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Foreword

Mathematics is an integral component of all of the scientific disciplines, but for physics, it is a
vital and essential skill that anyone who chooses to study this subject must master. Mathematics
allows a physicist to understand a range of important concepts, model physical scenarios, and solve
problems. In your pre-university studies you will have encountered mathematics: perhaps when con-
sidering Newton’s laws of motion and gravitation, exploring the laws of electricity and magnetism, or
when comparing the absolute magnitudes of stars. As you move through your university studies you
will see the mathematical concepts underpinning physical ideas develop in increasingly sophisticated
ways; you will need to ensure you not only have a highly developed knowledge of algebra and calculus
but you can apply these effectively to a range of different and complex scenarios. Although there
are many different branches of physics, the ability to understand and apply mathematics will be
important regardless of which you choose to study. Mathematics forms the entire basis for physics,
and is a reason why physics graduates are so highly sought by a range of businesses and industries.

For some time it has become apparent that many students struggle with their mathematical
skills and knowledge as they make the transition to university in a wide range of subjects. It may
perhaps be surprising that this includes physics, however this was one of the original disciplines
where a problem was first identified in a seminal report back in 2000. Despite a range of activities,
interventions and resources, a mathematics problem within physics still remains. A 2011 report from
the Institute of Physics indicated many physics and engineering academic members of staff feel new
undergraduates within their disciplines are underprepared as they commence their university studies
due to a lack of fluency in mathematics. In addition, the report also highlights the concerns that
students themselves are now beginning to articulate in relation to their mathematical skills prior
to university entry. This is despite the evidence that they are typically arriving at university with
increased mathematical grades.

In the summer of 2015 we set out to try to address this problem by working with two dedicated and
talented undergraduate interns to develop a supporting resource for those studying physics. There
are already a range of textbooks available that aim to help physics students develop their mathemat-
ical knowledge and skills. This guide isn’t intended to replace those, or indeed the notes provided
by your lecturers and tutors, but instead it provides an additional source of material presented in
a quick reference style allowing you to explore key mathematical ideas quickly and succinctly. Its
structure is mapped to include the key mathematical content most undergraduate physics students
encounter during their first year of study. Its key feature is that it contains numerous examples
demonstrating how the mathematics you will learn is applied directly within a physics context. Per-
haps most significantly, it has been developed by students for students.

While this guide can act as a very useful reference resource, it is essential you work to not only
understand the mathematical ideas and concepts it contains, but that you also continually practice
your mathematical skills throughout your undergraduate studies. Understanding key mathematical
ideas and being able to apply these to problems in physics is an essential part of being a competent
and successful physicist. We hope this guide provides a useful and accessible resource as you begin
your study of physics within higher education. Enjoy, and good luck!

Michael Grove & Joe Kyle
October 2015
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0 Introduction

This booklet has been produced to assist second year physics students with the mathematics content
of their course. It has been designed as an interactive resource to compliment lecture material with
particular focus on the application of maths in physics. The content in this booklet has been developed
using resources, such as lecture notes, lecture slides and past papers, provided to us by the University
of Birmingham.

0.1 About the Authors

Daniel Brett is currently in his third year, studying a joint honours course in Theoretical Physics and
Applied Mathematics at the University of Birmingham. He has enjoyed producing this learning resource
and hopes that it will help students with their studies.
Joseph Vovrosh has just finished his first year of University, also studying Theoretical Physics and
Applied Mathematics. He has a keen interest in maths and physics and hopes to pursue it as a career.

0.2 How to use this Booklet

� The contents contains hyper-links to the sections and subsections listed and they can be easily
viewed by clicking on them.

� The book on the bottom of each page will return you to the contents when clicked. Try it out for
yourself now:

� In the booklet, important equations and relations appear in boxes, as shown below:�� ��Physics > Maths

� Worked examples of the mathematics contained in this booklet are in the red boxes as shown below:

Example: What is the sum 1 + 1?

Solution: 1 + 1 = 2

� Worked physics examples that explain the application of mathematics in a physics-related problem
are in the blue boxes as shown below:

Physics Example: A particle travels 30 metres in 3 seconds. What is the velocity of
the particle, v?

