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UNIT-I

1 Introduction to Mechanical Vibrations

1.1 IMPORTANCE OF VIBRATIONS

Vibrations are oscillations in mechanical dynamic systems. égthaany system can oscillate
when it is forced to do so externally, the term “vibration” in mechanical engineering is often
reserved for systems that can oscillate freely without eghirces. Sometimes these vibrations
cause minor or serious performance or safety problems in ergiingestems. For instance, when
an aircraft wing vibrates excessively, passengers in the aibe@dme uncomfortable especially
when the frequencies of vibration correspond to natural freie® of the human body and
organs. In fact, it is well known that the resonant fregyef the human intestinal tract (approx.
4-8 Hz) should be avoided at all costs when designing high penf@emaircraft and reusable
launch vehicles because sustained exposure can cause seriouk tiatenma (Leatherwood and
Dempsey, 1976 NASA TN D-8188). If an aircraft wing vibratesaagd amplitudes for an
extended period of time, the wing will eventually experiencltgue failure of some kind,
which would potentially cause the aircraft to crash tasylin injuries and/or fatalities. Wing
vibrations of this type are usually associated with the wadéety of flutter phenomena brought
on by fluid-structure interactions. The most famous engineerisgstir of all time was the
Tacoma Narrows Bridge disaster in 1940 (see Figure 1.1 belowjett e to the same type of

self-excited vibration behavior that occurs in aircraft \wing

Figure 1.1: (left) View of Tacoma Narrows Bridge along dedigh(} view of torsional
vibration

In reading books and technical papers on vibration including theiopee paragraph,
engineering students are usually left with the impression thatitathtions are detrimental

because most publicized work discusses vibration reduction in inefanother. But
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vibrations can also be beneficial. For instance, many diitelypes of mining operations rely on
sifting vibrations through which different sized particles soeted using vibrations. In nature,
vibrations are also used by all kinds of different species in diady lives. Orb web spiders, for
example, use vibrations in their webs to detect the presenitiesobind other insects as they
struggle after being captured in the web for food. The re#sinmechanical systems vibrate
freely is because energy is exchanged between the system’s inertial (masses) elements and elastic
(springs) elements. Free vibrations usually cease after andength of time because damping
elements in systems dissipate energy as it is converted bad&rtindetween kinetic energy and

potential energy.

The role of mechanical vibration analysis should be tomesthematical tools fomodeling
and predicting potential vibration problems and solutions, which are usuallyobeious in
preliminary engineering designs. If problems can be predithed, designs can be modified to
mitigate vibration problems before systems are manufactuilechtions can also be intentionally
introduced into designs to take advantage of benefits lafive mechanical motion and to
resonate systems (e.g., scanning microscopy). Unfortunatalywlédge of vibrations in
preliminary mechanical designs is rarely considered essestiamany vibration studies are
carried out only after systems are manufactured. In theses,caibration problems must be
addressed using passive or active design modifications. Sometiesigga modification may be
as simple as a thickness change in a vibrating panel; addedetssctends to push the resonant
frequencies of a panel higher leading to less vibration iropleeating frequency range. Design
modifications can also be as complicated as inserting magmetdegical (MR) fluid dampers
into mechanical systems to take energy away from vibratingragsat specific times during their
motion. The point here is that design changes prior to manuéaare less expensive and more

effective than design modifications done later on.

1.2 Modeling issues

Modeling is usually 95% of the effort in real-world mechanightation problems; however, this
course will focus primarily on the derivation of equations afion, free response and forced
response analysis, and approximate solution methods for vibsystgms. Figure 1.2 illustrates
one example of why modeling can be challenging in mecharlating systems. A large crane
on a shipping dock is shown loading/unloading packages from a cargolrslope possible

vibration scenario, the cable might be idealized as masatesthe crane idealized as rigid. In
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this simple case, the package and crane both oscillatgidibotdies; the package oscillates about
the end of the crane and the crane oscillates about its basefoitation as the two exchange
energy. These vibrations would most likely correspond tdivels low frequenciesand would

take place in addition to the gross dynamical motion ofctla@e and package. Two coupled
ordinary differential equations would be needed in this taseodel the discrete, independent

motions of the crane and package.

This model might be sufficient in some cases, but what if #esrof the cable is comparable
to the mass of the package? In this case, the crane and patikdghave like rigid bodies, but
the cable will probably vibrate either transversely or longitutlireed a continuous body along its
length. Thesdigher frequencyibrations would require that both ordinary differengguations
for the crane and package and partial differential tops of the cable be used to model the
entire system. Furthermore, if the assumption of rigiditshe crane were also relaxed, then it too
would need to be modeled with partial differential eaqurai All of these complications would be

superimposed on top of the simple rigid body dynamics of the erahpackage.

NG NN AR RN

Hull Water

Figure 1.2: Crane for loading/unloading packages from cargo shipré&itfregimes of
operation require different levels of sophistication in the machavibration model.

We will have the opportunity to discuss modeling consideratimosi¢hout the course when
case studies of vibration phenomena are used to reinforcestihabrconcepts and analysis

procedures. Before starting to analyze systems, we must b algléve differential equations
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of motion that adequately describe the systems. Thereaarg different methods for doing

this; these are discussed in Chapter 2.

1.3 Linear superposition as a “working” principle

We cannot discuss everything in this course. In particular, iheret sufficient time to present
linear and nonlinear methods of vibration analysis. Thergtheecourse will primarily focus on
linear vibrating systems and linear approaches to analysis.d@rnbjin special characteristics of
nonlinear systems will be introduced during the semester. Betla@slecision has been made to
talk primarily about linear systems, the principle of supetjpmswill hold in every problem that
is discussed. Instead of stating this principle at the beginrditigeccourse, and referencing it
when it is needed in proofs and derivations, we will view it more as a “working” principle. In
other words, linear superposition will guide us in our analysfseefand forced linear vibrations.
When we begin to analyze vibrations, we will look to the qiplle of superposition to help us
move forward in our analyses. Recall that a mathematipetator,L[ ], which obeys the

principle of linear superposition by definition satisfies the folfgmwo expressions:

L[ax]= aL[x]

(1.1)

and

L[ax + by]: L[ax]+ L[by]

(1.2)

wherelL is said to operate on the two different functionandy, anda andb are constants. Eq.

( 1.1) is the principle ohomogeneityand Eq. ( 1.2 ) is the principle aflditivity. These two
expressions may seem trivial or obvious, but they will in faaxXteaordinarily useful later in the
course. The important point to remember is that lineatesys, which are governed by linear
operatorsL[ ], are equal to the sum of their parts. Although this statemegrofound and may
even be fruit for philosophical discussions, the motivationpigiting linear vibration into the
context of linear superposition here is that it makes vibratiolysisan free and forced systems

much easier to develop and understand. More will be said abpetposition in Chapter 3.
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1.4 Review of kinematics and generalized coordinate descriptions

This section will review some of the fundamental techniquesriicigakinematics. Note that this

is only a review so no attempt is being made to cover evegytiére. Student should take this
opportunity to refresh their memories of undergraduate ceuirsemechanics.Generalized
coordinates are the basis for oukinematic description of vibrating bodies. Generalized
coordinates are usually either position variables (g,§,,z, andr), angular variables (e.gp, 6,
anda), or a combination thereof (e.gcosp). We must choose our set of generalized variables in
each problem to adequately describeghsitionandorientationof all bodies in the mechanical
system of interest. Note that the position and orientatierboth important because both of these
coordinates are associated with kinetic and potential erstoggige. The minimum number of
coordinates required is equal to thegrees-of-freedofDOFs). Sometimes the number of DOFs
is not obvious. For example, Figure 1.3 illustrates a pendulutmsyatem that has many
translating and rotating inertias. The question is: Howyngeneralized coordinates are required

to locate and orient all of the inertias?
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Figure 1.3: Mass-spring-damper-pendulum cart system

In order to locate and orient every body, it appears as i€ooelinate is needed fiM1, one
coordinate foM2, one coordinate foM3, two coordinates foM4, and two coordinates fivis: a
total of seven coordinates are needed. But all of thesalinates are not actually required

because there are some constraints between them. Firstntiatioa ofM3 is equal to the
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motion of the center-of-mass bf4. Second, the translation bf4 is proportional to its rotation,
x4=R464. Third, the translation oMs is equal to the translation &2 plus a component due to

the rotation oMs. With a total of three constraints, the number of D8Fsduced as follows:

coordinates | kinematic/ geometric
# DOFs =# —# . .
chosen constraint equations

=7-3=4

Simply put, this statement implies that there should be ddterential equations of motion for
this system. The first step in any analytical vibrations proldkould be to compute the number
of DOFs. As an aside, the number of DOFs (i.e., ¥z the afdide system) must also always be

estimated prior to applying experimental vibration techniques.

There are many different common sets of generalized cabedirin use for mechanical
vibration analysis. If a position vectar, of a particle (or center-of-mass) is written in terof its

associated generalized (possibly) curvilinear coordingtess follows:

r= r(q1>qz>%)
(1.3)
then the differential tangent vectar,, is given by,
di e 2 g B8 e B
an a 2 a 3
= hy,dg, La_l’ + hyydq, La_l' + hy;dg, La_l'
hy, 9q, hy, 9q, hy; 9q,
= hydqg,e, + hy,dg,e, + hy;dgse,
(1.4)

where the generalized coordinate unit vecteksare given in parenthesis in the second of these
eguations and are chosen to be orthogonal in most vibratatrieprs, and thdwkk are scale
factors associated with the generalized coordinate €iffizds, dgk. For example, the cylindrical

coordinate system in terms of the Cartesian coordinate wtdrgds given by,
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r =rcosbi+ rsinfj+ zk

(15)
so the differential position vector is,
dr = (cosHi + sinHj)dr+ (— rsinéi + rcos Hj)ﬁlﬁ +dzk
(1.6)
with the following scale factors and orthogonal unit vectors:
h,=1 hy=r h, =1
e, =cosbi+sindj, e, =-rsinfi+rcoséj, e, =k
(1.7)

The fundamental theorem of kinematics can now be used to cothputelocity vector directly
(this equation is used later when computing velocity vectorshfokinetic energy terms). The

general and specific forms (cylindrical coordinates) ofvidecity, dr/dt, are given below:

I =h,qe +hy,q,e, + hsq.e,

=re, +rbe, + ze,

(1.8)

There are other useful closed-form expressions for kinemvati@ables like acceleration, for
example, which provide insight into various methods for derivingatons of motion in the next
chapter. Moreover, we will see later that the accetardti theek direction can be computed as

follows:

1

s =
k
h,,

, T=tii
2

dfor)_ar
di\ dq, | oq,

e.g., cylindrical a, = %[%(rz@)— 0] =70 +2i0

(1.9)
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which fits directly into Lagrange’s approach for deriving differential equations of motion.

The important point to note here is that we must be abéescribe how bodies move in
order to derive physical equations of motion. Kinematics ifitsteessential element of vibration
analysis. In the next chapter, methods for combining the kitiesyend physics using Newtonian

(vectorial) methods and analytical methods (e.g., energy/phagrange) are discussed.

1.5 Review of energy and power expressions

This section will review some important ideas in energy ancepawmechanical systems. These
ideas are important because we will use analytical energyodgin many problems to derive

equations of motion for vibrating systems. If an incremente€hanical work on a particle of

massM is denoted agV, then this amount of work can be calculated using the &ppked to the

particle along the incremental change in pdthof the particle as follows:

AW =F-dr

(1.10)

where the: denotes a dot product between the force and differentiabdesplent vector. Note
that the incremental amount of work is a scalar. Boaliantities like this one will be used in
Chapter 2 to develop elegant methods for deriving compliagedtions of motion. Because the
kinetic energy, T, of a particle is equal to the rate of changeWnwith time, a convenient
expression foll can be derived as follows:

AT AW de
dt  A=0 Al dt
dr

T, -T = fF —dl‘

dr 2 a’r dr )

_fa’t( a’t) dt _fdt( ar ar )"

1. .
= EMr -t (forconstant M)

(1.11)
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where the thit equation in the sequence was obtained using Newton’s second law (see Section
2.1 below). This expression for the kinetic energy of a parideks for any chosen set of
coordinates with respect to an inertial reference frafffeen using computer simulations to solve
dynamics/vibrations problems, it is common practice to implement E§ ) in order to calculate

the velocity vector.

For a rigid body, which is an infinite number of such iokes, the kinetic energy can be
found by summing the kinetic energies for all of the individuatigas of massdM. This

summation is performed using an integral over the entire &sdyilows

—_—

T=—f'-1"dM

Body

(\S]

(1.12)

where the position vector, is the position of the mass partiai (see Figure 2.1). For reasons
that will becomes clear later, it is best to writaith respect to the center of mass (CM) location,

Rcwm, as follows:

r= RCM +Tepram

. ar,
s CM/dM
r=Rg, + WX ey am

ot

=Ry + O XY

(1.13)

wherercm/dm is the vector (constant length) drawn from CM to the itégimal particledM and

w is the angular velocity of the rigid body. Remember thatatigular velocity of a rigid body
does not depend on its translational motion. When Eq. ( 1.13) iststgokinto Eq. ( 1.12 ), the

following sequence of steps leads to a general expression kingtie energy of a rigid body:
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L= f (RCM +@X r(‘M/dM) (Rc:u T O XY 4y }]M

Body

) . 1
= 5 o " Rey + Ry x frCM/ledM + 5 f(a) XXerriam ) (w XXenrrav )iM

Body Body

1. . . |
= 5 MRCM 4 RCM + E(U .HCM

(1.14)

whereHCM is the total angular momentum of the rigid body about the Edl.motions in the

plane with angular velocitywk and velocity vectoW cM=Vxi+Vyj, the total kinetic energy is,

T = MV-v+%a)-HCM

5 1
M6; + V\Q )+ 5 (C‘)k)' ([CMCU)(

M(Vf i V,i )+ % (ICM(‘)2 )

1]
M| = b= b

I

(1.15)

wherelcM is the planar mass moment of inertia of the body abouthe

The potential energyy, of a particle or rigid body is also important in therkvto follow.
Consider cases where an external force ve&ocan be written in terms of a special potential
function, V=V(r,t), which is only a function of the particle coordinatesaiminertial reference

frame, €1, €2, e3), and possibly time,

F--V
14

=——e ——¢e,——¢,
1 2
dx, ox, ax;

(1.16)

In this case, the total work done as the potential energyadesés calculated as follows,
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WIZ=VI—V2+f—dt
(1.17)

For instance, in a linear spring that acts to oppose applied forces actoneingxi, whereK is the

spring constant of the spring (force/displacement), the t&lon in Eq. ( 1.17 ) is given by,

I/Vl-z =Vl _V3
f—Kxi-dxi=0—V2

0

-
-—Kx ==V, (x
2 >(X)

(1.18)

Thus, the potential energy stored in a linear sprin@%{Z, wherex is the final displacement of

the end of a spring that is initially undeformed. The patémtiergy stored in the gravitational
field between a madd and the earth is given BY(x)=Mgx, wherex is the vertical distance from
an arbitrary datum or reference height to the mass. M@kt in both the spring and the
gravitational potential energies, a conservative forassociated with the stored energy. In the
spring the conservative force ks=-Kxi, whereas in the gravitational field the forceFs-Mgj.

We will see in the next Chapter that by extracting all epragive forcesfc, from the total
external force on a bodyk=FctFnc, and representing them with potential energy terms,
energy/power methods for deriving equations of motion can kanelk quite easily. We will
have many opportunities to compute potential energies indliff@roblems in the next Chapter.

UNIT-II
2 VIBRATION UNDER HARMONIC FORCING CONDITIONS

In order to discuss vibrations in mechanical systems, we msistifirive mathematical
eguations, which can then be used to analyze the fre@aedi fvibrations of interest. These
eguations that describe the physics and kinematics of systemdleadlmequations of motion
(EOMs). There are many techniques for deriving these equations among them Newton’s second
law of motion and Euler’s equation, the conservation of energy (first law of thermodynamics),

Hamilton’s principle, an array of analytical variational methods in dynamics (e.g., principles of
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Jourdain, Gaus6&rbbs) including Lagrange’s equations (class | and Il), and others. We will only
talk about a few of these. Students are encouraged to ctedslion dynamics by Greenwood,

Crandall, Thompson, Tse, Richardson, and Moon for a thoneww of each technique.

The important thing to understand here is how these technigeelffarent. In other words,
we want to know which method to choose for particular typgsalflems and why. For instance,
Newton’s second law and Euler’s equation offer more insight in many cases because they involve
vectors, which are often easily visualized in the course wirgpthe problem; unfortunately, that
insight comes at price: all of the external forces on egsh fody diagram must be known or
expressible in terms of the independent variables, and tleéeetons for each free body must
be computed. Forces in ‘real-world’ problems usually involve physics that are not well known
(e.g., friction, aerodynamic boundary conditions, etc.), wiseeezelerations involve extensive
amounts of kinematic algebra, which can be complicated wdtating body coordinate systems

are used.

The key to applying Newtonian methods is to select the generalzerdinates so as to
balance the effort required to mathematically express phgsics EF) and kinematics
(Acm=dVvcm/dt). During this course, we will attempt to illustrate gawalys to choose methods

for deriving EOMSs in general.

2.1 Newton’s second law and Euler’s equation

Newton’s second law of translational motion for a rigid body of (constant) mass M subjected to a

resultant external force vectdfcwm, is

dP 2
cm = d(;M = MR, ,where P, = MV,

(2.1)
whereRCM is the position vector of the CM with respect to an inertial reference frame. Euler’s

eguation for the rotational motion of a rigid body is,

dH
M _
Mg, = ar where H.,, = R, x P,

(2.2)
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whereFcM is the sum of all external forces acting on ineMigPCMm is the total linear momentum
of inertiaM moving with velocityVcm, HCM is the total angular momentum of ineriabout
its own center of mass (CMIRCM is the position of the center of mass in an inertial esice
frame, andvVcm=dRcwMm/dt is the absolute velocity of the center of mass with resipethe

inertial reference frame.

The first thing to remember about Eq. ( 2.1 ) is that abeeleration (velocity) must be
calculated with respect to dnertial reference frameNEWTON’S SECOND LAW IS NOT
VALID FOR RELATIVE COORDINATES. The second thing to remesntabout Eq. ( 2.1 ) is
that FcMm includes ALL external forces (conservative and non-coasiee) on the body. Thus,
the free body diagram (FBD), which shows all external ®@®d moments acting on the body,
must be accurate or else the resulting EOM will be wrong. Awagke sure that the EOMs

match the FBDs. We will have many opportunities to enfdresd two rules.

Although the form of Euler’s equation in Eq. ( 2.2 ) is correct and always works, there are
alternative forms, which are easier to apply in many cdlsagointA is chosen around which to
develop Euler’s equation instead of CM, then the moment equation can be written in several other

forms as follows:

% P .
M, = a’tA +R, x MR,

dH ..
_ oM
= +T, o X MR,

dt

dH ..
_ 4
= a2 +T,,00 X MR

(2.3a,b,c)

where the vectors in these equations are defined in Figure 2.1.
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Inertial reference
frame

X

Figure 2.1: Coordinate system for developing various forms of Euler’s equation

The reason Egs. ( 2.3a,b,c) are all useful is because thelfgitihe kinematics tremendously in
certain cases. Consider the system in Figure 2.2 below. Adliskon an incline as it is pulled
down the incline by gravity and up the incline by the lineaingpK. The corresponding FBD is
shown in the right of the figure. We will now illustrate the metladderiving EOMs using

Newtonian (vectorial) techniques.

1. First, draw a schematic of the system if one is not providedgi\ss many coordinates
as you need to define the position and orientation of all badigee system; make sure
to label the positive directions for all coordinates and defineunit vectors you feel are
appropriate to solve the problem. We are allowed to useveelabordinates in the
problem; however, we must remember that the acceleration terms in Newton’s equation
and Euler’s equation must be absolute (i.e., with respect to an inertial reference frame).
The minimum number of coordinates needed to locate aadt@il bodies in the system
is by definition the number of DOFs; you should always staseithjour solution. The
number of DOFs in the system in Figure 2.2 is one becausexamyp is needed to
locate and orient the disk. If you are not absolutely suratahe number of DOFs, the

following formula may help you to find your redundant coordinates:

coordinates  kinematic/ geometric
# DOF's =# —# , _
chosen constraint equations

(2.4)
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For example, if we choose battor ¢ to locate and orient the disk, then we can use Eq.
(2.4) to obtain the number of DOFs with the single comstre=-ag: #DOFs=#coord.-
#constraints=2-1=1. We will choose the phase angleas our main coordinate. This
means we will need to use the constraint equakergag, to eliminate all occurrences of

xin our equations. Step 1 is primarily concerned with the katesof the system.

No sl N
J I P a
;73//////////////’

Figure 2.2: (Left) Sprung disk on incline and (right) freeybdidhgram (FBD)

2. State any assumptions you made in drawing the schematic assuyptions you will
make in deriving the EOMs. For instance, the no slip conditiétigare 2.2 means that
the velocity of the disk’s point of contact with the surface is zero (i.e., the velocity of the
disk relative to the surface is zekfsontact/A=0, where A is a point inside the incline at

the point of contact). This assumption is important and mustalbed.

