
Computational Physics

Richard Fitzpatrick

Professor of Physics

The University of Texas at Austin

Contents

1 Introduction 8

1.1 Intended Audience . 8

1.2 Major Sources . 8

1.3 Purpose of Course . 9

1.4 Course Philosophy . 9

1.5 Programming Methodologies . 9

1.6 Scientific Programming Languages 11

2 Scientific Programming in C 13

2.1 Introduction . 13

2.2 Variables . 13

2.3 Expressions and Statements . 15

2.4 Operators . 18

2.5 Library Functions . 24

2.6 Data Input and Output . 26

2.7 Structure of a C Program . 33

2.8 Control Statements . 35

2.9 Functions . 45

2.10 Pointers . 55

2.11 Global Variables . 63

2

2.12 Arrays . 66

2.13 Character Strings . 73

2.14 Multi-File Programs . 75

2.15 Command Line Parameters . 77

2.16 Timing . 79

2.17 Random Numbers . 81

2.18 C++ Extensions to C . 83

2.19 Complex Numbers . 87

2.20 Variable Size Multi-Dimensional Arrays 89

2.21 The CAM Graphics Class . 93

3 Integration of ODEs 101

3.1 Introduction . 101

3.2 Euler’s Method . 102

3.3 Numerical Errors . 103

3.4 Numerical Instabilities . 106

3.5 Runge-Kutta Methods . 106

3.6 An Example Fixed-Step RK4 routine 109

3.7 An Example Calculation . 111

3.8 Adaptive Integration Methods . 113

3.9 An Example Adaptive-Step RK4 Routine 117

3.10 Advanced Integration Methods . 121

3

3.11 The Physics of Baseball Pitching . 121

3.12 Air Drag . 122

3.13 The Magnus Force . 126

3.14 Simulations of Baseball Pitches . 127

3.15 The Knuckleball . 134

4 The Chaotic Pendulum 140

4.1 Introduction . 140

4.2 Analytic Solution . 142

4.3 Numerical Solution . 148

4.4 Validation of Numerical Solutions 148

4.5 The Poincaré Section . 151

4.6 Spatial Symmetry Breaking . 152

4.7 Basins of Attraction . 157

4.8 Period-Doubling Bifurcations . 163

4.9 The Route to Chaos . 166

4.10 Sensitivity to Initial Conditions . 173

4.11 The Definition of Chaos . 179

4.12 Periodic Windows . 180

4.13 Further Investigation . 184

5 Poisson’s Equation 189

4

5.1 Introduction . 189

5.2 1-D Problem with Dirichlet Boundary Conditions 190

5.3 An Example Tridiagonal Matrix Solving Routine 193

5.4 1-D problem with Mixed Boundary Conditions 194

5.5 An Example 1-D Poisson Solving Routine 195

5.6 An Example Solution of Poisson’s Equation in 1-D 197

5.7 2-D problem with Dirichlet Boundary Conditions 197

5.8 2-d Problem with Neumann Boundary Conditions 201

5.9 The Fast Fourier Transform . 202

5.10 An Example 2-D Poisson Solving Routine 207

5.11 An Example Solution of Poisson’s Equation in 2-D 211

5.12 Example 2-D Electrostatic Calculation 213

5.13 3-D Problems . 216

6 The Diffusion Equation 218

6.1 Introduction . 218

6.2 1-D Problem with Mixed Boundary Conditions 219

6.3 An Example 1-D Diffusion Equation Solver 220

6.4 An Example 1-D Solution of the Diffusion Equation 221

6.5 von Neumann Stability Analysis . 224

6.6 The Crank-Nicholson Scheme . 225

6.7 An Improved 1-D Diffusion Equation Solver 226

5

6.8 An Improved 1-D Solution of the Diffusion Equation 228

6.9 2-D Problem with Dirichlet Boundary Conditions 229

6.10 2-D Problem with Neumann Boundary Conditions 231

6.11 An Example 2-D Diffusion Equation Solver 232

6.12 An Example 2-D Solution of the Diffusion Equation 236

6.13 3-D Problems . 236

7 The Wave Equation 238

7.1 Introduction . 238

7.2 The 1-D Advection Equation . 238

7.3 The Lax Scheme . 240

7.4 The Crank-Nicholson Scheme . 243

7.5 Upwind Differencing . 245

7.6 The 1-D Wave Equation . 248

7.7 The 2-D Resonant Cavity . 252

8 Particle-in-Cell Codes 265

8.1 Introduction . 265

8.2 Normalization Scheme . 266

8.3 Solution of Electron Equations of Motion 267

8.4 Evaluation of Electron Number Density 267

8.5 Solution of Poisson’s Equation . 268

6

8.6 An example 1-D PIC Code . 269

8.7 Results . 281

8.8 Discussion . 282

9 Monte-Carlo Methods 284

9.1 Introduction . 284

9.2 Random Numbers . 284

9.3 Distribution Functions . 291

9.4 Monte-Carlo Integration . 294

9.5 The Ising Model . 302

7

1 INTRODUCTION

1 Introduction

1.1 Intended Audience

These set of lecture notes are designed for an upper-division undergraduate

course on computational physics.

1.2 Major Sources

The sources which I have consulted most frequently whilst developing course

material are as follows:

C/C++ PROGRAMMING:

Software engineering in C, P.A. Darnell, and P.E. Margolis (Springer-Verlag,

New York NY, 1988).

The C++ programming language, 2nd edition, B. Stroustrup (Addison-Wesley,

Reading MA, 1991).

Schaum’s outline: Programming with C, 2nd edition, B. Gottfried (McGraw-

Hill, New York NY, 1996).

Schaum’s outline: Programming with C++, 2nd edition, J.R. Hubbard (McGraw-

Hill, New York NY, 2000).

NUMERICAL METHODS AND COMPUTATIONAL PHYSICS:

Computational physics, D. Potter (Wiley, New York NY, 1973).

Numerical recipes in C: the art of scientific computing, W.H. Press, S.A. Teukol-

sky, W.T. Vettering, and B.R. Flannery (Cambridge University Press, Cam-

bridge UK, 1992).

Computational physics, N.J. Giordano (Prentice-Hall, Upper Saddle River NJ,

1997).

Numerical methods for physics, 2nd edition, A.L. Garcia (Prentice-Hall, Upper

Saddle River NJ, 2000).

8

1.3 Purpose of Course 1 INTRODUCTION

PHYSICS OF BASEBALL:

The physics of baseball, R.K. Adair (Harper & Row, New York NY, 1990).

The physics of sports, A.A. Armenti, Jr., Ed. (American Institute of Physics,

New York NY, 1992).

CHAOS:

Chaos in a computer-animated pendulum, R.L. Kautz, Am. J. Phys. 61, 407

(1993).

Nonlinear dynamics and chaos, S.H. Strogatz, (Addison-Wesley, Reading MA,

1994).

Chaos: An introduction to dynamical systems, K.T. Alligood, T.D. Sauer, and

J.A. Yorke, (Springer-Verlag, New York NY, 1997).

1.3 Purpose of Course

The purpose of this course is demonstrate to students how computers can enable

us to both broaden and deepen our understanding of physics by vastly increasing

the range of mathematical calculations which we can conveniently perform.

1.4 Course Philosophy

My approach to computational physics is to write self-contained programs in a

high-level scientific language—i.e., either FORTRAN or C/C++. Of course, there

are many other possible approaches, each with their own peculiar advantages

and disadvantages. It is instructive to briefly examine the available options.

1.5 Programming Methodologies

Basically, there are three possible methods by which we could perform the nu-

merical calculations which we are going to encouter during this course.

9

1.5 Programming Methodologies 1 INTRODUCTION

Firstly, we could use a mathematical software package, such as MATHEMAT-

ICA1, MAPLE2 or MATLAB.3 The main advantage of these packages is that they

facilitate the very rapid coding up of numerical problems. The main disadvan-

tage is that they produce executable code which is interpreted, rather than com-

piled. Compiled code is translated directly from a high-level language into ma-

chine code instructions, which, by definition, are platform dependent—after all,

an Intel x86 chip has a completely different instruction set to a Power-PC chip.

Interpreted code is translated from a high-level language into a set of meta-code

instructions which are platform independent. Each meta-code instruction is then

translated into a fixed set of machine code instructions which is peculiar to the

particular hardware platform on which the code is being run. In general, inter-

preted code is nowhere near as efficient, in terms of computer resource utiliza-

tion, as compiled code: i.e., interpreted code run a lot slower than equivalent

compiled code. Thus, although MATHEMATICA, MAPLE, and MATLAB are ideal

environments in which to perform relatively small calculations, they are not suit-

able for full-blown research projects, since the code which they produce generally

runs far too slowly.

Secondly, we could write our own programs in a high-level language, but use

calls to pre-written, pre-compiled routines in commonly available subroutine li-

braries, such as NAG,4 LINPACK,5 and ODEPACK,6 to perform all of the real

numerical work. This is the approach used by the majority of research physicists.

Thirdly, we could write our own programs—completely from scratch—in a

high-level language. This is the approach used in this course. I have opted not to

use pre-written subroutine libraries, simply because I want students to develop

the ability to think for themselves about scientific programming and numerical

techniques. Students should, however, realize that, in many cases, pre-written

library routines offer solutions to numerical problems which are pretty hard to

improve upon.

1See http://www.wolfram.com
2See http://www.maplesoft.com
3See http://www.mathworks.com
4See http://www.nag.com
5See http://www.netlib.org
6ibid.

10

1.6 Scientific Programming Languages 1 INTRODUCTION

1.6 Scientific Programming Languages

What is the best high-level language to use for scientific programming? This,

unfortunately, is a highly contentious question. Over the years, literally hundreds

of high-level languages have been developed. However, few have stood the test of

time. Many languages (e.g., Algol, Pascal, Haskell) can be dismissed as ephemeral

computer science fads. Others (e.g., Cobol, Lisp, Ada) are too specialized to adapt

for scientific use. Let us examine the remaining options:

FORTRAN 77: FORTRAN was the first high-level programming language to be

developed: in fact, it predates the languages listed below by decades. Be-

fore the advent of FORTRAN, all programming was done in assembler code!

Moreover, FORTRAN was specifically designed for scientific computing. In-

deed, in the early days of computers all computing was scientific in nature—

i.e., physicists and mathematicians were the original computer scientists!

FORTRAN’s main advantages are that it is very straightforward, and it in-

terfaces well with most commonly available, pre-written subroutine libraries

(since these libraries generally consist of compiled FORTRAN code). FOR-

TRAN’s main disadvantages are all associated with its relative antiquity. For

instance. FORTRAN’s control statements are fairly rudimentary, whereas its

input/output facilities are positively paleolithic.

FORTRAN 90: This language is a major extension to FORTRAN 77 which does

away with many of the latter language’s objectionable features. In addition,

many “modern” features, such as dynamic memory allocation, are included

in the language for the first time. The major disadvantage of this language

is the absence of an inexpensive compiler. There seems little prospect of this

situation changing in the near future.

C: This language was originally developed by computer scientists to write op-

erating systems. Indeed, all UNIX operating systems are written in C. C is,

consequently, an extremely flexible and powerful language. Amongst its ma-

jor advantages are its good control statements and excellent input/output

facilities. C’s main disadvantage is that, since it was not specifically written

to be a scientific language, some important scientific features (e.g., complex

11

1.6 Scientific Programming Languages 1 INTRODUCTION

arithmetic) are missing. Although C is a high-level language, it incorporates

many comparatively low-level features, such as pointers (this is hardly sur-

prisingly, since C was originally designed to write operating systems). The

low-level features of C—in particular, the rather primitive implementation

of arrays—sometimes make scientific programming more complicated than

need be the case, and undoubtedly facilitate programming errors. On the

other hand, these features allow scientific programmers to write extremely

efficient code. Since efficiency is generally the most important concern in

scientific computing, the low-level features of C are, on balance, advanta-

geous.

C++: This language is a major extension of C whose main aim is to facilitate

object-orientated programming. Object-orientation is a completely different

approach to programming than the more traditional procedural approach:

it is particularly well suited to large projects involving many people who

are each writing different segments of the same code. However, object-

orientation represents a large, and somewhat unnecessary, overhead for the

type of straightforward, single person programming tasks considered in this

course. Note, however, that C++ incorporates some non-object-orientated

extensions to C which are extremely useful.

Of the above languages, we can immediately rule out C++, because object-

orientation is an unnecessary complication (at least, for our purposes), and FOR-

TRAN 90, because of the absence of an inexpensive compiler. The remaining

options are FORTRAN 77 and C. I have chosen to use C (augmented by some of

the useful, non-object-orientated features of C++) in this course, simply because

I find the archaic features of FORTRAN 77 too embarrassing to teach students in

the 21st century.

12

2 SCIENTIFIC PROGRAMMING IN C

2 Scientific Programming in C

2.1 Introduction

As we have already mentioned, C is a flexible, extremely powerful, high-level

programming language which was initially designed for writing operating sys-

tems and system applications. In fact, all UNIX operating systems, as well as

most UNIX applications (e.g., text editors, window managers, etc.) are written

in C. However, C is also an excellent vehicle for scientific programming, since,

almost by definition, a good scientific programming language must be powerful,

flexible, and high-level. Having said this, many of the features of C which send

computer scientists into raptures are not particularly relevant to the needs of the

scientific programmer. Hence, in the following, we shall only describe that subset

of the C language which is really necessary to write scientific programs. It may be

objected that our cut-down version of C bears a suspicious resemblance to FOR-

TRAN. However, this resemblance is hardly surprising. After all, FORTRAN is a

high-level programming language which was specifically designed with scientific

computing in mind.

As discussed previously, C++ is an extension of the C language whose main

aim is to facilitate object-orientated programming. The object-orientated features

of C++ are superfluous to our needs in this course. However, C++ incorporates

some new, non-object-orientated features which are extremely useful to the sci-

entific programmer. We shall briefly discuss these features towards the end of this

section. Finally, we shall describe some prewritten C++ classes which allow us

to incorporate complex arithmetic (which is not part of the C language), variable

size arrays, and graphics into our programs.

2.2 Variables

Variable names in C can consist of letters and numbers in any order, except that
the first character must be a letter. Names are case sensitive, so upper- and lower-
case letters are not interchangeable. The underscore character (_) can also be

13

2.2 Variables 2 SCIENTIFIC PROGRAMMING IN C

included in variable names, and is treated as a letter. There is no restriction on
the length of names in C. Of course, variable names are not allowed to clash with
keywords that play a special role in the C language, such as int, double, if,
return, void, etc. The following are examples of valid variable names in C:

x c14 area electron_mass TEMPERATURE

The C language supports a great variety of different data types. However, the

two data types which occur most often in scientific programs are integer, denoted

int, and floating-point, denoted double. (Note that variables of the most basic

floating-point data type float are not generally stored to sufficient precision by

the computer to be of much use in scientific programming.) The data type (int

or double) of every variable in a C program must be declared before that variable

can appear in an executable statement.

Integer constants in C are denoted, in the regular fashion, by strings of arabic
numbers: e.g.,

0 57 4567 128933

Floating-point constants can be written in either regular or scientific notation: e.g.,

0.01 70.456 3e+5 .5067e-16

Strings are mainly used in scientific programs for data input and output pur-
poses. A string consists of any number of consecutive characters (including
blanks) enclosed in double quotation marks: e.g.,

"red" "Austin TX, 78723" "512-926-1477"

Line-feeds can be incorporated into strings via the escape sequence \n: e.g.,

"Line 1\nLine 2\nLine 3"

The above string would be displayed on a computer terminal as

Line 1

Line 2

Line 3

14

2.3 Expressions and Statements 2 SCIENTIFIC PROGRAMMING IN C

A declaration associates a group of variables with a specific data type. As
mentioned previously, all variables must be declared before they can appear in
executable statements. A declaration consists of a data type followed by one or
more variable names, ending in a semicolon. For instance,

int a, b, c;

double acc, epsilon, t;

In the above, a, b, and c are declared to be integer variables, whereas acc,

epsilon, and t are declared to be floating-point variables.

A type declaration can also be used to assign initial values to variables. Some
examples of how to do this are given below:

int a = 3, b = 5;

double factor = 1.2E-5;

Here, the integer variables a and b are assigned the initial values 3 and 5, re-

spectively, whereas the floating-point variable factor is assigned the initial value

1.2 × 10−5.

Note that there is no restriction on the length of a type declaration: such

a declaration can even be split over many lines, so long as its end is signaled

by a semicolon. However, all declaration statements in a program (or program

segment) must occur prior to the first executable statement.

2.3 Expressions and Statements

An expression represents a single data item—usually a number. The expression
may consist of a single entity, such as a constant or variable, or it may consist
of some combination of such entities, interconnected by one or more operators.
Expressions can also represent logical conditions which are either true or false.
However, in C, the conditions true and false are represented by the integer values
1 and 0, respectively. Several simple expressions are given below:

a + b

x = y

15

2.3 Expressions and Statements 2 SCIENTIFIC PROGRAMMING IN C

t = u + v

x <= y

++j

The first expression, which employs the addition operator (+), represents the sum
of the values assigned to variables a and b. The second expression involves the
assignment operator (=), and causes the value represented by y to be assigned
to x. In the third expression, the value of the expression (u + v) is assigned to
t. The fourth expression takes the value 1 (true) if the value of x is less than or
equal to the value of y. Otherwise, the expression takes the value 0 (false). Here,
<= is a relational operator that compares the values of x and y. The final example
causes the value of j to be increased by 1. Thus, the expression is equivalent to

j = j + 1

The increment (by unity) operator ++ is called a unary operator, because it only

possesses one operand.

A statement causes the computer to carry out some definite action. There

are three different classes of statements in C: expression statements, compound

statements, and control statements.

An expression statement consists of an expression followed by a semicolon.
The execution of such a statement causes the associated expression to be evalu-
ated. For example:

a = 6;

c = a + b;

++j;

The first two expression statements both cause the value of the expression on

the right of the equal sign to be assigned to the variable on the left. The third

expression statement causes the value of j to be incremented by 1. Again, there

is no restriction on the length of an expression statement: such a statement can

even be split over many lines, so long as its end is signaled by a semicolon.

A compound statement consists of several individual statements enclosed within
a pair of braces { }. The individual statements may themselves be expression

16

2.3 Expressions and Statements 2 SCIENTIFIC PROGRAMMING IN C

statements, compound statements, or control statements. Unlike expression state-
ments, compound statements do not end with semicolons. A typical compound
statement is shown below:

{

pi = 3.141593;

circumference = 2. * pi * radius;

area = pi * radius * radius;

}

This particular compound statement consists of three expression statements, but

acts like a single entity in the program in which it appears.

A symbolic constant is a name that substitutes for a sequence of characters.
The characters may represent either a number or a string. When a program is
compiled, each occurrence of a symbolic constant is replaced by its corresponding
character sequence. Symbolic constants are usually defined at the beginning of a
program, by writing

#define NAME text

where NAME represents a symbolic name, typically written in upper-case letters,
and text represents the sequence of characters that is associated with that name.
Note that text does not end with a semicolon, since a symbolic constant defi-
nition is not a true C statement. In fact, during compilation, the resolution of
symbolic names is performed (by the C preprocessor) before the start of true com-
pilation. For instance, suppose that a C program contains the following symbolic
constant definition:

#define PI 3.141593

Suppose, further, that the program contains the statement

area = PI * radius * radius;

During the compilation process, the preprocessor replaces each occurrence of
the symbolic constant PI by its corresponding text. Hence, the above statement
becomes

area = 3.141593 * radius * radius;

17

2.4 Operators 2 SCIENTIFIC PROGRAMMING IN C

Symbolic constants are particularly useful in scientific programs for representing

constants of nature, such as the mass of an electron, the speed of light, etc. Since

these quantities are fixed, there is little point in assigning variables in which to

store them.

2.4 Operators

As we have seen, general expressions are formed by joining together constants

and variables via various operators. Operators in C fall into five main classes:

arithmetic operators, unary operators, relational and logical operators, assignment

operators, and the conditional operator. Let us, now, examine each of these classes

in detail.

There are four main arithmetic operators in C. These are:

addition +

subtraction -

multiplication *

division /

Unbelievably, there is no built-in exponentiation operator in C (C was written by

computer scientists)! Instead, there is a library function (pow) which carries out

this operation (see later).

It is poor programming practice to mix types in arithmetic expressions. In
other words, the two operands operated on by the addition, subtraction, multi-
plication, or division operators should both be either of type int or type double.
The value of an expression can be converted to a different data type by prepend-
ing the name of the desired data type, enclosed in parenthesis. This type of
construction is known as a cast. Thus, to convert an integer variable j into a
floating-point variable with the same value, we would write

(double) j

Finally, to avoid mixing data types when dividing a floating-point variable x by
an integer variable i, we would write

18

2.4 Operators 2 SCIENTIFIC PROGRAMMING IN C

x / (double) i

Of course, the result of this operation would be of type double.

The operators within C are grouped hierarchically according to their prece-
dence (i.e., their order of evaluation). Amongst the arithmetic operators, * and
/ have precedence over + and -. In other words, when evaluating expressions,
C performs multiplication and division operations prior to addition and subtrac-
tion operations. Of course, the rules of precedence can always be bypassed by
judicious use of parentheses. Thus, the expression

a - b / c + d

is equivalent to the unambiguous expression

a - (b / c) + d

since division takes precedence over addition and subtraction.

The distinguishing feature of unary operators is that they only act on single

operands. The most common unary operator is the unary minus, which occurs

when a numerical constant, variable, or expression is preceded by a minus sign.

Note that the unary minus is distinctly different from the arithmetic operator

(-) which denotes subtraction, since the latter operator acts on two separate

operands. The two other common unary operators are the increment operator,

++, and the decrement operator, --. The increment operator causes its operand

to be increased by 1, whereas the decrement operator causes its operand to be

decreased by 1. For example, --i is equivalent to i = i - 1. A cast is also

considered to be a unary operator. Note that unary operators have precedence

over arithmetic operators. Hence, - x + y is equivalent to the unambiguous

expression (-x) + y, since the unary minus operator has precedence over the

addition operator.

Note that there is a subtle distinction between the expressions a++ and ++a. In
the former case, the value of the variable a is returned before it is incremented.
In the latter case, the value of a is returned after incrementation. Thus,

b = a++;

19

2.4 Operators 2 SCIENTIFIC PROGRAMMING IN C

is equivalent to

b = a;

a = a + 1;

whereas

b = ++a;

is equivalent to

a = a + 1;

b = a;

There is a similar distinction between the expressions a-- and --a.

There are four relational operators in C. These are:

less than <

less than or equal to <=

greater than >

greater than or equal to >=

The precedence of these operators is lower than that of arithmetic operators.

Closely associated with the relational operators are the two equality operators:

equal to ==

not equal to !=

The precedence of the equality operators is below that of the relational operators.

The relational and equality operators are used to form logical expressions,

which represent conditions that are either true or false. The resulting expressions

are of type int, since true is represented by the integer value 1 and false by the

integer value 0. For example, the expression i < j is true (value 1) if the value

of i is less than the value of j, and false (value 0) otherwise. Likewise, the

expression j == 3 is true if the value of j is equal to 3, and false otherwise.

C also possess two logical operators. These are:

20

2.4 Operators 2 SCIENTIFIC PROGRAMMING IN C

&& and

|| or

The logical operators act on operands which are themselves logical expressions.

The net effect is to combine the individual logical expressions into more complex

expressions that are either true or false. The result of a logical and operation is

only true if both operands are true, whereas the result of a logical or operation

is only false if both operands are false. For instance, the expression (i >= 5) &&

(j == 3) is true if the value of i is greater than or equal to 5 and the value of

j is equal to 3, otherwise it is false. The precedence of the logical and operator

is higher than that of the logical or operator, but lower than that of the equality

operators.

C also includes the unary operator ! that negates the value of a logical expres-

sion: i.e., it causes an expression that is originally true to become false, and vice

versa. This operator is referred to as the logical negation or logical not operator.

For instance, the expression !(k == 4) is true if the value of k is not equal to 4,

and false otherwise.

Note that it is poor programming practice to rely too heavily on operator prece-
dence, since such reliance tends to makes C programs very hard for other people
to follow. For instance, instead of writing

i + j == 3 && i * l >= 5

and relying on the fact that arithmetic operators have precedence over relational
and equality operators, which, in turn, have precedence over logical operators, it
is better to write

((i + j) == 3) && (i * l >= 5)

whose meaning is fairly unambiguous, even to people who cannot remember the

order of precedence of the various operators in C.

The most common assignment operator in C is =. For instance, the expression

f = 3.4

21

2.4 Operators 2 SCIENTIFIC PROGRAMMING IN C

causes the floating-point value 3.4 to be assigned to the variable f. Note that the
assignment operator = and the equality operator == perform completely different
functions in C, and should not be confused. Multiple assignments are permissible
in C. For example,

i = j = k = 4

causes the integer value 4 to be assigned to i, j, and k, simultaneously. Note,

again, that it is poor programming practice to mix data types in assignment ex-

pressions. Thus, the data types of the constants or variables on either side of the

= sign should always match.

C contains four additional assignment operators: +=, -=, *=, and /=. The
expression

i += 6

is equivalent to i = i + 6. Likewise, the expression

i -= 6

is equivalent to i = i - 6. The expression

i *= 6

is equivalent to i = i * 6. Finally, the expression

i /= 6

is equivalent to i = i / 6. Note that the precedence of assignment operators is

below that of all the operators discussed previously.

Simple conditional operations can be carried out with the conditional opera-
tor (? :). An expression that makes use of the conditional operator is called a
conditional expression. Such an expression takes the general form

expression 1 ? expression 2 : expression 3

22

2.4 Operators 2 SCIENTIFIC PROGRAMMING IN C

If expression 1 is true (i.e., if its value is nonzero) then expression 2 is eval-
uated and becomes the value of the conditional expression. On the other hand,
if expression 1 is false (i.e., if its value is zero) then expression 3 is evaluated
and becomes the value of the conditional expression. For instance, the expression

(j < 5) ? 12 : -6

takes the value 12 if the value of j is less than 5, and the value -6 otherwise. The
assignment statement

k = (i < 0) ? n : m

causes the value of n to be assigned to the variable k if the value of i is less than

zero, and the value of m to be assigned to k otherwise. The precedence of the

conditional operator is just above that of the assignment operators.

As we have already mentioned, scientific programs tend to be extremely re-
source intensive. Scientific programmers should, therefore, always be on the
lookout for methods of speeding up the execution of their codes. It is important
to realize that multiplication (*) and division (/) operations consume consider-
ably more CPU time that addition (+), subtraction (-), comparison, or assignment
operations. Thus, a simple rule of thumb for writing efficient code is to try to
avoid redundant multiplication and division operations. This is particularly im-
portant for sections of code which are executed repeatedly: e.g., code which lies
within control loops. The classic illustration of this point is the evaluation of a
polynomial. The most straightforward method of evaluating (say) a fourth-order
polynomial would be to write something like:

p = c_0 + c_1 * x + c_2 * x * x + c_3 * x * x * x + c_4 * x * x * x * x

Note that the above expression employs ten expensive multiplication operations.
However, this number can be reduced to four via a simple algebraic rearrange-
ment:

p = c_0 + x * (c_1 + x * (c_2 + x * (c_3 + x * c_4)))

Clearly, the latter expression is far more computationally efficient than the former.

23

2.5 Library Functions 2 SCIENTIFIC PROGRAMMING IN C

2.5 Library Functions

The C language is accompanied by a number of standard library functions which

carry out various useful tasks. In particular, all input and output operations (e.g.,

writing to the terminal) and all math operations (e.g., evaluation of sines and

cosines) are implemented by library functions.

In order to use a library function, it is necessary to call the appropriate header
file at the beginning of the program. The header file informs the program of the
name, type, and number and type of arguments, of all of the functions contained
in the library in question. A header file is called via the preprocessor statement

#include <filename>

where filename represents the name of the header file.

A library function is accessed by simply writing the function name, followed

by a list of arguments, which represent the information being passed to the func-

tion. The arguments must be enclosed in parentheses, and separated by commas:

they can be constants, variables, or more complex expressions. Note that the

parentheses must be present even when there are no arguments.

The C math library has the header file math.h, and contains the following
useful functions:

Function Type Purpose

-------- ---- -------

acos(d) double Return arc cosine of d (in range 0 to pi)

asin(d) double Return arc sine of d (in range -pi/2 to pi/2)

atan(d) double Return arc tangent of d (in range -pi/2 to pi/2)

atan2(d1, d2) double Return arc tangent of d1/d2 (in range -pi to pi)

cbrt(d) double Return cube root of d

cos(d) double Return cosine of d

cosh(d) double Return hyperbolic cosine of d

exp(d) double Return exponential of d

fabs(d) double Return absolute value of d

hypot(d1, d2) double Return sqrt(d1 * d1 + d2 * d2)

log(d) double Return natural logarithm of d

log10(d) double Return logarithm (base 10) of d

24

2.5 Library Functions 2 SCIENTIFIC PROGRAMMING IN C

pow(d1, d2) double Return d1 raised to the power d2

sin(d) double Return sine of d

sinh(d) double Return hyperbolic sine of d

sqrt(d) double Return square root of d

tan(d) double Return tangent of d

tanh(d) double Return hyperbolic tangent of d

Here, Type refers to the data type of the quantity that is returned by the function.

Moreover, d, d1, etc. indicate arguments of type double.

A program that makes use of the C math library would contain the statement

#include <math.h>

close to its start. In the body of the program, a statement like

x = cos(y);

would cause the variable x to be assigned a value which is the cosine of the value

of the variable y (both x and y should be of type double).

Note that math library functions tend to be extremely expensive in terms of CPU

time, and should, therefore, only be employed when absolutely necessary. The

classic illustration of this point is the use of the pow() function. This function

assumes that, in general, it will be called with a fractional power, and, therefore,

implements a full-blown (and very expensive) series expansion. Clearly, it is not

computationally efficient to use this function to square or cube a quantity. In

other words, if a quantity needs to be raised to a small, positive integer power

then this should be implemented directly, instead of using the pow() function: i.e.,

we should write x * x rather than pow(x, 2), and x * x * x rather than pow(x,

3), etc. (Of course, a properly designed exponentiation function would realize

that it is more efficient to evaluate small positive integer powers by the direct

method. Unfortunately, the pow() function was written by computer scientists!)

The C math library comes with a useful set of predefined mathematical con-
stants:

Name Description

25

2.6 Data Input and Output 2 SCIENTIFIC PROGRAMMING IN C

---- -----------

M_PI Pi, the ratio of a circle’s circumference to its diameter.

M_PI_2 Pi divided by two.

M_PI_4 Pi divided by four.

M_1_PI The reciprocal of pi (1/pi).

M_SQRT2 The square root of two.

M_SQRT1_2 The reciprocal of the square root of two

(also the square root of 1/2).

M_E The base of natural logarithms.

The other library functions commonly used in C programs will be introduced,

as appropriate, during the remainder of this discussion.

2.6 Data Input and Output

Data input and output operations in C are carried out by the standard input/output

library (header file: stdio.h) via the functions scanf, printf, fscanf, and

fprintf, which read and write data from/to the terminal, and from/to a data

file, respectively. The additional functions fopen and fclose open and close, re-

spectively, connections between a C program and a data file. In the following,

these functions are described in detail.

The scanf function reads data from standard input (usually, the terminal). A
call to this function takes the general form

scanf(control_string, arg1, arg2, arg3, ...)

where control_string refers to a character string containing certain required

formatting information, and arg1, arg2, etc., are arguments that represent the

individual input data items.

The control string consists of individual groups of characters, with one char-
acter group for each data input item. In its simplest form, each character group
consists of a percent sign (%), followed by a set of conversion characters which
indicate the type of the corresponding data item. The two most useful sets of
conversion characters are as follows:

26

2.6 Data Input and Output 2 SCIENTIFIC PROGRAMMING IN C

Character Type

--------- ----

d int

lf double

The arguments are a set of variables whose types match the corresponding char-
acter groups in the control string. For reasons which will become apparent later
on, each variable name must be preceded by an ampersand (&). Below is a typical
application of the scanf function:

#include <stdio.h>

. . .

int k;

double x, y;

. . .

scanf("%d %lf %lf", &k, &x, &y);

. . .

In this example, the scanf function reads an integer value and two floating-point

values, from standard input, into the integer variable k and the two floating-point

variables x and y, respectively.

The scanf function returns an integer equal to the number of data values
successfully read from standard input, which can be fewer than expected, or
even zero, in the event of a matching failure. The special value EOF (which on
most systems corresponds to −1) is returned if an end-of-file is reached before
any attempted conversion occurs. The following code snippet gives an example
of how the scanf function can be checked for error-free input:

#include <stdio.h>

. . .

int check_input;

double x, y, z;

. . .

check_input = scanf("%lf %lf %lf", &x, &y, &z);

if (check_input < 3)

{

printf("Error during data input\n");

. . .

}

. . .

27

2.6 Data Input and Output 2 SCIENTIFIC PROGRAMMING IN C

See later for an explanation of the if() construct.

The printf function writes data to standard output (usually, the terminal). A
call to this function takes the general form

printf(control_string, arg1, arg2, arg3, ...)

where control_string refers to a character string containing formatting infor-

mation, and arg1, arg2, etc., are arguments that represent the individual output

data items.

The control string consists of individual groups of characters, with one char-
acter group for each output data item. In its simplest form, each character group
consists of a percent sign (%), followed by a conversion character which controls
the format of the corresponding data item. The most useful conversion characters
are as follows:

Character Meaning

--------- -------

d Display data item as signed decimal integer

f Display data item as floating-point number without exponent

e Display data item as floating-point number with exponent

The arguments are a set of variables whose types match the corresponding char-
acter groups in the control string (i.e., type int for d format, and type double for
f or e format). In contrast to the scanf function, the arguments are not preceded
by ampersands. Below is a typical application of the scanf function:

#include <stdio.h>

. . .

int k = 3;

double x = 5.4, y = -9.81;

. . .

printf("%d %f %f\n", k, x, y);

. . .

In this example, the program outputs the values of the integer variable k and the
floating-point variables x and y to the terminal. Executing the program produces
the following output:

28

2.6 Data Input and Output 2 SCIENTIFIC PROGRAMMING IN C

3 5.400000 -9.810000

%

Note that the purpose of the escape sequence \n in the control string is to gener-

ate a line-feed after the three data items have been written to the terminal.

Of course, the printf function can also be used to write a simple text string to
the terminal: e.g.,

printf(text_string)

Ordinary text can also be incorporated into the control string described above.

An example illustrating somewhat more advanced use of the printf function
is given below:

#include <stdio.h>

. . .

int k = 3;

double x = 5.4, y = -9.81;

. . .

printf("k = %3d x + y = %9.4f x*y = %11.3e\n", k, x + y, x*y);

. . .

Executing the program produces the following output:

k = 3 x + y = -4.4100 x*y = -5.297e+01

%

Note that the final two arguments of the printf function are arithmetic expres-

sions. Note, also, the incorporation of explanatory text into the control string.

The character sequence %3d in the control string indicates that the associated

data item should be output as a signed decimal integer occupying a field whose

width is at least 3 characters. More generally, the character sequence %nd indi-

cates that the associated data item should be output as a signed decimal integer

occupying a field whose width is at least n characters. If the number of charac-

ters in the data item is less than n characters, then the data item is preceded by

29

2.6 Data Input and Output 2 SCIENTIFIC PROGRAMMING IN C

enough leading blanks to fill the specified field. On the other hand, if the data

item exceeds the specified field width then additional space is allocated to the

data item, such that the entire data item is displayed.

The character sequence %9.4f in the control string indicates that the associated

data item should be output as a floating-point number, in non-scientific format,

which occupies a field of at least 9 characters, and has 4 figures after the decimal

point. More generally, the character sequence %n.mf indicates that the associated

data item should be output as a floating-point number, in non-scientific format,

which occupies a field of at least n characters, and has m figures after the decimal

point.

Finally, the character sequence %11.3e in the control string indicates that the

associated data item should be output as a floating-point number, in scientific

format, which occupies a field of at least 11 characters, and has 3 figures after

the decimal point. More generally, the character sequence %n.me indicates that

the associated data item should be output as a floating-point number, in scientific

format, which occupies a field of at least n characters, and has m figures after the

decimal point.

The printf function returns an integer equal to the number of printed char-

acters, or a negative value if there was an output error.

When working with a data file, the first step is to establish a buffer area, where
information is temporarily stored whilst being transferred between the program
and the file. This buffer area allows information to be read or written to the data
file in question more rapidly than would otherwise be possible. A buffer area is
established by writing

FILE *stream;

where FILE (upper-case letters required) is a special structure type that estab-

lishes a buffer area, and stream is the identifier of the created buffer area. Note

that a buffer area is often referred to as an input/output stream. The meaning

of the asterisk (*) that precedes the identifier of the stream, in the above state-

ment, will become clear later on. It is, of course, possible to establish multiple

input/output streams (provided that their identifiers are distinct).

30

2.6 Data Input and Output 2 SCIENTIFIC PROGRAMMING IN C

A data file must be opened and attached to a specific input/output stream
before it can be created or processed. This operation is performed by the function
fopen. A typical call to fopen takes the form

stream = fopen(file_name, file_type);

where stream is the identifier of the input/output stream to which the file is to
be attached, and file_name and file_type are character strings that represent
the name of the data file and the manner in which the data file will be utilized,
respectively. The file_type string must be one of the strings listed below:

file_type Meaning

--------- -------

"r" Open existing file for reading only

"w" Open new file for writing only (Any existing file

will be overwritten)

"a" Open existing file in append mode. (Output will be

appended to the file)

The fopen function returns the integer value NULL (which on most systems corre-

sponds to zero) in the event of an error.

A data file must also be closed at the end of the program. This operation is
performed by the function fclose. The syntax for a call to fclose is simply

fclose(stream);

where stream is the name of the input/output stream which is to be deattached

from a data file. The fclose function returns the integer value 0 upon successful

completion, otherwise it returns the special value EOF.

Data can be read from an open data file using the fscanf function, whose
syntax is

fscanf(stream, control_string, arg1, arg2, arg3, ...)

Here, stream is the identifier of the input/output stream to which the file is at-

tached, and the remaining arguments have exactly the same format and meaning

31

2.6 Data Input and Output 2 SCIENTIFIC PROGRAMMING IN C

as the corresponding arguments for the scanf function. The return values of

fscanf are similar to those of the scanf function.

Likewise, data can be written to an open data file using the fprintf function,
whose syntax is

fprintf(stream, control_string, arg1, arg2, arg3, ...)

Here, stream is the identifier of the input/output stream to which the file is at-

tached, and the remaining arguments have exactly the same format and meaning

as the corresponding arguments for the printf function. The return values of

fprintf are similar to those of the printf function.

An example of a C program which outputs data to the file “data.out” is given
below:

#include <stdio.h>

. . .

int k = 3;

double x = 5.4, y = -9.81;

FILE *output;

. . .

output = fopen("data.out", "w");

if (output == NULL)

{

printf("Error opening file data.out\n");

. . .

}

. . .

fprintf(output, "k = %3d x + y = %9.4f x*y = %11.3e\n", k, x + y, x*y);

. . .

fclose(output);

. . .

On execution, the above program will write the line

k = 3 x + y = -4.4100 x*y = -5.297e+01

to the data file “data.out”.

32

2.7 Structure of a C Program 2 SCIENTIFIC PROGRAMMING IN C

2.7 Structure of a C Program

The syntax of a complete C program is given below:

. . .

int main()

{

. . .

return 0;

}

. . .

The meaning of the statements int main() and return will become clear later

on. Preprocessor statements (e.g., #define and #include statements) are con-

ventionally placed before the int main() statement. All executable statements

must be placed between the int main() and return statements. Function defini-

tions (see later) are conventionally placed after the return statement.

A simple C program (quadratic.c) that calculates the real roots of a quadratic
equation using the well-known quadratic formula is listed below.

/* quadratic.c */

/*

Program to evaluate real roots of quadratic equation

2

a x + b x + c = 0

using quadratic formula

2

x = (-b +/- sqrt(b - 4 a c)) / (2 a)

*/

#include <stdio.h>

#include <math.h>

int main()

{

double a, b, c, d, x1, x2;

/* Read input data */

33

2.7 Structure of a C Program 2 SCIENTIFIC PROGRAMMING IN C

printf("\na = ");

scanf("%lf", &a);

printf("b = ");

scanf("%lf", &b);

printf("c = ");

scanf("%lf", &c);

/* Perform calculation */

d = sqrt(b * b - 4. * a * c);

x1 = (-b + d) / (2. * a);

x2 = (-b - d) / (2. * a);

/* Display output */

printf("\nx1 = %12.3e x2 = %12.3e\n", x1, x2);

return 0;

}

Note the use of comments (which are placed between the delimiters /* and */)
to first explain the function of the program and then identify the program’s major
sections. Note, also, the use of indentation to highlight the executable statements.
When executed, the above program produces the following output:

a = 2

b = 4

c = 1

x1 = -2.929e-01 x2 = -1.707e+00

%

Of course, the 2, 4, and 1 were entered by the user in response to the programs’s

prompts.

It is important to realize that there is more to writing a complete computer

program than simply arranging the individual declarations and statements in the

right order. Attention should also be given to making the program and its output

as readable as possible, so that the program’s function is immediately obvious to

other people. This can be achieved by judicious use of indentation and whites-

pace, as well as the inclusion of comments, and the generation of clearly labeled

output. It is hoped that this approach will be exemplified by the example pro-

grams used in this course.

34

2.8 Control Statements 2 SCIENTIFIC PROGRAMMING IN C

2.8 Control Statements

The C language includes a wide variety of powerful and flexible control state-

ments. The most useful of these are described in the following.

The if-else statement is used to carry out a logical test and then take one
of two possible actions, depending on whether the outcome of the test is true or
false. The else portion of the statement is optional. Thus, the simplest possible
if-else statement takes the form:

if (expression) statement

The expression must be placed in parenthesis, as shown. In this form, the state-

ment will only be executed if the expression has a nonzero value (i.e., if expression

if true). If the expression has a value of zero (i.e., if expression is false) then the

statement will be ignored. The statement can be either simple or compound.

The program quadratic.c, listed previously, is incapable of dealing correctly
with cases where the roots are complex (i.e., b2 < 4 a c), or cases where a = 0. It
is good programming practice to test for situations which fall outside the domain
of validity of a program, and produce some sort of error message when these
occur. An amended version of quadratic.c which uses if-else statements to
reject invalid input data is listed below.

/* quadratic1.c */

/*

Program to evaluate real roots of quadratic equation

2

a x + b x + c = 0

using quadratic formula

2

x = (-b +/- sqrt(b - 4 a c)) / (2 a)

Program rejects cases where roots are complex

or where a = 0.

*/

#include <stdio.h>

35

2.8 Control Statements 2 SCIENTIFIC PROGRAMMING IN C

#include <math.h>

#include <stdlib.h>

int main()

{

double a, b, c, d, e, x1, x2;

/* Read input data */

printf("\na = ");

scanf("%lf", &a);

printf("b = ");

scanf("%lf", &b);

printf("c = ");

scanf("%lf", &c);

/* Test for complex roots */

e = b * b - 4. * a * c;

if (e < 0.)

{

printf("\nError: roots are complex\n");

exit(1);

}

/* Test for a = 0. */

if (a == 0.)

{

printf("\nError: a = 0.\n");

exit(1);

}

/* Perform calculation */

d = sqrt(e);

x1 = (-b + d) / (2. * a);

x2 = (-b - d) / (2. * a);

/* Display output */

printf("\nx1 = %12.3e x2 = %12.3e\n", x1, x2);

return 0;

}

Note the use of indentation to highlight statements which are conditionally exe-
cuted (i.e., statements within an if-else statement). The standard library func-
tion call exit(1) (header file: stdlib.h) causes the program to abort with an

36

2.8 Control Statements 2 SCIENTIFIC PROGRAMMING IN C

error status. Execution of the above program for the case of complex roots yields
the following output:

a = 4

b = 2

c = 6

Error: roots are complex

%

The general form of an if-else statement, which includes the else clause, is

if (expression) statement 1 else statement 2

If the expression has a non-zero value (i.e., if expression is true) then statement 1
is executed. Otherwise, statement 2 is executed. The program listed below is an
extended version of the previous program quadratic.c which is capable of deal-
ing with complex roots.

/* quadratic2.c */

/*

Program to evaluate all roots of quadratic equation

2

a x + b x + c = 0

using quadratic formula

2

x = (-b +/- sqrt(b - 4 a c)) / (2 a)

Program rejects cases where a = 0.

*/

#include <stdio.h>

#include <math.h>

#include <stdlib.h>

int main()

{

double a, b, c, d, e, x1, x2;

37

2.8 Control Statements 2 SCIENTIFIC PROGRAMMING IN C

/* Read input data */

printf("\na = ");

scanf("%lf", &a);

printf("b = ");

scanf("%lf", &b);

printf("c = ");

scanf("%lf", &c);

/* Test for a = 0. */

if (a == 0.)

{

printf("\nError: a = 0.\n");

exit(1);

}

/* Perform calculation */

e = b * b - 4. * a * c;

if (e > 0.) // Test for real roots

{

/* Case of real roots */

d = sqrt(e);

x1 = (-b + d) / (2. * a);

x2 = (-b - d) / (2. * a);

printf("\nx1 = %12.3e x2 = %12.3e\n", x1, x2);

}

else

{

/* Case of complex roots */

d = sqrt(-e);

x1 = -b / (2. * a);

x2 = d / (2. * a);

printf("\nx1 = (%12.3e, %12.3e) x2 = (%12.3e, %12.3e)\n",

x1, x2, x1, -x2);

}

return 0;

}

Note the use of an if-else statement to deal with the two alternative cases of
real and complex roots. Note also that the C compiler ignores all characters on
a line which occur after the // construct.7 Hence, this construct can be used to
comment individual lines in a program. The output from the above program for

7 Strictly speaking, this is a C++ extension to the C language. However, most modern C compilers now accept
this comment style.

38

2.8 Control Statements 2 SCIENTIFIC PROGRAMMING IN C

the case of complex roots looks like:

a = 9

b = 2

c = 2

x1 = (-1.111e-01, 4.581e-01) x2 = (-1.111e-01, -4.581e-01)

%

The while statement is used to carry out looping operations, in which a group
of statements is executed repeatedly until some condition is satisfied. The general
form of a while statement is

while (expression) statement

The statement is executed repeatedly, as long as the expression is nonzero (i.e., as

long as expression is true). The statement can be either simple or compound. Of

course, the statement must include some feature that eventually alters the value

of the expression, thus providing an escape mechanism from the loop.

The program listed below (iteration.c) uses a while statement to solve an
algebraic equation via iteration, as explained in the initial comments.

/* iteration.c */

/*

Program to solve algebraic equation

5 2

x + a x - b = 0

by iteration. Easily shown that equation must have at least

one real root. Coefficients a and b are supplied by user.

Iteration scheme is as follows:

2 0.2

x = (b - a x)

n+1 n

where x_n is nth iteration. User must supply initial guess for x.

Iteration continues until relative change in x per iteration is

39

2.8 Control Statements 2 SCIENTIFIC PROGRAMMING IN C

less than eps (user supplied) or until number of iterations exceeds

NITER. Program aborts if (b - a x*x) becomes negative.

*/

#include <stdio.h>

#include <math.h>

#include <stdlib.h>

/* Set max. allowable no. of iterations */

#define NITER 30

int main()

{

double a, b, eps, x, x0, dx = 1., d;

int count = 0;

/* Read input data */

printf("\na = ");

scanf("%lf", &a);

printf("b = ");

scanf("%lf", &b);

printf("eps = ");

scanf("%lf", &eps);

/* Read initial guess for x */

printf("\nInitial guess for x = ");

scanf("%lf", &x);

x0 = x;

while (dx > eps) // Start iteration loop: test for convergence

{

/* Check for too many iterations */

++count;

if (count > NITER)

{

printf("\nError: no convergence\n");

exit(1);

}

/* Reject complex roots */

d = b - a * x * x;

if (d < 0.)

{

printf("Error: complex roots - try another initial guess\n");

exit(1);

40

2.8 Control Statements 2 SCIENTIFIC PROGRAMMING IN C

}

/* Perform iteration */

x = pow(d, 0.2);

dx = fabs((x - x0) / x);

x0 = x;

/* Output data on iteration */

printf("Iter = %3d x = %8.4f dx = %12.3e\n", count, x, dx);

}

return 0;

}

The typical output from the above program looks like:

a = 3

b = 10

eps = 1.e-6

Initial guess for x = 1

Iter = 1 x = 1.4758 dx = 3.224e-01

Iter = 2 x = 1.2823 dx = 1.509e-01

Iter = 3 x = 1.3834 dx = 7.314e-02

Iter = 4 x = 1.3361 dx = 3.541e-02

Iter = 5 x = 1.3595 dx = 1.720e-02

Iter = 6 x = 1.3483 dx = 8.350e-03

Iter = 7 x = 1.3537 dx = 4.056e-03

Iter = 8 x = 1.3511 dx = 1.969e-03

Iter = 9 x = 1.3524 dx = 9.564e-04

Iter = 10 x = 1.3518 dx = 4.644e-04

Iter = 11 x = 1.3521 dx = 2.255e-04

Iter = 12 x = 1.3519 dx = 1.095e-04

Iter = 13 x = 1.3520 dx = 5.318e-05

Iter = 14 x = 1.3519 dx = 2.583e-05

Iter = 15 x = 1.3520 dx = 1.254e-05

Iter = 16 x = 1.3520 dx = 6.091e-06

Iter = 17 x = 1.3520 dx = 2.958e-06

Iter = 18 x = 1.3520 dx = 1.436e-06

Iter = 19 x = 1.3520 dx = 6.975e-07

%

When a loop is constructed using a while statement, the test for the continua-
tion of the loop is carried out at the beginning of each pass. Sometimes, however,
it is desirable to have a loop where the test for continuation takes place at the

41

2.8 Control Statements 2 SCIENTIFIC PROGRAMMING IN C

end of each pass. This can be accomplished by means of a do-while statement.
The general form of a do-while statement is

do statement while (expression);

The statement is executed repeatedly, as long as the expression is true. Note,

however, that the statement is always executed at least once, since the test for

repetition does not take place until the end of the first pass through the loop.

The statement can be either simple or compound, and should, of course, include

some feature that eventually alters the value of the expression.

The program listed below is a marginally improved version of the previous
program (iteration.c) which uses a do-while loop to test for convergence at
the end (as opposed to the beginning) of each iteration loop.

/* iteration1.c */

/*

Program to solve algebraic equation

5 2

x + a x - b = 0

by iteration. Easily shown that equation must have at least

one real root. Coefficients a and b are supplied by user.

Iteration scheme is as follows:

2 0.2

x = (b - a x)

n+1 n

where x_n is nth iteration. User must supply initial guess for x.

Iteration continues until relative change in x per iteration is

less than eps (user supplied) or until number of iterations exceeds

NITER. Program aborts if (b - a x*x) becomes negative.

*/

#include <stdio.h>

#include <math.h>

#include <stdlib.h>

/* Set max. allowable no. of iterations */

42

2.8 Control Statements 2 SCIENTIFIC PROGRAMMING IN C

#define NITER 30

int main()

{

double a, b, eps, x, x0, dx, d;

int count = 0;

/* Read input data */

printf("\na = ");

scanf("%lf", &a);

printf("b = ");

scanf("%lf", &b);

printf("eps = ");

scanf("%lf", &eps);

/* Read initial guess for x */

printf("\nInitial guess for x = ");

scanf("%lf", &x);

x0 = x;

do // Start iteration loop

{

/* Check for too many iterations */

++count;

if (count > NITER)

{

printf("\nError: no convergence\n");

exit(1);

}

/* Reject complex roots */

d = b - a * x * x;

if (d < 0.)

{

printf("Error: complex roots - try another initial guess\n");

exit(1);

}

/* Perform iteration */

x = pow(d, 0.2);

dx = fabs((x - x0) / x);

x0 = x;

/* Output data on iteration */

printf("Iter = %3d x = %8.4f dx = %12.3e\n", count, x, dx);

43

2.8 Control Statements 2 SCIENTIFIC PROGRAMMING IN C

} while (dx > eps); // Test for convergence

return 0;

}

The output from the above program is essentially identical to that from the pro-

gram iteration.c.

The while and do-while statements are particularly well suited to looping sit-
uations in which the number of passes through the loop is not known in advance.
Conversely, situations in which the number of passes through the loop is known
in advance are often best dealt with using a for statement. The general form of
a for statement is

for (expression 1; expression 2; expression 3) statement

where expression 1 is used to initialize some parameter (called an index) that

controls the looping action, expression 2 represents a condition that must be

true for the loop to continue execution, and expression 3 is used to alter the

value of the parameter initially assigned by expression 1. When a for statement

is executed, expression 2 is evaluated and tested at the beginning of each pass

through the loop, whereas expression 3 is evaluated at the end of each pass.

The program listed below uses a for statement to evaluate the factorial of a
non-negative integer.

/* factorial.c */

/*

Program to evaluate factorial of non-negative

integer n supplied by user.