Solution: We know that velocity =
distance

time
. Therefore v = 30

3 = 10ms−1.

� Some examples can also be viewed as video examples. They have hyper-links that will take you to
the webpage the video is hosted on. Try this out for yourself now by clicking on the link below:

Physics Example: A particle is falling under gravity. After a time t the particle’s
velocity has increased from u to v. The acceleration is a and is described by the equation
v = u+ at. Rearrange the equation to make a the subject.

Click here for a video example

Solution: . . .
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1 Functions and Geometry

1.1 Properties of Functions

This section will explain what is meant by a function, as well as some of its properties, giving formal
definitions and notation. You should already be familiar with much of this content, however it is included
here for completeness and to provide a more formal approach.

Sets

A set is a collection of elements denoted by: {x1, x2, x3, ...} or {x : requirement on x}. You should
already be familiar with the standard sets of numbers:

� Natural numbers: N ={1, 2, 3,...}.

� Integer numbers: Z ={0, ±1, ±2, ±3,...}.

� Rational numbers: Q ={mn : m,n ∈ Z, n 6=0}.

� Real numbers: R. Real numbers may be rational or irrational.

� Complex numbers: C = {a+ bi : a, b ∈ R}.
These will be covered in their own section later on in the booklet.

However a set can contain any collection of numbers or objects. In this document we will only consider
sets of numbers.

Example:
Some examples of sets:

1. {apple, pear, 3, x}

2. {1, 4, 9, 2}

3. {x : x2 ∈ N}

4. {2, 7, blue, 8, 2}

Note that the third set is the set of positive multiples of 2. Also note that the fourth set is the
same as writing {2, 7, blue, 8} since we ignore repeated elements.

Functions

A function is a rule that transforms each element, x, of a set X to a unique element, y, of a second set
Y , or formally:
A function f from a set X to a set Y is a rule that associates to each number x ∈ X exactly one number
y ∈ Y . The function is denoted as y = f(x), or f : X → Y , where X is the domain of the function, Y is
the codomain of the function and all possible values of y make up the image.

� The domain of a function is the set X of all the values which we put into the function. The
domain cannot include values for which the function is undefined.

� The codomain is the set Y of all the values which may possibly come out of the function.

� The image is the set of all the values that actually come out of the function.

This means that the codomain contains the image, but they are not necessarily equal sets. If we are not
specifically given a domain then the domain convention tells us that we choose the domain as the set
of all real numbers for which the function defines a real number.
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Example: Let f : N → R such that f(x) = x2. What are the domain, the codomain and the
image of f?

Click here for a video example

Solution: The domain is the set of natural numbers, the codomain is the set of real numbers and
the image is the set of positive square numbers.

Note: The image is a subset of the codomain.

It is very important to note that functions can only be ‘one-to-one’ or ‘many-to-one’ and NOT ‘one-to-
many’. In other words, for any value of x in our domain, a function must only return one value of y.
This becomes important when considering inverse functions, as we are sometimes forced to restrict our
domain so that the inverse function does not become ‘one-to-many’.

Example:
The function f(x) = x2 is ‘many-to-one’, since both x = 1 and x = −1 give f(x) = 1. However,
the inverse function of this, g(x) =

√
x is ‘one-to-many’, since x = 1 gives both g(x) = 1 and

g(x) = −1. To make the inverse function ‘one-to-one’, we define
√
x carefully as having the

domain {x : x ≥ 0} and being the unique, non-negative number
√
x such that (

√
x)2 = x. Thus√

x always represents a positive (or zero) number.

Composite Functions

Consider two functions f(y) and g(x) (or f : Y ′ → Z and g : X → Y ) where the codomain of g is a
subset of the domain of f . A composite function of these two functions is written as f(g(x)), which
applies the function f to g(x). We can also write this composite function as f(g(x)) = f ◦ g(x). Note
that this is not the same as a product of two functions, gf(x). To use a composite function, we first
calculate g(x) to obtain a value x′, say, and then calculate f(x′).

