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Chapter 1

Introduction

These notes are intended to provide a survey of basic concepts in fluid dynamics
as a preliminary to the study of dynamical meteorology. They are based on a more
extensive course of lectures prepared by Professor B. R. Morton of Monash University,
Australia.

1.1 Description of fluid flow

The description of a fluid flow requires a specification or determination of the velocity
field, i.e. a specification of the fluid velocity at every point in the region. In general,
this will define a vector field of position and time, u = u(x, t).

Steady flow occurs when u is independent of time (i.e., ∂u/∂t ≡ 0). Otherwise
the flow is unsteady.

Streamlines are lines which at a given instant are everywhere in the direction
of the velocity (analogous to electric or magnetic field lines). In steady flow the
streamlines are independent of time, but the velocity can vary in magnitude along a
streamline (as in flow through a constriction in a pipe) - see Fig. 1.1.

Figure 1.1: Schematic diagram of flow through a constriction in a pipe.
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Particle paths are lines traced out by “marked” particles as time evolves. In
steady flow particle paths are identical to streamlines; in unsteady flow they are
different, and sometimes very different. Particle paths are visualized in the laboratory
using small floating particles of the same density as the fluid. Sometimes they are
referred to as trajectories.

Filament lines or streaklines are traced out over time by all particles passing
through a given point; they may be visualized, for example, using a hypodermic
needle and releasing a slow stream of dye. In steady flow these are streamlines; in
unsteady flow they are neither streamlines nor particle paths.

It should be emphasized that streamlines represent the velocity field at a specific
instant of time, whereas particle paths and streaklines provide a representation of
the velocity field over a finite period of time. In the laboratory we can obtain
a record of streamlines photographically by seeding the fluid with small neutrally
buoyant particles that move with the flow and taking a short exposure (e.g. 0.1 sec),
long enough for each particle to trace out a short segment of line; the eye readily
links these segments into continuous streamlines. Particle paths and streaklines are
obtained from a time exposure long enough for the particle or dye trace to traverse
the region of observation.

1.2 Equations for streamlines

The streamline through the point P , say (x, y, z), has the direction of u = (u, v, w).

Figure 1.2: Velocity vector and streamline

Let Q be the neighbouring point (x+ δx, y+ δy, z+ δz) on the streamline. Then
δx ≈ uδt, δy ≈ vδt, δz ≈ wδt and as δt→ 0, we obtain the differential relationship

dx

u
=
dy

v
=
dz

w
, (1.1)

between the displacement dx along a streamline and the velocity components. Equa-
tion (1.1) gives two differential equations (why?). Alternatively, we can represent the
streamline parameterically (with time as parameter) as
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∫
dx

u
=

∫
dt,

∫
dy

v
=

∫
dt,

∫
dz

w
=

∫
dt, (1.2)

Example 1

Find the streamlines for the velocity field u = (−Ωy, Ωx, 0), where Ω is a constant.

Solution

Eq. (1.1) gives

− dx

Ωy
=
dy

Ωx
=
dz

0
.

The first pair of ratios give ∫
Ω (x dx+ y dy) = 0

or
x2 + y2 = Γ(z),

where Γ is an arbitrary function of z. The second pair give∫
dz = 0 or z = constant.

Hence the streamlines are circles x2 + y2 = c2 in planes z = constant (we have
replaced Γ(z), a constant when z is constant, by c2).

Note that the velocity at P with position vector x can be expressed as u = Ωk∧x
and corresponds with solid body rotation about the k axis with angular velocity Ω.

1.3 Distinctive properties of fluids

Although fluids are molecular in nature, they can be treated as continuous media
for most practical purposes, the exception being rarefied gases. Real fluids generally
show some compressibility defined as

κ =
1

ρ

dρ

dp
=

change in density per unit change in pressure

density
,

but at normal atmospheric flow speed, the compressibility of air is a relative by
small effect and for liquids it is generally negligible. Note that sound waves owe their
existence to compressibility effects as do “supersonic bangs” produced by aircraft
flying faster than sound. For many purposes it is accurate to assume that fluids are
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incompressible, i.e. they suffer no change in density with pressure. For the present
we shall assume also that they are homogeneous, i.e., density ρ = constant.

When one solid body slides over another, frictional forces act between them to
reduce the relative motion. Friction acts also when layers of fluid flow over one
another. When two solid bodies are in contact (more precisely when there is a
normal force acting between them) at rest, there is a threshold tangential force below
which relative motion will not occur. It is called the limiting friction. An example
is a solid body resting on a flat surface under the action of gravity (see Fig. 1.3).

Figure 1.3: Forces acting on a rigid body at rest.

As T is increased from zero, F = T until T = μN , where μ is the so-called
coefficient of limiting friction which depends on the degree of roughness between the
surface. For T > μN , the body will overcome the frictional force and accelerate.
A distinguishing characteristic of most fluids in their inability to support tangential
stresses between layers without motion occurring; i.e. there is no analogue of limiting
friction. Exceptions are certain types of so-called visco-elastic fluids such as paint.

Fluid friction is characterized by viscosity which is a measure of the magnitude
of tangential frictional forces in flows with velocity gradients. Viscous forces are
important in many flows, but least important in flow past “streamlined” bodies. We
shall be concerned mainly with inviscid flows where friction is not important, but it
is essential to acquire some idea of the sort of flow in which friction may be neglected
without completely misrepresenting the behaviour. The total neglect of friction is
risky!

To begin with we shall be concerned mainly with homogeneous, incompressible
inviscid flows.

1.4 Incompressible flows

Consider an element of fluid bounded by a “tube of streamlines”, known as a stream
tube. In steady flow, no fluid can cross the walls of the stream tube (as they are
everywhere in the direction of flow).

Hence for incompressible fluids the mass flux ( = mass flow per unit time) across
section 1 (= ρv1S1) is equal to that across section 2 (= ρv2S2), as there can be no
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accumulation of fluid between these sections. Hence vS = constant and in the limit,
for stream tubes of small cross-section, vS = constant along an elementary stream
tube.

vS = constant along an elementary stream tube.

Figure 1.4:

It follows that, where streamlines contract the velocity increases, where they ex-
pand it decreases. Clearly, the streamline pattern contains a great deal of information
about the velocity distribution.

All vector fields with the property that

(vector magnitude) × (area of tube)

remains constant along a tube are called solenoidal. The velocity field for an incom-
pressible fluid is solenoidal.

1.5 Conservation of mass: the continuity equation

Apply the divergence theorem∫
V

∇ · u dV =

∫
S

u · n ds

to an arbitrarily chosen volume V with closed surface S (Fig. 1.5).Let n be a unit
outward normal to an element of the surface ds u.c. If the fluid is incompressible
and there are no mass sources or sinks within S, then there can be neither continuing
accumulation of fluid within V nor continuing loss. It follows that the net flux of
fluid across the surface S must be zero, i.e.,∫

S

u · n dS = 0,

whereupon
∫
V
∇ · u dV = 0. This holds for an arbitrary volume V , and therefore

∇ · u = 0 throughout an incompressible flow without mass sources or sinks. This is
the continuity equation for a homogeneous, incompressible fluid. It corresponds with
mass conservation.
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Figure 1.5:



Chapter 2

Equation of motion: some
preliminaries

The equation of motion is an expression of Newtons second law of motion:

mass × acceleration = force.

To apply this law we must focus our attention on a particular element of fluid,
say the small rectangular element which at time t has vertex at P [= (x, y, z)] and
edges of length δx, δy, δz. The mass of this element is ρ δx δy δz, where ρ is the
fluid density (or mass per unit volume), which we shall assume to be constant.

Figure 2.1: Configuration of a small rectangular element of fluid.

The velocity in the fluid, u = u(x, y, z, t) is a function both of position (x, y, z)
and time t, and from this we must derive a formula for the acceleration of the element
of fluid which is changing its position with time. Consider, for example, steady flow
through a constriction in a pipe (see Fig. 1.1). Elements of fluid must accelerate
into the constriction as the streamlines close in and decelerate beyond as they open
out again. Thus, in general, the acceleration of an element (i.e., the rate-of-change
of u with time for that element) includes a rate-of-change at a fixed position ∂u/∂t

9
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Figure 2.2:

and in addition a change associated with its change of position with time. We derive
an expression for the latter in section 2.1.

The forces acting on the fluid element consist of:

(i) body forces, which are forces per unit mass acting throughout the fluid because
of external causes, such as the gravitational weight, and

(ii) contact forces acting across the surface of the element from adjacent elements.

These are discussed further in section 2.2.

2.1 Rate-of-change moving with the fluid

We consider first the rate-of-change of a scalar property, for example the temperature
of a fluid, following a fluid element. The temperature of a fluid, T = T (x, y, z, t),
comprises a scalar field in which T will vary, in general, both with the position and
with time (as in the water in a kettle which is on the boil). Suppose that an element
of fluid moves from the point P [= (x, y, z)] at time t to the neighbouring point Q at
time t+ Δt. Note that if we stay at a particular point (x0, y0, z0), then T (x0, y0, z0)
is effectively a function of t only, but that if we move with the fluid, T is a function
both of position (x, y, z) and time t. It follows that the total change in T between
P and Q in time Δt is

ΔT = TQ − TP = T (x+ Δx, y + Δy, z + Δz, t+ Δt) − T (x, y, z, t),

and hence the total rate-of-change of T moving with the fluid is

lim
Δt→0

ΔT

Δt
= lim

Δt→0

T (x+ Δx, y + Δy, z + Δz, t+ Δt) − T (x, y, z, t)

Δt
.