3. Draw the FBDs for every body in the system. Draw FBDs ewethbse bodies that you
believe are not needed. We must put a lot of thought intbsFBecause they will
determine whether we get the correct EOMs in the end. It islyduedt to re-draw
coordinate systems with each FBD corresponding to individual boditdseisystem.
Compute forces in springs and dampers by using the relative naatioss the element;
the directions of these forces are determined by remembiandorces and dampers
oppose increases in relative displacement or velocigsadhem. When we draw vectors

on the FBD, we label vectors with magnitudehe vectors take care of directionality.
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4. Spend a few moments thinking about how you will write down only as/requations as
you need to find the EOMs. We could write down every equat®tivnk of, but this is
usually not as effective as thinking about which equations we asddwhy. For
example, we could write down both the force and momeuatans for the inclined
rolling disk in Figure 2.2. The force equation in théirection will involve the friction
force (unknown in terms of coordinates), gravity (known), gnedrestoring force in the
spring (known). The force equation in tlgedirection will involve the normal force
(unknown) and a gravitational component (known). The moment equetiold be

written around several different reference points:

Around point CM (center of mass):
_ dHCM

cm o
. d -
(_ a])x (_ ﬁ)= E(I(‘Mqﬁk)

—afk =1, ke = ICMq; = —gf

(25)
Around point A (point of contact inside the incline):
H . . H
4= ‘th +r, X ‘MRCM = Cd—tA
. . d( ;
(aj)x (- Mg )+ (aj)x (- K (x - x, §) = E(msk)
—aMgsinak + aK (x — x, k = I, 0k = I = —aMgsina + aK (x - x, )
(2.6)

Around point B (point on perpendicular to point of contact):

_dH,

M, ~ +foMRCM=dHB
t

dt
(-2ai)x - /¥v Caie (- Mg - K-, %)= (k)

- 2afk + aMgsin ok — aK(x —x, K =10k = 1,0 =—-2af +aMgsina - aK (x - xu)

(2.7)
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In this case, the moment equation about CM was the easiestyplappéver, it leaves

us with an unknowrf, which can be found using Weéon’s second law in the x direction:

Koy = MA
()j + (— K(x -x,)- f+ Mgsina)i= W(\)
- Mx + Mgsina - K(x —X, )= f

(2.8)

5. Solve the resulting equations to obtain the EOMs; there shaulssimany EOMs as
there are DOFs from Step 1. Upon substituting Eq. ( 2.8 ) int¢ E& ), the following
EOM is obtained:

(Ic“u +Ma' )) +Ka'¢p =-Mgasina — aKx,

(2.9)

Note that the only forces that do work on the body are thimgsgorce and the
gravitational force. This means that the friction formed normal force are both
extraneous in our analysis. We only used them to solve for the B@yldb not really
play a role in our EOM. We will study other methods for deri&@Ms later that do not

use extraneous forces like this one (called ideal forces ofraonkt

6. Check to see if the EOM makes physical sense. Do not forgeitdp; it is probably the
most important step for graduate students to perform. Tdwerea few things we can
check: Is the inertia positive? Are the stiffness and dampinitiygoéstability)? Do the
forces push or pull the system in the proper directions? etcwilVsee later that there

are several more checks for multiple DOF systems with thareone EOM.

7. Solve for the free and forced response characteristicE{sgaters 3 and 4). Check to

make sure these characteristics and solutions make physical sense.
Step 5 above mentioned that Newtonian techniques requiralthfidrces on each body are

included; however, not all of the forces generally do wamkthe system. In fact, some of the

forces simply hold the system together (i.e., no slip constrantal forces between smooth
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surfaces, etc.). For instance, the normal force in Figiteloes no work on the system because
the disk does not move in thedirection. If we could ignore all of these so-caliddalized
constraint forcesand only include the forces that do work (i.e., activedsy, then it would be

easier to derive the EOMs in many circumstances.

What if we just project the EOM onto the direction perpendidwldne constraint force? This
projection would effectively eliminate the constraint betiain the active forces as desired. For
example, if we projected Newton’s second law of motion for the rolling disk onto the direction of

motion, &xi, then we could eliminate all but the “important” forces as follows:

(F., - MA,, ) or=0
F_ +F, _-MA,)or=0

active constr

(V= Mgcosa)j- fi+ (- K(x-x, )+ Mgsina )i — Mi)-dr = 0

N - Mgcosa '+Mi+ - Klx—-x, )+ Mgsina i — Myi |- (dxi)=0
a u
(M—JMX—K(,V—,\'U% Mgsino [0x =0
a
(M + ]‘%)x +K(x-x,)- Mgsina = 0 for arbitrary dx
a

(2.10)

where ér=0dr/ox -0x+aor/op -6¢p=0xi is called thetotal variation of r with respect to the
coordinatesx and¢. We see that by projecting Newton’s second law onto ér we were able to
remove the normal force of constraint. Note that we subddittiie other force of constrairf,
from Eqg. ( 2.8 ). When we recognize ahead of time thatctmstraints will fall out of the
equation with no effect, we can write theatled d’Alembert-Lagrange principle for a single
particle,Mi, as follows,

(Farﬁve.i - M,'A,' ) 6ri =)

(2.11)

whereA.i is the absolute acceleration of the parti€legtive,iis the total active force on the particle,

anddri is variation of the position vector of the particle. It is asmetimes more convenient to
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replace the variationdri, with the first or second derivative of the variation todoie the
generalized d’Alembert-Lagrange principle for a particle. This technique canekinded to

multiple particles or rigid bodies, but we prefer to discussnangy method first as follows.

2.2 Conservation of energy (first law of thermodynamics)

Energy principles are always applicable in vibrations so longhasnecessary kinetic and
potential energies can be calculated. Furthermore, emeegyods only take into account active
forces; idealized forces of constraint, which do no work, ignored. This simplification is a

significant advantage in systems with many components (i@EsP For a single degree-of-
freedom (SDOF) system, the power equation is equal to théafivsif thermodynamics,

d aw
= V)= 2 ne
dt(T+ ) dt

(2.12)

whereWnc is the work done by non-conservative (dissipative) forces dthmmgnotion,T is the
kinetic energy, and/ is the potential energy of the particle or body. For ingatite system in

Figure 2.2 hag =M(dx/dt)2/2+lCM(d(p/dt)2/2, V=-Mg(x-xu)sina (noteV decreases for increasing
X), and no non-conservative forces. With these energy expressmns2.18 ) yields,
d(t ., 1. i’ aw

.2 ) ; 1
E(EMX +5[(,Ma—2 - Mg(x—xu)sma +5K(x—xu)2) = I

(A/fx'+ IC;” - Mgsina + K(x—xu)))'c =i}
a
; ICM = 2
M +—~|¥ - Mgsina +K(.\c—.\f“)= 0
a

(2.13)

Note that in moving from the third to the fourth equatioereéhwere two options for satisfying
the equation, but the zero velocity condition is trivial and onbpecial case. Also note that
before proceeding to take derivatives, the rotational kieetgrgy was expressed in terms of the

translational coordinate using the kinematic constraint. ileisially carry out this step when
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applying the power method and when applying generalized energy methitbdsnext section;

we will apply the constraints before taking derivatives to signgile calculus.

Eqg. ( 2.13 ) was relatively easy to obtain in comparison tocampe Newtonian-based
EOMs. Of course, it is identical to Eq. ( 2.10 ) and to E}9() when the kinematic constraint is
enforced; however, there was no need to include either afaigtraint forces because neither
one of them does work on the disk. Likewise, the conservativedodue to gravity and the
spring are accounted for by the potential energy expresgioihen there are non-conservative
forces acting, then the work done by those forces must be compihid.calculation is
performed using variational calculus, which simply projectsfohees onto differential changes

in the position vector. Assume that the non-conservative fisrgiven by,

F=Fe, +Fe,

(2.14)

whereel ande2 are unit coordinate vectors aRd andF2 are the components of the force. Also,

assume that the position vector of application of the force is,

r,=x¢e +x,6¢,

(2.15)

where bothx1 andx2 are functions of some generalized variablelhen thespatial variationof

the position vector is given by,

51‘4=a{i
A"
LT T P
dg dg

(2.16)

Finally, the work done by the non-conservative force is faopngbrojecting the force onto the

differential in Eq. ( 2.16):
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dW =F-or,

= (F,el +er2)- ﬁel +ﬂeq dq
dq

= (Eﬁ+F2 Clxz )dq
dq dq

(2.17)

For example, if a forcEt)=Focoswot acts on the disk in the positive x direction (Figure 2H3n

the increment of work done on the disk is given by,

dW =F:or,
y f(z)i-(ﬁi)dx
dx
= f(t)dx
= F cosw,tdx
(2.18)
and therefore the power equation in Eq. ( 2.12 ) becomes,
df{1. ., 1. i’ : 1 aw
—| = Mx" * —Igp— — Mgxsing +—K\x—x, ] |=—
dt(2 2 Mg 2 ( )2) dt
(]\/[x + - % - Mgsina + K(x - x, ))x = F, cosw, tx
](‘j\/f . .
= | M+—-|X-Mgsina + K(x —x“)= F, cosw,t
a
(2.19)

The important thing to remember about the energy method usthgawer equation, Eqg. (
2.12), is that the forces of constraint do no work and araoloided in the analysis. Also, note
that the technique as presented only produces one EOM andjwendg only works for SDOF
systems. Next, we will talk about a general energy methodhalytical dynamics that can be

used for any number of DOFs. This technique still requise® find the kinetic and potential
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energy expressions and to calculate the work done by extemabnservative forces, but it is

generally simpler to apply than Newton’s method in complicated problems.

2.3 Lagrange’s equations of class Il (holonomic form)

The energy method is Section 2.2 worked well and was sim@pply, but it was only valid for
SDOF systems; i.e., we only produced one EQlgrange’s equations simply extend the energy
method to accommodate multiple degofdreedom (MDOF) systems. Recall from Section 2.2
that if we want ¢ ignore the ideal forces of constraint, then we can project Newton’s second law

of motion onto the variational displacement of the systerthis operation eliminates the
constraints and maintains the forces that do work on thersy#tthere aré\ particles, then Eg. (
2.12) is repeatedN times:

N

2 (F active,i jwii: i ) 51.[(1() =0

(2.20)

WhereAi=d2ri/dt2 is the absolute acceleration of ﬁﬁ% particle,Factive,iis the total active force

on that particle, anc‘Irik is thekth order derivative of the variation of the position vectarThe
definition of the variation is,

" e.(k)
or; 5q(k>
) M-

or'® =
1 1 9q,

(2.21)

whereqr is therth generalized coordinate andis the total number of generalized coordinates.

Each of theéq(k)r variations is called aarbitrary kinematic variation these variations must
always satisfy the constraints on the system.

Lagrange’s equations of class Il follow directly from Eq. ( 2.20 ) after some variational

calculus. First we make the following substitution,
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. or, d{ o (1. . Jd (1. .
L= =% | || 75"
dq, dt\9q, (2 ) 9q, (2 )

(2.22)

into Eq. ( 2.20 ). Recall the similarity of this resultthat in Eq. ( 1.9 ) for the acceleration
computation in the generalized coordinate directipnAlso, note that Eq. ( 2.22 ) is equal to the
rate of change ifT within a differential, which affords a different methodolofyy deriving
Lagrange’s equations. Then we decompose the resultant active force vectors on each particle into
conservative (lamellar) and non-conservative componétsiye,=Fi,c+Fi,nc, and project them
onto the corresponding variations to obtain the so-called gaeetdbrces as described in the
first term of Eq. ( 2.20 ) given Eq. (2.21):

(k)

N
Q,. = 2 (Fuc[[ve,i ) .ai;lm

P a..(k)
- 2 E, +F, ) %

(k)

N -
= Z (~ V/V g Fi‘nc )%

0 "
= _i+Qr
aq,

(2.23)
: th , * th : : .
whereQr is ther  generalized force)r is ther " generalized non-conservative fordgis the
potential function corresponding to the conservative forces, W@ is the gradient of the

potential function. Lastly, Eq. ( 2.23 ) is substituted into E8.20 ) along with Eq. ( 2.22 ) to
obtain the following:
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E(M kg Mm“) o' =0

2 (M[‘ aum 1) 2 (k) &];'Ak) =0
EE(‘WI' Tie T lm) ar(k) 66](1‘)

r=1 i=l

2 d oT _aT  or o' log® =0
dtog, oq, og,

(2.24)

whereL=T-V is called theLagrangian If all of the generalized coordinates are independent of
one another, which they can sometimes be if we are caadfolit choosing generalized

coordinates, then the (holonomic) form of the Lagrange equatiaassftwo are given by,

(2.25)

If Eq. (2.25) is applied to the system in Figure 2.2 whemae ff{t)=F ocoswat, is applied to
the mass in thg direction and a viscous damp@€, is placed in parallel with the spring, then the

*
kinetic and potential energy expressions are the same as hef&® i( 2.13 ) and)r is

calculated as in EqQ. ( 2.23):

r"”

0; i(F,

q.
(A)

(F cosw,t — Cx)

(k)

r

=

dq

(F oswt—Cx) i
=F, cosw,t - Cx

(2.26)
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The kinetic and potential energies can then be substitute&amg 2.25 ):

dao(l _, l ] 1
—_—| =Mx" + + Max-x Jsinoo——K(x-x
dt&x[Z 2 C\l z g( 1) 2 ( u j

_.’i(—l—j%tz 1ICM .’ + Mg(x - x“)sma——K(x x)’]=
ox|{ 2 2 a

d(;%v+lw ) (Mgsma K( xu))=E,cosa)0t—Cfc
dt a
I .
(M+ (M)x+Cx+K(x x,)- Mgsina = F, cosw,t
a
(2.27)

This equation has the same form as the EOMs obtained in the ysresgotions. It might be
helpful at this point to reflect on what we just did. We applied Lagrange’s equations of class II to

a system where the (holonomic) constraints had already beendafpliemove dependencies
between the generalized coordinates. This procedure gave E®Mnhat was identical to the
EOM we derived using Newton-Euler vectorial techniques. The quasgashould answer now
is: Why do these two seemingly different techniques yietdgame equation? First of all, we
used Newton’s second law in the absence of ideal constraints to derive Lagrange’s equations
(recall Eq. ( 2.20)), so they should be the same. Seconthmassociate terms as follows in the

two techniques to convince ourselves that the two techniquegyimeshe same EOM:

Moo 43T 0T
dt 0qg dq
active,i S ﬂ + Q:
‘ 0,

(2.28)

2.4 Multiple degree-of-freedom (MDOF) systems

Up to this point, we have only discussed EOMs of SDOF systems. l\¢le fhe same procedure
in this section as in Sections 2.1-2.3 to apply Newtonian, efpenggr, and Lagrangian
technigues to multiple degred-freedom (MDOF) systems. Each DOF in the system
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will require another EOM and all of these EOMs will in gahde coupled in some way. For
example, the EOMs of the simple system in Figure 2.3 witbouss damping can be derived
using Newtonian or Lagrangian techniques. The FBDs of thismsyate shown in the bottom of
the figure.

f.{t) . @
- L Ca(X,-Xy) C3(X3-X))
Pl —>— " —> —
My | K (Xy-X9) Ky(X3-%,) | My [6—— Cyx
1 1 473
K1 X, 2V "2 2 33 %2 3
; 50 $
Cs(X3-Xq) Cs(X3-X9)
Ks(X3-Xq) Ks(X3-Xy)

Figure 2.3: (Top) three degreéfreedom vibrating system and (bottom) FBDs

When applying any EOM derivation technique, we first find the memof DOFs. In this
case, three coordinates are required to locate and atienaisses in the system: #DOFs=3. The
coordinate definitions are given in the figure. Then for Newton’s second law, the following

sequence of equations is obtained:

M% = f,()-Kx, - Cx, + C2(“‘.72 - X )+ K, (“ 2~ X )"‘ Cs(".% - X )"' Ks(x3 - “‘71)
M,%, = f:()-C; (-%2 ~ % )_Kz (xz - X )"‘ G, (.%3 - X, )+ K, (x3 - xz)
M;i, = -Cyxy; - Cy (j} - X, )_ K, (-’(3 —¥3 )_ Cs (.%3 - X )_ K (—‘”3 - -Vl)

(2.29)

This sequence can then be rearranged and placed intg foatnias follows:
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M, 0 0 1(%, C,+C,+C;, -G, - C; JJ\Il
0 M, 0 [x 1+ -C, C, +C, -C, X, L+
0 0 M,||x -C, -C, C,+(C,+C, l)@J
K +K, + K - K, - K X J,(0)
- K, K,+K, -K; [{x,t=1/()
- K -K, K;+K,||x, 0

(2.30)

There are three equations because there are three D@$-seflof equations has some important
properties that are common in systems of this type where absolrtdinates are used to derive
the EOMs. First, note that the mass, damping, and stiffnes¢dces are all symmetric; this
symmetry changes when relative coordinates are used. Seconthatothe off-diagonals of the
mass matrix are zero. Because the mass matrix is diaganahyvhere is ndynamic coupling

in this system through these coordinates. Dynamic couplingieinfhat the inertia associated
with one coordinate directly produces inertia in another coatei Because the stiffness matrix
is not diagonal, we say that the systenstiatically coupledthrough these coordinates. Static
coupling implies that a deflection of one coordinate causdectiehs in other coordinates.
Third, note that the force vector only has two nonzetdes (first and second) because the third

DOF has no exogenous force applied.

There are an infinite number of other EOMs for this systipending on the choice of
coordinates. Students are encouraged to define their owhamtrdinates and derive the EOMs
to demonstrate this point for themselves. For exampie, iff replaced withx*2, wherex*2= x2-

x1, a relative coordinate, then the EOM matrix becomes:

M, 0  01(% G+l ~0 il Jxl
M, M, 0|l&ls| G, G, +C; e s & +
0 0 M||i]| |-C,-C, -C; C+Ci+C, 1)(
K +K, + K, -K, —~ Ky X, £,
Ky K, +K, -K, {5 1={/0)
- K, - K, -K, K;+K,||x, 0

(2.31)
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Note that the symmetry in the mass, damping, and stiffne¢sces has disappeared and the

coordinates have become dynamically coupled as well as Byaticapled.

We can also use Lagrange’s equations from Eq. ( 2.25 ) to derive the EOMs of the system in
Figure 2.3. To do this, we first compute the kinetic and pialeenergy functions and the so-
calledRayleigh dissipation functiQiir:

1. ., 1 a1 .
T = EMle + EMZXZ + EMS.@
V=le2+lKn(x —x)2+lKﬂ(x —xq)2+~1—K (x, - x, )

2 12¥] 52 2 1 5 3%%3 2 5 TR | 1

1 ., 1 I | ..oy 1 AR R U
R =5C1xf +5C2(x2 —xl) +5C3(x3 —xz) +5C5(x3 —xl)r +5C4x§

(2.32)

The Rayleigh dissipation function is a common means for diyimgdi the derivation of EOMs in
damped systems. In a sense, damping is treated just likee kinetpotential energy analytically.

WhenR is included in Lagrange’s equation, Eq. ( 2.25) is modified somewhat to,

d oL oL N oR
dt agr aq/ aq;

=0
(2.33)
* . h . .
whereQr is now understood to be the remainder of rthegenerallzed force when viscous
damping has been accounted for with the dissipation famdgi

In summary, to derive Lagrange’s EOMSs for a system, follow Steps 1 through 3 in Section
2.1 and then continue with the steps below:

1) After defining the coordinate system, finding the number ofFBGand drawing the
FBDs, calculate the potential and kinetic energy functions elsas the Rayleigh
dissipation function\{, T, andR). ENFORCE THE CONSTRAINTS at this point to

eliminate dependencies in the selected generalized coodinate
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2) Form the Lagrangiar,. This step is really not necessary if we choose to leavé Eq.
2.33) in the expanded form, second to the last line in Eq. ( 2i2dojving V andT
instead.

3) Take the necessary partial derivativesvofl, andR with respect to the generalized
coordinates and velocities and then take the time derivatitheokinetic energy
partials.

*
4) Find the generalized force®r , as in Eq. ( 2.23 ) by projecting the non-conservative

forces not already accounted for in Rayleigh’s function onto the variational
coordinates.

5) Substitute thresults from Steps 3 and 4 into Lagrange’s equations, Eq. ( 2.33 ).

UNIT-111
3 VIBRATION UNDER GENERAL FORCING CONDITIONS

The differential EOMs of typical real-world vibrating sysieare nonlinear. Mechanical systems
can contain many different types of nonlinearities including goon kinematic, material, and
other less common types. Although there are powerful technitpresinalyzing nonlinear
vibrating systems, this course will largely ignore those teciesicand focus instead on linear
technigues. Thus, we must start with linear differential EOMdinmarizing nonlinear EOMs.
There are two approaches for doing this: 1) we can deriveiltrtie@Ms and then linearize them;
or 2) we can linearize the necessary energy functions ebefgplying Lagrage’s approach to
derive the final linearized EOMs. We will discuss both of thesdkniques, but we choose to

focus on the first method because it is slightly more intuitivértroductory material.

Consider the unforced and undamped simple pendulum, whictmnédiollowing EOM:

MPE@ + MgLsin@ = 0

(2.34)

whereM is the lumped mass of the pendulugrs the gravitational acceleration constdnis the
distance from the center of rotation to the lumped mamkfas the angular coordinate that the
pendulum makes with the vertical. In order to linearize (E8.34 ), we look to the nonlinear
function, sin6. Figure 2.4 shows that when the pendulum oscillates closaiyé the downward

equilibrium position (i.e., nea#=0 rad), sin6 is approximated well by the dotted straight line that
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passes through the origin. If the pendulum oscillates tooxfay &om the origin (i.e., iB is too
large), then the straight line does not accurately describestftifar motion. We can use Taylor
series (Maclaurin series) to mathematically linearize th®EGing these arguments. The Taylor

series okind abouté=0 (Maclaurin series) is,

1

9%+

-6,y =6-

0=0,

) 1 d(n)
sinf =sinf, + E—‘ g (sine)}
7=l 1

(2.35)

Figure 2.4: Nonlinear function with two equilibrium points as$ociated linear characteristics

The form of Eq. ( 2.35 ) confirms our discussion above; as long as thimargation is small, the
third and higher order terms are “negligible” compared to the first order linear term. Thus, if we are
just interested in how the pendulum moves in the neighborhoibe @irigin for|6|<<1 rad, then we

can define a new coordinatg=0-60=6-0, and then linearize Eq. ( 2.34 ) as follows,

MLEO + Mglsinf =0
MLE, + MgLsin(@, +0)=0

19.5, + g@(, =0
L

(2.36)
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We see then that the goal of linearization is to approximatenean| functions in EOMs with
linear terms near certain operating points (i.e., dguiim states) of interest. We could just as
easily have linearized Eq. ( 2.34 ) ab@atr rad as well:

MPEO + MglLsin® =0
MEE + MgLsin(@, + 7 )=0
MEG - Mglsin(0, )= 0

éd _ied =0

(2.37)

which of course describes the unstable nature of the equitilpint até=r1r rad. In summary,
all of the analysis techniques we will use in this coursdased on the assumption that the EOM
is linear. We usually have to linearize the EOM before applyiage techniques by defining our
operating point of interest and then approximating nonlineatibingcin the EOMs with linear

functions in the neighborhood of our chosen operating point.

