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Preface

In this note, we concern mainly fundamental concepts of continuum mechanics for the
formulation of basic equations of material bodies. Particular emphases are placed on
general physical requirements, which have to be satisfied by constitutive equations of
material models.

After introduction of kinematics for finite deformations and balance laws, constitu-
tive relations for material bodies are discussed. Two general physical requirements for
constitutive functions, namely, the principle of material frame-indifference and the ma-
terial symmetry, are introduced and their general consequences analyzed. In particular,
concepts of change of frame, Euclidean objectivity and observer-independence of mate-
rial properties are carefully defined so as to make the essential ideas of the principle of
material frame-indifference clear.

Entropy principle, like the conditions of material objectivity and material symmetry
is equally important in the constitutive theories of materials. Exploitation of the entropy
principle based on the general entropy inequality and the thermodynamic stability are
considered. The use of Lagrange multipliers in the evaluation of thermodynamic restric-
tions on the constitutive functions is carefully analyzed to exemplify its general exploiting
procedure.

Most of the standard materials in solid mechancis and fluid mechanics, such as solu-
tion methods and many boundary value problems for linear theories, will not be discussed.
However, some exact solutions for finite elasticity and wave progapation in a deformed
elastic region are included for a brief looking through the nonlinear theory of finite defor-
mation.

This note originated from a short course in Instituto de Matemática, Universidade
Federal do Rio de Janeiro, for mathematics, physics and engineering graduate students
interested in acquiring a better knowledge of material modelling in continuum mechanics.

I-Shih Liu
Rio de Janeiro, 2019
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1 Notations and tensor algebra

The reader is assumed to have a reasonable knowledge of the basic notions of vector spaces
and calculus on Euclidean spaces.

1.1 Vector space, inner product

Let V be a finite dimensional vector space, dimV = n, and {e1, · · · , en} be a basis of V .
Then for any vector v ∈ V , it can be represented as

v = v1e1 + v2e2 + · · ·+ vnen,

where (v1, v2, · · · , vn) are called the components of the vector v relative to the basis {ei}.
An inner product (or scalar product) is defined as a symmetric, positive definite, bi-

linear map such that for u, v ∈ V their inner product, denoted by u · v, is a scalar.

The norm (or length) of the vector v is defined as

|v| =
√
v · v.

We can show that |u · v| ≤ |u||v|, so that we can define the angle between two vectors as

cos θ(u,v) =
u · v
|u||v|

, 0 ≤ θ(u,v) ≤ π,

and say that they are orthogonal (or perpendicular) if u · v = 0, so that θ(u,v) = π/2.

A basis {e1, · · · , en} is called orthonormal if

ei · ej = δij,

where the Kronecker delta is defined as

δij =

{
1 if i = j
0 if i 6= j

.

For simplicity, we shall assume, from now on, that all bases are orthonormal.

Example. For u, v ∈ V ,

v = v1e1 + v2e2 + · · ·+ vnen =
n∑
i=1

viei = viei,

u = u1e1 + u2e2 + · · ·+ unen =
n∑
j=1

ujej = ujej,
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we have the inner product

u · v = (
n∑
i=1

uiei) · (
n∑
j=1

vjej) =
n∑
i=1

n∑
j=1

uivj(ei · ej) =
n∑
i=1

n∑
j=1

uivjδij =
n∑
i=1

uivi,

or
u · v = u1v1 + u2v2 + · · ·+ unvn = uivi.

In these expressions, we can neglect the summation signs for simplicity. This is called
the summation convention (due to Einstein), for which every pair of repeated index is
summed over its range as understood from the context.

Taking the inner product with the vector, we obtain the component,

ei · v = ei · (vjej) = vj(ei · ej) = vjδij = vi, vi = ei · v.

tu

1.2 Linear transformation

Let V be a finite dimensional vector space with an inner product. We call A : V → V a
linear transformation if for any vectors u,v ∈ V and any scalar a ∈ IR,

A(au+ v) = aA(u) + A(v).

Let L(V ) be the space of linear transformations on V . The elements of L(V ) are also
called (second order) tensors.

For u, v ∈ V we can define their tensor product, denoted by u ⊗ v ∈ L(V ), defined
as a tensor so that for any w ∈ V ,

(u⊗ v)w = (v ·w)u.

Let {ei, i = 1, · · · , n} be a basis of V , then {ei ⊗ ej, i, j = 1, · · · , n} is a basis for L(V ),
and for any A ∈ L(V ), the component form can be expressed as

A =
n∑
i=1

n∑
j=1

Aijei ⊗ ej = Aijei ⊗ ej, Aij = ei · Aej.

Here, we have used the summation convention for the two pairs of repeated indices i and
j. The components Aij can be represented as the i-th row and j-th column of a matrix.

For v = viei, then Av is a vector, and

Av = (Av)iei = (Aijei ⊗ ej)(vkek) = Aijvk(ei ⊗ ej) ek
= Aijvk(ej · ek) ei = Aijvkδjkei = Aikvk ei,
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which can be written in components or in matrix notation,

(Av)i = Aikvk, [Av] = [A][v],

where [v] is regarded as a column vector. Similarly, for any A,B ∈ L(V ), the product
AB ∈ L(V ) can be represented as a matrix product,

(AB)ij = AikBkj, [AB] = [A][B].

Example. Let V = IR2, and let {ex = (1, 0), ey = (0, 1)} be the standard basis. Any
v = (x, y) = xex + yey ∈ IR2 can be represented as a column vector,

[v] =

[
x
y

]
.

If u = (u1, u2) and w = (w1, w2), the component of their tensor product is

(u⊗ v)ij = ei · (u⊗ v)ej = (ei · u)(v · ej) = (ei · u)(v · ej) = uivj,

and can be represented by

[u⊗w] =

[
u1w1 u1w2

u2w1 u2w2

]
=

[
u1

u2

]
[w1 w2 ] .

Therefore, the standard basis for L(IR2) are given by

[ex ⊗ ex] =

[
1 0
0 0

]
, [ex ⊗ ey] =

[
0 1
0 0

]
,

[ey ⊗ ex] =

[
0 0
1 0

]
, [ey ⊗ ey] =

[
0 0
0 1

]
.

Given a linear transformation A : IR2 → IR2 defined by

A(x, y) = (2x− 3y, x+ 5y), [A] =

[
2 −3
1 5

]
.

It can be written as [
2 −3
1 5

] [
x
y

]
=

[
2x− 3y
x+ 5y

]
.

tu

The transpose of A ∈ L(V ) is defined for any u,v ∈ V , such that

ATu · v = u · Av.

In components, (AT )ij = Aji.
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Q ∈ L(V ) is an orthogonal transformation, if it preserves the inner product,

Qu ·Qv = u · v.

Therefore, an orthogonal transformation preserves both the angle and the norm of vectors.
From the definition, it follows that

QTQ = I, or Q−1 = QT ,

where I is the identity tensor and Q−1 is the inverse of Q.

The trace of a linear transformation can be defined as a linear scalar function, tr :
L(V )→ IR, such that for any u,v ∈ V ,

tru⊗ v = u · v.

Therefore, for any A ∈ L(V ),

trA = tr(Aijei ⊗ ej) = Aij tr(ei ⊗ ej) = Aijδij = Ajj,

which equals the sum of the diagonal elements of the matrix in Cartesian components.
One can easily verify that

trAT = trA, trAB = trBA.

We can define the inner product of two tensors A and B by

A : B = trABT = AijBij,

and the norm |A| can be defined as

|A|2 = A : A = AijAij,

which is the sum of square of all the elements of A by the summation convention.

We are particularly interest in the three-dimensional space, which is the physical space
of classical mechanics. Let dimV = 3, we can define the vector product of two vectors,
u× v ∈ V , in components,

(u× v)i = εijkujvk,

where εijk is the permutation symbol,

εijk =

 1, if {i, j, k} is an even permutation of {1,2,3},
−1, if {i, j, k} is an odd permutation of {1,2,3},
0, if otherwise.

One can easily check the following identity:

εijkεimn = δjmδkn − δjnδkm.
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We can easily show that |u× v| = |u| |v| | sin θ(u,v)|, which is geometrically the area
of the parallelogram formed by the two vectors.

We can also define the triple product u · v×w the triple product, which is the volume
of the parallelepiped formed by the three vectors. If they are linearly independent then
the triple product is different from zero.

For a linear transformation, we can define the determinant as the ratio between the
deformed volume and the original one for any three linearly independent vectors,

detA =
Au · Av × Aw
u · v ×w

.

We have

det(AB) =
ABu · ABv × ABw

u · v ×w
=
A(Bu) · A(Bv)× A(Bw)

Bu ·Bv ×Bw
· Bu ·Bv ×Bw

u · v ×w
,

which implies that
det(AB) = (detA)(detB).

1.3 Differentiation, gradient

Let IE be a three-dimensional Euclidean space and the vector space V be its translation
space. For any two points x, y ∈ IE there is a unique vector v ∈ V associated with their
difference,

v = y − x, or y = x+ v.

We may think of v as the geometric vector that starts at the point x and ends at the
point y. The distance between x and y is then given by

d(x,y) = |x− y| = |v|.

Let D be an open region in IE and W be any vector space or an Euclidean space.
A function f : D → W is said to be differentiable at x ∈ D if there exists a linear
transformation ∇f(x) : V → W , such that for any v ∈ V ,

f(x+ v)− f(x) = ∇f(x)[v] + o(2),

where o(2) denotes the second and higher order terms in |v|. We call ∇f the gradient of
f with respect to x, and will also denote it by ∇xxxf , or more frequently by grad f . The
above definition of gradient can also be written as

∇f(x)[v] =
d

dt
f(x+ tv)

∣∣∣
t=0
.

If f(x) ∈ IR is a scalar field for x ∈ D, then∇f(x) ∈ V is a vector field, and if h(x) ∈ V is
a vector field, then ∇h(x) ∈ L(V ) is a tensor field. The above notation has the following
meaning:

∇f(x)[v] = ∇f(x) · v, ∇h(x)[v] = ∇h(x)v.
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For functions defined on tensor space, F : W1 → W2, where W1,W2 are some tensor
spaces, the differentiation can similarly be defined.

Example. Let IE = IR2, and f(x, y) be a scalar field in Cartesian coordinate system,
then

x = (x, y), v = (vx, vy),

and

∇f(x) · v =
d

dt
f(x+ tvx, y + tvy)

∣∣∣
t=0

=
∂f

∂x
vx +

∂f

∂y
vy =

∂f

∂x
(ex · v) +

∂f

∂y
(ey · v) =

∂f

∂xj
(ej · v),

which gives

∇f(x, y) =
∂f

∂x
ex +

∂f

∂y
ey =

∂f

∂xi
ei.

Let
h(x, y) = hx(x, y)ex + hy(x, y)ey = hi(x, y)ei

be a vector field, then by the product rule, for any vector v,

∇h(x, y)[v] = (∇hi(x, y)[v]) ei + hi(x, y) (∇ei[v]).

Since the standard basis is a constant vector field, ∇ei = 0, therefore, we have

∇h(x, y)[v] = (∇hi(x, y)[v]) ei =
∂hi
∂xj

(ej · v)ei =
∂hi
∂xj

(ei ⊗ ej)v.

Therefore, we obtain

∇h(x, y) =
∂hx
∂x

ex ⊗ ex +
∂hx
∂y

ex ⊗ ey +
∂hy
∂x

ey ⊗ ex +
∂hy
∂y

ey ⊗ ey =
∂hi
∂xj

ei ⊗ ej.

In matrix notations,

[∇f(x, y)] =


∂f

∂x

∂f

∂y

 , [∇h(x, y)] =


∂hx
∂x

∂hx
∂y

∂hy
∂x

∂hy
∂y

 .
In components,

(∇f)i =
∂f

∂xi
= f,i, (∇h)ij =

∂hi
∂xj

= hi,j,

where i = 1, 2 refers to coordinate x and y respectively and we have used comma to
indicate partial differentiation. tu
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Example. Let F(A,v) = v·A2v be a scalar function of a tensor and a vector variables,
we have for any w ∈ V ,

∇vF(A,v) ·w =
d

dt
(v + tw) · A2(v + tw)

∣∣∣
t=0

= w · A2v + v · A2w = (A2v + (A2)Tv) ·w,

and for any W ∈ L(V ),

F(A+W,v)−F(A,v) = v · (A+W )(A+W )v − v · A2v

= v · (AW +WA+W 2)v = v · (AW +WA)v + o(2)

= ∇AF(A,v) : W + o(2),

or

∇AF(A,v) : W =
d

dt
(v · (A+ tW )(A+ tW )v)

∣∣∣
t=0

= v · (WA)v + v · (AW )v = (v ⊗ Av + ATv ⊗ v) : W,

since
v · (WA)v = W Tv · Av = tr(W Tv ⊗ Av) = (v ⊗ Av) : W,

v · (AW )v = ATv ·Wv = tr(Wv ⊗ ATv) = (ATv ⊗ v) : W.

So we obtain
∇vF(A,v) = A2v + (A2)Tv,

∇AF(A,v) = v ⊗ Av + ATv ⊗ v.
In components,

(∇vF)i = AikAklvl + AlkAkivl,

(∇AF)ij = viAjkvk + Akivkvj.

The above differentiations can also be carried out entirely in index notations. Since
components are scalar quantities, the usual product rule can easily applied. For exam-
ple

(∇AF)ij =
∂(AmkAknvmvn)

∂Aij

= δmiδkjAknvmvn + Amkδkiδnjvmvn

= Ajnvivn + Amivmvj.

In fact, doing tensor calculus entirely in index notation is the simplest way if one is
accustomed to the summation convention. The results can easily be converted into the
direct notation or matrix notation. tu
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1.4 Divergence

For a vector field v(x) ∈ V , x ∈ IE, the gradient ∇v(x) ∈ L(V ) is a tensor field, then
the divergence of a vector field is defined as a scalar field by

div v(x) = tr(∇v(x)) ∈ IR.

In components,

div v = tr(∇v) = tr
( ∂vi
∂xj

ei ⊗ ej
)

=
∂vi
∂xj

δij = vj,j.

Similarly, we can defined the divergence of a tensor field A(x) ∈ L(V ) as a vector field in
terms of its components by

divA = (divA)i ei =
∂Aij
∂xj

ei = Aij,jei.

Example. For IE = IR2, and v(x, y) = vx(x, y) ex + vy(x, y) ey, we have

div v =
∂vx
∂x

+
∂vy
∂xy

.

For a tensor field A(x, y) = Aij(x, y)ei ⊗ ej, we have

[divA] =


∂Axx
∂x

+
∂Axy
∂y

∂Ayx
∂x

+
∂Ayy
∂y

 .
tu

1.5 Remarks on functions and operators in other coordinate
systems

Functions, scalar-, vector- or tensor-valued, are most commonly expressed in Cartesian
coordinate system and standard basis in their simplest forms. Of course, they can also
be expressed relative to any other coordinate system and its related basis. This is usually
done in the theory of tensor analysis in general with the introduction of Christoffel symbols
and covariant derivatives.

In fact, to express functions and operators in coordinate system other than the Carte-
sian coordinate system, as we have done so far, is intrinsically simple. It involves only a
change of variables and a change of bases.
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Example. Let us consider the gradient of a scalar field from Cartesian to polar
coordinate system.

Let (x, y) be the Cartesian coordinate system with the standard basis (ex, ey) and
(r, θ) be the polar coordinate system with orthonormal basis (er, eθ). We have the
following change of variables (x, y)↔ (r, θ):

x = r cos θ, r =
√
x2 + y2,

y = r sin θ, θ = arctan
y

x
,

(1.1)

and change of bases (ex, ey)↔ (er, eθ):

ex = cos θ er − sin θ eθ, er = cos θ ex + sin θ ey,

ey = sin θ er + cos θ eθ, eθ = − sin θ ex + cos θ ey.
(1.2)

Consider a scalar-valued function,

f(x, y) = f(r, θ)

expressed in Cartesian and polar coordinate systems. The gradient of f(x, y) is given
by

∇f =
∂f

∂x
ex +

∂f

∂y
ey. (1.3)

To change it into polar coordinate, we can first change variables, so that

∂f

∂x
=
∂f

∂r

∂r

∂x
+
∂f

∂θ

∂θ

∂x
,

∂f

∂y
=
∂f

∂r

∂r

∂y
+
∂f

∂θ

∂θ

∂y
,

and from (1.1)2,
∂r

∂x
=
x

r
,

∂θ

∂x
=
−y
r2
,

∂r

∂y
=
y

r
,

∂θ

∂y
=

x

r2
.

Putting together into (1.3) and using (1.2)1 to change basis, it gives

∇f =
(∂f
∂r

x

r
− ∂f

∂θ

y

r2

)
(cos θ er − sin θ eθ) +

(∂f
∂r

y

r
+
∂f

∂θ

x

r2

)
(sin θ er + cos θ eθ),

which after simplification with (1.1)1 leads to the gradient in the polar coordinate,

grad f =
∂f

∂r
er +

1

r

∂f

∂θ
eθ.

tu
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Example. The divergence of a vector field in polar coordinate: Let

u = ux(x, y)ex + uy(x, y)ey = ur(r, θ)er + uθ(r, θ)eθ

be a vector field on IR2, then with the change (er, eθ)→ (ex, ey),

u = ur(cos θex + sin θey) + uθ(− sin θex + cos θey)

= (ur cos θ − uθ sin θ)ex + (ur sin θ + uθ cos θ)ey,

so that
ux = ur cos θ − uθ sin θ, uy = ur sin θ + uθ cos θ,

from which we have

∂ux
∂x

=
(∂ur
∂r

∂r

∂x
+
∂ur
∂θ

∂θ

∂x

)
cos θ − ur sin θ

∂θ

∂x
−
(∂uθ
∂r

∂r

∂x
+
∂uθ
∂θ

∂θ

∂x

)
sin θ − uθ cos θ

∂θ

∂x
,

∂uy
∂y

=
(∂ur
∂r

∂r

∂y
+
∂ur
∂θ

∂θ

∂y

)
sin θ + ur cos θ

∂θ

∂y
+
(∂uθ
∂r

∂r

∂y
+
∂uθ
∂θ

∂θ

∂y

)
cos θ − uθ sin θ

∂θ

∂y
.

Therefore, it follows after some calculation that

divu =
∂ux
∂x

+
∂uy
∂y

=
∂ur
∂r

+
1

r

∂uθ
∂θ

+
ur
r
.

tu
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2 Kinematics of finite deformation

2.1 Configuration and deformation

A body B can be identified mathematically with a region in a three-dimensional Euclidean
space IE. Such an identification is called a configuration of the body. In other words, a
one-to-one mapping from B into IE is called a configuration of B.

It is more convenient to single out a particular configuration of B, say κ, as a reference,

κ : B → IE, κ(p) = X. (2.1)

We call κ a reference configuration of B. The coordinates of X, (Xα, α = 1, 2, 3) are
called the referential coordinates, or sometimes called the material coordinates since the
point X in the reference configuration κ is often identified with the material point p of
the body when κ is given and fixed. The body B in the configuration κ will be denoted
by Bκ.
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Figure 1: Deformation

Let κ be a reference configuration and χ be an arbitrary configuration of B. Then the
mapping

χ
κ = χ ◦ κ−1 : Bκ → Bχ, x = χ

κ(X) = χ(κ−1(X)), (2.2)

is called the deformation of B from κ to χ (Fig. 1). In terms of coordinate systems
(xi, i = 1, 2, 3) and (Xα, α = 1, 2, 3) in the deformed and the reference configurations
respectively, the deformation χ

κ is given by

xi = χi(Xα), (2.3)

where χi are called the deformation functions.
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The deformation gradient of χ relative to κ, denoted by Fκ is defined by

Fκ = ∇XXXχκ. (2.4)

By definition, the deformation gradient is the linear approximation of the deformation.
Physically, it is a measure of deformation at a point in a small neighborhood. We shall
assume that the inverse mapping χ−1

κ exists and the determinant of Fκ is different from
zero,

J = detFκ 6= 0. (2.5)

When the reference configuration κ is chosen and understood in the context, Fκ will be
denoted simply by F .

Relative to the natural bases eα(X) and ei(x) of the coordinate systems (Xα) and
(xi) respectively, the deformation gradient F can be expressed in the following component
form,

F = F i
αei(x)⊗ eα(X), F i

α =
∂χi

∂Xα
. (2.6)

In matrix notation,

[F ] =



∂x1

∂X1

∂x1

∂X2

∂x1

∂X3

∂x2

∂X1

∂x2

∂X2

∂x2

∂X3

∂x3

∂X1

∂x3

∂X2

∂x3

∂X3

 ,

where ∂χi
∂Xα is commonly written as ∂xi

∂Xα .

Let dX = X −X0 be a small (infinitesimal) material line element in the reference
configuration, and dx = χ

κ(X) − χ
κ(X0) be its image in the deformed configuration,

then it follows from the definition that

χ
κ(X)− χκ(X0) = ∇XXXχκ(X0)(X −X0) + o(2),

or
dx = FdX, (2.7)

since dX is infinitesimal the higher order term o(2) tends to zero.

Let daκ and nκ be a small material surface element and its unit normal in the reference
configuration and da and n be the corresponding ones in the deformed configuration.
And let dvκ and dv be small material volume elements in the reference and the deformed
configurations respectively. Then we have

n da = JF−Tnκdaκ, dv = |J | dvκ. (2.8)
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To prove these, let the small surface element daκ be formed from the two line elements
dX1 and dX2. Then we have from (2.7)

nκ =
dX1 × dX2

|dX1 × dX2|
,

daκ = |dX1 × dX2|,

n =
FdX1 × FdX2

|FdX1 × FdX2|
,

da = |FdX1 × FdX2| .

Therefore, for any vector v, we have

v · n da = v · FdX1 × FdX2 = F (F−1v) · FdX1 × FdX2

= J F−1v · dX1 × dX2

= J F−1v · nκdaκ = v · JF−Tnκdaκ.

Similarly, let the small volume element dvκ be formed from three line elements dX1, dX2,
and dX3. Then we have

dv = |dx1 · dx2 × dx3| = |FdX1 · FdX2 × FdX3|
= |detF | |dX1 · dX2 × dX3| = |detF | dvκ.

Note that if detF = 1, the deformation is volume-preserving.

2.2 Strain and rotation

The deformation gradient is a measure of local deformation of the body. We shall intro-
duce other measures of deformation which have more suggestive physical meanings, such
as change of shape and orientation. First we shall recall the following theorem from linear
algebra:

Theorem (polar decomposition). For any non-singular tensor F , there exist unique
symmetric positive definite tensors V and U and a unique orthogonal tensor R such that

F = RU = VR. (2.9)

Since the deformation gradient F is non-singular, the above decomposition holds. We
observe that a positive definite symmetric tensor represents a state of pure stretches
along three mutually orthogonal axes and an orthogonal tensor a rotation. Therefore,
(2.9) assures that any local deformation is a combination of a pure stretch and a rotation.

We call R the rotation tensor, while U and V are called the right and the left stretch
tensors respectively. Both stretch tensors measure the local strain, a change of shape,
while the tensor R describes the local rotation, a change of orientation, experienced by
material elements of the body.

Clearly we have
U2 = F TF, V 2 = FF T ,

detU = detV = | detF |.
(2.10)
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Since V = RURT , V and U have the same eigenvalues and their eigenvectors differ only by
the rotation R. Their eigenvalues are called the principal stretches, and the corresponding
eigenvectors are called the principal directions.

We shall also introduce the right and the left Cauchy-Green strain tensors defined by

C = F TF, B = FF T , (2.11)

respectively, which are easier to be calculated than the strain measures U and V from a
given F in practice. Note that C and U share the same eigenvectors, while the eigenvalues
of U are the positive square root of those of C; the same is true for B and V .

2.3 Linear strain tensors

The strain tensors introduced in the previous section are valid for finite deformations in
general. In the classical linear theory, only small deformations are considered.

We introduce the displacement vector from the reference configuration (see Fig. 2),

u = χ
κ(X)−X,

and its gradient,

H = ∇XXXu, [H] =



∂u1

∂X1

∂u1

∂X2

∂u1

∂X3

∂u2

∂X1

∂u2

∂X2

∂u2

∂X3

∂u3

∂X1

∂u3

∂X2

∂u3

∂X3

 .
Obviously, we have F = I +H.
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Figure 2: Displacement vector

For small deformations, the displacement gradient H is assumed to be a small quantity,
|H| � 1, and say H is of order o(1). The right stretch tensor U and the rotation tensor
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R can then be approximated by

U =
√
F TF = I + 1

2
(H +HT ) + o(2) = I + E + o(2),

R = FU−1 = I + 1
2
(H −HT ) + o(2) = I + R̃ + o(2),

(2.12)

where

E =
1

2
(H +HT ), R̃ =

1

2
(H −HT ), (2.13)

in components,

Eij =
1

2

( ∂ui
∂Xj

+
∂uj
∂Xi

)
, R̃ij =

1

2

( ∂ui
∂Xj

− ∂uj
∂Xi

)
,

are called the infinitesimal strain tensor and the infinitesimal rotation tensor, respectively.
Note that infinitesimal strain and rotation are the symmetric and skew-symmetric parts
of the displacement gradient.

We can give geometrical meanings to the components of the infinitesimal strain tensor
Eij relative to a Cartesian coordinate system. Consider two infinitesimal material line
segments dX1 and dX2 in the reference configuration and their corresponding ones dx1

and dx2 in the current configuration. By (2.7), we have

dx1 · dx2 − dX1 · dX2 = (F TF − I)dX1 · dX2 = 2E dX1 · dX2, (2.14)

for small deformations. Now let dX1 = dX2 = soe1 be a small material line segment in
the direction of the unit base vector e1 and s be the deformed length. Then we have

s2 − s2
o = 2s2

o (Ee1 · e1) = 2s2
o E11,

which implies that

E11 =
s2 − s2

o

2s2
o

=
(s− so)(s+ so)

2s2
o

' s− so
so

.

In other words, E11 is the change of length per unit original length of a small line segment
in the e1-direction. The other diagonal components, E22 and E33 have similar interpreta-
tions as elongation per unit original length in their respective directions.

Similarly, let dX1 = soe1 and dX2 = soe2 and denote the angle between the two line
segments after deformation by θ. Then we have

s2
o |Fe1| |Fe2| cos θ − s2

o cos
π

2
= 2s2

o (Ee1 · e2),

from which, if we write γ = π/2− θ, the change from its original right angle, then

sin γ

2
=

E12

|Fe1| |Fe2|
.
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Since |E12| � 1 and |Fei| ' 1, it follows that sin γ ' γ and we conclude that

E12 '
γ

2
.

