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NOTE TO READER

I had hoped to finalize this second set of notes an year or two after publishing Volume I

of this series back in 2007. However I have been distracted by various other interesting tasks

and it has sat on a back-burner. Since I continue to receive email requests for this second

set of notes, I am now making Volume II available even though it is not as yet complete. In

addition, it has been “cleaned-up” at a far more rushed pace than I would have liked.

In the future, I hope to sufficiently edit my notes on Viscoelastic Fluids and Microme-

chanical Models of Viscoelastic Fluids so that they may be added to this volume; and if I

ever get around to it, a chapter on the mechanical response of materials that are affected by

electromagnetic fields.

I would be most grateful if the reader would please inform me of any errors in the notes

by emailing me at abeyaratne.vol.2@gmail.com.
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PREFACE

During the period 1986 - 2008, the Department of Mechanical Engineering at MIT offered

a series of graduate level subjects on the Mechanics of Solids and Structures that included:

2.071: Mechanics of Solid Materials,

2.072: Mechanics of Continuous Media,

2.074: Solid Mechanics: Elasticity,

2.073: Solid Mechanics: Plasticity and Inelastic Deformation,

2.075: Advanced Mechanical Behavior of Materials,

2.080: Structural Mechanics,

2.094: Finite Element Analysis of Solids and Fluids,

2.095: Molecular Modeling and Simulation for Mechanics, and

2.099: Computational Mechanics of Materials.

Over the years, I have had the opportunity to regularly teach the second and third of

these subjects, 2.072 and 2.074 (formerly known as 2.083), and the current four volumes

are comprised of the lecture notes I developed for them. First drafts of these notes were

produced in 1987 (Volumes I and IV) and 1988 (Volumes II) and they have been corrected,

refined and expanded on every subsequent occasion that I taught these classes. The material

in the current presentation is still meant to be a set of lecture notes, not a text book. It has

been organized as follows:

Volume I: A Brief Review of Some Mathematical Preliminaries

Volume II: Continuum Mechanics

Volume III: A Brief Introduction to Finite Elasticity

Volume IV: Elasticity

This is Volume II.

My appreciation for mechanics was nucleated by Professors Douglas Amarasekara and

Munidasa Ranaweera of the (then) University of Ceylon, and was subsequently shaped and

grew substantially under the influence of Professors James K. Knowles and Eli Sternberg

of the California Institute of Technology. I have been most fortunate to have had the

opportunity to apprentice under these inspiring and distinctive scholars.

I would especially like to acknowledge the innumerable illuminating and stimulating

interactions with my mentor, colleague and friend the late Jim Knowles. His influence on
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me cannot be overstated.

I am also indebted to the many MIT students who have given me enormous fulfillment

and joy to be part of their education.

I am deeply grateful for, and to, Curtis Almquist SSJE, friend and companion.

My understanding of elasticity as well as these notes have benefitted greatly from many

useful conversations with Kaushik Bhattacharya, Janet Blume, Eliot Fried, Morton E.

Gurtin, Richard D. James, Stelios Kyriakides, David M. Parks, Phoebus Rosakis, Stewart

Silling and Nicolas Triantafyllidis, which I gratefully acknowledge.

Volume I of these notes provides a collection of essential definitions, results, and illus-

trative examples, designed to review those aspects of mathematics that will be encountered

in the subsequent volumes. It is most certainly not meant to be a source for learning these

topics for the first time. The treatment is concise, selective and limited in scope. For exam-

ple, Linear Algebra is a far richer subject than the treatment in Volume I, which is limited

to real 3-dimensional Euclidean vector spaces.

The topics covered in Volumes II and III are largely those one would expect to see covered

in such a set of lecture notes. Personal taste has led me to include a few special (but still

well-known) topics. Examples of these include sections on the statistical mechanical theory

of polymer chains and the lattice theory of crystalline solids in the discussion of constitutive

relations in Volume II, as well as several initial-boundary value problems designed to illustrate

various nonlinear phenomena also in Volume II; and sections on the so-called Eshelby problem

and the effective behavior of two-phase materials in Volume III.

There are a number of Worked Examples and Exercises at the end of each chapter which

are an essential part of the notes. Many of these examples provide more details; or the proof

of a result that had been quoted previously in the text; or illustrates a general concept; or

establishes a result that will be used subsequently (possibly in a later volume).

The content of these notes are entirely classical, in the best sense of the word, and none

of the material here is original. I have drawn on a number of sources over the years as I

prepared my lectures. I cannot recall every source I have used but certainly they include

those listed at the end of each chapter. In a more general sense the broad approach and

philosophy taken has been influenced by:

Volume I: A Brief Review of Some Mathematical Preliminaries

I.M. Gelfand and S.V. Fomin, Calculus of Variations, Prentice Hall, 1963.
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J.K. Knowles, Linear Vector Spaces and Cartesian Tensors, Oxford University Press,

New York, 1997.

Volume II: Continuum Mechanics

P. Chadwick, Continuum Mechanics: Concise Theory and Problems, Dover,1999.

J.L. Ericksen, Introduction to the Thermodynamics of Solids, Chapman and Hall, 1991.

M.E. Gurtin, An Introduction to Continuum Mechanics, Academic Press, 1981.

M.E. Gurtin, E. Fried and L. Anand, The Mechanics and Thermodynamics of Con-

tinua, Cambridge University Press, 2010.

J. K. Knowles and E. Sternberg, (Unpublished) Lecture Notes for AM136: Finite Elas-

ticity, California Institute of Technology, Pasadena, CA 1978.

C. Truesdell and W. Noll, The nonlinear field theories of mechanics, in Handbüch der

Physik, Edited by S. Flügge, Volume III/3, Springer, 1965.

Volume III: Elasticity

M.E. Gurtin, The linear theory of elasticity, in Mechanics of Solids - Volume II, edited

by C. Truesdell, Springer-Verlag, 1984.

J. K. Knowles, (Unpublished) Lecture Notes for AM135: Elasticity, California Institute

of Technology, Pasadena, CA, 1976.

A. E. H. Love, A Treatise on the Mathematical Theory of Elasticity, Dover, 1944.

S. P. Timoshenko and J.N. Goodier, Theory of Elasticity, McGraw-Hill, 1987.

The following notation will be used in Volume II though there will be some lapses (for

reasons of tradition): Greek letters will denote real numbers; lowercase boldface Latin letters

will denote vectors; and uppercase boldface Latin letters will denote linear transformations.

Thus, for example, α, β, γ... will denote scalars (real numbers); x,y, z, ... will denote vectors;

and X,Y,Z, ... will denote linear transformations. In particular, “o” will denote the null

vector while “0” will denote the null linear transformation.

One result of this notational convention is that we will not use the uppercase bold letter

X to denote the position vector of a particle in the reference configuration. Instead we use

the lowercase boldface letters x and y to denote the positions of a particle in the reference

and current configurations.
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Chapter 1

Some Preliminary Notions

In this preliminary chapter we introduce certain basic notions that underly the continuum

theory of materials. These concepts are essential ingredients of continuum modeling, though

sometimes they are used implicitly without much discussion. We shall devote some attention

to these notions in this chapter since that will allow for greater clarity in subsequent chapters.

For example we frequently speak of an “isotropic material”. Does this mean that the

material copper, for example, is isotropic? Suppose we have a particular piece of copper

that is isotropic in a given configuration, and we deform it, will it still be isotropic? What

is isotropy a property of? The material, the body, or the configuration? Speaking of which,

what is the difference between a body, a configuration, and a region of space occupied by a

body (and is it important to distinguish between them)? ... Often we will want to consider

some physical property (e.g. the internal energy) associated with a part of a body (i.e. a

definite set of particles of the body). As the body moves through space and this part occupies

different regions of space at different times and the value of this property changes with time,

it may be important to be precise about the fact that this property is assigned to a fixed

set of particles comprising the part of the body and not the changing region of space that it

occupies. ... Or, consider the propagation of a wavefront. Consider a point on the wavefront

and a particle of the body, both of which happen to be located at the same point in space

at a given instant. However these are distinct entities and at the next instant of time this

same point on the wavefront and particle of the body would no longer be co-located in space.

Thus in particular, the velocity of the point of the wavefront is different from the velocity

of the particle of the body, even though they are located at the same point in space at the

current instant.

1



2 CHAPTER 1. SOME PRELIMINARY NOTIONS

The concepts introduced in this chapter aim to clarify such issues. We will not be pedan-

tic about these subtleties. Rather, we shall make use of the framework and terminology

introduced in this chapter only when it helps avoid confusion. The reader is encouraged

to pay special attention to the distinctions between the different concepts introduced here.

These concepts include the notions of

a body,

a configuration of the body,

a reference configuration of the body,

the region occupied by the body in some configuration,

a particle (or material point),

the location of a particle in some configuration,

a deformation,

a motion,

Eulerian and Lagrangian descriptions of a physical quantity,

Eulerian and Lagrangian spatial derivatives, and

Eulerian and Lagrangian time derivatives (including the material time derivative).

1.1 Bodies and Configurations.

Our aim is to develop a framework for studying how “objects that occur in nature” respond

to the application of forces or other external stimuli. In order to do this, we must construct

mathematical idealizations (i.e. mathematical models) of the “objects” and the “stimuli”.

Specifically, with regard to the “objects”, we must model their geometric and constitutive

character.

We shall use the term “body” to be a mathematical abstraction of an “object that

occurs in nature”. A body B is composed of a set of particles1 p (or material points). In a

given configuration of the body, each particle is located at some definite point y in three-

dimensional space. The set of all the points in space, corresponding to the locations of all

the particles, is the region R occupied by the body in that configuration. A particular body,

composed of a particular set of particles, can adopt different configurations under the action

1A particle in continuum mechanics is different to what we refer to as a particle in classical mechanics.

For example, a particle in classical mechanics has a mass m > 0, while a particle in continuum mechanics is

not endowed with a property called mass.
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of different stimuli (forces, heating etc.) and therefore occupy different regions of space under

different conditions. Note the distinction between the body, a configuration of the body, and

the region the body occupies in that configuration; we make these distinctions rigorous in

what follows. Similarly note the distinction between a particle and the position in space it

occupies in some configuration.

In order to appreciate the difference between a configuration and the region occupied

in that configuration, consider the following example: suppose that a body, in a certain

configuration, occupies a circular cylindrical region of space. If the object is “twisted” about

its axis (as in torsion), it continues to occupy this same (circular cylindrical) region of space.

Thus the region occupied by the body has not changed even though we would say that the

body is in a different “configuration”.

More formally, in continuum mechanics a body B is a collection of elements which can

be put into one-to-one correspondence with some region R of Euclidean point space2. An

element p ∈ B is called a particle (or material point). Thus, given a body B, there is

necessarily a mapping χ that takes particles p ∈ B into their geometric locations y ∈ R in

three-dimensional Euclidean space:

y = χ(p) where p ∈ B, y ∈ R. (1.1)

The mapping χ is called a configuration of the body B; y is the position occupied by the

particle p in the configuration χ; andR is the region occupied by the body in the configuration

χ. Often, we write R = χ(B).

R

y

p

B

y = χ(p)

p = χ−1(y)

Figure 1.1: A body B that occupies a region R in a configuration χ. A particle p ∈ B is located at

the position y ∈ R where y = χ(p). B is a mathematical abstraction. R is a region in three-dimensional

Euclidean space.

2Recall that a “region” is an open connected set. Thus a single particle p does not constitute a body.
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Since a configuration χ provides a one-to-one mapping between the particles p and posi-

tions y, there is necessarily an inverse mapping χ−1 from R → B:

p = χ−1(y) where p ∈ B, y ∈ R. (1.2)

Observe that bodies and particles, in the terminology used here, refer to “abstract” enti-

ties. Bodies are available to us through their configurations. Actual geometric measurements

can be made on the place occupied by a particle or the region occupied by a body.

1.2 Reference Configuration.

In order to identify a particle of a body, we must label the particles. The abstract particle

label p, while perfectly acceptable in principle and intuitively clear, is not convenient for

carrying out calculations. It is more convenient to pick some arbitrary configuration of the

body, say χref , and use the (unique) position x = χref(p) of a particle in that configuration

to label it instead. Such a configuration χref is called a reference configuration of the body.

It simply provides a convenient way in which to label the particles of a body. The particles

are now labeled by x instead of p.

A second reason for considering a reference configuration is the following: we can study

the geometric characteristics of a configuration χ by studying the geometric properties of

the points occupying the region R = χ(B). This is adequate for modeling certain materials

(such as many fluids) where the behavior of the material depends only on the characteristics

of the configuration currently occupied by the body. In describing most solids however one

often needs to know the changes in geometric characteristics between one configuration and

another configuration (e.g. the change in length, the change in angle etc.). In order to

describe the change in a geometric quantity one must necessarily consider (at least) two

configurations of the body: the configuration that one wishes to analyze, and a reference

configuration relative to which the changes are to be measured.

Let χref and χ be two configurations of a body B and let Rref and R denote the regions

occupied by the body B in these two configuration; see Figure 1.2. The mappings χref and

χ take p→ x and p→ y, and likewise B → Rref and B → R :

x = χref(p), y = χ(p). (1.3)

Here p ∈ B, x ∈ Rref and y ∈ R. Thus x and y are the positions of particle p in the two

configurations under consideration.
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R

x

y

p

B

y = χ(p)
p = χ−1(y)

Rref

y = y(x) = χ(χ−1
ref (x))

R

Rref

0
1

0
2 3

R R0

i = F 0
i

x = χref(p)

p = χ−1
ref (x)

y = y(x) = χ(χ−1
ref (x))

x = χref(p)

p = χ−1
ref (x)

y = y(x) = χ(χ−1
ref (x))

R

Figure 1.2: A body B that occupies a region R in a configuration χ, and another region Rref in a second

configuration χref . A particle p ∈ B is located at y = χ(p) ∈ R in configuration χ, and at x = χref(p) ∈ Rref

in configuration χref . The mapping of Rref → R is described by the deformation y = ŷ(x) = χ(χ−1
ref (x)).

This induces a mapping y = ŷ(x) from Rref → R:

y = ŷ(x)
def
= χ(χ−1

ref (x)), x ∈ Rref ,y ∈ R; (1.4)

ŷ is called a deformation of the body from the reference configuration χref .

Frequently one picks a particular convenient (usually fixed) reference configuration χref

and studies deformations of the body relative to that configuration. This particular con-

figuration need only be one that the body can sustain, not necessarily one that is actually

sustained in the setting being analyzed. The choice of reference configuration is arbitrary

in principle (and is usually chosen for reasons of convenience). Note that the function ŷ in

(1.4) depends on the choice of reference configuration.

When working with a single fixed reference configuration, as we will most often do, one

can dispense with talking about the body B, a configuration χ and the particle p, and work

directly with the region Rref , the deformation y(x) and the position x.

However, even when working with a single fixed reference configuration, sometimes, when

introducing a new concept, for reasons of clarity we shall start by using p, B etc. before

switching to x, Rref etc.
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There will be occasions when we must consider more than one reference configuration;

an example of this will be our analysis of material symmetry. In such circumstances one can

avoid confusion by framing the analysis in terms the body B, the reference configurations

χ1, χ2 etc.

1.3 Description of Physical Quantities: Spatial and

Referential (or Eulerian and Lagrangian) forms.

There are essentially two types of physical characteristics associated with a body. The first,

such as temperature, is associated with individual particles of the body; the second, such

as mass and energy, are associated with “parts of the body”. One sometimes refers to these

as intensive and extensive characteristics respectively. In this and the next few sections we

will be concerned with properties of the former type; we shall consider the latter type of

properties in Section 1.8.

First consider a characteristic such as the temperature of a particle. The temperature θ

of particle p in the configuration χ is given by3

θ = θ∗(p) (1.5)

where the function θ∗(p) is defined for all p ∈ B. Such a description, though completely

rigorous and well-defined, is not especially useful for carrying out calculations since a particle

is an abstract entity. It is more useful to describe the temperature by a function of particle

position by trading p for y by using y = χ(p):

θ = θ(y)
def
= θ∗

(
χ−1(y)

)
. (1.6)

The function θ(y) is defined for all y ∈ R. The functions θ∗ and θ both describe temperature:

θ∗(p) is the temperature of the particle p while θ(y) is the temperature of the particle located

at y. When p and y are related by y = χ(p), the two functions θ and θ∗ have the same value

since they both refer to the temperature of the same particle in the same configuration and

they are related by (1.6)2. One usually refers to the representation (1.5) which deals directly

with the abstract particles as a material description; the representation (1.6) which deals

3Even though it is cumbersome to do so, in order to clearly distinguish three different characterizations

of temperature from each other, we use the notation θ∗(·), θ(·) and θ̂(·) to describe three distinct but related

functions defined on B,R and Rref respectively.
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with the positions of the particles in the deformed configuration, (the configuration in which

the physical quantity is being characterized,) is called the Eulerian or spatial description.

If a reference configuration has been introduced we can label a particle by its position

x = χref(p) in that configuration, and this in turn allows us to describe physical quantities

in Lagrangian form. Consider again the temperature of a particle as given in (1.5). We can

trade p for x using x = χref(p) to describe the temperature in Lagrangian or referential form

by

θ = θ̂(x)
def
= θ∗(χ

−1
ref (x)). (1.7)

The function θ̂ is defined for all x ∈ Rref . The referential description θ̂(x) can also be

generated from the spatial description through

θ̂(x) = θ(ŷ(x)). (1.8)

It is essential to emphasize that the function θ̂ does not give the temperature of a particle

in the reference configuration; rather, θ̂(x) is the temperature in the deformed configuration

of the particle located at x in the reference configuration.

A physical field that is, for example, described by a function defined on R and expressed

as a function of y, can just as easily be expressed through a function defined on Rref and

expressed as a function of x; and vice versa. For example in the chapter on stress we will

encounter two 2-tensors T and S called the Cauchy stress and the first Piola-Kirchhoff stress.

It is customary to express T as a function of y ∈ R and S as a function of x ∈ Rref : T(y)

and S(x). This is because certain calculations simplify when done in this way. However they

both refer to stress at a particle in a deformed configuration where in one case the particle is

labeled by its position in the deformed configuration and in the other by its position in the

reference configuration. In fact, by making use of the deformation y = ŷ(x) we can write T

as a function of x: T̂(x) = T(ŷ(x)), and likewise S as a function of y: S(y) = S(ŷ−1(y)), if

we so need to.

1.4 Eulerian and Lagrangian Spatial Derivatives.

To be specific, consider again the temperature field θ in the body in a configuration χ. We

can express this either in Lagrangian form

θ = θ̂(x), x ∈ Rref , (1.9)
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or in Eulerian form

θ = θ(y), y ∈ R. (1.10)

Both of these expressions give the temperature of a particle in the deformed configuration

where the only distinction is in the labeling of the particle. These two functions are related

by (1.8).

It is cumbersome to write the decorative symbols, i.e., the “hats” and the “bars”, all the

time and we would prefer to write θ(x) and θ(y). If such a notation is adopted one must be

particularly attentive and continuously use the context to decide which function one means.

Suppose, for example, that we wish to compute the gradient of the temperature field.

If we write this as ∇θ we would not know if we were referring to the Lagrangian spatial

gradient

∇θ̂(x) which has components
∂θ̂

∂xi
(x), (1.11)

or to the Eulerian spatial gradient

∇θ(y) which has components
∂θ

∂yi
(y). (1.12)

In order to avoid this confusion we use the notation Grad θ and grad θ instead of ∇θ where

Grad θ = ∇θ̂(x), and grad θ = ∇θ(y). (1.13)

The gradient of the particular vector field ŷ(x), the deformation, is denoted by F(x) and

is known as the deformation gradient tensor:

F(x) = Grad ŷ(x) with components Fij =
∂ŷi
∂xj

(x). (1.14)

It plays a central role in describing the kinematics of a body.

The symbols Div and div, and Curl and curl are used similarly.

In order to relate Grad θ to grad θ we merely need to differentiate (1.8) with respect to

x using the chain rule. This gives

∂θ̂

∂xi
=

∂θ

∂yj

∂ŷj
∂xi

=
∂θ

∂yj
Fji = Fji

∂θ

∂yj
(1.15)

where summation over the repeated index j is taken for granted. This can be written as

Grad θ = F T grad θ. (1.16)
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Similarly, if w is any vector field, one can show that

Gradw = (gradw)F , (1.17)

and for any tensor field T, that

Div T = J div (J−1FT ) where J = det F. (1.18)

1.5 Motion of a Body.

A motion of a body is a one-parameter family of configurations χ(p, t) where the parameter

t is time:

y = χ(p, t), p ∈ B, t0 ≤ t ≤ t1. (1.19)

This motion takes place over the time interval [t0, t1]. The body occupies a time-dependent

region Rt = χ(B, t) during the motion, and the vector y ∈ Rt is the position occupied by the

particle p at time t during the motion χ. For each particle p, (1.19) describes the equation

of a curve in three-dimensional space which is the path of this particle.

Next consider the velocity and acceleration of a particle, defined as the rate of change of

position and velocity respectively of that particular particle:

v = v∗(p, t) =
∂χ

∂t
(p, t) and a = a∗(p, t) =

∂2χ

∂t2
(p, t). (1.20)

Since a particle p is only available to us through its location y, it is convenient to express

the velocity and acceleration as functions of y and t (rather than p and t). This is readily

done by using p = χ−1(y, t) to eliminate p in favor of y in (1.20) leading to the velocity and

acceleration fields v(y, t) and a(y, t):

v = v(y, t) = v∗(p, t)
∣∣∣
p=χ−1(y,t)

= v∗(χ
−1(y, t), t),

a = a(y, t) = a∗(p, t)
∣∣∣
p=χ−1(y,t)

= a∗(χ
−1(y, t), t),

(1.21)

where v∗(p, t) and a∗(p, t) are given by (1.20).

It is worth emphasizing that the velocity and acceleration of a particle can be defined

without the need to speak of a reference configuration.
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If a reference configuration χref has been introduced and x = χref(p) is the position of a

particle in that configuration, we can describe the motion alternatively by

y = ŷ(x, t)
def
= χ(χ−1

ref (x), t). (1.22)

The particle velocity in Lagrangian form is given by

v = v̂(x, t) = v∗(χ
−1
ref (x), t) (1.23)

or equivalently by

v = v̂(x, t) = v(ŷ(x, t), t). (1.24)

Similar expressions for the acceleration can be written. The function v̂(x, t) does not of

course give the velocity of a particle in the reference configuration but rather the velocity at

time t of the particle which is associated with the position x in the reference configuration.

Sometimes, the reference configuration is chosen to be the configuration of the body at

the initial instant, i.e., χref(p) = χ(p, t0), in which case x = ŷ(x, t0).

1.6 Eulerian and Lagrangian Time Derivatives.

To be specific, consider again the temperature field θ in the body at time t. As noted

previously, it is cumbersome to write the decorative symbols, i.e., the “hats” and the “bars”

over the Eulerian and Lagrangian representations θ(y, t) and θ̂(x, t) and so we sometimes

write both these functions as θ(y, t) and θ(x, t) being attentive when we do so.

For example consider the time derivative of θ. If we write this simply as ∂θ/∂t we would

not know whether we were referring to the Lagrangian or the Eulerian derivatives

∂θ̂

∂t
(x, t) or

∂θ

∂t
(y, t) (1.25)

respectively. To avoid confusion we therefore use the notation θ̇ and θ′ instead of ∂θ/∂t

where

θ̇ =
∂θ̂

∂t
(x, t) and θ′ =

∂θ

∂t
(y, t). (1.26)

θ̇ is called the material time derivative4 (since in calculating the time derivative we are

keeping the particle, identified by x, fixed).

4In fluid mechanics this is often denoted by Dθ/Dt.
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We can relate θ̇ to θ′ by differentiating θ̂(x, t) = θ(ŷ(x, t), t) with respect to t and using

the chain rule. This gives

∂θ̂

∂t
=

∂θ

∂yi

∂ŷi
∂t

+
∂θ

∂t
(1.27)

or

θ̇ = θ′ + (grad θ) · v (1.28)

where v is the velocity. Similarly, for any vector field w one can show that

ẇ = w′ + (gradw)v (1.29)

where gradw is a tensor. Unless explicitly stated otherwise, we shall always use an over dot

to denote the material time derivative.

1.7 A Part of a Body.

We say that P is a part of the body B if (i) P ⊂ B and (ii) P itself is a body, i.e. there is

a configuration χ of B such that χ(P) is a region. (Note therefore that a single particle p

does not constitute a part of the body.)

If Rt and Dt are the respective regions occupied at time t by a body B and a part of it

P during a motion, then Dt ⊂ Rt.

As the body undergoes a motion, the region Dt = χ(P , t) that is occupied by a part of the

body will evolve with time. Note that even though the region Dt changes with time, the set

of particles associated with it does not change with time. The region Dt is always associated

with the same part P of the body. Such a region, which is always associated with the same

set of particles, is called a material region. In subsequent chapters when we consider the

“global balance principles of continuum thermomechanics”, such as momentum or energy

balance, they will always be applied to a material region (or equivalently to a part of the

body). Note that the region occupied by P in the reference configuration, Dref = χref(P),

does not vary with time.

Next consider a surface St that moves in space through Rt. One possibility is that this

surface, even though it moves, is always associated with the same set of particles (so that it

“moves with the body”.) This would be the case for example of the surface corresponding to

the interface between two perfectly bonded parts in a composite material. Such a surface is

called a material surface since it is associated with the same particles at all times. A second
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possibility is that the surface is not associated with the same set of particles, as is the case

for example for a wave front propagating through the material. The wave front is associated

with different particles at different times as it sweeps through Rt. Such a surface is not a

material surface. Note that the surface Sref , which is the pre-image of St in the reference

configuration, does not vary with time for a material surface but does vary with time for a

non-material surface.

In general, a time dependent family of curves Ct, surfaces St and regions Dt are said to

represent, respectively, a material curve, a material surface and a material region if they are

associated with the same set of particles at all times.

1.8 Extensive Properties and their Densities.

In the previous sections we considered physical properties such as temperature that were

associated with individual particles of the body. Certain other physical properties in con-

tinuum physics (such as for example mass, energy and entropy) are associated with parts of

the body and not with individual particles.

Consider an arbitrary part P of a body B that undergoes a motion χ. As usual, the

regions of space occupied by P and B at time t during this motion are denoted by χ(P , t)
and χ(B, t) respectively, and the location of the particle p is y = χ(p, t).

We say that Ω is an extensive physical property of the body if there is a function Ω(·, t;χ)

defined on the set of all parts P of B which is such that

(i)

Ω(P1 ∪ P2, t;χ) = Ω(P1, t;χ) + Ω(P2, t;χ) (1.30)

for all arbitrary disjoint parts P1 and P2 (which simply states that the value of the

property Ω associated with two disjoint parts is the sum of the individual values for

each of those parts), and

(ii)

Ω(P , t;χ)→ 0 as the volume of χ(P , t)→ 0. (1.31)

Under these circumstance there exists a density ω(p, t;χ) such that

Ω(P , t;χ) =

∫
P
ω(p, t;χ) dp. (1.32)
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Thus, we have the property Ω(P , t;χ) associated with parts P of the body and its density

ω(p, t;χ) associated with particles p of the body, e.g. the energy of P and the energy density

at p.

It is more convenient to trade the particle p for its position y using p = χ−1(y, t) and

work with the (Eulerian or spatial) density function ω(y, t;χ) in terms of which

Ω(P , t;χ) =

∫
Dt

ω(y, t;χ) dVy.

Any physical property associated in such a way with all parts of a body has an associated

density; for example the mass m, internal energy e, and the entropy H have corresponding

mass5, internal energy and entropy densities which we will denote by ρ, ε and η.

References:

1. C. Truesdell, The Elements of Continuum Mechanics, Lecture 1, Springer-Verlag,

NewYork, 1966.

2. R.W. Ogden, Non-Linear Elastic Deformations, §§2.1.2 and 2.1.3, Dover, 1997.

3. C. Truesdell, A First Course in Rational Continuum Mechanics, §§1 to 4 and §7 of

Chapter 1 and §§1–4 of Chapter 2, Academic Press, New York 1977.

5In the particular case of mass, one has the added feature that m(P) > 0 whence ρ(y, t) > 0.





Chapter 2

Kinematics: Deformation

In this chapter we shall consider various geometric issues concerning the deformation of a

body. At this stage we will not address the causes of the deformation, such as the applied

loading or the temperature changes, nor will we discuss the characteristics of the material of

which the body is composed, assuming only that it can be described as a continuum. Our

focus will be on purely geometric issues1.

A roadmap of this chapter is as follows: in Section 2.1 we describe the notion of a

deformation. In Section 2.2 we introduce the central ingredient needed for describing the

deformation of an entire neighborhood of a particle – the deformation gradient tensor. Some

particular homogeneous deformations such as pure stretch, uniaxial extension and simple

shear are presented in Section 2.3. We then consider in Section 2.4 an infinitesimal curve,

surface and region in the reference configuration and examine their images in the deformed

configuration where the image and pre-image in each case is associated with the same set of

particles. A rigid deformation is described in Section 2.5. The decomposition of a general

deformation gradient tensor into the product of a rigid rotation and a pure stretch is pre-

sented in Section 2.6. Section 2.7 introduces the notion of strain, and finally we consider the

linearization of the prior results in Section 2.8.

1It is worth mentioning that in developing a continuum theory for a material, the appropriate kinematic

description of the body is not totally independent of, say, the nature of the forces. For example, in describing

the interaction between particles in a dielectric material subjected to an electric field, one has to allow for

internal forces and internal couples between every pair of points in the body. This in turn requires that the

kinematics allow for independent displacement and rotation fields in the body. In general, the kinematics

and the forces must be conjugate to each other in order to construct a self-consistent theory. This will be

made more clear in subsequent chapters.

15
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2.1 Deformation

In this chapter we will primarily be concerned with how the geometric characteristics of one

configuration of the body (the “deformed” or “current” configuration) differ from those of

some other configuration of the body (an “undeformed” or “reference” configuration). Thus

we consider two configurations in which the body occupies the respective regions2 R and

R0. The corresponding position vectors of a generic particle are y ∈ R and x ∈ R0. In this

chapter we shall consider one fixed reference configuration and therefore we can uniquely

identify a particle by its position x in that configuration. The deformation of the body from

the reference configuration to the deformed configuration is described by a mapping

y = ŷ(x) (2.1)

which takes R0 → R. We use the “hat” over y in order to distinguish the function ŷ(·) from

its value y. As we progress through these notes, we will most often omit the “hat” unless

the context does not make clear whether we are referring to ŷ or y, and/or it is essential to

emphasize the distinction.

The displacement vector field û(x) is defined on R0 by

û(x) = ŷ(x)− x; (2.2)

see Figure 2.1. In order to fully characterize the deformed configuration of the body one

must specify the function ŷ (or equivalently û) at every particle of the body, i.e. on the

entire domain R0.

We impose the physical requirements that (a) a single particle3 x will not split into two

particles and occupy two locations y(1) and y(2), and that (b) two particles x(1) and x(2) will

not coalesce into a single particle and occupy one location y. This implies that (2.1) must

be a one-to-one mapping. Consequently there exists a one-to-one inverse deformation

x = x(y) (2.3)

that carries R → R0. Since (2.3) is the inverse of (2.1), it follows that

x (ŷ(x)) = x for all x ∈ R0, ŷ (x(y)) = y for all y ∈ R. (2.4)

2In Chapter 1 we denoted the region occupied by the body in the reference configuration by Rref . Here,

we call it R0.
3Whenever there is no confusion in doing so, we shall use more convenient but less precise language such

as “the particle x” rather than “the particle p located at x in the reference configuration”.
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R R∗

x
y

e1

e2

e3

P

P′

O

u = u(x)

y = y(x) = χ(χ−1(x))

y = y(x)

y = y(x) = χ(χ−1
ref (x))

Figure 2.1: The respective regions R0 and R occupied by a body in a reference configuration and a

deformed configuration; the position vectors of a generic particle in these two configurations are denoted by

x and y. The displacement of this particle is u.

Unless explicitly stated otherwise, we will assume that ŷ(x) and x(y) are “smooth”,

or more specifically that they may each be differentiated at least twice, and that these

derivatives are continuous on the relevant regions:

ŷ ∈ C2(R0), x ∈ C2(R). (2.5)

We will relax these requirements occasionally. For example, if we consider a “dislocation” it

will be necessary to allow the displacement field to be discontinuous across a surface in the

body; and if we consider a “two-phase composite material”, we must allow the gradient of the

displacement field to be discontinuous across the interface between the different materials.

Finally, consider a fixed right-handed orthonormal basis {e1, e2, e3}. When we refer to

components of vector and tensor quantities, it will always be with respect to this basis. In

particular, the components of x and y in this basis are xi = x · ei and yi = y · ei, i = 1, 2, 3.

In terms of its components, equation (2.1) reads

yi = yi(x1, x2, x3). (2.6)

See Problems 2.1 and 2.2.
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2.2 Deformation Gradient Tensor. Deformation in the

Neighborhood of a Particle.

Let x denote the position of a generic particle of the body in the reference configuration.

Questions that we may want to ask, such as what is the state of stress at this particle? will

the material fracture at this particle? and so on, depend not only on the deformation at x but

also on the deformation of all particles in a small neighborhood of x. Thus, the deformation

in the entire neighborhood of a generic particle plays a crucial role in this subject and we now

focus on this. Thus we imagine a small ball of material centered at x and ask what happens

to this ball as a result of the deformation. Intuitively, we expect the deformation of the ball

(i.e. the local deformation near x,) to consist of a combination of a rigid translation, a rigid

rotation and a “straining”, notions that we shall make precise in what follows. The so-called

deformation gradient tensor at a generic particle x is defined by

F(x) = Grad y(x). (2.7)

This is the principal entity used to study the deformation in the immediate neighborhood of

x. The deformation gradient F(x) is a 2-tensor field and its components

Fij(x) =
∂yi(x)

∂xj
(2.8)

correspond to the elements of a 3× 3 matrix field [F (x)].

R

R

dx

dy

P

Q
P′

Q′

x

x + dx
P

Q

:

:

ŷ(x)

ŷ(x + dx)

P′

Q′
:

:

Figure 2.2: An infinitesimal material fiber in the reference and deformed configurations.

Consider two particles p and q located at x and x+dx in the reference configuration; their
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locations are depicted by P and Q in Figure 2.2. The infinitesimal material fiber4 joining

these two particles is dx. In the deformed configuration these two particles are located at

y(x) and y(x + dx) respectively, and the deformed image of this infinitesimal material fiber

is described by the vector

dy = y(x + dx)− y(x). (2.9)

Since p and q are neighboring particles we can approximate this expression for small |dx| by

the Taylor expansion

dy =
(
Grad y

)
dx + O(|dx|2) = F dx + O(|dx|2), (2.10)

which we can formally write as

dy = Fdx, (2.11)

or in terms of components as

dyi = Fij dxj or {y} = [F ] {x}. (2.12)

Note that this approximation does not assume that the deformation or deformation gradient

is small; only that the two particles p and q are close to each other.

Thus F carries an infinitesimal undeformed material fiber dx into its location dy in the

deformed configuration.

In physically realizable deformations we expect that (a) a single fiber dx will not split

into two fibers dy(1) and dy(2), and (b) that two fibers dx(1) and dx(2) will not coalesce into

a single fiber dy. This means that (2.11) must be a one-to-one relation between dx and

dy and thus that F must be non-singular. Thus in particular the Jacobian determinant, J ,

must not vanish:

J = det F 6= 0. (2.13)

Next, consider three linearly independent material fibers dx(i), i = 1, 2, 3, as shown in

Figure 2.3. The deformation carries these fibers into the three locations dy(i) = Fdx(i), i =

1, 2, 3. A deformation preserves orientation if every right-handed triplet of fibers {dx(1),

dx(2), dx(3)} is carried into a right-handed triplet of fibers {dy(1), dy(2), dy(3)}, i.e. the defor-

mation is orientation preserving if every triplet of fibers for which (dx(1) × dx(2)) · dx(3) > 0

is carried into a triplet of fibers for which (dy(1) × dy(2)) · dy(3) > 0. By using an iden-

tity established in one of the worked examples in Chapter 3 of Volume I, it follows that

4The notion of a material curve was explained at the end of Section 1.7: the fiber here being a material

fiber implies that PQ and P ′Q′ are associated with the same set of particles.
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R

dx(1)

dx(2)
dx(3)

dy(1)

dy(2)
dy(3)

P P′

n
(1)
0

n
(2)
0

dy = ndsy

R0

R

Figure 2.3: An orientation preserving deformation: the right-handed triplet of infinitesimal material fibers

dx(1),dx(2),dx(3) are carried into a right-handed triplet of fibers dy(1),dy(2),dy(3).

(dy(1) × dy(2)) · dy(3) = (Fdx(1) × Fdx(2)) · Fdx(3) = (det F) (dx(1) × dx(2)) · dx(3). Conse-

quently orientation is preserved if and only if

J = det F > 0. (2.14)

In these notes we will only consider orientation-preserving deformations5.

The deformation of a generic particle x + dx in the neighborhood of particle x can be

written formally as

y(x + dx) = y(x) + Fdx. (2.15)

Therefore in order to characterize the deformation of the entire neighborhood of x we must

know both the deformation y(x) and the deformation gradient tensor F(x) at x; y(x) char-

acterizes the translation of that neighborhood while F(x) characterizes both the rotation

and the “strain” at x as we shall see below.

A deformation y(x) is said to be homogeneous if the deformation gradient tensor is

constant on the entire region R0. Thus, a homogeneous deformation is characterized by

y(x) = Fx + b (2.16)

where F is a constant tensor and b is a constant vector. It is easy to verify that a set of

points which lie on a straight line/plane/ellipsoid in the reference configuration will continue

5Some deformations that do not preserve orientation are of physical interest, e.g. the turning of a tennis

ball inside out.
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to lie on a straight line/plane/ellipsoid in the deformed configuration if the deformation is

homogeneous.

2.3 Some Special Deformations.
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Figure 2.4: Pure homogeneous stretching of a cube. A unit cube in the reference configuration is carried

into an orthorhombic region of dimensions λ1 × λ2 × λ3.

Consider a body that occupies a unit cube in a reference configuration. Let {e1, e2, e3}
be a fixed orthonormal basis with the basis vectors aligned with the edges of the cube; see

Figure 2.4. Consider a pure homogeneous stretching of the cube,

y = Fx where F = λ1e1 ⊗ e1 + λ2e2 ⊗ e2 + λ3e3 ⊗ e3, (2.17)

where the three λ′is are positive constants. In terms of components in the basis {e1, e2, e3},
this deformation reads 

y1

y2

y3

 =


λ1 0 0

0 λ2 0

0 0 λ3




x1

x2

x3

 . (2.18)

The 1 × 1 × 1 undeformed cube is mapped by this deformation into a λ1 × λ2 × λ3

orthorhombic region R as shown in Figure 2.4. The volume of the deformed region is

λ1λ2λ3. The positive constants λ1, λ2 and λ3 here represent the ratios by which the three

edges of the cube stretch in the respective directions e1, e2, e3. Any material fiber that was
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parallel to an edge of the cube in the reference configuration simply undergoes a stretch and

no rotation under this deformation. However this is not in general true of any other material

fiber – e.g. one oriented along a diagonal of a face of the cube – which will undergo both a

length change and a rotation.

The deformation (2.17) is a pure dilatation in the special case

λ1 = λ2 = λ3

in which event F = λ1I. The volume of the deformed region is λ3
1.

If the deformation is isochoric, i.e. if the volume does not change, then λ1, λ2, λ3 must

be such that

λ1λ2λ3 = 1. (2.19)
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Figure 2.5: Uniaxial stretch in the e1-direction. A unit cube in the reference configuration is carried into

a λ1 × 1× 1 tetragonal region R in the deformed configuration.

If λ2 = λ3 = 1, then the body undergoes a uniaxial stretch in the e1-direction (and no

stretch in the e2 and e3 directions); see Figure 2.5. In this case

F = λ1e1 ⊗ e1 + e2 ⊗ e2 + e3 ⊗ e3,= I + (λ1 − 1)e1 ⊗ e1.

If λ1 > 1 the deformation is an elongation, whereas if λ1 < 1 it is a contraction. (The terms

“tensile” and “compressive” refer to stress not deformation.) More generally the deformation

y = Fx where

F = I + (λ− 1)n⊗ n, |n| = 1, (2.20)
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represents a uniaxial stretch in the direction n.

The cube is said to be subjected to a simple shearing deformation if

y = Fx where F = I + k e1 ⊗ e2

and k is a constant. In terms of components in the basis {e1, e2, e3}, this deformation reads
y1

y2

y3

 =


1 k 0

0 1 0

0 0 1




x1

x2

x3

 . (2.21)

The simple shear deformation carries the cube into the sheared region R as shown in Figure

2.6. Observe that the displacement field here is given by u(x) = y(x) − x = Fx − x =

k(e1⊗ e2)x = kx2 e1. Thus each plane x2 = constant is displaced rigidly in the x1-direction,

the amount of the displacement depending linearly on the value of x2. One refers to a plane

x2 = constant as a shearing (or glide) plane, the x1-direction as the shearing direction and k

is called the amount of shear. One can readily verify that det
(
I + k e1 ⊗ e2

)
= 1 wherefore

a simple shear automatically preserves volume; (that det F is a measure of volume change is

discussed in Section 2.4.3).

More generally the deformation y = Fx where

F = I + km⊗ n, |m| = |n| = 1, m · n = 0, (2.22)

represents a simple shear whose glide plane normal and shear direction are n and m respec-

tively.

If

λ3 = 1,

equation (2.17) describes a plane deformation in the 1, 2-plane (i.e. stretching occurs only in

the 1, 2-plane; fibers in the e3-direction remain unstretched); and a plane equi-biaxial stretch

in the 1, 2-plane if

λ1 = λ2, λ3 = 1.

If the material fibers in the direction defined by some unit vector m0 in the reference

configuration remain inextensible, then m0 and its deformed image Fm0 must have the same

length: |Fm0| = |m0| = 1 which holds if and only if

Fm0 · Fm0 = FTFm0 ·m0 = 1.
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R0
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e1

e2

R0

R
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Figure 2.6: Simple shear of a cube. Each plane x2 = constant undergoes a displacement in the x1-direction

by the amount kx2.

For example, if m0 = cos θ e1 + sin θ e2, we see by direct substitution that λ1, λ2 must obey

the constraint equation

λ2
1 cos2 θ + λ2

2 sin2 θ = 1.

Given m0, this restricts F.

We can now consider combinations of deformations, each of which is homogeneous. For

example consider a deformation y = F1F2x where F1 = I + αa ⊗ a, F2 = I + km ⊗ n,

the vectors a,m,n have unit length, and m · n = 0. This represents a simple shearing of

the body (with amount of shear k, glide plane normal n and shear direction m) in which

x → F2x, followed by a uniaxial stretching (in the a direction) in which F2x → F1(F2x);

see Figure 2.7 for an illustration of the case a = n = e2,m = e1.

The preceding deformations were all homogeneous in the sense that they were all of the

special form y = Fx where F was a constant tensor. Most deformations y = y(x) are not

of this form. A simple example of an inhomogeneous deformation is

y1 = x1 cos βx3 − x2 sin βx3,

y2 = x1 sin βx3 + x2 cos βx3,

y3 = x3.


This can be shown to represent a torsional deformation about the e3-axis in which each

plane x3 = constant rotates by an angle βx3. The matrix of components of the deformation
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R0

R

e1

Figure 2.7: A unit cube subjected to a simple shear (with glide plane normal e2) followed by a uniaxial

stretch in the direction e2.

gradient tensor associated with this deformation is

[
F
]

=

[
∂yi
∂xj

]
=


cos βx3 − sin βx3 −βx1 sin βx3 − βx2 cos βx3

sin βx3 cos βx3 βx1 cos βx3 − βx2 sin βx3

0 0 1

 ;

observe that the components Fij of the deformation gradient tensor here depend of (x1, x2, x3).

See Problems 2.3 and 2.4.

2.4 Transformation of Length, Orientation, Angle, Vol-

ume and Area.

As shown by (2.15), the deformation gradient tensor F(x) characterizes all geometric changes

in the neighborhood of the particle x. We now examine the deformation of an infinitesimal

material fiber, infinitesimal material surface and an infinitesimal material region. Specifically,

we calculate quantities such as the local 6 change in length, angle, volume and area in terms

of F(x). The change in length is related to the notion of fiber stretch (or strain), the change

in angle is related to the notion of shear strain and the change in volume is related to the

6i.e. the geometric changes of infinitesimally small line, area and volume elements at x.
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notion of volumetric (or dilatational) strain – notions that we will encounter shortly and

play an important role in this subject. The change in area is indispensable when calculating

the true stress on a surface.

2.4.1 Change of Length and Orientation.

n

dy = Fdxdsx

dsy

P

Q
P′

Q′

dx = n0dsx

dx = n0dsx

dy = ndsy

e3

n0

n

Figure 2.8: An infinitesimal material fiber: in the reference configuration it has length dsx and orientation

n0; in the deformed configuration it has length dsy and orientation n.

Suppose that we are given a material fiber that has length dsx and orientation n0 in the

reference configuration: dx = (dsx)n0. We want to calculate its length and orientation in

the deformed configuration.

If the image of this fiber in the deformed configuration has length dsy and orientation n,

then dy = (dsy)n. Since dy and dx are related by dy = Fdx, it follows that

(dsy)n = (dsx)Fn0. (2.23)

Thus the deformed length of the fiber is

dsy = |dy| = |Fdx| = dsx|Fn0|. (2.24)

The stretch ratio λ at the particle x in the direction n0 is defined as the ratio

λ = dsy/dsx (2.25)

and so

λ = |Fn0|. (2.26)
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This gives the stretch ratio λ = λ(n0) = |Fn0| of any fiber that was in the n0-direction

in the reference configuration. You might want to ask the question, among all fibers of all

orientations at x, which has the maximum stretch ratio?

The orientation n of this fiber in the deformed configuration is found from (2.23) to be

n =
Fn0

|Fn0|
. (2.27)

2.4.2 Change of Angle.
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Figure 2.9: Two infinitesimal material fibers. In the reference configurations they have equal length dsx

and directions n
(1)
0 and n

(2)
0 .

Suppose that we are given two fibers dx(1) and dx(2) in the reference configuration as

shown in Figure 2.9. They both have the same length dsx and they are oriented in the

respective directions n
(1)
0 and n

(2)
0 where n

(1)
0 and n

(2)
0 are unit vectors: dx(1) = dsxn

(1)
0 and

dx(2) = dsxn
(2)
0 . Let θx denote the angle between them: cos θx = n

(1)
0 · n(2)

0 . We want to

determine the angle between them in the deformed configuration.

In the deformed configuration these two fibers are characterized by Fdx(1) and Fdx(2).

By definition of the scalar product of two vectors Fdx(1) · Fdx(2) = |Fdx(1)||Fdx(2)| cos θy

and so the angle θy between them is found from

cos θy =
Fdx(1)

|Fdx(1)| ·
Fdx(2)

|Fdx(2)| =
Fn

(1)
0 · Fn

(2)
0

|Fn
(1)
0 ||Fn

(2)
0 |

. (2.28)
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The decrease in angle γ = θx − θy is the shear associated with the directions n
(1)
0 ,n

(2)
0 :

γ = γ(n
(1)
0 ,n

(2)
0 ). One can show that γ 6= π/2; (see Section 25 of Truesdell and Toupin).

You might want to ask the question, among all pairs of fibers at x, which pair suffers the

maximum change in angle, i.e. maximum shear?

2.4.3 Change of Volume.
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0

dy = ndsy

R0

R

Figure 2.10: Three infinitesimal material fibers defining a tetrahedral region. The volumes of the tetrahe-

drons in the reference and deformed configurations are dVx and dVy respectively.

Next, consider three linearly independent material fibers dx(i), i = 1, 2, 3, as shown in

Figure 2.10. By geometry, the volume of the tetrahedron formed by these three fibers is

dVx =

∣∣∣∣16(dx(1) × dx(2)) · dx(3)

∣∣∣∣ ;
see the related worked example in Chapter 2 of Volume I. The deformation carries these

fibers into the three fibers dy(i) = Fdx(i). The volume of the deformed tetrahedron is

dVy = |1
6
(dy(1) × dy(2)) · dy(3)| = |1

6
(Fdx(1) × Fdx(2)) · Fdx(3)|

= | det F| |1
6
(dx(1) × dx(2)) · dx(3)| = det F dVx,

where in the penultimate step we have used the identity noted just above (2.14) and the

fact that det F > 0. Thus the volumes of a differential volume element in the reference and

deformed configurations are related by

dVy = J dVx where J = det F. (2.29)
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Observe from this that a deformation preserves the volume of every infinitesimal volume

element if and only if

J(x) = 1 at all x ∈ R0. (2.30)

Such a deformation is said to be isochoric or locally volume preserving.

An incompressible material is a material that can only undergo isochoric deformations.

2.4.4 Change of Area.

Area dAx

Area dAy

R

n

dx(1)

dx(2)

dy(1)

dy(2)

R0

R

e1

e2

e3

n0

n

Figure 2.11: Two infinitesimal material fibers defining a parallelogram.

Next we consider the relationship between two area elements in the reference and de-

formed configurations. Consider the area element in the reference configuration defined by

the fibers dx(1) and dx(2) as shown in Figure 2.11. Suppose that its area is dAx and that n0

is a unit normal to this plane. Then, from the definition of the vector product,

dx(1) × dx(2) = dAx n0. (2.31)

Similarly if dAy and n are the area and the unit normal, respectively, to the surface defined

in the deformed configuration by dy(1) and dy(2), then

dy(1) × dy(2) = dAy n. (2.32)

It is worth emphasizing that the surfaces under consideration (shown shaded in Figure 2.11)

are composed of the same particles, i.e. they are “material” surfaces. Note that n0 and
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n are defined by the fact that they are normal to these material surface elements. Since

dy(i) = Fdx(i), (2.32) can be written as

Fdx(1) × Fdx(2) = dAy n. (2.33)

Then, by using an algebraic result from the relevant worked example in Chapter 3 of Volume

I, and combining (2.31) with (2.33) we find that

dAy n = dAx J F−T n0 . (2.34)

This relates the vector areas dAyn and dAxn0. By taking the magnitude of this vector

equation we find that the areas dAy and dAx are related by

dAy = dAx J |F−T n0|; (2.35)

On using (2.35) in (2.34) we find that the unit normal vectors n0 and n are related by

n =
F−Tn0

|F−Tn0|
. (2.36)

Observe that n is not in general parallel to Fn0 indicating that a material fiber in the

direction characterized by n0 is not mapped into a fiber in the direction n. As noted previ-

ously, n0 and n are defined by the fact that they are normal to the material surface elements

being considered; not by the fact that one is the image of the other under the deformation.

The particles that lie along the fiber n0 are mapped by F into a fiber that is in the direction

of Fn0 which is not generally perpendicular to the plane defined by dy(1) and dy(2).

See Problems 2.5 - 2.10.

2.5 Rigid Deformation.

We now consider the special case of a rigid deformation. A deformation is said to be rigid

if the distance between all pairs of particles is preserved under the deformation, i.e. if the

distance |z− x| between any two particles x and z in the reference configuration equals the

distance |y(z)− y(x)| between them in the deformed configuration:

|y(z)−y(x)|2 =
[
yi(z)−yi(x)

][
yi(z)−yi(x)

]
= (zi−xi)(zi−xi) for all x, z ∈ R0. (2.37)
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Since (2.37) holds for all x, we may take its derivative with respect to xj to get

−2Fij(x) (yi(z)− yi(x)) = −2(zj − xj) for all x, z ∈ R0, (2.38)

where Fij(x) = ∂yi(x)/∂xj are the components of the deformation gradient tensor. Since

(2.38) holds for all z we may take its derivative with respect to zk to obtain Fij(x)Fik(z) = δjk,

i.e.

FT (x)F(z) = 1 for all x, z ∈ R0. (2.39)

Finally, since (2.39) holds for all x and all z, we can take x = z in (2.39) to get

FT (x)F(x) = I for all x ∈ R0. (2.40)

Thus we conclude that F(x) is an orthogonal tensor at each x. In fact, since detF > 0, it is

proper orthogonal and therefore represents a rotation.

The (possible) dependence of F on x implies that F might be a different proper orthogonal

tensor at different points x in the body. However, returning to (2.39), multiplying both sides

of it by F(x) and recalling that F is orthogonal gives

F(z) = F(x) at all x, z ∈ R0; (2.41)

(2.41) implies that F(x) is a constant tensor.

In conclusion, the deformation gradient tensor associated with a rigid deformation is a

constant rotation tensor. Thus at all x ∈ R0 we can denote F(x) = Q where Q is a constant

proper orthogonal tensor. Thus necessarily a rigid deformation has the form

y = y(x) = Qx + b (2.42)

where Q is a constant rotation tensor and b is a constant vector. Conversely it is easy to

verify that (2.42) satisfies (2.37).

A rigid material (or rigid body) is a material that can only undergo rigid deformations.

One can readily verify from (2.42) and the results of the previous section that in a rigid

deformation the length of every fiber remains unchanged; the angle between every two fibers

remains unchanged; the volume of any differential element remains unchanged; and the unit

vectors n0 and n normal to a surface in the reference and deformed configurations are simply

related by n = Qn0.
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2.6 Decomposition of Deformation Gradient Tensor into

a Rotation and a Stretch.

As mentioned repeatedly above, the deformation gradient tensor F(x) completely charac-

terizes the deformation in the vicinity of the particle x. Part of this deformation is a rigid

rotation, the rest is a “distortion” or “strain”. The central question is “which part of F

is the rotation and which part is the strain?” The answer to this is provided by the polar

decomposition theorem discussed in Chapter 2 of Volume I. According to this theorem, every

nonsingular tensor F with positive determinant can be written uniquely as the product of a

proper orthogonal tensor R and a symmetric positive definite tensor U as

F = R U; (2.43)

R represents the rotational part of F while U represents the part that is not a rotation. It

is readily seen from (2.43) that U is given by the positive definite square root

U =
√

FTF (2.44)

so that R is then given by

R = FU−1. (2.45)

Since a generic undeformed material fiber is carried by the deformation from dx→ dy =

F dx, we can write the relationship between the two fibers as

dy = R (Udx). (2.46)

This allows us to view the deformation of the fiber in two-steps: first, the fiber dx is taken by

the deformation to Udx, and then, it is rotated rigidly by R: dx→ Udx→ R(Udx) = dy.

The essential property of U is that it is symmetric and positive definite. This allows

us to physically interpret U as follows: since U is symmetric, it has three real eigenvalues

λ1, λ2 and λ3, and a corresponding triplet of orthonormal eigenvectors r1, r2 and r3. Since

U is positive definite, all three eigenvalues are positive. Thus the matrix of components of

U in the principal basis {r1, r2, r3} is

[U ] =

 λ1 0 0

0 λ2 0

0 0 λ3

 , λi > 0. (2.47)
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If the components of dx in this principal basis are

{dx} =

 dx1

dx2

dx3

 then [U ] {dx} =

 λ1dx1

λ2dx2

λ3dx3

 .

Thus when dx → Udx, the fiber dx is stretched by the tensor U in the principal directions

of U by amounts given by the corresponding eigenvalues of U. The tensor U is called the

right stretch tensor.

The stretched fiber U dx is now taken by the rigid rotation R from Udx → R(Udx).

Note that in general, the fiber dx will rotate while it undergoes the stretching deformation

dx → Udx, since dx is not necessarily parallel to Udx; however this is not a rigid rotation

since the length of the fiber also changes.

The alternative version of the polar decomposition theorem (Chapter 2 of Volume I) pro-

vides a second representation for F. According to this part of the theorem, every nonsingular

tensor F with positive determinant can be written uniquely as the product of a symmetric

positive definite tensor V with a proper orthogonal tensor R as

F = VR; (2.48)

the tensor R here is identical to that in the preceding representation and represents the

rotational part of F. It is readily seen from (2.48) that V is given by

V =
√

FFT (2.49)

and that R is given by

R = V−1F. (2.50)

Since R = V−1F = FU−1 it follows that V = FUF−1.

A generic undeformed fiber dx can therefore alternatively be related to its image dy in

the deformed configuration by

dy = V (R dx), (2.51)

and so we can view the deformation of the fiber as first, a rigid rotation from dx to R dx,

followed by a stretching by V. Since V is symmetric and positive definite, all three of its

eigenvalues, λ1, λ2 and λ3 are real and positive; moreover the corresponding eigenvectors

form an orthonormal basis {`1, `2, `3} – a principal basis of V. Thus the deformation can

alternatively be viewed as, first, a rigid rotation of the fiber by the tensor R followed by
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stretching in the principal directions of V: dx → Rdx → V(Rdx). The tensor V is called

the left stretch tensor.

It is easy to show that the eigenvalues λ1, λ2 and λ3 of U are identical to those of

V. Moreover one can show that the eigenvectors by {r1, r2, r3} of U are related to the

eigenvectors {`1, `2, `3} of V by `i = Rri, i = 1, 2, 3. The common eigenvalues of U and

V, are known as the principal stretches associated with the deformation (at x). The stretch

tensors U and V can be expressed in terms of their eigenvectors and eigenvalues as

U =
3∑
i=1

λiri ⊗ ri, V =
3∑
i=1

λi`i ⊗ `i; (2.52)

see Section 2.2 of Volume I. As shown in one of the worked examples in Chapter 2 of Volume

I, we also have the representations

F =
3∑
i=1

λi`i ⊗ ri, R =
3∑
i=1

`i ⊗ ri. (2.53)

The expressions (2.24), (2.27), (2.28), (2.29) and (2.35) describe changes in length, ori-

entation, angle, volume and area in terms of the deformation gradient tensor F. Since a

rotation does not change length, angle, area and volume we expect that these equations

(except for the one for orientation) should be independent of the rotation tensor R in the

polar decomposition. By using F = RU in (2.24), (2.28), (2.29) and (2.35) it is readily seen

that they can be expressed in terms of U as

dsy = dsx
√

U2n0 · n0,

cos θy =
U2n

(1)
0 · n(2)

0√
U2n

(1)
0 · n(1)

0

√
U2n

(2)
0 · n(2)

0

,

dVy = dVx det U,

dAy = dAx (det U)|U−1n0|,


(2.54)

which emphasizes the fact that these changes depend only on the stretch tensor U and not

the rotational part R of the deformation gradient tensor7. The formula (2.27) for the change

of orientation of a fiber takes the form

n = R
Un0

|Un0|
, (2.55)

7Recall that for any tensor A and any two vectors x and y, we have Ax · y = x ·ATy.
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which shows that the orientation of a fiber changes due to both stretching and rotation.

Observe that the expressions in (2.54) give us information about the deformed images of

various geometric entities, given their pre-images in the reference configuration; for exam-

ple, the right hand side of (2.54)1 involves the orientation n0 of the fiber in the reference

configuration; the right hand side of (2.54)2 involves the orientations n
(1)
0 and n

(2)
0 of the two

fibers in the reference configuration; and so on.

If instead, the geometric entities are given in the deformed configuration, and we want to

determine the geometric properties of their pre-images in the reference configuration, these

can be readily calculated in terms of the left stretch tensor V. Consider, for example, a fiber

which in the deformed configuration has length dsy and orientation n. Then its length dsx

in the reference configuration can be calculated as follows:

dsx = |dx| = |F−1dy| = |R−1V−1dy| = |V−1dy| = dsy |V−1n| . (2.56)

Similarly, if two fibers dsyn
(1) and dsyn

(2) in the deformed configuration are given and

they subtend an angle θy, then the angle θx that their pre-images subtend in the reference

configuration is given by

cos θx =
V−2n(1) · n(2)

√
V−2n(1) · n(1)

√
V−2n(2) · n(2)

. (2.57)

Similarly an expression for the volume dVx in the reference configuration of a differential

volume element can be calculated in terms of the volume dVy in the deformed configuration

and the stretch tensor V; and likewise an expression for the area dAx in the reference

configuration of a differential area element can be calculated in terms of the area dAy and

unit normal n in the deformed configuration and the stretch tensor V.

Thus we see that the left stretch tensor V allows us to compute geometric quantities

in the reference configuration in terms of their images in the deformed configuration; and

that similarly the right stretch tensor U allows us to compute geometric quantities in the

deformed configuration in terms of their pre-images in the reference configuration. In this

sense we can view U and V as, respectively, Lagrangian and Eulerian stretch tensors.

Remark: It is quite tedious to calculate the tensors U = (FTF)1/2 and V = (FFT )1/2.

However, since there is a one-to-one relation between U and U2, and similarly between V

and V2, we can just as well use U2 and V2 as our measures of stretch; these are usually

denoted by C and B:

C = FTF = U2, B = FFT = V2, (2.58)
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and are referred to as the right and left Cauchy–Green deformation tensors respectively.

Note that the eigenvalues of C and B are λ2
1, λ

2
2 and λ2

3, where λi are the principal stretches,

and that the eigenvectors of C and B are the same as those of U and V respectively. The

two Cauchy-Green tensors admit the spectral representations

C =
3∑
i=1

λ2
i (ri ⊗ ri), B =

3∑
i=1

λ2
i (`i ⊗ `i). (2.59)

The particular scalar-valued functions of C

I1(C) = tr C, I2(C) =
1

2

[
tr C2 −

(
tr C

)2
]
, I3(C) = det C, (2.60)

are called the principal scalar invariants of C. It can be readily verified that these functions

have the property that for each symmetric tensor C,

Ii(C) = Ii(QCQT ), i = 1, 2, 3, (2.61)

for all orthogonal tensors Q. They are invariant scalar-valued functions in this sense. Finally,

it can be shown that they satisfy the identity

det(C− µI) = −µ3 + I1(C)µ2 − I2(C)µ+ I3(C)

for all scalars µ.

The principal scalar invariants can be written in terms of the principal stretches as

I1(C) = λ2
1 + λ2

2 + λ2
3, I2(C) = λ2

1λ
2
2 + λ2

2λ
2
3 + λ2

3λ
2
1, I3(C) = λ2

1λ
2
2λ

2
3. (2.62)

The principal scalar invariants of B and C coincide:

Ii(C) = Ii(B), i = 1, 2, 3.

See Problem 2.11.

2.7 Strain.

It is clear that U and V are the essential ingredients that characterize the non-rigid part

of the deformation. If “the body is not deformed”, i.e. the deformed configuration happens
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to coincide with the reference configuration, the deformation is given by y(x) = x for all

x ∈ R0, and therefore F = I and U = V = I. Thus the stretch equals the identity I in the

reference configuration. “Strain” on the other hand customarily vanishes in the reference

configuration. Thus strain is simply an alternative measure for the non-rigid part of the

deformation chosen such that it vanishes in the reference configuration. This is the only

essential difference between stretch and strain. Thus for example we could take U − I for

the strain where U is the stretch.

Various measures of Lagrangian strain and Eulerian strain are used in the literature,

examples of which we shall describe below. It should be pointed out that continuum theory

does not prefer8 one strain measure over another; each is a one-to-one function of the stretch

tensor and so all strain measures are equivalent. In fact, one does not even have to introduce

the notion of strain and the theory could be based entirely on the stretch tensors U and V.

The various measures of Lagrangian strain used in the literature are all related to the

stretch U in a one-to-one manner. Examples include the Green strain, the generalized Green

strain and the Hencky (or logarithmic) strain, defined by the respective expressions

1

2
(U2 − I),

1

m
(Um − I) and ln U, (2.63)

where m is a non-zero integer9. The principal directions of each of these strain tensors are

the same as those of U, i.e. {r1, r2, r3}; the associated principal strains are

1
2
(λ2

i − 1), 1
m

(λmi − 1), and lnλi (2.64)

respectively.

Similarly, various measures of Eulerian strain are used in the literature, all of them being

related to the stretch V in a one-to-one manner. Examples include the Almansi strain, the

generalized Almansi strain and the logarithmic strain, defined by the respective expressions

1

2
(I−V−2),

1

m
(Vm − I), and ln V (2.65)

8It sometimes happens that the constitutive description of a particular material takes an especially simple

form when one particular strain measure is used in its characterization, while a different strain measure might

lead to a simple constitutive description for some other material. This might then lead to a preference for

one strain measure over another for a particular material.

9Recall that the logarithm of the symmetric positive definite tensor U is defined by lnU =

3∑
i=1

lnλi (ri⊗ri)

where λi and ri are eigenvalues and eigenvectors of U.
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where m is a non-zero integer. The principal directions of each of these strain tensors are

the same as those of V, i.e. {`1, `2, `3}.

The preceding examples may be unified and generalized as follows: Let e(·) be a(ny)

scalar valued function that is defined on (0,∞) such that

a) e(1) = 0,

b) e′(1) = 1,

c) e′(λ) > 0 for all λ > 0.

(2.66)

Then, one can define the Lagrangian strain tensor E(U) to be the tensor with eigenvectors

ri and corresponding eigenvalues e(λi), i.e.

E =
3∑
i=1

e(λi)(ri ⊗ ri). (2.67)

The condition (2.66)1 ensures that E = O if the deformed configuration coincides with

the reference configuration. As we shall see shortly, condition (2.66)2 ensures that E(U)

linearizes to the classical infinitesimal strain tensor10. Condition (2.66)3 ensures that each

principal strain e(λi) increases monotonically with the corresponding principal stretch λi;

note that, necessarily, the principal strain is positive for extensions (λi > 1) and negative

for contractions (λi < 1).

Observe that all of these Lagrangian strain tensors are symmetric. Their diagonal compo-

nents E11, E22 and E33 are known as the normal components of strain, while the off-diagonal

components E12, E23 and E31 are the shear components of strain. Since E is symmetric, it

follows that it has a principal basis which is in fact {r1, r2, r3}; in this basis, its matrix of

components is diagonal; the shear components of strain vanish in this basis and the normal

components are the principal strains.

A generalized Eulerian strain tensor can be defined analogously.

The Green strain tensor E is defined by

E =
1

2
(U2 − I) =

1

2
(FTF− I) =

1

2

(
Grad u + (Grad u)T + (Grad u)TGrad u

)
, (2.68)

where u is the displacement vector. It has components

Eij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

+
∂uk
∂xi

∂uk
∂xj

)
. (2.69)

10Note that for values of λ close to unity, equations (2.66)1,2 leads to e(λ) ≈ λ − 1 = (dsy − dsx)/dsx

which is the familiar definition of normal strain in infinitesimal deformation theory.
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The expression (2.54)1 for change in length of a fiber can be written in terms of the Green

strain as

dsy = dsx
√

1 + 2En0 · n0, (2.70)

which allows us to calculate the change in length of the fiber, per unit reference length, as

dsy − dsx
dsx

=
√

1 + 2En0 · n0 − 1. (2.71)

Equation (2.71) characterizes the relative elongation, or normal strain, in the arbitrary fiber

direction n0. As a special case, consider a fiber which is oriented in the direction n0 = e1.

Then (2.71) yields
dsy − dsx

dsx
=
√

1 + 2E11 − 1; (2.72)

observe that this expression only involves the strain E11. Thus in general, the normal com-

ponents of strain E11, E22 and E33 characterize length changes in the respective coordinate

directions x1, x2 and x3. Similarly, the expression (2.54)2 for the change in angle between

two fibers can be written in terms of the Green strain as

cos θy =
(I + 2E)n

(1)
0 · n(2)

0√
(I + 2E)n

(1)
0 · n(1)

0

√
(I + 2E)n

(2)
0 · n(2)

0

. (2.73)

As a special case take n
(1)
0 = e1 and n

(2)
0 = e2 so that in the reference configuration the two

fibers are oriented in the x1- and x2-directions. Then the preceding equation simplifies to

cos θy =
2E12√

(1 + 2E11)
√

(1 + 2E22)
(2.74)

showing that the angle between these two fibers in the deformed configuration depends on

the shear strain E12 and the normal strains E11 and E22.

See Problems 2.12 and 2.13.

2.8 Linearization.

The displacement u(x) at a particle x is defined by

u(x) = y(x)− x, (2.75)
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and the displacement gradient tensor

H(x) = Grad u(x) (2.76)

has components

Hij =
∂ui
∂xj

. (2.77)

From (2.2), (2.76) it follows that the displacement gradient H and the deformation gradient

F are related by

H = F− I. (2.78)

Since the various kinematic quantities encountered previously, such as the stretches U,V,

the rotation R and the strain E, were expressed in terms of the deformation gradient tensor

F, they can all be represented instead in terms of the displacement gradient tensor H. In

many physical circumstances the displacement gradient H is “small”. This will be made

precise below, and our goal in this section is to derive approximations for U,V,R,E etc. in

this special case.

To this end we note three preliminary algebraic results. First, recall from Volume I, that

the norm (or magnitude) of a tensor A is defined as

|A| =
√

A ·A =

√
trace(ATA). (2.79)

Observe that (i) |A| > 0 for all A 6= 0; that (ii) in terms of the components Aij of A in any

orthonormal basis,

|A| = (A2
11 + A2

12 + A2
13 + A2

21 + · · ·+ A2
33)1/2, (2.80)

and therefore that (iii) if |A| → 0 then each component Aij → 0 as well.

Second, let Z(H) be a function that is defined for all 2-tensors H and whose values are

also 2-tensors. We say that Z(H) = O(|H|n) as |H| → 0 if there exists a number α > 0 such

that |Z(H)| < α|H|n as |H| → 0.

And third, if A is any symmetric tensor, and m is a real number, then

(I + A)m = I +mA + B where |B| = O(|A|2) as |A| → 0 (2.81)

which can be readily established in a principal basis of A.
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We are now in a position to linearize our preceding kinematic quantities in the special

case when H = Grad u = F− I is small. To this end we set

|H| = ε (2.82)

and conclude that as ε→ 0,

U2 = FTF = I + H + HT +O(ε2),

V2 = FFT = I + H + HT +O(ε2),

U =
√

U2 = I + 1
2
(H + HT ) +O(ε2),

V =
√

V2 = I + 1
2
(H + HT ) +O(ε2),

R = FU−1 = I + 1
2
(H−HT ) +O(ε2),

(2.83)

where we have used (2.81) in deriving the last three equations here. Using the properties of

e(·), we can linearize the Lagrangian strain tensor (2.67) to get

E(U) =
∑
i

e(λi)ri ⊗ ri =
∑
i

(λi − 1)ri ⊗ ri +O
(
ε2
)
. (2.84)

Finally, we define two 2-tensors ε and ω by

ε
def
= 1

2
(H + HT ) and ω

def
= 1

2
(H−HT), (2.85)

which in component form reads

εij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
, ωij =

1

2

(
∂ui
∂xj
− ∂uj
∂xi

)
. (2.86)

Observe that the stretch tensors can be approximated as

U = I + ε+O
(
ε2
)
, V = I + ε+O

(
ε2
)
, (2.87)

that the general Lagrangian strain tensor E can be approximated as

E = ε+O
(
ε2
)
, (2.88)

and that the rotation tensor R can be approximated as

R = I + ω +O
(
ε2
)
. (2.89)
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The tensors ε and ω are known as the infinitesimal strain tensor and the infinitesimal rota-

tion tensor respectively and play a central role in the theory of solids undergoing infinitesimal

deformations. Note that if εi is an eigenvalue of ε then

λi = 1 + εi +O(ε2). (2.90)

Remark: It is useful to observe from (2.11), (2.78) and (2.85) that a fiber dx in the reference

configuration and its image dy in the deformed configuration are related by

dy = dx + ε dx + ω dx +O(ε2), (2.91)

which expresses the fact that, in the linearized theory, the local deformation can be addi-

tively decomposed into a strain and a rotation. This is in contrast to the multiplicative

decomposition dy = RUdx for a finite deformation.

Remark: The linearized versions of equations (2.72) and (2.74) read

ε11 ≈
dsy − dsx

dsx
, ε12 ≈

1

2
cos θy ≈

1

2
(π/2− θy). (2.92)

It follows from this that when the deformation is infinitesimal, the normal strain component

ε11 represents the change in length per reference length of a fiber that was in the x1-direction

in the reference configuration; and that the shear strain component ε12 represents one half

the decrease in angle between two fibers that were in the x1- and x2-directions in the reference

configuration.

Remark: There are certain physical circumstances in which one wants to carry out a different

linearization (i.e., linearization based on the smallness of some other quantity, not Grad u).

For example, consider rolling up a sheet of paper. The rolled-up configuration is the deformed

configuration; the flat one is the reference one. In this situation one has large rotations R

but small strains U−I. Thus one might wish to linearize based on the assumption that U−I

is small (but leave R arbitrary). Note that under these conditions H may not be small.

See Problem 2.14.

2.9 Worked Examples and Exercises.

Problem 2.1. A body occupies a hollow circular cylindrical region R0 in a reference configuration where

R0 has inner radius a, outer radius b and length L: R0 = {(x1, x2, x3) : a < (x2
1 + x2

2)1/2 < b, 0 < x3 < L}.
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All components of vectors are taken with respect to the basis {e1, e2, e3} shown in the figure. A particle

located at (x1, x2, x3) in the reference configuration is carried to the location (y1, y2, y3) by the deformation

y1 = f(r)
[
x1 cosφ(x3)− x2 sinφ(x3)

]
,

y2 = f(r)
[
x2 cosφ(x3) + x1 sinφ(x3)

]
,

y3 = λx3;

 (a)

where r = (x2
1 + x2

2)1/2. Here φ(x3) is a given smooth function defined on (0, L) and λ > 0 is a constant.

Describe the physical nature of this deformation.

!

"

#

!
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%!$ &"

!'()'()'("" # *

Figure 2.12: Cross-section of the region R0 occupied by the body in a reference configuration: a hollow

circular cylinder of inner radius a, outer radius b (and length L).

Solution: First, from (a)3 it is clear that this deformation describes a uniform stretching of the cylinder in

the x3-direction. Thus in particular, the deformed length of the cylinder is λL.

The cylindrical polar coordinates (r, θ, z) of a particle in the reference configuration are related to the

rectangular cartesian coordinates (x1, x2, x3) by

x1 = r cos θ, x2 = r sin θ, x3 = z. (b)

On substituting (b) into (a) and using a standard trigonometric identity one gets

y1 = rf(r) cos
(
θ + φ(z)

)
, y2 = rf(r) sin

(
θ + φ(z)

)
, y3 = λz. (c)

Observe from (c) that

y2
1 + y2

2 =
(
rf(r))

)2

.

Therefore the particles that lie on any circle r = c = constant in the reference configuration are carried by

the deformation onto a circle in the deformed configuration of radius cf(c). Thus the cylinder undergoes a
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radial expansion (if f(c) > 1) or radial contraction (if f(c) < 1). The function f(r) is related to the radial

deformation of the cylinder.

Finally observe from (c) that
y2

y1
= tan

(
θ + φ(z)

)
. (d)

Therefore the points that lie on any radial straight line θ = c = constant, z = constant in the reference

configuration are carried by the deformation onto the radial straight line defined by (d). Therefore cross-

sections of the cylinder are twisted by this deformation. According to (d), the cross-section at z = c =

constant is rotated by the angle φ(c).

Problem 2.2. Bending of a slab.

Figure 2.13: Slab-like region R0 = {(x1, x2, x3) | 0 ≤ x1 ≤ L,−h ≤ x2 ≤ h,−b/2 ≤ x3 ≤ b/2} occupied by

a body in the reference configuration.

Consider a body that occupies the slab-like region R0 = {(x1, x2, x3) | 0 ≤ x1 ≤ L,−h ≤ x2 ≤ h,−b/2 ≤
x3 ≤ b/2} in a reference configuration. Figure 2.13 shows a side view of this slab looking down the x3-

axis. The slab is subjected to a deformation that carries it into the region R shown in Figure 2.14. More

specifically, the body is subjected to a deformation that has the following properties:

i) The displacement vector of every particle is parallel to the (x1, x2)-plane.

ii) Every plane x3 = constant in R0 deforms identically. Consequently one can treat this as a two-

dimensional problem and work on the (x1, x2)-plane.

iii) Each straight line x1 = constant is carried into a straight line in the deformed configuration, (e.g. AE

→ A′E′, MN → M′N′, BD → B′D′ etc.); moreover, the family of such straight lines corresponding to

the various values of x1 all pass through the same point (y1, y2) = (0, γL), see Figure 2.14.

iv) Each straight line x2 = constant is deformed into a circular arc centered at (0, γL) as shown in Figure

2.14, (e.g. AB → A′B′, PQ → P′Q′, OC → O′C′ etc.).
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(0, L)
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Figure 2.14: The region occupied by the deformed body. The points P′, Q′, M′, N′, etc. are the images

in the deformed configuration of the points P, Q, M, N, etc. in the reference configuration. Vertical straight

lines, e.g. MN, in the reference configuration are mapped into straight lines, e.g. M′N′, that pass through

the point (0, γL). Horizontal straight lines in the reference configuration, e.g. PQ, are carried into circular

arcs, e.g. P′Q′

Determine the mathematical characterization, yi = yi(x1, x2, x3), of this deformation.

Solution: Since no particle has a displacement component in the e3-direction it follows that u3(x1, x2, x3)

= 0 and therefore that

y3(x1, x2, x3) = x3 for all (x1, x2, x3) ∈ R0.

Moreover, since every plane x3 = constant deforms identically, it follows that y1(x1, x2, x3) and y2(x1, x2, x3)

are independent of x3:

y1 = y1(x1, x2), y2 = y2(x1, x2) for all (x1, x2, x3) ∈ R0, (a)

where y1(x1, x2) and y2(x1, x2) are to be determined.

Given the shape of the domainR it seems natural to consider polar coordinates (r, θ) centered at the point

(0, γL) to describe the deformed geometry. Thus instead of the representation (a) we can write equivalently

write

y1 = r(x1, x2) sin θ(x1, x2), y2 = γL− r(x1, x2) cos θ(x1, x2),

where r(x1, x2) and θ(x1, x2) are to be determined.

Since a straight line x1 = constant maps into a straight line θ = constant it follows that θ(x1, x2) cannot
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depend on x2 and so

θ = θ(x1).

Next, since a straight line x2 = constant maps into the arc of a circle r = constant it follows that r(x1, x2)

cannot depend on x1 and so

r = r(x2).

Thus in summary the deformation from (x1, x2)→ (y1, y2) described in the problem is characterized by

y1 = r(x2) sin θ(x1), y2 = γL− r(x2) cos θ(x1) (a)

where r(x1) > 0 and θ(x2) ∈ [0, 2π) are arbitrary functions.

Problem 2.3. [Truesdell and Toupin]

(a) Show that an arbitrary homogeneous deformation can be decomposed into the product of a simple

shear, a uniaxial extension normal to the plane of shear, a pure dilatation, and a rotation.

(b) Show that an arbitrary homogeneous deformation can be decomposed into the product of three simple

shears on mutually orthogonal planes, a pure dilatation, and a rotation.

Problem 2.4.

a. Let y = F1x and y = F2x be two arbitrary homogeneous deformations. Suppose that the deformation

y = F1F2x is a simple shear. Then, is the deformation y = F2F1x also a simple shear? If it is a

simple shear (either in general or under special circumstances), what is the associated amount of

shear, glide plane normal and direction of shear?

b. Under what conditions (if any) are two simple shears commutative? That is, suppose that y = F1x

and y = F2x represent two (distinct) simple shear deformations. Then consider the two deformations

y = F1F2x and y = F2F1x which arise by sequentially applying the preceding simple shears. The

question asks you to determine the conditions under which the deformations y = F1F2x and y =

F2F1x are identical.

Problem 2.5. Suppose that the region R0 occupied by a body in a reference configuration is a unit cube.

The body undergoes the homogeneous deformation y = Fx described by

y1 = λ1x1, y2 = λ2x2, y3 = λ3x3,

where the components here have been taken with respect to an orthonormal basis {e1, e2, e3} that is aligned

with the axes of the cube. Derive relationships between the principal stretches in each of the following cases:
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Figure 2.15: Unit cube R0 occupied by a body in its reference configuration.

(a) The body is composed of an incompressible material.

(b) The length of the fiber OP remains unchanged by the deformation.

(c) The angle between the fibers OP and QR remains unchanged by the deformation.

(d) The area of the plane RSQT remains unchanged by the deformation.

(e) The orientation of the plane RSQT remains unchanged by the deformation.

Solution: All components of vectors and tensors will be taken with respect to the orthonormal basis

{e1, e2, e3}. In particular the matrix of components of the deformation gradient tensor is

[F ] =


λ1 0 0

0 λ2 0

0 0 λ3

 and J = det[F ] = λ1λ2λ3.

(a) In general, volume elements in the reference and deformed configurations are related by dVy = JdVx.

If the material is incompressible then dVy = dVx and so J = 1. Thus if the material is incompressible, the

deformation must be such that

λ1λ2λ3 = 1.

(b) In general, a fiber dsxn0 in the reference configuration has length dsy = dsx|Fn0| in the deformed

configuration. Thus if the fiber does not change length, then dsx = dsy and so |Fn0| = 1. Here, the fiber
→

OP can be expressed as
→

OP= e1 + e2 + e3 =
√

3n0

where the unit vector n0 defines the direction of
→

OP and is given by

n0 =
e1 + e2 + e3√

3
.
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Thus

[F ]{n0} =


λ1 0 0

0 λ2 0

0 0 λ3




1/
√

3

1/
√

3

1/
√

3

 =


λ1/
√

3

λ2/
√

3

λ3/
√

3

 .

Since the fiber
→

OP does not change length we must have |Fn0| = 1, and so the deformation must be such

that
λ2

1

3
+
λ2

2

3
+
λ2

3

3
= 1.

(c) In general, the angle θx between two material fibers that are in the directions of the unit vectors n
(1)
0 and

n
(2)
0 in the reference configuration is given by cos θx = n

(1)
0 ·n

(2)
0 . The angle θy in the deformed configuration

between these same two fibers is given by cos θy = (Fn
(1)
0 /|Fn(1)

0 |)·(Fn
(2)
0 /|Fn(2)

0 |). Thus if the angle remains

unchanged by the deformation we must have

Fn
(1)
0

|Fn(1)
0 |
· Fn

(2)
0

|Fn(2)
0 |

= n
(1)
0 · n

(2)
0 .

Here, the material fibers
→

OP and
→

QR are described by

→
OP =

√
3n

(1)
0 where the unit vector n

(1)
0 = (e1 + e2 + e3)/

√
3, and

→
QR =

√
3n

(2)
0 where the unit vector n

(2)
0 = (e1 − e2 − e3)/

√
3.

Thus

cos θx = n
(1)
0 · n

(2)
0 =

(
1.1 + 1.(−1) + 1.(−1)

)1

3
= −1

3
.

Moreover, from the preceding we have

[F ]{n(1)
0 } =


λ1 0 0

0 λ2 0

0 0 λ3




1/
√

3

1/
√

3

1/
√

3

 =


λ1/
√

3

λ2/
√

3

λ3/
√

3

 , |Fn(1)
0 | =

√
λ2

1

3
+
λ2

2

3
+
λ2

3

3
,

and

[F ]{n(2)
0 } =


λ1 0 0

0 λ2 0

0 0 λ3




1/
√

3

−1/
√

3

−1/
√

3

 =


λ1/
√

3

−λ2/
√

3

−λ3/
√

3

 , |Fn(2)
0 | =

√
λ2

1

3
+
λ2

2

3
+
λ2

3

3
.

Thus

cos θy =
Fn

(1)
0

|Fn(1)
0 |
· Fn

(2)
0

|Fn(2)
0 |

=
(λ2

1

3
− λ2

2

3
− λ2

3

3

)/(λ2
1

3
+
λ2

2

3
+
λ2

3

3

)
.

Since θx = θy it follows that cos θy = cos θx = −1/3 and therefore that(
λ2

1 − λ2
2 − λ2

3

)(
λ2

1 + λ2
2 + λ2

3

) = −1

3
,
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i.e.,

2λ2
1 = λ2

2 + λ2
3.

Thus if the angle between
→

OP and
→

QR is to remain unchanged, the deformation must satisfy the above

restriction.

(d) In general, differential elements of area in the reference and deformed configurations are related by

dAy = J |F−Tm0| dAx. If a particular area element remains unchanged, dAy = dAx, the deformation must

be much that J |F−Tm0| = 1. Here, a unit vector normal to the plane RSQT is

m0 =
1√
2

(
e1 + e2

)
.

Since the matrix of components [F ] is diagonal we have [F ] = [F ]T . Moreover [F ]−1 is also diagonal and its

components are the reciprocals of the components of [F ]. Thus

[F ]−T {m0} =


1/λ1 0 0

0 1/λ2 0

0 0 1/λ3




1/
√

2

1/
√

2

0

 =


1/(λ1

√
2)

1/(λ2

√
2)

0

 .

Thus the area of RSQT is preserved if J |F−Tm0| = 1, i.e.

λ1λ2λ3

(
1

2λ2
1

+
1

2λ2
2

)1/2

= 1.

(e) If the orientation of an area element does not change in a deformation, then m0 = m where m0 and

m are unit normal vectors to the reference and deformed area elements respectively. In general, m =

F−Tm0/|F−Tm0|, and so if the orientation does not change, we must have F−Tm0 = |F−Tm0|m0. In the

specific case of the plane RSQT, we can substitute the preceding expressions for F and m into this equation

and simplify the result to get

λ1 = λ2

which is precisely what one would expect intuitively.

Problem 2.6. (a) Under what conditions does the orientation of a material fiber remain unchanged (in-

variant) in a given deformation?

(b) The region R0 occupied by a body in a reference configuration is a unit cube. The orthonormal

basis vectors {e1, e2, e3} are aligned with the edges of the cube. Consider the following volume preserving

deformation:

y =
(
λ1e1 ⊗ e1 + λ2e2 ⊗ e2 + e3 ⊗ e3

)(
I + k e1 ⊗ e2

)
x, λ1 6= 1, λ2 6= 1, k 6= 0.

Describe the physical nature of this deformation, and thus, based on your intuition, list the invariant direc-

tions.
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(c) Now show mathematically that there are exactly three material directions whose orientations remain

invariant in this deformation and determine these directions.

Solution: Consider a material fiber that in the reference configuration is oriented in the direction of the

unit vector m0. In the deformed configuration we know that this fiber will be in the direction of the vector

Fm0. Thus if the direction of this fiber remains unchanged m0 is parallel to Fm0 and so for some scalar µ

we must have

Fm0 = µm0.

Remark: This states that m0 is an eigenvector of F. Since F is not symmetric in general, it may not have

a full complement of real eigenvalues and eigenvectors. In three dimensional space, F has three eigenvalues.

If one eigenvalue is complex, its complex conjugate is also an eigenvalue. Thus complex eigenvalues occur in

pairs. Therefore F, in three dimensions, has either zero or two complex eigenvalues; or equivalently it has

either one or three real eigenvalues. Thus an arbitrary deformation gradient tensor F will have (in general)

either one or three directions that remain invariant. There maybe more than this many directions if the real

eigenvalues are repeated.

The given deformation has the form y = F2F1x and so it can be viewed in two steps. First x → F1x

and then F1x→ F2(F1x). The tensor
(
I + k e1 ⊗ e2

)
, i.e. F1, represents a simple shear in the x1, x2-plane

with the direction of shearing being e1. The tensor
(
λ1e1 ⊗ e1 + λ2e2 ⊗ e2 + e3 ⊗ e3

)
, i.e. F2, represents

a biaxial stretching in the e1- and e2-directions. (Note that λ3 = 1.) Thus the given deformation is the

composition of these two deformations both of which are entirely in the e1, e2-plane.

Since particles have zero displacement in the e3-direction, we see geometrically that any material fiber

that is in the e3-direction in the reference configuration will remain in the e3-direction in the deformed

configuration. Thus e3 would be an invariant direction.

Next consider a fiber that is in the e1 direction in the reference configuration. The simple shear will

simply slide this fiber in the e1-direction. The biaxial stretch with stretch and translate this fiber without

rotation. Thus any material fiber that is in the e1-direction in the reference configuration will remain in the

e1-direction in the deformed configuration. Thus e1 would also be an invariant direction.

Since both e1 and e3 are distinct eigenvectors of F, it must have two corresponding real eigenvalues.

Thus the third eigenvalue of F must also be real and the corresponding eigenvector will be a third direction

that remains invariant in this deformation. It is not easy to determine this direction intuitively.

We now proceed to calculate the invariant directions of F mathematically. First we note that

[F ] = [F2][F1] =


λ1 0 0

0 λ2 0

0 0 1




1 k 0

0 1 0

0 0 1

 =


λ1 kλ1 0

0 λ2 0

0 0 1

 .

We are told that this deformation is volume preserving whence detF = 1. This implies that λ1λ2 = 1. In
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order to simplify the notation we can therefore set λ1 = λ and λ2 = λ−1 whence

[F ] =


λ kλ 0

0 λ−1 0

0 0 1

 .

In order to find the orientation preserving directions we find the eigenvalues of F by solving det(F−µI) =

0 for µ, and then finding the associated eigenvectors m0 from Fm0 = µm0. Thus we first solve

det(F− µI) = det


λ− µ kλ 0

0 λ−1 − µ 0

0 0 1− µ

 = (1− µ)(λ− µ)(λ−1 − µ) = 0

to find the three eigenvalues µ1 = 1, µ2 = λ and µ3 = λ−1. The corresponding eigenvectors are then found

from Fm
(i)
0 = µim

(i)
0 , i = 1, 2, 3:

{m(1)
0 } =


0

0

1

 , {m(2)
0 } =


1

0

0

 , {m(3)
0 } =


−kλ

λ− λ−1

0

 .