Although the technique presented above for linearizing “after the fact” in the final EOMs is
useful in relatively simple problems, it will become unwiefdy more significant problems. In
those cases, we can use the Lagrange solution procedurees ffillst, we calculate the energy
expression forT, V, andR in addition to the generalized force®?r as before; second, we
linearize the energy expressions; lastly, we write down therimeehEOMSs directly. We begin
by examining the holonomic Lagrange equation of class Il at ailikegym point where

d(n)qr/dt(n)zo for n>0. At the equilibrium point, the values of the generalizedrdinates are

placed in the vectogo. From the form of Lagrange’s equations, we have

d(oL) oL oR

—|— |- +—=0

dt\dq, ) 9q, 9q,
9, Eq.Pr.

(2.38)
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If we are again only interested in small motions aroune:¢judibrium point, then we can expand

the potential energy function using a multi-variable Taylor séviésird order ing:

1 & & 82V "
@ -a.)+=> @, =4, Xa, = 9,0 )+ O(AT")

r@-rla)e o

= 7 lq=q, 2 r=1 m= laqrdqm q-q,
s oV
V q,, 2 E‘Kqud, qdma W here K - and qdr = qr - qm H qclm = qm - qmr)
09,09,

(2.39)

Note that we used Eg. ( 2.38 ) in addition to the conditionthe derivatives of the generalized
coordinates. Because Eq.

(2.39) is a quadratic form (i.edrqdm), we can immediately write down the partial derivatives

that we need for Lagrange’s equations:

ﬁ—_( (g, )+~ EEK,,,,%, 1)

p r=1 m=
= 2 Kprqdl'
p=l

(2.40)

which will provide the linear stiffness to ground and all tbhepding stiffnesses for the linearized
EOMs. As for the kinetic energy, we can obtain a similar exjpnressy computing the two sets of

partial derivatives we need for Lagrange’s equations:

T 9 (1K w
St it | M,.qurqdm
aqp aqp 2 G

(2.41)
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and

a0 (143
ag/} aq{) 2 r=1 m=
=( nearq,

Mrmédrédm )
1

(2.42)
Rayleigh’s dissipation function is handled in the same way as in the previous section.

Consider the simple pendulum again with the potentidlkimetic energies as follows:

V= A/[gl(l - cosH)

T = lAwL282
2

(2.43)
The following procedure is used below to develop the lineaixad for the simple pendulum:

1) Find the potential energy functiol,(q). Note that this procedure assumes that all
restoring forces are accounted foMnFind the equilibrium pointgo, such that Eq. (
2.38 ) is satisfied. Calculate the symmetric stiffness caefiis, Krm, using the

formula in Eq. ( 2.39 ) and find the stiffness matrix.

2) Find the kinetic energy functiof,, and expand it into a quadratic form involving
products of the generalized coordinate velocitigky/dt) -(dgn/dt). Evaluate the
coefficients of these quadratic terms aat and calculate the mass matrix of the
linearized EOMs.

3) Find the Rayleigh dissipation functioR, expand it in quadratic forms, identify the
viscous damping coefficients and create the viscous dampinx.matr

4) Write down the linearized EOMs in terms of the dynamic coatdm (i.e., variation
of coordinates away from the equilibrium point) using thiedated mass, damping,

and stiffness matrices computed in Steps 1-3.

Simple pendulum example:
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V= Mgl(l —COSH), where 0, =0

‘ 0> 0t

SO V=O+MgL(1+E_T!+O(B )
a’v
96’

= MglL=K,,

6=,

Since T = %(wﬁﬁ then M, = ML
d (T _ar oV _
di\og) a0 90
M“é)'t, +K,0,=0, where 6, =60-0, =0
(2.44)

Note that the terms of order two and lower (quadratitlsnear) are kept in the potential energy
because these are the terms that will produce linear terrtiseiEOMs. We will apply this

procedure in more complicated examples throughout the course.

2.6 Continuous systems of second and fourth-order

So far in these notes we have only discussed discrete systassesndampers, and springs,
which were all lumped elements. Next, we treat continuousragsby allowing the system mass,
damping, and stiffness to vary as continuous functions ofgémeralized coordinates. Most
systems are in reality continuous systems, but we are ofterested to know how discrete
models can be used to get accurate approximate solutions? Mdeseuiks this point later, but for
now we start with a relatively simple example of transveilseations along a string and then
move on to a more complicated example. Results here willlelathose in acoustics. The
process of deriving EOMs for continuous systems is identicahdb for discrete systems in

Sections 2.1-2.4; however, the FBDs will look more complicatieen in reality they are not.

Consider the continuous string shown in Figure 2.5 below witssrdensityp(x)
(mass/length) and tensiof(x) (force). Note that the density and tension are both et vary
with x, the longitudinal position of the small piece of mass alongttiireg in contrast to the fixed

mass and spring coefficients in the previous sections.
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f(x,t)

‘By ‘By
5 f(x,t)dx e

dx ? T+ %—M
T(X) ox

X

x+dx

Figure 2.5: (Left) String fixed on both ends (right) FBDsndinitesimal string element

The FBD of an infinitesimal string element is shown on thyatrbf the figure. Note that
changes in both the tension and slope along the string aresssgresing a two term Taylor
series; terms of higher order than one are neglected assuming small deflections. Newton’s second

law applied to the FBD in Figure 2.5 yields the following:

(,o( O)dlx )8 y(x 1) (T( )+ aT(A) )(aygx t) d ) T(x )ay(x ,0) + F(x)dx
X x*

3% y(x,1) aT(x) dy(x,7) 8%y aT(x) 3’y >
) >~ dx = - ——dx+T(x dx + dx) + f(x,t)dx
plx ot* ox ax ol )8x2 ox  ox* (@) + f(s)

2
p(x)% v (T( )""(* ’))+.f(x,r)+0(dx)
(2.45)

The second order terms in this last equation can be ignorecagushey were ignored in
calculating the slope of the string at both ends of the iefiilmhal segment in Figure 2.5. Of
course, this equation is only valid along the length of the stfiwx<L) and must be
accompanied by two boundary conditions at its end points toghgisécal meaning. Because the
eqguation is of second order yx,t), it requires two boundary conditions. In the case shown in

Figure 2.5, both ends are fixed so,

¥(0,8) = 0= y(L,1)

(2.46)
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Other possible boundary conditions would be computed similatrims of the displacemernt,
at the end points of the string. For example, if the leftisrftked and the right end is made to

oscillate according to the functiagt), then the boundary conditions would $€@,t)=0 and
y(L,H)=9(t).

Before proceeding with the derivation of other EOMs for cwordus systems, we should
reflect on the meaning of Eq. ( 2.45 ). Recall that oné@fsteps in deriving EOMs is to verify
that the resultant equations make physical sense. If weteetvat equation in the following

form:

ay(x,1)

a*y(x,0) 0
J ox

=5

5(T<x> ) - f(x1)

(2.47)
then it is relatively clear that the EOM for a stringatédses a balance between inertial, tension,

and external (exogenous) forces. For example, if the swimgassless and the external force is

zero, therp(x)=0 andf(x,t)=0. In this special case,

a};('x, 4 )
dx

) =0= T(x)M = constant(?)

.i(m) ,
ox ox

(2.48)

which means that for constant tension strififx)=constant the slope of the string is the same
all along its length at each moment in time. Does this raakee? Prove to yourself that it doe
by conducting an experiment of some kind. Also, in the steady wta¢nf(x,t)=constant(and

there is a small amount of damping in the string) the aldidice goes to zero along with the

acceleration because the motions cease and the tensiobdtanees the external force:

- i (T(x) (?y(xj )

- = f(x,t) atsteady state
0x 0X

(2.49)
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As in Eg. ( 2.48 ), this equation shows that for static fo(ces gravity) and constant tension

strings, the rate of change in slope with distance alongrihg & proportional td(x,t).

We can also derive EOMs for bars experiencing bending. Figbrehdws the system and
FBD for this type of system. In this type of problem, tinedr mass densityn(x), and flexural
(bending) stiffnessEl(x), are given as functions of position along the barand the loading
distribution,f(x,t), is given as well. The deflection at a positioalong the bar is the deflection of
the neutral axis of the beam, which is assumed to experiencgilnlegihear deformations and
rotations along its length. Application of Newton’s second law in the vertical direction and
Euler’s equation about the left end of the infinitesimal element yields the following two

equations:

()220 y (x ) (Q(x n+Z 90 x) —O(x,8) + F(x,)dx
0= (;W(x,l) +(’(;—de) M(x,t)+ (Q(r HN+— 80 dv)dx+ I, f)d‘CT
X

(2.50 a,b)

By ignoring second order terms as in the string case andtatibgtthe result from the second of

Egs. (2.50 a,b),M/ x+Q=0, into the first , the following EOM is obtained:

9° aGM
}(x r) - axz +f(xat)

m(x)

(2.51)
Because our goal is to find an EOM for the deflectidr,t), we now have to eliminatd(x,t) in

terms ofy by using the standard moment equation from elementary B-E behdiony:
t
M(x,t) = EI(x )m

(2.52)

which gives the final EOM in terms g{Xxt).
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N g

4

Figure 2.4: (Left) Bending bar fixed on both ends (right) FBDsfofitesimal bar element

3’ y(x,1) _ a’

. (E](x) L CY))

2
ox

m(x)

e w ) + f(x,0)

(2.53)

Note that this is a fourth order partial differentialuation, which requires four boundary
conditions (two on each end) for physical applications. Inr€i@.5, with clamped ends on the

left and right of the bar, the boundary conditions are given by,

av(x,f)

$(0.0) =0, and y(L,0)= 0,20

x=0 X x=L

(2.54)

Other types of boundary conditions include hinges (zero defleatidnmoment) and free ends
(zero moment and shearing force). When the boundary conditionsledeemined by the
geometry of the problem, they are callgeometric boundary condition¥Vvhen the boundary
conditions are determined by the physics of the problem at thedaoes, they are called
natural. Again, we should interpret Eq. ( 2.53 ) to ensureithabkes physical sense. First, note
that Eq. ( 2.53 ) essentially describes a balance betweetialinatiffness, and external
(exogenous) forces. Second, note that the EOM describes a system umgdstgiic bending
deflections when the inertial term is ignored. We can perfearious other simple thought

experiments to verify the correctness of Eq. ( 2.53).
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Although we used Newton’s second law to derive both Eq. ( 2.45 ) and Eq. ( 2.53 ), we can
also use Hamilton’s method (energy methods) to obtain the same results. To do this, we must
formulate the kinetic and potential energy expressions dotirmious systems. All of these
expressions are based on the corresponding discrete versions, but intexivals. The kinetic

energy of a continuous system can be found as follows:

T(t) = f ()(dv(xt))
(2.55)

The potential energy of a longitudinally vibrating rod wdibplacementi(x,t), is given by,

ou(x,t

V(r)——fEA( o™ )]

(2.56)
and the potential energy of a bar in bending with traneviefiectiony(x,t), is given by,
1 a2 y(x,1) ’
V(t)=—(El(x)|—=—| d
(0= 3£ )[ a5 l

(2.57)

These expressions can be used in conjunction with Hamilton’s principle to derive the EOMs;
however, this technique will not be presented here becaresguites a clear working knowledge

of variational calculus, which is beyond the scope of this course

UNIT-IV

4 TWO AND MULTI - DOF SYSTEM

Free vibrations occur without the aid of external forces. Nuat we have derived EOMs for
some common vibrating systems, we are ready to analyze theefigense behavior of these

systems. Recall that response analysis was the next stefE@kh@rocedure given in Section
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2.1. The rationale for studying the free response behavioraimdtthen the forced response
behavior is provided by the principle of superposition, i.e.tdtal response (solution) is equal to
the sum of the homogeneous solution and the non-homogeneous solution. We wilbyegin
studying the free response of undamped and damped SDOF syBifferent types of damping
and their effects on response characteristics will thedid®issed. Then we will study how
MDOF systems can be treated in similar ways using the nofidimear superposition as a
working principle. After discussing the importance of eigeresland eigenvectors in discrete
linearized MDOF systems, we will study eigenvalues and eigemfunscin the free response of

continuous systems.

3.1 Free response of single degree-of-freedom systems with viscous damping
Consider the SDOF differential equation model (Eq. ( 2.28f Yhe system in Figure 2.4 (the
rolling disk on an incline- repeated below for reference). If we set the input to, Z&)s0, as it

must be in free vibration problems, then the EOM becomes:

(M+[C_'12‘4)56+C,%+K(x—xu)—Mgsina =0
a
(3.1)

This equation is called theomogeneoysor unforceq EOM. We can see immediately that the
steady state response of this systesy,after the initial transient has decayed due to dampsng,

found by setting;lx/dt=0=d2x/dt2 (i.e., the rate of change of position and velocity are)z

K (xﬂ - X, )— Mgsina =0
X,=x,+ _Mg sin
B K

(3.2)

Does this result make sense? Because gravity is acting downtlihe, the steady state position
of the disk is equal to the position of the disk CM when the sggingdeformed (i.e., n¥) plus
the deformation in the spring when it is balancing the foreetdgravity on the disk. This steady

state value is important in many applications; for instatieestatic deflection in an
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automobile suspension system might be important because it @dlvay much working space
is left for dynamic deflections in the strut for potholes atieioroad inputs. However, it is very
common in vibrations to remove the static (steady state) pdheafesponse by redefining the
coordinate system. In our case, Eg. ( 3.2 ) suggests that theooetinate xd (“d” denotes the

dynamic coordinate) should be defined as follows:

X, =X—X,

(3.3)
When this substitution is made in the EOM (Eq. ( 3.1)), driéwibrational aspects of the

response are retained:

2
a

(M+ Lo )Xd +Cx, +Kx, =0
(3.4)

We will now analyze the free response described by this HdMat is the steady state solution
of this EOM?) There are many different ways to solve E¢ §.3We can guess a solution of the

form,

x, = Ae”
(35)
substitute this guess into Eq. (3.4),
1CM 2 st st st
M +—-|s"4de” + Csde” + K4e" =0
a
l(‘M 2 st
M+—==|s"+Cs+K|4e" =0
pe
(3.6)

and then select the only non-trivial solution that satisfies #wmilting characteristic or

subsidiary equation, Eq. ( 3.6 ):
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c \/C2 —4(M+ It'y )K
x,(t) = Ae™ + A,e™ where s, = = * a
2 M +IC¢ 2| M +1°l
a’ a’

(3.7)

The constantsl ands2 are called the roots, poles, or modal frequencies of #teraydescribed

by Eq. ( 3.4 ). They depend directly on the mass, dampingstifriess parameters; in other
words, the roots of a system are determined solely by the sy$teey will not depend on what
kind of input we measure or even what type of output we meaSinere are two unknown
constants in this solutio®y1 andA2, which are determined by the initial conditionsxarand its

derivative (velocity):

x,(0)=4, + 4,
x,(0) =54 +5,4,

(3.8)

Only the initial conditions on position and velocity are needezhiie this is a second order
system, which has by definition two states of importanceelknow these states at time zero and
have a valid EOM, then we can always find the free vilmatésponse (solution). This approach
is fairly easy to apply and always works as long as we rdraefmow to deal with systems
involving repeated roots (i.es]=s2). Recall from the variation of parameters that if weeih an

extra factor of timet, we can retain two independent solutions as in Eq. ( 3.7).

In order to find the solution to Eq. ( 3.4 ), which is lineae could also take the Laplace

transform of that equation and solve for the Laplace tramsfdithe responsed(s), as follows:
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a

(M + —I—C—Y—)SZ - (M + 19—21—).5',\‘,‘,(0) - (M + ig%4—))%“,(0)1)('(,(5) +
a’ a

[Cs - Cx, () ]¥,(s) + KX, (s) =0

(M + 1;12‘4 )sz +Cs+K|X,(s)= (M + 1;’2” )sxd (0) + Cx,(0) + (M + 1;;” ),t(,(O)
(M+[‘%)S+C (M+IC;4)
X ,(s) = ; = x,(0) + - _ i,(0)
(M+—"'2”~)52+CS+K (M+L2”)SZ+CS+K
a a

(3.9)

Eq. ( 3.9) is the solution for the frequency domain respaisesometimes called thmmplex
frequency. This procedure has the advantage that the initial conditappear automatically in
the solution, but has the disadvantage that we must factor the datmmuhboth terms (i.e., the
characteristic polynomial) and then carry out a partiattipa expansion to obtain the time
domain response. Regardless of which method we use to obtagspomse, will need to find the
roots (modal frequencies) and then apply the initial conditibherefore, it makes sense to study
s1 and< first. We can do this by plotting the two roots in the complaxe as shown in Figure
3.1. Representative time domain free responses are also shthwrright of the figure. We will
now analyze the roots in Eq. ( 3.7 ) to better understandxataire Figure 3.1.
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Figure 3.1: (Left) Plot of several pairs of roots in the complex plane)gghtesponding
time domain free responses illustrating the natural response hebbserond order
systems for undamped, underdamped, critically damped, and overdamped cases.

If we examine the roots in Eq. ( 3.7 ) closely, we notieefollowing:

1) Roots in second order systems come in pairs. Furthermore, wheheveoots are
complex (real and imaginary parts) or imaginary, they mustdmeplex conjugates of

one another(a+bj,a-bj) and(bj,-bj). Can you see this in Eq. ( 3.7 )? Look at the +- sign.

2) The real part of the root, which we will cal] thedamping factordetermines the rate of

decay (or growth) of the free response. The imaginarygbaine root, which we will call

thedamped natural frequengyud, determines the frequency of oscillation. This

terminology is appropriate because when we substitute the ramthénexponential

solution, the real part is factored out and the imaginary part (via Euler’s formula)

produces oscillations between a sinusoid and cosinusoid as shawn bel
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a *
If s = o+ j(l)d =35, 7then
eV = e(”‘*‘.f"'b/)’ %Pt o g (COS (0(/( + J sin (1)(/1) 3 and

e = I _ g gmivi _ g (cos w,t — jsin a)dt)

(3.10)

We also note that the units @fandwd correspond to those of a circular frequenag/s

We can find the actual values of the damping factor angppddmatural frequency using

Eq. (3.7):
I(.x\rl
% -] B 4 221K

3 =0 % jo,

2(M+ ) z(MHCy)
P
where o = damp e

2( M4 ) inertia

\/4 M + f")K C?
2(M+ )
a

3) Roots with positive real parts are unstable whereas rootedgditive real parts are

(3.11)

stable. This result makes sense beca?éedetermines the decay/growth of the free

response. When the damping is positi@e@), the roots are in the left half plane, and
when damping is negativeC€0), the roots are in the right half plane. Recall that
damping determines the rate at which energy is dissipatedsmdeaikermines the rate at

which energy is absorbed by the system.

4) Purely imaginary roots produce pure harmonic solutions; theseosaltave a constant
amplitude and do not decay or grow. This characteristiemaense because the

exponential part of the solutioe,at, is equal to one when the damping factor is zero,

0=0. Also, when the damping factor is zero there is no dam@nr@)( and so the roots
and undamped natural frequency from Eqg. ( 3.11) are fastidlows:
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K . \/siz’f f ness

inertia

A : 3
/sn ness.
where o, = L is the undamped natural frequency
lnertia

(3.12)

5) When the roots are complex or imaginary, the constamgsndA2 (called theresidue$
must be complex conjugates of one another just as the rootsnapéer conjugates.
Why is this true? If they are not complex conjugates, then wieesubstitute Egs. ( 3.10
) into the solutionxd(t), we produce a complex solution. This result does not make

physical sense. The only way to obtain a real solution foiréleeresponse is to satisfy

*
the condition:A1=A2 . Real solutions require complex conjugate residues. ¥eralte

that in general the roots can be rewritten in terms of atmme phenomenologically
meaningful parameters, the damping ratio and undampedhfraguency from Eq. (

3.12), as given below:

J4(M + ]‘2‘4)[( -C?
-C . a . . 2
Sip = xj =0z jo,=-c0,* j\l-¢'o,
2| M+ em 2| M+ en
a’ a’
where 0 = —¢w,
Cl)(, =4/l - g2a)n
Dampin,
g L = o P p g, where C, = Critical damping coefficient
1. Loes ratio
ZJK(M o)
a

(3.13)
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6)

Eqg. (3.13) shows that the type of free responses in Figuoal e classified in terms
of their corresponding damping ratids When{=0, the response imdampegdwhen
(<1, the response imderdampedand wher{>1, the response ®verdampedWhen
(<0, the roots are in the right half plane, which indicatefsttigaresponse is unstable.

Given the relationships developed in comments 1) through 5pfieis best to plot roots
in terms of their so-callednodal parameterge.g., damping factors, damped natural
frequencies, and undamped natural frequencies) as shown ure B2 below. The
student is encouraged to prove that the equations following the fBigartrue.

