOCATE(this_array%ll(n))

IF (ASSOCIATED (this_array%jj) ) &

DEALLOCATE(this_array%jj)

ALLOCATE(this_array%jj(n))

IF (ASSOCIATED (this_array%spin) ) &

DEALLOCATE(this_array%spin)

ALLOCATE(this_array%spin(n))

IF (ASSOCIATED (this_array%e) ) &

DEALLOCATE(this_array%e)

ALLOCATE(this_array%e(n))

IF (ASSOCIATED (this_array%orbit_status) ) &

DEALLOCATE(this_array%orbit_status)

ALLOCATE(this_array%orbit_status(n))

IF (ASSOCIATED (this_array%model_space) ) &

DEALLOCATE(this_array%model_space)

ALLOCATE(this_array%model_space(n))

! blank all characters and zero all other values

DO i= 1, n

this_array%model_space(i)= ' '

this_array%orbit_status(i)= ' '

this_array%e(i)=0.

this_array%nn(i)=0

this_array%ll(i)=0

this_array%jj(i)=0

this_array%nshell(i)=0

this_array%itzp(i)=0

ENDDO

SUBROUTINE deallocate_sp_array(this_array)

TYPE (single_particle_descript), INTENT(INOUT) :: this_array

DEALLOCATE(this_array%nn)

DEALLOCATE(this_array%ll)

DEALLOCATE(this_array%jj)

DEALLOCATE(this_array%spin)

DEALLOCATE(this_array%e)

DEALLOCATE(this_array%orbit_status); &

DEALLOCATE(this_array%model_space)

END SUBROUTINE deallocate_sp_array

!

! Read in all relevant single-particle data

!

SUBROUTINE single_particle_data

IMPLICIT NONE

CHARACTER*100 :: particle_species

READ(5,*) particle_species

WRITE(6,*) ' Particle species: '

WRITE(6,*) particle_species

SELECT CASE (particle_species)

CASE ('electron')

CALL read_electron_sp_data
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CASE ('proton&neutron')

CALL read_nuclear_sp_data

END SELECT

END SUBROUTINE single_particle_data

END MODULE single_particle_orbits

The module ends with the END MODULE single_particle_orbits statement. We have defined
a public variable TYPE, PUBLIC :: single_particle_descript which plays the same role
as the struct type in C++. In addition we have defined several member functions which
operate on various arrays and variables.

An example of a function which uses this module is given below and the module is accessed
via the USE single_particle_orbits statement.

!

PROGRAM main

....

USE single_particle_orbits

IMPLICIT NONE

INTEGER :: i

READ(5,*) all_orbit%total_orbits

IF( all_orbit%total_orbits <= 0 ) THEN

WRITE(6,*) 'WARNING, NO ELECTRON ORBITALS' ; STOP

ENDIF

! Setup all possible orbit information

! Allocate space in heap for all single-particle data

CALL allocate_sp_array(all_orbit,all_orbit%total_orbits)

! Read electron single-particle data

DO i=1, all_orbit%total_orbits

READ(5,*) all_orbit%nn(i),all_orbit%ll, &

all_orbit%jj(i),all_orbit%spin(i), &

all_orbit%orbit_status(i), &

all_orbit%model_space(i), all_orbit%e(i)

ENDDO

! further instructions

.......

! deallocate all arrays

CALL deallocate_sp_array(all_orbit)

END PROGRAM main

Inheritance allows one to create a hierarchy of classes in which the base class contains the
common properties of the hierarchy and the derived classes can modify and specialize these
properties. Specifically, a derived class contains all the class member functions of the base
class and can add new ones. Further, a derived class contains all the class member functions
of the base class and can modify them or add new ones. The value in using inheritance is to
avoid duplicating code when creating classes which are similar to one another. Fortran does
not support inheritance, but several features can be faked in Fortran! Consider the following
declarations:

TYPE proton_sp_orbit

TYPE (single_particle_orbits), PUBLIC :: &
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proton_particle_descript

INTEGER, DIMENSION(:), POINTER, PUBLIC :: itzp

END TYPE proton_sp_orbit

To initialize the proton_sp_orbit TYPE, we could now define a new function

SUBROUTINE allocate_proton_array(this_array,n)

TYPE (single_particle_descript), INTENT(INOUT) :: this_array

INTEGER , INTENT(IN) :: n

IF (ASSOCIATED (this_array%itzp) ) &

DEALLOCATE(this_array%itzp)

CALL allocate_sp_array(this_array,n)

this_array%itzp(i)=0

END SUBROUTINE allocate_proton_array

and

SUBROUTINE dellocate_proton_array(this_array)

TYPE (single_particle_descript), INTENT(INOUT) :: this_array

DEALLOCATE(this_array%itzp)

CALL deallocate_sp_array(this_array)

END SUBROUTINE deallocate_proton_array

and we could define a MODULE

MODULE proton_class

USE single_particle_orbits

TYPE proton_sp_orbit

TYPE (single_particle_orbits), PUBLIC :: &

proton_particle_descript

INTEGER, DIMENSION(:), POINTER, PUBLIC :: itzp

END TYPE proton_sp_orbit

INTERFACE allocate_proton

MODULE PROCEDURE allocate_proton_array, read_proton_array

END INTERFACE

INTERFACE deallocate_proton

MODULE PROCEDURE deallocate_proton_array

END INTERFACE

.....

CONTAINS

....

! various procedure

END MODULE proton_class

PROGRAM with_just_protons

USE proton_class

....

TYPE (proton_sp_orbit ) :: proton_data

CALL allocate_proton(proton_data)

....

CALL deallocate_proton_array(prton_data)

We have a written a new class which contains the data of the base class and all the pro-
cedures of the base class have been extended to work with the new derived class. Interface
statements have to be used to give the procedure uniform names.

We can now derive further classes for other particle types such as neutrons, hyperons etc
etc.



90 3 Numerical differentiation and interpolation

3.5 How to make Figures with Gnuplot

We end this chapter with a practical guide on making figures to be included in an eventual
report file. Gnuplot is a simple plotting program which follows the Linux/Unix operating
system. It is easy to use and allows also to generate figure files which can be included in a
LATEX document. Here we show how to make simple plots online and how to make postscript
versions of the plot or even a figure file which can be included in a LATEX document. There
are other plotting programs such as xmgrace as well which follow Linux or Unix as operating
systems. An excellent alternative which many of you are familiar with is to use Matlab to read
in the data of a calculation and vizualize the results.

In order to check if gnuplot is present type

which gnuplot

If gnuplot is available, simply write

gnuplot

to start the program. You will then see the following prompt

gnuplot>

and type help for a list of various commands and help options. Suppose you wish to plot data
points stored in the file mydata.dat. This file contains two columns of data points, where
the first column refers to the argument x while the second one refers to a computed function
value f (x).

If we wish to plot these sets of points with gnuplot we just need to write

gnuplot>plot ’mydata.dat’ using 1:2 w l

or

gnuplot>plot ’mydata.dat’ w l

since gnuplot assigns as default the first column as the x-axis. The abbreviations w l stand for
’with lines’. If you prefer to plot the data points only, write

gnuplot>plot ’mydata.dat’ w p

For more plotting options, how to make axis labels etc, type help and choose plot as topic.
Gnuplot will typically display a graph on the screen. If we wish to save this graph as a

postscript file, we can proceed as follows

gnuplot>set terminal postscript

gnuplot>set output ’mydata.ps’

gnuplot>plot ’mydata.dat’ w l

and you will be the owner of a postscript file called mydata.ps, which you can display with
ghostview through the call

gv mydata.ps

The other alternative is to generate a figure file for the document handling program LATEX.
The advantage here is that the text of your figure now has the same fonts as the remaining
LATEX document. Fig. 3.2 was generated following the steps below. You need to edit a file
which ends with .gnu. The file used to generate Fig. 3.2 is called derivative.gnu and contains
the following statements, which are a mix of LATEX and Gnuplot statements. It generates a
file derivative.tex which can be included in a LATEX document. Writing the following



3.5 How to make Figures with Gnuplot 91

set terminal pslatex

set output "derivative.tex"

set xrange [-15:0]

set yrange [-10:8]

set xlabel "log$_{10}(h)$"

set ylabel "$\epsilon$"

plot "out.dat" title "Relative error" w l

generates a LATEX file derivative.tex. Alternatively, you could write the above commands in
a file derivative.gnu and use Gnuplot as follows

gnuplot>load ’derivative.gnu’

You can then include this file in a LATEX document as shown here

\begin{figure}

\begin{center}

\input{derivative}

\end{center}

\caption{Log-log plot of the relative error of the second

derivative of $e^x$ as function of decreasing step

lengths $h$. The second derivative was computed for

$x=10$ in the program discussed above. See text for

further details\label{fig:lossofprecision}}

\end{figure}

Most figures included in this text have been generated using gnuplot.
Many of the above commands can all be baked in a Python code. The following example

reads a file from screen with x and y data, and plots these data and saves the result as a
postscript figure.

#!/usr/bin/env python

import sys

from Numeric import *
import Gnuplot

g = Gnuplot.Gnuplot(persist=1)

try:

infilename = sys.argv[1]

except:

print "Usage of this script", sys.argv[0], "infile", sys.argv[1]; sys.exit(1)

# Read file with data

ifile = open(infilename, 'r')

# Fill in x and y

x = [] ; y = []

for line in ifile:

pair = line.split()

x = float(pair[0]); y = float(pair[1])

ifile.close()

# convert to a form that the gnuplot interface can deal with

d = Gnuplot.Data(x, y, title='data from output file', with='lp')

g.xlabel('log10(h)') # make x label

g.ylabel('log10(|Exact-Computed|)/|Exact|')

g.plot(d) # plot the data

g.hardcopy(filename="relerror.ps",terminal="postscript", enhanced=1, color=1)



92 3 Numerical differentiation and interpolation

3.6 Exercises

3.1. We want you to compute the first derivative of

f (x) = tan−1(x)

for x=
√

2 with step lengths h. The exact answer is 1/3. We want you to code the derivative
using the following two formulae

f ′2c(x) =
f (x+h)− f (x)

h
+O(h), (3.14)

and

f ′3c =
fh− f−h

2h
+O(h2), (3.15)

with f±h = f (x±h).

1. Find mathematical expressions for the total error due to loss of precision and due to the nu-
merical approximation made. Find the step length which gives the smallest value. Perform
the analysis with both double and single precision.

2. Make thereafter a program which computes the first derivative using Eqs. (3.14) and (3.15)
as function of various step lengths h and let h→ 0. Compare with the exact answer.
Your program should contain the following elements:

• A vector (array) which contains the step lengths. Use dynamic memory allocation.
• Vectors for the computed derivatives of Eqs. (3.14) and (3.15) for both single and double

precision.
• A function which computes the derivative and contains call by value and reference (for

C++ users only).
• Add a function which writes the results to file.

3. Compute thereafter

ε = log10

(∣∣∣∣∣
f ′computed− f ′exact

f ′exact

∣∣∣∣∣

)
,

as function of log10(h) for Eqs. (3.14) and (3.15) for both single and double precision. Plot
the results and see if you can determine empirically the behavior of the total error as
function of h.

3.2. Modify your program from the previous exercise in order to include both Richardson’s
deferred extrapolation algorithm from Eq. (3.13) and Neville’s interpolation algorithm dis-
cussed in program4.cpp in this chapter. You will need to write a program for Richardson’s
algorithm. Discuss and comment your results.

3.3. Use the results from your program for the calculation of derivatives to make a table
of the derivatives as a function of the step length h. Write thereafter a program which reads
these results and performs a numerical interpolation using Lagrange’s formula from Eq. (3.9)
up to a polynomial of degree five. Compare the tabulated values with those obtained using
Lagrange’s formula. Compare also these results with those obtained using Neville’s algorithm
and comment your results.

3.4. Write your own C++ class which allows for operations on complex variables, such as
addition, subtraction, multiplication and division.

3.5. Write a C++ class which allows for treating one-dimensional arrays for integer, real
and complex variables. Use your complex class from the previous exercise. Use this class to
perform simple vector addition and vector multiplication operations.
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3.6. Write a C++ class which sets up various approximations to the derivatives and repeat
exercise 3.1 using this class.

3.7. Write a C++ class which sets up the position for a given particle in arbitrary dimensions.
Write thereafter a program which uses this class in order to set up the electron coordinates
for the ten electrons in the neutral neon atom. This is a three-dimensional system. Calculate

also the distance |r i |=
√

x2
i + y2

i + z2
i (modulus of the position from the mass center, where the

mass center is defined as the the atomic nucleus) of a given electron i to the atomic nucleus.
Extend the class so that it can be used to calculate the modulus of the relative distance
between two electrons

|r i− r j |=
√
(xi− x j)2+(yi− y j)2+(zi− zj)2.

3.8. Use the class from the previous exercise to write a program which reads in the position
of all planets in the solar system, using the sun as the center of mass of the system. Let this
program calculate the distance from the sun to all planets, and the relative distance between
all planets.

3.9. Use and extend the vector class discussed in this chapter to compute the 1 and 2 vector
norms given by

||x||1 = |x1|+ |x2|+ · · ·+ |xn|,

||x||2 = (|x1|2+ |x2|2+ · · ·+ |xn|2)
1
2 = (xTx)

1
2 .

Add to the vector class the possibility to calculate an arbitrary norm p

||x||p = (|x1|p+ |x2|p+ · · ·+ |xn|p)
1
p ,

where p≥ 1.
Write thereafter a program which checks numerically the the so-called Cauchy-Schwartz.

For any x and y being real-valued or complex-valued quantities, the inner product space
satisfies

|xTy| ≤ ||x||2||y||2,
and the equality is obeyed only if x and y are linearly dependent. Your program should be able
to read from file two tabulated vectors, or, alternatively let the program set them up.





Chapter 4

Non-linear Equations

Abstract In physics we often encounter the problem of determining the root of a function
f (x). Especially, we may need to solve non-linear equations of one variable. Such equations
are usually divided into two classes, algebraic equations involving roots of polynomials and
transcendental equations. When there is only one independent variable, the problem is one-
dimensional, namely to find the root or roots of a function. Except in linear problems, root
finding invariably proceeds by iteration, and this is equally true in one or in many dimensions.
This means that we cannot solve exactly the equations at hand. Rather, we start with some
approximate trial solution. The chosen algorithm will in turn improve the solution until some
predetermined convergence criterion is satisfied. The algoritms we discuss below attempt to
implement this strategy. We will deal mainly with one-dimensional problems.

In chapter 6 we will discuss methods to find for example zeros and roots of equations. In
particular, we will discuss the conjugate gradient method.

4.1 Particle in a Box Potential

You may have encountered examples of so-called transcendental equations when solving the
Schrödinger equation (SE) for a particle in a box potential. The one-dimensional SE for a
particle with mass m is

− h̄2

2m
d2u
dx2 +V(x)u(x) = Eu(x), (4.1)

and our potential is defined as

V(r) =

{
−V0 0≤ x< a

0 x> a
(4.2)

Bound states correspond to negative energy E and scattering states are given by positive
energies. The SE takes the form (without specifying the sign of E)

d2u(x)
dx2 +

2m

h̄2 (V0+E)u(x) = 0 x< a, (4.3)

and
d2u(x)

dx2 +
2m

h̄2 Eu(x) = 0 x> a. (4.4)

If we specialize to bound states E < 0 and implement the boundary conditions on the wave
function we obtain

u(r) = Asin(
√

2m(V0−|E|)r/h̄) r < a, (4.5)

95
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and
u(r) = Bexp(−

√
2m|E|r/h̄) r > a, (4.6)

where A and B are constants. Using the continuity requirement on the wave function at r = a
one obtains the transcendental equation

√
2m(V0−|E|)cot(

√
2ma2(V0−|E|)/h̄) =−

√
2m|E|. (4.7)

This equation is an example of the kind of equations which could be solved by some of the
methods discussed below. The algorithms we discuss are the bisection method, the secant
and Newton-Raphson’s method.

In order to find the solution for Eq. (4.7), a simple procedure is to define a function

f (E) =
√

2m(V0−|E|)cot(
√

2ma2(V0−|E|)/h̄)+
√

2m|E|. (4.8)

and with chosen or given values for a and V0 make a plot of this function and find the ap-
proximate region along the E−axiswhere f (E) = 0. We show this in Fig. 4.1 for V0 = 20MeV,
a= 2 fm and m= 938MeV. Fig. 4.1 tells us that the solution is close to |E| ≈ 2.2 (the binding
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Fig. 4.1 Plot of f (E) in Eq. (4.8) as function of energy |E| in MeV. Te function f (E) is in units of megaelectron-
volts MeV. Note well that the energy E is for bound states.

energy of the deuteron). The methods we discuss below are then meant to give us a numer-
ical solution for E where f (E) = 0 is satisfied and with E determined by a given numerical
precision.

4.2 Iterative Methods

To solve an equation of the type f (x) = 0 means mathematically to find all numbers s1 so that
f (s) = 0. In all actual calculations we are always limited by a given precision when doing

1 In the following discussion, the variable s is reserved for the value of x where we have a solution.
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numerics. Through an iterative search of the solution, the hope is that we can approach,
within a given tolerance ε, a value x0 which is a solution to f (s) = 0 if

|x0− s|< ε, (4.9)

and f (s) = 0. We could use other criteria as well like

∣∣∣∣
x0− s

s

∣∣∣∣< ε, (4.10)

and | f (x0)| < ε or a combination of these. However, it is not given that the iterative process
will converge and we would like to have some conditions on f which ensures a solution. This
condition is provided by the so-called Lipschitz criterion. If the function f , defined on the
interval [a,b] satisfies for all x1 and x2 in the chosen interval the following condition

| f (x1)− f (x2)| ≤ k|x1− x2| , (4.11)

with k a constant, then f is continuous in the interval [a,b]. If f is continuous in the interval
[a,b], then the secant condition gives

f (x1)− f (x2) = f ′(ξ )(x1− x2), (4.12)

with x1,x2 within [a,b] and ξ within [x1,x2]. We have then

| f (x1)− f (x2)| ≤ | f ′(ξ )| |x1− x2| . (4.13)

The derivative can be used as the constant k. We can now formulate the sufficient conditions
for the convergence of the iterative search for solutions to f (s) = 0.

1. We assume that f is defined in the interval [a,b].
2. f satisfies the Lipschitz condition with k< 1.

With these conditions, the equation f (x) = 0 has only one solution in the interval [a,b] and it
converges after n iterations towards the solution s irrespective of choice for x0 in the interval
[a,b]. If we let xn be the value of x after n iterations, we have the condition

|s− xn| ≤
k

1− k
|x1− x2| . (4.14)

The proof can be found in the text of Bulirsch and Stoer. Since it is difficult numerically to
find exactly the point where f (s) = 0, in the actual numerical solution one implements three
tests of the type

1.
|xn− s|< ε, (4.15)

and
2.

| f (s)| < δ , (4.16)

3. and a maximum number of iterations Nmaxiter in actual calculations.
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4.3 Bisection

This is an extremely simple method to code. The philosophy can best be explained by choosing
a region in e.g., Fig. 4.1 which is close to where f (E) = 0. In our case |E| ≈ 2.2. Choose a region
[a,b] so that a= 1.5 and b= 3. This should encompass the point where f = 0. Define then the
point

c=
a+b

2
, (4.17)

and calculate f (c). If f (a) f (c) < 0, the solution lies in the region [a,c] = [a,(a+b)/2]. Change
then b← c and calculate a new value for c. If f (a) f (c) > 0, the new interval is in [c,b] =
[(a+ b)/2,b]. Now you need to change a← c and evaluate then a new value for c. We can
continue to halve the interval till we have reached a value for c which fulfills f (c) = 0 to a
given numerical precision. The algorithm can be simply expressed in the following program

......

fa = f(a);

fb = f(b);

// check if your interval is correct, if not return to main

if ( fa*fb > 0) {

cout << ``\n Error, root not in interval'' << endl;

return;

}

for (j=1; j <= iter_max; j++) {

c=(a+b)/2;

fc=f(c)

// if this test is satisfied, we have the root c

if ( (abs(a-b) < epsilon ) || fc < delta ); return to main

if ( fa*fc < 0){

b=c ; fb=fc;

}

else{

a=c ; fa=fc;

}

}

......

Note that one needs to define the values of δ , ε and iter_max when calling this function.
The bisection method is an almost foolproof method, although it may converge slowly to-

wards the solution due to the fact that it halves the intervals. After n divisions by 2 we have a
possible solution in the interval with length

1
2n |b−a| , (4.18)

and if we set x0 = (a+ b)/2 and let xn be the midpoints in the intervals we obtain after n
iterations that Eq. (4.14) results in

|s− xn| ≤
1

2n+1 |b−a| , (4.19)

since the nth interval has length |b−a|/2n. Note that this convergence criterion is independent
of the actual function f (x) as long as this function fulfils the conditions discussed in the
conditions discussed in the previous subsection.

As an example, suppose we wish to find how many iteration steps are needed in order to
obtain a relative precision of 10−12 for xn in the interval [50,63], that is
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|s− xn|
|s| ≤ 10−12. (4.20)

It suffices in our case to study s≥ 50, which results in

|s− xn|
50

≤ 10−12, (4.21)

and with Eq. (4.19) we obtain
13

2n+150
≤ 10−12, (4.22)

meaning n≥ 37. The code for the bisection method can look like this

/*

** This function

** calculates a root between x1 and x2 of a function

** pointed to by (*func) using the method of bisection

** The root is returned with an accuracy of +- xacc.

*/

double bisection(double (*func)(double), double x1, double x2, double xacc)

{

int j;

double dx, f, fmid, xmid, rtb;

f = (*func)(x1);

fmid = (*func)(x2);

if(f*fmid >= 0.0) {

cout << "\n\nError in function bisection():" << endl;

cout << "\nroot in function must be within" << endl;

cout << "x1 ='' << x1 << ``and x2 `` << x2 << endl;

exit(1);

}

rtb = f < 0.0 ? (dx = x2 - x1, x1) : (dx = x1 - x2, x2);

for(j = 0; j < max_iterations; j++) {

fmid = (*func)(xmid = rtb + (dx *= 0.5));

if (fmid <= 0.0) rtb=xmid;

if(fabs(dx) < xacc || fmid == 0.0) return rtb;

}

cout << "Error in the bisection:" << endl; // should never reach this point

cout "Too many iterations!" << endl;

}

// End: function bisection

In this function we transfer the lower and upper limit of the interval where we seek the
solution, [x1,x2]. The variable xacc is the precision we opt for. Note that in this function the test
f (s)< δ is not implemented. Rather, the test is done through f (s) = 0, which is not necessarily
a good option.

Note also that this function transfer a pointer to the name of the given function through
double(*func)(double).

4.4 Newton-Raphson’s Method

Perhaps the most celebrated of all one-dimensional root-finding routines is Newton’s method,
also called the Newton-Raphson method. This method is distinguished from the previously
discussed methods by the fact that it requires the evaluation of both the function f and its
derivative f ′ at arbitrary points. In this sense, it is taylored to cases with e.g., transcendental



100 4 Non-linear Equations

equations of the type shown in Eq. (4.8) where it is rather easy to evaluate the derivative. If
you can only calculate the derivative numerically and/or your function is not of the smooth
type, we discourage the use of this method.

The Newton-Raphson formula consists geometrically of extending the tangent line at a
current point until it crosses zero, then setting the next guess to the abscissa of that zero-
crossing. The mathematics behind this method is rather simple. Employing a Taylor expansion
for x sufficiently close to the solution s, we have

f (s) = 0= f (x)+ (s− x) f ′(x)+
(s− x)2

2
f ′′(x)+ . . . . (4.23)

For small enough values of the function and for well-behaved functions, the terms beyond
linear are unimportant, hence we obtain

f (x)+ (s− x) f ′(x)≈ 0, (4.24)

yielding

s≈ x− f (x)
f ′(x)

. (4.25)

Having in mind an iterative procedure, it is natural to start iterating with

xn+1 = xn−
f (xn)

f ′(xn)
. (4.26)

This is Newton-Raphson’s method. It has a simple geometric interpretation, namely xn+1 is
the point where the tangent from (xn, f (xn)) crosses the x−axis. Close to the solution, Newton-
Raphson converges fast to the desired result. However, if we are far from a root, where the
higher-order terms in the series are important, the Newton-Raphson formula can give grossly
inaccurate results. For instance, the initial guess for the root might be so far from the true
root as to let the search interval include a local maximum or minimum of the function. If an
iteration places a trial guess near such a local extremum, so that the first derivative nearly
vanishes, then Newton-Raphson may fail totally. An example is shown in Fig. 4.2

It is also possible to extract the convergence behavior of this method. Assume that the
function f has a continuous second derivative around the solution s. If we define

en+1 = xn+1− s= xn−
f (xn)

f ′(xn)
− s, (4.27)

and using Eq. (4.23) we have

en+1 = en+
−en f ′(xn)+e2

n/2 f ′′(ξ )
f ′(xn)

=
e2

n/2 f ′′(ξ )
f ′(xn)

. (4.28)

This gives
|en+1|
|en|2

=
1
2
| f ′′(ξ )|
| f ′(xn)|2

=
1
2
| f ′′(s)|
| f ′(s)|2 (4.29)

when xn→ s. Our error constant k is then proportional to | f ′′(s)|/| f ′(s)|2 if the second derivative
is different from zero. Clearly, if the first derivative is small, the convergence is slower. In
general, if we are able to start the iterative procedure near a root and we can easily evaluate
the derivative, this is the method of choice. In cases where we may need to evaluate the
derivative numerically, the previously described methods are easier and most likely safer to
implement with respect to loss of numerical precision. Recall that the numerical evaluation
of derivatives involves differences between function values at different xn.

We can rewrite the last equation as
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Fig. 4.2 Example of a case where Newton-Raphson’s method does not converge. For the function f (x) =
x−2cos(x), we see that if we start at x= 7, the first iteration gives us that the first point where we cross the
x−axis is given by x1. However, using x1 as a starting point for the next iteration results in a point x2 which
is close to a local minimum. The tangent here is close to zero and we will never approach the point where
f (x) = 0.

|en+1|=C|en|2, (4.30)

with C a constant. If we assume that C∼ 1 and let en ∼ 10−8, this results in en+1 ∼ 10−16, and
demonstrates clearly why Newton-Raphson’s method may converge faster than the bisection
method.

Summarizing, this method has a solution when f ′′ is continuous and s is a simple zero of f .
Then there is a neighborhood of s and a constant C such that if Newton-Raphson’s method is
started in that neighborhood, the successive points become steadily closer to s and satisfy

|s− xn+1| ≤C|s− xn|2,

with n≥ 0. In some situations, the method guarantees to converge to a desired solution from
an arbitrary starting point. In order for this to take place, the function f has to belong to
C2(R), be increasing, convex and having a zero. Then this zero is unique and Newton’s method
converges to it from any starting point.

As a mere curiosity, suppose we wish to compute the square root of a number R, i.e.,
√

R.
Let R> 0 and define a function

f (x) = x2−R.

The variable x is a root if f (x) = 0. Newton-Raphson’s method yields then the following itera-
tive approach to the root

xn+1 =
1
2

(
xn+

R
xn

)
, (4.31)

a formula credited to Heron, a Greek engineer and architect who lived sometime between
100 B.C. and A.D. 100.

Suppose we wish to compute
√

13= 3.6055513and start with x0 = 5. The first iteration gives
x1 = 3.8, x2 = 3.6105263, x3 = 3.6055547and x4 = 3.6055513. With just four iterations and a not
too optimal choice of x0 we obtain the exact root to a precision of 8 digits. The above equation,
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together with range reduction , is used in the intrisic computational function which computes
square roots.

Newton’s method can be generalized to systems of several non-linear equations and vari-
ables. Consider the case with two equations

f1(x1,x2) = 0
f2(x1,x2) = 0

, (4.32)

which we Taylor expand to obtain

0= f1(x1+h1,x2+h2) = f1(x1,x2)+h1∂ f1/∂x1+h2∂ f1/∂x2+ . . .

0= f2(x1+h1,x2+h2) = f2(x1,x2)+h1∂ f2/∂x1+h2∂ f2/∂x2+ . . .
. (4.33)

Defining the Jacobian matrix Ĵ we have

Ĵ =

(
∂ f1/∂x1 ∂ f1/∂x2

∂ f2/∂x1 ∂ f2/∂x2

)
, (4.34)

we can rephrase Newton’s method as

(
xn+1

1
xn+1

2

)
=

(
xn

1
xn

2

)
+

(
hn

1
hn

2

)
, (4.35)

where we have defined (
hn

1
hn

2

)
=−Ĵ−1

(
f1(xn

1,x
n
2)

f2(xn
1,x

n
2)

)
. (4.36)

We need thus to compute the inverse of the Jacobian matrix and it is to understand that
difficulties may arise in case Ĵ is nearly singular.

It is rather straightforward to extend the above scheme to systems of more than two non-
linear equations.

The code for Newton-Raphson’s method can look like this

/*

** This function

** calculates a root between x1 and x2 of a function pointed to

** by (*funcd) using the Newton-Raphson method. The user-defined

** function funcd() returns both the function value and its first

** derivative at the point x,

** The root is returned with an accuracy of +- xacc.

*/

double newtonraphson(void (*funcd)(double, double *, double *), double x1, double x2,

double xacc)

{

int j;

double df, dx, f, rtn;

rtn = 0.5 * (x1 + x2); // initial guess

for(j = 0; j < max_iterations; j++) {

(*funcd)(rtn, &f, &df);

dx = f/df;

rtn -= dx;

if((x1 - rtn) * (rtn - x2) < 0.0) {

cout << "\n\nError in function newtonraphson:" << endl ;

cout << "Jump out of interval bracket" << endl;

}

if (fabs(dx) < xacc) return rtn;

}
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cout << "Error in function newtonraphson:" << endl;

cout << "Too many iterations!" << endl;

}

// End: function newtonraphson

We transfer again the lower and upper limit of the interval where we seek the solution, [x1,x2]

and the variable xacc. Firthermore, it transfers a pointer to the name of the given function
through double(*func)(double).

4.5 The Secant Method

For functions that are smooth near a root, the methods known respectively as false position
(or regula falsi) and secant method generally converge faster than bisection but slower than
Newton-Raphson. In both of these methods the function is assumed to be approximately linear
in the local region of interest, and the next improvement in the root is taken as the point
where the approximating line crosses the axis.

The algorithm for obtaining the solution for the secant method is rather simple. We start
with the definition of the derivative

f ′(xn) =
f (xn)− f (xn−1)

xn− xn−1

and combine it with the iterative expression of Newton-Raphson’s

xn+1 = xn−
f (xn)

f ′(xn)
,

to obtain

xn+1 = xn− f (xn)

(
xn− xn−1

f (xn)− f (xn−1)

)
, (4.37)

which we rewrite to

xn+1 =
f (xn)xn−1− f (xn−1)xn

f (xn)− f (xn−1)
. (4.38)

This is the secant formula, implying that we are drawing a straight line from the point
(xn−1, f (xn−1)) to (xn, f (xn)). Where it crosses the x− axis we have the new point xn+1. This
is illustrated in Fig. 4.3.

In the numerical implementation found in the program library, the quantities xn−1,xn,xn+1

are changed to a, b and c respectively, i.e., we determine c by the point where a straight line
from the point (a, f (a)) to (b, f (b)) crosses the x−axis, that is

c=
f (b)a− f (a)b
f (b)− f (a)

. (4.39)

We then see clearly the difference between the bisection method and the secant method. The
convergence criterion for the secant method is

|en+1| ≈ A|en|α , (4.40)

with α ≈ 1.62. The convergence is better than linear, but not as good as Newton-Raphson’s
method which converges quadratically.

While the secant method formally converges faster than bisection, one finds in practice
pathological functions for which bisection converges more rapidly. These can be choppy, dis-
continuous functions, or even smooth functions if the second derivative changes sharply near
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Fig. 4.3 Plot of f (E) Eq. (4.8) as function of energy |E|. The point c is determined by where the straight line
from (a, f (a)) to (b, f (b)) crosses the x−axis.

the root. Bisection always halves the interval, while the secant method can sometimes spend
many cycles slowly pulling distant bounds closer to a root. We illustrate the weakness of this
method in Fig. 4.4 where we show the results of the first three iterations, i.e., the first point
is c = x1, the next iteration gives c = x2 while the third iterations ends with c = x3. We may
risk that one of the endpoints is kept fixed while the other one only slowly converges to the
desired solution.
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Fig. 4.4 Plot of f (x) = 25x4−x2/2−2. The various straight lines correspond to the determination of the point
c after each iteration. c is determined by where the straight line from (a, f (a)) to (b, f (b)) crosses the x−axis.
Here we have chosen three values for c, x1, x2 and x3 which refer to the first, second and third iterations
respectively.
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The search for the solution s proceeds in much of the same fashion as for the bisection
method, namely after each iteration one of the previous boundary points is discarded in favor
of the latest estimate of the root. A variation of the secant method is the so-called false
position method (regula falsi from Latin) where the interval [a,b] is chosen so that f (a) f (b)<
0, else there is no solution. This is rather similar to the bisection method. Another possibility
is to determine the starting point for the iterative search using three points (a, f (a)), (b, f (b))
and (c, f (c)). One can thenuse Lagrange’s interpolation formula for a polynomial, see the
discussion in the previous chapter.

4.5.1 Broyden’s Method

Broyden’s method is a quasi-Newton method for the numerical solution of nonlinear equations
in k variables.

Newton’s method for solving the equation f (x) = 0 uses the Jacobian matrix and deter-
minant J, at every iteration. However, computing the Jacobian is a difficult and expensive
operation. The idea behind Broyden’s method is to compute the whole Jacobian only at the
first iteration, and to do a so-called rank-one update at the other iterations.

The method is a generalization of the secant method to multiple dimensions. The secant
method replaces the first derivative f ′(xn) with the finite difference approximation

f ′(xn)≃
f (xn)− f (xn−1)

xn− xn−1
,

and proceeds using Newton’s method

xn+1 = xn−
1

f ′(xn)
f (xn).

Broyden gives a generalization of this formula to a system of equations F(x) = 0, replacing
the derivative f ′ with the Jacobian J. The Jacobian is determined using the secant equation
(using the finite difference approximation):

Jn · (xn− xn−1)≃ F(xn)−F(xn−1).

However this equation is underdetermined in more than one dimension. Broyden suggested
using the current estimate of the Jacobian Jn−1 and improving upon it by taking the solution to
the secant equation that is a minimal modification to Jn−1 (minimal in the sense of minimizing
the Frobenius norm ‖Jn− Jn−1‖F))

Jn = Jn−1+
∆Fn− Jn−1∆xn

‖∆xn‖2
∆xT

n ,

and then apply Newton’s method

xn+1 = xn− J−1
n F(xn).

In the formula above xn = (x1[n], ...,xk[n]) and Fn(x) = ( f1(x1[n], ...,xk[n]), ..., fk(x1[n], ...,xk[n])) are
vector-columns with k elements for a system with k dimensions. We obtain then

∆xn =




x1[n]− x1[n−1]
...

xk[n]− xk[n−1]


 and ∆Fn =




f1(x1[n], ...,xk[n])− f1(x1[n−1], ...,xk[n−1])
...

fk(x1[n], ...,xk[n])− fk(x1[n−1], ...,xk[n−1])


 .
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Broyden also suggested using the Sherman-Morrison formula to update directly the inverse
of the Jacobian

J−1
n = J−1

n−1+
∆xn− J−1

n−1∆Fn

∆xT
n J−1

n−1∆Fn
(∆xT

n J−1
n−1)

This method is commonly known as the "good Broyden’s method". Many other quasi-Newton
schemes have been suggested in optimization, where one seeks a maximum or minimum by
finding the root of the first derivative (gradient in multi dimensions). The Jacobian of the
gradient is called Hessian and is symmetric, adding further constraints to its upgrade.

4.6 Exercises

4.1. Write a code which implements the bisection method, Newton-Raphson’s method and
the secant method.

Find the positive roots of
x2−4xsinx+(2sinx)2 = 0,

using these three methods and compare the achieved accuracy number of iterations needed
to find the solution. Give a critical discussion of the methods.

4.2. Make thereafter a class which includes the above three methods and test this class
against selected problems.

4.3. We are going to study the solution of the Schrödinger equation (SE) for a system with a
neutron and proton (the deuteron) moving in a simple box potential.

We begin our discussion of the SE with the neutron-proton (deuteron) system with a box
potential V(r). We define the radial part of the wave function R(r) and introduce the definition
u(r) = rR(R) The radial part of the SE for two particles in their center-of-mass system and with
orbital momentum l = 0 is then

− h̄2

m
d2u(r)

dr2 +V(r)u(r) = Eu(r),

with
m= 2

mpmn

mp+mn
,

where mp and mn are the masses of the proton and neutron, respectively. We use here m= 938
MeV. Our potential is defined as

V(r) =

{
−V0 0≤ r < a

0 r > a

Bound states correspond to negative energy E and scattering states are given by positive
energies. The SE takes the form (without specifying the sign of E)

d2u(r)
dr2 +

m

h̄2 (V0+E)u(r) = 0 r < a,

and
d2u(r)

dr2 +
m

h̄2 Eu(r) = 0 r > a.

We are now going to search for eventual bound states, i.e., E < 0. The deuteron has only one
bound state at energy E =−2.223MeV. Discuss the boundary conditions on the wave function
and use these to show that the solution to the SE is
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u(r) = Asin(kr) r < a,

and
u(r) = Bexp(−β r) r > a,

where A and B are constants. We have also defined

k=
√

m(V0−|E|)/h̄,

and
β =

√
m|E|/h̄.

Show then, using the continuity requirement on the wave function that at r = a you obtain the
transcendental equation

kcot(ka) =−β . (4.41)

Insert values of V0 = 60 MeV and a = 1.45 fm (1 fm = 10−15 m) and make a plot plotting
programs) of Eq. (4.41) as function of energy E in order to find eventual eigenvalues. See if
these values result in a bound state for E.

When you have localized on your plot the point(s) where Eq. (4.41) is satisfied, obtain a
numerical value for E using the class you programmed in the previous exercise, including the
Newton-Raphson’s method, the bisection method and the secant method. Make an analysis
of these three methods and discuss how many iterations are needed to find a stable solution.

What is smallest possible value of V0 which gives a bound state?





Chapter 5

Numerical Integration

Abstract In this chapter we discuss some of the classical methods for integrating a func-
tion. The methods we discuss are the trapezoidal, rectangular and Simpson’s rule for equally
spaced abscissas and integration approaches based on Gaussian quadrature. The latter are
more suitable for the case where the abscissas are not equally spaced. The emphasis is on
methods for evaluating few-dimensional (typically up to four dimensions) integrals. In chapter
11 we show how Monte Carlo methods can be used to compute multi-dimensional integrals.
We discuss also how to compute singular integrals. We end this chapter with an extensive dis-
cussion on MPI and parallel computing. The examples focus on parallelization of algorithms
for computing integrals.

5.1 Newton-Cotes Quadrature

The integral

I =
∫ b

a
f (x)dx (5.1)

has a very simple meaning. If we consider Fig. 5.1 the integral I simply represents the area
enscribed by the function f (x) starting from x= a and ending at x= b. Two main methods will
be discussed below, the first one being based on equal (or allowing for slight modifications)
steps and the other on more adaptive steps, namely so-called Gaussian quadrature methods.
Both main methods encompass a plethora of approximations and only some of them will be
discussed here.

In considering equal step methods, our basic approach is that of approximating a function
f (x) with a polynomial of at most degree N−1, given N integration points. If our polynomial
is of degree 1, the function will be approximated with f (x)≈ a0+a1x. The algorithm for these
integration methods is rather simple, and the number of approximations perhaps unlimited!

• Choose a step size

h=
b−a

N

where N is the number of steps and a and b the lower and upper limits of integration.
• With a given step length we rewrite the integral as

∫ b

a
f (x)dx=

∫ a+h

a
f (x)dx+

∫ a+2h

a+h
f (x)dx+ . . .

∫ b

b−h
f (x)dx.

109
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✲
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Fig. 5.1 The area enscribed by the function f (x) starting from x= a to x= b. It is subdivided in several smaller
areas whose evaluation is to be approximated by the techniques discussed in the text. The areas under the
curve can for example be approximated by rectangular boxes or trapezoids.

• The strategy then is to find a reliable polynomial approximation for f (x) in the various
intervals. Choosing a given approximation for f (x), we obtain a specific approximation to
the integral.

• With this approximation to f (x) we perform the integration by computing the integrals over
all subintervals.

Such a small measure may seemingly allow for the derivation of various integrals. To see this,
we rewrite the integral as

∫ b

a
f (x)dx=

∫ a+2h

a
f (x)dx+

∫ a+4h

a+2h
f (x)dx+ . . .

∫ b

b−2h
f (x)dx.

One possible strategy then is to find a reliable polynomial expansion for f (x) in the smaller
subintervals. Consider for example evaluating

∫ a+2h

a
f (x)dx,

which we rewrite as ∫ a+2h

a
f (x)dx=

∫ x0+h

x0−h
f (x)dx. (5.2)

We have chosen a midpoint x0 and have defined x0 = a+ h. Using Lagrange’s interpolation
formula from Eq. (3.9), an equation we restate here,
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PN(x) =
N

∑
i=0

∏
k6=i

x− xk

xi− xk
yi ,

we could attempt to approximate the function f (x) with a first-order polynomial in x in the
two sub-intervals x∈ [x0−h,x0] and x∈ [x0,x0+h]. A first order polynomial means simply that
we have for say the interval x∈ [x0,x0+h]

f (x) ≈ P1(x) =
x− x0

(x0+h)− x0
f (x0+h)+

x− (x0+h)
x0− (x0+h)

f (x0),

and for the interval x∈ [x0−h,x0]

f (x) ≈ P1(x) =
x− (x0−h)
x0− (x0−h)

f (x0)+
x− x0

(x0−h)− x0
f (x0−h).

Having performed this subdivision and polynomial approximation, one from x0−h to x0 and
the other from x0 to x0+h,

∫ a+2h

a
f (x)dx=

∫ x0

x0−h
f (x)dx+

∫ x0+h

x0

f (x)dx,

we can easily calculate for example the second integral as

∫ x0+h

x0

f (x)dx≈
∫ x0+h

x0

(
x− x0

(x0+h)− x0
f (x0+h)+

x− (x0+h)
x0− (x0+h)

f (x0)

)
dx,

which can be simplified to

∫ x0+h

x0

f (x)dx≈
∫ x0+h

x0

(
x− x0

h
f (x0+h)− x− (x0+h)

h
f (x0)

)
dx,

resulting in ∫ x0+h

x0

f (x)dx=
h
2
( f (x0+h)+ f (x0))+O(h3).

Here we added the error made in approximating our integral with a polynomial of degree 1.
The other integral gives

∫ x0

x0−h
f (x)dx=

h
2
( f (x0)+ f (x0−h))+O(h3),

and adding up we obtain

∫ x0+h

x0−h
f (x)dx=

h
2
( f (x0+h)+2 f (x0)+ f (x0−h))+O(h3), (5.3)

which is the well-known trapezoidal rule. Concerning the error in the approximation made,
O(h3) = O((b− a)3/N3), you should note the following. This is the local error! Since we are
splitting the integral from a to b in N pieces, we will have to perform approximately N such
operations. This means that the global error goes like ≈O(h2). To see that, we use the trape-
zoidal rule to compute the integral of Eq. (5.1),

I =
∫ b

a
f (x)dx= h( f (a)/2+ f (a+h)+ f (a+2h)+ · · ·+ f (b−h)+ fb/2) , (5.4)

with a global error which goes like O(h2).
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Hereafter we use the shorthand notations f−h = f (x0−h), f0 = f (x0) and fh = f (x0+h). The
correct mathematical expression for the local error for the trapezoidal rule is

∫ b

a
f (x)dx− b−a

2
[ f (a)+ f (b)] =−h3

12
f (2)(ξ ),

and the global error reads

∫ b

a
f (x)dx−Th( f ) =−b−a

12
h2 f (2)(ξ ),

where Th is the trapezoidal result and ξ ∈ [a,b].
The trapezoidal rule is easy to implement numerically through the following simple algo-

rithm

• Choose the number of mesh points and fix the step.
• calculate f (a) and f (b) and multiply with h/2
• Perform a loop over n = 1 to n− 1 ( f (a) and f (b) are known) and sum up the terms

f (a+h)+ f (a+2h)+ f (a+3h)+ · · ·+ f (b−h). Each step in the loop corresponds to a
given value a+nh.

• Multiply the final result by h and add h f(a)/2 and h f(b)/2.

A simple function which implements this algorithm is as follows

http://folk.uio.no/mhjensen/compphys/programs/chapter05/cpp/trapezoidal.cpp

double trapezoidal_rule(double a, double b, int n, double (*func)(double))

{

double trapez_sum;

double fa, fb, x, step;

int j;

step=(b-a)/((double) n);

fa=(*func)(a)/2. ;

fb=(*func)(b)/2. ;

TrapezSum=0.;

for (j=1; j <= n-1; j++){

x=j*step+a;

trapez_sum+=(*func)(x);

}

trapez_sum=(trapez_um+fb+fa)*step;

return trapez_sum;

} // end trapezoidal_rule

The function returns a new value for the specific integral through the variable trapez_sum.
There is one new feature to note here, namely the transfer of a user defined function called
func in the definition

void trapezoidal_rule(double a, double b, int n, double *trapez_sum,

double (*func)(double) )

What happens here is that we are transferring a pointer to the name of a user defined func-
tion, which has as input a double precision variable and returns a double precision number.
The function trapezoidal_rule is called as

trapezoidal_rule(a, b, n, &MyFunction )

http://folk.uio.no/mhjensen/compphys/programs/chapter05/cpp/trapezoidal.cpp
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in the calling function. We note that a, b and n are called by value, while trapez_sum and
the user defined function MyFunction are called by reference.

The name trapezoidal rule follows from the simple fact that it has a simple geometrical
interpretation, it corresponds namely to summing up a series of trapezoids, which are the
approximations to the area below the curve f (x).

Another very simple approach is the so-called midpoint or rectangle method. In this case
the integration area is split in a given number of rectangles with length h and height given
by the mid-point value of the function. This gives the following simple rule for approximating
an integral

I =
∫ b

a
f (x)dx≈ h

N

∑
i=1

f (xi−1/2), (5.5)

where f (xi−1/2) is the midpoint value of f for a given rectangle. We will discuss its truncation
error below. It is easy to implement this algorithm, as shown here

http://folk.uio.no/mhjensen/compphys/programs/chapter05/cpp/rectangle.cpp

double rectangle_rule(double a, double b, int n, double (*func)(double))

{

double rectangle_sum;

double fa, fb, x, step;

int j;

step=(b-a)/((double) n);

rectangle_sum=0.;

for (j = 0; j <= n; j++){

x = (j+0.5)*step+; // midpoint of a given rectangle

rectangle_sum+=(*func)(x); // add value of function.

}

rectangle_sum *= step; // multiply with step length.

return rectangle_sum;

} // end rectangle_rule

The correct mathematical expression for the local error for the rectangular rule Ri(h) for
element i is ∫ h

−h
f (x)dx−Ri(h) =−

h3

24
f (2)(ξ ),

and the global error reads

∫ b

a
f (x)dx−Rh( f ) =−b−a

24
h2 f (2)(ξ ),

where Rh is the result obtained with rectangular rule and ξ ∈ [a,b].
Instead of using the above first-order polynomials approximations for f , we attempt at

using a second-order polynomials. In this case we need three points in order to define a
second-order polynomial approximation

f (x) ≈ P2(x) = a0+a1x+a2x
2.

Using again Lagrange’s interpolation formula we have

P2(x) =
(x− x0)(x− x1)

(x2− x0)(x2− x1)
y2+

(x− x0)(x− x2)

(x1− x0)(x1− x2)
y1+

(x− x1)(x− x2)

(x0− x1)(x0− x2)
y0.

Inserting this formula in the integral of Eq. (5.2) we obtain

∫ +h

−h
f (x)dx=

h
3
( fh+4 f0+ f−h)+O(h5),

http://folk.uio.no/mhjensen/compphys/programs/chapter05/cpp/rectangle.cpp
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which is Simpson’s rule. Note that the improved accuracy in the evaluation of the deriva-
tives gives a better error approximation, O(h5) vs. O(h3) . But this is again the local error
approximation. Using Simpson’s rule we can easily compute the integral of Eq. (5.1) to be

I =
∫ b

a
f (x)dx=

h
3
( f (a)+4 f (a+h)+2 f (a+2h)+ · · ·+4 f (b−h)+ fb) , (5.6)

with a global error which goes like O(h4). More formal expressions for the local and global
errors are for the local error

∫ b

a
f (x)dx− b−a

6
[ f (a)+4 f ((a+b)/2)+ f (b)] =−h5

90
f (4)(ξ ),

and for the global error ∫ b

a
f (x)dx−Sh( f ) =−b−a

180
h4 f (4)(ξ ).

with ξ ∈ [a,b] and Sh the results obtained with Simpson’s method. The method can easily be
implemented numerically through the following simple algorithm

• Choose the number of mesh points and fix the step.
• calculate f (a) and f (b)
• Perform a loop over n = 1 to n− 1 ( f (a) and f (b) are known) and sum up the terms

4 f (a+ h)+ 2 f (a+ 2h)+4f (a+3h)+ · · ·+ 4 f (b− h). Each step in the loop corresponds
to a given value a+nh. Odd values of n give 4 as factor while even values yield 2 as
factor.

• Multiply the final result by h
3.

In more general terms, what we have done here is to approximate a given function f (x) with
a polynomial of a certain degree. One can show that given n+1 distinct points x0, . . . ,xn ∈ [a,b]
and n+1 values y0, . . . ,yn there exists a unique polynomial Pn(x) with the property

Pn(x j) = y j j = 0, . . . ,n

In the Lagrange representation discussed in chapter 3, this interpolating polynomial is given
by

Pn =
n

∑
k=0

lkyk,

with the Lagrange factors

lk(x) =
n

∏
i = 0
i 6= k

x− xi

xk− xi
k= 0, . . . ,n,

see for example the text of Kress [24] or Burlich and Stoer [25] for details. If we for example
set n= 1, we obtain

P1(x) = y0
x− x1

x0− x1
+ y1

x− x0

x1− x0
=

y1− y0

x1− x0
x− y1x0+ y0x1

x1− x0
,

which we recognize as the equation for a straight line.
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The polynomial interpolatory quadrature of order n with equidistant quadrature points
xk = a+ kh and step h= (b−a)/n is called the Newton-Cotes quadrature formula of order n.
General expressions can be found in for example Refs. [24,25].

5.2 Adaptive Integration

Before we proceed with more advanced methods like Gaussian quadrature, we mention
breefly how an adaptive integration method can be implemented.

The above methods are all based on a defined step length, normally provided by the user,
dividing the integration domain with a fixed number of subintervals. This is rather simple
to implement may be inefficient, in particular if the integrand varies considerably in certain
areas of the integration domain. In these areas the number of fixed integration points may
not be adequate. In other regions, the integrand may vary slowly and fewer integration points
may be needed.

In order to account for such features, it may be convenient to first study the properties
of integrand, via for example a plot of the function to integrate. If this function oscillates
largely in some specific domain we may then opt for adding more integration points to that
particular domain. However, this procedure needs to be repeated for every new integrand
and lacks obviously the advantages of a more generic code.

The algorithm we present here is based on a recursive procedure and allows us to automate
an adaptive domain. The procedure is very simple to implement.

Assume that we want to compute an integral using say the trapezoidal rule. We limit our-
selves to a one-dimensional integral. Our integration domain is defined by x∈ [a,b]. The algo-
rithm goes as follows

• We compute our first approximation by computing the integral for the full domain. We label
this as I (0). It is obtained by calling our previously discussed function trapezoidal_rule as

I0 = trapezoidal_rule(a, b, n, function);

• In the next step we split the integration in two, with c= (a+b)/2. We compute then the two
integrals I (1L) and I (1R)

I1L = trapezoidal_rule(a, c, n, function);

and

I1R = trapezoidal_rule(c, b, n, function);

With a given defined tolerance, being a small number provided by us, we estimate the
difference |I (1L) + I (1R)− I (0)| < tolerance. If this test is satisfied, our first approximation is
satisfactory.

• If not, we can set up a recursive procedure where the integral is split into subsequent
subintervals until our tolerance is satisfied.

This recursive procedure can be easily implemented via the following function

// Simple recursive function that implements the

// adaptive integration using the trapezoidal rule

// It is convenient to define as global variables

// the tolerance and the number of recursive steps

const int maxrecursions = 50;

const double tolerance = 1.0E-10;

// Takes as input the integration limits, number of points, function to integrate

// and the number of steps
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void adaptive_integration(double a, double b, double *Integral, int n, int steps, double

(*func)(double))

if ( steps > maxrecursions){

cout << 'Too many recursive steps, the function varies too much' << endl;

break;

}

double c = (a+b)*0.5;

// the whole integral

double I0 = trapezoidal_rule(a, b,n, func);

// the left half

double I1L = trapezoidal_rule(a, c,n, func);

// the right half

double I1R = trapezoidal_rule(c, b,n, func);

if (fabs(I1L+I1R-I0) < tolerance ) integral = I0;

else

{

adaptive_integration(a, c, integral, int n, ++steps, func)

adaptive_integration(c, b, integral, int n, ++steps, func)

}

}

// end function adaptive_integration

The variables integral and steps should be initialized to zero by the function that calls the
adaptive procedure.

5.3 Gaussian Quadrature

The methods we have presented hitherto are taylored to problems where the mesh points xi

are equidistantly spaced, xi differing from xi+1 by the step h. These methods are well suited
to cases where the integrand may vary strongly over a certain region or if we integrate over
the solution of a differential equation.

If however our integrand varies only slowly over a large interval, then the methods we
have discussed may only slowly converge towards a chosen precision1. As an example,

I =
∫ b

1
x−2 f (x)dx,

may converge very slowly to a given precision if b is large and/or f (x) varies slowly as function
of x at large values. One can obviously rewrite such an integral by changing variables to t = 1/x
resulting in

I =
∫ 1

b−1
f (t−1)dt,

which has a small integration range and hopefully the number of mesh points needed is not
that large.

However, there are cases where no trick may help and where the time expenditure in
evaluating an integral is of importance. For such cases we would like to recommend methods
based on Gaussian quadrature. Here one can catch at least two birds with a stone, namely,
increased precision and fewer integration points. But it is important that the integrand varies
smoothly over the interval, else we have to revert to splitting the interval into many small
subintervals and the gain achieved may be lost.

The basic idea behind all integration methods is to approximate the integral

1 You could e.g., impose that the integral should not change as function of increasing mesh points beyond the
sixth digit.
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I =
∫ b

a
f (x)dx≈

N

∑
i=1

ωi f (xi),

where ω and x are the weights and the chosen mesh points, respectively. In our previous
discussion, these mesh points were fixed at the beginning, by choosing a given number of
points N. The weigths ω resulted then from the integration method we applied. Simpson’s
rule, see Eq. (5.6) would give

ω : {h/3,4h/3,2h/3,4h/3, . . .,4h/3,h/3},

for the weights, while the trapezoidal rule resulted in

ω : {h/2,h,h, . . . ,h,h/2} .

In general, an integration formula which is based on a Taylor series using N points, will
integrate exactly a polynomial P of degree N−1. That is, the N weights ωn can be chosen to
satisfy N linear equations, see chapter 3 of Ref. [3]. A greater precision for a given amount
of numerical work can be achieved if we are willing to give up the requirement of equally
spaced integration points. In Gaussian quadrature (hereafter GQ), both the mesh points and
the weights are to be determined. The points will not be equally spaced2. The theory behind
GQ is to obtain an arbitrary weight ω through the use of so-called orthogonal polynomials.
These polynomials are orthogonal in some interval say e.g., [-1,1]. Our points xi are chosen in
some optimal sense subject only to the constraint that they should lie in this interval. Together
with the weights we have then 2N (N the number of points) parameters at our disposal.

Even though the integrand is not smooth, we could render it smooth by extracting from it
the weight function of an orthogonal polynomial, i.e., we are rewriting

I =
∫ b

a
f (x)dx=

∫ b

a
W(x)g(x)dx≈

N

∑
i=1

ωig(xi), (5.7)

where g is smooth and W is the weight function, which is to be associated with a given
orthogonal polynomial. Note that with a given weight function we end up evaluating the
integrand for the function g(xi).

The weight function W is non-negative in the integration interval x ∈ [a,b] such that for
any n≥ 0, the integral

∫ b
a |x|nW(x)dx is integrable. The naming weight function arises from the

fact that it may be used to give more emphasis to one part of the interval than another. A
quadrature formula

∫ b

a
W(x) f (x)dx≈

N

∑
i=1

ωi f (xi), (5.8)

with N distinct quadrature points (mesh points) is a called a Gaussian quadrature formula if
it integrates all polynomials p∈ P2N−1 exactly, that is

∫ b

a
W(x)p(x)dx=

N

∑
i=1

ωi p(xi), (5.9)

It is assumed that W(x) is continuous and positive and that the integral

∫ b

a
W(x)dx

2 Typically, most points will be located near the origin, while few points are needed for large x values since
the integrand is supposed to vary smoothly there. See below for an example.
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exists. Note that the replacement of f →Wg is normally a better approximation due to the
fact that we may isolate possible singularities of W and its derivatives at the endpoints of the
interval.

The quadrature weights or just weights (not to be confused with the weight function) are
positive and the sequence of Gaussian quadrature formulae is convergent if the sequence QN

of quadrature formulae

QN( f )→Q( f ) =
∫ b

a
f (x)dx,

in the limit N→ ∞. Then we say that the sequence

QN( f ) =
N

∑
i=1

ω(N)
i f (x(N)

i ),

is convergent for all polynomials p, that is

QN(p) = Q(p)

if there exits a constant C such that
N

∑
i=1
|ω(N)

i | ≤C,

for all N which are natural numbers.
The error for the Gaussian quadrature formulae of order N is given by

∫ b

a
W(x) f (x)dx−

N

∑
k=1

wk f (xk) =
f 2N(ξ )
(2N)!

∫ b

a
W(x)[qN(x)]

2dx

where qN is the chosen orthogonal polynomial and ξ is a number in the interval [a,b]. We
have assumed that f ∈C2N[a,b], viz. the space of all real or complex 2N times continuously
differentiable functions.

In science there are several important orthogonal polynomials which arise from the solu-
tion of differential equations. Well-known examples are the Legendre, Hermite, Laguerre and
Chebyshev polynomials. They have the following weight functions

Weight function Interval Polynomial

W(x) = 1 x∈ [−1,1] Legendre

W(x) = e−x2 −∞≤ x≤ ∞ Hermite
W(x) = xα e−x 0≤ x≤ ∞ Laguerre

W(x) = 1/(
√

1− x2) −1≤ x≤ 1 Chebyshev

The importance of the use of orthogonal polynomials in the evaluation of integrals can be
summarized as follows.

• As stated above, methods based on Taylor series using N points will integrate exactly a
polynomial P of degree N−1. If a function f (x) can be approximated with a polynomial of
degree N−1

f (x) ≈ PN−1(x),

with N mesh points we should be able to integrate exactly the polynomial PN−1.
• Gaussian quadrature methods promise more than this. We can get a better polynomial

approximation with order greater than N to f (x) and still get away with only N mesh points.
More precisely, we approximate

f (x)≈ P2N−1(x),

and with only N mesh points these methods promise that
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∫
f (x)dx≈

∫
P2N−1(x)dx=

N−1

∑
i=0

P2N−1(xi)ωi ,

The reason why we can represent a function f (x) with a polynomial of degree 2N−1 is due
to the fact that we have 2N equations, N for the mesh points and N for the weights.

The mesh points are the zeros of the chosen orthogonal polynomial of order N, and the
weights are determined from the inverse of a matrix. An orthogonal polynomials of degree N
defined in an interval [a,b] has precisely N distinct zeros on the open interval (a,b).

Before we detail how to obtain mesh points and weights with orthogonal polynomials, let
us revisit some features of orthogonal polynomials by specializing to Legendre polynomials.
In the text below, we reserve hereafter the labelling LN for a Legendre polynomial of order N,
while PN is an arbitrary polynomial of order N. These polynomials form then the basis for the
Gauss-Legendre method.

5.3.1 Orthogonal polynomials, Legendre

The Legendre polynomials are the solutions of an important differential equation in Science,
namely

C(1− x2)P−m2
l P+(1− x2)

d
dx

(
(1− x2)

dP
dx

)
= 0.

Here C is a constant. For ml = 0 we obtain the Legendre polynomials as solutions, whereas
ml 6= 0 yields the so-called associated Legendre polynomials. This differential equation arises
in for example the solution of the angular dependence of Schrödinger’s equation with spher-
ically symmetric potentials such as the Coulomb potential.

The corresponding polynomials P are

Lk(x) =
1

2kk!
dk

dxk (x
2−1)k k= 0,1,2, . . . ,

which, up to a factor, are the Legendre polynomials Lk. The latter fulfil the orthogonality
relation ∫ 1

−1
Li(x)L j (x)dx=

2
2i +1

δi j , (5.10)

and the recursion relation

( j +1)L j+1(x)+ jL j−1(x)− (2 j +1)xL j(x) = 0. (5.11)

It is common to choose the normalization condition

LN(1) = 1.

With these equations we can determine a Legendre polynomial of arbitrary order with input
polynomials of order N−1 and N−2.

As an example, consider the determination of L0, L1 and L2. We have that

L0(x) = c,

with c a constant. Using the normalization equation L0(1) = 1 we get that

L0(x) = 1.
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For L1(x) we have the general expression

L1(x) = a+bx,

and using the orthogonality relation

∫ 1

−1
L0(x)L1(x)dx= 0,

we obtain a= 0 and with the condition L1(1) = 1, we obtain b= 1, yielding

L1(x) = x.

We can proceed in a similar fashion in order to determine the coefficients of L2

L2(x) = a+bx+ cx2,

using the orthogonality relations

∫ 1

−1
L0(x)L2(x)dx= 0,

and ∫ 1

−1
L1(x)L2(x)dx= 0,

and the condition L2(1) = 1 we would get

L2(x) =
1
2

(
3x2−1

)
. (5.12)

We note that we have three equations to determine the three coefficients a, b and c.
Alternatively, we could have employed the recursion relation of Eq. (5.11), resulting in

2L2(x) = 3xL1(x)−L0,

which leads to Eq. (5.12).
The orthogonality relation above is important in our discussion on how to obtain the

weights and mesh points. Suppose we have an arbitrary polynomial QN−1 of order N−1 and a
Legendre polynomial LN(x) of order N. We could represent QN−1 by the Legendre polynomials
through

QN−1(x) =
N−1

∑
k=0

αkLk(x), (5.13)

where αk’s are constants.
Using the orthogonality relation of Eq. (5.10) we see that

∫ 1

−1
LN(x)QN−1(x)dx=

N−1

∑
k=0

∫ 1

−1
LN(x)αkLk(x)dx= 0. (5.14)

We will use this result in our construction of mesh points and weights in the next subsection.
In summary, the first few Legendre polynomials are

L0(x) = 1,

L1(x) = x,

L2(x) = (3x2−1)/2,
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L3(x) = (5x3−3x)/2,

and
L4(x) = (35x4−30x2+3)/8.

The following simple function implements the above recursion relation of Eq. (5.11). for com-
puting Legendre polynomials of order N.

// This function computes the Legendre polynomial of degree N

double Legendre( int n, double x)

{

double r, s, t;

int m;

r = 0; s = 1.;

// Use recursion relation to generate p1 and p2

for (m=0; m < n; m++ )

{

t = r; r = s;

s = (2*m+1)*x*r - m*t;

s /= (m+1);

} // end of do loop

return s;

} // end of function Legendre

The variable s represents L j+1(x), while r holds L j(x) and t the value L j−1(x).

5.3.2 Integration points and weights with orthogonal polynomials

To understand how the weights and the mesh points are generated, we define first a polyno-
mial of degree 2N−1 (since we have 2N variables at hand, the mesh points and weights for N
points). This polynomial can be represented through polynomial division by

P2N−1(x) = LN(x)PN−1(x)+QN−1(x),

where PN−1(x) and QN−1(x) are some polynomials of degree N−1 or less. The function LN(x)
is a Legendre polynomial of order N.

Recall that we wanted to approximate an arbitrary function f (x) with a polynomial P2N−1 in
order to evaluate ∫ 1

−1
f (x)dx≈

∫ 1

−1
P2N−1(x)dx.

We can use Eq. (5.14) to rewrite the above integral as

∫ 1

−1
P2N−1(x)dx=

∫ 1

−1
(LN(x)PN−1(x)+QN−1(x))dx=

∫ 1

−1
QN−1(x)dx,

due to the orthogonality properties of the Legendre polynomials. We see that it suffices to
evaluate the integral over

∫ 1
−1QN−1(x)dx in order to evaluate

∫ 1
−1P2N−1(x)dx. In addition, at the

points xk where LN is zero, we have

P2N−1(xk) = QN−1(xk) k= 0,1, . . . ,N−1,

and we see that through these N points we can fully define QN−1(x) and thereby the integral.
Note that we have chosen to let the numbering of the points run from 0 to N−1. The reason
for this choice is that we wish to have the same numbering as the order of a polynomial of
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degree N− 1. This numbering will be useful below when we introduce the matrix elements
which define the integration weights wi .

We develope then QN−1(x) in terms of Legendre polynomials, as done in Eq. (5.13),

QN−1(x) =
N−1

∑
i=0

αiLi(x). (5.15)

Using the orthogonality property of the Legendre polynomials we have

∫ 1

−1
QN−1(x)dx=

N−1

∑
i=0

αi

∫ 1

−1
L0(x)Li(x)dx= 2α0,

where we have just inserted L0(x) = 1! Instead of an integration problem we need now to
define the coefficient α0. Since we know the values of QN−1 at the zeros of LN, we may rewrite
Eq. (5.15) as

QN−1(xk) =
N−1

∑
i=0

αiLi(xk) =
N−1

∑
i=0

αiLik k= 0,1, . . . ,N−1. (5.16)

Since the Legendre polynomials are linearly independent of each other, none of the columns
in the matrix Lik are linear combinations of the others. This means that the matrix Lik has an
inverse with the properties

L̂−1L̂ = Î .

Multiplying both sides of Eq. (5.16) with ∑N−1
j=0 L−1

ji results in

N−1

∑
i=0

(L−1)kiQN−1(xi) = αk. (5.17)

We can derive this result in an alternative way by defining the vectors

x̂k =




x0

x1

.

.

xN−1




α̂ =




α0

α1

.

.

αN−1



,

and the matrix

L̂ =




L0(x0) L1(x0) . . . LN−1(x0)

L0(x1) L1(x1) . . . LN−1(x1)

. . . . . . . . . . . .

L0(xN−1) L1(xN−1) . . . LN−1(xN−1)


 .

We have then
QN−1(x̂k) = L̂α̂,

yielding (if L̂ has an inverse)
L̂−1QN−1(x̂k) = α̂,

which is Eq. (5.17).
Using the above results and the fact that

∫ 1

−1
P2N−1(x)dx=

∫ 1

−1
QN−1(x)dx,

we get
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∫ 1

−1
P2N−1(x)dx=

∫ 1

−1
QN−1(x)dx= 2α0 = 2

N−1

∑
i=0

(L−1)0iP2N−1(xi).

If we identify the weights with 2(L−1)0i , where the points xi are the zeros of LN, we have an
integration formula of the type

∫ 1

−1
P2N−1(x)dx=

N−1

∑
i=0

ωiP2N−1(xi)

and if our function f (x) can be approximated by a polynomial P of degree 2N− 1, we have
finally that

∫ 1

−1
f (x)dx≈

∫ 1

−1
P2N−1(x)dx=

N−1

∑
i=0

ωiP2N−1(xi).

In summary, the mesh points xi are defined by the zeros of an orthogonal polynomial of degree
N, that is LN, while the weights are given by 2(L−1)0i .

5.3.3 Application to the case N = 2

Let us apply the above formal results to the case N = 2. This means that we can approximate
a function f (x) with a polynomial P3(x) of order 2N−1= 3.

The mesh points are the zeros of L2(x) = 1/2(3x2− 1). These points are x0 = −1/
√

3 and
x1 = 1/

√
3.

Specializing Eq. (5.16)

QN−1(xk) =
N−1

∑
i=0

αiLi(xk) k= 0,1, . . . ,N−1.

to N = 2 yields

Q1(x0) = α0−α1
1√
3
,

and

Q1(x1) = α0+α1
1√
3
,

since L0(x=±1/
√

3) = 1 and L1(x=±1/
√

3) =±1/
√

3.
The matrix Lik defined in Eq. (5.16) is then

L̂ =

(
1 − 1√

3
1 1√

3

)
,

with an inverse given by

L̂−1 =

√
3

2

(
1√
3

1√
3

−1 1

)
.

The weights are given by the matrix elements 2(L0k)
−1. We have thence ω0 = 1 and ω1 = 1.

Obviously, there is no problem in changing the numbering of the matrix elements i,k =

0,1,2, . . . ,N−1 to i,k= 1,2, . . . ,N. We have chosen to start from zero, since we deal with poly-
nomials of degree N−1.

Summarizing, for Legendre polynomials with N = 2 we have weights

ω : {1,1} ,
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and mesh points

x :

{
− 1√

3
,

1√
3

}
.

If we wish to integrate ∫ 1

−1
f (x)dx,

with f (x) = x2, we approximate

I =
∫ 1

−1
x2dx≈

N−1

∑
i=0

ωix
2
i .

The exact answer is 2/3. Using N = 2 with the above two weights and mesh points we get

I =
∫ 1

−1
x2dx=

1

∑
i=0

ωix
2
i =

1
3
+

1
3
=

2
3
,

the exact answer!
If we were to emply the trapezoidal rule we would get

I =
∫ 1

−1
x2dx=

b−a
2

(
(a)2+(b)2)/2=

1− (−1)
2

(
(−1)2+(1)2)/2= 1!

With just two points we can calculate exactly the integral for a second-order polynomial since
our methods approximates the exact function with higher order polynomial. How many points
do you need with the trapezoidal rule in order to achieve a similar accuracy?

5.3.4 General integration intervals for Gauss-Legendre

Note that the Gauss-Legendre method is not limited to an interval [-1,1], since we can always
through a change of variable

t =
b−a

2
x+

b+a
2

,

rewrite the integral for an interval [a,b]

∫ b

a
f (t)dt =

b−a
2

∫ 1

−1
f

(
(b−a)x

2
+

b+a
2

)
dx.

If we have an integral on the form ∫ ∞

0
f (t)dt,

we can choose new mesh points and weights by using the mapping

x̃i = tan
{π

4
(1+ xi)

}
,

and
ω̃i =

π
4

ωi

cos2
(π

4 (1+ xi)
) ,

where xi and ωi are the original mesh points and weights in the interval [−1,1], while x̃i and
ω̃i are the new mesh points and weights for the interval [0,∞).

To see that this is correct by inserting the the value of xi =−1 (the lower end of the interval
[−1,1]) into the expression for x̃i . That gives x̃i = 0, the lower end of the interval [0,∞). For
xi = 1, we obtain x̃i = ∞. To check that the new weights are correct, recall that the weights
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should correspond to the derivative of the mesh points. Try to convince yourself that the
above expression fulfills this condition.

5.3.5 Other orthogonal polynomials

5.3.5.1 Laguerre polynomials

If we are able to rewrite our integral of Eq. (5.7) with a weight function W(x) = xαe−x with
integration limits [0,∞), we could then use the Laguerre polynomials. The polynomials form
then the basis for the Gauss-Laguerre method which can be applied to integrals of the form

I =
∫ ∞

0
f (x)dx=

∫ ∞

0
xα e−xg(x)dx.

These polynomials arise from the solution of the differential equation

(
d2

dx2 −
d
dx

+
λ
x
− l(l +1)

x2

)
L (x) = 0,

where l is an integer l ≥ 0 and λ a constant. This equation arises for example from the solution
of the radial Schrödinger equation with a centrally symmetric potential such as the Coulomb
potential. The first few polynomials are

L0(x) = 1,

L1(x) = 1− x,

L2(x) = 2−4x+ x2,

L3(x) = 6−18x+9x2− x3,

and
L4(x) = x4−16x3+72x2−96x+24.

They fulfil the orthogonality relation

∫ ∞

0
e−x

Ln(x)
2dx= 1,

and the recursion relation

(n+1)Ln+1(x) = (2n+1− x)Ln(x)−nLn−1(x).

5.3.5.2 Hermite polynomials

In a similar way, for an integral which goes like

I =
∫ ∞

−∞
f (x)dx=

∫ ∞

−∞
e−x2

g(x)dx.

we could use the Hermite polynomials in order to extract weights and mesh points. The
Hermite polynomials are the solutions of the following differential equation

d2H(x)
dx2 −2x

dH(x)
dx

+(λ −1)H(x) = 0.
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A typical example is again the solution of Schrödinger’s equation, but this time with a har-
monic oscillator potential. The first few polynomials are

H0(x) = 1,

H1(x) = 2x,

H2(x) = 4x2−2,

H3(x) = 8x3−12,

and
H4(x) = 16x4−48x2+12.

They fulfil the orthogonality relation

∫ ∞

−∞
e−x2

Hn(x)
2dx= 2nn!

√
π,

and the recursion relation
Hn+1(x) = 2xHn(x)−2nHn−1(x).

5.3.6 Applications to selected integrals

Before we proceed with some selected applications, it is important to keep in mind that since
the mesh points are not evenly distributed, a careful analysis of the behavior of the integrand
as function of x and the location of mesh points is mandatory. To give you an example, in
the Table below we show the mesh points and weights for the integration interval [0,100]
for N = 10 points obtained by the Gauss-Legendre method. Clearly, if your function oscillates

Table 5.1 Mesh points and weights for the integration interval [0,100] with N = 10using the Gauss-Legendre
method.

i xi ωi

1 1.305 3.334
2 6.747 7.473
3 16.030 10.954
4 28.330 13.463
5 42.556 14.776
6 57.444 14.776
7 71.670 13.463
8 83.970 10.954
9 93.253 7.473

10 98.695 3.334

strongly in any subinterval, this approach needs to be refined, either by choosing more points
or by choosing other integration methods. Note also that for integration intervals like for
example x ∈ [0,∞], the Gauss-Legendre method places more points at the beginning of the
integration interval. If your integrand varies slowly for large values of x, then this method
may be appropriate.

Let us here compare three methods for integrating, namely the trapezoidal rule, Simpson’s
method and the Gauss-Legendre approach. We choose two functions to integrate:
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∫ 100

1

exp(−x)
x

dx,

and ∫ 3

0

1
2+ x2dx.

A program example which uses the trapezoidal rule, Simpson’s rule and the Gauss-Legendre
method is included here. For the corresponding Fortran program, replace program1.cpp with
program1.f90. The Python program is listed as program1.py.

http://folk.uio.no/mhjensen/compphys/programs/chapter05/cpp/program1.cpp

#include <iostream>

#include "lib.h"

using namespace std;

// Here we define various functions called by the main program

// this function defines the function to integrate

double int_function(double x);

// Main function begins here

int main()

{

int n;

double a, b;

cout << "Read in the number of integration points" << endl;

cin >> n;

cout << "Read in integration limits" << endl;

cin >> a >> b;

// reserve space in memory for vectors containing the mesh points

// weights and function values for the use of the gauss-legendre

// method

double *x = new double [n];

double *w = new double [n];

// set up the mesh points and weights

gauss_legendre(a, b,x,w, n);

// evaluate the integral with the Gauss-Legendre method

// Note that we initialize the sum

double int_gauss = 0.;

for ( int i = 0; i < n; i++){

int_gauss+=w[i]*int_function(x[i]);

}

// final output

cout << "Trapez-rule = " << trapezoidal_rule(a, b,n, int_function)

<< endl;

cout << "Simpson's rule = " << simpson(a, b,n, int_function)

<< endl;

cout << "Gaussian quad = " << int_gauss << endl;

delete [] x;

delete [] w;

return 0;

} // end of main program

// this function defines the function to integrate

double int_function(double x)

{

double value = 4./(1.+x*x);

return value;

} // end of function to evaluate

To be noted in this program is that we can transfer the name of a given function to integrate.
In Table 5.2 we show the results for the first integral using various mesh points, while Table
5.3 displays the corresponding results obtained with the second integral. We note here that,
since the area over where we integrate is rather large and the integrand goes slowly to zero

http://folk.uio.no/mhjensen/compphys/programs/chapter05/cpp/program1.cpp
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Table 5.2 Results for
∫ 100

1 exp(−x)/xdx using three different methods as functions of the number of mesh
points N.

N Trapez Simpson Gauss-Legendre
10 1.821020 1.214025 0.1460448
20 0.912678 0.609897 0.2178091
40 0.478456 0.333714 0.2193834

100 0.273724 0.231290 0.2193839
1000 0.219984 0.219387 0.2193839

for large values of x, both the trapezoidal rule and Simpson’s method need quite many points
in order to approach the Gauss-Legendre method. This integrand demonstrates clearly the
strength of the Gauss-Legendre method (and other GQ methods as well), viz., few points are
needed in order to achieve a very high precision.

The second table however shows that for smaller integration intervals, both the trapezoidal
rule and Simpson’s method compare well with the results obtained with the Gauss-Legendre
approach.

Table 5.3 Results for
∫ 3

0 1/(2+x2)dx using three different methods as functions of the number of mesh points
N.

N Trapez Simpson Gauss-Legendre
10 0.798861 0.799231 0.799233
20 0.799140 0.799233 0.799233
40 0.799209 0.799233 0.799233

100 0.799229 0.799233 0.799233
1000 0.799233 0.799233 0.799233

5.4 Treatment of Singular Integrals

So-called principal value (PV) integrals are often employed in physics, from Green’s functions
for scattering to dispersion relations. Dispersion relations are often related to measurable
quantities and provide important consistency checks in atomic, nuclear and particle physics.
A PV integral is defined as

I(x) = P

∫ b

a
dt

f (t)
t− x

= lim
ε→0+

[∫ x−ε

a
dt

f (t)
t− x

+

∫ b

x+ε
dt

f (t)
t− x

]
,

and arises in applications of Cauchy’s residue theorem when the pole x lies on the real axis
within the interval of integration [a,b]. Here P stands for the principal value. An important
assumption is that the function f (t) is continuous on the interval of integration.

In case f (t) is a closed form expression or it has an analytic continuation in the complex
plane, it may be possible to obtain an expression on closed form for the above integral.

However, the situation which we are often confronted with is that f (t) is only known at
some points ti with corresponding values f (ti). In order to obtain I(x) we need to resort to a
numerical evaluation.

To evaluate such an integral, let us first rewrite it as

P

∫ b

a
dt

f (t)
t− x

=

∫ x−∆

a
dt

f (t)
t− x

+

∫ b

x+∆
dt

f (t)
t− x

+P

∫ x+∆

x−∆
dt

f (t)
t− x

,
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where we have isolated the principal value part in the last integral.
Defining a new variable u= t− x, we can rewrite the principal value integral as

I∆ (x) = P

∫ +∆

−∆
du

f (u+ x)
u

. (5.18)

One possibility is to Taylor expand f (u+x) around u= 0, and compute derivatives to a certain
order as we did for the Trapezoidal rule or Simpson’s rule. Since all terms with even powers
of u in the Taylor expansion dissapear, we have that

I∆ (x)≈
Nmax

∑
n=0

f (2n+1)(x)
∆2n+1

(2n+1)(2n+1)!
.

To evaluate higher-order derivatives may be both time consuming and delicate from a
numerical point of view, since there is always the risk of loosing precision when calculating
derivatives numerically. Unless we have an analytic expression for f (u+ x) and can evaluate
the derivatives in a closed form, the above approach is not the preferred one.

Rather, we show here how to use the Gauss-Legendre method to compute Eq. (5.18). Let
us first introduce a new variable s= u/∆ and rewrite Eq. (5.18) as

I∆ (x) = P

∫ +1

−1
ds

f (∆s+ x)
s

. (5.19)

The integration limits are now from −1 to 1, as for the Legendre polynomials. The principal
value in Eq. (5.19) is however rather tricky to evaluate numerically, mainly since computers
have limited precision. We will here use a subtraction trick often used when dealing with
singular integrals in numerical calculations. We introduce first the calculus relation

∫ +1

−1

ds
s
= 0.

It means that the curve 1/(s) has equal and opposite areas on both sides of the singular point
s= 0.

If we then note that f (x) is just a constant, we have also

f (x)
∫ +1

−1

ds
s

=

∫ +1

−1
f (x)

ds
s

= 0.

Subtracting this equation from Eq. (5.19) yields

I∆ (x) = P

∫ +1

−1
ds

f (∆s+ x)
s

=
∫ +1

−1
ds

f (∆s+ x)− f (x)
s

, (5.20)

and the integrand is no longer singular since we have that lims→0( f (s+ x)− f (x)) = 0 and for
the particular case s= 0 the integrand is now finite.

Eq. (5.20) is now rewritten using the Gauss-Legendre method resulting in

∫ +1

−1
ds

f (∆s+ x)− f (x)
s

=
N

∑
i=1

ωi
f (∆si + x)− f (x)

si
, (5.21)

where si are the mesh points (N in total) and ωi are the weights.
In the selection of mesh points for a PV integral, it is important to use an even number of

points, since an odd number of mesh points always picks si = 0 as one of the mesh points. The
sum in Eq. (5.21) will then diverge.

Let us apply this method to the integral
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I(x) = P

∫ +1

−1
dt

et

t
. (5.22)

The integrand diverges at x= t = 0. We rewrite it using Eq. (5.20) as

P

∫ +1

−1
dt

et

t
=

∫ +1

−1

et −1
t

, (5.23)

since ex = e0 = 1. With Eq. (5.21) we have then

∫ +1

−1

et −1
t
≈

N

∑
i=1

ωi
eti −1

ti
. (5.24)

The exact results is 2.11450175075.....With just two mesh points we recall from the previous
subsection that ω1 =ω2 = 1 and that the mesh points are the zeros of L2(x), namely x1 =−1/

√
3

and x2 = 1/
√

3. Setting N = 2 and inserting these values in the last equation gives

I2(x= 0) =
√

3
(

e1/
√

3−e−1/
√

3
)
= 2.1129772845.

With six mesh points we get even the exact result to the tenth digit

I6(x= 0) = 2.11450175075!

We can repeat the above subtraction trick for more complicated integrands. First we mod-
ify the integration limits to ±∞ and use the fact that

∫ ∞

−∞

dk
k− k0

=
∫ 0

−∞

dk
k− k0

+
∫ ∞

0

dk
k− k0

= 0.

A change of variable u=−k in the integral with limits from −∞ to 0 gives

∫ ∞

−∞

dk
k− k0

=

∫ 0

∞

−du
−u− k0

+

∫ ∞

0

dk
k− k0

=

∫ ∞

0

dk
−k− k0

+

∫ ∞

0

dk
k− k0

= 0.

It means that the curve 1/(k− k0) has equal and opposite areas on both sides of the singular
point k0. If we break the integral into one over positive k and one over negative k, a change of
variable k→−k allows us to rewrite the last equation as

∫ ∞

0

dk

k2− k2
0

= 0.

We can use this to express a principal values integral as

P

∫ ∞

0

f (k)dk

k2− k2
0

=

∫ ∞

0

( f (k)− f (k0))dk

k2− k2
0

, (5.25)

where the right-hand side is no longer singular at k = k0, it is proportional to the derivative
d f/dk, and can be evaluated numerically as any other integral.

Such a trick is often used when evaluating integral equations, as discussed in the next
section.
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5.5 Parallel Computing

We end this chapter by discussing modern supercomputing concepts like parallel computing.
In particular, we will introduce you to the usage of the Message Passing Interface (MPI) li-
brary. MPI is a library, not a programming language. It specifies the names, calling sequences
and results of functions or subroutines to be called from C++ or Fortran programs, and the
classes and methods that make up the MPI C++ library. The programs that users write in
Fortran or C++ are compiled with ordinary compilers and linked with the MPI library. MPI
programs should be able to run on all possible machines and run all MPI implementetations
without change. An excellent reference is the text by Karniadakis and Kirby II [17].

5.5.1 Brief survey of supercomputing concepts and terminologies

Since many discoveries in science are nowadays obtained via large-scale simulations, there
is an ever-lasting wish and need to do larger simulations using shorter computer time. The
development of the capacity for single-processor computers (even with increased processor
speed and memory) can hardly keep up with the pace of scientific computing. The solution to
the needs of the scientific computing and high-performance computing (HPC) communities
has therefore been parallel computing.

The basic ideas of parallel computing is that multiple processors are involved to solve a
global problem. The essence is to divide the entire computation evenly among collaborative
processors.

Today’s supercomputers are parallel machines and can achieve peak performances almost
up to 1015 floating point operations per second, so-called peta-scale computers, see for ex-
ample the list over the world’s top 500 supercomputers at www.top500.org. This list gets
updated twice per year and sets up the ranking according to a given supercomputer’s perfor-
mance on a benchmark code from the LINPACK library. The benchmark solves a set of linear
equations using the best software for a given platform.

To understand the basic philosophy, it is useful to have a rough picture of how to clas-
sify different hardware models. We distinguish betwen three major groups, (i) conventional
single-processor computers, normally called SISD (single-instruction-single-data) machines,
(ii) so-called SIMD machines (single-instruction-multiple-data), which incorporate the idea of
parallel processing using a large number of processing units to execute the same instruc-
tion on different data and finally (iii) modern parallel computers, so-called MIMD (multiple-
instruction- multiple-data) machines that can execute different instruction streams in parallel
on different data. On a MIMD machine the different parallel processing units perform op-
erations independently of each others, only subject to synchronization via a given message
passing interface at specified time intervals. MIMDmachines are the dominating ones among
present supercomputers, and we distinguish between two types of MIMD computers, namely
shared memory machines and distributed memory machines. In shared memory systems the
central processing units (CPU) share the same address space. Any CPU can access any data in
the global memory. In distributed memory systems each CPU has its own memory. The CPUs
are connected by some network and may exchange messages. A recent trend are so-called
ccNUMA (cache-coherent-non-uniform-memory- access) systems which are clusters of SMP
(symmetric multi-processing) machines and have a virtual shared memory.

Distributed memory machines, in particular those based on PC clusters, are nowadays the
most widely used and cost-effective, although farms of PC clusters require large infrastuc-
tures and yield additional expenses for cooling. PC clusters with Linux as operating systems
are easy to setup and offer several advantages, since they are built from standard commodity

www.top500.org
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hardware with the open source software (Linux) infrastructure. The designer can improve
performance proportionally with added machines. The commodity hardware can be any of
a number of mass-market, stand-alone compute nodes as simple as two networked comput-
ers each running Linux and sharing a file system or as complex as thousands of nodes with
a high-speed, low-latency network. In addition to the increased speed of present individual
processors (and most machines come today with dual cores or four cores, so-called quad-
cores) the position of such commodity supercomputers has been strenghtened by the fact
that a library like MPI has made parallel computing portable and easy. Although there are
several implementations, they share the same core commands. Message-passing is a mature
programming paradigm and widely accepted. It often provides an efficient match to the hard-
ware.

5.5.2 Parallelism

When we discuss parallelism, it is common to subdivide different algorithms in three major
groups.

• Task parallelism:the work of a global problem can be divided into a number of inde-
pendent tasks, which rarely need to synchronize. Monte Carlo simulations and numerical
integration are examples of possible applications. Since there is more or less no commu-
nication between different processors, task parallelism results in almost a perfect mathe-
matical parallelism and is commonly dubbed embarassingly parallel (EP). The examples in
this chapter fall under that category. The use of the MPI library is then limited to some few
function calls and the programming is normally very simple.

• Data parallelism: use of multiple threads (e.g., one thread per processor) to dissect loops
over arrays etc. This paradigm requires a single memory address space. Communication
and synchronization between the processors are often hidden, and it is thus easy to pro-
gram. However, the user surrenders much control to a specialized compiler. An example of
data parallelism is compiler-based parallelization.

• Message-passing: all involved processors have an independent memory address space.
The user is responsible for partitioning the data/work of a global problem and distribut-
ing the subproblems to the processors. Collaboration between processors is achieved by
explicit message passing, which is used for data transfer plus synchronization.
This paradigm is the most general one where the user has full control. Better parallel
efficiency is usually achieved by explicit message passing. However, message-passing pro-
gramming is more difficult. We will meet examples of this in connection with the solution
eigenvalue problems in chapter 7 and of partial differential equations in chapter 10.

Before we proceed, let us look at two simple examples. We will also use these simple
examples to define the speedup factor of a parallel computation. The first case is that of the
additions of two vectors of dimension n,

z= αx+βy,

where α and β are two real or complex numbers and z,x,y ∈ Rn or ∈ Cn. For every element
we have thus

zi = αxi +βyi.

For every element zi we have three floating point operations, two multiplications and one
addition. If we assume that these operations take the same time ∆ t, then the total time spent
by one processor is
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T1 = 3n∆ t.

Suppose now that we have access to a parallel supercomputer with P processors. Assume
also that P≤ n. We split then these addition and multiplication operations on every processor
so that every processor performs 3n/P operations in total, resulting in a time TP = 3n∆ t/P
for every single processor. We also assume that the time needed to gather together these
subsums is neglible

If we have perfect parallelism, our speedup should be P, the number of processors avail-
able. We see that this is the case by computing the relation between the time used in case
of only one processor and the time used if we can access P processors. The speedup SP is
defined as

SP =
T1

TP
=

3n∆ t
3n∆ t/P

= P,

a perfect speedup. As mentioned above, we call calculations that yield a perfect speedup for
embarassingly parallel. The efficiency is defined as

η(P) =
S(P)

P
.

Our next example is that of the inner product of two vectors defined in Eq. (6.5),

c=
n

∑
j=1

x jy j .

We assume again that P≤ n and define I = n/P. Each processor is assigned with its own subset
of local multiplications cP = ∑pxpyp, where p runs over all possible terms for processor P. As
an example, assume that we have four processors. Then we have

c1 =
n/4

∑
j=1

x jy j , c2 =
n/2

∑
j=n/4+1

x jy j ,

c3 =
3n/4

∑
j=n/2+1

x jy j , c4 =
n

∑
j=3n/4+1

x jy j .

We assume again that the time for every operation is ∆ t. If we have only one processor, the
total time is T1 = (2n− 1)∆ t. For four processors, we must now add the time needed to add
c1+ c2+ c3+ c4, which is 3∆ t (three additions) and the time needed to communicate the local
result cP to all other processors. This takes roughly (P−1)∆ tc, where ∆ tc need not equal ∆ t.

The speedup for four processors becomes now

S4 =
T1

T4
=

(2n−1)∆ t
(n/2−1)∆ t+3∆ t+3∆ tc

=
4n−2
10+n

,

if ∆ t = ∆ tc. For n= 100, the speedup is S4 = 3.62< 4. For P processors the inner products yields
a speedup

SP =
(2n−1)

(2I +P−2))+ (P−1)γ
,

with γ = ∆ tc/∆ t. Even with γ = 0, we see that the speedup is less than P.
The communication time ∆ tc can reduce significantly the speedup. However, even if it is

small, there are other factors as well which may reduce the efficiency ηp. For example, we
may have an uneven load balance, meaning that not all the processors can perform useful
work at all time, or that the number of processors doesn’t match properly the size of the
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problem, or memory problems, or that a so-called startup time penalty known as latency may
slow down the transfer of data. Crucial here is the rate at which messages are transferred

5.5.3 MPI with simple examples

When we want to parallelize a sequential algorithm, there are at least two aspects we need
to consider, namely

• Identify the part(s) of a sequential algorithm that can be executed in parallel. This can be
difficult.

• Distribute the global work and data among P processors. Stated differently, here you need
to understand how you can get computers to run in parallel. From a practical point of view
it means to implement parallel programming tools.

In this chapter we focus mainly on the last point. MPI is then a tool for writing programs
to run in parallel, without needing to know much (in most cases nothing) about a given ma-
chine’s architecture. MPI programs work on both shared memory and distributed memory
machines. Furthermore, MPI is a very rich and complicated library. But it is not necessary to
use all the features. The basic and most used functions have been optimized for most machine
architectures

Before we proceed, we need to clarify some concepts, in particular the usage of the words
process and processor. We refer to process as a logical unit which executes its own code,
in an MIMD style. The processor is a physical device on which one or several processes are
executed. The MPI standard uses the concept process consistently throughout its documen-
tation. However, since we only consider situations where one processor is responsible for one
process, we therefore use the two terms interchangeably in the discussion below, hopefully
without creating ambiguities.

The six most important MPI functions are

• MPI_ Init - initiate an MPI computation
• MPI_Finalize - terminate the MPI computation and clean up
• MPI_Comm_size - how many processes participate in a given MPI computation.
• MPI_Comm_rank - which rank does a given process have. The rank is a number between 0

and size-1, the latter representing the total number of processes.
• MPI_Send - send a message to a particular process within an MPI computation
• MPI_Recv - receive a message from a particular process within an MPI computation.

The first MPI C++ program is a rewriting of our ’hello world’ program (without the com-
putation of the sine function) from chapter 2. We let every process write "Hello world" on the
standard output.

http://folk.uio.no/mhjensen/compphys/programs/chapter05/program2.cpp

// First C++ example of MPI Hello world

using namespace std;

#include <mpi.h>

#include <iostream>

int main (int nargs, char* args[])

{

int numprocs, my_rank;

// MPI initializations

MPI_Init (&nargs, &args);

MPI_Comm_size (MPI_COMM_WORLD, &numprocs);

MPI_Comm_rank (MPI_COMM_WORLD, &my_rank);

http://folk.uio.no/mhjensen/compphys/programs/chapter05/program2.cpp
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cout << "Hello world, I have rank " << my_rank << " out of " << numprocs << endl;

// End MPI

MPI_Finalize ();

return 0;

}

The corresponding Fortran program reads

PROGRAM hello

INCLUDE "mpif.h"

INTEGER:: numprocs, my_rank, ierr

CALL MPI_INIT(ierr)

CALL MPI_COMM_SIZE(MPI_COMM_WORLD, numprocs, ierr)

CALL MPI_COMM_RANK(MPI_COMM_WORLD, my_rank, ierr)

WRITE(*,*)"Hello world, I've rank ",my_rank," out of ",numprocs

CALL MPI_FINALIZE(ierr)

END PROGRAM hello

MPI is a message-passing library where all the routines have a corresponding C++-bindings3

MPI_Command_name or Fortran-bindings (function names are by convention in uppercase, but can
also be in lower case) MPI_COMMAND_NAME

To use the MPI library you must include header files which contain definitions and decla-
rations that are needed by the MPI library routines. The following line must appear at the top
of any source code file that will make an MPI call. For Fortran you must put in the beginning
of your program the declaration

INCLUDE 'mpif.h'

while for C++ you need to include the statement

#include "mpi.h"

These header files contain the declarations of functions, variabels etc. needed by the MPI
library.

The first MPI call must be MPI_INIT, which initializes the message passing routines, as
defined in for example

INTEGER :: ierr

CALL MPI_INIT(ierr)

for the Fortran example. The variable ierr is an integer which holds an error code when
the call returns. The value of ierr is however of little use since, by default, MPI aborts the
program when it encounters an error. However, ierr must be included when MPI starts. For
the C++ code we have the call to the function

MPI_Init(int *argc, char *argv)

where argc and argv are arguments passed to main. MPI does not use these arguments in any
way, however, and in MPI-2 implementations, NULL may be passed instead. When you have
finished you must call the function MPI_Finalize. In Fortran you use the statement

CALL MPI_FINALIZE(ierr)

3 The C++ bindings used in practice are the same as the C bindings, although reading older texts like [15–17]
one finds extensive discussions on the difference between C and C++ bindings. Throughout this text we will
use the C bindings.
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while for C++ we use the function MPI_Finalize().
In addition to these calls, we have also included calls to so-called inquiry functions. There

are two MPI calls that are usually made soon after initialization. They are for C++,

MPI_COMM_SIZE((MPI_COMM_WORLD, &numprocs)

and

CALL MPI_COMM_SIZE(MPI_COMM_WORLD, numprocs, ierr)

for Fortran. The function MPI_COMM_SIZE returns the number of tasks in a specified MPI com-
municator (comm when we refer to it in generic function calls below).

In MPI you can divide your total number of tasks into groups, called communicators. What
does that mean? All MPI communication is associated with what one calls a communicator
that describes a group of MPI processes with a name (context). The communicator desig-
nates a collection of processes which can communicate with each other. Every process is
then identified by its rank. The rank is only meaningful within a particular communicator. A
communicator is thus used as a mechanism to identify subsets of processes. MPI has the flex-
ibility to allow you to define different types of communicators, see for example [16]. However,
here we have used the communicator MPI_COMM_WORLD that contains all the MPI processes that
are initiated when we run the program.

The variable numprocs refers to the number of processes we have at our disposal. The func-
tion MPI_COMM_RANK returns the rank (the name or identifier) of the tasks running the code. Each
task (or processor) in a communicator is assigned a number my_rank from 0 to numprocs−1.

We are now ready to perform our first MPI calculations.

5.5.3.1 Running codes with MPI

To compile and load the above C++ code (after having understood how to use a local cluster),
we can use the command

mpicxx -O2 -o program2.x program2.cpp

and try to run with ten nodes using the command

mpiexec -np 10 ./program2.x

If we wish to use the Fortran version we need to replace the C++ compiler statement mpicc
with mpif90 or equivalent compilers. The name of the compiler is obviously system dependent.
The command mpirunmay be used instead of mpiexec. Here you need to check your own system.

When we run MPI all processes use the same binary executable version of the code and
all processes are running exactly the same code. The question is then how can we tell the
difference between our parallel code running on a given number of processes and a serial
code? There are two major distinctions you should keep in mind: (i) MPI lets each process
have a particular rank to determine which instructions are run on a particular process and (ii)
the processes communicate with each other in order to finalize a task. Even if all processes
receive the same set of instructions, they will normally not execute the same instructions.We
will discuss this point in connection with our integration example below.

The above example produces the following output
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Hello world, I’ve rank 0 out of 10 procs.

Hello world, I’ve rank 1 out of 10 procs.

Hello world, I’ve rank 4 out of 10 procs.

Hello world, I’ve rank 3 out of 10 procs.

Hello world, I’ve rank 9 out of 10 procs.

Hello world, I’ve rank 8 out of 10 procs.

Hello world, I’ve rank 2 out of 10 procs.

Hello world, I’ve rank 5 out of 10 procs.

Hello world, I’ve rank 7 out of 10 procs.

Hello world, I’ve rank 6 out of 10 procs.

The output to screen is not ordered since all processes are trying to write to screen simul-
taneously. It is then the operating system which opts for an ordering. If we wish to have an
organized output, starting from the first process, we may rewrite our program as follows

http://folk.uio.no/mhjensen/compphys/programs/chapter05/program3.cpp

// Second C++ example of MPI Hello world

using namespace std;

#include <mpi.h>

#include <iostream>

int main (int nargs, char* args[])

{

int numprocs, my_rank, i;

// MPI initializations

MPI_Init (&nargs, &args);

MPI_Comm_size (MPI_COMM_WORLD, &numprocs);

MPI_Comm_rank (MPI_COMM_WORLD, &my_rank);

for (i = 0; i < numprocs; i++) {

MPI_Barrier (MPI_COMM_WORLD);

if (i == my_rank) {

cout << "Hello world, I have rank " << my_rank << " out of " << numprocs << endl;

fflush (stdout);

}

}

// End MPI

MPI_Finalize ();

return 0;

}

Here we have used the MPI_Barrier function to ensure that every process has completed its set
of instructions in a particular order. A barrier is a special collective operation that does not
allow the processes to continue until all processes in the communicator (here MPI_COMM_WORLD)
have called MPI_Barrier. The output is now

Hello world, I’ve rank 0 out of 10 procs.

Hello world, I’ve rank 1 out of 10 procs.

Hello world, I’ve rank 2 out of 10 procs.

Hello world, I’ve rank 3 out of 10 procs.

Hello world, I’ve rank 4 out of 10 procs.

Hello world, I’ve rank 5 out of 10 procs.

Hello world, I’ve rank 6 out of 10 procs.

http://folk.uio.no/mhjensen/compphys/programs/chapter05/program3.cpp
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Hello world, I’ve rank 7 out of 10 procs.

Hello world, I’ve rank 8 out of 10 procs.

Hello world, I’ve rank 9 out of 10 procs.

The barriers make sure that all processes have reached the same point in the code. Many
of the collective operations like MPI_ALLREDUCE to be discussed later, have the same property;
viz. no process can exit the operation until all processes have started. However, this is slightly
more time-consuming since the processes synchronize between themselves as many times as
there are processes. In the next Hello world example we use the send and receive functions
in order to a have a synchronized action.

http://folk.uio.no/mhjensen/compphys/programs/chapter05/program4.cpp

// Third C++ example of MPI Hello world

using namespace std;

#include <mpi.h>

#include <iostream>

int main (int nargs, char* args[])

{

int numprocs, my_rank, flag;

// MPI initializations

MPI_Status status;

MPI_Init (&nargs, &args);

MPI_Comm_size (MPI_COMM_WORLD, &numprocs);

MPI_Comm_rank (MPI_COMM_WORLD, &my_rank);

// Send and Receive example

if (my_rank > 0)

MPI_Recv (&flag, 1, MPI_INT, my_rank-1, 100, MPI_COMM_WORLD, &status);

cout << "Hello world, I have rank " << my_rank << " out of " << numprocs << endl;

if (my_rank < numprocs-1)

MPI_Send (&my_rank, 1, MPI_INT, my_rank+1, 100, MPI_COMM_WORLD);

// End MPI

MPI_Finalize ();

return 0;

}

The basic sending of messages is given by the function MPI_SEND, which in C++ is defined as

MPI_Send(void *buf, int count, MPI_Datatype datatype, int dest, int tag, MPI_Comm comm)

while in Fortran we would call this function with the following parameters

CALL MPI_SEND(buf, count, MPI_TYPE, dest, tag, comm, ierr).

This single command allows the passing of any kind of variable, even a large array, to any
group of tasks. The variable buf is the variable we wish to send while count is the number of
variables we are passing. If we are passing only a single value, this should be 1. If we transfer
an array, it is the overall size of the array. For example, if we want to send a 10 by 10 array,
count would be 10×10= 100since we are actually passing 100 values.

We define the type of variable using MPI_TYPE in order to let MPI function know what to
expect. The destination of the send is declared via the variable dest, which gives the ID
number of the task we are sending the message to. The variable tag is a way for the receiver
to verify that it is getting the message it expects. The message tag is an integer number
that we can assign any value, normally a large number (larger than the expected number of
processes). The communicator comm is the group ID of tasks that the message is going to. For
complex programs, tasks may be divided into groups to speed up connections and transfers.
In small programs, this will more than likely be in MPI_COMM_WORLD.

http://folk.uio.no/mhjensen/compphys/programs/chapter05/program4.cpp
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Furthermore, when an MPI routine is called, the Fortran or C++ data type which is passed
must match the corresponding MPI integer constant. An integer is defined as MPI_INT in C++
and MPI_INTEGER in Fortran. A double precision real is MPI_DOUBLE in C++ and MPI_DOUBLE_PRECISION

in Fortran and single precision real is MPI_FLOAT in C++ and MPI_REAL in Fortran. For further
definitions of data types see chapter five of Ref. [16].

Once you have sent a message, you must receive it on another task. The function MPI_RECV

is similar to the send call. In C++ we would define this as

MPI_Recv( void *buf, int count, MPI_Datatype datatype, int source, int tag, MPI_Comm comm,

MPI_Status *status )

while in Fortran we would use the call

CALL MPI_RECV(buf, count, MPI_TYPE, source, tag, comm, status, ierr)}.

The arguments that are different from those in MPI_SEND are buf which is the name of the
variable where you will be storing the received data, source which replaces the destination in
the send command. This is the return ID of the sender.

Finally, we have used MPI_Status~status;where one can check if the receive was completed.
The source or tag of a received message may not be known if wildcard values are used in the
receive function. In C++, MPI Status is a structure that contains further information. One
can obtain this information using

MPI_Get_count (MPI_Status *status, MPI_Datatype datatype, int *count)}

The output of this code is the same as the previous example, but now process 0 sends a
message to process 1, which forwards it further to process 2, and so forth.

Armed with this wisdom, performed all hello world greetings, we are now ready for serious
work.

5.5.4 Numerical integration with MPI

To integrate numerically with MPI we need to define how to send and receive data types. This
means also that we need to specify which data types to send to MPI functions.

The program listed here integrates

π =

∫ 1

0
dx

4
1+ x2

by simply adding up areas of rectangles according to the algorithm discussed in Eq. (5.5),
rewritten here

I =
∫ b

a
f (x)dx≈ h

N

∑
i=1

f (xi−1/2),

where f (x) = 4/(1+ x2). This is a brute force way of obtaining an integral but suffices to
demonstrate our first application of MPI to mathematical problems. What we do is to subdi-
vide the integration range x∈ [0,1] into n rectangles. Increasing n should obviously increase
the precision of the result, as discussed in the beginning of this chapter. The parallel part
proceeds by letting every process collect a part of the sum of the rectangles. At the end of
the computation all the sums from the processes are summed up to give the final global sum.
The program below serves thus as a simple example on how to integrate in parallel. We will
refine it in the next examples and we will also add a simple example on how to implement the
trapezoidal rule.
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http://folk.uio.no/mhjensen/compphys/programs/chapter05/program5.cpp

1 // Reactangle rule and numerical integration using MPI send and Receive

2 using namespace std;

3 #include <mpi.h>

4 #include <iostream>

5 int main (int nargs, char* args[])

6 {

7 int numprocs, my_rank, i, n = 1000;

8 double local_sum, rectangle_sum, x, h;

9 // MPI initializations

10 MPI_Init (&nargs, &args);

11 MPI_Comm_size (MPI_COMM_WORLD, &numprocs);

12 MPI_Comm_rank (MPI_COMM_WORLD, &my_rank);

13 // Read from screen a possible new vaue of n

14 if (my_rank == 0 && nargs > 1) {

15 n = atoi(args[1]);

16 }

17 h = 1.0/n;

18 // Broadcast n and h to all processes

19 MPI_Bcast (&n, 1, MPI_INT, 0, MPI_COMM_WORLD);

20 MPI_Bcast (&h, 1, MPI_DOUBLE, 0, MPI_COMM_WORLD);

21 // Every process sets up its contribution to the integral

22 local_sum = 0.;

23 for (i = my_rank; i < n; i += numprocs) {

24 x = (i+0.5)*h;

25 local_sum += 4.0/(1.0+x*x);

26 }

27 local_sum *= h;

28 if (my_rank == 0) {

29 MPI_Status status;

30 rectangle_sum = local_sum;

31 for (i=1; i < numprocs; i++) {

32 MPI_Recv(&local_sum,1,MPI_DOUBLE,MPI_ANY_SOURCE,500,MPI_COMM_WORLD,&status);

33 rectangle_sum += local_sum;

34 }

35 cout << "Result: " << rectangle_sum << endl;

36 } else

37 MPI_Send(&local_sum,1,MPI_DOUBLE,0,500,MPI_COMM_WORLD);

38 // End MPI

39 MPI_Finalize ();

40 return 0;

41 }

After the standard initializations with MPI such as

MPI_Init, MPI_Comm_size, MPI_Comm_rank,

MPI_COMM_WORLD contains now the number of processes defined by using for example

mpirun -np 10 ./prog.x

In line 14 we check if we have read in from screen the number of mesh points n. Note that in
line 7 we fix n= 1000, however we have the possibility to run the code with a different number
of mesh points as well. If my_rank equals zero, which correponds to the master node, then we
read a new value of n if the number of arguments is larger than two. This can be done as
follows when we run the code

mpiexec -np 10 ./prog.x 10000

http://folk.uio.no/mhjensen/compphys/programs/chapter05/program5.cpp
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In line 17 we define also the step length h. In lines 19 and 20 we use the broadcast function
MPI_Bcast. We use this particular function because we want data on one processor (our master
node) to be shared with all other processors. The broadcast function sends data to a group of
processes. The MPI routine MPI_Bcast transfers data from one task to a group of others. The
format for the call is in C++ given by the parameters of

MPI_Bcast (&n, 1, MPI_INT, 0, MPI_COMM_WORLD);.

In case we have a floating point variable we need to declare

MPI_Bcast (&h, 1, MPI_DOUBLE, 0, MPI_COMM_WORLD);

The general structure of this function is

MPI_Bcast( void *buf, int count, MPI_Datatype datatype, int root, MPI_Comm comm)

All processes call this function, both the process sending the data (with rank zero) and all
the other processes in MPI_COMM_WORLD. Every process has now copies of n and h, the number
of mesh points and the step length, respectively.

We transfer the addresses of n and h. The second argument represents the number of
data sent. In case of a one-dimensional array, one needs to transfer the number of array
elements. If you have an n×mmatrix, you must transfer n×m. We need also to specify whether
the variable type we transfer is a non-numerical such as a logical or character variable or
numerical of the integer, real or complex type.

We transfer also an integer variable int root. This variable specifies the process which
has the original copy of the data. Since we fix this value to zero in the call in lines 19 and 20,
it means that it is the master process which keeps this information. For Fortran, this function
is called via the statement

CALL MPI_BCAST(buff, count, MPI_TYPE, root, comm, ierr).

In lines 23-27, every process sums its own part of the final sum used by the rectangle rule.
The receive statement collects the sums from all other processes in case my_rank==0, else an
MPI send is performed.

The above function is not very elegant. Furthermore, the MPI instructions can be simplified
by using the functions MPI_Reduce or MPI_Allreduce. The first function takes information from all
processes and sends the result of the MPI operation to one process only, typically the master
node. If we use MPI_Allreduce, the result is sent back to all processes, a feature which is useful
when all nodes need the value of a joint operation. We limit ourselves to MPI_Reduce since it is
only one process which will print out the final number of our calculation, The arguments to
MPI_Allreduce are the same.

The MPI_Reduce function is defined as follows

MPI_Reduce( void *senddata, void* resultdata, int count, MPI_Datatype datatype, MPI_Op, int

root, MPI_Comm comm)

The two variables senddata and resultdata are obvious, besides the fact that one sends the
address of the variable or the first element of an array. If they are arrays they need to have the
same size. The variable count represents the total dimensionality, 1 in case of just one variable,
while MPI_Datatype defines the type of variable which is sent and received. The new feature is
MPI_Op. MPI_Op defines the type of operation we want to do. There are many options, see again
Refs. [15–17] for full list. In our case, since we are summing the rectangle contributions from
every process we define MPI_Op=MPI_SUM. If we have an array or matrix we can search for the
largest og smallest element by sending either MPI_MAX or MPI_MIN. If we want the location as
well (which array element) we simply transfer MPI_MAXLOC or MPI_MINOC. If we want the product
we write MPI_PROD. MPI_Allreduce is defined as
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MPI_Allreduce( void *senddata, void* resultdata, int count, MPI_Datatype datatype, MPI_Op,

MPI_Comm comm)

The function we list in the next example is the MPI extension of program1.cpp. The dif-
ference is that we employ only the trapezoidal rule. It is easy to extend this code to include
gaussian quadrature or other methods.

It is also worth noting that every process has now its own starting and ending point. We
read in the number of integration points n and the integration limits a and b. These are called
a and b. They serve to define the local integration limits used by every process. The local
integration limits are defined as

local_a = a + my_rank *(b-a)/numprocs

local_b = a + (my_rank-1) *(b-a)/numprocs.

These two variables are transfered to the method for the trapezoidal rule. These two methods
return the local sum variable local_sum. MPI_Reduce collects all the local sums and returns the
total sum, which is written out by the master node. The program below implements this. We
have also added the possibility to measure the total time used by the code via the calls to
MPI_Wtime.

http://folk.uio.no/mhjensen/compphys/programs/chapter05/program6.cpp

// Trapezoidal rule and numerical integration using MPI with MPI_Reduce

using namespace std;

#include <mpi.h>

#include <iostream>

// Here we define various functions called by the main program

double int_function(double );

double trapezoidal_rule(double , double , int , double (*)(double));

// Main function begins here

int main (int nargs, char* args[])

{

int n, local_n, numprocs, my_rank;

double a, b, h, local_a, local_b, total_sum, local_sum;

double time_start, time_end, total_time;

// MPI initializations

MPI_Init (&nargs, &args);

MPI_Comm_size (MPI_COMM_WORLD, &numprocs);

MPI_Comm_rank (MPI_COMM_WORLD, &my_rank);

time_start = MPI_Wtime();

// Fixed values for a, b and n

a = 0.0 ; b = 1.0; n = 1000;

h = (b-a)/n; // h is the same for all processes

local_n = n/numprocs; // make sure n > numprocs, else integer division gives zero

// Length of each process' interval of

// integration = local_n*h.

local_a = a + my_rank*local_n*h;

local_b = local_a + local_n*h;

total_sum = 0.0;

local_sum = trapezoidal_rule(local_a, local_b, local_n, &int_function);

MPI_Reduce(&local_sum, &total_sum, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);

time_end = MPI_Wtime();

total_time = time_end-time_start;

if ( my_rank == 0) {

cout << "Trapezoidal rule = " << total_sum << endl;

cout << "Time = " << total_time << " on number of processors: " << numprocs << endl;

}

http://folk.uio.no/mhjensen/compphys/programs/chapter05/program6.cpp
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// End MPI

MPI_Finalize ();

return 0;

} // end of main program

// this function defines the function to integrate

double int_function(double x)

{

double value = 4./(1.+x*x);

return value;

} // end of function to evaluate

// this function defines the trapezoidal rule

double trapezoidal_rule(double a, double b, int n, double (*func)(double))

{

double trapez_sum;

double fa, fb, x, step;

int j;

step=(b-a)/((double) n);

fa=(*func)(a)/2. ;

fb=(*func)(b)/2. ;

trapez_sum=0.;

for (j=1; j <= n-1; j++){

x=j*step+a;

trapez_sum+=(*func)(x);

}

trapez_sum=(trapez_sum+fb+fa)*step;

return trapez_sum;

} // end trapezoidal_rule

An obvious extension of this code is to read from file or screen the integration variables. One
could also use the program library to call a particular integration method.

5.6 An Integration Class

We end this chapter by presenting the usage of the integral class defined in the program
library. Here we have defined two header files, the Function.h and the Integral.h files. The
program below uses the classes defined in these header files to compute the integral

∫ 1

0
exp(x)cos(x).

#include <cmath>

#include <iostream>

#include "Function.h"

#include "Integral.h"

using namespace std;

class ExpCos: public Function{

public:

// Default constructor

ExpCos(){}

// Overloaded function operator().

// Override the function operator() of the parent class.

double operator()(double x){
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return exp(x)*cos(x);

}

};

int main(){

// Declare first an object of the function to be integrated

ExpCos f;

// Set integration bounds

double a = 0.0; // Lower bound

double b = 1.0; // Upper bound

int npts = 100; // Number of integration points

// Declared (lhs) and instantiate an integral object of type Trapezoidal

Integral *trapez = new Trapezoidal(a, b, npts, f);

Integral *midpt = new MidPoint(a, b, npts, f);

Integral *gl = new Gauss_Legendre(a,b,npts, f);

// Evaluate the integral of the function ExpCos and assign its

// value to the variable result;

double resultTP = trapez->evaluate();

double resultMP = midpt->evaluate();

double resultGL = gl->evaluate();

// Print the result to screen

cout << "Result with trapezoidal : " << resultTP << endl;

cout << "Result with mid-point : " << resultMP << endl;

cout << "Result with Gauss-Legendre: " << resultGL << endl;

}

The header file Function.h is defined as

http://folk.uio.no/mhjensen/compphys/programs/chapter05/cpp/Function.h

/**

* @file Function.h

* Interface for mathematical functions with one or more independent variables.

* The subclasses are implemented as functors, i.e., objects behaving as functions.

* They overload the function operator().

*

* Example Usage:

// 1. Declare a functor, i.e., an object which

// overloads the function operator().

class Squared: public Function{

public:

// Overload function operator()

double operator()(double x=0.0){

return x*x;

}

};

int main(){

// Instance an object Functor

Squared f;

// Use the instance of the object as a normal function

cout << f(3.0) << endl;

}

@endcode

*

**/

http://folk.uio.no/mhjensen/compphys/programs/chapter05/cpp/Function.h
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#ifndef FUNCTION_H

#define FUNCTION_H

#include "Array.h"

class Function{

public:

//! Destructor

virtual ~Function(){}; // Not needed here.

/**

* @brief Overload the function operator().

*

* Used for evaluating functions with one independent variable.

*

**/

virtual double operator()(double x){}

/**

* @brief Overload the function operator().

*

* Used for evaluating functions with more than one independent variable.

**/

virtual double operator()(const Array<double>& x){}

};

#endif

The header file Integral.h contains, with an example on how to use it, the following state-
ments

http://folk.uio.no/mhjensen/compphys/programs/chapter05/cpp/Integral.h

#ifndef INTEGRAL_H

#define INTEGRAL_H

#include "Array.h"

#include "Function.h"

#include <cmath>

class Integral{

protected: // Access in the subclasses.

double a; // Lower limit of integration.

double b; // Upper limit of integration.

int npts; // Number of integration points.