Example: Let f : R→ R such that f(x) = x2 and g : R→ R such that g(x) = x+ 1. Find the
value of g ◦ f(2).

Solution: g ◦ f(x) = g(f(x))
= g(x2)
= x2 + 1
⇒ g ◦ f(2) = 22 + 1 = 5.

Inverse Functions

An inverse function is formally defined as follows:
For a function f : X → Y the function f−1 : Y → X is called the inverse function of f if f−1(f(x)) = x
for any x ∈ X and f(f−1(y)) = y for any y ∈ Y .
In less formal terms, this means that given a function f which turns a value of x into a particular value
of y, the inverse function f−1 converts that value of y back into the original value of x.
We must be careful when working out an inverse of a function as only ‘one-to-one’ functions have an
inverse.
A very simple example is as follows:
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Example: Given the function f(x) = 2x+ 3 from R to R, what is the inverse function of f(x)?

Solution: To apply the original function, we multiply x by 2 and then add 3. To find the inverse
of f , we need to do the opposite of this. Therefore we need to subtract 3 from x and then divide
by 2 so that our inverse function is f−1(x) = x−3

2 .

To check our answer, we can calculate f−1(f(x)) and make sure that it is equal to x:

f−1(f(x)) = (2x+3)−3
2

= 2x
2

= x as required.

Odd and Even Functions

Given a domain X ⊆ R which is symmetric about zero and a codomain Y ⊆ R,

� A function f : X → Y is said to be odd if f(−x) = −f(x) for all x in R.

� A function f : X → Y is said to be even if f(−x) = f(x) for all x in R.

You may find this easier to understand graphically.

−2 −1 1 2

−2

−1

1

2

0

y = x3

Above is the graph of y = x3. We can see this is an odd function as the negative x portion of the graph
is an upside down reflection of the positive x portion.

−2 −1 1 2

−2

−1

1

2

0

y = x2

Above is the graph of y = x2. We can see that this is an even function as the graph is symmetric about
the y-axis.

It is also useful to note that:

� The product of two odd functions is an even function.

� The product of two even functions is also an even functions

� The product of an odd function and an even function is an odd function.
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This property is important as it allows us to predict the behaviour of functions, and in some cases take
shortcuts during integration, which will be covered in a later chapter.

Example: Determine whether the following functions are odd or even.

1. f(x) = 2x6 + 13x2

2. f(x) = 1
4x3−2x

Solution:

1. f(−x) = 2(−x)6 + 13(−x)2

= 2x6 + 13x2

= f(x)
⇒ f(−x) = f(x)
Thus the function is even.

2. f(−x) = 1
4(−x)3−2(−x)

= 1
−4x3+2x

= −f(x)
⇒ f(−x) = −f(x)
Thus the function is odd.

Increasing and Decreasing Functions

Another important property of functions is whether they are increasing or decreasing.

� An increasing function f(x) is such that f(x1) < f(x2) for all x1, x2 ∈ X such that x1 < x2.

� A decreasing function f(x) is such that f(x1) > f(x2) for all x1, x2 ∈ X such that x1 < x2.

Example: Find the restrictions of the domain, X = R, for the function

f(x) = (x+ 1)2

which make f(x)

1. an increasing function.

2. a decreasing function.

Click here for a video example

Solution: See the video example above.

Undefined Functions

When the rule of a function cannot be calculated at a point x′ we call it ‘undefined at the point x′’.
An example of this is f(x) = 1

x at the point where x = 0, i.e. f(0) = 1
0 . As x gets closer to zero from

above the function will grow without bound to ∞. However, if the initial value of x was negative and
was increased to 0 the function would tend to −∞.
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−4 −3 −2 −1 1 2 3 4

−4

−3

−2

−1

1

2

3

4

0
f

From above we can see that at x = 0, this function tends to both +∞ as well as −∞. The function is
thus undefined and so division by zero is forbidden.