Therefore, the component E12 is equal to one-half the change of angle between the two
line segments originally along the e1- and e2-directions. Other off-diagonal components,
E23 and E13 have similar interpretations as change of angle indicated by their numerical
subscripts.

Moreover, since detF = det(1 +H) ' 1 + trH for small deformations, by (2.8)2 for a
small material volume we have

trE = trH ' dv − dvκ
dvκ

.

Thus the sum E11+E22+E33 measures the infinitesimal change of volume per unit original
volume. Therefore, in the linear theory, if the deformation is incompressible, it follows
that

trE = Divu = 0. (2.15)

In terms of Cartesian coordinates, the displacement gradient

∂ui
∂Xj

=
∂ui
∂xk

∂xk
∂Xj

=
∂ui
∂xk

(
δkj +

∂uk
∂Xj

)
=
∂ui
∂xj

+ o(2).

In other words, the two displacement gradients

∂ui
∂Xj

and
∂ui
∂xj

differ in second order terms only. Therefore, since in classical linear theory, the higher
order terms are insignificant, it is usually not necessary to introduce the reference configu-
ration in the linear theory. The classical infinitesimal strain and rotation, in the Cartesian
coordinate system, are usually defined as

Eij =
1

2

(∂ui
∂xj

+
∂uj
∂xi

)
, R̃ij =

1

2

(∂ui
∂xj
− ∂uj
∂xi

)
, (2.16)

in the current configuration.

2.4 Motions

A motion of the body B can be regarded as a continuous sequence of deformations in
time, i.e., a motion χ of B is regarded as a map,

χ : Bκ × IR→ IE, x = χ(X, t). (2.17)
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We denote the configuration of B at time t in the motion χ by Bt.
In practice, the reference configuration κ is often chosen as the configuration in the

motion at some instant t0, κ = χ(·, t0), say for example, t0 = 0, so that X = χ(X, 0).

For a fixed material point X,

χ(X, · ) : IR→ IE

is a curve called the path of the material point X. The velocity v and the acceleration a
are defined as the first and the second time derivatives of position as X moves along its
path,

v =
∂χ(X, t)

∂t
, a =

∂2χ(X, t)

∂t2
. (2.18)

Lagrangian and Eulerian descriptions

A material body is endowed with some physical properties whose values may change
along with the deformation of the body in a motion. A quantity defined on a motion
can be described in essentially two different ways: either by the evolution of its value
along the path of a material point or by the change of its value at a fixed location in
the deformed body. The former is called the material (or a referential description if a
reference configuration is used) and the later a spatial description. We shall make them
more precise below.

For a given motion χ and a fixed reference configuration κ, consider a quantity, with
its value in some space W , defined on the motion of B by a function

f : B × IR→ W. (2.19)

Then it can be defined on the reference configuration,

f̂ : Bκ × IR→ W, (2.20)

by
f̂(X, t) = f(κ−1(X), t) = f(p, t), X ∈ Bκ,

and also defined on the position occupied by the body at time t,

f̃ : Bt × {t} → W, (2.21)

by
f̃(x, t) = f̂(χ−1(x, t), t) = f̂(X, t), x ∈ Bt.

As a custom in continuum mechanics, one usually denotes these functions f , f̂ , and
f̃ by the same symbol since they have the same value at the corresponding point, and
write, by an abuse of notations,

f = f(p, t) = f(X, t) = f(x, t),
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and called them respectively the material description, the referential description and the
spatial description of the function f . Sometimes the referential description is referred to
as the Lagrangian description and the spatial description as the Eulerian description.

When a reference configuration is chosen and fixed, one can usually identify the ma-
terial point p with its reference position X. In fact, the material description in (p, t)
is rarely used and the referential description in (X, t) is often regarded as the material
description instead.

Possible confusions may arise in such an abuse of notations, especially when differ-
entiations are involved. To avoid such confusions, one may use different notations for
differentiation in these situations.

In the referential description, the time derivative is denoted by a dot while the differen-
tial operators such as gradient and divergence are denoted by Grad and Div respectively,
beginning with capital letters:

ḟ =
∂f(X, t)

∂t
, Grad f = ∇XXXf(X, t), Div f(X, t).

In the spatial description, the time derivative is the usual ∂t and the differential operators
beginning with lower-case letters, grad and div:

∂f

∂t
=
∂f(x, t)

∂t
, grad f = ∇xxxf(x, t), div f(x, t).

The relations between these notations can easily be obtained from the chain rule. Indeed,
let f be a scalar field and u be a vector field. We have

ḟ =
∂f

∂t
+ (grad f) · v, u̇ =

∂u

∂t
+ (gradu)v, (2.22)

and
Grad f = F T grad f, Gradu = (gradu)F. (2.23)

In particular, taking the velocity v for u, it follows that

gradv = ḞF−1, (2.24)

since Gradv = Grad ẋ = Ḟ .

We call ḟ the material time derivative of f , which is the time derivative of f following
the path of the material point. Therefore, by the definition (2.18), we can write the
velocity v and the acceleration a as

v = ẋ, a = ẍ,

and hence by (2.22)2,

a = v̇ =
∂v

∂t
+ (gradv)v. (2.25)
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2.5 Relative deformation

Since the reference configuration can be conveniently chosen, we can also choose the
current configuration χ(·, t) as the reference configuration so that past and future defor-
mations can be described relative to the present configuration.
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Figure 3: Relative deformation

We denote the position of the material point X ∈ Bκ at time τ by ξ,

ξ = χ(X, τ).

Then
x = χ(X, t), ξ = χ

t(x, τ) = χ(χ−1(x, t), τ), (2.26)

where χt(·, τ) : Bt → Bτ is the deformation at time τ relative to the configuration at time t
or simply called the relative deformation (Fig. 3). The relative deformation gradient Ft is
defined by

Ft(x, τ) = ∇xxxχt(x, τ), (2.27)

that is, the deformation gradient at time τ with respect to the configuration at time t.
Of course, if τ = t,

Ft(x, t) = I,

and we can easily show that

F (X, τ) = Ft(x, τ)F (X, t). (2.28)

Similarly, we can also defined the relative displacement,

ut(x, τ) = ξ − x = χ
t(x, τ)− x,

and the relative displacement gradient,

Ht(x, τ) = ∇xxxut(x, τ).
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We have
Ft(x, τ) = I +Ht(x, τ),

and by the use of (2.28),

F (X, τ) = (I +Ht(x, τ))F (X, t).

Furthermore, from the definition, we have

χ(X, τ)− χ(X, t) = ut(χ(X, t), τ). (2.29)

By taking the derivatives with respect to τ , we obtain the velocity and the acceleration
of the motion at time τ ,

ẋ(X, τ) =
∂ut(x, τ)

∂τ
= u̇t(x, τ), ẍ(X, τ) = üt(x, τ).

Note that since x = χ(X, t) is independent of τ , the partial derivative with respect to τ
keeping x fixed is nothing but the material time derivative.

Relative description

Recall the material description of a function given by (2.20),

f : Bκ × IR→ W.

By the use of relative motion of the body, we can introduce another description of the
function,

ft : Bt × IR→ W,

by
ft(x, τ) = f(χ−1(x, t), τ) = f(X, τ).

In fact, we have already used this description above, such as, Ft(x, τ), ut(x, τ), and
Ht(x, τ). We shall call such description as the relative description, in contrast to the
frequently used Lagrangian and Eulerian descriptions.

It is interesting to note that for τ = t, the relative description reduces to the Eulerian
description, and for t = t0 where t0 is the time at the reference configuration, then the
relative description reduces to the Lagrangian description.
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3 Balance laws

3.1 General balance equation

Basic laws of mechanics can all be expressed in general in the following form,

d

dt

∫
Pt
ψ dv =

∫
∂Pt

Φψn da+

∫
Pt
σψ dv, (3.1)

for any bounded regular subregion of the body, called a part P ⊂ B and the vector
field n, the outward unit normal to the boundary of the region Pt ⊂ Bt in the current
configuration. The quantities ψ and σψ are tensor fields of certain order m, and Φψ is a
tensor field of order m + 1, say m = 0 or m = 1 so that ψ is a scalar or vector quantity,
and respectively Φψ is a vector or second order tensor quantity.

The relation (3.1), called the general balance of ψ in integral form, is interpreted as
asserting that the rate of change of the quantity ψ in a part P of a body is affected by
the flow of ψ through the boundary of P and the growth of ψ within P . We call Φψ the
flux of ψ and σψ the supply of ψ.

We are interested in the local forms of the integral balance (3.1) at a point in the
region Pt. The derivation of local forms rest upon smoothness assumption of the tensor
fields ψ, Φψ, and σψ.

First of all, we need the following theorem, which is a three-dimensional version of
the formula in calculus for differentiation under the integral sign on a moving interval
(Leibniz’s rule), namely

∂

∂t

∫ f(t)

g(t)

ψ(x, t) dx =

∫ f(t)

g(t)

∂ψ

∂t
dx+ ψ(f(t), t) ḟ(t)− ψ(g(t), t) ġ(t).

Theorem (transport theorem). Let V (t) be a regular region and un(x, t) be the outward
normal speed of a surface point x ∈ ∂V (t). Then for any smooth tensor field ψ(x, t), we
have

d

dt

∫
V

ψ dv =

∫
V

∂ψ

∂t
dv +

∫
∂V

ψ un da. (3.2)

In this theorem, if V (t) is a material region Pt, i.e., it always consists of the same
material points of a part P ⊂ B, then un = ẋ · n and (3.2) becomes

d

dt

∫
Pt
ψ dv =

∫
Pt

∂ψ

∂t
dv +

∫
∂Pt

ψ ẋ · n da. (3.3)
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3.2 Local balance equation

For a material region V , the equation of general balance in integral form (3.1) becomes∫
V

∂ψ

∂t
dv +

∫
∂V
ψ ẋ · n da =

∫
∂V
Φψn da+

∫
V
σψ dv. (3.4)

We can obtain the local balance equation at a regular point from the above integral
equation. We consider a small material region V containing x. By the use of the divergence
theorem, (3.4) becomes ∫

V

{∂ψ
∂t

+ div(ψ ẋ− Φψ)− σψ
}
dv = 0. (3.5)

Since the integrand is smooth and the equation (3.5) holds for any V , such that x ∈ V ,
the integrand must vanish at x. Therefore we have

Theorem (local balance equation). At a regular point x, the general balance equation
reduces to

∂ψ

∂t
+ div(ψ ẋ− Φψ)− σψ = 0. (3.6)

3.3 Balance equations in reference coordinates

Sometimes, for solid bodies, it is more convenient to use the referential description. The
corresponding relations for the balance equation (3.6) can be derived in a similar manner.
We begin with the integral form (3.1) now written in the reference configuration κ,

d

dt

∫
Pκ
ψκ dvκ =

∫
∂Pκ

Φψκnκ daκ +

∫
Pκ
σψκ dvκ. (3.7)

In view of the relations for volume elements and surface elements (2.8), dv = J dvκ, and
n da = JF−Tnκdaκ, the corresponding quantities are defined as

ψκ = J ψ, Φψκ = JΦψF
−T , σψκ = J σψ. (3.8)

The transport theorem (3.2) remains valid for ψκ(X, t) in a movable region V (t),

d

dt

∫
V

ψκdvκ =

∫
V

ψ̇κdvκ +

∫
∂V

ψκUκdaκ, (3.9)

where Uκ(X, t) is the outward normal speed of a surface point X ∈ ∂V (t).

However, for a material region in the reference configuration, the normal speed of the
surface points on ∂Vκ is zero since a material region is a fixed region in the reference
configuration. Therefore, from (3.7), we obtain∫

Vκ
ψ̇κdvκ =

∫
∂Vκ

Φψκnκdaκ +

∫
Vκ
σψκ dvκ, (3.10)

from which we obtain the local balance equation in the reference configuration,

ψ̇κ −DivΦψκ − σψκ = 0. (3.11)
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3.4 Conservation of mass

Let ρ(x, t) denote the mass density of Bt in the current configuration. Since the material
is neither destroyed nor created in any motion in the absence of chemical reactions, we
have

Conservation of mass. The total mass of any part P ⊂ B does not change in any
motion,

d

dt

∫
Pt
ρ dv = 0. (3.12)

By comparison, it is a special case of the general balance equation (3.1) with no flux
and no supply,

ψ = ρ, Φψ = 0, σψ = 0,

and hence from (3.6) we obtain the equation of mass conservation,

∂ρ

∂t
+ div(ρ ẋ) = 0, (3.13)

which can also be written as
ρ̇+ ρ div ẋ = 0.

The equation (3.12) states that the total mass of any part is constant in time. In
particular, if ρκ(X) denote the mass density of Bκ in the reference configuration, than∫

Pκ
ρκdvκ =

∫
Pt
ρ dv, (3.14)

which implies that

ρκ = ρ J, or ρ =
ρκ

detF
. (3.15)

This is another form of the conservation of mass in the referential description, which also
follows from the general expression (3.11) and (3.8).

3.5 Equation of motion

For a deformable body, the linear momentum and the angular momentum with respect
to a point x◦ ∈ IE of a part P ⊂ B in the motion can be defined respectively as∫

Pt
ρ ẋ dv, and

∫
Pt
ρ (x− x◦)× ẋ dv.

In laying down the laws of motion, we follow the classical approach developed by
Newton and Euler, according to which the change of momentum is produced by the
action of forces. There are two type of forces, namely, one acts throughout the volume,
called the body force, and one acts on the surface of the body, called the surface traction.
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Euler’s laws of motion. Relative to an inertial frame, the motion of any part P ⊂ B
satisfies

d

dt

∫
Pt
ρ ẋ dv =

∫
Pt
ρ b dv +

∫
∂Pt
t da,

d

dt

∫
Pt
ρ (x− x◦)× ẋ dv =

∫
Pt
ρ (x− x◦)× b dv +

∫
∂Pt

(x− x◦)× t da.

We remark that the existence of inertial frames (an equivalent of Newton’s first law)
is essential to establish the Euler’s laws (equivalent of Newton’s second law) in the above
forms. Roughly speaking, a coordinate system at rest for IE is usually regarded as an
inertial frame.

We call b the body force density (per unit mass), and t the surface traction (per unit
surface area). Unlike the body force b = b(x, t), such as the gravitational force, the
traction t at x depends, in general, upon the surface ∂Pt on which x lies. It is obvious
that there are infinite many parts P ⊂ B, such that ∂Pt may also contain x. However,
following Cauchy, it is assumed in classical continuum mechanics that the tractions on all
like-oriented surfaces with a common tangent plane at x are the same.

Postulate (Cauchy). Let n be the unit normal to the surface ∂Pt at x, then

t = t(x, t,n). (3.16)

An immediate consequence of this postulate is the well-known theorem which ensures
the existence of stress tensor. The proof of the theorem can be found in most books of
mechanics.

Theorem (Cauchy). Suppose that t(·,n) is a continuous function of x, and ẍ, b are
bounded in Bt. Then Cauchy’s postulate and Euler’s first law implies the existence of a
second order tensor T , such that

t(x, t,n) = T (x, t)n. (3.17)

The tensor field T (x, t) in (3.17) is called the Cauchy stress tensor. In components,
the traction force (3.17) can be written as

ti = Tijnj.

Therefore, the stress tensor Tij represents the i-th component of the traction force on the
surface point with normal in the direction of j-th coordinate.

With (3.17) Euler’s first law becomes

d

dt

∫
Pt
ρ ẋ dv =

∫
Pt
ρ b dv +

∫
∂Pt

Tn da. (3.18)
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Comparison with the general balance equation (3.1) leads to

ψ = ρ ẋ, Φψ = T, σψ = ρ b,

in this case, and hence from (3.6) we obtain the balance equation of linear momentum,

∂

∂t
(ρ ẋ) + div(ρ ẋ⊗ ẋ− T )− ρ b = 0. (3.19)

This equation, also known as the equation of motion, can be rewritten in the following
more familiar form by the use of (3.13),

ρ ẍ− div T = ρ b. (3.20)

A similar argument for Euler’s second law as a special case of (3.1) with

ψ = (x− x◦)× ρ ẋ, Φψn = (x− x◦)× Tn, σψ = (x− x◦)× ρ b,

leads to
T = T T , (3.21)

after some simplification from (3.6) by the use of (3.19). In other words, the symmetry
of the stress tensor is a consequence of the conservation of angular momentum.

3.6 Conservation of energy

Besides the kinetic energy, the total energy of a deformable body consists of another part
called the internal energy, ∫

Pt

(
ρ ε+

ρ

2
ẋ · ẋ

)
dv,

where ε(x, t) is called the specific internal energy density. The rate of change of the total
energy is partly due to the mechanical power from the forces acting on the body and
partly due to the energy inflow over the surface and the external energy supply.

Conservation of energy. Relative to an inertial frame, the change of energy for any
part P ⊂ B is given by

d

dt

∫
Pt

(ρ ε+
ρ

2
ẋ · ẋ) dv =

∫
∂Pt

(ẋ · Tn− q · n) da+

∫
Pt

(ρ ẋ · b+ ρ r) dv. (3.22)

We call q(x, t) the heat flux vector (or energy flux), and r(x, t) the energy supply
density due to external sources, such as radiation. Comparison with the general balance
equation (3.1), we have

ψ = (ρ ε+
ρ

2
ẋ · ẋ), Φψ = T ẋ− q, σψ = ρ (ẋ · b+ r),
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and hence we have the following local balance equation of total energy,

∂

∂t

(
ρ ε+

ρ

2
ẋ · ẋ

)
+ div

(
(ρ ε+

ρ

2
ẋ · ẋ)ẋ+ q − T ẋ

)
= ρ (r + ẋ · b), (3.23)

The energy equation (3.23) can be simplified by substracting the inner product of the
equation of motion (3.20) with the velocity ẋ,

ρ ε̇+ div q = T · grad ẋ+ ρ r. (3.24)

This is called the balance equation of internal energy. Note that the internal energy is
not conserved and the term T · grad ẋ is the rate of work due to deformation.

Summary of basic equations

By the use of material time derivative (2.22), the field equations can be written as follows:

ρ̇+ ρ div v = 0,

ρ v̇ − div T = ρ b,

T = T T .

ρ ε̇+ div q − T · gradv = ρ r,

(3.25)

In components:
∂ρ

∂t
+ vi

∂ρ

∂xi
+ ρ

∂vi
∂xi

= 0,

ρ
(∂vi
∂t

+ vj
∂vi
∂xj

)
− ∂Tij
∂xj

= ρ bi,

Tij = Tji,

ρ
(∂ε
∂t

+ vj
∂ε

∂xj

)
+
∂qj
∂xj
− Tij

∂vi
∂xj

= ρ r,

(3.26)

where (xi) is the Cartesian coordinate system at the present state. This is the balance
equations in Eulerian description (in variables (x, t)).

3.7 Basic equations in material coordinates

It is sometimes more convenient to rewrite the basic equations in material description
relative to a reference configuration κ. They can easily be obtained from (3.11),

ρ =
ρκ

detF
,

ρκẍ = Div Tκ + ρκb,

TκF
T = F T Tκ ,

ρκε̇+ Div qκ = Tκ · Ḟ + ρκr,

(3.27)
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where the following definitions have been introduced according to (3.8):

Tκ = J TF−T , qκ = JF−1q. (3.28)

In components,

(Tκ)iα = J Tij
∂Xα

∂xj
, (qκ)α = J qj

∂Xα

∂xj
.

J = detF is the determinant of the Jacobian matrix
[

(x1,x2,x3)
(X1,X2,X3)

]
, where (xi) and (Xα)

are the Cartesian coordinate systems at the present and the reference configurations
respectively.

Tκ is called the (First) Piola–Kirchhoff stress tensor and qκ is called the material heat
flux. Note that unlike the Cauchy stress tensor T , the Piola–Kirchhoff stress tensor Tκ is
not symmetric. The definition has been introduced according to the relation (2.8), which
gives the relation, ∫

S
Tn da =

∫
Sκ
Tκnκdaκ. (3.29)

In other words, Tn is the surface traction per unit area in the current configuration, while
Tκnκ is the surface traction measured per unit area in the reference configuration. Note
that the magnitude of two traction forces are generally different, however they are parallel
vectors.

In components, the equation of motion in material coordinate becomes

ρκẍi =
∂(Tκ)iα
∂Xα

+ ρκbi,

(Tκ)iα
∂xj
∂Xα

=
∂xi
∂Xα

(Tκ)jα.

(3.30)

This is the balance equations in Lagrangian description (in variables (X, t)).

3.8 Boundary value problem

Let Ω = Bt be the open region occupied by a solid body at the present time t, ∂Ω = Γ1∪Γ2

be its boundary, and n be the exterior unit normal to the boundary.

The balance laws (3.26) in Eulerian description,

∂ρ

∂t
+ vi

∂ρ

∂xi
+ ρ

∂vi
∂xi

= 0,

ρ
(∂vi
∂t

+ vj
∂vi
∂xj

)
− ∂Tij
∂xj

= ρ bi,

Tij = Tji,

are the governing equations for the initial boundary value problem to determine the fields
of density ρ(x, t) and velocity v(x, t) with the following conditions:
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Initial condition:

ρ(x, 0) = ρ0(x) ∀x ∈ Ω,

v(x, 0) = v0(x) ∀x ∈ Ω,

Boundary condition:

v(x, t) = 0 ∀x ∈ Γ1,

T (x, t)n = f(x, t) ∀x ∈ Γ2,

To solve this initial boundary value problem, we need the constitutive equation for the
Cauchy stress T (x, t) as a function in terms of the fields of density ρ(x, t) and the velocity
v(x, t). Constitutive equations of this type characterize the behavior of general fluids,
such as elastic fluid, Navier-Stokes fluid, and non-Newtonian fluid.

For solid bodies, it is more convenient to use the Lagrangian description of the equation
of motion (3.30),

ρκ üi =
∂(Tκ)iα
∂Xα

+ ρκbi,

for the determination of the displacement vector u(X, t) = x(X, t)−X, with the follow-
ing conditions:

Initial condition:

u(X, 0) = u0(X) ∀X ∈ Ωκ,

u̇(X, 0) = u1(X) ∀X ∈ Ωκ,

Boundary condition:

u(X, t) = uκ(X, t) ∀X ∈ Γκ1,

Tκ(X, t)nκ = fκ(X, t) ∀X ∈ Γκ2,

where Ωκ = Bκ is the open region occupied by the body at the reference configuration,
and ∂Ωκ = Γκ1 ∪ Γκ2 its boundary.

To complete the formulation of the boundary value problems, we need the constitu-
tive equation for the stress tensor in terms of the displacement field u(X, t). General
constitutive theory of material bodies will be discussed in the following chapters.
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4 Euclidean objectivity

Properties of material bodies are described mathematically by constitutive equations. In-
tuitively, there is a simple idea that material properties must be independent of observers,
which is fundamental in the formulation of constitutive equations. In order to explain
this, one has to know what an observer is, so as to define what independence of observer
means.

4.1 Frame of reference, observer

The event world W is a four-dimensional space-time in which physical events occur at
some places and certain instants. Let T be the collection of instants and Ws be the
placement space of simultaneous events at the instant s, then the classical space-time can
be expressed as the disjoint union of placement spaces of simultaneous events at each
instant,

W =
⋃
s∈T

Ws .

A point ps ∈ W is called an event, which occurs at the instant s and the place p ∈ Ws.
At different instants s and s̄, the spaces Ws and Ws̄ are two disjoint spaces. Thus it is
impossible to determine the distance between two non-simultaneous events at ps and ps̄
if s 6= s̄, and hence W is not a product space of space and time. However, it can be set
into correspondence with a product space through a frame of reference on W .

Definition. (Frame of reference): A frame of reference is a one-to-one mapping

φ :W → IE × IR, taking ps 7→ (x, t),

i.e., taking p 7→ x, s 7→ t, where IR is the space of real numbers and IE is a three-
dimensional Euclidean space. We shall denote the map taking p 7→ x as the map
φs :Ws → IE.

Of course, there are infinite many frames of reference. Each one of them may be
regarded as an observer, since it can be depicted as a person taking a snapshot so that
the image of φs is a picture (three-dimensional at least conceptually) of the placements of
the events at some instant s, from which the distance between two simultaneous events
can be measured. A sequence of events can also be recorded as video clips depicting the
change of events in time by an observer.

Now, suppose that two observers are recording the same events with video cameras.
In order to compare their video clips regarding the locations and time, they must have a
mutual agreement that the clock of their cameras must be synchronized so that simulta-
neous events can be recognized and since during the recording two observers may move
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independently while taking pictures with their cameras from different angles, there will
be a relative motion and a relative orientation between them. We shall make such a
consensus among observers explicit mathematically.
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(x, t) ∈ IE × IR (x∗, t∗) ∈ IE × IR∗

φ φ∗

Figure 4: A change of frame

Let φ and φ∗ be two frames of reference. They are related by the composite map
φ∗ ◦ φ−1,

φ∗ ◦ φ−1 : IE × IR→ IE × IR, taking (x, t) 7→ (x∗, t∗),

where (x, t) and (x∗, t∗) are the position and time of the same event observed by φ
and φ∗ simultaneously. Physically, an arbitrary map would be irrelevant as long as we
are interested in establishing a consensus among observers, which requires preservation of
distance between simultaneous events and time interval as well as the sense of time.

Definition. (Euclidean change of frame): A change of frame (observer) from φ to φ∗

taking (x, t) 7→ (x∗, t∗), is an isometry of space and time given by

x∗ = Q(t)(x− x0) + c(t), t∗ = t+ a, (4.1)

for some constant time difference a ∈ IR, some relative translation c : IR→ IE with respect
to the reference point x0 ∈ IE and some orthogonal transformation Q : IR→ O(V ).

Such a transformation will be called a Euclidean transformation. In particular, ∗ :=
φ∗t ◦ φ−1

t : IE → IE is given by

∗(x) = x∗ = Q(t)(x− xo) + c(t), (4.2)

which is a time-dependent rigid transformation consisting of an orthogonal transformation
and a translation. We shall often call Q(t) the orthogonal part of the change of frame
from φ to φ∗.

Euclidean changes of frame will often be called changes of frame for simplicity, since
they are the only changes of frame among consenting observers of our concern for the
purpose of discussing frame-indifference in continuum mechanics.

All consenting observers form an equivalent class, denoted by E, among the set of all
observers, i.e., for any φ, φ∗ ∈ E, there exists a Euclidean change of frame from φ → φ∗.
From now on, only classes of consenting observers will be considered. Therefore, any
observer, would mean any observer in some E, and a change of frame, would mean a
Euclidean change of frame.
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Motion and deformation of a body

In Chapter 2, concerning the deformation and the motion, we have tacitly assumed that
they are observed by an observer in a frame of reference. Since the later discussions
involve different observers, we need to explicitly indicate the frame of reference in the
kinematic quantities. Therefore, the placement of a body B in Wt is a mapping

χ
t : B → Wt.

for an observer φ with φt :Wt → IE. The motion can be viewed as a composite mapping
χ
φt := φt ◦ χt,

χ
φt : B → IE, x = χ

φt(p) = φt(χt(p)), p ∈ B.