‘Imag

Siy 5%

|
®g : ®n

I

: // P Real
cos_lt‘;

X

Figure 3.3: Plot of root locations in complex plane using modahpeteass

Given s, =0 * jo, = —w, + j|l-¢’o,

ReSl,Q = _ga)nﬂlmsl,Z = i./ l_g a)n

2 2
=0 +w;

-1 _
b

(Modulus) HSI,2

(Argument) Zs,, = £cos

(3.14)

Therefore, roots that are far away from the originespond to large undamped natural

frequencies, roots close to the imaginary axis correspondligitly damped
(underdamped) responses, and roots close to the real axspoomeo heavily damped

responses.
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In summary, the complex plane is a simple way to visual fesponses in linear vibrating
systems. By plotting the roots of the characteristic equati@hstudying their real and imaginary
parts, we can immediately determine whether the responseitexbdgillations and to wha

degree. We can also determine whether the response is stahblestable. Students are
encouraged to review Figure 3.1 thoroughly; a good knowledge opb@nocations determine

free response characteristics is indispensable in mechaihication analysis.

The solution of a SDOF system is rarely written in the fgiwen in Eq.( 3.7 ), rather it is

usually written in the following simplified manner:

x,(0) = X, e" cos(w,t +9¢,)

Al
- =Gt 2
=X, e cosyl-¢cw,r+9,,

Where xb’ (0) = )(“ COs ¢n
x,(0) =0X, cosp, -w, X sing,

(3.15)

This form is obtained using Euler’s formula with the complex conjugate constants A1 andA2 in

Eq. (3.7 ). After applying the initial conditions, the followivgjues ofXo andgo are obtained:

4 = tan = x,(0)+ox,(0)
? w,
. 2
X(, - \/( - xd (O)a)+ Oxd(o)) 4 (xd(O))Z

(3.16)

Note that just as the constats andA2 in Eq. ( 3.7 ) were determined by the initial conditions,

so to are the constarXs andgo in Eq. ( 3.15).
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3.2 Free response of single degree-of-freedom systems for arbitrary damping

The SDOF system in Eq. ( 3.1 ) had viscous damping, whichre. Systems usually have more
arbitrary linear or even nonlinear types of damping mechanifor instance, when we model a
system with wheels, we usually need to model the Coulomb damfitigffrin the bearings to
account for surfaces-surface dissipation during oscillation. When we model structusehtions
within fluids (i.e., off-shore oil rigs), we usually includenlinear quadratic damping to account
for dissipation due to momentum transfer in the fluid. \Afe @&lso model structural or hysteretic
(material) damping in problems with harmonic inputs by usin@raptex stiffness parameter.
Structural damping occurs as material layers slide over one arduhieg vibration. It is
important to remember that damping is one of the motudif phenomena to model in vibrating
systems. In fact, in the twenty years from 1945 to 1965, 2000 paperpwaished in the area of
damping technology. Mass and stiffness can both be approximahed aacurately using finite
element models, for instance; however, damping estimates amgounsly inaccurate because

dissipation is difficult to quantify analytically. Dampimgusually best estimated experimentally.

Although damping mechanisms in real systems are rarely viscous, the “nice” analytical
properties of vibrating systems with viscous damping are vexloiting if possible. In fact, the
concept of equivalent viscous damping is in wide use within the Boisbration engineering
community. Theequivalent viscous dampirig a model is defined such that the total energy
dissipated per cycle in the model is the same as in the tyg&ahvibrating system under
harmonic excitation (forced response to be addressed irexttehapter). More specifically, if

Whcis the amount of energy dissipated per cycle, then theagotwiscous dampin@eq, is

defined as follows:

dw, =F,,.. -dx, givenx(t)= X, coswt
w i . 2nlw .,

L = f— C,, xdx = f— C,xdt
cycle

cvele 0
2n/w

= f— C, X, cos’ widt
0
= -l X,

(3.17)
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The equivalent viscous damping is chosen such that for decillamplitudesxo, the energy
dissipated in the viscous damper is the same as that dissipatedarbitrary damper within the
system. Note that we are prematurely introducing force@FfSEsponses to harmonic excitations

in order to talk about the following most common damping meisims.

For example, a system with Coulomb friction is governed kg type of damping
characteristic shown in Figure 3.4. Recall that the idedlstatic Coulomb friction force is equal
to the product of the static friction coefficient betweetn tsurfaces,, and the normal force
between the surface$). A viscous damping characteristic is also shown in the figore
reference. Note that Coulomb friction is a nonlinear kindashging; i.e., the qualitative nature
of the damping characteristic is a function of the relatisecity between the two surfaces. For
positive velocities, the friction/damping force is positive apgoses the motion whereas for
negative velocities this force is negative and again opposeasdtien. In these two vibration
regimes, a SDOF system model is given by the following two msatwhere the normal force

has been assumed to be equal to the gravitational fortbe omass:

Mi+ Kx=-uMg for x>0
Mx + Kx=+uMg for x <0

(3.18 a,b)

By solving each of these equations in succession using the SDO#d fresponse solution
technigues discussed in the next chapter, we can show thaatthefrdecay of the peak
amplitudes is linear with time rather than exponentialvitls viscous damping. It may also be
clear from Egs. ( 3.18 a,b) that the frequency of osidhétibration does not depend on the
friction force or coefficient of friction; it is alwaysqual to(K/M). As long as the restoring force
in the spring is large enough to overcome the friction fafeemass will continue to oscillate as

shown in Figure 3.4.
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Figure 3.4: (Top left) Coulomb friction characteristic aright) free vibration response

As a second example of non-viscous damping, consider the commonf dagsteoeticor
structural dampingRecall that viscous damping forces are proportiondidosélocity across the
damper; in other words, if a SDOF system is made to atxilit a certain frequencw,

according tox(t)=Xocost+ @), then the viscous damping force is:

K

viscous

=Cx
=wCX, sin((uf + (/))

(3.19)

which means the force is in phase with the velocity andaptiopal to the frequency. Recall
from Eq. ( 3.17 ) that the energy dissipated in the viscous dampee cycle is also proportional
to the frequency. It is widely known that energy dissipatiomamy kinds of materials and
structural joints is not proportional to frequency but indtmathe amplitude of oscillation. These
damping mechanisms are at the same time in phase witlelibgty (i.e., 90 deg out of phase
with the displacement). In order to satisfy these two obserkedgmena, the viscous damping
model can be used to describe structural damping so long aartimnd coefficient is chosen
such thatC=h/w, whereh is the hysteretic damping coefficient. This choiceCofeads to the

following hysteresis damping force under harmonic excitation:
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=Cx
= wCX, sin(a)t + ¢)
=hX, sin(a)t + ¢)

hysteresis

(3.20)

In most applications, hysteretic or structural damping is usliladlorporated into models by
defining a so-calleddomplex modulysK(1+jn), wheren=h/K is called theloss coefficientIt
should be noted at this point most material dampers providestesgy dissipation for higher
frequencies, which is inconsistent with both the viscoushgsteretic models. Figure 3.5 shows
a typical plot of a loss coefficient in a viscoelastic enial, which is by far the most common
damping material in use today. Note that there is amajpti frequency and temperature at which

the viscoelastic should be used to dissipate energy.

K, modulus

M \ WK, loss coefficient

% K(1+jnEK) /

Glassy Transition
region region Rubbery region

Decreasing frequency (at constant T)
Increasing temperature (at constant o )

Figure 3.5: Characteristics of complex modulus in viscoelastiptgnmaterial

3.3 Free response of multiple degree-of-freedom systems

Although many applications can be modeled with a single dedffsEeedom, most systems
contain multiple degrees-of-freedom (MDOF). Sometimes we toeed to include all of these

DOFs. For instance, an offshore oil platform (Figure 3.B)ates as if it were a SDOF system in
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many circumstances because the support acts largely as ssté#fament and the platform acts
like an inertia in the frequency range associated wigic&y waves. For higher frequencies
associated with pressure surges or pulsations in the oil delipstines, the tower behaves more
like a collection of oscillating bodies with different compoisein the platform participating in
the modes of vibration. This type of transition from low-ord8DQF-like) to high-order
(MDOF-like) vibrations is common in most applications. We should yawaink about the
frequency range of interebefore we begin to model or analyze a vibrating system.

Platform
x(®)
1 ¢ —_—>
_ ——
M
Tower ww
K —O—10a

Ocean
bottom

P Al & o A

Figure 3.6: Offshore oil platform with SDOF model

The basis of our analysis of free response in MDOF systems iprithaple of linear
superposition. Recall from Section 3.1 that the free respoihaeSDOF system occurs at the
damped natural frequency of oscillation. When we loothatfree response of a MDOF system
(Figure 3.7), we find that each DOF response contains sevelehcies. Each of these
frequencies can be associated with a SDOF system. Bycattdi free responses from all of the
SDOF systems, the MDOF system response is obtained. These SD&hsstfst make up the
MDOF system are callesormal modegfor special types of damping) or jusibdes of vibration
Each mode has a temporal component, the modal frequetipyr, and a spatial component, the
modal vectoryr. Figure 3.7 shows that in general the modal frequencies féesedt as are the

modal vectors. In this particular case, the two DOF systetecomposed into two SDOF
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systems with an in-phase lower frequency mode of vibratawef-left) and outf-phase higher
frequency mode of vibration (lower-right). Our goal in teection is to justify this proposed
SDOF method of analysis with MDOF analytical techniques. Wlebe using eigen-solution
methods for obtaining the modal properties, so students are egegdurareview their previous

experience with methods in linear algebra.

x4(b) Xa(t)
c c —> %Y
Multiple ]
degree-of- j'
freedom system K M K M :
1] 1] 11 1l
2z Multiple frequencies
Single degree-of- Single degree-of-
—  freedom system + freedom system
B TR Oy +i®gp: ¥y
Spatial piece
- Modal vector
— — —> <
P,® pz(t) ¢ Temporal piece
_Wé —Fgﬁg%ﬁv - Modal frequency
Single frequency Single frequency

Figure 3.7: MDOF system described as a superposition of SDOF modbsation

We will start by writing down the EOM for the simple two DOfwin in Figure 3.7:
M 07(x 2C -C1(x 2K -K(x JOl

+ + =
0 M||%[ [-C C || |-K K ||x] |0f

(3.21)

Note that the external (exogenous) forces are zero in thisasathey must be in a free vibration
problem. There are two ways to proceed from here: we camphgsical arguments to find the
modal properties or we can use mathematical eigen-methamdctdate the modal properties.

Both approaches offer insight into general MDOF vibrating systemwe will discuss both of
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them. We will begin with the first approach because itmsoae physical and intuitive approach

to free vibration analysis in MDOF systems.

The model in Eg. ( 3.21 ) admits a wide variety of solutiorzaBse our argument above in
Figure 3.7 is based on the premise that MDOF systems are yacuatimbination of SDOF
normal modes, we will proceed in exactly the same way adidveo find the free response of
SDOF systems. First, we make a guess of the form,

(3.22)

substitute our guess into the EOM,

My 4 2B +2K ~Cr-E [[& il 0
~Cs—K Ms +Cs + K || X, 0
(3.23)

and pick the only non-trivial solutions. It is these non-trigialltions that will make up the
normal modes we talked about in Figure 3.7. For non-triviatisas of Eq. ( 3.23 )X1#0 ard

X2#0 , the matrix on the left hand side must be singular (i.;ust have a non-zero null space).

This constraint gives us the characteristic equation of théd@fF system:

(s +2Cs +2K ) (M2 + Cs + K )~ (Cs + KF =0

(3.24)

which has four solutionsi=01+j w1, £=01-jwl, B=02+j W2, ands4=o02-jw2. The real parts of
these solutions determine the decay/growth rate of the freensespwhereas the imaginary parts
determine the frequencies of oscillation (recall thewtision surrounding Eq. ( 3.10 ) in Section
3.1). For simplicity innotation, we have suppressed the subscript “d” that indicates that the
imaginary parts of the roots are damped natural fredeniNote that each complex conjugate

pair of roots (modal frequencies) is associated withfardift solution vector (modal vector) in
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Eq. ( 3.23). From the form of the original guess, the solutannow be written in either of the

following ways using Euler’s formula (eﬂa=cosafjsina):

(5] 2 [50) gy (K0 [Xia) gy [X]
£ P R PN el PO L PO
X

{Zj } ‘cos(w+¢, )+ X {Zj'z }e"3' cos(w,r +¢,)

22

(3.25 a,b)

These equations are in the form we discussed previously; twosrobdération are used to

* *
describe the total solution. The constant vectfxay X2r}T and{X 1r X 2r}T, are complex

conjugates of one another and are associated with mddey correspond to the constaris,

andA2, in the SDOF free response solution. The modal vec{tqms,Ler}T, in the second of Egs.

( 3.25 a,b) are determined to within a scale factor; thestors describe how the DOFs move
relative to one another at the two modes of vibratieh, andr=2. It is important to note that the

modal vectors are not unique. Tdafértcos@urH @r ) factors in Egs. ( 3.25 a,b) are determined by

the modal frequencies/roots from Eqg. ( 3.24 ); they deschieeftequency and damping
characteristics of each of the modal responses. Just as uwedairg Figure 3.7, the modal
frequencies from the characteristic equation determintethporalcharacteristics of the solution
and the modal vectors from the nullspace calculation in (E&23 ) determine thepatial
characteristics in the solution. This decomposition of the MD&#ponse into temporal and
spatial pieces is only possible with linear systems thanks toitiwégbe of linear superposition.

The second equation in Egs. ( 3.25 a,b) is the form we willrulds course because it is
most easily applied to satisfy the initial conditions. How maiityalnconditions do we need?
Because there are four constants to determXinex2, ¢1 and,2, we need four initial conditions
on the displacements and velocities of the two coordinateseThar conditions are satisfied as

follows:

3-57



MECHANICAL VIBRATIONS AND STRUCTURAL DYNAMICS

e
{xl (O)} = 0,4, {Z)}H }COS(@ )_ w, 4, {Z}’: } Sin(¢1 )+ 0,4, me }COS(¢2 )_ w, 4, {:/;]2 }Sin(qﬁ: )

x,(0) 21 11/’ 2 22
OR

x,(0) Yy Yn|[4 COS(¢|)
{xz (O)} ) |: n Yy l {Az COS(¢2 )}
Jxl(o)l _ oy oY ][4 COS(¢1 )l+ —OY, -,
l“\:’z (O)J Oy Oy {Az COS(¢2 )J |_ Oy — Oy,

[l

(3.26 a,b,c,d)

In order to make this discussion less abstract, consider thalsmese wheiiK=1 N/m,
C=0.1 Ns/mandM=1 kg. Then the solution in Eqg. ( 3.25 a,b) is given by,

b {0.61 8] i, 1.000 | .5,
=X cosl0.6187 + ¢, )+ X cos(1.613¢ +
{xz} 1000 ( hidbe T s 2 ( )

(3.27 a,b)

These two modes of vibration are illustrated in Figure 3.8 bdimte that the first mode is at a
lower frequency than the second mode and is more lightlypedras well. Also note that in the
first mode, thexi coordinate (solid line) has lower relative amplitude thanxtheoordinate
(dotted line). Finally, it is important to note that tmaplitude of the modal components shown in
Figure 3.8 are arbitrary. They were selected so thaathest amplitude would have a value of
unity. In order to obtain the exact amplitudes, initial caadg must be applied and Egs. ( 3.26
a,b,c,d) must then be solved to obtain the constants inlth@aoThe relative amplitudes shown

in Figure 3.8 would still apply in this case.
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Figure 3.8: Two modes of vibration in two DOF system

We can also use eigen-analysis techniques to find the medakficies and vectors

as follows. If the system has no damping, then Eq. ( 3.23i¢esdo the following:

-4

[Mf +2K -K

-K Ms +K
(3.28)
which can be easily reformulated into the following standégdn-problem,
[A Xll = A, Xl
X, | X,
(3.29)

by moving the inertia terms to the right and the stiffness taynige left.
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2K -K][X,)_ .[M 07[X)
K K ||X] 0 M||X,|
| o u

o o] [ S

2K/M -KIM] (X _, [
-K/M K/M||Xx,[ )X,

(3.30)

Now we just solve for the eigenvalues and eigenvectors of thixroatthe left hand side of this

equation. The values we obtain are given below:

A =-s{, =0.382,4, = -s;, = 2.618
X, _[0618] [X,] _ {1000
X, [, |rooof |x,[, |-0618]
which yields s,, = £70.618 = +xjw,, and s,, ==j1.618 == jw,,

(3.31)

Note how the eigenvalues of the system in Eq. ( 3.30 ) areddtathe modal frequencies of the
system. For every pair of modal frequencies, we have onawaige. Since we ignored the
damping to formulate the eigenvalue problem, we ended up mitely imaginary modal
frequencies, which correspond to the undamped naturakfneggs of the system. The undamped
natural frequencies in Eq. ( 3.31 ) are very close toddraped natural frequencies that were
found in Eq. ( 3.27 a,b) because the system is lightly dammed€i<1) with the selected value
of C. In large problems, we often carry out the procedure almfiad the modal frequencies.
That is, we ignore damping temporarily to formulate thgemvalue problem, compute the
eigenvalues and eigenvectors, compute the undamped modal freguemz then estimate the
damping factors for each pole. In fact, this techniqukaésanost common one applied in standard

finite element software.

If we preferred to retain damping throughout the eigenvalwblem, then we must

reformulate the EOMs in Eqg. ( 3.21) in the state spacehbr avords, we define two of the state
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variables as the displacements of the two DOFs and the othesstwite derivatives of these

variables. This produces tBeincan-Collar formulatiorand is given below:

1 0 0 07(73] [0 -1 0 07(n] (0
o M 0 ollin| [2k 2¢ -k -c||y,| |o
00 1 oflis["lo o o =1|]y[ Jo
0o 0 o Mli| |-k -c & c|lw| o

where y, =x,,y, =X =Y,V =X, Y, = X, = J;

(3.32)

The eigenvalues and eigenvectors of the system can then be ab@aplefore except now there

is no need to perform the subsidiary calculation wlzthnecause the system is formulated as first

order rather than second order. Students are encouragé@rpt this calculation and compare
their results with the ones given in Egs. ( 3.27 a,b).

3.4 Principal coordinates and modal transformations

The techniques described above for treating discrete MDOFsyditee a collection of SDOF
systems, each with their own associated modal frequeneikseztors, can be formulated in a

more systematic way. Consider again the two DOF system Eq. ( 3.21 ), repeated below for

ool e TRk Ex

If we ignore damping again, for convenience only, then ouk igahis section will be to find a

convenience:

new set of coordinates defined by the transformatigt)=Wp(t), wherep(t) is the vector of
principal coordinatesNote that we are prompted to use a linear transformhtom because the
system obeys the principle of superposition. We want to chtbeseansformation®, such that
the resulting EOMs in termsf principal coordinates are as “simple” as possible. Recall from
Figure 3.7 that our ideal description of a MDOF system is aat@h of SDOF systems.
Furthermore, we want these SDOF systems tarmoupledfrom one another so that we can

solve each of them independently and then add the results to @tbéuntal solution for the
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MDOF system. This transformation will be calledhadal transformatioffior the reasons

explained below.

Fortunately, we have already achieved this kind of transtasman Eq. ( 3.25 a,b), which is

repeated below and re-written using the notation above:

* = X, i e cos(w,,t + ¢, )+ X, e e cos(w,,t + ¢, )
w 11[}22

21

_ Y ¥ JXWW COS(wcnt + ¢1)
Yo Yo leeUZI cos(a)c,zl + ¢, )
x(1) = Wp(r)

(3.33)

Thus, the principal coordinates we seek are precisely the aathe temporal components in the
free response solution, which we already obtained in Eq. @325The transformation matrix,
Y, was also obtained previously and is simply the matrix afaheectors. Again we see that the
principle of linear superposition is at work: the free responseMDOF system is the
superposition of the free responses of the individual modes of vib(ationipal coordinates). If
we substitute the modal vectors from Eq. ( 3.27 a,b) intortHamped version of the two DOF

system, then we can carry out the following simplificatiosieg linear algebra:

“5 | ]{§1}={3}

o o wullal L el o)l

-'//u 1/’12 Y YullP 1 Yy 2/’lz 2K =K1y, vn](p _ 0
_1/}21 1/’22 0 M U’zw 1/'22 :bz U'Ql 1/’22 -K K U'2| Yo || P 0

YIMWp + W KWp =0
Mp+K p=0

(3.34)

If we want the principal coordinates to decouple the MDGftesy into two SDOF systems, then

the two coefficient matrices, the so-caltaddal masandmodal stiffness matrices Eq.
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( 3.34 ) must be diagonal. We can prove that they are by reeongj our eigen-system analysis

of this system. First, recall from Eg. ( 3.30 ) that esethof eigenvalues and eigenvectcz):s—,s2

and{X1 X2}T, satisfy the following equation:

(3.35)

Next, write this relationship for the two different sets igieavalues and eigenvectors, paand

pairs:

Kl/jr = A’I'er
Kl/),s = A'YMws

(3.36)

Now we perform an inspired sequence of linear algebraatipes: we pre-multiply the first
equation by the transpose of tlkeeigenvector and the second by the transpose ofr the

eivenvector, and then subtract these two results to obtaialliheing result:

Y, Ky, = Ay My,

W Ky, = Ay My,
0= —A "My, forr=s

(3.37)
The last of these equations proves that if the two eigersvalgedistinct, then the corresponding

eigenvectors are orthogonal with respect to the mass matkiewisie, they are also orthogonal

with respect to the stiffness matrix:

0

(A, AW Ky, forrs=s

(3.38)
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Of course, whem=s, Eqgs. ( 3.37 ) and ( 3.38 ) are not satisfied, rather, theyipeathe modal

mass and modal stiffness, respectively. Armed with this nmition, we can revisit Eq. ( 3.34 )
and discover that we were successful in transforming the MDOEnRsyisto uncoupled SDOF
systems of the following form:

Mp+Kp=0=Mp +K p =0 for r=12
where ' My, = M, and /Ky, =K,

T

(3.39)

The principal coordinate solutions to these equations are ghasein Eqg. ( 3.33 ). In summary,
we used a coordinate transformation from physigplkd principal or modalg) coordinates to
decouple the MDOF system into a collection of SDOF systemssdlagions to each of these

SDOF EOMS are then combined using linear superposition accordity {B.33 ).