*/

#include <stdio.h>

#include <stdlib.h>

int main()

{

int n, count;

double fact = 1.;

44

2.9 Functions 2 SCIENTIFIC PROGRAMMING IN C

/* Read in value of n */

printf("\nn = ");

scanf("%d", &n);

/* Reject negative value of n */

if (n < 0)

{

printf("\nError: factorial of negative integer not defined\n");

exit(1);

}

/* Calculate factorial */

for (count = n; count > 0; --count) fact *= (double) count;

/* Output result */

printf("\nn = %5d Factorial(n) = %12.3e\n", n, fact);

return 0;

}

The typical output from the above program is shown below:

n = 6

n = 6 Factorial(n) = 7.200e+02

%

The statements which occur within if-else, while, do-while, or for state-

ments can themselves be control statements, giving rise to the possibility of

nested if-else statements, conditionally executed loops, nested loops, etc. When

dealing with nested control statements, it is vital to adhere religiously to the syn-

tax rules described above, in order to avoid confusion.

2.9 Functions

We have seen that C supports the use of predefined library functions which are

used to carry out a large number of commonly occurring tasks. However, C

also allows programmers to define their own functions. The use of programmer-

defined functions permits a large program to be broken down into a number of

45

2.9 Functions 2 SCIENTIFIC PROGRAMMING IN C

smaller, self-contained units. In other words, a C program can be modularized via

the sensible use of programmer-defined functions. In general, modular programs

are far easier to write and debug than monolithic programs. Furthermore, proper

modularization allows other people to grasp the logical structure of a program

with far greater ease than would otherwise be the case.

A function is a self-contained program segment that carries out some specific,

well-defined task. Every C program consists of one or more functions. One of

these functions must be called main. Execution of the program always begins by

carrying out the instructions contained in main. Note that if a program contains

multiple functions then their definitions may appear in any order. The same

function can be accessed from several different places within a program. Once

the function has carried out its intended action, control is returned to the point

from which the function was accessed. Generally speaking, a function processes

information passed to it from the calling portion of the program, and returns

a single value. Some functions, however, accept information but do not return

anything.

A function definition has two principal components: the first line (including

the argument declarations), and the so-called body of the function.

The first line of a function takes the general form

data-type name(type 1 arg 1, type 2 arg 2, ..., type n arg n)

where data-type represents the data type of the item that is returned by the
function, name represents the name of the function, and type 1, type 2, ...,
type n represent the data types of the arguments arg 1, arg 2, ..., arg n.
The allowable data types for a function are:

int for a function which returns an integer value

double for a function which returns an floating-point value

void for a function which does not return any value

The allowable data types for a function’s arguments are int and double. Note

that the identifiers used to reference the arguments of a function are local, in the

sense that they are not recognized outside of the function. Thus, the argument

46

2.9 Functions 2 SCIENTIFIC PROGRAMMING IN C

names in a function definition need not be the same as those used in the segments

of the program from which the function was called. However, the corresponding

data types of the arguments must always match.

The body of a function is a compound statement that defines the action to

be taken by the function. Like a regular compound statement, the body can

contain expression statements, control statements, other compound statements,

etc. The body can even access other functions. In fact, it can even access itself—

this process is known as recursion. In addition, however, the body must include

one or more return statements in order to return a value to the calling portion

of the program.

A return statement causes the program logic to return to the point in the
program from which the function was accessed. The general form of a return
statement is:

return expression;

This statement causes the value of expression to be returned to the calling part of
the program. Of course, the data type of expression should match the declared
data type of the function. For a void function, which does not return any value,
the appropriate return statement is simply:

return;

A maximum of one expression can be included in a return statement. Thus, a

function can return a maximum of one value to the calling part of the program.

However, a function definition can include multiple return statements, each con-

taining a different expression, which are conditionally executed, depending on

the program logic.

Note that, by convention, the main function is of type int and returns the

integer value 0 to the operating system, indicating the error-free termination of

the program. In its simplest form, the main function possesses no arguments. The

library function call exit(1), employed in previous example programs, causes the

execution of a program to abort, returning the integer value 1 to the operating

system, which (by convention) indicates that the program terminated with an

error status.

47

2.9 Functions 2 SCIENTIFIC PROGRAMMING IN C

The program segment listed below shows how the previous program factorial.c
can be converted into a function factorial(n) which returns the factorial (in the
form of a floating-point number) of the non-negative integer n:

double factorial(int n)

{

/*

Function to evaluate factorial (in floating-point form)

of non-negative integer n.

*/

int count;

double fact = 1.;

/* Abort if n is negative integer */

if (n < 0)

{

printf("\nError: factorial of negative integer not defined\n");

exit(1);

}

/* Calculate factorial */

for (count = n; count > 0; --count) fact *= (double) count;

/* Return value of factorial */

return fact;

}

A function can be accessed, or called, by specifying its name, followed by a

list of arguments enclosed in parentheses and separated by commas. If the func-

tion call does not require any arguments then an empty pair of parentheses must

follow the name of the function. The function call may be part of a simple expres-

sion, such as an assignment statement, or it may be one of the operands within

a more complex expression. The arguments appearing in a function call may be

expressed as constants, single variables, or more complex expressions. However,

both the number and the types of the arguments must match those in the function

definition.

The program listed below (printfact.c) uses the function factorial(), de-
scribed above, to print out the factorials of all the integers between 0 and 20:

48

2.9 Functions 2 SCIENTIFIC PROGRAMMING IN C

/* printfact.c */

/*

Program to print factorials of all integers

between 0 and 20

*/

#include <stdio.h>

#include <stdlib.h>

//%%%

double factorial(int n)

{

/*

Function to evaluate factorial (in floating-point form)

of non-negative integer n.

*/

int count;

double fact = 1.;

/* Abort if n is negative integer */

if (n < 0)

{

printf("\nError: factorial of negative integer not defined\n");

exit(1);

}

/* Calculate factorial */

for (count = n; count > 0; --count) fact *= (double) count;

/* Return value of factorial */

return fact;

}

//%%%

int main()

{

int j;

/* Print factorials of all integers between 0 and 20 */

for (j = 0; j <= 20; ++j)

printf("j = %3d factorial(j) = %12.3e\n", j, factorial(j));

49

2.9 Functions 2 SCIENTIFIC PROGRAMMING IN C

return 0;

}

Note that the call to factorial() takes place inside a complex expression (i.e.,
a printf() function call). Note also that the argument of factorial() has a
different name (but the same data type) in the two sections of the program (i.e.,
in the main() function and the factorial() function). The output from the
above program looks like:

j = 0 factorial(j) = 1.000e+00

j = 1 factorial(j) = 1.000e+00

j = 2 factorial(j) = 2.000e+00

j = 3 factorial(j) = 6.000e+00

j = 4 factorial(j) = 2.400e+01

j = 5 factorial(j) = 1.200e+02

j = 6 factorial(j) = 7.200e+02

j = 7 factorial(j) = 5.040e+03

j = 8 factorial(j) = 4.032e+04

j = 9 factorial(j) = 3.629e+05

j = 10 factorial(j) = 3.629e+06

j = 11 factorial(j) = 3.992e+07

j = 12 factorial(j) = 4.790e+08

j = 13 factorial(j) = 6.227e+09

j = 14 factorial(j) = 8.718e+10

j = 15 factorial(j) = 1.308e+12

j = 16 factorial(j) = 2.092e+13

j = 17 factorial(j) = 3.557e+14

j = 18 factorial(j) = 6.402e+15

j = 19 factorial(j) = 1.216e+17

j = 20 factorial(j) = 2.433e+18

%

Ideally, function definitions should always precede the corresponding function

calls in a C program. This requirement can usually be satisfied by judicious or-

dering of the various functions which make up a program, but, almost inevitably,

restricts the location of the main() function to the end of the program. Hence,

if the order of the two functions in the above program [i.e., factorial() and

main()] were swapped then an error message would be generated on compila-

tion, since an attempt would be made to call factorial() prior to its definition.

Unfortunately, for the sake of logical clarity, most C programmers prefer to place

50

2.9 Functions 2 SCIENTIFIC PROGRAMMING IN C

the main() function at the beginning of their programs. After all, main() is al-

ways the first part of a program to be executed. In such situations, function calls

[within main()] are bound to precede the corresponding function definitions: for-

tunately, however, compilation errors can be avoided by using a construct known

as a function prototype.

Function prototypes are conventionally placed at the beginning of a program
(i.e., before the main() function) and are used to inform the compiler of the
name, data type, and number and data types of the arguments, of all user-defined
functions employed in the program. The general form of a function prototype is

data-type name(type 1, type 2, ..., type n);

where data-type represents the data type of the item returned by the referenced

function, name is the name of the function, and type 1, type 2,..., type n

are the data types of the arguments of the function. Note that it is not necessary

to specify the names of the arguments in a function prototype. Incidentally, the

function prototypes for predefined library functions are contained within the as-

sociated header files which must be included at the beginning of every program

which uses these functions.

The program listed below is a modified version of printfact.c in which the
main() function is the first function to be defined:

/* printfact1.c */

/*

Program to print factorials of all integers

between 0 and 20

*/

#include <stdio.h>

#include <stdlib.h>

/* Prototype for function factorial() */

double factorial(int);

int main()

{

int j;

51

2.9 Functions 2 SCIENTIFIC PROGRAMMING IN C

/* Print factorials of all integers between 0 and 20 */

for (j = 0; j <= 20; ++j)

printf("j = %3d factorial(j) = %12.3e\n", j, factorial(j));

return 0;

}

//%%%

double factorial(int n)

{

/*

Function to evaluate factorial (in floating-point form)

of non-negative integer n.

*/

int count;

double fact = 1.;

/* Abort if n is negative integer */

if (n < 0)

{

printf("\nError: factorial of negative integer not defined\n");

exit(1);

}

/* Calculate factorial */

for (count = n; count > 0; --count) fact *= (double) count;

/* Return value of factorial */

return fact;

}

Note the presence of the function prototype for factorial() prior to the defi-

nition of main(). This is needed because the program calls factorial() before

this function has been defined. The output from the above program is identical

to that from printfact.c.

It is generally considered to be good programming practice to provide function

prototypes for all user-defined functions accessed in a program, whether or not

they are strictly required by the compiler.8 The reason for this is fairly simple.

8Function prototypes are a requirement for all user-defined functions in C++ programs.

52

2.9 Functions 2 SCIENTIFIC PROGRAMMING IN C

If we provide a prototype for a given function then the compiler can carefully

compare each use of the function, within the program, with this prototype so as

to determine whether or not we are calling the function properly. In the absence

of a prototype, an incorrect call to a function (e.g., using the wrong number of

arguments, or arguments of the wrong data type) can give rise to run-time errors

which are difficult to diagnose.

When a single value is passed to a function as an argument then the value of

that argument is simply copied to the function. Thus, the argument’s value can

subsequently be altered within the function but this will not affect its value in the

calling routine. This procedure for passing the value of an argument to a function

is called passing by value.

Passing an argument by value has advantages and disadvantages. The advan-
tages are that it allows a single-valued argument to be written as an expression,
rather than being restricted to a single variable. Furthermore, in cases where
the argument is a variable, the value of this variable is protected from alterations
which take place within the function. The main disadvantage is that information
cannot be transferred back to the calling portion of the program via arguments.
In other words, passing by value is a strictly one-way method of transferring
information. The program listed below, which is another modified version of
printfact.c, illustrates this point:

/* printfact2.c */

/*

Program to print factorials of all integers

between 0 and 20

*/

#include <stdio.h>

#include <stdlib.h>

/* Prototype for function factorial() */

double factorial(int);

int main()

{

int j;

/* Print factorials of all integers between 0 and 20 */

for (j = 0; j <= 20; ++j)

53

2.9 Functions 2 SCIENTIFIC PROGRAMMING IN C

printf("j = %3d factorial(j) = %12.3e\n", j, factorial(j));

return 0;

}

//%%%

double factorial(int n)

{

/*

Function to evaluate factorial (in floating-point form)

of non-negative integer n.

*/

double fact = 1.;

/* Abort if n is negative integer */

if (n < 0)

{

printf("\nError: factorial of negative integer not defined\n");

exit(1);

}

/* Calculate factorial */

for (; n > 0; --n) fact *= (double) n;

/* Return value of factorial */

return fact;

}

Note that the function factorial() has been modified such that its integer ar-

gument n is also used as the index in a for statement. Thus, the value of this

argument is modified within the function. Nevertheless, the output of the above

program is identical to that from printfact.c, since the modifications to n are

not passed back to the main part of the program. Note, incidentally, the use of a

null initialization expression in the for statement appearing in factorial().

54

2.10 Pointers 2 SCIENTIFIC PROGRAMMING IN C

2.10 Pointers

One of the main characteristics of a scientific program is that large amounts of

numerical information are exchanged between the various functions which make

up the program. It is generally most convenient to pass this information via the

argument lists, rather than the names, of the these functions. After all, only one

number can be passed via a function name, whereas scientific programs generally

require far more than one number to be passed during a function call. Hence,

the functions employed in scientific programs generally return no values via their

names (i.e., they tend to be of data type void) but possess large strings of argu-

ments. There is one obvious problem with this approach. Namely, a void function

which passes all of its arguments by value is incapable of returning any informa-

tion to the program segment from which it was called. Fortunately, there is a

way of getting around this difficulty: we can pass the arguments of a function by

reference, rather than by value, using constructs known as pointers. This allows

the two-way communication of information via arguments during function calls.

Pointers are discussed in the following.

Suppose that v is a variable in a C program which represents some particular

data item. Of course, the program stores this data item at some particular location

in the computer’s memory. The data item can thus be accessed if we know its

location, or address, in computer memory. The address of v’s memory location

is determined by the expression &v, where & is a unary operator known as the

address operator.

Suppose that we assign the address of v to another variable pv. In other words,

pv = &v

This new variable is called a pointer to v, since it points to the location where v

is stored in memory. Remember, however, that pv represents v’s address, and not

its value.

The data item represented by v (i.e., the data item stored at v’s memory loca-

tion) can be accessed via the expression *pv, where * is a unary operator, called

the indirection operator, which only operates on pointer variables. Thus, *pv

55

2.10 Pointers 2 SCIENTIFIC PROGRAMMING IN C

and v both represent the same data item. Furthermore, if we write pv = &v and

u = *pv then both u and v represent the same value.

The simple program listed below illustrates some of the points made above:

/* pointer.c */

/*

Simple illustration of the action of pointers

*/

#include <stdio.h>

main()

{

int u = 5;

int v;

int *pu; // Declare pointer to an integer variable

int *pv; // Declare pointer to an integer variable

pu = &u; // Assign address of u to pu

v = *pu; // Assign value of u to v

pv = &v; // Assign address of v to pv

printf("\nu = %d &u = %X pu = %X *pu = %d", u, &u, pu, *pu);

printf("\nv = %d &v = %X pv = %X *pv = %d\n", v, &v, pv, *pv);

return 0;

}

Note that pu is a pointer to u, whereas pv is a pointer to v. Incidentally, the con-
version character X, which appears in the control strings of the above printf()
function calls, indicates that the associated data item should be output as a hex-
adecimal number—this is the conventional method of representing an address in
computer memory. Execution of the above program yields the following output:

u = 5 &u = BFFFFA24 pu = BFFFFA24 *pu = 5

v = 5 &v = BFFFFA20 pv = BFFFFA20 *pv = 5

%

In the first line, we see that u represents the value 5, as specified in its declaration

statement. The address of u is determined automatically by the compiler to be

BFFFFA24 (hexadecimal). The pointer pu is assigned this value. Finally, the value

56

2.10 Pointers 2 SCIENTIFIC PROGRAMMING IN C

to which pu points is 5, as expected. Similarly, the second line shows that v also

represents the value 5. This is as expected, since we assigned the value *pu to v.

The address of v is BFFFFA20. Of course, u and v have different addresses.

The unary operators & and * are members of the same precedence group as

the other unary operators (e.g., ++ and --). The address operator (&) can only act

upon operands which possess a unique address, such as ordinary variables. Thus,

the address operator cannot act upon arithmetic expression, such as 2 * (u + v).

The indirection operator (*) can only act upon operands which are pointers.

Pointer variables, like all other variables, must be declared before they can
appear in executable statements. A pointer declaration takes the general form

data-type *ptvar;

where ptvar is the name of the pointer variable, and data-type is the data type

of the data item towards which the pointer points. Note that an asterisk must

always precede the name of a pointer variable in a pointer declaration.

Referring to Sect. 2.6, we can now appreciate that the mysterious asterisk
which appears in the declaration of an input/output stream, e.g.,

FILE *stream;

is there because stream is a pointer variable (pointing towards an object of the

special data type FILE). In fact, stream points towards the beginning of the asso-

ciated input/output stream in memory.

Pointers are often passed to a function as arguments. This allows data items

within the calling part of the program to be accessed by the function, altered

within the function, and then passed back to the calling portion of the program in

altered form. This use of pointers is referred to as passing arguments by reference,

rather than by value.

When an argument is passed by value, the associated data item is simply

copied to the function. Thus, any alteration to the data item within the func-

tion is not passed back to the calling routine. When an argument is passed by

57

2.10 Pointers 2 SCIENTIFIC PROGRAMMING IN C

reference, however, the address of the associated data item is passed to the func-

tion. The contents of this address can be freely accessed by both the function and

the calling routine. Furthermore, any changes made to the data item stored at

this address are recognized by both the function and the calling routine. Thus,

the use of a pointer as an argument allows the two-way communication of infor-

mation between a function and its calling routine.

The program listed below, which is yet another modified version of printfact.c,
uses a pointer to pass back information from a function to its calling routine:

/* printfact3.c */

/*

Program to print factorials of all integers

between 0 and 20

*/

#include <stdio.h>

#include <stdlib.h>

/* Prototype for function factorial() */

void factorial(int, double *);

int main()

{

int j;

double fact;

/* Print factorials of all integers between 0 and 20 */

for (j = 0; j <= 20; ++j)

{

factorial(j, &fact);

printf("j = %3d factorial(j) = %12.3e\n", j, fact);

}

return 0;

}

//%%%

void factorial(int n, double *fact)

{

/*

Function to evaluate factorial *fact (in floating-point form)

of non-negative integer n.

58

2.10 Pointers 2 SCIENTIFIC PROGRAMMING IN C

*/

*fact = 1.;

/* Abort if n is negative integer */

if (n < 0)

{

printf("\nError: factorial of negative integer not defined\n");

exit(1);

}

/* Calculate factorial */

for (; n > 0; --n) *fact *= (double) n;

return;

}

The output from this program is again identical to that from printfact.c. Note
that the function factorial() has been modified such that there is no data item
associated with its name (i.e., the function is of data type void). However, the
argument list of this function has been extended such that there are now two
arguments. As before, the first argument is the value of the positive integer n
whose factorial is to be evaluated by the function. The second argument, fact,
is a pointer which passes back the factorial of n (in the form of a floating-point
number) to the main part of the program. Incidentally, the compiler knows that
fact is a pointer because its name is proceeded by an asterisk in the argument
declaration for factorial(). Of course, in the body of the function, reference
is made to *fact (i.e., the value of the data item stored in the memory location
towards which fact points) rather than fact (i.e., the address of the memory
location towards which fact points). Note that a void function, which returns
no value, can only be called via a statement consisting of the function name
followed by a list of its arguments (in parentheses and separated by commas).
Thus, the function factorial() is called in the main part of the program via the
statement

factorial(j, &fact);

This statement passes the integer value j to factorial(), which, in turn, passes
back the value of the factorial of j via its second argument. Note that since the
second argument is passed by reference, rather than by value, it is written &fact
(i.e., the address of the memory location where the floating-point value fact is
stored) rather than fact (i.e., the value of the floating-point variable fact). Note,
finally, that the function prototype for factorial() takes the form

59

2.10 Pointers 2 SCIENTIFIC PROGRAMMING IN C

void factorial(int, double *);

Here, the asterisk after double indicates that the second argument is a pointer to

a floating-point data item.

We can now appreciate that the mysterious ampersands which must precede
variable names in scanf() calls: e.g.,

scanf("%d %lf %lf", &k, &x, &y);

are not so mysterious, after all. scanf() is a function which returns data to its

calling routine via its arguments (excluding its first argument, which is a control

string). Hence, these arguments must be passed to scanf() by reference, rather

than by value, otherwise they would be unable to pass information back to the

calling routine. It follows that we must pass the addresses of variables (e.g., &k)

to scanf(), rather than the values of these variables (e.g., k). Note that since the

printf() function does not return any information to its calling routine via its

arguments, there is no need to pass these arguments by reference—passing by

value is fine. This explains why there are no ampersands in the argument list of

a printf() function.

A pointer to a function can be passed to another function as an argument. This

allows one function to be transferred to another, as though the first function were

a variable. This is very useful in scientific programming. Imagine that we have a

routine which numerically integrates a general one-dimensional function. Ideally,

we would like to use this routine to integrate more than one specific function.

We can achieve this by passing (to the routine) the name of the function to be

integrated as an argument. Thus, for example, we can use the same routine to

integrate a polynomial, a trigonometric function, or a logarithmic function.

Let us refer to the function whose name is passed as an argument as the guest
function. Likewise, the function to which this name is passed is called the host
function. A pointer to a guest function is identified in the host function definition
by an entry of the form

data-type (*function-name)(type 1, type 2, ...)

60

2.10 Pointers 2 SCIENTIFIC PROGRAMMING IN C

in the host function’s argument declaration.9 Here, data-type is the data type
of the guest function, function-name is the local name of the guest function in
the host function definition, and type 1, type 2, ... are the data types of the
guest function’s arguments. The pointer to the guest function also requires an
entry of the form

data-type (*)(type 1, type 2, ...)

in the argument declaration of the host function’s prototype. The guest function
can be accessed within the host function definition by means of the indirection
operator. To achieve this, the indirection operator must precede the guest func-
tion name, and both the indirection operator and the guest function name must
be enclosed in parenthesis: i.e.,

(*function-name)(arg 1, arg 2, ...)

Here, arg 1, arg 2,... are the arguments passed to the guest function. Finally,
the name of a guest function is passed to the host function, during a call to the
latter function, via an entry like

function-name

in the host function’s argument list.

The program listed below is a rather silly example which illustrates the passing
of function names as arguments to another function:

/* passfunction.c */

/*

Program to illustrate the passing of function names as

arguments to other functions via pointers

*/

#include <stdio.h>

/* Function prototype for host fun. */

void cube(double (*)(double), double, double *);

9The parenthesis around *function-name are very important:
data-type *function-name(type 1, type 2, ...) is interpreted by the compiler as a reference to a function
which returns a pointer to type data-type, rather than a pointer to a function which returns type data-type.

61

2.10 Pointers 2 SCIENTIFIC PROGRAMMING IN C

double fun1(double); // Function prototype for first guest function

double fun2(double); // Function prototype for second guest function

int main()

{

double x, res1, res2;

/* Input value of x */

printf("\nx = ");

scanf("%lf", &x);

/* Evaluate cube of value of first guest function at x */

cube(fun1, x, &res1);

/* Evaluate cube of value of second guest function at x */

cube(fun2, x, &res2);

/* Output results */

printf("\nx = %8.4f res1 = %8.4f res2 = %8.4f\n", x, res1, res2);

return 0;

}

//%%%

void cube(double (*fun)(double), double x, double *result)

{

/*

Host function: accepts name of floating-point guest function

with single floating-point argument as its first argument,

evaluates this function at x (the value of its second argument),

cubes the result, and returns final result via its third argument.

*/

double y;

y = (*fun)(x); // Evaluate guest function at x

*result = y * y * y; // Cube value of guest function at x

return;

}

//%%%

62

2.11 Global Variables 2 SCIENTIFIC PROGRAMMING IN C

double fun1(double z)

{

/*

First guest function

*/

return 3.0 * z * z - z;

}

//%%%

double fun2(double z)

{

/*

Second guest function

*/

return 4.0 * z - 5.0 * z * z * z;

}

In the above program, the function cube() accepts the name of a guest function
(with one argument) as its first argument, evaluates this function at x (the value
of its second argument, which is ultimately specified by the user), cubes the re-
sult, and then passes the final result back to the main part of the program via its
third argument (which, of course, is a pointer). The two guest functions, fun1()
and fun2(), whose names are passed to cube(), are both simple polynomials.
The output from the above program looks like:

x = 2

x = 2.0000 res1 = 1000.0000 res2 = -32768.0000

%

2.11 Global Variables

We have seen that a general C program is basically a collection of functions. Fur-

thermore, the variables used by these functions are local in scope: i.e., a variable

defined in one function is not recognized in another. The main method of trans-

ferring data from one function to another is via the argument lists in function

63

2.11 Global Variables 2 SCIENTIFIC PROGRAMMING IN C

calls. Arguments can be passed in one of two different manners. When an ar-

gument is passed by value then the value of a local variable (or expression) in

the calling routine is copied to a local variable in the function which is called.

When an argument is passed by reference then a local variable in the calling rou-

tine shares the same memory location as a local variable in the function which

is called: hence, a change in one variable is automatically mirrored in the other.

However, there is a third method of transferring information from one function

to another. It is possible to define variables which are global in extent: such vari-

ables are recognized by all the functions making up the program, and have the

same values in all of these functions.

The C compiler recognizes a variable as global, as opposed to local, because

its declaration is located outside the scope of any of the functions making up the

program. Of course, a global variable can only be used in an executable state-

ment after it has been declared. Hence, the natural place to put global variable

declaration statements is before any function definitions: i.e., right at the begin-

ning of the program. Global variables declarations can be used to initialize such

variables, in the regular manner. However, the initial values must be expressed

as constants, rather than expressions. Furthermore, the initial values are only

assigned once, at the beginning of the program.

The program listed below is yet another version of printfact.c, in which
communication between the two sections of the program takes place entirely via
global variables:

/* printfact4.c */

/*

Program to print factorials of all integers

between 0 and 20

*/

#include <stdio.h>

#include <stdlib.h>

/* Prototype for function factorial() */

void factorial();

/* Global variable declarations */

int j;

64

2.11 Global Variables 2 SCIENTIFIC PROGRAMMING IN C

double fact;

int main()

{

/* Print factorials of all integers between 0 and 20 */

for (j = 0; j <= 20; ++j)

{

factorial();

printf("j = %3d factorial(j) = %12.3e\n", j, fact);

}

return 0;

}

//%%%

void factorial()

{

/*

Function to evaluate factorial (in floating-point form)

of non-negative integer j. Result stored in variable fact.

*/

int count;

/* Abort if j is negative integer */

if (j < 0)

{

printf("\nError: factorial of negative integer not defined\n");

exit(1);

}

/* Calculate factorial */

for (count = j, fact = 1.; count > 0; --count) fact *= (double) count;

return;

}

The output from the above program is identical to that from printfact.c. Ob-

serve that the global variable j is used to pass the integer value whose factorial is

to be calculated from the main part of the program to the function factorial(),

whilst the global variable fact is used to pass the calculated factorial back to

the main part of the program. Incidentally, note the use of multiple initial-

ization statements (separated by commas) in the for statement appearing in

65

2.12 Arrays 2 SCIENTIFIC PROGRAMMING IN C

factorial().

Global variables should be used sparingly in scientific programs (or any other

type of program), since there are inherent dangers in their employment. An

alteration in the value of a global variable within a given function is carried

over into all other parts of the program. Unfortunately, such an alteration can

sometimes happen inadvertently, as the side-effect of some other action. Thus,

there is the possibility of the value of a global variable changing unexpectedly,

resulting in a subtle programming error which can be extremely difficult to track

down, since the offending line could be located anywhere in the program. Similar

errors involving local variables are much easier to debug, since the scope of local

variables is far more limited than that of global variables.

2.12 Arrays

Scientific programs very often deal with multiple data items possessing common

characteristics. In such cases, it is often convenient to place the data items in

question into an array, so that they all share a common name (e.g., x). The

individual data items can be either integers or floating-point numbers. However,

they all must be of the same data type.

In C, an element of an array (i.e., an individual data item) is referred to by

specifying the array name followed by one or more subscripts, with each sub-

script enclosed in square brackets. All subscripts must be nonnegative integers.

Thus, in an n-element array called x, the array elements are x[0], x[1], ...,

x[n-1]. Note that the first element of the array is x[0] and not x[1], as in other

programming languages.

The number of subscripts determines the dimensionality of an array. For exam-

ple, x[i] refers to an element of a one-dimensional array, x. Similarly, y[i][j]

refers to an element of a two-dimensional array, y, etc.

Arrays are declared in much the same manner as ordinary variables, except
that each array name must be accompanied by a size specification (which speci-
fies the number of elements). For a one-dimensional array, the size is specified by

66

2.12 Arrays 2 SCIENTIFIC PROGRAMMING IN C

a positive integer constant, enclosed in square brackets. The generalization for
multi-dimensional arrays is fairly obvious. Several valid array declarations are
shown below:

int j[100];

double x[20];

double y[10][20];

Thus, j is a 100-element integer array, x is a 20-element floating point array, and
y is a 10x20 floating-point array. Note that variable size array declarations, e.g.,

double a[n];

where n is an integer variable, are illegal in C.

It is sometimes convenient to define an array size in terms of a symbolic con-

stant, rather than a fixed integer quantity. This makes it easier to modify a pro-

gram that utilizes an array, since all references to the maximum array size can be

altered by simply changing the value of the symbolic constant. This approach is

used in many of the example programs employed in this course.

Like an ordinary variable, an array can be either local or global in extent,
depending on whether the associated array declaration lies inside or outside,
respectively, the scope of any of the functions which constitute the program. Both
local and global arrays can be initialized via their declaration statements.10 For
instance,

int j[5] = {1, 3, 5, 7, 9};

declares j to be a 5-element integer array whose elements have the initial values

j[0]=1, j[1]=3, etc.

Single operations which involve entire arrays are not permitted in C. Thus, if x

and y are similar arrays (i.e., the same data type, dimensionality, and size) then

assignment operations, comparison operations, etc. involving these two arrays

10Prior to the ANSI standard, to which the GNU C compiler adheres, local arrays could not be initialized via their
declaration statements.

67

2.12 Arrays 2 SCIENTIFIC PROGRAMMING IN C

must be carried out on an element by element basis. This is usually accomplished

within a loop (or within nested loops, for multi-dimensional arrays).

The program listed below is a simple illustration of the use of arrays in C.
The program reads a list of numbers, entered by the user, into a one-dimensional
array, list, and then calculates the average of these numbers. The program also
calculates and outputs the deviation of each number from the average.

/* average.c */

/*

Program to calculate the average of n numbers and then

compute the deviation of each number from the average

Code adapted from "Programming with C", 2nd Edition, Byron Gottfreid,

Schaum’s Outline Series, (McGraw-Hill, New York NY, 1996)

*/

#include <stdio.h>

#include <stdlib.h>

#define NMAX 100

int main()

{

int n, count;

double avg, d, sum = 0.;

double list[NMAX];

/* Read in value for n */

printf("\nHow many numbers do you want to average? ");

scanf("%d", &n);

/* Check that n is not too large or too small */

if ((n > NMAX) || (n <= 0))

{

printf("\nError: invalid value for n\n");

exit(1);

}

/* Read in the numbers and calculate their sum */

for (count = 0; count < n; ++count)

{

printf("i = %d x = ", count + 1);

scanf("%lf", &list[count]);

68

2.12 Arrays 2 SCIENTIFIC PROGRAMMING IN C

sum += list[count];

}

/* Calculate and display the average */

avg = sum / (double) n;

printf("\nThe average is %5.2f\n\n", avg);

/* Calculate and display the deviations about the average */

for (count = 0; count < n; ++count)

{

d = list[count] - avg;

printf("i = %d x = %5.2f d = %5.2f\n", count + 1, list[count], d);

}

return 0;

}

Note the use of the symbolic constant NMAX to specify the size of the array list,
and, hence, the maximum number of values which can be averaged. The typical
output from the above program looks like:

How many numbers do you want to average? 5

i = 1 x = 4.6

i = 2 x = -2.3

i = 3 x = 8.7

i = 4 x = 0.12

i = 5 x = -2.7

The average is 1.68

i = 1 x = 4.60 d = 2.92

i = 2 x = -2.30 d = -3.98

i = 3 x = 8.70 d = 7.02

i = 4 x = 0.12 d = -1.56

i = 5 x = -2.70 d = -4.38

%

It is important to realize that an array name in C is essentially a pointer to the

first element in that array.11 Thus, if x is a one-dimensional array then the address

of the first array element can be expressed as either &x[0] or simply x. Moreover,

11An array name is not exactly equivalent to a pointer, because a pointer can point to any address in the computer
memory—this address can even be changed—whereas an array name is constrained to always point towards the
address of its associated first data item.

69

2.12 Arrays 2 SCIENTIFIC PROGRAMMING IN C

the address of the second array element can be written as either &x[1] or (x+1).

In general, the address of the (i+1)th array element can be expressed as either

&x[i] or (x+i). Incidentally, it should be understood that (x+i) is a rather special

type of expression, since x represents an address, whereas i represents an integer

quantity. The expression (x+i) actually specifies the address of the array element

which is i memory locations offset from the address of the first array element (C,

of course, stores all elements of an array both contiguously and in order in the

computer memory). Hence, (x+i) is a symbolic representation of an address,

rather than an arithmetic expression.

Since &x[i] and (x+i) both represent the address of the (i+1)th element of

the array x, it follows that x[i] and *(x+i) must both represent the contents of

that address (i.e., the value of the (i+1)th element). In fact, the latter two terms

are completely interchangeable in C programs.

For the moment, let us concentrate on one-dimensional arrays. An entire array

can be passed to a function as an argument. To achieve this, the array name

must appear by itself, without brackets or subscripts, as an argument within the

function call. The corresponding argument in the function definition must be

declared as an array. In order to do this, the array name is written followed by

an empty pair of square brackets. The size of the array is not specified. In a

function prototype, an array argument is specified by following the data type of

the argument by an empty pair of square brackets.

Since, as we have seen, an array name is essentially a pointer, it is clear that

when an array is passed to a function it is passed by reference, and not by value.

Hence, if any of the array elements are altered within the function then these

alterations are recognized in the calling portion of the program. Likewise, if

an array (rather than an individual array element) appears in the argument list

of a scanf() function then it should not be preceded by the address operator

(&), since an array name already is an address. The reason why arrays in C are

always passed by reference is fairly obvious. In order to pass an array by value,

it is necessary to copy the value of every element. On the other hand, to pass an

array by reference it is only necessary to pass the address of the first element.

Clearly, for large arrays, passing by reference is far more efficient than passing by

70

2.12 Arrays 2 SCIENTIFIC PROGRAMMING IN C

value.

The program listed below is yet another version of printfact.c, albeit a far

more efficient one than any of those listed previously. In this version, the factori-

als of all the non-zero integers up to 20 are calculated in one fell swoop, by the

function factorial(), using the recursion relation

(n + 1)! = (n + 1) n! (2.1)

The factorials are stored as elements of the array fact[], which is passed as an
argument from factorial() to the main part of the program.

/* printfact5.c */

/*

Program to print factorials of all integers

between 0 and 20

*/

#include <stdio.h>

/* Function prototype for factorial() */

void factorial(double []);

int main()

{

int j;

double fact[21]; // Declaration of array fact[]

/* Calculate factorials */

factorial(fact);

/* Output results */

for (j = 0; j <= 20; ++j)

printf("j = %3d factorial(j) = %12.3e\n", j, fact[j]);

return 0;

}

//%%%

void factorial(double fact[])

{

/*

Function to calculate factorials of all integers

71

2.12 Arrays 2 SCIENTIFIC PROGRAMMING IN C

between 0 and 20 (in form of floating-point

numbers) via recursion formula

(n+1)! = (n+1) n!

Factorials returned in array fact[0..20]

*/

int count;

fact[0] = 1.; // Set 0! = 1

/* Calculate 1! through 20! via recursion */

for (count = 0; count < 20; ++count)

fact[count+1] = (double)(count+1) * fact[count];

return;

}

The output from the above program is identical to that from printfact.c.

It is important to realize that there is no array bound checking in C. If an array

x is declared to have 100 elements then the compiler will reserve 100 contigu-

ous, appropriately sized, slots in computer memory on its behalf. The contents

of these slots can be accessed via expressions of the form x[i], where the inte-

ger i should lie in the range 0 to 99. As we have seen, the compiler interprets

x[i] to mean the contents of the memory slot which is i slots along from the

beginning of the array. Unfortunately, expressions such as x[100] or x[1000] are

interpreted in a like manner, leading the compiler to instruct the executable to

access memory slots which lie off the end of the memory block reserved for x.

Obviously, accessing elements of an array which do not exist is going to produce

some sort of error. Exactly what sort of error is very difficult to say—the program

may crash, it may produce absurdly incorrect output, it may produce plausible

but incorrect output, it may even produce correct output—it all depends on ex-

actly what information is being stored in the memory locations surrounding the

block of memory reserved for x. This type of error can be extremely difficult to

debug, since it may not be immediately apparent that something has gone wrong

when the program is executed. It is, therefore, the programmer’s responsibility

to ensure that all references to array elements lie within the declared bounds of

72

2.13 Character Strings 2 SCIENTIFIC PROGRAMMING IN C

the associated arrays.

Let us now discuss multi-dimensional arrays in more detail. The elements of

a multi-dimensional array are stored contiguously in a block of computer mem-

ory. In scanning across this block, from its start to its end, the order of storage is

such than the last subscript of the array varies most rapidly whilst the first varies

least rapidly. For instance, the elements of the two-dimensional array x[2][2]

are stored in the order: x[0][0], x[0][1], x[1][0], x[1][1]. The elements

of a multi-dimensional array can only be addressed if the program is explicitly

told the size of the array in its second, third, etc. dimensions. It is, therefore, not

surprising to learn that when a multi-dimensional array is passed to a function, as

an argument, then the associated argument declaration within the function defi-

nition must include explicit size declarations in all of the subscript positions except

the first. The same is true for a multi-dimensional array argument appearing in a

function prototype.

2.13 Character Strings

The basic C character data type is called char. A character string in C can be rep-
resented symbolically as an array of data type char. For instance, the declaration

char word[20] = "four";

initializes the 20-element character array word, and then stores the character
string “four” in it. The resulting elements of word are as follows:

word[0] = ’f’ word[1] = ’o’ word[2] = ’u’ word[3] = ’r’ word[4] = ’\0’

with the remaining elements undefined. Here, ’f’ represents the character “f”,

etc., and ’\0’ represents the so-called null character (ASCII code 0), which is

used in C to signal the termination of a character string. The null character is

automatically added to the end of any character string enclosed in double quotes.

Note that, since all character strings in C must be terminated by the (invisible)

null character, it takes a character array of size at least n+1 to store an n-letter

string.

73

2.13 Character Strings 2 SCIENTIFIC PROGRAMMING IN C

As with arrays of numbers, the name of a character array is essentially equiva-
lent to a pointer to the first element of that array. Hence, word[i] and *(word + i)
both refer to the same character in the character array word. Note, however, that
the name of a character array is not a true pointer, since the address to which it
points cannot be changed. Of course, we can always represent a character array
using a true pointer. Consider the declaration

char *word = "four";

Here, word is declared to be a pointer to a char which points towards the first
element of the character string ’f’ ’o’ ’u’ ’r’ ’\0’. Unlike the name of a
character array, a true pointer to a char can be redirected. Thus,

char *word = "four";

. . .

word = "five";

is legal, whereas

char word[20] = "four";

. . .

word = "five";

is illegal. Note that, in the former example, the addresses of the first elements
of the strings “four” and “five” are probably different. Of course, the contents
of a character array can always be changed, element by element—it is just the
address of the first element which must remain constant. Thus,

char word[20] = "four";

. . .

word[0] = ’f’;

word[1] = ’i’;

word[2] = ’v’;

word[3] = ’e’;

word[4] = ’\0’;

is perfectly legal.

Note, finally, that a character string can be printed via the printf() function
by making use of a %s entry in its control string: e.g.,

74

2.14 Multi-File Programs 2 SCIENTIFIC PROGRAMMING IN C

printf("word = %s\n", word);

Here, the second argument, word, can either be the name of a character array or

a true pointer to the first element of a character string.

2.14 Multi-File Programs

In a program consisting of many different functions, it is often convenient to place

each function in an individual file, and then use the make utility to compile each

file separately and link them together to produce an executable.

There are a few common-sense rules associated with multi-file programs. Since

a given file is initially compiled separately from the rest of the program, all sym-

bolic constants which appear in that file must be defined at its start. Likewise, all

referenced library functions must be accompanied by the appropriate references

to header files. Also, any referenced user-defined functions must have their pro-

totypes at the start of the file. Finally, all global variables used in the file must

be declared at its start. This usually means that definitions for common sym-

bolic constants, header files for common library functions, prototypes for com-

mon user-defined functions, and declarations for common global variables will

appear in multiple files. Note that a given global variable can only be initialized

in one of its declaration statements, which is regarded as the true declaration of

that variable [conventionally, the true declaration appears in the file containing

the function main()]. Indeed, the other declarations, which we shall term defini-

tions, must be preceded by the keyword extern to distinguish them from the true

declaration.

As an example, let us take the program printfact4.c, listed previously, and
break it up into multiple files, each containing a single function. The files in
question are called main.c and factorial.c. The listings of the two files which
make up the program are as follows:

/* main.c */

/*

Program to print factorials of all integers

75

2.14 Multi-File Programs 2 SCIENTIFIC PROGRAMMING IN C

between 0 and 20

*/

#include <stdio.h>

/* Prototype for fucntion factorial() */

void factorial();

/* Global variable declarations */

int j;

double fact;

int main()

{

/* Print factorials of all integers between 0 and 20 */

for (j = 0; j <= 20; ++j)

{

factorial();

printf("j = %3d factorial(j) = %12.3e\n", j, fact);

}

return 0;

}

and

/* factorial.c */

/*

Function to evaluate factorial (in floating point form)

of non-negative integer j. Result stored in variable fact.

*/

#include <stdio.h>

#include <stdlib.h>

/* Global variable definitions */

extern int j;

extern double fact;

void factorial()

{

int count;

/* Abort if j is negative integer */

if (j < 0)

76

2.15 Command Line Parameters 2 SCIENTIFIC PROGRAMMING IN C

{

printf("\nError: factorial of negative integer not defined\n");

exit(1);

}

/* Calculate factorial */

for (count = j, fact = 1.; count > 0; --count) fact *= (double) count;

return;

}

Note that all library functions and user-defined functions referenced in each file

are declared (either via a header file or a function prototype) at the start of that

file. Note, also, the distinction between the global variable declarations in the file

main.c and the global variable definitions in the file factorial.c.

2.15 Command Line Parameters

The main() function may optionally possess special arguments which allow pa-
rameters to be passed to this function from the operating system. There are two
such arguments, which are conventionally called argc and argv. The former ar-
gument, argc, is an integer which is set to the number of parameters passed to
main(), whereas the latter argument, argv, is an array of pointers to character
strings which contain these parameters. In order to pass one or more parameters
to a C program when it is executed from the operating system, the parameters
must follow the program name on the command line: e.g.,

% program-name parameter_1 parameter_2 parameter_3 ... parameter_n

The program name will be stored in the first item in argv, followed by each of

the parameters. Hence, if the program name is followed by n parameters there

will be n + 1 entries in argv, ranging from argv[0] to argv[n]. Furthermore,

argc will be automatically set equal to n + 1.

The program listed below is a simple illustration of the use of command line
parameters: it simply echoes all of the parameters passed to it.

/* repeat.c */

77

2.15 Command Line Parameters 2 SCIENTIFIC PROGRAMMING IN C

/*

Program to read and echo data from command line

*/

int main(int argc, char *argv[])

{

int i;

for (i = 1; i < argc; i++) printf("%s ", argv[i]);

printf("\n");

return 0;

}

Assuming that the executable is called repeat, the typical output from this pro-
gram is as follows:

% repeat The quick brown fox jumped over the lazy hounds

The quick brown fox jumped over the lazy hounds

%

Suppose that one or more of the parameters passed to a given program are
numbers. As we have seen, these numbers are actually passed as character strings.
Hence, before they can be employed in calculations, they must be converted into
either type int or type double. This can be achieved via the use of the functions
atoi() and atof() (the appropriate header file for these functions is stdlib.h).
Thus, int atoi(char *ptr) converts a string pointed to by ptr into an int,
whereas double atof(char *ptr) converts a string pointed to by ptr into an
double. The program listed below illustrates the use of the atof() function:
it reads in a number passed as a command line parameter, interprets it as a
temperature in degrees Fahrenheit, converts it to degrees Celsius, and then prints
out the result.

/* ftoc.c */

/*

Program to convert temperature in Fahrenheit input

on command line to temperature in Celsius

*/

#include <stdlib.h>

#include <stdio.h>

78

2.16 Timing 2 SCIENTIFIC PROGRAMMING IN C

int main(int argc, char *argv[])

{

double deg_f, deg_c;

/* If no parameter passed to program print error

message and exit */

if (argc < 2)

{

printf("Usage: ftoc temperature\n");

exit(1);

}

/* Convert first command line parameter to double */

deg_f = atof(argv[1]);

/* Convert from Fahrenheit to Celsius */

deg_c = (5. / 9.) * (deg_f - 32.);

printf("%f degrees Fahrenheit equals %f degrees Celsius\n",

deg_f, deg_c);

return 0;

}

Assuming that the executable is called ftoc, the typical output from this program
is as follows:

% ftoc 98

98.000000 degrees Fahrenheit equals 36.666667 degrees Celsius

%

2.16 Timing

The header file time.h defines a number of library functions which can be used to

assess how much CPU time a C program consumes during execution. The simplest

such function is called clock(). A call to this function, with no argument, will

return the amount of CPU time used so far by the calling program. The time

is returned in a special data type, clock_t, defined in time.h. This time must

be divided by CLOCKS_PER_SEC, also defined in time.h, in order to covert it into

79

2.16 Timing 2 SCIENTIFIC PROGRAMMING IN C

seconds. The ability to measure how much CPU time a given code consumes

is useful in scientific programming: e.g., because it allows the effectiveness of

the various available compiler optimization flags to be determined. Optimization

usually (but not always!) speeds up the execution of a program. However, over

aggressive optimization can often slow a program down again.

The program listed below illustrates the simple use of the clock() function.
The program compares the CPU time required to raise a double to the fourth
power via a direct calculation and via a call to the pow() function. Actually,
both operations are performed a million times and the elapsed CPU time is then
divided by a million.

/* timing.c */

/*

Program to test operation of clock() function

*/

#include <time.h>

#include <math.h>

#define N_LOOP 1000000

int main()

{

int i;

double a = 11234567890123456.0, b;

clock_t time_1, time_2;

time_1 = clock();

for (i = 0; i < N_LOOP; i++) b = a * a * a * a;

time_2 = clock();

printf ("CPU time needed to evaluate a*a*a*a: %f microsecs\n",

(double) (time_2 - time_1) / (double) CLOCKS_PER_SEC);

time_1 = clock();

for (i = 0; i < N_LOOP; i++) b = pow(a, 4.);

time_2 = clock();

printf ("CPU time needed to evaluate pow(a, 4.): %f microsecs\n",

(double) (time_2 - time_1) / (double) CLOCKS_PER_SEC);

return 0;

}

The typical output from this program is as follows:

80

2.17 Random Numbers 2 SCIENTIFIC PROGRAMMING IN C

CPU time needed to evaluate a*a*a*a: 0.190000 microsecs

CPU time needed to evaluate pow(a, 4.): 1.150000 microsecs

%

Clearly, evaluating a fourth power using the pow() function is a lot more expen-

sive than the direct calculation. Hence, as has already been mentioned, the pow()

function should not be used to raise floating point quantities to small integer pow-

ers.

2.17 Random Numbers

A large class of scientific calculations (e.g., so-called Monte Carlo calculations)

require the use of random variables. A call to the rand() function (header file

stdlib.h), with no arguments, returns a fairly good approximation to a random

integer in the range 0 to RAND_MAX (defined in stdlib.h). The srand() function

sets its argument, which is of type int, as the seed for a new sequence of num-

bers to be returned by rand(). These sequences are repeatable by calling srand()

with the same seed value. If no seed value is provided, the rand() function is

automatically seeded with the value 1. It is common practice in C programming

to seed the random number generator with the number of seconds elapsed since

00:00:00 UTC, January 1st, 1970. This number is returned, as an integer, via a

call to the time (NULL) function (header file: <time.h>). Seeding the genera-

tor in this manner ensures that a different set of random numbers is generated

automatically each time the program is run.

The program listed below illustrates the use of the rand() function to construct
a pseudo-random variable, x, which is uniformly distributed in the range 0 to 1.
The program calculates 107 values of x, and then evaluates the mean and variance
of these values.

/* random.c */

/*

Program to test operation of rand() function

*/

#include <stdlib.h>

81

2.17 Random Numbers 2 SCIENTIFIC PROGRAMMING IN C

#include <stdio.h>

#include <time.h>

#define N_MAX 10000000

int main()

{

int i, seed;

double sum_0, sum_1, mean, var, x;

/* Seed random number generator */

seed = time(NULL);

srand(seed);

/* Calculate mean and variance of x: random number uniformly

distributed in range 0 to 1 */

for (i = 1, sum_0 = 0., sum_1 = 0.; i <= N_MAX; i++)

{

x = (double) rand() / (double) RAND_MAX;

sum_0 += x;

sum_1 += (x - 0.5) * (x - 0.5);

}

mean = sum_0 / (double) N_MAX;

var = sum_1 / (double) N_MAX;

printf("mean(x) = %12.10f var(x) = %12.10f\n", mean, var);

return 0;

}

The typical output from this program is as follows:

mean(x) = 0.5000335261 var(x) = 0.0833193874

%

As is easily demonstrated, the theoretical mean and variance of x are 1/2 and

1/12, respectively. It can be seen that the values returned by the program agree

with these theoretical values to five decimal places, which is all that can be ex-

pected with only 107 calls.

82

2.18 C++ Extensions to C 2 SCIENTIFIC PROGRAMMING IN C

2.18 C++ Extensions to C

In this subsection, we shall briefly discuss some of the useful, non-object-orientated

extensions to C introduced in the C++ language. Files containing source code

which incorporates C++ elements should be distinguished from files containing

plain C code via the extension .cpp.

In C, all local variables within a function must be declared before the first
executable statement. In C++, this restriction is relaxed: a local variable can be
declared (almost) anywhere in a function, provided that this declaration occurs
prior to the variable’s first use. The following code snippet illustrates the use of
this new feature:

. . .

for (int i = 0; i < MAX; i++)

{

. . .

}

. . .

Observe that the index i of the for loop is now declared at the start of the

loop, instead of at the start of the function containing the loop. This is far more

convenient, and also makes the code easier to read (since we no longer have to

skip back to the declarations at the start of the function to check that i is an

int). Note, however, that the variable i is only defined over the extent of the

loop (i.e., between the curly braces). Any attempt to reference i outside the loop

will result in a compilation error. In general, when a variable is declared in C++

its scope (i.e., range of definition) extends from its declaration to the closing curly

brace which terminates the current program block. Program blocks are functions,

loops, conditionally executed compound statements, etc., and are delineated by

curly braces. There are a number of restrictions to this new method of variable

declaration. Variables cannot be declared within conditional statements, in the

second or third expressions of for loops, or in function calls.

In C, we have seen that in order to pass an argument to a function in such
a manner that changes made to this argument within the function are passed
back to the calling routine, we must actually pass a pointer to the argument. This
procedure, which is called passing by reference, is illustrated in the code snippet

83

2.18 C++ Extensions to C 2 SCIENTIFIC PROGRAMMING IN C

listed below:

. . .

void square(double, double *);

. . .

int main()

{

. . .

double arg, res;

square(arg, &res);

. . .

return 0;

}

. . .

void square(double x, double *y)

{

*y = x * x;

return;

}

Here, the second argument to square() is returned to main() in modified form.
This argument must, therefore, be passed as a pointer. Consequently, we must
write &res, rather that res, when calling square(), and we must refer to the
argument as *y, rather than y, in the function itself. After a while, all these
ampersands and asterisks can become a little tedious! C++ introduces a new
method of passing by reference which somewhat less involved. This new method
is illustrated in the following:

. . .

void square(double, double &);

. . .

int main()

{

. . .

double arg, res;

square(arg, res);

. . .

return 0;

}

. . .

void square(double x, double &y)

{

y = x * x;

84

2.18 C++ Extensions to C 2 SCIENTIFIC PROGRAMMING IN C

return;

}

Here, the second argument to square() is again passed by reference. However,

this is now indicated by prepending an ampersand to the variable name in the

function declaration. A corresponding ampersand appears in the associated func-

tion prototype. Note that we do not need to explicitly pass a pointer to the second

argument when calling square() (this is done behind the scenes): i.e., we write

res, rather than &res, when calling square(). Likewise, we do not have to ex-

plicitly deference the argument in the function itself (this is also done behind the

scenes): i.e., we refer to the argument by its regular local name, y, as opposed to

*y, within the function.

Functions are used in C programs to avoid having to repeat the same block

of code in many different places in the source. The use of functions also ren-

ders a code easier to read and maintain. However, there is a price to pay for

the convenience of functions. When a regular function is called in an executable,

the program jumps to the block of memory in which the compiled function code

is stored, and then jumps back to its original position in memory space when

the function returns. Unfortunately, the large jumps in memory space associated

with a function call take up a non-negligible amount of CPU time. Indeed, the

overhead associated with making function calls often discourages scientific pro-

grammers from writing small functions, even when it may be desirable to do so.