Function &f; // Function to be integrated.

public:

/**

* @brief Constructor.

*

* @param lower_. Lower limit of integration.

* @param upper_. Upper limit of integration.

* @param npts_. Number of points of integration.

* @param f_. Reference to a functor representing the function to be integrated.

**/

Integral(double lower_, double upper_, int npts_, Function &f_);

//! Destructor

virtual ~Integral(){}

http://folk.uio.no/mhjensen/compphys/programs/chapter05/cpp/Integral.h
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/**

* @brief Evaluate the integral.

* @return The value of the integral in double precision.

**/

virtual double evaluate()=0;

// virtual forloop

}; // End class Integral

class Trapezoidal: public Integral{

private:

double h; // Step size.

public:

/**

* @brief Constructor.

*

* @param lower_. Lower limit of integration.

* @param upper_. Upper limit of integration.

* @param npts_. Number of points of integration.

* @param f_. Reference to a functor representing the function to be integrated.

**/

Trapezoidal(double lower_, double upper_, int npts_, Function &f_);

//! Destructor

~Trapezoidal(){}

/**

* Evaluate the integral of a function f using the trapezoidal rule.

* @return The value of the integral in double precision.

**/

double evaluate();

}; // End class Trapezoidal

class MidPoint: public Integral{

private:

double h; // Step size.

public:

/**

* @brief Constructor.

*

* @param lower_. Lower limit of integration.

* @param upper_. Upper limit of integration.

* @param npts_. Number of points of integration.

* @param f_. Reference to a functor representing the function to be integrated.

**/

MidPoint(double lower_, double upper_, int npts_, Function &f_);

//! Destructor

~MidPoint(){}

/**

* Evaluate the integral of a function f using the midpoint approximation.

*

* @return The value of the integral in double precision.

**/

double evaluate();
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};

class Gauss_Legendre: public Integral{

private:

static const double ZERO = 1.0E-10;

static const double PI = 3.14159265359;

double h;

public:

/**

* @brief Constructor.

*

* @param lower_. Lower limit of integration.

* @param upper_. Upper limit of integration.

* @param npts_. Number of points of integration.

* @param f_. Reference to a functor representing the function to be integrated.

**/

Gauss_Legendre(double lower_, double upper_, int npts_, Function &f_);

//! Destructor

~Gauss_Legendre(){}

/**

* Evaluate the integral of a function f using the Gauss-Legendre approximation.

*

* @return The value of the integral in double precision.

**/

double evaluate();

};

#endif

5.7 Exercises

5.1. Use Lagrange’s interpolation formula for a second-order polynomial

P2(x) =
(x− x0)(x− x1)

(x2− x0)(x2− x1)
y2+

(x− x0)(x− x2)

(x1− x0)(x1− x2)
y1+

(x− x1)(x− x2)

(x0− x1)(x0− x2)
y0,

and insert this formula in the integral

∫ +h

−h
f (x)dx≈

∫ +h

−h
P2(x)dx,

and derive Simpson’s rule. You need to define properly the values x0, x1 and x2 and link them
with the integration limits x0−h and x0+h. Simpson’s formula reads

∫ +h

−h
f (x)dx=

h
3
( fh+4 f0+ f−h)+O(h5).

Write thereafter a class which implements both the Trapezoidal rule and Simpson’s rule. You
can for example follow the example given in the last section of this chapter. You can look up
the header file for this class at http://folk.uio.no/mhjensen/compphys/programs/chapter05/cpp/Integral.h.

5.2. Write a program which then uses the above class containing the Trapezoidal rule and
Simpson’s rule to implement the adaptive algorithm discussed in section 5.2. Compute the
integrals

http://folk.uio.no/mhjensen/compphys/programs/chapter05/cpp/Integral.h
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I =
∫ 1

0

4
1+ x2 = π ,

and

I =
∫ ∞

0
xexp(−x)sinx=

1
2
.

Discuss strategies for choosing the integration limits using these methods

5.3. Add now to your integration class the possibility for extrapolating h→ 0 using Richard-
son’s deferred extrapolation technique, see Eq. (3.13) and exercise 3.2 in chapter 3.

5.4. Write a class which includes your own functions for Gaussian quadrature using Legen-
dre, Hermite and Laguerre polynomials. You can write your own functions for these methods
or use those included with the programs of this book. For the latter see for example the
programs in the directory programs/chapter05. The functions are called gausslegendre.cpp,
gausshermite.cpp and gausslaguerre.cpp.

Use the Legendre and Laguerre polynomials to evaluate again

I =
∫ ∞

0
xexp(−x)sinx=

1
2
.

5.5. The task here is to integrate a six-dimensional integral which is used to determine the
ground state correlation energy between two electrons in a helium atom. The integral appears
in many quantum mechanical applications. However, if you are not too familiar with quantum
mechanics, you can simply look at the mathematical details. We will employ both Gauss-
Legendre and Gauss-Laguerre quadrature. Furthermore, you will need to parallelize your
code. You can use your class from the previous problem.

We assume that the wave function of each electron can be modelled like the single-particle
wave function of an electron in the hydrogen atom. The single-particle wave function for an
electron i in the 1s state is given in terms of a dimensionless variable (the wave function is
not properly normalized)

r i = xiex+ yiey+ ziez,

as
ψ1s(r i) = e−αr i ,

where α is a parameter and

r i =
√

x2
i + y2

i + z2
i .

We will fix α = 2, which should correspond to the charge of the helium atom Z = 2.
The ansatz for the wave function for two electrons is then given by the product of two

so-called 1swave functions as
Ψ(r1, r2) = e−α(r1+r2).

Note that it is not possible to find a closed-form solution to Schrödinger’s equation for two
interacting electrons in the helium atom.

The integral we need to solve is the quantum mechanical expectation value of the correla-
tion energy between two electrons which repel each other via the classical Coulomb interac-
tion, namely

〈 1
|r1− r2|

〉=
∫ ∞

−∞
dr1dr2e−2α(r1+r2)

1
|r1− r2|

.

Note that our wave function is not normalized. There is a normalization factor missing, but
for this project we don’t need to worry about that.

This integral can be solved in closed form and the answer is 5π2/162. Can you derive this
value?
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1. Use Gauss-Legendre quadrature and compute the integral by integrating for each variable
x1,y1,z1,x2,y2,z2 from −∞ to ∞. How many mesh points do you need before the results con-
verges at the level of the third leading digit? Hint: the single-particle wave function e−αr i is
more or less zero at r i ≈? (find the appropriate limit). You can therefore replace the integra-
tion limits −∞ and ∞ with −?and ?, respectively. You need to check that this approximation
is satisfactory, that is, make a plot of the function and check if the abovementioned limits
are appropriate. You need also to account for the potential problems which may arise when
|r1− r2|= 0.

2. The Legendre polynomials are defined for x ∈ [−1,1]. The previous exercise gave a very
unsatisfactory ad hoc procedure. We wish to improve our results. It can therefore be useful
to change to another coordinate frame and employ the Laguerre polynomials. The Laguerre
polynomials are defined for x∈ [0,∞) and if we change to spherical coordinates

dr1dr2 = r2
1dr1r2

2dr2dcos(θ1)dcos(θ2)dφ1dφ2,

with
1

r12
=

1√
r2
1 + r2

2−2r1r2cos(β )

and
cos(β ) = cos(θ1)cos(θ2)+ sin(θ1)sin(θ2)cos(φ1−φ2))

we can rewrite the above integral with different integration limits. Find these limits and
replace the Gauss-Legendre approach in a) with Laguerre polynomials. Do your results
improve? Compare with the results from a).

3. Make a detailed analysis of the time used by both methods and compare your results.
Parallelize your codes and check that you have an optimal speed up.





Part II

Linear Algebra and Eigenvalues



This part of the text aims at giving an overview over several methods to solve linear al-
gebra and eigenvalue problems. These methods span from standard Gaussian elimination to
iterative eigenvalue solvers for large eigenvalue problems. Furthermore, several technicali-
ties which pertain to handling arrays, their memory allocation and deallocation, classes for
handling arrays and links to professional software packages such as LAPACK and BLAS will
also be discussed. Parallelization of both eigenvalue solvers and linear algebra problems are
also discussed.



Chapter 6

Linear Algebra

Abstract This chapter introduces several matrix related topics, from the solution of linear
equations, computing determinants, conjugate-gradient methods, spline interpolation to effi-
cient handling of matrices

6.1 Introduction

In this chapter we deal with basic matrix operations, such as the solution of linear equations,
calculate the inverse of a matrix, its determinant etc. The solution of linear equations is an
important part of numerical mathematics and arises in many applications in the sciences.
Here we focus in particular on so-called direct or elimination methods, which are in principle
determined through a finite number of arithmetic operations. Iterative methods will also be
discussed.

This chapter serves also the purpose of introducing important programming details such
as handling memory allocation for matrices and the usage of the libraries which follow these
lectures.

The algorithms we describe and their original source codes are taken from the widely used
software package LAPACK [26], which follows two other popular packages developed in the
1970s, namely EISPACK and LINPACK. The latter was developed for linear equations and
least square problems while the former was developed for solving symmetric, unsymmetric
and generalized eigenvalue problems. From LAPACK’s website http://www.netlib.org it is
possible to download for free all source codes from this library. Both C++ and Fortran ver-
sions are available. Another important library is BLAS [27], which stands for Basic Linear
Algebra Subprogram. It contains efficient codes for algebraic operations on vectors, matrices
and vectors and matrices. Basically all modern supercomputer include this library, with effi-
cient algorithms. Else, Matlab offers a very efficient programming environment for dealing
with matrices. The classic text from where we have taken most of the formalism exposed here
is the book on matrix computations by Golub and Van Loan [28]. Good recent introductory
texts are Kincaid and Cheney [23] and Datta [29]. For more advanced ones see Trefethen and
Bau III [30], Kress [24] and Demmel [31]. Ref. [28] contains an extensive list of textbooks
on eigenvalue problems and linear algebra. LAPACK [26] contains also extensive listings to
the research literature on matrix computations. For the introduction of the auxiliary library
Blitz++ [32], which allows for a very efficient way of handling arrays in C++ we refer to the
online manual at http://www.oonumerics.org. A library we highly recommend is Armadillo,
see http://arma.sourceforge.org. Armadillo is an open-source C++ linear algebra library
aiming towards a good balance between speed and ease of use. Integer, floating point and
complex numbers are supported, as well as a subset of trigonometric and statistics functions.

153

http://www.netlib.org
http://www.oonumerics.org
http://arma.sourceforge.org
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Various matrix and vector operations are provided through optional integration with BLAS
and LAPACK.

6.2 Mathematical Intermezzo

The matrices we will deal with are primarily square real symmetric or hermitian ones, assum-
ing thereby that an n×nmatrix A ∈Rn×n for a real matrix1 and A ∈Cn×n for a complex matrix.
For the sake of simplicity, we take a matrix A ∈R4×4 and a corresponding identity matrix I

A =




a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44


 I =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 , (6.1)

where ai j ∈ R. The inverse of a matrix, if it exists, is defined by

A−1 ·A = I .

In the following discussion, matrices are always two-dimensional arrays while vectors are
one-dimensional arrays. In our nomenclature we will restrict boldfaced capitals letters such
as A to represent a general matrix, which is a two-dimensional array, while ai j refers to a
matrix element with row number i and column number j. Similarly, a vector being a one-
dimensional array, is labelled x and represented as (for a real vector)

x ∈ R
n ⇐⇒




x1

x2

x3

x4


 ,

with pertinent vector elements xi ∈ R. Note that this notation implies xi ∈ R4×1 and that the
members of x are column vectors. The elements of xi ∈R1×4 are row vectors.

Table 6.2 lists some essential features of various types of matrices one may encounter.
Some of the matrices we will encounter are listed here

Table 6.1 Matrix properties

Relations Name matrix elements
A = AT symmetric ai j = a ji

A =
(
AT
)−1

real orthogonal ∑k aika jk = ∑k akiak j = δi j

A = A∗ real matrix ai j = a∗i j
A = A† hermitian ai j = a∗ji
A =

(
A†
)−1

unitary ∑k aika∗jk = ∑k a∗kiak j = δi j

1. Diagonal if ai j = 0 for i 6= j,

1 A reminder on mathematical symbols may be appropriate here. The symbol R is the set of real numbers.
Correspondingly,N, Z and C represent the set of natural, integer and complex numbers, respectively. A symbol
like R

n stands for an n-dimensional real Euclidean space, while C[a,b] is the space of real or complex-valued
continuous functions on the interval [a,b], where the latter is a closed interval. Similalry, Cm[a,b] is the space
of m-times continuously differentiable functions on the interval [a,b]. For more symbols and notations, see the
main text.
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2. Upper triangular if ai j = 0 for i > j, which for a 4×4matrix is of the form




a11 a12 a13 a14

0 a22 a23 a24

0 0 a33 a34

0 0 0 ann




3. Lower triangular if ai j = 0 for i < j




a11 0 0 0
a21 a22 0 0
a31 a32 a33 0
a41 a42 a43 a44




4. Upper Hessenberg if ai j = 0 for i > j +1, which is similar to a upper triangular except that
it has non-zero elements for the first subdiagonal row




a11 a12 a13 a14

a21 a22 a23 a24

0 a32 a33 a34

0 0 a43 a44




5. Lower Hessenberg if ai j = 0 for i < j +1




a11 a12 0 0
a21 a22 a23 0
a31 a32 a33 a34

a41 a42 a43 a44




6. Tridiagonal if ai j = 0 for |i− j|> 1




a11 a12 0 0
a21 a22 a23 0
0 a32 a33 a34

0 0 a43 a44




There are many more examples, such as lower banded with bandwidth p for ai j = 0 for i > j+p,
upper banded with bandwidth p for ai j = 0 for i < j + p, block upper triangular, block lower
triangular etc.

For a real n×n matrix A the following properties are all equivalent

1. If the inverse of A exists, A is nonsingular.
2. The equation Ax = 0 implies x = 0.
3. The rows of A form a basis of Rn.
4. The columns of A form a basis of Rn.
5. A is a product of elementary matrices.
6. 0 is not an eigenvalue of A.

The basic matrix operations that we will deal with are addition and subtraction

A = B±C =⇒ ai j = bi j ± ci j , (6.2)

scalar-matrix multiplication
A = γB =⇒ ai j = γbi j ,

vector-matrix multiplication
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y = Ax =⇒ yi =
n

∑
j=1

ai j x j , (6.3)

matrix-matrix multiplication

A = BC =⇒ ai j =
n

∑
k=1

bikck j, (6.4)

transposition
A = BT =⇒ ai j = b ji ,

and if A ∈ Cn×n, conjugation results in

A = B
T
=⇒ ai j = b ji ,

where a variable z= x− ıy denotes the complex conjugate of z= x+ ıy. In a similar way we
have the following basic vector operations, namely addition and subtraction

x = y± z=⇒ xi = yi± zi,

scalar-vector multiplication
x = γy =⇒ xi = γyi ,

vector-vector multiplication (called Hadamard multiplication)

x = yz=⇒ xi = yizi ,

the inner or so-called dot product

c= yTz=⇒ c=
n

∑
j=1

y jzj , (6.5)

with c a constant and the outer product, which yields a matrix,

A = yzT =⇒ ai j = yizj , (6.6)

Other important operations are vector and matrix norms. A class of vector norms are the
so-called p-norms

||x||p = (|x1|p+ |x2|p+ · · ·+ |xn|p)
1
p ,

where p≥ 1. The most important are the 1, 2 and ∞ norms given by

||x||1 = |x1|+ |x2|+ · · ·+ |xn|,

||x||2 = (|x1|2+ |x2|2+ · · ·+ |xn|2)
1
2 = (xTx)

1
2 ,

and
||x||∞ = max |xi |,

for 1≤ i ≤ n. From these definitions, one can derive several important relations, of which the
so-called Cauchy-Schwartz inequality is of great importance for many algorithms. For any x
and y being real-valued or complex-valued quantities, the inner product space satisfies

|xTy| ≤ ||x||2||y||2,

and the equality is obeyed only if x and y are linearly dependent. An important relation which
follows from the Cauchy-Schwartz relation is the famous triangle relation, which states that
for any x and y in a real or complex, the inner product space satisfies
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||x+ y||2≤ ||x||2+ ||y||2.

Proofs can be found in for example Ref. [28]. As discussed in chapter 2, the analysis of the
relative error is important in our studies of loss of numerical precision. Using a vector norm
we can define the relative error for the machine representation of a vector x. We assume that
f l(x) ∈ Rn is the machine representation of a vector x ∈ Rn. If x 6= 0, we define the relative
error as

ε =
|| f l(x)− x||
||x|| .

Using the ∞-norm one can define a relative error that can be translated into a statement on
the correct significant digits of f l(x),

|| f l(x)− x||∞
||x||∞

≈ 10−l ,

where the largest component of f l(x) has roughly l correct significant digits.
We can define similar matrix norms as well. The most frequently used are the Frobenius

norm

||A||F =

√
m

∑
i=1

n

∑
j=1
|ai j |2,

and the p-norms

||A||p =
||Ax||p
||x||p

,

assuming that x 6= 0. We refer the reader to the text of Golub and Van Loan [28] for a further
discussion of these norms.

The way we implement these operations will be discussed below, as it depends on the
programming language we opt for.

6.3 Programming Details

Many programming problems arise from improper treatment of arrays. In this section we
will discuss some important points such as array declaration, memory allocation and array
transfer between functions. We distinguish between two cases: (a) array declarations where
the array size is given at compilation time, and (b) where the array size is determined dur-
ing the execution of the program, so-called dymanic memory allocation. Useful references on
C++ programming details, in particular on the use of pointers and memory allocation, are
Reek’s text [33] on pointers in C, Berryhill’s monograph [34] on scientific programming in
C++ and finally Franek’s text [35] on memory as a programming concept in C and C++.
Good allround texts on C++ programming in engineering and science are the books by
Flowers [18] and Barton and Nackman [19]. See also the online lecture notes on C++ at
http://heim.ifi.uio.no/~hpl/INF-VERK4830. For Fortran we recommend the online lec-
tures at http://folk.uio.no/gunnarw/INF-VERK4820. These web pages contain extensive
references to other C++ and Fortran resources. Both web pages contain enough material,
lecture notes and exercises, in order to serve as material for own studies.

http://heim.ifi.uio.no/~hpl/INF-VERK4830
http://folk.uio.no/gunnarw/INF-VERK4820
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Fig. 6.1 Segmentation fault, again and again! Alas, this is a situation you will most likely end up in, unless
you initialize, access, allocate and deallocate properly your arrays. Many program development environments
such as Dev C++ at www.bloodshed.net provide debugging possibilities. Beware however that there may be
segmentation errors which occur due to errors in libraries of the operating system. (Drawing: courtesy by
Victoria Popsueva 2003.)

6.3.1 Declaration of fixed-sized vectors and matrices

In the program below we discuss some essential features of vector and matrix handling where
the dimensions are declared in the program code.

In line awe have a standard C++ declaration of a vector. The compiler reserves memory to
store five integers. The elements are vec[0], vec[1],....,vec[4]. Note that the numbering
of elements starts with zero. Declarations of other data types are similar, including structure
data.

The symbol vec is an element in memory containing the address to the first element vec[0]
and is a pointer to a vector of five integer elements.

In line b we have a standard fixed-size C++ declaration of a matrix. Again the elements
start with zero, matr[0][0], matr[0][1], ....., matr[0][4], matr[1][0],.... This se-
quence of elements also shows how data are stored in memory. For example, the element
matr[1][0] follows matr[0][4]. This is important in order to produce an efficient code and
avoid memory stride.

There is one further important point concerning matrix declaration. In a similar way as for
the symbol vec,matr is an element in memory which contains an address to a vector of three
elements, but now these elements are not integers. Each element is a vector of five integers.
This is the correct way to understand the declaration in line b. With respect to pointers this
means that matr is pointer-to-a-pointer-to-an-integer which we can write ∗∗matr. Furthermore
∗matr is a-pointer-to-a-pointer of five integers. This interpretation is important when we want
to transfer vectors and matrices to a function.

In line c we transfer vec[] and matr[][] to the function sub_1(). To be specific, we trans-
fer the addresses of vec[] and matr[][] to sub_1().

www.bloodshed.net
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In line d we have the function definition of subfunction(). The int vec[] is a pointer to an
integer. Alternatively we could write int ∗vec. The first version is better. It shows that it is a
vector of several integers, but not how many. The second version could equally well be used
to transfer the address to a single integer element. Such a declaration does not distinguish
between the two cases.

The next definition is int matr[][5]. This is a pointer to a vector of five elements and the
compiler must be told that each vector element contains five integers. Here an alternative
version could be int (∗matr)[5] which clearly specifies that matr is a pointer to a vector of five
integers.

int main()

{

int k,m, row = 3, col = 5;

int vec[5]; // line a

int matr[3][5]; // line b

// Fill in vector vec

for (k = 0; k < col; k++) vec[k] = k;

// fill in matr

for (m = 0; m < row; m++){

for (k = 0; k < col ; k++) matr[m][k] = m + 10*k;

}

// write out the vector

cout << `` Content of vector vec:'' << endl;

for (k = 0; k < col; k++){

cout << vec[k] << endl;

}

// Then write out the matrix

cout << `` Content of matrix matr:'' << endl;

for (m = 0; m < row; m++){

for (k = 0; k < col ; k++){

cout << matr[m][k] << endl;

}

}

subfunction(row, col, vec, matr); // line c

return 0;

} // end main function

void subfunction(int row, int col, int vec[], int matr[][5]); // line d

{

int k, m;

// write out the vector

cout << `` Content of vector vec in subfunction:'' << endl;

for (k = 0; k < col; k++){

cout << vec[k] << endl;

}

// Then write out the matrix

cout << `` Content of matrix matr in subfunction:'' << endl;

for (m = 0; m < row; m++){

for (k = 0; k < col ; k++){

cout << matr[m][k] << endl;

}

}

} // end of function subfunction

There is at least one drawback with such a matrix declaration. If we want to change the
dimension of the matrix and replace 5 by something else we have to do the same change in
all functions where this matrix occurs.

There is another point to note regarding the declaration of variables in a function which
includes vectors and matrices. When the execution of a function terminates, the memory re-
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quired for the variables is released. In the present case memory for all variables in main() are
reserved during the whole program execution, but variables which are declared in subfunc-
tion() are released when the execution returns to main().

6.3.2 Runtime Declarations of Vectors and Matrices in C++

We change thereafter our program in order to include dynamic allocation of arrays. As men-
tioned in the previous subsection a fixed size declaration of vectors and matrices before
compilation is in many cases bad. You may not know beforehand the actually needed sizes of
vectors and matrices. In large projects where memory is a limited factor it could be important
to reduce memory requirement for matrices which are not used any more. In C an C++ it is
possible and common to postpone size declarations of arrays untill you really know what you
need and also release memory reservations when it is not needed any more. The following
program shows how we could change the previous one with static declarations to dynamic
allocation of arrays.

int main()

{

int k,m, row = 3, col = 5;

int vec[5]; // line a

int matr[3][5]; // line b

cout << `` Read in number of rows'' << endl; // line c

cin >> row;

cout << `` Read in number of columns'' << endl;

cin >> col;

vec = new int[col]; // line d

matr = (int **)matrix(row,col,sizeof(int)); // line e

// Fill in vector vec

for (k = 0; k < col; k++) vec[k] = k;

// fill in matr

for (m = 0; m < row; m++){

for (k = 0; k < col ; k++) matr[m][k] = m + 10*k;

}

// write out the vector

cout << `` Content of vector vec:'' << endl;

for (k = 0; k < col; k++){

cout << vec[k] << endl;

}

// Then write out the matrix

cout << `` Content of matrix matr:'' << endl;

for (m = 0; m < row; m++){

for (k = 0; k < col ; k++){

cout << matr[m][k] << endl;

}

}

subfunction(row, col, vec, matr); // line f

free_matrix((void **) matr); // line g

delete vec[];

return 0;

} // end main function

void subfunction(int row, int col, int vec[], int matr[][5]); // line h

{

int k, m;

// write out the vector
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cout << `` Content of vector vec in subfunction:'' << endl;

for (k = 0; k < col; k++){

cout << vec[k] << endl;

}

// Then write out the matrix

cout << `` Content of matrix matr in subfunction:'' << endl;

for (m = 0; m < row; m++){

for (k = 0; k < col ; k++){

cout << matr[m][k] << endl;

}

}

} // end of function subfunction

In line a we declare a pointer to an integer which later will be used to store an address to the
first element of a vector. Similarily, line b declares a pointer-to-a-pointer which will contain
the address to a pointer of row vectors, each with col integers. This will then become a matrix
with dimensionality [col][col]

In line c we read in the size of vec[] and matr[][] through the numbers row and col.
Next we reserve memory for the vector in line d. In line e we use a user-defined function

to reserve necessary memory for matrix[row][col] and again matr contains the address to the
reserved memory location.

The remaining part of the function main() are as in the previous case down to line f. Here
we have a call to a user-defined function which releases the reserved memory of the matrix.
In this case this is not done automatically.

In line g the same procedure is performed for vec[]. In this case the standard C++ library
has the necessary function.

Next, in line h an important difference from the previous case occurs. First, the vector
declaration is the same, but the matr declaration is quite different. The corresponding pa-
rameter in the call to sub_1[] in line g is a double pointer. Consequently, matr in line h must
be a double pointer.

Except for this difference sub_1() is the same as before. The new feature in the program
below is the call to the user-defined functions matrix and free_matrix. These functions are
defined in the library file lib.cpp. The code for the dynamic memory allocation is given below.

http://folk.uio.no/compphys/programs/FYS3150/cpp/cpluspluslibrary/lib.cpp

/*

* The function

* void **matrix()

* reserves dynamic memory for a two-dimensional matrix

* using the C++ command new . No initialization of the elements.

* Input data:

* int row - number of rows

* int col - number of columns

* int num_bytes- number of bytes for each

* element

* Returns a void **pointer to the reserved memory location.

*/

void **matrix(int row, int col, int num_bytes)

{

int i, num;

char **pointer, *ptr;

pointer = new(nothrow) char* [row];

if(!pointer) {

cout << "Exception handling: Memory allocation failed";

cout << " for "<< row << "row addresses !" << endl;

http://folk.uio.no/compphys/programs/FYS3150/cpp/cplusplus library/lib.cpp
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return NULL;

}

i = (row * col * num_bytes)/sizeof(char);

pointer[0] = new(nothrow) char [i];

if(!pointer[0]) {

cout << "Exception handling: Memory allocation failed";

cout << " for address to " << i << " characters !" << endl;

return NULL;

}

ptr = pointer[0];

num = col * num_bytes;

for(i = 0; i < row; i++, ptr += num ) {

pointer[i] = ptr;

}

return (void **)pointer;

} // end: function void **matrix()

As an alternative, you could write your own allocation and deallocation of matrices. This
can be done rather straightforwardly with the following statements. Recall first that a matrix
is represented by a double pointer that points to a contiguous memory segment holding a
sequence of double* pointers in case our matrix is a double precision variable. Then each
double* pointer points to a row in the matrix. A declaration like double** A; means that A[i]
is a pointer to the i +1-th row A[i] and A[i][ j] is matrix entry (i, j). The way we would allocate
memory for such a matrix of dimensionality n×n is for example using the following piece of
code

int n;

double ** A;

A = new double*[n]

for ( i = 0; i < n; i++)

A[i] = new double[N];

When we declare a matrix (a two-dimensional array) we must first declare an array of double
variables. To each of this variables we assign an allocation of a single-dimensional array. A
conceptual picture on how a matrix A is stored in memory is shown in Fig. 6.2.

Allocated memory should always be deleted when it is no longer needed. We free memory
using the statements

for ( i = 0; i < n; i++)

delete[] A[i];

delete[] A;

delete[]A;, which frees an array of pointers to matrix rows.
However, including a library like Blitz++ http://www.oonumerics.org or Armadillo makes

life much easier when dealing with matrices.

6.3.3 Matrix Operations and C++ and Fortran Features of Matrix

handling

Many program libraries for scientific computing are written in Fortran, often also in older
version such as Fortran 77. When using functions from such program libraries, there are
some differences between C++ and Fortran encoding of matrices and vectors worth noticing.
Here are some simple guidelines in order to avoid some of the most common pitfalls.

http://www.oonumerics.org
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double∗∗A =⇒ double∗A[0. . .3]

A[0][0] A[0][1] A[0][2] A[0][3]

A[1][0] A[1][1] A[1][2] A[1][3]

A[2][0] A[2][1] A[2][2] A[2][3]

A[3][0] A[3][1] A[3][2] A[3][3]

A[0]

A[1]

A[2]

A[3]

Fig. 6.2 Conceptual representation of the allocation of a matrix in C++.

First of all, when we think of an n× n matrix in Fortran and C++, we typically would
have a mental picture of a two-dimensional block of stored numbers. The computer stores
them however as sequential strings of numbers. The latter could be stored as row-major
order or column-major order. What do we mean by that? Recalling that for our matrix el-
ements ai j , i refers to rows and j to columns, we could store a matrix in the sequence
a11a12. . .a1na21a22. . .a2n . . .ann if it is row-major order (we go along a given row i and pick up all
column elements j) or it could be stored in column-major order a11a21. . .an1a12a22. . .an2 . . .ann.

Fortran stores matrices in the latter way, i.e., by column-major, while C++ stores them
by row-major. It is crucial to keep this in mind when we are dealing with matrices, because
if we were to organize the matrix elements in the wrong way, important properties like the
transpose of a real matrix or the inverse can be wrong, and obviously yield wrong physics.
Fortran subscripts begin typically with 1, although it is no problem in starting with zero, while
C++ starts with 0 for the first element. This means that A(1,1) in Fortran is equivalent to
A[0][0] in C++. Moreover, since the sequential storage in memory means that nearby matrix
elements are close to each other in the memory locations (and thereby easier to fetch) ,
operations involving e.g., additions of matrices may take more time if we do not respect the
given ordering.

To see this, consider the following coding of matrix addition in C++ and Fortran. We have
n×n matrices A, B and C and we wish to evaluate A = B+C according to Eq. (6.2). In C++
this would be coded like

for(i=0 ; i < n ; i++) {

for(j=0 ; j < n ; j++) {

a[i][j]=b[i][j]+c[i][j]

}

}
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while in Fortran we would have

DO j=1, n

DO i=1, n

a(i,j)=b(i,j)+c(i,j)

ENDDO

ENDDO

Fig. 6.3 shows how a 3×3 matrix A is stored in both row-major and column-major ways.

a11 a12 a13

a21 a22 a23

a31 a32 a33

=⇒⇐=

a11

a12

a13

a21

a22

a23

a31

a32

a33

a11

a21

a31

a12

a22

a32

a13

a23

a33

Fig. 6.3 Row-major storage of a matrix to the left (C++ way) and column-major to the right (Fortran way).

Interchanging the order of i and j can lead to a considerable enhancement in process
time. In Fortran we write the above statements in a much simpler way a=b+c. However, the
addition still involves ∼ n2 operations. Matrix multiplication or taking the inverse requires
∼ n3 operations. The matrix multiplication of Eq. (6.4) of two matrices A = BC could then take
the following form in C++

for(i=0 ; i < n ; i++) {

for(j=0 ; j < n ; j++) {
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for(k=0 ; k < n ; k++) {

a[i][j]+=b[i][k]*c[k][j]

}

}

}

and in Fortran we have

DO j=1, n

DO i=1, n

DO k = 1, n

a(i,j)=a(i,j)+b(i,k)*c(k,j)

ENDDO

ENDDO

ENDDO

However, Fortran has an intrisic function called MATMUL, and the above three loops can
be coded in a single statement a=MATMUL(b,c). Fortran contains several array manipulation
statements, such as dot product of vectors, the transpose of a matrix etc etc. The outer
product of two vectors is however not included in Fortran. The coding of Eq. (6.6) takes then
the following form in C++

for(i=0 ; i < n ; i++) {

for(j=0 ; j < n ; j++) {

a[i][j]+=x[i]*y[j]

}

}

and in Fortran we have

DO j=1, n

DO i=1, n

a(i,j)=a(i,j)+x(j)*y(i)

ENDDO

ENDDO

A matrix-matrix multiplication of a general n×nmatrix with

a(i, j) = a(i, j)+b(i,k)∗ c(k, j),

in its inner loops requires a multiplication and an addition. We define now a flop (floating
point operation) as one of the following floating point arithmetic operations, viz addition,
subtraction, multiplication and division. The above two floating point operations (flops) are
done n3 times meaning that a general matrix multiplication requires 2n3 flops if we have
a square matrix. If we assume that our computer performs 109 flops per second, then to
perform a matrix multiplication of a 1000× 1000case should take two seconds. This can be
reduced if we multiply two matrices which are upper triangular such as

A =




a11 a12 a13 a14

0 a22 a23 a24

0 0 a33 a34

0 0 0 a44


 .

The multiplication of two upper triangular matrices BC yields another upper triangular matrix
A, resulting in the following C++ code

for(i=0 ; i < n ; i++) {

for(j=i ; j < n ; j++) {

for(k=i ; k < j ; k++) {
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a[i][j]+=b[i][k]*c[k][j]

}

}

}

The fact that we have the constraint i ≤ j leads to the requirement for the computation of ai j

of 2( j− i +1) flops. The total number of flops is then

n

∑
i=1

n

∑
j=1

2( j− i +1) =
n

∑
i=1

n−i+1

∑
j=1

2 j ≈
n

∑
i=1

2(n− i +1)2

2
,

where we used that ∑n
j=1 j =n(n+1)/2≈ n2/2 for large n values. Using in addition that ∑n

j=1 j2≈
n3/3 for large n values, we end up with approximately n3/3 flops for the multiplication of two
upper triangular matrices. This means that if we deal with matrix multiplication of upper
triangular matrices, we reduce the number of flops by a factor six if we code our matrix
multiplication in an efficient way.

It is also important to keep in mind that computers are finite, we can thus not store in-
finitely large matrices. To calculate the space needed in memory for an n×n matrix with dou-
ble precision, 64 bits or 8 bytes for every matrix element, one needs simply compute n×n×8
bytes . Thus, if n= 10000, we will need close to 1GB of storage. Decreasing the precision to
single precision, only halves our needs.

A further point we would like to stress, is that one should in general avoid fixed (at com-
pilation time) dimensions of matrices. That is, one could always specify that a given matrix A
should have size A[100][100], while in the actual execution one may use only A[10][10]. If one
has several such matrices, one may run out of memory, while the actual processing of the
program does not imply that. Thus, we will always recommend that you use dynamic memory
allocation, and deallocation of arrays when they are no longer needed. In Fortran one uses
the intrisic functions ALLOCATE and DEALLOCATE, while C++ employs the functions new
and delete.

6.3.3.1 Fortran Allocate Statement and Mathematical Operations on Arrays

An array is declared in the declaration section of a program, module, or procedure using the
dimension attribute. Examples include

REAL, DIMENSION (10) :: x,y

REAL, DIMENSION (1:10) :: x,y

INTEGER, DIMENSION (-10:10) :: prob

INTEGER, DIMENSION (10,10) :: spin

The default value of the lower bound of an array is 1. For this reason the first two state-
ments are equivalent to the first. The lower bound of an array can be negative. The last two
statements are examples of two-dimensional arrays.

Rather than assigning each array element explicitly, we can use an array constructor to
give an array a set of values. An array constructor is a one-dimensional list of values, sepa-
rated by commas, and delimited by "(/" and "/)". An example is

a(1:3) = (/ 2.0, -3.0, -4.0 /)

is equivalent to the separate assignments
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a(1) = 2.0

a(2) = -3.0

a(3) = -4.0

One of the better features of Fortran is dynamic storage allocation. That is, the size of an
array can be changed during the execution of the program. To see how the dynamic allocation
works in Fortran, consider the following simple example where we set up a 4×4 unity matrix.

......

IMPLICIT NONE

! The definition of the matrix, using dynamic allocation

REAL, ALLOCATABLE, DIMENSION(:,:) :: unity

! The size of the matrix

INTEGER :: n

! Here we set the dim n=4

n=4

! Allocate now place in memory for the matrix

ALLOCATE ( unity(n,n) )

! all elements are set equal zero

unity=0.

! setup identity matrix

DO i=1,n

unity(i,i)=1.

ENDDO

DEALLOCATE ( unity)

.......

We always recommend to use the deallocation statement, since this frees space in memory.
If the matrix is transferred to a function from a calling program, one can transfer the dimen-
sionality n of that matrix with the call. Another possibility is to determine the dimensionality
with the SIZE function. Writing a statement like n=SIZE(unity,DIM=1) gives the number of rows,
while using DIM=2 gives the number of columns. Note however that this involves an extra
call to a function. If speed matters, one should avoid such calls.

6.4 Linear Systems

In this section we outline some of the most used algorithms to solve sets of linear equations.
These algorithms are based on Gaussian elimination [24,28] and will allow us to catch several
birds with a stone. We will show how to rewrite a matrix A in terms of an upper and a lower
triangular matrix, from which we easily can solve linear equation, compute the inverse of A
and obtain the determinant. We start with Gaussian elimination, move to the more efficient
LU-algorithm, which forms the basis for many linear algebra applications, and end the discus-
sion with special cases such as the Cholesky decomposition and linear system of equations
with a tridiagonal matrix.

We begin however with an example which demonstrates the importance of being able to
solve linear equations. Suppose we want to solve the following boundary value equation

−d2u(x)
dx2 = f (x,u(x)),

with x∈ (a,b) and with boundary conditions u(a) = u(b) = 0. We assume that f is a continuous
function in the domain x∈ (a,b). Since, except the few cases where it is possible to find ana-
lytic solutions, we will seek approximate solutions, we choose to represent the approximation
to the second derivative from the previous chapter
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f ′′ =
fh−2 f0+ f−h

h2 +O(h2).

We subdivide our interval x∈ (a,b) into n subintervals by setting xi = a+ ih, with i = 0,1, . . . ,n+1.
The step size is then given by h = (b− a)/(n+ 1) with n ∈ N. For the internal grid points
i = 1,2, . . .n we replace the differential operator with the above formula resulting in

u′′(xi)≈
u(xi +h)−2u(xi)+u(xi−h)

h2 ,

which we rewrite as

u
′′
i ≈

ui+1−2ui +ui−i

h2 .

We can rewrite our original differential equation in terms of a discretized equation with ap-
proximations to the derivatives as

−ui+1−2ui +ui−i

h2 = f (xi ,u(xi)),

with i = 1,2, . . . ,n. We need to add to this system the two boundary conditions u(a) = u0 and
u(b) = un+1. If we define a matrix

A =
1
h2




2 −1
−1 2 −1
−1 2 −1
. . . . . . . . . . . . . . .

−1 2 −1
−1 2




and the corresponding vectors u = (u1,u2, . . . ,un)
T and f(u) = f (x1,x2, . . . ,xn,u1,u2, . . . ,un)

T we
can rewrite the differential equation including the boundary conditions as a system of linear
equations with a large number of unknowns

Au = f(u). (6.7)

We assume that the solution u exists and is unique for the exact differential equation, viz that
the boundary value problem has a solution. But the discretization of the above differential
equation leads to several questions, such as how well does the approximate solution resemble
the exact one as h→ 0, or does a given small value of h allow us to establish existence and
uniqueness of the solution.

Here we specialize to two particular cases. Assume first that the function f does not depend
on u(x). Then our linear equation reduces to

Au = f, (6.8)

which is nothing but a simple linear equation with a tridiagonal matrix A. We will solve such
a system of equations in subsection 6.4.3.

If we assume that our boundary value problem is that of a quantum mechanical particle
confined by a harmonic oscillator potential, then our function f takes the form (assuming
that all constants m= h̄= ω = 1) f (xi ,u(xi)) = −x2

i u(xi)+2λu(xi) with λ being the eigenvalue.
Inserting this into our equation, we define first a new matrix A as
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A =




2
h2 + x2

1 − 1
h2

− 1
h2

2
h2 + x2

2 − 1
h2

− 1
h2

2
h2 + x2

3 − 1
h2

. . . . . . . . . . . . . . .

− 1
h2

2
h2 + x2

n−1 − 1
h2

− 1
h2

2
h2 + x2

n




, (6.9)

which leads to the following eigenvalue problem




2
h2 + x2

1 − 1
h2

− 1
h2

2
h2 + x2

2 − 1
h2

− 1
h2

2
h2 + x2

3 − 1
h2

. . . . . . . . . . . . . . .

− 1
h2

2
h2 + x2

n−1 − 1
h2

− 1
h2

2
h2 + x2

n







u1

u2

un




= 2λ




u1

u2

un



.

We will solve this type of equations in chapter 7. These lecture notes contain however several
other examples of rewriting mathematical expressions into matrix problems. In chapter 5 we
show how a set of linear integral equation when discretized can be transformed into a simple
matrix inversion problem. The specific example we study in that chapter is the rewriting
of Schrödinger’s equation for scattering problems. Other examples of linear equations will
appear in our discussion of ordinary and partial differential equations.

6.4.1 Gaussian Elimination

Any discussion on the solution of linear equations should start with Gaussian elimination. This
text is no exception. We start with the linear set of equations

Ax = w.

We assume also that the matrix A is non-singular and that the matrix elements along the
diagonal satisfy aii 6= 0. We discuss later how to handle such cases. In the discussion we limit
ourselves again to a matrix A ∈ R4×4, resulting in a set of linear equations of the form




a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44







x1

x2

x3

x4


=




w1

w2

w3

w4


 .

or

a11x1+a12x2+a13x3+a14x4 = w1

a21x1+a22x2+a23x3+a24x4 = w2

a31x1+a32x2+a33x3+a34x4 = w3

a41x1+a42x2+a43x3+a44x4 = w4.

The basic idea of Gaussian elimination is to use the first equation to eliminate the first un-
known x1 from the remaining n−1 equations. Then we use the new second equation to elimi-
nate the second unknown x2 from the remaining n−2 equations. With n−1 such eliminations
we obtain a so-called upper triangular set of equations of the form
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b11x1+b12x2+b13x3+b14x4 = y1

b22x2+b23x3+b24x4 = y2

b33x3+b34x4 = y3

b44x4 = y4.

We can solve this system of equations recursively starting from xn (in our case x4) and proceed
with what is called a backward substitution. This process can be expressed mathematically
as

xm =
1

bmm

(
ym−

n

∑
k=m+1

bmkxk

)
m= n−1,n−2, . . .,1.

To arrive at such an upper triangular system of equations, we start by eliminating the un-
known x1 for j = 2,n. We achieve this by multiplying the first equation by a j1/a11 and then
subtract the result from the jth equation. We assume obviously that a11 6= 0 and that A is not
singular. We will come back to this problem below.

Our actual 4×4 example reads after the first operation




a11 a12 a13 a14

0 (a22− a21a12
a11

) (a23− a21a13
a11

) (a24− a21a14
a11

)

0 (a32− a31a12
a11

) (a33− a31a13
a11

) (a34− a31a14
a11

)

0 (a42− a41a12
a11

) (a43− a41a13
a11

) (a44− a41a14
a11

)







x1

x2

x3

x4


=




y1

w(2)
2

w(2)
3

w(2)
4


 .

or

b11x1+b12x2+b13x3+b14x4 = y1

a(2)22 x2+a(2)23 x3+a(2)24 x4 = w(2)
2

a(2)32 x2+a(2)33 x3+a(2)34 x4 = w(2)
3

a(2)42 x2+a(2)43 x3+a(2)44 x4 = w(2)
4 ,

(6.10)

with the new coefficients
b1k = a(1)1k k= 1, . . . ,n,

where each a(1)1k is equal to the original a1k element. The other coefficients are

a(2)jk = a(1)jk −
a(1)j1 a(1)1k

a(1)11

j,k= 2, . . . ,n,

with a new right-hand side given by

y1 = w(1)
1 , w(2)

j = w(1)
j −

a(1)j1 w(1)
1

a(1)11

j = 2, . . . ,n.

We have also set w(1)
1 = w1, the original vector element. We see that the system of unknowns

x1, . . . ,xn is transformed into an (n−1)× (n−1) problem.
This step is called forward substitution. Proceeding with these substitutions, we obtain the

general expressions for the new coefficients

a(m+1)
jk = a(m)

jk −
a(m)

jm a(m)
mk

a(m)
mm

j,k= m+1, . . . ,n,
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with m= 1, . . . ,n−1 and a right-hand side given by

w(m+1)
j = w(m)

j −
a(m)

jm w(m)
m

a(m)
mm

j = m+1, . . . ,n.

This set of n−1 elimations leads us to Eq. (6.10), which is solved by back substitution. If the
arithmetics is exact and the matrix A is not singular, then the computed answer will be exact.
However, as discussed in the two preceeding chapters, computer arithmetics is not exact. We
will always have to cope with truncations and possible losses of precision. Even though the
matrix elements along the diagonal are not zero, numerically small numbers may appear and
subsequent divisions may lead to large numbers, which, if added to a small number may yield
losses of precision. Suppose for example that our first division in (a22−a21a12/a11) results in
−107, that is a21a12/a11. Assume also that a22 is one. We are then adding 107+1. With single
precision this results in 107. Already at this stage we see the potential for producing wrong
results.

The solution to this set of problems is called pivoting, and we distinguish between partial
and full pivoting. Pivoting means that if small values (especially zeros) do appear on the
diagonal we remove them by rearranging the matrix and vectors by permuting rows and
columns. As a simple example, let us assume that at some stage during a calculation we have
the following set of linear equations




1 3 4 6
0 10−8 198 19
0 −91 51 9
0 7 76 541







x1

x2

x3

x4


=




y1

y2

y3

y4


 .

The element at row i = 2 and column 2 is 10−8 and may cause problems for us in the next
forward substitution. The element i = 2, j = 3 is the largest in the second row and the element
i = 3, j = 2 is the largest in the third row. The small element can be removed by rearranging
the rows and/or columns to bring a larger value into the i = 2, j = 2 element.

In partial or column pivoting, we rearrange the rows of the matrix and the right-hand
side to bring the numerically largest value in the column onto the diagonal. For our example
matrix the largest value of column two is in element i = 3, j = 2 and we interchange rows 2
and 3 to give 



1 3 4 6
0 −91 51 9
0 10−8 198 19
0 7 76 541







x1

x2

x3

x4


=




y1

y3

y2

y4


 .

Note that our unknown variables xi remain in the same order which simplifies the implemen-
tation of this procedure. The right-hand side vector, however, has been rearranged. Partial
pivoting may be implemented for every step of the solution process, or only when the diago-
nal values are sufficiently small as to potentially cause a problem. Pivoting for every step will
lead to smaller errors being introduced through numerical inaccuracies, but the continual
reordering will slow down the calculation.

The philosophy behind full pivoting is much the same as that behind partial pivoting. The
main difference is that the numerically largest value in the column or row containing the value
to be replaced. In our example above the magnitude of element i = 2, j = 3 is the greatest in
row 2 or column 2. We could rearrange the columns in order to bring this element onto the
diagonal. This will also entail a rearrangement of the solution vector x. The rearranged system
becomes, interchanging columns two and three,
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


1 6 3 4
0 198 10−8 19
0 51 −91 9
0 76 7 541







x1

x3

x2

x4


=




y1

y2

y3

y4


 .

The ultimate degree of accuracy can be provided by rearranging both rows and columns
so that the numerically largest value in the submatrix not yet processed is brought onto
the diagonal. This process may be undertaken for every step, or only when the value on
the diagonal is considered too small relative to the other values in the matrix. In our case,
the matrix element at i = 4, j = 4 is the largest. We could here interchange rows two and
four and then columns two and four to bring this matrix element at the diagonal position
i = 2, j =2. When interchanging columns and rows, one needs to keep track of all permutations
performed. Partial and full pivoting are discussed in most texts on numerical linear algebra.
For an in-depth discussion we recommend again the text of Golub and Van Loan [28], in
particular chapter three. See also the discussion of chapter two in Ref. [36]. The library
functions you end up using, be it via Matlab, the library included with this text or other ones,
do all include pivoting.

If it is not possible to rearrange the columns or rows to remove a zero from the diagonal,
then the matrix A is singular and no solution exists.

Gaussian elimination requires however many floating point operations. An n× n matrix
requires for the simultaneous solution of a set of r different right-hand sides, a total of n3/3+
rn2−n/3 multiplications. Adding the cost of additions, we end up with 2n3/3+O(n2) floating
point operations, see Kress [24] for a proof. An n×n matrix of dimensionalty n= 103 requires,
on a modern PC with a processor that allows for something like 109 floating point operations
per second (flops), approximately one second. If you increase the size of the matrix to n= 104

you need 1000 seconds, or roughly 16 minutes.
Although the direct Gaussian elmination algorithm allows you to compute the determinant

of A via the product of the diagonal matrix elements of the triangular matrix, it is seldomly
used in normal applications. The more practical elimination is provided by what is called
lower and upper decomposition. Once decomposed, one can use this matrix to solve many
other linear systems which use the same matrix A, viz with different right-hand sides. With
an LU decomposed matrix, the number of floating point operations for solving a set of linear
equations scales as O(n2). One should however note that to obtain the LU decompsed ma-
trix requires roughly O(n3) floating point operations. Finally, LU decomposition allows for an
efficient computation of the inverse of A.

6.4.2 LU Decomposition of a Matrix

A frequently used form of Gaussian elimination is L(ower)U(pper) factorization also known
as LU Decomposition or Crout or Dolittle factorisation. In this section we describe how one
can decompose a matrix A in terms of a matrix L with elements only below the diagonal
(and thereby the naming lower) and a matrix U which contains both the diagonal and matrix
elements above the diagonal (leading to the labelling upper). Consider again the matrix A
given in Eq. (6.1). The LU decomposition method means that we can rewrite this matrix as
the product of two matrices L and U where

A = LU =




a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44


=




1 0 0 0
l21 1 0 0
l31 l32 1 0
l41 l42 l43 1







u11 u12 u13 u14

0 u22 u23 u24

0 0 u33 u34

0 0 0 u44


 . (6.11)
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LU decomposition forms the backbone of other algorithms in linear algebra, such as the
solution of linear equations given by

a11x1+a12x2+a13x3+a14x4 = w1

a21x1+a22x2+a23x3+a24x4 = w2

a31x1+a32x2+a33x3+a34x4 = w3

a41x1+a42x2+a43x3+a44x4 = w4.

The above set of equations is conveniently solved by using LU decomposition as an interme-
diate step, see the next subsection for more details on how to solve linear equations with an
LU decomposed matrix.

The matrix A ∈ R
n×n has an LU factorization if the determinant is different from zero. If

the LU factorization exists and A is non-singular, then the LU factorization is unique and the
determinant is given by

det{A}= u11u22. . .unn.

For a proof of this statement, see chapter 3.2 of Ref. [28].
The algorithm for obtaining L and U is actually quite simple. We start always with the first

column. In our simple (4×4) case we obtain then the following equations for the first column

a11 = u11

a21 = l21u11

a31 = l31u11

a41 = l41u11,

which determine the elements u11, l21, l31 and l41 in L and U. Writing out the equations for the
second column we get

a12 = u12

a22 = l21u12+u22

a32 = l31u12+ l32u22

a42 = l41u12+ l42u22.

Here the unknowns are u12, u22, l32 and l42 which can all be evaluated by means of the
results from the first column and the elements of A. Note an important feature. When going
from the first to the second column we do not need any further information from the matrix
elements ai1. This is a general property throughout the whole algorithm. Thus the memory
locations for the matrix A can be used to store the calculated matrix elements of L and U.
This saves memory.

We can generalize this procedure into three equations

i < j : l i1u1 j + l i2u2 j + · · ·+ l ii ui j = ai j

i = j : l i1u1 j + l i2u2 j + · · ·+ l iiu j j = ai j

i > j : l i1u1 j + l i2u2 j + · · ·+ l i j u j j = ai j

which gives the following algorithm:
Calculate the elements in L and U columnwise starting with column one. For each column
( j):

• Compute the first element u1 j by
u1 j = a1 j .

• Next, we calculate all elements ui j , i = 2, . . . , j−1
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ui j = ai j −
i−1

∑
k=1

l ikuk j.

• Then calculate the diagonal element u j j

u j j = a j j −
j−1

∑
k=1

l jkuk j. (6.12)

• Finally, calculate the elements l i j , i > j

l i j =
1

u j j

(
ai j −

i−1

∑
k=1

l ikuk j

)
, (6.13)

The algorithm is known as Doolittle’s algorithm since the diagonal matrix elements of L are 1.
For the case where the diagonal elements of U are 1, we have what is called Crout’s algorithm.
For the case where U = LT so that uii = l ii for 1≤ i ≤ n we can use what is called the Cholesky
factorization algorithm. In this case the matrix A has to fulfill several features; namely, it
should be real, symmetric and positive definite. A matrix is positive definite if the quadratic
form xTAx > 0. Establishing this feature is not easy since it implies the use of an arbitrary
vector x 6= 0. If the matrix is positive definite and symmetric, its eigenvalues are always real
and positive. We discuss the Cholesky factorization below.

A crucial point in the LU decomposition is obviously the case where u j j is close to or equals
zero, a case which can lead to serious problems. Consider the following simple 2×2 example
taken from Ref. [30]

A =

(
0 1
1 1

)
.

The algorithm discussed above fails immediately, the first step simple states that u11 = 0. We
could change slightly the above matrix by replacing 0 with 10−20 resulting in

A =

(
10−20 1

1 1

)
,

yielding
u11 = 10−20

l21 = 1020

and u12 = 1 and
u22= a11− l21= 1−1020,

we obtain

L =

(
1 0

1020 1

)
,

and

U =

(
10−20 1

0 1−1020

)
,

With the change from 0 to a small number like 10−20 we see that the LU decomposition is now
stable, but it is not backward stable. What do we mean by that? First we note that the matrix
U has an element u22 = 1−1020. Numerically, since we do have a limited precision, which for
double precision is approximately εM ∼ 10−16 it means that this number is approximated in
the machine as u22∼−1020 resulting in a machine representation of the matrix as

U =

(
10−20 1

0 −1020

)
.
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If we multiply the matrices LU we have

(
1 0

1020 1

)(
10−20 1

0 −1020

)
=

(
10−20 1

1 0

)
6= A.

We do not get back the original matrix A!
The solution is pivoting (interchanging rows in this case) around the largest element in a

column j. Then we are actually decomposing a rowwise permutation of the original matrix A.
The key point to notice is that Eqs. (6.12) and (6.13) are equal except for the case that we
divide by u j j in the latter one. The upper limits are always the same k = j − 1(= i− 1). This
means that we do not have to choose the diagonal element u j j as the one which happens to
fall along the diagonal in the first instance. Rather, we could promote one of the undivided
l i j ’s in the column i = j +1, . . .N to become the diagonal of U . The partial pivoting in Crout’s
or Doolittle’s methods means then that we choose the largest value for u j j (the pivot element)
and then do the divisions by that element. Then we need to keep track of all permutations
performed. For the above matrix A it would have sufficed to interchange the two rows and
start the LU decomposition with

A =

(
1 1
0 1

)
.

The error which is done in the LU decomposition of an n× n matrix if no zero pivots are
encountered is given by, see chapter 3.3 of Ref. [28],

LU = A +H,

with
|H| ≤ 3(n−1)u(|A|+ |L ||U|)+O(u2),

with |H| being the absolute value of a matrix and u is the error done in representing the
matrix elements of the matrix A as floating points in a machine with a given precision εM,
viz. every matrix element of u is

| f l(ai j )−ai j | ≤ ui j ,

with |ui j | ≤ εM resulting in
| f l(A)−A| ≤ u|A|.

The programs which perform the above described LU decomposition are called as follows

C++: ludcmp(double ∗∗a, int n, int ∗indx, double ∗d)
Fortran: CALL lu_decompose(a, n, indx, d)

Both the C++ and Fortran 90/95 programs receive as input the matrix to be LU decom-
posed. In C++ this is given by the double pointer **a. Further, both functions need the
size of the matrix n. It returns the variable d, which is ±1 depending on whether we have
an even or odd number of row interchanges, a pointer indx that records the row permu-
tation which has been effected and the LU decomposed matrix. Note that the original
matrix is destroyed.

6.4.2.1 Cholesky’s Factorization

If the matrix A is real, symmetric and positive definite, then it has a unique factorization
(called Cholesky factorization)

A= LU = LLT
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where LT is the upper matrix, implying that

LT
i j = L ji .

The algorithm for the Cholesky decomposition is a special case of the general LU-decomposition
algorithm. The algorithm of this decomposition is as follows

• Calculate the diagonal element Lii by setting up a loop for i = 0 to i = n−1 (C++ indexing
of matrices and vectors)

Lii =

(
Aii −

i−1

∑
k=0

L2
ik

)1/2

.

• within the loop over i, introduce a new loop which goes from j = i+1 to n−1 and calculate

L ji =
1
Lii

(
Ai j −

i−1

∑
k=0

Lik l jk

)
.

For the Cholesky algorithm we have always that Lii > 0 and the problem with exceedingly
large matrix elements does not appear and hence there is no need for pivoting.

To decide whether a matrix is positive definite or not needs some careful analysis. To find
criteria for positive definiteness, one needs two statements from matrix theory, see Golub
and Van Loan [28] for examples. First, the leading principal submatrices of a positive definite
matrix are positive definite and non-singular and secondly a matrix is positive definite if and
only if it has an LDL T factorization with positive diagonal elements only in the diagonal matrix
D. A positive definite matrix has to be symmetric and have only positive eigenvalues.

The easiest way therefore to test whether a matrix is positive definite or not is to solve the
eigenvalue problem Ax = λx and check that all eigenvalues are positive.

6.4.3 Solution of Linear Systems of Equations

With the LU decomposition it is rather simple to solve a system of linear equations

a11x1+a12x2+a13x3+a14x4 = w1

a21x1+a22x2+a23x3+a24x4 = w2

a31x1+a32x2+a33x3+a34x4 = w3

a41x1+a42x2+a43x3+a44x4 = w4.

This can be written in matrix form as
Ax = w.

where A and w are known and we have to solve for x. Using the LU dcomposition we write

Ax ≡ LUx = w. (6.14)

This equation can be calculated in two steps

Ly = w; Ux = y. (6.15)

To show that this is correct we use to the LU decomposition to rewrite our system of linear
equations as

LUx = w,
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and since the determinat of L is equal to 1 (by construction since the diagonals of L equal 1)
we can use the inverse of L to obtain

Ux = L−1w = y,

which yields the intermediate step
L−1w = y

and multiplying with L on both sides we reobtain Eq. (6.15). As soon as we have y we can
obtain x through Ux = y.

For our four-dimentional example this takes the form

y1 = w1

l21y1+ y2 = w2

l31y1+ l32y2+ y3 = w3

l41y1+ l42y2+ l43y3+ y4 = w4.

and

u11x1+u12x2+u13x3+u14x4 = y1

u22x2+u23x3+u24x4 = y2

u33x3+u34x4 = y3

u44x4 = y4

This example shows the basis for the algorithm needed to solve the set of n linear equations.
The algorithm goes as follows

• Set up the matrix A and the vector w with their correct dimensions. This determines
the dimensionality of the unknown vector x.

• Then LU decompose the matrix A through a call to the function

C++: ludcmp(double a, int n, int indx, double &d)
Fortran: CALL lu_decompose(a, n, indx, d)

This functions returns the LU decomposed matrix A, its determinant and the vector
indx which keeps track of the number of interchanges of rows. If the determinant is
zero, the solution is malconditioned.

• Thereafter you call the function

C++: lubksb(double a, int n, int indx, double w)
Fortran: CALL lu_linear_equation(a, n, indx, w)

which uses the LU decomposed matrix A and the vector w and returns x in the same
place as w. Upon exit the original content in w is destroyed. If you wish to keep this
information, you should make a backup of it in your calling function.

6.4.4 Inverse of a Matrix and the Determinant

The basic definition of the determinant of A is
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det{A}= ∑
p
(−1)pa1p1 ·a2p2 · · ·anpn,

where the sum runs over all permutations p of the indices 1,2, . . . ,n, altogether n! terms. To
calculate the inverse of A is a formidable task. Here we have to calculate the complementary
cofactor ai j of each element ai j which is the (n−1)determinant obtained by striking out the
row i and column j in which the element ai j appears. The inverse of A is then constructed
as the transpose of a matrix with the elements (−)i+ jai j . This involves a calculation of n2

determinants using the formula above. A simplified method is highly needed.
With the LU decomposed matrix A in Eq. (6.11) it is rather easy to find the determinant

det{A}= det{L}×det{U}= det{U},

since the diagonal elements of L equal 1. Thus the determinant can be written

det{A}=
N

∏
k=1

ukk.

The inverse is slightly more difficult. However, with an LU decomposed matrix this reduces
to solving a set of linear equations. To see this, we recall that if the inverse exists then

A−1A = I ,

the identity matrix. With an LU decomposed matrix we can rewrite the last equation as

LUA−1 = I .

If we assume that the first column (that is column 1) of the inverse matrix can be written as
a vector with unknown entries

A−1
1 =




a−1
11

a−1
21
. . .

a−1
n1


 ,

then we have a linear set of equations

LU




a−1
11

a−1
21
. . .

a−1
n1


=




1
0
. . .

0


 .

In a similar way we can compute the unknow entries of the second column,

LU




a−1
12

a−1
22
. . .

a−1
n2


=




0
1
. . .

0


 ,

and continue till we have solved all n sets of linear equations.
A calculation of the inverse of a matrix could then be implemented in the following way:

• Set up the matrix to be inverted.
• Call the LU decomposition function.



6.4 Linear Systems 179

• Check whether the determinant is zero or not.
• Then solve column by column the sets of linear equations.

The following codes compute the inverse of a matrix using either C++ or Fortran as pro-
gramming languages. They are both included in the library packages, but we include them
explicitely here as well as two distinct programs which use these functions. We list first the
C++ code.

http://folk.uio.no/compphys/programs/chapter06/cpp/program1.cpp

/* The function

** inverse()

** perform a mtx inversion of the input matrix a[][] with

** dimension n.

*/

void inverse(double **a, int n)

{

int i,j, *indx;

double d, *col, **y;

// allocate space in memory

indx = new int[n];

col = new double[n];

y = (double **) matrix(n, n, sizeof(double));

// first we need to LU decompose the matrix

ludcmp(a, n, indx, &d);

// find inverse of a[][] by columns

for(j = 0; j < n; j++) {

// initialize right-side of linear equations

for(i = 0; i < n; i++) col[i] = 0.0;

col[j] = 1.0;

lubksb(a, n, indx, col);

// save result in y[][]

for(i = 0; i < n; i++) y[i][j] = col[i];

}

// return the inverse matrix in a[][]

for(i = 0; i < n; i++) {

for(j = 0; j < n; j++) a[i][j] = y[i][j];

}

free_matrix((void **) y); // release local memory

delete [] col;

delete []indx;

} // End: function inverse()

We first need to LU decompose the matrix. Thereafter we solve linear equations by using the
back substitution method calling the function lubksb and obtain finally the inverse matrix.

An example of a C++ function which calls this function is also given in the following pro-
gram and reads

http://folk.uio.no/compphys/programs/chapter06/cpp/program1.cpp

// Simple matrix inversion example

#include <iostream>

#include <new>

#include <cstdio>

#include <cstdlib>

#include <cmath>

#include <cstring>

http://folk.uio.no/compphys/programs/chapter06/cpp/program1.cpp
http://folk.uio.no/compphys/programs/chapter06/cpp/program1.cpp


180 6 Linear Algebra

#include "lib.h"

using namespace std;

/* function declarations */

void inverse(double **, int);

/*

** This program sets up a simple 3x3 symmetric matrix

** and finds its determinant and inverse

*/

int main()

{

int i, j, k, result, n = 3;

double **matr, sum,

a[3][3] = { {1.0, 3.0, 4.0},

{3.0, 4.0, 6.0},

{4.0, 6.0, 8.0}};

// memory for inverse matrix

matr = (double **) matrix(n, n, sizeof(double));

// various print statements in the original code are omitted

inverse(matr, n); // calculate and return inverse matrix

....

return 0;

} // End: function main()

In order to use the program library you need to include the lib.h file using the #include "lib.h"

statement. This function utilizes the library function matrix and free_matrix to allocate and
free memory during execution. The matrix a[3][3] is set at compilation time. Alternatively, you
could have used either Blitz++ or Armadillo.

The corresponding Fortran program for the inverse of a matrix reads

http://folk.uio.no/compphys/programs/FYS3150/f90library/f90lib.f90

!

! Routines to do mtx inversion, from Numerical

! Recipes, Teukolsky et al. Routines included

! below are MATINV, LUDCMP and LUBKSB. See chap 2

! of Numerical Recipes for further details

!

SUBROUTINE matinv(a,n, indx, d)

IMPLICIT NONE

INTEGER, INTENT(IN) :: n

INTEGER :: i, j

REAL(DP), DIMENSION(n,n), INTENT(INOUT) :: a

REAL(DP), ALLOCATABLE :: y(:,:)

REAL(DP) :: d

INTEGER, , INTENT(INOUT) :: indx(n)

ALLOCATE (y( n, n))

y=0.

! setup identity matrix

DO i=1,n

y(i,i)=1.

ENDDO

! LU decompose the matrix just once

CALL lu_decompose(a,n,indx,d)

! Find inverse by columns

http://folk.uio.no/compphys/programs/FYS3150/f90 library/f90lib.f90
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DO j=1,n

CALL lu_linear_equation(a,n,indx,y(:,j))

ENDDO

! The original matrix a was destroyed, now we equate it with the inverse y

a=y

DEALLOCATE ( y )

END SUBROUTINE matinv

The Fortran program matinv receives as input the same variables as the C++ program and
calls the function for LU decomposition lu_decompose and the function to solve sets of linear
equations lu_linear_equation. The program listed under programs/chapter4/program1.f90
performs the same action as the C++ listed above. In order to compile and link these pro-
grams it is convenient to use a so-called makefile. Examples of these are found under the
same catalogue as the above programs.

6.4.4.1 Scattering Equation and Principal Value Integrals via Matrix Inversion

In quantum mechanics, it is often common to rewrite Schrödinger’s equation in momentum
space, after having made a so-called partial wave expansion of the interaction. We will not go
into the details of these expressions but limit ourselves to study the equivalent problem for so-
called scattering states, meaning that the total energy of two particles which collide is larger
than or equal zero. The benefit of rewriting the equation in momentum space, after having
performed a Fourier transformation, is that the coordinate space equation, being an integro-
differantial equation, is transformed into an integral equation. The latter can be solved by
standard matrix inversion techniques. Furthermore, the results of solving these equation can
be related directly to experimental observables like the scattering phase shifts. The latter tell
us how much the incoming two-particle wave function is modified by a collision. Here we take
a more technical stand and consider the technical aspects of solving an integral equation with
a principal value.

For scattering states, E > 0, the corresponding equation to solve is the so-called Lippman-
Schwinger equation. This is an integral equation where we have to deal with the amplitude
R(k,k′) (reaction matrix) defined through the integral equation

Rl (k,k
′) =Vl (k,k

′)+
2
π

P

∫ ∞

0
dqq2Vl (k,q)

1
E−q2/m

Rl (q,k
′), (6.16)

where the total kinetic energy of the two incoming particles in the center-of-mass system is

E =
k2

0

m
. (6.17)

The symbol P indicates that Cauchy’s principal-value prescription is used in order to avoid
the singularity arising from the zero of the denominator. We will discuss below how to solve
this problem. Equation (6.16) represents then the problem you will have to solve numerically.
The interaction between the two particles is given by a partial-wave decomposed version
Vl (k,k′), where l stands for a quantum number like the orbital momentum. We have assumed
that interaction does not coupled to partial waves with different orbital momenta. The vari-
ables k and k′ are the outgoing and incoming relative momenta of the two interacting parti-
cles.

The matrix Rl (k,k′) relates to the experimental the phase shifts δl through its diagonal
elements as

Rl (k0,k0) =−
tanδl

mk0
, (6.18)
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where m is the reduced mass of the interacting particles. Furthemore, the interaction between
the particles, V, carries

In order to solve the Lippman-Schwinger equation in momentum space, we need first to
write a function which sets up the integration points. We need to do that since we are going
to approximate the integral through

∫ b

a
f (x)dx≈

N

∑
i=1

wi f (xi),

where we have fixed N integration points through the corresponding weights wi and points
xi . These points can for example be determined using Gaussian quadrature.

The principal value in Eq. (6.16) is rather tricky to evaluate numerically, mainly since com-
puters have limited precision. We will here use a subtraction trick often used when dealing
with singular integrals in numerical calculations. We use the calculus relation from the pre-
vious section ∫ ∞

−∞

dk
k− k0

= 0,

or ∫ ∞

0

dk

k2− k2
0

= 0.

We can use this to express a principal values integral as

P

∫ ∞

0

f (k)dk

k2− k2
0

=
∫ ∞

0

( f (k)− f (k0))dk

k2− k2
0

, (6.19)

where the right-hand side is no longer singular at k = k0, it is proportional to the derivative
d f/dk, and can be evaluated numerically as any other integral.

We can then use the trick in Eq. (6.19) to rewrite Eq. (6.16) as

R(k,k′) =V(k,k′)+
2
π

∫ ∞

0
dq

q2V(k,q)R(q,k′)− k2
0V(k,k0)R(k0,k′)

(k2
0−q2)/m

. (6.20)

We are interested in obtaining R(k0,k0), since this is the quantity we want to relate to experi-
mental data like the phase shifts.

How do we proceed in order to solve Eq. (6.20)?

1. Using the mesh points k j and the weights ω j , we can rewrite Eq. (6.20) as

R(k,k′) =V(k,k′)+
2
π

N

∑
j=1

ω jk2
jV(k,k j )R(k j ,k′)

(k2
0− k2

j )/m
− 2

π
k2

0V(k,k0)R(k0,k
′)

N

∑
n=1

ωn

(k2
0− k2

n)/m
. (6.21)

This equation contains now the unknowns R(ki ,k j) (with dimension N×N) and R(k0,k0).
2. We can turn Eq. (6.21) into an equation with dimension (N+1)×(N+1) with an integration

domain which contains the original mesh points k j for j = 1,N and the point which cor-
responds to the energy k0. Consider the latter as the ’observable’ point. The mesh points
become then k j for j = 1,n and kN+1 = k0.

3. With these new mesh points we define the matrix

Ai, j = δi, j −V(ki ,k j)u j , (6.22)

where δ is the Kronecker δ and

u j =
2
π

ω jk2
j

(k2
0− k2

j )/m
j = 1,N (6.23)
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and

uN+1 =−
2
π

N

∑
j=1

k2
0ω j

(k2
0− k2

j )/m
. (6.24)

The first task is then to set up the matrix A for a given k0. This is an (N+1)× (N+1)matrix.
It can be convenient to have an outer loop which runs over the chosen observable values
for the energy k2

0/m. Note that all mesh points k j for j = 1,N must be different from k0. Note
also that V(ki ,k j) is an (N+1)× (N+1) matrix.

4. With the matrix A we can rewrite Eq. (6.21) as a matrix problem of dimension (N+ 1)×
(N+1). All matrices R, A and V have this dimension and we get

Ai,l Rl , j =Vi, j , (6.25)

or just
AR=V. (6.26)

5. Since we already have defined A and V (these are stored as (N+1)× (N+1) matrices) Eq.
(6.26) involves only the unknown R. We obtain it by matrix inversion, i.e.,

R= A−1V. (6.27)

Thus, to obtain R, we need to set up the matrices A and V and invert the matrix A. With the
inverse A−1 we perform a matrix multiplication with V and obtain R.

With Rwe can in turn evaluate the phase shifts by noting that

R(kN+1,kN+1) = R(k0,k0), (6.28)

and we are done.

6.4.4.2 Inverse of the Vandermonde Matrix

In chapter 3 we discussed how to interpolate a function f which is known only at n+1 points
x0,x1,x2, . . . ,xn with corresponding values f (x0), f (x1), f (x2), . . . , f (xn). The latter is often a typi-
cal outcome of a large scale computation or from an experiment. In most cases in the sciences
we do not have a closed-form expression for a function f . The function is only known at spe-
cific points.

We seek a functional form for a function f which passes through the above pairs of values

(x0, f (x0)),(x1, f (x1)),(x2, f (x2)), . . . ,(xn, f (xn)).

This is normally achieved by expanding the function f (x) in terms of well-known polynomials
φi(x), such as Legendre, Chebyshev, Laguerre etc. The function is then approximated by a
polynomial of degree n pn(x)

f (x) ≈ pn(x) =
n

∑
i=0

aiφi(x),

where ai are unknown coefficients and φi(x) are a priori well-known functions. The simplest
possible case is to assume that φi(x) = xi , resulting in an approximation

f (x)≈ a0+a1x+a2x2+ · · ·+anx
n.

Our function is known at the points n+1 points x0,x1,x2, . . . ,xn, leading to n+1 equations of
the type



184 6 Linear Algebra

f (xi)≈ a0+a1xi +a2x2
i + · · ·+anx

n
i .

We can then obtain the unknown coefficients by rewriting our problem as




1 x0 x2
0 . . . . . . xn

0
1 x1 x2

1 . . . . . . xn
1

1 x2 x2
2 . . . . . . xn

2
1 x3 x2

3 . . . . . . xn
3

. . . . . . . . . . . . . . . . . .

1 xn x2
n . . . . . . xn

n







a0

a1

a2

a3

. . .

an




=




f (x0)

f (x1)

f (x2)

f (x3)

. . .

f (xn)



,

an expression which can be rewritten in a more compact form as

Xa = f,

with

X =




1 x0 x2
0 . . . . . . xn

0
1 x1 x2

1 . . . . . . xn
1

1 x2 x2
2 . . . . . . xn

2
1 x3 x2

3 . . . . . . xn
3

. . . . . . . . . . . . . . . . . .

1 xn x2
n . . . . . . xn

n



.

This matrix is called a Vandermonde matrix and is by definition non-singular since all points
xi are different. The inverse exists and we can obtain the unknown coefficients by inverting
X, resulting in

a= X−1f.

Although this algorithm for obtaining an interpolating polynomial which approximates our
data set looks very simple, it is an inefficient algorithm since the computation of the inverse
requires O(n3) flops. The methods we discussed in chapter 3, together with spline interpola-
tion discussed in the next section, are much more effective from a numerical point of view.
There is also another subtle point. Although we have a data set with n+1 points, this does
not necessarily mean that our function f (x) is well represented by a polynomial of degree n.
On the contrary, our function f (x) may be a parabola (second-order in n), meaning that we
have a large excess of data points. In such cases a least-square fit or a spline interpolation
may be better approaches to represent the function. Spline interpolation will be discussed in
the next section.

6.4.5 Tridiagonal Systems of Linear Equations

We start with the linear set of equations from Eq. (6.8), viz

Au = f,

where A is a tridiagonal matrix which we rewrite as

A =




b1 c1 0 . . . . . . . . .

a2 b2 c2 . . . . . . . . .

a3 b3 c3 . . . . . .

. . . . . . . . . . . . . . .

an−2 bn−1 cn−1

an−1 bn



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where a,b,c are one-dimensional arrays of length 1 : n. In the example of Eq. (6.8) the arrays
a and c are equal, namely ai = ci =−1/h2. We can rewrite Eq. (6.8) as

Au =




b1 c1 0 . . . . . . . . .

a2 b2 c2 . . . . . . . . .

a3 b3 c3 . . . . . .

. . . . . . . . . . . . . . .

an−2 bn−1 cn−1

an−1 bn







u1

u2

. . .

. . .

. . .

un




=




f1
f2
. . .

. . .

. . .

fn



.

A tridiagonal matrix is a special form of banded matrix where all the elements are zero except
for those on and immediately above and below the leading diagonal. The above tridiagonal
system can be written as

aiui−1+biui + ciui+1 = fi ,

for i = 1,2, . . . ,n. We see that u−1 and un+1 are not required and we can set a1 = cn = 0. In many
applications the matrix is symmetric and we have ai = ci . The algorithm for solving this set of
equations is rather simple and requires two steps only, a forward substitution and a backward
substitution. These steps are also common to the algorithms based on Gaussian elimination
that we discussed previously. However, due to its simplicity, the number of floating point
operations is in this case proportional with O(n) while Gaussian elimination requires 2n3/3+
O(n2) floating point operations. In case your system of equations leads to a tridiagonal matrix,
it is clearly an overkill to employ Gaussian elimination or the standard LU decomposition. You
will encounter several applications involving tridiagonal matrices in our discussion of partial
differential equations in chapter 10.

Our algorithm starts with forward substitution with a loop over of the elements i and can be
expressed via the following piece of code taken from the Numerical Recipe text of Teukolsky
et al [36]

btemp = b[1];

u[1] = f[1]/btemp;

for(i=2 ; i <= n ; i++) {

temp[i] = c[i-1]/btemp;

btemp = b[i]-a[i]*temp[i];

u[i] = (f[i] - a[i]*u[i-1])/btemp;

}

Note that you should avoid cases with b1 = 0. If that is the case, you should rewrite the
equations as a set of order n−1 with u2 eliminated. Finally we perform the backsubstitution
leading to the following code

for(i=n-1 ; i >= 1 ; i--) {

u[i] -= temp[i+1]*u[i+1];

}

Note that our sums start with i = 1 and that one should avoid cases with b1 = 0. If that is the
case, you should rewrite the equations as a set of order n−1 with u2 eliminated. However, a
tridiagonal matrix problem is not a guarantee that we can find a solution. The matrix A which
rephrases a second derivative in a discretized form

A =




2 −1 0 0 0 0
−1 2 −1 0 0 0
0 −1 2 −1 0 0
0 . . . . . . . . . . . . . . .

0 0 0 −1 2 −1
0 0 0 0 −1 2



,
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fulfills the condition of a weak dominance of the diagonal, with |b1| > |c1|, |bn| > |an| and
|bk| ≥ |ak|+ |ck| for k= 2,3, . . . ,n−1. This is a relevant but not sufficient condition to guarantee
that the matrix A yields a solution to a linear equation problem. The matrix needs also to
be irreducible. A tridiagonal irreducible matrix means that all the elements ai and ci are
non-zero. If these two conditions are present, then A is nonsingular and has a unique LU
decomposition.

We can obviously extend our boundary value problem to include a first derivative as well

−d2u(x)
dx2 +g(x)

du(x)
dx

+h(x)u(x) = f (x),

with x ∈ [a,b] and with boundary conditions u(a) = u(b) = 0. We assume that f , g and h are
continuous functions in the domain x∈ [a,b] and that h(x)≥ 0. Then the differential equation
has a unique solution. We subdivide our interval x ∈ [a,b] into n subintervals by setting xi =

a+ ih, with i = 0,1, . . . ,n+1. The step size is then given by h= (b−a)/(n+1) with n ∈ N. For
the internal grid points i = 1,2, . . .n we replace the differential operators with

u
′′
i ≈

ui+1−2ui +ui−i

h2 .

for the second derivative while the first derivative is given by

u
′
i ≈

ui+1−ui−i

2h
.

We rewrite our original differential equation in terms of a discretized equation as

−ui+1−2ui +ui−i

h2 +gi
ui+1−ui−i

2h
+hiui = fi ,

with i = 1,2, . . . ,n. We need to add to this system the two boundary conditions u(a) = u0 and
u(b) = un+1. This equation can again be rewritten as a tridiagonal matrix problem. We leave it
as an exercise to the reader to find the matrix elements, find the conditions for having weakly
dominant diagonal elements and that the matrix is irreducible.

6.5 Spline Interpolation

Cubic spline interpolation is among one of the most used methods for interpolating between
data points where the arguments are organized as ascending series. In the library program
we supply such a function, based on the so-called cubic spline method to be described below.
The linear equation solver we developed in the previous section for tridiagonal matrices can
be reused for spline interpolation.

A spline function consists of polynomial pieces defined on subintervals. The different subin-
tervals are connected via various continuity relations.

Assume we have at our disposal n+ 1 points x0,x1, . . .xn arranged so that x0 < x1 < x2 <

.. .xn−1 < xn (such points are called knots). A spline function s of degree k with n+1 knots is
defined as follows

• On every subinterval [xi−1,xi) s is a polynomial of degree ≤ k.
• s has k−1 continuous derivatives in the whole interval [x0,xn].

As an example, consider a spline function of degree k= 1 defined as follows
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s(x) =





s0(x) = a0x+b0 x∈ [x0,x1)

s1(x) = a1x+b1 x∈ [x1,x2)

. . . . . .

sn−1(x) = an−1x+bn−1 x∈ [xn−1,xn]

(6.29)

In this case the polynomial consists of series of straight lines connected to each other at
every endpoint. The number of continuous derivatives is then k− 1 = 0, as expected when
we deal with straight lines. Such a polynomial is quite easy to construct given n+1 points
x0,x1, . . .xn and their corresponding function values.

The most commonly used spline function is the one with k = 3, the so-called cubic spline
function. Assume that we have in addition to the n+1 knots a series of functions values y0 =

f (x0),y1 = f (x1), . . .yn = f (xn). By definition, the polynomials si−1 and si are thence supposed to
interpolate the same point i, i.e.,

si−1(xi) = yi = si(xi), (6.30)

with 1≤ i ≤ n−1. In total we have n polynomials of the type

si(x) = ai0+ai1x+ai2x
2+ai3x

3, (6.31)

yielding 4n coefficients to determine. Every subinterval provides in addition two conditions

yi = s(xi), (6.32)

and
yi+1 = s(xi+1), (6.33)

to be fulfilled. If we also assume that s′ and s′′ are continuous, then

s′i−1(xi) = s′i(xi), (6.34)

yields n−1 conditions. Similarly,
s′′i−1(xi) = s′′i (xi), (6.35)

results in additional n−1 conditions. In total we have 4n coefficients and 4n−2 equations to
determine them, leaving us with 2 degrees of freedom to be determined.

Using the last equation we define two values for the second derivative, namely

s′′i (xi) = fi , (6.36)

and
s′′i (xi+1) = fi+1, (6.37)

and setting up a straight line between fi and fi+1 we have

s′′i (x) =
fi

xi+1− xi
(xi+1− x)+

fi+1

xi+1− xi
(x− xi), (6.38)

and integrating twice one obtains

si(x) =
fi

6(xi+1− xi)
(xi+1− x)3+

fi+1

6(xi+1− xi)
(x− xi)

3+ c(x− xi)+d(xi+1− x). (6.39)

Using the conditions si(xi) = yi and si(xi+1) = yi+1 we can in turn determine the constants c and
d resulting in
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si(x) =
fi

6(xi+1−xi)
(xi+1− x)3+

fi+1
6(xi+1−xi)

(x− xi)
3

+ (
yi+1

xi+1−xi
− fi+1(xi+1−xi)

6 )(x− xi)+ ( yi
xi+1−xi

− fi(xi+1−xi)
6 )(xi+1− x). (6.40)

How to determine the values of the second derivatives fi and fi+1? We use the continuity
assumption of the first derivatives

s′i−1(xi) = s′i(xi), (6.41)

and set x= xi . Defining hi = xi+1− xi we obtain finally the following expression

hi−1 fi−1+2(hi +hi−1) fi +hi fi+1 =
6
hi
(yi+1− yi)−

6
hi−1

(yi− yi−1), (6.42)

and introducing the shorthands ui = 2(hi +hi−1), vi =
6
hi
(yi+1− yi)− 6

hi−1
(yi− yi−1), we can refor-

mulate the problem as a set of linear equations to be solved through e.g., Gaussian elemina-
tion, namely 



u1 h1 0 . . .

h1 u2 h2 0 . . .

0 h2 u3 h3 0 . . .

. . . . . . . . . . . . . . . . . .

. . . 0 hn−3 un−2 hn−2

0 hn−2 un−1







f1
f2
f3
. . .

fn−2

fn−1



=




v1

v2

v3

. . .

vn−2

vn−1



. (6.43)

Note that this is a set of tridiagonal equations and can be solved through only O(n) operations.
It is easy to write your own program for the cubic spline method when you have written

a slover for tridiagonal equations. We split the program into two tasks, one which finds the
polynomial approximation and one which uses the polynomials approximation to find an in-
terpolated value for a function. These functions are included in the programs of this chapter,
see the codes cubicpsline.cpp and cubicsinterpol.cpp. Alternatively, you can solve exercise
6.4!

6.6 Iterative Methods

Till now we have dealt with so-called direct solvers such as Gaussian elimination and LU de-
composition. Iterative solvers offer another strategy and are much used in partial differential
equations. We start with a guess for the solution and then iterate till the solution does not
change anymore.

6.6.1 Jacobi’s method

It is a simple method for solving
Âx = b,

where Â is a matrix and x and b are vectors. The vector x is the unknown.
It is an iterative scheme where we start with a guess for the unknown, and after k+ 1

iterations we have
x(k+1) = D̂−1(b− (L̂+Û)x(k)),

with Â= D̂+Û + L̂ and D̂ being a diagonal matrix, Û an upper triangular matrix and L̂ a lower
triangular matrix.
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If the matrix Â is positive definite or diagonally dominant, one can show that this method
will always converge to the exact solution.

We can demonstrate Jacobi’s method by a 4×4 matrix problem. We assume a guess for the

initial vector elements, labeled x(0)i . This guess represents our first iteration. The new values
are obtained by substitution

x(1)1 = (b1−a12x
(0)
2 −a13x

(0)
3 −a14x

(0)
4 )/a11

x(1)2 = (b2−a21x
(0)
1 −a23x

(0)
3 −a24x

(0)
4 )/a22

x(1)3 = (b3−a31x
(0)
1 −a32x

(0)
2 −a34x

(0)
4 )/a33

x(1)4 = (b4−a41x
(0)
1 −a42x

(0)
2 −a43x

(0)
3 )/a44,

which after k+1 iterations result in

x(k+1)
1 = (b1−a12x

(k)
2 −a13x

(k)
3 −a14x

(k)
4 )/a11

x(k+1)
2 = (b2−a21x

(k)
1 −a23x

(k)
3 −a24x

(k)
4 )/a22

x(k+1)
3 = (b3−a31x

(k)
1 −a32x

(k)
2 −a34x

(k)
4 )/a33

x(k+1)
4 = (b4−a41x

(k)
1 −a42x

(k)
2 −a43x

(k)
3 )/a44,

We can generalize the above equations to

x(k+1)
i = (bi−

n

∑
j=1, j 6=i

ai j x
(k)
j )/aii

or in an even more compact form as

x(k+1) = D̂−1(b− (L̂+Û)x(k)),

with Â= D̂+Û + L̂ and D̂ being a diagonal matrix, Û an upper triangular matrix and L̂ a lower
triangular matrix.

6.6.2 Gauss-Seidel

Our 4×4matrix problem

x(k+1)
1 = (b1−a12x

(k)
2 −a13x

(k)
3 −a14x

(k)
4 )/a11

x(k+1)
2 = (b2−a21x

(k)
1 −a23x

(k)
3 −a24x

(k)
4 )/a22

x(k+1)
3 = (b3−a31x

(k)
1 −a32x

(k)
2 −a34x

(k)
4 )/a33

x(k+1)
4 = (b4−a41x

(k)
1 −a42x

(k)
2 −a43x

(k)
3 )/a44,

can be rewritten as

x(k+1)
1 = (b1−a12x

(k)
2 −a13x

(k)
3 −a14x

(k)
4 )/a11

x(k+1)
2 = (b2−a21x

(k+1)
1 −a23x

(k)
3 −a24x

(k)
4 )/a22

x(k+1)
3 = (b3−a31x

(k+1)
1 −a32x

(k+1)
2 −a34x

(k)
4 )/a33

x(k+1)
4 = (b4−a41x

(k+1)
1 −a42x

(k+1)
2 −a43x

(k+1)
3 )/a44,
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which allows us to utilize the preceding solution (forward substitution). This improves nor-
mally the convergence behavior and leads to the Gauss-Seidel method!

We can generalize these equations to the following form

x(k+1)
i =

1
aii

(
bi−∑

j>i

ai j x
(k)
j −∑

j<i

ai j x
(k+1)
j

)
, i = 1,2, . . . ,n.

The procedure is generally continued until the changes made by an iteration are below some
tolerance.

The convergence properties of the Jacobi method and the Gauss-Seidel method depend on
the matrix Â. These methods converge when the matrix is symmetric positive-definite, or is
strictly or irreducibly diagonally dominant. Both methods sometimes converge even if these
conditions are not satisfied.

6.6.3 Successive over-relaxation

We can rewrite the above in a slightly more formal way and extend the methods to what is
called successive over-relaxation. Given a square system of n linear equations with unknown
x:

Âx = b

where:

Â=




a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...
an1 an2 · · · ann


 , x =




x1

x2
...

xn


 , b =




b1

b2
...

bn


 .

Then A can be decomposed into a diagonal component D, and strictly lower and upper trian-
gular components L and U:

Â= D̂+ L̂+Û ,

where

D =




a11 0 · · · 0
0 a22 · · · 0
...

...
. . .

...
0 0 · · · ann


 , L =




0 0 · · · 0
a21 0 · · · 0
...

...
. . .

...
an1 an2 · · · 0


 , U =




0 a12 · · · a1n

0 0 · · · a2n
...

...
. . .

...
0 0 · · · 0


 .

The system of linear equations may be rewritten as:

(D+ωL)x = ωb− [ωU +(ω−1)D]x

for a constant ω > 1. The method of successive over-relaxation is an iterative technique that
solves the left hand side of this expression for x, using previous value for x on the right hand
side. Analytically, this may be written as:

x(k+1) = (D+ωL)−1(ωb− [ωU +(ω−1)D]x(k)
)
.

However, by taking advantage of the triangular form of (D+ωL), the elements of x(k+1) can
be computed sequentially using forward substitution:

x(k+1)
i = (1−ω)x(k)i +

ω
aii

(
bi−∑

j>i
ai j x

(k)
j −∑

j<i
ai j x

(k+1)
j

)
, i = 1,2, . . . ,n.
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The choice of relaxation factor is not necessarily easy, and depends upon the properties of the
coefficient matrix. For symmetric, positive-definite matrices it can be proven that 0< ω < 2
will lead to convergence, but we are generally interested in faster convergence rather than
just convergence.

6.6.4 Conjugate Gradient Method

The success of the Conjugate Gradient method for finding solutions of non-linear problems is
based on the theory for of conjugate gradients for linear systems of equations. It belongs to
the class of iterative methods for solving problems from linear algebra of the type

Âx̂ = b̂.

In the iterative process we end up with a problem like

r̂ = b̂− Âx̂,

where r̂ is the so-called residual or error in the iterative process.
The residual is zero when we reach the minimum of the quadratic equation

P(x̂) =
1
2

x̂TÂx̂− x̂T b̂,

with the constraint that the matrix Â is positive definite and symmetric. If we search for a
minimum of the quantummechanical variance, then the matrix Â, which is called the Hessian,
is given by the second-derivative of the variance. This quantity is always positive definite. If
we vary the energy, the Hessian may not always be positive definite.

In the Conjugate Gradient method we define so-called conjugate directions and two vectors
ŝ and t̂ are said to be conjugate if

ŝT Ât̂ = 0.

The philosophy of the Conjugate Gradient method is to perform searches in various conjugate
directions of our vectors x̂i obeying the above criterion, namely

x̂T
i Âx̂ j = 0.

Two vectors are conjugate if they are orthogonal with respect to this inner product. Being
conjugate is a symmetric relation: if ŝ is conjugate to t̂, then t̂ is conjugate to ŝ.

An example is given by the eigenvectors of the matrix

v̂T
i Âv̂ j = λ v̂T

i v̂ j ,

which is zero unless i = j.
Assume now that we have a symmetric positive-definite matrix Â of size n× n. At each

iteration i +1 we obtain the conjugate direction of a vector

x̂i+1 = x̂i +αi p̂i .

We assume that p̂i is a sequence of n mutually conjugate directions. Then the p̂i form a basis
of Rn and we can expand the solution Âx̂ = b̂ in this basis, namely

x̂ =
n

∑
i=1

αi p̂i .
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The coefficients are given by

Ax =
n

∑
i=1

αiAp i = b.

Multiplying with p̂T
k from the left gives

p̂T
k Âx̂ =

n

∑
i=1

αi p̂T
k Âp̂i = p̂T

k b̂,

and we can define the coefficients αk as

αk =
p̂T

k b̂

p̂T
k Âp̂k

If we choose the conjugate vectors p̂k carefully, then we may not need all of them to obtain
a good approximation to the solution x̂. So, we want to regard the conjugate gradient method
as an iterative method. This also allows us to solve systems where n is so large that the direct
method would take too much time.

We denote the initial guess for x̂ as x̂0. We can assume without loss of generality that

x̂0 = 0,

or consider the system
Âẑ= b̂− Âx̂0,

instead.
One can show that the solution x̂ is also the unique minimizer of the quadratic form

f (x̂) =
1
2

x̂TÂx̂− x̂T x̂, x̂ ∈ Rn.

This suggests taking the first basis vector p̂1 to be the gradient of f at x̂ = x̂0, which equals

Âx̂0− b̂,

and x̂0 = 0 it is equal −b̂. The other vectors in the basis will be conjugate to the gradient,
hence the name conjugate gradient method.

Let r̂ k be the residual at the k-th step:

r̂ k = b̂− Âx̂k.

Note that r̂ k is the negative gradient of f at x̂ = x̂k, so the gradient descent method would
be to move in the direction r̂ k. Here, we insist that the directions p̂k are conjugate to each
other, so we take the direction closest to the gradient r̂ k under the conjugacy constraint. This
gives the following expression

p̂k+1 = r̂ k−
p̂T

k Âr̂ k

p̂T
k Âp̂k

p̂k.

We can also compute the residual iteratively as

r̂ k+1 = b̂− Âx̂k+1,

which equals
b̂− Â(x̂k+αkp̂k),

or
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(b̂− Âx̂k)−αkÂp̂k,

which gives
r̂ k+1 = r̂ k− Âp̂k,

If we consider finding the minimum of a function f using Newton’s method, that implies a
search for a zero of the gradient of a function. Near a point xi we have to second order

f (x̂) = f (x̂i)+ (x̂− x̂i)∇ f (x̂i)
1
2
(x̂− x̂i)Â(x̂− x̂i)

giving
∇ f (x̂) = ∇ f (x̂i)+ Â(x̂− x̂i).

In Newton’s method we set ∇ f = 0 and we can thus compute the next iteration point

x̂− x̂i = Â−1∇ f (x̂i).

Subtracting this equation from that of x̂i+1 we have

x̂i+1− x̂i = Â−1(∇ f (x̂i+1)−∇ f (x̂i)).

6.7 A vector and matrix class

We end this chapter by presenting a class which allows to manipulate one- and two-
dimensional arrays. However, before we proceed, we would like to come with some general
recommendations. Although it is useful to write your own classes, like the one included here,
in general these classes may not be very efficient from a computational point of view. There
are several libraries which include many interesting array features that allow us to write
more compact code. The latter has the advantage that the code is lost likely easier to debug
in case of errors (obviously assuming that the library is functioning correctly). Furthermore,
if the proper functionalities are included, the final code may closely resemble the mathemat-
ical operations we wish to perform, increasing considerably the readability of our program.
And finally, the code is in almost all casesmuch faster than the one we wrote!

In particular, we would like to recommend the C++ linear algebra library Armadillo, see
http://arma.sourceforgenet. For those of you who are familiar with compiled programs
like Matlab, the syntax is deliberately similar. Integer, floating point and complex numbers
are supported, as well as a subset of trigonometric and statistics functions. Various matrix
decompositions are provided through optional integration with LAPACK, or one of its high
performance drop-in replacements (such as the multi-threaded MKL or ACML libraries). The
selected examples included here show some examples on how to declare arrays and rearrange
arrays or perform mathematical operations on say vectors or matrices. The first example
here defines two random matrices of dimensionality 10× 10 and performs a matrix-matrix
multiplication using the dgemmfunction of the library BLAS.

Simple matrix-matrix multiplication of two random matrices

#include <iostream>

#include <armadillo>

using namespace std;

using namespace arma;

int main(int argc, char** argv)

{

http://arma.sourceforgenet
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mat A = randu<mat>(10,10);

mat B = randu<mat>(10,10);

// Matrix-matrix multiplication

cout << A*B << endl;

return 0;

}

In the next example we compute the determinant of a 5×5 matrix, its inverse and perform
thereafter several operations on various matrices.

Determinant and inverse of a matrix

#include <iostream>

#include "armadillo"

using namespace arma;

using namespace std;

int main(int argc, char** argv)

{

cout << "Armadillo version: " << arma_version::as_string() << endl;

mat A;

// Hard coding of the matrix

// endr indicates "end of row"

A << 0.165300 << 0.454037 << 0.995795 << 0.124098 << 0.047084 << endr

<< 0.688782 << 0.036549 << 0.552848 << 0.937664 << 0.866401 << endr

<< 0.348740 << 0.479388 << 0.506228 << 0.145673 << 0.491547 << endr

<< 0.148678 << 0.682258 << 0.571154 << 0.874724 << 0.444632 << endr

<< 0.245726 << 0.595218 << 0.409327 << 0.367827 << 0.385736 << endr;

// .n_rows = number of rows

// .n_cols = number of columns

cout << "A.n_rows = " << A.n_rows << endl;

cout << "A.n_cols = " << A.n_cols << endl;

// Print the matrix A

A.print("A =");

// Computation of the determinant

cout << "det(A) = " << det(A) << endl;

// inverse

cout << "inv(A) = " << endl << inv(A) << endl;

// save to disk

A.save("MatrixA.txt", raw_ascii);

// Define a new matrix B which reads A from file

mat B;

B.load("MatrixA.txt");

B += 5.0*A;

B.print("The matrix B:");

// generate the identity matrix

mat C = eye<mat>(4,4);

// transpose of B

cout << "trans(B) =" << endl;

// maximum from each column (traverse along rows)

cout << "max(B) =" << endl;

cout << max(B) << endl;

// sum of all elements B

cout << "sum(sum(B)) = " << sum(sum(B)) << endl;

cout << "accu(B) = " << accu(B) << endl;

// trace = sum along diagonal

cout << "trace(B) = " << trace(B) << endl;

// random matrix -- values are uniformly distributed in the [0,1] interval

mat D = randu<mat>(4,4);

D.print("Matrix D:");

// sum of four matrices (no temporary matrices are created)

mat E = A+B + C + D;
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F.print("F:");

return 0;

}

For more examples, please consult the online manual, see http://arma.sourceforgenet.

6.7.1 How to construct your own matrix-vector class

The rest of this section shows how one can build a matrix-vector class. We first give an exam-
ple of a function which use the header file Array.h.

#include "Array.h"

#include <iostream>

using namespace std;

int main(){

// Create an array with (default) nrows = 1, ncols = 1:

Array<double> v1;

// Redimension the array to have length n:

int n1 = 3;

v1.redim(n1);

// Extract the length of the array:

const int length = v1.getLength();

// Create a narray of specific length:

int n2 = 5;

Array<double> v2(n2);

// Create an array as a copy of another one:

Array<double> v5(v1);

// Assign the entries in an array:

v5(0) = 3.0;

v5(1) = 2.5;

v5(2) = 1.0;

for(int i=0; i<3; i++){

cout << v5(i) << endl;

}

// Extract the ith component of an array:

int i = 2;

double value = v5(1);

cout << "value: " << value << endl;

// Set an array equal another one:

Array<double> v6 = v5;

for(int i=0; i<3; i++){

v1(i) = 1.0;

v2(i) = 2.0;

}

// Create a two-dimensional array (matrix):

http://arma.sourceforgenet
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Array<double> matrix(2, 2);

// Fill the array:

matrix(0,0) = 1;

matrix(0,1) = 2;

matrix(1,0) = 3;

matrix(1,1) = 4;

// Get the entries in the array:

cout << "\nMatrix: " << endl;

for(int i=0; i<2; i++){

for(int j=0; j<2; j++){

cout << matrix(i,j) << " ";

}

cout << endl;

}

// Assign an entry of the matrix to a variable:

double scalar = matrix(0,0);

const double b = matrix(1,1);

Array<double> vector(2);

vector(0) = 1.0;

vector(1) = 2.0;

Array<double> v = vector;

Array<double> A = matrix;

Array<double> u(2);

cout << "\nMatrix: " << endl;

for(int i=0; i<2; i++){

for(int j=0; j<2; j++){

cout << matrix(i,j) << " ";

}

cout << endl;

}

Array<double> a(2,2);

a(1,1) = 5.0;

// Arithmetic operations with arrays using a

// syntax close to the mathematical language

Array<double> w = v1 + 2.0*v2;

// Create multidimensional matrices and assign values to them:

int N = 3;

Array<double> multiD; multiD.redim(N,N,N);

for(int i=0; i<N; i++){

for(int j=0; j<N; j++){

for(int k=0; k<N; k++){

cout << "multD(i,j,k) = " << multiD(i,j,k) << endl;

}

}

}

multiD(1,2,3) = 4.0;

cout << "multiD(1,2,3) = " << multiD(1,2,3) << endl;

}

The header file follows here
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#ifndef ARRAY_H

#define ARRAY_H

#include <iostream>

#include <sstream>

#include <iomanip>

#include <cstdlib>

using namespace std;

template<class T>

class Array{

private:

static const int MAXDIM = 6;

T *data ; /**> One-dimensional array of data.*/

int size[MAXDIM]; /**> Size of each dimension.*/

int ndim; /**> Number of dimensions occupied. */

int length; /**> Total number of entries.*/

int dx1, dx2, dx3, dx4, dx5;

void allocate(int ni=0, int nj=0, int nk=0, int nl=0, int nm=0, int nn=0){

ndim = MAXDIM;

// Set the number of entries in each dimension.

size[0]=ni;

size[1]=nj;

size[2]=nk;

size[3]=nl;

size[4]=nm;

size[5]=nn;

// Set the number of dimensions used.

if(size[5] == 0)

ndim--;

if(size[4] == 0)

ndim--;

if(size[3] == 0)

ndim--;

if(size[2] == 0)

ndim--;

if(size[1] == 0)

ndim--;

if(size[0] == 0){

ndim = 0;

length = 0;

data = NULL;

}else{

try{

int i;

// Set the length (total number of entries) of the one-dimensional array.

length = 1;

for(i=0; i<ndim; i++)

length *= size[i];

data = new T[length];

dx1 = size[0];
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dx2 = dx1*size[1];

dx3 = dx2*size[2];

dx4 = dx3*size[3];

dx5 = dx4*size[4];

}catch(std::bad_alloc&){

std::cerr << "Array::allocate -- unable to allocate array of length " << length <<

std::endl;

exit(1);

}

}

}

public:

/**

* @brief Constructor with default arguments.

*

* Creates an array with one or two-dimensions.

*

* @param int nrows. Number of rows in the array.

* @param int ncolsd. Number of columns in the array.

**/

Array(int ni=0, int nj=0, int nk=0, int nl=0, int nm=0, int nn=0){

// Allocate memory

allocate(ni,nj,nk,nl,nm,nn);

} // end constructor

//! Constructor

Array(T* array, int ndim_, int size_[]){

ndim = ndim_;

length = 1;

int i;

for(i=0; i<ndim; i++){

size[i] = size_[i]; // Copy only the ndim entries. The rest is zero by default.

length *= size[i];

}

// Now when we known the length, we should not forget to allocate memory!!!!

data = new T[length];

// Copy the entries from array to data:

for(i=0; i<length; i++){

data[i] = array[i];

}

} // End constructor.

//! Copy constructor

Array(const Array<T>& array);

//! Destructor

~Array();
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/**

* @brief Checks the validity of the indexing.

* @param i, an integer for indexing the rows.

* @param j, an integer for indexing the columns.

**/

bool indexOk(int i, int j=0) const;

/**

* @brief Change the dimensions of an array.

* @param ni number of entries in the first dimension.

* @param nj number of entries in the second dimension.

* @param nk number of entries in the third dimension.

* @param nl number of entries in the fourth dimension.

* @param nm number of entries in the fifth dimension.

* @param nn number of entries in the sixth dimension.

**/

bool redim(int ni, int nj=0, int nk=0, int nl=0, int nm=0, int nn=0);

/**

* @return The total number of entries in the array, i.e., the sum of the entries in all

the dimensions.

**/

int getLength()const{return length;}

/**

* @return The number of rows in a matrix.

**/

int getRows() const {return size[0];}

/**

* @return Returns the number of columns in a matrix.

**/

int getColumns() const {return size[1];}

/** @brief Gives the number of entries in a dimension.

*

* @param i An integer from 0 to 5 indicating the dimension we want to explore.

* @return size[i] An integer for the number of elements in the dimension number i.

**/

int dimension(int i) const{return size[i];}

/**

* The number of dimensions in the array.

**/

int getNDIM()const{return ndim;}

/**

* @return A constant pointer to the array of data.

* This function can be used to interface C++ with Python/Fortran/C.

**/

const T* getPtr() const;

/**

* @return A pointer to the array of data.

* This function can be used to interface C++ with Python/Fortran/C.
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**/

T* getPtr();

/**

* @return A pointer to an array with information on the length of each dimension.

**/

int* getPtrSize();

/************************************************************/

/* OPERATORS */

/************************************************************/

//! Assignment operator

Array<T>& operator=(const Array<T>& array);

//! Sum operator

Array<T> operator+(const Array<T>& array);

//! Substraction operator

Array<T> operator-(const Array<T>& array)const; /// w=u-v;

//! Multiplication operator

//Array<T> operator*(const Array<T>& array);

//! Assigment by addition operator

Array<T>& operator+=(const Array<T>& w);

//! Assignment by substraction operator

Array<T>& operator-=(const Array<T>& w);

//! Assignment by scalar product operator

Array<T>& operator*=(double scalar);

//! Assignment by division operator

Array<T>& operator/=(double scalar);

//! Index operators

const T& operator()(int i)const;

const T& operator()(int i, int j)const;

const T& operator()(int i, int j, int k)const;

const T& operator()(int i, int j, int k, int l)const;

const T& operator()(int i, int j, int k, int l, int m)const;

const T& operator()(int i, int j, int k, int l, int m, int n)const;

T& operator()(int i);

T& operator()(int i, int j);

T& operator()(int i, int j, int k);

T& operator()(int i, int j, int k, int l);

T& operator()(int i, int j, int k, int l, int m);

T& operator()(int i, int j, int k, int l, int m, int n);
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/**************************************************************/

/* FRIEND FUNCTIONS */

/**************************************************************/

//! Unary operator +

template <class T2>

friend Array<T> operator+ (const Array<T>&); // u = + v

//! Unary operator -

template <class T2>

friend Array<T> operator-(const Array<T>&); // u = - v

/**

* Premultiplication by a floating point number:

* \f$\mathbf{u} = a \mathbf{v}\f$,

* where \f$a\f$ is a scalar and \f$\mathbf{v}\f$ is a array.

**/

template <class T2>

friend Array<T> operator*(double, const Array<T>&); // u = a*v

/**

* Postmultiplication by a floating point number:

* \f$\mathbf{u} = \mathbf{v} a\f$,

* where \f$a\f$ is a scalar and \f$\mathbf{v}\f$ is a array.

**/

template <class T2>

friend Array<T> operator*(const Array<T>&, double); // u = v*a

/**

* Division of the entries of a array by a scalar.

**/

template <class T2>

friend Array<T> operator/(const Array<T>&, double); // u = v/a

};

#include "Array.cpp"

// Destructor

template <class T>

inline Array<T>::~Array(){delete[] data;}

// Index operators

template <class T>

inline const T& Array<T>::operator()(int i)const {

#if CHECKBOUNDS_ON

indexOk(i);

#endif

return data[i];

}
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template <class T>

inline const T& Array<T>::operator()(int i, int j)const {

#if CHECKBOUNDS_ON

indexOk(i,j);

#endif

return data[i + j*dx1];

}

template <class T>

inline const T& Array<T>::operator()(int i, int j, int k)const {

#if CHECKBOUNDS_ON

indexOk(i,j,k);

#endif

return data[i + j*dx1 + k*dx2];

}

template <class T>

inline const T& Array<T>::operator()(int i, int j, int k, int l)const {

#if CHECKBOUNDS_ON

indexOk(i,j,k,l);

#endif

return data[i + j*dx1 + k*dx2 + l*dx3];

}

template <class T>

inline const T& Array<T>::operator()(int i, int j, int k, int l, int m)const {

#if CHECKBOUNDS_ON

indexOk(i,j,k,l, m);

#endif

return data[i + j*dx1 + k*dx2 + l*dx3 + m*dx4];

}

template <class T>

inline const T& Array<T>::operator()(int i, int j, int k, int l, int m, int n)const {

#if CHECKBOUNDS_ON

indexOk(i,j,k,l,m,n);

#endif

return data[i + j*dx1 + k*dx2 + l*dx3 + m*dx4 + n*dx5];

}

template <class T>

inline T& Array<T>::operator()(int i) {

#if CHECKBOUNDS_ON

indexOk(i);

#endif

return data[i];

}

template <class T>

inline T& Array<T>::operator()(int i, int j) {

#if CHECKBOUNDS_ON

indexOk(i,j);
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#endif

return data[i + j*dx1];

}

template <class T>

inline T& Array<T>::operator()(int i, int j, int k) {

#if CHECKBOUNDS_ON

indexOk(i,j,k);

#endif

return data[i + j*dx1 + k*dx2];

}

template <class T>

inline T& Array<T>::operator()(int i, int j, int k, int l) {

#if CHECKBOUNDS_ON

indexOk(i,j,k,l);

#endif

return data[i + j*dx1 + k*dx2 + l*dx3];

}

template <class T>

inline T& Array<T>::operator()(int i, int j, int k, int l, int m) {

#if CHECKBOUNDS_ON

indexOk(i,j,k,l,m);

#endif

return data[i + j*dx1 + k*dx2 + l*dx3 + m*dx4];

}

template <class T>

inline T& Array<T>::operator()(int i, int j, int k, int l, int m, int n) {

#if CHECKBOUNDS_ON

indexOk(i,j,k,l,m,n);

#endif

return data[i + j*dx1 + k*dx2 + l*dx3 + m*dx4 + n*dx5];

}

template <class T>

inline const T* Array<T>::getPtr() const {return data;}

template <class T>

inline T* Array<T>::getPtr(){return data; }

template <class T>

inline int* Array<T>::getPtrSize(){return size;}

// template <class T>
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// inline int Array<T>::dim()const{return ndim;}

/******************************************************************/

/* IMPLEMENTATION OF FRIEND FUNCTIONS */

/******************************************************************/

/******************************************************************/

/* (Arithmetic) Unary operators */

/******************************************************************/

//! Unary operator +

template <class T>

inline Array<T> operator+(const Array<T>& v){ // u = + v

return v;

}

//! Unary operator -

template <class T>

inline Array<T> operator-(const Array<T>& v){ // u = - v

return Array<T>(v.size[0],v.size[1]) -v;

}

//! Postmultiplication operator

template <class T>

inline Array<T> operator*(const Array<T>& v, double scalar){ // u = v*a

return Array<T>(v) *= scalar;

}

//! Premultiplication operator.

template <class T>

inline Array<T> operator*(double scalar, const Array<T>& v){ // u = a*v

return v*scalar; // Note the call to postmultiplication operator defined above

}

//! Division of the entries in a array by a scalar

template <class T>

inline Array<T> operator/(const Array<T>& v, double scalar){

if(!scalar) std::cout << "Division by zero!" << std::endl;

return (1.0/scalar)*v;

}

#endif

6.8 Exercises

6.1. The aim of this exercise is to write your own Gaussian elimination code.

1. Consider the linear system of equations

a11x1+a12x2+a13x3 = w1

a21x1+a22x2+a23x3 = w2

a31x1+a32x2+a33x3 = w3.
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This can be written in matrix form as
Ax = w.

We specialize here to the following case

− x1+ x2−4x3 = 0

2x1+2x2 = 1

3x1+3x2+2x3 =
1
2.

Obtain the solution (by hand) of this system of equations by doing Gaussian elimination.
2. Write therafter a program which implements Gaussian elimination (with pivoting) and

solve the above system of linear equations. How many floating point operations are in-
volved in the solution via Gaussian elimination without pivoting? Can you estimate the
number of floating point operations with pivoting?

6.2. If the matrix A is real, symmetric and positive definite, then it has a unique factorization
(called Cholesky factorization)

A= LU = LLT

where LT is the upper matrix, implying that

LT
i j = L ji .

The algorithm for the Cholesky decomposition is a special case of the general LU-decomposition
algorithm. The algorithm of this decomposition is as follows

• Calculate the diagonal element Lii by setting up a loop for i = 0 to i = n−1 (C++ indexing
of matrices and vectors)

Lii =

(
Aii −

i−1

∑
k=0

L2
ik

)1/2

. (6.44)

• within the loop over i, introduce a new loop which goes from j = i+1 to n−1 and calculate

L ji =
1
Lii

(
Ai j −

i−1

∑
k=0

Lik l jk

)
. (6.45)

For the Cholesky algorithmwe have always that Lii >0 and the problemwith exceedingly large
matrix elements does not appear and hence there is no need for pivoting. Write a function
which performs the Cholesky decomposition. Test your program against the standard LU
decomposition by using the matrix

A =




6 3 2
3 2 1
2 1 1


 (6.46)

Finally, use the Cholesky method to solve

0.05x1+0.07x2+0.06x3+0.05x4 = 0.23

0.07x1+0.10x2+0.08x3+0.07x4 = 0.32

0.06x1+0.08x2+0.10x3+0.09x4 = 0.33

0.05x1+0.07x2+0.09x3+0.10x4 = 0.31

You can also use the LU codes for linear equations to check the results.

6.3. In this exercise we are going to solve the one-dimensional Poisson equation in terms of
linear equations.
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1. We are going to solve the one-dimensional Poisson equation with Dirichlet boundary con-
ditions by rewriting it as a set of linear equations.
The three-dimensional Poisson equation is a partial differential equation,

∂ 2φ
∂x2 +

∂ 2φ
∂y2 +

∂ 2φ
∂z2 =−ρ(x,y,z)

ε0
,

whose solution we will discuss in chapter 10. The function ρ(x,y,z) is the charge density
and φ is the electrostatic potential. In this project we consider the one-dimensional case
since there are a few situations, possessing a high degree of symmetry, where it is possible
to find analytic solutions. Let us discuss some of these solutions.
Suppose, first of all, that there is no variation of the various quantities in the y- and z-
directions. In this case, Poisson’s equation reduces to an ordinary differential equation in
x, the solution of which is relatively straightforward. Consider for example a vacuum diode,
in which electrons are emitted from a hot cathode and accelerated towards an anode. The
anode is held at a large positive potential V0 with respect to the cathode. We can think of
this as an essentially one-dimensional problem. Suppose that the cathode is at x = 0 and
the anode at x= d. Poisson’s equation takes the form

d2φ
dx2 =−ρ(x)

ε0
,

where φ(x) satisfies the boundary conditions φ(0) = 0 and φ(d) = V0. By energy conserva-
tion, an electron emitted from rest at the cathode has an x-velocity v(x) which satisfies

1
2

mev
2(x)−eφ(x) = 0.

Furthermore, we assume that the current I is independent of x between the anode and
cathode, otherwise, charge will build up at some points. From electromagnetism one can
then show that the current I is given by I =−ρ(x)v(x)A, where A is the cross-sectional area
of the diode. The previous equations can be combined to give

d2φ
dx2 =

I
ε0A

(me

2e

)1/2
φ−1/2.

The solution of the above equation which satisfies the boundary conditions is

φ =V0

( x
d

)4/3
,

with

I =
4
9

ε0A
d2

(
2e
me

)1/2

V3/2
0 .

This relationship between the current and the voltage in a vacuum diode is called the
Child-Langmuir law.
Another physics example in one dimension is the famous Thomas-Fermi model, widely
used as a mean-field model in simulations of quantum mechanical systems [37, 38], see
Lieb for a newer and updated discussion [39]. Thomas and Fermi assumed the existence
of an energy functional, and derived an expression for the kinetic energy based on the
density of electrons, ρ(r) in an infinite potential well. For a large atom or molecule with
a large number of electrons. Schrödinger’s equation, which would give the exact density
and energy, cannot be easily handled for large numbers of interacting particles. Since
the Poisson equation connects the electrostatic potential with the charge density, one can
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derive the following equation for potential V

d2V
dx2 =

V3/2
√

x
,

with V(0) = 1.
In our case we will rewrite Poisson’s equation in terms of dimensionless variables. We can
then rewrite the equation as

−u′′(x) = f (x), x∈ (0,1), u(0) = u(1) = 0.

and we define the discretized approximation to u as vi with grid points xi = ih in the interval
from x0 = 0 to xn+1 = 1. The step length or spacing is defined as h= 1/(n+1). We have then
the boundary conditions v0 = vn+1 = 0. We approximate the second derivative of u with

−vi+1+ vi−1−2vi

h2 = fi for i = 1, . . . ,n,

where fi = f (xi). Show that you can rewrite this equation as a linear set of equations of the
form

Av = b̃,

where A is an n×n tridiagonal matrix which we rewrite as

A =




2 −1 0 . . . . . . 0
−1 2 −1 0 . . . . . .

0 −1 2 −1 0 . . .

. . . . . . . . . . . . . . .