The previous geometric discussion had already told us that fibers in the directions m
(1)
0 and m

(2)
0 do not

change their orientation. We now know that fibers in the direction m
(3)
0 also preserve their orientation.

Problem 2.7. [Chadwick] An incompressible body is reinforced by embedding two families of straight

inextensible fibers in it. The fiber directions m0 in the reference configuration are given by m0
1 = cos θ,

m0
2 = ± sin θ, m0

3 = 0 where θ is a constant 0 < θ < π/2. This body is subjected to the homogeneous

deformation

y1 = λ1x1, y2 = λ2x2, y3 = λ3x3.

In view of the internal geometric constraints of the material, show that the only deformations (of the above

form) that this material can sustain are those that have

λ2
1 cos2 θ + λ2

2 sin2 θ = 1, λ1λ2λ3 = 1.

Hence show that the thickness of the sheet in the x3-direction cannot be made arbitrarily small, and

that in particular, the ratio between the deformed and undeformed thicknesses must be ≥ sin 2θ. When this

contraction is achieved, show that the two families of fibers are orthogonal in the deformed configuration.
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Figure 2.16: Square slab reinforced with two families of inextensible fibers at ±θ.

Solution: The fibers are oriented in the directions m±0 = cos θ e1 ± sin θ e2. Thus the components of the

deformed images of m±0 are given by

[F ]{m±0 } =


λ1 0 0

0 λ2 0

0 0 λ3




cos θ

± sin θ

0

 =


λ1 cos θ

±λ2 sin θ

0

 .

Since material fibers that lie in the directions m±0 are inextensible we must have |Fm±0 | = |m±0 |, i.e.

λ2
1 cos2 θ + λ2

2 sin2 θ = 1. (a)

In addition, since the material is incompressible we have detF = λ1λ2λ3 = 1:

λ3 =
1

λ1λ2
. (b)

Equation (a) tells us that the (positive) stretches λ1 and λ2 cannot take arbitrary values because they

must always must lie on the ellipse defined by (a). Thus in particular we see that 0 < λ1 < 1/ cos θ and

0 < λ2 < 1/ sin θ. Thus the sheet cannot be extended by arbitrary amounts in the e1- and e2-directions.

We wish to determine whether the constraints (a) and (b) place any similar restriction on λ3. To this

end, note that equation (a) can be written equivalently as

(λ1 cos θ − λ2 sin θ)2 + λ1λ2 sin 2θ = 1

which in turn can be rearranged to yield

1

λ1λ2
= sin 2θ +

(λ1 cos θ − λ2 sin θ)2

λ1λ2
.
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Since the stretches are necessarily positive, the second term on the right hand side is non-negative and so

1

λ1λ2
≥ sin 2θ.

On combining this with (b) yields λ3 ≥ sin 2θ. This shows that the ratio of the deformed thickness to the

undeformed thickness of the sheet cannot be made any smaller than sin 2θ.

Problem 2.8. Show that a plane isochoric deformation is equivalent to a simple shear followed by a

rotation.

Solution: Consider a homogeneous, planar, isochoric deformation. Since the deformation is homogeneous

it has the form y = Fx where F is a constant tensor whose determinant is unity since the deformation is

volume preserving. Without loss of generality we can omit the rotational part of F and consider a deformation

y = Ux where U is symmetric and positive definite. Let {e1, e2, e3} be an orthonormal principal basis of

U with corresponding principal stretches λ1, λ2 and λ3 = 1. All components of vectors and tensors will be

taken with respect to this basis. Since the deformation is isochoric, detU = λ1λ2 = 1 and so we can set

λ1 = λ, λ2 = λ−1. Thus the components of the stretch tensor can be written as

[U ] =


λ 0 0

0 λ−1 0

0 0 1

 .

Let a and n be vectors, and let R be a tensor, whose components are given by

{a} =


cos θ

sin θ

0

 , {n} =


− sin θ

cos θ

0

 , [R] =


cosϕ sinϕ 0

− sinϕ cosϕ 0

0 0 1

 .

Note that a and n are unit vectors and that a · n = 0. Moreover observe that R is a proper orthogonal

tensor.

One can now show by straightforward algebraic substitution that

U = R(I + ka⊗ n),

provided we take

k = λ−1 − λ, tan θ = λ, tanϕ =
1

2
(λ− λ−1).

Here R represents a rotation and I + ka⊗ n represents a simple shear.

Thus the given deformation can be written as y = Fx = (λ e1 ⊗ e1 + λ−1e2 ⊗ e2)x = R(I + ka⊗ n)x,

and so we conclude from that a plane isochoric deformation is equivalent to a simple shear followed by a

rotation.
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Problem 2.9. Consider the deformation

y =
(
I + αa⊗ a

)(
I + km⊗ n

)
x

which represents a simple shearing of a body followed by a uniaxial stretching; here the vectors a,m,n have

unit length and m · n = 0.

A plane P in the reference regionR is said to remain undistorted by a deformation if the distance between

every pair of particles on P is the same in the reference and deformed configurations. Not all deformations

have an undistorted plane.

Under what conditions (on α, k,a,m,n) does the preceding deformation have an undistorted plane?

Problem 2.10. A plane P in the reference region R is said to remain undistorted by a deformation if

the distance between every pair of particles on P is the same in the reference and deformed configurations.

In certain deformations there are no undistorted planes while in others there are. In certain problems in

Materials Science, it is sometimes important to find all such undistorted planes in a given deformation.

Show that the homogeneous deformation y = Fx has an undistorted plane if and only if all three of the

following conditions hold: (a) λ1 = 1, (b) λ2 ≤ 1, (c) λ3 ≥ 1, where the λi’s are the principal stretches.

Show also that if the deformation y = Fx has one undistorted plane then it necessarily has at least two

undistorted planes.

Problem 2.11. Calculate the rotation tensor R and the stretch tensors U and V in the polar decomposition

of the deformation gradient tensor F in simple shear. Describe, using a sketch, how x → Ux → RUx and

how x→ Rx→ VRx.

Solution: Consider a body that occupies a cubic domain R0 in a reference configuration. Let {e1, e2, e3}
be a fixed orthonormal basis where the three unit vectors are aligned with the edges of the cube. The cube

is subjected to the simple shearing deformation

y = (1 + k e1 ⊗ e2)x,

where k is a constant. This carries the cube into the sheared region R shown in Figure 2.6. In terms of

components with respect to the given basis11, this can be expressed as

y1 = x1 + kx2, y2 = x2, y3 = x3. (a)

Observe that the displacement field u(x) = y(x)− x has components

u1 = kx2, u2 = 0, u3 = 0.

11Unless explicitly stated otherwise, all components are taken with respect to the basis {e1, e2, e3}.
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Thus each plane x2 = constant is displaced rigidly in the x1-direction, the amount of the displacement

depending linearly on the value of x2. One refers to a plane x2 = constant as a shearing (or glide) plane and

the x1-direction as the shearing direction.

It follows from (a) that the matrix of components of the deformation gradient tensor F is

[F ] =

[
∂yi
∂xj

]
=

 1 k 0

0 1 0

0 0 1

 .

Note that detF = 1 so that a simple shear deformation is locally volume preserving (isochoric).

The components of the Cauchy-Green tensor U2 are

[U2] = [F ]T [F ] =

 1 k 0

k 1 + k2 0

0 0 1

 ,

and its eigenvalues are given by the roots λ2 of the equation

det[U2 − λ2I] = det

 1− λ2 k 0

k 1 + k2 − λ2 0

0 0 1− λ2

 = 0

which simplifies to

(1− λ2)(λ4 − (2 + k2)λ2 + 1) = 0.

The roots of this equation, i.e. the eigenvalues of U2, are

λ2
1 =

2 + k2 + k
√
k2 + 4

2
(≥ 1), λ2

2 =
2 + k2 − k

√
k2 + 4

2
(≤ 1), λ2

3 = 1.

The corresponding eigenvectors of U2 are given by ξ1e1 + ξ2e2 + ξ3e3 where 1− λ2 k 0

k 1 + k2 − λ2 0

0 0 1− λ2


 ξ1

ξ2

ξ3

 =

 0

0

0

 .

For each λ = λi this can be solved for ξ1, ξ2, ξ3 thus leading to the corresponding eigenvector ri:

r1 =
1√

1 + λ2
1

e1 +
λ1√

1 + λ2
1

e2 = cos θr e1 + sin θr e2,

r2 = − λ1

1 + λ2
1

e1 +
1√

1 + λ2
1

e2 = − sin θr e1 + cos θr e2,

r3 = e3,


where we have set

cos θr =
1√

1 + λ2
1

, sin θr =
λ1√

1 + λ2
1

,

or equivalently

tan 2θr = − 2

k
,

π

4
≤ θr <

π

2
.
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Figure 2.17: Principal directions r1, r2, r3 of the (right) Lagrangian stretch tensor U.

The angle θr has the significance shown in Figure 2.17.

Now consider the stretch tensor U itself. Its eigenvectors are the same as those of U2 while its eigenvalues

are λ1, λ2, λ3:

λ1 =
k +
√
k2 + 4

2
(≥ 1), λ2 =

√
k2 + 4− k

2
(≤ 1), λ3 = 1.

The matrix of components of U in its principal basis {r1, r2, r3} is

[U ′] =

 λ1 0 0

0 λ2 0

0 0 λ3

 .

In order to find [U ], the matrix of components of U in the basis {e1, e2, e3}, we use the usual tensor

transformation rule12

[U ′] = [Q][U ][Q]T

where the elements of the rotation matrix [R] that relates the two bases is given by Qij = ri · ej , i.e.

[Q] =

 cos θr sin θr 0

− sin θr cos θr 0

0 0 1

 .

Combining the three preceding equations and solving for [U ] leads to

[U ] =
1√

4 + k2

 2 k 0

k 2 + k2 0

0 0
√

4 + k2

 .

The components of the rotation tensor R in the polar decomposition of F can now be calculated using

R = FU−1 which leads to

[R] =
1√

4 + k2

 2 k 0

−k 2 0

0 0
√

4 + k2

 .

12See Section 3.5 of Volume 1.
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Finally, by using V = FRT one can show that the matrix of components of the left stretch tensor V are

[V ] =
1√

4 + k2

 2 + k2 k 0

k 2 0

0 0
√

4 + k2

 .

O

A
B

C

A′

B′

C′

A∗
B∗

Figure 2.18: Simple shear deformation viewed in two steps: y = Fx = R(Ux). The pure stretch x→ Ux

takes the regionOABC → O′A′B′C ′ and the subsequent rotation Ux→ R(Ux) takesOA′B′C ′ → OA∗B∗C.

We may now visualize the simple shear deformation (a) in two steps as follows:

y = Fx = RUx = R(Ux).

First, the deformation x → Ux stretches the square OABC in Figure 2.18 by the amounts λ1, λ2 in the

principal directions r1, r2 leading to the region OA′B′C ′. This is then followed by the deformation Ux →
R(Ux) which rigidly rotates OA′B′C ′ into the region OA∗B∗C which is the region occupied by the deformed

body.

Alternatively we may visualize the simple shear deformation (a) in the two steps y = Fx = VRx =

V(Rx). The first step x→ Rx rigidly rotates the square OABC in Figure 2.19 into the square OA′′B′′C ′′.

Second, this is followed by the deformation Rx→ V(Rx) which stretches OA′′B′′C ′′ by the amounts λ1, λ2

in the principal directions `1, `2 to get the region OA∗B∗C occupied by the deformed body.

Problem 2.12. Consider a body which occupies a region R0 in a reference configuration and a region R
in a deformed configuration. The deformation which takes R0 → R is homogeneous:

y = Fx, F = constant.

Let {e1, e2, e3} be an orthonormal basis.
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O

A
B

C

A′′

B′′

C′′

A∗ B∗

Figure 2.19: Simple shear deformation viewed in two steps: y = Fx = V(Rx). The rotation x → Rx

takes the region OABC → OA′′B′′C ′′ and the pure stretch Rx→ V(Rx) takes OA′′B′′C ′′ → OA∗B∗C.
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R0

R

e1

e2

e3

n0

n

e3

n0

n

Figure 2.20: Two material fibers AB and AC in the reference configuration are carried into A′B′ and A′C ′

respectively by a deformation.

Consider two material fibers AB and AC which, in the reference configuration, have equal length s0, and

are oriented in the respective directions e1 and e2. In the current configuration these fibers are described by

A′B′ and A′C ′.

Suppose that the lengths s1 and s2 of the fibers A′B′ and A′C ′ in the current configuration have been

measured. Suppose that the angle between these fibers in the current configuration has also been measured

and is given by π/2− φ.

Calculate the strain components E11, E22 and E12 in terms of s0, s1, s2 and φ where the strain tensor E

is the Green strain tensor

E = (1/2)(U2 − I).

Linearize your answer in the case of an infinitesimal deformation.
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Solution: Set dsx = s0, dsy = s1 and n0 = e1 in (2.70) to get

s1 = s0

√
1 + 2E11

and therefore

E11 =
1

2

[(
s1

s0

)2

− 1

]
. (a)

Similarly setting dsx = s0, dsy = s2 and n0 = e2 in (2.70) yields

E22 =
1

2

[(
s2

s0

)2

− 1

]
. (b)

Next, set θy = π/2− φ, n(1)
0 = e1 and n

(2)
0 = e2 in (2.73) to get

sinφ =
2E12√

1 + 2E11

√
1 + 2E22

whence

E12 =
1

2

s1

s0

s2

s0
sinφ. (c)

For an infinitesimal deformation, we set s1 = s0 + ∆s1, substitute this into (a) and approximate the

result for small ∆s1/s0. This leads to

E11 =
s1 − s0

s0

with the error being quadratic. Similarly one finds

E22 =
s2 − s0

s0

to linear accuracy. Substituting s1 = s0 + ∆s1 and s2 = s0 + ∆s2 into (c) and approximating the result for

small φ,∆s1/s0 and ∆s2/s0 leads to

E12 =
1

2
φ

where the error is quadratic.

Problem 2.13. Consider a simple shear

y1 = x1 + kx2, y2 = x2, y3 = x3,

where the components have been taken with respect to a fixed orthonormal basis {e1, e2, e3}. Calculate the

components of the Lagrangian logarithmic strain tensor E = lnU with respect to this same basis.

Solution: In an earlier Example we worked out the details of the polar decomposition of the deformation

gradient tensor F for a simple shear. From those results, the eigenvalues of the right stretch tensor U were

λ1 =

√
k2 + 4 + k

2
, λ2 =

√
k2 + 4− k

2
, λ3 = 1, (a)
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and the corresponding eigenvectors were

r1 = cos θr e1 + sin θr e2, r2 = − sin θr e1 + cos θr e2, r3 = e3, (b)

where

cos θr =
1√

1 + λ2
1

, sin θr =
λ1√

1 + λ2
1

. (c)

Since the Lagrangian logarithmic strain tensor is given by

lnU = lnλ1 r1 ⊗ r1 + lnλ2 r2 ⊗ r2 + lnλ3 r3 ⊗ r3,

we substitute (b) into this and expand the result to get

lnU = (cos2 θr lnλ1 + sin2 θr lnλ2)e1 ⊗ e1 + (lnλ1 − lnλ2) sin θr cos θr e1 ⊗ e2

+(lnλ1 − lnλ2) sin θr cos θr e2 ⊗ e1 + (sin2 θr lnλ1 + cos2 θr lnλ2)e2 ⊗ e2.

The coefficient of ei ⊗ ej in this equation is the i, j-component of the tensor lnU in the basis {e1, e2, e3}.
Expressions for the λ’s and θr in terms of the amount of shear k are given above in (a) and (c).

Problem 2.14. Consider a body that undergoes a simple shearing y = (I + k e1 ⊗ e2)x where k is a

constant and {e1, e2, e3} is a fixed orthonormal basis. Calculate

a. The components of the deformation gradient tensor F, the displacement gradient tensor H, the Green

strain tensor E, the infinitesimal strain tensor ε, and the infinitesimal rotation tensor ω.

b. Discuss the distinction between E and ε.

Solution: In terms of components with respect to the given basis, this deformation can be expressed as

y1 = x1 + kx2, y2 = x2, y3 = x3.

The deformation gradient tensor F = Grady associated with this deformation has components

[F ] =

[
∂yi
∂xj

]
=

 1 k 0

0 1 0

0 0 1

 .

Observe that the associated displacement field u(x) = y(x)− x has components

u1 = kx2, u2 = 0, u3 = 0. (a)

Thus each plane x2 = constant is displaced rigidly in the x1-direction, the amount of the displacement

depending linearly on the value of x2. One refers to a plane x2 = constant as a shearing (or glide) plane,

the x1-direction as the shearing direction and k is called the amount of shear.
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The displacement gradient tensor H = Gradu associated with the displacement field (a) has components

[H] =

[
∂ui
∂xj

]
=

 0 k 0

0 0 0

0 0 0

 . (b)

The components

Eij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

+
∂uk
∂xi

∂uk
∂xj

)
,

of the Green strain tensor specialize in this case to

[E] =

 0 k/2 0

k/2 k2/2 0

0 0 0

 ,

while the components

εij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
of the infinitesimal strain tensor specialize to

[ε] =

 0 k/2 0

k/2 0 0

0 0 0

 .

Similarly the components

ωij =
1

2

(
∂ui
∂xj
− ∂uj
∂xi

)
of the infinitesimal rotation tensor specialize in simple shear to

[ω] =

 0 k/2 0

−k/2 0 0

0 0 0

 .

We now make some observations. First observe that ε22 = 0 and E22 = k2/2. Both these strain

components are concerned with the change in length of a material fiber that, in the reference configuration,

was in the e2-direction. Since E22 6= 0 it follows from (2.72) that this material fiber undergoes a change in

length. On the other hand since ε22 = 0 it follows from (2.92) that this material fiber does not change its

length in an infinitesimal deformation; or more precisely, that any changes in length of this fiber are O(ε2).

It can be seen geometrically from Figure 2.6 that a fiber which, in the reference configuration was in the

e2-direction, does undergo a change in length due to the deformation. This is consistent with the fact that

E22 6= 0. We see from (b) that the components of the displacement gradient are infinitesimal when k << 1.

Note that E22 = k2/2 = O(k2) as k → 0 which shows that the change in length of this fiber is O(k2)

Similarly when the k2 terms are omitted from the rotation tensor R one can show that R = I+ω+O(k2);

(see subsequent example on the polar decomposition of the deformation gradient tensor in simple shear for

an expression for R).
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Problem 2.15. A body undergoes a deformation in which the deformation gradient tensor field is given

by Q(x) where Q is proper orthogonal at each point x ∈ R0. Show that Q must necessarily be independent

of x. Thus, if the body undergoes a rigid motion in the vicinity of each particle x, in fact all particles

necessarily undergo the same rigid motion.

Problem 2.16. Compatibility. Let R0 be the region occupied by a body in a reference configuration.

Suppose that we are given a deformation ŷ(x) which is defined and three-times continuously differentiable

on R0. Let C(x) = U2(x) = FT (x)F(x) be the associated right Cauchy-Green deformation tensor field.

Prove that necessarily,

Rijkm = 0 on R0, (2.93)

where

Rijkm
def
= Γjmi,k − Γjki,m + C−1

pq (ΓrkpΓimq − ΓjmpΓikq),

Γijk
def
= 1/2(Cjk,i + Cik,j − Cij,k).

Remark: Conversely, suppose that you are given a function C(x) which is defined and twice-continuously

differentiable on R0, and whose value at each x is a symmetric positive definite tensor. Suppose further that

R0 is a simply-connected region. Then one can show that, if C(x) satisfies (2.93), then there is a deformation

ŷ(x) such that the given C(x) is the associated right Cauchy-Green deformation tensor field.

Reference: T.Y. Thomas, Systems of Total Differential Equations Defined Over Simply Connected Domains,

Annals of Mathematics 35(1934), pp. 730–734.
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Chapter 3

Kinematics: Motion

In Chapter 2 we examined a single configuration of a body. Here we consider a time-

dependent sequence of configurations, i.e. we study the motion of a body during which it

occupies different regions of space at each instant of time. The reader is referred back to

Chapter 1 for a discussion of some basic notions underlying a motion.

An outline of the material in this chapter is as follows: in Section 3.1 we characterize

the motion of a body with respect to a fixed reference configuration. In Section 3.2 we

examine the special case of a rigid motion. The velocity gradient tensor is the key ingredient

for studying the time rate of change of geometric characteristics in the neighborhood of a

particle; it is introduced in Section 3.3. In that section we also decompose the velocity

gradient tensor into the stretching tensor and the spin tensor. In Section 3.4 we consider an

infinitesimal material curve, surface and region in the current configuration and calculate the

time rate of change of length, angle, area and volume. Formulae for these can be expressed

solely in terms of the stretching tensor. However the rate at which the orientation of an

infinitesimal fiber changes depends on both the stretching and spin tensors. In Section 3.5

we consider an arbitrary motion, and study it using the current configuration as the reference

configuration. Thus the reference configuration in this analysis is time-dependent. We show

that in this framework, the time rate of change of the stretch tensors and rotation tensor in

the polar decomposition equal the stretching tensor and the spin tensor respectively. This

is not true if the reference configuration had been, for example, fixed. In Section 3.7 we

calculate the time rate of change of the volume integral of some field quantity where the

integration is taken over the current (time-dependent) region occupied by a part of the

body. Similar transport equations are also presented for integrals over material surfaces and

63
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material curves. In Section 3.8 we introduce the concept of material frame indifference (or

objectivity or observer independence). The notions of the convected and co-rotational time

derivatives of a vector and tensor field are introduced in Section 3.9. And finally in Section

3.10 we linearize the prior results.

3.1 Motion.

With respect to a fixed reference configuration, a motion can be characterized by

y = y(x, t) x ∈ R0, y ∈ Rt, t ∈ [t0, t1], (3.1)

where x is the location of a generic particle in the reference configuration, y is its location at

time t, and [t0, t1] is the time interval over which the motion takes place. The body occupies

a region R0 in the reference configuration and a region Rt at time t.

R

x

P

P′

O

Rt

y(x, t)

u(x, t)

Figure 3.1: The respective regions R0 and Rt occupied by a body in a reference configuration and at time

t during a motion y = y(x, t). The position of a generic particle in the reference configuration and at time

t are denoted by x and y(x, t) respectively. The displacement is given by u(x, t).

It is not necessary that the reference configuration be occupied by the body at any time

during the motion. If it so happens that the body occupies the reference configuration at

the initial instant of time, then we may refer to it as the initial configuration of the body.

In this case,

x = y(x, t0), F(x, t0) = I for all x ∈ R0. (3.2)
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The velocity and acceleration of a particle are given by

v(x, t) =
∂y

∂t
(x, t) = ẏ, a(x, t) =

∂v

∂t
(x, t) = v̇. (3.3)

Recall from Chapter 1 that an over dot denotes the material time derivative, i.e. the time

rate of change at a fixed particle x.

Most of our preceding discussion on deformations carries over to motions in an obvious

manner. In particular, we have the deformation gradient tensor F (x, t), the Jacobian deter-

minant J(x, t), the proper orthogonal (rotation) tensor R(x, t) and the symmetric positive

definite (stretch) tensors U(x, t), V (x, t) :

F (x, t) = Grady(x, t), (3.4)

J(x, t) = detF (x, t) > 0, (3.5)

F (x, t) = R(x, t)U(x, t) = V (x, t)R(x, t). (3.6)

The principal stretches λ1(x, t), λ2(x, t), λ3(x, t) are the common eigenvalues of U(x, t) and

V (x, t); the corresponding eigenvectors r1(x, t), r2(x, t), r3(x, t) and `1(x, t), `2(x, t), `3(x, t)

are the principal directions of the Lagrangian and Eulerian stretch tensors, and so on.

3.2 Rigid Motions.

A rigid deformation is characterized by (2.42). Thus a rigid motion is characterized by

y = Q(t)x+ b(t) (3.7)

where the proper orthogonal tensor Q(t) and the vector b(t) denote the rotational and

translational parts of the motion at time t. Differentiating (3.7) with respect to t yields the

velocity field (in Lagrangian form):

v(x, t) = Q̇(t)x+ ḃ(t). (3.8)

In Classical Mechanics of rigid bodies, the velocity of a rigid body is written in a quite

different form to (3.8), and in particular involves an angular velocity vector. In the remainder

of this section we shall show how (3.8) can be written in that familiar form.
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We first express the velocity field (3.8) in Eulerian form by trading x for y. To this end

we solve (3.7) for x which leads to

x = QTy −QTb, (3.9)

and substitute (3.9) into (3.8) to obtain

v(y, t) = Ω(t)y + c(t) (3.10)

where we have set Ω = Q̇QT and c = ḃ− Q̇QTb.

In order to further simplify the velocity field (3.10), we first recall that Q(t) is an orthog-

onal tensor and therefore Q(t)QT (t) = I at each instant t. Differentiating this with respect

to t yields

Q̇QT +QQ̇
T

= 0 (3.11)

or

Ω = −ΩT . (3.12)

Thus Ω(t) is skew symmetric at each instant t.

Finally recall from Chapter 2 of Volume I that, given any skew symmetric tensor Ω there

exists a vector w such that

Ωp = w × p for all vectors p. (3.13)

By using this result in (3.10), it follows that the velocity field (3.10) can be written equiva-

lently as

v(y, t) = w(t)× y + c(t); (3.14)

w(t) is called the angular velocity vector of the rigid motion. Note from (3.10) and (3.14)

that

Ω = grad v and w =
1

2
curl v.

3.3 Velocity Gradient, Stretching and Spin Tensors.

When studying a deformation, we wanted to calculate the changes in various geometric

quantities such as length, area, etc. and found that the deformation gradient tensor F

was the key ingredient needed for doing so. Now we wish to study the rate of change of
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various geometric quantities and will find that the velocity gradient tensor L is the essential

ingredient for this. The Lagrangian velocity field v̂(x, t) can be expressed in Eulerian form

v(y, t) by using the inverse motion x = x(y, t) to trade the x for y:

v = v(y, t) = v̂(x(y, t), t). (3.15)

The velocity gradient tensor is defined as the (spatial) gradient of the velocity field:

L(y, t) = grad v(y, t) =
∂v

∂y
(y, t) (3.16)

where we have now omitted the “overline” on v. In terms of components in an orthonormal

basis,

Lij =
∂vi
∂yj

. (3.17)

Note the useful fact that

tr L = div v. (3.18)

On using (3.4), (3.3)1 and (1.17) we find

Ḟ =
∂

∂t
(Grad y(x, t)) = Grad

(
∂y

∂t
(x, t)

)
= Grad v = (grad v)F = LF . (3.19)

This leads to the following useful expression for L:

L = Ḟ F−1. (3.20)

The stretching tensor (or rate of deformation tensor) D and the spin tensor W are

defined as the symmetric and skew-symmetric parts of L:

D = 1
2
(L+LT ), W = 1

2
(L−LT ); (3.21)

clearly the stretching tensor is symmetric, the spin tensor is skew-symmetric, and their sum

equals the velocity gradient tensor:

D = DT W = −W T and L = D +W . (3.22)

Note from this that

tr D = tr L, tr W = 0. (3.23)

Observe from (3.16) and (3.21) that

D = 1
2

(
grad v + (grad v)T

)
, W = 1

2

(
grad v − (grad v)T

)
, (3.24)
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or in terms of their components,

Dij =
1

2

(
∂vi
∂yj

+
∂vj
∂yi

)
, Wij =

1

2

(
∂vi
∂yj
− ∂vj
∂yi

)
. (3.25)

Since W is skew symmetric, there exists a unique axial vector w such that Wp = w×p

for all vectors p. One can show that

w =
1

2
curl v (3.26)

which is the local angular velocity at a particle. The vorticity ω is defined as

ω = 2w = curl v. (3.27)

Note from (3.10), (3.16) and (3.21), that in the special case of a rigid motion

L(y, t) = Ω(t), D(y, t) = O, W (y, t) = Ω(t). (3.28)

The tensors1 D and W play an important role in the kinematics of motions. We turn

next to interpreting D and W .

3.4 Rate of Change of Length, Orientation, and Vol-

ume.

3.4.1 Rate of Change of Length and Orientation.

Let dx be a material fiber through the particle x in the reference configuration, and let dy

be its image at time t. Then dy = dy(x, t; dx) = F (x, t)dx. Differentiating this with respect

to t and using (3.20) gives (dy)· = Ḟ dx = (LF )dx = L(F dx) = Ldy. Thus

(dy)· = Ldy (3.29)

and so L characterizes the rate of change of length and orientation of a material fiber in the

current configuration.

1 It is worth remarking that there is no simple relation between the stretching tensor D and time rates

of change of the stretch tensors, i.e. U̇ and V̇; nor is there a simple relation between the spin tensor W and

the time rate of change of the rotation tensor, i.e. Ṙ. The relations between these quantities is established

in Problem 3.4. However see also Section 3.5.
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From this basic equation we can separately calculate the rate of change of length and the

rate of change of orientation of the fiber. To this end, let

dy = n ds (3.30)

where ds(t) is the current length of the fiber and the unit vector n(t) is its current orientation.

Taking the material time derivative of ds2 = dy · dy and using (3.29) gives ds(ds)· =

dy · (dy)· = Ldy · dy which further simplifies on using (3.30) to (ds)·/ds = Ln · n. On

using the fact that L = D+W , and furthermore recalling from Chapter 2 of Volume I that

Wn · n = 0 since W is skew-symmetric, we can write the preceding equation as

1

ds
(ds)· = Dn · n. (3.31)

Consequently, we conclude that the stretching tensor D characterizes the rate of change of

length.

In particular, we can now interpret the diagonal components of [D] as follows: by defini-

tion Dij = Dei · ej. First pick n = ei. Then (3.31) gives

Dii =
1

ds
(ds)· (no sum on i). (3.32)

Therefore for each i = 1, 2, 3, the component Dii of the stretching tensor measures the rate

of change of length per unit length of a material fiber that is currently in the ei-direction.

Next, suppose that we pick n = l1 where l1 is a principal vector of the Eulerian stretch

tensor V . Recall from our discussion of deformations that in this special case ds = λ1ds0

where ds0 is the length of the fiber in the reference configuration and λ1 is the principal

stretch in direction l1. Now, (3.32) gives

D11 =
λ̇1

λ1

= (lnλ1)·. (3.33)

Note that D11 here is the 11-component of D in the special basis {`1, `2, `3} (whereas D11

in (3.32) is the 11-component of D in any arbitrary orthonormal basis {e1, e2, e3}).

Finally we consider the rate of change of orientation. From (3.29) and (3.30) we have

(n ds)· = Ln ds which when expanded out reads ṅ = Ln−n(ds)·/ds. Since (ds)·/ds = n·Ln

this can be written as

ṅ = Ln−
(
n · Ln

)
n. (3.34)

Finally, on using L = D +W this simplifies to

ṅ = Wn+Dn− (Dn · n)n. (3.35)
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Observe first that in a rigid motion, since D = 0, (3.35) specializes to ṅ = Wn; thus in

this special case the vector n rotates with the spin W . In a general motion however, we see

from (3.35) that Dn− (Dn · n)n represents an additional motion superposed on the rigid

spin W .

Since D is symmetric it has three real eigenvalues δi and a corresponding set of orthonor-

mal eigenvectors di :

Ddi = δidi, i = 1, 2, 3, (no summation over i). (3.36)

Observe from (3.36) that Ddi = (Ddi · di)di so that if we pick n = di in (3.35), we get

ḋi = Wdi. (3.37)

Thus a material fiber which happens to lie along a principal axis of D at time t rotates

at an angular velocity W . This motivates the use of the term spin to describe W . It is

worth emphasizing that as the orthonormal triplet of vectors {d1,d2,d3} corresponding to

a principal basis of D rotates with time, different material fibers are aligned with these

directions in general. In terms of the axial vector w associated with the skew symmetric

tensor W, we have

ḋi = w × di;

see (3.26).

3.4.2 Rate of Change of Angle.

Consider two material fibers dx(1), dx(2) in the reference configuration whose images at time

t are dy(1) = ds1 n
(1) and dy(2) = ds2 n

(2). The angle θ between these fibers at time t is

given by

cos θ = n(1) · n(2). (3.38)

Differentiating (3.38) with respect to t and using (3.35) gives

− sin θ θ̇ = ṅ(1) · n(2) + n(1) · ṅ(2)

=
{
Wn(1) +Dn(1) − (Dn(1) · n(1))n(1)

}
· n(2)

+
{
Wn(2) +Dn(2) − (Dn(2) · n(2))n(2)

}
· n(1)

(3.39)

and therefore

θ̇ =
−2Dn(1) · n(2) + {Dn(1) · n(1) +Dn(2) · n(2)}(n(1) · n(2))

sin θ
. (3.40)
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Consequently we see that the rate of change of angle between two material fibers can be

characterized in terms of the stretch tensor D.

Specifically if we choose n(1) = e1 and n(2) = e2 then (3.40) specializes to

D12 = −1
2
θ̇. (3.41)

Thus the off-diagonal component D12 of D equals −1/2 the rate of change of the angle

between two material fibers that currently happen to be oriented in the e1 and e2 directions.

3.4.3 Rate of Change of Volume.

Consider a material volume dVx in the reference configuration, and let dVy be the vol-

ume occupied by this same collection of particles in the current configuration. Recall that

dVy = J dVx where J = detF . Recall the following standard formula for differentiating the

determinant (see Volume I),

d

dt

(
det F

)
= (det F) tr

(
dF

dt
F−1

)
. (3.42)

On using this we get

J̇ = det F tr (Ḟ F−1) = J tr L (3.43)

where we have used (3.20). Since trD = trL, we can write this equivalently as

J̇ = J trD = J div v (3.44)

where in the last step we have used (3.17). Thus

(dVy)
·

dVy
=
J̇

J
= div v. (3.45)

Note that in the particular case of an isochoric (i.e. locally volume preserving) motion,

div v(y, t) = 0. (3.46)

3.4.4 Rate of Change of Area and Orientation.

Consider a material surface which at time t has area dAy and unit normal n. We leave it as

an exercise to the reader to show that the rate of change of area and the rate of rotation of

the unit normal are given by

(dAy)
· =
(
tr L− n · Ln

)
dAy, (3.47)



72 CHAPTER 3. KINEMATICS: MOTION

ṅ =
(
n · Ln

)
n− LTn. (3.48)

Question: Why is (3.34) different to (3.48)?

Example: Simple Shearing Motion.

Consider a unit cube undergoing the simple shearing motion

y1 = x1 + k(t)x2, y2 = x2, y3 = x3. (3.49)

We wish to calculate the components Dij of the stretching tensor and discuss the significance of the various

components.

Before carrying out a mathematical calculation using (3.49), let’s think about the physics of the motion.

Consider first a material fiber which currently is in the e1-direction; clearly its length doesn’t change with

time, and so D11 = 0. Similarly we must have D33 = 0. Next consider a material fiber that happens to

be currently aligned with the e2-direction. Note that this fiber is not always aligned with the e2-direction.

In particular, observe that its length has been contracting (in the past) and is about to begin extending

(in the future). Thus instantaneously its length is not changing and so D22 = 0. Finally, consider a pair

of fibers that are currently in the e1- and e3-directions. Clearly the angle between them is not changing.

Thus D13 = D31 = 0. Similarly D23 = D32 = 0. Thus the only non-zero components of D are D12 and

D21(= D12).

t

Figure 3.2: The region occupied by a cube undergoing simple shear. The figure is drawn at a particular

instant t and shows two material fibers, one of which happens to be horizontal and the other vertical, at this

particular instant.

Now we carry out a formal calculation of Dij . Differentiating (3.49) gives

v1 = k̇x2, v2 = 0, v3 = 0, (3.50)

which, by using (3.49) can be expressed in the Eulerian form

v1 = k̇y2, v2 = 0, v3 = 0. (3.51)
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The components of the velocity gradient tensor can be calculated from (3.51) to be

[L] =

[
∂vi
∂yj

]
=


0 k̇ 0

0 0 0

0 0 0

 (3.52)

and thus the components of the stretching tensor and spin tensor, [D] = ([L] + [L]T )/2 and [W ] = ([L] −
[L]T )/2, are

[D] =


0 k̇/2 0

k̇/2 0 0

0 0 0

 , [W ] =


0 k̇/2 0

−k̇/2 0 0

0 0 0

 . (3.53)

From (3.53) we can find the principal values and principal directions of D to be

δ1 = k̇/2, δ2 = −k̇/2, δ3 = 0, (3.54)

d1 = e1/
√

2 + e2/
√

2, d2 = −e1/
√

2 + e2/
√

2, d3 = e3. (3.55)

Observe that in this particular motion the principal directions di happen to be time independent. This is

usually not the case.

Remark: We leave it to the reader to reconcile the apparent contradiction between the formula (3.37), and

the formulas (3.53), (3.55) together with the fact that the di’s are time independent.

tt

!!"#

!"#

Figure 3.3: The region Rt occupied by a cube undergoing simple shear. The figure shows a material fiber

in the direction n(t).

Finally let us explicitly evaluate the formula (3.35) for determining the rate of change of direction of a

material fiber. Let n be the current orientation of a material fiber and suppose that

n(t) = cos θ(t) e1 + sin θ(t) e2. (3.56)

Then from (3.56) and (3.53) one readily finds that

Wn =
k̇

2
(sin θ e1 − cos θ e2), (3.57)
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and from (3.53) and (3.56) one obtains

Dn− (Dn · n)n = − k̇
2

cos 2θ(sin θe1 − cos θe2). (3.58)

From (3.35), we see that the (3.57) and (3.58) represent the two parts of ṅ, the first due to spin and the

second due to stretching. Observe that each component is in the e1, e2-plane. On combining them we have

ṅ =
k̇

2
(1− cos 2θ)(sin θe1 − cos θe2) = k̇ sin2 θ(sin θe1 − cos θe2). (3.59)

On the other hand, differentiating (3.56) gives ṅ = (− sin θe1 + cos θe2)θ̇ and so comparing this with (3.59)

shows that θ̇ = −k̇ sin2 θ.

3.5 Current Configuration as Reference Configuration.

In our analysis thus far we have always worked with respect to one fixed reference con-

figuration. It is not necessary to do so and we could, just as well, use a time-dependent

reference configuration. A useful special case of this is to take the current configuration as

the time-dependent reference configuration. In this section we formulate such a description of

a motion and establish some useful results. In particular we show (in a certain precise sense)

that the time rates of change of the stretch and rotation tensors of the polar decomposition

equal the stretching and spin tensors; see footnote 1 in this chapter.

Consider a body B. In some time-independent reference configuration, an arbitrary

particle p ∈ B is located at x; and the body occupies a region R0. We consider a motion of

this body over a time interval τ0 ≤ τ ≤ τ1. (In this section we let τ and t denote an arbitrary

instant of time and the current instant of time respectively.) Suppose that this motion is

described, with respect to the aforementioned reference configuration, by the mapping

z = ŷ(x, τ), x ∈ R0, τ0 ≤ τ ≤ τ1, (3.60)

where z ∈ Rτ is the location of particle p at time τ and (3.60) maps R0 → Rτ ; see Figure

3.4.

Suppose that t is the “current instant of time” and that the position of particle p at this

instant is y:

y = ŷ(x, t), x ∈ R0. (3.61)

Note that z = y when τ = t. If the configuration at time t (the “current configuration”) is

used as a (time-dependent) reference configuration, then the motion at hand can be described
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Rτ

Rt

A motion z = y(x↪ τ ) on a time interval τ0 ≤ τ ≤

Initial

Instant τ0

R

Rt

A motion z = y(x↪ τ ) on a time interval τ0 ≤ τ ≤ τ1

Initial

Instant τ0

Current

Instant t

Rτ

Rt

y(x↪ τ ) on a time interval τ0 ≤ τ ≤ τ1

Initial

Instant τ0

A motion z = y(x↪ τ ) on a time interval τ0 ≤ τ ≤ τ1

Initial

Instant τ0

Current

Instant t

Arbitrary

Instant τ

Final

Initial

Instant τ0

Current

Instant t

Arbitrary

Instant τ

Final

Instant τ1

Initial

Instant τ0

Current

Instant t

Arbitrary

Instant τ

Final

Instant τ1

Final

Instant τ1

z

y

z = yt(y↪ τ )

dx(1) = n
(1)

ds

z

y

z = yt(y↪ τ )

dx(1) = n
(1)
0 dsx

1

Figure 3.4: A motion on a time interval τ0 ≤ τ ≤ τ1 is described, with respect to a time-independent

reference configuration (not shown), by z = ŷ(x, τ); here the position of a particle at an arbitrary instant of

time τ is z, and its position in the reference configuration is x. The current instant of time is denoted by t

and at τ = t this particle is located at y. This same motion, when described with the current configuration

taken to be the reference configuration, y→ z, is described by z = ŷt(y, τ); see equation (3.62).

with respect to this second reference configuration by

z = ŷ(ŷ−1(y, t), τ)
def
= ŷt(y, τ), (3.62)

where ŷ−1(·, t) is the inverse of ŷ(·, t) at each t. Equations (3.60) - (3.62) lead to the identity

ŷ(x, τ) = ŷt(ŷ(x, t), τ). (3.63)

Perhaps it is worth remarking that the subscript t does not represent differentiation with

respect to t; we could have just as well written, say, ŷ(y, τ ; t) instead of ŷt(y, τ).

By (3.60), the deformation gradient tensor of the configuration at time τ , with respect

to the time-independent reference configuration, is

F(x, τ) = 5
x

ŷ(x, τ). (3.64)

Similarly by (3.62)2, the deformation gradient tensor of the configuration at time τ , with

respect to the time-dependent reference configuration, is

Ft(y, τ) = 5
y

ŷt(y, τ). (3.65)

We first show that at the current instant t, the deformation gradient tensor with respect

to the current configuration, and the stretch and rotation tensors related to it by its polar
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decomposition, all equal the identity. To show this we begin by taking the gradient of the

identity (3.63) with respect to x which leads to

5
x

ŷ(x, τ) = 5
y

ŷt(y, τ) 5
x

ŷ(x, t) (3.66)

where we have used the chain rule. Thus by (3.64) – (3.66):

F(x, τ) = Ft(y, τ)F(x, t). (3.67)

Now set τ = t in (3.67) to get

Ft(y, t) = I. (3.68)

Thus at the current instant t, the deformation gradient tensor with respect to the current

configuration is the identity. On using the polar decomposition of Ft(y, t) we get

Ft(y, t) = Rt(y, t)Ut(y, t) = I.

Certainly Rt(y, t) = Ut(y, t) = I is one choice for the rotation and stretch tensors that are

consistent with this. By the uniqueness of the polar decomposition, this is in fact the only

choice for Rt(y, t) and Ut(y, t). Thus

Rt(y, t) = I, Ut(y, t) = I. (3.69)

Next we show that at the current instant t, the time rate of change of the deformation

gradient, stretch and rotation tensors all with respect to the current configuration, equal the

velocity gradient, stretching and spin tensors respectively. Differentiating (3.67) with respect

to time2 τ gives

Ḟ(x, τ) =
∂

∂τ
Ft(y, τ) F(x, t). (3.70)

On using Ḟ = LF, see (3.20), we get

L(z, τ)F(x, τ) =
∂

∂τ
Ft(y, τ) F(x, t)

where L is the velocity gradient tensor associated with the motion z = ŷ(x, τ). Setting τ = t

in this leads to the first result stated above, viz.

L(y, t) =
∂

∂τ
Ft(y, τ)

∣∣∣∣
τ=t

(3.71)

2Here and in the rest of this section, when we differentiate with respect to time τ we shall do so at a fixed

particle and a fixed current instant, i.e. we shall hold x,y and t fixed.
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where we have made use of the fact that z = y when τ = t. Next we use the polar

decomposition Ft(y, τ) = Rt(y, τ)Ut(y, τ) in (3.71) to get

L(y, τ) =
∂

∂τ

(
Rt(y, τ)Ut(y, τ)

)
=

(
∂

∂τ
Rt(y, τ)

)
Ut(y, τ) + Rt(y, τ)

(
∂

∂τ
Ut(y, τ)

)
.

Setting τ = t in this and using the fact that Ut(y, t) = Rt(y, t) = I leads to

L(y, t) =
∂

∂τ
Rt(y, τ)

∣∣∣∣
τ=t

+
∂

∂τ
Ut(y, τ)

∣∣∣∣
τ=t

. (3.72)

However Rt(y, τ) is orthogonal:

Rt(y, τ)RT
t (y, τ) = I.

Differentiating this with respect to τ gives(
∂

∂τ
Rt(y, τ)

)
RT
t (y, τ) + Rt(y, τ)

(
∂

∂τ
RT
t (y, τ)

)
= 0,

which, upon setting τ = t and using Rt(y, t) = I, simplifies to

∂

∂τ
Rt(y, τ)

∣∣∣∣
τ=t

+
∂

∂τ
RT
t (y, τ)

∣∣∣∣
τ=t

= 0.

Therefore
∂

∂τ
Rt(y, τ)

∣∣∣∣
τ=t

is skew-symmetric. Consequently (3.72) and the definition of the stretching tensor, D =

(L + LT )/2, gives

D(y, t) =
∂

∂τ
Ut(y, τ)

∣∣∣∣
τ=t

; (3.73)

similarly (3.72) and the definition of the spin tensor, W = (L− LT )/2, gives

W(y, t) =
∂

∂τ
Rt(y, τ)

∣∣∣∣
τ=t

,

which are the other two results stated at the beginning of this paragraph. Thus when

the reference configuration is taken to be the current configuration the stretching tensor

D coincides with the time rate of change of the stretch tensor U; and the spin tensor W

coincides with the time rate of change of the rotation tensor R. The relations between

these quantities with respect to a time-independent reference configuration are established

in Problem 3.4.
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3.6 Worked Examples and Exercises

.

Problem 3.1. The velocity field in a certain deforming continuum is known to be given by

v = −αy2e1 + αy1e2 + βe3

where α and β are constants. Calculate the acceleration of a particle during this motion.

Solution: Working directly, we take the (material) time derivative of the given velocity field which leads to

the desired result

v̇ = −αẏ2e1 + αẏ1e2 = −αv2e1 + αv1e2 = −α(αy1)e1 + α(−αy2)e2 = −α2y1e1 − α2y2e2.

Alternatively we could use the formula v̇ =
(
gradv

)
v + ∂v(y, t)/∂t to get the same result

v̇ =
(
− αe1 ⊗ e2 + αe2 ⊗ e1

)
(−αy2e1 + αy1e2 + βe3) = −α2y1e1 − α2y2e2.

Problem 3.2. A fluid undergoes the motion

y1 = (cos at)x1 − (sin at)x2, y2 = (sin at)x1 + (cos at)x2, y3 = x3 + bt,

for t ≥ 0 where a and b are constants and −∞ < xi <∞, i = 1, 2, 3. Observe that (y1, y2, y3) are the current

coordinates of the particle that at time t = 0 was located at (x1, x2, x3).

Determine the path (curve) followed by the particle which is at (1, 0, 1) at time t = 2π/a. What is the

qualitative character of this curve?

Calculate the quantities div v̇ and (div v)·.

If the temperature of the particle which is located at (y1, y2, y3) at time t is given by

θ(y1, y2, y3, t) = y1y2y3 e
−t,

calculate θ̇ and Grad θ.

Problem 3.3. The spatial (Eulerian) representation of the velocity field associated with a particular motion

of a fluid is

v1 = −αy2, v2 = αy1, v3 = β.

The reference configuration coincides with the configuration occupied by the body at the initial instant

whence x = ŷ(x, 0). Determine the path of a generic particle for times t > 0.
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Solution: We are given that ẏ1 = −αy2, ẏ2 = αy1. Combining these leads to ÿ1 + α2y1 = 0, ÿ2 + α2y2 = 0,

and by solving them we find that necessarily

y1 = C1(x1, x2, x3) sinαt + D1(x1, x2, x3) cosαt,

y2 = C2(x1, x2, x3) sinαt + D2(x1, x2, x3) cosαt.

In order to ensure that these expressions satisfy the given equations we substitute them back into ẏ1 =

−αy2, ẏ2 = αy1 which shows that we must have C1 = −D2, C2 = D1. Thus we conclude that

y1 = C1(x1, x2, x3) sinαt + C2(x1, x2, x3) cosαt,

y2 = C2(x1, x2, x3) sinαt − C1(x1, x2, x3) cosαt.

On integrating the third equation ẏ3 = β we obtain

y3 = βt+ C3(x1, x2, x3).

Next we use the fact that the reference configuration coincides with the configuration occupied by the body

at the initial instant and so set t = 0 and (y1, y2, y3) = (x1, x2, x3). This shows that C1 = −x2, C2 =

x1, C3 = x3. Even though these expressions for Ci were derived by setting t = 0, since Ci = Ci(x1, x2, x3)

are independent of t, they hold for all t. Thus we conclude that

y1 = −x2 sinαt + x1 cosαt,

y2 = x1 sinαt + x2 cosαt,

y3 = x3 + βt.


For each fixed particle, i.e. fixed (x1, x2, x3), this provides a parametric description y1 = y1(t), y2 =

y2(t), y3 = y3(t) of the path followed by the particle during the flow.

Problem 3.4. How is the stretch tensor U related to the stretching tensor D? Similarly, how is the rotation

tensor R related to the spin tensor W?

Solution: Recall that F = RU where R is orthogonal and U is symmetric positive definite. Differentiating

this and substituting the result into the formula L = ḞF−1 leads to

L = ṘUF−1 + RU̇F−1.

Substituting F−1 = U−1RT into this leads to

L = ṘRT + RU̇U−1RT .

Since R is orthogonal, RRT = I which when differentiated leads to ṘRT = −RṘ
T

(i.e. ṘRT is skew

symmetric). Using this together with the preceding equation for L and D = (L + LT )/2, W = (L− LT )/2

leads to
D = 1

2R
(
U̇U−1 + U−1U̇

)
RT ,

W = ṘRT + 1
2R
(
U̇U−1 − U−1U̇

)
RT .

}
Remark: Note that if the reference configuration happens to coincide with the current configuration then

F = I and so R = U = I, whence the preceding equations specialize to

D = U̇, W = Ṙ.
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Problem 3.5. Let C = FTF be the right Cauchy-Green tensor and let
(n)

C be its nth material time derivative,

n = 1, 2, . . . . The nth Rivlin-Ericksen tensor An is defined by

An = F−T
(n)

C F−1. (3.74)

Show that

A1 = 2D and An+1 = Ȧn + AnL + LTAn. (3.75)

Solution: Setting n = 1 in definition (3.74) gives

A1 = F−T ĊF−1 = F−T (FTF)·F−1 = F−T (Ḟ
T
F + FT Ḟ)F−1.

Since Ḟ = LF we have

Ḟ
T
F + FT Ḟ = (LF)TF + FTLF = FTLTF + FTLF = FT (L + LT )F = 2FTDF.

Combining the preceding two equations leads to

A1 = 2D

which establishes (3.75)1.

Next, again from definition (3.74) and Ḟ = LF we have

An+1 = F−T
(n+1)

C F−1 = F−T
( (n)

C
)·
F−1 = F−T (FTAnF)·F−1

= F−T Ḟ
T
AnFF

−1 + F−TFT ȦnFF
−1 + F−TFTAnḞF

−1

= F−TFTLTAnFF
−1 + Ȧn + F−TFTAnLFF

−1

= LTAn + Ȧn + AnL

which establishes (3.75)2.

Problem 3.6. Show that a motion is rigid if and only if the stretching tensor D vanishes at all points and

all times.

Solution: In term of components in a fixed basis, we are given that Dij(y, t) = 1
2 (∂vi/∂yj + ∂vj/∂yi) = 0

at all y ∈ Rt. Thus
∂vi
∂yj

= −∂vj
∂yi

(a)

It follows from this that

∂2vi
∂yj∂yk

=
∂2vi
∂yk∂yj

= − ∂2vj
∂yk∂yi

= − ∂2vj
∂yi∂yk

=
∂2vk
∂yi∂yj

=
∂2vk
∂yj∂yi

= − ∂2vi
∂yj∂yk

;
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here, in the first, third and fifth steps we have simply changed the order of differentiation while in the second,

fourth and sixth steps we have used equation (a). Thus,

∂2vi
∂yj∂yk

= 0 at all y ∈ Rt.

Integrating once leads to
∂vi
∂yk

= Cik(t) at all y ∈ Rt, (b)

while integrating again leads to

vi(y, t) =

3∑
k=1

Cik(t)yk + ci(t)

or equivalently

v(y, t) = C(t)y + c(t) at all y ∈ Rt. (c)

Observe from (a) and (b) that C(t) is a skew symmetric tensor. Thus by comparing (c) with (3.10) we

conclude that if D(y, t) = 0 then the motion is a rigid body motion.

The converse can be verified readily by substituting (c) into the formula D = 1
2 (gradv + (gradv)T ).

Problem 3.7. Consider a simple shearing motion

y1 = x1 + k(t)x2, y2 = x2, y3 = x3,

where the components have been taken with respect to a fixed orthonormal basis {e1, e2, e3}. Let E = lnU

be the Lagrangian logarithmic strain tensor. Calculate the components of the following “strain-rate tensors”

with respect to this same basis:

(a) the (material time derivative) strain-rate tensor Ė,

(a) the co-rotational strain-rate tensor
◦
E

def
= Ė−WE + EW;

here W is the spin tensor. The co-rotational rate is also called the Jaumann rate. It represents the rate of

change relative to a basis rotating with the local body spin W.

Problem 3.8. Show that the two (vector) kinematic jump conditions at a singular surface, (6.25) and (6.30),

are equivalent to the one (tensor) jump condition

[[v]]⊗ n0 + [[F]]V0 = o (3.76)

provided V0 6= 0.

Solution: First suppose that (3.76) holds. Operating both sides of it on the unit normal n0 leads to

[[v]] + [[Fn0]]V0 = o, (6.30)
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because ([[v]]⊗ n0)n0 = v(n0 · n0) = v. Operating both sides of (3.76) on any unit vector ` that is tangent

to S0(t) gives

[[ F`]] = o (6.25)

provided V0 6= 0 because ([[v]]⊗ n0)` = v(n0 · `) = 0. Thus if (3.76) holds then so do (6.25) and (6.30).

Conversely, suppose that (6.25) and (6.30) hold. For an arbitrary vector g we have the following sequence

of results:

V0[[F]]g = V0[[F]](n0 · g)n0 = −[[v]](n0 · g) = −([[v]]⊗ n0)g;

in the first step we have used the fact that by (6.25), when [[F]] operates on the component of g that is

tangential to the surface one gets the null vector and so [[F]] operating on g is identical to [[F]] operating on

the component of g that is normal to S0; in the second step we have used (6.30); and in the third step we

have used the vector identity (a⊗ b)c = (c · b)a. Therefore(
V0[[F]] + ([[v]]⊗ n0)

)
g = 0

for any vector g and so (3.76) holds.

Problem 3.9. In this problem we study the motion of a propagating surface in a body. In contrast to the

singular surfaces studied in Section 6.1, here we assume that the motion ŷ(x, t) is smooth everywhere and

at all times. We leave it as an exercise to the reader to modify the analysis in the present problem to the

class of singular surfaces studied previously and to compare the results thus obtained with those in Section

6.1.

Let St be a surface defined by

St : ϕ(y, t) = 0

that is contained within the region Rt occupied by a body at the current instant. Its pre-image S0(t) in the

reference configuration is the surface, contained within the region R0, defined by

S0(t) : ϕ̂(x, t) = 0

where ϕ̂(x, t) = ϕ(ŷ(x, t), t) and y = ŷ(x, t) is the motion of the body assumed to be smooth. Note that at

each instant t, the particles p associated with S0(t) and St are identical because x and y are related through

the motion y = ŷ(x, t).

As time progresses, the surface St propagates within the region Rt and in general, different particles p

are associated with it at different times. The surface S0(t) will propagate correspondingly within the region

R0.

Determine

(i) the conditions under which this surface is a material surface, and
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(ii) the relation between the speeds V and V0 with which the respective surfaces St and S0(t) propagate

in directions normal to themselves.

Solution:

(i) In the special case of a material surface, the same set of particles is associated with the surface St
at all times, and therefore this must be true of S0(t) as well. Thus S0(t) must be time independent and

remain stationary in R0. Two examples of material surfaces are (i) the boundary of the body and (ii) an

interface between two bodies that are joined together at that interface. Thus for a material surface, ϕ̂(x, t)

is independent of t:

ϕ̂(x) = ϕ(ŷ(x, t), t).

Differentiating this with respect to time at fixed x gives

ϕ̇ = v · grad ϕ+ ∂ϕ/∂t = 0,

i.e. if ϕ(y, t) = 0 is a material surface then its material time derivative must vanish. This is necessary and

sufficient for ϕ = 0 to be a material surface.
Rt
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V n
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Rt
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Figure 3.5: (a) The region R0 and a surface S0(t) : ϕ̂(x, t) = 0 in the reference configuration, and (b) the

corresponding region Rt(t) and surface St : ϕ(y, t) = 0 in the current configuration. The velocity of a point

on St in the direction of the normal n is V . Likewise, the velocity of a point on S0(t) in the direction of the

normal n0 is V0.

(ii) Note that for a non-material surface, the motion of St is not necessarily related to the motion of the

body. The propagation speed of the surface described by ϕ(y, t) = 0, in the direction of the unit normal

vector

n =
gradϕ

|gradϕ| , (3.77)

is3

V = − ϕ′

|gradϕ| (3.78)

3In the particular case when St is a material surface, since St is attached to the same set of particles



84 CHAPTER 3. KINEMATICS: MOTION

where ϕ′ = ∂ϕ(y, t)/∂t. Similarly the propagation speed of the surface ϕ̂(x, t) = 0 in the direction of its

unit normal vector

n0 =
Gradϕ

|Gradϕ| , (3.79)

is

V0 = − ϕ̇

|Gradϕ| , (3.80)

where ϕ̇ = ∂ϕ̂(x, t)/∂t. However the surfaces St and S0(t) are related through the motion by ϕ̂(x, t) =

ϕ(ŷ(x, t), t), and it follows from this that

Gradϕ = FT
(

gradϕ
)
, ϕ̇ = gradϕ · v + ϕ′. (3.81)

Therefore from (3.77) - (3.81) we find the following relations between the unit normals n0 and n, and the

speeds V0 and V :

n0 =
|gradϕ|
|Gradϕ| F

Tn, V0 =
|gradϕ|
|Gradϕ| (V − v · n). (3.82)

Problem 3.10. In a certain motion of a body the evolving closed surface

ϕ(y1, y2, y3, t) = y2
1 + (1 + t2)y2

2 + y2
3 − 2ty1y2 − 1 = 0

is a material surface, i.e. even though this surface changes with time the particles that lie on it are the same

at all times. Determine an example of a motion for which this would be true.

Solution: The surface of interest is defined by

ϕ = y2
1 + (1 + t2)y2

2 + y2
3 − 2ty1y2 − 1 = 0. (a)

Since it is a material surface, we must have ϕ̇ = 0: i.e.

ϕ̇ = −2(y1 − ty2)y2 + 2(y1 − ty2)v1 +
[
2(1 + t2)y2 − 2ty1

]
v2 + 2y3v3 = 0 (b)

where

ẏ1 = v1, ẏ2 = v2, ẏ3 = v3. (c)

If the reference configuration coincides with the initial configuration then ŷ(x, 0) = x, i.e.

ŷ1(x1, x2, x3, 0) = x1, ŷ2(x1, x2, x3, 0) = x2, ŷ3(x1, x2, x3, 0) = x3. (d)

Equations (a)− (d) do not determine the motion yi = ŷi(x1, x2, x3, t) uniquely but do impose restrictions on

it.

We now find a particular motion that is consistent with (a) − (d). Suppose that the velocity field is

unidirectional so that v2 = v3 = 0 throughout the body at all times. Using this and integrating (c)2,3 gives

p at all times, the propagation speed of the surface St at (y, t) equals the particle velocity at (y, t) in the

n-direction. Thus the propagation speed of a material surface obeys V = v · n.
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ŷ2(x1, x2, x3, t) = α(x1, x2, x3), ŷ3(x1, x2, x3, t) = β(x1, x2, x3); in view of (d)2,3, this in turn requires that

α = x2, β = x3. Thus we have

ŷ2(x1, x2, x3, t) = x2,

ŷ3(x1, x2, x3, t) = x3.
(e)

Since v2 = v3 = 0, equation (b) simplifies to v1 = y2 which in turn reduces to ẏ1 = x2 in view of (e)1.

Integrating this leads to ŷ1(x1, x2, x3, t) = tx2 + γ(x1, x2, x3), which in view of (d)1 yields γ = x1. Thus

ŷ1(x1, x2, x3, t) = tx2 + x1. (f)

The motion of the body is thus described by (e), (f) which is seen to be a simple shear.

Remark: When the reference configuration coincides with the initial configuration, the pre-image of the

surface ϕ(y, t) = 0 is found by setting t = 0 and y = x: ϕ(x, 0) = 0. This shows that the pre-image of the

particular surface described by (a) is the sphere x2
1 + x2

2 + x2
3 = 1.

Problem 3.11. Find necessary and sufficient conditions that ensure that a curve is a material curve.

Solution: See Section 75 of Truesdell and Toupin.

Problem 3.12. Show that the left stretch tensor Vt in the polar decomposition Ft = VtRt obeys the

relationship

D(y, t) =
∂

∂τ
Vt(y, τ)

∣∣∣∣
τ=t

,

where we have used the notation and setting introduced in Section 3.5.This shows that, at the current instant

t, the time rate of change of the right stretch tensor with respect to the current configuration, equals the

stretching and spin tensors, cf. equation (3.73).

Problem 3.13. Show that the nth Rivlin-Ericksen tensor An defined in Problem 3.5 obeys

An(y, t) =
∂n

∂τn
Ct(y, τ)

∣∣∣∣
τ=t

(3.83)

where we have used the notation and setting introduced in Section 3.5.

Solution: A straightforward calculation using the Cauchy Green tensors C(x, τ) = FT (x, τ)F(x, τ), Ct(y, τ) =

FTt (y, τ)Ft(y, τ) and equation (3.67) shows that

C(x, τ) = FT (x, τ)F(x, τ) = FT (x, t)FTt (y, τ)Ft(y, τ)F(x, t) = FT (x, t)Ct(y, τ)F(x, t).

Differentiating C(x, τ) = FT (x, t)Ct(y, τ)F(x, t) n times with respect to τ leads to

(n)

C (x, τ) = FT (x, t)
∂n

∂τn
Ct(y, τ)F(x, t).
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On setting τ = t in here we get

(n)

C (x, t) = FT (x, t)
∂n

∂τn
Ct(y, τ)

∣∣∣∣
τ=t

F(x, t).

Combining this with the definition of the nth Rivlin Ericksen tensor given in Problem 3.5 leads to (3.83).

Problem 3.14. Consider the particular motion of a continuum where the deformation gradient tensor at a

generic particle is given by

F(t) = Q(t) etkN0

where Q(t) is orthogonal at each t, the scalar k is constant, and the constant tensor N0 has the properties

|N0| = 1, trN0 = 0.

Using the properties of the exponential tensor from Section 3.6 of Volume I, or otherwise, show that

det F(t) = 1 and that the eigenvalues of Ct(τ) = FTt (τ)Ft(τ), i.e. the principal relative stretch tensor,

are constant during this motion.

Remark: Consider the particular case where N0 = e1 ⊗ e2 for an arbitrary pair of mutually orthogonal unit

vectors e1 and e2. Observe that N2
0 = 0 for this N0, from which follows that Nn

0 = 0 for n = 2, 3, . . .. The

series representation of the exponential tensor then simplifies to

etkN0 =

∞∑
n=0

tnkn

n!
Nn

0 = I + ktN0

and therefore the given deformation gradient tensor specializes to F(t) = Q(t)
(
I+kt e1⊗e2

)
. This describes

a simple shear followed by a rotation.

3.7 Transport Equations.

Let β(p, t) be some scalar property, say the internal energy density, at the particle p at time

t during some motion. Then the total internal energy of a part P is given by the integral

of β over the part P . If we wish to calculate the time rate of change of the internal energy

associated with part P during the motion we must evaluate

d

dt

∫
P

β(p, t) dp.

Though this is conceptually easy to state, a particle, a body and a part of a body are abstract

notions (see Chapter 1) and so we cannot get very far with evaluating the above expression.
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Therefore we transform p→ y and P → Dt using the motion y = χ(p, t) in which case the

preceding integral can be written in the equivalent form

d

dt

∫
Dt

β(y, t)dV

where β(y, t) is the internal energy per unit current volume at the particle that is located at

y at time t, and Dt is the region occupied by P at time t, during this motion. Recall that

by definition, a part P consists of a particular fixed set of particles. The particles associated

with P do not change with time, and so we are studying the internal energy of the same set

of particles during the motion. The region Dt that P occupies however does vary with time.

In this section we derive formulae for evaluating terms such as the preceding one where the

only challenge is that we want to calculate the time derivative of an integral that is taken

over a region that changes with time.

Let the fields β(y, t) and b(y, t) characterize a scalar and vector property associated with

a motion of the body. For example b(y, t) might be the linear momentum density (i.e. linear

momentum per unit volume) of the particle located at y at time t. Suppose that Dt is a

material subregion of Rt. Then one can show that

d

dt

∫
Dt

β dVy =

∫
Dt

(
β̇ + β div v

)
dVy,

d

dt

∫
Dt

b dVy =

∫
Dt

(
ḃ + b div v

)
dVy;

 (3.84)

if St is a material surface4 in Rt, one can show that

d

dt

∫
St
βn dAy =

∫
St

[(
β̇ + β div v

)
n− βLTn

]
dAy,

d

dt

∫
St

b · n dAy =

∫
St

(
ḃ + b div v − Lb

)
· n dAy;

 (3.85)

and if Ct is a material curve in Rt, one can show that

d

dt

∫
Ct
β dy =

∫
Ct

(
β̇ dy + β Ldy

)
,

d

dt

∫
Ct

b · dy =

∫
Ct

(
ḃ + LTb

)
· dy.

 (3.86)

In order to establish these relations one first transforms the time dependent domains Dt,
St or Ct on the left hand sides of these equations to their respective (time independent) images

4Recall from Section 1.7 that the terms material region, material surface and material curve refer to a

region Dt, surface St and curve Ct which consist of the same particles of the body at all times.
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in the reference configuration D0, S0 or C0 by using dVy = JdVx, n dAy = JF−Tn0 dAx and

dy = Fdx respectively. The pre-images D0, S0 and C0 are time independent because we are

considering a fixed set of particles. Since the integrals are now taken over time independent

domains, the time derivatives that are outside the integrals can now be taken inside. After

simplification, one uses the relations dVy = JdVx etc. in reverse to now transform the

referential domains back to the current domains thus leading to the desired results. For

example, in order to establish (3.84)2 we proceed as follows:

d

dt

∫
Dt

b(y, t) dVy =
d

dt

∫
D0

b(x, t) J(x, t) dVx

=

∫
D0

∂

∂t

(
b(x, t) J(x, t)

)
dVx

=

∫
D0

(
ḃ J + bJ̇

)
dVx

=

∫
D0

(
ḃ J + b J div v

)
dVx

=

∫
Dt

(
ḃ + b div v

)
dVy,

(3.87)

where in the first step we have transformed Dt → D0 while in the last step we have trans-

formed D0 → Dt both by using dVy = JdVx. In the preceding calculation we have used the

formulae Ḟ = LF and J̇ = J traceL = J trace(ḞF−1) = J div v.

Similarly, to establish (3.85)1 we proceed as follows:

d

dt

∫
St
β(y, t) n dAy =

d

dt

∫
S0
β(x, t) JF−Tn0 dAx

=

∫
S0

∂

∂t

(
β JF−T

)
n0 dAx

=

∫
S0

(
β̇ JF−T + β J̇F−T + β J(F−T )·

)
n0 dAx

=

∫
S0

(
β̇ JF−T + β J (div v) F−T + β J

(
− F−T (Ḟ)TF−T

) )
n0 dAx

=

∫
St

[(
β̇ + β div v

)
I− βLT

]
n dAy,

(3.88)

where we have used Ḟ = LF, J̇ = J div v, n dAy = JF−Tn0 dAx, as well as the formula

(F−T )· = −F−T (Ḟ)T F−T which results from differentiating F−TFT = I with respect to

time.

The remaining transport equations can be established similarly.
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The transport formulae (3.84) can be written in the alternative useful forms

d

dt

∫
Dt

β dVy =

∫
Dt

∂β

∂t
dVy +

∫
∂Dt

β (v · n) dAy,

d

dt

∫
Dt

b dVy =

∫
Dt

∂b

∂t
dVy +

∫
∂Dt

b (v · n) dAy;

 (3.89)

here n is a unit outward normal on the boundary ∂Dt and therefore v · n is the outward

normal particle speed. Note that the last terms in each equation above can be interpreted

as the flux of the quantity β or b at the surface ∂Dt.

3.8 Change of Observer. Objective Physical Quanti-

ties.

An observer O (or frame of reference) determines the place y and the instant t at which

an event occurs. (One sometimes speaks of an observer as being a rigid body moving in

3-dimensional Euclidean space carrying a clock.) Only the ratios of distances (and not the

distances themselves), and the ratios of time intervals (and not the intervals themselves),

can be experienced by an observer.

Certain physical quantities must be independent of the observer and in this section we

develop the framework necessary for studying this issue. Observer independence will play

an indispensable role in our subsequent consideration of constitutive relationships where we

shall require them to be independent of the observer.

Let O and O∗ be two observers. Suppose that the same event is characterized by (y, t)

and (y∗, t∗) by these two observers. The two observers are said to be equivalent if they agree

on the distance between every two points, agree on orientation (i.e. right-handedness or

left-handedness), agree on the time interval between every two instants, and agree on the

sense of time (i.e. the order in which two instants occur). It is possible to show that these

four requirements hold if and only if (y, t) and (y∗, t∗) are related by

y∗ = Q(t)y + c(t), t∗ = t+ a, (3.90)

where a is an arbitrary constant, c(t) is an arbitrary time-dependent vector, and Q(t) is an

arbitrary time-dependent proper orthogonal tensor. Alternatively given one observer O, we

can view (3.90) as describing an observer transformation from O to an equivalent observer

O∗.
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In general, the characterization of a physical quantity associated with a motion depends

on the observer. It is important to distinguish between physical quantities that depend in-

trinsically on the observer and those that don’t. A physical quantity is said to be observer

independent – or objective (or frame indifferent) – if it is invariant under all observer trans-

formations. The importance of whether a physical quantity is objective or not will become

apparent when we consider constitutive relationships in what follows.

Specifically, suppose that a certain physical quantity is denoted by the scalar field β(y, t)

by observer O, and by β∗(y∗, t∗) by observer O∗. Then we say that this scalar physical

quantity is observer independent or objective if

β∗(y∗, t∗) = β(y, t) (3.91)

for all equivalent observers O, O∗, i.e. when y,y∗, t, t∗ are related by (3.90). Next, consider a

physical quantity that is denoted by the vector field b(y, t) by observer O, and by b∗(y∗, t∗)

by observer O∗. Then we say that this vector physical quantity is objective if

b∗(y∗, t∗) = Q(t)b(y, t) (3.92)

for all equivalent observers O, O∗, i.e. when y,y∗, t, t∗ are related by (3.90). Finally, consider

a physical quantity that is denoted by the tensor field B(y, t) by observerO, and by B∗(y∗, t∗)

by observer O∗. Then we say that this tensor physical quantity is objective if

B∗(y∗, t∗) = Q(t)B(y, t)QT (t) (3.93)

for all equivalent observers O, O∗, i.e. when y,y∗, t, t∗ are related by (3.90).

Physically, equation (3.92) ensures that the components associated with an objective

vector quantity are unaffected by an observer transformation. To see this, consider an

orthonormal basis X = {e1, e2, e3} and a second orthonormal basis X∗ = {Qe1,Qe2,Qe3}.
See Figure 3.6. Suppose that an observer-independent physical quantity is denoted by the

vector b by observer O. The components of b in the basis X are bi = b · ei. If a second

observer O∗ represents this same physical quantity by the vector b∗ then the components of

b∗ in the basis X∗ are b∗i = b∗ ·Qei = Qb ·Qei = b · ei = bi, i.e. the components of b∗ in

the basis X∗ are identical to the components of b in the basis X.

Similarly (3.93) ensures that the components associated with an objective tensor quantity

are unaffected by an observer transformation. Suppose that an observer-independent physical

quantity is denoted by the tensor B by observer O. The components of B in the basis X
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Figure 3.6: The figure is drawn for the special case a = 0, c = o. At the instant depicted, the two

observers see the same particle x to be located at y and y∗ = Qy respectively. Two bases X = {e1, e2} and

X∗ = {Qe∗1,Qe∗2} are shown. If b(y, t) is an objective vector quantity then the components of b in X equals

the components of b∗ in X∗: bi = b∗i .

are given by Bij = ei ·Bej. If a second observer O∗ represents this same physical quantity

by the tensor B∗ then the components of B∗ in the basis X∗ are B∗ij = Qei · B∗(Qej) =

Qei · (QBQT )(Qej) = ei ·Bej = Bij, i.e. the components of B∗ in the basis X∗ are identical

to the components of B in the basis X.

Since kinematic quantities such as the deformation gradient tensor F and the stretching

tensor D are purely geometric in nature, one can simply verify whether they are objective

or not. On the other hand for mechanical or thermodynamic quantities such as stress and

energy, one has to postulate whether they should be objective or not based on the underlying

physics.

We end this section by examining whether the following kinematic quantities are objec-

tive: particle velocity v, particle acceleration a, the deformation gradient tensor F, the right

stretch tensor U, the velocity gradient tensor L, the spin tensor W, the left stretch tensor

V, and the stretching tensor D. We will find that the first six are not objective while the

last two are objective.
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To establish the preceding claims consider a motion described by

y = y(x, t) (3.94)

by observer O. An equivalent observer O∗ describes this motion as

y∗ = Q(t∗ − a)y(x, t∗ − a) + c(t∗ − a)
def
= y∗(x, t∗) (3.95)

where we have used y∗ = Qy + c, t∗ = t+ a. The particle velocity is given by

v∗(y∗, t∗) =
∂y∗

∂t∗
= Q̇(t)y + Q(t)v(y, t) + ċ(t) (3.96)

where y∗ = Qy + c, t∗ = t+ a; because of the terms Q̇ and ċ in this expression we see that

in general v∗ 6= Qv and so the particle velocity is not an objective quantity. Differentiating

this again leads to

a∗(y∗, t∗) = Q̈(t)y + 2Q̇(t)v(y, t) + Q(t)a(y, t) + c̈(t) (3.97)

which shows that in general a∗ 6= Qa and so the particle acceleration is also not objective.

Observe that the expression (3.97) relating the acceleration vectors a∗ and a does reduce

to the objectivity relation a∗ = Qa if (and only if) Q(t) is a constant orthogonal tensor and ċ

is a constant vector. In this particular case the two motions y(x, t) and y∗(x, t) = Qy(x, t)+c

are said to be related by a Galilean Transformation. The acceleration is therefore objective

under Galilean transformations. This is an important observation since the equations of

motion (to follow in later chapters) involve the acceleration and are only valid relative to an

inertial frame.

Next consider the deformation gradient tensor. From (3.95) we have

F∗(x, t∗) =
∂y∗

∂x
= Q(t)F(x, t) (3.98)

and so F∗ 6= QFQT . Thus the deformation gradient tensor is not objective. By the polar

decomposition theorem we have F∗ = R∗U∗ = QF = QRU. Since the polar decomposition

is unique it follows that necessarily R∗ = QR and

U∗ = U. (3.99)

Thus the right stretch tensor U is also not objective. On the other hand from the alternative

version of the polar decomposition theorem we have F∗ = V∗R∗ = QVR = QVQTR∗ and

so

V∗ = QVQT . (3.100)
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Thus the left stretch tensor V is objective.

Next, differentiating (3.96) gives

L∗ =
∂v∗

∂y∗
= QḞF−1QT + Q̇QT = QLQT + Ω (3.101)

whence we see that the velocity gradient tensor is not objective in general since L∗ 6= QLQ;

here Ω = Q̇QT is skew symmetric. Turning finally to the stretching tensor we have

D∗ =
1

2
(L∗ + LT

∗ ) =
1

2
(QLQT + QLTQT ) = QDQT (3.102)

since Ω = −ΩT . Therefore D is objective.

Similarly on finds that

W∗ = QWQT + Ω.

Remark: Instead of the preceding phrasing in terms of two equivalent observers, the notion

of objectivity (material frame indifference) can be alternatively phrased in terms of a single

observer who considers two motions y(x, t) and y∗(x, t∗) related by

y∗(x, t∗) = Q(t∗ − a)y(x, t∗ − a) + c(t∗ − a); (3.103)

here a is a constant, and at each instant t, Q(t) is an arbitrary proper orthogonal tensor and

c(t) is an arbitrary vector. In most of the subsequent chapters it is sufficient to consider the

special case a = 0 and c = o in which case

y∗(x, t) = Q(t)y(x, t). (3.104)

We shall phrase our discussion of material frame indifference (objectivity) in subsequent

sections in terms of two motions related by (3.103) or (3.104) rather than in terms of the

earlier phrasing in terms of equivalent observers.

3.9 Convecting and Co-Rotating Bases and Rates.

Convecting Bases and Rates: Consider three material fibers passing through a point

y at time t. Suppose that the vectors f1(y, t), f2(y, t) and f3(y, t) are tangent to these

material fibers and suppose further that this triplet of vectors is linearly independent. Then
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{f1, f2, f3} forms a basis. If these vectors are attached to the fibers, they will move with, or

convect with, the body. From (3.29) it follows that

ḟ i = Lf i (3.105)

It can be shown that if {f1(y, t), f2(y, t), f3(y, t)} is a (convecting) basis at one instant t,

then it forms a basis for all time.

Next, let a(y, t) be an arbitrary vector field with components ai in the basis {f1, f2, f3}:

ai = f i · a. (3.106)

On taking the material time derivative of both sides of this we get

4
ai= ḟ i · a + f i · ȧ = Lf i · a + f i · Lf i = f i · (ȧ + LTa). (3.107)

Here we have denoted the material time derivative of ai by
4
ai rather than ȧi. Had we called

it ȧi, one might assume that ȧi are the components of the vector ȧ, which they are not. It

follows from (3.107) that
4
ai are the components of the vector

4
a= ȧ + LTa (3.108)

which is often referred to as the convected time derivative of a.

Similarly, let A(y, t) be an arbitrary tensor field with components Aij in the basis

{f1, f2, f3}:
Aij = f i ·Af j. (3.109)

On taking the material time derivative of both sides of this we get

4
Aij= ḟ i·Af j+f i·Ȧf j+f i·Aḟ j = Lf i·Af j+f i·Ȧf j+f i·ALf j = f i·(Ȧ+LTA+AL)f j. (3.110)

As before, we have denoted the material time derivative of Aij by
4
Aij rather than Ȧij. Had

we called it Ȧij, one might assume that Ȧij are the components of the tensor Ȧ which they

are not. It follows from (3.110) that
4
Aij are the components of the tensor

4
A= Ȧ + AL + LTA (3.111)

which is often referred to as the convected time derivative of A.
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Co-Rotating Bases and Rates: Consider a triplet of orthonormal vectors f1(y, t),

f2(y, t) and f3(y, t) that forms a basis at some instant of time. We say that these vectors

spin with the body, or co-rotate with the body if

ḟ i = Wf i (3.112)

where W is the spin tensor; see (3.21). It can be shown that if {f1(y, t), f2(y, t), f3(y, t)} is

a (co-rotating) orthonormal basis at one instant t, then it forms an orthonormal basis for all

time. A calculation entirely analogous to the preceding can be carried out to show that, if ai

are the components of a vector in this basis, then the material time derivative of ai, denoted

by
◦
ai, are the components of the vector

◦
a= ȧ−Wa (3.113)

referred to as the co-rotational time derivative of a. Likewise, if Aij are the components

of a tensor in this basis, then the material time derivative of Aij, denoted by
◦
Aij, are the

components of the tensor
◦
A= Ȧ + AW −WA (3.114)

referred to as the co-rotational time derivative of A. In writing both of the preceding

equations we have used the fact that W = −WT .

Problem 3.18 asks you to show that the material time derivatives ȧ and Ȧ of an objective

vector a and an objective tensor A are not objective in general, but that their convected

and co-rotational rates of change are objective.

3.10 Linearization.

We now restrict attention to motions which are “infinitesimal” in the sense that the dis-

placement gradient tensor is small, ε = H = |Grad u| � 1. Linearized expressions for the

stretch tensors, the rotation tensor and the strain tensor where derived previously in Section

2.8. Differentiating the expressions (2.85), (2.76) that define the infinitesimal strain tensor

ε and the infinitesimal rotation tensor ω with respect to t at fixed x gives

ε̇ =
1

2
(Grad v + (Grad v)T), ω̇ =

1

2
(Grad v − (Grad v)T). (3.115)

Recall that the velocity gradient tensor L, the strain-rate tensor D and the spin tensor

W are defined by

L = grad v, D =
1

2
(grad v + (grad v)T), W =

1

2
(grad v − (grad v)T). (3.116)
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When the motion is infinitesimal, it is readily seen that Grad v = grad v + O(ε2). Therefore

D = ε̇+O(ε2), W = ω̇ +O(ε2), (3.117)

or in component form

Lij =
∂vi
∂xj

, ε̇ij =
1

2

(
∂vi
∂xj

+
∂vj
∂xi

)
, ω̇ij =

1

2

(
∂vi
∂xj
− ∂vj
∂xi

)
, (3.118)

3.11 Worked Examples and Exercises.

Problem 3.15. Show that the transport formulae (3.84) can be written in the alternative forms

d

dt

∫
Dt

β dVy =

∫
Dt

∂β

∂t
dVy +

∫
∂Dt

β (v · n) dAy,

d

dt

∫
Dt

b dVy =

∫
Dt

∂b

∂t
dVy +

∫
∂Dt

b (v · n) dAy.

(3.119)

Here n is a unit outward normal on the boundary ∂Dt and therefore v · n is the outward normal particle

speed. Note that the last terms in each equation above can be interpreted as the flux of the quantity β or

b on the surface ∂Dt.

Problem 3.16. Let St be a surface contained within the region Rt occupied by the body and let Γt be the

closed curve which forms the boundary of St. The circulation associated with the curve Γt is defined by

C(Γt) =

∫
Γt

v · dy. (3.120)

A flow is said to be circulation preserving if C(Γt) is time independent for every closed curve Γt in Rt.
Calculate the vorticity5 ω(x, t) at a generic particle of the body at time t in terms of the vorticity ω(x, 0)

at the initial instant. (Assume for simplicity that the reference configuration of the body coincides with the

initial configuration of the body.)

Solution: On using Stokes’ Theorem (e.g. see Volume 1, Section 5.2) and ω = curlv we get

C(Γt) =

∫
Γt

v · dy =

∫
St

(curlv) · n dAy =

∫
St
ω · n dAy.

Differentiating this with respect to time and using the transport equation (3.85)2 yields

d

dt
C(Γt) =

d

dt

∫
St
ω · n dAy =

∫
St

(
ω̇ + ω traceL− Lω

)
· n dAy

5Recall that ω = curlv.
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If the flow is circulation preserving
d

dt
C(Γt) = 0

for all curves Γt ∈ Rt. Thus we conclude that

ω̇ + ω traceL− Lω = 0.

Pre-operating on this with JF−1 leads to

JF−1ω̇ + JF−1ω traceL− JF−1Lω = 0.

Recall from (3.43) that J̇ = J traceL. Furthermore, differentiate FF−1 = I with respect to t and use Ḟ = LF

to obtain
(
F−1

)·
= −F−1L. Using these in the preceding equation allow us to write it as

JF−1ω̇ + J̇F−1ω + J(F−1)·ω = 0

or equivalently as (
JF−1ω

)·
= 0.

Thus JF−1ω remains constant at each particle and so in particular

J(x, t)F−1(x, t)ω(x, t) = J(x, 0)F−1(x, 0)ω(x, 0).

If the reference configuration coincides with the initial configuration then F(x, 0) = I and J(x, 0) = 1. Thus

the preceding equation simplifies to

J(x, t)F−1(x, t)ω(x, t) = ω(x, 0)

which yields

ω(x, t) =
1

J(x, t)
F(x, t)ω(x, 0).

Problem 3.17. Show that the (oriented) unit normal vector to a surface in the deformed configuration is

objective.

Solution: By (2.36) we have that the two unit normal vectors are given by

n =
F−Tn0

|F−Tn0|
, and n∗ =

F−T∗ n0

|F−T∗ n0|
.

Moreover, we have from (3.98) that

F∗ = QF.

Since Q is orthogonal, Q−1 = QT and |Qq| = |q| for any vector q. Combining these leads to

n∗ =
F−T∗ n0

|F−T∗ n0|
=

(QF)−Tn0

|(QF)−Tn0|
=

QF−Tn0

|QF−Tn0|
= Q

F−Tn0

|F−Tn0|
= Qn.

Thus the unit normal vector n is objective.
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Problem 3.18. Suppose that α(y, t),a(y, t) and A(y, t) are objective scalar, vector and tensor fields

respectively.

a) Show that α̇ is also objective, but that ȧ and Ȧ are not objective (in general).

b) If ȧ is objective, show that necessarily a = o.

c) If Ȧ is objective show that A = β I for some scalar field β(y, t).

d) Show that the so-called convected rates of change of a and A are always objective, where the convected

rates of change are defined by

4
a= ȧ + LTa and

4
A= Ȧ + LTA + AL.

e) Which of the following rates-of-change of A are objective?

4
A

def
= Ȧ + LTA + AL,

∇
A

def
= Ȧ− LA−ALT ,

◦
A

def
= Ȧ−WA + AW,

�
A

def
= 1

2 (
4
A −

∇
A) = DA + AD.

The tensor
◦
A is called the co-rotational rate of change of A.

Solution: We will establish the second result in part (d). Since A is objective

A∗ = QAQT ; (i)

by definition, the convected derivatives of A in the two motions are

4
A = Ȧ + LTA + AL, (ii)

4
A∗ = Ȧ∗ + LT∗A∗ + A∗L∗; (iii)

from (3.101) we have

L∗ = QLQT + Q̇QT ; (iv)

differentiating the orthogonality condition QQT = I yields

QQ̇
T

= −Q̇QT ; (v)

and differentiating (i) gives

Ȧ∗ = Q̇AQT + QȦQT + QAQ̇
T
. (vi)
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We now take equation (iii) and eliminate the terms Ȧ∗,L∗ and A∗ on its right hand side by substituting

from (vi), (iv) and (i) respectively. Finally we use (v) to simplify the result further eventually ending up

with
4
A∗= QȦQT + QLTAQT + QALQT = Q

4
A QT

from which we conclude that the convected derivative
4
A is objective.

Problem 3.19. Show that the Rivlin-Ericksen tensors An(y, t) defined in one of the preceding examples

are objective.

Problem 3.20. Is the relative deformation gradient tensor objective? Let Ft(τ) be the deformation gra-

dient tensor of the configuration at time τ with the configuration at time t being taken as the reference

configuration; see Section 3.5. Determine the relation between the relative deformation gradient tensors

Ft(τ) and F∗t (τ) in two motions χ and χ∗ = Qχ where Q(t) is a rotation tensor at each t.

Solution: Let F(t),F∗(t) and Ft(τ),F∗t (τ) denote the deformation gradient tensors and relative deformation

gradient tensors in the two motions. Recall from Section 3.5 that in the motion χ

Ft(τ) = F(τ)F−1(t), (a)

and therefore similarly in the motion χ∗,

F∗t (τ) = F∗(τ)
∗
F −1(t). (b)

Knowing from (3.98) that the deformation gradient tensors in the two motions are related by

F∗(t) = Q(t)F(t), (c)

we can determine the relation between F∗t (τ) and Ft(τ) as follows:

F∗t (τ) = F∗(τ)
∗
F −1(t),

= Q(τ)F(τ)F−1(t)QT (t),

= Q(τ)Ft(τ)QT (t),

where in the first, second and third steps we have used, respectively, (b), (c) and (a). Therefore the relative

deformation gradient tensors are related by

F∗t (τ) = Q(τ)Ft(τ)QT (t).

Note that the argument of Q in its two occurrences here are different, t in one case and τ in the other. Thus

the relative deformation gradient tensor is not objective.
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Chapter 4

Mechanical Balance Laws and Field

Equations

In this chapter we shall consider the application of the fundamental principles of mechanics –

viz., the conservation of mass and the mechanical principles of linear and angular momentum

balance – to a continuum. In the next chapter we shall turn to the thermodynamic principles

corresponding to the first and second laws of thermodynamics1 .

A roadmap of this chapter is as follows: in Section 4.1 we introduce the notions of a global

balance law and a local field equation in general terms. Then in Section 4.2 we present the

balance law and field equation associated with the principle of mass balance. Next in Section

4.3 we introduce the notion of force, more specifically body force and traction, and discuss

various attributes of them. Section 4.4 states the principles of global balance of linear and

angular momentum. From it we deduce the notion of stress and discuss it in Section 4.5.

