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Chapter 1

Vectors

1.1 The Philosophy of Physics

Everything I’m going to tell you in the next two weeks is a lie.
The reason for this is that physics is an experimental science. Over the

course of the Scientific Revolution, it slowly became accepted that if you wanted
to know how the Universe works, you had to actually go do an experiment and
find out. This may seem obvious to us today, but this way of thinking has
important ramifications for the way we do physics, which can be easy to forget
when first learning about the subject. At its core, physics is about coming up
with models to try to understand how the Universe works, and then making
predictions from those models which we can test in an experiment.

Because the ultimate laws of physics are not handed down to us from some
higher being, it’s left to us to try to figure out what they are. Unfortunately, we
are faced with the problem that our experimental data will always be incom-
plete. There’s always a region of the Universe we haven’t been able to observe
yet, a complicated type of material we haven’t been able to build in a lab yet,
or some very short distance scale which we haven’t been able to probe yet.

As a result of this, any theory of physics comes with an asterisk on it, which
tells us that it is only valid as far as we know so far. Newtonian mechanics, the
subject of Physics 20, was the prevailing theory of how mechanical bodies be-
haved, up until the early 1900s. After observing the ways in which the Universe
appeared to behave, Isaac Newton and other scientists realized that they could
assume certain mathematical rules about how physical bodies should behave
which fit this data, and allowed them to make further experimental predictions
which were subsequently verified. But eventually, once experiments became
sensitive enough to make detailed measurements involving the motion of light,
Newtonian mechanics was replaced with a more complete theory, called Special
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6 CHAPTER 1. VECTORS

Relativity.

These facts are relevant to this course in two primary ways. First, it puts
what you are about to learn into perspective, which is always a useful thing
to know before taking any course on any subject. Newtonian mechanics is a
model for how the world works, which has been proven to be very successful for
describing the behavior of what me might call “everyday” objects, bodies which
are average in physical size and move at speeds much slower than the speed of
light. In some sense, this theory is “wrong,” in that we now have theories which
are more accurate, and only approximately reproduce Newtonian mechanics
under certain conditions. However, Newtonian mechanics is still an incredibly
useful tool. If I were studying, for example, the projectile motion of a rock fired
from a catapult, in principle, a theory of the detailed microscopic properties of
the spring used to build the catapult would provide me with more information
than Newtonian mechanics. But this is usually unnecessary in any practical
application - once I measure the speed with which my catapult can launch
rocks, then I can make use of this information to study the motion of the rock
with a very high level of accuracy, more than enough to be able to get it over
the walls of my enemy’s castle. However, if I wanted to build a better, more
powerful spring, I would eventually need to know more about the chemistry of
the materials it’s made of.

Secondly, the fact that the practice of physics involves doing experiments
and inferring laws from them means that there is an art form to doing physics.
Being able to look at experimental data, decide what information is actually
relevant to what you need to know, and then building a theory from there takes a
lot of training. If you continue to do scientific research as a career, you probably
won’t be competent at this until you’ve finished your PhD, and only after years
working as a professional researcher will you become skilled at it. But the ability
to look at a situation, decide what information is relevant, and answer a question
is a skill which you can start honing now, and this is really the most useful thing
which you’re going to learn in your early physics education. At the beginning
of your education, this skill will be mostly developed by accepting some general
physical principles, and attempting to make a physical prediction that could be
tested in an experiment. As you begin to take lab classes, you’ll start to learn
how to actually do the experimental part of this process. Ultimately, if you
continue on to become a professional researcher, you’ll learn how to actually
look at the Universe and say something new about it. But whether or not you
continue on to become a professional physicist, I think you’ll find that developing
this ability will be incredibly useful to you in life in general, and this sort of
mindset is the one I hope to center this course around.

With that said, let’s start learning about some physics.
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1.2 Vectors

In Newtonian mechanics, we want to understand how material bodies interact
with each other and how this affects their motion through space. In order to
be able to make quantitative statements about this, we need to develop a sort
of mathematical language for describing motion. Part of this language involves
calculus, since we know that calculus lets us talk about how things change in
a quantitative way. The other part of this language involves the notion of a
vector. A vector is a mathematical object which not only has a magnitude, but
also an orientation in space. For example, the velocity of a material object is a
vector. It has a magnitude, which we call its speed. This tells us how “quickly”
the object is moving, in other words how much distance it travels in some time.
It also has a direction - moving to the left is different from moving to the right.

This is in contrast with what we call scalars, which are simply just numbers,
with no direction. For example, the temperature of an object is a scalar -
temperature doesn’t “point” in a direction. However, if we were to put two
bodies of different temperature in contact and ask about the heat flow between
them, we would be talking about a vector - the heat would flow at some rate,
and in some direction (from the hot body to the cold body).

When we write vectors down on paper, there are two common notations.
One way is to write them with an arrow over them, such as ~a. Another way
is to simply write them in bold, such as a. When I want to talk about the
magnitude of a vector, I will usually write this as the name of the vector without
any special style, just as a. Another notation is to write the magnitude as |~a|.

One type of vector which we’ll talk about a lot is the displacement between
two objects, which is shown in Figure 1.1. If I have two objects somewhere in
space, the displacement from one object to the other is a vector quantity, whose
magnitude is the distance between them, and whose orientation points from the
first object to the second object. We can use this example to demonstrate the
first mathematical operation we can do with vectors, which is vector addition.

Consider the three points in space, A, B, and C. These could represent the
location of some particles interacting in some way, or maybe this is just some
map of where my house is in relation to the rest of Goleta. In any event, we
call the vector pointing from point A to point B ~vAB. Likewise, the vector from
point B to C is ~vBC , and the vector from A to C is ~vAC . We define the vector
sum of ~vAB and ~vBC to be equal to ~vAC ,

~vAB + ~vBC = ~vAC . (1.1)

This agrees with our intuitive sense of moving through space - if I walk from
A to B, and then from B to C, I’ve effectively walked from A to C. Notice,
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Figure 1.1: The most beautiful vectors ever drawn.

however, that if I had walked these two different routes in straight lines, the
total distance I would have walked would NOT be the same. On the homework
you’ll explore the difference between these two distances.

Notice that graphically, we add two displacement vectors by taking the tail
of the second vector and placing it at the tip of the first vector. In the example
of the three points in space, the vectors were already lined up in this way. There
will be other situations in which we want to add vectors that do not necessarily
line up in this fashion. One example of this is when we want to add or subtract
velocity vectors, in order to find the relative velocity between two objects. In
this situation, we take one of the vectors, and move it so that the tail of one
vector lines up with the tip of the other vector, while maintaining the length
and orientation of the vector that we moved. This process is known as “parallel
transport.” An example of this is shown in figure 1.2.

We can also multiply vectors by numbers. When we multiply a vector by
a positive number, we simply multiply the magnitude by that number, while
leaving the orientation unchanged. When we multiply a vector by a negative
number, we multiply its magnitude by the absolute value of this number, while
reversing its orientation. As for notation, if I want to write the result of mul-
tiplying ~v by a number α, I will denote it as α~v. One important fact is that
scalar multiplication distributes over vector addition, which is to say

α
(
~a+~b

)
= α~a+ α~b. (1.2)
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Figure 1.2: Parallel transporting a vector so that it can be added to another
one.

Geometrically, the above statement says that I am just multiplying all of the
side lengths in the triangle formed by the three vectors by the same amount, in
order to get a similar triangle. It is also true that

(α+ β)~v = α~v + β~v. (1.3)

1.3 Coordinate Systems

Now, in principle, we could perform vector manipulations in a completely geo-
metric way, by drawing them with their lengths and orientations, and finding
the resulting vector sums. However, it is usually easier to work with something
called a coordinate system. A coordinate system consists of a point called the
origin, and a choice of vectors, equal to the number of dimensions of space,
called axes. This is demonstrated in Figure 1.3. In this case I’m working in
two dimensions, which would be appropriate if I were, for example, considering
only objects sitting on a flat surface, say on the surface of a table. The origin in
some sense is a point of reference which I’ll use to describe all other points. The
two vectors x̂ and ŷ are the vectors which define my two coordinate axes. The
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“hat” on the names of the vectors is a symbol which means these are a special
type of vector, whose magnitude is equal to one (in some suitable set of units,
say one meter). The two vectors have an angle of 90 degrees between them.

Figure 1.3: Representing a vector in a coordinate system.

The reason that a coordinate system is useful is because it allows me to
write any vector as a set of numbers that describe the relation between that
vector and my basis. These numbers are called coordinates, and they can be
used to perform vector manipulations in a concise way. In Figure 1.3 I’ve drawn
the vector sum of 2x̂ and ŷ. Notice that to compute the sum, I moved one of
the vectors so that its tail was in contact with the tip of the other vector. The
resulting vector can be written as

~v = 2x̂+ ŷ. (1.4)

The fact that ~v is equal to this vector sum allows us to develop an efficient
method of working with vectors. The idea is to represent the vector ~v in terms
of the two numbers in this vector sum,

~v =

(
2
1

)
. (1.5)
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Any vector that I can draw can be represented in this way, for some choice of
numbers. Imagine I have another vector,

~w = 3x̂+ 4ŷ. (1.6)

Using the rules of vector addition, I can write

~v + ~w = 2x̂+ ŷ + 3x̂+ 4ŷ = 5x̂+ 5ŷ. (1.7)

If I write the above statement in my new language of coordinates, I find

~v + ~w =

(
2
1

)
+

(
3
4

)
=

(
5
5

)
. (1.8)

Thus, the vector sum, in coordinates, is just the sum of the coordinates of the
two vectors. Figure 1.4 shows a graphical representation of why this works. In
general, we work with the notation

~v = vxx̂+ vyŷ. (1.9)

The number vx is called the x coordinate, and vy is the y coordinate.
We can also represent scalar multiplication this way,

5~v = 5

(
2
1

)
=

(
10
5

)
. (1.10)

An important fact to always remember is that a vector is a quantity which
exists in its own right, without a coordinate system! The displacement between
campus and my house has a well defined length and orientation, regardless
of how I describe it. Choosing a coordinate system is just a way to make
calculations easier. Depending on which coordinate system we pick, we will get
different values for the coordinates of a vector. But the vector will always be
the same vector.

In order to specify a vector, I can do two things. First, I can just specify its
coordinates. This tells me how to form the vector out of the coordinate vectors,
similar to what I have written above. Alternatively, I can specify the magnitude
of the vector, and its angle with respect to some fixed direction in space. As a
matter of convention, we usually choose to specify vectors in terms of the angle
they form with the x̂ vector (although nothing says that we MUST make this
choice). With a little trigonometry, we can see that

vx = v cos θ ; vy = v sin θ (1.11)

Because our coordinate vectors are perpendicular, we can use the Pythagorean
theorem to show that

v =
√
v2x + v2y . (1.12)

Figure 1.5 shows how this works.
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Figure 1.4: A geometric representation of how we can use coordinates to add
vectors. Notice the use of parallel transport to add two vectors whose tails are
initially both at the origin.

1.4 The Scalar Product

There is another commonly used operation we’re going to want to perform with
vectors, which goes by many names. It is often called the scalar product, but
it is also referred to as the dot product, or inner product. Given two vectors ~a
and ~b, their scalar product is defined as

~a ·~b = ab cos θ (1.13)

Geometrically, this product gives us a sort of sense of how much ~a lies along ~b,
which is shown in Figure 1.6. While not immediately obvious, it will turn out
that this mathematical object shows up a lot in physics, and so it is useful to
give it a special status, and give it a name.

The scalar product distributes, in the sense that

~a ·
(
~b+ ~c

)
= ~a ·~b+ ~a · ~c. (1.14)
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Figure 1.5: The relation between a vector’s coordinates and its length and
orientation.

This fact can be proven with some knowledge of geometry and trigonometry.
For our coordinate vectors, since we know the lengths and orientations, we can
see that

x̂ · x̂ = ŷ · ŷ = 1 ; x̂ · ŷ = 0. (1.15)

Figure 1.6: A geometric representation of the dot product.

Using the above facts, we see that the dot product of two vectors can easily
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be written in terms of their components,

~a·~b = (axx̂+ ayŷ)·(bxx̂+ byŷ) = axbxx̂·x̂+axbyx̂·ŷ+aybxŷ·x̂+aybyŷ·ŷ = axbx+ayby.
(1.16)

Notice that the final expression would not be as simple if we had chosen a more
complicated set of coordinate vectors. A special case of the above expression
tells us that

a = |~a| =
√
~a · ~a. (1.17)

1.5 Three Dimensions

The idea of a vector easily generalizes to three dimensions. We add another
coordinate vector, which we often call ẑ, which is perpendicular to both and x̂
and ŷ. Any vector in three dimensions can be written in the form

~v = vxx̂+ vyŷ + vz ẑ, (1.18)

and the scalar product is written as

~v · ~w = vxwx + vywy + vzwz. (1.19)

The expression for the length of a vector in terms of the dot product with itself
is still the same. An example of a three-dimensional coordinate system is shown
in Figure 1.7.

Tomorrow we’ll learn about how to use some of these ideas to describe the
motion of particles.
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Figure 1.7: Representing a vector in three dimensions. Image credit: Kristen
Moore



16 CHAPTER 1. VECTORS



Chapter 2

Kinematics

2.1 Displacement and Velocity

In order to understand the motion of physical objects, we need to develop the
mathematical language to describe it, which is usually referred to as Kinematics.
Because we know that we can use vectors to describe objects with magnitude and
orientation, we are going to use vectors to describe motion. The idea is to define
the position vector of an object as the vector from the origin of some coordinate
system to that object, which is demonstrated in Figure 2.1. We usually refer
to the position vector of the object as ~r (t), since of course the word position
starts with the letter p. The notation emphasizes that, in general, the location
of the object will change with time. Often we will simply refer to the position
vector of a particle as its position.

If my object is at a given point at some time t1, and then it is at another
point at time t2, the displacement vector over that time interval is defined as

∆~r = ~r (t2)− ~r (t1) . (2.1)

Remember: this is not the same thing as the total distance traveled between the
two points! In general, even if the particle follows some sort of wiggly path in
between these two points, the displacement is still defined as the above vector
quantity.

Using the displacement, we can define the average velocity over the time
interval, which is given by

~vavg =
∆~r

∆t
=
~r (t2)− ~r (t1)

t2 − t1
. (2.2)

This agrees with our usual notion of velocity as being a notion of distance
traveled per time, although it is important to remember that this is a vector

17
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Figure 2.1: The definition of the average velocity over a time interval, defined
in terms of the displacement vectors.

quantity. This is shown in Figure 2.1. In the limit that the time interval goes
to zero, we recover what is called the instantaneous velocity,

~v (t) = lim
t1→t2

~r (t2)− ~r (t1)

t2 − t1
≡ d~r

dt
. (2.3)

This defines the (instantaneous) velocity of an object as the derivative of the
position with respect to time. This idea is shown in Figure 2.2. If we write out
the position and velocity vectors in terms of coordinates, what we find is that

~v (t) = lim
t1→t2


rx(t2)−rx(t1)

t2−t1
ry(t2)−ry(t1)

t2−t1
rz(t2)−rz(t1)

t2−t1

 =

drx
dt
dry
dt
drz
dt

 (2.4)

and so we have

vx (t) =
drx
dt
, (2.5)

and similarly for the y and z components. The magnitude of the velocity is
referred to as the speed.

The velocity vector is different from the displacement vector in an important
way. The displacement vector is an oriented line from the origin to the location
of the particle, and has physical units of length. The velocity vector, however,
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Figure 2.2: The definition of the instantaneous velocity as the time derivative
of the displacement. The velocity at the first time is given, while several other
position vectors along the motion of the particle are also shown.

has units of length divided by time, and it is NOT a displacement vector that
extends in space between two points, even though this is how we’ve drawn the
average velocity. As shown in Figure 2.2, the tail of the instantaneous velocity
vector is usually placed at the location of the particle at that time, but it is
important to remember that drawing the vector as something that extends in
space is really just a way for us to graphically represent the fact that it has a
magnitude and direction. In reality, velocity doesn’t have a length that extends
through space, so in some sense it’s not really correct to draw it on the same set
of axes as the displacement vectors, although we usually still do this anyways.

Another important fact about the velocity vector is that if we shift the
origin of our coordinates, while maintaining the orientation of the axes, the
components of the velocity vector don’t change, whereas the components of the
displacement vector do change. We’ll discuss this in more detail when we cover
Galilean relativity on day four.
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We can find the displacement in terms of the velocity by integrating,

∆~r =

∫ t2

t1

v̂ (t) dt =

[∫ t2

t1

vx (t) dt

]
x̂+

[∫ t2

t1

vy (t) dt

]
ŷ+

[∫ t2

t1

vz (t) dt

]
ẑ. (2.6)

One can check that this is correct using the fundamental theorem of calculus
for each component of the position and velocity. The total distance traveled by
the object, often referred to as the arc length of its trajectory, is given by the
integral of its speed,

s =

∫ t2

t1

|~v (t) |dt (2.7)

where s of course stands for “arc,” since no other important terms I just men-
tioned start with the letter s.

After defining the velocity, we can also discuss higher order derivatives. The
second derivative of the position, or the first derivative of the velocity, is referred
to as the acceleration,

~a =
d~v

dt
=
d2~r

dt2
. (2.8)

The average acceleration over some time is given by

~aavg =
~v (t2)− ~v (t1)

t2 − t1
. (2.9)

Again, the change in velocity can be obtained from the integral of the acceler-
ation,

~v (t2)− ~v (t1) =

∫ t2

t1

~a (t) dt (2.10)

Usually, acceleration is the highest order derivative that we consider. This is
because Newton’s laws tell us what the acceleration of an object is in terms of the
forces acting on it. However, higher order derivative occasionally come up. The
third derivative of position, or first derivative of acceleration, is usually referred
to as the “jerk.” The fourth derivative is often referred to as the “jounce,” or
sometimes the “snap,” while some sources cite the fifth and sixth derivatives as
the “crackle” and “pop,” respectively.

It is absolutely imperative to remember that these are all VECTOR quan-
tities! They must be manipulated as such, making sure to correctly add the
different components together.



2.2. MOTION AT CONSTANT ACCELERATION 21

2.2 Motion at Constant Acceleration

While the mathematical language of kinematics that we’ve developed so far
allows us to describe arbitrary motion, it is quite often the case that we are
studying motion in which the acceleration is constant. Therefore, it is useful to
derive some equations that describe the motion of a particle in this special case.

For simplicity, we’ll assume that the motion begins at time zero, and denote
the final time as simply t, with intermediate times (being integrated over)
referred to as t′. The notation we’ll use for any quantity at time zero will be

~v (0) ≡ ~v0. (2.11)

Now, we know that we can find the final velocity according to

~v (t) = ~v0 +

∫ t

0
~a dt′. (2.12)

In terms of components, we have

~v (t) = ~v0 +

[∫ t

0
axdt

′
]
x̂+

[∫ t

0
aydt

′
]
ŷ +

[∫ t

0
azdt

′
]
ẑ. (2.13)

Because all of the components of the acceleration are constant, this simply
becomes

~v (t) = ~v0 + axtx̂+ aytŷ + aztẑ = ~v0 + ~at. (2.14)

Remember that the acceleration is constant in the sense that it does not change
in time. It is, however, still a vector quantity, with a magnitude and a direction.

Now, similarly we can find the position according to

~r (t) = ~r0 +

∫ t

0
~v
(
t′
)
dt′ = ~r0 +

∫ t

0

(
~v0 + ~at′

)
dt′. (2.15)

Because ~v0 and ~a are constant, the result is

~r (t) = ~r0 + ~v0t+
1

2
~at2 (2.16)

This result is often referred to as one of the “kinematic equations,” but keep
in mind that it is applicable only in the case that the acceleration is constant
throughout the motion. The above expression is absolutely untrue when the
acceleration changes with time.