C++ provides a way out of this dilemma, via the use of the new keyword inline.

An inline function looks like a normal function when it is used, but is compiled in

a different manner. Calling an inline function from several different locations in

a code does not result in multiple calls to a single function. Instead, the code for

the inline function is inserted into the program code by the compiler wherever

the function is used.

Inline functions are only useful for small functions. The disadvantage of in-

serting the code for a large function multiple times into the code for a typical

program easily outweighs the small gain in performance obtained by the elim-

ination of standard function calls. The break-even point for inline functions is

usually about three executable lines.

85

2.18 C++ Extensions to C 2 SCIENTIFIC PROGRAMMING IN C

To inline a function, a programmer adds the keyword inline at the start of
the function’s definition. For example:

inline double square(double x)

{

return x * x;

}

Because the body of an inline function must be known before the compiler can

insert it into the program code, wherever the function is used, we must define

such a function prior to its first use—a prototype declaration is not enough. It is

common practice to define inline functions at the same location in source code

files that the prototypes for regular (i.e., outline) functions are placed.

Variable size array declarations of the form

void function(n)

{

int n;

double x[n];

. . .

}

are illegal in C, which is extremely inconvenient. In C++, such declarations
are enabled via the use of the new keywords new and delete. Thus, the C++
implementation of the above code snippet takes the form:

void function(n)

{

. . .

int n;

double *x = new double[n];

. . .

x[i] = . . .

. . .

. . .

delete x[];

. . .

}

86

2.19 Complex Numbers 2 SCIENTIFIC PROGRAMMING IN C

Note that x is actually declared as a pointer, rather than a standard array. The

declaration new double[n] reserves a memory block which is just large enough

to store n doubles, and then returns the address of the start of this block. The line

delete x[] frees up the block of memory associated with the array x when it is

no longer needed (note that this is not done automatically). Unfortunately, the

new and delete keywords cannot be used to make variable size multi-dimensional

arrays.

2.19 Complex Numbers

As we have already mentioned, the C language definition does not include com-
plex arithmetic—presumably because the square root of minus one is not a con-
cept which crops up very often in systems programming! Fortunately, this rather
serious deficiency—at least, as far as the scientific programmer is concerned—is
remedied in C++. The program listed below illustrates the use of the C++ com-
plex class (header file complex.h) to perform complex arithmetic using doubles:

/* complex.cpp */

/*

Program to test out C++ complex class

*/

#include <complex.h>

#include <stdio.h>

/* Define complex double data type */

typedef complex<double> dcomp;

int main()

{

dcomp i, a, b, c, d, e, p, q, r; // Declare complex double variables

double x, y;

/* Set complex double variable equal to complex double constant */

i = dcomp (0., 1.);

printf("\ni = (%6.4f, %6.4f)\n", i);

/* Test arithmetic operations with complex double variables */

a = i * i;

b = 1. / i;

87

2.19 Complex Numbers 2 SCIENTIFIC PROGRAMMING IN C

printf("\ni*i = (%6.4f, %6.4f)\n", a);

printf("1/i = (%6.4f, %6.4f)\n", b);

/* Test mathematical functions using complex double variables */

c = sqrt(i);

d = sin(i);

e = pow(i, 0.25);

printf("\nsqrt(i) = (%6.4f, %6.4f)\n", c);

printf("sin(i) = (%6.4f, %6.4f)\n", d);

printf("i^0.25 = (%6.4f, %6.4f)\n", e);

/* Test complex operations */

p = conj(i);

q = real(i);

r = imag(i);

printf("\nconj(i) = (%6.4f, %6.4f)\n", p);

printf("real(i) = %6.4f\n", q);

printf("imag(i) = %6.4f\n", r);

return 0;

}

The typical output from this program is as follows:

i = (0.0000, 1.0000)

i*i = (-1.0000, 0.0000)

1/i = (0.0000, -1.0000)

sqrt(i) = (0.7071, 0.7071)

sin(i) = (0.0000, 1.1752)

i^0.25 = (0.9239, 0.3827)

conj(i) = (0.0000, -1.0000)

real(i) = 0.0000

imag(i) = 1.0000

%

The program first of all defines the complex double type dcomp. Variables of this

type are then declared, set equal to complex constants, employed in arithmetic

expressions, used as the arguments of mathematical functions, etc., in much the

same manner that we would perform similar operations in C with variables of

88

2.20 Variable Size Multi-Dimensional Arrays 2 SCIENTIFIC PROGRAMMING IN C

type double. Note the special functions conj(), real(), and imag(), which take

the complex conjugate of, find the real part of, and find the imaginary part of a

complex variable, respectively.

2.20 Variable Size Multi-Dimensional Arrays

Multi-dimensional arrays crop up in a wide variety of different applications in
scientific programming. Moreover, it is very common for the sizes of the arrays
employed in a scientific code to vary from run to run, depending on the partic-
ular values of the input parameters. For instance, in a standard fluid code the
array sizes depend on the number of grid points, which, in turn, depends on
the requested accuracy. Thus, a crucial test of the suitability of a programming
language for scientific purposes is its ability to deal with variable size, multi-
dimensional arrays in a convenient manner. Unfortunately, C fails this test rather
badly, since variable size matrix declarations of the form

void function(a, m, n)

{

int m, n;

double a[m][n];

. . .

are illegal (unlike in FORTRAN 77, where variable size matrix declarations are

perfectly acceptable). Indeed, this unfortunate (and quite unnecessary!) omis-

sion in the C language definition is often put forward as a reason why C should

not be used for scientific purposes. Fortunately, we can get around the absence

of variable size multi-dimensional arrays in C by making use of a freely available

C++ package called the Blitz++ library—see http://www.oonumerics.org/blitz/.

The program listed below illustrates the use of the Blitz++ library. The pro-
gram adds together two matrices whose dimensions and elements are input by
the user, and then prints out the result.

/* addmatrix.c */

/*

Program to add two variable dimension matrices input by user

*/

89

2.20 Variable Size Multi-Dimensional Arrays 2 SCIENTIFIC PROGRAMMING IN C

#include <stdio.h>

#include <stdlib.h>

#include <blitz/array.h>

using namespace blitz;

/* Function prototypes */

void readin(Array<double,2>);

void writeout(Array<double,2>);

void addmatrices(Array<double,2>, Array<double,2>, Array<double,2>);

int main()

{

int n, m;

/* Input number of rows and columns */

printf("\nPlease input number of rows, n, and number of columns, m: ");

scanf("%d %d", &n, &m);

/* Check that n, m are positive integers */

if (n <= 0 || m <= 0)

{

printf("\nError: invalid values for n and/or m\n");

exit(1);

}

/* Array declarations */

Array<double,2> A(n, m), B(n, m), C(n, m);

/* Read in elements of A, row by row */

printf("\nReading in elements of A:\n");

readin(A);

/* Read in elements of B, row by row */

printf("\nReading in elements of B:\n");

readin(B);

/* Write out elements of A, row by row */

printf("\nWriting out elements of A:\n");

writeout(A);

/* Write out elements of B, row by row */

printf("\n\nWriting out elements of B:\n");

writeout(B);

90

2.20 Variable Size Multi-Dimensional Arrays 2 SCIENTIFIC PROGRAMMING IN C

/* Add matrices A and B */

addmatrices(A, B, C);

/* Write out matrix C = A + B, row by row */

printf("\n\nWriting out elements of C = A + B:\n");

writeout(C);

printf("\n");

return 0;

}

//%%%

/*

Read in elements of matrix M, row by row

*/

void readin(Array<double,2> M)

{

int n = M.extent(0);

int m = M.extent(1);

for (int i = 0; i < n; i++)

{

printf("\nRow %d: ", i + 1);

for (int j = 0; j < m; j++) scanf("%lf", &M(i, j));

}

return;

}

//%%%

/*

Write out elements of matrix M, row by row

*/

void writeout(Array<double,2> M)

{

int n = M.extent(0);

int m = M.extent(1);

for (int i = 0; i < n; i++)

{

printf("\nRow %d: ", i + 1);

91

2.20 Variable Size Multi-Dimensional Arrays 2 SCIENTIFIC PROGRAMMING IN C

for (int j = 0; j < m; j++) printf("%7.2f ", M(i, j));

}

return;

}

//%%%

/*

Add matrices M and N and store result in matrix P

*/

void addmatrices(Array<double,2> M, Array<double,2> N, Array<double,2> P)

{

int n = M.extent(0);

int m = M.extent(1);

for (int i = 0; i < n; i++)

for (int j = 0; j < m; j++)

P(i, j) = M(i, j) + N(i, j);

return;

}

Typical output from the program looks like

Please input number of rows, n, and number of columns, m: 3 3

Reading in elements of A:

Row 1: 1 4 5

Row 2: 6 7 8

Row 3: 3 6 0

Reading in elements of B:

Row 1: 1 6 0

Row 2: 4 7 8

Row 3: 4 8 8

92

2.21 The CAM Graphics Class 2 SCIENTIFIC PROGRAMMING IN C

Writing out elements of A:

Row 1: 1.00 4.00 5.00

Row 2: 6.00 7.00 8.00

Row 3: 3.00 6.00 0.00

Writing out elements of B:

Row 1: 1.00 6.00 0.00

Row 2: 4.00 7.00 8.00

Row 3: 4.00 8.00 8.00

Writing out elements of C = A + B:

Row 1: 2.00 10.00 5.00

Row 2: 10.00 14.00 16.00

Row 3: 7.00 14.00 8.00

The header file for the Blitz++ library is called blitz/array.h. Moreover, any

program file which makes use of Blitz++ must include the cryptic line using

namespace blitz; before the first call, otherwise compilation errors will ensue.

The declaration Array<double,2> A(n, m) declares a two-dimensional n by m

array of doubles. The generalization to an array of integers, or a higher dimen-

sion array, is fairly obvious. Note that the i, j element of matrix A is refered to

simply as A(i,j). The function call M.extent(0) returns the size of array M in its

first dimension. Likewise, M.extent(1) returns the size of array M in its second

dimension, etc. More details of the operation of Blitz++ can be found by reading

the extensive documentation which accompanies this library. Unfortunately, the

Blitz++ library slows down compilation considerably since it makes use of some

very advanced templating features of the C++ language.

2.21 The CAM Graphics Class

There are a myriad of useful, prewritten C++ classes which are freely available

on the web—for more details see http://www.trumphurst.com/cpplibsx.html.

In this Subsection, we shall discuss just one of these—namely, the CAM graphics

93

2.21 The CAM Graphics Class 2 SCIENTIFIC PROGRAMMING IN C

class,12 whose purpose is to enable a C++ program to generate simple line plots.

This class is freely available from the following URL: http://www.math.ucla.edu/-

~anderson/CAMclass/CAMClass.html

The CAM graphics class actually generates a PostScript13 file. Postscript is a
programming language that describes the appearance of a printed page. It was
developed by Adobe in 1985, and has become an industry standard for printing
and imaging. All major printer manufacturers make printers that can interpret
PostScript. A PostScript file is conventionally identified via a .ps suffix. The
schematic code listed below illustrates the basic use of the CAM graphics class:

. . .

#include <gprocess.h> // Header file for CAM graphic class

. . .

CAMgraphicsProcess Gprocess; // declare a graphics process

CAMpostScriptDriver Pdriver("filename.ps"); // declare a PostScript driver

Gprocess.attachDriver(Pdriver); // attach driver to process

. . .

Gprocess.frame(); // "frame" the first plot

. . .

Gprocess.frame(); // "frame" the second plot

. . .

. . .

Gprocess.frame(); // "frame" the last plot

Gprocess.detachDriver(); // detach the driver

. . .

The header file for the class is called gprocess.h. The procedure for generating

a plot is to first declare a graphics process, then declare a PostScript driver and

attach this to a PostScript file—filename.ps, in the above example—and, finally,

attach this driver to the process. A PostScript file can contain multiple pictures,

or frames. Each frame is terminated by a call to Gprocess.frame(). Finally, the

driver is detached, which has the effect of closing the PostScript file.

The program listed below uses the CAM graphics class to plot the curve y =

sin2 x for x in the range −2π to 2π.

/* camgraph1.cpp */

12 The CAM graphics class is copyrighted to its author, Prof. Chris Anderson, Department of Mathematics, UCLA,
1998.

13PostScript is a registered trademark of Adobe Systems Incorporated.

94

2.21 The CAM Graphics Class 2 SCIENTIFIC PROGRAMMING IN C

/*

Illustration of use of CAM graphics class to create simple line plot

Program plots y = sin^2 x versus x in range -2 PI to +2 PI

Program adapted from gpsmp1.cpp by Chris Anderson, UCLA 1996

*/

#include <gprocess.h>

#include <math.h>

#include <stdlib.h>

double func(double);

int main()

{

int N_points = 400;

double x_start = -2. * M_PI;

double x_end = 2. * M_PI;

double delta_x = (x_end - x_start) / ((double) N_points - 1.);

double *x = new double[N_points];

double *y = new double[N_points];

for (int i = 0; i < N_points; i++)

{

x[i] = x_start + (double) i * delta_x;

y[i] = func(x[i]);

x[i] /= M_PI;

}

{ // This brace used to limit scope of Gprocess

CAMgraphicsProcess Gprocess; // declare a graphics process

CAMpostScriptDriver Pdriver("graph1.ps"); // declare a PostScript driver

Gprocess.attachDriver(Pdriver); // attach driver to process

Gprocess.setAxisRange(-2., 2., -2., 2.); // set plotting ranges

Gprocess.title("y = sin(x*x)"); // label the plot

Gprocess.labelX("x / PI");

Gprocess.labelY("y");

Gprocess.plot(x, y, N_points); // do the plotting

Gprocess.frame(); // "frame" the plot

95

2.21 The CAM Graphics Class 2 SCIENTIFIC PROGRAMMING IN C

Gprocess.detachDriver(); // detach the driver

} // This brace calls the destructor for Gprocess:

// without it the system() call would hang up

delete[] x;

delete[] y;

system("gv graph1.ps"); // display plot on screen

return 0;

}

double func(double x)

{

return sin(x*x);

}

The command Gprocess.plot(x, y, n) plots the n values of vector y against

the n values of vector x as a solid curve. The command Gprocess.setAxisRange-

(x_low, x_high, y_low, y_high) sets the range of plotting. Finally, the com-

mands Gprocess.title("title"), Gprocess.labelX("x_label"), and Gprocess.-

labelY("y_label") label the plot, the x-axis, and the y-axis, respectively. Inci-

dentally, the UNIX function call system("gv graph1.ps") is used to pass the

command gv graph1.ps to the operating system. On execution, this command

displays the contents of graph1.ps on the screen. The graph written in the file

graph1.ps is shown in Fig 1

The program shown below illustrates some of the more advanced features of
the CAM graphics class:

/* camgraph2.cpp */

/*

Illustration of use of CAMgraphics class to create more advanced line plots

Program plots three trigonometric functions versus x in range

-2 PI to +2 PI using different plot styles and different

line styles

Program adapted from gpsmp2.cpp by Chris Anderson, UCLA 1996

*/

96

2.21 The CAM Graphics Class 2 SCIENTIFIC PROGRAMMING IN C

y = sin(x*x)y = sin(x*x)y = sin(x*x)

x / PI

y

-2.00 -1.00 0.00 1.00 2.00
-2.00

-1.00

0.00

1.00

2.00

Figure 1: An example plot generated by the CAM graphics class.

#include <gprocess.h>

#include <math.h>

#include <stdlib.h>

double fun1(double);

double fun2(double);

double fun3(double);

int main()

{

int N_points = 100;

double x_start = -2. * M_PI;

double x_end = 2. * M_PI;

double delta_x = (x_end - x_start) / ((double) N_points - 1.);

double *x = new double[N_points];

double *y1 = new double[N_points];

double *y2 = new double[N_points];

double *y3 = new double[N_points];

for (int i = 0; i < N_points; i++)

{

x[i] = x_start + (double) i * delta_x;

y1[i] = fun1(x[i]);

y2[i] = fun2(x[i]);

y3[i] = fun3(x[i]);

x[i] /= M_PI;

}

97

2.21 The CAM Graphics Class 2 SCIENTIFIC PROGRAMMING IN C

{

CAMgraphicsProcess Gprocess; // declare a graphics process

CAMpostScriptDriver Pdriver("graph2.ps"); // declare a PostScript driver

Gprocess.attachDriver(Pdriver); // attach driver to process

/* First frame; using different plot "styles" */

Gprocess.setAxisRange(-2., 2., -2., 2.); // set plotting ranges

Gprocess.title("Plots Using Different Plot Styles");// label the plot

Gprocess.labelX("x / PI");

Gprocess.labelY("y");

Gprocess.plot(x, y1, N_points); // solid line (default)

Gprocess.plot(x, y2, N_points, ’+’); // + markers

Gprocess.plot(x, y3, N_points, ’+’, 2); // + markers and solid line

Gprocess.frame(); // "frame" the plot

/* Second frame; using different plot line "styles" */

Gprocess.setAxisRange(-2., 2., -2., 2.); // set plotting ranges

Gprocess.title("Plots Using Different Line Styles");// label the plot

Gprocess.labelX("x / PI");

Gprocess.labelY("y");

Gprocess.plot(x, y1, N_points); // solid line (default)

Gprocess.setPlotDashPattern(1);

Gprocess.plot(x, y2, N_points); // dashed line

Gprocess.setPlotDashPattern(4);

Gprocess.plot(x, y3, N_points); // dashed-dot line

Gprocess.frame(); // "frame" the plot

Gprocess.detachDriver(); // detach the driver

}

delete[] x;

delete[] y1;

delete[] y2;

delete[] y3;

system("gv graph2.ps"); // display plots on screen

return 0;

}

98

2.21 The CAM Graphics Class 2 SCIENTIFIC PROGRAMMING IN C

double fun1(double x)

{

return sin(x);

}

double fun2(double x)

{

return cos(x);

}

double fun3(double x)

{

return cos(2.*x);

}

The command Gprocess.plot(x, y, n, ’+’) plots the n values of vector y against

the n values of vector x as a set of points, each indicated by a ’+’ character. The

command Gprocess.plot(x, y, n, ’+’, 2) does the same, but also connects

the points with a solid line. The fourth argument of this command is an inte-

ger code which determines the plot style. The various options are as follows:

0 - curve; 1 - points; 2 - curve and points. The command Gprocess.setPlot-

DashPattern(n) sets the line style. The argument is again an integer code. The

various options are: 0 - solid; 1 - dash; 2 - double-dash; 4 - dash-dot; 5 - dash-

double-dot; 6 - dots.

The graphs written in the first and second frames of graph2.ps are shown in

Figs. 2 and 3, respectively.

99

2.21 The CAM Graphics Class 2 SCIENTIFIC PROGRAMMING IN C

Plots Using Different Plot StylesPlots Using Different Plot StylesPlots Using Different Plot Styles

x / PI

y

-2.00 -1.00 0.00 1.00 2.00
-2.00

-1.00

0.00

1.00

2.00

++++
+
+
+
+
+
+

+

+

+

+

+

+

+
+
+
+
+
+
+++++++

+
+
+
+
+

+

+

+

+

+

+

+

+
+
+
+
+
+
++++++

+
+
+
+
+
+

+

+

+

+

+

+

+

+
+
+
+
+
+++++++

+
+
+
+
+
+

+

+

+

+

+

+

+
+
+
+
+
+
++++

-2.00 -1.00 0.00 1.00 2.00
-2.00

-1.00

0.00

1.00

2.00

++
+

+

+

+

+

+

+

+

+

+
++

+

+

+

+

+

+

+

+

+

+
++

+
+

+

+

+

+

+

+

+

+
+++

+

+

+

+

+

+

+

+

+

+
++

+

+

+

+

+

+

+

+

+

+
+++

+

+

+

+

+

+

+

+

+
+
++

+

+

+

+

+

+

+

+

+

+
++

+

+

+

+

+

+

+

+

+

+
++

-2.00 -1.00 0.00 1.00 2.00
-2.00

-1.00

0.00

1.00

2.00

Figure 2: An example plot generated by the CAM graphics class.

Plots Using Different Line StylesPlots Using Different Line StylesPlots Using Different Line Styles

x / PI

y

-2.00 -1.00 0.00 1.00 2.00
-2.00

-1.00

0.00

1.00

2.00

-2.00 -1.00 0.00 1.00 2.00
-2.00

-1.00

0.00

1.00

2.00

-2.00 -1.00 0.00 1.00 2.00
-2.00

-1.00

0.00

1.00

2.00

Figure 3: An example plot generated by the CAM graphics class.

100

3 INTEGRATION OF ODES

3 Integration of ODEs

3.1 Introduction

In this section, we shall discuss the standard numerical techniques used to inte-

grate systems of ordinary differential equations (ODEs). We shall then employ

these techniques to simulate the trajectories of various different types of baseball

pitch.

By definition, an ordinary differential equation, or o.d.e., is a differential equa-

tion in which all dependent variables are functions of a single independent vari-

able. Furthermore, an nth-order o.d.e. is such that, when it is reduced to its

simplest form, the highest order derivative it contains is nth-order.

According to Newton’s laws of motion, the motion of any collection of rigid

objects can be reduced to a set of second-order o.d.e.s. in which time, t, is the

common independent variable. For instance, the equations of motion of a set of

n interacting point objects moving in 1-dimension might take the form:

d2xj

dt2
=

Fj(x1, ..., xn, t)

mj

(3.1)

for j = 1 to n, where xj is the position of the jth object, mj is its mass, etc.

Note that a set of n second-order o.d.e.s can always be rewritten as a set of 2n

first-order o.d.e.s. Thus, the above equations of motion can be rewritten:

dxj

dt
= vj, (3.2)

dvj

dt
=

Fj(x1, ..., xn, t)

mj

. (3.3)

for j = 1 to n. We conclude that a general knowledge of how to numerically solve

a set of coupled first-order o.d.e.s would enable us to investigate the behaviour

of a wide variety of interesting dynamical systems.

101

3.2 Euler’s Method 3 INTEGRATION OF ODES

3.2 Euler’s Method

Consider the general first-order o.d.e.,

y ′ = f(x, y), (3.4)

where ′ denotes d/dx, subject to the general initial-value boundary condition

y(x0) = y0. (3.5)

Clearly, if we can find a method for numerically solving this problem, then we

should have little difficulty generalizing it to deal with a system of n simultaneous

first-order o.d.e.s.

It is important to appreciate that the numerical solution to a differential equa-

tion is only an approximation to the actual solution. The actual solution, y(x),

to Eq. (3.4) is (presumably) a continuous function of a continuous variable, x.

However, when we solve this equation numerically, the best that we can do is to

evaluate approximations to the function y(x) at a series of discrete grid-points,

the xn (say), where n = 0, 1, 2, · · · and x0 < x1 < x2 · · ·. For the moment, we shall

restrict our discussion to equally spaced grid-points, where

xn = x0 + n h. (3.6)

Here, the quantity h is referred to as the step-length. Let yn be our approximation

to y(x) at the grid-point xn. A numerical integration scheme is essentially a

method which somehow employs the information contained in the original o.d.e.,

Eq. (3.4), to construct a series of rules interrelating the various yn.

The simplest possible integration scheme was invented by the celebrated 18th

century Swiss mathematician Leonhard Euler, and is, therefore, called Euler’s

method. Incidentally, it is interesting to note that virtually all of the standard

methods used in numerical analysis were invented before the advent of electronic

computers. In olden days, people actually performed numerical calculations by

hand—and a very long and tedious process it must have been! Suppose that we

have evaluated an approximation, yn, to the solution, y(x), of Eq. (3.4) at the

grid-point xn. The approximate gradient of y(x) at this point is, therefore, given

102

3.3 Numerical Errors 3 INTEGRATION OF ODES

y(x)

x
x x x

0 1 2

Figure 4: Illustration of Euler’s method.

by

y ′
n = f(xn, yn). (3.7)

Let us approximate the curve y(x) as a straight-line between the neighbouring

grid-points xn and xn+1. It follows that

yn+1 = yn + y ′
n h, (3.8)

or

yn+1 = yn + f(xn, yn) h. (3.9)

The above formula is the essence of Euler’s method. It enables us to calculate all

of the yn, given the initial value, y0, at the first grid-point, x0. Euler’s method is

illustrated in Fig. 4.

3.3 Numerical Errors

There are two major sources of error associated with a numerical integration

scheme for o.d.e.s: namely, truncation error and round-off error. Truncation error

arises in Euler’s method because the curve y(x) is not generally a straight-line

between the neighbouring grid-points xn and xn+1, as assumed above. The error

associated with this approximation can easily be assessed by Taylor expanding

103

3.3 Numerical Errors 3 INTEGRATION OF ODES

y(x) about x = xn:

y(xn + h) = y(xn) + h y ′(xn) +
h2

2
y ′′(xn) + · · ·

= yn + h f(xn, yn) +
h2

2
y ′′(xn) + · · · . (3.10)

A comparison of Eqs. (3.9) and (3.10) yields

yn+1 = yn + h f(xn, yn) + O(h2). (3.11)

In other words, every time we take a step using Euler’s method we incur a trun-

cation error of O(h2), where h is the step-length. Suppose that we use Euler’s

method to integrate our o.d.e. over an x-interval of order unity. This requires

O(h−1) steps. If each step incurs an error of O(h2), and the errors are simply

cumulative (a fairly conservative assumption), then the net truncation error is

O(h). In other words, the error associated with integrating an o.d.e. over a finite

interval using Euler’s method is directly proportional to the step-length. Thus, if

we want to keep the relative error in the integration below about 10−6 then we

would need to take about one million steps per unit interval in x. Incidentally,

Euler’s method is termed a first-order integration method because the truncation

error associated with integrating over a finite interval scales like h1. More gen-

erally, an integration method is conventionally called nth order if its truncation

error per step is O(hn+1).

Note that truncation error would be incurred even if computers performed

floating-point arithmetic operations to infinite accuracy. Unfortunately, comput-

ers do not perform such operations to infinite accuracy. In fact, a computer is only

capable of storing a floating-point number to a fixed number of decimal places.

For every type of computer, there is a characteristic number, η, which is defined as

the smallest number which when added to a number of order unity gives rise to

a new number: i.e., a number which when taken away from the original number

yields a non-zero result. Every floating-point operation incurs a round-off error

of O(η) which arises from the finite accuracy to which floating-point numbers

are stored by the computer. Suppose that we use Euler’s method to integrate

our o.d.e. over an x-interval of order unity. This entails O(h−1) integration steps,

104

3.3 Numerical Errors 3 INTEGRATION OF ODES

and, therefore, O(h−1) floating-point operations. If each floating-point opera-

tion incurs an error of O(η), and the errors are simply cumulative, then the net

round-off error is O(η/h).

The total error, ǫ, associated with integrating our o.d.e. over an x-interval of

order unity is (approximately) the sum of the truncation and round-off errors.

Thus, for Euler’s method,

ǫ ∼
η

h
+ h. (3.12)

Clearly, at large step-lengths the error is dominated by truncation error, whereas

round-off error dominates at small step-lengths. The net error attains its mini-

mum value, ǫ0 ∼ η1/2, when h = h0 ∼ η1/2. There is clearly no point in making the

step-length, h, any smaller than h0, since this increases the number of floating-

point operations but does not lead to an increase in the overall accuracy. It is

also clear that the ultimate accuracy of Euler’s method (or any other integration

method) is determined by the accuracy, η, to which floating-point numbers are

stored on the computer performing the calculation.

The value of η depends on how many bytes the computer hardware uses to

store floating-point numbers. For IBM-PC clones, the appropriate value for double

precision floating point numbers is η = 2.22 × 10−16 (this value is specified in

the system header file float.h). It follows that the minimum practical step-

length for Euler’s method on such a computer is h0 ∼ 10−8, yielding a minimum

relative integration error of ǫ0 ∼ 10−8. This level of accuracy is perfectly adequate

for most scientific calculations. Note, however, that the corresponding η value

for single precision floating-point numbers is only η = 1.19 × 10−7, yielding a

minimum practical step-length and a minimum relative error for Euler’s method

of h0 ∼ 3× 10−4 and ǫ0 ∼ 3× 10−4, respectively. This level of accuracy is generally

not adequate for scientific calculations, which explains why such calculations are

invariably performed using double, rather than single, precision floating-point

numbers on IBM-PC clones (and most other types of computer).

105

3.4 Numerical Instabilities 3 INTEGRATION OF ODES

3.4 Numerical Instabilities

Consider the following example. Suppose that our o.d.e. is

y ′ = −α y, (3.13)

where α > 0, subject to the boundary condition

y(0) = 1. (3.14)

Of course, we can solve this problem analytically to give

y(x) = exp(−α x). (3.15)

Note that the solution is a monotonically decreasing function of x. We can also

solve this problem numerically using Euler’s method. Appropriate grid-points are

xn = n h, (3.16)

where n = 0, 1, 2, · · ·. Euler’s method yields

yn+1 = (1 − α h) yn. (3.17)

Note one curious fact. If h > 2/α then |yn+1| > |yn|. In other words, if the

step-length is made too large then the numerical solution becomes an oscillatory

function of x of monotonically increasing amplitude: i.e., the numerical solution

diverges from the actual solution. This type of catastrophic failure of a numer-

ical integration scheme is called a numerical instability. All simple integration

schemes become unstable if the step-length is made sufficiently large.

3.5 Runge-Kutta Methods

There are two main reasons why Euler’s method is not generally used in scientific

computing. Firstly, the truncation error per step associated with this method is

far larger than those associated with other, more advanced, methods (for a given

value of h). Secondly, Euler’s method is too prone to numerical instabilities.

106

3.5 Runge-Kutta Methods 3 INTEGRATION OF ODES

The methods most commonly employed by scientists to integrate o.d.e.s were

first developed by the German mathematicians C.D.T. Runge and M.W. Kutta in

the latter half of the nineteenth century.14 The basic reasoning behind so-called

Runge-Kutta methods is outlined in the following.

The main reason that Euler’s method has such a large truncation error per

step is that in evolving the solution from xn to xn+1 the method only evaluates

derivatives at the beginning of the interval: i.e., at xn. The method is, therefore,

very asymmetric with respect to the beginning and the end of the interval. We

can construct a more symmetric integration method by making an Euler-like trial

step to the midpoint of the interval, and then using the values of both x and y at

the midpoint to make the real step across the interval. To be more exact,

k1 = h f(xn, yn), (3.18)

k2 = h f(xn + h/2, yn + k1/2), (3.19)

yn+1 = yn + k2 + O(h3). (3.20)

As indicated in the error term, this symmetrization cancels out the first-order

error, making the method second-order. In fact, the above method is generally

known as a second-order Runge-Kutta method. Euler’s method can be thought of

as a first-order Runge-Kutta method.

Of course, there is no need to stop at a second-order method. By using two

trial steps per interval, it is possible to cancel out both the first and second-order

error terms, and, thereby, construct a third-order Runge-Kutta method. Likewise,

three trial steps per interval yield a fourth-order method, and so on.15

The general expression for the total error, ǫ, associated with integrating our

o.d.e. over an x-interval of order unity using an nth-order Runge-Kutta method

is approximately

ǫ ∼
η

h
+ hn. (3.21)

Here, the first term corresponds to round-off error, whereas the second term

14Numerical recipes in C: the art of scientific computing, W.H. Press, S.A. Teukolsky, W.T. Vettering, and B.R. Flannery
(Cambridge University Press, Cambridge UK, 1992), p. 710.

15Handbook of mathematical functions, M. Abramowitz and I.A. Stegun (Dover, New York NY, 1965), p. 896.

107

3.5 Runge-Kutta Methods 3 INTEGRATION OF ODES

n h0 ǫ0

1 1.5 × 10−8 1.5 × 10−8

2 6.1 × 10−6 3.7 × 10−11

3 1.2 × 10−4 1.8 × 10−12

4 7.4 × 10−4 3.0 × 10−13

5 2.4 × 10−3 9.0 × 10−14

Table 1: The minimum practical step-length, h0, and minimum error, ǫ0, for an nth-order Runge-

Kutta method integrating over a finite interval using double precision arithmetic on an IBM-PC clone.

represents truncation error. The minimum practical step-length, h0, and the min-

imum error, ǫ0, take the values

h0 ∼ η1/(n+1), (3.22)

ǫ0 ∼ ηn/(n+1), (3.23)

respectively. In Tab. 1, these values are tabulated against n using η = 2.22×10−16

(the value appropriate to double precision arithmetic on IBM-PC clones). It can

be seen that h0 increases and ǫ0 decreases as n gets larger. However, the relative

change in these quantities becomes progressively less dramatic as n increases.

In the majority of cases, the limiting factor when numerically integrating an

o.d.e. is not round-off error, but rather the computational effort involved in cal-

culating the function f(x, y). Note that, in general, an nth-order Runge-Kutta

method requires n evaluations of this function per step. It can easily be appreci-

ated that as n is increased a point is quickly reached beyond which any benefits

associated with the increased accuracy of a higher order method are more than

offset by the computational “cost” involved in the necessary additional evaluation

of f(x, y) per step. Although there is no hard and fast general rule, in most prob-

lems encountered in computational physics this point corresponds to n = 4. In

other words, in most situations of interest a fourth-order Runge Kutta integration

method represents an appropriate compromise between the competing require-

ments of a low truncation error per step and a low computational cost per step.

The standard fourth-order Runge-Kutta method takes the form:

k1 = h f(xn, yn), (3.24)

108

3.6 An Example Fixed-Step RK4 routine 3 INTEGRATION OF ODES

k2 = h f(xn + h/2, yn + k1/2), (3.25)

k3 = h f(xn + h/2, yn + k2/2), (3.26)

k4 = h f(xn + h, yn + k3), (3.27)

yn+1 = yn +
k1

6
+

k2

3
+

k3

3
+

k4

6
+ O(h5). (3.28)

This is the method which we shall use, throughout this course, to integrate first-

order o.d.e.s. The generalization of this method to deal with systems of coupled

first-order o.d.e.s is (hopefully) fairly obvious.

3.6 An Example Fixed-Step RK4 routine

Listed below is an example fixed-step, fourth-order Runge-Kutta (RK4) integra-
tion routine which utilizes the Blitz++ library (see Sect. 2.20).

// rk4_fixed.cpp

/*

Function to advance set of coupled first-order o.d.e.s by single step

using fixed step-length fourth-order Runge-Kutta scheme

x ... independent variable

y ... array of dependent variables

h ... fixed step-length

Requires right-hand side routine

void rhs_eval (double x, Array<double,1> y, Array<double,1>& dydx)

which evaluates derivatives of y (w.r.t. x) in array dydx

*/

#include <blitz/array.h>

using namespace blitz;

void rk4_fixed (double& x, Array<double,1>& y,

void (*rhs_eval)(double, Array<double,1>, Array<double,1>&),

double h)

109

3.6 An Example Fixed-Step RK4 routine 3 INTEGRATION OF ODES

{

// Array y assumed to be of extent n, where n is no. of coupled

// equations

int n = y.extent(0);

// Declare local arrays

Array<double,1> k1(n), k2(n), k3(n), k4(n), f(n), dydx(n);

// Zeroth intermediate step

(*rhs_eval) (x, y, dydx);

for (int j = 0; j < n; j++)

{

k1(j) = h * dydx(j);

f(j) = y(j) + k1(j) / 2.;

}

// First intermediate step

(*rhs_eval) (x + h / 2., f, dydx);

for (int j = 0; j < n; j++)

{

k2(j) = h * dydx(j);

f(j) = y(j) + k2(j) / 2.;

}

// Second intermediate step

(*rhs_eval) (x + h / 2., f, dydx);

for (int j = 0; j < n; j++)

{

k3(j) = h * dydx(j);

f(j) = y(j) + k3(j);

}

// Third intermediate step

(*rhs_eval) (x + h, f, dydx);

for (int j = 0; j < n; j++)

{

k4(j) = h * dydx(j);

}

// Actual step

for (int j = 0; j < n; j++)

{

y(j) += k1(j) / 6. + k2(j) / 3. + k3(j) / 3. + k4(j) / 6.;

}

x += h;

110

3.7 An Example Calculation 3 INTEGRATION OF ODES

return;

}

3.7 An Example Calculation

Consider the following system of o.d.e.s:

dx

dt
= v, (3.29)

dv

dt
= −k x, (3.30)

subject to the initial conditions x(0) = 0 and v(0) =
√

k at t = 0. In fact, this

system can be solved analytically to give

x = sin(
√

k t). (3.31)

Let us compare the above solution with that obtained numerically using either

Euler’s method or a fourth-order Runge-Kutta method. Figure 5 shows the inte-

gration errors associated with these two methods (calculated by integrating the

above system, with k = 1, from t = 0 to t = 10, and then taking the difference

between the numerical and analytic solutions) plotted against the step-length,

h, in a log-log graph. All calculations are performed to single precision: i.e., by

using float, rather than double, variables. It can be seen that at large values

of h, the error associated with Euler’s method becomes much greater than unity

(i.e., the magnitude of the numerical solution greatly exceeds that of the analytic

solution), indicating the presence of a numerical instability. There are no simi-

lar signs of instability associated with the Runge-Kutta method. At intermediate

h, the error associated with Euler’s method decreases smoothly like h−1: in this

regime, the dominant error is truncation error, which is expected to scale like

h−1 for a first-order method. The error associated with the Runge-Kutta method

similarly scales like h−4—as expected for a fourth-order scheme—in the trunca-

tion error dominated regime. Note that, as h is decreased, the error associated

with both methods eventually starts to rise in a jagged curve that scales roughly

like h1. This is a manifestation of round-off error. The minimum error associated

111

3.7 An Example Calculation 3 INTEGRATION OF ODES

h

h
-1

-4

numerical instability

round-off error
truncation error

Figure 5: Global integration errors associated with Euler’s method (solid curve) and a fourth-order

Runge-Kutta method (dotted curve) plotted against the step-length h. Single precision calculation.

with both methods corresponds to the boundary between the truncation error

and round-off error dominated regimes. Thus, for Euler’s method the minimum

error is about 10−3 at h ∼ 10−3, whereas for the Runge-Kutta method the mini-

mum error is about 10−5 at h ∼ 10−1. Clearly, the performance of the Runge-Kutta

method is vastly superior to that of Euler’s method, since the former method is

capable of attaining much greater accuracy than the latter using a far smaller

number of steps (i.e., a far larger h).

Figure 6 displays similar data to that shown in Fig. 5, except that now all

of the calculations are performed to double precision. The figure exhibits the

same broad features as those apparent in Fig. 5. The major difference is that the

round-off error has been reduced by about nine orders of magnitude, allowing

the Runge-Kutta method to attain a minimum error of about 10−12 (see Tab. 1)—

a remarkably performance!

Figures 5 and 6 illustrate why scientists rarely use Euler’s method, or single

precision numerics, to integrate systems of o.d.e.s.

112

3.8 Adaptive Integration Methods 3 INTEGRATION OF ODES

h
-4

h
-1

numerical instability

round-off error

truncation error

Figure 6: Global integration errors associated with Euler’s method (solid curve) and a fourth-order

Runge-Kutta method (dotted curve) plotted against the step-length h. Double precision calculation.

3.8 Adaptive Integration Methods

Consider the following system of o.d.e.s:

dx

dt
= v, (3.32)

dv

dt
=

v

t
− 4 k t2 x, (3.33)

subject to the boundary conditions x =
√

k ν2 and v = 2
√

k ν at x = ν, where

0 < ν ≪ 1. This system can be solved analytically to give

x = sin(
√

k t2). (3.34)

One peculiarity of the above solution is that its variation scale-length decreases

rapidly as t increases.

Let us compare the above solution with that obtained numerically using a

fourth-order Runge-Kutta method. Figure 7 shows the integration error asso-

ciated with such a method (calculated by integrating the above system, with

k = 10, from t = 10−3 to t = t, and then taking the difference between the

113

3.8 Adaptive Integration Methods 3 INTEGRATION OF ODES

Figure 7: Global integration error associated with a fixed step-length (h = 0.01), fourth-order

Runge-Kutta method, plotted against the independent variable, t, for a system of o.d.e.s in which the

variation scale-length decreases rapidly with increasing t. Double precision calculation.

numerical and analytic solutions) with a fixed step-length of h = 0.01, plotted

against the independent variable, t. It can be seen that, although the error starts

off small, it rises rapidly as the variation scale-length of the solution decreases

(i.e., as t increases), and quickly becomes unacceptably large. Of course, we

could reduce the error by simply reducing the step-length, h. However, this is

a very inefficient solution. The step-length only needs to be reduced at large t.

There is no need to reduce it, at all, at small t. Clearly, the ideal solution to this

problem would be an integration method in which the step-length is varied so as

to maintain a relatively constant truncation error per step. Such an adaptive inte-

gration method would take large steps when variation scale-length of the solution

was large, and vice versa.

Let us investigate how we could convert our fixed step-length, fourth-order

Runge-Kutta method into a corresponding adaptive method. First of all, we need

an estimate of the truncation error at each step. Suppose that the current step-

length is h. We can estimate the truncation error, ǫ, associated with the current

step by taking the difference between the solutions obtained by stepping by h/2

twice and by h once (starting from the same point, in both cases). Let ǫ0 be

114

3.8 Adaptive Integration Methods 3 INTEGRATION OF ODES

the desired truncation error per step. How do we adjust h so as to ensure that

the truncation error associated with the next step is closer to this value? Observe,

from Eq. (3.28), that the truncation error per step in a fourth-order scheme scales

like h5. It follows, therefore, that our step-length adjustment formula should take

the form16

hnew = hold

∣

∣

∣

∣

∣

ǫ0

ǫ

∣

∣

∣

∣

∣

1/5

. (3.35)

According to this formula, the step-length should be increased if the truncation

error per step is too small, and vice versa, in such a manner that the error per step

remains relatively constant at ǫ0.

There are a number of caveats to the above discussion. In a system of n

coupled o.d.e.s, the overall truncation error per step, ǫ, should, of course, be

some appropriately weighted average of the errors associated with each equa-

tion. There is also a question of whether ǫ should be an absolute error or a

relative error. The relative error associated with the ith equation is simply the

absolute error divided by |yi|, where yi is the current value of the ith dependent

variable. An absolute error estimate is appropriate to a system of equations in

which the amplitudes of the various dependent variables remain bounded. A rel-

ative error estimate is appropriate to a system in which the amplitudes of the

dependent variables blow-up at some point, but the variables always remain the

same sign. Finally, a mixed error estimate—usually the minimum of the absolute

and relative errors—is appropriate to a system in which the amplitudes of the

dependent variables blow-up at some point, but the signs of the variables oscil-

late. It is usually a good idea to place some limits on the allowed variation of

the step-length from step to step: e.g., by preventing the step-length from in-

creasing or decreasing by more than some factor S > 1 per step. This prevents

h from oscillating unduly about its optimum value. Obviously, if h becomes ab-

surdly small then the integration method has failed, and should abort with an

appropriate error message. Finally, a limit should be placed on how large h can

become—unfortunately, adaptive methods have a tendency to become a little

over optimistic when integration is easy.

16Numerical recipes in C: the art of scientific computing, W.H. Press, S.A. Teukolsky, W.T. Vettering, and B.R. Flannery
(Cambridge University Press, Cambridge, England, 1992), p. 714.

115

3.8 Adaptive Integration Methods 3 INTEGRATION OF ODES

Figure 8: Global integration errors associated with a fixed step-length (h = 0.01), fourth-order

Runge-Kutta method (solid curve) and a corresponding adaptive method (ǫ0 = 10−8)(dotted curve),

plotted against the independent variable, t, for a system of o.d.e.s in which the variation scale-length

decreases rapidly with increasing t. Double precision calculation.

Figure 8 shows the integration errors associated with a fixed step-length, fourth-

order Runge-Kutta method and a corresponding adaptive method—constructed

along the lines discussed above—as functions of the independent variable, t.

The errors are calculated by integrating the current system, with k = 10, from

t = 10−3 to t = t, and then taking the difference between the numerical and

analytic solutions. The fixed step-length associated with the former method is

h = 0.01. The desired truncation error per step associated with the latter is

ǫ0 = 10−8. It can be seen that the performance of the adaptive method is far su-

perior to that of the fixed step-length method, since the former method maintains

a relatively constant integration error as the variation scale-length of the solution

decreases (i.e., as t increases). Figure 9 illustrates how this is achieved. This

figure shows the step-length, h, associated with the adaptive method as a func-

tion of t. It can be seen that the adaptive method maintains a relatively constant

truncation error per step by decreasing h as t increases.

116

3.9 An Example Adaptive-Step RK4 Routine 3 INTEGRATION OF ODES

Figure 9: The step-length, h, associated with the adaptive integration method shown in the previous

figure, plotted as a function of the independent variable, t. Double precision calculation.

3.9 An Example Adaptive-Step RK4 Routine

Listed below is an example adaptive-step RK4 routine which makes use of the
previously listed fixed-step routine. Note that the routine recalculates all steps
whose truncation error exceeds the desired value acc.

// rk4_adaptive.cpp

/*

Function to advance set of coupled first-order o.d.e.s by single step

using adaptive fourth-order Runge-Kutta scheme

x ... independent variable

y ... array of dependent variables

h ... step-length

t_err ... actual truncation error per step

acc ... desired truncation error per step

S ... step-length cannot change by more than this factor from

step to step

rept ... number of step recalculations

maxrept ... maximum allowable number of step recalculations

h_min ... minimum allowable step-length

h_max ... maximum allowable step-length

117

3.9 An Example Adaptive-Step RK4 Routine 3 INTEGRATION OF ODES

flag ... controls manner in which truncation error is calculated

Requires right-hand side routine

void rhs_eval (double x, Array<double,1> y, Array<double,1>& dydx)

which evaluates derivatives of y (w.r.t. x) in array dydx.

Function advances equations by single step whilst attempting to maintain

constant truncation error per step of acc:

flag = 0 ... error is absolute

flag = 1 ... error is relative

flag = 2 ... error is mixed

If step-length falls below h_min then routine aborts

*/

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#include <blitz/array.h>

using namespace blitz;

void rk4_fixed (double&, Array<double,1>&,

void (*)(double, Array<double,1>, Array<double,1>&),

double);

void rk4_adaptive (double& x, Array<double,1>& y,

void (*rhs_eval)(double, Array<double,1>, Array<double,1>&),

double& h, double& t_err, double acc,

double S, int& rept, int maxrept,

double h_min, double h_max, int flag)

{

// Array y assumed to be of extent n, where n is no. of coupled

// equations

int n = y.extent(0);

// Declare local arrays

Array<double,1> y0(n), y1(n);

// Declare repetition counter

static int count = 0;

118

3.9 An Example Adaptive-Step RK4 Routine 3 INTEGRATION OF ODES

// Save initial data

double x0 = x;

y0 = y;

// Take full step

rk4_fixed (x, y, rhs_eval, h);

// Save data

y1 = y;

// Restore initial data

x = x0;

y = y0;

// Take two half-steps

rk4_fixed (x, y, rhs_eval, h/2.);

rk4_fixed (x, y, rhs_eval, h/2.);

// Calculate truncation error

t_err = 0.;

double err, err1, err2;

if (flag == 0)

{

// Use absolute truncation error

for (int i = 0; i < n; i++)

{

err = fabs (y(i) - y1(i));

t_err = (err > t_err) ? err : t_err;

}

}

else if (flag == 1)

{

// Use relative truncation error

for (int i = 0; i < n; i++)

{

err = fabs ((y(i) - y1(i)) / y(i));

t_err = (err > t_err) ? err : t_err;

}

}

else

{

// Use mixed truncation error

for (int i = 0; i < n; i++)

{

err1 = fabs ((y(i) - y1(i)) / y(i));

119

3.9 An Example Adaptive-Step RK4 Routine 3 INTEGRATION OF ODES

err2 = fabs (y(i) - y1(i));

err = (err1 < err2) ? err1 : err2;

t_err = (err > t_err) ? err : t_err;

}

}

// Prevent small truncation error from rounding to zero

if (t_err == 0.) t_err = 1.e-15;

// Calculate new step-length

double h_est = h * pow (fabs (acc / t_err), 0.2);

// Prevent step-length from changing by more than factor S

if (h_est / h > S)

h *= S;

else if (h_est / h < 1. / S)

h /= S;

else

h = h_est;

// Prevent step-length from exceeding h_max

h = (fabs(h) > h_max) ? h_max * h / fabs(h) : h;

// Abort if step-length falls below h_min

if (fabs(h) < h_min)

{

printf ("Error - |h| < hmin\n");

exit (1);

}

// If truncation error acceptable take step

if ((t_err <= acc) || (rept >= maxrept))

{

rept = count;

count = 0;

}

// If truncation error unacceptable repeat step

else

{

count++;

x = x0;

y = y0;

rk4_adaptive (x, y, rhs_eval, h, t_err, acc,

S, rept, maxrept, h_min, h_max, flag);

}

120

3.10 Advanced Integration Methods 3 INTEGRATION OF ODES

return;

}

3.10 Advanced Integration Methods

Of course, Runge-Kutta methods are not the last word in integrating o.d.e.s. Far

from it! Runge-Kutta methods are sometimes referred to as single-step methods,

since they evolve the solution from xn to xn+1 without needing to know the so-

lutions at xn−1, xn−2, etc. There is a broad class of more sophisticated integration

methods, known as multi-step methods, which utilize the previously calculated

solutions at xn−1, xn−2, etc. in order to evolve the solution from xn to xn+1. Exam-

ples of these methods are the various Adams methods17 and the various Predictor-

Corrector methods.18 The main advantages of Runge-Kutta methods are that they

are easy to implement, they are very stable, and they are “self-starting” (i.e., un-

like muti-step methods, we do not have to treat the first few steps taken by a

single-step integration method as special cases). The primary disadvantages of

Runge-Kutta methods are that they require significantly more computer time than

multi-step methods of comparable accuracy, and they do not easily yield good

global estimates of the truncation error. However, for the straightforward dy-

namical systems under investigation in this course, the advantage of the relative

simplicity and ease of use of Runge-Kutta methods far outweighs the disadvan-

tage of their relatively high computational cost.

3.11 The Physics of Baseball Pitching

Baseball is the oldest professional sport in the U.S. It is a game of great subtlety

(like cricket!) which has fascinated fans for over a hundred years. It has also

fascinated physicists—partly, because many physicists are avid baseball fans, but,

partly, also, because there are clearly delineated physics principles at work in

17Numerical methods, R.W. Hornbeck (Prentice-Hall, Englewood Cliffs NJ, 1975), p. 196.
18ibid, p. 199.

121

3.12 Air Drag 3 INTEGRATION OF ODES

this game. Indeed, more books and papers have been written on the physics of

baseball than on any other sport.

A baseball is formed by winding yarn around a small sphere of cork. The ball

is then covered with two interlocking pieces of white cowhide, which are tightly

stitched together. The mass and circumference of a regulation baseball are 5 oz

and 9 in (i.e., about 150 g and 23 cm), respectively. In the major leagues, the ball is

pitched a distance of 60 feet 6 inches (i.e., 18.44 m), towards the hitter, at speeds

which typically lie in the range 60 to 100 mph (i.e., about 30 to 45 m/s). As is

well-known to baseball fans, there are a surprising variety of different pitches.

“Sliders” deviate sideways through the air. “Curveballs” deviate sideways, but

also dip unusually rapidly. Conversely, “fastballs” dip unusually slowly. Finally,

the mysterious “knuckleball” can weave from side to side as it moves towards the

hitter. How is all this bizarre behaviour possible? Let us investigate.

3.12 Air Drag

A baseball in flight is subject to three distinct forces. The first is gravity, which

causes the ball to accelerate vertically downwards at g = 9.8 m/s
−2

. The second

is air drag, which impedes the ball’s motion through the air. The third is the

Magnus force, which permits the ball to curve laterally. Let us discuss the latter

two forces in more detail.

As is well-known, the drag force acting on an object which moves very slowly

through a viscous fluid is directly proportional to the speed of that object with

respect to the fluid. For example, a sphere of radius r, moving with speed v

through a fluid whose coefficient of viscosity is η, experiences a drag force given

by Stokes’ law:19

fD = 6 π η r v. (3.36)

As students who have attempted to reproduce Millikan’s oil drop experiment will

recall, this force is the dominant drag force acting on a microscopic oil drop

falling through air. However, for most macroscopic projectiles moving through

19Methods of theoretical physics, Vol. II, P.M. Morse, and H. Feshbach, (McGraw-Hill, New York NY, 1953).

122

3.12 Air Drag 3 INTEGRATION OF ODES

air, the above force is dwarfed by a second drag force which is proportional to v2.

The origin of this second force is fairly easy to understand. At velocities suf-

ficiently low for Stokes’ law to be valid, air is able to flow smoothly around a

passing projectile. However, at higher velocities, the projectile’s motion is too

rapid for this to occur. Instead, the projectile effectively knocks the air out of its

way. The total mass of air which the projectile comes into contact with per second

is ρ v A, where ρ is the air density, v the projectile speed, and A the projectile’s

cross-sectional area. Suppose, as seems reasonable, that the projectile imparts to

this air mass a speed v ′ which is directly proportional to v. The rate of momen-

tum gain of the air, which is equal to the drag force acting on the projectile, is

approximately

fD =
1

2
CD(v) ρ A v2, (3.37)

where the drag coefficient, CD(v), is a dimensionless quantity.