Continuity

Informally, we can say a function f(x) is continuous if there are no ‘jumps’ in the function. Graphically,
this means that a function is continuous if there are no breaks in the line, and discontinuous if there
is at least one break in the line. In physics, the most common discontinuity that you will encounter
is an asymptotic discontinuity, which occurs when the curve approaches ±∞ at a point. To find the
discontinuous points of a function, we find the values of x for which the function is undefined. Functions
may have more than one discontinuous point.
An example of an asymptotically discontinuous function is y = 1

x2 , shown below. It has a discontinuous
point at x = 0 since at this point, y tends to ∞ so the function is undefined.

−3 −2 −1 1 2

1

2

3

0
f

Functions with discontinuities must be handled with extra care, especially when differentiating and inte-
grating, which will be covered later. To see the reason for this, think about what happens to the gradient
of the function at the discontinuous point shown above.
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Example: Find the discontinuous point(s) of the following functions:

1. f(x) = 1
x−4

2. f(x) = 1
(x2−1)(x+3)

Solution:

1. We look for the values of x for which the denominator is zero. At the point x = 4, the
function becomes 1

0 which is undefined. Therefore f(x) = 1
x−4 has a discontinuous point at

x = 4

2. At the point x = −3 there is a discontinuous point, since (x + 3) becomes zero, and hence
the denominator becomes zero. Now we look at the values of x for which (x2 − 1) is zero.
Since there is an x2, both x = 1 and x = −1 satisfy this condition. Therefore there exist
three discontinuous points: x = −3, x = −1 and x = 1.

Periodicity

Some functions are ‘periodic’, meaning that they repeat their values in regular intervals or periods. The
general expression for these functions is

f(x+ P ) = f(x)

A function of this type has fundamental period P . In other words, after every interval of length P , the
function ‘resets’ and traces out the same pattern for each interval. An important example of a periodic
function is the ‘sine’ function, which will be covered in more detail in the next section. By looking at
the graph of y = sinx, you can see that the pattern is repeated after each interval of 2π.

−2π −3π/2 −π −π/2 π/2 π 3π/2 2π

−1

1

0f

The Modulus Function

The modulus function is denoted |x| and is defined by:

|x| =

{
x, if x ≥ 0

−x, if x < 0

This just means that given a number x, if it’s negative, multiply it by minus one. The modulus function
will only output non-negative numbers. The modulus function is extremely useful in cases where we
would like to know the distance between two real numbers. For example, the distance between a and b
can be written as |a− b|. Below is the graph of y = |x|.

−2 −1 1

x

−1

1

2

y

0

y = |x|
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Example:

1. What is the modulus of −324?

2. Solve |x+ 1| = 3.

Solution:

1. The modulus of −324 is written as | − 324|
= −1×−324
= 324

2. To solve this requires an understanding of possible cases of |x+ 1|.

If x < −1 this means x+ 1 < 0 thus |x+ 1| = −(x+ 1).
However if x ≥ −1 then x+ 1 ≥ 0 and |x+ 1| = x+ 1
So to achieve a full solution to this problem one needs to consider all cases separately.

(a) Case 1: x < −1.
As seen above, in this case |x+ 1| = −(x+ 1)
Therefore −(x+ 1) = 3
⇒ −x− 1 = 3
⇒ x = −4

(b) Case 2: x ≥ −1.
As seen above, in this case |x+ 1| = x+ 1.
Therefore x+ 1 = 3
⇒ x = 2

This means that the full solution is x = 2 or x = −4. The solutions can also be shown on a
graph.

−5 −4 −3 −2 −1 1 2 3

x

−1

0

1

2

3

4 y

0

y = |x|

a

(−4, 3) (2, 3)

Note: This idea of case analysis is very powerful and can be used to solve inequalities involving the
modulus function as well as simple equations like above.
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1.2 Curve Sketching

If we are given a function f(x), then it is often beneficial to sketch the function in order to understand
how it changes with x. In order to do this, there are a number of properties of the function that we can
look for:

1. Asymptotes: We look for how f(x) behaves as x tends to ±∞.

2. Zeros: Find the values of x for which f(x) = 0, then we know that this is where the function
crosses the x-axis.

3. Singularities: Find the values of x for which f(x) = ±∞.

4. Sign Change: Find where f(x) changes from positive to negative, then we can deduce for what
ranges of x the graph is above or below the x-axis.