For small increments Δx,Δy,Δz,Δt, we may use a Taylor expansion

T (x+ Δx, y + Δy, z + +Δz, t+ Δt) − T (x, y, z, t) +

[
∂T

∂t

]
P

Δt+
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[
∂T

∂x

]
P

Δx+

[
∂T

∂y

]
P

Δy +[
∂T

∂z

]
P

Δz + higher order terms in Δx, Δy, Δz, Δt .

Hence the rate-of-change moving with the fluid element

= lim
Δt→0

[
∂T

∂t
Δt+

∂T

∂x
Δx+

∂T

∂y
Δy +

∂T

∂z
Δz

]
/Δt

=
∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
+ w

∂T

∂z
,

since higher order terms → 0 and u = dx/dt, v = dy/dt, w = dz/dt, where r = r(t) =
(x(t), y(t), z(t)) is the coordinate vector of the moving fluid element. To emphasize
that we mean the total rate-of-change moving with the fluid we write

DT

Dt
=
∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
+ w

∂T

∂z
(2.1)

Here, ∂T/∂t is the local rate-of-change with time at a fixed position (x, y, z), while

u
∂T

∂x
+ v

∂T

∂y
+ w

∂T

∂z
= u · ∇T

is the advective rate-of-change associated with the movement of the fluid element.
Imagine that one is flying in an aeroplane that is moving with velocity c(t) =
(dx/dt, dy/dt, dz/dt) and that one is measuring the air temperature with a ther-
mometer mounted on the aeroplane. According to (2.1), if the air temperature
changes both with space and time, the rate-of-change of temperature that we would
measure from the aeroplane would be

dT

dt
=
∂T

∂t
+ c · ∇T. (2.2)

The first term on the right-hand-side of (2.2) is just the rate at which the tem-
perature is varying locally ; i.e., at a fixed point in space. The second term is the
rate-of-change that we observe on account of our motion through a spatially-varying
temperature field. Suppose that we move through the air at a speed exactly equal to
the local flow speed u, i.e., we move with an air parcel. Then the rate-of-change of
any quantity related to the air parcel, for example its temperature or its x-component
of velocity, is given by

∂

∂t
+ u · ∇ (2.3)

operating on the quantity in question. We call this the total derivative and often
use the notation D/Dt for the differential operator (2.3). Thus the x-component of
acceleration of the fluid parcel is
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Du

Dt
=
∂u

∂ t
+ u · ∇u, (2.4)

while the rate at which its potential temperature changes is expressed by

Dθ

Dt
=
∂θ

∂ t
+ u · ∇θ. (2.5)

Consider, for example, the case of potential temperature. In many situations,
this is conserved following a fluid parcel, i.e.,

Dθ

Dt
= 0. (2.6)

In this case it follows from (2.5) and (2.6) that

∂θ

∂t
= −u · ∇θ. (2.7)

This equation tells us that the rate-of-change of potential temperature at a point is
due entirely to advection, i.e., it occurs solely because fluid parcels arriving at the
point come from a place where the potential temperature is different.

For example, suppose that there is a uniform temperature gradient of −1◦ C/100
km between Munich and Frankfurt, i.e., the air temperature in Frankfurt is cooler. If
the wind is blowing directly from Frankfurt to Munich, the air temperature in Munich
will fall steadily at a rate proportional to the wind speed and to the temperature
gradient. If the air temperature in Frankfurt is higher than in Munich, then the
temperature in Munich will rise. The former case is one of cold air advection (cold
air moving towards a point); the latter is one of warm air advection.

Example 2

Show that

DF

Dt
=
∂F

∂T
+ (u · ∇) F

represents the total rate-of-change of any vector field F moving with the fluid velocity
(velocity field u), and in particular that the acceleration (or total change in u moving
with the fluid) is

Du

Dt
=
∂u

∂t
+ (u · ∇) u.

Solution

The previous result for the rate-of-change of a scalar field can be applied to each of
the component of F, or to each of the velocity components (u, v, w) and these results
follow at once.
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Example 3

Show that
Dr

Dt
= u.

Solution

Dr

Dt
=
∂r

∂t
+ (u · ∇) r = 0 +

(
u
∂

∂x
+ v

∂

∂y
+ w

∂

∂z

)
(x, y, z) = (u, v, w)

as x, y, z, t are independent variables.

2.2 Internal forces in a fluid

An element of fluid experiences “contact” or internal forces across its surface due to
the action of adjacent elements. These are in many respects similar to the normal
reaction and tangential friction forces exerted between two rigid bodies, except, as
noted earlier, friction in fluids is found to act only when the fluid is in non-uniform
motion.

Figure 2.3: Forces on small surface element δS in a fluid.

Consider a region of fluid divided into two parts by the (imaginary) surface S,
and let δS be a small element of S containing the point P and with region 1 below
and region 2 above S. Let (δX, δY, δZ) denote the force exerted on fluid in region 1
by fluid region 2 across δS.

This elementary force is the resultant (vector sum) of a set of contact forces acting
across δS, in general it will not act through P ; alternatively, resolution of the forces
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will yield a force (δX, δY, δZ) acting through P together with an elementary couple

with moment of magnitude on the order of (δS)1/2 (δX2 + δY 2 + δZ2)
1/2

.
The main force per unit area exerted by fluid 2 on fluid 1 across δS,[

δX

δS
,
δY

δS
,
δZ

δS

]
is called the mean stress. The limit as δS → 0 in such a way that it always contains
P , if it exists, is the stress at P across S. Stress is a force per unit area. The stress
F is generally inclined to the normal n to S at P , and varies both in magnitude and
direction as the orientation n of S is varied about the fixed point P .

The stress F may be resolved into a normal reaction N , or tension, acting normal
to S and shearing stress T , tangential to S, each per unit area.

Figure 2.4: The stress on a surface element δS can be resolved into normal and
tangential components.

Note that in the limit δS → 0 there is no resultant bending moment as

lim
δS→0

δM

δS
lim
δS→0

∼ (δS)1/2

[(
δX

δS

)2

+

(
δY

δS

)2

+

(
δZ

δS

)2
]1/2

= 0

provided that the stress is bounded.
The stress and its reaction (exerted by fluid in region 1 on fluid in region 2) are

equal and opposite. This follows by considering the equilibrium of an infinitesimal
slice at P ; see Fig. 2.5.

2.2.1 Fluid and solids: pressure

If the stress in a material at rest is always normal to the measuring surface for
all points P and surfaces S, the material is termed a fluid ; otherwise it is a solid.
Solids at rest sustain tangential stresses because of their elasticity, but simple fluids
do not possess this property. By assuming the material to be at rest we eliminate
the shearing stress due to internal friction. Many real fluids conform closely to this
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Figure 2.5: The stress and its reaction are equal and opposite.

definition including air and water, although there are more complex fluids possessing
both viscosity and elasticity. A fluid can be defined also as a material offering no
initial resistance to shear stress, although it is important to realize that frictional
shearing stresses appear as soon as motion begins, and even the smallest force will
initiate motion in a fluid in time. The property of internal friction in a fluid is known
as viscosity.

Although the term tension is usual in the theory of elasticity, in fluid dynamics
the term pressure is used to denote the hydrostatic stress, reversed in sign. In a fluid
at rest the stress acts normally outwards from a surface, whereas the pressure acts
normally inwards from the fluid towards the surface.

2.2.2 Isotropy of pressure

The pressure at a point P in a continuous fluid is isotropic; i.e., it is the same for
all directions n. This is proved by considering the equilibrium of a small tetrahedral
element of fluid with three faces normal to the coordinate axes and one slant face.
The proof may be found in any text on fluid mechanics.

2.2.3 Pressure gradient forces in a fluid in macroscopic equi-

librium

Pressure is independent of direction at a point, but may vary from point to point in
a fluid. Consider the equilibrium of a thin cylindrical element of fluid PQ of length
δs and cross-section A, and with its ends normal to PQ. Resolve the forces in the
direction P for the fluid at rest. Then pressure acts normally inwards on the curved
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cylindrical surface and has no component in the direction of PQ (2.6). Thus the
only contributions are from the plane ends.

Figure 2.6: Pressure forces on a cylindrical element of fluid.

The net force in the direction PQ due to the pressure thrusts on the surface of
the element is

pA− (p+ δp)A = −∂p
∂s
A δs = −∂p

∂s
δV,

where dV is the volume of the cylinder. In the limit δs→ 0, A→ 0, the net pressure
thrust → − (∂p/∂s) dV, or − ∂p/∂s = −ŝ · ∇p per unit volume of fluid (ŝ being a
unit vector in the direction PQ). It follows that −∇p is the pressure gradient force
per unit volume of fluid, and −n̂ · ∇p is the component of pressure gradient force
per unit volume in the direction n̂.

Figure 2.7: A horizontal cylindrical element of fluid in equilibrium.

2.2.4 Equilibrium of a horizontal element

The cylindrical element shown in Fig. 2.7 is in equilibrium under the action of
the pressure over its surface and its weight. Resolving in the direction PQ, the
x-direction, the only force arises from pressure acting on the ends
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pA− (p+ δs) A = −Aδp
δx
δx = −δp

δx
δV

and hence in equilibrium in the limit δV → 0,

−δp
δx

= 0.

Alternatively, the horizontal component of pressure gradient force per unit volume
is −i · ∇p = −∂p/∂x = 0, from the assumption of equilibrium.