The drag force acting on a projectile, passing through air, always points in the

opposite direction to the projectile’s instantaneous direction of motion. Thus, the

vector drag force takes the form

fD = −
1

2
CD(v) ρ A v v. (3.38)

When a projectile moves through air it leaves a turbulent wake. The value of

the drag coefficient, CD, is closely related to the properties of this wake. Turbu-

lence in fluids is conventionally characterized in terms of a dimensionless quan-

tity known as a Reynolds number:20

Re =
ρ v d

η
. (3.39)

Here, d is the typical length-scale (e.g., the diameter) of the projectile. For suffi-

ciently small Reynolds numbers, the air flow immediately above the surface of the

projectile remains smooth, despite the presence of the turbulent wake, and CD

takes an approximately constant value which depends on the projectile’s shape.

However, above a certain critical value of Re—which corresponds to 2 × 105 for

20R.E. Reynolds, Phil. Trans. Roy. Soc. 174, 935 (1883).

123

3.12 Air Drag 3 INTEGRATION OF ODES

2 x 10
5

C
D

R
e

rough smooth

Figure 10: Typical dependence of the drag coefficient, CD, on the Reynolds number, Re.

a smooth projectile—the air flow immediately above the surface of the projectile

becomes turbulent, and the drag coefficient drops: i.e., a projectile slips more

easily through the air when the surrounding flow is completely turbulent. In this

high Reynolds number regime, the drag coefficient generally falls rapidly by a

factor of between 3 and 10, as Re is increased, and then settles down to a new,

roughly constant value. Note that the critical Reynolds number is significantly

less than 2 × 105 for projectiles with rough surfaces. Paradoxically, a rough pro-

jectile generally experiences less air drag, at high velocities, than a smooth one.

The typical dependence of the drag coefficient on the Reynolds number is illus-

trated schematically in Fig. 10.

Wind tunnel measurements reveal that the drag coefficient is a strong function

of speed for baseballs, as illustrated in Fig. 11. At low speeds, the drag coefficient

is approximately constant. However, as the speed increases, CD drops substan-

tially, and is more than a factor of 2 smaller at high speeds. This behaviour is

similar to that described above. The sudden drop in the drag coefficient is trig-

gered by a transition from laminar to turbulent flow in the air layer immediately

above the ball’s surface. The critical speed (to be more exact, the critical Reynolds

number) at which this transition occurs depends on the properties of the surface.

Thus, for a completely smooth baseball the transition occurs at speeds well be-

124

3.12 Air Drag 3 INTEGRATION OF ODES

0 50 100 150 200

0.8

0.4

0.2

0

smooth ball

v (miles per hour)

D
ra

g
 c

o
ef

fi
ci

en
t

rough ball

normal
baseball

Figure 11: Variation of the drag coefficient, CD, with speed, v, for normal, rough, and smooth

baseballs. From The physics of baseball, R.K. Adair (Harper & Row, New York NY, 1990).

yond the capabilities of the fastest pitchers. Conversely, the transition takes place

at comparatively low speeds if the surface of the ball is rough. In fact, the raised

stitches on the otherwise smooth regulation baseball cause the transition to occur

at an intermediate speed which is easily within the range of major league pitch-

ers. Note that the magnitude of the drag force is substantial—it actually exceeds

the force due to gravity for ball speeds above about 95 mph.

The above discussion leads to a number of interesting observations. First,

the raised stitches on a baseball have an important influence on its aerodynamic

properties. Without them, the air drag acting on the ball at high speeds would

increase substantially. Indeed, it seems unlikely that major league pitchers could

throw 95 mph fastballs if baseballs were completely smooth. On the other hand, a

scuffed-up baseball experiences even less air drag than a regulation ball. Presum-

ably, such a ball can be thrown faster—which explains why balls are so regularly

renewed in major league games.

Giordano21 has developed the following useful formula which quantifies the

21Computational physics, N.J. Giordano, (Prentice-Hall, Upper Saddle River NJ, 1997).

125

3.13 The Magnus Force 3 INTEGRATION OF ODES

drag force acting on a baseball:

fD

m
= −F(v) v v, (3.40)

where

F(v) = 0.0039 +
0.0058

1 + exp[(v − vd)/∆]
. (3.41)

Here, vd = 35 m/s and ∆ = 5 m/s.

3.13 The Magnus Force

We have not yet explained how a baseball is able to curve through the air. Physi-

cists in the last century could not account for this effect, and actually tried to

dismiss it as an “optical illusion.” It turns out that this strange phenomenon is

associated with the fact that the balls thrown in major league games tend to spin

fairly rapidly—typically, at 1500 rpm.

The origin of the force which makes a spinning baseball curve can readily be

appreciated once we recall that the drag force acting on a baseball increases with

increasing speed.22 For a ball spinning about an axis perpendicular to its direction

of travel, the speed of the ball, relative to the air, is different on opposite sides of

the ball, as illustrated in Fig. 12. It can be seen, from the diagram, that the lower

side of the ball has a larger speed relative to the air than the upper side. This

results in a larger drag force acting on the lower surface of the ball than on the

upper surface. If we think of drag forces as exerting a sort of pressure on the ball

then we can readily appreciate that when the unequal drag forces acting on the

ball’s upper and lower surfaces are added together there is a component of the

resultant force acting upwards. This force—which is known as the Magnus force,

after the German physicist Heinrich Magnus, who first described it in 1853—is

the dominant spin-dependent force acting on baseballs. The Magnus force can be

written

fM = S(v) ω × v, (3.42)

22Although the drag coefficient, CD, decreases with increasing speed, the drag force, which is proportional to
CD v2, always increases.

126

3.14 Simulations of Baseball Pitches 3 INTEGRATION OF ODES

ω

v + rω

v - r

r

v
D
f

M
f

ω

Figure 12: Origin of the Magnus force for a ball of radius r, moving with speed v, and spinning with

angular velocity ω about an axis perpendicular to its direction of motion.

where ω is the angular velocity vector of the ball. According to Adair and Gior-

dano, it is a fairly good approximation to take

B =
S

m
= 4.1 × 10−4 (3.43)

for baseballs. Note that B is a dimensionless quantity. The magnitude of the

Magnus force is about one third of the force due to gravity for typical curveballs.

3.14 Simulations of Baseball Pitches

Let us adopt a set of coordinates such that x measures displacement from the

pitcher to the hitter, y measures horizontal displacement (a displacement in the

+y direction corresponds to a displacement to the hitter’s right-hand side), and z

measures vertical displacement (a displacement in the +z direction corresponds

to an upward displacement). Using these coordinates, the equations of motion of

a baseball can be written as the following set of coupled first-order o.d.e.s:

dx

dt
= vx, (3.44)

dy

dt
= vy, (3.45)

127

3.14 Simulations of Baseball Pitches 3 INTEGRATION OF ODES

dz

dt
= vz, (3.46)

dvx

dt
= −F(v) v vx + B ω (vz sin φ − vy cos φ), (3.47)

dvy

dt
= −F(v) v vy + B ω vx cos φ, (3.48)

dvz

dt
= −g − F(v) v vz − B ω vx sin φ. (3.49)

Here, the ball’s angular velocity vector has been written ω = ω (0, sin φ, cos φ).

Appropriate boundary conditions at t = 0 are:

x(t = 0) = 0, (3.50)

y(t = 0) = 0, (3.51)

z(t = 0) = 0, (3.52)

vx(t = 0) = v0 cos θ (3.53)

vy(t = 0) = 0, (3.54)

vz(t = 0) = v0 sin θ, (3.55)

where v0 is the initial speed of the pitch, and θ is its initial angle of elevation.

Note that, in writing the above equations, we are neglecting any decrease in the

ball’s rate of spin as it moves towards the hitter.

The above set of equations have been solved numerically using a fixed step-

length, fourth-order Runge-Kutta method. The step-length, h, is conveniently

expressed as a fraction of the pitch’s estimated time-of-flight, T = l/v0, where

l = 18.44 m is the horizontal distance between the pitcher and the hitter. Thus,

1/h is approximately the number of steps used to integrate the trajectory.

It is helpful, at this stage, to describe the conventional classification of baseball

pitches in terms of the direction of the ball’s axis of spin. Figure 13 shows the

direction of rotation of various different pitches thrown by a right-handed pitcher,

as seen by the hitter. Obviously, the directions are reversed for the corresponding

pitches thrown by a left-handed pitcher. Note, from Eq. (3.42), that the arrows in

Fig. 13 show both the direction of the ball’s spin and the direction of the Magnus

128

3.14 Simulations of Baseball Pitches 3 INTEGRATION OF ODES

curveballfastball slider screwball

z

y

ω

φ

Figure 13: Rotation direction, as seen by hitter, for various pitches thrown by a right-handed pitcher.

The arrow shows the direction of rotation, which is also the direction of the Magnus force. From The

physics of baseball, R.K. Adair (Harper & Row, New York NY, 1990).

force.

Figure 14 shows the numerical trajectory of a “slider” delivered by a right-

handed pitcher. The ball is thrown such that its axis of rotation points vertically

upwards, which is the direction of spin generated by the natural clockwise (seen

from below) rotation of a right-handed pitcher’s wrist. The associated Magnus

force causes the ball to curve sideways, away from a right-handed hitter (i.e., in

the +y-direction). As can be seen, from the figure, the sideways displacement

for an 85 mph pitch spinning at 1800 rpm is over 1 foot. Of course, a slider

delivered by a left-handed pitcher would curve towards a right-handed hitter.

It turns out that pitches which curve towards a hitter are far harder to hit than

pitches which curve away. Thus, a right-handed hitter is at a distinct disadvantage

when facing a left-handed pitcher, and vice versa. A lot of strategy in baseball

games is associated with teams trying to match the handedness of hitters and

pitchers so as to gain an advantage over their opponents.

Figure 14 shows the numerical trajectory of a “curveball” delivered by a right-

handed pitcher. The ball is thrown such that its axis of rotation, as seen by the

hitter, points upwards, but also tilts to the right. The hand action associated with

throwing a curveball is actually somewhat more natural than that associated with

a slider. The Magnus force acting on a curveball causes the ball to deviate both

129

3.14 Simulations of Baseball Pitches 3 INTEGRATION OF ODES

Figure 14: Numerical trajectory of a slider delivered by a right-handed pitcher. The solid and dashed

curves show the vertical and horizontal displacements of the ball, respectively. The parameters for

this pitch are v0 = 85 mph, θ = 1◦, ω = 1800 rpm, φ = 0◦, and h = 1 × 10−4. The ball passes over

the plate at 76 mph about 0.52 seconds after it is released by the pitcher.

130

3.14 Simulations of Baseball Pitches 3 INTEGRATION OF ODES

Figure 15: Numerical trajectory of a curveball delivered by a right-handed pitcher. The solid and

dashed curves show the vertical and horizontal displacements of the ball, respectively. The parameters

for this pitch are v0 = 85 mph, θ = 1◦, ω = 1800 rpm, φ = 45◦, and h = 1 × 10−4. The ball passes

over the plate at 76 mph about 0.52 seconds after it is released by the pitcher.

sideways and downwards. Thus, although a curveball generally does not move

laterally as far as a slider, it dips unusually rapidly—which makes it difficult to hit.

The anomalously large dip of a typical curveball is apparent from a comparison

of Figs. 14 and 15.

As we have already mentioned, a pitch which curves towards a hitter is harder

to hit than one which curves away. It is actually possible for a right-handed

pitcher to throw an inward curving pitch to a right-handed hitter. Such a pitch is

known as a “screwball.” Unfortunately, throwing screwballs involves a completely

unnatural wrist rotation which is extremely difficult to master. Figure 16 shows

the numerical trajectory of a screwball delivered by a right-handed pitcher. The

ball is thrown such that its axis of rotation, as seen by the hitter, points upwards

and tilts to the left. Note that the pitch dips rapidly—like a curveball—but has a

sideways displacement in the opposite direction to normal.

Probably the most effective pitch in baseball is the so-called “fastball.” As the

131

3.14 Simulations of Baseball Pitches 3 INTEGRATION OF ODES

Figure 16: Numerical trajectory of a screwball delivered by a right-handed pitcher. The solid and

dashed curves show the vertical and horizontal displacements of the ball, respectively. The parameters

for this pitch are v0 = 85 mph, θ = 1◦, ω = 1800 rpm, φ = 135◦, and h = 1 × 10−4. The ball passes

over the plate at 76 mph about 0.52 seconds after it is released by the pitcher.

132

3.14 Simulations of Baseball Pitches 3 INTEGRATION OF ODES

Figure 17: Numerical trajectory of a fastball delivered by a right-handed pitcher. The solid and

dashed curves show the vertical and horizontal displacements of the ball, respectively. The parameters

for this pitch are v0 = 95 mph, θ = 1◦, ω = 1800 rpm, φ = 225◦, and h = 1 × 10−4. The ball passes

over the plate at 86 mph about 0.46 seconds after it is released by the pitcher.

name suggests, a fastball is thrown extremely rapidly—typically, at 95 mph. The

natural hand action associated with throwing this type of pitch tends to impart

a significant amount of backspin to the ball. Thus, the Magnus force acting on a

fastball has a large upwards component, slowing the ball’s rate of fall. Figure 17

shows the numerical trajectory of a fastball delivered by a right-handed pitcher.

The ball is thrown such that its axis of rotation, as seen by the hitter, points down-

wards and tilts to the left. Note that the pitch falls an unusually small distance.

This is partly because the ball takes less time than normal to reach the hitter, but

partly also because the Magnus force has a substantial upward component. This

type of pitch is often called a “rising fastball,” because hitters often claim that the

ball rises as it moves towards them. Actually, this is an optical illusion created by

the ball’s smaller than expected rate of fall.

133

3.15 The Knuckleball 3 INTEGRATION OF ODES

3.15 The Knuckleball

Probably the most entertaining pitch in baseball is the so-called “knuckleball.”

Unlike the other types of pitch we have encountered, knuckleballs are low speed

pitches (typically, 65 mph) in which the ball is purposely thrown with as little spin

as possible. It turns out that knuckleballs are hard to hit because they have un-

stable trajectories which shift from side to side in a highly unpredictable manner.

How is this possible?

Suppose that a moving ball is not spinning at all, and is orientated such that

one of its stitches is exposed on one side, whereas the other side is smooth. It

follows, from Fig. 11, that the drag force on the smooth side of the ball is greater

than that on the stitch side. Hence, the ball experiences a lateral force in the

direction of the exposed stitch. Suppose, now, that the ball is rotating slowly as it

moves towards the hitter. As the ball moves forward its orientation changes, and

the exposed stitch shifts from side to side, giving rise to a lateral force which also

shifts from side to side. Of course, if the ball is rotating sufficiently rapidly then

the oscillations in the lateral force average out. However, for a slowly rotating

ball these oscillations can profoundly affect the ball’s trajectory.

Watts and Sawyer23 have performed wind tunnel measurements of the lateral

force acting on a baseball as a function of its angular orientation. Note that the

stitches on a baseball pass any given point four times for each complete revolution

of the ball about an axis passing through its centre. Hence, we expect the lateral

force to exhibit four maxima and four minima as the ball is rotated once. This is

exactly what Watts and Sawyer observed. For the case of a 65 mph knuckleball,

Giordano has extracted the following useful expression for the lateral force, as a

function of angular orientation, ϕ, from Watts and Sawyer’s data:

fy

m g
= G(ϕ) = 0.5 [sin(4ϕ) − 0.25 sin(8ϕ) + 0.08 sin(12ϕ) − 0.025 sin(16ϕ)] .

(3.56)

The function G(ϕ) is plotted in Fig. 18. Note the very rapid changes in this

function in certain narrow ranges of ϕ.

23Aerodynamics of a knuckleball, R.G. Watts, and E. Sawyer, Am. J. of Phys. 43, 960 (1975).

134

3.15 The Knuckleball 3 INTEGRATION OF ODES

Figure 18: The lateral force function, G(ϕ), for a 65 mph knuckleball.

Using the above expression, the equations of motion of a knuckleball can be

written as the following set of coupled first-order o.d.e.s:

dx

dt
= vx, (3.57)

dy

dt
= vy, (3.58)

dz

dt
= vz, (3.59)

dvx

dt
= −F(v) v vx, (3.60)

dvy

dt
= −F(v) v vy + g G(ϕ), (3.61)

dvz

dt
= −g − F(v) v vz. (3.62)

dϕ

dt
= ω. (3.63)

Note that we have added an equation of motion for the angular orientation, ϕ,

135

3.15 The Knuckleball 3 INTEGRATION OF ODES

of the ball, which is assumed to rotate at a fixed angular velocity, ω, about a

vertical axis. Here, we are neglecting the Magnus force, which is expected to be

negligibly small for a slowly spinning pitch. Appropriate boundary conditions at

t = 0 are:

x(t = 0) = 0, (3.64)

y(t = 0) = 0, (3.65)

z(t = 0) = 0, (3.66)

vx(t = 0) = v0 cos θ (3.67)

vy(t = 0) = 0, (3.68)

vz(t = 0) = v0 sin θ, (3.69)

ϕ(t = 0) = ϕ0, (3.70)

where v0 is the initial speed of the pitch, θ is the pitch’s initial angle of elevation,

and ϕ0 is the ball’s initial angular orientation.

The above set of equations have been solved numerically using a fixed step-

length, fourth-order Runge-Kutta method. The step-length, h, is conveniently

expressed as a fraction of the pitch’s estimated time-of-flight, T = l/v0, where

l = 18.44 m is the horizontal distance between the pitcher and the hitter. Thus,

1/h is approximately the number of steps used to integrate the trajectory.

Figure 19 shows the lateral displacement of a set of four knuckleballs thrown

with the same rate of spin, ω = 20 rpm, but starting with different angular ori-

entations. Note the striking difference between the various trajectories shown in

this figure. Clearly, even a fairly small change in the initial orientation of the ball

translates into a large change in its subsequent trajectory through the air. For this

reason, knuckleballs are extremely unpredictable—neither the pitcher, the hitter,

nor the catcher can be really sure where one of these pitches is going to end up.

Needless to say, baseball teams always put their best catcher behind the plate

when a knuckleball pitcher is on the mound!

Figure 20 shows the lateral displacement of a knuckleball thrown with a some-

what higher rate of spin than those shown previously: i.e., ω = 40 rpm. Note the

136

3.15 The Knuckleball 3 INTEGRATION OF ODES

Figure 19: Numerical trajectories of knuckleballs with the same angular velocity but different initial

orientations. The solid, dotted, long-dashed, and short-dashed curves show the horizontal displace-

ment of the ball for ϕ0 = 0◦, 22.5◦, 45◦, and 67.5◦, respectively. The other parameters for this pitch

are v0 = 65 mph, θ = 4◦, ω = 20 rpm, and h = 1 × 10−4. The ball passes over the plate at 56 mph

about 0.69 seconds after it is released by the pitcher. The ball rotates about 83◦ whilst it is in the air.

137

3.15 The Knuckleball 3 INTEGRATION OF ODES

Figure 20: Numerical trajectory of a knuckleball. The parameters for this pitch are v0 = 65 mph,

θ = 4◦, ϕ0 = 0◦, ω = 40 rpm, and h = 1× 10−4. The ball passes over the plate at 56 mph about 0.69

seconds after it is released by the pitcher. The ball rotates about 166◦ whilst it is in the air.

138

3.15 The Knuckleball 3 INTEGRATION OF ODES

curious way in which the ball “dances” through the air. Given that the difference

between a good hit and a bad hit can correspond to a shift in the strike point on

the bat by as little as 1/4 of an inch, it must be quite a challenge to hit such a

pitch well!

139

4 THE CHAOTIC PENDULUM

4 The Chaotic Pendulum

4.1 Introduction

Up to now, we have mostly dealt with problems which are capable of analytic

solution (so that we can easily validate our numerical solutions). Let us now

investigate a problem which is quite intractable analytically, and in which mean-

ingful progress can only be made via numerical means.

Consider a simple pendulum consisting of a point mass m, at the end of a

light rigid rod of length l, attached to a fixed frictionless pivot which allows the

rod (and the mass) to move freely under gravity in the vertical plane. Such a

pendulum is sketched in Fig. 21. Let us parameterize the instantaneous position

of the pendulum via the angle θ the rod makes with the downward vertical. It is

assumed that the pendulum is free to swing through 360 degrees. Hence, θ and

θ + 2π both correspond to the same pendulum position.

The angular equation of motion of the pendulum is simply

m l
d2θ

dt2
+ m g sin θ = 0, (4.1)

where g is the downward acceleration due to gravity. Suppose that the pendulum

is embedded in a viscous medium (e.g., air). Let us assume that the viscous drag

torque acting on the pendulum is governed by Stokes’ law (see Sect. 3.12) and

is, thus, directly proportional to the pendulum’s instantaneous velocity. It follows

that, in the presence of viscous drag, the above equation generalizes to

m l
d2θ

dt2
+ ν

dθ

dt
+ m g sin θ = 0, (4.2)

where ν is a positive constant parameterizing the viscosity of the medium in

question. Of course, viscous damping will eventually drain all energy from the

pendulum, leaving it in a stationary state. In order to maintain the motion against

viscosity, it is necessary to add some external driving. For the sake of simplicity,

we choose a fixed amplitude, periodic drive (which could arise, for instance, via

140

4.1 Introduction 4 THE CHAOTIC PENDULUM

θ

m

mg

l

mass

rod

pivot

Figure 21: A simple pendulum.

periodic oscillations of the pendulum’s pivot point). Thus, the final equation of

motion of the pendulum is written

m l
d2θ

dt2
+ ν

dθ

dt
+ m g sin θ = A cos ωt, (4.3)

where A and ω are constants parameterizing the amplitude and angular fre-

quency of the external driving torque, respectively.

Let

ω0 =

√

g

l
. (4.4)

Of course, we recognize ω0 as the natural (angular) frequency of small amplitude

oscillations of the pendulum. We can conveniently normalize the pendulum’s

equation of motion by writing,

t̂ = ω0 t, (4.5)

ω̂ =
ω

ω0

, (4.6)

Q =
m g

ω0 ν
, (4.7)

Â =
A

m g
, (4.8)

141

4.2 Analytic Solution 4 THE CHAOTIC PENDULUM

in which case Eq. (4.3) becomes

d2θ

dt̂2
+

1

Q

dθ

dt̂
+ sin θ = Â cos ω̂t̂. (4.9)

From now on, the hats on normalized quantities will be omitted, for ease of no-

tation. Note that, in normalized units, the natural frequency of small amplitude

oscillations is unity. Moreover, Q is the familiar quality-factor—roughly, the num-

ber of oscillations of the undriven system which must elapse before its energy is

significantly reduced via the action of viscosity. The quantity A is the amplitude

of the external torque measured in units of the maximum possible gravitational

torque. Finally, ω is the angular frequency of the external torque measured in

units of the pendulum’s natural frequency.

Equation (4.9) is clearly a second-order o.d.e. It can, therefore, also be written

as two coupled first-order o.d.e.s:

dθ

dt
= v, (4.10)

dv

dt
= −

v

Q
− sin θ + A cos ωt. (4.11)

4.2 Analytic Solution

Before attempting to solve the equations of motion of any dynamical system us-

ing a computer, we should, first, investigate them as thoroughly as possible via

standard analytic techniques. Unfortunately, Eqs. (4.10) and (4.11) constitute a

non-linear dynamical system—because of the presence of the sin θ term on the

right-hand side of Eq. (4.11). This system, like most non-linear systems, does

not possess a simple analytic solution. Fortunately, however, if we restrict our

attention to small amplitude oscillations, such that the approximation

sin θ ≃ θ (4.12)

is valid, then the system becomes linear, and can easily be solved analytically.

142

4.2 Analytic Solution 4 THE CHAOTIC PENDULUM

The linearized equations of motion of the pendulum take the form:

dθ

dt
= v, (4.13)

dv

dt
= −

v

Q
− θ + A cos ωt. (4.14)

Suppose that the pendulum’s position, θ(0), and velocity, v(0), are specified at

time t = 0. As is well-known, in this case, the above equations of motion can be

solved analytically to give:

θ(t) =

{

θ(0) −
A (1 − ω2)

[(1 − ω2)2 + ω2/Q2]

}

e−t/2Q cos ω∗t

+
1

ω∗

{

v(0) +
θ(0)

2Q
−

A (1 − 3 ω2)/2Q

[(1 − ω2)2 + ω2/Q2]

}

e−t/2Q sin ω∗t

+
A
[

(1 − ω2) cos ωt + (ω/Q) sin ωt
]

[(1 − ω2)2 + ω2/Q2]
, (4.15)

v(t) =

{

v(0) −
A ω2/Q

[(1 − ω2)2 + ω2/Q2]

}

e−t/2Q cos ω∗t

−
1

ω∗

{

θ(0) +
v(0)

2Q
−

A [(1 − ω2) − ω2/2Q2]

[(1 − ω2)2 + ω2/Q2]

}

e−t/2Q sin ω∗t

+
ωA

[

−(1 − ω2) sin ωt + (ω/Q) cos ωt
]

[(1 − ω2)2 + ω2/Q2]
. (4.16)

Here,

ω∗ =

√

√

√

√1 −
1

4Q2
, (4.17)

and it is assumed that Q > 1/2. It can be seen that the above expressions

for θ and v both consist of three terms. The first two terms clearly represent

transients—they depend on the initial conditions, and decay exponentially in

time. In fact, the e-folding time for the decay of these terms is 2 Q (in nor-

malized time units). The final term represents the time-asymptotic motion of the

pendulum, and is manifestly independent of the initial conditions.

143

4.2 Analytic Solution 4 THE CHAOTIC PENDULUM

v
 /

 A

/ Aθ

Figure 22: A phase-space plot of the periodic attractor for a linear, damped, periodically driven,

pendulum. Data calculated analytically for Q = 4 and ω = 2.

It is often convenient to visualize the motion of a dynamical system as an orbit,

or trajectory, in phase-space, which is defined as the space of all of the dynamical

variables required to specify the instantaneous state of the system. For the case in

hand, there are two dynamical variables, v and θ, and so phase-space corresponds

to the θ-v plane. Note that each different point in this plane corresponds to a

unique instantaneous state of the pendulum. [Strictly speaking, we should also

consider t to be a dynamical variable, since it appears explicitly on the right-hand

side of Eq. (4.11).]

It is clear, from Eqs. (4.15) and (4.16), that if we wait long enough for all of

the transients to decay away then the motion of the pendulum settles down to

the following simple orbit in phase-space:

θ(t) =
A
[

(1 − ω2) cos ωt + (ω/Q) sin ωt
]

[(1 − ω2)2 + ω2/Q2]
, (4.18)

v(t) =
ωA

[

−(1 − ω2) sin ωt + (ω/Q) cos ωt
]

[(1 − ω2)2 + ω2/Q2]
. (4.19)

144

4.2 Analytic Solution 4 THE CHAOTIC PENDULUM

This orbit traces out the closed curve
(

θ

Ã

)2

+

(

v

ω Ã

)2

= 1, (4.20)

in phase-space, where

Ã =
A

√

(1 − ω2)2 + ω2/Q2
. (4.21)

As illustrated in Fig. 22, this curve is an ellipse whose principal axes are aligned

with the v and θ axes. Observe that the curve is closed, which suggests that the

associated motion is periodic in time. In fact, the motion repeats itself exactly

every

τ =
2π

ω
(4.22)

normalized time units. The maximum angular displacement of the pendulum

from its undriven rest position (θ = 0) is Ã. As illustrated in Fig. 23, the variation

of Ã with driving frequency ω [see Eq. (4.21)] displays all of the features of a

classic resonance curve. The maximum amplitude of the driven oscillation is

proportional to the quality-factor, Q, and is achieved when the driving frequency

matches the natural frequency of the pendulum (i.e., when |ω| = 1). Moreover,

the width of the resonance in ω-space is proportional to 1/Q.

The phase-space curve shown in Fig. 22 is called a periodic attractor. It is

termed an “attractor” because, irrespective of the initial conditions, the trajectory

of the system in phase-space tends asymptotically to—in other words, is attracted

to—this curve as t → ∞. This gravitation of phase-space trajectories towards the

attractor is illustrated in Figs. 24 and 25. Of course, the attractor is termed

“periodic” because it corresponds to motion which is periodic in time.

Let us summarize our findings, so far. We have discovered that if a damped

pendulum is subject to a low amplitude, periodic, drive then its time-asymptotic

response (i.e., its response after any transients have died away) is periodic, with

the same period as the driving torque. Moreover, the response exhibits resonant

behaviour as the driving frequency approaches the natural frequency of oscilla-

tion of the pendulum. The amplitude of the resonant response, as well as the

width of the resonant window, is governed by the amount of damping in the sys-

tem. After a little reflection, we can easily appreciate that all of these results are a

145

4.2 Analytic Solution 4 THE CHAOTIC PENDULUM

ω

A
 /

 A
~

Figure 23: The maximum angular displacement of a linear, damped, periodically driven, pendulum

as a function of driving frequency. The solid curve corresponds to Q = 1. The short-dashed curve

corresponds to Q = 5. The long-dashed curve corresponds to Q = 10. Analytic data.

v
 /

 A

/ Aθ

Figure 24: The phase-space trajectory of a linear, damped, periodically driven, pendulum. Data

calculated analytically for Q = 1 and ω = 2. Here, v(0)/A = 0 and θ(0)/A = 0.

146

4.2 Analytic Solution 4 THE CHAOTIC PENDULUM

v
 /

 A

/ Aθ

Figure 25: The phase-space trajectory of a linear, damped, periodically driven, pendulum. Data

calculated analytically for Q = 1 and ω = 2. Here, v(0)/A = 0.5 and θ(0)/A = 0.5.

direct consequence of the linearity of the pendulum’s equations of motion in the

low amplitude limit. In fact, it is easily demonstrated that the time-asymptotic

response of any intrinsically stable linear system (with a discrete spectrum of

normal modes) to a periodic drive is periodic, with the same period as the drive.

Moreover, if the driving frequency approaches one of the natural frequencies of

oscillation of the system then the response exhibits resonant behaviour. But, is

this the only allowable time-asymptotic response of a dynamical system to a pe-

riodic drive? Most undergraduate students might be forgiven for answering this

question in the affirmative. After all, the majority of undergraduate classical dy-

namics courses focus almost exclusively on linear systems. The correct answer,

as we shall see, is no. The response of a non-linear system to a periodic drive

is generally far more rich and diverse than simple periodic motion. Since the

majority of naturally occurring dynamical systems are non-linear, it is clearly im-

portant that we gain a basic understanding of this phenomenon. Unfortunately,

we cannot achieve this goal via a standard analytic approach—non-linear equa-

tions of motion generally do not possess simple analytic solutions. Instead, we

must use computers. As an example, let us investigate the dynamics of a damped

pendulum, subject to a periodic drive, with no restrictions on the amplitude of the

147

4.3 Numerical Solution 4 THE CHAOTIC PENDULUM

pendulum’s motion.

4.3 Numerical Solution

In the following, we present numerical solutions of Eqs. (4.10) and (4.11) ob-

tained using a fixed step-length, fourth-order, Runge-Kutta integration scheme.

The step-length is conveniently parameterized by Nacc, which is defined as the

number of time-steps taken by the integration scheme per period of the external

drive.

4.4 Validation of Numerical Solutions

Before proceeding with our investigation, we must first convince ourselves that

our numerical solutions are valid. Now, the usual method of validating a numer-

ical solution is to look for some special limits of the input parameters for which

analytic solutions are available, and then to test the numerical solution in one of

these limits against the associated analytic solution.

One special limit of Eqs. (4.10) and (4.11) occurs when there is no viscous

damping (i.e., Q → ∞) and no external driving (i.e., A → 0). In this case, we

expect the normalized energy of the pendulum

E = 1 +
v2

2
− cos θ (4.23)

to be a constant of the motion. Note that E is defined such that the energy is

zero when the pendulum is in its stable equilibrium state (i.e., at rest, pointing

vertically downwards). Figure 26 shows E versus time, calculated numerically

for an undamped, undriven, pendulum. Curves are plotted for various values of

the parameter Nacc, which, in this special case, measures the number of time-

steps taken by the integrator per (low amplitude) natural period of oscillation of

the pendulum. It can be seen that for Nacc = 12 there is a strong spurious loss

of energy, due to truncation error in the numerical integration scheme, which

eventually drains all energy from the pendulum after about 2000 oscillations.

148

4.4 Validation of Numerical Solutions 4 THE CHAOTIC PENDULUM

Figure 26: The normalized energy E of an undamped, undriven, pendulum versus time (measured

in natural periods of oscillation τ). Data calculated numerically for Q = 1016, A = 10−16, ω = 1,

θ(0) = 0, and v(0) = 1. The dotted curve shows data for Nacc = 12. The dashed curve shows data

for Nacc = 24. The dot-dashed curve shows data for Nacc = 48. Finally, the solid curve shows data

for Nacc = 96.

For Nacc = 24, the spurious energy loss is less severe, but, nevertheless, still

causes a more than 50% reduction in pendulum energy after 10,000 oscillations.

For Nacc = 48, the reduction in energy after 10,000 oscillations is only about

1%. Finally, for Nacc = 96, the reduction in energy after 10,000 oscillation is

completely negligible. This test seems to indicate that when Nacc ≥ 100 our

numerical solution describes the pendulum’s motion to a high degree of precision

for at least 10,000 oscillations.

Another special limit of Eqs. (4.10) and (4.11) occurs when these equations

are linearized to give Eqs. (4.13) and (4.14). In this case, we expect

R =
√

θ2 + (v/ω)2 (4.24)

to be a constant of the motion, after all transients have died away (see Sect. 4.2).

Figure 27 shows R versus time, calculated numerically, for a linearized, damped,

periodically driven, pendulum. Curves are plotted for various values of the pa-

rameter Nacc, which measures the number of time-steps taken by the integrator

per period of oscillation of the external drive. As Nacc increases, it can be seen

149

4.4 Validation of Numerical Solutions 4 THE CHAOTIC PENDULUM

Figure 27: The parameter R associated with a linearized, damped, periodically driven, pendulum

versus time (measured in units of the period of oscillation τ of the external drive). Data calculated

numerically for Q = 2, A = 1, ω = 3, θ(0) = 0, and v(0) = 0. The dotted curve shows data for

Nacc = 12. The dashed curve shows data for Nacc = 24. The solid curve shows data for Nacc = 48.

that the amplitude of the spurious oscillations in R, which are due to trunca-

tion error in the numerical integration scheme, decreases rapidly. Indeed, for

Nacc ≥ 48 these oscillations become effectively undetectable. According to the

analysis in Sect. 4.2, the parameter R should take the value

R =
A

√

(1 − ω2)2 + ω2/Q2
. (4.25)

Thus, for the case in hand (i.e., Q = 2, A = 1, ω = 3), we expect R = 0.122859.

It can be seen that this prediction is borne out very accurately in Fig. 27. The

above test essentially confirms our previous conclusion that when Nacc ≥ 100

our numerical solution matches pendulum’s actual motion to a high degree of

accuracy for many thousands of oscillation periods.

150

4.5 The Poincaré Section 4 THE CHAOTIC PENDULUM

Figure 28: Equally spaced (in time) points on a time-asymptotic orbit in phase-space. Data calculated

numerically for Q = 0.5, A = 1.5, ω = 2/3, θ(0) = 0, v(0) = 0, and Nacc = 100.

4.5 The Poincaré Section

For the sake of definiteness, let us fix the normalized amplitude and frequency

of the external drive to be A = 1.5 and ω = 2/3, respectively.24 Furthermore,

let us investigate any changes which may develop in the nature of the pendu-

lum’s time-asymptotic motion as the quality-factor Q is varied. Of course, if Q

is made sufficiently small (i.e., if the pendulum is embedded in a sufficiently vis-

cous medium) then we expect the amplitude of the pendulum’s time-asymptotic

motion to become low enough that the linear analysis outlined in Sect. 4.2 re-

mains valid. Indeed, we expect non-linear effects to manifest themselves as Q is

gradually made larger, and the amplitude of the pendulum’s motion consequently

increases to such an extent that the small angle approximation breaks down.

Figure 28 shows a time-asymptotic orbit in phase-space calculated numerically

for a case where Q is sufficiently small (i.e., Q = 1/2) that the small angle ap-

proximation holds reasonably well. Not surprisingly, the orbit is very similar to

the analytic orbits described in Sect. 4.2. The fact that the orbit consists of a

single loop, and forms a closed curve in phase-space, strongly suggests that the

24G.L. Baker, Control of the chaotic driven pendulum, Am. J. Phys. 63, 832 (1995).

151

4.6 Spatial Symmetry Breaking 4 THE CHAOTIC PENDULUM

corresponding motion is periodic with the same period as the external drive—we

term this type of motion period-1 motion. More generally, period-n motion con-

sists of motion which repeats itself exactly every n periods of the external drive

(and, obviously, does not repeat itself on any time-scale less than n periods). Of

course, period-1 motion is the only allowed time-asymptotic motion in the small

angle limit.

It would certainly be helpful to possess a graphical test for period-n motion.

In fact, such a test was developed more than a hundred years ago by the French

mathematician Henry Poincaré—nowadays, it is called a Poincaré section in his

honour. The idea of a Poincaré section, as applied to a periodically driven pen-

dulum, is very simple. As before, we calculate the time-asymptotic motion of the

pendulum, and visualize it as a series of points in θ-v phase-space. However, we

only plot one point per period of the external drive. To be more exact, we only

plot a point when

ω t = φ + k 2π (4.26)

where k is any integer, and φ is referred to as the Poincaré phase. For period-1

motion, in which the motion repeats itself exactly every period of the external

drive, we expect the Poincaré section to consist of only one point in phase-space

(i.e., we expect all of the points to plot on top of one another). Likewise, for

period-2 motion, in which the motion repeats itself exactly every two periods

of the external drive, we expect the Poincaré section to consist of two points in

phase-space (i.e., we expect alternating points to plot on top of one another).

Finally, for period-n motion we expect the Poincaré section to consist of n points

in phase-space.

Figure 29 displays the Poincaré section of the orbit shown in Fig. 28. The fact

that the section consists of a single point confirms that the motion displayed in

Fig. 28 is indeed period-1 motion.

4.6 Spatial Symmetry Breaking

Suppose that we now gradually increase the quality-factor Q. What happens to

the simple orbit shown in Fig. 28? It turns out that, at first, nothing particularly

152

4.6 Spatial Symmetry Breaking 4 THE CHAOTIC PENDULUM

Figure 29: The Poincaré section of a time-asymptotic orbit. Data calculated numerically for Q = 0.5,

A = 1.5, ω = 2/3, θ(0) = 0, v(0) = 0, Nacc = 100, and φ = 0.

Figure 30: The v-coordinate of the Poincaré section of a time-asymptotic orbit plotted against the

quality-factor Q. Data calculated numerically for A = 1.5, ω = 2/3, θ(0) = 0, v(0) = 0, Nacc = 100,

and φ = 0.

153

4.6 Spatial Symmetry Breaking 4 THE CHAOTIC PENDULUM

exciting happens. The size of the orbit gradually increases, indicating a corre-

sponding increase in the amplitude of the pendulum’s motion, but the general

nature of the motion remains unchanged. However, something interesting does

occur when Q is increased beyond about 1.2. Figure 30 shows the v-coordinate

of the orbit’s Poincaré section plotted against Q in the range 1.2 and 1.3. Note the

sharp downturn in the curve at Q ≃ 1.245. What does this signify? Well, Fig. 31

shows the time-asymptotic phase-space orbit just before the downturn (i.e., at

Q = 1.24), and Fig. 32 shows the orbit somewhat after the downturn (i.e., at

Q = 1.30). It is clear that the downturn is associated with a sudden change

in the nature of the pendulum’s time-asymptotic phase-space orbit. Prior to the

downturn, the orbit spends as much time in the region θ < 0 as in the region

θ > 0. However, after the downturn the orbit spends the majority of its time in

the region θ < 0. In other words, after the downturn the pendulum bob favours

the region to the left of the pendulum’s vertical. This is somewhat surprising,

since there is nothing in the pendulum’s equations of motion which differentiates

between the regions to the left and to the right of the vertical. We refer to a

solution of this type—which fails to realize the full symmetry of the dynamical

system in question—as a symmetry breaking solution. In this case, because the

particular symmetry which is broken is a spatial symmetry, we refer to the pro-

cess by which the symmetry breaking solution suddenly appears, as the control

parameter Q is adjusted, as spatial symmetry breaking. Needless to say, spatial

symmetry breaking is an intrinsically non-linear process—it cannot take place in

dynamical systems possessing linear equations of motion.

It stands to reason that since the pendulum’s equations of motion favour nei-

ther the left nor the right then the left-favouring orbit pictured in Fig. 32 must

be accompanied by a mirror image right-favouring orbit. How do we obtain this

mirror image orbit? It turns out that all we have to do is keep the physics param-

eters Q, A, and ω fixed, but change the initial conditions θ(0) and v(0). Figure 33

shows a time-asymptotic phase-space orbit calculated with the same physics pa-

rameters used in Fig. 32, but with the initial conditions θ(0) = 0 and v(0) = −3,

instead of θ(0) = 0 and v(0) = 0. It can be seen that the orbit is indeed the mirror

image of that pictured in Fig. 32.

Figure 34 shows the v-coordinate of the Poincaré section of a time-asymptotic

154

4.6 Spatial Symmetry Breaking 4 THE CHAOTIC PENDULUM

Figure 31: Equally spaced (in time) points on a time-asymptotic orbit in phase-space. Data calculated

numerically for Q = 1.24, A = 1.5, ω = 2/3, θ(0) = 0, v(0) = 0, and Nacc = 100.

Figure 32: Equally spaced (in time) points on a time-asymptotic orbit in phase-space. Data calculated

numerically for Q = 1.30, A = 1.5, ω = 2/3, θ(0) = 0, v(0) = 0, and Nacc = 100.

155

4.6 Spatial Symmetry Breaking 4 THE CHAOTIC PENDULUM

Figure 33: Equally spaced (in time) points on a time-asymptotic orbit in phase-space. Data calculated

numerically for Q = 1.30, A = 1.5, ω = 2/3, θ(0) = 0, v(0) = −3, and Nacc = 100.

orbit, calculated with the same physics parameters used in Fig. 30, versus Q in the

range 1.2 and 1.3. Data is shown for the two sets of initial conditions discussed

above. The figure is interpreted as follows. When Q is less than a critical value,

which is about 1.245, then the two sets of initial conditions lead to motions which

converge on the same, left-right symmetric, period-1 attractor. However, once Q

exceeds the critical value then the attractor bifurcates into two asymmetric, mirror

image, period-1 attractors. Obviously, the bifurcation is indicated by the forking

of the curve shown in Fig. 34. The lower and upper branches correspond to the

left- and right-favouring attractors, respectively.

Spontaneous symmetry breaking, which is the fundamental non-linear pro-

cess illustrated in the above discussion, plays an important role in many areas of

physics. For instance, symmetry breaking gives mass to elementary particles in

the unified theory of electromagnetic and weak interactions.25 Symmetry break-

ing also plays a pivotal role in the so-called “inflation” theory of the expansion of

the early universe.26

25E.S. Albers and B.W. Lee, Phys. Rep. 9C, 1 (1973).
26P. Coles, and F. Lucchin, Cosmology: The origin and evolution of cosmic structure, (J. Wiley & Sons, Chichester

UK, 1995).

156

4.7 Basins of Attraction 4 THE CHAOTIC PENDULUM

Figure 34: The v-coordinate of the Poincaré section of a time-asymptotic orbit plotted against the

quality-factor Q. Data calculated numerically for A = 1.5, ω = 2/3, and Nacc = 100. Data is shown

for two sets of initial conditions: θ(0) = 0 and v(0) = 0 (lower branch); and θ(0) = 0 and v(0) = −3

(upper branch).

4.7 Basins of Attraction

We have seen that when Q = 1.3, A = 1.5, and ω = 2/3 there are two co-

existing period-1 attractors in θ–v phase-space. The time-asymptotic trajectory of

the pendulum through phase-space converges on one or other of these attractors

depending on the initial conditions: i.e., depending on the values of θ(0) and v(0).

Let us define the basin of attraction of a given attractor as the locus of all points

in the θ(0)–v(0) plane which lead to motion which ultimately converges on that

attractor. We have seen that in the low-amplitude (i.e., linear) limit (see Sect. 4.2)

there is only a single period-1 attractor in phase-space, and all possible initial

conditions lead to motion which converges on this attractor. In other words, the

basin of attraction for the low-amplitude attractor constitutes the entire θ(0)–

v(0) plane. The present case, in which there are two co-existing attractors in

phase-space, is somewhat more complicated.

Figure 35 shows the basins of attraction, in θ(0)–v(0) space, of the asymmetric,

mirror image, attractors pictured in Figs. 32 and 33. The basin of attraction of

157

4.7 Basins of Attraction 4 THE CHAOTIC PENDULUM

Figure 35: The basins of attraction for the asymmetric, mirror image, attractors pictured in Figs. 32

and 33. Regions of θ(0)–v(0) space which lead to motion converging on the left-favouring attractor

shown in Fig. 32 are coloured white: regions of θ(0)–v(0) space which lead to motion converging on

the right-favouring attractor shown in Fig. 33 are coloured black. Data calculated numerically for

Q = 1.3, A = 1.5, ω = 2/3, Nacc = 100, and φ = 0.

158

4.7 Basins of Attraction 4 THE CHAOTIC PENDULUM

Figure 36: Detail of the basins of attraction for the asymmetric, mirror image, attractors pictured in

Figs. 32 and 33. Regions of θ(0)–v(0) space which lead to motion converging on the left-favouring

attractor shown in Fig. 32 are coloured white: regions of θ(0)–v(0) space which lead to motion

converging on the right-favouring attractor shown in Fig. 33 are coloured black. Data calculated

numerically for Q = 1.3, A = 1.5, ω = 2/3, Nacc = 100, and φ = 0.

the left-favoring attractor shown in Fig. 32 is coloured black, whereas the basin

of attraction of the right-favoring attractor shown in Fig. 33 is coloured white. It

can be seen that the two basins form a complicated interlocking pattern. Since

we can identify the angles π and −π, the right-hand edge of the pattern connects

smoothly with its left-hand edge. In fact, we can think of the pattern as existing

on the surface of a cylinder.

Suppose that we take a diagonal from the bottom left-hand corner of Fig. 35 to

its top right-hand corner. This diagonal is intersected by a number of black bands

of varying thickness. Observe that the two narrowest bands (i.e., the fourth band

from the bottom left-hand corner and the second band from the upper right-

hand corner) both exhibit structure which is not very well resolved in the present

159

4.7 Basins of Attraction 4 THE CHAOTIC PENDULUM

Figure 37: Detail of the basins of attraction for the asymmetric, mirror image, attractors pictured in

Figs. 32 and 33. Regions of θ(0)–v(0) space which lead to motion converging on the left-favouring

attractor shown in Fig. 32 are coloured white: regions of θ(0)–v(0) space which lead to motion

converging on the right-favouring attractor shown in Fig. 33 are coloured black. Data calculated

numerically for Q = 1.3, A = 1.5, ω = 2/3, Nacc = 100, and φ = 0.

picture.

Figure 36 is a blow-up of a region close to the lower left-hand corner of Fig. 35.

It can be seen that the unresolved band in the latter figure (i.e., the second and

third bands from the right-hand side in the former figure) actually consists of

a closely spaced pair of bands. Note, however, that the narrower of these two

bands exhibits structure which is not very well resolved in the present picture.

Figure 37 is a blow-up of a region of Fig. 36. It can be seen that the unresolved

band in the latter figure (i.e., the first and second bands from the left-hand side

in the former figure) actually consists of a closely spaced pair of bands. Note,

however, that the broader of these two bands exhibits structure which is not very

well resolved in the present picture.

160

4.7 Basins of Attraction 4 THE CHAOTIC PENDULUM

Figure 38: Detail of the basins of attraction for the asymmetric, mirror image, attractors pictured in

Figs. 32 and 33. Regions of θ(0)–v(0) space which lead to motion converging on the left-favouring

attractor shown in Fig. 32 are coloured white: regions of θ(0)–v(0) space which lead to motion

converging on the right-favouring attractor shown in Fig. 33 are coloured black. Data calculated

numerically for Q = 1.3, A = 1.5, ω = 2/3, Nacc = 100, and φ = 0.

161

4.8 Period-Doubling Bifurcations 4 THE CHAOTIC PENDULUM

Figure 38 is a blow-up of a region of Fig. 37. It can be seen that the unresolved

band in the latter figure (i.e., the first, second, and third bands from the right-

hand side in the former figure) actually consists of a closely spaced triplet of

bands. Note, however, that the narrowest of these bands exhibits structure which

is not very well resolved in the present picture.

It should be clear, by this stage, that no matter how closely we look at Fig. 35

we are going to find structure which we cannot resolve. In other words, the

separatrix between the two basins of attraction shown in this figure is a curve

which exhibits structure at all scales. Mathematicians have a special term for

such a curve—they call it a fractal.27

Many people think of fractals as mathematical toys whose principal use is the

generation of pretty pictures. However, it turns out that there is a close con-

nection between fractals and the dynamics of non-linear systems—particularly

systems which exhibit chaotic dynamics. We have just seen an example in which

the boundary between the basins of attraction of two co-existing attractors in

phase-space is a fractal curve. This turns out to be a fairly general result: i.e.,

when multiple attractors exist in phase-space the separatrix between their var-

ious basins of attraction is invariably fractal. What is this telling us about the

nature of non-linear dynamics? Well, returning to Fig. 35, we can see that in the

region of phase-space in which the fractal behaviour of the separatrix manifests

itself most strongly (i.e., the region where the light and dark bands fragment) the

system exhibits abnormal sensitivity to initial conditions. In other words, we only

have to change the initial conditions slightly (i.e., so as to move from a dark to a

light band, or vice versa) in order to significantly alter the time-asymptotic motion

of the pendulum (i.e., to cause the system to converge to a left-favouring instead

of a right-favouring attractor, or vice versa). Fractals and extreme sensitivity to

initial conditions are themes which will reoccur in our investigation of non-linear

dynamics.

162

4.8 Period-Doubling Bifurcations 4 THE CHAOTIC PENDULUM

Figure 39: The v-coordinate of the Poincaré section of a time-asymptotic orbit plotted against the

quality-factor Q. Data calculated numerically for A = 1.5, ω = 2/3, θ(0) = 0, v(0) = 0, Nacc = 100,

and φ = 0.

4.8 Period-Doubling Bifurcations

Let us now return to Fig. 30. Recall, that as the quality-factor Q is gradually

increased, the time-asymptotic orbit of the pendulum through phase-space un-

dergoes a sudden transition, at Q ≃ 1.245, from a left-right symmetric, period-1

orbit to a left-favouring, period-1 orbit. What happens if we continue to increase

Q? Figure 39 is basically a continuation of Fig. 30. It can be seen that as Q is in-

creased the left-favouring, period-1 orbit gradually evolves until a critical value of

Q, which is about 1.348, is reached. When Q exceeds this critical value the nature

of the orbit undergoes another sudden change: this time from a left-favouring,

period-1 orbit to a left-favouring, period-2 orbit. Obviously, the change is indi-

cated by the forking of the curve in Fig. 39. This type of transition is termed a

period-doubling bifurcation, since it involves a sudden doubling of the repetition

period of the pendulum’s time-asymptotic motion.

We can represent period-1 motion schematically as AAAAAA · · ·, where A

represents a pattern of motion which is repeated every period of the external

27B.B. Mandelbrot, The fractal geometry of nature, (W.H. Freeman, New York NY, 1982).

163

4.8 Period-Doubling Bifurcations 4 THE CHAOTIC PENDULUM

Figure 40: Equally spaced (in time) points on a time-asymptotic orbit in phase-space. Data calculated

numerically for Q = 1.36, A = 1.5, ω = 2/3, θ(0) = 0, v(0) = −3, and Nacc = 100.

drive. Likewise, we can represent period-2 motion as ABABAB · · ·, where A and

B represent distinguishable patterns of motion which are repeated every alter-

nate period of the external drive. A period-doubling bifurcation is represented:

AAAAAA · · · → ABABAB · · ·. Clearly, all that happens in such a bifurcation is

that the pendulum suddenly decides to do something slightly different in alter-

nate periods of the external drive.

Figure 40 shows the time-asymptotic phase-space orbit of the pendulum cal-

culated for a value of Q somewhat higher than that required to trigger the above

mentioned period-doubling bifurcation. It can be seen that the orbit is left-

favouring (i.e., it spends the majority of its time on the left-hand side of the

plot), and takes the form of a closed curve consisting of two interlocked loops in

phase-space. Recall that for period-1 orbits there was only a single closed loop in

phase-space. Figure 41 shows the Poincaré section of the orbit shown in Fig. 40.

The fact that the section consists of two points confirms that the orbit does indeed

correspond to period-2 motion.

A period-doubling bifurcation is an example of temporal symmetry breaking.