The modal analysis described above and resulting in Eqg. ( 3v88s)only valid for
undamped systems; however, similar analyses can also be cautitm damped systems with
special classes of damping. For exampleportionally dampedystems have viscous damping

matrices of the following form:

C=oM+ pK

(3.40)

wherea and are real constants. Systems with damping of this typedaffee same sort of

modal decomposition as in Eq. ( 3.39 ) with the addition axara damping term:

Mp+Cp+Kp=0=Mp +Cp +K p =0 for r=12
(3.41)
When systems anmgon-proportionally dampedviscous), then the Duncan-Collar formulation in

Eqg. ( 3.32) is used to perform the modal transformationsnbsidiary first order vector space.

When other arbitrary forms of damping (e.g., structura)esicountered, then the equivalent
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viscous damping can be computed for harmonic inputs as descréxolusty in Section 3.2, and

then the Duncan-Collar formulation can be used to perfbenmodal transformation.

In the interest of clarity, we should pause for a momeditcansider some of the variations in
terminology that we see in the literature. Sometimes dmeponents irp(t) will be called the
natural coordinatesnstead of the principal coordinates, and, in a similar waywill call the
vectors inW¥ the natural modesinstead of the modal vectors. Furthermore, if the natural
modes/modal vectors are normalized in any consistent way eaity modal mass) with respect
to the mass and stiffness matrices as in Eq. ( 3.39 ) then we replace the word “natural” with
“normal” — i.e., normal coordinates and normal modes. We will sisesame terminology in the

analysis of free response in continuous systems.

3.5 Boundary conditions and rigid body modes in semi-definite MDOF systems

There are many topics to discuss in this course, but two omt® important are boundary
conditions and their effects on mechanical vibration chaiatitsr What do we mean by
boundary conditions? Consider the two DOF system in Figure 8.Temall that there are two
sets of springs and dampers. One set couples the two ineriasthé two DOFs) together
whereas the other set holds the two DOFs in the same gereaasthey vibrate. In this case,
the spring and damper to ground at the left of DOF 1 thvarboundary condition of this system.
Of course, the surface below the two DOFs is also a boundagjtion, but in this case it is not
very interesting because the wheels are frictionless and maastesxperience no slip. We will
now consider how the boundary condition to the left of mass dtaflee free response of the two

DOF system.

Physically, we see that if the stiffne$s,to ground becomes very, very large<), then the
two DOF system becomes a SDOF system because mass 1 is haldagermove; it is fixed to
ground. Does our analysis above reveal this sensitivity to thedaoy conditions? From Eg. (

3.30), the modified eigen-problem for variable stiffnesdi@bbundary condition is,

K +KY M -K l[XJ 1, {X}

-K KIM||X,| X,

(3.42)

3-65



MECHANICAL VIBRATIONS AND STRUCTURAL DYNAMICS

The undamped modal frequencies corresponding to this eigeralolem are shown below in
Figure 3.8. Note from the equation above that as the boundliness increases, the modal
frequency for the second mode grows and the frequency fdirdhenode levels out. This result
makes physical sense because if the stiffness becomes large aheufiist DOF will remain
stationary as the second mass vibraték/) according to the schematic in Figure 3.7.

25 [} | | | [} | I I |

Undamped nat. freq,, P [rad/s]

Approaches (K/M)U'5
0 | | | 1 | | 1 1 |
50 100 150 200 250 300 350 400 450 500
Kbounda*y [N/m]

Figure 3.8: Effects of BC stiffness on undamped modal frequemcte®iDOF system

What happens to the modal frequencies if we reduce the bgustiffness to zero? Figure
3.9 shows the same modal frequency sensitivity plot forcdkée as in Figure 3.8. Note that the
first modal frequency, the one which corresponds to the modédaitiein where the two DOFs
move in phase, approaches zero. When there is a mode of vitatero like this, it is called a
rigid body modeand the system is said to bemi-definite Physically, it means that the system
does not oscillate at all for this modal vector. This reshtiuld not surprise us because the
system in Figure 3.7 is free to move to any position along ttlieection and then can oscillate
around that position. From Eqg. ( 3.21 ), when the boundafpestff goes to zero, the stiffness

matrix actually becomes singular. This result also makes phg&inak because we should not
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be able to solve for a unique steady state (equilibrium ypwirthis case because the system is

unrestrained (free-free BCs).

Rigid body modes are essential in analytical and experimeitiedtions because when
systems vibrate, they also usually experience rigid body mo#@msnstance, passenger cars in
trains can move as rigid bodies along the track to carry passdéngarone place to another, but
they can also vibrate as energy is exchanged between thBafrsypes of motion are needed to
describe the general motions of the train. In terms of patestiergy, the train at one position
can have the same potential energy stored in the springs/litkedmethe cars as at any other
position of the train along the track. The most common realevapplication in which rigid body
modes are important is in rotating systems (e.g., stagessintugaine engine, drive-train in
vehicles). In these applications, large rigid body motions of theidrghaft assemblies are

prevented by bearings.

[rad/s]
ol =
\
1

nr

w
e
n
[}
|

Undamped nat. freq.,

Figure 3.9: Effects of BC stiffness on undamped modal frequeircisvo DOF system
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3.6 Second order continuous systems and separation of variables

In the discrete MDOF eigen-system/modal analysis described abeweere able to decompose
the total free response into two components: a temporee (fike principal coordinates) and a
spatial piece (the modal vectors). We found that this decatigrogreatly simplified the EOMs
because it effectively decoupled the equations, leaving usadtfiysimple second order (SDOF)
eguations to solve for the modal responses (normal modes in thepediaase). We would like
to exploit the same sort of “separation” of the temporal and spatial pieces in the free responses of
second order continuous systems like the string EOM in Eg. ( 2.36 p@eor@ous equation is

repeated below for convenience). Boundary conditions wilhtleded below.

2 i . . ’
P TE 0T 20 <0

ot d_\- ax

(3.43)

Because the responsg(x,t), is a function of both space and time, this problem could be
potentially very difficult to solve when time and space awgptar. Fortunately, our approach so
far using linear superposition has been to decouple the tempatadpatial components by
thinking in terms ofsynchronougnodes of vibration, in which all elements of a system adeill
together (in phase) at certain special frequencies (moealidncies). With this approach in

mind, we can separate the two variables by assuming thaspanse is of the following form:

y(x,1) =Y(x)-G(2)

(3.44)

It is instructive to compare Eq. ( 3.44 ) with Eq. ( 3.33 ): theiapfunction, Y(x), is directly
analogous to the matrix of modal vectors/natural mo#esand the temporal functiog(t), is
directly analogous to the principal coordinates/natural coatenp(t). In fact, if we just allow

the number of DOFs to approach infinity, then the modatove should turn intd/(x) and the
principal coordinates should turn in&(t). Other analogies between discrete and continuous free
vibrations will emerge as we proceed. When we substitute Bat4() into Eq. ( 3.43 ), we

convert the partial derivatives into ordinary derivativesrtiva at the expression below:
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P(x)%l— %(T(AT)M) -

p(WUamm]ij@xﬁpmh

’lem]_ 1 ( ) a[Y(x)])

G(t) ot p(x)Y (x) ox
(3.45)

Now we make an inspired observation: because the left handfsithis equation is only a
function oft and the right hand side is only a functionxpthe only way to have equality is for

both sides to equal the same constant. Our inspired substitutidnisfoonstant will bewzz

G(t) +w’G() =0
(N)”“j 2 p(x)Y (x)

(3.46 a,b)

We have achieved exactly what we had hoped to achie#ssn ( 3.46 a,b) in that the
temporal and spatial components in the free response are bmtoHpr instance, we can

immediately write down the form @(t), the principal coordinates:

G(t) =G, cos(a)t + ¢,,)

(3.47)

in which the constant€r andr, are associated with the form ¥{x). As for Y(x), we must
apply the boundary conditions to find the possible natural mwogdeslving the continuous eigen-
problem. Once we obtain the infinite number of naturadesoYr(x), then the solutiony(x,t), can

be written down in terms of the principal coordinates and abtuodes:

y(x0) = S TG, (1) = S,(0)G, coslor +9,)

(3.48)
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We sometimes use normal modes and normal coordinates to expdirek tresponse. These
normal modal properties are obtained by performing confimueersions of the discrete
orthogonality calculations in the previous Section 3.4. More Spelty, unit orthogonality of the
natural modes with respect to the density function is expresskdiows:

[PCOY, (0, (x)dx =5, =

0 forr=s
l forr=gs

(3.49)

wheredrs is the binary Kronecker delta function, and the correspondihggonality of the
natural modes with respect to the tension is expressed asgollow

fL T(x) MMd\t =w’d
0 dx dx

rs

(3.50)

When these normal modes are used to expand the free vibrationseespercan rewrite Eq. (

3.48) as follows:

W) = 3 Y.(0)g, (1) = DY, (x)g, cos(, + 6, )

r= e

where g (f)+w’g (r)=0 and Y, (x) is normalized as above

(3.51)

The discussion above can be made less abstract by solving foeahresponse of the string
shown in Figure 2.5; that string is fixed on both ends. We @amassume that the string has a
constant density and tension if it is taut. These simatifins to the second of Eqgs. ( 3.46 a,b)

yield the following second order differential equation:

d’Y(x)

2

T %Y(x) —0 with ¥(0)=0 and Y(Z)=0

dx

(3.52)
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which admits the following set of harmonic solutions:

V(X)L > Py(x)=0 with ¥(0)=0 and ¥(L)=0
dx” T
Y(x)= A4, sin w\/gx] + 4, cos(a)\/gx] for 0O<x<L

Y(0)=4, =0

vl slttons, st o PE | <
Y(L) = 4 sin w\/gL) _0 => non - trivial solutions, sm(a)\/;L) =0

. . 5 / T .
Natural frequencies, ; = rz rra for integer » =1,2,---
0.

(3.53)

As before in the discrete case, we have special modal/naftegliencies with their
corresponding natural mode shapes. Whereas the discrete modahtieg were equal to the
square root of stiffness divided by inertia, the frequencieqqin B.53 ) are equal to the square
root of tension per unit length divide by the mass of thagtiThese frequencies and shapes are
then substituted into Eq. ( 3.48 ) or Eq. ( 3.51 ) to obtanfiiee response solution. Figure 3.10
shows how the free response of a continuous string, which isdideath ends, is analyzed using
natural frequencies and mode shapes. Some common terminslagyoduced in the figure

including the notion of fundamental frequencies hadnonicsor overtones

Musical stringed instruments (e.g., violin, viola, cello, ba@e an excellent real-world
illustration of the discussion above on the free vibration respohsefixed-fixed string (see
Meirovitch, 1986). For example, a standard violin has four strinis four fundamental
frequencies, which the musician can change with proper fingpositions along the strings. It is
relatively easy to see that changesLir{via fingering on the bridge) ofF (via tightening of
screws) bring about changes in the fundamental frequencesigae 3.10). It is interesting to
note, however, that in musical instruments, the sounds from fiardahfrequencies are often
not as important as the higher harmonics or overtones. The seudshaf expensive violins
(e.g., Stradivarius), for instance, are designed and remtesti to produce more pleasing, full
sounds than those from a less expensive violin. Likewise, timdboard of a Steinway grand

piano is designed to resonate overtones more effectively tleas axpensive instrument.
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f(x,t)

Continous
system

y(x.t) P, TE)

Multiple frequencies
at position, x, along string

Single Single )
o natural mode + natural mode + oo Infinite number of
SDOF systems

Fundamental First harmonic
G . 2
Spatial piece
R, - N - Natural/mnormal
T | mode
Anti-node of vibration Node of vibration
g, g,® .
h A\ N\t t Temporal piece
| \j V \ - Natural/normal
coordinate
Single frequency Single frequency
LT Da

Figure 3.10: lllustration of continuous free vibration solutiomgsnodal characteristics

3.7 Fourth order continuous systems and separation of variables

We can proceed in exactly the same way as in Section 8dit@ the free response solution for
a continuous system of fourth order. Recall the EOM from(Efj53 ) for the bar undergoing

transverse vibration. In the free vibration problem, wef(ze)=0, and obtain the homogeneous
EOM:

3% y(x,1) g 0’ y(x,1)
m(x =——| El(x) —————=
o at* ax* (x) ax?

(3.54)

We can begin by separating the respoy(z&) into spatial and temporal components as before:
y(x,t)=Y(X)G(t) After substituting this form into Eq. ( 3.54 ) and making #agne sort of

argument surrounding Eq. ( 3.45 ) about equality in space andfuim&ons, we obtain the
following two equations:
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2
&2(0 + wa(t) =

d*Y (x) _
dx*

w? %Y(x) =0 with Y(0) =0=Y(L), Y"(x)|_, =0=Y"(x)|

(3.55a,b)
Note we have assumed that the boundary conditions on the lsamphg supported at both ends
producing zero displacements and reactive moments. The natuidihedes are found as before
in Eq. ( 3.47), and the natural modes are found by factaridghen solving the second of Egs. (
3.55 a,b). Note that Eq. ( 3.55 a,b) is a type of eigen-pnolbdr continuous systems. Moreover,

compare this form to the standard form of an eigenvaluegmolnl discrete systems,

(AI-A)x=0 (Eqg. ( 3.35)). In fact, this expression is often rewritten uspeyator notation as

follows to emphasize this analogy:

(3.56)

The possible solutions (eigenvectors) for this expression are lgglew:

Y(x) = 4,sin| o’ x|+ 4, cos s’ 2 x|+ 4, sinh ﬂwz x| + 4, cosh 1w’ 2 x
El B El ) El El

(3.57)

We can apply the boundary conditions in Egs. ( 3.55 a,b) td sellgcthose natural modes

(eigenvectors) that satisfy the physical constraints on thatiigrbar as follows:
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X -X X —-X

Recall sinh(x) = _ and cosh(x) = g ';e

3%(—A2+A4)=0

2

ay
Y(0)=4,+ 4, and o

x=0

—4,=0=4,

Y(x)=4,sin| % w0 x|+ Aysinh| 4 >y
El El
Y(L) = 4, sin| 4|w® Lid + A, sinh 4‘/0)2 By i-f
EI ET

2
d? =2 2| - 4 sin 4|0 2L |+ 4, sinh| 40> =L || =0
| EI Ve TN B

=4, =0, sin ﬂwz 2Ll 0= ¢/’ ML —rr forr =12,
; El El

(3.58)

With these natural frequencies and modes, we can expaneé¢response of the bar as follows:

y(x,1) = EY (x)g,. (1) = 2\/:s1n( )g, cos((o t+¢, )

where me (x)Y,(x)dx=6,, and f"E[ d’y, (A)d ¥, (r)

=0. w’
dax’ dx’

rs T

(3.59)

The expansion in Eq. ( 3.59 ) assumes that the natural modesdeawvadrmalized as defined in
the second line of that expression. In order to justify this naraten procedure, we must first
prove that natural modes in continuous systems are orthogonal tnotier with respect to

mass and stiffness just as modal vectors were in discreesrsyst

We will proceed in the same way as before. First, weevatitwn the eigen-problem for the

natural mode of the bar for two different modes:
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g {El(x)

X

&YX d* d“¥ (x s
d;EX)] = a)f X)L e [El(x) d;g\)] =w. m(x)Y (x)

(3.60 a,b)

Then we multiply the eigen-equation bys and integrate by parts over the length of the bar and
multiple thes eigen-equation byr and integrate by parts. When we do this, subtract theggsult
and assume that there are boundary conditions like clamipgedhand free, then the following

orthogonality conditions appear after some calculus:

f Im(x)Y, (x)Y,(x)dx=0 for r=s (Massorthogonality)

fLE[( ) d Y (\7) i gx(v) =0 for r=s (Stiffnessorthogonality)

then

rs?

If fm(x)Y,,(x)YS(x)dx =0

d’v, (x) d’ z; z(x)dx—(ofé,\ (Normalized)
dx’

[, Er)-

(3.61)

In summary, we have solved a continuous eigenvalue probléndtthe natural frequencies and
shapes in the same way that we solved the discrete eigepvahiem in the previous section to
find the natural frequencies and vectors. The two diff@ehetween the discrete and continuous
free vibration problems are that modal vectors are finiteed#iional whereas continuous mode
shapes are infinite dimensional, and modal frequenciesf diisite number whereas continuous

modal frequencies are of infinite number.

3.8 Case studies in free vibration

We are now going to study a few examples of free vibratiomeahworld systems in order to
reinforce the theory that was discussed in this chaptereTdesmples will be done largely in

class; however, the problem statements are given below évenek.
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Vehicle suspension vibration in ride:

Vehicle suspension systems can vibrate in a variety of ways.bddy and frame can bounce
essentially as rigid bodies on the tires and suspension, or theabddframe can vibrate as
continuous systems as well. We will model and analyze sonmest motions and discuss
potential issues to consider when designing a vehicle suspewosiroid noise and vibration

problems and maintain handling performance. Because boundaryti@msmdare extremely

important in complex, multi-body systems like this one, wéfatus much of our discussion on
ways to incorporate and examine the effects of differqrastyf boundary conditions.

Figure 3.11: lllustration of vehicle suspension model

Equivalent masses in non-ideal springs:

When we discussed MDOF systems, we have modeled mechanical systegnglesi mass,
damping, and stiffness elements. Of course, in the reatiwmidss is compliant to some extent,
springs have mass, and dampers have both mass and stiffnes® §ding to model and analyze
the valve train of an automotive internal combustion engine usingnarngy-based method

(Rayleigh’s quotient), which we have not yet discussed.
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UNIT-V
5 CONTINUOUS SYSTEMS

The free response of a mechanical vibrating system owss gis one part of the solution, the
complementary solution to the homogeneous equation of motion. Im twdénd the total
solution to the general equation of motion, we must be ableintb & solution to the
inhomogeneous equation as well, the so-cailedicular solution Then we just add up the two
solutions and apply the initial conditions. This method works,ef@mple, in a forced linear
lumped parameter SDOF system with constant coefficientsignous damping becausexit)

is the complimentary solution ang(t) is the particular solution, then the sum of these two

solutions xd(t), satisfies the equation of motion:

M, +Cx, + Kx, = f(t)

5:2 (x + X )+ C%(xc +Xx, )+ K(xc 4B, )= f(0

(M, + C, + Kx, )+ (M, + Cx, + Kx, )= £(0)
0+ /() = £(1

M

(4.1)

Please note that we CANNOT apply the initial conditions toctimaplementary solution before
adding up the complementary and particular solutions. Our tota#i@olwould not satisfy the
initial conditions if we did this unless the particular saativere of an unusual form such that
xp(0)=0=dxp/dt(0). Eq. ( 4.1 ) is a direct result of the principle of lineaperposition. This
additive property of the total response is responsible fat wfothe techniques that will discuss

in this chapter.

4.1 Terminology - steady state and transient response

The terms ‘complementary’ and ‘particular’ have specific physical connotations in vibration
analysis: the complementary solution is associated withr¢leerésponse, which does not depend
on the forcing function but does allow us to specify differetst skinitial conditions whereas the
particular solution describes the specific effects of a givetingrfunction. We can begin to
make the following associations: free respeasemplementary solution and forced

response»>particular solution.
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There is another terminology associated with forced vibragsponse that is common in the
literature. The terms steady state and transient are o$et to describe those portions of the
total response that remain in the steady state-a¢ tand those portions that only last for a finite
period of time. Because the complementary solution is alwagsiént as long as the vibration is
stable, the particular solution is often all that remaindhim steady state. Because of this
characteristic, we can also start to make the associatiamsient responsecomplementary
solution and steady state respomsparticular solution. It is also common to refer to steady state
and transient forces. For instance, a sinusoidal inpuplsitrarmonic with constant frequency
and amplitude) and a broad band random (stationary stochiaptit)are both examples of steady
state inputs. Likewise, an impulse and a step function are kathpdes of transient inputs. In
general, real-world external inputs contain both steady ataté¢ransient parts. For example, an
aircraft is subjected to both steady air stream velocitidgwbulent (sudden) pockets of air that

produce transient responses.

There is also something else special about the additive débrthe solution,xc(t)+xp(t),
which remember is just a consequence of the principlenell superposition. Specifically, the
particular solution is completely decoupled from the complemergalution becausep(t) is
found before the initial conditions are applied. Recall thatcomplementary solution always
contains as many constants as there are initial conditidhge system, but the particular solution
does not contain any constants. This result means that the statalyesponse does not depend
on the initial conditions: it is unique. Thus, in linear (or dirized) vibrating systems, the notion
of a ‘transient’ response is reasonable; however, if a system is nonlinear, the complementary and
particular solutions are not uncoupled in one direction as dneyin linear cases. When the
complementary and particular solutions interact, the portibrthe response that would be
‘transient’ in the linear case actually survives into the steady state. This portion is called a
nonlinear resonancand is an example of how nonlinear systems fail to satisfy theiganof
swerposition. We will assume here that we are dealing wwigat, time-invariant differential
eguations of motion. This assumption will allow us to apply thecpi@ of superposition in
many different ways to simplify our analysis significantiigure 4.1 illustrates the additive

nature of the forced vibration response in linear systems.
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Complementary Particular
;4 Yo solution p| solution

1
+

Independent of
TOTAL SOLUTION initial conditions

Determined by steady-stat
- System modal frequencies (eteady &

- Initial conditions
- Particular solution

Figure 4.1: lllustration of additive nature of forced vibratiesponse

4.2 Some review of time-frequency signal representation

Forces and responses in real world systems are usually commblisat we need to understand
how to express them in analytical terms. We will focus onrahétéstic analytical forced
vibration response analysis: we assume that we know the mxctitat force exactly at any
moment in time. In random vibration analysis, we can onlyrdesthe statistical properties of
the excitation. For example, in vehicle ride analysis, wellysoaly know that there is a certain
probability distribution of wavelengths in a typical road pefilThe vehicle is designed to

respond well to the distribution rather than to a specific sefideterministic inputs.

