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Chapter 1

Review

1.1 Scalars, Vectors and all That

This chapter is meant to be a review of basic concepts in the geometry of three-
dimensional Euclidean space, R3. Therefore we will be somewhat brief and not as
precise as a mathematician should be.

The simplest thing one can imagine is a scalar. Simply put a scalar is a single
number; the value of which everyone agrees on. For example the temperature of a given
point in this room, e.g.

T =20°C". (1.1)

(It’s a different question as to whether or not you think thats warm or cold.)
Vectors are more interesting physical quantities. In three dimensions they are given
by a triplet of numbers. For example the position of point in this room is given by a

vector:

(1.2)

=
Il
[SIENSIE

We denote vectors by an underline. The three numerical values on the right hand side
give the coordinate values of the point in some coordinate system. Why is this so
different from three scalars? Because people using different coordinate systems will not
use the same values of x,y and z to describe the same point.

We will often use an index notation 7%, a = 1, 2,3 for the components of a vector r.
In particular

rt =2z rt =y =z, (1.3)

Please note that 72 in this case does not mean r-squared. There is no meaning to the
square of a vector (although below we will consider the length-squared of a vector which
will be denoted by |r|?).

Vectors live in a vector space. This means that one has the following two actions

that map vectors to vectors:

e multiplication by a scalar a:
ax

az
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e addition of two vectors:

T T2 T+ x2
ntrn=lnl+tlwl=lnte| - (1.5)
21 z9 21+ 22

Note that the subscript on r; does not denote the components r!.
For this course three-dimensional space is a vector space: R3. The three means
that it is 3-dimensional. This in turn means that one can pick a basis of three vectors,

€1, €9, 3 so that any other vector can be written uniquely in terms of these three:
r = ae; + bey + ceg . (1.6)

Of course for R? the most natural choice is

1 0 0
e =0, e=|1], e=|0 (1.7)
0 0 1
So that, quite simply,
r =€ + Yes + zZ€3 . (18)

But this not the only choice.
More generally a basis for an n-dimensional vector space is a choice of n vectors

€1, ..., that are linearly independent. This means that the equation
aie;+...+ane, =0 (1.9)

only has the trivial solution a; = ... = a, =0
The Scalar Product (a.k.a. dot product, inner product...) is a map that takes two

vectors into a number and has the following properties:
e symmetric: 1] -1y =15 T
o distributive: 1y - (ro +13) =11 T9 + 1 T3

Sometimes a third property is useful (but not always e.g. Relativity):
e positive definite: r - r > 0 with equality iff r = 0.

If this is last property is true then we can define the length of a vector to be

Ir| =TT, (1.10)

which allows us to do geometry.

Although one can consider more general possibilities we will simply take

3
Ty = Zr%rg = 1122 + Y1y2 + 2122 . (1.11)

a=1
You can check yourself that this satisfies the symmetry, distributive and positive definite

properties above. In this case length of a vector is

o= VT g (1.12)
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Figure 1.1.1: Angle between two vectors

which is, of course, just the Pythagorian theorem (in 3D). For example

1 4
it ri=1|2 ro =15 then r,-ry=1-442-54+3-6=232. (1.13)
3 6

The interpretation of the scalar product is
Ty Ty = |1ryl|ra| cos b2 (1.14)

where 015 is the angle between the two vectors in the plane through the origin defined
by r; and ry.

This is easily seen in two dimensions. Let
r1cosf r9 cos 6
= 100 =2 2. (1.15)
r1sin 01 79 sin O
Then it is easy to see that |r;| =71 and |ry| = 2 and also

ry - To = r17r2(cos 61 cos by + sin 0y sin fa) = ry7ry cos(fy — 602) (1.16)

(do you remember your trig identities?!) and so indeed we find 612 = 6; — 65. In three

dimensions one can simply rotate the basis until both vectors take the form

r1 cos 01 79 COS b
r;y = | r1sinf; ro = | rosinfy ) (1'17)
0 0

and the result follows again.

Thus, not surprisingly, the basis chosen in (1.7) satisfies:

1 a=b
e, ey = O = {O a#b (1.18)
a

i.e. the basis elements are all unit length and orthogonal to each other. Such a basis is

called orthonormal.

1.2 Vector Product

It is easy to see that the scalar product can be extended to any dimension, we’ve already
used it in two and three dimensions. However in three dimensions there is another

product as we will now see.
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In three dimensions any two non-parallel vectors r; and r, define a plane through
the origin. A plane in three-dimensions has a normal vector: that is a vector which
is orthogonal to every vector in the plane. This allows us to define a the vector prod-
uct which takes two vectors and gives a third that is orthogonal to the original two.

Explicitly we define

3

(uxw)* = eapcv’w® . (1.19)

be=1

Here €43, has the following properties:

+1 if(a,b,¢) = (1,2,3),(2,3,1),(3,1,2)
€abe = -1 if(aa b7 C) = (37 27 1)7 (2> 17 3)7 (17 37 2) (120)

0 otherwise

What does this mean? It means that €, vanishes unless a, b, ¢ are all distinct. In that

"L (or cyclic) order or €. = —1 if (a,b,c) is in

case €gpe = +1 if (a,b,c) is in ‘clockwise
‘anti-clockwise’ (or anti-cyclic) order.
If this seems tricky then it maybe easier to see whats going on by writing out the

components:

(v x w)t = v*w? — v3w?
(v x w)? = vdw! — vlw?
(v x w)? = viw? — 2wt . (1.21)

Notice again the the sign is determined by whether or not 1,2,3 appear in clockwise or
anti-clockwise order.

There are two fundamental properties of the vector product:
e anti-symmetry: (v X w) = —(w X v)
e orthogonality: v- (v X w) =w- (v X w) =0

Let us check these. In fact anti-symmetry is clear from the definition. Swapping v® <> w®
in (1.19) or (1.21) changes the overall sign of the right hand sides.

Let us check that the vector product (v x w) is indeed orthogonal to both v and w.
First the fast way:

(v x w) ZU v X w)? Zeabcvvw =0. (1.22)

abc=1

b

Why? because the sum involves €,p.v*v°w® which contains terms of the form

e13v v’ w? + e300t w? = (+1)vh?wd + (=1)v*vlwd =0 . (1.23)

Imagine a clock face corresponding to a day with just 3 hours.
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Figure 1.2.1: Area of a parallelagram

Or we can do the slow way:

UX'LU E’UUXUJ
2 1,3 3

(61231) V2 + €130 vl)w + (63121) vt + ep39vt )w2 + (6231v2v3 + €391v v2)w1
= (1111)2 — fu2v1)fw + (v vl — vlv?’)w + (v v — 1137)2)
=04+040
=0. (1.24)
Lastly we see that
w-(uxw)=-w-(wxv)=0, (1.25)

which simply follows from anti-symmetry and switching the names v < w.

Next we show that
|y X ro| = |ry[|ro[sin b . (1.26)
You can prove this by writing out all the terms (it helps to observe |r;|?|ry|? sin? 012 =
71 2|ro|?(1 — cos? 012) = |ry|?|rs|® — |1y - 75]* ). Or we can go back to or choice before
(1.17), where we adapted the basis to be convenient for the plane defined by r; and r,
Here we see that

r1 cos 01 79 COS O9 0
Ty XT9g=|r9sinfy | X | rosinfy | = 0 (127)
0 0 r17r2(cos 1 sin 3 — sin 61 cos 62)
and so
Iry X 5|2 = 7373 (cos 0y sin By — sin 6y cos By)? = |ry|*|ry | sin(6; — 6s) | (1.28)

as promised.

There is also an interpretation of |r; X ry| as the area of the parallelogram defined
by r; and ry:

From Figure 2 one can see that the area consists of two triangles with hight h; =
Iro|sin b2 and base by = |ry|cosfi2 as well as rectangle with base b, = |r;| — by and
hight h, = h¢. Thus

1
Area = 2 - §btht + b.h, = ht(bt + br) = ’ZlHZQ‘ sin 61 . (129)



10 CHAPTER 1. REVIEW

Figure 1.3.1: Volume of a Parallelepiped

1.3 Triple Products

One can construct a scalar triple product of three vectors:
ry - (rg X r3) (1.30)

which gives a scalar. Geometrically this gives the area (or more accurately the absolute
value gives the area) of a parallelepiped with sides defined by r;, ry and rs.

One could also consider the vector triple product
ry X (rg X r3) . (1.31)

But it is not really independent of what we have already constructed. Indeed note that
ry X 13 is orthogonal to both ry and rs. Similarly r; X (ry X r3) is orthogonal to (14 X 13),
which is orthogonal to the plane defined by r5 and r5. So it must be that r; x (ry X r3)

lies in the plane defined by r, and r3. Therefore we have
ry X (rg X r3) = Arg + Bry . (1.32)

For some scalars A and B.

To compute A and B we can use the definition:

(Zl X (£2 X fS))a = Zeabcrll)(EQ X fg)c
b,c

= Z €abc€cde7"l177“§l7“§ . (133)
b,c,d,e
Next we observe that
Z Eabc€ede = 6ad5be - 5a65bd . (134)
c

Why? Its actually just a matter thinking it through: Clearly to be non-zero a must be
different from b. Let us fix a = 1,b = 2. Then the left hand side is only non-zero if ¢ = 3
and (d,e) = (1,2) or (d,e) = (2,1). Thus there are only two choices for a non-vanishing

answer: a = d and b = e or a = e and b = d. Similarly for the other choices of a,b.
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This is what the right hand side says. The only issue is the minus sign but this arises
as Eabefeab = (Eabe)? = 1 but eapeeba = —(€ape)? = —1 (assuming a, b, ¢ are all different).

We can now compute

(ry % (rg X 73))" = ) (3adOhe — Sacdoa)rirsrs

b,d,e
= (ry r3)ry — (ry - 19)15 . (1.35)
which is just
Ty X (rg X 13) = (11 - 13)T9 — (11 - T9)T3 (1.36)

ie. A= (ry-r3), B=—(r; 1y).

1.4 Matrices

Lastly we look at matrices which act on vectors as linear maps M : R3 — R3. Linear
here means that
M(Ar; + 1) = AM(r;) + M(ry) (1.37)

where a is a scalar. We will usually drop the parenthesis and denote matrix multiplica-
tion by Mr.

In terms of the components notation we can write?

M%r . (1.38)

NE

(Mr)* =

b=1
This can be read as follows: the a'® component of Mr is given by the scalar product of
the a*P-row of M with r. Thus a matrix has two indices and can be written as an array:

e.g. the identity matrix I, which doesn’t change a vector after multiplication, is

1
D" =0d"%= [0 (1.39)
0

o = O
= o O

here §%;, is known as the Kronecker-delta.
It is clear that we can multiply a matrix by a scalar or add to matrices to get a new

matrix in the obvious way:
(AM + N)ab = AM% + N% . (1.40)
In addition we can also define the product of two matrices (we will always be looking

at 3 x 3 matrices) in what may not seem like the obvious way:

3
(MN)% = > M“N%, . (1.41)
c=1

2In this course you need not worry about why one index is up and the other down. In more general
cases, such as special relativity this is important, and there is a rule that you only ever sum over and

index that appears in an expression exactly once up and once down.
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bth component of MN is given by the scalar product of

This can be read as follows: the a
the aP-row M with the b*'-column of N. The reason this definition is useful, as opposed
to what might be the obvious way of simply multiplying the individual components
together, is that this is what you’d get if you first acted on a vector by N and then
acted again by M.

An important set of matrices are those that leave the scalar product between two

vectors invariant:

(Ory) - (Ory) =11 15, (1.42)

for any pair of vectors r; and ry. Substituting (1.38) into the left-hand side gives

3
(Or,) - (Ory) = Z 0% rfO%r} (1.43)

abc=1

while the right hand side is

3
Ty Ty = fofg . (1.44)
c=1
Thus we must have
3 3 3
Z 0, r1{0%r} = errg = Z o4rirt (1.45)
a,b,e=1 c=1 a,b=1
for any r{, r§. This in turn requires that
3
> 0%,0% =6 . (1.46)
c=1
In other words
o’o=1, (1.47)
where
(0")% =0V, (1.48)

is called the transpose. Linear transformations that don’t change angles are more

usually referred to as rotations®. For example you can check that

cos —sinf O
O=|sinf cosf O], (1.49)
0 0 1

is a rotation in the x,y plane. But more complicated examples exist (although they
can always be viewed as a two-dimensional rotation in some plane - meaning that there
is always one non-zero vector, the normal to the plane, that is left invariant under the

action of a rotation in three-dimensions).

3Technically, for those who know, one usually also requires that a rotation has determinant 1, which

excludes reflections about one axis (but not two).
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1.5 Derivatives vs Partial Derivatives

In this course there will be a lot of calculus applied to a functions of many variables. It
will be important to clearly understand the difference between the following:

a  dF - OF  OF
dt’ dt ’ Ou; ’ ot -

(1.50)

Here f(t) is a function of one variable ¢ and F(uy,...,up,t) is a function of n variables
labelled w; and possibly of t as well (we will often take ¢ to be time but it could be

anything). Let us recall some definitions:

ol ()
t e—0 €
oF ~ lim flut,cyus + €, cttn, t) — fur, ..., ujy ooy Up, t)
8ui e—0 €
OF _ i L0ttt €) = fl, oy tins ) (1.51)
ot e—0 €

The first is the ordinary derivative and measures the rate of change of f with respect
to its argument ¢t. The second is a partial derivative and measures the rate of change of
F with respect to one of its arguments u, while holding all the others and ¢ fixed. The
third is the rate of change of F' with respect to its argument ¢ holding all the u; fixed.
In this course we will often encounter functions F(uq, ..., uy,t) where the variables

u; themselves depend on time ¢. Thus we might look at a function of the form

F(&) = Fur(t), ooy un(t), 1) - (1.52)

If we want to know the rate of change of f with respect to ¢t then we use the chain rule:

oF duz 8F
dt é)uZ dt

(1.53)

Here the first terms give the change in f that arises from the fact that the variables u;
change with ¢ and F depends on u;. The last term arises if £’ has an explicit dependence
on t.

On a practical level this means that if we consider a small but finite variation:

u; — u; + ou; and t — ¢ + Ot then to first order in du;, 6t we can approximate

OF
it 0t 1.54
Zauf“ 5t + (1.54)

where
OF = F(u; + dug, t + 0t) — f(ui, t) , (1.55)

where from now on we will use a shortcut to refer to the whole collection of variables w;:
F(ui(t),...;un(t),t) = F(ui(t),t). This is simply the first term in a Taylor expansion.
The ellipsis denotes higher order terms. We will often write du; = €T, 0t = €I’ where €
is a small parameter, which we can take to be as small as we wish, and T}, T" are some

expressions that are not small. Thus the Taylor expansion is

"\ OF oF



14 CHAPTER 1. REVIEW

F

<y

|
|
|
|
I
o~ |
~_ \J

Figure 1.6.1: Spherical coordinates

By taking e suitably small we can neglect the higher order terms as much as we wish.

On a more abstract level we might express this as
n
OF OF
dF = ——du; + —dt . (1.57)

Note that we have not defined dF, du; or dt. One can think of them as meaning § F’,
ou; and dt in the limit that € — 0. Alternatively one can simply think of (1.57) as a
substitute for (1.53) in the sense that if we allow the u; to depend on any parameter,
such as ¢, then (1.53) holds. This is just like how you are not supposed to think of df /dt
as a fraction but in practice it is often helpful to do so. In a sense (1.57) is just formal

expression* which encodes the statement that F depends on u1, ..., u, and t.

1.6 Coordinate systems

When computing derivatives and scalar and vector products we have been working in the
cartesian co-ordinate system {x,y,z}. We often use spherical co-ordinates to describe
systems with angular momentum or in the case of a central potential (see next chapter).
In order to compute vector products we need to be able to convert from one system to
another.

In the diagram above we have coordinates {r, 6, ¢}.
re€ (0, o0), 6€(0, ), ¢c(0, 2m). (1.58)
In order to express a vector r = {r, 6, ¢} in cartesian coordinates (so we can perform
vector products ) we must make the transformations,

x=rsinfcosp, y=rsinfsing, z=rcosd . (1.59)

Exercise: What are the opposite transformations? i.e. what are r(z,y, z),0(x,y, z) and

4Formal because we are not supposed to give a numerical value to dF, du; dt. Rather we must always

understand it as applying within the context of (1.53) or (1.56).
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¢(z,y,2)} 7

Care should be taken with any example as different conventions are often in use.
Sometimes the ’azimuthal’ angle 6 is measured from below the z = 0 plane. In this
case the only transformation to change is that for the z coordinate to become negative,
z = —rcosf . Some books may even swap the names for the azimuthal angle and the
longitudinal angle. It is usually easy to establish the convention in use.

Also note that when r = 0 then 6 and ¢ are redundant and when 8 = 0 or «, ¢

becomes redundant.
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Chapter 2

Newton and His Three Laws

So now its time to do Physics. Newtons laws are the basis of classical physics. Classical
physics is the basis of almost every technological invention, including the industrial
revolution, until the 20th century and is still highly relevant. But more than that they
offered, for the first time, a set of universal laws that governed our every day lives as
well as the motions of the heavenly bodies. So with Newton we learn that we are at one
with the stars.

Newton’s greatest work is his (in)famous Principia Mathematica in 1687. Although
he had already developed calculus he did not use it in the Principia, forcing him to use
some very elaborate reasoning. Just because he thought it might be viewed with little
suspicion. Or maybe just to show off! We will simply use calculus. Amusingly the book
was to be published by the Royal Society (near Piccadilly circus, not far from King’s)
but they had spent all their publishing budget that year on a book called “The History
of Fishes”, which is now only famous for not being the Principia.! So the cost was paid
for by Edmund Halley who was their clerk at the time. If that wasn’t bad enough the
“History of Fishes” was a commercial failure and such a drain on the financial resources
of the Royal Society that they could only pay Halley his salary by giving him the unsold
copies. So that will make you think twice about accepting an FRS.

Newton’s laws are incredibly powerful and they basically put Physics in pole position
as the most predictive science. We still use it all the time even though they have,
in a formal sense, been superseded somewhat by relativity but more so by quantum
theory. Indeed perhaps the first major new ideas beyond Newton came from Maxwell’s
theory of electromagnetism, which he published while he was a Professor at King’s
in 1861. You will learn about Maxwell’s laws in another course but they ushered in
two new concepts: dynamical fields which permeate space and time and the Lorentz
transformations of special relativity. Maxwell, who was one of the greatest physicists
by any standard, came to King’s because he had been down-sized in a merger at the
University of Aberdeen in Scotland (a worse fauz pas than not signing the Beatles or
letting Taylor Swift leave your label to record her own songs). So there is hope for

everyone except, perhaps, administrators.

Tt’s also not clear what history it talks about since it predates evolution - it must have missed that

boat too.

17
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2.1 Newton’s Laws

In his Principia Newton proposed three laws that govern all motion. We will state
them here for the case of a point particle, that is to say a particle small enough that
any structure it has does not affect its motion. One can also discuss ‘rigid bodies’
which do have structure that is important for their motion but that structure itself
doesn’t change (hence the term rigid). Examples include spinning disney characters
<http://www.youtube.com/watch?v=qquek0c5bt4>. Of course we think of rigid bodies

as being made of particles which are subjected to Newton’s Laws.

e [NI] A particle will stay at rest or move with a constant velocity along a straight

line unless acted on by an external force.

e [NII] The rate of change of momentum of a particle is equal to, and in the direction

of, the net force acting on it.
e [NIII] Every action has an opposite and equal reaction.

You’ve probably heard these before. However before we continue there are some impor-
tant comments to make.

First it should be stated that [NI] effectively defines what is meant by an inertial
frame. The reason being that the word ’velocity’ is frame dependent. Not all frames
are inertial. Picture yourself on a roller coaster. There is a frame, that is a choice of
coordinates, where you are at rest and the amusement park is flying all around you.
It would be very hard to convince yourself that [NI] held. Rather you'd have to come
up with all sorts of fictitious forces (centrifugal force is one) to explain the motions
of everything that was not strapped in traveling around with you the roller coaster
(including your stomach and your lunch). To define an inertial frame we simply say it is
a frame where [NI] holds true. It should be clear that if we have one inertial frame and
then boost it then we obtain a new inertial frame. By boost we mean give it a constant
velocity relative to what it had before. Rotations and translations also take one inertial
frame to another. Mathematically this means that we can change coordinates according
to

translation: r —r+a
rotation: r — Rr

boost : r — 1+ vt (2.1)

and still be in a frame where [NI] is true. Here a and v are a fixed vectors and R is
a rotation matrix, that is a matrix such that RTR = 1. These transformations form
the Galilean Group? (a group is an important mathematical topic that you might know
about but if not should do soon) and this is known as Galilean relativity.

Special relativity takes these ideas further and 1) declares that physical laws must
be the same in all inertial frames and 2) uses a different notion of boost which leaves the
speed of light constant in all frames (which in turn requires that time changes when we

go between inertial frames - leading one to replace the Galilean group by the Poincare

2From the line from Queen’s Bohemian Rhapsody
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group (which is the Lorentz group along with translations)). That was a bit of name
dropping not to show off but in case you have heard the words before.