0 . . . −1 2 −1
0 . . . 0 −1 2




and b̃i = h2 fi .
In our case we will assume that f (x) = (3x+x2)ex, and keep the same interval and boundary
conditions. Then the above differential equation has an analytic solution given by u(x) =
x(1− x)ex (convince yourself that this is correct by inserting the solution in the Poisson
equation). We will compare our numerical solution with this analytic result in the next
exercise.

2. We can rewrite our matrix A in terms of one-dimensional vectors a,b,c of length 1 : n. Our
linear equation reads

A =




b1 c1 0 . . . . . . . . .

a2 b2 c2 . . . . . . . . .

a3 b3 c3 . . . . . .

. . . . . . . . . . . . . . .

an−2 bn−1 cn−1

an bn







v1

v2

. . .

. . .

. . .

vn




=




b̃1

b̃2

. . .

. . .

. . .

b̃n



.

A tridiagonal matrix is a special form of banded matrix where all the elements are zero
except for those on and immediately above and below the leading diagonal. The above
tridiagonal system can be written as

aivi−1+bivi + civi+1 = b̃i ,
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for i = 1,2, . . . ,n. The algorithm for solving this set of equations is rather simple and re-
quires two steps only, a decomposition and forward substitution and finally a backward
substitution.
Your first task is to set up the algorithm for solving this set of linear equations. Find also
the number of operations needed to solve the above equations. Show that they behave
like O(n) with n the dimensionality of the problem. Compare this with standard Gaussian
elimination.
Then you should code the above algorithm and solve the problem for matrices of the size
10×10, 100×100and 1000×1000. That means that you choose n= 10, n= 100and n= 1000
grid points.
Compare your results (make plots) with the analytic results for the different number of grid
points in the interval x∈ (0,1). The different number of grid points corresponds to different
step lengths h.
Compute also the maximal relative error in the data set i = 1, . . . ,n,by setting up

εi = log10

(∣∣∣∣
vi−ui

ui

∣∣∣∣
)
,

as function of log10(h) for the function values ui and vi . For each step length extract the
max value of the relative error. Try to increase n to n= 10000and n= 105. Comment your
results.

3. Compare your results with those from the LU decomposition codes for the matrix of size
1000×1000. Use for example the unix function time when you run your codes and compare
the time usage between LU decomposition and your tridiagonal solver. Can you run the
standard LU decomposition for a matrix of the size 105×105? Comment your results.

6.8.1 Solution

The program listed below encodes a possible solution to part b) of the above project. Note
that we have employed Blitz++ as library and that the range of the various vectors are now
shifted from their default ranges (0 : n−1) to (1 : n) and that we access vector elements as a(i)
instead of the standard C++ declaration a[i].

The program reads from screen the name of the ouput file and the dimension of the prob-
lem, which in our case corresponds to the number of mesh points as well, in addition to the
two endpoints. The function f (x) = (3x+ x2)exp(x) is included explicitely in the code. An ob-
vious change is to define a separate function, allowing thereby for a generalization to other
function f (x).

/*
Program to solve the one-dimensional Poisson equation

-u''(x) = f(x) rewritten as a set of linear equations

A u = f where A is an n x n matrix, and u and f are 1 x n vectors

In this problem f(x) = (3x+x*x)exp(x) with solution u(x) = x(1-x)exp(x)

The program reads from screen the name of the output file.

Blitz++ is used here, with arrays starting from 1 to n

*/

#include <iomanip>

#include <fstream>

#include <blitz/array.h>

#include <iostream>

using namespace std;

using namespace blitz;
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ofstream ofile;

// Main program only, no other functions

int main(int argc, char* argv[])

{

char *outfilename;

int i, j, n;

double h, btemp;

// Read in output file, abort if there are too few command-line arguments

if( argc <= 1 ){

cout << "Bad Usage: " << argv[0] <<

" read also output file on same line" << endl;

exit(1);

}

else{

outfilename=argv[1];

}

ofile.open(outfilename);

cout << "Read in number of mesh points" << endl;

cin >> n;

h = 1.0/( (double) n+1);

// Use Blitz to allocate arrays

// Use range to change default arrays from 0:n-1 to 1:n

Range r(1,n);

Array<double,1> a(r), b(r), c(r), y(r), f(r), temp(r);

// set up the matrix defined by three arrays, diagonal, upper and lower diagonal band

b = 2.0; a = -1.0 ; c = -1.0;

// Then define the value of the right hand side f (multiplied by h*h)

for(i=1; i <= n; i++){

// Explicit expression for f, could code as separate function

f(i) = h*h*(i*h*3.0+(i*h)*(i*h))*exp(i*h);

}

// solve the tridiagonal system, first forward substitution

btemp = b(1);

for(i = 2; i <= n; i++) {

temp(i) = c(i-1) / btemp;

btemp = b(i) - a(i) * temp(i);

y(i) = (f(i) - a(i) * y(i-1)) / btemp;

}

// then backward substitution, the solution is in y()

for(i = n-1; i >= 1; i--) {

y(i) -= temp(i+1) * y(i+1);

}

// write results to the output file

for(i = 1; i <= n; i++){

ofile << setiosflags(ios::showpoint | ios::uppercase);

ofile << setw(15) << setprecision(8) << i*h;

ofile << setw(15) << setprecision(8) << y(i);

ofile << setw(15) << setprecision(8) << i*h*(1.0-i*h)*exp(i*h) <<endl;

}

ofile.close();

}

The program writes also the exact solution to file. In Fig. 6.4 we show the results obtained
with n = 10. Even with so few points, the numerical solution is very close to the analytic
answer. With n = 100 it is almost impossible to distinguish the numerical solution from the
analytical one, as shown in Fig. 6.5. It is therefore instructive to study the relative error,
which we display in Table 6.2 as function of the step length h= 1/(n+1).

The mathematical truncation we made when computing the second derivative goes like
O(h2). Our results for n from n = 10 to somewhere between n = 104 and n = 105 result in a
slope which is almost exactly equal 2,in good agreement with the mathematical truncation
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Fig. 6.4 Numerical solution obtained with n= 10 compared with the analytical solution.
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Fig. 6.5 Numerical solution obtained with n= 10 compared with the analytical solution.

Table 6.2 log10 values for the relative error and the step length h computed at x= 0.5.

n log10(h) εi = log10(|(vi −ui)/ui |)
10 -1.04 -2.29

100 -2.00 -4.19
1000 -3.00 -6.18

104 -4.00 -8.18
105 -5.00 -9.19
106 -6.00 -6.08
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made. Beyond n= 105 the relative error becomes bigger, telling us that there is no point in
increasing n. For most practical application a relative error between 10−6 and 10−8 is more
than sufficient, meaning that n= 104 may be an acceptable number of mesh points. Beyond
n= 105, numerical round off errors take over, as discussed in the previous chapter as well.

6.4. Write your own code for performing the cubic spline interpolation using either Blitz++
or Armadillo. Alternatively you can use the vector-matrix class included in this text.

6.5. Write your own code for the LU decomposition using the same libraries as in the previous
exercise. Find also the number of floating point operations.

6.6. Solve exercise 6.3 by writing a code which implements both the iterative Jacobi method
and the Gauss-Seidel method. Study carefully the number of iterations needed to achieve the
exact result.

6.7. Extend thereafter your code for the iterative Jacobi method to a parallel version and
compare with the results from the previous exercise.

6.8. Write your own code for the Conjugate gradient method.





Chapter 7

Eigensystems

Abstract We present here two methods for solving directly eigenvalue problems using sim-
ilarity transformations. One is the familiar Jacobi rotation method while the second method
is based on transforming the matrix to tridiagonal form using Householder’s algorithm. We
discuss also so-called power methods and conclude with a discussion of iterative algorithms.
These are particularly interesting for eigenvalue problems of large dimnesionality.

7.1 Introduction

Together with linear equations and least squares, the third major problem in matrix com-
putations deals with the algebraic eigenvalue problem. Here we limit our attention to the
symmetric case. We focus in particular on two similarity transformations, the Jacobi method,
the famous QR algoritm with Householder’s method for obtaining a triangular matrix and
Francis’ algorithm for the final eigenvalues. Our presentation follows closely that of Golub
and Van Loan, see Ref. [28].

7.2 Eigenvalue problems

Let us consider the matrix A of dimension n. The eigenvalues of A are defined through the
matrix equation

Ax(ν) = λ (ν)x(ν), (7.1)

where λ (ν) are the eigenvalues and x(ν) the corresponding eigenvectors. Unless otherwise
stated, when we use the wording eigenvector we mean the right eigenvector. The left eigen-
vector is defined as

x(ν)LA = λ (ν)x(ν)L

The above right eigenvector problem is equivalent to a set of n equations with n unknowns xi

a11x1+a12x2+ · · ·+a1nxn = λx1

a21x1+a22x2+ · · ·+a2nxn = λx2

. . . . . .

an1x1+an2x2+ · · ·+annxn = λxn.

We can rewrite Eq. (7.1) as

213
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(
A−λ (ν)I

)
x(ν) = 0,

with I being the unity matrix. This equation provides a solution to the problem if and only if
the determinant is zero, namely ∣∣∣A−λ (ν)I

∣∣∣= 0,

which in turn means that the determinant is a polynomial of degree n in λ . The eigenvalues
of a matrix A ∈ C

n×n are thus the n roots of its characteristic polynomial

P(λ ) = det(λ I −A), (7.2)

or

P(λ ) =
n

∏
i=1

(λi−λ ) . (7.3)

The set of these roots is called the spectrum and is denoted as λ (A). If λ (A) = {λ1,λ2, . . . ,λn}
then we have

det(A) = λ1λ2 . . .λn,

the trace of A is Tr(A) = λ1+λ2+ · · ·+λn.
Procedures based on these ideas can be used if only a small fraction of all eigenvalues and

eigenvectors are required or if the matrix is on a tridiagonal form, but the standard approach
to solve Eq. (7.1) is to perform a given number of similarity transformations so as to render
the original matrix A in either a diagonal form or as a tridiagonal matrix which then can be
be diagonalized by computational very effective procedures.

The first method leads us to Jacobi’s method whereas the second one is given by House-
holder’s algorithm for tridiagonal transformations. We will discuss both methods below.

7.3 Similarity transformations

In the present discussion we assume that our matrix is real and symmetric, that is A ∈ Rn×n.
The matrix A has n eigenvalues λ1 . . .λn (distinct or not). Let D be the diagonal matrix with
the eigenvalues on the diagonal

D =




λ1 0 0 0 . . . 0 0
0 λ2 0 0 . . . 0 0
0 0 λ3 0 0 . . . 0
. . . . . . . . . . . . . . . . . . . . .

0 . . . . . . . . . . . . λn−1

0 . . . . . . . . . . . . 0 λn



.

If A is real and symmetric then there exists a real orthogonal matrix S such that

STAS= diag(λ1,λ2, . . . ,λn),

and for j = 1 : n we have AS(:, j) = λ jS(:, j). See chapter 8 of Ref. [28] for proof.
To obtain the eigenvalues of A ∈ R

n×n, the strategy is to perform a series of similarity
transformations on the original matrix A, in order to reduce it either into a diagonal form as
above or into a tridiagonal form.

We say that a matrix B is a similarity transform of A if

B = STAS, where STS= S−1S= I .



7.4 Jacobi’s method 215

The importance of a similarity transformation lies in the fact that the resulting matrix has the
same eigenvalues, but the eigenvectors are in general different. To prove this we start with
the eigenvalue problem and a similarity transformed matrix B.

Ax = λx and B = STAS.

We multiply the first equation on the left by ST and insert STS= I between A and x. Then we
get

(STAS)(STx) = λSTx, (7.4)

which is the same as
B
(
STx

)
= λ

(
STx

)
.

The variable λ is an eigenvalue of B as well, but with eigenvector STx.
The basic philosophy is to

• either apply subsequent similarity transformations so that

ST
N . . .ST

1 AS1 . . .SN = D, (7.5)

• or apply subsequent similarity transformations so that A becomes tridiagonal. Thereafter,
techniques for obtaining eigenvalues from tridiagonal matrices can be used.

Let us look at the first method, better known as Jacobi’s method or Given’s rotations.

7.4 Jacobi’s method

Consider an (n×n) orthogonal transformation matrix

S=




1 0 . . . 0 0 . . . 0 0
0 1 . . . 0 0 . . . 0 0
. . . . . . . . . . . . . . . . . . 0 . . .

0 0 . . . cosθ 0 . . . 0 sinθ
0 0 . . . 0 1 . . . 0 0
. . . . . . . . . . . . . . . . . . 0 . . .

0 0 . . . 0 0 . . . 1 0
0 0 . . . −sinθ . . . . . . 0 cosθ




with property ST = S−1. It performs a plane rotation around an angle θ in the Euclidean
n−dimensional space. It means that the matrix elements that differ from zero are given by

skk = sll = cosθ ,skl =−slk =−sinθ ,sii =−sii = 1 i 6= k i 6= l ,

A similarity transformation
B = STAS,

results in
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bii = aii , i 6= k, i 6= l

bik = aikcosθ −ail sinθ , i 6= k, i 6= l

bil = ail cosθ +aiksinθ , i 6= k, i 6= l

bkk = akkcos2θ −2aklcosθsinθ +all sin2θ
bll = all cos2θ +2aklcosθsinθ +akksin2θ
bkl = (akk−all )cosθsinθ +akl(cos2θ − sin2θ )

The angle θ is arbitrary. The recipe is to choose θ so that all non-diagonal matrix elements
bkl become zero.

The algorithm is then quite simple. We perform a number of iterations until the sum over
the squared non-diagonal matrix elements are less than a prefixed test (ideally equal zero).
The algorithm is more or less foolproof for all real symmetric matrices, but becomes much
slower than methods based on tridiagonalization for large matrices.

The main idea is thus to reduce systematically the norm of the off-diagonal matrix elements
of a matrix A

off(A) =

√
n

∑
i=1

n

∑
j=1, j 6=i

a2
i j .

To demonstrate the algorithm, we consider the simple 2×2 similarity transformation of the
full matrix. The matrix is symmetric, we single out 1≤ k < l ≤ n and use the abbreviations
c= cosθ and s= sinθ to obtain

(
bkk 0
0 bll

)
=

(
c −s
s c

)(
akk akl

alk all

)(
c s
−s c

)
.

We require that the non-diagonal matrix elements bkl = blk = 0, implying that

akl(c
2− s2)+ (akk−all )cs= bkl = 0.

If akl = 0 one sees immediately that cosθ = 1 and sinθ = 0.
The Frobenius norm of an orthogonal transformation is always preserved. The Frobenius

norm is defined as

||A||F =

√
n

∑
i=1

n

∑
j=1
|ai j |2.

This means that for our 2×2 case we have

2a2
kl +a2

kk+a2
ll = b2

kk+b2
ll ,

which leads to

off(B)2 = ||B||2F −
n

∑
i=1

b2
ii = off(A)2−2a2

kl,

since

||B||2F −
n

∑
i=1

b2
ii = ||A||2F −

n

∑
i=1

a2
ii +(a2

kk+a2
ll −b2

kk−b2
ll ).

This result means that the matrix A moves closer to diagonal form for each transformation.
Defining the quantities tanθ = t = s/c and

τ =
all −akk

2akl
,

we obtain the quadratic equation
t2+2τt−1= 0,
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resulting in

t =−τ±
√

1+ τ2,

and c and s are easily obtained via

c=
1√

1+ t2
,

and s= tc. Choosing t to be the smaller of the roots ensures that |θ | ≤ π/4 and has the effect
of minimizing the difference between the matrices B and A since

||B−A||2F = 4(1− c)
n

∑
i=1,i 6=k,l

(a2
ik +a2

il )+
2a2

kl

c2 .

The main idea is thus to reduce systematically the norm of the off-diagonal matrix elements
of a matrix A

off(A) =

√
n

∑
i=1

n

∑
j=1, j 6=i

a2
i j .

To implement the Jacobi algorithm we can proceed as follows

• Choose a tolerance ε, making it a small number, typically 10−8 or smaller.
• Setup a while-test where one compares the norm of the newly computed off-diagonal

matrix elements

off(A) =

√
n

∑
i=1

n

∑
j=1, j 6=i

a2
i j > ε.

This is however a very time-comsuming test which can be replaced by the simpler
test

max(a2
i j )> ε.

• Now choose the matrix elements akl so that we have those with largest value, that is
|akl |= maxi 6= j |ai j |.

• Compute thereafter τ = (all −akk)/2akl, tanθ , cosθ and sinθ .
• Compute thereafter the similarity transformation for this set of values (k, l), obtaining

the new matrix B = S(k, l ,θ )TAS(k, l ,θ ).
• Continue till

max(a2
i j )≤ ε.

The convergence rate of the Jacobi method is however poor, one needs typically 3n2−5n2 ro-
tations and each rotation requires 4n operations, resulting in a total of 12n3−20n3 operations
in order to zero out non-diagonal matrix elements. Although the classical Jacobi algorithm
performs badly compared with methods based on tridiagonalization, it is easy to parallelize.

The slow convergence is related to the fact that when a new rotation is performed, matrix
elements which were previously zero, may change to non-zero values in the next rotation. To
see this, consider the following simple example.

We specialize to a symmetric 3×3matrix A. We start the process as follows (assuming that
a23 = a32 is the largest non-diagonal matrix element) with c= cosθ and s= sinθ

B =




1 0 0
0 c −s
0 s c






a11 a12 a13

a21 a22 a23

a31 a32 a33






1 0 0
0 c s
0 −s c


 .
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We will choose the angle θ in order to have b23 = b32= 0. We get the new symmetric matrix

B =




a11 a12c−a13s a12s+a13c
a12c−a13s a22c2+a33s2−2a23sc (a22−a33)sc+a23(c2− s2)

a12s+a13c (a22−a33)sc+a23(c2− s2) a22s2+a33c2+2a23sc


 .

Note that a11 is unchanged! As it should.
We have then

b11 = a11

b12 = a12cosθ −a13sinθ ,1 6= 2,1 6= 3

b13 = a13cosθ +a12sinθ ,1 6= 2,1 6= 3

b22 = a22cos2θ −2a23cosθsinθ +a33sin2θ
b33 = a33cos2θ +2a23cosθsinθ +a22sin2θ
b23 = (a22−a33)cosθsinθ +a23(cos2θ − sin2θ )

We will fix the angle θ so that b23= 0.
We get then a new matrix

B =




b11 b12 b13

b12 b22 0
b13 0 a33


 .

We repeat assuming that b12 is the largest non-diagonal matrix element and get a new matrix

C =




c −s 0
s c 0
0 0 1






b11 b12 b13

b12 b22 0
b13 0 b33






c s 0
−s c 0
0 0 1


 .

We continue this process till all non-diagonal matrix elements are zero. It is easy to con-
vince oneself that when performing the above operations, the matrix element b23 which was
previously set to zero may become different from zero. This is one of the problems which
slows down the Jacobi procedure. We leave this experience to the reader in form of a large
numerical project at the end of this chapter.

An implementation of the above algorithm, normally referred to as the classical Jacobi
algorithm, is exposed partially in the code here.

http://folk.uio.no/compphys/programs/chapter07/cpp/jacobi.cpp

/*
Jacobi's method for finding eigenvalues

eigenvectors of the symetric matrix A.

The eigenvalues of A will be on the diagonal

of A, with eigenvalue i being A[i][i].

The j-th component of the i-th eigenvector

is stored in R[i][j].

A: input matrix (n x n)

R: empty matrix for eigenvectors (n x n)

n: dimention of matrices

*/

#include <iostream>

#include <cmath>

#include "jacobi.h"

void jacobi_method ( double ** A, double ** R, int n )

http://folk.uio.no/compphys/programs/chapter07/cpp/jacobi.cpp
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{

// Setting up the eigenvector matrix

for ( int i = 0; i < n; i++ ) {

for ( int j = 0; j < n; j++ ) {

if ( i == j ) {

R[i][j] = 1.0;

} else {

R[i][j] = 0.0;

}

}

}

int k, l;

double epsilon = 1.0e-8;

double max_number_terations = (double) n * (double) n * (double) n;

int iterations = 0;

double max_offdiag = maxoffdiag ( A, &k, &l, n );

while ( fabs(max_offdiag) > epsilon && (double) iterations < max_number_iterations ) {

max:offdiag = maxoffdiag ( A, &k, &l, n );

rotate ( A, R, k, l, n );

iterations++;

}

std::cout << "Number of iterations: " << iterations << "\n";

return;

}

// Function to find the maximum matrix element. Can you figure out a more

// elegant algorithm?

double maxoffdiag ( double ** A, int * k, int * l, int n )

{

double max = 0.0;

for ( int i = 0; i < n; i++ ) {

for ( int j = i + 1; j < n; j++ ) {

if ( fabs(A[i][j]) > max ) {

max = fabs(A[i][j]);

*l = i;

*k = j;

}

}

}

return max;

}

// Function to find the values of cos and sin

void rotate ( double ** A, double ** R, int k, int l, int n )

{

double s, c;

if ( A[k][l] != 0.0 ) {

double t, tau;

tau = (A[l][l] - A[k][k])/(2*A[k][l]);

if ( tau > 0 ) {

t = 1.0/(tau + sqrt(1.0 + tau*tau);

} else {

t = -1.0/( -tau + sqrt(1.0 + tau*tau);

}

c = 1/sqrt(1+t*t);

s = c*t;

} else {

c = 1.0;

s = 0.0;



220 7 Eigensystems

}

double a_kk, a_ll, a_ik, a_il, r_ik, r_il;

a_kk = A[k][k];

a_ll = A[l][l];

// changing the matrix elements with indices k and l

A[k][k] = c*c*a_kk - 2.0*c*s*A[k][l] + s*s*a_ll;

A[l][l] = s*s*a_kk + 2.0*c*s*A[k][l] + c*c*a_ll;

A[k][l] = 0.0; // hard-coding of the zeros

A[l][k] = 0.0;

// and then we change the remaining elements

for ( int i = 0; i < n; i++ ) {

if ( i != k && i != l ) {

a_ik = A[i][k];

a_il = A[i][l];

A[i][k] = c*a_ik - s*a_il;

A[k][i] = A[i][k];

A[i][l] = c*a_il + s*a_ik;

A[l][i] = A[i][l];

}

// Finally, we compute the new eigenvectors

r_ik = R[i][k];

r_il = R[i][l];

R[i][k] = c*r_ik - s*r_il;

R[i][l] = c*r_il + s*r_ik;

}

return;

}

7.5 Similarity Transformations with Householder’s method

In this case the diagonalization is performed in two steps: First, the matrix is transformed
into tridiagonal form by the Householder similarity transformation. Secondly, the tridiago-
nal matrix is then diagonalized. The reason for this two-step process is that diagonalizing a
tridiagonal matrix is computational much faster than the corresponding diagonalization of a
general symmetric matrix. Let us discuss the two steps in more detail.

7.5.1 The Householder’s method for tridiagonalization

The first step consists in finding an orthogonal matrix Swhich is the product of (n−2) orthog-
onal matrices

S= S1S2 . . .Sn−2,

each of which successively transforms one row and one column of A into the required tridi-
agonal form. Only n−2 transformations are required, since the last two elements are already
in tridiagonal form. In order to determine each Si let us see what happens after the first
multiplication, namely,

ST
1 AS1 =




a11 e1 0 0 . . . 0 0
e1 a′22 a′23 . . . . . . . . . a′2n
0 a′32 a′33 . . . . . . . . . a′3n
0 . . . . . . . . . . . . . . .

0 a′n2 a′n3 . . . . . . . . . a′nn



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where the primed quantities represent a matrix A′ of dimension n−1which will subsequentely
be transformed by S2. The factor e1 is a possibly non-vanishing element. The next transforma-
tion produced by S2 has the same effect as S1 but now on the submatirx A

′
only

(S1S2)
T AS1S2 =




a11 e1 0 0 . . . 0 0
e1 a′22 e2 0 . . . . . . 0
0 e2 a′′33 . . . . . . . . . a′′3n
0 . . . . . . . . . . . . . . .

0 0 a′′n3 . . . . . . . . . a′′nn




Note that the effective size of the matrix on which we apply the transformation reduces for
every new step. In the previous Jacobi method each similarity transformation is in principle
performed on the full size of the original matrix.

After a series of such transformations, we end with a set of diagonal matrix elements

a11,a
′
22,a

′′
33. . .a

n−1
nn ,

and off-diagonal matrix elements
e1,e2,e3, . . . ,en−1.

The resulting matrix reads

STAS=




a11 e1 0 0 . . . 0 0
e1 a′22 e2 0 . . . 0 0
0 e2 a′′33 e3 0 . . . 0
. . . . . . . . . . . . . . . . . . . . .

0 . . . . . . . . . . . . a(n−1)
n−1n−1 en−1

0 . . . . . . . . . . . . en−1 a(n−1)
nn




.

It remains to find a recipe for determining the transformation Sn. We illustrate the method
for S1 which we assume takes the form

S1 =

(
1 0T

0 P

)
,

with 0T being a zero row vector, 0T = {0,0, · · ·} of dimension (n−1). The matrix P is symmetric
with dimension ((n−1)× (n−1)) satisfying P2 = I and PT = P. A possible choice which fulfills
the latter two requirements is

P= I −2uuT ,

where I is the (n−1) unity matrix and u is an n−1 column vector with norm uTu = 1, that is
its inner product.

Note that uuT is an outer product giving a dimension ((n−1)×(n−1)). Each matrix element
of P then reads

Pi j = δi j −2uiu j ,

where i and j range from 1 to n−1. Applying the transformation S1 results in

ST
1 AS1 =

(
a11 (Pv)T

Pv A′

)
,

where vT = {a21,a31, · · · ,an1} and P must satisfy (Pv)T = {k,0,0, · · ·}. Then

Pv= v−2u(uTv) = ke, (7.6)
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with eT = {1,0,0, . . .0}. Solving the latter equation gives us u and thus the needed transforma-
tion P. We do first however need to compute the scalar k by taking the scalar product of the
last equation with its transpose and using the fact that P2 = I . We get then

(Pv)TPv= k2 = vTv = |v|2 =
n

∑
i=2

a2
i1,

which determines the constant k=±v. Now we can rewrite Eq. (7.6) as

v− ke= 2u(uTv),

and taking the scalar product of this equation with itself and obtain

2(uTv)2 = (v2±a21v), (7.7)

which finally determines

u =
v− ke
2(uTv)

.

In solving Eq. (7.7) great care has to be exercised so as to choose those values which make
the right-hand largest in order to avoid loss of numerical precision. The above steps are then
repeated for every transformations till we have a tridiagonal matrix suitable for obtaining the
eigenvalues. It is not so difficult to implement Householder’s algorithm, as demonstrated by
the following code.

http://folk.uio.no/compphys/programs/chapter07/cpp/householder.cpp

/*

** The function

** householder()

** perform a Housholder reduction of a real symmetric matrix

** a[][]. On output a[][] is replaced by the orthogonal matrix

** effecting the transformation. d[] returns the diagonal elements

** of the tri-diagonal matrix, and e[] the off-diagonal elements,

** with e[0] = 0.

*/

void householder(double **a, int n, double *d, double *e)

{

register int l,k,j,i;

double scale,hh,h,g,f;

for(i = n - 1; i > 0; i--) {

l = i-1;

h = scale= 0.0;

if(l > 0) {

for(k = 0; k <= l; k++)

scale += fabs(a[i][k]);

if(scale == 0.0) // skip transformation

e[i] = a[i][l];

else {

for(k = 0; k <= l; k++) {

a[i][k] /= scale; // used scaled a's for transformation

h += a[i][k]*a[i][k];

}

f = a[i][l];

g = (f >= 0.0 ? -sqrt(h) : sqrt(h));

e[i] = scale*g;

h -= f * g;

a[i][l] = f - g;

f = 0.0;

http://folk.uio.no/compphys/programs/chapter07/cpp/householder.cpp
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for(j = 0;j <= l;j++) {

a[j][i] = a[i][j]/h; // can be omitted if eigenvector not wanted

g = 0.0;

for(k = 0; k <= j; k++) {

g += a[j][k]*a[i][k];

}

for(k = j+1; k <= l; k++)

g += a[k][j]*a[i][k];

e[j]=g/h;

f += e[j]*a[i][j];

}

hh=f/(h+h);

for(j = 0; j <= l;j++) {

f = a[i][j];

e[j]=g=e[j]-hh*f;

for(k = 0; k <= j; k++)

a[j][k] -= (f*e[k]+g*a[i][k]);

}

} // end k-loop

} // end if-loop for l > 1

else {

e[i]=a[i][l];

}

d[i]=h;

} // end i-loop

d[0] = 0.0;

e[0] = 0.0;

/* Contents of this loop can be omitted if eigenvectors not

** wanted except for statement d[i]=a[i][i];

*/

for(i = 0; i < n; i++) {

l = i-1;

if(d[i]) {

for(j = 0; j <= l; j++) {

g= 0.0;

for(k = 0; k <= l; k++) {

g += a[i][k] * a[k][j];

}

for (k = 0; k <= l; k++) {

a[k][j] -= g * a[k][i];

}

}

}

d[i] = a[i][i];

a[i][i] = 1.0;

for(j = 0; j <= l; j++) {

a[j][i]=a[i][j] = 0.0;

}

}

} // End: function householder()
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7.5.2 Diagonalization of a Tridiagonal Matrix via Francis’ Algorithm

The matrix is now transformed into tridiagonal form and the last step is to transform it into a
diagonal matrix giving the eigenvalues on the diagonal1.

Before we discuss the algorithms, we note that the eigenvalues of a tridiagonal matrix can
be obtained using the characteristic polynomial

P(λ ) = det(λ I −A) =
n

∏
i=1

(λi−λ ) ,

with the matrix

A−λ I =




det

d1−λ e1 0 0 . . . 0 0
e1 d2−λ e2 0 . . . 0 0
0 e2 d3−λ e3 0 . . . 0
. . . . . . . . . . . . . . . . . . . . .

0 . . . . . . . . . . . . dNstep−2−λ eNstep−1

0 . . . . . . . . . . . . eNstep−1 dNstep−1−λ




We can solve this equation in a recursive manner. We let Pk(λ ) be the value of k subde-
terminant of the above matrix of dimension n× n. The polynomial Pk(λ ) is clearly a poly-
nomial of degree k. Starting with P1(λ ) we have P1(λ ) = d1− λ . The next polynomial reads
P2(λ ) = (d2−λ )P1(λ )−e2

1. By expanding the determinant for Pk(λ ) in terms of the minors of
the nth column we arrive at the recursion relation

Pk(λ ) = (dk−λ )Pk−1(λ )−e2
k−1Pk−2(λ ).

Together with the starting values P1(λ ) and P2(λ ) and good root searching methods we ar-
rive at an efficient computational scheme for finding the roots of Pn(λ ). However, for large
matrices this algorithm is rather inefficient and time-consuming.

The programswhich performs these transformations are matrix A−→ tridiagonal matrix−→
diagonal matrix

C: void householder(double ∗∗a, int n, double d[], double e[])
void francis(double d[], double[], int n, double ∗∗z)

Fortran: CALL householder(a, n, d, e)
CALL francis(d, e, n, z)

The last step through the function francis() involves several technical details. Let us de-
scribe the basic idea in terms of a four-dimensional example. For more details, see Ref. [28],
in particular chapters seven and eight.

The current tridiagonal matrix takes the form

A =




d1 e1 0 0
e1 d2 e2 0
0 e2 d3 e3

0 0 e3 d4


 .

As a first observation, if any of the elements ei are zero the matrix can be separated into
smaller pieces before diagonalization. Specifically, if e1 = 0 then d1 is an eigenvalue. Thus, let

1 This section is not complete it will be finished end of fall 2009.
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us introduce a transformation S1

S1 =




cosθ 0 0 sinθ
0 0 0 0
0 0 0 0

−sinθ 0 0 cosθ




Then the similarity transformation

ST
1 AS1 = A′ =




d′1 e′1 0 0
e′1 d2 e2 0
0 e2 d3 e′3
0 0 e′3 d′4




produces a matrix where the primed elements in A′ have been changed by the transformation
whereas the unprimed elements are unchanged. If we now choose θ to give the element
a
′
21 = e

′
= 0 then we have the first eigenvalue = a

′
11 = d

′
1.

This procedure can be continued on the remaining three-dimensional submatrix for the
next eigenvalue. Thus after four transformations we have the wanted diagonal form.

7.6 Power Methods

We assume Â can be diagonalized. Let λ1, λ2, . . . , λn be the n eigenvalues (counted with
multiplicity) of Â and let v1, v2, . . . , vn be the corresponding eigenvectors. We assume that λ1

is the dominant eigenvalue, so that |λ1|> |λ j | for j > 1.
The initial vector b0 can be written:

b0 = c1v1+ c2v2+ · · ·+ cmvm.

If b0 is chosen randomly (with uniform probability), then c1 âL’ă 0 with probability 1. Now,

Akb0 = c1Akv1+ c2Akv2+ · · ·+ cmAkvm

= c1λ k
1v1+ c2λ k

2v2+ · · ·+ cmλ k
mvm

= c1λ k
1

(
v1+

c2
c1

(
λ2
λ1

)k
v2+ · · ·+ cm

c1

(
λm
λ1

)k
vm

)
.

The expression within parentheses converges to v1 because |λ j/λ1|< 1 for j > 1. On the other
hand, we have

bk =
Akb0

‖Akb0‖
.

Therefore, bk converges to (a multiple of) the eigenvector v1. The convergence is geometric,
with ratio ∣∣∣∣

λ2

λ1

∣∣∣∣ ,

where λ2 denotes the second dominant eigenvalue. Thus, the method converges slowly if
there is an eigenvalue close in magnitude to the dominant eigenvalue.

Under the assumptions:

• A has an eigenvalue that is strictly greater in magnitude than its other eigenvalues
• The starting vector b0 has a nonzero component in the direction of an eigenvector associ-

ated with the dominant eigenvalue.
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then:

• A subsequence of (bk) converges to an eigenvector associated with the dominant eigen-
value

Note that the sequence (bk) does not necessarily converge. It can be shown that bk = eiφkv1+

rk where: v1 is an eigenvector associated with the dominant eigenvalue, and ‖rk‖ → 0. The
presence of the term eiφk implies that (bk) does not converge unless eiφk = 1. Under the two

assumptions listed above, the sequence (µk) defined by µk =
b∗kAbk
b∗kbk

converges to the dominant

eigenvalue.
Power iteration is not used very much because it can find only the dominant eigenvalue.
The algorithm is however very useful in some specific case. For instance, Google uses it

to calculate the page rank of documents in their search engine. For matrices that are well-
conditioned and as sparse as the web matrix, the power iterationmethod can be more efficient
than other methods of finding the dominant eigenvector.

Some of the more advanced eigenvalue algorithms can be understood as variations of
the power iteration. For instance, the inverse iteration method applies power iteration to
the matrix Â−1. Other algorithms look at the whole subspace generated by the vectors bk.
This subspace is known as the Krylov subspace. It can be computed by Arnoldi iteration or
Lanczos iteration. The latter is method of choice for diagonalizing symmetric matrices with
huge dimensionalities. We discuss the Lanczos algorithm in the next section.

7.7 Iterative methods: Lanczos’ algorithm

The Lanczos algorithm is applied to symmetric eigenvalue problems. The basic features with
a real symmetric matrix (and normally huge n> 106 and sparse) Â of dimension n×n are

• The Lanczos’ algorithm generates a sequence of real tridiagonal matrices Tk of dimension
k× k with k ≤ n, with the property that the extremal eigenvalues of Tk are progressively
better estimates of Â’ extremal eigenvalues.

• The method converges to the extremal eigenvalues.
• The similarity transformation is

T̂ = Q̂T ÂQ̂,

with the first vector Q̂ê1 = q̂1.

We are going to solve iteratively
T̂ = Q̂T ÂQ̂,

with the first vector Q̂ê1 = q̂1. We can then write out the matrix Q̂ in terms of its column
vectors

Q̂= [q̂1q̂2 . . . q̂n] .

The matrix
T̂ = Q̂T ÂQ̂,

can be written as

T̂ =




α1 β1 0 . . . . . . 0
β1 α2 β2 0 . . . 0
0 β2 α3 β3 . . . 0
. . . . . . . . . . . . . . . 0
. . . βn−2 αn−1 βn−1

0 . . . . . . 0 βn−1 αn



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Using the fact that Q̂Q̂T = Î , we can rewrite

T̂ = Q̂T ÂQ̂,

as
Q̂T̂ = ÂQ̂,

and if we equate columns (recall from the previous slide)

T̂ =




α1 β1 0 . . . . . . 0
β1 α2 β2 0 . . . 0
0 β2 α3 β3 . . . 0
. . . . . . . . . . . . . . . 0
. . . βn−2 αn−1 βn−1

0 . . . . . . 0 βn−1 αn




we obtain
Âq̂k = βk−1q̂k−1+αkq̂k+βkq̂k+1.

We have thus
Âq̂k = βk−1q̂k−1+αkq̂k+βkq̂k+1,

with β0q̂0 = 0 for k= 1 : n−1. Remember that the vectors q̂k are orthornormal and this implies

αk = q̂T
k Âq̂k,

and these vectors are called Lanczos vectors. We have thus

Âq̂k = βk−1q̂k−1+αkq̂k+βkq̂k+1,

with β0q̂0 = 0 for k= 1 : n−1 and
αk = q̂T

k Âq̂k.

If
r̂k = (Â−αkÎ)q̂k−βk−1q̂k−1,

is non-zero, then
q̂k+1 = r̂k/βk,

with βk =±||r̂k||2. These steps can then be written in terms of the following simple algorithm:

r_0 = q_1; beta_0=1; q_0=0; int k = 0;

while (beta_k != 0)

q_{k+1} = r_k/beta_k

k = k+1

alpha_k = q_k^T A q_k

r_k = (A-alpha_k I) q_k -beta_{k-1}q_{k-1}

beta_k = || r_k||_2

end while

7.8 Schrödinger’s Equation Through Diagonalization

Instead of solving the Schrödinger equation as a differential equation, we will solve it through
diagonalization of a large matrix. However, in both cases we need to deal with a problem with
boundary conditions, viz., the wave function goes to zero at the endpoints.
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To solve the Schrödinger equation as a matrix diagonalization problem, let us study the
radial part of the Schrödinger equation. The radial part of the wave function, R(r), is a solution
to

− h̄2

2m

(
1
r2

d
dr

r2 d
dr
− l(l +1)

r2

)
R(r)+V(r)R(r) = ER(r).

Then we substitute R(r) = (1/r)u(r) and obtain

− h̄2

2m
d2

dr2 u(r)+

(
V(r)+

l(l +1)
r2

h̄2

2m

)
u(r) = Eu(r).

We introduce a dimensionless variable ρ =(1/α)r where α is a constant with dimension length
and get

− h̄2

2mα2

d2

dρ2u(r)+

(
V(ρ)+

l(l +1)
ρ2

h̄2

2mα2

)
u(ρ) = Eu(ρ).

In the example below, we will replace the latter equation with that for the one-dimensional
harmonic oscillator. Note however that the procedure which we give below applies equally
well to the case of e.g., the hydrogen atom. We replace ρ with x, take away the centrifugal
barrier term and set the potential equal to

V(x) =
1
2

kx2,

with k being a constant. In our solution we will use units so that k = h̄ = m= α = 1 and the
Schrödinger equation for the one-dimensional harmonic oscillator becomes

− d2

dx2u(x)+ x2u(x) = 2Eu(x).

Let us now see how we can rewrite this equation as a matrix eigenvalue problem. First we
need to compute the second derivative. We use here the following expression for the second
derivative of a function f

f ′′ =
f (x+h)−2 f (x)+ f (x−h)

h2 +O(h2),

where h is our step. Next we define minimum and maximum values for the variable x, Rmin

and Rmax, respectively. With a given number of steps, Nstep, we then define the step h as

h=
Rmax−Rmin

Nstep
.

If we now define an arbitrary value of x as

xi = Rmin+ ih i = 1,2, . . . ,Nstep−1

we can rewrite the Schrödinger equation for xi as

−u(xk+h)−2u(xk)+u(xk−h)
h2 + x2

ku(xk) = 2Eu(xk),

or in a more compact way

−uk+1−2uk+uk−1

h2 + x2
kuk =−

uk+1−2uk+uk−1

h2 +Vkuk = 2Euk,
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where uk = u(xk), uk±1 = u(xk±h) and Vk = x2
k, the given potential. Let us see how this recipe

may lead to a matrix reformulation of the Schrödinger equation. Define first the diagonal
matrix element

dk =
2
h2 +Vk,

and the non-diagonal matrix element

ek =−
1
h2 .

In this case the non-diagonal matrix elements are given by a mere constant. All non-diagonal
matrix elements are equal. With these definitions the Schrödinger equation takes the follow-
ing form

dkuk+ek−1uk−1+ek+1uk+1 = 2Euk,

where uk is unknown. Since we have Nstep−1 values of k we can write the latter equation as a
matrix eigenvalue problem




d1 e1 0 0 . . . 0 0
e1 d2 e2 0 . . . 0 0
0 e2 d3 e3 0 . . . 0
. . . . . . . . . . . . . . . . . . . . .

0 . . . . . . . . . . . . dNstep−2 eNstep−1

0 . . . . . . . . . . . . eNstep−1 dNstep−1







u1

u2

. . .

. . .

. . .

uNstep−1




= 2E




u1

u2

. . .

. . .

. . .

uNstep−1




(7.8)

or if we wish to be more detailed, we can write the tridiagonal matrix as




2
h2 +V1 − 1

h2 0 0 . . . 0 0
− 1

h2
2
h2 +V2 − 1

h2 0 . . . 0 0
0 − 1

h2
2
h2 +V3 − 1

h2 0 . . . 0
. . . . . . . . . . . . . . . . . . . . .

0 . . . . . . . . . . . . 2
h2 +VNstep−2 − 1

h2

0 . . . . . . . . . . . . − 1
h2

2
h2 +VNstep−1




(7.9)

This is a matrix problem with a tridiagonal matrix of dimension Nstep−1×Nstep−1 and will
thus yield Nstep− 1 eigenvalues. It is important to notice that we do not set up a matrix of
dimension Nstep×Nstepsince we can fix the value of the wave function at k= Nstep. Similarly, we
know the wave function at the other end point, that is for x0.

The above equation represents an alternative to the numerical solution of the differential
equation for the Schrödinger equation discussed in chapter 9.

The eigenvalues of the harmonic oscillator in one dimension are well known. In our case,
with all constants set equal to 1, we have

En = n+
1
2
,

with the ground state being E0 = 1/2. Note however that we have rewritten the Schrödinger
equation so that a constant 2 stands in front of the energy. Our program will then yield twice
the value, that is we will obtain the eigenvalues 1,3,5,7.. . . . .

In the next subsection we will try to delineate how to solve the above equation.
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7.8.1 Numerical solution of the Schrödinger equation by

diagonalization

The algorithm for solving Eq. (7.8) may take the following form

• Define values for Nstep, Rmin and Rmax. These values define in turn the step size h. Typical
values for Rmax and Rmin could be 10 and −10 respectively for the lowest-lying states. The
number of mesh points Nstep could be in the range 100 to some thousands. You can check
the stability of the results as functions of Nstep− 1 and Rmax and Rmin against the exact
solutions.

• Construct then two one-dimensional arrays which contain all values of xk and the potential
Vk. For the latter it can be convenient to write a small function which sets up the poten-
tial as function of xk. For the three-dimensional case you may also need to include the
centrifugal potential. The dimension of these two arrays should go from 0 up to Nstep.

• Construct thereafter the one-dimensional vectors d and e, where d stands for the diagonal
matrix elements and e the non-diagonal ones. Note that the dimension of these two arrays
runs from 1 up to Nstep−1, since we know the wave function u at both ends of the chosen
grid.

• We are now ready to obtain the eigenvalues by calling the function tqli which can be found
on the web page of the course. Calling tqli, you have to transfer the matrices d and e, their
dimension n = Nstep− 1 and a matrix z of dimension Nstep− 1×Nstep− 1 which returns the
eigenfunctions. On return, the array d contains the eigenvalues. If z is given as the unity
matrix on input, it returns the eigenvectors. For a given eigenvalue k, the eigenvector is
given by the column k in z, that is z[][k] in C, or z(:,k) in Fortran.

• TQLI does however not return an ordered sequence of eigenvalues. You may then need
to sort them as e.g., an ascending series of numbers. The program we provide includes a
sorting function as well.

• Finally, you may perhaps need to plot the eigenfunctions as well, or calculate some other
expectation values. Or, you would like to compare the eigenfunctions with the analytical
answers for the harmonic oscillator or the hydrogen atom. We provide a function plot
which has as input one eigenvalue chosen from the output of tqli. This function gives you
a normalized wave function u where the norm is calculated as

∫ Rmax

Rmin

|u(x)|2dx→ h
Nstep

∑
i=0

u2
i = 1,

and we have used the trapezoidal rule for integration discussed in chapter 5.

7.8.2 Program example and results for the one-dimensional harmonic

oscillator

We present here a program example which encodes the above algorithm.

http://folk.uio.no/compphys/programs/chapter07/cpp/program1.cpp

/*
Solves the one-particle Schrodinger equation

for a potential specified in function

potential(). This example is for the harmonic oscillator

*/

#include <cmath>

#include <iostream>

http://folk.uio.no/compphys/programs/chapter07/cpp/program1.cpp
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#include <fstream>

#include <iomanip>

#include "lib.h"

using namespace std;

// output file as global variable

ofstream ofile;

// function declarations

void initialise(double&, double&, int&, int&) ;

double potential(double);

int comp(const double *, const double *);

void output(double, double, int, double *);

int main(int argc, char* argv[])

{

int i, j, max_step, orb_l;

double r_min, r_max, step, const_1, const_2, orb_factor,

*e, *d, *w, *r, **z;

char *outfilename;

// Read in output file, abort if there are too few command-line arguments

if( argc <= 1 ){

cout << "Bad Usage: " << argv[0] <<

" read also output file on same line" << endl;

exit(1);

}

else{

outfilename=argv[1];

}

ofile.open(outfilename);

// Read in data

initialise(r_min, r_max, orb_l, max_step);

// initialise constants

step = (r_max - r_min) / max_step;

const_2 = -1.0 / (step * step);

const_1 = - 2.0 * const_2;

orb_factor = orb_l * (orb_l + 1);

// local memory for r and the potential w[r]

r = new double[max_step + 1];

w = new double[max_step + 1];

for(i = 0; i <= max_step; i++) {

r[i] = r_min + i * step;

w[i] = potential(r[i]) + orb_factor / (r[i] * r[i]);

}

// local memory for the diagonalization process

d = new double[max_step]; // diagonal elements

e = new double[max_step]; // tridiagonal off-diagonal elements

z = (double **) matrix(max_step, max_step, sizeof(double));

for(i = 0; i < max_step; i++) {

d[i] = const_1 + w[i + 1];

e[i] = const_2;

z[i][i] = 1.0;

for(j = i + 1; j < max_step; j++) {

z[i][j] = 0.0;

}

}

// diagonalize and obtain eigenvalues

tqli(d, e, max_step - 1, z);

// Sort eigenvalues as an ascending series

qsort(d,(UL) max_step - 1,sizeof(double),
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(int(*)(const void *,const void *))comp);

// send results to ouput file

output(r_min , r_max, max_step, d);

delete [] r; delete [] w; delete [] e; delete [] d;

free_matrix((void **) z); // free memory

ofile.close(); // close output file

return 0;

} // End: function main()

/*
The function potential()

calculates and return the value of the

potential for a given argument x.

The potential here is for the 1-dim harmonic oscillator

*/

double potential(double x)

{

return x*x;

} // End: function potential()

/*
The function int comp()

is a utility function for the library function qsort()

to sort double numbers after increasing values.

*/

int comp(const double *val_1, const double *val_2)

{

if((*val_1) <= (*val_2)) return -1;

else if((*val_1) > (*val_2)) return +1;

else return 0;

} // End: function comp()

// read in min and max radius, number of mesh points and l

void initialise(double& r_min, double& r_max, int& orb_l, int& max_step)

{

cout << "Min vakues of R = ";

cin >> r_min;

cout << "Max value of R = ";

cin >> r_max;

cout << "Orbital momentum = ";

cin >> orb_l;

cout << "Number of steps = ";

cin >> max_step;

} // end of function initialise

// output of results

void output(double r_min , double r_max, int max_step, double *d)

{

int i;

ofile << "RESULTS:" << endl;

ofile << setiosflags(ios::showpoint | ios::uppercase);

ofile <<"R_min = " << setw(15) << setprecision(8) << r_min << endl;

ofile <<"R_max = " << setw(15) << setprecision(8) << r_max << endl;

ofile <<"Number of steps = " << setw(15) << max_step << endl;

ofile << "Five lowest eigenvalues:" << endl;

for(i = 0; i < 5; i++) {

ofile << setw(15) << setprecision(8) << d[i] << endl;

}

} // end of function output
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There are several features to be noted in this program.
The main program calls the function initialise, which reads in the minimum and maximum

values of r, the number of steps and the orbital angular momentum l . Thereafter we allocate
place for the vectors containing r and the potential, given by the variables r[i] and w[i], respec-
tively. We also set up the vectors d[i] and e[i] containing the diagonal and non-diagonal matrix
elements. Calling the function tqli we obtain in turn the unsorted eigenvalues. The latter are
sorted by the intrinsic C-function qsort.

The calculaton of the wave function for the lowest eigenvalue is done in the function plot,
while all output of the calculations is directed to the fuction out put.

The included table exhibits the precision achieved as function of the number of mesh points
N. The exact values are 1,3,5,7,9.

Table 7.1 Five lowest eigenvalues as functions of the number of mesh points N with rmin =−10 and rmax= 10.

N E0 E1 E2 E3 E4

50 9.898985E-01 2.949052E+00 4.866223E+00 6.739916E+00 8.568442E+00
100 9.974893E-01 2.987442E+00 4.967277E+00 6.936913E+00 8.896282E+00
200 9.993715E-01 2.996864E+00 4.991877E+00 6.984335E+00 8.974301E+00
400 9.998464E-01 2.999219E+00 4.997976E+00 6.996094E+00 8.993599E+00

1000 1.000053E+00 2.999917E+00 4.999723E+00 6.999353E+00 8.999016E+00

The agreement with the exact solution improves with increasing numbers of mesh points.
However, the agreement for the excited states is by no means impressive. Moreover, as the
dimensionality increases, the time consumption increases dramatically. Matrix diagonaliza-
tion scales typically as ≈ N3. In addition, there is a maximum size of a matrix which can be
stored in RAM.

The obvious question which then arises is whether this scheme is nothing but a mere
example of matrix diagonalization, with few practical applications of interest. In chapter 3,
where we dealt with interpolation and extrapolation, we discussed also called Richardson’s
deferred extrapolation scheme. Applied to this particualr case, the philosophy of this scheme
would be to diagonalize the above matrix for a set of values of N and thereby the step length
h. Thereafter, an extrapolation is made to h→ 0. The obtained eigenvalues agree then with a
remarkable precision with the exact solution. The algorithm is then as follows

• Perform a series of diagonalizations of the matrix in Eq. (7.9 ) for different values of
the step size h. We obtain then a series of eigenvalues E(h/2k) with k = 0,1,2, . . . .
That will give us an array of ’x-values’ h,h/2,h/4, . . . and an array of ’y-values’
E(h),E(h/2),E(h/4), . . . . Note that you will have such a set for each eigenvalue.

• Use these values to perform an extrapolation calling e.g., the function POLINT with
the point where we wish to extrapolate to given by h= 0.

• End the iteration over k when the error returned by POLINT is smaller than a fixed
test.

The results for the 10 lowest-lying eigenstates for the one-dimensional harmonic oscilla-
tor are listed below after just 3 iterations, i.e., the step size has been reduced to h/8 only.
The exact results are 1,3,5, . . . ,19 and we see that the agreement is just excellent for the
extrapolated results. The results after diagonalization differ already at the fourth-fifth digit.

Parts of a Fortran program which includes Richardson’s extrapolation scheme is included
here. It performs five diagonalizations and establishes results for various step lengths and
interpolates using the function POLINT.
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Table 7.2 Result for numerically calculated eigenvalues of the one-dimensional harmonic oscillator after
three iterations starting with a matrix of size 100×100and ending with a matrix of dimension 800×800. These
four values are then used to extrapolate the 10 lowest-lying eigenvalues to h= 0.. The values of x span from
−10 to 10, that means that the starting step was h = 20/100= 0.2. We list here only the results after three
iterations. The error test was set equal 10−6.

Extrapolation Diagonalization Error
0.100000D+01 0.999931D+00 0.206825D-10
0.300000D+01 0.299965D+01 0.312617D-09
0.500000D+01 0.499910D+01 0.174602D-08
0.700000D+01 0.699826D+01 0.605671D-08
0.900000D+01 0.899715D+01 0.159170D-07
0.110000D+02 0.109958D+02 0.349902D-07
0.130000D+02 0.129941D+02 0.679884D-07
0.150000D+02 0.149921D+02 0.120735D-06
0.170000D+02 0.169899D+02 0.200229D-06
0.190000D+02 0.189874D+02 0.314718D-06

! start loop over interpolations, here we set max interpolations to 5

DO interpol=1, 5

IF ( interpol == 1) THEN

max_step=start_step

ELSE

max_step=(interpol-1)*2*start_step

ENDIF

n=max_step-1

ALLOCATE ( e(n) , d(n) )

ALLOCATE ( w(0:max_step), r(0:max_step))

d=0. ; e =0.

! define the step size

step=(rmax-rmin)/FLOAT(max_step)

hh(interpol)=step*step

! define constants for the matrix to be diagonalized

const1=2./(step*step)

const2=-1./(step*step)

! set up r, the distance from the nucleus and the function w for energy =0

! w corresponds then to the potential

! values at

DO i=0, max_step

r(i) = rmin+i*step

w(i) = potential(r(i))

ENDDO

! setup the diagonal d and the non-diagonal part e of

! the tridiagonal matrix matrix to be diagonalized

d(1:n)=const1+w(1:n) ; e(1:n)=const2

! allocate space for eigenvector info

ALLOCATE ( z(n,n) )

! obtain the eigenvalues

CALL tqli(d,e,n,z)

! sort eigenvalues as an ascending series

CALL eigenvalue_sort(d,n)

DEALLOCATE (z)

err1=0.

! the interpolation part starts here

DO l=1,20

err2=0.

value(interpol,l)=d(l)

inp=d(l)
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IF ( interpol > 1 ) THEN

CALL polint(hh,value(:,l),interpol,0.d0 ,inp,err2)

err1=MAX(err1,err2)

WRITE(6,'(D12.6,2X,D12.6,2X,D12.6)') inp, d(l), err1

ELSE

WRITE(6,'(D12.6,2X,D12.6,2X,D12.6)') d(l), d(l), err1

ENDIF

ENDDO

DEALLOCATE ( w, r, d, e)

ENDDO

7.9 Exercises

7.1. The aim of this problem is to solve Schrödinger’s equation for two electrons in a three-
dimensional harmonic oscillator well with and without a repulsive Coulomb interaction. Your
task is to solve this equation by reformulating it in a discretized form as an eigenvalue equa-
tion to be solved with Jacobi’s method. To achieve this you will have to write your own code
which implements Jacobi’s method.

Electrons confined in small areas in semiconductors, so-called quantum dots, form a hot
research area in modern solid-state physics, with applications spanning from such diverse
fields as quantum nano-medicine to the contruction of quantum gates.

Here we will assume that these electrons move in a three-dimensional harmonic oscillator
potential (they are confined by for example quadrupole fields) and repel each other via the
static Colulomb interaction. We assume spherical symmetry.

We are first interested in the solution of the radial part of Schrödinger’s equation for one
electron. This equation reads

− h̄2

2m

(
1
r2

d
dr

r2 d
dr
− l(l +1)

r2

)
R(r)+V(r)R(r) = ER(r).

In our case V(r) is the harmonic oscillator potential (1/2)kr2 with k= mω2 and E is the energy
of the harmonic oscillator in three dimensions. The oscillator frequency is ω and the energies
are

Enl = h̄ω
(

2n+ l +
3
2

)
,

with n= 0,1,2, . . . and l = 0,1,2, . . . .
Since we have made a transformation to spherical coordinates it means that r ∈ [0,∞).

The quantum number l is the orbital momentum of the electron. Then we substitute R(r) =
(1/r)u(r) and obtain

− h̄2

2m
d2

dr2 u(r)+

(
V(r)+

l(l +1)
r2

h̄2

2m

)
u(r) = Eu(r).

The boundary conditions are u(0) = 0 and u(∞) = 0.
We introduce a dimensionless variable ρ = (1/α)r where α is a constant with dimension

length and get

− h̄2

2mα2

d2

dρ2u(ρ)+
(

V(ρ)+
l(l +1)

ρ2

h̄2

2mα2

)
u(ρ) = Eu(ρ).

We will set in this project l = 0. Inserting V(ρ) = (1/2)kα2ρ2 we end up with
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− h̄2

2mα2

d2

dρ2 u(ρ)+
k
2

α2ρ2u(ρ) = Eu(ρ).

We multiply thereafter with 2mα2/h̄2 on both sides and obtain

− d2

dρ2u(ρ)+
mk

h̄2 α4ρ2u(ρ) =
2mα2

h̄2 Eu(ρ).

The constant α can now be fixed so that

mk

h̄2 α4 = 1,

or

α =

(
h̄2

mk

)1/4

.

Defining

λ =
2mα2

h̄2 E,

we can rewrite Schrödinger’s equation as

− d2

dρ2u(ρ)+ρ2u(ρ) = λu(ρ).

This is the first equation to solve numerically. In three dimensions the eigenvalues for l = 0
are λ0 = 3,λ1 = 7,λ2 = 11, . . . .

We use the by now standard expression for the second derivative of a function u

u′′ =
u(ρ +h)−2u(ρ)+u(ρ−h)

h2 +O(h2),

where h is our step. Next we define minimum and maximum values for the variable ρ , ρmin = 0
and ρmax, respectively. You need to check your results for the energies against different values
ρmax, since we cannot set ρmax= ∞.

With a given number of steps, nstep, we then define the step h as

h=
ρmax−ρmin

nstep
.

Define an arbitrary value of ρ as

ρi = ρmin+ ih i = 0,1,2, . . . ,nstep

we can rewrite the Schrödinger equation for ρi as

−u(ρi +h)−2u(ρi)+u(ρi−h)
h2 +ρ2

i u(ρi) = λu(ρi),

or in a more compact way

−ui+1−2ui +ui−1

h2 +ρ2
i ui =−

ui+1−2ui +ui−1

h2 +Viui = λui ,

where Vi = ρ2
i is the harmonic oscillator potential. Define first the diagonal matrix element

di =
2
h2 +Vi,
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and the non-diagonal matrix element

ei =−
1
h2 .

In this case the non-diagonal matrix elements are given by a mere constant. All non-diagonal
matrix elements are equal. With these definitions the Schrödinger equation takes the follow-
ing form

diui +ei−1ui−1+ei+1ui+1 = λui ,

where ui is unknown. We can write the latter equation as a matrix eigenvalue problem




d1 e1 0 0 . . . 0 0
e1 d2 e2 0 . . . 0 0
0 e2 d3 e3 0 . . . 0
. . . . . . . . . . . . . . . . . . . . .

0 . . . . . . . . . . . . dnstep−2 enstep−1

0 . . . . . . . . . . . . enstep−1 dnstep







u1

u2

. . .

. . .

. . .

unstep−1




= λ




u1

u2

. . .

. . .

. . .

unstep−1




(7.10)

or if we wish to be more detailed, we can write the tridiagonal matrix as




2
h2 +V1 − 1

h2 0 0 . . . 0 0
− 1

h2
2
h2 +V2 − 1

h2 0 . . . 0 0
0 − 1

h2
2
h2 +V3 − 1

h2 0 . . . 0
. . . . . . . . . . . . . . . . . . . . .

0 . . . . . . . . . . . . 2
h2 +Vnstep−2 − 1

h2

0 . . . . . . . . . . . . − 1
h2

2
h2 +Vnstep−1




(7.11)

Recall that the solutions are known via the boundary conditions at i = nstepand at the other
end point, that is for ρ0. The solution is zero in both cases.

a) Your task here is to write a function which implements Jacobi’s rotation algorithm in order
to solve Eq. (7.10).
We Define the quantities tanθ = t = s/c, with s= sinθ and c= cosθ and

cot2θ = τ =
all −akk

2akl
.

We can then define the angle θ so that the non-diagonal matrix elements of the transformed
matrix akl become non-zero and we obtain the quadratic equation (using cot2θ = 1/2(cotθ−
tanθ )

t2+2τt−1= 0,

resulting in

t =−τ±
√

1+ τ2,

and c and s are easily obtained via

c=
1√

1+ t2
,

and s= tc. Explain why we should choose t to be the smaller of the roots. Show that these
choice ensures that |θ | ≤ π/4) and has the effect of minimizing the difference between the
matrices B and A since

||B−A||2F = 4(1− c)
n

∑
i=1,i 6=k,l

(a2
ik +a2

il )+
2a2

kl

c2 .
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b) How many points nstepdo you need in order to get the lowest three eigenvalues with four
leading digits? Remember to check the eigenvalues for the dependency on the choice of
ρmax.
How many similarity transformations are needed before you reach a result where all non-
diagonal matrix elements are essentially zero? Try to estimate the number of transforma-
tions and extract a behavior as function of the dimensionality of the matrix.
You can check your results against the code based on Householder’s algorithm, tqli in the
file lib.cpp.
Comment your results (here you could for example compute the time needed for both
algorithms for a given dimensionality of the matrix).

c) We will now study two electrons in a harmonic oscillator well which also interact via a
repulsive Coulomb interaction. Let us start with the single-electron equation written as

− h̄2

2m
d2

dr2u(r)+
1
2

kr2u(r) = E(1)u(r),

where E(1) stands for the energy with one electron only. For two electrons with no repulsive
Coulomb interaction, we have the following Schrödinger equation

(
− h̄2

2m
d2

dr2
1

− h̄2

2m
d2

dr2
2

+
1
2

kr2
1 +

1
2

kr2
2

)
u(r1, r2) = E(2)u(r1, r2).

Note that we deal with a two-electron wave function u(r1, r2) and two-electron energy E(2).
With no interaction this can be written out as the product of two single-electron wave
functions, that is we have a solution on closed form.
We introduce the relative coordinate r = r1− r2 and the center-of-mass coordinate R =

1/2(r1+ r2). With these new coordinates, the radial Schrödinger equation reads

(
− h̄2

m
d2

dr2 −
h̄2

4m
d2

dR2 +
1
4

kr2+ kR2
)

u(r,R) = E(2)u(r,R).

The equations for r and R can be separated via the ansatz for the wave function u(r,R) =
ψ(r)φ(R) and the energy is given by the sum of the relative energy Er and the center-of-
mass energy ER, that is

E(2) = Er +ER.

We add then the repulsive Coulomb interaction between two electrons, namely a term

V(r1, r2) =
βe2

|r1− r2|
=

βe2

r
,

with βe2 = 1.44 eVnm.
Adding this term, the r-dependent Schrödinger equation becomes

(
− h̄2

m
d2

dr2 +
1
4

kr2+
βe2

r

)
ψ(r) = Erψ(r).

This equation is similar to the one we had previously in (a) and we introduce again a
dimensionless variable ρ = r/α. Repeating the same steps as in (a), we arrive at

− d2

dρ2 ψ(ρ)+
mk

h̄2 α4ρ2ψ(ρ)+
mαβe2

ρ h̄2 ψ(ρ) =
mα2

h̄2 Erψ(ρ).
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We want to manipulate this equation further to make it as similar to that in (a) as possible.
We define kr = 1/4k The constant α is then again fixed so that

mkr

h̄2 α4 = 1,

or

α =

(
h̄2

mkr

)1/4

.

Defining

λ =
mα2

h̄2 E,

we can rewrite Schrödinger’s equation as

− d2

dρ2ψ(ρ)+ρ2ψ(ρ)+
γ
ρ
= λ ψ(ρ),

with

γ =
mαβe2

h̄2 .

We treat γ as a parameter which reflects the strength of the oscillator potential.
Here we will study the cases γ = 0, γ = 0.5, γ = 1, γ = 2 and γ = 4. for the ground state only,
that is the lowest-lying state.
For γ = 0 you should get a result which corresponds to the relative energy of a non-
interacting system. The way we have written the equations means you get the same as
in (a) for γ = 0. Make sure your results are stable as functions of ρmax and the number of
steps.
We are only interested in the ground state with l = 0. We omit the center-of-mass energy.
You can reuse the code you wrote for (a), but you need to change the potential from ρ2 to
ρ2+ γ/ρ .
Comment the results for the lowest state (ground state) as function of varying strengths of
γ.
For specific oscillator frequencies, the above equation has analytic answers, see the article
by M. Taut, Phys. Rev. A 48, 3561 - 3566 (1993). The article can be retrieved from the
following web address http://prola.aps.org/abstract/PRA/v48/i5/p3561_1.

d) In this exercise we want to plot the wave function for two electrons as functions of the rel-
ative coordinate r and different values of γ. For γ = 0 your wave function should correspond
to that of a harmonic oscillator. Varying γ, the shape of the wave function will change.
We are only interested in the wave function for the ground state with l = 0 and omit again
the center-of-mass motion.
You can choose between two approaches; the first is to use the existing tqli function. Here
the eigenvectors are obtained from the matrix z[i][ j], where the index j refers to eigenvalue
j. The index i points to the value of the wave function in position ρ j . That is, u(λ j)(ρi) = z[i][ j].
The eigenvectors are normalized. Plot then the normalized wave functions for different
values of γ and comment the results.
The other alternative is to add a piece to your Jacobi routine which also returns the eigen-
vectors. This is the more difficult part. You will need to normalize the eigenvectors.

http://prola.aps.org/abstract/PRA/v48/i5/p3561_1




Part III

Differential Equations



Here we discuss both ordinary differential equations and partial differential equations,
with a focus on finite difference schemes. We specialize also in a dedicated chapter on nu-
merical solutions of the time-dependent Schrödinger equation.



Chapter 8

Differential equations

If God has made the world a perfect mechanism, he has at least conceded so much to our imperfect
intellect that in order to predict little parts of it, we need not solve innumerable differential equations,
but can use dice with fair success.Max Born, quoted in H. R. Pagels, The Cosmic Code [40]

Abstract This chapter aims at giving an overview on some of the most used methods to
solve ordinary differential equations. Several examples of applications to physical systems
are discussed, from the classical pendulum to the physics of Neutron stars.

8.1 Introduction

We may trace the origin of differential equations back to Newton in 16871 and his treatise on
the gravitational force and what is known to us as Newton’s second law in dynamics.

Needless to say, differential equations pervade the sciences and are to us the tools by which
we attempt to express in a concise mathematical language the laws of motion of nature. We
uncover these laws via the dialectics between theories, simulations and experiments, and we
use them on a daily basis which spans from applications in engineering or financial engineer-
ing to basic research in for example biology, chemistry, mechanics, physics, ecological models
or medicine.

We have already met the differential equation for radioactive decay in nuclear physics.
Other famous differential equations are Newton’s law of cooling in thermodynamics. the
wave equation, Maxwell’s equations in electromagnetism, the heat equation in thermody-
namic, Laplace’s equation and Poisson’s equation, Einstein’s field equation in general relativ-
ity, Schrödinger equation in quantum mechanics, the Navier-Stokes equations in fluid dynam-
ics, the Lotka-Volterra equation in population dynamics, the Cauchy-Riemann equations in
complex analysis and the Black-Scholes equation in finance, just to mention a few. Excellent
texts on differential equations and computations are the texts of Eriksson, Estep, Hansbo and
Johnson [41], Butcher [42] and Hairer, Nørsett and Wanner [43].

There are five main types of differential equations,

• ordinary differential equations (ODEs), discussed in this chapter for initial value problems
only. They contain functions of one independent variable, and derivatives in that variable.
The next chapter deals with ODEs and boundary value problems.

• Partial differential equations with functions of multiple independent variables and their
partial derivatives, covered in chapter 10.

1 Newton had most of the relations for his laws ready 22 years earlier, when according to legend he was
contemplating falling apples. However, it took more than two decades before he published his theories, chiefly
because he was lacking an essential mathematical tool, differential calculus.
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• So-called delay differential equations that involve functions of one dependent variable,
derivatives in that variable, and depend on previous states of the dependent variables.

• Stochastic differential equations (SDEs) are differential equations in which one or more of
the terms is a stochastic process, thus resulting in a solution which is itself a stochastic
process.

• Finally we have so-called differential algebraic equations (DAEs). These are differential
equation comprising differential and algebraic terms, given in implicit form.

In this chapter we restrict the attention to ordinary differential equations. We focus on
initial value problems and present some of the more commonly used methods for solving such
problems numerically. The physical systems which are discussed range from the classical
pendulum with non-linear terms to the physics of a neutron star or a white dwarf.

8.2 Ordinary differential equations

In this section we will mainly deal with ordinary differential equations and numerical methods
suitable for dealing with them. However, before we proceed, a brief remainder on differential
equations may be appropriate.

• The order of the ODE refers to the order of the derivative on the left-hand side in the
equation

dy
dt

= f (t,y).

This equation is of first order and f is an arbitrary function. A second-order equation goes
typically like

d2y
dt2

= f (t,
dy
dt

,y).

A well-known second-order equation is Newton’s second law

m
d2x
dt2

=−kx, (8.1)

where k is the force constant. ODE depend only on one variable, whereas
• partial differential equations like the time-dependent Schrödinger equation

ih̄
∂ψ(x, t)

∂ t
=

h̄2

2m

(
∂ 2ψ(r , t)

∂x2 +
∂ 2ψ(r , t)

∂y2 +
∂ 2ψ(r , t)

∂z2

)
+V(x)ψ(x, t),

may depend on several variables. In certain cases, like the above equation, the wave func-
tion can be factorized in functions of the separate variables, so that the Schrödinger equa-
tion can be rewritten in terms of sets of ordinary differential equations.

• We distinguish also between linear and non-linear differential equation where e.g.,

dy
dt

= g3(t)y(t),

is an example of a linear equation, while

dy
dt

= g3(t)y(t)−g(t)y2(t),

is a non-linear ODE. Another concept which dictates the numerical method chosen for
solving an ODE, is that of initial and boundary conditions. To give an example, in our study
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of neutron stars below, we will need to solve two coupled first-order differential equations,
one for the total mass m and one for the pressure P as functions of ρ

dm
dr

= 4πr2ρ(r)/c2,

and
dP
dr

=−Gm(r)
r2 ρ(r)/c2.

where ρ is the mass-energy density. The initial conditions are dictated by the mass being
zero at the center of the star, i.e., when r = 0, yielding m(r = 0) = 0. The other condition is
that the pressure vanishes at the surface of the star. This means that at the point where
we have P = 0 in the solution of the integral equations, we have the total radius R of the
star and the total mass m(r = R). These two conditions dictate the solution of the equations.
Since the differential equations are solved by stepping the radius from r = 0 to r = R, so-
called one-step methods (see the next section) or Runge-Kutta methods may yield stable
solutions.
In the solution of the Schrödinger equation for a particle in a potential, we may need to
apply boundary conditions as well, such as demanding continuity of the wave function and
its derivative.

• In many cases it is possible to rewrite a second-order differential equation in terms of two
first-order differential equations. Consider again the case of Newton’s second law in Eq.
(8.1). If we define the position x(t) = y(1)(t) and the velocity v(t) = y(2)(t) as its derivative

dy(1)(t)
dt

=
dx(t)

dt
= y(2)(t),

we can rewrite Newton’s second law as two coupled first-order differential equations

m
dy(2)(t)

dt
=−kx(t) =−ky(1)(t), (8.2)

and
dy(1)(t)

dt
= y(2)(t). (8.3)

8.3 Finite difference methods

These methods fall under the general class of one-step methods. The algoritm is rather sim-
ple. Suppose we have an initial value for the function y(t) given by

y0 = y(t = t0).

We are interested in solving a differential equation in a region in space [a,b]. We define a step
h by splitting the interval in N sub intervals, so that we have

h=
b−a

N
.

With this step and the derivative of y we can construct the next value of the function y at

y1 = y(t1 = t0+h),
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and so forth. If the function is rather well-behaved in the domain [a,b], we can use a fixed step
size. If not, adaptive steps may be needed. Here we concentrate on fixed-step methods only.
Let us try to generalize the above procedure by writing the step yi+1 in terms of the previous
step yi

yi+1 = y(t = ti +h) = y(ti)+h∆(ti,yi(ti))+O(hp+1),

where O(hp+1) represents the truncation error. To determine ∆ , we Taylor expand our function
y

yi+1 = y(t = ti +h) = y(ti)+h

(
y′(ti)+ · · ·+ y(p)(ti)

hp−1

p!

)
+O(hp+1), (8.4)

where we will associate the derivatives in the parenthesis with

∆(ti ,yi(ti)) = (y′(ti)+ · · ·+ y(p)(ti)
hp−1

p!
). (8.5)

We define
y′(ti) = f (ti ,yi)

and if we truncate ∆ at the first derivative, we have

yi+1 = y(ti)+h f(ti,yi)+O(h2), (8.6)

which when complemented with ti+1 = ti + h forms the algorithm for the well-known Euler
method. Note that at every step we make an approximation error of the order of O(h2), how-
ever the total error is the sum over all steps N = (b−a)/h, yielding thus a global error which
goes like NO(h2) ≈ O(h). To make Euler’s method more precise we can obviously decrease h
(increase N). However, if we are computing the derivative f numerically by e.g., the two-steps
formula

f ′2c(x) =
f (x+h)− f (x)

h
+O(h),

we can enter into roundoff error problems when we subtract two almost equal numbers f (x+
h)− f (x) ≈ 0. Euler’s method is not recommended for precision calculation, although it is
handy to use in order to get a first view how a solution may look like. As an example, consider
Newton’s equation rewritten in Eqs. (8.2) and (8.3). We define y0 = y(1)(t = 0) an v0 = y(2)(t = 0).
The first steps in Newton’s equations are then

y(1)1 = y0+hv0+O(h2)

and
y(2)1 = v0−hy0k/m+O(h2).

The Euler method is asymmetric in time, since it uses information about the derivative at

the beginning of the time interval. This means that we evaluate the position at y(1)1 using the

velocity at y(2)0 = v0. A simple variation is to determine y(1)n+1 using the velocity at y(2)n+1, that is
(in a slightly more generalized form)

y(1)n+1 = y(1)n +hy(2)n+1+O(h2)

and
y(2)n+1 = y(2)n +han+O(h2).

The acceleration an is a function of an(y
(1)
n ,y(2)n , t) and needs to be evaluated as well. This is the

Euler-Cromer method.
Let us then include the second derivative in our Taylor expansion. We have then
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∆(ti ,yi(ti)) = f (ti)+
h
2

d f(ti ,yi)

dt
+O(h3).

The second derivative can be rewritten as

y′′ = f ′ =
d f
dt

=
∂ f
∂ t

+
∂ f
∂y

∂y
∂ t

=
∂ f
∂ t

+
∂ f
∂y

f

and we can rewrite Eq. (8.4) as

yi+1 = y(t = ti +h) = y(ti)+h f(ti)+
h2

2

(
∂ f
∂ t

+
∂ f
∂y

f

)
+O(h3),

which has a local approximation error O(h3) and a global error O(h2). These approximations
can be generalized by using the derivative f to arbitrary order so that we have

yi+1 = y(t = ti +h) = y(ti)+h( f (ti,yi)+ . . . f (p−1)(ti ,yi)
hp−1

p!
)+O(hp+1).

These methods, based on higher-order derivatives, are in general not used in numerical com-
putation, since they rely on evaluating derivatives several times. Unless one has analytical
expressions for these, the risk of roundoff errors is large.

8.3.1 Improvements of Euler’s algorithm, higher-order methods

The most obvious improvements to Euler’s and Euler-Cromer’s algorithms, avoiding in addi-
tion the need for computing a second derivative, is the so-called midpoint method. We have
then

y(1)n+1 = y(1)n +
h
2

(
y(2)n+1+ y(2)n

)
+O(h2)

and
y(2)n+1 = y(2)n +han+O(h2),

yielding

y(1)n+1 = y(1)n +hy(2)n +
h2

2
an+O(h3)

implying that the local truncation error in the position is now O(h3), whereas Euler’s or Euler-
Cromer’s methods have a local error of O(h2). Thus, the midpoint method yields a global error
with second-order accuracy for the position and first-order accuracy for the velocity. However,
although these methods yield exact results for constant accelerations, the error increases in
general with each time step.

One method that avoids this is the so-called half-step method. Here we define

y(2)n+1/2 = y(2)n−1/2+han+O(h2),

and
y(1)n+1 = y(1)n +hy(2)n+1/2+O(h2).

Note that this method needs the calculation of y(2)1/2. This is done using for example Euler’s
method

y(2)1/2 = y(2)0 +
h
2

a0+O(h2).
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As this method is numerically stable, it is often used instead of Euler’s method. Another
method which one may encounter is the Euler-Richardson method with

y(2)n+1 = y(2)n +han+1/2+O(h2), (8.7)

and
y(1)n+1 = y(1)n +hy(2)n+1/2+O(h2). (8.8)

8.3.2 Predictor-Corrector methods

Consider again the first-order differential equation

dy
dt

= f (t,y),

which solved with Euler’s algorithm results in the following algorithm

yi+1≈ y(ti)+h f(ti ,yi)

with ti+1 = ti +h. This means geometrically that we compute the slope at yi and use it to predict
yi+1 at a later time ti+1. We introduce k1 = f (ti ,yi) and rewrite our prediction for yi+1 as

yi+1≈ y(ti)+hk1.

We can then use the prediction yi+1 to compute a new slope at ti+1 by defining k2 = f (ti+1,yi+1).
We define the new value of yi+1 by taking the average of the two slopes, resulting in

yi+1≈ y(ti)+
h
2
(k1+ k2).

The algorithm is very simple,namely

1. Compute the slope at ti , that is define the quantity k1 = f (ti ,yi).
2. Make a predicition for the solution by computing yi+1≈ y(ti)+hk1 by Euler’s method.
3. Use the predicition yi+1 to compute a new slope at ti+1 defining the quantity k2 =

f (ti+1,yi+1).
4. Correct the value of yi+1 by taking the average of the two slopes yielding yi+1≈ y(ti)+

h
2(k1+ k2).

It can be shown [24] that this procedure results in a mathematical truncation which goes
like O(h2), to be contrasted with Euler’s method which runs as O(h). One additional function
evaluation yields a better error estimate.

This simple algorithm conveys the philosophy of a large class of methods called predictor-
corrector methods, see chapter 15 of Ref. [36] for additional algorithms. A simple extension
is obviously to use Simpson’s method to approximate the integral

yi+1 = yi +

∫ ti+1

ti
f (t,y)dt,
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when we solve the differential equation by successive integrations. The next section deals
with a particular class of efficient methods for solving ordinary differential equations, namely
various Runge-Kutta methods.

8.4 More on finite difference methods, Runge-Kutta methods

Runge-Kutta (RK) methods are based on Taylor expansion formulae, but yield in general bet-
ter algorithms for solutions of an ODE. The basic philosophy is that it provides an intermedi-
ate step in the computation of yi+1.

To see this, consider first the following definitions

dy
dt

= f (t,y),

and

y(t) =
∫

f (t,y)dt,

and

yi+1 = yi +

∫ ti+1

ti
f (t,y)dt.

To demonstrate the philosophy behind RK methods, let us consider the second-order RK
method, RK2. The first approximation consists in Taylor expanding f (t,y) around the cen-
ter of the integration interval ti to ti+1, i.e., at ti +h/2, h being the step. Using the midpoint
formula for an integral, defining y(ti +h/2) = yi+1/2 and ti +h/2= ti+1/2, we obtain

∫ ti+1

ti
f (t,y)dt≈ h f(ti+1/2,yi+1/2)+O(h3).

This means in turn that we have

yi+1 = yi +h f(ti+1/2,yi+1/2)+O(h3).

However, we do not know the value of yi+1/2. Here comes thus the next approximation, namely,
we use Euler’s method to approximate yi+1/2. We have then

y(i+1/2) = yi +
h
2

dy
dt

= y(ti)+
h
2

f (ti ,yi).

This means that we can define the following algorithm for the second-order Runge-Kutta
method, RK2.

k1 = h f(ti ,yi),

k2 = h f(ti+1/2,yi + k1/2),

with the final value
yi+1≈ yi + k2+O(h3).

The difference between the previous one-step methods is that we now need an intermedi-
ate step in our evaluation, namely ti +h/2= t(i+1/2) where we evaluate the derivative f . This
involves more operations, but the gain is a better stability in the solution. The fourth-order
Runge-Kutta, RK4, which we will employ in the solution of various differential equations be-
low, is easily derived. The steps are as follows. We start again with the equation
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yi+1 = yi +

∫ ti+1

ti
f (t,y)dt,

but instead of approximating the integral with the midpoint rule, we use now Simpson’s rule
at ti +h/2, h being the step. Using Simpson’s formula for an integral, defining y(ti +h/2)= yi+1/2

and ti +h/2= ti+1/2, we obtain

∫ ti+1

ti
f (t,y)dt ≈ h

6

[
f (ti ,yi)+4 f (ti+1/2,yi+1/2)+ f (ti+1,yi+1)

]
+O(h5).

This means in turn that we have

yi+1 = yi +
h
6

[
f (ti ,yi)+4 f (ti+1/2,yi+1/2)+ f (ti+1,yi+1)

]
+O(h5).

However, we do not know the values of yi+1/2 and yi+1. The fourth-order Runge-Kutta method
splits the midpoint evaluations in two steps, that is we have

yi+1≈ yi +
h
6

[
f (ti ,yi)+2 f (ti+1/2,yi+1/2)+2 f (ti+1/2,yi+1/2)+ f (ti+1,yi+1)

]
,

since we want to approximate the slope at yi+1/2 in two steps. The first two function evalua-
tions are as for the second order Runge-Kutta method. The algorithm is as follows

1. We compute first
k1 = h f(ti ,yi), (8.9)

which is nothing but the slope at ti .If we stop here we have Euler’s method.
2. Then we compute the slope at the midpoint using Euler’s method to predict yi+1/2, as

in the second-order Runge-Kutta method. This leads to the computation of

k2 = h f(ti +h/2,yi + k1/2). (8.10)

3. The improved slope at the midpoint is used to further improve the slope of yi+1/2 by
computing

k3 = h f(ti +h/2,yi + k2/2). (8.11)

4. With the latter slope we can in turn predict the value of yi+1 via the computation of

k4 = h f(ti +h,yi + k3). (8.12)

5. The final algorithm becomes then

yi+1 = yi +
1
6
(k1+2k2+2k3+ k4) . (8.13)

Thus, the algorithm consists in first calculating k1 with ti , y1 and f as inputs. Thereafter, we
increase the step size by h/2 and calculate k2, then k3 and finally k4. With this caveat, we can
then obtain the new value for the variable y. It results in four function evaluations, but the
accuracy is increased by two orders compared with the second-order Runge-Kutta method.
The fourth order Runge-Kutta method has a global truncation error which goes like O(h4).
Fig. 8.1 gives a geometrical interpretation of the fourth-order Runge-Kutta method.
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Fig. 8.1 Geometrical interpretation of the fourth-order Runge-Kutta method. The derivative is evaluated at
four points, once at the intial point, twice at the trial midpoint and once at the trial endpoint. These four
derivatives constitute one Runge-Kutta step resulting in the final value for yi+1 = yi +1/6(k1+2k2+2k3+k4).

8.5 Physics examples

8.5.1 Ideal harmonic oscillations

Our first example is the classical case of simple harmonic oscillations, namely a block sliding
on a horizontal frictionless surface. The block is tied to a wall with a spring, portrayed in e.g.,
Fig. 8.2. If the spring is not compressed or stretched too far, the force on the block at a given
position x is

F =−kx.

The negative sign means that the force acts to restore the object to an equilibrium position.
Newton’s equation of motion for this idealized system is then

m
d2x
dt2

=−kx,

or we could rephrase it as
d2x
dt2

=− k
m

x=−ω2
0x, (8.14)

with the angular frequency ω2
0 = k/m.

The above differential equation has the advantage that it can be solved analytically with
solutions on the form

x(t) = Acos(ω0t +ν),
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x

k
m v

Fig. 8.2 Block tied to a wall with a spring tension acting on it.

where A is the amplitude and ν the phase constant. This provides in turn an important test for
the numerical solution and the development of a program for more complicated cases which
cannot be solved analytically.

As mentioned earlier, in certain cases it is possible to rewrite a second-order differential
equation as two coupled first-order differential equations. With the position x(t) and the ve-
locity v(t) = dx/dt we can reformulate Newton’s equation in the following way

dx(t)
dt

= v(t),

and
dv(t)

dt
=−ω2

0x(t).

We are now going to solve these equations using the Runge-Kutta method to fourth order
discussed previously. Before proceeding however, it is important to note that in addition to
the exact solution, we have at least two further tests which can be used to check our solution.

Since functions like cosare periodic with a period 2π , then the solution x(t) has also to be
periodic. This means that

x(t +T) = x(t),

with T the period defined as

T =
2π
ω0

=
2π√
k/m

.

Observe that T depends only on k/m and not on the amplitude of the solution or the con-
stant ν.

In addition to the periodicity test, the total energy has also to be conserved.
Suppose we choose the initial conditions

x(t = 0) = 1 m v(t = 0) = 0 m/s,

meaning that block is at rest at t = 0 but with a potential energy

E0 =
1
2

kx(t = 0)2 =
1
2

k.
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The total energy at any time t has however to be conserved, meaning that our solution has to
fulfill the condition

E0 =
1
2

kx(t)2+
1
2

mv(t)2.

An algorithm which implements these equations is included below.

1. Choose the initial position and speed, with the most common choice v(t = 0) = 0 and
some fixed value for the position. Since we are going to test our results against the
periodicity requirement, it is convenient to set the final time equal t f = 2π , where we
choose k/m= 1. The initial time is set equal to ti = 0. You could alternatively read in
the ratio k/m.

2. Choose the method you wish to employ in solving the problem. In the enclosed pro-
gram we have chosen the fourth-order Runge-Kutta method. Subdivide the time in-
terval [ti , t f ] into a grid with step size

h=
t f − ti

N
,

where N is the number of mesh points.
3. Calculate now the total energy given by

E0 =
1
2

kx(t = 0)2 =
1
2

k.

and use this when checking the numerically calculated energy from the Runge-Kutta
iterations.

4. The Runge-Kutta method is used to obtain xi+1 and vi+1 starting from the previous
values xi and vi ..

5. When we have computed x(v)i+1 we upgrade ti+1 = ti +h.
6. This iterative process continues till we reach the maximum time t f = 2π .
7. The results are checked against the exact solution. Furthermore, one has to check

the stability of the numerical solution against the chosen number of mesh points N.

8.5.1.1 Program to solve the differential equations for a sliding block

The program which implements the above algorithm is presented here, with a corresponding

http://folk.uio.no/mhjensen/compphys/programs/chapter08/cpp/program1.cpp

/* This program solves Newton's equation for a block

sliding on a horizontal frictionless surface. The block

is tied to a wall with a spring, and Newton's equation

takes the form

m d^2x/dt^2 =-kx

with k the spring tension and m the mass of the block.

The angular frequency is omega^2 = k/m and we set it equal

1 in this example program.

Newton's equation is rewritten as two coupled differential

equations, one for the position x and one for the velocity v

dx/dt = v and

dv/dt = -x when we set k/m=1

http://folk.uio.no/mhjensen/compphys/programs/chapter08/cpp/program1.cpp


254 8 Differential equations

We use therefore a two-dimensional array to represent x and v

as functions of t

y[0] == x

y[1] == v

dy[0]/dt = v

dy[1]/dt = -x

The derivatives are calculated by the user defined function

derivatives.

The user has to specify the initial velocity (usually v_0=0)

the number of steps and the initial position. In the programme

below we fix the time interval [a,b] to [0,2*pi].

*/

#include <cmath>

#include <iostream>

#include <fstream>

#include <iomanip>

#include "lib.h"

using namespace std;

// output file as global variable

ofstream ofile;

// function declarations

void derivatives(double, double *, double *);

void initialise ( double&, double&, int&);

void output( double, double *, double);

void runge_kutta_4(double *, double *, int, double, double,

double *, void (*)(double, double *, double *));

int main(int argc, char* argv[])

{

// declarations of variables

double *y, *dydt, *yout, t, h, tmax, E0;

double initial_x, initial_v;

int i, number_of_steps, n;

char *outfilename;

// Read in output file, abort if there are too few command-line arguments

if( argc <= 1 ){

cout << "Bad Usage: " << argv[0] <<

" read also output file on same line" << endl;

exit(1);

}

else{

outfilename=argv[1];

}

ofile.open(outfilename);

// this is the number of differential equations

n = 2;

// allocate space in memory for the arrays containing the derivatives

dydt = new double[n];

y = new double[n];

yout = new double[n];

// read in the initial position, velocity and number of steps

initialise (initial_x, initial_v, number_of_steps);

// setting initial values, step size and max time tmax

h = 4.*acos(-1.)/( (double) number_of_steps); // the step size

tmax = h*number_of_steps; // the final time

y[0] = initial_x; // initial position

y[1] = initial_v; // initial velocity

t=0.; // initial time
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E0 = 0.5*y[0]*y[0]+0.5*y[1]*y[1]; // the initial total energy

// now we start solving the differential equations using the RK4 method

while (t <= tmax){

derivatives(t, y, dydt); // initial derivatives

runge_kutta_4(y, dydt, n, t, h, yout, derivatives);

for (i = 0; i < n; i++) {

y[i] = yout[i];

}

t += h;

output(t, y, E0); // write to file

}

delete [] y; delete [] dydt; delete [] yout;

ofile.close(); // close output file

return 0;

} // End of main function

// Read in from screen the number of steps,

// initial position and initial speed

void initialise (double& initial_x, double& initial_v, int& number_of_steps)

{

cout << "Initial position = ";

cin >> initial_x;

cout << "Initial speed = ";

cin >> initial_v;

cout << "Number of steps = ";

cin >> number_of_steps;

} // end of function initialise

// this function sets up the derivatives for this special case

void derivatives(double t, double *y, double *dydt)

{

dydt[0]=y[1]; // derivative of x

dydt[1]=-y[0]; // derivative of v

} // end of function derivatives

// function to write out the final results

void output(double t, double *y, double E0)

{

ofile << setiosflags(ios::showpoint | ios::uppercase);

ofile << setw(15) << setprecision(8) << t;

ofile << setw(15) << setprecision(8) << y[0];

ofile << setw(15) << setprecision(8) << y[1];

ofile << setw(15) << setprecision(8) << cos(t);

ofile << setw(15) << setprecision(8) <<

0.5*y[0]*y[0]+0.5*y[1]*y[1]-E0 << endl;

} // end of function output

/* This function upgrades a function y (input as a pointer)

and returns the result yout, also as a pointer. Note that

these variables are declared as arrays. It also receives as

input the starting value for the derivatives in the pointer

dydx. It receives also the variable n which represents the

number of differential equations, the step size h and

the initial value of x. It receives also the name of the

function *derivs where the given derivative is computed

*/

void runge_kutta_4(double *y, double *dydx, int n, double x, double h,

double *yout, void (*derivs)(double, double *, double *))

{

int i;

double xh,hh,h6;
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double *dym, *dyt, *yt;

// allocate space for local vectors

dym = new double [n];

dyt = new double [n];

yt = new double [n];

hh = h*0.5;

h6 = h/6.;

xh = x+hh;

for (i = 0; i < n; i++) {

yt[i] = y[i]+hh*dydx[i];

}

(*derivs)(xh,yt,dyt); // computation of k2, eq. 3.60

for (i = 0; i < n; i++) {

yt[i] = y[i]+hh*dyt[i];

}

(*derivs)(xh,yt,dym); // computation of k3, eq. 3.61

for (i=0; i < n; i++) {

yt[i] = y[i]+h*dym[i];

dym[i] += dyt[i];

}

(*derivs)(x+h,yt,dyt); // computation of k4, eq. 3.62

// now we upgrade y in the array yout

for (i = 0; i < n; i++){

yout[i] = y[i]+h6*(dydx[i]+dyt[i]+2.0*dym[i]);

}

delete []dym;

delete [] dyt;

delete [] yt;

} // end of function Runge-kutta 4

In Fig. 8.3 we exhibit the development of the difference between the calculated energy and
the exact energy at t = 0 after two periods and with N = 1000and N = 10000mesh points. This
figure demonstrates clearly the need of developing tests for checking the algorithm used. We
see that even for N = 1000 there is an increasing difference between the computed energy
and the exact energy after only two periods.

8.5.2 Damping of harmonic oscillations and external forces

Most oscillatory motion in nature does decrease until the displacement becomes zero. We call
such a motion for damped and the system is said to be dissipative rather than conservative.
Considering again the simple block sliding on a plane, we could try to implement such a
dissipative behavior through a drag force which is proportional to the first derivative of x,
i.e., the velocity. We can then expand Eq. (8.14) to

d2x
dt2

=−ω2
0x−ν

dx
dt

, (8.15)

where ν is the damping coefficient, being a measure of the magnitude of the drag term.
We could however counteract the dissipative mechanism by applying e.g., a periodic exter-

nal force
F(t) = Bcos(ωt),

and we rewrite Eq. (8.15) as
d2x
dt2

=−ω2
0x−ν

dx
dt

+F(t). (8.16)
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Fig. 8.3 Plot of ∆E(t) = E0−Ecomputed for N = 1000 and N = 10000 time steps up to two periods. The initial
position x0 = 1 m and initial velocity v0 = 0 m/s. The mass and spring tension are set to k= m= 1.

Although we have specialized to a block sliding on a surface, the above equations are
rather general for quite many physical systems.

If we replace x by the charge Q, ν with the resistance R, the velocity with the current I ,
the inductance L with the mass m, the spring constant with the inverse capacitanceC and the
force F with the voltage drop V, we rewrite Eq. (8.16) as

L
d2Q
dt2

+
Q
C
+R

dQ
dt

=V(t). (8.17)

The circuit is shown in Fig. 8.4.
How did we get there? We have defined an electric circuit which consists of a resistance R

with voltage drop IR, a capacitor with voltage drop Q/C and an inductor L with voltage drop
LdI/dt. The circuit is powered by an alternating voltage source and using Kirchhoff’s law,
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V
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R

Fig. 8.4 Simple RLC circuit with a voltage source V.

which is a consequence of energy conservation, we have

V(t) = IR+LdI/dt+Q/C,

and using

I =
dQ
dt

,

we arrive at Eq. (8.17).
This section was meant to give you a feeling of the wide range of applicability of the

methods we have discussed. However, before leaving this topic entirely, we’ll dwelve into the
problems of the pendulum, from almost harmonic oscillations to chaotic motion!

8.5.3 The pendulum, a nonlinear differential equation

Consider a pendulum with mass m at the end of a rigid rod of length l attached to say a fixed
frictionless pivot which allows the pendulum to move freely under gravity in the vertical plane
as illustrated in Fig. 8.5.

The angular equation of motion of the pendulum is again given by Newton’s equation, but
now as a nonlinear differential equation

ml
d2θ
dt2

+mgsin(θ ) = 0,

with an angular velocity and acceleration given by

v= l
dθ
dt

,

and

a= l
d2θ
dt2

.

For small angles, we can use the approximation

sin(θ )≈ θ .

and rewrite the above differential equation as
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Fig. 8.5 A simple pendulum.

d2θ
dt2

=−g
l

θ ,

which is exactly of the same form as Eq. (8.14). We can thus check our solutions for small
values of θ against an analytical solution. The period is now

T =
2π√
l/g

.

We do however expect that the motion will gradually come to an end due a viscous drag
torque acting on the pendulum. In the presence of the drag, the above equation becomes

ml
d2θ
dt2

+ν
dθ
dt

+mgsin(θ ) = 0,

where ν is now a positive constant parameterizing the viscosity of the medium in question.
In order to maintain the motion against viscosity, it is necessary to add some external driving
force. We choose here, in analogy with the discussion about the electric circuit, a periodic
driving force. The last equation becomes then

ml
d2θ
dt2

+ν
dθ
dt

+mgsin(θ ) = Acos(ωt), (8.18)

with A and ω two constants representing the amplitude and the angular frequency respec-
tively. The latter is called the driving frequency.

If we now define the natural frequency

ω0 =
√

g/l ,

the so-called natural frequency and the new dimensionless quantities

t̂ = ω0t,
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with the dimensionless driving frequency

ω̂ =
ω
ω0

,

and introducing the quantity Q, called the quality factor,

Q=
mg
ω0ν

,

and the dimensionless amplitude

Â=
A

mg

we can rewrite Eq. (8.18) as

d2θ
dt̂2 +

1
Q

dθ
dt̂

+ sin(θ ) = Âcos(ω̂ t̂).

This equation can in turn be recast in terms of two coupled first-order differential equations
as follows

dθ
dt̂

= v̂,

and
dv̂
dt̂

=− v̂
Q
− sin(θ )+ Âcos(ω̂ t̂).

These are the equations to be solved. The factor Q represents the number of oscillations
of the undriven system that must occur before its energy is significantly reduced due to the
viscous drag. The amplitude Â is measured in units of the maximum possible gravitational
torque while ω̂ is the angular frequency of the external torque measured in units of the
pendulum’s natural frequency.

8.6 Physics Project: the pendulum

8.6.1 Analytic results for the pendulum

Although the solution to the equations for the pendulum can only be obtained through nu-
merical efforts, it is always useful to check our numerical code against analytic solutions. For
small angles θ , we have sin(θ )≈ θ and our equations become

dθ
dt̂

= v̂,

and
dv̂
dt̂

=− v̂
Q
−θ + Âcos(ω̂ t̂).

These equations are linear in the angle θ and are similar to those of the sliding block or the
RLC circuit. With given initial conditions v̂0 and θ0 they can be solved analytically to yield

θ (t) =
[
θ0− Â(1−ω̂2)

(1−ω̂2)2+ω̂2/Q2

]
e−τ/2Qcos(

√
1− 1

4Q2 τ)

+
[
v̂0+

θ0
2Q−

Â(1−3ω̂2)/2Q
(1−ω̂2)2+ω̂2/Q2

]
e−τ/2Qsin(

√
1− 1

4Q2 τ)+
Â(1−ω̂2)cos(ω̂τ)+ ω̂

Q sin(ω̂τ)
(1−ω̂2)2+ω̂2/Q2 ,

and
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v̂(t) =
[
v̂0− Âω̂2/Q

(1−ω̂2)2+ω̂2/Q2

]
e−τ/2Qcos(

√
1− 1

4Q2 τ)

−
[
θ0+

v̂0
2Q−

Â[(1−ω̂2)−ω̂2/Q2]
(1−ω̂2)2+ω̂2/Q2

]
e−τ/2Qsin(

√
1− 1

4Q2 τ)+
ω̂Â[−(1−ω̂2)sin(ω̂τ)+ ω̂

Q cos(ω̂τ)]
(1−ω̂2)2+ω̂2/Q2 ,

with Q > 1/2. The first two terms depend on the initial conditions and decay exponentially
in time. If we wait long enough for these terms to vanish, the solutions become independent
of the initial conditions and the motion of the pendulum settles down to the following simple
orbit in phase space

θ (t) =
Â(1− ω̂2)cos(ω̂τ)+ ω̂

Qsin(ω̂τ)
(1− ω̂2)2+ ω̂2/Q2 ,

and

v̂(t) =
ω̂Â[−(1− ω̂2)sin(ω̂τ)+ ω̂

Qcos(ω̂τ)]
(1− ω̂2)2+ ω̂2/Q2 ,

tracing the closed phase-space curve

(
θ
Ã

)2

+

(
v̂

ω̂Ã

)2

= 1

with

Ã=
Â√

(1− ω̂2)2+ ω̂2/Q2
.

This curve forms an ellipse whose principal axes are θ and v̂. This curve is closed, as we will
see from the examples below, implying that the motion is periodic in time, the solution repeats
itself exactly after each period T = 2π/ω̂. Before we discuss results for various frequencies,
quality factors and amplitudes, it is instructive to compare different numerical methods. In
Fig. 8.6 we show the angle θ as function of time τ for the case with Q = 2, ω̂ = 2/3 and
Â = 0.5. The length is set equal to 1 m and mass of the pendulum is set equal to 1 kg. The
inital velocity is v̂0 = 0 and θ0 = 0.01. Four different methods have been used to solve the
equations, Euler’s method from Eq. (8.6), Euler-Richardson’s method in Eqs. (8.7)-(8.8) and
finally the fourth-order Runge-Kutta scheme RK4. We note that after few time steps, we obtain
the classical harmonic motion. We would have obtained a similar picture if we were to switch
off the external force, Â = 0 and set the frictional damping to zero, i.e., Q = 0. Then, the
qualitative picture is that of an idealized harmonic oscillation without damping. However, we
see that Euler’s method performs poorly and after a few steps its algorithmic simplicity leads
to results which deviate considerably from the other methods. In the discussion hereafter
we will thus limit ourselves to present results obtained with the fourth-order Runge-Kutta
method.

The corresponding phase space plot is shown in Fig. 8.7, for the same parameters as
in Fig. 8.6. We observe here that the plot moves towards an ellipse with periodic motion.
This stable phase-space curve is called a periodic attractor. It is called attractor because,
irrespective of the initial conditions, the trajectory in phase-space tends asymptotically to
such a curve in the limit τ → ∞. It is called periodic, since it exhibits periodic motion in
time, as seen from Fig. 8.6. In addition, we should note that this periodic motion shows
what we call resonant behavior since the the driving frequency of the force approaches the
natural frequency of oscillation of the pendulum. This is essentially due to the fact that we
are studying a linear system, yielding the well-known periodic motion. The non-linear system
exhibits a much richer set of solutions and these can only be studied numerically.

In order to go beyond the well-known linear approximation we change the initial conditions
to say θ0 = 0.3 but keep the other parameters equal to the previous case. The curve for θ
is shown in Fig. 8.8. The corresponding phase-space curve is shown in Fig. 8.9. This curve
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Fig. 8.6 Plot of θ as function of time τ with Q= 2, ω̂ = 2/3 and Â= 0.5. The mass and length of the pendulum
are set equal to 1. The initial velocity is v̂0 = 0 and θ0 = 0.01. Four different methods have been used to solve
the equations, Euler’s method from Eq. (8.6), the half-step method, Euler-Richardson’s method in Eqs. (8.7)-
(8.8) and finally the fourth-order Runge-Kutta scheme RK4. Only N = 100 integration points have been used
for a time interval t ∈ [0,10π ].
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Fig. 8.7 Phase-space curve of a linear damped pendulum with Q= 2, ω̂ = 2/3 and Â= 0.5. The inital velocity
is v̂0 = 0 and θ0 = 0.01.
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Fig. 8.8 Plot of θ as function of time τ with Q= 2, ω̂ = 2/3 and Â= 0.5. The mass of the pendulum is set equal
to 1 kg and its length to 1 m. The inital velocity is v̂0 = 0 and θ0 = 0.3.

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

v̂

θ

Fig. 8.9 Phase-space curve with Q= 2, ω̂ = 2/3 and Â= 0.5. The mass of the pendulum is set equal to 1 kg
and its length l = 1 m.. The inital velocity is v̂0 = 0 and θ0 = 0.3.
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demonstrates that with the above given sets of parameters, after a certain number of periods,
the phase-space curve stabilizes to the same curve as in the previous case, irrespective of
initial conditions. However, it takes more time for the pendulum to establish a periodic motion
and when a stable orbit in phase-space is reached the pendulum moves in accordance with
the driving frequency of the force. The qualitative picture is much the same as previously.
The phase-space curve displays again a final periodic attractor.

If we now change the strength of the amplitude to Â= 1.35 we see in Fig. 8.10 that θ as
function of time exhibits a rather different behavior from Fig. 8.8, even though the initial
conditions and all other parameters except Â are the same. The phase-space curve is shown
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Fig. 8.10 Plot of θ as function of time τ with Q= 2, ω̂ = 2/3 and Â = 1.35. The mass of the pendulum is set
equal to 1 kg and its length to 1 m. The inital velocity is v̂0 = 0 and θ0 = 0.3. Every time θ passes the value ±π
we reset its value to swing between θ ∈ [−π , pi]. This gives the vertical jumps in amplitude.

in Fig. 8.11.
We will explore these topics in more detail in Exercise 8.2 below, where we extend our

discussion to the phenomena of period doubling and its link to chaotic motion.

8.6.2 The pendulum code

The program used to obtain the results discussed above is presented here. The enclosed code
solves the pendulum equations for any angle θ with an external force Acos(ωt). It employes
several methods for solving the two coupled differential equations, from Euler’s method to
adaptive size methods coupled with fourth-order Runge-Kutta. It is straightforward to apply
this program to other systems which exhibit harmonic oscillations or change the functional
form of the external force.

We have also introduced a class where we define various methods for solving ordinary and
coupled first order differential equations. This is done via the . classpendulum. This methods
access variables which belong only to this particular class via the private declaration. As
such, the methods we list here can easily be reused by other types of ordinary differential
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Fig. 8.11 Phase-space curve after 10 periods with Q= 2, ω̂ = 2/3 and Â= 1.35. The mass of the pendulum is
set equal to 1 kg and its length l = 1 m. The inital velocity is v̂0 = 0 and θ0 = 0.3.

equations. In the code below, we list only the fourth order Runge Kutta method, which was
used to generate the above figures. For the full code see programs/chapter08/program2.cpp.

http://folk.uio.no/mhjensen/compphys/programs/chapter08/cpp/program2.cpp

#include <stdio.h>

#include <iostream.h>

#include <math.h>

#include <fstream.h>

/*
Different methods for solving ODEs are presented

We are solving the following eqation:

m*l*(phi)'' + viscosity*(phi)' + m*g*sin(phi) = A*cos(omega*t)

If you want to solve similar equations with other values you have to

rewrite the methods 'derivatives' and 'initialise' and change the variables in the

private

part of the class Pendulum

At first we rewrite the equation using the following definitions:

omega_0 = sqrt(g*l)

t_roof = omega_0*t

omega_roof = omega/omega_0

Q = (m*g)/(omega_0*reib)

A_roof = A/(m*g)

and we get a dimensionless equation

(phi)'' + 1/Q*(phi)' + sin(phi) = A_roof*cos(omega_roof*t_roof)

This equation can be written as two equations of first order:

(phi)' = v

(v)' = -v/Q - sin(phi) +A_roof*cos(omega_roof*t_roof)

http://folk.uio.no/mhjensen/compphys/programs/chapter08/cpp/program2.cpp
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All numerical methods are applied to the last two equations.

The algorithms are taken from the book "An introduction to computer simulation methods"

*/

class pendelum

{

private:

double Q, A_roof, omega_0, omega_roof,g; //

double y[2]; //for the initial-values of phi and v

int n; // how many steps

double delta_t,delta_t_roof;

// Definition of methods to solve ODEs

public:

void derivatives(double,double*,double*);

void initialise();

void euler();

void euler_cromer();

void midpoint();

void euler_richardson();

void half_step();

void rk2(); //runge-kutta-second-order

void rk4_step(double,double*,double*,double); // we need it in function rk4() and asc()

void rk4(); //runge-kutta-fourth-order

void asc(); //runge-kutta-fourth-order with adaptive stepsize control

};

// This function defines the particular coupled first order ODEs

void pendelum::derivatives(double t, double* in, double* out)

{ /* Here we are calculating the derivatives at (dimensionless) time t

'in' are the values of phi and v, which are used for the calculation

The results are given to 'out' */

out[0]=in[1]; //out[0] = (phi)' = v

if(Q)

out[1]=-in[1]/((double)Q)-sin(in[0])+A_roof*cos(omega_roof*t); //out[1] = (phi)''

else

out[1]=-sin(in[0])+A_roof*cos(omega_roof*t); //out[1] = (phi)''

}

// Here we define all input parameters.

void pendelum::initialise()

{

double m,l,omega,A,viscosity,phi_0,v_0,t_end;

cout<<"Solving the differential eqation of the pendulum!\n";

cout<<"We have a pendulum with mass m, length l. Then we have a periodic force with

amplitude A and omega\n";

cout<<"Furthermore there is a viscous drag coefficient.\n";

cout<<"The initial conditions at t=0 are phi_0 and v_0\n";

cout<<"Mass m: ";

cin>>m;

cout<<"length l: ";

cin>>l;

cout<<"omega of the force: ";

cin>>omega;

cout<<"amplitude of the force: ";

cin>>A;

cout<<"The value of the viscous drag constant (viscosity): ";

cin>>viscosity;

cout<<"phi_0: ";

cin>>y[0];

cout<<"v_0: ";
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cin>>y[1];

cout<<"Number of time steps or integration steps:";

cin>>n;

cout<<"Final time steps as multiplum of pi:";

cin>>t_end;

t_end *= acos(-1.);

g=9.81;

// We need the following values:

omega_0=sqrt(g/((double)l)); // omega of the pendulum

if (viscosity) Q= m*g/((double)omega_0*viscosity);

else Q=0; //calculating Q

A_roof=A/((double)m*g);

omega_roof=omega/((double)omega_0);

delta_t_roof=omega_0*t_end/((double)n); //delta_t without dimension

delta_t=t_end/((double)n);

}

// fourth order Run

void pendelum::rk4_step(double t,double *yin,double *yout,double delta_t)

{

/*
The function calculates one step of fourth-order-runge-kutta-method

We will need it for the normal fourth-order-Runge-Kutta-method and

for RK-method with adaptive stepsize control

The function calculates the value of y(t + delta_t) using fourth-order-RK-method

Input: time t and the stepsize delta_t, yin (values of phi and v at time t)

Output: yout (values of phi and v at time t+delta_t)

*/

double k1[2],k2[2],k3[2],k4[2],y_k[2];

// Calculation of k1

derivatives(t,yin,yout);

k1[1]=yout[1]*delta_t;

k1[0]=yout[0]*delta_t;

y_k[0]=yin[0]+k1[0]*0.5;

y_k[1]=yin[1]+k1[1]*0.5;

/*Calculation of k2 */

derivatives(t+delta_t*0.5,y_k,yout);

k2[1]=yout[1]*delta_t;

k2[0]=yout[0]*delta_t;

y_k[0]=yin[0]+k2[0]*0.5;

y_k[1]=yin[1]+k2[1]*0.5;

/* Calculation of k3 */

derivatives(t+delta_t*0.5,y_k,yout);

k3[1]=yout[1]*delta_t;

k3[0]=yout[0]*delta_t;

y_k[0]=yin[0]+k3[0];

y_k[1]=yin[1]+k3[1];

/*Calculation of k4 */

derivatives(t+delta_t,y_k,yout);

k4[1]=yout[1]*delta_t;

k4[0]=yout[0]*delta_t;

/*Calculation of new values of phi and v */

yout[0]=yin[0]+1.0/6.0*(k1[0]+2*k2[0]+2*k3[0]+k4[0]);

yout[1]=yin[1]+1.0/6.0*(k1[1]+2*k2[1]+2*k3[1]+k4[1]);

}

void pendelum::rk4()

{

/*We are using the fourth-order-Runge-Kutta-algorithm

We have to calculate the parameters k1, k2, k3, k4 for v and phi,
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so we use to arrays k1[2] and k2[2] for this

k1[0], k2[0] are the parameters for phi,

k1[1], k2[1] are the parameters for v

*/

int i;

double t_h;

double yout[2],y_h[2]; //k1[2],k2[2],k3[2],k4[2],y_k[2];

t_h=0;

y_h[0]=y[0]; //phi

y_h[1]=y[1]; //v

ofstream fout("rk4.out");

fout.setf(ios::scientific);

fout.precision(20);

for(i=1; i<=n; i++){

rk4_step(t_h,y_h,yout,delta_t_roof);

fout<<i*delta_t<<"\t\t"<<yout[0]<<"\t\t"<<yout[1]<<"\n";

t_h+=delta_t_roof;

y_h[0]=yout[0];

y_h[1]=yout[1];

}

fout.close;

}

int main()

{

pendelum testcase;

testcase.initialise();

testcase.rk4();

return 0;

} // end of main function

8.7 Exercises

8.1. In the pendulum example we rewrote the equations as two differential equations in terms
of so-called dimensionless variables. One should always do that. There are at least two good
reasons for doing this.

• By rewriting the equations as dimensionless ones, the program will most likely be easier to
read, with hopefully a better possibility of spotting eventual errors. In addtion, the various
constants which are pulled out of the equations in the process of rendering the equations
dimensionless, are reintroduced at the end of the calculation. If one of these constants is
not correctly defined, it is easier to spot an eventual error.

• In many physics applications, variables which enter a differential equation, may differ
by orders of magnitude. If we were to insist on not using dimensionless quantities, such
differences can cause serious problems with respect to loss of numerical precision.

An example which demonstrates these features is the set of equations for gravitational
equilibrium of a neutron star. We will not solve these equations numerically here, rather, we
will limit ourselves to merely rewriting these equations in a dimensionless form.
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The equations for a neutron star

The discovery of the neutron by Chadwick in 1932 prompted Landau to predict the existence
of neutron stars. The birth of such stars in supernovae explosions was suggested by Baade
and Zwicky 1934. First theoretical neutron star calculations were performed by Tolman, Op-
penheimer and Volkoff in 1939 and Wheeler around 1960. Bell and Hewish were the first to
discover a neutron star in 1967 as a radio pulsar. The discovery of the rapidly rotating Crab
pulsar ( rapidly rotating neutron star) in the remnant of the Crab supernova observed by the
chinese in 1054 A.D. confirmed the link to supernovae. Radio pulsars are rapidly rotating with
periods in the range 0.033s ≤ P≤ 4.0 s. They are believed to be powered by rotational energy
loss and are rapidly spinning down with period derivatives of order Ṗ∼ 10−12−10−16. Their
high magnetic field B leads to dipole magnetic braking radiation proportional to the magnetic
field squared. One estimates magnetic fields of the order of B∼ 1011−1013 G. The total num-
ber of pulsars discovered so far has just exceeded 1000 before the turn of the millenium and
the number is increasing rapidly.

The physics of compact objects like neutron stars offers an intriguing interplay between
nuclear processes and astrophysical observables, see Refs. [44–46] for further information
and references on the physics of neutron stars. Neutron stars exhibit conditions far from
those encountered on earth; typically, expected densities ρ of a neutron star interior are of
the order of 103 or more times the density ρd ≈ 4 ·1011 g/cm3 at ’neutron drip’, the density at
which nuclei begin to dissolve and merge together. Thus, the determination of an equation
of state (EoS) for dense matter is essential to calculations of neutron star properties. The
EoS determines properties such as the mass range, the mass-radius relationship, the crust
thickness and the cooling rate. The same EoS is also crucial in calculating the energy released
in a supernova explosion.

Clearly, the relevant degrees of freedom will not be the same in the crust region of a neu-
tron star, where the density is much smaller than the saturation density of nuclear matter, and
in the center of the star, where density is so high that models based solely on interacting nu-
cleons are questionable. Neutron star models including various so-called realistic equations
of state result in the following general picture of the interior of a neutron star. The surface
region, with typical densities ρ < 106 g/cm3, is a region in which temperatures and magnetic
fields may affect the equation of state. The outer crust for 106 g/cm3 < ρ < 4 ·1011g/cm3 is a
solid region where a Coulomb lattice of heavy nuclei coexist in β -equilibrium with a relativis-
tic degenerate electron gas. The inner crust for 4 ·1011 g/cm3 < ρ < 2 ·1014g/cm3 consists of a
lattice of neutron-rich nuclei together with a superfluid neutron gas and an electron gas. The
neutron liquid for 2 ·1014 g/cm3 < ρ < 1015g/cm3 contains mainly superfluid neutrons with a
smaller concentration of superconducting protons and normal electrons. At higher densities,
typically 2− 3 times nuclear matter saturation density, interesting phase transitions from a
phase with just nucleonic degrees of freedom to quark matter may take place. Furthermore,
one may have a mixed phase of quark and nuclear matter, kaon or pion condensates, hyper-
onic matter, strong magnetic fields in young stars etc.

Equilibrium equations

If the star is in thermal equilibrium, the gravitational force on every element of volume will be
balanced by a force due to the spacial variation of the pressure P. The pressure is defined by
the equation of state (EoS), recall e.g., the ideal gas P= NkBT. The gravitational force which
acts on an element of volume at a distance r is given by

FGrav =−
Gm
r2 ρ/c2,
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where G is the gravitational constant, ρ(r) is the mass density and m(r) is the total mass inside
a radius r. The latter is given by

m(r) =
4π
c2

∫ r

0
ρ(r ′)r ′2dr′

which gives rise to a differential equation for mass and density

dm
dr

= 4πr2ρ(r)/c2.

When the star is in equilibrium we have

dP
dr

=−Gm(r)
r2 ρ(r)/c2.

The last equations give us two coupled first-order differential equations which determine
the structure of a neutron star when the EoS is known.