Section 4.6 is devoted to deriving the field equations associated with momentum balance.

The principal stresses and principal directions are discussed in Section 4.7. The analysis and

discussion up to this point is carried out entirely in the current configuration. We now turn in

Section 4.8 to reformulating the preceding analysis with respect to a reference configuration.

In particular the concept of the first Piola Kirchhoff stress tensor is introduced and discussed.

Section 4.9 considers the rate at which stresses do work – the stress power – and discusses

the notion of work-conjugate stress-strain pairs. Finally in Section 4.10 the preceding results

are linearized.

1If electromagnetic effects are important then we would add Maxwell’s equations to this list.
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4.1 Introduction

Consider an arbitrary motion χ of a body B that takes a particle p ∈ B to the location

y = χ(p, t) at time t. Let Rt = χ(B, t) be the region occupied by B at time t and let

Dt = χ(P , t) be the region occupied by some part P of the body. The motion takes place

over a time interval2 [t0, t1].

Suppose that Ω(P , t;χ) is the value of some extensive physical property associated with

the part P at time t (e.g. the internal energy). As discussed in Section 1.8, under suitable

assumptions there exists a density ω(y, t;χ) of this property (e.g. the internal energy per

unit volume in the current configuration) such that

Ω(P , t;χ) =

∫
Dt

ω(y, t;χ) dVy.

The density ω depends on the position y (or particle p). For simplicity of writing we shall

generally omit the fact that the density depends on the motion and simply write ω(y, t).

In this chapter the quantities Ω that we shall consider are the mass, linear momentum

and angular momentum of P , while in the next chapter we shall also consider the energy

and entropy. These have the respective representations∫
Dt

ρ dVy,

∫
Dt

ρv dVy,

∫
Dt

y × ρv dVy,
∫
Dt

(
ρε+

1

2
ρv · v

)
dVy,

∫
Dt

ρη dVy; (4.1)

here ρ(y, t) is the mass density, v(y, t) is the particle velocity, ε(y, t) is the specific internal

energy (or internal energy density), and η(y, t) is the specific entropy (or entropy density).

Note from the preceding expressions that ρε, for example, represents the internal energy per

unit volume (where volume dVy is measured in the current configuration); consequently ε

itself represents the internal energy per unit mass.

The physical principles of interest to us concern the time rate of change of these various

physical quantities, and all but the second law of thermodynamics have the form,∫
Dt

β dVy +

∫
∂Dt

ζ dAy =
d

dt

∫
Dt

ω dVy (4.2)

where β represents the bulk (volumetric) generation of Ω at points within the region Dt and

is often called the “source”, while ζ represents the generation of Ω at points on the surface

2When we have an equation that holds for all time in this interval, we shall, for simplicity, say that it

holds “for all time”.
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(boundary) ∂Dt and is often called the “flux”. The second law of thermodynamics also has

the form (4.2) but with an inequality replacing the equality. Equation (4.2) is to hold for all

parts of the body or equivalently for all subregions Dt ⊂ Rt.

An equation of the form (4.2) is known as a global balance law; a “balance law” since it

describes how the rate of increase of the amount of Ω in P is balanced by the generation of

Ω at the particles in the bulk of P plus the flux of Ω across the particles on the boundary of

P ; and “global” because it holds for parts P of the body rather than locally at each particle

p of the body. It is worth pointing out that the balance law (4.2) is applied to a fixed set of

particles of the body (i.e. the set of particles that comprise the part P). Even though the

domain Dt varies with time, it always contains the same set of particles3.

While a global balance law is a clear way in which to state a basic physical principle,

in order to carry out calculations it is much more convenient to work with an equivalent

statement that holds at each point y ∈ Rt. Such an equivalent statement is called a (local)

field equation.

In order to derive a field equation from a balance law, the standard procedure is to first

show or observe that the surface field ζ in (4.2) depends on the unit normal vector to ∂Dt in

a convenient form, and to then use the divergence theorem4 to convert that surface integral

into a volume integral over Dt. Next, the time derivative on the right hand side is taken

inside the integral using one of the transport equations from Section 3.7. Now the entire

equation has the form of a single integral over the region Dt that vanishes for all subregions

Dt. Thus by localization5 we conclude that the integrand itself must vanish at each point y,

thus leading to the field equation associated with the balance law (4.2).

All fields will be assumed to be smooth in this and the next chapter. Specifically, we

shall assume that the particle velocity v(y, t), the mass density ρ(y, t), the Cauchy stress

T(y, t), the heat flux q(y, t), the specific internal energy ε(y, t), the temperature θ(y, t), and

the specific entropy η(y, t) are all continuously differentiable jointly in position and time.

The body force density b(y, t) and the heat supply r(y, t) are assumed to be continuous in

position and time.

Finally we remark that the discussion of the balance laws and field equations that follow

immediately below will be carried out entirely in the current configuration. We will not even

3An interesting class of problems that requires one to rethink this formulation pertains to problems

involving growth, e.g. the growth of a tumor, where particles are added to the tumor.
4See Chapter 5.2 of Volume I.
5See Section 5.3 of Volume I.
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refer to a reference configuration. However for reasons of convenience, we shall consider an

alternative (equivalent) formulation with respect to a reference configuration later in this

chapter.

4.2 Conservation of Mass.

Given any part P of a body, its mass is a positive, scalar valued property, whose dimension is

independent of length and time, that we denote by m(P , t;χ). In terms of the mass density

ρ(y, t;χ) (> 0)

m(P , t;χ) =

∫
Dt

ρ(y, t;χ) dVy; (4.3)

see Section 1.8.

The conservation of mass states that the mass of any part P does not depend on the

motion or time: i.e. m(P , t;χ) = m(P). Note that ρ continues to be configuration and time

dependent even though m(P) is not. Since m(P) is time independent, we differentiate (4.3)

with respect to t to get the balance law

d

dt

∫
Dt

ρ(y, t;χ) dVy = 0 (4.4)

which must hold for all sub-regions Dt ⊂ Rt. For simplicity of notation, from hereon we

shall omit explicitly displaying the motion χ in the mass density and simply write ρ(y, t).

On using the transport equation (3.84)1 this becomes∫
Dt

(ρ̇+ ρ div v) dVy = 0 . (4.5)

Since this holds for all Dt ⊂ Rt, and since the integrand is continuous, it can be localized6

to get the field equation

ρ̇+ ρ div v = 0 (4.6)

which holds for all y ∈ Rt and all t. Recall that the over dot represents the material time

derivative.

The steps in the preceding calculation can be reversed to obtain (4.4) from (4.6). Thus

the field equation (4.6) and balance law (4.4) are equivalent.

6See Chapter 5.3 of Volume I.
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A useful result: In what follows we shall be repeatedly using one of the transport equations

established in Section 3.7. However in each case the integrand will involve the mass density

ρ multiplying a smooth scalar- or vector-valued field φ. In this event the transport equations

simplify further and we make a note of this here before proceeding further. By using either

of the transport equations in (3.84)

d

dt

∫
Dt

ρ φ dVy =

∫
Dt

[
(ρφ)· + ρφ div v

]
dVy =

∫
Dt

[
ρφ̇+ (ρ̇+ ρ div v)φ

]
dVy. (4.7)

The term in parentheses on the right hand side vanishes by the balance of mass field equation

(4.6) and so we get
d

dt

∫
Dt

ρ φ dVy =

∫
Dt

ρ φ̇ dVy . (4.8)

Equation (4.8) will be used frequently in what follows. Note that in deriving it we have not

ignored the fact that Dt and ρ are time dependent even though the end result appears to

suggest this.

4.3 Force.
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Figure 4.1: Forces on the part P: the traction t is a force per unit area acting at points on the boundary

∂Dt of the subregion, and the body force b is a force per unit mass acting at points in the interior of Dt.

We now turn our attention to the forces that act on an arbitrary part P of the body

at time t. For simplicity, we will sometimes refer to “the forces that act on the region Dt”
rather than (more correctly) the part P . These forces are most conveniently described in

terms of entities that act on the region Dt occupied by P in the current configuration. As
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depicted in Figure 4.1 we assume that there are two types of forces: body forces — that act

at each point in the interior of the region Dt, and contact forces (or tractions) — that act at

points on the boundary of Dt and represent forces due to contact between P and the rest of

the body B − P across the surface ∂Dt7. The body force density is a force per unit volume

(or mass), while the contact force density is a force per unit surface area; see Figure 4.1.

In order to characterize a force, we must specify how it contributes to (i) the resultant

force, (ii) the resultant moment about a point, and (iii) how it does work. Let b denote

the body force per unit mass. This is distributed over the interior of Dt. The resultant body

force, the resultant moment of the body forces about a fixed point O, and the rate at which

the body forces do work are taken to be∫
Dt

ρb dVy,

∫
Dt

y × ρb dVy,

∫
Dt

ρb · v dVy , (4.9)

respectively, where y is position, v is particle velocity and ρ is the mass density in the current

configuration. Similarly, let t denote the contact force per unit area (or traction). This is

distributed over the boundary of Dt. The resultant contact force, the resultant moment of

the contact forces about a fixed point O, and the rate at which the contact forces do work

are taken to be ∫
∂Dt

t dAy ,

∫
∂Dt

y × t dAy ,

∫
∂Dt

t · v dAy , (4.10)

respectively. Note that t represents a force per unit current area. On summing the above

expressions we conclude that the resultant force on P is∫
Dt

ρb dVy +

∫
∂Dt

t dAy , (4.11)

the resultant moment about O of the forces on P is∫
Dt

y × ρb dVy +

∫
∂Dt

y × t dAy , (4.12)

and the total rate of working of the external forces on P is∫
Dt

ρb · v dVy +

∫
∂Dt

t · v dAy . (4.13)

7If some part of ∂Dt coincides with a part of the boundary of the body ∂Rt, then the contact force on

that portion of the boundary is applied by agents outside of the body via contact with the body.
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D1

D2

A

D
1

D2

A

t1

t2

Figure 4.2: Regions D1 and D2 occupied by two different parts of the body with the point A common to

both boundaries ∂D1 and ∂D2. The figure on the left has isolated D1 while that on the right has isolated

D2. The traction t1 is applied on ∂D1 at A by the material outside D1. Similarly, the traction t2 is applied

on ∂D2 at A by the material outside D2.

Remark (a): In order for the formulae (4.11) - (4.13) to be useful, we must specify the

variables that these force densities depend on. We expect that in general the body force

density may depend on both position y and time t, and so we assume that

b = b(y, t). (4.14)

Remark (b): We now turn to the traction t. One might assume that the traction also

depends only on the same variables as the body force, i.e. t = t(y, t). However some

thought shows that this cannot be so. To see this, consider two parts of the body, P1 and

P2, which occupy regions D1 and D2 at time t as shown in Figure 4.2. Let yA be the

position of a point that is common to both boundaries ∂D1 and ∂D2 as shown. In general,

we expect that the contact force exerted on ∂D1 at yA (by the material outside D1), to be

different to the contact force exerted on ∂D2 at yA (by the material outside D2). However

if t is a function of y and t only, then it cannot capture this difference since both of these

tractions would have the value t(yA, t). Thus the traction must depend on more than just

the position and time. It must also depend on the specific surface under consideration as

well: t = t(y, t, ∂Dt). To first order, a surface is described by its unit outward normal vector

n, and so we shall assume that

t = t(y, t,n). (4.15)

Remark (c): The assumption (4.15) is known as Cauchy’s hypothesis. In order to appreciate

its limitations, consider two parts P1 and P2 of the body and suppose that at some time t
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Figure 4.3: Regions D1 and D2 occupied by two distinct parts of the body. The point A is common to the

boundaries of both these regions. Moreover, the unit outward normal vector at A to both boundaries ∂D1

and ∂D2 is n.

they occupy regions D1 and D2 as shown in Figure 4.3. Note that the point A is common

to both boundaries ∂D1 and ∂D2. Moreover, note that the unit outward normal vectors to

∂D1 and ∂D2 at A are the same. By Cauchy’s hypothesis t = t(y, t,n), and so the traction

on both surfaces ∂D1 and ∂D2 at A is the same; the traction does not, for example, depend

on the curvature of the boundary when the Cauchy hypothesis is invoked.

Remark (d): It is worth emphasizing that the traction t(y, t,n) denotes the force per unit

area on ∂Dt applied by the part of the body which is outside Dt on the material inside Dt.
Often we speak of the side into which n points as the positive side of the surface (which is

the outside of Dt) and the side that n points away from as the negative side of the surface

(which is the inside of Dt). Then t(y, t,n) is the force density applied by the positive side

on the negative side. Consider for example a body which at some time t occupies the region

Rt = D1 ∪ D2 shown in Figure 4.4: the cubic subregion D1 is occupied by part of the body

and the rest of the body occupies D2. The figure on the left in Figure 4.4 has isolated D1

while that on the right has isolated D2. Consider the particle A whose position vector at

time t is yA. Then in order to calculate the traction applied by D2 on D1 at A, we draw the

unit normal to ∂D1 that points outward from D1. This is denoted by n in the figure on the

left. Thus this traction is t(yA, t,n). On the other hand if we want to calculate the traction

applied by D1 on D2 at A, we must draw the unit normal to ∂D2 that points outward from

D2 which is −n in the figure on the right. Thus this traction is t(yA, t,−n).

Remark (e): The traction acts in a direction that is determined by the internal forces within

the body and need not be normal to the surface. The component of traction that is normal
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Figure 4.4: The region Rt occupied by a body in its current configuration is the union of the two subregions

D1 and D2: Rt = D1 ∪ D2. The figure on the left has isolated D1 while that on the right has isolated D2.

The unit normal vector to ∂D1 at A that points out of D1 is n. The unit normal vector to ∂D2 at A that

points out of D2 is −n.
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Figure 4.5: Components of the traction t: normal stress Tn and resultant shear stress Ts .

to the surface ∂Dt is called the normal stress and we denote it by Tn:

Tn = t · n ; (4.16)

see Figure 4.5. The tangential component of t is called the resultant shear stress and we

denote it by Ts:

Ts = |t− Tn n| =
(
|t|2 − T 2

n

)1/2
. (4.17)

Remark (f): The traction on the boundary ∂Rt of the region occupied by the entire body is

applied by agents outside of the body through physical contact along the boundary. When

formulating and solving a boundary-value problem, these tractions are boundary conditions.
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Note that they act on the boundary ∂Rt in the current configuration whose location is in

general not known a priori.

4.4 The Balance of Momentum Principles.

The balance principle for linear momentum postulates that in an inertial frame, the resultant

force on any part of the body equals the rate of increase of its linear momentum:∫
Dt

ρb dVy +

∫
∂Dt

t dAy =
d

dt

∫
Dt

ρv dVy. (4.18)

Similarly, the balance principle for angular momentum postulates that in an inertial frame,

the resultant moment on any part of the body about a fixed point O equals the rate of

increase of its angular momentum (about O):∫
Dt

y × ρb dVy +

∫
∂Dt

y × t dAy =
d

dt

∫
Dt

y × ρv dVy . (4.19)

Both (4.18) and (4.19) must hold for every part of the body and therefore for all subregions

Dt ⊂ Rt.

When the fields are smooth, by using (4.8) we can write the balance laws (4.18) and

(4.19) in the equivalent forms∫
Dt

ρb dVy +

∫
∂Dt

t dAy =

∫
Dt

ρv̇ dVy , (4.20)

∫
Dt

y × ρb dVy +

∫
∂Dt

y × t dAy =

∫
Dt

y × ρv̇ dVy , (4.21)

where v̇ is the acceleration of a particle. In deriving (4.21) we have used the fact that

ẏ × v = v × v = o.

4.5 A Consequence of Linear Momentum Balance: Stress.

We now explore some implications of the balance of linear momentum. The analysis in

this section addresses the question of how the traction vector t(y, t,n) depends on the unit

normal vector n. The position y and time t will play no central role in the discussion to
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Figure 4.6: A surface St contained within Rt. The sub-region Dt is intersected by this surface.

follow, and so it is convenient in this section to suppress these variables and write t(n)

instead of t(y, t,n).

First, consider the region Rt occupied by the body in its current configuration and let

St be an arbitrary surface contained within it. Pick a sub-region Dt that is intersected by

St and which is thus separated into regions D1 and D2: Dt = D1 ∪ D1; see Figure 4.6. S
is the portion of St that is contained within Dt and is therefore the interface between D1

and D2. Note that the unit vector n on S shown in the figure is outward to D1 whereas

−n is outward to D2. Thus when the balance of linear momentum (4.20) is applied to D1,

the traction term will involve the integral of t(n) over S, whereas when it is applied to D2,

it will involve the integral of t(−n) over S. We now apply the linear momentum principle

(4.20) to each of the regions D1, D2 and Dt individually, and then subtract the first two of

the resulting equations from the third. This leads to∫
S

[t(n) + t(−n)] dAy = 0. (4.22)

Since this must hold for arbitrary choices of Dt, and therefore for arbitrary choices of S, it

follows by localization that the integrand must vanish at each point on St. Thus we conclude

that t(−n) = −t(n), or displaying all the variables,

t(y, t,−n) = −t(y, t,n) (4.23)

for all unit vectors n.

Observe that this is the analog for a continuum of Newton’s third law for particles. It

says that the traction exerted on the positive side of a surface by the negative side, is equal
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in magnitude and opposite in direction to the traction exerted on the negative side by the

positive side. Note that this is a consequence of the balance of linear momentum and not a

separate postulate.
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Figure 4.7: Tetrahedral subregion Dt of the body.

We now establish a second, critically important, consequence of the balance of linear

momentum, namely that the traction vector t(n) depends linearly on the normal vector

n. This is called Cauchy’s Theorem. In order to establish this, consider the tetrahedral

subregion Dt shown in Figure 4.7 with three of its faces parallel to the coordinate planes.

Observe that the unit outward normal vectors to the four faces of Dt are n, −e1, −e2 and

−e3. Moreover, if the area of the shaded face is A, one can readily show from geometry

that the area, Ak, of the face normal to ek is nkA. Next, we apply the balance of linear

momentum to this tetrahedron, and take the limit of the resulting equation as the height

h → 0 with the orientations of all the faces held fixed. One readily finds that in this limit

the volumetric terms (which involve the body force and inertial terms) approach zero like h3

whereas the area terms (which involve the traction) approach zero like h2. Therefore only

the area terms survive in this limit, and this leads to

At(n) + A1t(−e1) + A2t(−e2) + A3t(−e3) = o. (4.24)

Because of (4.23) and Ak = nkA, we can write this as

t(n) = n1t(e1) + n2t(e2) + n3t(e3) = t(ej)nj. (4.25)

Now define the nine scalars Tij by

Tij = t(ei) · ej. (4.26)

Note that this says that Tij is the jth component of the traction on the plane normal to ei.

Thus we can equivalently write

t(ei) = Ti1e1 + Ti2e2 + Ti3e3 = Tijej. (4.27)
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Substituting (4.27) into (4.25) gives

t(n) = (Tjiei)nj = Tjiei(ej · n) = Tji(ei ⊗ ej)n =
(
Tji ei ⊗ ej

)
n . (4.28)

Next, let T be the second-order tensor whose components in the basis {e1, e2, e3} are Tij,

i.e8.

T = Tijei ⊗ ej. (4.29)

Since this implies that TT = Tijej ⊗ ei, it now follows that (4.28) can be written as t(n) =

TTn, or by writing out all the variables:

t(y, t,n) = TT (y, t)n. (4.30)

In terms of components we have

ti(n) = Tjinj, {t} = [T ]T{n}. (4.31)
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Figure 4.8: The figure shows two views of the same cubic region and the same basis vectors {e1, e2, e3}.
Figure (a) shows the stress components Tij acting on three faces of the body that are normal to the +e1, +e2

and +e3. Observe how the figure is consistent with Tij = t(ei) ·(ej). Figure (b) shows the stress components

Tij acting on three faces normal to the −e1, −e2 and −e3 directions. Note in this case the consistency with

Tij = t(−ei) · (−ej).

The tensor T(y, t) is known as the Cauchy stress tensor. Note because of (4.27) that its

component Tij represents the jth component of the force per unit area acting on a surface

8See Chapter 2.2 of Volume I
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whose normal is in the ith direction; this is illustrated in Figure 4.8(a). Note that the surface

referenced here must be normal to the ith direction in the current configuration; similarly the

area referenced here refers to area in the current configuration. Note that T does not depend

on the normal vector n. Therefore we may speak of the stress at a point; in contrast, recall

that when speaking of traction we must speak of the traction on a surface through a point.

When T(y, t) is known, equation (4.30) can be used to calculate the traction t(y, t,n) on

any plane through y. The balance of angular momentum will show that T is symmetric.

Observe from (4.26), (4.23) that

Tij = t(−ei) · (−ej). (4.32)

This allows us to describe the traction on a face with unit outward normal −ei. In particular,

as shown in Figure 4.8(b), the force per unit area in the −ei direction acting on a surface

with unit normal −ej is Tij.

Problems 4.1 - 4.4.

4.6 Field Equations Associated with the Momentum

Balance Principles.

We now return to the global balance laws for linear and angular momentum introduced

earlier in (4.20) and (4.21). We are now in a position to derive their local versions, versions

that hold at each particle of the body. Consider first the linear momentum principle (4.20).

Substituting (4.30) into it and then using the divergence theorem leads to

∫
Dt

ρv̇ dVy =

∫
∂Dt

TTn dAy +

∫
Dt

ρb dVy =

∫
Dt

div TT dVy +

∫
Dt

ρb dVy , (4.33)

and so, ∫
Dt

(div TT + ρb− ρv̇) dVy = 0 . (4.34)

Since this must hold for all parts of the body and therefore for all choices of Dt, it can be

localized to yield

div TT + ρb = ρ v̇ (4.35)
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at each y ∈ Rt and all times t. In component form

∂Tji
∂yj

+ ρbi = ρv̇i. (4.36)

The equation of motion (4.35) is the field equation corresponding to linear momentum bal-

ance.

Conversely, when the equation of motion (4.35) and the traction-stress relation (4.30)

hold, then necessarily the global linear momentum balance law (4.20) also holds.

We turn next to the angular momentum principle (4.21). Recall that for any two vectors

a and b, the ith component of the vector a×b is eijkajbk where eijk is the alternator. Thus

we can write (4.21) in component form as∫
∂Dt

eijk yj tk dAy +

∫
Dt

eijk yjρbk dVy =

∫
Dt

eijk ρyj v̇k dVy . (4.37)

The term involving the traction can be simplified by first using the traction-stress relation

(4.31), then using the divergence theorem and finally expanding the result. This leads to∫
∂Dt

eijk yj tk dAy =

∫
∂Dt

eijk yj Tmknm dAy =

∫
Dt

eijk
∂(yj Tmk)

∂ym
dVy

=

∫
Dt

eijk

(
δjm Tmk + yj

∂Tmk
∂ym

)
dVy .

(4.38)

Substituting (4.38) into (4.37) and making use of the equation of motion (4.35) now leads to∫
Dt

eijk Tjk dVy = 0 . (4.39)

Since (4.39) must to hold for all choices of Dt, it follows that

eijk Tjk = 0 (4.40)

at each point in Rt. Multiplying (4.40) by eipq and then making use of the identity eijk eipq =

δjpδkq − δjqδkp simplifies this finally to

Tij = Tji (4.41)

or equivalently

T = TT (4.42)



116 CHAPTER 4. MECHANICAL BALANCE LAWS AND FIELD EQUATIONS

at each y ∈ Rt and at all times. Therefore, the stress tensor T is symmetric. Equation

(4.42) is a local consequence of the balance of angular momentum.

Conversely, when the symmetry condition (4.42), the equations of motion (4.35), and

the traction-stress relation (4.30) all hold, then necessarily the global balance of angular

momentum (4.21) also holds.

In summary, the global balance laws for linear and angular momentum hold if and only

if the following local conditions hold at each point in the body and at each instant during

the motion:
div T + ρb = ρv̇,

T = TT ,

 (4.43)

with the traction on a surface related to the stress through

t = Tn. (4.44)

In component form

∂Tij
∂yj

+ ρbi = ρv̇i, Tij = Tji, ti = Tijnj. (4.45)

4.7 Principal Stresses.

Since T is symmetric, it has three real eigenvalues, T1, T2, T3, and a set of three corresponding

orthonormal eignevectors, ν(1),ν(2),ν(3):

Tν(i) = Ti ν
(i) (no sum on i); (4.46)

the eigenvalues Ti are called the principal stresses and the eigenvectors ν(i) define the prin-

cipal directions. The triplet of vectors {ν(1),ν(2),ν(3)} defines an orthonormal basis referred

to as a principal basis of stress. The matrix of stress components in this basis is diagonal

and is given by

[T ] =


T1 0 0

0 T2 0

0 0 T3

 . (4.47)

In order to get some physical insight into the significance of the principal stresses and

principal directions, consider an arbitrary point y in Rt and consider an arbitrary plane
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ν(1)(1)

ν(2)(2)

ν(3)(3)

Figure 4.9: Principal stresses and principal directions.

through y. Let n be the unit normal vector to this plane. The associated normal stress Tn

is (see (4.16) and (4.44))

Tn(n) = t · n = Tn · n. (4.48)

A natural question to ask is, from among all planes passing through this point, on which

plane is Tn largest? And on which one is it smallest? This requires one to consider Tn(n) as

a function of n and to find the specific vector(s) n at which it has its extrema. In one of the

exercises at the end of this chapter it will be shown that the largest value of Tn(n) is given

by the largest principal stress, i.e. max{T1, T2, T3}; and that the corresponding principal

direction defines the plane on which it acts.

Finally it is worth noting that the principal directions of the stress tensor T have no

relationship, in general, to the principal directions of the stretch tensors U or V. There

may be a relationship between them for particular materials, but this is constitutive law

dependent.

Remark: Consider a fixed orthonormal basis {e1, e2, e3} and let Tij be the components of T

in this basis. The special case in which the components of stress in this basis has the form
T 0 0

0 0 0

0 0 0


is said to describe a state of uniaxial stress in the e1 direction. Note that we can write this
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as T = Te1 ⊗ e1. The special case in which [T ] has the form
T 0 0

0 T 0

0 0 T


is said to describe a state of equitriaxial stress or a state of pure pressure −T . Note that we

can write this as T = T I. Finally the special case in which [T ] has the form
T11 T12 0

T12 T22 0

0 0 0


is said to describe a state of plane stress in the e1, e2 plane.

Problems 4.5 - 4.14.

In closing, it is worth repeating that we have had no need to refer to a reference config-

uration in the preceding discussion of the notions of traction and stress, or the balance laws

and field equations of momentum. Though not conceptually necessary, sometimes it is con-

venient to introduce a reference configuration and to refer various quantities and equations

to that configuration. We turn to this in the next section.

4.8 Formulation of Mechanical Principles with Respect

to a Reference Configuration.

Consider an arbitrary motion y = χ(p, t) of a body B and let Rt = χ(B, t) be the region

occupied by the body at time t. Let P be some part of the body and let Dt = χ(P , t) be

the region occupied by this part at time t. We now consider a reference configuration χref

of the body. Suppose that the particle p is located at x = χref(p) in this configuration. Let

R0 = χref(B) and D0 = χref(P) be the respective regions occupied by the body B and the

part P in this configuration. Note that the reference configuration need not coincide with a

configuration that the body actually occupies during the motion; in this sense our use of the
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notation D0 (and R0) is misleading since the reader might assume that these regions refer

to the initial configuration. Perhaps Dr or Dref would be better.

A motion of the body maybe characterized by

y = y(x, t) (4.49)

where x ∈ R0, t ∈ [t0, t1] and y ∈ Rt. We assume that y(x, t) is twice continuously differen-

tiable jointly in position and time.

We first consider mass balance. We know from Chapter 2 that a (material) volume

element dVx has volume dVy = JdVx at the current instant where J = det F. Therefore the

mass density ρ0 in the reference configuration is related to the mass density ρ in the current

configuration by

ρ0 = ρ J where J = det F. (4.50)

Next we turn to momentum balance, traction and stress. We begin by addressing the

following two issues:

(i) Recall first that the stress tensor T represents the force per unit current area, and

that the traction Tn acts on the surface whose normal in the current configuration

is n. Even though the forces act on the current configuration of the body, it is still

sometimes convenient to refer them to the geometry of the reference configuration.

Often, the current configuration is not known a priori and is to be determined, while

the reference configuration can be chosen at will. Therefore, it is sometimes more

convenient to consider a different stress tensor, say S, which represents force per unit

reference area, and with the associated traction Sn0 acting on the surface which is

normal to the direction n0 in the reference configuration. This is illustrated in Figure

4.10. Note that the forces act in the current configuration.

(ii) Next recall that our formulation has been in the current configuration, so that a field

quantity such as, say, the stress T, was taken to be a function of the current position

y and time: T = T(y, t). Consequently the field equations, such as the equations of

motion (4.43), hold at points y ∈ Rt. Sometimes it is more convenient to use the

position in the reference configuration x instead of y. To do this we could simply

substitute the motion y = y(x, t) into the field, e.g. T(y(x, t), t) to get T(x, t), and

to then write the field equations in a form that holds at points x ∈ R of the reference

region. The field equations in terms of T(x, t) turns out to have a complicated form,
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but, if written in terms of some other suitable stress tensor S(x, t) has a simple form.

We set ourself the task for finding such a stress tensor S.
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Figure 4.10: Surface St and surface element ∆St in current configuration, and their images S0 and ∆S0

in the reference configuration. Different (equivalent) ways for characterizing the contact force are shown.

Note that the contact force acts on the current configuration.

Consider some fixed instant during the motion. Let St be a surface in Rt and let S0 be

its image in the reference configuration; let y be a point on St and let x be its image on S0;

let n be a unit normal vector to St at y, and let n0 be the corresponding unit normal vector

to S0 at x; and finally, let ∆St be an infinitesimal surface element on St at y whose area

is dAy, and let ∆S0 be its image in the reference configuration whose area is dAx. This is

illustrated in Figure 4.10.

If t is the traction at y on St, then the contact force on the surface element ∆St is the

product of this traction with the area dAy:

The contact force on ∆St = t dAy = Tn dAy. (4.51)

Next, recall from (2.34) the geometric relation

dAy n = dAx J F−T n0 (4.52)

relating the area dAy to the area dAx, and the unit normal n to the unit normal n0. Com-

bining (4.52) with (4.51) gives

The contact force on ∆St = (J T F−T ) n0 dAx (4.53)
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It is natural therefore to define a tensor S and a vector s by the respective equations

S = J T F−T , (4.54)

s = S n0 , (4.55)

whence

The contact force on ∆St = t dAy = Tn dAy = s dAx = Sn0 dAx . (4.56)

Thus, s is the contact force per unit referential area. Note that it acts on the surface element

∆St in the current configuration. This is illustrated in Figure 4.10. The vector s is called

the first Piola-Kirchhoff traction vector and the tensor S is called the first Piola-Kirchhoff

stress tensor.

A

B

C

D

S2222

S3232

B′

C′

D′

A′

S1212

AreaArea dAx

e2

Figure 4.11: Physical significance of the components of the stress tensor S: the shaded surface in the

reference configuration is normal to e2 and has area dAx. The ith component of force acting on the image

of this surface in the current configuration is Si2 × dAx.

The physical significance of the components of S can be deduced as follows. Recall first

that the component Sij of the tensor S in an orthonormal basis {e1, e2, e3} is defined by

Sij = (Sej) ·ei. Next, taking n0 = ej in (4.55) and taking the scalar product of the resulting

equation with ei gives s(ej) · ei = S ej · ei. By combining these it follows that

Sij = S ej · ei = s(ej) · ei. (4.57)

Therefore, Sij is the ith component of force per unit referential area acting on the surface

which was normal to the jth direction in the reference configuration. For example consider

a surface element which was normal to e2 in the reference configuration; see Figure 4.11.

Then, by taking n0 = e2 in (4.55), the contact force on this element is

Contact force on ∆St = t dAy = s dAx = S e2 dAx = (S12 e1 + S22 e2 + S32 e3) dAx. (4.58)
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This is illustrated in Figure 4.11. Note that the force we have calculated acts on the current

configuration. The image of this surface in the reference configuration had unit normal e1.

In order to determine the force, the appropriate component of S is multiplied by the area

dAx of the image of this surface element in the reference configuration.
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Figure 4.12: Simple shear. The middle and rightmost figures both show the region Rt occupied by the

body at the same instant t. They depict the tractions on the faces B′C ′ and C ′D′ in two different, but

equivalent, ways: the middle figure describes the traction in terms of the stress T while the rightmost figure

describes them in terms of S. The corresponding forces are given by multiplying each traction by either the

current area of the relevant surface or its area in the reference configuration, depending on whether one is

working with S or T respectively.

To illustrate this further, consider a simple shear deformation of a block as shown in

Figure 4.12. The figure of the left shows the region R0, whereas the middle and right figures

both show the region Rt. The face C ′D′ has a unit outward normal n and therefore

Contact force on C ′D′ = Tn×|C ′D′| = [(T1jnj)e1 + (T2jnj)e2 + (T3jnj)e3]×|C ′D′| ; (4.59)

this is illustrated in the middle figure. Since the face CD, which is the image of C ′D′, has

a unit outward normal e1, we can equivalently write

Contact force on C ′D′ = Se1 × |CD| = [S11e1 + S21e2 + S31e3]× |CD|; (4.60)

this is illustrated in the right most figure. Similarly the unit outward normals to the face

B′C ′, and to its image BC, are both e2, and therefore we can write

Contact force on B′C ′ = Te2 × |B′C ′| = [T12e1 + T22e2 + T32e3]× |B′C ′|,

= Se2 × |BC| = [S12e1 + S22e2 + S32e3]× |BC|;
(4.61)
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these are also illustrated in Figure 4.12.

We now turn to the second point made at the beginning of this section. As mentioned

there, any field quantity which is a function of the current position y and time t can be

readily be converted to a field which depends on the reference position x and t by using the

motion y = y(x, t) to change y → x. Thus, for example, the Cauchy stress can be written

as T̄(x, t) = T(y(x, t), t) and so on. As mentioned there, one finds that making this change

to the Cauchy stress does not lead to any advantages. It is however convenient to express S

as a function of x and t, so that (4.54), (4.55) would (more precisely) read

S(x, t) = J(x, t) T(y(x, t), t) F−T (x, t) , (4.62)

s(x,n0, t) = S(x, t) n0 . (4.63)

Substituting (4.62) into (4.43) and simplifying shows that the equation of motion (4.43)1

and the angular momentum equation (4.43)2 can be written in the equivalent forms

Div S + ρ0b = ρ0v̇,

SFT = FST ,

 (4.64)

where these field equations must hold at every point x ∈ R0 and every instant t; the traction

on a surface continues to be related to the stress through

s = Sn0. (4.65)

In component form

∂Sij
∂xj

+ ρ0bi = ρ0v̇i, SikFjk = FikSjk, si = Sijnj. (4.66)

Note that in general, the stress tensor S is not symmetric. Consequently, among other things,

this means that S may not have three real eigenvalues, so that we usually do not speak of

the principal values of the first Piola-Kirchhoff stress tensor.

It is useful to construct the various terms of, say, the global balance of linear momentum

in terms of these referential ingredients. Let D0 and Dt be the regions occupied by a part P
of the body in the reference configuration and the current configuration respectively. From

(4.56) the resultant contact force on P at time t is

=

∫
∂Dt

t dAy =

∫
∂Dt

Tn dAy =

∫
∂D0

s dAx =

∫
∂D0

Sn0 dAx.
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Since ρ and ρ0 are the respective mass densities in the reference and current configurations,

and since b is the body force per unit mass, the resultant body force on P at time t is

=

∫
Dt

ρb dVy =

∫
D0

ρ0b dVx.

Similarly the linear momentum of P at time t is

=

∫
Dt

ρv dVy =

∫
D0

ρ0v dVx.

Consequently, the balance law for linear momentum (4.18) can be equivalently written as∫
∂D0

s dAx +

∫
D0

ρ0 b dVx =
d

dt

∫
D0

ρ0 v dVx (4.67)

which must hold for all subregions D0 of the region R0 occupied by the body in the refer-

ence configuration. The field equation (4.64)1 corresponding to (4.67) can now be derived

(alternatively) by using the divergence theorem on (4.67) and then localizing the result.

Similarly, the resultant moment of the contact force on P at time t is given by

=

∫
∂Dt

y × t dAy =

∫
∂Dt

y ×Tn dAy =

∫
∂D0

y(x, t)× s dAx =

∫
∂D0

y(x, t)× Sn0 dAx

where we have again used (4.56). In this way one finds that the balance law for angular

momentum (4.19) can be written equivalently as∫
∂D0

y × Sn0 dAx +

∫
D0

y × ρ0b dVx =
d

dt

∫
D0

y × ρ0v dVx . (4.68)

Perhaps it is worth remarking that it is not x × Sn0 etc. that appear here but rather

y(x, t)× Sn0 etc.

In the literature one encounters a number of stress measures some examples of which are

T Cauchy stress tensor

JT Kirchhoff stress tensor

S = JTF−T First Piola−Kirchhoff stress tensor

S(2) = JF−1TF−T Second Piola−Kirchhoff stress tensor

ST = JF−1T Nominal stress tensor

S(1) = 1
2

(
STR + RTS

)
Biot stress tensor
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Even though many of these stresses have no simple physical significance, they are sometimes

useful in, say, carrying out computations.

Problems 4.15 - 4.18.

4.9 Stress Power.

4.9.1 A Work-Energy Identity.

Consider some part P of the body. We now derive a relationship between the rate of

external work on P , the rate of internal working within P , and the kinetic energy of P .

This analysis, like everything else so far, is independent of constitutive relation and is valid

for all materials. It should also be noted that the relationship derived here is not the first

law of thermodynamics; it is a relationship that is entirely mechanical in character.

Let p(P ; t) denote the rate at which external work is being done on P at some instant

during the motion. From (4.13),

p(P ; t) =

∫
∂Dt

t · v dAy +

∫
Dt

ρb · v dVy . (4.69)

It is convenient to work in terms of components in some fixed orthonormal basis. Then we

have

p(P ; t) =

∫
∂Dt

tivi dAy +

∫
Dt

ρbivi dVy =

∫
∂Dt

Tijnjvi dAy +

∫
Dt

ρbivi dVy

=

∫
Dt

∂

∂yj

(
Tijvi

)
dVy +

∫
Dt

ρbivi dVy

=

∫
Dt

[
∂Tij
∂yj

vi + Tij
∂vi
∂yj

+ ρbivi

]
dVy =

∫
Dt

[
ρviv̇i + Tij

∂vi
∂yj

]
dVy

=

∫
Dt

[
ρ
∂

∂t

(
1

2
vivi

)
+

1

2
Tij

(
∂vi
∂yj

+
∂vj
∂yi

)]
dVy

=

∫
Dt

[
ρ
∂

∂t

(
1

2
v · v

)
+ TijDij

]
dVy =

∫
Dt

[
ρ
∂

∂t

(
1

2
v · v

)
+ T ·D

]
dVy

=
d

dt

∫
Dt

1

2
ρ v · v dVy +

∫
Dt

T ·D dVy

(4.70)
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In the first line we have used the relation between traction and stress; in the second line

we have used the divergence theorem; in the third line we have used the equation of motion

(4.45)1; in the fourth line we have made use of the fact that the stress tensor is symmetric;

in the fifth line we have introduced the stretching tensor D and used the formula for the

inner product of two tensors; and in the final line we have used (4.8).

And thus, by combining (4.70) with (4.69) we find the work-energy relation∫
∂Dt

t · v dAy +

∫
Dt

ρb · v dVy =
d

dt

∫
Dt

1

2
ρ v · v dVy +

∫
Dt

T ·D dVy . (4.71)

Equation (4.71) states that the rate of external work on any part of the body (represented

by the left-hand side) equals the rate of increase of kinetic energy of that part (represented

by the first term on the right-hand side) and the rate of internal work within that part

(represented by the second term on the right-hand side). Thus the last term of the right-

hand side of (4.71) represents the rate of working by the internal stresses in Dt and is often

called the stress power. In general, the stress power accounts for both stored and dissipated

energy. The integral involving the stress power in (4.71) cannot in general be written as the

time derivative of the volume integral of some scalar field.

One can readily show that the work-energy identity (4.71) can be expressed equivalently

in the referential formulation by∫
∂D0

s · v dAx +

∫
D0

ρ0 b · v dVx =
d

dt

∫
D0

1

2
ρ0 v · v dVx +

∫
D0

S · Ḟ dVx (4.72)

and that the stress power density – the stress power per unit reference volume – can be

written as

Stress power density = S · Ḟ = J T ·D (4.73)

where J = det F.

Later in Section 5.5 we will show that the stress power is an objective quantity.

4.9.2 Work Conjugate Stress-Strain Pairs.

Consider a body undergoing an arbitrary motion. Suppose that the stress power density can

be expressed in the form A · Ḃ where B is a strain measure (in the sense of Section 2.7) and

the components of A have the dimensions of stress. Then we say that the stress A and the
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strain B are conjugate9. This conjugacy reflects a special relationship between these two

measures.

For example, consider the family of Lagrangian strain tensors

E(n) =
1

n

(
Un − I

)
, n 6= 0.

Can one find a corresponding family of stress tensors S(n) such that the

stress power density = S(n) · Ė(n)
?

Consider the case n = 2. Since U2 = FTF,

Ė
(2)

=
1

2

(
Ḟ
T
F + FT Ḟ

)
.

Recalling that Ḟ = LF where L is the velocity gradient tensor and using this to eliminate Ḟ

yields

Ė
(2)

=
1

2

(
FTLTF + FTLF

)
= FTDF

where D = (L+LT )/2 is the stretching tensor. So the tensor S(2) that we seek must be such

that

S(2) · FTDF = JT ·D.
It follows from this that

S(2) = JF−1TF−T or equivalently S(2) = F−1S

which is in fact the second Piola-Kirchhoff stress tensor.

The case of general n is treated in Chapter 3.5 of Ogden’s book.

4.10 Linearization.

Finally we turn to motions that are infinitesimal in the sense that the displacement gradient

is small: |Grad u| << 1. Since F = I + Grad u and J = det F = 1 + Div u + O(|Grad u|2),

it follows from T = J−1SFT that, to leading order,

S ∼ T . (4.74)

9Recall from (4.73) that the stress power density is given by J T ·D = S · Ḟ. However note that F is

not a strain and D is not the material time derivative of a strain. Thus one usually does not refer to the

quantities here as being conjugate.
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Thus the 1st Piola-Kirchoff stress tensor and the Cauchy stress tensor do not differ in in-

finitesimal motions to leading order. For clarity we shall use the symbol σ for the stress

under these circumstances. Similarly the mass density ρ = ρ0 +O(|Grad u|).

Thus for infinitesimal motions, the equation of motion (4.64)1 reads, to leading order,

Div σ + ρ0 b = ρ0 v̇ (4.75)

while the angular momentum requirement (4.64)2 tells us that σ is symmetric:

σ = σT ; (4.76)

both of these equations must hold at each x ∈ R0 and all times t. Note that these field

equations hold on the region R0 occupied in the reference configuration. In formulating

these various force requirements we do not need to distinguish between the reference and

current geometries. Similarly, the traction-stress relation is

t = σn0 (4.77)

where we take n0 to be the unit normal in the undeformed configuration. Finally the stress

component σij is the ith component of force per unit area on the surface normal to ej.

Thus in conclusion, for infinitesimal deformations we will work with the stress tensor

σ and we do not need to consider the deformed configuration in formulating any of the

fundamental principles for stress. Reviewing the preceding material in this chapter, we see

that, for example, we can interpret the stress components σij as in Figure 4.8 with Tij

replaced by σij; we do not need to address whether the planes shown lie in the reference

or current configurations. Similarly in the example discussed in Section 4.5, the prismatic

region described is that which is occupied by the body and we do not need to address whether

that is in the undeformed or deformed configurations.

Problems 4.19 - 4.23.

4.11 Objectivity of Mechanical Quantities.

We shall consider the objectivity of both mechanical and thermodynamic quantities in Sec-

tion 5.5.
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4.12 Worked Examples and Exercises.

Unless explicitly told otherwise, neglect body forces and inertial effects.

Problem 4.1. Consider all planes that pass through a particular point y. Let n denote a unit normal

vector to such a plane and let Tn(y,n) be the “normal stress” on this plane:

Tn = t(y,n) · n.

From among all planes through y, on which one is Tn a maximum?

Problem 4.2.

Show that there is always a plane through any point y on which the resultant shear stress Ts is zero. Is

there also, in general, a plane on which the normal stress Tn vanishes?

Problem 4.3. Let n be a unit vector which is equally inclined to the principal axes of T. The plane normal

to n is known as the octahedral plane. Calculate the normal stress and the resultant shear stress on the

octahedral plane in terms of the principal stress components T1, T2, T3.

Problem 4.4. All vector and tensor components referred to in this problem are components with respect

to an arbitrary fixed basis {e1, e2, e3}.

(a) Let T be a stress tensor with principal stresses T1, T2, T3 and corresponding principal directions

ν(1),ν(2),ν(3). Express Tij in terms of the principal stresses and the components of the principal

directions.

(b) Let T be a stress tensor which corresponds to a pure uniaxial stress To in a direction m. Express Tij

in terms of To and the components of m.

(c) Let T be a stress tensor which corresponds to the superposition of a uniaxial stress T1 in the direction

e1, a uniaxial stress T2 in the direction e2, and a uniaxial stress T3 in the direction (e1 + e2)/
√

2.

Express Tij in terms of T1, T2, T3.

(d) Let T be a stress tensor which corresponds to a state of pure shear stress T with respect to the

mutually orthogonal directions m,n. Express Tij in terms of T and the components of m,n.

Solution:
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(a) Let νij be the jth component of the vector ν(i):

ν(i) =

3∑
j=1

νijej . (a)

The scalars νij can be calculated from νij = ν(i) · ej . We are given that

T =

3∑
i=1

Tiν
(i) ⊗ ν(i). (b)

Substituting (a) into (b) and simplifying leads to

T =

3∑
i=1

Ti

 3∑
j=1

νijej

⊗( 3∑
k=1

νikek

)
=

3∑
j=1

3∑
k=1

(
3∑
i=1

Tiνijνik

)
ej ⊗ ek.

Therefore the component Tjk of stress is given by

Tjk =

3∑
i=1

Tiνijνik.

(b) Let mi = m · ei be the ith component of m:

m =

3∑
i=1

miei. (c)

We are given that

T = Tom⊗m. (d)

Substituting (c) into (d) gives

T = To

(
3∑
i=1

miei

)
⊗

 3∑
j=1

mjej

 =

3∑
i=1

3∑
j=1

(Tomimj) ei ⊗ ej

Therefore

Tij = Tomimj .

(c) Here we are given that

T = T1e1 ⊗ e1 + T2e2 ⊗ e2 + T3

2 (e1 + e2)⊗ (e1 + e2)

=
(
T1 + T3

2

)
e1 ⊗ e1 +

(
T2 + T3

2

)
e2 ⊗ e2 + T3

2 (e1 ⊗ e2 + e2 ⊗ e1) .

Thus

T11 = T1 +
T3

2
, T22 = T2 +

T3

2
, T12 = T21 =

T3

2
, T13 = T23 = T33 = 0.

(d) Let mi = m · ei and ni = n · ei be the ith components of m and n:

m =

3∑
i=1

miei, n =

3∑
i=1

niei. (e)
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We are given that

T = T (m⊗ n + n⊗m). (f)

Substituting (e) into (f) gives

T = T

(
3∑
i=1

miei

)
⊗

 3∑
j=1

njej

+ T

(
3∑
i=1

niei

)
⊗

 3∑
j=1

mjej

 =

3∑
i=1

3∑
j=1

T
(
minj +mjni

)
ei ⊗ ej .

Therefore

Tij = T
(
minj +mjni

)
.

Problem 4.5. A submersible underwater vessel has the form of a sphere of (outer) radius r containing a

cubic compartment whose dimensions are a × a × a. (Assume that these are the dimensions of the vessel

in its pressurized configuration.) When submerged, the outer surface is subjected to a uniform pressure p2

while the compartment pressure is p1. Calculate the mean stress T in the vessel, defined as

T =
1

vol(Rb)

∫
Rb

T dVy; (a)

here Rb is the region of space occupied by the body and its volume is vol(Rb) = 4πr3/3− a3.

a

r

p
1

p
2

So

Si

Figure 4.13: A spherical vessel of radius r with hollow cubic compartment of side a.

Solution: Since we are only given the loading on the boundary of the body in this problem, it appears that

the mean stress in the body must depend solely on the traction on the boundary. If this is true, it is natural

to wonder whether this is true for a body of more general shape. Therefore, before attacking the specific

problem at hand, let us see what we can say about the mean stress more generally.
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We would like to calculate a formula for the mean stress in the body in terms of the boundary tractions

alone (if this is possible). If we were to calculate the integral of ti over the entire boundary we would get

zero because of equilibrium; moreover, since T ij is a second order tensor (two subscripts) the otherside of

the formula we want to derive should also involve a second order tensor (two subscripts). We can consider

two possibility: the integral over the boundary of either titj or yitj . The former has the wrong dimensions

(force squared) and so we consider the later. Based on this motivation we proceed as follows:∫
∂Rb

yitj dAy =
∫
∂Rb

yiTjknk dAy =
∫
Rb

(yiTjk),k dVy =
∫
Rb

(yi,kTjk + yiTjk,k) dVy

=
∫
Rb

(δikTjk) dVy =
∫
Rb

Tij dVy.

In this calculation we have made use of the traction-stress relation ti = Tijnj , the divergence theorem, the

equilibrium equation in the absence of body forces Tij,j = 0 and the fact that yi,j = ∂yi/∂yj = δij . This

shows that ∫
Rb

Tij dVy =

∫
∂Rb

yitj dAy or equivalently

∫
Rb

T dVy =

∫
∂Rb

y ⊗ t dAy.

Therefore the mean Cauchy stress defined by (a) can be expressed solely in terms of the traction on the

boundary by

T =
1

vol(Rb)

∫
∂Rb

y ⊗ t dAy. (b)

Now consider the specific problem at hand. The region Rb occupied by the body is contained between

a closed outer spherical surface So and a closed inner cubic surface Si. Let Rc denote the region enclosed

by the inner surface Si, i.e. the region occupied by the cubic cavity; therefore vol(Rc) = a3. Similarly let

R0 = Rb +Rc denote the region enclosed by the outer spherical surface So so that vol(Ro) = 4πr3/3.

We are given that t = −p1n on Si and t = −p2n on So. Therefore∫
Si
yitj dAy = −p1

∫
Si
yinj dAy = −p1

∫
Rc

yi,j dVy = −p1δij

∫
Rc

dVy = −p1 vol(Rc) δij

where we have used the divergence theorem, and similarly,∫
So
yitj dAy = −p2 vol(Ro) δij .

Since ∂Rb = Si ∪ So we can combine these with (b) to obtain

T =
1

vol(Rb)
( ∫
So

y ⊗ t dAy +

∫
Si

y ⊗ t
)
dAy =

(
− p1 vol(Rc)I− p2 vol(Ro)I

)
vol(Rb)

.

Thus

T = T = −p1(a3) + p2(4πr3/3)

4πr3/3− a3
I.

Problem 4.6. Suppose that Rt, the region occupied by a certain body in its current configuration, is a

right circular cylinder of length l and radius a:

Rt = {(y1, y2, y3) | y2
1 + y2

2 ≤ a2, −l ≤ y3 ≤ 0}.
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Suppose that the matrix of components of the Cauchy stress tensor field in the cylinder is

[T ] =



0 0 −αy2

0 0 αy1

−αy2 αy1 β + γy1 + δy2


(a)

where α, β, γ and δ are constants. The components here (and throughout) have been taken with respect to

an orthonormal basis {e1, e2, e3} where e3 is aligned with the axis of the cylinder.

(i) Verify that this stress field satisfies the equilibrium equations in the absence of body forces.

(ii) Verify that the curved surface of the cylinder is traction-free.

(iii) Calculate the traction on the end y3 = 0. Hence calculate the resultant force and couple acting on

the cylinder at the end y3 = 0. Hence show that the parameters α, β, γ and δ describe, respectively,

twisting of the cylinder about the y3-axis, pulling of the cylinder in the y1-direction, bending of the

cylinder about the y2-axis, and bending of the cylinder about the y1-axis.

(iv) Given a circular cylinder which is subjected to axial loading, twisting and bending, does it therefore

follow that the stress field in the body has to be the stress field given in this problem statement?

(v) Calculate the principal components of stress at an arbitrary point in the body. Calculate the value

of the largest normal stress in the cylinder.

y1

y
2

y
3

y
2

a

l

Figure 4.14: A right circular cylinder of length ` and radius a.

Solution:

(i) To check whether this stress field is in equilibrium we substitute the given stress field into the

equilibrium equations Tij,j = 0. It is easily seen that these equations hold trivially since each term in each

equation

T11,1 + T12,2 + T13,3 = 0; T21,1 + T22,2 + T23,3 = 0; T31,1 + T32,2 + T33,3 = 0.

is identically zero.
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(ii) The components of the unit outward normal vector n on the curved surface y2
1 + y2

2 = a2 can be

written as

n1 = cos θ, n2 = sin θ, n3 = 0, 0 ≤ θ < 2π,

and so the traction on this surface can be calculated using t = Tn. This first two of these equations hold

trivially

t1 = T11n1 + T12n2 + T13n3 = 0; t2 = T21n1 + T22n2 + T23n3 = 0.

The third equation simplifies as follows

t3 = T31n1 + T32n2 + T33n3 = (−αy2) cos θ + (αy1) sin θ = (−αa sin θ) cos θ + (αa cos θ) sin θ = 0

where we have used the fact that y1 = a cos θ, y2 = a sin θ at the “point θ” on the curved boundary.

(iii) The components of the unit outward normal vector n on the end y3 = 0 are n1 = n2 = 0, n3 = 1.

Therefore the traction on this surface has components ti = Tijnj :

t1 = T13n3 = −αy2, t2 = T23n3 = αy1, t3 = T33n3 = β + γy1 + δy2.

Let S0 denote the region occupied by the end at y3 = 0: S0 = {(y1, y2, y3) | y3 = 0 y2
1 + y2

2 ≤ a2 }. Then

the resultant force on S0 is given by the integral of t over the surface S0. Therefore

F1 =

∫
S0
t1 dAy =

∫
S0
T1jnj dAy =

∫
S0
T13 dAy =

∫
S0

(−αy2) dAy = 0,

F2 =

∫
S0
t2 dAy =

∫
S0
T2jnj dAy =

∫
S0
T23 dAy =

∫
S0

(αy1) dAy = 0

F3 =

∫
S0
t3 dAy =

∫
S0
T3jnj dAy =

∫
S0
T33 dAy =

∫
S0

(β + γy1 + δy2) dAy = βπa2.

Therefore the resultant force on this end is a pure axial force in the y3-direction:

F = βπa2 e3. (b)

Turning next to the resultant moment on this face we recall that in general the resultant moment M is given

by the integral of y × t over the surface S0. Therefore

M1 =

∫
S0
y2t3 dAy =

∫
S0
y2(β + γy1 + δy2) dAy = δ

πa4

4
,

M2 =

∫
S0
−y1t3 dAy =

∫
S0
−y1(β + γy1 + δy2) dAy = −γ πa

4

4
,

M3 =

∫
S0

(−y2t1 + y1t2) dAy =

∫
S0

(αy2
2 + αy2

1) dAy = α
πa4

2
.

Therefore the resultant moment on the face y3 = 0 is

m =
πa4

4

(
δe1 − γe2 + 2αe3

)
. (c)

Therefore from equations (b) and (c) we conclude that the parameters α, β, γ and δ describe, respectively,

twisting of the cylinder about the y3-axis, pulling of the cylinder in the y1-direction, bending of the cylinder

about the y2-axis, and bending of the cylinder about the y1-axis.
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(iv) The given stress field is in equilibrium, maintains a traction free curved surface and is consistent

with having a traction distribution on the ends y3 = 0 and y3 = −` that result in axial loading, twisting and

bending. Remark: Note that the traction distribution on the two ends arising from (a) has a very specific

form. There are other traction distributions that can be applied on the two ends that also correspond to

to axial loading, twisting and bending. The stress field in the body corresponding to such an alternative

applied traction distribution on the two ends would differ from (a).

(v) The principal stresses at an arbitrary point in the body is given by the eigenvalues T of the given

stress tensor:

det [T − TI] = det



−T 0 −αy2

0 −T αy1

−αy2 αy1 β + γy1 + δy2 − T


= 0.

Expanding the determinant and solving the resulting cubic equation for T shows that the largest of the three

roots is

T =
1

2

{
β + γy1 + δy2 +

√
(β + γy1 + δy2)2 + 4α2(y2

1 + y2
2)
}
.

This is the largest principal stress at a point (y1, y2, y3). In order to find the maximum principal stress from

among all points in the body, we need to maximize T as a function of y1, y2 on the circle y2
1 + y2

2 ≤ a2.

Problem 4.7. Consider a material such as a polarized dielectric solid under the action of an electric field,

where, in addition to a body force b(y, t), there is also a body couple c(y, t) per unit mass. Also, at any point

y on a surface St suppose that there is, in addition to the contact force t(y, t,n) a contact couple m(y, t,n);

here n is the unit outward normal vector at a point on a surface in the body and c is the couple applied by

the material on the positive side of St on the material on the negative side. (The “positive side” of St is the

side into which n points.)

Write down the global linear and angular momentum principles for this case. Show that, in addition to the

stress tensor T, there is also a couple stress tensor Z(y, t) such that

m = Zn.

Derive the local consequences of the momentum principles. Is the stress tensor T symmetric?

Solution: Existence of couple stress tensor. The additional couples that exist in the current setting have

no effect on the forces and so the balance of linear momentum remains as is:∫
∂Dt

t dAy =

∫
Dt

ρv̇ dVy.
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In the usual way this implies the existence of the Cauchy stress tensor T such that t = TTn. The couples

do contribute to the resultant moment and so the balance of angular momentum reads∫
∂Dt

y × t dAy +

∫
∂Dt

m(y, t,n) dAy +

∫
Dt

ρc dVy =

∫
Dt

y × ρv̇ dVy.

(In this and the next problem one could, and perhaps ought to, introduce a new independent kinematic field

that represents the local rotation conjugate to the couples, which then contributes an additional term to

the inertia; see for example Toupin.) Using the fact that t = TTn and the divergence theorem allows us to

convert the first surface integral into a volume integral. On applying this balance principle to a tetrahedral

region and shrinking the region to a point, all the volume integrals vanish and only the contribution of m

over the boundary remains. Then mimicing the steps we used to show the existence of stress T allows us to

conclude that there exists a tensor Z(y, t) that is independent of n such that

m(y, t,n) = Z(y, t)n.

Field equations. Since the linear momentum balance law and the traction-stress relation are the familiar

ones the calculation in the notes goes through and we find

divTT = ρv̇ or in terms of components Tji,j = ρv̇i.

Next, substituting t = TTn and m = Zn into the angular momentum balance above gives∫
∂Dt

y ×TTn dAy +

∫
∂Dt

Zn dAy +

∫
Dt

ρc dVy =

∫
Dt

y × ρv̇ dVy

or in terms of components∫
∂Dt

εijkyjTpknp dAy +

∫
∂Dt

Zipnp dAy +

∫
Dt

ρci dVy =

∫
εijkyjρv̇k dVy.

Using the divergence theorem to convert the area integrals to volume integrals and then localizing the resul

in the familiar way leads

εijkδjpTpk + εijkyjTpk,p + Zip,p + ρci − εijkyjρv̇k = 0.

which simplifies to

εijkTjk + Zip,p + ρci = 0.

This can we written in an alternative, more illuminating form, by first multiplying it by εipq and then using

the familiar identity εipqεijk = δpjδqk − δpkδqj . This leads to

(δpjδqk − δpkδqj) Tjk + εipqZij,j + ρεipqci = 0

and finally to

Tpq − Tqp + εipqZij,j + ρεipqci = 0.

Observe that the Cauchy stress T is not symmetric and that the above equation provides an expression for

T−TT in terms of the couple stress and body couple.
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Problem 4.8. Write down an expression for the rate of working of the forces and couples in the setting of

the previous example. Rewrite this in the form of a volume integral of the local power.

Solution: The rate of working of a couple is equal to the inner product of the couple with an appropriate

measure of the work conjugate rotation-rate. We continue to work in the setting of classical kinematics. (In

this and the previous problem one could, and perhaps ought to, introduce a new independent kinematic field

that represents the local rotation and is work conjugate to the couples; see for example Toupin.)

We first calculate the rate of working of the traction:

∫
∂Dt

tivi dAy =
∫
∂Dt

Tpivinp dAy =
∫
Dt

(Tpi,pvi + Tpivi,p) dVy

=
∫
Dt

ρv̇ivi dVy +
∫
Dt
Tpivi,p dVy

=
∫
Dt

ρv̇ivi dVy +
∫
Dt

(TpiDip + TpiWip) dVy

=
∫
Dt
ρv̇ivi dVy +

∫
Dt

TT ·D dVy +
∫
Dt
TpiWip dVy

where D and W are the stretching and spin tensors respectively. The integrand of the last term can be

simplified as follows

TpiWip = TpiWip + TipWpi = (Tpq − Tqp)Wqp

= − {εipqZij,j + ρεipqci}Wqp

Now integrating this over the region Dt gives∫
Dt

TpiWip dVy = −
∫
Dt

{εipqZij,jWqp + ρεipqciWqp} dVy

= −
∫
∂Dt

εipqZijWqpnj dAy −
∫
Dt

ρεipqciWqp dVy

+

∫
Dt

εipqZijWqp,j dVy

Finally we substitute this back into the first equation to get∫
∂Dt

tivi dAy +

∫
∂Dt

εipqmiWqp dAy +

∫
Dt

ρεipqciWqp dVy

=
d

dt

∫
Dt

1

2
ρvivi dVy +

∫
Dt

TT ·D dVy +

∫
Dt

εipqZijWqp,j dVy

(4.78)

This can be further simplified by using the relation between the spin tensor W and the angular velocity
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vector ω. The term∫
∂Dt

εipq miWqp dAy =

∫
∂Dt

εipq mi εpqk ωk dAy

=

∫
∂Dt

εpqi εpqk mi ωk dAy

=

∫
∂Dt

(δqqδik − δqkδiq)miωk dAy

=

∫
∂Dt

(3miωi −mqωq) dAy =

∫
∂Dt

miωi dAy

The other term ∫
Dt

ρ εipq ciWqp dVy = 2

∫
Dt

ρ ci ωi dVy

And finally the third term∫
Dt

εipq Zij Wqp,j dVy =

∫
Dt

εipq Zij εqpk ωk,j dVy

=

∫
Dt

εqip εqpk Zij ωk,j dVy

=

∫
Dt

(δipδpk − δikδpp) Zij ωk,j dVy

=

∫
Dt

{Zijωi,j − 3Zijωi,j} dVy = −2

∫
Dt

Zij ωij dVy

On collecting these results we finally get∫
∂Dt

tivi dAy +

∫
∂Dt

miωi dAy + 2

∫
Dt

ρ ci ωi dVy

=
d

dt

∫
Dt

1

2
ρvivi dVy +

∫
Dt

TT ·D dVy − 2

∫
Dt

Zij ωij dVy

Problem 4.9. In the preceding example we encountered couple stresses, and specifically, showed that there

is a couple stress tensor Z.

a. Let Z0 be the referential version of Z, i.e. the tensor analogous to what the first Piola-Kirchoff stress

tensor S is to the Cauchy stress tensor T. Derive a formula for Z0.

b. Derive the field equation corresponding to angular momentum balance in its referential form in terms

of Z0.
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Problem 4.10. In these notes we formulated and analyzed the basic balance laws by focussing attention on

an arbitrary fixed part P of the body B; our attention at all times was therefore on the same set of particles.

Sometimes it is convenient to work with a control volume instead: i.e. a fixed region in space (with different

particles entering and leaving as time progresses).

Let Rt be the region occupied by the body at the instant t. Let Π be a fixed region of space which is

such that Π ⊂ Rt for all times close to t.

Show that the balance laws for mass, linear momentum and anugular momentum as stated in class are

equivalent to the following alternative statements for the control volume Π:

d

dt

∫
Π

ρ dVy = −
∫
∂Π

ρv · n dAy,

∫
∂Π

t dAy +

∫
Π

b dVy =
d

dt

∫
Π

ρv dVy +

∫
∂Π

(ρv) v · n dAy,

∫
∂Π

y × t dAy +

∫
Π

y × b dVy =
d

dt

∫
Π

y × ρv dVy +

∫
∂Π

y × (ρv) v · n dAy.

Problem 4.11. [Gurtin] In this problem you will establish the equations of motion for an arbitrary (not

necessarily rigid) body B in terms of the motion of its center of mass. Let

y(t) = the current location of the center of mass of B,

m(B) = the total mass of B,

`(B, t) = the total linear momentum of B at time t,

α(B, t) = the total angular momentum of B at time t about a fixed origin o,

αcm(B, t) = the “spin angular momentum”; i.e., the moment about the center of mass

of the linear momentum of the body relative to a frame moving with the

center of mass, i.e.

αcm(B, t) =

∫
Rt

(y − y)× ρ(v − ẏ) dVy ,

f(B, t) = the resultant force acting on B at time t,

τ cm(B, t) = the resultant moment about the center of mass acting on B at time t.

Show that

(a) `(B, t) = m(B) ẏ(t) ,
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(b) α̇(B, t) = α̇cm(B, t) + y × ˙̀ (B, t) ,

(c) τ cm(B, t) = α̇cm .

Problem 4.12. Consider a rigid body B undergoing an arbitrary motion. Calculate the total linear momen-

tum `(B, t), the total angular momentum α(B, t), and the total kinetic energy K(B, t) of B at any instant

during the motion.

Problem 4.13. In this problem you will derive Euler’s equations of motion for a rigid body B. Refer to

Problem 4.11 for the definitions of some of the symbols below. Let the angular velocity of the body during

this motion be ω(t).

(a) Show that

αcm(B, t) = J(B, t) ω(t)

where J is the inertia tensor of B relative to the center of mass, i.e.,

J(B, t) =

∫
Rt

((z · z) I− z⊗ z) ρ dVy

where

z(y, t) = y − y(t), y(x, t) = Q(t)x + b(t).

(b) Show that

J(B, t) = Q(t) J(B, 0) QT (t)

and conclude from this that the components of J with respect to a frame that rotates with the body

are independent of time.

(c) Since J is symmetric, there is a frame in which the component matrix of J is diagonal. Consider

such a principal frame which rotates with the body. Let Ji be the diagonal components of J (i.e., the

principal moments of inertia) and let ωi be the components of ω in this same frame. By calculating

the components of αcm relative to this frame and using the results of the previous problems, show

that

(τcm)1 = J1 ω̇1 + (J3 − J2) ω2ω3,

(τcm)2 = J2 ω̇2 + (J1 − J3) ω1ω3,

(τcm)3 = J3 ω̇3 + (J2 − J1) ω1ω2.
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Problem 4.14. Consider a body that occupies a region R in a deformed configuration. It is in equilibrium

under the action of applied surface tractions on its entire boundary ∂R. Suppose that this traction is parallel

to a fixed unit vector a at every point on ∂R (so that one might say that the loading is uniaxial). Show that

the mean stress in the body, defined as

T =
1

vol (R)

∫
R

T(y) dVy ,

has the form T = τa⊗ a for some constant τ . Therefore the mean stress is also uniaxial.

Problem 4.15. Consider a body that occupies a unit cube in a reference configuration:

R0 = {(x1, x2, x3) | 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1, 0 ≤ x3 ≤ 1}.

It is subjected to the following deformation:

y1 = x1 + kx2, y2 = hx2, y3 = x3,

where k and h are constants. The corresponding components of the 1st-Piola-Kirchhoff stress tensor are

[S] =


S11 S12 S13

S21 S22 S23

S31 S32 S33


where each Sij is a constant. You may consider h, k and Sij to be given.

Consider a surface S0 in the reference configuration that is characterized by x1+x2 = 1. The deformation

carries S0 → S∗.

a. Calculate the force (vector) which acts on S∗.

b. Calculate the true (Cauchy) traction on S∗.

c. Calculate the normal component of true (Cauchy) traction on S∗.

Solution: The matrix of components of the deformation gradient tensor, [F ], are found by differentiating

y1 = x1 + kx2, y2 = hx2, y3 = x3 and recalling that Fij = ∂yi/∂xj . Its inverse and determinant can then

be found from matrix algebra:

[F ] =


1 k 0

0 h 0

0 0 1

 , [F ]−1 =


1 −k/h 0

0 1/h 0

0 0 1

 , J = det[F ] = h. (a)

Our writing will be simplified if we set

` =
[
1 + (1− k)2/h2

]−1/2

. (b)
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A unit normal vector n0 to the surface S0 is

n0 = (1/
√

2)e1 + (1/
√

2)e2. (c)

Therefore a unit normal vector n to its deformed image S is

n =
F−Tn0

|F−Tn0|
= ` e1 + (1− k)h e2. (d)

where we have used (a)2, (b), (c).

The areas Ax and Ay of the surfaces S0 and S are

Ax =
√

2, Ay = AxJ |F−Tn0| = h/`. (e)

(a) The resultant force on the deformed surface is given by

force = sAx = Sn0Ax = (S11 + S12)e1 + (S21 + S22)e2 + (S31 + S32)e3.

(b) Since the resultant force = sAx = tAy we find the Cauchy (true) traction to be

t = sAx/Ay = (`/h)
[
(S11 + S12)e1 + (S21 + S22)e2 + (S31 + S32)e3

]
. (f)

(c) The normal stress on the plane is given by (d) and (f) as

t · n =
1

h`2

[
S11 + S12 + (S21 + S22)(1− k)h

]
.

Problem 4.16. Consider a thin sheet which is subjected to a state of plane stress. Figure 4.15 shows (a

plan view of) a material element which occupies an infinitesimal square ABCD in the reference configuration

and a region A′B′C ′D′ in the current configuration. Draw a free body diagram of the region A′B′C ′D′ and

mark all forces which act on it (in terms of the components of the 1st Piola-Kirhhoff stress tensor S), e.g.

the force on one surface is S11 × Area, while that on another is (S11 + (∂S11/∂x1) δx1) × Area, and so on.

By summing forces and moments, derive the corresponding equilibrium equations associated with force

and moment balance.

Problem 4.17. Consider a state of plane stress and let (R,Θ, Z) be cylindrical coordinates in the reference

state. Derive the equilibrium equations obeyed by the cylindrical components of the first Piola-Kirchhoff

stress S(R,Θ).

(NOTE: It is probably easiest to consider a free-body-diagram of an infinitesimal material volume and derive

the equilibrium equations by summing forces. Since SRΘ 6= SΘR etc. you must be careful! You should verify

that your answer reduces to the classical cylindrical coordinate equilibrium equations that you can find in

any book in the special case when S is symmetrical.)
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Figure 4.15: An infinitesimal material region ABCD in the reference configuration and its image A′B′C ′D′

in the deformed configuration.

Problem 4.18. Establish the Principle of Virtual Work, i.e. show that the equilibrium equations

Sij,j + bi = 0

hold if and only if ∫
∂R0

SijnjwidA+

∫
R0

biwi =

∫
R0

SijγijdV

for all arbitrary smooth enough vector fields w(x). Here R0 is the region occupied by the body in the

reference configuration, and γij = (1/2)(wi,j + wj,i).

Remark: Note that w(x) is not necessarily the actual displacement field in the body; it is called a “virtual

displacement”.

Problem 4.19. Two symmetric tensors are said to be coaxial if their principal axes coincide. Prove

that the Cauchy stress tensor T and the left Cauchy-Green tensor B are coaxial if and only if the second

Piola-Kirchhoff tensor S(2) is coaxial with the right Cauchy-Green strain tensor C.

Problem 4.20. Consider the family of Lagrangian strain tensors

E(n) =
1

n

(
Un − I

)
, n 6= 0.

For both n = 1 and n = −2 find the corresponding conjugate stress tensors S(n) for which the stress power

density is given by

S(n) · Ė(n)
.



144 CHAPTER 4. MECHANICAL BALANCE LAWS AND FIELD EQUATIONS

Solution: When n = 1 we have E(1) = U− I and so Ė
(1)

= U̇. The tensor S(1) must be such that

p = S(1) · U̇.

In Section 4.9.2 we found a tensor S(2) such that

p = S(2) · Ė(2)
.

On equating these two expressions for p we get

S(1) · U̇ = S(2) · Ė(2)
.

Differentiating E(2) = (UU − I)/2 leads to Ė
(2)

= (U̇U + UU̇)/2. Substituting this into the preceding

equation yields

S(1) · U̇ =
1

2
S(2) · (U̇U + UU̇) =

1

2
S(2)U · U̇ +

1

2
US(2) · U̇

and therefore

S(1) =
1

2

(
S(2)U + US(2)

)
.

Since in Section 4.9.2 we found that S(2) = F−1S we thus have the final result

S(1) =
1

2

(
F−1SU + RTS

)
.

Since SFT = FST by angular momentum balance, this can be written as

S(1) =
1

2

(
STR + RTS

)
.

Problem 4.21. In this exercise do not assume that the linear and angular momentum balance

principles hold. Consider a continuum that is undergoing a quasi-static motion i.e. a time-dependent

motion with inertia neglected. The power, i.e. the rate at which the surface and body forces do work on any

part P of the body during a motion, is given by∫
∂D0

Sn · v dAx +

∫
D0

ρob · v dVx

where v(x, t) is the velocity field associated with the motion and D0 is the region occupied by P in the

reference configuration. The power should be frame indifferent. Derive necessary and sufficient conditions

which ensure this.

Problem 4.22. Determine the stress that is conjugate to the (Lagrangian) logarithmic strain tensor lnU.

Solution: See the paper by A, Hoger, The stress conjugate to logarithmic strain, International Journal of

Solids and Structures, 23(1987), pp. 1645-1656.
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Problem 4.23. Pick any Eulerian strain tensor of your choice. Find the stress tensor that is conjugate to

it.

Solution: See the paper by Andrew Norris, Eulerian conjugate stress and strain, J. Mech. Materials Struct.,

3(2008), pp. 243-260. In general finding stress tensors conjugate to Eulerian strains is much more difficult

than the corresponding problem for Lagrangian strains.
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Chapter 5

Thermodynamic Balance Laws and

Field Equations

We now consider the laws of thermodynamics as applied to a deformable continuum. In

Section 5.1 we state the global balance law associated with the first law and derive the

associated field equation (sometimes called the energy equation). The second law of ther-

modynamics in considered in Section 5.2 where, from the global inequality we derive the

associated local inequality. The preceding analyses are carried out in the current configu-

ration with no mention of a reference configuration. The discussion is now reframed with

respect to a reference configuration in Section 5.3. Section 5.4 summarizes the results. The

material frame indifference of the various quantities introduced in this and the preceding

chapter, e.g. traction, heat flux, stress, etc., are studied in Section 5.5.

5.1 The First Law of Thermodynamics.

As before, let P be some part of a body B that is undergoing a motion y = χ(p, t). Let

Rt = χ(B, t) and Dt = χ(P , t) denote the respective regions occupied by B and P at time

t. We suppose that the heating of P is due to two sources: (i) heat supply—which is the

rate at which heat is generated/provided to all particles throughout P , e.g. due to radiation

or heat sources, and (ii) heat flux—which is the rate at which heat enters into P across the

boundary ∂Dt.

Let r be the heat supply rate per unit mass and let h be the heat flux per unit current

147
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area. Both r and h represent heat supplied to the part P from the exterior of P . Then the

total rate of heating of P is ∫
Dt

ρr dVy +

∫
∂Dt

h dAy . (5.1)

We assume that the heat supply depends on position y and time t, and that the heat flux

depends on the position y, the time t and the surface ∂Dt. More specifically, we assume

that h depends on ∂Dt only through the local unit normal vector. Thus we take

r = r(y, t), h = h(y, t,n). (5.2)

This is entirely analogous to our previous treatment of the mechanical quantities the body

force b(y, t) and the traction t(y, t,n).

Turning next to the energy associated with P , that portion of the energy which P pos-

sesses in addition to its kinetic energy is called the internal energy. Let U(P , t;χ) denote the

internal energy of the part P at time t during the motion χ. It follows from the discussion

in Section 1.8 that there exists a density of internal energy, say ε(y, t), such that the total

internal energy of P can be written as

U(P , t;χ) =

∫
Dt

ρε(y, t) dVy; (5.3)

ε(y, t) is called the specific internal energy (per unit mass). For simplicity we have not

displayed the dependency of ε on the motion χ and written ε(y, t) in place of ε(y, t;χ).

The first law of thermodynamics states that at each instant during a motion, the sum of

the rates of working and heating on any part P must equal the rate of increase of the total

energy of P (which is comprised of the kinetic and internal energies), i.e.,∫
∂Dt

t · v dAy +

∫
Dt

ρ b · v dVy +

∫
∂Dt

h dAy +

∫
Dt

ρr dVy

=
d

dt

∫
Dt

1

2
ρ v · v dVy +

d

dt

∫
Dt

ρε dVy (5.4)

for all subregions Dt of Rt. By using the work-energy identity (4.71), we can write this as∫
∂Dt

h dAy +

∫
Dt

ρr dVy +

∫
Dt

T ·D dVy =
d

dt

∫
Dt

ρε dVy . (5.5)

One can show that the first law of thermodynamics (5.5) implies that the heat flux

h(y, t,n) depends linearly on the unit vector n, i.e., that there is a vector q(y, t) such that1

h(y, t,n) = q(y, t) · n . (5.6)

1Frequently, authors take h = −q · n.
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The proof of this result is analogous to the proof of Cauchy’s Theorem for traction/stress:

one applies (5.5) to a region Dt in the form of a tetrahedron and then takes the limit as

the tetrahedron shrinks to a point. The result (5.6) is known as Fourier’s Theorem and the

vector q is called the heat flux vector. Note that q(y, t) does not depend on the normal

vector n. If St is a surface in Dt, and n is a unit normal vector at some point on St, let us

refer to the side into which n points as the positive side of St. Then q represents the heat

flux from the positive side to the negative side.

The physical significance of the components of q can be deduced as follows. (In this

paragraph we shall write h(n) instead of h(y, t,n) since y and t play no role.) Recall that

the component qi of the vector q in an orthonormal basis {e1, e2, e3} is defined by qi = q ·ei.
Thus taking n = ei in (5.6) gives h(ei) = q·ei = qi. Therefore qi = h(ei) is the ith component

of heat flux per unit current area flowing across the surface that is normal to the ith direction.

Observe that h(−ei) = −qi.

Next we derive the field equation associated with (5.5). On using (5.6) and (4.8) in (5.5),

one gets ∫
Dt

T ·D dVy +

∫
∂Dt

q · n dAy +

∫
Dt

ρr dVy =

∫
Dt

ρε̇ dVy

which, on using the divergence theorem leads to∫
Dt

(T ·D + div q + ρr − ρε̇) dVy = 0 .

Since this must hold for all subregions Dt of Rt we can localize the result to obtain the

energy field equation

T ·D + div q + ρr = ρε̇ , (5.7)

which must hold at all y ∈ Rt and all times t.

Conversely, if the energy field equation (5.7) and the heat flux - heat flux vector relation

(5.6) hold, then one can reverse the preceding steps and show that the global balance law

(5.5) holds.

5.2 The Second Law of Thermodynamics.

Recall from the thermodynamics of quasi-static homogeneous processes that the first and

second laws of thermodynamics are commonly written as

W +Q = U̇ ,
Q

θ
≤ Ṡ , (5.8)
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where W and Q are the rates of working and heating respectively, θ is the absolute tem-

perature, and U and S are the internal energy and entropy respectively. The kinetic energy

is ignored because the process is quasi-static, and no spatial variations are present in the

system since it is taken to be homogeneous. Our task is to generalize (5.8)2 to the current

setting. In the previous section we generalized the first these: W +Q = U̇ .

We start with the supply of entropy to the body. As before, let P be some part of a body

that is undergoing a motion y = χ(p, t) and let Dt = χ(P , t) denote the region occupied

by P at time t. We suppose that the supply of entropy to P is due to two sources: (i)

the bulk rate of entropy supply per unit mass, ηb(y, t), which is the rate at which entropy is

generated/provided to all particles throughout P , and (ii) the rate of entropy flux, ηs(y, t,n),

that is distributed over the particles on the boundary ∂Dt and represents the rate at which

entropy flows into P across the boundary ∂Dt. The total rate of entropy supplied to P is

thus ∫
Dt

ρ ηb(y, t) dVy +

∫
∂Dt

ηs(y, t,n) dAy.

We now introduce the absolute temperature θ(y, t) that, by assumption2, relates entropy

and heat through

ηb(y, t) =
r

θ
, ηs(y, t,n) =

q · n
θ

where r(y, t) and q(y, t) are the bulk and surface heat supply rates. Note that the entropy

supply and entropy flux vanish if and only if the heat supply and heat flux vanish. Thus the

total rate at which entropy is supplied to the part P is∫
Dt

ρr

θ
dVy +

∫
∂Dt

q · n
θ

dAy;

compare this with the left hand side of (5.8)2.

Next consider the right hand side of (5.8)2. Let S(P , t;χ) be the entropy of the part P
at time t. From Section 1.8 it follows that there exists a density of entropy, say η(y, t), such

that the entropy of P can be written as

S(P , t;χ) =

∫
Dt

ρη(y, t) dVy; (5.9)

η is called the specific entropy (per unit mass). For simplicity we have not displayed the

dependency of η on the motion χ: η(y, t;χ).

2For a more detailed discussion, see Müller and T. Ruggeri (1993).
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The Second Law of Thermodynamics states that at each instant during a motion, the

sum of the rates of entropy flux and entropy supply cannot exceed the rate of increase of the

entropy of P : ∫
Dt

ρr

θ
dVy +

∫
∂Dt

q · n
θ

dAy ≤
d

dt

∫
Dt

ρ η dVy . (5.10)

Thus the net rate of entropy production, i.e. the imbalance, is

Γ =
d

dt

∫
Dt

ρ η dVy −
∫
Dt

ρr

θ
dVy −

∫
∂Dt

q · n
θ

dAy ≥ 0. (5.11)

We can introduce the density γ of the entropy production rate so that

Γ =

∫
Dt

ρ γ dVy ≥ 0 where γ = ρ η̇ − ρr

θ
− div

(q

θ

)
. (5.12)

The inequality (5.12) must hold for all subregions Dt of Rt. In the now familiar way one can

readily derive the field condition corresponding to the global entropy imbalance law (5.11)

to be

ργ = ρ η̇ − ρr

θ
− div

(q

θ

)
≥ 0 (5.13)

which is to hold at all y ∈ Rt and all times t.

Remark: The statement of the second law in the forms (5.10) is called the Clausius-Duhem

inequality. It is a generalization of equation (5.8)2. One can generalize (5.8)2 in other ways,

for example by requiring that some version of it hold at each particle, e.g. to postulate that

ρ η̇ ≥ div q

θ
+
ρr

θ
(5.14)

This is called the Clausius-Planck Inequality. Observe that the Clausius-Duhem inequality

(5.13) and the Clausius-Planck inequality (5.14) are different in general, but coincide when

the temperature field is homogeneous: θ(y, t) = θ(t).

As we shall see later, certain other thermodynamic fields can play important roles in

various settings. The most common of these fields are the

Helmholtz free energy per unit mass ψ = ε− η θ,

Enthalpy per unit mass = ε− S · F
ρ0

,

Gibbs free energy per unit mass = ε− η θ − S · F
ρ0

.


(5.15)
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5.3 Formulation of Thermodynamic Principles with Re-

spect to a Reference Configuration.

Consider some fixed instant during the motion. Consider the geometric context associated

with Figure 4.10. Here St is a surface in Rt and S0 is its image in the reference configuration.

Let y be a point on St and let x be its image on S0; let n be a unit normal vector to St at

y, and let n0 be the corresponding unit normal vector to S0 at x; and finally, let ∆St be an

infinitesimal surface element on St at y whose area is dAy, and let ∆S0 be its image in the

reference configuration whose area is dAx.

Let h be the heat flux at y on St. Then the rate of heat flow across the surface element

∆St is the product of this flux with the area dAy:

The rate of heat flow across ∆St = h dAy = q · n dAy. (5.16)

Next, recall from (2.34) the geometric relation

dAy n = dAx J F−T n0 (5.17)

relating the area dAy to the area dAx, and the unit normal n to the unit normal n0. Com-

bining (5.16) with (5.17) gives

The rate of heat flow across ∆St = q · (J F−T ) n0 dAx = JF−1q · n0 dAx . (5.18)

It is natural therefore to define a vector q0 and a scalar h0 by

q0 = J F−1q, h0 = q0 · n0 . (5.19)

It follows then from (5.16), (5.18) and (5.19) that

The rate of heat flow across ∆St = h dAy = q · n dAy = h0 dAx = q0 · n0 dAx. (5.20)

Thus, h0 is the heat flux per unit referential area. Note that it flows through the surface

element ∆St in the current configuration.

The physical significance of the components of q0 can be deduced as follows. Recall

that the component q0
i of the vector q0 in an orthonormal basis {e1, e2, e3} is defined by

q0
i = qo · ei. Thus taking n0 = ei in (5.19)2 gives h0(ei) = q0 · ei = q0

i . Therefore q0
i = h0(ei)

is the ith component of heat flux per unit referential area flowing across the surface that was

normal to the ith direction in the reference configuration.
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On introducing the referential heat flux vector q0(x, t) we can write the global versions

of the first and second laws of thermodynamics as

∫
∂D0

s · v dAx +
∫
D0

ρ0 b · v dVx +
∫
∂D0

h0 dAx +
∫
D0

ρ0 r dVX

=
d

dt

∫
D0

1

2
ρ0 v · v dVx +

d

dt

∫
D0

ρ0 ε dVx ,

(5.21)

and ∫
D0

ρ0r

θ
dVx +

∫
∂D0

q0 · n0

θ
dAx ≤

d

dt

∫
D0

ρ0 η dVx , (5.22)

respectively. These must hold for all subregions D0 ofR0. The corresponding field conditions

can be found in the usual way to be

S · Ḟ + Div q0 + ρ0r = ρ0 ε̇,

Div
(q0

θ

)
+
ρ0r

θ
≤ ρo η̇,

(5.23)

which hold at all x ∈ R0 and all times t.

5.4 Summary.

The field equations associated with the balance of mass, linear momentum, angular momen-

tum, energy, and the imbalance of entropy can be written as

ρ̇+ ρ div v = 0,

div T + ρb = ρv̇,

T = TT ,

T ·D + div q + ρr = ρ ε̇,

div
(q

θ

)
+
ρr

θ
≤ ρ η̇,


(5.24)
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which must hold at each y ∈ Rt and all times t; and equivalently in the forms

ρ0 = ρJ,

Div S + ρ0 b = ρ0 v̇,

SFT = FST ,

S · Ḟ + Div q0 + ρ0r = ρ0 ε̇,

Div
(q0

θ

)
+
ρ0r

θ
≤ ρo η̇,


(5.25)

which must hold at each x ∈ R0 and all times t.

It is useful for later purposes to rewrite the first and second laws of thermodynamics

using the specific Helmholtz free-energy ψ in place of the specific internal energy ε where

these quantities are related through

ψ = ε− η θ; (5.26)

recall (5.15). One simply substitutes ε = ψ + ρθ into either (5.24)4 or (5.25)4 to obtain the

alternative forms of the first law. We shall not record the results here. We note however that

if the energy equation is now solved for the heat supply r, and the result used to eliminate

r from the entropy inequality, one is led to

ρψ̇ −T ·D + ρηθ̇ − q · grad θ

θ
≤ 0, (5.27)

or equivalently

ρ0ψ̇ − S · Ḟ + ρ0ηθ̇ − q0 ·
Grad θ

θ
≤ 0. (5.28)

5.5 Objectivity of Thermomechanical Quantities.

The notion of material frame indifference, or objectivity, was introduced and discussed in

Section 3.8. We adopt the description of this concept in the form described in the last remark

of that section.

Let α, a,A be some scalar, vector and 2-tensor fields associated with a motion y(x, t)

and let α∗, a∗,A∗ be the corresponding fields in the related motion y∗(x, t) = Q(t)y(x, t)



5.5. OBJECTIVITY OF THERMOMECHANICAL QUANTITIES. 155

where Q(t) is proper orthogonal at all t. Then these properties are said to be objective if

α∗(y∗, t∗) = α(y, t), a∗(y∗, t∗) = Q(t)a(y, t), A∗(y∗, t∗) = Q(t)A(y, t)QT (t)

(5.29)

where3

y∗ = Q(t)y, t∗ = t, (5.30)

for all time dependent proper orthogonal tensors Q(t). Figure 5.1 depicts the regions D and

D∗ occupied by the same part P of a body in a pair of motions y(x, t) and Q(t)y(x, t).