Thus p is independent of horizontal distance x, and is similarly independent of
horizontal distance y. It follows that

p = p(z)

and surfaces of equal pressure (isobaric surfaces) are horizontal in a fluid at rest.

2.2.5 Equilibrium of a vertical element

For a vertical cylindrical element at rest in equilibrium under the action of pressure
thrusts and the weight of fluid

−k · ∇p δV + ρg δV = 0, where k = (0, 0, 1).

Thus 1 dp
dz

= ρg, per unit volume, since p = p(z) only (otherwise we would write

∂p/∂z!). Hence ρ = 1
g
dp
dz

is a function of z at most, i.e., ρ = ρ(z).

2.2.6 Liquids and gases

Liquids undergo little change in volume with pressure over a very large range of
pressures and it is frequently a good assumption to assume that ρ = constant. In
that case, the foregoing equation integrates to give

p = p0 + ρgz,

where p = p0 at the level z = 0.
Ideal gases are such that pressure, density and temperature are related through

the ideal gas equation, p = ρRT , where T is the absolute temperature and R is
the specific gas constant. If a certain volume of gas is isothermal (i.e., has constant
temperature), then pressure and density vary exponentially with depth with a so-
called e-folding scale H = RT/g (see Ex. 4).

1Here z measures downwards so that sgn(δz) = sgn(δp). Normally we take z upwards whereupon
dp/dz = −ρg.
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Figure 2.8: Equilibrium forces on a vertical cylindrical element of fluid at rest.

2.2.7 Archimedes Principle

In a fluid at rest the net pressure gradient force per unit volume acts vertically
upwards and is equal to −dp/dz (when z points upwards) and the gravitational force
per unit volume is ρg. Hence, for equilibrium, dp/dz = −ρg. Consider the vertically-
oriented cylindrical element P1P2 of an immersed body which intersects the surface
of the body to form surface elements δS1 and δS2. These surface elements have
normals n1, n2 inclined at angles θ1, θ2 to the vertical.

The net upward thrust on these small surfaces

= p2 cos θ2 δS2 − p1 cos θ1 δS1 = (p2 − p1) δS,

where δS1cosθ1 = δS2cosθ2 = δS is the horizontal cross-sectional area of the cylinder.
Since

p1 − p2 = −
∫ z1

z2

ρg dz ,

the net upward thrust

=

(∫ z1

z2

ρg dz

)
δS

= The weight of liquid displaced by the cylindrical element.

If this integration is now continued over the whole body we have Archimedes Principle
which states that the resultant thrust on an immersed body has a magnitude equal
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Figure 2.9: Pressure forces on an immersed body or fluid volume.

to the weight of fluid displaced and acts upward through the centre of mass of the
displaced fluid (provided that the gravitational field is uniform).

Exercises

1. If you suck a drink up through a straw it is clear that you must accelerate
fluid particles and therefore must be creating forces on the fluid particles near
the bottom of the straw by the action of sucking. Give a concise, but careful
discussion of the forces acting on an element of fluid just below the open end
of the straw.

2. Show that the pressure at a point in a fluid at rest is the same in all directions.

3. Show that the force per unit volume in the interior of homogeneous fluid is
−∇p, and explain how to obtain from this the force in any specific direction.

4. Show that, in hydrostatic equilibrium, the pressure and density in an isothermal
atmosphere vary with height according to the formulae

p(z) = p(0) exp(−z/HS) ,
ρ(z) = ρ(0) exp(−z/HS) ,

where Hs = RT/g and z points vertically upwards. Show that for realistic
values of T in the troposphere, the e-folding height scale is on the order of 8
km.



CHAPTER 2. EQUATION OF MOTION: SOME PRELIMINARIES 20

5. A factory releases smoke continuously from a chimney and we suppose that the
smoke plume can be detected far down wind. On a particular day the wind
is initially from the south at 0900 h and then veers (turns clockwise) steadily
until it is from the west at 1100 h. Draw initial and final streamlines at 0900
and 1100 h, a particle path from 0900 h to 1100 h, and filament line from 0900
to 1100 h.

6. Show that the streamline through the origin in the flow with uniform velocity
(U, V,W ) is a straight line and find its direction cosines.

7. Find streamlines for the velocity field u = (αx,−αy, 0), where α is constant,
and sketch them for the case α > 0.

8. Show that the equation for a particle path in steady flow is determined by the
differential relationship

dx

u
=
dy

v
=
dz

w
,

where u = (u, v, w) is the velocity at the point (x, y, z). What does this
relationship represent in unsteady flow?

9. A stream is broad and shallow with width 8 m, mean depth 0.5 m, and mean
speed 1ms−1. What is its volume flux (rate of flow per second) in m3 s−1? It
enters a pool of mean depth 3 m and width 6 m: what then is its mean speed?
It continues over a waterfall in a single column with mean speed 10ms−1 at its
base: what is the mean diameter of this column at the base of the waterfall?
Will the diameter of the water column at the top of the waterfall be greater,
equal to, or less at its base? Why?

10. Under what condition is the advective rate-of-change equal to the total rate-
of-change?

11. Express u·∇ and ∇·u in Cartesian form and show that they are quite different,
one being a scalar function and one a scalar differential operator.

12. Some books use the expression df/dt. Would you identify this with Df/Dt or
∂f/∂t in a field f(x, y, z, t)?

13. The vector differential operator del (or nabla) is defined as

∇ ≡
[
∂

∂x
,
∂

∂y
,
∂

∂z

]

in rectangular Cartesian coordinates. Express in full Cartesian form the quan-
tities: ∇ · u, ∇∧ u, u · ∇, ∇ · ∇ and identify each.
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14. Are the two x-components in rectangular Cartesian coordinates,

(u · ∇u)x and
(∇1

2
u2

)
x

the same or different? Note that (u ·∇)u = ∇(1
2
u)2 −u∧ω, where ω = ∇∧u.



Chapter 3

Equations of motion for an inviscid
fluid

The equation of motion for a fluid follows from Newtons second law, i.e.,

mass × acceleration = force.

If we apply the equation to a unit volume of fluid:

(i) the mass of the element is ρ kg m−3;

(ii) the acceleration must be that following the fluid element to take account both
of the change in velocity with time at a fixed point and of the change in position
within the velocity field at a fixed time,

Du

Dt
=
∂u

∂t
+ (u · ∇) u =

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
;

(iii) the total force acting on the element (neglecting viscosity or fluid friction)
comprises the contact force acting across the surface of the element −∇p per
unit volume, which is a pressure gradient force arising from the difference in
pressure across the element, and any body forces F, acting throughout the fluid
including especially the gravitational weight per unit volume, −gk.

The resulting equation of motion or momentum equation for inviscid fluid flow,

ρ
Du

Dt
= −∇p + ρF , per unit volume,

or
∂u

∂ t
+ (u · ∇) u = −1

ρ
∇p+ F , per unit mass,

22
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is known as Euler’s equation. In rectangular Cartesian coordinates (x, y, z) with
velocity components (u, v, w) the component equations are

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
= −1

ρ

∂p

∂x
+X ,

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
= −1

ρ

∂p

∂y
+ Y ,

∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z
= −1

ρ

∂p

∂z
+ Z ,

where F = (X, Y, Z) is the external force per unit mass (or body force). These are
three partial differential equations in the four dependent variables u, v, w, p and four
independent variables x, y, z, t. For a complete system we require four equations in
the four variables, and the extra equation is the conservation of mass or continuity
equation which for an incompressible fluid has the form

∇ · u = 0, or
∂ u

∂ x
+
∂ v

∂ y
+
∂ w

∂ z
= 0.

3.1 Equations of motion for an incompressible vis-

cous fluid

It can be shown that the viscous (frictional) forces in a fluid may be expressed as
μ∇2u = ρν∇2u where μ the coefficient of viscosity and ν = μ/ρ the kinematic
viscosity provide a measure of the magnitude of the frictional forces in particular
fluid, i.e., μ and ν are properties of the fluid and are relatively small in air or water
and large in glycerine or heavy oil. In a viscous fluid the equation of motion for unit
mass,

∂u

∂t
+ (u · ∇) u = − 1

ρ
∇p + F + ν∇2u

local accel-
eration

advective
accelera-
tion

pressure
gradient
force

body force viscous
force

is known as the Navier-Stokes equation. We require also the continuity equation,

∇ · u = 0,

to close the system of four differential equations in four dependent variables. There
is no equivalent to the continuity equation in either particle or rigid body mechanics,
because in general mass is permanently associated with bodies. In fluids, however,
we must ensure that holes do not appear or that fluid does not double up, and we
do this by requiring that ∇ · u = 0, which implies that in the absence of sources
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or sinks there can be no net flow either into or out of any closed surface. We may
regard this as a geometric condition on the flow of an incompressible fluid. It is not,
of course, satisfied by a compressible fluid (c.f. a bicycle pump). We say that any
incompressible flow satisfying the continuity equation ∇ · u = 0 is a kinematically
possible motion.

The Navier-Stokes equation plus continuity equation are extremely important,
but extremely difficult to solve. With possible further force terms on the right, they
represent the behaviour of gaseous stars, the flow of oceans and atmosphere, the
motion of the earth’s mantle, blood flow, air flow in the lungs, many processes of
chemistry and chemical engineering, the flow of water in rivers and in the permeable
earth, aerodynamics of aeroplanes, and so forth....