This mapping identifies the body with a region in the Euclidean space, Bχt := χ
φt(B) ⊂ IE

(see the right part of Figure 5). We call χφt a configuration of B at the instant t in the
frame φ, and a motion of B is a sequence of configurations of B in time, χφ = {χφt , t ∈
IR | χφt : B → IE}. We can also express a motion as

χ
φ : B × IR→ IE, x = χ

φ(p, t) = χ
φt(p), p ∈ B.

p ∈ B

Wt0 Wt

X ∈ Bκ ⊂ IE x ∈ Bχt ⊂ IE
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χ
κφ( · , t)

κφ χ
φt

κ χ
t

φt0 φt

Figure 5: Motion χ
φt , reference configuration κφ and deformation χ

κφ( · , t)

Reference configuration

We regard a body B as a set of material points. Although it is possible to endow the body
as a manifold with a differentiable structure and topology for doing mathematics on the
body, to avoid such mathematical subtleties, usually a particular configuration is chosen
as reference (see the left part of Figure 5),

κφ : B → IE, X = κφ(p), Bκ := κφ(B) ⊂ IE,

so that the motion at an instant t is a one-to-one mapping

χ
κφ(·, t) : Bκ → Bχt , x = χ

κφ(X, t) = χ
φt(κ

−1
φ (X)), X ∈ Bκ,
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defined on a domain in the Euclidean space IE for which topology and differentiability
are well defined. This mapping is called a deformation from κ to χt in the frame φ and
a motion is then a sequence of deformations in time.

Remember that a configuration is a placement of a body relative to an observer.
Therefore, for the reference configuration κφ, there is some instant, say t0, at which the
reference placement κ of the body is chosen (see Figure 5).

4.2 Objective tensors

The change of frame (4.1) on the Euclidean space IE gives rise to a linear mapping on
the translation space V , in the following way: Let u(φ) = x2 − x1 ∈ V be the difference
vector of x1,x2 ∈ IE in the frame φ, and u(φ∗) = x∗2 − x∗1 ∈ V be the corresponding
difference vector in the frame φ∗, then from (4.1), it follows immediately that

u(φ∗) = Q(t)u(φ),

where Q(t) ∈ O(V ) is the orthogonal part of the change of frame φ→ φ∗.

Any vector quantity in V , which has this transformation property, is said to be objec-
tive with respect to Euclidean transformations, objective in the sense that it pertains to
a quantity of its real nature rather than its values as affected by different observers. This
concept of objectivity can be generalized to any tensor spaces of V . Let

s : E→ IR, u : E→ V, T : E→ V ⊗ V,

where E is the Euclidean class of frames of reference. They are scalar, vector and (second
order) tensor observable quantities respectively. We call f(φ) the value of the quantity f
observed in the frame φ.

Definition. Let s, u, and T be scalar-, vector-, (second order) tensor-valued functions
respectively. If relative to a change of frame from φ to φ∗,

s(φ∗) = s(φ),

u(φ∗) = Q(t)u(φ),

T (φ∗) = Q(t)T (φ)Q(t)T ,

where Q(t) is the orthogonal part of the change of frame from φ to φ∗, then s, u and T
are called objective scalar, vector and tensor quantities respectively.

More precisely, they are also said to be frame-indifferent with respect to Euclidean
transformations or simply Euclidean objective. For simplicity, we often write f = f(φ)
and f ∗ = f(φ∗).

One can easily deduce the transformation properties of functions defined on the po-
sition and time under a change of frame. Consider an objective scalar field ψ(x, t) =
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ψ∗(x∗, t∗). Taking the gradient with respect to x, from (4.2) we obtain

∇xxxψ(x, t) = Q(t)T∇xxx∗ψ∗(x∗, t∗) or (gradψ)(φ∗) = Q(t) (gradψ)(φ),

which proves that (gradψ) is an objective vector field. Similarly, we can show that if
u is an objective vector field then (gradu) is an objective tensor field and (divu) is an
objective scalar field. However, one can easily show that the partial derivative ∂ψ/∂t is
not an objective scalar field and neither is ∂u/∂t an objective vector field.

4.3 Transformation properties of motion

Let χφ be a motion of the body in the frame φ, and χ
φ∗ be the corresponding motion

in φ∗,
x = χ

φ(p, t), x∗ = χ
φ∗(p, t

∗), p ∈ B.
Then from (4.2), we have

χ
φ∗(p, t

∗) = Q(t)(χφ(p, t)− xo) + c(t), p ∈ B,

from which, one can easily show that the velocity and the acceleration are not objective
quantities,

ẋ∗ = Qẋ+ Q̇(x− xo) + ċ,

ẍ∗ = Qẍ+ 2Q̇ẋ+ Q̈(x− x0) + c̈.
(4.3)

A change of frame (4.1) with constant Q(t) and c(t) = c0 + c1t, for constant c0 and c1, is
called a Galilean transformation. Therefore, from (4.3) we conclude that the acceleration
is not Euclidean objective but it is frame-indifferent with respect to Galilean transfor-
mation. Moreover, it also shows that the velocity is neither a Euclidean nor a Galilean
objective vector quantity.

Transformation properties of deformation gradient

Let κ : B → Wt0 be a reference placement of the body at some instant t0 (see Figure 6),
then

κφ = φt0 ◦ κ and κφ∗ = φ∗t0 ◦ κ (4.4)

are the corresponding reference configurations of B in the frames φ and φ∗ at the same
instant, and

X = κφ(p), X∗ = κφ∗(p), p ∈ B.
Let us denote by γ = κφ∗ ◦ κ−1

φ the change of reference configuration from κφ to κφ∗ in

the change of frame, then it follows from (4.4) that γ = φ∗t0 ◦ φ
−1
t0 and by (4.2), we have

X∗ = γ(X) = Q(t0)(X − xo) + c(t0). (4.5)
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Figure 6: Reference configurations κφ and κφ∗ in the change of frame from φ→ φ∗

On the other hand, the motion in referential description relative to the change of frame
is given by x = χ

κ(X, t) and x∗ = χ
κ∗(X

∗, t∗). Hence from (4.2), we have

χ
κ∗(X

∗, t∗) = Q(t)(χκ(X, t)− xo) + c(t). (4.6)

Therefore we obtain for the deformation gradient in the frame φ∗, i.e., F ∗ = ∇XXX∗χκ∗ , by
taking the gradient with respect to X and the use of the chain rule and (4.5),

F ∗(X∗, t∗)Q(t0) = Q(t)F (X, t), or simply F ∗ = QFKT , (4.7)

where K = Q(t0) is a constant orthogonal tensor due to the change of frame for the
reference configuration.

Remark. The transformation property (4.7) stands in contrast to F ∗ = QF , the widely used

formula which is obtained “provided that the reference configuration is unaffected by the change

of frame” as usually implicitly assumed, so that K reduces to the identity transformation. tu

The deformation gradient F is not a Euclidean objective tensor. However, the property
(4.7) also shows that it is frame-indifferent with respect to Galilean transformations, since
in this case, K = Q is a constant orthogonal transformation.

From (4.7), we can easily obtain the transformation properties of other kinematic
quantities associated with the deformation gradient. In particular, let us consider the
velocity gradient defined in (2.24). We have

L∗ = Ḟ ∗(F ∗)−1 = (QḞ + Q̇F )KT (QFKT )−1 = (QḞ + Q̇F )F−1QT ,

which gives
L∗ = QLQT + Q̇QT . (4.8)

Moreover, with the decomposition L = D+W into symmetric and skew-symmetric parts,
it becomes

D∗ +W ∗ = Q(D +W )QT + Q̇QT .

By separating symmetric and skew-symmetric parts, we obtain

D∗ = QDQT , W ∗ = QWQT + Q̇QT ,

since Q̇QT is skew-symmetric. Therefore, while the velocity gradient L and the spin
tensor W are not objective, the rate of strain tensor D is an objective tensor.
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4.4 Inertial frames

In classical mechanics, Newton’s first law, often known as the law of inertia, is essentially
a definition of inertial frame.

Definition. (Inertial frame): A frame of reference is called an inertial frame if, relative
to it, the velocity of a body remains constant unless the body is acted upon by an external
force.

We present the first law in this manner in order to emphasize that the existence of
inertial frames is essential for the formulation of Newton’s second law, which asserts that
relative to an inertial frame, the equation of motion takes the simple form:

m ẍ = f. (4.9)

Now, we shall assume that there is an inertial frame φ0 ∈ E, for which the equation
of motion of a particle is given by (4.9), and we are interested in how the equation is
transformed under a change of frame.

Unlike the acceleration, transformation properties of non-kinematic quantities cannot
be deduced theoretically. Instead, for the mass and the force, it is conventionally postulated
that they are Euclidean objective scalar and vector quantities respectively, so that for any
change from φ0 to φ∗ ∈ E given by (4.1), we have

m∗ = m, f∗ = Q f,

which together with (4.3), by multiplying (4.9) with Q, we obtain the equation of motion
in the (non-inertial) frame φ∗,

m∗ẍ∗ = f∗ + m∗ i∗, (4.10)

where i∗ is called the inertial force given by

i∗ = c̈+ 2Ω(ẋ∗ − ċ) + (Ω̇− Ω2)(x∗ − c),

where Ω = Q̇QT : IR → L(V ) is called the spin tensor of the frame φ∗ relative to the
inertial frame φ0.

Note that the inertial force vanishes if the change of frame φ0 → φ∗ is a Galilean
transformation, i.e., Q̇ = 0 and c̈ = 0, and hence the equation of motion in the frame φ∗

also takes the simple form,
m∗ẍ∗ = f∗,

which implies that the frame φ∗ is also an inertial frame.

Therefore, any frame of reference obtained by a Galilean change of frame from an
inertial frame is also an inertial frame and thus, all inertial frames form an equivalent class
G, such that for any φ, φ∗ ∈ G, the change of frame φ→ φ∗ is a Galilean transformation.
The Galilean class G is a subclass of the Euclidean class E.
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Remark. Since Euclidean change of frame is an equivalence relation, it decomposes all frames
of reference into disjoint equivalence classes, i.e., Euclidean classes as we previously called.
However, the existence of an inertial frame which is essential in establishing dynamic laws in
mechanics, leads to a special choice of Euclidean class of interest.

Let E be the Euclidean class which contains an inertial frame. Since different Euclidean

classes are not related by any Euclidean transformation, hence, nor by any Galilean transfor-

mation, it is obvious that the Euclidean class E is the only class containing the subclass G of

all inertial frames. Consequently, from now on, the only Euclidean class of interest for further

discussions, is the one, denoted by E, containing Galilean class of all inertial frames. tu

In short, we can assert that physical laws, like the equation of motion, are in general
not (Euclidean) frame-indifferent. Nevertheless, the equation of motion is Galilean frame-
indifferent, under the assumption that mass and force are frame-indifferent quantities.
This is usually referred to as Galilean invariance of the equation of motion.

4.5 Galilean invariance of balance laws

In Section 3, the balance laws of mass, linear momentum, and energy for deformable
bodies,

ρ̇+ ρ div ẋ = 0,

ρ ẍ− div T = ρ b,

ρ ε̇+ div q − T · grad ẋ = ρ r,

(4.11)

are tacitly formulated relative to an inertial frame. Consequently, motivated by classical
mechanics, they are required to be invariant under Galilean transformation.

Since two inertial frames are related by a Galilean transformation, it means that the
equations (4.11) should hold in the same form in any inertial frame. In particular, the
balance of linear momentum takes the forms in the inertial frames φ, φ∗ ∈ G,

ρ ẍ− div T = ρ b, ρ∗ẍ∗ − (div T )∗ = ρ∗b∗.

Since the acceleration ẍ is Galilean objective, in order this to hold, it is usually assumed
that the mass density ρ, the Cauchy stress tensor T and the body force b are objective
scalar, tensor, and vector quantities respectively. Similarly, for the energy equation, it
is also assumed that the internal energy ε and the energy supply r are objective scalars,
and the heat flux q is an objective vector. These assumptions concern the non-kinematic
quantities, including external supplies (b, r), and the constitutive quantities (T, q, ε).

In fact, for Galilean invariance of the balance laws, only frame-indifference with re-
spect to Galilean transformation for all those non-kinematic quantities would be sufficient.
However, similar to classical mechanics, it is postulated that they are not only Galilean ob-
jective but also Euclidean objective. Therefore, with the known transformation properties
of the kinematic variables, the balance laws in any arbitrary frame can be deduced.
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To emphasize the importance of the objectivity postulate for constitutive theories, it
will be referred to as Euclidean objectivity for constitutive quantities:

Euclidean objectivity. The constitutive quantities: the Cauchy stress T , the heat flux
q and the internal energy density ε, are Euclidean objective (Euclidean frame-indifferent),

T (φ∗) = Q(t)T (φ)Q(t)T , q(φ∗) = Q(t) q(φ), ε(φ∗) = ε(φ), (4.12)

where Q(t) ∈ O(V ) is the orthogonal part of the change of frame from φ to φ∗.

Note that this postulate concerns only frame-indifference properties of balance laws,
so that it is a universal property for any deformable bodies, and therefore, do not concern
any aspects of material properties of the body.
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5 Principle of material frame-indifference

Properties of material bodies are described mathematically by constitutive equations.
Classical models, such as Hooke’s law of elastic solids, Navier-Stokes law of viscous fluids,
and Fourier law of heat conduction, are mostly proposed based on physical experiences
and experimental observations. However, even these linear experimental laws did not
come without some understanding of theoretical concepts of material behavior. Without
it one would neither know what experiments to run nor be able to interpret their results.

For a general and rational formulation of constitutive theories, asides from physical
experiences, one should rely on some basic requirements that a mathematical model should
obey lest its consequences be contradictory to physical nature. The most fundamental
ones are

• principle of material frame-indifference,

• material symmetry,

• second law of thermodynamics.

These requirements impose severe restrictions on material models and hence lead to great
simplifications for general constitutive equations. From theoretical viewpoints, the aim of
constitutive theories in continuum mechanics is to construct material models consistent
with such universal requirements so as to enable us, by formulating and analyzing mathe-
matical problems, to predict the outcomes in material behavior verifiable by experimental
observations.

5.1 Constitutive equations in material description

Physically a state of the thermomechanical behavior of a body is characterized by a
description of the fields of density ρ(p, t), motion χ(p, t) and temperature θ(p, t). The
material properties of a body generally depend on the past history of its thermomechanical
behavior.

Let us introduce the notion of the past history of a function. Let h(•, t) be a function
of time defined on a set X in some space W, h : X × IR → W. The history of h up to
time t is defined by

ht(•, s) = h(•, t− s),
where s ∈ [ 0,∞) denotes the time-coordinate pointed into the past from the present
time t. Clearly s = 0 corresponds to the present time, therefore ht(•, 0) = h(•, t).

Let the set of history functions on a set X in some space W be denoted by

H(X ,W) = {ht : X × [0,∞)→W}.
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Mathematical descriptions of material properties are called constitutive equations. We
postulate that the history of thermomechanical behavior up to the present time determines
the properties of the material body.

Principle of determinism. Let φ be a frame of reference, and C be a constitutive
quantity, then the constitutive equation for C is given by a functional of the form,

C(φ, p, t) = Fφ(ρt, χt, θt; p), p ∈ B, t ∈ IR, (5.1)

where the first three arguments are history functions:

ρt ∈ H(B, IR), χt ∈ H(B, IE), θt ∈ H(B, IR).

We call Fφ the constitutive function of C in the frame φ. Such a functional allows the
description of arbitrary non-local effect of an inhomogeneous body with a perfect memory
of the past thermomechanical history. With the notation Fφ, we emphasize that the value
of a constitutive function may depend on the frame of reference φ.

For simplicity, for further discussions on constitutive equations, we shall restrict our
attention to material models for mechanical theory only, and only constitutive equations
for the stress tensor, T (φ, p, t) ∈ V ⊗ V , will be considered. It can be written as

T (φ, p, t) = Fφ(χt; p), φ ∈ E, p ∈ B, χt ∈ H(B, IE). (5.2)

Let φ∗ ∈ E be another observer, then the constitutive equation, T (φ∗, p, t∗) ∈ V ⊗ V ,
can be written as

T (φ∗, p, t∗) = Fφ∗((χt)∗; p), p ∈ B, (χt)∗ ∈ H(B, IE), (5.3)

where the corresponding histories of motion are related by (4.2),

(χt)∗(p̄, s) = ∗(χt(p̄, s)) = Qt(s)(χt(p̄, s)− xo) + ct(s),

for any s ∈ [ 0,∞) and any p̄ ∈ B in the change of frame φ→ φ∗.

Condition of Euclidean objectivity

We need to bear in mind that according to the assumption referred to as the Euclidean
objectivity (4.12), the stress is a frame-indifferent quantity under a change of observer,

T (φ∗, p, t∗) = Q(t)T (φ, p, t))Q(t)T .

Therefore, it follows immediately that

Fφ∗(∗(χt); p) = Q(t)Fφ(χt; p)Q(t)T , (5.4)
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where Q(t) ∈ O(V ) is the orthogonal part of the change of frame φ→ φ∗.

The relation (5.4) will be referred to as the condition of Euclidean objectivity. It is a
relation between the constitutive functions relative to two different observers. In other
words, different observers cannot independently propose their own constitutive equations.
Instead, the condition of Euclidean objectivity (5.4) determines the constitutive func-
tion Fφ∗ once the constitutive function Fφ is given or vice-versa. They determine one
from the other in a frame-dependent manner because they are bounded by the consensus
requirement.

5.2 Principle of material frame-indifference

It is obvious that not any proposed constitutive equations can be used as material models.
First of all, they may be frame-dependent in general. However, since the constitutive
functions must characterize the intrinsic properties of the material body itself, it should
be independent of observer. Consequently, there must be some restrictions imposed on
the constitutive functions so that they would be indifferent to the change of frame. This
is the essential idea of the principle of material frame-indifference.

Principle of material frame-indifference (in material description). The constitutive
function of an objective constitutive quantity must be independent of frame, i.e., for any
frames of reference φ and φ∗, the functionals Fφ and Fφ∗ , defined by (5.2) and (5.3), must
have the same form,

Fφ( • ; p) = Fφ∗( • ; p), p ∈ B, • ∈ H(B, IE). (5.5)

where • represents the same arguments in both functionals.

Thus, from the condition of Euclidean objectivity (5.4) and the principle of material
frame-indifference (5.5), we obtain the following condition:

Condition of material objectivity. The constitutive function of the stress tensor, in
material description, satisfies the condition,

Fφ(∗(χt); p) = Q(t)Fφ(χt; p)Q(t)T , p ∈ B, χt ∈ H(B, IE), (5.6)

where Q(t) ∈ O(V ) is the orthogonal part of an arbitrary change of frame ∗.

Since the condition (5.6) involves only the constitutive function in the frame φ, it
becomes a restriction imposed on the constitutive function Fφ. We call it material objec-
tivity to emphasize its observer-indifference concerning material properties.

5.3 Constitutive equations in referential description

For mathematical analysis, it is more convenient to use referential description so that
motions can be defined on the Euclidean space IE instead of the set of material points
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in B. Therefore, for further discussions, we need to reinterpret the principle of material
frame-indifference for constitutive equations relative to a reference configuration.

p ∈ B

X ∈ Bκ X∗ ∈ Bκ∗

x ∈ Bχt x∗ ∈ Bχ
t∗
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Let κ : B → IE and κ∗ : B → IE be the two corresponding reference configurations of
B in the frames φ and φ∗ at the same instant t0, and

X = κ(p) ∈ IE, X∗ = κ∗(p) ∈ IE, p ∈ B.

Let us denote by γ = κ∗ ◦ κ−1 the change of reference configuration from κ to κ∗ in the
change of frame, then from (4.5) we have

X∗ = γ(X) = K(X − xo) + c(t0), (5.7)

where K = ∇XXXγ = Q(t0) is a constant orthogonal tensor.

The motion in referential description relative to the change of frame is given by

x = χ(p, t) = χ(κ−1(X), t) = χ
κ(X, t), χ = χ

κ ◦ κ,
x∗ = χ∗(p, t∗) = χ∗(κ∗−1(X∗), t∗) = χ

κ∗(X
∗, t∗), χ∗ = χ

κ∗ ◦ κ∗.

From (5.2) and (5.3), we can define the corresponding constitutive functions with respect
to the reference configuration,

Tφ(χt; p) = Tφ(χtκ ◦ κ ; p) := Hκ(χ
t
κ;X), χt

κ ∈ H(Bκ, IE),

Tφ∗((χt)∗; p) = Tφ∗((χtκ)∗ ◦ κ∗; p) := Hκ∗((χ
t
κ)
∗;X∗), (χtκ)

∗ ∈ H(Bκ∗ , IE).

From the above definitions, we can obtain the relation between the constitutive functions
Hκ and Hκ∗ in the referential description,

Hκ∗((χ
t)∗;X∗) = Tφ∗((χtκ)∗ ◦ κ∗; p) = Tφ((χtκ)

∗ ◦ κ∗; p)
= Tφ((χtκ)

∗ ◦ γ ◦ κ ; p) = Hκ((χ
t)∗ ◦ γ;X),

which begins with the definition and in the second passage the principle of material frame
invariance (5.5), Tφ = Tφ∗ has been used, and then κ∗ is replaced by γ ◦ κ, and finally the
definition again.

Unlike Tφ = Tφ∗ with the same domain H(B, IE) × B in the material description, the
constitutive functions Hκ and Hκ∗ have different domains, namely, H(Bκ, IE) × Bκ and
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H(Bκ∗ , IE) × Bκ∗ in referential description. Therefore, Hκ∗ 6= Hκ, but rather they are
related by

Hκ∗( • ;X∗) = Hκ( • ◦ γ ;X), • ∈ H(Bκ∗ , IE), (5.8)

where γ = κ∗ ◦ κ−1 is the change of reference configuration from κ to κ∗ in the change
of frame ∗ and X = γ−1(X∗). This is the reinterpretation of the principle of material
frame-indifference, for which in expressing observer independence of material properties,
one must also take into account the domains of constitutive functions affected by the
change of frame on the reference configuration.

The Euclidean objectivity relation (5.4) in referential description can be written in
the form,

Hκ∗(∗(χtκ);X∗) = Q(t)Hκ(χ
t
κ;X)Q(t)T , (5.9)

where Q(t) is the orthogonal part of the change of frame ∗.
Finally, by combining (5.8) and (5.9), we obtain the condition of material objectivity

in referential description,

Hκ(∗(χtκ) ◦ γ;X) = Q(t)Hκ(χ
t
κ;X)Q(t)T , (5.10)

valid for any χt
κ ∈ H(Bκ, IE) and for any change of frame ∗. In particular, it is valid for

any Q(t) ∈ O(V ). Note that from (4.6)

∗(χκ) ◦ γ(X, t) = χ
κ∗(γ(X), t∗) = χ

κ∗(X
∗, t∗)

= Q(t)(χκ(X, t)− x0) + c(t),

the condition of material objectivity (5.10) becomes

Hκ(Q
t(χtκ − x0) + ct;X) = Q(t)Hκ(χ

t
κ;X)Q(t)T , (5.11)

for any Q(t) ∈ O(V ), x0, c(t) ∈ IE and for any χtκ ∈ H(Bκ, IE).

Note that since the conditions (5.8) and (5.9) are valid for any change of frame φ→ φ∗,
while the condition (5.11) concerns only the frame φ, the star frame φ∗ can then be chosen
arbitrarily. Therefore, unlike the conditions (5.8) and (5.9) concerning two frames in the
change, the condition (5.11) is valid for any choice of Q(t) ∈ O(V ), x0, c(t) ∈ IE, which
define an arbitrary change of frame. In other words, the condition (5.11) becomes a
restriction on the consitutive function Hκ so that it is valid for any such choices.

5.4 Simple materials

According to the principle of determinism (5.1), thermomechanical histories of any part of
the body can affect the response at any point of the body. In most applications, such a non-
local property is irrelevant. Therefore it is usually assumed that only thermomechanical
histories in an arbitrary small neighborhood ofX affects the material response at the point
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X, and hence if only linear approximation by Taylor expansion in a small neighborhood
of X is concerned, we have

χ
κ(Y , t) = χ

κ(X, t) + F (X, t)(Y −X) + o(2),

and the constitutive equation can be written as

T (X, t) = Hκ(χ
t
κ(X), F t(X);X), X ∈ Bκ.

An immediate consequence of the condition of material objectivity (5.11) can be ob-
tained by the following choice of change of frame such that

Q(t) = I, c(t) = c0,

the condition (5.11) implies that

Hκ(χ
t
κ + c0 − x0, F

t;X) = Hκ(χ
t
κ, F

t;X).

Since (c0 − x0) ∈ V is arbitrary, we conclude that Hκ can not depend on the history of
position χt

κ(X, s).

Therefore the constitutive equation can be written as

T (X, t) = Hκ(F
t(X);X), X ∈ Bκ, F t ∈ H({X},L(V )). (5.12)

where F t = ∇XXXχtκ is the deformation gradient and the domain of the history is a single
point {X}. In other words, the constitutive function depends only on local values at the
position X.

A material with constitutive equation (5.12) is called a simple material (due to Noll).
The class of simple materials is general enough to include most of the materials of practical
interests, such as: elastic solids, viscoelastic solids, as well as elastic fluids, Navier-Stokes
fluids and non-Newtonian fluids.

For simple materials, by the use of (5.7), the consequence of the principle of material
frame indifference (5.8) takes the form,

Hκ∗((F
t)∗;X∗) = Hκ((F

t)∗K;X),

and the Euclidean objectivity condition (5.9) becomes

Hκ∗((F
t)∗;X∗) = Q(t)Hκ(F

t;X)Q(t)T .

Combining the above two conditions and knowing the relation, by the use of (4.7),

(F t)∗K = (QtF tKT )K = QtF t,

we obtain the following
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Condition of material objectivity. Constitutive equation of a simple material must
satisfy

Hκ(Q
tF t;X) = Q(t)Hκ(F

t;X)Q(t)T , (5.13)

for any orthogonal transformation Q(t) ∈ O(V ) and any local history of deformation
gradient F t ∈ H({X},L(V )).

Obviously we can also deduce the above condition from (5.11) directly for a simple
material.

Remarks. The condition (5.13) is the well-known condition of material objectivity, ob-
tained with the assumption that “reference configuration be unaffected by the change
of frame” in the fundamental treatise, The Non-Linear Field Theories of Mechanics by
Truesdell and Noll (1965). This condition remains valid without such an assumption.