Secondly note that [NII] does not say F = mf, i.e. F = ma, where a dot denotes a
time derivative. This is true in the simplest cases but not all. Rather, as we have stated
it, [NII] is

F=p, (2.2)
where p is called the momentum. The more familiar F' = m# then arises when m is
constant, where

p=mr (2.3)
and

p=mi. (2.4)
But for a simple counter example (that we will look at later) consider a rocket ship then

m decreases as it burns its fuel so that
F=mi +mr . (2.5)

In full generality one also can allow for F to depend on r,7 and t. In these cases [NII]
sets up a second order differential equation for r which can, in principle if not practice,
be solved for all £ by knowing the values of r and 7 at some initial time ¢.

Finally [NIII] is the famous statement that if you push against something, say the
wall, then the wall pushes back on you with equal force but in the opposite direction,
after all you can feel it. This is important since if it weren’t the case then there would
be a net force and, by [NII], the wall would move. There are by now many ways to
demonstrate this. For example this is how a rocket works: it moves forward by throwing
its fuel backwards. Another example is a gun where the shooter feels a recoiling force
when they pull the trigger.

Note that in the absence of any Force Newton’s law tell us that a particle moves in

a straight line. Here one simply has

F=—p=0. (2.6)

SR

In other words momentum is conserved p is time independent.

2.2 Skiing: A Simple Example of Linear Motion

Skiing: Let us look at a skier who descends a slope which makes and angle 6 with the
horizon.
The force of gravity is constant and acts in the downward direction: F, = —mge,,.

However it is useful to think of e, in terms of two components

e, = sinfe;, + cosbep . (2.7)

Here ¢, is the unit vector pointing up the hill against the direction of the skier’s motion

and ep points up perpendicularly from the slope. Accordingly we can write

r, = —mge,

= —mgsinfe, —mgcosfep

= Ey+Ep, (2.8)
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Figure 2.2.1: Skiing

corresponding to the parts which push the skier down the hill /', and the part F'p that
pulls the skier into the slope.

The component F'p = —mgcosfep is canceled by an opposite and equal reactive
force of the hill pushing back on the skier. This is intuitively obvious but fundamentally
due to the electromagnetic forces inside the atoms of snow and ski-boots. Now in this

case p = mi- where m is constant so we are simply left with
mi = F; = —mgsinfe,, . (2.9)
Let us write r = re;, then we find
7= —gsinf . (2.10)
To solve this we simply integrate both sides:
7(t) = —gsinét + 7(0) , (2.11)
where 7(0) is a constant of integration. And then integrate again
r(t) = —%g sin 0% + #(0)t 4 r(0) , (2.12)

where r(0) is a another constant of integration. Now clearly the arbitrary constants
7(0) and 7(0) correspond to the speed and position of the skier at ¢ = 0. Given these as
inputs we can then compute how the skier will continue to go down the hill. The answer

is faster and faster as any novice skier can tell you.
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But to be more explicit an assume that at ¢ = 0 the skier is at r = 100m and

traveling at —1m/s (i.e. down the hill) then
r(t) = —5sin 0t* — t + 100 (2.13)

where we've used g = 10m/s? (its actually more like 9.8m/s?). For a green run one
might have § = 7/6 so sinf = 1/2 leading to

(1) green = —2.5t% — t + 100 (2.14)

In the first second the skier arrives at r(1)green = 96.5m, just a few meters, but after 5
seconds 7(10)gpeen = 67.5m, thats already quite far: 2/3 of the way down the hill. For

a red run maybe one has § = /4, sinf ~ 0.7 and hence
7(t)pea ~ —3.5t% — t 4 100 (2.15)

so that after 1 second 7(1),.q = 95.5m also just a few meters but now after 5 seconds

7(5)reqd = 7.5m which is almost all the way down.

2.3 Friction

That’s not so realistic since the skier will eventually reach a so-called terminal velocity
due to the presence of friction. How do we include friction? It corresponds to adding
another force

FE=Fr+E,+FEp (2.16)

where

Fr=—-vr. (2.17)

Here v > 0 is the friction coefficient. Note the minus sign which means that friction
acts in the opposite direction to the velocity.

The effect of friction is therefore to change the equation to
mit = F;, + Fp = —mgsinfe;, — vi. (2.18)
Putting r = re;, gives us the equation
. . v,
= —gsinf — —7. (2.19)
m

vt/m

To solve this we multiply both sides by e and write it as

%(ﬁe”t/m) = —gsinfet/™ (2.20)

We an now integrate both sides once:

rert/m = T in gert/m 4 A (2.21)
v
where A is an integration constant. Multiplying both sides by e **/™ gives

F= " ng 4 Ae—vt/m (2.22)
1%
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which can again be integrated to
mg . mA —vt/m
r(t) = ——=sinft — —e + B, (2.23)
v v

Here B is another integration constant. It is easy to see that A and B can be related
to the initial position and momentum but not such a simple way as before. However we
can see one universal feature that doesn’t depend on these. At late times, ¢ — oo, the
exponential becomes negligible and

r()isoo = — Y sindt + B . (2.24)
1%

meaning that the skier will no longer speed up but will travel with a constant terminal
velocity vo = =™ sin 6 down the hill. Of course the fun of skiing is that v is small so
Uso 18 big! The same equation also applies if you try skiing without snow, its just that v
is very large. This assumes that v > 0. For v < 0 we find the opposite: the skier speeds
up exponentially! Thats why the sign in the coefficient of friction is so important.
Friction also explains why rain drops don’t hurt (usually). Imagine a 1g rain drop

that falls from 1km. Without wind resistance its final velocity is
r(t) = —5t* 4+ 1000 (2.25)

where we have used the same equation as the skier but taken the initial value of r to
be 1km = 1000m, the initial 7 to be zero and set § = 7 /2. So it hits your head at
t = 104/2s. The speed it hits you with is

i = —10t = —100v2m/s , (2.26)
and carries momentum
p =mi = —0.1V2kgm/s ~ —.14kgm/s . (2.27)

How painful would that be? Consider a 1kg brick dropped on you from a height of 1m.

Again use the same equations:
r(t) = —5t2 4+ 1 (2.28)
so t = /5/5, the final velocity is © = —10t = —21/5 and the final momentum is
p=mi = —2v5kgm/s ~ —4.4Tkgm/s . (2.29)

So one rain drop would give about 1/40 the punch of such a brick. Maybe not too bad
but you can expect more than one rain drop to fall on your head. Indeed you can expect
40 per second! Of course life isn’t so cruel. The rain drops reach a modest terminal

velocity and only carry a small amount of momentum when they hit hour head.

2.4 Angular Motion

A more complicated but still quite trackable example of motion arises when particles
move in angular (e.g. circular or elliptical) orbits. For example we could be studying

planets as they moved around the sun



2.4. ANGULAR MOTION 23

hg
=

SSAQR — Y ey

Figure 2.4.1: Planetary motion

Since they are not moving in straight lines linear momentum, p is not conserved.
However in many cases an analogous quantity, angular momentum, is conserved. One
can also introduce a suitable notion of force, known as torque, that is better adapted to
angular motion.

We start with the definition of angular momentum about the origin:
L=rxp. (2.30)

Note that L points in a direction orthogonal to both r and p.
Next we want to define the analogue of force for angular motion: Torque N. This is
important in sports cars as it tell you how much the engine can turn the wheels around,

which then leads to forward motion. In particular
N=rxF (2.31)

We observe that, from (NII), if we have a point particle with fixed mass m and

momentum p = my then

N=rxFE

d

:a(TX]_Q)

:L (2.32)

Here we have used the fact that

d( Xp)=FXp+rX
(X p)=ixptrxp

=mrXr+rxp

=0+rxp (2.33)

So indeed torque and angular momentum play analogous roles to force and momentum.
Lets see how this works in a simple example.

Let us imagine a particle the moves in a circle. Thus we take

r cos 6(t)
r= | rsinf(t) (2.34)
0
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Circular motion means that r» = |r| is constant but not 6(¢)!. In particular

d d
—|r|=0, ie. =0 but —

do
7 r#0  because = #0. (2.35)

dt—
As you keep this in mind, we here drop the dependence on t everywhere to simplify the

notation. As anticipated we have

—rfsind
=] rfcosd (2.36)
0
and hence
7| = 720%(sin? 0 + cos® 0) = r%6° . (2.37)

Note that  is called the angular velocity® and that (2.37) will be useful in the evaluation

of the kinetic energy, to be defined in the following. Moreover we have

—r0sinf — 762 cos O
=1 rfcosh —r62sinf . (2.38)
0

It is important to realise that, even for constant angular velocity, this particle is accel-

erating. If we do restrict to § = w a constant then we see that there must be a force:

—1r62 cos 6
mi=m [ —ré2sind | = —mw’r . (2.39)

0

Thus there is a force pointing inwards whose strength is linear in r:
F=—mutr, (2.40)

such as a spring. This is called a centripetal force (as opposed to centrifugal force which
is a fictitious force pointing outwards that one feels if one is the particle).
In the general case, let us calculate also the angular momentum. From the expression

for 7 above we have

L=rxp

7 Ccos 0 —rfsinf
=m | rsind | x | r0cosd
0 0

0
= m 0
20(cos? 6 + sin? 6)

0
=mr?6 | 0 (2.41)
1

3For those either old enough or cool enough one might know of 33 and 45 rpm records (even 78 for

the truly old); rpm stands for revolutions per minute and is a measure of angular velocity.
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Note that this points up out of the plane of circular motion. Next we compute the

torque for constant angular velocity:

N=rxF

Il
=3

= —mw’r xr

I
I

(2.42)

We see from the expression for i that if there is angular acceleration (but still take r

constant):
N=rxF
=mr x f
rcosf —rfsinf — r6? cos
=m | rsinf | x 76 cos 0 — 62 sin 0
0 0
rcosf —rfsinf
=m | rsinf | X | rfcosd
0 0
0
=mr20 |0 (2.43)
1

Note that the second term in the second line is proportional to r and hence vanishes in
the cross product with r. This kind of torque is why you buy a BMW M-series and not
simply a 316i. It is the ability of a car to speed up the angular velocity of its wheels.

2.5 Work, Conservative Forces and Conserved Quantities

We have seen that in the cases of linear and angular motion, if there is no force or torque

then momentum p and angular L are constant in time, or conserved. In particular

is conserved

=P
0 = L is conserved

Conserved quantities play a critical role in the understanding of dynamical system be-
cause they can be used to solve a problem, or at least reduce its complexity.

But before we move on to conserved quantities more generally we need to introduce
the notion of work, or more precisely the work done on a system (one doesn’t have an
absolute notion of work). In an infinitesimal step the work done on a particle by a force

F is the scalar product of the force and of the consequent particle’s displacement
dW = F -dr . (2.44)

For a complete path the work done is defined as a line integral so that as a particle

moves from r; to ro we have

AW = /_2 F-dr. (2.45)
Ty
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Figure 2.5.1: Paths for work

You should think of this as follows. The particle takes some path described by r(t) and

goes from r; = r(t1) to ry = r(ta) as t goes from t; to to. Therefore
dr = rdt , (2.46)

and

t2
AW:/QF@ﬁ. (2.47)
t1

to d
=2 iy
2 Jy, dt
L. o L . 2
= gmli(t2) " = gmli(t))” - (2.48)
Here we have introduced the kinetic energy
1 .5
T = §m]£\ . (2.49)

The work done is therefore given by the change in kinetic energy over the path of the
particle:
AW = AT . (2.50)

It is generally path-dependent: taking different paths will lead to different changes in
kinetic energy.

For example if one has only the force of friction, with ¥ = —v7 then

AW iction = —v / Y idt <0, (2.51)
t1

This is negative since, unless there is a counter acting force pushing the particle along,
the particle will slow down. The friction will have done negative work (positive work is
an achievement: such as speeding up!).

For example if you push your shopping trolley around the supermarket you must do
work to keep the trolley moving at a constant speed because you are constantly fighting
agains the friction. Furthermore the more you walk around the isles the more work you

must do. All trips to the supermarket start at the front door and end at the check-out.
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Figure 2.5.2: Closed path for work

But the amount of work you must do to overcome the negative work of friction depends
on how long a path around the isles you take to find what you want.

In other words in order to fight against friction you must supply a force that does
positive work. In particular to ensure that your final speed is the same as your initial

velocity you must provide a force £, so that
AW = /Eyou : df + AWfriction =0. (2'52)
and hence you must do work:
AW, = / Fypdr >0 (2.53)

But there is a class of force for which the work done is independent of the path
taken. Such a force is said to be conservative. Roughly speaking the fundamental
forces we observe in Nature (gravity, electromagnetism,...) when acting in empty space
ideal environment are conservative. Non-conservative forces typically arise from some
kind of friction force that is due to the microscopic details of many particles bouncing
around hitting each other in a disorderly way.

An important class of conservative forces arises if there exists a function V(r) such
that

F=-VV. (2.54)

Let us check that such an F' does lead to a definition of work that is path independent.

To do this we observe that

(
(ry) = Vi(ra) - (2.55)
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As promised, this only depends on the end points and not the path taken.

In fact if F only depends on r and not, for example 7, then such a V' always exists (at
least locally). We won’t prove this here but to see why we note that path independence
is equivalent to the statement that the total work done around a closed path vanishes.

For instance, let us consider a closed path, from r; to r, and then back again (along

a different path) (see figure 6). In this case the work done between the first and second

%E-df:/ﬁ-df—i-/ﬂ-df:() (2.56)
I I

since path I and path II have the same endpoints but in reverse order.

legs will cancel so that

Therefore we have

0= frea=[  (xF)-da (2.57)
¥ {B|0B=~}

where we have used a corollary of the Stokes theorem applied to a region B whose
boundary is the curve ~, dr is tangent to the curve and dA is perpendicular to the

surface B. Since this must be true for any curve v we deduce that
VxF=0 (2.58)

This means (and we won’t prove it here) that F = —VV for some function V.4
This allows us to define the most fundamental of conserved quantities: the total

energy :
E=T+V

= Sl + V() (259)

Claim: The total energy of a conserved system is conserved, i.e. constant. To see

this we simply differentiate:

%Ezmr P+ VV.r
=r-F+VV.r
=(F+VV)-i
=0. (2.60)

N.B. This is a special case of a more general definition of energy. We will encouter
other systems where there is a conserved energy but it takes a different form in section
3.5.4.

2.6 Solving One-dimensional Dynamics

Conservation of energy is already enough to essentially solve for the motion of a particle
in one-dimension with a conservative force. In this case r is just a number 7 € R. Let

the potential be V(r) so that the energy is

o %m <%>2 V() (2.61)

4This is an example of the Poincare lemma. More interestingly the number of solutions to this

equation which are not of this form count the number of ”holes” in space in a certain topological sense.



2.6. SOLVING ONE-DIMENSIONAL DYNAMICS 29

Figure 2.6.1: Motion in one dimension

Note that E > V(r) with equality only if 7 = 0, i.e. the particle is at rest. Conceptually,
regardless of the origin of this system, we can think of it as a particle moving in a
potential V(z) and, more explicitly, imagine that V' (x) is the height of a hill. Then the
particle’s motion will simply be the same as a skier, moving without friction, along the
hill. We must re-imagine our hill as a function of r distance travelled along the slope
rather than of z, (this would have the effect of smoothing out the slopes).

Given that the energy is conserved along the motion, let’s fix it to Ey. FEp is a
constant but one that can be changed from solution to solution. For each solution one
can formally solve for r(¢). In fact one solves for t as a function of r and then inverts.
To do this we rewrite the conservation energy equation with £ = Ej as

dr 2

==+

== (Eo—V(r)), (2.62)

m

and as

= +dt (2.63)
which we can integrate to get

r(t) /
t—ty = j:/ dr .
r(to) 4 /%(Eo —V(r))

The right hand side is, for a given potential V' (7), just some integral that can in principle

(2.64)

be evaluated.

Note that there is a choice of sign. For a given choice we solve the system until we
reach a turning point. The is a point where Ey = V(r) and the expression inside the
square root vanishes. Here all the energy is potential energy, i.e. no kinetic energy. This
means that the particle is at rest at that point. The is illustrated by the left-most point
in Figure 7. What typically happens is that the particle goes up the hill as far as it can
and will now turn around and come back. Thus at such a point V(r) was increasing,
has stopped and will now start decreasing. To find the corresponding solution one must

match solutions at the turning point with one choice of sign to solutions with the other
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choice of sign (since time always runs forwards whereas the particle can go up the hill
turn around and come back).

We can illustrate this with the skier again! This is solvable for the simple case of a
constant slope. Here the potential is just V' = mgsin0r (why?). Therefore the solution
we find from (2.64) is

r(t) /
t—m:i/ dr
riio) /2 (Eo — mgsin0r')

r(t)

1 2
= F— \/—(Eo—mgsiner’)
gsinf V m

(to)
1

=F \/g <\/E0 — mgsin0r(t) — /Eg — mgsin 97‘(250)) (2.65)

gsind

This looks a little odd but we can square both sides

1
ng2 sin? 0(t — tg)? = (Eo — mgsin 0r(t)) + (Ey — mgsin 0r(tg))

— 2v/Ey — mgsin 0r(t))\/Ey — mgsin r(t) (2.66)
Next we note that
VEo —mgsin0r(t) = \/Ey — mgsin0r(to) F gsin b,/ %(t —to) (2.67)

and so

1
§m92 sin? 0(t — o) F 2gsin 64/ %\/Eo —mgsinOr(ty)(t — to)
= (Eg —mgsindr(t)) — (Ey — mgsin0r(ty)) (2.68)

The point of this mess is that it is a quadratic equation for r as a function of ¢. In fact

we can just as well set tg = 0 by a suitable choice of time which leads to

1 2
r(t) =r(0) — 29 sin 0t + \/ E\/EO — mgsin 0r(0)t (2.69)
Compare this with our old result:
1
r(t) =r(0) — 59 sin 0t + v(0)t (2.70)

From here it is clear that the choice of sign is the choice of sign of the the initial speed

v(0). In fact matching the coefficient of the term linear in ¢ we identify

v(0) = £/ %\/EO —mgsin0r(0) < Ey = %va(O) + mg sin 0r(0) (2.71)

which agrees with what we know. In particular the choice of sign simply corresponds to
the fact that the energy is the same for a particle with velocity v or —v. Thus there are
two branches of solutions depending on this choice.

Let us return to the case of turning points. In particular let us look at the solution

we found above (again with ¢9 = 0):

1

t=1F \/% (\/Eo —mgsinfr — \/Ey —mg sin@r(t0)>

gsinf

1 /2
—F J2 VB —mgsmer + 2O (2.72)
m

gsin6 gsinf
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Let us suppose that the skier starts by going up hill with some initial v(0) > 0 then
r(t) increases until she slows down to a stop. Thus both r and ¢ are increasing (time
is always increasing) which means that we must take the minus sign in (2.72) (and
correspondingly the plus sign in (2.71)). When does she stop? She stopes when there
is no kinetic energy so that E = V(r(t)), i.e. Ey —mgsinfr = 0, where the term inside

the square root vanishes. It follows from (2.72) that this happens at

v(0)

—_—. 2.
gsinf (2.73)

t= tturm’ng =
Its called a turning point because after stopping the skier will then start to go down
the hill with increasing speed. Thus after the turning point r is decreasing but ¢ is

increasing. This corresponds to the plus sign in (2.72). Thus the full solution is

[~ EVE 0+ 2 Sty
gy 2 VB~ mgsmOrD) + 0 > i
But of course at all times we find that
Ey = %me + mgsinfr | (2.75)

regardless of the choice of sign.

2.7 Angular Momentum Revisited

There are other important examples of conserved quantities. Perhaps the next most
important one is angular momentum which we have already briefly seen.

A force is called central if ' o<1, i.e. F = f(r)r.

For a conservative force that is derived from a potential V(r) then central implies
that V is only a function of |r| (for some choice of the origin). Such forces include the

one we used above for circular motion but also, and most importantly, gravity:

_GNMm

V., —
J Ir|

(2.76)

where G is Newton’s constant and M ,m are the masses of the two particles. To see

this we note that (here we think of V' as a function of |r|)

w = () =) (2.77)
and
V() = g9 = g V) = (279)
Hhus dV\ r
F=-VV=-— <d|£|) E : (2.79)
- F=fr f=-19 (2.80)
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Claim: The angular momentum L = r X p is conserved for a central force. In other
words the torque vanishes. To see this we simply note that
d
—L=— (
dt dt
=rXp+rxp

r X p)

=mi X7 +rxF
=0+rxfr
=0 (2.81)

2.8 Solving Three-Dimensional Motion in a Central Po-
tential with Effective Potentials

Conservation of angular momentum, along with conservation of energy, is powerful
enough to essentially solve the dynamics of a particle in R?, just like we did for one-
dimensional motion. To this end we note that since L = r X p, conservation of L implies
that L is orthogonal to r, thus the motion is restricted to a plane: the plane orthogonal

to L. Let us choose coordinates where the plane is

7 Ccos 0 7 cos® — rfsin
r=|rsinf = P = |7sinf+rfcos (2.82)
0 0

From this we find

7 Ccos 7cos — rfsin
=m | rsing | x | #sind + rfcosd
0 0

=1 0o |, (2.83)

and
7|? = (7 cos @ — rf sin#)? 4 (7sin 6 + 76 cos 6)?
=2 4 r20% (2.84)

Since L is conserved we can fix

l

l=mr’d =  O=— 2.85
mr 2 ( )
where [ is a constant. Thus we can write the conserved energy as
1 )
Ey = Em(i“2 +720%) + V (r)
P
= ymi + py— +V(r)
1
= —mi? + Vopp(r) (2.86)

2
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Here
2

Veff(T) = 5 l + V(r) (2.87)

mr?
is an effective potential that incorporates the effect of angular motion. We have now
reduce the problem to the same as the one-dimensional case only with the effective
potential Vz¢(r) in place of the original V(1) (and r is now restricted to r > 0).