The difficulty of solution, and there are probably no more than a dozen or so
solutions known for very simple geometries, arises from:

(i) the non-linear term (u ·∇)u as a result of which, if u1 and u2 are two solutions
of the equation, c1u1 + c2u2 (where c1 and c2 are constants) is in general not a
solution, so that we lose one of our main methods of solution;

(ii) the viscous term, which is small relative to other terms except close to bound-
aries, yet it contains the highest order derivatives(

∂2u/∂ x2 , ∂2u/∂ y2 , ∂2u/∂ z2
)
,

and hence determines the number of spatial boundary conditions that must be
imposed to determine a solution.

The Navier-Stokes equation is too difficult for us to handle at present and we
shall concentrate on Euler’s equation from which we can learn much about fluid
flow. Euler’s equation is still non-linear, but there are clever methods to bypass this
difficulty.

Example 4

Find the velocity field u = (−Ωy,Ωx, 0) for Ω constant as a possible flow of an
incompressible liquid in a uniform gravitational field F ≡ g = (0, 0, −g).

Solution

(i) This is a kinematically-possible steady incompressible flow, as u satisfies the
continuity equation

∇ · u =
∂ u

∂ x
+
∂ v

∂ y
+
∂ w

∂ z
= 0 + 0 + 0 = 0.
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(ii) We find the corresponding pressure field from Euler’s equation.

u · ∇u = −1

ρ
∇p+ g.

If the given velocity field is substituted in the Euler’s equation and it is rear-
ranged in component form,

∂ p

∂ x
= ρΩ2x,

∂p

∂y
= ρΩ2y,

∂p

∂z
= −ρ g.

We may now solve these three equations as follows.

∂ p

∂ x
≡

[
∂ p

∂ x

]
y,z constant

= ρΩ2x ⇒ p =
1

2
ρΩ2x2 + constant

where “constant” can include arbitrary functions of both y and z (Check:
∂ p/∂ x = ρΩ2x + 0). We continue in like manner with the other component
equations:

∂ p

∂ y
= ρΩ2y ⇒ p =

1

2
ρΩ2y2 + g(z, x),

∂ p

∂ z
= −ρ g ⇒ p = −ρ gz + h(x, y),

where f(y, z), g(z, x) and h(x, y) are arbitrary functions. By comparison of the
three solutions we see that f(y, z) must incorporate 1

2
ρΩ2y2 and −ρgz and so

forth. Hence the full solution is

p =
1

2
ρΩ2(x2 + y2) − ρ gz + constant,

and we find that this solution does in fact satisfy each of the component Euler
equations. On a free surface containing the origin O(x = 0, y = 0, z = 0), p =
po ⇒ the constant = po, where po is atmospheric pressure, and r2 = x2 + y2,

p = po +
1

2
ρΩ2r2 − ρ gz.

(iii) The equation for the free surface is now given by p = p0 over the whole liquid
surface, which therefore has equation

z =
ρΩ2

2ρ g
r2 =

Ω2

2g
r2.
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(iv) Streamlines in the flow are given by

dx

u
=
dy

v
=
dz

w
, or

dx

−Ωy
=
dy

Ωx
=
dz

0
,

yielding two relations

∫
Ωx dx+

∫
Ωy dy = 0 ⇒ x2 + y2 = constant∫

dz = 0 ⇒ z = constant

and streamlines are circles about the z-axis in planes z = constant. The velocity
field represents rigid body rotation of fluid with angular velocity Ω about the
axis Oz (imagine a tin of water on turntable!).

3.2 Equations of motion in cylindrical polars

Take the cylindrical polars (r, θ, z) and velocity (vr, vθ, vz). These are more com-
plicated than rectangular Cartesians as vr, vθ change in direction with P (in fact
OP rotates about Oz with angular velocity vθ/r). Suppose that r̂, n̂, ẑ are the unit
vectors at P in the radial, azimuthal and axial directions, as sketched in Fig. 3.1.
Then ẑis fixed in direction (and, of course, magnitude) but r̂ and n̂ rotate in the
plane z = 0 as P moves, and it follows that dẑ/dt = 0, but that

dr̂

dt
= n̂θ̇,

dn̂

dt
= (−r̂)θ̇ = −r̂θ̇

Hence, as θ̇ = vθ/r,

v = (vrr̂ + vθn̂ + vzẑ) ,

v̇ = v̇r r̂ + vr
dr̂

dt
+ v̇θn̂ + vθ

dn̂

dt
+ v̇zẑ = (v̇r − vrθ/r) r̂ + (v̇θ + vrvθ/r) n̂ + v̇zẑ.

Recalling also that d/dt must be interpreted here as D/Dt, the acceleration is[
Dvr
Dt

− v2
θ

r
,
Dvθ
Dt

+
vrvθ
r
,
Dvz
Dt

]
.

If we now write (u, v, w) in place of (vr, vθ, vz), Euler’s equations in cylindrical
polar coordinates take the form
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Figure 3.1: Velocity vectors and coordinate axes in cylindrical polar coordinates.

∂ u

∂ r
+

1

r

∂ v

∂ θ
+
∂ ω

∂ z
= 0

∂ u

∂ t
+ u

∂ u

∂ r
+
v

r

∂ u

∂ θ
+ w

∂ u

∂ z
− v2

r
= −1

ρ

∂ p

∂ r
+ Fr ,

∂ v

∂ t
+ u

∂ v

∂ r
+

v

r

∂ v

∂ θ
+ w

∂ v

∂ z
+
uv

r
= − 1

ρ r

∂ p

∂ θ
+ Fθ ,

∂ w

∂ t
+ u

∂ w

∂ r
+
v

r

∂ w

∂ θ
+ w

∂ w

∂ z
= − 1

ρ

∂ p

∂ z
+ Fz .

3.3 Dynamic pressure (or perturbation pressure)

If in Euler’s equation for an incompressible fluid,

Du

Dt
= −1

ρ
∇p+ g, (3.1)

we put u = 0 to represent the equilibrium or rest state,
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0 = −1

ρ
∇p0 + g (3.2)

This is merely the hydrostatic equation

∇p0 = ρg or
∂ p0

∂ x
= 0,

∂ p0

∂ y
= 0,

∂ p0

∂ z
= −ρ g,

where p0 is the hydrostatic pressure. Subtracting (3.1)-(3.2) we obtain

Du

Dt
= −1

ρ
∇(p− p0) = −1

ρ
∇pd

where pd = p−p0 = (total pressure) - (hydrostatic pressure) is known as the dynamic
pressure (or sometimes, especially in dynamical meteorology, the perturbation pres-
sure). The dynamic pressure is the excess of total pressure over hydrostatic pressure,
and is the only part of the pressure field associated with motion.

We shall usually omit the suffix d since it is fairly clear that if g is included we
are using total pressure, and if no g appears we are using the dynamic pressure,

Du

Dt
=
∂ u

∂ t
+ (u · ∇) u = −1

ρ
∇p.

3.4 Boundary conditions for fluid flow

(i) Solid boundaries : there can be no normal component of velocity through the
boundary. If friction is neglected there may be free slip along the boundary,
but friction has the effect of slowing down fluid near the boundary and it
is observed experimentally that there is no relative motion at the boundary,
either normal or tangential to the boundary. In fluids with low viscosity, this
tangential slowing down occurs in a thin boundary layer, and in a number of
important applications this boundary layer is so thin that it can be neglected
and we can say approximately that the fluid slips at the surface; in many other
cases the entire boundary layer separates from the boundary and the inviscid
model is a very poor approximation. Thus, in an inviscid flow (also called the
flow of an ideal fluid) the fluid velocity must be tangential at a rigid body, and:

for a surface at rest n · u = 0;
for a surface with velocity us n · (u − us) = 0.

(ii) Free boundaries: at an interface between two fluids (of which one might be
water and one air) the pressure must be continuous, or else there would be
a finite force on an infinitesimally small element of fluid causing unbounded
acceleration; and the component of velocity normal to the interface must be
continuous. If viscosity is neglected the two fluids may slip over each other. If
there is liquid under air, we may take p = p0 = atmospheric pressure at the
interface, where p0 is taken as constant. If surface tension is important there
may be a pressure difference across the curved interface.
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3.4.1 An alternative boundary condition

As the velocity at a boundary of an inviscid fluid must be wholly tangential, it
follows that a fluid particle once at the surface must always remain at the surface.
Hence for a surface or boundary with equation

F (x, y, z, t) = 0,

if the coordinates of a fluid particle satisfy this equation at one instant, they must
satisfy it always. Hence, moving with the fluid at the boundary,

DF

Dt
= 0

or
∂ F

∂ t
+ u · ∇F = 0,

as F must remain zero for all time for each particle at the surface.

Exercises

3.1 Describe briefly the physical significance of each term in the Euler equation for
the motion of an incompressible, inviscid fluid,

ρ
∂ u

∂ t
+ ρ (u · ∇)u = −∇p + ρg,

explaining clearly why the two terms on the left are needed to express the mass
acceleration fully. To what amount of fluid does this equation apply?

3.2 The velocity components in an incompressible fluid are

u = − 2xyz

(x2 + y2)2 , v =
(x2 − y2) z

(x2 + y2)2 , w =
y

x2 + y2
.

Show that this velocity represents a kinematically possible flow (that is, that
the equation of continuity is satisfied).

3.3 Find the pressure field in the inviscid, incompressible flow with velocity field

u = (nx,−ny, 0).

3.4 If r̂, n̂ are the unit radial and azimuthal vectors in cylindrical polars (r, θ, z)
show that

dn̂

dt
= −

·
θ r̂
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3.5 State the boundary conditions for velocity in an inviscid fluid at (a) a stationary
rigid boundary bisecting the 0x, 0y axes; (b) a rigid boundary moving with
velocity V j in the direction of the y axis.