The initial conditions are dictated by the mass being zero at the center of the star, i.e.,
when r = 0, we have m(r = 0) = 0. The other condition is that the pressure vanishes at the
surface of the star. This means that at the point where we have P = 0 in the solution of the
differential equations, we get the total radius R of the star and the total mass m(r = R). The
mass-energy density when r = 0 is called the central density ρs. Since both the final mass M
and total radius R will depend on ρs, a variation of this quantity will allow us to study stars
with different masses and radii.

Dimensionless equations

When we now attempt the numerical solution, we need however to rescale the equations so
that we deal with dimensionless quantities only. To understand why, consider the value of the
gravitational constant G and the possible final mass m(r = R) = MR. The latter is normally of
the order of some solar masses M⊙, with M⊙= 1.989×1030Kg. If we wish to translate the latter
into units of MeV/c2, we will have that MR∼ 1060 MeV/c2. The gravitational constant is in units
of G= 6.67×10−45× h̄c (MeV/c2)−2. It is then easy to see that including the relevant values for
these quantities in our equations will most likely yield large numerical roundoff errors when
we add a huge number dP

dr to a smaller number P in order to obtain the new pressure. We list
here the units of the various quantities and in case of physical constants, also their values. A
bracketed symbol like [P] stands for the unit of the quantity inside the brackets.

Quantity Units

[P] MeVfm−3

[ρ ] MeVfm−3

[n] fm−3

[m] MeVc−2

M⊙ 1.989×1030 Kg= 1.1157467×1060 MeVc−2

1 Kg = 1030/1.78266270D0 MeVc−2

[r] m
G h̄c6.67259×10−45 MeV−2c−4

h̄c 197.327 MeVfm
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We introduce therefore dimensionless quantities for the radius r̂ = r/R0, mass-energy den-
sity ρ̂ = ρ/ρs, pressure P̂= P/ρs and mass m̂= m/M0.

The constants M0 and R0 can be determined from the requirements that the equations for
dm
dr and dP

dr should be dimensionless. This gives

dM0m̂
dR0r̂

= 4πR2
0r̂2ρsρ̂ ,

yielding
dm̂
dr̂

= 4πR3
0r̂

2ρsρ̂/M0.

If these equations should be dimensionless we must demand that

4πR3
0ρs/M0 = 1.

Correspondingly, we have for the pressure equation

dρsP̂
dR0r̂

=−GM0
m̂ρsρ̂
R2

0r̂2

and since this equation should also be dimensionless, we will have

GM0/R0 = 1.

This means that the constants R0 and M0 which will render the equations dimensionless are
given by

R0 =
1√

ρsG4π
,

and

M0 =
4πρs

(
√

ρsG4π)3 .

However, since we would like to have the radius expressed in units of 10 km, we should
multiply R0 by 10−19, since 1 fm = 10−15 m. Similarly, M0 will come in units of MeV/c2, and it
is convenient therefore to divide it by the mass of the sun and express the total mass in terms
of solar masses M⊙.

The differential equations read then

dP̂
dr̂

=− m̂ρ̂
r̂2 ,

dm̂
dr̂

= r̂2ρ̂ .

In the solution of our problem, we will assume that the mass-energy density is given by
a simple parametrization from Bethe and Johnson [47]. This parametrization gives ρ as a
function of the number density n= N/V, with N the total number of baryons in a volume V. It
reads

ρ(n) = 236×n2.54+nmn, (8.19)

where mn = 938.926MeV/c2, the mass of the neutron (averaged). This means that since
[n] =fm−3, we have that the dimension of ρ is [ρ ] =MeV/c2fm−3. Through the thermodynamic
relation

P=−∂E
∂V

, (8.20)

where E is the energy in units of MeV/c2 we have

P(n) = n
∂ρ(n)

∂n
−ρ(n) = 363.44×n2.54.
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We see that the dimension of pressure is the same as that of the mass-energy density, i.e.,
[P] =MeV/c2fm−3.

Here comes an important point you should observe when solving the two coupled first-
order differential equations. When you obtain the new pressure given by

Pnew=
dP
dr

+Pold,

this comes as a function of r. However, having obtained the new pressure, you will need to
use Eq. (8.1) in order to find the number density n. This will in turn allow you to find the new
value of the mass-energy density ρ(n) at the relevant value of r.

In solving the differential equations for neutron star equilibrium, you should proceed as
follows

1. Make first a dimensional analysis in order to be sure that all equations are really dimen-
sionless.

2. Define the constants R0 and M0 in units of 10 km and solar mass M⊙. Find their values.
Explain why it is convenient to insert these constants in the final results and not at each
intermediate step.

3. Set up the algorithm for solving these equations and write a main program where the
various variables are defined.

4. Write thereafter a small function which uses the expressions for pressure and mass-energy
density from Eqs. (8.1) and (8.19).

5. Write then a function which sets up the derivatives

− m̂ρ̂
r̂2 , r̂2ρ̂.

6. Employ now the fourth order Runge-Kutta algorithm to obtain new values for the pressure
and the mass. Play around with different values for the step size and compare the results
for mass and radius.

7. Replace the fourth order Runge-Kutta method with the simple Euler method and compare
the results.

8. Replace the non-relativistic expression for the derivative of the pressure with that from
General Relativity (GR), the so-called Tolman-Oppenheimer-Volkov equation

dP̂
dr̂

=− (P̂+ ρ̂)(r̂3P̂+ m̂)

r̂2−2m̂r̂
,

and solve again the two differential equations.
9. Compare the non-relatistic and the GR results by plotting mass and radius as functions of

the central density.

8.2. The angular equation of motion of the pendulum is given by Newton’s equation and with
no external force it reads

ml
d2θ
dt2

+mgsin(θ ) = 0,

with an angular velocity and acceleration given by

v= l
dθ
dt

,

and

a= l
d2θ
dt2

.
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We do however expect that the motion will gradually come to an end due a viscous drag
torque acting on the pendulum. In the presence of the drag, the above equation becomes

ml
d2θ
dt2

+ν
dθ
dt

+mgsin(θ ) = 0, (8.21)

where ν is now a positive constant parameterizing the viscosity of the medium in question.
In order to maintain the motion against viscosity, it is necessary to add some external driving
force. We choose here a periodic driving force. The last equation becomes then

ml
d2θ
dt2

+ν
dθ
dt

+mgsin(θ ) = Asin(ωt), (8.22)

with A and ω two constants representing the amplitude and the angular frequency respec-
tively. The latter is called the driving frequency.

1. Rewrite Eqs. (8.21) and (8.22) as dimensionless equations.
2. Write then a code which solves Eq. (8.21) using the fourth-order Runge Kutta method.

Perform calculations for at least ten periods with N = 100, N = 1000and N = 10000mesh
points and values of ν = 1, ν = 5 and ν = 10. Set l = 1.0m, g= 1m/s2 and m= 1 kg. Choose as
initial conditions θ (0) = 0.2 (radians) and v(0) = 0 (radians/s). Make plots of θ (in radians)
as function of time and phase space plots of θ versus the velocity v. Check the stability of
your results as functions of time and number of mesh points. Which case corresponds to
damped, underdamped and overdamped oscillatory motion? Comment your results.

3. Now we switch to Eq. (8.22) for the rest of the project. Add an external driving force and
set l = g= 1, m= 1, ν = 1/2 and ω = 2/3. Choose as initial conditions θ (0) = 0.2 and v(0) = 0
and A = 0.5 and A = 1.2. Make plots of θ (in radians) as function of time for at least 300
periods and phase space plots of θ versus the velocity v. Choose an appropriate time step.
Comment and explain the results for the different values of A.

4. Keep now the constants from the previous exercise fixed but set now A= 1.35, A= 1.44and
A= 1.465. Plot θ (in radians) as function of time for at least 300 periods for these values of
A and comment your results.

5. We want to analyse further these results by making phase space plots of θ versus the
velocity v using only the points where we have ωt = 2nπ where n is an integer. These are
normally called the drive periods. This is an example of what is called a Poincare section
and is a very useful way to plot and analyze the behavior of a dynamical system. Comment
your results.

8.3. We study first a hypothetical solar system with one planet, say Earth, which orbits around
the Sun. The only force in the problem is gravity. Newton’s law of gravitation is given by a
force FG

FG =
GMsunMEarth

r2 ,

where Msun is the mass of the Sun and MEarth is the mass of Earth. The gravitational constant
is G and r is the distance between Earth and the Sun. We assume that the sun has a mass
which is much larger than that of Earth. We can therefore safely neglect the motion of the
sun in this problem. In the first part of this project, your aim is to compute the motion of the
Earth using different methods for solving ordinary differential equations.

We assume that the orbit of Earth around the Sun is co-planar, and we take this to be the
xy-plane. Using Newton’s second law of motion we get the following equations

d2x
dt2

=
FG,x

MEarth
,

and
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d2y
dt2

=
FG,y

MEarth
,

where FG,x and FG,y are the x and y components of the gravitational force.

1. Rewrite the above second-order ordinary differential equations as a set of coupled first or-
der differential equations. Write also these equations in terms of dimensionless variables.
As an alternative to the usage of dimensionless variables, you could also use so-called
astronomical units (AU as abbreviation). If you choose the latter set of units, one astro-
nomical unit of length, known as 1 AU, is the average distance between the Sun and Earth,
that is 1 AU = 1.5× 1011 m. It can also be convenient to use years instead of seconds
since years match better the solar system. The mass of the Sun is Msun= M⊙ = 2× 1030

kg. The mass of Earth is MEarth = 6× 1024 kg. The mass of other planets like Jupiter is
MJupiter= 1.9×1027 kg and its distance to the Sun is 5.20 AU. Similar numbers for Mars are
MMars= 6.6×1023 kg and 1.52 AU, for Venus MVenus= 4.9×1024 kg and 0.72 AU, for Saturn
are MSaturn= 5.5× 1026 kg and 9.54 AU, for Mercury are MMercury = 2.4× 1023 kg and 0.39
AU, for Uranus are MUranus= 8.8×1025 kg and 19.19 AU, for Neptun are MNeptun= 1.03×1026

kg and 30.06 AU and for Pluto are MPluto= 1.31×1022 kg and 39.53 AU. Pluto is no longer
considered a planet, but we add it here for historical reasons.
Finally, mass units can be obtained by using the fact that Earth’s orbit is almost circu-
lar around the Sun. For circular motion we know that the force must obey the following
relation

FG =
MEarthv2

r
=

GM⊙MEarth

r2 ,

where v is the velocity of Earth. The latter equation can be used to show that

v2r = GM⊙ = 4π2AU3/yr2.

Discretize the above differential equations and set up an algorithm for solving these equa-
tions using the so-called Euler-Cromer method discussed in the lecture notes, chapter 8.

2. Write then a program which solves the above differential equations for the Earth-Sun sys-
tem using the Euler-Cromer method. Find out which initial value for the velocity that gives
a circular orbit and test the stability of your algorithm as function of different time steps
∆ t. Find a possible maximum value ∆ t for which the Euler-Cromer method does not yield
stable results. Make a plot of the results you obtain for the position of Earth (plot the x and
y values) orbiting the Sun.
Check also for the case of a circular orbit that both the kinetic and the potential energies
are constants. Check also that the angular momentum is a constant. Explain why these
quantities are conserved.

3. Modify your code by implementing the fourth-order Runge-Kutta method and compare the
stability of your results by repeating the steps in b). Compare the stability of the two
methods, in particular as functions of the needed step length ∆ t. Comment your results.

4. Kepler’s second law states that the line joining a planet to the Sun sweeps out equal areas
in equal times. Modify your code so that you can verify Kepler’s second law for the case of
an elliptical orbit. Compare both the Runge-Kutta method and the Euler-Cromer method
and check that the total energy and angular momentum are conserved. Why are these
quantities conserved? A convenient choice of starting values are an initial position of 1 AU
and an initial velocity of 5 AU/yr.

5. Consider then a planet which begins at a distance of 1 AU from the sun. Find out by trial
and error what the initial velocity must be in order for the planet to escape from the sun.
Can you find an exact answer?

6. We will now study the three-body problem, still with the Sun kept fixed at the center
but including Jupiter (the most massive planet in the solar system, having a mass that
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is approximately 1000 times smaller than that of the Sun) together with Earth. This leads
us to a three-body problem. Without Jupiter, Earth’s motion is stable and unchanging with
time. The aim here is to find out how much Jupiter alters Earth’s motion.
The program you have developed can easily be modified by simply adding the magnitude
of the force betweem Earth and Jupiter.
This force is given again by

FEarth−Jupiter=
GMJupiterMEarth

r2
Earth−Jupiter

,

where MJupiter is the mass of the sun and MEarth is the mass of Earth. The gravitational
constant is G and rEarth−Jupiter is the distance between Earth and Jupiter.
We assume again that the orbits of the two planets are co-planar, and we take this to be
the xy-plane. Modify your first-order differential equations in order to accomodate both
the motion of Earth and Jupiter by taking into account the distance in x and y between
Earth and Jupiter. Set up the algorithm and plot the positions of Earth and Jupiter using
the fourth-order Runge-Kutta method.
As you will notice, the influence on Earth from Jupiter is very small. Repeat these calcula-
tions by increasing the mass of Jupiter by a factor of 10 and 1000 and plot the position of
Earth. Investigate also the effect on Mars (that is replace Earth with Mars). Comment your
results.

7. Finally, we carry out a real three-body calculation where all three systems, Earth, Jupiter
and the Sun are in motion. To do this, choose the center-of-mass position of the three-body
system as the origin rather than the position of the sun. Give the sun an initial velocity
which makes the total momentum of the system exactly zero (the center-of-mass will re-
main fixed). Compare these results with those from the previous exercise and comment
your results. Extend your program to include all planets in the solar system (do not include
the various moons) and discuss your results.





Chapter 9

Two point boundary value problems

Abstract When differential equations are required to satisfy boundary conditions at more
than one value of the independent variable, the resulting problem is called a boundary value
problem. The most common case by far is when boundary conditions are supposed to be satis-
fied at two points - usually the starting and ending values of the integration. The Schrödinger
equation is an important example of such a case. Here the eigenfunctions are typically re-
stricted to be finite everywhere (in particular at r = 0) and for bound states the functions
must go to zero at infinity.

9.1 Introduction

In the previous chapter we discussed the solution of differential equations determined by
conditions imposed at one point only, the so-called initial condition. Here we move on to
differential equations where the solution is required to satisfy conditions at more than one
point. Typically these are the endpoints of the interval under consideration. When discussing
differential equations with boundary conditions, there are three main groups of numerical
methods, shooting methods, finite difference and finite element methods. In this chapter we
focus on the so-called shooting method, whereas chapters 7 and 10 focus on finite difference
methods. Chapter 7 solves the finite difference problem as an eigenvalue problem for a one
variable differential equation while in chapter 10 we present the simplest finite difference
methods for solving partial differential equations with more than one variable. The finite
element method is not discussed in this text, see for example Ref. [48] for a computational
presentation of the finite element method.

In the discussion here we will limit ourselves to the simplest possible case, that of a lin-
ear second-order differential equation whose solution is specified at two distinct points, for
more complicated systems and equations see for example Refs. [49, 50]. The reader should
also note that the techniques discussed in this chapter are restricted to ordinary differen-
tial equations only, while finite difference and finite element methods can also be applied
to boundary value problems for partial differential equations. The discussion in this chapter
and chapter 7 serves therefore as an intermediate step and model to the chapter on par-
tial differential equations. Partial differential equations involve both boundary conditions and
differential equations with functions depending on more than one variable.

In this chapter we will discuss in particular the solution of the one-particle Schödinger
equation and apply the method to hydrogen-atom like problems. We start however with a
familiar problem from mechanics, namely that of a tightly stretched and flexible string or
rope, fixed at the endpoints. This problem has an analytic solution which allows us to define
our numerical algorithms based on the shooting methods.

277
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9.2 Shooting methods

In many physics applications we encounter differential equations like

d2y
dx2 + k2(x)y= F(x); a≤ x≤ b, (9.1)

with boundary conditions
y(a) = α, y(b) = β . (9.2)

We can interpret F(x) as an inhomogenous driving force while k(x) is a real function. If it is
positive the solutions y(x) will be oscillatory functions, and if negative they are exponention-
ally growing or decaying functions.

To solve this equation we could start with for example the Runge-Kutta method or various
improvements to Euler’s method, as discussed in the previous chapter. Then we would need to
transform this equation to a set of coupled first-order equations. We could however start with
the discretized version for the second derivative. We discretise our equation and introduce
a step length h = (b− a)/N, with N being the number of equally spaced mesh points. Our
discretised second derivative reads at a step xi = a+ ih with i = 0,1, . . .

y′′i =
yi+1+ yi−1−2yi

h2 +O(h2),

leading to a discretised differential equation

yi+1+ yi−1−2yi

h2 +O(h2)+ k2
i yi = Fi .

Recall that the fourth-order Runge-Kutta method has a local error of O(h4).
Since we want to integrate our equation from x0 = a to xN = b, we rewrite it as

yi+1≈−yi−1+ yi
(
2−h2k2

i +h2Fi
)
. (9.3)

Starting at i = 1 we have after one step

y2 ≈−y0+ y1
(
2−h2k2

1+h2F1
)
.

Irrespective of method to approximate the second derivative, this equation uncovers our first
problem. While y0 = y(a) = 0, our function value y1 is unknown, unless we have an analytic
expression for y(x) at x = 0. Knowing y1 is equivalent to knowing y′ at x = 0 since the first
derivative is given by

y′i ≈
yi+1− yi

h
.

This means that we have y1≈ y0+hy′0.

9.2.1 Improved approximation to the second derivative, Numerov’s

method

Before we proceed, we mention how to improve the local truncation error from O(h2) to O(h6)

without too many additional function evaluations.
Our equation is a second order differential equation without any first order derivatives.

Let us also for the sake of simplicity assume that F(x) = 0. Numerov’s method is designed to
solve such an equation numerically, achieving a local truncation error O(h6).
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We start with the Taylor expansion of the desired solution

y(x+h) = y(x)+hy(1)(x)+
h2

2!
y(2)(x)+

h3

3!
y(3)(x)+

h4

4!
y(4)(x)+ · · ·

Here y(n)(x) is a shorthand notation for the nth derivative dny/dxn. Because the correspond-
ing Taylor expansion of y(x− h) has odd powers of h appearing with negative signs, all odd
powers cancel when we add y(x+h) and y(x−h)

y(x+h)+ y(x−h)= 2y(x)+h2y(2)(x)+
h4

12
y(4)(x)+O(h6).

We obtain

y(2)(x) =
y(x+h)+ y(x−h)−2y(x)

h2 − h2

12
y(4)(x)+O(h6).

To eliminate the fourth-derivative term we apply the operator (1+ h2

12
d2

dx2 ) on the differential
equation

y(2)(x)+
h2

12
y(4)(x)+ k2(x)y(x)+

h2

12
d2

dx2

(
k2(x)y(x)

)
≈ 0.

In this expression the y(4) terms cancel. To treat the general x dependence of k2(x) we
approximate the second derivative of (k2(x)y(x) by

d2(k2y(x))
dx2 ≈

(
k2(x+h)y(x+h)+ k2(x)y(x)

)
+
(
k2(x−h)y(x−h)+ k2(x)y(x)

)

h2 .

We replace then y(x+h) with the shorthand yi+1 (and similarly for the other variables) and
obtain a final discretised algorithm for obtaining yi+1

yi+1 =
2
(
1− 5

12h2k2
i

)
yi−

(
1+ 1

12h2k2
i−1

)
yi−1

1+ h2

12k2
i+1

+O(h6),

where xi = ih, ki = k(xi = ih) and yi = y(xi = ih) etc.
It is easy to add the term Fi since we need only to take the second derivative. The final

algorithm reads then

yi+1 =
2
(
1− 5

12h2k2
i

)
yi−

(
1+ 1

12h2k2
i−1

)
yi−1

1+ h2

12k2
i+1

+
h2

12
(Fi+1+Fi−1−2Fi)+O(h6).

Starting at i = 1 results in, using the boundary condition y0 = 0,

y2 =
2
(
1− 5

12h2k1y1
)
−
(
1+ 1

12h2k2
0y0
)

1+ h2

12k2
2

+
h2

12
(F2+F0−2F1)+O(h6).

This equation carries a local truncation error proportional to h6. This is an order better than
the fourth-order Runge-Kutta method which has a local error proportional to h5. The global
for the fourth-order Runge-Kutta is proportional to h4 while Numerov’s method has an error
proportional to h5. With few additional function evulations, we have achieved an increased
accuracy.

But even with an improved accuracy we end up with one unknown on the right hand side,
namely y1. The value of y1 can again be determined from the derivative at y0, or by a good
guess on its value. We need therefore an additional constraint on our set of equations before
we start. We could then add to the boundary conditions
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y(a) = α, y(b) = β ,

the requirement y′(a) = δ , where δ could be an arbitrary constant. In quantum mechani-
cal applications with homogenous differential equations the normalization of the solution is
normally not known. The choice of the constant δ can therefore reflect specific symmetry
requirements of the solution.

9.2.2 Wave equation with constant acceleration

We start with a well-known problem from mechanics, that of a whirling string or rope fixed at
both ends. We could think of this as an idealization of a jumping rope and ask questions about
its shape as it spins. Obviously, in deriving the equations we will make several assumptions
in order to obtain an analytic solution. However, the general differential equation it leads to,
with added complications not allowing an analytic solution, can be solved numerically. We
discuss the shooting methods as one possible numerical approach in the next section.

Our aim is to arrive at a differential equation which takes the following form

y′′+λy= 0; y(0) = 0, y(L) = 0,

where L is the length of the string and λ a constant or function of the variable x to be defined
below.

We derive an equation for y(x) using Newton’s second law F = maacting on a piece of the
string with mass ρ∆x, where ρ is the mass density per unit length and ∆x is small displace-
ment in the interval x,x+∆x. The change ∆x is our step length.

We assume that the only force acting on this string element is a constant tension T acting
on both ends. The net vertical force in the positive y-direction is

F = Tsin(θ +∆θ )−Tsin(θ ) = Tsin(θi+1)−Tsin(θi).

For the angles we employ a finite difference approximation

sin(θi+1) =
yi+1− yi

∆x
+O(∆x2).

Using Newton’s second law F = ma, with m= ρ∆x = ρh and a constant angular velocity ω
which relates to the acceleration as a=−ω2y we arrive at

T
yi+1+ yi−1−2yi

∆x2 ≈−ρω2y,

and taking the limit ∆x→ 0 we can rewrite the last equation as

Ty′′+ρω2y= 0,

and defining λ = ρω2/T and imposing the condition that the ends of the string are fixed we
arrive at our final second-order differential equation with boundary conditions

y′′+λy= 0; y(0) = 0, y(L) = 0.

The reader should note that we have assumed a constant acceleration. Replacing the constant
acceleration with the second derivative of y as function of both position and time, we arrive
at the well-known wave equation for y(x, t) in 1+1 dimension, namely
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∂ 2y
∂ t2 = λ

∂ 2y
∂x2 .

We discuss the solution of this equation in chapter 10.
If λ > 0 the above wave equation has a solution of the form

y(x) = Acos(αx)+Bsin(αx),

and imposing the boundary conditions results in an infinite sequence of solutions of the form

yn(x) = sin(
nπx
L

), n= 1,2,3, . . .

with eigenvalues

λn =
n2π2

L2 , n= 1,2,3, . . .

For λ = 0 we have
y(x) = Ax+B,

and due to the boundary conditions we have y(x) = 0, the trivial solution, which is not an
eigenvalue of the problem. The classical problem has no negative eigenvalues, viz we cannot
find a solution for λ < 0. The trivial solution means that the string remains in its equilibrium
position with no deflection.

If we relate the constant angular speed ω to the eigenvalues λn we have

ωn =

√
λnT

ρ
=

nπ
L

√
T
ρ
, n= 1,2,3, . . . ,

resulting in a series of discretised critical speeds of angular rotation. Only at these critical
speeds can the string change from its equilibrium position.

There is one important observation to made here, since later we will discuss Schrödinger’s
equation. We observe that the eigenvalues and solutions exist only for certain discretised
values λn,yn(x). This is a consequence of the fact that we have imposed boundary conditions.
Thus, the boundary conditions, which are a consequence of the physical case we wish to
explore, yield only a set of possible solutions. In quantum physics, we would say that the
eigenvalues λn are quantized, which is just another word for discretised eigenvalues.

We have then an analytic solution

yn(x) = sin(
nπx
L

),

from

y′′+
n2π2

L2 y= 0; y(0) = 0, y(1) = 0.

Choosing n= 4 and L = 1, we have y(x) = sin(4πx) as our solution. The derivative is obviously
4πcos(πx). We can start to integrate our equation using the exact expression for the derivative
at y1. This yields

y2 ≈−y0+ y1
(
2−h2k2

1+h
)
= 4hπcos(4πx0)

(
2−16h2π2)= 4π

(
2−16h2π2) .

If we split our interval x∈ [0,1] into 10 equally spaced points we arrive at the results displayed
in Table 9.1. We note that the error at the endpoint is much larger than the chosen mathemat-
ical approximation O(h2), resulting in an error of approximately 0.01. We would have expected
a smaller error. We can obviously get better precision by increasing the number of integra-
tion points, but it would not cure the increasing discrepancy we see towards the endpoints.
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Table 9.1 Integrated and exact solution of the differential equation y′′ + λy = 0 with boundary conditions
y(0) = 0 and y(1) = 0.

xi = ih sin(πxi) y(xi )

0.000000E+00 0.000000E+00 0.000000E+00
0.100000E+00 0.951057E+00 0.125664E+01
0.200000E+00 0.587785E+00 0.528872E+00
0.300000E+00 -.587785E+00 -.103405E+01
0.400000E+00 -.951056E+00 -.964068E+00
0.500000E+00 0.268472E-06 0.628314E+00
0.600000E+00 0.951057E+00 0.122850E+01
0.700000E+00 0.587785E+00 -.111283E+00
0.800000E+00 -.587786E+00 -.127534E+01
0.900000E+00 -.951056E+00 -.425460E+00
0.100000E+01 0.000000E+00 0.109628E+01

With N = 100, we have 0.829944E−02at x= 1.0, while the error is ∼ 10−4 with 100 integration
points.

It is also important to notice that in general we do not know the eigenvalue and the eigen-
functions, except some of their limiting behaviors close to the boundaries. One method for
searching for these eigenvalues is to set up an iterative process. We guess a trial eigenvalue
and generate a solution by integrating the differential equation as an initial value problem,
as we did above except that we have here the exact solution. If the resulting solution does not
satisfy the boundary conditions, we change the trial eigenvalue and integrate again. We re-
peat this process until a trial eigenvalue satisfies the boundary conditions to within a chosen
numerical error. This approach is what constitutes the so-called shooting method.

Upon integrating to our other boundary, x= 1 in the above example, we obtain normally a
non-vanishing value for y(1), since the trial eigenvalue is normally not the correct one. We can
then readjust the guess for the eigenvalue and integrate and repeat this process till we obtain
a value for y(1) which agrees to within the precision we have chosen. As we will show in the
next section, this results in a root-finding problem, which can be solved with for example the
bisection or Newton methods discussed in chapter 4.

The example we studied here hides however an important problem. Our two solutions are
rather similar, they are either represented by a sin(x) form or a cos(x) solution. This means
that the solutions do not differ dramatically in behavior at the boundaries. Furthermore,
the wave function is zero beyond the boundaries. For a quantum mechanical system, we
would get the same solutions if a particle is trapped in an infinitely high potential well. Then
the wave function cannot exist outside the potential. However, for a finite potential well,
there is always a quantum mechanical probability that the particle can be found outside the
classical region. The classical region defines the so-called turning points, viz points from
where a classical solution cannot exist. These turning points are useful when we want to
solve quantum mechanical problems.

Let us however perform our brute force integration for another differential equation as
well, namely that of the quantum mechanical harmonic oscillator.

The situation worsens dramatically now. We have then a one-dimensional differential
equation of the type, see Eq. (14.6), (all physical costants are set equal to one, that is
m= c= h̄= k= 1)

−1
2

d2y
dx2 +

1
2

x2y= εy; −∞ < x< ∞,

with boundary conditions y(−∞)= y(∞)= 0. For the lowest lying state, the eigenvalue is ε =1/2
and the eigenfunction is
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Table 9.2 Integrated and exact solution of the differential equation −y′′+x2y= 2εy with boundary conditions
y(−∞) = 0 and y(∞) = 0.

xi = ih exp(−x2/2) y(xi )

-.100000E+02 0.192875E-21 0.192875E-21
-.800000E+01 0.126642E-13 0.137620E-13
-.600000E+01 0.152300E-07 0.157352E-07
-.400000E+01 0.335462E-03 0.331824E-03
-.200000E+01 0.135335E+00 0.128549E+00
0.000000E-00 0.100000E+01 0.912665E+00
0.200000E+01 0.135335E+00 0.118573E+00
0.400000E+01 0.335463E-03 -.165045E-01
0.600000E+01 0.152300E-07 -.250865E+03
0.800000E+01 0.126642E-13 -.231385E+09
0.900000E+01 0.257677E-17 -.101904E+13

y(x) =

(
1
π

)1/4

exp(−x2/2).

The reader should observe that this solution is imposed by the boundary conditions, which
again follow from the quantum mechanical properties we require for the solution. We repeat
the integration exercise which we did for the previous example, starting from a large negative
number (x0 = −10, which gives a value for the eigenfunction close to zero) and choose the
lowest energy and its corresponding eigenfunction. We obtain for y2

y2≈−y0+ y1
(
2+h2x2−h2) ,

and using the exact eigenfunction we can replace y1 with the derivative at x0. We use now
N = 1000and integrate our equation from x0 =−10 to xN = 10. The results are shown in Table
9.2 for selected values of xi . In the beginning of our integrational interval, we obtain an
integrated quantity which resembles the analytic solution, but then our integrated solution
simply explodes and diverges. What is happening? We started with the exact solution for both
the eigenvalue and the eigenfunction!

The problem is due to the fact that our differential equation has two possible solution for
eigenvalues which are very close (−1/2 and +1/2), either

y(x)∼ exp(−x2/2),

or
y(x)∼ exp(x2/2).

The boundary conditions, imposed by our physics requirements, rule out the last possibility.
However, our algorithm, which is nothing but an approximation to the differential equation
we have chosen, picks up democratically both solutions. Thus, although we start with the
correct solution, when integrating we pick up the undesired solution. In the next subsections
we discuss how to cure this problem.

9.2.3 Schrödinger equation for spherical potentials

We discuss the numerical solution of the Schrödinger equation for the case of a particle with
mass mmoving in a spherical symmetric potential.

The initial eigenvalue equation reads
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Ĥψ(r) = (T̂ + V̂)ψ(r) = Eψ(r). (9.4)

In detail this gives (
− h̄2

2m
∇2+V(r)

)
ψ(r) = Eψ(r). (9.5)

The eigenfunction in spherical coordinates takes the form

ψ(r) = R(r)Ym
l (θ ,φ), (9.6)

and the radial part R(r) is a solution to

− h̄2

2m

(
1
r2

d
dr

r2 d
dr
− l(l +1)

r2

)
R(r)+V(r)R(r) = ER(r). (9.7)

Then we substitute R(r) = (1/r)u(r) and obtain

− h̄2

2m
d2

dr2 u(r)+

(
V(r)+

l(l +1)
r2

h̄2

2m

)
u(r) = Eu(r). (9.8)

We introduce a dimensionless variable ρ =(1/α)r where α is a constant with dimension length
and get

− h̄2

2mα2

d2

dρ2u(ρ)+
(

V(ρ)+
l(l +1)

ρ2

h̄2

2mα2

)
u(ρ) = Eu(ρ). (9.9)

In our case we are interested in attractive potentials

V(r) =−V0 f (r), (9.10)

where V0 > 0 and analyze bound states where E < 0. The final equation can be written as

d2

dρ2u(ρ)+ k(ρ)u(ρ) = 0, (9.11)

where

k(ρ) = γ
(

f (ρ)− 1
γ

l(l +1)
ρ2 − ε

)

γ =
2mα2V0

h̄2

ε =
|E|
V0

(9.12)

9.2.3.1 Schrödinger equation for a spherical box potential

Let us now specify the spherical symmetric potential to

f (r) =

{
1
−0

for
r ≤ a
r > a

(9.13)

and choose α = a. Then

k(ρ) = γ

{
1− ε− 1

γ
l(l+1)

ρ2

−ε−− 1
γ

l(l+1)
ρ2

for
r ≤ a
r > a

(9.14)
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The eigenfunctions in Eq. (9.5) are subject to conditions which limit the possible solutions.
Of importance for the present example is that u(r) must be finite everywhere and

∫ |u(r)|2dτ
must be finite. The last condition means that rR(r) −→ 0 for r −→ ∞. These conditions imply
that u(r) must be finite at r = 0 and u(r)−→ 0 for r −→ ∞.

9.2.3.2 Analysis of u(ρ) at ρ = 0

For small ρ Eq. (9.11) reduces to

d2

dρ2u(ρ)− l(l +1)
ρ2 u(ρ) = 0, (9.15)

with solutions u(ρ) = ρ l+1 or u(ρ) = ρ−l . Since the final solution must be finite everywhere we
get the condition for our numerical solution

u(ρ) = ρ l+1 for small ρ (9.16)

9.2.3.3 Analysis of u(ρ) for ρ −→ ∞

For large ρ Eq. (9.11) reduces to

d2

dρ2u(ρ)− γεu(ρ) = 0 γ > 0, (9.17)

with solutions u(ρ) = exp(±γερ) and the condition for large ρ means that our numerical solu-
tion must satisfy

u(ρ) = e−γερ for large ρ (9.18)

As for the harmonic oscillator, we have two solutions at the boundaries which are very
different and can easily lead to totally worng and even diverging solutions if we just integrate
from one endpoint to the other. In the next section we discuss how to solve such problems.

9.3 Numerical procedure, shooting and matching

The eigenvalue problem in Eq. (9.11) can be solved by the so-called shooting methods. In
order to find a bound state we start integrating, with a trial negative value for the energy,
from small values of the variable ρ , usually zero, and up to some large value of ρ . As long
as the potential is significantly different from zero the function oscillates. Outside the range
of the potential the function will approach an exponential form. If we have chosen a correct
eigenvalue the function decreases exponentially as u(ρ) = e−γερ . However, due to numerical
inaccuracy the solution will contain small admixtures of the undesireable exponential growing
function u(ρ) = e+γερ . The final solution will then become unstable. Therefore, it is better to
generate two solutions, with one starting from small values of ρ and integrate outwards to
some matching point ρ = ρm. We call that function u<(ρ). The next solution u>(ρ) is then
obtained by integrating from some large value ρ where the potential is of no importance,
and inwards to the same matching point ρm. Due to the quantum mechanical requirements
the logarithmic derivative at the matching point ρm should be well defined. We obtain the
following condition
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d
dρ u<(ρ)
u<(ρ)

=

d
dρ u>(ρ)
u>(ρ)

at ρ = ρm. (9.19)

We can modify this expression by normalizing the function u<u<(ρm) = Cu>u>(ρm). Then
Eq. (9.19) becomes

d
dρ

u<(ρ) =
d

dρ
u>(ρ) at ρ = ρm (9.20)

For an arbitary value of the eigenvalue Eq. (9.19) will not be satisfied. Thus the numerical
procedure will be to iterate for different eigenvalues until Eq. (9.20) is satisfied.

We can calculate the first order derivatives by

d
dρ

u<(ρm)≈
u<(ρm)−u<(ρm−h)

h

d
dρ

u>(ρm)≈
u>(ρm)−u>(ρm+h)

h
(9.21)

Thus the criterium for a proper eigenfunction will be

f = u>(ρm+h)−u<(ρm−h) = 0. (9.22)

9.3.1 Algorithm for solving Schrödinger’s equation

Here we outline the solution of Schrödinger’s equation as a common differential equation but
with boundary conditions. The method combines shooting and matching. The shooting part
involves a guess on the exact eigenvalue. This trial value is then combined with a standard
method for root searching, e.g., the secant or bisection methods discussed in chapter 4.

The algorithm could then take the following form

• Initialise the problem by choosing minimum and maximum values for the energy, Emin and
Emax, the maximum number of iterations max_iter and the desired numerical precision.

• Search then for the roots of the function f , where the root(s) is(are) in the interval E ∈
[Emin,Emax] using for example the bisection method. Newton’s method, also discussed in
chapter 4 requires an analytic expression for f . A possible approach is to use the standard
bisection method for localizing the eigenvalue and then use the secant method to obtain a
better estimate.
The pseudocode for such an approach can be written as

do {

i++;

e = (e_min+e_max)/2.; /* bisection */

if ( f(e)*f(e_max) > 0 ) {

e_max = e; /* change search interval */

}

else {

e_min = e;

}

} while ( (fabs(f(e) > convergence_test) !! (i <= max_iterations))

The use of a root-searching method forms the shooting part of the algorithm. We have
however not yet specified the matching part.

• The matching part is given by the function f (e) which receives as argument the present
value of E. This function forms the core of the method and is based on an integration
of Schrödinger’s equation from ρ = 0 and ρ = ∞. If our choice of E satisfies Eq. (9.22)
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we have a solution. The matching code is given below. To choose the matching point it
is convenient to start integrating inwards, that is from the large r-values. When the wave
function turns, we use that point to define the matching point. The reason for this is that we
start integrating from a region which corresponds normally to classically forbidden ones,
and integrating into such regions leads normally to inaccurate solutions and the pick up of
the undesired solutions. The consequence is that the solution diverges. We can therefore
define as a matching point the classical turning point and start to integrate from large
r-values. In the absence of such a point, we can use the point where the wave function
turns.

The function f (E) above receives as input a guess for the energy. In the version imple-
mented below, we use the standard three-point formula for the second derivative, namely

f ′′0 ≈
fh−2 f0+ f−h

h2 .

We leave it as an exercise to the reader to implement Numerov’s algorithm.

//

// The function

// f()

// calculates the wave function at fixed energy eigenvalue.

//

double f(double step, int max_step, double energy, double *w, double *wf)

{

int loop, loop_1,match;

double const sqrt_pi = 1.77245385091;

double fac, wwf, norm;

// adding the energy guess to the array containing the potential

for(loop = 0; loop <= max_step; loop ++) {

w[loop] = (w[loop] - energy) * step * step + 2;

}

// integrating from large r-values

wf[max_step] = 0.0;

wf[max_step - 1] = 0.5 * step * step;

// search for matching point

for(loop = max_step - 2; loop > 0; loop--) {

wf[loop] = wf[loop + 1] * w[loop + 1] - wf[loop + 2];

if(wf[loop] <= wf[loop + 1]) break;

}

match = loop + 1;

wwf = wf[match];

// start integrating up to matching point from r =0

wf[0] = 0.0;

wf[1] = 0.5 * step * step;

for(loop = 2; loop <= match; loop++) {

wf[loop] = wf[loop -1] * w[loop - 1] - wf[loop - 2];

if(fabs(wf[loop]) > INFINITY) {

for(loop_1 = 0; loop_1 <= loop; loop_1++) {

wf[loop_1] /= INFINITY;

}

}

}

// now implement the test of Eq. (10.25)

return (wf[match-1]-wf[match+1]);

} // End: funtion plot()

The approach we have described here suffers from the fact that the matching point is not
properly defined. Using a Green’s function approach we can easily determine the matching
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point as the midpoint of the integration interval and compute safely the solution. This is the
topic of the next section.

9.4 Green’s function approach

A slightly different approach, which however still keeps the matching procedure discussed
above, is based on the computation of the Green’s function and its relation to the solution of
a differential equation with boundary values.

Consider the differential equation

−u(x)′′ = f (x), x∈ (0,1), u(0) = u(1) = 0, (9.23)

and using the fundamental theorem of calculus, there is a constant c1 such that

u(x) = c1+

∫ x

0
u′(y)dy,

and a constant c2

u′(y) = c2+

∫ y

0
u′′(z)dz.

This is true for any twice continuously differentiable function u
If u satisfies the above differential equation we have then

u′(y) = c2−
∫ y

0
f (z)dz.

which inserted into the equation for u gives

u(x) = c1+ c2x−
∫ x

0

(∫ y

0
f (z)dz

)
dy,

and defining

F(y) =
∫ y

0
f (z)dz,

and performing an integration by parts we obtain

∫ x

0
F(y)dy=

∫ x

0

(∫ y

0
f (z)dz

)
dy=

∫ x

0
(x− y) f (y)dy.

This gives us

u(x) = c1+ c2x−
∫ x

0
(x− y) f (y)dy.

The boundary condition u(0) = 0 yields c1 = 0 and u(1) = 0, resulting in

c2 =

∫ 1

0
(1− y) f (y)dy,

meaning that we can write the solution as

u(x) = x
∫ 1

0
(1− y) f (y)dy−

∫ x

0
(x− y) f (y)dy

The solution to our differential equation can be represented in a compact way using the
so-called Green’s functions, which are also solutions to our differential equation with f (x) = 0.
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If we then define the Green’s function as

G(x,y) =

{
y(1− x) if 0 ≤ y≤ x
x(1− y) if x≤ y≤ 1

we can write the solution as

u(x) =
∫ 1

0
G(x,y) f (y)dy,

The Green’s function, see for example Refs. [50,51] is

1. continuous
2. it is symmetric in the sense that G(x,y) = G(y,x)
3. it has the properties G(0,y) = G(1,y) = G(x,0) = G(x,1) = 0
4. it is a piecewise linear function of x for fixed y and vice versa. G′ is discontinuos at

y= x.
5. G(x,y)≥ 0 for all x,y∈ [0,1]
6. it is the solution of the differential equation

d2

dx2 G(x,y) =−δ (x− y).

The Green’s function can now be used to define the solution before and after a specific
matching point in the domain.

The Green’s function satisfies the homogeneous equation for y 6= x and its derivative is
discontinuous at x= y. We can see this if we integrate the differential equation

d2

dx2 G(x,y) =−δ (x− y)

from x= y− ε to x= y+ ε, with ε as an infinitesmally small number. We obtain then

dG
dx
|x=y+ε −

dG
dx
|x=y−ε = 1.

The problem is obvioulsy to find G.
We can obtain this by considering two solutions of the homogenous equation. We choose a

general domain x∈ [a,b] with a boundary condition on the general solution u(a) = u(b) = 0.
One solution is obtained by integrating from a to b (called u<) and one by integrating

inward from b to a, labelled u>.
Using the continuity requirement on the function and its derivative we can compute the

Wronskian [50,51]

W =
du>
dx

u<−
du<
dx

u>,

and using
dG
dx
|x=y+ε −

dG
dx
|x=y−ε = 1,

and one can then show that the Green’s function reads

G(x,y) = u<(x<)u>(x>), (9.24)

where x< is defined for x= y− ε and x> = y+ ε. Using the definition of the Green’s function in
Eq. (9.24) we can now solve Eq. (9.23) for x∈ [a,b] using
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u(x) = u>(x)
∫ x

a
u<(x′) f (x′)dx′+u<(x)

∫ b

x
u>(x′) f (x′)dr′ (9.25)

The algorithm for solving Eq. (9.23) proceed now as follows: Your task is to choose a match-
ing point, say the midpoint, and then compute the Greens’ function after you have used Nu-
merov’s algo to find u (inward and outward integration for all points). Find u integrating with
the Green’s function.

A possible algorithm could be phrased as follows:

• Compute the solution of the homogeneous part of Eq. (9.23) using Numerov’s method.
You should then have both the inward and the outward solutions.

• Compute the Wronskian at the matching point using

du
dx
≈ u(x+h)−u(x+h)

2h
,

for the first derivative and choose the matching point as the midpoint. You should try
the stability of the solution by choosing other matching points as well.

• Compute then the outward integral of the Green’s function approach, including the
inhomogeneous term. For the integration one can employ for example Simpson’s rule
discussed in chapter 5.

• Compute thereafter the inward integral of the Green’s function approach. Adding
these two integrals gives the resulting wave function of Eq. (9.25).

An example of a code which performs all these steps is listed here

void wfn(Array<double,2> &k, Array<double,2> &ubasis, Array<double,1> &r, Array<double,2>

&F,Array<double,1> &uin, Array<double,1> &uout)

{

int loop, loop_1, midpoint, j;

double norm, wronskian, sum, term;

ubasis=0;uin=0;uout=0;

// Compute inwards homogenous solution

for(j=0;j<mat_size;j++){

uin(max_step) = 0.0;

uin(max_step-1) = 1.0E-10;

for(loop = max_step-2; loop >= 0; loop--) {

uin(loop) = (2.0*(1.0-5.0*k(loop+1,j)/12.0)* uin(loop+1)- (1.0+k(loop+2,j)/12.0)*
uin(loop+2))/(1.0+k(loop,j)/12.0);

}

// Compute outwards homogenous solution

uout(0) = 0.0;

uout(1) = 1.0E-10;

for(loop = 2; loop <= max_step; loop++) {

uout(loop) = (2.0*(1.0-5.0*k(loop-1,j)/12.0)* uout(loop-1)-

(1.0+k(loop-2,j)/12.0)*uout(loop-2))/(1.0+k(loop,j)/12.0);

}
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// Compute Wronskian at matching mid-point

midpoint = (max_step)/2;

// first part of Wronskian

wronskian = (uin(midpoint+1)-uin(midpoint-1))* uout(midpoint)/(2*step);

// second part

wronskian -= (uout(midpoint+1)-uout(midpoint-1))* uin(midpoint)/(2*step);

// Outward integral of Greens function

sum = 0.0;

for(loop = 0; loop <= max_step; loop++) {

term = uout(loop)*F(loop,j);

sum += term;

ubasis(loop,j) = uin(loop)*sum*step;

}

// Inward integral of Greens function

sum = 0.0;

for(loop = max_step; loop >= 0; loop--) {

term = uin(loop)*F(loop,j);

sum += term;

ubasis(loop,j) = (ubasis(loop,j)+uout(loop)*sum*step)/wronskian;

}

// Compute the norm

for(loop = 0, norm = 0.0; loop <= max_step; loop++) {

norm += ubasis(loop,j)*ubasis(loop,j) * step;//wf[loop] * step;//fabs(wf[loop] *
step);//wf[loop]* wf[loop] * step;

}

if(fabs(norm) < 1.0e-15) {

printf("\n\nError in norm in function wfn(): ");

//exit(1);

}

norm = 1./sqrt(norm); //

for(loop = 0; loop <= max_step; loop++) {

ubasis(loop,j) *= norm;

}

}

} // End: funtion wfn()

9.5 Exercises

9.1. In this project we will solve the one-dimensional Poissson equation

−u′′(x) = f (x), x∈ (0,1), u(0) = u(1) = 0.

with the inhomogeneous given by f (x) =100e−10x. This equation has u(x) =1−(1−e−10)x−e−10x

as analytic solution.
Write a code which solves the above differential equation using Numerov’s algorithm and

the Green’s function method. Can you find an analytic expression for the Green’s function?
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Compare these results with those obtained by solving the above differential equation as a
set of linear equations, as done in chapter 6. Which method would you prefer?

9.2. We are going to study the solution of the Schrödinger equation for a system with a
neutron and a proton (the deuteron) for a simple box potential. This potential will later be
replaced with a realistic one fitted to experimental phase shifts.

We begin our discussion of the Schrödinger equation with the neutron-proton (deuteron)
system with a box potential V(r). We define the radial part of the wave function R(r) and
introduce the definition u(r) = rR(R) The radial part of the SE for two particles in their center-
of-mass system and with orbital momentum l = 0 is then

− h̄2

2m
d2u(r)

dr2 +V(r)u(r) = Eu(r), (9.26)

with
m= 2

mpmn

mp+mn
, (9.27)

where mp and mn are the masses of the proton and neutron, respectively. We use here m= 938
MeV. Our potential is defined as

V(r) =





0 r > a
−V0 0< r ≤ a

∞ r ≤ 0
, (9.28)

displayed in Fig 9.1.

✲ x

0 a

−V0

V(x)

Fig. 9.1 Example of a finite box potential with value −V0 in 0< x≤ a, infinitely large for x≤ 0 and zero else.

Bound states correspond to negative energy E and scattering states are given by positive
energies. The SE takes the form (without specifying the sign of E)
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d2u(r)
dr2 +

m

h̄2 (V0+E)u(r) = 0 r < a, (9.29)

and
d2u(r)

dr2 +
m

h̄2 Eu(r) = 0 r > a. (9.30)

1. We are now going to search for eventual bound states, i.e., E < 0. The deuteron has only
one bound state at energy E = −2.223MeV. Discuss the boundary conditions on the wave
function and use these to show that the solution to the SE is

u(r) = Asin(kr) r < a, (9.31)

and
u(r) = Bexp(−β r) r > a, (9.32)

where A and B are constants. We have also defined

k=
√

m(V0−|E|)/h̄, (9.33)

and
β =

√
m|E|/h̄. (9.34)

Show then, using the continuity requirement on the wave function that at r = a you obtain
the transcendental equation

kcot(ka) =−β . (9.35)

2. Insert values of V0 = 60MeV and a= 1.45 fm (1 fm = 10−15 m) and make a plot of Eq. (9.35)
as function of energy E in order to find eventual eigenvalues. See if these values result in
a bound state for E.
When you have localized on your plot the point(s) where Eq. (9.35) is satisfied, obtain a
numerical value for E using for example Newton-Raphson’s method or similar methods,
see chapter 4. To use these functions you need to provide the function kcot(ka)+β and its
derivative as function of E.
What is smallest possible value of V0 which gives one bound state only?

3. Write a program which implements the Green’s function method using Numerov’s method
for this potential and find the lowest eigenvalue for the case that V0 supports only one
bound state. Use the results from b) to guide your choice of trial eigenvalues. Plot the
wave function and discuss your results.

4. We turn now to a fitted interaction which reproduces the low-lying phase shifts for scat-
tering between a proton and neutron. The parametrized version of this potential fits the
experimental phase-shifts. It is given by

V(r) =Va
e−ax

x
+Vb

e−bx

x
+Vc

e−cx

x
(9.36)

with x = µr, µ = 0.7 fm−1 (the inverse of the pion mass), Va = −10.463 MeV and a = 1,
Vb =−1650.6 MeV and b= 4 and Vc = 6484.3 MeV and c= 7. Replace the box potential from
point c) and find the wave function and possible eigenvalues for this potential as well.
Discuss your results.





Chapter 10

Partial Differential Equations

Abstract Partial differential equations play an important role in our modelling of physical
processes, from diffusion of heat to our understanding of Tsunamis. In this chapter we present
some of the basic methods using finite difference methods.

10.1 Introduction

In the Natural Sciences we often encounter problems with many variables constrained by
boundary conditions and initial values. Many of these problems can be modelled as partial
differential equations. One case which arises in many situations is the so-called wave equation
whose one-dimensional form reads

∂ 2u
∂x2 = A

∂ 2u
∂ t2 , (10.1)

where A is a constant. The solution u depends on both spatial and temporal variables, viz. u=

u(x, t). In two dimension we have u = u(x,y, t). We will, unless otherwise stated, simply use u
in our discussion below. Familiar situations which this equation can model are waves on a
string, pressure waves, waves on the surface of a fjord or a lake, electromagnetic waves and
sound waves to mention a few. For e.g., electromagnetic waves we have the constant A= c2,
with c the speed of light. It is rather straightforward to extend this equation to two or three
dimension. In two dimensions we have

∂ 2u
∂x2 +

∂ 2u
∂y2 = A

∂ 2u
∂ t2 ,

In Chapter 12 we will see another case of a partial differential equation widely used in the
Natural Sciences, namely the diffusion equation whose one-dimensional version we derived
from a Markovian random walk. It reads

∂ 2u
∂x2 = A

∂u
∂ t

, (10.2)

and A is in this case called the diffusion constant. It can be used to model a wide selection of
diffusion processes, from molecules to the diffusion of heat in a given material.

Another familiar equation from electrostatics is Laplace’s equation, which looks similar to
the wave equation in Eq. (10.1) except that we have set A= 0

∂ 2u
∂x2 +

∂ 2u
∂y2 = 0, (10.3)

295
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or if we have a finite electric charge represented by a charge density ρ(x)we have the familiar
Poisson equation

∂ 2u
∂x2 +

∂ 2u
∂y2 =−4πρ(x). (10.4)

Other famous partial differential equations are the Helmholtz (or eigenvalue) equation,
here specialized to two dimensions only

− ∂ 2u
∂x2 −

∂ 2u
∂y2 = λu, (10.5)

the linear transport equation (in 2+1 dimensions) familiar from Brownian motion as well

∂u
∂x

+
∂u
∂x

+
∂u
∂y

= 0, (10.6)

and Schrödinger’s equation

−∂ 2u
∂x2 −

∂ 2u
∂y2 + f (x,y)u= ı

∂u
∂ t

.

Important systems of linear partial differential equations are the famous Maxwell equations

∂E
∂ t

= curlB; −curlE = B; divE = divB = 0.

Similarly, famous systems of non-linear partial differential equations are for example Euler’s
equations for incompressible, inviscid flow

∂u
∂ t

+u∇u =−Dp; divu = 0,

with p being the pressure and

∇ =
∂
∂x

ex+
∂
∂y

ey,

in the two dimensions. The unit vectors are ex and ey. Another example is the set of Navier-
Stokes equations for incompressible, viscous flow

∂u
∂ t

+u∇u−∆u =−Dp; divu = 0.

Ref. [52] contains a long list of interesting partial differential equations.
In this chapter we focus on so-called finite difference schemes and explicit and implicit

methods. The more advanced topic of finite element methods are not treated in this text. For
texts with several numerical examples, see for example Refs. [48,53].

As in the previous chapters we will focus mainly on widely used algorithms for solutions
of partial differential equations. A text like Evans’ [52] is highly recommended if one wishes
to study the mathematical foundations for partial differential equations, in particular how
to determine the uniqueness and existence of a solution. We assume that our problems are
well-posed, strictly meaning that the problem has a solution, this solution is unique and the
solution depends continuously on the data given by the problem. While Evans’ text provides
a rigorous mathematical exposition, the texts of Langtangen, Ramdas-Mohan, Winther and
Tveito and Evans et al. contain a more practical algorithmic approach see Refs. [48,50,53,54].

A general partial differential equation with two given dimensions reads

A(x,y)
∂ 2u
∂x2 +B(x,y)

∂ 2u
∂x∂y

+C(x,y)
∂ 2u
∂y2 = F(x,y,u,

∂u
∂x

,
∂u
∂y

),
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and if we set
B=C= 0,

we recover the 1+ 1-dimensional diffusion equation which is an example of a so-called
parabolic partial differential equation. With

B= 0, AC< 0

we get the 2+1-dim wave equation which is an example of a so-called elliptic PDE, where
more generally we have B2 > AC. For B2 < AC we obtain a so-called hyperbolic PDE, with the
Laplace equation in Eq. (10.3) as one of the classical examples. These equations can all be
easily extended to non-linear partial differential equations and 3+1 dimensional cases.

The aim of this chapter is to present some of the more familiar difference methods and
their possible implementations.

10.2 Diffusion equation

The diffusion equation describes in typical applications the evolution in time of the density
u of a quantity like the particle density, energy density, temperature gradient, chemical con-
centrations etc.

The basis is the assumption that the flux density ρ obeys the Gauss-Green theorem

∫

V
divρdx=

∫

∂V
ρndS,

where n is the unit outer normal field and V is a smooth region with the space where we seek
a solution. The Gauss-Green theorem leads to

divρ = 0.

Assuming that the flux is proportional to the gradient ∇u but pointing in the opposite direction
since the flow is from regions of high concetration to lower concentrations, we obtain

ρ =−D∇u,

resulting in
div∇u= D∆u= 0,

which is Laplace’s equation, an equation whose one-dimensional version we met in chapter 6.
The constant D can be coupled with various physical constants, such as the diffusion constant
or the specific heat and thermal conductivity discussed below. We will discuss the solution of
the Laplace equation later in this chapter.

If we let u denote the concetration of a particle species, this results in Fick’s law of dif-
fusion, see Ref. [55]. If it denotes the temperature gradient, we have Fourier’slaw of heat
conduction and if it refers to the electrostatic potential we have Ohm’s law of electrical con-
duction.

Coupling the rate of change (temporal dependence) of u with the flux density we have

∂u
∂ t

=−divρ ,

which results in
∂u
∂ t

= Ddiv∇u= D∆u,
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the diffusion equation, or heat equation.
If we specialize to the heat equation, we assume that the diffusion of heat through some

material is proportional with the temperature gradient T(x, t) and using conservation of en-
ergy we arrive at the diffusion equation

κ
Cρ

∇2T(x, t) =
∂T(x, t)

∂ t

where C is the specific heat and ρ the density of the material. Here we let the density be rep-
resented by a constant, but there is no problem introducing an explicit spatial dependence,
viz.,

κ
Cρ(x, t)

∇2T(x, t) =
∂T(x, t)

∂ t
.

Setting all constants equal to the diffusion constant D, i.e.,

D =
Cρ
κ

,

we arrive at

∇2T(x, t) = D
∂T(x, t)

∂ t
.

Specializing to the 1+1-dimensional case we have

∂ 2T(x, t)
∂x2 = D

∂T(x, t)
∂ t

.

We note that the dimension of D is time/length2. Introducing the dimensionless variables
α x̂= x we get

∂ 2T(x, t)
α2∂ x̂2 = D

∂T(x, t)
∂ t

,

and since α is just a constant we could define α2D = 1 or use the last expression to define a
dimensionless time-variable t̂. This yields a simplified diffusion equation

∂ 2T(x̂, t̂)
∂ x̂2 =

∂T(x̂, t̂)
∂ t̂

.

It is now a partial differential equation in terms of dimensionless variables. In the discussion
below, we will however, for the sake of notational simplicity replace x̂→ x and t̂→ t. Moreover,
the solution to the 1+1-dimensional partial differential equation is replaced by T(x̂, t̂)→ u(x, t).

10.2.1 Explicit Scheme

In one dimension we have the following equation

∇2u(x, t) =
∂u(x, t)

∂ t
,

or
uxx = ut ,

with initial conditions, i.e., the conditions at t = 0,

u(x,0) = g(x) 0< x< L
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with L = 1 the length of the x-region of interest. The boundary conditions are

u(0, t) = a(t) t ≥ 0,

and
u(L, t) = b(t) t ≥ 0,

where a(t) and b(t) are two functions which depend on time only, while g(x) depends only on
the position x. Our next step is to find a numerical algorithm for solving this equation. Here
we recur to our familiar equal-step methods discussed in Chapter 3 and introduce different
step lengths for the space-variable x and time t through the step length for x

∆x=
1

n+1

and the time step length ∆ t. The position after i steps and time at time-step j are now given
by {

t j = j∆ t j ≥ 0
xi = i∆x 0≤ i ≤ n+1

If we then use standard approximations for the derivatives we obtain

ut ≈
u(x, t +∆ t)−u(x, t)

∆ t
=

u(xi , t j +∆ t)−u(xi, t j )

∆ t

with a local approximation error O(∆ t) and

uxx≈
u(x+∆x, t)−2u(x, t)+u(x−∆x, t)

∆x2 ,

or

uxx≈
u(xi +∆x, t j)−2u(xi, t j)+u(xi−∆x, t j)

∆x2 ,

with a local approximation error O(∆x2). Our approximation is to higher order in coordinate
space. This can be justified since in most cases it is the spatial dependence which causes
numerical problems. These equations can be further simplified as

ut ≈
ui, j+1−ui, j

∆ t
,

and

uxx≈
ui+1, j−2ui, j +ui−1, j

∆x2 .

The one-dimensional diffusion equation can then be rewritten in its discretized version as

ui, j+1−ui, j

∆ t
=

ui+1, j −2ui, j +ui−1, j

∆x2 .

Defining α = ∆ t/∆x2 results in the explicit scheme

ui, j+1 = αui−1, j +(1−2α)ui, j +αui+1, j . (10.7)

Since all the discretized initial values

ui,0 = g(xi),
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a(t)

t

g(x)

b(t)

x

ui−1, j ui, j

ui, j+1

ui+1, j

✲

✻

Fig. 10.1 Discretization of the integration area used in the solution of the 1+1-dimensional diffusion equa-
tion. This discretization is often called calculational molecule.

are known, then after one time-step the only unknown quantity is ui,1 which is given by

ui,1 = αui−1,0+(1−2α)ui,0+αui+1,0 = αg(xi−1)+ (1−2α)g(xi)+αg(xi+1).

We can then obtain ui,2 using the previously calculated values ui,1 and the boundary conditions
a(t) and b(t). This algorithm results in a so-called explicit scheme, since the next functions
ui, j+1 are explicitely given by Eq. (10.7). The procedure is depicted in Fig. 10.1.

We specialize to the case a(t) = b(t) = 0 which results in u0, j = un+1, j = 0. We can then
reformulate our partial differential equation through the vector Vj at the time t j = j∆ t

Vj =




u1, j

u2, j

. . .

un, j


 .

This results in a matrix-vector multiplication

Vj+1 = ÂVj

with the matrix Â given by

Â=




1−2α α 0 0. . .
α 1−2α α 0. . .
. . . . . . . . . . . .

0. . . 0. . . α 1−2α




which means we can rewrite the original partial differential equation as a set of matrix-vector
multiplications

Vj+1 = ÂVj = · · ·= Â j+1V0,
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where V0 is the initial vector at time t = 0 defined by the initial value g(x). In the numerical
implementation one should avoid to treat this problem as a matrix vector multiplication since
the matrix is triangular and at most three elements in each row are different from zero.

It is rather easy to implement this matrix-vector multiplication as seen in the following
piece of code

// First we set initialise the new and old vectors

// Here we have chosen the boundary conditions to be zero.

// n+1 is the number of mesh points in x

u[0] = unew[0] = u[n] = unew = 0.0;

for (int i = 1; i < n; i++) {

x = i*step;

// initial condition

u[i] = func(x);

// intitialise the new vector

unew[i] = 0;

}

// Time iteration

for (int t = 1; t <= tsteps; t++) {

for (int i = 1; i < n; i++) {

// Discretized diff eq

unew[i] = alpha * u[i-1] + (1 - 2*alpha) * u[i] + alpha * u[i+1];

}

// note that the boundaries are not changed.

However, although the explicit scheme is easy to implement, it has a very weak stability
condition, given by

∆ t/∆x2≤ 1/2.

This means that if ∆x= 0.01 (a rather frequent choice), then ∆ t = 5×10−5. This has obviously
bad consequences if our time interval is large. In order to derive this relation we need some
results from studies of iterative schemes. If we require that our solution approaches a definite
value after a certain amount of time steps we need to require that the so-called spectral radius
ρ(Â) of our matrix Â satisfies the condition

ρ(Â)< 1, (10.8)

see for example chapter 10 of Ref. [28] or chapter 4 of [23] for proofs. The spectral radius is
defined as

ρ(Â) = max
{
|λ | : det(Â−λ Î) = 0

}
,

which is interpreted as the smallest number such that a circle with radius centered at zero in
the complex plane contains all eigenvalues of Â. If the matrix is positive definite, the condition
in Eq. (10.8) is always satisfied.

We can obtain closed-form expressions for the eigenvalues of Â. To achieve this it is conve-
nient to rewrite the matrix as

Â= Î −αB̂,

with

B̂=




2 −1 0 0. . .
−1 2 −1 0. . .
. . . . . . . . . . . .

0. . . 0. . . −1 2

.




The eigenvalues of Â are λi = 1−αµi , with µi being the eigenvalues of B̂. To find µi we note
that the matrix elements of B̂ are

bi j = 2δi j − δi+1 j− δi−1 j ,



302 10 Partial Differential Equations

meaning that we have the following set of eigenequations for component i

(B̂x̂)i = µixi ,

resulting in

(B̂x̂)i =
n

∑
j=1

(
2δi j − δi+1 j − δi−1 j

)
x j = 2xi− xi+1− xi−1 = µixi .

If we assume that x can be expanded in a basis of x = (sin(θ ),sin(2θ ), . . . ,sin(nθ )) with θ =

lπ/n+1, where we have the endpoints given by x0 = 0 and xn+1 = 0, we can rewrite the last
equation as

2sin(iθ )− sin((i +1)θ )− sin((i−1)θ )= µisin(iθ ),

or
2(1− cos(θ ))sin(iθ ) = µisin(iθ ),

which is nothing but
2(1− cos(θ ))xi = µixi ,

with eigenvalues µi = 2−2cos(θ ).
Our requirement in Eq. (10.8) results in

−1< 1−α2(1− cos(θ ))< 1,

which is satisfied only if α < (1− cos(θ ))−1 resulting in α ≤ 1/2 or ∆ t/∆x2 ≤ 1/2.

10.2.2 Implicit Scheme

In deriving the equations for the explicit scheme we started with the so-called forward for-
mula for the first derivative, i.e., we used the discrete approximation

ut ≈
u(xi , t j +∆ t)−u(xi, t j)

∆ t
.

However, there is nothing which hinders us from using the backward formula

ut ≈
u(xi , t j)−u(xi, t j −∆ t)

∆ t
,

still with a truncation error which goes like O(∆ t). We could also have used a midpoint ap-
proximation for the first derivative, resulting in

ut ≈
u(xi , t j +∆ t)−u(xi, t j −∆ t)

2∆ t
,

with a truncation error O(∆ t2). Here we will stick to the backward formula and come back to
the latter below. For the second derivative we use however

uxx≈
u(xi +∆x, t j)−2u(xi, t j)+u(xi−∆x, t j)

∆x2 ,

and define again α = ∆ t/∆x2. We obtain now

ui, j−1 =−αui−1, j +(1−2α)ui, j−αui+1, j .

Here ui, j−1 is the only unknown quantity. Defining the matrix Â
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Â=




1+2α −α 0 0. . .
−α 1+2α −α 0. . .
. . . . . . . . . . . .

0. . . 0. . . −α 1+2α


 ,

we can reformulate again the problem as a matrix-vector multiplication

ÂVj =Vj−1

meaning that we can rewrite the problem as

Vj = Â−1Vj−1 = Â−1(Â−1Vj−2
)
= · · ·= Â− jV0.

This is an implicit scheme since it relies on determining the vector ui, j−1 instead of ui, j+1. If α
does not depend on time t, we need to invert a matrix only once. Alternatively we can solve
this system of equations using our methods from linear algebra discussed in chapter 6. These
are however very cumbersome ways of solving since they involve ∼ O(N3) operations for a
N×N matrix. It is much faster to solve these linear equations using methods for tridiago-
nal matrices, since these involve only ∼ O(N) operations. The function tridag of Ref. [36] is
suitbale for these tasks.

The implicit scheme is always stable since the spectral radius satisfies ρ(Â)< 1. We could
have inferred this by noting that the matrix is positive definite, viz. all eigenvalues are larger
than zero. We see this from the fact that Â = Î +αB̂ has eigenvalues λi = 1+α(2−2cos(θ ))
which satisfy λi > 1. Since it is the inverse which stands to the right of our iterative equa-
tion, we have ρ(Â−1) < 1 and the method is stable for all combinations of ∆ t and ∆x. The
calculational molecule for the implicit scheme is shown in Fig. 10.2.

a(t)

t

g(x)

b(t)

x

ui−1, j+1 ui, j+1 ui+1, j+1

ui, j

✲

✻

Fig. 10.2 Calculational molecule for the implicit scheme.
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10.2.2.1 Program Example for Implicit Equation

We show here parts of a simple example of how to solve the one-dimensional diffusion equa-
tion using the implicit scheme discussed above. The program uses the function to solve linear
equations with a tridiagonal matrix discussed in chapter 6.

// parts of the function for backward Euler

void backward_euler(int xsteps, int tsteps, double delta_x, double alpha)

{

double *v, *r, a, b, c;

v = new double[xsteps+1]; // This is u

r = new double[xsteps+1]; // Right side of matrix equation Av=r

// Initialize vectors

for (int i = 0; i < xsteps; i++) {

r[i] = v[i] = func(delta_x*i);

}

r[xsteps] = v[xsteps] = 0;

// Matrix A, only constants

a = c = - alpha;

b = 1 + 2*alpha;

// Time iteration

for (int t = 1; t <= tsteps; t++) {

// here we solve the tridiagonal linear set of equations

tridag(a, b, c, r, v, x_steps+1);

// boundary conditions

v[0] = 0;

v[xsteps] = 0;

for (int i = 0; i <= x_steps; i++) {

r[i] = v[i];

}

}

...

}

// Function used to solve systems of equations for tridiagonal matrices

void tridag(double a, double b, double c, double *r, double *u, int n)

{

double bet, *gam;

gam = new double[n];

bet = b;

// forward substitution

u[0]=r[0]/bet;

for (int j=1;j<n;j++) {

gam[j] = c/bet;

bet = b - a*gam[j];

if (bet == 0.0) {cout << "Error 2 in tridag" << endl;}

u[j] = (r[j] - a*u[j-1])/bet;

}

// backward substitution

for (int j=n-2; j>=0; j--) {u[j] -= gam[j+1]*u[j+1];}

delete [] gam;

}
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10.2.3 Crank-Nicolson scheme

It is possible to combine the implicit and explicit methods in a slightly more general approach.
Introducing a parameter θ (the so-called θ -rule) we can set up an equation

θ
∆x2

(
ui−1, j −2ui, j +ui+1, j

)
+

1−θ
∆x2

(
ui+1, j−1−2ui, j−1+ui−1, j−1

)
=

1
∆ t

(
ui, j −ui, j−1

)
, (10.9)

which for θ = 0 yields the forward formula for the first derivative and the explicit scheme,
while θ = 1 yields the backward formula and the implicit scheme. These two schemes are
called the backward and forward Euler schemes, respectively. For θ = 1/2 we obtain a new
scheme after its inventors, Crank and Nicolson. This scheme yields a truncation in time which
goes like O(∆ t2) and it is stable for all possible combinations of ∆ t and ∆x.

Using our previous definition of α = ∆ t/∆x2 we can rewrite the latter equation as

−αui−1, j +(2+2α)ui, j −αui+1, j = αui−1, j−1+(2−2α)ui, j−1+αui+1, j−1,

or in matrix-vector form as (
2Î +αB̂

)
Vj =

(
2Î−αB̂

)
Vj−1,

where the vector Vj is the same as defined in the implicit case while the matrix B̂ is

B̂=




2 −1 0 0. . .
−1 2 −1 0. . .
. . . . . . . . . . . .

0. . . 0. . . 2




We can rewrite the Crank-Nicolson scheme as follows

Vj =
(
2Î +αB̂

)−1(
2Î −αB̂

)
Vj−1.

We have already obtained the eigenvalues for the two matrices
(
2Î +αB̂

)
and

(
2Î −αB̂

)
. This

means that the spectral function has to satisfy

ρ(
(
2Î +αB̂

)−1(
2Î −αB̂

)
)< 1,

meaning that ∣∣∣((2+αµi)
−1 (2−αµi)

∣∣∣< 1,

and since µi = 2−2cos(θ )we have 0< µi < 4. A little algebra shows that the algorithm is stable
for all possible values of ∆ t and ∆x.

The calculational molecule for the Crank-Nicolson scheme is shown in Fig. 10.3.

10.2.3.1 Parts of Code for the Crank-Nicolson Scheme

We can code in an efficient way the Crank-Nicolson algortihm by first multplying the matrix

Ṽj−1 =
(
2Î −αB̂

)
Vj−1,

with our previous vector Vj−1 using the matrix-vector multiplication algorithm for a tridiago-
nal matrix, as done in the forward-Euler scheme. Thereafter we can solve the equation

(
2Î +αB̂

)
Vj = Ṽj−1,
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using our method for systems of linear equations with a tridiagonal matrix, as done for the
backward Euler scheme.

We illustrate this in the following part of our program.

void crank_nicolson(int xsteps, int tsteps, double delta_x, double alpha)

{

double *v, a, b, c, *r;

v = new double[xsteps+1]; // This is u

r = new double[xsteps+1]; // Right side of matrix equation Av=r

....

// setting up the matrix

a = c = - alpha;

b = 2 + 2*alpha;

// Time iteration

for (int t = 1; t <= tsteps; t++) {

// Calculate r for use in tridag, right hand side of the Crank Nicolson method

for (int i = 1; i < xsteps; i++) {

r[i] = alpha*v[i-1] + (2 - 2*alpha)*v[i] + alpha*v[i+1];

}

r[0] = 0;

r[xsteps] = 0;

// Then solve the tridiagonal matrix

tridag(a, b, c, r, v, xsteps+1);

v[0] = 0;

v[xsteps] = 0;

....

}

a(t)

t

g(x)

b(t)

x

ui−1, j+1 ui, j+1 ui+1, j+1

ui−1, j ui+1, jui, j

✲

✻

Fig. 10.3 Calculational molecule for the Crank-Nicolson scheme.
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10.2.4 Numerical Truncation

We start with the forward Euler scheme and Taylor expand u(x, t +∆ t), u(x+∆x, t) and u(x−
∆x, t)

u(x+∆x, t) = u(x, t)+ ∂u(x,t)
∂x ∆x+ ∂ 2u(x,t)

2∂x2 ∆x2+O(∆x3), (10.10)

u(x−∆x, t) = u(x, t)− ∂u(x,t)
∂x ∆x+ ∂ 2u(x,t)

2∂x2 ∆x2+O(∆x3),

u(x, t +∆ t) = u(x, t)+ ∂u(x,t)
∂ t ∆ t +O(∆ t2).

With these Taylor expansions the approximations for the derivatives takes the form

[
∂u(x,t)

∂ t

]
approx

= ∂u(x,t)
∂ t +O(∆ t), (10.11)

[
∂ 2u(x,t)

∂x2

]
approx

= ∂ 2u(x,t)
∂x2 +O(∆x2).

It is easy to convince oneself that the backward Euler method must have the same truncation
errors as the forward Euler scheme.

For the Crank-Nicolson scheme we also need to Taylor expand u(x+∆x, t +∆ t) and u(x−
∆x, t +∆ t) around t ′ = t +∆ t/2.

u(x+∆x, t+∆ t) = u(x, t ′)+ ∂u(x,t′)
∂x ∆x+ ∂u(x,t′)

∂ t
∆ t
2 + ∂ 2u(x,t′)

2∂x2 ∆x2+ ∂ 2u(x,t′)
2∂ t2

∆ t2
4 +

∂ 2u(x,t′)
∂x∂ t

∆ t
2 ∆x+O(∆ t3)

u(x−∆x, t+∆ t) = u(x, t ′)− ∂u(x,t′)
∂x ∆x+ ∂u(x,t′)

∂ t
∆ t
2 +

∂ 2u(x,t′)
2∂x2 ∆x2+

∂ 2u(x,t′)
2∂ t2

∆ t2
4 −

∂ 2u(x,t′)
∂x∂ t

∆ t
2 ∆x+O(∆ t3)

u(x+∆x, t) = u(x, t ′)+ ∂u(x,t′)
∂x ∆x− ∂u(x,t′)

∂ t
∆ t
2 + ∂ 2u(x,t′)

2∂x2 ∆x2+ ∂ 2u(x,t′)
2∂ t2

∆ t2
4 −

∂ 2u(x,t′)
∂x∂ t

∆ t
2 ∆x+O(∆ t3)

u(x−∆x, t) = u(x, t ′)− ∂u(x,t′)
∂x ∆x− ∂u(x,t′)

∂ t
∆ t
2 + ∂ 2u(x,t′)

2∂x2 ∆x2+ ∂ 2u(x,t′)
2∂ t2

∆ t2
4 +

∂ 2u(x,t′)
∂x∂ t

∆ t
2 ∆x+O(∆ t3)

u(x, t +∆ t) = u(x, t ′)+ ∂u(x,t′)
∂ t

∆t
2 + ∂ 2u(x,t′)

2∂ t2
∆ t2+O(∆ t3)

u(x, t) = u(x, t ′)− ∂u(x,t′)
∂ t

∆ t
2 + ∂ 2u(x,t′)

2∂ t2
∆ t2+O(∆ t3)

We now insert these expansions in the approximations for the derivatives to find

[
∂u(x,t′)

∂ t

]
approx

= ∂u(x,t′)
∂ t +O(∆ t2), (10.12)

[
∂ 2u(x,t′)

∂x2

]
approx

= ∂ 2u(x,t′)
∂x2 +O(∆x2).

The following table summarizes the three methods.

Scheme: Truncation Error: Stability requirements:

Crank-Nicolson O(∆x2) and O(∆t2) Stable for all ∆t and ∆x.
Backward Euler O(∆x2) and O(∆t) Stable for all ∆t and ∆x.
Forward Euler O(∆x2) and O(∆t) ∆t ≤ 1

2∆x2

Table 10.1 Comparison of the different schemes.
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10.2.5 Solution for the One-dimensional Diffusion Equation

It cannot be repeated enough, it is always useful to find cases where one can compare the
numerics and the developed algorithms and codes with closed-form solutions. The above case
is also particularly simple. We have the following partial differential equation

∇2u(x, t) =
∂u(x, t)

∂ t
,

with initial conditions
u(x,0) = g(x) 0< x< L.

The boundary conditions are

u(0, t) = 0 t ≥ 0, u(L, t) = 0 t ≥ 0,

We assume that we have solutions of the form (separation of variable)

u(x, t) = F(x)G(t).

which inserted in the partial differential equation results in

F ′′

F
=

G′

G
,

where the derivative is with respect to x on the left hand side and with respect to t on right
hand side. This equation should hold for all x and t. We must require the rhs and lhs to be
equal to a constant. We call this constant −λ 2. This gives us the two differential equations,

F ′′+λ 2F = 0; G′ =−λ 2G,

with general solutions

F(x) = Asin(λx)+Bcos(λx); G(t) =Ce−λ 2t .

To satisfy the boundary conditions we require B= 0 and λ = nπ/L. One solution is therefore
found to be

u(x, t) = Ansin(nπx/L)e−n2π2t/L2
.

But there are infinitely many possible n values (infinite number of solutions). Moreover, the
diffusion equation is linear and because of this we know that a superposition of solutions will
also be a solution of the equation. We may therefore write

u(x, t) =
∞

∑
n=1

Ansin(nπx/L)e−n2π2t/L2
.

The coefficient An is in turn determined from the initial condition. We require

u(x,0) = g(x) =
∞

∑
n=1

Ansin(nπx/L).

The coefficient An is the Fourier coefficients for the function g(x). Because of this, An is given
by (from the theory on Fourier series)

An =
2
L

∫ L

0
g(x)sin(nπx/L)dx.



10.3 Laplace’s and Poisson’s Equations 309

Different g(x) functions will obviously result in different results for An. A good discussion on
Fourier series and their links with partial differential equations can be found in Ref. [50].

10.3 Laplace’s and Poisson’s Equations

Laplace’s equation reads
∇2u(x) = uxx+uyy = 0. (10.13)

with possible boundary conditions u(x,y) = g(x,y) on the border δΩ . There is no time-
dependence. We seek a solution in the region Ω and we choose a quadratic mesh with equally
many steps in both directions. We could choose the grid to be rectangular or following polar
coordinates r,θ as well. Here we choose equal steps lengths in the x and the y directions. We
set

h= ∆x= ∆y=
L

n+1
,

where L is the length of the sides and we have n+1 points in both directions.
The discretized version reads

uxx≈
u(x+h,y)−2u(x,y)+u(x−h,y)

h2 ,

and

uyy≈
u(x,y+h)−2u(x,y)+u(x,y−h)

h2 ,

which we rewrite as

uxx≈
ui+1, j−2ui, j +ui−1, j

h2 ,

and

uyy≈
ui, j+1−2ui, j +ui, j−1

h2 ,

which gives when inserted in Laplace’s equation

ui, j =
1
4

[
ui, j+1+ui, j−1+ui+1, j +ui−1, j

]
. (10.14)

This is our final numerical scheme for solving Laplace’s equation. Poisson’s equation adds
only a minor complication to the above equation since in this case we have

uxx+uyy =−ρ(x,y),

and we need only to add a discretized version of ρ(x) resulting in

ui, j =
1
4

[
ui, j+1+ui, j−1+ui+1, j +ui−1, j

]
+

h2

4
ρi, j . (10.15)

The boundary condtions read
ui,0 = gi,0 0≤ i ≤ n+1,

ui,L = gi,0 0≤ i ≤ n+1,

u0, j = g0, j 0≤ j ≤ n+1,

and
uL, j = gL, j 0≤ j ≤ n+1.

The calculational molecule for the Laplace operator of Eq. (10.14) is shown in Fig. 10.4.



310 10 Partial Differential Equations

With n+1 mesh points the equations for u result in a system of (n+1)2 linear equations in
the (n+1)2 unknown ui, j . One can show that there exist unique solutions for the Laplace and
Poisson problems, see for example Ref. [50] for proofs. However, solving these equations us-
ing for example the LU decomposition techniques discussed in chapter 6 becomes inefficient
since the matrices are sparse. The relaxation techniques discussed below are more efficient.

10.3.1 Jacobi Algorithm for solving Laplace’s Equation

It is fairly straightforward to extend this equation to the three-dimensional case. Whether we
solve Eq. (10.14) or Eq. (10.15), the solution strategy remains the same. We know the values
of u at i = 0 or i = n+1 and at j = 0 or j = n+1 but we cannot start at one of the boundaries
and work our way into and across the system since Eq. (10.14) requires the knowledge of u
at all of the neighbouring points in order to calculate u at any given point.

The way we solve these equations is based on an iterative scheme based on the Jacobi
method or the Gauss-Seidel method discussed in chapter 6.

Implementing Jacobi’s method is rather simple. We start with an initial guess for u(0)i, j where
all values are known. To obtain a new solution we solve Eq. (10.14) or Eq. (10.15) in order

to obtain a new solution u(1)i, j . Most likely this solution will not be a solution to Eq. (10.14).

This solution is in turn used to obtain a new and improved u(2)i, j . We continue this process
till we obtain a result which satisfies some specific convergence criterion. Summarized, this
algorithm reads

1. Make an initial guess for ui, j at all interior points (i, j) for all i = 1 : n and j = 1 : n

g(x,y)

y

g(x,y)

g(x,y)

x

ui, j+1

ui−1, j ui+1, jui, j

ui, j−1

✲

✻

Fig. 10.4 Five-point calculational molecule for the Laplace operator of Eq. (10.14). The border δ Ω defines
the boundary condition u(x,y) = g(x,y).
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2. Use Eq. (10.14) to compute um at all interior points (i, j). The index m stands for
iteration number m.

3. Stop if prescribed convergence threshold is reached, otherwise continue on next step.
4. Update the new value of u for the given iteration
5. Go to step 2

A simple example may help in visualizing this method. We consider a condensator with
parallel plates separated at a distance L resulting in e.g., the voltage differences u(x,0) =
100sin(2πx/L) and u(x,1) = −100sin(2πx/L). These are our boundary conditions and we ask
what is the voltage u between the plates? To solve this problem numerically we provide below
a C++ programwhich solves iteratively Eq. (10.14). Only the part which computes Eq. (10.14)
is included here.

....

// define the step size

double h = (xmax-xmin)/(ndim+1);

length = xmax-xmin;

// allocate space for the vector u and the temporary vector to

// be upgraded in every iteration

Matrix u( ndim, ndim); // using Armadillo to define matrices

Matrix u_temp( ndim, ndim);

double pi = acos(-1.);

! set up of initial conditions at t = 0 and boundary conditions

u = 0.

for(i=0; i < ndim; i++){

x = i*h*pi/length;

u(i,1) = func(x);

u(i,ndim) = -func(x);

}

// iteration algorithm starts here

iterations = 0;

while( (iterations <= 20) && ( diff > 0.00001) ){

u_temp = u; diff = 0.;

for (j = 1; j< ndim - 1,j++){

for(l = 1; l < ndim -1; l++){

u(j,l) = 0.25*(u_temp(j+1,l)+u_temp(j-1,l)+ &

u_temp(j,l+1)+u_temp(j,l-1));

diff += fabs(u_temp(i,j)-u(i,j));

}

}

iterations++;

diff /= pow((ndim+1.0),2.0);

} // end while loop

The important part of the algorithm is applied in the function which sets up the two-
dimensional Laplace equation. There we have a do-while statement which tests the difference
between the temporary vector and the solution ui, j . Moreover, we have fixed the number of
iterations to be at most 20. This is sufficient for the above problem, but for more general
applications you need to test the convergence of the algorithm.

While the Jacobi iteration scheme is very simple and parallelizable, its slow convergence
rate renders it impractical for any "real world" applications. One way to speed up the conver-
gent rate would be to "over predict" the new solution by linear extrapolation. This leads to
the Successive Over Relaxation scheme, see chapter 19.5 on relaxation methods for boundary
value problems of Ref. [36].
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10.4 Wave Equation in two Dimensions

The 1+1-dimensional wave equation reads

∂ 2u
∂x2 =

∂ 2u
∂ t2 ,

with u= u(x, t) and we have assumed that we operate with dimensionless variables. Possible
boundary and initial conditions with L = 1 are





uxx = utt x∈ (0,1), t > 0
u(x,0) = g(x) x∈ (0,1)

u(0, t) = u(1, t) = 0 t > 0
∂u/∂ t|t=0 = 0 x∈ (0,1)

.

We discretize again time and position,

uxx≈
u(x+∆x, t)−2u(x, t)+u(x−∆x, t)

∆x2 ,

and

utt ≈
u(x, t +∆ t)−2u(x, t)+u(x, t−∆ t)

∆ t2 ,

which we rewrite as

uxx≈
ui+1, j−2ui, j +ui−1, j

∆x2 ,

and

utt ≈
ui, j+1−2ui, j +ui, j−1

∆ t2 ,

resulting in

ui, j+1 = 2ui, j −ui, j−1+
∆ t2

∆x2

(
ui+1, j−2ui, j +ui−1, j

)
. (10.16)

If we assume that all values at times t = j and t = j−1 are known, the only unknown variable
is ui, j+1 and the last equation yields thus an explicit scheme for updating this quantity. We
have thus an explicit finite difference scheme for computing the wave function u. The only
additional complication in our case is the initial condition given by the first derivative in time,
namely ∂u/∂ t|t=0 = 0. The discretized version of this first derivative is given by

ut ≈
u(xi , t j +∆ t)−u(xi, t j −∆ t)

2∆ t
,

and at t = 0 it reduces to

ut ≈
ui,+1−ui,−1

2∆ t
= 0,

implying that ui,+1 = ui,−1. If we insert this condition in Eq. (10.16) we arrive at a special
formula for the first time step

ui,1 = ui,0+
∆ t2

2∆x2 (ui+1,0−2ui,0+ui−1,0) . (10.17)

We need seemingly two different equations, one for the first time step given by Eq. (10.17)
and one for all other time-steps given by Eq. (10.16). However, it suffices to use Eq. (10.16)
for all times as long as we provide u(i,−1) using

ui,−1 = ui,0+
∆ t2

2∆x2 (ui+1,0−2ui,0+ui−1,0) ,
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in our setup of the initial conditions.
The situation is rather similar for the 2+1-dimensional case, except that we now need to

discretize the spatial y-coordinate as well. Our equations will now depend on three variables
whose discretized versions are now





tl = l∆ t l ≥ 0
xi = i∆x 0≤ i ≤ nx

y j = j∆y 0≤ j ≤ ny

,

and we will let ∆x= ∆y= h and nx = ny for the sake of simplicity. The equation with initial and
boundary conditions reads now





uxx+uyy= utt x,y∈ (0,1), t > 0
u(x,y,0) = g(x,y) x,y∈ (0,1)

u(0,0, t) = u(1,1, t) = 0 t > 0
∂u/∂ t|t=0 = 0 x,y∈ (0,1)

.

We have now the following discretized partial derivatives

uxx≈
ul

i+1, j−2ul
i, j +ul

i−1, j

h2 ,

and

uyy≈
ul

i, j+1−2ul
i, j +ul

i, j−1

h2 ,

and

utt ≈
ul+1

i, j −2ul
i, j +ul−1

i, j

∆ t2 ,

which we merge into the discretized 2+1-dimensional wave equation as

ul+1
i, j = 2ul

i, j −ul−1
i, j +

∆ t2

h2

(
ul

i+1, j −4ul
i, j +ul

i−1, j +ul
i, j+1+ul

i, j−1

)
, (10.18)

where again we have an explicit scheme with ul+1
i, j as the only unknown quantity. It is easy to

account for different step lengths for x and y. The partial derivative is treated in much the
same way as for the one-dimensional case, except that we now have an additional index due
to the extra spatial dimension, viz., we need to compute u−1

i, j through

u−1
i, j = u0

i, j +
∆ t
2h2

(
u0

i+1, j −4u0
i, j +u0

i−1, j +u0
i, j+1+u0

i, j−1

)
,

in our setup of the initial conditions.

10.4.1 Closed-form Solution

We develop here the closed-form solution for the 2+ 1 dimensional wave equation with the
following boundary and initial conditions





c2(uxx+uyy) = utt x,y∈ (0,L), t > 0
u(x,y,0) = f (x,y) x,y∈ (0,L)

u(0,0, t) = u(L,L, t) = 0 t > 0
∂u/∂ t|t=0 = g(x,y) x,y∈ (0,L)

.
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Our first step is to make the ansatz

u(x,y, t) = F(x,y)G(t),

resulting in the equation
FGtt = c2(FxxG+FyyG),

or
Gtt

c2G
=

1
F
(Fxx+Fyy) =−ν2.

The lhs and rhs are independent of each other and we obtain two differential equations

Fxx+Fyy+Fν2 = 0,

and
Gtt +Gc2ν2 = Gtt +Gλ 2 = 0,

with λ = cν. We can in turn make the following ansatz for the x and y dependent part

F(x,y) = H(x)Q(y),

which results in
1
H

Hxx =−
1
Q
(Qyy+Qν2) =−κ2.

Since the lhs and rhs are again independent of each other, we can separate the latter equation
into two independent equations, one for x and one for y, namely

Hxx+κ2H = 0,

and
Qyy+ρ2Q= 0,

with ρ2 = ν2−κ2.
The second step is to solve these differential equations, which all have trigonometric func-

tions as solutions, viz.
H(x) = Acos(κx)+Bsin(κx),

and
Q(y) =Ccos(ρy)+Dsin(ρy).

The boundary conditions require that F(x,y) = H(x)Q(y) are zero at the boundaries, meaning
that H(0) = H(L) = Q(0) = Q(L) = 0. This yields the solutions

Hm(x) = sin(
mπx

L
) Qn(y) = sin(

nπy
L

),

or
Fmn(x,y) = sin(

mπx
L

)sin(
nπy
L

).

With ρ2 = ν2−κ2 and λ = cν we have an eigenspectrum λ = c
√

κ2+ρ2 or λmn= cπ/L
√

m2+n2.
The solution for G is

Gmn(t) = Bmncos(λmnt)+Dmnsin(λmnt),

with the general solution of the form

u(x,y, t) =
∞

∑
mn=1

umn(x,y, t) =
∞

∑
mn=1

Fmn(x,y)Gmn(t).
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The final step is to determine the coefficients Bmnand Dmn from the Fourier coefficients. The
equations for these are determined by the initial conditions u(x,y,0) = f (x,y) and ∂u/∂ t|t=0 =

g(x,y). The final expressions are

Bmn=
2
L

∫ L

0

∫ L

0
dxdy f(x,y)sin(

mπx
L

)sin(
nπy
L

),

and

Dmn=
2
L

∫ L

0

∫ L

0
dxdyg(x,y)sin(

mπx
L

)sin(
nπy
L

).

Inserting the particular functional forms of f (x,y) and g(x,y) one obtains the final closed-form
expressions.

10.5 Exercises

10.1. Consider the two-dimensional wave equation for a vibrating membrane given by the
following initial and boundary conditions





uxx+uyy= utt x,y∈ (0,1), t > 0
u(x,y,0) = sin(x)cos(y) x,y∈ (0,1)
u(0,0, t) = u(1,1, t) = 0 t > 0

∂u/∂ t|t=0 = 0 x,y∈ (0,1)

.

1. Find the closed-form solution for this equation using the technique of separation of vari-
ables.

2. Write down the algorithm for solving this equation and set up a program to solve the
discretized wave equation. Compare your results with the closed-form solution. Use a
quadratic grid.

3. Consider thereafter a 2+1 dimensional wave equation with variable velocity, given by

∂ 2u
∂ t2 = ∇(λ (x,y)∇u).

If λ is constant, we obtain the standard wave equation discussed in the two previous points.
The solution u(x,y, t) could represent a model for water waves. It represents then the sur-
face elevation from still water. The function λ simulates the water depth using for example
measurements of still water depths in say a fjord or the north sea. The boundary conditions
are then determined by the coast lines. You can discretize

∇(λ (x,y)∇u) =
∂
∂x

(
λ (x,y)

∂u
∂x

)
+

∂
∂y

(
λ (x,y)

∂u
∂y

)
,

as follows using again a quadratic domain for x and y:

∂
∂x

(
λ (x,y)

∂u
∂x

)
≈ 1

∆x

(
λi+1/2, j

[
ul

i+1, j −ul
i, j

∆x

]
−λi−1/2, j

[
ul

i, j −ul
i−1, j

∆x

])
,

and
∂
∂y

(
λ (x,y)

∂u
∂y

)
≈ 1

∆y

(
λi, j+1/2

[
ul

i, j+1−ul
i, j

∆y

]
−λi, j−1/2

[
ul

i, j −ul
i, j−1

∆y

])
.
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Convince yourself that this equation has the same truncation error as the expressions used
in a) and b) and that they result in the same equations when λ is a constant.

4. Develop an algorithm for solving the new wave equation and write a program which imple-
ments it.

10.2. In this project will first study the simple two-dimensional wave equation and compare
our numerical solution with closed-form results. Thereafter we introduce a simple model for
a tsunami.

Consider first the two-dimensional wave equation for a vibrating square membrane given
by the following initial and boundary conditions





λ
(

∂ 2u
∂x2 +

∂ 2u
∂y2

)
= ∂ 2u

∂ t2
x,y∈ [0,1], t ≥ 0

u(x,y,0) = sin(πx)sin(2πy) x,y∈ (0,1)
u= 0 boundary t ≥ 0
∂u/∂ t|t=0 = 0 x,y∈ (0,1)

.

The boundary is defined by x= 0, x= 1, y= 0 and y= 1.

• Find the closed-form solution for this equation using the technique of separation of vari-
ables.

• Write down the algorithm for the explicit method for solving this equation and set up
a program to solve the discretized wave equation. Describe in particular how you treat
the boundary conditions and initial conditions. Compare your results with the closed-form
solution. Use a quadratic grid.
Check your results as function of the number of mesh points and in particular against the
stability condition

∆ t ≤ 1√
λ

(
1

∆x2 +
1

∆y2

)−1/2

where ∆ t, ∆x and ∆y are the chosen step lengths. In our case ∆x= ∆y. It can be useful to
make animations of the results.
An example of a simple code which solves this problem using the explicit scheme is listed
here.

int main ( int argc, char * argv[] )

{

// terminal input

if ( argc < 4 ) {

cout << "\n\nToo few input arguments. Please provide\n"

<< "spatial resolution, time step and\n"

<< "final time.\n\n"

<< "Ex: proj4b 100 0.005 10\n\n";

return 0;

}

int n;

double tStep, tFinal;

n = atoi(argv[1]);

tStep = atof(argv[2]);

tFinal = atof(argv[3]);

double h = 1.0/(((double) n) - 1.0);

// variables

double ** u;

double ** uLast;

double ** uNext;

u = new double * [n];

uLast = new double * [n];
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uNext = new double * [n];

double * x;

double * y;

x = new double [n];

y = new double [n];

for ( int i = 0; i < n; i++ ) {

u[i] = new double [n];

uLast[i] = new double [n];

uNext[i] = new double [n];

x[i] = i*h;

y[i] = x[i];

}

// initializing

for ( int i = 0; i < n; i++ ) { // setting initial step

for ( int j = 0; j < n; j++ ) {

uLast[i][j] = sin(PI*x[i])*sin(2*PI*y[j]);

}

}

for ( int i = 1; i < (n-1); i++ ) { // setting first step using the initial derivative

for ( int j = 1; j < (n-1); j++ ) {

u[i][j] = uLast[i][j] - ((tStep*tStep)/(2.0*h*h))*
(4*uLast[i][j] - uLast[i+1][j] - uLast[i-1][j] - uLast[i][j+1] - uLast[i][j-1]);

}

u[i][0] = 0; // setting boundaries once and for all

u[i][n-1] = 0;

u[0][i] = 0;

u[n-1][i] = 0;

uNext[i][0] = 0;

uNext[i][n-1] = 0;

uNext[0][i] = 0;

uNext[n-1][i] = 0;

}

// iterating in time

double t = 0.0 + tStep;

int iter = 0;

while ( t < tFinal ) {

iter ++;

t = t + tStep;

for ( int i = 1; i < (n-1); i++ ) { // computing next step

for ( int j = 1; j < (n-1); j++ ) {

uNext[i][j] = 2*u[i][j] - uLast[i][j] - ((tStep*tStep)/(h*h))*
(4*u[i][j] - u[i+1][j] - u[i-1][j] - u[i][j+1] - u[i][j-1]);

}

}

for ( int i = 1; i < (n-1); i++ ) { // shifting results down

for ( int j = 1; j < (n-1); j++ ) {

uLast[i][j] = u[i][j];

u[i][j] = uNext[i][j];

}

}

}

// computing error and printing to screen

double error;

double errorTmp;

for ( int i = 0; i < n; i++ ) {
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for ( int j = 0; j < n; j++ ) {

errorTmp = u[i][j] - sin(PI*x[i])*sin(2*PI*y[j])*cos(sqrt(5)*PI*t);

error += errorTmp*errorTmp;

}

}

error = sqrt(error)/((double) n);

cout << "\n\nRMS Error: " << setprecision(8) << error << endl

<< "Iterations: " << iter

<< "\n\n\n";

// deallocating memory

for ( int i = 0; i < n; i++ ) {

delete [] u[i];

delete [] uLast[i];

delete [] uNext[i];

}

delete [] u;

delete [] uLast;

delete [] uNext;

delete [] x;

delete [] y;

// finishing without error

return 0;

}

We modify now the wave equation in order to consider a 2+1 dimensional wave equation
with a position dependent velocity, given by

∂ 2u
∂ t2 = ∇ · (λ (x,y)∇u).

If λ is constant, we obtain the standard wave equation discussed in the two previous points.
The solution u(x,y, t) could represent a model for water waves. It represents then the surface
elevation from still water. We will model λ as

λ = gH(x,y),

with g being the acceleration of gravity and H(x,y) is the still water depth.
The function H(x,y) simulates the water depth using for example measurements of still

water depths in say a fjord or the north sea. The boundary conditions are then determined
by the coast lines as discussed in point d) below. We have assumed that the vertical motion is
negligible and that we deal with long wavelenghts λ̃ compared with the depth of the sea H,
that is λ̃/H≫ 1. We will also neglect Coriolis effects.

You can discretize

∇ · (λ (x,y)∇u) =
∂
∂x

(
λ (x,y)

∂u
∂x

)
+

∂
∂y

(
λ (x,y)

∂u
∂y

)
,

as follows using again a quadratic domain for x and y:

∂
∂x

(
λ (x,y)

∂u
∂x

)
≈ 1

∆x

(
λi+1/2, j

[
ul

i+1, j −ul
i, j

∆x

]
−λi−1/2, j

[
ul

i, j −ul
i−1, j

∆x

])
,

and
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∂
∂y

(
λ (x,y)

∂u
∂y

)
≈ 1

∆y

(
λi, j+1/2

[
ul

i, j+1−ul
i, j

∆y

]
−λi, j−1/2

[
ul

i, j −ul
i, j−1

∆y

])
.

• Show that this equation has the same truncation error as the expressions used in a) and b)
and that they result in the same equations when λ is a constant.

We assume that we can approximate the coastline with a quadratic grid. As boundary
condition at the coastline we will employ

∂u
∂n

= ∇u ·n = 0,

where ∂u/∂n is the derivative in the direction normal to the boundary.
We are going to model the impact of an earthquake on sea water. This is normally modelled

via an elevation of the sea bottom. We will assume that the movement of the sea bottom
is very rapid compared with the period of the propagating waves. This means that we can
approximate the bottom elevation with an initial surface elevation. The initial conditions are
then given by (with L the length of the grid)

u(x,y,0) = f (x,y) x,y∈ (0,L),

and
∂u/∂ t|t=0 = 0 x,y∈ (0,L).

We will approximate the initial elevation with the function

f (x,y) = A0exp

(
−
[

x− xc

σx

]2

−
[

y− yc

σy

]2
)
,

where A0 is the elevation of the surface and is typically 1−2m. The variables σx and σy repre-
sent the extensions of the surface elevation. In this project we will let σx = 80km and σy = 200
km. The 2004 tsunami had extensions of approximately 200 and 1000 km, respectively.

The variables xc and yc represent the epicentre of the earthquake.
We need also to model the sea bottom and the function λ (x,y) = gH(x,y). We assume that

we can model the sea bottom with a water depth of 5000 m and a surface elevation of 2 m.
The sea bottom towards one of the coastlines has a shape with an inclination of θ = 1 degree
and depth where the earthquake takes place of 5000 m. This gives the following model for
λ (x,y) = gH(x,y) = gH(x) with H0 = 5000m

for ( int i = 0; i < (2*n+1); i++ ) {

if ( (i-1)*(h/2.0) < X_0 ) {

lambda[i] = G*H_0; // lambda depends only on x

} else {

lambda[i] = G*(H_0 - ((i-1)*(h/2.0)-X_0)*0.0174550649282176);

}

}

Here X0 is the point where the sea bed changes (with respect to shore). Your tasks are as
follows:

• Develop an algorithm for solving the new wave equation and write a program which imple-
ments it. Pay in particular attention to the implementation of the boundary conditions and
the initial conditions. Figure out how to deal with the fictitious values in time and space
for the discretized functions. You need also to find the functional form of H(x,y) = H(x).
Be careful to scale the equations properly. With the depth of 5000 m, extensions σx = 80
km and σy = 200km you need to figure out the proper dimensions of the grid L×L. Scale
the equations so that you can use dimensionless quantities.
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With the above parameters, initial values and boundary conditions, study the temporal
evolution of the wave towards the coastline. Comment your results. It can be useful to
make animations of the results (a simple recipe with gnuplot and python for this is available
under the project link for project 4 at the webpage).
It also important that you keep in mind the stability condition

∆ t ≤ 1√
maxλ (x,y)

(
1

∆x2 +
1

∆y2

)−1/2

• We keep now the same shape of the sea bottom and the same parameters as in d), but we
shift the center of the earthquake to the right with 40 km. Which one of the two earth-
quakes will produce the largest impact (wave elevation) at the coastline? Comment your
results.

10.3. Consider a condensator with parallel plates separated at a distance L resulting in the
voltage differences u(x,0) = 100sin(2πx/L) and u(x,1) = −100sin(2πx/L). These are our bound-
ary conditions. Write a program which obtains the voltage ubetween the plates using both the
Jacobi method and the Gauss-Seidel method. Parallelize your program as detailed in chapter
6 and study the stability of your solutions as functions of the number of mesh points. How
does your parallel code scale?

10.4. The dominant way of transporting signals between neurons (nerve cells) in the brain
is by means of diffusion of particular signal molecules called neurotransmitters across the
synaptic cleft separating the cell membranes of the two cells. A drawing of a synapse is given
in Fig. 10.5.

Fig. 10.5 Drawing of a synapse. The axon terminal is the knoblike structure and the spine of the receiving
neuron is the bottom one. The synaptic cleft is the small space between the presynaptic (axon) and postsy-
naptic (dendritic spine) membrane. (From Thompson: “The Brain”, Worth Publ., 2000)

Following the arrival of an action potential in the axon terminal a process is initiated in
which (i) vesicles inside the axon terminal (filled with neurotransmitter molecules) merge
with the presynaptic (axon) membrane and (ii) release neurotransmitters into the synaptic
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Fig. 10.6 Left: Schematic drawing of the process of vesicle release from the axon terminal and release
of transmitter molecules into the synaptic cleft. (From Thompson: “The Brain”, Worth Publ., 2000). Right:
Molecular structure of the two important neurotransmitters glutamate and GABA.

cleft. These neurotransmitters diffuse across the synaptic cleft to receptors on the postsy-
naptic side which “receives” the signal. A schematic illustration of this process is shown in
Fig. 10.6(left). Since the transport process in the synaptic cleft is governed by diffusion, we
can describe it mathematically by

∂u
∂ t

= D∇2u, (10.19)

where uăis the concentration of the particular neurotransmitter, and D is the diffusion coeffi-
cient of the neurotransmitter in this particular environment (solvent in synaptic cleft).

If we assume (i) that the neurotransmitter is released roughly equally on the “presynaptic”
side of the synaptic cleft, and (ii) that the synaptic cleft is roughly equally wide across the
whole synaptic terminal, we can, given the large area of the synaptic cleft compared to its
width, assume that the neurotransmitter concentration only varies in the direction across
the synaptic cleft (from presynaptic to postsynaptic side). We choose this direction to be the
x-direction (see Fig. 10.7). In this case u(r) = u(x), the diffusion equation reduces to

∂u
∂ t

= D
∂ 2u
∂x2 . (10.20)

Immediately after the release of a neurotransmitter into the synaptic cleft (t = 0) the concen-
tration profile in the x-direction is given by

u(x, t = 0) = Nδ (x), (10.21)

where N is the number of particle released into the synaptic cleft per area of membrane.

x=d

x=0

x

dendrite (postsynaptic)

axon (presynaptic)

synaptic cleft

Fig. 10.7 Schematic drawing of the synaptic cleft in our model. The black dots represent neurotransmitter
molecules, and the situation shown corresponds to the situation immediately after neurotransmitter release
into the synaptic cleft.



322 10 Partial Differential Equations

To get an idea over the time-dependence of the neurotransmitter concentration at the
postsynaptic side (x= d), we can look at the solution of a “free” randomwalk (i.e., no obstacles
or particle absorbers in either direction). The solution of Eq. (10.20) with the initial condition
in Eq. (10.21) is given by (see Nelson: Biological Physics, p. 143 or Lectures notes chapter
12.3)

u(x, t) =
N√

4πDt
e−x2/4Dt . (10.22)

The concentration at the postsynaptic side u(d, t) approaches 0 in the limit t→ 0 ăand t → ∞.
The above assumption regarding the neurotransmitter molecules undergoing a “free” ran-

dom walk, is obviously a simplification. In the true diffusion process in the synaptic cleft the
neurotransmitter molecules will, for example, occasionally bump into the presynaptic mem-
brane they came from. Also at the postsynaptic side the neurotransmitters are absorbed by
receptors located on the postsynaptic cell membrane and are thus (temporally) removed from
the solution.

To approach this situation in our mathematical model we can impose the following bound-
ary and initial conditions with x∈ [0,d]

u(x= 0, t > 0) = u0, u(x= d,all t) = 0, u(0< x< d, t < 0) = 0 . (10.23)

Hereafter we set d = 1. This corresponds to that (i) for t < 0 there are no neurotransmitters
in the synaptic cleft, (ii) for t > 0 the concentration of neurotransmitters at the presynaptic
boundary of the synaptic cleft (x = 0) is kept fixed ă at u = u0 = 1 in our case, and (iii) that
the postsynaptic receptors immediately absorb nearby neurotransmitters so that u= 0 on the
postsynaptic side of the cleft (x= d = 1).

The full solution of the diffusion equation with boundary/initial conditions in Eq. (10.23)
can be found in a closed form. We will use this solution to test our numerical calculations.

We are thus looking at a one-dimensional problem

∂ 2u(x, t)
∂x2 =

∂u(x, t)
∂ t

, t > 0,x∈ [0,d]

or
uxx = ut ,

with initial conditions, i.e., the conditions at t = 0,

u(x,0) = 0 0< x< d

with d = 1 the length of the x-region of interest. The boundary conditions are

u(0, t) = 1 t > 0,

and
u(d, t) = 0 t > 0.

In this project we want to study the numerical stability of three methods for partial differ-
ential equations (PDEs). These methods are

1. The explicit forward Euler algorithm with discretized versions of time given by a forward
formula and a centered difference in space resulting in

ut ≈
u(x, t +∆ t)−u(x, t)

∆ t
=

u(xi , t j +∆ t)−u(xi, t j)

∆ t

and
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uxx≈
u(x+∆x, t)−2u(x, t)+u(x−∆x, t)

∆x2 ,

or

uxx≈
u(xi +∆x, t j)−2u(xi, t j)+u(xi−∆x, t j)

∆x2 .

2. The implicit Backward Euler with

ut ≈
u(x, t)−u(x, t−∆ t)

∆ t
=

u(xi , t j)−u(xi, t j −∆ t)

∆ t

and

uxx≈
u(x+∆x, t)−2u(x, t)+u(x−∆x, t)

∆x2 ,

or

uxx≈
u(xi +∆x, t j)−2u(xi, t j)+u(xi−∆x, t j)

∆x2 ,

3. Finally we use the implicit Crank-Nicolson scheme with a time-centered scheme at (x, t +
∆ t/2)

ut ≈
u(x, t +∆ t)−u(x, t)

∆ t
=

u(xi, t j +∆ t)−u(xi, t j)

∆ t
.

The corresponding spatial second-order derivative reads

uxx≈
1
2

(
u(xi +∆x, t j)−2u(xi, t j)+u(xi−∆x, t j)

∆x2 +

u(xi +∆x, t j +∆ t)−2u(xi, t j +∆ t)+u(xi−∆x, t j +∆ t)
∆x2

)
.

Note well that we are using a time-centered scheme wih t +∆ t/2 as center.

a) Find the closed form solution to this problem. You will need this in order to study the
numerical accuracy of your results. To find the closed-form solution, we will need the sta-
tionary solution (steady-state solution). The solution to the steady-state problem is on the
form u(x) = Ax+b. The solution for the steady-state case us that obeys the above boundary
conditions is

us(x) = 1− x.

You can use this solution to define a new function v(x) = u(x)−us(x) with boundary condi-
tions v(0) = v(d) = 0. The latter is easier to solve both numerically and on a closed form.

b) Write down the algorithms for these three methods and the equations you need to imple-
ment. For the implicit schemes show that the equations lead to a tridiagonal matrix system
for the new values.

c) Find the truncation errors of these three schemes and investigate their stability properties.
d) Implement the three algorithms in the same code and perform tests of the solution for

these three approaches for ∆x= 1/10, h= 1/100using ∆ t as dictated by the stability limit
of the explicit scheme. Study the solutions at two time points t1 and t2 where u(x, t1) is
smooth but still significantly curved and u(x, t2) is almost linear, close to the stationary
state. Remember that for solving the tridiagonal equations you can use your code from
project 1.

e) Compare the solutions at t1 and t2 with the analytic result for the continuous problem.
Which of the schemes would you classify as the best?

f) The above problem can be solved using Monte Carlo methods and random walks. We follow
here Farnell and Gibson in Journal of Computational Physics, volume 208, pages 253-265
(2005). Choose a constant step length l0 =

√
2D∆ t and equal probability for jumping left

and right. Set up the algorithm for solving the above diffusion problem and write a code to
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do it. Compare your results with those from the partial differential equation solution and
comment the results.

g) Change the above stepsize by using a Gaussian distribution with mean value 1 and stan-
dard deviation 0. The step length of the random walker is now l0 =

√
2D∆ tξ , where ξ is

random number chosen from the above Gaussian distribution. Implement this stepsize to
the program from f) and compare the results and comment.



Part IV

Monte Carlo Methods



We start with an introduction to the basic Monte Carlo philosophy in the first chapter.
Thereafter we discuss Markov chains and Brownian motion, we present the famous Metropo-
lis algorithm and discuss several applications of this algorithm to many problems in Science,
from the simulation of phase transitions in materials, via studies quantum mechanical sys-
tems to the simulation of stock markets and genomic data.



Chapter 11

Outline of the Monte Carlo Strategy

’Iacta Alea est’, the die is cast, is what Julius Caesar is reported by Suetonius to have said on January 10,
49 BC as he led his army across the River Rubicon in Northern Italy. (Twelve Ceasars) Gaius Suetonius

AbstractWe present here the basic philosophy behind stochastic Monte Carlo methods, with
an emphasis on numerical integration. Random number generators and properties of proba-
bility density functions are also discussed.

11.1 Introduction

Monte Carlo methods are widely used in Science, from the integration of multi-dimensional
integrals to solving ab initio problems in chemistry, physics, medicine, biology, or even Dow-
Jones forecasting. Computational finance is one of the novel fields where Monte Carlo meth-
ods have found a new field of applications, with financial engineering as an emerging field,
see for example Refs. [56, 57]. Emerging fields like econophysics [58–60] are new examples
of applications of Monte Carlo methods.

Numerical methods that are known as Monte Carlo methods can be loosely described as
statistical simulation methods, where statistical simulation is defined in quite general terms
to be any method that utilizes sequences of random numbers to perform the simulation. As
mentioned in the introduction to this text, a central algorithm in Monte Carlo methods is the
Metropolis algorithm, ranked as one of the top ten algorithms in the last century. We discuss
this algorithm in the next chapter.

Statistical simulation methods may be contrasted to conventional numerical discretization
methods, which are typically applied to ordinary or partial differential equations that describe
some underlying physical or mathematical system. In many applications of Monte Carlo, the
physical process is simulated directly, and there is no need to even write down the differential
equations that describe the behavior of the system. The only requirement is that the physical
(or mathematical) system be described by probability distribution functions (PDF’s). Once
the PDF’s are known, the Monte Carlo simulation can proceed by random sampling from
the PDF’s. Many simulations are then performed (multiple “trials” or “histories”) and the
desired result is taken as an average over the number of observations (which may be a single
observation or perhaps millions of observations). In many practical applications, one can
predict the statistical error (the “variance”) in this average result, and hence an estimate
of the number of Monte Carlo trials that are needed to achieve a given error. If we assume
that the physical system can be described by a given probability density function, then the
Monte Carlo simulation can proceed by sampling from these PDF’s, which necessitates a fast
and effective way to generate random numbers uniformly distributed on the interval [0,1].

327
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The outcomes of these random samplings, or trials, must be accumulated or tallied in an
appropriate manner to produce the desired result, but the essential characteristic of Monte
Carlo is the use of random sampling techniques (and perhaps other algebra to manipulate
the outcomes) to arrive at a solution of the physical problem. In contrast, a conventional
numerical solution approach would start with the mathematical model of the physical system,
discretizing the differential equations and then solving a set of algebraic equations for the
unknown state of the system. It should be kept in mind that this general description of Monte
Carlo methods may not directly apply to some applications. It is natural to think that Monte
Carlo methods are used to simulate random, or stochastic, processes, since these can be
described by PDF’s. However, this coupling is actually too restrictive because many Monte
Carlo applications have no apparent stochastic content, such as the evaluation of a definite
integral or the inversion of a system of linear equations. However, in these cases and others,
one can pose the desired solution in terms of PDF’s, and while this transformation may seem
artificial, this step allows the system to be treated as a stochastic process for the purpose of
simulation and hence Monte Carlo methods can be applied to simulate the system.

There are at least four ingredients which are crucial in order to understand the basic
Monte-Carlo strategy. These are

1. Random variables,
2. probability distribution functions (PDF),
3. moments of a PDF
4. and its pertinent variance σ2.

All these topics will be discussed at length below. We feel however that a brief explanation
may be appropriate in order to convey the strategy behind a Monte-Carlo calculation. Let us
first demystify the somewhat obscure concept of a random variable. The example we choose
is the classic one, the tossing of two dice, its outcome and the corresponding probability. In
principle, we could imagine being able to determine exactly the motion of the two dice, and
with given initial conditions determine the outcome of the tossing. Alas, we are not capable
of pursuing this ideal scheme. However, it does not mean that we do not have a certain
knowledge of the outcome. This partial knowledge is given by the probablity of obtaining a
certain number when tossing the dice. To be more precise, the tossing of the dice yields the
following possible values

{2,3,4,5,6,7,8,9,10,11,12}.
These values are called the domain. To this domain we have the corresponding probabilities

{1/36,2/36/3/36,4/36,5/36,6/36,5/36,4/36,3/36,2/36,1/36}.

The numbers in the domain are the outcomes of the physical process tossing the dice. We
cannot tell beforehand whether the outcome is 3 or 5 or any other number in this domain.
This defines the randomness of the outcome, or unexpectedness or any other synonimous
word which encompasses the uncertitude of the final outcome. The only thing we can tell
beforehand is that say the outcome 2 has a certain probability. If our favorite hobby is to
spend an hour every evening throwing dice and registering the sequence of outcomes, we
will note that the numbers in the above domain

{2,3,4,5,6,7,8,9,10,11,12},

appear in a random order. After 11 throws the results may look like

{10,8,6,3,6,9,11,8,12,4,5}.
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Eleven new attempts may results in a totally different sequence of numbers and so forth.
Repeating this exercise the next evening, will most likely never give you the same sequences.
Thus, we say that the outcome of this hobby of ours is truly random.

Random variables are hence characterized by a domain which contains all possible values
that the random value may take. This domain has a corresponding PDF.