The equations of motion of the pendulum are invariant under the transformation

164

4.8 Period-Doubling Bifurcations 4 THE CHAOTIC PENDULUM

Figure 41: The Poincaré section of a time-asymptotic orbit. Data calculated numerically for Q = 1.36,

A = 1.5, ω = 2/3, θ(0) = 0, v(0) = 0, Nacc = 100, and φ = 0.

t → t + τ, where τ is the period of the external drive. In the low amplitude (i.e.,

linear) limit the time-asymptotic motion of the pendulum always respects this

symmetry. However, as we have just seen, in the non-linear regime it is possible

to obtain solutions which spontaneously break this symmetry. Obviously, motion

which repeats itself every two periods of the external drive is not as temporally

symmetric as motion which repeats every period of the drive.

Figure 42 is essentially a continuation of Fig 34. Data is shown for two sets

of initial conditions which lead to motions converging on left-favouring (lower

branch) and right-favouring (upper branch) periodic attractors. We have already

seen that the left-favouring periodic attractor undergoes a period-doubling bifur-

cation at Q = 1.348. It is clear from Fig. 42 that the right-favouring attractor un-

dergoes a similar bifurcation at almost exactly the same Q-value. This is hardly

surprising since, as has already been mentioned, for fixed physics parameters

(i.e., Q, A, ω), the left- and right-favouring attractors are mirror-images of one

another.

165

4.9 The Route to Chaos 4 THE CHAOTIC PENDULUM

Figure 42: The v-coordinate of the Poincaré section of a time-asymptotic orbit plotted against the

quality-factor Q. Data calculated numerically for A = 1.5, ω = 2/3, Nacc = 100, and φ = 0. Data

is shown for two sets of initial conditions: θ(0) = 0 and v(0) = 0 (lower branch); and θ(0) = 0 and

v(0) = −2 (upper branch).

4.9 The Route to Chaos

Let us return to Fig. 39, which tracks the evolution of a left-favouring periodic

attractor as the quality-factor Q is gradually increased. Recall that when Q ex-

ceeds a critical value, which is about 1.348, then the attractor undergoes a period-

doubling bifurcation which converts it from a period-1 to a period-2 attractor.

This bifurcation is indicated by the forking of the curve in Fig. 39. Let us now

investigate what happens as we continue to increase Q. Fig. 43 is basically a

continuation of Fig. 39. It can be seen that, as Q is gradually increased, the at-

tractor undergoes a period-doubling bifurcation at Q = 1.348, as before, but then

undergoes a second period-doubling bifurcation (indicated by the second forking

of the curves) at Q ≃ 1.370, and a third bifurcation at Q ≃ 1.375. Obviously, the

second bifurcation converts a period-2 attractor into a period-4 attractor (hence,

two curves split apart to give four curves). Likewise, the third bifurcation con-

verts a period-4 attractor into a period-8 attractor (hence, four curves split into

eight curves). Shortly after the third bifurcation, the various curves in the figure

seem to expand explosively and merge together to produce an area of almost

166

4.9 The Route to Chaos 4 THE CHAOTIC PENDULUM

Figure 43: The v-coordinate of the Poincaré section of a time-asymptotic orbit plotted against the

quality-factor Q. Data calculated numerically for A = 1.5, ω = 2/3, θ(0) = 0, v(0) = 0, Nacc = 100,

and φ = 0.

solid black. As we shall see, this behaviour is indicative of the onset of chaos.

Figure 44 is a blow-up of Fig. 43, showing more details of the onset of chaos.

The period-4 to period-8 bifurcation can be seen quite clearly. However, we can

also see a period-8 to period-16 bifurcation, at Q ≃ 1.3755. Finally, if we look

carefully, we can see a hint of a period-16 to period-32 bifurcation, just before

the start of the solid black region. Figures 43 and 44 seem to suggest that the

onset of chaos is triggered by an infinite series of period-doubling bifurcations.

Table 2 gives some details of the sequence of period-doubling bifurcations

shown in Figs. 43 and 44. Let us introduce a bifurcation index n: the period-1 to

period-2 bifurcation corresponds to n = 1; the period-2 to period-4 bifurcation

corresponds to n = 2; and so on. Let Qn be the critical value of the quality-

factor Q above which the nth bifurcation is triggered. Table 2 shows the Qn,

determined from Figs. 43 and 44, for n = 1 to 5. Also shown is the ratio

Fn =
Qn−1 − Qn−2

Qn − Qn−1

(4.27)

167

4.9 The Route to Chaos 4 THE CHAOTIC PENDULUM

Figure 44: The v-coordinate of the Poincaré section of a time-asymptotic orbit plotted against the

quality-factor Q. Data calculated numerically for A = 1.5, ω = 2/3, θ(0) = 0, v(0) = 0, Nacc = 100,

and φ = 0.

168

4.9 The Route to Chaos 4 THE CHAOTIC PENDULUM

Bifurcation n Qn Qn − Qn−1 Fn

period-1→period-2 1 1.34870 - -

period-2→period-4 2 1.37003 0.02133 -

period-4→period-8 3 1.37458 0.00455 4.69 ± 0.01

period-8→period-16 4 1.37555 0.00097 4.69 ± 0.04

period-16→period-32 5 1.37575 0.00020 4.9 ± 0.20

Table 2: The period-doubling cascade.

for n = 3 to 5. It can be seen that Tab. 2 offers reasonably convincing evidence

that this ratio takes the constant value F = 4.69. It follows that we can esti-

mate the critical Q-value required to trigger the nth bifurcation via the following

formula:

Qn = Q1 + (Q2 − Q1)

n−2∑

j=0

1

Fj
, (4.28)

for n > 1. Note that the distance (in Q) between bifurcations decreases rapidly

as n increases. In fact, the above formula predicts an accumulation of period-

doubling bifurcations at Q = Q∞, where

Q∞ = Q1 + (Q2 − Q1)

∞∑

j=0

1

Fj
≡ Q1 + (Q2 − Q1)

F

F − 1
= 1.3758. (4.29)

Note that our calculated accumulation point corresponds almost exactly to the

onset of the solid black region in Fig. 44. By the time that Q exceeds Q∞, we

expect the attractor to have been converted into a period-infinity attractor via an

infinite series of period-doubling bifurcations. A period-infinity attractor is one

whose corresponding motion never repeats itself, no matter how long we wait.

In dynamics, such bounded aperiodic motion is generally referred to as chaos.

Hence, a period-infinity attractor is sometimes called a chaotic attractor. Now,

period-n motion is represented by n separate curves in Fig. 44. It is, therefore,

not surprising that chaos (i.e., period-infinity motion) is represented by an infinite

number of curves which merge together to form a region of solid black.

Let us examine the onset of chaos in a little more detail. Figures 45–48 show

details of the pendulum’s time-asymptotic motion at various stages on the period-

doubling cascade discussed above. Figure 45 shows period-4 motion: note that

the Poincaré section consists of four points, and the associated sequence of net

169

4.9 The Route to Chaos 4 THE CHAOTIC PENDULUM

Figure 45: The Poincaré section of a time-asymptotic orbit. Data calculated numerically for Q =

1.372, A = 1.5, ω = 2/3, θ(0) = 0, v(0) = 0, Nacc = 100, and φ = 0. Also, shown is the net

rotation per period, ∆θ/2π, calculated at the Poincaré phase φ = 0.

rotations per period of the pendulum repeats itself every four periods. Figure 46

shows period-8 motion: now the Poincaré section consists of eight points, and the

rotation sequence repeats itself every eight periods. Figure 47 shows period-16

motion: as expected, the Poincaré section consists of sixteen points, and the rota-

tion sequence repeats itself every sixteen periods. Finally, Fig. 48 shows chaotic

motion. Note that the Poincaré section now consists of a set of four continuous

line segments, which are, presumably, made up of an infinite number of points

(corresponding to the infinite period of chaotic motion). Note, also, that the

associated sequence of net rotations per period shows no obvious sign of ever re-

peating itself. In fact, this sequence looks rather like one of the previously shown

periodic sequences with the addition of a small random component. The genera-

tion of apparently random motion from equations of motion, such as Eqs. (4.10)

and (4.11), which contain no overtly random elements is one of the most surpris-

ing features of non-linear dynamics.

Many non-linear dynamical systems, found in nature, exhibit a transition from

periodic to chaotic motion as some control parameter is varied. Now, there are

various known mechanisms by which chaotic motion can arise from periodic mo-

tion. However, a transition to chaos via an infinite series of period-doubling

bifurcations, as illustrated above, is certainly amongst the most commonly oc-

curring of these mechanisms. Around 1975, the physicist Mitchell Feigenbaum

170

4.9 The Route to Chaos 4 THE CHAOTIC PENDULUM

Figure 46: The Poincaré section of a time-asymptotic orbit. Data calculated numerically for Q =

1.375, A = 1.5, ω = 2/3, θ(0) = 0, v(0) = 0, Nacc = 100, and φ = 0. Also, shown is the net

rotation per period, ∆θ/2π, calculated at the Poincaré phase φ = 0.

Figure 47: The Poincaré section of a time-asymptotic orbit. Data calculated numerically for Q =

1.3757, A = 1.5, ω = 2/3, θ(0) = 0, v(0) = 0, Nacc = 100, and φ = 0. Also, shown is the net

rotation per period, ∆θ/2π, calculated at the Poincaré phase φ = 0.

171

4.9 The Route to Chaos 4 THE CHAOTIC PENDULUM

Figure 48: The Poincaré section of a time-asymptotic orbit. Data calculated numerically for Q =

1.376, A = 1.5, ω = 2/3, θ(0) = 0, v(0) = 0, Nacc = 100, and φ = 0. Also, shown is the net

rotation per period, ∆θ/2π, calculated at the Poincaré phase φ = 0.

was investigating a simple mathematical model, known as the logistic map, which

exhibits a transition to chaos, via a sequence of period-doubling bifurcations, as

a control parameter r is increased. Let rn be the value of r at which the first

2n-period cycle appears. Feigenbaum noticed that the ratio

Fn =
rn−1 − rn−2

rn − rn−1

(4.30)

converges rapidly to a constant value, F = 4.669 . . ., as n increases. Feigenbaum

was able to demonstrate that this value of F is common to a wide range of differ-

ent mathematic models which exhibit transitions to chaos via period-doubling bi-

furcations.28 Feigenbaum went on to argue that the Feigenbaum ratio, Fn, should

converge to the value 4.669 . . . in any dynamical system exhibiting a transition

to chaos via period-doubling bifurcations.29 This amazing prediction has been

verified experimentally in a number of quite different physical systems.30 Note

that our best estimate of the Feigenbaum ratio (see Tab. 2) is 4.69± 0.01, in good

agreement with Feigenbaum’s prediction.

The existence of a universal ratio characterizing the transition to chaos via

period-doubling bifurcations is one of many pieces of evidence indicating that

28M.J. Feigenbaum, Quantitative universality for a class of nonlinear transformations, J. Stat. Phys. 19, 25 (1978).
29M.J. Feigenbaum, The universal metric properties of nonlinear transformations, J. Stat. Phys. 21, 69 (1979).
30P. Citanovic, Universality in chaos, (Adam Hilger, Bristol UK, 1989).

172

4.10 Sensitivity to Initial Conditions 4 THE CHAOTIC PENDULUM

chaos is a universal phenomenon (i.e., the onset and nature of chaotic motion

in different dynamical systems has many common features). This observation

encourages us to believe that in studying the chaotic motion of a damped, pe-

riodically driven, pendulum we are learning lessons which can be applied to a

wide range of non-linear dynamical systems.

4.10 Sensitivity to Initial Conditions

Suppose that we launch our pendulum and then wait until its motion has con-

verged onto a particular attractor. The subsequent motion can be visualized as

a trajectory θ0(t), v0(t) through phase-space. Suppose that we somehow perturb

the pendulum, at time t = t0, such that its position in phase-space is instanta-

neously changed from θ0(t0), v0(t0) to θ0(t0) + δθ0, v0(t0) + δv0. The subsequent

motion can be visualized as a second trajectory θ1(t), v1(t) through phase-space.

What is the relationship between the original trajectory θ0(t), v0(t) and the per-

turbed trajectory θ1(t), v1(t)? In other words, does the phase-space separation

between the two trajectories, whose components are

δθ(∆t) = θ1(t0 + ∆t) − θ0(t0 + ∆t), (4.31)

δv(∆t) = v1(t0 + ∆t) − v0(t0 + ∆t), (4.32)

grow in time, decay in time, or stay more or less the same? What we are really

investigating is how sensitive the time-asymptotic motion of the pendulum is to

initial conditions.

According to the linear analysis of Sect. 4.2,

δθ(∆t) = δθ0 cos(ω∗∆t) e−∆t/2Q

+
1

ω∗

{

δv0 +
δθ0

2Q

}

sin(ω∗∆t) e−∆t/2Q, (4.33)

δv(∆t) = δv0 cos(ω∗∆t) e−∆t/2Q

−
1

ω∗

{

δθ0 +
δv0

2Q

}

sin(ω∗∆t) e−∆t/2Q, (4.34)

173

4.10 Sensitivity to Initial Conditions 4 THE CHAOTIC PENDULUM

Figure 49: The v-component of the separation between two neighbouring phase-space trajectories

(one of which lies on an attractor) plotted against normalized time. Data calculated numerically for

Q = 1.372, A = 1.5, ω = 2/3, θ(0) = 0, v(0) = 0, and Nacc = 100. The separation between the two

trajectories is initialized to δθ0 = δv0 = 10−6 at ∆t = 0.

assuming sin(ω∗ t0) = 0. It is clear that in the linear regime, at least, the pen-

dulum’s time-asymptotic motion is not particularly sensitive to initial conditions.

In fact, if we move the pendulum’s phase-space trajectory slightly off the linear

attractor, as described above, then the perturbed trajectory decays back to the

attractor exponentially in time. In other words, if we wait long enough then the

perturbed and unperturbed motions of the pendulum become effectively indistin-

guishable. Let us now investigate whether this insensitivity to initial conditions

carries over into the non-linear regime.

Figures 49–52 show the results of the experiment described above, in which

the pendulum’s phase-space trajectory is moved slightly off an attractor and the

phase-space separation between the perturbed and unperturbed trajectories is

then monitored as a function of time, at various stages on the period-doubling

cascade discussed in the previous section. To be more exact, the figures show

the logarithm of the absolute magnitude of the v-component of the phase-space

separation between the perturbed and unperturbed trajectories as a function of

normalized time.

174

4.10 Sensitivity to Initial Conditions 4 THE CHAOTIC PENDULUM

Figure 50: The v-component of the separation between two neighbouring phase-space trajectories

(one of which lies on an attractor) plotted against normalized time. Data calculated numerically for

Q = 1.375, A = 1.5, ω = 2/3, θ(0) = 0, v(0) = 0, and Nacc = 100. The separation between the two

trajectories is initialized to δθ0 = δv0 = 10−6 at ∆t = 0.

Figure 51: The v-component of the separation between two neighbouring phase-space trajectories

(one of which lies on an attractor) plotted against normalized time. Data calculated numerically for

Q = 1.3757, A = 1.5, ω = 2/3, θ(0) = 0, v(0) = 0, and Nacc = 100. The separation between the

two trajectories is initialized to δθ0 = δv0 = 10−6 at ∆t = 0.

175

4.10 Sensitivity to Initial Conditions 4 THE CHAOTIC PENDULUM

Figure 52: The v-component of the separation between two neighbouring phase-space trajectories

(one of which lies on an attractor) plotted against normalized time. Data calculated numerically for

Q = 1.376, A = 1.5, ω = 2/3, θ(0) = 0, v(0) = 0, and Nacc = 100. The separation between the two

trajectories is initialized to δθ0 = δv0 = 10−6 at ∆t = 0.

Figure 49 shows the time evolution of the v-component of the phase-space

separation, δv, between two neighbouring trajectories, one of which is the period-

4 attractor illustrated in Fig. 45. It can be seen that δv decays rapidly in time. In

fact, the graph of log(|δv|) versus ∆t can be plausibly represented as a straight-line

of negative gradient λ. In other words,

|δv(∆t)| ≃ δv0 e λ∆t, (4.35)

where the quantity λ is known as the Liapunov exponent. Clearly, in this case, λ

measures the strength of the exponential convergence of the two trajectories in

phase-space. Of course, the graph of log(|δv|) versus ∆t is not exactly a straight-

line. There are deviations due to the fact that δv oscillates, as well as decays, in

time. There are also deviations because the strength of the exponential conver-

gence between the two trajectories varies along the attractor.

The above definition of the Liapunov exponent is rather inexact, for two main

reasons. In the first place, the strength of the exponential convergence/divergence

between two neighbouring trajectories in phase-space, one of which is an attrac-

tor, generally varies along the attractor. Hence, we should really take formula

176

4.10 Sensitivity to Initial Conditions 4 THE CHAOTIC PENDULUM

(4.35) and somehow average it over the attractor, in order to obtain a more

unambiguous definition of λ. In the second place, since the dynamical system

under investigation is a second-order system, it actually possesses two different

Liapunov exponents. Consider the evolution of an infinitesimal circle of per-

turbed initial conditions, centred on a point in phase-space lying on an attrac-

tor. During its evolution, the circle will become distorted into an infinitesimal

ellipse. Let δk, where k = 1, 2, denote the phase-space length of the kth princi-

pal axis of the ellipse. The two Liapunov exponents, λ1 and λ2, are defined via

δk(∆t) ≃ δk(0) exp(λk ∆t). However, for large ∆t the diameter of the ellipse is

effectively controlled by the Liapunov exponent with the most positive real part.

Hence, when we refer to the Liapunov exponent, λ, what we generally mean is

the Liapunov exponent with the most positive real part.

Figure 50 shows the time evolution of the v-component of the phase-space

separation, δv, between two neighbouring trajectories, one of which is the period-

8 attractor illustrated in Fig. 46. It can be seen that δv decays in time, though not

as rapidly as in Fig. 49. Another way of saying this is that the Liapunov exponent

of the periodic attractor shown in Fig. 46 is negative (i.e., it has a negative real

part), though not as negative as that of the periodic attractor shown in Fig. 45.

Figure 51 shows the time evolution of the v-component of the phase-space

separation, δv, between two neighbouring trajectories, one of which is the period-

16 attractor illustrated in Fig. 47. It can be seen that δv decays weakly in time.

In other words, the Liapunov exponent of the periodic attractor shown in Fig. 47

is small and negative.

Finally, Fig. 52 shows the time evolution of the v-component of the phase-

space separation, δv, between two neighbouring trajectories, one of which is

the chaotic attractor illustrated in Fig. 48. It can be seen that δv increases in

time. In other words, the Liapunov exponent of the chaotic attractor shown in

Fig. 48 is positive. Further investigation reveals that, as the control parameter Q

is gradually increased, the Liapunov exponent changes sign and becomes positive

at exactly the same point that chaos ensues in Fig 44.

The above discussion strongly suggests that periodic attractors are character-

ized by negative Liapunov exponents, whereas chaotic attractors are character-

177

4.10 Sensitivity to Initial Conditions 4 THE CHAOTIC PENDULUM

ized by positive exponents. But, how can an attractor have a positive Liapunov ex-

ponent? Surely, a positive exponent necessarily implies that neighbouring phase-

space trajectories diverge from the attractor (and, hence, that the attractor is not a

true attractor)? It turns out that this is not the case. The chaotic attractor shown

in Fig. 48 is a true attractor, in the sense that neighbouring trajectories rapidly

converge onto it—i.e., after a few periods of the external drive their Poincaré sec-

tions plot out the same four-line segment shown in Fig. 48. Thus, the exponential

divergence of neighbouring trajectories, characteristic of chaotic attractors, takes

place within the attractor itself. Obviously, this exponential divergence must come

to an end when the phase-space separation of the trajectories becomes compara-

ble to the extent of the attractor.

A dynamical system characterized by a positive Liapunov exponent, λ, has a

time horizon beyond which regular deterministic prediction breaks down. Sup-

pose that we measure the initial conditions of an experimental system very ac-

curately. Obviously, no measurement is perfect: there is always some error δ0

between our estimate and the true initial state. After a time t, the discrepancy

grows to δ(t) ∼ δ0 exp(λ t). Let a be a measure of our tolerance: i.e., a prediction

within a of the true state is considered acceptable. It follows that our prediction

becomes unacceptable when δ ≫ a, which occurs when

t > th ∼
1

λ
ln

(

a

δ0

)

. (4.36)

Note the logarithmic dependence on δ0. This ensures that, in practice, no matter

how hard we work to reduce our initial measurement error, we cannot predict

the behaviour of the system for longer than a few multiples of 1/λ.

It follows, from the above discussion, that chaotic attractors are associated

with motion which is essentially unpredictable. In other words, if we attempt to

integrate the equations of motion of a chaotic system then even the slightest error

made in the initial conditions will be amplified exponentially over time and will

rapidly destroy the accuracy of our prediction. Eventually, all that we will be able

to say is that the motion lies somewhere on the chaotic attractor in phase-space,

but exactly where it lies on the attractor at any given time will be unknown to us.

The hyper-sensitivity of chaotic systems to initial conditions is sometimes called

178

4.11 The Definition of Chaos 4 THE CHAOTIC PENDULUM

the butterfly effect. The idea is that a butterfly flapping its wings in a South

American rain-forest could, in principle, affect the weather in Texas (since the

atmosphere exhibits chaotic dynamics). This idea was first publicized by the

meteorologist Edward Lorenz, who constructed a very crude model of the con-

vection of the atmosphere when it is heated from below by the ground.31 Lorenz

discovered, much to his surprise, that his model atmosphere exhibited chaotic

motion—which, at that time, was virtually unknown to physics. In fact, Lorenz

was essentially the first scientist to fully understand the nature and ramifications

of chaotic motion in physical systems. In particular, Lorenz realized that the

chaotic dynamics of the atmosphere spells the doom of long-term weather fore-

casting: the best one can hope to achieve is to predict the weather a few days in

advance (1/λ for the atmosphere is of order a few days).

4.11 The Definition of Chaos

There is no universally agreed definition of chaos. However, most people would

accept the following working definition:

Chaos is aperiodic time-asymptotic behaviour in a deterministic system

which exhibits sensitive dependence on initial conditions.

This definition contains three main elements:

1. Aperiodic time-asymptotic behaviour—this implies the existence of phase-space

trajectories which do not settle down to fixed points or periodic orbits. For

practical reasons, we insist that these trajectories are not too rare. We also

require the trajectories to be bounded: i.e., they should not go off to infinity.

2. Deterministic—this implies that the equations of motion of the system possess

no random inputs. In other words, the irregular behaviour of the system

arises from non-linear dynamics and not from noisy driving forces.

31E. Lorenz, Deterministic nonperiodic flow, J. Atmospheric Science 20, 130 (1963).

179

4.12 Periodic Windows 4 THE CHAOTIC PENDULUM

Figure 53: The v-coordinate of the Poincaré section of a time-asymptotic orbit plotted against the

quality-factor Q. Data calculated numerically for A = 1.5, ω = 2/3, θ(0) = 0, v(0) = −0.75,

Nacc = 100, and φ = 0.

3. Sensitive dependence on initial conditions—this implies that nearby trajectories

in phase-space separate exponentially fast in time: i.e., the system has a

positive Liapunov exponent.

4.12 Periodic Windows

Let us return to Fig. 44. Recall, that this figure shows the onset of chaos, via

a cascade of period-doubling bifurcations, as the quality-factor Q is gradually

increased. Figure 53 is essentially a continuation of Fig. 44 which shows the full

extent of the chaotic region (in Q-v space). It can be seen that the chaotic region

ends abruptly when Q exceeds a critical value, which is about 1.4215. Beyond this

critical value, the time-asymptotic motion appears to revert to period-1 motion

(i.e., the solid black region collapses to a single curve). It can also be seen that the

chaotic region contains many narrow windows in which chaos reverts to periodic

motion (i.e., the solid black region collapses to n curves, where n is the period of

180

4.12 Periodic Windows 4 THE CHAOTIC PENDULUM

Figure 54: The v-coordinate of the Poincaré section of a time-asymptotic orbit plotted against the

quality-factor Q. Data calculated numerically for A = 1.5, ω = 2/3, θ(0) = 0, v(0) = −0.75,

Nacc = 100, and φ = 0.

the motion) for a short interval in Q. The four widest windows are indicated on

the figure.

Figure 54 is a blow-up of the period-3 window shown in Fig. 53. It can be seen

that the window appears “out of the blue” as Q is gradually increased. However,

it can also be seen that, as Q is further increased, the window breaks down,

and eventually disappears, due to the action of a cascade of period-doubling

bifurcations. The same basic mechanism operates here as in the original period-

doubling cascade, discussed in Sect. 4.9, except that now the orbits are of period

3 · 2n, instead of 2 · 2n. Note that all of the other periodic windows seen in Fig. 53

break down in an analogous manner, as Q is increased.

We now understand how periodic windows break down. But, how do they

appear in the first place? Figures 55–57 show details of the pendulum’s time-

asymptotic motion calculated just before the appearance of the period-3 window

(shown in Fig. 54), just at the appearance of the window, and just after the ap-

181

4.12 Periodic Windows 4 THE CHAOTIC PENDULUM

Figure 55: The Poincaré section of a time-asymptotic orbit. Data calculated numerically for Q =

1.387976, A = 1.5, ω = 2/3, θ(0) = 0, v(0) = −0.75, Nacc = 100, and φ = 0. Also, shown is the

net rotation per period, ∆θ/2π, calculated at the Poincaré phase φ = 0.

Figure 56: The Poincaré section of a time-asymptotic orbit. Data calculated numerically for Q =

1.387977, A = 1.5, ω = 2/3, θ(0) = 0, v(0) = −0.75, Nacc = 100, and φ = 0. Also, shown is the

net rotation per period, ∆θ/2π, calculated at the Poincaré phase φ = 0.

182

4.12 Periodic Windows 4 THE CHAOTIC PENDULUM

Figure 57: The Poincaré section of a time-asymptotic orbit. Data calculated numerically for Q =

1.387978, A = 1.5, ω = 2/3, θ(0) = 0, v(0) = −0.75, Nacc = 100, and φ = 0. Also, shown is the

net rotation per period, ∆θ/2π, calculated at the Poincaré phase φ = 0.

pearance of the window, respectively. It can be seen, from Fig. 55, that just before

the appearance of the window the attractor is chaotic (i.e., its Poincaré section

consists of a line, rather than a discrete set of points), and the time-asymptotic

motion of the pendulum consists of intervals of period-3 motion interspersed with

intervals of chaotic motion. Figure 56 shows that just at the appearance of the

window the attractor loses much of its chaotic nature (i.e., its Poincaré section

breaks up into a series of points), and the chaotic intervals become shorter and

much less frequent. Finally, Fig. 57 shows that just after the appearance of the

window the attractor collapses to a period-3 attractor, and the chaotic intervals

cease altogether. All of the other periodic windows seen in Fig. 53 appear in an

analogous manner to that just described.

According to the above discussion, the typical time-asymptotic motion seen

just prior to the appearance of a period-n window consists of intervals of period-

n motion interspersed with intervals of chaotic motion. This type of behaviour

is called intermittency, and is observed in a wide variety of non-linear systems.

As we move away from the window, in parameter space, the intervals of periodic

motion become gradually shorter and more infrequent. Eventually, they cease

altogether. Likewise, as we move towards the window, the intervals of periodic

motion become gradually longer and more frequent. Eventually, the whole mo-

tion becomes periodic.

183

4.13 Further Investigation 4 THE CHAOTIC PENDULUM

In 1973, Metropolis and co-workers investigated a class of simple mathemati-

cal models which all exhibit a transition to chaos, via a cascade of period-doubling

bifurcations, as some control parameter r is increased.32 They were able to

demonstrate that, for these maps, the order in which stable periodic orbits occur

as r is increased is fixed. That is, stable periodic attractors always occur in the same

sequence as r is varied. This sequence is called the universal or U-sequence. It is

possible to make a fairly convincing argument that any physical system which ex-

hibits a transition to chaos via a sequence of period-doubling bifurcations should

also exhibit the U-sequence of stable periodic attractors. Up to period-6, the U-

sequence is

1, 2, 2 × 2, 6, 5, 3, 2 × 3, 5, 6, 4, 6, 5, 6.

The beginning of this sequence is familiar: periods 1, 2, 2 × 2 are the first stages

of the period-doubling cascade. (The later period-doublings give rise to periods

greater than 6, and so are omitted here). The next periods, 6, 5, 3 correspond to

the first three periodic windows shown in Fig. 53. Period 2× 3 is the first compo-

nent of the period-doubling cascade which breaks up the period-3 window. The

next period, 5, corresponds to the last periodic window shown in Fig. 53. The

remaining periods, 6, 4, 6, 5, 6, correspond to tiny periodic windows, which, in

practice, are virtually impossible to observe. It follows that our driven pendulum

system exhibits the U-sequence of stable periodic orbits fairly convincingly. This

sequence has also been observed experimentally in other, quite different, dynam-

ical systems.33 The existence of a universal sequence of stable periodic orbits

in dynamical systems which exhibit a transition to chaos via a cascade of period-

doubling bifurcations is another indication that chaos is a universal phenomenon.

4.13 Further Investigation

Figure 58 shows the complete bifurcation diagram for the damped, periodically

driven, pendulum (with A = 1.5 and ω = 2/3). It can be seen that the chaotic

32N. Metropolis, M.L. Stein, and P.R. Stein, On finite limit sets for transformations on the unit interval, J. Combin.
Theor. 15, 25 (1973).

33R.H. Simoyi, A. Wolf, and H.L. Swinney, One-dimensional dynamics in a multi-component chemical reaction, Phys.
Rev. Lett. 49, 245 (1982).

184

4.13 Further Investigation 4 THE CHAOTIC PENDULUM

Figure 58: The v-coordinate of the Poincaré section of a time-asymptotic orbit plotted against the

quality-factor Q. Data calculated numerically for A = 1.5, ω = 2/3, θ(0) = 0, v(0) = 0, Nacc = 100,

and φ = 0.

185

4.13 Further Investigation 4 THE CHAOTIC PENDULUM

Figure 59: Equally spaced (in time) points on a time-asymptotic orbit in phase-space. Data calculated

numerically for Q = 1.5, A = 1.5, ω = 2/3, θ(0) = 0, v(0) = 0, and Nacc = 100. Also shown is the

time-asymptotic orbit calculated for the modified initial conditions θ(0) = 0, and v(0) = −1.

region investigated in the previous section is, in fact, the first, and least extensive,

of three different chaotic regions.

The interval between the first and second chaotic regions is occupied by the

period-1 orbits shown in Fig. 59. Note that these orbits differ somewhat from

previously encountered period-1 orbits, because the pendulum executes a com-

plete rotation (either to the left or to the right) every period of the external drive.

Now, an n, l periodic orbit is defined such that

θ(t + n τ) = θ(t) + 2π l

for all t (after the transients have died away). It follows that all of the periodic

orbits which we encountered in previous sections were l = 0 orbits: i.e., their as-

sociated motions did not involve a net rotation of the pendulum. The orbits show

in Fig. 59 are n = 1, l = −1 and n = 1, l = +1 orbits, respectively. The existence

of periodic orbits in which the pendulum undergoes a net rotation, either to the

left or to the right, is another example of spatial symmetry breaking—there is

nothing in the pendulum’s equations of motion which distinguishes between the

two possible directions of rotation.

Figure 60 shows the Poincaré section of a typical attractor in the second chaotic

region shown in Fig. 58. It can be seen that this attractor is far more convoluted

and extensive than the simple 4-line chaotic attractor pictured in Fig. 48. In fact,

186

4.13 Further Investigation 4 THE CHAOTIC PENDULUM

Figure 60: The Poincaré section of a time-asymptotic orbit. Data calculated numerically for Q = 2.13,

A = 1.5, ω = 2/3, θ(0) = 0, v(0) = 0, Nacc = 100, and φ = 0.

the attractor shown in Fig. 60 is clearly a fractal curve. It turns out that virtually

all chaotic attractors exhibit fractal structure.

The interval between the second and third chaotic regions shown in Fig. 58 is

occupied by n = 3, l = 0 periodic orbits. Figure 61 shows the Poincaré section

of a typical attractor in the third chaotic region. It can be seen that this attractor

is even more overtly fractal in nature than that pictured in the previous figure.

Note that the fractal nature of chaotic attractors is closely associated with some

of their unusual properties. Trajectories on a chaotic attractor remain confined

to a bounded region of phase-space, and yet they separate from their neighbours

exponentially fast (at least, initially). How can trajectories diverge endlessly and

still stay bounded? The basic mechanism is described below. If we imagine a

blob of initial conditions in phase-space, then these undergo a series of repeated

stretching and folding episodes, as the chaotic motion unfolds. The stretching is

what gives rise to the divergence of neighbouring trajectories. The folding is what

ensures that the trajectories remain bounded. The net result is a phase-space

structure which looks a bit like filo dough—in other words, a fractal structure.

187

4.13 Further Investigation 4 THE CHAOTIC PENDULUM

Figure 61: The Poincaré section of a time-asymptotic orbit. Data calculated numerically for Q = 3.9,

A = 1.5, ω = 2/3, θ(0) = 0, v(0) = 0, Nacc = 100, and φ = 0.

188

5 POISSON’S EQUATION

5 Poisson’s Equation

5.1 Introduction

In this section, we shall discuss some simple numerical techniques for solving

Poisson’s equation:

∇2u(r) = v(r). (5.1)

Here, u(r) is usually some sort of potential, whereas v(r) is a source term. The

solution to the above equation is generally required in some simply-connected

volume V bounded by a closed surface S. There are two main types of boundary

conditions to Poisson’s equation. In so-called Dirichlet boundary conditions, the

potential u is specified on the bounding surface S. In so-called Neumann bound-

ary conditions, the normal gradient of the potential ∇u · dS is specified on the

bounding surface.

Poisson’s equation is of particular importance in electrostatics and Newtonian

gravity. In electrostatics, we can write the electric field E in terms of an electric

potential φ:

E = −∇φ. (5.2)

The potential itself satisfies Poisson’s equation:

∇2φ = −
ρ

ǫ0

, (5.3)

where ρ(r) is the charge density, and ǫ0 the permittivity of free-space. In New-

tonian gravity, we can write the force f exerted on a unit test mass in terms of a

gravitational potential φ:

f = −∇φ. (5.4)

The potential satisfies Poisson’s equation:

∇2φ = 4π2 G ρ, (5.5)

where ρ(r) is the mass density, and G the universal gravitational constant.

189

5.2 1-D Problem with Dirichlet Boundary Conditions 5 POISSON’S EQUATION

5.2 1-D Problem with Dirichlet Boundary Conditions

As a simple test case, let us consider the solution of Poisson’s equation in one

dimension. Suppose that
d2u(x)

dx2
= v(x), (5.6)

for xl ≤ x ≤ xh, subject to the Dirichlet boundary conditions u(xl) = ul and

u(xh) = uh.

As a first step, we divide the domain xl ≤ x ≤ xh into equal segments whose

vertices are located at the grid-points

xi = xl +
i (xh − xl)

N + 1
, (5.7)

for i = 1, N. The boundaries, xl and xh, correspond to i = 0 and i = N + 1,

respectively.

Next, we discretize the differential term d2u/dx2 on the grid-points. The most

straightforward discretization is

d2u(xi)

dx2
=

ui−1 − 2 ui + ui+1

(δx)2
+ O(δx)2. (5.8)

Here, δx = (xh − xl)/(N + 1), and ui ≡ u(xi). This type of discretization is

termed a second-order, central difference scheme. It is “second-order” because the

truncation error is O(δx)2, as can easily be demonstrated via Taylor expansion. Of

course, an nth order scheme would have a truncation error which is O(δx)n. It is

a “central difference” scheme because it is symmetric about the central grid-point,

xi. Our discretized version of Poisson’s equation takes the form

ui−1 − 2 ui + ui+1 = vi (δx)2, (5.9)

for i = 1, N, where vi ≡ v(xi). Furthermore, u0 = ul and uN+1 = uh.

It is helpful to regard the above set of discretized equations as a matrix equa-

tion. Let u = (u1, u2, · · · , uN) be the vector of the u-values, and let

w = [v1 (δx)2 − ul, v2 (δx)2, v3 (δx)2, · · · , vN−1 (δx)2, vN (δx)2 − uh] (5.10)

190

5.2 1-D Problem with Dirichlet Boundary Conditions 5 POISSON’S EQUATION

be the vector of the source terms. The discretized equations can be written as:

M u = w. (5.11)

The matrix M takes the form

M =





























−2 1 0 0 0 0

1 −2 1 0 0 0

0 1 −2 1 0 0

0 0 1 −2 1 0

0 0 0 1 −2 1

0 0 0 0 1 −2





























(5.12)

for N = 6. The generalization to other N values is fairly obvious. Matrix M

is termed a tridiagonal matrix, since only those elements which lie on the three

leading diagonals are non-zero.

The formal solution to Eq. (5.11) is

u = M−1 w, (5.13)

where M−1 is the inverse matrix to M. Unfortunately, the most efficient general

purpose algorithm for inverting an N×N matrix—namely, Gauss-Jordan elimina-

tion with partial pivoting—requires O(N3) arithmetic operations. It is fairly clear

that this is a disastrous scaling for finite-difference solutions of Poisson’s equation.

Every time we doubled the resolution (i.e., doubled the number of grid-points)

the required cpu time would increase by a factor of about eight. Consequently,

adding a second dimension (which effectively requires the number of grid-points

to be squared) would be prohibitively expensive in terms of cpu time. Fortunately,

there is a well-known trick for inverting an N × N tridiagonal matrix which only

requires O(N) arithmetic operations.

Consider a general N × N tridiagonal matrix equation M u = w. Let a, b,

and c be the vectors of the left, center and right diagonal elements of the matrix,

respectively Note that a1 and cN are undefined, and can be conveniently set to

zero. Our matrix equation can now be written

ai ui−1 + bi ui + ci ui+1 = wi, (5.14)

191

5.2 1-D Problem with Dirichlet Boundary Conditions 5 POISSON’S EQUATION

for i = 1, N. Let us search for a solution of the form

ui+1 = xi ui + yi. (5.15)

Substitution into Eq. (5.14) yields

ai ui−1 + bi ui + ci (xi ui + yi) = wi, (5.16)

which can be rearranged to give

ui = −
ai ui−1

bi + ci xi

+
wi − ci yi

bi + ci xi

. (5.17)

However, if Eq. (5.15) is general then we can write ui = xi−1 ui−1 + yi−1. Com-

parison with the previous equation yields

xi−1 = −
ai

bi + ci xi

, (5.18)

and

yi−1 =
wi − ci yi

bi + ci xi

. (5.19)

We can now solve our tridiagonal matrix equation in two stages. In the first stage,

we scan up the leading diagonal from i = N to 1 using Eqs. (5.18) and (5.19).

Thus,

xN−1 = −
aN

bN

, yN−1 =
wN

bN

, (5.20)

since cN = 0. Furthermore,

xi = −
ai+1

bi+1 + ci+1 xi+1

, yi =
wi+1 − ci+1 yi+1

bi+1 + ci+1 xi+1

(5.21)

for i = N − 2, 1. Finally,

x0 = 0, y0 =
w1 − c1 y1

b1 + c1 x1

, (5.22)

since a1 = 0. We have now defined all of the xi and yi. In the second stage, we

scan down the leading diagonal from i = 0 to N − 1 using Eq. (5.15). Thus,

u1 = y0, (5.23)

192

5.3 An Example Tridiagonal Matrix Solving Routine 5 POISSON’S EQUATION

since x0 = 0, and

ui+1 = xi ui + yi (5.24)

for i = 1, N − 1. We have now inverted our tridiagonal matrix equation using

O(N) arithmetic operations.

Clearly, we can use the above algorithm to invert Eq. (5.11), with the source

terms specified in Eq. (5.10), and the diagonals of matrix M given by ai = 1 for

i = 2, N, plus bi = −2 for i = 1, N, and ci = 1 for i = 1, N − 1.

5.3 An Example Tridiagonal Matrix Solving Routine

Listed below is an example tridiagonal matrix solving routine which utilizes the
Blitz++ library (see Sect. 2.20).

// Tridiagonal.cpp

// Function to invert tridiagonal matrix equation.

// Left, centre, and right diagonal elements of matrix

// stored in arrays a, b, c, respectively.

// Right-hand side stored in array w.

// Solution written to array u.

// Matrix is NxN. Arrays a, b, c, w, u assumed to be of extent N+2,

// with redundant 0 and N+1 elements.

#include <blitz/array.h>

using namespace blitz;

void Tridiagonal (Array<double,1> a, Array<double,1> b, Array<double,1> c,

Array<double,1> w, Array<double,1>& u)

{

// Find N. Declare local arrays.

int N = a.extent(0) - 2;

Array<double,1> x(N), y(N);

// Scan up diagonal from i = N to 1

x(N-1) = - a(N) / b(N);

y(N-1) = w(N) / b(N);

for (int i = N-2; i > 0; i--)

193

5.4 1-D problem with Mixed Boundary Conditions 5 POISSON’S EQUATION

{

x(i) = - a(i+1) / (b(i+1) + c(i+1) * x(i+1));

y(i) = (w(i+1) - c(i+1) * y(i+1)) / (b(i+1) + c(i+1) * x(i+1));

}

x(0) = 0.;

y(0) = (w(1) - c(1) * y(1)) / (b(1) + c(1) * x(1));

// Scan down diagonal from i = 0 to N-1

u(1) = y(0);

for (int i = 1; i < N; i++)

u(i+1) = x(i) * u(i) + y(i);

}

5.4 1-D problem with Mixed Boundary Conditions

Previously, we solved Poisson’s equation in one dimension subject to Dirichlet

boundary conditions, which are the simplest conceivable boundary conditions.

Let us now consider the following much more general set of boundary conditions:

αl u(x) + βl

du(x)

dx
= γl, (5.25)

at x = xl, and

αh u(x) + βh

du(x)

dx
= γh, (5.26)

at x = xh. Here, αl, βl, etc., are known constants. The above boundary conditions

are termed mixed, since they are a mixture of Dirichlet and Neumann boundary

conditions.

Using the previous notation, the discretized versions of Eq. (5.25) and (5.26)

are:

αl u0 + βl

u1 − u0

δx
= γl, (5.27)

αh uN+1 + βh

uN+1 − uN

δx
= γh, (5.28)

respectively. The above expressions can be rearranged to give

u0 =
γl δx − βl u1

αl δx − βl

, (5.29)

194

5.5 An Example 1-D Poisson Solving Routine 5 POISSON’S EQUATION

uN+1 =
γh δx + βh uN

αh δx + βh

. (5.30)

Using Eqs. (5.8), (5.29), and (5.30), the problem can be reduced to a tridiag-

onal matrix equation M u = w, where the left, center, and right diagonals of M

possess the elements ai = 1 for i = 2, N, with

b1 = −2 −
βl

αl δx − βl

, (5.31)

and bi = −2 for i = 2, N − 1, plus

bN = −2 +
βh

αh δx + βh

, (5.32)

and ci = 1 for i = 1, N − 1, respectively. The elements of the right-hand side are

w1 = v1 (δx)2 −
γl δx

αl δx − βl

, (5.33)

with wi = vi (δx)2 for i = 2, N − 1, and

wN = vN (δx)2 −
γh δx

αh δx + βh

. (5.34)

Our tridiagonal matrix equation can be inverted using the algorithm discussed

previously.

5.5 An Example 1-D Poisson Solving Routine

Listed below is an example 1-d Poisson solving routine which utilizes the previ-
ously listed tridiagonal matrix solver and the Blitz++ library (see Sect. 2.20).

// Poisson1D.cpp

// Function to solve Poisson’s equation in 1-d:

// d^2 u / dx^2 = v for xl <= x <= xh

195

5.5 An Example 1-D Poisson Solving Routine 5 POISSON’S EQUATION

// alpha_l u + beta_l du/dx = gamma_l at x=xl

// alpha_h u + beta_h du/dx = gamma_h at x=xh

// Arrays u and v assumed to be of extent N+2.

// Now, ith elements of arrays correspond to

// x_i = xl + i * dx i=0,N+1

// Here, dx = (xh - xl) / (N+1) is grid spacing.

#include <blitz/array.h>

using namespace blitz;

void Tridiagonal (Array<double,1> a, Array<double,1> b, Array<double,1> c,

Array<double,1> w, Array<double,1>& u);

void Poisson1D (Array<double,1>& u, Array<double,1> v,

double alpha_l, double beta_l, double gamma_l,

double alpha_h, double beta_h, double gamma_h,

double dx)

{

// Find N. Declare local arrays.

int N = u.extent(0) - 2;

Array<double,1> a(N+2), b(N+2), c(N+2), w(N+2);

// Initialize tridiagonal matrix

for (int i = 2; i <= N; i++) a(i) = 1.;

for (int i = 1; i <= N; i++) b(i) = -2.;

b(1) -= beta_l / (alpha_l * dx - beta_l);

b(N) += beta_h / (alpha_h * dx + beta_h);

for (int i = 1; i <= N-1; i++) c(i) = 1.;

// Initialize right-hand side vector

for (int i = 1; i <= N; i++)

w(i) = v(i) * dx * dx;

w(1) -= gamma_l * dx / (alpha_l * dx - beta_l);

w(N) -= gamma_h * dx / (alpha_h * dx + beta_h);

// Invert tridiagonal matrix equation

Tridiagonal (a, b, c, w, u);

// Calculate i=0 and i=N+1 values

196

5.6 An Example Solution of Poisson’s Equation in 1-D 5 POISSON’S EQUATION

u(0) = (gamma_l * dx - beta_l * u(1)) /

(alpha_l * dx - beta_l);

u(N+1) = (gamma_h * dx + beta_h * u(N)) /

(alpha_h * dx + beta_h);

}

5.6 An Example Solution of Poisson’s Equation in 1-D

Let us now solve Poisson’s equation in one dimension, with mixed boundary con-

ditions, using the finite difference technique discussed above. We seek the solu-

tion of
d2u(x)

dx2
= v(x), (5.35)

in the region 0 ≤ x ≤ 1, with v(x) = 1 − 2 x2. The boundary conditions at xl = 0

and xh = 1 take the mixed form specified in Eqs. (5.25) and (5.26). Of course,

we can solve this problem analytically. In fact,

u(x) = g + h x +
x2

2
−

x4

6
, (5.36)

where

g =
γl (αh + βh) − βl [γh − (αh + βh)/3]

αl αh + αl βh − βl αh

, (5.37)

h =
αl [γh − (αh + βh)/3] − γl αh

αl αh + αl βh − βl αh

. (5.38)

Figure 62 shows a comparison between the analytic and finite difference solutions

for N = 100. It can be seen that the finite difference solution mirrors the analytic

solution almost exactly.

5.7 2-D problem with Dirichlet Boundary Conditions

Let us consider the solution of Poisson’s equation in two dimensions. Suppose

that
∂2u(x, y)

∂x2
+

∂2u(x, y)

∂y2
= v(x, y), (5.39)

197

5.7 2-D problem with Dirichlet Boundary Conditions 5 POISSON’S EQUATION

Figure 62: Solution of Poisson’s equation in one dimension with v = 1 − 2 x2, αl = 1, βl = −1,

γl = 1, αh = 1, βh = 1, and γh = 1. The dotted curve (obscured) shows the analytic solution,

whereas the open triangles show the finite difference solution for N = 100.

for xl ≤ x ≤ xh, and 0 ≤ y ≤ L. By direct analogy with our previous method of so-

lution in the 1-d case, we could discretize the above 2-d problem using a second-

order, central difference scheme in both the x- and y-directions. Unfortunately,

such a discretization scheme yields a set of equations which cannot be reduced

to a simple tridiagonal matrix equation. In fact, all of the efficient numerical al-

gorithms for solving this type of problem are iterative in nature. For instance, the

Jacobi method, the Gauss-Seidel method, the successive over-relaxation method,

and the multi-grid method.34 Regrettably, unless such iteration methods are ex-

tremely sophisticated (e.g., the multi-grid method), and, hence, beyond the scope

of this course, they tend to converge very poorly. In the following, rather than

discuss iterative methods which do not work very well, we shall instead discuss

a non-iterative method which works effectively for a restricted set of problems.

The method in question is termed a spectral method, since it involves expanding

u and v as truncated Fourier series in the y-direction.

Suppose that u(x, y) satisfies mixed boundary conditions in the x-direction:

34See Numerical recipes in C: the art of scientific computing, W.H. Press, S.A. Teukolsky, W.T. Vettering, and B.R. Flan-
nery (Cambridge University Press, Cambridge, England, 1992), Sect. 19.5.

198

5.7 2-D problem with Dirichlet Boundary Conditions 5 POISSON’S EQUATION

i.e.,

αl u(x, y) + βl

∂u(x, y)

∂x
= γl(y), (5.40)

at x = xl, and

αh u(x, y) + βh

∂u(x, y)

∂x
= γh(y), (5.41)

at x = xh. Here, αl, βl, etc., are known constants, whereas γl, γh are known

functions of y. Furthermore, suppose that u(x, y) satisfies the following simple

Dirichlet boundary conditions in the y-direction:

u(x, 0) = u(x, L) = 0. (5.42)

Note that, since u(x, y) is a potential, and, hence, probably undetermined to

an arbitrary additive constant, the above boundary conditions are equivalent to

demanding that u take the same constant value on both the upper and lower

boundaries in the y-direction.

Let us write u(x, y) as a Fourier series in the y-direction:

u(x, y) =

∞∑

j=0

Uj(x) sin(j π y/L). (5.43)

Note that the above expression for u automatically satisfies the boundary con-

ditions in the y-direction. The sin(j π y/L) functions are orthogonal, and form a

complete set, in the interval y = 0, L. In fact,

2

L

∫L

0

sin(j π y/L) sin(k π y/L) dy = δjk. (5.44)

Thus, we can write the source term as

v(x, y) =

∞∑

j=0

Vj(x) sin(j π y/L), (5.45)

where

Vj(x) =
2

L

∫L

0

v(x, y) sin(j π y/L) dy. (5.46)

199

5.7 2-D problem with Dirichlet Boundary Conditions 5 POISSON’S EQUATION

Furthermore, the boundary conditions in the x-direction become

αl Uj(x) + βl

dUj(x)

dx
= Γl j, (5.47)

at x = xl, and

αh Uj(x) + βh

dUj(x)

dx
= Γh j, (5.48)

at x = xh, where

Γl j =
2

L

∫L

0

γl(y) sin(j π y/L) dy, (5.49)

etc.

Substituting Eqs. (5.43) and (5.45) into Eq. (5.39), and equating the coeffi-

cients of the sin(j π y/L) (since these functions are orthogonal), we obtain

d2Uj(x)

dx2
−

j2 π2

L2
Uj(x) = Vj(x), (5.50)

for j = 0,∞. Now, we can discretize the problem in the y-direction by truncating

our Fourier expansion: i.e., by only solving the above equations for j = 0, J, rather

than j = 0,∞. This is essentially equivalent to discretization in the y-direction

on the equally-spaced grid-points yj = j L/J. The problem is discretized in the x-

direction by dividing the domain into equal segments, according to Eq. (5.7), and

approximating d2/dx2 via the second-order, central difference scheme specified

in Eq. (5.8). Thus, we obtain

Ui−1,j − (2 + j2 κ2) Ui,j + Ui+1,j = Vi,j (δx)2, (5.51)

for i = 1, N and j = 0, J. Here, Ui,j ≡ Uj(xi), Vi,j ≡ Vj(xi), and κ = π δx/L. The

boundary conditions (5.47) and (5.48) discretize to give:

U0,j =
Γl j δx − βl U1,j

αl δx − βl

, (5.52)

UN+1,j =
Γh j δx + βh UN,j

αh δx + βh

, (5.53)

for j = 0, J. Eqs. (5.51), (5.52), and (5.53) constitute a set of J + 1 uncoupled

tridiagonal matrix equations (with one equation for each separate j value). These

200

5.8 2-d Problem with Neumann Boundary Conditions 5 POISSON’S EQUATION

equations can be inverted, using the algorithm discussed in Sect. 5.4, to give the

Ui,j. Finally, the u(xi, yj) values can be reconstructed from Eq. (5.43). Hence, we

have solved the problem.

5.8 2-d Problem with Neumann Boundary Conditions

Let us redo the above calculation, replacing the Dirichlet boundary conditions

(5.42) with the following simple Neumann boundary conditions:

∂u(x, y = 0)

∂y
=

∂u(x, y = L)

∂y
= 0. (5.54)

In this case, we can express u(x, y) in the form

u(x, y) =

∞∑

j=0

Uj(x) cos(j π y/L), (5.55)

which automatically satisfies the boundary conditions in the y-direction. Like-

wise, we can write the source term v(x, y) as

v(x, y) =

∞∑

j=0

Vj(x) cos(j π y/L), (5.56)

where

Vj(x) =
2

L

∫L

0

v(x, y) cos(j π y/L) dy, (5.57)

since
2

L

∫L

0

cos(j π y/L) cos(k π y/L) dy = δjk. (5.58)

Finally, the boundary conditions in the x-direction become

αl Uj(x) + βl

dUj(x)

dx
= Γl j, (5.59)

at x = xl, and

αh Uj(x) + βh

dUj(x)

dx
= Γh j, (5.60)

201

5.9 The Fast Fourier Transform 5 POISSON’S EQUATION

at x = xh, where

Γl j =
2

L

∫L

0

γl(y) cos(j π y/L) dy, (5.61)

etc. Note, however, that the factor in front of the integrals in Eqs. (5.57) and

(5.61) takes the special value 1/L for the j = 0 harmonic.