As we noted in Section 3.8, in the case of purely kinematic quantities such as velocity,

deformation gradient, rate of stretching tensor etc., one can simply verify whether or not

those quantities are objective. Not so with quantities that are not solely kinematic. Here

one has to postulate whether a particular physical quantity is objective or not based on the

underlying physics. When we discussed mass balance at the beginning of this chapter we

introduced one new field, the mass density ρ(y, t); then we moved to the momentum princi-

ples and introduced two new fields, the traction t(y, t,n) and the body force density b(y, t);

next we turned to the first law of thermodynamics and introduced another three fields, the

specific internal energy ε(y, t), the heat flux h(y, t,n) and the heat supply r(y, t); finally

we considered the second law of thermodynamics and introduced the specific entropy η(y, t)

and the temperature θ(y, t). We now postulate that all of these fields must be objective.

ρ∗ = ρ,

t∗ = Qt, b∗ = Qb,

ε∗ = ε, h∗ = h, r∗ = r,

η∗ = η, θ∗ = θ.


(5.31)

In order to understand the basis for these postulates4, consider for example the traction.

Figure 5.1 depicts the boundary surfaces ∂Dt and ∂D∗t of some part of a body in the pair

of motions y(x, t) and Q(t)y(x, t). Note that the outward normal vectors at corresponding

3In general we should consider y∗ = Qy + c, t∗ = t+ a where c(t) is a time dependent vector and a is a

constant. However for our considerations it is sufficient to consider the special case (5.30) where c = o, a = 0.
4In the case of the mass density, let ρ0 denote the mass density in some reference configuration. Then

mass balance tells us that ρ0 = ρ∗J∗ and ρ0 = ρJ . However we know from Section 3.8 that F∗ = QF.

Therefore J = detF = detF∗ = J∗ and so it follows that ρ = ρ∗. Thus the objectivity of the mass density

is automatic and is not in fact a postulate; it has been built into its definition.
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Figure 5.1: The figure shows the regions occupied by a body in two motions ŷ(x, t) and Q(t)ŷ(x, t). At

the instant depicted, the same particle is located at y and y∗ = Qy in these two motions. The bases

X = {e1, e2, e3} and X∗ = {e∗1, e∗2, e∗3} are related by e∗i = Qei, i = 1, 2, 3. We postulate, based on physical

expectation, that the traction components (t1, t2, t3) should equal the traction components (t∗1, t
∗
2, t
∗
3) shown

in the figure, i.e. that the components of the traction vector t in the basis X should equal the components

of the traction vector t∗ in the basis X∗.

points on ∂Dt and ∂D∗t are related by n∗ = Qn. On physical grounds, it is natural to

postulate that the components of t in the basis X should equal the corresponding components

of t∗ in the basis X∗ (see Figure 5.1). Thus we require that ti = t∗i where ti = ei · t and

t∗i = e∗i · t∗. It can be readily shown now from ei · t = e∗i · t∗ and e∗i = Qei that

t∗ = Qt,

i.e. that the traction is an objective vector.

One can show as a consequence of (5.31) that the Cauchy stress tensor T, heat flux vector

q and stress power density JT ·D are automatically objective:

T∗ = QTQ, q∗ = Qq, J∗T∗ ·D∗ = JT ·D. (5.32)

To show the first of these claims, consider the objectivity of the traction. As just noted,



5.5. OBJECTIVITY OF THERMOMECHANICAL QUANTITIES. 157

the unit outward normal vector n at a point on the boundary ∂Dt is objective:

n∗ = Qn. (5.33)

Now consider the Cauchy stress tensors T and T∗ which are related to the tractions by

t∗ = T∗n∗, t = Tn. (5.34)

Substituting the first of (5.31)2 and (5.33) into (5.34)1 gives Qt = T∗Qn and now substituing

(5.34)2 into this to eliminate t yields QTn = T∗Qn. Since T does not depend on the normal

vector n and this result must hold for all unit vectors n it follows that QT = T∗Q or

T∗ = QTQT . (5.35)

Thus we conclude that the Cauchy stress tensor is objective.

Similarly by using h = q ·n and h∗ = q∗ ·n∗ one can show that the postulate (5.31)3, i.e.

that the heat flux h be objective, implies that the heat flux vector must be objective:

q∗ = Qq. (5.36)

Since J = det F,D and T are each objective, it can be readily shown that the stress

power per unit reference volume, JT ·D, is also objective:

J∗T∗ ·D∗ = JT ·D. (5.37)

Remark: One can show that the first Piola-Kirchhoff stress tensor S and the Lagrangian

heat flux vector q0 obey

S∗ = QS, q∗0 = q0, (5.38)

and therefore are not objective, whereas the Piola-Kirchhoff traction s = Sn0 and referential

heat flux h0 = q0 · n0 obey

s∗ = Qs, h∗0 = h0, (5.39)

and therefore are objective. In establishing the last pair of equations it is useful to note that

the unit normal vector in the reference configuration is n0 to both observers.

Finally consider the time rate of change of stress, a quantity that is needed for the

formulation of the constitutive relations for certain materials. Since the Cauchy stress is

objective, taking the material time derivative of T∗ = QTQT leads to Ṫ
∗

= QṪQT +

Q̇TQT + QTQ̇
T

and so Ṫ is not objective (except under Gallilean transformations where
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Q is time independent). However, as was shown in one of the problems in Section 3.6, the

co-rotational derivative of T defined by

4
T= Ṫ + LTT + TL,

is objective. All of the following quantities, each of which has the dimension of stress rate,

can be shown to be objective:

4
T = Ṫ + LTT + TL Convected rate,

∇
T = Ṫ− LT−TLT Oldroyd rate,

◦
T = Ṫ−WT + TW Co− rotational or Jaumann rate,

⊗
T = Ṫ + TΩ−ΩT Green− Naghdi rate,

�
T = 1

2
(
4
T −

∇
T) = DT + TD;

here Ω = ṘRT is the angular velocity tensor. See Chapter 3.9 for a discussion of some of

these rates. These stress rates are encountered in certain constitutive relations.

The significance of the preceding discussion on objectivity will become apparent when

we consider constitutive relations in what follows and require that they be independent of

the observer. Roughly speaking, various physical fields such as the stress are related to the

kinematic fields through constitutive equations, and every candidate constitutive law must

be consistent with the preceding requirements arising from objectivity.

5.6 Worked Examples and Exercises.

Problem 5.1. Show that there is a (time-independent) additive degree of non-uniqueness in the specifi-

cation of the specific internal energy and the specific entropy; i.e. show that the first and second laws of

thermodynamics remain invariant under the transformations

ε(y, t) → ε(y, t) + ε0(y), η(y, t) → η(y, t) + η0(y),

where ε0(y) and η0(y) are arbitrary functions. (These functions would be chosen by picking a datum from

which the internal energy and entropy are measured.)
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Problem 5.2. Consider a thermo-mechanical process of a body subjected to the following mechanical

boundary conditions:

Tn = −p0 n on ∂D1, v = o on ∂D2,

and the following thermal boundary conditions:

θ = θ0 on ∂D3, q · n = 0 on ∂D4;

here the pressure p0 and temperature θ0 are constants, and ∂D1 ∪ ∂D2 = ∂D3 ∪ ∂D4 = Dt. Show that there

is a Lyapunov function associated with any process of this body.

Problem 5.3. As we will see in a later chapter, for a general elastic material the Helmholtz free energy

can be expressed as a function of the deformation gradient tensor and the temperature, ψ = ψ̂(F, θ), and in

addition,

S = ρ0ψ̂F(F, θ), η = −ψ̂θ(F, θ)

where the subscripts denote differentiation, e.g. ψ̂F = ∂ψ̂/∂F. Suppose further that Fourier’s law of heat

conduction q0 = K(F, θ) Grad θ holds. The referential heat conductivity tensor K may be assumed to be

symmetric. Specialize the general field equations of thermo-mechanics to such a material. In particular

derive a set of four partial differential equations that involve the three components ui(x, t) of displacement

and the temperature θ(x, t).

Problem 5.4. Reconsider the setting of Problem 5.3 and consider a uni-axial motion of a body:

y1 = x+ u(x, t), y2 = x2, y3 = x3,

where we have set x1 = x and u1 = u for convenience. Specialize the general field equations of thermo-

mechanics to such a motion.

Problem 5.5. Reconsider the general three-dimensional setting of Problem 5.3. Derive a formula for the

specific heat at constant deformation gradient.

Problem 5.6. Reconsider the general three-dimensional setting of Problem 5.3 and calculate the rate of

entropy production Γ.
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Problem 5.7. Truesdell defines the “internal dissipation rate” (per unit mass) δ by

δ = θη̇ − (1/ρ)(divq + ρr).

Note that δ involves thermodynamic quantities only. Note also that the Clausius-Planck inequality (5.14)

requires that δ ≥ 0. Finally observe that the density of the entropy production rate γ is related to δ by

γ =
δ

θ
+

1

ρθ2
q · grad θ.

Gurtin, Fried and Anand refer to θγ as the dissipation rate and the Clausius-Duhem inequality requires that

this be non-negative.

(a) Show that one can alternatively write δ as

δ = T ·D/ρ− (ψ̇ + θ̇η)

where ψ = ε− ηθ is known as the Helmholtz free-energy.

(b) Consider an elastic fluid (i.e., a compressible, inviscid fluid). For such as material,

T = −p(v, η)I, ε = ε̂(v, η),

p = −∂ε̂
∂v

(v, η) θ =
∂ε̂

∂η
(v, η)

where v = 1/ρ is the specific volume. Show that δ = 0 for an elastic fluid.

(c) Next consider a general elastic material. In this case,

S = Ŝ(F, η), ε = ε̂(F, η),

S = ρ0
∂ε̂

∂F
(F, η), θ =

∂ε̂

∂η
(F, η).

(As we shall see later, this is an alternative equivalent characterization of an elastic material to that

given in Problem 5.3.) Show that δ = 0 for a general elastic material.

(d) Consider next a linearly viscous (compressible) fluid. For such a material,

T = −p(v, η)I + λ(trD)1 + 2µD, ε = ε̂(v, η),

p = −∂ε̂
∂v

(v, η), θ =
∂ε̂

∂η
(v, η)

where v = 1/ρ is the specific volume and λ and µ depend at most on temperature. Derive an expression

for the internal dissipation rate δ and show that it is positive semi-definite for every symmetric tensor

D if and only if

µ ≥ 0, 3λ+ 2µ ≥ 0.
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(e) Does the second law of thermodynamics (in all cases) require that δ ≥ 0? Does it require it in the

special case of a linearly viscous fluid?

Solution

(a) We use the energy equation

T ·D + div q + ρr = ρε̇ ,

to eliminate the heat flux q and heta supply r from the internal dissipation rate:

δ = θη̇ − (1/ρ)(divq + ρr) = θη̇ − (1/ρ)(ρε̇−T ·D) = T ·D/ρ+ θη̇ − ε̇ (a)

Substituting ε = ψ + ηθ into this leads to

δ = T ·D/ρ+ θη̇ − (ψ̇ + θη̇ + θ̇η) = T ·D/ρ− (ψ̇ + θ̇η).

(b) For an invicid compressible fluid we are given that

T = −p(v, η)I, ε = ε̂(v, η), p = −∂ε̂
∂v

(v, η) θ =
∂ε̂

∂η
(v, η) (b)

where v = 1/ρ is the specific volume. First we calculate T ·D:

T ·D = −pI ·D = −p trD = p
ρ̇

ρ
(c)

where in the last step we have used mass balance ρ̇+ ρtrD = 0. Next we calculate ε̇:

ε̇ =
∂ε̂

∂v
v̇ +

∂ε̂

∂η
η̇ = −pv̇ + θη̇ (d)

where we have used (b)2,3. To evaluate the internal dissipation rate δ it is most convenient for us to use the

form given in equation (a) and to substitute (c) and (d) into it:

δ = T ·D/ρ+ θη̇ − ε̇ = p
ρ̇

ρ2
+ pv̇.

Since v = 1/ρ it follows that v̇ = −ρ̇/ρ2 and therefore δ = 0.

(c) For a general elastic material we are given

S = Ŝ(F, η), ε = ε̂(F, η), S = ρ0
∂ε̂

∂F
(F, η), θ =

∂ε̂

∂η
(F, η). (e)

First we calculate ε̇:

ε̇ =
∂ε̂

∂F
· Ḟ +

∂ε̂

∂η
η̇ = S · Ḟ/ρ0 + θη̇ (f)

where we have used (e)3,4. Recall from our discussion on stress power, see (4.73) and (4.50), that

T ·D/ρ = S · Ḟ/ρ0. (g)

To evaluate the internal dissipation rate δ it is most convenient for us to use the form given in equation (a)

and to substitute (f) and (g) into it:

δ = T ·D/ρ+ θη̇ − ε̇ = S · Ḟ/ρ0 + θη̇ −
(
S · Ḟ/ρ0 + θη̇

)
= 0.
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(d) For a linearly viscous (compressible) fluid we are given that

T = −p(v, η)1 + λ(trD)1 + 2µD, ε = ε̂(v, η), p = −∂ε̂
∂v

(v, η), θ =
∂ε̂

∂η
(v, η)

where v = 1/ρ is the specific volume and λ and µ depend at most on temperature. First calculate T ·D:

T ·D =
(
− pI + λ(trD)I + 2µD

)
·D = p

ρ̇

ρ
+ λ(trD)2 + 2µtrD2

where we have used I ·D = trD, D ·D = trD2 and that mass balance gives ρ̇+ρtrD = 0. Next we calculate

ε̇ and proceed as in part (b) to get

ρδ = λ(trD)2 + 2µtrD2. (h)

Note that a sufficient condition for δ to be nonnegative is for λ ≥ 0, µ ≥ 0. To obtain a condition that

is both necessary and sufficient we set d = trD/3 and observe that

tr (D− dI)2 = tr
(
D2 − 2dD + d2I) = trD2 − 2d trD + 3d2 = trD2 − 2

3
(trD)2 +

1

3
(trD)2

Therefore we can write the internal dissipation rate as

ρδ = λ (trD)2 + 2µ trD2 =

(
λ+

2µ

3

)
(trD)2 + 2µ tr (D− dI)2 ≥ 0 (j)

Therefore a sufficient condition for δ to be nonnegative is to have

µ > 0, λ+
2

3
µ > 0. (k)

Since (j) is to hold for all D, if we pick D = dI we see that λ+ 2µ/3 ≥ 0 is necessary for δ ≥ 0. And if we

pick any traceless D so that d = 0 we see that µ ≥ 0 is also necessary. Therefore the inequalities (k) are

necessary and sufficient for the internal dissipation rate to be nonnegative.

(e) The entropy inequality arising from the Clausius Duhem inequality is

ρ η̇ ≥ div
(q
θ

)
+
ρr

θ
.

Let γ denote the rate of entropy production per unit mass so that

γ = η̇ − 1

ρ
div
(q
θ

)
− r

θ
≥ 0.

On expanding div (q/θ) and using the definition of δ we can write

γ =
δ

θ
+

q · grad θ

ρθ2

Suppose heat cannot flow in the direction of increasing temperature, so that q · grad θ ≥ 0. Then

δ ≥ 0 ⇒ γ ≥ 0 though γ ≥ 0 6⇒ δ ≥ 0.

Here γ ≥ 0 is the entropy inequality.
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Problem 5.8. In these notes we formulated and analyzed the basic balance laws of thermodynamics by

focussing attention on an arbitrary fixed part P of the body B; our attention at all times was therefore on

the same set of particles. Sometimes it is convenient to work with a control volume instead: i.e. a fixed

region in space (with different particles entering and leaving as time progresses).

Let Rt be the region occupied by the body at the instant t. Let Π be a fixed region of space which is

such that Π ⊂ Rt for all times close to t.

Derive statements of the first and second laws of thermodynamics that are valid for a control volume Π.
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Chapter 6

Singular Surfaces and Jump

Conditions

6.1 Introduction.

Our analyses of kinematics and balance laws in the preceding chapters assumed that the mo-

tion y(x, t) and various other fields such as the stress S(x, t) and heat flux q0(x, t) possessed

certain degrees of smoothness. Though these smoothness requirements are often met, there

are some circumstances of physical interest in which they are not.

Of particular interest are settings where the classical degree of smoothness is met every-

where except at one or more surfaces in the body: certain fields suffer finite jump discon-

tinuities at such a surface but remain smooth everywhere else. We refer to such a surface

generically as a “singular surface”. A familiar example of a singular surface is the common

interface between two bonded bodies. Other examples include problems involving impact

loading of solids, transonic flows in gas dynamics, and phase transitions in solids where the

singular surface corresponds to a wave front, a shock wave and a phase boundary respectively.

Consider the following Lagrangian framework for studying a singular surface: a body

occupies a region R0 in a (time-independent) reference configuration. Let S0(t) be a surface

that moves through R0. Note the distinction between a point on the surface and a particle

of the body, even if they both have the same location at some particular instant. Since

S0(t) moves through R0 it is associated with different particles of the body at different

times and so is not a material surface. In the special case when S0 is time-independent, it

165
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Figure 6.1: The (time-independent) region R0 occupied by a body in a reference configuration is separated

into two (time-dependent) subregions R±0 (t) by the moving singular surface S0(t). The region Rt and surface

St are corresponding images in the current configuration. The unit vector n0 is normal to S0(t) and points

into the region R+
0 . It is St that one would observe in the laboratory.

is then associated with the same particles at all times. A shock wave is an example of a

non-material singular surface, while the interface between two bonded bodies is a material

singular surface.

Suppose that the surface S0(t) separates R0 into two subregions R+
0 (t) and R−0 (t) where

R+
0 (t)∪R−0 (t) = R0; see Figure 6.1(a). Let n0(x, t) be a unit vector that is normal to S0(t)

at x. The surface is oriented such that n0 points into the “positive region” R+
0 . Let V0(x, t)

denote the propagation speed of a point of this surface in the direction n0 normal to the

surface.

Consider a generic (scalar, vector or tensor) field α(x, t) which is discontinuous across

S0(t) but whose limiting values at a point x ∈ S0(t) exist when x is approached from the

plus and minus sides. These values are denoted by α+(x, t) and α−(x, t) respectively. The

difference between α+ and α− is the jump in α at the point x which we denote by

[[α ]] = α+ − α−. (6.1)

One can have different types of singular surfaces depending on the quantities that are

discontinuous across it. For example, at each instant t, the motion y(·, t) maybe continuous

but the velocity v(·, t) may suffer a jump discontinuity across S0. Or the motion and velocity

fields may both be continuous but the acceleration v̇(·, t) may suffer a jump discontinuity at

S0. And so on.
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In these notes we assume that the various fields possess the usual degree of smoothness on

either side of S0(t). We insist that the motion y(x, t) be continuous on R0 but we allow the

deformation gradient tensor F, the particle velocity v, the first Piola-Kirchhoff stress tensor

S, the referential heat flux vector q0, the specific internal energy ε, the specific entropy

η and the temperature θ to suffer jump discontinuities across S0. This means they have

limiting values1 F±, q±0 , v±, S±, ε±, η± and θ± on S0. These limiting values are not entirely

arbitrary since the continuity of the motion and the balance laws impose certain restrictions

on them. These restrictions – the jump conditions – are what we wish to derive and study

in this chapter. This class of singular surfaces describe, in particular, both a shock wave and

a phase boundary.

Finally we remark that it is the image of S0 in the current configuration, say St, that

one would observe in the laboratory. See Figure 6.1(b).

6.2 Jump Conditions in 1-D Theory.

For simplicity we begin by carrying out our analysis in a purely one-dimensional theory. The

three-dimensional case will be addressed in subsequent sections.

Accordingly we consider a one-dimensional continuum that occupies the interval [0, L] of

the x-axis in a reference configuration: R0 = {x : 0 ≤ x ≤ L}. During a motion of this body,

the particle located at x in the reference configuration is carried at time t to the point y by

the motion y = y(x, t). The counterpart of a singular surface in this one dimensional setting

is a singular point across which certain fields are allowed to have jump discontinuities.

We assume in these notes that the motion is continuous, with piecewise continuous first

and second derivatives with respect to both spatial and time coordinates. The stretch λ

and the particle velocity v are defined by λ = yx and v = yt, where the subscripts x and t

indicate partial derivatives. The degree of smoothness assumed allows λ and v to have jump

discontinuities at a singular point.

Suppose that the motion involves a single singular point whose referential location at

time t is x = s0(t) ∈ (0, L). The stretch λ(x, t) and particle velocity v(x, t) have limiting

1The body force b and heat supply r, both of which are prescribed externally, are taken to be continuous

throughout R0.
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Figure 6.2: Reference and current configurations of a bar. The motion involves one singular point whose

referential and spatial locations are x = s0(t) and y = s(t) respectively.

values λ± and v± at x = s0:

λ±(t) = lim
ε→0

λ(s0(t)± ε, t), v±(t) = lim
ε→0

v(s0(t)± ε, t), (6.2)

By assumption (λ+, v+) 6= (λ−, v−) reflecting the fact that the stretch and particle velocity

suffer jump discontinuities at x = s0.

We begin by considering the kinematics of the motion. Since the motion y(x, t) is con-

tinuous everywhere, and therefore in particular at x = s0(t), we have

y(s0(t)+, t) = y(s0(t)−, t). (6.3)

Differentiating this with respect to time and setting λ = yx and v = yt shows that

λ
(
s0(t)+, t

)
ṡ0(t) + v

(
s0(t)+, t

)
= λ

(
s0(t)−, t

)
ṡ0(t) + v

(
s0(t)−, t

)
. (6.4)

Thus the limiting values of the stretch λ± are related to the limiting values of the particle

velocity v± by

λ+ṡ0 + v+ = λ−ṡ0 + v−;

here ṡ0(t) is the (referential or Lagrangian) speed of the singular point. One is therefore led

to the kinematic jump condition

[[ λ ]]ṡ0 + [[ v ]] = 0 (6.5)

which must hold at x = s0(t). This is the one-dimensional counterpart of the three-

dimensional jump condition (6.30) to be established later in this chapter.

If one were to observe this body in a laboratory, it is the current configuration that one

would observe, and so in particular, one would observe the singular point to be located at
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y = s(t) = y(s0(t), t); see Figure 6.2. To calculate the velocity of the (“Eulerian”) singular

point we differentiate s(t) = y(s0(t), t) with respect to t to get

ṡ(t) = λ(s0(t)+, t)ṡ0(t) + v(s0(t)+, t) = λ(s0(t)−, t)ṡ0(t) + v(s0(t)−, t) =

= λ+ṡ0 + v+ = λ−ṡ0 + v−.
(6.6)

The two representations of ṡ(t) in (6.6) can be shown to be equivalent in view of (6.5).

We next turn to the balance laws. We can treat all of the balance laws simultaneously

by writing them in the generic form∫
D0

β(x, t) dVx +

∫
∂D0

ζ(x, t) dAx =
d

dt

∫
D0

ω(x, t) dVx. (6.7)

This is the referential form of the generic spatial balance law (4.2).

In the present one dimensional setting the body occupies the regionR0 = {x : 0 ≤ x ≤ L}
and an arbitrary part of the body occupies a region D0 = {x : x1 < x < x2} ⊂ R0; here x1

and x2 are arbitrary except for the requirement that 0 < x1 < x2 < L; see Figure 6.2. The

generic balance law in one-dimension takes the form∫ x2

x1

β(x, t) dx + ζ(x2, t)− ζ(x1, t) =
d

dt

∫ x2

x1

ω(x, t) dx (6.8)

where we have used the fact that the boundary of D0 consists of the two points x = x1 and

x = x2. Equation (6.8) must hold for all D0, i.e. for all x1 and x2(> x1) in [0, L].

First consider any interval [x1, x2] which does not contain x = s0(t). Thus the fields are

smooth on [x1, x2] and so we can write (6.8) as∫ x2

x1

β dx +

∫ x2

x1

∂ζ

∂x
dx =

∫ x2

x1

∂ω

∂t
dx. (6.9)

This must hold for all intervals [x1, x2] on either side of x = s0, and so by localization we

conclude that

β +
∂ζ

∂x
=
∂ω

∂t
. (6.10)

This field equation must hold at each x ∈ [0, L] with the exception of x = s0(t).

Next consider an interval [x1, x2] that contains the singular point x = s0(t) in its interior.

It is natural in this case to consider the segment [x1, x2] as the union of the two segments
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[x1, s0] and [s0, x2]. First note that

ζ(x2, t)− ζ(x1, t) = ζ(x2, t)− ζ(s0+, t) + ζ(s0−, t)− ζ(x1, t) + ζ(s0+, t)− ζ(s0−, t) =

=

∫ x2

s0

∂ζ

∂x
dx+

∫ s0

x1

∂ζ

∂x
dx+ [[ ζ ]] =

=

∫ x2

x1

∂ζ

∂x
dx+ [[ ζ ]],

(6.11)

where in the first step we have added and subtracted the quantities ζ(s0±, t). Similarly we

have

d

dt

∫ x2

x1

ω(x, t) dx =
d

dt

∫ s0(t)

x1

ω(x, t) dx+
d

dt

∫ x2

s0(t)

ω(x, t) dx =

=

∫ s0

x1

∂ω

∂t
dx+ ω(s0(t)−, t)ṡ0 +

∫ x2

s0

∂ω

∂t
dx− ω(s0(t)+, t)ṡ0(t) =

=

∫ x2

x1

∂ω

∂t
dx− [[ω]] ṡ0.

(6.12)

Therefore the balance law (6.8) takes the form∫ x2

x1

(
β +

∂ζ

∂x
− ∂ω

∂t

)
dx + [[ ζ ]] + [[ω]] ṡ0 = 0. (6.13)

In view of the field equation (6.10) the integrand vanishes almost everywhere and so we

obtain the jump condition

[[ ζ ]] + [[ω]] ṡ0 = 0 (6.14)

that must hold at x = s0(t).

We now apply this to the various balance laws of continuum mechanics. First consider

linear momentum balance (cf. (4.67)). Here we take β = ρ0b for the body force, ζ = σ for

the stress, and ω = ρ0v for the linear momentum in (6.8); note that ρ0 is the mass density in

the reference configuration. The jump condition associated with linear momentum balance

then follows from (6.14):

[[ σ ]] + [[ρ0v]] ṡ0 = 0. (6.15)

Next consider the first law of thermodynamics. In equation (6.8) we now take β = ρ0bv+ρ0r

for the rate at which the body forces do work and the heat supply, ζ = σv + q0 for the rate

at which the stress does work and the heat flux, and ω = ρ0ε+ρ0v
2/2 for the internal energy

density and the kinetic energy density; cf. (5.21). The jump condition associated with the
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first law of thermodynamics then follows from (6.14):

[[ σv + q0 ]] + [[ ρ0ε+ ρ0v
2/2 ]] ṡ0 = 0. (6.16)

Finally consider the second law of thermodynamics (cf. (5.22)). In this case the equality

in (6.8) must be replaced by the inequality ≤; and we must take β = ρ0r/θ for the entropy

source, ζ = q0/θ for the entropy flux, and ω = ρ0η for the specfic entropy in (6.8). The jump

inequality condition associated with the second law of thermodynamics then follows from

(6.14) with the inequality replaced by ≤:

[[ q0/θ ]] + [[ ρ0η ]] ṡ0 ≤ 0. (6.17)

In summary, we have the following jump conditions in the one dimensional theory:

[[ v ]] + [[ λ ]]ṡ0 = 0,

[[ σ ]] + [[ρ0v]] ṡ0 = 0,

[[ σv + q0 ]] + [[ ρ0ε+ ρ0v
2/2 ]] ṡ0 = 0,

[[ q0/θ ]] + [[ ρ0η ]] ṡ0 ≤ 0,

(6.18)

which arise from the continuity of the motion, balance of linear momentum, and the first and

second laws of thermodynamics respectively. They must hold at the singular point x = s0(t).

There is no one-dimensional counterpart of the angular momentum balance law. In three

dimensions it turns out that the jump condition stemming from angular momentum balance

is automatically implied by the other jump conditions, and it therefore does not impose any

additional restrictions on a singular surface.

6.3 Worked Examples and Exercises.

Problem 6.1. Generalized transport theorem. For a smooth field β(y, t), the one dimensional counterpart

of the three dimensional transport equation (3.89)1 is

d

dt

∫ y2

y1

β dy =

∫ y2

y1

β′dy + β2v2 − β1v1 (a)

where yα = y(xα, t) are the current locations of two particles x1 and x2, v(y, t) is the particle velocity field,

β′ = ∂β(y, t)/∂t and we have set βα = β(yα, t) and vα = v(yα, t), α = 1, 2.
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When the motion involves a singular point at y = s(t) ∈ (y1(t), y2(t)), show that (a) generalizes to

d

dt

∫ y2

y1

β dy =

∫ y2

y1

β′dy + β2v2 − β1v1 − [[β]]ṡ.

Solution: During the motion, the particles x1 and x2 are located at

y1(t) = y(x1, t), y2(t) = y(x2, t),

and have speeds

v1 = ẏ1(t), v2 = ẏ2(t).

Consider the part of the body that occupies D0 = [x1, x2] in the reference configuration. At time t, this part

occupies the segment Dt = [y1(t), y2(t)] = [y(x1, t), y(x2, t)]; see Figure 6.2.

Recall the standard formula for differentiating an integral when the interval of integration is variable:

d

dt

∫ b(t)

a(t)

f(y, t) dy =

∫ b(t)

a(t)

∂

∂t
f(y, t) dy + f(b(t), t) ḃ(t)− f(a(t), t) ȧ(t).

On using this formula we have

d

dt

∫ y2

y1

β dy =
d

dt

(∫ s

y1

β dy +

∫ y2

s

β dy

)
=

d

dt

∫ s(t)

y1(t)

β dy +
d

dt

∫ y2(t)

s(t)

β dy

=

∫ s

y1

β′ dy + β−ṡ− β1 v1 +

∫ y2

s

β′ dy + β2 v2 − β+ṡ

=

∫ y2

y1

β′ dy + β2v2 − β1v1 − [[ β ]] ṡ

which is what we set out to prove.

Problem 6.2. Jump conditions in Eulerian form. In a one dimensional setting, the global balance laws

for mass, linear momentum, energy and the entropy inequality in Eulerian form are

d

dt

∫ y2

y1

ρ dy = 0 ,

T (y2, t)− T (y1, t) +

∫ y2

y1

ρb dy =
d

dt

∫ y2

y1

ρv dy ,

T (y2, t) v(y2, t)− T (y1, t) v(y1, t) +

∫ y2

y1

ρbv dy

=
d

dt

∫ y2

y1

ρε dy +
d

dt

∫ y2

y1

1

2
ρv2 dy ,

q(y2, t)

θ(y2, t)
− q(y1, t)

θ(y1, t)
+

∫ y2

y1

ρr

θ
dy =

d

dt

∫ y2

y1

ρη dy .


Here we have denoted the particle velocity, mass density, specific body force, true stress, specific internal

energy, specific entropy, specific heat supply, temperature and heat flux by v(y, t), ρ(y, t), b(y, t), T (y, t),

ε(y, t), η(y, t), r(y, t), θ(y, t), q(y, t) respectively.
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Show from these that the respective jump conditions in Eulerian form associated with the balance laws

for mass, linear momentum, energy and the entropy inequality are

[[ρ(ṡ− v)]] = 0 ,

[[T + ρv(ṡ− v)]] = 0 ,[[
Tv + q + ρ(ṡ− v)

(
ε+ 1

2v
2
)]]

= 0 ,

[[q/θ + ρ(ṡ− v)η]] ≤ 0,


which are to hold at the singular point y = s(t). Observe that the shock speed enters through the terms

ṡ− v±, and note that ṡ− v± is the speed of the singular point relative to the particle at y = s±.

6.4 Kinematic Jump Conditions in 3-D.

We now turn to the three dimensional Lagrangian framework for studying a singular surface

S0(t) as presented in Section 6.1 and illustrated in Figure 6.1(a). In particular, V0(x, t)

denotes the propagation speed of a point of this surface in the direction n0 normal to the

surface.

The singular surface S0(t) can be described parametrically by

x = x̃(ξ1, ξ2, t) (6.19)

where the parameters (ξ1, ξ2) belong to some fixed domain Π. The pair (ξ1, ξ2) identifies a

particular point of the surface, while x given by (6.19) is the spatial location of this point at

time t. We recall that a given surface can be characterized by different parameterizations.

Of particular interest are intrinsic features of the surface, i.e. features that do not depend

on the particular parameterization.

For simplicity, we shall not keep repeating the phrase “at the point (ξ1, ξ2) of the surface

at time t” in what follows though it applies to many sentences (starting with the next one).

One can choose the parameterization such that the vectors `1 and `2, defined by

`α =
∂x̃

∂ξα
, (6.20)

are (linearly independent) unit vectors that are tangent to S0(t). The velocity of propagation

of point (ξ1, ξ2) of the surface S0(t) represented by ∂x̃/∂t is dependent on the parameteri-

zation and is therefore not an intrinsic property of the surface. On the other hand, one can
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show that the velocity component normal to the surface,

V0 =
∂x̃

∂t
· n0, (6.21)

is independent of the parameterization and is therefore an intrinsic property of the surface.

Note the distinction between the velocity of a point of the surface S0 and the velocity of a

particle of the body, even if their locations happen to coincide at a given time.

Let St be the image of S0(t) in the current configuration. Then St is described by

y = ỹ(ξ1, ξ2, t) = y(x̃(ξ1, ξ2, t), t), (ξ1, ξ2) ∈ Π, (6.22)

where y(x, t) is the motion of the body. Since the function y is continuous across S0 by

assumption, the function ỹ(ξ1, ξ2, t) is independent of whether one calculates it by approach-

ing the surface from the + or − side. In particular, this tells us that the left hand sides of

(6.23) and (6.24) below are equal, as are the left hand sides of the two equations in (6.29).

First consider the limit from the plus side. Differentiating (6.22) with respect to ξα and

using (6.20) yields
∂ỹ

∂ξα
= F+ ∂x̃

∂ξα
= F+`α. (6.23)

If we do the same from the minus side, we get

∂ỹ

∂ξα
= F−

∂x̃

∂ξα
= F−`α. (6.24)

Subtracting the former from the latter gives

F+`α − F−`α = [[F]]`α = o.

Since the pair of vectors `1 and `2 are linearly independent, it follows that the jump condition

[[F]]` = o (6.25)

must hold for all unit vectors ` that are tangent to S0.

Since (F+ − F−)` = 0 for all unit vectors ` that are tangent to S0, it follows that

this set of tangent vectors is the null space of the tensor F+ − F−. Since the null space is

2-dimensional, while the vector space itself is 3-dimensional, it follows that the rank of the

tensor F+ − F− must be one (= 3 − 2). Thus from Chapter 2 of Volume I it follows that

there necessarily exist two non-zero vectors a and b in terms of which

[[F]] = F+ − F− = a⊗ b; (6.26)
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without loss of generality we can take b to be a unit vector. Since (F+− F−)` = (a⊗b)` =

(b · `)a = 0 it follows that b · ` = 0 for all vectors ` tangent to S0. Thus the unit vector

b is normal to the plane S0 and so b = n0. Observe from (6.26) that a = [[F]]b. Thus we

conclude that (6.25) requires

[[F]] = F+ − F− = a⊗ n0, a = [[F]]n0. (6.27)

Conversely, one can readily verify that if F+ and F− satisfy (6.27) for any non-zero vector a

with n0 being normal to the plane S0, then the jump condition (6.25) holds. An application

of the jump condition (6.27)) is explored in Problems NNN and NNN.

The physical significance of (6.27)1 can be seen by writing it in the illuminating form

F− =
(
I− β n⊗ n

)(
I− γm⊗ n

)
F+. (6.28)

In this representation β = b · n, m = b∗/|b∗| and γ = |b∗| where b = |(F+)−Tn0|a and

b∗ = b− (b ·n)n. The unit vector n here is normal to the image St of the singular surface in

the current configuration and is given by the familiar relation (6.33) below. One can readily

verify that the unit vector m is perpendicular to n. It follows from (6.28) that at each instant

t, locally, near each point x ∈ S0, the deformation on R−0 differs from the deformation on

R+
0 by a simple shear I − γm ⊗ n parallel to the plane St followed by a uniaxial stretch

I− β n⊗ n in the direction normal to St.

Next differentiate (6.22) with respect to t. Considering the limits from the plus and

minus sides lead to the respective equations

∂ỹ

∂t
= F+∂x̃

∂t
+ v+,

∂ỹ

∂t
= F−

∂x̃

∂t
+ v−. (6.29)

Subtracting the former from the latter yields

(F+ − F−)
∂x̃

∂t
+ (v+ − v−) = o.

Note from (6.25) that when F+ − F− operates on the tangential component of any vector,

the result is the null vector. Therefore the action of F+−F− on any vector equals its action

on the component of that vector in the normal direction. Thus we can replace ∂x̃/∂t in the

preceding equation by its normal component and so get

(F+ − F−)

(
∂x̃

∂t
· n0

)
n0 + (v+ − v−) = o.
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Finally, using (6.21) in this leads to the jump condition

V0[[F]]n0 + [[v]] = o. (6.30)

This jump condition relates the limiting values of the deformation gradient tensor and the

particle velocity and involves the speed V0 of the (Lagrangian) surface in the normal direction

n0. It must hold at each x ∈ S0(t).

The image of S0(t) in the current configuration is St; see Figure 6.1(b). Its propagation

speed

V =
∂ỹ

∂t
· n (6.31)

in the normal direction n can be related to the speed V0. On using (6.22) in (6.31) we get

V =
∂ỹ

∂t
· n =

(
F±

∂x̃

∂t

)
· n + v± · n (6.32)

Recall the relation

n =
F−T± n0

|F−T± n0|
(6.33)

between the unit normals n and n0; see (2.36). Using this in the preceding equation and

simplifying the result leads to

V =
V0

|F−T+ n0|
+ v+ · n =

V0

|F−T− n0|
+ v− · n. (6.34)

The two representations of V here are equivalent by (6.30).

6.5 Momentum, Energy and Entropy Jump Conditions

in 3-D.

6.5.1 Linear Momentum Balance Jump Condition.

We now derive the jump condition associated with linear momentum balance (in referential

form), starting from the global balance law (4.67):∫
∂D0

Sn0 dAx +

∫
D0

ρ0b dVx =
d

dt

∫
D0

ρ0v dVx (6.35)
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that holds for all subregions D0 ⊂ R0. By limiting attention to all subregions that do not

intersect the singular surface S0(t) we derive, in the usual way, the field equation,

Div S + ρ0b = ρ0v̇; (6.36)

this must hold at all x in R0 that do not lie on S0.
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Figure 6.3: An arbitrary subregion D0 that intersects the singular surface S0(t): D0 = D+
0 (t)∪D−0 (t). The

segment of S0 that lies within D0 is denoted by Ŝ(t). Note that ∂D0 = S+(t)∪S−(t), ∂D+
0 (t) = S+(t)∪Ŝ(t)

and ∂D−0 (t) = S−(t) ∪ Ŝ(t).

Now consider an arbitrary subregion D0 that does intersect S0(t) as shown in Figure

6.3: S0(t) separates D0 into two regions D+
0 (t) and D−0 (t), the unit vector m0 is normal

to the singular surface S0(t) and points into D+
0 (t), and the unit vector n0 is normal to

the boundary ∂D0(t) of D0 and points outwards from D0(t). Futhermore we denote the

segment of S0 that lies within D0 by Ŝ(t), and the surfaces S+(t) and S−(t) are as shown in

Figure 6.3 such that the boundary of D0 is ∂D0(t) = S+(t) ∪ S−(t), the boundary of D+
0 is

∂D+
0 (t) = S+(t)∪ Ŝ(t) and the boundary of D−0 is ∂D−0 (t) = S−(t)∪ Ŝ(t). A point on S0(t)

propagates with speed V0 in the direction m0.

We first simplify the traction term in (6.35) as follows by considering D0 to be the union
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of D+
0 and D−0 :∫

∂D0

Sn0 dAx =

∫
S+

Sn0 dAx +

∫
S−

Sn0 dAx

=

∫
S+

Sn0 dAx +

∫
Ŝ

S+(−m0) dAx +

∫
Ŝ

S+m0 dAx+

+

∫
S−

Sn0 dAx +

∫
Ŝ

S−m0 dAx −
∫
Ŝ

S−m0 dAx

=

∫
∂D+

0

Sn0 dAx +

∫
∂D−0

Sn0 dAx +

∫
Ŝ

(
S+ − S−

)
m0 dAx

=

∫
D+

0

Div S dVx +

∫
D−0

Div S dVx +

∫
Ŝ

[[S]]m0 dAx

=

∫
D0

Div S dVx +

∫
Ŝ

[[S]]m0 dAx,

(6.37)

where S± are the limiting values of the first Piola-Kirchhoff stress tensor at a point on

S0 as it is approached from the plus and minus sides of the surface. In the second step

we have added and subtracted the same quantity; in the third step we have observed that

∂D+
0 (t) = S+(t) ∪ Ŝ(t) and ∂D−0 (t) = S−(t) ∪ Ŝ(t), and used the symbol n0 to denote the

unit outward normal to the regions ∂D±0 ; and we have used the divergence theorem in the

third step.

Next we simplify the rate of change of linear momentum term in (6.35). On using the

analog of the transport equation (3.89) in the present setting we have

d

dt

∫
D+

0

ρ0v dVx =

∫
D+

0

ρ0v̇ dVx +

∫
Ŝ
ρ0v

+(−V0) dAx,

d

dt

∫
D−0

ρ0v dVx =

∫
D−0

ρ0v̇ dVx +

∫
Ŝ
ρ0v

−(V0) dAx,

which when added together yields

d

dt

∫
D0

ρ0v dVx =

∫
D0

ρ0v̇ dVx −
∫
Ŝ
ρ0[[v]]V0 dAx. (6.38)

Substituting (6.37) and (6.38) into (6.35) leads to∫
D0

(Div S + ρ0b− ρ0v̇) dVx +

∫
Ŝ

([[S]]mo + ρo[[v]]V0) dAx = 0. (6.39)

The first term here vanishes in view of the field equation (6.36) and so we are led to∫
Ŝ

([[S]]mo + ρo[[v]]V0) dAx = 0. (6.40)
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Since this must hold for all D0, and therefore all Ŝ (⊂ S0), we conclude by localization that

[[S]]mo + ρo[[v]]V0 = 0. (6.41)

This is the jump condition associated with linear momentum balance. It must hold at all

x ∈ S0.

Remark: It is useful to consider the origin of each term of the jump condition (6.41) in

light of each term of the global balance law (6.35). Keeping Figure 6.3 in mind, consider

a limiting process in which S+ is collapsed onto Ŝ. The traction on S+ then reduces to

the traction S+m0 on Ŝ since m0 = n0. On the other hand a limiting process in which

S− is collapsed onto Ŝ results in the traction on S− reducing to the traction S−(−m0) on

Ŝ since m0 = −n0 in this case. This results in the traction term S+m0 − S−m0 = [[S]]m0

on Ŝ which led to the first term in (6.41). The body force term in (6.35) disappears in the

aforementioned limit. The rate of change of linear momentum of D0 consists of two parts:

the change of linear momentum in the bulk of D0 which also disappears in this limit, and a

second contribution due to the motion of the singular surface. We see from Figure 6.3 that

as the singular surface advances with speed V0, particles with momentum density ρ0v
+ are

“replaced” by particles with momentum density ρ0v
−. This leads to the rate of change of

linear momentum term (−ρ0v
+ + ρv−)V0 = −[[ρ0v]]V0 over the surface Ŝ, which led to the

second term in (6.41).

This remark tells us how, in many cases, we can write down the jump condition associated

with a balance law directly by inspection. See Problem 6.5.

6.5.2 Summary: Jump Conditions in Lagrangian Formulation.

The jump conditions associated with angular momentum balance and the first and second

laws of thermodynamics can be derived as above. This leads to the following complete set

of jump conditions which are to hold at all points x ∈ S0(t):

[[v]] + [[Fn0]]V0 = 0, [[ F]] = a⊗ n0 where a = [[F]]n0,

[[ Sn0 ]] + [[ ρ0v ]]V0 = 0,

[[Sn0 · v]] + [[ρ0 (ε+ v · v/2)]] V0 + [[q0 · n0]] = 0,

[[ρ0η]] V0 + [[q0 · n0/θ]] ≤ 0.


(6.42)
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The third line results from the first law of thermodynamics and the inequality in the final

line is associated with the second law of thermodynamics. The jump condition stemming

from angular momentum balance can be shown to be implied by the other jump conditions

and so does not impose an additional condition at the singular surface.

Remark: In the special case of mechanical equilibrium, the particle velocity v and the

propagation speed V0 of the surface vanish at all times. In this case the general jump

conditions (6.42) reduce to

[[ F`]] = 0, [[Sn0]] = 0 , [[q0 · n0]] = 0 . (6.43)

Thus momentum balance requires the traction to be continuous while the first law of ther-

modynamics requires the heat flux to be continuous. The jump condition associated with

the second law of thermodynamics holds automatically in view of (6.43)3, assuming the

temperature to be continuous.

Remark: A different special case corresponds to the setting where the singular surface is

a material surface, i.e. it is attached to the same set of material particles (even though

the body might be undergoing a dynamic process) e.g. the interface between two perfectly

bonded materials in a composite material. In this case the (Lagrangian) speed of the surface

V0 = 0 and the general jump conditions (6.42) specialize to

[[ F`]] = 0, [[v]] = 0, [[ Sn0 ]] = 0, [[Sn0 · v]] + +[[q0 · n0]] = 0, [[q0 · n0]] ≤ 0. (6.44)

6.5.3 Jump Conditions in Eulerian Formulation.

Consider the Eulerian framework for studying a singular surface; see Figure 6.1(b). Let St
denote the image of the Lagrangian singular surface S0(t) in the current configuration. The

unit vector n(y, t) is normal to St, and the surface propagates at a speed V (y, t) in the

direction n. The speeds V and V0 are related by (6.34) while the unit normals n and n0 are

related by (6.33).

One can show that mass balance, linear momentum balance, the first law of thermody-

namics and the second law of thermodynamics require that at each instant t the following
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jump conditions hold at all points y ∈ St:

[[ρ(V − v · n)]] = 0 ,

[[ρv(V − v · n) + Tn]] = 0 ,

[[Tn · v + q · n + ρ(ε+ v · v/2)(V − v · n)]] = 0 ,

[[q · n/θ + ρη(V − v · n)]] ≤ 0.


(6.45)

Here T and q are the true stress and true heat flux vector. Note that ρ here is the mass

density in the current configuration and, in general, is discontinuous at the singular surface.

Observe that it is the velocity of the moving surface relative to the underlying particle

velocity, V − v± · n, that enters all of the above expressions. These jump conditions are

established in Problem 6.8.

6.6 Worked Examples and Exercises.

Problem 6.3. Consider the motion of a singular surface characterized by x = x̃(ξ1, ξ2, t) as in Section 6.4.

Does the velocity vector of the moving surface V0 = ∂x̃/∂t depend on the parameterization? Show that the

normal component of velocity V0 · n0 is an intrinsic property of the surface in that it does not depend on

the parameterization. Note that it is only V · n0 that appeared in the jump conditions (6.42).

Problem 6.4. Motivation: Consider a smooth motion y = y(x, t) of a body that occupies a region R0 in

a reference configuration. The particle velocity is given by

v =
∂y

∂t
.

Taking the referential gradient of this equation, changing the order of differentiation on the right hand side,

and using F = Grady leads to
∂v

∂x
=
∂F

∂t
. (a)

Since (a) holds at each particle x ∈ R0 we can integrate this equation over an arbitrary subregion D0 of R0

to get ∫
D0

∂v

∂x
dVx =

∫
D0

∂F

∂t
dVx.

Since D0 does not depend on time we can take the time derivative outside the integral in the right hand

term. On the left hand side we can use the divergence theorem2 to convert the volume integral over D0 into

2See Section 5.2 of Volume 1.
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a surface integral over its boundary ∂D0 leading to∫
∂D0

v ⊗ n dAx =
d

dt

∫
D0

F dVx. (b)

This must hold for all subregions D0 ⊂ R0. Conversely, if we require (b) to hold for all smooth motions and

all subregions D0, one can readily reverse the preceding steps and derive (a).

Since (b) is of integral form, each term is mathematically meaningful for classes of motions that are not

as smooth as assumed above. This motivates the following question:

Problem Statement: Suppose that the conservation law (b) is required to hold for motions of the class

considered in this chapter. Derive the field equation and jump condition associated with it.

Solution: First consider subregions D0 that do not intersect the singular surface S0. One can then reverse

the steps that led from (a) to (b) to conclude that

∂v

∂x
=
∂F

∂t
at each x ∈ R0, x 6∈ S0(t). (c)

Next consider a region D0 that intersects S0(t). The jump condition associated with the conservation

law (b) can be written down by inspection, for example by using the approach outlined in the Remark at

the end of Section 6.5.1. The jump condition associated with (b) is

(v+ − v−)⊗ n0 − (F− − F+)V0 = O at each x ∈ S0. (d)

The unit vector n0 is normal to the singular surface S0 and points into the “positive” side.

Thus in summary the conservation law (b) leads to the field equation (c) and the jump condition (d).

To examine (d) more closely, operate both sides of (d) on the unit normal n0. This gives

(v+ − v−) − (F− − F+)n0V0 = o for all x ∈ S0. (e)

Similarly operating both sides of (d) on any unit vector ` that is tangent to S0 leads to

V0(F− − F+)` = o at each x ∈ S0. (f)

The pair of (vector) jump conditions (e) and (f) are equivalent to the (tensor) jump condition (d).

Observe that when V0 6= 0, the two jump conditions (e) and (f) coincide with the kinematic jump

conditions (6.42)1. However they differ when V0 = 0.

Remark: Consider the time-integral version of (b) obtained by integrating it with respect to time from some

initial instant t0 to time t. Derive the jump conditions associated with this time integral statement. Is the

case V0 = 0 exceptional?

Problem 6.5. Consider the generic balance law (in Lagrangian form)∫
∂D0

ζ(x, t,n0) dAx +

∫
D0

β(x, t) dVx =
d

dt

∫
D0

ω(x, t) dVx (6.46)
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where n0 is the unit outward normal vector to ∂D0. Here ζ(x, t,n0), β(x, t) and ω(x, t) are generic fields.

The dependence of ζ(x, t,n0) on the unit vector n0 is assumed to be linear so that, in particular,

ζ(x, t,−n0) = −ζ(x, t,n0). (a)

Show that the jump condition associated with the balance law (6.46) is

ζ+(x, t,m0)− ζ−(x, t,m0) +
(
ω+(x, t)− ω−(x, t)

)
V0 = 0. (6.47)

The unit vector m0 here is normal to the singular surface and points into the “plus” side.

Solution We shall follow the approach outlined in the Remark at the end of Section 6.5.1. In all limiting

processes below, it is assumed that the various fields are such that the limits exist as needed.

Keep Figure 6.3 in mind and consider the first term of (6.46). Note first that ∂D0 = S+ ∪S−. Consider

a limiting process in which S+ and S− collapse onto Ŝ from the “plus” and “minus” sides respectively. In

this limit the integral of ζ on S+ reduces to the integral of ζ+(x, t,m0) on Ŝ since, in the limit, n0 = m0; see

Figure 6.3. Similarly the integral of ζ on S− reduces to the integral of ζ−(x, t,−m0) on Ŝ since n0 = −m0

in this case. Thus the integral of ζ over ∂D0 reduces to the integral of ζ+(x, t,m0)−ζ−(x, t,m0) on Ŝ where

we have used the linearity condition (a) to take the negative sign out of the argument of ζ−:∫
∂D0

ζ(x, t,n0) dAx →
∫
Ŝ

(
ζ+(x, t,m0) − ζ−(x, t,m0)

)
dAx.

The volume integral of β in (6.46) disappears in the aforementioned limit since the volume of D0 tends to

zero: ∫
D0

β(x, t) dVx → 0.

Next consider the right hand side of (6.46). The rate of change of the integral of ω on D0 consists of two

parts: the change in the bulk, i.e. the integral of ∂ω/∂t over D0, which also disappears in this limit since

the volume of D0 → 0, and a second contribution due to the motion of the singular surface. We see from

Figure 6.3 that as the singular surface advances with speed V0, particles on the “plus” side of the singular

surface with ω = ω+ are “replaced” by particles on the “minus” side with ω = ω−. Thus in this limit, the

rate of change of the integral of ω on D0 is given by the surface integral of −ω+V0 + ω−V0 over the surface

Ŝ:
d

dt

∫
D0

ω(x, t) dVx →
∫
Ŝ

(
− ω+(x, t)V0 + ω−(x, t)V0

)
dAx.

Collecting the preceding results shows that in this limit, equation (6.46) leads to∫
Ŝ

(
ζ+(x, t,m0)− ζ−(x, t,m0) + ω+(x, t)V0 − ω−(x, t)V0

)
dAx = 0.

Since this must hold for all Ŝ it follows by localization that the jump condition (6.47) must hold.

Problem 6.6. Derive the jump condition associated with balance of angular momentum (in the Lagrangian

formulation). Show that the resulting jump condition is implied by the jump conditions (6.42) and is therefore

not an additional restriction on the limiting values of the fields.
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Solution: Consider a body occupying a region R0 in a reference configuration and undergoing a motion

y = ŷ(x, t). The balance of angular momentum requires that∫
∂D0

ŷ × Sn0 dAx +

∫
D0

ŷ × ρ0b dVx =
d

dt

∫
D0

ŷ × ρ0v dVx, (a)

at each instant t and for every subregion D0 ⊂ R0. Suppose that a singular surface S0(t) intersects the region

D0 as in Figure 6.3. One can write down the jump condition by specializing the generic jump condition

given in Problem 6.5. Accordingly, the jump condition associated with (a) is

ŷ × (S+n0 − S−n0) = ŷ × (−ρ0v
+ + ρ0v

−)V0. (b)

However by (6.42)2, linear momentum balance ensures that [[S]]n0 + [[ρ0v]]V0 = o. In light of this, the jump

condition (b) is automatic in that it is implied by linear momentum balance.

Problem 6.7. Generalize the transport equations (3.89) to a setting where the region occupied by the body

at time t involves a singular surface.

Solution: Suppose first that the motion is smooth and consider an arbitrary subregion Dt ⊂ Rt. The unit

vector n is normal to Dt and points in the outward direction. From (3.89), for a smooth scalar field β(y, t)

and a smooth vector field b(y, t) we have the transport equations

d

dt

∫
Dt

β dVy =

∫
Dt

β′ dVy +

∫
∂Dt

β (v · n) dAy, (a)

d

dt

∫
Dt

b dVy =

∫
Dt

b′ dVy +

∫
∂Dt

b (v · n) dAy, (b)

where as usual, β′ = ∂β(y, t)/∂t and b′ = ∂b(y, t)/∂t. Note that the scalar v · n is the propagation speed

of the closed surface ∂Dt in the outward normal direction.

The key observation for our purposes is that (a) and (b) hold for nonmaterial regions Dt as well with

v · n replaced by the propagation speed of the boundary in the outward normal direction3.

Now consider a motion that involves a singular surface St. Let Dt be an arbitrary subregion that

intersects St and suppose that St separates Dt into two regions D+
t and D−t . The surfaces S+

t , S−t are as

shown in Figure 6.4, and Ŝt = St ∩ Dt is the portion of the singular surface that lies within Dt.

We first apply (a) to D−t . Note that its boundary ∂D−t is comprised of the union of the surfaces S−t
and Ŝt and that the outward normal speed with which these surfaces propagate are v ·n and V respectively.

Applying (a) to the region D−t yields

d

dt

∫
D−

t

β dVy =

∫
D−

t

β′ dVy +

∫
S−
t

β v · n +

∫
Ŝt

β− V dAy,

where β− is the limiting value of β at a point on St is approached from the minus side. Next we apply (a)

to D+
t . Its boundary of ∂D+

t is comprised of the union of the surfaces S+
t and Ŝt and the outward normal

3See for example Vectorial Mechanics, by E.A. Milne, Interscience, NY, 1948.
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Figure 6.4: An arbitrary subregion Dt that intersects the singular surface St: Dt = D+
t ∪D−t . The segment

of St that lies within Dt is denoted by Ŝt. Note that ∂D+
t = S+

t ∪ Ŝt and ∂D−t = S−t ∪ Ŝt. The unit vector

m is normal to St and points into R+
t The propagation speed of the surface is V in the direction m.

speed with which these surfaces propagate are v · n and −V respectively. Applying (a) to the region D+
t

yields
d

dt

∫
D+

t

β dVy =

∫
D+

t

β′ dVy +

∫
S+
t

β v · n−
∫
Ŝt

β+ V dAy.

On combining the preceding equations we obtain the desired result

d

dt

∫
Dt

β dVy =

∫
Dt

β′ dVy +

∫
∂Dt

β v · n dAy −
∫
Ŝt

(
β+ − β−

)
V dAy

Similarly for a vector field b(y, t) we use (b) and show that

d

dt

∫
Dt

b dVy =

∫
Dt

b′ dVy +

∫
∂Dt

b (v · n) dAy −
∫
Ŝt

(
b+ − b−

)
V dAy

Problem 6.8. Derive the Eulerian jump conditions (6.45).

Solution: We shall derive the jump condition associated with linear momentum balance; the other jump

conditions can be obtained is an entirely analogous manner. The global balance of linear momentum requires

that
d

dt

∫
Dt

ρv dVy =

∫
Dt

ρb dVy +

∫
∂Dt

Tn dAy (a)

for all subregions Dt ⊂ Rt. By applying the generalized transport equation derived in Problem 6.7 to the

first term in (a) we get∫
Dt

(ρv)′ dVy +

∫
∂Dt

ρv (v · n) dAy −
∫
Ŝt

(
(ρv)+ − (ρv)−

)
V dAy =

∫
Dt

ρb dVy +

∫
∂Dt

Tn dAy, (b)

where Ŝt = Dt ∩ St is the portion of the singular surface that is in the interior of Dt; see Figure 6.4.
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We now take the limit of (b) as Dt is shrunk so as to collapse onto Ŝt, i.e. we keep Ŝt fixed as Dt shrinks.

Observe from Figure 6.4 that ∂Dt = S+
t ∪ S−t , and m denotes the unit vector normal to St that points into

R+
t . It can be seen from Figure 6.4 that in the limit we are concerned with, S+

t → Ŝt and the unit outward

normal to S+
t approaches +m; similarly S−t → Ŝt and the unit outward normal to S−t approaches −m. In

this limit ∫
∂Dt

Tn dAy =

∫
S+
t

Tn dAy +

∫
S−
t

Tn dAy →
∫
Ŝt

T+m dAy +

∫
Ŝt

T−(−m) dAy,∫
∂Dt

ρv(v · n) dAy =

∫
S+
t

ρv(v · n) dAy +

∫
S−
t

ρv(v · n) dAy →

→
∫
Ŝt

(ρv)+(v+ ·m) dAy +

∫
Ŝt

(ρv)−(v− · (−m)) dAy,

and the volume integrals are taken to vanish in this limit. Thus in this limit (b) yields∫
Ŝt

(ρv)+(v+ ·m) dAy +

∫
Ŝt

(ρv)−
[
v− · (−m)

]
dAy −

∫
Ŝt

[
(ρv)+ − (ρv)−

]
V dAy =

=

∫
Ŝt

T+m dAy −
∫
Ŝt

T−m dAy,

which can be written as∫
Ŝt

{
(T+m−T−m) + (ρv)+

(
V − v+ ·m

)
− (ρv)−

(
V − v− ·m

)}
dAy

or ∫
Ŝt
{[[Tm]] + [[(ρv)(V − v ·m)]]} dAy = 0.

Since this must hold for all choices of Ŝt it follows that the integrand must vanish at each point on St. Thus

we have the jump condition associated with linear momentum balance as

[[Tm]] + [[(ρv)(V − v ·m)]] = 0 (c)

which must hold at all points of the singular surface St.

Problem 6.9. Derive again the Eulerian jump conditions (6.45) but now by substituting S = JTF−T and

q0 = JF−1q into the Lagrangian jump conditions (6.42).

Problem 6.10. Show that the jump condition (6.42)3 associated with the first law of thermodynamics can

be written alternately as (
[[ρ0ε]]−

1

2
(S+ + S−) · [[F]]

)
V0 + [[q0 · n0]] = 0. (6.48)



6.6. WORKED EXAMPLES AND EXERCISES. 187

Solution: To establish the desired result we simplify the terms [[Sn0 · v]] + [[ρ0v · v/2]]V0 that appear in

(6.42)3 as follows:

S+n0 · v+ − S−n0 · v− + 1
2ρ0(v+ · v+ − v− · v−)V0 =

= S+n0 · v+ − S−n0 · v− + 1
2ρ0(v+ − v−) · (v+ + v−)V0 =

= S+n0 · v+ − S−n0 · v− − 1
2 (S+n0 − S−n0) · (v+ + v−) =

= 1
2 (S+ + S−)n0 · (v+ − v−) =

= − 1
2 (S+ + S−)n0 · (F+ − F−)n0V0 =

= − 1
2 (S+ + S−)n0 · aV0 =

= − 1
2 (S+ + S−) · (a⊗ n0)V0 =

= − 1
2 (S+ + S−) · (F+ − F−)V0.

In this sequence of calculations we have used the linear momentum jump condition (6.42)2 in the second

step; the kinematic jump condition (6.30) in the fourth step; and the kinematic jump condition (6.27) in the

fifth and seventh steps. We have also used the algebraic result (a⊗ n0)n0 = (n0 · n0)a = a and the identity

Ax · y = A · (y ⊗ x).

We now replace the terms [[Sn0 · v]] + [[ρ0v · v/2]]V0 in the jump condition (6.42)3 by the preceding

representation which leads to (6.48).

Problem 6.11. Under modest assumptions on the temperature and heat flux, show that the rate of entropy

production at a singular surface can be written as

Γjump =

∫
S0(t)∩D0

f

< θ >
V0 dAx (6.49)

where the driving force f(x, t) on the singular surface is given by

f = [[ρ0ψ]] − < S > · [[F]] + < ρ0η > [[θ]]. (6.50)

Here ψ = ε − θη is the Helmholtz free energy function. We use the notation < α > to denote the average

value of a generic field α(x, t) at the singular surface:

< α >=
1

2
(α+ + α−). (6.51)

Solution: The rate of entropy production Γ(t) associated with a subregion D0 of R0 is defined to be the

excess of the rate of increase of the total entropy in D0 over the rate that entropy is supplied to D0 through

the heat flux q0 and the heat supply r:

Γ(t) =
d

dt

∫
D0

ρ0η dVx −
∫
∂D0

q0 · n0

θ
dAx −

∫
D0

ρ0r

θ
dVx. (a)
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Suppose that the singular surface S0(t) intersects D0 for some time interval of interest. One can decompose

the entropy production rate into a term Γbulk characterizing the contribution from the particles in the bulk

of D0 plus a term Γjump characterizing the contribution from the particles on that portion of the singular

surface within D0, viz. S0(t) ∩ D0. Such an alternate representation for Γ may be obtained from (a) with

the help of a calculation analogous to the one that led from (6.35) to (6.39). The result may be written in

the form

Γ = Γbulk + Γjump, (b)

where

Γbulk =

∫
D0

{ρ0η̇ −Div(q0/θ)− ρ0r/θ} dVx, (c)

and

Γjump = −
∫
S0(t)∩D0

{ρ0[[η]] V0 + [[q0 · n0/θ]]} dAx. (d)

Observe that the non-negativity of the integrands in (c) and (d) correspond to the field and jump inequalities,

(??)2 and (6.42)4, associated with the second law of thermodynamics.

By using the alternative form (6.48) of the jump condition associated with the first law, one can rewrite

part of the integrand in (d) as follows:

[[q0 · n0/θ]] =

(
−ρ0[[ε]]− < S > · [[F]]

< θ >

)
V0+

+ (< 1/θ > −1/ < θ >) [[q0 · n0]] + [[1/θ]] < q0 · n0 > .

(e)

Suppose that the thermomechanical processes considered are either adiabatic, in which case q0 = 0, r = 0;

or involve heat conduction and the temperature is continuous. For adiabatic processes the last two terms on

the right in (e) vanish by virtue of the vanishing of q0. For processes involving heat conduction, these same

terms vanish because of the continuity of the temperature. Thus in all thermomechanical processes of the

aforementioned type, (e) reduces to

[[q0 · n0/θ]] = − 1

< θ >
(ρ0[[ε]]− S · [[F]]) V0.

The rate of entropy production at the singular surface, Γjump given by (d), may now be rewritten as

Γjump =

∫
S0(t)∩D

[[ρ0ε]]− < S > · [[F]]− < θ > [[ρ0η]]

< θ >
V0 dAx.

In terms of the Helmholtz free energy ψ = ε− θη, this reduces to the desired result (6.49), (6.50).

Note that the second law of thermodynamics requires that

fV0 ≥ 0 (6.52)

at each x ∈ S0
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Problem 6.12. In this problem we will derive the classical jump conditions (Rankine-Hugoniot conditions)

of gas dynamics at a “normal shock” in a uniaxial flow of an inviscid fluid. In an inviscid fluid the Cauchy

stress tensor necessarily has the form T = −pI where p(y, t) is the pressure. Consider a one dimensional

flow of such a fluid: v = ve1. Suppose that the flow involves a shock (a singular surface) perpendicular to

the flow and that the Eulerian shock velocity is V e1.

Show that the general three-dimensional jump conditions (in Eulerian form) can be simplified and

combined to give

[[ρU ]] = 0, [[p+ ρU2]] = 0, [[ρU(ε+ p/ρ+ U2/2)] + q]] = 0, (a)

where U± = V − v± are the relative velocities of the shock relative to the flow. The entropy inequality must

also hold of course.

Solution: Setting n = e1,v
± = v±e1,q = q e1, U

± = V − v±,T±n = −p±e1,T
±n · v± = −p±v± and

v± · v± = (v±)2 in the general jump conditions (6.45)1,2,3 leads to

[[ρU ]] = 0, [[ρvU − p]] = 0, [[− pv + q + ρ(ε+ v2/2)U ]] = 0 (b)

Equation (b)1 establishes (a)1.

Next, (b)1 tells us that

ρ+U+ = ρ−U−, (c)

and so we can simplify (b)2 as follows:

[[p]] = [[ρvU ]] = ρ+U+v+ − ρ−U−v− = ρ+U+(v+ − v−) = −ρ+U+(U+ − U−) = −ρ+U2
+ + ρ−U

2
− = −[[ρU2]]

where we have used (c) in the third and fifth steps and used v± = V − U± in the fourth step. Thus

[[p+ ρU2]] = 0. (d)

Equation (d) establishes (a)2.

We now turn to (b)3 and work on each term separately:

[[ρUε]] = ρ+U+[[ε]], (i)

[[ρUv2]] = ρ+U+[[v2]] = ρ+U+((V − U+)2 − (V − U−)2) = ρ+U+(−2V U+ + U2
+ + 2V U− − U2

−)

= ρ+U+[[U2 − 2V U ]],
(ii)

[[pv]] = p+(V − U+)− p−(V − U−) = [[p]]V − p+U+ + p−U−

= −[[ρU2]]V − (p+ρ−/ρ+)U− + (p−ρ+/ρ−)U+

= −[[ρU2]]V − [[p/ρ]]ρ+U+ = −(ρ+U2
+ − ρ−U2

−)V − [[p/ρ]]ρ+U+

= −ρ+U+(U+ − U−)V − [[p/ρ]]ρ+U+ = −ρ+U+
(

[[U ]]V + [[p/ρ]]
)

= −ρ+U+[[UV + p/ρ]].

(iii)
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In the preceding calculations we have used (c), (d) and v± = V − U± at several steps. Therefore from (ii)

and (iii) we get

[[ρUv2/2]]− [[pv]] =
1

2
ρ+U+[[U2 − 2V U ]] + ρ+U+

(
[[UV + p/ρ]]

)
= ρ+U+[[U2/2 + p/ρ]]. (iv)

Finally on combining (i) and (iv) we have

[[ρUε+ ρUv2/2− pv]] = ρ+U+[[ε]] + ρ+U+[[U2/2 + p/ρ]] = ρ+U+[[ε+ U2/2 + p/ρ]] = [[ρU(ε+ U2/2 + p/ρ)]]

which in view of (b)3 establishes (a)3.

Remark: If the flow is occurring at high speed, the dynamic processes will occur much faster than the heat

transfer processes and so one frequently assumes the flow to be adiabatic, i.e. q = 0, r = 0.

Problem 6.13. In this problem you are asked to explicitly solve the kinematic jump condition (6.27)1 in

a particular case.

Suppose that the limiting values of the deformation gradient tensor at a point on a singular surface are

F+ = QU2 and F− = U1. Here U1 and U2 are symmetric positive definite tensors such that

U2 = RTU1R (a)

where

R = −1 + 2e⊗ e (b)

for some unit vector e. (Note that the tensor R represents a 180-degree rotation about the unit vector e.

Note also that detU1 = detU2.).

Consider the kinematic jump condition

QU2 −U1 = a⊗ n0 (c)

for some orthogonal tensor Q, non-zero vector a and unit vector n0.

(i) Given U1 and U2 that obey (a), (b), verify that one solution {n0,a,Q} of (c) is

Solution I : n0 = e, a = 2

(
U−1

1 e

|U−1
1 e|2

−U1e

)
,

and that a second solution is

Solution II : n0 = 2α

(
e− U2

1e

|U1e|2
)
, a =

1

α
U1e.

Here the scalar α simply makes n0 a unit vector. The orthogonal tensors Q associated with these two

solutions have not been displayed. (One can show that there are no other solutions of (c).)
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(ii) Consider tensors U1 and U2 whose components with respect to some orthonormal basis are

[U1] =

 η2 0 0

0 η1 0

0 0 η1

 , [U2] =

 η1 0 0

0 η2 0

0 0 η1

 ,

where η1 > 0 and η2 > 0 are constants. Show that this pair of tensors obey (a) and (b) for some e.

Remark: See K. Bhattacharya, Microstructure of Martensite, Oxford, 2003, for a discussion of how this

problem relates to a particular problem in the crystallography of martensite.

Problem 6.14. In this problem you are to examine an example where the kinematic jump condition

(6.27)1 does not have a solution and therefore, where the proposed tensors F+ and F− cannot be the

limiting deformation gradient tensors at a point on a singular surface with continuous deformation.

Consider the symmetric positive definite tensors U1,U2 and U3 whose components with respect to an

orthonormal basis are

[U1] =

 η2 0 0

0 η1 0

0 0 η1

 , [U2] =

 η1 0 0

0 η2 0

0 0 η1

 , [U3] =

 η1 0 0

0 η1 0

0 0 η2

 .

Here η1 > 0 and η2 > 0 are constants. Show that there do not exist a proper orthogonal tensor Q, a non-zero

vector a and unit vector n0 for which

F+ − F− = a⊗ n0

when F+ = QUi, i = 1, 2, 3, and F− = I.

Remark: See K. Bhattacharya, Microstructure of Martensite, Oxford, 2003, for a discussion of how this

problem relates to a particular problem in the crystallography of austenite/martensite.

Problem 6.15. Consider a singular surface as discussed in the present chapter but now suppose that the

motion y(x, t) is once continuously differentiable everywhere so that in particular the particle velocity field

ẏ and deformation gradient tensor field Grady are both continuous across the singular surface. However

the second derivatives of y(x, t) are discontinuous across this singular surface. Such a surface is called an

acceleration wave. Specialize the general (Eulerian) jump conditions (6.45) to this case.

References:

1. K. Bhattacharya, Microstructure of Martensite, Oxford, 2003.



192 CHAPTER 6. SINGULAR SURFACES AND JUMP CONDITIONS

2. P. Chadwick, Continuum Mechanics: Concise Theory and Problems, Chapter 3, Dover,

1999.

3. M.E. Gurtin, E. Fried and L. Anand, The Mechanics and Thermodynamics of Con-

tinua, Chapters 32 and 33, Cambridge University Press, 2010.



Chapter 7

Constitutive Principles

In this brief chapter we make some general remarks about the constitutive response of a

material. In the subsequent chapters we explore these ideas in detail, in the context of

certain specific classes of materials.

The basic fields of the continuum theory, i.e. the velocity vector v(y, t), mass density

ρ(y, t), Cauchy stress tensor T(y, t), heat flux vector q(y, t), specific internal energy ε(y, t),

specific entropy η(y, t) and temperature θ(y, t), must satisfy the field equations/inequality

ρ̇ + ρ div v = 0, Mass balance,

div T + ρb = ρv̇, Linear momentum balance,

T = TT , Angular momentum balance,

T ·D + div q + ρr = ρε̇, Energy balance,

ρη̇ ≥ div
(q

θ

)
+
ρr

θ
, Entropy inequality.


(7.1)

The body force density b(y, t) and heat supply density r(y, t) are applied on the body by

agents external to the body. They are viewed as prescribed.

These field equations hold for all materials so long as the body can be treated as a

continuum1. While our daily experience tells us that different materials respond differently

to the same stimulus, so far there is nothing that brings this characteristic into the theory.

Moreover, in terms of components, there are 16 scalar-valued fields in (7.1) above (taking

1and it does not involve additional ingredients such as contact and body torques.

193
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the Cauchy stress to be symmetric) and only 5 field equations (the entropy condition being

an inequality). The additional 11 scalar equations that are needed describe the material

behavior. They are provided by a set of constitutive relations.

A material is characterized by a set of constitutive response functions2 T̂, q̂, ε̂ and η̂:

given the motion y(x, t) and the temperature field θ(x, t) at all particles of the body for all

times up to and including the present, the role of the constitutive response functions is to

provide the current values of stress, heat flux, specific internal energy and specific entropy

at each particle in the body. A simple nontrivial example of a set of constitutive relations

would be

T = T̂(F, Ḟ, θ), q = q̂(F, θ,Grad θ), ε = ε̂(F, θ), η = η̂(F, θ), (7.2)

where F = Grad y and Ḟ is its material time derivative. In terms of components, there are 11

scalar-valued equations here (the function T̂ being assumed to be symmetric tensor-valued).

In order to determine the specific constitutive response functions that describe a given

material, one might, say, use first principles atomistic calculations, or use physical experi-

ments, or a combination thereof3. However it is natural to ask whether the constitutive re-

sponse functions are completely arbitrary as far as continuum theory is concerned or whether

the basic theory we have laid out thus far places any restrictions on them (which might, for

example, reduce the number of independent constitutive response functions that must ulti-

mately be determined by other means). We address this question in the remainder of this

chapter.

1. Causality. We note first that we would never allow the current value of any of the fields

to depend on a future value of that or any other field.

2. Field Equations. As noted already, angular momentum balance places a clear restriction

on the constitutive law for stress: the function T̂ must be symmetric tensor-valued. We

assume that the body force b and heat supply r – applied by agents external to the body –

can in principle be prescribed arbitrarily. Thus given any motion and temperature field, and

any set of constitutive response functions generating stress, heat flux, etc., one can always

find a body force b and heat supply r a posteriori such that the equation of motion (7.1)2

and the energy equation (7.1)4 hold. Thus these equations do not place any restrictions on

the constitutive response functions. This leaves the entropy inequality.

2Though we use the term “functions” they might in fact sometimes be functionals.
3We note that a particular set of constitutive response functions, no matter how carefully determined,

provides a model of the material. It would not describe the material’s behavior exactly.
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Once r has been chosen to satisfy the energy equation, the entropy inequality becomes

a restriction since it has no arbitrarily prescribable entities. This restriction can be made

explicit by eliminating r between the energy equation (7.1)4 and the entropy inequality (7.1)5

leading to

ρθη̇ ≥ ρε̇−T ·D− q · grad θ

θ

in terms of the specific internal energy; or equivalently as either

ρψ̇ −T ·D + ρηθ̇ − q · grad θ

θ
≤ 0 (7.3)

or

ρ0ψ̇ − S · Ḟ + ρ0ηθ̇ − qo ·
Grad θ

θ
≤ 0,

in terms of the specific Helmholtz free energy ψ = ε − ηθ. Thus the entropy inequality

will impose certain restrictions on the constitutive response functions. We shall illustrate

this in Section 7.2, and explore it in detail for several classes of constitutive relations in the

subsequent chapters.

3. Material Frame Indifference. Next, we know from the discussions on objectivity in

Sections 3.8 and 5.5 how the various physical fields are related in two different motions that

differ by a rigid body motion. For example we know that ε∗ = ε,F∗ = QF and θ∗ = θ where

the starred and unstarred quantities refer to the two motions and Q is the proper orthogonal

tensor that relates the two motions. Thus if, for example, the constitutive response function

for internal energy ε̂ depends on F and θ, the constitutive relation gives ε = ε̂(F, θ) and

ε∗ = ε̂(F∗, θ∗) = ε̂(QF, θ) in the two motions. objectivity requires that ε = ε∗ and therefore

it is necessary that

ε̂(F, θ) = ε̂(QF, θ)

for all proper orthogonal Q. This restricts the allowable form of ε̂ which is a consequence

of requiring the constitutive response functions to be consistent with material frame indif-

ference. It reflects the fact that physical laws should be independent of the observer. We

shall illustrate such a restriction and its consequences in Section 7.2, and explore this issue

in detail for several classes of constitutive relations in the subsequent chapters.

4. Material Symmetry. Next, if we have knowledge of some microstructural symmetry

characteristics of the material – for example the material might be a single crystal of a

crystalline material with a cubic lattice – then the symmetry at the microstrutural level

translates into a symmetry at the continuum level. Requiring the constitutive response
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functions to be consistent with this material symmetry (if any) will place further restrictions

on them.

Remark: Internal Constraints. The response of a specific material might always display some

particular kinematic characteristic. For example one might observe that the volume change

in all motions in some material is very small compared with other geometric changes. Or

in some other material, one might observe that the extension or contraction in a particular

direction is almost zero (perhaps because there are stiff fibers inside the material in that

direction). One might then idealize these materials by saying that the former is strictly

incompressible, and the latter strictly inextensible in some direction. Internal constraints

of this sort restrict the set of motions that the material can undergo and this in turn has

consequences on the constitutive response functions.

Remark: Equipresence. For internal consistency, if we allow one of the constitutive response

functions in the set T̂, q̂, ε̂, η̂ to depend on a particular quantity, say temperature gradient,

then we have no a priori reason not to allow all of them to depend on this quantity. Note that

the example given in (7.2) is not consistent with this convention since only T̂, for example,

has been allowed to depend on Ḟ.

7.1 Different Functional Forms of Constitutive Response

Functions. Some Examples.

The particular way in which a specific constitutive response function depends on the motion

and temperature depends on the characteristics of the material being modeled. For example,

consider the stress and how it may depend on the motion. The examples below describe

cases where the material has (a) no knowledge of its past (no memory), (b) short term

memory and (c) long term memory. Likewise the examples describe materials where the

stress at a particle depends (d) only on what goes on in an infinitesimal neighborhood of

that particle, (e) the neighborhood of influence is slightly larger than in the preceding case,

and (f) the neighborhood of influence is large. What follow are merely examples of stress

response functions with these properties.

(i) [No memory. Short range forces.] Suppose that the stress at a particle p at a time t

depends only on the motion of the particles in an infinitesimal neighborhood of p at that
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time t. In this case we might expect T̂ to be given by

T̂(F(x, t)).

(ii) [Short memory. Short range forces.] Suppose that the stress at a particle p at a time t

depends only on the motion of the particles in an infinitesimal neighborhood of p at times

up to and close to times preceding time t. Such a material has some slight memory of the

past. In this case we might expect T̂ to depend on F(x, t) as well some number of time

derivatives of F:

T̂(F(x, t), Ḟ(x, t), F̈(x, t), . . . ,
(n)

F (x, t)).

(iii) [Long memory. Short range forces.] Suppose that the stress at a particle p at a time

t depends only on the motion of the particles in an infinitesimal neighborhood of p at all

times up to and preceding time t. Such a material has memory of the past. In this case we

might expect T̂ to involve terms such as∫ t

−∞
e−(t−τ)/λf

(
F(x, τ)

)
dτ, λ > 0.

(iv) [No memory. Medium range forces.] Suppose that the stress at a particle p at a time

t depends only on the motion of the particles in a small but not infinitesimal neighborhood

of p at that time t. Such a material is said to be nonlocal. In this case we might expect T̂

to depend on F(x, t) as well as some spatial derivatives of F:

T̂
(
F, Grad F, Grad

(
Grad F

))
.

(v) [No memory. Long range forces.] Suppose that the stress at a particle p at a time t

depends only on the motion of all of the the particles of the body at that time t. In this case

we might expect T̂ to involve terms such as∫
Rt

e−α|x−ξ| f
(
F(ξ − x, t)

)
dξ.

The preceding are meant only to be illustrative and not exhaustive in any sense. There

are other constitutive relations whose primitive form is quite different to the preceding, for

example,

α
4
T +T = f(F)

where the first term is the convected time derivative of stress.
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7.2 Illustration.

In this section we use a simple example to illustrate how the restrictions placed on a set of

constitutive relations by the requirements of objectivity and the entropy inequality can be

used to infer certain characteristics of the constitutive response functions. In the example

below, we will find that there is a considerable simplification in the form of the constitutive

relations.

Kinematics and field equations: For simplicity, we consider the so-called purely mechan-

ical theory of a continuum which involves the motion y(x, t), velocity v(y, t), mass density

ρ(y, t), Cauchy stress T(y, t) and free energy ψ(y, t) but no thermodynamic quantities.

These fields must obey the kinematic equations

F = Grad y, J = det F, v = ẏ, D =
1

2
(L + LT ), L = grad v, (7.4)

and the field equations

ρ0 = ρJ,

div T + ρb = ρv̇, T = TT ,

T ·D ≥ ρψ̇,

 (7.5)

associated with mass balance, linear and angular momentum balance, and the entropy in-

equality. The inequality (7.5)3 is the purely mechanical version of (7.3).

Constitutive equations: The 11 scalar fields corresponding to ρ, ψ and the components of

y and T (T being taken to be symmetric) that appear in (7.5) are to obey the 4 scalar field

equations (7.5)1,2. The requisite 7 additional scalar equations are given through appropriate

constitutive relations. As an example suppose that the stress and energy depend on the

motion through constitutive response functions T and ψ that are such that

T = T(J), ψ = ψ(J) where J = det F.

This material has no memory and only short range forces, and specifically, the stress and

energy depend on the motion only through the determinant of the deformation gradient

tensor. Alternatively, since mass balance relates the mass density ρ to J through (7.5)1, we

may consider an equivalent set of constitutive relations

T = T̂(ρ), ψ = ψ̂(ρ). (7.6)
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The aim of this section is to illustrate how objectivity and the entropy inequality impose

certain restrictions on the constitutive response functions T̂ and ψ̂. We shall start with the

set of constitutive relations (7.6) that involve seven independent scalar constitutive functions

T̂ij and ψ̂; after ensuring that (7.6) is consistent with the requirements of objectivity and the

entropy inequality, we will find that, in fact, they only involve one independent scalar-valued

constitutive function.

Material frame indifference: We first consider the implications of objectivity. Here we ex-

amine the physical quantities associated with two motions y(x, t) and y∗(x, t) = Q(t)y(x, t)

where Q(t) is a rigid rotation at each t. The Jacobians in the two motions are related by

J = J∗ since J = det F and J∗ = det F∗ = det(QF) = (det Q)(det F) = det F. Mass balance

(7.5)1 now implies that the mass densities associated with the two motions are related by

ρ∗ = ρ. The constitutive relations (7.6) give the energies and stresses associated with these

two motions to be

ψ = ψ̂(ρ), ψ∗ = ψ̂(ρ∗); T = T̂(ρ), T∗ = T̂(ρ∗). (7.7)

The relationship between the energies ψ, ψ∗ and the stresses T,T∗ associated with the two

motions must be postulated based on physical grounds. As discussed in Section 5.5 we

require that

ψ∗ = ψ, T∗ = QTQT , (7.8)

for all orthogonal tensors Q.

Restrictions due to objectivity: We now determine the restrictions that objectivity (7.8)

places on the two constitutive response functions ψ̂ and T̂. First, it follows from (7.8)1 and

(7.7)1,2 that the energy response function must obey the requirement ψ̂(ρ∗) = ψ̂(ρ); but this

is automatic since ρ∗ = ρ. Next, it follows from (7.8)2, (7.7)3,4 and ρ∗ = ρ that we must have

T̂(ρ) = QT̂(ρ)QT . (7.9)

This must hold for all ρ > 0 and all proper orthogonal tensors Q. It is a restriction on the

stress response function T̂.

Constitutive relations consistent with objectivity: We now explore the implications of

the restriction (7.9). We showed in one of the problems in Chapter 3 of Volume I, that a

second order symmetric tensor A obeys A = QAQT for all rotations Q if and only if A is

a scalar multiple of the identity tensor. Thus in the present context objectivity implies that

T̂(ρ) = −p̂(ρ)I for some scalar-valued function p̂(ρ). In summary, the constitutive relations
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(7.6) conform to the requirement of objectivity, if and only if they take the simpler form

T̂(ρ) = −p̂(ρ)I, ψ = ψ̂(ρ), (7.10)

where p̂ is an arbitrary scalar-valued constitutive function, there being no restrictions on

ψ̂. Observe that the 7 scalar constitutive functions T̂ij and ψ̂ have been reduced by the

requirement of objectivity to 2 independent scalar-valued constitutive functions p̂ and ψ̂.

Restrictions due to the entropy inequality: We now turn to the entropy inequality (7.5)3.

First note that

T ·D = −p̂(ρ) I ·D = −p̂(ρ) tr D = −p̂(ρ) div v = p̂(ρ)
ρ̇

ρ

where we have used (3.23), (3.18) in the third step and the alternative form ρ̇+ ρ div v = 0

of mass balance in the last step. Thus the entropy inequality (7.5)3 requires that

p̂(ρ)
ρ̇

ρ
≥ ρ ψ̂′(ρ) ρ̇. (7.11)

This must hold in all thermodynamic processes and therefore places a restriction on the

constitutive functions p̂ and ψ̂.

Constitutive relations consistent with the entropy inequality: We now explore the impli-

cations of (7.11). We first rewrite (7.11) as(
−p̂(ρ) + ρ2 ψ̂′(ρ)

)
ρ̇ ≤ 0 (7.12)

and then note that, since this must hold in all thermodynamic processes, it must hold for all

ρ > 0 and all ρ̇. (See an important note at the end of this section.) It follows that the term

in the parenthesis must vanish, since if it was either positive or negative, we could chose ρ̇

to be negative or positive respectively, thus violating the inequality (7.12). Consequently we

find that the two constitutive functions p̂ and ψ̂ are not independent but are in fact related

by

p̂(ρ) = ρ2 ψ̂′(ρ). (7.13)

Summary: If a material is described by a set of constitutive relations of the form (7.6),

in view of objectivity and the entropy inequality they must in fact be of the form4

T = − ρ2 ψ̂′(ρ) I, ψ = ψ̂(ρ). (7.14)

4The reader may recognize that these constitutive relations describe a compressible inviscid fluid in

circumstances where thermal effects are not important.
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Observe that the 7 scalar constitutive functions T̂ij and p̂ that we started with have been

reduced by the requirements of objectivity and the entropy inequality to 1 independent scalar

constitutive function ψ̂.

Note: We stated above, that (7.12) must hold for all ρ > 0 and all ρ̇. We thus claimed that

at any particular spatial and temporal point (y†, t†) the values of ρ and ρ̇ can be specified

independently and arbitrarily. Consider the uniform velocity field v(y, t) = Ly where L is

an arbitrary constant tensor. Set β = tr L = div v; β is also constant. Now consider the

spatially uniform mass density field

ρ(t) = αe−β(t−t†)

where α > 0 is an arbitrary constant. Observe that this mass density satisfies the requirement

of mass balance, ρ̇+ ρ div v = 0, and that ρ(t) is positive for all t. Note that ρ(t†) = α and

ρ̇(t†) = −αβ. Since the constants α > 0 and β can be chosen independently and arbitrarily,

this shows that the values of ρ(t†) and ρ̇(t†) can be chosen independently and arbitrarily as

was claimed.
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Chapter 8

Thermoelastic Materials

In this chapter we introduce and study the constitutive relations for a thermoelastic material,

starting in Section 8.1 from their most primitive form. The entropy inequality is used to

reduce them in Section 8.2 and material frame indifference is then used in Section 8.3 to

reduce them even further. In Section 8.4 we discuss various consequences of the reduced

constitutive relations, and in particular specialize the field equations, introduce the specific

heat at constant strain, and provide an alternative characterization of the internal energy

potential as a function of deformation gradient and entropy. The notion of material symmetry

is introduced in Section 8.5 and we specialize the constitutive relations to the isotropic and

transversely isotropic cases. In Section 8.6 the constitutive theory is modified to the case

of materials that are kinematically constrained (e.g. incompressible materials). Various

explicit special constitutive relations are given in Section 8.7, and the linearized theory of

thermoelasticity is derived by making the appropriate approximations of smallness.

8.1 Constitutive Characterization in Primitive Form.

An elastic material has no memory of its past. Moreover, the response at a particle x

depends only on the motion of the particles in an infinitesimal neighborhood of it. Thus as

far as dependency on the motion goes, the constitutive response functions depend on the

motion solely through the current value of the deformation gradient tensor at x: F(x, t).