3.6 Write down Euler’s equation for the motion of an inviscid fluid in a gravitational
uniform field: (i) in terms of the total pressure p, and (ii) in terms of the
dynamic pressure pd. Relate p and pd.

3.7 Explain briefly why DF/Dt = 0 provides an alternative form of the bound-
ary condition for flow in a region of inviscid fluid bounded by the surface
F (x, y, z, t) = 0. Find the boundary condition on velocity at a fixed plane
y + mx = 0 and show that the equation y = m(x + y − Ut) represents a cer-
tain inclined plane moving with the speed U in a certain direction. Find this
direction and obtain the boundary condition at this plane.



Chapter 4

Bernoulli’s equation

For steady inviscid flow under external forces which have a potential Ω such that
F = −∇Ω Euler’s equation reduces to

u · ∇u = −1

ρ
∇p−∇Ω,

and for an incompressible fluid

u · ∇u +
1

ρ
∇(p+ ρΩ) = 0.

We may regard p + pΩ as a more general dynamic pressure; but for the particular
case of gravitation potential, Ω = gzand F = −∇Ω = −(0, 0, g) = −gk.

We note that

u · (u · ∇)u = u(u · ∇) u+ v(u · ∇) v + w(u · ∇)w

= u · ∇1
2

(
u2 + v2 + w2

)
= (u · ∇) 1

2
u2,

using the fact that u · ∇ is a scalar differential operator. Hence,

u · [u · ∇u + ∇ (p/ρ+ Ω)] = u · ∇ [
1
2
u2 + p/ρ+ Ω

]
= 0,

and it follows that
(

1
2
u2 + p/ρ+ Ω

)
is constant along each streamline (as u · ∇ is

proportional to the rate-of-change in the direction u of streamlines). Thus for steady,
incompressible, inviscid flow

(
1
2
u2 + p/ρ+ Ω

)
is a constant on a streamline, although

the constant will generally be different on each different streamline.

31
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4.1 Application of Bernoulli’s equation

(i) Draining a reservoir through a small hole

If the draining opening is of much smaller cross-section than the reservoir (Fig.
4.1), the water surface in the tank will fall very slowly and the flow may be
regarded as approximately steady. We may take the outflow speed uA as ap-
proximately uniform across the jet and the pressure pA uniform across the jet
and equal to the atmospheric pressure p0 outside the jet (for, if this were not
so, there would be a difference in pressure across the surface of the jet, and
this would accelerate the jet surface radially, which is not observed, although
the jet is accelerated downwards by its weight). Hence, on the streamline AB,

1
2
u2
A + p0/ρ = 1

2
u2
B + p0/ρ+ gh,

and as uB << uA uA =
√

2gh.

Figure 4.1: Draining of a reservoir.

This is known as Toricelli’s theorem. Note that the outflow speed is that of
free fall from B under gravity; this clearly neglects any viscous dissipation of
energy.

(ii) Bluff body in a stream; Pitot tube

Suppose that a stream has uniform speed U0 and pressure p0 far from any
obstacle, and that it then flows round a bluff body (Fig. 4.2). The flow must
be slowed down in front of the body and there must be one dividing streamline
separating fluid which follows past one side of the body or the other. This
dividing streamline must end on the body at a stagnation point at which the
velocity is zero and the pressure

p = p0 +
1

2
ρU2

0 .
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Figure 4.2: Flow round a bluff body in this case a cylinder.

This provides the basis for the Pitot tube in which a pressure measurement is
used to obtain the free stream velocity U0. The pressure p = p0 + 1

2
ρU2

0 is
the total or Pitot pressure (also known as the total head) of the free stream,
and differs from the static pressure p0 by the dynamic pressure 1

2
ρU2

0 . The

Figure 4.3: Principal of a Pitot tube.

Pitot tube consists of a tube directed into the stream with a small central
hole connected to a manometer for measuring pressure difference p− p0 (Fig.
4.3). At equilibrium there is no flow through the tube, and hence the left hand
pressure on the manometer is the total pressure p0 + 1

2
ρU2

0 . The static pressure
p0 can be obtained from a static tube which is normal to the flow.

The Pitot-static tube combines a Pitot tube and a static tube in a single head
(Fig. (4.4). The difference between Pitot pressure (p0 + 1

2
ρU2

0 ) and static pres-
sure (p0) is the dynamic pressure 1

2
ρU2

0 , and the manometer reading therefore
provides a measure of the free stream velocity U0. The Pitot-static tube can
also be flown in an aeroplane and used to determine the speed of the aeroplane
through the air.

(iii) Venturi tube

This is a device for measuring fluid velocity and discharge (Fig. 4.5). Suppose
that there is a restriction of cross-sections in a pipe of cross-section S, with
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Figure 4.4: A Pitot-static tube.

Figure 4.5: A Venturi tube.

velocities v, V and pressures p, P in the two sections, respectively, the pipe
being horizontal. Then

p

ρ
+

1

2
v2 =

P

ρ
+

1

2
V 2

or

v2 − V 2 =
2

ρ
(P − p) =

2

ρ
ρm gh = 2gh

ρm
ρ
.
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The discharge
Q = vs = V S,

and substitution gives [
Q

s

]2

−
[
Q

S

]2

= 2gh
ρm
ρ
,

i.e.,

Q =
sS√
S2 − s2

√
2gh

ρm
ρ

V =
Q

S
=

s√
S2 − s2

√
2gh

ρm
ρ
.

Exercises

1. Hold two sheets of paper at A and B with a finger between the two at top and
bottom, and blow between the sheets as illustrated in Fig. 4.6. The trailing
edges of the sheets will not move apart as you might have anticipated, but
together. Explain this in terms of Bernoulli’s equation, assuming the flow to
be steady.

Figure 4.6:

2. Explain why there is an increase in pressure on the side of a building facing
the wind.

3. A uniform straight open rectangular channel carries a water flow of mean speed
U and depth h. The channel has a constriction which reduces its width by half
and it is observed that the depth of water in the constriction is only 1

2
h. By

applying Bernoulli’s theorem to a surface streamline find U in terms of g and
h.

4. Using Bernoulli’s equation (often referred to as Bernoulli’s theorem):

(i) show that air from a balloon at excess pressure p1 above atmospheric will
emerge with approximate speed

√
2p1/p;
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(ii) find the depth of water in the steady state in which a vessel, with a waste
pipe of length 0.01 m and cross-sectional area 2 × 10−5 m2 protruding
vertically below its base, is filled at the constant rate 3 × 10−5 m3 s−1.

5. A vertical round post stands in a river, and it is observed that the water level at
the upstream face of the post is slightly higher than the level at some distance
to either side. Explain why this is so, and find the increase in the height in
terms of the surface stream speed U and acceleration of gravity g. Estimate
the increase in height for a stream with undisturbed surface speed 1 ms−1.



Chapter 5

The vorticity field

The vector ω = ∇× u ≡ curl u is called the vorticity (from Latin for a whirlpool).
The vorticity vector ω(x, t) defines a vector field, just like the velocity field u(x, t).
In the case of the velocity, we can define streamlines that are everywhere in the
direction of the velocity vector at a given time. Similarly we can define vortex lines
that are everywhere in the direction of the vorticity vector at a given time. We will
show that the vorticity is twice the local angular velocity in the flow.

Figure 5.1:

(i) Bundles of vortex lines make up vortex tubes.

(ii) Thin vortex tubes, such that their constituent vortex lines are approximately
parallel to the tube axis, are called vortex filaments (see below).

(iii) The vorticity field is solenoidal, i.e. ∇ · ω = 0. This very important result
result is proved as follows:

∇ · ω = ∇ · (∇× u)

37
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=
∂

∂ x

[
∂ w

∂ y
− ∂ v

∂ z

]
+

∂

∂ y

[
∂ u

∂ z
− ∂ w

∂ x

]
+

∂

∂ z

[
∂ v

∂ x
− ∂ u

∂ y

]
= 0.

Figure 5.2:

From the divergence theorem, for any volume V with boundary surface S∫
S

ω · n ds =

∫
v

∇ · ω dV = 0,

and there is zero net flux of vorticity (or vortex tubes) out of any volume:
hence there can be no sources of vorticity in the interior of a fluid (cf. sources
of mass can exist in a velocity field!).

(iv) Consider a length P1P2 of vortex tube. From the divergence theorem∫
S

ω · n ds =

∫
∇ · ω dV = 0.

We can divide the surface of the length P1P2 into cross-sections and the tube
wall,

S = S1 + S2 + Swall,

or ∫
S

ω · n ds =

∫
S1

ω · n ds+

∫
S2

ω · n ds+

∫
Swall

ω · n ds = 0. (5.1)
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Figure 5.3:

However, the contribution from the wall (where ω ⊥n) is zero, and hence∫
S2

ω · n ds =

∫
S1

ω · (−n) ds

where the positive sense for normals is that of increasing distance along the
tube from the origin. Hence ∫

Ssec tion

ω · n ds

measured over a cross-section of the vortex tube with n taken in the same sense
is constant, and taken as the strength of the vortex tube.

In a thin vortex tube, we have approximately:∫
S

ω · n dS ≈ ω · n

∫
S

dS = ωS

and ω × area = constant along tube (a property of all solenoidal fields). Here,
ω = |ω|.