Note that one “effect” of angular momentum is to add a so-called angular momentum
barrier that stops particles from going to r = 0 if [ # 0. In particular since £ >V and
E is constant then the particle cannot get to r = 0 since V. becomes arbitrarily large
and hence, for small enough 7, V.y¢ > E which is forbidden (this assumes that there
isn’t a negative term in the original potential V(r) that is more dominant than [2/2mr?

at small 7).

2.9 Celestial Motion about the Sun

Let us now put everything we’ve learnt together and consider the classic case of a planet

orbiting the sun with a potential

GnMm
r

V= (2.88)

so that ) o
l NMm
Vier = — 2.89
eI omr2 r ( )

Thus here there is an angular momentum barrier since the first term dominates at small
T.

We can qualitatively see how the system behaves in the case of asteroid or planet
orbiting the sun under the force of gravity. Looking at the plot of V,;; we can identify
two types of trajectories. If Ey < 0 then the object is a planet and cannot escape to
r — oo. Rather it will oscillate around the minimum of Virr. As we will see these
indeed correspond to the elliptic orbits of planets. There is a also very special case of
an exactly circular orbit where r is held fixed at the minimum of V.s;. On the other
hand if Fy > 0 then the object is an asteroid and will escape to r — oo. Put another
way such an asteroid comes in from r — oo and then reaches a minimal value of r and
then goes back out to co. This is in fact a hyperbolic orbit (there is also a special case
of a parabolic orbit).

In this case we can also analytically solve for the motion. To see that the solutions

are ellipses and parabolas it is more helpful to think of r as a function of 6 so that

dr - l dr

== —— 2.90
T mr? df (2:90)
The energy conservation equation is now
dr\* 1 ?  GyMm
Ey=|(— — . 2.91
0 (dG) 2mr? + 2mr? r (2:91)

The smart idea is to note that we can rewrite this as

12 1dr\? 121 1
Eo=— (-=%) 4 = _GyMm- . 2.92
0 2m< r2d9> +2m7“2 N mr ( )
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Figure 2.9.1: Planetary Effective Potential

So let us introduce u = 1/r to find

2 2 2
Ey = l (d_u) +l—u2—GNMmu

2m \ dof om
2 (du)\? 2 GnMm2\® G M*m3
_ L fou LN _ 2.
om (d&) T om (u 2 > 202 (2.93)
Next we make a shift
u=v+GyMm?/I? (2.94)
so that
G2 M2m3 12 [dv\? 2
o4 N " (22 Y
0t T om <d0> T omt
2 | [dv\?
=5 [<@> + 02 (2.95)
The solution to this is
v = Acos(f — 6p) , (2.96)

where 0y is arbitrary. In fact without loss of generality we can choose coordinates such
that 6y = 0. We see that A satisfies

Eo + G%Vi\gmg = l;ﬁj = A= \/ 2”;2E 04 G?V]f"# . (2.97)
Returning to the original variables we have
1 2 /72
0 =v+GyMm*~/l
= Acos(0 —0y)+ B, (2.98)

where B = GyMm?/I?. Or in terms of B we have

QmEO

2 _ n2
A =B =

(2.99)
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2.10 Conic Sections

The solutions (2.98) are known as conic sections. They played a key role in dynamics
since they give the motion of the planets, comet which, until the 20-th century described
the motions of all heavenly bodies in the known universe (which was at that time was
essentially just the solar system along with fixed stars). So they literally had cosmic
signifigence and hence we should look at them more closely. The curves we find (ellipses,
Parabolas and hyperbolas) are called conic sections because thats what you get by
intersecting a cone with a plane in three-dimensions. But they had almost mystic
significance for 300 years until the larger Universe, with a wider variety of motions, was
discovered.

Let us choose a coordinate system where g = 0 and set
x =rcosf y=rsind . (2.100)
We can rewrite (2.98) as
1= Arcosf + Br
= Az + B\/2?2 + 2 (2.101)
Rearranging this and squaring both sides gives
(1 — Az)? = B%2? + B?%y? (2.102)
Some more rearranging gives
1 = (B? — A%)z? + 2Ax + B?y? (2.103)

which, for A2 # B2, can be written as

2 2 A ? 2,2 A?
(B —A)(%—i—m) —I—By :1+m. (2.104)
or with a little more rearranging
B2 _ A2)2 A 2
(‘T) (x + m) + (B2 - A%y =1. (2.105)

Let us first look at the Ey > 0 possibilities. For Eg > 0, A2 — B%2 > 0 and we have

2
(‘42;4232)2 <x — ﬁ) — (A2 -B*)y*=1. (2.106)
which is a hyperbolic trajectory. The object, call it an asteroid, has come in from infinity
with an non-zero initial velocity so that Fy > 0. At some point it will reach a minimum
value of r where it turns around and back goes out. The minimum value of r is easily
seen from (2.98) to be 1/(B + A).

And for B?> = A? we find a parabolic trajectory. Here it is easiest to back to the

form (2.103) to find

1 1
1 — 2Bz = By & =_— —-By*. 2.107

x y r=5p5 5By (2.107)

Here it is as if it is being dropped into the sun with a vanishing initial velocity. Again
there it makes a closest approach before returning to infinity. The case Fy < 0 is left as

an exercise.
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Figure 2.10.1: Conical Cross Sections
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2.11 Kepler’s Laws

Now we consider the case of planets. These are ”bound” to the sun and cannot escape to
infinity (as opposed to asteroids). Therefore they correspond to solutions with Ey < 0.

Before Newton Kepler was led by observations to propose three laws of planetary motion:
e [KI] The planets move in an ellipse with the sun at one focus.

e [KII] The line joining a given planet to the sun sweeps out equal areas over an

equal times

e [KIII] The square of a planets orbital period is proportional to the cube of the

semi-major axis.

Newton was able to derive these three laws from his universal Law of gravitation. So
let’s do that.

Looking at the conic sections above it is clear that they move in ellipses. It remains
to see that the sun, located at (0,0) is one focus. By definition an ellipse is the set of
points on the plane such the line joining them to one focus plus the line joining them
to a second focus has fixed length 2d. Let us show that what we found corresponds to
an ellipse with focii at the origin and at (—2a,0) (we will have to deduce a and d). The

distances to the point (z,y) are

dy = /2% + 9?2 dy =/ (x + 2a)? + y? (2.108)

Thus the equation of an ellipse is

2d =dy +dy = V22 + 32 + /(2 + 2a)2 + 32 (2.109)
We can rearrange this as

— Va2 +12)% = (2 + 20)% +
(:>4d2—4d\/m:4ax+4a
= d*(2* +y*) = (ax + a2 — d*)?
— (d? — a®)2® + 2a(d® — a®)z + d*y* = (d?
24 42 2_(d2 )2+(d2—a2)a2
= (d* - a®)d?

— (d*> — a®) (z + a)
— (d® — d®) (z + a)* + d*y?

1 1
— ﬁ($+a)2+my2 =1 (2.110)
This agrees with (2.105) and we learn that
A B
cpoa Tmpom (2.111)

Thus we have proven KI.

To prove KII we note that for an infinitesimal change in 6 the infinitesimal area
swept out by the line joining the planet to (0,0) is just given by a triangle with base r
and height rdf (see figure 9). Thus

1
dArea = §r2d9 (2.112)
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O

Figure 2.11.1: Area Swept-out by a Planet

for infinitesimal df. Thus the rate of change in time is

dA 1 20
— = 0=1/2 2.113
7 =5 /2m (2.113)
where [ is the conserved angular momentum. This proves KII.

Finally we look at KIII). To do this we compute the area of the ellipse in two ways.

First we note that since the planet sweeps out the same area at equal times we have

T T
Area = / ddrea, [ Ly W (2.114)
0 dt 0 2m 2m

where T is the period of the orbit, i.e. how long it takes to go around.

On the other hand for an ellipse of the form

(z + a)? y? . (x+a)?
7 +d2—a2:1 i.e. y=+Vd? — a? 17T

the area is simply

(2.115)

—a+d

Area = 2v/d? — a2 x+a

—a—d

=2d\/ d? — aQ/ V1—22dz (2.116)
-1

where we introduced z = (x 4 a)/d. Continuing we find, introducing z = sin ¢,

Area = 2dv/ d? — a? cos ¢d sin ¢

—7r/2

= 2d\/ d? — a? cos2 wdp

—m/2
=nd\d? —a® . (2.117)
We already saw that d = B/(B% — A?) and a = A/(B? — A?) so

B2 A? 1
2 9
d* —a” = (B2 — A2)2 (B2 — A2)2 T B2 _ A2 (2.118)

and setting the areas equal we find

ZT B
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Finally we note that the semi-major axis is defined as half the widest distance across an

ellipse:
1
Rsmaj = §(T(O) + T(?T))
1 1 1
== +
2\A+B -A+B
B
- (2.120)
Thus 3/2
T Rsmaj —1/2 p3/2
g =8 () =R .
and hence 9
T — ﬂB—l/QRIi/Z _ 27T(GNM)—1/2R§7/3W, (2.122)

l smaj

and we have proven KIII, including a calculation of the constant of proportionality.

2.12 Weighing Planets

We see from the above that by observing the planets we could deduce Gy Mgy,,. Similar
equations apply for the case of the moon orbiting the earth. In this case we could
measure G Mgt We can also deduce g = 9.8m/ s? by simply expanding the force of
gravity near the surface of the the earth. In particular if we lift a particle up a height

h above the earth’s surface then

V(h) _ GNM;arthm
. GNMeartnm
o Rearth + R
 GNMegrinm 1
T Rearth (1 + h/Rearth>
_ GNé‘f:::hm GRIEZ Z”h 4. (2.123)

The first term is a constant that can be ignored. Comparing the second term to the
formula V = mgh we deduce that

o GNMearin
9= TR

earth

(2.124)

Since one can measure Req-;, and g we can again deduce Gy Meqrth.

However we would really like to know Gy as a universal constant. This was first done
by Lord Cavendish up near Russell Square. He was the first to perform an experiment
to measure the force of gravitational attraction between two massive balls. Since he
knew their mass he could deduce Gy . It is a subtle experiment based on measuring the
oscillations of the two balls suspended in a so-called torsion balance configuration, but

he was able to do it. In fact he was very close to the current value of
Gy ~ 6.67 x 1071 m3 /kg/ s> (2.125)

(he obtained something like 6.75 x 10~ "m?/kg/s?). Although this determined Gy it is
more commonly known as “weighing the earth” since one could then deduce M4+, and

My, and this was his primary objective.
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2.13 The Runge-Lenz Vector

Lastly it is worth mentioning the famous Runge-Lenz vector. Although it is generally
acknowledged that it was known to FKuler, Lagrange and others before Runge and Lenz.
Runge apparently wrote about it in a text book, which Lenz referenced in a paper, and

ever since then its had its current name. In any case the Runge-Lenz vector is
A=px L+mV(r)r . (2.126)

To see that it is conserved we compute:

A=px L+pxL+m(YV-i)r+mV(|r|)i
= YV x L+px0+m(¥V-i)r+mV ()i (2.127)
where we have used NI with /' = —VV and L = 0 because F is central. Next we note

that and L = mr x 7 so that

A=-—mVV x (rx i) +m(YV - i)r +mV(|r])i
=-—-m(YV - -i)r+m(VV -r)i + m(NVV - i)r + mV(|r|)7 (2.128)

Here we used the triple product identity (1.36). Clearly the first and third terms cancel.

To show that the second and fourth also cancel we note that V oc |r|~! so that

av
YV = Mﬂzl
14
= oY)
2|r]

<2

r (2.129)

=
[\

Thus VV -r = —V and indeed the second and fourth terms cancel. The existence of this
extra conserved vector is in fact rather miraculous. It arises due to a so-called hidden
symmetry that we will return to later. Note also that the only important feature is that
V ~ 1/r so it also works for an electric charge orbiting an opposite charge as in the
Hydrogen atom.

To see how useful it is we simply evaluate

A-r=r-(pxL)

=1 - GyMm?r , (2.130)
where r = |r|. In the second line we used the fact that

U - (Q X w) — Zeabcuavbwc

abc

= E Ecapu®vPw’

abc

=(uxv) w (2.131)
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On the other hand the right hand side is just |A|r cos 8, where 6 is the angle between r
and the fixed vector A. Thus we have

|Alrcosf = 1> — Gy Mm?r (2.132)

which is the same equation for () that we derived if we identify |A| = Al%2. Thus
we have been able to derive the equation for r(f) without ever solving a differential

equation!

2.14 Multi-Particle Systems

So far we have mainly concerned our selves with the motion of a single particle in some
external force. Our next step is to consider many particles which we label by 7. In this

case we can distinguish between two types of forces acting on the ith particle:
e external forces F¢*!
e inter particle forces F7] nt hetween the ith and jth particle.

Note that (NIII) implies that £ nt — — L it And hence also that F" = 0. Thus (NII)

can be written as J
_p _ Fea:t ZFmt (2133)

It may not be necessary to know exactly what each particle is doing and one might

just be interested in the average. To study this we can sum (2.133) over i:
d ,
72V = LB b
— Z Fea?t Z ant
— Z Fe:rt Z Flnt
— Z Fevt (2.134)
i

Here we have used NIII: Fi"t = —Fmt so that the second sum vanishes. Let us also
suppose that each particle has p = my1;. It is helpful to introduce the centre of mass

and total mass:

Doty
R==00 M:Zmi (2.135)

This is a weighted sum over the various positions with the weight of each particle given

by its mass. From this it is easy to see that

di Z Tt Z mir;
= Z miﬁi

= MR . (2.136)
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And therefore

MR =Y Pt (2.137)

Thus the centre of mass is only sensitive to the external forces. This makes sense as
without it we wouldn’t be able to describe a tennis ball without also thinking of all the
individual atoms, or even quarks, or whatever quarks are made of, inside it.

To continue with our generalization to many bodies we define the angular momentum

of the system to be the sum of the individual angular momenta:

=D nixp
i
= mar; X i (2.138)
i
where the second line holds in the case that 1_7i = m;r; with m; constant. In particular
we don’t expect that the individual angular momentum will be conserved for many

bodies. Indeed even if the force between any pair of particles is central there will not

be a common origin for all particles. We therefore have the that the torque is

N

Mlh

X1y X P, (2.139)

Let us assume that ]_9i = m,r; then r; X p, = 0 and hence

N=> rxp

i

= Z ry x | Fe*t 4 Z Fint (2.140)

To proceed we need to assume something about F' mt. A natural choice is to assume

that
Fiftoc(ry—r;)  de.  Ft=FM(r; —r;) (2.141)

where F’”t is some scalar function of the positions: F”‘t( 1;,1;). This is quite reasonable
for an mternal force between two particles ¢ and j. Indeed it is a straightforward

generalization of our definition of a central force. Thus we have

Zr > Feact + Zant_ ﬁj)
= Zr x F§ot — ZFW_ (2.142)

Next we note that by NIII Fmt —Fmt and hence Fmt FJ’Zm Thus by changing the



2.14. MULTI-PARTICLE SYSTEMS

Figure 2.14.1: The Centre of Mass

summation variables
ZF“ME > T — Zant_'
ij
— Zant )
_ Z ant
_ ZFmt )
Thus
> Ftrixr; =0,

ij

and hence
i
It is instructive to separate off this centre-of-mass motion and write
=1+ R
The total angular momentum is
= Z mr; X 1,
i

= Zmz(ﬁ +R) x (' + R)

(2
= marh x i+ marix R+ miRx i+ miRxR.

However we note that

43

(2.143)

(2.144)

(2.145)

(2.146)

(2.147)

(2.148)
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and therefore

doma'=0 = > mi'=0. (2.149)
i i
Thus things simplify and we have

= mri x i+ Y miRxR. (2.150)
A A

which is simply the sum of the individual angular momenta about the centre of mass

and the centre of mass angular momentum.

2.15 Work and Energy for Many Particles

It is also easy to see that the work just the sum of the individual work done by each

particle:

=) (Ti(tz) — Ti(t2)) (2.151)

is the sum over the changes of the individual kinetic energies. As before this will be
path independent if all the forces are conservative.

How is it that in a world with only fundamental forces friction arises? Where does
the excess work and energy go? Well as you are pushing a shopping trolley around the
supermarket you are heating up the wheels and floor. This leads to an increase in the
kinetic energy of the molecules in the wheels and floor. But it is disorganized and not
useful as the molecules are pushed in all sorts of directions. So from a macroscopic
perspective it is just wasted. This is essentially the definition of heat: wasted energy
(although you might not think the heat of a fire is wasted on a cold day or a romantic
evening).

Suppose the internal and external forces can be obtained through potentials:

E;ja}t _ _Zivext Ez?t = _V. Vlnt . (2152)

i Vig

where V, is the gradient with respect to r;. Note that Newtons third law Fmt Fmt
implies that
V, Vit = v Vit (2.153)

—v " 1] ]]Z

In the case where Eﬁ?t F mt(r —1;) that we considered above arises when th is only
a function of the separation between two particles: th th (r;—r; ) this means that

Newton’s third law is simply (up to an unimportant Constant)

Vit = vt (2.154)
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It is easy to see that the work done will be path independent

to
=3 [ mvee v | (2.155)

As before we recognise the first term as just dV®*'/dt but the second term requires a
bit of care. We observe that

% Z Vznt Z Vkvznt 7,

ijk

— sznt 7” +Zv Vlnt

Vg e
ij

= ZLVJ” i +szvjzﬂt i

=2 Z v Virt i, (2.156)

\3.

ﬁ

\3

Here in the second line we used the fact that th is a function of r; —r; (and in particular

does not depend on any third coordinate r;, Wlth k # i,7). So we must have k = i or
k = j. In the third line we swapped the i, j indices on the sum (which does nothing).
In the last line we used th th Thus going back to AW we see that

AW—/tQi vm+lzwnt dt
Sy, dt 2£ Y

— | yreat + % Z ‘/Zznt tQ + Z yext 4= Z V’mt tl (2157)
ij

One way to understand this factor of 1/2 is that takes into account the over-counting
in the sum over all 7, j as th th.

Comparing (2.151) with we see that the total energy
B = LS il Ve + L SOV (2158)
i ij
Indeed a short calculation shows that:
E= Zmz B+ Zvvel‘t 7+ %% ZV]]“

—Zmzr 7"—|—ZV Vvert g, —i—ZVZVZ”t

= Zzl | i+ Y, yert 4 sz‘/;znt
% J

— § :fz m,r o Fe:ct § :Fmt
i

J
=0. (2.159)
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Furthermore, as we have seen above, if the external force is central, in the sense that

r; X F f“t = 0 then we also have a conserved total angular momentum:

Lzzmiﬁ Xi§+zmzﬂxﬂ- (2.160)

However unlike in the single particle case these are not enough to solve for the system
in general. There are simply too many variables, too many degrees of freedom. An

exception is the two-body case that we now consider.

2.16 Solving the two-body problem

The simplest example of a many-body problem is the 2-body problem. This is meant
to refer to two particles under-going a mutual interaction along with a possible external
force. In fact we can solve the 2 body problem for a wide class of forces.

Let us suppose that we have two particles with positions r; and r, which move
subject to an external force F',,, as well as an internal force F';, = —F5;. We have seen

that the center-of-mass R only sees F'.,,. So let us change variables to

miry + mary
R=——""— Tio =171 —T9 . 2.161
Fa? M1+ T'ig =11 Iy ( )

where M = m; + my is the total mass. We need to invert this to find r; and ry as

functions of R and 19

(m1 +ma)R = miry +ma(r; — 1) (2.162)
rearranging gives
ma
=R+ Mﬁm (2.163)

and

The conserved energy is

1 . 1 .
B = _m1’£1|2 + §m2‘£2‘2 + Vig + peat

2
1o 1
= SMIBP + Spligsf* + Vig + V! (2.165)
where
mima
=—, 2.166
a mi + me ( )

is called the reduced mass. Note that in the limit that one mass is much larger than the
other, say mj >> mo we simply have

m2

1 T m2/m1 mg( mg/ml + ) me9 ) ( 67)

I
corresponding to the lighter particle (but slightly reduced - hence the name) and

M =mq1+mg=my (1—|—m2/m1):m1+... , (2.168)
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corresponding to the heavy particle. In addition we find

mi m2
R= ry+ Ty
mi + ms mi + ms
mg/ml

= r T
1+m2/m1_1 1+m2/m1_2

=1y — (ma/m1)ris+ ...

N (2.169)

so that the centre of mass is essentially just where the heavy particle sits. On the other

hand if both particles have the same mass then

= % M =2m . (2.170)
and
R=ttl ;Lf? , (2.171)

is the average position.

A key point of the two body problem is that, under certain conditions, namely if
Vert only depends on R and V{2 only depends on r;,, then we can reduce it to two one
body problems: one for R and one for r;5. To see this we note that the equations for

r; and rqy are

m1i1 = —Z1Vemt - 21‘/12
m2i2 = —YQVEZT — YQVlQ . (2172)

The equation for R is obtained by summing the two equations in (2.172)

ME — _zlvex‘t _ szext
mi ex ma ex
= = YeV " = eV
— _ZEVewt
= ZEH (2.173)

which agrees with our general result above. Here we used the NIII condition that

V1 Via = =V, Vi as well as the chain rule to write
Zlvemt —_ %zﬂvext , Z2ve$t _ %Zﬂvext (2174)

assuming that V¢t only depends on R. Therefore the equation for MR only involves R

and a again leads to the conservation of
1 .
Eom = §M]E\2 + Vet (2.175)

To obtain an equation for the relative position we multiply the first equation in
(2.172) by mg and the second by m; and then subtract them to find

Mpig = —m221vext + leszt —maV 1 Vi2a + miVyVio (2-176)
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If V@ is only a function of R then

mimsa

_mQZlvezt + mlz2ve$t _ _m2m1 ZRvezt + zRvewt — Q . (2177>
M = M =
Also if Vi is just a function of ry5 then
VoVig = =V Vig = =V, V1o . (2.178)
Thus (2.176) becomes
piy = —=VioVia . (2.179)

This equation only depends on r;5 and not R. As before this equation tells us that

1.
By = §u|£12!2 + Vi (2.180)

is conserved on its own.