Also, notice that our final result is specified in terms of three quantities that
we need to provide: the (constant) acceleration, the initial starting velocity,
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and the initial starting position. These pieces of information we need to provide
about the behavior of the motion at its beginning are often referred to as “initial
conditions,” or sometimes “boundary values.”

In one dimension, the above kinematic equation reads

rx (t) = rx0 + vx0t+
1

2
axt

2. (2.17)

In higher dimensions, this expression will be true for each component separately,
since the kinematic equation is a vector equation.

I want to pause for a moment to point out that up until now in this course,
we haven’t actually done any physics yet. Everything we’ve talked about so
far has involved how to develop a good language for describing motion, and is
really just math. So far I haven’t told you anything about what sort of motion
actually occurs in nature as a result of some sort of physical principles. I’m
going to change that now by introducing the subject of projectile motion.

2.3 Projectile Motion

Projectile motion is the motion that occurs for a material body under the in-
fluence of gravity alone. An example of this would be the motion of a bullet
after it has been fired from a gun (assuming that we are neglecting the effects
of air resistance). For reasons which we will come to understand later on in
the course, for objects moving near the surface of the Earth, it is usually a
very good approximation to say that gravity causes the objects to move with a
constant acceleration, with a value that is completely independent of the body
in question. We generally refer to this value as g, and on Earth the numerical
value for its magnitude is approximately 9.8 meters per second squared. Its
orientation is directed towards the ground.

Since the motion of a body under the influence of gravity is described by
a constant acceleration, we can use the equation we derived in the previous
section to describe its motion. Let’s imagine that we have a gun which fires
a bullet with some initial velocity, held at some initial starting point. This is
shown in Figure 2.3. What we want to do is find the position of the bullet as a
function of time, after it is fired.

In order to solve this problem efficiently, we’re going to want to set up a
coordinate system. The common convention is to set up a coordinate system
whose x axis is parallel with the ground, and whose y axis points vertically
upwards away from the ground. The origin is generally placed so that the x
coordinate of the starting point of the bullet is zero - in other words, it is aligned
horizontally with the nozzle of the gun. As for the vertical location of the origin,
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we have two choices that both make sense. We can either take the origin to be
at the location of the nozzle of the gun, or we can choose the origin so that it
is on the ground. In this case, I’m going to orient my coordinates so that the
origin is on the ground, but any other choice would be fine, so long as I am
consistent with my choice. This is shown in Figure 2.3.

Figure 2.3: The set up of our projectile motion problem, complete with coordi-
nate axes. The dotted line is a path we suspect the particle might take. Image
credit: Kristen Moore

Now, the equation that we derived in the previous case will give me what
I want to know (the location of the bullet as a function of time), so long as I
provide it with three things: the initial location of the bullet, the initial velocity
of the bullet, and the (constant) value for the acceleration. In our coordinates,
we can see that the initial location of the bullet is specified by

~r0 =

(
0
h

)
, (2.18)

where h is the height of the nozzle of the gun off of the ground. As for the
initial velocity, we can either specify this in terms of components, or the initial



24 CHAPTER 2. KINEMATICS

magnitude and angle. Usually, it is more physically intuitive to specify the
magnitude and angle, so we write our initial velocity as

~v0 =

(
v0 cos θ
v0 sin θ

)
, (2.19)

where v0 is the initial magnitude of the velocity of the bullet (its speed), and θ
is the angle the initial velocity makes with the horizontal axis (the ground).

As for the acceleration, we are told that it will have a magnitude equal
to g, pointed towards the ground. Therefore, if we take g to be the positive
magnitude of the acceleration, the vector form of the acceleration will be

~a =

(
0
−g

)
. (2.20)

Notice that the y component is negative! This is a result of the fact that we
oriented ŷ to be pointing up away from the ground, whereas the acceleration
points down towards the ground.

With this information clarified, I can now make use of my kinematic equa-
tion. The x component of the motion is described by the equation

rx (t) = rx0 + vx0t+
1

2
axt

2, (2.21)

or,
rx (t) = v0 cos θt. (2.22)

The y coordinate of the motion is described by

ry (t) = ry0 + vy0t+
1

2
ayt

2, (2.23)

or,

ry (t) = h+ v0 sin θt− 1

2
gt2. (2.24)

Combining these together, we can write the position vector of the bullet as a
function of time as

~r (t) =

(
v0 cos θt

h+ v0 sin θt− 1
2gt

2

)
(2.25)

So now we have an expression for the position of the bullet as a function
of time. However, we know that this expression has an obvious limit to its
validity. Eventually, one of two things will happen. One possibility is that
the bullet will shortly fall back to the ground, at which point it will no longer
be under the influence of gravity, and projectile motion will no longer be an
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adequate description of its trajectory. The second possibility is that we have
an unimaginably powerful, rocket-powered rifle, and we’ve fired the bullet with
such a large initial speed that it is able to travel very far from the surface of
the Earth, and the approximation of constant acceleration is no longer valid. If
the speed is large enough, it is possible for the bullet to completely escape the
Earth’s gravity, and never return.

Assuming that the first situation is more accurate, one thing we would like to
do is figure out the time at which the bullet hits the ground, and then proceeds to
do something else which is not correctly described by projectile motion (bounces
off the ground, gets stuck in the dirt, or whatever). Now, in order to figure this
out, we need to understand how to take a physical constraint (the bullet hits
the ground) and turn it into an appropriate mathematical statement, which will
somehow allow us to get to the ultimate answer we want.

Now, if we think about it, the statement that the bullet has hit the ground,
in our vector language, is really the statement that the y coordinate has become
zero. Thus, the mathematical statement of our condition is

ry (t) = h+ v0 sin θt− 1

2
gt2 = 0. (2.26)

What we have now is an expression which can be solved to find the possible
values of t which satisfy this condition. This is really just a math problem,
and we can use the quadratic formula to see that the possible solutions to this
problem are

t =
−v0 sin θ ±

√
v20 sin2 θ + 2gh

−g
. (2.27)

Of course, the quadratic formula has two possible solutions. How could this
be the case? Presumably, there is ONE time when the bullet hits the ground,
not two. Well, we need to apply some more physical reasoning. Certainly, the
time must be in the future, and so it should be a positive number. This rules
out one of the possible answers, and so we see that the time that the bullet hits
the ground must be

tg =
v0 sin θ +

√
v20 sin2 θ + 2gh

g
. (2.28)

An easy thing to immediately notice about this expression is that it is inversely
proportional to g, so that when the acceleration due to gravity is larger, it takes
a shorter amount of time for the bullet to hit the ground. This makes intuitive
sense - if the acceleration due to gravity is not very strong, we expect it to not
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influence the motion of the bullet as much, and so it will take longer for the
motion of the bullet to deviate from its initial velocity, which is pointing up and
away from the ground.

We can also ask how high the bullet will go before starting to fall back
down. We know physically that the bullet will travel up, come to a stop, and
then turn around. Therefore, the maximum height must be attained when the
vertical component of the velocity goes to zero. The y component of velocity as
a function of time can be found by differentiating the y coordinate, and we find

vy (t) = v0 sin θ − gt. (2.29)

If we set this equal to zero, the time at which the maximum height is obtained
is

tmax =
v0 sin θ

g
. (2.30)

The maximum height is found by evaluating the y coordinate at this time,

ymax = ry

(
v0 sin θ

g

)
= h+ v0 sin θ

v0 sin θ

g
− 1

2
g

(
v0 sin θ

g

)2

, (2.31)

or

ymax = h+
v20 sin2 θ

2g
. (2.32)

Notice that the maximum height obtained depends on the starting height, but
the time it takes to get there does not. Also notice that in order to find a
maximum value, we had to take a derivative. Does this sound reminiscent of
anything you remember covering in your calculus courses?

Also, notice that in the case that h = 0, which is the case that the bullet
is fired from the ground, the amount of time it takes to reach the maximum
height is half the amount of time it takes to reach the ground. This says that the
amount of time it takes the bullet to rise to its maximum height is the
same as the amount of time it takes to fall back down to the original
starting height, which is a nice feature of projectile motion to remember.

One last question we might want to know the answer to is how far the bullet
travels horizontally before hitting the ground - that is, what is the x coordinate
of the bullet at the time when the bullet hits the ground. In order to figure
this out, we simply evaluate the expression for the x coordinate at the time we
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found previously,

xmax = rx

t =
v0 sin θ +

√
v20 sin2 θ + 2gh

g

 (2.33)

=

v0 cos θ

(
v0 sin θ +

√
v20 sin2 θ + 2gh

)
g

.

There’s another nice feature of projectile motion, which is that it’s relatively
easy to write down a relation between the x and y coordinates of the motion at
any given time. Because the x coordinate increases linearly with time, there is
a one to one relationship between the x coordinate of the bullet, and the time
that has elapsed. If we invert this relationship, we find

t =
rx

v0 cos θ
. (2.34)

If I specify a value for the x coordinate, the above expression will tell me how
much time has elapsed when the bullet has that x coordinate. Using this ex-
pression, I can write the y coordinate as a function of x coordinate, to find

ry (rx) = h+ v0 sin θ

(
rx

v0 cos θ

)
− 1

2
g

(
rx

v0 cos θ

)2

, (2.35)

or
ry (rx) = h+ tan θrx −

g

2v20 cos2 θ
r2x. (2.36)

Thus, if we plot the y coordinate against the x coordinate, which indicates the
bullet’s trajectory, we will find a parabola, which is a generic feature of projectile
motion. Specifically, this means that in Figure 2.3, the shape of the dotted line
is parabolic.

So far we’ve talked about how to describe the motion of particles using
vectors and kinematics, and studied one physical case where we were told that
the acceleration was constant. Tomorrow we’ll talk about Newton’s laws, and
we’ll try to start understanding why objects move in the various ways that they
do.
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Chapter 3

Newton’s Laws

3.1 Forces and Newton’s Laws

Now that we have a way of describing the motion of bodies, we want to start
developing a model for why they move in the ways they do. Newtonian me-
chanics is a model which tells us how to compute the acceleration of a body in
terms of something called the force acting on it, an idea which we will clarify
in today’s lecture.

The rules which tell us how objects behave under the influence of a force
are generally referred to as Newton’s Laws. Unfortunately, this is very bad
terminology. The use of the word “law” implies that we somehow know these
rules to be absolute fact, and that they hold under all circumstances. Of course,
we know today this is not true - special relativity and quantum mechanics
provide a more accurate description of physics. Even before we knew this, it
was still true that Newtonian mechanics was a theory of physics, just like every
other model we have ever created to describe the universe. In common language,
the word “theory” is often used as a pejorative, in an attempt to discredit some
idea as being unfounded or untested. However, in scientific language, any model
of the universe is a theory of physics, even if it has been experimentally tested
and confirmed to be accurate in a variety of situations.

What then, exactly, is a force? Intuitively, a force on an object is a sort
of “push” or “pull” that results in the object experiencing some sort of change
in its motion. Ultimately, all of the forces that act on a body are a result
of interactions it experiences with other bodies, and so the idea of forces is
really just a succinct mathematical way to describe how bodies interact with
each other. There are various ways that bodies can interact with each other,
and thus various types of forces that can act on objects. Objects can exert
gravitational forces on each other, and electrically charged particles experience

29
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forces from electric fields. We have a variety of models and theories which tell
us exactly what these forces should be in order to correctly describe the motion
of bodies in these situations. In general, there can be several different forces
which act on an object.

In particular, the force acting on a body is a vector quantity. It has a
magnitude (roughly speaking, how much we’re pushing on the body), along
with a direction (roughly speaking, where we are trying to push it). When
more than one type of force acts on a body, we say that the net force acting on
it is the vector sum of all of the individual forces. In order to study the motion
of bodies in a quantitative way, we need to develop a precise set of rules which
tell us, given a certain physical situation, exactly what forces are present on a
body, and how they affect its motion. As we mentioned above, in Newtonian
Mechanics, these rules are referred to as Newton’s Laws, and there are three of
them.

The first of Newton’s laws says that if a body is under the influence of zero
net force, then its acceleration is zero. In other words, if a body interacts with
other bodies in such a way that the net force acting on it is zero, its motion is
unperturbed, and it has a constant velocity.

Newton’s second law generalizes this statement. It says that the net force
acting on a body is equal to the mass of that body, times its acceleration,

~F = m~a. (3.1)

Notice that when the force is zero, this reduces to Newton’s first law. The
mass of an object is a positive, scalar number which tells us how much a body
resists changes in its motion. It is a somewhat abstract quantity, and is different
from the weight of an object. The weight of an object is the force that object
experiences due to the effects of gravity. If I take a ball on Earth and move it
to the Moon, where the effects of gravity are weaker, then the weight of the ball
will be reduced. But its mass will stay the same. If I were to take a magnetic
ball out into empty space far from any other bodies, where any gravitational
effects are negligible, and study its reaction to a magnetic force, I would be
learning something about its mass.

Newton’s second law isn’t very useful unless I start telling you something
about what types of forces can act on an object and how they behave. But
before I start giving examples of forces, Newton’s third law tells us that there
are certain conditions that any valid force must obey. In particular, whenever
two bodies interact, the magnitude of the force exerted on each body is the
same, while the directions of the forces are opposite. This is often stated by
saying that bodies exert equal and opposite forces on each other. For example,
two bodies with mass will be attracted to each other through gravity, and the
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force they exert on each other will be the same in magnitude. The direction
of the force on one body is such that the force points towards the other body,
so that the two forces are opposite in direction. This is sketched in Figure 3.1.
You’ll explore Newton’s law of gravitation more in the homework.

To clarify the difference between the two forces in a force pair, we often
develop a subscript notation. If I have two bodies which I will call A and B,
then the force from body A acting on body B is written ~FA on B. Newton’s third
law then reads

~FA on B = −~FB on A. (3.2)

3.2 Some Examples of Forces

As I mentioned previously, the gravitational interaction between two bodies is
one way two bodies can exert forces on each other. For small bodies moving
near the surface of the Earth, as we mentioned yesterday, it is usually a good
approximation to say that the acceleration of a body due to gravity is constant,
and we call this constant acceleration ~g. As a result, the force acting on the
body due to gravity is

~Fg = m~g, (3.3)

where m is the mass of the body. In principle, the small body ALSO exerts a
force on the Earth. You’ll explore this more in the second homework.

Another way that two bodies can interact is through electromagnetic forces.
When I take a cup of coffee and sit it down on a table, I know that despite the
force of gravity pulling the cup down, the cup sits still, and so its acceleration
must be zero. This must mean that some other force is acting on the cup, in
order to result in a net force of zero on the cup. The other force of course comes
from the interaction of the cup with the table. In principle, the reason that
the cup and table do not simply pass straight through each other is related to
chemistry. At a microscopic level, the electrons in the atoms of the cup and
the table are electrically charged, and repel each other through the force of
electricity.

If we had a knowledge of how these electrons interacted with each other, and
a lot of patience, in principle, we could calculate the force that the table and
cup exert on each other. However, if we just want to model the interaction of
the cup and the table on a larger scale, we don’t really need to do this. Because
we know the cup is not accelerating, then we know that the net force on the
cup must be zero. Therefore, the net effect of the interaction of the cup and
the table must be such that the force from the table on the cup must be the
negative of the force acting from the Earth on the cup, so that the two forces
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Figure 3.1: Two massive bodies will exert a gravitational force on each other,
and it will obey Newton’s third law. Newton’s law of gravitation, which you’ll
work with in the homework, is shown at the bottom.
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add to zero. Thus, we say
~N = −~Fg, (3.4)

and we call the force between the cup and table the normal force.

It’s important to remember that we didn’t compute this normal force using
any sort of deeper principle, or any theory of how the cup and table should
interact. We simply imposed the physical condition that the cup isn’t accel-
erating, along with the knowledge that gravity is acting on the cup, to infer
what the force between the cup and table must be. Because we’ve defined the
normal force in terms of how one might go about measuring it, we sometimes
say we’ve given the normal force an operational definition. The normal force is
always defined to be perpendicular to the surface over which two bodies meet.
In general, there can also be forces as a result of contact between two bodies
which point parallel to the direction of the surface. We’ll deal with these later
in the lecture, when we discuss friction.

3.3 Free-Body Diagrams

In general, a body can have many different forces acting on it, and as we’ve
seen, we need to add these forces together as a vector sum, in order to find
the net force acting on the body. In order to do this, it’s convenient to work
with something called a free-body diagram. To see how this works, let’s set
up a coordinate system, where the origin is centered on the location of the
coffee cup I just mentioned. We’re going to make the approximation that the
cup is a point-like object, which, despite sounding somewhat silly, turns out to
be a surprisingly reasonable assumption, provided that the shape and overall
structure of the body doesn’t change much (later in the course we’ll understand
why this approximation works so well when we discuss the notion of center of
mass). If I wanted to study how a physical body was squeezed or compressed
due to a force, then this approximation wouldn’t be so useful, but for our current
purposes it will suffice. In particular, we will choose a set of coordinate axes
where the x direction is aligned along the surface of the table, and the y direction
points upwards away from the surface of the table. This is shown in Figure 3.2.

The idea is to use this free-body diagram to indicate the forces acting on
the body in question. The way we do this is by drawing the forces acting on the
body as vectors, with the tails of the vectors located at the origin. The forces
are drawn in the direction that they point in space. However, while the vectors
have an orientation, and a magnitude, they do not have units of length, and
they are not displacement vectors - they don’t actually extend physically out
into space. Force has units of Newtons, or kilogram-meters per second squared.
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Figure 3.2: A free-body diagram for a cup sitting still on a table.

In our example, the force of gravity acts on the cup and points down, while
the normal force points upwards. We’ve drawn the two vectors with the same
length, to indicate that their magnitudes are the same.

We can also consider a more complicated example. Imagine that I had tied
a string to the coffee cup, and I begin to pull on the string at some angle with
respect to the surface of the table. Let’s assume that I know how much force
this exerts on the cup, and I call this force ~Fs. My free-body diagram now looks
like Figure 3.3 (I’ve dispensed with the table for the sake of clarity). This sort
of force is often referred to as a tension force.

Figure 3.3: A free-body diagram for a cup, sitting on a table, being pulled by a
string.

I now want to compute the net force on the cup, assuming that these are the
three forces acting on it. It is usually useful to do this component by component.
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I’ll start by computing the x component of the net force, which means I need to
add the x components of each of the three forces. Now, we know that gravity
points downwards, so its x component is zero. As far as the x component of the
tension is concerned, I can use my usual trigonometry relation to write

Fsx = Fs cos θ, (3.5)

assuming that the direction and magnitude of this force are two quantities
which I’m given. For the moment, we’ll still assume that the table only exerts
an upwards normal force on the cup, so that there is no friction to consider.
Thus, the total force in the x direction is

Fx = Fs cos θ. (3.6)

From Newton’s second law, this tells us that the acceleration in the x direction
is

ax =
Fs cos θ

m
, (3.7)

where m is the mass of the coffee cup.
As for the y components of the net force, we must add the y components of

the weight, the normal force, and the tension. The result is

Fy = −mg +N + Fs sin θ, (3.8)

where I’ve used the specific form of the gravitational force. Now, I do not know
a priori what the value of the normal force is. But, if I happen to be moving
the string in such a way that there is no vertical acceleration of the coffee cup,
then the net force in the y direction must be zero. If I set the above expression
equal to zero, then I know that

N = mg − Fs sin θ. (3.9)

In the case that there is no string, or the case that the string is completely
horizontal, the second term on the right is zero, and we recover the previous
situation. Notice that pulling up on the string at an angle reduces the normal
force between the cup and table (can you see why this makes intuitive sense?).

3.4 Friction

We know from everyday experience that if I were to take my coffee cup and
slide it horizontally along the table, and then let go, eventually the coffee cup
would come to a stop. Because the velocity of the cup has changed over time,
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we know that the cup is accelerating, and so it must have a force acting on it.
Of course, this is the result of friction between the cup and the table. Again,
the reason for this force is a result of complicated chemical reactions between
the cup and the table at the atomic level. In principle, if we knew the detailed
laws of how these materials interact, we could figure out what this force is.