(v) Circulation
∮
C

u · dr
From Stokes’ theorem ∫

S

(∇× u) · n dS =

∮
C

u · dr

Hence the line integral of the velocity field in any circuit C that passes once
round a vortex tube is equal to the total vorticity cutting any cap S on C, and
is therefore equal to the strength of the vortex tube. We measure the strength
of a vortex tube by calculating

∮
C

u · dr around any circuit C enclosing the
tube once only. The quantity

∮
C

u · dr is termed the circulation.

Vorticity may be regarded as circulation per unit area, and the component in
any direction of ω is

lim
S→0

1

S

∮
c

u · dr

where C is a loop of area S perpendicular to the direction specified.



CHAPTER 5. THE VORTICITY FIELD 40

Figure 5.4:

Example 5

Show that 1
2
u2 + p/ρ+ Ω = constant along a vortex line for steady, incompressible,

inviscid flow under conservative external forces.

Solution

As before
u · ∇u + ∇ (p/ρ+ Ω) = 0,

where

u · ∇u = ∇
(

1

2
u2

)
− u × (∇× u) = ∇

(
1

2
u2

)
− u × ω.

Hence
u× ω = ∇ [

1
2
u2 + p/ρ+ Ω

]
.

u. u · (u × ω) ≡ 0 = u · ∇ [
1
2
u2 + p/ρ+ Ω

]
(5.2)

ω ω · (u× ω) ≡ 0 = ω · ∇ [
1
2
u2 + p/ρ+ Ω

]
(5.3)

From Eq.(5.2) 1
2
u2 + p/ρ + Ω = constant along a streamline, and from Eq.(5.3)

1
2
u2 + p/ρ + Ω = constant along a vortex line. Thus we have a Bernoulli equation

for vortex lines as well as for streamlines.
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Exercises

1. Define the circulation round a closed circuit C and show that it is equal to the
net vorticity cutting any cap on that circuit.

2. Show that vorticity may be interpreted as circulation per unit area of section.

3. Does fluid with velocity

u =

[
z − 2x

r
, 2y − 3z − 2y

r
, x− 3y − 2z

r

]

possess vorticity (where u = (u, v, w) is the velocity in the Cartesian frame
r = (x, y, z) and r2 = x2 + y2 + z2)? What is the circulation in the circle
x2 + y2 = 9, z = 0? Is this flow incompressible?

4. Find the vorticity passing through the circuit x2+y2 = a2, z = 0 in the velocity
field u = U(z, x, y)/a.

5.1 The Helmholtz equation for vorticity

From Euler’s equation for an incompressible fluid in a conservative force field.

∂u

∂t
+ u · ∇u = −1

ρ
∇p−∇Ω

or
∂u

∂t
+ ∇

(
1

2
u2

)
− u× ω = −∇

(
p

ρ
+ Ω

)
;

taking the curl,

∇× ∂u

∂t
−∇× (u × ω) + ∇×

[
∇

(
1

2
u2 +

p

ρ
+ Ω

)]
= 0.

Using (i) ∇× (∇φ) ≡ for all φ, and (ii)

∇× (u× ω) = u (∇ · ω) − ω (∇ · u) + (ω · ∇)u − (u · ∇) ω

= (ω · ∇)u − (u · ∇) ω

as ω is always solenoidal and u is solenoidal in an incompressible fluid; we obtain

Dω

Dt
=
∂ω

∂t
+ (u · ∇) ω = (ω · ∇)u,

which is the Helmholtz vorticity equation.



CHAPTER 5. THE VORTICITY FIELD 42

Figure 5.5:

5.1.1 Physical significance of the term (ω · ∇)u

We can understand the significance of the term (ω · ∇)u in the Helmholtz equation
by recalling that ∇ is a directional derivative and (ω · ∇)u is proportional to the
derivative in the direction of ω along the vortex line (see example 7).

D

Dt
= (ω · ∇)u = |ω| ω̂ · ∇u = ω

∂u

∂sω
,

where δsω is the length of an element of vortex tube. We now resolve u into compo-
nents uω parallel to ω and u⊥ at right angles to ω and hence to δsω. Then

δsω
ω

Dω

Dt
=

∂

∂sω
(uω + u⊥) δsω

=
∂uω
∂sω

δsω +
∂u⊥
∂sω

δsω

≈ [uω (r + δsω) − uω(r)]︸ ︷︷ ︸
rate of stretching of element

+ [u⊥ (r + δsω) − u⊥(r)]︸ ︷︷ ︸
rate of turning of element

(a) (b)

Figure 5.6:
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• stretching along the length of the filament causes relative amplification of the
vorticity field;

• turning away from the line of the filament causes a reduction of the vorticity
in that direction, but an increase in the new direction.

Example 6

Discuss properties of the directional derivative.

Solution

Suppose that P is a point on the level surface φ of a scalar function, and that N and
P are points on the neighbouring surface φ + δφ in the direction of the normal at
P (n̂) and a specified curve (ŝ). Then

Figure 5.7:

∂φ

∂s
= lim

δn→0

δφ

δs
= lim

δn→0

δφ

δn

δn

δs
=
∂φ

∂n
cos θ.

∇φ = n̂ ∂φ/∂n is the largest of the directional derivatives at P (as δn is the minimum
separation distance between the surfaces, φ, φ + δφ) and has the direction n̂ of the
outward normal at P . Then

ŝ · ∇φ = ŝ · n̂∂φ
∂n

=
∂φ

∂n
cos θ =

∂φ

∂s
,

and ω · ∇u = |ω| ω̂ · ∇u = ω ∂u
∂sω

where sω is distance along the vortex line.



CHAPTER 5. THE VORTICITY FIELD 44

5.2 Kelvin’s Theorem

The ideas of vorticity and circulation are important because of the permanence of
circulation under deformation of the flow due to pressure forces. We next look at the
rate-of-change of circulation round a circuit moving with an incompressible, inviscid
fluid:

D

Dt

∮
u · dr =

∮
D

Dt
(u · dr)

=

∮
Du

Dt
· dr +

∮
u · D

Dt
dr .

The first integral on the right may be written
∮ (

−1
ρ
∇p−∇Ω

)
· dr, and the

second one
∮

u · D
Dt
dr =

∮
u · du (see Example 7). Hence∮

Du

Dt
· dr =

D

Dt

∮
u · dr =

∮ [
−1

ρ
∇p−∇Ω

]
· dr +

∮
u · du

=

∮ [
−1

ρ
dp− dΩ + d

(
1

2
u

2

)]

=

∮
d

(
−p
ρ
− Ω +

1

2
u2

)
= 0

as −p/ρ − Ω + 1
2
u2 returns to its initial value after one circuit since it is a single

valued function.

Example 7

Show that
∮

u · D
Dt
dr =

∮
u · du.

Solution

Suppose that the elementary vector P̄ �Q = δr at t is advected with the flow to
P̄′�Q′ = δr (t+ δt) at t+ δt. Then

δr (t+ δt) ≈ −u (r) δt+ δr(t) + u (r + δr) δt,

or
δr (t+ δt) − δr(t) ≈ u (r + δr) δt− u (r) δt,

or

lim
δt→0

δr (t+ δt) − δr(t)

δt
= lim

δs→0

u (r + δr) − u (r)

δs
δs

D

Dt
(δr) ≈ ∂u

∂s
δs ≈ δu



CHAPTER 5. THE VORTICITY FIELD 45

Figure 5.8:

in a fixed reference frame 0xyz, where |δr| = δs and s is arc length along the path
P. In the limit as δr → dr , δu → du,

D

Dt
(dr) = du.

5.2.1 Results following from Kelvins Theorem

(i) Helmholtz theorem: vortex lines move with the fluid

Consider a tube of particles T which at the instant t forms a vortex tube of
strength k. At that time the circulation round any circuit C ′ lying in the tube
wall, but not linking (i.e. embracing) the tube is zero, while that in an circuit
C linking the tube once is k. These circulations suffer no change moving with
the fluid: hence the circulation in C ′ remains zero and that in C remains k,
i.e. the fluid comprising the vortex tube at T continues to comprise a vortex
tube (as the vorticity component normal to the tube wall - measured in C ′- is
always zero), and the strength of the vortex remains constant. A vortex line
is the limiting case of a small vortex tube: hence vortex lines move with (are
frozen into) inviscid fluids.

(ii) A flow which is initially irrotational remains irrotational Circulation is
advected with the fluid in inviscid flows, and vorticity is “circulation per unit
area”. If initially for all closed circuits in some region of flow, it must remain
so for all subsequent times. Motion started from rest is initially irrotational
(free from vorticity) and will therefore remain irrotational provided that it is
inviscid.

(iii) The direction of the vorticity turns as the vortex line turns, and its
magnitude increases as the vortex line is stretched.



CHAPTER 5. THE VORTICITY FIELD 46

The circulation round a thin vortex tube remains the same; as it stretches the
area of section decreases and

circulation
area

= vorticity

increases in proportion to the stretch.

Figure 5.9:

Exercises

1. Explain the physical significance of each term in the Helmholtz equation for
vorticity in inviscid incompressible flow.

2. Show that in two-dimensional flow, with u = (u(x, y), v(x, y), 0) vorticity is
necessarily normal to the xy-plane, ω = (0, 0, ζ). Hence show that in two-
dimensional inviscid incompressible flow the Helmholtz vorticity equation re-
duces to the form

Dω

Dt
= 0,

so that if the distribution of vorticity is initially uniform it must remain so,
and if the motion is initially irrotational (free from vorticity) it must remain
so.