To give you another example of possible random number spare time activities, consider
the radioactive decay of an α-particle from a certain nucleus. Assume that you have at your
disposal a Geiger-counter which registers every 10 ms whether an α-particle reaches the
counter or not. If we record a hit as 1 and no observation as zero, and repeat this experiment
for a long time, the outcome of the experiment is also truly random. We cannot form a specific
pattern from the above observations. The only possibility to say something about the outcome
is given by the PDF, which in this case is the well-known exponential function

λ exp−(λx),

with λ being proportional to the half-life of the given nucleus which decays.
If you wish to read more about the more formal aspects of Monte Carlo methods, see for

example Refs. [61–63].

11.1.1 Definitions

Random numbers as we use them here are numerical approximations to the statistical con-
cept of stochastic variables, sometimes just called random variables. To understand the
behavior of pseudo random numbers we must first establish the theoretical framework of
stochastic variables. Although this is typical textbook material, the nomenclature may differ
from one textbook to another depending on the level of difficulty of the book. We would there-
fore like to establish a nomenclature suitable for our purpose, one that we are going to use
consequently throughout this text.

A stochastic variable can be either continuous or discrete. In any case, we will denote
stochastic variables by capital letters X,Y, . . .

There are two main concepts associated with a stochastic variable. The domain is the set
D = {x} of all accessible values the variable can assume, so that X ∈ D. An example of a
discrete domain is the set of six different numbers that we may get by throwing of a dice,
x∈ {1, 2, 3, 4, 5, 6}.

The probability distribution function (PDF) is a function p(x) on the domain which, in the
discrete case, gives us the probability or relative frequency with which these values of X
occur

p(x) = Prob(X = x)

In the continuous case, the PDF does not directly depict the actual probability. Instead we
define the probability for the stochastic variable to assume any value on an infinitesimal
interval around x to be p(x)dx. The continuous function p(x) then gives us the density of
the probability rather than the probability itself. The probability for a stochastic variable to
assume any value on a non-infinitesimal interval [a, b] is then just the integral

Prob(a≤ X ≤ b) =
∫ b

a
p(x)dx

Qualitatively speaking, a stochastic variable represents the values of numbers chosen as if
by chance from some specified PDF so that the selection of a large set of these numbers
reproduces this PDF.
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Also of interest to us is the cumulative probability distribution function (CDF), P(x), which
is just the probability for a stochastic variable X to assume any value less than x

P(x) = Prob(X ≤ x) =
∫ x

−∞
p(x′)dx′

The relation between a CDF and its corresponding PDF is then

p(x) =
d
dx

P(x)

There are two properties that all PDFs must satisfy. The first one is positivity (assuming
that the PDF is normalized)

0≤ p(x)≤ 1

Naturally, it would be nonsensical for any of the values of the domain to occur with a proba-
bility greater than 1 or less than 0. Also, the PDF must be normalized. That is, all the proba-
bilities must add up to unity. The probability of “anything” to happen is always unity. For both
discrete and continuous PDFs, this condition is

∑
xi∈D

p(xi) = 1

∫

x∈D
p(x)dx= 1

In addition to the exponential distribution discussed above, there are two other continuous
PDFs that are especially important. The first one is the most basic PDF; namely the uniform
distribution

p(x) =
1

b−a
θ (x−a)θ (b− x) (11.1)

with:
θ (x) = 0 x< 0
θ (x) = 1 x≥ 0

The second one is the Gaussian Distribution, often called the normal distribution

p(x) =
1

σ
√

2π
exp(− (x− µ)2

2σ2 )

Let h(x) be an arbitrary function on the domain of the stochastic variable X whose PDF is
p(x). We define the expectation value of h with respect to p as follows

〈h〉X ≡
∫

h(x)p(x)dx (11.2)

Whenever the PDF is known implicitly, like in this case, we will drop the index X for clarity.
A particularly useful class of special expectation values are the moments. The n-th moment

of the PDF p is defined as follows

〈xn〉 ≡
∫

xnp(x)dx

The zero-th moment 〈1〉 is just the normalization condition of p. The first moment, 〈x〉, is called
the mean of p and often denoted by the letter µ

〈x〉= µ ≡
∫

xp(x)dx
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Qualitatively it represents the centroid or the average value of the PDF and is therefore often
simply called the expectation value of p.1 A PDF can in principle be expanded in the set of its
moments [64]. For two PDFs to be equal, each of their moments must be equal.

A special version of the moments is the set of central moments, the n-th central moment
defined as

〈(x−〈x〉)n〉 ≡
∫
(x−〈x〉)np(x)dx

The zero-th and first central moments are both trivial, equal 1 and 0, respectively. But the sec-
ond central moment, known as the variance of p, is of particular interest. For the stochastic
variable X, the variance is denoted as σ2

X or Var(X)

σ2
X = Var(X) = 〈(x−〈x〉)2〉=

∫
(x−〈x〉)2p(x)dx

=

∫ (
x2−2x〈x〉 + 〈x〉2

)
p(x)dx

= 〈x2〉−2〈x〉〈x〉+ 〈x〉2

= 〈x2〉− 〈x〉2

The square root of the variance, σ =
√
〈(x−〈x〉)2〉 is called the standard deviation of p. It

is clearly just the RMS (root-mean-square) value of the deviation of the PDF from its mean
value, interpreted qualitatively as the “spread” of p around its mean.

We will also be interested in finding the PDF of a function of a stochastic variable. Let
the stochastic variable X have the PDF pX(x), and let Y = h(X) be a function of X. What we
want to find is the PDF of Y, pY(y). We will have to restrict ourselves to the case where
h(X) is invertible, so that it has to be strictly monotonous. First we construct the cumulative
distribution of Y, considering only the case where h increases

PY (y) = Prob(Y ≤ y) = Prob(h(X)≤ y) = Prob(X ≤ h−1(y)) = PX (h−1(y))

where h−1 is the inverse function of h, meaning that if y= h(x) then x= h−1(y). This gives the
PDF of Y

pY(y) =
d
dy

PY (y) =
d
dy

PX (h−1(y))

Considering in a similar manner the other case of a decreasing h we arrive at

pY(y) = pX(h
−1(y))

∣∣∣∣
d
dy

h−1(y)

∣∣∣∣ (11.3)

This formula will become useful when transforming simple pseudo random number genera-
tors to more general ones.

All the PDFs above have been written as functions of only one stochastic variable. Such
PDFs are called univariate. A PDF may well consist of any number of variables, in which case
we call it multivariate. A general multivariate expectation value is defined similarly as for the
univariate case, but all stochastic variables are taken into account at once. Let P(x1, . . . ,xn)

be the multivariate PDF for the set {Xi} of n stochastic variables and let H(x1, . . . ,xn) be an
arbitrary function over the joint domain of all Xi . The expectation value of H with respect to
P is defined as follows

1 We should now formulate 11.2 in a more rigorous manner. It is mathematically more correct to speak of h
as a function transforming the stochastic variable X to the stochastic variable Y, Y = h(X). Let pX(x) be the
known PDF of X, and pY(y) be the unknown PDF of Y. It can then be shown [64] that the expectation value of
Y, namely 〈y〉Y =

∫
ypY(y)dy, must equal what we have defined as the expectation value of h(x) with respect to

pX , namely 〈h〉X =
∫

h(x)pX(x)dx.
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〈H〉X1...Xn =

∫
· · ·
∫

H(x1, . . . ,xn)P(x1, . . . ,xn)dx1 . . .dxn

If we want to find the expectation value of an arbitrary function h(xi) on the domain of just
one stochastic variable Xi , we must still use the joint PDF P and remember to integrate over
the total domain of all Xi

〈h〉X1...Xn =

∫
· · ·
∫

h(xi)P(x1, . . . ,xn)dx1 . . .dxn (11.4)

We will now define the property of correlation, of great importance for our study of random
numbers. Let us continue with the same set of n stochastic variables {Xi} as above. The
variables are uncorrelated (or independent) if P may be factorized in the following form

P(x1,x2, . . . ,xn) =
n

∏
i=1

pi(xi)

where pi(xi) is the univariate PDF of Xi . Notice, that if all Xi are uncorrelated, then the above
equation for the expectation value of the univariate function h, eq. (11.4) reduces, nicely to
the familiar simple univariate form of eq. (11.2).

To understand the definition of independence qualitatively, consider a process of n se-
quential events determined by the stochastic variables Xi ∀ i ∈ {1,2, . . . ,n}. The PDF pi(xi)

determines the probability density that the i-th event (governed by Xi) will have the outcome
xi . If the individual events are to be independent, then the joint probability density should
intuitively be just the product of the individual densities. The events receive no information
about each other. The probability to get some particular outcome of an event is independent
of whether other events are happening at all or not.

11.1.2 First Illustration of the Use of Monte-Carlo Methods

With this definition of a random variable and its associated PDF, we attempt now a clarifica-
tion of the Monte-Carlo strategy by using the evaluation of an integral as our example.

In chapter 5 we discussed standard methods for evaluating an integral like

I =
∫ 1

0
f (x)dx≈

N

∑
i=1

ωi f (xi),

where ωi are the weights determined by the specific integration method (like Simpson’s or
Taylor’s methods) with xi the given mesh points. To give you a feeling of how we are to eval-
uate the above integral using Monte-Carlo, we employ here the crudest possible approach.
Later on we will present slightly more refined approaches. This crude approach consists in
setting all weights equal 1, ωi = 1. That corresponds to the rectangle method presented in
Eq. (5.5), displayed again here

I =
∫ b

a
f (x)dx≈ h

N

∑
i=1

f (xi−1/2),

where f (xi−1/2) is the midpoint value of f for a given value xi−1/2. Setting h= (b−a)/N where
b= 1, a= 0, we can then rewrite the above integral as

I =
∫ 1

0
f (x)dx≈ 1

N

N

∑
i=1

f (xi−1/2),
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where xi−1/2 are the midpoint values of x. Introducing the concept of the average of the
function f for a given PDF p(x) as

〈 f 〉= 1
N

N

∑
i=1

f (xi)p(xi),

and identify p(x) with the uniform distribution, viz p(x) = 1when x∈ [0,1] and zero for all other
values of x. The integral is is then the average of f over the interval x∈ [0,1]

I =
∫ 1

0
f (x)dx≈ 〈 f 〉.

In addition to the average value 〈 f 〉 the other important quantity in a Monte-Carlo calculation
is the variance σ2 and the standard deviation σ . We define first the variance of the integral
with f for a uniform distribution in the interval x∈ [0,1] to be

σ2
f =

1
N

N

∑
i=1

( f (xi)−〈 f 〉)2p(xi),

and inserting the uniform distribution this yields

σ2
f =

1
N

N

∑
i=1

f (xi)
2−
(

1
N

N

∑
i=1

f (xi)

)2

,

or
σ2

f =
(
〈 f 2〉− 〈 f 〉2

)
.

which is nothing but a measure of the extent to which f deviates from its average over the re-
gion of integration. The standard deviation is defined as the square root of the variance. If we
consider the above results for a fixed value of N as a measurement, we could recalculate the
above average and variance for a series of different measurements. If each such measumer-
ent produces a set of averages for the integral I denoted 〈 f 〉l , we have for M measurements
that the integral is given by

〈I〉M =
1
M

M

∑
l=1

〈 f 〉l .

We show in section 11.3 that if we can consider the probability of correlated events to be
zero, we can rewrite the variance of these series of measurements as (equating M = N)

σ2
N ≈

1
N

(
〈 f 2〉− 〈 f 〉2

)
=

σ2
f

N
. (11.5)

We note that the standard deviation is proportional to the inverse square root of the number
of measurements

σN ∼
1√
N
.

The aim of Monte Carlo calculations is to have σN as small as possible after N samples. The
results from one sample represents, since we are using concepts from statistics, a ’measure-
ment’.

The scaling in the previous equation is clearly unfavorable compared even with the trape-
zoidal rule. In chapter 5 we saw that the trapezoidal rule carries a truncation error O(h2), with
h the step length. In general, methods based on a Taylor expansion such as the trapezoidal
rule or Simpson’s rule have a truncation error which goes like ∼ O(hk), with k≥ 1. Recalling
that the step size is defined as h= (b−a)/N, we have an error which goes like ∼ N−k.
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However, Monte Carlo integration is more efficient in higher dimensions. To see this, let
us assume that our integration volume is a hypercube with side L and dimension d. This cube
contains hence N = (L/h)d points and therefore the error in the result scales as N−k/d for the
traditional methods. The error in the Monte carlo integration is however independent of d and
scales as σ ∼ 1/

√
N, always! Comparing this error with that of the traditional methods, shows

that Monte Carlo integration is more efficient than an algorithm with error in powers of k
when d>2k. In order to expose this, consider the definition of the quantummechanical energy
of a system consisting of 10 particles in three dimensions. The energy is the expectation value
of the Hamiltonian H and reads

E =

∫
dR1dR2 . . .dRNΨ∗(R1,R2, . . . ,RN)H(R1,R2, . . . ,RN)Ψ(R1,R2, . . . ,RN)∫

dR1dR2 . . .dRNΨ∗(R1,R2, . . . ,RN)Ψ(R1,R2, . . . ,RN)
,

where Ψ is the wave function of the system and Ri are the coordinates of each particle. If we
want to compute the above integral using for example Gaussian quadrature and use for exam-
ple ten mesh points for the ten particles, we need to compute a ten-dimensional integral with
a total of 1030 mesh points. As an amusing exercise, assume that you have access to today’s
fastest computer with a theoretical peak capacity of more than one Petaflops, that is 1015

floating point operations per second. Assume also that every mesh point corresponds to one
floating operation per second. Estimate then the time needed to compute this integral with
a traditional method like Gaussian quadrature and compare this number with the estimated
lifetime of the universe, T ≈ 4.7×1017s. Do you have the patience to wait?

We end this first part with a discussion of a brute force Monte Carlo program which inte-
grates ∫ 1

0
dx

4
1+ x2 = π ,

where the input is the desired number of Monte Carlo samples. The program is listed below.
What we are doing is to employ a random number generator to obtain numbers xi in the

interval [0,1] through a call to one of the library functions ran0, ran1, ran2 or ran3 which
generate random numbers in the interval x∈ [0,1]. These functions will be discussed in the
next section. Here we simply employ these functions in order to generate a random variable.
All random number generators produce pseudo-random numbers in the interval [0,1] using
the so-called uniform probability distribution p(x) defined as

p(x) =
1

b−a
Θ(x−a)Θ(b− x),

with a= 0 og b= 1 and whereΘ is the standard Heaviside function or simply the step function.
If we have a general interval [a,b], we can still use these random number generators through
a change of variables

z= a+(b−a)x,

with x in the interval [0,1].
The present approach to the above integral is often called ’crude’ or ’Brute-Force’ Monte-

Carlo. Later on in this chapter we will study refinements to this simple approach. The reason
is that a random generator produces points that are distributed in a homogenous way in the
interval [0,1]. If our function is peaked around certain values of x, we may end up sampling
function values where f (x) is small or near zero. Better schemes which reflect the properties
of the function to be integrated are thence needed.

The algorithm is as follows
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• Choose the number of Monte Carlo samples N.
• Perform a loop over N and for each step generate a a random number xi in the interval

[0,1] through a call to a random number generator.
• Use this number to evaluate f (xi).
• Evaluate the contributions to the mean value and the standard deviation for each

loop.
• After N samples calculate the final mean value and the standard deviation.

The following C/C++ program2 implements the above algorithm using the library function
ran0 to compute π . Note again the inclusion of the lib.h file which has the random number
generator function ran0.

http://folk.uio.no/mhjensen/compphys/programs/chapter11/cpp/program1.cpp

#include <iostream>

#include "lib.h"

using namespace std;

// Here we define various functions called by the main program

// this function defines the function to integrate

double func(double x);

// Main function begins here

int main()

{

int i, n;

long idum;

double crude_mc, x, sum_sigma, fx, variance;

cout << "Read in the number of Monte-Carlo samples" << endl;

cin >> n;

crude_mc = sum_sigma=0. ; idum=-1 ;

// evaluate the integral with the a crude Monte-Carlo method

for ( i = 1; i <= n; i++){

x=ran0(&idum);

fx=func(x);

crude_mc += fx;

sum_sigma += fx*fx;

}

crude_mc = crude_mc/((double) n );

sum_sigma = sum_sigma/((double) n );

variance=sum_sigma-crude_mc*crude_mc;

// final output

cout << " variance= " << variance << " Integral = "

<< crude_mc << " Exact= " << M_PI << endl;

} // end of main program

// this function defines the function to integrate

double func(double x)

{

double value;

value = 4/(1.+x*x);

return value;

} // end of function to evaluate

2 The Fortran 90/95 programs are not listed in the main text, they are found under the corresponding chapter
as programs/chapter8/programn.f90.

http://folk.uio.no/mhjensen/compphys/programs/chapter11/cpp/program1.cpp
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Note that we transfer the variable idum in order to initialize the random number generator
from the function ran0. The variable idum gets changed for every sampling. This variable is
called the seed. The results of our computations are listed in Table 11.1. We note that as
N increases, the integral itself never reaches more than an agreement to the fourth or fifth
digit. The variance also oscillates around its exact value 4.13581E− 01. Note well that the
variance need not be zero but one can, with appropriate redefinitions of the integral be made
smaller. A smaller variance yields also a smaller standard deviation. Improvements to this
crude Monte Carlo approach will be discussed in the coming sections.

As an alternative, we could have used the random number generator provided by the
C/C++ compiler through the functions srand and rand. In this case we initialise it via the
function srand. The random number generator is called via the function rand, which returns
an integer from 0 to its maximum value, defined by the variable RAND_MAX as demonstrated in
the next few lines of code.

invers_period = 1./RAND_MAX;

// initialise the random number generator

srand(time(NULL));

// obtain a floating number x in [0,1]

x = double(rand())*invers_period;

Table 11.1 Results for I = π = 4
∫ 1

0 dx/(1+ x2) as function of number of Monte Carlo samples N. The exact
answer is 3.14159E+00 for the integral and 4.13581E−01 for the variance with six leading digits.

N I σN

10 3.10263E+00 3.98802E-01
100 3.02933E+00 4.04822E-01

1000 3.13395E+00 4.22881E-01
10000 3.14195E+00 4.11195E-01

100000 3.14003E+00 4.14114E-01
1000000 3.14213E+00 4.13838E-01

10000000 3.14177E+00 4.13523E-01
109 3.14162E+00 4.13581E-01

11.1.3 Second Illustration, Particles in a Box

We give here an example of how a system evolves towards a well defined equilibrium state.
Consider a box divided into two equal halves separated by a wall. At the beginning, time

t = 0, there are N particles on the left side. A small hole in the wall is then opened and one
particle can pass through the hole per unit time.

After some time the system reaches its equilibrium state with equally many particles in
both halves, N/2. Instead of determining complicated initial conditions for a system of N par-
ticles, we model the system by a simple statistical model. In order to simulate this system,
which may consist of N≫ 1 particles, we assume that all particles in the left half have equal
probabilities of going to the right half. We introduce the label nl to denote the number of
particles at every time on the left side, and nr = N−nl for those on the right side. The proba-
bility for a move to the right during a time step ∆ t is nl/N. The algorithm for simulating this
problem may then look like this
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• Choose the number of particles N.
• Make a loop over time, where the maximum time (or maximum number of steps)

should be larger than the number of particles N.
• For every time step ∆ t there is a probability nl/N for a move to the right. Compare

this probability with a random number x.
• If x≤ nl/N, decrease the number of particles in the left half by one, i.e., nl = nl − 1.

Else, move a particle from the right half to the left, i.e., nl = nl +1.
• Increase the time by one unit (the external loop).

In this case, a Monte Carlo sample corresponds to one time unit ∆ t.
The following simple C/C++-program illustrates this model.

http://folk.uio.no/mhjensen/compphys/programs/chapter11/cpp/program2.cpp

// Particles in a box

#include <iostream>

#include <fstream>

#include <iomanip>

#include "lib.h"

using namespace std;

ofstream ofile;

int main(int argc, char* argv[])

{

char *outfilename;

int initial_n_particles, max_time, time, random_n, nleft;

long idum;

// Read in output file, abort if there are too few command-line arguments

if( argc <= 1 ){

cout << "Bad Usage: " << argv[0] <<

" read also output file on same line" << endl;

exit(1);

}

else{

outfilename=argv[1];

}

ofile.open(outfilename);

// Read in data

cout << "Initial number of particles = " << endl ;

cin >> initial_n_particles;

// setup of initial conditions

nleft = initial_n_particles;

max_time = 10*initial_n_particles;

idum = -1;

// sampling over number of particles

for( time=0; time <= max_time; time++){

random_n = ((int) initial_n_particles*ran0(&idum));

if ( random_n <= nleft){

nleft -= 1;

}

else{

nleft += 1;

}

ofile << setiosflags(ios::showpoint | ios::uppercase);

ofile << setw(15) << time;

ofile << setw(15) << nleft << endl;

}

http://folk.uio.no/mhjensen/compphys/programs/chapter11/cpp/program2.cpp
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return 0;

} // end main function

Figure 11.1 shows the development of this system as function of time steps. We note that
for N = 1000 after roughly 2000 time steps, the system has reached the equilibrium state.
There are however noteworthy fluctuations around equilibrium.

If we denote 〈nl 〉 as the number of particles in the left half as a time average after equilib-
rium is reached, we can define the standard deviation as

σ =
√
〈n2

l 〉− 〈nl〉2. (11.6)

This problem has also an analytic solution to which we can compare our numerical simula-
tion. If nl (t) is the number of particles in the left half after t moves, the change in nl (t) in the
time interval ∆ t is

∆n=

(
N−nl(t)

N
− nl (t)

N

)
∆ t,

and assuming that nl and t are continuous variables we arrive at

dnl (t)
dt

= 1− 2nl (t)
N

,

whose solution is

nl (t) =
N
2

(
1+e−2t/N

)
,

with the initial condition nl (t = 0) = N. Note that we have assumed n to be a continuous
variable. Obviously, particles are discrete objects.
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Fig. 11.1 Number of particles in the left half of the container as function of the number of time steps. The
solution is compared with the analytic expression. N = 1000.
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11.1.4 Radioactive Decay

Radioactive decay is among one of the classical examples of Monte-Carlo simulations. Assume
that at the time t = 0 we have N(0) nuclei of type X which can decay radioactively. At a
time t > 0 we are left with N(t) nuclei. With a transition probability ω, which expresses the
probability that the system will make a transition to another state during a time step of one
second, we have the following first-order differential equation

dN(t) =−ωN(t)dt,

whose solution is
N(t) = N(0)e−ωt ,

where we have defined the mean lifetime τ of X as

τ =
1
ω
.

If a nucleus X decays to a daugther nucleus Y which also can decay, we get the following
coupled equations

dNX(t)
dt

=−ωXNX(t),

and
dNY(t)

dt
=−ωYNY(t)+ωXNX(t).

The program example in the next subsection illustrates how we can simulate such the decay
process of one type of nuclei through a Monte Carlo sampling procedure.

11.1.5 Program Example for Radioactive Decay

The program is split in four tasks, a main program with various declarations,

http://folk.uio.no/mhjensen/compphys/programs/chapter11/cpp/program3.cpp

// Radioactive decay of nuclei

#include <iostream>

#include <fstream>

#include <iomanip>

#include "lib.h"

using namespace std;

ofstream ofile;

// Function to read in data from screen

void initialise(int&, int&, int&, double& ) ;

// The Mc sampling for nuclear decay

void mc_sampling(int, int, int, double, int*);

// prints to screen the results of the calculations

void output(int, int, int *);

int main(int argc, char* argv[])

{

char *outfilename;

int initial_n_particles, max_time, number_cycles;

double decay_probability;

int *ncumulative;

// Read in output file, abort if there are too few command-line arguments

if( argc <= 1 ){

cout << "Bad Usage: " << argv[0] <<

http://folk.uio.no/mhjensen/compphys/programs/chapter11/cpp/program3.cpp
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" read also output file on same line" << endl;

exit(1);

}

else{

outfilename=argv[1];

}

ofile.open(outfilename);

// Read in data

initialise(initial_n_particles, max_time, number_cycles,

decay_probability) ;

ncumulative = new int [max_time+1];

// Do the mc sampling

mc_sampling(initial_n_particles, max_time, number_cycles,

decay_probability, ncumulative);

// Print out results

output(max_time, number_cycles, ncumulative);

delete [] ncumulative;

return 0;

} // end of main function

followed by a part which performs the Monte Carlo sampling

void mc_sampling(int initial_n_particles, int max_time,

int number_cycles, double decay_probability,

int *ncumulative)

{

int cycles, time, np, n_unstable, particle_limit;

long idum;

idum=-1; // initialise random number generator

// loop over monte carlo cycles

// One monte carlo loop is one sample

for (cycles = 1; cycles <= number_cycles; cycles++){

n_unstable = initial_n_particles;

// accumulate the number of particles per time step per trial

ncumulative[0] += initial_n_particles;

// loop over each time step

for (time=1; time <= max_time; time++){

// for each time step, we check each particle

particle_limit = n_unstable;

for ( np = 1; np <= particle_limit; np++) {

if( ran0(&idum) <= decay_probability) {

n_unstable=n_unstable-1;

}

} // end of loop over particles

ncumulative[time] += n_unstable;

} // end of loop over time steps

} // end of loop over MC trials

} // end mc_sampling function

and finally functions for reading input and writing output data. The latter are not listed here
but contained in the full listing available at the webpage. The input variables are the number
of Monte Carlo cycles, the maximum number of time steps, the initial number of particles
and the decay probability. The output consists of the number of remaining nuclei at each time
step.
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11.1.6 Brief Summary

In essence the Monte Carlo method contains the following ingredients

• A PDF which characterizes the system
• Random numbers which are generated so as to cover in an as uniform as possible

way on the unity interval [0,1].
• A sampling rule
• An error estimation
• Techniques for improving the errors

In the next section we discuss various PDF’s which may be of relevance here, thereafter
we discuss how to compute random numbers. Section 11.4 discusses Monte Carlo integration
in general, how to choose the correct weighting function and how to evaluate integrals with
dimensions d > 1.

11.2 Probability Distribution Functions

Hitherto, we have tacitly used properties of probability distribution functions in our computa-
tion of expectation values. Here and there we have referred to the uniform PDF. It is now time
to present some general features of PDFs which we may encounter when doing physics and
how we define various expectation values. In addition, we derive the central limit theorem
and discuss its meaning in the light of properties of various PDFs.

The following table collects properties of probability distribution functions. In our notation
we reserve the label p(x) for the probability of a certain event, while P(x) is the cumulative
probability.

Table 11.2 Important properties of PDFs.

Discrete PDF Continuous PDF
Domain {x1,x2,x3, . . . ,xN} [a,b]
Probability p(xi ) p(x)dx
Cumulative Pi = ∑i

l=1 p(xl ) P(x) =
∫ x

a p(t)dt
Positivity 0≤ p(xi )≤ 1 p(x) ≥ 0
Positivity 0≤ Pi ≤ 1 0≤ P(x) ≤ 1
Monotonic Pi ≥ Pj if xi ≥ x j P(xi)≥ P(x j ) if xi ≥ x j

Normalization PN = 1 P(b) = 1

With a PDF we can compute expectation values of selected quantities such as

〈xk〉= 1
N

N

∑
i=1

xk
i p(xi),

if we have a discrete PDF or

〈xk〉=
∫ b

a
xkp(x)dx,

in the case of a continuous PDF. We have already defined the mean value µ and the variance
σ2.
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The expectation value of a quantity f (x) is then given by for example

〈 f 〉 =
∫ b

a
f (x)p(x)dx.

We have already seen the use of the last equation when we applied the crude Monte Carlo
approach to the evaluation of an integral.

There are at least three PDFs which one may encounter. These are the

1. uniform distribution

p(x) =
1

b−a
Θ(x−a)Θ(b− x),

yielding probabilities different from zero in the interval [a,b]. The mean value and the
variance for this distribution are discussed in section 11.3.

2. The exponential distribution
p(x) = α exp(−αx),

yielding probabilities different from zero in the interval [0,∞) and with mean value

µ =
∫ ∞

0
xp(x)dx=

∫ ∞

0
xα exp(−αx)dx=

1
α

and variance

σ2 =
∫ ∞

0
x2p(x)dx− µ2 =

1
α2 .

3. Finally, we have the so-called univariate normal distribution, or just the normal distribution

p(x) =
1

b
√

2π
exp

(
− (x−a)2

2b2

)

with probabilities different from zero in the interval (−∞,∞). The integral
∫ ∞
−∞ exp

(
−(x2

)
dx

appears in many calculations, its value is
√

π , a result we will need when we compute the
mean value and the variance. The mean value is

µ =
∫ ∞

0
xp(x)dx=

1

b
√

2π

∫ ∞

−∞
xexp

(
− (x−a)2

2b2

)
dx,

which becomes with a suitable change of variables

µ =
1

b
√

2π

∫ ∞

−∞
b
√

2(a+b
√

2y)exp−y2dy= a.

Similarly, the variance becomes

σ2 =
1

b
√

2π

∫ ∞

−∞
(x− µ)2exp

(
− (x−a)2

2b2

)
dx,

and inserting the mean value and performing a variable change we obtain

σ2 =
1

b
√

2π

∫ ∞

−∞
b
√

2(b
√

2y)2exp
(
−y2)dy=

2b2
√

π

∫ ∞

−∞
y2exp

(
−y2)dy,

and performing a final integration by parts we obtain the well-known result σ2 = b2. It is
useful to introduce the standard normal distribution as well, defined by µ = a = 0, viz. a
distribution centered around zero and with a variance σ2 = 1, leading to
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p(x) =
1√
2π

exp

(
−x2

2

)
. (11.7)

The exponential and uniform distributions have simple cumulative functions, whereas the
normal distribution does not, being proportional to the so-called error function er f(x), given
by

P(x) =
1√
2π

∫ x

−∞
exp

(
− t2

2

)
dt,

which is difficult to evaluate in a quick way. Later in this chapter we will present an algorithm
by Box and Mueller which allows us to compute the cumulative distribution using random
variables sampled from the uniform distribution.

Some other PDFs which one encounters often in the natural sciences are the binomial
distribution

p(x) =

(
n
x

)
yx(1− y)n−x x= 0,1, . . . ,n,

where y is the probability for a specific event, such as the tossing of a coin or moving left or
right in case of a random walker. Note that x is a discrete stochastic variable.

The sequence of binomial trials is characterized by the following definitions

• Every experiment is thought to consist of N independent trials.
• In every independent trial one registers if a specific situation happens or not, such as

the jump to the left or right of a random walker.
• The probability for every outcome in a single trial has the same value, for example

the outcome of tossing (either heads or tails) a coin is always 1/2.

In the next chapter we will show that the probability distribution for a random walker
approaches the binomial distribution.

In order to compute the mean and variance we need to recall Newton’s binomial formula

(a+b)m=
m

∑
n=0

(
m
n

)
anbm−n,

which can be used to show that

n

∑
x=0

(
n
x

)
yx(1− y)n−x = (y+1− y)n = 1,

the PDF is normalized to one. The mean value is

µ =
n

∑
x=0

x

(
n
x

)
yx(1− y)n−x =

n

∑
x=0

x
n!

x!(n− x)!
yx(1− y)n−x,

resulting in

µ =
n

∑
x=0

x
(n−1)!

(x−1)!(n−1− (x−1))!
yx−1(1− y)n−1−(x−1),

which we rewrite as

µ = ny
n

∑
ν=0

(
n−1

ν

)
yν(1− y)n−1−ν = ny(y+1− y)n−1 = ny.

The variance is slightly trickier to get. It reads σ2 = ny(1− y).
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Another important distribution with discrete stochastic variables x is the Poisson model,
which resembles the exponential distribution and reads

p(x) =
λ x

x!
e−λ x= 0,1, . . . , ;λ > 0.

In this case both the mean value and the variance are easier to calculate,

µ =
∞

∑
x=0

x
λ x

x!
e−λ = λe−λ

∞

∑
x=1

λ x−1

(x−1)!
= λ ,

and the variance is σ2 = λ . An example of applications of the Poisson distribution could be the
counting of the number of α-particles emitted from a radioactive source in a given time inter-
val. In the limit of n→ ∞ and for small probabilities y, the binomial distribution approaches
the Poisson distribution. Setting λ = ny, with y the probability for an event in the binomial
distribution we can show that

lim
n→∞

(
n
x

)
yx(1− y)n−xe−λ =

∞

∑
x=1

λ x

x!
e−λ ,

see for example Refs. [61,62] for a proof.

11.2.1 Multivariable Expectation Values

An important quantity is the so called covariance, a variant of the variance. Consider the
set {Xi} of n stochastic variables (not necessarily uncorrelated) with the multivariate PDF
P(x1, . . . ,xn). The covariance of two of the stochastic variables, Xi and Xj , is defined as follows

Cov(Xi , Xj) ≡
〈
(xi−〈xi〉)(x j −〈x j〉)

〉

=

∫
· · ·
∫
(xi−〈xi〉)(x j −〈x j〉)P(x1, . . . ,xn)dx1 . . .dxn (11.8)

with

〈xi〉=
∫
· · ·
∫

xi P(x1, . . . ,xn)dx1 . . .dxn

If we consider the above covariance as a matrix Ci j = Cov(Xi , Xj), then the diagonal elements
are just the familiar variances, Cii = Cov(Xi , Xi) = Var(Xi). It turns out that all the off-diagonal
elements are zero if the stochastic variables are uncorrelated. This is easy to show, keeping in
mind the linearity of the expectation value. Consider the stochastic variables Xi and Xj , (i 6= j)

Cov(Xi , Xj) =
〈
(xi−〈xi〉)(x j −〈x j〉)

〉

= 〈xix j − xi〈x j〉− 〈xi〉x j + 〈xi〉〈x j 〉〉
= 〈xix j〉− 〈xi〈x j〉〉− 〈〈xi〉x j〉+ 〈〈xi〉〈x j〉〉
= 〈xix j〉− 〈xi〉〈x j〉− 〈xi〉〈x j〉+ 〈xi〉〈x j 〉
= 〈xix j〉− 〈xi〉〈x j〉

If Xi and Xj are independent, we get 〈xix j〉= 〈xi〉〈x j 〉, resulting in Cov(Xi ,Xj) = 0 (i 6= j).
Also useful for us is the covariance of linear combinations of stochastic variables. Let {Xi}

and {Yi} be two sets of stochastic variables. Let also {ai} and {bi} be two sets of scalars.
Consider the linear combination
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U = ∑
i

aiXi V = ∑
j

b jYj

By the linearity of the expectation value, it can be shown [64] that

Cov(U,V) = ∑
i, j

aib jCov(Xi ,Yj)

Now, since the variance is just Var(Xi) = Cov(Xi ,Xi), we get the variance of the linear combi-
nation U = ∑i aiXi

Var(U) = ∑
i, j

aia jCov(Xi ,Xj) (11.9)

And in the special case when the stochastic variables are uncorrelated, the off-diagonal ele-
ments of the covariance are as we know zero, resulting in

Var(U) = ∑
i

a2
i Cov(Xi ,Xi) =∑

i
a2

i Var(Xi)

Var(∑
i

aiXi) = ∑
i

a2
i Var(Xi)

which will become very useful in our study of the error in the mean value of a set of measure-
ments.

Now that we have constructed an idealized mathematical framework, let us try to apply
it to empirical observations. Examples of relevant physical phenomena may be spontaneous
decays of nuclei, or a purely mathematical set of numbers produced by some deterministic
mechanism. It is the latter we will deal with, using so-called pseudo-random number gener-
ators. In general our observations will contain only a limited set of observables. We remind
the reader that a stochastic process is a process that produces sequentially a chain of values

{x1,x2, . . . xk, . . .}.

We will call these values our measurements and the entire set as our measured sample. The
action of measuring all the elements of a sample we will call a stochastic experiment (since,
operationally, they are often associated with results of empirical observation of some physi-
cal or mathematical phenomena; precisely an experiment). We assume that these values are
distributed according to some PDF pX(x), where X is just the formal symbol for the stochastic
variable whose PDF is pX(x). Instead of trying to determine the full distribution pwe are often
only interested in finding the few lowest moments, like the mean µX and the variance σX .

In practical situations however, a sample is always of finite size. Let that size be n. The
expectation value of a sample α, the sample mean, is then defined as follows

〈xα〉 ≡
1
n

n

∑
k=1

xα ,k.

The sample variance is:

Var(x)≡ 1
n

n

∑
k=1

(xα ,k−〈xα〉)2,

with its square root being the standard deviation of the sample.
You can think of the above observables as a set of quantities which define a given experi-

ment. This experiment is then repeated several times, say m times. The total average is then

〈Xm〉=
1
m

m

∑
α=1

xα =
1

mn∑
α ,k

xα ,k, (11.10)
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where the last sums end at m and n. The total variance is

σ2
m =

1
mn2

m

∑
α=1

(〈xα〉− 〈Xm〉)2,

which we rewrite as

σ2
m =

1
m

m

∑
α=1

n

∑
kl=1

(xα ,k−〈Xm〉)(xα ,l −〈Xm〉). (11.11)

We define also the sample variance σ2 of all mn individual experiments as

σ2 =
1

mn

m

∑
α=1

n

∑
k=1

(xα ,k−〈Xm〉)2. (11.12)

These quantities, being known experimental values or the results from our calculations,
may differ, in some cases significantly, from the similarly named exact values for the mean
value µX, the variance Var(X) and the covariance Cov(X,Y).

The law of large numbers (see for example [64] and the next subsection) states that as the
size of our sample grows to infinity, the sample mean approaches the true mean µX of the
chosen PDF:

lim
n→∞
〈xα〉= µX

The sample mean x̄n works therefore as an estimate of the true mean µX .
What we need to find out is how good an approximation x̄n is to µX . In any stochastic

measurement, an estimated mean is of no use to us without a measure of its error. A quantity
that tells us how well we can reproduce it in another experiment. We are therefore interested
in the PDF of the sample mean itself. Its standard deviation will be a measure of the spread of
sample means, and we will simply call it the error of the sample mean, or just sample error,
and denote it by errX. In practice, we will only be able to produce an estimate of the sample
error since the exact value would require the knowledge of the true PDFs behind, which we
usually do not have.

The straight forward brute force way of estimating the sample error is simply by producing
a number of samples, and treating the mean of each as a measurement. The standard devi-
ation of these means will then be an estimate of the original sample error. If we are unable
to produce more than one sample, we can split it up sequentially into smaller ones, treating
each in the same way as above. This procedure is known as blocking and will be given more
attention in later chapters. At this point it is worth while exploring more indirect methods of
estimation that will help us understand some important underlying principles of correlation
effects.

Let us first take a look at what happens to the sample error as the size of the sample grows.
We derive here the central limit theorem first.

11.2.2 The Central Limit Theorem

Suppose we have a PDF p(x) from which we generate a series N of averages 〈xi〉. Each mean
value 〈xi〉 is viewed as the average of a specific measurement, e.g., throwing dice 100 times
and then taking the average value, or producing a certain amount of random numbers. For
notational ease, we set 〈xi〉= xi in the discussion which follows.

If we compute the mean z of m such mean values xi

z=
x1+ x2+ · · ·+ xm

m
,
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the question we pose is which is the PDF of the new variable z.
The probability of obtaining an average value z is the product of the probabilities of obtain-

ing arbitrary individual mean values xi , but with the constraint that the average is z. We can
express this through the following expression

p̃(z) =
∫

dx1p(x1)

∫
dx2p(x2) . . .

∫
dxmp(xm)δ (z−

x1+ x2+ · · ·+ xm

m
),

where the δ -function enbodies the constraint that the mean is z. All measurements that lead to
each individual xi are expected to be independent, which in turn means that we can express p̃
as the product of individual p(xi). The independence assumption is important in the derivation
of the central limit theorem.

If we use the integral expression for the δ -function

δ (z− x1+ x2+ · · ·+ xm

m
) =

1
2π

∫ ∞

−∞
dqexp

(
iq(z− x1+ x2+ · · ·+ xm

m
)

)
,

and inserting eiµq−iµq where µ is the mean value we arrive at

p̃(z) =
1

2π

∫ ∞

−∞
dqexp(iq(z− µ))

[∫ ∞

−∞
dxp(x)exp(iq(µ− x)/m)

]m

,

with the integral over x resulting in

∫ ∞

−∞
dxp(x)exp(iq(µ− x)/m) =

∫ ∞

−∞
dxp(x)

[
1+

iq(µ− x)
m

− q2(µ− x)2

2m2 + . . .

]
.

The second term on the rhs disappears since this is just the mean and employing the definition
of σ2 we have ∫ ∞

−∞
dxp(x)e(iq(µ−x)/m) = 1− q2σ2

2m2 + . . . ,

resulting in [∫ ∞

−∞
dxp(x)exp(iq(µ− x)/m)

]m

≈
[
1− q2σ2

2m2 + . . .

]m

,

and in the limit m→ ∞ we obtain

p̃(z) =
1√

2π(σ/
√

m)
exp

(
− (z− µ)2

2(σ/
√

m)2

)
,

which is the normal distribution with variance σ2
m = σ2/m, where σ is the variance of the PDF

p(x) and µ is also the mean of the PDF p(x).
Thus, the central limit theorem states that the PDF p̃(z) of the average of m random values

corresponding to a PDF p(x) is a normal distribution whose mean is the mean value of the
PDF p(x) and whose variance is the variance of the PDF p(x) divided by m, the number of
values used to compute z.

The theorem is satisfied by a large class of PDFs. Note however that for a finite m, it is not
always possible to find a closed expression for p̃(x). The central limit theorem leads then to
the well-known expression for the standard deviation, given by

σm =
σ√
m
.

The latter is true only if the average value is known exactly. This is obtained in the limit m→∞
only. Because the mean and the variance are measured quantities we obtain the familiar
expression in statistics
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σm≈
σ√

m−1
,

see for example Ref. [64] for further discussions.
In many cases however the above estimate for the standard deviation, in particular if cor-

relations are strong, may be too simplistic. We need therefore a more precise defintion of the
error and the variance in our results.

11.2.3 Definition of Correlation Functions and Standard Deviation

Let us now return to the definition of the variance and standard deviation of our measure-
ments. Our estimate of the true average µX is then the sample mean 〈Xm〉

µX ≈ Xm =
1

mn

m

∑
α=1

n

∑
k=1

xα ,k.

We can then use Eq. (11.11)

σ2
m =

1
mn2

m

∑
α=1

n

∑
kl=1

(xα ,k−〈Xm〉)(xα ,l −〈Xm〉),

and rewrite it as

σ2
m =

σ2

n
+

2
mn2

m

∑
α=1

n

∑
k<l

(xα ,k−〈Xm〉)(xα ,l −〈Xm〉),

where the first term is the sample variance of all mn experiments divided by n and the last
term is nothing but the covariance which arises when k 6= l . If the observables are uncorre-
lated, then the covariance is zero and we obtain a total variance which agrees with the central
limit theorem. Correlations may often be present in our data set, resulting in a non-zero co-
variance. The first term is normally called the uncorrelated contribution. Computationally the
uncorrelated first term is much easier to treat efficiently than the second. We just accumu-
late separately the values x2 and x for every measurement x we receive. The correlation term,
though, has to be calculated at the end of the experiment since we need all the measurements
to calculate the cross terms. Therefore, all measurements have to be stored throughout the
experiment.

Let us analyze the problem by splitting up the correlation term into partial sums of the
form

fd =
1

nm

m

∑
α=1

n−d

∑
k=1

(xα ,k−〈Xm〉)(xα ,k+d−〈Xm〉),

The correlation term of the total variance can now be rewritten in terms of fd

2
mn2

m

∑
α=1

n

∑
k<l

(xα ,k−〈Xm〉)(xα ,l −〈Xm〉) =
2
n

n−1

∑
d=1

fd

The value of fd reflects the correlation between measurements separated by the distance d
in the samples. Notice that for d = 0, f is just the sample variance, σ2. If we divide fd by σ2,
we arrive at the so called autocorrelation function

κd =
fd

σ2 (11.13)

which gives us a useful measure of the correlation pair correlation starting always at 1 for
d = 0.
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The sample variance of the mnexperiments can now be written in terms of the autocorre-
lation function

σ2
m =

σ2

n
+

2
n
·σ2

n−1

∑
d=1

fd
σ2 =

(
1+2

n−1

∑
d=1

κd

)
1
n

σ2 =
τ
n
·σ2 (11.14)

and we see that σm can be expressed in terms of the uncorrelated sample variance times a
correction factor τ which accounts for the correlation between measurements. We call this
correction factor the autocorrelation time

τ = 1+2
n−1

∑
d=1

κd (11.15)

For a correlation free experiment, τ equals 1. From the point of view of Eq. (11.14) we can
interpret a sequential correlation as an effective reduction of the number of measurements
by a factor τ. The effective number of measurements becomes

neff =
n
τ

To neglect the autocorrelation time τ will always cause our simple uncorrelated estimate
of σ2

m ≈ σ2/n to be less than the true sample error. The estimate of the error will be too
“good”. On the other hand, the calculation of the full autocorrelation time poses an efficiency
problem if the set of measurements is very large. The solution to this problem is given by
more practically oriented methods like the blocking technique, see for example Ref. [65] for
more details. This method is discussed in more detail in chapter 15.

11.3 Random Numbers

Uniform deviates are just random numbers that lie within a specified range (typically 0 to 1),
with any one number in the range just as likely as any other. They are, in other words, what
you probably think random numbers are. However, we want to distinguish uniform deviates
from other sorts of random numbers, for example numbers drawn from a normal (Gaussian)
distribution of specified mean and standard deviation. These other sorts of deviates are al-
most always generated by performing appropriate operations on one or more uniform devi-
ates, as we will see in subsequent sections. So, a reliable source of random uniform deviates,
the subject of this section, is an essential building block for any sort of stochastic modeling or
Monte Carlo computer work. A disclaimer is however appropriate. It should be fairly obvious
that something as deterministic as a computer cannot generate purely random numbers.

Numbers generated by any of the standard algorithms are in reality pseudo random num-
bers, hopefully abiding to the following criteria:

1. they produce a uniform distribution in the interval [0,1].
2. correlations between random numbers are negligible
3. the period before the same sequence of random numbers is repeated is as large as possible

and finally
4. the algorithm should be fast.

That correlations, see below for more details, should be as small as possible resides in the
fact that every event should be independent of the other ones. As an example, a particular
simple system that exhibits a seemingly random behavior can be obtained from the iterative
process

xi+1 = cxi(1− xi),
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which is often used as an example of a chaotic system. The variable c is a constant and for cer-
tain values of c and x0 the system can settle down quickly into a regular periodic sequence of
values x1,x2,x3, . . . . For x0 = 0.1 and c= 3.2 we obtain a periodic pattern as shown in Fig. 11.2.
Changing c to c= 3.98yields a sequence which does not converge to any specific pattern. The
values of xi seem purely random. Although the latter choice of c yields a seemingly random
sequence of values, the various values of x harbor subtle correlations that a truly random
number sequence would not possess.

c= 3.98
c= 3.2

i

x

100806040200

1.2

1.1

1
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0.2

Fig. 11.2 Plot of the logistic mapping xi+1 = cxi(1−xi) for x0 = 0.1 and c= 3.2 and c= 3.98.

The most common random number generators are based on so-called Linear congruential
relations of the type

Ni = (aNi−1+ c)MOD(M),

which yield a number in the interval [0,1] through

xi = Ni/M

The number M is called the period and it should be as large as possible and N0 is the
starting value, or seed. The function MOD means the remainder, that is if we were to evaluate
(13)MOD(9), the outcome is the remainder of the division 13/9, namely 4.

The problem with such generators is that their outputs are periodic; they will start to
repeat themselves with a period that is at most M. If however the parameters a and c are
badly chosen, the period may be even shorter.

Consider the following example

Ni = (6Ni−1+7)MOD(5),

with a seed N0 = 2. This generator produces the sequence 4,1,3,0,2,4,1,3,0,2, ... . . ., i.e., a
sequence with period 5. However, increasing M may not guarantee a larger period as the
following example shows

Ni = (27Ni−1+11)MOD(54),

which still, with N0 = 2, results in 11,38,11,38,11,38, . . ., a period of just 2.
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Typical periods for the random generators provided in the program library are of the order
of ∼ 109 or larger. Other random number generators which have become increasingly popular
are so-called shift-register generators. In these generators each successive number depends
on many preceding values (rather than the last values as in the linear congruential generator).
For example, you could make a shift register generator whose lth number is the sum of the
l − ith and l − jth values with modulo M,

Nl = (aNl−i + cNl− j)MOD(M).

Such a generator again produces a sequence of pseudorandom numbers but this time with
a period much larger than M. It is also possible to construct more elaborate algorithms by
including more than two past terms in the sum of each iteration. One example is the generator
of Marsaglia and Zaman [66] which consists of two congruential relations

Nl = (Nl−3−Nl−1)MOD(231−69), (11.16)

followed by
Nl = (69069Nl−1+1013904243)MOD(232), (11.17)

which according to the authors has a period larger than 294.
Moreover, rather than using modular addition, we could use the bitwise exclusive-OR (⊕)

operation so that
Nl = (Nl−i)⊕ (Nl− j)

where the bitwise action of ⊕ means that if Nl−i = Nl− j the result is 0 whereas if Nl−i 6= Nl− j

the result is 1. As an example, consider the case where Nl−i = 6 and Nl− j = 11. The first one
has a bit representation (using 4 bits only) which reads 0110whereas the second number is
1011. Employing the ⊕ operator yields 1101, or 23+22+20 = 13.

In Fortran90, the bitwise ⊕ operation is coded through the intrinsic function IEOR(m,n)
where mand n are the input numbers, while inC it is given by m∧n. The program below (from
Numerical Recipes, chapter 7.1) shows how the function ran0 implements

Ni = (aNi−1)MOD(M).

However, since a and Ni−1 are integers and their multiplication could become greater than
the standard 32 bit integer, there is a trick via Schrage’s algorithm which approximates the
multiplication of large integers through the factorization

M = aq+ r,

where we have defined
q= [M/a],

and
r = M MOD a.

where the brackets denote integer division. In the code below the numbers q and r are chosen
so that r < q. To see how this works we note first that

(aNi−1)MOD(M) = (aNi−1− [Ni−1/q]M)MOD(M), (11.18)

since we can add or subtract any integer multiple of M from aNi−1. The last term [Ni−1/q]MMOD(M)

is zero since the integer division [Ni−1/q] just yields a constant which is multiplied with M. We
can now rewrite Eq. (11.18) as
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(aNi−1)MOD(M) = (aNi−1− [Ni−1/q](aq+ r))MOD(M), (11.19)

which results in

(aNi−1)MOD(M) = (a(Ni−1− [Ni−1/q]q)− [Ni−1/q]r))MOD(M), (11.20)

yielding
(aNi−1)MOD(M) = (a(Ni−1MOD(q))− [Ni−1/q]r))MOD(M). (11.21)

The term [Ni−1/q]r is always smaller or equal Ni−1(r/q) and with r < qwe obtain always a num-
ber smaller than Ni−1, which is smaller than M. And since the number Ni−1MOD(q) is between
zero and q− 1 then a(Ni−1MOD(q)) < aq. Combined with our definition of q = [M/a] ensures
that this term is also smaller than M meaning that both terms fit into a 32-bit signed integer.
None of these two terms can be negative, but their difference could. The algorithm below
adds M if their difference is negative. Note that the program uses the bitwise ⊕ operator to
generate the starting point for each generation of a random number. The period of ran0 is
∼ 2.1×109. A special feature of this algorithm is that is should never be called with the initial
seed set to 0.

/*

** The function

** ran0()

** is an "Minimal" random number generator of Park and Miller

** Set or reset the input value

** idum to any integer value (except the unlikely value MASK)

** to initialize the sequence; idum must not be altered between

** calls for sucessive deviates in a sequence.

** The function returns a uniform deviate between 0.0 and 1.0.

*/

double ran0(long &idum)

{

const int a = 16807, m = 2147483647, q = 127773;

const int r = 2836, MASK = 123459876;

const double am = 1./m;

long k;

double ans;

idum ^= MASK;

k = (*idum)/q;

idum = a*(idum - k*q) - r*k;

// add m if negative difference

if(idum < 0) idum += m;

ans=am*(idum);

idum ^= MASK;

return ans;

} // End: function ran0()

The other random number generators ran1, ran2 and ran3 are described in detail in Ref. [36].
Here we limit ourselves to study selected properties of these generators.

11.3.1 Properties of Selected Random Number Generators

As mentioned previously, the underlying PDF for the generation of random numbers is the
uniform distribution, meaning that the probability for finding a number x in the interval [0,1]
is p(x) = 1.

A random number generator should produce numbers which uniformly distributed in this
interval. Table 11.3 shows the distribution of N = 10000random numbers generated by the
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functions in the program library. We note in this table that the number of points in the various
intervals 0.0−0.1, 0.1−0.2 etc are fairly close to 1000, with some minor deviations.

Two additional measures are the standard deviation σ and the mean µ = 〈x〉.
For the uniform distribution, the mean value µ is then

µ = 〈x〉= 1
2

while the standard deviation is

σ =
√
〈x2〉− µ2 =

1√
12

= 0.2886.

The various random number generators produce results which agree rather well with these
limiting values.

Table 11.3 Number of x-values for various intervals generated by 4 random number generators, their cor-
responding mean values and standard deviations. All calculations have been initialized with the variable
idum=−1.

x-bin ran0 ran1 ran2 ran3
0.0-0.1 1013 991 938 1047
0.1-0.2 1002 1009 1040 1030
0.2-0.3 989 999 1030 993
0.3-0.4 939 960 1023 937
0.4-0.5 1038 1001 1002 992
0.5-0.6 1037 1047 1009 1009
0.6-0.7 1005 989 1003 989
0.7-0.8 986 962 985 954
0.8-0.9 1000 1027 1009 1023
0.9-1.0 991 1015 961 1026

µ 0.4997 0.5018 0.4992 0.4990
σ 0.2882 0.2892 0.2861 0.2915

There are many other tests which can be performed. Often a picture of the numbers gen-
erated may reveal possible patterns.

Since our random numbers, which are typically generated via a linear congruential algo-
rithm, are never fully independent, we can then define an important test which measures the
degree of correlation, namely the so-called auto-correlation function defined previously, see
again Eq. (11.13). We rewrite it here as

Ck =
fd

σ2 ,

with C0 = 1. Recall that σ2 = 〈x2
i 〉 − 〈xi〉2. The non-vanishing of Ck for k 6= 0 means that the

random numbers are not independent. The independence of the random numbers is crucial
in the evaluation of other expectation values. If they are not independent, our assumption for
approximating σN in Eq. (11.5) is no longer valid.

Figure 11.3 compares the auto-correlation function calculated from ran0 and ran1. As can
be seen, the correlations are non-zero, but small. The fact that correlations are present is
expected, since all random numbers do depend in some way on the previous numbers.



354 11 Outline of the Monte Carlo Strategy
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Fig. 11.3 Plot of the auto-correlation function Ck for various k-values for N = 10000using the random number
generators ran0 and ran1.

11.4 Improved Monte Carlo Integration

In section 11.1 we presented a simple brute force approach to integration with the Monte
Carlo method. There we sampled over a given number of points distributed uniformly in the
interval [0,1]

I =
∫ 1

0
f (x)dx= 〈 f 〉.

Here we introduce two important topics which in most cases improve upon the above
simple brute force approach with the uniform distribution p(x) = 1 for x∈ [0,1]. With improve-
ments we think of a smaller variance and the need for fewer Monte Carlo samples, although
each new Monte Carlo sample will most likely be more times consuming than corresponding
ones of the brute force method.

• The first topic deals with change of variables, and is linked to the cumulative function
P(x) of a PDF p(x). Obviously, not all integration limits go from x= 0 to x= 1, rather, in
physics we are often confronted with integration domains like x∈ [0,∞) or x∈ (−∞,∞)

etc. Since all random number generators give numbers in the interval x ∈ [0,1], we
need a mapping from this integration interval to the explicit one under consideration.

• The next topic deals with the shape of the integrand itself. Let us for the sake of
simplicity just assume that the integration domain is again from x= 0 to x= 1. If the
function to be integrated f (x) has sharp peaks and is zero or small for many values of
x∈ [0,1], most samples of f (x) give contributions to the integral I which are negligible
or zero. As a consequence we need many N samples to have a sufficient accuracy in
the region where f (x) is peaked. What do we do then? We try to find a new PDF p(x)
chosen so as to match f (x) in order to render the integrand smooth. The new PDF
p(x) has in turn an x domain which most likely has to be mapped from the domain of
the uniform distribution.



11.4 Improved Monte Carlo Integration 355

Why care at all and not be content with just a change of variables in cases where that
is needed? Below we show several examples of how to improve a Monte Carlo integration
through smarter choices of PDFs which render the integrand smoother. However one classic
example from quantum mechanics illustrates the need for a good sampling function.

In quantum mechanics, the probability distribution function is given by p(x) =Ψ(x)∗Ψ (x),
where Ψ (x) is the eigenfunction arising from the solution of e.g., the time-independent
Schrödinger equation. If Ψ(x) is an eigenfunction, the corresponding energy eigenvalue is
given by

H(x)Ψ (x) = EΨ(x),

where H(x) is the hamiltonian under consideration. The expectation value of H, assuming that
the quantum mechanical PDF is normalized, is given by

〈H〉=
∫

dxΨ (x)∗H(x)Ψ(x).

We could insert Ψ(x)/Ψ(x) right to the left of H and rewrite the last equation as

〈H〉=
∫

dxΨ(x)∗Ψ(x)
H(x)
Ψ (x)

Ψ (x), (11.22)

or

〈H〉=
∫

dxp(x)H̃(x),

which is on the form of an expectation value with

H̃(x) =
H(x)
Ψ(x)

Ψ (x).

The crucial point to note is that if Ψ(x) is the exact eigenfunction itself with eigenvalue E,
then H̃(x) reduces just to the constant E and we have

〈H〉=
∫

dxp(x)E = E,

since p(x) is normalized.
However, in most cases of interest we do not have the exact Ψ . But if we have made a

clever choice for Ψ(x), the expression H̃(x) exhibits a smooth behavior in the neighbourhood
of the exact solution. The above example encompasses the main essence of the Monte Carlo
philosophy. It is a trial approach, where intelligent guesses lead to hopefully better results.

11.4.1 Change of Variables

The starting point is always the uniform distribution

p(x)dx=

{
dx 0≤ x≤ 1
0 else

with p(x) = 1 and satisfying ∫ ∞

−∞
p(x)dx= 1.
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All random number generators provided in the program library generate numbers in this
domain.

When we attempt a transformation to a new variable x→ y we have to conserve the proba-
bility

p(y)dy= p(x)dx,

which for the uniform distribution implies

p(y)dy= dx.

Let us assume that p(y) is a PDF different from the uniform PDF p(x) = 1 with x∈ [0,1]. If we
integrate the last expression we arrive at

x(y) =
∫ y

0
p(y′)dy′,

which is nothing but the cumulative distribution of p(y), i.e.,

x(y) = P(y) =
∫ y

0
p(y′)dy′.

This is an important result which has consequences for eventual improvements over the
brute force Monte Carlo.

To illustrate this approach, let us look at some examples.

11.4.1.1 Transformed Uniform Distribution

Suppose we have the general uniform distribution

p(y)dy=

{ dy
b−a a≤ y≤ b
0 else

If we wish to relate this distribution to the one in the interval x∈ [0,1] we have

p(y)dy=
dy

b−a
= dx,

and integrating we obtain the cumulative function

x(y) =
∫ y

a

dy′

b−a
,

yielding
y= a+(b−a)x,

a well-known result!

11.4.1.2 Exponential Distribution

Assume that
p(y) = exp(−y),

which is the exponential distribution, important for the analysis of e.g., radioactive decay.
Again, p(x) is given by the uniform distribution with x∈ [0,1], and with the assumption that
the probability is conserved we have
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p(y)dy= exp(−y)dy= dx,

which yields after integration

x(y) = P(y) =
∫ y

0
exp(−y′)dy′ = 1−exp(−y),

or
y(x) =− ln(1− x).

This gives us the new random variable y in the domain y ∈ [0,∞) determined through the
random variable x∈ [0,1] generated by functions like ran0.

This means that if we can factor out exp(−y) from an integrand we may have

I =
∫ ∞

0
F(y)dy=

∫ ∞

0
exp(−y)G(y)dy

which we rewrite as

∫ ∞

0
exp(−y)G(y)dy=

∫ 1

0
G(y(x))dx≈ 1

N

N

∑
i=1

G(y(xi)),

where xi is a random number in the interval [0,1]. We have changed the integration limits
in the second integral, since we have performed a change of variables. Since we have used
the uniform distribution defined for x ∈ [0,1], the integration limits change to 0 and 1. The
variable y is now a function of x. Note also that in practical implementations, our random
number generators for the uniform distribution never return exactly 0 or 1, but we may come
very close.

The algorithm for the last example is rather simple. In the function which sets up the
integral, we simply need to call one of the random number generators like ran0, ran1, ran2 or
ran3 in order to obtain numbers in the interval [0,1]. We obtain y by the taking the logarithm
of (1− x). Our calling function which sets up the new random variable y may then include
statements like

.....

idum=-1;

x=ran0(&idum);

y=-log(1.-x);

.....

11.4.1.3 Another Example

Another function which provides an example for a PDF is

p(y)dy=
dy

(a+by)n ,

with n > 1. It is normalizable, positive definite, analytically integrable and the integral is
invertible, allowing thereby the expression of a new variable in terms of the old one. The
integral ∫ ∞

0

dy
(a+by)n =

1
(n−1)ban−1 ,

gives

p(y)dy=
(n−1)ban−1

(a+by)n dy,
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which in turn gives the cumulative function

x(y) = P(y) =
∫ y

0

(n−1)ban−1

(a+bx)n dy′,

resulting in

x(y) = 1− 1
(1+b/ay)n−1 ,

or
y=

a
b

(
(1− x)−1/(n−1)−1

)
.

With the random variable x∈ [0,1] generated by functions like ran0, we have again the appro-
priate random variable y for a new PDF.

11.4.1.4 Normal Distribution

For the normal distribution, expressed here as

g(x,y) = exp(−(x2+ y2)/2)dxdy.

it is rather difficult to find an inverse since the cumulative distribution is given by the error
function er f(x)

erf(x) =
2√
π

∫ x

0
e−t2dt.

We obviously would like to avoid computing an integral everytime we need a random variable.
If we however switch to polar coordinates, we have for x and y

r =
(
x2+ y2)1/2 θ = tan−1x

y
,

resulting in
g(r,θ ) = r exp(−r2/2)drdθ ,

where the angle θ could be given by a uniform distribution in the region [0,2π ]. Following
example 1 above, this implies simply multiplying random numbers x∈ [0,1] by 2π . The variable
r, defined for r ∈ [0,∞) needs to be related to to random numbers x′ ∈ [0,1]. To achieve that,
we introduce a new variable

u=
1
2

r2,

and define a PDF
exp(−u)du,

with u∈ [0,∞). Using the results from example 2 for the exponential distribution, we have

u=− ln(1− x′),

where x′ is a random number generated for x′ ∈ [0,1]. With

x= r cos(θ ) =
√

2ucos(θ ),

and
y= r sin(θ ) =

√
2usin(θ ),

we can obtain new random numbers x,y through
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x=
√
−2ln(1− x′)cos(θ ),

and
y=

√
−2ln(1− x′)sin(θ ),

with x′ ∈ [0,1] and θ ∈ 2π [0,1].
A function which yields such random numbers for the normal distribution would include

statements like

.....

idum=-1;

radius=sqrt(-2*ln(1.-ran0(idum)));

theta=2*pi*ran0(idum);

x=radius*cos(theta);

y=radius*sin(theta);

.....

11.4.2 Importance Sampling

With the aid of the above variable transformations we address now one of the most widely
used approaches to Monte Carlo integration, namely importance sampling.

Let us assume that p(y) is a PDF whose behavior resembles that of a function F defined in
a certain interval [a,b]. The normalization condition is

∫ b

a
p(y)dy= 1.

We can rewrite our integral as

I =
∫ b

a
F(y)dy=

∫ b

a
p(y)

F(y)
p(y)

dy.

This integral resembles our discussion on the evaluation of the energy for a quantum me-
chanical system in Eq. (11.22).

Since random numbers are generated for the uniform distribution p(x) with x ∈ [0,1], we
need to perform a change of variables x→ y through

x(y) =
∫ y

a
p(y′)dy′,

where we used
p(x)dx= dx= p(y)dy.

If we can invert x(y), we find y(x) as well.
With this change of variables we can express the integral of Eq. (11.4.2) as

I =
∫ b

a
p(y)

F(y)
p(y)

dy=
∫ b̃

ã

F(y(x))
p(y(x))

dx,

meaning that a Monte Carlo evaluation of the above integral gives

∫ b̃

ã

F(y(x))
p(y(x))

dx=
1
N

N

∑
i=1

F(y(xi))

p(y(xi))
.
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Note the well the change in integration limits from a and b to ã and b̃. The advantage of such
a change of variables in case p(y) follows closely F is that the integrand becomes smooth and
we can sample over relevant values for the integrand. It is however not trivial to find such a
function p. The conditions on p which allow us to perform these transformations are

1. p is normalizable and positive definite,
2. it is analytically integrable and
3. the integral is invertible, allowing us thereby to express a new variable in terms of the old

one.

The variance is now with the definition

F̃ =
F(y(x))
p(y(x))

,

given by

σ2 =
1
N

N

∑
i=1

(
F̃
)2−

(
1
N

N

∑
i=1

F̃

)2

.

The algorithm for this procedure is

• Use the uniform distribution to find the random variable y in the interval [0,1]. The
function p(x) is a user provided PDF.

• Evaluate thereafter

I =
∫ b

a
F(x)dx=

∫ b

a
p(x)

F(x)
p(x)

dx,

by rewriting ∫ b

a
p(x)

F(x)
p(x)

dx=
∫ b̃

ã

F(x(y))
p(x(y))

dy,

since
dy
dx

= p(x).

• Perform then a Monte Carlo sampling for

∫ b̃

ã

F(x(y))
p(x(y))

dy,≈ 1
N

N

∑
i=1

F(x(yi))

p(x(yi))
,

with yi ∈ [0,1],
• and evaluate the variance as well according to Eq. (11.4.2).

11.4.3 Acceptance-Rejection Method

This is a rather simple and appealing method after von Neumann. Assume that we are looking
at an interval x∈ [a,b], this being the domain of the PDF p(x). Suppose also that the largest
value our distribution function takes in this interval is M, that is

p(x)≤M x∈ [a,b].
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Then we generate a random number x from the uniform distribution for x∈ [a,b] and a corre-
sponding number s for the uniform distribution between [0,M]. If

p(x)≥ s,

we accept the new value of x, else we generate again two new random numbers x and s and
perform the test in the latter equation again.

As an example, consider the evaluation of the integral

I =
∫ 3

0
exp(x)dx.

Obviously to derive a closed-form expression is much easier, however the integrand could
pose some more difficult challenges. The aim here is simply to show how to implent the
acceptance-rejection algorithm. The integral is the area below the curve f (x) = exp(x). If we
uniformly fill the rectangle spanned by x∈ [0,3] and y∈ [0,exp(3)], the fraction below the curve
obtained from a uniform distribution, and multiplied by the area of the rectangle, should
approximate the chosen integral. It is rather easy to implement this numerically, as shown in
the following code.

Acceptance-Rejection algorithm

// Loop over Monte Carlo trials n

integral =0.;

for ( int i = 1; i <= n; i++){

// Finds a random value for x in the interval [0,3]

x = 3*ran0(&idum);

// Finds y-value between [0,exp(3)]

y = exp(3.0)*ran0(&idum);

// if the value of y at exp(x) is below the curve, we accept

if ( y < exp(x)) s = s+ 1.0;

// The integral is area enclosed below the line f(x)=exp(x)

}

// Then we multiply with the area of the rectangle and divide by the number of cycles

Integral = 3.*exp(3.)*s/n

11.5 Monte Carlo Integration of Multidimensional Integrals

When we deal with multidimensional integrals of the form

I =
∫ b1

a1

dx1

∫ b2

a2

dx2 . . .

∫ bd

ad

dxdg(x1, . . . ,xd),

with xi defined in the interval [ai ,bi] we would typically need a transformation of variables of
the form

xi = ai +(bi−ai)ti ,

if we were to use the uniform distribution on the interval [0,1]. In this case, we need a Jacobi
determinant

d

∏
i=1

(bi−ai),

and to convert the function g(x1, . . . ,xd) to

g(x1, . . . ,xd)→ g(a1+(b1−a1)t1, . . . ,ad +(bd−ad)td).
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As an example, consider the following six-dimensional integral

∫ ∞

−∞
dxdyg(x,y),

where
g(x,y) = exp(−x2− y2)(x− y)2

with d = 6.
We can solve this integral by employing our brute force scheme, or using importance sam-

pling and random variables distributed according to a gaussian PDF. For the latter, if we set
the mean value µ = 0 and the standard deviation σ = 1/

√
2, we have

1√
π

exp(−x2),

and using this normal distribution we rewrite our integral as

π3
∫ 6

∏
i=1

(
1√
π

exp(−x2
i )

)
(x− y)2dx1. . . .dx6,

which is rewritten in a more compact form as

∫
f (x1, . . . ,xd)F(x1, . . . ,xd)

6

∏
i=1

dxi ,

where f is the above normal distribution and

F(x1, . . . ,x6) = F(x,y) = (x− y)2,

Below we list two codes, one for the brute force integration and the other employing im-
portance sampling with a gaussian distribution.

11.5.1 Brute Force Integration

http://folk.uio.no/mhjensen/compphys/programs/chapter11/cpp/program4.cpp

#include <iostream>

#include <fstream>

#include <iomanip>

#include "lib.h"

using namespace std;

double brute_force_MC(double *);

// Main function begins here

int main()

{

int n;

double x[6], y, fx;

double int_mc = 0.; double variance = 0.;

double sum_sigma= 0. ; long idum=-1 ;

double length = 5.; // we fix the max size of the box to L=5

double jacobidet = pow((2*length),6);

cout << "Read in the number of Monte-Carlo samples" << endl;

cin >> n;

// evaluate the integral with importance sampling

http://folk.uio.no/mhjensen/compphys/programs/chapter11/cpp/program4.cpp
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for ( int i = 1; i <= n; i++){

// x[] contains the random numbers for all dimensions

for (int j = 0; j< 6; j++) {

x[j]=-length+2*length*ran0(&idum);

}

fx=brute_force_MC(x);

int_mc += fx;

sum_sigma += fx*fx;

}

int_mc = int_mc/((double) n );

sum_sigma = sum_sigma/((double) n );

variance=sum_sigma-int_mc*int_mc;

// final output

cout << setiosflags(ios::showpoint | ios::uppercase);

cout << " Monte carlo result= " << setw(10) << setprecision(8) << jacobidet*int_mc;

cout << " Sigma= " << setw(10) << setprecision(8) << volume*sqrt(variance/((double) n

)) << endl;

return 0;

} // end of main program

// this function defines the integrand to integrate

double brute_force_MC(double *x)

{

// evaluate the different terms of the exponential

double xx=x[0]*x[0]+x[1]*x[1]+x[2]*x[2];

double yy=x[3]*x[3]+x[4]*x[4]+x[5]*x[5];

double xy=pow((x[0]-x[3]),2)+pow((x[1]-x[4]),2)+pow((x[2]-x[5]),2);

return exp(-xx-yy)*xy;

} // end function for the integrand

11.5.2 Importance Sampling

This code includes a call to the function normal_random, which produces random numbers
from a gaussian distribution.

http://folk.uio.no/mhjensen/compphys/programs/chapter11/cpp/program5.cpp

// importance sampling with gaussian deviates

#include <iostream>

#include <fstream>

#include <iomanip>

#include "lib.h"

using namespace std;

double gaussian_MC(double *);

double gaussian_deviate(long *);

// Main function begins here

int main()

{

int n;

double x[6], y, fx;

cout << "Read in the number of Monte-Carlo samples" << endl;

cin >> n;

double int_mc = 0.; double variance = 0.;

double sum_sigma= 0. ; long idum=-1 ;

double jacobidet = pow(acos(-1.),3.);

double sqrt2 = 1./sqrt(2.);

http://folk.uio.no/mhjensen/compphys/programs/chapter11/cpp/program5.cpp
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// evaluate the integral with importance sampling

for ( int i = 1; i <= n; i++){

// x[] contains the random numbers for all dimensions

for (int j = 0; j < 6; j++) {

x[j] = gaussian_deviate(&idum)*sqrt2;

}

fx=gaussian_MC(x);

int_mc += fx;

sum_sigma += fx*fx;

}

int_mc = int_mc/((double) n );

sum_sigma = sum_sigma/((double) n );

variance=sum_sigma-int_mc*int_mc;

// final output

cout << setiosflags(ios::showpoint | ios::uppercase);

cout << " Monte carlo result= " << setw(10) << setprecision(8) << jacobidet*int_mc;

cout << " Sigma= " << setw(10) << setprecision(8) << volume*sqrt(variance/((double) n

)) << endl;

return 0;

} // end of main program

// this function defines the integrand to integrate

double gaussian_MC(double *x)

{

// evaluate the different terms of the exponential

double xy=pow((x[0]-x[3]),2)+pow((x[1]-x[4]),2)+pow((x[2]-x[5]),2);

return xy;

} // end function for the integrand

// random numbers with gaussian distribution

double gaussian_deviate(long * idum)

{

static int iset = 0;

static double gset;

double fac, rsq, v1, v2;

if ( idum < 0) iset =0;

if (iset == 0) {

do {

v1 = 2.*ran0(idum) -1.0;

v2 = 2.*ran0(idum) -1.0;

rsq = v1*v1+v2*v2;

} while (rsq >= 1.0 || rsq == 0.);

fac = sqrt(-2.*log(rsq)/rsq);

gset = v1*fac;

iset = 1;

return v2*fac;

} else {

iset =0;

return gset;

}

} // end function for gaussian deviates

The following table lists the results from the above two programs as function of the number of
Monte Carlo samples. The suffix cr stands for the brute force approach while gd stands for the
use of a Gaussian distribution function. One sees clearly that the approachwith a Gaussian
distribution function yields a much improved numerical result, with fewer samples.
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Table 11.4 Results as function of number of Monte Carlo samples N. The exact answer is I ≈ 93.020 for the
integral. The suffix cr stands for the brute force approach while is stands for the importance sampling results.
All calculations use ran0 as function to generate the uniform distribution.

N Icr Igd

10000 9.92072E+01 9.33225E+01
100000 8.75039E+01 9.30042E+01

1000000 9.56759E+01 9.29988E+01
10000000 9.15446E+01 9.30203E+01

11.6 Classes for Random Number Generators

We end this chapter with presenting a possible class for using random number genrerators.
The class consists of five files, one which defines the random number generators, random.h
and four separate files Ran0.h, Ran1.h, Ran2.h and Ran3.h discussed in the text. We list here
only the definitions contained in random.h. The file is well commented and all information is
contained within the file itself.

The file random.h

/**

* @file Random.h

* @class Random

*

* Interface for random number generators (RNG). The particular RNG are

* implemented in the various subclasses.

*

**/

#ifndef RANDOM_H

#define RANDOM_H

class Random{

protected:

long seed;

public:

/**

* @brief Constructor.

*

* @param seed_ A negative long integer. If none is given, seed takes the default value

-1.

**/

Random(long seed_=-1): seed(seed_){}

//! Destructor

virtual ~Random();

/**

* This function is useful in cases where it is necessary to take care of the seed in

order

* to reproduce experiments with the same sequences.

*

* @return The seed used during the initialization of the Random Number Generator.

**/

long getSeed()const{return seed;}

//! Modify the seed.

virtual reseed(long seed_){seed = seed_;}
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/**

* @return A random number from a particular Random Number Generator

* implemented in the subclasses.

**/

virtual double sample()=0;

};

#inline Random::~Random(){}

#endif

11.7 Exercises

11.1. Calculate the cumulative functions P(x) for the binomial and the Poisson distributions
and their variances.

11.2. Make a program which computes random numbers according to the algorithm of
Marsaglia and Zaman, Eqs. (11.16) and (11.17). Compute the correlation function Ck and
compare with the auto-correlation function from the function ran0.

11.3. Make a function normal_randomwhich computes random numbers for the normal distri-
bution based on random numbers generated from the function ran0.

11.4. Make a function exp_randomwhich computes random numbers for the exponential dis-
tribution p(y) = e−αy based on random numbers generated from the function ran0.

11.5. 1. Calculate the integral

I =
∫ 1

0
e−x2

dx,

using brute force Monte Carlo with p(x) = 1 and importance sampling with p(x) = ae−x

where a is a constant.
2. Calculate the integral

I =
∫ π

0

1
x2+ cos2(x)

dx,

with p(x) = ae−x where a is a constant. Determine the value of a which minimizes the
variance.

11.6. In this exercise we are going to simulate the radioactive decay of these nuclei using
sampling through random numbers. We assume that at t = 0 we have NX(0) nuclei of the
type X which can decay radioactively. At a given time t we are left with NX(t) nuclei. With a
transition rate ωX, which is the probability that the system will make a transition to another
state during a time step of one second, we get the following differential equation

dNX(t) =−ωXNX(t)dt,

whose solution is
NX(t) = NX(0)e

−ωXt ,

and where the mean lifetime of the nucleus X is

τ =
1

ωX
.

If the nucleus X decays to Y, which can also decay, we get the following coupled equations
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dNX(t)
dt

=−ωXNX(t),

and
dNY(t)

dt
=−ωYNY(t)+ωXNX(t).

We assume that at t = 0 we have NY(0) = 0. In the beginning we will have an increase of NY

nuclei, however, they will decay thereafter. In this project we let the nucleus 210Bi represent
X. It decays through β -decay to 210Po, which is the Y nucleus in our case. The latter decays
through emision of an α-particle to 206Pb, which is a stable nucleus. 210Bi has a mean lifetime
of 7.2 days while 210Po has a mean lifetime of 200 days.

1. Find closed form solutions for the above equations assuming continuous variables and
setting the number of 210Po nuclei equal zero at t = 0.

2. Make a program which solves the above equations. What is a reasonable choice of timestep
∆ t? You could use the program on radioactive decay from the web-page of the course as
an example and make your own for the decay of two nuclei. Compare the results from your
program with the exact answer as function of NX(0) = 10, 100and 1000. Make plots of your
results.

3. When 210Po decays it produces an α particle. At what time does the production of α
particles reach its maximum? Compare your results with the closed form solutions for
NX(0) = 10, 100and 1000.

11.7. The task here is to integrate in a brute force manner a six-dimensional integral which
is used to determine the ground state correlation energy between two electrons in a helium
atom. Furthermore, you will need to parallelize your code for the Monte-Carlo integration.

We assume that the wave function of each electron can be modelled like the single-particle
wave function of an electron in the hydrogen atom. The single-particle wave function for an
electron i in the 1s state is given in terms of a dimensionless variable (the wave function is
not properly normalized)

r i = xiex+ yiey+ ziez,

as
ψ1s(r i) = e−αr i ,

where α is a parameter and

r i =
√

x2
i + y2

i + z2
i .

We will fix α = 2, which should correspond to the charge of the helium atom Z = 2.
The ansatz for the wave function for two electrons is then given by the product of two 1s

wave functions as
Ψ(r1, r2) = e−α(r1+r2).

Note that it is not possible to find a closed form solution to Schrödinger’s equation for two
interacting electrons in the helium atom.

The integral we need to solve is the quantum mechanical expectation value of the correla-
tion energy between two electrons, namely

〈 1
|r1− r2|

〉=
∫ ∞

−∞
dr1dr2e−2α(r1+r2)

1
|r1− r2|

. (11.23)

Note that our wave function is not normalized. There is a normalization factor missing, but
for this project we don’t need to worry about that.
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1. Set up a program which performs a Monte Carlo integration of the above integral, but
without using importance sampling. That is, use only the uniform distribution. An example
of a program which implements this can be written as

double int_mc = 0.; double variance = 0.;

double sum_sigma= 0. ; long idum=-1 ;

double length=1.5; // we fix the max size of the box to L=3

double jacobidet=pow((2*length),6.);

// evaluate the integral with importance sampling

for ( int i = 1; i <= n; i++){

// x[] contains the random numbers for all dimensions

for (int j = 0; j< 6; j++) {

// Maps U[0,1] to U[-L,L]

x[j]=-length+2*length*ran0(&idum);

}

fx=brute_force_MC(x);

int_mc += fx;

sum_sigma += fx*fx;

}

int_mc = jacobidet*int_mc/((double) n );

sum_sigma = jacobidet*sum_sigma/((double) n );

variance=sum_sigma-int_mc*int_mc;

....

We include also an example of a function which sets up the function to integrate

double brute_force_MC(double *x)

{

double alpha = 2.;

// evaluate the different terms of the exponential

double exp1=-2*alpha*sqrt(x[0]*x[0]+x[1]*x[1]+x[2]*x[2]);

double exp2=-2*alpha*sqrt(x[3]*x[3]+x[4]*x[4]+x[5]*x[5]);

double deno=sqrt(pow((x[0]-x[3]),2)

+pow((x[1]-x[4]),2)+pow((x[2]-x[5]),2));

double value=exp(exp1+exp2)/deno;

return value;

} // end function for the integrand

2. Improve your brute force Monte Carlo calculation by using importance sampling. Hint: use
the exponential distribution. Does the variance decrease? Does the CPU time used com-
pared with the brute force Monte Carlo decrease in order to achieve the same accuracy?
Comment your results. An extract from a code which performs the importance sampling is
included here.

double int_mc = 0.; double variance = 0.;

double sum_sigma= 0. ; long idum=-1 ;

// The 'volume' contains 4 jacobideterminants(pi,pi,2pi,2pi)

// and a scaling factor 1/16

double jacobidet=4*pow(acos(-1.),4.)*1./16;

// evaluate the integral with importance sampling

for ( int i = 1; i <= n; i++){

for (int j = 0; j < 2; j++) {

y=ran0(&idum);

x[j]=-0.25*log(1.-y);

}

for (int j = 2; j < 4; j++) {

x[j] = 2*acos(-1.)*ran0(&idum);

}

for (int j = 4; j < 6; j++) {

x[j] = acos(-1.)*ran0(&idum);
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}

fx=integrand_MC(x);

....

The importance sampling improves considerably the results, as we noted in the example
with the normal distribution. Typical results are

Table 11.5 Results obtained with the uniform distribution only and importance sampling. The suffix ud stands
for the approach with the uniform distribution while is stands for the use of importance sampling.

N Iud σud time(s) Iis σis time(s)
1E6 0.19238 3.85124E-4 0.6 0.19176 1.01515E-4 1.4

10E6 0.18607 1.18053E-4 6 0.192254 1.22430E-4 14
100E6 0.18846 4.37163E-4 57 0.192720 1.03346E-4 138

1000E6 0.18843 1.35879E-4 581 0.192789 3.28795E-5 1372

3. Parallelize your code from the previous point and compare the CPU time needed with that
from the first point above. Do you achieve a good speedup?

4. The integral of Eq. (11.23) has a closed form solution. Can you find it?





Chapter 12

Random walks and the Metropolis algorithm

The way that can be spoken of is not the constant way. (Tao Te Ching, Book I, I.1) Lao Tzu

Abstract We present the theory of random walks, Markov chains and present the Metropolis
algorithm.

12.1 Motivation

In the previous chapter we discussed technical aspects of Monte Carlo integration such as
algorithms for generating random numbers and integration of multidimensional integrals.
The latter topic served to illustrate two key topics in Monte Carlo simulations, namely a
proper selection of variables and importance sampling. An intelligent selection of variables,
good sampling techniques and guiding functions can be crucial for the outcome of our Monte
Carlo simulations. Examples of this will be demonstrated in the chapters on statistical and
quantum physics applications. Here we make a detour from this main area of applications.
The focus is on diffusion and random walks. Furthermore, we will use these topics to derive
the famous Metropolis algorithm.

The rationale for this is that the tricky part of an actual Monte Carlo simulation resides in
the appropriate selection of random states, and thereby numbers, according to the probability
distribution (PDF) at hand.

Suppose our PDF is given by the well-known normal distribution. Think of for example the
velocity distribution of an ideal gas in a container. In our simulations we could then accept or
reject new moves with a probability proportional to the normal distribution. This would par-
allel our example on the sixth dimensional integral in the previous chapter. However, in this
case we would end up rejecting basically all moves since the probabilities are exponentially
small in most cases. The result would be that we barely moved from the initial position. Our
statistical averages would then be significantly biased and most likely not very reliable.

Instead, all Monte Carlo schemes used are based on Markov processes in order to generate
new random states. A Markov process is a random walk with a selected probability for making
a move. The new move is independent of the previous history of the system. The Markov
process is used repeatedly in Monte Carlo simulations in order to generate new random
states. The reason for choosing a Markov process is that when it is run for a long enough time
starting with a random state, we will eventually reach the most likely state of the system. In
thermodynamics, this means that after a certain number of Markov processes we reach an
equilibrium distribution. This mimicks the way a real system reaches its most likely state at
a given temperature of the surroundings.

371
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To reach this distribution, the Markov process needs to obey two important conditions, that
of ergodicity and detailed balance. These conditions impose constraints on our algorithms for
accepting or rejecting new random states. The Metropolis algorithm discussed here abides
to both these constraints and is discussed in more detail in Section 12.5. The Metropolis
algorithm is widely used in Monte Carlo simulations of physical systems and the understand-
ing of it rests within the interpretation of random walks and Markov processes. However,
before we do that we discuss the intimate link between random walks, Markov processes
and the diffusion equation. In section 12.3 we show that a Markov process is nothing but
the discretized version of the diffusion equation. Diffusion and random walks are discussed
from a more experimental point of view in the next section. There we show also a simple
algorithm for random walks and discuss eventual physical implications. We end this chapter
with a discussion of one of the most used algorithms for generating new steps, namely the
Metropolis algorithm. This algorithm, which is based on Markovian random walks satisfies
both the ergodicity and detailed balance requirements and is widely in applications of Monte
Carlo simulations in the natural sciences. The Metropolis algorithm is used in our studies of
phase transitions in statistical physics and the simulations of quantum mechanical systems.

12.2 Diffusion Equation and Random Walks

Physical systems subject to random influences from the ambient have a long history, dating
back to the famous experiments by the British Botanist R. Brown on pollen of different plants
dispersed in water. This lead to the famous concept of Brownian motion. In general, small
fractions of any system exhibit the same behavior when exposed to random fluctuations of the
medium. Although apparently non-deterministic, the rules obeyed by such Brownian systems
are laid out within the framework of diffusion and Markov chains. The fundamental works on
Brownian motion were developed by A. Einstein at the turn of the last century.

Diffusion and the diffusion equation are central topics in both Physics and Mathematics,
and their ranges of applicability span from stellar dynamics to the diffusion of particles gov-
erned by Schrödinger’s equation. The latter is, for a free particle, nothing but the diffusion
equation in complex time!

Let us consider the one-dimensional diffusion equation. We study a large ensemble of par-
ticles performing Brownian motion along the x-axis. There is no interaction between the par-
ticles.

We define w(x, t)dx as the probability of finding a given number of particles in an interval
of length dx in x∈ [x,x+dx] at a time t. This quantity is our probability distribution function
(PDF). The quantum physics equivalent of w(x, t) is the wave function itself. This diffusion
interpretation of Schrödinger’s equation forms the starting point for diffusion Monte Carlo
techniques in quantum physics.

Good overview texts are the books of Robert and Casella and Karatsas, see Refs. [61,67].

12.2.1 Diffusion Equation

From experiment there are strong indications that the flux of particles j(x, t), viz., the number
of particles passing x at a time t is proportional to the gradient of w(x, t). This proportionality
is expressed mathematically through

j(x, t) =−D
∂w(x, t)

∂x
,
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where D is the so-called diffusion constant, with dimensionality length2 per time. If the num-
ber of particles is conserved, we have the continuity equation

∂ j(x, t)
∂x

=−∂w(x, t)
∂ t

,

which leads to
∂w(x, t)

∂ t
= D

∂ 2w(x, t)
∂x2 , (12.1)

which is the diffusion equation in one dimension.
With the probability distribution function w(x, t)dxwe can use the results from the previous

chapter to compute expectation values such as the mean distance

〈x(t)〉=
∫ ∞

−∞
xw(x, t)dx,

or

〈x2(t)〉=
∫ ∞

−∞
x2w(x, t)dx,

which allows for the computation of the variance σ2 = 〈x2(t)〉− 〈x(t)〉2. Note well that these
expectation values are time-dependent. In a similar way we can also define expectation values
of functions f (x, t) as

〈 f (x, t)〉=
∫ ∞

−∞
f (x, t)w(x, t)dx.

Since w(x, t) is now treated as a PDF, it needs to obey the same criteria as discussed in the
previous chapter. However, the normalization condition

∫ ∞

−∞
w(x, t)dx= 1

imposes significant constraints on w(x, t). These are

w(x=±∞, t) = 0
∂ nw(x, t)

∂xn |x=±∞ = 0,

implying that when we study the time-derivative ∂ 〈x(t)〉/∂ t, we obtain after integration by
parts and using Eq. (12.1)

∂ 〈x〉
∂ t

=
∫ ∞

−∞
x

∂w(x, t)
∂ t

dx= D
∫ ∞

−∞
x

∂ 2w(x, t)
∂x2 dx,

leading to
∂ 〈x〉
∂ t

= Dx
∂w(x, t)

∂x
|x=±∞−D

∫ ∞

−∞

∂w(x, t)
∂x

dx,

implying that
∂ 〈x〉
∂ t

= 0.

This means in turn that 〈x〉 is independent of time. If we choose the initial position x(t = 0) = 0,
the average displacement 〈x〉= 0. If we link this discussion to a random walk in one dimension
with equal probability of jumping to the left or right and with an initial position x = 0, then
our probability distribution remains centered around 〈x〉= 0 as function of time. However, the
variance is not necessarily 0. Consider first

∂ 〈x2〉
∂ t

= Dx2 ∂w(x, t)
∂x

|x=±∞−2D
∫ ∞

−∞
x

∂w(x, t)
∂x

dx,
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where we have performed an integration by parts as we did for ∂ 〈x〉
∂ t . A further integration by

parts results in
∂ 〈x2〉

∂ t
=−Dxw(x, t)|x=±∞ +2D

∫ ∞

−∞
w(x, t)dx= 2D,

leading to
〈x2〉= 2Dt,

and the variance as
〈x2〉− 〈x〉2 = 2Dt. (12.2)

The root mean square displacement after a time t is then
√
〈x2〉− 〈x〉2 =

√
2Dt.

This should be contrasted to the displacement of a free particle with initial velocity v0. In that
case the distance from the initial position after a time t is x(t) = vt whereas for a diffusion
process the root mean square value is

√
〈x2〉− 〈x〉2 ∝

√
t. Since diffusion is strongly linked

with random walks, we could say that a random walker escapes much more slowly from the
starting point than would a free particle. We can vizualize the above in the following figure.
In Fig. 12.1 we have assumed that our distribution is given by a normal distribution with
variance σ2 = 2Dt, centered at x= 0. The distribution reads

w(x, t)dx=
1√

4πDt
exp(− x2

4Dt
)dx.

At a time t = 2s the new variance is σ2 = 4Ds, implying that the root mean square value
is
√
〈x2〉− 〈x〉2 = 2

√
D. At a further time t = 8 we have

√
〈x2〉− 〈x〉2 = 4

√
D. While time has

elapsed by a factor of 4, the root mean square has only changed by a factor of 2. Fig. 12.1
demonstrates the spreadout of the distribution as time elapses. A typical example can be the
diffusion of gas molecules in a container or the distribution of cream in a cup of coffee. In both
cases we can assume that the the initial distribution is represented by a normal distribution.
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Fig. 12.1 Time development of a normal distribution with variance σ 2 = 2Dt and with D = 1m2/s. The solid
line represents the distribution at t = 2s while the dotted line stands for t = 8s.
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12.2.2 Random Walks

Consider now a random walker in one dimension, with probability R of moving to the right
and L for moving to the left. At t = 0we place the walker at x= 0, as indicated in Fig. 12.2. The
walker can then jump, with the above probabilities, either to the left or to the right for each
time step. Note that in principle we could also have the possibility that the walker remains
in the same position. This is not implemented in this example. Every step has length ∆x= l .
Time is discretized and we have a jump either to the left or to the right at every time step.
Let us now assume that we have equal probabilities for jumping to the left or to the right, i.e.,

• • • • • • • •
.. −3l −2 −l x= 0 l 2l 3l ..

Fig. 12.2 One-dimensional walker which can jump either to the left or to the right. Every step has length
∆x= l .

L = R= 1/2. The average displacement after n time steps is

〈x(n)〉=
n

∑
i

∆xi = 0 ∆xi =±l ,

since we have an equal probability of jumping either to the left or to right. The value of 〈x(n)2〉
is

〈x(n)2〉=
(

n

∑
i

∆xi

)(
n

∑
j

∆x j

)
=

n

∑
i

∆x2
i +

n

∑
i 6= j

∆xi∆x j = l2n.

For many enough steps the non-diagonal contribution is

N

∑
i 6= j

∆xi∆x j = 0,

since ∆xi, j =±l . The variance is then

〈x(n)2〉− 〈x(n)〉2 = l2n. (12.3)

It is also rather straightforward to compute the variance for L 6= R. The result is

〈x(n)2〉− 〈x(n)〉2 = 4LRl2n.

In Eq. (12.3) the variable n represents the number of time steps. If we define n= t/∆ t, we can
then couple the variance result from a random walk in one dimension with the variance from
the diffusion equation of Eq. (12.2) by defining the diffusion constant as

D =
l2

∆ t
.

In the next section we show in detail that this is the case.
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The program below demonstrates the simplicity of the one-dimensional random walk al-
gorithm. It is straightforward to extend this program to two or three dimensions as well.
The input is the number of time steps, the probability for a move to the left or to the right
and the total number of Monte Carlo samples. It computes the average displacement and the
variance for one random walker for a given number of Monte Carlo samples. Each sample is
thus to be considered as one experiment with a given number of walks. The interesting part
of the algorithm is described in the function mc_sampling. The other functions read or write
the results from screen or file and are similar in structure to programs discussed previously.
The main program reads the name of the output file from screen and sets up the arrays con-
taining the walker’s position after a given number of steps. The corresponding program for
a two-dimensional random walk (not listed in the main text) is found under programs/chap-
ter12/program2.cpp

http://folk.uio.no/mhjensen/compphys/programs/chapter12/cpp/program1.cpp

/*
1-dim random walk program.

A walker makes several trials steps with

a given number of walks per trial

*/

#include <iostream>

#include <fstream>

#include <iomanip>

#include "lib.h"

using namespace std;

// Function to read in data from screen, note call by reference

void initialise(int&, int&, double&) ;

// The Mc sampling for random walks

void mc_sampling(int, int, double, int *, int *);

// prints to screen the results of the calculations

void output(int, int, int *, int *);

int main()

{

int max_trials, number_walks;

double move_probability;

// Read in data

initialise(max_trials, number_walks, move_probability) ;

int *walk_cumulative = new int [number_walks+1];

int *walk2_cumulative = new int [number_walks+1];

for (int walks = 1; walks <= number_walks; walks++){

walk_cumulative[walks] = walk2_cumulative[walks] = 0;

} // end initialization of vectors

// Do the mc sampling

mc_sampling(max_trials, number_walks, move_probability,

walk_cumulative, walk2_cumulative);

// Print out results

output(max_trials, number_walks, walk_cumulative,

walk2_cumulative);

delete [] walk_cumulative; // free memory

delete [] walk2_cumulative;

return 0;

} // end main function

The input and output functions are

void initialise(int& max_trials, int& number_walks, double& move_probability)

{

cout << "Number of Monte Carlo trials =";

http://folk.uio.no/mhjensen/compphys/programs/chapter12/cpp/program1.cpp
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cin >> max_trials;

cout << "Number of attempted walks=";

cin >> number_walks;

cout << "Move probability=";

cin >> move_probability;

} // end of function initialise

void output(int max_trials, int number_walks,

int *walk_cumulative, int *walk2_cumulative)

{

ofstream ofile("testwalkers.dat");

for( int i = 1; i <= number_walks; i++){

double xaverage = walk_cumulative[i]/((double) max_trials);

double x2average = walk2_cumulative[i]/((double) max_trials);

double variance = x2average - xaverage*xaverage;

ofile << setiosflags(ios::showpoint | ios::uppercase);

ofile << setw(6) << i;

ofile << setw(15) << setprecision(8) << xaverage;

ofile << setw(15) << setprecision(8) << variance << endl;

}

ofile.close();

} // end of function output

The algorithm is in the function mc_sampling and tests the probability of moving to the left or
to the right by generating a random number.

void mc_sampling(int max_trials, int number_walks,

double move_probability, int *walk_cumulative,

int *walk2_cumulative)

{

long idum;

idum=-1; // initialise random number generator

for (int trial=1; trial <= max_trials; trial++){

int position = 0;

for (int walks = 1; walks <= number_walks; walks++){

if (ran0(&idum) <= move_probability) {

position += 1;

}

else {

position -= 1;

}

walk_cumulative[walks] += position;

walk2_cumulative[walks] += position*position;

} // end of loop over walks

} // end of loop over trials

} // end mc_sampling function

Fig. 12.3 shows that the variance increases linearly as function of the number of time steps, as
expected from the closed-form results. Similarly, the mean displacement in Fig. 12.4 oscillates
around zero.

12.3 Microscopic Derivation of the Diffusion Equation

When solving partial differential equations such as the diffusion equation numerically, the
derivatives are always discretized. Recalling our discussions from Chapter 3, we can rewrite
the time derivative as
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Fig. 12.3 Time development of σ 2 for a random walker. 100000 Monte Carlo samples were used with the
function ran1 and a seed set to −1.
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Fig. 12.4 Time development of 〈x(t)〉 for a random walker. 100000 Monte Carlo samples were used with the
function ran1 and a seed set to −1.

∂w(x, t)
∂ t

≈ w(i,n+1)−w(i,n)
∆ t

,

whereas the gradient is approximated as

D
∂ 2w(x, t)

∂x2 ≈ D
w(i +1,n)+w(i−1,n)−2w(i,n)

(∆x)2 ,

resulting in the discretized diffusion equation
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w(i,n+1)−w(i,n)
∆ t

= D
w(i +1,n)+w(i−1,n)−2w(i,n)

(∆x)2 ,

where n represents a given time step and i a step in the x-direction. The solution of such equa-
tions is discussed in our chapter on partial differential equations, see Chapter 10. The aim
here is to show that we can derive the discretized diffusion equation from a Markov process
and thereby demonstrate the close connection between the important physical process diffu-
sion and random walks. Random walks allow for an intuitive way of picturing the process of
diffusion. In addition, as demonstrated in the previous section, it is easy to simulate a random
walk.

12.3.1 Discretized Diffusion Equation and Markov Chains

A Markov process allows in principle for a microscopic description of Brownian motion. As
with the random walk studied in the previous section, we consider a particle which moves
along the x-axis in the form of a series of jumps with step length ∆x = l . Time and space
are discretized and the subsequent moves are statistically independent, i.e., the new move
depends only on the previous step and not on the results from earlier trials. We start at a
position x= jl = j∆x and move to a new position x= i∆x during a step ∆ t = ε, where i ≥ 0 and
j ≥ 0 are integers. The original probability distribution function (PDF) of the particles is given
by wi(t = 0) where i refers to a specific position on the grid in Fig. 12.2, with i = 0 represent-
ing x = 0. The function wi(t = 0) is now the discretized version of w(x, t). We can regard the
discretized PDF as a vector. For the Markov process we have a transition probability from a
position x= jl to a position x= il given by

Wi j (ε) =W(il − jl ,ε) =
{ 1

2 |i− j|= 1
0 else

,

where Wi j is normally called the transition probability and we can represent it, see below, as
a matrix. Note that this matrix is not a stochastic matrix as long as it is a finite matrix. Our
new PDF wi(t = ε) is now related to the PDF at t = 0 through the relation

wi(t = ε) = ∑
j

W( j → i)wj (t = 0).

This equation represents the discretized time-development of an original PDF. It is a micro-
scopic way of representing the process shown in Fig. 12.1. Since both W and w represent
probabilities, they have to be normalized, i.e., we require that at each time step we have

∑
i

wi(t) = 1,

and

∑
j

W( j → i) = 1,

which applies for all j-values. The further constraints are 0≤Wi j ≤ 1 and 0≤wj ≤ 1. Note that
the probability for remaining at the same place is in general not necessarily equal zero. In
our Markov process we allow only for jumps to the left or to the right.

The time development of our initial PDF can now be represented through the action of
the transition probability matrix applied n times. At a time tn = nε our initial distribution has
developed into
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wi(tn) = ∑
j

Wi j (tn)wj(0),

and defining
W(il − jl ,nε) = (Wn(ε))i j

we obtain
wi(nε) = ∑

j

(Wn(ε))i j wj (0),

or in matrix form
ŵ(nε) = Ŵn(ε)ŵ(0). (12.4)

The matrix Ŵ can be written in terms of two matrices

Ŵ =
1
2

(
L̂+ R̂

)
,

where L̂ and R̂ represent the transition probabilities for a jump to the left or the right, respec-
tively. For a 4×4 case we could write these matrices as

R̂=




0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0


 ,

and

L̂ =




0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0


 .

However, in principle these are infinite dimensional matrices since the number of time steps
are very large or infinite. For the infinite case we can write these matrices Ri j = δi,( j+1) and
Li j = δ(i+1), j , implying that

L̂R̂= R̂L̂ = I , (12.5)

which applies in the case of infinite matrices and

L̂ = R̂−1 (12.6)

To see that L̂R̂= R̂L̂ = 1, perform e.g., the matrix multiplication

L̂R̂= ∑
k

L̂ikR̂k j = ∑
k

δ(i+1),kδk,( j+1) = δi+1, j+1 = δi, j ,

and only the diagonal matrix elements are different from zero.
For the first time step we have thus

Ŵ =
1
2

(
L̂+ R̂

)
,

and using the properties in Eqs. (12.5) and (12.6) we have after two time steps

Ŵ2(2ε) =
1
4

(
L̂2+ R̂2+2R̂L̂

)
,

and similarly after three time steps

Ŵ3(3ε) =
1
8

(
L̂3+ R̂3+3R̂L̂2+3R̂2L̂

)
.
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Using the binomial formula
n

∑
k=0

(
n
k

)
âkb̂n−k = (a+b)n,

ee we have that the transition matrix after n time steps can be written as

Ŵn(nε)) =
1
2n

n

∑
k=0

(
n
k

)
R̂kL̂n−k,

or

Ŵn(nε)) =
1
2n

n

∑
k=0

(
n
k

)
L̂n−2k =

1
2n

n

∑
k=0

(
n
k

)
R̂2k−n,

and using Rm
i j = δi,( j+m) and Lm

i j = δ(i+m), j we arrive at

W(il − jl ,nε) =





1
2n

(
n

1
2(n+ i− j)

)
|i− j| ≤ n

0 else
, (12.7)

and n+ i− j has to be an even number. We note that the transition matrix for a Markov process
has three important properties:

• It depends only on the difference in space i− j, it is thus homogenous in space.
• It is also isotropic in space since it is unchanged when we go from (i, j) to (−i,− j).
• It is homogenous in time since it depends only the difference between the initial time

and final time.

If we place the walker at x = 0 at t = 0 we can represent the initial PDF with wi(0) = δi,0.
Using Eq. (12.4) we have

wi(nε) = ∑
j
(Wn(ε))i j wj(0) = ∑

j

1
2n

(
n

1
2(n+ i− j)

)
δ j ,0,

resulting in

wi(nε) =
1
2n

(
n

1
2(n+ i)

)
|i| ≤ n.

We can then use the recursion relation for the binomials
(

n+1
1
2(n+1+ i)

)
=

(
n

1
2(n+ i +1)

)
+

(
n

1
2(n+ i−1)

)
(12.8)

to obtain the discretized diffusion equation. In order to achieve this, we define x= il , where l
and i are integers, and t = nε. We can then rewrite the probability distribution as

w(x, t) = w(il ,nε) = wi(nε) =
1
2n

(
n

1
2(n+ i)

)
|i| ≤ n,

and rewrite Eq. (12.8) as

w(x, t + ε) =
1
2

w(x+ l , t)+
1
2

w(x− l , t).

Adding and subtracting w(x, t) and multiplying both sides with l2/ε we have
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w(x, t + ε)−w(x, t)
ε

=
l2

2ε
w(x+ l , t)−2w(x, t)+w(x− l , t)

l2
.

If we identify D = l2/2ε and l = ∆x and ε = ∆ t we see that this is nothing but the discretized
version of the diffusion equation. Taking the limits ∆x→ 0 and ∆ t → 0 we recover

∂w(x, t)
∂ t

= D
∂ 2w(x, t)

∂x2 ,

the diffusion equation.

12.3.1.1 An Illustrative Example

The following simple example may help in understanding the meaning of the transition matrix
Ŵ and the vector ŵ. Consider the 4×4 matrix Ŵ

Ŵ =




1/4 1/9 3/8 1/3
2/4 2/9 0 1/3
0 1/9 3/8 0

1/4 5/9 2/8 1/3


 ,

and we choose our initial state as

ŵ(t = 0) =




1
0
0
0


 .

We note that both the vector and the matrix are properly normalized. Summing the vector el-
ements gives one and summing over columns for the matrix results also in one. Furthermore,
the largest eigenvalue is one. We act then on ŵ with Ŵ. The first iteration is

ŵ(t = ε) = Ŵŵ(t = 0),

resulting in

ŵ(t = ε) =




1/4
1/2
0.0
1/4


 .

The next iteration results in
ŵ(t = 2ε) = Ŵŵ(t = ε),

resulting in

ŵ(t = 2ε) =




0.201389
0.319444
0.055556
0.423611


 .

Note that the vector ŵ is always normalized to 1. We find the steady state of the system by
solving the linear set of equations

w(t = ∞) = Ww(t = ∞).

This linear set of equations reads
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W11w1(t = ∞)+W12w2(t = ∞)+W13w3(t = ∞)+W14w4(t = ∞) = w1(t = ∞)

W21w1(t = ∞)+W22w2(t = ∞)+W23w3(t = ∞)+W24w4(t = ∞) = w2(t = ∞)

W31w1(t = ∞)+W32w2(t = ∞)+W33w3(t = ∞)+W34w4(t = ∞) = w3(t = ∞)

W41w1(t = ∞)+W42w2(t = ∞)+W43w3(t = ∞)+W44w4(t = ∞) = w4(t = ∞)

(12.9)

with the constraint that

∑
i

wi(t = ∞) = 1,

yielding as solution

ŵ(t = ∞) =




0.244318
0.319602
0.056818
0.379261


 .

Table 12.1 demonstrates the convergence as a function of the number of iterations or time
steps. After twelve iterations we have reached the exact value with six leading digits.

Table 12.1 Convergence to the steady state as function of number of iterations.

Iteration w1 w2 w3 w4

0 1.000000 0.000000 0.000000 0.000000
1 0.250000 0.500000 0.000000 0.250000
2 0.201389 0.319444 0.055556 0.423611
3 0.247878 0.312886 0.056327 0.382909
4 0.245494 0.321106 0.055888 0.377513
5 0.243847 0.319941 0.056636 0.379575
6 0.244274 0.319547 0.056788 0.379391
7 0.244333 0.319611 0.056801 0.379255
8 0.244314 0.319610 0.056813 0.379264
9 0.244317 0.319603 0.056817 0.379264

10 0.244318 0.319602 0.056818 0.379262
11 0.244318 0.319602 0.056818 0.379261
12 0.244318 0.319602 0.056818 0.379261

ŵ(t = ∞) 0.244318 0.319602 0.056818 0.379261

We have after t-steps
ŵ(t) = Ŵtŵ(0),

with ŵ(0) the distribution at t = 0 and Ŵ representing the transition probability matrix. We
can always expand ŵ(0) in terms of the right eigenvectors v̂ of Ŵ as

ŵ(0) = ∑
i

αi v̂i ,

resulting in
ŵ(t) = Ŵtŵ(0) = Ŵt ∑

i
αi v̂i = ∑

i
λ t

i αi v̂i ,

with λi the ith eigenvalue corresponding to the eigenvector v̂i.
If we assume that λ0 is the largest eigenvector we see that in the limit t→∞, ŵ(t) becomes

proportional to the corresponding eigenvector v̂0. This is our steady state or final distribution.
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12.3.2 Continuous Equations

Hitherto we have considered discretized versions of all equations. Our initial probability dis-
tribution function was then given by

wi(0) = δi,0,

and its time-development after a given time step ∆ t = ε is

wi(t) = ∑
j

W( j → i)wj (t = 0).

The continuous analog to wi(0) is
w(x)→ δ (x), (12.10)

where we now have generalized the one-dimensional position x to a generic-dimensional vec-
tor x. The Kroenecker δ function is replaced by the δ distribution function δ (x) at t = 0.

The transition from a state j to a state i is now replaced by a transition to a state with
position y from a state with position x. The discrete sum of transition probabilities can then
be replaced by an integral and we obtain the new distribution at a time t +∆ t as

w(y, t +∆ t) =
∫

W(y,x,∆ t)w(x, t)dx,

and after m time steps we have

w(y, t +m∆ t) =
∫

W(y,x,m∆ t)w(x, t)dx.

When equilibrium is reached we have

w(y) =
∫

W(y,x, t)w(x)dx.

We can solve the equation for w(y, t) by making a Fourier transform to momentum space. The
PDF w(x, t) is related to its Fourier transform w̃(k, t) through

w(x, t) =
∫ ∞

−∞
dk exp(ikx)w̃(k, t), (12.11)

and using the definition of the δ -function

δ (x) =
1

2π

∫ ∞

−∞
dk exp(ikx),

we see that
w̃(k,0) = 1/2π .

We can then use the Fourier-transformed diffusion equation

∂ w̃(k, t)
∂ t

=−Dk2w̃(k, t), (12.12)

with the obvious solution

w̃(k, t) = w̃(k,0)exp
[
−(Dk2t)

)
=

1
2π

exp
[
−(Dk2t)

]
.

Using Eq. (12.11) we obtain
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w(x, t) =
∫ ∞

−∞
dk exp[ikx]

1
2π

exp
[
−(Dk2t)

]
=

1√
4πDt

exp
[
−(x2/4Dt)

]
, (12.13)

with the normalization condition ∫ ∞

−∞
w(x, t)dx = 1.

It is rather easy to verify by insertion that Eq. (12.13) is a solution of the diffusion equation.
The solution represents the probability of finding our random walker at position x at time t if
the initial distribution was placed at x = 0 at t = 0.

There is another interesting feature worth observing. The discrete transition probability
W itself is given by a binomial distribution, see Eq. (12.7). The results from the central limit
theorem, see Sect. 11.2.2, state that transition probability in the limit n→ ∞ converges to the
normal distribution. It is then possible to show that

W(il − jl ,nε)→W(y,x,∆ t) =
1√

4πD∆ t
exp
[
−((y− x)2/4D∆ t)

]
,

and that it satisfies the normalization condition and is itself a solution to the diffusion equa-
tion.

12.3.3 Numerical Simulation

In the two previous subsections we have given evidence that a Markov process actually yields
in the limit of infinitely many steps the diffusion equation. It links therefore in a physical in-
tuitive way the fundamental process of diffusion with random walks. It could therefore be of
interest to visualize this connection through a numerical experiment. We saw in the previous
subsection that one possible solution to the diffusion equation is given by a normal distribu-
tion. In addition, the transition rate for a given number of steps develops from a binomial
distribution into a normal distribution in the limit of infinitely many steps. To achieve this
we construct in addition a histogram which contains the number of times the walker was
in a particular position x. This is given by the variable probability, which is normalized in
the output function. We have omitted the initialization function, since this identical to pro-
gram1.cpp or program2.cpp of this chapter. The array probability extends from -number_walks

to +number_walks

http://folk.uio.no/mhjensen/compphys/programs/chapter12/cpp/program2.cpp

/*
1-dim random walk program.

A walker makes several trials steps with

a given number of walks per trial

*/

#include <iostream>

#include <fstream>

#include <iomanip>

#include "lib.h"

using namespace std;

// Function to read in data from screen, note call by reference

void initialise(int&, int&, double&) ;

// The Mc sampling for random walks

void mc_sampling(int, int, double, int *, int *, int *);

// prints to screen the results of the calculations

void output(int, int, int *, int *, int *);

http://folk.uio.no/mhjensen/compphys/programs/chapter12/cpp/program2.cpp
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int main()

{

int max_trials, number_walks;

double move_probability;

// Read in data

initialise(max_trials, number_walks, move_probability) ;

int *walk_cumulative = new int [number_walks+1];

int *walk2_cumulative = new int [number_walks+1];

int *probability = new int [2*(number_walks+1)];

for (int walks = 1; walks <= number_walks; walks++){

walk_cumulative[walks] = walk2_cumulative[walks] = 0;

}

for (int walks = 0; walks <= 2*number_walks; walks++){

probability[walks] = 0;

} // end initialization of vectors

// Do the mc sampling

mc_sampling(max_trials, number_walks, move_probability,

walk_cumulative, walk2_cumulative, probability);

// Print out results

output(max_trials, number_walks, walk_cumulative,

walk2_cumulative, probability);

delete [] walk_cumulative; // free memory

delete [] walk2_cumulative; delete [] probability;

return 0;

} // end main function

The output function contains now the normalization of the probability as well and writes this
to its own file.

void output(int max_trials, int number_walks,

int *walk_cumulative, int *walk2_cumulative, int * probability)

{

ofstream ofile("testwalkers.dat");

ofstream probfile("probability.dat");

for( int i = 1; i <= number_walks; i++){

double xaverage = walk_cumulative[i]/((double) max_trials);

double x2average = walk2_cumulative[i]/((double) max_trials);

double variance = x2average - xaverage*xaverage;

ofile << setiosflags(ios::showpoint | ios::uppercase);

ofile << setw(6) << i;

ofile << setw(15) << setprecision(8) << xaverage;

ofile << setw(15) << setprecision(8) << variance << endl;

}

ofile.close();

// find norm of probability

double norm = 0.;

for( int i = -number_walks; i <= number_walks; i++){

norm += (double) probability[i+number_walks];

}

// write probability

for( int i = -number_walks; i <= number_walks; i++){

double histogram = probability[i+number_walks]/norm;

probfile << setiosflags(ios::showpoint | ios::uppercase);

probfile << setw(6) << i;

probfile << setw(15) << setprecision(8) << histogram << endl;

}

probfile.close();

} // end of function output

The sampling part is still done in the same function, but contains now the setup of a histogram
containing the number of times the walker visited a given position x.
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void mc_sampling(int max_trials, int number_walks,

double move_probability, int *walk_cumulative,

int *walk2_cumulative, int *probability)

{

long idum;

idum=-1; // initialise random number generator

for (int trial=1; trial <= max_trials; trial++){

int position = 0;

for (int walks = 1; walks <= number_walks; walks++){

if (ran0(&idum) <= move_probability) {

position += 1;

}

else {

position -= 1;

}

walk_cumulative[walks] += position;

walk2_cumulative[walks] += position*position;

probability[position+number_walks] += 1;

} // end of loop over walks

} // end of loop over trials

} // end mc_sampling function

Fig. 12.5 shows the resulting probability distribution after n steps In Fig. 12.5 we have plotted
the probability distribution function after a given number of time steps. Do you recognize the
shape of the probabiliy distributions?

12.4 Entropy and Equilibrium Features

We use this section to motivate, in a physically intuitive way, the importance of the ergodic
hypothesis via a discussion of how a Markovian process reaches an equilibrium situation
after a given number of random walks. It serves then purpose of bridging the gap between a
Markovian process and our discussion of the Metropolis algorithm in the next section.

To achieve this, we will use the program from the previous section, see programs/chap-
ter12/program3.cpp and introduce the concept of entropy S. We discuss the thermodynamical
meaning of the entropy and its link with the second law of thermodynamics in the next chap-
ter. Here it will suffice to state that the entropy is a measure of the disorder of the system,
thus a system which is fully ordered and stays in its fundamental state (ground state) has
zero entropy, while a disordered system has a large and nonzero entropy.