Thus we have reduced the two-body problem to two one-body problems. In particular
the total energy E = E15 + E.p, is actually the sum of two conserved energies.

Finally if V12 only depends on 713 = |r}5| then energy and angular momentum of the

relative system will be conserved leading to a single one-dimensional problem:

2

(. : : l
Eiy = spity + V5 VI = Via(ra) + 5 (2.181)
2 21T

and similarly if V** only depends on R = |R| then

1

Ecm:§

. l2
MR+ Vg V=V (R) + 5770 - (2.182)

Next you might try the three-body problem, but that is unsolvable in general. But
some things can be said in special cases or limits (such as when one mass is much heavier
than the others).

2.17 Examples

Let us first consider a simple example. Let us consider two skiers going down the same
ski slope that we had before. We only consider one-dimensional motion where both
skiers move straight down the hill. They have masses m; and ms and their distance
from the bottom of the slope are r; and ro respectively. Thus they are subject to an

external force of gravity
F{™t = —mygsinf F§™ = —mygsin 6 (2.183)
However they are tied together by a spring which induced an internal force
Fi3' = —F3p' = —k(r1 — o) (2.184)
with some constant £ > 0. Thus the equations of motion are

miiy = —mqygsind — k(ry — ra)

mais = —magsin@ — k(ra — 1) (2.185)
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Figure 2.17.1: Two Skiers Tied Together With A Spring

If we add the two equations of motion we readily see that

MR = —Mgsin6 (2.186)

where the centre of mass is R = (myr; +mara)/(m1 + msg) and the total mass is M. As

expected this equation is independent of 715 and can be solved by
1 .
R(t) = —5gsin 0t* + R(0)t + R(0) (2.187)

Thus the centre of mass behaves just like a single skier did.
On the other hand taking mo times the first equation and subtracting my times the

second equation we find
,u?'”.12 = —k’l“lg (2.188)

where p = mymg/M is the reduced mass. If we let w = \/k/p then the solutions to this

equation are (see Problem 3.3).

ria(t) = ém(c)) sin(wt) + r12(0) cos(wt) (2.189)

Thus the separation between the skiers behaves as a simple harmonic oscillator. Putting
things back we find

ma
rL = R+ —T12

M
1 . . mo . . m
= —5gsin 0t + R(0)t + R(0) + M—Z}mQ(O) sin(wt) + MQHQ(O) cos(wt)
m
ro=R— erm (2.190)
1 . . my . . m
= —5gsin 0t + R(0)t + R(0) — M—;T12(O) sin(wt) — Mlle(O) cos(wt)

We also see that we these forces come from the potentials

Vet = mygsin Or, + mogsin Ory

= gMsinfR (2.191)
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Figure 2.17.2: r1 and 72 for two skiers of equal masses (left) and unequal masses (right)

and

. , 1
Vig' = Vit = k(i — r2)?
1 2

Thus we see that both
1 .
Eem = 5MR2 + MgsinOR

1, 1
By =3 [y + §kr%2 (2.193)

are conserved.
Let us consider N electrons moving in the presence of an electric field £ which we

assume to be constant. This gives an external force
F$*' = eE . (2.194)

that acts on the i¢th electron. However in addition there will be inter-electron repulsive

forces due to the fact that like charges repel. These give rise to the internal forces

. 2 1 T, — 7T,
pint = © — (2.195)

0 dn ey =P [y —

This force is similar in form to gravity and one can easily check that it arises from the

potential
2
e 1
Viij=——— 2.196
) 47 ‘fz _ Ej’ ( )
Thus the equation for a single electron is
i E+262 L L7l (2.197)
mi; =ek — .
! 4m ’Ei—ij ‘fi_fj‘

J#1
This is clearly a tricky thing to solve in general (impossible might be a better term).
However if the electrons are well separated then the final term is small compared to the

FE and B terms. In this case the problem of each electron is separated and individually

solvable. Roughly speaking this is true if

2
<< e|lE] (2.198)

Ir; _ij
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where v is the speed of the electrons. This can be achieved by making the background
electric field to be large.

Alternatively, we can essentially solve the system with inter-electron force if we
consider just two electrons. There isn’t a potential V** for the magnetic field (though
the magnetic force is conservative!) so let us set that to zero and only look at a constant

electric field E . For the centre of mass we find (recall M = 2m)
MR = F§* + F5™ = 2¢E (2.199)
which corresponds to the potential
Ve = —eE - (r; +1y) = ~2E- R (2.200)

This is of the form we needed above in that it only depends on R. The electric field is
just a constant force like gravity was for the skier going down the hill (with down now
being determined by the direction in which E points). So the solution will be similar.

Thus we can solve for the centre-of-mass by writing

1 .
R= §at2E + R(0)t + R(0) (2.201)

where R(0) and R(0) are the initial centre of mass speed and position and a is a constant.
The electrons are therefore accelerated in the direction £. To determine a we substitute
into (2.199) we find

a=2e a=or=— ( )

Thus the background electric field causes a constant acceleration of the electrons along
the direction of E.
Next we look at r;5. From the formulae above we find the relation (recall yu = m/2)
e? 1 12

1
E — %2 _|_ ‘/ ‘/ = — _|._ .
o H12 eff eff(r2) dr e 2urd

(2.203)

This is similar to to the gravitational case we saw before when studying planetary
motion except that all terms are positive and hence V. is monotonically decreasing
from infinity at 710 = 0 to zero as r19 — oo. Therefore there are no bound state solutions
and r12 always ends up growing arbitrarily large. In other words if the two electrons are
sufficiently far away from each other there is little attractive force but once they come
close there is a repulsive force that sends them far away again from each other. Thus
the pair of electrons will constantly accelerate along the direction of £ and scatter off

each other whenever they come too close.
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Chapter 3

Lagrangian Mechanics

So when a rain drop falls do you think that it is trying to solve differential equations
arising from Newtons laws to figure out what to do on the way down? Surely not.
So how does it know? Here we need to introduce a new level of abstraction. And an

apparent miracle.

3.1 The Principle of Least Action

You may have noticed in the treatment of the planets, that we never really used the
force at all. Although we used Newtons Laws to introduce the notion of a potential
which we then used to derive a conserved energy. Let us return to the case of a single

particle. In particular we had kinetic energy

1
T:§mm2 (3.1)

and if the force was conservative, a potential energy V (r). This lead to the total energy

E=T+V. (3.2)

This is conserved: for a given path of a particle E remains constant.

There is something else that we can consider:
1 .,
L=T-V = §m|f| —V(r). (3.3)

This is not conserved, it changes in time as the particle moves. But we can consider

instead the functional

Sir] = / " L, #)dt . (3.4)

t1
S is called the action and L is the Lagrangian. The action is a functional in the sense
that it is a function of a function: given a function, namely the entire path r(t) of a
particle from t3 to to then S[r| gives a number. This number depends on the whole path
not just any given point on it. This is indicated by the square brackets S = S[r|. Note
that the Lagrangian is not a functional because it depends on r and 7 at a single time.
Rather one tends to think of it as a formal function of  and 7 as independent variables,

without thinking of the fact that r and i are also themselves functions time.

53
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Finally the action is somewhat analogous to the work which is also a functional (i.e.

a function of a function):

Wir] = /j2 F - idt (3.5)

except that whereas work is path-independent for conservative forces the action S is very
much path-dependent also in this case. Although there is the following crude analogy.
When you are pushing a shopping cart around the supermarket looking for the marmite,
if you know what you are doing you will not wander around everywhere but rather take
the shortest path to the marmite and then the shortest path to the check-out. You do
this to minimize the amount of work that you must do to push the shopping trolley. As
we will now see particles make a similar calculation. We now state the

Principle of Least Action: Particles move so as to extremize the action S as a
functional of all possible paths between r(t1) and r(t2). That is to say Newton’s Laws

of motion are equivalent to the statement that
08 =0, (3.6)

where 05 is the first order variation of the action obtained by shifting the path r — r+dr
(and 7 — 7 + d7), subject to the condition that the end points of the path are fixed:
or(t1) = dr(t2) = 0.

Let us prove this. To do this we compute

Slr + or] = /t2 %m(t +07) - (7 4 07) — V(r + ér)dt

t1

t2 1 1 1
—/ —mf -+ —mdr -+ —mi - 6 — V(r+dr)dt + ...
L 2 2 2

to 1
:/'imfz+mzﬁz—vg+ﬁgﬁ (3.7)
t1
where the dots denote higher order terms in dr which we have dropped in the last line
as we will only be interested in the first order variation. Next we need to taylor expand
V(r+ dor):

Vir+oér)=V(r)+ VYV -or+... (3.8)

where again the dots denote higher order terms in dr. Putting this back in we find

to
S[£+5£]—/ %mi'i—v(z)ﬂLmiﬂt—ZV-étdt
t

1

:5m+/bm@&—szﬂﬁ+m (3.9)

t1
Our next step is to note that the third term can be manipulated using integration by
parts:
e do .
mi - 01 = E(mz-éf)—mféz. (3.10)

Thus we have

to t2
S[z—l—éz]:S[ﬂ—l—/ %(mi-dz)dt—/ [mi - 6r + V'V - dr]dt + ...
t1 t1

to
= S[r] +mi - or |2 —/ [mit + VY V] - rdt + . .. (3.11)

t1
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Figure 3.1.1: Paths in Space

Now we assume that we vary the action over all paths which begin at r(¢;) and end at
r(t3). Thus we impose that dr(t;) = 0r(t2) = 0. Therefore we find
to

S[r+5r]:S[r]—/ (M + YV - ordt + ... (3.12)

t1

from which we read off the first order variation:

6S[r] = S[r + dor] — S[r] = — /:2 [mi + VV] - ordt . (3.13)

1

The claim is that for arbitrary variations in the path the particle will extremise S:
0S8 = 0. The path which extremises S against an arbitrary variation is therefore the one
for which:

mir+VV =0. (3.14)

This is just NII with F' = —VV and p = m!

3.2 Generalized Coordinates and Lagrangians

The power of the Lagrangian method lies in the fact that we can relatively simply
construct Lagrangians for different physical systems by determining the kinetic and
potential energies as a function of the dynamical variables. This leads to more general
Lagrangians. In particular this can happen in essentially two ways: either we wish to
modify what we mean by kinetic and potential energy, for example we may allow for the
mass to change. Or we impose some kind of constraint to the system which effectively
eliminates some coordinates in terms of others.

This leads to the notion of generalized coordinates. This means that instead of
thinking of the dynamical variables as the positions r; of N particles, we simply consider
a generic system with ”generalized” coordinates that we denote by ¢;. Here each ¢; is
treated as a scalar, not a vector, and we will take the index i to be rather generic and
ranges over all the generalized coordinates in the problem at hand.

A related concept is that of a degree of freedom is a generalized coordinate that
is allowed to evolve in time without restrictions on its initial conditions. For example

if we do have a system of IV free particles with positions r,,...,r then the generalized
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coordinates ¢; are just the 3N components of the positions so that ¢ = 1,...,3N. This
has 3N degrees of freedom.

However we will also want to look at constrained systems where the various gen-
eralized coordinate are related to each other leading to a reduction in the number of
degrees of freedom. An example of this was the skier we considered early on. The skier
is constrained to lie on a hill slope and furthermore we assume that they went straight
down the hill. Thus even though a skier is described by a three-vector r in the end
we only used the distance that the skier was up the slope from the bottom, which we
denoted by r. Another example is a pendulum where the weight is constrained to sit
at the end of rod of fixed length. In this case the generalized coordinate is simply the
angle of the pendulum from the equilibrium position.

Thus we wish to know how to evaluate the principle of least action, 5 = 0 for a
general Lagrangian. We will assume that the Lagrangian is a function of ¢;(¢) and ¢;(t)
but not higher order derivatives (although this can also be considered). It may also have

an explicit dependence on t. Thus we start with
to
Sla = | Lla(®). (o). ) (3.15)
t1

To evaluate §S we expand ¢; — ¢; +0q;, ¢; — ¢; +0¢;. We treat ¢; and ¢; as independent.
Although these are functions, at a fixed value of ¢ we could just think of them as ordinary

variables. Therefore we can expand L using the familiar rules of calculus:!

S[q,; + (qu] = /t2 L(qi(t) + (5qi(t), qz(t) + 6qz(t), t)dt

t1

t
:/2 QUq’La Jrza 5Q1+Z 5‘]@ c.o.dt

t1

(3.16)

where the dots denote higher order terms in d¢; and d¢;. We do not need these terms

to evaluate 6.5 which is, by definition, the first order term in the variation:
08 = Slgi + dqi] losy —Slail - (3.17)

Therefore we find b ol oL
2
05 = —0q; + —0¢; ) dt . 3.18
zi:/tl <3qz‘ " o qz) (319

Next we want to write the second term in terms of d¢;, not d¢;. To do this we rewrite

the second term as a total derivative plus something else:

oL _. oL OL
8—%5% pr (8 5qz> pr (8 > dq; . (3.19)

Substituting this into §.5 we find

d d (0L oL
5S = Z/l < > o <a >(5qz 8qi6qidt
t2 OL OL
Z/ [dt (a_q) 6qj Sqqdt . (3.20)

t1 t1

= a_qz(s%

n the literature one sometimes sees 0L/6q; instead of OL/Dq;.
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To get deal with the boundary term we note that we want to make an arbitrary variation
the path

qi(t) = qi(t) + 6qi(t) , (3.21)

however we only want to consider paths that start at a fixed starting point ¢;(¢1) and

end at a fixed end point. Thus we keep dr(t) arbitrary except that

(Sqi(tl) == 6qi(t2) =0. (322)
And therefore
oL . |™
—dq;| =0, 3.23
96:%|, (3.23)

so that finally we find
27d (L) OL
08 = — — = | — = | dqdt . .24
’ Z/ HGIRAE (3:24)

Now the principle of least action asserts that the dynamical path of the system is
the one for which §S = 0 for any choice of dg;(t) (subject to (3.22)). This will only be

the case if
d (0L oL
— (=)= =0. 2

at <aq'i> og; " (3.25)

This is known as the Euler-Lagrange equation.
Finally we note that two Lagrangians that differ by a total derivative will give the
same Euler-Lagrange equation and hence correspond to the same physical system. In

particular if

. . d
L'(gi, i, t) = L(gis Gis t) + %Q(Qz‘,t) ; (3.26)

then the associated actions differ by boundary terms
S'lai] = Slai] + Qai(t2), t2) — Qai(tr), t1) - (3.27)
Since we do not vary the boundary values dg;(t1) = dgi(t2) = 0 it follows that
58" =469, (3.28)

and hence we would find the same Euler-Lagrange equation.

3.3 Simple Examples

This is all quite abstract. Let us see how it works in several examples.
Example 1: a particle in 3D: Lets go back to the single particle that we originally
studied:

1
L= gmlif? =V ()

1 . . .
= 5mldt + 3 + @) = Ve g2.05) (3.29)
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where in the second line we have rewritten the Lagrangian in terms of the ”generalized”
coordinates ¢;, i = 1,2,3 which are simply the components of r = (¢!, ¢% ¢%), i.e.

q; = r® From here we see that (recall that we think of ¢; and ¢; as independent):

oL __ov
g g
0L .

Thus the Euler-Lagrange equation (3.25) is

it =0 3.31
mé; + 90 : (3.31)

which is the component version of (3.14). In particular we have simply rediscovered NII
with Fi = —8V/6qi.
Example 2: The skier: Lets look at our skier again. Here r = re;,, where ¢;, was

the constant unit vector pointing up the hill. Thus

1
T = —m||?
5l
. .
= §m(7"§h) - (Tep)
1
= —mi? (3.32)
2
The potential energy is just proportional to the height A = rsin 6:
V =mgrsin6 . (3.33)
Thus the Lagrangian is
1
L= §m7'“2 —mgrsing . (3.34)
Here there is just one generalized coordinate ¢ = r. We can easily evaluate
oL 0
— = —mgsin
or g
oL
o = mr (3.35)
and hence the Euler-Lagrange equation is
mi +mgsinf =0 , (3.36)

which is what we found before. Note that here we did not have to worry about resolving
the forces into the part Fp along the direction of motion and the part £, that is
cancelled by the upwards force of the hill pushing back on the skier. All we needed was
to identify the potential, which is the height.

In fact we can easily allow for a more interesting ski slope where the ski slope has
a non-trivial profile y = h(x). Here z is the direction along the horizon and y is the
height above the ground.

In this case the potential is

V =mgh(x) (3.37)
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The kinetic energy is (we only consider motion straight up and down the hill and not

side-to-side across the slope)

1
T = -m(&? + 9°)

2
21 (P 2
dx

1
1+ (%)2] i (3.38)

=-m

2

1

2m

Thus the Lagrangian is

1 dh\?| ,
L= 5™ 1+ <%> ] * — mgh(x) (3.39)
From here we find
oL,
or  drd2’ T "
oL dh\?
P () | 4
9% m[%—(dx)]:c (3.40)

and hence the Euler-Lagrange equation is

4 14+ dh P — @ﬁ'2+ @_0
ar \" dz ) 1) T Mz dert T T

dh\ 2 dh d?h dh
= m{l+(-—) | &+m-—=si®+mg—=0 (3.41)
dx dx?

dx dzx

This equation would have been pretty hard to determine based directly on Newton’s

Laws. Although in this case it is simply equivalent to the conservation of energy
dh\?
1 -
()

We find the simple skier we had before if we identify x = rcos@ and h = rsinf =

1
E=T4+V=-m

5 i% + mgh (3.42)

as can be seen by evaluating dE/dt = 0.

x tan.
Example 3: Circular motion and centrifugal force: Let us look at a free
particle V' = 0, lying in a plane but using polar coordinates. We looked at this problem

before and took:
7 cos

r=|rsinfg | . (3.43)
0

To compute the Lagrangian we note that
i cosf — rfsinf

7= |7sind+rfcosf | . (3.44)
0
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and hence

1
L= -m|i|?
2m|£|

1 . .
= §m((r cos@ — rfsin)? + (sin @ + 6 cos H)?)
1

= §m(7'“2 +r26?) . (3.45)

The generalized coordinates are ¢; = r and go = 6. Lets look at the Euler-Lagrange

equations, there will be one for r and one for 0. First 7:

oL -
E = mre
oL
L — my 4
o7, mr (3.46)
S0
mit —mrf* =0 . (3.47)

The second term is the centrifugal force term. Recall this was a fictitious force and
indeed it arises here because we have not used Cartesian coordinates. Indeed in the

Lagrangian we have set V = 0 so that there is no ‘real’ force.

For 6 we find
OL
20— 0
% = mr20 (3.48)
S0 J
7 (mr29) =m0 + 2mrif =0 . (3.49)

This equation immediately gives us the conservation of angular momentum:
|L| = mr?6 = constant. (3.50)

We could also considering adding a potential term V' (r,8). This would then correct

the Euler-Lagrange equations to

mit — mré? + 8—‘/ =0
or
mr20 + 2mrif + 88—‘9/ =0, (3.51)

Corresponding to a force with components F,, = —0V/0r, Fy = —0V/00. We also see
that the Fy component generates torque, corresponding to non-conservation of angular

momentum.

3.4 Constraints

The last two examples were actually cases where there was a constraint on the system. In
particular, rather than looking at an object that was free to move in all three-dimensions
there was always some kind of restriction: The skier was required to stay on a the slope

and the particle undergoing circular motion was required to lie in the plane. These
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i

Figure 3.5.1: A Pendulum

constraints were so simple that we hardly noticed them at all. Nevertheless they are
examples of holonomic constraints:

Definition A holonomic constraint on a system is a function of the form
C(qi,t) =0 (3.52)

that is imposed on the coordinates, but not their derivatives, at all times for some func-
tion C'. There can of course be more than one such constraint on a system. Constraints
that are not of this type are called, no surprise here, non-holonomic.

In general each holonomic constraint reduces the number degrees of freedom of the
system by one. In particular one uses each constraint to solve for one of the generalized
coordinates in terms of the others.

One of the great powers of the Lagrangian formulation is that it can handle holonomic
constraints quite easily (in principle - one can always come up with examples that are
tough to solve in practice). This is because we are only required to determine the kinetic
and potential energies of the system. We do not need to analyze each of the forces and
counter-forces to determine the net force on each particle. For the examples above this
isn’t so hard to do. We did it for some of them. Let us now look at some more difficult
problems that involve constraints. Although possible, you would find it very tricky to

solve them by analysing all the forces.

3.5 The Pendulum and Double Pendulum in the Plane

A Pendulum is a weight of mass m that is attached to a rigid rod of length [ which is
itself held fixed at the other end. There is a story that Galileo was in church and saw the
chandeliers swinging and by the end of the, evidently less than riveting, sermon he had
deduced the form of their motion with the classic result that the period of oscillation is
independent of the mass of the chandelier or the size of its swing (its amplitude).