Note that in condition (5.13), no mention of change of frame is involved, and Q(t) can
be interpreted as a superimposed orthogonal transformation on the deformation. This
interpretation is sometimes viewed as an alternative version of the principle of mate-
rial objectivity and is called the “principle of invariance under superimposed rigid body
motions”. tu
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6 Material symmetry

We shall consider homogeneous simple material bodies from now on for simplicity. A
body is called homogeneous in the configuration κ if the constitutive function does not
depend on the argument X explicitly,

T (X, t) = Hκ(F
t(X)).

As indicated, constitutive functions may depend on the reference configuration. Now
suppose that κ̂ is another reference configuration, so that the motion can be written as

x = χ
κ(X, t) = χ

κ̂(X̂, t) and X̂ = ξ(X).

Let G = ∇XXXξ ∈ L(V ), then

∇XXXχκ = (∇X̂XXχκ̂) (∇XXXξ) or F = F̂G.

Therefore, from the function Hκ, the constitutive function Hκ̂ relative to the configura-
tion κ̂ can be defined as

Hκ(F
t) = Hκ(F̂

tG) := Hκ̂(F̂
t). (6.14)

The two functions Hκ and Hκ̂ are in general different. Consequently, a material body
subjected to the same experiment (i.e., the same mechanical histories) at two different
configurations may have different results.

6.1 Material symmetry group

However, a material body may posses a certain symmetry so that one can not distinguish
the outcomes of the same experiments performed at two different configurations. For
example, a material body with a cubic crystal structure before and after a rotation of 90◦

about one of its crystallographic axes is physically indistinguishable.

Definition. Two reference configurations κ and κ̂ are said to be materially indistinguish-
able if their corresponding constitutive functions are the same,

Hκ( • ) = Hκ̂( • ).

By the second relation of (6.14), the above condition is equivalent to

Hκ(F
t) = Hκ(F

tG), ∀ F t. (6.15)

We call a transformation G ∈ L(V ) which satisfies (6.15) a material symmetry transfor-
mation with respect to κ.
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We assume that a material symmetry transformation is volume-preserving, since, oth-
erwise, if G is a material symmetry transformation, so is Gn for any n = 1, 2, · · ·, and
since |detGn| = | detG|n, the material could suffer arbitrarily large change of volume
with no change in material response – a conclusion that seems physically unacceptable.
Therefore, we must require that G ∈ U(V ), where U(V ) = {G ∈ L(V ) : |detG| = 1} is
called the unimodular group on the vector space V .

It is easy to verify that the set of all material symmetry transformations

Gκ = {G ∈ U(V ) : Hκ(F
t) = Hκ(F

tG), ∀ F t}

is a subgroup of the unimodular group. We call Gκ the material symmetry group of the
material body in the reference configuration κ.

Condition of material symmetry. Constitutive function of a simple material must
satisfy

Hκ(F
tG) = Hκ(F

t), ∀ G ∈ Gκ, ∀ F t. (6.16)

Like the condition of material objectivity (5.13), the condition of material symmetry
is also a restriction imposed on the constitutive function Hκ.

6.2 Classification of material bodies

Physical concepts of real materials such as solids and fluids, can be characterized by their
symmetry properties. One of such concepts can be interpreted as saying that a solid has
a preferred configuration such that any non-rigid deformation from it alters its material
response, while for a fluid any deformation that preserves the density should not affect
the material response. The following definitions are based on this concept.

Definition. A simple material body is called a solid body if the symmetry group Gκ is
a subgroup of the orthogonal group, Gκ ⊆ O(V ).

Definition. A simple material is called a fluid if the symmetry group is the unimodular
group, Gκ = U(V ).

A simple material which is neither a fluid nor a solid will be called a fluid crystal.
Another concept concerning material symmetry is the material response due to change of
orientation.

Definition. A simple material body is called isotropic if there exists a configuration κ,
such that the symmetry group contains the orthogonal group, Gκ ⊇ O(V ).

Physically, we can interpret the above definition as saying that any rotation does
not alter material response of an isotropic material. The following theorem characterizes
isotropic materials (for the proof, see Noll (1965)).

48



Theorem. The orthogonal group is maximal in the unimodular group, i.e., if G is a
group such that

O(V ) ⊆ G ⊆ U(V ),

then either G = O(V ) or G = U(V ).

Therefore, an isotropic material is either a fluid, Gκ = U(V ) for any κ, or an isotropic
solid at some configuration κ, Gκ = O(V ). Any other materials are anisotropic. Trans-
versely isotropic solids, crystalline solids and fluid crystals are all anisotropic materials.
A solid is isotropic at some configuration may not be isotropic at other configurations.

6.3 Summary on constitutive models of simple materials

So far, we have derived the conditions of material objectivity and material symmetry
for the stress tensor only for simplicity. For other vector or scalar constitutive quantities,
similar results can be easily obtained. We shall summarize the results for simple materials
as follows:

Let G be the symmetry group of the material and the constitutive equations for the
stress T , the heat flux vector q, and the internal energy density ε be given by

T = T (F t, θt, gt), q = q(F t, θt, gt), ε = ε(F t, θt, gt),

where g = grad θ is the spatial gradient of the temperature.

• Condition of material objectivity

T (QtF t, θt, Qtgt) = Q(t) T (F t, θt, gt)Q(t)T ,

q(QtF t, θt, Qtgt) = Q(t) q(F t, θt, gt),

ε(QtF t, θt, Qtgt) = ε(F t, θt, gt),

(6.17)

for any Qt ∈ O(V ) and any thermomechanical histories (F t, θt, gt).

• Condition of material symmetry

T (F tG, θt, gt) = T (F t, θt, gt),

q(F tG, θt, gt) = q(F t, θt, gt),

ε(F tG, θt, gt) = ε(F t, θt, gt),

(6.18)

for any G ∈ G and any thermomechanical histories (F t, θt, gt).

These conditions are the most fundamental restrictions imposed on any constitutive
functions. Since the constitutive functions of simple materials with memory are in gen-
eral functionals, i.e., functions of history functions, the analysis of the above conditions
requires much more mathematical hardware and is beyond the context of this chapter.
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Therefore, in order to analyze these conditions, we shall restrict ourselves to much
simpler material models, namely, simple materials without long range memory. In this
case, a history function, say ht(s) = h(t − s) for small s, can be expressed in the Taylor
series approximation,

ht(s) = h(t)− ḣ(t) s+
1

2
ḧ(t) s2 + · · · .

Therefore, the dependence on the history function can be approximated by the dependence
on the values of the function and its derivatives up to a certain order at the present time.
With this approximation, constitutive functions become ordinary functions instead of
functionals. Constitutive theories of such material models can then be analyzed with
linear algebra and differential calculus, no theory of functional analysis will be needed.

We shall consider some simple material models:

• Elastic materials
C = C(F ).

• Thermoelastic materials
C = C(F, θ, g).

• Viscoelastic materials
C = C(F, Ḟ ).

• Thermo-viscoelastic materials
C = C(F, Ḟ , θ, g).

In the following chapters, we shall analyze the restrictions imposed on the constitutive
functions, C = {T , q, ε}, by the conditions of material objectivity and material symmetry
on these models for solids and fluids.

6.4 Remark on incompressibility

A motion is called incompressible if it is volume-preserving, which can be characterized
by the condition, | detF | = 1. We call a body an incompressible material body if it is
capable of undergoing only incompressible motions.

In the discussions of constitutive equations so far, it is assumed that a material body
is capable of undergoing any motions. Obviously, for incompressible bodies, some consti-
tutive assumptions must be modified. Indeed, in order to maintain the constant volume
in the motion some internal stress is needed to counter the tendency of volume change due
to applied forces on the body. This is called the reaction stress which maintains constant
volume and hence it should not do any real works in the motion.
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Since the rate of work in the motion (see the third term of the equation (3.24)) due
to the reaction stress N can be expressed as (N · grad ẋ), we shall require that

N · grad ẋ = 0.

Taking the material time derivative of the equation detF = ±1 and by the use of grad ẋ =
ḞF−1 from (2.24), we obtain

d

dt
(detF ) = (detF )F−T·Ḟ = (detF )I ·ḞF−1 = 0 or I · grad ẋ = 0.

By comparison, we conclude that the reaction stress N must be proportional to the
identity tensor, so we can write,

N = −p I.

Therefore for an incompressible body, the stress tensor can be expressed as sum of the
reaction pressure and the extra stress,

T = −p I + T̃ (F t, θt, gt), | detF t| = 1.

The principle of determinism for an incompressible material body now requires that
only the extra stress be given by a constitutive function of thermomechanical histories of
the body. Consequently, the constitutive function of the extra stress T̃ , instead of the
(total) stress, is subject to the conditions of material objectivity and material symmetry
as discussed in the previous chapters.

The reaction pressure p is a function depending on the applied forces on the body and
can not be determined entirely by the thermomechanical histories of the body. It is often
referred to as indeterminate pressure.
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7 Elastic solids

Elasticity is a quality of a material body of being able to recover its original state inde-
pendent of any history of deformation. In other words, the elastic behaviors depend solely
on the present state of deformation. Therefore, the mathematical model for the class of
elastic materials can be characterized by the constitutive equation for the Cauchy stress
tensor as a function of the deformation gradient, T = T (F ).

7.1 Isotropic elastic solid

For an isotropic elastic solid, the condition of material symmetry (6.16),

T (F ) = T (FG) ∀F, ∀G ∈ G = O(V ).

By the use of polar decomposition F = V R, and by taking G = RT which is orthogonal,
it follows that

T (F ) = T (V ) := T̃ (B), B = V 2 = FF T .

It implies that the constitutive function T (F ) must reduce to a function of the left stretch
tensor V or the left Cauchy-Green tensor B only. It is independent of the rotation part R
of the deformation – an expected result for being isotropic, i.e., the same in all directions.

Moreover, the condition of material objectivity (5.13), requires the function T̃ (B) to
satisfy

T (QF ) = QT (F )QT ∀F, ∀Q ∈ O(V ).

Therefore, we have

Q T̃ (B)QT = T̃ ((QF )(QF )T ), ∀ Q ∈ O(V ),

or
Q T̃ (B)QT = T̃ (QBQT ), ∀ Q ∈ O(V ). (7.1)

Conversely, one can easily show that if T (F ) = T̃ (FF T ) and if it satisfies the relation
(7.1), then both the conditions of material objectivity and material symmetry are satisfied.

A tensor-valued function satisfies the relation (7.1) is called an isotropic tensor func-
tion.

7.2 Representations of isotropic functions

Definition. Let S : L(V )→ L(V ). We say that S is a tensor-valued isotropic functions,
if for any A ∈ L(V ), it satisfies the following condition:

S(QAQT ) = QS(A)QT ,
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for any orthogonal transformation Q ∈ O(V ).

Before giving the representation theorem for an isotropic function, let us recall a
theorem in linear algebra,

Theorem (Cayley-Hamilton). A linear transformation A ∈ L(V ) satisfies its character-
istic equation,

A3 − IAA
2 + IIAA− IIIAI = 0, (7.2)

where {IA, IIA, IIIA} are called the principal invariants of A. They are the coefficients of
the characteristic polynomial of A, i.e.,

det(λI − A) = λ3 − IAλ
2 + IIAλ− IIIA.

Since eigenvalues of A are the roots of the characteristic equation, det(λI −A) = 0, if
A is symmetric and {a1, a2, a3} are three eigenvalues of A, then it follows that

IA = a1 + a2 + a3, IIA = a1a2 + a2a3 + a3a1, IIIA = a1a2a3.

It is obvious that IA = trA and IIIA = detA are the trace and the determinant of the
tensor A respectively. Moreover, IA, IIA and IIIA are respectively a first order, a second
order and a third order quantities of |A|.

Let the set of all symmetric linear transformation be denoted by Sym(V ).

Theorem. Let S : Sym(V ) → Sym(V ), then it is an isotropic function if and only if it
can be represented by

S(A) = s0I + s1A+ s2A
2, (7.3)

where s0, s1 and s2 are arbitrary scalar functions of (IA, IIA, IIIA).

Corollary. If S(A) is an isotropic and linear function of A, then

S(A) = λ (trA)I + µA, (7.4)

where λ and µ are independent of A.

This theorem was first proved by Rivlin & Ericksen (1955). Representations for
isotropic functions of any number of vector and tensor variables have been extensively
studied and the results are usually tabulated in the literature. We shall give here without
proof another theorem for isotropic functions of one vector and one symmetric tensor
variables.

Theorem. Let D = V × Sym(V ), and φ : D → IR, h : D → V , and S : D → Sym(V ).
Then they are isotropic if and only if they can be represented by

φ = ϕ(IA, IIA, IIIA, v · v, v · Av, v · A2v),

h = h0v + h1Av + h2A
2v,

S = s0I + s1A+ s2A
2 + s3v ⊗ v + s4(Av ⊗ v + v ⊗ Av) + s5Av ⊗ Av,

(7.5)
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where the coefficients h0 through h2 and s0 through s5 are arbitrary functions of the
variables indicated in the scalar function ϕ.

Therefore, from the relation (7.1) and the representation theorem, we have

Theorem. The most general constitutive equation for an Isotropic elastic solid is given
by

T = t0 I + t1B + t2B
2,

where t0, t1, t2 are functions of the principal invariants (IB, IIB, IIIB).

7.3 Incompressible isotropic elastic solids

Incompressible elastic bodies can be similarly formulated. It is known that the reaction
stress for incompressibility is an indeterminate pressure and therefore, the constitutive
equation for the stress tensor is given by

T = −p I + t1B + t2B
2, detB = IIIB = 1,

where t1 and t2 are functions of (IB, IIB) and p is the indeterminate pressure. By the use
of Cayley-Hamilton theorem, B2 = IB B − IIB I +B−1, it can also be expressed by

T = −p I + s1B + s2B
−1, detB = 1,

where the parameters s1 and s2 are functions of (IB, IIB). Two special cases are of practical
interest for finite elasticity, namely, the simple models for which the parameters s1 and
s2 are constants.

• Neo-Hookean material: T = −p I + s1B.

• Mooney-Rivlin material: T = −p I + s1B + s2B
−1.

Thermodynamic stability analysis1 requires that

s1 > 0, s2 < s1.

These incompressible material models are often adopted for rubber-like materials. It
provides a reasonable theory of natural rubber at finite strains.

1 Liu, I-Shih, A note on the Mooney-Rivlin material model, Continuum Mechanics and Thermody-
namics, 24, 583-590 (2012)
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7.4 Elastic solid materials

For elastic solids in general, the constitutive function must satisfy the conditions of ma-
terial objectivity,

T (QF ) = Q T (F )QT , ∀ F, ∀ Q ∈ O(V ), (7.6)

and the condition of material symmetry,

T (FG) = T (F ), ∀ F, ∀ G ∈ G, (7.7)

where G ⊂ O(V ) is the symmetry group of the solid material body.

By the use of polar decomposition F = RU , and since the condition of material
objectivity (7.6) is valid for any orthogonal tensor Q, by taking Q = RT , it follows that

T (F ) = QTT (QF )Q = R T (RTRU)RT , or T (F ) = R T (U)RT . (7.8)

Therefore, the constitutive function T (F ) satisfies the condition of material objectivity
(7.6) if and only if it can be represented in the form (7.8). The representation (7.8) requires
that the dependence on F must reduce to a specific form of dependence on the stretch
part U and the rotation part R. It can not depend on the deformation gradient F in an
arbitrary manner.

The representation (7.8) for the Cauchy stress tensor takes a simpler form in terms of
the second Piola-Kirchhoff stress tensor defined as

S = |detF | F−1TF−T .

It follows that

S = |det(RU)| (RU)−1 (R T (U)RT ) (RU)−T = (detU)U−1T (U)U−T ,

where |detR| = 1 has been used since R ∈ O(V ).

Therefore, the material objectivity condition implies that the second Piola-Kirchhoff
stress tensor for elastic materials must reduce to a function of the right stretch tensor U
or equivalently of the right Cauchy-Green strain tensor C = U2 only,

S = S(C), C = F TF.

This representation is more convenient in practical calculations in terms of the deformation
gradient, because no calculation of U from polar decomposition is necessary.

Moreover, from this representation and the condition of material symmetry (7.7), we
have

S(GTCG) = G−1S(C)G−T , ∀G ∈ G ⊂ O(V ),

for any elastic material with symmetry group G.
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Elastic solid. The second Piola-Kirchhoff stress tensor of an elastic solid with symmetry
group G ⊆ O(V ) is given by

S = S(C), ∀ C = F TF, (7.9)

for some function S : Sym(V )→ Sym(V ) satisfying the following condition:

S(QCQT ) = QS(C)QT , ∀ Q ∈ G, ∀ C. (7.10)

A function satisfying the relation (7.10) is called invariant relative to the group G.
Explicit representations for constitutive functions of elastic solids invariant relative to
transversely isotropic groups and some symmetry groups of crystalline solids can be found
in the literature.

7.5 Hooke’s law

In the classical theory of linear elasticity, only small deformations are considered. We
introduce the displacement vector from the reference configuration and its gradient,

u = χ
κ(X)−X, H = ∇XXXu, X ∈ Bκ.

We have H = F − I. For small deformations, the displacement gradient H is assumed to
be a small quantity of order o(1). The Cauchy-Green tensor C can then be approximated
by

C = F TF = (I +H)T (I +H) = I +H +HT +HTH = I + 2E + o(2),

where the infinitesimal strain tensor E is defined as the symmetric part of the displacement
gradient,

E =
1

2
(H +HT ).

The function S of the equation (7.9) can now be approximated by

S(C) = S(I) +L[E] + o(2), L[E] :=
d

dt
S(I + 2E t)

∣∣∣
t=0
.

Here we have defined a fourth order tensor L as a linear transformation of Sym(V ) into
itself. If we further assume that the reference configuration is a natural state, i.e., zero
stress at the undeformed state, T (I) = 0, then so is S(I) = 0. Since L[E] is of order o(1)
and F = I + o(1), by neglecting the second order terms in (7.9) we obtain

T = L[E], (7.11)

This linear stress-strain relation is known as the Hooke’s law and L is called the elasticity
tensor. Since both the stress and the strain tensors are symmetric, by definition, the
elasticity tensor has the following symmetry properties in terms of Cartesian components:

Tij =
3∑

k,l=1

LijklEkl, Lijkl = Ljikl = Lijlk. (7.12)
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Moreover, the conditions of material objectivity (7.6) and material symmetry (7.7) imply
that

T (QFQT ) = Q T (F )QT , ∀ Q ∈ G ⊆ O(V ).

Since T (F ) = L[E(F )] and E(F ) = 1
2
(H +HT ) = 1

2
(F +F T )− I, it follows immediately

that
L[QEQT ] = QL[E]QT , ∀ Q ∈ G ⊆ O(V ).

In other words, the elasticity tensor L : Sym(V ) → Sym(V ) is linear and invariant
relative to the symmetry group G ⊂ O(V ) for anisotropic linear elastic solids in general.
In particular, for G = O(V ), by the use of the linear representation (7.4), the Hooke’s law
for isotropic linear elastic solid body becomes

T = λ (trE)I + µE,

where the material parameters λ and µ are called Lamé elastic coefficients.

Remark. We should point out that the linear law (7.11) does not satisfy the condition
of material objectivity (7.6) for arbitrary orthogonal tensor Q. Therefore, the theory of
linear elasticity is meaningless for large deformations.

Indeed, if we choose F = 1, which is a natural state by assumption, then the condition
(7.6) implies that

T (Q) = QT (1)QT = 0,

for any orthogonal tensor Q. On the other hand, since

T (F ) = L[E(F )], E(F ) =
1

2
(H +HT ) =

1

2
(F + F T )− 1,

if we choose Q as a rotation about z-axis,

Q =

 cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 ,
we have

E(Q) =

 cos θ − 1 0 0
0 cos θ − 1 0
0 0 0

 ,
and for θ 6= 0

T (Q) = L[E(Q)] 6= 0.

Hence, the condition of material objectivity is not satisfied in general. Nevertheless, one
can see that it is approximately satisfied when both the displacement and the rotation
are small (in this case, cos θ ≈ 1). tu
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8 Viscoelastic materials

From physical experiences, viscosity is a phenomenon associated with the rate of deforma-
tion – the greater the deformation rate, the greater the resistance to motion. Therefore,
we shall consider a simple model for viscous materials given by the constitutive equation
for the Cauchy stress, T = T (F, Ḟ ).

From (6.17), the constitutive function T must satisfy the condition of material objec-
tivity,

T (QF, (QF )· ) = Q T (F, Ḟ )QT , ∀ Q ∈ O(V ), ∀ F, (8.13)

and from (6.18), the condition of material symmetry,

T (FG, ḞG) = T (F, Ḟ ), ∀ G ∈ G, ∀ F. (8.14)

8.1 Isotropic viscoelastic solids

For isotropic solids, the symmetry group is the orthogonal group G = Q(V ). To obtain
the restrictions imposed on the constitutive function T , consider the polar decomposition
F = V R and take G = RT ∈ G in the condition (8.14),

T (F, Ḟ ) = T (FRT , ḞRT ) = T (V RRT , ḞF−1FRT ) = T (V, LV ),

where we have used the relation L = ḞF−1 for velocity gradient. In other words, the
dependence on (F, Ḟ ) reduces to the dependence on (V, L), or equivalently on (B,L)
where B = FF T is the left Cauchy–Green strain tensor. Therefore, we can write

T (F, Ḟ ) = T̂ (B,L).

On the other hand, the function T̂ must satisfy the condition of material objectivity
(8.13) which becomes

T̂ ((QF )(QF )T , (QF )·(QF )−1) = Q T̂ (B,L)QT .

Simplifying the left-hand side and decomposing L = D + W into symmetric and skew-
symmetric parts, we obtain

T̂ (QBQT , QDQT +QWQT + Q̇QT ) = Q T̂ (B,L)QT . (8.15)

This relation must hold for any orthogonal tensor Q. In particular, we can choose the
othogonal tensor (check it!), Qt(s) = exp((t−s)W ), where W is the skew-symmetric part
of the velocity gradient, so that Q(t) = I and Q̇(t) = −W and the above relation reduces
to

T̂ (B,L) = T̂ (B,D),
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where D is the symmetric part of L. Hence, the constitutive function can not depend
on the skew-symmetric part W of the velocity gradient. This, in turns, implies from the
above relation (8.15) that T̂ (B,D) is an isotropic tensor function,

T̂ (QBQT , QDQT ) = Q T̂ (B,D)QT , ∀ Q ∈ O(V ).

This isotropic function depends on two symmetric tensor variables. The general rep-
resentation for such a function can be expressed in the following form2:

T = t1I + t2B + t3B
2 + t4D + t5D

2

+ t6(BD +DB) + t7(B2D +DB2) + t8(BD2 +D2B),

ti = ti(IB, IIB, IIIB, ID, IID, IIID, tr(BD), tr(B2D), tr(BD2), tr(B2D2)).

(8.16)

For some practical problems of small deformation rate, one can consider a representa-
tion which contains up to linear terms in D. It can be written as

T = s0I + s1B + s2B
−1 + µ1D + µ2(BD +DB) + µ3(B−1D +DB−1),

si = ai + bi trD + ci tr(BD) + di tr(B
−1D),

µi = µi(IB, IIB, IIIB),

and the coefficients ai, bi, ci, and di, are also functions of (IB, IIB, IIIB). In these expressions,
obtained from (8.16), we have replaced B2 with B−1 as we did in Mooney–Rivlin materials.

8.2 Viscoelastic solids

For viscoelastic solids in general, the constitutive function, T = T (F, Ḟ ), must satisfy the
conditions of material objectivity,

T (QF, (QF )
.

) = Q T (F, Ḟ )QT , F, ∀ Q ∈ O(V ), (8.17)

and the condition of material symmetry,

T (FG, ḞG) = T (F, Ḟ ), ∀ G ∈ G, (8.18)

where G ⊂ O(V ) is the symmetry group of the solid material body.

By the use of polar decomposition F = RU , and since the condition of material
objectivity (8.17) is valid for any orthogonal tensor Q, by taking Q = RT , it follows that

QF = RT (RU) = U, (QF )
.

= (RT (RU))
.

= U̇ ,

and hence,
T (F, Ḟ ) = R T (U, U̇)RT . (8.19)

2I-Shih Liu, Continuum Mechanics, Springer 2002, (Chapter 4).
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Therefore, for any viscoelastic solid, the constitutive equation for the Cauchy stress tensor
must reduces to the above representation (8.19).

As before, it follows that the second Piola-Kirchhoff stress tensor must reduces to

S(F, Ḟ ) = S(C, Ċ), C = F TF = U2.

Moreover, from this representation and the condition of material symmetry (8.18), we
have

S(GTCG,GT ĊG) = G−1S(C, Ċ)G−T , ∀G ∈ G ⊂ O(V ).

Viscoelastic solid. The second Piola-Kirchhoff stress tensor of a viscoelastic solid with
symmetry group G ⊆ O(V ) is given by

S = S(C, Ċ), C = F TF, (8.20)

for some function S : Sym(V )→ Sym(V ) satisfying the following condition:

S(QCQT , QĊQ) = QS(C, Ċ)QT , ∀ Q ∈ G, ∀ C, (8.21)

that is, it is invariant relative to the group G.

Remark: Since the general representation of viscoelastic solid is given by (8.19),

T (F, Ḟ ) = R T (U, U̇)RT . (8.22)

in particular, this must hold for isotropic viscoelastic solid which has been proved that it
must reduce to

T (F, Ḟ ) = T̂ (B,D). (8.23)

Therefore, (8.23) must be a special case of (8.22).

To see this, note that F = V R = RU , so that

B = V 2 = RU2RT ,

and, with L = ḞF−1 and D = 1
2
(L+ LT ),

Ċ = (F TF )
.

= F T (ḞF−1 + F−T Ḟ T )F = 2F TDF,

which, with F = RU and C = U2, implies that

D =
1

2
F−T ĊF−1 = RU−1(UU̇)U−1RT = R(U̇U−1)RT .

Therefore,
T̂ (B,D) = T̂ (RU2RT , R(U̇U−1)RT ),

and since the function T̂ is isotropic and R is orthogonal, it follows that

T̂ (B,D) = R T̂ (U2, (U̇U−1))RT ,

which is a particular case of (8.22). tu
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8.3 Viscous fluids

For fluids, the symmetry group is the unimodular group G = U(V ). To obtain the
restrictions of these conditions imposed on the constitutive function T , we shall take
G = |detF | 1/3F−1, obviously |detG| = 1 so that G belongs to the symmetry group,
and by (8.14), it follows that

T (F, Ḟ ) = T ( |detF | 1/3 FF−1, |detF | 1/3 ḞF−1)

= T ( |detF | 1/3 I, |detF | 1/3 L) := T̂ ( |detF | , L).