The definition of the entropy S (as a dimensionless quantity here) is

S=−∑
i

wi ln(wi),

where wi is the probability of finding our system in a state i. For our one-dimensional random
walk case discussed in the previous sections it represents the probability for being at position
i = i∆x after a given number of time steps. In order to test this, we start with the previous
program but assume now that we have N random walkers at i = 0 and t = 0 and let these
randomwalkers diffuse as function of time. This means simply an additional loop. We compute
then, as in the previous program example, the probability distribution for N walkers after a
given number of steps i along x and time steps j. We can then compute an entropy Sj for a
given number of time steps by summing over all probabilities i. We show this in Fig. 12.6.
The code used to compute these results is in programs/chapter12/program4.cpp. Here we
have used 100 walkers on a lattice of length from L = −50 to L = 50 employing periodic
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Fig. 12.5 Probability distribution for one walker after 10, 100 and 1000 steps.
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Fig. 12.6 Entropy Sj as function of number of time steps j for a random walk in one dimension. Here we
have used 100 walkers on a lattice of length from L = −50 to L = 50 employing periodic boundary conditions
meaning that if a walker reaches the point x= L+1 it is shifted to x=−L and if x=−L it is shifted to x= L.

boundary conditions meaning that if a walker reaches the point x = L it is shifted to x = −L
and if x = −L it is shifted to x = L. We see from Fig. 12.6 that for small time steps, where
all particles N are in the same position or close to the initial position, the entropy is very
small, reflecting the fact that we have an ordered state. As time elapses, the random walkers
spread out in space (here in one dimension) and the entropy increases as there are more
states, that is positions accesible to the system. We say that the system shows an increased
degree of disorder. After several time steps, we see that the entropy reaches a constant value,
a situation called a steady state. This signals that the system has reached its equilibrium
situation and that the random walkers spread out to occupy all possible available states. At
equilibrium it means thus that all states are equally probable and this is not baked into any
dynamical equations such as Newton’s law of motion. It occurs because the system is allowed
to explore all possibilities. An important hypothesis, which has never been proven rigorously
but for certain systems, is the ergodic hypothesis which states that in equilibrium all available
states of a closed system have equal probability. For a discussion of the ergodicity hypothesis
and the Metropoli algorithm, see for example Ref. [61]. This hypothesis states also that if we
are able to simulate long enough, then one should be able to trace through all possible paths
in the space of available states to reach the equilibrium situation. Our Markov process should
be able to reach any state of the system from any other state if we run for long enough.
Markov processes fullfil the requirement of ergodicity since all new steps are independent of
the previous ones and the random walkers can thus explore with equal probability all possible
positions. In general however, we know that physical processes are not independent of each
other. The relation between ergodicity and physical systems is an unsettled topic.

The Metropolis algorithm which we discuss in the next section is based on a Markovian
process and fullfils the requirement of ergodicity. In addition, in the next section we impose
the criterion of detailed balance.
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12.5 The Metropolis Algorithm and Detailed Balance

Let us recapitulate some of our results about Markov chains and random walks.

• The time development of our PDF w(t), after one time-step from t = 0 is given by

wi(t = ε) =W( j → i)wj (t = 0).

This equation represents the discretized time-development of an original PDF. We can
rewrite this as a

wi(t = ε) =Wi j wj(t = 0).

with the transition matrix W for a random walk given by

Wi j (ε) =W(il − jl ,ε) =
{ 1

2 |i− j|= 1
0 else

We call Wi j for the transition probability and we represent it as a matrix.
• BothW and w represent probabilities and they have to be normalized, meaning that at each

time step we have

∑
i

wi(t) = 1,

and

∑
j

W( j → i) = 1.

Here we have written the previous matrix Wi j = W( j → i). The further constraints are 0≤
Wi j ≤ 1 and 0≤ wj ≤ 1.

• We can thus write the action of W as

wi(t +1) = ∑
j

Wi j wj(t),

or as vector-matrix relation
ŵ(t +1) = Ŵŵ(t),

and if we have that ||ŵ(t+1)− ŵ(t)|| → 0, we say that we have reached the most likely state
of the system, the so-called steady state or equilibrium state. Another way of phrasing this
is

w(t = ∞) = Ww(t = ∞). (12.14)

In most situations, the transition probabilityWi j =W( j→ i) is not known1. It can represent
a complicated set of chemical reactions which we are not capable of modeling or, we are able
to write down and account for all the boundary and the initial conditions needed to describe
W( j → i). A Markov chain is a process where this probability is in general unknown. The
question then is how can we model anything under such a severe lack of knowledge? The
Metropolis algorithm comes to our rescue here. Since W( j → i) is unknown, we model it as
the product of two probabilities, a probability for accepting the proposed move from the state
j to the state j, and a probability for making the transition to the state i being in the state j.
We label these probabilities A( j→ i) and T( j→ i), respectively. Our total transition probability
is then

W( j → i) = T( j → i)A( j → i).

1 Note that the discrete equations here can easily be replaced by continuous ones.
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The algorithm can then be expressed as

• We make a suggested move to the new state i with some transition or moving probability
Tj→i .

• We accept this move to the new state with an acceptance probability A j→i . The new state i
is in turn used as our new starting point for the next move. We reject this proposed moved
with a 1−A j→i and the original state j is used again as a sample.

We wish to derive the required properties of the probabilities T and A such that w(t→∞)
i → wi ,

starting from any distribution, will lead us to the correct distribution.
We can now derive the dynamical process towards equilibrium. To obtain this equation we

note that after t time steps the probability for being in a state i is related to the probability of
being in a state j and performing a transition to the new state together with the probability
of actually being in the state i and making a move to any of the possible states j from the
previous time step. We can express this as, assuming that T and A are time-independent,

wi(t +1) = ∑
j

[wj (t)Tj→iA j→i +wi(t)Ti→ j (1−Ai→ j)] .

All probabilities are normalized, meaning that ∑ j Ti→ j = 1. Using the latter, we can rewrite the
previous equation as

wi(t +1) = wi(t)+∑
j
[wj (t)Tj→iA j→i−wi(t)Ti→ j Ai→ j ] ,

which can be rewritten as

wi(t +1)−wi(t) = ∑
j
[wj(t)Tj→iA j→i−wi(t)Ti→ j Ai→ j ] .

This equation is very similar to the so-called Master equation, which relates the temporal
dependence of a PDF wi(t) to various transition rates. The equation can be derived from
the so-called Chapman-Einstein-Enskog-Kolmogorov equation, see for example Ref. [68]. The
equation is given as

dwi(t)
dt

= ∑
j

[W( j → i)wj −W(i→ j)wi ] , (12.15)

which simply states that the rate at which the systems moves from a state j to a final state
i (the first term on the right-hand side of the last equation) is balanced by the rate at which
the system undergoes transitions from the state i to a state j (the second term). If we have
reached the so-called steady state, then the temporal development is zero since we are now
satisfying Eq. (12.5). This means that in equilibrium we have

dwi(t)
dt

= 0.

In the limit t → ∞ we require that the two distributions wi(t +1) = wi and wi(t) = wi and we
have

∑
j

wjTj→iA j→i = ∑
j

wiTi→ j Ai→ j ,

which is the condition for balance when the most likely state (or steady state) has been
reached. We see also that the right-hand side can be rewritten as

∑
j

wiTi→ jAi→ j = ∑
j

wiWi→ j ,

and using the property that ∑ j Wi→ j = 1, we can rewrite our equation as
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wi = ∑
j

wj Tj→iA j→i = ∑
j

wjWj→i ,

which is nothing but the standard equation for a Markov chain when the steady state has
been reached.

However, the condition that the rates should equal each other is in general not sufficient
to guarantee that we, after many simulations, generate the correct distribution. We may risk
to end up with so-called cyclic solutions. To avoid this we therefore introduce an additional
condition, namely that of detailed balance

W( j → i)wj =W(i→ j)wi .

These equations were derived by Lars Onsager when studying irreversible processes, see
Ref. [69]. At equilibrium detailed balance gives thus

W( j → i)
W(i→ j)

=
wi

wj
.

Rewriting the last equation in terms of our transition probabilities T and acceptance probobal-
ities A we obtain

wj(t)Tj→iA j→i = wi(t)Ti→ jAi→ j .

Since we normally have an expression for the probability distribution functions wi , we can
rewrite the last equation as

Tj→iA j→i

Ti→ jAi→ j
=

wi

wj
.

In statistical physics this condition ensures that it is e.g., the Boltzmann distribution which is
generated when equilibrium is reached.

We introduce now the Boltzmann distribution

wi =
exp(−β (Ei))

Z
,

which states that the probability of finding the system in a state i with energy Ei at an inverse
temperature β = 1/kBT is wi ∝ exp(−β (Ei)). The denominator Z is a normalization constant
which ensures that the sum of all probabilities is normalized to one. It is defined as the sum
of probabilities over all microstates j of the system

Z = ∑
j

exp(−β (Ei)).

From the partition function we can in principle generate all interesting quantities for a given
system in equilibrium with its surroundings at a temperature T. This is demonstrated in the
next chapter.

With the probability distribution given by the Boltzmann distribution we are now in a posi-
tion where we can generate expectation values for a given variable A through the definition

〈A〉=∑
j

A jwj =
∑ j A j exp(−β (E j)

Z
.

In general, most systems have an infinity of microstates making thereby the computation
of Z practically impossible and a brute force Monte Carlo calculation over a given number of
randomly selected microstates may therefore not yield those microstates which are important
at equilibrium. To select the most important contributions we need to use the condition for
detailed balance. Since this is just given by the ratios of probabilities, we never need to
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evaluate the partition function Z. For the Boltzmann distribution, detailed balance results in

wi

wj
= exp(−β (Ei−E j)).

Let us now specialize to a system whose energy is defined by the orientation of single
spins. Consider the state i, with given energy Ei represented by the following N spins

↑ ↑ ↑ . . . ↑ ↓ ↑ . . . ↑ ↓
1 2 3 . . . k−1 k k+1 . . . N−1 N

We are interested in the transition with one single spinflip to a new state j with energy E j

↑ ↑ ↑ . . . ↑ ↑ ↑ . . . ↑ ↓
1 2 3 . . . k−1 k k+1 . . . N−1 N

This change from one microstate i (or spin configuration) to another microstate j is the con-
figuration space analogue to a random walk on a lattice. Instead of jumping from one place
to another in space, we ’jump’ from one microstate to another.

However, the selection of states has to generate a final distribution which is the Boltzmann
distribution. This is again the same we saw for a random walker, for the discrete case we had
always a binomial distribution, whereas for the continuous case we had a normal distribu-
tion. The way we sample configurations should result, when equilibrium is established, in the
Boltzmann distribution. Else, our algorithm for selecting microstates is wrong.

As stated above, we do in general not know the closed-form expression of the transition
rate and we are free to model it asW(i→ j) = T(i→ j)A(i→ j). Our ratio between probabilities
gives us

A j→i

Ai→ j
=

wiTi→ j

wj Tj→i
.

The simplest form of the Metropolis algorithm (sometimes called for brute force Metropolis)
assumes that the transition probability T(i→ j) is symmetric, implying that T(i→ j) =T( j→ i).
We obtain then (using the Boltzmann distribution)

A( j → i)
A(i→ j)

= exp(−β (Ei−E j)).

We are in this case interested in a new state E j whose energy is lower than Ei , viz., ∆E =

E j −Ei ≤ 0. A simple test would then be to accept only those microstates which lower the
energy. Suppose we have ten microstates with energy E0≤E1≤E2≤E3≤ ·· · ≤E9. Our desired
energy is E0. At a given temperature T we start our simulation by randomly choosing state E9.
Flipping spins we may then find a path from E9→ E8→ E7 · · · → E1→ E0. This would however
lead to biased statistical averages since it would violate the ergodic hypothesis discussed in
the previous section. This principle states that it should be possible for any Markov process to
reach every possible state of the system from any starting point if the simulations is carried
out for a long enough time.

Any state in a Boltzmann distribution has a probability different from zero and if such a
state cannot be reached from a given starting point, then the system is not ergodic. This
means that another possible path to E0 could be E9→ E7→ E8 · · · → E9→ E5→ E0 and so forth.
Even though such a path could have a negligible probability it is still a possibility, and if we
simulate long enough it should be included in our computation of an expectation value.

Thus, we require that our algorithm should satisfy the principle of detailed balance and be
ergodic. The problem with our ratio
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A( j → i)
A(i→ j)

= exp(−β (Ei−E j)),

is that we do not know the acceptance probability. This equation only specifies the ratio of
pairs of probabilities. Normally we want an algorithm which is as efficient as possible and
maximizes the number of accepted moves. Moreover, we know that the acceptance proba-
bility has 0 as its smallest value and 1 as its largest. If we assume that the largest possible
acceptance probability is 1, we adjust thereafter the other acceptance probability to this con-
straint.

To understand this better, assume that we have two energies, Ei and E j , with Ei < E j . This
means that the largest acceptance value must be A( j→ i) since we move to a state with lower
energy. It follows from also from the fact that the probability wi is larger than wj . The trick
then is to fix this value to A( j → i) = 1. It means that the other acceptance probability has to
be

A(i→ j) = exp(−β (E j −Ei)).

One possible way to encode this equation reads

A( j → i) =

{
exp(−β (Ei−E j)) Ei−E j > 0

1 else
,

implying that if we move to a state with a lower energy, we always accept this move with
acceptance probability A( j→ i) = 1. If the energy is higher, we need to check this acceptance
probability with the ratio between the probabilities from our PDF. From a practical point of
view, the above ratio is compared with a random number. If the ratio is smaller than a given
random number we accept the move to a higher energy, else we stay in the same state.

Nothing hinders us obviously in choosing another acceptance ratio, like a weighting of the
two energies via

A( j → i) = exp(−1
2

β (Ei−E j)).

However, it is easy to see that such an acceptance ratio woud result in fewer accepted moves.

12.5.1 Brief Summary

The Monte Carlo approach, combined with the theory for Markov chains can be summarized
as follows: A Markov chain Monte Carlo method for the simulation of a distribution w is any
method producing an ergodic Markov chain of events x whose stationary distribution is w.
The Metropolis algorithm can be phrased as

• Generate an initial value x(i).
• Generate a trial value yt with probability T(yt |x(i)). The latter quantity represents the

probability of generating yt given x(i).
• Take a new value

x(i+1) =

{
yt with probability= A(x(i)→ yt)

x(i) with probability= 1−A(x(i)→ yt)

• We have defined the transition (acceptance) probability as
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A(x→ y) = min

{
w(y)T(x|y)
w(x)T(y|x) ,1

}
.

The distribution f is often called the instrumental (we will relate it to the jumping
of a walker) or proposal distribution while A is the Metropolis-Hastings acceptance
probability. When T(y|x) is symmetric it is just called the Metropolis algorithm.

Using the Metropolis algorithm we can in turn set up the general calculational scheme as
shown in Fig. 12.7.

The dynamical equation can be written as

wi(t +1) = ∑
j

Mi j wj(t) (12.16)

with the matrix M given by

Mi j = δi j

[
1−∑

k

Ti→kAi→k

]
+Tj→iA j→i . (12.17)

Summing over i shows that ∑i Mi j = 1, and since ∑k Ti→k = 1, and Ai→k ≤ 1, the elements of the
matrix satisfy Mi j ≥ 0. The matrix M is therefore a stochastic matrix.

The Metropolis method is simply the power method for computing the right eigenvector of
M with the largest magnitude eigenvalue. By construction, the correct probability distribution
is a right eigenvector with eigenvalue 1. Therefore, for the Metropolis method to converge to
this result, one has to show that M has only one eigenvalue with this magnitude, and all other
eigenvalues are smaller.

12.6 Langevin and Fokker-Planck Equations

We end this chapter with a discussion and derivation of the Fokker-Planck and Langevin
equations. These equations will in turn be used in our discussion on advanced Monte Carlo
methods for quantum mechanical systems, see chapter for example chapter 16.

12.6.1 Fokker-Planck Equation

For many physical systems initial distributions of a stochastic variable y tend to an equilibrium
distribution wequilibrium(y), that is w(y, t)→wequilibrium(y) as t→∞. In equilibrium, detailed balance
constrains the transition rates

W(y→ y′)w(y) =W(y′→ y)wequilibrium(y),

where W(y′ → y) is the probability per unit time that the system changes from a state |y〉 ,
characterized by the value y for the stochastic variable Y , to a state |y′〉.

Note that for a system in equilibrium the transition rateW(y′→ y) and the reverseW(y→ y′)
may be very different.

Let us now assume that we have three probability distribution functions for times t0 < t ′< t,
that is w(x0, t0), w(x′, t ′) and w(x, t). We have then
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Fig. 12.7 Chart flow for the Metropolis algorithm.
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w(x, t) =
∫ ∞

−∞
W(x.t|x′.t ′)w(x′, t ′)dx′,

and

w(x, t) =
∫ ∞

−∞
W(x.t|x0.t0)w(x0, t0)dx0,

and

w(x′, t ′) =
∫ ∞

−∞
W(x′.t ′|x0, t0)w(x0, t0)dx0.

We can combine these equations and arrive at the famous Einstein-Smoluchenski-Kolmogorov-
Chapman (ESKC) relation

W(xt|x0t0) =
∫ ∞

−∞
W(x, t|x′, t ′)W(x′, t ′|x0, t0)dx′.

We can replace the spatial dependence with a dependence upon say the velocity (or momen-
tum), that is we have

W(v, t|v0, t0) =
∫ ∞

−∞
W(v, t|v′, t ′)W(v′, t ′|v0, t0)dx′.

We will now derive the Fokker-Planck equation. We start from the ESKC equation

W(x, t|x0, t0) =
∫ ∞

−∞
W(x, t|x′, t ′)W(x′, t ′|x0, t0)dx′.

We define s= t ′− t0, τ = t− t ′ and t− t0 = s+ τ. We have then

W(x,s+ τ|x0) =

∫ ∞

−∞
W(x,τ|x′)W(x′,s|x0)dx′.

Assume now that τ is very small so that we can make an expansion in terms of a small step
xi, with x′ = x− ξ , that is

W(x,s|x0)+
∂W
∂s

τ +O(τ2) =

∫ ∞

−∞
W(x,τ|x− ξ )W(x− ξ ,s|x0)dx′.

We assume that W(x,τ|x− ξ ) takes non-negligible values only when ξ is small. This is just
another way of stating the Master equation!

We say thus that x changes only by a small amount in the time interval τ. This means that
we can make a Taylor expansion in terms of ξ , that is we expand

W(x,τ|x− ξ )W(x− ξ ,s|x0) =
∞

∑
n=0

(−ξ )n

n!
∂ n

∂xn [W(x+ ξ ,τ|x)W(x,s|x0)] .

We can then rewrite the ESKC equation as

∂W
∂s

τ =−W(x,s|x0)+
∞

∑
n=0

(−ξ )n

n!
∂ n

∂xn

[
W(x,s|x0)

∫ ∞

−∞
ξ nW(x+ ξ ,τ|x)dξ

]
.

We have neglected higher powers of τ and have used that for n= 0 we get simply W(x,s|x0)

due to normalization.
We say thus that x changes only by a small amount in the time interval τ. This means that

we can make a Taylor expansion in terms of ξ , that is we expand

W(x,τ|x− ξ )W(x− ξ ,s|x0) =
∞

∑
n=0

(−ξ )n

n!
∂ n

∂xn [W(x+ ξ ,τ|x)W(x,s|x0)] .
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We simplify the above by introducing the moments

Mn =
1
τ

∫ ∞

−∞
ξ nW(x+ ξ ,τ|x)dξ =

〈[∆x(τ)]n〉
τ

,

resulting in
∂W(x,s|x0)

∂s
=

∞

∑
n=1

(−ξ )n

n!
∂ n

∂xn [W(x,s|x0)Mn] .

When τ → 0 we assume that 〈[∆x(τ)]n〉 → 0 more rapidly than τ itself if n > 2. When τ is
much larger than the standard correlation time of system then Mn for n> 2 can normally be
neglected. This means that fluctuations become negligible at large time scales.

If we neglect such terms we can rewrite the ESKC equation as

∂W(x,s|x0)

∂s
=−∂M1W(x,s|x0)

∂x
+

1
2

∂ 2M2W(x,s|x0)

∂x2 .

In a more compact form we have

∂W
∂s

=−∂M1W
∂x

+
1
2

∂ 2M2W
∂x2 ,

which is the Fokker-Planck equation. It is trivial to replace position with velocity (momentum).
The solution to this equation is a Gaussian distribution and can be used to constrain pro-

posed transitions moves, that one can model the transition probabilities T from our discussion
of the Metropolis algorithm.

12.6.2 Langevin Equation

Consider a particle suspended in a liquid. On its path through the liquid it will continuously
collide with the liquid molecules. Because on average the particle will collide more often on
the front side than on the back side, it will experience a systematic force proportional with its
velocity, and directed opposite to its velocity. Besides this systematic force the particle will
experience a stochastic force F(t). The equations of motion then read

dr
dt

= v,

dv
dt

=−ξ v+F,

The last equation is the Langevin equation. The original Langevin equation was meant to
describe Brownian motion. It is a stochastic differential equation used to describe the time
evolution of collective (normally macroscopic) variables that change only slowly with respect
to the microscopic ones. The latter are responsible for the stochastic nature of the Langevin
equation. We can say that we model our ignorance about the microscopic physics in a stochas-
tic term. From the Langevin equation we can in turn derive for example the fluctuation dissi-
pation theorem discussed below. To see, we need some information about the friction constant
from hydrodynamics. From hydrodynamics we know that the friction constant ξ is given by

ξ = 6πηa/m

where η is the viscosity of the solvent and a is the radius of the particle.
Solving the Langevin equation we get
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v(t) = v0e−ξ t +

∫ t

0
dτe−ξ (t−τ)F(τ).

If we want to get some useful information out of this, we have to average over all possible
realizations of F(t), with the initial velocity as a condition. A useful quantity is then

〈v(t) ·v(t)〉v0 = v−ξ2t
0 +2

∫ t

0
dτe−ξ (2t−τ)v0 · 〈F(τ)〉v0

+

∫ t

0
dτ ′

∫ t

0
dτe−ξ (2t−τ−τ ′)〈F(τ) ·F(τ ′)〉v0.

In order to continue we have to make some assumptions about the conditional averages of
the stochastic forces. In view of the chaotic character of the stochastic forces the following
assumptions seem to be appropriate. We assume that

〈F(t)〉= 0,

and
〈F(t) ·F(t ′)〉v0 =Cv0δ (t− t ′).

We omit the subscript v0 when the quantity of interest turns out to be independent of v0. Using
the last three equations we get

〈v(t) ·v(t)〉v0 = v2
0e−2ξ t +

Cv0

2ξ
(1−e−2ξ t).

For large t this should be equal to the well-known result 3kT/m, from which it follows that

〈F(t) ·F(t ′)〉= 6
kT
m

ξ δ (t− t ′).

This result is called the fluctuation-dissipation theorem.
Integrating

v(t) = v0e−ξ t +

∫ t

0
dτe−ξ (t−τ)F(τ),

we get

r(t) = r0+ v0
1
ξ
(1−e−ξ t)+

∫ t

0
dτ
∫ τ

0
τ ′e−ξ (τ−τ ′)F(τ ′),

from which we calculate the mean square displacement

〈(r(t)− r0)
2〉v0 =

v2
0

ξ
(1−e−ξ t)2+

3kT
mξ 2 (2ξ t−3+4e−ξ t−e−2ξ t).

For very large t this becomes

〈(r(t)− r0)
2〉= 6kT

mξ
t

from which we get the Einstein relation

D =
kT
mξ

where we have used 〈(r(t)− r0)
2〉= 6Dt.

The standard approach in for example quantum mechanical diffusion Monte Carlo calcula-
tions, is to use the Langevin equation to propose new moves (for examples new velocities or
positions) since they will depend on the given probability distributions. These new proposed
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states or values are then used to compute the transition probability T, where the latter is the
solution of for example the Fokker-Planck equation.

12.7 Exercises

12.1. Extend the first program discussed in this chapter to a two-dimensional random walk
with probability 1/4 for a move to the right, left, up or down. Compute the variance for both
the x and y directions and the total variance.

12.2. Use the second program to fit the computed probability distribution with a normal
distribution using your calculated values of σ2 and 〈x〉.

12.3. In this exercise the aim is to show that the Metropolis algorithm generates the Boltz-
mann distribution

P(β ) =
e−β E

Z
,

with β = 1/kT being the inverse temperature, E is the energy of the system and Z is the
partition function. The only functions you will need are those to generate random numbers.

We are going to study one single particle in equilibrium with its surroundings, the latter
modelled via a large heat bath with temperature T.

The model used to describe this particle is that of an ideal gas in one dimension and
with velocity −v or v. We are interested in finding P(v)dv, which expresses the probability
for finding the system with a given velocity v∈ [v,v+dv]. The energy for this one-dimensional
system is

E =
1
2

kT =
1
2

v2,

with mass m=1. In order to simulate the Boltzmann distribution, your program should contain
the following ingredients:

• Reads in the temperature T, the number of Monte Carlo cycles, and the initial velocity.
You should also read in the change in velocity δv used in every Monte Carlo step. Let the
temperature have dimension energy.

• Thereafter you choose a maximum velocity given by for example vmax∼ 10
√

T. This should
include all relevant velocities which give a non-zero probability. But you need to check
whether this is true or not.
Then you construct a velocity interval defined by vmax and divide it in small intervals
through vmax/N, with N ∼ 100− 1000. For each of these intervals your task is to find out
how many times a given velocity during the Monte Carlo sampling appears in each specific
interval.

• The number of times a given velocity appears in a specific interval is used to construct a
histogram representing P(v)dv. To achieve this you should construct a vector P[N] which
contains the number of times a given velocity appears in the subinterval v,v+dv.

In order to find the number of velocities appearing in each interval we will employ the
Metropolis algorithm. A pseudocode for this is

for( montecarlo_cycles=1; Max_cycles; montecarlo_cycles++) {

...

// change speed as function of delta v

v_change = (2*ran1(&idum) -1 )* delta_v;

v_new = v_old+v_change;

// energy change

delta_E = 0.5*(v_new*v_new - v_old*v_old) ;
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......

// Metropolis algorithm begins here

if ( ran1(&idum) <= exp(-beta*delta_E) ) {

accept_step = accept_step + 1 ;

v_old = v_new ;

.....

}

// thereafter we must fill in P[N] as a function of

// the new speed

P[?] = ...

// upgrade mean velocity, energy and variance

...

}

1. Make your own algorithm which sets up the histogram P(v)dv, find mean velocity, energy
〈E〉, energy variance Var(E) and the number of accepted steps for a given temperature.
Study the change of the number of accepted moves as a function of δv. Compare the final
energy with the closed form result 〈E〉= kT/2 for one dimension. Find also the closed-form
expressions for the energy variance and the mean velocity and compare your calculations
with these results. Use T = 4 and set the intial velocity to zero, i.e., v0 = 0. Try different
values of δv. Check the final result for the energy as a function of the number of Monte
Carlo cycles.

2. Repeat the calculation in the previous exercise but using now a normal distribution. Does
that improve your results compared with the exact expressions?

3. Make thereafter a plot of log(P(v)) as function of E and see if you get a straight line.
Comment the result.

4. In our analysis under [1) we have not discussed how the system reaches the most likely
state, that is whether equilibrium has been reached or not. Make a plot of the mean ve-
locity, energy, energy variance and the number of accepted steps for a given temperature
as function of the number of Monte Carlo samples. Perform these calculations for several
temperatures, namely T = 0.5, T = 1, T = 2 and T = 10 and comment your results. Can you
find a rough measure for when the most likely state has been reached?

5. The analysis in point [4) is rather rough and obviously user dependent, in the sense that
it is very much up to the user to define when an equilibrium situation has been reached
or not. To improve upon this, compute the so-called time autocorrelation function defined
here as

φ(t) =
1

tmax− t

tmax−t

∑
t′=0

Ē(t ′)Ē(t ′+ t)− 1
tmax− t

tmax−t

∑
t′=0

Ē(t ′)× 1
tmax− t

tmax−t

∑
t′=0

Ē(t ′+ t)

for the mean energy E(̄t) and plot it as function of the number of Monte Carlo steps for the
temperatures in [c). The time t corresponds to a given number of Monte Carlo cycles. Can
you extract an equilibration measure? How does the correlation time behave as function
of temperature? Comment your results. Be careful in choosing values of t, they should not
be too close to tmax. Compute the autocorrelation function for all temperatures listed in [d)
and compare your results with those in [d). Comment your results.

6. In the previous analysis we computed the time autocorrelation function. This quantity can
be related to the covariance of our measurements. To achieve this you need to store the
results of all contributions to the measurements of the mean energy and its variance σ2

E
given by

σ2
E =

1
n2

n

∑
k=1

(Ek− Ē)2+
2
n2 ∑

k<l

(Ek− Ē)(El − Ē)
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Here we assume that n corresponds to the number of Monte Carlo samples in one exper-
iment and that we repeat these experiments a given time. We can assume here that we
repeat these experiments m= n times. The value Ē is the mean energy while Ek,l repre-
sent individual measurements. The first term is the same as the error in the uncorrelated
case. This means that the second term accounts for the error correction due to correlation
between the measurements. For uncorrelated measurements this second term is zero.
Computationally the uncorrelated first term is much easier to treat efficiently than the
second.

Var(E) =
1
n

n

∑
k=1

(Ek−〈E〉)2 =

(
1
n

n

∑
k=1

E2
k

)
−〈E〉2

We just accumulate separately the values E2
k and Ek for every measurement Ek we receive.

The correlation term, though, has to be calculated at the end of the experiment since we
need all the measurements to calculate the cross terms. Therefore, all measurements have
to be stored throughout the experiment.
Let us analyze the problem by splitting up the correlation term into partial sums of the
form:

fd =
1
n

n−d

∑
k=1

(Ek−〈E〉)(Ek+d−〈E〉)

The correlation term of the error can now be rewritten in terms of fd:

2
n ∑

k<l

(Ek−〈E〉)(El −〈E〉) = 2
n−1

∑
d=1

fd

The value of fd reflects the correlation between measurements separated by the distance
d in the samples. Notice that for d = 0, f is just the sample variance, Var(E). If we divide fd
by Var(E), we arrive at the so called autocorrelation function:

κd =
fd

Var(E)

which gives us a useful measure of the correlation pair correlation starting always at 1 for
d = 0.
The sample variance can now be written in terms of the autocorrelation function:

σ2
E =

1
n

Var(E)+
2
n
·Var(E)

n−1

∑
d=1

fd
Var(E)

=

(
1+2

n−1

∑
d=1

κd

)
1
n

Var(E)

=
τ
n
·Var(E) (12.18)

and we see that σ2
E can be expressed in terms the uncorrelated sample variance times a

correction factor τ which accounts for the correlation between measurements. We call this
correction factor the autocorrelation time:

τ = 1+2
n−1

∑
d=1

κd

For a correlation free experiment, τ equals 1. From the point of view of Eq. (12.18) we can
interpret a sequential correlation as an effective reduction of the number of measurements
by a factor τ. The effective number of measurements becomes
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neff =
n
τ

From the previous exercise you needed to store all experiments Ek in order to compute
the time autocorrelation function. You can reuse these data in this exercise and compute
the full variance σ2

E, the covariance, the autocorrelation time τ and the effective number
of measurements neff. It is sufficient to choose only one of the temperatures. Comment
your results. Can you relate the correlation time τ to what you found [5)? What about the
covariance and the time autocorrelation function?

12.4. The aim of this exercise is to simulate financial transactions among financial agents
using Monte Carlo methods. The final goal is to extract a distribution of income as function
of the income m. From Pareto’s work (V. Pareto, 1897) it is known from empirical studies that
the higher end of the distribution of money follows a distribution

wm ∝ m−1−α ,

with α ∈ [1,2]. We will here follow the analysis made by Patriarca et al [70].
Here we will study numerically the relation between the microdynamical relations among

financial agents and the resulting macroscopic money distribution.
We assume we have N agents that exchange money in pairs (i, j). We assume also that all

agents start with the same amount of money m0 > 0. At a given ’time step’, we choose ran-
domly a pair of agents (i, j) and let a transaction take place. This means that agent i’s money
mi changes to m′i and similarly we have mj → m′j . Money is conserved during a transaction,
meaning that

mi +mj = m′i +m′j . (12.19)

The change is done via a random reassignement (a random number) ε, meaning that

m′i = ε(mi +mj),

leading to
m′j = (1− ε)(mi +mj).

The number ε is extracted from a uniform distribution. In this simple model, no agents are left
with a debt, that is m≥ 0. Due to the conservation law above, one can show that the system
relaxes toward an equilibrium state given by a Gibbs distribution

wm = β exp(−βm),

with

β =
1
〈m〉 ,

and 〈m〉= ∑i mi/N = m0, the average money. It means that after equilibrium has been reached
that the majority of agents is left with a small number of money, while the number of richest
agents, those with m larger than a specific value m′, exponentially decreases with m′.

We assume that we have N = 500 agents. In each simulation, we need a sufficiently large
number of transactions, say 107. Our aim is find the final equilibrium distribution wm. In
order to do that we would need several runs of the above simulations, at least 103−104 runs
(experiments).

a) Your task is to first set up an algorithm which simulates the above transactions with an
initial amount m0. The challenge here is to figure out a Monte Carlo simulation based on
the above equations. You will in particular need to make an algorithm which sets up a
histogram as function of m. This histogram contains the number of times a value m is reg-
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istered and represents wm∆m. You will need to set up a value for the interval ∆m (typically
0.01−0.05). That means you need to account for the number of times you register an in-
come in the interval m,m+∆m. The number of times you register this income, represents
the value that enters the histogram. You will also need to find a criterion for when the
equilibrium situation has been reached.

b) Make thereafter a plot of log(wm) as function of m and see if you get a straight line. Com-
ment the result.

c) We can then change our model to allow for a saving criterion, meaning that the agents save
a fraction λ of the money they have before the transaction is made. The final distribution
will then no longer be given by Gibbs distribution. It could also include a taxation on
financial transactions.
The conservation law of Eq. (12.19) holds, but the money to be shared in a transaction
between agent i and agent j is now (1−λ )(mi +mj). This means that we have

m′i = λmi + ε(1−λ )(mi +mj),

and
m′j = λmj +(1− ε)(1−λ )(mi +mj),

which can be written as
m′i = mi + δm

and
m′j = mj − δm,

with
δm= (1−λ )(εmj− (1− ε)mi),

showing how money is conserved during a transaction. Select values of λ = 0.25,0.5 and
λ = 0.9 and try to extract the corresponding equilibrium distributions and compare these
with the Gibbs distribution. Comment your results. If you have time, see if you can extract
a parametrization of the above curves (see Patriarca et al [70])



Chapter 13

Monte Carlo Methods in Statistical Physics

When you are solving a problem, don’t worry. Now, after you have solved the problem, then that’s the
time to worry. Richard Feynman

Abstract The aim of this chapter is to present examples from the physical sciences where
Monte Carlo methods are widely applied. Here we focus on examples from statistical physics
and discuss two of the most studied models, the Ising model and the Potts model for the
interaction among classical spins. These models have been widely used for studies of phase
transitions.

13.1 Introduction and Motivation

Fluctuations play a central role in our understanding of phase transitions. Their behavior
near critical points convey important information about the underlying many-particle inter-
actions. In this chapter we will focus on two widely studied models in statistical physics, the
Ising model and the Potts model for interacting spins. The main focus is on the Ising model.
Both models can exhibit first and second order phase transitions and are perhaps among the
most studied systems in statistical physics with respect to simulations of phase transitions.
The Norwegian-born chemist Lars Onsager developed in 1944 an ingenious mathematical
description of the Ising model [71] meant to simulate a two-dimensional model of a magnet
composed of many small atomic magnets. This work proved later useful in analyzing other
complex systems, such as gases sticking to solid surfaces, and hemoglobin molecules that
absorb oxygen. He got the Nobel prize in chemistry in 1968 for his studies of non-equilibrium
thermodynamics. Many people argue he should have received the Nobel prize in physics as
well for his work on the Ising model. Another model we discuss at the end of this chapter is the
so-called class of Potts models, which exhibits both first and second order type of phase tran-
sitions. Both the Ising model and the Potts model have been used to model phase transitions
in solid state physics, with a particular emphasis on ferromagnetism and antiferromagnetism.

Metals like iron, nickel, cobalt and some of the rare earths (gadolinium, dysprosium) ex-
hibit a unique magnetic behavior which is called ferromagnetism because iron (ferrum in
Latin) is the most common and most dramatic example. Ferromagnetic materials exhibit a
long-range ordering phenomenon at the atomic level which causes the unpaired electron
spins to line up parallel with each other in a region called a domain. The long range order
which creates magnetic domains in ferromagnetic materials arises from a quantum mechani-
cal interaction at the atomic level. This interaction is remarkable in that it locks the magnetic
moments of neighboring atoms into a rigid parallel order over a large number of atoms in
spite of the thermal agitation which tends to randomize any atomic-level order. Sizes of do-
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Fig. 13.1 Example of a cubic lattice with atoms at each corner. Each atom has a finite magnetic moment
which points in a particular direction.
.

mains range from a 0.1 mm to a few mm. When an external magnetic field is applied, the
domains already aligned in the direction of this grow at the expense of their neighbors. For a
given ferromagnetic material the long range order abruptly disappears at a certain temper-
ature which is called the Curie temperature for the material. The Curie temperature of iron
is about 1043 K while metals like cobalt and nickel have a Curie temperature of 1388 K and
627 K, respectively, and some of the rare earth metals like gadolinium and dysprosium have
293 K and 85 K, respectively. We could think of an actual metal as composed of for example a
cubic lattice with atoms at each corner with a resulting magnetic moment pointing in a par-
ticular direction, as portrayed in Fig. 13.1. In many respects, these atomic magnets are like
ordinary magnets and can be thought of in terms of little magnet vectors pointing from south
to north poles. The Ising model provides a simple way of describing how a magnetic material
responds to thermal energy and an external magnetic field. In this model, each domain has
a corresponding spin of north or south. The spins can be thought of as the poles of a bar
magnet. The model assigns a value of +1 or -1 to the spins north and south respectively. The
direction of the spins influences the total potential energy of the system.

Another physical case where the application of the Ising model enjoys considerable success
is the description of antiferromagnetism. This is a type of magnetism where adjacent ions
spontaneously align themselves at relatively low temperatures into opposite, or antiparallel,
arrangements throughout the material so that it exhibits almost no gross external magnetism.
In antiferromagnetic materials, which include certain metals and alloys in addition to some
ionic solids, the magnetism from magnetic atoms or ions oriented in one direction is canceled
out by the set of magnetic atoms or ions that are aligned in the reverse direction.

This spontaneous antiparallel coupling of atomic magnets is disrupted by heating and dis-
appears entirely above a certain temperature, called the Néel temperature, characteristic
of each antiferromagnetic material. (The Néel temperature is named for Louis Néel, French
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physicist, who in 1936 gave one of the first explanations of antiferromagnetism.) Some anti-
ferromagnetic materials have Néel temperatures at, or even several hundred degrees above,
room temperature, but usually these temperatures are lower. The Néel temperature for man-
ganese oxide, for example, is 122 K.

Antiferromagnetic solids exhibit special behaviour in an applied magnetic field depending
upon the temperature. At very low temperatures, the solid exhibits no response to the exter-
nal field, because the antiparallel ordering of atomic magnets is rigidly maintained. At higher
temperatures, some atoms break free of the orderly arrangement and align with the exter-
nal field. This alignment and the weak magnetism it produces in the solid reach their peak
at the Néel temperature. Above this temperature, thermal agitation progressively prevents
alignment of the atoms with the magnetic field, so that the weak magnetism produced in the
solid by the alignment of its atoms continuously decreases as temperature is increased. For
further discussion of magnetic properties and solid state physics, see for example the text of
Ashcroft and Mermin [72].

As mentioned above, spin models like the Ising and Potts models can be used to model
other systems as well, such as gases sticking to solid surfaces, and hemoglobin molecules
that absorb oxygen. We sketch such an application in Fig. 13.2.

Fig. 13.2 The open (white) circles at each lattice point can represent a vacant site, while the black circles
can represent the absorption of an atom on a metal surface.
.

However, before we present the Ising model, we feel it is appropriate to refresh some
important quantities in statistical physics, such as various definitions of statistical ensembles,
their partition functions and relevant variables.

13.2 Review of Statistical Physics

In statistical physics the concept of an ensemble is one of the cornerstones in the definition of
thermodynamical quantities. An ensemble is a collection of microphysics systems from which
we derive expectations values and thermodynamical properties related to experiment. As an
example, the specific heat (which is a measurable quantity in the laboratory) of a system
of infinitely many particles, can be derived from the basic interactions between the micro-
scopic constituents. The latter can span from electrons to atoms and molecules or a system
of classical spins. All these microscopic constituents interact via a well-defined interaction.
We say therefore that statistical physics bridges the gap between the microscopic world and
the macroscopic world. Thermodynamical quantities such as the specific heat or net magne-
tization of a system can all be derived from a microscopic theory.

There are several types of ensembles, with their pertinent expectaction values and poten-
tials. Table 13.1 lists the most used ensembles in statistical physics together with frequently
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arising extensive (depend on the size of the systems such as the number of particles) and
intensive variables (apply to all components of a system), in addition to associated potentials.

Table 13.1 Overview of the most common ensembles and their variables. Here we have define M - to be the
magnetization, D - the electric dipole moment, H - the magnetic field and E - to be the electric field. The last
two replace the pressure as an intensive variable, while the magnetisation and the dipole moment play the
same role as volume, viz they are extensive variables. The invers temperatur β regulates the mean energy
while the chemical potential µ regulates the mean number of particles.

Microcanonical Canonical Grand canonical Pressure canonical

Exchange of heat no yes yes yes
with the environment

Exchange of particles no no yes no
with the environemt

Thermodynamical V,M ,D V,M ,D V,M ,D P,H ,E
parameters E T T T

N N µ N

Potential Entropy Helmholtz PV Gibbs

Energy Internal Internal Internal Enthalpy

13.2.1 Microcanonical Ensemble

The microcanonical ensemble represents an hypothetically isolated system such as a nucleus
which does not exchange energy or particles via the environment. The thermodynamical
quantity of interest is the entropy Swhich is related to the logarithm of the number of pos-
sible microscopic states Ω(E) at a given energy E that the system can access. The relation
is

S= kBlnΩ .

When the system is in its ground state the entropy is zero since there is only one possible
ground state. For excited states, we can have a higher degeneracy than one and thus an
entropy which is larger than zero. We may therefore loosely state that the entropy measures
the degree of order in a system. At low energies, we expect that we have only few states
which are accessible and that the system prefers a specific ordering. At higher energies, more
states become accessible and the entropy increases. The entropy can be used to compute
observables such as the temperature

1
kBT

=

(
∂ logΩ

∂E

)

N,V
,

the pressure
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p
kBT

=

(
∂ logΩ

∂V

)

N,E
,

or the chemical potential.
µ

kBT
=−

(
∂ logΩ

∂N

)

V,E
.

It is very difficult to compute the density of states Ω(E) and thereby the partition function
in the microcanonical ensemble at a given energy E, since this requires the knowledge of all
possible microstates at a given energy. This means that calculations are seldomly done in the
microcanonical ensemble. In addition, since the microcanonical ensemble is an isolated sys-
tem, it is hard to give a physical meaning to a quantity like the microcanonical temperature.

13.2.2 Canonical Ensemble

One of the most used ensembles is the canonical one, which is related to the microcanoni-
cal ensemble via a Legendre transformation. The temperature is an intensive variable in this
ensemble whereas the energy follows as an expectation value. In order to calculate expec-
tation values such as the mean energy 〈E〉 at a given temperature, we need a probability
distribution. It is given by the Boltzmann distribution

Pi(β ) =
e−β Ei

Z

with β = 1/kBT being the inverse temperature, kB is the Boltzmann constant, Ei is the energy
of a microstate i while Z is the partition function for the canonical ensemble defined as

Z =
M

∑
i=1

e−β Ei ,

where the sum extends over all microstates M. The potential of interest in this case is
Helmholtz’ free energy. It relates the expectation value of the energy at a given temperatur
T to the entropy at the same temperature via

F =−kBTlnZ= 〈E〉−TS.

Helmholtz’ free energy expresses the struggle between two important principles in physics,
namely the strive towards an energy minimum and the drive towards higher entropy as the
temperature increases. A higher entropy may be interpreted as a larger degree of disorder.
When equilibrium is reached at a given temperature, we have a balance between these two
principles. The numerical expression is Helmholtz’ free energy. The creation of a macroscopic
magnetic field from a bunch of atom-sized mini-magnets, as shown in Fig. 13.1 results from
a careful balance between these two somewhat opposing principles in physics, order vs. dis-
order.

In the canonical ensemble the entropy is given by

S= kBlnZ+ kBT

(
∂ lnZ
∂T

)

N,V
,

and the pressure by

p= kBT

(
∂ lnZ
∂V

)

N,T
.
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Similarly we can compute the chemical potential as

µ =−kBT

(
∂ lnZ
∂N

)

V,T
.

For a system described by the canonical ensemble, the energy is an expectation value since
we allow energy to be exchanged with the surroundings (a heat bath with temperature T).

This expectation value, the mean energy, can be calculated using

〈E〉= kBT2
(

∂ lnZ
∂T

)

V,N

or using the probability distribution Pi as

〈E〉=
M

∑
i=1

EiPi(β ) =
1
Z

M

∑
i=1

Eie
−β Ei .

The energy is proportional to the first derivative of the potential, Helmholtz’ free energy. The
corresponding variance is defined as

σ2
E = 〈E2〉− 〈E〉2 = 1

Z

M

∑
i=1

E2
i e−β Ei −

(
1
Z

M

∑
i=1

Eie
−β Ei

)2

.

If we divide the latter quantity with kT2 we obtain the specific heat at constant volume

CV =
1

kBT2

(
〈E2〉− 〈E〉2

)
,

which again can be related to the second derivative of Helmholtz’ free energy. Using the same
prescription, we can also evaluate the mean magnetization through

〈M 〉=
M

∑
i

MiPi(β ) =
1
Z

M

∑
i

Mie
−β Ei ,

and the corresponding variance

σ2
M = 〈M 2〉− 〈M 〉2 = 1

Z

M

∑
i=1

M
2
i e−β Ei −

(
1
Z

M

∑
i=1

Mie
−β Ei

)2

.

This quantity defines also the susceptibility χ

χ =
1

kBT

(
〈M 2〉− 〈M 〉2

)
.

13.2.3 Grand Canonical and Pressure Canonical

Two other ensembles which are much used in statistical physics and thermodynamics are
the grand canonical and pressure canonical ensembles. In the first we allow the system (in
contact with a large heat bath) to exchange both heat and particles with the environment.
The potential is, with a partition function Ξ(V,T,µ) with variables V,T and µ ,

pV = kBT lnΞ ,
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and the entropy is given by

S= kBlnΞ + kBT

(
∂ lnΞ
∂T

)

V,µ
,

while the mean number of particles is

〈N〉= kBT

(
∂ lnΞ
∂ µ

)

V,T
.

The pressure is determined as

p= kBT

(
∂ lnΞ
∂V

)

µ,T
.

In the pressure canonical ensemble we employ with Gibbs’ free energy as the potential. It
is related to Helmholtz’ free energy via G= F + pV. The partition function is ∆(N, p,T), with
temperature, pressure and the number of particles as variables. The pressure and volume
term can be replaced by other external potentials, such as an external magnetic field (or a
gravitational field) which performs work on the system. Gibbs’ free energy reads

G=−kBT ln∆ ,

and the entropy is given by

S= kBln∆ + kBT

(
∂ ln∆
∂T

)

p,N
.

We can compute the volume as

V =−kBT

(
∂ ln∆
∂ p

)

N,T
,

and finally the chemical potential

µ =−kBT

(
∂ ln∆
∂N

)

p,T
.

In this chapter we work with the canonical ensemble only.

13.3 Ising Model and Phase Transitions in Magnetic Systems

13.3.1 Theoretical Background

The model we will employ in our studies of phase transitions at finite temperature for mag-
netic systems is the so-called Ising model. In its simplest form the energy is expressed as

E =−J
N

∑
<kl>

sksl −B

N

∑
k

sk,

with sk =±1, N is the total number of spins, J is a coupling constant expressing the strength
of the interaction between neighboring spins and B is an external magnetic field interacting
with the magnetic moment set up by the spins. The symbol < kl > indicates that we sum over
nearest neighbors only. Notice that for J> 0 it is energetically favorable for neighboring spins
to be aligned. This feature leads to, at low enough temperatures, a cooperative phenomenon
called spontaneous magnetization. That is, through interactions between nearest neighbors,
a given magnetic moment can influence the alignment of spins that are separated from the
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given spin by a macroscopic distance. These long range correlations between spins are asso-
ciated with a long-range order in which the lattice has a net magnetization in the absence of
a magnetic field. In our further studies of the Ising model, we will mostly limit the attention
to cases with B = 0 only.

In order to calculate expectation values such as the mean energy 〈E〉 or magnetization 〈M 〉
in statistical physics at a given temperature, we need a probability distribution

Pi(β ) =
e−β Ei

Z

with β = 1/kT being the inverse temperature, k the Boltzmann constant, Ei is the energy of a
state i while Z is the partition function for the canonical ensemble defined as

Z =
M

∑
i=1

e−β Ei ,

where the sum extends over all microstates M. Pi expresses the probability of finding the
system in a given configuration i.

The energy for a specific configuration i is given by

Ei =−J
N

∑
<kl>

sksl .

To better understand what is meant with a configuration, consider first the case of the one-
dimensional Ising model with B = 0. In general, a given configuration of N spins in one di-
mension may look like

↑ ↑ ↑ . . . ↑ ↓ ↑ . . . ↑ ↓
1 2 3 . . . i−1 i i +1 . . . N−1 N

In order to illustrate these features let us further specialize to just two spins.
With two spins, since each spin takes two values only, we have 22 = 4possible arrangements

of the two spins. These four possibilities are

1=↑↑ 2=↑↓ 3=↓↑ 4=↓↓

What is the energy of each of these configurations?
For small systems, the way we treat the ends matters. Two cases are often used.

1. In the first case we employ what is called free ends. This means that there is no contri-
bution from points to the right or left of the endpoints. For the one-dimensional case, the
energy is then written as a sum over a single index

Ei =−J
N−1

∑
j=1

sj sj+1,

If we label the first spin as s1 and the second as s2 we obtain the following expression for
the energy

E =−Js1s2.

The calculation of the energy for the one-dimensional lattice with free ends for one specific
spin-configuration can easily be implemented in the following lines

for ( j=1; j < N; j++) {

energy += spin[j]*spin[j+1];

}
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where the vector spin[] contains the spin value sk = ±1. For the specific state E1, we have
chosen all spins up. The energy of this configuration becomes then

E1 = E↑↑ =−J.

The other configurations give
E2 = E↑↓ =+J,

E3 = E↓↑ =+J,

and
E4 = E↓↓ =−J.

2. We can also choose so-called periodic boundary conditions. This means that the neighbour
to the right of sN is assumed to take the value of s1. Similarly, the neighbour to the left of
s1 takes the value sN. In this case the energy for the one-dimensional lattice reads

Ei =−J
N

∑
j=1

sjsj+1,

and we obtain the following expression for the two-spin case

E =−J(s1s2+ s2s1).

In this case the energy for E1 is different, we obtain namely

E1 = E↑↑ =−2J.

The other cases do also differ and we have

E2 = E↑↓ =+2J,

E3 = E↓↑ =+2J,

and
E4 = E↓↓ =−2J.

If we choose to use periodic boundary conditions we can code the above expression as

jm=N;

for ( j=1; j <=N ; j++) {

energy += spin[j]*spin[jm];

jm = j ;

}

The magnetization is however the same, defined as

Mi =
N

∑
j=1

sj ,

where we sum over all spins for a given configuration i.
Table 13.2 lists the energy and magnetization for both free ends and periodic boundary

conditions.
We can reorganize Table 13.2 according to the number of spins pointing up, as shown

in Table 13.3. It is worth noting that for small dimensions of the lattice, the energy differs
depending on whether we use periodic boundary conditions or free ends. This means also
that the partition functions will be different, as discussed below. In the thermodynamic limit
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Table 13.2 Energy and magnetization for the one-dimensional Ising model with N = 2 spins with free ends
(FE) and periodic boundary conditions (PBC).

State Energy (FE) Energy (PBC) Magnetization
1=↑↑ −J −2J 2
2=↑↓ J 2J 0
3=↓↑ J 2J 0
4=↓↓ −J −2J -2

Table 13.3 Degeneracy, energy and magnetization for the one-dimensional Ising model with N = 2 spins with
free ends (FE) and periodic boundary conditions (PBC).

Number spins up Degeneracy Energy (FE) Energy (PBC) Magnetization
2 1 −J −2J 2
1 2 J 2J 0
0 1 −J −2J -2

we have N→ ∞, and the final results do not depend on the kind of boundary conditions we
choose.

For a one-dimensional lattice with periodic boundary conditions, each spin sees two neigh-
bors. For a two-dimensional lattice each spin sees four neighboring spins. How many neigh-
bors does a spin see in three dimensions?

In a similar way, we could enumerate the number of states for a two-dimensional system
consisting of two spins, i.e., a 2× 2 Ising model on a square lattice with periodic boundary
conditions. In this case we have a total of 24 = 16 states. Some examples of configurations
with their respective energies are listed here

E =−8J
↑ ↑
↑ ↑ E = 0

↑ ↑
↑ ↓ E = 0

↓ ↓
↑ ↓ E =−8J

↓ ↓
↓ ↓

In the Table 13.4 we group these configurations according to their total energy and mag-
netization.

Table 13.4 Energy and magnetization for the two-dimensional Ising model with N = 2×2 spins with periodic
boundary conditions.

Number spins up Degeneracy Energy Magnetization
4 1 −8J 4
3 4 0 2
2 4 0 0
2 2 8J 0
1 4 0 -2
0 1 −8J -4

For the one-dimensional Ising model we can compute rather easily the exact partition
function for a system of N spins. Let us consider first the case with free ends. The energy
reads

E =−J
N−1

∑
j=1

sjsj+1.
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The partition function for N spins is given by

ZN = ∑
s1=±1

. . . ∑
sN=±1

exp(βJ
N−1

∑
j=1

sjsj+1),

and since the last spin occurs only once in the last sum in the exponential, we can single out
the last spin as follows

∑
sN=±1

exp(βJsN−1sN) = 2cosh(βJ).

The partition function consists then of a part from the last spin and one from the remaining
spins resulting in

ZN = ZN−12cosh(βJ).

We can repeat this process and obtain

ZN = (2cosh(βJ))N−2Z2,

with Z2 given by
Z2 = ∑

s1=±1
∑

s2=±1

exp(βJs1s2) = 4cosh(βJ),

resulting in
ZN = 2(2cosh(βJ))N−1.

In the thermodynamical limit where we let N→∞, the way we treat the ends does not matter.
However, since our computations will always be carried out with a limited value of N, we
need to consider other boundary conditions as well. Here we limit the attention to periodic
boundary conditions.

If we use periodic boundary conditions, the partition function is given by

ZN = ∑
s1=±1

. . . ∑
sN=±1

exp(βJ
N

∑
j=1

sjsj+1),

where the sum in the exponential runs from 1 to N since the energy is defined as

E =−J
N

∑
j=1

sjsj+1.

We can then rewrite the partition function as

ZN = ∑
{si=±1}

N

∏
i=1

exp(βJsisi+1),

where the first sum is meant to represent all lattice sites. Introducing the matrix T̂ (the so-
called transfer matrix)

T̂ =

(
eβ J e−β J

e−β J eβ J

)
,

with matrix elements t11 = eβ J, t1−1 = e−β J, t−11 = eβ J and t−1−1 = eβ J we can rewrite the parti-
tion function as

ZN = ∑
{si=±1}

T̂s1s2T̂s2s3 . . . T̂sNs1 = TrT̂N.

The 2×2 matrix T̂ is easily diagonalized with eigenvalues λ1 = 2cosh(βJ) and λ2 = 2sinh(βJ).
Similarly, the matrix T̂N has eigenvalues λ N

1 and λ N
2 and the trace of T̂N is just the sum over
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eigenvalues resulting in a partition function

ZN = λ N
1 +λ N

2 = 2N
(
[cosh(βJ)]N +[sinh(βJ)]N

)
.

In the limit N→∞ the two partition functions with free ends and periodic boundary conditions
agree, see below for a demonstration.

In the development phase of an algorithm and its pertinent code it is always useful to test
the numerics against closed-form results. It is therefore instructive to compute properties
like the internal energy and the specific heat for these two cases and test the results against
those produced by our code. We can then calculate the mean energy with free ends from the
above formula for the partition function using

〈E〉=−∂ lnZ
∂β

=−(N−1)Jtanh(βJ).

Helmholtz’s free energy is given by

F =−kBT lnZN =−NkBT ln(2cosh(βJ)) .

If we take our simple system with just two spins in one-dimension, we see immediately that
the above expression for the partition function is correct. Using the definition of the partition
function we have

Z2 =
2

∑
i=1

e−β Ei = 2e−β J+2eβ J = 4cosh(βJ)

If we take the limit T→ 0 (β → ∞) and set N = 2, we obtain

lim
β→∞
〈E〉=−J

eJβ −e−Jβ

eJβ +e−Jβ =−J,

which is the energy where all spins point in the same direction. At low T, the system tends
towards a state with the highest possible degree of order.

The specific heat in one-dimension with free ends is

CV =
1

kT2

∂ 2

∂β 2 lnZN = (N−1)k

(
βJ

cosh(βJ)

)2

.

Note well that this expression for the specific heat from the one-dimensional Ising model does
not diverge or exhibit discontinuities, as can be seen from Fig. 13.3.

In one dimension we do not have a second order phase transition, although this is predicted
by mean field models [55].

We can repeat this exercise for the case with periodic boundary conditions as well.
Helmholtz’s free energy is in this case

F =−kBT ln(λ N
1 +λ N

2 ) =−kBT

{
Nln(λ1)+ ln

(
1+(

λ2

λ1
)N
)}

,

which in the limit N→ ∞ results in F = −kBTNln(λ1) as in the case with free ends. Since
other thermodynamical quantities are related to derivatives of the free energy, all observables
become identical in the thermodynamic limit.

Hitherto we have limited ourselves to studies of systems with zero external magnetic field,
viz B = 0. We will mostly study systems which exhibit a spontaneous magnitization. It is
however instructive to extend the one-dimensional Ising model to B 6= 0, yielding a partition
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Fig. 13.3 Heat capacity per spin (CV/(N−1)kB as function of inverse temperature β for the one-dimensional
Ising model.

function (with periodic boundary conditions)

ZN = ∑
s1=±1

. . . ∑
sN=±1

exp(β
N

∑
j=1

(Jsjsj+1+
B

2
(sj + sj+1)),

which yields a new transfer matrix with matrix elements t11 = eβ (J+B), t1−1 = e−β J, t−11 = eβ J

and t−1−1 = eβ (J−B) with eigenvalues

λ1 = eβ Jcosh(βJ)+ (e2β Jsinh2(βB)+e−2β J)1/2,

and
λ1 = eβ Jcosh(βJ)− (e2β Jsinh2(βB)+e−2β J)1/2.

The partition function is given by ZN = λ N
1 +λ N

2 and in the thermodynamic limit we obtain the
following free energy

F =−NkBT ln
(

eβ Jcosh(βJ)+ (e2β Jsinh2(βB)+e−2β J)1/2
)
.

It is now useful to compute the expectation value of the magnetisation per spin

〈M /N〉= 1
NZ

M

∑
i

Mie
−β Ei =− 1

N
∂F
∂B

,

resulting in

〈M /N〉= sinh(βB)(
sinh2(βB)+e−2β J)1/2

) .

We see that for B = 0 the magnetisation is zero. This means that for a one-dimensional Ising
model we cannot have a spontaneous magnetization. For the two-dimensional model however,
see the discussion below, the Ising model exhibits both a spontaneous magnetisation and a
specific heat and susceptibility which are discontinuous or even diverge. However, except for
the simplest case such as 2×2 lattice of spins, with the following partition function
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Z = 2e−8Jβ +2e8Jβ +12,

and resulting mean energy

〈E〉=− J
Z

(
16e8Jβ −16e−8Jβ

)
,

it is a highly non-trivial task to find the closed-form expression for ZN in the thermodynamic
limit. The closed-form expression for the Ising model in two dimensions was obtained via a
mathematical tour de force in 1944 by the Norwegian chemist Lars Onsager [71]. The exact
partition function for N spins in two dimensions and with zero magnetic field B is given by

ZN =
[
2cosh(βJ)eI]N ,

with

I =
1

2π

∫ π

0
dφ ln

[
1
2

(
1+(1−κ2sin2φ)1/2

)]
,

and
κ = 2sinh(2βJ)/cosh2(2βJ).

The resulting energy is given by

〈E〉=−Jcoth(2βJ)

[
1+

2
π
(2tanh2(2βJ)−1)K1(q)

]
,

with q= 2sinh(2βJ)/cosh2(2βJ) and the complete elliptic integral of the first kind

K1(q) =
∫ π/2

0

dφ√
1−q2sin2φ

.

Differentiating once more with respect to temperature we obtain the specific heat given by

CV =
4kB

π
(βJcoth(2βJ))2

{
K1(q)−K2(q)− (1− tanh2(2βJ))

[π
2
+(2tanh2(2βJ)−1)K1(q)

]}
,

(13.1)
where

K2(q) =
∫ π/2

0
dφ
√

1−q2sin2φ , (13.2)

is the complete elliptic integral of the second kind. Near the critical temperature TC the
specific heat behaves as

CV ≈−
2
π

(
2J

kBTC

)2

ln

∣∣∣∣1−
T
TC

∣∣∣∣+ const. (13.3)

In theories of critical phenomena one ca show that for temperatures T below a critical
temperature TC, the heat capacity scales as [73]

CV ∼
∣∣∣∣1−

T
TC

∣∣∣∣
−α

,

and Onsager’s result is a special case of this power law behavior. The limiting form of the
function

limα→0
1
α
(Y−α −1) =−lnY,

can be used to infer that the closed-form result is a special case of the power law singularity
with α = 0.

Similar relations applies to other expectation values. An example is the the spontaneous
magnetisation per spin. This quantity is also highly non-trivial to compute. Here we simply



13.4 Phase Transitions and Critical Phenomena 419

limit ourselves to list Onsager’s result

〈M (T)/N〉=
[
1− (1− tanh2(βJ))4

16tanh4(βJ)

]1/8

,

for T < TC. For T > TC the magnetization is zero. From theories of critical phenomena one can
show that the magnetization behaves as T→ TC from below

〈M (T)/N〉 ∼ (TC−T)1/8.

The susceptibility behaves as
χ(T)∼ |TC−T|−7/4.

Before we proceed, we need to say some words about phase transitions and critical phe-
nomena.

13.4 Phase Transitions and Critical Phenomena

A phase transition is marked by abrupt macroscopic changes as external parameters are
changed, such as an increase of temperature. The point where a phase transition takes place
is called a critical point.

We distinguish normally between two types of phase transitions; first-order transitions and
second-order transitions. An important quantity in studies of phase transitions is the so-called
correlation length ξ and various correlations functions like spin-spin correlations. For the
Ising model we shall show below that the correlation length is related to the spin-correlation
function, which again defines the magnetic susceptibility. The spin-correlation function is
nothing but the covariance and expresses the degree of correlation between spins.

The correlation length defines the length scale at which the overall properties of a material
start to differ from its bulk properties. It is the distance over which the fluctuations of the mi-
croscopic degrees of freedom (for example the position of atoms) are significantly correlated
with each other. Usually it is of the order of few interatomic spacings for a solid. The correla-
tion length ξ depends however on external conditions such as pressure and temperature.

First order/discontinuous phase transitions are characterized by two or more states on
either side of the critical point that can coexist at the critical point. As we pass through
the critical point we observe a discontinuous behavior of thermodynamical functions. The
correlation length is normally finite at the critical point. Phenomena such as hysteris occur,
viz. there is a continuation of state below the critical point into one above the critical point.
This continuation is metastable so that the system may take a macroscopically long time to
readjust. A classical example is the melting of ice. It takes a specific amount of time before
all the ice has melted. The temperature remains constant and water and ice can coexist for
a macroscopic time. The energy shows a discontinuity at the critical point, reflecting the fact
that a certain amount of heat is needed in order to melt all the ice

Second order or continuous transitions are different and in general much difficult to un-
derstand and model. The correlation length diverges at the critical point, fluctuations are
correlated over all distance scales, which forces the system to be in a unique critical phase.
The two phases on either side of the critical point become identical. The disappearance of a
spontaneous magnetization is a classical example of a second-order phase transitions. Struc-
tural transitions in solids are other types of second-order phase transitions. Strong correla-
tions make a perturbative treatment impossible. From a theoretical point of view, the way
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out is renormalization group theory [73–79]. Table 13.5 lists some typical system with their
pertinent order parameters.

Table 13.5 Examples of various phase transitions with respective order parameters.

System Transition Order Parameter

Liquid-gas Condensation/evaporation Density difference ∆ρ = ρl iquid−ρgas

Binary liquid mixture/Unmixing Composition difference
Quantum liquid Normal fluid/superfluid < φ >, ψ = wavefunction
Liquid-solid Melting/crystallisation Reciprocal lattice vector

Magnetic solid Ferromagnetic Spontaneous magnetisation M
Antiferromagnetic Sublattice magnetisation M

Dielectric solid Ferroelectric Polarization P
Antiferroelectric Sublattice polarisation P

Using Ehrenfest’s definition of the order of a phase transition we can relate the behavior
around the critical point to various derivatives of the thermodynamical potential. In the
canonical ensemble we are using, the thermodynamical potential is Helmholtz’ free energy

F = 〈E〉−TS=−kT lnZ

meaning lnZ =−F/kT =−Fβ . The energy is given as the first derivative of F

〈E〉=−∂ lnZ
∂β

=
∂ (βF)

∂β
.

and the specific heat is defined via the second derivative of F

CV =− 1
kT2

∂ 2(βF)
∂β 2 .

We can relate observables to various derivatives of the partition function and the free energy.
When a given derivative of the free energy or the partition function is discontinuous or di-
verges (logarithmic divergence for the heat capacity from the Ising model) we talk of a phase
transition of order of the derivative. A first-order phase transition is recognized in a discon-
tinuity of the energy, or the first derivative of F . The Ising model exhibits a second-order
phase transition since the heat capacity diverges. The susceptibility is given by the second
derivative of F with respect to external magnetic field. Both these quantities diverge.

13.4.1 The Ising Model and Phase Transitions

The Ising model in two dimensions with B = 0 undergoes a phase transition of second order.
What it actually means is that below a given critical temperature TC, the Ising model exhibits
a spontaneous magnetization with 〈M 〉 6= 0. Above TC the average magnetization is zero.
The mean magnetization approaches zero at TC with an infinite slope. Such a behavior is an
example of what are called critical phenomena [76,78,80]. A critical phenomenon is normally
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marked by one or more thermodynamical variables which vanish above a critical point. In our
case this is the mean magnetization 〈M 〉 6= 0. Such a parameter is normally called the order
parameter.

Critical phenomena have been extensively studied in physics. One major reason is that
we still do not have a satisfactory understanding of the properties of a system close to a
critical point. Even for the simplest three-dimensional systems we cannot predict exactly the
values of various thermodynamical variables. Simplified theoretical approaches like mean-
field models discussed below, can even predict the wrong physics. Mean-field theory results
in a second-order phase transition for the one-dimensional Ising model, whereas we saw in
the previous section that the one-dimensional Ising model does not predict any spontaneous
magnetization at any finite temperature. The physical reason for this can be understood from
the following simple consideration. Assume that the ground state for an N-spin system in one
dimension is characterized by the following configuration

↑ ↑ ↑ . . . ↑ ↑ ↑ . . . ↑ ↑
1 2 3 . . . i−1 i i +1 . . . N−1 N

which has a total energy −NJ and magnetization N, where we used periodic boundary condi-
tions. If we flip half of the spins we obtain a possible configuration where the first half of the
spins point upwards and the last half points downwards we arrive at the configuration

↑ ↑ ↑ . . . ↑ ↑ ↓ . . . ↓ ↓
1 2 3 . . . N/2−1 N/2 N/2+1 . . . N−1 N

with energy (−N+ 4)J and net magnetization zero. This state is an example of a possible
disordered state with net magnetization zero. The change in energy is however too small to
stabilize the disordered state. There are many other such states with net magnetization zero
with energies slightly larger than the above case. But it serves to demonstrate our point, we
can namely build states at low energies compared with the ordered state with net magne-
tization zero. And the energy difference between the ground state is too small to stabilize
the system. In two dimensions however the excitation energy to a disordered state is much
higher, and this difference can be sufficient to stabilize the system. In fact, the Ising model
exhibits a phase transition to a disordered phase both in two and three dimensions.

For the two-dimensional case, we move from a phase with finite magnetization 〈M 〉 6= 0 to
a paramagnetic phase with 〈M 〉= 0 at a critical temperature TC. At the critical temperature,
quantities like the heat capacity CV and the susceptibility χ are discontinuous or diverge at
the critical point in the thermodynamic limit, i.e., with an infinitely large lattice. This means
that the variance in energy and magnetization are discontinuous or diverge. For a finite lattice
however, the variance will always scale as∼1/

√
M, M being e.g., the number of configurations

which in our case is proportional with L, the number of spins in a the x and y directions. The
total number of spins is N = L×L resulting in a total of M = 2N microstates. Since our lattices
will always be of a finite dimensions, the calculated CV or χ will not exhibit a diverging
behavior. We will however notice a broad maximum in e.g., CV near TC. This maximum, as
discussed below, becomes sharper and sharper as L is increased.

Near TC we can characterize the behavior of many physical quantities by a power law
behavior (below we will illustrate this in a qualitative way using mean-field theory).

We showed in the previous section that the mean magnetization is given by (for tempera-
ture below TC)

〈M (T)〉 ∼ (T−TC)
β ,

where β = 1/8 is a so-called critical exponent. A similar relation applies to the heat capacity

CV(T)∼ |TC−T|−α ,
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and the susceptibility
χ(T)∼ |TC−T|−γ ,

with α = 0 and γ = −7/4. Another important quantity is the correlation length, which is ex-
pected to be of the order of the lattice spacing for T is close to TC. Because the spins become
more and more correlated as T approaches TC, the correlation length increases as we get
closer to the critical temperature. The discontinuous behavior of the correlation ξ near TC is

ξ (T)∼ |TC−T|−ν . (13.4)

A second-order phase transition is characterized by a correlation length which spans the
whole system. The correlation length is typically of the order of some few interatomic dis-
tances. The fact that a system like the Ising model, whose energy is described by the inter-
action between neighboring spins only, can yield correlation lengths of macroscopic size at a
critical point is still a feature which is not properly understood. Stated differently, how can
the spins propagate their correlations so extensively when we approach the critical point, in
particular since the interaction acts only between nearest spins? Below we will compute the
correlation length via the spin-sin correlation function for the one-dimensional Ising model.

In our actual calculations of the two-dimensional Ising model, we are however always lim-
ited to a finite lattice and ξ will be proportional with the size of the lattice at the critical point.
Through finite size scaling relations [73, 76–78] it is possible to relate the behavior at finite
lattices with the results for an infinitely large lattice. The critical temperature scales then as

TC(L)−TC(L = ∞) ∝ aL−1/ν , (13.5)

with a a constant and ν defined in Eq. (13.4). The correlation length for a finite lattice size
can then be shown to be proportional to

ξ (T) ∝ L∼ |TC−T|−ν .

and if we set T = TC one can obtain the following relations for the magnetization, energy and
susceptibility for T ≤ TC

〈M (T)〉 ∼ (T−TC)
β ∝ L−β/ν ,

CV(T)∼ |TC−T|−γ ∝ Lα/ν ,

and
χ(T)∼ |TC−T|−α ∝ Lγ/ν .

13.4.2 Critical Exponents and Phase Transitions from Mean-field

Models

In order to understand the above critical exponents, we will derive some of the above relations
using what is called mean-field theory.

In studies of phase transitions we are interested in minimizing the free energy by varying
the average magnetisation, which is the order parameter for the Ising model. The magnetiza-
tion disappears at TC.

Here we use mean field theory to model the free energy F. In mean field theory the local
magnetisation is a treated as a constant and all effects from fluctuations are neglected. Stated
differently, we reduce a complicated system of many interacting spins to a set of equations
for each spin. Each spin sees now a mean field which is set up by the surrounding spins. We
neglect therefore the role of spin-spin correlations. A way to achieve this is to rewrite the



13.4 Phase Transitions and Critical Phenomena 423

interaction between two spins at sites i and j, respectively, by adding and subtracting the
mean value of the spin 〈S〉, that is

SiSj = (Si−〈S〉+ 〈S〉)(Si−〈S〉+ 〈S〉)≈ 〈S〉2+ 〈S〉(Si−〈S〉)+ 〈S〉(Sj−〈S〉),

where we have ignored terms of the order (Si−〈S〉)(Si−〈S〉). These are the terms which lead
to correlations between neighbouring spins. In mean field theory we ignore correlations.

This means that we can rewrite the Hamiltonian

E =−J
N

∑
<i j>

SkSl −B
N

∑
i

Si,

as
E =−J ∑

<i j>
〈S〉2+ 〈S〉(Si−〈S〉)+ 〈S〉(Sj−〈S〉)−B∑

i
Si,

resulting in
E =−(B+ zJ〈S〉)∑

i
Si + zJ〈S〉2,

with z the number of nearest neighbours for a given site i. We have included the external
magnetic field B for completeness.

We can then define an effective field which all spins see, namely

Beff = (B+ zJ〈S〉).

To obtain the vaue of 〈S〉) we employ again our results from the canonical ensemble. The
partition function reads in this case

Z = e−NzJ〈S〉2/kT (2cosh(Beff/kT))N ,

with a free energy

F =−kT lnZ=−NkTln(2)+NzJ〈S〉2−NkTln(cosh(Beff/kT))

and minimizing F with respect to 〈S〉 we arrive at

〈S〉= tanh(2cosh(Beff/kT)) .

Close to the phase transition we expect 〈S〉 to become small and eventually vanish. We can
then expand F in powers of 〈S〉 as

F =−NkT ln(2)+NzJ〈s〉2−NkT−BN〈s〉+NkT

(
1
2
〈s〉2+ 1

12
〈s〉4+ . . .

)
,

and using 〈M〉 = N〈S〉 we can rewrite Helmholtz free energy as

F = F0−B〈M〉+ 1
2

a〈M〉2+ 1
4

b〈M〉4+ . . .

Let 〈M〉 = m and

F = F0+
1
2

am2+
1
4

bm4+
1
6

cm6

F has a minimum at equilibrium F ′(m) = 0 and F ′′(m)> 0

F ′(m) = 0= m(a+bm2+ cm4),
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and if we assume that m is real we have two solutions

m= 0,

or

m2 =
b
2c

(
−1±

√
1−4ac/b2

)
.

This relation can be used to describe both first and second-order phase transitions. Here
we consider the second case. We assume that b > 0 and let a≪ 1 since we want to study a
perturbation around m= 0. We reach the critical point when a= 0, that is

m2 =
b
2c

(
−1±

√
1−4ac/b2

)
≈−a/b.

We define the temperature dependent function

a(T) = α(T−TC),

with α > 0 and TC being the critical temperature where the magnetization vanishes. If a is
negative we have two solutions

m=±
√
−a/b=±

√
α(TC−T)

b
,

meaning that m evolves continuously to the critical temperature where F = 0 for T ≤ TC

We can now compute the entropy as follows

S=−
(

∂F
∂T

)
.

For T ≥ TC we have m= 0 and

S=−
(

∂F0

∂T

)
,

and for T ≤ TC

S=−
(

∂F0

∂T

)
−α2(TC−T)/2b,

and we see that there is a smooth crossover at TC.
In theories of critical phenomena one has that

CV ∼
∣∣∣∣1−

T
TC

∣∣∣∣
−α

,

and Onsager’s result is a special case of this power law behavior. The limiting form of the
function

limα→0
1
α
(Y−α −1) =− log(Y),

meaning that the closed-form result is a special case of the power law singularity with α = 0.

13.5 The Metropolis Algorithm and the Two-dimensional Ising Model

We switch now back to the Ising model in two dimensions and explore how to write a pro-
gram that will allow us to compute various thermodynamical quantities. The algorithm of
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choice for solving the Ising model is the approach proposed by Metropolis et al. [81] in 1953.
As discussed in chapter 12, new configurations are generated from a previous one using a
transition probability which depends on the energy difference between the initial and final
states.

In our case we have as the Monte Carlo sampling function the probability for finding the
system in a state s given by

Ps =
e−(β Es)

Z
,

with energy Es, β = 1/kT and Z is a normalization constant which defines the partition function
in the canonical ensemble. As discussed above

Z(β ) = ∑
s

e−(β Es)

is difficult to compute since we need all states. In a calculation of the Ising model in two
dimensions, the number of configurations is given by 2N with N = L×L the number of spins
for a lattice of length L. Fortunately, the Metropolis algorithm considers only ratios between
probabilities and we do not need to compute the partition function at all. The algorithm goes
as follows

1. Establish an initial state with energy Eb by positioning yourself at a random configu-
ration in the lattice

2. Change the initial configuration by flipping e.g., one spin only. Compute the energy
of this trial state Et .

3. Calculate ∆E = Et −Eb. The number of values ∆E is limited to five for the Ising model
in two dimensions, see the discussion below.

4. If ∆E ≤ 0 we accept the new configuration, meaning that the energy is lowered and
we are hopefully moving towards the energy minimum at a given temperature. Go to
step 7.

5. If ∆E > 0, calculate w= e−(β ∆E).
6. Compare w with a random number r. If

r ≤ w,

then accept the new configuration, else we keep the old configuration.
7. The next step is to update various expectations values.
8. The steps (2)-(7) are then repeated in order to obtain a sufficently good representation

of states.
9. Each time you sweep through the lattice, i.e., when you have summed over all spins,

constitutes what is called a Monte Carlo cycle. You could think of one such cycle as a
measurement. At the end, you should divide the various expectation values with the
total number of cycles. You can choose whether you wish to divide by the number of
spins or not. If you divide with the number of spins as well, your result for e.g., the
energy is now the energy per spin.

The crucial step is the calculation of the energy difference and the change in magneti-
zation. This part needs to be coded in an as efficient as possible way since the change in
energy is computed many times. In the calculation of the energy difference from one spin
configuration to the other, we will limit the change to the flipping of one spin only. For the
Ising model in two dimensions it means that there will only be a limited set of values for ∆E.
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Actually, there are only five possible values. To see this, select first a random spin position
x,y and assume that this spin and its nearest neighbors are all pointing up. The energy for
this configuration is E = −4J. Now we flip this spin as shown below. The energy of the new
configuration is E = 4J, yielding ∆E = 8J.

E =−4J
↑
↑ ↑ ↑
↑

=⇒ E = 4J
↑
↑ ↓ ↑
↑

The four other possibilities are as follows

E =−2J
↑
↓ ↑ ↑
↑

=⇒ E = 2J
↑
↓ ↓ ↑
↑

with ∆E = 4J,

E = 0
↑
↓ ↑ ↑
↓

=⇒ E = 0
↑
↓ ↓ ↑
↓

with ∆E = 0,

E = 2J
↓
↓ ↑ ↑
↓

=⇒ E =−2J
↓
↓ ↓ ↑
↓

with ∆E =−4J and finally

E = 4J
↓
↓ ↑ ↓
↓

=⇒ E =−4J
↓
↓ ↓ ↓
↓

with ∆E =−8J. This means in turn that we could construct an array which contains all values
of eβ ∆E before doing the Metropolis sampling. Else, we would have to evaluate the exponen-
tial at each Monte Carlo sampling. For the two-dimensional Ising model there are only five
possible values. It is rather easy to convice oneself that for the one-dimensional Ising model
we have only three possible values. The main part of the Ising model program is shown here
(there is also a corresponding Fortran program).

http://folk.uio.no/mhjensen/compphys/programs/chapter13/cpp/ising_2dim.cpp

/*
Program to solve the two-dimensional Ising model

The coupling constant J = 1

Boltzmann's constant = 1, temperature has thus dimension energy

Metropolis sampling is used. Periodic boundary conditions.

*/

#include <iostream>

#include <fstream>

#include <iomanip>

#include "lib.h"

using namespace std;

ofstream ofile;

// inline function for periodic boundary conditions

inline int periodic(int i, int limit, int add) {

return (i+limit+add) % (limit);

}

// Function to read in data from screen

void read_input(int&, int&, double&, double&, double&);

// Function to initialise energy and magnetization

http://folk.uio.no/mhjensen/compphys/programs/chapter13/cpp/ising_2dim.cpp
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void initialize(int, double, int **, double&, double&);

// The metropolis algorithm

void Metropolis(int, long&, int **, double&, double&, double *);

// prints to file the results of the calculations

void output(int, int, double, double *);

// main program

int main(int argc, char* argv[])

{

char *outfilename;

long idum;

int **spin_matrix, n_spins, mcs;

double w[17], average[5], initial_temp, final_temp, E, M, temp_step;

// Read in output file, abort if there are too few command-line arguments

if( argc <= 1 ){

cout << "Bad Usage: " << argv[0] <<

" read also output file on same line" << endl;

exit(1);

}

else{

outfilename=argv[1];

}

ofile.open(outfilename);

// Read in initial values such as size of lattice, temp and cycles

read_input(n_spins, mcs, initial_temp, final_temp, temp_step);

spin_matrix = (int**) matrix(n_spins, n_spins, sizeof(int));

idum = -1; // random starting point

for ( double temp = initial_temp; temp <= final_temp; temp+=temp_step){

// initialise energy and magnetization

E = M = 0.;

// setup array for possible energy changes

for( int de =-8; de <= 8; de++) w[de+8] = 0;

for( int de =-8; de <= 8; de+=4) w[de+8] = exp(-de/temp);

// initialise array for expectation values

for( int i = 0; i < 5; i++) average[i] = 0.;

initialize(n_spins, double temp, spin_matrix, E, M);

// start Monte Carlo computation

for (int cycles = 1; cycles <= mcs; cycles++){

Metropolis(n_spins, idum, spin_matrix, E, M, w);

// update expectation values

average[0] += E; average[1] += E*E;

average[2] += M; average[3] += M*M; average[4] += fabs(M);

}

// print results

output(n_spins, mcs, temp, average);

}

free_matrix((void **) spin_matrix); // free memory

ofile.close(); // close output file

return 0;

}

The array w[17] contains values of ∆E spanning from −8J to 8J and it is precalculated in the
main part for every new temperature. The program takes as input the initial temperature,
final temperature, a temperature step, the number of spins in one direction (we force the
lattice to be a square lattice, meaning that we have the same number of spins in the x and
the y directions) and the number of Monte Carlo cycles. For every Monte Carlo cycle we
run through all spins in the lattice in the function metropolis and flip one spin at the time
and perform the Metropolis test. However, every time we flip a spin we need to compute the
actual energy difference ∆E in order to access the right element of the array which stores
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eβ ∆E. This is easily done in the Ising model since we can exploit the fact that only one spin
is flipped, meaning in turn that all the remaining spins keep their values fixed. The energy
difference between a state E1 and a state E2 with zero external magnetic field is

∆E = E2−E1 = J
N

∑
<kl>

s1
ks1

l − J
N

∑
<kl>

s2
ks2

l ,

which we can rewrite as

∆E =−J
N

∑
<kl>

s2
k(s

2
l − s1

l ),

where the sum now runs only over the nearest neighbors k of the spin Since the spin to be
flipped takes only two values, s1

l =±1 and s2
l =±1, it means that if s1

l = 1, then s2
l = −1 and if

s1
l =−1, then s2

l = 1. The other spins keep their values, meaning that s1
k = s2

k. If s1
l = 1 we must

have s1
l − s2

l = 2, and if s1
l =−1 we must have s1

l − s2
l = −2. From these results we see that the

energy difference can be coded efficiently as

∆E = 2Js1
l

N

∑
<k>

sk, (13.6)

where the sum runs only over the nearest neighbors k of spin l . We can compute the change
in magnetisation by flipping one spin as well. Since only spin l is flipped, all the surround-
ing spins remain unchanged. The difference in magnetisation is therefore only given by the
difference s1

l − s2
l =±2, or in a more compact way as

M2 = M1+2s2
l , (13.7)

where M1 and M2 are the magnetizations before and after the spin flip, respectively. Eqs. (13.6)
and (13.7) are implemented in the function metropolis shown here

void Metropolis(int n_spins, long& idum, int **spin_matrix, double& E, double&M, double *w)

{

// loop over all spins

for(int y =0; y < n_spins; y++) {

for (int x= 0; x < n_spins; x++){

// Find random position

int ix = (int) (ran1(&idum)*(double)n_spins);

int iy = (int) (ran1(&idum)*(double)n_spins);

int deltaE = 2*spin_matrix[iy][ix]*
(spin_matrix[iy][periodic(ix,n_spins,-1)]+

spin_matrix[periodic(iy,n_spins,-1)][ix] +

spin_matrix[iy][periodic(ix,n_spins,1)] +

spin_matrix[periodic(iy,n_spins,1)][ix]);

// Here we perform the Metropolis test

if ( ran1(&idum) <= w[deltaE+8] ) {

spin_matrix[iy][ix] *= -1; // flip one spin and accept new spin config

// update energy and magnetization

M += (double) 2*spin_matrix[iy][ix];

E += (double) deltaE;

}

}

}

} // end of Metropolis sampling over spins

Note that we loop over all spins but that we choose the lattice positions x and y randomly.
If the move is accepted after performing the Metropolis test, we update the energy and the
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magnetisation. The new values are used to update the averages computed in the main func-
tion.

When setting up the values of the spins it can be useful to have a visualization of the lattice,
as shown for the 7×7 lattice of Fig. 13.4.
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Fig. 13.4 Example of a two-dimensional 7× 7 lattice with spins pointing either up or down. The variable
spin_matrix[1][0] takes the value +1 while spin_matrix[0][6] is −1.

Another important function is the function initialize. This function sets up the initial en-
ergy, magnetisation and spin values for the different lattice positions. The latter sets all spins
equal one if the temperature is low, which for the two-dimensional Ising model means prac-
tically temperatures T < 1.5. Else, it keeps the value from the preceeding temperature. The
latter is done in order to get a best possible estimate of the most likely state for the given
temperature.

We have built up a code where we run over a larger temperature span, typically with values
T ∈ [1.0,3.0].

// function to initialise energy, spin matrix and magnetization

void initialize(int n_spins, double temp, int **spin_matrix,

double& E, double& M)

{

// setup spin matrix and intial magnetization

for(int y =0; y < n_spins; y++) {

for (int x= 0; x < n_spins; x++){

if (temp < 1.5) spin_matrix[y][x] = 1; // spin orientation for the ground state

M += (double) spin_matrix[y][x];

}

}

// setup initial energy
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for(int y =0; y < n_spins; y++) {

for (int x= 0; x < n_spins; x++){

E -= (double) spin_matrix[y][x]*
(spin_matrix[periodic(y,n_spins,-1)][x] +

spin_matrix[y][periodic(x,n_spins,-1)]);

}

}

}// end function initialise

In the function output we print the final results, spanning from the mean energy to the sus-
ceptibility. Note that we divide by all spins. All the thermodynamical variables we compute
are so-called extensive ones meaning that they depend linearly on the number of spins. Since
our results will depend on the size of the lattice, we need to divide by the total number of
spins in order to see whether quantities like the energy or the heat capacity stabilise or not
as functions of increasing lattice size. This is

void output(int n_spins, int mcs, double temperature, double *average)

{

double norm = 1/((double) (mcs)); // divided by total number of cycles

double Eaverage = average[0]*norm;

double E2average = average[1]*norm;

double Maverage = average[2]*norm;

double M2average = average[3]*norm;

double Mabsaverage = average[4]*norm;

// all expectation values are per spin, divide by 1/n_spins/n_spins

double Evariance = (E2average- Eaverage*Eaverage)/n_spins/n_spins;

double Mvariance = (M2average - Maverage*Maverage)/n_spins/n_spins;

double M2variance = (M2average - Mabsaverage*Mabsaverage)/n_spins/n_spins;

double Mvariance = (M2average - Mabsaverage*Mabsaverage)/n_spins/n_spins;

ofile << setiosflags(ios::showpoint | ios::uppercase);

ofile << setw(15) << setprecision(8) << temperature;

ofile << setw(15) << setprecision(8) << Eaverage/n_spins/n_spins;

ofile << setw(15) << setprecision(8) << Evariance/temperature/temperature;

// ofile << setw(15) << setprecision(8) << Maverage/n_spins/n_spins;

ofile << setw(15) << setprecision(8) << M2variance/temperature;

ofile << setw(15) << setprecision(8) << Mabsaverage/n_spins/n_spins << endl;

} // end output function

13.5.1 Parallelization of the Ising Model

To parallelize the Ising model, or many Monte Carlo procedures is in general rather simple.
Here we show an example of a modified main program where we let different nodes perform
a given set of Monte Carlo samples. We have fixed the size of the grid to a 40×40 lattice, but
the reading of these variables can easily be done by the master node, either by reading the
variables from the command line or via a user-defined file.

Note that every node has its own seed for the random number generators.

/*
Program to solve the two-dimensional Ising model

with zero external field using MPI

The coupling constant J = 1

Boltzmann's constant = 1, temperature has thus dimension energy

Metropolis sampling is used. Periodic boundary conditions.

The code needs an output file on the command line.

*/

#include "mpi.h"
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#include <cmath>

#include <iostream>

#include <fstream>

#include <iomanip>

#include "lib.h"

using namespace std;

// output file

ofstream ofile;

// inline function for periodic boundary conditions

inline int periodic(int i, int limit, int add) {

return (i+limit+add) % (limit);

}

// Function to initialise energy and magnetization

void initialize(int, int **, double&, double&);

// The metropolis algorithm

void Metropolis(int, long&, int **, double&, double&, double *);

// prints to file the results of the calculations

void output(int, int, double, double *);

// Main program begins here

int main(int argc, char* argv[])

{

char *outfilename;

long idum;

int **spin_matrix, n_spins, mcs, my_rank, numprocs;

double w[17], average[5], total_average[5],

initial_temp, final_temp, E, M, temp_step;

// MPI initializations

MPI_Init (&argc, &argv);

MPI_Comm_size (MPI_COMM_WORLD, &numprocs);

MPI_Comm_rank (MPI_COMM_WORLD, &my_rank);

if (my_rank == 0 && argc <= 1) {

cout << "Bad Usage: " << argv[0] <<

" read output file" << endl;

exit(1);

}

if (my_rank == 0 && argc > 1) {

outfilename=argv[1];

ofile.open(outfilename);

}

n_spins = 40; mcs = 1000000; initial_temp = 2.4; final_temp = 2.7; temp_step =0.1;

/*
Determine number of intervall which are used by all processes

myloop_begin gives the starting point on process my_rank

myloop_end gives the end point for summation on process my_rank

*/

int no_intervalls = mcs/numprocs;

int myloop_begin = my_rank*no_intervalls + 1;

int myloop_end = (my_rank+1)*no_intervalls;

if ( (my_rank == numprocs-1) &&( myloop_end < mcs) ) myloop_end = mcs;

// broadcast to all nodes common variables

MPI_Bcast (&n_spins, 1, MPI_INT, 0, MPI_COMM_WORLD);

MPI_Bcast (&initial_temp, 1, MPI_DOUBLE, 0, MPI_COMM_WORLD);

MPI_Bcast (&final_temp, 1, MPI_DOUBLE, 0, MPI_COMM_WORLD);

MPI_Bcast (&temp_step, 1, MPI_DOUBLE, 0, MPI_COMM_WORLD);



432 13 Monte Carlo Methods in Statistical Physics

// Allocate memory for spin matrix

spin_matrix = (int**) matrix(n_spins, n_spins, sizeof(int));

// every node has its own seed for the random numbers, this is important else

// if one starts with the same seed, one ends with the same random numbers

idum = -1-my_rank; // random starting point

// Start Monte Carlo sampling by looping over T first

for ( double temperature = initial_temp; temperature <= final_temp;

temperature+=temp_step){

// initialise energy and magnetization

E = M = 0.;

// initialise array for expectation values

initialize(n_spins, spin_matrix, E, M);

// setup array for possible energy changes

for( int de =-8; de <= 8; de++) w[de+8] = 0;

for( int de =-8; de <= 8; de+=4) w[de+8] = exp(-de/temperature);

for( int i = 0; i < 5; i++) average[i] = 0.;

for( int i = 0; i < 5; i++) total_average[i] = 0.;

// start Monte Carlo computation

for (int cycles = myloop_begin; cycles <= myloop_end; cycles++){

Metropolis(n_spins, idum, spin_matrix, E, M, w);

// update expectation values for local node

average[0] += E; average[1] += E*E;

average[2] += M; average[3] += M*M; average[4] += fabs(M);

}

// Find total average

for( int i =0; i < 5; i++){

MPI_Reduce(&average[i], &total_average[i], 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);

}

// print results

if ( my_rank == 0) {

output(n_spins, mcs, temperature, total_average);

}

}

free_matrix((void **) spin_matrix); // free memory

ofile.close(); // close output file

// End MPI

MPI_Finalize ();

return 0;

}

13.6 Selected Results for the Ising Model

In Figs. 13.5-13.8 we display selected results from the program discussed in the previous sec-
tion. The results have all been obtained with one million Monte Carlo cycles and the Metropo-
lis algorithm for different two-dimensional lattices. A temperature step of ∆T = 0.1 was used
for all lattices except the 100×100results. For the latter we single out a smaller temperature
region close to the critical temperature and used ∆T = 0.05. Fig. 13.5 shows the energy to
stabilize as function of lattice size. We note that the numerics indicates a smooth and continu-
ous curve for the energy, although there is a larger increase close to the critical temperature
TC ≈ 2.269.

We mentioned previously that the two-dimensional Ising model with zero external magnetic
field exhibits a second-order phase transition and a spontaneous magnetization below TC.
Fig. 13.6 shows the absolute value of the magnetisation as function of the number of spins.
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Fig. 13.5 Average energy per spin as function of the lattice size for the two-dimensional Ising model.

We note that with increasing lattice size we approach a steeper line and the transition from
a smaller magnetisation to a larger one becomes sharper. This is a possible sign of a phase
transition, where we move from a state where all spins (or most of them) align in a specific
direction (high degree of order) to a phase where both spin directions are equally probable
(high degree of disorder) and result in zero net magnetisation. The ordered phase at low
temperatures is called a ferromagnetic phase while the disordered phase is called the param-
agnetic phase, with zero net magnetisation. Since we are plotting the absolute value, our net
magnetisation will always be above zero since we are taking the average of a number which
is never negative.
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Fig. 13.6 Absolute value of the average magnetization per spin as function of the lattice size for the two-
dimensional Ising model.
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The reason we choose to plot the average absolute value instead of the net magnetisation
is that slightly below TC, the net magnetisation may oscillate between negative and positive
values since the system, as function of the number of Monte Carlo cycles is likely to have its
spins pointing up or down. This means that after a given number of cycles, the net spin may
be slightly positive but could then occasionaly jump to a negative value and stay there for
a given number of Monte Carlo cycles. Above the phase transition the net magnetisation is
always zero.

The fact that the system exhibits a spontaneous magnetization (no external field applied)
below TC leads to the definition of the magnetisation as an order parameter. The order param-
eter is a quantity which is zero on one side of a critical temperature and non-zero on the other
side. Since the magnetisation is a continuous quantity at TC, with the closed-form results

[
1− (1− tanh2(βJ))4

16tanh4(βJ)

]1/8

,

for T < TC and 0 for T > TC, our transition is defined as a continuous one or as a second order
phase transition. From Ehrenftest’s definition of a phase transition we have that a second
order or continuous phase transition exhibits second derivatives of Helmholtz’ free energy
(the potential in this case) with respect to e.g., temperature that are discontinuous or diverge
at TC. The specific heat for the two-dimensional Ising model exhibits a power-law behavior
around TC with a logarithmic divergence. In Fig. 13.7 we show the corresponding specific
heat.
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Fig. 13.7 Heat capacity per spin as function of the lattice size for the two-dimensional Ising model.

We see from this figure that as the size of the lattice is increased, the specific heat develops
a sharper and shaper peak centered around the critical temperature. A similar behavior is
seen for the susceptibility as well, with an even sharper peak, as can be seen from Fig. 13.8.
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Fig. 13.8 Susceptibility per spin as function of the lattice size for the two-dimensional Ising model. Note that
we have computed the susceptibility as ξ = (〈M2〉−〈|M|〉2)/kbT.

The Metropolis algorithm is not very efficient close to the critical temperature. Other algo-
rihms such as the heat bath algorithm, the Wolff algorithm and other clustering algorithms,
the Swendsen-Wang algorithm, or the multi-histogram method [82, 83] are much more effi-
cient in simulating properties near the critical temperature. For spin models like the class
of higher-order Potts models discussed in section 13.8, the efficiency of the Metropolis algo-
rithm is simply inadequate. These topics are discussed in depth in the textbooks of Newman
and Barkema [77] and Landau and Binder [78].

13.7 Correlation Functions and Further Analysis of the Ising Model

13.7.1 Thermalization

In the code discussed above we have assumed that one performs a calculation starting with
low temperatures, typically well below TC. For the Ising model this means to start with an
ordered configuration. The final set of configurations that define the established equilibrium
at a given T, will then be dominated by those configurations where most spins are aligned
in one specific direction. For a calculation starting at low T, it makes sense to start with an
initial configuration where all spins have the same value, whereas if we were to perform a
calculation at high T, for example well above TC, it would most likely be more meaningful
to have a randomly assigned value for the spins. In our code example we use the final spin
configuration from a lower temperature to define the initial spin configuration for the next
temperature.

In many other cases we may have a limited knowledge on the suitable initial configurations
at a given T. This means in turn that if we guess wrongly, we may need a certain number of
Monte Carlo cycles before we reach the most likely equilibrium configurations. When equilib-
rium is established, various observable such as the mean energy and magnetization oscillate
around their mean values. A parallel is the particle in the box example discussed in chap-
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ter 11. There we considered a box divided into two equal halves separated by a wall. At the
beginning, time t = 0, there are N particles on the left side. A small hole in the wall is then
opened and one particle can pass through the hole per unit time. After some time the system
reaches its equilibrium state with equally many particles in both halves, N/2. Thereafter, the
mean number of particles oscillates around N/2.

The number of Monte Carlo cycles needed to reach this equilibrium position is referred to
as the thermalization time, or equilibration time teq. We should then discard the contributions
to various expectation values till we have reached equilibrium. How to determine the ther-
malization time can be done in a brute force way, as demonstrated in Figs. 13.9 and 13.10.
In Fig. 13.9 the calculations have been performed with a 40× 40 lattice for a temperature
kBT/J = 2.4, which corresponds to a case close to a disordered system. We compute the abso-
lute value of the magnetization after each sweep over the lattice. Two starting configurations
were used, one with a random orientation of the spins and one with an ordered orienta-
tion, the latter corresponding to the ground state of the system. As expected, a disordered
configuration as start configuration brings us closer to the average value at the given temper-
ature, while more cycles are needed to reach the steady state with an ordered configuration.
Guided by the eye, we could obviously make such plots and discard a given number of sam-
ples. However, such a rough guide hides several interesting features. Before we switch to a
more detailed analysis, let us also study a case where we start with the ’correct’ configuration
for the relevant temperature.
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Fig. 13.9 Absolute value of the mean magnetisation as function of time t. Time is represented by the number
of Monte Carlo cycles. The calculations have been performed with a 40×40 lattice for a temperature kBT/J =
2.4. Two start configurations were used, one with a random orientation of the spins and one with an ordered
orientation, which corresponds to the ground state of the system.

Fig. 13.10 displays the absolute value of the mean magnetisation as function of time t for a
100× 100 lattice for temperatures kBT/J = 1.5 and kBT/J = 2.4. For the lowest temperature,
an ordered start configuration was chosen, while for the temperature close to the critical
temperature, a disordered configuration was used. We notice that for the low temperature
case the system reaches rather quickly the expected value, while for
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Fig. 13.10 Absolute value of the mean magnetisation as function of time t. Time is represented by the number
of Monte Carlo cycles. The calculations were performed with a 100× 100 lattice for temperatures kBT/J =
1.5 and kBT/J = 2.4. For the lowest temperature, an ordered start configuration was chosen, while for the
temperature close to TC, a disordered configuration was used.

the temperature close to kBTC/J≈ 2.269 it takes more time to reach the actual steady state.
It seems thus that the time needed to reach a steady state is longer for temperatures close

to the critical temperature than for temperatures away. In the next subsection we will define
more rigorously the equilibration time teq in terms of the so-called correlation time τ. The
correlation time represents the typical time by which the correlation function discussed in
the next subsection falls off. There are a number of ways to estimate the correlation time τ. It
is normal to set the equilibration time τ = teq. The correlation time is a measure of how long it
takes the system to get from one state to another one that is significantly different from the
first. Normally the equilibration time is longer than the correlation time, mainly because two
states close to the steady state are more similar in structure than a state far from the steady
state.

Here we mention also that one can show, using scaling relations [77], that at the critical
temperature the correlation time τ relates to the lattice size L as

τ ∼ Ld+z,

with d the dimensionality of the system. For the Metropolis algorithm based on a single spin-
flip process, Nightingale and Blöte obtained z= 2.1665± 0.0012 [84]. This is a rather high
value, meaning that our algorithm is not the best choice when studying properties of the
Ising model near TC.

We can understand this behavior by studying the development of the two-dimensional Ising
model as function of temperature. The first figure to the left shows the start of a simulation
of a 40×40 lattice at a high temperature. Black dots stand for spin down or −1 while white
dots represent spin up (+1). As the system cools down, we see in the picture to the right that
it starts developing domains with several spins pointing in one particular direction.
figure=figures/pict4.ps,width=height=6cm figure=figures/pict2.ps,width=height=6cm
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Cooling the system further we observe clusters pervading larger areas of the lattice, as
seen in the next two pictures. The rightmost picture is the one with T close to the criti-
cal temperature. The reason for the large correlation time (and the parameter z) for the
single-spin flip Metropolis algorithm is the development of these large domains or clusters
with all spins pointing in one direction. It is quite difficult for the algorithm to flip over
one of these large domains because it has to do it spin by spin, with each move having
a high probability of being rejected due to the ferromagnetic interaction between spins.
figure=figures/pict1.ps,width=height=6cm figure=figures/pict6.ps,width=height=6cm

Since all spins point in the same direction, the chance of performing the flip

E =−4J
↑
↑ ↑ ↑
↑

=⇒ E = 4J
↑
↑ ↓ ↑
↑

leads to an energy difference of ∆E = 8J. Using the exact critical temperature kBTC/J≈ 2.269,
we obtain a probability exp−(8/2.269) = 0.029429which is rather small. The increase in large
correlation times due to increasing lattices can be diminished by using so-called cluster al-
gorithms, such as that introduced by Ulli Wolff in 1989 [85] and the Swendsen-Wang [86]
algorithm from 1987. The two-dimensional Ising model with the Wolff or Swendsen-Wang
algorithms exhibits a much smaller correlation time, with the variable z= 0.25± 001. Here,
instead of flipping a single spin, one flips an entire cluster of spins pointing in the same
direction.

13.7.2 Time-correlation Function

The so-called time-displacement autocorrelation φ(t) for the magnetization is given by1

φ(t) =
∫

dt′
[
M (t ′)−〈M 〉

][
M (t ′+ t)−〈M 〉

]
,

which can be rewritten as

φ(t) =
∫

dt′
[
M (t ′)M (t ′+ t)−〈M 〉2

]
,

where 〈M 〉 is the average value of the magnetization and M (t) its instantaneous value. We
can discretize this function as follows, where we used our set of computed values M (t) for a
set of discretized times (our Monte Carlo cycles corresponding to a sweep over the lattice)

φ(t) =
1

tmax− t

tmax−t

∑
t′=0

M (t ′)M (t ′+ t)− 1
tmax− t

tmax−t

∑
t′=0

M (t ′)× 1
tmax− t

tmax−t

∑
t′=0

M (t ′+ t). (13.8)

One should be careful with times close to tmax, the upper limit of the sums becomes small and
we end up integrating over a rather small time interval. This means that the statistical error
in φ(t) due to the random nature of the fluctuations in M (t) can become large. Note also that
we could replace the magnetization with the mean energy, or any other expectation values of
interest.

The time-correlation function for the magnetization gives a measure of the correlation be-
tween the magnetization at a time t ′ and a time t ′+ t. If we multiply the magnetizations at
these two different times, we will get a positive contribution if the magnetizations are fluc-

1 We follow closely chapter 3 of Ref. [77].
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tuating in the same direction, or a negative value if they fluctuate in the opposite direction.
If we then integrate over time, or use the discretized version of Eq. (13.8), the time corre-
lation function φ(t) should take a non-zero value if the fluctuations are correlated, else it
should gradually go to zero. For times a long way apart the magnetizations are most likely
uncorrelated and φ(t) should be zero. Fig. 13.11 exhibits the time-correlation function for the
magnetization for the same lattice and temperatures discussed in Fig. 13.10.
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Fig. 13.11 Time-autocorrelation function with time t as number of Monte Carlo cycles. It has been normalized
with φ (0). The calculations have been performed for a 100×100 lattice at kBT/J = 2.4 with a disordered state
as starting point and at kBT/J = 1.5 with an ordered state as starting point.

We notice that the time needed before φ(t) reaches zero is t ∼ 300 for a temperature
kBT/J = 2.4. This time is close to the result we found in Fig. 13.10. Similarly, for kBT/J = 1.5
the correlation function reaches zero quickly, in good agreement again with the results of
Fig. 13.10. The time-scale, if we can define one, for which the correlation function falls off
should in principle give us a measure of the correlation time τ of the simulation.

We can derive the correlation time by observing that our Metropolis algorithm is based on
a random walk in the space of all possible spin configurations. We recall from chapter 12 that
our probability distribution function ŵ(t) after a given number of time steps t could be written
as

ŵ(t) = Ŵtŵ(0),

with ŵ(0) the distribution at t = 0 and Ŵ representing the transition probability matrix. We
can always expand ŵ(0) in terms of the right eigenvectors of v̂ of Ŵ as

ŵ(0) = ∑
i

αi v̂i ,

resulting in
ŵ(t) = Ŵtŵ(0) = Ŵt ∑

i
αi v̂i = ∑

i
λ t

i αi v̂i ,
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with λi the ith eigenvalue corresponding to the eigenvector v̂i . If we assume that λ0 is the
largest eigenvector we see that in the limit t → ∞, ŵ(t) becomes proportional to the corre-
sponding eigenvector v̂0. This is our steady state or final distribution.

We can relate this property to an observable like the mean magnetization. With the prob-
abilty ŵ(t) (which in our case is the Boltzmann distribution) we can write the mean magneti-
zation as

〈M (t)〉= ∑
µ

ŵ(t)µMµ ,

or as the scalar of a vector product

〈M (t)〉= ŵ(t)m,

with m being the vector whose elements are the values of Mµ in its various microstates µ .
We rewrite this relation as

〈M (t)〉= ŵ(t)m = ∑
i

λ t
i αi v̂imi .

If we define mi = v̂imi as the expectation value of M in the ith eigenstate we can rewrite the
last equation as

〈M (t)〉=∑
i

λ t
i αimi .

Since we have that in the limit t→∞ the mean magnetization is dominated by the the largest
eigenvalue λ0, we can rewrite the last equation as

〈M (t)〉= 〈M (∞)〉+∑
i 6=0

λ t
i αimi .

We define the quantity

τi =−
1

logλi
,

and rewrite the last expectation value as

〈M (t)〉= 〈M (∞)〉+∑
i 6=0

αimie
−t/τi . (13.9)

The quantities τi are the correlation times for the system. They control also the auto-
correlation function discussed above. The longest correlation time is obviously given by the
second largest eigenvalue τ1, which normally defines the correlation time discussed above.
For large times, this is the only correlation time that survives. If higher eigenvalues of the
transition matrix are well separated from λ1 and we simulate long enough, τ1 may well define
the correlation time. In other cases we may not be able to extract a reliable result for τ1.
Coming back to the time correlation function φ(t) we can present a more general definition in
terms of the mean magnetizations 〈M (t)〉. Recalling that the mean value is equal to 〈M (∞)〉
we arrive at the expectation values

φ(t) = 〈M (0)−M (∞)〉〈M (t)−M (∞)〉,

and using Eq. (13.9) we arrive at

φ(t) = ∑
i, j 6=0

miαimjα j e
−t/τi ,

which is appropriate for all times.
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13.8 The Potts’ model

The Potts model has been, in addition to the Ising model, widely used in studies of phase
transitions in statistical physics. The so-called two-dimensional q-state Potts model has an
energy given by

E =−J
N

∑
<kl>

δsl ,sk,

where the spin sk at lattice position k can take the values 1,2, . . . ,q. The Kronecker delta
function δsl ,sk equals unity if the spins are equal and is zero otherwise. The variable N is the
total number of spins.

For q= 2 the Potts model corresponds to the Ising model. To see that we can rewrite the
last equation as

E =−J
2

N

∑
<kl>

2(δsl ,sk−
1
2
)−

N

∑
<kl>

J
2
.

Now, 2(δsl ,sk− 1
2) is +1 when sl = sk and −1 when they are different. This model is thus equiv-

alent to the Ising model except a trivial difference in the energy minimum given by a an
additional constant and a factor J→ J/2. One of the many applications of the Potts model is
to helium absorbed on the surface of graphite.

For references on the Potts Models see Refs. [87–90]
Compared with the two-dimensional Ising model, the Potts model can take only four possi-

ble values for ∆E, as shown in the following part of code

void Energy(double T,double *Boltzmann){

Boltzmann[0] = exp(-J/T) ;

Boltzmann[1] = exp(-2*J/T);

Boltzmann[2] = exp(-3*J/T);

Boltzmann[3] = exp(-4*J/T);

}//Energy

However, when we run the Potts model we must choose the new value of q randomly. The
following functions encodes the Metropolis algorithm for the Potts model.

void Metropolis(int q,double *Boltzmann,int **Spin,long& seed,double& E){

int SpinFlip, LocalEnergy0, LocalEnergy, x, y, dE;

for(int i = 0; i < N; i++){

for(int j = 0; j < N; j++){

x = (int) (ran1(&seed)*N);

y = (int) (ran1(&seed)*N);

LocalEnergy0 = 0;

LocalEnergy = 0;

dE = 0;

if(Spin[x][y] == Spin[x][periodic(y,N,-1)])

LocalEnergy0 --;

if(Spin[x][y] == Spin[periodic(x,N,-1)][y])

LocalEnergy0 --;

if(Spin[x][y] == Spin[x][periodic(y,N,1)])

LocalEnergy0 --;

if(Spin[x][y] == Spin[periodic(x,N,1)][y])

LocalEnergy0 --;

do{

SpinFlip = (int)(ran1(&seed)*(q)+1);

}while(SpinFlip == Spin[x][y]);

if(SpinFlip == Spin[x][periodic(y,N,-1)])
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LocalEnergy --;

if(SpinFlip == Spin[periodic(x,N,-1)][y])

LocalEnergy --;

if(SpinFlip == Spin[x][periodic(y,N,1)])

LocalEnergy --;

if(SpinFlip == Spin[periodic(x,N,1)][y])

LocalEnergy --;

dE = LocalEnergy - LocalEnergy0;

if(dE<=0){

Spin[x][y] = SpinFlip;

E += J*dE;

}

else if(ran1(&seed)<Boltzmann[dE-1]){

Spin[x][y] = SpinFlip;

E += J*dE;

In the calculation of the energy difference from one spin configuration to the other, we
have for the q= 2 Potts two possible values only. When we change one of the values such as
flipping a spin we start with an energy E = −4J. Now we flip this spin as shown below. The
energy of the new configuration is E = 0J, yielding ∆E = 4J.

E =−4J
↑
↑ ↑ ↑
↑

=⇒ E = 4J
↑
↑ ↓ ↑
↑

However, when q becomes large the standard Metropolis algorithm becomes inefficient.
Assume that q= 100. At high T the acceptance probability is close to 1 and our algorithm is
efficient.

When we cool down the system T → TC, more and more ’spins’ will take the same value
and we build up cluster/domains with equally valued ’spins’. If the spins are aligned with its
neigbours it has lower energy and thereby larger weight e−β E.

The problem comes when q is large. If our value is one of the other 96 values, we need on
average 100/4= 25 steps to find a desired state. This can result in a very long time to find
state with lower energy.

If we start at low temperatures, there is an extra cost to excite, leading to smaller accep-
tance probability. We can easily end up in situation where we have almost 96 out 100 moves
rejected. This means that we need a better algorithm. Such improvements are discussed in
the chapter on advanced statistical physics problems (not available in this version).

13.9 Exercises

13.1. Convince yourself that the values listed in Table 13.4 are correct.

13.2. Calculate the internal energy and heat capacity of the one-dimensional Ising model
using periodic boundary conditions and compare the results with those for free ends in the
limit N→ ∞.

13.3. In this project we will use the Metropolis algorithm to generate states according to the
Boltzmann distribution. Each new configuration is given by the change of only one spin at the
time, that is sk→−sk. Use periodic boundary conditions and set the magnetic field B = 0.

1. Write a program which simulates the one-dimensional Ising model. Choose J > 0, the num-
ber of spins N = 20, temperature T = 3 and the number of Monte Carlo samples mcs= 100.
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Let the initial configuration consist of all spins pointing up, i.e., sk = 1. Compute the mean
energy and magnetization for each cycle and find the number of cycles needed where the
fluctuation of these variables is negligible. What kind of criterium would you use in order
to determine when the fluctuations are negligible?
Change thereafter the initial condition by letting the spins take random values, either−1 or
1. Compute again the mean energy and magnetization for each cycle and find the number
of cycles needed where the fluctuation of these variables is negligible.
Explain your results.

2. Let mcs≥ 1000 and compute 〈E〉, 〈E2〉 and CV as functions of T for 0.1≤ T ≤ 5. Plot the
results and compare with the exact ones for periodic boundary conditions.

3. Using the Metropolis sampling method you should now find the number of accepted config-
urations as function of the total number of Monte Carlo samplings. How does the number
of accepted configurations behave as function of temperature T? Explain the results.

4. Compute thereafter the probability P(E) for a system with N = 50 at T = 1. Choose mcs≥
1000and plot P(E) as function of E. Count the number of times a specific energy appears
and build thereafter up a histogram. What does the histogram mean?

13.4. Here we will simulate the two-dimensional Ising model.

1. Assume that the number of spins in the x and y directions are two, viz L = 2. Find the
closed-form expression for the partition function and the corresponding mean values for
E, M , the capacity CV and the suceptibility χ as function of T using periodic boundary
conditions.

2. Write your own code for the two-dimensional Ising model with periodic boundary condi-
tions and zero external field B. Set L = 2 and compare your numerical results with the
closed-form ones from the previous exercise. using T = 0.5 and T = 2.5. How many Monte
Carlo cycles do you need before you reach the exact values with an unceertainty less
than 1%? What are most likely starting configurations for the spins. Try both an ordered
arrangement of the spins and a randomly assigned orientations for both temperature. Anal-
yse the mean energy and magnetisation as functions of the number of Monte Carlo cycles
and estimate how many thermalization cycles are needed.

3. We will now study the behavior of the Ising model in two dimensions close to the critical
temperature as a function of the lattice size L×L, with L the number of spins in the x and y
directions. Calculate the expectation values for 〈E〉 and 〈M 〉, the specific heat CV and the
susceptibility χ as functions of T for L = 10, L = 20, L = 40 and L = 80 for T ∈ [2.0,2.4] with
a step in temperature ∆T = 0.05. Plot 〈E〉, 〈M 〉, CV and χ as functions of T. Can you see an
indication of a phase transition?

4. Use Eq. (13.5) and the exact result ν = 1 in order to estimate TC in the thermodynamic limit
L→ ∞ using your simulations with L = 10, L = 20, L = 40 and L = 80.

5. In the remaining part we will use the exact result kTC/J = 2/ln(1+
√

2) ≈ 2.269and ν = 1.
Determine the numerical values of CV , χ and M at the exact value T = TC for L = 10, L = 20,
L = 40and L = 80. Plot log10 M and χ som funksjon av log10 L and use the scaling relations
in order to determine the constants β and γ. Are your log-log plots close to straight lines?
The exact values are β = 1/8 and γ = 7/4.

6. Make a log-log plot using the results for CV as function of L for your computations at the
exact critical temperature. The specific heat exhibits a logarithmic divergence with α = 0,
see Eqs. (13.1) and (13.3). Do your results agree with this behavior? Make also a plot of
the specific heat computed at the critical temperature for the given lattice.
The exact specific heats behaves as

CV ≈−
2
π

(
2J

kBTC

)2

ln

∣∣∣∣1−
T
TC

∣∣∣∣+ const.
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Comment your results.

13.5. The Potts model has been, in addition to the Ising model, widely used in studies of
phase transitions in statistical physics. The so-called two-dimensional q-state Potts model has
an energy given by

E =−J
N

∑
<kl>

δsl ,sk,

where the spin sk at lattice position k can take the values 1,2, . . . ,q. The Kroneckr delta func-
tion δsl ,sk equals unity if the spins are equal and is zero otherwise. N is the total number of
spins. For q= 2 the Potts model corresponds to the Ising model. To see that we can rewrite
the last equation as

E =−J
2

N

∑
<kl>

2(δsl ,sk−
1
2
)−

N

∑
<kl>

J
2
.

Now, 2(δsl ,sk− 1
2) is +1 when sl = sk and −1 when they are different. This model is thus equiv-

alent to the Ising model except a trivial difference in the energy minimum given by a an
additional constant and a factor J→ J/2. One of the many applications of the Potts model is
to helium absorbed on the surface of graphite.