An excitation (or response) is said to be harmonic whenritagts a single frequency
component. A simple harmonic signal is a constant amplitudedmac. Simple harmonic signals
are the simplest kind of periodic signals, which repeat thees@veryT seconds. For instance,
a linear SDOF vibrating system exhibits a simple harmongriesponse to a general set of initial

conditions:

M, +Kx, =0
for x,(f) = Acos(w,,t # ¢’)

(4.2)
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The quantitywnt+¢ is called the instantaneous phase angle of the sigi(@l,andy is called the
initial phase angle. The velocity and acceleration of this systemat +90 and +180 degrees,

respectively, with respect to the displacement:

x, (1) = Acosw,? + @)
: : /4
x,(t)=-Aw, sm(a)"t + (p)= Aw, cos(a)nt +@+ E)

i,(6)=—-Aw’ cos(w,t +¢)= Aw’ cos(w t + ¢ + 1)

s0 ¥, = —w]x

nd

(43)

Thus, acceleration is proportional to displacement for siratenonic motion. We can also use
complex numbers that rotate in the complex plane (phasors) and Euler’s formula to describe

harmonic signals. For instanceg) from the equation above can be rewritten as follows:

x,(t) = Acos(a)nt + cp)=

= ReE‘le’(‘”"’*(’)]: Re[4Zaw,t+¢]
Lo @) 4 4o T0)

- 2

(4.4)

and then the 90 degree phase difference between the displdaesgtocity and velocity-
acceleration is accounted for with a factorjeh, which introduces a +90 degree rotation in the

complex plane:

x,(f) = Rel_Aej (”’"’*‘/”)J
).Cd (f) = Rekj.(un )] Aej((r)),r+(p)]
%,(1) = Re|(joo, ¥ de’@®)

(45)
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We will develop this idea of using complex numbers to destwbalifferent characteristics in a
signal, magnitude and phagk &éndwnt+¢), later on in our discussion about frequency response

functions in linear vibrating systems.

The period of oscillation in secondg, is inversely proportional to the circular frequenoy,
in radians/second according de=27/T. The frequencyf, in Hertz (cycles/second) is the inverse
of the period of oscillationf=1/T. When two simple harmonic signals with slightly different
frequencies are added, the following result is obtained usganometry:

x,(1) + x,(t) = Asin(wr )+ Asin(wr + Awr)
= A[sin(wt)+ sin(a)t + Awl)]
((m‘ + ot + Aa)t) (a)[ -t — Aa)t)]
cos

= A[Zsin
2

=2A4cos M sin a)l+M
2 2
(4.6)

which exhibits the so-calledeating phenomenon. The amplitude slowly varies fronto 2A
according to the small frequencyw/2, as the signal frequency remains constant at the larger
valuew+4w/2. We will discuss this kind of harmonic forced response behdaier on in this
chapter when we talk about lightly damped or undamped inratystems that are forced at

frequencies close to their own natural frequencies ofiatsan.

The Fourier series is an important tool for representkegation and response time histories
in analytical vibration analysis. The general idea of Fwuseries is to decompose a periodic
signal, xd(t), with periodT into a sum of simple harmonic signals with various frequsndiVe
can also use Fourier series to decompose an aperiodic sigmalarmonics over a given time
interval, T. The decomposition is given below for real and complex numbations. The
response to each term in this series is calculated indegignftem all the others and then the

results are added as shown in Figure 4.2.
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x,(1) = i [a” cos(nw, 1)+ b, sin(n(uoz)]
n=0
where a, = % J: TT/Z x,(0)cos(nw, 1 )t

/2
b, =£f7 x, (1) sin(na,t Mt with T = o
TJ-112 w

o

= Yo

n=-0

1 712 - ) a b « a }
where ¢ =—-f x,(He’™'dt with ¢, =2 —j2= and c_, =c, =—2+j
n T —T/Z n 2 24 2

wherewo is called the fundamental frequencyddnis called the fundamental period.

) X 2(t)

+
Single frequency Single frequency
X ()

xl(t

Multiple frequencies
x(t) f®
C >

3 f(® t
—

K M

Multiple frequencies

£, I,

Single frequency Single frequency

P

Figure 4.2: lllustration of temporal superposition in fordaddr vibrating systems
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By decomposing excitations into harmonic components as in Eg. ), 4olving for the
response to each harmonic, and then adding the various harmegponse components, we can
deal effectively with many kinds of inputs. Note that lineaperposition is what enables us to
analyze the forced response of vibrating systems in this wgergosition holds because stable
linear vibrating systems only respond at the excitation frequientye steady state. Among other
things, this guarantees that the response to each harmamitependent from the response to all
other harmonics (see Figure 4.2). In nonlinear systems, twddodiwesponse harmonics often
conspire to create new harmonic response components, which ¢enerplained with linear
models. We will limit our analysis primarily to stable lineabration in which systems only

respond at the excitation frequency in the steady state.

Note that periodic signals have discrete frequency spectra tfion-zero coefficients in
Fourier series). If we let the period of the periodic sigrdroach infinity, then we can use the
Fourier series to describe any aperiodic signal of ‘exponential order’ as well. In this case, the
fundamental frequency approaches zero and the sigigl,is decomposed into an infinite series

of sinusoids using the Fourier integral:

. 1 72 -
Xd((l)) — ];ll’n]-*)OQ ?j_]T/zxd(t)e_JmUTdf

s f x, (e dt

(4.8)

The function, Xd(w), is called the Fourier transform ofi(t). Thus, aperiodic signals have
frequency components (or coefficients) that are continuous. ilfhe Fourier integral is one
analytical tool that will be used to study frequency resparsaracteristics in linear vibrating
systems. Note that the integration limits on the Fouriergnatl prevent it from being used to
study transient response (i.e., it does not take into actiennitial conditions). It can only be

used to study steady state response behavior.
A close relative of the Fourier integral is the Laplaemdform, which can be used to study

transient and steady state response behavior in linearimpsgstems. The Laplace transform of

a functionxd(t), is given by the integral below:
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X, (s) =ﬁ) x, (e dt

(4.9)

This integral exists if the functiomxd(t), is of exponential order, which is usually true when the
function has a finite number of jumps (discontinuities).eNibiat the limits of integration indicate
that the Laplace transform can be used to incorpordi& iconditions, which are needed to study

transient response behavior. More will be said later afb@itransform as well.

4.3 Step response: A simple example of forced response analysis

In this section, we will introduce the fundamental ideasoofed response analysis using the
sprung disk on the inclined plane problem under the force oftgr@efer to Section 2.1). The
illustration is repeated below in Figure 4.3 for referefide corresponding equation of motion is

also repeated below in Eq. (4.10).

2 No slip o
779//////////////

Figure 4.3: Sprung disk on an incline for forced step respmmelgsis

2
a

(M+ ey )5‘; +Cx + Kx= Mgsina + Kx,

(4.10)
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Note that gravity is included in the equation of motionsathée undeformed length of the spring.
This equation of motion is valid prior to redefinition of thepdacement coordinate with respect
to the equilibrium position of the disk. We will study the trensiand steady state response
behavior of the disk when it is released on the incling=& (units length) with zero initial
velocity. The input in this case is a step equal to the anheh the right hand side of Eq.(4.10).

We begin by finding the form of the complementary (free resgosolution, which was

already done in Section 3.1. A summary of the results froméaferrepeated below:

- . I
Characteristic equation : (M + C—Y)SQ +Cs+K =0
2
Modal frequencies : s,, =0 = jw,

Complimentary solution : x_(7) = 4" + A" = X e cos(w,t +¢, )

(4.11)

where the damping factor)(and damped natural frequenayd] were previously defined in
terms of the inertia, damping, and stiffness paramete@fomderdamped systeffx(), and the
amplitude Ko) and initial phase angled) are to be determined from the initial conditions on the
displacementx(0)=0) and velocity @x/dt(0)=0).

The particular solution can be found by any one of a nuwidifferent techniques. We will
use the method of undetermined coefficients here. In this techniguassume a form for the
particular solution based on the form of the inhomogeneous teemtfie excitation) and the
modal frequencies. Because the inhomogeneous term in Eq. ( 4.10e)donstant on the right
hand side of that equation, our assumed form will be a aunstigt)=Xp (for t>0). If the modal
frequencies had been zero instead (i.e., rigid body mtus),it would have been necessary to
guess a particular solution of the foxaft)=Xp1+ Xp2t. We must include a factor ofwith every
term that matches in the complementary solution. After subegt our guess into the

inhomogeneous equation, we can solve for the single undetermirfédienie Xp:
Mgsina
_ Mgsina |

p K X

(4.12)
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Because Eq. ( 4.10 ) is a linear differential equationareeguaranteed that this is the unique

solution. We do not need to look for any other solutions becauseateno others.

The total solution is the sum of the complementary and patisolutions:

Mosi
x(1) = X" cos(wyt +, )+ 2 = x,
Transient] [Steady - state

| Solution Solution

(4.13)

Before applying the initial conditions, note the form of the solutibtihe linear system is stable
(i.e.,M, C, andK positive), then the complementary solution decays aftertaircgreriod of time
and the particular solution is all that remains. The physitalpretation of this result makes
sense because we expect for the disk to come to rest atpegition along the plane after it
oscillates for a while. In fact, the final position is plgnthe static equilibrium positiorxe, which

we used in Section 3.2 to define the new dynamic coordixixte;xe.

After applying the initial conditions, the final solution becomes:

Mgsina + x,

® ;
e cos| w,t - tan

@, ( J1-¢?

x(1) = 1-

(4.14)

This solution is plotted in Figure 4.4 below fdgsinn/K+xu=1 (units length) for three different
values of{ (top) and three different values @h (bottom). Note that less damping produces more
overshoot with longer sustained oscillations and more damping proadaster convergence to
the steady state response. Also, larger undamped natunadricées produce shorter times-
peak in addition to more rapid oscillations. The effegtsboth evident in Eq. ( 4.14 ) due to the
presence of the exponential sinusoid term. Note also thahea system becomes stiffé,
increases and the steady state response amplitude decreas#slasstly, note that a step input
is equivalent to a co-sinusoidal input with zero frequenoggw?)=1 for w=0 rad/s, for t>0. This

equivalence between static and harmonic inputs will becmetil later on because we will
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associate low-frequency quasi-static response behaviotheitstiffness characteristics in the

vibrating system.

2 ] 1 | 1 1 1 1 | 1
— 005w =2
_ 18- /\ _ w05w=2 -
=
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Figure 4.4: Sprung disk step response on an incline showing traastbateady state behaviors

4.4 Harmonic response: relative amplitude and phase relationships

The previous section focused on one special kind of input, thdustetion u(t)=1 for t>0. We
demonstrated that SDOF mechanical vibrating systems respond ste#ttly state with a static
deflection when forced with a zero frequency excitationmost cases, the static response of
mechanical systems is important but if we ignore the dynamjmonse to time-varying inputs,
systems are not likely to perform the way we expect orldviike them to. For instance, if
buildings were designed only to support their own weight and mobithstand dynamic
excitations, they would fail catastrophically if subjectedbase excitations during earthquakes.
Why do mechanical systems behave so differently when thesxeited with dynamic inputs? In
short, mechanical systems ‘want’ to vibrate at certain frequencies and if we excite them at those
frequencies, systems will respond with large amplitudes of tidiocaThese are called forced

resonances and occur when the excitation is driven in phasthwitielocity of the
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system. We will show later on why this forcing condition producesna&nce, but first we must

calculate the general solution of a SDOF system to a sinligqida

We will again consider the rolling disk on the incline bluba@se this time to look only at the
dynamic part of the response to a co-sinusoidal input (i.e.,subtract the equilibrium
displacement frorm(t)). The inhomogeneous equation for the dynamic displacemutt, with a

harmonic forcing term is given below:

( M+ 1<_2W)xd +Ci, + Kx, = F,coslwrt +9,)

a

(4.15)

As in the previous section, we first find the complemengatytion, which is the same as in Eq. (
4.11 ). Then we select a form for the particular solutiat is representative of the excitation,
xp(t)=Xpcost+g¢p), which assumes that the response is at the same frequetieyiaput but

with a different amplitude and phase. This solution is suibstitinto Eq. ( 4.15) as follows:

K - (M + 1‘42‘4)(021)(” cos(a)t +¢, )— wCX sin(a)t +¢, )= o cos(a)l o+ (/)i)
a

/ .
[K - (M + ﬂ)aﬁ ]Xp cos¢, - wCX , sing, ) cos(wr )+

— [K - (AM + %)wz ]Xp sing, —wCX , cosg, J sin(wr) = F, cos(wt )cos ¢, — F, sin(wr )sin ¢,
— [K — (M + ﬂ)cozl)(l, cos¢, —wCX ,sing, = F, cos¢,

2
a

2§ : :
= —[K - (M +%)a)2]Xp sing, —wCX , cos$, = —F, sing,

(4.16)

where the coefficients of the (orthogonah(wt) andcos(wt) terms have been equated from each
side of the equation. If the second to the last equation is sgaacethen added to the last

eguation, the amplitude of the particular solution can be fdiikeéwise, if the second to the last
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equation is multiplied byingi, the last equation is multiplied legsgi, and then the two are

added, the phase of the particular solution can also be fBottusolutions are given below:

F
X, = 1 2
\/lK —~ (M + )wz] +(C)
a
¢p = ¢i - tan - (UC
K- (M ¥ 1‘4)0)2
2

(4.17)

These two equations govern the frequency response of thdndigle system. The terms
‘frequency response’ imply that the excitation and particular response are simple harmonic in
nature. There are several interesting characteristicsstnisti in these solutions. First, note that
both the response amplitude and phase are fmlative to the excitation amplitude and phase.
Second, note that the relative phase of the particular respemlways less than or equal to zero
for all frequencies greater than or equal to zergpewtively. Third, note that there are three

frequency ranges over which the particular response behaviordamentally different:

For low frequencies, the relative amplitude and phase ofrdbgonse are primarily
governed by the stiffness of the spriXgzFi/K andgp= ¢ i+0 rad. Stiffness is said to

dominate the frequency response in this frequency rérges <wn.

For high frequencies, the relative amplitude and phadeeaksponse are primarily governed

by the inertia of the diskp=~Fi/Mefiw andpp= gi-tan ~(-C/Meffw) rad. Mass is
said to dominate the frequency response in this frequengg @>>wn.

For frequencies near the undamped natural frequency of osoiltétk/Mef), the relative
amplitude and phase of the response are primarily governte ldamper characteristic,

Xp=Fi/wC andpp= ¢ i—tan-l(oo)=goi—7r/2 rad. Damping is said to dominate the frequency
response in this frequency range;wn.

In order to summarize these results graphically, we wat fewrite Eq. ( 4.17 ) as follows:
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, F. /K
)‘p - 272 2
w" a)ﬂ
2c w
e
-1 n
¢, =¢, —tan >

(4.18)

Figure 4.5 summarizes the discussion above with plots of the reththamic amplitude and
phase Xp/(Fi/K) andgp- ¢gi. Furthermore, it makes sense to plot the amplitude norrdatzenis

way because it indicates how large the dynamic amplitudeaisvesto the static deflection.
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Figure 4.5: Relative amplitude and phase diagrams for danawetbhic frequency response
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Figure 4.5 highlights some other interesting characteristicsrtighit not have been obvious in
Eq. (4.18). These characteristics are discussed below:

The maximum value of the relative amplitude does NOT oatuhe undamped natural
frequency @n) or at the damped natural frequenaeyd)! Instead, it occurs atw/wn)max

=\/(1-2¢2). This result is easily shown by differentiating the re@aamplitude functiorwith
respect tow and then setting the derivative equal to zero in sedr¢cheomaximum. The

maximum value of the relative amplitude is found by substituting réégiEncy ratio into Eq.
(4.18) (note that the following relationships are validfot<0.7):

By 1
E/K max 2g 1_§2

(gbp )nm = ¢, —tan™" —“l_gzsj

(4.19)

The value of the relative amplitude at the undamped ndtexgliency is very close to the
maximum amplitude above. In fact, if the damping ratio igtnless than on&€<0.1),

the differences are negligible.

Xp _L
FI/K), ., 2

(95,; )a,:w” = _%

(4.20)

When damping is increased in the system, the amplitudedeti@ases at all excitation frequencies and the
relative phase plot changes more gradually. Lightly damystdras

exhibit a sharp phase transition, sometimes referred tchaghajuality factor 0=1/2{.
For small damping ratios, the quality factor can be apprateéd ason/(w2-w1), in which
w2 and w1 are the half power points0.(7f07Q above and below, respectively, the
undamped natural frequency. Note also that a small chand@mping near resonance

causes a major change in the amplitude ratio due to thesgngesportionality.
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We can also draw conclusions about undamped frequency regihamnaeteristics by
settingd=0in Eq. (4.17 ) through ( 4.20 ). In this case, the relativeliude and phase
characteristisare given by:

)~
P Jundamp ed - 2
w
1= —
W,
@) tan” ——
P Zundamped - ¢i =B 2

,

These characteristics are plotted below in Figure 4.6nil@gy (top-left), log-log (top-right) and

(4.21)

semilogx (bottom) formats. There are a few additional poinistefest in these plots:

Without damping, the relative amplitude between the harmoesgponse and the

excitation is unbounded; damping is the only element that mietbe response from
growing continuously at steady state when the system is fatcexbonance. Reflect on
the meaning of this statement for a moment; it does not meamhthdnput suddenly
jumps to infinity when the excitation frequency is at the unudnnatural frequency,
rather, the particular response amplitude grows as a lineaioiuiod time without end.

This undamped resonant forcing condition can benixed by revisiting the form for the

total solution (complimentary plus particular) in the case atibe system undamped
natural frequency is the same as the excitation frequéheys(wnt). In this case, the
particular solution must be expressedxaf)=tXpicos(wnt)+tXp2sin(wnt), in order to

avoid repetition in the complementary and particular solutibhis. substitution into the

differential equation of motion yields the following solutioritfwXpi=0):

x, (1) = —Ltsin(w,lt)
gr

(4.22)
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which is plotted in Figure 4.8 when normalized with respecEi/2N(KMefi) (units
length/time) for an undamped natural frequency of 10sradbte that the amplitude

grows linearly with time for linear undamped forced resoea

Usually the system begins to behave in a nonlinear way ifrtipditade grows to a high
enough level as it will in an undamped vibrating systertmef excitation frequency is
near the resonant frequency. For large motions away fieenequilibrium point,

linearized models will miss certain nonlinear behaviors.

The relative phase between the response and the excigtiithar zero or -180 degrees
away from resonance and equal to -90 degrees at resonanceovBtorwhen an
undamped SDOF system is forced at resonance, the forcetheadsplacement by 90
degrees. In other words, the force is in phase with the ibelaghich means that the

force continually reinforces the vibration of the system.
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Figure 4.6: Relative amplitude and phase diagrams for undamgupaehcy response
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If large amplitude particular responses are achieved by forcBIQGF in phase with its
velocity, then small responses must be achieved by forcingtansyut of phase with its
displacement. Thus, at higher frequencies in Figure 4.6 (maswmateth range), the
relative phase is -180 degrees and the amplitude ratio is wel. Shink about the

physical reasoning behind these comments.

10 I | | | I |

x J(F 2Sqrt(KM_,)) [length/time]

P

Time [sec]

Figure 4.7: Plot of particular solution at undamped foresdmance

4.5 Harmonic response: total solution = transient + steady state

Section 4.4 discussed the particular solution to a simple harnmgmit in a SDOF vibrating
system in the damped and undamped cases. In order ty satsém initial conditions, this
solution must be added to the complementary solution from Eqg. ()4.Ihen the initial

conditions on displacement and velocity can be satisfied:
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x,(8) = x.() +x,(7)
= X e” cos(w,t +¢, )+ X, cos(wt +9, )

(4.23)

For instance, if a SDOF system withh=5 rad/s, (=0.05, and K=1 N/m is forced with an
excitationcos(2t) Nand the initial conditions are chosen such ¥wtXp andpo=0 rad, then the
total solution is as shown in Figure 4.8 below. Note thatregponse components are evident
during the initial 10 seconds: the complementary solution (transgeat)a higher frequency (5
rad/s) than the particular solution (steady state responke samne frequency as the excitation, 2
rad/s). Beyond=20 seconds, however, the complementary solution has vanished athdtall
remains is the steady state response at 2 rad/s. In fut, #mplitude ratio and relative phase
characteristics are to be measured experimentally, thernipiortant to wait for a certain period
of time before recording the amplitude and phase of thporse because the transient will

corrupt the steady state measurement otherwise.

25 1 I | [} I

(N]

x40 [m], 1t

o

| |
0 5 10 15 20 25 30
Time [sec]

Figure 4.8: Plot of total solution in a SDOF system withgrent and steady state components
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When undamped systems are forced near resonance, beatingcasn as described
mathematically in Eq. ( 4.6 ). For example, if a SDOFeawswith wn=5 rad/s, (=0.0, andK=1
N/m is forced with an excitatiortos(4.8t) N(i.e., slightly below resonance) and the initial
conditions are chosen such thatXp andpo=0 rad, then the total solution is as shown in Figure
4.9 below. Note that the higher fregy in the response is given by o+ Aw/2=4.8+0.1=4.9
rad/s whereas the slower ‘beating’ of the amplitude is given by Aw/2=0.1 rad/s. This type of
response behavior is common in twin propeller aircraft bedhessvo blades are rotated slightly
out of phase so as to not excite large amplitudes of tharae. In this case, the two forces on

either side of the fuselage conspire to cause beating withipassenger cabin.