5. Stationary Points: We find where the function reaches a local maximum, a local minimum or a
point of inflexion as this gives an idea of the shape of the graph. The method for this is described
in detail in the section on ‘Stationary Points’.
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Example: Sketch the graph of

y = x+
1

x− 2

Solution:

� First we look at how the equation acts at x tends to ±∞:

- We can see that as x tends to +∞ the term 1
x−2 will tend to 1

∞ = 0 therefore y will
tend to the line y = x.

- As x tends to −∞ we can see that 1
x−2 will tend to zero again so y will tend to the line

y = x.

� To find out if the equation has any zeros we need to solve

0 = x+
1

x− 2

⇒ x(x− 2) + 1 = 0

⇒ (x− 1)2 = 0

Therefore x = 1 is a zero of the equation.

� We can see the equation has a singularity at x = 2.

- As x tends to 2 from negative values of y, 1
x−2 will tend to −∞ so y tends to −∞.

- As x tends to 2 from large positive values of y, 1
x−2 will tend to ∞ so y tends to ∞.

� The sign of the function only changes either side of x = 2

�

dy

dx
= 1− 1

(x− 2)2
so

dy

dx
= 0 at:

1 =
1

(x− 2)2

This expands to give
x2 − 4x+ 3 = (x− 1)(x− 3) = 0

So there are turning points at x = 1 and x = 3.
d2y

dx2
=

2

(x− 2)2

At x = 1,
d2y

dx2
> 0 therefore this point is a minimum.

At x = 3,
d2y

dx2
< 0 therefore this point is a maximum.

Putting all this together gives the following graph (red lines are the asymptotes):

−3 −2 −1. 1 2 3 4 5 6

x

−3

−2

−1

1

2

3

4

5

6

y

0

f

a

b

©University of Birmingham, 2015
18

http://creativecommons.org/licenses/by-nc-nd/4.0/


1.3 Trigonometry

In this section we will recap trigonometry and discuss some important ideas involving properties of the
trigonometric functions.

Radians

We often use degrees to measure angles, however we also have the option of measuring angles using
radians which can be much more convenient. Instead of splitting a full circle into 360◦, it is split into
2π radians. We must use radians in calculus (differentiation and integration), complex numbers and
polar coordinates.
Below is shown a full circle showing some angles in degrees and what they are in radians.

2π

360◦
π

180◦

3π
2

270◦

π
290◦

π
4

45◦

We may wish to convert between degree and radians. In order to turn x degrees into radians we use the
formula: �



�
	x◦

360◦
× 2π

In order to convert x radians into degrees we use the formula:�


�
	x

2π
× 360◦
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Example: Convert the following:

1. 60◦ into radians.

2.
3π

8
radians into degrees.

Solution:

1. We need to use the formula
x◦

360◦
× 2π

x◦

360◦
× 2π =

60◦

360◦
× 2π =

π

3
radians.

2. We need to use the formula
x

2π
× 360◦.

x

2π
× 360◦ =

(
3π

8

)
2π

× 360◦ =
3

16
× 360◦ = 67.5◦

SOHCAHTOA

Hypotenuse

Adjacent

Opposite

θ

Given our right-angled triangle we start by defining sine, cosine and tangent before reviewing what their
graphs look like.
Note: The angle θ is measured in radians in the following graphs on the x-axis.
Sine Function
We define sine as the ratio of the opposite to the hypotenuse.�



�
	sin(θ) =

Opposite

Hypotenuse

The graph of y = sin(θ) is shown below:

The domain of sin(θ) is the set of real numbers (R)
The range of sin(θ) is {y : −1 ≤ y ≤ 1}
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The sine function has two very useful properties:

� sin θ is an odd function, i.e. sin(−θ) = − sin(θ).

� sin θ is periodic with period 2π radians, as mentioned in the section on periodicity, ie. sin(θ+2πn) =
sin(θ).