If we choose coordinates such that x points out of the page, y is horizontal and z

points up the page (as in figure 1.6.1) then the constraints are

Ci =
Co=1r

=3

-1

0
0

(3.53)
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In particular the first one asserts that the pendulum only moves in the y—z plane whereas
the second states that the distance to the origin, where the chandelier is attached to the

ceiling, is fixed. Writing

T
r=1y (3.54)
z
we see that C imposes x = 0. To solve Cy we write y = rsinf, z = —rcos (the minus

sign is because the chandelier is taken to lie below the ceiling). Then Cs simply states
that |r| =r=1.

To construct the Lagrangian we note that the position of the chandelier is

0
r=| Ilsinf . (3.55)
—lcosf
Since [ is fixed we have
0
= |10cost | . (3.56)
10sin 6
and hence the kinetic energy is
1 1 .
T = §m|t|2 = §ml292 (3.57)

Indeed this is the same in example 3 just with » — [ a constant (as well as § — 0 —7/2).
Unlike example 3 there is a potential due to gravity which is just the height (much like
the skier):

V = —mglcos6 . (3.58)
Therefore the Lagrangian is
1 )
L= §m1292 + mglcos6 . (3.59)
We evaluate
L
g—e = —mglsinf
oL .
— =ml?*0, (3.60)
00

so that the Euler-Lagrange equation for 6 is
mi?0 + mglsind =0 . (3.61)
Here we see that the factors of m cancel, corresponding to Galileo’s observation:

é+%sin9:0. (3.62)

This is a little tricky to solve however for small oscilations, sinf = 6 + ... and one can
simply take

b+ %9 —0. (3.63)
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Figure 3.5.2: A Double Pendulum

The solution to this is

0= asin (([41) + Boos (|/41) (3.61)

for arbitrary constants A and B. Therefore if you know the length of the cord holding
a chandelier you can measure the gravitational constant g.

Let us next consider a pendulum that is attached to a second pendulum (see Figure
(3.5.2). The rods connecting then both have length [ and they both have the same mass
m. The details of this are left as a problem so let us just give some sketch of what to
do.

Let their positions be (z1,y1, 21) and (z2,y2, 22). Pendulum one has the same form

as the single pendulum above in terms of 6. In particular it satisfies the constraints

=0

T
P 4+22-12=0 (3.65)

Cl(xla Y1, 21,22, Y2, 227t)

02($la Y1,21,%2,Y2, 22, t)
We are taking the z direction to point out of the page in Figure 13. These reduce the 3
degrees of freedom of the first pendulum to a single degree of freedom 6 that was saw
above.
The second pendulum satisfies the constraints
C3(21, Y1, 21, T2, Y2, 22,t) = 22 =0
Ca(z1,y1,21, T2, Y2, 22,1) = (2 —y1)> + (2 —21)* = ° = 0. (3.66)
Again this reduces the 3 degrees of freedom down to one
Yo —y1 = lsin g 29— 21 = —lcoso . (3.67)
This allows one to compute the kinetic energy 7' in terms of 6 and qS The potential is
the sum of two terms, one for each weight,
Vi =mgz

Vo = mgzo (3.68)
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This allows you to write down the Lagrangian as a function of the generalized coordinates

0, ¢ and their time derivatives. In particular we have

y1 = Ilsin@ 21 = —lcosf

yo = lsinf + [sin ¢ 29 = —lcosf —lcos ¢
So the kinetic term is

1 . . . .
T = cm(gf + 2 + 93 + 23)

2
_ L 4 02+ 3 4 200(cos0c0s + sinsing)
- %ml2(292 + & + 200 cos(f — @) (3.69)
and hence
L =ml%6?+ %mlzgf}2 + ml20¢ cos(6 — ¢) + mgl(2 cos 6 + cos @) . (3.70)

From here we can read off the 6 equation of motion

4 <2mz2é + mi2¢cos(f — ¢)) - (—ml2(9'qz'5 sin(0 — ¢) — 2mglsin 9) —0

dt
<
om0 + ml2écos(9 — ) —ml%p(0 — ¢) sin(f — ¢) + mi?0¢sin(6 — ®) +2mglsind =0
e

0+ %écos(@ —¢)+ %(ﬁQsin(H —¢)+ %sin@ =0,
(3.71)

and the ¢ equation of motion:

4 (mz2¢'> + mi2f cos(0 — ¢)> - (mﬂégz} sin( — @) — mglsin ¢) —0

dt
<
mi?p 4+ mi?6 cos(0 — ¢) — mi?0(6 — ¢) sin(0 — ¢) — mi*0psin(0 — ¢) + mglsing = 0
<~
b+ 0cos(0 — ¢) — 6% sin(6 — ¢) + %sinqﬁ =0.

(3.72)

Of course it is altogether a different problem to solve these equations! In fact they are
known to exhibit chaotic behaviour. You can take a look at some cool pictures and
movies about it here:

http://en.wikipedia.org/wiki/Double_pendulum

3.6 Interlude: Linearized Analysis and Normal Modes

While we are looking at the double pendulum it is instructive to consider the equations

in the limit where (0, ¢) are small, as we did for the single pendulum - although here

we also need to assume that (6, ¢) are small to obtain linear differential equations. In
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this case we approximate sin(6 — ¢) ~ 0 — ¢, cos( — ¢) ~ 1 and sin ¢ ~ ¢, and neglect

terms of higher order in 6§ and ¢. In this case we find
0+ = 20 =
+ 2¢) + ; 0
q'zi+(9'+“ll¢=0 (3.73)

To solve this we write our system in terms of matrices:
KO +Q0=0 (3.74)

@:(9>, K:(l 1/2>, Q:€<1 0) (3.75)
& 11 1\o 1

We then invert K and write our equation as
6+K 00 =0 (3.76)

Note that K~! always exists otherwise it would mean that some linear combination of ¢
and ¢ did not have kinetic energy in the Lagrangian. Next we construct the eigenvalues
w%g of K1 and their eigenvectors ©1 and O, respectively. The solution to the equation
O+ K106 = 0 is then

© = Re (410 + A2e™?'05) (3.77)

where A1 and Ay are arbitrary complex numbers. Here we use the linearity of the
equation to take the real part (or we could take the imaginary part) to obtain a real
solution.

The O and wy 2 are called the normal modes and normal frequencies respec-
tively. In our case the normal frequencies are real but in general they could be complex.
This is okay as the equations are linear and so one just takes the real (or imaginary) part
to obtain a physically acceptable solution. However an imaginary part to the frequency

w indicates an instability as the solution will have an exponential dependence of the

2 -1
(_2 2) (3.78)

form et ~ e~ Im(@)t which diverges in the past or future.

In our case we find

g L 1 —1/2\g (1 0\ g
1-1/2\-1 1 Ji\o 1) 1

The eigenvalue equation is therefore

0= 29/l —wiy)?* —2¢°/17

Wiy = %(2 FV2). (3.79)

Next we find the eigenvectors. To this end we write

- (2) (3.80)
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and substitute into K ~1Q0O = wiQ@ which leads to the condition
%(2 b= %(2 +2) (3.81)

Thus b = +v/2 and our eigenvectors are

1 1
o (5). e () os

0 Re (Aleiwlt + Agei"‘&t)
= ) ) 3.83
(Cf)) (\/iRe (Ale“‘“t — Age“"Qt) ( )

For example taking Ay = As = A a real constant gives:

o) Acoswit + Acoswsat (3.84)
¢ ~ \ V24 coswit — V24 coswat '

Lastly we note that it is curious to see irrational values showing up which gives a

Thus our solution is

hint of the complicated and chaotic motion of the full system. In particular the ratio

“r_ 2-V2 (3.85)

w2 242

is irrational so that the motion is not periodic, i.e. there is no time ¢ # 0 for which
both wit and wet are integer multiples of 2. So there is no time in the future where

the pendulums return to their original positions and velocities.

3.7 A Marble in a Bowl

Let us derive the equations of motion of a marble rolling about without friction in a
bowl under the force of gravity. In particular suppose that the bowl is defined by the

curve, for z > 0,
2= +y? = C(x,y,2)=2z—2° —y*=0. (3.86)

Solving this constraint reduces us from three degrees of freedom to two. In particular

let us switch to polar coordinates for x and y:

T = rcosf

y=rsinf (3.87)
so that the constraint is simply solved by taking
z=7?. (3.88)
The kinetic energy is then

T = %m((r cos — rfsin0)? + (7sin 6 + r cos 0)? + 4r2?)

1 1 .
= om(1+ 4r?)p? 5mr?92 : (3.89)
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The potential energy is again just the height:
V =mgr? , (3.90)

so that

1 1 .
L= §m(1 + 4r%)r? + Emr292 —mgr? . (3.91)

More generally one could consider a bowl with a shape given by a function z =
f(x? 4+ 9?) so that the constraint is satisfied by z = f(r?). Therefore z = 2r¢f/(r?) and
hence

L= gm(1 442 () 4 Smr — mgf(r?) (3.92)

To find the Euler-Lagrange equations we first evaluate

L

%?:nuy+wﬁf
I .

g— = dmri? + mrf? — 2mgr | (3.93)
”

so that the r Euler-Lagrange equation is
m(1 + 4r?)i + 8mri? — dmri? — mré? + 2mgr =0 . (3.94)

For the 6 equation we again notice that since L/00 = 0 there is a conservation law:
d (0L d 924
Rl el I 0) = .
o <39> g (mr<6) =0, (3.95)

which is equivalent to the conservation of angular momentum I = mr26.
We can now use the conservation of [ to obtain a reduced dynamical system that
only involves r and an effective potential as we did before. To this end we note that the

energy

E=T+V

1 2v:2 | L 249 2

:§m(1—|—4r )7 —|—§mr9 + mgr
1 12

_ 2) .2 2
= im(l + 4r°)re + p— + mgr (3.96)

is conserved.

This can also be seen by starting from the r-equation of motion and substituting in

for 6:
2

l
m(1 + 4r?)i 4+ 4mri? — — +2mgr =0 (3.97)
mr
Next we multiply by 7 and integrate up with respect to time:

l2
m(1 + 4r?)ir + dmri® — — + 2mgri = 0
mr3

d (1 12
DAL (1 422 2\ _ '
<2m( + 4r<)ic + o + mgr ) 0 (3.98)

Thus F is indeed constant.
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Figure 3.8.1: A Bead On A Rotating Wire

Just as before we can rewrite the conservation of energy as

1 5 12 1 mgr? E
—mr — =0 3.99
2 T T 14 Txar? (3.99)
This is of the form
1
inm2+vgf=o (3.100)
but with ) )
l 1 mgr E
Verr = — . 3.101
I omr2 1 + 412 + 1+4r2 14472 ( )

This can be quantitatively and qualitatively analysed as we did before for 3D problems
with conserved angular momentum. Note that ' now appears as part of V. ;s rather
than as a line which the particle must stay below.

We could also have simply written the energy as

1 - - 12
E=om(+4r)i% + Vegp  Veps =

52+ mgr? (3.102)

In this case there is a non-standard kinetic term but this won’t have much of a qualitative
effect on the dynamics since the non-constant coefficient 14472 never vanishes. Its effect
is to modify the relation between kinetic energy and velocity depending on the value
of r. But qualitatively one still has that the kinetic energy is an increasing positive

function of velocity. It will of course have quantitative effects.

3.8 A Bead on a Rotating Wire

Let us now look at something with a time-dependent constraint. We consider a straight
wire that is lying in the x — y plane and rotating about its midpoint at the origin with
constant angular velocity w = 6. Let us imagine a bead moves on the wire without
friction. We also assume that the wire is infinitely long so the bead never falls off the
end.

Let us write the position of the bead in cylindrical coordinates

r cos
r=|rsind | . (3.103)

z
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The constraint that the bead is on the wire, and the wire is rotating, can be written as

Cy(r,0,z,t) =0 —wt =0
Cy(r,0,z,t) =2=0, (3.104)

for a fixed w. These are solved by taking

Il
o

0 =wt z (3.105)

Thus there are initially three degrees of freedom but there are two constraints leading

to just one generalized coordinate or degree of freedom r. To continue we just compute:

7 cos(wt) — wr sin(wt)
7= | 7sin(wt) + wrcos(wt) | - (3.106)
0

There is no potential energy so the Lagrangian is just the kinetic energy

1
L= Em\ﬂQ

= %m((r cos(wt) — wrsin(wt))? + (7 sin(wt) + wr cos(wt))?)

1

= §m(7'“2 + w?r?) . (3.107)
This is just like an unconstrained particle in a potential V = —mw?r/2 corresponding
to a force F' = mw?r that points radially outwards. This is a centrifugal force and
is again fictitious, in the sense that there is no force or potential term in the original
Lagrangian.

Let us look at the equation of motion:
i —wir=0. (3.108)

Rather than finding sine and cosine as solutions the minus sign in second term indicates

an instability. The solutions are given by
r = Ae*t + Be ! . (3.109)

At late times only the first term is important and the bead flies off to r — oo getting
ever faster and faster due to the centrifugal force. In particular if at ¢ = 0 we assume
7 = 0 then we require

Aw — Bw =0 — A=1DB (3.110)

so that r = 2A cosh(wt).

3.9 The Coriolis Effect

Next we consider a more involved and famous example: the Coriolis effect which is
important for the weather. This is not particularly related to constraints (although we
will impose one) but rather relates to what (fictitious) forces arise when one switches

between different coordinate systems where there is an explicit time dependence. In
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~\

Figure 3.9.1: Rotating Coordinates

other words what happens when we are not in an inertial frame and Newton’s first law
is violated. This leads to so-called fictitious forces of which the most famous is the
Coriolis effect. For some videos demonstrating this see
https://www.youtube.com/watch?v=mPsLanVS1Q8
https://www.youtube.com/watch?v=dt_XJp77-mk
In particular consider a mass of air above the Earth with coordinates ' = (2/,4/, 2/)
where the 2’ coordinate runs north-south. Since the Earth is rotating r’ is not an inertial

frame. Therefore it makes sense to switch to a inertial coordinate system r = (z,y, z):

x ' cos(wt) — y' sin(wt)
y | = | ¥ cos(wt) + ' sin(wt) | , (3.111)
z

Z/

where w = 27/60/60,/24 ~ 0.00007 is the angular velocity of the Earth per second. For
w > 0 this means that the (z/,y’) plane is rotating with angular velocity w with respect

to the (z,y) plane. We can denote this as

cos(wt) —sin(wt) 0
r =Ry R = | sin(wt) cos(wt) O] . (3.112)
0 0 1

We don’t need a potential. The Atmosphere is of course subjected to Earth’s gravity
but the pressure of the lower air levels keeps the higher air from falling. So in effect
the gravitational force is cancelled, at least in the approximation that we will make. In
other words we will impose the constraint that the height |r| of the air molecule is fixed.

Thus the Lagrangian of an air molecule is the kinetic energy
L=T
1 .,
= §m\£|
L 7.
=—_mi T (3.113)

where we are thinking of the positions as 1 x 3 matrices. Now

i =Ri’ + Ry’ (3.114)


https://www.youtube.com/watch?v=mPsLanVS1Q8
https://www.youtube.com/watch?v=dt_XJp77-mk
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so that
1 : .
L=om(Ri’ + Rr')" (Ri’ + Rr')
1 : :
= om("RY +r"RT)(Ri + Ry)

1 . . s
= §m(z’TRTRf +TRIR + #TRIRr 4+ r"TRTRY) . (3.115)

The middle two terms are actually equal:
SRR = (SRR
=i""R'Ry’ . (3.116)
Further since R is a rotation we have RTR = I. Thus we see that
L= %m|ﬁ’|2 +mi' TR Ry + %mz’TRTRz’ . (3.117)

Next we need to compute

—sin(wt) —cos(wt) 0
R=w| cos(wt) —sin(wt) 0 (3.118)
0 0 0
so that
cos(wt) sin(wt) 0 —sin(wt) —cos(wt) 0
R'R =w | —sin(wt) cos(wt) 0 cos(wt) —sin(wt) 0
0 0 1 0 0 0
0 -1 0
—w|1 0 o0 (3.119)
0 0 O

—sin(wt)  cos(wt) —sin(wt) — cos(wt)

0 0
RTR = w? | —cos(wt) —sin(wt) 0| | cos(wt) —sin(wt) 0
0 0

0 0 0 0
100
=w?l0 1 0 (3.120)
000

Putting this all together we find
1 1

L= om((#)* + (1) + (£)7) + mw(@'y = y/'&') + gme?((2)* + ()% - (3.121)

This can be rewritten as
1 1
L= ém]illz +mw(r’ xi') e, + §mw2|£’ x e, |?. (3.122)

where e, is the unit vector point north.

What are these terms? The first is the familiar kinetic term and is independent of
the rotation of the earth. The third is a centrifugal force term. In particular the third

term can written as a potential

1 1
V= _Emw2|£’ xe,|?= —§mw2|£l|gsin20 , (3.123)
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Figure 3.9.2: Centrifugal Force on Earth

where 6 is the angle between r’ and e, - so the minimum at 6 = 7/2 is the equator. So
you are lighter, by about 0.3% at the equator.

The second term gives a velocity dependent force and is known as the Coriolis ef-
fect. Let us look at the effect of this term on the equations of motion (Euler-Lagrange

equation). To do this we consider the 2’ equation:

d
yr (mi’ — mwy') — mwy’ + O(w?) =0
i — 2wy + 0w =0. (3.124)

Here we do not want to worry about the effects of the centrifugal force which is higher

order in w. The 3/ equation is:

d
g7 (my +mwa') + mwi’ + O(w?) =0

i+ 2wi’ + O(w?) =0 . (3.125)
On the other hand the 2’ equation is unaffected:

#=0. (3.126)

Thus the Coriolis term gives and extra velocity dependent force. We can integrate these

equations:

i — 2wy = 2wA
¥ + 2wz’ =2wB
J=C (3.127)

where A, B, C are constants. Clearly we can integrate up the 2z’ equation again to find
Z=Ct+D. (3.128)
To solve for 2’ and vy’ we first substitute y = 2wB — 2wz’ into the ' equation:
i+ 4wy’ = 40*B | (3.129)
Again we can solve this by writing

o' =B+al, (3.130)
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where x{, satisfies
ip 4 dw?xh =0 . (3.131)

Thus 2’ is oscillating about B with frequency w:
7' = B + asin(2wt) + B cos(2wt) . (3.132)
We can now solve for 3 by writing:

' = 2wB — 2wz’
= —2wasin(2wt) — 2w cos(2wt)
y = E + acos(2wt) — Bsin(2wt) . (3.133)

Here F is just a constant (not related to the energy). We see that
(' =B+ (y —E)?>=a®+ 7. (3.134)

Thus a particle will move in circles in the 2’ — 3’ plane. Of course since w is so small
a given air mass doesn’t make it very far around the circle before other weather effects

become important.

3.10 Symmetries

So far we have been using the principle of least action to obtain the equations of motion
of a system from the Euler-Lagrange Equations. But we haven’t usually been trying
to solve them. Indeed almost all systems of interest will be too complicated to solve
exactly. One would must use a computer to find numerical approximations. So we now
want to think more abstractly about Lagrangians.

However the action defines the dynamics and we can learn a lot about a system by
thinking about the Lagrangian. An important part of the analysis involves symmetries
and these are in turn deeply related to conserved quantities. In order to proceed we
need to study conserved quantities again, but this time in the Lagrangian formulation.

If we define the conjugate momentum as

oL
i = 3 3.135
Pi= 5 (3.135)
and oL
F=—, 3.136
G (3.136)
then the Euler-Lagrange equation reads as
d
—p; = F, . 1
2P (3.137)
which is in the form of NII. In the cases where
1 ]
L=5 mid V(). (3.138)
we have that the conjugate momentum is p; = m;q; and the generalized force is
L
oL _ OV (3.139)

Y04 0’
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which is just the usual expression in terms of a potential V. But we have also seen
examples where the conjugate momentum is more complicated. For example in the

marble in a bowl we find

1 1 .
L=gm(l+ 4r2)i? 4 5m7«292 — mgr? (3.140)
and so
oL
pr=o = m(1 + 4r?)r
oL 9
= — =mrf . 3.141
P= (3.141)

This arises as the curvature of the bowl modifies what one means by momentum. The

generalized force is also a little different:

F, = — = dmri? + mré? — 2mgr
or
oL
Fp=—=0. 3.142
©T o0 (8.142)

In the examples above we saw several times that if the Lagrangian was independent
of a particular coordinate g, (quite often it was the angle ), but not ¢, then we could
immediately identify a conserved quantity (when the Lagrangian is independent of the

angle 0, the conserved quantity was the angular momentum):

d (0L oL
- = = i . .14
o ( aq*> 0 = Q 90 is conserved (3.143)

Such a coordinate is said to be ignorable.
If L is independent of a particular coordinate, say g, then there is a symmetry:
L{gi + 6qi, ¢ + 643, t] = L[gi, Gi, t] where

0qe =€, 0q; = 0 otherwise , 0¢« = 0¢; =0, (3.144)

where € is a constant. This can be made more general as follows. A (continuous or

infinitesimal) symmetry of the Lagrangian is a transformation
G —qi+ €l G —di+ €Ty, (3.145)

where € is an infinitesimal parameter? and T} is a function of the ¢;’s and ¢, under which

L is invariant:
Llgi + €T}, 4 + €T}, t] = Llg;, i, ] - (3.146)

i.e. 0L = L[q; + €T3, ¢; + eTi,t} — L|gi, gi,t] = 0 (to first order in €).