30 | 1 I | I [} |

204 -

L.ALUJAH JJ l] i

-20 4 -

-30 1 ] ] ] 1 |
0 10 20 30 40 50 60 70 80

Time [sec]

Figure 4.9: Plot of total solution showing beating between comptang'particular solutions

4.6 Harmonic response with Laplace transforms: frequency response functions

The procedure we used above to find the total solution as a sanc@hplementary solution,
which depended only on the system characteristics, and aufsrsolution, which depended on
both the system and the type of excitation we consideradt the only procedure for calculating
the total linear forced response. The other common methadtéke the Laplace transform of

both sides of the inhomogeneous equation of motion (Eq. ( 4.104.156 )) as indicated before
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in Eq. (3.9). This operation is performed below where thedcgptransform of the excitation is

written asF(s):

I.
[(M+(‘—‘;VI)S2+CS+K

a

X8)= (M + IC‘ZW )sxd(O) +Cx,(0)+ ( M + [‘%)Xd (0)+ F(s)
a a

(M+]°‘2‘4>S+C (M+°—"2‘4) .
= ; @ x,(0)+ ; g %,(0) + ; F(s)
(M+ £ )SQ+C\‘+K AM-I‘CQ’)SQ-FCY-FK (M+('ﬁ’)s2+Cs+K
a’ a’ a
(4.24)

The quantity F(s) could correspond to a step input as in E§0()4r a sinusoidal input as in Eq.
(4.15). For instance, for an inptitt)=Ficos(wt), the Laplace transform B(s)= sti/(sz+a)2).

The solution procedure would then proceed by finding the inMempéace transforms of the
various terms in Eq. ( 4.24 ); however, this is a tedious pro@eskaimonic inputs. The
important point to make here is that there is an easigrtwalerive the amplitude ratio and
relative phase expressions in Eg. ( 4.18 ). Note that theéelastin Eq. ( 4.24 ) is equal to the
excitation (or input) divided by the so-calledpedance functianMoreover, the inverse of the
impedance function is called thansfer functionThese definitions are listed below for review:

=
2

Impedance function: B(s) = (M + Lo )sz +Cs+K
a

1 _ X, (s)
T F(s)

Transfer function: H(s) = forzero I.C.s

M +L,")s2 +Cs+ K
a

(4.25)

We can think of the impedance function as a kind of ‘dynamic stiffness’. In other words, if a
system only contains springs, then the impedance function isstaob equivalent to the effective
stiffness of the system. On the other hand, if a system osnmass and damping, then the
impedance will be a function of the complex frequencyialde, s. Also, note that the transfer
function is equal to the ratio of the Laplace transformhefresponse and the excitation for zero
initial conditions.

4-97



MECHANICAL VIBRATIONS AND STRUCTURAL DYNAMICS

An inspired choice of leads to the formulas for the amplitude ratio and relathase. We
chooses=jw, wherew is the excitation frequency icogwz+gi). In other words, we choose to
look at slices of the general complex functiodé) andH(s), along the imaginary axis. With this
choice ofs, the transfer function becomes the so-cditequency response functigiRF):

H(s),.,, = H(jw) = X, (]w) _ 1
B Fjo) &~ ( M+ Jeu )wz + jowC

- 2

a

(4.26)

The FRF is a complex number with two parts: real andjinaay (or equivalently, magnitude and
phase). The FRF must have two parts because it describes howr asystean responds with a
certain amplitude ratio and relative phase angle to a silmgrimonic input. Note the similarities
between Eq. (4.26 ) and Eqg. (4.17 ). In fact, if we comiligenagnitude of/(jw) and the angle
(argument), we get precisely the same amplitude ratiogdative phase angle that we computed
in Eq. (4.17 ) and Eq. (4.18):

. | 1/K
priion- —— L
\/[K—(M+]Cg”)a)2| +|wCT 1aa 2L | e |20
a a)” a)”
C % -
/H(jw)=—tan" = i =—tan” @ 5
K—(M+ cu )af 1_(2)
a- a)n
(4.27)

In terms of our original differential equation, Eq. ( 4.1&hg excitation and steady state response

(particular solution) are of the following form:

f()=F cos(a)t + (/)l.) and x (1) = F, ||H O'a)}|cos(a)f +¢, + LH (/'a)))

(4.28)
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Again we see that the steady state harmonic response & sdrtie frequency as the excitation
with a different amplitude and phase. Also, remembeat ttis expression is only valid for linear
vibrating systems with time-invariant coefficients. The FRFRiseful because its form does not
change from one moment to another or for different exaitatequencies. The FRF also does
not change regardless of how large the response amplitude dsecdims feature is where
nonlinear vibrating systems commonly differ from linear vibratingteays, but nonlinear

frequency response behavior is beyond the scope of this class.

It is also worthwhile to note the behavior of the FRF fartain frequencies and frequency
ranges. The best way to do this is by plotting the magnitude and phdkse FRF, which
remember are simply the amplitude ratio and relatives@lad the steady state response to a
simple harmonic input. In fact, we already did this in Fégdi'5 so there is no need to do it again.
You should revisit the discussion preceding Figure 4.5 in ligtheFRF in Eq. (4.27 ) in order

to re-examined the forced steady state response behawer, aniddle, and high frequencies.

We could have also used the Fourier transform directlyind the FRF because, recall,
Fourier transforms can be used to analyze the steady spateoinput behavior of linear
systems. In passing, note that the FRF of a given excitedggonse pair is sometimes defined as
the ratio of the Fourier transform of the steady state resp@asticular solution) to the Fourier

transform of the excitation:

Ny, 0] x,@) 1
1)l Fe) - K—(M+ICM )aﬁ + o

2

(4.29)

where F[.] denotes the Fourier transform of a function and jtha front of the frequency
argument is usually removed in this definition. Regardless of thewFRF is derived, it is
extremely useful in analytical and experimental meclaniibrations. Before proceeding, note
again that the FRF only exists because the transient eandlystate solutions are decoupled as in
Eqg. (4.23) and ( 4.24 ); therefore, linear superpositionsis @sponsible for the existence of
FRFs. Let’s continue to study more complicated forces by applying superposition as discussed in

Figure 4.2.
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4.7 Harmonic response for general periodic inputs using superposition

We have analyzed the forced response of SDOF systems to d¢imgte of inputs like step
(static) functions and individual harmonics; however, most inputsmare complicated than this.
For instance, if we are going to use the accelerometeigure 4.10 to measure the acceleration
of the surface to which it is attached, then we must be tabtmmpute the response to any
combination of harmonics. We follow the procedure in Figurerd2der to do this.

The equation of motion for this system for a base exaitatb(t), and a displacement of the

piezo elemento(t), is given below:

M, + Cx, + Kx, = C, + Kx,

(4.30)

An accelerometer uses the relative motion between the bése accelerometer (i.e., motion of
interest) and the piezo crystal/elemer(t)=xo(t)-xb(t), to estimate the acceleration of the surface.
When this new coordinate is substituted into Eq. ( 4.30 ), theenaf the accelerometer as an

instrument for sensing acceleration is revealed:

Mz + Cz+ Kz=-Mj,

(4.31)

This equation indicates that the relative displacenmt,is the response to an input acceleration

at the base of the acceleromeué%xb/dtz. Because bodies often exhibit periodic acceleration

response at multiple frequencies, it is desirable to exfinedsase acceleration as a Fourier series
like in EQ. (4.7):

X (1) = i[an cos(na),,t)+ b, sin(n(uot)]

(4.32)
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All that remains is to compute the response to this sefibarmonics. Because the model in Eq. (
4.31 ) is linear, the responses to each individual harmaiat ican be added to give the total

response. To that end, the FRF for this system with an dthlbwdtz and a responsais given by:

Z(w) - M
H = =
(@) ~0’X,(w) K-Mo®+ joC
M 1/ w?
where |[H(w )| = \/[K — 2] ] = — -
- Mo | + |

e

a)” C()ll

C 25,
and /_H(a))= -180° —tan™ # =-180° — tan™' —w'12

- Mo -

.

)

(4.33)

Note that the phase of the particular response always atiirds -180 degrees with respect to the
base excitation for zero frequency and decreases (loses phade) frequency increases. Other
interesting remarks can be made after the magnitude and gftthee-RF are plotted (see Figure

4.11 below). The 180 degree phase lag is removed in the signe$girag electronics.

Accelerometer casing

Piezo element -._|
M, K and C

Surface for
measurement

Rigidly attached

X, () - xb(t) - Sib(t)

Figure 4.10: Schematic of single degree-of -freedom shear moaelgiezic accelerometer
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Figure 4.11: Frequency response magnitude and phase charastefisin accelerometer

First, note that the low frequency (DC) amplitude raﬁim/&)znzle-4 seg (see Eq. (4.33)).

Also note the effects of damping on the frequency respomsdafe amounts of damping the
relative amplitude characteristic is flatter below the mmgled resonant frequency, but the phase
characteristic drops significantly in that frequency ranfes drop in phase produces phase
distortion; in other words, each harmonic response component ecwjo a different phase
shift so the resultant measured acceleration is quite difféi@n the true acceleration. Likewise,
for small damping ratios the phase characteristic isnftarly all the way out to the undamped
resonance, but the amplitude ratio characteristic rises isamify as the resonant frequency is
approached. This rise in amplitude produces amplitude distomiather words, each harmonic
response component is subjected to a different calibratiorr faatq a certain number afolts
per g of acceleration, for instance). Accelerometers arediyi designed to have damping ratios
of approximately 0.6 or 0.7 to avoid amplitude distortiomaHly, note that the electronics in an
actual accelerometer put an additional gain into the ERf®mvert the length/acceleration units
to volts/acceleration units. The motion of the piezoeleelement relative to the post produces a

certain charge across the element, which is then convetted iltage for output processing.
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Having determined the FRF for the accelerometer, the sstatéyresponse to a general

periodic input is therefore equal to:

[an cos(na)at +/LH (na)o )+ b, sin(na)of +/LH (na)o ))]

z, (1) = EHH(na)O]

(4.34)

Each harmonic component is amplified and phase shifted aogduodthe characteristic in Figure
4.11. ldeally, the amplitude factof|H(w)||, in the frequency range of interest should be
approximately flat (i.e., constant) as should the phasectaaistic, £H(w).

4.8 Frequency response functions in systems with non-viscous damping

We said in Chapter 3 that viscous damping is rare in maztasystems. Other more realistic
damping models including quadratic damping, Coulomb damping, astdrégic/structural damping
were discussed at that time. In this section, we wilngine how hysteretic damping affects the FRF
of the standard SDOF mechanical vibration model. Recatl ithave set the viscous damping
coefficient toCe=h/w= 77K/w, whereh is the hysteretic damping coefficient and

n is the loss factor, then the SDOF model is slightly modified t

5 K . L
Mi, +Z-x, +Kx, = F, cos(a)t + ¢,)

(4.35)

which is valid for simple harmonic inputs and has the FRFngimeEq. ( 4.36 ) below. The
magnitude and phase angle of the FRF for this system atedpintFigure 4.12. There are two
main differences between this FRF and that of theesponding SDOF system with viscous

damping (see Figure 4.5):

The relative phase for zero frequency is not zerotherovords, systems with hysteretic
damping are never in phase with the excitation. This behavicommonly seen in
viscoelastics and other elastomers, which exhibit ‘relaxation’ when subjected to DC

inputs.
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The low frequency stiffness characteristic changes when $bddotor changes; in other
words, hysteretic damping seems to introduce both damping stiffdess-like

characteristics into the FR

The peak for all values of is found at the undamped natural frequenay,

1
K- Mo + jnK

H(w) =

1/K

1 -
k-0 T4bkT 1_(0,;

where ||H (a) )| =

(4.36)

i K g
and LH(w)=—tanl777—2=—tan1 1 R
K - Mo a)
- =
10°
o
o
o
= J
(@] LA A
5 10 — z
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Figure 4.12: Frequency response magnitude and phase charasthgistiysteretic damping
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Note that only the stiffness and damping-dominated regionfieofFRF are affected by the
change to hysteretic damping. The mass-dominated region is etetyplnaffected by this

change because the inertia term is the same as in the viscopsg case.

4.9 Forced response to general inputs and transients through convolution

Even though we are now equipped to use Fourier series to @egenleral periodic excitations,

we are still unable to describe inputs like potholes, for megtain roads. Potholes and other
transient-type excitations are not periodic, so they aramenable to Fourier series analysis. We
conclude that we need to find a different, more genepgoach to forced response than the
FRF. The approach we need is actually intimately reledethe FRF approach as we will now

explain.

Why was the FRF so useful? The answer is because its form dichaoge when the
excitation frequency changed. But the FRF was applied irfrdggiency domain, that is, for
excitations that are described as a series of harmonics.aneovfind an expression in the time
domain that can be used in a similar way with arbitrapggyof excitations. Superposition will
again be the basis of our approach. Consider the illustratibigure 4.13. If we could develop a
procedure for decomposing an arbitrary excitatifft), into a sum of impulse functions and
calculating the response to each impulse, then we could ¢héaiatal forced response by simply
adding up the responses to the individual impulses. This approacHyisvadid for linear
vibrating systems (and time varying systems if we accounthi®rvariation with time of the

response characteristic). This method is known as convolution adkis for any type of input.

x ()
1 Response to impulse at t1
HU)

x() -

& —_ ¢ Xz(t) Response to impulse at t2
LI B
1] f(

4

t1 t2

Figure 4.13: lllustration of impulse response convolution methodafoedl response analysis
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The process of convolution begins by decomposing the excitatioramtinfinite train of
impulses functions. This decomposition is accomplished using the Ispiesi@ property of the
impulse functiond(t), which is given by-o(t-a)f(t)dt=f(a). Each impulse has a strength equal to
the value off(t) at the particular value of timgsn t, times the time intervat, The excitation can

then be rewritten as follows:

(1) = 26 (t = nAt)f (nAt)AL

(4.37)

where it is assumed that the excitation is appliggd@tand is zero before that time. Now we will
find the particular solution to each of these impulses sepagatdithen sum the results. First, we
can find the impulse response of the SDOF vibrating systeapplying the Fourier transform
definition of the FRF given that the Fourier transfornd(j is 1:

1
K- Mo + joC
so that x (7) =h(t) = F [H(o))]

1

X (@)= H(w)F () =

(4.38)

WhereF_l[.] denotes the inverse Fourier transform daft) is called the unit impulse response

function (IRF). Consequently, we see that the inverseiéotnansform of the FRF plays an
important role in the forced response to arbitrary axoins.

If we want to avoid introducing Fourier transform thedhgn we can use Eq. (4.24 ) and

Laplace transforms instead. That equation is repeated betawlihear SDOF vibrating system:

Ms+C M 1

X (§)=—— " () —— % (0)+
/(5 Ms> +Cs+K 4(0) Ms +Cs+K «(0) M

— F(s
¥ +Cs+K (5)

(4.39)

The important thing to notice is that the second term la@dast term in this equation are almost

identical wherF(s)=1, which corresponds to an impulsive inpdt); therefore, we can say that
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impulsive excitations introduce initial conditions on the g@&jo Furthermore, the general form

of the complementary solution for any set of initial conditieee(Eq. 3.15),

x, (1) = X,e” cos(w,? +9¢,)
A}
=X, e cos\l-c*w,t+9,
where x,(0) = X, cosg,

x,(0)=0X cos¢, —w, X, sing,

can be used to solve for the impulse response by using the goitiactonditions corresponding
to the impulsive excitationxd(0)=0 and dxd(0)/dt=1/M, chosen to make the second and third
terms of Eq. ( 4.39 ) match. Thugy=-7/2 and Xo=1/Mwd, which yield the following impulse

response function:

x, (1) =h(t) = \/11 ¢” sin(w, ) for £>0

M,
(4.40)
Note that the IRF is zero at time zero, has a fimitéal velocity, and oscillates and decays as
before. Finally, we can add up each of the impulse respandbke series of impulses in Eq. (
4.37) by shifting the IRF to the times at which the impulsespplied and then integrating to

obtain the particular response to an arbitrary excitat{on,

x, (1) = Ew h(t - nit)f (nAr)At

n=(0

Let Ar— 0 then x, (1) = j:)h(t—r)f(r)ir

(4.41)

Eq. ( 4.41) is profound because it suggests that if we know fhewRich is determined solely
by the system, then the particular response to any excitatiobecéound by convolving the
excitation with the IRF. The integral in Eq. ( 4.41 )called aconvolution integralfor that
reason. This development is valid for linear, time-invari@BtOF systems and provides the
particular solution for zero initial conditions. As beforteg total solution is equal to the sum of

the complementary solution and the particular solution from Egtl().

4-107



MECHANICAL VIBRATIONS AND STRUCTURAL DYNAMICS

As an example of how to apply the convolution integral, congluersystem forced by a

static input from Section 4.3. The equation under considerationithegpeated below:

(M ; IC—ZW)A +Ci + Kx= Mgsina + Kx,

a

In this case, the input is a step functiory@p=(Mgsina+Kxu)us(t), whereus(t) is called the unit
step function and is zero befoteO and 1 fort>0. The particular solution for zero initial

conditions is found by substituting this excitation into Eq. ( 4.41):

x,(0) =j;h(t ~7)f @t

=f_w1—@”("’) Sin(a)d (1 —r)XMgsina KX, ){'T

' o Pa
Mgsi KX, @ o0
_Mgsmna+ 1,,f el sm(a)de}m
Mq/flll)(/ l
M > --
L I e w,t—tan” 5 for t>0
K wd 1 - gz

(4.42)
which was the same result we found in Section 4.3. In geneeataiculus and algebra required

to analytically calculate the convolution integral is unwieldp these integrations are done

numerically instead.
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4.10 Some common applications of forced vibration response analysis

The material in the previous sections is applied throughout mmaingtries on a daily basis, so
there are many different applications to discuss. Automotive emgiaee continuing to develop
new ways to minimize vibration and noise in their products|eamicro-chip manufacturers are
working diligently to develop sophisticated vibration isolation Bwnents in which to assemble
their products with precision. We will focus on a few ttiadal examples involving rotating
(reciprocating) unbalance, vibration isolation, shaft wiaing elastomeric mounts and bushings.
See any textbook on vibration for discussions of these problems\ergget al).

Reciprocating unbalance in rotating machinery produces osajjlétarmonic) inputs that, in
turn, introduce unwanted (usually) vibration into systems. Taerenany good example of when
the resulting vibration is actually desired. For instance,yntwaby bassinets are instrumented
with inertial exciters that have small rotating inertigkjch produce vibration that is supposed to
‘sooth’ babies. A basic rotating system with an eccentric mass is illustrated in Figure 4.14. This
system could represent a clothes washer or dryer withmbalance in how the clothes are
distributed, a lathe or rotating machine tool with a slighialance, or any other rotating system
in which the center of rotation does not coincide with theter of mass (e.g., fan, disk drive,
etc.).M is the total mass of the systemjs the eccentric mass,is the eccentricity, ang is the
frequency of operation. The system is supported by a lisyggang and viscous damper. The

equation of motion for the system by Newton’s method is:

Mz + Cx + Kx = mew” sin(wr)

(4.43)
m
o ()
ot -
M (total) Q\I
1
K =] C

Figure 4.14: Schematic of SDOF system with rotating unbal@uoentric oscillating mass)
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Because the excitation is harmonic, we can use Eq. ( 4t@dind the FRF as long as the

dependence on frequency is included in the excitation:

If f(z)=mew’ sin(col)= F sin((ut), then x,(7) =X, sin(a)t +9, ) where

H(jwy-X42) UK and
(] ()
I-|—| + /2| —
w’l n
ﬂ 2
MX, B w,
me 312 2

)| +=()

(4.44)

The phase of the particular solution can also be found, kuwil focus on the magnitude
characteristic. The last line of Eq. ( 4.44 ) is plotted inuFgg4.15 below. There are several

interesting characteristics to note in this FRF magniploe

First, we notice that although there is still a peak in RRE& magnitude plot for the

reciprocating unbalance problem as there was in previous Bode tawgmilots for
forced SDOF systems, the shape of the FRF seems to be theimage of the one in
Figures 4.5, 4.6, 4.11, and 4.12. More specifically, the fiihasis region seems to have
shifted to high frequencies (high operating speeds) and e Istess region seems to

have shifted to low frequencies (low operating sis¢eThis switch occurs because there

is now a factor Ofa)2 in the numerator of the FRF that ‘cancels’ the a)2 in the

denominator. Physically, the flat characteristic at highrating speeds implies that the
center of mass of the rotating system is stationary.

Second, note that if the goal is to have as little vibnais possible, then it is best to
operate at speeds (frequencies) below the resonant fi@gyee., r<1) because the
amplitude is smaller in this region. This result is in contrastthe SDOF FRF

characteristic.
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Figure 4.15: Amplitude of response due to reciprocating unbalanc

Whirling shafts are also an important application for vibragnalysis in rotating systems.
Figure 4.16 is an illustration of the simplified problem involveigft whirl. The shaft (assumed
massless) and bearings both provide stiffness via a restoriog tiothe disk as it rotates about
the axis through poire. The axis through poind passes through the two fixed bearing supports
and is a reference for motion of poiRt@nd the disk center of ma$s, The rotational velocity of
the line segmen®P is called the whirl velocity and the distan®® is the whirling amplitude.
Note that the whirl speed and direction are not alwaysdhee as the shaft speed and direction.
The rotational speed of the shaft is prescribed and thatieqgs of motion in thex andy

directions are assumed to be uncoupled. Newton’s method produces the following results:

M+ K x = Mew’ coswt

My+K,y= Mew” sin wt

(4.45)
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Note that the stiffness in theandy directions are taken to be different, and the dampirmpih

directions is set to zero; this result makes the problem less camepliand the results more

easily interpreted. Also, note that the excitations fohel@ction are 90 degrees apart.

Ky P

O -- Geometric center
P -- Rotational axis
K

¥ Dq G -- Mass center of disk

Figure 4.16: lllustration of shaft whirl geometry for equatibmotion derivation

In the steady state, the magnitudes and phases &fahdy responses can be shown to be

governed by the following FRFs:

2

(0] ]
j i w, s
X(J(l)) - (a)ﬂ«\’j - and Y(j(l)) - ( ny e—]n/_

2
e e
1 (1) I [w)
wm‘ wny

(4.46)

Again, we can note several interesting things about theses RiRRE then relate these

characteristics to the physical nature of the response:
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The amplitudes okp(t) andyp(t) are not equal; thus, the motion of the pdmntannot
describe a circle but instead describes an elliptical shagmauBe there is no damping,

this ellipse has its major (or minor) axis aligned withuasical (or horizontal).