However, experience has shown that it is usually possible to model the fric-
tion between two objects in a very simple form, and that it comes in two types.
The first type of friction is called kinetic friction, and it occurs between two
objects that are in contact and moving against each other. Empirical evidence
suggests that the magnitude of the force due to kinetic friction can be written
as

fk = µkN, (3.10)

where N is the magnitude of the normal force between the two objects, and
µk is a parameter called the coefficient of kinetic friction. This parameter is
something we can measure from experiment, and is taken to be a property of
the two bodies. For example, if I was sliding a coffee cup across a wooden table,
I would look up the coefficient of kinetic friction between ceramic and wood.
Experience has shown that, to a good approximation, this parameter does not
depend very much on how quickly the objects are moving past each other, and
so we will take it to be a constant. The direction of the force is along the surface
of contact, and for each body it points opposite to the direction of motion.

Figure 3.4: A free-body diagram for a cup sitting on a table being pulled by a
string, and subject to a kinetic friction force.

If I revisit my previous free-body diagram and include the effects of kinetic
friction while the coffee cup is being pulled by the string, it would look like
Figure 3.4. Because friction acts along the surface of contact, it only has an x
component. Therefore, the net force in the x direction is now

Fx = −µkN + Fs cos θ. (3.11)
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The magnitude of the normal force is still determined by the condition that
the coffee cup does not accelerate vertically, and if we use the value we found
previously, we can write

Fx = −µkmg + µkFs sin θ + Fs cos θ. (3.12)

If we pull on the string so that the motion along the table is at constant velocity,
then all of the components of the force must be zero, including the x component
above. Thus, if we set the above expression to zero, we can write

Fs =
µkmg

µk sin θ + cos θ
, (3.13)

which tells us, for a given angle, how large the magnitude of the tension must
be in order to move the block at constant velocity.

Notice that the above expression for the required tension force has a very
nontrivial dependence on the angle. We might initially expect that if we want to
pull the coffee cup horizontally with the smallest required force, we should pull
the string horizontally. But this is not true, because there are two competing
effects at play here. While it is true that lifting the string projects a smaller
component of the force along the x direction, it also helps reduce the normal
force, since the vertical component of the tension now helps compensate the
effects of gravity. If we minimize the above expression as a function of angle,
we can figure out the ideal angle to pull the string at. The result turns out to
be

tan θideal = µk. (3.14)

The above resuls are valid while the two objects are moving against each
other. We also know from experience that two objects placed in contact with
each other will generally experience friction as a result of their contact, even
when they are not moving. This is the reason that a cup placed on a slanted
table does not slide down if the slant is not too steep, even though gravity is
pulling it down. The force between the table and the cup that is preventing any
motion in this case is called static friction.

Static friction is similar to the normal force in the sense that we usually
figure out what it is by imposing some physical constraint. For example, if a
cup is not sliding across a slanted table, it must be because there exists a static
friction force helping to balance the force of gravity. However, we know from
experience that if we tip the table enough, the coffee cup will eventually begin
to slide. Thus, there is a maximum amount of resisting force that friction can
provide. Experience has shown that we can find out what this maximum value
is in terms of the normal force, such that

fs ≤ µsN, (3.15)
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where µs is called the coefficient of static friction.

An example of this is shown in Figure 3.5, where we’ve drawn a rectangular
block on an inclined plane at some angle. We might ask ourselves, how much
can we tip the ramp before the block begins to slide? Well, this is a matter
of determining, as a function of the angle, what static friction force would be
required to hold the block in place. Once the angle becomes large enough that
this hypothetical force exceeds the maximum allowed frictional force, we know
the block will begin to slide.

Figure 3.5: Behold the block on a ramp, in all its glory.

To answer this question, we set up a free body diagram for the block, as
shown in Figure 3.6. We’ve chosen to align the x direction pointing downwards
along the ramp, and the y direction perpendicular to the ramp, pointing out.
We’ve indicated the presence of a potential normal and static friction force,
which together describe the interaction of the block with the ramp, as well as
the force due to gravity. Using trigonometry, we can see that the components
of the gravitational force are

Fgx = Fg sin θ = mg sin θ ; Fgy = −Fg cos θ = −mg cos θ, (3.16)

where m is the mass of the block.

Sometimes working out the components of the gravitational force in situa-
tions like this can be frustrating, since the location of where the angle is defined
(the corner of the ramp) is not aligned with the origin of our free-body diagram
(the location of the block). A good way to check that you have the right expres-
sion is to make sure that the forces reduce to a sensible limit when the angle
goes to zero. In this case the ramp is flat, the above expressions would tell us
that there is no component of the force along the x direction. This implies that
there is no component of the gravitational force pointing along the surface of
the ramp, as should be the case when the ramp is flat.

Now, the net force in the y direction will be due to the normal force and
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Figure 3.6: A free-body diagram for a block on a ramp, subject to gravity and
static friction.

component of gravity along that direction,

Fy = N −mg cos θ. (3.17)

If we assume that the block stays sitting on the surface of the ramp, it will
not be accelerating perpendicular to it, which means that the net force in the
y direction must be zero, and so

N = mg cos θ. (3.18)

When the angle goes to zero, the cosine term is equal to one, and we recover
the usual result for a flat table.

As for the x direction, the two relevant forces are static friction, and gravity.
Adding these two forces, we find

Fx = mg sin θ − fs. (3.19)

Notice that I’ve oriented the static friction force so that it will point opposite
to the force of gravity, in order to compensate its effects. If I want the block
to not slide at all, then the acceleration along the x direction should be zero,
which means the net force along the x direction should be zero. Equating the
above expression to zero, I find

mg sin θ = fs. (3.20)

Now, we know that the maximum frictional force we can sustain is given
by

fs ≤ µsN = µsmg cos θ. (3.21)
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This means that we must have

mg sin θ ≤ µsmg cos θ, (3.22)

or,
sin θ ≤ µs cos θ. (3.23)

Since cos θ is always positive over the range of angles we are considering, we can
divide it over the inequality, and we ultimately find that we must have

tan θ ≤ µs (3.24)

in order for the block not to slide.
In the homework you’ll explore some more problems that involve working

with forces and free-body diagrams. Tomorrow we’ll discuss the ideas of Galilean
Relativity, Inertial Reference Frames, and the Equivalence Principle, and how
we can use them to help us solve physics problems.



Chapter 4

Galilean Relativity

4.1 Changing Coordinate Systems

In previous lectures, I’ve told you that when I do physics problems, it doesn’t
matter what choice of coordinate system I make. Today I’m going to explore
this statement in a little more detail.

Let’s imagine that I have two bodies in space, interacting gravitationally,
shown in Figure 4.1. The force they experience depends on the distance between
them, and their two masses. I’ve included a choice of coordinates, and indicated
the position vectors of each body.

Now, what if I wanted to make another choice of coordinate system? I’ve
indicated in Figure 4.2 the same physical system, but with another coordinate
system chosen. This new coordinate system is drawn in blue, and I’ve labeled
the coordinate axes with primes. Now, because the position vector of an object
is defined with respect to the origin of some coordinate system, it becomes clear
that with a new set of coordinates, the position vectors of my bodies will change.
This is also shown.

Now, the question I want to ask is, how are the position vectors in the two
coordinate systems related to each other? To answer this question, I’ve also
drawn another vector, ~d, which is the displacement vector from the origin of the
first coordinate system to the origin of the second coordinate system. Using the
laws of vector addition, it becomes clear that

~r1
′ = ~r1 − ~d, (4.1)

and likewise for the position of the second body. Alternatively, I could rearrange
this to write

~d+ ~r1
′ = ~r1. (4.2)
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Figure 4.1: Two massive bodies will exert a gravitational force on each other,
according to Newton’s law of gravitation. Apologies for MS Paint.

This vector equation just says that if I start at the origin of the original co-
ordinate system, move to the origin of the new coordinate system, and then
move along the vector ~r1

′, I’ll end up at the location of the first body. This is
what I should expect, since the net result of moving from the origin of the first
coordinate system to the first body is described by the displacement vector ~r1.

Now, despite the fact that I can use two different coordinate systems to
describe my physical problem, the forces experienced by the bodies should be
the same regardless. The forces are vector quantities which act on the bodies,
and have an existence in their own right, independent of a choice of coordinate
system. This is made explicit by the formula for the force. It depends on the
physical distance between the two bodies, and their masses, which are all
quantities that have nothing to do with my choice of reference frame. So the
forces are always the same, and so are the masses.

The fact that this is true means that for either of the bodies, the expression
~F/m, or the force on that body divided by its mass, is always the same, no
matter what choice of coordinates I pick, so that

~F/m = ~F ′/m. (4.3)
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Figure 4.2: A second choice of coordinate system will, in general, lead to differ-
ent position vectors.

Now, I told you that the way that we actually determine the motion of a body
is by using Newton’s second law,

~F/m = ~a. (4.4)

If it is indeed true that I can use any choice of coordinate system to do a physics
problem, then Newton’s law should be true no matter which coordinate system
I choose. If it is, and the quantity ~F/m is the same regardless of the choice of
coordinates, then it better be true that the acceleration is also the same in both
coordinate systems.

However, the acceleration is something which is defined in terms of the posi-
tion vector. Since the position vector DOES depend on the choice of coordinate
system, I had better be more careful in making sure that the acceleration vector
is actually the same. In the original coordinate system, I have

~a =
d2~r

dt2
. (4.5)

Now, in the new coordinate system, I have

~a ′ =
d2~r ′

dt2
=

d2

dt2

(
~r − ~d

)
. (4.6)
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However, the vector ~d is just a constant displacement vector, and so its time
derivative is zero. Therefore, we find

~a ′ =
d2~r

dt2
= ~a. (4.7)

So everything checks out.

4.2 Galilean Relativity

But now let’s imagine I do something a little different. Imagine I were to pick a
new frame whose origin was not sitting still with respect to the old frame, but
instead moving at a constant velocity with respect to the old frame. That is,
imagine I had

~d (t) = ~d0 + t~vno, (4.8)

where ~vno and ~d0 are some constant vectors. Notice that the vector ~vno is the
velocity of the origin of the new frame with respect to the old frame. We can see
this because ~d is nothing other than the position vector of the origin of the new
frame with respect to the old frame. If I therefore want to compute the velocity
of the origin of the new frame, I need to compute the time derivative of ~d,

d

dt
~d =

d

dt

(
~d0 + ~vnot

)
= ~vno, (4.9)

as claimed. Because this vector tells me the velocity of the origin of the new
coordinate system with respect to the origin of the old coordinate system, we
often just say that this is “the velocity of the new frame with respect to the old
frame.” The subscript “no” stands for “new with respect to old.”

I now want to understand how this might change the physics of my problem.
Again, so long as t 6= 0, the position vectors with respect to one frame will be
different from the position vectors with respect to another frame. But, I can
again show that the accelerations will stay the same, and so Newton’s laws will
still be valid. If I compute the acceleration in the new frame this time, I find

~a ′ =
d2~r ′

dt2
=

d2

dt2

(
~r − ~d

)
=

d2

dt2

(
~r − ~d0 − t~vno

)
. (4.10)

However, the second derivative with respect to time will kill off the second and
third terms, and so again

~a ′ =
d2~r

dt2
= ~a. (4.11)
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Thus, if Newton’s laws hold in the first frame, they also hold in the new frame.
This result is called the principle of Galilean relativity, and the change of coor-
dinate system we have performed is called a Galilean transformation.

This result tells us that there is really no way to prefer one of these frames
over the other. Newton’s laws, which we believe to be the “laws of physics,”
hold the same way in both frames. So there is really no way we can say which
one is the “correct frame,” or which origin is the one sitting still.

However, while the accelerations are the same, the velocities will be different.
We can see this by considering the velocity of body number one in the new frame.
What we find is that

~v1
′ =

d~r1
′

dt
=

d

dt

(
~r1 − ~d0 − t~vno

)
= ~v1 − ~vno. (4.12)

We see that the velocity is shifted by the velocity of the new frame with respect
to the old one. To make my notation a little more explicit, I can write this as

~v1n = ~v1o − ~vno, (4.13)

where the subscripts would be read as “body one with respect to new frame,”
“body one with respect to old frame,” and “new frame with respect to old
frame.”

Now, velocity transformations can be a little annoying, because it’s easy to
accidentally get the subscripts backwards, or be dyslexic about which frame is
which. There is a notational method I find very helpful to make sure you have
the transformation correct. If I take the above equation and rearrange it, I have

~v1o = ~v1n + ~vno. (4.14)

Notice that on the right side, the letter “n” shows up twice, once on the outside
of the two letters, and once on the inside. If I imagine these two copies of “n”
“canceling”, then they leave me with simply “1o,”

1n+ no→ 1o. (4.15)

The result is the correct arrangement of subscripts on the left side.

I can also generalize this formula a little bit. Imagine that I have three
objects or points in space, A, B, and C, which are moving with respect to each
other. If I associate the origin of a coordinate system with two of them, and
then consider the velocity of the third object, what I have is that

~vAC = ~vAB + ~vBC . (4.16)
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This equation says that the velocity of object A as observed from the
location of C is the same as the vector sum of the velocity of object
A with respect to the location of object B, plus the velocity of object
B with respect to the location of object C . I find this form of the veloc-
ity addition law to be the easiest one to remember, because I simply imagine
“canceling out” the two Bs.

Another important property to remember is that for any two objects A and
B,

~vAB = −~vBA. (4.17)

Intuitively, this says that if I think you’re moving to the left, you instead think
that I’m moving to the right. I can verify this claim pretty easily from looking
at Figure 4.2. If ~d is the position vector of the new frame with respect to the
old frame, then certainly, −~d must be the position vector of the old frame, as
viewed by the new frame, since −~d points in the opposite direction, from the
origin of the new frame to the origin of the old frame. When we take a time
derivative to get the velocity, the minus sign carries through.

These ideas are actually probably familiar to you already, although you may
not have thought about them in this way. To give an example of these ideas,
imagine I’m standing on the Earth and I fire a gun horizontally. I’ve drawn
this in Figure 4.3. I’ve also set up a coordinate system centered around myself,
indicated in blue, with the bullet moving along the x direction, with velocity ~vb
with respect to my coordinates. For the sake of simplicity, I’ll ignore the effects
of gravity in this example (I’ll assume that I’m only worried about time periods
short enough that the bullet hasn’t started to fall noticeably).

I’ve also shown a car which I imagine happens to be driving by me as I
fire the gun. Let’s say that with respect to me, the car isn’t moving in the
y direction, but it is moving along the x direction with some velocity ~vc with
respect to me. Now, I’ve also drawn some coordinates centered around the car,
labeled in red. If the driver of the car measures the velocity of the bullet, then
we can use the velocity transformation rule to see that they will find

~vb
′ = ~vb − ~vc. (4.18)

If we want to be really careful that this is right, we can use the letter B for
bullet, C for car, and G for ground (where I’m standing). Then the above
equation says

~vBC = ~vBG − ~vCG = ~vBG + ~vGC , (4.19)

which obeys the rule for the subscripts that I mentioned previously.
Now, if I notice that the car is passing by me at the same velocity that I

fired the bullet, we have
~vb
′ = ~vb − ~vb = 0, (4.20)
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Figure 4.3: A demonstration of Galilean relativity, using the example of a bullet
traveling through the air, as observed by the gunman and a driver passing by.

which is to say that according to the driver of the car, the bullet is sitting still.
Of course, this makes sense. If the car drives by me at the same velocity as the
bullet, the driver of the car should see the bullet travelling next to him, sitting
still with respect to his coordinates.

Now, it is tempting to say that I am the one who is “really sitting still,”
and that the car is actually moving. This is because I am on the ground, and
the surface of the Earth is familiar to us, for obvious reasons. However, we
know in reality that the Earth is actually moving through space, and doesn’t
really represent any sort of special location. In fact, there is really no difference
between the car’s choice of coordinates and mine. The driver of the car and I
would both say that the bullet is moving at constant velocity, and so it is not
accelerating (at least not in the x direction). We also both agree that aside
from gravity (which would only affect the y component anyways), there is no
force acting on the bullet (at least not in the x direction), since it is in free fall
and not in contact with anything. Thus, we both agree that the force and the
acceleration are zero, and so we both agree that Newton’s second law is obeyed.
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4.3 Inertial Reference Frames

Lastly, what if I consider two reference frames whose relative velocities are not
constant? Let’s go back to our example in Figure 4.1, and imagine that ~d is
now given by

~d = ~d0 + ~vnot+
1

2
~gt2. (4.21)

That is to say, the second frame is moving with respect to the first in a way
that is quadratic in time, not linear - it is accelerating. If we now go to compute
the acceleration of the first body, according to the new frame, we find

~a ′ =
d2~r ′

dt2
=

d2

dt2

(
~r − ~d0 − ~vnot−

1

2
~gt2
)

= ~a− ~g, (4.22)

and so the acceleration is NOT the same. However, we know that the forces
are still the same in both frames. Therefore, it cannot be true that Newton’s
second law is the same in both frames. If it is true in one, then it cannot be
true in the other.

The same idea can be examined in the case of the car and the bullet. If the
car were accelerating with respect to me, then to the driver, it would appear that
the bullet had a net acceleration backwards, despite there not being any forces
acting on it in the x direction.

Assuming that Newton’s law is correctly obeyed in the first frame, this frame
is know as an inertial reference frame. The definition of an inertial reference
frame is one in which Newton’s laws are obeyed. We have seen that if I have an
inertial frame, any other frame which is moving at constant velocity with respect
to this frame will also obey Newton’s laws, and so it is also an inertial reference
frame. By starting with one inertial frame, we can find all other inertial frames
by considering all of the frames moving with respect to it at constant velocity.
However, any frames which are accelerating with respect to this frame will not
obey Newton’s laws, and we call them non-inertial reference frames.

When I first learned this fact, it seemed somewhat unsatisfying to me. The
result we’ve found is that while the universe doesn’t seem to “know” what speed
you’re moving at, it does seem to be able to make a distinction between which
frames are accelerating, and which are not. Why should the first derivative
of position be totally unimportant, while the second derivative is absolutely
crucial?

An even more unsettling example involves what happens if you stand with
your arms outstretched and spin around. Experience tells us that if I stand
still, I feel nothing special. But if I start spinning around in a circle, I feel a
tension in my arms. This is because my hands are now moving in a circle, and
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so there is a force required to keep them accelerating, which I feel in my arms.
By the way, this effect has nothing to do with whether or not you are standing
on the Earth - I could travel far out into intergalactic space, far away from any
other bodies, and this would still be the case. But this simple fact actually
reveals something profound about the way the universe works: there is a way
to distinguish between a rotating and a non-rotating frame. I can know if I
am “really” spinning or not. How can it be that if I go out into empty space,
there’s no way to tell what velocity I’m moving at, not even in principle, yet I
can tell for sure whether or not I am really accelerating or rotating?

If we don’t like these ideas, there are two possible ways we can think about
getting around them. One idea might be to generalize Newton’s laws. Maybe
there is a more general law, which takes into account all possible types of frames,
and the form of this equation always stays true, no matter what. The other idea
is that perhaps if empty space seems to care about acceleration and rotation,
perhaps it is actually not so empty as I thought. But it would have to be filled
with something pretty weird, something that cares about acceleration, but not
velocity.

It turns out that actually both of these ideas can be combined together to
help us find a resolution to this problem, but it involves making very radical
changes to the way we think about the universe. The resulting theory of physics
is known as General Relativity, and I’ll talk about it briefly at the very end of
the course. But, in the remaining time today, I want to show you a useful tool
about accelerated frames which will not only help you do physics problems, but
is actually, in disguise, the first step towards solving this puzzle.