3. Explain the statement that in inviscid flows vorticity is “frozen into the fluid”.

4. Show that the circulation in any circuit embracing a vortex tube (i.e. passing
once round it) in otherwise irrotational fluid is equal to the strength of the
vortex tube ∮

s

ω · n dS
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taken over any section of tube. Hence, or otherwise, show that a vortex tube
cannot terminate in the interior of a fluid region.

5.3 Rotational and irrotational flow

Flow in which the vorticity is everywhere zero (∇ × u = 0) is called irrotational.
Other terms in use are vortex free; ideal ; perfect. Much of fluid dynamics used to
be concerned with analysing irrotational flows and deciding where these give a good
representation of real flows, and where they are quite wrong.

We have neglected compressibility and viscosity. It can be shown that the neglect
of compressibility is not very serious even at moderately high speeds, but the effect
of neglecting viscosity can be disastrous. Viscosity diffuses the vorticity (much as
conductivity diffuses heat) and progressively blurs the results derived above, the
errors increasing with time.

There is no term in the Helmholtz equation

Dω

Dt
= (ω · ∇)u

corresponding to the generation of vorticity: the term ω · ∇u represents processing
by stretching and turning of vorticity already present. It follows, therefore, that in
homogeneous fluids all vorticity must be generated at boundaries. In real (viscous) flu-
ids, this vorticity is carried away from the boundary by diffusion and is then advected
into the body of the flow. But in inviscid flow vorticity cannot leave the surface by
diffusion, nor can it leave by advection with the fluid as no fluid particles can leave
the surface. It is this inability of inviscid flows to model the diffusion/advection of
vorticity generated at boundaries out into the body of the flow that causes most of
the failures of the model.

In inviscid flows we are left with a free slip velocity at the boundaries which we
may interpret as a thin vortex sheet wrapped around the boundary.

5.3.1 Vortex sheets

Consider a thin layer of thickness δ in which the vorticity is large and is directed
along the layer (parallel to 0y), as sketched. The vorticity is

η =
∂u

∂z
− ∂w

∂x
,

where ∂u/∂z is large (but not ∂w/∂x, which would lead to very large w). We can
suppose that within the vortex layer

u = u0 + ωz

changing from u0 to u0 + ωδ between z = 0 and δ, with mean vorticity

η =
(u0 + ωδ) − u0

δ
= ω.
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Figure 5.10:

This vortex layer provides a sort of roller action, though it is not of course rigid, and
it also suffers high rate-of-strain.

If we idealize this vortex layer by taking the limit δ → 0, ω → ∞, such that ωδ
remains finite, we obtain a vortex sheet, which is manifest only through the free slip
velocity. Such vortex sheets follow the contours of the boundary and clearly may
be curved. They are infinitely thin sheets of vorticity with infinite magnitude across
which there is finite difference in tangential velocity.

5.3.2 Line vortices

We can represent approximately also strong thin vortex tubes (e.g. tornadoes, wa-
terspouts, draining vortices) by vortex lines without thickness. The circulation in a
circuit round the tube tends to a definite non-zero limit as the circuit area (S) →
zero. If the flow outside the vortex is irrotational then all circuits round the vortex
have the same circulation, the strength κ of the vortex:∮

C

u · dr → κ as C → 0.

As a consequence, the velocity → ∞ as the line vortex is approached, like κ ∝
(distance)−1.

The effect of viscosity is to thicken vortex sheets and line vortices by diffusion;
however, the effect of diffusion is often slow relative to that of advection by the flow,
and as a result large regions of flow will often remain free from vorticity. Vortex
sheets at surfaces diffuse to form boundary layers in contact with the surfaces; or
if free they often break up into line vortices. Boundary layers on bluff bodies often
separate or break away from the body, forming a wake of rotational, retarded flow
behind the body, and it is these wakes that are associated with the drag on the body.
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Figure 5.11:

5.3.3 Motion started from rest impulsively

Viscosity (which is really just distributed internal fluid friction) is responsible for
retarding or damping forces which cannot begin to act until the motion has started;
i.e. take time to act. Hence any flow will be initially irrotational everywhere except at
actual boundaries. Within increasing time, vorticity will be diffused form boundaries
and advected and diffused out into the flow.

Motion started from rest by an instantaneous impulse must be irrotational. For,
if we integrate the Euler equation over the time interval (t, t+ δt)∫ t+δt

t

Du

Dt
dt =

∫ t+δt

t

F dt−
∫ t+δt

t

1

ρ
∇p dt

or

[u]

∫ b+δt

t

=

∫ t+δt

t

F dt− 1

ρ
∇

∫ t+δt

t

p dt .

In the limit δt→ 0 for start-up by an instantaneous impulse, the impulse of the body
force → 0 (as the body force is unaffected by the impulsive nature of the start) and

u − u0 = −1

ρ
∇P,

where the fluid responds instantaneously with the impulsive pressure field P =∫ δt
p dt, and the impulse on a fluid element is −∇P per unit volume, producing

a velocity from rest of

u0 = −1

ρ
∇P.

This is irrotational as

∇× v = −1

ρ
∇× (∇P ) ≡ 0.



Chapter 6

Two dimensional flow of a
homogeneous, incompressible,
inviscid fluid

In two (x, z) dimensions, the Euler equations of motion are

∂u

∂t
+ u

∂u

∂x
+ w

∂u

∂z
= −1

ρ

∂p

∂x
, (6.1)

∂w

∂t
+ u

∂w

∂x
+ w

∂w

∂z
= −1

ρ

∂p

∂z
, (6.2)

and the continuity equation is

∂u

∂x
+
∂w

∂z
= 0. (6.3)

The vorticity ω has only one non-zero component, the y-component, i.e., ω =
(0, η, 0), where

η =
∂u

∂z
− ∂w

∂x
. (6.4)

Taking (∂/∂z) (6.1) −(∂/∂x) (6.2) and using the continuity equation we can show
that

Dη

Dt
= 0. (6.5)

This equation states that fluid particles conserve their vorticity as they move
around. This is a powerful and useful constraint. In some problems, η = 0 for all
particles. Such flows are called irrotational.

Consider, for example, the problem of a steady, uniform flow U past a cylinder
of radius a. All fluid particles originate from far upstream (x → −∞) where u = 0,

50
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Figure 6.1:

w = 0, and therefore η = 0. It follows that fluid particles have zero vorticity for all
time.

The inviscid flow problem can be solved as follows. Note that the continuity
equation (6.3) suggests that we introduce a streamfunction ψ, defined by the equa-
tions

u =
∂ψ

∂z
, w = −∂ψ

∂x
. (6.6)

Then Eq. (6.3) is automatically satisfied and it follows from (6.4) that

η =
∂2ψ

∂x2
+
∂2ψ

∂z2
(6.7)

In the case of irrotational flow, η = 0 and ψ satisfies Laplaces equation:

∂2ψ

∂x2
+
∂2ψ

∂z2
= 0. (6.8)

Appropriate boundary conditions are found using (6.6). For example, on a solid
boundary, the normal velocity must be zero, i.e., u · n = 0 on the boundary. If
n = (n1, 0, n3), it follows using (6.6) that n1

∂ψ
∂z

− n3
∂ψ
∂x

= 0, or n ∧ ∇ψ = 0 on the
boundary. We deduce that ∇ψ is in the direction of n, whereupon ψ is a constant
on the boundary itself.

Figure 6.2:

Let us return to the example of uniform flow past a cylinder of radius a: see
diagram below.

The problem is to solve Eq. (6.8) in the region outside the cylinder (i.e. r > a)
subject to the boundary condition that
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Figure 6.3:

u =

(
∂ψ

∂z
, 0, −∂ψ

∂x

)
→ (U, 0, 0) as r → ∞, (6.9)

and

u · n = 0 on r = a, (6.10)

where r = (x2 + y2)
1/2

. For this problem it turns out to be easier to work in cylin-
drical polar coordinates centred on the cylinder.

It is easy to check that the solution of (6.8) satisfying (6.9) and (6.10) is

ψ = U

(
r − a2

r

)
sin θ. (6.11)

Note that for large r, ψ ∼ Ur sin θ = Uz, whereupon u = ∂ψ/∂z ∼ U as required.

Now

∂ψ

∂z
=
∂ψ

∂r

∂r

∂z
+
∂ψ

∂θ

∂θ

∂z

and z = r sin θ ⇒ ∂r/∂z = 1/ sin θ and 1 = r cos θ ∂/∂z, whereupon

∂ψ

∂z
=

1

sin θ

∂ψ

∂r
+

1

r cos θ

∂ψ

∂θ.
(6.12)

Similarly,
∂ψ

∂x
=
∂ψ

∂r

∂r

∂x
+
∂ψ

∂θ

∂θ

∂x

and x = r cos θ ⇒ ∂r/∂x = 1/cosθ and 1 = −r sin θ ∂/∂x, whereupon

∂ψ

∂x
=

1

cos θ

∂ψ

∂r
− 1

r sin θ

∂ψ

∂ θ
. (6.13)

The boundary condition on the cylinder expressed by (6.10) requires that

∂ψ

∂z
cos θ − ∂ψ

∂x
sin θ = 0
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at r = a and for all θ and, using (6.12) and (6.13), this reduces to

∂ψ

∂ θ
= 0 at r = a. (6.14)

This equation implies that ψ is a constant on the cylinder; i.e., the surface of the
cylinder must be a streamline. Substitution of (6.11) into (6.14) confirms that ψ ≡ 0
on the cylinder.