Therefore, for fluids, the material symmetry requires that the dependence of T on (F, Ḟ )
be reduced to the dependence on the determinant of F and the velocity gradient L = ḞF−1

as defined by the constitutive function T̂ ( |detF | , L).

Furthermore, the function T̂ must satisfy the condition of material objectivity (8.13)
which becomes

T̂ ( |det(QF )| , (QF )·(QF )−1) = Q T̂ ( |detF | , L)QT .

By a similar argument from isotropic viscoelastic solids, we arrive the conclusion that
the constitutive function can not depend on the skew-symmetric part W of the velocity
gradient, and that T̂ ( |detF | , D) is an isotropic tensor function,

T̂ ( |detF | , QDQT ) = Q T̂ ( |detF | , D)QT , ∀ Q ∈ O(V ).

Moreover, from the conservation of mass, we have |detF | = ρκ/ρ, where the mass
density ρκ in the reference configuration is constant. Consequently, by replacing the
dependence on |detF | with the mass density ρ, and by the use of the representation
theorem for isotropic functions (7.3), we obtain the constitutive equation,

T = T̃ (ρ,D) = d0 I + d1D + d2D
2, (8.24)

where the material parameters d0, d1, d2 are functions of mass density and three principal
invariants of the rate of strain tensor, (ρ, ID, IID, IIID).

This is the most general constitutive equation for the viscous fluid of the simple model
T (F, Ḟ ). It was first derived by Reiner (1945) and by Rivlin (1947) and it is usually known
as Reiner-Rivlin fluid. However, we should point out that this is by no means the most
general constitutive equation for simple viscous fluids. Indeed, one may consider other
viscous fluid models which depend also on deformation rates of higher order, for example,
a simple fluid of grade-two T (F, Ḟ , F̈ ). In this note, we shall restrict our attention to
simple models only.

8.4 Navier-Stokes fluids

The most well-known viscous fluid models is the Navier-Stokes fluids. It is a mathemati-
cally simpler model of the general one (8.24) in which only linear dependence on the rate
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of strain is relevant and hence by the linear representation (7.4), the constitutive equation
for Navier-Stokes fluids is given by

T = −p(ρ) I + λ(ρ)(trD) I + 2µ(ρ)D. (8.25)

The coefficients λ and µ are called the coefficients of viscosity, while µ and (λ + 2
3
µ) are

also known as the shear and the bulk viscosities respectively. The pressure p and the
viscosities λ and µ are functions of ρ.

A Navier-Stokes fluid is also known as a Newtonian fluid in fluid mechanics. It is
usually assumed that

µ ≥ 0, 3λ+ 2µ ≥ 0.

The non-negativeness of the shear and bulk viscosities can be proved from thermodynamic
considerations.

It should be pointed out that unlike the Hooke’s law in linear elasticity which is an
approximate model for small deformations only, the Navier-Stokes fluids defines a class of
material models which satisfies both the conditions of material objectivity and material
symmetry. It need not be regarded as the linear approximation of a Reiner-Rivlin fluid.
Thus it is conceivable that there are some fluids which obey the constitutive equation
(8.25) for arbitrary rate of deformation. Indeed, water and air are usually treated as
Navier-Stokes fluids in most practical applications with very satisfactory results even
under rapid flow conditions

8.5 Viscous heat-conducting fluids

We now consider a simple fluid with heat conduction and viscosity given by the following
constitutive equation for C = {T , q, ε},

C = C(F, Ḟ , θ, g).

With the same arguments as before, from the conditions of material objectivity and
material symmetry, the constitutive variables (F, Ḟ , θ, g) must reduce to (ρ,D, θ, g) and
the constitutive functions are isotropic functions,

T (ρ,QDQT , θ, Q g) = Q T (ρ,D, θ, g)QT ,

q(ρ,QDQT , θ, Q g) = Q q(ρ,D, θ, g), ∀ Q ∈ O(V ), ∀ (ρ,D, θ, g).

ε(ρ,QDQT , θ, Q g) = ε(ρ,D, θ, g),

Therefore, from the representation (7.5), one can immediately write down the most general
constitutive equations of a viscous heat-conducting fluid for the stress, the heat flux, and
the internal energy,

T = α0 I + α1D + α2D
2 + α3 g ⊗ g + α4(Dg ⊗ g + g ⊗Dg) + α5Dg ⊗Dg,

q = β1 g + β2Dg + β3D
2g,

ε = ε(ρ, θ, ID, IID, IIID, g · g, g ·Dg, g ·D2g),
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where the coefficient αi and βj as well as ε are scalar functions of eight variables indicated
in the arguments of ε.

The special case, when only up to linear terms in both the strain rate D and the
temperature gradient g are relevant, gives the most widely-used model for viscosity and
heat conduction.

Navier-Stokes-Fourier fluids

T = −p(ρ, θ) I + λ(ρ, θ) (trD) I + 2µ(ρ, θ)D,

q = −κ(ρ, θ) g,

ε = ε(ρ, θ) + ε1(ρ, θ) trD.

These are the classical Navier-Stokes theory and the Fourier law of heat conduction.
The material parameters λ, µ are the viscosity coefficients and κ is called the thermal
conductivity. From thermodynamic considerations, it is possible to prove that the thermal
conductivity is non-negative, and the internal energy is independent of the strain rate, so
that ε = ε(ρ, θ).

For incompressible fluids, the mass density ρ is a constant field and the equation of
mass balance in (4.11) implies that div ẋ = 0, or trD = 0. Therefore, we have

Incompressible Navier-Stokes fluids

T = −p I + 2µ(θ)D, trD = 0,

q = −κ(θ) g,

ε = ε(θ),

where the pressure is no longer a constitutive parameter but rather must be determined
from the condition div ẋ = 0 and suitable boundary conditions.

Another important special case is the simplest model in Continuum Mechanics, given
by constitutive equations depending on the density and the temperature only. Hence, it
is also a special case of elastic materials.

Elastic fluids
T = −p(ρ, θ) I, q = 0, ε = ε(ρ, θ).

This defines an inviscid compressible fluid without heat conduction, also known as Euler
fluid or ideal fluid in Fluid Mechanics. Similarly, in the case of incompressible Euler
fluids, the mass density ρ is a constant field and the indeterminate pressure p depends on
boundary conditions and the condition div ẋ = 0.
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9 Second law of thermodynamics

We shall give a brief consideration of thermodynamic restrictions imposed on constitutive
equations. We have already mentioned the first law of thermodynamics, i.e., the energy
balance. Now we are going to consider the second law for which the essential quantity is
the entropy, ∫

Pt
ρ η dv, (9.1)

where η(x, t) is called the specific entropy density. Unlike the total energy, the rate of
change of total entropy of a body can not be given completely in the form of a balance
equation (3.1). There are internal entropy productions in “non-equilibrium” processes.

Entropy production. For any part P ⊂ B, the entropy production σ(P , t) is given by

σ(P , t) =
d

dt

∫
Pt
ρ η dv +

∫
∂Pt
Φ · n da−

∫
Pt
ρ s dv.

We call Φ(x, t) the entropy flux and s the external entropy supply density. Although
entropy is not a quantity associated with some easily measurable physical quantities, its
existence is usually inferred from some more fundamental hypotheses concerning thermal
behaviors of material bodies, usually known as the second law of thermodynamics. We
choose to accept the existence of entropy and state the consequence of such hypotheses
directly by saying that the entropy production is a non-negative quantity.

Second law of thermodynamics. The following entropy inequality must hold for any
part P ⊂ B:

d

dt

∫
Pt
ρ η dv +

∫
∂Pt
Φ · n da−

∫
Pt
ρ s dv ≥ 0. (9.2)

Comparing with the general balance equation (3.1) by setting

ψ = ρ η, Φψ = Φ, σψ = ρ s,

we have the following local form of the entropy inequality,

ρη̇ + divΦ− ρs ≥ 0. (9.3)

Another quantity essential in thermodynamics introduced previously is the tempera-
ture. Intuitively it is a measurable quantity by contact thermometers. In fact, this prop-
erty is based on the assumption that on the interface between two bodies, the temperature
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is continuous. We shall call such a wall an ideal wall. The continuity of temperature across
an ideal wall is often referred as the zeroth law of thermodynamics.

In addition to the continuity of temperature, we shall also postulate the absence of
energy and entropy productions at an ideal wall so that the normal components of energy
flux and entropy flux are continuous across the wall. This may be regarded as a supplement
to the laws of thermodynamics. That is, for a wall between bodies I and II,

qI · n = qII · n, ΦI · n = ΦII · n, if θI = θII. (9.4)

9.1 Entropy principle

One of the principal objectives of continuum mechanics is to determine or predict the
behavior of a body once the external causes are specified. Mathematically, this amounts
to solve initial boundary value problems governed by the balance laws of mass, linear
momentum and energy,

ρ̇+ ρ div ẋ = 0,

ρ ẍ− div T = ρ b,

ρ ε̇+ div q − T · grad ẋ = ρ r,

(9.5)

when the external supplies b and r are given.

The governing field equations are obtained, for the determination of the fields of
the density ρ(X, t), the motion χ(X, t), and the temperature θ(X, t), after introducing
the constitutive relations for T , ε, and q, into the balance laws (9.5). Any solution
{ρ(X, t), χ(X, t), θ(X, t)} of the field equations is called a thermodynamic process.

On the other hand, the behavior of a body must also obey the second law of thermo-
dynamics, i.e., a thermodynamic process must also satisfy the entropy inequality (9.3).
Following the idea set forth by Coleman and Noll, the second law of thermodynamics
plays an essential role in constitutive theories of continuum mechanics.

Entropy principle. It is required that constitutive relations be such that the entropy
inequality is satisfied identically for any thermodynamic process.

From this point of view, like the principle of material objectivity and material sym-
metry, the entropy principle also imposes restrictions on constitutive functions. To find
such restrictions is one of the major task in modern continuum thermodynamics. We
shall illustrate the procedures of exploiting the entropy principle in this section.

We shall first make some general remarks. Motivated by the results of classical thermo-
statics, it is often assumed that the entropy flux and the entropy supply are proportional
to the heat flux and the heat supply respectively. Moreover, both proportional constants
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are assumed to be the reciprocal of the absolute temperature θ,

Φ =
1

θ
q, s =

1

θ
r. (9.6)

The resulting entropy inequality is called the Clausius-Duhem inequality,

ρη̇ + div
q

θ
− ρ r

θ
≥ 0. (9.7)

Exploitation of entropy principle based on the Clausius-Duhem inequality has been widely
adopted in the development of modern continuum thermodynamics following the simple
Coleman-Noll procedure.

However, the main assumptions (9.6) while seem to be plausible in all classical theories
of continuum mechanics, are not particularly well motivated for materials in general. In
fact, the relation (9.6) is known to be inconsistent with the results from the kinetic
theory of ideal gases and is also found to be inappropriate to account for thermodynamics
of diffusion.

Müller, on the other hand, proposed that if the body is free of external supplies (i.e.,
b = 0, r = 0) the entropy supply must also vanish (s = 0), which is certainly much weaker
than the assumption (9.6). Since constitutive functions do not depend on the external
supplies, in exploring thermodynamic restrictions, it suffices to consider only supply-free
bodies.

Exploitation of the entropy principle based on the entropy inequality in its general
form (9.3) has been proposed by Müller and the method of Lagrange multipliers proposed
by Liu greatly facilitates its procedure (sometimes referred to as Müller-Liu procedure).

9.2 Thermodynamics of heat-conducting elastic fluids

We shall now exploit the entropy principle based on the general entropy inequality for a
simple case of heat-conducting elastic fluids following Müller-Liu procedure.

The constitutive relations for heat-conducting elastic fluids are given by

T = T (ρ, θ, g),

q = q(ρ, θ, g),

ε = ε(ρ, θ, g),

η = η(ρ, θ, g),

Φ = Φ(ρ, θ, g),
(9.8)

where θ will be regarded as an empirical temperature, and g = ∇θ is its spatial gradient.
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9.3 Exploitation of entropy principle

For a supply-free body, we have the following balance laws,

ρ̇+ ρ div ẋ = 0,

ρ ẍ− div T = 0,

ρ ε̇+ div q − T · grad ẋ = 0,

and the entropy inequality,
ρη̇ + divΦ ≥ 0.

The entropy principle requires that the above inequality must hold for any thermody-
namic process {ρ, χ, θ}. This requirement can be stated in a different way, namely, the
fields that satisfy the entropy inequality are constrained by the requirement that they
must be solutions of the field equations. Following Liu, we can take care of this require-
ment by the use of Lagrange multipliers much like that in the classical problems of finding
the extremum with constraints.

Method of Lagrange multipliers. There exist Lagrange multipliers Λρ, Λv, and Λε

such that the inequality

ρη̇ + divΦ− Λρ(ρ̇+ ρ div ẋ)− Λv(ρẍ− div T )− Λε(ρε̇+ div q − T · grad ẋ) ≥ 0 (9.9)

must hold for any fields {ρ(x, t), χ(x, t), θ(x, t)}. Moreover, the Lagrange multipliers are
functions of (ρ, θ, g).

Note that after introducing the constitutive relations (9.8) into (9.9), the inequality
assumed the following form:

26∑
b=1

Sb(Xa) · Yb + σ(Xa) ≥ 0, a = 1, · · · , 5, (9.10)

where Xa = (ρ, θ, g) and Yb = (ρ̇, θ̇, ġ,∇ρ,∇(∇θ),∇ẋ, ẍ). Here, we have used the nota-
tion, ∇g = ∇(∇θ), to emphasize the symmetry of the second gradient.

Since the inequality (9.9) must hold for any functions ρ(x, t), χ(x, t), and θ(x, t), for
arbitrary values of Xa and Yb, one can define such functions in the neighbourhood of a
given point and instant, say (x0, t0) which take those given values at (x0, t0) (e.g., by
truncated Taylor series). In other words, the inequality (9.10) must hold for any given
values of Xa and Yb.

Note that the inequality (9.10) is linear in Yb, and the values of Yb can be given
independently of the values of Sb and σ. This implies that Sb (respecting the part involved
with the symmetry of the second gradient ∇(∇θ)) must vanish, otherwise, it is possible
to choose some values of Yb such that the inequality is violated.
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First of all, from (9.9), vanishing of coefficients of ẍ and and ∇ẋ leads to

Λv = 0, (9.11)

and
ΛεT − Λρρ I = 0,

which implies that the stress tensor is a pressure only,

T = −p I, (9.12)

where
Λρ = −p

ρ
Λε. (9.13)

With the above results, the inequality (9.9) becomes

ρ(η̇ − Λεε̇+ Λε
p

ρ2
ρ̇) + (divΦ− Λε Div q) ≥ 0. (9.14)

and the rest of vanishing coefficients in Yb can now be listed below:

∂η

∂ρ
− Λε ∂ε

∂ρ
+ Λε

p

ρ2
= 0,

∂η

∂θ
− Λε∂ε

∂θ
= 0,

∂η

∂g
− Λε ∂ε

∂g
= 0,

(9.15)

and
∂Φ

∂ρ
− Λε∂q

∂ρ
= 0,(∂Φ

∂g
− Λε∂q

∂g

)
sym

= 0.

(9.16)

Finally, the inequality (9.9) reduces to the remaining one which is the entropy production
density σ(ρ, θ, g) given by

σ =
(∂Φ
∂θ
− Λε∂q

∂θ

)
· g ≥ 0. (9.17)

The relations (9.12), (9.15), (9.16), (9.17) summarize the consequence of the require-
ment of the entropy principle. These relations contains one essential quantity, the La-
grange multiplier Λε, whose physical significance must be further investigated.

The Lagrange multiplier

The characteristic property of the Lagrange multiplier Λε lies in the relation between
the entropy flux and the energy flux. For a heat-conducting elastic fluid, its constitutive
functions (9.8) must be isotropic functions. For energy and entropy fluxes, we have

q = −κ(ρ, θ, Ig)g, Φ = −φ(ρ, θ, Ig)g,
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where κ and φ are scalar functions and Ig = g · g.

It follows from the relation (9.16)2 that

(φ− Λεκ)I −
( ∂φ
∂Ig
− Λε ∂κ

∂Ig

)
g ⊗ g = 0.

This is a tensor equation, and since I and g ⊗ g are independent tensor elements, their
coefficients must vanish,

φ = Λεκ,
∂φ

∂Ig
− Λε ∂κ

∂Ig
= 0,

which implies that
Φ = Λεq. (9.18)

Taking the gradient of (9.18) with respect to g and using again the relation (9.16)2, we
obtain

∂Λε

∂g
· q = tr

(∂Φ
∂g
− Λε∂q

∂g

)
= 0,

from which it implies that Λε must be independent of g, since q does not vanish in general.
Similarly, by taking the gradient with respect to ρ and using the relation (9.16)1, it follows
immediately that Λε must be independent of ρ. Therefore, we may write

Λε = Λ(θ). (9.19)

Moreover, the entropy production density (9.17) becomes

σ = −
(∂Λ
∂θ

)
(g · κ g) ≥ 0. (9.20)

Since the entropy production does not vanish identically in heat conducting bodies, we
require that ∂Λ/∂θ 6= 0. Consequently, Λ(θ) depends monotonically on θ and hence Λ(θ)
can also be taken as a temperature measure referred to as the coldness.

Universal coldness

Recall the continuity of normal components of energy and entropy fluxes at an ideal wall
where the temperature is continuous. Taking two different fluid bodies in contact of the
same class considered here, say, I and II, from (9.18) and the conditions (9.4) we have

qI · n = qII · n, ΛI qI · n = ΛII qII · n,

which implies that
ΛI(θ) = ΛII(θ).

In other words, the coldness is the same function of the empirical temperature θ for any
fluid of the class under consideration, therefore, it is referred to as the universal colness
by Müller.
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Absolute temperature

The universal property enables us to determine the coldness function if we can chose it
for only one fluid of the kind, say, the ideal gases for simplicity, for which the constitutive
relations for the pressure and the internal energy are given by

p = Rρθ, ε = c(θ − θ0) + ε0,

where R is the gas constant, c is the specific heat, and ε0 is the reference value at the
reference temperature θ0. In these well-known results, we have chosen the empirical
temperature as the absolute temperature.

To begin with, we consider the integrability condition for the entropy, by calculating
the second derivatives with respect to ρ and θ from (9.15)1,2 to give

dΛ

dθ

(∂ε
∂ρ
− p

ρ2

)
= Λ

1

ρ2

∂p

∂θ
.

For ideal gases, it reduces to
1

Λ

dΛ

dθ
= −1

p

dp

dθ
= −1

θ
,

which integrates to
lnΛ = − ln θ + k.

By conveniently taking constant k to be zero, we arrive at

Λ(θ) =
1

θ
. (9.21)

In other words, we conclude that the Lagrange multiplier Λε can be identified with the
reciprocal of the absolute temperature for heat-conducting elastic fluids in general.

Another integrability condition, by the second derivative of the entropy with respect
to θ and g from (9.15) implies the independence of the internal energy and hence also the
entropy on g,

ε = ε(ρ, θ), η = η(ρ, θ),

and the relations (9.15) can be written as

dη =
1

θ

(
dε− p

ρ2
dρ
)
. (9.22)

This is known as the Gibb’s relation. By introducing the free energy function

ψ = ε− θη,

it becomes
dψ = −η dθ +

p

ρ2
dρ,

from which we obtain

η = −∂ψ
∂θ
, p = ρ2∂ψ

∂ρ
.
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Summary of thermodynamic restrictions

Proposition. For heat-conducting elastic fluids, general constitutive relations (9.8) re-
duce to

T = −p I, p = ρ2∂ψ

∂ρ
,

ε = ψ − θ ∂ψ
∂θ
,

η = −∂ψ
∂θ
,

q = −κ g,

Φ =
1

θ
q,

(9.23)

where θ is the abslute temperature. These relations depend only on two scalar functions,
the free energy density

ψ = ψ(ρ, θ)

and the heat conductivity coefficient

κ = κ(ρ, θ, g · g) ≥ 0,

which is non-negative, as an immediate consequence of the remaining inequality (9.20).

From this example, the exploitation of the entropy principle yields, great restrictions on
the constitutive functions from (9.8) to (9.23) depending only on two scalar functions, as
well as the identification of the absolute temperature, from Müller-Liu procedure. Similar
results have been investigated for many other classes of material bodies by either Müller-
Liu or Coleman-Noll procedure. Since Coleman-Noll procedure involves more specific
assumptions the formulation following it may not be the same as the one following Müller-
Liu precedure. However, it turns out that in most classical theories, such as isotropic
elastic solids and viscoelastic fluids, they do lead to the same results. In the advance of
continuum thermodynamics, the exploitation of entropy principle has been the essential
task to achieve the principal objective in the formulation of any constitutive theory.

9.4 Thermodynamic stability

Another important concept associated with the entropy inequality is the thermodynamic
stability of a material body.

Stable equilibrium state. We say that an equilibrium state is stable if any small distur-
bance away from it will eventually disappear and thus the original state will be restored.

To establish a stability criterion for a material system, one may try to find a decreasing
function of time A(t) from the balance laws and the entropy inequality in integral forms.
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Such a function is called an availability function of the system, since it is the quantity
available to the system for its expense in the course toward equilibrium. Such a function
is usually known as a Liapounov function in the stability theory of dynamic systems.

To illustrate the basic ideas let us consider a supply-free body occupying a region V
with a fixed adiabatic boundary,

v = 0, q · n = 0, Φ · n = 0 on ∂V ,

and hence the entropy inequality (9.2) and the energy balance (3.22) become

d

dt

∫
V
ρη dv ≥ 0,

d

dt

∫
V
ρ(ε+ 1

2
v · v) dv = 0. (9.24)

In other words, the total entropy must increase in time while the total energy remains con-
stant for a body with fixed adiabatic boundary. Statements of this kind are usually called
a stability criteria. In the present example, from (9.24)1 one may define the availability
function A of the system as

A(t) = −
∫
V
ρη dv,

dA
dt
≤ 0.

Suppose that the region V is occupied by an elastic fluid in an equilibrium state at
rest with constant mass density ρ0 and internal energy density ε0. Now let us consider a
small disturbance of internal energy only, from the equilibrium state at the initial time,

ε(x, 0) = ε̂(x),

for a small quantity |ε̂− ε0| . If we assume that the original state is stable then the
perturbed state will eventually return to the original state at later time. Therefore since
the total entropy must increase we conclude that∫

V
ρ0η0 dv ≥

∫
V
ρ0η̂ dv, (9.25)

where η0 = η(ε0, ρ0) and η̂ = η(ε̂, ρ0) are the final equilibrium entropy and the perturbed
initial entropy. Expanding η̂ in Taylor series around the equilibrium state, we obtain from
(9.25), ∫

V

{∂η
∂ε

∣∣∣
0
ρ0(ε̂− ε0) +

1

2

∂2η

∂ε2

∣∣∣
0
ρ0(ε̂− ε0)2

}
dv + o(3) ≤ 0.

Since the total energy remains constant, we have∫
V
(ρ0ε̂− ρ0ε0) dv = 0,

and hence ∫
V

1

2

∂2η

∂ε2

∣∣∣
0
ρ0(ε̂− ε0)2 dv =

∂2η

∂ε2

∣∣∣
0

∫
V

1

2
ρ0(ε̂− ε0)2 dv ≤ 0.
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Since the integral is positive, it implies that

∂2η

∂ε2
≤ 0. (9.26)

at any equilibrium state (ε0, ρ0).

In order to give more suggestive meaning to the above condition for stability, note
that from the Gibbs relation (9.22), we have

∂η

∂ε

∣∣∣
ρ

=
1

θ
,

for the entropy as a function of (ρ, ε). Hence

∂2η

∂ε2

∣∣∣
ρ

= − 1

θ2

∂ε

∂θ

∣∣∣−1

ρ
.

Therefore, in terms of the variables (ρ, θ), the stability condition (9.26) reduces to

∂ε

∂θ
> 0, (9.27)

since we have already assumed that ε(ρ, θ) is invertible with respect to θ.

In other words, the positiveness of the specific heat cv = ∂ε/∂θ is a consequence of
thermodynamic stability.

As a second example, we consider a supply-free body with a fixed isothermal boundary,

v = 0, θ = θo on ∂V ,

and assume that the relation Φ = q/θ holds. Then the energy balance (3.22) and the
entropy inequality (9.2) lead to

d

dt

∫
V
ρ(ε+ 1

2
v · v) dv +

∫
∂V
q · n da = 0,

d

dt

∫
V
ρη dv +

1

θo

∫
∂V
q · n da ≥ 0.

Elimination of the terms containing surface integrals from above, gives

dA
dt
≤ 0, A(t) =

∫
V
ρ(ε− θoη + 1

2
v · v) dv. (9.28)

In this manner we have found a decreasing function of time, the availability A(t), which
characterizes the stability for this system. Note that∫

V
ρ(ε− θoη) dv
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is the total free energy if θ = θo throughout the body. Therefore, it follows that for a
body with constant uniform temperature in a fixed region the availability A reduces to
the sum of the free energy and the kinetic energy.

Now, suppose that the region V is occupied by an elastic fluid in an equilibrium state
at rest with constant mass density ρ0 and temperature θ0, and let us consider a small
disturbance of mass density at the initial time,

ρ(x, 0) = ρ̂(x),

for a small quantity |ρ̂− ρ0| . If we assume that the original state is stable then the
perturbed state will eventually return to the original state at later time. Therefore since
the free energy must decrease we conclude that∫

V
ρ0ψ0 dv ≤

∫
V
ρ̂ψ̂ dv,

where ψ0 = ψ(ρ0, θ0) and ψ̂ = ψ(ρ̂, θ0) are the final equilibrium free energy and the
perturbed initial free energy. Taking Taylor series expansion around the equilibrium
state, we obtain ∫

V

{∂ψ
∂ρ

∣∣∣
0
ρ̂(ρ̂− ρ0) +

1

2

∂2ψ

∂ρ2

∣∣∣
0
ρ̂(ρ̂− ρ0)2

}
dv + o(3) ≥ 0. (9.29)

Since total mass remains constant, we have∫
V
(ρ̂− ρo) dv = 0,

and hence ∫
V
ρ̂(ρ̂− ρo) dv =

∫
V
(ρ̂− ρo)2dv =

∫
V

ρ̂

ρo
(ρ̂− ρo)2dv + o(3).

Therefore, up to the second order terms, (9.29) becomes∫
V

{ 1

ρ0

∂ψ

∂ρ

∣∣∣
0

+
1

2

∂2ψ

∂ρ2

∣∣∣
0

}
ρ̂(ρ̂− ρ0)2 dv ≥ 0,

which as before, implies that
∂ψ

∂ρ
+
ρ

2

∂2ψ

∂ρ2
≥ 0.