3.11 Noether’s Theorem

We can now state and prove the famous Noether’s Theorem: For every continuous

symmetry of the Lagrangian there is a conserved quantity:

oL
Q=2 Tk (3.147)

2Meaning that we are free to make € as small as we like.
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Note that the term continuous is important. Lagrangians can also have discrete sym-
metries, where ¢; — ¢}, which do not have a small expansion parameter e. A common
one might by a reflection ¢; — —¢;. Such symmetries are also important but they do
not lead to conserved charges.

Let us prove Noether’s theorem. We first note that the condition that this is a

symmetry, i.e. 6L = 0, when expanded to first order in € using Taylor’s theorem gives

0L = Z 5(]7, 5 QZ

=0. (3.148)
Thus we must have
oL oL .
— T, +—1;,=0. 3.149
Z a% * 8% ( )

It is important to emphasize that we have only considered a specific variation of the

coordinates and their derivatives given by
8qi = €Ty, 8¢ = €T, (3.150)

where T; is some specified function of the coordinates (for example, in the case of a
marble in a bowl, ér = 0,06 = € corresponding to T, = 0, Ty = 1). This is quite
different, in a sense opposite, to when we evaluated 65 = 0. In that case we required
that the action was invariant under all variations of the coordinates and their derivatives
and this led to the Euler-Lagrange equation that selects a particular path g;, ¢;.

To do so we simply compute

Z aL dT;
dt 8ql 8q1 dt

’L

= o, (3.151)

where in the second line we used the Euler-Lagrange equation and in the last line
equation (3.149).
Finally we note that actually all we require is a symmetry of the action S. Thus it

is enough if the Lagrangian is invariant up to a total derivative:

dQ)
L=e—. 152
0 e (3.152)

Here € is some function of the ¢;’s and ¢;’s. Thus (3.149) is modified to

oL oL . dQ2
T+ —=T,=— . 1
Zaqz Toq T @ (8.153)

In this case all we need to do is shift the definition of @ to

Q= Za—%T Q, (3.154)



76 CHAPTER 3. LAGRANGIAN MECHANICS
so that the second to last line in

d@ d (0L oL dT; dS2

T (=1 + = _ 2t

d Z di (aqi) T oq @t i

oL oL . dQ)
= —Ti —.Tz‘ -
Zi: 9qi - 9q; dt

=0. (3.155)

Even more generally one might also allow for ¢ to change under the transformation. In
this case one must also be careful to include the change in ¢t when evaluating the action
as in integral over time, as we will see below.

This is a deep connection between symmetry and conservation laws. It is widely
viewed as one of the most fundamental cornerstones of physics. There are a few im-
portant symmetries that many physical systems have and these lead to well known

conserved charges. Let us look at some.

3.12 Elementary examples of symmetries: A free particle

on plane
Let us look at a single particle in a plane with Cartesian coordinates (z,y):
Leartcsian = 5@ +37) (3.156)
Here we see that both x and y are ignorable. This leads to two symmetries:

T — T+ € Y=y
y—y+e T =T (3.157)
parameterized by €; and e;. These are simply translations in space as there is no

preferred point in space in the absence of an external force.

Let us look at the same system but in polar coordinates:
1 .
Lpolar = im(TQ + 7”292) (3158)
where

r =22+ y>?

f = arctan(y/z) . (3.159)
Here 6 is an ignorable coordinate and hence one has the symmetry
0 —0+es r—T (3.160)

This is simply a rotation about the origin which is a symmetry as there is no preferred
direction.

However these represent the same system. So both Lagrangians must have all three
symmetries. So we must show that: (A) rotations are a symmetry of Legrtesian and (B)
translations in x and y are a symmetries of Lyoq,. (In fact there is a fourth symmetry

due to translations in time but we will see that a little later.)
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(A): To see that this is indeed the case we can first compute the €3 symmetry in

cartesian coordinates

Oz ox
dx = 0 — 00
iy + 00
= —rsinfes
= Ys (3.161)
and
oy Jy
oy = =0 — 46
Y=o + 00
= rcos fes
= res - (3.162)
Therefore & = —yes and §y = Tes.
5Lcartesmn _ aLcartesian 6z + 8Lcartesicm 5y + aLcart'esian 5+ 8Lcart.esian 6y
= mzdz + mydy
= —miye + myre
=0 (3.163)

Again we can compute compute the conserved charge due to the symmetry generated

by e3:

10L 10L
Q3= ——0x+ — =0y
€3 o €3 8y

= mi(=y) +my(z)
= m(yx — y). (3.164)

If we substitute x = r cosf and y = rsin then

Q3 = m(rsin 4 10 cos 0)r cos § — mi cos O(7 cos 6 — rf sin 6)
= mr?0(cos® 0 + sin? 0)
= mr?f

=1. (3.165)

(B): On the other hand we can also compute the change in 7,0 coming from €; and

€9

= cos fe1 + sin fey (3.166)
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and
00 00
00 = —o —0

3 T+ P Y

B 1 —y 1 1
1+ y?/x? x? CTIT y2 /2% x

T2t T 22

sin 6 cos
= — €1+ € . (3.167)

From these we can compute

57 = —fsin fer + 0 cos Oes

.cosf .sin 0 sinf _cosf

00 = —0 €1 — 0 . €2+ 7 Rl R A (3.168)

r
From these we can compute

OL
5 Lpola’r’ _ polar

8Lpolar 8Lpolar . 8Lpolar A
0 — 00
o or + 20 00 + o7 or + % 0

= midr 4+ mrord* + mr*060
= mi-(—0sin ey + 6 cos Bez) + mr(—6 cos ey + O sin Oez)d>

. -cos -sin 6 sin @ cos b
+m7’29(—0 61—<91 €2+7"12 €1 —T—5— 62)
r r r r

=0 (3.169)

Thus the symmetries generated by €; and €3 also extend to symmetries of Lo We
can compute the Noether charges. For the symmetry generated by €; we set e = 0 and
find

1 0L 1 0L

= mi(cos 0) + mr20 <_s1n0>

r

= ma(r cos 0)

= mi . (3.170)

While for the symmetry generated by €3 we set e = 0 and find

1 0L 1 0L

= mi(sin 0) + mr?0 (C089>
r

=m—(rsinf)

dt
=my . (3.171)

The point of this is to show that although some symmetries may be realised rather
trivially, such as those generated by €; and €5 in cartesian coordinates, there may still be
other symmetries which have a non-trivial realization. In this case the there is a third
symmetry generated by es. Similarly in polar coordinates where e3 is rather simple
there are in fact still two more symmetries generated by €1 and eo. Later in the course
we will see that there can be still more symmetries that are not al all apparent in the

Lagrangian formulation.
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3.13 Invariance under spatial translations gives conserved

momentum

This is the simplest example of a symmetry. Let us suppose that the generalized coor-
dinates are positions in space and that the potential and kinetic terms only depend on

the separation between any two pairs of particles, e.g. we might have
1 . 2
L= Z 5m1|£1| —Vi(r; — Zj) (3.172)
i

where V' only depends on r; — r;. Then we have an overall translational symmetry:

— T

L

rp o ritea 1y (3.173)

where a is a fixed vector. Therefore r; — r; is invariant. This corresponds to picking up

every particle in your system and moving it over a tiny bit in the direction of a. Since

we assume g = 0 the Lagrangian will be invariant and we find
oL
= —-a= a . 3.174

This is just the total momentum along the direction a. This symmetry reflects the

homogeneity of space, namely that there is no preferred location.

3.14 Invariance under rotations gives conserved angular

momentum

Let us make the same assumption as for spatial translations but then also assume that
the potential and kinetic terms only depend on the distance |r; — fj] between any pair
of particles (and not the direction). This is the case for all known fundamental forces.

Then we can consider a rotation of all the particles:
r; > 1; +€eTr; 7 — 17 +elr; (3.175)

where T is a constant anti-symmetric matrix: T7 = —T. To show that the Lagrangian

is invariant we must show that |r; — r;| is invariant:

O(|r; — fj’2> =2(r; —r;) - (r; — ;)

=2e(r; —r;) T(r; —15) , (3.176)

1)

Now T is an anti-symmetric 3 X 3 matrix so we can write is as

0o 73 T?
T=| 713 0o -7t . (3.177)
-T2 71 0

If we think in terms of components we have

3
T% = - eaneT” . (3.178)

c=1
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and therefore

0(|r; — r;*) = 2e(r; — ;) - T — )

= 2e > eanelr? —r)(r? )T

abc

=0. (3.179)

(=l

The expression vanishes because €gpe = —€pge but (rf — r?)(ri — r?) is symmetric in
a <> b. Thus the Lagrangian will be invariant.

The Noether charge is

=2 BT

ab
_ a ch
- D; €abeT;

v abc

=T-> r;xp,. (3.180)

This is just the component of the total angular momentum along the direction 7' =
(T, T2, T3).

This symmetry reflects the isotropy of space, namely that it looks the same in all
directions.

Note that putting in a massive body such as the sun and holding it fixed will break
homogeneity but not isotropy about the sun. Of course in reality the sun isn’t fixed,
just heavy compared to the planets, and so space is really homogeneous as the sun is

free to move.

3.15 Invariance Under Time Translations Gives Conserva-

tion of Energy

Lastly, but most importantly, let us show that conservation of energy arises from invari-
ance under time translations. So let us assume that the Lagrangian does not have any

explicit time dependence:
oL

i

First note that the action S depends only on ¢; and t2 (and not on the integration

0. (3.181)

variable ¢ which has been integrated over). Thus a translation in time means a shift
t1 — t1 + €, to — to + €. In this case we must be a little more subtle with the variation
of the action which is now

to+e

5= [ Lo, oy~ [ L i

t1+4€ t1

= [ L@+ 9uislt + ) - Liale)di )it (3.182)

t1



3.15. INVARIANCE UNDER TIME TRANSLATIONS GIVES CONSERVATION OF ENERGYS81

where in the first term of the second line we use a change of variables ' =t + ¢ in the

integral. In this case the coordinates will transform as
qi(t) = qi(t + €) = qi(t) + €qi(t) Gi(t) = q(t+€) = ¢i(t) + €gi(t) . (3.183)

In other words

5(]2‘ = qu 5q1 = qu (3.184)
Since the Lagrangian has no explicit ¢ dependence it too simply transforms as

dL

L(qi(t +€),qi(t +€)) = L(qi(t), 4i(t)) + I (3.185)

where

oL . OL .

= > 9q 0 T 7 b (3.186)
Thus

to L
55 = e/ Ly (3.187)
. dt

and we need to use the modified form for the Noether charge (3.154):

If we evaluate this for a simple Lagrangian of the form

1
L= §m|ﬂ2 —V(ry), (3.188)

then
p=mi, (3.189)

and hence the conserved charge is indeed the energy E:

1
Q=p-i—gmlif*+V(r)

|
—_ I3

= gmli + V()
—FE (3.190)

as previously defined. Here we see how to extend it to a general Lagrangian. Note that

for a general Lagrangian, one that isn’t of the form (3.188), this definition of energy is

not simply of the form E = %m|£ |2+ V. This can happen for example if the Lagrangian

contains terms which are linear, or which are higher than second order, in 7.
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Let us check that this is indeed conserved. To do so we first compute:

1L 0L (0L, oL,
dt Ot 0q; e 0q; g

i

~ ot 9 T dt (o Tt |og | T

%

oL d oL . oL d [AL\ .
-5t a2 o] * X (5 ~ i o)) o

i

oL d
or dt Zi:p e (3.191)
where we have used the Euler-Lagrange equation. Combining this with
E=) p4-L (3.192)
tells us that iE oL
— = ——. 3.193
dt ot ( )

Thus, provided that L does not explicitly depend on time, then E will be conserved.
In particular if we return to the free particle in two dimensions that we studied before
we can identify a fourth symmetry corresponding to time translations. The associated

conserved quantity is then just

1

= mi? + mg? — 5m(:z:2 +9?) (3.194)
1

= §m(x'2 +72) . (3.195)

Or in terms of polar coordinates
E =pd+pgd—L
= mi? + mr?f* — %m(vﬂ +76?) (3.196)
- %m(ﬂ 1262 | (3.197)

It is easy to check that these two expression for E agree. Thus there are four conserved

quantities (pz,py, pg = [ and E).

3.16 Example: A spherical pendulum

Let us return to the simple pendulum but now we not longer constrained it to lie in a
plane but can move in all three dimensions. However it still has one constraint: it must

be a fixed distance ! from the origin:
Ci(r,t) =Ir|-1=0. (3.198)
To solve this constraint we introduce spherical coordinates, r = (z,y, z) with

x = rsinf cos ¢
y =rsinfsin¢

z = —rcosf (3.199)
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Figure 3.16.1: A Spherical Pendulum

Note that the range of 6 and ¢ are [0, 7] and [0, 27) respectively, therefore the constraint
is

4P =12 =0 (3.200)
solved by taking r = [.

To continue we compute the kinetic energy

0 cos 0 cos ¢ — ¢ sin O sin ¢

7 =1]6cosfsin ¢+ ¢sinf cos (3.201)
fsin 6
and hence
1
7= Sl
2
1 . . . . .
= §ml2 <(6’ cos @ cos ¢ — psinfsin ) + (0 cosfsin ¢ + ¢sin b cos )% + 2 sin? 9)
1 . . . . X
= iml2 (02 cos? 6 cos® ¢ + ¢* sin? @ sin® ¢ + 6% cos® Osin® ¢ + ¢ sin” 0 cos® ¢ + 62 sin® 0)
Lo 200
= 2ml (0 + sin” 0¢ ) . (3.202)

The potential is just V = mgz:
V = —mglcosf . (3.203)
Hence we arrive at the Lagrangian
L= %ml2 (92 + sin? 9(]52> + mglcos@ . (3.204)

Here we see that ¢ is an ignorable coordinate.

What are the conserved charges? Since L does not depend explicitly on ¢ we have a
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conserved energy:

E:a—L.éJra—L.qB—L
90 9¢

) ) 1 ) )
= mi%% + mi?sin? 067 — Sml? (02 + sin? 0¢2) — mgl cosf
1 ) )
= mi® (92 + sin? 9¢2> — mglcosd . (3.205)

From the symmetry ¢ — ¢ + € we have conserved angular momentum about the
Z-axis
oL

0¢
= mi?sin®0¢ . (3.206)

L,

As before this is enough to reduce the system to two a single first order differential

equation. In particular we write

¢ = m : (3.207)
so that the energy is
B = L2 4 —2 —mglcosf . (3.208)
2 2mi2 sin? 0
This gives the effective potential
2
Vesr = m —mglcos@ , (3.209)

so that the solution for 0(t) comes from the integral

m. [0 de’
t—to = \/;l il (3.210)

Once one knows 60(t) one can integrate (3.207) to obtain ¢(t). Clearly finding 0(t) is not
easy but it can be done numerically with computers.
However qualitatively one can understand the dynamics by looking at a sketch of

Vegr for L, # 0 (see figure 17). We see that there is a minimum of V. ;; at

L? sin* @ L?
—————=——cosf lsinf =0 = = 2 3.211
M3 g +mgtsin cos  m2gl3 ( )
At this value of, 6§ = 6y, we obtain circular orbits where 6 = 6 is constant and
L.t
= 3.212
¢ mi2 sin? 6, ( )

Notice that small values of L, lead to small values of 8y but large values lead to 0y ~ /2.
More typically 8 will oscillate around this minimum, while ¢ winds around, leading
to paths depicted in figure 18. Of course we could also choose initial conditions where

¢ =0, i.e. L, =0. In which case we recover the simple pendulum in a plane.
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Figure 3.16.2: Effective Potential for the Spherical Pendulum

Figure 3.16.3: Typical Motion Of A Spherical Pendulum

85
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3.17 The Brachistochrone

The principle of least action and resulting Euler-Lagrange equations are an example
of the calculus of variations. This is where one performs ‘calculus’ on functionals, i.e.
where one needs to differentiate with respect to a function. One of the first examples of
this technique was to solve the so-called brachistochrone problem:
https://en.wikipedia.org/wiki/Brachistochrone_curve
https://mathcurve.com/courbes2d.gb/brachistochrone/brachistochrone.shtml

The short version of the story is that Bernouli posed the problem as a challenge:

“I, Johann Bernoulli, address the most brilliant mathematicians in the world. Noth-
ing is more attractive to intelligent people than an honest, challenging problem, whose
possible solution will bestow fame and remain as a lasting monument. Following the
example set by Pascal, Fermat, etc., I hope to gain the gratitude of the whole scientific
community by placing before the finest mathematicians of our time a problem which will
test their methods and the strength of their intellect. If someone communicates to me
the solution of the proposed problem, I shall publicly declare him worthy of praise.”

Newton received the challenge at 4pm on 29 January 1697 and had solved it by 4am
the following day.?> He mailed his solution anonymously to Bernoulli who upon reading
it declared that he “recognizes a lion from his claw mark”.

So before we finish with our discussion of Lagrangians lets us discuss this problem
using terms our skier would understand. Our skier is by now quite experienced and
wants to know the shape of a ski slope that gets her down the hill as quickly as possible.
Clearly the shortest ski slope would be a straight line but this will not be the fastest
as it is beneficial and more fun to speed up as much as possible early on, even if that
means having to go further.

Let us consider a skier on a slope given by y = h(xz). We saw before that the
Lagrangian is

L= %m((l + (W)2)i2) — mgh() | (3.213)

where h' = dh/dz. This means that the energy is

oL .
E= 8—xm —L
= %m((l + (W)?)i?) 4+ mgh(x) . (3.214)

What the skier wants to minimize is the time

t:/dt

o d
:/ & (3.215)

1 T

where x1 and x are the starting and finishing positions (along the x-axis). If we write

E = mghyg for some hg then using the equation for the energy we have

i=/2g m : (3.216)

3 It’s reassuring to observe that Physicists working patterns haven’t changed much.
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Note that if the skier starts from rest, i.e. with & = 0, then hg = h(x(0)). Thus we have
1+ (h'(x))?
—d
Vg / ho—h(z)
_ / L(h, W )da (3.217)
1

This is our functional that we want to minimise. We know how to do that! We just
derive the Euler-Lagrange equation for £. Only now h(z) is the function we want to

vary. Thus we need to compute (note that the role of ¢ is now replaced by )
_d oLy oL [Td h' LT VI
Tde \ow' )  oh N 2gde \Vhg —hvi+h2) 2V 2g(ho — h)3/2

1 n 1 /1 h'2
_ |+ + o= (3.218)
29 vVho — hvV1+h2 2V 29 (hg — h)3/2/1 + B2

1 h/2h// B 1 i /1 + h/Q
29 Vho — (1 + h2)3/2 2\ 2g (hg — h)3/2

1 1 /1 1
=4/5 + o4/ = .
29 vho — h(1 + Rh2)3/2 2V 2g (hg — h)3/2y/1 + K72

So finally we can write this as
1
(ho — h)R" + S+ h?)=0. (3.219)

But there is an easier way to proceed. Although there is no ‘time’ in our new problem
x behaves like time and furthermore the Lagrangian £ is independent of z. So the

analogue of ‘energy’, £, is still ‘conserved’ (meaning independent of x):

E= Sff’h/ L. (3.220)

Check that d€/dxz = 0 if you don’t believe me! This gives us a first order equation

J/29E = h'? 1+ h7
Vo —ivith?  \ho—h
- = h1\/1 — (3.221)
If we square both sides and rearrange we find
(ho — h)(1 +1*) = C? (3.222)
where C? = 1/2g€%. We can solve for h':
Y };) }i"; h (3.223)
and rewrite this
o=l g~ s (3.224)

C2—hg+h
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A computer (or hard work) will tell you that

C2—hyg+h

+(z — xg) = C? arcsin ( o2

) +/(ho — h)(C? — ho + h) (3.225)

Another way to solve this we write
1 2 .
x = 50 (0 — sin 0)
1
h=hg— 502(1 —cosf) . (3.226)

To check this we note that ' = —1C?sin0df/dx and dz/df = $C*(1 — cos0) = hg — h

SO

1C?%sind sin @

h/ = — — pu—
2 de/df 11— cos@
in20 sin?0 4+ 1 — 2cos § + cos? 2
14R? =140 = = 3.227
+ + (1 — cosf)? (1 — cos )2 1 —cosf ( )

From these you can see that (hg — h)(1 + h'?) = C2.

If you think about the curve (z(f),—h(f)) then you realise that it describes the
motion of a point on wheel of radius C?/2 as it rolls along a flat surface, corresponding
to h = hg — C? (think of # as depending linearly on time) and is known as a cycloid:

https://mathworld.wolfram.com/Cycloid.html
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Chapter 4

Hamiltonian Mechanics

In our discussion of Lagrangians we already introduced the notion of the conjugate

momentum:
)

_8_%

%

p (4.1)

Once all the (holonomic only) constraints have been solved for, leading to a reduced
number of degrees of freedom there is one conjugate momentum for each generalized
coordinate ¢;. The Euler-Lagrange equation then gives a second order differential equa-
tion for the time evolution of the system. Since it is second order one must specify the
initial values of ¢; and ¢;. That is the initial positions and velocities of the particles.
We now consider an equivalent description of dynamical systems known as the Hamil-
tonian formulation. Here one essentially swaps ¢; for the conjugate momentum p’ and
doubles the number of variables. Since both positions and velocities are needed to de-
scribe a system the Hamiltonian formulation puts both of ¢; and p’ on an equal footing.
The upside of this is that the second order Euler-Lagrange equations are replaced by
first order evolution equations known as Hamilton’s equations. In effect we wish to go
from thinking in terms of the Lagrangian L(g;, ¢;,t) to a new function H(g;, p’,t) known
as the Hamiltonian which encodes the same information. In particular in the Hamilto-
nian view ¢; never appears, only ¢; and p’. To emphasize this point we will not use a
dot as a short-hand for a time derivative once we are in the Hamiltonian formulation
(although we will use it when we discuss Lagrangians). Thus, once in the Hamiltonian

formulation ¢ never appears.