4.4 The Equivalence Principle

Let’s imagine a situation where I am in a very simple looking rocket traveling
through empty space, shown in Figure 4.4. I’ve drawn a set of coordinate axes,
which I know to be an inertial frame. In this frame, I happen to know that the
rocket is about to start accelerating upwards, with an acceleration which we
will call ~g. I’m standing in the rocket, and I’m holding a ball. I’ve aligned the
axes so that at time zero, the floor of the rocket is at y = 0, and the ball is at
y = h. The rocket starts accelerating right at time zero. This type of reference
frame, aligned with an accelerating object in such a way that it is momentarily
at rest with respect to it, is often called an instantaneous rest frame for that
object at that time.

Now, at time zero, I let go of the ball, and I ask what happens. Because
the ball is now in empty space with no forces acting on it, its acceleration will
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Figure 4.4: Dropping a ball in a rocket... IN SPACE!

be zero. Because it initially had zero velocity, it will continue to not move, and
so the ball will stay at y = h. The floor of the rocket, however, will accelerate
from zero, and so the y coordinate of the floor will be given by

yf =
1

2
gt2. (4.23)

Eventually, the floor of the rocket will move upwards far enough to hit the ball
(which is sitting still). This time occurs when

yf = h⇒ t =

√
2h

g
. (4.24)

In general, before the floor hits, the distance between the ball and the floor will
be

d = yb − yf = h− 1

2
gt2. (4.25)

However, we know this equation looks very familiar. This is exactly the
same expression for the height above the ground when I drop a ball on Earth.
In fact, let’s pretend that I don’t know I’m in a rocket accelerating, and imagine
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my perspective from inside the rocket. As far as I know, I let go of a ball, and
the distance between the ball decreased according to the above equation. Of
course I’m now convinced I must be standing on the Earth, because clearly this
ball is falling under the influence of a uniform gravitational field!

Not only would the motion of the ball look the same, but the sensation
I would feel while standing would also be the same. If I were standing in a
laboratory on Earth, I would feel a contact force with the floor. I would say
that because I am not accelerating, there must be a normal force that the ground
exerts on me to compensate gravity, whose magnitude is mg, where m is my
mass. But someone watching me accelerate in the rocket would say I have it
all wrong - I AM accelerating, at a magnitude of g. The rocket is providing a
normal force to cause that acceleration, and it is the ONLY force acting on me.
This is also shown in the figure.

This is a nice result, and you’ll see when doing the homework that it can be
incredibly useful in solving some problems. I can always take an accelerating
reference frame, and pretend that I am not actually accelerating, but instead
I am subject to a gravitational field. I can also do the reverse, and remove a
gravitational field by assuming that I am in a laboratory in empty space, and
that laboratory is accelerating.

Now, this certainly all makes sense in terms of the Newtonian mechanics
we’ve been studying, although you might wonder if it’s just a nice mathematical
trick. Of course, I could also try seeing what happens to other objects in the
rocket. I could shine a laser pen around inside, and the light beam would move
along some path. If I were to go out on a limb and try to extend my previous
ideas, my conclusion would be that the behavior of light in an accelerating
reference frame is the same as its behavior in a gravitational field. In Figure
4.5, we’ve shown what it might look like if our rocket had a source of light on
one side, and a beam of light passed across the length of the rocket. Now, the
path of the light beam would appear to bend downwards, thus leading to the
conclusion that light is affected by a gravitational field. But of course this is a
silly idea, and it seems as though our astronaut in the rocket now has a way
to determine, once and for all, that he is actually accelerating, and NOT in a
uniform gravitational field.

Amazingly, it turns out that this equivalence of uniform gravity and accel-
eration is, in fact, always true. Believe it or not, light is affected by gravity - a
light beam passing by a massive object will be deflected by it (although not by
very much), and our astronaut cannot tell that he is accelerating. You might
wonder how something like a massless wave of light could possibly be affected
by gravity. There is a way to explain this phenomenon, but again, it requires
a dramatically different way of thinking about the universe, which we’ll discuss
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Figure 4.5: A light beam passing through a rocket.

briefly at the end of the course.
That concludes our lightning review of basic mechanics in terms of Newton’s

laws. Tomorrow, we’ll start talking about work and energy, a set of useful ideas
which will further help us solve a variety of physics problems.



Chapter 5

Work and Kinetic Energy

5.1 Work

Today I’m going to start introducing the concepts of work and energy, which will
be helpful for solving problems in a lot of situations where applying Newton’s
laws would be cumbersome.

Let’s imagine I have a block which I’m pushing across the floor, shown in
Figure 5.1. If I’m moving the block at constant velocity, then I know that I
have to apply a force to compensate the effects of kinetic friction,

~F = −~fk = µkNx̂ = µkmgx̂, (5.1)

where I’m assuming I’m moving the block in the positive x direction. N is the
magnitude of the normal force, m is the mass of the block, and the coefficient
of kinetic friction is µk.

I know that in order to perform this task, there is some sense in which I
need to put some “effort” into compensating the effects of friction. In order to
quantify this statement, let’s assume I move the block a total distance d. Then,
if I’m applying a force along the direction of the motion, a simple definition to
quantify this amount of effort might be

W = Fd, (5.2)

which we say is the amount of work that I have done on the block. This definition
takes into account how much force I am applying, and for how long of a distance
I do that. Intuitively, I would expect that increasing both of these things would
correspond to me putting more overall effort into moving the block.

Now, we can also say that because the floor exerts a frictional force on the
block, it also does work on the block. In this case, however, the frictional force

53
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Figure 5.1: Doing work on a block by pushing it across the floor.

opposes the motion of the block - its the reason we need to do anything to make
the block move - so perhaps we want to take this into account as well. In this
case, we say that the floor does negative work on the block, and we write

Wf = −fkd = −Fd, (5.3)

where I’ve used the fact that the magnitudes of the two forces are the same, and
I’ve also included a subscript to clarify that this is the work the floor is doing.

If I add these two together, I find that I get zero, since

Wt = Wm +Wf = Fd− Fd = 0, (5.4)

where the subscripts stand for “total,” “me,” and “floor.” Notice that zero net
force along the direction of motion implies zero net work.

I can generalize this definition to include forces pointing in arbitrary direc-
tions, which I’ve shown in Figure 5.2. In this situation, we want to get a sense
of how much the force I’m applying goes into moving the block, if I imagine,
say, that I am pulling on the block with a string at some angle. In some sense,
it seems like this should involve the component of the force along the direction
of the block. If the displacement vector for the block’s net motion is

~d = dx̂, (5.5)

then I define the work to be

Wm = ~F · ~d = Fd cos θ = Fxd. (5.6)

While it may not be obvious that this is the best possible definition, it will
become clear in a moment why it is useful.

Now, I can imagine moving the block along a sequence of paths, as shown
in Figure 5.3. If the block experiences a net force ~F1 while moving along a
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Figure 5.2: Work done by a force which is not along the direction of motion.

displacement ~d1, and a net force ~F2 while moving along a displacement ~d2, we
define the total work to be

Wt = ~F1 · ~d1 + ~F2 · ~d2. (5.7)

Figure 5.3: The addition of the work done along two paths.

In general, we can imagine that the object moves along an arbitrary path,
feeling a force which depends on where it is located. This is shown in Figure
5.4. The notation on the forces emphasizes that the force can depend on where
the object is, and the notation on the position of the object emphasizes that
this changes with time. Now, over short enough distances, we know a curve will
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look approximately straight. We can imagine that at time t1, the object moves
a tiny, infinitesimal distance which we call d~r. Over this small section of path,
the path is roughly straight, and so we define the infinitesimal work to be

dW = ~F (~r (t1)) · d~r. (5.8)

We write the total work over the path from ~r (t1) to ~r (t2) as

W =

∫ ~r(t2)

~r(t1)

~F (~r (t)) · d~r (t) . (5.9)

Figure 5.4: The work done along an arbitrary path.

The above object is called a line integral. It tells us to sum up all of the
infinitesimal contributions to the work along the path. In order to make sense
out of what it means to integrate with respect to a vector, and how to actually
compute the above object, we notice that the infinitesimal displacement at a
given time is

d~r (t) = ~v (t) dt, (5.10)

or the velocity at that instant times the time difference. Thus, we can write our
integral as

W =

∫ t2

t1

[
~F (~r (t)) · ~v (t)

]
dt, (5.11)

which is now just a regular time integral which I know how to compute, assuming
I know the path as a function of time, and also what the force is at each point.
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While it certainly doesn’t look like it from the above expression, the amount
of work done over a path is actually independent of how quickly the object
moves, so long as the forces only depend on where the particle is in space.
While it is beyond the level of this class to prove that, it is a useful fact which
can make some calculations easier - if I want to compute the work done while
going around in a circle, then so long as the forces doing work on the object
only depend on where the particle is located on the circle, I can assume the
particle moves in uniform cicular motion when computing the above quantity.

5.2 Kinetic Energy and the Work-Energy Principle

Now that I’ve defined this object called work, let’s put it to use. From Newton’s
second law, we know that we can write the total force on the particle as

~F (~r (t)) = m~a (t) , (5.12)

where I’ve assumed that the force, and thus acceleration, may change in time.
Using this, I can write the formula for the work as

W = m

∫ t2

t1

~a (t) · ~v (t) dt. (5.13)

Now, there is a useful formula for taking the time derivative of a dot product
of two vectors. If I have two vectors ~p (t) and ~q (t), then their dot product is

~p (t) · ~q (t) = px (t) qx (t) + py (t) qy (t) . (5.14)

If I take a time derivative of this, and use the product rule for taking derivatives,
I find

d

dt
(~p (t) · ~q (t)) =

dpx
dt

qx + px
dqx
dt

+
dpy
dt
qy + py

dqy
dt
. (5.15)

If I further rearrange this, I can write it as

d

dt
(~p (t) · ~q (t)) =

d~p

dt
· ~q +

d~q

dt
· ~p. (5.16)

So there is a “product rule” for dot products as well. However, make sure to
realize that I carefully checked this by using the definition of the dot product!
I didn’t just assume that it was also true for dot products just because it’s true
for multiplying regular numbers.

With this formula, notice that I can write

d

dt

(
v2 (t)

)
=

d

dt
(~v (t) · ~v (t)) =

d~v

dt
· ~v +

d~v

dt
· ~v = 2

d~v

dt
· ~v = 2~a · ~v. (5.17)
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Using this, I can write my expression for the work as

W =
1

2
m

∫ t2

t1

d

dt

(
v2 (t)

)
dt. (5.18)

Since this is just the integral of a derivative, we finally see that

W =
1

2
mv2 (t2)−

1

2
mv2 (t1) . (5.19)

The quantity K = 1
2mv

2, which depends on the speed of the body, is known
as the kinetic energy of the body. The above equation tells us that the amount
of work done on an object as it travels between two points is the same as the
difference between the kinetic energies that that body has at those two points.
This is known as the work-energy principle.

So far, it seems like all I have done is define two new quantities - work and
kinetic energy. But these ideas are actually very useful in solving problems. To
see how this is the case, let’s revisit the subject of a block sliding on a table,
shown in Figure 5.5. Let’s say that I give the block a shove, so that I start it off
with some initial velocity ~v0, which we’ll take to be entirely along the surface of
the table. As the block moves, we know it will be subject to a frictional force,
given by

~fk = −µkNx̂ = −µkmgx̂, (5.20)

where N is the magnitude of the normal force, m is the mass of the block, and
µk is the coefficient of kinetic friction. I’ve taken the positive x direction to be
along the direction of the initial velocity, so that the frictional force is negative
(I’ve avoided drawing the gravitational and normal forces on the diagram for
the sake of clarity, but they are there of course, acting solely in the vertical
direction). Because I give the block a shove and let go, once the block is moving
there is no applied force from me.

Now, what I want to know is, how far does the block travel before coming
to rest? Well, there are two ways we can answer this question. First, we can
solve for the position of the block as a function of time, and then solve for the
time that the velocity comes to zero. The x component of the force acting on
the block is

Fx = −µkmg, (5.21)

and so the x component of acceleration is

ax = −µkg. (5.22)

Now, if we integrate this equation once, we find

vx (t) = vx (0) +

∫ t

0
axdt

′ = v0 − µkgt. (5.23)
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Figure 5.5: A block being brought to a stop by friction.

Integrating again, we see that the position of the block as a function of time is
given by

x (t) = v0t−
1

2
µkgt

2, (5.24)

assuming that we take the starting position to be at x = 0.
Now, solving for the condition that the block’s velocity is zero, we have

v0 − µkgt = 0⇒ td =
v0
µkg

. (5.25)

If we use this in the expression for the position, we find

d = x (td) = v0

(
v0
µkg

)
− 1

2
µkg

(
v0
µkg

)2

=
1

2

v20
µkg

. (5.26)

However, there is a second way to do this problem, which is to make use of
the work-energy principle. We know that the change in kinetic energy of the
block will be the same as the work done on it during its motion. The net force
on the block is due to friction, and so if the block moves a distance d, the work
done on it is

W = ~fk · ~d = −fkd = −µkmgd. (5.27)

Make sure to remember that the work is negative! Now, the change in kinetic
energy is equal to the final kinetic energy, minus the initial kinetic energy. This
is equal to

∆K =
1

2
mv2d −

1

2
mv20 = −1

2
mv20, (5.28)
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since the final velocity is zero. Thus, we have

W = ∆K ⇒ −µkmgd = −1

2
mv20 ⇒ d =

1

2

v20
µkg

. (5.29)

This is the same result, but with much less effort! The moral of the story is this:
if you only care about what happens at the beginning and end of an object’s
motion, and don’t need to know the full trajectory as a function of time, the
work-energy principle can save you a lot of time. Never do more work than you
have to!

Now, we can also use the work-energy principle to do problems that would
be much more irritating, or possibly intractable, depending on how much math
we know. Let’s redo this problem, but consider a more complicated situation.
Let’s say I’ve taken the table and sanded it down in some strange way, so that
the coefficient of friction is not uniform over the table. As a specific example,
let’s say that

µk = Ax2, (5.30)

where A is some constant number. That is, the coefficient is a function of
position. If I were to revisit my expression for the acceleration, I would find
that

ax = −Agx2. (5.31)

Writing the acceleration in terms of the position, we find

d2x

dt2
= −Agx2. (5.32)

This equation is a differential equation which contains second order derivatives.
Not only have you not learned how to solve this yet, it turns out that the
solution for the position as a function of time is somewhat gross looking, and
difficult to work with.

However, the work-energy principle lets us get to the answer we really want,
without the intermediate step of solving for the trajectory. Again, we know that
the change in kinetic energy will be equal to the work done on the block. The
change in kinetic energy is still the same as before, since the mass, along with
starting and ending velocities, are the same. The only thing which is different
now is the total work done. But, I know how to compute this - it’s just the
integral of the force over the distance traveled. So if my block travels a distance
d, the work done is

W =

∫
~fk · d~x = −

∫ d

0
Amgx2 dx = −1

3
Amgd3. (5.33)
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Notice that in one dimension,

d~x = ~v (t) dt =
dx

dt
dt = dx. (5.34)

In one dimension, I can simply integrate with respect to x, although if I were
working in a higher number of dimensions, I would need to invent some fictitious
trajectory for my block to follow, and compute what ~v (t) is (which you’ll explore
on the homework). If I now equate the work done with the change in kinetic
energy, I find that

− 1

3
Amgd3 = −1

2
mv20 ⇒ d =

[
3

2

v20
Ag

]1/3
. (5.35)

Needless to say, this is much, much easier than using kinematics!

5.3 Power

The last concept I want to introduce today is power. Power is defined to be the
rate at which work is done,

P =
dW

dt
. (5.36)

Using our general expression for work, we can see that

P =
d

dt

∫
~F · ~v dt = ~F · ~v. (5.37)

Because the force acting on an object, along with its velocity, can be functions
of time, the power, in general, will also be some function of time. It is equal to
the rate of change of the kinetic energy, since we can easily calculate

dK

dt
=

d

dt

(
1

2
mv2

)
=

d

dt

(
1

2
m~v · ~v

)
= m~a · ~v = ~F · ~v = P. (5.38)

Notice that while in many cases, the net force on an object may be zero, it
is often still true that some agent is providing power. In the case of the sliding
block, if I am pushing the block along to compensate friction, I am doing work
on the block, and so I am expending some effort to do this. The rate at which
I do this is the power I am providing.

Actually, in an indirect way, I am actually doing work on the floor. Because
the floor does negative work on the block, the net work done on the block
from the floor and me is zero, and so is the net power supplied to the block.
So where does the result of my work go? Well, we know that when I rub two
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surfaces together, they get hot. So really I am heating the floor! The power I am
providing is going into the thermal energy of the floor, although that is a subject
more appropriate for a class on thermodynamics, not classical mechanics.

In many situations, power is a much more important quantity than total
work. Walking five miles over the course of a day is pretty easy, but running
five miles in an hour is a lot harder! Runners have to train their bodies to be
able to output power at a much higher rate than the average person.

Tomorrow we’ll continue our discussion of energy by introducing the con-
cepts of potential energy and energy conservation.



Chapter 6

Potential Energy

6.1 Potential Energy

Yesterday we introduced the ideas of work and kinetic energy. Today we’re
going to expand on these ideas, in order to further build our set of physics
problem solving tools.

Let’s consider a new type of system that I haven’t talked about yet. Let’s
imagine I have a block sitting on the floor, but it’s attached to a nearby wall
with a spring. This is shown in Figure 6.1. I’ll imagine that the floor has a
negligible amount of friction, so that I can effectively ignore it (maybe the floor
is actually an air hockey table or something). Initially, I’ve placed the block so
that the spring is not stretched or compressed at all, and is not exerting any
forces on the block. I’ve labeled this position as x0. If I’ve taken the location
of the wall to be x = 0, then we say that the spring has an equilibrium length
of x0.

Now, Hooke’s law tells us that as we start to move the block a little bit, the
force exerted by the spring on the block is given by

F = −k (x1 − x0) , (6.1)

where x1 is the new location of the block, and k is some positive constant which
characterizes the spring. This is shown in Figure 6.2. Notice that when x1 is to
the left of the equilibrium position, the sign of the force is positive, as it should
be.

Now let’s imagine that I compress the spring by some amount

∆x = x1 − x0. (6.2)

After yesterday’s lecture, I might want to ask how much work I’ve done on the
block-spring system. Well, I know that the force I exert will be opposite to what

63
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Figure 6.1: A block attached to a spring, sitting at rest.

Figure 6.2: Doing work on a block by moving it against the action of a spring.

the spring is exerting on the block,

Fm = +k (x1 − x0) . (6.3)

If I now compute the amount of work that I’ve done, the result is

Wm =

∫ x1

x0

~Fm · d~x = +k

∫ x1

x0

(x− x0) dx =
1

2
k (x1 − x0)2 =

1

2
k (∆x)2 . (6.4)

Notice that my final result doesn’t depend on the sign of ∆x, and is always
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positive - this agrees with our intuition that compressing and stretching a string
both require some positive effort on my part.

In some sense, while I’m applying a force to the block directly, it might be
more natural for me to think of doing work on the spring. The reason I say this
is because after the compression has finished, the block is more or less in the
same state it was in before I started, and has had zero net work done on it, since
it is sitting still before and after the compression, so it’s kinetic energy has not
changed. The spring, however, has changed noticeably - it is physically smaller
as a result of being compressed. We’ll elaborate on this idea in a moment.

Now, what happens when I let go of the block? Well, if I were considering
the case where I had just done work against friction, nothing. That’s because
there is only a kinetic friction force opposing the motion of the block while it
is moving. Once it stops, and I am not touching it, there is no longer any
force doing any work. However, in the case of the spring, this is no longer true.
Because the spring is compressed, there will be a force exerted on the block,
and once I let go, there is nothing to compensate that force. So the block will
start to move back to its equilibrium position.