By the use of the relation (9.23)2,

p = ρ2 ∂ψ

∂ρ
,
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it implies
∂p

∂ρ
≥ 0.

Therefore, the non-negativeness of the isothermal compressibility is also a consequence of
thermodynamic stability.

As a conclusion, we can Summarize the above two criteria for the stability of equilib-
rium states as follow:

Criteria of thermodynamic stability.

1) For a body with fixed adiabatic boundary and constant energy, the entropy tends to
a maximum in equilibrium.

2) For a body with fixed boundary and constant uniform temperature, the sum of the
free energy and the kinetic energy tends to a minimum in equilibrium.

We have seen in this section that thermodynamic stability criteria, like the entropy
principle, impose further restrictions on properties of the constitutive functions, namely,
specific heat and compressibility must be positive. On the other hand, such criteria,
besides being used in analyzing stability of solutions, they are the basic principles for the
formulation of equilibrium solutions in terms of minimization (or maximization) problems.
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10 Some problems in finite elasticity

We shall make an interesting remark on isotropic elastic bodies. From the representations

T = s0I + s1B + s2B
−1 (10.1)

for compressible bodies, where the material parameters s0, s1, s2 are scalar functions of
(IB, IIB, IIIB), and

T = −pI + s1B + s2B
−1 (10.2)

for incompressible bodies, where s1, s2 are functions for (IB, IIB) and p is the indeterminate
pressure, it is obvious that the stress tensor and the left Cauchy–Green tensor commute,

TB = B T. (10.3)

In particular, for a deformation such that the physical components B〈13〉 = B〈23〉 = 0,
so that T〈13〉 and T〈23〉 also vanish, the only non-trivial relation of (10.3) is the expression
for the 〈12〉-component, which reads

T〈11〉 − T〈22〉

T〈12〉
=
B〈11〉 −B〈22〉

B〈12〉
. (10.4)

The relations (10.3) and (10.4) between stress and deformation do not depend on any
particular constitutive function, and thus they are called universal relations of isotropic
elastic materials, compressible or incompressible. Relations of this kind are very important
for experimental verification of material models, since they reflect a direct consequence
from the material symmetry without having to know the constitutive function itself. In
other words, if the deformation of a material model does not satisfy the relation (10.3) in
its experimental observation it cannot be a material model for an isotropic elastic body.

10.1 Universal solutions in elasticity

For elastic solid bodies, the equation of motion is given by

div T (F ) + ρ b = ρ ẍ, ρ =
ρκ
|detF |

, (10.5)

or, in terms of referential description,

Div Tκ(F ) + ρκb = ρκẍ, (10.6)

where Tκ = JTF−T is the Piola–Kirchhoff stress tensor and ρκ is the mass density in the
reference configuration κ. The external body force b is usually given in a specific problem.

An initial boundary value problem in elastic bodies is a problem of finding solutions,
x = χ(X, t), of (10.5), or (10.6), with given initial conditions for the position χ(X, t0)
and the velocity ẋ(X, t0), as well as certain boundary conditions. The following three
types of boundary conditions are often considered.
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1) Traction boundary condition: The forces acting on the boundary are prescribed,

Tκ(X)nκ(X) = fκ(X), X ∈ ∂Bκ, (10.7)

where fκ denotes external surface forces exerted on the boundary and nκ denotes the
outward unit normal in the reference configuration.

2) Place boundary condition: The position of the boundary is prescribed,

χ(X) = x0(X), X ∈ ∂Bκ, (10.8)

where x0(X) is a given function.

3) Mixed boundary condition: The traction is prescribed on a part of the boundary, while
on the other part of the boundary the position is prescribed.

Boundary value problems for incompressible elastic bodies can be similarly formulated.
From (10.2) the constitutive equation for the stress tensor can be written as

T = −p1 + T (F ), detF = 1,

and the equation of motion (10.5) becomes

− grad p+ div T (F ) + ρ b = ρ ẍ, (10.9)

or, in referential description,

−Grad p+ Div Tκ(F ) + ρκb = ρκẍ, (10.10)

where p is the undeterminate hydrostatic pressure.

We shall consider some solutions, called controllable deformations. Such a solution is
specified by a certain deformation function satisfying the equation of motion such that
the body can be maintained in equilibrium by applying suitable surface traction on the
boundary alone. In other words, a controllable deformation is a solution of the equilibrium
equation,

div T (F ) + ρ b = 0, (10.11)

for compressible elastic bodies, or

− grad p+ div T (F ) + ρ b = 0, (10.12)

for incompressible elastic bodies. No additional boundary conditions are prescribed, in-
stead, the boundary tractions are to be determined from (10.7). In the case of incom-
pressible bodies, the pressure field must be suitably chosen so as to satisfy the equilibrium
equation.

In general, a controllable deformation for a certain elastic material may not be con-
trollable for a different elastic material, since the equilibrium equation depends on the
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constitutive equation. If a deformation function is controllable for a certain type of elastic
materials, it will be called a universal solution of such materials. It has been shown by
Ericksen that homogeneous deformations are the only class of universal solutions for com-
pressible isotropic elastic bodies. However, being allowed to choose a suitable pressure
field in order to satisfy the equilibrium equation gives an additional freedom for possi-
ble solutions in the case of incompressible bodies. And indeed, there are several other
well-known classes of universal solutions for incompressible isotropic elastic bodies. The
search for universal solutions is known as “Ericksen’s problem” in the literature. We shall
consider some of these solutions in the succeeding sections.

10.2 Simple Shear

We consider an isotropic elastic body subject to a deformation of simple shear given by

x = X + κY, y = Y, z = Z,

where the amount of shear κ is a constant, we have the left Cauchy–Green tensor

[B〈ij〉] =

 1 + κ2 κ 0
κ 1 0
0 0 1

 , (10.13)

and its inverse

[B〈ij〉]
−1 =

 1 −κ 0
−κ 1 + κ2 0
0 0 1

 ,
so that its principal invariants are given by

IB = 3 + κ2, IIB = 3 + κ2, IIIB = 1.

It is easy to verify that the simple shear deformation satisfies the equilibrium equation
with no body force. The stress tensor is a constant tensor given by

[T〈ij〉] =(s0 + s1 + s2)

 1 0 0
0 1 0
0 0 1

+ (s1 − s2)κ

 0 1 0
1 0 0
0 0 0


+ s1κ

2

 1 0 0
0 0 0
0 0 0

+ s2κ
2

 0 0 0
0 1 0
0 0 0

 ,
(10.14)

where si = si(3+κ2, 3+κ2, 1) = si(κ
2). Note that simple shear is a volume-preserving de-

formation and the above results are also valid for an incompressible elastic body, provided
that the material parameter s0 is replaced by −p, the undeterminate pressure.
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The shear stress T〈xy〉 on the surface, Y = Y0, has the value

T〈xy〉 = µ̂κ, (10.15)

where
µ̂(κ2) = s1(κ2)− s2(κ2)

is called the shear modulus of the material. For a small κ, then

µ̂(κ2) = µ+ o(κ2),

where µ = µ̂(0) is the classical shear modulus. Therefore, any discrepancy from the
classical result for the shear stress is at least of third-order in the amount of shear κ.

For simple shear, from (10.4) and (10.13) we have the following universal relation,

T〈xx〉 − T〈yy〉 = κT〈xy〉, (10.16)

which can be checked immediately from (10.14). If we denote the normal stress on the
slanted surface of the block, corresponding to the plane in the reference state X = X0,
by N (see Fig. 7), the universal relation (10.16) can be rewritten as

N = T〈yy〉 −
κ

1 + κ2
T〈xy〉. (10.17)

From this expression, it is clear that in order to effect a simple shear on a rectangular
block, besides shear stresses, normal stresses must also be applied on the surfaces of the
block, since from the above relation the two normal stresses can not vanish simultaneously
or even be equal to each other unless there is no shear at all. Moreover, the normal stress
difference is a second-order effect in the amount of shear according to (10.15) and (10.17).
Therefore, the normal stress difference is more significant than the discrepancy in the
shear stress as an indication for the departure from the classical theory. The existence of
a normal stress difference is usually known as the Poynting effect or simply as the normal
stress effect.

10.3 Pure Shear

We have noticed that by applying shear stresses alone on the surface of a rectangular block,
the body will tend to contract or expand if normal stresses were not supplied properly.
To examine such changes quantitatively, we consider a deformation that consists of a
homogeneous stretch followed by a simple shear,

x = λ1X + κλ2Y, y = λ2Y, z = λ3Z.
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Figure 7: Simple shear

Since this is a homogeneous deformation, it is a controllable universal solution for an
elastic body. The deformation gradient relative to the Cartesian coordinate system is
given by

[F〈iα〉] =

λ1 κλ2 0
0 λ2 0
0 0 λ3

 . (10.18)

The left Cauchy–Green tensor is given by

[B〈ij〉] =

 λ2
1 + κ2λ2

2 κλ2
2 0

κλ2
2 λ2

2 0

0 0 λ2
3

 , (10.19)

and its inverse

[(B−1)〈ij〉] =



1

λ2
1

− κ

λ2
1

0

− κ

λ2
1

1

λ2
2

+
κ2

λ2
1

0

0 0
1

λ2
3

 .

For isotropic elastic body, the stress tensor T〈ij〉 can be calculated from (10.1) for a
compressible body or from (10.2) for an incompressible body. In particular, the shear
stress on the surface, Y = Y0, is given by

T〈xy〉 = κ
(
s1λ

2
2 − s2

1

λ2
1

)
, (10.20)

where si = si(IB, IIB, IIIB). This holds for either compressible or incompressible (IIIB = 1)
bodies. Moreover, from (10.19), the universal relation (10.4) takes the following form,

T〈xx〉 − T〈yy〉 =
λ2

1 − λ2
2 + κ2λ2

2

κλ2
2

T〈xy〉. (10.21)
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Unlike the case of simple shear discussed in the previous section, for a fixed κ, it is
now possible to determine the three constants λ1, λ2, and λ3 in such a way that three
normal stresses vanish on the surface of the block. In the case of an incompressible body,
the three conditions for vanishing normal stresses can be used to determine λ1, λ2 and
the pressure p, while the condition of incompressibility, λ1λ2λ3 = 1, determines λ3.
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Figure 8: Pure shear

We consider a square block, with sides of unit length. From Fig. 8, we require the
block be free of normal stresses,

N1 = 0, N2 = T〈yy〉 = 0, T〈zz〉 = 0.

The normal stress N1 is given by

N1 = T〈xx〉 − 2κT〈xy〉 + κ2T〈yy〉,

which together with vanishing of normal stress implies

T〈xx〉 − 2κT〈xy〉 = 0.

The last condition combined with the relation (10.21) leads to

λ2
1 = (1 + κ2)λ2

2. (10.22)

It is interesting to point out that this relation is also a universal relation for elastic bodies
and it admits a very simple geometric interpretation, namely, OA = OB, as shown in
Fig. 8.

Furthermore, from (10.20) and (10.22), the shear stress τ is given by

τ = T〈xy〉 = κ(s1λ
2
2 − s2λ

−2
1 ), S1 = S2 = τ. (10.23)

Besides the vanishing of normal stresses, the shear stresses on the surfaces, X = X0 and
Y = Y0, are equal. Such a state of stress is called a pure shear.
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Thus we have seen that to effect a state of pure shear on a square block, it is only
necessary to apply equal shear stresses on the four surfaces. The amount of shear κ
and the stretches λ1 and λ2 are adjusted in such a way that the length of the four sides
remains the same. A square block becoming a rhombic block is also what one would
expect intuitively in a pure shear.

To determine the stretches for the amount of shear τ , explicit constitutive expressions
would be needed. As an example, we shall consider the Mooney–Rivlin material with
constant material parameters s1 and s2. In the case of two-dimensional deformation, so
that the thickness in x3-direction remains unchanged, i.e.,

λ3 = 1, and λ1λ2 = 1,

by incompressibility. It follows from (10.22) and (10.23) that

λ1 = (1− τ 2(s1 − s2)−2)−1/4. (10.24)

Note that according to the requirement, s1 > s2, the value of λ1 is greater than 1 so that
the side of the rhombus (losango) is greater than the side of original square.

10.4 bending of a rectangular block

We shall consider the case of bending a rectangular block into a circular section for an
incompressible isotropic elastic material.

This problem can be described by the following volume-preserving deformation:

r =
√

2aX + b, θ = cY, z = dZ, for acd = 1,

where (X, Y, Z) are the Cartesian coordinates for the initial configuration and (r, θ, z) are
the cylindrical coordinates for the deformed configuration of the body.

For this deformation, the deformation gradient is given by

[F i
α] =

 ∂r
∂X

∂r
∂Y

∂r
∂Z

∂θ
∂X

∂θ
∂Y

∂θ
∂Z

∂z
∂X

∂z
∂Y

∂z
∂Z

 =

 ar−1 0 0
0 c 0
0 0 d

 .
In terms of physical components, we have

[F〈iα〉] =

 ar−1 0 0
0 cr 0
0 0 d

 , [B〈ij〉] =

 a2r−2 0 0
0 c2r2 0
0 0 d2

 . (10.25)

Obviously, detF = detB = 1 in physical components, as required by incompressibility.
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This deformation belongs to a class of universal solutions for incompressible isotropic
elastic bodies given by the constitutive equations (10.2). In other words, this deformation
satisfies the equation of equilibrium (10.9) with no body force b and ẍ = 0,

grad p− div(s1B + s2B
−1) = 0. (10.26)

Since the Cauchy–Green tensor B is a function of r only, the equilibrium equation in the
deformed cylindrical coordinate can be written as (see Sec. 10.6)

∂T〈rr〉
∂r

+
1

r
(T〈rr〉 − T〈θθ〉) = 0,

∂p

∂θ
= 0,

∂p

∂z
= 0,

which imply that the pressure p = p(r), and

T〈rr〉 = −
∫

1

r
(T〈rr〉 − T〈θθ〉) dr. (10.27)
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Figure 9: Bending into a circular section

In order to integrate this equation explicitly, we shall consider Mooney–Rivlin material
model with constant s1, s2, and for simplicity, taking d = 1 so that the deformation

r =

√
2

c
X +

1

c2
, θ = cY, z = Z, (10.28)

is essentially two-dimensional without change of thickness, as shown in Fig 9. In this case,
(10.26)becomes

T〈rr〉 = −(s1 − s2)

∫
1

r

( 1

c2r2
− c2r2

)
dr.

84



Upon integration, we obtain

T〈rr〉 =
1

2
(s1 − s2)

( 1

c2r2
+ c2r2

)
+K,

where K is an integration constant.

Note that from (10.28), we have

c2r2 = 1 + 2cX.

If we impose a boundary condition that the inner surface of the circular block (X = 0) is
stress free, i.e.,

T〈rr〉|X=0 = (s1 − s2) +K = 0, (10.29)

which implies K = s2 − s1.

Finally, from (10.2), we obtain the exact solutions for the stresses and the pressure:

T〈rr〉 =
1

2
(s1 − s2)

(
c2r2 +

1

c2r2
− 2
)
,

T〈θθ〉 =
1

2
(s1 − s2)

(
3 c2r2 − 1

c2r2
− 2
)
,

p =
1

2
s1

( 1

c2r2
− c2r2 + 2

)
+

1

2
s2

(
3 c2r2 +

1

c2r2
− 2
)
.

In order to effect the deformation from a rectangular block into a circular block, besides
the condition (10.29), other proper boundary conditions must be applied.

10.5 Deformation of a cylindrical annulus

For inflation, torsion, and extension, the deformation functions, from reference coordinate
(R,Θ, Z) to deformed coordinate (r, θ, z) in cylindrical coordinates, given by

r =
√
A+BR2, θ = CΘ +DZ, z = EΘ + FZ,

with the condition B(CF−DE) = 1 for incompressibility, is a family of universal solutions
for any incompressible elastic bodies.

For the case with no torsion and no extension, we takeB = C = F = 1 andD = E = 0,
and the deformation functions become

r =
√
R2 + A, θ = Θ, z = Z. (10.30)

In this case, we have the deformation gradient

[F i
α] =

Rr−1 0 0
0 1 0
0 0 1

 .
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In the physical components, it becomes

[F〈iα〉] =

Rr−1 0 0
0 rR−1 0
0 0 1

 ,
and B = FF T is given by

[B〈ij〉] =


R2

r2
0 0

0
r2

R2
0

0 0 1

 =


r2 − A
r2

0 0

0
r2

r2 − A
0

0 0 1

 . (10.31)

The equilibrium equation, − div T = 0, in cylindrical coordinates for this case can be
written as

∂T〈rr〉
∂r

+
1

r
(T〈rr〉 − T〈θθ〉) = 0,

∂p

∂θ
= 0,

∂p

∂z
= 0.

(10.32)

Therefore the solutions for the stress T and the pressure p are functions of r only.

For incompressible isotropic elastic materials, T = −pI + s1B + s2B
−1, where s1 and

s2 are functions of (IB, IIB), from the above equation, we have

T〈rr〉 = −
∫

1

r
(T〈rr〉 − T〈θθ〉)dr

= −
∫

1

r

(
s1

(r2 − A
r2

− r2

r2 − A

)
+ s2

( r2

r2 − A
− r2 − A

r2

))
dr.

For Mooney–Rivlin material for which s1 and s2 are material constants, we can inte-
grate the above equation and obtain

T〈rr〉(r) =
1

2
(s1 − s2)

(
ln
r2 − A
r2

− A

r2

)
+K, (10.33)

where K is the integration constant.

On the other hand, since

T〈rr〉 = −p+ s1
r2 − A
r2

+ s2
r2

r2 − A
,

from (10.33), we obtain

p(r) = s1
r2 − A
r2

+ s2
r2

r2 − A
− 1

2
(s1 − s2)

(
ln
r2 − A
r2

− A

r2

)
−K. (10.34)
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Similarly, from

T〈θθ〉 = −p+ s1
r2

r2 − A
+ s2

r2 − A
r2

,

we obtain

T〈θθ〉(r) =
1

2
(s1 − s2)

(
ln
r2 − A
r2

+
2r2

r2 − A
− 2r2 − A

r2

)
+K. (10.35)

Summary of the problem

We consider the deformation function,

r =
√
R2 + A, θ = Θ, z = Z,

for reference region R0 ≤ R ≤ R1 and deformed region r0 ≤ r ≤ r1.

Equilibrium solution for the stress T = −pI+s1B+s2B
−1 of Mooney–Rivlin material

is given by

T〈rr〉(R) =
1

2
(s1 − s2)

(
ln

R2

R2 + A
− A

R2 + A

)
+K,

T〈θθ〉(R) =
1

2
(s1 − s2)

(
ln

R2

R2 + A
+

2(R2 + A)

R2
− 2R2 + A

R2 + A

)
+K,

p(R) = s1
R2

R2 + A
+ s2

R2 + A

R2
− 1

2
(s1 − s2)

(
ln

R2

R2 + A
− A

R2 + A

)
+K.

The solution contains two free parameters, namely, A and K, to be determined from
boundary conditions. One can prescribe the boundary conditions at the inner and outer
surfaces of the cylinder, for example,

p0 = −T〈rr〉(R0), p1 = −T〈rr〉(R1).

which lead to a system of two equations for the two constants A and K:

1

2
(s1 − s2)

(
ln

R2
0

R2
0 + A

− A

R2
0 + A

)
+K = −p0,

1

2
(s1 − s2)

(
ln

R2
1

R2
1 + A

− A

R2
1 + A

)
+K = −p1.

The system is difficult to solve analytically, but numerically, it can easily be solved.

10.6 Appendix: Divergence of a tensor field

The divergence in physical components of a symmetric tensor field T :
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a) Cartesian coordinate system (x, y, z):

(div T )〈x〉 =
∂T〈xx〉
∂x

+
∂T〈xy〉
∂y

+
∂T〈xz〉
∂z

,

(div T )〈y〉 =
∂T〈xy〉
∂x

+
∂T〈yy〉
∂y

+
∂T〈yz〉
∂z

,

(div T )〈z〉 =
∂T〈xz〉
∂x

+
∂T〈yz〉
∂y

+
∂T〈zz〉
∂z

.

b) Cylindrical coordinate system (r, θ, z):

(div T )〈r〉 =
∂T〈rr〉
∂r

+
1

r

∂T〈rθ〉
∂θ

+
∂T〈rz〉
∂z

+
T〈rr〉 − T〈θθ〉

r
,

(div T )〈θ〉 =
∂T〈rθ〉
∂r

+
1

r

∂T〈θθ〉
∂θ

+
∂T〈θz〉
∂z

+
2

r
T〈rθ〉,

(div T )〈z〉 =
∂T〈rz〉
∂r

+
1

r

∂T〈θz〉
∂θ

+
∂T〈zz〉
∂z

+
1

r
T〈rz〉.

c) Spherical coordinate system (r, θ, φ):

(div T )〈r〉 =
∂T〈rr〉
∂r

+
1

r

∂T〈rθ〉
∂θ

+
1

r sin θ

∂T〈rφ〉
∂φ

+
1

r

(
2T〈rr〉 − T〈θθ〉 − T〈φφ〉 + cot θ T〈rθ〉

)
,

(div T )〈θ〉 =
∂T〈rθ〉
∂r

+
1

r

∂T〈θθ〉
∂θ

+
1

r sin θ

∂T〈θφ〉
∂φ

+
1

r

(
3T〈rθ〉 + cot θ (T〈θθ〉 − T〈φφ〉)

)
,

(div T )〈φ〉 =
∂T〈rφ〉
∂r

+
1

r

∂T〈θφ〉
∂θ

+
1

r sin θ

∂T〈φφ〉
∂φ

+
1

r

(
3T〈rφ〉 + 2 cot θ T〈θφ〉

)
.
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11 Wave propagation in elastic bodies

We shall consider small amplitude waves, which are motions of small deformation in a
material body. It can be treated in a relatively simple classical approach of harmonic wave
propagation. The material body on which the wave propagates is generally deformed so
that the body is effectively anisotropic. To study small amplitude waves on a deformed
body, we shall first formulate a theory of small deformation on a deformed body.

11.1 Small deformations on a deformed body

To account for propagation of small amplitude waves into a prestressed body, we shall
formulate a theory of small deformation on a finitely deformed body. Although this is a
well-known problem in finite elasticity3, our approach will not be formulated in Eulerian
description nor in Lagrangian description as usual, rather, the problem can be elegantly
formulated in relative description (see Chapter 2), relative to the pre-deformed state of
the body as the reference configuration.

The relative description

Let κ0 be a reference configuration of the body B, and κt be its deformed configuration
at the present time t, Let

x = χ(X, t), X ∈ κ0(B),

and
F (X, t) = ∇X(χ(X, t)),

be the deformation and the deformation gradient from κ0 to κt.

Now, at some time τ , consider the deformed configuration κτ , and

ξ = χ(X, τ) := ξt(x, τ) ∈ κτ (B), x = χ(X, t) ∈ κt(B). (11.1)

ξt(x, τ) is called the relative motion with respect to the present configuration at time t,
and

Ft(x, τ) = ∇xξt(x, τ),

is called the relative deformation gradient. We also define the relative displacement vector
as

u(x, τ) = ξt(x, τ)− x, (11.2)

3 Green, A.E.; Rivlin R.S.; Shield, R.T.: General theory of small elastic deformations superposed on
finite deformations. Pro. Roy. Soc. London, Ser. A, 211, 128-154, (1952)
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and
H(x, τ) = ∇xu(x, τ) = Ft(x, τ)− I, (11.3)

is the relative displacement gradient at time τ with respect to the present configuration
κt (emphasize, not κ0), and I stands for the identity tensor.

Note that from (11.1),

∇xξt(x, τ) = ∇X(χ(X, τ))∇X(χ(X, t))−1 = F (X, τ)F (X, t)−1,

hence, by the use of (11.3) we have

H(x, τ) = F (X, τ)F (X, t)−1 − I,

or simply as
Ft(τ) = I +H(τ) and F (τ) = (I +H(τ))F (t). (11.4)

In these expressions and hereafter, we shall often denote a function F as F (t) to emphasize
its value at time t when its spatial variable is self-evident.

We can represent the deformation and deformation gradient schematically in the fol-
lowing diagram:

-

�
�

�
�	

@
@
@
@R

X ∈ κ0(B)

x ∈ κt(B) ξ ∈ κτ (B)
Ft(τ)

F (t) F (τ)

ξ = x+ u

Furthermore, from (11.1) and (11.2) (or from the above diagram), we have

χ(X, τ) = χ(X, t) + u(χ(X, t), τ). (11.5)

By taking the derivatives with respect to τ , we obtain the velocity and the acceleration
of the motion at time τ ,

ẋ(X, τ) =
∂u(x, τ)

∂τ
= u̇(x, τ), ẍ(X, τ) = ü(x, τ). (11.6)

Note that since x = χ(X, t) is independent of τ , in relative motion description, the partial
derivative with respect to τ keeping x fixed is nothing but the material time derivative.

The advantage of using relative Lagrangian formulation is that it enable us to linearize
constitutive equation relative to the present state and hence with a successive method of
Euler’s type, we can approximate the nonlinear constitutive functions for large deforma-
tions.

90



Linearized constitutive equations

Let κ0 be the preferred reference configuration of a viscoelastic body B, and let the Cauchy
stress T (X, t) be given by the constitutive equation in the configuration κ0,

T (X, t) = T (F (X, t)). (11.7)

For large deformations, the constitutive function T is generally a nonlinear function of
the deformation gradient F .

We shall regard the present configuration κt as an updated reference configuration, and
consider a small deformation relative to the present state κt(B) at time τ = t+∆t, for small
enough time interval ∆t. In other words, we shall assume that the relative displacement
gradient H is small, |H| � 1, so that we can linearize the constitutive equation (11.7) at
time τ relative to the updated reference configuration at time t, namely,

T (τ) = T (F (τ)) = T (F (t)) + ∂FT (F (t))[F (τ)− F (t)],

or by the use of (11.4),

T (τ) = T (t) + ∂FT (F (t))[H(τ)F (t)] + o(2),

where o(2) represents higher order terms in the small displacement gradient |H|.
The linearized constitutive equation can now be written as

T (τ) = T (t) + L(F (t))[H(τ)], (11.8)

where
L(F )[H] := ∂FT (F )[HF ], (11.9)

define the fourth order elasticity tensor L(F ) relative to the present configuration κt.

The above general definition of the elasticity for any constitutive class of elastic materi-
als T = T (F ), relative to the updated present configuration, will be explicitly determined
in the following sections for a particular class, namely a Mooney–Rivlin type materials.