4.1 Legendre transformation

The general procedure is called a Legendre transformation. Let us consider a func-
tion F(x,y) which we want to swap for a new function F(x,u) without losing any

information. To do this we note that the total differential of F' is

oF oF
dF = —d —dy . 4.2
ar ** * oy Y (4.2)
Let us introduce a new function

89
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which is initially a function of (z,y,u) so that

. F F
dF = ydu + udy — g—xdx — 2—ydy . (4.4)

However we see that the dy term in dF drops out if we take

oF
= —. 4.5
= (45)
In this case F is only a function of (z,u):
F(z,u) = uy(z,u) — F(z,y(z,u)) (4.6)

where we use (4.5) to find y(u,z). This is the Legendre transformation and it
preserves all the information of the system since we can undo it by a further Legendre

transformation. To see this consider

F(x,z)= a—u(:c,z) — F(z,u(z, 2)) , (4.7)

OF _ oy 0F0y
ou ou Oy Ou
B oy y
v+ u@u “ou
=y, (4.8)

where we have used (4.5) in the second line. Therefore

}:7’(:1:, 2) = yu(x, z) — F(x,u(z, 2))
= F(x,z), (4.9)

and we have the original function back.

N.B. This isn’t quite true. In computing the Legendre transform we have assumed
that we can invert the expression v = dF /0y to find y as a function of u (and z). If
F is only linear in y then u is y-independent and hence we can not invert to find y as
a function of u. We will largely ignore this special case since y will be taken to be the
velocity and Lagrangians are typically quadratic in velocity.

So what? We have already encountered the conjugate momentum:

;  OL
pt = 96 (4.10)
This can be viewed as part of a Legendre transform which produces the Hamiltonian

from the Lagrangian:
H(gi,p't) =Y p'di — L(qi, dir 1) - (4.11)
%

We have seen this before, where H was the conserved energy F (when there is no explicit
time dependence). Thus the physical significance of the Hamiltonian is that it is the

energy of the system.
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Example: To make things concrete let us look at a Lagrangian of the form
L(gi, i) Z Smidl — V(g) . (4.12)

For example the ¢;’s could be the 3N position variables of N particles in R?. Here we

see that the conjugate momenta are
pi = mlql <~ ql = pi/ml- . (4.13)
The Hamiltonian is then

H(gi,p Zp Gi — L(gi 4i(qi, "))
= Zpiq'i -3 imiq'iz +Via)
(r')°
s D 4.14
I (414

4.2 Hamilton’s Equations

As H = H(g;, p';t) then,
oOH OH OH
dH = Z ( 30 9+ 5 o ) (4.15)

While as H = Y, ¢;p' — L we also have

OL OL OL
H = 1. 1 - 1 . 'i - 4'1
d E <dq P+ Gidp' o dg; — o0, —dg 5 dt) (4.16)

oL
= Z <qzdp - —dqz o dt)

where we have used the definition of the conjugate momentum p* = g—(j; to eliminate
two terms in the final line. By comparing the coefficients of dg;, dg; and dt in the two

expressions for dH we find

. _oH oL _oH oH _ oL
G= By 8¢ 0q;’ ot ot

(4.17)

Next we use the Euler-Lagrange equation to observe that p; = g—; so that the first two

equations give
d OH d OH

a" "oy @ dqi

p ==
These are referred to as Hamilton’s equations of motion. Notice that these are 2n first

(4.18)

order differential equations compared to Lagrange’s equations which are n second-order
differential equations. The space of (g;, p') is known as phase space and typically for

RSN since each particle has three position variables and

N unconstrained particles it is
three momentum variables. In classical mechanics the state of a system is given by a

point in phase space.
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Example 1: Let us look at a free particle on R? The Lagrangian is
1
L= §mm2 (4.19)
Clearly the Euler-Lagrange equations are just

mi = 0 (4.20)

which have linear solutions r(t) = v(0)t + r(0). To construct the Hamiltonian we note
that

L
p— g_t = mi (4.21)
and hence
Lo
= — . 4.22
5 1Pl (4.22)
What are Hamiltons equations? Just:
d OH p
—_—r = — = =
dt— p m
d OH
—p=—F7—=0 4.23
dtz—? or ~ ( )
Thus the solution is
p(t) = p(0)
0
v = 2% 4 1(0) (1.24)

In this case the Hamiltonian flow simply consists of straight lines in phases space with a
constant value of p # 0. In particular the flow goes to the left for lines above the r axis
but to the right for lines below the r axis. The p = 0 axis itself is special as points that
start on it remain on it. Therefore it simply consists of an infinite collection of disjoint
points (this case is a bit singular).

Example 2: Let us look at the simplest next possible system in detail. Its called
the harmonic oscillator and consists of a single degree of freedom ¢ with mass m moving
in a potential V(q) = %k‘qz. Thus the force is linear F' = —kq. Such a system could
be a spring displaced by an amount ¢ (using Hook’s law with spring constant k) or the
small angle approximation to a pendulum with ¢ = 0 << 1, since in that case we had
V = —mglcos ~ —mgl + %mgl@2 so that k2 = mgl and the constant term —mgl is
irrelevant.

First let us solve this problem using the Lagrangian approach. Here we construct

L= %mq’Q - %kqQ (4.25)

from which we obtain the Euler-Lagrange equation

AN
~dt \ 9¢ 0q

d
g (mq) + kq

=m{+kq . (4.26)
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This can be readily solved by taking
q(t) = Asin(wt) + B cos(wt) w=+k/m. (4.27)
Here we identify B = ¢(0) and wA = ¢(0) so that we could write
q(t) = w14(0) sin(wt) + ¢(0) cos(wt) . (4.28)

Let us look at this in the Hamiltonian formalism. Here the phase space is R? pa-

rameterized by (g, p). First we note that

oL
= ma 4.29
P= 5 =M (4.29)
so that
Gg=p/m. (4.30)
Thus the Hamiltonian is
H=p¢—L
2
¢ 1 (p) L o
=—4 (= —k
m + 2 \m + 2
I (4.31)
“om! T2 '
From here we read off Hamilton’s equations:
d oOH y
_ = — = m
dtq Op b
d oH
p=_—"""=_kg. 4.32
i 9 q (4.32)

Note that we can substitute the first equation into the second equation to find

d d?
_p:m

g pro i —qk (4.33)

which is just the same equation as in the Lagrangian formulation. However this is not
how we want to think of the problem. Rather we want to solve for ¢(t) and p(t). The

simplest way to do this is take the previous solution and reinterpret it:

q(t) = Asin(wt) + B cos(wt)

p(t) = mqg
= mAw cos(wt) — mBw sin(wt) (4.34)
From here we see that
p(0)
B =¢q(0 A=—= 4.35
4(0) " (435)
so we have
p(0)

q(t) = o sin(wt) 4 ¢(0) cos(wt)

p(t) = p(0) cos(wt) — mq(0)w sin(wt) . (4.36)
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o
NS

Figure 4.2.1: Phase Space Flows for the Harmonic Oscilator

Notice that these parameterize an ellipse:

(@(6)? + —— (p(1))? = +(a(0))? +

m2w? m
In particular the right hand side is simply proportional to the Hamiltonian which is the

1
2

—(p(0))? (437)

energy of the system:

1 1
H=_— 2 T1.,2
am? T gk
k 2 p2
2 (q * %)
mew? p?
= T <q2 + ﬂ) (4.38)
so that
1 2F
(a0)* + —5—(p(t)* = —— . (4.39)

Thus from the Hamiltonian point of view the dynamical motion consists of concentric
ellipses in phase space. Note that any given point in phase space lies on just one ellipse.

This is a general feature: the ellipses are known as Hamiltonian flows and as a
consequence of the first order dynamical differential equations a given point in phase
space lies on just one curve of the Hamiltonian flow since the solution to Hamilton’s

equations only depends on the initial value of (g, p).

4.3 Poisson Brackets and Canonical Transformations

Phase space is always even-dimensional (at least as we’ve constructed it here). As a
result there is a useful skew-symmetric structure known as a symplectic structure.
It is determined by the Poisson bracket which is defined by

=Y (af 99 _ 99 0f ) , (4.40)

dq; dp'  dg; AP’

7
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Figure 4.2.2: Forbidden Phase Space Flows

where f = f(q;,p") and g = g(g;,p’) are arbitrary functions on phase space.

The Poisson bracket has several properties:

i {f7g}:_{g7f}
o {f,g+ A n} ={f g} + M f,h}, for \eR
o {figh} ={f,gth+g{f h}

The first two should be obvious from the definition. The third requires a little calculation

(and is given as a problem).
One can write the equations of motion using the Poisson bracket as

d OH d OH
i) = : s = . 4.41
9= 14 H} oy and  —p= {' H} = ~ o (4.41)

In fact for any function f(g;,p’) on phase space we have that f = {f, H}. To prove this

{f,H}=Z<ﬁaH—a—Haf> (4.42)

we note that

0q; Op*  0Oq; Op*
_ Z of dg; dp" of
g dt dt Op

_ﬁ
Cdt’

if f= f(gp").
The set of Poisson brackets acting on simply ¢; and p’ are known as the fundamental

or canonical Poisson brackets. They have a simple form:

{qi. 0"} = 6 (4.43)
{gi,q;} =0
{r'ry=0,

which one may easily confirm by direct computation.
Definition: Canonical transformations ¢; — ¢, Pt — p; are transformations

which preserve fundamental Poisson brackets, i.e.

{05} =0ij, {a,q;} =0 and  {p;,pj} =0. (4.44)
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Note that ¢, and p) are both allowed to be functions of ¢; and p'. From the Lagrangian
point of view this would be weird: it would mean redefining ¢, as a function of ¢; and
¢;. But in the Hamiltonian formulation ¢; and p’ are on equal footings. We will see that
this leads to a larger class of symmetries than in the Lagrangian formulation.

The key thing about canonical transformations is that Hamilton’s equations remain

valid i, 0H(dp) d OH (dpl)
a4 q;; P; 4 _ q;; P;
i oy and P T og (4.45)
To see this we write (4.42) for ¢’ instead of f and we note that
d
5 = tai 1}
_ Z <aqza_H _ 94 8_H>
dq; Op  Op? dq;
(8(11 <8pk OH N qu 8H> aqZ (ka OH L+ %% 8qk 8H> >
o opl Op), ~ Op’ Oq, op? \ 9q; Op),  0q; Oq,
_ Z < <8qZ 8pk aq, Opk) OH N <8qi % dq, 8qk> 8H>
‘7 \\9q; 0p  9p? dq; ) Op, ~ \9q; Op?  9p Bq; ) 94
0H
1k I
= q;, + i a7
Zk: < b } {q Qk}aqz)
- ap'i . (4.46)
Similarly
d _ /7
o0 =" H}
B Z <8p” OH 8p” 6H>
dg; Op7  Op? Og;
B Z <8p” (8p’k OH N 8qk 8H> B op}; <8pk OH 8qk 8H> )
dq; \ Op? Op* ~ Opi dq;,)  Opi \ Oq; Op), ~ 0q; Ogj,
B Z < (8}?” ap/k; 8]?” 3pk> 0H n <a_p;a_q;g 8pl 8qk> 8H>
7 \\0q; Op)  Op’ 9q; ) Opy, ~ \9q; 9p?  Op’ Oq; ) Oq
, O0H < 0H
1 Ik )
= ’ = + ) a7
Zk: <{p p }ap;c {p Qk}aq]/g>
OH
-2 (4.47)

4.4 Examples of Canonical Transformations

This might seem rather abstract and you might be thinking how in the world does one
construct a canonical transformation. So let us look at this. First lets discuss one
example before constructing a large class of canonical transformations.

Example: Harmonic Oscilator If we return to the Harmonic oscilator we see

that

/ 1 / /
1 vV mkp P e ( )
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is indeed a canonical transformation:
{d',p'} = { ——p,—Vm q} —{p.q} ={a,p} =1 (4.49)
N

Furthermore {¢', ¢'} = {p/, p'} = 0 automatically as the Poisson bracket is anti-symmetric.

Furthermore one has

H(q,p) = % (Wq’)erg (— D >2

=H(d,p) - (4.50)

From the point of view of the phase space diagrams this corresponds to swapping m
with 1/k (which effectively swaps the longer and shorter radii of the ellipses), and then
rotating (p, q) by 90°. This maps the ellipses of phase space back to themselves and, as
we have just seen, this is a symmetry of the Hamiltonian.

However from the Lagrangian point of view this is weird: how can we swap positions
with momenta? Furthermore the Lagrangian has no such symmetry to swap ¢ with ¢
and m with 1/k.

Infinitesimal canonical transformation may be generated by any arbitrary function

f(q;,p") (called the generating function) on phase space via

¢ = ¢ =q+efa [} =a+0q (4.51)
P pl=p +elp', f} =p" +p,

where
5 = clai. f) = 8f .
5p' =e{p', f} = —eg—qf . (4.52)

Next we show that, expanding to first order in € < 1, the transformation is an infinites-
imal canonical transformation. It is easy to check that this preserves the fundamental

Poisson brackets up to terms of order O(€?), e.g.

{4,905} = {ai + e{ai, 13,07 + e, 113 (4.53)
= {ai, P’} + 6{{% '} + eai {07, £} + O()

— @) + 0+ (i )) + O(E)

dq;

0% f 0% f
:5i'+6< N >+Oe2
J 0q;0p*  0Op'Oq; (")

= §;; + O(€%).




98 CHAPTER 4. HAMILTONIAN MECHANICS

We must also check that

{4, di} = {ai + fai, [}, 05 + elay. f1} (4.54)

= {ai i} + e{{ai, £}, 05} + e{ai {5, F1} + O(e)

g} + e({%,qj} e Yy o)

op?
_ 0*f o*f 2
_0+6<_8pj3pi + 8piapi) +0()
=0+ O(é?).

and

0} ={p' + {0’ f1.0) + {0, £} (4.55)
={p". 0"} + {{p’". f} P+l {0 f1}+ O

— P+ e+ () + O

]

O*f O*f > 9
—0+e— + +O(e
< 0q;0q;  0¢;0q; ()

=0+ O(e?).

Canonical transformations therefore generalise simple coordinate transformations of
the form ¢} = ¢}(¢;) to also allow for transformations that define ¢/ in terms of ¢; and p'.
In particular when we looked at Noether’s theorem we considered infinitesimal change

of variables of the form
¢ = q; + €T;(q) i.e. 0q; = €15 (4.56)

where € << 1. In the Lagrangian formulation we can use this to compute the change in
P
i/ _ aL
" T
Z aqj oL (9qj OL
0d; 04; 8(1’§ 9q;

0q; OL
_ 4.57
Z a4, aqj ( )

where we have used the fact that g; and ¢; are independent in the Lagrangian formulation.

To proceed we note that, to first order in e, we can write

;= d; — €Ty(q")

) aT;(q) .
=di—e) 78]; i (4.58)
k
so that
0q; oT; 0°T
— = ;i — —J 6 i
= 51']‘ - 6% 5 (459)
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where we used the fact that T' does not depend on ¢; so that the second derivative term

vanishes. Therefore

_ pi - EZ 8TJ(Q)p] 7 (460)

where we have dropped all terms that are higher order in e.

To see that these transformations are canonical we can just take the generating

function f to be
F=> 1T (4.61)
J

(note that this is just the Noether charge (3.147) written in terms of p/) so that
5gi =€ {ai.p'T;(q)}

J

=e> {a,}T5(0) + € > {a, Ti(@)}p
J J

=e Z 6;T(q)
J

_ i) (4.62)

whereas for dp’ we find

op’ = GZ{pi,pjTj(q)}

=e> {001 T5(0) + > {p, Tj(9)}
j

J
0T5(q)
= —ezj:p] T (4.63)
Which agrees with what we found using the Lagrangian formulation. Thus an infinites-
imal coordinate transformation in the Lagrangian formulation leads to an infinitesimal
canonical transformation in the Hamiltonian formulation where the generating function
f is linear in momenta.

However clearly there are many more types of canonical transformations in the
Hamiltonian formulation since f can be an arbitrary function of both ¢; and p’. However
the Lagrangian formulation only sees canonical transformations that are generated by

a function f that is linear in the momentum variables.
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4.5 Symmetries and Noether’s Theorem

Let us now define what we mean by a symmetry in the Hamiltonian formulation. A

symmetry is a canonical transformation ¢ — ¢(gi, p%), p* — p"(gi, p’) such that

H(q},p") = H(gi,p")
{¢p7y=6, A{dnd;}={p"p"}=0
Example: Harmonic Oscilator Let us return again to the harmonic oscilator. In

fact any rotation (along with an appropriate rescaling of coordinates) is a symmetry. In

particular if

1
"= cosaq + sin «
! k"
p' = cosap — Vmkgsin o (4.64)

then

1 k
H(d.,p) = %(cos ap — Vmk sin ozq)2 + = (Cos aq +

psin a)?

F

1 k
= %(cos2 o+ sin? a)p? + = 5 (cos® a + sin® a)¢?

= H(q,p) (4.65)

To see whether or not it is canonical we again compute ({¢’,¢'} = {p’,p'} = 0 automat-

ically)

1
{q’,p/} = {cosaq + \/_kp sin a, cos ap — Vmkgsin a}
m

= cos? a{q,p} — sin® ofp, ¢}
= {a,p} (4.66)

So this is indeed a canonical transformation. In fact if we start with a the solutions we

found before:

q(t) = % sin(wt) + ¢(0) cos(wt)
p(t) = p(0) cos(wt) — mq(0)w sin(wt) . (4.67)

then the new solutions are (recall w = y/k/m and some trig identities)

"(t) = @ sin(wt) cos cos(wt) cos & cos(wt) sina — mq(o)wsin wt) sin
/(1) =2 7 sinfut) cosar + 9(0) cos(et) cosa + D cos(wr)simar — T Sesingu)
= }Zr(f)w) (sin(wt) cos a 4 cos(wt) sin ) + ¢(0) (cos(wt) cos o — sin(wt) sin av)
= % sin(wt 4+ «) + ¢(0) cos(wt + )

0
p(0) cos(wt) cos @ — mq(0)w sin(wt) sin v — V mkzjn(—w) sin(wt) sin & — Vmkq(0) cos(wt) sin a

p'(t)

0

(0)
= p(0) (cos(wt) cos a — sin(wt) sin &) — mwq(0) (sin(wt) sin @ + cos(wt) sin )
p(0)c

cos(wt + o) — mq(0)w sin(wt + «) . (4.68)
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Thus we see that the canonical transformations corresponding to rotations are simply
time translations. Furthermore the Hamiltonian itself is the function that generates

these transformations infinitesimally (up to a factor of w that can be absorbed into «):

[0 8] (0%
0g=—{qg HY = —— =
q u){q, } 2mw{q,p} N
8]

ka
op = —{p, H} = o—{p, ¢’} = —avVmkq

w

which agrees with (4.64) to first order in a.
In fact this is a general result. That is to say if at time ¢ a Hamiltonian system is at

¢;(t),p'(t) then at time ¢ + € the system is in

Gi(t+€) = qi(t) + G%Qi(t) pt+e) =p'(t)+ e%p"(t)
=qi(t) + elq;, H} =p'(t) + {p', H} (4.69)

Thus time evolution is just a series of infinitesimal canonical transformations on phase
space.

In particular if the infinitesimal canonical transformation generated by a function f
on phase space is a symmetry of the Hamiltonian then d H = 0 under the transformation.

Now,

oH . OH _,
0H = Z <0qi&h + o dp ) (4.70)

i

OH oH
ZGZ (8—%{%,f}+ api{ﬂ’f}>
- OH Of OH of
_622.: <8Qi op' 8pi3_qz'>
=e{H, [}

4
dt’

= —¢

where we have assumed that f is an explicit function of the phase space variables and
not time, i.e. ‘g—{ = 0. Hence if the transformation is a symmetry §H = 0 then f(g;, p’)
is a conserved quantity. Thus Noether’s theorem is if and only in the Hamiltonian
formulation: every conserved quantity generates a canonical transformation that is a
symmetry and vice-versa: every (infinitesimal) canonical transformation is generated by
a function f and if this is a symmetry then f is conserved. And indeed we will see that
there are more symmetries that are manifest in the Hamiltonian formulation.

If the Hamiltonian has no explicit time dependence then clearly it generates a canon-

ical transformation that is a symmetry since
0H =e¢{H,H}=0. (4.71)

So that H itself is the conserved quantity: the total energy £ = H.!