Cosine Function
We define cosine as the ratio of the adjacent to the hypotenuse.�



�
	cos(θ) =

Adjacent

Hypotenuse

The graph of y = cos(θ) is shown below:

The domain of cos(θ) is the set of real numbers (R)
The range of cos(θ) is {y : −1 ≤ y ≤ 1}

As with the sine function, the cosine function also has two very useful properties:

� cos θ is an even function, i.e. cos(−θ) = cos(θ).

� cos θ is periodic with period 2π radians, as mentioned in the section on periodicity, ie. cos(θ+2πn) =
cos(θ).

Tangent Function
We define tangent as the ratio of the opposite to the adjacent.�



�
	tan(θ) =

Opposite

Adjacent

This leads to the relationship tan(θ) =
sin(θ)

cos(θ)
shown below:

tan(θ) =
Opposite

Adjacent
=

Opposite × Hypotenuse

Adjacent × Hypotenuse
=

(
Opposite

Hypotenuse

)
(

Adjacent

Hypotenuse

) =
sin(θ)

cos(θ)

The graph of y = tan(θ) is shown below:
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The domain of tan(θ) is {θ : θ 6= (2n+1)π
2 , n ∈ Z}

The range of tan(θ) is the set of real numbers (R)

The function tan(θ) has the useful property that it is periodic with period π.

The definitions of sine, cosine and tangent are often more easily remembered by using SOHCAHTOA.
We can use the formulas in SOHCAHTOA to calculate the size of angles and the length of sides in
right-angled triangles.

S O H︸ ︷︷ ︸
sin(θ)= Opposite

Hypotenuse

C A H︸ ︷︷ ︸
cos(θ)= Adjacent

Hypotenuse

T O A︸ ︷︷ ︸
tan(θ)= Opposite

Adjacent

There are some common values of sin(θ), cos(θ) and tan(θ) which are useful to remember, presented in
the table below.

Angle (θ) sin(θ) cos(θ) tan(θ)

0 0 1 0

π

6

1

2

√
3

2

√
3

3

π

4

√
2

2

√
2

2
1

π

3

√
3

2

1

2

√
3

π

2
1 0 undefined

π 0 −1 0
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Example: Using SOHCAHTOA find the lengths x, y and z in the right-angled triangles below.

3
x

30◦

y

7
30◦ z

6

π
4

Solution: For shorthand H is used to denote the hypotenuse, O the opposite and A the adjacent.

1. We know the length of the hypotenuse and wish to find the opposite hence we need to use

sin(θ) =
O

H
=⇒ sin(30◦) =

O

3
=⇒ O = sin(30◦)× 3 =

3

2

Note: This question is in degrees.

2. We know the length of the adjacent and wish to find the opposite hence we need to use

tan(θ) =
O

A
=⇒ tan(30◦) =

O

7
=⇒ O = tan(30◦)× 7 =

7
√

3

3

Note: This question is in degrees.

3. We know the length of the adjacent and wish to find the hypotenuse hence we need to use

cos(θ) =
A

H
=⇒ cos

(π
4

)
=

6

H
=⇒ H =

6

cos
(π

4

) = 6
√

2

Note: This question is in radians.

Trigonometric Formulae and Identities

A very useful tool in many areas of physics is to be able to simplify and manipulate trigonometric
expressions. There are a number of formulae that can be used to achieve this, however the most important
of these by far is the identity: �� ��cos2(θ) + sin2(θ) = 1

This means that for ANY value of θ, the sum of the squares of the sine and cosine functions is ALWAYS
equal to 1. From this identity and the two following formulae, we can derive many useful equations
which can help us to simplify some of the complicated trigonometric expressions that appear in physics.
The following formulae can be proved geometrically. For the sake of interest, here is a link to the proofs.
Two useful identities are:

sin(A±B) = sin(A) cos(B)± cos(A) sin(B)

cos(A±B) = cos(A) cos(B)∓ sin(A) sin(B)