As it does so, the spring will be doing work on the block. The amount of
work done will be

Ws =

∫ x0

x1

~Fs · d~x = −k
∫ x0

x1

(x− x0) dx =
1

2
k (x1 − x0)2 =

1

2
k (∆x)2 . (6.5)

This is the same amount of work I did on the spring-block system when I
compressed the spring. So what I’m starting to notice is that in some sense,
I did work on a system, did something to the spring to change its physical
nature, and then, when I let go, the spring restored itself to its original state,
while transferring the same amount of work to the block. Furthermore, because
the work done on the block is the change in its kinetic energy, I know that
after the spring has restored itself to its initial state, it has acquired a nonzero
velocity, given by

1

2
mv2 =

1

2
k (∆x)2 . (6.6)

All of this gives me the idea that maybe there is some sort of “stuff” which
is being transferred around from place to place in my system, whose amount
seems to stay the same. In order to start quantifying this, let me take the
expression for the work done during the compression and use it to define a new
quantity,

U (x) = −
∫ x

x0

Fs

(
x′
)
dx′ = k

∫ x

x0

(
x′ − x0

)
dx′ =

1

2
k (x− x0)2 , (6.7)
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which I will call the potential energy stored in the spring. While I originally
considered compression from x0 to x1, I’m now considering compression to some
arbitrary point x. Notice that it is a function only of the material properties
of the spring, described by k, and the location of the end of the spring (where
the block is). It is equal to the amount of work I did on the system when I
compressed the spring.

Also, notice that the only reason I could define this function in this way is
because it was possible for me to write down the force as a function of position.
I could not do the same thing for friction, because the frictional force acting on a
block is not just something I can write down as a function of position. The force
of kinetic friction depends on whether or not the block is moving (it is some
constant if it is moving, and zero otherwise), and so it depends on the velocity,
not just the location. I describe this by saying that the force from the spring is
a conservative force, whereas the force from friction is a nonconservative force.

I can also use the fundamental theorem of calculus to invert the above rela-
tionship, and write the force as

Fs (x) = −dU
dx

. (6.8)

So alternatively, in a system where I can define a potential energy, I can either
specify the force as a function of position, or the potential energy as a function
of position, and either one will tell me what the physics is. To see this explicitly,
we can take Newton’s second law for the spring acting on the block,

Fs = ma, (6.9)

and use my new definition to write

mẍ = −dU
dx

. (6.10)

So I’ve rewritten Newton’s laws in terms of this potential energy function.
Now, the observable thing I can measure for the block is its acceleration, and

so this tells me that the physically relevant quantity is actually the derivative
of the potential energy function, not the potential energy itself. To see this,
pretend I defined a second potential energy function,

Ũ (x) = U (x) + C, (6.11)

where C is some constant. We see that

dŨ

dx
=

d

dx
(U (x) + C) =

dU

dx
. (6.12)
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Because the derivative of the potential is what determines the forces and accel-
erations, then really, either of these definitions is just as good.

The reason for this ambiguity has to do with the fact that I can make
different choices for the lower bound of the integral in the definition of the
potential energy,

U (x) = −
∫ x

x0

Fs

(
x′
)
dx′. (6.13)

Let’s imagine that my new potential energy is defined to be the same integral,
but starting at a different lower bound,

Ũ (x) = −
∫ x

x̃0

Fs

(
x′
)
dx′. (6.14)

To see the relationship to the old function explicitly, let me break the integral
up into two parts,

Ũ (x) = −
∫ x0

x̃0

Fs

(
x′
)
dx′ −

∫ x

x0

Fs

(
x′
)
dx′. (6.15)

Now, the integral from x̃0 to x0 is

−
∫ x0

x̃0

Fs

(
x′
)
dx′ =

1

2
k (x̃0 − x0)2 . (6.16)

This number depends on k, and also the two possible lower bounds, but it does
not depend on x, the actual position of the end of the spring. Therefore, it is
just some constant with respect to x. The other integral on the right, of course,
is just my original potential energy function, and so I find

Ũ (x) =
1

2
k (x̃0 − x0)2 + U (x) = U (x) + C. (6.17)

This verifies my claim that the ability to shift the potential energy by a constant
is a result of the possibility to choose different lower bounds for the integral. Of
course, it certainly seems natural to define the lower bound as the position where
the spring is in equilibrium, and usually this is what we do, but the important
conclusion is that we don’t HAVE to, and none of the physics is affected by this
choice.

6.2 Conservation of Energy

Now, I want to continue elaborating on this idea that in some sense, there is
some sort of “stuff” which is being moved around in this system. In the language
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I’m developing, it seems like I did work on the spring, and put potential energy
into it. Then, the block lost this potential energy when it relaxed back to
equilibrium, but it gave that potential energy to the block in the form of kinetic
energy. Motivated by this thinking, let’s define the object

E = U +K =
1

2
k (x− x0)2 +

1

2
mv2, (6.18)

which I will call the total energy of the system.
I have a suspicion that this object always stays the same - it is the “stuff”

which I am trying to describe. What I would like to show is that it is always
the same number, at all points of the motion.

To check this, let’s see what happens when we take a time derivative. We
have

dE

dt
=

d

dt

[
1

2
k (x− x0)2 +

1

2
mv2

]
= k (x− x0)

dx

dt
+mv

dv

dt
, (6.19)

where I’ve used the chain rule in a few places in order to take time derivatives. If
I use the definitions of the time derivatives in terms of velocity and acceleration,
I have

dE

dt
= [k (x− x0) +ma] v. (6.20)

Using Newton’s law, I can write

dE

dt
= [k (x− x0) + F ] v. (6.21)

However, I know that the force on the block from the spring is given by

F = −k (x− x0) , (6.22)

meaning that the two terms in the brackets cancel each other out, and I find

dE

dt
= 0. (6.23)

So indeed, this total energy function is constant in time - it never changes
throughout the motion. This principle is called conservation of energy.

Notice in particular that I made use of Newton’s second law,

F = ma (6.24)

in order to prove the above statement. So I know that it should hold in any
situation in which Newton’s second law holds, which is to say that it holds in
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any inertial reference frame. Now, it is true that according to different reference
frames, the block will have different speeds. So in general, we see that the kinetic
energy, and hence also the total energy, is a number that depends on which
reference frame I am in. But whatever reference frame I use, and whatever
value I compute for the total energy, it is always true that that number will
stay the same over time.

We say that the total energy is a conserved quantity, but it is not an invariant
quantity. A conserved quantity is a number which stays the same over time in
any one frame, but which depends on which frame you are in. An invariant
quantity is a number which is the same in all inertial reference frames, for
example, the mass of the block. Any particular quantity can be one or the
other, or both. The energy is conserved, but not invariant. The mass of the
block in this case happens to be conserved and invariant, but that need not be
the case. If the block were made of some radioactive material, the atoms in it
would decay over time, and its mass would change. But at any given point in
time, the mass is the same in all frames.

Of course, energy conservation is an incredibly useful tool. As an example,
imagine a situation where instead of slowly compressing the spring, I give it an
initial shove, so that it possesses an initial velocity, shown in Figure 6.3. Because
the spring is not initially compressed, the initial energy is solely a result of the
block’s kinetic energy, and so we have

E =
1

2
mv20 (6.25)

at the beginning of the motion. Of course, because the total energy is conserved,
this will always be the total energy, so that for a general position and general
velocity,

E =
1

2
mv20 =

1

2
mv2 +

1

2
k (x− x0)2 . (6.26)

I can use this information to easily answer a lot of questions. For example, if I
want to know how much the spring will compress, this corresponds to the block
transferring all of its kinetic energy to the spring. This occurs when the block
has zero velocity, and so that maximum compression is given by

1

2
mv20 =

1

2
k (x− x0)2 . (6.27)

Rearranging and taking a square root, I find

± v0
√
m

k
= x− x0, (6.28)
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or,

x = x0 ± v0
√
m

k
. (6.29)

So I see that there are two different solutions for the location of the block. This
of course makes sense - I know that initially the block will compress, come to a
stop, and then start uncompressing. But of course, the block is now traveling
in the opposite direction and has some kinetic energy when it comes back to its
starting point. Thus, it will keep going, and now it will stretch out the spring,
until the spring is extended to some final stopping point. These two points
where the block comes to rest are the two points given above.

Figure 6.3: Giving a spring an initial velocity.

Keep in mind that if I wanted to find the motion of the block as a function
of time, I would need to solve the differential equation

mẍ = −k (x− x0) . (6.30)

While it turns out that this differential equation actually has a nice looking
solution, and is not too difficult to do, it still demonstrates the idea that I can
learn a lot of information about a particle’s trajectory without ever needing to
work out the kinematics.

6.3 Potential Energy Diagrams

There’s a useful fact about the way that kinetic and potential energies behave,
which helps us easily visualize what’s going on in our system. Notice that by
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definition, the kinetic energy is always positive,

K =
1

2
mv2. (6.31)

As a result, we have
K ≥ 0, (6.32)

since the square of the speed can never be negative. This is the reason that the
spring compressed to some distance, and then stopped compressing. In order
to compress further, it would need to have more potential energy put into it.
However, the potential energy must come at the expense of the kinetic energy,
since their sum is conserved. Thus, because the potential energy increases as
the kinetic energy decreases, and the kinetic energy cannot be less than zero,
there is a maximum amount to which the potential energy can increase. This
is, of course, the total energy E itself. If we rewrite the above equation in terms
of total and potential energy, we have

E − U (x) ≥ 0⇒ U (x) ≤ E. (6.33)

Now, if I think about it, this statement actually tells me something about
the motion of the particle. The above statement says that the potential energy
can never exceed the total energy. Since the potential energy is a function of
position, this means that some regions of space are forbidden to the particle -
these are regions in which the potential energy function is more than E. If the
particle were to travel to these regions, its potential energy would exceed the
total, which is not allowed.

To see how we can visualize these ideas, let’s draw a plot of my potential
energy function, shown in Figure 6.4. I’ve plotted the potential energy function,
along with a horizontal line, equal to some value E. I’ll assume that this is the
total energy of my system. The point x0 represents the equilibrium point, and
the points xi and xf are the point which satisfy

U (xi) = U (xf ) = E. (6.34)

Specifically, this means that, taking xi to be the smaller value, we have

xi = x0 −
√

2E

k
, (6.35)

as well as

xf = x0 −
√

2E

k
. (6.36)
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Figure 6.4: Using a potential energy diagram to understand the motion of the
block under the influence of the spring force.

From the above considerations, I know the block cannot venture outside of
these two points. This is because the potential energy is quadratic, and increases
outside of this region. So the block cannot move beyond the region indicated,
since otherwise its potential energy would exceed the total energy.

Let’s see what else I can say about the motion of the block, just by looking
at this potential energy plot. At the bottom of the plot, we have a minimum of
the potential energy, and so the first derivative must be zero,

dU

dx
= 0. (6.37)

However, we know this is equal to the force, and so

F = 0 (6.38)

at a minimum of the potential energy. If I take the block and place it at this
point, and then let go, it will sit there, since there is no force acting on it.
Thus, we see that places where the potential energy has a minimum correspond
to equilibrium points of the system.
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Let’s also see what happens when I move the block to either side of the
minimum. If I place the block slightly to the left, then the force is

F = −dU
dx

> 0, (6.39)

which we can say because the derivative of the plot in this region is negative,
since the function is decreasing. This means that the force points in the positive
direction, bringing it back to the equilibrium point. If we place the block to the
right, then we have

F = −dU
dx

< 0, (6.40)

and the force points to the left, again tending to push it back to the minimum.
These ideas help us to develop some intuition about what our potential energy
diagram is telling us. Placing the block at the minimum will result in no motion,
while displacing it slightly will tend to bring it back towards the equilibrium
point.

In general, if I displace my block slightly, then it will continue to experience
a force pushing it back to the equilibrium point. Once it reaches this point,
the force will begin to oppose its motion. This will continue to occur until the
block loses all of its kinetic energy, and the potential energy is again equal to
E. The motion then reverses. So we see in general, the block will oscillate back
and forth between the two end points of the motion, xi and xf .

Because of these behaviors, it is common to make an analogy where we liken
this to the rolling of a ball down a “hill.” If I were to imagine taking a parabolic
surface, shaped like my potential energy plot, and placing a ball on it, when I
let go, it would start rolling down towards the bottom of the well, and then roll
up the other side, eventually oscillating back and forth. This is a handy tool
for thinking about what happens in a potential energy function, but remember
that there is a crucial distinction between these two cases. In the case of the
ball, I am considering motion throughout two dimensional space, and my axes
are x and y, two directions of space. In the case of the potential energy function
I am considering, it is really just a one dimensional problem - the block only
moves in one dimension, oscillating back and forth between xi and xf . This
point can cause lots of confusion, if it is not fully appreciated.

We can actually say something even more specific than this. Let’s imagine
that I take my block and move it to xi, where it sits still. Once I let go, the
block will move to the right. Using the relation between kinetic and potential
energy, I can write

1

2
mv2 = E − U (x) , (6.41)
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or

v = ±
√

2

m
(E − U (x)). (6.42)

Let me consider first the motion from xi to xf . Because the block is moving to
the right, the velocity is positive, and I have

v =
dx

dt
=

√
2

m
(E − U (x)). (6.43)

If I consider this to be a differential equation involving the position, then after
using the method of separation, I find∫ T1

0
dt =

∫ xf

xi

√
m

2

dx√
E − U (x)

, (6.44)

where T1 is the time it takes to travel from xi to xf . Thus,

T1 =

√
m

2

∫ xf

xi

dx√
E − U (x)

. (6.45)

After the block makes it to the right, it will move back to the left, and since its
velocity is now negative, we have

T2 = −
√
m

2

∫ xi

xf

dx√
E − U (x)

(6.46)

as the time it takes to move from right to left. However, I can get rid of the
minus sign by flipping the order of integration, and I get

T2 =

√
m

2

∫ xf

xi

dx√
E − U (x)

= T1. (6.47)

So already, I have another useful conclusion - the time it takes to move from
left to right is the same as the time to move from right to left. Notice that
this doesn’t make any assumption about the shape of the potential. But I can
actually do better than this. The full period of oscillation between the two
points is

T = T1 + T2 =
√

2m

∫ xf

xi

dx√
E − U (x)

. (6.48)

The important conclusion here is that I can find the period of oscillation just by
integrating a function that depends only on the shape of the potential energy
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function, in between the two end points. I don’t need to know anything about
the intermediate kinematics of the motion.

As an application of this, let’s find the period of an oscillating spring. For
a given energy, we know the form of xi and xf in terms of the energy E, and
so we have

T =
√

2m

∫ x0+
√

2E/k

x0−
√

2E/k

dx√
E − (k/2) (x− x0)2

. (6.49)

After doing a little rearranging on this expression, and making some changes of
variables in the integral, I can get this expression into the form

T = 2

√
m

k

∫ 1

−1

du√
1− u2

. (6.50)

Now, the value of this integral turns out to be∫ 1

−1

du√
1− u2

= π, (6.51)

and thus

T = 2π

√
m

k
. (6.52)

This clearly represents an enormously powerful set of tools. I have quali-
tatively analyzed the motion of the block over its entire range of motion, and
even said something exact about its period of oscillation. And I never even had
to actually solve for the motion! Notice that in the above expression for the
period, there is no dependence on the total energy. This is a unique feature of
the harmonic oscillator potential, and is not true for a generic potential.

6.4 Potential Energy in General

Having discussed these ideas extensively for the case of an oscillating spring, it
would be nice to generalize them. For any one dimensional system in which the
force on the object in question can be written as a function of position alone,
we simply define the potential energy as

U (x) = −
∫ x

x0

F
(
x′
)
dx′. (6.53)

Again, the choice of x0 is up to me, and does not affect any of the physics.



76 CHAPTER 6. POTENTIAL ENERGY

All of the general claims above will still be true. In particular, we still have

F (x) = −dU
dx

. (6.54)

Also, the total energy, now defined in general to be

E =
1

2
mv2 + U (x) , (6.55)

will still be a constant. This is easy to see, since

dE

dt
=

d

dt

(
1

2
mv2

)
+
dU

dt
= mv

dv

dt
+
dU

dx

dx

dt
= [ma− F ] v = 0. (6.56)

As a result, all of the useful features of potential energy diagrams will still be
true, even for arbitrarily funny looking potential energy functions.

Now, for an object moving under an arbitrary force, I might ask the question:
“where” is the potential energy stored? In the case of the block oscillating on a
spring, the force acting on the block was a result of the spring, and we ascribed
the potential energy to the change in the physical nature of the spring. However,
it may not always be so clear what the object is that’s storing the potential
energy. As an example, let’s imagine that instead of being attached to the wall
by a spring, that my block has a small amount of electric charge on it, labeled
by q, and the wall has a small patch of charge where the spring was attached,
equal to Q. This is shown in Figure 6.5. Coulomb’s law tells me that the force
acting on the block is given by

F =
1

4πε0

qQ

x2
x̂, (6.57)

where ε0 is a constant of nature called the permittivity of free space. The direc-
tion of the force will depend on the signs of q and Q.

Now, again, I can define a potential energy associated with the location of
the block,

U (x) = − qQ

4πε0

∫ x

x0

dx′

(x′)2
=

qQ

4πε0

1

x′

∣∣∣∣x
x0

, (6.58)

where x0 is some conveniently chosen reference point. If I take this to be
infinitely far away, I recover

U (x) =
qQ

4πε0

1

x
. (6.59)

Now, the question I naturally ask is, what is this energy, physically? Well,
in this case it’s not so easy to say. The charge on the wall sits still, and nothing
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Figure 6.5: In general, it may not be so clear what is “storing” the potential
energy in a certain situation.

is obviously different about the system, other than the position of the block. As
you will learn in a class on electromagnetism, we typically invent an abstract
object known as an “Electric Field,” which exists throughout space, and con-
tains energy. Under the right circumstances, this field can change over time,
and “move through space,” which is what an electromagnetic wave is.

However, the useful feature of potential energy is that I can still define a
potential energy function mathematically, and leave the physical nature of the
energy as a question for another day. So long as I can write the force on the
block as a function of its position, then I can define a potential energy, and use
all of tips and tricks I’ve developed here to understand its motion.

6.5 Higher Dimensions and Gravitational Potential

Now, I would like to generalize this to higher dimensions. Let’s imagine I want to
derive an expression for a gravitational version of potential energy. Analogously
to the way that I defined potential energy in one dimension to be the work done
on the system while moving along a path, I might do the same in two or three
dimensions. This is sketched in Figure 6.6. Since the gravitational force depends
only on my location (trivially, since it is just a constant), then I expect I should
be able to do this. I therefore propose that

Ug (~r) = −
∮
C

~F · d~r. (6.60)
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My fancy new notation emphasizes that this is a line integral performed over
some curve C. I’ve defined the line integrals to start at the origin of some
coordinate system I’ve set up, but this is only one of many possible choices.

Figure 6.6: Defining potential energy for an arbitrary vector field.

Now, for gravity, I know that I have

~F = −mgŷ. (6.61)

If I use this in my definition, and I consider traversing a path which points
straight upwards, then I have

Ug (~r) = mg

∮
C
ŷ · d~r = mg

∫ h

0
dy = mgh. (6.62)

Therefore, my gravitational potential energy is just a linear function of height
(of course, since I can add a constant to this if I want, I can take h = 0 to be
located wherever I want). Using this expression, I can answer many of the same
questions as before. For example, if I fire a bullet into the air with some initial
kinetic energy, I can figure out how high it travels by imposing the condition
that total energy is conserved, and then solving for the maximum height in a
similar fashion. Because the potential energy only depends on height, effectively
I again have a one dimensional problem.
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6.6 A Subtle Problem

However, there is actually a potential issue here (no pun intended). In one
dimension, there was only one way to get between any two points - all you
can do is move in a straight line. But in more than one dimension, there are
actually a lot of ways I can travel to get to a point. This is also demonstrated
in Figure 6.6, where more than one path is drawn. For the case of gravity, my
line integral was sufficiently simple to do because the vector field was constant
and only pointed in one direction. But for a more general force, I would need
to evaluate

U (~r) = −
∮
C

~F · d~r = −
∫

~F · ~v dt. (6.63)

I’m now faced with an important question: does the value of the line integral
depend on which path I take? If it does, then I have a problem - because the
value of the line integral will depend on which path I take, I can no longer write
a simple potential energy function that just depends on my location in space.
Notice that while I told you that a line integral does not depend on how quickly
the path is traversed, I didn’t make any promises about how it depends on the
path you take between the two endpoints.