The Potts model exhibits a second order phase transition for low values of q and a first order
transition for larger values of q. Using Eherenfest’s definition of a phase transition, a second
order phase transition has second derivatives of the free energy that are discontinuous or
diverge (the heat capacity and susceptibility in our case) while a first order transition has first
derivatives like the mean energy that are discontinuous or diverge. Since the calculations are
done with a finite lattice it is always difficult to find the order of the phase transitions. In
this project we will limit ourselves to find the temperature region where a phase transition
occurs and see if the numerics allows us to extract enough information about the order of the
transition.

1. Write a program which simulates the q = 2 Potts model for two-dimensional lattices with
10× 10, 40× 40 and 80× 80 spins and compute the average energy and specific heat. Es-
tablish an appropriate temperature range for where you see a sudden change in the heat
capacity and susceptibility. Make the analysis first for few Monte Carlo cycles and smaller
lattices in order to narrow down the region of interest. To get appropriate statistics after-
wards you should allow for at least 105 Monte Carlo cycles. In setting up this code you need
to find an efficient way to simulate the energy differences between different microstates.
In doing this you need also to find all possible values of ∆E.

2. Compare these results with those obtained with the two-dimensional Ising model. The
exact critical temperature for the Ising model is TC = 2.269. Here you can eventually use
the abovementioned program from the lectures or write your own code for the Ising model.
Tip when comparing results with the Ising model: remove the constant term. The first step
is thus to check that your algorithm for the Potts model gives the same results as the ising
model. Note that critical temperature for the q= 2 Potts model is half of that for the Ising
model.

3. Extend the calculations to the Potts model with q = 3,6 and q = 10. Make a table of the
possible values of ∆E for each value of q. Establish first the location of the peak in the
specific heat and study the behavior of the mean energy and magnetization as functions of
q. Do you see a noteworthy change in behavior from the q= 2 case? For larger q values you
may need lattices of at least 50×50 in size.
For q= 3 and higher you can then proceed as follows:

• Do a calculation with a small lattice first over a large temperature region. Use typical
temperature steps of 0.1.
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• Establish a small region where you see the heat capacity and the susceptibility start to
increase.

• Decrease the temperature step in this region and perform calculations for larger lattices
as well.

For q= 6 and q= 10we have a first order phase transition, the energy shows a discontinuity
at the critical temperature.

To compute the magnetisation in this case can lead to some preliminary conceptual prob-
lems. For the q= 2 case we can always assign the values of −1 and +1 to the spins. We would
then get the same magnetisation as we had with the two-dimensional Ising model. However,
we could also assign the value of 0 and 1 to the spins. A simulation could then start with all
spins equal 0 at low temperatures. This is then the ordered state. Increasing the tempera-
ture and crossing the region where we have the phase transition, both spins value should be
equally possible. This means half of the spins take the value 0 and the other half take the
value 1, yielding a final magnetisation per spin of 1/2. The important point is that we see
the change in magnetisation when we cross the critical temperature. For higher q values, for
example q = 3 we could choose something similar to the Ising model. The spins could take
the values −1,0,1. We would again start with an ordered state and let temperature increase.
Above TC all values are equally possible resulting again in a magnetisation equal zero. For
the values 0,1,2 the situation would be different. Above TC, one third has value 0, another
third takes the value 1 and the last third is 2, resulting in a net magnetisation per spin equal
0×1/3+1×1/3+2×1/3= 1.





Chapter 14

Quantum Monte Carlo Methods

If, in some cataclysm, all scientific knowledge were to be destroyed, and only one sentence passed on
to the next generation of creatures, what statement would contain the most information in the fewest
words? I believe it is the atomic hypothesis (or atomic fact, or whatever you wish to call it) that all
things are made of atoms, little particles that move around in perpetual motion, attracting each other
when they are a little distance apart, but repelling upon being squeezed into one another. In that one
sentence you will see an enormous amount of information about the world, if just a little imagination
and thinking are applied. Richard Feynman, The Laws of Thermodynamics.

Abstract The aim of this chapter is to present examples of applications of Monte Carlo meth-
ods in studies of simple quantummechanical systems. We study systems such as the harmonic
oscillator, the hydrogen atom, the hydrogen molecule and the helium atom. Systems with
many interacting fermions and bosons such as liquid 4He and Bose Einstein condensation of
atoms are discussed in chapters 16 and 17.

14.1 Introduction

Most quantum mechanical problems of interest in for example atomic, molecular, nuclear and
solid state physics consist of a large number of interacting electrons and ions or nucleons.
The total number of particles N is usually sufficiently large that an exact solution cannot be
found. In quantum mechanics we can express the expectation value of a given operator Ô for
a system of N particles as

〈Ô〉=
∫

dR1dR2 . . .dRNΨ∗(R1,R2, . . . ,RN)Ô(R1,R2, . . . ,RN)Ψ(R1,R2, . . . ,RN)∫
dR1dR2 . . .dRNΨ ∗(R1,R2, . . . ,RN)Ψ (R1,R2, . . . ,RN)

, (14.1)

where Ψ(R1,R2, . . . ,RN) is the wave function describing a many-body system. Although we
have omitted the time dependence in this equation, it is an in general intractable problem.
As an example from the nuclear many-body problem, we can write Schrödinger’s equation as
a differential equation with the energy operator Ĥ (the so-called Hamiltonian) acting on the
wave function as

ĤΨ (r1, .., rA,α1, ..,αA) = EΨ(r1, .., rA,α1, ..,αA)

where
r1, .., rA,

are the coordinates and
α1, ..,αA,

447
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are sets of relevant quantum numbers such as spin and isospin for a system of A nucleons
(A= N+Z, N being the number of neutrons and Z the number of protons). There are

2A×
(

A
Z

)

coupled second-order differential equations in 3A dimensions. For a nucleus like 16O, with
eight protons and eight neutrons this number is 8.4×108. This is a truely challenging many-
body problem.

Equation (14.1) is a multidimensional integral. As such, Monte Carlo methods are ideal
for obtaining expectation values of quantum mechanical operators. Our problem is that we
do not know the exact wavefunction Ψ (r1, .., rA,α1, ..,αN). We can circumvent this problem
by introducing a function which depends on selected variational parameters. This function
should capture essential features of the system under consideration. With such a trial wave
function we can then attempt to perform a variational calculation of various observables,
using Monte Carlo methods for solving Eq. (14.1).

The present chapter aims therefore at giving you an overview of the variational Monte
Carlo approach to quantum mechanics. We limit the attention to the simple Metropolis al-
gorithm, without the inclusion of importance sampling. Importance sampling and diffusion
Monte Carlo methods are discussed in chapters 16 and 17.

However, before we proceed we need to recapitulate some of the postulates of quantum
mechanics. This is done in the next section. The remaining sections deal with mathemati-
cal and computational aspects of the variational Monte Carlo methods, with examples and
applications from electronic systems with few electrons.

14.2 Postulates of Quantum Mechanics

14.2.1 Mathematical Properties of the Wave Functions

Schrödinger’s equation for a one-dimensional onebody problem reads

− h̄2

2m
∇2Ψ (x, t)+V(x, t)Ψ(x, t) = ıh̄

∂Ψ(x, t)
∂ t

,

where V(x, t) is a potential acting on the particle. The first term is the kinetic energy. The so-
lution to this partial differential equation is the wave functionΨ(x, t). The wave function itself
is not an observable (or physical quantity) but it serves to define the quantum mechanical
probability, which in turn can be used to compute expectation values of selected operators,
such as the kinetic energy or the total energy itself. The quantum mechanical probability
P(x, t)dx is defined as1

P(x, t)dx=Ψ(x, t)∗Ψ(x, t)dx,

representing the probability of finding the system in a region between x and x+dx. It is, as
opposed to the wave function, always real, which can be seen from the following definition of
the wave function, which has real and imaginary parts,

Ψ (x, t) = R(x, t)+ ıI(x, t),

1 This is Max Born’s postulate on how to interpret the wave function resulting from the solution of
Schrödinger’s equation. It is also the commonly accepted and operational interpretation.
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yielding
Ψ(x, t)∗Ψ (x, t) = (R− ıI)(R+ ıI) = R2+ I2.

The variational Monte Carlo approach uses actually this definition of the probability, allowing
us thereby to deal with real quantities only. As a small digression, if we perform a rotation
of time into the complex plane, using τ = it/h̄, the time-dependent Schrödinger equation be-
comes

∂Ψ(x,τ)
∂τ

=
h̄2

2m
∂ 2Ψ(x,τ)

∂x2 −V(x,τ)Ψ (x,τ).

With V = 0 we have a diffusion equation in complex time with diffusion constant

D =
h̄2

2m
.

This is the starting point for the DiffusionMonte Carlo method discussed in chapter 17. In that
case it is the wave function itself, given by the distribution of random walkers, that defines
the probability. The latter leads to conceptual problems when we have anti-symmetric wave
functions, as is the case for particles with spin being a multiplum of 1/2. Examples of such
particles are various leptons such as electrons, muons and various neutrinos, baryons like
protons and neutrons and quarks such as the up and down quarks.

The Born interpretation constrains the wave function to belong to the class of functions in
L2. Some of the selected conditions which Ψ has to satisfy are

1. Normalization ∫ ∞

−∞
P(x, t)dx=

∫ ∞

−∞
Ψ(x, t)∗Ψ (x, t)dx= 1,

meaning that ∫ ∞

−∞
Ψ(x, t)∗Ψ(x, t)dx< ∞.

2. Ψ(x, t) and ∂Ψ (x, t)/∂x must be finite
3. Ψ(x, t) and ∂Ψ (x, t)/∂x must be continuous.
4. Ψ(x, t) and ∂Ψ (x, t)/∂x must be single valued.

14.2.2 Important Postulates

We list here some of the postulates that we will use in our discussion, see for example [91]
for further discussions.

14.2.2.1 Postulate I

Any physical quantity A(r, p) which depends on position r and momentum p has a correspond-
ing quantum mechanical operator by replacing p −ih̄▽, yielding the quantum mechanical
operator

Â = A(r ,−ih̄▽).

Quantity Classical definition Quantum mechanical operator
Position r r̂ = r
Momentum p p̂=−ih̄▽
Orbital momentum L = r× p L̂ = r× (−ih̄▽)

Kinetic energy T = (p)2/2m T̂ =−(h̄2/2m)(▽)2

Total energy H = (p2/2m)+V(r) Ĥ =−(h̄2/2m)(▽)2+V(r)
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14.2.2.2 Postulate II

The only possible outcome of an ideal measurement of the physical quantity A are the eigen-
values of the corresponding quantum mechanical operator Â,

Âψν = aνψν ,

resulting in the eigenvalues a1,a2,a3, · · · as the only outcomes of a measurement. The corre-
sponding eigenstates ψ1,ψ2,ψ3 · · · contain all relevant information about the system.

14.2.2.3 Postulate III

Assume Φ is a linear combination of the eigenfunctions ψν for Â,

Φ = c1ψ1+ c2ψ2+ · · ·= ∑
ν

cνψν .

The eigenfunctions are orthogonal and we get

cν =

∫
(Φ)∗ψν dτ.

From this we can formulate the third postulate:

When the eigenfunction is Φ, the probability of obtaining the value aν as the outcome of a
measurement of the physical quantity A is given by |cν |2 and ψν is an eigenfunction of Â with
eigenvalue aν .

As a consequence one can show that when a quantal system is in the state Φ, the mean
value or expectation value of a physical quantity A(r, p) is given by

〈A〉=
∫
(Φ)∗Â(r,−ih̄▽)Φdτ.

We have assumed that Φ has been normalized, viz.,
∫
(Φ)∗Φdτ = 1. Else

〈A〉=
∫
(Φ)∗ÂΦdτ∫
(Φ)∗Φdτ

.

14.2.2.4 Postulate IV

The time development of a quantal system is given by

ih̄
∂Ψ
∂ t

= ĤΨ ,

with Ĥ the quantal Hamiltonian operator for the system.

14.3 First Encounter with the Variational Monte Carlo Method

The required Monte Carlo techniques for variational Monte Carlo are conceptually simple,
but the practical application may turn out to be rather tedious and complex, relying on a
good starting point for the variational wave functions. These wave functions should include
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as much as possible of the pertinent physics since they form the starting point for a variational
calculation of the expectation value of the Hamiltonian H. Given a Hamiltonian H and a trial
wave function ΨT , the variational principle states that the expectation value of 〈H〉

〈H〉=
∫

dRΨ∗T (R)H(R)ΨT(R)∫
dRΨ∗T (R)ΨT(R)

, (14.2)

is an upper bound to the true ground state energy E0 of the Hamiltonian H, that is

E0≤ 〈H〉.

To show this, we note first that the trial wave function can be expanded in the eigenstates
of the Hamiltonian since they form a complete set, see again Postulate III,

ΨT(R) = ∑
i

aiΨi(R),

and assuming the set of eigenfunctions to be normalized, insertion of the latter equation in
Eq. (14.2) results in

〈H〉= ∑mna∗man
∫

dRΨ∗m(R)H(R)Ψn(R)

∑mna∗man
∫

dRΨ∗m(R)Ψn(R)
=

∑mna∗man
∫

dRΨ∗m(R)En(R)Ψn(R)

∑n a2
n

,

which can be rewritten as
∑na2

nEn

∑na2
n
≥ E0.

In general, the integrals involved in the calculation of various expectation values are multi-
dimensional ones. Traditional integration methods like Gaussian-quadrature discussed in
chapter 5 will not be adequate for say the computation of the energy of a many-body sys-
tem.

We could briefly summarize the above variational procedure in the following three steps:

1. Construct first a trial wave function ψT(R;α), for say a many-body system consisting
of N particles located at positions R = (R1, . . . ,RN). The trial wave function depends
on α variational parameters α = (α1, . . . ,αm).

2. Then we evaluate the expectation value of the Hamiltonian H

〈H〉=
∫

dRΨ∗T (R;α)H(R)ΨT(R;α)∫
dRΨ∗T (R;α)ΨT(R;α)

.

3. Thereafter we vary α according to some minimization algorithm and return to the
first step.

The above loop stops when we reach the minimum of the energy according to some speci-
fied criterion. In most cases, a wave function has only small values in large parts of configu-
ration space, and a straightforward procedure which uses homogenously distributed random
points in configuration space will most likely lead to poor results. This may suggest that some
kind of importance sampling combined with e.g., the Metropolis algorithm may be a more
efficient way of obtaining the ground state energy. The hope is then that those regions of
configurations space where the wave function assumes appreciable values are sampled more
efficiently.
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The tedious part in a variational Monte Carlo calculation is the search for the variational
minimum. A good knowledge of the system is required in order to carry out reasonable vari-
ational Monte Carlo calculations. This is not always the case, and often variational Monte
Carlo calculations serve rather as the starting point for so-called diffusion Monte Carlo cal-
culations. Diffusion Monte Carlo allows for an in principle exact solution to the many-body
Schrödinger equation. A good guess on the binding energy and its wave function is however
necessary. A carefully performed variational Monte Carlo calculation can aid in this context.
Diffusion Monte Carlo is discussed in depth in chapter 17.

14.4 Variational Monte Carlo for Quantum Mechanical Systems

The variational quantum Monte Carlo has been widely applied to studies of quantal systems.
Here we expose its philosophy and present applications and critical discussions.

The recipe, as discussed in chapter 11 as well, consists in choosing a trial wave function
ψT(R) which we assume to be as realistic as possible. The variable R stands for the spatial
coordinates, in total 3N if we have N particles present. The trial wave function defines the
quantum-mechanical probability distribution

P(R;α) =
|ψT(R;α)|2

∫ |ψT(R;α)|2dR
.

This is our new probability distribution function.
The expectation value of the Hamiltonian is given by

〈Ĥ〉=
∫

dRΨ∗(R)H(R)Ψ(R)∫
dRΨ∗(R)Ψ(R)

,

where Ψ is the exact eigenfunction. Using our trial wave function we define a new operator,
the so-called local energy

ÊL(R;α) =
1

ψT(R;α)
ĤψT(R;α), (14.3)

which, together with our trial probability distribution function allows us to compute the ex-
pectation value of the local energy

〈EL(α)〉=
∫

P(R;α)ÊL(R;α)dR. (14.4)

This equation expresses the variational Monte Carlo approach. We compute this integral for
a set of values of α and possible trial wave functions and search for the minimum of the
function EL(α). If the trial wave function is close to the exact wave function, then 〈EL(α)〉
should approach 〈Ĥ〉. Equation (14.4) is solved using techniques from Monte Carlo integra-
tion, see the discussion below. For most Hamiltonians, H is a sum of kinetic energy, involving
a second derivative, and a momentum independent and spatial dependent potential. The con-
tribution from the potential term is hence just the numerical value of the potential. A typical
Hamiltonian reads thus

Ĥ =− h̄2

2m

N

∑
i=1

∇2
i +

N

∑
i=1

Vonebody(r i)+
N

∑
i< j

Vint(| r i− r j |). (14.5)

where the sum runs over all particles N. We have included both a onebody potentialVonebody(r i)

which acts on one particle at the time and a twobody interaction Vint(| r i− r j |) which acts be-
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tween two particles at the time. We can obviously extend this to more complicated three-body
and/or many-body forces as well. The main contributions to the energy of physical systems is
largely dominated by one- and two-body forces. We will therefore limit our attention to such
interactions only.

Our local energy operator becomes then

ÊL(R;α) =
1

ψT(R;α)

(
− h̄2

2m

N

∑
i=1

∇2
i +

N

∑
i=1

Vonebody(r i)+
N

∑
i< j

Vint(| r i− r j |)
)

ψT(R;α),

resulting in

ÊL(R;α) =
1

ψT(R;α)

(
− h̄2

2m

N

∑
i=1

∇2
i

)
ψT(R;α)+

N

∑
i=1

Vonebody(r i)+
N

∑
i< j

Vint(| r i− r j |).

The numerically time-consuming part in the variational Monte Carlo calculation is the evalu-
ation of the kinetic energy term. The potential energy, as long as it has a spatial dependence
only, adds a simple term to the local energy operator.

In our discussion below, we base our numerical Monte Carlo solution on the Metropolis
algorithm. The implementation is rather similar to the one discussed in connection with the
Ising model, the main difference resides in the form of the probability distribution function
. The main test to be performed by the Metropolis algorithm is a ratio of probabilities, as
discussed in chapter 12. Suppose we are attempting to move from position R to a new position
R′. We need to perform the following two tests:

1. If
P(R′;α)

P(R;α)
> 1,

where R′ is the new position, the new step is accepted, or
2.

r ≤ P(R′;α)

P(R;α)
,

where r is random number generated with uniform probability distribution function such
that r ∈ [0,1], the step is also accepted.

In the Ising model we were flipping one spin at the time. Here we change the position of say
a given particle to a trial position R′, and then evaluate the ratio between two probabilities.
We note again that we do not need to evaluate the norm2 ∫ |ψT(R;α)|2dR (an in general
impossible task), since we are only computing ratios between probabilities.

When writing a variational Monte Carlo program, one should always prepare in advance
the required formulae for the local energy EL in Eq. (14.4) and the wave function needed
in order to compute the ratios of probabilities in the Metropolis algorithm. These two func-
tions are almost called as often as a random number generator, and care should therefore be
exercised in order to prepare an efficient code.

If we now focus on the Metropolis algorithm and the Monte Carlo evaluation of Eq. (14.4),
a more detailed algorithm is as follows

• Initialisation: Fix the number of Monte Carlo steps and thermalization steps. Choose
an initial R and variational parameters α and calculate |ψT(R;α)|2. Define also the
value of the stepsize to be used when moving from one value of R to a new one.

2 This corresponds to the partition function Z in statistical physics.
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• Initialise the energy and the variance.
• Start the Monte Carlo calculation with a loop over a given number of Monte Carlo

cycles
1. Calculate a trial position Rp = R+ r ∗∆R where r is a random variable r ∈ [0,1] and

∆R a user-chosen step length.
2. Use then the Metropolis algorithm to accept or reject this move by calculating the

ratio
w= P(Rp)/P(R).

If w≥ s, where s is a random number s∈ [0,1], the new position is accepted, else we
stay at the same place.

3. If the step is accepted, then we set R = Rp.
4. Update the local energy and the variance.

• When the Monte Carlo sampling is finished, we calculate the mean energy and the
standard deviation. Finally, we may print our results to a specified file.

Note well that the way we choose the next step Rp = R+ r ∗∆R is not determined by the
wave function. The wave function enters only the determination of the ratio of probabilities,
similar to the way we simulated systems in statistical physics. This means in turn that our
sampling of points may not be very efficient. We will return to an efficient sampling of in-
tegration points in our discussion of diffusion Monte Carlo in chapter 17 and importance
sampling later in this chapter. Here we note that the above algorithm will depend on the cho-
sen value of ∆R. Normally, ∆R is chosen in order to accept approximately 50%of the proposed
moves. One refers often to this algorithm as the brute force Metropolis algorithm.

14.4.1 First illustration of Variational Monte Carlo Methods

The harmonic oscillator in one dimension lends itself nicely for illustrative purposes. The
Hamiltonian is

H =− h̄2

2m
d2

dx2 +
1
2

kx2, (14.6)

where m is the mass of the particle and k is the force constant, e.g., the spring tension for a
classical oscillator. In this example we will make life simple and choose m= h̄= k= 1. We can
rewrite the above equation as

H =− d2

dx2 + x2,

The energy of the ground state is then E0 = 1. The exact wave function for the ground state is

Ψ0(x) =
1

π1/4
e−x2/2,

but since we wish to illustrate the use of Monte Carlo methods, we choose the trial function

ΨT(x) =

√
α

π1/4
e−x2α2/2.

Inserting this function in the expression for the local energy in Eq. (14.3), we obtain the
following expression for the local energy

EL(x) = α2+ x2(1−α4),
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with the expectation value for the Hamiltonian of Eq. (14.4) given by

〈EL〉=
∫ ∞

−∞
|ψT(x)|2EL(x)dx,

which reads with the above trial wave function

〈EL〉=
∫ ∞
−∞ dxe−x2α2α2+ x2(1−α4)

∫ ∞
−∞ dxe−x2α2 .

Using the fact that ∫ ∞

−∞
dxe−x2α2

=

√
π

α2 ,

we obtain

〈EL〉=
α2

2
+

1
2α2 .

and the variance

σ2 =
(α4−1)2

2α4 . (14.7)

In solving this problem we can choose whether we wish to use the Metropolis algorithm and
sample over relevant configurations, or just use random numbers generated from a normal
distribution, since the harmonic oscillator wave functions follow closely such a distribution.
The latter approach is easily implemented, as seen in this listing

... initialisations, declarations of variables

... mcs = number of Monte Carlo samplings

// loop over Monte Carlo samples

for ( i=0; i < mcs; i++) {

// generate random variables from gaussian distribution

x = normal_random(&idum)/sqrt2/alpha;

local_energy = alpha*alpha + x*x*(1-pow(alpha,4));

energy += local_energy;

energy2 += local_energy*local_energy;

// end of sampling

}

// write out the mean energy and the standard deviation

cout << energy/mcs << sqrt((energy2/mcs-(energy/mcs)**2)/mcs));

This variational Monte Carlo calculation is rather simple, we just generate a large number
N of random numbers corresponding to a gaussian probability distribution function (which
resembles the ansatz for our trial wave function ∼ |ΨT |2) and for each random number we
compute the local energy according to the approximation

〈ÊL〉=
∫

P(R)ÊL(R)dR≈ 1
N

N

∑
i=1

EL(xi),

and the energy squared through

〈Ê2
L〉=

∫
P(R)Ê2

L(R)dR≈ 1
N

N

∑
i=1

E2
L(xi).

In a certain sense, this is nothing but the importance Monte Carlo sampling discussed in
chapter 11. Before we proceed however, there is an important aside which is worth keeping
in mind when computing the local energy. We could think of splitting the computation of the
expectation value of the local energy into a kinetic energy part and a potential energy part.
The expectation value of the kinetic energy is
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−
∫

dRΨ∗T (R)∇2ΨT(R)∫
dRΨ∗T (R)ΨT(R)

, (14.8)

and we could be tempted to compute, if the wave function obeys spherical symmetry, just the
second derivative with respect to one coordinate axis and then multiply by three. This will
most likely increase the variance, and should be avoided, even if the final expectation values
are similar. For quantum mechanical systems, as discussed below, the exact wave function
leads to a variance which is exactly zero.

Another shortcut we could think of is to transform the numerator in the latter equation to
∫

dRΨ∗T (R)∇2ΨT(R) =−
∫

dR(∇Ψ ∗T (R))(∇ΨT(R)), (14.9)

using integration by parts and the relation
∫

dR∇(Ψ∗T (R)∇ΨT(R)) = 0,

where we have used the fact that the wave function is zero at R = ±∞. This relation can in
turn be rewritten through integration by parts to

∫
dR(∇Ψ∗T (R))(∇ΨT(R))+

∫
dRΨ∗T (R)∇2ΨT(R)) = 0.

The right-hand side of Eq. (14.9) involves only first derivatives. However, in case the wave
function is the exact one, or rather close to the exact one, the left-hand side yields just a
constant times the wave function squared, implying zero variance. The rhs does not and may
therefore increase the variance.

If we use integration by parts for the harmonic oscillator case, the new local energy is

EL(x) = x2(1+α4),

and the variance

σ2 =
(α4+1)2

2α4 ,

which is larger than the variance of Eq. (14.7).

14.5 Variational Monte Carlo for atoms

The Hamiltonian for an N-electron atomic system consists of two terms

Ĥ(R) = T̂(R)+ V̂(R), (14.10)

the kinetic and the potential energy operator. Here R = {r1, r2, . . . rN} represents the spatial
and spin degrees of freedom associated with the different particles. The classical kinetic
energy

T =
P2

2M
+

N

∑
j=1

p2
j

2m
,

is transformed to the quantum mechanical kinetic energy operator by operator substitution
of the momentum (pk→−ih̄∂/∂xk)

T̂(R) =− h̄2

2M
∇2

0−
N

∑
i=1

h̄2

2m
∇2

i . (14.11)
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Here the first term is the kinetic energy operator of the nucleus, the second term is the kinetic
energy operator of the electrons, M is the mass of the nucleus and m is the electron mass.
The potential energy operator is given by

V̂(R) =−
N

∑
i=1

Ze2

(4πε0)r i
+

N

∑
i=1,i< j

e2

(4πε0)r i j
, (14.12)

where the r i ’s are the electron-nucleus distances and the r i j ’s are the inter-electronic dis-
tances.

We seek to find controlled and well understood approximations in order to reduce the
complexity of the above equations. The Born-Oppenheimer approximation is a commonly used
approximation. In this approximation, the motion of the nucleus is disregarded.

14.5.1 The Born-Oppenheimer Approximation

In a system of interacting electrons and a nucleus there will usually be little momentum
transfer between the two types of particles due to their differing masses. The forces between
the particles are of similar magnitude due to their similar charge. If one assumes that the
momenta of the particles are also similar, the nucleus must have a much smaller velocity
than the electrons due to its far greater mass. On the time-scale of nuclear motion, one
can therefore consider the electrons to relax to a ground-state given by the Hamiltonian of
Eqs. (14.10), (14.11) and (14.12) with the nucleus at a fixed location. This separation of the
electronic and nuclear degrees of freedom is known as the Born-Oppenheimer approximation.

In the center of mass system the kinetic energy operator reads

T̂(R) =− h̄2

2(M+Nm)
∇2

CM−
h̄2

2µ

N

∑
i=1

∇2
i −

h̄2

M

N

∑
i> j

∇i ·∇ j , (14.13)

while the potential energy operator remains unchanged. Note that the Laplace operators ∇2
i

now are in the center of mass reference system.
The first term of Eq. (14.13) represents the kinetic energy operator of the center of mass.

The second term represents the sum of the kinetic energy operators of the N electrons, each
of them having their mass m replaced by the reduced mass µ = mM/(m+M) because of the
motion of the nucleus. The nuclear motion is also responsible for the third term, or the mass
polarization term.

The nucleus consists of protons and neutrons. The proton-electron mass ratio is about
1/1836and the neutron-electron mass ratio is about 1/1839. We can therefore approximate
the nucleus as stationary with respect to the electrons. Taking the limit M→∞ in Eq. (14.13),
the kinetic energy operator reduces to

T̂ =−
N

∑
i=1

h̄2

2m
∇2

i

The Born-Oppenheimer approximation thus disregards both the kinetic energy of the cen-
ter of mass as well as the mass polarization term. The effects of the Born-Oppenheimer ap-
proximation are quite small and they are also well accounted for. However, this simplified
electronic Hamiltonian remains very difficult to solve, and closed-form solutions do not exist
for general systems with more than one electron. We use the Born-Oppenheimer approxima-
tion in our discussion of atomic and molecular systems.
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The first term of Eq. (14.12) is the nucleus-electron potential and the second term is
the electron-electron potential. The inter-electronic potential is the main problem in atomic
physics. Because of this term, the Hamiltonian cannot be separated into one-particle parts,
and the problem must be solved as a whole. A common approximation is to regard the ef-
fects of the electron-electron interactions either as averaged over the domain or by means of
introducing a density functional. Popular methods in this direction are Hartree-Fock theory
and Density Functional theory. These approaches are actually very efficient, and about 99%
or more of the electronic energies are obtained for most Hartree-Fock calculations. Other ob-
servables are usually obtained to an accuracy of about 90−95% (ref. [92]). We discuss these
methods in chapter 15, where also systems with more than two electrons are discussed in
more detail. Here we limit ourselves to systems with at most two electrons. Relevant systems
are neutral helium with two electrons, the hydrogen molecule or two electrons confined in a
two-dimensional harmonic oscillator trap.

14.5.2 The Hydrogen Atom

The spatial Schrödinger equation for the three-dimensional hydrogen atom can be solved in
a closed form, see for example Ref. [91] for details. To achieve this, we rewrite the equation
in terms of spherical coordinates using

x= r sinθ cosφ ,

y= r sinθ sinφ ,

and
z= r cosθ .

The reason we introduce spherical coordinates is due to the spherical symmetry of the
Coulomb potential

e2

4πε0r
=

e2

4πε0

√
x2+ y2+ z2

,

where we have used r =
√

x2+ y2+ z2. It is not possible to find a separable solution of the type

ψ(x,y,z) = ψ(x)ψ(y)ψ(z).

as we can with the harmonic oscillator in three dimensions. However, with spherical coordi-
nates we can find a solution of the form

ψ(r,θ ,φ) = R(r)P(θ )F(φ) = RPF.

These three coordinates yield in turn three quantum numbers which determine the energy of
the system. We obtain three sets of ordinary second-order differential equations [91],

1
F

∂ 2F
∂φ2 =−C2

φ ,

Cr sin2 (θ )P+ sin(θ )
∂

∂θ
(sin(θ )

∂P
∂θ

) =C2
φ P,

and
1
R

∂
∂ r

(r2 ∂R
∂ r

)+
2mrke2

h̄2 +
2mr2

h̄2 E =Cr , (14.14)
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where Cr and Cφ are constants. The angle-dependent differential equations result in the so-
called spherical harmonic functions as solutions, with quantum numbers l and ml . These
functions are given by

Ylml (θ ,φ) = P(θ )F(φ) =

√
(2l +1)(l −ml)!

4π(l +ml)!
Pml

l (cos(θ ))exp(iml φ),

with Pml
l being the associated Legendre polynomials. They can be rewritten as

Ylml (θ ,φ) = sin|ml |(θ )× (polynom(cosθ ))exp(iml φ),

with the following selected examples

Y00 =

√
1

4π
,

for l = ml = 0,

Y10 =

√
3

4π
cos(θ ),

for l = 1 og ml = 0,

Y1±1 =∓1

√
3

8π
sin(θ )exp(±iφ),

for l = 1 og ml =±1, and

Y20 =

√
5

16π
(3cos2(θ )−1)

for l = 2 og ml = 0. The quantum numbers l and ml represent the orbital momentum and
projection of the orbital momentum, respectively and take the values l ≥ 0, l = 0,1,2, . . . and
ml =−l ,−l +1, . . . , l −1, l . The spherical harmonics for l ≤ 3 are listed in Table 14.1.

Spherical Harmonics

ml\l 0 1 2 3

+3 − 1
8(

35
π )1/2 sin3 θe+3iφ

+2 1
4(

15
2π )

1/2 sin2 θe+2iφ 1
4(

105
2π )1/2 cosθ sin2 θe+2iφ

+1 − 1
2(

3
2π )

1/2 sinθe+iφ − 1
2(

15
2π )

1/2 cosθ sinθe+iφ − 1
8(

21
2π )

1/2(5cos2 θ −1)sinθe+iφ

0 1
2π1/2

1
2(

3
π )

1/2 cosθ 1
4(

5
π )

1/2(3cos2 θ −1) 1
4(

7
π )

1/2(2−5sin2 θ )cosθ

-1 + 1
2(

3
2π )

1/2 sinθe−iφ + 1
2(

15
2π )

1/2 cosθ sinθe−iφ + 1
8(

21
2π )

1/2(5cos2 θ −1)sinθe−iφ

-2 1
4(

15
2π )

1/2 sin2 θe−2iφ 1
4(

105
2π )1/2 cosθ sin2 θe−2iφ

-3 + 1
8(

35
π )1/2 sin3 θe−3iφ

Table 14.1 Spherical harmonics Ylml for the lowest l and ml values.

We focus now on the radial equation, which can be rewritten as

− h̄2r2

2m

(
∂
∂ r

(r2 ∂R(r)
∂ r

)

)
− ke2

r
R(r)+

h̄2l(l +1)
2mr2

R(r) = ER(r).
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Introducing the function u(r) = rR(r), we can rewrite the last equation as

− h̄2

2m
∂ 2u(r)

∂ r2 −
(

ke2

r
− h̄2l(l +1)

2mr2

)
u(r) = Eu(r), (14.15)

where m is the mass of the electron, l its orbital momentum taking values l = 0,1,2, . . . , and
the term ke2/r is the Coulomb potential. The first terms is the kinetic energy. The full wave
function will also depend on the other variables θ and φ as well. The energy, with no external
magnetic field is however determined by the above equation . We can then think of the radial
Schrödinger equation to be equivalent to a one-dimensional movement conditioned by an
effective potential

Veff(r) =−
ke2

r
+

h̄2l(l +1)
2mr2

.

The radial equation yield closed form solutions resulting in the quantum number n, in
addition to lml . The solution Rnl to the radial equation is given by the Laguerre polynomials
[91]. The closed-form solutions are given by

ψnlml (r,θ ,φ) = ψnlml = Rnl(r)Ylml (θ ,φ) = RnlYlml

The ground state is defined by n= 1 and l = ml = 0 and reads

ψ100=
1

a3/2
0

√
π

exp(−r/a0),

where we have defined the Bohr radius a0

a0 =
h̄2

mke2
,

with length a0 = 0.05nm. The first excited state with l = 0 is

ψ200=
1

4a3/2
0

√
2π

(
2− r

a0

)
exp(−r/2a0).

For states with with l = 1 and n= 2, we can have the following combinations with ml = 0

ψ210=
1

4a3/2
0

√
2π

(
r
a0

)
exp(−r/2a0)cos(θ ),

and ml =±1

ψ21±1 =
1

8a3/2
0

√
π

(
r
a0

)
exp(−r/2a0)sin(θ )exp(±iφ).

The exact energy is independent of l and ml , since the potential is spherically symmetric.
The first few non-normalized radial solutions of equation are listed in Table 14.2.
When solving equations numerically, it is often convenient to rewrite the equation in terms

of dimensionless variables. This leads to an equation in dimensionless form which is easier
to code, sparing one for eventual errors. In order to do so, we introduce first the dimension-
less variable ρ = r/β , where β is a constant we can choose. Schrödinger’s equation is then
rewritten as

− 1
2

∂ 2u(ρ)
∂ρ2 − mke2β

h̄2ρ
u(ρ)+

l(l +1)
2ρ2 u(ρ) =

mβ 2

h̄2 Eu(ρ). (14.16)



14.5 Variational Monte Carlo for atoms 461

Hydrogen-like atomic radial functions

l\n 1 2 3

0 exp(−Zr) (2− r)exp(−Zr/2) (27−18r +2r2)exp(−Zr/3)

1 r exp(−Zr/2) r(6− r)exp(−Zr/3)

2 r2 exp(−Zr/3)

Table 14.2 The first few radial functions of the hydrogen-like atoms.

We can determine β by simply requiring3

mke2β
h̄2 = 1 (14.17)

With this choice, the constant β becomes the famous Bohr radius a0 = 0.05 nm a0 = β =

h̄2/mke2. We list here the standard units used in atomic physics and molecular physics calcu-
lations. It is common to scale atomic units by setting m= e= h̄= 4πε0 = 1, see Table 14.3. We

Atomic Units

Quantity SI Atomic unit

Electron mass, m 9.109·10−31 kg 1
Charge, e 1.602·10−19 C 1
Planck’s reduced constant, h̄ 1.055·10−34 Js 1
Permittivity, 4πε0 1.113·10−10 C2 J−1 m−1 1

Energy, e2

4πε0a0
27.211eV 1

Length, a0 =
4πε0h̄2

me2
0.529·10−10 m 1

Table 14.3 Scaling from SI units to atomic units.

introduce thereafter the variable λ
λ =

mβ 2

h̄2 E,

and inserting β and the exact energy E = E0/n2, with E0 = 13.6 eV, we have that

λ =− 1
2n2 ,

n being the principal quantum number. The equation we are then going to solve numerically
is now

− 1
2

∂ 2u(ρ)
∂ρ2 − u(ρ)

ρ
+

l(l +1)
2ρ2 u(ρ)−λu(ρ) = 0, (14.18)

with the Hamiltonian

H =−1
2

∂ 2

∂ρ2 −
1
ρ
+

l(l +1)
2ρ2 .

3 Remember that we are free to choose β .
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The ground state of the hydrogen atom has the energy λ =−1/2, or E =−13.6 eV. The exact
wave function obtained from Eq. (14.18) is

u(ρ) = ρe−ρ ,

which yields the energy λ =−1/2. Sticking to our variational philosophy, we could now intro-
duce a variational parameter α resulting in a trial wave function

uα
T (ρ) = αρe−αρ . (14.19)

Inserting this wave function into the expression for the local energy EL of Eq. (14.3) yields

EL(ρ) =−
1
ρ
− α

2

(
α− 2

ρ

)
. (14.20)

For the hydrogen atom we could perform the variational calculation along the same lines as
we did for the harmonic oscillator. The only difference is that Eq. (14.4) now reads

〈H〉=
∫

P(R)EL(R)dR =

∫ ∞

0
α2ρ2e−2αρEL(ρ)ρ2dρ ,

since ρ ∈ [0,∞). In this case we would use the exponential distribution instead of the normal
distrubution, and our code could contain the following program statements

... initialisations, declarations of variables

... mcs = number of Monte Carlo samplings

// loop over Monte Carlo samples

for ( i=0; i < mcs; i++) {

// generate random variables from the exponential

// distribution using ran1 and transforming to

// to an exponential mapping y = -ln(1-x)

x=ran1(&idum);

y=-log(1.-x);

// in our case y = rho*alpha*2

rho = y/alpha/2;

local_energy = -1/rho -0.5*alpha*(alpha-2/rho);

energy += (local_energy);

energy2 += local_energy*local_energy;

// end of sampling

}

// write out the mean energy and the standard deviation

cout << energy/mcs << sqrt((energy2/mcs-(energy/mcs)**2)/mcs));

As for the harmonic oscillator case, we need to generate a large number N of random numbers
corresponding to the exponential probability distribution function α2ρ2e−2αρ and for each
random number we compute the local energy and variance.

14.5.3 Metropolis sampling for the hydrogen atom and the harmonic

oscillator

We present in this subsection results for the ground states of the hydrogen atom and harmonic
oscillator using a variational Monte Carlo procedure. For the hydrogen atom, the trial wave
function

uα
T (ρ) = αρe−αρ ,
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depends only on the dimensionless radius ρ . It is the solution of a one-dimensional differential
equation, as is the case for the harmonic oscillator as well. The latter has the trial wave
function

ΨT(x) =

√
α

π1/4
e−x2α2/2.

However, for the hydrogen atom we have ρ ∈ [0,∞), while for the harmonic oscillator we have
x∈ (−∞,∞). In the calculations below we have used a uniform distribution to generate the vari-
ous positions. This means that we employ a shifted uniform distribution where the integration
regions beyond a given value of ρ and x are omitted. This is obviously an approximation and
techniques like importance sampling discussed in chapter 11 should be used. Using a uni-
form distribution is normally refered to as brute force Monte Carlo or brute force Metropolis
sampling. From a practical point of view, this means that the random variables are multiplied
by a given step length λ . To better understand this, consider the above dimensionless radius
ρ ∈ [0,∞).

The new position can then be modelled as

ρnew= ρold+λ × r,

with r being a random number drawn from the uniform distribution in a region r ∈ [0,Λ ],
with Λ < ∞, a cutoff large enough in order to have a contribution to the integrand close to
zero. The step length λ is chosen to give approximately an acceptance ratio of 50% for all
proposed moves. This is nothing but a simple rule of thumb. In this chapter we will stay with
this brute force Metropolis algorithm. All results discussed here have been obtained with this
approach. Importance sampling and further improvements will be discussed in chapter 15.
In Figs. 14.1 and 14.2 we plot the ground state energies for the one-dimensional harmonic
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Fig. 14.1 Result for ground state energy of the harmonic oscillator as function of the variational parameter
α . The exact result is for α = 1 with an energy E = 1. See text for further details.

oscillator and the hydrogen atom, respectively, as functions of the variational parameter α.
These results are also displayed in Tables 14.4 and 14.5. In these tables we list the variance
and the standard deviation as well. We note that at α = 1 for the hydrogen atom, we obtain
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the exact result, and the variance is zero, as it should. The reason is that we have used the
exact wave function, and the action of the hamiltionan on the wave function

Hψ = constant×ψ ,

yields just a constant. The integral which defines various expectation values involving mo-
ments of the Hamiltonian becomes then

〈Hn〉=
∫

dRΨ∗T (R)Hn(R)ΨT(R)∫
dRΨ∗T (R)ΨT(R)

= constant×
∫

dRΨ∗T (R)ΨT(R)∫
dRΨ∗T (R)ΨT(R)

= constant.

This explains why the variance is zero for α = 1. However, the hydrogen atom and the har-

Table 14.4 Result for ground state energy of the harmonic oscillator as function of the variational parameter
α . The exact result is for α = 1 with an energy E = 1. We list the energy and the variance σ 2 as well. The
variable N is the number of Monte Carlo samples. In this calculation we set N = 100000and a step length of 2
was used in order to obtain an acceptance of ≈ 50%.

α 〈H〉 σ 2

5.00000E-01 2.06479E+00 5.78739E+00
6.00000E-01 1.50495E+00 2.32782E+00
7.00000E-01 1.23264E+00 9.82479E-01
8.00000E-01 1.08007E+00 3.44857E-01
9.00000E-01 1.01111E+00 7.24827E-02
1.00000E-00 1.00000E+00 0.00000E+00
1.10000E+00 1.02621E+00 5.95716E-02
1.20000E+00 1.08667E+00 2.23389E-01
1.30000E+00 1.17168E+00 4.78446E-01
1.40000E+00 1.26374E+00 8.55524E-01
1.50000E+00 1.38897E+00 1.30720E+00
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Fig. 14.2 Result for ground state energy of the hydrogen atom as function of the variational parameter α .
The exact result is for α = 1 with an energy E =−1/2. See text for further details.
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monic oscillator are some of the few cases where we can use a trial wave function proportional
to the exact one. These two systems offer some of the few examples where we can find an
exact solution to the problem. In most cases of interest, we do not know a priori the exact

Table 14.5 Result for ground state energy of the hydrogen atom as function of the variational parameter α .
The exact result is for α = 1with an energy E =−1/2. The variable N is the number of Monte Carlo samples. In
this calculation we fixed N= 100000and a step length of 4 Bohr radii was used in order to obtain an acceptance
of ≈ 50%.

α 〈H〉 σ 2

5.00000E-01 -3.76740E-01 6.10503E-02
6.00000E-01 -4.21744E-01 5.22322E-02
7.00000E-01 -4.57759E-01 4.51201E-02
8.00000E-01 -4.81461E-01 3.05736E-02
9.00000E-01 -4.95899E-01 8.20497E-03
1.00000E-00 -5.00000E-01 0.00000E+00
1.10000E+00 -4.93738E-01 1.16989E-02
1.20000E+00 -4.75563E-01 8.85899E-02
1.30000E+00 -4.54341E-01 1.45171E-01
1.40000E+00 -4.13220E-01 3.14113E-01
1.50000E+00 -3.72241E-01 5.45568E-01

wave function, or how to make a good trial wave function. In essentially all real problems a
large amount of CPU time and numerical experimenting is needed in order to ascertain the
validity of a Monte Carlo estimate. The next examples deal with such problems.

14.5.4 The Helium Atom

Most physical problems of interest in atomic, molecular and solid state physics consist of
many interacting electrons and ions. The total number of particles N is usually sufficiently
large that an exact solution cannot be found. Controlled and well understood approximations
are sought to reduce the complexity to a tractable level. Once the equations are solved, a
large number of properties may be calculated from the wave function. Errors or approxima-
tions made in obtaining the wave function will be manifest in any property derived from the
wave function. Where high accuracy is required, considerable attention must be paid to the
derivation of the wave function and any approximations made.

The helium atom consists of two electrons and a nucleus with charge Z = 2. In setting
up the Hamiltonian of this system, we need to account for the repulsion between the two
electrons as well. A common and very reasonable approximation used in the solution of of the
Schrödinger equation for systems of interacting electrons and ions is the Born-Oppenheimer
approximation discussed above. But even this simplified electronic Hamiltonian remains very
difficult to solve. No closed-form solutions exist for general systems with more than one
electron.

To set up the problem, we start by labelling the distance between electron 1 and the nu-
cleus as r1. Similarly we have r2 for electron 2. The contribution to the potential energy due
to the attraction from the nucleus is

−2ke2

r1
− 2ke2

r2
,

and if we add the repulsion arising from the two interacting electrons, we obtain the potential
energy
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V(r1, r2) =−
2ke2

r1
− 2ke2

r2
+

ke2

r12
,

with the electrons separated at a distance r12 = |r1− r2|. The Hamiltonian becomes then

Ĥ =− h̄2∇2
1

2m
− h̄2∇2

2

2m
− 2ke2

r1
− 2ke2

r2
+

ke2

r12
,

and Schrödingers equation reads
Ĥψ = Eψ .

Note that this equation has been written in atomic units (a.u.) which are more convenient
for quantum mechanical problems. This means that the final energy has to be multiplied by a
2×E0, where E0 = 13.6 eV, the binding energy of the hydrogen atom.

A very simple first approximation to this system is to omit the repulsion between the two
electrons. The potential energy becomes then

V(r1, r2)≈−
Zke2

r1
− Zke2

r2
.

The advantage of this approximation is that each electron can be treated as being indepen-
dent of each other, implying that each electron sees just a central symmetric potential, or
central field.

To see whether this gives a meaningful result, we set Z= 2 and neglect totally the repulsion
between the two electrons. Electron 1 has the following Hamiltonian

ĥ1 =−
h̄2∇2

1

2m
− 2ke2

r1
,

with pertinent wave function and eigenvalue Ea

ĥ1ψa = Eaψa,

where a = {nalamla} are the relevant quantum numbers needed to describe the system. We
assume here that we can use the hydrogen-like solutions, but with Z not necessarily equal to
one. The energy Ea is

Ea =−
Z2E0

n2
a

.

In a similar way, we obtain for electron 2

ĥ2 =−
h̄2∇2

2

2m
− 2ke2

r2
,

with wave function ψb, b= {nblbmlb} and energy

Eb =
Z2E0

n2
b

.

Since the electrons do not interact, the ground state wave function of the helium atom is
given by

ψ = ψaψb,

resulting in the following approximation to Schrödinger’s equation

(
ĥ1+ ĥ2

)
ψ =

(
ĥ1+ ĥ2

)
ψa(r1)ψb(r2) = Eabψa(r1)ψb(r2).
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The energy becomes then

(
ĥ1ψa(r1)

)
ψb(r2)+

(
ĥ2ψb(r2)

)
ψa(r1) = (Ea+Eb)ψa(r1)ψb(r2),

yielding

Eab = Z2E0

(
1
n2

a
+

1

n2
b

)
.

If we insert Z = 2 and assume that the ground state is determined by two electrons in the
lowest-lying hydrogen orbit with na = nb = 1, the energy becomes

Eab = 8E0 =−108.8 eV,

while the experimental value is −78.8 eV. Clearly, this discrepancy is essentially due to our
omission of the repulsion arising from the interaction of two electrons.

14.5.4.1 Choice of trial wave function

The choice of trial wave function is critical in variational Monte Carlo calculations. How to
choose it is however a highly non-trivial task. All observables are evaluated with respect to
the probability distribution

P(R) =
|ψT(R)|2

∫ |ψT(R)|2 dR
.

generated by the trial wave function. The trial wave function must approximate an exact
eigenstate in order that accurate results are to be obtained. Improved trial wave functions
also improve the importance sampling, reducing the cost of obtaining a certain statistical
accuracy.

Quantum Monte Carlo methods are able to exploit trial wave functions of arbitrary forms.
Any wave function that is physical and for which the value, the gradient and the laplacian of
the wave function may be efficiently computed can be used. The power of Quantum Monte
Carlo methods lies in the flexibility of the form of the trial wave function.

It is important that the trial wave function satisfies as many known properties of the exact
wave function as possible. A good trial wave function should exhibit much of the same fea-
tures as does the exact wave function. Especially, it should be well-defined at the origin, that
is Ψ (|R| = 0) 6= 0, and its derivative at the origin should also be well-defined . One possible
guideline in choosing the trial wave function is the use of constraints about the behavior of
the wave function when the distance between one electron and the nucleus or two electrons
approaches zero. These constraints are the so-called “cusp conditions” and are related to the
derivatives of the wave function.

To see this, let us single out one of the electrons in the helium atom and assume that this
electron is close to the nucleus, i.e., r1→ 0. We assume also that the two electrons are far
from each other and that r2 6= 0. The local energy can then be written as

EL(R) =
1

ψT(R)
HψT(R) =

1
ψT(R)

(
−1

2
∇2

1−
Z
r1

)
ψT(R)+ finite terms.

Writing out the kinetic energy term in the spherical coordinates of electron 1, we arrive at
the following expression for the local energy

EL(R) =
1

RT(r1)

(
−1

2
d2

dr2
1

− 1
r1

d
dr1
− Z

r1

)
RT(r1)+ finite terms,
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where RT(r1) is the radial part of the wave function for electron 1. We have also used that the
orbital momentum of electron 1 is l = 0. For small values of r1, the terms which dominate are

lim
r1→0

EL(R) =
1

RT(r1)

(
− 1

r1

d
dr1
− Z

r1

)
RT(r1),

since the second derivative does not diverge due to the finiteness ofΨ at the origin. The latter
implies that in order for the kinetic energy term to balance the divergence in the potential
term, we must have

1
RT(r1)

dRT(r1)

dr1
=−Z,

implying that
RT(r1) ∝ e−Zr1.

A similar condition applies to electron 2 as well. For orbital momenta l > 0 it is rather straight-
forward to show that

1
RT(r)

dRT(r)
dr

=− Z
l +1

.

Another constraint on the wave function is found when the two electrons are approaching
each other. In this case it is the dependence on the separation r12 between the two electrons
which has to reflect the correct behavior in the limit r12→ 0. The resulting radial equation
for the r12 dependence is the same for the electron-nucleus case, except that the attractive
Coulomb interaction between the nucleus and the electron is replaced by a repulsive interac-
tion and the kinetic energy term is twice as large.

To find an ansatz for the correlated part of the wave function, it is useful to rewrite the
two-particle local energy in terms of the relative and center-of-mass motion. Let us denote
the distance between the two electrons as r12. We omit the center-of-mass motion since we
are only interested in the case when r12→ 0. The contribution from the center-of-mass (CoM)
variable RCoM gives only a finite contribution. We focus only on the terms that are relevant
for r12. The relevant local energy becomes then

lim
r12→0

EL(R) =
1

RT(r12)

(
2

d2

dr2
i j

+
4
r i j

d
dri j

+
2
r i j
− l(l +1)

r2
i j

+2E

)
RT(r12) = 0,

where l is now equal 0 if the spins of the two electrons are anti-parallel and 1 if they are
parallel. Repeating the argument for the electron-nucleus cusp with the factorization of the
leading r-dependency, we get the similar cusp condition:

dRT(r12)

dr12
=− 1

2(l +1)
RT(r12) r12→ 0

resulting in

RT ∝





exp(r i j /2) for anti-parallel spins, l = 0

exp(r i j /4) for parallel spins, l = 1
.

This is so-called cusp condition for the relative motion, resulting in a minimal requirement
for the correlation part of the wave fuction. For general systems containing more than two
electrons, we have this condition for each electron pair i j .

Based on these consideration, a possible trial wave function which ignores the ’cusp’-
condition between the two electrons is

ψT(R) = e−α(r1+r2), (14.21)
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where r1,2 are dimensionless radii and α is a variational parameter which is to be interpreted
as an effective charge.

A possible trial wave function which also reflects the ’cusp’-condition between the two
electrons is

ψT(R) = e−α(r1+r2)er12/2. (14.22)

The last equation can be generalized to

ψT(R) = φ(r1)φ(r2) . . .φ(rN)∏
i< j

f (r i j ),

for a system with N electrons or particles. The wave function φ(r i) is the single-particle wave
function for particle i, while f (r i j ) account for more complicated two-body correlations. For
the helium atom, we placed both electrons in the hydrogenic orbit 1s. We know that the
ground state for the helium atom has a symmetric spatial part, while the spin wave function
is anti-symmetric in order to obey the Pauli principle. In the present case we need not to deal
with spin degrees of freedom, since we are mainly trying to reproduce the ground state of
the system. However, adopting such a single-particle representation for the individual elec-
trons means that for atoms beyond the ground state of helium, we cannot continue to place
electrons in the lowest hydrogenic orbit. This is a consenquence of the Pauli principle, which
states that the total wave function for a system of identical particles such as fermions, has to
be anti-symmetric. One way to account for this is by introducing the so-called Slater deter-
minant (to be discussed in more detail in chapter 15). This determinant is written in terms of
the various single-particle wave functions.

If we consider the helium atom with two electrons in the 1s state, we can write the total
Slater determinant as

Φ(r1, r2,α,β ) =
1√
2

∣∣∣∣
ψα(r1) ψα(r2)

ψβ (r1) ψβ (r2)

∣∣∣∣ ,

with α = nlml sms = (1001/21/2) and β = nlml sms = (1001/2− 1/2) or using ms = 1/2 =↑ and
ms = −1/2 =↓ as α = nlml sms = (1001/2 ↑) and β = nlml sms = (1001/2 ↓). It is normal to skip
the two quantum numbers sms of the one-electron spin. We introduce therefore the shorthand
nlml ↑ or nlml ↓) for a particular state where an arrow pointing upward represents ms = 1/2
and a downward arrow stands for ms =−1/2. Writing out the Slater determinant

Φ(r1, r2,α,β ) =
1√
2

[
ψα(r1)ψβ (r2)−ψβ (r1)ψγ (r2)

]
,

we see that the Slater determinant is antisymmetric with respect to the permutation of two
particles, that is

Φ(r1, r2,α,β ) =−Φ(r2, r1,α,β ).

The Slater determinant obeys the cusp condition for the two electrons and combined with
the correlation part we could write the ansatz for the wave function as

ψT(R) =
1√
2

[
ψα(r1)ψβ (r2)−ψβ (r1)ψγ(r2)

]
f (r12),

Several forms of the correlation function f (r i j ) exist in the literature and we will mention
only a selected few to give the general idea of how they are constructed. A form given by
Hylleraas that had great success for the helium atom was the series expansion

f (r i j ) = exp(εs)∑
k

ckr
lksmktnk
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where the inter-particle separation r i j for simplicity is written as r. In addition s= r i + r i and
t = r i − r i with r i and r j being the two electron-nucleus distances. All the other quantities are
free parameters. Notice that the cusp condition is satisfied by the exponential. Unfortunately
the convergence of this function turned out to be quite slow. For example, to pinpoint the He-
energy to the fourth decimal digit a nine term function would suffice. To double the number
of digits, one needed almost 1100terms.

The so called Padé-Jastrow form, however, is more suited for larger systems. It is based on
an exponential function with a rational exponent:

f (r i j ) = exp(U)

In its general form,U is a potential series expansion on both the absolute particle coordinates
r i and the inter-particle coordinates r i j :

U =
N

∑
i< j




∑
k

αk rk
i

1+∑
k

α ′kr
k
i


+

N

∑
i




∑
k

βk rk
i j

1+∑
k

β ′kr
k
i j




A typical Padé-Jastrow function used for quantum mechanical Monte Carlo calculations of
molecular and atomic systems is

exp

(
ari j

(1+β r i j )

)

where β is a variational parameter and a dependes on the spins of the interacting particles.

14.5.5 Program Example for Atomic Systems

The variational Monte Carlo algorithm consists of two distinct parts. In the first a walker, a
single electron in our case, consisting of an initially random set of electron positions is prop-
agated according to the Metropolis algorithm, in order to equilibrate it and begin sampling .
In the second part, the walker continues to be moved, but energies and other observables are
also accumulated for later averaging and statistical analysis. In the program below, the elec-
trons are moved individually and not as a whole configuration. This improves the efficiency of
the algorithm in larger systems, where configuration moves require increasingly small steps
to maintain the acceptance ratio. The main part of the code contains calls to various func-
tions, setup and declarations of arrays etc. Note that we have defined a fixed step length h
for the numerical computation of the second derivative of the kinetic energy. Furthermore,
we perform the Metropolis test when we have moved all electrons. This should be compared
to the case where we move one electron at the time and perform the Metropolis test. The lat-
ter is similar to the algorithm for the Ising model discussed in the previous chapter. A more
detailed discussion and better statistical treatments and analyses are discussed in chapters
17 and 15.

http://folk.uio.no/compphys/programs/chapter14/cpp/program1.cpp

// Variational Monte Carlo for atoms with up to two electrons

#include <iostream>

#include <fstream>

#include <iomanip>

#include "lib.h"

using namespace std;

// output file as global variable

ofstream ofile;

http://folk.uio.no/compphys/programs/chapter14/cpp/program1.cpp


14.5 Variational Monte Carlo for atoms 471
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Fig. 14.3 Chart flow for the Quantum Varitional Monte Carlo algorithm.



472 14 Quantum Monte Carlo Methods

// the step length and its squared inverse for the second derivative

#define h 0.001

#define h2 1000000

// declaraton of functions

// Function to read in data from screen, note call by reference

void initialise(int&, int&, int&, int&, int&, int&, double&) ;

// The Mc sampling for the variational Monte Carlo

void mc_sampling(int, int, int, int, int, int, double, double *, double *);

// The variational wave function

double wave_function(double **, double, int, int);

// The local energy

double local_energy(double **, double, double, int, int, int);

// prints to screen the results of the calculations

void output(int, int, int, double *, double *);

// Begin of main program

//int main()

int main(int argc, char* argv[])

{

char *outfilename;

int number_cycles, max_variations, thermalization, charge;

int dimension, number_particles;

double step_length;

double *cumulative_e, *cumulative_e2;

// Read in output file, abort if there are too few command-line arguments

if( argc <= 1 ){

cout << "Bad Usage: " << argv[0] <<

" read also output file on same line" << endl;

exit(1);

}

else{

outfilename=argv[1];

}

ofile.open(outfilename);

// Read in data

initialise(dimension, number_particles, charge,

max_variations, number_cycles,

thermalization, step_length) ;

cumulative_e = new double[max_variations+1];

cumulative_e2 = new double[max_variations+1];

// Do the mc sampling

mc_sampling(dimension, number_particles, charge,

max_variations, thermalization,

number_cycles, step_length, cumulative_e, cumulative_e2);

// Print out results

output(max_variations, number_cycles, charge, cumulative_e, cumulative_e2);

delete [] cumulative_e; delete [] cumulative_e;

ofile.close(); // close output file

return 0;

}
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The implementation of the brute force Metropolis algorithm is shown in the next function.
Here we have a loop over the variational variables α. It calls two functions, one to compute
the wave function and one to update the local energy.

// Monte Carlo sampling with the Metropolis algorithm

void mc_sampling(int dimension, int number_particles, int charge,

int max_variations,

int thermalization, int number_cycles, double step_length,

double *cumulative_e, double *cumulative_e2)

{

int cycles, variate, accept, dim, i, j;

long idum;

double wfnew, wfold, alpha, energy, energy2, delta_e;

double **r_old, **r_new;

alpha = 0.5*charge;

idum=-1;

// allocate matrices which contain the position of the particles

r_old = (double **) matrix( number_particles, dimension, sizeof(double));

r_new = (double **) matrix( number_particles, dimension, sizeof(double));

for (i = 0; i < number_particles; i++) {

for ( j=0; j < dimension; j++) {

r_old[i][j] = r_new[i][j] = 0;

}

}

// loop over variational parameters

for (variate=1; variate <= max_variations; variate++){

// initialisations of variational parameters and energies

alpha += 0.1;

energy = energy2 = 0; accept =0; delta_e=0;

// initial trial position, note calling with alpha

// and in three dimensions

for (i = 0; i < number_particles; i++) {

for ( j=0; j < dimension; j++) {

r_old[i][j] = step_length*(ran1(&idum)-0.5);

}

}

wfold = wave_function(r_old, alpha, dimension, number_particles);

// loop over monte carlo cycles

for (cycles = 1; cycles <= number_cycles+thermalization; cycles++){

// new position

for (i = 0; i < number_particles; i++) {

for ( j=0; j < dimension; j++) {

r_new[i][j] = r_old[i][j]+step_length*(ran1(&idum)-0.5);

}

}

wfnew = wave_function(r_new, alpha, dimension, number_particles);

// Metropolis test

if(ran1(&idum) <= wfnew*wfnew/wfold/wfold ) {

for (i = 0; i < number_particles; i++) {

for ( j=0; j < dimension; j++) {

r_old[i][j]=r_new[i][j];

}

}

wfold = wfnew;

accept = accept+1;

}

// compute local energy

if ( cycles > thermalization ) {

delta_e = local_energy(r_old, alpha, wfold, dimension,

number_particles, charge);
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// update energies

energy += delta_e;

energy2 += delta_e*delta_e;

}

} // end of loop over MC trials

cout << "variational parameter= " << alpha

<< " accepted steps= " << accept << endl;

// update the energy average and its squared

cumulative_e[variate] = energy/number_cycles;

cumulative_e2[variate] = energy2/number_cycles;

} // end of loop over variational steps

free_matrix((void **) r_old); // free memory

free_matrix((void **) r_new); // free memory

} // end mc_sampling function

The wave function is in turn defined in the next function. Here we limit ourselves to a function
which consists only of the product of single-particle wave functions.

// Function to compute the squared wave function, simplest form

double wave_function(double **r, double alpha,int dimension, int number_particles)

{

int i, j, k;

double wf, argument, r_single_particle, r_12;

argument = wf = 0;

for (i = 0; i < number_particles; i++) {

r_single_particle = 0;

for (j = 0; j < dimension; j++) {

r_single_particle += r[i][j]*r[i][j];

}

argument += sqrt(r_single_particle);

}

wf = exp(-argument*alpha) ;

return wf;

}

Finally, the local energy is computed using a numerical derivation for the kinetic energy. We
use the familiar expression derived in Eq. (3.4), that is

f ′′0 =
fh−2 f0+ f−h

h2 ,

in order to compute

− 1
2ψT(R)

∇2ψT(R). (14.23)

The variable h is a chosen step length. For helium, since it is rather easy to evaluate the
local energy, the above is an unnecessary complication. However, for many-electron or other
many-particle systems, the derivation of a closed-form expression for the kinetic energy can
be quite involved, and the numerical evaluation of the kinetic energy using Eq. (3.4) may
result in a simpler code and/or even a faster one.

// Function to calculate the local energy with num derivative

double local_energy(double **r, double alpha, double wfold, int dimension,

int number_particles, int charge)

{

int i, j , k;

double e_local, wfminus, wfplus, e_kinetic, e_potential, r_12,
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r_single_particle;

double **r_plus, **r_minus;

// allocate matrices which contain the position of the particles

// the function matrix is defined in the progam library

r_plus = (double **) matrix( number_particles, dimension, sizeof(double));

r_minus = (double **) matrix( number_particles, dimension, sizeof(double));

for (i = 0; i < number_particles; i++) {

for ( j=0; j < dimension; j++) {

r_plus[i][j] = r_minus[i][j] = r[i][j];

}

}

// compute the kinetic energy

e_kinetic = 0;

for (i = 0; i < number_particles; i++) {

for (j = 0; j < dimension; j++) {

r_plus[i][j] = r[i][j]+h;

r_minus[i][j] = r[i][j]-h;

wfminus = wave_function(r_minus, alpha, dimension, number_particles);

wfplus = wave_function(r_plus, alpha, dimension, number_particles);

e_kinetic -= (wfminus+wfplus-2*wfold);

r_plus[i][j] = r[i][j];

r_minus[i][j] = r[i][j];

}

}

// include electron mass and hbar squared and divide by wave function

e_kinetic = 0.5*h2*e_kinetic/wfold;

// compute the potential energy

e_potential = 0;

// contribution from electron-proton potential

for (i = 0; i < number_particles; i++) {

r_single_particle = 0;

for (j = 0; j < dimension; j++) {

r_single_particle += r[i][j]*r[i][j];

}

e_potential -= charge/sqrt(r_single_particle);

}

// contribution from electron-electron potential

for (i = 0; i < number_particles-1; i++) {

for (j = i+1; j < number_particles; j++) {

r_12 = 0;

for (k = 0; k < dimension; k++) {

r_12 += (r[i][k]-r[j][k])*(r[i][k]-r[j][k]);

}

e_potential += 1/sqrt(r_12);

}

}

free_matrix((void **) r_plus); // free memory

free_matrix((void **) r_minus);

e_local = e_potential+e_kinetic;

return e_local;

}

The remaining part of the program consists of the output and initialize functions and is not
listed here.

The way we have rewritten Schrödinger’s equation results in energies given in atomic
units. If we wish to convert these energies into more familiar units like electronvolt (eV), we
have to multiply our reults with 2E0 where E0 = 13.6 eV, the binding energy of the hydrogen
atom. Using Eq. (14.21) for the trial wave function, we obtain an energy minimum at α =
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1.68754. The ground state is E = −2.85 in atomic units or E = −77.5 eV. The experimental
value is −78.8 eV. Obviously, improvements to the wave function such as including the ’cusp’-
condition for the two electrons as well, see Eq. (14.22), could improve our agreement with
experiment.

We note that the effective charge is less than the charge of the nucleus. We can interpret
this reduction as an effective way of incorporating the repulsive electron-electron interaction.
Finally, since we do not have the exact wave function, we see from Fig. 14.4 that the variance
is not zero at the energy minimum. Techniques such as importance sampling, to be contrasted
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α

MC simulation with N=107

Exact result

Fig. 14.4 Result for ground state energy of the helium atom using Eq. (14.21) for the trial wave function.
A total of 107 Monte Carlo moves were used with a step length of 1 Bohr radius. Approximately 50% of all
proposed moves were accepted. The variance at the minimum is 1.026, reflecting the fact that we do not have
the exact wave function. The variance has a minimum at value of α different from the energy minimum. The
numerical results are compared with the exact result E[Z] = Z2−4Z+ 5

8Z.

to the brute force Metropolis sampling used here, and various optimization techniques of the
variance and the energy, will be discussed in the next section and in chapter 17.

14.5.6 Importance sampling

As mentioned in connection with the generation of random numbers, sequential correlations
must be given thorough attention as it may lead to bad error estimates of our numerical
results.

There are several things we need to keep in mind in order to keep the correlation low. First
of all, the transition acceptance must be kept as high as possible. Otherwise, a walker will
dwell at the same spot in state space for several iterations at a time, which will clearly lead
to high correlation between nearby succeeding measurements.

4 With hydrogen like wave functions for the 1s state one can easily calculate the energy of the ground state
for the helium atom as function of the charge Z. The results is E[Z] = Z2−4Z+ 5

8Z, and taking the derivative

with respect to Z to find the minumum we get Z = 2− 5
16 = 1.6875. This number represents an optimal effective

charge.
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Secondly, when using the simple symmetric form of ω(rold, rnew), one has to keep in mind
the random walk nature of the algorithm. Transitions will be made between points that are
relatively close to each other in state space, which also clearly contributes to increase corre-
lation. The seemingly obvious way to deal with this would be just to increase the step size, al-
lowing the walkers to cover more of the state space in fewer steps (thus requiring fewer steps
to reach ergodicity). But unfortunately, long before the step length becomes desirably large,
the algorithm breaks down. When proposing moves symmetrically and uniformly around rold,
the step acceptance becomes directly dependent on the step length in such a way that a too
large step length reduces the acceptance. The reason for this is very simple. As the step
length increases, a walker will more likely be given a move proposition to areas of very low
probability, particularly if the governing trial wave function describes a localized system. In
effect, the effective movement of the walkers again becomes too small, resulting in large
correlation. For optimal results we therefore have to balance the step length with the accep-
tance.

With a transition suggestion rule ω as simple as the uniform symmetrical one emphasized
so far, the usual rule of thumb is to keep the acceptance around 0.5. But the optimal interval
varies a lot from case to case. We therefore have to treat each numerical experiment with
care.

By choosing a better ω, we can still improve the efficiency of the step length versus accep-
tance. Recall that ω may be chosen arbitrarily as long as it fulfills ergodicity, meaning that it
has to allow the walker to reach any point of the state space in a finite number of steps. What
we basically want is an ω that pushes the ratio towards unity, increasing the acceptance. The
theoretical situation of ω exactly equal to p itself:

ω(rnew, rold) = ω(rnew) = p(rnew)

would give the maximal acceptance of 1. But then we would already have solved the prob-
lem of producing points distributed according to p. One typically settles on modifying the
symmetrical ω so that the walkers move more towards areas of the state space where the
distribution is large. One such procedure is the Fokker-Planck formalism where the walkers
are moved according to the gradient of the distribution. The formalism “pushes” the walkers
in a “desirable” direction. The idea is to propose moves similarly to an isotropic diffusion
process with a drift. A new position xnew is calculated from the old one, xold, as follows:

rnew = rold+ χ +DF(rold)δ t (14.24)

Here χ is a Gaussian pseudo-random number with mean equal zero and variance equal 2Dδ t.
It accounts for the diffusion part of the transition. The third term on the left hand side ac-
counts for the drift. F is a drift velocity dependent on the position of the walker and is derived
from the quantum mechanical wave function ψ. The constant D, being the diffusion constant
of χ , also adjusts the size of the drift. δ t is a time step parameter whose presence will be
clarified shortly.

It can be shown that the ω corresponding to the move proposition rule in Eq. (14.24)
becomes (in non-normalized form):

ω(rold, rnew) = exp

(
− (rnew− rold−Dδ tF(rold))2

4Dδ t

)
(14.25)

which, as expected, is a Gaussian with variance 2Dδ t centered slightly off rold due to the drift
term DF(rold)δ t.

What is the optimal choice for the drift term? From statistical mechanics we know that a
simple isotropic drift diffusion process obeys a Fokker-Planck equation of the form:
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∂ f
∂ t

= ∑
i

D
∂

∂xi

(
∂

∂xi
−Fi(F)

)
f (14.26)

where f is the continuous distribution of walkers. Equation (14.24) is a discretized realization
of such a process where δ t is the discretized time step. In order for the solution f to converge
to the desired distribution p, it can be shown that the drift velocity has to be chosen as follows:

F =
1
f

∇ f

where the operator ∇ is the vector of first derivatives of all spatial coordinates. Convergence
for such a diffusion process is only guaranteed when the time step approaches zero. But in the
Metropolis algorithm, where drift diffusion is used just as a transition proposition rule, this
bias is corrected automatically by the rejection mechanism. In our application, the desired
probability distribution function being the square absolute of the wave function, f = |ψ |2, the
drift velocity becomes:

F = 2
1
ψ

∇ψ (14.27)

As expected, the walker is “pushed” along the gradient of the wave function.
When dealing with many-particle systems, we should also consider whether to move only

one particle at a time at each transition or all at once. The former method may often be more
efficient. A movement of only one particle will restrict the accessible space a walker can move
to in a single transition even more, thus introducing correlation. But on the other hand, the
acceptance is increased so that each particle can be moved further than it could in a standard
all-particle move. It is also computationally far more efficient to do one-particle transitions
particularly when dealing with complicated distributions governing many-dimensional anti-
symmetrical fermionic systems.

Alternatively, we can treat the sequence of all one-particle transitions as one total transi-
tion of all particles. This gives a larger effective step length thus reducing the correlation.
From a computational point of view, we may not gain any speed by summing up the individual
one-particle transitions as opposed to doing an all-particle transition. But the reduced corre-
lation increases the total efficiency. We are able to do fewer calculations in order to reach the
same numerical accuracy.

Another way to acquire some control over the correlation is to do a so called blocking
procedure on our set of numerical measurements. This is discussed in chapter 16.

14.6 Exercises

14.1. The aim of this problem is to test the variational Monte Carlo apppled to light atoms.
We will test different trial wave function ΨT . The systems we study are atoms consisting of
two electrons only, such as the helium atom, LiII and BeIII . The atom LiII has two electrons
and Z = 3 while BeIII has Z = 4 but still two electrons only. A general ansatz for the trial wave
function is

ψT(R) = φ(r1)φ(r2) f (r12). (14.28)

For all systems we assume that the one-electron wave functions φ(r i) are described by the an
elecron in the lowest hydrogen orbital 1s.

The specific trial functions we study are

ψT1(r1, r2, r12) = exp(−α(r1+ r2)), (14.29)
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where α is the variational parameter,

ψT2(r1, r2, r12) = exp(−α(r1+ r2))(1+β r12), (14.30)

with β as a new variational parameter and

ψT3(r1, r2, r12) = exp(−α(r1+ r2))exp

(
r12

2(1+β r12)

)
. (14.31)

a) Find the closed-form expressions for the local energy for the above trial wave function for
the helium atom. Study the behavior of the local energy with these functions in the limits
r1→ 0, r2→ 0 and r12→ 0.

b) Compute

〈Ĥ〉=
∫

dRΨ∗T (R)Ĥ(R)ΨT(R)∫
dRΨ∗T (R)ΨT(R)

, (14.32)

for the helium atom using the variational Monte Carlo method employing the Metropolis
algorithm to sample the different states using the trial wave function ψT1(r1, r2, r12). Com-
pare your results with the closed-form expression

〈Ĥ〉= h̄2

me
α2− 27

32
e2

πε0
α. (14.33)

c) Use the optimal value of α from the previous point to compute the ground state of the
helium atom using the other two trial wave functions ψT2(r1, r2, r12) and ψT3(r1, r2, r12). In
this case you have to vary both α and β . Explain briefly which function ψT1(r1, r2, r12),
ψT2(r1, r2, r12) and ψT3(r1, r2, r12) is the best.

d) Use the optimal value for all parameters and all wave functions to compute the expectation
value of the mean distance 〈r12〉 between the two electrons. Comment your results.

e) We will now repeat point 1c), but we replace the helium atom with the ions LiII and BeIII .
Perform first a variational calculation using the first ansatz for the trial wave function
ψT1(r1, r2, r12) in order to find an optimal value for α. Use then this value to start the vari-
ational calculation of the energy for the wave functions ψT2(r1, r2, r12) and ψT3(r1, r2, r12).
Comment your results.

14.2. The H+
2 molecule consists of two protons and one electron, with binding energy EB =

−2.8 eV and an equilibrium position r0 = 0.106nm between the two protons.
We define our system through the following variables. The electron is at a distance r from

a chosen origo, one of the protons is at the distance −R/2 while the other one is placed at
R/2 from origo, resulting in a distance to the electron of r −R/2 and r +R/2, respectively.

In our solution of Schrödinger’s equation for this system we are going to neglect the kinetic
energies of the protons, since they are 2000 times heavier than the electron. We assume
thus that their velocities are negligible compared to the velocity of the electron. In addition
we omit contributions from nuclear forces, since they act at distances of several orders of
magnitude smaller than the equilibrium position.

We can then write Schrödinger’s equation as follows

{
− h̄2∇2

r

2me
− ke2

|r −R/2| −
ke2

|r +R/2|+
ke2

R

}
ψ(r ,R) = Eψ(r ,R), (14.34)

where the first term is the kinetic energy of the electron, the second term is the potential
energy the electron feels from the proton at −R/2 while the third term arises from the po-
tential energy contribution from the proton at R/2. The last term arises due to the repulsion
between the two protons.
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Since the potential is symmetric with respect to the interchange of R→−R and r →−r
it means that the probability for the electron to move from one proton to the other must be
equal in both directions. We can say that the electron shares it’s time between both protons.

With this caveat, we can now construct a model for simulating this molecule. Since we have
only one elctron, we could assume that in the limit R→ ∞, i.e., when the distance between
the two protons is large, the electron is essentially bound to only one of the protons. This
should correspond to a hydrogen atom. As a trial wave function, we could therefore use the
electronic wave function for the ground state of hydrogen, namely

ψ100(r) =

(
1

πa3
0

)1/2

e−r/a0. (14.35)

Since we do not know exactly where the electron is, we have to allow for the possibility that
the electron can be coupled to one of the two protons. This form includes the ’cusp’-condition
discussed in the previous section. We define thence two hydrogen wave functions

ψ1(r ,R) =

(
1

πa3
0

)1/2

e−|r−R/2|/a0, (14.36)

and

ψ2(r ,R) =

(
1

πa3
0

)1/2

e−|r+R/2|/a0. (14.37)

Based on these two wave functions, which represent where the electron can be, we attempt
at the following linear combination

ψ±(r ,R) =C± (ψ1(r ,R)±ψ2(r ,R)) , (14.38)

with C± a constant. Based on this discussion, we add a second electron in order to simulate
the H2 molecule. That is the topic for project 14.3.

14.3. The H2 molecule consists of two protons and two electrons with a ground state energy
E =−1.17460a.u. and equilibrium distance between the two hydrogen atoms of r0 = 1.40Bohr
radii. We define our systems using the following variables. Origo is chosen to be halfway
between the two protons. The distance from proton 1 is defined as −R/2 whereas proton 2
has a distance R/2. Calculations are performed for fixed distances R between the two protons.

Electron 1 has a distance r1 from the chose origo, while electron 2 has a distance r2. The
kinetic energy operator becomes then

− ∇2
1

2
− ∇2

2

2
. (14.39)

The distance between the two electrons is r12 = |r1− r2|. The repulsion between the two elec-
trons results in a potential energy term given by

+
1

r12
. (14.40)

In a similar way we obtain a repulsive contribution from the interaction between the two
protons given by

+
1
|R| , (14.41)

where R is the distance between the two protons. To obtain the final potential energy we
need to include the attraction the electrons feel from the protons. To model this, we need
to define the distance between the electrons and the two protons. If we model this along a
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chosen z-akse with electron 1 placed at a distance r1 from a chose origo, one proton at −R/2
and the other at R/2, the distance from proton 1 to electron 1 becomes

r1p1 = r1+R/2, (14.42)

and
r1p2 = r1−R/2, (14.43)

from proton 2. Similarly, for electron 2 we obtain

r2p1 = r2+R/2, (14.44)

and
r2p2 = r2−R/2. (14.45)

These four distances define the attractive contributions to the potential energy

− 1
r1p1
− 1

r1p2
− 1

r2p1
− 1

r2p2
. (14.46)

We can then write the total Hamiltonian as

Ĥ =−∇2
1

2
− ∇2

2

2
− 1

r1p1
− 1

r1p2
− 1

r2p1
− 1

r2p2
+

1
r12

+
1
|R| , (14.47)

and if we choose R = 0 we obtain the helium atom.
In this project we will use a trial wave function of the form

ψT(r1, r2,R) = ψ(r1,R)ψ(r2,R)exp

(
r12

2(1+β r12)

)
, (14.48)

with the following trial wave function

ψ(r1,R) = (exp(−αr1p1)+exp(−αr1p2)) , (14.49)

for electron 1 and
ψ(r2,R) = (exp(−αr2p1)+exp(−αr2p2)) . (14.50)

The variational parameters are α and β .
One can show that in the limit where all distances approach zero that

α = 1+exp(−R/α), (14.51)

resulting in β kas the only variational parameter. The last equation is a non-linear equation
which we can solve with for example Newton’s method discussed in chapter 4.

1. Find the local energy as function of R.
2. Set up and algorithm and write a program which computes the expectation value of 〈Ĥ〉

using the variational Monte Carlo method with a brute force Metropolis sampling. For each
inter-proton distance R you must find the parameter β which minimizes the energy. Plot
the corresponding energy as function of the distance R between the protons.

3. Use thereafter the optimal parameter sets to compute the average distance 〈r12〉 between
the electrons where the energy as function of R exhibits its minimum. Comment your re-
sults.

4. We modify now the approximation for the wave functions of electrons 1 and 2 by subtract-
ing the two terms instead of adding up, viz
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ψ(r1,R) = (exp(−αr1p1)−exp(−αr1p2)) , (14.52)

for electron 1
ψ(r2,R) = (exp(−αr2p1)−exp(−αr2p2)) , (14.53)

for electron 2. Mathematically, this approach is equally viable as the previous one. Repeat
your calculations from point b) and see if you can obtain an energy minimum as function
of R. Comment your results.



Part V

Advanced topics



The last part of this book contains several project oriented advanced topics. Each of these
topics can serve as a regular one-semester course based on the solution of the pertinent
projects. We present several topics, mainly within applications to quantum mechanical sys-
tems and statistical mechanics. We discuss Hartree-Fock and density-functional theory cal-
culations for electronic systems, variational and diffusion Monte Carlo calculations of many-
particle systems (atoms, quantum dots and Bose-Einstein condensation), large molecular-
dynamics calculations of solids, percolation and critical phenomena and advanced simulations
of phase transitions.



Chapter 15

Many-body approaches to studies of electronic

systems: Hartree-Fock theory and Density

Functional Theory

Abstract This chapter presents the Hartree-Fock method with an emphasis on computing the
energies of selected closed-shell atoms.

15.1 Introduction

A theoretical understanding of the behavior of quantum mechanical systems with many in-
teracting particles, normally called many-body systems, is a great challenge and provides
fundamental insights into systems governed by quantum mechanics, as well as offering po-
tential areas of industrial applications, from semi-conductor physics to the construction of
quantum gates. The capability to simulate quantum mechanical systems with many interact-
ing particles is crucial for advances in such rapidly developing fields like materials science.

However, most quantum mechanical systems of interest in physics consist of a large num-
ber of interacting particles. The total number of particles N is usually sufficiently large that an
exact solution (viz., in closed form) cannot be found. One needs therefore reliable numerical
methods for studying quantum mechanical systems with many particles.

Studies of many-body systems span from our understanding of the strong force with quarks
and gluons as degrees of freedom, the spectacular macroscopic manifestations of quantal
phenomena such as Bose-Einstein condensation with millions of atoms forming a coherent
state, to properties of new materials, with electrons as effective degrees of freedom. The
length scales range from few micrometers and nanometers, typical scales met in materials
science, to 10−15−10−18 m, a relevant length scale for the strong interaction. Energies can
span from few meV to GeV or even TeV. In some cases the basic interaction between the in-
teracting particles is well-known. A good example is the Coulomb force, familiar from studies
of atoms, molecules and condensed matter physics. In other cases, such as for the strong in-
teraction between neutrons and protons (commonly dubbed as nucleons) or dense quantum
liquids one has to resort to parameterizations of the underlying interparticle interactions. But
the system can also span over much larger dimensions as well, with neutron stars as one of
the classical objects. This star is the endpoint of massive stars which have used up their fuel.
A neutron star, as its name suggests, is composed mainly of neutrons, with a small fraction
of protons and probably quarks in its inner parts. The star is extremely dense and compact,
with a radius of approximately 10 km and a mass which is roughly 1.5 times that of our sun.
The quantum mechanical pressure which is set up by the interacting particles counteracts
the gravitational forces, hindering thus a gravitational collapse. To describe a neutron star
one needs to solve Schrödinger’s equation for approximately 1054 interacting particles!

With a given interparticle potential and the kinetic energy of the system, one can in turn
define the so-called many-particle Hamiltonian Ĥ which enters the solution of Schrödinger’s

485
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equation or Dirac’s equation in case relativistic effects need to be included. For many parti-
cles, Schrödinger’s equation is an integro-differential equation whose complexity increases
exponentially with increasing numbers of particles and states that the system can access.
Unfortunately, apart from some few analytically solvable problems and one and two-particle
systems that can be treated numerically exactly via the solution of sets of partial differen-
tial equations, the typical absence of an exactly solvable (on closed form) contribution to the
many-particle Hamiltonianmeans that we need reliable numerical many-body methods. These
methods should allow for controlled approximations and provide a computational scheme
which accounts for successive many-body corrections in a systematic way.

Typical examples of popular many-body methods are coupled-cluster methods [93–97], var-
ious types of Monte Carlo methods [98–100], perturbative many-body methods [101–103],
Green’s function methods [104, 105], the density-matrix renormalization group [106, 107],
density functional theory [108] and ab initio density functional theory [109–111], and large-
scale diagonalization methods [112–114], just to mention a few. The physics of the system
hints at which many-body methods to use. For systems with strong correlations among the
constituents, methods based on mean-field theory such as Hartree-Fock theory and density
functional theory are normally ruled out. This applies also to perturbative methods, unless
one can renormalize the parts of the interaction which cause problems.

The aim of this and the next three chapters is to present to you many-body methods which
can be used to study properties of atoms, molecules, systems in the solid state and nuclear
physics. We limit the attention to non-relativistic quantum mechanics.

In this chapter we limit ourselves to studies of electronic systems such atoms, molecules
and quantum dots, as discussed partly in chapter 14 as well. Using the Born-Oppenheimer
approximation we rewrote Schrödinger’s equation for N electrons as

[
−

N

∑
i=1

1
2

∇2
i −

N

∑
i=1

Z
r i
+

N

∑
i< j

1
r i j

]
Ψ(R) = EΨ(R),

where we let R represent the positions which the N electrons can take, that is R= {r1, r2, . . . , rN}.
With more than one electron present we cannot find an solution on a closed form and must
resort to numerical efforts. In this chapter we will examine Hartree-Fock theory applied to
the atomic problem. However, the machinery we expose can easily be extended to studies of
molecules or two-dimensional systems like quantum dots.

For atoms and molecules, the electron-electron interaction is rather weak compared with
the attraction from the nucleus. An independent particle picture is therefore a viable first step
towards the solution of Schrödinger’s equation. We assume therefore that each electrons sees
an effective field set up by the other electrons. This leads to an integro-differential equation
and methods like Hartree-Fock theory discussed in this chapter.

In practical terms, for the Hartree-Fock method we end up solving a one-particle equation,
as is the case for the hydrogen atom but modified due to the screening from the other elec-
trons. This modified single-particle equation reads (see Eq. (14.15 for the hydrogen case) in
atomic units

−1
2

d2

dr2 unl(r)+

(
l(l +1)

2r2 − Z
r
+Φ(r)+Fnl

)
unl(r) = enlunl(r).

The function unl is the solution of the radial part of the Schrödinger equation and the functions
Φ(r) and Fnl are the corrections due to the screening from the other electrons. We will derive
these equations in the next section.

The total one-particle wave function, see chapter 14 is

ψnlml sms = φnlml (r)ξms(s)
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with s is the spin (1/2 for electrons), ms is the spin projection ms =±1/2, and the spatial part
is

φnlml (r) = Rnl(r)Ylml (r̂)

with Y the spherical harmonics discussed in chapter 14 and unl = rRnl. The other quantum
numbers are the orbital momentum l and its projection ml = −l ,−l + 1, . . . , l − 1, l and the
principal quantum number n= nr + l +1, with nr the number of nodes of a given single-particle
wave function. All results are in atomic units, meaning that the energy is given by enl =

−Z2/2n2 and the radius is dimensionless.
We obtain then a modified single-particle eigenfunction which in turn can be used as an

input in a variational Monte Carlo calculation of the ground state of a specific atom. This
is the aim of the next chapter. Since Hartree-Fock theory does not treat correctly the role
of many-body correlations, the hope is that performing a Monte Carlo calculation we may
improve our results by obtaining a better agreement with experiment.

In the next chapter we focus on the variational Monte Carlo method as a way to improve
upon the Hartree-Fock results. Although the variational Monte Carlo approach will improve
our agreement with experiment compared with the Hartree-Fock results, there are still fur-
ther possibilities for improvement. This is provided by Green’s function Monte Carlo meth-
ods, which allow for an in principle exact calculation. The diffusion Monte Carlo method is
discussed in chapter 17, with an application to studies of Bose-Einstein condensation. Other
many-body methods such as large-scale diagonalization and coupled-cluster theories are dis-
cussed in Ref. [115].

15.2 Hartree-Fock theory

Hartree-Fock theory [95, 116] is one of the simplest approximate theories for solving the
many-body Hamiltonian. It is based on a simple approximation to the true many-body wave-
function; that the wave-function is given by a single Slater determinant of N orthonormal
single-particle wave functions1

ψnlml sms = φnlml (r)ξms(s).

We use hereafter the shorthand ψnlml sms(r) = ψα(r), where α now contains all the quantum
numbers needed to specify a particular single-particle orbital.

The Slater determinant can then be written as

Φ(r1, r2, . . . , rN,α,β , . . . ,ν) =
1√
N!

∣∣∣∣∣∣∣∣∣∣∣

ψα(r1) ψα(r2) . . . ψα(rN)

ψβ (r1) ψβ (r2) . . . ψβ (rN)

...
...

. . .
...

ψν (r1) ψβ (r2) . . . ψβ (rN)

∣∣∣∣∣∣∣∣∣∣∣

. (15.1)

Here the variables r i include the coordinates of spin and space of particle i. The quantum
numbers α,β , . . . ,ν encompass all possible quantum numbers needed to specify a particular
system. As an example, consider the Neon atom, with ten electrons which can fill the 1s, 2sand
2p single-particle orbitals. Due to the spin projections ms and orbital momentum projections
ml , the 1sand 2sstates have a degeneracy of 2(2l +1)= 2while the 2p orbital has a degeneracy

1 We limit ourselves to a restricted Hartree-Fock approach and assume that all the lowest-lying orbits are
filled. This constitutes an approach suitable for systems with filled shells. The theory we outline is therefore
applicable to systems which exhibit so-called magic numbers like the noble gases, closed-shell nuclei like 16O
and 40Ca and quantum dots with magic number fillings.
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of 2(2l +1)2(2 ·1+1) = 6. This leads to ten possible values for α,β , . . . ,ν. Fig. 15.1 shows the
possible quantum numbers which the ten first elements can have.

s p

K

L

H

s p s p

K

L

He Li

s p s p s p s p

n= 1

n= 2

Be B C N

s p s p s p

n= 1

n= 2

O F Ne

Fig. 15.1 The electronic configurations for the ten first elements. We let an arrow which points upward to
represent a state with ms = 1/2 while an arrow which points downwards has ms =−1/2.

If we consider the helium atom with two electrons in the 1s state, we can write the total
Slater determinant as

Φ(r1, r2,α,β ) =
1√
2

∣∣∣∣
ψα(r1) ψα(r2)

ψβ (r1) ψβ (r2)

∣∣∣∣ , (15.2)

with α = nlml sms = (1001/21/2) and β = nlml sms = (1001/2− 1/2) or using ms = 1/2 =↑ and
ms = −1/2 =↓ as α = nlml sms = (1001/2 ↑) and β = nlml sms = (1001/2 ↓). It is normal to skip
the quantum number of the one-electron spin. We introduce therefore the shorthand nlml ↑ or
nlml ↓) for a particular state. Writing out the Slater determinant

Φ(r1, r2,α,β ) =
1√
2

[
ψα(r1)ψβ (r2)−ψβ (r1)ψγ (r2)

]
, (15.3)

we see that the Slater determinant is antisymmetric with respect to the permutation of two
particles, that is

Φ(r1, r2,α,β ) =−Φ(r2, r1,α,β ),

For three electrons we have the general expression

Φ(r1, r2, r3,α,β ,γ) =
1√
3!

∣∣∣∣∣∣

ψα(r1) ψα(r2) ψα(r3)

ψβ (r1) ψβ (r2) ψβ (r3)

ψγ(r1) ψγ(r2) ψγ(r3)

∣∣∣∣∣∣
. (15.4)

Computing the determinant gives

Φ(r1, r2, r3,α,β ,γ) = 1√
3!

[
ψα(r1)ψβ (r2)ψγ(r3)+ψβ (r1)ψγ(r2)ψα(r3)+ψγ(r1)ψα (r2)ψβ (r3)−

ψγ (r1)ψβ (r2)ψα(r3)−ψβ (r1)ψα (r2)ψγ(r3)−ψα(r1)ψγ (r2)ψβ (r3)
]
. (15.5)

We note again that the wave-function is antisymmetric with respect to an interchange of any
two electrons, as required by the Pauli principle. For an N-body Slater determinant we have
thus (omitting the quantum numbers α,β , . . . ,ν)
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Φ(r1, r2, . . . , r i , . . . , r j , . . . rN) =−Φ(r1, r2, . . . , r j , . . . , r i , . . . rN).

As another example, consider the Slater determinant for the ground state of beryllium.
This system is made up of four electrons and we assume that these electrons fill the 1sand 2s
hydrogen-like orbits. The radial part of the single-particle could also be represented by other
single-particle wave functions such as those given by the harmonic oscillator.

The ansatz for the Slater determinant can then be written as

Φ(r1, r2, , r3, r4,α,β ,γ,δ ) =
1√
4!

∣∣∣∣∣∣∣∣

ψ100↑(r1) ψ100↑(r2) ψ100↑(r3) ψ100↑(r4)

ψ100↓(r1) ψ100↓(r2) ψ100↓(r3) ψ100↓(r4)

ψ200↑(r1) ψ200↑(r2) ψ200↑(r3) ψ200↑(r4)

ψ200↓(r1) ψ200↓(r2) ψ200↓(r3) ψ200↓(r4)

∣∣∣∣∣∣∣∣
.

We choose an ordering where columns represent the spatial positions of various electrons
while rows refer to specific quantum numbers.

Note that the Slater determinant as written is zero since the spatial wave functions for the
spin up and spin down states are equal. However, we can rewrite it as the product of two
Slater determinants, one for spin up and one for spin down. In general we can rewrite it as

Φ(r1, r2, , r3, r4,α,β ,γ,δ ) = Det ↑ (1,2)Det ↓ (3,4)−Det ↑ (1,3)Det ↓ (2,4)

−Det ↑ (1,4)Det ↓ (3,2)+Det ↑ (2,3)Det ↓ (1,4)−Det ↑ (2,4)Det ↓ (1,3)
+Det ↑ (3,4)Det ↓ (1,2),

where we have defined

Det ↑ (1,2) =
∣∣∣∣

1√
2

ψ100↑(r1) ψ100↑(r2)

ψ200↑(r1) ψ200↑(r2)

∣∣∣∣ ,

and

Det ↓ (3,4) =
∣∣∣∣

1√
2

ψ100↓(r3) ψ100↓(r4)

ψ200↓(r3) ψ200↓(r4)

∣∣∣∣ .

The total determinant is still zero! In our variational Monte Carlo calculations this will obvi-
ously cause problems.

We want to avoid to sum over spin variables, in particular when the interaction does not
depend on spin. It can be shown, see for example Moskowitz et al [117, 118], that for the
variational energy we can approximate the Slater determinant as the product of a spin up
and a spin down Slater determinant

Φ(r1, r2, , r3, r4,α,β ,γ,δ ) ∝ Det ↑ (1,2)Det ↓ (3,4),

or more generally as
Φ(r1, r2, . . . rN) ∝ Det ↑ Det ↓,

where we have the Slater determinant as the product of a spin up part involving the number of
electrons with spin up only (two in beryllium and five in neon) and a spin down part involving
the electrons with spin down.

This ansatz is not antisymmetric under the exchange of electrons with opposite spins but
it can be shown that it gives the same expectation value for the energy as the full Slater
determinant as long as the Hamiltonian is spin independent. It is left as an exercise to the
reader to show this. However, before we can prove this need to set up the expectation value
of a given two-particle Hamiltonian using a Slater determinant.
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15.3 Expectation value of the Hamiltonian with a given Slater

determinant

We rewrite our Hamiltonian

Ĥ =−
N

∑
i=1

1
2

∇2
i −

N

∑
i=1

Z
r i
+

N

∑
i< j

1
r i j

,

as

Ĥ = Ĥ0+ ĤI =
N

∑
i=1

ĥi +
N

∑
i< j=1

1
r i j

, (15.6)

where

ĥi =−
1
2

∇2
i −

Z
r i
. (15.7)

The first term of Eq. (15.6), H1, is the sum of the N identical one-body Hamiltonians ĥi . Each
individual Hamiltonian ĥi contains the kinetic energy operator of an electron and its potential
energy due to the attraction of the nucleus. The second term, H2, is the sum of the N(N−1)/2
two-body interactions between each pair of electrons. Let us denote the ground state energy
by E0. According to the variational principle we have

E0≤ E[Φ] =

∫
Φ∗ĤΦdτ (15.8)

where Φ is a trial function which we assume to be normalized
∫

Φ∗Φdτ = 1, (15.9)

where we have used the shorthand dτ = dr1dr2 . . .drN. In the Hartree-Fock method the trial
function is the Slater determinant of Eq. (15.1) which can be rewritten as

Ψ(r1, r2, . . . , rN,α,β , . . . ,ν) =
1√
N!

∑
P
(−)PPψα(r1)ψβ (r2) . . .ψν(rN) =

√
N!A ΦH , (15.10)

where we have introduced the anti-symmetrization operator A defined by the summation
over all possible permutations of two eletrons. It is defined as

A =
1
N! ∑

P
(−)PP, (15.11)

with the the Hartree-function given by the simple product of all possible single-particle func-
tion (two for helium, four for beryllium and ten for neon)

ΦH(r1, r2, . . . , rN,α,β , . . . ,ν) = ψα(r1)ψβ (r2) . . .ψν (rN). (15.12)

Both Ĥ0 and ĤI are invariant under electron permutations, and hence commute with A

[H0,A ] = [HI ,A ] = 0. (15.13)

Furthermore, A satisfies
A

2 = A , (15.14)

since every permutation of the Slater determinant reproduces it. The expectation value of Ĥ0

∫
Φ∗Ĥ0Φdτ = N!

∫
Φ∗HA Ĥ0A ΦHdτ
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is readily reduced to ∫
Φ∗Ĥ0Φdτ = N!

∫
Φ∗HĤ0A ΦHdτ,

where we have used eqs. (15.13) and (15.14). The next step is to replace the anti-symmetry
operator by its definition eq. (15.10) and to replace Ĥ0 with the sum of one-body operators

∫
Φ∗Ĥ0Φdτ =

N

∑
i=1

∑
P
(−)P

∫
Φ∗H ĥiPΦHdτ. (15.15)

The integral vanishes if two or more electrons are permuted in only one of the Hartree-
functions ΦH because the individual orbitals are orthogonal. We obtain then

∫
Φ∗Ĥ0Φdτ =

N

∑
i=1

∫
Φ∗H ĥiΦHdτ. (15.16)

Orthogonality allows us to further simplify the integral, and we arrive at the following expres-
sion for the expectation values of the sum of one-body Hamiltonians

∫
Φ∗Ĥ0Φdτ =

N

∑
µ=1

∫
ψ∗µ(r i)ĥiψµ(r i)dr i . (15.17)

The expectation value of the two-body Hamiltonian is obtained in a similar manner. We
have ∫

Φ∗ĤI Φdτ = N!
∫

Φ∗HA ĤIA ΦHdτ, (15.18)

which reduces to ∫
Φ∗ĤI Φdτ =

N

∑
i≤ j=1

∑
P
(−)P

∫
Φ∗H

1
r i j

PΦHdτ, (15.19)

by following the same arguments as for the one-body Hamiltonian. Because of the dependence
on the inter-electronic distance 1/r i j , permutations of two electrons no longer vanish, and we
get

∫
Φ∗ĤI Φdτ =

N

∑
i< j=1

∫
Φ∗H

1
r i j

(1−Pi j )ΦHdτ. (15.20)

where Pi j is the permutation operator that interchanges electrons i and j. Again we use the
assumption that the orbitals are orthogonal, and obtain

∫
Φ∗ĤI Φdτ =

1
2

N

∑
µ=1

N

∑
ν=1

[∫
ψ∗µ(r i)ψ∗ν (r j)

1
r i j

ψµ(r i)ψν (r j)dxidxj −
∫

ψ∗µ(r i)ψ∗ν (r j)
1
r i j

ψν(r i)ψµ(r i)dxidxj

]
.

(15.21)
The first term is the so-called direct term or Hartree term, while the second is due to the
Pauli principle and is called the exchange term or the Fock term. The factor 1/2 is introduced
because we now run over all pairs twice.

Combining Eqs. (15.17) and (15.21) we obtain the functional

E[Φ] =
N

∑
µ=1

∫
ψ∗µ(r i)ĥiψµ(r i)dr i +

1
2

N

∑
µ=1

N

∑
ν=1

[∫
ψ∗µ(r i)ψ∗ν (r j)

1
r i j

ψµ(r i)ψν (r j)dr idr j− (15.22)

−
∫

ψ∗µ(r i)ψ∗ν (r j)
1
r i j

ψν(r i)ψµ(r j)dr idr j

]
.
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15.4 Derivation of the Hartree-Fock equations

Having obtained the functional E[Φ], we now proceed to the second step of the calculation.
With the given functional, we can embark on at least two types of variational strategies:

• We can vary the Slater determinant by changing the spatial part of the single-particle wave
functions themselves.

• We can expand the single-particle functions in a known basis and vary the coefficients, that
is, the new single-particle wave function |a〉 is written as a linear expansion in terms of a
fixed chosen orthogonal basis (for the example harmonic oscillator, or Laguerre polynomi-
als etc)

ψa = ∑
λ

Caλ ψλ .

In this case we vary the coefficients Caλ .

We will derive the pertinent Hartree-Fock equations and discuss the pros and cons of the two
methods. Both cases lead to a new Slater determinant which is related to the previous one
via a unitary transformation.

Before we proceed we need however to repeat some aspects of the calculus of variations.
For more details see for example the text of Arfken [51].

We have already met the variational principle in chapter 14. We give here a brief reminder
on the calculus of variations.

15.4.1 Reminder on calculus of variations

The calculus of variations involves problems where the quantity to be minimized or maximized
is an integral.

In the general case we have an integral of the type

E[Φ] =
∫ b

a
f (Φ(x),

∂Φ
∂ r

, r)dr ,

where E is the quantity which is sought minimized or maximized. The problem is that although
f is a function of the variables Φ, ∂Φ/∂ r and r , the exact dependence of Φ on r is not known.
This means again that even though the integral has fixed limits a and b, the path of integration
is not known. In our case the unknown quantities are the single-particle wave functions and
we wish to choose an integration path which makes the functional E[Φ] stationary. This means
that we want to find minima, or maxima or saddle points. In physics we search normally for
minima.

Our task is therefore to find the minimum of E[Φ] so that its variation δE is zero subject
to specific constraints. In our case the constraints appear as the integral which expresses
the orthogonality of the single-particle wave functions. The constraints can be treated via
the technique of Lagrangian multipliers. We assume the existence of an optimum path, that
is a path for which E[Φ] is stationary. There are infinitely many such paths. The difference
between two paths δΦ is called the variation of Φ.

The condition for a stationary value is given by a partial differential equation, which we
here write in terms of one variable x

∂ f
∂Φ
− d

dx
∂ f

∂Φx
= 0,
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This equation is better better known as Euler’s equation and it can easily be generalized to
more variables.

As an example consider a function of three independent variables f (x,y,z) . For the function
f to be an extreme we have

d f = 0.

A necessary and sufficient condition is

∂ f
∂x

=
∂ f
∂y

=
∂ f
∂z

= 0,

due to

d f =
∂ f
∂x

dx+
∂ f
∂y

dy+
∂ f
∂z

dz.

In physical problems the variables x,y,z are often subject to constraints (in our case Φ and
the orthogonality constraint) so that they are no longer all independent. It is possible at least
in principle to use each constraint to eliminate one variable and to proceed with a new and
smaller set of independent varables.

The use of so-called Lagrangian multipliers is an alternative technique when the elimi-
nation of of variables is incovenient or undesirable. Assume that we have an equation of
constraint on the variables x,y,z

φ(x,y,z) = 0,

resulting in

dφ =
∂φ
∂x

dx+
∂φ
∂y

dy+
∂φ
∂z

dz= 0.

Now we cannot set anymore
∂ f
∂x

=
∂ f
∂y

=
∂ f
∂z

= 0,

if d f = 0 is wanted because there are now only two independent variables. Assume x and y
are the independent variables. Then dz is no longer arbitrary. However, we can add to

d f =
∂ f
∂x

dx+
∂ f
∂y

dy+
∂ f
∂z

dz,

a multiplum of dφ , viz. λdφ , resulting in

d f +λdφ = (
∂ f
∂z

+λ
∂φ
∂x

)dx+(
∂ f
∂y

+λ
∂φ
∂y

)dy+(
∂ f
∂z

+λ
∂φ
∂z

)dz= 0,

where our multiplier is chosen so that

∂ f
∂z

+λ
∂φ
∂z

= 0.

However, since we took dx and dy to be arbitrary we must have

∂ f
∂x

+λ
∂φ
∂x

= 0,

and
∂ f
∂y

+λ
∂φ
∂y

= 0.

When all these equations are satisfied, d f = 0. We have four unknowns, x,y,z and λ . Actually
we want only x,y,z, there is no need to determine λ . It is therefore often called Lagrange’s
undetermined multiplier. If we have a set of constraints φk we have the equations



49415 Many-body approaches to studies of electronic systems: Hartree-Fock theory and Density Functional Theory

∂ f
∂xi

+∑
k

λk
∂φk

∂xi
= 0.

Let us specialize to the expectation value of the energy for one particle in three-dimensions.
This expectation value reads

E =

∫
dxdydzψ∗(x,y,z)Ĥψ(x,y,z),

with the constraint ∫
dxdydzψ∗(x,y,z)ψ(x,y,z) = 1,

and a Hamiltonian

Ĥ =−1
2

∇2+V(x,y,z).

The integral involving the kinetic energy can be written as, if we assume periodic boundary
conditions or that the function ψ vanishes strongly for large values of x,y,z,

∫
dxdydzψ∗

(
−1

2
∇2
)

ψdxdydz= ψ∗∇ψ |+
∫

dxdydz
1
2

∇ψ∗∇ψ .

Inserting this expression into the expectation value for the energy and taking the variational
minimum (using V(x,y,z) =V) we obtain

δE = δ
{∫

dxdydz

(
1
2

∇ψ∗∇ψ +Vψ∗ψ
)}

= 0.

The requirement that the wave functions should be orthogonal gives

∫
dxdydzψ∗ψ = constant,

and multiplying it with a Lagrangian multiplier λ and taking the variational minimum we
obtain the final variational equation

δ
{∫

dxdydz

(
1
2

∇ψ∗∇ψ +Vψ∗ψ−λ ψ∗ψ
)}

= 0.

We introduce the function f

f =
1
2

∇ψ∗∇ψ +Vψ∗ψ−λ ψ∗ψ =
1
2
(ψ∗x ψx+ψ∗y ψy+ψ∗z ψz)+Vψ∗ψ−λ ψ∗ψ .

In our notation here we have dropped the dependence on x,y,z and introduced the shorthand
ψx, ψy and ψz for the various first derivatives.

For ψ∗ the Euler equation results in

∂ f
∂ψ∗

− ∂
∂x

∂ f
∂ψ∗x

− ∂
∂y

∂ f
∂ψ∗y

− ∂
∂z

∂ f
∂ψ∗z

= 0,

which yields

−1
2
(ψxx+ψyy+ψzz)+Vψ = λ ψ .

We can then identify the Lagrangian multiplier as the energy of the system. The last equation
is nothing but the standard Schrödinger equation and the variational approach discussed
here provides a powerful method for obtaining approximate solutions of the wave function.
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15.4.2 Varying the single-particle wave functions

If we generalize the Euler-Lagrange equations to more variables and introduce N2 Lagrange
multipliers which we denote by εµν , we can write the variational equation for the functional
of Eq. (15.23) as

δE−
N

∑
µ=1

N

∑
ν=1

εµν δ
∫

ψ∗µψν = 0. (15.23)

For the orthogonal wave functions ψµ this reduces to

δE−
N

∑
µ=1

εµδ
∫

ψ∗µ ψµ = 0. (15.24)

Variation with respect to the single-particle wave functions ψµ yields then

N

∑
µ=1

∫
δψ∗µ ĥiψµdxi +

1
2

N

∑
µ=1

N

∑
ν=1

[∫
δψ∗µψ∗ν

1
r i j

ψµψν d(xixj )−
∫

δψ∗µ ψ∗ν
1
r i j

ψνψµdr idr j

]

+
N

∑
µ=1

∫
ψ∗µ ĥiδψµdr i +

1
2

N

∑
µ=1

N

∑
ν=1

[∫
ψ∗µ ψ∗ν

1
r i j

δψµψνdr idr j −
∫

ψ∗µψ∗ν
1
r i j

ψν δψµdr idr j

]

−
N

∑
µ=1

Eµ

∫
δψ∗µψµdxi−

N

∑
µ=1

Eµ

∫
ψ∗µδψµdr i = 0.

(15.25)

Although the variations δψ and δψ∗ are not independent, they may in fact be treated as
such, so that the terms dependent on either δψ and δψ∗ individually may be set equal to
zero. To see this, simply replace the arbitrary variation δψ by iδψ, so that δψ∗ is replaced by
−iδψ∗, and combine the two equations. We thus arrive at the Hartree-Fock equations

[
−1

2
∇2

i −
Z
r i
+

N

∑
ν=1

∫
ψ∗ν (r j)

1
r i j

ψν(r j)dr j

]
ψµ(xi)

−
[

N

∑
ν=1

∫
ψ∗ν (r j)

1
r i j

ψµ(r j)dr j

]
ψν(r i) = εµ ψµ(r i).

(15.26)

Notice that the integration
∫

dr j implies an integration over the spatial coordinates r j and
a summation over the spin-coordinate of electron j.

The two first terms are the one-body kinetic energy and the electron-nucleus potential.
The third or direct term is the averaged electronic repulsion of the other electrons. This
term includes the ’self-interaction’ of electrons when i = j. The self-interaction is cancelled in
the fourth term, or the exchange term. The exchange term results from our inclusion of the
Pauli principle and the assumed determinantal form of the wave-function. The effect of the
exchange is for electrons of like-spin to avoid each other. A theoretically convenient form of
the Hartree-Fock equation is to regard the direct and exchange operator defined through the
following operators

Vd
µ (r i) =

∫
ψ∗µ(r j)

1
r i j

ψµ(r j)dr j (15.27)

and

Vex
µ (r i)g(r i) =

(∫
ψ∗µ(r j)

1
r i j

g(r j)dr j

)
ψµ(r i), (15.28)



49615 Many-body approaches to studies of electronic systems: Hartree-Fock theory and Density Functional Theory

respectively. The function g(r i) is an arbitrary function, and by the substitution g(r i) = ψν(r i)

we get

Vex
µ (r i)ψν(r i) =

(∫
ψ∗µ(r j)

1
r i j

ψν(r j)dr j

)
ψµ(r i). (15.29)

We may then rewrite the Hartree-Fock equations as

HHF
i ψν (r i) = εν ψν(r i), (15.30)

with

HHF
i = hi +

N

∑
µ=1

Vd
µ (r i)−

N

∑
µ=1

Vex
µ (r i), (15.31)

and where hi is defined by equation (15.7).

15.4.3 Detailed solution of the Hartree-Fock equations

We show here the explicit form of the Hartree-Fock for helium and beryllium
Let us introduce

ψnlml sms = φnlml (r)ξms(s)

with s is the spin (1/2 for electrons), ms is the spin projection ms =±1/2, and the spatial part
is

φnlml (r) = Rnl(r)Ylml (r̂)

with Y the spherical harmonics and unl = rRnl. We have for helium

Φ(r1, r2,α,β ) =
1√
2

φ100(r1)φ100(r2)
[
ξ↑(1)ξ↓(2)− ξ↑(2)ξ↓(1)

]
,

The direct term acts on
1√
2

φ100(r1)φ100(r2)ξ↑(1)ξ↓(2)

while the exchange term acts on

− 1√
2

φ100(r1)φ100(r2)ξ↑(2)ξ↓(1).

How do these terms get translated into the Hartree and the Fock terms?
The Hartree term

Vd
µ (r i) =

∫
ψ∗µ(r j)

1
r i j

ψµ(r j)dr j ,

acts on ψλ (r i) = φnlml (r i)ξms(si), that is it results in

Vd
µ (r i)ψλ (r i) =

(∫
ψ∗µ(r j)

1
r i j

ψµ(r j)dr j

)
ψλ (r i),

and accounting for spins we have

Vd
nlml↑(r i)ψλ (r i) =

(∫
ψ∗nlml ↑(r j)

1
r i j

ψnlml ↑(r j)dr j

)
ψλ (r i),

and

Vd
nlml↓(r i)ψλ (r i) =

(∫
ψ∗nlml ↓(r j)

1
r i j

ψnlml ↓(r j)dr j

)
ψλ (r i),
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If the state we act on has spin up, we obtain two terms from the Hartree part,

N

∑
µ=1

Vd
µ (r i),

and since the interaction does not depend on spin we end up with a total contribution for
helium

N

∑
µ=1

Vd
µ (r i)ψλ (r i) =

(
2
∫

φ∗100(r j)
1
r i j

φ100(r j)dr j

)
ψλ (r i),

one from spin up and one from spin down. Since the energy for spin up or spin down is the
same we can then write the action of the Hartree term as

N

∑
µ=1

Vd
µ (r i)ψλ (r i) =

(
2
∫

φ∗100(r j)
1
r i j

φ100(r j)dr j

)
ψ100↑(r i).

(the spin in ψ100↑ is irrelevant)
What we need to code for helium is then

Φ(r i)u10= 2Vd
10(r i)u10(r i) = 2

∫ ∞

0
|u10(r j)|2

1
r>

dr j )u10(r i).

with r> = max(r i , r j). What about the exchange or Fock term

Vex
µ (r i)ψλ (r i) =

(∫
ψ∗µ(r j )

1
r i j

ψλ (r j)dr j

)
ψµ(r i)?

We must be careful here with

Vex
µ (r i)ψλ (r i) =

(∫
ψ∗µ(r j)

1
r i j

ψλ (r j)dr j

)
ψµ(r i),

because the spins of µ and λ have to be the same due to the constraint

〈sµ mµ
s |sλ mλ

s 〉= δmµ
s ,mλ

s
.

This means that if mµ
s =↑ then mλ

s =↑ and if mµ
s =↓ then mλ

s =↓. That is

Vex
µ (r i)ψλ (r i) = δmµ

s ,mλ
s

(∫
ψ∗µ(r j)

1
r i j

ψλ (r j)dr j

)
ψµ(r i),

The consequence is that for the 1s↑ (and the same for 1s↓) state we get only one contribu-
tion from the Fock term, namely

N

∑
µ=1

Vex
µ (r i)ψ100↑(r i) = δmµ

s ,↑

(∫
ψ∗µ(r j)

1
r i j

ψ100↑(r j)dr j

)
ψµ(r i),

resulting in
N

∑
µ=1

Vex
µ (r i)ψ100↑(r i) =

(∫
ψ∗100↑(r j)

1
r i j

ψ100↑(r j)dr j

)
ψ100↑(r i).

The final Fock term for helium is then

N

∑
µ=1

Vex
µ (r i)ψ100↑(r i) =

(∫
ψ∗100↑(r j)

1
r i j

ψ100↑(r j)dr j

)
ψ100↑(r i),
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which is exactly the same as the Hartree term except for a factor of 2. Else the integral is the
same. We can then write the differential equation

(
−1

2
d2

dr2 +
l(l +1)

2r2 − 2
r
+Φnl(r)−Fnl(r)

)
unl(r) = enlunl(r).

as (
−1

2
d2

dr2 +
l(l +1)

2r2 − 2
r
+2Vd

10(r)

)
u10(r)−Vex

10(r) = e10u10(r),

or (
−1

2
d2

dr2 −
2
r
+Vd

10(r)

)
u10(r) = e10u10(r),

since l = 0. The shorthand Vex
10(r) contains the 1swave function.

The expression we have obtained are independent of the spin projections and we have
skipped them in the equations.

For beryllium the Slater determinant takes the form

Φ(r1, r2, , r3, r4,α,β ,γ,δ ) =
1√
4!

∣∣∣∣∣∣∣∣

ψ100↑(r1) ψ100↑(r2) ψ100↑(r3) ψ100↑(r4)

ψ100↓(r1) ψ100↓(r2) ψ100↓(r3) ψ100↓(r4)

ψ200↑(r1) ψ200↑(r2) ψ200↑(r3) ψ200↑(r4)

ψ200↓(r1) ψ200↓(r2) ψ200↓(r3) ψ200↓(r4)

∣∣∣∣∣∣∣∣
,

When we now spell out the Hartree-Fock equations we get two coupled differential equa-
tions, one for u10 and one for u20.