For a thermoelastic material we assume an additional dependency on the temperature of the

same form: θ(x, t). However, we know from simple models of heat transfer, e.g. Fourier’s

203
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law, that the heat flux depends on the temperature gradient. Thus the heat flux response

function q̂ (or q̂0) must depend on Grad θ. By the notion of equipresence, we allow all of

the constitutive response functions to depend on Grad θ.

Thus a thermoelastic material is characterized by a set of constitutive relations

T = T̂(F, θ, Grad θ),

ε = ε̂(F, θ, Grad θ),

q = q̂(F, θ, Grad θ),

η = η̂(F, θ, Grad θ),


or equivalently

S = Ŝ(F, θ, Grad θ),

ψ = ψ̂(F, θ, Grad θ),

q0 = q̂0(F, θ, Grad θ),

η = η̂(F, θ, Grad θ),


for the Cauchy stress T, the specific internal energy ε, the true heat flux vector q and the

specific entropy η; or equivalently for the first Piola-Kirchhoff stress S, the specific Helmholtz

free-energy ψ, the nominal heat flux vector q0 and the specific entropy η.

The constitutive response functions for stress, T̂ and Ŝ, are assumed to satisfy the (an-

gular momentum) requirements

T̂(F, θ,g) = T̂T (F, θ,g), Ŝ(F, θ,g)FT = FŜ
T

(F, θ,g)

for all nonsingular F, all θ > 0, and all vectors g.

8.2 Implications of the Entropy Inequality.

It is convenient for our present purposes to consider the referential constitutive characteri-

zation
S = Ŝ(F, θ, Grad θ),

ψ = ψ̂(F, θ, Grad θ),

q0 = q̂0(F, θ, Grad θ),

η = η̂(F, θ, Grad θ).


(8.1)

Consider the entropy inequality written in the form

ρ0ψ̇ − S · Ḟ + ρ0ηθ̇ − qo ·
Grad θ

θ
≤ 0. (8.2)
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Substituting (8.1) into (8.2) and rearranging terms leads to{
ρ0ψ̂F(F, θ,g)− Ŝ(F, θ,g)

}
· Ḟ

+ ρ0

{
ψ̂θ(F, θ,g) + η̂(F, θ,g)

}
θ̇

+ ρ0

{
ψ̂g(F, θ,g)

}
· ġ

− q̂0(F, θ,g) · g/θ ≤ 0,

(8.3)

where the subscripts such as F, θ and g denote partial differentiation with respect to these

quantities. Equation (8.3) must hold in all thermomechanical processes.

The fact that (8.3) must hold in all thermomechanical processes implies that this inequal-

ity must hold for all arbitrarily chosen1 tensors Ḟ, real numbers θ̇ and vectors ġ. Notice that

1We must show that the values of F(x0, t0), Ḟ(x0, t0), θ(x0, t0), θ̇(x0, t0), g(x0, t0), ġ(x0, t0) can be

specified arbitrarily at any particle x0 and instant t0.

Following Gurtin, Fried and Anand, choose two arbitrary constant tensors L0 and F0 with det F0 > 0,

and consider the motion

y(x, t) = x0 + e(t−t0)L0 F0(x− x0) .

Observe that the deformation gradient tensor (is independent of position x) and is given by

F(t) = e(t−t0)L0 F0;

one can show that detF(t) > 0. The time derivative of F is

Ḟ(t) = L0 e
(t−t0)L0 F0.

Thus

F(x0, t0) = F0, Ḟ(x0, t0) = L0F0.

Since L0 and F0 were prescribed arbitrarily it follows that F(x0, t0), Ḟ(x0, t0) can be specified arbitrarily.

Next choose two arbitrary (scalar) constants θ0, θ0 with θ0 > 0, and two arbitrary constant vectors g0,

g0. Define the scalar-valued function

φ(x, t) = (t− t0) θ0 + g0 · (x− x0) + (t− t0)g0 · (x− x0)

and consider the temperature field

θ(x, t) = θ0 e
φ(x,t)/θ0 .

Note that θ(x, t) > 0. Then

θ(x0, t0) = θ0, θ̇(x0, t0) = θ0, g(x0, t0) = Grad θ(x0, t0) = g0, ġ(x0, t0) = Grad θ̇(x0, t0) = g0.

Since θ0, θ0, g0 and g0 were prescribed arbitrarily, it follows that θ(x0, t0), θ̇(x0, t0), g(x0, t0), ġ(x0, t0) can

be specified arbitrarily.
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the terms within each pair of braces in (8.3), do not involve the quantity immediately outside

it. We now exploit this factor.

Pick and fix all of the quantities F, θ,g, θ̇ and ġ, i.e. all of the quantities in (8.3) except

for Ḟ. Then (8.3) has the form

A · Ḟ + β ≤ 0 for all tensors Ḟ

where A and β are independent of Ḟ. If we now pick Ḟ = αA, this implies that α(A·A)+β ≤
0 for all real numbers α which implies that A ·A = 0 and therefore that A = 0, i.e. that

ρ0ψ̂F(F, θ,g)− Ŝ(F, θ,g) = 0.

Proceeding in this manner, we conclude from (8.3) that

ρ0ψ̂F(F, θ,g)− Ŝ(F, θ,g) = 0,

ψ̂θ(F, θ,g) + η̂(F, θ,g) = 0,

ψ̂g(F, θ,g) = 0,

−q̂0(F, θ,g) · g ≤ 0,


(8.4)

where the inequality (8.4)4 is what is leftover of (8.3) after one has concluded that (8.4)1,2,3

hold. It simply states that the direction of the heat flux vector cannot oppose that of the

temperature gradient vector, i.e. heat flows in the direction of high temperature to low

temperature.

The third of (8.4) states that the Helmholtz free-energy potential ψ̂ is independent of the

temperature gradient g and therefore from the first and second of (8.4) it follows that the

stress and entropy response functions Ŝ and η̂ are also independent of g. Thus (8.4) can be

further simplified to read

ψ = ψ̂(F, θ),

Ŝ(F, θ) = ρ0ψ̂F(F, θ),

η̂(F, θ) = −ψ̂θ(F, θ),

q̂0(F, θ,g) · g ≥ 0.


(8.5)

Conversely if (8.5) holds then so does (8.3). Thus (8.5) describes the most general thermoe-

lastic material which is consistent with the entropy inequality.
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Observe that in order to characterize a thermoelastic material it is only necessary to

specify the two constitutive response functions ψ̂(F, θ) and q̂0(F, θ, Grad θ).

8.3 Implications of Material Frame Indifference.

We now explore the implications of material frame indifference on the constitutive response

functions ψ̂(F, θ) and q̂0(F, θ, Grad θ).

Throughout this discussion we will be concerned with two processes y∗, θ∗ and y, θ, which

are related to each other by

y∗(x, t) = Q(t)y(x, t), θ∗(x, t) = θ(x, t),

where Q(t) is a rotation tensor at each time. We focus attention on a particle p of the body.

Let F∗, ψ∗, q∗0 and F, ψ,q0 be the deformation gradient tensors, Helmholtz free-energies and

heat flux vectors at this one particle p at time t in these two processes. Then the constitutive

relation, when applied to these two processes, yields

ψ = ψ̂(F, θ),

q0 = q̂0(F, θ, Grad θ),

 ψ∗ = ψ̂(F∗, θ),

q∗0 = q̂0(F∗, θ, Grad θ).

 (8.6)

Note that since Grad θ is the referential spatial gradient of temperature, it is the same in

the two motions; grad θ on the other hand would be different.

From our previous discussion on objectivity, see Sections 3.8 and 5.5, we know that

F∗ = QF, ψ∗ = ψ, and q∗0 = q0. (8.7)

Constitutive laws should be independent of the observer. Thus, on using (8.6) and (8.7) we

see that the constitutive response functions ψ̂, q̂0 must be such that

ψ̂(QF, θ) = ψ̂(F, θ), q̂0(QF, θ,g) = q̂0(F, θ,g) (8.8)

for all tensors F with positive determinant, all proper orthogonal tensors Q, all positive real

numbers θ and all vectors g.

Equation (8.8) places restrictions of the constitutive response functions ψ̂, q̂0. For exam-

ple the function ψ̂(F, θ) = tr (FTF) does satisfy (8.8)1 but ψ̂(F, θ,g) = tr F does not.
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Next we turn our attention to determining the most general constitutive response func-

tions ψ̂, q̂0 which are consistent with (8.8). Since the temperature and temperature gradient

are the same on the two sides of (8.8), they play no role in the present discussion, and so for

convenience we shall suppress them in what follows.

First consider the Helmholtz free energy response function ψ̂ which is required to obey

ψ̂(F) = ψ̂(QF). (8.9)

We begin by deriving a necessary condition implied by (8.9). Since (8.9) is to hold for all

rotations Q, it must necessarily hold for the particular choice Q = RT where R is the

rotational part in the polar decomposition F = RU. Then (8.9) implies

ψ̂(F) = ψ̂(U) (8.10)

where U =
√

(FTF). Conversely, let ψ̂(·) be any real-valued function defined for tensors

with positive determinant which obeys (8.10). Then, since QF = Q(RU) = (QR)U, the

rotational and right stretch factors in the (unique) polar decomposition of QF are QR and

U respectively. Thus when (8.10) holds it follows that

ψ̂(QF) = ψ̂(U) (8.11)

for all F with positive determinant and all rotations Q where U =
√

(FTF). Combining

(8.11) with (8.10) shows that (8.9) holds. Thus, it follows that (8.10) is necessary and

sufficient for (8.9) to hold.

Remark: Intuitively, we would have expected the free energy to not depend on the rotation,

and therefore that it should depend on F only through the stretch. However it may not have

been immediately obvious as to which of the two stretches U and V would be appropriate.

The above analysis shows that it is U. Intuitively, we could have guessed this too, since

frame indifference states that a post-rotation doesn’t affect the energy; it does not refer to a

pre-rotation (which as we shall discuss later is related to the symmetry of the material, and

which would, in general, affect the energy).

We turn next to the referential heat flux response function q̂0 which according to (8.8)

must be such that

q̂0(F) = q̂0(QF) (8.12)

for all F with positive determinant and all rotations Q. An analysis entirely analogous to

the preceding shows that a necessary and sufficient condition for (8.12) to hold is that

q̂0(F) = q̂0(U) (8.13)
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where U =
√

(FTF).

Therefore the most general set of constitutive response functions for an elastic material

that is both frame-indifferent and consistent with the second law of thermodynamics is as

follows:
ψ = ψ̂(U, θ),

q0 = q̂0(U, θ, Grad θ).


Since C = U2, we can define a function ψ̃ by ψ̃(C, θ) = ψ̂(

√
C, θ). Since C = FTF, it

follows that
∂Cpq
∂Fij

= Fiqδpj + Fipδqj

so that by the chain rule and S = ρ0∂ψ̂/∂F, we get

S = 2ρ0 Fψ̃C(C, θ).

Thus in summary, a thermoelastic material is characterized by the following set of con-

stitutive relations:
ψ = ψ̃(C, θ),

S = 2ρ0 F ψ̃C(C, θ),

η = −ψ̃θ(C, θ),

q0 = q̃0(C, θ,Grad θ),


(8.14)

where q̃0 is subject to the inequality

q̃0(C, θ,g) · g ≥ 0. (8.15)

8.4 Discussion.

Remark 1: The Helmholtz free-energy function ψ̃(C, θ) completely characterizes the re-

sponse of a thermoelastic material (with the exception of its heat transfer characteristics).

Once ψ̃(C, θ) has been determined for a particular material, the 1st Piola-Kirchhoff stress S

and the entropy η can be calculated from (8.14). The Cauchy stress T = J−1SFT and the

internal energy ε = ψ + ηθ are given by

T̃(C, θ) = 2ρ F ψ̃C(C, θ) FT , ε̃(C, θ) = ψ̃(C, θ)− θ ψ̃θ(C, θ). (8.16)
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It can be verified that if, instead of the free energy ψ̃(C, θ), the internal energy ε̃(C, θ) (alone)

is known, it is not possible to determine the stress and entropy from it without additional

information.

Remark 2: The balance of angular momentum requires that SFT = FST . In principle,

this imposes a restriction on the constitutive response function Ŝ. However since ψ̃C is a

symmetric tensor, the stress that results from the constitutive equation S = 2ρ0 F ψ̃C(C, θ)

automatically satisfies the angular momentum requirement. Thus, for a thermoelastic mate-

rial the two laws of thermodynamics and the principle of material frame indifference imply

the angular momentum principle!

Remark 3: We now return to the field equations. The material time derivative of the internal

energy can be written as follows:

ρoε̇ = ρo(ψ + ηθ). = ρo

(
∂ψ

∂F
· Ḟ +

∂ψ

∂θ
θ̇ + η̇θ + ηθ̇

)
= S · Ḟ + ρo

(
−ηθ̇ + η̇θ + ηθ̇

)
= S · Ḟ + ρoη̇θ

where we have made use of (8.5). Therefore the energy equation S · Ḟ + Div q0 + ρ0r = ρ0ε̇

reduces to

Div q0 + ρ0r = ρ0θη̇. (8.17)

This together with the equation of motion

Div S + ρ0b = ρ0v̇ (8.18)

form the basic field equations which are to be satisfied in any thermomechanical process for

a thermoelastic material. Even though these equations appear to have decoupled into a

thermal one and a mechanical one, the motion y(x, t) and the temperature field θ(x, t) are

coupled through the constitutive relations (8.14).

Observe from the energy equation (8.17) that if the process happens to be adiabatic, i.e.

if q0 = 0 and r = 0 at all x and t, (which may, for instance, be a good approximation for

dynamic processes where the inertial time scale is much smaller than the thermal time scale)

then the energy equation simplifies further to η̇ = 0 and so η is independent of time at each

particle. An adiabatic process in a thermoelastic material is therefore necessarily isentropic.

Remark 4: A particular example of the heat conduction law qo = q̃o(C, θ,g) is given by the

generalized Fourier law

q̃0(C, θ,g) = K(C, θ)g
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where the second order tensor K is known as the conductivity tensor. The entropy inequality

(8.15) requires that K be positive semi-definite.

Remark 5: Let Γ denote the rate of entropy production at time t in a (material) subregion

D0 ⊂ R0:

Γ =
d

dt

∫
D0

ρoηdVx −
∫
D0

ρor

θ
dVx −

∫
∂Do

qo · no
θ

dAx.

By using (8.17) this can be simplified to

Γ =

∫
D0

ρoγ dVx where γ =
q0 ·Grad θ

ρ2
0θ

2
≥ 0; (8.19)

here γ represents the (local) entropy production rate per unit mass and the inequality in

(8.19) arises due to the second law. Thus the production of entropy is due solely to the flux

of heat.

Remark 6: When Grad θ = 0 at a particle one says that that particle is in “thermal

equilibrium”. The entropy production γ at a particle vanishes if it is in thermal equilibrium.

In order to further examine the entropy inequality, for each C and θ, define a function

f(g) = q̃0(C, θ,g) · g (8.20)

for all vectors g. Observe that

f(o) = 0 and

f(g) ≥ 0 for all vectors g

 (8.21)

where the inequality here follows from the entropy inequality (8.15). It follows from (8.21)

that f has a minimum at g = o and therefore

∂f

∂g

∣∣∣∣
g=o

= o.

By evaluating ∂f/∂g using (8.20) and then setting g = o gives

q0(C, θ,0) = o. (8.22)

Equation (8.22) says that when the temperature gradient vanishes, so does the heat flux

vector. Thus when a particle is in thermal equilibrium, the heat flux vector at it necessarily

vanishes.
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Remark 7: Since ε = ψ + ηθ, the internal energy can be expressed as a function of C and θ

by

ε̃(C, θ) = ψ̃(C, θ) + η̃(C, θ) θ. (8.23)

Define the quantity c(C, θ) by

c(C, θ) =
∂ε̃(C, θ)

∂θ
(8.24)

which represents the change of specific internal energy with respect to change of temperature

at constant strain; we see below that this is a specific heat of the material. By using (8.23)

and (8.14)3 in (8.24), we can express c alternatively as

c = θ
∂η̃(C, θ)

∂θ
= −θ∂

2ψ̃(C, θ)

∂θ2
. (8.25)

By using (8.14) and (8.25), the energy equation (8.17) can now be written as

Div q0 + ρ0r = ρocθ̇ − ρ0θ
∂2ψ̃(C, θ)

∂θ∂C
· Ċ.

Observe that in the case of a special process in which the stretching of the body remains

constant, i.e. Ċ = O, this reduces to the classical “heat equation”

Div q0 + ρ0r = ρocθ̇.

This shows that c is the specific heat per unit mass at constant strain.

Remark 8: Assume that the specific heat at constant strain is positive: c(C, θ) > 0 for

all symmetric positive definite tensors C and all positive numbers θ. Then it follows from

c = ∂ε̃/∂θ = θ∂η̃/∂θ that
∂η̃(C, θ)

∂θ
> 0.

Thus, the relation η = η̃(C, θ) is invertible at each fixed C and leads to the inverse relation

θ = θ̄(C, η). We can now use this to swap θ for η in ε̃(C, θ) thereby obtaining another

internal energy potential ε̄(C, η) by

ε̄(C, η) = ε̃
(
C, θ̄(C, η)

)
= ψ̃(C, θ̄(C, η)) + ηθ̄(C, η).

Differentiating this with respect to C and η shows that

∂ε̄(C, η)

∂C
=
∂ψ̃(C, θ)

∂C
,

∂ε̄(C, η)

∂η
= θ,
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with θ = θ̄(C, η). Thus the constitutive relations for a thermoelastic material can be written

alternatively, and equivalently, as

S = 2ρ0 F
∂ε̄(C, η)

∂C
= ρ0

∂ε̄(C, η)

∂F
, θ =

∂ε̄(C, η)

∂η
. (8.26)

While both forms of the constitutive relationships are always valid, (8.14) is particularly

convenient if the process happens to be isothermal, while (8.26) is more convenient to use if

the process is isentropic.

It is worth noting that once ε̄(C, η) has been determined for a particular material, all

other thermoelastic characteristics of that material (e.g. T̄, S̄, θ̄ and ψ̄) can be calculated.

If instead the Helmholtz free-energy function ψ̄(C, η) was known, it is not possible to de-

termine all of the other thermomechanical characteristics of the material without additional

information. Thus C, η are the “natural variables” for the internal energy potential while

C, θ are the natural variables for the Helmholtz free energy potential.

8.5 Material Symmetry.

The Cauchy stress in some current configuration does not depend on the choice of reference

configuration. In fact, recall from Section 4 that our discussion of the (true) Cauchy stress

was carried out without any mention of a reference configuration.

However the deformation gradient tensor F enters into the constitutive relation2 T =

T̂(F), and the deformation gradient tensor does depend on the choice of reference config-

uration. Since F depends on the choice of reference configuration while T does not, it is

necessary that the stress response function T̂ must also depend on the reference configura-

tion; and the way in which F and T̂ depend on the reference configuration must be such

that T̂(F) is independent of reference configuration.

To explore this further, let χ1 and χ2 be two reference configurations and let F1 and

F2 be the deformation gradient tensors in the current configuration relative to these two

reference configurations (at some particle p). Let T̂1 and T̂2 be the two stress response

functions associated with these two reference configurations. Since the Cauchy stress in the

current configuration is given by both T = T̂1(F1) and T = T̂2(F2), we must have

T̂2(F2) = T̂1(F1).

2Since the temperature θ plays no role in the present discussion we suppress it.
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χ p

pp

H

F1F2

χ1χ2

Figure 8.1: A sketch of the regions occupied by a body in a (current) configuration χ and two reference

configurations χ1 and χ2. The deformation gradient tensors from χ1 → χ and χ2 → χ are F1 and F2.

The stress at the particle p in the deformed configuration is T and is independent of the choice of reference

configuration.

Let H be the gradient of the mapping (at p) from the first reference configuration to the

second. Then F1 = F2H and so we must have

T̂2(F) = T̂1(FH) for all nonsingular F.

Thus if we know the stress response function T̂1 associated with one reference configuration,

and the mapping H from it to another reference configuration, the stress response function

in the second reference configuration can be found from the preceding equation.

If the two reference configurations happen to be such that

T̂1(F) = T̂2(F) for all nonsingular F,

then these two reference configurations have the same stress response functions; see Figure

8.2. Consider the set of all tensors H that take χ1 to a configuration with the identical stress

response function. This set is

{H : det H 6= 0, T̂(F) = T̂(FH) for all nonsingular F}.
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χ p

pp

H

FF

χ1χ2
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C

D A

B

C

D

Figure 8.2: A sketch of the regions occupied by a body in a (deformed) configuration χ and two reference

configurations χ1 and χ2. The locations of 4 material points A, B, C, D in the two reference configuration

are shown. Note the symmetry between the reference configurations χ1 and χ2 even though they are distinct.

The transformation H from χ1 → χ2 preserves the symmetry of the material.

This is the set of transformations of the reference configuration that leave the stress response

function unchanged.

Next recall that the mass densities, ρ1 and ρ2 in the two reference configurations are

related by

ρ2 = ρ1| det H|.

The mass densities in the two reference configurations are identical if | det H| = 1.

We speak of two configurations as being mechanically indistinguishable from each other

if their mass densities and stress response functions coincide. Thus in order to study me-

chanically indistinguishable configurations we must restrict attention to tensors H whose

determinant is ±1. (If det H = −1 such a tensor could not be the deformation gradient of

an actual deformation since det H 6> 0. However we admit such tensors in our discussion

of symmetry since we wish to include reflection tensors in the set of permissible symmetry

transformations.) A tensor with determinant equal to ±1 is said to be unimodular. In view
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of the two preceding observations we consider the set of tensors

G = {H : det H = ±1, T̂(F) = T̂(FH) for all nonsingular F}. (8.27)

The set G characterizes the set of all configurations that are mechanically indistinguishable

from χ1. It is called the material symmetry group of the configuration χ1.

Note that symmetry is a property of a configuration. In general, the same body will

have different symmetries in different configurations. Symmetry transformations are the

particular transformations that leave the “material microstructure” invariant.

One can show from (8.27) that (a) if H1 ∈ G and H2 ∈ G then H1H2 ∈ G; and (b) if

H ∈ G then H−1 ∈ G. Therefore G is a group3.

We could alternatively have carried out the discussion of symmetry based on the free

energy potential ψ̂(F), in which case the set of tensors

G = {H : det H = ±1, ψ̂(F) = ψ̂(FH) for all nonsingular F} (8.28)

would be said to describe the symmetry of a configuration. We leave it as an exercise to the

reader to explore the relation between these two definitions, keeping in mind the relation

T̂(F) = ρ0J
−1ψ̂F(F) FT between the two constitutive response functions T̂ and ψ̂.

The set of all tensors whose determinant is ±1 is a group U referred to as the unimod-

ular group. It follows from (8.27) that the material symmetry group G is a subset of the

unimodular group:

G ⊂ U . (8.29)

In principle, the material symmetry group could coincide with any subgroup of the unimod-

ular group. Two particular subgroups of U are the set of orthogonal tensors O, and the set

of proper orthogonal tensors O+; see Chapter 4 of Volume I. The set of all rotations about a

fixed axis is a subgroup of O+ and is therefore another potential material symmetry group.

Frequently, the material symmetry group is composed of certain rotations and/or reflections.

One can show using material symmetry, together with material frame indifference, that a

necessary and sufficient condition for an orthogonal tensor Q to be in G is for

T̂(QFQT ) = QT̂(F)QT for all nonsingular tensors F; (8.30)

or alternatively in terms of the free energy

ψ̂(QFQT ) = ψ̂(F) for all nonsingular tensors F. (8.31)

3See Chapter 4 of Volume I.
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Remark: As emphasized above, symmetry is a property of a configuration of a body.

However when there is no chance for confusion, we shall use the (imprecise but convenient

and common) terminology that attributes symmetry to the material, e.g. we shall speak of

an “isotropic material” when we mean that we consider a configuration of a body in which

it is isotropic, and so on.

8.5.1 Some Examples of Material Symmetry Groups.

Example: The largest possible material symmetry group is the unimodular group itself:

G = U . If the material symmetry group of a certain configuration of a body is the unimodular

group, one can show that

T̂(F) = f(det F)I;

i.e. the Cauchy stress is hydrostatic and depends on the deformation only through the

Jacobian det F. Thus the body responds as a fluid. As shown in one of the exercises, if the

material symmetry group in one configuration is U , then it is U in every configuration. Thus

if the body behaves as a fluid in one configuration it behaves as a fluid in all configurations.

Example: Let Rφ
e denote the rotation through an angle φ about an axis e. The set of all

rotations about a fixed axis e, Rφ
e with 0 ≤ φ ≤ 2π, is a group. If the material symmetry

group coincides with this group we say that the body is transversely isotropic about the axis

e in this reference configuration.

Example: If the material symmetry group is generated4 by π/2 rotations R
π/2
i ,R

π/2
j ,R

π/2
k

about the three orthonormal vector {i, j,k}, the material is said to be cubic5 in this reference

configuration.

Example: If G = O we say that the body is isotropic in this reference configuration.

4A set of tensors A1,A2, . . . ,AN is said to generate a group if products of their powers exhaust the

group.
5The converse is not true. If a material is cubic it does not have to be generated by the rotations listed

here.
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8.5.2 Imposing Symmetry Requirements on Constitutive Response

Functions.

Thus far we have simply learned how to characterize the symmetry of a material. We

now examine how this information helps further reduce the constitutive relations. We shall

address this issue in two cases. Green and Adkins have studied this question in great detail;

see also Spencer.

8.5.2.1 An isotropic material. If a configuration is isotropic then ψ̂(QFQT ) = ψ̂(F) for

all orthogonal tensors Q. In this event one can show that6 ψ̂ has the representation

ψ̂(F) = ψ
(
I1(C), I2(C), I3(C)

)
(8.32)

where

I1(C) = tr C, I2(C) =
1

2

[
(tr C)2 − tr (C2)

]
, I3(C) = det C = J2, (8.33)

are the principal scalar invariants of the right Cauchy Green tensor C = FTF = U2. (Recall

that the eigenvalues and principal scalar invariants of C and B = FFT = V2 coincide.) On

differentiating (8.33) with respect to C we find we find

∂I1

∂C
= I,

∂I2

∂C
= I1 I−C

∂I3

∂C
= J2C−1. (8.34)

In order to determine the stress tensor S, we may use S = 2ρ0Fψ̂C; and since T = J−1SFT

it follows that T = 2ρ0J
−1Fψ̂CFT which can be used to find T. Using these, together with

the chain rule and (8.34), lead to the following constitutive relations for an elastic material

with respect to an isotropic reference configuration:

ρ−1
0 T = 2J

∂ψ

∂I3

I +
2

J

[
∂ψ

∂I1

+ I1
∂ψ

∂I2

]
B − 2

J

∂ψ

∂I2

B2,

ρ−1
0 S = 2I3

∂ψ

∂I3

F−T + 2

[
∂ψ

∂I1

+ I1
∂ψ

∂I2

]
F − 2

∂ψ

∂I2

BF.

 (8.35)

Note that for an isotropic material the principal directions of T and B coincide.

Remark: For an elastic material, we frequently refer to its strain energy function W (F).

This is related to the Helmholtz free energy function by

W (F) = ρ0ψ̂(F) (8.36)

6See for example Chapter 4 of Volume I.
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so that W represents the free energy per unit referential volume.

Remark: In terms of the principal stretches λ1, λ2, λ3 one can write the principal scalar

invariants of C (or B) as

I1 = λ2
1 + λ2

2 + λ2
3, I2 = λ2

1λ
2
2 + λ2

2λ
2
3 + λ2

3λ
2
1, I3 = λ2

1λ
2
2λ

2
3. (8.37)

For an isotropic material, since the strain energy function can be written as W (I1, I2, I3), it

follows that it can equivalently be written in the form

W = Ŵ (λ1, λ2, λ3) (8.38)

where the constitutive response function Ŵ remains invariant if any two of its arguments

are switched:

Ŵ (λ1, λ2, λ3) = Ŵ (λ2, λ1, λ3) = Ŵ (λ1, λ3, λ2) = . . . . (8.39)

Remark: Let λ2
i and ri be an eigenvalue and corresponding eigenvector of C. One can show

by differentiating Cri = λ2
i ri (no sum on i) and using the fact that ri is a unit vector that

∂λi
∂C

=
1

2λi
ri ⊗ ri (no sum on i). (8.40)

The constitutive relation for the Cauchy stress can now be rewritten by changing W̃ (C) to

Ŵ (λ1, λ2, λ3) in (8.16)1, using the chain rule, (8.40) and Fri = λi`i. This leads to

T =
3∑
i=1

λi
J

∂Ŵ

∂λi
`i ⊗ `i, (8.41)

showing that the principal components of the Cauchy stress are

T11 =
λ1

λ1λ2λ3

∂Ŵ

∂λ1

, T22 =
λ2

λ1λ2λ3

∂Ŵ

∂λ2

, T33 =
λ3

λ1λ2λ3

∂Ŵ

∂λ3

. (8.42)

Thus given F, one can find the principal values of T from (8.42) and the principal directions

of T by finding the principal directions of B = FFT :

Remark: Since the 1st Piola-Kirchhoff stress tensor S is not symmetric in general, it may

not have principal values. However a calculation just like the one above but now applied to

(8.14)2 allows us to write the constitutive relation for S as

S =
3∑

k=1

∂Ŵ

∂λk
`k ⊗ rk. (8.43)
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where r1, r2, r3 and `1, `2, `3 are the eigenvectors of the right and left stretch tensors U and

V respectively.

Remark: If the deformation is such that F = λ1e1 ⊗ e1 + λ2e2 ⊗ e2 + λ3e3 ⊗ e3, then the

bases {e1, e2, e3}, {r1, r2, r3} and {`1, `2, `3} all coincide and

S = S1e1 ⊗ e1 + S2e2 ⊗ e2 + S3e3 ⊗ e3 where Si =
∂Ŵ

∂λi
.

If one considers spherically symmetric problems for isotropic materials, one finds that the

bases {eR, eΘ, eZ} and {er, eθ, ez} coincide, that they are the principal bases for B and T,

and that [F ] and [S] are diagonal in these bases.

Remark: Perhaps it is worth mentioning that if one is to conduct laboratory experiments to

find Ŵ , it is necessary to carry out experiments that probe various parts of λ1, λ2, λ3-space

and not simply a hundred uniaxial tension tests which would only probe a single path (many

times) in this space.

8.5.2.2 A transversely isotropic material. If a configuration is transversely isotropic

about an axis e then ψ̂(QFQT ) = ψ̂(F) for all rotation tensors Q about the axis e. In this

event one can show that7 ψ̂ has the representation

ψ̂(F) = ψ(I1(C), I2(C), I3(C), I4(C, e), I5(C, e)) (8.44)

where I1(C), I2(C) and I3(C) continue to be given by (8.33) and

I4(C, e) = tr
[
C2(e⊗ e)

]
, I5(C, e) = tr

[
C(e⊗ e)

]
. (8.45)

By taking components with respect to an orthonormal basis {e1, e2, e3} where e3 = e, this

can be written as

ψ̂(F) = ψ(I1(C), I2(C), I3(C), C33, C
2
31 + C2

32 + C2
33). (8.46)

The presence of the C3i components here is because the e3-direction is special.

One can use S = 2ρ0Fψ̂C and T = 2ρ0J
−1Fψ̂CFT to derive expressions for the stresses

by differentiating (8.33) and (8.45) with respect to C and using the chain rule.

7See for example Chapter 4 of Volume I.
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8.6 Materials with Internal Constraints.

Thus far we have assumed that the body under consideration can undergo any motion at all

by subjecting it to suitable body forces and surface tractions. In certain circumstances it is

possible, and indeed convenient, to idealize the body such that it can only undergo motions

of a certain restricted class. For example a rigid body can only undergo rigid motions,

i.e. motions in which F(x, t) is independent of x and is proper orthogonal at all t; an

incompressible body can only undergo volume-preserving motions, i.e. motions in which

det F(x, t) = 1; a body which is inextensible in a certain (referential) direction e can only

undergo motions in which |F(x, t)e| = 1 at every particle and instant.

A material is said to be subjected to a “simple internal constraint” if it can only undergo

motions in which

φ̂(F(x, t)) = 0 for all x ∈ R, t ∈ [to, t1] (8.47)

where the function φ̂ describes the constraint. The constraints of rigidity, incompressibility

and inextensibility are described by φ̂(F) = FTF−I, φ̂(F) = det F−1 and φ̂(F) = Fe·Fe−1

respectively.

It is natural to require the constraint (8.47) to be material frame indifferent, i.e. if a

deformation gradient tensor F obeys the constraint (8.47), a subsequent rigid rotation should

not lead to a violation of the constraint, i.e. if F obeys (8.47) then QF must also satisfy

(8.47) for every rotation Q. Accordingly we require that φ̂(F) = φ̂(QF) for all nonsingular

tensors F and all rotations Q. The discussion on objectivity earlier in this chapter can be

readily adapted to be present context to show that (8.47) is objective if and only if the

constraint can be expressed in the form

φ(C(x, t)) = 0 for all x ∈ R, t ∈ [to, t1], (8.48)

where C = FTF. Observe that the three examples given earlier can be expressed in this

form: rigidity as C = I, incompressibility as det C = 1, and inextensibility as Ce · e = 1.

We now consider the stresses in a constrained body. In order to explain the basic idea,

consider as an example, a sphere composed of an incompressible isotropic material that

is subjected to a uniform applied pressure q on its boundary. Since the geometry, the

material and the loading are all symmetric, let us restrict attention to spherically symmetric

deformations. Thus the sphere can only become a smaller/larger sphere when q is applied.

However due to incompressibility the sphere cannot remain spherical and change its size.
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Thus, irrespective of the value of q, incompressibility implies that any symmetric deformation

of the sphere must be the trivial one: ŷ(x, t) = x and therefore that necessarily F(x, t) = I

no matter what the value of q. The stress on the other hand would certainly depend on

the value of the applied pressure q. Thus the stress T is not completely determined by the

deformation gradient F, or equivalently, different stress fields can correspond to the same

deformation. This contradicts our earlier notion of determinism, according to which the

stress is completely determined by the history of the motion until time t. We must therefore

modify this notion when considering a constrained body.

It is customary to suppose that the stress T can be additively decomposed into two parts,

one that is determined by the history of the deformation gradient tensor F, and the other,

say N, that is not. The stress N is assumed to do no work in any motion consistent with

the constraint. Thus, for example, one might have

T = T̃(F, Ḟ) + N (8.49)

where

N ·D = 0 (8.50)

for all stretching tensors D consistent with the constraint (8.48). The stress field N(x, t)

arises in “reaction” to the constraint and is often referred to as the reaction stress. One

sometimes refers to T̃ and N as the active and reactive parts of the stress.

Note that (8.50) does not hold for all symmetric D but only for those that are consistent

with the constraint (8.48). Thus we now determine the restriction that the constraint places

on the stretching tensor. Differentiating (8.48) with respect to t shows that

φC(C) · Ċ = 0. (8.51)

On making use of the kinematic identity Ċ = 2FTDF, (8.51) provides the following restric-

tion on the possible values of D:

FφC(C)FT ·D = 0. (8.52)

Equation (8.52) states that D is orthogonal to FφC(C)FT . Equations (8.50) and (8.52) state

that the tensor N is orthogonal to every tensor D that is orthogonal to FφC(C)FT . Thus

N must be parallel to FφC(C)FT , and so there exists a scalar field q(x, t) such that

N = qFφC(C)FT . (8.53)
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Thus in summary, the reaction stress in a body subjected to a simple constraint (8.48) is

given by (8.53).

As an example, consider an incompressible body in which case φ(C) = det C − 1. Thus

φC(C) = (det C)C−T = C−1, so that (8.53) yields the well-known result

N = q I (8.54)

which says that the reaction stress is a pressure. Similarly, for a body that is inextensible in

the referential direction e, one finds that

N = q Fe⊗ Fe; (8.55)

here, N is a uniaxial stress in the fiber direction e.

The constitutive theory for a constrained material now proceeds as for an unconstrained

material. Thus in particular, T̃ is required to be objective and a discussion of material

symmetry is carried out in terms of T̃. In particular, for an incompressible elastic body that

is isotropic in the reference configuration, one finds that the Helmholtz free-energy ψ(F) has

the form ψ(I1(C), I2(C)), and that the stress tensors T and S are related to the deformation

through

T = −p I + 2

[
∂W

∂I1

+ I1
∂W

∂I2

]
B − 2

∂W

∂I2

B2, (8.56)

S = −pF−T + 2

[
∂W

∂I1

+ I1
∂W

∂I2

]
F − 2

∂W

∂I2

BF. (8.57)

Note that I3(C) = det C = (det F)2 = 1 due to incompressibility.

If the strain energy function is expressed in terms of the principal stretches

W = Ŵ (λ1, λ2, λ3) (8.58)

with Ŵ being invariant if any two of its arguments are switched,

Ŵ (λ1, λ2, λ3) = Ŵ (λ2, λ1, λ3) = Ŵ (λ1, λ3, λ2) = . . . . (8.59)

then the principal Cauchy stress components can be written at

T11 = λ1
∂Ŵ

∂λ1

− p, T22 = λ2
∂Ŵ

∂λ2

− p, T33 = λ3
∂Ŵ

∂λ3

− p. (8.60)
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8.7 Some Models of Elastic Materials.

In order to describe the response of some particular elastic material we need to know the

strain energy function W (I1(C), I2(C), I3(C)) (or the free energy function ψ = W/ρ0) that

characterizes the material. In this section we give some examples of strain energy functions

W from the literature. The list is by no means complete.

It is convenient to record again the constitutive relations. For an (unconstrained) isotropic

elastic material we have

T = 2J
∂W

∂I3

I +
2

J

[
∂W

∂I1

+ I1
∂W

∂I2

]
B − 2

J

∂W

∂I2

B2,

S = 2I3
∂W

∂I3

F−T + 2

[
∂W

∂I1

+ I1
∂W

∂I2

]
F − 2

∂W

∂I2

BF,

 (8.61)

and for an incompressible isotropic elastic material we have

T = −p I + 2

[
∂W

∂I1

+ I1
∂W

∂I2

]
B − 2

∂W

∂I2

B2,

S = −pF−T + 2

[
∂W

∂I1

+ I1
∂W

∂I2

]
F − 2

∂W

∂I2

BF.

(8.62)

8.7.1 A Compressible Fluid.

Consider a material characterized by a strain energy function W (I1, I2, I3) that depends only

on the third invariant:

W = W (I3).

It follows immediately from (8.61)1 that the constitutive relation for stress is

T = 2J W ′(I3) I. (8.63)

Note that the Cauchy stress is hydrostatic and depends on the deformation only through

the Jacobian det F; therefore the material under discussion is a perfect fluid, i.e. an inviscid,

compressible fluid.

We can write the preceding constitutive relation in a more familiar form as follows. Recall

that the Helmholtz free energy function is given by ψ = W (I3)/ρ0, and that the mass density

in the curent configuration is given by ρ0 = ρJ, J =
√
I3. Define the function ψ(ρ) by

ψ(ρ) =
1

ρ0

W
(

(ρ0/ρ)2
)
.
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Then it is readily shown from (8.63) that

T = −ρ2 ψ ′(ρ) I.

We can write this as

T = −p I

with the pressure p given by

p = ρ2 ψ ′(ρ). (8.64)

This is the familiar form for stress in an inviscid, compressible fluid.

Note that we studied this material previously in Section 7.2.

8.7.2 Neo-Hookean Model.

The neo-Hookean strain energy density function is perhaps the simplest model for an incom-

pressible isotropic rubber-like material. It is characterized by

W (I1, I2) =
µ

2
(I1 − 3), (8.65)

where µ > 0 is a material constant. Substituting (8.65) into (8.62)1 leads to the constitutive

relation

T = −p I + µB (8.66)

for a neo-Hookean material. We now consider the response of this material in two deforma-

tions:

Uniaxial Stress: Consider a state of uniaxial stress in the e1-direction and the corresponding

pure homogeneous deformation. The Cauchy stress tensor and deformation gradient tensor

have components in the form

[T ] =


T11 0 0

0 0 0

0 0 0

 , [F ] =


λ 0 0

0 λ2 0

0 0 λ2

 ; (8.67)

here we have set λ1 = λ for the stretch in the direction of stressing and set λ2 = λ3 for the

transverse stretch. Since the material is incompressible we must have det F = λλ2
2 = 1 and

so

λ2 = λ−1/2; (8.68)
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this describes how the transverse stretch is related to the longitudinal stretch in uniaxial

stress. Using B = FFT and substituting (8.67) into (8.66) leads to
T11 0 0

0 0 0

0 0 0

 =


−p+ µλ2 0 0

0 −p+ µλ2
2 0

0 0 −p+ µλ2
2

 . (8.69)

Therefore from T22 = T33 = 0 we get p = µλ2
2 = µ/λ where we have used (8.68). Substituting

this into T11 gives

T11 = µ(λ2 − λ−1),

which is the stress-stretch response in uniaxial stress. We can calculate the components of

the first Piola-Kirchhoff stress tensor by using the formula S = JTF−T . Alternative by

physical considerations, if the cross-section normal to the axis of stress has dimensions 1× 1

in the reference configuration, in the current configuration its dimensions are λ2 × λ2. Thus

the axial force is S11 × 1 = T11 × λ2
2. Thus

S11 = T11λ
2
2 = µ(λ− λ−2),

with all the other stress components Sij being zero. Figure 8.3 shows plots of the stresses

T11 and S11 versus the stretch λ in uniaxial stress for a neo-Hookean material.
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Figure 8.3: Stress-Stretch curves for the neo-Hookean material in uniaxial tension. The upper and lower

curves correspond respectively to the Cauchy stress and first Piola-Kirchhoff stress.

Simple Shear: We now consider a simple shear which is characterized by a deformation
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gradient tensor with components

[F ] =


1 k 0

0 1 0

0 0 1

 , [B] = [F ][F ]T =


1 + k2 k 0

k 1 0

0 0 1

 . (8.70)

Note that det F = 1 automatically. Substituting (8.70) into (8.66) gives

[T ] =


µ(1 + k2)− p µk 0

µk µ− p 0

0 0 µ− p

 . (8.71)

This is all that one can say without some further knowledge. In particular, note that the

reaction pressure p is not determined.

Suppose that the stress normal to the plane of shearing is zero: T33 = 0. Then p = µ and

T12 = µk, T11 = µk2.

Observe that in this material, the shear stress T12 depends linearly on the amount of shear

k for all values of k. Observe also the presence of the nonzero normal stress T11 = µk2. This

is in contrast to the linearized theory where the shear stress T12 is the only nonzero stress.

Note that for infinitesimal amounts of shear T11 = O(k2) and so can be neglected.

8.7.3 Blatz-Ko Model.

The Blatz-Ko strain energy function provides a model for a class of (isotropic compressible)

foam rubber materials:

W (I1, I2, I3) =
µ

2

(
I2

I3

+ 2
√
I3 − 5

)
(8.72)

where µ > 0 is a material constant. Substituting (8.72) into (8.61)1 gives

T =
µ

J3

[
(J3 − I2)I + I1B−B2

]
. (8.73)
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Simple Shear: When [F ] and [B] are given by (8.70) we have

[B2] =


k4 + 3k2 + 1 k(k2 + 2) 0

k(k2 + 2) 1 + k2 0

0 0 1

 . (8.74)

Therefore the principal scalar invariants are

I1(B) = tr B = 3 + k2,

I2(B) = 1
2

[
(tr B)2 − tr (B2)

]
= 3 + k2,

I3(B) = det B = 1, J =
√
I3 = 1.

 (8.75)

Substituting (8.75), (8.74) and (8.70)2 into (8.73) leads to

T12 = µk, T22 = −µk2. (8.76)

Again, the shear stress happens to depend linearly on the amount of shear and there is a

nonzero normal stress in the body.

Uniaxial Stress: When [F ] is given by (8.67)2, we have

[B] = [F ][F ]T =


λ2 0 0

0 λ2
2 0

0 0 λ2
2

 , [B2] =


λ4 0 0

0 λ4
2 0

0 0 λ4
2

 , (8.77)

and so
I1(B) = tr B = λ2 + 2λ2

2,

I2(B) = 1
2

[
(tr B)2 − tr (B2)

]
= λ2

2(2λ2 + λ2
2),

I3(B) = det B = λ2λ4
2, J =

√
I3 = λλ2

2.

 (8.78)

Therefore substituting (8.78) and (8.77) into (8.73) yields T22 = µJ−1(λλ4
2 − 1)λ2λ2

2. But

this stress component must vanish because the state of uniaxial stress is characterized by

(8.67)1. Therefore we set T22 = 0 and derive the following relation between the transverse

stretch and the longitudinal stretch:

λ2 = λ−1/4. (8.79)
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Substituting (8.77), (8.78) and (8.79) into (8.73) now yields the stress-stretch relation

T11 = µ(1− λ−5/2).

The corresponding formula for the first Piola-Kirchhoff can be readily obtained from S =

JTF−T :

S11 = T11λ
2
2 = µ(λ−1/2 − λ−3). (8.80)

Figure 8.4 shows plots of the stresses T11 and S11 versus the stretch λ in uniaxial stress for

a Blatz-Ko material.

1.1 1.2 1.3 1.4 1.5

0.1

0.2

0.3

0.4

0.5

0.6

S11

T11

Stretch λ

St
re

ss
/μ

Figure 8.4: Stress-Stretch curves for the Blatz-Ko material in uniaxial tension. The upper and lower curves

correspond respectively to the Cauchy stress and first Piola-Kirchhoff stress.

8.7.4 Gent Model. Limited Extensibility.

The Gent model for an incompressible isotropic elastic material is characterized by the strain

energy function

W = W (I1) = −µ
2
Jm ln

(
1− I1 − 3

Jm

)
(8.81)

where µ and Jm are positive material constants. Since the argument of the logarithm must

be positive, the principal invariant I1 cannot exceed 3 + Jm:

I1 < 3 + Jm. (8.82)
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One can show by linearization that µ is the shear modulus at infinitesimal deformations.

One can also show that in the limit Jm → ∞, the Gent model reduces to the neo-Hookean

model (8.65).

Substituting the particular form (8.81) into the general constitutive equation (8.62) leads

to

T = −pI +
µJm

3 + Jm − I1

B. (8.83)

Uniaxial Stress in the e1-direction: Set λ1 = λ and take the transverse stretches to be equal

λ2 = λ3. Then incompressibility gives λλ2
2 = 1 and so the transverse stretch is given in terms

of λ by

λ2 = λ−1/2. (8.84)

The principal invariant I1 is now found to be

I1 = λ2
1 + λ2

2 + λ2
3 = λ2 + 2λ−1. (8.85)

Since I1 cannot exceed 3 + Jm we must have λ2 + 2λ−1 < 3 + Jm which limits the maximum

possible stretch to some value λm.

The stress components T11 and T22 = T33 can now be found from (8.83) to be

T11 = −p+
µJm λ

2

3 + Jm − λ2 − 2λ−1
, T22 = −p+

µJm
λ(3 + Jm − λ2 − 2λ−1)

. (8.86)

Since T22 = T33 = 0 in a state of uniaxial stress in the e1-direction, the second equation above

can be solved for p. When this is substituted into the first equation we find the stress-stretch

relation in uniaxial stress:

T11 =
(
λ2 − λ−1

)( µJm
3 + Jm − λ2 − 2λ−1

)
. (8.87)

Note that T11 →∞ as λ→ λm.

8.7.5 Fung Model for Soft Biological Tissue.

Reference: J. D. Humphrey, Continuum biomechanics of soft biological tissues, Proceeding

of the Royal Society: Series A, Vol. 459, 2003, pp. 3 - 46.

The mechanical response of soft biological tissue under quasi-static loading is dominated

by its fibrous constituents: collagen and elastin. At small strains, the collagen fibers are
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unstretched and the mechanical response is almost entirely due to the soft, isotropic elastin.

As the load increases, the collagen fibers straighten-out and align with the direction of

loading. This leads to a rapid increase in the stiffness as well as anisotropic material behavior

due to the preferred direction of collagen orientation.

One of the earliest constitutive models for soft tissue was proposed by Fung using a strain

energy function in the form

W = W (C) = α
(

eQ(C) − 1
)
,

where α is a material constant and Q is a function of the left Cauchy Green tensor C = FTF:

Q = Q(C).

Different functional forms of Q have been considered with a general quadratic form the most

common. By suitably choosing the form of Q(C) the material anisotropy can be built in.

The rapid stiffening is modeled by the exponential.

8.8 An Elastic Body with One Preferred Direction.

Reference: A.J.M. Spencer Deformation of Fiber-Reinforced Materials, Clarendon Press,

Oxford, 1972.

In this section we consider an elastic material that has a “preferred direction” a in

the reference configuration. The material might, for example, be reinforced by a family of

fibers oriented in direction a, (though our analysis models a uniform material, not one with

two constituents corresponding to a matrix and fibers). Because of the preferred direction

the material is not isotropic. In fact, since arbitrary rotations about a preserves material

symmetry, the material is transversely isotropic about a. While the models we construct

will be identical to those obtained in Section 8.5.2 our approach will be different8.

We shall consider two material models. The first involves no constraints. The second

treats the material as incompressible and inextensible in the direction a.

We start by stating without proof a theorem from algebra which will be used in what

follows:
8In Section 8.5.2 we considered the energy to have the form W (C) and required it be invariant under

all rotations about the axis a. Here we consider the energy to have the form W (C,a) and required it be

invariant under all rotations.
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Theorem: Let φ(A1,A2) be a scalar-valued polynomial of two symmetric tensors A1 and A2. Moreover,

suppose that φ is invariant under rotations in the sense that φ(A1,A2) = φ(QA1Q
T ,QA2Q

T ) for all

orthogonal Q. Then φ can be expressed as a polynomial function of the following basic invariants:

trA1, trA2, trA2
1, trA2

2, trA3
1, trA3

2,

tr
(
A1A2

)
, tr

(
A1A

2
2

)
, tr

(
A2

1A2

)
, tr

(
A2

1A
2
2

)
.

Proof: R.S. Rivlin, Journal of Rational Mechanics and Analysis, 4(1955), pp. 681.

Special Case: Suppose that A2 = a ⊗ a where a is a unit vector. In this case note that A2 = A2
2 = A3

2

and trA2 = 1. In this case the list of basic invariants reduces to

trA1, trA2
1, trA3

1, tr
(
A1A2

)
, tr

(
A2

1A2

)
. (8.88)

Material 1: Consider an elastic solid with a single preferred orientation represented by the

unit vector a in the reference configuration. The strain energy function can be expressed as

a function of the deformation gradient tensor F and the unit vector a, i.e.

W = W (F, a). (8.89)

Material frame indifference requires that W (QF, a) = W (F, a) for all rotations Q which

holds if and only if one can express W in the form

W = W (C, a) (8.90)

where C = FTF; recall that a is a direction in the reference configuration and so is unaffected

by Q.) Since the sense of the vector a is immaterial, changing a→ −a does not change the

energy. Therefore we can take

W = W (C, a⊗ a). (8.91)

Requiring W to be invariant under all orthogonal changes of the reference configuration (and

assuming W to be a polynomial of arbitrary order of its arguments) implies that W can be

expressed as a function of the isotropic polynomials listed in the Theorem above. Therefore

setting A1 = C and A2 = a⊗ a leads to

W = W (J1, J2, J3, J4, J5) (8.92)

where from (8.88),

J1 = tr C, J2 = tr C2, J3 = tr C3, J4 = tr
[
C(a⊗ a)

]
, J5 = tr

[
C2 (a⊗ a)

]
. (8.93)
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These are the same five invariants that Green and Adkins use in their discussion of a trans-

versely isotropic material about the axis a. There are several equivalent but alternative ways

in which to write the invariants Ji given in (8.93). One that is convenient for our purposes

is

I1 = tr C, I2 = 1/2
[
(tr C)2 − tr C2

]
, I3 = det C,

I4 = tr
[
C2(a⊗ a)

]
, I5 = tr

[
C(a⊗ a)

]
.

(8.94)

Observe that these are the same invariants we found in Section 8.45 for a transversely

isotropic material. One readily finds from (8.94) that

∂I1

∂C
= I;

∂I2

∂C
= I1 I−C;

∂I3

∂C
= J2C−1;

∂I4

∂C
= a⊗Ca + Ca⊗ a;

∂I5

∂C
= a⊗ a.



(8.95)

The Cauchy stress can now be calculated using T = 2J−1FWCFT , W = W (I1, I2, I3, I4, I5),

the chain rule and (8.95) whence

T =
2

J

(
W1B +W2

[
I1 B−B2

]
+ J2W3I +W4

[
b⊗Bb + Bb⊗ b

]
+W5b⊗ b

)
where B = FFT is the right Cauchy Green tensor; b = Fa is the image of a in the deformed

configuration; and we have set Wi = ∂W/∂Ii.

Material 2: Suppose that the material at hand coincides with the material above except

that now it is, in addition, both incompressible and inextensible in the direction a. These

two kinematic constraints are described by det F = 1 and |a| = |Fa|, and they can be written

equivalently as

det C = 1, tr
[
C(a⊗ a)

]
= 1, (8.96)

where C = FTF.
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As noted previously in Section 8.6, the Cauchy stress in a kinematically constrained

material is additively decomposed into a part T̃ determined by the deformation and a part

N, called the reaction stress, which is not determined by the deformation:

T = T̃ + N.

From (8.54) and (8.55), the reaction stress N arising from the constraints of incompressibility

and inextensibility is

N = −pI + τCa⊗ a = −pI + τb⊗ b,

where b = Fa is the image of a in the deformed configuration. Here p and τ are constitutively

indeterminate.

Observe that because of the kinematic constraints (8.96), two of the invariants in the list

(8.94) must equal unity:

I3 = I5 = 1, (8.97)

and so the strain energy function has the form W = W (I1, I2, I4).

The kinematically determined portion of the stress is calculated from the constitutive

relation T̃ = 2J−1FWCFT . A straightforward calculation using the chain rule and (8.94)1,2,3

leads to

T̃ = 2(W1 + I1W2)B− 2W2B
2 + 2W4(b⊗Bb + Bb⊗ b) (8.98)

where b = Fa, Wi = ∂W/∂Ii and B = FFT . Therefore the Cauchy stress T = T̃ + N is

given by

T = 2(W1 + I1W2)B− 2W2B
2 + 2W4(b⊗Bb + Bb⊗ b)− pI + τb⊗ b. (8.99)

8.9 Linearized Thermoelasticity.

Reference: D.E. Carlson, Linear Thermoelasticity, in Mechanics of Solids, Volume II, (Edited

by C. Truesdell), Springer, 1984, pp. 299–321.

On various occasions in the preceding chapters on kinematics and stress, we specialized

the general theory to the case where the displacement gradient tensor H = Grad u = F− I

was infinitesimal: |H| << 1. In particular the infinitesimal strain tensor γ was defined by

γ =
1

2
(H + HT ), γij =

1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
, (8.100)
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and we found that all strain measures, E(U) and E(V), equaled the infinitesimal strain

tensor γ to leading order:

Eij = γij +O(|H|2).

Note also that C = FTF with F = I + H and (8.100) tells us that

C = I + 2γ +O(|H|2).

In the case of stress, we found that the Cauchy stress and the first Piola-Kirchhoff stress

agreed to leading order and we called this common stress σ:

Sij, Tij → σij where σij = σji.

We now approximate the general constitutive relationships under the assumption that the

displacement gradient tensor is infinitesimal, that the temperature θ is close to some uniform

reference temperature θ0 and the temperature gradient |g| = |Grad θ| is infinitesimal.

First consider the constitutive relation for stress: it is convenient to start with the ex-

pression (8.14)2 for the first Piola-Kirchhoff stress:

S = 2ρ0F
∂ψ

∂C
(C, θ). (8.101)

Setting (F,C, θ) = (I, I, θ0) on the right hand side of (8.101) gives the stress in the reference

configuration which we denote by
o
σ:

o
σ= 2ρ0

∂ψ

∂C

∣∣∣ C=I
θ=θ0

. (8.102)

This is frequently called the residual stress.

We now approximate (8.101) by carrying out a Taylor expansion of its right hand side

and using F = I + H, C = I + 2γ:

σij = 2ρ0

(
δik +

∂ui
∂xk

)
∂ψ

∂Ckj
(C, θ),

= 2ρ0

(
δik +

∂ui
∂xk

)[
∂ψ

∂Ckj

∣∣∣ C=I
θ=θ0

+
∂2ψ

∂Ckj∂Cpq

∣∣∣ C=I
θ=θ0

2γpq +
∂2ψ

∂Ckj∂θ

∣∣∣ C=I
θ=θ0

(θ − θ0) +O(ε2)

]
,

=

(
δik +

∂ui
∂xk

)[
o
σkj +Ckjpqγpq + Mkj(θ − θ0) +O(ε2)

]
,

=
o
σij +

o
σkj

∂ui
∂xk

+ Cijpqγpq + Mij(θ − θ0) +O(ε2),
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where we used (8.102)2 and set

Cijk` = 4ρ0
∂2ψ

∂CijCk`

∣∣∣ C=I
θ=θ0

(8.103)

and

Mij = 2ρ0
∂2ψ

∂Cij∂θ

∣∣∣ C=I
θ=θ0

. (8.104)

The components of the fourth-order elasticity tensor C and the second-order stress-temperature

tensor M are material constants. In particular, the components of the elasticity tensor rep-

resent the various elastic moduli of the material. Observe from (8.103) that

Cijk` = Ck`ij, Cijk` = Cjik`, Cijk` = Cij`k, (8.105)

and therefore that the most general (anisotropic) elastic material has 21 elastic constants.

Since the stress-temperature tensor is symmetric, it involves 6 material constants:

Mij = Mji. (8.106)

The constitutive relation for stress in the linearized theory is thus

σij =
o
σij +

o
σkj

∂ui
∂xk

+ Cijk`γk` + Mij(θ − θ0).

From hereon we take the residual stress to be zero in the reference configuration,
o
σ= 0,

in which event the preceding equation reduces to

σij = Cijk`γk` + Mij(θ − θ0). (8.107)

If the elasticity tensor is invertible, one can solve (8.107) for the strain γ in terms of stress

and temperature to get an equation of the form

γij = Kijk`σk` + Aij (θ − θ0).

The components of the compliance tensor K and the thermal expansion tensor A are material

constants.

We next turn to the constitutive relation for the specific entropy. Recalling that η =

−∂ψ(C, θ)/∂θ and carrying out a Taylor expansion of the right hand side about (C, θ) =

(I, θ0) and using C = I + 2γ yields

η = −∂ψ
∂θ

∣∣∣ C=I
θ=θ0

− ∂2ψ

∂Cij∂θ

∣∣∣ C=I
θ=θ0

2γij −
∂2ψ

∂θ2

∣∣∣ C=I
θ=θ0

(θ − θ0)

= −ρ−1
0 Mijγij + c (θ/θ0 − 1) ,

(8.108)
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where we have used (8.104) and set

c = −θ0
∂2ψ

∂θ2

∣∣∣ C=I
θ=θ0

for the specific specific heat in the reference configuration at the reference temperature.

We have taken the entropy in the reference configuration at the reference temperature, i.e.

∂ψ/∂θ at (C, θ) = (I, θ0), to be zero which can be done by choosing the datum for the

entropy appropriately. The constitutive relation for specific entropy in the linearized theory

is

η = −ρ−1
0 Mijγij + c (θ/θ0 − 1) . (8.109)

For completeness, we note the appropriate approximation for the Helmholtz free-energy

ψ. A Taylor expansion of ψ(C, θ) about (C, θ) = (I, θ0) is readily shown to lead to

ρ0ψ =
1

2
Cijk`γijγkl + Mijγij(θ − θ0)− ρ0c

2θ0

(θ − θ0)2.

Next we turn to the constitutive relation for the heat flux: q0 = q̂0(C, θ,g), g = Grad θ.

It is useful to first recall from (8.22) that the entropy inequality requires that

q̂0(C, θ,0) = 0 (8.110)

for all symmetric positive definite tensors C and all positive numbers θ. Differentiating this

shows that we also must have

∂q̂0

∂C
(C, θ,0) = 0,

∂q̂0

∂θ
(C, θ,0) = 0. (8.111)

We now take the constitutive law for the referential heat flux vector, q0 = q̂0(C, θ,g) and

carry out a Taylor expansion about (C, θ,g) = (I, θ0,0). This gives

q0
i =

∂q̂0
i

∂gj

∣∣∣
C=I, θ=θ0,g=0

∂θ

∂xj

where we have used (8.110) and (8.111) and set g = Grad θ. On setting

Kij =
∂q̂0

i

∂gj

∣∣∣
C=I, θ=θ0,g=0

for the heat conduction tensor (in the reference configuration at the reference temperature

in thermal equilibrium) we have are led to the (Fourier) heat conduction relation

q0 = K Grad θ. (8.112)
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Finally we linearize the energy equation for a thermoelastic material which, by (8.17), is

Div q0 + ρ0r = ρ0θη̇.

On substituting the linearized heat conduction relation (8.112) and the constitutive relation

(8.109) for the entropy into this we are led to the linearized energy equation

∂

∂xi

(
Kij

∂θ

∂xj

)
+ θ0Mij γ̇ij + ρ0r = ρ0c θ̇.

In summary, the linearized theory of thermoelasticity is characterized by the system of

equations
∂σij
∂xj

+ ρ0bi = ρ0üi,

∂qi
∂xi

+ θ0Mij γ̇ij + ρ0r = c θ̇,

σij = Cijk` γk` + Mij(θ − θ0),

qi = Kij
∂θ

∂xj
,

γij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
,



(8.113)

where the material is characterized by the elastic moduli Cijk`, the heat conductivity coeffi-

cients Kij and the stress-temperature coefficients Mij (which are related to the coefficients

of thermal expansion). Equation (8.109) can be used to calculate the specific entropy a

posteriori.

This system of equations (8.113) can be reduced to a system of 4 (scalar) equations for

the displacement field u(x, t) and the temperature field θ(x, t) by substituting (8.113)3,4 into

(8.113)1,2 to eliminate the stress and heat flux, and then using (8.113)5 in the resulting pair

of equations to eliminate the strain. This leads to

∂

∂xj

(
Cijk`

∂uk
∂x`

)
+ Mij

∂θ

∂xj
+ ρ0bi = ρ0

∂2ui
∂t2

,

∂

∂xi

(
Kij

∂θ

∂xj

)
+ θ0Mij

∂2ui
∂t ∂xj

+ ρ0r =
c ρ0

θ0

∂θ

∂t
,


where we have also made use of the symmetries (11.9) and (11.10) of C and M. Observe

that the mechanical effects (characterized by the terms involving the displacement u) are
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coupled to the thermal effects (characterized by the terms involving the temperature θ) by

the stress-temperature tensor M. If M = 0 the first equation becomes the wave equation

while the second becomes the heat equation.

8.9.1 Linearized Isotropic Thermoelastic Material.

For an isotropic material we know that ψ = ψ(I1(C), I2(C), I3(C), θ) and so a lengthy

calculation can be used to evaluated the second derivative to ψ with respect to C which

eventually leads to the specific expression:

Cijkl = µ(δikδj` + δi`δjk) + λδijδk`

where (with W = ρ0ψ)

µ = 2

(
∂W

∂I1

+
∂W

∂I2

) ∣∣∣
I1=I2=3,I3=1,θ=θ0

,

λ = 4

(
∂W

∂I2

+
∂W

∂I3

+
∂2W

∂I2
1

+ 4
∂2W

∂I2
2

+
∂2W

∂I2
3

+ 4
∂2W

∂I1∂I2

+

+ 2
∂2W

∂I1∂I3

+ 4
∂2W

∂I2∂I3

) ∣∣∣
I1=I2=3,I3=1,θ=θ0

.

In addition, for an isotropic material we also have

Mij = mδij, Kij = kδij.

so that the material has a single coefficient of thermal expansion and a single coefficient of

heat conduction.

8.10 Worked Examples and Exercises.

Problem 8.1. Suppose that the stress-stretch relation (for the Cauchy stress) in uniaxial tension of a

particular isotropic incompressible elastic material is given by

T = c1(λ− 1) + c2(λ− 1)n + c3 lnλ, where n > 1 is a positive integer; c1 > 0, c3 > 0.

Note that T → −∞ when λ→ 0 and T →∞ when λ→∞.

Determine two strain energy functions W (I1, I2) that yield this same stress-stretch relation. Calculate the

shear stress - amount of shear relations corresponding to these two W ′s.
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Problem 8.2. Consider an isotropic incompressible elastic material. In general, such a material is char-

acterized by a strain energy function W (I1, I2) where I1 and I2 are the first two principal invariants of

the Cauchy Green tensor C (or B). Many examples of material models mentioned in the notes, e.g. the

neo-Hookean model, the Gent model, the Arruda-Boyce model, do not depend on the second invariant I2

and so have the special form W = W (I1). Devise an experiment that can determine if the strain energy

function of a given isotropic incompressible elastic material depends on I2 or not.

Problem 8.3. Let T̂(F) be the Cauchy stress response function. It is symmetruc tensor-valued and defined

for all tensors with positive determinant.

(i) Show that T̂(F) is material frame indifferent if and only if

T̂(F) = RT̂(U)RT

where R and U are the rotation and stretch tensors in the polar decomposition of F.

(ii) Show that this can be written equivalently as

T̂(F) = FT(C)FT

where C = FTF.

(iii) Show from this that the second Piola-Kirchhoff stress tensor S(2) can be expressed as a function of the

Lagrangian Cauchy-Green tensor C only.

(iv) Suppose that T(C) is a polynomial of arbitrary (finite) order:

T(C) =

N∑
n=0

αnC
n

Show that

T̂(F) =

N∑
n=0

αnB
n+1

where B = FFT .

Solution: Given two motions y and y∗ = Qy the associated deformation gradient tensors and Cauchy stress

tensors are given by F,T and F∗,T∗ respectively. Therefore from the constitutive relation we have

T = T̂(F), T∗ = T̂(F∗).

However we know that F∗ = QF and T∗ = QTQT . Therefore we have

T = T̂(F), QTQT = T̂(QF),

and on combining these we get

T̂(F) = QT T̂(QF)Q. (a)
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Equation (a) must hold for all nonsingular tensors F and all rotations Q. This is what material frame

indifference requires. We are asked to determine the most most general form of the constitutive relation that

satisfies this requirement.

(i) Since (a) must hold for all rotations Q it must necessarily hold for Q = RT where R = FU−1 with

U = (FTF)1/2. Therefore necessarily

T̂(F) = RT̂(U)RT where U = (FTF)1/2, R = FU−1. (b)

Conversely suppose that (b) hold for all nonsingular tensors F. Then it must also hold for QF where Q is

any rotation. The associated stretch and rotation tensors are

((QF)T (QF))1/2 = (FTF)1/2 = U, (QF)U−1 = QR.

and so (b) when applied to QF gives

T̂(QF) = QRT̂(U)RTQT (c)

Combining (b) and (c) yields (a). Thus (b) is necessary and sufficient for the constitutive relation to be

consistent with material frame indifference.

(ii) Next, let T̃ be the function defined by

T̃(U) = U−1T̂(U)U−1

Substituting this into (b) gives

T̂(F) = FT̃(U)FT

and so if we introduce the function T(C) = T̃(
√
C) we get

T̂(F) = FT(C)FT . (d)

(iii) The second Piola-Kirchhoff tensor S(2) is defined by S(2) = JF−1TF−T and so substituting (d) into

this yields

S(2) = J T(C) = (detF) T(C) = (detU) T(C) = (det
√
C) T(C),

and so we can write

S(2) = T̂(C).

(iv) From C = FTF and B = FFT it is readily shown that

FCnFT = Bn+1 n = 0, 1, . . . (e)

For example by induction, if (e) holds for n = p, then because Bp+2 = Bp+1B = FCpFTB = FCpFTFFT =

FCpCFT = FCp+1FT , it will hold for n = p + 1. It is trivial to verify that the given identity holds for

n = 0. This establishes (e). The result we are asked to prove follows immediately since T̂(F) = FT(C)FT .
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Problem 8.4. We know that symmetry is a property of a configuration, not a body. A body which is

isotropic in one configuration will not, in general, be isotropic in another configuration. More generally,

let G1 and G2 be the material symmetry groups associated with two reference configurations χ1 and χ2

respectively. Then in general G1 6= G2. However, knowing G1 allows one to calculate G2 provided that one

knows the deformation gradient tensor of the mapping from χ1 → χ2.

If G1 and G2 are the material symmetry groups of two configurations show that

G2 =
{
P | H−1PH ∈ G1

}
. (8.114)

where H is the gradient of the mapping from χ1 → χ2. Thus for any A ∈ G1 we have that HAH−1 ∈ G2

and conversely for any B ∈ G2 we have that H−1BH ∈ G1.

Solution: Consider a particle p and let H be the gradient of the mapping from configuration χ1 to configu-

ration χ2 at p. It is not necessary for the mass densities at p in these two configurations to be the same, and

so det H need not be ±1. Let G1 and G2 be the material symmetry groups at p in these two configurations.

The stress response functions T̂1 and T̂2 in these two configurations are related by

T̂1(F) = T̂2(FH−1) for all nonsingular tensors F.

Recall from (8.27) that a tensor P belongs to symmetry group G1 if and only if

T̂1(FP) = T̂1(F) for all nonsingular tensors F,

or, by making use of (a), if and only if

T̂2(FPH−1) = T̂2(FH−1) for all nonsingular tensors F,

which in turn holds if and only if

T̂2(FHPH−1) = T̂2(F) for all nonsingular tensors F.

Thus P belongs to G1 if and only if HPH−1 belongs to G2 and so we have shown that

G2 =
{
P | H−1PH ∈ G1

}
.

The material symmetry group G2 therefore consists of all elements of G1, premultiplied by H and postmul-

tiplied by H−1. One often writes G2 = HGH−1.

Problem 8.5. Let T̂(F) be the objective Cauchy stress response function of an elastic material.

(i) If the material symmetry group of the reference configuration is the full unimodular group U show

that there is a scalar-valued function p̂ such that

T̂(F) = −p̂(detF)I.

Truesdell and Noll call such a material an elastic (i.e. compressible, inviscid fluid).
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(ii) Next, if the material symmetry group of one reference configuration is the full unimodular group U ,

then show that the material symmetry group of every reference configuration is also U . (Thus, if the

material is an elastic fluid in one reference configuration then it is an elastic fluid in every reference

configuration).

Solution:

(i) An elastic material here is characterized by the constitutive relation T = T̂(F) (rather than in terms

of the gradient of the free energy as in the preceding notes). The deformation gradient tensor F and the

Cauchy stress response function T̂ depend on the choice of reference configuration. By definition, a tensor

H belongs to the material symmetry group of the reference configuration if it is unimodular (detH = ±1)

and

T̂(F) = T̂(FH) (a)

for all nonsingular F. The tensor H represents a transformation of the reference configuration in which the

stress response function T̂ and the mass density remain invariant.

Now consider the particular class of elastic materials described in this problem. For it, equation (a)

holds for all nonsingular F and all unimodular H. Since this holds for all unimodular H it necessarily holds

for the particular choice

H = J1/3F−1, J = detF.

Substituting this into (a) tells us that

T̂(F) = T̂(J1/3I), J = detF, (b)

for all nonsingular F. Material frame indifference requires

T̂(QF) = QT̂(F)QT (c)

for all orthogonal Q and all nonsingular F. Thus by (b) and (c) we must have

T̂(J1/3I) = QT̂(J1/3I)QT (d)

for all orthogonal Q where we have used detQF = detF = J . Recall that if a symmetric tensor A is such

that A = QAQT for all orthogonal Q then A must be a scalar multiple of the identity tensor. Thus in our

setting (d) implies that

T̂(J1/3I) = αI where α = α(J);

or by (b)

T̂(F) = α(J)I, J = detF, (e)

for all nonsingular F.

Conversely if (e) holds it can be readily verified that (a) holds for all unimodular H and (c) hold for all

orthogonal Q.

(ii) Next, consider a body whose material symmetry group in some configuration χ1 is the unimodular

group: G1 = U . Let χ2 be any other configuration and let H be the gradient of the mapping from χ1 to
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χ2. If P is any element of U then so is H−1PH, and thus H−1PH ∈ G1. Therefore by (8.114), P ∈ G2.

Thus we have shown that any element P of U is necessarily an element of G2, i.e. U ⊂ G2. However, all

material symmetry groups are subsets of the unimodular group and therefore G2 ⊂ U . By combining these,

U ⊂ G2 ⊂ U , and so G2 = U . This means that if the material symmetry group coincides with the unimodular

group in any one configuration, then it coincides with it in every configuration.

Problem 8.6. If the material symmetry group G of some material is a subgroup of the orthogonal group

O in some configuration, does this imply that the material symmetry group in every configuration is a

subgroup of the orthogonal group? Truesdell and Noll call such a material an elastic solid. (Compare this

with a similar result for the unimodular group U in Problem 8.5.)

Problem 8.7. Let T̂(F) be the objective stress response function of an elastic material. If the body is

isotropic in the reference configuration, so that the material symmetry group contains the orthogonal group,

show that T̂(F) admits the representation

T̂(F) = T(B)

where B = FFT is the Eulerian Cauchy Green tensor, and where the function T obeys

T(QBQT ) = QT(B)QT

for all orthogonal tensors Q and all symmetric positive definite tensors B.

It follows from this that T(B) is an isotropic function and therefore admits the representation9

T(B) = τoI + τ1B + τ2B
2 where τi = τi

(
I1(B), I2(B), I3(B)

)
,

and

I1(B) = trB, I2(B)− 1

2

[
(trB)2 − tr (B2)

]
, I3(B) = det B,

are the principal scalar invariants of B.

Problem 8.8. Suppose that one has carried out a series of experiments on a particular elastic (inviscid

compressible) gas and found that its specific heat at constant volume, cv, and its specific heat at constant

pressure, cp, are both constants. Determine a complete characterization of the constitutive response function

for the Helmholtz free energy of this material in terms of a set of parameters (unknown constants) only.

Solution: Since the rate of heat supply to a point in the body, per unit reference volume, is given by

Divqo + ρor, it follows from the definition of specific heat that

Divqo + ρor =


ρocv θ̇ in processes in which ρ̇ = 0,

ρocpθ̇ in processes in which ṗ = 0.

9See for example Chapter 4 of Volume I.
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It follows from this and the energy equation (8.17) that

η̇ =


cv θ̇/θ in processes in which ρ̇ = 0,

cpθ̇/θ in processes in which ṗ = 0.

(a)

First consider processes in which ρ̇ = 0. Differentiating η = η(ρ, θ) with respect to time, and using (a)1,

gives

η̇ =
∂η

∂ρ
ρ̇+

∂η

∂θ
θ̇ =

∂η

∂θ
θ̇ = cv

θ̇

θ
⇒

(
∂η

∂θ
− cv

θ

)
θ̇ = 0.

Since this must hold for all proccess of this type, it must necessarily hold for arbitrary θ̇ and so

∂η

∂θ
=
cv
θ
.

Integrating this yields

η = cv log (θ/θo) + f(ρ), (b)

where the constant θo and the function f(ρ) arise from the integration. Since η = −∂ψ/∂θ we can integrate

this once more to obtain

ψ = −cvθ [log (θ/θo)− 1]− θf(ρ)− g(ρ), (c)

where g(ρ) is a function arising from the integration.

Next consider processes in which ṗ = 0. By calculating η̇ from (b) and using the result in (a)2 gives

f ′(ρ)ρ̇+ cv
θ̇

θ
= cp

θ̇

θ
(d)

which must hold in all processes in which ṗ = 0. This does not mean that (d) must hold for all ρ̇ and θ̇

because the requirement ṗ = 0 relates ρ̇ to θ̇. In order to proceed further, we need to first determine this

relationship and then eliminate either ρ̇ or θ̇ from (d). Substituting (c) into (8.64)1 gives

p = ρ2 ∂ψ

∂ρ
= −ρ2θf ′(ρ)− ρ2g′(ρ), (e)

and then setting ṗ = 0 leads to [
θ(ρ2f ′′ + 2ρf ′) + ρ2g′′ + 2ρg′

]
ρ̇ = −ρ2f ′θ̇

which is the relationship between ρ̇ and θ̇. Using this to eliminate ρ̇ from (d), and recognizing that the result

must hold in all processes with ṗ = 0, i.e. for arbitrary θ̇, leads one to

θ

[
ρ2f ′′ + 2ρf ′ +

ρ2(f ′)2

R

]
+
[
ρ2g′′ + 2ρg′

]
= 0 (f)

where we have set

R = cp − cv.

Since (f) must hold for all ρ > 0 and θ > 0 it follows that both of the following must hold:

ρ2f ′′ + 2ρf ′ +
ρ2(f ′)2

R
= 0, (g)



246 CHAPTER 8. THERMOELASTIC MATERIALS

ρ2g′′ + 2ρg′ = 0. (h)

Solving the differential equations (g) and (h) leads to

g(ρ) = d2 −
d1

ρ
, f(ρ) = −R log ρ+ d3, (i)

where d1, d2 and d3 are constants.

In summary, combining (b), (c), (e) and (i) provide the following constitutive characterization of this

gas:

ψ = Rθ log ρ− cvθ
[
log

(
θ

θ0

)
− 1

]
− d3θ +

d1

ρ
− d2

p = Rρθ − d1,

η = −R log ρ+ cv log

(
θ

θ0

)
+ d3,

ε = cvθ +
d1

ρ
− d2.


The constant −d1 is seen to represent the pressure in the gas at absolute zero temperature. But on physical

ground this should be zero. Also, the constants d2 and d3 simply set the datum values of energy and entropy

and can therefore be chosen arbitrarily. Taking them also to be zero leads to the classical equations for an

ideal polytropic gas:

ψ = Rθ log ρ− cvθ
[
log

(
θ

θ0

)
− 1

]
p = Rρθ,

η = −R log ρ+ cv log

(
θ

θ0

)
,

ε = cvθ.


(j)

Eliminating θ between (j)2 and (j)3 leads to

p = R θ0 ρ
γ exp[η/cv − 1] where γ = R/cv + 1. (k)

The preceding equations are valid in all processes. Note that (j)2 is the “stress-strain-temperature relation”

and is particularly suited for use in isothermal processess, while (k) is the “stress-strain-entropy relation”

and its form is particularly convenient for isentropic processes.

Problem 8.9. Consider a so-called anti-plane deformation. described with respect to a fixed orthonormal

basis {e1, e2, e3} by

y1 = x1, y2 = x2, y3 = x3 + u(x1, x2).

Consider an arbitrary incompressible isotropic elastic material and determine all of the field equations that

u must satisfy.

What happens in the special case when W = W (I1)?
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Solution:

Reference: J. K. Knowles, On finite anti-plane shear for incompressible elastic materials, Journal of the

Australian Mathematical Society, Series B, 19(1976), pp. 400-415.

We are given the deformation field

y1 = x1, y2 = x2, y3 = x3 + u(x1, x2). (a)

Using Fij = ∂yi/∂xj we can calculate the matrix of components of the deformation gradient tensor:

[F ] =


1 0 0

0 1 0

k1 k1 1


where for simplicity we use the notation

k1 =
∂u

∂x1
, k2 =

∂u

∂x2
, k = |∇u| =

√
k2

1 + k2
2.

Observe that

det[F ] = 1

automatically. We can now calculate the components of the Cauchy-Green tensor [B] = [F ][F ]T and its

square [B]2:

[B] = [F ][F ]T =


1 0 k1

0 1 k2

k1 k2 1 + k2

 , [B]2 =


1 + k2

1 k1k2 (2 + k2)k1

k1k2 1 + k2
2 (2 + k2)k2

(2 + k2)k1 (2 + k2)k2 1 + 3k2 + k4

 . (b)

The principal invariants are

I1(B) = tr [B] = 3 + k2, I2(B) =
1

2
[(tr[B])2 − tr ([B]2)] = 3 + k2. (c)

We now substitute (b) and (c) into the constitutive relation for the Cauchy stress for an isotropic incom-

pressible material

T = −pI + 2(W1 + I1W2)B− 2W2B
2

where Wα = ∂W/∂Iα, α = 1, 2. After some simplification we find

T11 = −p+ 2W1 + 2(2 + k2
2)W2,

T22 = −p+ 2W1 + 2(2 + k2
1)W2,

T33 = −p+ 2(1 + k2)W1 + 2(2 + k2)W2,

T12 = T21 = −2W2k1k2,

T13 = T31 = 2k1(W1 +W2),

T23 = T32 = 2k2(W1 +W2),



(d)
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where it is understood that

Wα =
∂W

∂Iα

∣∣∣∣
I1=I2=3+k2

, α = 1, 2.

If we substitute the stresses (d) into the equilibrium equations without body forces

∂Tij
∂yj

= 0 ,

we obtain 3 partial differential equations for 2 unknown fields u(x1, x2), p(x1, x2, x3). And in general these

equations are not self-consistent and therefore have no solution. For an analysis that proves this rigorously

see the reference above. This means that an anti-plane deformation (a) cannot be sustained by an arbitrary

isotropic incompressible material (in the absence of body forces).

Now consider the special material W = W (I1). The expressions (d) for stress now simplify to

T11 = −p+ 2W ′ T22 = −p+ 2W ′ T33 = −p+ 2(1 + k2)W ′

T12 = T21 = 0

T13 = T31 = 2k1W
′ T23 = T32 = 2k2W

′

(e)

where W ′ = dW/dI1. For simplicity let us assume that p is also independent of x3 so that p = p(x1, x2). It

is not necessary to make this assumption. Note that all the stress components now depend on only x1, x2

at most.

We now substitute (e) into the equilibrium equations. The third equation ∂T3j/∂yj = 0 becomes

∂

∂x1

(
W ′(3 + |∇u|2)

∂u

∂x1

)
+

∂

∂x2

(
W ′(3 + |∇u|2)

∂u

∂x2

)
= 0 (f)

where we have made use of the fact that y1 = x1, y2 = x2. This is a single partial differential equation for

u(x1, x2). The first equilibrium equation ∂T1j/∂yj = 0 gives

∂

∂x1
(−p+ 2W ′) = 0, (g)

while the second equilibrium equation ∂T2j/∂yj = 0 gives

∂

∂x2
(−p+ 2W ′) = 0. (h)

It follows from (g) and (h) that

p(x1, x2) = 2W ′(3 + |∇u|2).

Remark: Observe that formally, when we wrote out the equilibrium equations in terms of u and p we had

the 3 equations (f), (g) and (h) for the two unknown fields. But in this case equations (g) and (h) are

self-consistent in that if one differentiates the former by x2 one gets the same result as when differentiating

the latter by x1.
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Problem 8.10. Here we consider a body subjected to a certain kinematic constraint. Let the unit vector

m denote a direction in the reference configuration, and suppose that the area of any plane normal to m

cannot change. (Though the body is treated as a homogeneous continuum, it might, for example, be a solid

that has a family of stiff parallel planes aligned normal to the direction m.) Determine the corresponding

reaction stress.

Problem 8.11. Ericksen has suggested that certain elastic crystals obey the kinematic constraint

trC = 3.

Determine the associated reaction stress.

Reference: J. L. Ericksen, Constitutive theory for some constrained elastic crystals, International Journal of

Solids and Structures, Vol. 22, 1986, pp. 951-964.

Problem 8.12. Show that the symmetry of a configuration is unchanged by a pure dilatation.

Solution:

If the configurations χ1 and χ2 happen to be related by a dilatation, so that H = hI, it follows from

(8.114) that G2 = G1. Thus the symmetry of a configuration is unchanged by a pure dilatation.

Problem 8.13. Let G(e) be the set of all volume preserving tensors that leaves a given unit vector e

invariant to within sign, i.e.

G(e) =
{
H : detH = ±1, He = ±e

}
.

(i) Show that G(e) is a group.

(ii) Show that G(e) is not the unimodular group.

(iii) Show that G(e) is not a subgroup of the orthogonal group.

(iv) Suppose that G(e) is the material symmetry group of a body in a certain reference configuration.

Show that the symmetry group of this body in every reference configuration is (a) not the unimodular

group, and (b) not a subgroup of the orthogonal group. (Thus in the terminology of Truesdell and

Noll, this simple material is neither a fluid nor a solid.)

Reference B. D. Coleman, Simple Liquid Crystals, Archive for Rational Mechanics and Analysis, 20(1965),

pp. 41-58.

Solution:
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(i) In order to show that G(e) is a group we must show that if any two tensors belong to G(e) then so does

their product; and that if any tensor belongs to G(e) so does its inverse.

Suppose that H1 and H2 both belong to G(e). Then

detH1 = ±1, H1e = ±e, detH2 = ±1, H2e = ±e. (a)

First, it follows from (a)2,4 that H1H2e = H1(H2e) = H1(±e) = ±e; and from (a)1,3 that det(H1H2) =

detH1 detH2 = ±1. Therefore H1H2 ∈ G(e). Second, it follows from (a)1,2 that detH−1
1 = ±1 and that

H−1
1 e = ±e. Therefore H−1

1 ∈ G(e). In view of these two properties of G(e) is a group.

(ii) If G(e) coincides with the unimodular group U then necessarily every member of U must also be a

member of G(e). Thus if we can find any one tensor that is in U but not in G(e) this would establish the

desired result G(e) 6= U .

Consider an orthonormal basis {e, e2, e3} and let P be the tensor whose components in this basis are
α 0 0

0 α−1 0

0 0 1

 , α 6= ±1.

Since detP = 1 it follows that P is a member of the unimodular group U . However since the components

of e in this basis are {1, 0, 0} we see that Pe = αe 6= ±e and so P is not a member of G(e). Therefore

G(e) 6= U .

(iii) If G(e) is a subgroup of the orthogonal group O then every member of G(e) must also be a member of

O. Thus if we can find any one tensor that is in G(e) but not in O this would establish the desired result

G(e) 6⊂ U .

Consider again the orthonormal basis {e, e2, e3} and now let P be the tensor whose components in this basis

are 
1 0 α

0 1 0

0 0 1

 , α 6= 0.

Since detP = 1 and Pe = e it follows that P ∈ G(e). However PPT 6= I and so P is not a member of the

orthogonal group O. Therefore G(e) 6⊂ U .

(iv) It was shown in Problem 8.5 that if the material symmetry group in any one reference configuration is

the unimodular group then the material symmetry group in every reference configuration will necessarily be

the unimodular group. Therefore if the material symmetry group in some reference configuration is not the

unimodular group it follows that there is no reference configuration in which the material symmetry group

will be the unimodular group. The desired result of the first part of (iv) now follows from this and the result

of part (ii).

Turning to the second part, let G2 be the material symmetry group in an arbitrary second reference

configuration that is related to the first by the deformation gradient tensor F. Then from Problem 8.4,
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G2 = FG(e)F−1, i.e. for every P ∈ G(e) we have FPF−1 ∈ G2. Since P ∈ G(e) it follows that Pe = ±e
which we can write as PF−1Fe = ±e whence FPF−1(Fe) = ±(Fe). Therefore G2 = G(Fe). We can now

repeat the argument of part (iii) to show that G2 = G(Fe) 6⊂ O.

Thus we have shown that there is no reference configuration in which the material symmetry group

coincides with the unimodular group, and that there is no reference configuration in which the material

symmetry group is a subset of the orthogonal group.

Problem 8.14. Show that the constitutive relation of an elastic material can be written in terms of the

second Piola-Kirchhoff stress tensor P as

P =
∂W

∂E
(8.115)

where W (E) is the strain energy function expressed in terms of the Green strain tensor E:

E =
1

2
(C− I) =

1

2
(FTF− I). (a)

Solution: Recall that we introduced the second Piola-Kirchhoff stress tensor S(2) in Section 4.9. For

notational simplicity, in this section we shall denote it by P. Recall that P is conjugate to the time rate of

change of the Green strain in the sense that the

Stress power per unit reference volume = S · Ḟ = P · Ė.

Also, it is related to the Cauchy stress tensor T and the first Piola-Kirchhoff stress tensor S by

P = JF−1TF−T , P = F−1S.

Finally, recall that it is symmetric due to angular momentum balance:

P = PT .

Now consider an elastic material. By material frame indifference the strain energy function W depends

on F only through the right Cauchy Green tensor C = FTF, or in view of (a), only through E:

W (F) = W (E).

The components of the first Piola-Kirchoff stress tensor can be calculated as follows:

Sij =
∂W

∂Fij
=

∂W

∂Ek`

∂Ek`
∂Fij

=
1

2

∂W

∂Ek`
(δkjFi` + Fikδ`j) = Fik

∂W

∂Ekj
,

where we have used the fact that
∂Ek`
∂Fij

=
1

2
(δkjFi` + Fikδ`j)

which follows by differentiating (a) with respect to F. Finally, since S = FP, this leads to (8.115). Observe

that equation (8.115) is a further reflection of the fact that P is conjugate to E.
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Problem 8.15. A Van Der Waals Gas is an inviscid compressible fluid characterized by the Helmholtz free

energy response function

ψ(v, θ) = −Rθ log(v − b)− a

v
− cvθ log

θ

θo
,

where v = 1/ρ is the specific volume. Determine explicit expressions for ε(v, θ), p(v, θ) and η(v, θ).