It turns out that sometimes the line integral will depend on the path, and
sometimes it won’t. For the case of gravity, it turns out that no matter how I
perform the line integral, I will always get the same answer, so it is possible to
define a gravitational potential energy which only depends on location in space.
But sometimes I cannot do this. It would be nice to be able to look at the form
of the force as a function of position, and know when this is the case. While it
is beyond the scope of this class to prove this, it turns out that the line integral
will not depend on the path so long as

~∇× ~F ≡
(
∂Fz

∂y
− ∂Fy

∂z

)
x̂+

(
∂Fx

∂z
− ∂Fz

∂x

)
ŷ +

(
∂Fy

∂x
− ∂Fx

∂y

)
ẑ = 0. (6.64)

This object is called the curl of the vector field, and if the above equation is
true, then it is possible to define a potential energy function. In this case, we
often say that the vector field is “curl free.” When this works, it turns out that
the force is given in terms of the potential energy function as

~F = −~∇U =

(
∂Fx

∂x

)
x̂+

(
∂Fy

∂y

)
ŷ +

(
∂Fz

∂z

)
ẑ. (6.65)

This operation is called the gradient of the function U , and it is a generalization
of the derivative to higher dimensions. For those of you not familiar with the
funny looking derivative symbols above, they are called partial derivatives. They
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tell me that I should take a derivative of the object in question with respect to
the given coordinate, while pretending that all of the other coordinates are held
fixed. So for example,

∂

∂x

(
x3 sin y

)
= 3x2 sin y, (6.66)

while
∂

∂y

(
x3 sin y

)
= x3 cos y. (6.67)

For those of you in CCS Physics, you’ll end up understanding how to prove
these statements once you take the class on vector calculus. While these consid-
erations may seem merely academic, they are actually very important in many
areas of physics. For example, it turns out that static electric fields are always
curl free and can always be associated with a potential energy function, whereas
magnetic fields are never curl free, and can never be associated with a potential
energy function.

That concludes our discussion of work and energy, and also the first week
of classes. Next week, we’ll start off by introducing the concept of momentum.



Chapter 7

Momentum

7.1 Momentum

Last week, we introduced the ideas of potential and kinetic energy, and talked
about situations in which their sum, the total energy, was conserved. We found
that we could do this when there weren’t any nonconservative forces involved
in the system, such as friction. Today, I’m going to introduce another concept,
momentum, which can be very helpful in solving some problems, especially ones
which involve nonconservative forces.

Let’s consider a system where two blocks of the same mass slide towards each
other on a frictionless table, with equal but opposite velocities. This is shown
in Figure 7.1. Let’s also imagine we’ve applied some tape to the sides of the
blocks, so that they’ll stick together. Once the two blocks hit, we find that as
soon as they stick together, they come to a stop, and then their taped-together
collective mass sits still on the table.

Clearly, the kinetic energy of the two blocks is not conserved here. The
initial kinetic energy of the two blocks was mv2, while after the collision it is
zero. The gravitational potential energy (were this to occur on the Earth) is
the same before and after, so the total sum of kinetic plus potential energy is
not conserved either. Of course, this is due to the presence of a nonconservative
force in our system, which we can not write in terms of a potential energy - the
tape causes the two blocks to stick together. The reason for this has to do with
the complicated chemical interactions of the tape molecules at short distances,
which goes beyond the scope of this course.

However, we do notice something else. The total velocity before and after is
conserved. The vector sum of the velocity of the left block and the velocity of
the right block always add together to equal zero. Maybe this implies some kind
of conservation of total velocity of bodies. However, experience shows that this

81
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Figure 7.1: Two blocks which violate kinetic energy conservation but which
preserve total momentum.

cannot be true in general. We know that if we are driving down the highway
and hit a bug, it does not bring our car to a stop. We have the intuitive sense
that this is because our car is much more massive. Even though the bug and
the car exert the same force on each other (according to Newton’s third law),
the car keeps moving more or less unaffected, while the same is not true for the
bug. With this idea in mind, let’s define a simple looking quantity which might
capture these two ideas of mass and velocity being important in collisions, by
defining

~p = m~v (7.1)

to be the momentum of a body.

In the above example, momentum was conserved, since it was zero both
before and after the collision. Will this be true for two bodies with arbitrary
masses and velocities? It turns out that it will be, which can be shown pretty
easily using Newton’s second and third law. Newton’s second law for a given
body says that

~F = m~a, (7.2)

which we can write as

~F = m
d~v

dt
. (7.3)

Because the mass is constant, we can pull it into the time derivative, and we
find

~F =
d

dt
(m~v) =

d~p

dt
. (7.4)
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Now, for two bodies interacting with each other, which we will call A and B,
we know that in general, they must satisfy Newton’s third law,

~FA on B = −~FB on A. (7.5)

If we define the total momentum of the two bodies to be

~pT = ~pA + ~pB, (7.6)

and we assume that the only forces on each body are due to the other one, we
see that

d~pT
dt

=
d

dt
(~pA + ~pB) =

d~pA
dt

+
d~pB
dt

= ~FB on A + ~FA on B = ~FB on A− ~FB on A = 0.

(7.7)
So total momentum is conserved in this situation of two bodies colliding.

7.2 Collisions

The result above - that the momentum of two colliding bodies is conserved -
was a nice result which followed simply from Newton’s second and third laws.
So long as we believe these two laws to be true, then we can use this result in a
wide variety of cases, even if we don’t fully understand the nature of all of the
complicated interactions going on between the two objects. A good example of
an application of these ideas is studying collisions between two massive bodies.

In general, we usually speak of three types of collisions between bodies. The
first type of collision, elastic scattering, happens when two bodies collide off of
each other in such a way that they conserve their kinetic energy. This usually
involves the two bodies doing minimal “sticking” to each other, which says
that none of their kinetic energy goes into deforming the material properties
of the bodies or heating them up in ways that involve complicated microscopic
interactions. The second type is called inelastic scattering, which occurs when
some of the kinetic energy is lost. This can be due to several mechanics, quite
often frictional heating. The extreme case of this is referred to as completely
inelastic scattering, and it is when two bodies completely stick together to form
one body.

As an example of these ideas, let’s consider the case when two blocks stick
to each other in more generality. Consider the case shown in Figure 7.2. Let’s
assume that the velocity of block A is larger than that of block B, so that block
A will eventually collide with block B, and then stick to it. Before the collision,
the total initial momentum of the system is

~pi = mA~vA +mB~vB. (7.8)
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Now, after they stick, the two blocks will move together with some combined
velocity, which we will call ~vAB, and their total mass will be

M = mA +mB. (7.9)

Thus, their final momentum will be

~pf = M~vAB = (mA +mB)~vAB. (7.10)

Since we know that momentum will be conserved, the final and initial momen-
tum must be the same, and so we can say that

mA~vA +mB~vB = (mA +mB)~vAB. (7.11)

This is an incredibly useful statement, since it lets us find the final velocity of
the lump formed out of the two blocks,

~vAB =
mA~vA +mB~vB
mA +mB

. (7.12)

Figure 7.2: Two blocks which will collide and stick together.

In general, we cannot say whether or not a collision will be elastic or inelastic
without knowing more detailed information about the interactions between the
bodies. Thus, in a totally arbitrary collision we don’t know anything about
beforehand, we can’t apply conservation of kinetic energy, since we have no idea
if the collision will actually be elastic. However, so long as two bodies interact
with each other on their own, we can always apply momentum conservation,
since it follows straight from Newton’s second and third laws.
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7.3 Momentum Conservation In General

In the above example, we were able to invoke Newton’s laws to derive the
conservation of momentum for two particles only interacting with themselves.
Can we generalize this idea to larger systems? We can, and it will turn out to
give us a lot of insight into some of the physics we’ve been doing up until now.

Let’s imagine that I have a collection of particles (N of them to be precise),
and they all interact with each other through forces that obey Newton’s laws.
I’ll use the notation ~Fji to indicate the force on particle i from particle j, which
we know satisfies

~Fji = −~Fij . (7.13)

I will also write the total momentum of the collection as

~pT =
N∑
i=1

~pi, (7.14)

where ~pi is the momentum of particle i. Now, the change in total momentum
is given by

d~pT
dt

=

N∑
i=1

d~pi
dt
. (7.15)

Now, from what we saw above, the change in momentum of particle i is
given by the force acting on it, which will be

d~pi
dt

= ~Fext,i +
N∑
j=1

~Fji, (7.16)

where the sum on j is over all of the particles in the system. Notice that we
can write it this way with the understanding that

~Fii = 0, (7.17)

which is to say that particle i does not exert any forces on itself. The vector
~Fext,i is taken to be the net sum of all forces acting on particle i which come
from outside of the collection of N particles. Our expression for the change in
momentum tells us

d~pT
dt

=

N∑
i=1

~Fext,i +

N∑
j=1

~Fji

 = ~Fext +

N∑
i=1

N∑
j=1

~Fji, (7.18)
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where ~Fext is defined as the total collection of external forces acting on the
collection of N particles from outside of the system.

Now, because of Newton’s third law, the forces two bodies exert on each
other are equal and opposite. Thus, when we write out the double sum above,
the forces will always come in pairs, and they will cancel out. For example, with
three particles,

3∑
i=1

3∑
j=1

~Fji =

N∑
i=1

[
~F1i + ~F2i + ~F3i

]
= ~F21 + ~F31 + ~F12 + ~F32 + ~F13 + ~F23, (7.19)

where I already made use of the fact that the force from a particle on itself is
zero. We can rewrite this as

3∑
i=1

N∑
j=1

~Fji = ~F21 + ~F31 − ~F21 + ~F32 − ~F31 − ~F32 = 0. (7.20)

To be more general, we can use Newton’s third law to write the double sum as

N∑
i=1

N∑
j=1

~Fji = −
N∑
i=1

N∑
j=1

~Fij . (7.21)

If we change the names of the dummy integration indices on the right, we find

N∑
i=1

N∑
j=1

~Fji = −
N∑
j=1

N∑
i=1

~Fji. (7.22)

Lastly, if we swap the order of summation on the right, we find

N∑
i=1

N∑
j=1

~Fji = −
N∑
i=1

N∑
j=1

~Fji ⇒
N∑
i=1

N∑
j=1

~Fji = 0. (7.23)

In any event, because the double sum always cancels, we find that

d~pT
dt

= ~Fext. (7.24)

This tells us that the change in total momentum of a collection of particles is
equal to the sum of the external forces acting on all of those particles. If the
collection of particles is totally isolated, then its total momentum is conserved.
Notice that this result was derived solely on the basis of Newton’s second and
third laws - no other knowledge of the detailed interactions or physics was
needed.
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7.4 Center of Mass

This realization that the time derivative of total momentum only depends on
the external forces helps us to define some new concepts which will allow us
to understand some of the physical assumptions we’ve previously been making.
Let’s define a new object, defined according to

~R =

∑N
i=1mi~ri∑N
i=1mi

=
1

M

N∑
i=1

mi~ri, (7.25)

and call it the center of mass, where M is the total mass. It is an average of
the positions of the particles, weighted by their masses.

Let’s also define something called the center of mass velocity, which is the
time derivative of the center of mass

~vCM =
d~R

dt
=

1

M

N∑
i=1

mi
d~ri
dt

=
1

M

N∑
i=1

mi~vi =
1

M

N∑
i=1

~pi. (7.26)

From this result, we see that the center of mass velocity is related to the total
mass and total momentum of the system,

~pT = M~vCM . (7.27)

If we take a second time derivative, we can define the acceleration of the center
of mass, and we have

d~pT
dt

= M~aCM . (7.28)

However, from the previous section, we know that the change in total momentum
is given by the total external force, and so we have

~Fext = M~aCM . (7.29)

This result tells us that the total mass times the acceleration of the center of
mass is given by the total external force.

This result actually helps us to explain some subtleties of what we’ve been
doing up until now. I’ve frequently been making reference to “complicated
microscopic forces” that occur inside of a body. I’ve cited this as the reason for
why a coffee cup doesn’t fall through a table, and also for why friction and sticky
collisions don’t preserve kinetic energy. But if such a complicated microscopic
world makes up all of these material bodies, how can I reliably apply Newton’s
laws to any sort of large bodies? I keep talking about applying forces to large
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objects like blocks and carts, without worrying at all about the shape or physical
deformations of the body, and how this affects the way I interact with them.
Why have I been able to treat my block like a single point object, and talk about
its location and acceleration, without specifying details about the orientation
of the body?

The answer to these questions is that really, when I talk about these large
physical objects obeying Newton’s second law, what I’m really saying is that the
center of mass of these large composite bodies obey Newton’s laws, using the
total external force, and total mass. It doesn’t matter precisely how I handle
the block, so long as I know what the net force is that I’m applying over all
of the atoms which make up its surface. Furthermore, once I know the total
external force, I know this is equal to the total mass, times the acceleration of
the center of mass. So really, what I am talking about here is the mass-weighted
average of all of the positions in the body. When I take an eraser and throw it
across the room, it may spin and rotate and move in a weird way, but the center
of mass is the location in the body which will move according to the projectile
motion formulas we derived. Even if the projectile does something incredibly
violent like explode in the middle of flight, if we were to look at the constituent
pieces, their center of mass would still move along the usual projectile path.
These ideas are demonstrated in Figure 7.3.

Figure 7.3: A hammer undergoing projectile motion. While it may rotate and
generally move in some complicated way, the center of mass continues to follow
the path we previously found for projectile motion.

Newton’s first law of course is also true, since it is a special case of the
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second law - if the total external force on the object is zero, then its center of
mass will not accelerate. Of course, we know that in many cases, a physical
body will still react to forces on them, even when the total is zero. If I squeeze
an object inwards so that the total force is zero, I can still change the physical
size and shape of the object. But its center of mass will not accelerate.

7.5 Impulse

When the mass of an object is constant, then we’ve seen that we can write
Newton’s second law in two forms,

~F = m~a =
d~p

dt
. (7.30)

However, when the mass changes in time, these two expressions are no longer
the same. So the question is, which IS the correct expression, in general? Well,
it turns out I’ve been lying to you somewhat - the second form is actually the
one that is correct in full generality. When the mass of an object changes, I can
still use the second form, but I cannot use the first form.

In particular, this means that the change in momentum is always equal to
the integral of the force over time,

~p (t2)− ~p (t1) =

∫ t2

t1

~F (t) dt. (7.31)

We define this object to be something called the impulse,

~J ≡
∫ t2

t1

~F (t) dt. (7.32)

This equation can sometimes be useful in situations in which we know the total
amount of force applied as a function of time.

7.6 Rocket Motion

There are several important situations in which using momentum considerations
is crucial, because we are considering a system whose mass is changing. Consider
the case of a rocket powering itself by emitting exhaust. In this situation, as
the rocket dumps fuel, its mass is changing. This is indicated in Figure 7.4.
With respect to some particular inertial reference frame that we’ve set up out
in space, the velocity of the rocket is vR, and the velocity of the fuel coming
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Figure 7.4: A rocket which is accelerating as a result of burning fuel.

out the back, at any particular instant in time, is vf . Notice that both of these
quantities, with respect to the inertial reference frame, will change over time as
the rocket accelerates.

Now we want to know - how does burning fuel affect the motion of the
rocket? We’ll work in one dimension, for simplicity, so that we will often omit the
vector symbols on the relevant velocities - we can always do this if the exhaust
is emitted straight out the back (keep in mind, however, that the velocities
are still signed quantities). Let’s assume that at any given moment, the mass
of the rocket is some value m. As the rocket expels fuel, the mass of the
rocket will change, but we should still be able to apply momentum conservation.
We assume that the infinitesimal change in the rocket’s mass is dm. If its
infinitesimal change in velocity is dvR, then the rocket’s new momentum, after
it has emitted the piece of fuel, will be

pR = (m+ dm) (vR + dvR) . (7.33)

Now, consider the infinitesimal piece of fuel that is emitted during this
process. The mass of this piece of fuel will be the negative of the change in
the rocket mass, and the momentum it carries away with it is given by

pf = −dm vf , (7.34)
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where vf is the velocity of the emitted fuel with respect to whatever inertial
frame we are using to measure velocities out in space. However, for someone who
is on-board the rocket operating its engines, a more natural quantity to consider
is the velocity of the fuel with respect to the rocket, since as the rocket operator
adjusts the rate of fuel being emitted from the engines, this is the quantity that
he can directly adjust. If we use the Galilean velocity transformation formula to
write the velocity of the fuel in terms of the velocity of the rocket, emphasizing
with our notation that vf and vR are with respect to an inertial frame, we have

vf ≡ vfI = vfR + vRI ≡ vR + vfR. (7.35)

It is often convention, however, to work instead with the exhaust velocity

vex = −vfR. (7.36)

The reason for this is that because fuel is being ejected backwards out of the
rocket, vfR will be negative, while vex will be positive. This is demonstrated in
Figure 7.5. Using this velocity transformation, we can write

pf = −dm (vR − vex) . (7.37)

The total momentum of the rocket and the emitted piece of fuel is thus

pT = (m+ dm) (vR + dv)− dm (vR − vex) . (7.38)

If we expand out this expression, we find that

pT = mvR +mdv + vexdm+ dmdv. (7.39)

Now, if we are taking the limit that dm and dvR both become infinitesimally
small, then the last term becomes unimportant compared with the other ones,
since it is quadratic in small quantities. Thus, we drop it, and write

pT = mvR +mdv + vexdm. (7.40)

Now, because there are no other external forces acting on the system, the net
change in momentum must be zero. Before the infinitesimal piece of mass was
emitted, it was sitting on the rocket, and the momentum of the two was simply
mvR. Thus, we have

mvR = mvR +mdv + vexdm, (7.41)

or
mdv = −vexdm. (7.42)
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Figure 7.5: The fuel being exhausted from the perspective of an observer on the
rocket.

The above expression can be used to find an equation for the velocity as a
function of mass. If we rearrange, we find

dv = −vex
dm

m
. (7.43)

If we assume the rocket has some initial mass m0 and some initial velocity v0,
then we can write ∫ vR

v0

dv′ = −vex
∫ m

m0

dm′

m′
, (7.44)

which becomes
vR − v0 = vex ln

(m0

m

)
. (7.45)

So we see that the change in velocity of the rocket depends only on the exhaust
speed of the fuel, and the ratio of the original mass to the new mass. Momentum
conservation makes this a very easy result to arrive at.

That concludes our overview of the topics which are typically covered in
Physics 20. Tomorrow, I’ll give you a brief introduction to a more advanced
tool in physics, Lagrangian mechanics.



Chapter 8

Advanced Methods:
Lagrangian Mechanics

8.1 The Calculus of Variations

So far in this class, we’ve used a variety of different concepts - Newton’s laws,
free-body diagrams, work, kinetic energy, potential energy, and momentum.
These have all been useful in different situations, depending on the particular
physics involved. But really, they all stem from the same basic ideas. Whenever
I showed some new result, my derivation always invoked one of Newton’s laws.
For example, when I showed that the sum of kinetic and potential energy was
constant, I invoked Newton’s second law,

~F = m~a, (8.1)

in order to show that certain terms were zero. So really, all I’ve been doing
up until now is taking the same information, and repackaging it in different
forms. The reason for this is because sometimes different situations are best
tackled from different angles, and thinking about Newton’s laws in different
ways sometimes lets us take a shortcut when it comes to getting to our final
answer.

In this spirit, today I’m going to tell you about yet another way to think
about Newton’s laws. This idea is a little bit different though - at first it might
seem like an unusual path to take when thinking about physics, but it will
turn out to be one of the most useful ways to tackle physics problems. And,
as Richard Feynman himself said, “every theoretical physicist who is any good
knows six or seven different theoretical representations for exactly the same
physics. He knows that they are all equivalent, and that nobody is ever going
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to be able to decide which one is right at that level, but he keeps them in his
head, hoping that they will give him different ideas for guessing.”