Compressible and nearly incompressible bodies

For a elastic body, the constitutive equation (11.7) relative to the preferred reference
configuration κ0 can be written as

T = T (F ) = −p(F )I + T̃ (F ). (11.10)

However, for an incompressible body, the pressure p depends also on the boundary con-
ditions, and because it cannot be determined from the deformation of the body alone, it
is called an indeterminate pressure, which is an independent variable in addition to the
displacement vector variable for boundary value problems.
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For compressible bodies, we shall assume that the pressure depend on the deformation
gradient only through the determinant, or by the use of the mass balance, depend only
on the mass density,

p = p̂(detF ) = p(ρ), ρ =
ρ0

detF
,

where ρ0 is the mass density in the reference configuration κ0. We have

ρ(τ)− ρ(t) = ρ0(detF (τ)−1 − detF (t)−1) = ρ(t)(det(F (τ)−1F (t))− 1)

= ρ(t)(det(I +H(τ))−1 − 1) = −ρ(t) trH(τ) + o(2),

in which the relation (11.4) has been used.

Therefore, it follows that

p(τ)− p(t) =
(dp
dρ

)
t
(ρ(τ)− ρ(t)) + o(2) = −

(
ρ
dp

dρ

)
t

trH(τ) + o(2),

or
p(τ) = p(t)− β trH(τ) + o(2), (11.11)

where β := (ρ dp
dρ

)t is a material parameter evaluated at the present time t.

From (11.10) and (11.4), let

C(F (t))[H(τ)] := ∂F T̃ (F (t))[F (τ)− F (t)] = ∂F T̃ (F (t))[H(τ)F (t)],

then from (11.9)1, the elasticity tensor becomes

L(F )[H] = β(trH)I + C(F )[H]. (11.12)

We call a body nearly incompressible if its density is nearly insensitive to the change
of pressure. Therefore, if we regard the density as a function of pressure, ρ = ρ(p),
then its derivative with respect to the pressure is nearly zero. In other words, for nearly
incompressible bodies, we shall assume that β is a material parameter much greater than 1,

β � 1. (11.13)

Note that for compressible or nearly incompressible body, the elasticity tensor does
not contain the pressure explicitly. It is only a function of the deformation gradient and
the material parameter β at the present time t.

Mooney–Rivlin material

For Mooney–Rivlin material,

T = T (F ) = −p(F )I + s1B + s2B
−1, (11.14)
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The material parameters s1 and s2 are assumed to be constants. After taking the gradients
of T̃ (F ) with respect to F at (F, 0), from (11.8), we have

T (τ) = T (t) + L(F (t))[H(τ)], (11.15)

where

L(F )[H] = β(trH)I + s1(HB +BHT )− s2(B−1H +HTB−1). (11.16)

11.2 The equation of motion in relative description

Let κ be a reference configuration of the body B, then in the Lagrangian formulation, we
can write the equation of motion at time τ as

ρκ(X)ẍ(X, τ)−Div Tκ(X, τ) = ρκ(X)g(X, τ), X ∈ κ(B),

where Tκ(τ) is the Piola–Kirchhoff stress tensor at time τ relative to the reference config-
uration κ, and g(τ) is the body force. The operator (Div) stands for the divergence with
respect to the coordinate system (X) in κ(B), and the overhead dot (·) is the material
time derivative with respect to time variable τ .

Instead of the fixed reference configuration κ, we can rewrite the equation relative to
the configuration κt at the present time t as the reference configuration. By a simple
substitution, it becomes

ρ(x, t)ẍ(x, τ)− div Tt(x, τ) = ρ(x, t)g(x, τ), x ∈ κt(B),

where Tt(τ) = Tκt(τ) is the Piola–Kirchhoff stress tensor at time τ relative to the present
configuration κt. The operator (div) stands for the divergence with respect to the coor-
dinate system (x) in the present configuration.

This is the equation of motion in the relative description. We call this a relative
Lagrangian formulation in contrast to the usual (total) Lagrangian and Eulerian formu-
lations.

The (first) Piola-Kirchhoff stress tensor at time τ relative to the present configuration
at time t, Tt(τ), is given by

Tt(τ) := detFt(τ)T (τ)Ft(τ)−T = det(I +H)T (τ)(I +H)−T

= det(I +H)(T (t) + L(F )[H])(I +H)−T

= (I + trH)(T (t) + L(F )[H])(I −HT ) + o(2)

= T (t) + (trH)T (t)− T (t)HT + L(F )[H] + o(2).

We can write the linearized Piola-Kirchhoff stress as

Tt(τ) = T (t) + (trH(τ))T (t)− T (t)H(τ)T + L(F (t))[H(τ)].
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Note that when τ → t, H → 0, and hence Tt(τ) → T (t), therefore, the Piola-Kirchhoff
stress, becomes the Cauchy stress at the present time t.

We can also write
Tt(τ) = T (t) +K(F (t), T (t))[H(τ)], (11.17)

where the Piola-Kirchhoff elasticity tensor is defined as

K(F, T )[H] = (trH)T − THT + L(F )[H].

For Mooney–Rivlin materials, from (11.16), we have

K(F, T )[H] = (trH)T − THT + β(trH)I

+ s1(HB +BHT )− s2(B−1H +HTB−1).
(11.18)

Linearized equation of motion

We shall assume that at the present time t, the deformation gradient F with respect to
the preferred reference configuration κ0 and the Cauchy stress T are known, and that
τ = t + ∆t with small enough ∆t. Then from (11.17),The equation of motion can be
written as

ρ(t)ü(τ)− div
(
K(F (t), T (t))[∇u(τ)]

)
= ρ(t)g(τ) + div T (t), (11.19)

which is a linear partial differential equation for the relative displacement vector u(x, τ).

If we further assume that the body is in equilibrium at time t, i.e.,

− div T (t) = ρ(t)g(t),

then the equation becomes

ρ(t)ü(τ)− div
(
K(F (t), T (t))[∇u(τ)]

)
= ρ(t)(g(τ)− g(t)).

Note that the right-hand side is the incremental body force, which vanishes if the body
force is time-independent. In this case, we have

ρ(t)ü(τ)− div
(
K(F (t), T (t))[∇u(τ)]

)
= 0. (11.20)

This is the same partial differential equation of linear elasticity, except that the elasticity
tensor is not constant, and rather, it depends on the deformed state of the reference body.
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Remark: On problem of large deformation

The above formulation of linearized problem in relative description can be successively
applied by updating the reference state at each time step, so that the accumulation of
successive small deformation can be used as an approximation for a problem of large finite
deformation. This is referred to as Successive Linear Approximation and has been used
for the solutions in numerical schemes in some problems in finite elasticity discussed in
the previous chapter4.

11.3 Plane harmonic waves in a deformed elastic body

We consider a plane harmonic wave defined as

u(x, τ) = ŝa ekin·x cos(ωτ − krn · x+ φ),

where ŝ is the (scalar) amplitude, a is the unit amplitude vector, ω is the frequency, the
unit vector n is the wave normal, ki is called the attenuation factor, kr is called the wave
number, and φ is a phase constant. The phase (ωτ − krn · x+ φ) is constant on a plane
perpendicular to the wave normal vector n and ω/kr is the phase speed.

It is more convenient to express a harmonic wave in the complex form (i =
√
−1 ),

u(x, τ) = Re(sa ei(ωτ−kn·x)),

where we have defined the complex amplitude s and the complex wave number k by

s = ŝ eiφ, k = kr + iki,

Note that physically, we are only interested in the real part of the expression, however,
for mathematical convenience, we shall write

u(x, τ) = sa ei(ωτ−kn·x), (11.21)

and hence, we have the phase speed U ,

U =
ω

Re(k)
.

Propagation condition

We consider harmonic wave propagations in a pre-deformed elastic body. In the relative
Lagrangian formulation, from (11.20) we can write the equation of motion in component
form,

ρ üi =
∂

∂xj

(
Kijkl

∂uk
∂xl

)
, (11.22)

4I-Shih Liu, Successive linear approximation for boundary value problems of nonlinear elasticity in
relative-descriptional formulation, International Journal of Engineering Science, 49 (2011) 635-645.
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where u(x, τ) is the relative displacement vector from the reference state at x ∈ κt(B)
and K(F (x, t), T (x, t)) is the elasticity tensor defined in (11.17). Of course, the values of
(F (x, t), T (x, t)) are assumed to be known at the reference time t, and furthermore, for
simplicity, we shall assume that (F (x, t), T (x, t)) are homogeneous in a small neighbor-
hood of x ∈ κt(B) so that K(F, T ) is constant at (x, t).

For a solution of harmonic wave, from (11.21), the relative displacement vector can be
represented as

ui = s ai e
i(ωτ−knjxj),

where we have represent the amplitude vector ũ = sa, for scalar amplitude s and unit
amplitude vector a.

Upon substitution into (11.22), it leads to

ρ
(ω
k

)2

ai = Kijkl aknlnj = Qik ak,

where the acoustic tensor Q is defined as

Qik = Kijkl njnl. (11.23)

The above relation can be written in direct notations as

ρ
(ω
k

)2

a = K[a⊗ n]n = Q(n)a. (11.24)

For a given propagation direction n, the amplitude vector a must be a real eigenvector
of Q(n) and the eigenvalue can be obtained from the relation,

ρ
(ω
k

)2

= a ·Q(n)a = a ·K[a⊗ n]n. (11.25)

Note that if the right-hand side of (11.25) is non-negative, then the wave number k is real
and ω/k is the phase speed, denoted by Una, for the wave propagating in the direction n
with amplitude in the direction a without attenuation (Im k = 0). If a = n, the wave is
called longitudinal, and if a · n = 0, the wave is called transversal.

The acoustic tensor Q(n) defined by (11.23) is real, but, in general, it is not symmetric.
Therefore, there are no guarantee that there are three eigenvectors, and even there are,
they may not be orthogonal. However, in the three-dimensional (real) vector space, there
is at least one (real) eigenvalue with the corresponding eigenvector.

If the propagation direction vector n is an eigenvector then from (11.24), we have

ρ
(ω
k

)2

n = K[n⊗ n]n,

and provided that

ρ
(ω
k

)2

= n ·K[n⊗ n]n, ρU 2
nn = Kijkl ninjnknl,
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is non-negative, it is a longitudinal wave with wave speed Unn.

Note that to guarantee the existence of longitudinal waves, from (11.25) one can
postulate the following requirement:

Kijkl vi uj vk ul > 0, for any v 6= 0, u 6= 0. (11.26)

This is usually called the strong ellipticity condition. The validity of this requirement
depends on constitutive parameters of the material model as well as the reference state
of deformation.

11.4 Mooney–Rivlin elastic materials

The propagation condition (11.24) is valid for (Piola–Kirchhoff) elasticity tensorK defined
in (11.18) for any elastic material T = T (F ). In particular, for Mooney–Rivlin materials,

T = T (F ) = −p(F )I + s1B + s2B
−1,

from (11.18), we have

Kijkl = Tijδkl − Tilδjk + β δijδkl + s1(δikBjl +Bilδjk)− s2(B−1
ik δjl + δilB

−1
jk ),

and from Qik = Kijkl njnl, we have

Qik = β nink + s1(δikBjlnjnl +Bilnlnk)− s2(B−1
ik + niB

−1
kj nj),

or in direct notation, the acoustic tensor can be written as

Q(n) = β n⊗ n+ s1

(
(n ·Bn)I +Bn⊗ n

)
− s2

(
B−1 + n⊗B−1n

)
. (11.27)

Note that from this expression, the acoustic tensor Q(n) is obviously not symmetric unless
the direction n is an eigenvector of the Cauchy–Green deformation tensor B.

We can easily obtain the propagation speed from (11.25) and (11.27), provided that
the wave with amplitude a in the direction n exists,

ρU 2
na = β(a · n)2 + s1

(
n ·Bn+ (a ·Bn)(a · n)

)
− s2

(
a ·B−1a+ (n ·B−1a)(a · n)

)
.

(11.28)

In particular, for a = n, the longitudinal wave speed is given by

ρU 2
nn = β + 2

(
s1(n ·Bn)− s2(n ·B−1n)

)
. (11.29)

For a · n = 0, the transversal wave speed is given by

ρU 2
na = s1(n ·Bn)− s2(a ·B−1a). (11.30)

97



In general, for an arbitrary propagation direction n, the eigenvector of the acoustic
tensor Q(n), that is, the amplitude vector a may not be parallel or perpendicular to n,
therefore, it is an oblique wave with wave velocity given by (11.28).

We shall consider the following special cases:

1. Principal waves

That is, both the propagation direction n and the amplitude vector a are in the
principal directions of the deformation tensor B, let

B = b1 e1 ⊗ e1 + b2 e2 ⊗ e2 + b3 e3 ⊗ e3, n = e1.

In this case, the acoustic tensosr Q(e1) is also diagonal, and hence, the possible
amplitude vectors a are in the principal directions. Now take

a = e1, a = e2, a = e3,

respectively, we have one longitudinal and two transversal waves,

U11 =

√
1

ρ

(
β + 2(s1b1 −

s2

b1

)
)
,

U12 =

√
1

ρ

(
s1b1 −

s2

b2

)
,

U13 =

√
1

ρ

(
s1b1 −

s2

b3

)
.

(11.31)

In general, there are nine principle waves for n = e1, e2, e3, three longitudinal and
six transversal, propagating into a deformed body. Therefore, when the field of the
deformation is known in the body, one can determined the fields of local wave speed
from (11.31) in the principal directions over the body.

2. Small deformation from natural state

For small deformation from the natural state, B = I + · · ·, b1 = b2 = b3 = 1, the
results (11.31) reduce to

U11 ≈

√
β + 2(s1 − s2)

ρ
, U12 = U13 ≈

√
s1 − s2

ρ
.

By comparison with the well-known results of linear elasticity, we can identity the
Lamé constants with the material parameters of Mooney–Rivlin materials,

λ = β, µ = s1 − s2, (11.32)

in the isotropic natural state.
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11.5 Principal acceleation waves of finite amplitude

The results obtained in (11.31) for small amplitude waves can be confirmed from that
of finite amplitude acceleration waves treated by Wang & Truesdell5 for isotropic elastic
bodies. Their results will be cited below.

For an isotropic elastic body, T = H(B), both the Cauchy stress T and the strain
tensor B have the same prinicipal directions (e1, e2, e3),

T = t1e1 ⊗ e1 + t2e2 ⊗ e2 + t3e3 ⊗ e3,

B = b1e1 ⊗ e1 + b2e2 ⊗ e2 + b3e3 ⊗ e3.

Let the propagation direction n = e1, then there are one longitudinal and two transversal
principal wave velocities given by the following formulas in terms of principle stresses and
strains:

s = s e1, U2
11 =

2b1

ρ

∂t1
∂b1

,

s = s e2, U2
12 =

b1

ρ

t1 − t2
b1 − b2

, (11.33)

s = s e3, U2
13 =

b1

ρ

t1 − t3
b1 − b3

.

Note that no explicit constitutive relation is needed in the derivation of the formulas
of the principal wave speed (11.33), which is valid for any isotropic elastic material model
T = H(B).

Linear elastic materials

For infinitesimal deformation from a natural state, let E be the linear strain tensor, then
we have the Cauchy–Green strain tensor

B = I + 2E + o(2), E = ∇u+∇uT ,
where u = x −X is the displacement gradient and o(2) denotes the higher order terms
in |∇u|. The constitutive equation for small deformation from a natural state is given by
the Hook’s law,

T = H(B) = λ(trE)I + 2µE

=
1

2
λ(trB − 3)I + µ(B − I).

In terms of principal basis,

B =

 b1

b2

b3

 =

 1 + 2E11 + · · ·
1 + 2E22 + · · ·

1 + 2E33 + · · ·

 .
5Wang, C.-C., Truesdell, C.; Introduction to Rational Elasticity, Noordhof International Publishing,

1973
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Therefore, we have

t1 =
1

2
λ(b1 + b2 + b3 − 3) + µ(b1 − 1) + · · · ,

t2 =
1

2
λ(b1 + b2 + b3 − 3) + µ(b2 − 1) + · · · ,

t3 =
1

2
λ(b1 + b2 + b3 − 3) + µ(b3 − 1) + · · · ,

and from (11.33), we obtain the speed of the principal waves propagating in the direc-
tion e1,

U2
11 =

2b1

ρ

∂t1
∂b1

= b1
λ+ 2µ

ρ
≈ λ+ 2µ

ρ
,

U2
12 =

b1

ρ

t1 − t2
b1 − b2

= b1
µ

ρ
≈ µ

ρ
,

U2
13 =

b1

ρ

t1 − t3
b1 − b3

= b1
µ

ρ
≈ µ

ρ
.

(11.34)

Therefore, we have the well-known results that, there are only two wave speeds:√
(λ+ 2µ)/ρ for the longitudinal wave and

√
µ/ρ for the transversal (shear) wave in

isotropic linear elastic bodies.

Mooney–Rivlin elastic material

We consider the Mooney–Rivlin material model of constitutive equation for an isotropic
elastic body,

T = H(B) = −p(ρ)I + s1B + s2B
−1, ρ =

ρκ√
detB

,

where s1 and s2 are material constants.

In principal basis,

t1 = −p(ρ) + s1b1 + s2b
−1
1 ,

t2 = −p(ρ) + s1b2 + s2b
−1
2 ,

t3 = −p(ρ) + s1b3 + s2b
−1
3 ,

ρ =
ρκ√
b1b2b3

,

and
∂p

∂b1

=
dp

dρ

∂ρ

∂b1

= −1

2
ρ
dp

dρ

1

b1

= −1

2

β

b1

,

where the material parameter β(ρ) is defined as

β = ρ
dp

dρ
.
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From (11.33), we obtain the wave speed of the principal waves propagating in the
direction e1,

U2
11 =

2b1

ρ

∂t1
∂b1

=
1

ρ

(
β + 2(s1b1 −

s2

b1

)
)
,

U2
12 =

b1

ρ

t1 − t2
b1 − b2

=
1

ρ

(
s1b1 −

s2

b2

)
,

U2
13 =

b1

ρ

t1 − t3
b1 − b3

=
1

ρ

(
s1b1 −

s2

b3

)
,

(11.35)

which agree with the results (11.31) for small amplitude waves.
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12 Mixture theory of porous media

The theories of mixtures in the framework of continuum mechanics have been developed
throughout the sixties and seventies of the last century. Here we shall briefly review some
essential features for the governing balance equations and the formulation of constitutive
theories of mixtures of different material constituents.

12.1 Theories of mixtures

We consider a mixture of N constituents, all of which are supposed to be able to occupy
the same region of space simultaneously. Let Bα denote the αth constituent and κα be its
reference configuration and denote Bα = κα(Bα). The motion of Bα is a smooth mapping,

χ
α : Bα × IR→ IE, x = χ

α(Xα, t), Xα ∈ Bα,

for each constituent α = 1, · · · , N . We denote the mixture body at the instant t as

Bt = χ
α(Bα, t) ⊂ IE,

valid for each constituent α. The mapping χα(t) : Bα → Bt is smooth and bijective.

Schematically, for α = {s, f} (stand for solid and fluid constituents), the motion of the
constituents can be depicted in the following diagram:
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Bt = χ
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���Pqvf
vs

Figure 10: At any instant t, for any x ∈ Bt, there exist constituent-points, Xs ∈ Bs and
X f ∈ Bf , occupied the same position instantaneously with different constituent-velocities
individually.

It states that at any instant t, for any spatial position x ∈ Bt, there is a material point
Xα ∈ Bα in each constituent, at its reference position Xα = κα(Xα), that in their motions
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x = χ
α(Xα, t) occupy simultaneously the same spatial position in the Euclidean space

IE. — This is the basic assumption that one can regard a mixture body as a continuous
medium of multicomponent body.

The velocity and the deformation gradient of each constituent are defined as

vα =
∂

∂t
χ
α(Xα, t), Fα = ∇XXXα

χ
α(Xα, t).

We introduce the following quantities for the constituent α ∈ {1, · · · , N}:

ρα mass density of constituent α.
vα velocity of constituent α.
Tα stress tensor of constituent α.
bα external body force on constituent α.
εα internal energy density of constituent α.
qα energy flux of constituent α.
rα external energy supply of constituent α.
ηα entropy density of constituent α.
Φα entropy flux of constituent α.
sα external entropy supply of constituent α.
τα mass production of constituent α.
mα interaction force on constituent α.
Mα interaction moment of momentum on constituent α.
lα energy production of constituent α.
σα entropy production of constituent α.

Balance laws of each constituent

Following the pioneering work of Truesdell, the basic laws of a mixture are given by
the following balance equations for mass, linear momentum, moment of momentum, and
energy for each constituent:

∂ρα
∂t

+ div(ραvα) = τα,

∂ραvα
∂t

+ div(ραvα ⊗ vα − Tα)− ραbα = mα,

Tα − T Tα = Mα,

∂

∂t

(
ραεα + 1

2
ραv

2
α

)
+ div

((
ραεα + 1

2
ραv

2
α

)
vα + qα − T Tα vα

)
− ραrα − ραbα · vα = lα,

(12.1)

If the mixture reduces to a single constituent, the right hand side of the above equations
are zero, and we recover the balance laws for a single body. The terms on the right hand
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side thus represent the physical transfers among different constituents, such as chemical
reactions, interaction forces and energy transfer. In a mixture as a whole, we assume that
such physical transfers are solely due to exchanges among constituents. Therefore, we
postulate that the mixture as a whole should behave like a single body. This is expressed
by the following relations:∑

α

τα = 0,
∑
α

mα = 0,
∑
α

Mα = 0,
∑
α

lα = 0. (12.2)

Balance laws of the mixture

The motion of a mixture as a whole will be assumed to be governed by the same equa-
tions of balance as a single body, by summing up the balance equations (12.1) over all
constituents α ∈ {1, · · · , N},∑

α

{∂ρα
∂t

+ div(ραvα)
}

=
∑
α

τα,∑
α

{∂ραvα
∂t

+ div(ραvα ⊗ vα − Tα)− ραbα
}

=
∑
α

mα,∑
α

{
Tα − T Tα

}
=
∑
α

Mα,∑
α

{ ∂
∂t

(
ραεα + 1

2
ραv

2
α

)
+ div

(
· · ·
)
− ραrα − ραbα · vα

}
=
∑
α

lα.

(12.3)

By the use of the relations (12.2) and the following definition of the corresponding quan-
tities for the mixture,

ρ =
∑
α

ρα,

v =
∑
α

ρα
ρ
vα,

T =
∑
α

(Tα − ραuα ⊗ uα),

b =
∑
α

ρα
ρ
bα,

(12.4)

and
ε =

∑
α

ρα
ρ

(εα + 1
2
u2
α),

q =
∑
α

(
qα + ρα(εα + 1

2
u2
α)uα − T Tα uα

)
,

r =
∑
α

ρα
ρ

(rα + bα · uα),

(12.5)
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the equations (12.3) reduces to the usual balance equations of mass, linear momentum,
and energy for the mixture as a single body,

∂ρ

∂t
+ div(ρv) = 0,

∂ρv

∂t
+ div(ρv ⊗ v − T ) = ρb,

∂

∂t
(ρε+ 1

2
ρv2) + div

(
(ρε+ 1

2
ρv2)v + q − T Tv

)
= ρr + ρb · v.

(12.6)

The energy equation can also be written as,

∂ρε

∂t
+ div(ρεv + q)− tr(T gradv) = ρr. (12.7)

Note that in the relation (12.4) and (12.5), we have introduced the diffusive velocity
of constituent α relative to the mixture,

uα = vα − v,

which by the use of (12.4)2, satisfies the identity,∑
α

ραuα = 0. (12.8)

Also note that
∑
Mα = 0 implies the symmetry of

∑
Tα as well as the total stress T ,

while the partial stress Tα is not symmetric in general.

The entropy inequality

The balance of entropy of constituent α can be written as

∂ραηα
∂t

+ div(ραηαvα +Φα)− ραsα = σα.

Since entropy is not a conservative quantity, we shall allow the partial production of
entropy of a constituent be of any amount provided that the total production of entropy
for the mixture be non-negative, ∑

α

σα ≥ 0. (12.9)

By summing up the equations of all constituents α ∈ {1, · · · , N} and introducing the
corresponding quantities for the mixture,

η =
∑
α

ρα
ρ
ηα,

Φ =
∑
α

(Φα + ραηαuα),

s =
∑
α

ρα
ρ
sα,

(12.10)
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we obtain the usual entropy inequality for the mixture as a single body,

∂ρη

∂t
+ div(ρηv +Φ)− ρs ≥ 0. (12.11)

Note that we do not postulate a similar entropy inequality for individual constituent. The
partial entropy production could be negative provided that the total production of the
mixture is non-negative, otherwise it will lead to very restrictive physical results.

The use of the general entropy inequality (12.11) for the exploitation of its restrictions
on constitutive models is often quite sophisticate and could be rather tedious. In appli-
cation, assumption for the specific form of the entropy flux and entropy supply for the
constituents is usually adopted, namely,

Φα =
1

θα
qα, sα =

1

θα
rα, (12.12)

where θα is the temperature of the constituent α. Under this assumption, from (12.10),
we have

Φ =
∑
α

(qα
θα

+ ραηαuα

)
,

s =
∑
α

ρα
ρ

rα
θα
.

For further discussions, we shall assume that energy exchange among constituents is quick
enough relative to characteristic observation time, so that all the constituents have the
same common temperature, then we have

Φ =
1

θ

∑
α

(
qα + θραηαuα

)
,

s =
1

θ

∑
α

ρα
ρ
rα.

(12.13)

Even though we have adopted the Clausius–Duhem assumptions (12.12) for each con-
stituent, for the mixture as a single body, from (12.13) and (12.5) such assumptions are
not valid in general. In other words, the usual Clausius–Duhem inequality cannot be
adopted in theories of mixtures. Indeed, we can rewrite the relations (12.13) as

Φ =
1

θ

(
q −

∑
α

ρα(Kα + 1
2
u2
αI)uα

)
,

s =
1

θ

(
r −

∑
α

ρα
ρ
uα · bα

)
,

(12.14)

where

Kα = ψαI −
T Tα
ρα

, ψα = εα − θηα, (12.15)
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are the chemical potential tensor and the free energy of constituent α respectively. For
the free energy of the mixture we define

ψ =
∑
α

ρα
ρ
ψα. (12.16)

Remark. It has been shown that the assumptions (12.12) are appropriate (but not
necessarily general enough) to account for the behavior of a mixture within the framework
of continuum mechanics. On the other hand, the very expressions in (12.14) show that
the Clausius–Duhem assumptions Φ = q/θ and s = r/θ may not be appropriate for
thermodynamic considerations of material bodies in general.

Jump conditions at semi-permeable surface

Let S be a surface within the mixture and [A] be the jump of a quantity A across S,
defined by

[A] = A+ − A−.