The 1swave function has the same Hartree-Fock contribution as in helium for the 1s state,
but the 2s state gives two times the Hartree term and one time the Fock term. We get

N

∑
µ=1

Vd
µ (r i)ψ100↑(r i) = 2

∫ ∞

0
dr j

(
φ∗100(r j)

1
r i j

φ100(r j)+φ∗200(r j)
1
r i j

φ200(r j)

)
ψ100↑(r i)

= (2Vd
10(r i)+2Vd

20(r i))ψ100↑(r i)

for the Hartree part.
For the Fock term we get (we fix the spin)

N

∑
µ=1

Vex
µ (r i)ψ100↑(r i) =

∫ ∞

0
dr jφ∗100(r j)

1
r i j

φ100(r j)ψ100↑(r i)+

∫ ∞

0
dr jφ∗200(r j)

1
r i j

φ100(r j)ψ200↑(r i) =Vex
10(r i)+Vex

20(r i).

The first term is the same as we have for the Hartree term with 1s except the factor of two.
The final differential equation is

(
−1

2
d2

dr2 −
4
r
+Vd

10(r)+2Vd
20(r)

)
u10(r)−Vex

20(r) = e10u10(r).

Note again that the Vex
20(r) contains the 1s function in the integral, that is

Vex
20(r) =

∫ ∞

0
dr jφ∗200(r j)

1
r− r j

φ100(r j)ψ200↑(r).

The 2swave function obtains the following Hartree term (recall that the interaction has no
spin dependence)
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N

∑
µ=1

Vd
µ (r i)ψ200↑(r i) = 2

∫ ∞

0
dr j

(
φ∗100(r j)

1
r i j

φ100(r j)+φ∗200(r j)
1
r i j

φ200(r j)

)
ψ200↑(r i) =

(2Vd
10(r i)+2Vd

20(r i))ψ200↑(r i)

For the Fock term we get

N

∑
µ=1

Vex
µ (r i)ψ200↑(r i) =

∫ ∞

0
dr jφ∗100(r j)

1
r i j

φ200(r j)ψ100↑(r i)+

∫ ∞

0
dr jφ∗200(r j)

1
r i j

φ200(r j)ψ200↑(r i) =Vex
10(r i)+Vex

20(r i)

The second term is the same as we have for the Hartree term with 2s. The final differential
equation is (

−1
2

d2

dr2 −
4
r
+2Vd

10(r)+Vd
20(r)

)
u20(r)−Vex

10(r) = e20u20(r).

Note again that Vex
10(r) contains the 2s function in the integral, that is

Vex
10(r) =

∫ ∞

0
dr jφ∗100(r j)

1
r− r j

φ200(r j)ψ100↑(r).

We have two coupled differential equations

(
−1

2
d2

dr2 −
4
r
+Vd

10(r)+2Vd
20(r)

)
u10(r)−Vex

20(r) = e10u10(r),

and (
−1

2
d2

dr2 −
4
r
+2Vd

10(r)+Vd
20(r)

)
u20(r)−Vex

10(r) = e20u20(r).

Recall again that the interaction does not depend on spin. This means that the single-particle
energies and single-particle function u do not depend on spin.

15.4.4 Hartree-Fock by variation of basis function coefficients

Another possibility is to expand the single-particle functions in a known basis and vary the
coefficients, that is, the new single-particle wave function is written as a linear expansion in
terms of a fixed chosen orthogonal basis (for example harmonic oscillator, Laguerre polyno-
mials etc)

ψa = ∑
λ

Caλ ψλ . (15.32)

In this case we vary the coefficients Caλ .
The single-particle wave functions ψλ (r), defined by the quantum numbers λ and r are

defined as the overlap
ψα(r) = 〈r |α〉.

We will omit the radial dependence of the wave functions and introduce first the following
shorthands for the Hartree and Fock integrals

〈µν|V|µν〉=
∫

ψ∗µ(r i)ψ∗ν (r j)V(r i j )ψµ(r i)ψν (r j)dr ir j ,

and
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〈µν|V|νµ〉=
∫

ψ∗µ(r i)ψ∗ν (r j)V(r i j )ψν(r i)ψµ(r i)dr ir j .

Since the interaction is invariant under the interchange of two particles it means for example
that we have

〈µν|V|µν〉= 〈νµ |V|νµ〉,
or in the more general case

〈µν|V|στ〉= 〈νµ |V|τσ〉.
The direct and exchange matrix elements can be brought together if we define the anti-

symmetrized matrix element

〈µν|V|µν〉AS= 〈µν|V|µν〉− 〈µν|V|νµ〉,

or for a general matrix element

〈µν|V|στ〉AS= 〈µν|V|στ〉− 〈µν|V|τσ〉.

It has the symmetry property

〈µν|V|στ〉AS=−〈µν|V|τσ〉AS=−〈νµ |V|στ〉AS.

The antisymmetric matrix element is also hermitian, implying

〈µν|V|στ〉AS= 〈στ|V|µν〉AS.

With these notations we rewrite Eq. (15.21) as

∫
Φ∗Ĥ0Φdτ =

1
2

A

∑
µ=1

A

∑
ν=1

〈µν|V|µν〉AS. (15.33)

Combining Eqs. (15.17) and (15.33) we obtain the energy functional

E[Φ] =
N

∑
µ=1

〈µ |h|µ〉+ 1
2

N

∑
µ=1

N

∑
ν=1

〈µν|V|µν〉AS. (15.34)

which we will use as our starting point for the Hartree-Fock calculations.
If we vary the above energy functional with respect to the basis functions |µ〉, this corre-

sponds to what was done in the previous subsection. We are however interested in defining
a new basis defined in terms of a chosen basis as defined in Eq. (15.32). We can then rewrite
the energy functional as

E[Ψ ] =
N

∑
a=1
〈a|h|a〉+ 1

2

N

∑
ab

〈ab|V|ab〉AS, (15.35)

where Ψ is the new Slater determinant defined by the new basis of Eq. (15.32). Using
Eq. (15.32) we can rewrite Eq. (15.35) as

E[Ψ ] =
N

∑
a=1

∑
αβ

C∗aαCaβ 〈α|h|β 〉+
1
2 ∑

ab
∑

αβ γδ
C∗aαC∗bβCaγCbδ 〈αβ |V|γδ 〉AS. (15.36)

We wish now to minimize the above functional. We introduce again a set of Lagrange multi-
pliers, noting that since 〈a|b〉= δa,b and 〈α|β 〉= δα ,β , the coefficients Caγ obey the relation

〈a|b〉= δa,b = ∑
αβ

C∗aαCaβ 〈α|β 〉= ∑
α

C∗aαCaα ,
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which allows us to define a functional to be minimized that reads

E[Ψ ]−∑
a

εa∑
α

C∗aαCaα . (15.37)

Minimizing with respect to C∗kα , remembering that C∗kα and Ckα are independent, we obtain

d
dC∗kα

[
E[Ψ ]−∑

a
εa∑

α
C∗aαCaα

]
= 0, (15.38)

which yields for every single-particle state k the following Hartree-Fock equations

∑
γ

Ckγ 〈α|h|γ〉+
1
2 ∑

a
∑
β γδ

C∗aβCaδCkγ 〈αβ |V|γδ 〉AS= εkCkα . (15.39)

We can rewrite this equation as

N

∑
γ=1

{
〈α|h|γ〉+ 1

2

N

∑
a

N

∑
β δ

C∗aβCaδ 〈αβ |V|γδ 〉AS

}
Ckγ = εkCkα . (15.40)

Defining

hHF
αγ = 〈α|h|γ〉+ 1

2

N

∑
a

N

∑
β δ

C∗aβCaδ 〈αβ |V|γδ 〉AS,

we can rewrite the new equations as

N

∑
γ=1

hHF
αγ Ckγ = εkCkα . (15.41)

The advantage of this approach is that we can calculate and tabulate the matrix elements
α|h|γ〉 and 〈αβ |V|γδ 〉AS once and for all. If the basis |α〉 is chosen properly, then the matrix
elements can also serve as a good starting point for a Hartree-Fock calculation. Eq. (15.41)
is nothing but an eigenvalue problem. The eigenvectors are defined by the coefficients Ckγ .

The size of the matrices to diagonalize are seldomly larger than 1000× 1000and can be
solved by the standard eigenvalue methods that we discussed in chapter 7.

For closed shell atoms it is natural to consider the spin-orbitals as paired. For example,
two 1s orbitals with different spin have the same spatial wave-function, but orthogonal spin
functions. For open-shell atoms two procedures are commonly used; the restricted Hartree-
Fock (RHF) and unrestricted Hartree-Fock (UHF). In RHF all the electrons except those
occupying open-shell orbitals are forced to occupy doubly occupied spatial orbitals, while in
UHF all orbitals are treated independently. The UHF, of course, yields a lower variational
energy than the RHF formalism. One disadvantage of the UHF over the RHF, is that whereas
the RHF wave function is an eigenfunction of S2, the UHF function is not; that is, the total
spin angular momentum is not a well-defined quantity for a UHL wave-function. Here we limit
our attention to closed shell RHF’s, and show how the coupled HF equations may be turned
into a matrix problem by expressing the spin-orbitals using known sets of basis functions.

In principle, a complete set of basis functions must be used to represent spin-orbitals
exactly, but this is not computationally feasible. A given finite set of basis functions is, due to
the incompleteness of the basis set, associated with a basis-set truncation error. The limiting
HF energy, with truncation error equal to zero, will be referred to as the Hartree-Fock limit.

The computational time depends on the number of basis-functions and of the difficulty in
computing the integrals of both the Fock matrix and the overlap matrix. Therefore we wish to
keep the number of basis functions as low as possible and choose the basis-functions cleverly.
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By cleverly we mean that the truncation error should be kept as low as possible, and that the
computation of the matrix elements of both the overlap and the Fock matrices should not be
too time consuming.

One choice of basis functions are the so-called Slater type orbitals (STO), see for example
Ref. [119]). They are defined as

Ψnlml (r,θ ,φ) = N rne f f−1e

Ze f f ρ
ne f f Ylml (θ ,φ). (15.42)

Here N is a normalization constant that for the purpose of basis set expansion may be put
into the unknown ciµ ’s, Ylml is a spherical harmonic and ρ = r/a0.

The normalization constant of the spherical harmonics may of course also be put into the
expansion coefficients ciµ . The effective principal quantum number ne f f is related to the true
principal quantum number N by the following mapping (ref. [119])

n→ ne f f : 1→ 1 2→ 2 3→ 3 4→ 3.7 5→ 4.0 6→ 4.2.

The effective atomic number Ze f f for the ground state orbitals of some neutral ground-state
atoms are listed in table 15.1. The values in table 15.1 have been constructed by fitting STOs
to numerically computed wave-functions [120].

Effective Atomic Number

H He
1s 1 1.6875

Li Be B C N O F Ne
1s 2.6906 3.6848 4.6795 5.6727 6.6651 7.6579 8.6501 9.6421
2s 1.2792 1.9120 2.5762 3.2166 3.8474 4.4916 5.1276 5.7584
2p 2.4214 3.1358 3.8340 4.4532 5.1000 5.7584

Na Mg Al Si P S Cl Ar
1s 10.6259 11.6089 12.5910 13.5754 14.5578 15.5409 16.5239 17.5075
2s 6.5714 7.3920 8.2136 9.0200 9.8250 10.6288 11.4304 12.2304
2p 6.8018 7.8258 8.9634 9.9450 10.9612 11.9770 12.9932 14.0082
3s 2.5074 3.3075 4.1172 4.9032 5.6418 6.3669 7.0683 7.7568
3p 4.0656 4.2852 4.8864 5.4819 6.1161 6.7641

Table 15.1 Values of Ze f f for neutral ground-state atoms [120].

15.5 Density Functional Theory

Hohenberg and Kohn [121] proved that the total energy of a system including that of the
many-body effects of electrons (exchange and correlation) in the presence of static external
potential (for example, the atomic nuclei) is a unique functional of the charge density. The
minimum value of the total energy functional is the ground state energy of the system. The
electronic charge density which yields this minimum is then the exact single particle ground
state energy.

It was then shown by Kohn and Sham that it is possible to replace the many electron
problem by an exactly equivalent set of self consistent one electron equations. The total
energy functional can be written as a sum of several terms:
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for a fixed set of atomic nuclei. The first two terms are the classical Coulomb interaction
between the electrons and ions and between electrons and other electrons respectively, both
of which are simply functions of the electronic charge density. This equation is analogous to
the Hartree method, but the term contains the effects of exchange and correlation and also
the single particle kinetic energy. In the different HF methods one works with large basis sets.
This poses a problem for large systems. An alternative to the HF methods is density functional
theory (DFT) [121, 122], see also Refs. [3, 108, 123–125]. DFT takes into account electron
correlations but is less demanding computationally than for example full diagonalization oor
many-body perturbation theory.

The electronic energy E is said to be a functional of the electronic density, E[ρ ], in the
sense that for a given function ρ(r), there is a single corresponding energy. The Hohenberg-
Kohn theorem [121] confirms that such a functional exists, but does not tell us the form of the
functional. As shown by Kohn and Sham, the exact ground-state energy E of an N-electron
system can be written as

E[ρ ] =−1
2

N

∑
i=1

∫
Ψ∗i (r1)∇2

1Ψi(r1)dr1−
∫

Z
r1

ρ(r1)dr1+
1
2

∫ ρ(r1)ρ(r2)

r12
dr1dr2+EEXC[ρ ]

with Ψi the Kohn-Sham (KS) orbitals. The ground-state charge density is given by

ρ(r) =
N

∑
i=1
|Ψi(r)|2,

where the sum is over the occupied Kohn-Sham orbitals. The last term, EEXC[ρ ], is the
exchange-correlation energy which in theory takes into account all non-classical electron-
electron interaction. However, we do not know how to obtain this term exactly, and are forced
to approximate it. The KS orbitals are found by solving the Kohn-Sham equations, which can
be found by applying a variational principle to the electronic energy E[ρ ]. This approach is
similar to the one used for obtaining the HF equation in the previous section. The KS equa-
tions read {

−1
2

∇2
1−

Z
r1

+

∫ ρ(r2)

r12
dr2+VEXC(r1)

}
Ψi(r1) = εiΨi(r1) (15.43)

where εi are the KS orbital energies, and where the exchange-correlation potential is given
by

VEXC[ρ ] =
δEEXC[ρ ]

δρ
. (15.44)

The KS equations are solved in a self-consistent fashion. A variety of basis set functions
can be used, and the experience gained in Hartree-Fock calculations are often useful. The
computational time needed for a Density function theory calculation formally scales as the
third power of the number of basis functions.

The main source of error in DFT usually arises from the approximate nature of EXC. In the
local density approximation (LDA) it is approximated as

EEXC=
∫

ρ(r)εEXC[ρ(r)]dr , (15.45)

where εEXC[ρ(r)] is the exchange-correlation energy per electron in a homogeneous electron
gas of constant density. The LDA approach is clearly an approximation as the charge is not
continuously distributed. To account for the inhomogeneity of the electron density, a nonlocal
correction involving the gradient of ρ is often added to the exchange-correlation energy.
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15.5.1 Hohenberg-Kohn Theorem

15.5.2 Derivation of the Kohn-Sham Equations

15.5.3 The Local Density Approximation and the Electron Gas

15.5.4 Applications and Code Examples

15.6 Exercises

15.1. The aim of this problem is to perform Hartree-Fock calculations in order to obtain an
optimal basis for the single-particle wave functions Beryllium.

The Hartree-Fock functional is written as

E[Φ] =
N

∑
µ=1

∫
ψ∗µ(r i)ĥiψµ(r i)dr i +

1
2

N

∑
µ=1

N

∑
ν=1

[∫
ψ∗µ(r i)ψ∗ν (r j)

1
r i j

ψµ(r i)ψν(r j)dr ir j

−
∫

ψ∗µ(r i)ψ∗ν (r j)
1
r i j

ψν(r i)ψµ(r i)dr ir j

]
.

The more compact version is

E[Φ] =
N

∑
µ=1
〈µ |h|µ〉+ 1

2

N

∑
µ=1

N

∑
ν=1

[
〈µν| 1

r i j
|µν〉− 〈µν| 1

r i j
|νµ〉

]
.

With the given functional, we can perform at least two types of variational strategies.

• Vary the Slater determinant by changing the spatial part of the single-particle wave func-
tions themselves.

• Expand the single-particle functions in a known basis and vary the coefficients, that is, the
new function single-particle wave function |a〉 is written as a linear expansion in terms of
a fixed basis φ (harmonic oscillator, Laguerre polynomials etc)

ψa = ∑
λ

Caλ φλ ,

Both cases lead to a new Slater determinant which is related to the previous via a unitary
transformation. The second one is the one we will use in this project.

1. Consider a Slater determinant built up of single-particle orbitals ψλ , with λ = 1,2, . . . ,N.
The unitary transformation

ψa = ∑
λ

Caλ φλ ,

brings us into the new basis. Show that the new basis is orthonormal. Show that the new
Slater determinant constructed from the new single-particle wave functions can be written
as the determinant based on the previous basis and the determinant of the matrixC. Show
that the old and the new Slater determinants are equal up to a complex constant with
absolute value unity. (Hint, C is a unitary matrix).

2. Minimizing with respect to C∗kα , remembering that C∗kα and Ckα are independent and defin-
ing

hHF
αγ = 〈α|h|γ〉+

N

∑
a=1

∑
β δ

C∗aβCaδ 〈αβ |V|γδ 〉AS,
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show that you can write the Hartree-Fock equations as

∑
γ

hHF
αγ Ckγ = εkCkα .

Explain the meaning of the different terms.
Set up the Hartree-Fock equations for the ground state beryllium with the electrons oc-
cupying the respective ’hydrogen-like’ orbitals 1s and 2s. There is no spin-orbit part in the
two-body Hamiltonian.

3. As basis functions for our calculations we will use hydrogen-like single-particle functions.
In the computations you will need to program the Coulomb interaction with matrix ele-
ments involving single-particle wave functions with l = 0 only, so-called s-waves. We need
only the radial part since the spherical harmonics for the s-waves are rather simple. Our
radial wave functions are

Rn0(r) =

(
2Z
n

)3/2
√

(n−1)!
2n×n!

L1
n−1(

2Zr
n

)exp(−Zr
n
),

with energies −Z2/2n2. A function for computing the generalized Laguerre polynomials
L1

n−1(
2Zr
n ) is provided at the webpage of the course under the link of project 2. We will use

these functions to solve the Hartree-Fock problem for beryllium.
Show that you can simplify the direct term developed during the lectures

∫
r2
1dr1

∫
r2
2dr2R∗nα 0(r1)R

∗
nβ 0(r2)

1
(r>)

Rnγ 0(r1)Rnδ 0(r2)

∫ ∞

0
r2
1dr1R∗nα 0(r1)Rnγ 0(r1)

[
1

(r1)

∫ r1

0
r2
2dr2R∗nβ 0(r2)Rnδ 0(r2)+

∫ ∞

r1

r2dr2R∗nβ 0(r2)Rnδ 0(r2)

]
.

Find the corresponding expression for the exchange term.
4. With the above ingredients we are now ready to solve the Hartree-Fock equations for the

beryllium atom. Write a program which solves the Hartree-Fock equations for beryllium.
You will need methods to find eigenvalues (see chapter 7) and gaussian quadrature (chap-
ter 5) to compute the integrals of the Coulomb interaction. Use as input for the first iter-
ation the hydrogen-like single-particle wave function. Compare the results (make a plot of
the 1s and the 2s functions) when self-consistency has been achieved with those obtained
using the hydrogen-like wave functions only (first iteration). Parameterize thereafter your
results in terms of the following Slater-type orbitals (STO)

RSTO
10 (r) = N10exp(−α10r)

and
RSTO

20 (r) = N20r exp(−α20r/2)

Find the coefficients α10 and α20 which reproduce best the Hartree-Fock solutions. These
functions can then be used in a variational Monte Carlo calculation of the beryllium atom.

15.2. In this problem we will attempt to perform so-called density functional calculations.

1. The first step is to perform a Hartree-Fock calculation using the code developed in the
previous exercise but omitting the exchange (Fock) term. Solve the Hartree equation for
beryllium and find the total density determined in terms of the single-particle wave func-
tions ψi as

ρH(r) =
N

∑
i=1
|ψi(r)|2,
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where the single-particle functions ψi are the solutions of the Hartree equations and the
index H refers to the density obtained by solving the Hartree equations. Check that the
density is normalised to ∫

d3rρH(r) = N.

Compare this density with the corresponding density ρHF(r) you get by solving the full
Hartree-Fock equations. Compare both the Hartree and Hartree-Fock densities with those
resulting from your best VMC calculations. Discuss your results.

2. A popular approximation to the exchange potential in the density functional is to approx-
imate the contribution to this term by the corresponding result from the infinite electron
gas model. The exchange term reads then

Vx(r) =−
(

3
π

)1/3

ρH(r).

Use the Hartree results to compute the total ground state energy of beryllium with the
above approximation to the exchange potential. Compare the resulting energy with the
resulting Hartree-Fock energy.

15.3. We consider a system of electrons confined in a pure two-dimensional isotropic har-
monic oscillator potential, with an idealized total Hamiltonian given by

Ĥ =
N

∑
i=1

(
−1

2
∇2

i +
1
2

ω2r2
i

)
+∑

i< j

1
r i j

,

where natural units (h̄= c= e= me= 1) are used and all energies are in so-called atomic units
a.u. We will study systems of many electrons N as functions of the oscillator frequency ω
using the above Hamiltonian. The Hamiltonian includes a standard harmonic oscillator part

Ĥ0 =
N

∑
i=1

(
−1

2
∇2

i +
1
2

ω2r2
i

)
,

and the repulsive interaction between two electrons given by

Ĥ1 = ∑
i< j

1
r i j

,

with the distance between electrons given by r i j =
√

r1− r2. We define the modulus of the po-

sitions of the electrons (for a given electron i) as r i =
√

r2
ix
+ r2

iy
. We limit ourselves to quantum

dots with N = 2 and N = 6 electrons only.

1. The first step is to develop a code that solves the Kohn-Sham equations for N = 2 and
N = 6 quantum dot systems with frequencies ω = 0.01, ω = 0.28 and ω = 1.0 ignoring the
exchange contribution. This corresponds to solving the Hartree equations. Solve the Kohn-
Sham equations with this approximation for these quantum dot systems and find the total
density determined in terms of the single-particle wave functions ψi as

ρH(r) =
N

∑
i=1
|ψi(r)|2,

where the single-particle functions ψi are the solutions of the approximated Kohn-Sham
equations. Check that the density is normalised to
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∫
d3rρH(r) = N.

Compare this density with the corresponding density you get by solving the VMC calcula-
tions. Discuss your results.

2. A popular approximation to the exchange potential in the density functional is to approx-
imate the contribution to this term by the corresponding result from the infinite electron
gas model in two dimensions. For the exchange interaction Vx(r) we will use the local-
density approximation of Rajagopal and Kimball, see Phys. Rev. B 15, 2819 (1977). Use the
Kohn-Sham equations to compute the total ground state energy of the same ground states
as in 2a) with the above approximation to the exchange potential. Compare the resulting
energy with that obtained by performing a Hartree-Fock calculation of these quantum dot
systems..





Chapter 16

Improved Monte Carlo Approaches to Systems of

Fermions

Abstract This chapter develops the equations and formalism that are necessary to study
many-particle systems of fermions. The crucial part of any variational or diffusion Monte
Carlo code for many particles is the Metropolis evaluation of the ratios between wave func-
tions and the computation of the local energy. In particular, we develop efficient ways of
computing the ratios between Slater determinants

16.1 Introduction

For fermions we need to pay particular attention to the way we treat the Slater determinant.
The trial wave function, as discussed in chapter 14, consists of separate factors that incorpo-
rate different mathematical properties of the total wave function. There are three types that
will be of concern to us: The Slater determinant, the product state, and the correlation factor.
The two first are direct functions of the spatial coordinates of the particles, while the last one
typically depends on the relative distance between particles.

The trial wave function plays a central role in quantum variational Monte Carlo simula-
tions. Its importance lies in the fact that all the observables are computed with respect to the
probability distribution function defined from the trial wave function. Moreover, it is needed
in the Metropolis algorithm and in the evaluation of the quantum force term when impor-
tance sampling is applied. Computing a determinant of an N×N matrix by standard Gaussian
elimination is of the order of O(N3) calculations. As there are N ·d independent coordinates
we need to evaluate Nd Slater determinants for the gradient (quantum force) and N ·d for the
Laplacian (kinetic energy). Therefore, it is imperative to find alternative ways of computating
quantities related to the trial wave function such that the computational perfomance can be
improved.

16.2 Splitting the Slater Determinant

Following for example Ref. [126], assume that we wish to compute the expectation value of
a spin-independent quantum mechanical operator Ô(r) using the spin-dependent state Ψ(x),
where x = (r ,σ) represents the space-spin coordinate par. Then,

〈Ô〉= 〈Ψ(x)|Ô(r)|Ψ(x)〉
〈Ψ (x)|Ψ(x)〉 .

509
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If for each spin configuration σ = (σ1, . . . ,σN) we replace the total antisymmetric wave func-
tion by a version with permuted arguments arranged such that the first N↑ arguments are
spin up and the rest N↓ = N−N↑ are spin down we get

Ψ(x1, . . . ,xN)→Ψ(xi1, . . . ,xiN)

= Ψ({r i1,↑}, . . . ,{r iN↑ ,↑},{r iN↑+1,↓}, . . . ,{r iN ,↓})
= Ψ({r1,↑}, . . . ,{rN↑ ,↑},{r1N↑+1,↓}, . . . ,{rN,↓}).

Because the operator Ô is symmetric with respect to the exchange of labels in a pair of
particles, each spin configuration gives an identical contribution to the expectation value.
Hence,

〈Ô〉= 〈Ψ(r)|Ô(r)|Ψ (r)〉
〈Ψ (r)|Ψ(r)〉

The new state is antisymmetric with respect to exchange of spatial coordinates of pairs of
spin-up or spin-down electrons. Therefore, for spin-independent Hamiltonians, the Slater de-
terminant can be splitted in a product of Slater determinants obtained from single particle
orbitals with different spins. For electronic systems we get then

ΨD = D↑D↓,

where

D↑ = |D(r1, r2, . . . , rN/2)|↑ =

∣∣∣∣∣∣∣∣∣

φ1(r1) φ2(r1) · · · φN/2(r1)

φ1(r2) φ2(r2) · · · φN/2(r2)
...

...
. . .

...
φ1(rN/2) φ2(rN/2) · · · φN/2(rN/2)

∣∣∣∣∣∣∣∣∣
↑

. (16.1)

In a similar way, D↓ = |D(rN/2+1, rN/2+2, . . . , rN)|↓. The normalization factor has been removed,
since it cancels in the ratios needed by the variational Monte Carlo algorithm, as shown
later. The new state ΨD(r) gives in this case the same expectation value as Ψ (x), but is more
convenient in terms of computational cost.The Slater determinant can now be factorized as

ΨT(x) = D↑D↓ΨC. (16.2)

16.3 Computational Optimization of the Metropolis/Hasting Ratio

In the Metropolis/Hasting algorithm, the acceptance ratio determines the probability for a
particle to be accepted at a new position. The ratio of the trial wave functions evaluated at
the new and current positions is given by

R≡ Ψnew
T

Ψ cur
T

=
|D|new
↑

|D|cur
↑

|D|new
↓

|D|cur
↓︸ ︷︷ ︸

RSD

Ψ new
C

Ψ cur
C︸ ︷︷ ︸
RC

. (16.3)

16.3.1 Evaluating the Determinant-determinant Ratio

Evaluating the determinant of an N×N matrix by Gaussian elimination takes of the order of
O(N3) operations, which is rather expensive for a many-particle quantum system. An alter-
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native algorithm not requiring the separated evaluation of the determinants will be derived
in the following. We start by defining a Slater matrix D with its corresponding (i, j)−entries
given by

Di j ≡ φ j (r i), (16.4)

where φ j(r i) is the jth single particle wave function evaluated for the particle at position r i .

The inverse of a (Slater) matrix is related to its adjoint (transpose matrix of cofactors) and its
determinant by

D−1 =
ad jD
|D| ⇒ |D|=

ad jD
D−1 , (16.5)

or

|D|=
N

∑
j=1

Cji

D−1
i j

=
N

∑
j=1

Di jCji , (16.6)

i.e., the determinant of a matrix equals the scalar product of any column(row) of the matrix
with the same column(row) of the matrix of cofactors.

In the particular case when only one particle is moved at the time (say particle at position r i),
this changes only one row (or column)1 of the Slater matrix. An efficient way of evaluating
that ratio is as follows [92,127].

We define the ratio of the new to the old determinants in terms of Eq. (16.6) such that

RSD≡
|D(xnew)|
|D(xcur)| =

∑N
j=1Di j (xnew)Cji (xnew)

∑N
j=1Di j (xcur)Cji (xcur)

.

When the particle at position r i is moved, the ith−row of the matrix of cofactors remains
unchanged, i.e., the row number i of the cofactor matrix are independent of the entries in the
rows of its corresponding matrix D. Therefore,

Ci j (xnew) =Ci j (xcur),

and

RSD=
∑N

j=1Di j (xnew)Cji (xcur)

∑N
j=1Di j (xcur)Cji (xcur)

=
∑N

j=1Di j (xnew)D−1
ji (xcur)|D|(xcur)

∑N
j=1Di j (xcur)D−1

ji (xcur)|D|(xcur)
. (16.7)

The invertibility of D implies that
N

∑
k

DikD−1
k j = δi j . (16.8)

Hence, the denominator in Eq. (16.7) is equal to unity. Then,

RSD=
N

∑
j=1

Di j (xnew)D−1
ji (xcur).

Substituting Eq. (16.4) we arrive at

RSD=
N

∑
j=1

φ j(xnew
i )D−1

ji (xcur) (16.9)

1 Some authors prefer to express the Slater matrix by placing the orbitals in a row wise order and the position
of the particles in a column wise one.
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which means that determining RSD when only particle i has been moved, requires only the
evaluation of the dot product between a vector containing orbitals (evaluated at the new
position) and all the entries in the ith column of the inverse Slater matrix (evaluated at the
current position). This requires approximately O(N) operations.

Further optimizations can be done by noting that when only one particle is moved at the
time, one of the two determinants in the numerator and denominator of Eq. (16.3) is unaf-
fected, cancelling each other. This allows us to carry out calculations with only half of the total
number of particles every time a move occurs, requiring only (N/2)d operations, where d is
the number of spatial components of the problem, in systems with equal number of electrons
with spin up and down. The total number of operations for a problem in three dimensions
becomes (N/2)3 = N3/8, i.e., the total calculations are reduced up to by a factor of eight.

16.4 Optimizing the ∇ΨT/ΨT Ratio

Setting ΨD = |D|↑|D|↓ in Eq. (16.2) we get,

∇Ψ
Ψ

=
∇(ΨDΨC)

ΨDΨC
=

ΨC∇ΨD+ΨD∇ΨC

ΨDΨC
=

∇ΨD

ΨD
+

∇ΨC

ΨC

=
∇(|D|↑|D|↓)
|D|↑|D|↓

+
∇ΨC

ΨC
,

or

∇Ψ
Ψ

=
∇(|D|↑)
|D|↑

+
∇(|D|↓)
|D|↓

+
∇ΨC

ΨC
. (16.10)

16.4.1 Evaluating the Gradient-determinant-to-determinant Ratio

The evaluation of Eq. (16.10) requires differentiating the N entries of the Slater matrix with
respect to all the d spatial components. Since the evaluation of the Slater determinant scales
as O(N3) this would involve of the order of N ·d ·O(N3) ≈ O(N4) floating point operations. A
cheaper algorithm can be derived by noting that when only one particle is moved at the time,
only one row in the Slater matrix needs to be evaluated again. Thus, only the derivatives of
that row with respect to the coordinates of the particle moved need to be updated. Obtaining
the gradient-determinant ratio required in Eq. (16.10) becomes straigforward. It is analogous
to the procedure used in deriving Eq. (16.3). From Eq. (16.9) and Eq. (16.3) we see that

∇i |D(x)|
|D(x)| =

N

∑
j=1

∇iDi j (x)D−1
ji (x) =

N

∑
j=1

∇iφ j(xi)D
−1
ji (x), (16.11)

which means that when one particle is moved at the time, the gradient-determinant ratio is
given by the dot product between the gradient of the single-particle wave functions evaluated
for the particle at position r i and the inverse Slater matrix. A small modification has to be done
when computing the gradient to determinant ratio after a move has been accepted. Denoting
by y the vector containing the new spatial coordinates, by definition we get,
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∇i |D(y)|
|D(y)| =

N

∑
j=1

∇iDi j (y)D−1
ji (y) =

N

∑
j=1

∇iφ j(yi)D
−1
ji (y),

which can be expressed in terms of the transpose and inverse of the Slater matrix evaluated
at the old positions [92] to get

∇i |D(y)|
|D(y)| =

1
R

N

∑
j=1

∇iφ j (yi)D
−1
ji (x). (16.12)

Computing a single derivative is an O(N) operation. Since there are dN derivatives, the total
time scaling becomes O(dN2).

16.5 Optimizing the ∇2ΨT/ΨT Ratio

From the single-particle kinetic energy operator, the expectation value of the kinetic energy
expressed in atomic units for electron i is

〈K̂ i〉=−
1
2
〈Ψ |∇2

i |Ψ〉
〈Ψ |Ψ 〉 , (16.13)

which is obtained by using Monte Carlo integration. The energy of each space configuration
is cummulated after each Monte Carlo cycle. For each electron we evaluate

Ki =−
1
2

∇2
i Ψ
Ψ

. (16.14)

Following a procedure similar to that of section 16.4, the term for the kinetic energy is ob-
tained by

∇2Ψ
Ψ

=
∇2(ΨDΨC)

ΨDΨC
=

∇·[∇(ΨDΨC)]

ΨDΨC
=

∇·[ΨC∇ΨD +ΨD∇ΨC]

ΨDΨC

=
∇ΨC ·∇ΨD +ΨC∇2ΨD+∇ΨD ·∇ΨC+ΨD∇2ΨC

ΨDΨC

(16.15)

∇2Ψ
Ψ

=
∇2ΨD

ΨD
+

∇2ΨC

ΨC
+2

∇ΨD

ΨD
· ∇ΨC

ΨC

=
∇2(|D|↑|D|↓)
(|D|↑|D|↓)

+
∇2ΨC

ΨC
+2

∇(|D|↑|D|↓)
(|D|↑|D|↓)

· ∇ΨC

ΨC
,

or

∇2Ψ
Ψ

=
∇2|D|↑
|D|↑

+
∇2|D|↓
|D|↓

+
∇2ΨC

ΨC
+2

[
∇|D|↑
|D|↑

+
∇|D|↓
|D|↓

]
· ∇ΨC

ΨC
, (16.16)

where the laplace-determinant-to-determinant ratio is given by

∇2
i |D(x)|
|D(x)| =

N

∑
j=1

∇2
i Di j (x)D−1

ji (x) =
N

∑
j=1

∇2
i φ j(xi)D

−1
ji (x) (16.17)
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for particle at xi as deduced from Eq. (16.9) and Eq. (16.3). The comments given in section
16.4 on performance yields applies also to this case. Moreover, Eq. (16.17) is computed with
the trial move only if it is accepted.

16.6 Updating the Inverse of the Slater Matrix

Computing the ratios in Eqs. (16.9), (16.11), (16.12) and (16.17) requires that we maintain
the inverse of the Slater matrix evaluated at the current position. Each time a trial position
is accepted, the row number i of the Slater matrix changes and updating its inverse has to be
carried out. Getting the inverse of an N×N matrix by Gaussian elimination has a complexity
of order of O(N3) operations, a luxury that we cannot afford for each time a particle move
is accepted. An alternative way of updating the inverse of a matrix when only a row/column
is changed was suggested by Sherman and Morris. It has a time scaling of the order of
O(N2) [92,126,127] and is given by

D−1
k j (x

new) =





D−1
k j (x

cur)− D−1
ki (xcur)

R ∑N
l=1Dil (xnew)D−1

l j (xcur) if j 6= i

D−1
ki (xcur)

R ∑N
l=1Dil (xcur)D−1

l j (xcur) if j = i

(16.18)

The evaluation of the determinant of an N×N matrix by standard Gaussian elimination
requires O(N3) calculations. As there are Nd independent coordinates we need to evaluate
Nd Slater determinants for the gradient (quantum force) and Nd for the Laplacian (kinetic
energy). With the updating algorithm we need only to invert the Slater determinant matrix
once. This can be done by the LU decomposition discussed in chapter 6.

Table 16.1 summarizes the computational cost associated with the Slater determinant part of
the trial wave function.

Operation No optimization With optimization

Evaluation of R O(N2) O

(
N2

2

)

Updating inverse O(N3) O

(
N3

4

)

Transition of one particle O(N2)+O(N3) O

(
N2

2

)
+O

(
N3

4

)

Table 16.1 Comparison of the computational cost involved in the computation of the Slater determinant with
and without optimization.

16.7 Reducing the Computational Cost of the Correlation Form

The total number of different relative distances r i j is N(N−1)/2. In a matrix storage format,
the set forms a strictly upper triangular matrix2

2 In the implementation, however, we do not store the entries lying on the diagonal.
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r ≡




0 r1,2 r1,3 · · · r1,N
... 0 r2,3 · · · r2,N
...

... 0
. . .

...
...

...
...

. . . rN−1,N

0 0 0 · · · 0




. (16.19)

This applies to g= g(r i j ) as well.

16.8 Computing the Correlation-to-correlation Ratio

For the case where all particles are moved simlutaneously, all the gi j have to be reevaluated.
The number of operations for getting RC scales as O(N2). When moving only one particle
at a time, say the kth, only N− 1 of the distances r i j having k as one of their indices are
changed. It means that the rest of the factors in the numerator of the Jastrow ratio has a
similar counterpart in the denominator and cancel each other. Therefore, only N−1 factors
of Ψ new

C and Ψcur
C avoid cancellation and

RC =
Ψ new

C

Ψcur
C

=
k−1

∏
i=1

gnew
ik

gcur
ik

N

∏
i=k+1

gnew
ki

gcur
ki

. (16.20)

For the Padé-Jastrow form

RC =
Ψnew

C

Ψcur
C

=
eUnew

eUcur
= e∆U , (16.21)

where

∆U =
k−1

∑
i=1

(
f new
ik − f cur

ik

)
+

N

∑
i=k+1

(
f new
ki − f cur

ki

)
(16.22)

One needs to develop a special algorithm that iterates only through the elements of the
upper triangular matrix g that have k as an index.

16.9 Evaluating the ∇ΨC/ΨC Ratio

The expression to be derived in the following is of interest when computing the quantum
force and the kinetic energy. It has the form

∇iΨC

ΨC
=

1
ΨC

∂ΨC

∂xi
,

for all dimensions and with i running over all particles. From the discussion in section 16.8,
for the first derivative only N− 1 terms survive the ratio because the g-terms that are not
differentiated cancel with their corresponding ones in the denominator. Then,

1
ΨC

∂ΨC

∂xk
=

k−1

∑
i=1

1
gik

∂gik

∂xk
+

N

∑
i=k+1

1
gki

∂gki

∂xk
. (16.23)
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An equivalent equation is obtained for the exponential form after replacing gi j by exp(gi j ),
yielding:

1
ΨC

∂ΨC

∂xk
=

k−1

∑
i=1

∂gik

∂xk
+

N

∑
i=k+1

∂gki

∂xk
, (16.24)

with both expressions scaling as O(N).

Later, using the identity
∂

∂xi
gi j =−

∂
∂x j

gi j (16.25)

on the right hand side terms of Eq. (16.23) and Eq. (16.24), we get expressions where all the
derivatives act on the particle are represented by the second index of g:

1
ΨC

∂ΨC

∂xk
=

k−1

∑
i=1

1
gik

∂gik

∂xk
−

N

∑
i=k+1

1
gki

∂gki

∂xi
, (16.26)

and for the exponential case:

1
ΨC

∂ΨC

∂xk
=

k−1

∑
i=1

∂gik

∂xk
−

N

∑
i=k+1

∂gki

∂xi
. (16.27)

16.9.1 Special Case: Correlation Functions Depending on the Relative

Distance

For correlation forms depending only on the scalar distances r i j , we note that

∂gi j

∂x j
=

∂gi j

∂ r i j

∂ r i j

∂x j
=

x j − xi

r i j

∂gi j

∂ r i j
, (16.28)

after substitution in Eq. (16.26) and Eq. (16.27) we arrive at

1
ΨC

∂ΨC

∂xk
=

k−1

∑
i=1

1
gik

r ik

r ik

∂gik

∂ r ik
−

N

∑
i=k+1

1
gki

r ki

rki

∂gki

∂ rki
. (16.29)

Note that for the Padé-Jastrow form we can set gi j ≡ g(r i j ) = ef (r i j ) = efi j and

∂gi j

∂ r i j
= gi j

∂ fi j
∂ r i j

. (16.30)

Therefore,

1
ΨPJ

∂ΨPJ

∂xk
=

k−1

∑
i=1

r ik

r ik

∂ fik
∂ r ik
−

N

∑
i=k+1

r ki

rki

∂ fki

∂ rki
, (16.31)

where
r i j = |r j − r i|= (x j − xi)ê1+(y j − yi)ê2+(zj − zi)ê3 (16.32)

is the vectorial distance. When the correlation function is the linear Padé-Jastrow, we set

fi j =
ai j r i j

(1+βi j r i j )
, (16.33)
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which yields the closed-form expression

∂ fi j
∂ r i j

=
ai j

(1+βi j r i j )2 . (16.34)

16.10 Computing the ∇2ΨC/ΨC Ratio

For deriving this expression we note first that Eq. (16.29) can be written as

∇kΨC =
k−1

∑
i=1

1
gik

∇kgik +
N

∑
i=k+1

1
gki

∇kgki.

After multiplying by ΨC and taking the gradient on both sides we get,
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1
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∑
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1
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)

+ΨC∇k ·
(

N

∑
i=k+1

1
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1
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∑
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1
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∇kgki

)
. (16.35)

Now,

∇k ·
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, (16.36)

with d being the number of spatial dimensions.
Moreover,

∇k

(
1
r ik

∂gik

∂ r ik
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r ik

r ik

∂
∂ r ik

(
1
r ik
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r ik

(
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r2
ik

∂gik

∂ r ik
+

1
r ik

∂ 2gik

∂ r2
ik

)
.
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The substitution of the last result in Eq. (16.36) gives

∇k ·
(

1
gik

∇kgik

)
=− 1

g2
ik

(
∂gik

∂ r ik

)2

+
1

gik

[(
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)
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∂ r ik
+

∂ 2gik

∂ r2
ik

]
.

Inserting the last expression in Eq. (16.35) and after division by ΨC we get,
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. (16.37)

For the exponential case we have

∇2
kΨPJ
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Using

∂
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)
=
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and substituting this result into the equation above gives rise to the final expression,
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. (16.38)

Again, for the linear Padé-Jastrow, we get in this case the closed-form result

∂ 2 fi j
∂ r2

i j

=− 2ai j βi j

(1+βi j r i j )3 . (16.39)
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16.11 Efficient Optimization of the Trial Wave Function

Energy minimization requires the evaluation of the derivative of the trial wave function with
respect to the variational parameters. The computational cost of this operation depends, of
course, on the algorithm selected. In practice, evaluating the derivatives of the trial wave
function with respect to the variational parameters analitically is possible only for small sys-
tems (two to four electrons). On the other hand, the numerical solution needs the repetead
evaluation of the trial wave function (the product of a Slater determinant by a Jastrow func-
tion) with respect to each variational parameter. As an example, consider using a central
difference scheme to evaluate the derivative of the Slater determinant part with respect to a
parameter α,

dΨSD

dα
=

ΨSD(α +∆α)−ΨSD(α−∆α)

2∆α
+O(∆α2).

The reader should note that for the Slater determinant part we need to compute the expres-
sion above two times per Monte Carlo cycle per variational parameter. Computing a deter-
minant is a highly costly operation. Moreover, the numerical accuracy in the solution will
depend on the choice of the step size ∆α.

In the following we suggest a method to efficiently compute the derivative of the energy
with respect to the variational parameters. It derives from the fact that the energy derivative
is equivalent to

∂E
∂cm

= 2

[〈
EL

∂ lnΨTcm

∂cm

〉
−E

〈
∂ lnΨTcm

∂cm

〉]
,

or more precisicely,
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=2

{
1
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N

∑
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(
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∂cm

)

i

]
− 1

N2

N

∑
i=1

(EL[cm])i

N

∑
j=1

(
∂ lnΨTc

∂cm

)

j

}
, (16.40)

and because ΨTcm
=ΨSDcm

ΨJcm
, we get that

lnΨTcm
= ln(ΨSDcm

ΨJcm
) = ln(ΨSDcm

)+ ln(ΨJcm
)

= ln(ΨSDcm↑ΨSDcm↓)+ ln(ΨJcm
)

= ln(ΨSDcm↑)+ ln(ΨSDcm↓)+ ln(ΨJcm
).

Then,

∂ lnΨTcm

∂cm
=

∂ ln(ΨSDcm↑)

∂cm
+

∂ ln(ΨSDcm↓)

∂cm
+

∂ ln(ΨJcm
)

∂cm
, (16.41)

which is a convenient expression in terms of implementation in an object oriented fashion
because we can compute the contribution to the expression above in two separated classes
independently, namely the Slater determinant and Jastrow classes.

Note also that for each of the derivatives of concerning the determinants above we have,
in general, that

∂ ln(ΨSDcm
)

∂cm
=

∂ΨSDcm
∂cm

ΨSDcm↑

For the derivative of the Slater determinant yields that if A is an invertible matrix which
depends on a real parameter t, and if dA

dt exists, then



520 16 Improved Monte Carlo Approaches to Systems of Fermions

d
dt
(||A) = (||A)tr

(
A−1 dA

dt

)
.

d
dt

ln ||A(t) = tr

(
A−1dA

dt

)
=

N

∑
i=1

N

∑
j=1

A−1
i j Ȧ ji , (16.42)

where N is the number of entries in a row. What we have here is the expression for com-
puting the derivative of each of the determinants appearing in Eq. (16.41). Furthemore, note
that the specialization of this expression to the current problem implies that the term A−1

appearing on the right hand side is the inverse of the Slater matrix, already available after
finishing each Monte Carlo cycle as deduced from the algorithms discussed in the previous
sections. It means that the only thing we have to do is to take the derivative of each single
wave function in the Slater matrix with respect to its variational parameter and taking the
trace of ΨSD(α)−1 ˙ΨSD(α). The implementation of this expression and its computation using
analytical derivatives for the single state wave functions is straighforward. The flow chart for
the Quantum Variational Monte Carlo method with optimization of the trial wave function is
shown in figure 16.1.

16.12 Exercises

16.1. The aim of this project is to use the Variational Monte Carlo (VMC) method and evaluate
the ground state energy of the atoms helium, beryllium and neon.

We label r1 the distance from electron 1 to the nucleus and similarly r2 the distance be-
tween electron 2 and the nucleus. The contribution to the potential energy from the interac-
tions between the electrons and the nucleus is

− 2
r1
− 2

r2
, (16.43)

and if we add the electron-electron repulsion with r12 = |r1− r2|, the total potential energy
V(r1, r2) is

V(r1, r2) =−
2
r1
− 2

r2
+

1
r12

, (16.44)

yielding the total Hamiltonian

Ĥ =−∇2
1

2
− ∇2

2

2
− 2

r1
− 2

r2
+

1
r12

, (16.45)

and Schrödinger’s equation reads
Ĥψ = Eψ . (16.46)

All equations are in so-called atomic units. The distances r i and r12 are dimensionless. To have
energies in electronvolt you need to multiply all results with 2×E0, where E0 = 13.6 eV. The
experimental binding energy for helium in atomic units a.u. is EHe =−2.9037a.u..

1. Set up the Hartree-Fock equations for the ground state of the helium atom with two elec-
trons occupying the hydrogen-like orbitals with quantum numbers n= 1, s= 1/2 and l = 0.
There is no spin-orbit part in the two-body Hamiltonian.Make sure to write these equa-

tions using atomic units.
2. Write a programwhich solves the Hartree-Fock equations for the helium atom. Use as input

for the first iteration the hydrogen-like single-particle wave function, with analytical shape
∼ exp(−αr i) where r i represents the coordinates of electron i. The details of all equations



16.12 Exercises 521

Initialize R,
set α and
ΨT−α(R)

Suggest
a move

Compute ac-
ceptance ratio

Generate a
uniformly
distributed
variable r

Is
R≥ r?

Reject move:
xnew

i = xold
i

Accept move:
xold

i = xnew
i

Last
move?

Get local
energy EL

Last
MC
step?

Collect
samples

Is
〈E〉min?

End

yes

no

yes

yes

no

yes

no

Fig. 16.1 Optimization of the trial wave function Ψtrial (α) and minimization of the energy with respect to the
variational parameters.
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which you need to program will be discussed during the lectures. Compare the results with
those obtained using the hydrogen-like wave functions only.

3. Our next step is to perform a Variational Monte Carlo calculation of the ground state of the
helium atom. In our first attempt we will use a brute force Metropolis sampling with a trial
wave function which has the following form

ψT(r1, r2, r12) = exp(−α(r1+ r2))exp

(
r12

2(1+β r12)

)
, (16.47)

with α and β as variational parameters.
Your task is to perform a Variational Monte Carlo calculation using the Metropolis algo-
rithm to compute the integral

〈E〉=
∫

dr1dr2ψ∗T(r1, r2, r12)Ĥ(r1, r2, r12)ψT(r1, r2, r12)∫
dr1dr2ψ∗T(r1, r2, r12)ψT(r1, r2, r12)

. (16.48)

In performing the Monte Carlo analysis you should use blocking as a technique to make
the statistical analysis of the numerical data. The code has to run in parallel. A code for
doing a VMC calculation for the helium atom can be found on the webpage of the course,
see under programs.

4. Repeat the last step but use now importance sampling. Study the dependence of the results
as function of the time step δ t.

5. Our final step is to replace the hydrogen-like orbits in Eq. (16.47) with those obtained from
b) by solving the Hartree-Fock equations. This leads us to only one variational parame-
ter, β . The calculations should include parallelization, blocking and importance sampling.
There is no need to do brute force Metropolis sampling.
Compare the results with those from c) and the Hartree-Fock results from b). How impor-
tant is the correlation part?
Here we will focus on the neon and beryllium atoms. It is convenient to make modules
or classes of trial wave functions, both many-body wave functions and single-particle wave
functions and the quantum numbers involved,such as spin, orbital momentum and principal
quantum numbers.
The new item you need to pay attention to is the calculation of the Slater Determinant.
This is an additional complication to your VMC calculations. If we stick to hydrogen-like
wave functions, the trial wave function for beryllium can be written as

ψT(r1, r2, r3, r4) = Det(φ1(r1),φ2(r2),φ3(r3),φ4(r4))
4

∏
i< j

exp

(
r i j

2(1+β r i j )

)
, (16.49)

where the Det is a Slater determinant and the single-particle wave functions are the hydro-
gen wave functions for the 1s and 2s orbitals. Their form within the variational ansatz are
given by

φ1s(r i) = e−αr i , (16.50)

and
φ2s(r i) = (1−αr i/2)e−αr i/2. (16.51)

For neon , the trial wave function can take the form

ψT(r1, r2, . . . , r10) = Det(φ1(r1),φ2(r2), . . . ,φ10(r10))
10

∏
i< j

exp

(
r i j

2(1+β r i j )

)
, (16.52)

In this case you need to include the 2p wave function as well. It is given as



16.12 Exercises 523

φ2p(r i) = αr ie
−αr i/2. (16.53)

Observe that r i =
√

r2
ix
+ r2

iy
+ r2

iz
.

6. Set up the Hartree-Fock equations for the ground state of the beryllium and neon atoms
with four and ten electrons, respectively, occupying the respective hydrogen-like orbitals.
There is no spin-orbit part in the two-body Hamiltonian. Find also the experimental ground
state energies using atomic units.

7. Solve the Hartree-Fock equations for the beryllium and neon atoms. Use again as input
for the first iteration the hydrogen-like single-particle wave function. Compare the results
with those obtained using the hydrogen-like wave functions only (first iteration).

8. Write a function which sets up the Slater determinant for beryllium and neon. Use the
Hartree-Fock single-particle wave functions to set up the Slater determinant. You have
only one variational parameter, β . Compute the ground state energies of neon and beryl-
lium. The calculations should include parallelization, blocking and importance sampling.
Compare the results with the Hartree-Fock results. How important is the correlation part?
Is there a difference compared with helium? Comment your results.

16.2. The aim of this project is to use the Variational Monte Carlo (VMC) method to evaluate
the ground state energy, onebody densities, expectation values of the kinetic and potential
energies and single-particle energies of quantum dots with N = 2, N = 6 and N = 12electrons,
so-called closed shell systems.

We consider a system of electrons confined in a pure two-dimensional isotropic harmonic
oscillator potential, with an idealized total Hamiltonian given by

Ĥ =
N

∑
i=1

(
−1

2
∇2

i +
1
2

ω2r2
i

)
+∑

i< j

1
r i j

, (16.54)

where natural units (h̄= c= e= me= 1) are used and all energies are in so-called atomic units
a.u. We will study systems of many electrons N as functions of the oscillator frequency ω
using the above Hamiltonian. The Hamiltonian includes a standard harmonic oscillator part

Ĥ0 =
N

∑
i=1

(
−1

2
∇2

i +
1
2

ω2r2
i

)
,

and the repulsive interaction between two electrons given by

Ĥ1 = ∑
i< j

1
r i j

,

with the distance between electrons given by r i j =
√

r1− r2. We define the modulus of the

positions of the electrons (for a given electron i) as r i =
√

r2
ix
+ r2

iy
.

1a) In exercises 1a-1e we will deal only with a system of two electrons in a quantum dot with
a frequency of h̄ω = 1. The reason for this is that we have exact closed form expressions
for the ground state energy from Taut’s work for selected values of ω, see M. Taut, Phys.
Rev. A 48, 3561 (1993). The energy is given by 3 a.u. (atomic units) when the interaction
between the electrons is included. If only the harmonic oscillator part of the Hamiltonian,
the so-called unperturbed part,

Ĥ0 =
N

∑
i=1

(
−1

2
∇2

i +
1
2

ω2r2
i

)
,
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the energy is 2 a.u. The wave function for one electron in an oscillator potential in two
dimensions is

φnx,ny(x,y) = AHnx(
√

ωx)Hny(
√

ωy)exp(−ω(x2+ y2)/2.

The functions Hnx(
√

ωx) are so-called Hermite polynomials, discussed in appendix while
A is a normalization constant. For the lowest-lying state we have nx = ny = 0 and an en-
ergy εnx,ny = ω(nx+ny+1) = ω. Convince yourself that the lowest-lying energy for the two-
electron system is simply 2ω.
The unperturbed wave function for the ground state of the two-electron system is given by

Φ(r1, r2) =Cexp
(
−ω(r2

1+ r2
2)/2

)
,

with C being a normalization constant and r i =
√

r2
ix + r2

iy. Note that the vector r i refers to

the x and y position for a given particle. What is the total spin of this wave function? Find
arguments for why the ground state should have this specific total spin.

1b) We want to perform a Variational Monte Carlo calculation of the ground state of two elec-
trons in a quantum dot well with different oscillator energies, assuming total spin S= 0 us-
ing the Hamiltonian of Eq. (16.54). In our first attempt we will use a brute force Metropolis
sampling with a trial wave function which has the following form

ψT(r1, r2) =Cexp
(
−αω(r2

1+ r2
2)/2

)
exp

(
ar12

(1+β r12)

)
, (16.55)

where a is equal to one when the two electrons have anti-parallel spins and 1/3 when the
spins are parallel. Finally, α and β are our variational parameters.
Your task is to perform a Variational Monte Carlo calculation using the Metropolis algo-
rithm to compute the integral

〈E〉=
∫

dr1dr2ψ∗T(r1, r2)Ĥ(r1, r2)ψT(r1, r2)∫
dr1dr2ψ∗T(r1, r2)ψT(r1, r2)

. (16.56)

You should parallelize your program. As an optional possibility, to program GPUs can be
used instead of standard parallelization with MPI throughout the project.
Find the energy minimum and compute also the mean distance r12 =

√
r1− r2 (with r i =√

r2
ix
+ r2

iy
) between the two electrons for the optimal set of the variational parameters. A

code for doing a VMC calculation for a two-electron system (the three-dimensional helium
atom) can be found on the webpage of the course, see under programs.
You should also find a closed-form expression for the local energy. Compare the results of
this calculation (in terms of CPU time) compared with a calculation which performs a brute
force numerical derivation.

1c) Introduce now importance sampling and study the dependence of the results as a func-
tion of the time step δ t. Compare the results with those obtained under 1a) and comment
eventual differences. In performing the Monte Carlo analysis you should use blocking as
a technique to make the statistical analysis of the numerical data. The code has to run in
parallel.

1d) With the optimal parameters for the ground state wave function, compute the onebody
density. Discuss your results and compare the results with those obtained with a pure har-
monic oscillator wave functions. Run a Monte Carlo calculations without the Jastrow factor
as well and compute the same quantities. How important are the correlations induced by
the Jastrow factor? Compute also the expectation value of the kinetic energy and potential
energy using ω = 0.01, ω = 0.28 and ω = 1.0. Comment your results.
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1e) Repeat step 1c) by varying the energy using the conjugate gradient method to obtain the
best possible set of parameters α and β . Discuss the results.

The previous exercises have prepared you for extending your calculational machinery to other
systems. Here we will focus on quantum dots with N= 6 and N = 12electrons. It is convenient
to make modules or classes of trial wave functions, both many-body wave functions and single-
particle wave functions and the quantum numbers involved, such as spin, value of nx and ny

quantum numbers.
The new item you need to pay attention to is the calculation of the Slater Determinant. This

is an additional complication to your VMC calculations. If we stick to harmonic oscillator like
wave functions, the trial wave function for say an N = 6 electron quantum dot can be written
as

ψT(r1, r2, . . . , r6) = Det(φ1(r1),φ2(r2), . . . ,φ6(r6))
6

∏
i< j

exp

(
ari j

(1+β r i j )

)
, (16.57)

where Det is a Slater determinant and the single-particle wave functions are the harmonic
oscillator wave functions for the nx = 0,1 and ny = 0,1 orbitals. For the N = 12 quantum dot,
the trial wave function can take the form

ψT(r1, r2, . . . , r12) = Det(φ1(r1),φ2(r2), . . . ,φ12(r12))
12

∏
i< j

exp

(
ari j

2(1+β r i j )

)
, (16.58)

In this case you need to include the nx = 2 and ny = 2 wave functions as well. Observe that

r i =
√

r2
ix + r2

iy. Use the Hermite polynomials defined in the appendix.

(1f) Write a function which sets up the Slater determinant handle larger systems as well. Find
the Hermite polynomials which are needed for nx = 0,1,2 and obviously ny as well. Compute
the ground state energies of quantum dots for N = 6 and N = 12 electrons, following the
same set up as in exercise 1e) for ω = 0.01, ω = 0.28 and ω = 1.0. The calculations should
include parallelization, blocking, importance sampling and energy minimization using the
conjugate gradient approach. To test your Slater determinant code, you should reproduce
the unperturbed single-particle energies when the electron-electron repulsion is switched
off. Convince yourself that the unperturbed ground state energies for N = 6 is 10ω and for
N = 12we obtain 28ω. What is the expected total spin of the ground states?

1g) With the optimal parameters for the ground state wave function, compute again the one-
body density. Discuss your results and compare the results with those obtained with a pure
harmonic oscillator wave functions. Run a Monte Carlo calculations without the Jastrow
factor as well and compute the same quantities. How important are the correlations in-
duced by the Jastrow factor? Compute also the expectation value of the kinetic energy and
potential energy using ω = 0.01, ω = 0.28and ω = 1.0. Comment your results.

Additional material on Hermite polynomials

The Hermite polynomials are the solutions of the following differential equation

d2H(x)
dx2 −2x

dH(x)
dx

+(λ −1)H(x) = 0. (16.59)

The first few polynomials are
H0(x) = 1,

H1(x) = 2x,
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H2(x) = 4x2−2,

H3(x) = 8x3−12x,

and
H4(x) = 16x4−48x2+12.

They fulfil the orthogonality relation

∫ ∞

−∞
e−x2

Hn(x)
2dx= 2nn!

√
π,

and the recursion relation
Hn+1(x) = 2xHn(x)−2nHn−1(x).



Chapter 17

Bose-Einstein condensation and Diffusion Monte

Carlo

AbstractWe discuss how to perform diffusion Monte Carlo calculations for systems of bosons

17.1 Diffusion Monte Carlo

The DMC method belongs to a larger class of methods often called projector Monte Carlo. As
the name indicates, this is a general class of methods based on taking projections in Hilbert
space.

Consider a system governed by a Hamiltonian Ĥ. Its stationary eigenfunctions are then
given by

Ĥφi = εiφi

DMC is a method of projecting out the φi from Ψ with the lowest energy. Most often, and in
our case particularly, we are interested in the ground state. But just as with the variational
principle used by VMC, if we let Ψ fulfill a certain mathematical symmetry, the projected φk

will be the state of lowest energy with that given symmetry.
In contrast to VMC, which relies on the variational principle, DMC does not directly depend

on any a priori choice of wave function that ultimately restricts the quality of the result.
Thus, DMC can in principle produce the exact ground state of our system, at least within the
statistical limits of the algorithm.

The procedure of projecting out the component state of Ψ with the lowest energy is based
on operating on Ψ with the special evolution operator exp(−Ĥt)

e(−Ĥt)Ψ(x) = ∑
i

ci exp(−εit)φi(x)

This is just the formal solution of the special equation:

− ∂
∂ t

Ψ(x, t) = ĤΨ(x, t) (17.1)

which resembles the time dependent Schrödinger equation as if it were transformed to imag-
inary time it → t. Recall that the formal solution of the time dependent Schrödinger equation
is just

Ψ (x, t) = e−
i
h̄ Ĥt Ψ(x) = ∑

i

cie
− i

h̄εit φi(x)

As we let t→∞, the exponential makes all the eigenstates with negative energy blow up while
the ones with positive energy vanish. To control this effect we introduce a constant energy
shift ET, called a trial energy, to the potential term of Ĥ. This shift does, of course, not change

527
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any relevant physical properties of our system since it is generally independent of the choice
of the zero point of the energy. The effect on the projection operation becomes

Ψ(x, t) = e−(Ĥ−ET)tΨ(x) = ∑
i

cie
−(εi−ET)tφi(x) (17.2)

Consider the ideal situation of letting ET equal exactly ε0, resulting in

Ψ(x, t) = e−(Ĥ−ET)tΨ(x) = c0φ0+∑
i>0

ciφi(x)e
−(εi−ε0)t

Since εi > ε0 for i 6= 0, all the remaining exponents become negative. In the limit t → ∞, the
contributions from excited states must obviously vanish, so that propagating Ψ according to
Eq. (17.1) gives

lim
t→∞

e−(Ĥ−ε0)tΨ(x) = c0φ0

thus projecting out the ground state.
Without even considering how to do the time propagation in practice, the formulas already

indicate to us that approaching the problem first with VMC can help produce an initial Ψ
close to φ0 and, more importantly, a trial energy ET being an upper bound to the true ground
state energy ε0. Hopefully ET is close enough to ε0 to be smaller than the first excited energy.
Inserting such a ET into Eq. (17.2) while letting t → ∞ will make all the excited states col-
lapse while the ground state blows up and dominates because of the positive exponent in the
coefficient.

From this consideration we also see that the evolution operator is not unitary. The norm of
Ψ is not necessarily conserved with time. Depending on the value of ET it may grow without
limit or go to zero. Only in the case of ET = ε0 the state tends to a constant. This proposes
a method of determining the ground state energy by adjusting ET dynamically during time
propagation so that the state stays constant.

Writing out the imaginary time Schrödinger equation, Eq. (17.1), including the energy
offset ET, we get

∂
∂ t

Ψ(x, t) = −K̂Ψ(x, t)− (V̂(x)−ET)Ψ (x, t)

=
h̄2

2m
∇2Ψ(x, t)− (V̂(x)−ET)Ψ (x, t) (17.3)

where K̂ and V̂ is the kinetic and potential energy operator, respectively. We see that this is
of the form of an extended diffusion equation. We can therefore consider the wave function
Ψ as a probability distribution evolving according to this equation. This greatly contrasts the
usual quantum mechanical interpretation of |Ψ |2 being the actual probability density function
(PDF). We will see that the approach poses some potentially serious problems when the wave
functionΨ we seek has nodes and is partially negative and possibly complex. But to illustrate
the main mechanisms of the method we will at the moment focus on the simple cases of
bosonic ground states which usually are strictly positive and real.

In simple terms, the job consists of representing the initial state Ψ by a collection of walk-
ers, much the same way as in VMC, and letting them evolve in time as a controlled diffusion
process governed by Eq. (17.3). Interpreting the rhs. terms of Eq. (17.3), we see that the first
term is a standard diffusion term with a diffusion constant of

D≡ h̄2

2m
(17.4)
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The second term is called a branching term. When positive, it induces a growth of the number
of walkers and a decay if it is negative.

Before we expand on how to carry out DMC in practice, it may be helpful to consider an
analytically exact approach by focusing on the Green’s function corresponding to the time
evolution of the wave function. The approach is called Green’s function Monte Carlo (GFMC)
and shares its main ideas with the DMC method. Using Dirac’s bracket notation, we start
over by substituting the initial wave function Ψ(x) with its corresponding state ket |Ψ 〉 and
let the special evolution operator work on |Ψ〉

|Ψ〉t = e−(Ĥ−ET)t |Ψ〉,

Now we switch to position representation:

Ψ(x, t) = 〈x|Ψ〉t = 〈x|e−(Ĥ−ET)t |Ψ〉=
∫
〈x|e−(Ĥ−ET)t |x′〉〈x′|Ψ 〉dx′

where we have just inserted a completeness relation, 1 =
∫
|x′〉〈x′|dx′. Defining the Green’s

function for this case

G(x,x′, t)≡ 〈x|e−(Ĥ−ET)t |x′〉= 〈x|e−(K̂+V̂−ET)t |x′〉

we get:

Ψ(x, t) =
∫

G(x,x′, t)Ψ (x′)dx′ (17.5)

Calculating the Green’s function Gwould be greatly simplified if we could split it into separate
factors for each of the terms K̂ and (V̂ −ET) of the Hamiltonian Ĥ, as with the following
factorization

eÂ+B̂ = eÂeB̂

However, such a factorization requires that the operators Â and B̂ commute, [A,B] = 0. Un-
fortunately, this is not the case for the terms K̂ and V̂ of the Hamiltonian. But, by expanding
the exponential of each part, using a descendent of the so called Baker-Campbell-Hausdorff
formula

eÂeB̂ = eÂ+B̂e
1
2 [Â,B̂]

we get that:

e−(Ĥ−ET)t = e−(K̂+V̂−ET)t = e−K̂te−(V̂−ET)t +O(t2)

It is also possible to make approximations to higher orders of t, but we will here keep to the
simple first order case. As t → 0, the error term disappears and the simple factorized form
becomes exact. Thus, an approximation of the form

e−(Ĥ−ET)t ≈ e−K̂te−(V̂−ET)t

is only good for small t and is readily called a short time approximation. The Green’s function
can by this be approximated as follows

G(x,x′, t) = 〈x|e−(Ĥ−ET)t |x′〉
= 〈x|e−K̂t e−(V̂−ET)t |x′〉+O(t2)

=

∫
〈x|e−K̂t |x′′〉〈x′′|e−(V̂−ET)t |x′〉dx′′+O(t2)

=

∫
GK(x,x

′′, t)GV(x
′′,x′, t)dx′′+O(t2)

For the kinetic energy part, GK , we get
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GK(x,x
′′, t) = 〈x|e−K̂t |x′′〉

=
1

(2π)3N

∫
〈x|k〉e−Dk2t〈k|x′′〉dk

=
1

(2π)3N

∫
e−ikxe−Dk2teikx′′ dk

=
1

(4πDt)3N/2
e−(x

′′−x)2/4Dt

The constant D is still the same diffusion constant in Eq. (17.4). The part related to the
potential, GV , is simpler, since it contains a local operator only dependent on x

GV(x
′′,x′, t) = e−(V(x′)−ET)tδ (x′− x′′)

Putting these two parts together and carrying out the integral over x′′ is simplified by the
delta function of GV . Ignoring the normalization constant of GK we get

G(x,x′, t) = e−(x
′−x)2/4Dt e(ET−V(x′))t +O(t2) (17.6)

At this point, the GFMC method would pursue the problem by explicitly evaluating the
Green’s function integral of Eq. (17.5) with a suitable approximation. We, on the other hand,
are now ready to interpret the diffusion process controlled by Eq. (17.3) in terms of the short
time approximated Green’s function. Our wave function Ψ (x) is represented by a set of ran-
dom walkers, so the integral over G(x,x′, t)Ψ(x′) expresses the probability of a walker ending
up at x given the initial configuration of walkers Ψ(x′). Calculating the integral corresponds
to one iteration of the DMC algorithm (to be described in detail later on). Operationally this
has a different effect for each of the two exponential factors of G.

The first factor expresses the probability for a walker to move from position x to x′. Since
this clearly is just a Gaussian of x around x′, we can simply generate new positions as a simple
diffusion process

x= x′+ χ

where χ is a Gaussian pseudo-random number with mean equal zero and variance equal 2Dt.
The second factor, the branching term, is only dependent on x′ and can be interpreted as the
rate of growth of random walkers at each position x′. The short time approximation permits
us to conduct the two processes, diffusion and branching separately, as long as the time step
t is kept small.

Even though this approach, after a large enough number of iterations, should yield a dis-
tribution of walkers corresponding to the exact ground state of Ĥ, the method is not efficient.
In particular, a serious problem arises when our system is governed by an unbounded po-
tential, like a Coulomb potential typical for interactions between electrons or a parametrized
nucleon-nucleon central potential with a hard central core. The branching exponential may
diverge giving a huge production of new random walkers that may be difficult to handle nu-
merically. Also the fluctuations become very large making statistical estimates of physical
quantities inaccurate.

Another problem is that there is actually no simple way of calculating a mean energy esti-
mate from the set of walkers alone. The mean energy is not only the most essential result of
the algorithm, we also need it to be able to adjust the trial energy ET dynamically throughout
the DMC calculation.

For these reasons, and others that will become apparent, we introduce so called impor-
tance sampling by biasing the combined branching-diffusion process with a trial wave func-
tion ΨT which hopefully imitates the exact solution well. The technical contents of this will be
made clear shortly.
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17.1.1 Importance Sampling

Let us introduce a time independent trial wave function ΨT(x). We define the new quantity

f (x, t)≡ΨT(x)Ψ (x, t)

Now by inserting Ψ = f/ΨT into Eq. (17.3) we get a slightly more complicated equation in
terms of f (x, t)

∂ f (x, t)
∂ t

= D∇2 f (x, t)−D∇(F(x) f (x, t))− (EL(x)−ET) f (x, t) (17.7)

with the constant D defined as in Eq. (17.4). Notice that the rhs. consists of three terms. By
the same line of thought as before we now recognize the first term as the familiar diffusion
term, acting on f instead ofΨ . The last term, similar in form to the potential term, is our new
branching term, also acting on f . The quantity EL(x) is just the local energy with respect to
ΨT, defined in the same manner as in the variational Monte Carlo procedure

EL ≡
1

ΨT
ĤΨT

The vector quantity F(x) in the unfamiliar middle term is the drift velocity as we know it from
the Fokker-Planck formalism we used to improve the Metropolis algorithm

F(x)≡ 2
ΨT

∇ΨT (17.8)

Actually, the two first terms on the rhs. of Eq. (17.7) can equivalently be expressed as the
familiar Fokker-Planck drift-diffusion on the rhs. of Eq. (14.26).

Eq. (17.7) motivates us to let the set of random walkers represent f instead ofΨ . A typical
first order short time approximation of the corresponding Green’s function is

G(x,x′, t) =
1

(4πDt)3N/2
e−(x−x′−DtF(x′))2/4Dt e−((EL(x)+EL(x

′))/2−ET)t

+ O(t2) (17.9)

We see that the Green’s function above consists of two factors. The first one is similar to the
Gaussian in Eq. (17.6). But now we have in addition a drift term displacing the mean of the
Gaussian by DtF(x′). Notice that this factor of the Green’s function is practically identical
to the transition proposition rule introduced by the Fokker-Planck formalism to improve the
Metropolis algorithm (see Eq. (14.25)). We can therefore use the same drift-diffusion formal-
ism for the first factor in the above Green’s function. Recall that if a walker is initially at
position x′, the new position x is calculated as follows (see Eq. (14.24))

x= x′+ χ +DF(x′)t (17.10)

where χ is again a Gaussian pseudo-random number with mean equal zero and variance equal
2Dt while DF(x′)t gives a drift in the direction that ΨT increases. The size of the time step t
biased the final outcome of the Fokker-Planck algorithm of the drifted diffusion. A desirable
diffusion was reached only as t→ 0 for each iteration. Also in the present application to DMC,
this bias must be taken into account. In the Metropolis algorithm, the rejection mechanism
took care of it. So we may use the same approach here. After calculating a new position with
Eq. (17.10), we accept it according to the acceptance matrix
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A(x, x′, t) =min

[
1,

GK(x′,x)
GK(x,x′)

|ΨT(x)|2
|ΨT(x′)|2

]
(17.11)

where GK is the kinetic part of the Green’s function, the part related to the diffusion pro-
cess. If we do not wish to do such a Metropolis test, we may alternatively conduct separate
calculations for a set of different time steps t and extrapolate the results to t = 0.

The second factor of Eq. (17.9) plays the same role as the branching term of Eq. (17.6).
But the potential V is replaced by an expression dependent on the local energy,

EL(x)+EL(x′)
2

−ET

The new branching term gives a greatly reduced branching effect compared to the one in
Eq. (17.6). Particularly, in the limit ofΨT = φ0 and ET = ε0 (exactly equal the ground state of Ĥ),
the local energy is constant, giving equal branching everywhere, or in effect, no branching at
all. Thus we can in general expect the number of walkers to fluctuate less and we certainly
avoid uncontrollable growth. In addition, the branching favors the areas of the configuration
space that give the lowest local energy, i.e. the local energy closest to the true ground state
energy. Furthermore, the drifted diffusion pushes the walkers towards the desirable areas.
Thus the whole DMC process is conducted more efficiently.

Finally, the introduction of the trial wave function ΨT makes it possible to evaluate an
estimate of the mean energy given the distribution of the walkers. Instead of calculating the
typical mean energy ∫

Ψ∗ĤΨdx∫
Ψ∗Ψdx

we calculate the so called mixed estimator

〈E〉mixed=

∫
ΨTĤΨdx∫
ΨTΨdx

(17.12)

As the DMC method approaches the exact result Ψ = φ0, the mixed estimator becomes

〈E〉mixed=

∫
ΨT ε0Ψdx∫

ΨTΨdx
=

ε0
∫

ΨTΨdx∫
ΨTΨdx

= ε0

so that the estimate indeed becomes correct. Because of the hermiticity of Ĥ we can rewrite
the mixed estimator of Eq. (17.12) as follows

〈E〉mixed=

∫
Ψ ĤΨTdx∫
ΨTΨdx

=

∫
ΨTΨ 1

ΨT
ĤΨT dx

∫
ΨTΨdx

=

∫
EL f (x)dx∫

f (x)dx
(17.13)

Since the walkers represent f we just need to average the local energy EL over the set of
walkers.

This energy estimator allows us to calculate relatively easily the mean energy on the dis-
tribution of walkers so that we can update the trial energy ET dynamically as the algorithm
proceeds. As the trial energy gets better and better, the algorithm will hopefully stabilize on
the exact result within the limits of statistical fluctuations imposed by the local energy and
our choice of ΨT.

As we know, a good choice of ΨT reduces the fluctuations of the local energy EL. Now we
see that this also makes the estimation of the mean energy in Eq. (17.13) more efficient since
the same number of points (walkers) gives a smaller variance, thus pinpointing the energy
more exactly.
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Importance sampling makes it also to some extent easier to deal with wave functions that
are not positive definite, like fermionic states whose wave function have nodes. What hap-
pens is that the nodes of the function f are tied by the nodes of the trial wave function ΨT.
Therefore it is necessary for ΨT to have a node configuration that best reproduces the phys-
ical properties of the exact wave function. Operationally, the node surfaces of ΨT become
impenetrable walls to the walkers in the sense that the drift velocity F in the vicinity of such
a surface increases in a direction away from it pushing any walker away, preventing it from
crossing the nodal surfaces of ΨT. The approach is called a fixed node approximation.

From all these deliberations on importance sampling we should by now understand the
importance of the trial wave function being as close to the exact solution as possible. We
therefore rely heavily on simpler methods like VMC that do not necessarily solve the prob-
lem exactly, but are easier to handle computationally and are much less sensitive to initial
conditions.

17.2 Bose-Einstein Condensation in Atoms

The spectacular demonstration of Bose-Einstein condensation (BEC) in gases of alkali atoms
87Rb, 23Na, 7Li confined in magnetic traps [128–130] has led to an explosion of interest in
confined Bose systems. Of interest is the fraction of condensed atoms, the nature of the
condensate, the excitations above the condensate, the atomic density in the trap as a function
of Temperature and the critical temperature of BEC, Tc. The extensive progress made up to
early 1999 is reviewed by Dalfovo et al. [131].

A key feature of the trapped alkali and atomic hydrogen systems is that they are dilute.

The characteristic dimensions of a typical trap for 87Rb is ah0 = (h̄/mω⊥)
1
2 = 1− 2× 104 Å

(Ref. [128]). The interaction between 87Rb atoms can be well represented by its s-wave scat-
tering length, aRb. This scattering length lies in the range 85< aRb< 140a0 where a0 = 0.5292
Å is the Bohr radius. The definite value aRb= 100a0 is usually selected and for calculations the
definite ratio of atom size to trap size aRb/ah0 = 4.33×10−3 is usually chosen [131]. A typical
87Rb atom density in the trap is n≃ 1012−1014 atoms/cm3 giving an inter-atom spacing ℓ≃ 104

Å. Thus the effective atom size is small compared to both the trap size and the inter-atom
spacing, the condition for diluteness (na3

Rb≃ 10−6 where n = N/V is the number density). In
this limit, although the interaction is important, dilute gas approximations such as the Bo-
goliubov theory [132], valid for small na3 and large condensate fraction n0 = N0/N, describe
the system well. Also, since most of the atoms are in the condensate (except near Tc), the
Gross-Pitaevskii equation [133,134] for the condensate describes the whole gas well. Effects
of atoms excited above the condensate have been incorporated within the Popov approxima-
tion [135].

Most theoretical studies of Bose-Einstein condensates (BEC) in gases of alkali atoms con-
fined in magnetic or optical traps have been conducted in the framework of the Gross-
Pitaevskii (GP) equation [133, 134]. The key point for the validity of this description is the
dilute condition of these systems, i.e., the average distance between the atoms is much larger
than the range of the inter-atomic interaction. In this situation the physics is dominated by
two-body collisions, well described in terms of the s-wave scattering length a. The crucial
parameter defining the condition for diluteness is the gas parameter x(r) = n(r)a3, where n(r)
is the local density of the system. For low values of the average gas parameter xav ≤ 10−3,
the mean field Gross-Pitaevskii equation does an excellent job (see for example Ref. [131]
for a review). However, in recent experiments, the local gas parameter may well exceed this
value due to the possibility of tuning the scattering length in the presence of a Feshbach
resonance [136].



534 17 Bose-Einstein condensation and Diffusion Monte Carlo

Under such circumstances it is unavoidable to test the accuracy of the GP equation by
performing microscopic calculations. If we consider cases where the gas parameter has been
driven to a region were one can still have a universal regime, i.e., that the specific shape of
the potential is unimportant, we may attempt to describe the system as dilute hard spheres
whose diameter coincides with the scattering length. However, the value of x is such that
the calculation of the energy of the uniform hard-sphere Bose gas would require to take into
account the second term in the low-density expansion [137] of the energy density

E
V

=
2πn2ah̄2

m

[
1+

128
15

(
na3

π

)1/2

+ · · ·
]
, (17.14)

where m is the mass of the atoms treated as hard spheres. For the case of uniform systems,
the validity of this expansion has been carefully studied using Diffusion Monte Carlo [138]
and Hyper-Netted-Chain techniques [139].

The energy functional associated with the GP theory is obtained within the framework
of the local-density approximation (LDA) by keeping only the first term in the low-density
expansion of Eq. (17.14)

EGP[Ψ ] =
∫

dr
[

h̄2

2m
| ∇Ψ(r) |2 +Vtrap(r) |Ψ |2 +

2π h̄2a
m
|Ψ |4

]
, (17.15)

where

Vtrap(r) =
1
2

m(ω2
⊥x2+ω2

⊥y2+ω2
z z2) (17.16)

is the confining potential defined by the two angular frequencies ω⊥ and ωz. The condensate
wave function Ψ is normalized to the total number of particles.

By performing a functional variation of EGP[Ψ ] with respect toΨ∗ one finds the correspond-
ing Euler-Lagrange equation, known as the Gross-Pitaevskii (GP) equation

[
− h̄2

2m
∇2+Vtrap(r)+

4π h̄2a
m
|Ψ |2

]
Ψ = µΨ , (17.17)

where µ is the chemical potential, which accounts for the conservation of the number of
particles. Within the LDA framework, the next step is to include into the energy functional of
Eq. (17.15) the next term of the low density expansion of Eq. (17.14). The functional variation
gives then rise to the so-called modified GP equation (MGP) [140]

[
− h̄2

2m
∇2+Vtrap(r)+

4π h̄2a
m
|Ψ |2

(
1+

32a3/2

3π1/2
|Ψ |

)]
Ψ = µΨ . (17.18)

The MGP corrections have been estimated in Ref. [140] in a cylindrical condensate in
the range of the scattering lengths and trap parameters from the first JILA experiments
with Feshbach resonances. These experiments took advantage of the presence of a Fesh-
bach resonance in the collision of two 85Rb atoms to tune their scattering length [136]. Fully
microscopic calculations using a hard-spheres interaction have also been performed in the
framework of Variational and Diffusion Monte Carlo methods [141–144].
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17.3 Exercises

17.1. The aim of this project is to use the Variational Monte Carlo (VMC) method and evaluate
the ground state energy of a trapped, hard sphere Bose gas for different numbers of particles
with a specific trial wave function. See Ref. [92] for a discussion of VMC.

This wave function is used to study the sensitivity of condensate and non-condensate prop-
erties to the hard sphere radius and the number of particles. The trap we will use is a spher-
ical (S) or an elliptical (E) harmonic trap in three dimensions given by

Vext(r) =

{
1
2mω2

hor
2 (S)

1
2m[ω2

ho(x
2+ y2)+ω2

zz2] (E)
(17.19)

where (S) stands for symmetric and

H =
N

∑
i

(−h̄2

2m
▽2

i +Vext(r i)

)
+

N

∑
i< j

Vint(r i , r j), (17.20)

as the two-body Hamiltonian of the system. Here ω2
ho defines the trap potential strength. In

the case of the elliptical trap, Vext(x,y,z), ωho = ω⊥ is the trap frequency in the perpendicular
or xy plane and ωz the frequency in the z direction. The mean square vibrational amplitude

of a single boson at T = 0K in the trap (17.19) is < x2 >= (h̄/2mωho) so that aho≡ (h̄/mωho)
1
2

defines the characteristic length of the trap. The ratio of the frequencies is denoted λ =ωz/ω⊥
leading to a ratio of the trap lengths (a⊥/az) = (ωz/ω⊥)

1
2 =
√

λ .
We represent the inter boson interaction by a pairwise, hard core potential

Vint(|r i− r j |) =
{

∞ |r i− r j | ≤ a
0 |r i− r j |> a

(17.21)

where a is the hard core diameter of the bosons. Clearly, Vint(|r i− r j |) is zero if the bosons are
separated by a distance |r i − r j | greater than a but infinite if they attempt to come within a
distance |r i− r j | ≤ a.

Our trial wave function for the ground state with N atoms is given by

ΨT(R) =ΨT(r1, r2, . . . rN,α,β ) = ∏
i

g(α,β , r i)∏
i< j

f (a, |r i− r j |), (17.22)

where α and β are variational parameters. The single-particle wave function is proportional
to the harmonic oscillator function for the ground state, i.e.,

g(α,β , r i) = exp[−α(x2
i + y2

i +βz2
i )]. (17.23)

For spherical traps we have β = 1 and for non-interacting bosons (a= 0) we have α = 1/2a2
ho.

The correlation wave function is

f (a, |r i− r j |) =
{

0 |r i− r j | ≤ a
(1− a

|r i−r j | ) |r i− r j |> a. (17.24)

a) Find analytic expressions for the local energy

EL(R) =
1

ΨT(R)
HΨT(R), (17.25)
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for the above trial wave function of Eq. (17.22). Compute also the analytic expression for
the drift force to be used in importance sampling

F =
2∇ΨT

ΨT
. (17.26)

The tricky part is to find an analytic expressions for the derivative of the trial wave function

1
ΨT(R)

N

∑
i

∇2
i ΨT(R),

for the above trial wave function of Eq. (17.22). We rewrite

ΨT(R) =ΨT(r1, r2, . . . rN,α,β ) = ∏
i

g(α,β , r i)∏
i< j

f (a, |r i− r j |),

as
ΨT(R) = ∏

i
g(α,β , r i)e∑i< j u(r i j )

where we have defined r i j = |r i− r j | and

f (r i j ) = e∑i< j u(r i j ),

and in our case
g(α,β , r i) = e−α(x2

i +y2
i +z2

i ) = φ(r i).

The first derivative becomes

∇kΨT(R) = ∇kφ(r k)

[

∏
i 6=k

φ(r i)

]
e∑i< j u(r i j )+∏

i
φ(r i)e∑i< j u(r i j ) ∑

j 6=k

∇ku(r i j )

We leave it as an exercise for the reader to find the expression for the sceond derivative.
The final expression is

1
ΨT(R)

∇2
kΨT(R) =

∇2
kφ(r k)

φ(r k)
+

∇kφ(r k)

φ(r k)

(

∑
j 6=k

r k

rk
u′(r i j )

)
+

∑
i j 6=k

(r k− r i)(r k− r j)

rkirk j
u′(rki)u

′(rk j)+ ∑
j 6=k

(
u′′(rk j)+

2
rk j

u′(rk j)

)

You need to get the analytic expression for this expression using the harmonic oscillator
wave functions and the correlation term defined in the project.

b) Write a Variational Monte Carlo program which uses standard Metropolis sampling and
compute the ground state energy of a spherical harmonic oscillator (β = 1) with no inter-
action. Use natural units and make an analysis of your calculations using both the analytic
expression for the local energy and a numerical calculation of the kinetic energy using
numerical derivation. Compare the CPU time difference. You should also parallelize your
code. The only variational parameter is α. Perform these calculations for N = 10, 100 and
500atoms. Compare your results with the exact answer.

c) We turn now to the elliptic trap with a hard core interaction. We fix, as in Refs. [141,145]
a/aho= 0.0043. Introduce lengths in units of aho, r→ r/aho and energy in units of h̄ωho. Show
then that the original Hamiltonian can be rewritten as

H =
N

∑
i=1

1
2

(
−∇2

i + x2
i + y2

i + γ2z2
i

)
+∑

i< j

Vint(|r i− r j |). (17.27)
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What is the expression for γ? Choose the initial value for β = γ = 2.82843and set up a
VMC program which computes the ground state energy using the trial wave function of
Eq. (17.22). using only α as variational parameter. Use standard Metropolis sampling and
vary the parameter α in order to find a minimum. Perform the calculations for N = 10,50
and N= 100and compare your results to those from the ideal case in the previous exercise.
In actual calculations employing e.g., the Metropolis algorithm, all moves are recast into
the chosen simulation cell with periodic boundary conditions. To carry out consistently the
Metropolis moves, it has to be assumed that the correlation function has a range shorter
than L/2. Then, to decide if a move of a single particle is accepted or not, only the set of
particles contained in a sphere of radius L/2 centered at the referred particle have to be
considered.

d) We repeat exercise c), but now we replace the brute force Metropolis algorithm with impor-
tance sampling based on the Fokker-Planck and the Langevin equations. Discuss your re-
sults and comment on eventual differences between importance sampling and brute force
sampling.
Your code should reproduce the results of Refs. [141,145].



538 17 Bose-Einstein condensation and Diffusion Monte Carlo

References

1. J. Dongarra, F. Sullivan, Computing in Science and Engineering 2, 22 (2000)
2. B. Cipra, SIAM News 33, 1 (2000)
3. J. Thijssen, Computational Physics (Cambridge, 1999)
4. S. Koonin, D. Meredith, Computational Physics (Addison Wesley, 1990)
5. J. Gibbs, Computational Physics (World Scientific, 1994)
6. B. Giordano, H. Nakanishi, Computational Physics (Preston, 2005)
7. R. Landau, M. Paez, Computational Physics (Wiley, 1997)
8. R. Guardiola, E. Higon, J. Ros, Metodes Numèrics per a la Física (Universitat de Valencia, 1997)
9. E. Schmid, G. Spitz, W. Lösch, Theoretische Physik mit dem Personal Computer (Springer Verlag, 1987)

10. H. Gould, J. Tobochnik, An Introduction to Computer Simulation Methods: Applications to Physical Sys-
tems (Addison-Wesley, 1996)

11. B. Smith, J. Adams, W. Brainerd, J. Wagener, Fortran 95 Handbook (MIT press, 1997)
12. M. Metcalf, J. Reid, The F90 Programming Language (Oxford University Press, 1996)
13. A. Marshall, Fortran 90 Programming (University of Liverpool, 1995)
14. J. Reid, The new features of fortran 2003. Tech. rep., ISO working group on Fortran (2007). URL

http://www.iso.org/iso/home.htm

15. W. Gropp, E. Lusk, A. Skjellum, Using MPI (The MIT Press, 1999)
16. M. Snir, S. Otto, S. Huss-Ledermann, D. Walker, J. Dongarra, MPI, the Complete Reference, Vols I and II

(The MIT Press, 1998)
17. G.E. Karniadakis, R.M. Kirby II, Parallel scientific computing in C++ and MPI (Cambridge, 2005)
18. B. Flowers, An Introduction to Numerical Methods in C++ (Oxford University Press, 2000)
19. J. Barton, L. Nackman, Scientific and Engineering C++ (Addison Wesley, 1994)
20. B. Stoustrup, The C++ Programming Language (Pearson, 1997)
21. H. Langtangen, Python Scripting for Computational Science (Springer, 2006)
22. H. Langtangen, Introduction to Computer Programming; A Python-based approach for Computational

Science (Springer Verlag, 2009)
23. D. Kincaid, W. Cheney, Numerical Analysis (Brooks/Gole Publishing Company, 1996)
24. R. Kress, Numerical Analysis (Springer, 1998)
25. J. Stoer, R. Bulirsch, Introduction to Numerical Analysis (Springer Verlag, 1983)
26. LAPACK – Linear Algebra PACKage (http://www.netlib.org/lapack/)
27. C.L. Lawson, R.J. Hanson, D. Kincaid, F.T. Krogh, ACM Trans. Math. Soft. 5, 308 (1979)
28. G. Golub, C. Van Loan, Matrix Computations (John Hopkins University Press, 1996)
29. B. Datta, Numerical Linear Algebra and Applications (Brooks/Cole Publishing Company, 1995)
30. L. Trefethen, D. Bau III, Numerical Linear Algebra (SIAM Publications, 1997)
31. J. Demmel, Numerical Linear Algebra (SIAM Publications, 1996)
32. T. Veldhuizen, Blitz++ User’s Guide (http://www.oonumerics.org/blitz/ , 2003)
33. K. Reek, Pointers on C (Addison Wesley, 1998)
34. J. Berryhill, C++ Scientific Programming (Wiley-Interscience, 2001)
35. F. Franek, Memory as a Programming Concept in C and C++ (Cambridge University Press, 2004)
36. W. Press, B. Flannery, S. Teukolsky, W. Vetterling, Numerical Recipes in C++, The art of scientific Com-

puting (Cambridge University Press, 1999)
37. L.H. Thomas, Proc. Camb. Phil. Soc. 23, 542 (1927)
38. E. Fermi, Rend. Accad. Naz. Lincei 6, 602 (1927)
39. E.H. Lieb, Rev. Mod. Phys. 53(4), 603 (1981). DOI 10.1103/RevModPhys.53.603
40. H.R. Pagels, Cosmic Code: Quantum Physics as the Law of Nature (Simon and Schuster, 1982)
41. K. Eriksson, D. Estep, P. Hansbo, C. Johnson, Computational Differential Equations (Cambridge Univer-

sity Press, 1996)
42. J. Butcher, Numerical Methods for Ordinary Differential equations (Wiley, 2008)
43. E. Hairer, S. NÃÿrsett, G. Wanner, Solving Ordinary Differential Equations I (Springer Verlag, Berlin,

1987)
44. S.L. Shapiro, S.A. Teukolsky, Black holes, white dwarfs, and neutron stars: the physics of compact objects

(Wiley, 1983)
45. H. Heiselberg, M. Hjorth-Jensen, Phys. Rep. 328, 237 (2000). DOI doi:10.1016/S0370-1573(99)00110-6
46. N.K. Glendenning, Compact Stars (Springer, 2000)
47. H. Bethe, M. Johnson, Nucl. Phys. A 230, 1 (1974)
48. H. Langtangen, Computational Partial Differential Equations: Numerical Methods and Diffpack Pro-

gramming (Springer, 1999)
49. J. Ortega, W. Poole, An Introduction to Numerical Methods for Differential Equations (Pitman, 1981)
50. A. Tveito, R. Winther, Introduction to Partial Differential Equations (Springer, 2002)

http://www.iso.org/iso/home.htm
http://www.netlib.org/lapack/
http://www.oonumerics.org/blitz/


References 539

51. G. Arfken, Mathematical Methods for Physicists (Academic Press, 1985)
52. L. Evans, Partial differential equations, Graduate Studies in Mathematics, vol. 19 (American Mathemat-

ical Society, 2002)
53. L. Ramdas Ram-Mohan, Finite Element and Boundary Element Applications in Quantm Mechanics (Ox-

ford University Press, 2002)
54. G. Evans, J. Blackledge, P. Yardley, Numerical methods for partial differential equations (Springer, 1999)
55. M. Pliscke, B. Bergersen, Equilibrium Statistical Physics (Prentice-Hall, 1989)
56. P. Glasserman, Monte Carlo Methods in Financial Engineering (Springer Verlag, 2004)
57. P. Jackel, Monte Carlo Methods in Finance (John Wiley and Sons, LTD, 2002)
58. J. Voit, The Statistical Mechanics of Financial Markets (Springer Verlag, 2005)
59. J.L. McCauley, Dynamics of Markets, Econophysics and Finance (Cambridge University Press, 2004)
60. D. Sornette,Why Stock Markets Crash (Princeton University Press, 2002)
61. C. Robert, G. Casella, Monte Carlo Statistical Methods (Springer Verlag, 2004)
62. J. Johnson, Probability and Statistics for Computer Science (Wiley-Interscience, 2003)
63. G. Fishman, Monte Carlo, Concepts, Algorithms and Applications (Springer, 1996)
64. J.A. Rice, Mathematical Statistics and Data Analysis (Duxbury Advanced, 1994)
65. H. Flyvbjerg, H.G. Petersen, The Journal of Chemical Physics 91(1), 461 (1989). DOI 10.1063/1.457480.

URL http://link.aip.org/link/?JCP/91/461/1

66. H. Marzaglia, B. Zaman, Computers in Physics 8, 117 (1994)
67. I. Karatsas, S. Shreve, Brownian Motion and Stochastic Calculus (Springer, 1988)
68. M. Chaichian, A. Demichev, Path Integrals in Physics, Volume 1 (Institute of Physics Publishing, 2001)
69. L. Onsager, Phys. Rev. 31, 405 (1931)
70. M. Patriarca, A. Chakraborti, K. Kaski, Physica A 340, 334 (2004). DOI doi:10.1016/j.physa.2004.04.024
71. L. Onsager, Phys. Rev. 65(3-4), 117 (1944). DOI 10.1103/PhysRev.65.117
72. N. Ashcroft, N. Mermin, Solid State Physics (Holt-Saunders, 1976)
73. J. Cardy, Scaling and Renormalization in Statistical Physics (Cambridge University Press, 1996)
74. K.G. Wilson, Rev. Mod. Phys. 47, 773 (1975). DOI 10.1103/RevModPhys.47.773
75. K.G. Wilson, Rev. Mod. Phys. 55, 583 (1983). DOI 10.1103/RevModPhys.55.583
76. H.E. Stanley, Rev. Mod. Phys. 71(2), S358 (1999). DOI 10.1103/RevModPhys.71.S358
77. M. Newman, G. Barkema, Monte Carlo Methods in Statistical Physics (Clarendon Press, 1999)
78. D. Landau, K. Binder, A Guide to Monte Carlo Simulations in Statistical Physics (Cambridge University

Press, 2000)
79. R. Shankar, Rev. Mod. Phys. 66(1), 129 (1994). DOI 10.1103/RevModPhys.66.129
80. H. Stanley, Introduction to Phase Transitions and Critical Phenomena (Oxford University Press, 1971)
81. N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, E. Teller, The Journal of Chemical Physics

21(6), 1087 (1953). URL http://link.aip.org/link/?JCP/21/1087/1

82. A.M. Ferrenberg, R.H. Swendsen, Phys. Rev. Lett. 61, 2635 (1988). DOI 10.1103/PhysRevLett.61.2635
83. A.M. Ferrenberg, R.H. Swendsen, Phys. Rev. Lett. 63, 1195 (1989). DOI 10.1103/PhysRevLett.63.1195
84. M.P. Nightingale, H.W.J. Blöte, Phys. Rev. Lett. 76(24), 4548 (1996). DOI 10.1103/PhysRevLett.76.4548
85. U. Wolff, Phys. Rev. Lett. 62(4), 361 (1989). DOI 10.1103/PhysRevLett.62.361
86. R.H. Swendsen, J.S. Wang, Phys. Rev. Lett. 58, 86 (1987). DOI 10.1103/PhysRevLett.58.86
87. J.L. Monroe, Phys. Rev. E 66(6), 066129 (2002). DOI 10.1103/PhysRevE.66.066129
88. M.S.S. Challa, D.P. Landau, K. Binder, Phys. Rev. B 34(3), 1841 (1986). DOI 10.1103/PhysRevB.34.1841
89. F.Y. Wu, Rev. Mod. Phys. 54(1), 235 (1982). DOI 10.1103/RevModPhys.54.235
90. K. Binder, Reports on Progress in Physics 50(7), 783 (1987). URL

http://stacks.iop.org/0034-4885/50/783

91. R. Liboff, Introductory Quantum Mechanics (Addison Wesley, 2003)
92. B.L. Hammond, W.A. Lester, P. Reynolds, Monte Carlo Methods in ab Initio Quantum Chemistry (World

Scientific, 1994)
93. H. Kümmel, K.H. Luhrmann, J.G. Zabolitzky, Phys. Rep. 36, 1 (1978, and references therein)
94. R.J. Bartlett, M. Musiał, Reviews of Modern Physics 79(1), 291 (2007). DOI 10.1103/RevModPhys.79.

291. URL http://link.aps.org/abstract/RMP/v79/p291

95. T. Helgaker, P. Jørgensen, J. Olsen, Molecular Electronic Structure Theory. Energy and Wave Functions
(Wiley, Chichester, 2000)

96. D.J. Dean, M. Hjorth-Jensen, Physical Review C 69, 054320 (2004). URL
http://link.aps.org/abstract/PRC/v69/e054320

97. K. Kowalski, D.J. Dean, M. Hjorth-Jensen, T. Papenbrock, P. Piecuch, Phys. Rev. Lett. 92, 132501 (2004)
98. B.S. Pudliner, V.R. Pandharipande, J. Carlson, S.C. Pieper, R.B. Wiringa, Phys. Rev. C 56, 1720 (1997).

DOI 10.1103/PhysRevC.56.1720
99. S. Koonin, D. Dean, K. Langanke, Phys. Rep. 278, 1 (1997). DOI doi:10.1016/S0370-1573(96)00017-8

100. D.M. Ceperley, Rev. Mod. Phys. 67, 279 (1995). URL http://link.aps.org/abstract/RMP/v67/p279

101. P.J. Ellis, E. Osnes, Rev. Mod. Phys. 49, 777 (1977). URL http://link.aps.org/abstract/RMP/v49/p777

http://link.aip.org/link/?JCP/91/461/1
http://link.aip.org/link/?JCP/21/1087/1
http://stacks.iop.org/0034-4885/50/783
http://link.aps.org/abstract/RMP/v79/p291
http://link.aps.org/abstract/PRC/v69/e054320
http://link.aps.org/abstract/RMP/v67/p279
http://link.aps.org/abstract/RMP/v49/p777


540 17 Bose-Einstein condensation and Diffusion Monte Carlo

102. I. Lindgren, J. Morrison, Atomic Many-Body Theory (Springer, Berlin, 1985)
103. M. Hjorth-Jensen, T.T.S. Kuo, E. Osnes, Phys. Rep. 261, 125 (1995). DOI doi:10.1016/0370-1573(95)

00012-6
104. W.H. Dickhoff, D.V. Neck,Many-Body Theory exposed! (World Scientific, 2005)
105. J.P. Blaizot, G. Ripka, Quantum theory of finite systems (MIT press, Cambridge, USA, 1986)
106. S.R. White, Phys. Rev. Lett. 69, 2863 (1992). DOI 10.1103/PhysRevLett.69.2863. URL

http://link.aps.org/abstract/PRL/v69/p2863

107. U. Schollwock, Rev. Mod. Phys. 77, 259 (2005). URL http://link.aps.org/abstract/RMP/v77/p259

108. R.O. Jones, O. Gunnarsson, Rev. Mod. Phys. 61(3), 689 (1989). DOI 10.1103/RevModPhys.61.689
109. R.J. Bartlett, V.F. Lotrich, I.V. Schweigert, J. Chem. Phys. 123, 062205 (2005). URL

http://link.aip.org/link/?JCP/123/062205/1

110. K. Peirs, D.V. Neck, M. Waroquier, Physical Review A (Atomic, Molecular, and Optical Physics) 67,
012505 (2003). URL http://link.aps.org/abstract/PRA/v67/e012505

111. D.V. Neck, S. Verdonck, G. Bonny, P.W. Ayers, M. Waroquier, Physical Review A (Atomic, Molecular, and
Optical Physics) 74, 042501 (2006). URL http://link.aps.org/abstract/PRA/v74/e042501

112. R.R. Whitehead, A. Watt, B.J. Cole, I. Morrison, Adv.Nucl.Phys. 9, 123 (1977)
113. E. Caurier, G. Martinez-Pinedo, F. Nowacki, A. Poves, A.P. Zuker, Rev. Mod. Phys. 77, 427 (2005). URL

http://link.aps.org/abstract/RMP/v77/p427

114. M. Horoi, B.A. Brown, T. Otsuka, M. Honma, T. Mizusaki, Phys. Rev. C 73, 061305 (2006). URL
http://link.aps.org/abstract/PRC/v73/e061305

115. D.J. Dean, M. Hjorth-Jensen, Computational Quantum Mechanics for Nuclear Physics (Chapman & Hal-
l/CRC, 2009)

116. B.H. Bransden, C.J. Joachain, Physics of Atoms and Molecules (Longman, 1983)
117. J.W. Moskowitz, M.H. Kalos, Int. J. Quantum Chem. 20, 1107 (1981)
118. J.W. Moskowitz, K.E. Schmidt, M.A. Lee, M.H. Kalos, The Journal of Chemical Physics 76(2), 1064 (1982).

DOI 10.1063/1.443098. URL http://link.aip.org/link/?JCP/76/1064/1

119. P.W. Atkins, R.S. Freidman, Molecular Quantum Mechanics (Oxford Univerity Press, 2003)
120. E. Clementi, D.L. Raimondi, J. Chem. Phys. 38, 2686 (1963)
121. P. Hohenberg, W. Kohn, Phys. Rev. 136(3B), B864 (1964). DOI 10.1103/PhysRev.136.B864
122. W. Kohn, L.J. Sham, Phys. Rev. 140(4A), A1133 (1965). DOI 10.1103/PhysRev.140.A1133
123. J.P. Perdew, A. Zunger, Phys. Rev. B 23(10), 5048 (1981). DOI 10.1103/PhysRevB.23.5048
124. J.P. Perdew, Y. Wang, Phys. Rev. B 45(23), 13244 (1992). DOI 10.1103/PhysRevB.45.13244
125. J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, C. Fiolhais, Phys. Rev. B

46(11), 6671 (1992). DOI 10.1103/PhysRevB.46.6671
126. A.J. Williamson, S.D. Kenny, G. Rajagopal, A.J. James, R.J. Needs, L.M. Fraser, W.M.C. Foulkes, P. Maccul-

lum, Phys. Rev. B 53(15), 9640 (1996). DOI 10.1103/PhysRevB.53.9640
127. D. Ceperley, G.V. Chester, M.H. Kalos, Phys. Rev. B 16(7), 3081 (1977). DOI 10.1103/PhysRevB.16.3081
128. M.H. Anderson, J.R. Ensher, M.R. Matthews, C.E. Wieman, E.A. Cornell, Science 269, 198 (1995)
129. K.B. Davis, M.O. Mewes, M.R. Andrews, N.J. van Druten, D.S. Durfee, D.M. Kurn, W. Ketterle, Phys. Rev.

Lett. 75(22), 3969 (1995). DOI 10.1103/PhysRevLett.75.3969
130. C.C. Bradley, C.A. Sackett, J.J. Tollett, R.G. Hulet, Phys. Rev. Lett. 75(9), 1687 (1995). DOI 10.1103/

PhysRevLett.75.1687
131. F. Dalfovo, S. Giorgini, L.P. Pitaevskii, S. Stringari, Rev. Mod. Phys. 71, 463 (1999). DOI 10.1103/

RevModPhys.71.463
132. N. Bogolyubov, Dolk. Akad. Nauk SSSR 119, 244 (1959)
133. E. Gross, Nuovo Cimento 20, 454 (1961)
134. L. Pitaevskii, Zh.EKSP.Teor.Fiz. 40, 646 (1961)
135. D.A.W. Hutchinson, E. Zaremba, A. Griffin, Phys. Rev. Lett. 78(10), 1842 (1997). DOI 10.1103/

PhysRevLett.78.1842
136. S.L. Cornish, N.R. Claussen, J.L. Roberts, E.A. Cornell, C.E. Wieman, Phys. Rev. Lett. 85(9), 1795 (2000).

DOI 10.1103/PhysRevLett.85.1795
137. A.L. Fetter, J.D. Walecka, Quantum Theory of Many-Particle Systems (McGraw-Hill, 1971)
138. S. Giorgini, J. Boronat, J. Casulleras, Phys. Rev. A 60(6), 5129 (1999). DOI 10.1103/PhysRevA.60.5129
139. F. Mazzanti, A. Polls, A. Fabrocini, Phys. Rev. A 67(6), 063615 (2003). DOI 10.1103/PhysRevA.67.063615
140. A. Fabrocini, A. Polls, Phys. Rev. A 60(3), 2319 (1999). DOI 10.1103/PhysRevA.60.2319
141. J.L. DuBois, H.R. Glyde, Phys. Rev. A 63(2), 023602 (2001). DOI 10.1103/PhysRevA.63.023602
142. A.R. Sakhel, J.L. DuBois, H.R. Glyde, Phys. Rev. A 66(6), 063610 (2002). DOI 10.1103/PhysRevA.66.

063610
143. J.L. DuBois, H.R. Glyde, Phys. Rev. A 68(3), 033602 (2003). DOI 10.1103/PhysRevA.68.033602
144. D. Blume, C.H. Greene, Phys. Rev. A 63(6), 063601 (2001). DOI 10.1103/PhysRevA.63.063601
145. J.K. Nilsen, J. Mur-Petit, M. Guilleumas, M. Hjorth-Jensen, A. Polls, Physical Review A (Atomic, Molecular,

and Optical Physics) 71, 053610 (2005). URL http://link.aps.org/abstract/PRA/v71/e053610

http://link.aps.org/abstract/PRL/v69/p2863
http://link.aps.org/abstract/RMP/v77/p259
http://link.aip.org/link/?JCP/123/062205/1
http://link.aps.org/abstract/PRA/v67/e012505
http://link.aps.org/abstract/PRA/v74/e042501
http://link.aps.org/abstract/RMP/v77/p427
http://link.aps.org/abstract/PRC/v73/e061305
http://link.aip.org/link/?JCP/76/1064/1
http://link.aps.org/abstract/PRA/v71/e053610

	Part I Introduction to programming and numerical methods
	Introduction
	Choice of programming language
	Designing programs

	Introduction to C++ and Fortran
	Getting Started
	Scientific hello world

	Representation of Integer Numbers
	Fortran codes

	Real Numbers and Numerical Precision
	Representation of real numbers
	Machine numbers

	Programming Examples on Loss of Precision and Round-off Errors
	Algorithms for e-x
	Fortran codes
	Further examples

	Additional Features of C++ and Fortran 
	Operators in C++
	Pointers and arrays in C++.
	Macros in C++
	Structures in C++ and TYPE in Fortran 

	Exercises

	Numerical differentiation and interpolation
	Numerical Differentiation
	The second derivative of exp(x)
	Error analysis

	Numerical Interpolation and Extrapolation
	Interpolation
	Richardson's deferred extrapolation method

	Classes in C++
	The Complex class
	The vector class

	Modules in Fortran
	How to make Figures with Gnuplot
	Exercises

	Non-linear Equations
	Particle in a Box Potential
	Iterative Methods
	Bisection
	Newton-Raphson's Method
	The Secant Method
	Broyden's Method

	Exercises

	Numerical Integration
	Newton-Cotes Quadrature
	Adaptive Integration
	Gaussian Quadrature
	Orthogonal polynomials, Legendre
	Integration points and weights with orthogonal polynomials
	Application to the case N=2
	General integration intervals for Gauss-Legendre
	Other orthogonal polynomials
	Applications to selected integrals

	Treatment of Singular Integrals
	Parallel Computing
	Brief survey of supercomputing concepts and terminologies
	Parallelism
	MPI with simple examples
	Numerical integration with MPI

	An Integration Class
	Exercises


	Part II Linear Algebra and Eigenvalues
	Linear Algebra
	Introduction
	Mathematical Intermezzo
	Programming Details
	Declaration of fixed-sized vectors and matrices
	Runtime Declarations of Vectors and Matrices in C++
	Matrix Operations and C++ and Fortran Features of Matrix handling

	Linear Systems
	Gaussian Elimination
	LU Decomposition of a Matrix
	Solution of Linear Systems of Equations
	Inverse of a Matrix and the Determinant
	Tridiagonal Systems of Linear Equations

	Spline Interpolation
	Iterative Methods
	Jacobi's method
	Gauss-Seidel
	Successive over-relaxation
	Conjugate Gradient Method

	A vector and matrix class
	How to construct your own matrix-vector class

	Exercises
	Solution


	Eigensystems
	Introduction
	Eigenvalue problems
	Similarity transformations
	Jacobi's method
	Similarity Transformations with Householder's method
	The Householder's method for tridiagonalization
	Diagonalization of a Tridiagonal Matrix via Francis' Algorithm

	Power Methods
	Iterative methods: Lanczos' algorithm
	Schrödinger's Equation Through Diagonalization
	Numerical solution of the Schrödinger equation by diagonalization
	Program example and results for the one-dimensional harmonic oscillator

	Exercises


	Part III Differential Equations
	Differential equations
	Introduction
	Ordinary differential equations
	Finite difference methods
	Improvements of Euler's algorithm, higher-order methods
	Predictor-Corrector methods

	More on finite difference methods, Runge-Kutta methods
	Physics examples
	Ideal harmonic oscillations
	Damping of harmonic oscillations and external forces
	The pendulum, a nonlinear differential equation

	Physics Project: the pendulum
	Analytic results for the pendulum
	The pendulum code

	Exercises

	Two point boundary value problems
	Introduction
	Shooting methods
	Improved approximation to the second derivative, Numerov's method
	Wave equation with constant acceleration
	Schrödinger equation for spherical potentials

	Numerical procedure, shooting and matching
	Algorithm for solving Schrödinger's equation

	Green's function approach
	Exercises

	Partial Differential Equations
	Introduction
	Diffusion equation
	Explicit Scheme
	Implicit Scheme
	Crank-Nicolson scheme
	Numerical Truncation
	Solution for the One-dimensional Diffusion Equation

	Laplace's and Poisson's Equations
	Jacobi Algorithm for solving Laplace's Equation

	Wave Equation in two Dimensions
	Closed-form Solution

	Exercises


	Part IV Monte Carlo Methods
	Outline of the Monte Carlo Strategy
	Introduction
	Definitions
	First Illustration of the Use of Monte-Carlo Methods
	Second Illustration, Particles in a Box
	Radioactive Decay
	Program Example for Radioactive Decay
	Brief Summary

	Probability Distribution Functions
	Multivariable Expectation Values
	The Central Limit Theorem
	Definition of Correlation Functions and Standard Deviation

	Random Numbers
	Properties of Selected Random Number Generators

	Improved Monte Carlo Integration
	Change of Variables
	Importance Sampling
	Acceptance-Rejection Method

	Monte Carlo Integration of Multidimensional Integrals
	Brute Force Integration
	Importance Sampling

	Classes for Random Number Generators
	Exercises

	Random walks and the Metropolis algorithm
	Motivation
	Diffusion Equation and Random Walks
	Diffusion Equation
	Random Walks

	Microscopic Derivation of the Diffusion Equation
	Discretized Diffusion Equation and Markov Chains
	Continuous Equations
	Numerical Simulation

	Entropy and Equilibrium Features
	The Metropolis Algorithm and Detailed Balance
	Brief Summary

	Langevin and Fokker-Planck Equations
	Fokker-Planck Equation
	Langevin Equation

	Exercises

	Monte Carlo Methods in Statistical Physics
	Introduction and Motivation
	Review of Statistical Physics
	Microcanonical Ensemble
	Canonical Ensemble
	Grand Canonical and Pressure Canonical

	Ising Model and Phase Transitions in Magnetic Systems
	Theoretical Background

	Phase Transitions and Critical Phenomena
	The Ising Model and Phase Transitions
	Critical Exponents and Phase Transitions from Mean-field Models

	The Metropolis Algorithm and the Two-dimensional Ising Model
	Parallelization of the Ising Model

	Selected Results for the Ising Model
	Correlation Functions and Further Analysis of the Ising Model
	Thermalization
	Time-correlation Function

	The Potts' model
	Exercises

	Quantum Monte Carlo Methods
	Introduction
	Postulates of Quantum Mechanics
	Mathematical Properties of the Wave Functions
	Important Postulates

	First Encounter with the Variational Monte Carlo Method
	Variational Monte Carlo for Quantum Mechanical Systems
	First illustration of Variational Monte Carlo Methods

	Variational Monte Carlo for atoms
	The Born-Oppenheimer Approximation
	The Hydrogen Atom
	Metropolis sampling for the hydrogen atom and the harmonic oscillator
	The Helium Atom
	Program Example for Atomic Systems
	Importance sampling

	Exercises


	Part V Advanced topics
	Many-body approaches to studies of electronic systems: Hartree-Fock theory and Density Functional Theory
	Introduction
	Hartree-Fock theory
	Expectation value of the Hamiltonian with a given Slater determinant
	Derivation of the Hartree-Fock equations
	Reminder on calculus of variations
	Varying the single-particle wave functions
	Detailed solution of the Hartree-Fock equations
	Hartree-Fock by variation of basis function coefficients

	Density Functional Theory
	Hohenberg-Kohn Theorem
	Derivation of the Kohn-Sham Equations
	The Local Density Approximation and the Electron Gas
	Applications and Code Examples

	Exercises

	Improved Monte Carlo Approaches to Systems of Fermions
	Introduction
	Splitting the Slater Determinant
	Computational Optimization of the Metropolis/Hasting Ratio
	Evaluating the Determinant-determinant Ratio

	Optimizing the T / T Ratio
	Evaluating the Gradient-determinant-to-determinant Ratio

	Optimizing the 2 T/T Ratio
	Updating the Inverse of the Slater Matrix
	Reducing the Computational Cost of the Correlation Form
	Computing the Correlation-to-correlation Ratio
	Evaluating the  C/C Ratio
	Special Case: Correlation Functions Depending on the Relative Distance

	Computing the 2 C/C Ratio
	Efficient Optimization of the Trial Wave Function
	Exercises

	Bose-Einstein condensation and Diffusion Monte Carlo
	Diffusion Monte Carlo
	Importance Sampling

	Bose-Einstein Condensation in Atoms
	Exercises
	References