What I want to consider first is a math question. Let’s imagine I have some
function y(x), shown in Figure 8.1. What is the length of this curve connecting
the two points? Well, I know that I should be able to write an infinitesimal
piece of length of the curve as

dl =
√
dx2 + dy2. (8.2)

If I do a little rearranging with the infinitesimal pieces, I find

dl =

√
1 +

(
dy

dx

)2

dx. (8.3)

With this expression, I can integrate from xa to xb, and find the total length

l =

∫
dl =

∫ xb

xa

√
1 +

(
dy

dx

)2

dx. (8.4)

Now, if I happen to know the form of the function, I can go ahead and easily
compute this, which is a common problem in introductory calculus. But what
if I ask a totally different question - out of all possible functions, which function
minimizes the length between the two points?

You might intuitively guess that this is a straight line, and of course this is
correct. But as a mathematical question, it is an interesting one to consider -
how would I “prove” this? This is a much more subtle question than the usual
minimization questions we consider in calculus. In those cases, we have a given
function, and we want to know at what point the function is minimized. So
what I ask in that situation is, out of all numbers on the real line, which one
corresponds to the point where the function is at a minimum? The question
I am asking here is much different - I want to know, out of the space of all
possible functions that exist, which one minimizes this integral.

The subject of mathematics which addresses this is called the Calculus of
Variations. While it may seem overkill to introduce a whole new subject of
mathematics to see that the shortest distance between two points is a line, it
turns out that there are many other situations in which we want to ask a similar
question, and the answer is not nearly so obvious. For example, if I have a rope
hanging from a ceiling, what shape will it hang in order to minimize its potential
energy? In that case, the potential energy of the rope is the potential energy of
all of the little pieces dm under the influence of gravity, and we have

U =

∫
gy dm = gρ

∫
y dl = gρ

∫ xb

xa

y

√
1 +

(
dy

dx

)2

dx, (8.5)
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Figure 8.1: A curve connecting two points, whose length we can compute if we
perform the appropriate integration.

where ρ is the linear mass density of the rope, y is the height of the rope as a
function of x, and xa and xb are the endpoints that the rope is tied at. It turns
out that in this case the shape of the function is something called a hyperbolic
cosine, which isn’t exactly as “obvious” as the straight line answer we proposed
before.

I can imagine other situations too. What if I have some sort of elastic
membrane that I’m using in an engineering application, and I want to know
what shape will result in the least amount of tension? Or maybe I need to
minimize the amount of time it takes for a certain mechanical process to occur.
All of these cases mentioned so far typically involve a situation where I have a
quantity which is an integral, and I want to know which function will minimize
the value of that integral. It is common to say that what we are minimizing is a
functional - something which takes a function as input, and returns a number.
This is to contrast them with normal functions.

With these facts in mind, I am now going to imagine an arbitrary inte-
gral which involves a function y(x), its derivative, and x itself. I write this
schematically as

I =

∫ xb

xa

L (x, y, yx) dx, (8.6)
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where I’ve defined the notation

yx ≡
dy

dx
. (8.7)

The quantity L represents some expression involving the function, which I’ve
yet to specify precisely. In my previous example, I had

L (x, y, yx) =
√

1 + y2x, (8.8)

although in the other cases I mentioned, the form of L would look different.
Given an arbitrary integrand of this form, is there a systematic way to deduce
the function which minimizes the integral?

Amazingly enough, it turns out there is a pretty simple looking equation
that tells me the answer to this question. Deriving it is somewhat beyond the
scope of this course, but it turns out there is a simple differential equation I
can use to find the appropriate equation. That differential equation is called
the Euler-Lagrange equation, and it is

∂L
∂y

=
d

dx

(
∂L
∂yx

)
. (8.9)

The notation here is a little tricky. The derivative on the right with respect to
x is a normal derivative. But the partial derivatives acting on L are instructing
me to pretend as though y and yx were independent, unrelated variables, that
L depends on. So for example, in the case of my curve length problem, I would
find

∂L
∂yx

=
∂

∂yx

(√
1 + y2x

)
=

yx√
1 + y2x

, (8.10)

whereas
∂L
∂y

=
∂

∂y

(√
1 + y2x

)
= 0. (8.11)

Even though it seems like there should be some sort of “chain rule” relating y
and yx, the funny looking partial derivatives tell me to ignore that, and just
think of them as separate things that go into L. We say that the derivative
∂L/∂y is zero because L has no explicit dependence on y, although it does have
implicit dependence, through the appearance of its derivative.

In any event, if we accept the fact that this is the correct way to minimize a
functional, we can put it to use. For our example of the length of a curve, the
Euler-Lagrange equations tell us that

0 =
d

dx

(
yx√

1 + y2x

)
, (8.12)
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since my integrand has no explicit dependence on y. Because the x derivative
of some expression is zero, this means that that expression must be a constant
with respect to x,

yx√
1 + y2x

= C. (8.13)

If I square both sides, and do some rearranging, I find

yx =

√
C2

1− C2
. (8.14)

Because C is some arbitrary constant, this just tells me that the first derivative
of the function is equal to some constant value. But of course, this is precisely
the mathematical definition of a straight line. The precise value of the constant
would be determined by imposing the boundary conditions at each end point -
that is, that it actually passes through the required points.

8.2 The Principle of Least Action

After having made this mathematical detour, I want to introduce a new object,
called a Lagrangian. For a single particle moving under the influence of a po-
tential energy function, we define its Lagrangian to be its kinetic energy, minus
its potential energy,

L =
1

2
mẋ2 − U (x) , (8.15)

where for simplicity I’m just considering one dimension. Furthermore, I will
define something called the action, which is just the integral of the Lagrangian
over time,

S =

∫ t2

t1

Ldt =

∫ t2

t1

[
1

2
mẋ2 − U (x)

]
dt, (8.16)

integrated between some given times t1 and t2.

Notice that this object has a similar form as the other integrals I’ve been
considering. In this case, my notation is a little different - t is the variable
I’m integrating with respect to, x(t) is a function of that variable, and ẋ is its
derivative. So, if I wanted to, I could ask - for given times t1 and t2, what
value of the function x(t), that is the particle’s location as a function of time,
minimizes the action?

To answer this, I can again use the Euler-Lagrange equation. In my new
variables, it reads

∂L
∂x

=
d

dt

(
∂L
∂ẋ

)
. (8.17)
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If I inspect my Lagrangian, first of all I see that

∂L
∂x

= −dU
dx

, (8.18)

since the potential energy is the only place where I have explicit dependence on
x. I also see that

d

dt

(
∂L
∂ẋ

)
=

d

dt
(mẋ) = mẍ. (8.19)

Equating the two sides of the Euler-Lagrange equation, I find

mẍ = −dU
dx

, (8.20)

which is precisely Newton’s equation! So I have discovered an object which, if
minimized, results in the correct motion of the particle, assuming I impose the
proper boundary conditions at the endpoints. This result tells me that particles
under the influence of such a force always move in such a way as to minimize
this action functional, a result which is known as the principle of least action.

8.3 Lagrangian Mechanics

While this is a very interesting result in its own right, we might wonder how it’s
useful to us. I’ve told you that Newton’s equation is equivalent to minimizing
this thing called the action, but all that tells me is the same differential equation
I already knew. How is that helpful?

The reason that this is useful is because it turns out that the Euler-Lagrange
is incredibly flexible in terms of how I write down the action, and does not care
about what variables I use. Let me explain this with an example, by considering
the setup in Figure 8.2. Here, I have a block, with mass m, sitting on a table,
attached to a wall with a spring, with spring constant k. The block slides on
a frictionless table. Attached to the side of the block is a pendulum which is
free to swing from side to side. It has a length L, and the bob has a mass M . I
want to derive a set of differential equations which describe the motion of this
system.

I could try to tackle this by setting up free-body diagrams for the pendulum
and block, and using Newton’s laws. The result, not surprisingly, is a complete
nightmare. The back reaction of the pendulum on the sliding block makes this
a very nontrivial problem. If you don’t believe me, try it for yourself - it won’t
be a fun time.

However, this is a problem which is perfectly suited for Lagrangian mechan-
ics. The principle of least action generalizes to larger systems, and we stipulate
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Figure 8.2: The spring-block-pendulum nightmare scenario.

that the Lagrangian is always the kinetic minus the potential energy. This
means that we will typically now have several functions which enter into our
Lagrangian (the various coordinates of all of the objects), and it turns out that
there will be an Euler-Lagrange equation for each function. Let me show how
this works by working out the Lagrangian for this system.

There are several sources of potential and kinetic energy in this system.
First, we tackle potential energy. The spring has a potential energy of

Us =
1

2
k (xb − x0)2 , (8.21)

where xb is the x coordinate of the block. The mass on the pendulum has a
gravitational potential energy of

Ug = Mgyp, (8.22)

where yp is the y coordinate of the pendulum. We’ve taken the zero of potential
energy to be the height of the table, so that the block’s gravitational potential
energy is always zero. In addition to the potential energy, we have kinetic
energy. The kinetic energy of the block is

Kb =
1

2
mẋ2b , (8.23)

while the kinetic energy of the pendulum mass is

Kp =
1

2
M
(
ẋ2p + ẏ2p

)
. (8.24)
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Adding these contributions together, we find

L = K − U =
1

2
mẋ2b +

1

2
M
(
ẋ2p + ẏ2p

)
− 1

2
k (xb − x0)2 −Mgyp (8.25)

for the Lagrangian.

Now, we could go on to solve this problem in terms of the x and y coordi-
nates. But this is actually a bad idea. The reason is because my description of
this system right now is redundant - I do not really need the x and y coordinates
of both the block and the pendulum. If I inspect my system, I notice that I can
actually completely describe its orientation in terms of the x coordinate of the
block, and the angle θ of the pendulum arm. Because of the physical constraint
that the pendulum mass is hooked to the block with a length L, this completely
indicates the location of every object in the system. In regular Newtonian me-
chanics using Newton’s laws, this seems somewhat unnatural, since we like to
describe our systems in terms of the coordinates of nice inertial reference frames.
But as we will see soon, this is no concern at all for Lagrangian mechanics.

With this in mind, let’s rewrite the coordinates of the pendulum in terms
of its angle. With a little trigonometry, we can write

yp = −L cos θ, (8.26)

along with

xp = xb + L sin θ. (8.27)

Using this, we can write

ẏp = Lθ̇ sin (θ) , (8.28)

along with

ẋp = ẋb + Lθ̇ cos (θ) . (8.29)

If we plug this back into our Lagrangian, and do some simplifying, we find

L =
1

2
mẋ2 +

1

2
M
(
ẋ2 + L2θ̇2 + 2Lẋθ̇ cos θ

)
− 1

2
k (x− x0)2 +MgL cos θ, (8.30)

where I’ve dropped the subscript on the block’s position, since it’s now the only
x coordinate we are considering.

The parameters x and θ are called generalized coordinates. They are not the
components of a position vector in an inertial coordinate system, but they are
variables which are functions of time that completely describe the state of my
system. It turns out that the calculus of variations does not distinguish between
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generalized coordinates and regular ones. It says that for each generalized coor-
dinate showing up in the Lagrangian, there is an Euler-Lagrange equation. For
my x coordinate, the Euler-Lagrange equation is

∂L
∂x

=
d

dt

(
∂L
∂ẋ

)
, (8.31)

whereas for my angular coordinate, the equation reads

∂L
∂θ

=
d

dt

(
∂L
∂θ̇

)
. (8.32)

This will give me a pair of differential equations for these two variables.
If I go ahead and take the above derivatives, then after only a few short lines

of math, I will ultimately find

mẍ+Mẍ+MLθ̈ cos θ −MLθ̇2 sin θ = −k (x− x0) (8.33)

for the x equation, along with

ML2θ̈ +MLẍ cos θ = −MgL sin θ (8.34)

for the θ equation. Now, unfortunately Lagrangian mechanics doesn’t promise
that the resulting differential equations will be simple to solve. However, simple
differential equations are pretty rare in actual physics, and all told, this one
doesn’t look too bad. In any event, this is really not a concern to us as physi-
cists. We care about figuring out what the equations of motion are, based on
physical principles. Once we’ve done that, the physics part is over. The rest is
just the math problem of how in God’s name to solve that system of differential
equations. In reality, what we usually do is solve this sort of thing numerically
with a computer, which is actually pretty straightforward to do. But the im-
portant thing is that we were able to find out the equations of motion at all. To
give you a sense of how badly behaved this system is, notice that from the above
equations, I can read off the x component of the block’s acceleration, which is

ẍ =
1

M +m

[
−k (x− x0)−MLθ̈ cos θ +MLθ̇2 sin θ

]
. (8.35)

Imagine trying to derive that form of the acceleration using a free body diagram!

8.4 Noether’s Theorem

It most likely goes without saying that the principle of least action is incredibly
powerful. The above system would have been a total mess to analyze using forces
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and free body diagrams, but with only a few short lines of taking derivatives,
I derived the correct differential equation for the motion of the system. This
alone would make Lagrangian mechanics an indispensable tool.

But the advantages of the Lagrangian formalism go beyond just this - too
many really to mention all of them here. But there are a few notable examples.
The first one is that it is particularly well-suited to perturbation theory and
approximation schemes. In my above example, there is an equilibrium state
where the block sits still at the rest position of the spring, while the pendulum
hangs motionless under it. If I then nudge the system slightly, it will start
to wiggle back and forth, and I might wonder what the frequency of small
vibrations in the system is. While I don’t have time to go into details here,
these small vibrations are called normal modes, and it turns out that if I take
my Lagrangian and Taylor expand it around this equilibrium point, it’s possible
to basically read these frequencies off right from the Lagrangian, if you know
how. This is incredibly important in engineering when trying to figure out the
resonant frequencies of structures.

The second, and possibly most important advantage of Lagrangian mechan-
ics is that symmetries become very obvious. To explain how this is true, I will
give a simple example. Imagine I have a particle moving in two dimensions,
and I describe its position in terms of its radius from the origin, and its angle
θ from the x axis. On the homework, you will show that the kinetic energy of
this particle can be written as

K =
1

2
mṙ2 +

1

2
mr2θ̇2. (8.36)

If we assume that the particle is exposed to a potential that only depends on
the distance from the origin (which is quite often the case), then the Lagrangian
becomes

L =
1

2
mṙ2 +

1

2
mr2θ̇2 − U (r) , (8.37)

where U(r) does not depend on the angle at all.

Now, something I immediately notice about this Lagrangian is that it has
no dependence on the angle θ at all. Because the Euler-Lagrange equation for
θ is

∂L
∂θ

=
d

dt

(
∂L
∂θ̇

)
, (8.38)

then I immediately see that

d

dt

(
∂L
∂θ̇

)
= 0. (8.39)
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This means that the quantity inside of the parentheses must be a constant which
never changes with time. Taking the partial derivative, I see that

∂L
∂θ̇

= mr2θ̇ ≡ J, (8.40)

which we call the angular momentum. When exposed to a potential that only
depends on radius, it is a constant in time, and so is conserved. In two dimen-
sions, it is just a scalar number, but in three dimensions it is a vector quantity,
which is given by

~J = ~r × ~p, (8.41)

where ~r is the particle’s position vector, ~p is its momentum, and the operation
between them is known as the cross product, an operation between vectors which
we haven’t discussed in detail here, but comes up frequently in physics.

What has happened here is that a symmetry has immediately led to a conser-
vation law. Because a generalized coordinate was missing from the Lagrangian,
the Euler-Lagrange equations immediately told us that the time derivative of
some quantity was zero, thus telling us that object is conserved. Clearly, this
is a pretty easy way to find conserved quantities, which are always very useful.
Another example is a free particle moving alone under the influence of no ex-
ternal forces. In this case, the Lagrangian is simply kinetic energy alone, and
we have

L =
1

2
m
(
ẋ2 + ẏ2 + ż2

)
. (8.42)

Because the Lagrangian does not depend on the position at all, then the Euler-
Lagrange equation says

d

dt

(
∂L
∂ẋ

)
= 0, (8.43)

and likewise for the other coordinates. But we have

∂L
∂ẋ

= mẋ, (8.44)

which is just the momentum. So the lack of an external force gives rise to
momentum conservation.

This idea that symmetries lead to conservation laws is known as Noether’s
Theorem, and it is one of the most important ideas in physics. While it is beyond
the scope of this class, it turns out there are actually more conservation laws
hiding in these Lagrangians. Seeing them requires a little more mathematical
insight, however, since they don’t necessarily fall right out of the Euler-Lagrange
equations. But the punch line is that Noether’s Theorem tells us that for every
symmetry which leaves the action unchanged, there is a corresponding conserved
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quantity. For example, it is possible to show that because the Lagrangian does
not depend explicitly on time, then there is always a conserved quantity as-
sociated with this fact. This turns out to be what we have been calling the
energy.

Speaking of energy conservation, this leads to an interesting question - what
about nonconservative forces, which cannot be written in terms of potential
energies? It turns out that Lagrangian mechanics can handle situations like
this too, but the terms that we need to add to the Lagrangian will usually
depend explicitly on time. Because of this, we no longer have time translation
symmetry, and there will not be a conserved quantity we can identify as energy.
There are some special exceptions to this, where there is a related quantity
which will be constant, but is not what we usually think of as an energy.

Should energy be conserved in nature in general? Up until now I’ve been
talking about nonconservative forces, but really these typically arise from mi-
croscopic atomic interactions that actually do conserve energy - they tend to
increase the random thermal motion of the atoms, which doesn’t manifest it-
self as motion of the macroscopic center of mass. It turns out that in modern
theories of physics, energy conservation is actually a somewhat subtle issue.
General Relativity tells us that the distinction between space and time is not
so clear cut, and so this introduces issues with what we mean by the conserved
quantity associated with time symmetry. It turns out there is a very important
conservation law in General Relativity, but the object assoicated with it is not
necessarily what we are familiar with as an energy. However, this is usually
only a practical matter in situations where the effect of gravity is very strong.
In everyday physics we do in laboratories on the Earth, the effects related to
this issue are barely detectable.

8.5 New Physics

It turns out that many of the ideas we’ve been talking about, such as forces
and Newton’s laws, are no longer used in modern theories of physics. A va-
riety of different quantities and ideas make up modern physics theories, such
as the Standard Model of Particle Physics, and General Relativity. But the
one principle which has survived in all of our physical theories to date is the
principle of least action. All of these theories are written in terms of an action
with some set of “generalized coordinates.” Some of these coordinates are very
abstract objects - in the Standard Model, they are quantum fields - strange en-
tities which extend through space and give rise to what we think of as particles.
In general relativity, it is the curvature - a function which tells us how much
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spacetime is distorted by the presence of matter. Typically, we just think of the
object in these theories as “the Lagrangian,” and not necessarily as a difference
of kinetic and potential energies, since the notion of kinetic vs. potential energy
does not necessarily survive in these models. But in all of these cases, an action
functional which is being minimized is at the heart of the theory.

In fact, this is the current way in which most new theories are first written
down. Because Lagrangian mechanics makes it so easy to see conservation laws
and symmetries, and to write down the equation of motion, most new theories
are formulated by trying to think of a new Lagrangian which obeys all of the
symmetries of nature we think should exist. It turns out that symmetry, in
combination with a few other more abstract principles, actually greatly restrict
the types of terms which are allowed in Lagrangians, and so this is actually a
very useful exercise.

There also exists a related idea, Hamiltonian mechanics, which can be very
useful as well. Unfortunately I don’t have time to talk about it in this course, but
it is very similar to Lagrangian mechanics. The Hamiltonian is a new function
which is derived from the Lagrangian, and leads to a different, yet completely
equivalent, set of differential equations for a system. These equations sometimes
have nice features, and are more useful in some situations.

In any event, that wraps up all of the material involving classical mechanics,
and all of the material which will show up on any of the homeworks or final
exam. Tomorrow is going to be a special topics class dedicated to what I think
is one of the most amazing ideas in modern physics, Special Relativity.
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Appendix A

Tips for Solving Physics
Problems

The following is some advice for solving physics problems from previous SIMS
instructor Sebastian Fischetti.