As before, we truncate the Fourier expansion in the y-direction, and discretize

in the x-direction, to obtain the set of tridiagonal matrix equations specified in

Eqs. (5.51), (5.52), and (5.53). We can solve these equations to obtain the Ui,j,

and then reconstruct the u(xi, yj) from Eq. (5.55). Hence, we have solved the

problem.

5.9 The Fast Fourier Transform

The method outlined in Sect. 5.7 for solving Poisson’s equation in 2-d with simple

Dirichlet boundary conditions in the y-direction requires us to perform very many

Fourier-sine transforms:

FS
j =

2

J

J−1∑

k=1

fk sin(j k π/J) (5.62)

for j = 0, J, and inverse Fourier-sine transforms:

fj =

J−1∑

k=1

FS
k sin(j k π/J). (5.63)

Here, fj is the value of f(y) at yj = j L/J. Thus, Eq. (5.62) is analogous to

Eqs. (5.46) and (5.49), whereas Eq. (5.63) can be used to reconstruct the u(xi, yj)

from the Ui,j. Likewise, the method outlined in Sect. 5.8 for solving Poisson’s

equation in 2-d with simple Neumann boundary conditions in the y-direction

requires us to perform very many Fourier-cosine transforms:

FC
j =

f0

J
+

2

J

J−1∑

k=1

fk cos(j k π/J) +
(−1)j fJ

J
(5.64)

202

5.9 The Fast Fourier Transform 5 POISSON’S EQUATION

for j = 0, J, and inverse Fourier-cosine transforms:

fj =

J∑

k=0

FC
k cos(j k π/J). (5.65)

Unfortunately, performing such transforms directly requires O(J2) arithmetic op-

erations, which means that they are extremely expensive in terms of cpu resources.

There is, however, an ingenious algorithm for performing Fourier transforms

which only takes O(J ln J) arithmetic operations [which is much less than O(J2)

operations when J is large]. This algorithm is known as the fast Fourier transform

or FFT.35

The details of the FFT algorithm lie beyond the scope of this course. Roughly

speaking, the algorithm works by building up the transform in stages using 2, 4,

8, 16, etc. grid-points. In this course, we shall employ the best-known publicly

available FFT library, called the fftw library,36 to perform all of our Fourier-sine

and -cosine transforms. Unfortunately, the fftw library does not directly calcu-

late Fourier-sine and -cosine transforms.37 Instead, it calculates complex Fourier

transforms:

Fj =
1

2J

2J−1∑

k=0

fk exp(−i j k π/J) (5.66)

for j = 0, 2J − 1, and complex inverse Fourier transforms:

fj =

2J−1∑

k=0

Fk exp(i j k π/J). (5.67)

Note that fj and Fj are periodic in j with period 2 J. Note, further, that the data-

sets associated with complex Fourier transforms contain twice as many elements

as the data-sets associated with sine and cosine transforms. However, we can

easily convert a sine or cosine transform into a complex transform by extending

its data-set. Thus, for a sine transform we write:

f2J−j = −fj, (5.68)

F2J−j = −Fj, (5.69)

35See Numerical recipes in C: the art of scientific computing, W.H. Press, S.A. Teukolsky, W.T. Vettering, and B.R. Flan-
nery (Cambridge University Press, Cambridge, England, 1992), Sect. 12.2.

36See http://www.fftw.org
37This is the case for version 2 of the library (which is the version used in this course), but not version 3.

203

5.9 The Fast Fourier Transform 5 POISSON’S EQUATION

for j = 1, J − 1, in which case

FS
j = 2 i Fj. (5.70)

Likewise, for a cosine transform we write:

f2J−j = fj, (5.71)

F2J−j = Fj, (5.72)

for j = 1, J − 1, in which case

FC
j = 2 Fj. (5.73)

Listed below are a set of wrapper routines which employ the fftw library to
perform Fourier-sine and -cosine transforms.

// FFT.cpp

// Set of functions to calculate Fourier-cosine and -sine transforms

// of real data using fftw Fast-Fourier-Transform library.

// Input/ouput arrays are assumed to be of extent J+1.

// Uses version 2 of fftw library (incompatible with vs 3).

#include <fftw.h>

#include <blitz/array.h>

using namespace blitz;

// Calculates Fourier-cosine transform of array f in array F

void fft_forward_cos (Array<double,1> f, Array<double,1>& F)

{

// Find J. Declare local arrays.

int J = f.extent(0) - 1;

int N = 2 * J;

fftw_complex ff[N], FF[N];

// Load and extend data

c_re (ff[0]) = f(0); c_im (ff[0]) = 0.;

c_re (ff[J]) = f(J); c_im (ff[J]) = 0.;

for (int j = 1; j < J; j++)

{

c_re (ff[j]) = f(j); c_im (ff[j]) = 0.;

c_re (ff[2*J-j]) = f(j); c_im (ff[2*J-j]) = 0.;

}

204

5.9 The Fast Fourier Transform 5 POISSON’S EQUATION

// Call fftw routine

fftw_plan p = fftw_create_plan (N, FFTW_FORWARD, FFTW_ESTIMATE);

fftw_one (p, ff, FF);

fftw_destroy_plan (p);

// Unload data

F(0) = c_re (FF[0]); F(J) = c_re (FF[J]);

for (int j = 1; j < J; j++)

{

F(j) = 2. * c_re (FF[j]);

}

// Normalize data

F /= 2. * double (J);

}

// Calculates inverse Fourier-cosine transform of array F in array f

void fft_backward_cos (Array<double,1> F, Array<double,1>& f)

{

// Find J. Declare local arrays.

int J = f.extent(0) - 1;

int N = 2 * J;

fftw_complex ff[N], FF[N];

// Load and extend data

c_re (FF[0]) = F(0); c_im (FF[0]) = 0.;

c_re (FF[J]) = F(J); c_im (FF[J]) = 0.;

for (int j = 1; j < J; j++)

{

c_re (FF[j]) = F(j) / 2.; c_im (FF[j]) = 0.;

FF[2*J-j] = FF[j];

}

// Call fftw routine

fftw_plan p = fftw_create_plan (N, FFTW_BACKWARD, FFTW_ESTIMATE);

fftw_one (p, FF, ff);

fftw_destroy_plan (p);

// Unload data

f(0) = c_re (ff[0]); f(J) = c_re (ff[J]);

for (int j = 1; j < J; j++)

{

f(j) = c_re (ff[j]);

}

}

205

5.9 The Fast Fourier Transform 5 POISSON’S EQUATION

// Calculates Fourier-sine transform of array f in array F

void fft_forward_sin (Array<double,1> f, Array<double,1>& F)

{

// Find J. Declare local arrays.

int J = f.extent(0) - 1;

int N = 2 * J;

fftw_complex ff[N], FF[N];

// Load and extend data

c_re (ff[0]) = 0.; c_im (ff[0]) = 0.;

c_re (ff[J]) = 0.; c_im (ff[J]) = 0.;

for (int j = 1; j < J; j++)

{

c_re (ff[j]) = f(j); c_im (ff[j]) = 0.;

c_re (ff[2*J-j]) = - f(j); c_im (ff[2*J-j]) = 0.;

}

// Call fftw routine

fftw_plan p = fftw_create_plan (N, FFTW_FORWARD, FFTW_ESTIMATE);

fftw_one (p, ff, FF);

fftw_destroy_plan (p);

// Unload data

F(0) = 0.; F(J) = 0.;

for (int j = 1; j < J; j++)

{

F(j) = - 2. * c_im (FF[j]);

}

// Normalize data

F /= 2. * double (J);

}

// Calculates inverse Fourier-sine transform of array F in array f

void fft_backward_sin (Array<double,1> F, Array<double,1>& f)

{

// Find J. Declare local arrays.

int J = f.extent(0) - 1;

int N = 2 * J;

fftw_complex ff[N], FF[N];

// Load and extend data

c_re (FF[0]) = 0.; c_im (FF[0]) = 0.;

c_re (FF[J]) = 0.; c_im (FF[J]) = 0.;

206

5.10 An Example 2-D Poisson Solving Routine 5 POISSON’S EQUATION

for (int j = 1; j < J; j++)

{

c_re (FF[j]) = 0.; c_im (FF[j]) = - F(j) / 2.;

c_re (FF[2*J-j]) = 0.; c_im (FF[2*J-j]) = F(j) / 2.;

}

// Call fftw routine

fftw_plan p = fftw_create_plan (N, FFTW_BACKWARD, FFTW_ESTIMATE);

fftw_one (p, FF, ff);

fftw_destroy_plan (p);

// Unload data

f(0) = 0.; f(J) = 0.;

for (int j = 1; j < J; j++)

{

f(j) = c_re (ff[j]);

}

}

5.10 An Example 2-D Poisson Solving Routine

Listed below is an example 2-d Poisson solving routine which employs the previ-
ously listed tridiagonal matrix inversion and FFT wrapper routines, as well as the
Blitz++ library.

// Poisson2d.cpp

// Function to solve Poisson’s equation in 2-d:

// d^2 u / dx^2 + d^2 u / dy^2 = v for xl <= x <= xh and 0 <= y <= L

// alphaL u + betaL du/dx = gammaL(y) at x=xl

// alphaH u + betaH du/dx = gammaH(y) at x=xh

// In y-direction, either simple Dirichlet boundary conditions:

// u(x,0) = u(x,L) = 0

// or simple Neumann boundary conditions:

// du/dy(x,0) = du/dy(x,L) = 0

207

5.10 An Example 2-D Poisson Solving Routine 5 POISSON’S EQUATION

// Matrices u and v assumed to be of extent N+2, J+1.

// Arrays gammaL, gammaH assumed to be of extent J+1.

// Now, (i,j)th elements of matrices correspond to

// x_i = xl + i * dx i=0,N+1

// y_j = j * L / J j=0,J

// Here, dx = (xh - xl) / (N+1) is grid spacing in x-direction.

// Now, kappa = pi * dx / L

// Finally, Neumann=0/1 selects Dirichlet/Neumann bcs in y-direction.

#include <blitz/array.h>

using namespace blitz;

void fft_forward_cos (Array<double,1> f, Array<double,1>& F);

void fft_backward_cos (Array<double,1> F, Array<double,1>& f);

void fft_forward_sin (Array<double,1> f, Array<double,1>& F);

void fft_backward_sin (Array<double,1> F, Array<double,1>& f);

void Tridiagonal (Array<double,1> a, Array<double,1> b, Array<double,1> c,

Array<double,1> w, Array<double,1>& u);

void Poisson2D (Array<double,2>& u, Array<double,2> v,

double alphaL, double betaL, Array<double,1> gammaL,

double alphaH, double betaH, Array<double,1> gammaH,

double dx, double kappa, int Neumann)

{

// Find N and J. Declare local arrays.

int N = u.extent(0) - 2;

int J = u.extent(1) - 1;

Array<double,2> V(N+2, J+1), U(N+2, J+1);

Array<double,1> GammaL(J+1), GammaH(J+1);

// Fourier transform boundary conditions

if (Neumann)

{

fft_forward_cos (gammaL, GammaL);

fft_forward_cos (gammaH, GammaH);

}

else

208

5.10 An Example 2-D Poisson Solving Routine 5 POISSON’S EQUATION

{

fft_forward_sin (gammaL, GammaL);

fft_forward_sin (gammaH, GammaH);

}

// Fourier transform source term

for (int i = 1; i <= N; i++)

{

Array<double,1> In(J+1), Out(J+1);

for (int j = 0; j <= J; j++) In(j) = v(i, j);

if (Neumann)

fft_forward_cos (In, Out);

else

fft_forward_sin (In, Out);

for (int j = 0; j <= J; j++) V(i, j) = Out(j);

}

// Solve tridiagonal matrix equations

if (Neumann)

{

for (int j = 0; j <= J; j++)

{

Array<double,1> a(N+2), b(N+2), c(N+2), w(N+2), uu(N+2);

// Initialize tridiagonal matrix

for (int i = 2; i <= N; i++) a(i) = 1.;

for (int i = 1; i <= N; i++)

b(i) = -2. - double (j * j) * kappa * kappa;

b(1) -= betaL / (alphaL * dx - betaL);

b(N) += betaH / (alphaH * dx + betaH);

for (int i = 1; i <= N-1; i++) c(i) = 1.;

// Initialize right-hand side vector

for (int i = 1; i <= N; i++)

w(i) = V(i, j) * dx * dx;

w(1) -= GammaL(j) * dx / (alphaL * dx - betaL);

w(N) -= GammaH(j) * dx / (alphaH * dx + betaH);

// Invert tridiagonal matrix equation

Tridiagonal (a, b, c, w, uu);

for (int i = 1; i <= N; i++) U(i, j) = uu(i);

}

209

5.10 An Example 2-D Poisson Solving Routine 5 POISSON’S EQUATION

}

else

{

for (int j = 1; j < J; j++)

{

Array<double,1> a(N+2), b(N+2), c(N+2), w(N+2), uu(N+2);

// Initialize tridiagonal matrix

for (int i = 2; i <= N; i++) a(i) = 1.;

for (int i = 1; i <= N; i++)

b(i) = -2. - double (j * j) * kappa * kappa;

b(1) -= betaL / (alphaL * dx - betaL);

b(N) += betaH / (alphaH * dx + betaH);

for (int i = 1; i <= N-1; i++) c(i) = 1.;

// Initialize right-hand side vector

for (int i = 1; i <= N; i++)

w(i) = V(i, j) * dx * dx;

w(1) -= GammaL(j) * dx / (alphaL * dx - betaL);

w(N) -= GammaH(j) * dx / (alphaH * dx + betaH);

// Invert tridiagonal matrix equation

Tridiagonal (a, b, c, w, uu);

for (int i = 1; i <= N; i++) U(i, j) = uu(i);

}

for (int i = 1; i <= N ; i++)

{

U(i, 0) = 0.; U(i, J) = 0.;

}

}

// Reconstruct solution via inverse Fourier transform

for (int i = 1; i <= N; i++)

{

Array<double,1> In(J+1), Out(J+1);

for (int j = 0; j <= J; j++) In(j) = U(i, j);

if (Neumann)

fft_backward_cos (In, Out);

else

fft_backward_sin (In, Out);

for (int j = 0; j <= J; j++) u(i, j) = Out(j);

210

5.11 An Example Solution of Poisson’s Equation in 2-D 5 POISSON’S EQUATION

}

// Calculate i=0 and i=N+1 values

for (int j = 0; j <= J; j++)

{

u(0, j) = (gammaL(j) * dx - betaL * u(1, j)) /

(alphaL * dx - betaL);

u(N+1, j) = (gammaH(j) * dx + betaH * u(N, j)) /

(alphaH * dx + betaH);

}

}

5.11 An Example Solution of Poisson’s Equation in 2-D

Let us now use the techniques discussed above to solve Poisson’s equation in two

dimensions. Suppose that the source term is

v(x, y) = 6 x y (1 − y) − 2 x3 (5.74)

for 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1. The boundary conditions at x = 0 are αl = 1,

βl = 0, and γl = 0 [see Eq. (5.40)], whereas the boundary conditions at x = 1

are αh = 1, βh = 0, and γh = y (1 − y) [see Eq. (5.41)]. The simple Dirichlet

boundary conditions u(x, 0) = u(x, 1) = 0 are applied at y = 0 and y = 1. Of

course, this problem can be solved analytically to give

u(x, y) = y (1 − y) x3. (5.75)

Figures 63 and 64 show comparisons between the analytic and finite difference

solutions for N = J = 64. It can be seen that the finite difference solution mirrors

the analytic solution almost exactly.

As a second example, suppose that the source term is

v(x, y) = −2 (2 y3 − 3 y2 + 1) + 6 (1 − x2) (2 y − 1) (5.76)

for 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1. The boundary conditions at x = 0 are αl = 1, βl = 0,

and γl = 2 y3−3 y2+1 [see Eq. (5.40)], whereas the boundary conditions at x = 1

are αh = 1, βh = 0, and γh = 0 [see Eq. (5.41)]. The simple Neumann boundary

211

5.11 An Example Solution of Poisson’s Equation in 2-D 5 POISSON’S EQUATION

Figure 63: Solution of Poisson’s equation in two dimensions with simple Dirichlet boundary condi-

tions in the y-direction. The solution is plotted versus x at y = 0.5. The dotted curve (obscured) shows

the analytic solution, whereas the open triangles show the finite difference solution for N = J = 64.

Figure 64: Solution of Poisson’s equation in two dimensions with simple Dirichlet boundary condi-

tions in the y-direction. The solution is plotted versus y at x = 0.5. The dotted curve (obscured) shows

the analytic solution, whereas the open triangles show the finite difference solution for N = J = 64.

212

5.12 Example 2-D Electrostatic Calculation 5 POISSON’S EQUATION

Figure 65: Solution of Poisson’s equation in two dimensions with simple Neumann boundary condi-

tions in the y-direction. The solution is plotted versus x at y = 0.5. The dotted curve (obscured) shows

the analytic solution, whereas the open triangles show the finite difference solution for N = J = 64.

conditions ∂u(x, 0)/∂y = ∂u(x, 1)/∂y = 0 are applied at y = 0 and y = 1. Of

course, this problem can be solved analytically to give

u(x, y) = (1 − x2) (2 y3 − 3 y2 + 1). (5.77)

Figures 65 and 66 show comparisons between the analytic and finite difference

solutions for N = J = 64. It can be seen that the finite difference solution mirrors

the analytic solution almost exactly.

5.12 Example 2-D Electrostatic Calculation

Let us perform an example 2-d electrostatic calculation. Consider a charged wire

running parallel to the axis of a uniform, hollow, rectangular, conducting channel.

Suppose that the vertices of the channel lie at (x, y) = (0, 0), (0, 1), (1, 0), and

(1, 1). Suppose, further, that the wire carries a uniform charge per unit length of

magnitude unity. The electric potential φ(x, y) inside the channel satisfies [see

213

5.12 Example 2-D Electrostatic Calculation 5 POISSON’S EQUATION

Figure 66: Solution of Poisson’s equation in two dimensions with simple Neumann boundary condi-

tions in the y-direction. The solution is plotted versus y at x = 0.5. The dotted curve (obscured) shows

the analytic solution, whereas the open triangles show the finite difference solution for N = J = 64.

Eq. (5.3)]

∂2φ(x, y)

∂x2
+

∂2φ(x, y)

∂y2
= v(x, y) = −δ(x − x0) δ(y − y0), (5.78)

where (x0, y0) are the coordinates of the wire. Here, we have conveniently nor-

malized our units such that the factor ǫ0 is absorbed into the normalization. As-

suming that the box is grounded, the potential is subject to the Dirichlet boundary

conditions φ = 0 at x = 0, x = 1, y = 0, and y = 1. We require the solution in

the region 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1.

Note that when discretizing Eq. (5.78) the right-hand side becomes

v(xi, yj) = −
1

δx δy
(5.79)

on the grid-point closest to the wire, with v(xi, yj) = 0 on the remaining grid-

points. Here, δx and δy are the grid spacings in the x- and y- directions, respec-

tively.

Figures 67 and 68 show the electric potential φ(x, y) and electric field E =

−∇φ generated by a wire placed at the center of the channel: i.e., (x0, y0) =

214

5.12 Example 2-D Electrostatic Calculation 5 POISSON’S EQUATION

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y

Figure 67: Contour plot of the electric potential generated by a charged wire placed at the center of

a grounded rectangular channel. The wire is located at (x, y) = (0.5, 0.5), whereas the channel walls

are at x = 0, x = 1, y = 0, and y = 1. Calculation performed with N = J = 128.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y

Figure 68: Vector plot showing the direction of the electric field generated by a charged wire placed

at the center of a grounded rectangular channel. The wire is located at (x, y) = (0.5, 0.5), whereas

the channel walls are at x = 0, x = 1, y = 0, and y = 1. Calculation performed with N = J = 128.

215

5.13 3-D Problems 5 POISSON’S EQUATION

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y

Figure 69: Contour plot of the electric potential generated by a charged wire offset from the center

of a grounded rectangular channel. The wire is located at (x, y) = (0.25, 0.5), whereas the channel

walls are at x = 0, x = 1, y = 0, and y = 1. Calculation performed with N = J = 128.

(0.5, 0.5). The calculation was performed with the previously listed 2-d Poisson

solver using N = J = 128.

Figures 69 and 70 show the electric potential φ(x, y) and electric field E =

−∇φ generated by a wire offset from the center of the channel: i.e., (x0, y0) =

(0.25, 0.5). The calculation was performed with the previously listed 2-d Poisson

solver using N = J = 128.

5.13 3-D Problems

The techniques discussed in Sects. 5.7 and 5.8 for solving Poisson’s equation in

two dimensions with a restricted class of boundary conditions can easily be gen-

eralized to three dimensions. In the 3-d case, it is necessary to Fourier transform

in two directions (the y and z directions, say) in order to reduce the problem

to a system of uncoupled tridiagonal matrix equations. These equations can be

inverted in the usual manner, and the solution can then be reconstructed via a

double inverse Fourier transform.

216

5.13 3-D Problems 5 POISSON’S EQUATION

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y

Figure 70: Vector plot showing the direction of the electric field generated by a charged wire offset

from the center of a grounded rectangular channel. The wire is located at (x, y) = (0.25, 0.5), whereas

the channel walls are at x = 0, x = 1, y = 0, and y = 1. Calculation performed with N = J = 128.

217

6 THE DIFFUSION EQUATION

6 The Diffusion Equation

6.1 Introduction

The diffusion equation
∂T(r, t)

∂t
= D∇2T(r, t), (6.1)

where D > 0 is the (uniform) coefficient of diffusion, describes many interesting

physical phenomena. For instance, in heat conduction we can write

q = −κ∇T, (6.2)

where q is the heat flux, T the temperature, and κ the coefficient of thermal con-

ductivity. The above equation merely states that heat flows down a temperature

gradient. In the absence of sinks or sources of heat, energy conservation requires

that

−
∂Q

∂t
=

∫

q · dS, (6.3)

where Q is the thermal energy contained in some volume V bounded by a closed

surface S. The above equation states that the rate of decrease of the thermal

energy content of volume V equals the instantaneous heat flux flowing across its

boundary. However, Q =
∫

c T dV, where c is the heat capacity per unit volume.

Making use of the previous equations, as well as the divergence theorem, we

obtain the following diffusion equation for the temperature:

∂T

∂t
= D∇2T, (6.4)

where D = κ/c. In a typical heat conduction problem, we are given the tem-

perature T(r, t0) at some initial time t0, and then asked to evaluate T(r, t) at all

subsequent times. Such a problem is known as an initial value problem. The spa-

tial boundary conditions can be either of type Dirichlet (i.e., T specified on the

boundary), type Neumann (i.e., ∇T specified on the boundary), or some combi-

nation.

218

6.2 1-D Problem with Mixed Boundary Conditions 6 THE DIFFUSION EQUATION

6.2 1-D Problem with Mixed Boundary Conditions

Consider the solution of the diffusion equation in one dimension. Suppose that

∂T(x, t)

∂t
= D

∂2T(x, t)

∂x2
, (6.5)

for xl ≤ x ≤ xh, subject to the mixed spatial boundary conditions

αl(t) T(x, t) + βl(t)
∂T(x, t)

∂x
= γl(t), (6.6)

at x = xl, and

αh(t) T(x, t) + βh(t)
∂T(x, t)

∂x
= γh(t), (6.7)

at x = xh. Here, αl, βl, etc., are known functions of time. Of course, T(x, t0) must

be specified at some initial time t0.

Equation (6.5) needs to be discretized in both time and space. In time, we

discretize on the equally spaced grid

tn = t0 + n δt, (6.8)

where δt is the time-step. Adopting a simple first-order differencing scheme,

Eq. (6.5) becomes

T(x, tn+1) − T(x, tn)

δt
= D

∂2T(x, tn)

∂x2
+ O(δt). (6.9)

In space, we discretize on the usual equally spaced grid-points specified in Eq. (5.7),

and approximate d2/dx2 via the second-order, central difference scheme intro-

duced in Eq. (5.8). The spatial boundary conditions are discretized in a similar

manner to Eqs. (5.27) and (5.28). Thus, Eq. (6.9) yields

Tn+1
i − Tn

i

δt
= D

Tn
i−1 − 2 Tn

i + Tn
i+1

(δx)2
, (6.10)

or

Tn+1
i = Tn

i + C
(

Tn
i−1 − 2 Tn

i + Tn
i+1

)

(6.11)

219

6.3 An Example 1-D Diffusion Equation Solver 6 THE DIFFUSION EQUATION

for i = 1, N, where Tn
i ≡ T(xi, tn), and C = D δt/(δx)2. The discretized boundary

conditions take the form

Tn
0 =

γn
l δx − βn

l Tn
1

αn
l δx − βn

l

, (6.12)

Tn
N+1 =

γn
h δx + βn

h Tn
N

αn
h δx + βn

h

, (6.13)

where γn
l ≡ γl(tn), etc. The discretization scheme outlined above is termed first-

order in time and second-order in space.

Equations (6.11)–(6.13) constitute a fairly straightforward iterative scheme

which can be used to evolve the T(x, t) in time.

6.3 An Example 1-D Diffusion Equation Solver

Listed below is an example 1-d diffusion equation solving routine which makes
use of the Blitz++ library.

// Diffusion1D.cpp

// Function to evolve diffusion equation in 1-d:

// dT / dt = D d^2 T / dx^2 for xl <= x <= xh

// alpha_l T + beta_l dT/dx = gamma_l at x=xl

// alpha_h T + beta_h dT/dx = gamma_h at x=xh

// Array T assumed to be of extent N+2.

// Now, ith element of array corresponds to

// x_i = xl + i * dx i=0,N+1

// Here, dx = (xh - xl) / (N+1) is grid spacing.

// Function evolves T by single time-step.

// C = D dt / dx^2, where dt is time-step.

220

6.4 An Example 1-D Solution of the Diffusion Equation 6 THE DIFFUSION EQUATION

// Uses explicit scheme.

#include <blitz/array.h>

using namespace blitz;

void Diffusion1D (Array<double,1>& T,

double alpha_l, double beta_l, double gamma_l,

double alpha_h, double beta_h, double gamma_h,

double dx, double C)

{

// Set N. Declare local array.

int N = T.extent(0) - 2;

Array<double,1> T0(N+2);

// Evolve T

T0 = T;

for (int i = 1; i <= N; i++)

T(i) += C * (T0(i-1) - 2. * T0(i) + T0(i+1));

// Set boundary conditions

T(0) = (gamma_l * dx - beta_l * T(1)) / (alpha_l * dx - beta_l);

T(N+1) = (gamma_h * dx + beta_h * T(N)) / (alpha_h * dx + beta_h);

}

6.4 An Example 1-D Solution of the Diffusion Equation

Let us now solve the diffusion equation in 1-d using the finite difference technique

discussed above. We seek the solution of Eq. (6.5) in the region −x0 ≤ x ≤ x0,

subject to the initial condition

T(x, t0) = exp





−x2

4 D t0



 , (6.14)

where t0 > 0. The spatial boundary conditions are

T(±x0, t) =

√

√

√

√

t0

t
exp





−x2
0

4 D t



 . (6.15)

221

6.4 An Example 1-D Solution of the Diffusion Equation 6 THE DIFFUSION EQUATION

Figure 71: Diffusive evolution of a 1-d Gaussian pulse. Numerical calculation performed using D = 1,

x0 = 5, δt = 4 × 10−3, and N = 100. The pulse is evolved from t = 0.1 to t = 1. The solid curve

shows the initial condition at t = 0.1, the dashed curve the numerical solution at t = 1, and the

dotted curve (obscured by the dashed curve) the analytic solution at t = 1.

Of course, we can solve this problem analytically to give

T(x, t) =

√

√

√

√

t0

t
exp





−x2

4 D t



 . (6.16)

Note that the above equation describes a Gaussian pulse which gradually de-

creases in height and broadens in width in such a manner that its area is con-

served. The width of the pulse varies approximately as

∆x ∼
√

D t. (6.17)

Moreover, the pulse approaches a δ-function as t → 0.

Figure 71 shows a comparison between the analytic and numerical solutions

for a calculation performed using D = 1, x0 = 5, t0 = 0.1, δt = 4 × 10−3, and

N = 100. It can be seen that the analytic and numerical solutions are in excellent

agreement.

It is reasonable to expect that as N increases at fixed δt (i.e., the spatial resolu-

tion increases at fixed temporal resolution) the numerical solution should become

222

6.4 An Example 1-D Solution of the Diffusion Equation 6 THE DIFFUSION EQUATION

Figure 72: Diffusive evolution of a 1-d Gaussian pulse. Numerical calculation performed using D = 1,

x0 = 5, δt = 4 × 10−3, and N = 125. The simulation is started at t = 0.1. The top-left, top-right,

bottom-left, and bottom-right panels show the solution at t = 0.45, t = 0.46, t = 0.47, and t = 0.48,

respectively.

223

6.5 von Neumann Stability Analysis 6 THE DIFFUSION EQUATION

more and more accurate. This is indeed the case—at least, until N exceeds a crit-

ical value. Beyond this value, there is a catastrophic breakdown in the numerical

solution. This breakdown is illustrated in Fig. 72. It can be seen that the solu-

tion develops rapidly growing short-wavelength oscillations. Indeed, the solution

eventually becomes effectively infinite. Let us investigate this unusual and rather

disturbing phenomenon.

6.5 von Neumann Stability Analysis

Clearly, our simple finite difference algorithm for solving the 1-d diffusion equa-

tion is subject to a numerical instability under certain circumstances. Let us try

to establish when this instability occurs. Consider the time evolution of a single

Fourier mode of wave-number k:

T(x, t) = T̂(t) e i k x. (6.18)

Substitution of the above expression into our finite difference scheme (6.11)

yields

T̂n+1 e i k xn = T̂n e i k xn
[

1 + C (e−i k δx − 2 + e+i k δx)
]

, (6.19)

or

T̂n+1 = A T̂n, (6.20)

where

A = 1 − 2 C (1 − cos k δx) = 1 − 4 C sin2(k δx/2). (6.21)

Thus, the amplitude of the Fourier mode is amplified by a factor A at each time-

step. In order for the differencing scheme to be stable, the modulus of this ampli-

fication factor must be less than unity for all possible values of k. Now, the largest

possible value of sin2(k δx/2) is unity: hence, the wave-length corresponding to

this value is that of the most unstable Fourier mode. In fact, the most unstable

mode possesses a wave-length which is half the grid-spacing: i.e., λ = δx/2. It

follows from Eq. (6.21) that this mode is stable provided

C <
1

2
. (6.22)

224

6.6 The Crank-Nicholson Scheme 6 THE DIFFUSION EQUATION

Finally, from the definition of C, our stability condition can be written

δt <
(δx)2

2 D
. (6.23)

Note that C = 0.408 for the stable calculation shown in Fig. 71, whereas C =

0.635 for the unstable calculation shown in Fig. 72. Incidentally, the type of

stability analysis outlined above is called von Neumann stability analysis. Note

that the neglect of the spatial boundary conditions in the above calculation is

justified because the unstable modes vary on very small length-scales which are

typically of order the grid spacing.

According to Eq. (6.23), our finite difference scheme for solving the 1-d diffu-

sion equation is only stable provided that the time-step remains below some crit-

ical value. Note that this critical value scales like the square of the grid-spacing.

This is a very unfavorable scaling, since it implies that a doubling of the spatial

resolution requires a simultaneous reduction in the time-step by a factor of four

in order to maintain numerical stability. Certainly, the above constraint limits us

to absurdly small time-steps in high resolution calculations. Is there any way of

overcoming this constraint?

6.6 The Crank-Nicholson Scheme

Let us revisit our temporal differencing scheme:

T(x, tn+1) − T(x, tn)

δt
= D

∂2T(x, tn)

∂x2
+ O(δt). (6.24)

Note that the right-hand side is evaluated entirely at the start of the time-step:

i.e., at tn. This type of temporal differencing scheme is termed an explicit scheme.

Now, explicit schemes are very straightforward to implement, but are also notori-

ously prone to numerical instabilities. Fortunately, we can often overcome these

instabilities by making our differencing scheme implicit in nature. An implicit

scheme is one in which the right-hand side is evaluated partly (or wholly) at the

end of the time-step: i.e., at tn+1. Unfortunately, implicit schemes are generally a

great deal more complicated to implement than explicit schemes.

225

6.7 An Improved 1-D Diffusion Equation Solver 6 THE DIFFUSION EQUATION

The well-known Crank-Nicholson implicit method for solving the diffusion

equation involves taking the average of the right-hand side between the begin-

ning and end of the time-step. In other words,

T(x, tn+1) − T(x, tn)

δt
=

D

2

∂2T(x, tn)

∂x2
+

D

2

∂2T(x, tn+1)

∂x2
+ O(δt)2. (6.25)

As indicated by the error term, this method is actually second-order in time.

Adopting our usual spatial differencing scheme, the above expression yields

Tn+1
i −

C

2

(

Tn+1
i−1 − 2 Tn+1

i + Tn+1
i+1

)

= Tn
i +

C

2

(

Tn
i−1 − 2 Tn

i + Tn
i+1

)

. (6.26)

When we perform a von Neumann stability analysis of the above scheme, we

obtain the following expression for the amplification factor:

A =
1 − 2 C sin2(k δx/2)

1 + 2 C sin2(k δx/2)
. (6.27)

Note that |A| < 1 for all values of k. It follows that the Crank-Nicholson scheme is

unconditionally stable. Unfortunately, Eq. (6.26) constitutes a tridiagonal matrix

equation linking the Tn+1
i and the Tn

i . Thus, the price we pay for the high accuracy

and unconditional stability of the Crank-Nicholson scheme is having to invert a

tridiagonal matrix equation at each time-step. Usually, this price is well worth

paying.

6.7 An Improved 1-D Diffusion Equation Solver

Listed below is an improved 1-d diffusion equation solver which uses the Crank-
Nicholson scheme, as well as the previous listed tridiagonal matrix solver and the
Blitz++ library. Note the great structural similarity between this solver and the
previously listed 1-d Poisson solver (see Sect. 5.5).

// CrankNicholson1D.cpp

// Function to evolve diffusion equation in 1-d:

226

6.7 An Improved 1-D Diffusion Equation Solver 6 THE DIFFUSION EQUATION

// dT / dt = D d^2 T / dx^2 for xl <= x <= xh

// alpha_l T + beta_l dT/dx = gamma_l at x=xl

// alpha_h T + beta_h dT/dx = gamma_h at x=xh

// Array T assumed to be of extent N+2.

// Now, ith element of array corresponds to

// x_i = xl + i * dx i=0,N+1

// Here, dx = (xh - xl) / (N+1) is grid spacing.

// Function evolves T by single time-step.

// C = D dt / dx^2, where dt is time-step.

// Uses Crank-Nicholson implicit scheme.

#include <blitz/array.h>

using namespace blitz;

void Tridiagonal (Array<double,1> a, Array<double,1> b, Array<double,1> c,

Array<double,1> w, Array<double,1>& u);

void CrankNicholson1D (Array<double,1>& T,

double alpha_l, double beta_l, double gamma_l,

double alpha_h, double beta_h, double gamma_h,

double dx, double C)

{

// Find N. Declare local arrays.

int N = T.extent(0) - 2;

Array<double,1> a(N+2), b(N+2), c(N+2), w(N+2);

// Initialize tridiagonal matrix

for (int i = 2; i <= N; i++) a(i) = - 0.5 * C;

for (int i = 1; i <= N; i++) b(i) = 1. + C;

b(1) += 0.5 * C * beta_l / (alpha_l * dx - beta_l);

b(N) -= 0.5 * C * beta_h / (alpha_h * dx + beta_h);

for (int i = 1; i <= N-1; i++) c(i) = - 0.5 * C;

// Initialize right-hand side vector

for (int i = 1; i <= N; i++)

227

6.8 An Improved 1-D Solution of the Diffusion Equation 6 THE DIFFUSION EQUATION

w(i) = T(i) + 0.5 * C * (T(i-1) - 2. * T(i) + T(i+1));

w(1) += 0.5 * C * gamma_l * dx / (alpha_l * dx - beta_l);

w(N) += 0.5 * C * gamma_h * dx / (alpha_h * dx + beta_h);

// Invert tridiagonal matrix equation

Tridiagonal (a, b, c, w, T);

// Calculate i=0 and i=N+1 values

T(0) = (gamma_l * dx - beta_l * T(1)) /

(alpha_l * dx - beta_l);

T(N+1) = (gamma_h * dx + beta_h * T(N)) /

(alpha_h * dx + beta_h);

}

6.8 An Improved 1-D Solution of the Diffusion Equation

Let us now solve the simple diffusion problem introduced in Sect. 6.4 with the

above listed Crank-Nicholson routine. Figure 73 shows a comparison between

the analytic and numerical solutions for a calculation performed using D = 1,

x0 = 5, t0 = 0.1, δt = 0.1, and N = 100. It can be seen that the analytic and

numerical solutions are in excellent agreement. Note, however, that the time-

step used in this calculation (i.e., δt = 0.1) is much larger than that used in our

previous calculation (i.e., δt = 4×10−3), which employed an explicit differencing

scheme—see Fig. 71. According to Eq. (6.23), an explicit scheme is limited to

time-steps less than about 5×10−3 for the problem under investigation. Thus, we

have been able to exceed this limit by a factor of 20 with our implicit scheme, yet

still maintain numerical stability. Note that our Crank-Nicholson scheme is able

to obtain accurate results with a time-step as large as 0.1 because it is second-order

in time.

228

6.9 2-D Problem with Dirichlet Boundary Conditions 6 THE DIFFUSION EQUATION

Figure 73: Diffusive evolution of a 1-d Gaussian pulse. Numerical calculation performed using D = 1,

x0 = 5, δt = 0.1, and N = 100. The pulse is evolved from t = 0.1 to t = 1. The solid curve shows the

initial condition at t = 0.1, the dashed curve the numerical solution at t = 1, and the dotted curve

(obscured by the dashed curve) the analytic solution at t = 1.

6.9 2-D Problem with Dirichlet Boundary Conditions

Let us consider the solution of the diffusion equation in two dimensions. Suppose

that
∂T(x, y, t)

∂t
= D

∂2T(x, y, t)

∂x2
+ D

∂2T(x, y, t)

∂y2
, (6.28)

for xl ≤ x ≤ xh, and 0 ≤ y ≤ L. Suppose that T(x, y, t) satisfies mixed boundary

conditions in the x-direction:

αl(t) T(x, y, t) + βl(t)
∂T(x, y, t)

∂x
= γl(y, t), (6.29)

at x = xl, and

αh(t) T(x, y, t) + βh(t)
∂T(x, y, t)

∂x
= γh(y, t), (6.30)

at x = xh. Here, αl, βl, etc., are known functions of t, whereas γl, γh are known

functions of y and t. Furthermore, suppose that T(x, y, t) satisfies the following

229

6.9 2-D Problem with Dirichlet Boundary Conditions 6 THE DIFFUSION EQUATION

simple Dirichlet boundary conditions in the y-direction:

T(x, 0, t) = T(x, L, t) = 0. (6.31)

As before, we discretize in time on the uniform grid tn = t0 + n δt, for n =

0, 1, 2, · · ·. Furthermore, in the x-direction, we discretize on the uniform grid xi =

xl + i δx, for i = 0, N+1, where δx = (xh −xl)/(N+1). Finally, in the y-direction,

we discretize on the uniform grid yj = j δy, for j = 0, J, where δy = L/J. Adopting

the Crank-Nicholson temporal differencing scheme discussed in Sect. 6.6, and the

second-order spatial differencing scheme outlined in Sect. 5.2, Eq. (6.28) yields

Tn+1
i,j − Tn

i,j

δt
−

D

2

Tn+1
i−1,j − 2 Tn+1

i,j + Tn+1
i+1,j

(δx)2
−

D

2





∂2T

∂y2





n+1

i,j

=

D

2

Tn
i−1,j − 2 Tn

i,j + Tn
i+1,j

(δx)2
+

D

2





∂2T

∂y2





n

i,j

, (6.32)

where Tn
i,j ≡ T(xi, yj, tn). The discretized boundary conditions take the form

Tn
0,j =

γn
l j δx − βn

l Tn
1,j

αn
l δx − βn

l

, (6.33)

Tn
N+1,j =

γn
h j δx + βn

h Tn
N,j

αn
h δx + βn

h

, (6.34)

plus

Tn
i,0 = Tn

i,J = 0. (6.35)

Here, αn
l ≡ αl(tn), etc., and γn

l j ≡ γl(yj, tn), etc.

Adopting the Fourier method introduced in Sect. 5.7, we write the Tn
i,j in terms

of their Fourier-sine harmonics:

Tn
i,j =

J∑

k=0

T̂n
i,k sin(j k π/J), (6.36)

which automatically satisfies the boundary conditions (6.35). The above expres-

sion can be inverted to give (see Sect. 5.9)

T̂n
i,j =

2

J

J∑

k=0

Tn
i,k sin(j k π/J). (6.37)

230

6.10 2-D Problem with Neumann Boundary Conditions 6 THE DIFFUSION EQUATION

When Eq. (6.32) is written in terms of the T̂n
i,j, it reduces to

−
C

2
T̂n+1

i−1,j +
{
1 + C (1 + j2 κ2/2)

}
T̂n+1

i,j −
C

2
T̂n+1

i+1,j =

C

2
T̂n

i−1,j +
{
1 − C (1 + j2 κ2/2)

}
T̂n

i,j +
C

2
T̂n

i+1,j, (6.38)

for i = 1, N, and j = 0, J. Here, C = D δt/(δx)2, and κ = π δx/L. Moreover, the

boundary conditions (6.33) and (6.34) yield

T̂n
0,j =

Γn
l j δx − βn

l T̂n
1,j

αn
l δx − βn

l

, (6.39)

T̂n
N+1,j =

Γn
h j δx + βn

h T̂n
N,j

αn
h δx + βn

h

, (6.40)

where

Γ̂n
l j =

2

J

J∑

k=0

γn
l,k sin(j k π/J), (6.41)

etc. Equations (6.38)—(6.40) constitute a set of J + 1 uncoupled tridiagonal

matrix equations for the T̂n+1
i,j , with one equation for each separate value of j.

In order to advance our solution by one time-step, we first Fourier transform

the Tn
i,j and the boundary conditions, according to Eqs. (6.37) and (6.41). Next,

we invert the J + 1 tridiagonal equations (6.38)—(6.40) to obtain the T̂n+1
i,j . Fi-

nally, we reconstruct the Tn
i,j via Eq. (6.36).

6.10 2-D Problem with Neumann Boundary Conditions

Let us replace the Dirichlet boundary conditions (6.35) by the following simple

Neumann boundary conditions:

∂T(x, 0, t)

∂y
=

∂T(x, L, t)

∂y
= 0. (6.42)

The method of solution outlined in the previous section is unaffected, except

that the Fourier-sine transforms are replaced by Fourier-cosine transforms—see

Sects. 5.8 and 5.9.

231

6.11 An Example 2-D Diffusion Equation Solver 6 THE DIFFUSION EQUATION

6.11 An Example 2-D Diffusion Equation Solver

Listed below is an example 2-d diffusion equation solver which uses the Crank-
Nicholson scheme, as well as the previous listed tridiagonal matrix solver and the
Blitz++ library. Note the great structural similarity between this solver and the
previously listed 2-d Poisson solver (see Sect. 5.10).

// CrankNicholson2D.cpp

// Function to evolve diffusion equation in 2-d:

// dT / dt = D d^2 T / dx^2 + D d^2 T / dy^2 for xl <= x <= xh

// and 0 <= y <= L

// alphaL T + betaL dT/dx = gammaL(y) at x=xl

// alphaH T + betaH dT/dx = gammaH(y) at x=xh

// In y-direction, either simple Dirichlet boundary conditions:

// T(x,0) = T(x,L) = 0

// or simple Neumann boundary conditions:

// dT/dy(x,0) = dT/dy(x,L) = 0

// Matrix T assumed to be of extent N+2, J+1.

// Arrays gammaL, gammaH assumed to be of extent J+1.

// Now, (i,j)th elements of matrices correspond to

// x_i = xl + i * dx i=0,N+1

// y_j = j * L / J j=0,J

// Here, dx = (xh - xl) / (N+1) is grid spacing in x-direction.

// Now, C = D dt / dx^2, and kappa = pi * dx / L

// Finally, Neumann=0/1 selects Dirichlet/Neumann bcs in y-direction.

// Uses Crank-Nicholson scheme.

#include <blitz/array.h>

232

6.11 An Example 2-D Diffusion Equation Solver 6 THE DIFFUSION EQUATION

using namespace blitz;

void fft_forward_cos (Array<double,1> f, Array<double,1>& F);

void fft_backward_cos (Array<double,1> F, Array<double,1>& f);

void fft_forward_sin (Array<double,1> f, Array<double,1>& F);

void fft_backward_sin (Array<double,1> F, Array<double,1>& f);

void Tridiagonal (Array<double,1> a, Array<double,1> b, Array<double,1> c,

Array<double,1> w, Array<double,1>& u);

void CrankNicholson2D (Array<double,2>& T,

double alphaL, double betaL, Array<double,1> gammaL,

double alphaH, double betaH, Array<double,1> gammaH,

double dx, double C, double kappa, int Neumann)

{

// Find N and J. Declare local arrays.

int N = T.extent(0) - 2;

int J = T.extent(1) - 1;

Array<double,2> TT(N+2, J+1), V(N+2, J+1);

Array<double,1> GammaL(J+1), GammaH(J+1);

// Fourier transform T

for (int i = 0; i <= N+1; i++)

{

Array<double,1> In(J+1), Out(J+1);

for (int j = 0; j <= J; j++) In(j) = T(i, j);

if (Neumann)

fft_forward_cos (In, Out);

else

fft_forward_sin (In, Out);

for (int j = 0; j <= J; j++) TT(i, j) = Out(j);

}

// Fourier transform boundary conditions

if (Neumann)

{

fft_forward_cos (gammaL, GammaL);

fft_forward_cos (gammaH, GammaH);

}

else

{

fft_forward_sin (gammaL, GammaL);

233

6.11 An Example 2-D Diffusion Equation Solver 6 THE DIFFUSION EQUATION

fft_forward_sin (gammaH, GammaH);

}

// Construct source term

for (int i = 1; i <= N; i++)

for (int j = 0; j <= J; j++)

V(i, j) =

0.5 * C * TT(i-1, j) +

(1. - C * (1. + 0.5 * double (j * j) * kappa * kappa)) * TT(i, j) +

0.5 * C * TT(i+1, j);

// Solve tridiagonal matrix equations

if (Neumann)

{

for (int j = 0; j <= J; j++)

{

Array<double,1> a(N+2), b(N+2), c(N+2), w(N+2), u(N+2);

// Initialize tridiagonal matrix

for (int i = 2; i <= N; i++) a(i) = - 0.5 * C;

for (int i = 1; i <= N; i++)

b(i) = 1. + C * (1. + 0.5 * double (j * j) * kappa * kappa);

b(1) += 0.5 * C * betaL / (alphaL * dx - betaL);

b(N) -= 0.5 * C * betaH / (alphaH * dx + betaH);

for (int i = 1; i <= N-1; i++) c(i) = - 0.5 * C;

// Initialize right-hand side vector

for (int i = 1; i <= N; i++)

w(i) = V(i, j);

w(1) += 0.5 * C * GammaL(j) * dx / (alphaL * dx - betaL);

w(N) += 0.5 * C * GammaH(j) * dx / (alphaH * dx + betaH);

// Invert tridiagonal matrix equation

Tridiagonal (a, b, c, w, u);

for (int i = 1; i <= N; i++) TT(i, j) = u(i);

}

}

else

{

for (int j = 1; j < J; j++)

{

Array<double,1> a(N+2), b(N+2), c(N+2), w(N+2), u(N+2);

// Initialize tridiagonal matrix

for (int i = 2; i <= N; i++) a(i) = - 0.5 * C;

234

6.11 An Example 2-D Diffusion Equation Solver 6 THE DIFFUSION EQUATION

for (int i = 1; i <= N; i++)

b(i) = 1. + C * (1. + 0.5 * double (j * j) * kappa * kappa);

b(1) -= betaL / (alphaL * dx - betaL);

b(N) += betaH / (alphaH * dx + betaH);

for (int i = 1; i <= N-1; i++) c(i) = - 0.5 * C;

// Initialize right-hand side vector

for (int i = 1; i <= N; i++)

w(i) = V(i, j);

w(1) += 0.5 * C * GammaL(j) * dx / (alphaL * dx - betaL);

w(N) += 0.5 * C * GammaH(j) * dx / (alphaH * dx + betaH);

// Invert tridiagonal matrix equation

Tridiagonal (a, b, c, w, u);

for (int i = 1; i <= N; i++) TT(i, j) = u(i);

}

for (int i = 1; i <= N ; i++)

{

TT(i, 0) = 0.; TT(i, J) = 0.;

}

}

// Reconstruct solution

for (int i = 1; i <= N; i++)

{

Array<double,1> In(J+1), Out(J+1);

for (int j = 0; j <= J; j++) In(j) = TT(i, j);

if (Neumann)

fft_backward_cos (In, Out);

else

fft_backward_sin (In, Out);

for (int j = 0; j <= J; j++) T(i, j) = Out(j);

}

// Calculate i=0 and i=N+1 values

for (int j = 0; j <= J; j++)

{

T(0, j) = (gammaL(j) * dx - betaL * T(1, j)) /

(alphaL * dx - betaL);

T(N+1, j) = (gammaH(j) * dx + betaH * T(N, j)) /

(alphaH * dx + betaH);

235

6.12 An Example 2-D Solution of the Diffusion Equation 6 THE DIFFUSION EQUATION

}

}

6.12 An Example 2-D Solution of the Diffusion Equation

Let us now solve the diffusion equation in 2-d using the finite difference technique

discussed above. We seek the solution of Eq. (6.28) in the region 0 ≤ x ≤ 1 and

0 ≤ y ≤ 1, subject to the following initial condition at t = 0:

T(x, y, 0) = 1 for |x − 0.5| < 0.1 and |y − 0.5| < 0.1,

T(x, y, 0) = 0 otherwise. (6.43)

The boundary conditions are simply T(0, y) = T(1, y) = T(x, 0) = T(x, 1) = 0.

Figure 74 shows the evolution of T(x, y, t) for a calculation performed with

the previously listed 2-d diffusion equation solver using D = 1, δt = 10−4, and

N = J = 128.

6.13 3-D Problems

The techniques discussed above for solving the diffusion equation in two dimen-

sions with a restricted class of boundary conditions can easily be generalized to

three dimensions. In the 3-d case, it is necessary to Fourier transform in two di-

rections (the y and z directions, say) in order to reduce the problem to a system

of uncoupled tridiagonal matrix equations. These equations can be inverted in

the usual manner, and the solution can then be reconstructed via a double inverse

Fourier transform.

236

6.13 3-D Problems 6 THE DIFFUSION EQUATION

Figure 74: Diffusion in two dimensions. Numerical calculation performed using D = 1, δt = 10−4,

and N = J = 128. Density plots of T(x, y, t) are shown at t = 0.000 (top-left), t = 0.001 (top-

right), t = 0.002 (middle-left), t = 0.003 (middle-right), t = 0.004 (bottom-left), and t = 0.005

(bottom-right).

237

7 THE WAVE EQUATION

7 The Wave Equation

7.1 Introduction

The wave equation, which in one dimension takes the form

∂2ξ

∂t2
= c2 ∂2ξ

∂x2
, (7.1)

occurs so frequently in physics that it is not necessary to enumerate examples.

Here, ξ is usually some sort of displacement or perturbation, whereas c is the

(constant) wave speed. The wave equation possesses the formal solution

ξ(x, t) = F(x − c t) + G(x + c t), (7.2)

where F and G are arbitrary functions. The above solution represents arbitrar-

ily shaped wave pulses propagating with speed c in the +x and −x directions,

respectively, without changing shape.

The wave equation, which is second-order in space and time, can be written

as two coupled first-order equations by defining the new variables v = ∂ξ/∂t and

θ = −c ∂ξ/∂x. Expressing Eq. (7.1) in terms of these new variables, we obtain

∂v

∂t
+ c

∂θ

∂x
= 0, (7.3)

∂θ

∂t
+ c

∂v

∂x
= 0. (7.4)

Note that when solving the wave equation numerically it is generally preferable

to write it as a set of coupled first-order equations, as shown above.

7.2 The 1-D Advection Equation

The wave equation is closely related to the so-called advection equation, which in

one dimension takes the form

∂u

∂t
= −v

∂u

∂x
. (7.5)

238

7.2 The 1-D Advection Equation 7 THE WAVE EQUATION

This equation describes the passive advection of some scalar field u(x, t) carried

along by a flow of constant speed v. Since the advection equation is somewhat

simpler than the wave equation, we shall discuss it first. The advection equation

possesses the formal solution

u(x, t) = F(x − v t), (7.6)

where F is an arbitrary function. This solution describes an arbitrarily shaped

pulse which is swept along by the flow, at constant speed v, without changing

shape.