!Note that by this equation we mean that H is a function of ¢; and p’ and can be evaluated for
any path (g;(t),p’(t)). If it is evaluated on a specific flow that solves Hamilton’s equations then it is a

constant that we identify with the energy E of that flow.
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4.6 Kepler Revisited: Phase Diagram

Let us construct the Hamiltonian for the Kepler problem. It is simply taken from the

previous examples with a potential V(r) = —GyMm/|r|:
1 M
H= L jp2 . GvMm (4.72)

om B

where ¢ = r is the position of the planet. The phase space of this system is six-
dimensional (3 from p and 3 r). So its not easy to draw a phase diagram. However we
can consider the effective one-dimensional theory for the radius r = |r|. We saw before

that that was (switching to p = mr)

1 l2 GNMm
E=_—p° - 4.73
om? T 2mr? r (4.73)
So in this reduced theory we have the Hamiltonian
1 2 2GNMm?
H = — (pP+ 5 - ——
(r,p) =5~ <p + 3 . >
1 (., (1 GyMm>\*\ G%M2m3

_ R S\ 4.74
2m <p + <7“ l 212 (4.74)

We want to draw the phase diagram for this system. Recall that the phase flow consists
of curves with constant E = H. At large r we have E = p?/2m which is independent
of 7, so lines of constant E have constant p. At small r (note that » > 0) we have
E = p%/2m + 12/2mr? so p = ++/2mE — 2/r? which implies there is a minimum value
of r: r > l\/m and then |p| increases as r increases. On the other hand near
r =12/GNMm? we can expand r = I?/GyMm? + p for small p to find
p? L+ G?VM4m7p2 B G% M?m3

EF=—
2m 216 212

(4.75)

which is like the harmonic oscillator (since we are near a minimum of the potential).
A little bit of thought shows that the phase diagram looks like the figure below. In
particular the closed orbits are the planets moving in ellipses with £ < 0 and the open
orbits that extend to r — oo are asteroids with £ > 0.

Although we won’t necessarily need them we should, for completeness, compute

Hamilton’s equations:

d_om _1

dt dp N m]—)

dr? 1

— = —p® 4.76
=P (4.76)

and

dB oH . GnyMm

T T
dp® GNMm

where in the second lines we have written the equations in terms of the components
re,p® of r,p with r = /(r')2 + (r2)2 + (r3)2. If we substitute the first equation into
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Figure 4.6.1: Phase Space For the Kepler Problem

the second then we obtain the equation of motion that we would get from NII:

d?r GyMm

Mar TP
d*r® GNMm
Mmooy =T (4.78)

4.7 Kepler Revisited: Conserved Quantities

Let us look at the conserved charges. Since the Hamiltonian doesn’t depend explicitly

on time, H = F will be conserved:
E={H H}=0. (4.79)

As we have seen the canonical transformation generated by H = FE is just time-
translation: t — t + €.
We also saw above that there was conservation of angular momentum L = r X p, or

in components:

Ly= €pcarePa - (4.80)
c,d

First we should check that {H, L,} = 0. Indeed this will be true for any H of the form:

H=_—p-p+ V(). (4.81)

We need to evaluate

1
{Ha La} = % Z Ebcd{’]_7|2a rcpd} + Z ebcd{v(|f’2)7 rcpd}
c,d c,d
1
=5 Z evca{|p|*, re}pa + Z evcare{V (I7]*), pa}
c,d c,d

1 dv
= % Z Ebcd{’]_)|2a Tc}pd + W Z Ebcdrc{|£|2,pd}
C,d - C7d
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Next we simply note that

{IpI* ey = = {re;papa} = —2pe (4.82)
d
and similarly {|r|?, ps} = 2r4. Thus

1 av
{H7 La} = _E ; €bedDcPd + QW ; €bedTcTd = 0 . (4.83>

So this is indeed a conserved quantity.

Let us look at the canonical transformation generated by Lp:
5bra = G{Ta, Lb}
=€) €peafra,repa}

c,d

=€ Z 5bcd<{7"a> Tc}pd + rc{raa pd})

c,d

=€ E €cbal'c

[

=€) €apeTe ; (4.84)

[

and

0pPa = e{pm Lb}
=€ Z Ebcd{pa, Tcpd}

c,d

=¢ Z €bed {Pas Te}pa + re{Pa, Pa})
c,d

= —¢€ § €badPd

d

=€ Z €abcPe (485>

C
Hence for every choice of T}, a general canonical transformation generated by L =
>y LyT? is just a rotation

r—or+el xr p—pt+elXp
=r+eTr =p+eTp (4.86)
where the matrix T has components Tqe = > €apcT’ b= _ > cacyT?. Tt is easy to see

that as before these generate a symmetry of H since in particular both [p|? and |r|* are

invariant under rotations:
d|r|* = 2r - or
=2 Z Tq0Tq
a

= 2¢ Z raeabchrc

=271 (Lxr)
=0, (4.87)

since aqre = rerq but €gpe = —€pe. Similarly one sees that 6|p|? = 0.



4.8. KEPLER REVISITED: RUNGE-LENZ 105

4.8 Kepler Revisited: Runge-Lenz

Let us also recall the Runge-Lenz vector

2
- I
G N Mm?
=pXx(rxp) r
- - ||
GnyMm?
=(@-pr—(r-pp-— i (4.88)

This was conserved but it does not arise from a symmetry of the Lagrangian. But by
construction it generates a canonical transformation that is a symmetry of the Hamil-

tonian. What is it? First we write A in components:

GnMm?
Ay = r? chpc — pb chrc _ N T . (4.89)
C C

||

Note that this is not linear in p, and so the associated canonical transformation is not

simply a coordinate transformation of r,. Next we evaluate
5bra = E{T’a, Ab}
= e{ra, "> pepe}t — e{ra, 0" Y pere}
C C

=€ <Z rbpc{ra,pc} + Z{""mpc}rbpc - Z{Taapb}pcrc - Zpb{raapc}""c
c c c c

= 2€rppa — Eéab(]_? : f) - pbra ) (490)

N——

where we have dropped terms which involve {rq,r.}.

For the momenta we find

5bpa = 6{pa7 Ab}
= e{pa: 7"} > _pepe — "D {Pasretpe — €GN Mm{pa,y/|r]}
(& C

GnyMm _
= —€dap|p|® + €paps — eN’T{pa, o} — €GN MmPry{pa, |r| 7'} . (4.91)

To evaluate the last term we can use the chain rule

_ Opa Or|~t Opg Or| !
N I
d

Orq Opg Opg Oryg

O
N org
Tq
=4 4.92
P (4.92)
so that o ) o N
Mm Mm
Oppa = _Edab‘]_7|2 + €papy + € il Oab — € al TpTq - (493)

|r|3

If we consider a general canonical transformation generated by A = ), AU b we

I

have
or=2¢U-r)p—e(p-r)U—elU-p)r

2 2
Gjmn >+6( _ GNMm

op = eU (—\}_?[2 +
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To see that this is indeed a symmetry of H we first note that

0H = lp‘5p—|— Mf'éﬂ. (4.95)
m= =P
Next we compute
GNMm? GyMm?
pop =) (~lo + SO ) e pl? - W )
GnMm? GyMm?
= (U p) — e m— (U ) p) (4.96)
| Ir|
SO
1 GyMm GNyMm
. 6p — o) — e . 4.
On the other hand
GnyMm GnMm GnMm
WZ'CSE:%T(Q'Z)(I_?'E)—Ew(g'f)(ﬂ'f)
GnMm
DD
GyMm GyMm
= y-r)p-r)—e P
|£’3 ( )( ) |£‘ ( _)
1
=——p-dp (4.98)
me P

Therefore these two cancel so that 6 H = 0 as required. You would be hard-pressed to
guess this symmetry! Note that it mixes p into r and vice-versa. Therefore one would
not see it as a symmetry of the Lagrangian. But it explains why we find the conserved

Runge-Lenz vector.

For completeness we should also show that {H, Ay} = 0. In fact this follows from
the fact that 0H = 0 since

oOH oH
§H = a 8—%5m + Za: a—paapa
OH OH
= 6%: %{Taag'é} + Za: a—pa{pmgié}

_ OHOWU-A) O0HOWU:-A)

a 6%: <3ra Opa  Opa Oda )

=e{H,U- A}

—U-{H,A}. (4.99)

Since 0H = 0 for arbitrary U we see that {H, A} = 0.

However for those interested we can also do the full computation:

G NM m2
{Ap, HY = {r"> " pepe, Hy = {p" Y pere, H} — {Trb, H} . (4.100)
C C -
Expanding this out will give six terms, so this is going to be complicated. To break
up our calculation into smaller pieces we note that this must be true without imposing

any equations of motion. Therefore it must be separately true for the terms that are
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proportional to various different powers of Gy: G, G}V and G?V. The terms that are

independent of G arise from taking H = ﬁ\QP as well as dropping the last term:

{Aba H}G?\, = %{Tb chpa Zpdpd} - %{pb ch'rm Zpdpd}
c d c d
L > pepe{r®, papa} — Ly > pel{re. papa}
m c,d 2m c,d
-1 > pepe{r’ patpa — Ly > pe{re;patpd
m c,d m c,d

1 1
= — pepebpaps — —p" Y pebeapa
m m

1 1
= E Z DcPePo — pr chpc
c c

~0. (4.101)
Next we look at the terms that are proportional to G (but not G3). In the first two
terms these come from taking H = —GyMm/|r| but we must take H = 5—|p|® in the
third term:
GNMm GNMm 1
{As, H}G}V = _{T chpm } + {pb chrc’ b - Z{ pcpc}

_ _ 1 _
=GyMm (—rb ch{pcpc, r| 7} + Zczrc{pbpc, ™ =5 ZC:{|£| lrb,pcpc}>
=GNMm (—27’b > pedpe Il T+ re{ppes Ir) T - Z{Iﬁllrb,pc}pc>

(& (& C
=GnMm (—2#) > pedpe Il T+ repedpl Irl T+ rep{pes 1|71
(& (& C

= ndlel ™ petpe — e Z{rb,pc}pc> (4.102)

Next we recall that
Olr|™! -3
= |r|

1y _
{pd7 ‘Z’ } - 8T'd

ra (4.103)

so that

GnMm
{Abv H}G}V = 771‘3 < 2Tb chrc + Z Tcch + Z rcp Te + Z TpTecPe — ‘T’ Z 5bcpc)

GyMm
=L <—27“b D pere+2) reper’ + [r’py — !tl%)
- C C
=0 (4.104)

Finally there is a term that is proportional to G% that comes from taking H = —GyMm/|r|

in the last term:

GNMm? GyMm
Tp,

{Ap, H} gz = { }

=0 (4.105)

|| ||
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- -~

N\ Ant =\o\A .

Figure 4.9.1: Time Evolution Of A Region Of Phase Space

But this is clearly zero as no p, appears in the Poisson bracket. Thus indeed { Ay, H} = 0.

It is worth commenting that conservation of angular momentum arises from rota-
tional symmetry which is generated by 3 x 3 special orthogonal matrices known as SO(3).
The conservation of the Runge-Lenz also gives rise to a separate “rotational” symme-
try. Here we use quotes as the canonical transformations generated by the Runge-Lenz
vector are not simply rotations that preserve the lengths of r and p however they are
still associated with an SO(3) (viewed as a group - if you know what that means). So
the Kepler Hamiltonian (or the Hamiltonian for a Hydrogen atom which is structurally
the same just with different constants) has an SO(3) x SO(3) symmetry. It is amusing
to note that (ignoring some subtlties) SO(3) x SO(3) = SO(4) so it is as if there were

an a hidden extra dimension of space.

4.9 Liouville’s Theorem

Hamiltonian’s equations define time evolution as a flow in phase space, known as the
Hamiltonian flow. One of the most important features is that since Hamilton’s equations
are first order in time, given an initial point (p’,¢;) there is a unique flow that passes
through that point at time ¢ = 0. If we start at a nearby point at ¢ = 0 then we will flow
along a different path. If two paths ever intersect at a point then they must be the same
path everywhere (here we are assuming that there is no explicit time dependence in the
Hamiltonian). To see this we stop the motion at the point were the two paths meet.
Then restart the time evolution. Since it is first order the subsequent time evolution of
each path must be the same. In addition we can run the Hamiltonian flow backwards
to deduce that the flows must have been the same in the past.

On the other hand we could instead consider region of phase space, not just a single
point. This region will then also evolve smoothly in time since no two points in it will
ever intersect. Why might we be interested in this? Well since one can never measure
anything with 100% precision one never really quite knows which point in phase space
a system is in. By looking at regions of phase space we allow for a certain amount of
experimental error. It also touches on the subject of chaos which mathematically means

sensitivity to initial conditions. In particular one can ask what happens to points in
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phase space that start off near each other, will they stay nearby?
Here we encounter a theorem:
Liouville’s Theorem: The volume of a region of phase space is constant along a

Hamiltonian flow. Here volume means
Volume(R) = / dqy...dgndpy...dpy = / dv (4.106)
R R

where R is the region under consideration. So in general it is a high-dimensional integral
in 2N dimensions and not simply a ‘volume’ in as we encounter in three-dimensions that
is say measured in litres.

Proof: We wish to show that dV is time-independent. Under time evolution

dg; oOH
Gilt) = ait +€) = g+ e =ai+egs =4
: : < dp; : o0H
“(t) — p'(t =p'+e—r =p' — =7 . 4.107
pi(t) 2 pitte)=p +e ~=p g Vi ( )
Thus the volume at time ¢ + € is
dV' = dq}...dqdndp) ...dpy
= det(J)dq...dgndp; ...dpn (4.108)
where
dq,  9q.
dq;  Opl
I=1\5 o
dqj  Op’
_ | Op0q; Op*OpJ
= < 0% J s oot | (4.109)
0q;0q; J 0q;0p7
Let us write this as
9°H 9’H
Optoq; OptopI
9q;0q; 0q;0p7
To continue we need to use the relation, valid to first order in e,
det(J) =1 + etr(X) . (4.111)
In fact this is the first order in € form of the relation:
det e® = ™A | (4.112)

with A = ¢X One quick way to see this relation, or at least convince oneself it’s true, is
to note that it is a basis independent. Let us assume that there is a basis where A is

diagonal with eigenvalues ay, ..., a, then

eA = . (4.113)
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Thus

det e® = %1%, e = gt taztfan — GtrA (4.114)

Let us prove this relation at order € for a generic matrix A = ¢X by induction. It is
clearly true for a 1 x 1 matrix and let us assume it is true for an n x n matrix. Consider
n (n+1) x (n+ 1) matrix then

detJ = Jq1 det jll — Jig det 312 + ...+ (_1)nJ1n+1 det jln-i—l
= (1 + €X11) det jll — €X12 det 312 + ...+ (—1)n€X1n+1 det jln+l 5 (4115)

where J ij is the reduced matrix with the ith row and jth column deleted whereas J;; is
the ij entry of J. Next we note that we only need to go to first order in € so that in all

but the first term we can replace jij with iij:

detJ = (1 + 6X11) det jll — eXiodet i12 + ...(—1)“6X1n+1 det iln—i—l
= (1 + EXH) det jll , (4116)

the second line follows because det iij = 0 if i # j (there will always be a row of zeros
somewhere in iij if i # j ). Thus using the induction hypothesis on J =1+ 6X11

and dropping terms that are higher order in €, we find

detJ = (14 eX11)(1 + etr(Xy1))
=1+ eX11)(1+ €e(Xoo+ Xaz + ... + Xpt1n11))
= (1+eX11) + (X2 + X33+ ... + Xpng1n41)
=1+etrX . (4.117)

Evaluating our expressions we obtain

detJ—1+eZaqap Zapzaqz

=1. (4.118)

Thus dV’ = dV so the volume is preserved by the flow. Note that the Hamiltonian
appeared here because it generates time translations but was otherwise arbitrary. Thus
we see that more generally any infinitesimal canonical transformation preserves the phase

space volume: dV’ = dV. As an exercise you should convince yourself of this.

4.10 Poincare Recurrence

Our last topic is enigmatic Poincare Recurrence Theorem: If the phase space of
a system is bounded then given any open neighbourhood B of a point (g;,p’) then a
system that starts at (g;,p’) will return to B in a finite time.

Proof. Let V(t) be the volume of phase space that is swept out by the initial region

B in time t. Since the volume is preserved we have

dav

= 4.11
' =Cg, (4.119)
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Figure 4.10.1: Poincare Recurrance

where C'g > 0 is constant and hence the total volume swept out at time ¢ is of the form
V(t)=V(0)+Cpt . (4.120)

If no point in B ever returns to B then the volume swept out by B will grow linearly
in time. However since the total phase space volume is finite, V' (¢) cannot become
arbitrarily large. This is a contradiction which means that at least a finite volume part
of B must return to B in finite time.

Note that this refers to late times. Given a finite region B of phase space at ¢t = 0
then in a small enough time step B(t) will naturally still intersect B(0) as all the points
in B will only have shifted a small amount and hence some must still remain in B.
However after a finite time, call it t; B(t1) will generically? no longer intersect B(0).
The important part of this claim is that there must be a later time t,ecurrence >> t1
where B(trecurrence) again intersects B(0).

Next we have to ask about any remaining part of B that does not return, call it
B’. If B’ has finite volume then we repeat the argument above applied to B’ and reach
another contradiction: at least a finite volume part of B’ must return to B’, otherwise
it would go on to sweep out an infinite volume of phase space. Thus there is at most a
zero-volume set in B that does not return to B eventually.

Put another way given even the smallest region of phase space, so long as it has
non-zero volume, it will sweep out an arbitrarily large region of phase space unless it
eventually intersects itself again. Since there isn’t an infinite amount of phase space
to cover, it follows that it must intersect itself again. Thus a system either repeats its
motion in phase space or evolves to fill up a subregion of the phase space, or all of it.
In the last case the system is said to be ergodic.

Note that it is sufficient that the subsets of phase space corresponding to constant
H are bounded as the system is constrained (assuming no explicit time dependence) to
evolve such that H is fixed.

We can illustrate this with the simple pendulum. In the case of a single pendulum
we saw that the motion was periodic (at least for small oscillations) with frequency

w = 4/g/l. For example one solution is

6 = Asinwt po = mAw cos wt (4.121)

2Generically because one could chose B so large that it always self-intersects and then the theorem

is trivially true.



112 CHAPTER 4. HAMILTONIAN MECHANICS

which has # = 0 and py = Aml?w at t = 0. Clearly every single point in phase space
returns to itself after a time 27w /w. Note that in phase space we also require that the
momenta return to themselves which means ¢t = 27n/w and not just t = mn/w.

For the double pendulum we saw that a single point never returns to itself as the

ratio of the periods of the normal modes was irrational. For example one solution is
) Acoswit + Acoswot
¢ V2A coswit — V/2A cos wot

Do —ml? Awy sinwit — ml? Aws sin wot
= , _ ) _ (4.122)
Do V2mi? Aw; sinwit + v2mi? Aws sin wot

(-0 G)-6) o

But this never happens again since this requires coswit = coswot = 1. However this

At t =0 we have

means that
t =27mny /w; = 2w /wo (4.124)

for integers ni,ns which implies that wy/wy = nj/ng is rational, but it isn’t. However
given any rational approximation Nj/Ny to wi/wy we can take ¢ = 2w Ny /w; so that

coswit =1 and

w2 Nl
t= 2r——Ns | . 4.125
COS Wy cos( TN, 2) ( )

By taking better and better rational approximations to w;/we the argument can be
made arbitrarily close to 2nNy. Hence coswst will be arbitrarily close to, but always
less than, 1. Thus 8 < 2A with equality only at ¢ = 0 but it can get as close to 24
as one wants by waiting a sufficiently long enough time. Thus given any small region
around the initial starting point the system will eventually come back to it, even if it
never exactly comes back to where it started. Clearly the smaller we make the region,
the better rational approximation to w;/ws we must use and hence the value of Ny, Ny
must be large, corresponding to a long recurrence time.

This is an amazing theorem and the cause for much pub-chatter®. Why? One
example is the long-run stability of the solar system. Let us consider a system of (say)
8 planets in orbit around the sun. Planets can’t escape to infinity because they have
negative energy. And they can’t go faster that the speed of light. So they effectively live
in a bounded phase space. Therefore the solar system is either completely stable and
periodic or it will eventually explore all available phase space. It seems unlikely that
the planets orbits are so “fine-tuned” that the motion will be periodic (in particular
why should the orbital periods of the planets be rational multiples of an earth year).
So we are led to suspect that the solar system will eventually fill up all of its phase
space, which could include having at least one planet go very far away (or perhaps move
very very fast). Thus one is led to expect that the solar system is, ultimately, unstable

(meaning that it will eventually look very different to how it looks now).

31f you are lucky(...) enough to be in the pub with a physicist.
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Figure 4.10.2: Dispersement Of Gas Molecules

Another example is to consider a finite sized room that is empty of air. Suppose
you then place some air into a corner of the room in such a way that each air molecules
have vanishing or small initial velocity. The air will subsequently naturally disperse
and fill the whole room. In this case the phase space is bounded (for constant energy)
because the room is bounded and the momentum of a given air molecule cannot be
so large that its kinetic energy is greater that than the total energy. So the Poincare
Recurrence Theorem applies. That means that in a finite time all the air will be back
in the corner of the room with small velocities and the people who subsequently entered
will spontaneously suffocate.

This seems to contract the notion that entropy, the amount of disorder, never de-
creases since the initial and final configurations are highly ordered whereas a generic
room of air is a highly disordered state. So whats wrong? The cheap answer is that
a finite time can still be an incredibly long time. In this case the time scale for the
recurrence is longer than the age of the Universe.

But this answer is cheap because a theorem is a theorem and it can’t depend on
how long is a long time. Which theorem is wrong? This is much debated*. Arguably
the theorem of the increase in entropy is more suspect. Its proof is far less simple and
any known proof of it includes an assumption such as “repeated interactions between
particles can be treated as independent”. Whereas in essence the Poincare recurrence

theorem shows that they are not truly independent.

4Typically also in the aforementioned pub.