We assume that the one-side limits A+ and A− exist and the jump is smooth on S. Such a
surface is called a singular surface. Let u∗ and n denote the velocity and the unit normal
of S respectively.

In addition to the balance laws (12.6) and (12.11) at a regular point where relevant
fields are continuous, at a singular point, i.e., a point on S, the balance laws take the
form of the following jump conditions of mass, momentum, energy and entropy:

[ ρ(v − u∗)] · n = 0,

[ ρv ⊗ (v − u∗)− T ]n = 0,

[ q − Tv + ρ(ε+ 1
2
v2)(v − u∗) ] · n = 0,

[Φ+ ρη(v − u∗)] · n ≥ 0.

(12.17)

A singular surface will be called ideal, if across it the temperature is continuous,
[θ] = 0. We assume further that across an ideal singular surface, the entropy jump is null,

[Φ+ ρη(v − u∗)] · n = 0, (12.18)

and the entropy flux Φ is given by the relation (12.14)1.

The diffusive velocity of constituent α relative to the surface S is defined as

Vα = vα − u∗.

If Vα = 0, we say that S is not permeable to the constituent α, i.e., the constituent does
not go across the surface. A singular surface which is not permeable to all constituents
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except the constituent ν is called a semi-permeable surface with respect to the constituent
ν, or simply a ν–permeable surface. We have the following result: 6:

Theorem. Let S be an ideal ν–permeable surface, then by the use of the jump conditions
(12.17)1,2 and (12.18), the energy jump condition (12.17)3 becomes

[(Kν + 1
2
V 2
ν I)ρνVν ] · n = 0, (12.19)

where Kν is the chemical potential tensor of the constituent ν.

Proof: Note that at a ν−permeable surface, from (12.17), we have

[ρνVν ] · n = 0,

[T ]n = [v ⊗ ρνVν ]n,
[q − Tv] · n = −[(ε+ 1

2
v2)ρνVν ] · n.

(12.20)

We shall work on the left hand side of the energy jump condition (12.20)3. First, from
(12.18) and (12.14)1, we have

[q] · n = [−θη ρνVν ] · n+
∑

[(Kα + 1
2
u2
α I)ραuα] · n. (12.21)

With uα = (vα − u∗)−
∑ ρβ

ρ
(vβ − u∗) and the relations (12.15) and (12.16), the second

term on the right hand side becomes∑
[(Kα + 1

2
u2
α I)ραuα] · n = [(Kν + 1

2
u2
ν I)ρνVν ] · n−

∑
[
ρα
ρ

(Kα + 1
2
u2
α I)ρνVν ] · n

= [(Kν + 1
2
u2
ν I)ρνVν ] · n+ [

1

ρ
(TI − ρψI +

∑
1
2
u2
α I)ρνVν ] · n.

Substituting this into (12.21), by the use of (12.15) and (12.5)1, we have

[q] · n = [(Kν +
TI
ρ
− εI + 1

2
u2
ν I)ρνVν ] · n. (12.22)

Now, for the second term on the left hand side of (12.20)3, from (12.4)3, we have

[Tv] · n = [TIv] · n−
∑

[(ραuα ⊗ uα)v] · n,

where TI =
∑
Tα is a symmetric tensor. With v = v −u∗ +u∗ = 1

ρ

∑
ρβ(vβ −u∗) +u∗,

it becomes

[Tv] · n = [
TI
ρ
ρνVν ] · n+ [TIu

∗] · n−
∑

[(uα · v)ραuα] · n

= [
TI
ρ
ρνVν ] · n+ [Tu∗] · n+

∑
[(ραuα ⊗ uα)u∗] · n−

∑
[(uα · v)ραuα] · n,

6I-Shih Liu, On chemical potential and incompressible porous media, Journal de Mecanique 19, 327-342
(1980).
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and by the use of (12.20)2 and uα = (vα − u∗)− (v − u∗), we have

[Tv] · n = [
TI
ρ
ρνVν ] · n+ [((u∗ · v) + (uν · u∗)− (uν · v))ρνVν ] · n. (12.23)

Substituting (12.22) and (12.23) into (12.20)3, we obtain

[(Kν + (1
2
u2
ν + 1

2
v2 − (u∗ · v)− (uν · u∗) + (uν · v))I)ρνVν ] · n = 0.

By summing [1
2
u∗2ρνVν ] · n, which is zero by (12.20)1, to the above equation, we obtain

[(Kν + 1
2
(uν + v − u∗)2I)ρνVν ] · n = 0,

that proves the theorem. tu

12.2 Mixture of elastic materials

We consider a non-reacting mixture of elastic materials characterized by the constitutive
equation of the form:

f = F(θ, grad θ, Fα, gradFα,vα), (12.24)

where θ is the temperature, Fα is the deformation gradient of the constituent α relative
to a reference configuration, and

f = {Tα, ε, q,mα}

are the constitutive quantities for the basic field variables {ρα,vα, θ} with the following
governing equations:

∂ρα
∂t

+ div(ραvα) = 0,

∂ραvα
∂t

+ div(ραvα ⊗ vα − Tα)− ραbα = mα,

∂ρε

∂t
+ div(ρεv + q)− tr(T gradv) = ρr.

(12.25)

Thermodynamic considerations of such a mixture theory has been considered by Bowen7

in which consequences of the entropy principle have been obtained based on the entropy
inequality of the form:

∂ρη

∂t
+ div(ρηv +Φ)− ρs ≥ 0, (12.26)

7 Bowen, R.M.: The theory of Mixtures in Continuum Mechanics, Edited by A.C. Eringen, Vol. III,
Academic Press (1976). See also Truesdell, C.: Rational Thermodynamics, Second Edition, Springer-
Verlag, New York Berlin (1984), Appendix 5A.
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where for the mixture under consideration, the entropy flux and the entropy supply density
are given by the relation (12.14),

Φ =
1

θ

(
q −

∑
α

(ρα(ψα + 1
2
u2
α)I − T Tα )uα

)
,

s =
1

θ

(
r − 1

ρ

∑
α

ραuα·bα
)
,

(12.27)

where ψα is the free energy density of the constituent α.

Note that since only a common temperature is considered for all constituents, only
the energy equation of the mixture, instead of the partial energy equations (12.1)4 of
all constituents, is needed in the system of governing equations (12.25). Moreover, since
the partial stresses are not assumed to be symmetric, the equation of partial moment of
momentum (12.1)3 is not explicitly needed in (12.25).

Note that the constitutive variables (12.24) for elastic materials not only contain the
deformation gradient Fα but also the second gradients, gradFα. This makes the mixture
under consideration a non-simple mixture (in the sense of Noll’s simple materials). The
reason to consider such a mixture will become clear later.

Summary of results for elastic solid-fluid mixtures

For a mixture of a solid (with subindex s) and a fluid (with subindex f), to establish
field equations of the basic field variables, {ρs, ρf , χs, χf , θ}, constitutive equations for the
quantities in the balance equations,

f = {Ts, Tf , ε, q,mf}, (12.28)

must be specified. For an elastic solid-fluid mixture, we consider the constitutive equations
of the form:

f = F(θ, ρf , Fs, grad θ, grad ρf , gradFs, V ). (12.29)

where θ is the temperature and V = vf − vs is referred to as the relative velocity.

The results of thermodynamic restrictions of such a mixture obtained by Bowen have
also been confirmed from the analysis with the use of Lagrange multipliers by Liu8, and

8Liu, I-Shih: A solid-fluid mixture theory of porous media, International Journal of Engineering
Sciences 84, 133-146 (2014).
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can be summarized in the following constitutive equations:

Tf = ρfψf I −
∂ρψ

I

∂ρf

ρf I + ρf
∂ψf

∂V
⊗ V,

Ts = ρsψs I +
∂ρψ

I

∂Fs

F T
s + ρs

∂ψs

∂V
⊗ V,

ε = ψ
I
− θ

∂ψ
I

∂θ
+

1

2

ρfρs

ρ2
V · V,

m0
f =

∂ρsψ
0
s

∂ρf

grad ρf −
∂ρfψ

0
f

∂Fs

· gradFs, q0 = 0.

(12.30)

where 0 denotes the equilibrium value at the state with V = 0 and grad θ = 0.

These constitutive equations depend solely on the constitutive functions of the free
energy,

ψf = ψf(θ, ρf , Fs, V ), ψs = ψs(θ, ρf , Fs, V ),

ψ
I

= ψ
I
(θ, ρf , Fs).

(12.31)

Note that although the partial free energies ψf and ψs may depend on the relative veloc-
ity V , the (inner) free energy ψ

I
,

ρψ
I

= ρfψf + ρsψs,

does not depend on V .

Moreover, from (12.30) and (12.31), the sum of partial stresses becomes

T
I

= ρψ
I
I −

∂ρψ
I

∂ρf

ρf I +
∂ρψ

I

∂Fs

F T
s ,

T = T
I
(θ, ρf , Fs)−

1

2

ρsρf

ρ
V ⊗ V.

(12.32)

Similarly, although the partial stresses Tf and Ts may depend on V , the sum of partial
stress, T

I
= Tf + Ts, does not depend on V .

If we define the equilibrium chemical potential of the fluid and the equilibrium partial
fluid pressure as

µf =
∂ρψ

I

∂ρf

, pf = ρf(µf − ψ0
f ), (12.33)

then the equilibrium fluid stress reduces to the pressure, T 0
f = −pf I, and

Tf = −pf I + ρf(ψf − ψ0
f )I + ρf

∂ψf

∂V
⊗ V. (12.34)

From (12.30)1, the chemical potential tensor of the fluid becomes

Kf = µfI − V ⊗
∂ψf

∂V
, (12.35)

and from (12.30)4 and (12.33), the interaction force can be written as

m0
f =

pf

ρf

grad ρf − ρf(gradψ0
f )
∣∣∣
0
. (12.36)
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Chemical potential at fluid-permeable surface

At a fluid-permeable surface considered in the previous section, from the relation (12.19),
we have the following energy jump condition,

[(Kf + 1
2
V 2

f I)ρfVf ] · n = 0,

At this surface, vs = u∗, so that Vf = vf − u∗ = V . Hence, by the use of (12.35), the
condition becomes [

µf + 1
2
V 2 − V · ∂ψf

∂V

]
ρfVf · n = 0,

where we have noted that from the mass jump condition (12.17)1 at the fluid-permeable
surface (ρfVf · n) is continuous, and since it is not zero in general, it follows that[

µf + 1
2
V 2 − V · ∂ψf

∂V

]
= 0. (12.37)

In particular, we have
[µf ]→ 0 when V → 0.

Thus, we conclude that in equilibrium (vf = u∗), the chemical potential of the fluid
constituent is continuous across a fluid-permeable surface. This confirms the well-known
result of the classical theory.

12.3 Saturated porous media

The solid-fluid mixture considered in the previous section can be regarded as a model for
saturated porous media provided that the concept of porosity is introduced. For mixture
theory of porous media, a material point is regarded as a representative volume element
dV which contains pores through them fluid constituent can flow. Physically, it is assumed
that a representative volume element is large enough compare to solid grains (connected
or not), yet at the same time small enough compare to the characteristic length of the
material body.

Let the volume fraction of pores be denoted by φ, then the fractions of representative
volume element of the fluid and the solid are

dVf = φ dV, dVs = (1− φ)dV,

if the porous medium is saturated.

Remember that in the mixture theory, the mass densities are defined relative to the
mixture volume, so that the fluid and solid mass in the representative volume element are
given by

dMf = ρfdV = dfdVf ,

dMs = ρsdV = dsdVs,
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and hence,
ρf = φ df , ρs = (1− φ)ds, (12.38)

where df and ds are the true mass densities of fluid and solid constituents respectively.

We shall also regard the partial fluid pressure pf in the mixture theory as the outcome
of a “microscopic” pressure acting over the area fraction of surface actually occupied by
the fluid in the pore, i.e.,

pfdA = PdAf , hence, pf = φaP,

where P will be called the pore fluid pressure and φa = dAf/dA is the area fraction of the
pores.

In general, the volume fraction φ and the area fraction φa may be different, yet for
practical applications, we shall adopt a reasonable assumption that they are the same for
simplicity, so that the pore fluid pressure is defined as

P =
pf

φ
. (12.39)

The pore pressure is an important concept in soil mechanics, we shall see that the defini-
tion (12.39) leads to results consistent with the well-known results in soil mechanics.

Pore fluid pressure

From (12.31), we have

ψ0
f = ψ̂f(θ, φdf , Fs).

However, in most applications, it is reasonable to assume that in equilibrium the free
energy of the fluid constituent is the same as the free energy of the pure fluid, i.e., we
shall assume that

ψ0
f = ψ̂f(θ, df). (12.40)

From (12.33), we have

µ =
P

df

+ ψ0
f .

Since the true density does not change, [df ] = 0, at an ideal fluid-permeable surface which
allows the fluid to go through, it follows that

[µ] =

[
P

df

]
+ [ψ̂f(θ, df)] =

1

df

[P ].

Therefore the condition (12.37) implies that

[P ] + df

[
1

2
(vf − u∗)2 − (vf − u∗) ·

∂ψf

∂V

]
= 0.
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In particular, if vf = u∗, then
[P ] = 0. (12.41)

This result agrees with our physical intuition that if the fluid does not flow from one side
to the other side through the pores then the pressures in the pores on both sides must be
equal.

A typical fluid pressure measurement is the use of manometric tube attached to the
specimen. In the case of a porous body, the junction of the manometric tube and the
porous medium can be treated as a fluid-permeable ideal singular surface, where on one
side is a solid-fluid mixture and on the other is a pure fluid at rest. Consequently by
virtue of the jump condition (12.41) in equilibrium, the fluid pressure measured from the
manometric tube is the pore fluid pressure.

Remark. In laying down the jump conditions (12.17) at a singular surface, we have
tacitly assumed that there are no surface effects for the mixture as a whole, since the
the singular surface is not regarded as a real material surface. Although in the absence
of surface effects, it is reasonable to postulate the jump conditions for the mixture, it is
not advisable to postulate the similar jump conditions for each constituent. To see this,
suppose that for the fluid constituent,

[ρvf ⊗ (vf − u∗)− Tf ]n = 0, (12.42)

at a fluid-permeable surface where the porosity is not continuous, i.e.,

[φ] 6= 0.

Now from (12.41) and (12.34), in equilibrium the left-hand side of (12.42) becomes

[ρvf ⊗ (vf − u∗)− Tf ]n = [pf ]n = P [φ]n,

which is not zero unless the pore pressure is zero. Therefore, the jump condition (12.42)
is not valid in the case of porous media.

12.4 Equations of motion

The equations of motion (12.25)2 for the fluid and the solid constituents in porous media
can be written as

φdf v̀f = div Tf +mf + φdfg,

(1− φ)dsv̀s = div Ts −mf + (1− φ)dsg,

where the external body force is the gravitational force g, and the material derivatives
with respect to the constituent have been used,

ỳα =
∂yα
∂t

+ (grad yα)vα.
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Let us write the stresses in the following form,

Tf = −φPI + T f ,

Ts = −(1− φ)PI + T s.
(12.43)

We call T f the extra fluid stress and T s the effective solid stress, since it reduces to the
effective stress widely used in soil mechanics as we shall see later. The equations of motion
then become

φdf v̀f = −φ gradP − P gradφ+ div T f +mf + φdfg,

(1− φ)dsv̀s = −(1− φ) gradP + P gradφ+ div T s −mf + (1− φ)dsg.
(12.44)

On the other hand, from (12.36), the interactive force mf in equilibrium becomes

m0
f = P gradφ− φr0, r0 = −P

df

grad df + df(gradψ0
f )
∣∣∣
0
. (12.45)

By canceling out the term P gradφ in (12.44) from the interactive force (12.45) leads to
the following equations of motion for porous media,

φdf v̀f = −φ gradP + div T f + (mf −m0
f )− φr0 + φdfg,

(1− φ)dsv̀s = −(1− φ) gradP + div T s − (mf −m0
f ) + φr0 + (1− φ)dsg,

(12.46)

12.5 Linear theory

Since equilibrium is characterized by the conditions, grad θ = 0 and V = 0, in a linear
theory, we shall assume that | grad θ| and |V | are small quantities, and that o(2) stands
for higher order terms in these quantities.

From (12.34) and (12.43), the extra fluid stress,

T f = φdf(ψf − ψ0
f )I + φdf

∂ψf

∂V
⊗ V ≈ o(2), (12.47)

is a second order quantity because the free energy of fluid constituent must be a scalar-
valued isotropic function of the vector variable (V · V ).

Moreover, we can define the resistive force as

r = r0 − 1

φ
(mf −m0

f ).

It is the force against the flow of the fluid through the medium. Since the non-equilibrium
part of the interactive force, (mf −m0

f ), vanishes in equilibrium, we can represent the
resistive force as

r = RV +G grad θ + r0 + o(2). (12.48)

116



The parameter R is called the resistivity tensor, and its inverse R−1 is called the perme-
ability tensor.

The equations of motion (12.46) in the linear theory becomes

df v̀f = − gradP − r + dfg,

(1− φ)dsv̀s = −(1− φ) gradP + div T s + φ r + (1− φ)dsg.
(12.49)

Darcy’s law and equilibrium pore fluid pressure

The equation (12.49)1 for the motion of the fluid is a generalized Darcy’s law. Indeed, for
stationary case, and only r = RV is taken into account from (12.48), it reduces to the
classical Darcy’s law,

vf − vs = −R−1(gradP − dfg).

Furthermore, in equilibrium, it becomes

gradP = dfg, (12.50)

which can be integrated immediately. Suppose that the x-coordinate is in the vertical
downward direction, and g = gex. then we have

P = dfg x+ P0, P0 = P (0). (12.51)

This result asserts that the equilibrium pore pressure is the hydrostatic pressure. It
agrees with the observation in soil mechanics from experimental measurements that the
manometric pressure in the soil is the pressure as if the medium were bulk fluid, unaffected
by the presence of the solid constituent in the medium.

We remark that this result is sometimes overlooked in the mixture theory of porous
media. It is mainly due to the fact that in the theory of simple mixture, which omits the
second gradients of deformations as independent constitutive variables, the equilibrium
interactive force m0

f is identically zero by constitutive hypothesis (see (12.30)4). However,
from the relation (12.45), m0

f is not a negligible quantity for a body with non-uniform
porosity, m0

f = P gradφ, and it is easy to see that in the absence of this term, the result
(12.51) need not follow. This remark, we shall regard as a strong evidence that porous
media must be treated as non-simple mixtures even for a linear equilibrium theory.

Uplift and effective stress principle

We can obtain an interesting equation for the solid constituent if we eliminate (gradP )
between the two equations in (12.49),

(1− φ)dsv̀s − div T s = r + (1− φ)(ds − df)g + (1− φ)df v̀f . (12.52)

From this equation, we notice that the effective stress is not affected by the pore fluid
pressure — this is the essential meaning of the effective stress principle in soil mechanics.
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Note that there are three terms of forces on the right-hand side of the equation (12.52).
The first one, r = R(vf − vs) + · · ·, is the usual resistive force of diffusive motion. The
second term, (1− φ)(ds − df)g, is the weight of solid reduced by the uplift (or buoyancy)
from the fluid corresponding to the principle of Archimedes. The importance of uplift in
soil structures had been one of the major concern in the development of soil mechanics.

The third term, (1−φ)df v̀f , is the inertia force against the displacement of fluid in the
motion of the solid through it, which we may think of it as the buoyancy of the inertial
force along side with the buoyancy of the gravitational force (1 − φ)dfg in the sense of
d’Alembert. The effect of this force seems to be largely unrecognized in the literature.

In the theory of Biot, the relative acceleration was introduced as a part of interactive
force between solid and fluid constituents to account for the apparent added mass effect
commonly expected. The inertia force considered here seems to correspond to such an
effect. However, from the derivation above, it is clear that it is not a part of interactive
force, since there is no inertia effect on the motion of fluid (12.49)1.

12.6 Problems in poroelasticity

Hereafter we shall restrict our attention to mechanical problems (isothermal case) of the
theory of elastic porous media, also known as poroelasticity. The governing equations are
based on the balance equations of partial mass (12.25)1,2 and partial momentum of fluid
and solid constituents (12.49), :

(φdf )̀ + φdf div vf = 0,

((1− φ)ds)̀ + (1− φ)ds div vs = 0,

φ df v̀f + φ gradP − div T f + φ r = φ dfg,

(1− φ)dsv̀s + (1− φ) gradP − div T s − φ r = (1− φ)dsg.

(12.53)

For this system of equations, from (12.43), (12.45), (12.47), and (12.48), we have the
following constitutive relations:

T f = ρf(ψf − ψ0
f )I + ρf

∂ψf

∂V
⊗ V ≈ o(2),

T s = T
I
+ PI − T f = T

I
+ PI + o(2),

r = RV − P

df

grad df + df(gradψ0
f ) + o(2).

(12.54)

where o(2) stands for higher order terms in |V |, and

ψf = ψf(φ, df , Fs, V ), P = P (φ, df , Fs), T
I

= T
I
(φ, df , Fs).

Some models of porous media

The governing system (12.53) consists of two scalar and two vector equations, while
besides the two vector variables of the motions of fluid and solid constituents, there are
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three scalar variables, namely, the two true densities, df and ds, and the porosity φ.
Therefore, the system is under-determinate, namely, there are less number of equations
than the number of independent variables.

Porosity is a microstructural variable of the porous media. To deal with this additional
variable, without postulating an additional (evolution or balance) equation for porosity,
as proposed in some mixture theories in the literature, there remain some possibilities
to formulate deterministic theories from the present theory of porous media. We may
consider following models by making some incompressibility assumption of solid or fluid
constituent to reduce the number of scalar variables.

1. Incompressible solid constituent: constant ds.

Independent variables: (φ, df , χf , χs).

Constitutive variables:

P = P (φ, df , Fs), r = r(φ, df , Fs, V ),

T f = T f(φ, df , Fs, V ), T s = T s(φ, df , Fs, V ).

2. Incompressible fluid constituent: constant df .

Independent variables: (φ, ds, χf , χs).

Constitutive variables:

P = P (φ, Fs), r = r(φ, Fs, V ),

T f = T f(φ, Fs, V ), T s = T s(φ, Fs, V ).

3. Incompressible porous medium: constant ds and df .

Independent variables: (φ, P, χf , χs).

Constitutive variables:

T f = T f(φ, Fs, V ), T s = T s(φ, Fs, V ) r = r(φ, Fs, V ).

Note that even composed with incompressible constituents, the porous body is not
necessarily incompressible because the porosity may vary. Moreover, we can regard
the pore pressure P as an indeterminate pressure so that the system is deterministic.
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12.7 Boundary conditions

Regarding the boundary as a singular surface between the porous body and the external
medium, we have the following jump conditions for the mixture as a single body,

[ρ(v − u∗)] · n = 0,

[ρv ⊗ (v − u∗)− T ]n = 0,
(12.55)

where u∗ is the surface velocity of the boundary.

Therefore, at the boundary of a solid-fluid mixture body, we have vs = u∗ and the
jump conditions (12.55) becomes,

[ρfV ] · n = 0,[
v ⊗ ρfV − (Tf + Ts) +

1

2

ρfρs

ρ
V ⊗ V

]
n = 0,

(12.56)

Furthermore, the boundary of a porous body can also be regarded as a semipermeable
singular surface for the fluid constituent, in other words, the fluid can flow across the
boundary and the solid cannot. In a semipermeable boundary, it has been proved that
the jump condition of energy is given by (12.37),[

µf + 1
2
V 2 − V · ∂ψf

∂V

]
= 0,

where µf =
∂ρψ

I

∂ρf

is the fluid chemical potential. From (12.33), pf = ρf(µf − φ0
f ), it

implies the jump condition for the pore fluid pressure in a porous body,

[P ] + df

[
ψ0

f +
1

2
V 2 − V · ∂ψf

∂V

]
= 0. (12.57)

Based on the above jump conditions, we can formulate the boundary condition for the
system of partial differential equations. For well-posedness of the problem, two boundary
conditions are needed at any point on the boundary, in addition to the proper initial
conditions. There are two type of boundary conditions, namely, prescription of the motion
of the boundary or the force acting on the boundary described in the following conditions,
where the subindex w denotes the corresponding prescribed value at the exterior side of
the boundary.

Dirichlet conditions

These are displacement (velocity) boundary conditions. From (12.56)1, one can prescribe
the solid displacement uw and the fluid mass flow mw,

us = uw, φ df(vf − vs) · n = mw,

where us is the displacement vector of the solid constituent.
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Neumann conditions

Traction boundary conditions must be prescribed according to the relations (12.56)2 and
(12.57). Provided that the fluid mass flux is small enough, one can prescribe the total
surface traction tw,

Tn = (Ts + Tf)n = tw.

If in addition, the equilibrium free energy ψ0
f is a function of df only, then the second

condition implies the continuity of the pore pressure across the boundary,

Pn = pwn,

where pw is the pressure of the adjacent fluid acting on the boundary.

Remarks:

Unlike the continuity of total traction, the continuity of pore pressure has been mostly
ignored in the literature, and an additional boundary condition is often postulated for the
closure of the problem.

It is proposed by Rajagobal9 a “method of splitting the total traction” into parts acting
on the fluid and the solid constituents according to the proportion of volume fraction (or
surface fraction more exactly). Therefore, suppose that the boundary separates the porous
body and the external fluid with pressure pw, then the method requires that

Tfn ≈ −pfn = −ρf

df

pwn.

Since the pore fluid pressure is defined as P = pf/φ and ρf = φdf , the proposed splitting
method is consistent with the the continuity of pore fluid pressure at the semipermeable
surface.

Another condition was suggested by Deresiewicz10, in which an interfacial version of
Darcy’s law simulates the fluid flow across the boundary,

ρf(vf − vs) · n = α
(
pf −

ρf

df

pw

)
,

where α is referred to as the interface permeability. For α = 0 the condition reduces
to vf = vs, i.e., the boundary is impermeable, while for α = ∞, it reduces to the
continuity of pore fluid pressure. For the value in between, the boundary is not an ideal
singular surface as proposed in the usual mixture theories, instead, the interface has

9Rajagopal, K.R.; Tao, L.: Mechanics of Mixtures, World Scientific Singapore (1995).
10Deresiewicz, H.; Skalak, R.; On uniqueness in dynamic poroelasticity, Bull. Seismol. Soc. Am. 53,

783-788 (1963).
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its physical property. To include such an effect, a more sophisticated mixture theory
containing interfacial membrane must be considered. Such a theory is beyond the present
consideration, However, with of the jump condition (12.57), which relates the mass flux
and the pore pressure across the boundary, it seems that the postulate of an additional
condition, such as Deresiewicz condition, is superfluous in the framework of the usual
mixture theories of porous media.
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