In high school, the way I learned physics was very algorithmic: our teacher
would teach us a new concept (“Here’s what a free body diagram is”), and then
he would give us lots of the same problem to repeat over and over again, just
using different numbers (“If forces A, B, and C are acting on a block, draw a
free body diagram for the block and figure out the total force on the block”).
Mostly, it was mindless drilling.

I suspect that many of you may have learned physics in a similar way, and
I want to emphasize that that is not how physics works at all. Physics is really
about creativity - if you encounter a problem you’ve never seen before, can you
think creatively about ways to solve it? Can you apply concepts and ideas you
already know to new systems? This is what makes physics hard (and fun!).

To break it down, a physical problem usually goes something like this: given
some information about a physical system (e.g. a baseball is being thrown with
some initial velocity; a beam of light is about to enter a piece of glass; the
universe is created in some explosion of spacetime), make some new statements
about the physical behavior of the system (e.g. when and where the baseball
lands; what happens to the light when it enters the glass; what the distribution
of matter in the universe looks like later). Going directly from the setup to a
conclusion is often difficult, so we use mathematics as an intermediate step. So,
solving a physical problem consists of three steps:

1. Convert the information about the physical system into some mathemat-
ical statements
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2. Use the rules of mathematics to work the mathematical statements into
some mathematical conclusions

3. Convert the mathematical conclusions back into physical statements

We can think of the picture as something like this:

Physics Math

Initial Physical

Statements

Initial Math

Statements

Final Math

Statements

Final Physical

Statements

Step 1

Step 2

Step 3

The dashed line is what we’re really trying to do, but the three solid lines
are what the tool of mathematics allows us to do. The important thing to bear
in mind is that you’re only doing physics when you’re on the physics side of the
diagram; when you’re on the math side, you’re doing math. Thus, Steps 1 and 3
are the steps that require you to do physics, while Step 2 is just doing math.
Unfortunately, since Step 2 is usually the easiest, students often learn in high
school (and sometimes continue to believe in college) that physics is all about
Step 2, and they never learn that Steps 1 and 3 are even important (or even
exist!). My goal in this course, and your goal in your future physics courses, is
to really focus on Steps 1 and 3, and Step 2 should be given a lower priority.

(By the way, in your introductory physics courses, you may hear of the I
SEE method of problem solving, which stands for Identify, Set up, Execute,
and Evaluate. Roughly speaking, the Identify and Set up steps are like Step 1,
the Execute step is like Step 2, and the Evaluate step is like Step 3)

With that said, I’d like to give you some tips and tricks that I think will be
useful in dealing with these three steps.

Step 1

In the first step of the diagram I drew, your goal is to convert some physical
statements into mathematical ones. This process requires understanding what
physical principles are involved, which will guide you in getting the relevant
equations you want. My tips for this step are:
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• THINK ABOUT THE PHYSICS OF THE SYSTEM, think about what
physical principles you know and if they’re relevant, and if they can give
you any useful information. Don’t just “jump right into the math” if you
don’t know what you’re doing first!

• TALK TO OTHER PEOPLE. Everyone has a different way of thinking
about things, and sharing ideas and knowledge can be incredibly useful.
Study groups are great for this, and since you already know everyone in the
SIMS program, finding people to work with shouldn’t be too difficult at
all. Of course, your instructors and TAs will also be available for questions
and discussion.

• USE YOUR WORDS. I’ve found that many students think that since
physics is mathy, their homeworks should basically be full of equations
and calculations with no words. This is bad in two ways: first, physics
is about thinking, not about math, and you need to use your words to
explain your thought process. Second, there’s a common saying “the only
way to know you really understand something is if you can explain it to
someone else.” If you write your homeworks as if you’re explaining how to
do the problem to someone else, you’ll find that your own understanding
of the problem will increase dramatically. When I start posting homework
solutions, note that I often have much more explanatory text than I do
equations; you should try to do something similar on your own homeworks.

Step 2

I don’t have much to say about this step. This is the “plug and chug” part of
the problem, where you take the formulas you obtained in Step 1 and just
use algebra/calculus/linear algebra/complex analysis/geometry/vector calcu-
lus/differential equations/etc. to solve the equations. There can be a lot of
interesting stuff in this step, but it’s all math, so I’d ask your math intructors
about that.

Step 3

This is the most often skipped step, which I think is very unfortunate, because
it’s also the most important. The goal of a physical problem is to understand
how the universe works, and this is the step that gives you insight into physical
systems. The idea here is to think about what your final mathematical answer
is telling you about the physics of the problem. My tips are:
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• FORCE YOURSELF TO DO THIS STEP. Many physics problems don’t
explicitly ask you to think about your final answer, but it’s very good to
get into the habit of doing it whether you’re asked to or not. When you
get to a final answer, ask yourself: does this answer make sense? Is there
some way I can test it? What is it telling me about the problem? Again,
this goes back to what I said above about using your words to discuss the
answer.

• CHECK LIMITING CASES. In this course, we’re almost exclusively going
to stick to variable quantities. The reason variables are so much better
than numbers is that you can tune the variables to whatever you want,
which makes it easy to check your answer in certain simple cases (for
example, if you’re working on an inclined plane at angle θ, it’s easy to
check what happens when the plane becomes flat by setting θ = 0, or
when the plane becomes vertical by setting θ = π/2).

• USE DIMENSIONAL ANALYSIS. Physics quantities have units, and it’s
important for units to match! A very, very easy check you can perform
on your final answer is to see if all the units agree (I tend to take a lot
of points off from students who don’t bother to check their units, so be
warned!).

• Above all, USE AND DEVELOP PHYSICAL INTUITION. If you’re
working on, say, a classical mechanics problem, you should often have
physical intuition for whether or not the answer makes sense (if your an-
swer says that a block with no forces on it should spontaneously start
sliding across a flat table, something is clearly wrong). Your intuition is
a good check. As you get to more advanced physics concepts, though,
sometimes your intuition fails: in special relativity, we have no intuition
for how things behave when they move at close to the speed of light, and
in quantum mechanics, we have no intuition for how subatomic particles
behave. In these cases, you can use your results to physics problems de-
velop new intuition about physics. Special relativity blew my mind when
I first learned abotu it; now I’ve used it so often, it seems obvious to me
that if I’m in a spaceship moving at close to the speed of light, I should
see the stars in front of me turn bluer and scrunch together in front of my
ship.

That may have been a lot to take in, so here’s a very simple example showing
how I might use the steps myself. Consider the problem of finding the accelera-
tion of a block of mass m down a frictionless inclined plane at angle θ from the
horizontal, as shown:
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θ

m

Let’s break this problem into the three steps:

1. First, we need to take the physical situation above and come up with some
quantitative statements about it (i.e. we need to move from the physics
side to the math side). We would do this with a free body diagram and by
applying Newton’s laws: the fact that the block isn’t accelerating in the
direction perpendicular to the surface of the incline tells us that mg cos θ−
N = 0, where N is the normal force on the block. Newton’s second law in
the direction parallel to the surface of the incline tells us that mg sin θ =
ma, where a is the acceleration of the block. At this point, we have two
equations for two unknown quantities a and N , and we can proceed to
the next step.

2. This is the “plug and chug” step; in our case, we just rearrange the equa-
tion for the acceleration into a = g sin θ. So, here’s the answer we were
looking for. Are we done yet? No! We still need to think about it in the
last step!

3. Now, we need to take our mathematical answer a = g sin θ and think
about what it’s telling us physically, and consider whether or not it makes
sense based on our intuition. The first thing we can do is check if the
units work: g has units of acceleration, sin θ is dimensionless, so g sin θ
has units of acceleration. a also has unit of acceleration, we get accelera-
tion = acceleration, as we should. Next, we should consider some limiting
cases. Intuitively, it might not be obvious what the block should do on
an arbitrary incline, but what if we make the incline flat? A flat incline
means that θ = 0, in which case we get a = 0. So if the block is on a flat
surface, it doesn’t accelerate, exactly as we would expect! We can also
consider the case of the incline being vertical, i.e. θ = π/2. In this case,
we’d expect the block to just fall freely under the influence of gravity. In-
deed, if we plug θ = π/2 into our solution, we get a = g, which just means
the block is just in freefall. So this, too, agrees with our expectation.

The thing I want to highlight is that most students would stop at the end of
Step 2 above when they get to the answer a = g sin θ, but you’ll notice that
there’s a lot of physical discussion and understanding in Step 3. This was a
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silly example just to highlight the main ideas, but as you work through more
complex problems, try to always focus on that third step, and you’ll find your
physical intuition should improve significantly.
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Taylor’s Theorem

One of the most basic questions of introductory calculus is the following: If I
have a general function f(x), what is the tangent line at some point x0? Well, I
know that I can find this by computing the derivative, since that’s the slope of
the function at that point. We know from our calculus courses that the tangent
line is given by

y (x) = f ′ (x0) (x− x0) + f (x0) , (B.1)

where y (x) is the equation of the tangent line.

Now, if I’m looking at the function zoomed in very close to this point, then
I know that it should look roughly straight, and the tangent line will be a good
approximation to the function. But what if I want to do just a little bit better
with my approximation? I don’t want to work with the full function (maybe
it’s really complicated looking), but I do want a slightly better approximation
than the tangent line. Taylor’s theorem is a result which tells us how we can do
this. In essence, what it says is that “almost” any function can be expanded in
terms of an expansion in powers of (x− x0), which looks like

f (x) =

∞∑
n=0

f (n) (x0)

n!
(x− x0)n , (B.2)

where f (n) (x0) is the nth derivative of f(x), evaluated at x0. This expansion is
called a Taylor Series. Figure B.1 shows an example of using a Taylor Series to
make a better and better approximation to the sine function.

If we only want to make an approximation one step better than the tangent
line, we can write

f (x) ≈ f (x0) + f ′ (x0) (x− x0) +
1

2
f ′′ (x0) (x− x0)2 . (B.3)
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Figure B.1: Approximating the sine function, using higher and higher order
Taylor series. Notice that while all of the curves look pretty close to each other
for small values of x, the fifth-order expansion is clearly the best approximation
for larger values of x. Notice that there are no second or fourth order expansions
- because sine is an odd function, all of its even order terms disappear.

Generally, for any given point x, the approximation will get better as we include
more and more terms.

As an example of how this can be useful, imagine I want to solve the equation

cos(x) = λx, (B.4)

for some number λ. In other words, I have a straight line with slope λ that
passes through the origin, and the cosine function, and I want to see where
their plots intersect. This is shown in Figure B.2. In general, there is no easy
way to do this in closed form.

But let’s imagine that I know that λ is really huge, so that the straight line
is very steep. Then I know that the point where the two lines should intersect
is very close to x = 0, because the steeper the line, the more it bends in towards
the vertical axis. Then because the intersection will occur near x = 0, it seems
plausible that we should be able to approximate the value of the cosine function
by using a series expansion around zero. To lowest order, we can just replace
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Figure B.2: Finding the intersection of two functions with the help of a Taylor
series expansion. The number 2 is not really that large, although it is a good
value for making a nice looking plot.

the cosine function with its value at zero, which is simply one, and we find

1 = λx, (B.5)

or,

x =
1

λ
. (B.6)

Even for the value λ = 2, which isn’t even that “big,” we see that the result
we get is 0.5, which, from looking at the plot, seems to be pretty close to the
correct value! Notice that our expression gets smaller as λ gets bigger, as we
expected.

But by using the power of a taylor series expansion, I can do even better,
without very much work. We know that the first derivative of cosine is sine,
which is zero at x = 0. So there is no correction at that order in the expansion.
But the second derivative of cosine is negative itself, which at zero gives negative
one. Thus, to second order we can approximate

cos (x) ≈ 1− 1

2
x2. (B.7)
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Despite the fact that I computed the derivatives in this expansion myself, Taylor
Series are so useful that the expansions of many functions are documented to
very high orders, so you can usually look them up, without doing any math.

Using this expansion, the equation we are trying to solve is now

1− 1

2
x2 = λx, (B.8)

or,
x2 + 2λx− 2 = 0. (B.9)

Taking the positive solution to the quadratic formula, we find

x = −λ+
√
λ2 + 2. (B.10)

Now, if I consider the function

g (y) =
√
λ2 + y, (B.11)

then I can ALSO Taylor expand THIS function centered around y = 0, to find
that

g (y) ≈ g (0) + g′ (0) y +
1

2
g′′ (0) y2. (B.12)

After computing all of the derivatives (or just looking up the expansion on
Wikipedia), and using the fact that

√
λ2 = λ, (B.13)

then I ultimately find

g (y = 2) =
√
λ2 + 2 ≈ λ+

1

λ
− 1

2λ3
. (B.14)

Notice that I chose to do my expansion centered around a point where I could
do the square root easily. Using this in my above expression, I see that

x ≈ 1

λ
− 1

2λ3
. (B.15)

This gives me a nice looking expression for the intersection point in terms
of λ. It turns out that even for λ = 2, my expression gives 0.4375, while a
much more sophisticated computational method says that the exact answer, up
to four digits, is 0.4502, which is not too far from my value! For λ = 10, we
would have to go out to six decimal places before seeing a difference between
my answer and a computer’s answer. If we imagine that x is some distance in
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meters which I’m measuring with a ruler, it’s unlikely I’d be able to measure
six decimal places!

While it is true that I could have used a computer to get this result for any
one specific value of λ, the nice thing about my result is that it gives me a feel
for what the intersection point looks like as a function of λ, which can be good
for gaining intuition in some situations.

This is an extremely useful tool in physics, because it allows us to
make approximations that get better and better until we no longer
care about the difference in accuracy. Typically in physics, we are inter-
ested in doing experiments, and so we always work with data that has imperfect
resolution. In fact, in many cases, we take the philosophy that our job is to just
experimentally measure the coefficients in a Taylor series!

As an example, imagine that I want to know how the freezing point of water
changes when I add a small amount of salt. I write Tf (µ) as the freezing
temperature, as a function of the salt concentration µ. If I assume that there
is some series expansion, I can write the first few terms as

Tf (µ) ≈ T0 + T1µ+ T2µ
2 + ... (B.16)

If the salt concentration is very small, then I expect that whatever the true
functional dependence on µ is, keeping the first few terms in the series expansion
should be reasonable. So, what I do is go out and do an experiment, record a
bunch of data, and then I will attempt to fit the data to a quadratic curve. The
fit parameters will tell me what the coefficients are. As far as I’m concerned,
if the third order term were so small that I could never tell the difference with
my thermometer, there’s no way for me to know what the third order term is,
so I might as well just stop here!

While this may seem like the easy way out, this is actually how a lot of
modern physics is usually done! Several theories of physics that we have today
are described by equations which could have more terms added to them, but we
don’t do it because we don’t have the ability to measure them yet anyways! With
all of this power that the Taylor Series gives us, it’s often said that the most
important physicist was actually a mathematician, and his name was Brook
Taylor.
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Appendix C

Differential Equations

There are many instances in physics in which we have a mathematical object
we do not know the value of, but which we can solve for by performing some
mathematical manipulations. For example, often times we need to solve an
algebraic equation for an unknown variable x,

2x+ 1 = 5 ⇒ 2x = 4 ⇒ x = 4/2 = 2 (C.1)

The quantity x is some object which satisfies a mathematical constraint defined
by the above equation. By performing basic algebraic manipulations, I can
arrive at the value of x.

Sometimes the constraint imposed on a mathematical object is more com-
plicated, and can involve calculus. For example, I could have the equation

y′ (x) =
dy

dx
= x. (C.2)

The variable y is some function which depends on x, and the above equation
puts a constraint on its derivative. To solve this equation, I remember that
the integral of a derivative gives the original function back (up to an additive
constant), and so I can perform an indefinite integral on both sides with respect
to x, thus finding ∫

dy

dx
dx =

∫
x dx ⇒ y (x) =

1

2
x2 + C. (C.3)

Unlike the algebraic equation, this equation has many solutions, since the ad-
ditive constant C can be any number I like. For example,

y (x) =
1

2
x2 + 5 ⇒ dy

dx
=

d

dx

(
1

2
x2 + 5

)
= x. (C.4)
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But what if the equation that places a constraint on the function y (x)
involves the function itself? For example, what if we had the equation

y′ =
dy

dx
= y + x (C.5)

This sort of equation that relates a function to its derivative in some way is
known as a differential equation, and they will show up over and over again
in your physics classes. If we attempt to proceed as before and integrate both
sides with respect to x, we find∫

dy

dx
dx =

∫
(y + x) dx ⇒ y =

∫
y dx+

1

2
x2 = ??? (C.6)

Because I don’t know what the function y (x) is, I can’t perform the integration
on the right. How do we go about finding all of the allowed solutions to this
equation?

In general, solving differential equations can be a very complicated subject.
Even solving a simple looking differential equation, like the one above, requires
some techniques that are too complicated to discuss here, given the amount of
time we have in this course (although it would be one of the first techniques
you would learn in a course dedicated to differential equations, known as the
technique of integrating factors). But even this differential equation is far from
the hardest one to solve. We could have higher order derivatives appearing, for
example,

y′′ + y′ = y + x. (C.7)

We could also have situations in which there are two dependent variables, y (x)
and z (x), whose derivatives depend on each other, for example

y′ = z + x ; z′ = y + x. (C.8)

We can even have some functions that have multiple independent variables,
y (x, t), with an equation like

d

dt
y (x, t) =

d

dx
y (x, t) . (C.9)

The first two of these you would learn how to solve in a sophomore-level course
on differential equations, while the third one you would learn how to solve in
a junior or senior-level course on a subject known as partial differential equa-
tions. Ultimately, the vast majority of differential equations are too complicated
to solve by hand, and require numerical approximation techniques that are per-
formed on a computer.
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However, there is a special class of differential equations that are easy to
solve, known as separable differential equations. This is a differential equation
that takes the form

y′ (x) = f (x) g (y (x)) . (C.10)

Notice that the left side of the equation involves only the first derivative of y.
The right side of the equation involves a function of only x, multiplied by a
function of only y (x). For example, we might have the equation

y′ (x) = (x+ 1) (y (x) + 3) . (C.11)

In this example,

f (x) = x+ 1 ; g (y (x)) = y (x) + 3. (C.12)

The reason this type of equation is known as separable is because the right side
“separates” into two factors, one involving x, and the other involving y.

There is a simple technique for solving separable equations. The first step is
to notice that we can divide both sides of our equation by the part that depends
on y. In the example above, this means

y′ (x)

(y (x) + 3)
= (x+ 1) . (C.13)

Now, because y is a function of x, it makes sense to integrate both sides with
respect to x, ∫

y′ (x)

(y (x) + 3)
dx =

∫
(x+ 1) dx =

1

2
x2 + x+ C. (C.14)

Notice that the integral on the right side is easy to perform.
Now, it may seem that we are still stuck on the left side. But, remember

one of the tricks from your calculus class, the method of substitution. That
method relies on the fact that underneath the integral sign, we can make the
replacement

y′ (x) dx =
dy

dx
dx → dy. (C.15)

Whenever the integrand underneath the integral involves a factor of y′ (x), we
can use this trick to effectively change variables in the integral, going from an
integral over x, to an integral over y. Using this, our equation becomes∫

dy

(y + 3)
=

1

2
x2 + x+ C ⇒ ln (y + 3) =

1

2
x2 + x+ C. (C.16)
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We now have an algebraic equation for y in terms of x, which we can re-
arrange to arrive at a formula for x. The presence of the additive constant
C indicates that there will again be many allowed solutions to this equation,
one for each possible value of C (why did I omit the additive constant when I
performed the integral on the left?). On the homework, you’ll get a chance to
gain more practice in solving equations like this (which will include doing the
necessary algebraic rearrangement to find what y is), along with some practice
in understanding how they relate to actual scientific problems, by choosing to
perform some of the extra credit problems.
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