Solution:

ε = ψ − θ∂ψ
∂θ

= cvθ + a

(
1− 1

v

)
+Rθo log(1− b),

p = −∂ψ
∂v

= ρo
Rθ

v − b − ρo
a

v2
,

Remark: The ideal gas law can be derived from molecular scale arguments based on the kinetic theory of

gases. Among the various assumptions underlying this derivation is one that treats the gas as a collection of

point masses (which occupy no volume) and another that neglects any forces between pairs of molecules. An

intuitive way in which to correct for the former is to replace v by v − b where the emperical constant b > 0

accounts for the volume occupied by the gas molecules. With regard to the second assumption, the presence

of interatomic forces will tend to slow down a molecule as it approaches a wall and therefore to reduce the

pressure in proportion to the number of interacting pairs of molecules suggests that p should be reduced by

a term proportional to 1/v2. Based on these heuristic arguments Van der Waals replaced the ideal gas law

p = Rθ/v by

p =
Rθ

v − b −
a

v2
.
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Chapter 9

Elastic Materials: Micromechanical

Models

Continuum theory says that an elastic material is characterized by a free energy function

ψ(C, θ). If additional information on material symmetry is available, this can be reduced

further, for example to the form ψ(I1(C), I2(C), I3(C), θ) for an isotropic material. However,

that is as far as the theory goes. The examples of explicit functions ψ given in Section

8.7 (corresponding, for example, to the Blatz-Ko or Fung models) are “phenomenological

models” of particular elastic materials, i.e. the functional form of ψ is laid out at the outset

at the continuum level, and subsequent laboratory experiments are used to refine it.

On the other hand the macroscopic (or continuum) behavior of a material reflects its

underlying microscopic behavior. If one could describe the processes at the microscopic

scale, and knew how to homogenize them across scales, one could then infer the response at

the macroscopic scale. When this is possible, the continuum model so developed captures

the microscopic physics.

In this chapter we shall start at the respective microscopic scales and develop two explicit

forms for the free energy function ψ(C, θ) describing two specific elastic materials, viz. a

rubber-like material (in Section 9.1) and a crystalline solid (in Section 9.2). The microscale

models we use are the simplest conceivable ones, and our purpose is merely to illustrate how

one might develop continuum models from microscale models.

255
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9.1 Example: Rubber Elasticity.

The reader is referred to Weiner and references therein, and Treloar, for an in-depth discus-

sion of the material to follow. The discussion in Sections 9.1.1 - 9.1.4 below concern a single

long chain molecule. In Section 9.1.5 a network of molecules built-up from a unit cell will be

considered, and from this (microscopic) unit cell model we shall derive explicit (macroscopic)

strain energy functions of the generalized Hookean type, i.e. ψ = ψ(I1).

r

Figure 9.1: A long chain of N identical rigid links, each of length `, each attached to its adjacent links by

ball joints which allow free rotation. The end-to-end distance between the two ends of the chain is r.

Rubber consists of long, flexible, chain-like organic molecules. The molecule is chain-like

in the sense that it is composed of a chain of links along the molecule’s backbone. Since the

C − C bond of each link is very strong, each link is almost inextensible. However the links

can rotate easily relative to each other, and the deformation of the molecule is related to the

easy rotation of the links (one C-C bond relative to the next) rather than to the extensibility

of the bond. See Figure 9.1. The molecule takes up a random conformation (configuration)

in a stress-free state and progressively straightens out and gets oriented if a tensile force is

applied. Once the molecule is perfectly straight, it cannot extend appreciably and the chain

locks-up. A block of rubber consists of a large number of such molecules which are connected

to each other (cross-linked) at certain points along their lengths.

In the simplest models, the distance r between the two ends of a molecule is the primary

kinematic variable. Thus the Helmholtz free energy would have the form ψ(r, θ). As discussed

in Section 5.2 of Weiner, experimental observations suggest that the dependency of the

internal energy on r is negligible, and moreover that entropic effects dominate the stress-

stretch-temperature behavior. Thus for the free energy we have

ψ(r, θ) = ε(θ)− θη(r, θ)
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so that the force-displacement-temperature relation is

f =
∂

∂r
ψ(r, θ) = −θ ∂

∂r
η(r, θ).

Let p(r) denote the probability density function. Then, the probability that the end-to-

end distance of the molecule has a value between r and r + dr is p(r) dr in one dimension,

and 4πr2 p(r) dr in three dimensions. While thermal fluctuations can affect p we neglect the

effect of temperature on p here. From statistical mechanics, the entropy is then given by

η = k ln p

where k is Boltzmann’s constant, e.g. see Weiner. Thus for the free energy we can take

ψ(r, θ) = ε(θ)− kθ ln p(r). (9.1)

and the relation between the force f , the end-to-end distance r, and the temperature θ is

f = −kθ ∂

∂r

(
ln p(r)

)
. (9.2)

This relation is completely determined once the probability density function p(r) is known.

9.1.1 A Single Long Chain Molecule: A One-Dimensional Toy

Model.

Consider a chain consisting of N rigid links, each of length `, so that its total (contour)

length is L = N`. This is the length of the chain if it is completely stretched out. The links

are connected by ball-joints at its ends. In the present one-dimensional toy model, every

link must lie on the x−axis.

In some arbitrary configuration, one end of the chain is at the origin and the other is

at x = r where r = j` and j is some integer in the interval −N ≤ j ≤ N . If the chain is

viewed as an oriented curve, then in this configuration some of the links are oriented in the

+x-direction while the rest are oriented in the −x-direction; see illustration in Figure 9.2.

Let N+ and N− denote the number of links that are oriented in the +x and −x directions.

Then necessarily

N+ +N− = N,

`N+ − `N− = r = j`,


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which can be solved to give

N+ =
N + j

2
,

N− =
N − j

2
.

 (9.3)

Thus, given the total number of links N , the end-to-end length of the chain r and the link

length `, equation (9.3) gives the number of links which are oriented forwards and the number

oriented backwards.

N = 4

r = 2

S t

Dt

D+
t

D−

N = 4

r = 2

Figure 9.2: A chain consisting of N = 4 identical rigid links, each of length `. One end of the chain is at

the origin. In the configurations shown, the end-to-end distance between the two ends is r = 2`. There are

4 = 4!/(3! 1!) ways in which the links can be arranged consistent with this information.

Since N+ and N− must be integers, it follows from (9.3)2 that N − j must be an even

integer (in which case N + j is automatically an even integer). In essence, this states that

the end-to-end length of the chain r cannot take all values in the interval −L ≤ r ≤ L. The

only locations at which the movable end of the chain can lie correspond to the values of r, or

equivalently to the integers j, which are such that N− j is an even integer. Observe that if j

satisfies this condition then so do j±2 but not j±1. Thus the free end of the chain can only

be located at every other node. (This restrictive feature is due to the extreme simplicity of

the present one-dimensional model; if, for example, the two ends of the chain were located

on the x−axis but the individual links were allowed to be anywhere in three-dimensional

space, then the movable end can be located anywhere in [−L,L].) In the present model, the

movable end of the chain can be located at x = r = j` if and only if j ∈ Z where

Z = {i | i = integer, −N ≤ i ≤ N, i = N − even integer}. (9.4)
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Now pick and fix a j ∈ Z. This fixes both ends of the chain. We want to know the

number of different arrangements (configurations) of the chain that are consistent with these

end locations. Since we know N and j, this determines the number N+ of links oriented

one way and the number N− oriented the other way. This does not however completely

determine the configuration of the chain1 because the individual links can be arranged in

several different ways, all of them with the same values of N+ and N− as illustrated in

Figure 9.2 for the case N = 4, j = 2. The number of different ways in which the links can

be arranged is

W (j) =
N !

N+! N−!
=

N !(
N + j

2

)
!

(
N − j

2

)
!

, j ∈ Z. (9.5)

It is customary to use the symbol W for this and it should not be confused with the strain

energy function.

!" #" #" !"

#$"

!$"

%$"

&$"

'"

'#

--
!

!

N = 40

j

S t

Dt

D+
t

Figure 9.3: The binomial probability P (j) versus j where P is given by (9.5), (9.7). It characterizes the

probability of finding the free end of the chain at a certain location j. This graph should only show the set

of discrete points corresponding to j ∈ Z rather than a curve.

Next, we know that the location of the movable end of the chain, characterized by j,

can take any value j ∈ Z, and that for each such j, the number of possible configurations is

1This is analogous to a one-dimensional random walk: if a person walks along the x−axis and takes a

total of N steps, each of length `, and ends up at the position r = j`, then the number of steps taken

forwards N+ and the number taken backwards N− are fixed but the order in which these steps are taken is

not fixed.
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W (j). Thus the sum total number of possible configurations of the chain is∑
j∈Z

W (j). (9.6)

If each of these configurations can occur with equal likelihood, the probability of the chain

having length r = j` is

P (j) =
W (j)∑

j∈Z

W (j)
. (9.7)

This describes a “binomial distribution” of probability. Figure 9.3 shows a plot of P (j)

versus the free-end location of the chain j for a particular value of N . Note that the most

likely location of the free end of the chain is at the origin. The mean square of the end-to-end

length, say r2, is proportional to N `2.

Thus by (9.2), the relationship between the force f , length r and temperature θ for a

one-dimensional chain with N links, each of length ` is given2 explicitly by

f = f(r, θ) = −kθ ∂

∂r
lnP

(
r/`
)
, (9.8)

where the probablity function P (j) is given by (9.5), (9.7) with j = r/` = Nr/L. A graph of

force3 f versus end-to-end distance r is shown in Figure 9.4. Note the characteristic upward

turning of the force-length curve. Since the chain cannot have a length greater than L, the

chain “locks-up” when r → L.

9.1.2 A Special Case of the Preceding One-Dimensional Long Chain

Molecule.

We now approximate the exact solution of the preceding problem to the special case where

(i) the chain has many links, and (ii) we limit attention to configurations in which the chain

is far from being fully stretched:

N >> 1, |r| << L.

2Since r takes this discrete values in this model the derivative ∂/∂r is meaningful only for N >> 1.
3The calculation proceeds as follows: given the total number of links N , we construct the set Z from

(9.4); the number of configurations at a fixed j, W (j), from (9.5); the total number of configurations from

(9.6); and the probability of a particular configuration from (9.7). The force is then given by (9.8).
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Figure 9.4: The force f versus end-to-end distance r of the chain as given by (9.4) - (9.8). This graph

should only show the set of discrete points corresponding to j ∈ Z rather than a curve.

It is convenient to set

ξ =
r

L
=

j

N
. (9.9)

Note that |ξ| << 1. For large values of the integer n, the Stirling approximation for n! gives

n! ≈ n lnn− n+
1

2
lnn+

1

2
ln(2π).

It can therefore be readily shown that for fixed ξ and large N ,

ln

 N !(
N + j

2

)
!

(
N − j

2

)
!

 ≈ −N2 [−2 ln 2 + (1 + ξ) ln(1 + ξ) + (1− ξ) ln(1− ξ)] ,

to leading order. Next, this can be approximated for small ξ to get

lnW = ln

 N !(
N + j

2

)
!

(
N − j

2

)
!

 ≈ −N2 [−2 ln 2 + ξ2
]
, (9.10)

or

W = 2N e−b
2r2 where b2 =

1

2N`2
.

Therefore the expression (9.7) leads to

p(r) =
2N e−b

2r2∫∞
−∞ 2N e−b2r2 dr

=
b√
π

e−b
2r2 . (9.11)
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In summary, the probability density function p(r) is given by

p(r) =
b√
π

e−b
2r2 where b =

√
1

2N`2
. (9.12)

The probability of finding the free end of the chain lying between r and r + dr is therefore

p(r) dr. Note that, since |r/L| = |r/(N`)| << 1 and N >> 1 we are now treating r as a

continuous variable in the interval (−∞,∞). Observe that the probability density function

(9.12)1 is proportional to exp(−b2r2) and so we have been led to “Gaussian statistics” in

this limit.

Since p(r) attains its maximum value at r = 0, this is the most probable end-to-end

distance of the chain. The root mean square length of the chain – given by the square root

of the integral of r2 × p(r) with respect to r from negative infinity to infinity – is readily

calculated to be (
r2
)1/2

=
1

2b
= `
√
N
√

2.

Substituting the probability density function (9.12) into the general constitutive law (9.2)

leads to the following relationship between the force, end-to-end distance and temperature:

f =
kθ

`

r

L
. (9.13)

Observe the linear relationship between f and r, and that the modulus kθ/` of the material

is completely determined in terms of micromechanical parameters. This approximation is, of

course, only valid for small stretches |r/L| << 1; in particular, it does not therefore display

the phenomenon of “locking-up” of the chain which was captured by the exact solution (9.5)

- (9.8).

Remark: Note that by (9.7), P is the ratio of two numbers and is dimensionless. On the

other hand due to the integral in the denominator of (9.11)1 the dimension of p is length−1.

In the three dimensional model considered next, p will have dimension length−3. When

calculating the entropy we take the logarithm of the probability (density), and in order to be

able to take the logarithm the probability (density) should be made non-dimensional using

an appropriate length scale. However this factor will become an additive constant in the

entropy and so we disregard it.
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9.1.3 A Single Long Chain Molecule in Three Dimensions.

Suppose that the rigid links of the chain are not restricted to lie on the x-axis but can lie

anywhere in 3-dimensional space (provided the links remain connected), with the connection

between any two adjacent links being a ball joint. Each link is free to take any configuration

subject only to the restriction that it be joined to its two neighboring links.

We limit attention to the special case where the number of links is large, N >> 1, and

the chain is not close to being fully extended, i.e. |r| << L. (This is the three-dimensional

version of the special case we considered before.)

Suppose that one end of the chain is held fixed at the origin, while the other end is to lie

within the infinitesimal box {(x, y, z) : y1 < x < dy1, y2 < y < y2 +dy2, y3 < z < y3 +dy3}.
The probability that the free end of the chain lies in this box is given by p(y1, y2, y3)dy1dy2dy3

where p is the probability density function. Recall that Gaussian probability distributions

are ubiquitous in a wide range of physical problems; in particular we encountered it in

the preceding problem. Assume that in the current circumstances p is given by Gaussian

statistics:

p(y1, y2, y3) =
exp (−b2y2

1)∫∞
−∞ exp (−b2y2

1) dy1

.
exp (−b2y2

2)∫∞
−∞ exp (−b2y2

2) dy2

.
exp (−b2y2

3)∫∞
−∞ exp (−b2y2

3) dy3

=
exp [−b2(y2

1 + y2
2 + y2

3)]∫∞
−∞

∫∞
−∞

∫∞
−∞ exp [−b2(y2

1 + y2
2 + y2

3)] dy1dy2dy3

=

(
b√
π

)3

exp
[
−b2(y2

1 + y2
2 + y2

3)
]
.

(9.14)

One can show that in the present three dimensional model

b =

√
3

2N`2
; (9.15)

see, for example, Section 5.5 of Weiner.

Observe the spherical symmetry of the probability density function (9.14) in that it only

depends on y2
1 + y2

2 + y2
3. Let r = (y2

1 + y2
2 + y2

3)1/2 denote the linear distance between the

two ends of the chain. Then we can write (9.14) as

p(r) =
b3

π3/2
exp

[
−b2r2

]
(9.16)

where

b =

√
3

2N`2
. (9.17)
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Observe the similarity between (9.12) and (9.16), (9.17), the two factors of 3 in the latter

being due to the 3-dimensional character of the present setting. Now, with one end of the

chain fixed, the probability that the end-to-end distance of the chain lies between r and

r + dr (irrespective of direction in three-dimensional space) is p(r) 4πr2 dr where 4πr2 dr is

the volume of a spherically symmetric differential element.

By differentiating 4πr2p(r) we find that it attains its maximum value at

r = `
√
N
√

2/3 ;

this is therefore the most probable value of r, i.e. the most probable end-to-end length of the

chain. The root mean square length of the chain – given by the square root of the integral

of r2 × [4πr2p(r)] with respect to r from zero4 to infinity – is(
r2
)1/2

= `
√
N. (9.18)

Substituting the probability density function (9.16), (9.17) into the general constitutive

law (9.2) leads to the following relationship between the force f , end-to-end distance r and

temperature θ:

f = 3
kθ

`

r

L
. (9.19)

Compare this with the result (9.13) of the one-dimensional model.

The case of limited rotation: In many polymeric molecules, e.g. paraffin, the angle between

two adjacent bonds is difficult to change and can be treated as fixed. Thus if one link is held

fixed, the adjacent link can only lie on the cone whose vertex is at the joint connecting the

links and whose angle is the given fixed one. If this angle is α (< π/2) then the mean square

end-to-end distance can be shown to be

r2 = N`2

(
1 + cosα

1− cosα

)
;

see Chapter 3.1 of Treloar. Observe that the Gaussian probability density function (9.16)

involves a single parameter b; in the preceding example the value of b was given by (9.17).

Suppose here that we continue to adopt the Gaussian probability distribution function but

leave b arbitrary. The mean square end-to-end distance associated with this probability

density function is

r2 =

∫ ∞
0

r2 p(r) 4πr2 dr =

∫ ∞
0

r2
( b3

π3/2
exp

[
−b2r2

] )
4πr2 dr =

3

2
b−2.

4In the one dimensional model r took values in (−∞,∞), whereas here, r is a radial distance and so takes

values in (0,∞).
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If we set the two preceding expressions for r2 equal to each other, we can solve for b and find

b =

√
3

2N`2

(
1− cosα

1 + cosα

)
. (9.20)

Therefore the probability density function for such a constrained long chain molecule can be

taken to be given by (9.16) with b given by (9.20). This in turn can now be used to calculate

the force-distance-temperature relation using (9.2).

9.1.4 A Single Long Chain Molecule: Langevin Statistics.

As noted previously, the Gaussian distribution used in the preceding two examples is only

valid for |r/L| << 1, i.e. for small values of stretch. In order to develop a model that

is appropriate at large stretches one must use a distribution function that is more accurate

than the Gaussian distribution. This is provided by the Langevin distribution defined below;

see Chapter 6.2 of Treloar.

In Langevin statistics, the probability density function is given by

p(r) = c exp

[
−N

(
β L(β) + ln

β

sinh β

)]
where β = L−1

( r
L

)
, (9.21)

where c is a constant that can be fixed by normalization and L−1 denotes the inverse of the

Langevin function

L(x) = coth x − 1

x
.

As before, r is the linear end-to-end distance between the two ends of the chain, L = N`

is the (contour) length of the entire chain, and each link is free to take any configuration

subject only to the restriction that it be joined to its two neighboring links. The inessential

constant c can be determined by requiring the integral of p(r)4πr2 with respect to r from

zero to infinity to be unity. Since L−1(x) = 3x + 9x3/5 + ... for small x, it can be readily

seen using a Taylor expansion that for small r/L the Langevin probability density function

(9.21) reduces to the Gaussian probability density function (9.16).

Again, with one end of the chain held fixed, the probability that the other end is at a

radial distance between r and r+ dr (irrespective of direction) is p(r) 4πr2 dr where 4πr2 dr

is the volume of a spherically symmetric differential element.

The relation between the force f , end-to-end distance r and temperature θ is given by

f = −kθ ∂

∂r

(
ln p(r)

)
(9.22)
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Figure 9.5: The force f versus end-to-end distance of the chain r. The curve corresponds to Langevin

statistics and is characterized by (9.22), (9.21). Note the rapid rise as r → L corresponding to locking-up of

the chain. The straight line corresponds to Gaussian statistics and is characterized by (9.19).

with p(r) is given by (9.21).

Figure 9.5 shows plots of the force f versus the distance r according to the Gaussian

relation (9.19) and the Langevin relation (9.22), (9.21). Observe that the Langevin model

shows the upward trend of the f, r-curve associated with chain locking.

9.1.5 A Molecular Model for a Generalized Neo-Hookean Mate-

rial.

Network models of rubber account for the presence of several molecules. A class of partic-

ularly useful network models is based on building up from a unit cell. For example in a

8-chain cubic unit cell, one end of each of eight molecules are linked together in the interior

of a cube, their eight other ends being located at the eight vertices of the cube. The unit

cell is assumed to deform with the macroscopic deformation, for example, it maybe subject

to stretches λ1, λ2, λ3 in the cubic directions.

Suppose that in an unstressed configuration the cube has dimensions a0 × a0 × a0. The

distance r0 from a vertex to the centre of the cube is r0 = a0

√
3/2. Since r0 is the end-to-end



9.1. EXAMPLE: RUBBER ELASTICITY. 267

a0

a0

a0
λ1 a0

λ2 a0

λ3 a0

Figure 9.6: A unit cell with 8 molecular chains. In the reference configuration the unit cell is a cube. The

molecules are linked together in the interior of the cube at one of their ends, their eight other ends being

attached to the vertices of the cube. The deformation stretches the cube along its edges.

distance of a molecule in the unstressed state, we take r0 to be the root mean square length

of a chain5 In the deformed configuration the unit cell is a tetrahedron, λ1a0 × λ2a0 × λ3a0,

and the distance r from a vertex to the centre is

r =
√
λ2

1 + λ2
2 + λ2

3

a0

2
=
√
λ2

1 + λ2
2 + λ2

3

r0√
3
. (9.23)

This is the end-to-end distance of a chain in the deformed configuration.

Since the first invariant of the Cauchy Green tensor C can be expressed in terms of the

principal stretches by

I1(C) = λ2
1 + λ2

2 + λ2
3

it follows that we can write

r =
r0√

3

√
I1 (9.24)

where we are now assuming that the principal stretches at the macroscopic scale coincide

with those of the unit cell.

To calculate the macroscopic energy we multiply the free of one molecule given by (9.1)

by n, the molecular density per unit volume to get

ψ = nε(θ) − nkθ ln p
(
r0

√
I1/3

)
(9.25)

5In, for example, the Gaussian model r0 = `
√
N ; see (9.18).
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which is of the form

ψ = ψ(I1).

An isotropic incompressible elastic material whose response is independent of the second

invariant I2 is often referred to as a generalized neo-Hookean material. Thus the 8-chain net-

work model leads to a family of generalized neo-Hookean materials, each one corresponding

to a particular probability distribution function p(r) and its root mean square chain length

r0.

If we use the Gaussian distribution (9.16), (9.17) for p, this specializes to

ψ = −nkθ(−b2r2) =
nkθ

2
(λ2

1 + λ2
2 + λ2

3) =
nkθ

2
I1

where we have omitted all terms that are independent of the kinematic variable r. This

is precisely the macroscopic free energy of the neo-Hookean model (8.7.2) (except for an

additive constant).

Use of the Langevin probability density function in (9.25) leads to a far more accurate

model for rubber elasticity based on the eight-chain unit cell; see Arruda and Boyce.

References:

E. Arruda and M.C. Boyce, A three-dimensional constitutive model for the large de-

formation stretch behavior of rubber elastic materials, Journal of the Mechanics and

Physics of Solids, 41(1993), pp. 389-412.

L.R. G. Treloar, Chapters 2, 3 and 6, The Physics of Rubber Elasticity, Clarendon

Press, Oxford, 1975.

J.H. Weiner, Chapter 5, Statistical Mechanics of Elasticity, Wiley, 1983.

9.2 Example: Lattice Theory of Elasticity.

The notes in this section closely follow the unpublished lecture notes of Professor Kaushik

Bhattacharya of Caltech. I am most grateful to him for sharing them with me.
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The aim of this section is to illustrate how a simple atomistic model of a crystalline solid

can be used to derive explicit continuum scale constitutive response functions T̂ and Ŵ

for the Cauchy stress and the strain energy function in terms of the deformation gradient

tensor. We will see that the expressions to be derived automatically satisfy the requirements

of material frame indifference, material symmetry and the entropy inequality. Moreover we

find that the traction - stress relation t = Tn and the symmetry condition T = TT hold

automatically. The expressions for T̂ and Ŵ that we derive are explicit in terms of the

lattice geometry and the interatomic force potential; see (9.36) and (9.41).

9.2.1 A Bravais Lattice. Pair Potential.

A Bravais lattice L is an infinite set of points in R3 generated by translating a point yo
through three linearly independent vectors {`1, `2, `3}: i.e.,

L(`1, `2, `3) =
{
y : y ∈ R3, y = yo + νi`i for all integers ν1, ν2, ν3

}
. (9.26)

The lattice vectors {`1, `2, `3} define a unit cell. Note the distinction between the lattice L,

which is an infinite set of periodically arranged points in space, and the lattice vectors. In

particular, it is generally possible to generate the same lattice L from more than one set of

lattice vectors, i.e., a given set of lattice vectors generates a unique lattice, but the converse

is not necessarily true. More on this later. We shall take the orientation of the lattice vectors

to be such that the volume of the unit cell is

vol (unit cell) = (`1 × `2) · `3 > 0. (9.27)

The neighborhood of any lattice point, say yA, is identical to that of any other lattice

point, say yC . To see this we simply note that if yB is any third lattice point, then there

necessarily is a fourth lattice point yD such that yD − yC = yB − yA. Thus the position of

yB relative to yA is the same as the position of yD relative to yC . Any two lattice points

yA and yC of a Bravais lattice are therefore geometrically equivalent. Bravais lattices can

represent only monoatomic lattices; in particular, no alloy is a Bravais lattice6.

We will ignore lattice vibrations and assume that the atoms are located at the lattice

points. Therefore the calculations we carry out are valid at zero degrees Kelvin.

6Even some monoatomic lattices – e.g. a hexagonal close-packed lattice – cannot be represented as a

Bravais lattice.
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Figure 9.7: Examples of lattices in R2 and R3.

In the simplest model of interatomic interactions one assumes the existence of a pair

potential φ(ρ) such that the force exerted by atom A on atom B, say fA,B, is the gradient of

this potential:

fA,B = −∇yφ(|y|)
∣∣∣
y=yB−yA

= −φ′(|yB − yA|)
yB − yA
|yB − yA|

. (9.28)

In this model the force exerted by one atom on the other depends solely on the relative

positions of those two atoms and is independent of the positions of the surrounding atoms.

Note that the force (9.28) is a central force in that it acts along the line joining those two

atoms. Also observe that if the distance ρ between the atoms is such that φ′(ρ) < 0, then

the force between them is repulsive; if φ′(ρ) > 0 it is attractive. Finally, observe from (9.28)

that fA,B = −fB,A so that the force exterted by atom A on atom B is equal in magnitude

and opposite in direction to the force applied by atom B on atom A.

Figure 9.8 shows a graph of a typical pair-potential φ(ρ) versus the distance ρ between

the pair of atoms. Note that the associated force is repulsive at short distances (< ρo) and

attractive at large distances (> ρo).

Several of the calculations to follow will involve infinite sums over all lattice points of

terms involving φ, φ′ and φ′′; it is necessary to ensure that these sums converge to finite

values. This requires that φ(ρ)→ 0 fast enough as ρ→∞. We assume that φ possesses the

requisite7 decay rate.

7To determine the required decay rate, one can consider a sphere of radius, say ρ, and separate the infinite

sum over the entire lattice into a finite sum over the finite number of lattice points in the interior of the

sphere plus a sum over the infinite number of lattice points in the exterior of the sphere. An upper bound for

the second term can then be written by replacing the sum by an integral (over the entire three dimensional

region exterior to the sphere). Convergence of the integral guarantees convergence of the sum. For example
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Figure 9.8: Typical graph of the pair-potential φ.

Because of the periodicity and symmetry of a Bravais lattice, if yA and yB are any two

lattice points, there necessarily is a third lattice point yC which is such that yA − yB =

−(yA − yC). Therefore according to the force law (9.28), the forces exerted on atom A by

atoms B and C are equal in magnitude and opposite in direction. Consequently for each

atom B that exerts a force on atom A, there is another atom C that exerts an equal and

opposite force on A. Thus a Bravais lattice is always in equilibrium.

9.2.2 Homogenous Deformation of a Bravais Lattice.R R0
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Figure 9.9: Homogeneous deformation of a lattice. The lattice vectors {`o1, `o2} of the reference lattice are

mapped by F into the lattice vectors {`1, `2} of the deformed lattice.

Most, but not all, of the discussion to follow will be carried out entirely in the current

(deformed) lattice. There will however be a few occasions when we wish to consider a

the energy (9.41) will converge if the integral of ρ2φ(ρ) over the interval [ρ,∞) converges, which would be

true if φ→ 0 faster than ρ−3 as ρ→∞.
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reference lattice. In this event we will consider a second Bravais lattice L0:

L(`o1, `
o
2, `

o
3) =

{
x : x ∈ R3, x = xo + νi`

o
i for all integers ν1, ν2, ν3

}
where the lattice vectors {`o1, `o2, `o3} define a unit cell of the reference lattice. Since each set

of lattice vectors is linearly independent, it follows that there is a nonsingular tensor F that

maps {`o1, `o2, `o3} → {`1, `2, `3}:
`i = F`oi , i = 1, 2, 3. (9.29)

This is illustrated in Figure 9.9.
i i
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Figure 9.10: The deformation y(x) carries the three dimensional region R0 into R. The figure shows

blown-up views of infinitesimal neighborhoods of x and y(x). The mapping of the lattice vectors is assumed

to be described by Grady(x) (= ∇y(x)) as depicted in the figure.

Suppose that we associate a (continuum) body with the lattice. The lattices L0 and

L are associated with two configurations of the body. Let y(x) be the deformation of the

continuum that mapsR0 intoR. The deformation gradient tensor is Grad y(x). As discussed

in Section 2.2, Grad y(x) maps material fibers of the continuum from the reference to the

deformed configurations. The tensor F introduced above maps the reference lattice vectors

to the deformed lattice vectors through (9.29). The Cauchy-Born hypothesis states that the

“continuum deforms with the lattice” in the sense that Grad y(x) = F. This is illustrated

in Figure 9.10.

9.2.3 Traction and Stress.

We now establish a notion of traction and then derive an explicit expression for it in terms

of the interatomic forces. Let P be an arbitrary plane through the lattice and let n denote
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a unit vector normal to P . Let L+ and L− denote the two subsets of the lattice L which are

on, respectively, the side into which and the side away from which n points; see Figure 9.11.

Let A be a subregion of the plane P . Consider two lattice points y+ ∈ L+ and y− ∈ L−
such that the line joining them intersects the subregion A; see Figure 9.11. By summing

the forces between all such pairs of atoms, we can associate a force with the region A. The

traction t can then be defined as the normalization of this force by the area of A:

t(A) =
1

area (A)

∑
f i,j =

1

area (A)

∑
−φ′(|y− − y+|)

y− − y+

|y− − y+|
, (9.30)

where the summation is carried out over all y+ ∈ L+ and y− ∈ L− which are such that the

line joining y+ to y− intersects A.

L+

L−

P

A

L+ L− y+ y− A P

νi i

(1)
1

(1)
2

(1)
3

(2)
1

(2)
2

(2)
3

∂D+
t = S+

t ∪ S t

L+ L− y+ y− A P

Figure 9.11: A plane P separating the lattice into two parts L+ and L−. The two lattice points y+ ∈ L+

and y− ∈ L− are such that the line joining them intersects the subregion A ⊂ P.

If (9.30) is to be useful, we need to characterize the range of summation in a simpler

form. First, since y− and y+ are lattice points, it follows that there are integers {ν1, ν2, ν3}
for which y− − y+ = νi`i. Conversely, given any three integers {ν1, ν2, ν3} which are such

that (νi`i) ·n < 0 (which simply means that the vector νi`i points in the −n direction), there

exist pairs (note plural) of lattice points y+ ∈ L+ and y− ∈ L− such that y− − y+ = νi`i;

of these, the number of pairs whose line of connection intersects A can be estimated to be

N =
volume of the (non-prismatic) cylinder with base A and generator νi`i

volume of the unit cell

=
area (A) |(νi`i) · n|

(`1 × `2) · `3

= −area (A)
(νi`i) · n

(`1 × `2) · `3

(9.31)
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Figure 9.12: (a) Two lattice points y+ ∈ L+ and y− ∈ L−: y− − y+ = νi`i for some integers ν1, ν2, ν3.

(b) Non-prismatic cylinder whose base is A and generator is νi`i.

when the area of A is sufficiently large8; see Figure 9.12. In the last step we have used the

fact that (νi`i) · n < 0. Given the triplet of integers {ν1, ν2, ν3}, equation (9.31) gives the

corresponding number of pairs of points whose line of connection intersects A.

We can now evaluate the summation in (9.30) in two steps: first, for given {ν1, ν2, ν3}
with (νi`i)·n < 0, we sum over all pairs of lattice points y− and y+ which have y−−y+ = νi`i

and where the line connecting them intersects A. Then, we sum over all triplets of integers

{ν1, ν2, ν3} obeying (νi`i) · n < 0. This leads to

t(A) =
1

area (A)

∑
{ν1, ν2, ν3} 3
(νi`i) · n < 0

−φ′(|νp`p|)
νi`i
|νk`k|

N . (9.32)

Substituting (9.31) into this yields

t(A) =
1

(`1 × `2) · `3

∑
{ν1, ν2, ν3} 3
(νi`i) · n < 0

φ′(|νp`p|)
νi`i
|νk`k|

(νj`j) · n . (9.33)

Finally, observe that if we change {ν1, ν2, ν3} → {−ν1,−ν2,−ν3}, the term within the sum-

mation sign remains unchanged though (νi`i) · n changes sign. Therefore, the sum above

with the restriction (νi`i) ·n < 0 equals one-half the sum without this restriction. Therefore

8In a homogeneously deformed continuum, the traction on the plane P would be uniform, i.e. it would

be the same at all point on P. The lattice at hand has a uniform geometry and we want (9.30) to be related

to the continuum notion of traction. This requires that the right-hand side of (9.30) be independent of the

size of A. This in turn requires that the subregion A be sufficiently large.
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we obtain the following expression for the traction on the plane P :

t(A) =

 1

2(`1 × `2) · `3

∑
{ν1,ν2,ν3}

φ′(|νp`p|)
(νi`i)⊗ (νj`j)

|νk`k|

n (9.34)

where the summation is taken over all triplets of integers {ν1, ν2, ν3}.

Observe that the traction given by (9.34) depends linearly on the unit normal vector n.

This suggests that we define the Cauchy stress tensor T by

T =
1

2(`1 × `2) · `3

∑
{ν1,ν2,ν3}

φ′(|νp`p|)
(νi`i)⊗ (νj`j)

|νk`k|
. (9.35)

Note that t = Tn. Moreover T = TT as required by the balance of angular momentum.

Given a Bravais lattice and a pair potential, equation (9.35) provides an explicit formula for

the stress. It involves the (current) geometry of the lattice and the pair-potential.

Finally we provide a representation for T in terms of a referential lattice by replacing the

deformed lattice vectors {`1, `2, `3} in (9.35) by reference lattice vectors. To this end, con-

sider a reference lattice defined by lattice vectors {`o1, `o2, `o3}. The lattice vectors {`o1, `o2, `o3}
of the reference lattice are related to the lattice vectors {`1, `2, `3} of the deformed lattice

through the nonsingular tensor F where `i = F`oi . The stress (in the deformed lattice) given

by (9.35) can now be written in terms of the referential lattice vectors and F as

T = T̂(F) =
1

2(F`o1 × F`o2) · F`o3
∑

{ν1,ν2,ν3}

φ′(|νp F`op|)
(νi F`

o
i )⊗ (νj F`oj)

|νk F`ok|
. (9.36)

This provides an explicit formula for the stress response function T̂ in terms of the referential

lattice, the tensor F, and the pair potential. If we associate a continuum with this lattice

and invoke the Cauchy-Born hypothesis, F would be the deformation gradient tensor.

9.2.4 Energy.

We begin by calculating the energy of a single atom located at a lattice point y. The energy

associated with the pair of atoms located at y and ξ is φ(|y− ξ|). Assume that this energy

is equally shared by the two atoms. Then, the energy of the atom located at y due to its

interaction with all other atoms of the lattice is

1

2

∑
ξ ∈ L
ξ 6= y

φ(|y − ξ|) =
1

2

∑
{ν1,ν2,ν3}

φ(|νi `i|). (9.37)
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Observe that this energy does not depend on y, reflecting the fact that the lattice is uniform

and the energy of each atom is the same. Now consider the energy associated with some

region R of three dimensional space. If R is sufficiently large, the number of lattice points

in R is
vol (R)

(`1 × `2) · `3

(9.38)

where the denominator denotes the volume of the unit cell. Therefore the energy associated

with the region R is given by the product of two preceding expressions:

vol (R)

(`1 × `2) · `3

1

2

∑
{ν1,ν2,ν3}

φ(|νi `i|). (9.39)

On dividing by vol (R), we get the energy per unit current volume. Thus, given a Bravais

lattice and a pair potential, equation (9.39) provides an explicit formula for the energy per

unit current volume. It involves the (current) geometry of the lattice and the pair-potential.

Finally we express this in terms of a referential lattice. Consider the lattice defined

by lattice vectors {`o1, `o2, `o3} that are related to the current lattice vectors by `i = F`oi .

Substituting `i = F`oi and using the fact that the volumes of R and its pre-image Ro in the

reference configuration are related by vol(R) = det F vol(Ro) allows us to write (9.39) as

vol (Ro) det F

(F`o1 × F`o2) · F`o3
1

2

∑
{ν1,ν2,ν3}

φ(|νi F`oi |). (9.40)

Finally, on using the identity (Aa ×Ab) ·Ac = det A (a × b) · c and dividing by vol(Ro)

gives the following expression for the energy per unit referential volume:

Ŵ (F) =
1

(`o1 × `o2) · `o3
1

2

∑
{ν1,ν2,ν3}

φ(|νi F`oi |). (9.41)

This provides an explicit formula for the strain energy response function Ŵ in terms of the

referential lattice, the tensor F, and the pair potential. If we associate a continuum with

this lattice and invoke the Cauchy-Born hypothesis, F would be the deformation gradient

tensor.

Note from (9.41) and (9.29) that the function Ŵ and the tensor F both depend on the

choice of reference lattice vectors. However, the energy of the deformed lattice does not

depend on the choice of reference lattice vectors. Therefore the way in which F and Ŵ

depend on the reference lattice vectors must balance each other out such that the value of

Ŵ is independent of the choice of reference lattice vectors.
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It is shown in Problem 9.2 that the stress response function (9.36) derived previously and

the energy response function (9.41) are related automatically through the relation

T̂(F) =
1

det F

∂Ŵ

∂F
(F) FT (9.42)

which is precisely what the entropy inequality would require of the continuum theory.

9.2.5 Material Frame Indifference.

It is shown in Problem 9.1 that the constitutive response function T̂(F) defined by (9.36)

automatically obeys the relation

T̂(QF) = QT̂(F)QT

for all proper orthogonal tensors Q as would be required by material frame indifference in

the continuum theory.

It can similarly be verified that the energy response function (9.41) has the property that

Ŵ (F) = Ŵ (QF)

for all proper orthogonal tensors Q. This shows that Ŵ is automatically consistent with

material frame indifference.

9.2.6 Linearized Elastic Moduli. Cauchy Relations.

In Problem 9.3 we shall linearize the constitutive relation (9.41), (9.42) to the special case of

infinitesimal deformations. This leads to the constitutive relation of linear elasticity with the

material characterized by an elasticity tensor C. In fact, Problem 9.3 provides an explicit

formula for the components Cijk` of the elasticity tensor in terms of the referential lattice

and the pair potential.

The elastic moduli obtained in this way exhibit the symmetries

Cijk` = Ck`ij = Cjik` = Cij`k, (9.43)

just as required by the continuum theory; see Section (8.9). However in addition, Cijk` here

is found to also posses the symmetry

Cijk` = Ci`kj (9.44)
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which is not required by the continuum theory. The symmetries (9.44) obtained from the

present lattice model are known as the Cauchy relations. The Cauchy relations are known

to be not obeyed by most elastic materials9 and this is therefore a limitation of the lattice

theory formulated here. This limitation is directly related to the use of a pair-potential to

model interatomic interactions. More realistic interatomic interaction models remove this

limitation.

9.2.7 Lattice and Continuum Symmetry.

Since the stress and strain energy response functions T̂ and Ŵ given by (9.36) and (9.41) were

derived from lattice considerations, they inherit the appropriate invariance characteristics

associated with the symmetry of the underlying lattice. In this section we address three

issues:

1. We examine the geometric invariance characteristics of a Bravais lattice and construct

its “lattice symmetry group”.

2. We show that the lattice symmetry group plays the role of the material symmetry

group for the response functions T̂ and Ŵ derived above.

3. We remark on the suitability of using the lattice symmetry group to characterize the

symmetry of a continuum.
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1 2 = ∇y(x) 0

2
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1

(1)
2

(2)
1

(2)
2
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2

(1)
3

(2)
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(2)
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(2)
3
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∂D−
t = S−

t ∪ S t

Figure 9.13: Two sets of lattice vectors that describe the same lattice.

9For example, for an isotropic material, the Cauchy relations imply that the Poisson ratio must always

be 0.25.
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Characterizing the symmetry of a Bravais lattice: First observe that because of its

inherent symmetry, more than one set of lattice vectors may generate the same lattice. For

example, the two-dimensional lattice shown in Figure 9.13 is generated by both {`(1)
1 , `

(1)
2 }

and {`(2)
1 , `

(2)
2 }. Observe that

`
(2)
1 = `

(1)
1 ,

`
(2)
2 = `

(1)
1 + `

(1)
2 ,

(9.45)

so that the 2 × 2 matrix [µ], whose elements relate the two sets of lattice vectors through

`
(2)
i = µij`

(1)
j , is  1 0

1 1

 . (9.46)

Note that the elements of [µ] are integers and that det [µ] = 1.

In general, let L(`
(1)
1 , `

(1)
2 , `

(1)
3 ) be the lattice generated by a given set of lattice vectors

{`(1)
1 , `

(1)
2 , `

(1)
3 }. Suppose that {`(2)

1 , `
(2)
2 , `

(2)
3 } is a second10 set of lattice vectors that generates

this same lattice, i.e.

L(`
(1)
1 , `

(1)
2 , `

(1)
3 ) = L(`

(2)
1 , `

(2)
2 , `

(2)
3 ).

One can show that two sets of lattice vectors generate the same lattice if and only if the

matrix [µ], whose elements relate the two sets of lattice vectors through

`
(2)
i = µij`

(1)
j , (9.47)

has elements that are integers and whose determinant is 1.

An alternative more useful way in which to characterize symmetry is as follows: given a

set of lattice vectors {`(1)
1 , `

(1)
2 , `

(1)
3 } and the associated Bravis lattice L = L(`

(1)
1 , `

(1)
2 , `

(1)
3 ),

let G(L) denote the set of all nonsingular tensors H that map {`(1)
1 , `

(1)
2 , `

(1)
3 } into a set of

vectors {H`(1)
1 ,H`

(1)
2 ,H`

(1)
3 } that generate the same lattice:

L(`
(1)
1 , `

(1)
2 , `

(1)
3 ) = L(H`

(1)
1 ,H`

(1)
2 ,H`

(1)
3 ) for all H ∈ G(L).

It follows from (9.47) that G(L) admits the representation

G(L) =
{

H : H`
(1)
i = µij `

(1)
j for all µij that are integers with det [µ] = 1

}
. (9.48)

Two sets of lattice vectors generate the same lattice if and only if

`
(2)
i = H`

(1)
i , i = 1, 2, 3, (9.49)

10 We shall only consider lattice vector sets that have the same orientation.
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where H ∈ G(L). This is equivalent to (9.47). Despite the presence of the lattice vectors

on the right hand side of (9.48), by its definition, G(L) depends on the lattice but not on

the particular set of lattice vectors used to represent it. The set G(L) can be shown to be a

group. It characterizes the symmetry of the lattice L and may be referred to as the “lattice

symmetry group”.

It is shown in Problem 9.5 that

det H = 1 for all H ∈ G(L). (9.50)

As a consequence, note that the volumes of the unit cells formed by lattice vectors {`(1)
1 , `

(1)
2 , `

(1)
3 }

and {`(2)
1 , `

(2)
2 , `

(2)
3 } are equal if the lattice vectors are related through a symmetry transfor-

mation:

(`
(2)
1 × `(2)

2 ) · `(2)
3 = (`

(1)
1 × `(1)

2 ) · `(1)
3 (9.51)

provided

`
(2)
i = H`

(1)
i , H ∈ G(L). (9.52)

Symmetry of the response functions T̂ and Ŵ : As noted at the beginning of this

subsection, since the stress and strain energy response functions T̂ and Ŵ given by (9.36)

and (9.41) were derived from lattice considerations, they inherit the appropriate invariance

characteristics associated with the symmetry of the underlying lattice. We shall now verify

this claim and show, for example, that

Ŵ (F) = Ŵ (FH) for all H ∈ G(Lo) (9.53)

where G(Lo) is the lattice symmetry group (9.48) of the reference lattice Lo and Ŵ is the

strain energy response function (9.41).

Recall from Section 8.5 that when examining symmetry in the continuum theory, we

considered a deformed configuration χ and two reference configurations χ1 and χ2. We

were interested in the special case when a symmetry transformation took χ1 → χ2. In

the lattice theory we analogously consider a deformed lattice L that is generated by lattice

vectors {`1, `2, `3} and two reference lattices L1 and L2 that are generated by lattice vectors

{`(1)
1 , `

(1)
2 , `

(1)
3 } and {`(2)

1 , `
(2)
2 , `

(2)
3 }. We are interested in the special case when a symmetry

transformation takes {`(1)
1 , `

(1)
2 , `

(1)
3 } to {`(2)

1 , `
(2)
2 , `

(2)
3 } in which case the reference lattices L1

and L2 are identical: L1 = L2.

Let {`(1)
1 , `

(1)
2 , `

(1)
3 } be a set of lattice vectors characterizing a reference lattice L1, and let
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Ŵ1 be the stored energy response function with respect to this reference lattice:

Ŵ1(F) =
1

(`
(1)
1 × `(1)

2 ) · `(1)
3

1

2

∑
{ν1,ν2,ν3}

φ(|νi F`(1)
i |). (9.54)

Let {`(2)
1 , `

(2)
2 , `

(2)
3 } be another set of lattice vectors characterizing a (possibly different) ref-

erence lattice L2, and let Ŵ2 be the stored energy response function with respect to this

reference lattice:

Ŵ2(F) =
1

(`
(2)
1 × `(2)

2 ) · `(2)
3

1

2

∑
{ν1,ν2,ν3}

φ(|νi F`(2)
i |). (9.55)

If the two sets of reference lattice vectors are related by (9.47), or equivalently by (9.49),

then they generate the same reference lattice (L1 = L2) in which case

Ŵ1(F) = Ŵ2(F). (9.56)

It then follows from (9.54) and (9.49) that

Ŵ1(FH) =
1

(`
(1)
1 × `(1)

2 ) · `(1)
3

1

2

∑
{ν1,ν2,ν3}

φ(|νi FH`
(1)
i |)

=
1

(`
(1)
1 × `(1)

2 ) · `(1)
3

1

2

∑
{ν1,ν2,ν3}

φ(|νi F`(2)
i |)

=
1

(`
(2)
1 × `(2)

2 ) · `(2)
3

1

2

∑
{ν1,ν2,ν3}

φ(|νi F`(2)
i |)

= Ŵ2(F)

where in the penultimate step we have used (9.51) and in the ultimate step we have used

(9.55). It follows from this and (9.56) that

Ŵ1(FH) = Ŵ1(F) for all nonsingular F and all H ∈ G(L1).

Similarly one can show that

T̂1(F) = T̂1(FH) for all H ∈ G(L1) . (9.57)

Thus the stress response function T̂ and the energy response function Ŵ derived from the

present lattice theory, i.e. (9.36) and (9.41), are invariant under the group of transformations

G(Lo) that map the reference lattice back onto itself.

The lattice symmetry group and the symmetry of a continuum. Suppose that the

lattice underlying the reference configuration of some elastic solid is a known Bravais lattice
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L0. However, suppose that one does not adopt the elementary pair potential model for

interatomic interactions but arrives at a form for the strain energy function Ŵ (F) by some

other method, i.e. consider a strain energy response function Ŵ (F) for the lattice that is

not given by (9.41).

Even though the pair potential model for interatomic interactions was not used, the un-

derlying lattice is (by assumption) a known Bravais lattice. Thus in particular the symmetry

of the lattice is characterized by a known lattice symmetry group G(Lo). Should one require

that the continuum model exhibit all of the symmetries of the lattice? i.e. should we require

Ŵ (FH) = Ŵ (F) for all H ∈ G(Lo)? (9.58)

The generally accepted answer is “no”: the material symmetry group of the continuum

should be a suitable subgroup of G(Lo). This is based on the fact that in addition to

rotations and reflections, the lattice symmetry group G(Lo) contains finite shears as well;

e.g. see the example (9.45), (9.46). Such shears cause large distortions of the lattice and

are usually associated with lattice slip and plasticity. It is natural therefore to exclude these

large shears when modeling thermoelastic materials.

Based on the work of Ericksen & Pitteri (see Bhattacharya) the appropriate material

symmetry group of the continuum should be the subgroup of rotations in G(Lo):

P(Lo) = {R : R ∈ SO(3), R ∈ G(Lo)} . (9.59)

Thus we would require Ŵ (FR) = Ŵ (F) for all R ∈ P(Lo) instead of the more stringent

requirement (9.58). P(Lo) is called the “point group” or “ Laue group” of the lattice. It is

the group of rotations which map the lattice11 back into itself. The point group associated

with any Bravais lattice is a finite group.

9.2.8 Worked Examples and Exercises.

Problem 9.1. Show that the stress response function T̂(F) given explicitly in (9.36) automatically satisfies

the condition T̂(QF) = QT̂(F)QT for all proper orthogonal tensors Q. (Therefore this T̂(F) is automatically

material frame indifferent.)

11For example, the point group of a simple cubic lattice consists of the 24 rotations that map the unit

cube back into itself.
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Solution: From (9.36),

T(QF) =
1

2(QF`o1 ×QF`o2) ·QF`o3

∑
{ν1,ν2,ν3}

[
φ′(|νp QF`op|) .

(νi QF`oi )⊗ (νj QF`oj)

|νk QF`ok|

]
. (a)

By using the vector identity (Aa×Ab) ·Ac = detA (a× b) · c and the fact that detQ = 1 we can write

(QF`o1 ×QF`o2) ·QF`o3 = (F`o1 × F`o2) · F`o3 . (b)

Next, since Q is orthogonal, it preserves length, i.e. |Qy| = |y| for all vectors y, and consequently

|νi QF`oi | = |νi F`oi | . (c)

Finally, in view of the vector identity (Aa)⊗ (Bb) = A(a⊗ b)BT can write

(νiQF`oi )⊗ (νiQF`oi ) = Q
(
(νi F`

o
i )⊗ (νj F`

o
j)
)
QT . (d)

Therefore we can simplify (a) by using (b), (c) and (d) to get

T(QF) =
1

2(F`o1 × F`o2) · F`o3
Q

 ∑
{ν1,ν2,ν3}

[
φ′(|νp F`op|)

(νi F`
o
i )⊗ (νj F`

o
j)

|νk F`ok|

]QT

= QT(F)QT .

Problem 9.2. Show that the Cauchy stress response function T̂(F) given explicitly by (9.36) and the strain

energy response function Ŵ (F) given explicitly by (9.41) are automatically related by

T̂(F) =
1

detF

∂Ŵ

∂F
(F) FT .

(Therefore the stress and strain energy response functions provided by the lattice theory automatically satisfy

the relation imposed by the entropy inequality.)

Solution: Differentiating (9.41) with respect to F gives

2(`o1 × `o2) · `o3

(
∂Ŵ

∂F

)
=

∑
{ν1,ν2,ν3}

[
φ′(|νp F`op|)

(
∂

∂F
(|νi F`oi |)

)]
. (a)

The following identity can be readily verified for an arbitrary vector y:

∂

∂F
(|Fy|) =

1

2|Fy|
∂

∂F
(|Fy|2) =

1

2|Fy|
∂

∂F

(
Fy · Fy

)
=

1

2|Fy|
(

2Fy ⊗ y
)
,

from which it follows that
∂

∂F
(|νp F`op|) =

1

|νk F`ok|
[
(νi F`

o
i )⊗ νj `oj

]
. (b)

Substituting (b) into (a) yields

2(`o1 × `o2) · `o3

(
∂Ŵ

∂F

)
=

∑
{ν1,ν2,ν3}

[
φ′(|νp F`op|)

(νi F`
o
i )⊗ νj `oj
|νk F`ok|

]
,
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from which it follows that

2(`o1 × `o2) · `o3

(
∂Ŵ

∂F

)
FT =

∑
{ν1,ν2,ν3}

[
φ′(|νp F`op|)

(νi F`
o
i )⊗ νj F`oj
|νk F`ok|

]
. (c)

Finally, because of the identity (Aa × Ab) · Ac = detA (a × b) · c, we see from (c) and (9.36) that the

relation (9.42) between T̂ and Ŵ holds.

Problem 9.3. Derive an explicit expression for the elasticity tensor C of linear elasticity by linearization of

the results of this chapter. Show that the resulting components Cijk` posses the usual symmetries

Cijk` = Ck`ij = Cjik` = Cij`k, (a)

as well as the additional symmetry

Cijk` = Ci`kj (b)

known as the Cauchy relations.

Solution: We first show that the energy response function Ŵ given by (9.41) depends on F only through

the Cauchy-Green tensor C = FTF; thereafter we determine the components of the elasticity tensor C by

recalling that

Cijk` =
∂2W (C)

∂Cij ∂Ckl

∣∣∣∣
C=I

.

The fact that Ŵ depends on F only through C follows from

|νi F`0
i | =

(
(νi F`

0
i ) · (νi F`0

i )
)1/2

=
(
FTF(νi `

0
i ) · νi `0

i

)1/2

=
(
C(νi `

0
i ) · νi `0

i

)1/2

whence we can write (9.41) as

W (C) =
1

2(`0
1 × `0

2) · `0
3

∑
{ν1,ν2,ν3}

φ
(

(C(νi `
0
i ) · νi `0

i )
1/2
)
.

In order to calculate the elasticity tensor we must calculate the second derivative of W with respect to

C and then evaluate it in the reference configuration where C = I. In order to simplify the writing it is

convenient to introduce the notation

α = 2(`0
1 × `0

2) · `0
3, y = νi `

0
i , ρ(C) = (Cy · y)1/2 ,

so that

W (C) =
1

α

∑
{ν1,ν2,ν3}

φ(ρ(C)).

It is straightforward to show that
∂ρ(C)

∂Ck`
=

yk y`
2ρ(C)

.
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Therefore the first derivative of W is

∂W

∂Ck`
(C) =

∑
{ν1,ν2,ν3}

1

α
φ′(ρ(C))

∂ρ(C)

∂Ck`
=

∑
{ν1,ν2,ν3}

1

2αρ(C)
φ′(ρ(C)) yk y` .

The second derivative can be calculated similarly by differentiating this once more, which leads after some

calculation to

∂2W (C)

∂Cij ∂Ck`
=

∑
{ν1,ν2,ν3}

1

4αρ2(C)

(
φ′′(ρ(C))− 1

ρ(C)
φ′(ρ(C))

)
yi yj yk y` .

In order to calculate the components of the elasticity tensor we set C = I, ρ(C) = ρ(I) = |y| in the

preceding expression to obtain

Cijk` =
∂2W (I)

∂Cij ∂Ck`

∣∣∣∣
C=I

=
1

2(`0
1 × `0

2) · `0
3

∑
{ν1,ν2,ν3}

1

4|y|2
(
φ′′(|y|)− 1

|y|φ
′(|y|)

)
yi yj yk y`

where the vector y = νi`i. The right-hand side of this is invariant with respect to the change of any pair of

subscripts, and therefore so is the left-hand side. This establishes the symmetries (a) and (b).

Problem 9.4. Show that two sets of lattice vectors {`(1)
1 , `

(1)
2 , `

(1)
3 } and {`(2)

1 , `
(2)
2 , `

(2)
3 } generate the same

lattice if and only if the matrix [µ], whose elements relate the lattice vectors through

`
(2)
i = µij`

(1)
j ,

has elements that are integers and has determinant 1.

Problem 9.5. Let H be any member of the lattice symmetry group G(L) defined in (9.48). Show that

detH = 1.

Solution: Substitute

H`
(1)
i = µij`

(1)
j

into the vector identity

(H`
(1)
1 ×H`

(1)
2 ) ·H`(1)

3 = detH (`
(1)
1 × `

(1)
2 ) · `(1)

3

and expand out the result. This leads to

det [µ] = detH

after making use of the fact that

(`
(1)
1 × `

(1)
2 ) · `(1)

3 = (`
(1)
2 × `

(1)
3 ) · `(1)

1 = (`
(1)
3 × `

(1)
1 ) · `(1)

2

where each of these expressions represents the volume of the unit cell. Finally, since det [µ] = 1 it follows

that detH = 1.
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Chapter 10

Some Nonlinear Effects: Illustrative

Examples

Nonlinearity can lead to phenomena that are absent from the linearized theory, and in some

cases, phenomena that may be totally unexpected; and even counterintuitive. In this chapter

we illustrate some examples of these.

10.1 Example (1): Simple Shear.

Consider an isotropic elastic body that occupies a unit cube in its reference configuration.

This cube is subjected to the simple shear deformation

y1 = x1 + kx2, y2 = x2, y3 = x3, (10.1)

where, as usual, (x1, x2, x3) and (y1, y2, y3) are the coordinates of a particle in the refer-

ence and deformed configurations respectively. The amount of shear k > 0 is given. All

components are taken with respect to a fixed orthonormal basis. We wish to calculate the

components of the Cauchy stress tensor T associated with this deformation.

The components Fij = ∂yi/∂xj of the deformation gradient tensor associated (10.1) are

[F ] =


1 k 0

0 1 0

0 0 1

 ,

287
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and so the tensors B = FFT and B2 have components

[B] =


1 + k2 k 0

k 1 0

0 0 1

 , [B]2 =


1 + 3k2 + k4 k(2 + k2) 0

k(2 + k2) 1 + k2 0

0 0 1

 . (10.2)

The corresponding principal scalar invariants therefore are given by

I1 = tr [B] = 3 + k2, I2 =
1

2

[
tr ([B]2)− (tr [B])2

]
= 3 + k2, I3 = det[B] = 1. (10.3)

For an isotropic elastic material T is related to the deformation through the constitutive

relation

T = 2
√
I3W3I +

2√
I3

(W1 + I1W2)B − 2√
I3

W2B
2, B = FFT , (10.4)

where W (I1, I2, I3) is the strain-energy function with respect to the reference configuration

and we have written Wi = ∂W/∂Ii.

On substituting (10.2) and (10.3) into (10.4) we find that the components of Cauchy

stress in simple shear are

T12 = 2k(W1 +W2),

T23 = T31 = 0,

T11 = (2W1 + 4W2 + 2W3) + 2k2(W1 +W2),

T22 = (2W1 + 4W2 + 2W3),

T33 = (2W1 + 4W2 + 2W3) + 2k2W2,


(10.5)

where the functions Wi(I1, I2, I3) are evaluated at (I1, I2, I3)= (3 + k2, 3 + k2, 1).

Remarks:

1. Observe that in contrast to the classical linearized theory, the normal stress components

T11, T22, T33 do not vanish in general. This is sometimes called the Poynting effect. Thus

in order to maintain a simple shear deformation, one must apply the appropriate shear

stress as well as suitable normal stresses.
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2. If one linearizes the expressions for stress in (10.5) for small amounts of shear, |k| << 1,

one obtains

T12 = 2k(W1 +W2)
∣∣∣
I1=3, I2=3, I3=1

+ O(k3),

T11 = (2W1 + 4W2 + 2W3)
∣∣∣
I1=3, I2=3, I3=1

+ O(k2),
(10.6)

as k → 0.

It follows from the first of these that the shear modulus at infinitesimal strains, µ =

T12/k, is given by

µ = 2(W1 +W2)
∣∣∣
I1=3, I2=3, I3=1

. (10.7)

Note that T12 = µ k.

On the other hand note that the leading order term in the expression for T11 in (10.6)

does not depend on k. Therefore it is the value of T11 when k = 0, i.e. in the reference

configuration. If the reference configuration is stress-free, this term vanishes and then

we see from (10.5)3 that T11 = O(k2) as k → 0. Thus T11 is quadratic in k which is

why it is absent from the linearized theory.

3. Consider the restriction of the strain energy function W to simple shear deformations,

i.e. specialize the strain energy function to simple shear by making use of the fact that

I1 = 3 + k2, I2 = 3 + k2, I3 = 1 and so define a strain energy that is a function only of

k:

W (k)
def
= W (3 + k2, 3 + k2, 1).

Differentiating this with respect to k gives W
′
(k) = 2k(W1 + W2) where W1 and W2

are evaluated at I1 = 3 + k2, I2 = 3 + k2, I3 = 1. Therefore from (10.5) we see that

T12 = W ′(k).

Thus the shear stress T12 is the gradient of the energy with respect to the amount of

shear k. Note that, knowing the function W (k) alone allows us to calculate the shear

stress T12, but not any of the other stress components.

4. Observe from (10.5) that T11 − T22 = kT12. This is independent of the strain energy

function W that characterizes the material and so holds for all elastic materials. It is

sometimes called a “universal relation”.
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5. Instead of the simple shearing of a cube, consider instead a circular shaft that is

subjected to a torsional deformation, i.e. a twisting about its axis. Locally, at each

particle, a torsional deformation is just a simple shear. It follows from the present

discussion that we would have to apply both a torque and an axial force in order to

maintain such a deformation. This is in contrast in the linearized theory where only a

torque is required.

6. Similarly, consider a large thin sheet which contains a small planar crack in its interior.

If far from the crack the sheet is subjected to a simple shear deformation in the plane of

the sheet, with the direction of shearing being parallel to the crack – a so-called Mode

II loading –, it follows from the preceding discussion that the crack faces will either

move apart and so the crack with open up, or the crack faces will press together and be

in contact; which of these occurs depends on whether the normal stress in the direction

perpendicular to the crack faces would be tensile or compressive in the absence of the

crack. In contrast, in the linearized theory, the crack faces simply slide parallel to each

other.

7. Analogous to here, normal stresses are involved in the shear flow of a non-Newtonian

fluid. If such a fluid is placed between two coaxial circular cylindrical tubes, one of

which is rotating about its axis, the fluid will climb up along the tubes. This is because

in order to maintain a shear flow, a suitable normal stress must be applied. But there

is nothing at the free surface to apply such a stress.

10.2 Example (2): Deformation of an Incompressible

Cube Under Prescribed Tensile Forces.

References:

1. R.S. Rivlin, Large elastic deformations of isotropic materials. II Some uniqueness the-

orems for pure homogeneous deformation, Philosophical Transactions of Royal Society

(London), Series A, 240(1948), pp. 491-508.

2. R.S. Rivlin, Stability of pure homogeneous deformations of an elastic cube under dead

loading, Quarterly of Applied Mathematics, 32(1974), pp. 265-271
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Equilibrium configurations of a cube: Consider an incompressible isotropic elastic body

which occupies a unit cube in a reference configuration. The cube is composed of a neo-

Hookean material. The strain-energy function characterizing the material is therefore given

by

W =
µ

2
(I1 − 3)

where µ > 0 is a constant. The general constitutive relation for the Cauchy stress in an

incompressible isotropic elastic body, (8.62)1, specializes for a neo-Hookean material to

T = µB− pI, B = FFT . (10.8)

Here p is the pressure field that arises due to the incompressibility constraint.

F

Q(t)e1

e2 e

F

Q(t)e1 Q(t)e2

e2 e1 e∗
2

b b1 b2

b∗ b∗
1 b∗

2

F

Q(t)e1 Q(t)e2

e2 e1 e∗
2

b b1 b2

b∗ b∗
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Q(t)e1 Q(t)e2
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Figure 10.1: A unit cube in the reference configuration. All six of its faces are subjected to uniformly

distributed normal tractions whose resultant force, on each face, is F . The figure only shows the resultant

force and not the distributed traction.

Each of the six faces of the cube is subjected to a tensile force F (> 0) (which are in

fact the resultants of uniformly distributed normal tractions that are applied on each face).

This is illustrated in Figure 10.1 where the uniform distribution of normal traction is not

shown, and only the resultant forces are shown. We wish to determine the resulting pure

homogeneous deformation of the body.

It should be noted that in the problem considered here it is the force F that is prescribed

(or equivalently the first Piola-Kirchhoff traction that is prescribed). The associated Cauchy

(true) tractions on the faces of the cube will depend on the areas of the faces in the deformed

configuration. One could consider the problem in which the Cauchy tractions are prescribed

on each face. This is a different problem to the one we study here.

Because of the symmetry of the body, the loading and the material, it is natural to assume

that the deformation will also be symmetric. However we wish to look at not-necessarily
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symmetric pure homogeneous deformations, and so we shall not assume a priori that the

cube deforms symmetrically. If it does, then we will find this out. Thus, suppose that the

cube undergoes a pure homogeneous deformation

y1 = λ1x1, y2 = λ2x2, y3 = λ3x3. (10.9)

Incompressibility of the material requires that

λ1λ2λ3 = 1. (10.10)

The deformed faces of the body have areas λ2λ3, λ3λ1 and λ1λ2. Thus the prescribed bound-

ary conditions require that the Cauchy stress components be given by

T11 =
F

λ2λ3

, T22 =
F

λ3λ1

, T33 =
F

λ1λ2

. (10.11)

The problem at hand is to find the principal stretches λi, given F .

Since the deformation is homogeneous, and assuming that the pressure field is constant,

the stress field will also be homogeneous throughout the body. Therefore (ignoring body

forces) the equilibrium equations are satisfied automatically. The boundary conditions have

already been enforced above. All that remains is to enforce the constitutive law. To this end

we first note that the deformation gradient tensor F and the Cauchy-Green tensor B = FFT

associated with the deformation (10.9) have components

[F ] =


λ1 0 0

0 λ2 0

0 0 λ3

 , [B] =


λ2

1 0 0

0 λ2
2 0

0 0 λ2
3

 . (10.12)

Therefore the constitutive relation (10.8) for a neo-Hookean material together with (10.12)

gives

T11 = µλ2
1 − p, T22 = µλ2

2 − p, T33 = µλ2
3 − p. (10.13)

Combining (10.13) with (10.11) and using (10.10) leads to

Fλ1 = µλ2
1 − p, Fλ2 = µλ2

2 − p, Fλ3 = µλ2
3 − p. (10.14)

Equations (10.14) and (10.10) provide four scalar algebraic equations involving λ1, λ2, λ3 and

p.
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In order to solve these equations systematically it is convenient to first eliminate p. Thus,

subtracting the second of (10.14) from the first, and similarly the third of (10.14) from the

second leads to

[F − µ(λ1 + λ2)](λ1 − λ2) = 0,

[F − µ(λ2 + λ3)](λ2 − λ3) = 0.

 (10.15)

Equations (10.10) and (10.15) are to be solved for the principal stretches. There are now

three cases to consider.

Case (1): Suppose first that all of the λ’s are distinct: λ1 6= λ2 6= λ3 6= λ1. Then (10.15)

yields

F = µ(λ1 + λ2), F = µ(λ2 + λ3),

which implies that

λ1 = λ3;

this contradicts the assumption that the λ′s are all distinct. Thus there is no solution in

which all of the λ’s are distinct.

Case (2): Suppose next that all of the λ’s are equal: λ1 = λ2 = λ3. In this case equations

(10.15) are automatically satisfied while (10.10) requires that

λ1 = λ2 = λ3 = 1. (10.16)

Thus one solution of the problem, for every value of the applied force F , is given by (10.9),

(10.16). This corresponds to a configuration of the body in which, geometrically, it remains

a unit cube, but one that is under stress.

Case (3): Finally consider the remaining possibility that two λ’s are equal and different to

the third:

λ2 = λ3 = λ (say), λ1 6= λ. (10.17)

Incompressibility (10.10) requires that

λ1 = λ−2

while equations (10.15) reduce to F = µ(λ1 + λ2) = µ(λ−2 + λ), i.e.

λ+ λ−2 = F/µ. (10.18)
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21/3

3/22/3

1

2

F/μ

λ

Figure 10.2: Graph of F versus λ as given by (10.18).

Given F/µ, if (10.18) can be solved for one or more roots λ > 0, then (10.17), (10.9), (10.18)

provides the corresponding solution to the problem1. Whether (10.18) can be solved or not

depends on the value of F/µ. To examine this consider the graph of F/µ versus λ shown in

Figure 10.2. From it, we see that

if F/µ < 3/22/3 then equation (10.18) has no roots,

if F/µ = 3/22/3 then equation (10.18) has one root λ = 21/3, and

if F/µ > 3/22/3 then equation (10.18) has two roots.

Note that solutions with λ > 1 describe configurations in which the deformed body has two

relatively long equal edges and one relatively short unequal edge (λ2 = λ3 > 1, λ1 < 1), i.e.

the block has a flattened shape. On the other hand λ > 1 describes configurations in which

the deformed body has two relatively short equal edges and one relatively long unequal edge

(λ2 = λ3 < 1, λ1 > 1), i.e. the block has a pillar-like shape.

Thus in summary, there are two types of configurations which the body can adopt. In

one, the body remains a unit cube in the deformed configuration and this is possible for

all values of the applied force F . The other is possible only if F/µ ≥ 3/22/3 and here the

deformed body is no longer a cube; rather, it has two sides equal and the third side different;

there are two possibilities of this form corresponding to the two roots of (10.18).

1There are of course additional configurations corresponding to permutations of the λ’s, e.g. λ3 = λ1 =

λ, λ2 = λ−2.
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Figure 10.3: Equilibrium configurations of the cube: the symmetric configuration corresponds to the line

λ = 1. The curve corresponds to the non-symmetric configurations given by (10.18).

Both types of solutions are depicted in Figure 10.3. The symmetric solution corresponds

to the horizontal line λ = 1 which extends indefinitely to the right. The unsymmetric

solution corresponds to the curve (which is the same curve as in Figure 10.2 but with the

axes switched). The figure shows that

if F/µ < 3/22/3 the body must be in the cubic configuration,

if F/µ > 3/22/3 the body can be in either the cubic configuration or

a configuration in which one stretch is different to the other two;

in fact there are two configurations of this type.

Thus the solution to the problem is non-unique. This lack of uniqueness implies that one

should examine the stability of the various equilibrium configurations.

Stability of the cube: Rivlin has shown that

The symmetric configurations of the body are stable for F/µ < 2. They are unstable

otherwise.

The unsymmetric configurations of the body with λ > 21/3 are stable. The others are

unstable.
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Figure 10.4: The stable and unstable solutions are depicted by the solid and dashed curves respectively.

Figure 10.4 depicts the solutions again, now with the solid line/curve corresponding to the

stable solutions and the dashed line/curve the unstable ones.

Remarks on studying the stability of the equilibrium configurations: As mentioned

in Chapter 7 of Volume I, an alternative approach for studying equilibrium configurations of

an elastic solid/structure is via the minimization of the potential energy. One considers all

geometrically possible deformation fields z(x), and minimizes the potential energy over this

class of functions. If the potential energy has an extremum at say z(x) = y(x) then y(x)

describes an equilibrium configuration of the body. Moreover, if this extremum corresponds

to a minimum of the potential energy, then this configuration is stable.

Suppose that an elastic body occupies a region R0 in a reference configuration and that

the deformation field is prescribed on a portion ∂Rdef of its boundary, and that the first

Piola-Kirchhoff traction (“dead load”) is prescribed on the remaining portion ∂Rloads of the

boundary; here ∂R0 = ∂Rdef ∪ ∂Rloads. A kinematically possible deformation field is any

smooth enough vector field z(x) defined on R0 that obeys all geometric constraints. One

requirement would be that its value coincide with the prescribed deformation on ∂Rdef . If

there are internal kinematic constraints such as incompressibility, then these too must be

satisfied. The potential energy associated with a geometrically possible deformation field
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z(x) is

Φ =

∫
R0

W (Grad z) dVx −
∫
∂Rloads

Sn · z dAx. (10.19)

The first term on the right hand side describes the elastic energy stored in the body while

the second term corresponds to the potential energy of the applied dead loading. One seeks

to minimize this functional over the set of all geometrically possible deformation fields.

Exercise: Specialize this to the problem of the triaxially loaded cube under discussion and

show that the potential energy

Φ =

∫
R0

W (Grad z) dVx −
∫
∂R0

Sn · z dAx

is to be minimized over the set of all smooth enough vector field z(x) subject to the incom-

pressibility requirement det
(
Grad z

)
= 1.

Exercise: Rather than minimizing this over the set of all geometrically possible kinematic

fields suppose that we minimize over the smaller class of all geometrically possible homoge-

neous deformation fields: z(x) = Fx where F is a constant tensor with unit determinant.

Show that in this case

Φ = W (F)− S · F (10.20)

plus an inessential additive constant.

Exercise: Suppose that we further limit attention to geometrically possible deformation

fields of the even more restricted form

y1 = λ1x1, y2 = λ2x2, y3 = λ3x3, λ1λ2λ3 = 1. (10.21)

Show that the potential energy (10.20) (for the neo-Hookean material) now takes the explicit

form

Φ(λ1, λ2, λ3) =
µ

2
(λ2

1 + λ2
2 + λ2

3)− F (λ1 + λ2 + λ3).

We are to minimize this over all (λ1, λ2, λ3) subject to the constraint λ1λ2λ3 = 1. We can

simplify this by eliminating λ3 using the incompressibility constraint. This gives

Φ(λ1, λ2) =
µ

2
(λ2

1 + λ2
2 +

1

λ2
1λ

2
2

)− F (λ1 + λ2 +
1

λ1λ2

) (10.22)

which we must minimize over all (λ1, λ2).

Finding the extrema of (10.22) leads to the equilibrium configurations found previously

(depicted in Figure 10.3). Examining whether or not they are local minima provides neces-

sary information about their stability. Necessary, but not sufficient, because we are minimiz-

ing over a subset of all geometrically possible deformations. If the current analysis shows an
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equilibrium state to be a local minimizer, it may or may not be a minimizer (stable) under

the wider class of all deformations. However if the current analysis shows an equilibrium

state to be not a local minimizer, then it is not a minimizer even under the wider class of

all deformations (and so is unstable).

Exercise Rather than minimizing over the class of deformations (10.21) consider the subset

of such deformations of the form

y1 = λ−2x1, y2 = λx2, y3 = λx3, λ > 0.

Show that the potential energy specializes to

Φ(λ) =
µ

2
(λ−4 + 2λ2)− F (λ−2 + 2λ) (10.23)

which we are to minimize over all λ > 0.

Show that the equilibrium configurations found by setting Φ′(λ) = 0 are

either λ = 1 or λ+ λ−2 = F/µ

which are the two equilibrium configurations that we found earlier. To examine their stability

show that

Φ′′(λ)|λ=1 = 6(2µ− F )

and conclude that the symmetric configuration is unstable when

F > 2µ.

Similarly show that

Φ′′(λ)|λ+λ−2=F/µ = 2µ (λ3 − 1)λ−6(λ3 − 2).

and conclude that the non-symmetric solutions are unstable when

1 < λ < 21/3.

As noted previously, a configuration found to be unstable by this calculation will be unstable

irregardless of the set of possible deformation fields. On the other hand a solution that is

found to be stable by this analysis may not be stable when the full set of admissible defor-

mations are considered. In fact as noted previously, Rivlin has shown that the unsymmetric

configurations are stable only if λ > 21/3. Thus the unsymmetric solutions corresponding to

λ < 1 that are minimizers of (10.23) are not minimizers in the more general setting.
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Figure 10.5: A hollow sphere in the reference configuration (left) and in the deformed configuration (right).

The uniform radial dead load is applied on the outer surface of the sphere.

10.3 Example (3): Growth of a Cavity.

References:

1. A.N. Gent and P.B. Lindley, Internal rupture of bonded rubber cylinders in tension,

Proceedings of the Royal Society (London), A249, (1958), 195-205.

2. J.M. Ball, Discontinuous equilibrium solutions and cavitation in nonlinear elasticity,

Philosophical Transactions of the Royal Society (London), A306, (1982), 557-611.

Suppose that the region occupied by a body in a reference configuration is a hollow

sphere of inner radius A and outer radius B, and suppose that this body is composed of a

neo-Hookean material:

T = µB− p I. (10.24)

A uniformly distributed radial tensile (Piola-Kirchhoff) traction S is applied on the outer

surface of the body while the inner surface remains traction-free. We wish to determine the

radius a of the deformed cavity as a function of the applied stress S.

We assume that the resulting deformation is spherically symmetric so that it can be

described by

r = f(R), θ = Θ, φ = Φ, (10.25)
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where (R,Θ,Φ) and (r, θ, φ) are the spherical coordinates of a particle in the reference and

deformed configurations respectively. The principal stretches associated with this deforma-

tion are2

λR = f ′(R), λΘ = λΦ = f(R)/R. (10.26)

Since the material is incompressible, the deformation (10.25) must be volume preserving so

that

det F = λRλΘλΦ = f 2(R)f ′(R)/R2 = 1.

Solving the first order differential equation f 2f ′ = R2 leads to

f(R) = (R3 + a3 − A3)1/3, A ≤ R ≤ B, (10.27)

where a is a constant of integration. Note from (10.25) and (10.27) that r = a when R = A,

and so the constant a represents the (unknown) radius of the deformed cavity.

From (10.24), the normal components of Cauchy stress are given by

Trr = µλ2
R − p, Tθθ = Tφφ = µλ2

Θ − p, (10.28)

where p = p(r) is the reaction pressure arising due to the incompressibility constraint, and

the principal stretches λR and λΘ are given by (10.26), (10.27); the shear components of

stress vanish. The equilibrium equation div T = 0 when expressed in spherical components

and then specialized to the present case where Trr = Trr(r), Tθθ(r) = Tφφ(r) reduces to

dTrr
dr

+
2

r
(Trr − Tθθ) = 0. (10.29)

Calculating Trr − Tθθ from (10.28), then expressing the result explicitly in terms of r by

using (10.25), (10.26) and (10.27), and finally substituting the result into (10.29), leads to

the following differential equation for Trr:

dTrr
dr

+
2µ

r

[
(r3 − a3 + A3)4/3

r4
− r2

(r3 − a3 + A3)2/3

]
= 0. (10.30)

The given loading on the boundaries implies that SRR = 0 at the inner cavity wall and

SRR = S at the outer wall. By using the relation T = SFT between the Cauchy and first

2These expressions can be calculated either by finding the eigenvalues of B, or more easily by calculating

the ratio between the deformed and undeformed lengths of two infinitesimal material fibers, one in the radial

direction and the other in the circumferential direction.
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Piola-Kirchhoff stresses, these boundary conditions can be written in terms of the Cauchy

stress as

Trr = 0 at r = a, Trr =
B2

(B3 − A3 + a3)2/3
S at r = (B3 − A3 + a3)1/3. (10.31)

We wish to integrate (10.30) from the inner radius r = a to the outer radius r = (B3−A3 +

a3)1/3 and enforce the boundary conditions (10.31).

It order to carry out this calculation it is convenient to make the substitution

λ =
r

(r3 + A3 − a3)1/3

(which is nothing more that the stretch r/R in the hoop direction). Then some calculation

shows that the differential equation (10.30) takes the form

dTrr
dλ

= −2µ(λ−5 + λ−2).

This can be readily integrated. After integrating this and enforcing the boundary conditions,

one finds the following relation between the deformed cavity radius a and the applied stress

S:

S

2µ
=

(
a3

B3
− A3

B3
+ 1

)1/3

+
1

4

(
a3

B3
− A3

B3
+ 1

)−2/3

−
(
A

a
+

1

4

A4

a4

)(
a3

B3
− A3

B3
+ 1

)2/3

.

(10.32)

We are given the radii A and B of the undeformed body, the shear modulus µ and the applied

stress S, and are to determine the radius a of the deformed cavity from this equation.

Equation (10.32) is of the form S/2µ = h(a). One can show that h(a) increases mono-

tonically with a; moreover h(A) = 0 and h(a)→∞ as a→∞. Thus, for each given value of

applied stress S > 0, equation (10.32) can be solved for a unique root a. The graph in Figure

10.6 shows the variation of the cavity radius a/B with the applied stress S/2µ according to

(10.32) for a cavity of initial radius A/B = 0.3.

Thus far this problem in the nonlinear theory has not been qualitatively different to the

linear problem. However, if we plot graphs of a versus S for progressively decreasing initial

cavity radii A, the family of curves obtained shows an interesting trend as seen in Figure

10.7. As A/B → 0, the graph of a/B versus S/2µ approaches the curve C. Note that C is

composed of two portions: the straight line segment a = 0 for 0 < S/2µ ≤ 1.25 and the

curved portion for S/2µ ≥ 1.25.



302 CHAPTER 10. SOME NONLINEAR EFFECTS: ILLUSTRATIVE EXAMPLES

!"
#

a/B

S/2µ
0

0.5

1.0

0.5 1.0

0.3

Figure 10.6: Variation of the deformed cavity radius a with applied stress S. The figure has been drawn

for the case A/B = 0.3.
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Figure 10.7: Variation of the deformed cavity radius a with applied stress S. The different curves corre-

spond to different values of the undeformed cavity radius A. Observe that as A/B → 0 these curves approach

the curve C.
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To examine this analytically, one takes the limit A/B → 0 at fixed a/B of the right-hand

side of (10.32). The third term on the right hand side vanishes and the other two terms

combine to give
S

2µ
=

a3/B3 + 5/4

(a3/B3 + 1)2/3
.

This is the equation of the curved portion of C. Note that S/2µ→ 5/4 as a/B → 0 in this

equation. This is reflected in Figure 10.7 as well.

We therefore conclude that a cavity which is infinitesimally small in the undeformed

configuration remains infinitesimally small as the applied stress S increases until it reaches

the critical value Scr/2µ = 5/4; when S exceeds Scr, the cavity grows (i.e. a > 0) in the

manner described by the curved portion of C. This describes the phenomenon of cavitation.

An entirely similar calculation shows that, if the body is composed of a general isotropic

incompressible material with associated strain energy function W (λ1, λ2, λ3), the value of

the critical stress for cavitation is formally given by

Scr =

∫ ∞
1

1

λ3 − 1
W ′(λ)dλ (10.33)

where W (λ)
def
= W (λ−2, λ, λ). Observe that the integrand has a potential singularity at λ = 1

unless W ′(1) behaves suitably; moreover, since the range of this integral is infinite, its

convergence depends on the behavior of W (λ) as λ→∞. Thus for certain elastic materials,

i.e. certain functions W , the integral in (10.33) will not converge (i.e. Scr = ∞) and so

an infinitesimally small void remains infinitesimally small for all values of applied stress.

For other materials (for which the integral does converge) cavitation will occur and the

infinitesimal cavity will begin to growth when S exceeds the critical value given by (10.33).

10.4 Example (4): Inflation of a Thin-Walled Tube.

References:

1. S. Kyriakides and Y-C. Chang, On the initiation and propagation of a localized insta-

bility in an inflated elastic tube, International Journal of Solids and Structures, 27,

(1991), 1085-1111.

2. J.L. Ericksen, Introduction to the Thermodynamics of Solids, Chapman & Hall, 1991,

Chapters 3 and 5.
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Consider a long thin-walled circular cylindrical tube whose mean radius and wall thickness

in a stress-free reference configuration are R and D respectively. The tube is composed of

an incompressible isotropic elastic material, and it is subjected to an internal pressure p (per

unit current area). In the deformed state, the tube has mean radius r and wall thickness d.

We assume a state of plane strain so that there is no change in the axial dimension.

We shall exploit the fact that the tube is thin-walled, D/R << 1, and use it to carry out

an approximate analysis. The results can be justified by carrying out an exact analysis of a

thick-walled internally pressurized tube and then taking the limit D/R→ 0 of the results.

Since the deformation must be volume preserving, and there is no change in the axial

dimension, one must have 2πRD = 2πrd. Thus

d =
RD

r
. (10.34)

The stretch ratio in the circumferential direction is λΘ = 2πr/2πR; in the axial direction

λZ = 1; and in the radial direction λR = d/D which because of (10.34) can be written as

λR = R/r. Thus

λR =
R

r
, λΘ =

r

R
, λZ = 1. (10.35)

The principal Cauchy stresses Ti are related to the strain energy functionW= W (λ1, λ2, λ3)

by Ti = λiWi− q where Wi denotes ∂W/∂λi. (We use the symbol q for the reaction pressure

due to the incompressibility constraint since the applied internal pressure has been denoted

by p.) Thus on taking the 1- and 2- directions to coincide with the radial and circumferential

directions respectively we find from the constitutive relation that

Trr = λRW1 − q, Tθθ = λΘW2 − q.

The reaction pressure q can be eliminated by subtracting the second equation from the first.

This leads to

Tθθ − Trr = λΘW2 − λRW1. (10.36)

Consider next the equilibrium of a longitudinal section of the tube in the deformed

configuration; see Figure 10.8. One readily finds by setting the resultant force on this

segment of the tube equal to zero that p × 2r = 2(Tθθ × d), where Tθθ is the mean (true)

Cauchy hoop stress. Thus

Tθθ =
pr

d
=
pr2

RD
(10.37)
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Figure 10.8: Free body diagram of a longitudinal section of the tube including the fluid it contains (in the

deformed configuration). The two segments of the tube itself each have thickness d and a stress Tθθ acts on

them. The relevant portion of fluid has length 2r and pressure p. The force 2 × (Tθθd) must balance the

force p(2r).

where we used (10.34) in the last step. Since the tube is thin-walled (R/D >> 1 and

so presumably r/d >> 1), the circumferential stress Tθθ = p × (r/d) >> p, i.e. Tθθ is

considerably greater than the applied pressure p. On the other hand the radial stress Trr

has the value −p at the inner-wall of the tube and vanishes at the outer-wall of the tube and

so is presumably of the order of p through the entire thickness. Thus Tθθ >> Trr and so in

(10.36) we may neglect the radial stress in comparison with the circumferential stress to get

Tθθ ≈ λΘW2 − λRW1. (10.38)

Finally we combine (10.38) and (10.37) to obtain

p =
RD

r2
(λΘW2 − λRW1) . (10.39)

In this equation the principal stretches λR and λΘ on the right hand side are given in terms

of r by (10.35), and the functions Wi are evaluated at (R/r, r/R, 1). Thus this equation

relates the applied pressure p to the deformed radius r of the tube. Given the deformed

radius r, it gives the corresponding pressure p. Or conversely given the pressure p, it is to

be solved for the radius r.

Since “volume” is the natural conjugate kinematic variable to pressure, the results sim-

plify if we work with the volume (enclosed by a unit length of the tube) instead of the radius

r. Accordingly let

v = πr2
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denote the volume enclosed by a unit length of the tube in the deformed configuration. Then

the principal stretches (10.35) can be expressed as

λR =

√
πR2

v
, λΘ =

√
v

πR2
, λZ = 1. (10.40)

Next let W (v) be the strain energy function (per unit reference length of the tube) expressed

as a function of volume v, i.e. evaluate W (λ1, λ2, λ3) at (λ1, λ2, λ3) = (λR, λΘ, 1) where λR

and λΘ are given by (10.40):

W (v)
def
= 2πRD W

(√
πR2

v
,

√
v

πR2
, 1

)
; (10.41)

the factor 2πRD here converts “per unit reference volume” to “per unit reference length”.

Differentiating (10.41) with respect to v leads to

W ′(v) =
πRD

v

{√
v

πR2
W2 −

√
πR2

v
W1

}
=

RD

r2

{
λΘ W2 − λR W1

}
(10.42)

and therefore from (10.42) and (10.39) we have the following relation between the applied

pressure p and the enclosed volume v:

p = W ′(v). (10.43)

In summary, given the strain energy function W (λ1, λ2, λ3) that characterizes the ma-

terial, we calculate W (v) from (10.41). Then, given the volume v, equation (10.43) yields

the corresponding pressure p. Or conversely given the pressure p, equation (10.43) is to be

solved for the corresponding volume v.

Given a specific material model (strain energy function) one can work out the details

above and obtain an explicit expression for the pressure-volume relation p = W ′(v). For

example for the neo-Hookean strain energy function

W (λ1, λ2, λ3) =
µ

2
(λ2

1 + λ2
2 + λ2

3)

(10.43) takes the explicit form

p

µ
=
D

R

{
1−

(
πR2

v

)2
}
. (10.44)
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For certain strain energy functions such as the neo-Hookean and Gent models, the rela-

tionship p = W ′(v) between pressure and volume is a monotonically increasing one. Con-

sequently given the pressure p there is a unique corresponding value of volume v (and vice

versa of course).

However for certain other strain energy functions this relationship is non-monotonic. This

is the case for example for the following strain energy function that models the latex rubber

used by Kyriakides and Chang in certain experiments:

W =
3∑

n=1

µn
αn

((λαn
1 + λαn

2 + λαn
3 )

where

µ1 = 617kPa, µ2 = 1.86kPa, µ3 = −9.79kPa, α1 = 1.30, α2 = 5.08, α3 = −2.00.
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Figure 10.9: Schematic graph of p versus v as given by (10.43) for a certain class of materials (strain

energy functions). The pressure reaches a (local) maximum value pM at v = vM and a (local) minimum

value pm at v = vm.

For this material, as the volume v increases, the pressure p first rises until it reaches a

maximum value, it then decreases until it reaches a minimum value, and finally increases
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again. Figure 10.9 depicts such a case schematically where the (local) maximum value of

pressure is attained at v = vM and this value is p = pM , and the (local) minimum value of

pressure is attained at v = vm and this value is p = pm.