We seek the solution of Eq. (7.5) in the region xl ≤ x ≤ xh, subject to the

simple Dirichlet boundary conditions u(xl) = u(xh) = 0. As usual, we discretize

in time on the uniform grid tn = t0 + n δt, for n = 0, 1, 2, · · ·. Furthermore, in

the x-direction, we discretize on the uniform grid xi = xl + i δx, for i = 0, N + 1,

where δx = (xh−xl)/(N+1). Adopting an explicit temporal differencing scheme,

and a centered spatial differencing scheme, Eq. (7.5) yields

un+1
i − un

i

δt
= −v

un
i+1 − un

i−1

2 δx
, (7.7)

where un
i ≡ u(xi, tn). The above equation can be rewritten

un+1
i = un

i −
C

2
(un

i+1 − un
i−1), (7.8)

where C = v δt/δx.

Let us perform a von Neumann stability analysis of the above differencing

scheme. Writing u(x, t) = û(t) exp(i k x), we obtain ûn+1
i = A ûn

i , where

A = 1 − i C sin(k δx). (7.9)

Note that

|A|2 = 1 + C2 sin2(k δx) > 1. (7.10)

Thus, the magnitude of the amplification factor is greater than unity for all k.

This implies, unfortunately, that the simple differencing scheme (7.8) is uncondi-

tionally unstable.

239

7.3 The Lax Scheme 7 THE WAVE EQUATION

7.3 The Lax Scheme

The instability in the differencing scheme (7.8) can be fixed by replacing un
i on

the right-hand side by the spatial average of u taken over the neighbouring grid

points. Thus, we obtain

un+1
i =

1

2
(un

i+1 + un
i−1) −

C

2
(un

i+1 − un
i−1), (7.11)

which is known as the Lax scheme. A von Neumann stability analysis of the Lax

scheme yields the following expression for the amplification factor:

A = cos(k δx) − i C sin(k δx). (7.12)

Now

|A|2 = 1 − (1 − C2) sin2(k δx). (7.13)

It follows that the Lax scheme is unconditionally stable (i.e., |A| < 1 for all k),

provided that C < 1. From the definition of C, the inequality C < 1 can also be

written

δt <
δx

v
. (7.14)

This is the famous Courant-Friedrichs-Lewy (or CFL) stability criterion. In fact, all

stable explicit differencing schemes for solving the advection equation are subject

to the CFL constraint, which determines the maximum allowable time-step.

Listed below is a routine which solves the 1-d advection equation via the Lax
method.

// Lax1D.cpp

// Function to evolve advection equation in 1-d:

// du / dt + v du / dx = 0 for xl <= x <= xh

// u = 0 at x=xl and x=xh

// Array u assumed to be of extent N+2.

// Now, ith element of array corresponds to

240

7.3 The Lax Scheme 7 THE WAVE EQUATION

// x_i = xl + i * dx i=0,N+1

// Here, dx = (xh - xl) / (N+1) is grid spacing.

// Function evolves u by single time-step.

// C = v dt / dx, where dt is time-step.

// Uses Lax scheme.

#include <blitz/array.h>

using namespace blitz;

void Lax1D (Array<double,1>& u, double C)

{

// Set N. Declare local array.

int N = u.extent(0) - 2;

Array<double,1> u0(N+2);

// Evolve u

u0 = u;

for (int i = 1; i <= N; i++)

u(i) = 0.5 * (u0(i+1) + u0(i-1)) - 0.5 * C * (u0(i+1) - u0(i-1));

// Set boundary conditions

u(0) = 0.;

u(N+1) = 0.;

}

Figure 75 shows an example calculation which uses the above routine to ad-

vect a Gaussian pulse. The initial condition is

u(x, 0) = exp[−100 (x − 0.5)2], (7.15)

and the calculation is performed with v = 1, δt = 2.49 × 10−3, and N = 200.

Furthermore, xl = v t and xh = 1 + v t. Note that C = 0.5 for these parameters.

It can be seen that the pulse is advected at the correct speed: i.e., the pulse

appears approximately stationary when plotted versus x − v t. Unfortunately, the

pulse does not remain the same shape (as it should). Instead, the pulse becomes

gradually lower and wider as it propagates, and eventually diffuses away entirely.

It is clear, from the above calculation, that the Lax scheme introduces a spu-

241

7.3 The Lax Scheme 7 THE WAVE EQUATION

Figure 75: Advection of a 1-d Gaussian pulse. Numerical calculation performed using v = 1, δt =

2.49 × 10−3, and N = 200. The solid curve shows the initial condition at t = 0, the short-dashed

curve the numerical solution at t = 1, the long-dashed curve the numerical solution at t = 2, and the

dot-dashed curve the numerical solution at t = 3.

rious dispersion effect into the advection problem. We can understand the ori-

gin of this effect by attempting a Fourier solution, u(x, t) = ûk(t) exp(i k x), of

Eq. (7.5). We easily obtain

ûk(t) = ûk(0) exp(−i k v t). (7.16)

Note that |ûk| is constant in time for all values of k. In other words, the amplitudes

of the Fourier harmonics of a true solution of the advection equation remain

constant in time—it is the phases of the harmonics which evolve. Let us now

examine Eq. (7.13). It can be seen that, provided the CFL condition C < 1

is satisfied, the magnitude of the amplification factor, |A|, is less than unity for

all Fourier harmonics. In other words, the Lax differencing scheme causes the

Fourier harmonics to decay in time. It is this unphysical attenuation of the Fourier

harmonics which gives rise to the strong dispersion effect illustrated in Fig. 75.

Figure 76 shows a calculation made using the Lax scheme in which the CFL

condition is violated. This calculation is identical to the one discussed previously,

except that the time-step has been increased to δt = 9.95 × 10−3, yielding a CFL

parameter, C = 2.0, which exceeds unity. It can be seen that the pulse grows in

242

7.4 The Crank-Nicholson Scheme 7 THE WAVE EQUATION

Figure 76: Advection of a 1-d Gaussian pulse. Numerical calculation performed using v = 1, δt =

9.95× 10−3, and N = 200. The dotted curve shows the initial condition at t = 0.00, the short-dashed

curve the numerical solution at t = 0.15, the long-dashed curve the numerical solution at t = 0.30,

and the solid curve the numerical solution at t = 0.37.

amplitude, and eventually starts to break up due to a short-wavelength instability.

7.4 The Crank-Nicholson Scheme

The Crank-Nicholson implicit scheme for solving the diffusion equation (see Sect. 6.6)

can be adapted to solve the advection equation. Thus, taking the average of the

right-hand side of Eq. (7.5) between the beginning and end of the time-step, we

obtain the differencing scheme written below:

un+1
i +

C

4
(un+1

i+1 − un+1
i−1) = un

i −
C

4
(un

i+1 − un
i−1). (7.17)

A von Neumann stability analysis of the above scheme yields the following ex-

pression for the amplification factor:

A =
1 − i (C/2) sin(k δx)

1 + i (C/2) sin(k δx)
. (7.18)

Note that |A| = 1 for all values of k, irrespective of the value of C. This implies

that the Crank-Nicholson implicit scheme is not subject to the CFL constraint, C <

243

7.4 The Crank-Nicholson Scheme 7 THE WAVE EQUATION

1 (since there is no value of k for which |A| > 1). Moreover, there is no spurious

decay in the Fourier harmonics of the solution (since |A| = 1). Hence, unlike

the Lax scheme, we would not expect the Crank-Nicholson scheme to introduce

strong numerical dispersion into the advection problem.

Listed below is a routine which solves the 1-d advection equation via the
Crank-Nicholson method.

// Advect1D.cpp

// Function to evolve advection equation in 1-d:

// du / dt + v du / dx = 0 for xl <= x <= xh

// u = 0 at x=xl and x=xh

// Array u assumed to be of extent N+2.

// Now, ith element of array corresponds to

// x_i = xl + i * dx i=0,N+1

// Here, dx = (xh - xl) / (N+1) is grid spacing.

// Function evolves u by single time-step.

// C = v dt / dx, where dt is time-step.

// Uses Crank-Nicholson scheme.

#include <blitz/array.h>

using namespace blitz;

void Tridiagonal (Array<double,1> a, Array<double,1> b, Array<double,1> c,

Array<double,1> w, Array<double,1>& u);

void Advect1D (Array<double,1>& u, double C)

{

// Find N. Declare local arrays.

int N = u.extent(0) - 2;

Array<double,1> a(N+2), b(N+2), c(N+2), w(N+2);

// Initialize tridiagonal matrix

244

7.5 Upwind Differencing 7 THE WAVE EQUATION

for (int i = 2; i <= N; i++) a(i) = - 0.25 * C;

for (int i = 1; i <= N; i++) b(i) = 1.;

for (int i = 1; i <= N-1; i++) c(i) = + 0.25 * C;

// Initialize right-hand side vector

for (int i = 1; i <= N; i++)

w(i) = u(i) - 0.25 * C * (u(i+1) - u(i-1));

// Invert tridiagonal matrix equation

Tridiagonal (a, b, c, w, u);

// Calculate i=0 and i=N+1 values

u(0) = 0.;

u(N+1) = 0.;

}

Figure 75 shows an example calculation which uses the above routine to ad-

vect a Gaussian pulse. The initial condition is as specified in Eq. (7.15), and the

calculation is performed with v = 1, δt = 9.95 × 10−3, and N = 200. Note that

C = 2.0 for these parameters. It can be seen that the pulse propagates at (al-

most) the correct speed, and maintains approximately the same shape. Clearly,

the performance of the Crank-Nicholson scheme is vastly superior to that of the

Lax scheme.

7.5 Upwind Differencing

We might be forgiven for concluding that the Crank-Nicholson scheme repre-

sents an efficient and accurate general purpose numerical method for solving

the advection equation. This is indeed the case, provided we restrict ourselves

to fairly smooth wave-forms. Unfortunately, the Crank-Nicholson scheme does a

very poor job at advecting wave-forms with sharp leading or trailing edges. This

is illustrated in Fig. 78, which shows a calculation in which the Crank-Nicholson

scheme is used to advect a square wave-pulse. It can be seen that spurious os-

cillations are generated at both the leading and trailing edges of the wave-form.

It turns out that all central difference schemes for solving the advection equation

suffer from a similar problem.

245

7.5 Upwind Differencing 7 THE WAVE EQUATION

Figure 77: Advection of a 1-d Gaussian pulse. Numerical calculation performed using v = 1, δt =

9.95 × 10−3, and N = 200. The solid curve shows the initial condition at t = 0, the short-dashed

curve the numerical solution at t = 1, the long-dashed curve the numerical solution at t = 2, and the

dot-dashed curve the numerical solution at t = 3.

Figure 78: Advection of a 1-d square wave-pulse. Numerical calculation performed using v = 1,

δt = 2.49 × 10−3, and N = 200. The dotted curve shows the initial condition at t = 0.0, whereas the

solid curve shows the numerical solution at t = 0.1.

246

7.5 Upwind Differencing 7 THE WAVE EQUATION

The only known way to suppress spurious oscillations at the leading and trail-

ing edges of a sharp wave-form is to adopt a so-called upwind differencing scheme.

In such a scheme, the spatial differences are skewed in the “upwind” direction:

i.e., the direction from which the advecting flow emanates. Thus, the upwind

version of the simple explicit differencing scheme (7.7) is written

un+1
i − un

i

δt
= −v

un
i − un

i−1

δx
, (7.19)

or

un+1
i = un

i − C (un
i − un

i−1), (7.20)

Note that this scheme is only first-order in space, whereas every other scheme we

have discussed has been second-order. A von Neumann stability analysis of the

above scheme yields

A = 1 − C [1 − cos(k δx)] − i C sin(k δx). (7.21)

Note that

|A|2 = 1 − 2 C (1 − C) [1 − cos(k δx)]. (7.22)

It follows that |A| < 1 for all k provided that C < 1. Thus, the upwind differenc-

ing scheme is stable provided that the CFL condition is satisfied. Fig. 79 shows

a calculation in which the above scheme is used to advect a square wave-pulse.

There are now no spurious oscillations generated at the sharp edges of the wave-

form. On the other hand, the wave-form shows evidence of dispersion. Indeed,

the upwind differencing scheme suffers from the same type of spurious dispersion

problem as the Lax scheme. Unfortunately, there is no known differencing scheme

which is both non-dispersive and capable of dealing well with sharp wave-fronts.

In fact, sophisticated codes which solve the advection (or wave) equation gener-

ally employ an upwind scheme in regions close to sharp wave-fronts, or shocks,

and a more accurate non-dispersive scheme elsewhere.

Incidentally, it is easily demonstrated that the downwind differencing scheme,

un+1
i − un

i

δt
= −v

un
i+1 − un

i

δx
, (7.23)

is unconditionally unstable.

247

7.6 The 1-D Wave Equation 7 THE WAVE EQUATION

Figure 79: Advection of a 1-d square wave-pulse. Numerical calculation performed using v = 1,

δt = 2.49 × 10−3, and N = 200. The dotted curve shows the initial condition at t = 0.0, whereas the

solid curve shows the numerical solution at t = 0.1.

7.6 The 1-D Wave Equation

Consider a plane polarized electromagnetic wave propagating in vacuo along

the z-axis. Suppose that the electric and magnetic fields take the form E =

[Ex(z, t), 0, 0], and B = [0, By(z, t), 0]. Now, according to Maxwell’s equations,

∂Ex

∂t
+ c

∂Hy

∂z
= 0, (7.24)

∂Hy

∂t
+ c

∂Ex

∂z
= 0, (7.25)

where Hy = c By, and c is the velocity of light. Note that the above equations take

the form of two coupled advection equations. Let us find the numerical solution

of these equations in some region 0 ≤ z ≤ L which is bounded by perfectly

conducting walls at z = 0 and z = L. Now, both the tangential electric field and

the normal magnetic field must be zero at a perfect conductor. It follows that

Ex(0, t) = Ex(L, t) = 0. (7.26)

248

7.6 The 1-D Wave Equation 7 THE WAVE EQUATION

Moreover, Eq. (7.24) yields

∂Hy(0, t)

∂z
=

∂Hy(L, t)

∂z
= 0. (7.27)

We expect Eqs. (7.24) and (7.25) to support wave-like solutions which bounce

backwards and forwards between the conducting walls.

As before, we discretize in time on the uniform grid tn = t0 + n δt, for n =

0, 1, 2, · · ·. Furthermore, in the z-direction, we discretize on the uniform grid

zi = i δz, for i = 0, I, where δz = L/I. Adopting a Crank-Nicholson temporal

differencing scheme similar to that discussed in Sect. 7.4, Eqs. (7.24)–(7.25) yield

(Ex)
n+1
i − (Ex)

n
i

δt
+

c

2

(

∂Hy

∂z

)n+1

i

+
c

2

(

∂Hy

∂z

)n

i

= 0, (7.28)

(Hy)
n+1
i − (Hy)

n
i

δt
+

c

2

(

∂Ex

∂z

)n+1

i

+
c

2

(

∂Ex

∂z

)n

i

= 0, (7.29)

where (Ex)
n
i ≡ Ex(zi, tn), etc.

Adopting a Fourier approach, we write

(Ex)
n
i =

∑

j=0,I

Ên
j sin(i j π/I), (7.30)

(Hy)
n
i =

∑

j=0,I

Ĥn
j cos(i j π/I), (7.31)

which automatically satisfies the boundary conditions (7.26) and (7.27). Equa-

tions (7.28) and (7.29) yield

Ên+1
i − Ên

i − i D (Ĥn+1
i + Ĥn

i) = 0, (7.32)

Ĥn+1
i − Ĥn

i + i D (Ên+1
i + Ên

i) = 0, (7.33)

where D = π c δt/(2 L). It follows that

Ên+1
i = +

2 i D

1 + i2 D2
Ĥn

i +
1 − i2 D2

1 + i2 D2
Ên

i , (7.34)

Ĥn+1
i = −

2 i D

1 + i2 D2
Ên

i +
1 − i2 D2

1 + i2 D2
Ĥn

i , (7.35)

249

7.6 The 1-D Wave Equation 7 THE WAVE EQUATION

for i = 0, I.

Let us determine the eigenvalues λ of the above linear system, assuming that

(Ên+1
i , Ĥn+1

i) = λ (Ên
i , Ĥn

i). After a little analysis, we obtain

λ2 − 2
1 − i2 D2

1 + i2 D2
λ + 1 = 0. (7.36)

For all values of i, the two roots of the above quadratic are complex, but have

modulus unity: i.e., |λ| = 1. This implies that our differencing scheme is both

numerically stable (if |λ| > 1 then the scheme would be unstable, since the as-

sociated eigenfunction would be amplified at each time-step) and non-dispersive

(if |λ| < 1 then all Fourier harmonics would eventually decay away, and, hence,

so would the solution). Note that the above calculation is equivalent to von Neu-

mann stability analysis.

The routine listed below solves the 1-d wave equation using the Crank-Nicholson
scheme discussed above. The routine first Fourier transforms Ex and Hy, takes a
time-step using Eqs. (7.34) and (7.35), and then reconstructs Ex and Hy via an
inverse Fourier transform.

// Wave1D.cpp

// Function to evolve 1-d wave equation:

// d E_x / dt + c d H_y / dz = 0

// d H_y / dt + c d E_x / dz = 0

// in region 0 < z < L.

// Boundary conditions:

// E_x(0,t) = E_x(L,t) = 0

// d H_y(0,t) / dz = d H_y(L,t) / dz = 0

// Arrays Ex, Hy assumed to be of extent I+1.

// Now, ith elements of arrays correspond to

// z_i = i * L / J i=0,I

250

7.6 The 1-D Wave Equation 7 THE WAVE EQUATION

// Also, D = pi c dt / (2 L), where dt is time-step.

// Uses Crank-Nicholson scheme.

#include <blitz/array.h>

using namespace blitz;

void fft_forward_cos (Array<double,1> f, Array<double,1>& F);

void fft_backward_cos (Array<double,1> F, Array<double,1>& f);

void fft_forward_sin (Array<double,1> f, Array<double,1>& F);

void fft_backward_sin (Array<double,1> F, Array<double,1>& f);

void Wave1D (Array<double,1>& Ex, Array<double,1>& Hy, double D)

{

// Find I. Declare local arrays

int I = Ex.extent(0) - 1;

Array<double,1> EE(I+1), HH(I+1), EE0(I+1), HH0(I+1);

// Fourier transform Ex and Hy

fft_forward_sin (Ex, EE0);

fft_forward_cos (Hy, HH0);

// Evolve EE and HH

for (int i = 0; i <= I; i++)

{

double x = double (i) * D;

double fp = 1. + x*x;

double fm = 1. - x*x;

EE(i) = 2. * x * HH0(i) + fm * EE0(i);

EE(i) /= fp;

HH(i) = - 2. * x * EE0(i) + fm * HH0(i);

HH(i) /= fp;

}

// Reconstruct Ex and Hy via inverse Fourier transform

fft_backward_sin (EE, Ex);

fft_backward_cos (HH, Hy);

}

Figure 7.1 shows an example calculation which uses the above routine to prop-

251

7.7 The 2-D Resonant Cavity 7 THE WAVE EQUATION

agate a Gaussian wave-pulse. The initial condition is

Ex(z, 0) = Hy(z, 0) = exp[−100 (z − 0.5)2], (7.37)

and the calculation is performed with L = 1, c = 1, δt = 5 × 10−3, and N = 100.

It can be seen that the pulse moves to the right, reflects off the conducting wall

at z = 1, and then moves to the left. Note, that Ex = +Hy when the wave is far

from the conducting walls and moving to the right, whereas Ex = −Hy when the

wave is far from the conducting walls and moving to the left.

Figure 7.24 shows a second example calculation performed with the same

parameters as the first. In this calculation, the pulse is allowed to reflect off

the conducting walls ten times before returning to its initial position. Note that

the pulse amplitude and shape remain constant to a very good approximation

during this process. The fact that the pulse returns almost exactly to its initial

position after ten time periods have elapsed (i.e., at t = 10) demonstrates that it

is propagating at the correct speed (i.e., c = 1).

Figure 82 shows a third example calculation which uses the above listed rou-

tine to propagate a square wave-pulse. Note that the routine does a very poor

job, since spurious oscillations are generated at the sharp leading and trailing

edges of the wave-form. As discussed in Sect. 7.5, such oscillations can only be

suppressed by adopting an upwind differencing scheme, which in this case means

that the spatial differences must be skewed in the direction from which the wave

is propagating. Unfortunately, simple explicit upwind schemes are subject to the

CFL constraint,

δt <
δz

c
, (7.38)

and also tend to be highly dispersive.

7.7 The 2-D Resonant Cavity

Figure 83 shows a 2-d resonant cavity consisting of a hollow, rectangular, per-

fectly conducting channel of dimensions Lx × Ly. Suppose that the walls of the

channel are aligned along the x- and y-axes. We shall excite this cavity in a

252

7.7 The 2-D Resonant Cavity 7 THE WAVE EQUATION

Figure 80: Propagation of a 1-d Gaussian wave-pulse. Numerical calculation performed using c = 1,

δt = 5 × 10−3, and N = 100. The solid curves show Ex, whereas the dashed curves show Hy. The

top-left, top-right, middle-left, middle-right, bottom-left, and bottom-right panels show the solution

at t = 0.0, 0.2, 0.4, 0.6, 0.8, and 1.0, respectively.

253

7.7 The 2-D Resonant Cavity 7 THE WAVE EQUATION

Figure 81: Propagation of a 1-d Gaussian wave-pulse. Numerical calculation performed using c = 1,

δt = 5 × 10−3, and N = 100. The solid curve shows Ex at t = 0., the dashed curve shows Ex at

t = 10., and the dotted curve (obscured by the dashed curve) shows By at t = 10.

Figure 82: Propagation of a 1-d square wave-pulse. Numerical calculation performed using c = 1,

δt = 5 × 10−3, and N = 100. The dotted curve shows Ex at t = 0.0, and the solid curve shows Ex at

t = 0.1.

254

7.7 The 2-D Resonant Cavity 7 THE WAVE EQUATION

L

yL

x

conducting walls

x

y

Figure 83: A 2-d resonant cavity.

rather artificial manner by imposing a z-directed alternating current pattern of

frequency f, which has the same spatial structure as the mode in which we are

interested. Let us calculate the electric and magnetic field patterns excited within

the cavity by such a current pattern.

The electric and magnetic fields within the cavity can be written E = [0, 0,

Ez(x, y, t)], and B = [Bx(x, y, t), By(x, y, t), 0], respectively. It follows from Maxwell’s

equations that

∂Hx

∂t
+ c

∂Ez

∂y
= 0, (7.39)

∂Hy

∂t
+ c

∂Ez

∂x
= 0, (7.40)

∂Ez

∂t
+ c

∂Hy

∂x
+ c

∂Hx

∂y
= Jz, (7.41)

where c is the velocity of light, Hx = c Bx, Hy = −c By, and Jz = −µ0 c2 jz. Note

that the above system of equations takes the form of three coupled advection

equations with a source term. The boundary conditions are that the tangential

electric field and the normal magnetic field must be zero at the conducting walls.

255

7.7 The 2-D Resonant Cavity 7 THE WAVE EQUATION

It follows that

Ez = 0 (7.42)

at all the walls (which are located at x = 0, Lx and y = 0, Ly),

Hx =
∂Hy

∂x
= 0 (7.43)

at x = 0, Lx, and

Hy =
∂Hx

∂y
= 0 (7.44)

at y = 0, Ly. Finally, the normalized current pattern associated with the (m, n)

mode takes the form

Jz(x, y, t) = J0 sin(m π x/Lx) sin(n π y/Ly) sin(2 π f t). (7.45)

As usual, we discretize in time on the uniform grid tn = t0 + n δt, for n =

0, 1, 2, · · ·. Furthermore, in the x-direction, we discretize on the uniform grid

xi = i δx, for i = 0, I, where δx = Lx/I. Finally, in the y-direction, we discretize

on the uniform grid yj = j δy, for j = 0, J, where δy = Ly/J. Adopting a Crank-

Nicholson temporal differencing scheme similar to that discussed in Sects. 7.4

and 7.6, Eqs. (7.39)–(7.41) yield

(Hx)
n+1
i,j − (Hx)

n
i,j

δt
+

c

2

(

∂Ez

∂y

)n+1

i,j

+
c

2

(

∂Ez

∂y

)n

i,j

= 0, (7.46)

(Hy)
n+1
i,j − (Hy)

n
i,j

δt
+

c

2

(

∂Ez

∂x

)n+1

i,j

+
c

2

(

∂Ez

∂x

)n

i,j

= 0, (7.47)

(Ez)
n+1
i,j − (Ez)

n
i,j

δt
+

c

2

(

∂Hy

∂x

)n+1

i,j

+
c

2

(

∂Hy

∂x

)n

i,j

+
c

2

(

∂Hx

∂y

)n+1

i,j

+
c

2

(

∂Hx

∂y

)n

i,j

= (Jz)
n
i,j, (7.48)

where (Hx)
n
i,j ≡ Hx(xi, yj, tn), etc.

Adopting a Fourier approach, we write

(Ez)
n
i,j =

j ′=0,J∑

i ′=0,I

Ên
i ′,j ′ sin(i i ′ π/I) sin(j j ′ π/J), (7.49)

256

7.7 The 2-D Resonant Cavity 7 THE WAVE EQUATION

(Hx)
n
i,j =

j ′=0,J∑

i ′=0,I

X̂n
i ′,j ′ sin(i i ′ π/I) cos(j j ′ π/J), (7.50)

(Hy)
n
i,j =

j ′=0,J∑

i ′=0,I

Ŷn
i ′,j ′ cos(i i ′ π/I) sin(j j ′ π/J), (7.51)

(Jz)
n
i,j =

j ′=0,J∑

i ′=0,I

Ĵn
i ′,j ′ sin(i i ′ π/I) sin(j j ′ π/J) (7.52)

which automatically satisfies the boundary conditions (7.42)–(7.44). Equations (7.46)–

(7.48) yield

X̂n+1
i,j − X̂n

i,j + j Dy (Ên+1
i,j + Ên

i,j) = 0, (7.53)

Ŷn+1
i,j − Ŷn

i,j + i Dx (Ên+1
i,j + Ên

i,j) = 0, (7.54)

Ên+1
i,j − Ên

i,j − i Dx (Ŷn+1
i,j + Ŷn

i,j) − j Dj (X̂
n+1
i,j + X̂n

i,j) = δt Ĵn
i,j, (7.55)

for i = 0, I and j = 0, J, where Dx = π c δt/(2 Lx) and Dy = π c δt/(2 Ly). It

follows that

Ên+1
i,j =

(1 − i2 D2
x − j2 D2

y) Ên
i,j + 2 j Dy X̂n

i,j + 2 i Dx Ŷn
i,j + δt Ĵn

i,j

1 + i2 D2
x + j2 D2

y

(7.56)

X̂n+1
i,j = X̂n

i,j − j Dy (Ên+1
i,j + Ên

i,j), (7.57)

Ŷn+1
i,j = Ŷn

i,j − i Dx (Ên+1
i,j + Ên

i,j). (7.58)

The routine listed below solves the 2-d wave equation in a resonant cavity
using the Crank-Nicholson scheme discussed above. The routine first Fourier
transforms Hx, Hy, Ez, and Jz in both the x- and y-directions, takes a time-step
using Eqs. (7.56)–(7.58), and then reconstructs Hx, Hy, and Ez via an double
inverse Fourier transform.

// Wave2D.cpp

// Function to evolve 2-d wave equation:

257

7.7 The 2-D Resonant Cavity 7 THE WAVE EQUATION

// d H_x / dt + c d E_z / dy = 0

// d H_y / dt + c d E_z / dx = 0

// d E_z / dt + c d H_y / dx + c d H_x / dy = J_z

// in region 0 < x < L_x and 0 < y < L_y

// Boundary conditions:

// E_z(0, y) = E_z(L_x, y) = E_z(x, 0) = E_z(x, L_y) = 0

// H_x(0, y) = H_x(L_x, y) = d H_y(0, y) / dx = d H_y(L_x, y) / dx = 0

// H_y(x, 0) = H_y(x, L_y) = d H_x(x, 0) / dy = d H_x(x, L_y) / dy = 0

// Matrices Hx, Hy, Ez, Jz assumed to be of extent I+1, J+1.

// Now, (i,j)th elements of matrices correspond to

// x_i = i * dx i=0,I

// y_j = j * dy j=0,J

// Here, dx = L_x / I is grid spacing in x-direction,

// and dy = L_y / J is grid spacing in x-direction.

// Now, Dx = pi c dt / (2 L_x) and Dy = pi c dt / (2 L_y),

// where dt is time-step.

// Uses Crank-Nicholson scheme.

#include <blitz/array.h>

using namespace blitz;

void fft_forward_cos (Array<double,1> f, Array<double,1>& F);

void fft_backward_cos (Array<double,1> F, Array<double,1>& f);

void fft_forward_sin (Array<double,1> f, Array<double,1>& F);

void fft_backward_sin (Array<double,1> F, Array<double,1>& f);

void Wave2D (Array<double,2>& Hx, Array<double,2>& Hy, Array<double,2>& Ez,

Array<double,2> Jz, double Dx, double Dy, double dt)

{

258

7.7 The 2-D Resonant Cavity 7 THE WAVE EQUATION

// Find I and J. Declare local arrays

int I = Hx.extent(0) - 1;

int J = Hx.extent(1) - 1;

Array<double,2> X(I+1, J+1), XX(I+1, J+1), XXX(I+1, J+1);

Array<double,2> Y(I+1, J+1), YY(I+1, J+1), YYY(I+1, J+1);

Array<double,2> E(I+1, J+1), EE(I+1, J+1), EEE(I+1, J+1);

Array<double,2> K(I+1, J+1), KK(I+1, J+1);

// Fourier transform solution in x-direction

for (int j = 0; j <= J; j++)

{

Array<double,1> In(I+1), Out(I+1);

// Fourier transform Hx

for (int i = 0; i <= I; i++) In(i) = Hx(i, j);

fft_forward_sin (In, Out);

for (int i = 0; i <= I; i++) X(i, j) = Out(i);

// Fourier transform Hy

for (int i = 0; i <= I; i++) In(i) = Hy(i, j);

fft_forward_cos (In, Out);

for (int i = 0; i <= I; i++) Y(i, j) = Out(i);

// Fourier transform Ez

for (int i = 0; i <= I; i++) In(i) = Ez(i, j);

fft_forward_sin (In, Out);

for (int i = 0; i <= I; i++) E(i, j) = Out(i);

// Fourier transform Jz

for (int i = 0; i <= I; i++) In(i) = dt * Jz(i, j);

fft_forward_sin (In, Out);

for (int i = 0; i <= I; i++) K(i, j) = Out(i);

}

// Fourier transform solution in y-direction

for (int i = 0; i <= I; i++)

{

Array<double,1> In(J+1), Out(J+1);

// Fourier transform Hx

for (int j = 0; j <= J; j++) In(j) = X(i, j);

fft_forward_cos (In, Out);

for (int j = 0; j <= J; j++) XX(i, j) = Out(j);

// Fourier transform Hy

259

7.7 The 2-D Resonant Cavity 7 THE WAVE EQUATION

for (int j = 0; j <= J; j++) In(j) = Y(i, j);

fft_forward_sin (In, Out);

for (int j = 0; j <= J; j++) YY(i, j) = Out(j);

// Fourier transform Ez

for (int j = 0; j <= J; j++) In(j) = E(i, j);

fft_forward_sin (In, Out);

for (int j = 0; j <= J; j++) EE(i, j) = Out(j);

// Fourier transform Jz

for (int j = 0; j <= J; j++) In(j) = K(i, j);

fft_forward_sin (In, Out);

for (int j = 0; j <= J; j++) KK(i, j) = Out(j);

}

// Evolve XX, YY, and EE

for (int i = 0; i <= I; i++)

for (int j = 0; j <= J; j++)

{

double x = double (i) * Dx;

double y = double (j) * Dy;

double fp = 1. + x*x + y*y;

double fm = 1. - x*x - y*y;

EEE(i, j) = fm * EE(i, j) + 2. * y * XX(i, j) +

2. * x * YY(i,j) + KK(i, j);

EEE(i, j) /= fp;

XXX(i, j) = XX(i, j) - y * (EEE(i, j) + EE(i, j));

YYY(i, j) = YY(i, j) - x * (EEE(i, j) + EE(i, j));

}

// Reconstruct solution via inverse Fourier transform in y-direction

for (int i = 0; i <= I; i++)

{

Array<double,1> In(J+1), Out(J+1);

// Reconstruct Hx

for (int j = 0; j <= J; j++) In(j) = XXX(i, j);

fft_backward_cos (In, Out);

for (int j = 0; j <= J; j++) X(i, j) = Out(j);

// Reconstruct Hy

for (int j = 0; j <= J; j++) In(j) = YYY(i, j);

fft_backward_sin (In, Out);

for (int j = 0; j <= J; j++) Y(i, j) = Out(j);

260

7.7 The 2-D Resonant Cavity 7 THE WAVE EQUATION

// Reconstruct Ez

for (int j = 0; j <= J; j++) In(j) = EEE(i, j);

fft_backward_sin (In, Out);

for (int j = 0; j <= J; j++) E(i, j) = Out(j);

}

// Reconstruct solution via inverse Fourier transform in x-direction

for (int j = 0; j <= J; j++)

{

Array<double,1> In(I+1), Out(I+1);

// Reconstruct Hx

for (int i = 0; i <= I; i++) In(i) = X(i, j);

fft_backward_sin (In, Out);

for (int i = 0; i <= I; i++) Hx(i, j) = Out(i);

// Reconstruct Hy

for (int i = 0; i <= I; i++) In(i) = Y(i, j);

fft_backward_cos (In, Out);

for (int i = 0; i <= I; i++) Hy(i, j) = Out(i);

// Reconstruct Ez

for (int i = 0; i <= I; i++) In(i) = E(i, j);

fft_backward_sin (In, Out);

for (int i = 0; i <= I; i++) Ez(i, j) = Out(i);

}

}

The numerical calculations discussed below were performed using the above

routine. The electromagnetic fields Hx, Hy, and Ez were all initialized to zero

everywhere at t = 0. Figure 84 shows the maximum amplitude of Ez versus the

frequency, f, for an m = 1/n = 1 driving current distribution. It can be seen that

there is a clear resonance at f ≃ 0.7.

Figures 85 and 86 illustrate the typical time variation of Ez, Hx, and Hy for

a non-resonant and a resonant case, respectively. For the non-resonant case, the

traces take the form of interference patterns between the directly driven response,

which oscillates at the driving frequency f, and the transient response, which

oscillates at the natural frequency f0 of the cavity. Note that the transients never

decay, since there is no dissipation in the present problem. Incidentally, it is easily

261

7.7 The 2-D Resonant Cavity 7 THE WAVE EQUATION

Figure 84: Electromagnetic waves in a 2-d resonant cavity. The maximum amplitude of Ez(x =

0.5, y = 0.5) between t = 0 and t = 20 versus the driving frequency, f. Numerical calculation

performed using m = 1, n = 1, Lx = 1, Ly = 1, c = 1, I = J = 32, and δt = 10−2.

demonstrated that

f0 =
c

2

√

√

√

√

1

(n Lx)2
+

1

(m Ly)2
. (7.59)

Hence, it follows that f0 = 1/
√

2 = 0.7071 for n = m = Lx = Ly = c = 1,

which corresponds very well to the resonant frequency found in Fig. 84. For the

resonant case, the traces take the form of waves of ever increasing amplitude

which oscillate at the natural frequency f0.

Finally, Figs. 86 and 87 illustrate the spatial variation of the electromagnetic

fields driven within the cavity when m = 1 and n = 1.

262

7.7 The 2-D Resonant Cavity 7 THE WAVE EQUATION

Figure 85: Electromagnetic waves in a 2-d resonant cavity. Time traces of Ez(x = 0.5, y = 0.5) (solid

curve), Hx(x = 0.5, y = 0.0) (dashed curve), and Hy(x = 0.0, y = 0.5) (dotted curve—obscured

by dashed curve). Numerical calculation performed using m = 1, n = 1, Lx = 1, Ly = 1, c = 1,

I = J = 32, δt = 10−2, and f = 0.6.

Figure 86: Electromagnetic waves in a 2-d resonant cavity. Time traces of Ez(x = 0.5, y = 0.5) (solid

curve), Hx(x = 0.5, y = 0.0) (dashed curve), and Hy(x = 0.0, y = 0.5) (dotted curve—obscured

by dashed curve). Numerical calculation performed using m = 1, n = 1, Lx = 1, Ly = 1, c = 1,

I = J = 32, δt = 10−2, and f = 0.7071.

263

7.7 The 2-D Resonant Cavity 7 THE WAVE EQUATION

Figure 87: Electromagnetic waves in a 2-d resonant cavity. Spatial variation of Ez (solid curve) and

Hy (dashed curve) in the x-direction at t = 20 and y = 0.5. Numerical calculation performed using

m = 1, n = 1, Lx = 1, Ly = 1, c = 1, I = J = 32, δt = 10−2, and f = 0.7071.

Figure 88: Electromagnetic waves in a 2-d resonant cavity. Spatial variation of Ez (solid curve) and

Hx (dashed curve) in the y-direction at t = 20 and x = 0.5. Numerical calculation performed using

m = 1, n = 1, Lx = 1, Ly = 1, c = 1, I = J = 32, δt = 10−2, and f = 0.7071.

264

8 PARTICLE-IN-CELL CODES

8 Particle-in-Cell Codes

8.1 Introduction

Consider an unmagnetized, uniform, 1-dimensional plasma consisting of N elec-

trons and N unit-charged ions. Now, ions are much more massive than electrons.

Hence, on short time-scales, we can treat the ions as a static neutralizing back-

ground, and only consider the motion of the electrons. Let ri be the x-coordinate

of the ith electron. The equations of motion of the ith electron are written:

dri

dt
= vi, (8.1)

dvi

dt
= −

e E(ri)

me

, (8.2)

where e > 0 is the magnitude of the electron charge, me the electron mass, and

E(x) the x-component of the electric field-strength at position x. Now, the electric

field-strength can be expressed in terms of an electric potential:

E(x) = −
dφ(x)

dx
. (8.3)

Furthermore, from the Poisson-Maxwell equation, we have

d2φ(x)

dx2
= −

e

ǫ0

{n0 − n(x)}, (8.4)

where ǫ0 is the permittivity of free-space, n(x) the electron number density (i.e.,

n(x) dx is the number of electrons in the interval x to x+dx), and n0 the uniform

ion number density. Of course, the average value of n(x) is equal to n0, since

there are equal numbers of ions and electrons.

Let us consider an initial electron distribution function consisting of two counter-

propagating Maxwellian beams of mean speed vb and thermal spread vth: i.e.,

f(x, v) =
n0

2

{
1√

2 π vth

e−(v−vb)2/2 v 2
th +

1√
2 π vth

e−(v+vb)2/2 v 2
th

}

. (8.5)

265

8.2 Normalization Scheme 8 PARTICLE-IN-CELL CODES

Here, f(x, v) dx dv is the number of electrons between x and x+dx with velocities

in the range v to v + dv. Of course, n(x) =
∫∞

−∞ f(x, v) dv. The beam temperature

T is related to the thermal velocity via vth =
√

kB T/me, where kB is the Boltzmann

constant. It is well-known that if vb is significantly larger than vth then the above

distribution is unstable to a plasma instability called the two-stream instability.38

Let us investigate this instability numerically.

8.2 Normalization Scheme

It is convenient to normalize time with respect to ω−1
p , where

ω2
p =

n0 e2

ǫ0 me

(8.6)

is the so-called plasma frequency: i.e., the typical frequency of electrostatic elec-

tron oscillations. Likewise it is convenient to normalize length with respect to the

so-called Debye length:

λD =
vth

ωp

,

which is the length-scale above which the electrons exhibit collective (i.e., plasma-

like) effects, instead of acting like individual particles.

Our normalized equations take the form:

dxi

dt
= vi, (8.7)

dvi

dt
= −E(xi), (8.8)

E(x) = −
dφ(x)

dx
, (8.9)

d2φ(x)

dx2
=

n(x)

n0

− 1. (8.10)

38T.H. Stix, The theory of plasma waves, 1st Ed. (McGraw-Hill, New York NY, 1962).

266

8.3 Solution of Electron Equations of Motion 8 PARTICLE-IN-CELL CODES

whereas our initial distribution function becomes

f(x, v) =
n0

2

{
1√
2 π

e−(v−vb)2/2 +
1√
2 π

e−(v+vb)2/2

}

. (8.11)

Note that vth = 1 in normalized units.

Let us solve the above system of equations in the domain 0 ≤ x ≤ L. Fur-

thermore, for the sake of simplicity, let us adopt periodic boundary conditions:

i.e., let us identify the left and right boundaries of our solution domain. It fol-

lows that n(0) = n(L), φ(0) = φ(L), and E(0) = E(L). Moreover, any electron

which crosses the right boundary of the solution domain must reappear at the

left boundary with the same velocity, and vice versa.

8.3 Solution of Electron Equations of Motion

We can solve the electron equations of motion, (8.7) and (8.8), as a set of 2N

coupled first-order ODEs using the RK4 methods discussed in Sect. 3. However,

in order to evaluate the right-hand sides of these equations we need to know

the electric field E(x) at each time-step. We can achieve this by solving Poisson’s

equation, (8.10), every time-step. However, in order to determine the source

term for this equation we need to calculate the electron number density n(x),

which is, of course, a function of the instantaneous electron locations.

8.4 Evaluation of Electron Number Density

In order to obtain the electron number density n(x) from the electron coordinates

ri we adopt a so-called particle-in-cell (PIC) approach. Let us define a set of J

equally spaced spatial grid-points located at coordinates

xj = j δx, (8.12)

267

8.5 Solution of Poisson’s Equation 8 PARTICLE-IN-CELL CODES

for j = 0, J − 1, where δx = L/J. Let nj ≡ n(xj). Suppose that the ith electron lies

between the jth and (j + 1)th grid-points: i.e., xj < ri < xj+1. We let

nj → nj +





xj+1 − ri

xj+1 − xj





/

δx, (8.13)

and

nj+1 → nj+1 +





ri − xj

xj+1 − xj





/

δx. (8.14)

Thus, nj δx increases by 1 if the electron is at the jth grid-point, nj+1 δx increases

by 1 if the electron is at the (j+1)th grid-point, and nj δx and nj+1 δx both increase

by 1/2 if the electron is halfway between the two grid-points, etc. Performing a

similar assignment for each electron in turn allows us to build up the nj from the

electron coordinates (assuming that all the nj are initialized to zero at the start

of this process).

8.5 Solution of Poisson’s Equation

Consider the solution of Poisson’s equation:

d2φ(x)

dx2
= ρ(x), (8.15)

where ρ(x) = n(x)/n0 − 1. Note that n0 = N/L in normalized units. Let φj ≡
φ(xj) and ρj ≡ ρ(xj). We can write

φj =
∑

j ′=0,J−1

φ̂j ′ e
i j j ′ 2π/J, (8.16)

ρj =
∑

j ′=0,J−1

ρ̂j ′ e
i j j ′ 2π/J, (8.17)

which automatically satisfies the periodic boundary conditions φJ = φ0 and ρJ =

ρ0. Note that ρ̂0 = 0, since
∫L

0
n(x) dx = n0. The other ρ̂j are obtained from

ρ̂j =
1

J

∑

j ′=0,J−1

ρj ′ e
−i j j ′ 2π/J, (8.18)

268

8.6 An example 1-D PIC Code 8 PARTICLE-IN-CELL CODES

for j = 1, J − 1. The Fourier transformed version of Poisson’s equation yields

φ̂0 = 0 (8.19)

and

φ̂j = −
ρ̂j

j2 κ2
(8.20)

for j = 1, J/2, where κ = 2π/L. Finally,

φ̂j = φ̂∗
J−j (8.21)

for j = J/2 + 1 to J − 1, which ensures that the φj remain real. The discretized

version of Eq. (8.9) is

Ej =
φj−1 − φj+1

2 δx
. (8.22)

Of course, j = 0 and j = J − 1 are special cases which can be resolved using

the periodic boundary conditions. Finally, suppose that the coordinate of the ith

electron lies between the jth and (j + 1)th grid-points: i.e., xj < ri < xj+1. We can

then use linear interpolation to evaluate the electric field seen by the ith electron:

E(ri) =





xj+1 − ri

xj+1 − xj



Ej +





ri − xj

xj+1 − xj



Ej+1. (8.23)

8.6 An example 1-D PIC Code

The following code is an implementation of the ideas developed above.

The main function reads in the calculation parameters, checks that they are

sensible, initializes the electron coordinates, and then evolves the electron equa-

tions of motion from t = 0 to some specified tmax, using a fixed step RK4 routine

with some specified time-step δt. Information on the electron phase-space coor-

dinates and the electric field is periodically written to various data-files.

// 1-d PIC code to solve plasma two-stream instability problem.

#include <stdlib.h>

269

8.6 An example 1-D PIC Code 8 PARTICLE-IN-CELL CODES

#include <stdio.h>

#include <math.h>

#include <time.h>

#include <blitz/array.h>

#include <fftw.h>

using namespace blitz;

void Output (char* fn1, char* fn2, double t,

Array<double,1> r, Array<double,1> v);

void Density (Array<double,1> r, Array<double,1>& n);

void Electric (Array<double,1> phi, Array<double,1>& E);

void Poisson1D (Array<double,1>& u, Array<double,1> v, double kappa);

void rk4_fixed (double& x, Array<double,1>& y,

void (*rhs_eval)(double, Array<double,1>, Array<double,1>&),

double h);

void rhs_eval (double t, Array<double,1> y, Array<double,1>& dydt);

void Load (Array<double,1> r, Array<double,1> v, Array<double,1>& y);

void UnLoad (Array<double,1> y, Array<double,1>& r, Array<double,1>& v);

double distribution (double vb);

double L; int N, J;

int main()

{

// Parameters

L; // Domain of solution 0 <= x <= L (in Debye lengths)

N; // Number of electrons

J; // Number of grid points

double vb; // Beam velocity

double dt; // Time-step (in inverse plasma frequencies)

double tmax; // Simulation run from t = 0. to t = tmax

// Get parameters

270

8.6 An example 1-D PIC Code 8 PARTICLE-IN-CELL CODES

printf ("Please input N: "); scanf ("%d", &N);

printf ("Please input vb: "); scanf ("%lf", &vb);

printf ("Please input L: "); scanf ("%lf", &L);

printf ("Please input J: "); scanf ("%d", &J);

printf ("Please input dt: "); scanf ("%lf", &dt);

printf ("Please input tmax: "); scanf ("%lf", &tmax);

int skip = int (tmax / dt) / 10;

if ((N < 1) || (J < 2) || (L <= 0.) || (vb <= 0.)

|| (dt <= 0.) || (tmax <= 0.) || (skip < 1))

{

printf ("Error - invalid input parameters\n");

exit (1);

}

// Set names of output files

char* phase[11]; char* data[11];

phase[0] = "phase0.out";phase[1] = "phase1.out";phase[2] = "phase2.out";

phase[3] = "phase3.out";phase[4] = "phase4.out";phase[5] = "phase5.out";

phase[6] = "phase6.out";phase[7] = "phase7.out";phase[8] = "phase8.out";

phase[9] = "phase9.out";phase[10] = "phase10.out";data[0] = "data0.out";

data[1] = "data1.out"; data[2] = "data2.out"; data[3] = "data3.out";

data[4] = "data4.out"; data[5] = "data5.out"; data[6] = "data6.out";

data[7] = "data7.out"; data[8] = "data8.out"; data[9] = "data9.out";

data[10] = "data10.out";

// Initialize solution

double t = 0.;

int seed = time (NULL); srand (seed);

Array<double,1> r(N), v(N);

for (int i = 0; i < N; i++)

{

r(i) = L * double (rand ()) / double (RAND_MAX);

v(i) = distribution (vb);

}

271

8.6 An example 1-D PIC Code 8 PARTICLE-IN-CELL CODES

Output (phase[0], data[0], t, r, v);

// Evolve solution

Array<double,1> y(2*N);

Load (r, v, y);

for (int k = 1; k <= 10; k++)

{

for (int kk = 0; kk < skip; kk++)

{

// Take time-step

rk4_fixed (t, y, rhs_eval, dt);

// Make sure all coordinates in range 0 to L.

for (int i = 0; i < N; i++)

{

if (y(i) < 0.) y(i) += L;

if (y(i) > L) y(i) -= L;

}

printf ("t = %11.4e\n", t);

}

printf ("Plot %3d\n", k);

// Output data

UnLoad (y, r, v);

Output(phase[k], data[k], t, r, v);

}

return 0;

}

The following routine outputs the simulation data to various data-files.

// Write data to output files

272

8.6 An example 1-D PIC Code 8 PARTICLE-IN-CELL CODES

void Output (char* fn1, char* fn2, double t,

Array<double,1> r, Array<double,1> v)

{

// Write phase-space data

FILE* file = fopen (fn1, "w");

for (int i = 0; i < N; i++)

fprintf (file, "%e %e\n", r(i), v(i));

fclose (file);

// Write electric field data

Array<double,1> ne(J), n(J), phi(J), E(J);

Density (r, ne);

for (int j = 0; j < J; j++)

n(j) = double (J) * ne(j) / double (N) - 1.;

double kappa = 2. * M_PI / L;

Poisson1D (phi, n, kappa);

Electric (phi, E);

file = fopen (fn2, "w");

for (int j = 0; j < J; j++)

{

double x = double (j) * L / double (J);

fprintf (file, "%e %e %e %e\n", x, ne(j), n(j), E(j));

}

double x = L;

fprintf (file, "%e %e %e %e\n", x, ne(0), n(0), E(0));

fclose (file);

}

The following routine returns a random velocity distributed on a double Maxwellian

distribution function corresponding to two counter-streaming beams. The algo-

rithm used to achieve this is called the rejection method, and will be discussed

later in this course.

273

8.6 An example 1-D PIC Code 8 PARTICLE-IN-CELL CODES

// Function to distribute electron velocities randomly so as

// to generate two counter propagating warm beams of thermal

// velocities unity and mean velocities +/- vb.

// Uses rejection method.

double distribution (double vb)

{

// Initialize random number generator

static int flag = 0;

if (flag == 0)

{

int seed = time (NULL);

srand (seed);

flag = 1;

}

// Generate random v value

double fmax = 0.5 * (1. + exp (-2. * vb * vb));

double vmin = - 5. * vb;

double vmax = + 5. * vb;

double v = vmin + (vmax - vmin) * double (rand ()) / double (RAND_MAX);

// Accept/reject value

double f = 0.5 * (exp (-(v - vb) * (v - vb) / 2.) +

exp (-(v + vb) * (v + vb) / 2.));

double x = fmax * double (rand ()) / double (RAND_MAX);

if (x > f) return distribution (vb);

else return v;

}

The routine below evaluates the electron number density on an evenly spaced

mesh given the instantaneous electron coordinates.

// Evaluates electron number density n(0:J-1) from

274

8.6 An example 1-D PIC Code 8 PARTICLE-IN-CELL CODES

// array r(0:N-1) of electron coordinates.

void Density (Array<double,1> r, Array<double,1>& n)

{

// Initialize

double dx = L / double (J);

n = 0.;

// Evaluate number density.

for (int i = 0; i < N; i++)

{

int j = int (r(i) / dx);

double y = r(i) / dx - double (j);

n(j) += (1. - y) / dx;

if (j+1 == J) n(0) += y / dx;

else n(j+1) += y / dx;

}

}

The following functions are wrapper routines for using the fftw library with

periodic functions.

// Functions to calculate Fourier transforms of real data

// using fftw Fast-Fourier-Transform routine.

// Input/ouput arrays are assumed to be of extent J.

// Calculates Fourier transform of array f in arrays Fr and Fi

void fft_forward (Array<double,1>f, Array<double,1>&Fr,

Array<double,1>& Fi)

{

fftw_complex ff[J], FF[J];

// Load data

for (int j = 0; j < J; j++)

275

8.6 An example 1-D PIC Code 8 PARTICLE-IN-CELL CODES

{

c_re (ff[j]) = f(j); c_im (ff[j]) = 0.;

}

// Call fftw routine

fftw_plan p = fftw_create_plan (J, FFTW_FORWARD, FFTW_ESTIMATE);

fftw_one (p, ff, FF);

fftw_destroy_plan (p);

// Unload data

for (int j = 0; j < J; j++)

{

Fr(j) = c_re (FF[j]); Fi(j) = c_im (FF[j]);

}

// Normalize data

Fr /= double (J);

Fi /= double (J);

}

// Calculates inverse Fourier transform of arrays Fr and Fi in array f

void fft_backward (Array<double,1> Fr, Array<double,1> Fi,

Array<double,1>& f)

{

fftw_complex ff[J], FF[J];

// Load data

for (int j = 0; j < J; j++)

{

c_re (FF[j]) = Fr(j); c_im (FF[j]) = Fi(j);

}

// Call fftw routine

fftw_plan p = fftw_create_plan (J, FFTW_BACKWARD, FFTW_ESTIMATE);

276

8.6 An example 1-D PIC Code 8 PARTICLE-IN-CELL CODES

fftw_one (p, FF, ff);

fftw_destroy_plan (p);

// Unload data

for (int j = 0; j < J; j++)

f(j) = c_re (ff[j]);

}

The following routine solves Poisson’s equation in 1-D to find the instanta-

neous electric potential on a uniform grid.