There are three regions of operation similar to thoseady discussed for the SDOF
system above in Section 4.4. In the first regiors wx andw < wy, thex andy motions
are 90 degrees out of phase and the disk and theoitate in the same direction. We
assume here that tlyamotion is 90 degrees lagging thenotion because themotion is
forced with a sinusoid while themotion is forced with a co-sinusoid. Think about this
and make sure you understand why the two motions follow the patidthan Figure

4.17. Carefully consider the rotations of the line segmentsn@P&.

In the second regiom > wy andw < wx (or vice versa depending on whether or gt
or > wx), thex andy motions are 270 degrees out of phase so the disk andRptdte
in opposite directions because #§w) phase is -270 degrees whereasifjie) phase is
zero. The shaft speeds in this region are calléttal speeddfor two reasons: first, the
amplitudes are rather large when the speed of rotation tsameaof the undamped
resonances; and second, the resultant phase shift between thaatisk and rotation of
point P introduces stress reversals in the shaft. These stressalevean and often do

result in fatigue failures under the right conditions.

In the third and final regionp > wy andw > wx, thex andy motions are again 90
degrees out of phase so the disk and the point P rotate sartedirection because the
Y(jw) phase is -270 degrees and Mjfo) phase is -180 degrees. This region is the safest
operating region with the smallestandy amplitudes and no stress reversals. Finally,
note that for high operating speeds, the center of mdks disk,G, aligns itself with the
center of rotation®. Why is this? Think about the phase angle, @, of the line segment OP

with respect to PG.

The whirl angle and speed are found by combining#ieoordinates as follows:
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V do AR
f=tan"L, w, =—-=[sec?Z|ZZ
- dt X x”
(4.47)
Ky P
K &,
X y
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N large Y 3
small § » / \ / »
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Ky D<€] speed speed

Figure 4.17: lllustration of shaft whirl geometry modes of vilorati

Isolation and transmissibility reduction are also importapplications in mechanical

vibration analysis. The standard SDOF models for studyingtienl and transmissibility

characteristics of mounting systems are shown in Figure 4.18. imddel on the left, we are

interested in how much of the excitation forf(#), is transmitted to the foundation, whereas in

the model on

the right, we are interested in how much obdise displacement is transmitted

through to the isolated mass. The equations of motiorhésettwo systems and the transmitted

forces are given below:

LEFT: Mx +Cx+ Kx= f(t) and f,(f)=Cx+Kx
RIGHT : Mk, + Cx, + Kx, = Cx, + KX,

(4.48)
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The associated FRFs can be computed directly from thesgoeguaf motion. In the first case,
the ‘input’ is the excitation force, f(t), and the ‘output’ is the transmitted force, fT(t), and in the
second case the ‘input’ is the base displacement, x1(t), and the ‘output’ is the mass displacement,

x2(t). The FRFs are given below for these input-output pairs:

(t) T M ” - .

W d

1

X
C 1
TR S N = ﬁi

Figure 4.18: Single degree-of-freedom model for isolation andrmessibility analysis

1 j2§(ﬂ)
F(jo) _ o) _X(j)
F(jw) (a)): , (a)) X,(jw)
I-|—| + /25| —
a)n a)ﬂ

(4.49)

Note that the FRFs are equal for the force transmiiggibihd motion transmissibility cases. The

magnitude of this function is shown below in Figure 4.19. Note the fimlipiey characteristics:

At low frequency, the transmission is ofweene and at/wn=V2 it is also unity.

Near resonancep/wn=1, the ratio is approximately a maximum; thus, we do not
typically want to operate below the frequeneywn=2, because the best we can do in
terms of isolation is onts-one. For example, if we are trying to isolate a midrip-c
bonding station and the floor is vibrating at 0.1 mm due to BWAlated excitations,
then the best we could do is to isolate the bonding operatiorl tmf. displacement,

which is clearly too large to obtain good repeatability jpreetision at the micro-scale.
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Above w/wn=2, the transmission ratio is less than one; this range is vidwalegion

systems are designed to operate most effectively. Also hateigolation is actually
BETTER for more lightly damped systems! This result isnteuntuitive because we
always think about damping as a way to reduce vibration, biisicase less damping

actually provides better isolation.

In practice, damping is not usually chosen too small bedhesspeed must pass through
resonance during ‘start-up’ procedures. If damping is too small, then the lightly damped
response is quite high and can damage the isolation system #p#esl dwells at

resonance for too long.

In summary, the resonant frequency of a force oranasolation system is chosen much
lower (1/10) than the frequency or frequencies of operafitis operating frequency

provides better isolation as indicated by the comments above.
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Figure 4.19: Isolation and transmissibility magnitude charatitefor SDOF systems
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4.11 Forced response in multiple degree-of-freedom systems

Nothing changes from our previous forced response analysis weddd DOFs. We still use
FRFs, except now we need more of them to account for th@l@unputs and multiple outputs
we might have. We still use convolution integrals, except againeged more IRFs because there
are more inputs and outputs to consider. Furthermore, we sexpidatt from our discussion of
modal decompositions in Chapter 3 that MDOF forced responggsisnean be thought of as a
group of SDOF forced response problems, and this is exacthat®e Superposition will play a
new role in MDOF forced response analysis by giving us the caydbilkdd the forced response
results not only from various input harmonics but also from various isutgell. This kind of

spatial superposition is illustrated in Figure 4.20.

Environment y Total _ Sum of responses
1 1 response to individual forces

at each frequency

Structural

—) + -
Vibrating System Y3 Y1 . F1 e F2
F 'y, Y,= H21#F; +H22+F,
Boundary conditions Y3 = H31=F; + H32 *Fz

Figure 4.20: lllustration of spatial superposition in multiple degrefreedom systems

We will use the two DOF system from Eq. ( 3.21 ) to study tweefl response of MDOF

systems. For arbitrary forcing conditions, that system of equaisarpeated below:

o el e TRk S

(4.50)
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wherefi(t) is applied to body 1 anid(t) is applied to body 2. Since we saw in previous sections
that step responses are a special case of harmonic responses fatquency, we will focus on
the harmonic response problem. Instead of a transfer fun&mpn( 4.50 ) produces a transfer
function matrix after taking the Laplace transform and settieginitial conditions to zero. The
impedance matrix and transfer function matrix are both peed below along with the
characteristic polynomia(s).

Ms* +2Cs + 2K -Cs-K

B(s) |=
[565)] -Cs-K Ms +Cs+K
[7(9)]=[B»)]
1 Ms +Cs+K Cs+K
T A(s)|  Cs+K Mg +2Cs +2K
where A(s) = (M5 +2Cs + 2K \Ms" +Cs+ K )~ (Cs + K
(4.51)
The transfer function matrix relates the responses to thegani as follows:
X)) _ [F)]
B(s)} =
[5 ]{Xz(s)} 1F )|
[Xi9)) _ H(s) Fi(s))
| X0 Fy(s >
_ H, (s) Hp(s)|[£(s)
H, (s) Hy(s)||F>(s)
where H, (s)= (M5 +Cs+K ) A(s)
H,(s) = Hy (s) = (Cs + K )/ A(s)
Hy,(s) = (M +2Cs + 2K Y A(s)
(4.52)

Eqg. ( 4.52 ) is the basis for frequency response analysis in MB@tems. The following

comments summarize the most important characteristics iaxpigssion:
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Each response has two components: one due to the first excéati@nother due to the
second excitation. This is the spatial superposition highlighted und=#20.

Each transfer functiorilpg(s), describes the effects tHad(s) has onXp(s). Stated

differently: if F2(s)=0 then the response ¥i(s) is solely due td¢-1(s) and is equal to
H11(s)FL(s).

|
Each transfer function has the same denominator, which feeetian of our earlier
discussion about how the system alone (and B.C.s) determines the maqdahties
because the modal frequencies are found by setting this denominataoezgpral(s)=0

(the characteristic equation). This result implies that no mattat tlie input is or what

the output is, the modal frequencies that govern the coreplmy and

particular solutions will be identical.

Although there are four transfer functions, only threehai are unique because the
mass, damping, and stiffness matrices are symmetric. Likethee are four FRFs and

four IRFs, but only three of each of them are unique.

The FRFs associated with the transfer functions in Ecp4 ¥are found by letting=jw, which

produces the following set of frequency domain equations obmoti

X, (jw) _ H(jo) H,(jo)][F(jo)
{Xz(jtv)} B {Hm(jw) By (jw)HFZ(jw)}
where H, (jw) = (K ~ Mo® + j(oC)A(ja))
H,(jw) = Hy(s) = (K + joC )/ A(jw)
H,(jo) = 0K - Mo + j02C ) A(jo)

(4.53)

It is worthwhile to reflect on the meaning of Eq. ( 4.58r)a moment. If DOF 1 is forced with a
simple harmonic input at a frequeneyl, and DOF 2 is forced with a simple harmonic input at
frequency w2, then the response at either one of the DOFs contains twaoentp in the steady

state, which are at the same frequency as the inputs but ffaverdiamplitudes and phases. In
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equation form, the two time domain excitations and partiqsteady state) responses are written

as follows using FRF notation:

If jl([) = Fli cos(a)lt + ¢il ) and fz (t) = F:i cos(a)zt + ¢12 )
then,

x,(8) = ”Hn (jwl JlE, COS(CO]I +¢y +LH,, (ja)l ))"‘ ”le (]'602 ] F, COS((Uzt +¢, + Lle(jwe ))
X,, (1) = ||H21(/w1 ]lFu Cos(wlt +¢, +LH,, (ja)l ))+ ”sz (./‘Uz 1|F2, Cos(a)zf +9,+LH,, 0502 ))

(4.54)

Therefore, the total responses of the two DOF system to ainfiséial conditions are:

{XI(I)} - X, {an }eoll COS((U(“t +4, )+ X, {ij }eozf Cos(a)(,zt Wik, )+ {xlp([)}

x,(0) 21 2 Xop ()

(4.55)

This equation is applied in the same way as Eq. ( 4.23 ) by agpiligée initial conditions to

calculate the unknown parameters in the complementary solution.

Now consider the form of the four FRFs in Eq. ( 4.54 ). Esddihhe complexHpqg(jw) has a
magnitude and phase (argument) that vary as a functioregfidncy, but the nature of these
functionsis quite different and more ‘complex’ than those for the SDOF in Figure 4.5. The four
Bode diagrams for these FRFs are plotted in Figure 4.21pHysical meaning of these functions

can be described as follows:

First note that there are two resonances in each FRRhahdhese damped natural
frequencies are the same in each of the plots because mempedricies do not depend on
the location of the excitation or response. When the system itedyat each of its

undamped natural frequencies, it exhibits a particular nshd@e of vibration. Figure
4.22 illustrates this frequency response behavior for the mod@e? md/s and 16.2 rad/s

with the following inputs at DOF os(6.2-tandcos(16.2-tfforce units).
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H1lGw) and H22(jw) are driving point FRFs because they describe the sinusoidal
response amplitude and phase when the excitation and respomrgdreresame DOF in
the system. Note that the phase in each of these FRFs ‘recovers’ following the so-called
antiresonanceswhich are the frequencies at which the FRF magnitudgsdsaddenly
(also called complex zeroes). ThereforeNalDOF system exhibits a -180 degree phase

shift in its driving point FRFs over the entire frequency rangeitintly, this is because

driving point responses ‘want’ to follow their respective inputs at each mode of vibration.
Mathematically, 180 degrees of phase is added at the antmreses due to the numerator

dynamics in the FRFs (i.d\/132+Cs+K in H11jw)).

All of the FRFs (magnitude and phase) are flat towards fequency because for
smaller frequencies (near zero), the system behaves likeoup @f static springs

according to:

X,(jO)) 1 [K K] [FR(0)
{Xz(j())} K lK ZKHFz(J'O)}
(4.56)

H12(jw) andH21(jw) are equal, so the system is said to exhibit Maxwell-Beiprecity,
which always holds when the mass, viscous damping, and stiffnesg&esasare
symmetric. Also, note that although the phase in eaclmesfet s@alled ‘cross-point’
FRFs fails to recover after the resonances because tler® amtiresonances (for this
two DOF case), aNl DOF system does not exhibiti*180 degree phase shift over the
entire frequency range, rather -&*180+90 degree shift. Intuitively, this result is
obtained because cross-point responses tend to lag behind $peittiee inputs at each

mode of vibration.

Three sets of FRF are shown for varying mass, varying darmaiagvarying stiffness in
Figures 4.23, 4.24, and 4.25, respectively. Think about the chantiesresonances and

antiresonances and try to develop explanations for these ishifie FRFs.
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Figure 4.21: FRF Bode diagrams for two degree-of-freedom system
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Figure 4.22: Steady state responses of two DOF systeexditations at two resonances
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Figure 4.23: FRF Bode diagrams for two degree-of-freedom sy{staiableM)
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Figure 4.24: FRF Bode diagrams for two degree-of-freedom sy{stmmableC)
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Freq [rad/s] Freq [rad/s]

Figure 4.25: FRF Bode diagrams for two degree-of-freedom sy{staiableK)

4.12 Common applications in multiple degree-of-freedom forced analysis

In many vibration isolation systems, elastomers are used asterphbuilding block. Examples
of elastomers include engine and powertrain mounts and bushinjskage mechanisms.
Because elastomers have both stiffness and damping, and bebaysexhibit special
characteristics, they require a slightly different modebipgroach. Figure 4.26 illustrates one
type of model for an elastomer that includes a linear spningarallel with a series damper-
spring. The purpose of this model is to describe the frequemmndent nature of the damping
and stiffness characteristics of the elastomer. In othedsytine stiffness of the elastomer is not
simply, K, but instead is dependent on the frequency of excitation. Lskewhe damping also
depends on frequency. The two equations of motion that degtibsystem in Figure 4.26 are

given below:

M+ C(x - X, )+ Kx= F.sinwt
Cli-x)=K,x,

(4.57)
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f(t) T M “I

TN NN N NN

Figure 4.26: Model of linear elastomeric damper

For zero initial conditions, the Laplace transforms of bothssid¢hese equations are,

(M5 + Cs + K X (s5) - CsX, (5) = F(s)
CsX(s)-CsX, (s)=K,X,(s)
(4.58)

After solving the second of these equationsXd(s) and substituting the result into the first

eqguation, the following transfer function betwegis) andF(s) is obtained:

With X, (s) = Oy X(s), we have
Cs+K,
X(s) Cs+K,
F(s) (Ms+Cs+K|Cs+K,)-Cs?

B Cs+K,
MCs + MK s* + CKs+ CK s + KK,

(4.59)

The corresponding frequency response function is rewrittéreifollowing way,
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X(jw) joC + K,
F(jo) 2
(o) KKe(l = ﬂ) + joC(K + K, - M)
(l),;
KU(—'/Q)C +1)
Ke

w

n

2 2
KKe(l --(”—2) +ijK(1 o X —"’—)
K

|
E(ngt 0—+1) - P .
= 5 ~ —, where wj:M,N=?,i_K_
(1 “wvz) + ]2; ¢ (1 N - CUj W, e
n ne CO;
(4.60)

We could have also obtained this FRF by describing the respax@eand xo(t), as the
imaginary parts of the rotating phasobsefa)t and Xoefwt, where X and Xo are complex

amplitudes, and the excitatiofft), as the imaginary part of the rotatin haﬁm{wt, whereFi
p ginary p ap

is the real amplitude of the excitation. This approach wbale led to the exact same FRF as in
Eq. ( 4.60 ). The magnitude and phase of this FRF are plottEdyure 4.27 below. Note the
following characteristics of this plot:

The SDOF FRF for an elastomer support has the same lowefregustiffness)
characteristics as the SDOF FRF for viscous damping. Téudt ie obtained because the
damper in Figure 4.26 cannot support any static load, sd tideastatic support comes

from the stiffnessk.

The SDOF FRF for viscous damping passes through -90 degreesapliaseindamped
natural frequencypn="(K/M), but the SDOF FRF with an elastomer support does not.
This result is obvious from Eqg. ( 4.60 ) and means that resenamelayed to a slightly

higher frequency.
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Even though the elastomer support has the same damping coef@iciant same mass,
M, it has a smaller damping ratiy,because the effective stiffness near resonance is

K+Ke (i.e. (=C/2V(KefiM)).

Mag H¢o) [lengthfforce]

Phs H(») [deg]

10" e

SN Viscous, £=0.1

As Ke increases, the system in Figure 4.26 approaches the systerarm £itg (left).

Ke/K=0.1
Ke/K=0.2
Ke/K=0.4

-
[=3
o

-
[41]
o

i 1
02 0.4 08 0.8 1 1.2 1.4 1.6 1.8 2

]

-200
0

1 1
0.2 04 08 0.8 1 1.2 1.4 1.6 1.8 2
Frequency Ratio, wfw_

Figure 4.27: Frequency response function for SDOF system lagitomer support

The differences mentioned above become important when disgusbration (force and
motion) isolation systems as described before (see Figugy. A he transmissibility function
across an elastomer is derived below and plotted in Figurdat.B8=1 kg, K=100 N/m C=2 N-
s/m and variableKe. Note that there is little difference between thduction in transmissibility

achieved when using a viscous or elastomer isolation system liomthie-mid frequency range;
however, there is a substantial difference &wwn>5. Also, the relative phase approaches -180

degrees for the elastomer but only -90 degrees for the systenisgitius damping as frequency

increases. Intuitively, this phase difference means thatldstomer is more effective
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at blocking higher frequencies because it has an additional méviee in the denominator of its
FRF that helps to causelzéco2 decrease in amplitude rather than justa decrease due to this

additional loss in phase.

E(jo) K
F(i 2 2
() (1 w )+j2ge—w (1+N_w_2)

¢ )

(4.61)

10 1 = s - T T
Iy 3 ;'Ivllal
B i X
S H frup® "
E 10 ————+
i) ;
= E;
3
E10"{ - Kelk=01
2 Ke/K=0.2
= ——. Ke/K=0.4
- Viscous, £=0.1
10-_ - 1 1 H 5 :
10 10 10 10
Frequency Ratio, /o
0. -
-50
@
@
=, %
2-100F et
=
1)
£
o ;
_150 — > .1
-200 H .U A ..“ —
10 10 10 10°

Frequency Ratio, ofe_

Figure 4.28: Transmissibility function for SDOF system wldstomer support
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If a SDOF system is forced near its resonant frequenayll wibrate with large amplitudes.
If the damping is increased, its steady state amplitude detrease considerably; however,
damping is usually very difficult to introduce into systenilesiin the original design or with a
retrofitted damper of some kind. For that reason, aerdifft type of vibration reduction
mechanism is often used: the vibration absorber. Vibration absa®erst dissipate energy like
damping does; rather, they absorb energy that would othdpeiseparted to the original system
by the excitation. Figure 4.29 is a schematic of an undamped-3p€em with and without a

vibration absorber.

f(t) T %K . f(t) T S "

Figure 4.29: SDOF undamped system with (right) and withoft} devibration absorber

The equations of motion of these systems derived using Newton’s laws are given below:

WITHOUT : Mx + Kx = F, sinwt
WITH: Mi+(K + K, ) —K, x, = Fsin(wt) and M % +K x —K x=0

(4.62)

and the associated FRF and FRF matrix are:
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WITHOUT: 2@ ___ 1

Flw) K-Mw"

X Mo’ - "
WITH- @) 1 _|K+K, - Mo K, 7 JF(a))

X{t(w)J _Ku Ku —Mua)" l 0

L L &~ M. w’ K, F(w)
Aw) K, K+K, -Mo*|| 0

where

Aw) =K + K, - Mo* JK, - M,0° )-K?

(4.63)

Note the form of these two sets of equations. First, thatems in Eq. ( 4.62 ) are differential
eguations and the equations in Eq. ( 4.63 ) are algebraic eqatairthey describe the same
exact systems. This transformation from differential to algebequations is the main benefit of
using Laplace (and Fourier) transforms for solving vibrations pnafl Instead of having to
integrate the time domain equations of motion, we can looktljirat the algebraic equations in

the frequency domain and solve the problem almost by inspection.

In this case, we would like to design the absorber so tha¢spense of the system near
resonancep=(K/M), is reduced. If we force the system with a harmonic @beit at resonance,
then energy will continually be added to the system becauseengxciting the system in phase
with its velocity. This resonant forcing causes the amplitdidieeodisplacement response to grow
linearly without bound. Our goal is to design a vibration abs@bé¢his does not happen. In

other words, we want the energy we put into the system tbdmelaed by the madda instead of

massM. The question is: What should the absorber mass and stiffaéssrder to produce the
minimum motion of masM at the resonant frequenay=\(K/M)? The answer is in the 1-1
element of the FRF matrix in Eq. ( 4.63 ). If we design tismeber such that

\(Ka/Ma)=wn=\(K/M), then the mas¥l does not move at all in the steady state because:
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[Xo) | _(_1 K,-Mw’ K, {F(w)
IX(,(W) Alw) K, K +K, - Mo’ s 0 J
_-1[ 0 K, [F(w)
“Rle <[l o)
[ 0 xp(f)=0
= _—]F(w) = (t)—isin(a)t—n:)
= =0,

(4.64)

The original FRFs between the excitatidft), and response(t), and modified FRFs with the
absorber included are shown in Figure 4.30. Note that theydartresponse is zero at resonance
when the absorber is perfectly tuned and very small whenbgw@lzer is mistuned by 10% to
either side of the resonance. In the presence of dampindgunimeg requirements are more

complicated but are easily determined as well.
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Figure 4.30: FRFs for undamped SDOF system and systenalstitber
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