It remains to show that ψ satisfies (6.8). To do this one can use (6.12) and (6.13)
to transform (6.8) to cylindrical polar coordinates; i.e.,

∂

∂ r

(
r
∂ψ

∂ r

)
+

1

r

∂2ψ

∂ z2
= 0. (6.15)

It is now easy to verify that (6.11) satisfies (6.15) and is therefore the solution for
steady irrotational flow past a cylinder. Note that the solution for ψ is unique only
to within a constant value; if we add any constant to it, it will satisfy equation (6.8)
or (6.15), but the velocity field would be unchanged.

It is important to note that we have obtained a solution without reference to
the pressure field, but the pressure distribution determines the force field that drives
the flow! We seem, therefore, to have by-passed Newton’s second law, and have
obviously avoided dealing with the nonlinear nature of the momentum equations
(6.1) and (6.2). Looking back we will see that the trick was to use the vorticity
equation, a derivative of the momentum equations. For a homogeneous fluid, the
vorticity equation does not involve the pressure since ∇∧∇p ≡ 0. We infer from the
vorticity constraint [Eq. (6.7)] that the flow must be irrotational everywhere and use
this, together with the continuity constraint (which is automatically satisfied when
we introduce the streamfunction) to infer the flow field. If desired, the pressure field
can be determined, for example, by integrating Eqs. (6.1) and (6.2), or by using
Bernoulli’s equation along streamlines.

Figure 6.4:

Now the solution itself. The streamline corresponding with (11) are sketched in
the figure overleaf. Note that they are symmetrical around the cylinder. Applying
Bernoulli’s equation to the streamline around the cylinder we find that the pressure
distribution is symmetrical also so that the total pressure force on the upstream side
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of the cylinder is exactly equal to the pressure on the downwind side. In other words,
the net pressure force on the cylinder is zero! This result, which in fact is a general
one for irrotational inviscid flow past a body of any shape, is known as d’Alembert’s
Paradox. It is not in accord with our experience as you know full well when you try
to cycle against a strong wind. What then is wrong with the theory? Indeed, what
does the flow round a cylinder look like in reality? The reasons for the breakdown
of the theory help us to understand the limitations of inviscid flow theory in general
and help us to see the circumstances under which it may be applied with confidence.
First, let us return to the viscous theory.

Figure 6.5:

The Navier-Stokes’ equation is the statement of Newton’s second law of motion
for a viscous fluid. It reads

Du

Dt
= −1

ρ
∇p+ ν∇2u. (6.16)

The quantity of ν is called the kinematic viscosity. For air, ν = 1.5×10−5 m2 s−1;
for water ν = 1.0 × 10−6 m2 s−1. The relative importance of viscous effect is
characterized by the Reynolds’ number Re, a nondimensional number defined by

Re =
UL

ν
,

where U and L are typical velocity and length scales, respectively. The Reynolds’
number is a measure of the ratio of the acceleration term to the viscous term in
(6.16). For many flows of interest, Re >> 1 and viscous effects are relatively unim-
portant. However, these effects are always important near boundaries, even if only in
a thin “boundary-layer” adjacent to the boundary. Moreover, the dynamics of this
boundary layer may be crucial to the flow in the main body of fluid under certain
circumstances. For example, in flow past a circular cylinder it has important con-
sequences for the flow downstream. The observed streamline pattern in this case at
large Reynolds numbers is sketched in the figure overleaf. Upstream of the cylinder
the flow is similar to that predicted by the inviscid theory, except in a thin viscous
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boundary-layer adjacent to the cylinder. At points on the downstream side of the
cylinder the flow separates and there is an unsteady turbulent wake behind it. The
existence of the wake destroys the symmetry in the pressure field predicted by the
inviscid theory and there is net pressure force or form drag acting on the cylinder.
Viscous stresses at the boundary itself cause additional drag on the body.



Chapter 7

Boundary layers in nonrotating
fluids

We consider the boundary layer on a flat plate at normal incidence to a uniform
stream U as shown.

Figure 7.1:

The Navier Stokes’ equations for steady two-dimensional flow with typical scales
written below each component are:

u
∂u

∂x
+ w

∂u

∂z
= −1

ρ

∂p

∂x
+ ν

[
∂2u

∂x2
+
∂2u

∂z2

]
, (7.1)
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H

ΔP
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νU
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νU

H2
] (7.2)

u
∂w

∂x
+ w

∂w

∂z
= −1

ρ

∂p

∂z
+ ν

[
∂2w

∂x2
+
∂2w

∂z2

]
, (7.3)
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W 2

H

ΔP

ρH

νW

L2

νW

H2
(7.4)

and the continuity equation is

56
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∂u

∂x
+

∂w

∂z
= 0,

U2

L

W

H
(7.5)

From the continuity equation we infer that since |∂u/∂x| = |∂w/∂z|, W ∼ UH/L
and hence the two advection terms on the left hand sides of (7.1) and (7.3) are the
same order of magnitude: U2/L in (7.2) and (U2/L)(H/L) in (7.4). Now, for a thin
boundary layer, H/L << 1 so that the derivatives ∂2/∂x2 in (7.1) and (7.3) can be
neglected compared with ∂2/∂z2. Then in (7.1), assuming that the pressure gradient
term is not larger than both inertial or friction terms1, we have

U

L
∼ νU

H2
≥ ΔP

ρL
.

The first two terms imply that

H ∼ L Re−1/2

where Re = UL/ν has the form of a Reynolds’ number. Alternatively, this ex-
pression implies that the boundary thickness increases downstream like x1/2 [i.e.,
H ∼ L1/2(ν/U)1/2]. Now from (7.4) we find that

ΔP

ρH
/
UW

L
∼ ρU2

ρH
/
U2H

L2
∼ L2

H2
>> 1

ΔP

ρH
/
νW

H2
∼ ρU2

ρH
/
νU

HL
∼ UL

ν
= Re >> 1.

But if both the inertia terms and friction terms in (7.3) are much less than the
pressure gradient term, the equation must be accurately approximated by

∂p

∂z
= 0.

This implies that the perturbation pressure is constant across the boundary layer.
It follows that the horizontal pressure gradient in the boundary layer is equal to that
in free stream.

Collecting these results together we find that an approximate form of the Navier-
Stokes’ equations for the boundary layer to be

u
∂u

∂x
+ w

∂u

∂z
= U

dU

dx
+ ν

∂2u

∂z2
, (7.6)

1Note that if this were not true, steady flow would not be possible as the large pressure gradient
would accelerate the flow further.
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with

∂u

∂x
+
∂w

∂z
= 0, (7.7)

and U = U(x) being the (possible variable) free stream velocity above the boundary
layer, Equations (7.6) and (7.7) are called the boundary layer equations.

7.1 Blasius solution (U = constant)

Equation (7.6) reduces to

u
∂u

∂x
+ w

∂u

∂z
= ν

∂2u

∂z2
, (7.8)

and we look for a solution satisfying the boundary conditions u = 0, w = 0 at z = 0,
u → U as z → ∞ and u = U at x = 0. Equation (7.7) suggests that we introduce a
streamfunction ψ such that

Figure 7.2:

whereupon ψ must satisfy the conditions ψ = constant, ∂/∂z = 0 at z = 0,
ψ ∼ Uz as z → ∞ and ψ = Uz at x = 0. It is easy to verify that a solution
satisfying these conditions is

u =
∂ψ

∂z
, w = −∂ψ

∂x
, (7.9)

where

χ = (U/2νx)1/2 z, (7.10)
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f(χ) satisfies the ordinary differential equation

f ′′ + ff ′ = 0, (7.11)

subject to the boundary conditions

f(0) = f ′(0) = 0; f ′(∞) = 1. (7.12)

Here, a prime denotes differentiation with respect to χ. It is easy to solve Eq.
(7.11) subject to (7.12) numerically (see e.g. Rosenhead, 1966, Laminar Boundary
Layers, p. 222-224). The profile of f ′ which characterizes the variation of u across
the boundary layer thickness is proportional to χ and we might take χ = 4 as
corresponding with the edge of the boundary layer. Then (7.10) shows that the
dimensional boundary thickness δ(x) = 4(2νx/U)1/2; i.e., increases like the square
root of the distance from the leading edge of the plate. We can understand the
thickening of the boundary layers as due to the progressive retardation of more and
more fluid as the fictional force acts over a progressively longer distance downstream.

Often the boundary layer is relatively thin. Consider for example the boundary
layer in an aeroplane wing. Assuming the wing to have a span of 3 m and that the
aeroplane flies at 200 ms−1, the boundary layer at the trailing edge of the wing (as-

suming the wing to be a flat plate) would have thickness of 4 (2 × 1.5 × 10−5 × 3/200)
1/2

=
2.7×10−3 m, using the value ν = 1.5×10−5m2s−1 for the viscosity of air. The calcu-
lation assumes that the boundary layer remains laminar; if it becomes turbulent, the
random eddies in the turbulence have a much larger effect on the lateral momentum
transfer than do random molecular motions, thereby increasing the effective value
of ν, possibly by an order of magnitude or more, and hence the boundary layer
thickness.

Note that the boundary layer is rotational since ω = (0, η, 0), where η = ∂u
∂z

− ∂w
∂x

,
or approximately just −∂u/∂z.

7.2 Further reading

Acheson, D. J., 1990, Elementary Fluid Dynamics, Oxford University Press, pp406.

Morton, B. R., 1984: The generation and decay of vorticity. Geophys. Astrophys.
Fluid Dynamics, 28, 277-308.