// Solves 1-d Poisson equation:

// d^u / dx^2 = v for 0 <= x <= L

// Periodic boundary conditions:

// u(x + L) = u(x), v(x + L) = v(x)

// Arrays u and v assumed to be of length J.

// Now, jth grid point corresponds to

// x_j = j dx for j = 0,J-1

// where dx = L / J.

// Also,

// kappa = 2 pi / L

void Poisson1D (Array<double,1>& u, Array<double,1> v, double kappa)

{

// Declare local arrays.

Array<double,1> Vr(J), Vi(J), Ur(J), Ui(J);

// Fourier transform source term

fft_forward (v, Vr, Vi);

// Calculate Fourier transform of u

Ur(0) = Ui(0) = 0.;

for (int j = 1; j <= J/2; j++)

{

277

8.6 An example 1-D PIC Code 8 PARTICLE-IN-CELL CODES

Ur(j) = - Vr(j) / double (j * j) / kappa / kappa;

Ui(j) = - Vi(j) / double (j * j) / kappa / kappa;

}

for (int j = J/2; j < J; j++)

{

Ur(j) = Ur(J-j);

Ui(j) = - Ui(J-j);

}

// Inverse Fourier transform to obtain u

fft_backward (Ur, Ui, u);

}

The following function evaluates the electric field on a uniform grid from the

electric potential.

// Calculate electric field from potential

void Electric (Array<double,1> phi, Array<double,1>& E)

{

double dx = L / double (J);

for (int j = 1; j < J-1; j++)

E(j) = (phi(j-1) - phi(j+1)) / 2. / dx;

E(0) = (phi(J-1) - phi(1)) / 2. / dx;

E(J-1) = (phi(J-2) - phi(0)) / 2. / dx;

}

The following routine is the right-hand side routine for the electron equations

of motion. Is is designed to be used with the fixed-step RK4 solver described

earlier in this course.

// Electron equations of motion:

// y(0:N-1) = r_i

278

8.6 An example 1-D PIC Code 8 PARTICLE-IN-CELL CODES

// y(N:2N-1) = dr_i/dt

void rhs_eval (double t, Array<double,1> y, Array<double,1>& dydt)

{

// Declare local arrays

Array<double,1> r(N), v(N), rdot(N), vdot(N), r0(N);

Array<double,1> ne(J), rho(J), phi(J), E(J);

// Unload data from y

UnLoad (y, r, v);

// Make sure all coordinates in range 0 to L

r0 = r;

for (int i = 0; i < N; i++)

{

if (r0(i) < 0.) r0(i) += L;

if (r0(i) > L) r0(i) -= L;

}

// Calculate electron number density

Density (r0, ne);

// Solve Poisson’s equation

double n0 = double (N) / L;

for (int j = 0; j < J; j++)

rho(j) = ne(j) / n0 - 1.;

double kappa = 2. * M_PI / L;

Poisson1D (phi, rho, kappa);

// Calculate electric field

Electric (phi, E);

// Equations of motion

for (int i = 0; i < N; i++)

279

8.6 An example 1-D PIC Code 8 PARTICLE-IN-CELL CODES

{

double dx = L / double (J);

int j = int (r0(i) / dx);

double y = r0(i) / dx - double (j);

double Efield;

if (j+1 == J)

Efield = E(j) * (1. - y) + E(0) * y;

else

Efield = E(j) * (1. - y) + E(j+1) * y;

rdot(i) = v(i);

vdot(i) = - Efield;

}

// Load data into dydt

Load (rdot, vdot, dydt);

}

The following functions load and unload the electron phase-space coordinates

into the solution vector y used by the RK4 routine.

// Load particle coordinates into solution vector

void Load (Array<double,1> r, Array<double,1> v, Array<double,1>& y)

{

for (int i = 0; i < N; i++)

{

y(i) = r(i);

y(N+i) = v(i);

}

}

// Unload particle coordinates from solution vector

280

8.7 Results 8 PARTICLE-IN-CELL CODES

Figure 89: The electron phase-space distribution evaluated at various times for a 1-dimensional two-

stream instability calculation performed with N = 20000, J = 1000, L = 100, vb = 3, and δt = 0.1.

void UnLoad (Array<double,1> y, Array<double,1>& r, Array<double,1>& v)

{

for (int i = 0; i < N; i++)

{

r(i) = y(i);

v(i) = y(N+i);

}

}

8.7 Results

Figures 89 and 90 show the electron phase-space distributions evaluated at equally

spaced times for a two-stream instability calculation performed with 2× 104 elec-

trons. It can be seen that the distribution initially takes the form of two uni-

281

8.8 Discussion 8 PARTICLE-IN-CELL CODES

Figure 90: The electron phase-space distribution evaluated at various times for a 1-dimensional two-

stream instability calculation performed with N = 20000, J = 1000, L = 100, vb = 3, and δt = 0.1.

form bands, corresponding to two counter-streaming electron beams. However,

as time progresses, the bands spontaneously develop structure which grows in

magnitude and eventually converts the phase-space distribution into a set of con-

nected vortices. In this final state, the electrons are basically bouncing backwards

and forwards in a quasi-periodic electric potential generated by non-uniformities

in the electron density. In other words, the instability effectively destroys the two

beams. For this reason, the two-stream instability is of major concern in particle

accelerators, which often consist of counter-propagating charged particle beams.

8.8 Discussion

Obviously, the ideas discussed above could be generalized in a fairly straight-

forward manner to deal with the evolution of two and three-dimensional charged

particle distributions. PIC codes have the advantage that they are reasonably

straight-forward to write. Unfortunately, PIC codes also have a number of disad-

vantages. The first is that PIC codes suffer from high levels of statistical noise,

282

8.8 Discussion 8 PARTICLE-IN-CELL CODES

since they generally only deal with a relatively small number of particles (typi-

cally, ≤ 106). Real physical systems do not exhibit anything like the same level of

statistical noise, since they generally contain of order Avogadro’s number (∼ 1024)

of interacting particles. Another problem with PIC codes is that they do not han-

dle charged particle collisions very well. The reason for this is that there are

generally a large number of particles in each cell (for practical reasons), and

the short range Coulomb fields of these particles tend to cancel one another out

(recall that the electric field is only calculated at the cell vertices).

283

9 MONTE-CARLO METHODS

9 Monte-Carlo Methods

9.1 Introduction

Numerical methods which make use of random numbers are called Monte-Carlo

methods—after the famous casino. The obvious applications of such methods are

in stochastic physics: e.g., statistical thermodynamics. However, there are other,

less obvious, applications: e.g., the evaluation of multi-dimensional integrals.

9.2 Random Numbers

No numerical algorithm can generate a truly random sequence of numbers, How-

ever, there exist algorithms which generate repeating sequences of M (say) inte-

gers which are, to a fairly good approximation, randomly distributed in the range

0 to M−1. Here, M is a (hopefully) large integer. This type of sequence is termed

psuedo-random.

The most well-known algorithm for generating psuedo-random sequences of

integers is the so-called linear congruental method. The formula linking the nth

and (n + 1)th integers in the sequence is

In+1 = (A In + C) mod M, (9.1)

where A, C, and M are positive integer constants. The first number in the se-

quence, the so-called “seed” value, is selected by the user.

Consider an example case in which A = 7, C = 0, and M = 10. A typical

sequence of numbers generated by formula (9.1) is

I = {3, 1, 7, 9, 3, 1, · · ·}. (9.2)

Evidently, the above choice of values for A, C, and M is not a particularly good

one, since the sequence repeats after only four iterations. However, if A, C, and

M are properly chosen then the sequence is of maximal length (i.e., of length M),

and approximately randomly distributed in the range 0 to M − 1.

284

9.2 Random Numbers 9 MONTE-CARLO METHODS

The function listed below is an implementation of the linear congruental method.

// random.cpp

// Linear congruential psuedo-random number generator.

// Generates psuedo-random sequence of integers in

// range 0 .. RANDMAX.

#define RANDMAX 6074 // RANDMAX = M - 1

int random (int seed = 0)

{

static int next = 1;

static int A = 106;

static int C = 1283;

static int M = 6075;

if (seed) next = seed;

next = next * A + C;

return next % M;

}

The keyword static in front of a local variable declaration indicates that the

program should preserve the value of that variable between function calls. In

other words, if the static variable next has the value 999 on exit from function

random then the next time this function is called next will have exactly the same

value. Note that the values of non-static local variables are not preserved between

function calls. The = 0 in the first line of function random is a default value for the

argument seed. In fact, random can be called in one of two ways. Firstly, random

can be called with no argument: i.e., random (): in which case, seed is given the

default value 0. Secondly, random can be called with an integer argument: i.e.,

random (n): in which case, the value of seed is set to n. The first way of calling

random just returns the next integer in the psuedo-random sequence. The second

way seeds the sequence with the value n (i.e., I1 is set to n), and then returns the

next integer in the sequence (i.e., I2). Note that the function prototype for random

takes the form int random (int = 0): the = 0 indicates that the argument is

optional.

The above function returns a pseudo-random integer in the range 0 to RANDMAX

285

9.2 Random Numbers 9 MONTE-CARLO METHODS

Figure 91: Plot of xj versus xj+1 for j = 1, 10000. Here, the xj are random values, uniformly dis-

tributed in the range 0 to 1, generated using a linear congruental psuedo-random number generator

characterized by A = 106, C = 1283, and M = 6075.

(where RANDMAX takes the value M − 1). In order to obtain a random variable x,

uniformly distributed in the range 0 to 1, we would write

x = double (random ()) / double (RANDMAX);

Now if x is truly random then there should be no correlation between successive

values of x. Thus, a good way of testing our random number generator is to plot

xj versus xj+1 (where xj corresponds to the jth number in the psuedo-random

sequence) for many different values of j. For a good random number generator,

the plotted points should densely fill the unit square. Moreover, there should be

no discernible pattern in the distribution of points.

Figure 91 shows a correlation plot for the first 10000 xj–xj+1 pairs generated

using a linear congruental psuedo-random number generator characterized by

286

9.2 Random Numbers 9 MONTE-CARLO METHODS

Figure 92: Plot of xj versus xj+1 for j = 1, 10000. Here, the xj are random values, uniformly dis-

tributed in the range 0 to 1, generated using a linear congruental psuedo-random number generator

characterized by A = 107, C = 1283, and M = 6075.

A = 106, C = 1283, and M = 6075. It can be seen that this is a poor choice of

values for A, C, and M, since the pseudo-random sequence repeats after a few

iterations, yielding xj values which do not densely fill the interval 0 to 1.

Figure 92 shows a correlation plot for the first 10000 xj–xj+1 pairs generated

using a linear congruental psuedo-random number generator characterized by

A = 107, C = 1283, and M = 6075. It can be seen that this is a far better choice

of values for A, C, and M, since the pseudo-random sequence is of maximal

length, yielding xj values which are fairly evenly distributed in the range 0 to 1.

However, if we look carefully at Fig. 92, we can see that there is a slight tendency

for the dots to line up in the horizontal and vertical directions. This indicates

that the xj are not quite randomly distributed: i.e., there is some correlation

between successive xj values. The problem is that M is too low: i.e., there is not

a sufficiently wide selection of different xj values in the interval 0 to 1.

287

9.2 Random Numbers 9 MONTE-CARLO METHODS

Figure 93: Plot of xj versus xj+1 for j = 1, 10000. Here, the xj are random values, uniformly dis-

tributed in the range 0 to 1, generated using a linear congruental psuedo-random number generator

characterized by A = 1103515245, C = 12345, and M = 32768.

288

9.2 Random Numbers 9 MONTE-CARLO METHODS

Figure 93 shows a correlation plot for the first 10000 xj–xj+1 pairs generated

using a linear congruental psuedo-random number generator characterized by

A = 1103515245, C = 12345, and M = 32768. The clumping of points in this

figure indicates that the xj are again not quite randomly distributed. This time

the problem is integer overflow: i.e., the values of A and M are sufficiently large

that A In > 1032 − 1 for many integers in the pseudo-random sequence. Thus, the

algorithm (9.1) is not being executed correctly.

Integer overflow can be overcome using Schrange’s algorithm. If y = (A z) modM

then

y =

{
A (z mod q) − r (z/q) if y > 0

A (z mod q) − r (z/q) + M otherwise
, (9.3)

where q = M/A and r = M%A. The so-called Park and Miller method for gen-
erating a pseudo-random sequence corresponds to a linear congruental method
characterized by the values A = 16807, C = 0, and M = 2147483647. The func-
tion listed below implements this method, using Schrange’s algorithm to avoid
integer overflow.

// random.cpp

// Park and Miller’s psuedo-random number generator.

#define RANDMAX 2147483646 // RANDMAX = M - 1

int random (int seed = 0)

{

static int next = 1;

static int A = 16807;

static int M = 2147483647; // 2^31 - 1

static int q = 127773; // M / A

static int r = 2836; // M % A

if (seed) next = seed;

next = A * (next % q) - r * (next / q);

if (next < 0) next += M;

return next;

}

Figure 94 shows a correlation plot for the first 10000 xj–xj+1 pairs generated

using Park & Miller’s method. We can now see no pattern whatsoever in the

289

9.2 Random Numbers 9 MONTE-CARLO METHODS

Figure 94: Plot of xj versus xj+1 for j = 1, 10000. Here, the xj are random values, uniformly

distributed in the range 0 to 1, generated using Park & Miller’s psuedo-random number generator.

290

9.3 Distribution Functions 9 MONTE-CARLO METHODS

plotted points. This indicates that the xj are indeed randomly distributed in the

range 0 to 1. From now on, we shall use Park & Miller’s method to generate all the

psuedo-random numbers needed in our investigation of Monte-Carlo methods.

9.3 Distribution Functions

Let P(x) dx represent the probability of finding the random variable x in the in-

terval x to x + dx. Here, P(x) is termed a probability density. Note that P = 0

corresponds to no chance, whereas P = 1 corresponds to certainty. Since it is

certain that the value of x lies in the range −∞ to +∞, probability densities are

subject to the normalizing constraint

∫+∞

−∞

P(x) dx = 1. (9.4)

Suppose that we wish to construct a random variable x which is uniformly

distributed in the range x1 to x2. In other words, the probability density of x is

P(x) =

{
1/(x2 − x1) if x1 ≤ x ≤ x2

0 otherwise
. (9.5)

Such a variable is constructed as follows

x = x1 + (x2 - x1) * double (random ()) / double (RANDMAX);

There are two basic methods of constructing non-uniformly distributed ran-

dom variables: i.e., the transformation method and the rejection method. We shall

examine each of these methods in turn.

Let us first consider the transformation method. Let y = f(x), where f is a

known function, and x is a random variable. Suppose that the probability density

of x is Px(x). What is the probability density, Py(y), of y? Our basic rule is the

conservation of probability:

|Px(x) dx| = |Py(y) dy|. (9.6)

291

9.3 Distribution Functions 9 MONTE-CARLO METHODS

In other words, the probability of finding x in the interval x to x + dx is the same

as the probability of finding y in the interval y to y + dy. It follows that

Py(y) =
Px(x)

|f ′(x)|
, (9.7)

where f ′ = df/dx.

For example, consider the Poisson distribution:

Py(y) =

{
e−y if 0 ≤ y ≤ ∞

0 otherwise
. (9.8)

Let y = f(x) = − ln x, so that |f ′| = 1/x. Suppose that

Px(x) =

{
1 if 0 ≤ x ≤ 1

0 otherwise
. (9.9)

It follows that

Py(y) =
1

|f ′|
= x = e−y, (9.10)

with x = 0 corresponding to y = ∞, and x = 1 corresponding to y = 0. We
conclude that if

x = double (random ()) / double (RANDMAX);

y = - log (x);

then y is distributed according to the Poisson distribution.

The transformation method requires a differentiable probability distribution

function. This is not always practical. In such cases, we can use the rejection

method instead.

Suppose that we desire a random variable y distributed with density Py(y) in

the range ymin to ymax. Let Py max be the maximum value of P(y) in this range (see

Fig. 95). The rejection method is as follows. The variable y is sampled randomly

in the range ymin to ymax. For each value of y we first evaluate Py(y). We next

generate a random number x which is uniformly distributed in the range 0 to

292

9.3 Distribution Functions 9 MONTE-CARLO METHODS

Py

Py max

ymin ymax
y

0

Figure 95: The rejection method.

Py max. Finally, if Py(y) < x then we reject the y value; otherwise, we keep it. If

this prescription is followed then y will be distributed according to Py(y).

As an example, consider the Gaussian distribution:

Py(y) =
exp[(y − ȳ)2/2 σ2]√

2π σ
, (9.11)

where ȳ is the mean value of y, and σ is the standard deviation. Let

ymin = ȳ − 4 σ, (9.12)

ymax = ȳ + 4 σ, (9.13)

since there is a negligible chance that y lies more than 4 standard deviations from

its mean value. It follows that

Py max =
1√
2π σ

, (9.14)

with the maximum occurring at y = ȳ. The function listed below employs the
rejection method to return a random variable distributed according to a Gaussian
distribution with mean mean and standard deviation sigma:

// gaussian.cpp

// Function to return random variable distributed

293

9.4 Monte-Carlo Integration 9 MONTE-CARLO METHODS

// according to Gaussian distribution with mean mean

// and standard deviation sigma.

#define RANDMAX 2147483646

int random (int = 0);

double gaussian (double mean, double sigma)

{

double ymin = mean - 4. * sigma;

double ymax = mean + 4. * sigma;

double Pymax = 1. / sqrt (2. * M_PI) / sigma;

// Calculate random value uniformly distributed

// in range ymin to ymax

double y = ymin + (ymax - ymin) * double (random ()) / double (RANDMAX);

// Calculate Py

double Py = exp (- (y - mean) * (y - mean) / 2. / sigma / sigma) /

sqrt (2. * M_PI) / sigma;

// Calculate random value uniformly distributed in range 0 to Pymax

double x = Pymax * double (random ()) / double (RANDMAX);

// If x > Py reject value and recalculate

if (x > Py) return gaussian (mean, sigma);

else return y;

}

Figure 96 illustrates the performance of the above function. It can be seen that

the function successfully returns a random value distributed according to the

Gaussian distribution.

9.4 Monte-Carlo Integration

Consider a one-dimensional integral:
∫xh

xl
f(x) dx. We can evaluate this integral

numerically by dividing the interval xl to xh into N identical subdivisions of width

h =
xh − xl

N
. (9.15)

294

9.4 Monte-Carlo Integration 9 MONTE-CARLO METHODS

Figure 96: A million values returned by function gaussian with mean = 5. and sigma = 1.25. The

values are binned in 100 bins of width 0.1. The figure shows the number of points in each bin divided

by a suitable normalization factor. A Gaussian curve is shown for comparison.

Let xi be the midpoint of the ith subdivision, and let fi = f(xi). Our approximation

to the integral takes the form
∫ xh

xl

f(x) dx ≃
N∑

i=1

fi h (9.16)

This integration method—which is known as the midpoint method—is not partic-

ularly accurate, but is very easy to generalize to multi-dimensional integrals.

What is the error associated with the midpoint method? Well, the error is

the product of the error per subdivision, which is O(h2), and the number of

subdivisions, which is O(h−1). The error per subdivision follows from the linear

variation of f(x) within each subdivision. Thus, the overall error is O(h2) ×
O(h−1) = O(h). Since, h ∝ N−1, we can write

∫ xh

xl

f(x) dx ≃
N∑

i=1

fi h + O(N−1). (9.17)

Let us now consider a two-dimensional integral. For instance, the area en-

closed by a curve. We can evaluate such an integral by dividing space into iden-

295

9.4 Monte-Carlo Integration 9 MONTE-CARLO METHODS

tical squares of dimension h, and then counting the number of squares, N (say),

whose midpoints lie within the curve. Our approximation to the integral then

takes the form

A ≃ N h2. (9.18)

This is the two-dimensional generalization of the midpoint method.

What is the error associated with the midpoint method in two-dimensions?

Well, the error is generated by those squares which are intersected by the curve.

These squares either contribute wholly or not at all to the integral, depending on

whether their midpoints lie within the curve. In reality, only those parts of the

intersected squares which lie within the curve should contribute to the integral.

Thus, the error is the product of the area of a given square, which is O(h2), and

the number of squares intersected by the curve, which is O(h−1). Hence, the

overall error is O(h2) × O(h−1) = O(h) = O(N−1/2). It follows that we can write

A = N h2 + O(N−1/2). (9.19)

Let us now consider a three-dimensional integral. For instance, the volume

enclosed by a surface. We can evaluate such an integral by dividing space into

identical cubes of dimension h, and then counting the number of cubes, N (say),

whose midpoints lie within the surface. Our approximation to the integral then

takes the form

V ≃ N h3. (9.20)

This is the three-dimensional generalization of the midpoint method.

What is the error associated with the midpoint method in three-dimensions?

Well, the error is generated by those cubes which are intersected by the surface.

These cubes either contribute wholly or not at all to the integral, depending on

whether their midpoints lie within the surface. In reality, only those parts of the

intersected cubes which lie within the surface should contribute to the integral.

Thus, the error is the product of the volume of a given cube, which is O(h3),

and the number of cubes intersected by the surface, which is O(h−2). Hence, the

overall error is O(h3) × O(h−2) = O(h) = O(N−1/3). It follows that we can write

V = N h3 + O(N−1/3). (9.21)

296

9.4 Monte-Carlo Integration 9 MONTE-CARLO METHODS

Let us, finally, consider using the midpoint method to evaluate the volume, V ,

of a d-dimensional hypervolume enclosed by a (d−1)-dimensional hypersurface.

It is clear, from the above examples, that

V = N hd + O(N−1/d), (9.22)

where N is the number of identical hypercubes into which the hypervolume is

divided. Note the increasingly slow fall-off of the error with N as the dimension-

ality, d, becomes greater. The explanation for this phenomenon is quite simple.

Suppose that N = 106. With N = 106 we can divide a unit line into (identi-

cal) subdivisions whose linear extent is 10−6, but we can only divide a unit area

into subdivisions whose linear extent is 10−3, and a unit volume into subdivisions

whose linear extent is 10−2. Thus, for a fixed number of subdivisions the grid

spacing (and, hence, the integration error) increases dramatically with increas-

ing dimension.

Let us now consider the so-called Monte-Carlo method for evaluating multi-

dimensional integrals. Consider, for example, the evaluation of the area, A, en-

closed by a curve, C. Suppose that the curve lies wholly within some simple

domain of area A ′, as illustrated in Fig. 97. Let us generate N ′ points which are

randomly distributed throughout A ′. Suppose that N of these points lie within

curve C. Our estimate for the area enclosed by the curve is simply

A =
N

N ′ A
′. (9.23)

What is the error associated with the Monte-Carlo integration method? Well,

each point has a probability p = A/A ′ of lying within the curve. Hence, the

determination of whether a given point lies within the curve is like the measure-

ment of a random variable x which has two possible values: 1 (corresponding to

the point being inside the curve) with probability p, and 0 (corresponding to the

point being outside the curve) with probability 1 − p. If we make N ′ measure-

ments of x (i.e., if we scatter N ′ points throughout A ′) then the number of points

lying within the curve is

N =
∑

i=1,N ′

xi, (9.24)

297

9.4 Monte-Carlo Integration 9 MONTE-CARLO METHODS

C

A’

A

Figure 97: The Monte-Carlo integration method.

where xi denotes the ith measurement of x. Now, the mean value of N is

N̄ =
∑

i=1,N ′

x̄ = N ′ x̄, (9.25)

where

x̄ = 1 × p + 0 × (1 − p) = p. (9.26)

Hence,

N̄ = N ′ p = N ′ A

A ′ , (9.27)

which is consistent with Eq. (9.23). We conclude that, on average, a measure-

ment of N leads to the correct answer. But, what is the scatter in such a measure-

ment? Well, if σ represents the standard deviation of N then we have

σ2 = (N − N̄)2, (9.28)

which can also be written

σ2 =
∑

i,j,=1,N ′

(xi − x̄)(xj − x̄). (9.29)

However, (xi − x̄)(xj − x̄) equals (x − x̄)2 if i = j, and equals zero, otherwise,

since successive measurements of x are uncorrelated. Hence,

σ2 = N ′ (x − x̄)2. (9.30)

Now,

(x − x̄)2 = (x2 − 2 x x̄ + x̄2) = x2 − x̄2, (9.31)

298

9.4 Monte-Carlo Integration 9 MONTE-CARLO METHODS

and

x2 = 12 × p + 02 × (1 − p) = p. (9.32)

Thus,

(x − x̄)2 = p − p2 = p (1 − p), (9.33)

giving

σ =
√

N ′ p (1 − p). (9.34)

Finally, since the likely values of N lie in the range N = N̄ ± σ, we can write

N = N ′ A

A ′ ±
√

√

√

√N ′ A

A ′

(

1 −
A

A ′

)

. (9.35)

It follows from Eq. (9.23) that

A = A ′ N

N ′ ±
√

A (A ′ − A)√
N ′ . (9.36)

In other words, the error scales like (N ′)−1/2.

The Monte-Carlo method generalizes immediately to d-dimensions. For in-

stance, consider a d-dimensional hypervolume V enclosed by a (d−1)-dimensional

hypersurface A. Suppose that A lies wholly within some simple hypervolume V ′.

We can generate N ′ points randomly distributed throughout V ′. Let N be the

number of these points which lie within A. It follows that our estimate for V is

simply

V =
N

N ′ V
′. (9.37)

Now, there is nothing in our derivation of Eq. (9.36) which depends on the fact

that the integral in question is two-dimensional. Hence, we can generalize this

equation to give

V = V ′ N

N ′ ±
√

V (V ′ − V)√
N ′ . (9.38)

We conclude that the error associated with Monte-Carlo integration always scales

like (N ′)−1/2, irrespective of the dimensionality of the integral.

We are now in a position to compare and contrast the midpoint and Monte-

Carlo methods for evaluating multi-dimensional integrals. In the midpoint method,

299

9.4 Monte-Carlo Integration 9 MONTE-CARLO METHODS

1

y

1
x

Figure 98: Example calculation: volume of unit-radius 2-dimensional sphere enclosed in a close-

fitting 2-dimensional cube.

we fill space with an evenly spaced mesh of N (say) points (i.e., the midpoints of

the subdivisions), and the overall error scales like N−1/d, where d is the dimen-

sionality of the integral. In the Monte-Carlo method, we fill space with N (say)

randomly distributed points, and the overall error scales like N−1/2, irrespective

of the dimensionality of the integral. For a one-dimensional integral (d = 1),

the midpoint method is more efficient than the Monte-Carlo method, since in the

former case the error scales like N−1, whereas in the latter the error scales like

N−1/2. For a two-dimensional integral (d = 2), the midpoint and Monte-Carlo

methods are both equally efficient, since in both cases the error scales like N−1/2.

Finally, for a three-dimensional integral (d = 3), the midpoint method is less

efficient than the Monte-Carlo method, since in the former case the error scales

like N−1/3, whereas in the latter the error scales like N−1/2. We conclude that for

a sufficiently high dimension integral the Monte-Carlo method is always going

to be more efficient than an integration method (such as the midpoint method)

which relies on a uniform grid.

Up to now, we have only considered how the Monte-Carlo method can be

employed to evaluate a rather special class of integrals in which the integrand

function can only take the values 0 or 1. However, the Monte-Carlo method can

easily be adapted to evaluate more general integrals. Suppose that we wish to

evaluate
∫

f dV , where f is a general function and the domain of integration is of

arbitrary dimension. We proceed by randomly scattering N points throughout the

integration domain and calculating f at each point. Let xi denote the ith point.

300

9.4 Monte-Carlo Integration 9 MONTE-CARLO METHODS

Figure 99: The integration error, ǫ, versus the number of grid-points, N, for three integrals evaluated

using the midpoint method. The integrals are the area of a unit-radius circle (solid curve), the volume

of a unit-radius sphere (dotted curve), and the volume of a unit-radius 4-sphere (dashed curve).

The Monte-Carlo approximation to the integral is simply
∫

f dV =
1

N

∑

i=1,N

f(xi) + O

(

1√
N

)

. (9.39)

We end this section with an example calculation. Let us evaluate the volume

of a unit-radius d-dimensional sphere, where d runs from 2 to 4, using both the

midpoint and Monte-Carlo methods. For both methods, the domain of integration

is a cube, centred on the sphere, which is such that the sphere just touches each

face of the cube, as illustrated in Fig. 98.

Figure 99 shows the integration error associated with the midpoint method as

a function of the number of grid-points, N. It can be seen that as the dimension-

ality of the integral increases the error falls off much less rapidly as N increases.

Figure 100 shows the integration error associated with the Monte-Carlo method

as a function of the number of points, N. It can be seen that there is very little

change in the rate at which the error falls off with increasing N as the dimen-

sionality of the integral varies. Hence, as the dimensionality, d, increases the

301

9.5 The Ising Model 9 MONTE-CARLO METHODS

Figure 100: The integration error, ǫ, versus the number of points, N, for three integrals evaluated

using the Monte-Carlo method. The integrals are the area of a unit-radius circle (solid curve), the

volume of a unit-radius sphere (dotted curve), and the volume of a unit-radius 4-sphere (dashed

curve).

Monte-Carlo method eventually wins out over the midpoint method.

9.5 The Ising Model

Ferromagnetism arises when a collection of atomic spins align such that their asso-

ciated magnetic moments all point in the same direction, yielding a net magnetic

moment which is macroscopic in size. The simplest theoretical description of fer-

romagnetism is called the Ising model. This model was invented by Wilhelm Lenz

in 1920: it is named after Ernst Ising, a student of Lenz who chose the model as

the subject of his doctoral dissertation in 1925.

Consider N atoms in the presence of a z-directed magnetic field of strength

H. Suppose that all atoms are identical spin-1/2 systems. It follows that either

si = +1 (spin up) or si = −1 (spin down), where si is (twice) the z-component

302

9.5 The Ising Model 9 MONTE-CARLO METHODS

of the ith atomic spin. The total energy of the system is written:

E = −J
∑

<ij>

si sj − µ H
∑

i=1,N

si. (9.40)

Here, < ij > refers to a sum over nearest neighbour pairs of atoms. Further-

more, J is called the exchange energy, whereas µ is the atomic magnetic moment.

Equation (9.40) is the essence of the Ising model.

The physics of the Ising model is as follows. The first term on the right-hand

side of Eq. (9.40) shows that the overall energy is lowered when neighbouring

atomic spins are aligned. This effect is mostly due to the Pauli exclusion principle.

Electrons cannot occupy the same quantum state, so two electrons on neighbour-

ing atoms which have parallel spins (i.e., occupy the same orbital state) cannot

come close together in space. No such restriction applies if the electrons have

anti-parallel spins. Different spatial separations imply different electrostatic in-

teraction energies, and the exchange energy, J, measures this difference. Note

that since the exchange energy is electrostatic in origin, it can be quite large: i.e.,

J ∼ 1 eV. This is far larger than the energy associated with the direct magnetic in-

teraction between neighbouring atomic spins, which is only about 10−4 eV. How-

ever, the exchange effect is very short-range; hence, the restriction to nearest

neighbour interaction is quite realistic.

Our first attempt to analyze the Ising model will employ a simplification known

as the mean field approximation. The energy of the ith atom is written

ei = −
J

2

∑

k=1,z

sk si − µ H si, (9.41)

where the sum is over the z nearest neighbours of atom i. The factor 1/2 is

needed to ensure that when we sum to obtain the total energy,

E =
∑

i=1,N

ei, (9.42)

we do not count each pair of neighbouring atoms twice.

We can write

ei = −µ Heff si, (9.43)

303

9.5 The Ising Model 9 MONTE-CARLO METHODS

where

Heff = H +
J

2 µ

∑

k=1,z

sk. (9.44)

Here, Heff is the effective magnetic field, which is made up of two components: the

external field, H, and the internal field generated by neighbouring atoms.

Consider a single atom in a magnetic field Hm. Suppose that the atom is in

thermal equilibrium with a heat bath of temperature T . According to the well-

known Boltzmann distribution, the mean spin of the atom is

s̄ =
e+βµHm − e−βµHm

e+βµHm + e−βµHm
, (9.45)

where β = 1/kT , and k is the Boltzmann constant. The above expression follows

because the energy of the “spin up” state (s = +1) is −µ Hm, whereas the energy

of the “spin down” state (s = −1) is +µ Hm. Hence,

s̄ = tanh(β µ Hm). (9.46)

Let us assume that all atoms have identical spins: i.e., si = s̄. This assumption

is known as the “mean field approximation”. We can write

Heff = H +
z J s̄

2 µ
. (9.47)

Finally, we can combine Eqs. (9.46) and (9.47) (identifying Hm and Heff) to ob-

tain

s̄ = tanh {β µ H + β z J s̄/2} . (9.48)

Note that the heat bath in which a given atom is immersed is simply the rest of

the atoms. Hence, T is the temperature of the atomic array. It is helpful to define

the critical temperature,

Tc =
z J

2 k
, (9.49)

and the critical magnetic field,

Hc =
k Tc

µ
=

z J

2 µ
. (9.50)

304

9.5 The Ising Model 9 MONTE-CARLO METHODS

Equation (9.48) reduces to

s̄ = tanh

{
Tc

T

(

H

Hc

+ s̄

)

}

. (9.51)

The above equation cannot be solved analytically. However, it is fairly easily to

solve numerically using the following iteration scheme:

s̄i+1 = tanh

{
Tc

T

(

H

Hc

+ s̄i

)

}

. (9.52)

The above formula is iterated until s̄i+1 → s̄i.

It is helpful to define the net magnetization,

M = µ
∑

i=1,N

si = µ N s̄, (9.53)

the net energy,

E =
∑

i=1,N

ei = −N k Tc

(

H

Hc

+ s̄

)

s̄, (9.54)

and the heat capacity,

C =
dE

dT
. (9.55)

Figures 102, 101, and 103 show the net magnetization, net energy, and heat

capacity calculated from the iteration formula (9.52) in the absence of an exter-

nal magnetic field (i.e., with H = 0). It can be seen that below the critical (or

“Curie”) temperature, Tc, there is spontaneous magnetization: i.e., the exchange

effect is sufficiently large to cause neighbouring atomic spins to spontaneously

align. On the other hand, thermal fluctuations completely eliminate any align-

ment above the critical temperature. Moreover, at the critical temperature there

is a discontinuity in the first derivative of the energy, E, with respect to the tem-

perature, T . This discontinuity generates a downward jump in the heat capacity,

C, at T = Tc. The sudden loss of spontaneous magnetization as the temperature

exceeds the critical temperature is a type of phase transition.

Now, according to the conventional classification of phase transitions, a transi-

tion is first-order if the energy is discontinuous with respect to the order parame-

305

9.5 The Ising Model 9 MONTE-CARLO METHODS

Figure 101: The net magnetization, M, of a collection of N ferromagnetic atoms as a function of the

temperature, T , in the absence of an external magnetic field. Calculation performed using the mean

field approximation.

Figure 102: The net energy, E, of a collection of N ferromagnetic atoms as a function of the temper-

ature, T , in the absence of an external magnetic field. Calculation performed using the mean field

approximation.

306

9.5 The Ising Model 9 MONTE-CARLO METHODS

Figure 103: The heat capacity, C, of a collection of N ferromagnetic atoms as a function of the

temperature, T , in the absence of an external magnetic field. Calculation performed using the mean

field approximation.

ter (i.e., in this case, the temperature), and second-order if the energy is continu-

ous, but its first derivative with respect to the order parameter is discontinuous,

etc. We conclude that the loss of spontaneous magnetization in a ferromagnetic

material as the temperature exceeds the critical temperature is a second-order

phase transition.

In order to see an example of a first-order phase transition, let us examine the

behaviour of the magnetization, M, as the external field, H, is varied at constant

temperature, T .

Figures 104 and 105 show the magnetization, M, and energy, E, versus ex-

ternal field-strength, H, calculated from the iteration formula (9.52) at some

constant temperature, T , which is less than the critical temperature, Tc. It can be

seen that E is discontinuous, indicating the presence of a first-order phase transi-

tion. Moreover, the system exhibits hysteresis—meta-stable states exist within a

certain range of H values, and the magnetization of the system at fixed T and H

(within the aforementioned range) depends on its past history: i.e., on whether

H was increasing or decreasing when it entered the meta-stable range.

307

9.5 The Ising Model 9 MONTE-CARLO METHODS

H increasing

H decreasing

discontinuities

Figure 104: The net magnetization, M, of a collection of N ferromagnetic atoms as a function of the

external magnetic field, H, at constant temperature, T < Tc. Calculation performed using the mean

field approximation.

meta−stable states

discontinuities

Figure 105: The net energy, E, of a collection of N ferromagnetic atoms as a function of the external

magnetic field, H, at constant temperature, T < Tc. Calculation performed using the mean field

approximation.

308

9.5 The Ising Model 9 MONTE-CARLO METHODS

Figure 106: The net magnetization, M, of a collection of N ferromagnetic atoms as a function of the

external magnetic field, H, at constant temperature, T = Tc. Calculation performed using the mean

field approximation.

Figure 107: The net energy, E, of a collection of N ferromagnetic atoms as a function of the external

magnetic field, H, at constant temperature, T = Tc. Calculation performed using the mean field

approximation.

309

9.5 The Ising Model 9 MONTE-CARLO METHODS

L

L

Figure 108: A two-dimensional array of atoms.

Figures 106 and 107 show the magnetization, M, and energy, E, versus exter-

nal field-strength, H, calculated from the iteration formula (9.52) at a constant

temperature, T , which is equal to the critical temperature, Tc. It can be seen that

E is now continuous, and there are no meta-stable states. We conclude that first-

order phase transitions and hysteresis only occur, as the external field-strength is

varied, when the temperature lies below the critical temperature: i.e., when the

ferromagnetic material in question is capable of spontaneous magnetization.

The above calculations, which are based on the mean field approximation,

correctly predict the existence of first- and second-order phase transitions when

H 6= 0 and H = 0, respectively. However, these calculations get some of the details

of the second-order phase transition wrong. In order to do a better job, we must

abandon the mean field approximation and adopt a Monte-Carlo approach.

Let us consider a two-dimensional square array of atoms. Let L be the size of

the array, and N = L2 the number of atoms in the array, as shown in Fig. 108.

The Monte-Carlo approach to the Ising model, which completely avoids the use

of the mean field approximation, is based on the following algorithm:

• Step through each atom in the array in turn:

– For a given atom, evaluate the change in energy of the system, ∆E, when

the atomic spin is flipped.

– If ∆E < 0 then flip the spin.

– If ∆E > 0 then flip the spin with probability P = exp(−β ∆E).

310

9.5 The Ising Model 9 MONTE-CARLO METHODS

• Repeat the process many times until thermal equilibrium is achieved.

The purpose of the algorithm is to shuffle through all possible states of the sys-

tem, and to ensure that the system occupies a given state with the Boltzmann

probability: i.e., with a probability proportional to exp(−β E), where E is the

energy of the state.

In order to demonstrate that the above algorithm is correct, let us consider

flipping the spin of the ith atom. Suppose that this operation causes the system

to make a transition from state a (energy, Ea) to state b (energy, Eb). Suppose,

further, that Ea < Eb. According to the above algorithm, the probability of a

transition from state a to state b is

Pa→b = exp[−β (Eb − Ea)], (9.56)

whereas the probability of a transition from state b to state a is

Pb→a = 1. (9.57)

In thermal equilibrium, the well-known principal of detailed balance implies that

Pa Pa→b = Pb Pb→a, (9.58)

where Pa is the probability that the system occupies state a, and Pb is the prob-

ability that the system occupies state b. Equation (9.58) simply states that in

thermal equilibrium the rate at which the system makes transitions from state a

to state b is equal to the rate at which the system makes reverse transitions. The

previous equation can be rearranged to give

Pb

Pa

= exp[−β (Eb − Ea)], (9.59)

which is consistent with the Boltzmann distribution.

Now, each atom in our array has four nearest neighbours, except for atoms on

the edge of the array, which have less than four neighbours. We can eliminate

this annoying special behaviour by adopting periodic boundary conditions: i.e.,

by identifying opposite edges of the array. Indeed, we can think of the array as

existing on the surface of a torus.

311

9.5 The Ising Model 9 MONTE-CARLO METHODS

Figure 109: The net magnetization, M, of a 5 × 5 array of ferromagnetic atoms as a function of the

temperature, T , in the absence of an external magnetic field. Monte-Carlo simulation.

It is helpful to define

T0 =
J

k
. (9.60)

Now, according to mean field theory,

Tc =
z J

2 k
= 2 T0. (9.61)

The evaluation of

C = lim
∆T→0

∆E

∆T
(9.62)

via the direct method is difficult due to statistical noise in the energy, E. Instead,

we can make use of a standard result in equilibrium statistical thermodynamics:

C =
σ 2

E

k T 2
, (9.63)

where σE is the standard deviation of fluctuations in E. Fortunately, it is fairly

easy to evaluate σE: we can simply employ the standard deviation in E from step

to step in our Monte-Carlo iteration scheme.

Figures 109–116 show magnetization and heat capacity versus temperature

curves for L = 5, 10, 20, and 40 in the absence of an external magnetic field. In

312

9.5 The Ising Model 9 MONTE-CARLO METHODS

Figure 110: The heat capacity, C, of a 5 × 5 array of ferromagnetic atoms as a function of the

temperature, T , in the absence of an external magnetic field. Monte-Carlo simulation. The solid

curve shows the heat capacity calculated from Eq. (9.62), whereas the dotted curve shows the heat

capacity calculated from Eq. (9.63).

all cases, the Monte-Carlo simulation is iterated 5000 times, and the first 1000

iterations are discarded when evaluating σE (in order to allow the system to

attain thermal equilibrium). The two-dimensional array of atoms is initialized in

a fully aligned state for each different value of the temperature. Since there is no

external magnetic field, it is irrelevant whether the magnetization, M, is positive

or negative. Hence, M is replaced by |M| in all plots.

Note that the M versus T curves generated by the Monte-Carlo simulations

look very much like those predicted by the mean field model. The resemblance

increases as the size, L, of the atomic array increases. The major difference is the

presence of a magnetization “tail” for T > Tc in the Monte-Carlo simulations: i.e.,

in the Monte-Carlo simulations the spontaneous magnetization does not collapse

to zero once the critical temperature is exceeded—there is a small lingering mag-

netization for T > Tc. The C versus T curves show the heat capacity calculated

directly (i.e., C = ∆E/∆T), and via the identity C = σ 2
E/k T 2. The latter method

of calculation is clearly far superior, since it generates significantly less statistical

noise. Note that the heat capacity peaks at the critical temperature: i.e., unlike

313

9.5 The Ising Model 9 MONTE-CARLO METHODS

Figure 111: The net magnetization, M, of a 10 × 10 array of ferromagnetic atoms as a function of

the temperature, T , in the absence of an external magnetic field. Monte-Carlo simulation.

the mean field model, C is not zero for T > Tc. This effect is due to the residual

magnetization present when T > Tc.

Our best estimate for Tc is obtained from the location of the peak in the C ver-

sus T curve in Fig. 116. We obtain Tc = 2.27 T0. Recall that the mean field model

yields Tc = 2 T0. The exact answer for a two-dimensional array of ferromagnetic

atoms is

Tc =
2 T0

ln(1 +
√

2)
= 2.27 T0, (9.64)

which is consistent with our Monte-Carlo calculations. The above analytic result

was first obtained by Onsager in 1944.39 Incidentally, Onsager’s analytic solution

of the 2-D Ising model is one of the most complicated and involved calculations

in all of theoretical physics. Needless to say, no one has ever been able to find an

analytic solution of the Ising model in more than two dimensions.

Note, from Figs. 110, 112, 114, and 116, that the height of the peak in the heat

capacity curve at T = Tc increases with increasing array size, L. Indeed, a close

examination of these figures yields Cmax/N k = 0.95 for L = 5, Cmax/N k = 1.34

39L. Onsager, Phys. Rev. 65, 117 (1944).

314

9.5 The Ising Model 9 MONTE-CARLO METHODS

Figure 112: The heat capacity, C, of a 10 × 10 array of ferromagnetic atoms as a function of the

temperature, T , in the absence of an external magnetic field. Monte-Carlo simulation. The solid curve

shows the heat capacity calculated from Eq. (9.62), whereas the dotted curve shows the heat capacity

calculated from Eq. (9.63).

for L = 10, Cmax/N k = 1.77 for L = 20, and Cmax/N k = 2.16 for L = 40.

Figure 117 shows Cmax/N k plotted against ln L for L = 5, 10, 20, and 40. It

can be seen that the points lie on a very convincing straight-line, which strongly

suggests that
Cmax

k N
∝ ln L. (9.65)

Of course, for physical systems, L ∼
√

NA ∼ 1012, where NA is Avogadro’s num-

ber. Hence, C is effectively singular at the critical temperature (since ln NA ≫ 1),

as sketched in Fig. 118. This observation leads us to revise our definition of a

second-order phase transition. It turns out that actual discontinuities in the heat

capacity almost never occur. Instead, second-order phase transitions are charac-

terized by a local quasi-singularity in the heat capacity.

Recall, from Eq. (9.63), that the typical amplitude of energy fluctuations is

proportional to the square-root of the heat capacity (i.e., σE ∝
√

C). It follows

that the amplitude of energy fluctuations becomes extremely large in the vicinity

of a second-order phase transition.

315

9.5 The Ising Model 9 MONTE-CARLO METHODS

Figure 113: The net magnetization, M, of a 20 × 20 array of ferromagnetic atoms as a function of

the temperature, T , in the absence of an external magnetic field. Monte-Carlo simulation.

Figure 114: The heat capacity, C, of a 20 × 20 array of ferromagnetic atoms as a function of the

temperature, T , in the absence of an external magnetic field. Monte-Carlo simulation. The solid curve

shows the heat capacity calculated from Eq. (9.62), whereas the dotted curve shows the heat capacity

calculated from Eq. (9.63).

316

9.5 The Ising Model 9 MONTE-CARLO METHODS

Figure 115: The net magnetization, M, of a 40 × 40 array of ferromagnetic atoms as a function of

the temperature, T , in the absence of an external magnetic field. Monte-Carlo simulation.

Now, the main difference between our mean field and Monte-Carlo calcula-

tions is the existence of residual magnetization for T > Tc in the latter case.

Figures 119–123 show the magnetization pattern of a 40 × 40 array of ferromag-

netic atoms, in thermal equilibrium and in the absence of an external magnetic

field, calculated at various temperatures. It can be seen that for T = 20 T0 the

pattern is essentially random. However, for T = 5 T0, small clumps appear in the

pattern. For T = 3 T0, the clumps are somewhat bigger. For T = 2.32 T0, which

is just above the critical temperature, the clumps are global in extent. Finally,

for T = 1.8 T0, which is a little below the critical temperature, there is almost

complete alignment of the atomic spins.

The problem with the mean field model is that it assumes that all atoms are sit-

uated in identical environments. Hence, if the exchange effect is not sufficiently

large to cause global alignment of the atomic spins then there is no alignment

at all. What actually happens when the temperature exceeds the critical tem-

perature is that global alignment disappears, but local alignment (i.e., clumping)

remains. Clumps are only eliminated by thermal fluctuations once the temper-

ature is significantly greater than the critical temperature. Atoms in the middle

of the clumps are situated in a different environment than atoms on the clump

317

9.5 The Ising Model 9 MONTE-CARLO METHODS

Figure 116: The heat capacity, C, of a 40 × 40 array of ferromagnetic atoms as a function of the

temperature, T , in the absence of an external magnetic field. Monte-Carlo simulation. The solid curve

shows the heat capacity calculated from Eq. (9.62), whereas the dotted curve shows the heat capacity

calculated from Eq. (9.63).

boundaries. Hence, clumps cannot occur in the mean field model.

318

9.5 The Ising Model 9 MONTE-CARLO METHODS

L = 5

L = 10

L = 40

L = 20

Figure 117: The peak value of the heat capacity (normalized by Nk) versus the logarithm of the

array size for a two-dimensional array of ferromagnetic atoms in the absence of an external magnetic

field. Monte-Carlo simulation.

C
 /

 N
 k

T T c

Figure 118: A sketch of the expected variation of the heat capacity versus the temperature for a

physical two-dimensional ferromagnetic system.

319

9.5 The Ising Model 9 MONTE-CARLO METHODS

Figure 119: Magnetization pattern of a 40 × 40 array of ferromagnetic atoms in thermal equilib-

rium and in the absence of an external magnetic field. Monte-Carlo calculation with T = 20 T0.

Black/white squares indicate atoms magnetized in plus/minus z-direction, respectively.

Figure 120: Magnetization pattern of a 40×40 array of ferromagnetic atoms in thermal equilibrium

and in the absence of an external magnetic field. Monte-Carlo calculation with T = 5 T0. Black/white

squares indicate atoms magnetized in plus/minus z-direction, respectively.

320

9.5 The Ising Model 9 MONTE-CARLO METHODS

Figure 121: Magnetization pattern of a 40×40 array of ferromagnetic atoms in thermal equilibrium

and in the absence of an external magnetic field. Monte-Carlo calculation with T = 3 T0. Black/white

squares indicate atoms magnetized in plus/minus z-direction, respectively.

Figure 122: Magnetization pattern of a 40 × 40 array of ferromagnetic atoms in thermal equilib-

rium and in the absence of an external magnetic field. Monte-Carlo calculation with T = 2.32 T0.

Black/white squares indicate atoms magnetized in plus/minus z-direction, respectively.

321

9.5 The Ising Model 9 MONTE-CARLO METHODS

Figure 123: Magnetization pattern of a 40 × 40 array of ferromagnetic atoms in thermal equilib-

rium and in the absence of an external magnetic field. Monte-Carlo calculation with T = 1.8 T0.

Black/white squares indicate atoms magnetized in plus/minus z-direction, respectively.

322

	Introduction
	Intended Audience
	Major Sources
	Purpose of Course
	Course Philosophy
	Programming Methodologies
	Scientific Programming Languages

	Scientific Programming in C
	Introduction
	Variables
	Expressions and Statements
	Operators
	Library Functions
	Data Input and Output
	Structure of a C Program
	Control Statements
	Functions
	Pointers
	Global Variables
	Arrays
	Character Strings
	Multi-File Programs
	Command Line Parameters
	Timing
	Random Numbers
	C++ Extensions to C
	Complex Numbers
	Variable Size Multi-Dimensional Arrays
	The CAM Graphics Class

	Integration of ODEs
	Introduction
	Euler's Method
	Numerical Errors
	Numerical Instabilities
	Runge-Kutta Methods
	An Example Fixed-Step RK4 routine
	An Example Calculation
	Adaptive Integration Methods
	An Example Adaptive-Step RK4 Routine
	Advanced Integration Methods
	The Physics of Baseball Pitching
	Air Drag
	The Magnus Force
	Simulations of Baseball Pitches
	The Knuckleball

	The Chaotic Pendulum
	Introduction
	Analytic Solution
	Numerical Solution
	Validation of Numerical Solutions
	The Poincaré Section
	Spatial Symmetry Breaking
	Basins of Attraction
	Period-Doubling Bifurcations
	The Route to Chaos
	Sensitivity to Initial Conditions
	The Definition of Chaos
	Periodic Windows
	Further Investigation

	Poisson's Equation
	Introduction
	1-D Problem with Dirichlet Boundary Conditions
	An Example Tridiagonal Matrix Solving Routine
	1-D problem with Mixed Boundary Conditions
	An Example 1-D Poisson Solving Routine
	An Example Solution of Poisson's Equation in 1-D
	2-D problem with Dirichlet Boundary Conditions
	2-d Problem with Neumann Boundary Conditions
	The Fast Fourier Transform
	An Example 2-D Poisson Solving Routine
	An Example Solution of Poisson's Equation in 2-D
	Example 2-D Electrostatic Calculation
	3-D Problems

	The Diffusion Equation
	Introduction
	1-D Problem with Mixed Boundary Conditions
	An Example 1-D Diffusion Equation Solver
	An Example 1-D Solution of the Diffusion Equation
	von Neumann Stability Analysis
	The Crank-Nicholson Scheme
	An Improved 1-D Diffusion Equation Solver
	An Improved 1-D Solution of the Diffusion Equation
	2-D Problem with Dirichlet Boundary Conditions
	2-D Problem with Neumann Boundary Conditions
	An Example 2-D Diffusion Equation Solver
	An Example 2-D Solution of the Diffusion Equation
	3-D Problems

	The Wave Equation
	Introduction
	The 1-D Advection Equation
	The Lax Scheme
	The Crank-Nicholson Scheme
	Upwind Differencing
	The 1-D Wave Equation
	The 2-D Resonant Cavity

	Particle-in-Cell Codes
	Introduction
	Normalization Scheme
	Solution of Electron Equations of Motion
	Evaluation of Electron Number Density
	Solution of Poisson's Equation
	An example 1-D PIC Code
	Results
	Discussion

	Monte-Carlo Methods
	Introduction
	Random Numbers
	Distribution Functions
	Monte-Carlo Integration
	The Ising Model