We shall now discuss the consequences of having a rising-falling-rising pressure-volume

curve. In order to describe the behavior of the tube under various conditions we will state

without proof several results. Proofs can be found in Ericksen.

Case of prescribed pressure: If the given value of pressure lies in the range pm < p < pM ,

there are three values of v, say v1, v2 and v3, corresponding to the three branches of the

pressure-volume curve as depicted in Figure 10.10. Thus the solution to the equilibrium

problem is non-unique. Additional considerations must be taken into account if this non-

uniqueness is to be resolved.
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Figure 10.10: Three values of the volume, v1, v2 and v3, correspond to the given value of pressure p∗. The

first rising branch is associated with relatively small values of volume v (and therefore tube radius r) while

the second rising branch is associated with relatively large values of volume v (and therefore tube radius r).

Thus the tube has a relatively small radius in the configuration associated with v1 and a large radius in the

configuration associated with v3. The configuration associated with v2 is unstable.

Equilibrium solutions that are observed in the laboratory must be stable. Thus it is

natural to look at the stability of these multiple equilibrium states. In order to look at this,

one must describe more carefully the manner in which the loading is controlled. Suppose that

the pressure is controlled – often called loading by a “soft device”. This can be achieved, for

example, by inflating the tube with an incompressible fluid using a piston carrying a weight.
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Changing the magnitude of the weight changes the pressure.

If an equilibrium configuration is required to be stable against small disturbances, then

the solution v = v2 is found to be unstable while the solutions v1 and v3 are both stable.

Thus there are multiple stable solutions to the equilibrium problem.

Thus in this case we have non-uniqueness of stable equilibrium solutions3 (for certain

values of the prescribed pressure).
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Figure 10.11: A process during which the pressure increases from 0 to p∗; and a second process during

which the pressure decreases from some large value to p∗. The first process necessarily starts on the first

rising branch of the p, v-curve, while the second process necessarily starts on the second rising branch of the

p, v-curve.

One approach for examining this further would be to consider the process by which the

tube is pressurized instead of considering just a pure equilibrium problem. The observed

value of volume would now depend on the process by which the pressure p∗ is reached: one

might surmise from Figure 10.11 that if the pressure had increased monotonically from 0

to p∗ the associated volume would be v1; on the other hand if the pressure had decreased

monotonically from some large value to p∗, the associated volume would be v3.

An alternative approach would be to require that an equilibrium configuration be stable

against all disturbances. In this event one finds that the solution v = v1 is stable if the

3As can be seen from Figure 10.4, this also occurs in Example (2) for applied force values in the range

3/22/3 < F/µ < 2.
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Figure 10.12: There is only one equilibrium configuration of the type discussed here corresponding to the

prescribed volume v∗ and it is unstable.

pressure is less than a certain critical pressure (called the Maxwell pressure) and unstable

for larger values of pressure. On the other hand the solution v = v3 is found to be stable

when the pressure is greater than the Maxwell pressure and unstable for smaller values of

pressure. Thus the unique solution corresponding to a prescribed value of pressure smaller

than the Maxwell pressure is v1, while that corresponding to a value of pressure exceeding

the Maxwell pressure is v3. This only leaves unresolved the uniqueness of solution at the

Maxwell stress itself.

Case of prescribed volume: As seen from Figure 10.12, there is a unique value of pressure

corresponding to any value of the prescribed volume. However not all of these configurations

are stable. Again, one must describe the manner in which the loading is controlled before

stability can be discussed. In this case suppose that the volume v is controlled – often called

loading by a “hard device”. This can be achieved, for example, by inflating the tube with

an incompressible fluid using a screw: moving the screw in or out would increase or decrease

the prescribed volume v.

The solution corresponding to a value of v in the ranges v < vM or v > vm, i.e. the two

rising branches of the pressure-volume curve, is found to be stable against small disturbances,

while a solution corresponding to a value of v in the intermediate range vM < v < vm, i.e. the

falling branch of the pressure-volume curve, is unstable. Thus if the given value of volume

lies in the range vM < v < vm there is no stable solution to the problem
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Thus in this case we have non-existence of a stable equilibrium solution (for certain values

of the prescribed volume).

What configuration does the tube take if the value of v, which we control and can

therefore choose as we please, takes the value v∗ shown in Figure 10.12? Since this value of

v∗ is associated with the falling branch of the pressure-volume curve we know there is no

stable equilibrium state of the form we have been considering, i.e. where the tube remains

in a homogeneously deformed cylindrical configuration. Thus necessarily the tube must take

on a configuration which is not of this form.
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2r3

p

Tθθ
αL
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(1 − α)L

Figure 10.13: A configuration of the tube in which a length αL of the tube has a radius r1 (where v1 = πr2
1

is associated with the first rising branch of the p, v-curve); and the remaining length (1 − α)L of the tube

has a radius r3 (where v3 = πr2
3 is associated with the second rising branch of the p, v-curve);

Consider a length L of the tube. It turns out that when v = v∗, some fraction of this

length of tube, say αL (0 < α < 1), has a circular cylindrical shape with a relatively small

radius corresponding to a value of v on the first rising branch of the pressure-volume curve;

and the remaining length (1 − α)L has a circular cylindrical shape with a relatively large

radius corresponding to a value of v on the second rising branch of the pressure-volume curve.

These two values of v average out to give the value v∗. Thus the equilibrium configuration

of the tube involves lengths of two different radii (with a transition zone joining them); see

Figure 10.13. As the value of v∗ increases from vM to vm, the length that has the small

radius gets monotonically shorter (and the length having the large radius gets longer), i.e.

α decreases from 1 to 0. See Ericksen for the theory behind this and Kyriakides and Chang

for experiments that exhibit this behavior.
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10.5 Example (5): Nonlinear Wave Propagation.

An elastic bar occupies the interval [0, L] in an unstressed reference configuration. At the

initial instant the bar is unstretched and at rest. The left hand end of the bar is suddenly

given a velocity V at the initial instant and this velocity is maintained thereafter. Using the

one-dimensional purely mechanical theory, calculate the stretch field in the bar for t > 0.

Consider only sufficiently small times prior to the reflection of waves from the right hand

end x = L, and therefore take L =∞ with no loss of generality. Consider both cases V > 0

(sudden “impact” on the bar) and V < 0 (sudden extension of the bar).

Formulation: In the one-dimensional theory, the particle located at x in the reference

configuration is taken to y = y(x, t) at time t during a motion. The stretch λ(x, t) and

particle velocity v(x, t) are

λ =
∂y

∂x
, v =

∂y

∂t
, (10.45)

from which it follows that λ and v must obey the compatibility equation

∂λ

∂t
=
∂v

∂x
. (10.46)

Since the mapping from x→ y is to be one-to-one we have ∂y/∂x > 0, i.e.

λ > 0. (10.47)

Next, let σ(x, t) denote the stress. The equation of motion is

∂σ

∂x
= ρ

∂v

∂t
(10.48)

where the positive constant ρ is the mass density in the reference configuration.

For an elastic material, the stress response function σ̂ gives the stress as a function of

stretch:

σ = σ̂(λ), σ̂(1) = 0, (10.49)

where (10.49)2 indicates that we have taken the unstretched configuration to be stress free.

Suppose that

σ̂′(λ) > 0 and σ̂′′(λ) < 0 for all λ > 0, (10.50)

so that σ̂ is monotonically increasing and concave.
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It is convenient to introduce the function

c(λ) =
√
σ̂′(λ)/ρ > 0. (10.51)

Observe, in view of (10.50)2, that

c′(λ) < 0 for all λ > 0. (10.52)

Since c′ does not change sign, c has a unique inverse c−1 defined on the interval (c(∞), c(0)).

Figure 10.14: A graph of stress σ versus stretch λ for a concave stress response function σ̂(λ). The chord

joining (λ−, σ̂(λ−)) and (λ+, σ̂(λ+)) lies below the curve.

Substituting σ = σ̂(λ) into (10.48) and using (10.51) allows the equation of motion to be

written equivalently as

c2(λ)
∂λ

∂x
=
∂v

∂t
. (10.53)

Remark: If the pair of partial differential equations (10.46) and (10.53) are linearized about

a configuration of constant stretch λ0 we get the linear system

c2(λ0)
∂λ

∂x
=
∂v

∂t
,

∂λ

∂t
=
∂v

∂x
. (10.54)

In terms of y, this pair of linearized equations reduce to the linear wave equation

c2(λ0)
∂2y

∂x2
=
∂2y

∂t2
. (10.55)
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This shows that c(λ0) is the propagation speed of infinitesimal waves superposed on a uni-

formly stretched state of the bar at a stretch λ0, i.e. it is the speed of sound at the stretch

λ0.

Problem Statement: Find the stretch λ(x, t) and velocity v(x, t) that obey the field

equations

c2(λ)
∂λ

∂x
=
∂v

∂t
,

∂λ

∂t
=
∂v

∂x
, x > 0, t > 0, (10.56)

except possibly at shocks (at which the appropriate jump conditions must hold), together

with the initial conditions

λ(x, 0) = 1, v(x, 0) = 0, x > 0, (10.57)

and the boundary condition

v(0, t) = V, t > 0. (10.58)

The stress response function σ̂ is given and obeys the monotonicity and concavity conditions

(10.49). The speed of sound c(λ) is defined in terms of σ̂ by (10.51). The velocity V at the

boundary is given.

Observe that the scaling x → kx and t → kt leaves this boundary-initial value prob-

lem invariant. It is natural therefore to seek a solution that also displays this same scale

invariance, i.e. to look for a solution of the form

λ = λ(ξ), v = v(ξ) where ξ = x/t > 0. (10.59)

We start by seeking a continuous solution of this form. Specifically, in view of the boundary

and initial conditions at hand, we seek a continuous solution of the boundary-initial value

problem that has the form

λ(x, t), v(x, t) =


λ−, v−, 0 < x < ξ−t,

λ̂(x/t), v̂(x/t), ξ−t < x < ξ+t,

λ+, v+, ξ+t < x,

(10.60)

where the constants λ±, v±, ξ± and the functions λ̂(x/t), v̂(x/t) are to be determined. Figure

10.15 shows a schematic plot of λ(x, t) versus x at a fixed time t as described by this form

of solution.

Note that the solution involves two wave fronts: a front running wave front at x = ξ+t which

is followed by a wave front at x = ξ−t. The states ahead of the first wave front and behind
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Figure 10.15: Graph of the stretch λ(x, t) versus x at fixed t for a continuous solution of the form (10.60).

the second wave front are constant states. The solution varies smoothly between the two

wavefronts from one constant state to the other. In view of (10.47) and the inequalities in

(10.60), the unknown quantities λ±, v±, ξ± must obey

λ± > 0, 0 < ξ− < ξ+. (10.61)

The initial conditions (10.57) and boundary condition (10.58) tell us that

λ+ = 1, v+ = 0, v− = V. (10.62)

The continuity of the solution (10.60) requires

λ̂(ξ+) = λ+, v̂(ξ+) = v+, λ̂(ξ−) = λ−, v̂(ξ−) = v−, (10.63)

which upon using (10.62) simplifies to

λ̂(ξ+) = 1, v̂(ξ+) = 0, λ̂(ξ−) = λ−, v̂(ξ−) = V. (10.64)

Substituting (10.60) into (10.46) and (10.53) leads to the pair of equations

c(λ̂(ξ)) = ξ, v̂′(ξ) = −ξλ̂′(ξ), ξ− < ξ < ξ+, (10.65)

where we have assumed that λ̂′(ξ) does not vanish identically on the entire range ξ− < ξ < ξ+.

We now solve (10.65) subject to (10.64) to determine λ̂(ξ), v̂(ξ), λ− and ξ±.

As noted below (10.52), the function c is invertible and so (10.65)1 leads to

λ̂(ξ) = c−1(ξ), ξ− < ξ < ξ+. (10.66)
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Integrating (10.65)2 from ξ− to ξ and enforcing (10.64)4 gives

v̂(ξ) = V −
∫ ξ

ξ−
ζλ̂′(ζ) dζ, ξ− < ξ < ξ+. (10.67)

Changing variables in this integration allows us to write v̂(ξ) as

v̂(ξ) = V −
∫ λ̂(ξ)

λ−
c(ζ) dζ, ξ− < ξ < ξ+. (10.68)

Enforcing the remaining conditions (10.64)1,2,3 leads to the following three equations which

are to be solved for ξ−, ξ+ and λ−:

c(1) = ξ+, c(λ−) = ξ−, −V =

∫ λ−

1

c(λ) dλ. (10.69)

If equations (10.69)1,2,3 can be solved for ξ± and λ− in the ranges λ− > 0, 0 < ξ− < ξ+, then

equation (10.60) with (10.66) and (10.68) is a solution to the boundary-initial value problem

at hand.

The value of ξ+ is given by equation (10.69)1 and it is > 0 since c > 0 . Likewise, if

we know the value of λ−, the value of ξ− is given by equation (10.69)2 and it too is > 0.

Moreover, since c is a monotonically decreasing function these values will obey ξ− < ξ+ if

(and only if) λ− > 1, i.e. if we know the value of λ− and it is > 1, then (10.69)1,2 will

provide values of ξ± in the proper ranges. Thus it remains to solve equation (10.69)3 for a

root λ− > 1 corresponding to the given V . Since c > 0, the function g(λ) defined by

g(λ) =

∫ λ

1

c(ζ) dζ, λ > 0, (10.70)

and associated with the right hand side of (10.69)3, is monotonically increasing. Moreover

g(λ) < 0 for λ < 1 and g(λ) > 0 for λ > 1. Therefore equation (10.69)3 has a unique

root λ− > 1 provided −V lies in the appropriate range of the function g, i.e. provided

−g(∞) < V < 0. Note that since V < 0 the loading on the left hand boundary is extensional.

In summary, for each value of the boundary velocity in the range −g(∞) < V < 0,

equation (10.69)3 has a unique root λ− > 1. Equations (10.69)1,2 then give the values of ξ±.

These values are guaranteed to lie in the required ranges. With these choices for ξ±, λ− (and

λ+ = 1), equations (10.60) , (10.66), (10.68) provide a solution to the boundary-initial value

problem at hand.

Observe that if V > 0, i.e. for “impact loading”, there is no solution of the form (10.60).
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Case V > 0. Since the boundary-initial value problem has no continuous solution of the

form (10.60) when V > 0, we now admit the possibility of solutions with discontinuities.

Accordingly we seek a solution involving a single shock wave propagating into the bar at an

(unknown) speed ṡ. Such a solution has the form

λ(x, t), v(x, t) =

 λ−, v−, 0 < x < ṡt,

λ+, v+, x > ṡt,
(10.71)

where ṡ, λ±, v± are to be determined with ṡ > 0, λ± > 1. Figure 10.16 shows a schematic

plot of λ(x, t) versus x at a fixed time t as described by this form of solution.

Figure 10.16: Graph of the stretch λ(x, t) versus x at fixed t for a solution of the form (10.71) involving

a shock.

The shock at x = ṡt separates the upstream stretch and particle velocity λ+, v+ from the

downstream stretch and particle velocity λ−, v− . On enforcing the initial conditions (10.57)

and boundary condition (10.58) we find

λ+ = 1, v+ = 0, v− = V. (10.72)

It remains to determine λ− and ṡ, and for this we have the kinematic jump condition (v+−
v−)+ ṡ(λ+−λ−) = 0 and the linear momentum jump condition (σ+−σ−)+ρṡ(v+−v−) = 0.

The former gives

V + ṡ(λ− − 1) = 0. (10.73)

As one would expect, this shows that the bar is compressed (λ− < 1) behind the shock since

ṡ > 0, V > 0. The momentum jump condition, combined with (10.73), gives

ρV 2 = (λ− − 1)σ̂(λ−) (10.74)
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since the unstretched configuration has been assumed to be stress-free. It remains for us to

solve (10.74) for a root λ− in the range 0 < λ− < 1.

For 0 < λ < 1 we have σ̂(λ) < 0 in view of (10.49)2 and (10.50)1. This, together with

σ̂′(λ) > 0, shows that the function σ̂(λ)(λ−1) associated with the right hand side of (10.74)

is a monotonically decreasing function on (0, 1] that takes values in the interval [0,−σ̂(0+)).

Thus for each value of the prescribed velocity in the range 0 < V < (−σ̂(0+)/ρ)1/2, equation

(10.74) has a unique root λ− in the range 0 < λ− < 1; (10.73) then gives the associated

value of ṡ. Equation (10.71) then provides (tentatively) a solution to the boundary-initial

value problem at hand with these values of v±, λ±, ṡ.

We know from Section 6.5 that there is an entropy inequality that must hold at a shock,

which in the present purely mechanical theory takes the form of a dissipation inequality.

Before declaring (10.71) to be a solution we must verify that this inequality holds.

By analogy with the thermomechanical entropy inequality, see equations (6.49) and (6.50)

in Problem 6.11, the dissipation inequality in the purely mechanical theory is the requirement

that

f ṡ ≥ 0 at the shock x = ṡt, (10.75)

where the driving force f is defined as

f(λ+, λ−) =

∫ λ+

λ−
σ̂(λ) dλ− σ̂(λ+) + σ̂(λ−)

2
(λ+ − λ−). (10.76)

Observe the geometric interpretation of f as the area shown shaded in Figure 10.14. Since

ṡ > 0, the dissipation inequality requires the driving force to be nonnegative:∫ λ+

λ−
σ̂(λ) dλ− σ̂(λ+) + σ̂(λ−)

2
(λ+ − λ−) ≥ 0. (10.77)

Geometrically, this requires that the area under the stress response function between λ− and

λ+ must not be smaller than the area below the chord joining the two points (λ−, σ̂(λ−)) and

(λ+, σ̂(λ+)). Since the stress response function is concave, we know that for any λ− and λ+

the chord joining (λ−, σ̂(λ−)) and (λ+, σ̂(λ+)) lies below the segment of the curve σ = σ̂(λ)

on that same domain. Therefore the area under the curve is not smaller than the area under

the chord, i.e. f ≥ 0. Thus (10.77) holds.

The dissipation inequality is therefore satisfied at the shock and so, finally, we conclude

that equation (10.71) does indeed provide a solution to the boundary-initial value problem

at hand with the previously mentioned values for v±, λ±, ṡ.
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In summary, suppose that the stress response function is concave as assumed above.

Then if the applied boundary velocity V is extensional, i.e. V < 0, (more precisely −g(∞) <

V < 0), the boundary-initial value problem has a continuous solution of the form (10.60).

If V is compressive, i.e. V > 0, (more precisely 0 < V < (−σ̂(0+)/ρ)1/2), the problem has

no continuous solution but has a discontinuous solution of the form (10.71) that satisfies the

dissipation inequality (an “admissible” discontinuous solution).

Remark 1: One can verify that in the case V < 0, the boundary-initial value problem also

has a discontinuous solution involving a shock but that it violates the dissipation inequality.

Thus in this case the problem has a continuous solution and no admissible discontinuous

solution.

Remark 2: Suppose that the stress response function is convex. By analyses similar those

above, one can show that the situation is now reversed: if the applied boundary velocity V

is compressive, i.e. V > 0, the problem has a continuous solution of the form (10.60) but

no admissible discontinuous solution; if V is extensional, i.e. V < 0, the problem has an

admissible discontinuous solution of the form (10.71) (that obeys the dissipation inequality)

but no continuous solution.

10.6 Worked Examples and Exercises.

Problem 10.1. Consider a body that occupies a circular cylindrical region of space, length L and radius R,

in a reference configuration. We consider a coordinate system in which the x3-axis coincides with the axis of

the shaft and its cross-section is parallel to the x1, x2-plane. A torsional deformation of the shaft about its

axis can be described as follows: let the coordinates (x1, x2, x3) of a particle in the reference configuration

be written in cylindrical polar coordinates as (r cos θ, r sin θ, z). When subjected to a torsional deformation,

the coordinates (y1, y2, y3) of this particle in the deformed configuration are given by

y1 = r cos(θ + φ), y2 = r sin(θ + φ), y3 = z,

where φ = γz is the angle through which the cross-section at x3 = z rotates about its axis. The constant γ

represents the angle of rotation (twist) per unit shaft length. The lateral surface of the shaft is traction-free.

Show that, locally, at each particle, this deformation is effectively a simple shear. If the shaft is composed

of a neo-Hookean material, calculate the torque and axial force that must be applied on the shaft in order

to maintain a torsional deformation.
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Problem 10.2. Consider a thin rubber sheet that occupies a region `× `×h, h << `, in a reference config-

uration. The cube is composed of a Mooney-Rivlin material, i.e. an incompressible material characterized

by the strain energy function

W (I1, I2) = c1(I1 − 3) + c2(I2 − 3)

where c1, c2 are material constants. Each of the four edges of the sheet is subjected to a tensile force F

(which are in fact the resultants of uniformly distributed in-plane bi-axial normal tractions applied on the

four edges.) Determine all possible homogeneous equilibrium configurations of the sheet and examine their

stability. [Experiments of this nature have been carried out by Treloar as described in Ericksen.]

Problem 10.3. Derive the formula (10.33) for the cavitation stress for a general incompressible isotropic

elastic material. Give an explicit example of a material (i.e. a strain energy function) which does not exhibit

the phenomenon of cavitation (i.e. the stress required for cavitation is infinite). A material that does exhibit

cavitation is, of course, the neo-Hookean material.

Problem 10.4. Calculate the Maxwell pressure referred to in the pressurized tube problem of Section 10.4.

[You may wish to find the global minimum of the potential energy function

Φ(v) = W (v)− p∗v,

i.e. minimize Φ over all 0 < v <∞, p∗ being the prescribed pressure.]

Problem 10.5. Consider the pressurized tube problem of Section 10.4. In the case of prescribed volume,

calculate the pressure in the tube corresponding to a given value of v∗ in the range vM < v∗ < vm. Also,

calculate the length αL of the tube that is associated with the first rising branch of the p, v-curve. [You may

wish to minimize the potential energy function

Φ(v1, v2, α) = αW (v1) + (1− α)W (v3)

over all 0 < v1 <∞, 0 < v3 <∞, 0 < α < 1, where v1, v3 and α are subject to the constraint

v∗ = αv1 + (1− α)v3,

v∗ being the prescribed volume.]

Problem 10.6. In the respective cases of prescribed pressure and prescribed volume in the pressurized tube

problem of Section 10.4, we referred to a “soft loading device” and a “hard loading device”. When stating

the form of the potential energy in the cube under tension in Section 10.2 we referred to portions ∂Rload

and ∂Rdef of the boundary of the body on which, respectively, the first Piola Kirchhoff traction and the

deformation were prescribed. How do these concepts relate to each other?



Chapter 11

Linearized (Thermo)Elasticity

Given the important role that the linearized theory of elasticity plays in many practical

applications, here we shall collect (from Sections 2.8, 4.10, and 8.9) many of the basic

equations pertinent to this theory into one section. Some limited additional material is

included, especially in the section of Worked Examples and Exercises at the end. Volume

III in this series of lecture notes will explore the linear theory in detail.

11.1 Linearized Thermoelasticity

A body occupies the region R in a stress-free reference configuration1. A particle is identified

by its position x and the displacement field is denoted by u(x, t). When components are

used they will always be with respect to a fixed orthonormal basis. The particle velocity is

v = u̇, vi = u̇i; (11.1)

and the (infinitesimal) strain tensor is

ε =
1

2

(
Grad u + (Grad u)T

)
, εij =

1

2
(ui,j + uj,i) (11.2)

where a subscript comma followed by an index denotes partial differentiation with respect

to the x coordinate associated with that index, e.g. ui,j = ∂ui/∂xj.

In the linearized theory, spatial derivatives (gradient, divergence etc.) will always be

taken with respect to x; the difference between it and derivatives with respect to y are of

1Therefore by assumption the residual stress vanishes.

321
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the order of magnitude of the terms neglected in the linearized theory. Similarly all fields are

defined on the reference regions and all calculations are carried out there. The distinction

between the mass densities in the reference and current configurations can be neglected and

we simply use the symbol ρ.

The stress tensor σ is symmetric

σ = σT , σij = σji, (11.3)

and obeys the equation of motion

Divσ + ρb = ρü, σij,j + ρbi = ρüi (11.4)

where ρ is the mass density and b the body force per unit mass. The traction t on a surface

with unit normal n is related to the stress by

t = σn, ti = σijnj. (11.5)

At all times and all particles, the temperature field in the body θ(x, t) is assumed to be

close to some reference temperature θ0: |θ − θ0| << 1 The linearized energy equation reads

Div q + ρr = ρθ0η̇. (11.6)

The material is characterized by the strain energy function W (= ρψ):

W =
1

2
Cijk`εi,jεk,l + Mijεij(θ − θ0)− ρc

2θ0

(θ − θ0)2; (11.7)

it involves material constants Cijk`, Mij and c. The associated stress-strain-temperature

relation is

σ =
∂W

∂ε
(ε, θ) = C ε+ (θ − θ0)M, σij =

∂W

∂εij
(ε, θ) = Cijpqεpq + (θ − θ0)Mij. (11.8)

Thus the components of the fourth-order elasticity tensor C represent the elastic moduli of

the material. It has the symmetries

Cijk` = Ck`ij, Cijk` = Cjik`, Cijk` = Cij`k, (11.9)

and therefore the most general (anisotropic) elastic material has 21 elastic constants. The

components of the second-order stress-temperature tensor M are material constants that

couple the mechanical and thermal fields. It has the symmetries

Mij = Mji (11.10)
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and therefore M involves 6 material constants. Finally, the constitutive relation for the

specific entropy in the linearized theory is (recalling that W = ρψ)

η = −ρ−1∂W

∂θ
= −ρ−1M ·ε +c (θ/θ0 − 1) , η = −ρ−1∂W

∂θ
= −ρ−1Mijεij +c (θ/θ0 − 1) .

(11.11)

where the material constant c denotes the specific heat at constant strain.

Substituting the constitutive relation for the entropy (11.11) into the energy equation

(11.6) allows us to write the energy equation in the form

Div q + θ0 M · ε̇+ ρr = ρcθ̇,
∂qi
∂xi

+ θ0Mij ε̇ij + ρr = ρc θ̇. (11.12)

Next we turn to the constitutive relation for the heat flux q which in the linearized theory

is the classical Fourier heat conduction relation

q = K Grad θ, qi = Kij θ,j (11.13)

where K is the heat conduction tensor. The 9 components of K are material constants.

From Section 8.2, the second law of thermodynamics reduces in thermoelasticity to the

requirement q(g) · g ≥ 0 for all vectors g. This requires that K be positive semi-definite:

(Kg) · g = Kijgigj ≥ 0 for all vectors g. (11.14)

If the material is inhomogeneous, then ρ = ρ(x), C = C(x), M = M(x) and K = K(x).

If the elasticity tensor is invertible, one can solve the stress-strain-temperature relation

for the strain ε in terms of stress and temperature to get an equation of the form

ε = Kσ + A (θ − θ0), εij = Kijk`σk` + Aij (θ − θ0). (11.15)

The 21 components of the compliance tensor K = C−1 and the 6 components of the symmetric

thermal expansion tensor A = C−1M are material constants. Since K is the inverse of C we

have

Cijk`Kk`mn =
1

2
(δimδjn + δinδjm).

In summary, the linearized theory of thermoelasticity is characterized by the system of
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equations
∂σij
∂xj

+ ρbi = ρüi,

∂qi
∂xi

+ θ0Mij ε̇ij + ρr = ρc θ̇,

σij = Cijk` εk` + Mij(θ − θ0),

qi = Kij
∂θ

∂xj
,

εij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
,



(11.16)

where the material is characterized by the elastic moduli Cijk`, the specific heat at constant

strain c, the heat conductivity coefficients Kij and the stress-temperature coefficients Mij

(which are related to the coefficients of thermal expansion). We have not included the

constitutive relation for entropy in the list above; the specific entropy can be calculated a

posteriori from (11.13).

The system of equations (11.16) can be reduced to a system of 4 (scalar) equations for

the displacement field u(x, t) and the temperature field θ(x, t) by substituting (11.16)3,4 into

(11.16)1,2 to eliminate the stress and heat flux, and then using (11.16)5 in the resulting pair

of equations to eliminate the strain. This leads to

∂

∂xj

(
Cijk`

∂uk
∂x`

)
+ Mij

∂θ

∂xj
+ ρbi = ρüi,

∂

∂xi

(
Kij

∂θ

∂xj

)
+ θ0Mij

∂u̇i
∂xj

+ ρr = ρc θ̇,

 (11.17)

where we have also made use of the symmetries (11.9) and (11.10) of C and M; see for

example Problem 11.3. Observe that the mechanical effects (characterized by the terms

involving the displacement u) are coupled to the thermal effects (characterized by the terms

involving the temperature θ) by the stress-temperature tensor M. If M = 0 the first equation

becomes the wave equation (assuming C to be elliptic) while the second becomes the heat

equation (assuming K to be positive definite).

If an orthogonal tensor Q is a symmetry transformation of the reference configuration

then the material properties must obey the relations

Cijk` = CpqrsQpiQqjQrkQs`, Mij = QipQjqMpq, Kij = QipQjqKpq. (11.18)
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The material is isotropic if these equations hold for all orthogonal Q in which case

Cijkl = µ(δikδj` + δi`δjk) + λδijδk`

Mij = mδij,

Kij = kδij.

 (11.19)

Thus an isotropic material has two independent elastic moduli denoted by λ and µ and called

the Lamé moduli, a single coefficient of thermal expansion α (related to m as shown below)

and a single coefficient of heat conduction k. The stress-strain-temperature relation for an

isotropic material takes the explicit form

σ = 2µε+ λ(tr ε)I +m(θ − θ0)I, σij = 2µεij + λ(εkk)δij +m(θ − θ0)δij. (11.20)

If

µ 6= 0, 2µ+ 3λ 6= 0 (11.21)

the isotropic elasticity tensor is invertible and the stress-strain-temperature relation can be

inverted to give the strain in terms of stress and temperature by

ε =
1

2µ
σ− λ

2µ(2µ+ 3λ)
(trσ)I+α(θ−θ0)I, εij =

1

2µ
σij−

λ

2µ(2µ+ 3λ)
σkkδij+α(θ−θ0)δij

(11.22)

where

α = − m

3λ+ 2µ
(11.23)

is the coefficient of thermal expansion.

A frequently used approximation of the exact theory above is the “partially coupled

quasistatic theory”. Here one neglects the inertial term in the equation of motion (11.17)1 as

well as the coupling between mechanical and thermal effects in the energy equation (11.17)2;

coupling in the equation of (quasi-static) motion is retained.

11.1.1 Worked Examples and Exercises

Problem 11.1. For an isotropic material, show that the coefficient of thermal expansion α

is related to the Lamé moduli λ, µ and the stress-temperature coefficient m by

α = − m

3λ+ 2µ
.
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Solution: Essentially, we need to invert the stress-strain-temperature relation

σij = 2µεij + λεkkδij +m(θ − θ0)δij. (11.24)

To do this we first we set i = j = k in (11.24) to get

σkk = 2µεkk + 3λεkk + 3m(θ − θ0),

which yields

εkk =
1

2µ+ 3λ
σkk −

3m

2µ+ 3λ
(θ − θ0)

provided 2µ+ 3λ 6= 0. Solving (11.24) for εij gives

εij =
1

2µ
σij −

λ

2µ
εkkδij −

m

2µ
(θ − θ0)δij

where we have further assumed that µ 6= 0. We now substitute the previous expression for

εkk into the preceding equation which eliminates the strain from its righthand side and leads

to the strain-stress-temperature relation

εij =
1

2µ
σij −

λ

2µ(2µ+ 3λ)
σkkδij −

m

3λ+ 2µ
(θ − θ0)δij.

By definition, the coefficient of (θ − θ0)δij is the coefficient of thermal expansion α and so

we get the desired result

α = − m

3λ+ 2µ
.

Note that εij = α(θ − θ0)δij when the stress is zero.

Problem 11.2. The propagation of mechanical waves and the diffusion of heat occur on

two different time scales that are related to the wave speed
√
E/ρ and the diffusivity k/(ρc)

respectively. Thus dynamical processes driven by inertia occur on a much faster time scale

than thermal diffusion. Such circumstances are often modeled as being adiabatic: i.e. one

neglects the heat flux and heat supply by taking q = 0, r = 0. Derive the displacement

equations of motion associated with an adiabatic process and identify the so-called adiabatic

elasticity tensor.

Solution: Assume for simplicity that the material is homogeneous. Then we can write

(11.17)1 as

Cijk`uk,`j + Mijθ, j + ρbi = ρüi.
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After setting Kij = 0, r = 0 in (11.17)2, we have

θ0Mk`u̇k,` = ρc θ̇.

Differentiating the first equation with respect to time and the second with respect to xj

yields

Cijk`u̇k,`j + Mij θ̇, j = ρ
...
ui

and

θ0Mk`u̇k,`j = ρc θ̇, j.

We can eliminate the temperature θ between these two to get

(
Cijk` +

(
θ0/ρc

)
MijMk`

)
u̇k,`j = ρ

...
ui.

Integrating this with respect to time leads to

(
Cijk` +

(
θ0/ρc

)
MijMk`

)
uk,`j + ρbi = ρ üi (11.25)

where we have taken the additive function of x that results from time integration to be the

constant ρb. Equation (11.25) indicates that the 4-tensor

Aijk` = Cijk` +
(
θ0/ρc

)
MijMk`

plays the role of a modified elasticity tensor in the adiabatic theory in the sense that

(Aijk`uk,`), j + ρbi = ρüi has the form of an effective equation of motion. The 4-tensor

A is known as the adiabatic elasticity tensor. For an isotropic material

Aijk` = µ(δikδj` + δi`δjk) +
(
λ+ θ0m

2/ρc
)
δijδk`.
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11.2 Linearized Elasticity: The Purely Mechanical The-

ory

Here one simply drops all the thermal terms above2 . The strain-displacement equations and

the equations of motion are

εij =
1

2
(ui,j + uj,i) ,

σij,j + ρbi = ρüi,

 (11.26)

respectively. The traction t on a surface with unit normal n is given by

ti = σijnj. (11.27)

The material is characterized by the strain energy function

W (ε) =
1

2

(
Cε
)
· ε =

1

2
Cijk`εijεk`. (11.28)

In fact it is merely the elasticity tensor C that characterizes the material. The stress is

related to the strain by

σij =
∂W (ε)

∂εij
= Cijk` εk`. (11.29)

The elasticity tensor C has the symmetries

Cijk` = Ck`ij = Cjik` = Cij`k, (11.30)

and a general anisotropic elastic material has 21 independent elastic moduli Cijk`. The

elasticity tensor is positive definite if

Cijk`εijεk` > 0 for all symmetric tensors ε 6= 0. (11.31)

Problem 11.13 establishes one consequence of positive definiteness.

On substituting (11.29) and (11.26)1 into (11.26)2 we get the displacement equations of

motion:

(Cijk`uk,`), j + ρbi = ρüi (11.32)

2One could view this as a theory on its own standing. Alternatively, if the process is isothermal so that

the temperature is constant everywhere and at all times, θ(x, t) = θ0, then the equations of thermoelasticity

reduce to the equations presented here with the energy equation (11.16)2 giving the heat supply r needed to

maintain such an isothermal process.
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where we have made use of the result established in Problem 11.3. This is a set of three

partial differential equations involving the three components of displacement ui(x, t). They

must hold at all x ∈ R and all times during the motion.

Consider again the strain-displacement relation (11.26)1. Given the displacement field

u(x), it is a set of formulae for calculating the corresponding strain field ε(x). However if

one is given the strain field ε(x), the strain-displacement relations written in the form

ui,j + uj,i = 2εij (11.33)

is a set of six partial differential equations for calculating the three displacement components.

Thus it is (in general) an overdetermined set of equations: i.e. given an arbitrary strain field

it does not generally have a solution. If this set of equations are to be solvable, the strain

field must satisfy the compatibility equations

εij,k` + εk`,ij = εik,j` + εj`,ik. (11.34)

One can show that there are only six independent equations contained in (11.34).

For any subregion D of R one has the following balance between the rate of working and

the rate of change of energy:∫
∂D

t · v dA+

∫
D
ρb · v dV =

d

dt

∫
D

(
W (ε) +

1

2
ρv · v

)
dV. (11.35)

If the material is isotropic, then

Cijk` = λδijδk` + µ(δikδj` + δi`δjk) (11.36)

and so the stress-strain relation specializes to

σij = 2µεij + λ(εkk)δij.

An isotropic material is characterized by two independent material constants that, here, have

been taken to be the Lamé moduli λ and µ. Alternative commonly used elastic constants

are the Young’s modulus E, Poisson’s ratio ν and bulk modulus κ which are related to λ

and µ by

E =
µ(2µ+ 3λ)

µ+ λ
, ν =

λ

2(λ+ µ)
, κ =

3λ+ 2µ

3
.

The Lamé constant µ is in fact the shear modulus.
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If

µ 6= 0, 2µ+ 3λ 6= 0 (11.37)

the isotropic elasticity tensor is invertible and the strain in terms of stress is given by

εij =
1

2µ
σij +

λ

2µ(2µ+ λ)
σkkδij. (11.38)

In terms of E and ν the strain-stress relation can be written as

εij =
1

E

[
(1 + ν)σij − νσkkδij

]
.

In order to solve the equations of elasticity for a specific circumstance, one must specify

initial conditions

u(x, t0) = u0(x), v(x, t0) = v0(x), (11.39)

at all points in R at the initial instant t0. In addition one must specify boundary conditions

at all points on ∂R for all times. For example the boundary ∂R may be composed of two

distinct portions ∂Rdisp and ∂Rtrac on which the displacement and traction respectively are

specified during the motion:

u(x, t) = u(x, t), x ∈ ∂Rdisp, σ(x, t)n(x) = t(x, t), x ∈ ∂Rtrac. (11.40)

The functions u0(x), v0(x), u(x, t) and t(x, t) are given (on their respective domains of

definition).

11.2.1 Worked Examples and Exercises

Problem 11.3. Show that C ε = C∇u.

Solution: Let A be any 2- tensor. Then

Cijk`Ak` =
1

2
Cijk`Ak` +

1

2
Cijk`Ak` =

1

2
Cijk`Ak` +

1

2
Cij`kA`k =

1

2
Cijk`Ak` +

1

2
Cijk`A`k.

In the second step we have simply changed the dummy (repeated) indices, while in the fourth

step we have used the symmetry Cijk` = Cij`k. Therefore

Cijk`Ak` = Cijk`

(1

2
(Ak` + A`k)

)
.

The desired result follows for the special choice Aij = ui,j.
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Problem 11.4. Show that the stress-strain relation for an isotropic material,

σij = 2µεij + λ(εkk)δij,

can be inverted to give the strain in terms of stress by

εij =
1

2µ
σij +

λ

2µ(2µ+ λ)
σkkδij (11.41)

provided that

µ 6= 0, 2µ+ 3λ 6= 0. (11.42)

Problem 11.5. The elasticity tensor is said to be positive definite if

Cijk`SijSk` > 0

for all symmetric tensors S 6= 0. For an isotropic material show that positive definiteness is

equivalent to the inequalities

µ > 0, 2µ+ 3λ > 0. (11.43)

Problem 11.6. For any subregion D of R, and any smooth motion, establish the following

balance between the rate of working and the rate of change of energy:∫
∂D

t · v dA+

∫
D
ρb · v dV =

d

dt

∫
D

(
W (ε) +

1

2
ρv · v

)
dV. (11.44)

Solution: Starting with the left hand side of (11.44) we get∫
∂D

ti vi dA+

∫
D
ρbi vi dV =

∫
∂D

σijnj vi dA+

∫
D
ρbi vi dV

=

∫
D

(σij vi), j + ρbi vi) dV

=

∫
D

(σij,j vi + ρbi vi + σij vi,j) dV

=

∫
D

(ρv̇ivi + σij ε̇ij) dV

=

∫
D

(ρv̇ivi +
∂W

∂εij
ε̇ij) dV

=

∫
D

( ∂
∂t

(
1

2
ρvivi) +

∂

∂t
W (ε)

)
dV.
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In the first step we have used the relation ti = σijnj between the traction and stress; in

the second step we have used the divergence theorem; in the fourth step we have used the

equations of motion (11.26)2, the strain displacement relation (11.26)1 and the fact that

vi = u̇i; and in the fifth step we have made use of (11.29).

Problem 11.7. In the finite deformation theory we know that a rigid deformation is char-

acterized by

y(x) = Qx + c (11.45)

where Q is a constant proper orthogonal tensor and c is a constant vector. In such a

deformation, both Cauchy Green tensors B and C equal the identity and so any measure of

finite strain vanishes.

We now consider the analogous issue within the linear theory. Suppose that the in-

finitesimal strain tensor ε(x) vanishes everywhere on R. What is the most general form of

displacement field for which this is true?

Solution: We first consider the second derivatives of the displacement field, i.e. ui,jk, and

show that they vanish onR. To see this we carry out the following sequence of manipulations:

ui,jk = ui,kj = (ui,k), j = −(uk,i), j =

= −uk,ij = −uk,ji = −(uk,j), i = (uj,k), i =

= uj,ki = uj,ik = (uj,i), k = −(ui,j), k =

= −ui,jk.

In each line of calculations above, in the last step we have used the fact that ua,b = −ub,a
since the strain εab = 0. In the other steps we have either changed the order of partial

differentiation or done some rearranging of terms.

Thus we conclude that ui,jk(x) = 0 at all x ∈ R. Integrating this once gives

ui,j(x) = Wij

where W is a constant tensor. Since ui,j = −uj,i the tensor W is skew-symmetric. Integrating

this again gives

u(x) = Wx + c
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where c is a constant vector. This is the most general form of displacement field correspond-

ing to a vanishing infinitesimal strain field.

We can write this in an alternative form by recalling the algebraic result that, corre-

sponding to any skew symmetric tensor W there is vector w such that Wx = w× x for all

vectors x. Thus we can write the preceding equation as

u(x) = w × x + c (11.46)

where w and c are constant vectors. One sometimes finds (11.46) referred to as an “ in-

finitesimal rigid displacement field” just as (11.45) is a (finite) rigid deformation.

Problem 11.8. If the strain-displacement equations ui,j + uj,i = 2εij hold, show that the

components of strain must necessarily satisfy the compatibility equations

εij,k` + εk`,ij = εik,j` + εj`,ik. (11.47)

Solution: Differentiating εij = (1/2)(ui,j + uj,i) gives

2εij,k` = ui,jk` + uj,ik`

and

2εk`,ij = uk,`ij + u`,kij.

Adding these two equations and changing the order of partial differentiation gives

2(εij,k` + εk`,ij) = ui,kj` + uj,`ik + uk,ij` + u`,jik

= ui,kj` + uk,ij` + uj,`ik + u`,jik

= 2(εik,j` + εj`,ik)

which is the desired result.

Problem 11.9. The elasticity tensor is said to be strongly elliptic if

Cijk`aibjakb` > 0
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for all unit vectors a,b. For an isotropic material show that strong ellipticity is equivalent

to the inequalities

µ > 0, 2µ+ λ > 0. (11.48)

The next problem provides a physical interpretation of strong ellipticity.

Problem 11.10. Consider a homogeneous elasticity body with no body forces that under-

goes a motion of the form

u(x, t) = ϕ(x · n− ct) m (11.49)

where m and n are constant unit vectors and the scalar c is a constant. This describes a wave

that propagates in the the direction n with propagation speed c, the particle motion being

in the direction m. Under what conditions can this motion be sustained in a homogeneous

elastic solid with no body forces? Specialize your results to an isotropic material.

Solution: Let A(n) be the symmetric tensor whose components are

Aik(n) = ρ−1 Cijk`njn`. (11.50)

It is called the acoustic tensor. One can readily see by differentiation that for this motion,

ρü = ρc2ϕ′′m, Div (Cε) = ρϕ′′A(n)m. (11.51)

Thus the equations of motion become

A(n)m = c2m (11.52)

where we have assumed that ϕ′′ 6= 0. Thus for a wave of the assumed form to propagate

in the direction n, the particle velocity direction m must be an eigenvector of the acoustic

tensor A(n).

If the symmetric tensor A(n) is positive definite for each n, then it has three positive

eigenvalues and therefore three (real) speeds of propagation corresponding to each n. The

three associated mutually orthogonal eigenvectors are the directions of particle motion. The

acoustic tensor A(a) is positive definite if Aij(a)bibj > 0 for all unit vectors b or

Cijk`aibjakb` > 0 for all unit vectors a,b. (11.53)

An elasticity tensor that satisfies this condition is said to be strongly elliptic.



11.2. LINEARIZED ELASTICITY: THE PURELY MECHANICAL THEORY 335

For an isotropic material one finds from (11.36) and the definition of A that

ρA(n) =
µ+ λ

ρ
n⊗ n +

µ

ρ
I. (11.54)

The three eigenvalues of this tensor are c2
L, c2

S and c2
S where

c2
L =

2µ+ λ

ρ
, c2

S =
µ

ρ
. (11.55)

For A(n) to be positive definite (or equivalently for C to be strongly elliptic) we need these

eigenvalues to be positive, i.e. we need

2µ+ λ > 0, µ > 0,

in which case there are two real wave speeds

cL =

√
2µ+ λ

ρ
, cS =

√
µ

ρ
. (11.56)

Observe that (because of the isotropy of the material) the wave speeds and strong ellipticity

conditions are in fact independent of the propagation direction n.

It can be readily verified from (11.54) that

A(n)n =
λ+ 2µ

ρ
n, A(n)n⊥ =

µ

ρ
n⊥.

where n⊥ is any vector perpendicular to n. It follows that the eigenvectors corresponding

to the eigenvalues c2
L and c2

S are n and n⊥ respectively. Thus the particle motion direction

(which equals the eigenvector direction) corresponding to the wave speed cL is n and therefore

this wave propagates in the same direction as that of the particle motion. Thus this is a

longitudinal wave. The particle motion direction associated with waves with speed cS is

perpendicular to n and therefore the wave propagates in a direction normal to the particle

motion. Thus this is a shear wave.

Problem 11.11. Show that the Young’s modulus E, Poisson ratio ν and bulk modulus κ

are given in terms of the Lamé constants as follows:

E =
µ(2µ+ 3λ)

µ+ λ
, ν =

λ

2(λ+ µ)
, κ =

3λ+ 2µ

3
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Solution To examine the Young’s modulus and Poisson ratio we must consider a state of

uniaxial stress (say in the x1 direction):

[σ] =


σ 0 0

0 0 0

0 0 0


Substituting this into the right hand side of the strain-stress relation

εij =
1

2µ
σij +

λ

2µ(2µ+ λ)
σkkδij

gives the corresponding strain tensor components to be

[ε] =


ε11 0 0

0 ε22 0

0 0 ε22

 , where ε11 =
µ+ λ

µ(2µ+ λ)
σ, ε22 =

λ

2µ(2µ+ λ)
σ.

The Young’s modulus is defined as the ratio between the stress and strain, σ11/ε11, in a state

of uniaxial stress and therefore

E =
µ(2µ+ 3λ)

µ+ λ
,

The Poisson’s ratio is defined as the ratio between the transverse strain and longitudinal

strain, ε22/ε11, in a state of uniaxial stress and therefore

ν =
λ

2(λ+ µ)
,

To examine the bulk modulus we consider a state of hydrostatic strain

[ε] =


ε 0 0

0 ε 0

0 0 ε


Substituting this into the right hand side of the stress-strain relation

σij = 2µεij + λ(εkk)δij.
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gives the associated stress:

[σ] =


−p 0 0

0 −p 0

0 0 −p

 where p = −3(λ+ 2µ/3)ε.

The bulk modulus is defined as the ratio between the mean hydrostatic stress p/3 and the

volumetric strain ε in a state of hydrostatic strain and so

κ =
3λ+ 2µ

3

Problem 11.12. Variational formulation of elasticity. Consider an elastic body in equilib-

rium that occupies a region R. The material is characterized by the elasticity tensor C. The

boundary ∂R is composed of two portions ∂Rdisp and ∂Rtrac on which displacement and

traction boundary conditions are specified

ui(x) = ui(x), x ∈ ∂Rdisp; Cijk`uk,`(x)nj(x) = ti(x), x ∈ ∂Rtrac. (11.57)

Here ∂R = ∂Rdisp ∪ ∂Rtrac.

Any vector field that is defined and sufficiently smooth on R and obeys the displacement

boundary condition w = u on ∂Rdisp is said to be geometrically admissible. Consider the po-

tential energy functional Φ{w} defined on the set of all geometrically admissible displacement

fields w(x) by

Φ{w} =

∫
R

1

2
Cijk`wi,jwk,` dV −

∫
R
ρbiwi dV −

∫
∂Rtrac

tiwi dA

Show that a vector field w(x) that extremizes the potential energy necessarily satisfies the

conditions

(Cijk`wk,`), j + ρbi = 0 x ∈ R, Cijk`wk,`nj − ti = 0, x ∈ ∂Rtrac

which are seen to be the equilibrium equations and traction boundary condition if we set

σij = Cijk`wk,`.

Solution: The calculus of variations used here is reviewed in Chapter 7 of Volume I.
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Suppose that w(x) extremizes the potential energy functional and let δw(x) be an ad-

missible variation, i.e. any sufficiently smooth function defined on R with δw(x) = 0 on

∂Rdisp. To simplify writing let Φ1 denote the first term on the righthand side of Φ. Its first

variation is

δΦ1 =

∫
R

1

2
Cijk`δwi,jwk,` dV +

∫
R

1

2
Cijk`wi,jδwk,` dV

=

∫
R
Cijk`wk,`δwi,j dV

=

∫
R

(Cijk`wk,`δwi), j dV −
∫
R

(Cijk`wk,`), jδwi dV

=

∫
∂R

(Cijk`wk,`)njδwi dA −
∫
R

(Cijk`wk,`), jδwi dV

=

∫
∂Rtrac

(Cijk`wk,`)njδwi dA −
∫
R

(Cijk`wk,`), jδwi dV

where is the second step we have used the symmetries of Cijk` and the result established in

Problem 11.3; in the fourth step we have used the divergence theorem; and in the final step

we have used the facts that ∂R = ∂Rdisp ∪ ∂Rtrac and δwi = 0 on ∂Rdisp. Let Φ2 denote the

second and third terms on the righthand side of Φ. Its first variation is

δΦ2 = −
∫
R
ρbiδwi dV −

∫
∂Rtrac

tiδwi dA.

The first variation of Φ vanishes at an extremum; δΦ = δΦ1 + δΦ2 = 0. Therefore we have∫
∂Rtrac

(
(Cijk`wk,`)nj − ti

)
δwi dA −

∫
R

(
(Cijk`wk,`), j + ρbi

)
δwi dV = 0

which must hold for all variations δw(x). It follows (see Chapter 7 of Volume I) that

Cijk`wk,`nj − ti = 0, x ∈ ∂Rtrac,

(Cijk`wk,`), j + ρbi = 0 x ∈ R.

Problem 11.13. Consider again the framework of the preceding problem. If the elasticity

tensor is positive definite, show that the solution of the boundary value problem minimizes

the potential energy functional over the set of all admissible displacement fields. (In the

preceding problem we showed only that the solution of the boundary value problem was an

extremum of the potential energy. Note that we did not assume the elasticity tensor to be

positive definite there.)
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Chapter 12

Compressible Fluids. Viscous Fluids.

In this chapter we shall develop and discuss some of the most common constitutive models

used to describe many fluids. We will consider (i) compressible fluids with no viscous effects,

(ii) (not-necessarily Newtonian) viscous fluids with no compressibility effects, and (iii) fluids

with neither compressibility nor viscous effects. The remaining case, a compressible fluid

with viscous effects, is sketched in an exercise. Both mechanical and thermodynamic effects

are considered in the first model, but for reasons of simplicity, thermodynamic effects are left

out thereafter. Various exercises in this chapter illustrate certain phenomena, generalizations

and/or additional results.

A roadmap of this chapter is as follows: in Section 12.1 we consider compressible invis-

cid (elastic) fluids. We begin from a set of constitutive relations in primitive form and then

determine the most general set of such constitutive relationships that is material frame indif-

ferent and conforms to the entropy inequality. Next we consider the class of adiabatic flows

of such a fluid (which is relevant, for example, in gas dynamics). Several examples involving

shock waves are given. In Section 12.2 we turn to incompressible viscous fluids. Again we

begin by determining the most general set of constitutive relations within a certain class

that is material frame indifferent and conforms to the dissipation inequality. Newtonian and

non-Newtonian models are presented (the latter being limited to the generalized Newtonian

(including power-law) model and the Reiner Rivlin model). In the third and final section,

Section 12.3, we consider incompressible inviscid fluids.

In subsequent chapters we shall consider viscoelastic fluids and liquid crystals. These ma-

terials involve microstructural effects that have to be suitably accounted for in the continuum

theory. Viscoelastic fluids typically consist of a base fluid containing particles (e.g. a slurry)
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or long molecules (e.g. oil paints). The molecules in a liquid crystal have orientational order

though they have no positional order.

12.1 Compressible Inviscid Fluids (Elastic Fluids).

An elastic fluid is a special case of a general elastic material. For the class of fluids we

consider here the material symmetry group of a reference configuration is the largest possible

symmetry group, i.e. the set of all transformations whose determinant is ±1, the unimodular

group1 . This implies, as was shown in Problem 8.5 (i), that the manner in which the

constitutive response functions depend on the deformation gradient tensor F is solely through

its determinant det F. Moreover, it was shown in Problem 8.5 (ii) that if the material

symmetry group of one reference configuration is the unimodular group, then the material

symmetry group of every reference configuration is also the unimodular group.

Next, since mass balance tells us that the mass densities in the reference and current

configurations, ρ0 and ρ respectively, are related by ρ0 = ρ det F, it follows that dependence

on det F is equivalent to dependence on the mass density ρ.

Thus an elastic (or inviscid) fluid is characterized by the set of constitutive relations

T = T̂(ρ, θ, grad θ),

ψ = ψ̂(ρ, θ, grad θ),

η = η̂(ρ, θ, grad θ),

q = q̂(ρ, θ, grad θ),


(12.1)

for the Cauchy stress T, the specific Helmholtz free energy ψ, the specific entropy η and

the true heat flux vector q; T̂ is assumed to be symmetric tensor-valued so that angular

momentum balance is then automatic.

Implications of the Entropy Inequality: Consider the entropy inequality written in

the form

ρψ̇ − T ·D + ρηθ̇ − q · grad θ

θ
≤ 0; (12.2)

1Thus a fluid, by this definition, is necessarily isotropic. A liquid crystal on the other hand has a preferred

microstructural orientation and at the same time flows. Materials such as this are sometimes referred to as

anisotropic fluids.
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see (5.27). Substituting (12.1) into (12.2) and rearranging terms leads to{
−ρ2ψ̂ρ(ρ, θ,g) I − T̂(ρ, θ,g)

}
·D

+ ρ
{
ψ̂θ(ρ, θ,g) + η̂(ρ, θ,g)

}
θ̇

+ ρ
{
ψ̂g(ρ, θ,g)

}
· ġ − q̂(ρ, θ,g) · g/θ ≤ 0,

(12.3)

where the subscripts ρ, θ,g denote partial differentiation with respect to these quantities and

we have set

g = grad θ.

In writing (12.3) we have made use of the fact that I ·D = −ρ̇/ρ which follows from mass

balance ρ̇+ ρ div v = 0 and div v = tr D = I ·D.

By adapting to the current context arguments similar to those used previously in Sections

7.2 and 8.2, the inequality (12.3) must hold for all arbitrarily chosen symmetric tensors D,

real numbers θ̇ and vectors ġ from which we conclude that

−ρ2ψ̂ρ(ρ, θ,g)I− T̂(ρ, θ,g) = 0,

ψ̂θ(ρ, θ,g) + η̂(ρ, θ,g) = 0,

ψ̂g(ρ, θ,g) = o,

−q̂(ρ, θ,g) · g ≤ 0,


(12.4)

where the inequality (12.4)4 is what is leftover from (12.3) after one has concluded that

(12.4)1,2,3 hold.

The third of (12.4) states that the Helmholtz free-energy potential ψ̂ is independent of

the temperature gradient g. Therefore from the first and second of (12.4) it follows that the

stress and entropy response functions T̂ and η̂ are also independent of g. Thus (12.4) can

be further simplified to read

ψ = ψ̂(ρ, θ),

T̂(ρ, θ) = −ρ2ψ̂ρ(ρ, θ)I,

η̂(ρ, θ) = −ψ̂θ(ρ, θ),

q̂(ρ, θ,g) · g ≥ 0.


(12.5)
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Conversely if (12.5) holds then so does (12.3). Thus (12.5) describes the most general

elastic fluid which is consistent with the entropy inequality. Note that the Cauchy stress is

necessarily hydrostatic.

Implications of Material Frame Indifference: We now explore the implications of

material frame indifference on the constitutive response functions ψ̂(ρ, θ) and q̂(ρ, θ, gradθ).

Consider two processes y, θ and y∗, θ∗ that are related by y∗(x, t) = Q(t)y(x, t), θ∗(x, t) =

θ(x, t), where Q(t) is a rotation tensor at each instant. Since the mass density ρ and the

free energy ψ are objective, see (5.31), and the temperature is the same in the two processes,

material frame indifference does not impose any restrictions on ψ̂. Thus we only need consider

q̂.

Note from the chain rule that g = grad θ and g∗ = grad∗ θ are related by g∗ = Qg. A

constitutive law must be independent of the observer and so the response function q̂ is the

same for both observers. Thus the constitutive relation, when applied to these two processes,

tells us that

q = q̂(ρ, θ, g), q∗ = q̂(ρ, θ, g∗), (12.6)

where q and q∗ denote the heat flux vectors at a particle p at a time t in these two processes.

Recall our previous discussion on objectivity where we discussed why we should require

q∗ = Qq; (12.7)

see (5.36). On combining (12.6) with (12.7) we find that the constitutive response function

q̂ must be such that

q̂(Qg) = Qq̂(g) (12.8)

for all proper orthogonal tensors Q and all vectors g. (The mass density and temperature

play no role in the present discussion and so we have suppressed them.)

Equation (12.8) tells us that q̂ must be an isotropic vector-valued function and therefore

we can write

q̂(g) = k(|g|) g, (12.9)

where k is an arbitrary scalar-valued function; see Section 11 of Truesdell and Noll.

Therefore the most general set of constitutive response functions for an elastic fluid that
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is both frame-indifferent and consistent with the entropy inequality is as follows:

ψ = ψ(ρ, θ),

T(ρ, θ) = −p(ρ, θ)I,

η(ρ, θ) = −ψθ(ρ, θ),

q(ρ, θ,g) = k(ρ, θ, |g|) g


(12.10)

where p denotes the pressure,

p(ρ, θ) = ρ2ψρ(ρ, θ), (12.11)

g = grad θ and the entropy inequality requires that

k(ρ, θ, |g|) ≥ 0. (12.12)

Example: As deduced above, a compressible fluid is completely characterized (other than for its heat

conduction properties) by the single constitutive response function ψ(ρ, θ). Given ψ(ρ, θ), one can calculate

the various other fields such as the pressure, entropy, internal energy etc. using appropriate constitutive

relations.

In the literature on compressible fluids it is often customary to characterize the fluid by specifying the

two constitutive response functions p(ρ, θ) and ε(ρ, θ) instead. Consider for example the following commonly

used characterization of a “perfect gas”:

p(ρ, θ) = Rρθ, ε(ρ, θ) = cθ (12.13)

where R and c are material constants. From (12.11) and (12.13)1 we get ρ2ψρ(ρ, θ) = Rρθ which can be

integrated to yield

ψ(ρ, θ) = Rθ ln ρ+ f(θ). (12.14)

Here f(θ) arises from integration with respect to ρ. From this and (12.10)3 we get

−η(ρ, θ) = ψθ(ρ, θ) = R ln ρ+ f ′(θ). (12.15)

The internal energy ε = ψ+ηθ can now be calculated from (12.14) and (12.15), and compared with (12.13)2:

ε(ρ, θ) = f(θ)− θf ′(θ) = cθ.

Solving this first order differential equation gives f(θ) and substituting the result back into (12.14) gives the

Helmholtz free energy function

ψ(ρ, θ) = Rθ ln ρ− cθ ln(θ/θ0) + cθ (12.16)

that characterizes the material completely. In particular, the specific entropy η = −ψθ(ρ, θ) is

η = −R ln ρ+ c ln(θ/θ0). (12.17)
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We emphasize that specifying only one of the two constitutive response functions p(ρ, θ) or ε(ρ, θ) does

not fully characterize the fluid. One must specify both as in the present example. In contrast, specifying the

single constitutive response function ψ(ρ, θ) does completely characterize the fluid.

Thermomechanical processes of a compressible fluid are governed by the constitutive

relations (12.10) - (12.12) together with the field equations. Since T = −pI we have div T =

−grad p and so the equations of motion specialize to

−grad p+ ρb = ρv̇. (12.18)

Mass balance requires

ρ̇+ ρ div v = 0, (12.19)

and, just as for a general elastic material, the energy equation specializes to

div q + ρr = ρθη̇ (12.20)

which is the Eulerian version of (8.17). The entropy inequality reduces to (12.12).

In summary, the fields v(y, t), p(y, t), ρ(y, t),q(y, t), η(y, t), ψ(y, t) and θ(y, t) associated

with the flow of an elastic fluid are governed by the system of equations (12.10) - (12.12),

(12.18)-(12.20). In component form there are 11 scalar fields to be determined by the same

number of equations.

12.1.1 Worked Examples and Exercises.

Problem 12.1. Specific heat at constant mass density. Since ε = ψ + ηθ we can define a constitutive

response function for the specific internal energy by

ε̂(ρ, θ) = ψ̂(ρ, θ)− θ ψ̂θ(ρ, θ). (12.21)

Define the quantity c(ρ, θ) by

c(ρ, θ) =
∂ε̂(ρ, θ)

∂θ
(12.22)

which represents the change of specific internal energy with respect to change of temperature at constant den-

sity; we see below that this is a specific heat of the material. By using (12.21) we can express c alternatively

as

c = −θ∂
2ψ̂(ρ, θ)

∂θ2
. (12.23)

Differentiating η = −ψθ with respect to time and using (12.23) allows us to write the energy equation (12.20)

as

div q + ρr = ρcθ̇ − ρθ ∂
2ψ̂(ρ, θ)

∂θ∂ρ
ρ̇.
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If the mass density at each particle remains constant during some process, i.e. ρ̇ = 0, this reduces to the

“classical energy equation”

div q + ρr = ρcθ̇.

This shows that c is the specific heat per unit mass at constant strain, i.e. at constant mass density or

constant specific volume 1/ρ.

Problem 12.2. Alternative constitutive description of an elastic fluid. In what has preceded this, we

characterized the material through the single constitutive function ψ(ρ, θ). One can verify that no other

function of ρ and θ, e.g. ε(ρ, θ), by itself characterizes the material completely.

In certain circumstances (such as the setting considered in the next section), it is more convenient to

work with functions of ρ and η rather than with functions of ρ and θ. One can verify that the single

constitutive function ψ(ρ, η) by itself does not completely characterize the material. However the internal

energy function ε(ρ, η) does, as we shall now show.

Essentially we want to swap θ for η and in order to do this we must invert the function η = η(ρ, θ) to

get θ = θ(ρ, η). We can invert η(ρ, θ) uniquely provided that η is a monotonic function of θ (at fixed ρ).

Since the specific heat at constant density c(ρ, θ) = θ∂η̂/∂θ it follows that if we assume

c(ρ, θ) > 0

then the relation η = η̂(ρ, θ) is invertible at each fixed ρ and leads to the inverse relation θ = θ(ρ, η). We

can now use this to swap θ for η.

In particular suppose we swap θ for η in ε(ρ, θ) to obtain another internal energy potential ε(ρ, η):

ε(ρ, η) = ε
(
ρ, θ(ρ, η)

)
= ψ(ρ, θ(ρ, η)) + ηθ(ρ, η). (12.24)

We now show that the derivatives of ε with respect to ρ and η give certain other physical quantities.

Differentiating (12.24) with respect to ρ at fixed η, and with respect to η at fixed ρ, give

∂ε

∂ρ
(ρ, η) =

∂ψ̂

∂ρ
(ρ, θ),

∂ε

∂η
(ρ, η) = θ,

where θ = θ(ρ, η). Thus the pressure and temperature are given by the constitutive relations

p = ρ2 ∂ε

∂ρ
(ρ, η), θ =

∂ε

∂η
(ρ, η). (12.25)

Other physical quantities such as the Helmholtz free-energy can now be calculated.

Thus is summary, an elastic fluid can be completely characterized by either of the potentials ψ(ρ, θ) and

ε(ρ, η). While both are always valid, working with ρ and θ is particularly convenient if the process happens

to be isothermal, while working with ρ and η is more convenient if the process is isentropic.

Finally it is worth reiterating that ψ(ρ, θ) characterizes the fluid completely but ψ(ρ, η) does not. Likewise

ε(ρ, η) characterizes the fluid completely but ε(ρ, θ) does not. Thus ρ, η are the “natural variables” for the

internal energy potential while ρ, θ are the natural variables for the Helmholtz free energy potential.
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Problem 12.3. Bernoulli’s theorem. See Problem 12.17.

12.1.2 Adiabatic Flows.

Suppose that the dynamical processes occur on a time scale that is much faster than the

thermal processes. In this event one can neglect the heat flux and heat supply and set

q = 0, r = 0 in the energy equation. The energy equation (12.20) then reduces to η̇ = 0

which says that the flow is isentropic, i.e. the entropy of each particle remains constant

during the flow. If all particles have the same entropy at the initial instant, then the entropy

field remains constant in both space and time throughout the flow.

The field equations of momentum and mass balance are

−grad p+ ρb = ρv̇, (12.26)

and

ρ̇+ ρ div v = 0, (12.27)

while the first law reduces (as noted above) to

η̇ = 0. (12.28)

When studying adiabatic flows it is more convenient to have the constitutive equation

for pressure in the form p = p(ρ, η) rather than in the form p = p(ρ, θ) because the entropy

is constant at each particle during the flow. This can be obtained as described in Problem

12.2:

p = p(ρ, η) = p(ρ, θ(ρ, η)) (12.29)

where θ = θ(ρ, η) is the inverse of η = −ψθ(ρ, θ).

In an adiabatic flow, the fields v(y, t), p(y, t) and ρ(y, t) are governed by the system of

equations (12.26) - (12.29).

Example: Reconsider the perfect gas characterized by p = Rρθ and ε = cθ that we examined in a previous

example. Recall that there, we found in particular that

η = η(ρ, θ) = −R ln ρ+ c ln(θ/θ0).
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Solving this for the temperature gives

θ/θ0 = ρR/c eη/c,

which when substituted into p = Rρθ leads to

p = p(ρ, η) = Rθ0ρ
γ eη/c, where γ = 1 +R/c.

Thus in an isentropic flow of a perfect gas, p ∼ ργ .

Note that the internal energy of a perfect gas can be written in the useful form

ε = cθ =
c

R

p

ρ
=

1

γ − 1

p

ρ

where we have used p = Rρθ and γ = 1 +R/c.

12.1.3 Worked Examples and Exercises.

Problem 12.4. Acoustic waves in an adiabatic flow. Consider an equilibrium state

v(y, t) = o, p(y, t) = p0, ρ(y, t) = ρ0,

where p0 and ρ0 are constants with corresponding specific entropy η0. Now consider a small disturbance of

this state

v(y, t) = ṽ(y, t), p(y, t) = p0 + p̃(y, t), ρ(y, t) = ρ0 + ρ̃(y, t) (12.30)

where ṽ, p̃ and ρ̃ are small in some suitable sense. Substituting (12.30) into (12.26) and (12.27), and

linearizing leads to

−grad p̃ = ρ0
∂ṽ

∂t
,

∂ρ̃

∂t
+ ρ0 div ṽ = 0. (12.31)

The constitutive relation p = p(ρ, η) when linearized leads to p0 = p(ρ0, η0) and to next order, to

p̃ = pρ(ρ0, η0)ρ̃.

Substituting this into (12.31)1 gives

−a2 grad ρ̃ = ρ0
∂ṽ

∂t
(12.32)

where we have set

a =

√
∂p

∂ρ
(ρ0, η0)

provided the term within the square root is non-negative. Thus the pair of linear partial differential equations

governing ρ̃(y, t) and ṽ(y, t) are

−a2 grad ρ̃ = ρ0
∂ṽ

∂t
,

∂ρ̃

∂t
+ ρ0 div ṽ = 0.
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Taking the gradient of the first equation and the time derivative of the second equation allows us to

eliminate ṽ. This leads to the single equation

∂2ρ̃

∂t2
= a2∇2ρ̃

for the mass density ρ̃(y, t); ∇2 is the Laplacian operator. This is a linear wave equation with wave speed a

which represents the speed of acoustic waves (the speed of sound).

For the perfect gas discussed in a previous example, we had p = p(ρ, η) = Rθ0ρ
γ eη/c. Differentiating

this particular function p gives the acoustic speed in a perfect gas to be

a =
√
γp/ρ.

Problem 12.5. Shock waves in an adiabatic flow. Consider an adiabatic flow of some elastic fluid that

involves a shock wave across which the pressure p, the mass density ρ, specific entropy η and the particle

velocity v (as well as other related fields such as the temperature θ) suffer jump discontinuities. Referring

back to how we concluded that the entropy of a particle remains constant, we see that we implicitly assumed

that the various fields varied smoothly. Thus when there is a shock wave, the entropy η of a particle can

change discontinuously as the particle crosses the shock wave, though its entropy will remain constant on

either side of the shock wave.

Recall the jump conditions at a shock wave St established in (6.45). For an adiabatic flow we drop the

terms q ·n from the energy and entropy conditions there and find that, at each instant t, the following must

hold on St:
[[ρ(V − v · n)]] = 0 ,

[[ρv(V − v · n) + Tn]] = 0 ,

[[Tn · v + ρ(ε+ v · v/2)(V − v · n)]] = 0 ,

[[ρη(V − v · n)]] ≤ 0.


(12.33)

As usual, for any field g(y, t), we write [[g]] = g+ − g− for the difference between its limiting values g± from

the positive and negative side of the shock surface; the positive side is the side into which the unit normal

n points and V is the propagation speed of the shock in the direction n. These jump conditions are known

as the Rankine-Hugoniot conditions.

The shock is called a normal shock if the particle velocities v± are normal to the shock surface: v± =

v± n. If we let U± = V − v± denote the speed of the shock relative to the flow, and use the fact that

T = −pI for the class of fluids under consideration, one can rewrite the jump conditions (12.33) after some

algebra as

[[ρU ]] = 0, [[p+ ρU2]] = 0, [[ρU(ε+ p/ρ+ U2/2)]] = 0, [[ρηU ]] ≤ 0. (12.34)

The calculation leading from (12.33) to (12.34) were carried out in Problem 6.12.
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If ρ±U± 6= 0, we can use (12.34)1 to drop the ρU terms from (12.34)3,4; in the latter case the sign of

ρ±U± is also important. This allows us to write (12.34) as

[[ρU ]] = 0, [[p+ ρU2]] = 0, [[ε+ p/ρ+ U2/2]] = 0, [[η]] ≤ 0. (12.35)

where we have assumed ρ±U± > 0.

Problem 12.6. A Shock Tube. [Chadwick] A piston can slide freely (at one end) in a semi-infinite cylinder

of gas. Initially the piston and gas are at rest, and the gas is at a pressure p0 and mass density ρ0. The

piston is instantaneously given a speed Vpiston which is held constant thereafter. The direction of motion of

the piston is into the gas. Assume that all motion is adiabatic and one dimensional in the direction of the

pipe axis, that a shock wave forms and moves ahead of the piston into the gas, and that the states ahead of

and behind the shock are each uniform (pressure, density etc.) Take the fluid to be a perfect gas so that in

particular the specific internal energy is ε = (γ − 1)−1 p/ρ.

Show that the propagation speed of the shock wave Vshock is

Vshock =
1

4
(γ + 1)Vpiston +

[
1

16
(γ + 1)2V 2

piston + a2
0

]1/2

where a0 is the speed of sound in the state ahead of the shock:

a0 =
√
γp0/ρ0.

What happens if the piston is moved in the opposite direction (away from the gas)?

Problem 12.7. Conservation laws and shock waves. Show that the pair of equations (12.26) and (12.27)

that govern a general adiabatic flow can be written equivalently as

∂

∂t
(ρ) +

∂

∂yi
(ρvi) = 0,

∂

∂t
(ρvi) +

∂

∂yj
(pδij + ρvivj) = 0. (12.36)

Observe that these equations are in conservation law form

∂P

∂t
+
∂Qi
∂yi

= 0,
∂Pi
∂t

+
∂Qij
∂yj

= 0.

Show that the generic form of the jump conditions at a shock associated with such conservation laws are

−[[P ]]U + [[Qini]] = 0, −[[Pi]]U + [[Qijnj ]] = 0,

respectively.
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12.2 Incompressible Viscous Fluids.

In the simplest (Newtonian) model of a viscous fluid in one dimension, the shear stress τ

and the rate of shearing (strain rate) γ̇ are related linearly by τ = ηγ̇ where the material

constant η is the coefficient of viscosity. Thus if a constant stress is applied on the fluid,

the corresponding strain rate will be non zero and the strain will evolve with time implying

that the fluid will flow. This is in contrast to a linearly elastic solid where one can apply a

constant stress τ and the body can be in equilibrium at the strain level γ = τ/k where k is

the elastic modulus.

If we generalize the elementary constitutive relation τ = ηγ̇ to a nonlinear setting we

might write τ = τ̂(γ̇) where τ̂ is the constitutive response function for shear stress. If

further generalized to a three-dimensional setting we might write T = T̂(L) where T is the

Cauchy stress and L = grad v is the velocity gradient. Accordingly in this section we take

the constitutive relation for stress T to depend on the deformation rate as measured by the

velocity gradient tensor L: T = T̂(L). This is complementary to the class of constitutive

relations for an elastic material where the stress depends on the deformation as measured

by the deformation gradient tensor F: T = T̂(F).

We shall assume that the fluid is incompressible. Therefore it can only undergo motions

that are isochoric (locally volume preserving):

div v = tr L = tr D = 0.

Recall that the velocity gradient tensor L and stretching tensor (rate of deformation tensor)

D are defined by

L = grad v, D =
1

2
(L + LT ). (12.37)

For simplicity, we shall ignore thermodynamic effects and consider the so-called purely

mechanical theory of a continuum which only involves the following fields: particle velocity

v(y, t), Cauchy stress T(y, t) and specific free energy ψ(y, t). These fields must obey the

field equations/inequality

div v = 0,

div T + ρb = ρv̇, T = TT ,

T ·D ≥ ρψ̇.

 (12.38)
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Since the material is taken to be incompressible the mass density ρ(y, t) remains constant

at each particle.

In its primitive form, the constitutive relations for the class of viscous fluids we consider

are taken to have the form
T = −pI + τ̂ (L),

ψ = ψ̂(L),

 (12.39)

where the function τ̂ is required to be symmetric tensor-valued. The term −pI in the stress

arises in reaction to the incompressibility constraint.

We recall that no reference configuration is needed to develop the Eulerian formulation of

the field equations, nor is a reference configuration involved in the notions of Cauchy stress

T and velocity gradient L. Thus there is no reference configuration underlying the basic

system of equations (12.38) and (12.39). Consequently, provided the initial and boundary

conditions are given appropriately, the Eulerian fields p(v, t),v(y, t) can be determined in-

dependently of a reference configuration. This is not uncommon even for fluids characterized

by other constitutive relations. Of course a reference configuration is needed if we wish to

label particles, and without one, we can only describe the variation of the various fields at

points in space but not at fluid particles. Given a velocity field v(y, t) one finds the motion

y(x, t) by solving the initial value problem

ẏ(x, t) = v(y(x, t), t),

y(x, t0) = y0(x),

 (12.40)

on the regionR0 that the body occupies in the reference configuration (with respect to which

y(x, t) is defined).

Implications of the Dissipation Inequality We begin by determining the restric-

tions that the dissipation inequality (12.38)3 places on the constitutive response functions.

Substituting (12.39) into (12.38)3 leads to

τ̂ (L) ·D − ρ ψ̂L(L) · L̇ ≥ 0 (12.41)

where we have used the fact that −p I ·D = −p trD = −p div v = 0 in isochoric motions.

Equation (12.41) must hold in all isochoric processes. In particular it must hold for all

L̇ and so we conclude in the usual way that

ψ̂L = 0,

τ̂ (L) ·D ≥ 0,

 (12.42)
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where (12.42)2 is just the dissipation inequality (12.41) simplified in light of (12.42)1. We

conclude that ψ̂(L) does not depend on L and so it is constant.

Remark: If we set g(L) = τ̂ (L) · L, then g(0) = 0 while the dissipation inequality requires

g(L) ≥ 0. Thus g(L) has a minimum at L = 0 and consequently we must have ∂g/∂L = 0

at L = 0. This shows that τ̂ (0) = 0. Thus the stress τ must vanish in equilibrium.

Implications of Material Frame Indifference Recall the definitions of the stretch

tensor D = (L + LT )/2 and the spin tensor W = (L − LT )/2, and observe that there is a

one-to-one relationship between the tensor L and the pair of tensors {D,W}. Thus, instead

of τ̂ (L) we may equivalently take

τ = τ̌ (D,W). (12.43)

Turning to material frame indifference, we consider as usual two motions that are related

by a rigid rotation Q. The tensors D,W and their counterparts D∗,W∗ in the two motions

are related by

D∗ = QDQT , W∗ = QWQT + Ω, (12.44)

where Ω is a skew symmetric tensor; see Section 3.8. As discussed in Section 5.5 the Cauchy

stress T must be objective and therefore so must τ . Material frame indifference therefore

requires that

τ̌ (D∗,W∗) = Q τ̌ (D,W) QT (12.45)

which we can write as

τ̌ (QDQT , QWQT + Ω) = Qτ̌ (D,W)QT . (12.46)

Equation (12.46) must hold for all rotations Q and all skew symmetric tensors Ω. Thus it

must hold in particular for Q = I and Ω = −W. Then (12.46) reduces to

τ̌ (D, 0) = τ̌ (D,W). (12.47)

Since this must hold for all skew symmetric W it follows that τ much be independent of

the spin tensor W. Thus from hereon we may simply write τ (D) and the material frame

indifference restriction (12.46) becomes

τ̂ (QDQT ) = Qτ̂ (D)QT . (12.48)

Since this must hold for all rotations Q it follows that the function τ (·) is an isotropic

function of D; see Chapter 4 of Volume I. Therefore τ̂ has the representation

τ̂ (D) = τoI + τ1D + τ2D
2 (12.49)
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where the coefficients τk, k = 0, 1, 2 are functions of the three principal scalar invariants of

D, viz. I1(D), I2(D), I3(D):

τk = τk(I2(D), I3(D)), k = 0, 1, 2, (12.50)

where

I1(D) = tr D = 0, I2(D) =
1

2

[
(tr D)2 − tr D2

]
, I3(D) = det D.

Note that I1(D) = 0 because of incompressibility. Moreover the term τ0I in (12.49) can be

absorbed into the term −pI in the stress and so can be omitted. The τ ′ks are restricted by

the dissipation inequality τ ·D ≥ 0, i.e.

τ1 tr (D2) + τ2 tr (D3) ≥ 0. (12.51)

Thus in summary the Cauchy stress is given by

T = −pI + τ1D + τ2D
2, (12.52)

together with (12.50), (12.51). A fluid characterized by this constitutive relation is known

as a Reiner-Rivlin fluid.

It maybe worth pointing out the similarity between (12.52) and the constitutive relation

T = −pI + ϕ1B + ϕ2B
2, (12.53)

of an incompressible elastic solid; here B = FFT and the ϕk’s are functions of the principal

scalar invariants of B. Perhaps this is not surprising since the mathematical analyses used

in the two cases are similar. Though the effects of material frame indifference and isotropy

are intimately coupled in each representation one might, very roughly, say that (12.53) is a

result of isotropy while (12.52) is a result of material frame indifference.

Example: Consider a steady simple shearing flow in the 1, 2-plane with the particle velocity being in the

1-direction. The associated velocity field is

v1(y, t) = γ̇y2, v2(y, t) = 0, v3(y, t) = 0, y ∈ IR3, −∞ < t <∞; (12.54)

here the constant γ̇ is the rate of shearing. In this motion, planes normal to 2-direction slide in the 1-direction.

The components of the associated velocity gradient tensor L = gradv, the stretching tensor D =

(L + LT )/2 and its square D2 can be readily calculated to be

[L] =


0 γ̇ 0

0 0 0

0 0 0

 , [D] =


0 γ̇/2 0

γ̇/2 0 0

0 0 0

 , [D2] =


γ̇2/4 0 0

0 γ̇2/4 0

0 0 0

 ,
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and from this we find that the principal scalar invariants of D take the values

I1(D) = trD = 0, I2(D) =
1

2

[
(trD)2 − tr (D2)

]
= −γ̇2/4, I3(D) = det D = 0. (12.55)

The constitutive relation

T = −pI + τ1D + τ2D
2, (12.56)

now yields the Cauchy stress

[T ] =


−p+ τ2γ̇

2/4 τ1γ̇/2 0

τ1γ̇/2 −p+ τ2γ̇
2/4 0

0 0 −p

 ,

where the constitutive functions τk(I2(D), I3(D)), k = 1, 2, are evaluated at (I2(D), I3(D)) = (−γ̇2/4, 0).

Remark: As one would expect by symmetry, the shear stress components T23 = T31 = 0; moreover the shear

stress T12 that drives the flow however is non-zero. We note however that the normal stress components

T11, T22, T33 do not vanish in general even though this is a shear flow. The presence of non-zero normal

stresses here is the analog of the Poynting effect that we encountered previously for a nonlinear elastic solid;

see Section 10.1.

Note that if τ2 = 0, so that the D2 term is absent from the constitutive relation, then the normal stresses

may vanish if the boundary conditions are such that T33 = −p = 0. Observe that τ2 = 0 does not mean the

constitutive relation is linear since τ1 may depend nonlinearly on the invariants of D; see for example the

power law fluid below.

Note the “universal relation” T11 − T22 = 0 which holds for all Reiner-Rivlin fluids. Compare this with the

universal relation T11 − T22 = kT12 in an elastic solid.

12.2.1 Example: A Newtonian Fluid.

As a specific example, consider the case where τ is linear in D. It follows from the rep-

resentation (12.52) and the linearity in D that we must have τ2 = 0 and that τ1 must be

independent of D. Thus

τ̂ (D) = 2ηD (12.57)

where we have set τ1 = 2η which is a material constant. So in a Newtonian fluid the Cauchy

stress is given by the constitutive relation

T = −p I + 2ηD. (12.58)

In a steady simple shearing flow we find that

T12 = ηγ̇
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and so the material constant η represents the shear viscosity.

Returning to a general flow, the dissipation inequality requires that τ ·D ≥ 0, i.e.

2η tr (D2) ≥ 0 (12.59)

and so the shear viscosity η must be nonnegative:

η ≥ 0.

Substituting (12.58) into the equation of motion div T+ρb = ρv̇ (where incompressibility

implies that the mass density ρ is constant) leads to the classical Navier-Stokes equation

v̇ = −1

ρ
grad p+ ν∇2v + b, ν =

η

ρ
, div v = 0. (12.60)

12.2.2 Example: A Generalized Newtonian Fluid.

In the simplest one-dimensional setting of a Newtonian fluid we have the relation τ = ηγ̇

between the shear stress and the strain rate. A natural generalization would be to allow the

viscosity to depend on the strain rate and consider a constitutive relation τ = η(γ̇) γ̇. In the

general theory of a Newtonian fluid we have τ̂ (D) = 2ηD with η being a constant. This

can be generalized according to (12.49) by allowing η to depend on the two invariants I2(D)

and I3(D). However recall from the example above that in a steady simple shearing flow

I2 = γ̇2/4, I3 = 0 so that the shear rate γ̇ and I2 can be used interchangeably in such a flow.

This suggests one natural generalization of the Newtonian model to be

T = −pI + 2η(γ̇) D, γ̇ =
√

2D ·D ≥ 0.

The function η(γ̇) represents a “generalized viscosity” of the fluid. The dissipation inequality

requires that ηD ·D ≥ 0 whence η ≥ 0. We call this model a generalized Newtonian fluid.

A special case of this is obtained by taking the generalized viscosity to be a power law:

η(γ̇) = η0 γ̇
(n−1)

which leads to the power law constitutive relation

T = −pI + 2η0 γ̇
(n−1) D, γ̇ =

√
2D ·D ≥ 0.
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Here η0 and n are material constants. A power-law fluid with n = 1 is Newtonian; if n < 1 it

is said to be shear thinning since the viscosity decreases as the rate of shearing increases; and

if n > 1 it is said to be shear thickening since the viscosity increases as the rate of shearing

increases. Examples of shear thinning fluids are slurries, greases, toothpaste and oil paints;

shear thickening fluids are less common.

12.2.3 Worked Examples and Exercises.

Problem 12.8. Consider the class of compressible viscous fluids characterized by the constitutive response

functions
ψ = ψ̂(ρ, θ,L),

η = η̂(ρ, θ,L),

T = T̂(ρ, θ,L),

q = q̂(ρ, θ,g).


(12.61)

Work within the thermomechanical theory and develop the most general set of constitutive relationships of

this form that is consistent with the dissipation inequality and material frame indifference.

Solution: An outline of the steps one might go through are as follows:

– Use the entropy inequality to show that both ψ̂ and η̂ are independent of L; that η̂ = −ψ̂θ and that

the entropy inequality reduces to

(ρ2ψ̂ρ(ρ, θ) I + T̂) ·D + q̂ · g/θ ≥ 0.

– Define

τ̂ (ρ, θ,L) = T̂(ρ, θ,L) + ρ2ψ̂ρ(ρ, θ) I

so that the stress can be additively decomposed as

T̂(ρ, θ,L) = −ρ2ψ̂ρ(ρ, θ) I + τ̂ (ρ, θ,L)

and the entropy inequality can be written as

τ̂ (ρ, θ,L) ·D + q̂(ρ, θ,g) · g/θ ≥ 0.

– Show from material frame indifference that τ̂ depends on L only through its symmetric part D so

that one can write τ̂ (ρ, θ,D).

– Show that the entropy inequality further reduces to the two separate inequalities

τ̂ (ρ, θ,D) ·D ≥ 0, q̂(ρ, θ,g) · g ≥ 0
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– Show from the entropy inequality that

τ̂ (ρ, θ,0) = 0.

Therefore when the fluid is at rest, the preceding decomposition shows that T̂(ρ, θ,L) = −ρ2ψ̂ρ(ρ, θ) I.

Thus the hydrostatic stress −ρ2ψ̂ρ(ρ, θ) I represents the equilibrium stress and the component τ is

due to the motion.

– Show that material frame indifference further requires that τ̂ (D) and q̂(g) obey

τ̂ (QDQT ) = Qτ̂ (D)QT , q̂(Qg) = Qq̂(g).

(where ρ and θ have been suppressed). Thus τ̂ (D) and q̂(g) must be isotropic and infer from this

that

τ̂ (D) = τ0I + τ1D + τ2D
2, τp = τp(ρ, θ, I1(D), I2(D), I3(D))

where Ip(D), p = 1, 2, 3 are the three principal invariants of D; and that

q̂(ρ, θ,g) = k(ρ, θ, |g|)g.

Here τp, p = 0, 1, 2 and k are scalar-valued constitutive functions.

– Show that the entropy inequality reduces to

τ0 trD + τ1 trD2 + τ2 trD3 ≥ 0, k ≥ 0.

– Thus in summary one concludes that the most general set of constitutive equations of the form

considered that is consistent with the entropy inequality and material frame indifference is:

ψ = ψ̂(ρ, θ)

η = −ψ̂θ(ρ, θ)

T̂(ρ, θ,L) = −ρ2ψ̂ρ(ρ, θ) I + τ = −ρ2ψ̂ρ(ρ, θ) I + τ0I + τ1D + τ2D
2,

q̂(ρ, θ,g) = k(ρ, θ, |g|)g.


where τp = τp(ρ, θ, I1(D), I2(D), I3(D)) and k = k(ρ, θ, |g|) are subject to the inequalities above.

– Remark: In the special case where the stress depends linearly on D (a compressible Newtonian fluid)

show that

τ̂ (ρ, θ,D) = 2η(ρ, θ)D + λ(ρ, θ)trDI

where η and λ are material constants. Show that the entropy inequality gives

η ≥ 0, λ+
2

3
η ≥ 0.

Show that η is the shear viscosity, and λ+ 2η/3 is the bulk viscosity.
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Problem 12.9. Poiseuille Flow of a Generalized Newtonian Fluid. Consider a pipe of length L and circular

cross-section of radius a. An incompressible generalized Newtonian fluid flows steadily through the pipe.

Assume that there is no slip between the fluid and the pipe wall. Suppose that the drop in fluid pressure

between the two ends of the pipe is ∆p (> 0), the pressure at the inlet being higher than the pressure at the

outlet. Calculate the volumetric flow rate of the fluid. When specialized to a power law fluid show that the

volumetric flow rate is
πa3

3 + 1/n

(
a∆p

2Lη0

)1/n

.

Solution: Consider circular cylindrical coordinates (r, θ, z) with the z-axis coinciding with the axis of the

pipe. Because of symmetry, we take the steady uniform flow to have the form

v(y, t) = v(r) ez,

i.e. the particle velocity only has a component in the axial direction and it depends solely on the radial

coordinate. The corresponding particle acceleration is readily found to vanish: v̇(y, t) = o. In cylindrical

coordinates

divv =
∂vr
∂r

+
1

r
vr +

1

r

∂vθ
∂θ

+
∂vz
∂z

which vanishes automatically for a flow of the assumed form, whence it is automatically isochoric.

Next, we find the velocity gradient tensor

L = gradv = v′(r) ez ⊗ er

and its symmetric part

D =
1

2
v′(r)(ez ⊗ er + er ⊗ ez).

One can readily verify that γ̇ defined by γ̇ =
√

2D ·D in this flow is

γ̇ = |v′(r)|.

The no slip boundary condition at the wall tells us that v(a) = 0 while the pressure gradient will drive

the flow in the +z-direction and so we expect v(r) ≥ 0. Thus we shall tentatively assume that v′(r) ≤ 0 for

0 ≤ r ≤ a and thus take

γ̇ = −v′(r).

The constitutive relation is

T = −pI + 2η(γ̇)D

and so

T = −pI− η(γ̇)γ̇(ez ⊗ er + er ⊗ ez).

Thus

Trr = Tθθ = Tzz = −p, Trz = −γ̇η(γ̇), Trθ = Tθz = 0.

At this point we allow the pressure to depend on all three coordinates: p = p(r, θ, z).
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We now turn to the equations of motion in the absence of body force. The equations in the radial and

azimuthal directions are
∂Trr
∂r

= 0,
1

r

∂Tθθ
∂θ

= 0,

respectively. On using the constitutive relations in these two equations we get ∂p/∂r = 0 and ∂p/∂θ = 0

and so the pressure p is at most a function of z alone: p = p(z). The remaining equation of motion now

reads
dTrz
dr

+
dTzz
dz

+
Trz
r

= 0

or
1

r

d

dr
(rTrz)− p′(z) = 0.

Since the first term is a function of r only and the second a function of z only they must each be constant,

say, c:
1

r

d

dr
(rTrz) = c, p′(z) = c.

Therefore

p(z) = cz = −∆ p

L
z

where we have dropped the inessential additive constant, and

1

r

d

dr
(rTrz) = −∆ p

L

whence

Trz = −∆ p

L

r

2
;

the constant arising in this integration must be zero since otherwise there would be a 1/r term in the stress.

Now using the constitutive relation Trz = −γ̇ η(γ̇) gives is a first order nonlinear ordinary differential

equation for v(r):

−v′(r)η(−v′(r)) =
∆ p

L

r

2
.

Define the function

τ(γ̇) = γ̇ η(γ̇) for γ̇ ≥ 0,

and assume it to be invertible. [In a steady simple shearing flow (12.54) one can show that T12 = τ(γ̇).]

Then we get

−v′(r) = τ−1
(∆ p

L

r

2

)
Integrating this from some arbitrary radius r to the pipe wall r = a, and using the no slip boundary condition

v(a) = 0 gives the axial component of velocity to be

v(r) =

∫ a

r

τ−1
(∆ p

L

ξ

2

)
dξ

where ξ is just a dummy variable of integration. Finally the volumetric flow rate through the pipe is given

by ∫ a

0

2πrv(r)dr =

∫ a

0

2πr

[∫ a

r

τ−1
(∆ p

L

ξ

2

)
dξ

]
dr.



362 CHAPTER 12. COMPRESSIBLE FLUIDS. VISCOUS FLUIDS.

To illustrate this consider a power law fluid η(γ̇) = η0γ̇
n−1. Then τ(γ̇) = η0γ̇

n and so

τ−1(x) = (x/η0)1/n.

Therefore by evaluating the above integrals we find the axial velocity to be given by

v(r) =

(
∆p

2Lη0

)1/n
a1+1/n − r1+1/n

1 + 1/n

and the volumetric flow rate to be
πa3

3 + 1/n

(
a∆p

2Lη0

)1/n

.

When n = 1 we recover the classical result for a Poiseuille flow of a Newtonian fluid where, in particular,

the flow rate depends linearly on the pressure gradient. If the fluid is shear thinning (n < 1) the volume flux

increases more rapidly with pressure gradient ∆p/L than for a Newtonian fluid.

Note that v(r) decreases monotonically and so is consistent with the assumption v′(r) ≤ 0 made earlier.

Problem 12.10. Rod climbing in a spinning flow. Consider circular cylindrical coordinates with the z-

axis vertically upwards. Consider a rigid circular cylindrical rod of radius a and infinite length. The rod

rotates about its axis at a constant angular speed Ω. The axis of the rod is vertical and coincides with

the z-axis. The rod is immersed in a bath of an incompressible viscous fluid which occupies the region

r > a,−∞ < z < h(r), 0 ≤ θ < 2π where z = h(r) describes the (unknown) free-surface of the fluid. We are

asked to determine h(r).

Solution: Due to the viscosity, the fluid will also undergo a rotational motion. We assume that this motion

has the form

v = v(r)eθ. (i)

The acceleration of a particle is given, according to (1.29), by v̇ = v′+(gradv)v which in the current setting

yields

v̇ = −v
2(r)

r
er. (ii)

One can verify that divv = 0 automatically for this flow and therefore it is isochoric.

Set

γ̇ = v′(r)− v(r)

r
= r

d

dr

(
v(r)

r

)
. (iii)

The velocity gradient corresponding to the flow (i) can be readily calculated and from it we find that the

stretching tensor is

D =
1

2
γ̇(er ⊗ eθ + eθ ⊗ er), (iv)

and its square is

D2 =
1

4
γ̇2(er ⊗ er + eθ ⊗ eθ). (v)

One can verify that γ̇ = (2D ·D)1/2.
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Suppose that the constitutive relation of the fluid is

T = −pI + 2α1D + α2D
2 (vi)

where α1, α2 are constants. Substituting (iv) and (v) into (vi) leads to

T = Trr er ⊗ er + Tθθ eθ ⊗ eθ + Tzz ez ⊗ ez + Trθ (er ⊗ eθ + eθ ⊗ er), (vii)

where

Trr = −p+
α2

4
γ̇2, Tθθ = Trr, Tzz = −p, Trθ = α1γ̇. (viii)

There is a gravitational body force in this problem and the body force per unit mass is b = −gez. The

particle acceleration v̇ was given above. Therefore the equations of motion in the present setting reduce to

∂

∂r
Trr = −ρv

2

r
,

d

dr
Trθ +

2

r
Trθ = 0,

∂

∂z
Tzz − ρg = 0.


(ix)

Note from the constitutive relation for Trθ that this stress component depends solely on r which is why we

have used the ordinary derivative d/dr in (ix)2. On the other hand the pressure (and therefore the normal

stress components) may depend on both r and z. This is why we used partial derivatives in the other two

equations of motion.

The equation of motion (ix)2 can be written as

1

r2

d

dr

(
r2Trθ

)
= 0

which can be integrated to give

Trθ =
c

r2

where c is a constant. Combining this with the constitutive relation Trθ = α1γ̇ and using the expression

(iii) for γ̇ gives

α1r
d

dr

(v
r

)
=

c

r2
.

Integrating this gives

v(r) = −c/α1

2r
(x)

where the constant of integration that arises from this second integration must vanish since otherwise v →∞
as r →∞.

At the surface of the rod, the fluid and rod move together and therefore v(a) = aΩ. Using this in (x)

yields the constant c to be

c = −2a2Ωα1.

This and (x) determine the velocity field completely:

v(r) =
a2Ω

r
. (xi)
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Equations (xi) and (iii) give

γ̇ = −2a2Ω

r2
. (xii)

Next consider the radial equation of motion (ix)3 which on using (xi) reads

∂

∂r
Trr = −ρv

2

r
= −ρa

4Ω2

r3
.

Integrating this yields

Trr = ρ
a4Ω2

2r2
+ ξ(z) (xiii)

where the function ξ(z) arises since the integration is with respect to r. From (xiii)1 and (xiii) we have

p = α2
a4Ω2

r4
− ρa

4Ω2

2r2
− ξ(z). (xiv)

Finally consider the axial equation of motion (ix)3:

∂

∂z
Tzz − ρg = 0.

Integrating this gives

Tzz = ρgz + ζ(r)

and on using the constitutive relation (xiii)3 this leads to

p = −ρgz − ζ(r). (xv)

The two equations (xiv) and (xv) for the pressure must be identical. Matching them determines ξ(z) and

ζ(r), and this in turn gives the pressure field p(r, z):

p = α2
a4Ω2

r4
− ρa

4Ω2

2r2
− ρgz. (xvi)

The pressure at the free surface must equal the atmospheric pressure, which we take to be zero; thus we

have p = 0 at z = h(r). Using this in (xvi) gives the profile of the free surface to be

h(r) = −a
4Ω2

2gr2
+
α2

ρg

a4Ω2

r4
. (xvii)

Observe that the first term does not involve the material constants α1 and α2. It characterizes a purely

inertial effect. As one might expect (since inertia tends to move the particles outwards), this term describes a

depression of the surface. Next note that the material parameter α1 does not enter either term in (xvii) and

so has no effect on the free surface profile. Thus in particular if α2 = 0, in which case the fluid is Newtonian,

there is no constitutive effect on the free surface profile. The second term however is constitutive and is

related to the normal stress effect in shearing flows discussed in the example below (12.52). If α2 is positive

and sufficiently large, the second term will dominate the first and the net effect will be that the free surface

will rise, i.e. “the fluid will climb up the rod”.
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Problem 12.11. Viscous fluids are dissipative and it is of some interest to determine how fast the energy of

a fluid that is initially in motion decays to zero (assuming there is no source of energy input into the fluid).

Accordingly consider an incompressible Newtonian fluid that occupies a region R and has its boundary held

fixed: v = o on ∂R for t ≥ 0. Though the boundary is fixed, the fluid in the interior is in motion. Show that

the energy dissipation rate, which for an incompressible fluid equals the rate of decrease of kinetic energy,

= 2η

∫
R
|D|2 dV = η

∫
R
|ω|2 dV.

Solution:
d

dt

∫
R

1

2
ρv · v dV =

d

dt

∫
R

1

2
ρvividV

=

∫
R
ρviv̇idV

=

∫
R
viTij,jdV

=

∫
R
vi
(
− pδij + η(vi,j + vj,i)

)
, j
dV

=

∫
R

(
− p, ivi + ηvi(vi,jj + vj,ij)

)
dV

=

∫
R

(
− (pvi), i + pvi,i + ηvivi,jj

)
dV

=

∫
R

(
− (pvi), i + η(vivi,j), j − ηvi,jvi,j

)
dV

=

∫
∂R

(
− pvini + ηvivi,jnj

)
dA+

∫
R
−2ηDijDijdV

= −2η

∫
R
D ·DdV

In the sequence of calculations above at various points we have used the equations of motion Tij,j = ρv̇i, the

constitutive equation Tij = −pδij + 2ηDij , the definition Dij = (vi,j + vj,i)/2, incompressibility vi,i = 0, the

divergence theorem, and the boundary condition v = o on ∂R.

To establish the alternative representation, note first that

ω · ω = ωiωi = eijkvj,keipqvp,q = (δjpδkq − δjqδkp)vj,kvp,q = vp,qvp,q − vq,pvp,q

where we have used the formula eijkeipq = δjpδkq − δjqδkp relating the alternator to the Kronecker delta.

Observe also that ∫
R
vq,pvp,qdV =

∫
R

(
(vq,pvp), q − vq,pqvp

)
dV =

∫
∂R

vq,pvpnq dA = 0

where we have used incompressibility vi,i = 0, the divergence theorem, and the boundary condition v = o

on ∂R. Therefore ∫
R
ω · ω dV =

∫
R
vp,qvp,q dV =

∫
R

2DpqDpq dV =

∫
R

2D ·D dV

and so the rate of change of kinetic energy is

d

dt

∫
R

1

2
ρv · v = −η

∫
R
ω · ω dV
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12.2.4 An Important Remark:

Our starting point T = T(L) is a natural generalization of the elementary constitutive

relation τ = ηγ̇, and through a systematic analysis this led to the reduced form (12.52).

Unfortunately (12.52) is a poor model for non-Newtonian fluids. The special Newtonian

case is of course very useful in describing many fluids. Thus the models used to describe

most non-Newtonian fluids are based on a different starting point and lead to different forms

of constitutive relations. We shall say more in the subsequent chapter on viscoelastic fluids.

12.3 Incompressible Inviscid Fluids.

Since viscous effects are absent in this case we simply set τ = 0 in the basic equations of

Section 12.2. The stress is therefore purely a pressure, but in contrast to a compressible fluid

as considered in Section 12.1, is not determined constitutively. The pressure is a reaction to

the incompressibility constraint.

The system of equations governing the fields v(y, t) and p(y, t) for a flow of an incom-

pressible inviscid fluid is

div v = 0,

−grad p+ ρb = ρv̇,

 (12.62)

where we have substituted

T = −p I (12.63)

into the equation of motion.

When the body force is conservative and its associated potential is β, then

b = −grad β

and the equation of motion (12.62) can be written as

v̇ = −grad

(
p

ρ
+ β

)
. (12.64)
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The conservation of mass tells us that ρ̇ = 0 whence the density of each particle does

not change with time. For simplicity we shall assume in most of the examples to follow that

the density is spatially uniform as well so that the density everywhere and at all times is the

same. We note that there are interesting and important problems where the density varies

spatially and where in fact the density gradient is critical to some phenomenon. An example

of this is a fluid where the density varies with depth (such as in the deep ocean) where the

density gradient leads2 to what are called “internal waves”.

Recall that the vorticity is defined by

ω = curl v. (12.65)

The vorticity is a measure of the angular velocity of the fluid and ω/2 is the axial vector

corresponding to the spin tensor W. The simple form of the pair of governing equations

(12.62)1 and (12.64) leads the vorticity to have certain important characteristics for an

inviscid incompressible fluid; this is illustrated in Problems 12.13 - 12.16 below.

12.3.1 Worked Examples and Exercises.

Problem 12.12. Bernoulli’s theorem If an incompressible inviscid fluid undergoes a steady irrotational

motion in the presence of a conservative body force show that

ϕ
def
=

p

ρ
+

1

2
|v|2 + β

is constant everywhere and for all time. This is known as Bernoulli’s theorem.

Solution: We will first show that the material time derivative ϕ̇ = 0 indicating that ϕ is constant at each

particle. We will then show that gradϕ = o indicating that ϕ is constant spatially as well.

First, taking the material time derivative of ϕ and keeping in mind that ρ is constant for an incompressible

fluid gives

ϕ̇ =
ṗ

ρ
+ v · v̇ + β̇.

Recall the relation (1.28) between the referential and spatial time derivatives. On using this on the pressure

p and the potential β we get

ṗ = p′ + (grad p) · v = (grad p) · v and β̇ = β′ + (gradβ) · v = (gradβ) · v
2Perhaps it is worth noting that fluid compressibility allowed for the propagation of waves in a compress-

ible fluid as observed previously. This is absent in an incompressible fluid. Waves in an incompressible fluid

are associated with some other source such as a free-surface or density gradient.
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where in the respective second steps we have used the fact that p′ = 0 and β′ = 0 in a steady flow. Thus we

can write the preceding equation as

ϕ̇ =

[
grad

(
p

ρ
+ β

)
+ v̇

]
· v.

Thus we have ϕ̇ = 0 because of the equation of motion (12.64). Therefore ϕ is constant at each particle.

Note that the irrotationality of the flow has not been used in establishing this result.

Second, we are to show that gradϕ = o. Consider the equation of motion written in the form given in

equation (i) of Problem 12.13, Since the flow is steady, v′ = o. Since the flow is irrotational ω = o. Thus

the left hand side of (i) vanishes from which the desired result follows immediately.

Problem 12.13. Vorticity transport. Consider an incompressible inviscid fluid with conservative body

forces. Show that the vorticity obeys the equation

ω̇ = Lω (12.66)

where L = gradv is the velocity gradient tensor.

Solution: In view of the relation

v̇ = v′ + Lv where L = gradv

between the material and spatial time derivatives of v, we can write the equation of motion (12.64) as

v′ + Lv = −grad

(
p

ρ
+ β

)
.

Next, one can readily establish the vector calculus identity

Lv = (curlv)× v + grad

(
1

2
|v|2

)
which can be used to write the equation of motion as

v′ + ω × v = −grad

(
p

ρ
+ β +

1

2
|v|2

)
(i)

where ω = curlv is the vorticity.

We now take the curl of both sides of this equation and recall that the curl of a gradient vanishes. This

leads to

ω′ + curl (ω × v) = o.

Evaluating the term curl (ω×v) and making use of incompressibility shows that curl (ω×v) = (gradω)v−Lω
and so finally we

ω′ + (gradω)v = Lω,

which, since the material and spatial time derivatives of ω are related by ω̇ = ω′ + (gradω)v, leads to the

desired result

ω̇ = Lω.
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Problem 12.14. Circulation and Kelvin’s theorem. Show that the circulation associated with an arbitrary

closed material curve in an incompressible inviscid fluid is time invariant.

Solution: Consider a one-parameter family of closed material curves Ct where the parameter is t. Since Ct is

a material curve the same particles are associated with it at all times. We can define Ct parametrically by

Ct : y = y(s, t), 0 ≤ s ≤ `(t),

where s is the arc length along the curve Ct and `(t) is its total length at time t. The unit tangent vector to

the curve Ct is

s(s, t) =
∂y

∂s
.

Let v(y, t) be the velocity field. Then at any instant t one calls the integral of v · s around Ct the

circulation associated with Ct: ∫
Ct

v
(
y(s, t), t

)
· s(s, t) ds.

Note that the circulation is solely a function of time (given Ct and v).

On using the transport theorem (3.86)2 – and this is where we make use of the fact that Ct is a material

curve – we can write the rate of change of circulation as

d

dt

∫
Ct
v · s ds =

∫
Ct

(
v̇ + LTv

)
· s ds.

However the second term on the right hand side vanishes:∫
Ct
LTv · s ds =

∫
Ct

(
grad |v|2/2

)
· s ds =

∫
Ct

∂

∂s
(|v|2/2) ds = 0

because (a) LTv = grad |v|2/2, (b) (gradχ) · s = ∂χ/∂s for any scalar-valued field χ, and (c) the integral

over the entire closed path Ct of ∂χ/∂s vanishes provided χ is well behaved. Thus the rate of change of

circulation can be written as
d

dt

∫
Ct

v · s ds =

∫
Ct

v̇ · s ds. (i)

From (12.64), the equation of motion for an inviscid incompressible fluid under conservative body forces

is

v̇ = −grad

(
p

ρ
+ β

)
= −gradχ (ii)

where we have set χ = p/ρ+ β. Substituting (ii) into (i) leads to

d

dt

∫
Ct

v · s ds = −
∫
Ct

(gradχ) · s ds = −
∫
Ct

∂χ

∂s
ds = 0 (iii)

where we have again used the facts that (gradχ) · s = ∂χ/∂s for any well-behaved scalar-valued field χ and

the integral over the entire closed path Ct of ∂χ/∂s vanishes. Thus the rate of change of circulation vanishes

and so the circulation is constant.
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Problem 12.15. Irrotational flows. If the vorticity at every particle of the fluid vanishes at some instant

of time the flow is said to be irrotational at that instant. Show that if a flow is irrotational at one instant t0

then it is irrotational for all instants t assuming the fluid to be incompressible and inviscid.

Solution: One approach is via the vorticity transport equation (12.66):

ω̇ = Lω.

Since the time derivative in this equation is at fixed x, if we are to integrate it the velocity gradient tensor

and vorticity vector must be expressed in Lagrangian form: L(x, t),ω(x, t). Then the preceding first-order

ordinary differential equation, together with the fact that

ω(x, t0) = o

constitute an initial-value problem. (The particle x is held fixed.) Assume that this problem has a unique

solution. Since one can verify by direct substitution that ω(x, t) = o is one solution for all t, it then follows

that

ω(x, t) = o

is the solution3 for all t. One can now use the inverse motion x = x(y, t) to conclude that this is true in

Eulerian form as well: ω(y, t) = o.

A second approach is via Kelvin circulation theorem. By Stokes’ theorem (see Section 5.2 of Volume I)

we can write the circulation of Ct as∫
Ct

v · s ds =

∫
St

curlv · n dAy =

∫
St
ω · n dAy

where St is any smooth surface in Rt whose boundary is Ct and n is a unit normal on St; the direction of n

is selected using the right hand rule with respect to the sense of integration. Since ω vanishes at time t0, the

rightmost expression for the circulation shows that the circulation must also vanish at time t0. But Kelvin’s

theorem says that the circulation is time independent. Therefore the circulation must vanish at all times:∫
St
ω · n dAy = 0.

Since this is to hold for all choices of Ct we can localize it to get the desire result ω(y, t) = o.

Problem 12.16. Velocity potential. Consider an irrotational flow of an inviscid incompressible fluid.

Explore the simplifications resulting from the preceding information.

3One can verify by direct substitution that if the initial condition had been ω(x, t0) = ω0(x), a solution

of the initial-value problem is given by ω(x, t) = F(x, t)ω0(x); see also Problem 3.16 specialized to isochoric

motions.
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Solution: We are given that

curlv(y, t) = o for all y ∈ Rt, t ∈ [t0, t1].

A well-known theorem in calculus tells us that if the curl of a vector field vanishes, then that vector field is

the gradient of a scalar field. Thus in the present context there must exist a scalar-valued function φ(y, t)

such that

v = gradφ;

φ is called the velocity potential. Since the fluid is incompressible the flow must obey divv = 0. Substituting

v = gradφ into divv = 0 shows that φ satisfies Laplace’s equation

∇2 φ = 0.

Combining this with the result of Problem 12.15 leads to the very useful result that if the flow of an

incompressible inviscid fluid is irrotational at one instant of time, then the velocity field for all times can be

expressed as the gradient of a solution to Laplace’s equation.

Problem 12.17. Bernoulli’s theorem for a compressible inviscid fluid. Consider the purely mechanical

theory for an inviscid compressible fluid. Given the free energy function ψ̂(ρ), the system of equations

governing the pressure p(y, t), density ρ(y, t) and velocity v(y, t) are

− grad p+ ρb = ρv̇,

ρ̇+ ρdivv = 0,

p = p̂(ρ) = ρ2 ψ̂′(ρ).


Suppose that the body force is conservative with potential β: b = −gradβ. Define

ϕ = ψ +
p

ρ
+

1

2
|v|2 + β

and show that ϕ is constant for all time and everywhere for a steady irrotational flow.
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Chapter 13

Liquid Crystals

13.1 Introduction.

In a crystalline solid the molecules that form the material are located in an ordered manner

on a lattice; moreover the molecular orientation is also ordered. If the solid is heated until it

melts into its liquid phase the molecules lose both their positional and orientational order:

they are free to move about and tumble around. Certain materials however when heated, first

change from the solid phase to a liquid crystalline phase, and only upon further heating do

they change to the liquid phase. In the liquid crystal phase the molecules have no positional

order and can move about freely. However the molecules retain their orientational order.

This is depicted schematically in Figure 13.1. In the simplest case the molecules orient

themselves in one preferred direction and this direction is identified by a vector called the

director which we denote by d.

More precisely, the molecular orientation in the liquid crystal phase is not constrained

to lie precisely in the director direction (as it would in a solid). Rather, the molecular

orientation varies stochastically about d with the molecules spending significantly more time

in this preferred direction than in any other. An order parameter (or order tensor) can be

used to measure the degree to which the molecular orientation coincides with d. The order

parameter varies from the value unity (at perfect ordering) to zero (at completely random

ordering). As the temperature (and therefore the degree of disorder) increases, the value of

the order parameter will decrease as the liquid crystal “moves” from being closer to a solid

towards being closer to a liquid. We shall not discuss this aspect of liquid crystals in these

373
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(a) (b) (c)

Figure 13.1: Schematic diagram illustrating order: (a) Both positional and orientational order; (b) orien-

tational order but no positional order; (c) neither positional nor orientational order.

notes. The interested reader may consult the book by de Gennes and Prost.

The preceding description characterizes a nematic liquid crystal. There are other types of

liquid crystals. For example in a chiral nematic liquid crystal, the molecules prefer to orient

themselves at a small angle to each other. A string of molecules can then arrange themselves

with the director rotating in a spiral as one moves along the string (at the microscopic scale),

returning to the starting orientation after a certain distance. Liquid crystals are classified

broadly into three types: nematic, cholesteric and smectic; a qualitative description of these

can be found in Collings.

Most materials do not exist in the liquid crystal phase though several do. Collings

describes certain common characteristics of the molecules of a material that can exist in a

liquid crystal phase. He also describes the role of these materials in liquid crystal displays

(LCDs) as well as in molecular and cellular biology.

Liquid crystals respond to electric and magnetic fields. For example when placed in an

electric field, the positive and negative charges of a liquid crystal molecule get displaced

slightly producing an electric dipole. The external electric field now applies a pair of forces

on the charged ends of the molecule that are equal in magnitude and opposite in direction.

Thus there is no resultant force on the molecule, but if the pair of forces is non-collinear,

there will be a resultant couple. This couple will tend to rotate the molecule until it is

aligned with the field. Thus the orientation of the director can be controlled by the electric

field. In the theory developed here, the effect of the external electric or magnetic field enters

solely through a body couple field (analogous to a body force field) that is determined by

the electric/magnetic field.
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Boundary conditions can play an important role in the behavior of a liquid crystal.

For example if the forces between the liquid crystal and the container wall (in which the

liquid crystal is held) are very strong, the container will hold the molecules in some specific

direction along the wall. In this case one says that there is strong anchoring at the boundary.

The anchoring direction, i.e. the director orientation at the wall, can be controlled by

carefully rubbing the surface of the container in the desired direction. To illustrate the role

of anchoring, consider for example a liquid crystal that is contained between two parallel

plates. If the molecules are anchored in the same direction on both plates, then (in the

absence of external forcing) the director field throughout the body will coincide with this

direction. However if the direction of the director at one plate differs from that at the

other plate, then the director field will vary through the body; this is illustrated in Problem

13.3. Or, returning to the case where the anchoring direction is the same at the two plates,

suppose there is an electric field applied in some other direction. In this event there will

be a competition between molecules wanting to orient in the direction preferred due to the

boundary condition and wanting to orient in the direction preferred due to the field; Problem

13.4 illustrates this.

In this chapter we limit attention to nematic liquid crystals. The theory that we present

is often referred to as the Leslie-Ericksen theory. Note that the director is a field d(y, t)

so that if a liquid crystal is subjected to a deformation, the preferred direction at different

locations may be different depending on the local conditions. In contrast to the classical

continuum theory developed in previous Chapters, the Leslie-Ericksen theory involves two

fundamental kinematic fields: the usual velocity field v(y, t) and the director field d(y, t)

(or a field related to the director field). This second characterizes the microstructural effects

of the material at the continuum scale.

An outline of the material in this chapter is as follows: as alluded to above the contin-

uum theory of a nematic liquid crystal involves certain new ingredients, viz. body couples

and contact couples (analogous to body forces and contact forces), a conjugate kinematic

field representing the rotation rate of a director (as distinct from the rotation rate of the

continuum), and the related notion of rotational inertia. These concepts are introduce in

Section 13.2. The basic balance laws of continuum mechanics for linear momentum, angular

momentum and the dissipation inequality are restated in light of these new concepts, and the

associated field equations/inequality are derived. The section ends with a statement of the

constitutive relations in primitive form. In Section 13.3 the constitutive equations are made

to conform to material frame indifference and the dissipation inequality. A specific example



376 CHAPTER 13. LIQUID CRYSTALS

of the free energy function and the extra stress are given in Section 13.4. The boundary

condition to be imposed on the director field is discussed in Section 13.5. The final Section

13.6 contains several worked examples and exercises which illustrate some basic phenomena

and fill gaps in our presentation. In particular two examples look at the derivation of the

aforementioned example free energy function and extra stress by linearizing the general con-

stitutive relations. Another exercise asks for a physics-based derivation of this free energy

function. A variational formulation of the theory and a problem that looks at stability are

also included.

13.2 Formulation of basic concepts.

KINEMATICS: Consider a fluid undergoing a motion characterized by a velocity field

v(y, t). The velocity gradient tensor L, the stretching tensor D and the spin tensor W are

given by

L = grad v, D =
1

2
(L + LT ), W =

1

2
(L− L). (13.1)

The spin tensor W is a measure of the angular velocity of the fluid. The axial vector

associated with the skew symmetric tensor W is

1

2
curl v,

and this represents the local angular velocity of the fluid; see Section 3.3. If the fluid

is incompressible as we shall assume here it can only undergo locally volume preserving

motions:

div v = tr D = 0. (13.2)

To characterize the microstructure underlying a liquid crystal we assign to each particle p

a director characterized by a unit vector d(y, t). A motion of the liquid crystal is character-

ized by two independent kinematic fields v(y, t) and w(y, t), where the former represents the

velocity of a particle and the latter characterizes the angular velocity of a director1. Since

w is the angular velocity of the director d we must have

ḋ = w × d, ḋi = eijkwjdk (13.3)

1As we shall see shortly, having introduced a new independent kinematic field (director angular velocity)

we must introduce conjugate force fields (body and surface couples).
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where eijk is the alternator. Observe from this that the angular velocity field w(y, t) and

the director field d(y, t) are not independent.

The difference ω between the angular velocity of the director field and the angular velocity

of the fluid,

ω = w − 1

2
curl v,

is the angular velocity with which the director spins relative to the fluid.

Since the director is a unit vector2 we have |d| = 1. Taking the material time derivative

of d · d = 1 gives

ḋ · d = 0 (13.4)

which shows that ḋ is perpendicular to d.

Let
o

d be the co-rotational rate of change of the director (see Section 3.9):

o

d = ḋ−Wd. (13.5)

One can verify that
o

d= ω × d (13.6)

and so
o

d represents the rate of change of the director as viewed by an observer spinning with

the fluid. It follows from (13.6) that

o

d · d = 0.

Thus the co-rotational rate
o

d is also perpendicular to d.

We assume the director to be frame indifferent. Thus if d and d∗ describe the director

as seen by two observers related by Q, we postulate that

d∗ = Qd.

As noted in Section 3.9, when any vector d is objective, its material time derivative ḋ is not

objective in general but its co-rotational derivative
o

d is.

Finally it is convenient for later purposes to note that

˙grad d = grad (ḋ)− (grad d)L, ˙di,j = (ḋi),j − di,kvk,j. (13.7)

2By requiring the director to be a unit vector at all times, we are constraining it to be inextensible. This

constraint can be relaxed.
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This can be readily established by using the following expressions for the material time

derivatives of the respective quantities Gij and di,

Ġij = G′ij +Gij,kvk, ḋi = d′i + di,kvk

in the notation of Section 1.6. Here we have set Gij = di,j. In this chapter we use the

notation (·),k = ∂(·)/∂yk.

FORCES and TORQUES: In addition to the usual body forces and contact forces

(tractions) of continuum mechanics, when modeling a liquid crystal one must also account

for the torques that act on the directors. Therefore one must introduce body couple and

contact couple fields into the theory.

Thus, in addition to a body force b(y, t) there is also a body couple c(y, t) per unit mass

acting at each particle of the body. Likewise, at any point y on a surface St, in addition

to the contact force t(y, t,n) there is a contact couple m(y, t,n); here n is a unit normal

vector at a point on a surface in the body and m is the couple applied by the material on

the positive side of St on the material on the negative side. (The “positive side” of St is the

side into which n points.)

In order to define these notions precisely we must specify how each contributes to the

resultant force, resultant torque and total rate of working on an arbitrary part P of the

body. Consider a part P that occupies a region Dt at time t. Then we postulate that the

resultant force, the resultant torque and the total rate of working are∫
∂Dt

t dAy +
∫
Dt
ρb dVy,

∫
∂Dt

y × t dAy +
∫
Dt

y × ρb dVy +
∫
∂Dt

m dAy +
∫
Dt
ρc dVy,

∫
∂Dt

t · v dAy +
∫
Dt
ρb · v dVy +

∫
∂Dt

m ·w dAy +
∫
Dt
ρc ·w dVy.


(13.8)

Note from the expression for the rate of working that the kinematic field conjugate to the

body couples and contact couples is the director angular velocity field3 w(y, t).

The source of the body couple is often an electric (or magnetic) field which polarizes each

liquid crystal molecule and thereby applies a pair of forces on each molecule that are equal

3In Problem 4.7 we considered the effect of body couples and contact couples in a continuum, but there,

we did not introduce an independent kinematic field such as the angular velocity field w. Therefore we can

appropriate some but not all of the results from that problem to the current discussion.
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in magnitude and opposite in direction. If these forces are non-collinear, they result in a

couple. In the continuum theory this is represented by the body couple field c(y, t). In the

presence of an electric field E, the resulting body couple is given by

ρc = d× g, (13.9)

where

g = ε0χ (d · E) E; (13.10)

here the constant parameters ε0 and χ are the permittivity of free space and the dielectric

anisotropy respectively. Observe that the body couple vanishes if the director d is parallel

to the electric field E. A detailed discussion of the effect of electric and magnetic fields on

liquid crystals can be found, for example, in de Gennes and Prost.

BALANCE LAWS AND FIELD EQUATIONS: The global balance laws for linear

momentum and angular momentum are postulated to be

d
dt

∫
Dt
ρv dVy =

∫
∂Dt

t dAy +
∫
Dt
ρb dVy,

d
dt

∫
Dt

(
y × ρẏ + d× σḋ

)
dVy =

∫
∂Dt

y × t dAy +
∫
Dt

y × ρb dVy+

+
∫
∂Dt

m dAy +
∫
Dt
ρc dVy.


(13.11)

The first of these describes a balance between the resultant force and the rate of change of

linear momentum. The second likewise balances the resultant torque and the rate of change

of angular momentum.

Since in the preceding discussion we introduced additional kinematic and torque fields,

here we have introduced a corresponding measure of rotational inertia represented by the

term d× σḋ in the left hand side of (13.11)2. The constant σ is a measure of the rotational

inertia (just as ρ is a measure of the translational inertia). In order to motivate this term,

consider the moment of inertia tensor J of the director about its centre of mass. If the

director is treated as a slender rigid rod, its moment of inertia about the director axis is

zero while its moment of inertia about any axis perpendicular to the director is σ = m`2/12

where the mass and length of the director are m and ` respectively. Thus J = σ(I− d⊗ d).

The angular momentum of the director is then Jw where w is the angular velocity of the

director. On using (13.3) we find that Jw = d × σḋ which is the term introduced into the

left hand side of (13.11)2. In what follows we shall ignore this inertial effect and take

σ = 0;
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the case σ 6= 0 is considered in Problem 13.7.

Since the material is taken to be incompressible, the mass density ρ is constant and the

balance of mass is automatic.

Keeping in mind that t = t(y, t; n), the linear momentum balance law leads first to the

usual traction-stress relation, and thereafter to the usual equation of motion:

t = Tn, ti = Tijnj, (13.12)

div T + ρb = ρv̇, Tij,j + ρbi = ρv̇i. (13.13)

Turning to the angular momentum balance law, first using t = Tn and then the divergence

theorem allows us to convert the first surface integral on the right hand side into a volume

integral. On applying the angular momentum balance principle in this form to a tetrahedral

region and shrinking the region to a point, the volume integrals approach zero faster than

the surface integral, and so in the limit, the only remaining contribution is the limit of the

surface integral of m(y, t; n) over the boundary. Then mimicking the steps one uses to show

the existence of the stress tensor T allows one to conclude that there exists a couple stress

tensor Z(y, t) that is independent of n such that

m(y, t,n) = Z(y, t)n; (13.14)

see Problem 4.7. One can now return to (13.11)2 and substitute t = Tn,m = Zn and σ = 0

to get∫
∂Dt

y ×Tn dAy +

∫
Dt

y × ρb dVy +

∫
∂Dt

Zn dAy +

∫
Dt

ρc dVy =

∫
Dt

ρy × v̇ dVy

or in terms of components∫
∂Dt

eijkyjTkpnp dAy +

∫
Dt

eijkyjρbk dVy +

∫
∂Dt

Zipnp dAy +

∫
Dt

ρci dVy =

∫
ρeijkyj v̇k dVy.

Using the divergence theorem to convert the surface integrals to volume integrals and then

localizing the result in the familiar way leads to

eijkδjpTkp + eijkyjTkp,p + eijkyjρbk + Zip,p + ρci − eijkyjρv̇k = 0,

which simplifies on using the equations of motion (13.13) to the following field equation

associated with the angular momentum balance law:

eijkTkj + Zip,p + ρci = 0. (13.15)
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This set of equations can be written in an illuminating alternative form by first multi-

plying it by eipq and then using the familiar identity eipqeijk = δpjδqk − δpkδqj. This leads

to

Tqp − Tpq = −eipqZij,j − ρeipqci
which is an expression for the anti-symmetric part of stress T − TT in terms of the couple

stress and the body couple. Note from this that the Cauchy stress is not symmetric in

general.

DISSIPATION INEQUALITY We now turn to the counterpart of the entropy inequality

in the present purely mechanical context. We postulate that the rate of external work on

any part P of the body cannot be less than the rate of increase of kinetic energy and free

energy ψ. Accordingly let the dissipation rate per unit mass be denoted by D so that by

definition∫
Dt

ρD dVy =

∫
∂Dt

t · v dAy +

∫
Dt

ρb · v dVy +

∫
∂Dt

m ·w dAy +

∫
Dt

ρc ·w dVy−

− d

dt

∫
Dt

ρψ dVy −
d

dt

∫
Dt

1

2
ρv · v dVy −

d

dt

∫
Dt

1

2
σḋ · ḋ dVy

(13.16)

where ψ is the free energy per unit mass. The dissipation inequality postulates that each

side of (13.16) must be non-negative.

The last term in (13.16) represents the kinetic energy associated with the spinning of the

directors. To see this recall that the director kinetic energy is given by Jw · w/2 where J

is the inertia tensor of the director at its centre of mass and w is the angular velocity of

the director. By using Jw = d× σḋ (which was established previously) and (13.3) this can

be written in the alternate form σḋ · ḋ/2. As mentioned previously, in our present analysis

we neglect the director rotational inertia and take σ = 0; the case σ 6= 0 is considered in

Problem 13.7.

In order to localize (13.16), we first substitute for the traction t and contact couple m in

terms of stress T and couple stress Z using (13.12) and (13.14) respectively. The divergence

theorem is then used to convert the integrals over the boundary ∂Dt into volume integrals.

Finally the equations of motion (13.13) and (13.15) are used to eliminate the terms ∂Tij/∂yj

and ∂Zij/∂yj. This leads to∫
Dt

ρD dVy =

∫
Dt

(
Tijvi,j + Zijwi,j − wieijkTkj − ρψ̇

)
dVy ≥ 0.
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Assuming adequate smoothness, we can localize this using the usual argument to write the

dissipation rate per unit volume in the form

ρD = Tijvi,j + Zijwi,j − wieijkTkj − ρψ̇ ≥ 0. (13.17)

Note that since the stress tensor T is not necessarily symmetric, we cannot simply replace

Tijvi,j by TijDij where D is the stretching tensor as in previous chapters.

CONSTITUTIVE RESPONSE The field equations (13.2), (13.13) and (13.15) provide

7 scalar equations that involve the fields T(y, t),Z(y, t) and v(y, t) which have 21 scalar

components. In order to complete the mathematical model we must have an appropriate set

of constitutive equations which we assume to have the primitive form

ψ = ψ̂(d,G, ḋ,L),

T = −pI + T̂(d,G, ḋ,L),

Z = Ẑ(d,G, ḋ, L),

 (13.18)

where we have set

G = grad d. (13.19)

Note that the pressure p(y, t), the director field d(y, t) and the free energy ψ(y, t) that appear

in these constitutive relationships did not enter into the field equations (13.2), (13.13) and

(13.15). The pressure has been included because of the incompressibility constraint. In

terms of components, there are 19 scalar constitutive equations here and we have introduced

5 additional scalar quantities.

If the director has no polarity as we assume here, the vectors d and −d are physically

indistinguishable. In this event the transformation

d→ −d (13.20)

must leave the constitutive response functions ψ̂, T̂ and Ẑ unchanged.
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13.3 Reduced Constitutive Relations.

13.3.1 Restrictions due to dissipation inequality.

In order to determine the restrictions placed on this set of constitutive relations by the

dissipation inequality, we wish to substitute (13.18) into (13.17). We therefore begin by

calculating

ψ̇ =
∂ψ

∂di
ḋi +

∂ψ

∂Gij

Ġij +
∂ψ

∂ḋi
d̈i +

∂ψ

∂Lij
L̇ij.

Observe that the preceding equation involves d and its time and spatial derivatives. Note that

some other terms in the dissipation inequality (13.17) involve w and its spatial derivative.

But recall that w(y, t) and d(y, t) are not independent since they are related by (13.3).

Thus if we are to use the dissipation inequality in the usual manner to draw some useful

conclusions we need to express it in a form where certain terms can be arbitrarily chosen

(whence their coefficients must vanish). Thus we now establish the necessary relationships

between d,w and their derivatives.

Since ḋ = w × d, or in component form ḋi = eijkwjdk, we have

ḋi,j = ei`kw`,jdk + ei`kw`dk,j.

Recall from (13.7) that ˙di,j = ḋi,j − di,kvk,j. On combining these we have

Ġij = ˙di,j = ḋi,j − di,kvk,j = ei`kw`,jdk + ei`kw`dk,j − di,kvk,j.

Therefore the third term in the expression for ψ̇ above can be written as

∂ψ

∂Gij

Ġij =
( ∂ψ

∂Gij

ei`kdk

)
w`,j +

( ∂ψ

∂Gij

ei`kGkj

)
w` −

( ∂ψ

∂Gij

Gik

)
vk,j,

and so ψ̇ itself can be written as

ψ̇ =
( ∂ψ
∂di

eijkdk

)
wj +

( ∂ψ

∂Gij

ei`kdk

)
w`,j +

( ∂ψ

∂Gij

ei`kGkj

)
w`

−
( ∂ψ

∂Gij

Gik

)
vk,j +

∂ψ

∂ḋi
d̈i +

∂ψ

∂Lij
L̇ij.
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The dissipation inequality can now be written as

ρD =

[
T̂ij + ρ

∂ψ

∂Gkj

Gki

]
vi,j

+

[
Ẑij − ρ eik` dk

∂ψ

∂G`j

]
wi,j

− eijk wi

[
T̂kj − ρdk

∂ψ

∂dj
− ρGkp

∂ψ

∂Gjp

]

−
[
ρ
∂ψ

∂ḋi

]
d̈i −

[
ρ
∂ψ

∂Lij

]
L̇ij ≥ 0.

Since this must hold for arbitrary L̇ and d̈, we conclude that ψ must be independent of L

and ḋ whence we can write

ψ = ψ(d,G).

The dissipation inequality is now reduced to

ρD =

[
T̂ij + ρ

∂ψ

∂Gkj

Gki

]
vi,j

+

[
Ẑij − ρ eik` dk

∂ψ

∂G`j

]
wi,j

− eijk wi

[
T̂kj − ρdk

∂ψ

∂dj
− ρGkp

∂ψ

∂Gjp

]
≥ 0.

Let τ and ζ denote the respective portions of stress and couple stress that are not

determined by the free energy:

τij = T̂ij + ρ
∂ψ

∂Gpj

Gpi, ζij = Ẑij − ρ eik` dk
∂ψ

∂G`j

,

so that the Cauchy stress can be written as

Tij = −pδij − ρ
∂ψ

∂Gpj

Gpi + τij ,

and the couple stress as

Zij = ρ eik` dk
∂ψ

∂G`j

+ ζij .



13.3. REDUCED CONSTITUTIVE RELATIONS. 385

The dissipation inequality now reads

ρD = τijvi,j + ζijwi,j − wieijkτkj ≥ 0. (13.21)

In obtaining this inequality we have used the identity

eijk

(
dq
∂ψ

∂dp
+Gq`

∂ψ

∂Gp`

+G`q
∂ψ

∂G`p

)
= 0 (13.22)

which is a consequence of material frame indifference: since ψ must be frame indifferent we

shall show shortly that ψ(d,G) = ψ(Qd,QGQT ) for all orthogonal Q(t). Differentiate this

with respect to time, choose Q = I, set Q̇ = Ω where Ω must be skew symmetric since

QQ̇
T

is skew symmetric, and finally use the representation for Ω in terms of its axial vector.

Requiring the result to be true for all axial vectors leads to the identity above.

We now assume that the “extra stresses” τ and ζ do not depend on G, the gradient of

d. Thus the associated constitutive response functions have the form

τ = τ (d, ḋ,L), ζ = ζ(d, ḋ,L) . (13.23)

Returning to the dissipation inequality (13.21) and noting that it must hold for all wi,j,

and that because of (13.23) the only occurrence of wi,j is the explicit one in that inequality,

the coefficient of wi,j must vanish: ζ = 0. Thus we have the following constitutive relation

for couple stress:

Zij = ρ eik` dk
∂ψ

∂G`j

, (13.24)

and the dissipation inequality now reads

ρD = τijvi,j − eijkwiτkj ≥ 0. (13.25)

Note that τ is not generally symmetric and so we cannot replace τijvi,j in the dissipation

inequality by τijDij as in previous chapters. However we can move towards this as follows: As

noted earlier, w−ω = curl v/2 is the axial vector associated with the spin tensor W. Thus

first replacing grad v in (13.25) using grad v = L = D+W and then using the representation

of W in terms of its axial vector allows us to rewrite the dissipation inequality in the form

ρD = τijDij − eijkωjτik ≥ 0. (13.26)
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In summary, we have reduced the constitutive relations to

ψ = ψ(d,G),

Tij = −pδij − ρ
∂ψ

∂Gkj

Gki + τij(d, ḋ,L),

Zij = ρ eik` dk
∂ψ

∂G`j

,


(13.27)

and the dissipation inequality to

τijDij − eijkωjτik ≥ 0.

Remark In Problem 13.8 we look into whether the dissipation inequality implies that the

extra stress τ vanishes in equilibrium, i.e. when ḋ = o,D = 0.

13.3.2 Restrictions due to material frame indifference.

First consider the free energy

ψ = ψ(d,G)

where G = grad d. We assume the director to be frame indifferent. Thus if d and d∗ describe

the director as seen by two observers related by Q, we postulate that

d∗ = Qd.

Recall from Section 3.9, that the co-rotational time derivative of any objective vector is

objective, and so here,
o

d is necessarily objective.

We begin by examining whether G is objective or not. Let x = x(y, t) be the inverse

of the motion y = y(x, t). The spatial gradient ∂x/∂y is F−1 where F is the deformation

gradient tensor. If d(x, t) is defined by d(x, t) = d(y(x, t), t) then d(y, t) = d(x(y, t), t).

Let

Gij =
∂di
∂yj

and Hij =
∂di
∂xj

.

Differentiating d(y, t) = d(x(y, t), t) and using the chain rule gives

Gij =
∂di
∂yj

=
∂di
∂xp

∂xp
∂yj
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and so

G = HF−1.

Since d∗ = Qd and x∗ = x it follows that H∗ = QH. We know from Section 3.8 that

F∗ = QF. Therefore

G∗ = H∗F−1
∗ = (QH)(QF)−1 = QHF−1QT = QGQT

and therefore G is objective.

Since ψ has to be frame indifferent the function ψ(d,G) must have the property

ψ(d,G) = ψ(Qd,QGQT ) (13.28)

for all rotations Q, i.e. thus ψ must be an isotropic function of all its arguments. Note that

the tensor G is not necessarily symmetric and therefore the classical representation theorems

for isotropic functions cannot be used.

Consider now the frame indifference of the constitutive relation for the extra stress:

τ = τ (d, ḋ,L).

Since ḋ =
o

d +Wd, D = (L + LT )/2 and W = (L − LT )/2 it follows that there is a one-

to-one relation between the sets {d, ḋ,L} and {d,
o

d,D,W}. Thus τ admits the alternative

(equivalent) representation

τ = τ (d,
o

d,D,W).

Turning to material frame indifference we use the usual notation that a starred and

unstarred symbol refer to a quantity as seen by two observers related to each other by the

rotation Q. The quantities d,
o

d,D and G are objective and so

d∗ = Qd, (
o

d)∗ = Q
o

d, D∗ = QDQT , G∗ = QGQT .

Since the Cauchy stress is objective, the extra stress must also be objective:

τ ∗ = QτQT .

Finally considering the spin tensor we recall from Section 3.8 that it is not objective but

rather obeys the relation

W∗ = QWQT + Ω
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where Ω = Q̇QT . As has been noted before, since Q(t)QT (t) = I it follows by differentiation

that Ω must be skew-symmetric.

Material frame indifference therefore requires that the extra stress response function obey

τ (Qd,Q
o

d,QDQT ,QWQT + Ω) = Qτ (d,
o

d,D,W)QT

for all rotations Q and skew symmetric Ω. Picking Q = I and Ω = −W leads to

τ (d,
o

d,D,0) = τ (d,
o

d,D,W)

which must hold for all skew symmetric W. Thus τ must be independent of W:

τ = τ (d,
o

d,D)

and objectivity of the extra stress τ thus requires

τ (Qd,Q
o

d,QDQT ) = Qτ (d,
o

d,D)QT , (13.29)

i.e. τ must be an isotropic function of all its arguments.

Remark: Recall the two different discussions of a transversely isotropic elastic material in

Sections 8.5.2 and 8.8. In one, we took the energy to be of the form ψ(F) and required that

it exhibit the symmetries associated with transversely isotropic transformations about the

preferred direction d; and in the other, we took the energy to be of the form ψ(F,d) and

required it to be isotropic. These were equivalent treatments. The situation here is similar

to the latter treatment.

13.3.3 Summary.

In summary, we have reduced the constitutive relations to

ψ = ψ(d,G),

Tij = −pδij − ρ
∂ψ

∂Gpj

Gpi + τij(d,
o

d,D),

Zij = ρ eik` dk
∂ψ

∂G`j

,


(13.30)

where G = grad d, and ψ(d,G) and τ (d,
o

d,D) are isotropic functions of their respective

arguments. The dissipation inequality reads

τijDij − eijkωjτik ≥ 0. (13.31)
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The field equations of the Leslie-Ericksen theory are the equations of linear and angular

momentum, incompressibility and the constraint |d| = 1:

Tij,j + ρbi = ρv̇i,

eijkTkj + Zij,j + ρci = 0,

vi,i = 0,

didi = 1.


(13.32)

In the special case of equilibrium, assuming that the extra stress τ vanishes in equilibrium,

the problem decouples as follows: substituting (13.30) into (13.32)2 leads to set of 3 scalar

partial differential equations for di(y); see Problem 13.1 for a more careful discussion of this.

13.4 A Particular Constitutive Model.

In the Leslie-Ericksen theory, a nematic liquid crystal is characterized by two constitutive

functions: the free energy ψ(d, grad d) and the extra stress τ (d,
o

d,D). In this section we

lay down, with no motivation, a particular free energy and a particular extra stress. The

particular forms presented here are motivated in Problems 13.9, 13.10 and 13.12.

13.4.1 A Free Energy Function ψ: the Frank Energy

As a specific example of a constitutive relation for the free energy we consider

ρψ(d, grad d) =
1

2
K1(div d)2 +

1

2
K2(d · curl d)2 +

1

2
K3|d× curl d|2 (13.33)

which is referred to as the Frank free energy, and the material constants K1, K2 and K3 are

called the Frank elastic constants. As discussed in Problem 13.10 the moduli K1, K2 and K3

are associated with the three basic modes of liquid crystal deformation illustrated in Figure

13.3. One can show that ψ ≥ 0 if and only if

K1 ≥ 0, K2 ≥ 0, K3 ≥ 0.

Warner and Terentjev (Section 2.5) use an expansion based on the order parameter

(mentioned previously in Section 13.1 that measures the degree of orientational order) that
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to leading quadratic order gives K2 = K3. In this case one has the two-parameter Frank free

energy

ρψ =
1

2
K1(div d)2 +

1

2
K|curl d|2 (13.34)

where we have set K = K2 = K3. Observe that this is quadratic in d. The one-parameter

Frank free energy,

ρψ =
1

2
K|grad d|2 + a null lagrangian (13.35)

is obtained by setting K = K1 = K2 = K3. The null lagrangian is a term that does not

affect the Euler-Lagrange equations associated with ψ (and therefore has no effect on the

equations of motion).

13.4.2 An Extra Stress τ .

As a specific example of a constitutive relation for the extra stress we take

τ (d,
o

d,D) = α1 (d ·Dd)d⊗ d + α2

o

d ⊗d + α3 d⊗
o

d +

+ α4 D + α5 Dd⊗ d + α6 d⊗Dd.

(13.36)

Observe that the extra stress vanishes in equilibrium: τ (d,o,0) = 0. It can be readily ver-

ified that this constitutive relation has the property τ (Qd,Q
o

d,QDQT ) = Qτ (d,
o

d,D)QT

for all rotations Q as is required by material frame indifference.

The material constants α1, α2, . . . , α6 are known as the Leslie viscosity coefficients. One

can show that the dissipation inequality (13.31) holds if and only if (see Stewart)

α3 − α2 ≥ 0,

α4 ≥ 0,

2α4 + α5 + α6 ≥ 0,

2α1 + 3α4 + 2α5 + 2α6 ≥ 0,

4(α3 − α2)(2α4 + α5 + α6) ≥ (α2 + α3 + α6 − α5)2.

(13.37)
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13.5 Boundary Conditions: Anchoring.

In order to solve an initial-boundary-value problem we must supplement the system of partial

differential equations arising from the field equations with appropriate boundary conditions.

If the forces between the container and the liquid crystal are very strong, the director

will be oriented in some specific direction on its boundary. This can be achieved physically

by carefully rubbing the surface of the container. In this case one says that there is strong

anchoring at the boundary. Thus in the case of strong anchoring the director direction is

prescribed on the boundary: d(y, t) = d0(y, t) for y ∈ ∂R where d0 is given. For example

d0 may be tangential to the boundary ∂R; or perhaps normal to it.

In the case of no anchoring the boundary surface imposes no restrictions on the director

direction. Mathematically, the appropriate boundary condition is then the natural boundary

condition arising from a variational formulation; see Chapter 7 of Volume I, and also Problem

13.2 here.

Other possible boundary conditions include weak anchoring and conical anchoring as

discussed, for example, by de Gennes and Prost.

13.6 Worked Examples and Exercises.

Problem 13.1. Specialize and discuss the angular momentum field equation (13.32)2 when

the extra stress τ (d,
o

d,D) and free energy ψ(d, grad d) have the particular forms given in

(13.36) and (13.33) respectively.

Solution: First substitute (13.30)2 and (13.30)3 into (13.32)2 and simplify the result making

use of the identity (13.22). This leads to

ρci + eijkτkj + eipqdp

[
∂

∂yj

(
∂(ρψ)

∂Gqj

)
− ∂(ρψ)

∂dq

]
= 0. (13.38)

If we assume that the body couple has the form (13.9) (but not necessarily (13.10)), then

(13.38) can be written as

eijkτkj + eipqdp

[
∂

∂yj

(
∂(ρψ)

∂Gqj

)
− ∂(ρψ)

∂dq
+ gq

]
= 0. (13.39)
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For the particular form (13.36) of the extra stress, one can verify that

eipqτqp = eipqdp(−γ1

o

dq −γ2Dqrdr)

where we have set

γ1 = α3 − α2, γ2 = α6 − α5. (13.40)

Therefore the angular momentum balance (13.39) can be written as

eipqdp

[
−γ1

o

dq −γ2Dqrdr +
∂

∂yj

(
∂(ρψ)

∂Gqj

)
− ∂(ρψ)

∂dq
+ gq

]
= 0.

Since this has the form eipqapbq = 0 or a× b = o, the vectors a and b must be parallel, i.e.

a = λb for some scalar λ. Thus the preceding equation leads to

−γ1

o

dq −γ2Dqrdr +
∂

∂yj

(
∂(ρψ)

∂Gqj

)
− ∂(ρψ)

∂dq
+ gq = λdq (13.41)

for some scalar field λ(y, t).

Equation (13.41) holds for any free energy ψ(d, grad d). When ψ is the Frank free energy

(13.33), a direct calculation gives the explicit formula

∂

∂yj

(
∂(ρψ)

∂Gij

)
− ∂(ρψ)

∂di
= (K1−K2)dj,ji+K2di,jj+(K3−K2)(djdkdi,k) ,j−(K3−K2)djdk,jdk,i;

(13.42)

note that this reduces to
∂

∂yj

(
∂(ρψ)

∂Gij

)
− ∂(ρψ)

∂di
= Kdi,jj (13.43)

in the one-parameter case K = K1 = K2 = K3. Equation (13.43) can alternatively be

derived directly from (13.35) confirming that the null lagrangian term in (13.35) does not

contribute to the quantity represented by the lefthand side of (13.43).

In the special case of equilibrium, we have D = 0,
o

d= ḋ −Wd = o and so the angular

momentum equation (13.41) specializes to

∂

∂yj

(
∂(ρψ)

∂Gqj

)
− ∂(ρψ)

∂dq
+ gq = λdq. (13.44)

The system of equations (13.44) together with d · d = 1 is the complete set of differential

equations governing the fields d(y), λ(y). It may be observed that the equilibrium torque

balance equation (13.44) is not limited to the special material characterized by (13.36) and

(13.33). It holds for any free energy function ψ(d,G) provided only that the extra stress

vanishes in equilibrium.



13.6. WORKED EXAMPLES AND EXERCISES. 393

Problem 13.2. Variational formulation of equilibrium problem: Consider a liquid crystal

body occupying a region R. The director is specified, say d0, on a portion ∂Ranchoring of the

boundary. A body couple field ρc = d × g acts on the body where g is conservative: i.e.

there exists a potential β(d) such that

g = −∂β
∂d

.

For example, in the case of body couples induced by an electric field E, one has

β(d) = −1

2
ε0χ(E · d)2 and therefore g = ε0χ(E · d)E.

Consider the potential energy of the system defined by

Φ =

∫
R

(
ψ(d,G) + β(d)

)
dV (13.45)

where G = grad d. The functional here is rather subtle in that we have two unknown vector

fields y(x) and d(y) involved. We shall consider a limited problem statement where we treat

y(x) as known. Thus we seek to minimize the functional (13.45) over the set of all unit

vector fields d(y) which obey d(y) = d0(y) on ∂Ranchoring.

The requirement that d be a unit vector is a constraint that can be relaxed by introducing

a lagrange multiplier λ(y). Accordingly we consider the modified functional

Φ{d} =

∫
R

(
ψ(d,G) + β(d)− 1

2
λd · d

)
dV, G = grad d,

which is to be minimized over the set of all vector fields d(y) that obey the prescribed

boundary condition on ∂Ranchoring.

Proceeding in the usual way we calculate the first variation of Φ:

δΦ{d} =

∫
R

(
∂ψ

∂di
δdi +

∂ψ

∂Gij

δdi,j − giδdi − λdiδdi
)
dV

where we have used the fact that ∂β/∂d = −g. By rewriting the second term we get

δΦ{d} =

∫
R

(
∂ψ

∂di
δdi +

(
∂ψ

∂Gij

δdi

)
, j

− ∂

∂yj

(
∂ψ

∂Gij

)
δdi − giδdi − λdiδdi

)
dV
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which after using the divergence theorem leads to

δΦ{d} =

∫
R

[
∂ψ

∂di
− ∂

∂yj

(
∂ψ

∂Gij

)
− gi − λdi

]
δdi dV +

∫
∂R

∂ψ

∂Gij

njδdi dA.

Since δΦ{d} = 0 for all admissible variations δdi this leads to the Euler Lagrange equation

∂ψ

∂di
− ∂

∂yj

(
∂ψ

∂Gij

)
− gi − λdi = 0 on R (13.46)

and the natural boundary condition

∂ψ

∂Gij

nj = 0 on ∂R− ∂Ranchoring. (13.47)

Thus the director field d(y) (and the Lagrange multiplier λ(y)) are found by solving the

boundary value problem comprised of (13.46), (13.47) together with

d = d0 on ∂Ranchoring, (13.48)

|d| = 1 on R. (13.49)

Compare the Euler-Lagrange equation (13.46) with the torque equilibrium equation (13.44).

Problem 13.3. An equilibrium problem in the absence of external forcing. Consider a

y1, y2, y3- cartesian coordinate system. Suppose there are two infinite plates at y3 = 0 and

y3 = L and that the space between them is filled with a nematic liquid crystalline material.

The plate surfaces are treated such that the director is anchored to each plate as follows:

d = e1 at y3 = 0, d = e2 at y3 = L.

Thus as y3 increases from 0 to L the director changes its orientation from e1 to e2. Determine

the director orientation throughout the body.

Solution: Based on the problem description it is natural to assume that the director always

lies in the y1, y2-plane; and moreover, that it is independent of the y1- and y2-coordinates.

Then, since d is a unit vector, we can write

d = cosφ(y3) e1 + sinφ(y3) e2, (i)

where the function φ(y3) which characterizes the orientation of the director is to be deter-

mined. The prescribed anchoring boundary conditions tell us that

φ(0) = 0, φ(L) = π/2.
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Evaluating (13.42) for the particular director field (i), and substituting the result into

the field equation (13.44) leads to the pair of differential equations

φ′′(y3) = 0, λ = −
(
φ′(y3)

)2
, 0 < y3 < L.

Integrating the first of these and using the boundary conditions leads to the desired result

φ(y3) =
π y3

2L
. (ii)

Suppose we wish to calculate the contact couple acting on the lower plate. Evaluating

the constitutive relation (13.30) for the couple stress Z in the case of the Frank free energy

function (13.33), and then applying it to the particular director field (i) leads to

Z = −K2(d · curl d)(I− d⊗ d)

or

[Z] = K2


− sin2 φ sinφ cosφ 0

sinφ cosφ − cos2 φ 0

0 0 −1

 .

Thus the contact couple m acting on the lower plate y3 = 0 is

{m} = [Z]{n} = −K2


− sin2 φ sinφ cosφ 0

sinφ cosφ − cos2 φ 0

0 0 −1




0

0

−1

 = K2


0

0

1

 .

As one might expect, m has only a e3-component.

Remark: Alternatively one can use a variational approach to derive (ii) as follows. One

readily finds from (i) that

curl d = −φ′(y3) d,

and therefore that d · curl d = −φ′ and d× curl d = o. Thus the Frank free energy (13.33)

reduces to

ψ =
1

2
K2

(
φ′
)2
.

The total potential energy is therefore

Φ{φ} =

∫ L

0

1

2
K2

(
φ′
)2
dy3.
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Minimizing this with respect to all variations δφ with δφ(0) = δ(L) = 0 leads to the differ-

ential equation

φ′′(y3) = 0, 0 < y3 < L.

Problem 13.4. An equilibrium problem in the presence of an electric field. Consider a

y1, y2, y3- cartesian coordinate system. Suppose there are two infinite plates at y3 = 0 and

y3 = L and that the space between them is filled with a nematic liquid crystalline material.

The plate surfaces are treated so that the director is anchored at each plate as follows:

d = e1 at y3 = 0, d = e1 at y3 = L. (i)

Thus the director is anchored in the same direction e1 at both plates. In the absence of any

external forcing, the director would therefore be in the e1 direction everywhere. Suppose

there is an external electric field E = Ee2. Thus, if not for the boundary conditions, the

director would align with the electric field and be in the e2 direction everywhere. The

boundary condition (i) opposes this. We are asked to determine the director field.

Solution: Based on the problem description, we assume that at all locations the director

lies in the y1, y2-plane; and moreover, that it is independent of the y1 and y2 coordinates:

d(y) = d(z) where it is convenient to set y3 = z. Accordingly, since d is a unit vector, we

can write

d = cosφ(z) e1 + sinφ(z) e2. (ii)

The angular distribution of the director φ(z) is to be determined. Specializing the expression

for the body couple induced by an electric field given in Section 13.2 to the current setting

leads to

ρc = d× g, g = ε0χE
2 sinφ e2. (iii)

We differentiate (ii) and calculate the components di,j. We then evaluate the righthand

side of (13.42). Substituting the result, together with (iii), into (13.44) leads to the pair of

differential equations

− K2 sinφφ′′ −K2 cosφ (φ′)2 = λ cosφ,

K2 cosφφ′′ −K2 sinφ (φ′)2 + ε0χE
2 sinφ = λ sinφ.


Eliminating the lagrange multiplier λ from these equations leads to

K2φ
′′ + ε0χE

2 cosφ sinφ = 0, 0 < z < L. (iv)
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From (i) and (ii) we have the associated boundary conditions

φ(0) = φ(L) = 0. (v)

Note that (iv), (v) is an eigenvalue problem. Clearly, φ(z) = 0 is one solution of the

problem. For certain values of the field strength E (eigenvalues) there may be other solutions

(eigenfunctions). Perhaps the two questions of greatest interest are determining whether the

fundamental solution φ(z) = 0 is stable for some range of field strengths 0 < E < Ecrit and

finding Ecrit. We shall address this next.

The need to examine stability suggest that we turn to a variational formulation of the

problem. For the admissible set of director fields we take those that have the form d =

cosφ(z) e1 + sinφ(z) e2 where φ(z) is an arbitrary smooth function except for satisfying the

boundary conditions φ(0) = φ(L) = 0. Note that curl d = −φ′(z) d, and therefore that

d · curl d = −φ′ and d× curl d = o. Thus the Frank free energy (13.33) reduces to

ψ =
1

2
K2

(
φ′
)2
.

The energy density of the electric field is

β(d) = −1

2
ε0χ(E · d)2 = −1

2
ε0χ(Ee2 · d)2 = −1

2
ε0χE

2 sin2 φ.

Thus the total potential energy is given by

Φ{φ} =

∫ L

0

[
1

2
K2(φ′)2 − 1

2
ε0χE

2 sin2 φ

]
dz (vi)

and is defined for all smooth functions φ(z) with φ(0) = φ(L) = 0.

It is convenient to let φ0(z) denote the fundamental solution, so that in the present

problem φ0(z) = 0, 0 < z < L. To examine the stability of φ0 we calculate the energy

difference between this solution and an arbitrary neighboring function. Thus we calculate

Φ{φ} − Φ{φ0} for arbitrary functions φ which are close to φ0:

Φ{φ} − Φ{φ0} =

∫ L

0

[
1

2
K2(φ′)2 − 1

2
ε0χE

2φ2

]
dz (vii)

where we have used the fact that |φ − φ0| = |φ| << 1 to replace sinφ by φ. Consider

functions φ which have the Fourier representation

φ(z) =
∞∑
n=1

φn sin
nπz

L
. (viii)



398 CHAPTER 13. LIQUID CRYSTALS

Observe that all such functions satisfy the prescribed anchoring conditions φ(0) = φ(L) = 0.

Since ∫ L

0

sin
nπz

L
sin

mπz

L
dz =

∫ L

0

cos
nπz

L
cos

mπz

L
dz =

 0, n 6= m,

L/2, n = m,

it follows that∫ L

0

[φ′(y)]2 dy =
L

2

∞∑
n=1

(
nπφn
L

)2

,

∫ L

0

φ2(y) dy =
L

2

∞∑
n=1

(φn)2.

Therefore when the functional (vii) is evaluated at the function (viii) we get

Φ{φ} − Φ{φ0} =
L

4

∞∑
n=1

(φn)2

(
K2

[πn
L

]2

− ε0χE2

)
.

If the fundamental solution is to be stable we must have Φ{φ}−Φ{φ0} > 0. For this to hold

the coefficient of (φn)2 in the preceding equation must be positive for each n since otherwise,

one can always choose a set of parameters φn such that Φ{φ} − Φ{φ0} < 0. Therefore we

must have

K2

[πn
L

]2

> ε0χE
2 for all n = 1, 2, . . .

from which we see that the tightest bound on E is obtained by taking n = 1. Consequently

Ecrit =
π

L

(
K2

ε0χ

)1/2

.

Thus the fundamental solution φ(z) = 0 is stable for E < Ecrit and unstable for E > Ecrit, or

equivalently, the director orientation will be d = e1 for E < Ecrit and differ from e1 for E >

Ecrit. This transition in behavior at E = Ecrit is referred to as the Freedericksz transition.

The director configuration at E = Ecrit is given by the corresponding eigenfunction.

Problem 13.5. Define and calculate some notion of “effective shear viscosity” of a liquid

crystal.

Solution: Consider the uniform steady shear flow

v(y) = k(e1 ⊗ e3)y = ky3e1 (13.50)

with respect to a fixed orthonormal basis {e1, e2, e3}. Note that the particle velocity is in

the e1 direction and its magnitude increases linearly with y2; moreover, observe that v̇ = o

and grad v = constant. In addition, suppose that

grad d = 0, ḋ = o
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so that the director field d(y, t) is uniform and time independent. We define the ratio

between the shear stress T13 and shear rate k in this motion to be the shear viscosity.

We shall not address the question of whether such a motion is possible, i.e. we do

not examine whether this motion is consistent with the field equations. This question is

addressed in Problem 13.6.

Since the director field is spatially uniform grad d vanishes and equations (13.30)2 and

(13.36) give the Cauchy stress to be

T = −pI + τ (13.51)

where

τ (d,
o

d,D) = α1 (d ·Dd)d⊗ d + α2

o

d ⊗d + α3 d⊗
o

d +

+ α4 D + α5 Dd⊗ d + α6 d⊗Dd.

(13.52)

Observe from (13.52) that if α1 = α2 = α3 = α5 = α6 = 0, then (13.51) simplifies to the

Newtonian constitutive relation

T = −pI + α4D

with viscosity α4/2.

Since ḋ = o it follows from (13.5) that the co-rotational derivative of d is

o

d = −Wd. (13.53)

The stretching and spin tensors associated with the velocity field (13.50) are

D =
k

2
(e1 ⊗ e3 + e3 ⊗ e1), W =

k

2
(e1 ⊗ e3 − e3 ⊗ e1). (13.54)

Substituting (13.53) and (13.54) into (13.52), and the result into (13.51), leads to

T13 =
α4

2
k if it so happens that d = e2.

Thus if the director is perpendicular to the y1, y3-plane it has no effect on the relation between

the shear stress and the shear rate. The effective viscosity is α4/2.

However if the director lies in the y1, y3-plane, i.e. if d · e2 = 0, then (13.51) - (13.54)

leads to

T13 =
1

2

(
α4 + 2α1d

2
1d

2
3 + (α3 + α6)d2

1 + (α5 − α2)d2
3

)
k

so that now the effective viscosity is (α4 + 2α1d
2
1d

2
2 + (α3 +α6)d2

1 + (α5−α2)d2
2)/2 where the

components d1 and d3 specify the orientation of the director with respect to the e1 and e3

directions and the α’s are the Leslie viscosities.
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Problem 13.6. Elementary dynamical problem [Stewart] Consider an infinite medium

occupied by a nematic liquid crystal characterized by the constitutive relations (13.30),

(13.33) and (13.36). With respect to some orthonormal basis {e1, e2, e3}, the body undergoes

a simple shearing flow

v(y) = ky3 e1 (i)

where k > 0 is a constant. Assume that the director field d(y, t) is spatially uniform and

that the director undergoes a steady motion. Determine the motion of the director, and

since you will find multiple possible motions, examine their stability.

Solution: Since the director field is spatially uniform, using spherical polar coordinates we

can describe the director by

d(t) =
3∑

n=1

di ei = cos θ(t) cosφ(t) e1 + cos θ(t) sinφ(t) e2 + sin θ(t) e3. (ii)

Though we only seek steady motions (where θ̇ = φ̇ = 0), we shall not restrict our attention

to such motions since we must examine the stability of the steady motions determined.

We start from the simplified form of the angular momentum equation (13.41). Note first

that since d is spatially uniform in the present problem, all of its spatial derivatives di,j

vanish. Thus the righthand side of (13.42) is zero. Using this to simplify (13.41) leads to

γ1

o

d +γ2Dd = −λd

where we have set g = o since we assume there are no body couples and have set

γ1 = α3 − α2, γ2 = α6 − α5.

Taking the scalar product of this with d and recalling that
o

d is perpendicular to d gives

λ = −γ2 Dd · d.

Substituting this value of λ back into the preceding equation gives

γ1

o

d +γ2Dd = γ2(Dd · d)d. (iv)

We note that because of the circular nature of the preceding calculation, in component form,

equation (iv) leads to only two independent scalar equations. Finally, since
o

d= ḋ−Wd we

are led to

γ1ḋ = γ2(Dd · d)d− γ2Dd + γ1Wd. (?)
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The stretching and spin tensors associated with the simple shearing motion (i) are

D =
k

2

(
e1 ⊗ e3 + e3 ⊗ e1

)
, W =

k

2

(
e1 ⊗ e3 − e3 ⊗ e1

)
. (v)

Because of (ii) and (v) we have

Dd =
k

2
(d3e1 + d1e3), Wd =

k

2
(d3e1 − d1e3), Dd · d = kd1d3,

where the di’s are the components of the director as given in (ii). Equation (?) can therefore

be written explicitly as

γ1ḋ1e1 +γ1ḋ2e2 + γ1ḋ3e3 =

= (γ2kd1d3)(d1e1 + d2e2 + d3e3)− γ2
k
2
(d3e1 + d1e3) + γ1

k
2
(d3e1 − d1e3),

or as the three scalar equations

γ1ḋ1 =
k

2

(
2γ2d

2
1d3 − γ2d3 + γ1d3

)
,

γ1ḋ2 =
k

2

(
2γ2d1d2d3

)
,

γ1ḋ3 =
k

2

(
2γ2d1d

2
3 − γ2d1 − γ1d1

)
.


Finally since

d1 = cos θ cosφ, d2 = cos θ sinφ, d3 = sin θ,

these equations can be simplified, leading to the pair of ordinary differential equations

γ1 θ̇ =
k

2

[
(γ2 − γ1) sin2 θ − (γ2 + γ1) cos2 θ

]
cosφ,

γ1 cos θ φ̇ =
k

2
(γ2 − γ1) sin θ sinφ,


where γ1 = α3 − α2, γ2 = α6 − α5. For algebraic simplicity we assume from hereon that4

α6 − α5 = α2 + α3 whence we have

γ1 θ̇ = k(α2 sin2 θ − α3 cos2 θ) cosφ,

γ1 cos θ φ̇ = kα2 sin θ sinφ.

 (vi)

4There are reasons beyond mathematical simplicity to use this relation. It can be motivated by the

Onsager relations, and in the liquid crystal context is known as the Parodi relation; see for example Stewart.
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Recall from (13.37) that the dissipation inequality requires α3 ≥ α2. We shall assume

the strict inequality

α3 > α2. (vii)

Steady motions: We now seek solutions for which θ̇(t) = φ̇(t) = 0. From the second of

(vi) we find that necessarily sin θ sinφ = 0, and therefore either θ(t) = 0 or φ(t) = 0. In the

former case the first of (vi) requires that φ(t) = π/2, whereas in the latter case it requires

that θ(t) = ±θ0 where θ0 is found from tan2 θ0 = α3/α2. Thus we have two steady motions:

Steady motion 1 : θ(t) = 0, φ(t) = π/2,

Steady motion 2 : θ(t) = ±θ0, φ(t) = 0,

 (viii)

where θ0 ∈ [0, π/2] is given by

tan θ0 =
√
α3/α2. (ix)

Note that for the second solution to exist we must have α3/α2 ≥ 0. When discussing the

second solution we shall assume that the strict inequality

α2α3 > 0 (x)

holds. Thus for the second solution we have two cases to consider: α3 > α2 > 0 and

0 > α3 > α2. Observe that 0 < θ0 < π/4 for 0 > α3 > α2 and π/4 < θ0 < π/2 for

α3 > α2 > 0.

In the first steady motion the director is aligned with e2 and so is perpendicular to the

y1, y3-plane (and in particular to the particle velocity field v). In the second steady motion

the director lies in the y1, y3-plane and is inclined at an angle θ0 to the particle velocity; see

Figure 13.2.

We now examine the stability of these two steady motions. Consider the first steady

motion. To examine its stability we consider a perturbed motion close to it,

θ(t) = u(t), φ(t) = π/2 + v(t), (xi)

where the perturbations are small |u|, |v| << 1. Substituting (xi) into (vi) and linearizing

for small u, v leads to the following pair of linear differential equations:

γ1 u̇ = kα3 v,

γ1 v̇ = kα2 u.


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By seeking solutions of the form u(t) = u0 expµt, v(t) = v0 expµt and examining the sign of

µ, we find that solutions grow exponentially if α2α3 > 0 and do know grow if α2α3 < 0; in

the latter case the perturbed solution oscillates about the steady solution without decaying

towards it. Therefore the first steady solution is unstable if α2α3 > 0 and “stable” if

α2α3 < 0.

(c) (d)

(a) (b)

θ0

θ0

θ0

θ0

Figure 13.2: Four solution of second type: (a) Stable solution θ(t) = +θ0. (Case α2 < α3 < 0 whence

0 < θ0 < π/4.) (b) Unstable solution θ(t) = +θ0. (Case α3 > α2 > 0 whence π/4 < θ0 < π/2.) (c) Stable

solution θ(t) = −θ0. (Case α3 > α2 > 0 whence π/4 < θ0 < π/2.) (d) Unstable solution θ(t) = −θ0. (Case

α2 < α3 < 0 whence 0 < θ0 < π/4.)

Consider the second steady motion. We again consider perturbed motions close to it,

θ(t) = ±θo + u(t), φ(t) = v(t), (xii)

where the perturbations are small |u|, |v| << 1. Substituting (xii) into (vi) and linearizing
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for small u, v leads to the following pair of linear differential equations:

γ1 u̇ = ± k
2

(α2 + α3) sin(2θ0)u,

γ1 cos θ0 v̇ = ± kα2 sin(θ0) v.


By seeking solutions of the form u(t) = u0 expµ1t, v(t) = v0 expµ2t and examining the signs

of the µ’s, we find (keeping (vii) and (x) in mind) that for the case +θ0, that solutions

grow exponentially if α3 > α2 > 0 and they decay to zero if α2 < α3 < 0. On the other

hand for the case −θ0, solutions grow exponentially for α2 < α3 < 0 and decay to zero for

α3 > α2 > 0. These are illustrated in Figure 13.2.

Problem 13.7. Rotational inertia. Consider the balance laws

d
dt

∫
Dt
ρv dVy =

∫
∂Dt

t dAy +
∫
Dt
ρb dVy,

d
dt

∫
Dt

(
y × ρẏ + d× σḋ

)
dVy =

∫
∂Dt

y × t dAy +
∫
Dt

y × ρb dVy+

+
∫
∂Dt

m dAy +
∫
Dt
ρc dVy,


and the dissipation rate∫

Dt

ρD dVy =

∫
∂Dt

t · v dAy +

∫
Dt

ρb · v dVy +

∫
∂Dt

m ·w dAy +

∫
Dt

ρc ·w dVy−

− d

dt

∫
Dt

ρψ dVy −
d

dt

∫
Dt

1

2
ρv · v dVy −

d

dt

∫
Dt

1

2
σḋ · ḋ dVy

where we have included the effects of director rotational inertia via the terms involving

σ( 6= 0). Derive the field equations associated with the balance laws and an expression for

the dissipation rate D.

Problem 13.8. In Section 12.2 we used the dissipation inequality to show that the extra

stress τ in a viscous fluid had to vanish in equilibrium. Can we do the same here? i.e. can

we use (13.31) to show that

τ (d,
o

d,D) = 0 at D = 0,
o

d= o ?
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Solution: Recall that
o

d= ω × d. Let K be the unique skew-symmetric tensor whose axial

vector is ω:

Kik = eijkωj

and
o

d= Kd.

If K is non-singular then there is a one-to-one relation between the pairs {K,d} and {
o

d,d}.
If this is the case then there is a function τ such that τ (d,

o

d,D) = τ (d,K,D). The

dissipation inequality

τ (d,
o

d,D) ·D− eijkωjτik(d,
o

d,D) ≥ 0

can then be written equivalently as

τ (d,K,D) ·D− τ (d,K,D) ·K ≥ 0.

If we define a function D by

D(d,K,D) = τ (d,K,D) ·D− τ (d,K,D) ·K

then the function D has the properties

D(d,K,D) ≥ 0, D(d,0,0) = 0.

Thus D(d, ·, ·) has a minimum at K = 0,D = 0 and so ∂D/∂D = ∂D/∂K = 0 at D =

0,K = 0. Carrying out the differentiation leads to

τ (d,K,D) = 0 at D = 0,K = 0

and therefore that

τ (d,
o

d,D) = 0 at D = 0,
o

d= o.

The limitation to non-singular K is non-singular is a restriction on the preceding result.

Problem 13.9. Frank free energy. Mathematical derivation. Consider the free energy

function ψ(d,G) of a nematic liquid crystal. Here G = grad d and |d| = 1. Suppose that

the spatial variation of the director field is slow, |G| << 1, so that we expand ψ(d, ·) in

a Taylor series retaining only terms that are quadratic or smaller. Since the molecules are

assumed to be non-polarized there is no distinction between the two ends of the director and
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so the free energy must be invariant under the transformation d → −d. We also assume

centrosymmetry so that the free energy must also be invariant under the transformation

y→ −y. Finally the energy must obey ψ(Qd,QGQT ) = ψ(d,G) for all proper orthogonal

Q which characterizes the rotational symmetry about d. Determine the most general free

energy function with the preceding characteristics.

Solution: Since d(y, t) is a unit vector, taking the spatial gradient of d · d = 1 shows that

we must have

GTd = o.

First we normalize the energy so that it vanishes in the uniform state: ψ(d,0) = 0. Next

we observe that the only linear terms in G that are possible are div d and d ·curl d. However

these are both ruled out by the required invariances, the former because of invariance under

d→ −d and the latter due to invariance under y→ −y.

We now construct the most general expression for ψ that is quadratic in G and is consis-

tent with the preceding requirements. It is convenient to decompose G into its symmetric

and skew-symmetric parts:

S =
1

2

(
grad d + (grad d)T )

)
, K =

1

2

(
grad d− (grad d)T

)
.

First, note that there is a one-to-relation between the tensor G and the pair of tensors

{S,K}. Second, just as in our discussion in Section 3.3 of classical kinematics where we had

a one-to-one relation between the spin tensor (the skew-symmetric part of grad v) and the

vorticity vector curl v, here we have a one-to-one relation between K and the vector curl d.

Thus with no loss of generality we can write the free energy in the form ψ = ψ(d,S, curl d),

which has to be quadratic in G. It is convenient to write this as

ψ = ψ1(d,S) + ψ2(d, curl d) + ψ3(d,S, curl d)

where ψ1 is quadratic in S, ψ2 is quadratic in curl d, and ψ3 involves the product of terms

linear in S and linear in curl d.

The function ψ1 must be mathematically identical to the strain energy function of a

elastic material with rotational symmetry about the d-direction. Thus from Section 8.8

(see also Chapter 4 of Volume I) it follows that ψ1 must be a function of the scalar-valued

invariants

tr S, tr S2, tr S3, tr
(
S(d⊗ d)

)
, tr

(
S2(d⊗ d)

)
.
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However since ψ1 is to be quadratic in S it must therefore be a linear combination of

(tr S)2, tr S2,
[
tr
(
S(d⊗ d)

)]2

, tr
(
S2(d⊗ d)

)
, (tr S) tr

(
S(d⊗ d)

)
.

Note that

tr
(
S(d⊗ d)

)
= Sd · d = GTd · d = 0

and so the list of invariants reduces to

(tr S)2, tr S2, tr
(
S2(d⊗ d)

)
.

Since tr S = div d we can write this list as

(div d)2, tr S2, tr
(
S2(d⊗ d)

)
.

Next one can readily verify that

tr S2 = (di,jdj),i − (di,idj),j + (div d)2 +
1

2
|curl d|2.

If we calculate the volume integral of ψ, the first two terms on the righthand side of the

preceding equation can be converted into surface integrals by using the divergence theorem

and therefore they correspond to a “null lagrangian”, i.e. terms that do not contribute to

the Euler Lagrange equations associated with this energy. Thus we can drop these two terms

in calculating the energy. Thus ψ1 is a linear combination of

(div d)2, (div d)2 +
1

2
|curl d|2, tr

(
S2(d⊗ d)

)
,

or equivalently of

(div d)2, |curl d|2, tr
(
S2(d⊗ d)

)
Finally, since S = (G + GT )/2 and GTd = o it can be readily shown that

tr
(
S2(d⊗ d)

)
=

1

4
|Gd|2 and |d× curl d|2 = |Gd|2,

whence

tr
(
S2(d⊗ d)

)
=

1

4
|d× curl d|2.

Thus ψ1 is a linear combination of

(div d)2, |curl d|2, |d× curl d|2.

However

|d× curl d|2 = |curl d|2 − |d · curl d|2
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and therefore ψ1 can be expressed as

ρψ1 = µ1(div d)2 + µ2(d · curl d)2 + µ3|d× curl d|2.

While in theory the µ’s could depend on the vector d, the symmetry requirement µi(Qd) =

µi(d) for all proper orthogonal Q requires that µi depend on d only through its length |d|.
However since d is a unit vector, it follows that the µ’s are independent of d.

We leave the details of the analysis of ψ2 and ψ3 as an exercise. For ψ2, which is

quadratic in curl d, one can show that rotational invariance about d implies that it be a

linear combination of

(d · curl d)2, |d× curl d|2.

Similarly for ψ3, one can show that rotational symmetry about d and invariance under a

change of sign of d imply that it only involves the term |d× curl d|2.

Thus in summary we conclude that the free energy is given by

ρψ =
1

2
K1(div d)2 +

1

2
K2(d · curl d)2 +

1

2
K3|d× curl d|2

which is the Frank free energy (13.33).

Problem 13.10. Frank free energy. Physical derivation. The three basic modes of liquid

crystal deformation are illustrated in Figure 13.3. Show that the first, second and third

terms in the Frank free energy

ρψ(d, grad d) =
1

2
K1(div d)2 +

1

2
K2(d · curl d)2 +

1

2
K3|d× curl d|2 (13.55)

are associated with the splay, twist and bend modes respectively. Remark: Note that d is

parallel to curl d in pure twist, while d is perpendicular to curl d in pure bend.

Problem 13.11. Frank free energy. Material Frame Indifference. Show that the Frank free

energy

ρψ(d, grad d) =
1

2
K1(div d)2 +

1

2
K2(d · curl d)2 +

1

2
K3|d× curl d|2

has the property ψ(d,G) = ψ(Qd,QGQT ) for all rotations Q as required by material frame

indifference.
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(b)(a)

ee22

ee33

ee11

(c)

Figure 13.3: Schematic depiction of the three basic modes of distortion: (a) splay, (b) twist, and (c) bend.

Consider a pair of flat plates that are initially parallel to each other, the space between them filled by a

nematic liquid crystal, and which anchor the director in the respective directions (a) e3, (b) e1, and (c) e1.

The plates are then rotated in opposite directions about the (a) e2-, (b) e3-, and (c) e2-axes respectively.

Problem 13.12. The extra stress τ . Derive the constitutive relation (13.36) for the extra

stress, starting from the ansatz that τ (d,
o

d,D) is linear in
o

d and D and that it vanishes in

equilibrium. Note: This could, for example, be an approximation of a general constitutive

relation for τ (d,
o

d,D) for motions that are not far from equilibrium, i.e. where
o

d and D are

small.

Solution Since we are told that the constitutive relation for the extra stress τ (d,
o

d,D) is

linear in
o

d and D and that it vanishes in equilibrium, we can write

τij = Aijk
o

dk +Bijk`Dk` (13.56)

where A and B are functions of d. For a nematic liquid crystal one must have rotational

symmetry about the axis d. Smith and Rivlin5 have shown that in this event A and B must

be comprised of linear combinations of products of δij and di. The most general forms of A

5G.F. Smith and R.S. Rivlin, The anisotropic tensors, Quarterly Journal of Applied Mathematics, volume

15, 1957, pp. 308-314.
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and B are therefore

Aijk = µ1δijdk + µ2δjkdi + µ3δkidj + µ4didjdk,

Bijk` = µ5δijδk` + µ6δikδj` + µ7δi`δjk

+ µ8δijdkd` + µ9δjkdid` + µ10δikdjd` + µ11δi`djdk + µ12δj`didk + µ13δk`didj

+ µ14didjdkd`.

(13.57)

If we substitute (13.57) into (13.56) and simplify the result, making use of d·
o

d= 0 and

tr D = 0, we find that the terms involving µ1 and µ4 do not contribute to the extra stress.

Moreover, the term involving µ8 leads to a scalar multiple of the identity. This term can

be absorbed into the pressure term −p I in the Cauchy stress T, and so the term associated

with µ8 can be omitted from the extra stress. This leads to

τ = α1(d ·Dd)d⊗ d + α2

o

d ⊗d + α3d⊗
o

d +α4D + α5Dd⊗ d + α6d⊗Dd

where we have set α1 = µ14, α2 = µ3, α3 = µ2, α4 = µ6 + µ7, α5 = µ10 + µ11, α6 = µ9 + µ12.

This is precisely the form (13.36) given previously where the α’s are material constants

known as the Leslie viscosities.
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