From these we can show that:

tan(A±B) =
sin(A±B)

cos(A±B)
=

sin(A) cos(B)± cos(A) sin(B)

cos(A) cos(B)∓ sin(A) sin(B)

And dividing through by cos(A) cos(B) gives:

tan(A±B) =
tan(A)± tan(B)

1∓ tan(A) tan(B)

We can also show that if B = A then,
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�� ��sin(2A) = 2 sin(A) cos(A)

And that
cos(A+B) = cos(2A) = cos2(A)− sin2(A)

Using cos2(θ) + sin2(θ) = 1 we can further show that:�� ��cos(2A) = 1− 2 sin2(A) = 2 cos2(A)− 1

You only need to remember the first three identities, as long as you can derive the rest of the equations
as above.

Reciprocal Trigonometric Functions

As well as the standard trigonometric functions there are functions that are defined by the reciprocals
of these functions:

� The Secant function: �



�
	sec(θ) =

1

cos(θ)

The domain is {θ : θ 6= (2n+1)π
2 , n ∈ Z}

The range is {y : −1 ≤ y or y ≥ 1}
The period is 2π

� The Cosecant function: �



�
	cosec(θ) =

1

sin(θ)

The domain is {θ : θ 6= nπ, n ∈ Z}
The range is {y : −1 ≤ y or y ≥ 1}
The period is 2π

� The Cotangent function: �



�
	cot(θ) =

1

tan(θ)

The domain is {θ : θ 6= nπ, n ∈ Z}
The range is the set of real numbers (R)

The period is π

An easy way to remember which reciprocal function corresponds to each trig function is to look at the
third letter of each function:

� sec → cosine.

� cosec → sine.

� cot → tangent.

From these we can expand the list of identities above, using cos2(θ) + sin2(θ) = 1, and dividing through
by cos2(θ) and sin2(θ) separately:
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� Dividing through by cos2(θ) gives
1 + tan2(θ) = sec2(θ).

� Dividing through by sin2(θ) gives
1 + cot2(θ) = cosec2(θ)

Example:

1. Simplify
sin(θ) sec(θ)

cos2(θ)

2. Solve tan(θ) + sec2(θ) = 1.

Solution:

1.
sin(θ) sec(θ)

cos2(θ)
= tan(θ)

sec(θ)

cos(θ)

= tan(θ) sec2(θ)

= tan(θ)(tan2(θ) + 1)

= tan3(θ) + tan(θ)

2. Using 1 + tan2(θ) = sec2(θ) we get:

tan(θ) + tan2(θ) + 1 = 1

⇒ tan(θ) + tan2(θ) = 0

⇒ tan(θ)
(

tan(θ) + 1
)

= 0

⇒ tan(θ) = 0 or tan(θ) = −1

If tan(θ) = 0, θ = nπ where n ∈ Z

If tan(θ) = −1, θ = −π
4

+ nπ where n ∈ Z
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Inverse Trigonometric Functions

We may be given the lengths of two sides of a right-angled triangle and be asked to find the angle θ
between them or be asked to rearrange an equation with a trigonometric function. In order to do these we
need to introduce the inverse trigonometric functions. As the trigonometric functions are ‘one-to-many’
we also need to restrict the ranges of these inverses. The y-axis is measured in radians.

Note: We should also remark that whilst
(

sin(θ)
)−1

=
1

sin(θ)
, the notation sin−1(θ) is not the same

since it represents the inverse function of sin(θ) such that sin
(

sin−1(θ)
)

= θ.

� The inverse function of sin(x) is sin−1(x) and can also be denoted as arcsin(x).
Domain: −1 ≤ x ≤ 1
Range: −π2 ≤ y ≤

π
2

−1 1

x

−π/2

π/2 y

0

� The inverse function of cos(x) is cos−1(x) and can also be denoted as arccos(x).
Domain: −1 ≤ x ≤ 1
Range: 0 ≤ y ≤ π

−1 1

x

π/2

π y

0

� The inverse function of tan(x) is tan−1(x) and can also be denoted as arctan(x).
Domain: x ∈ R
Range: −π2 < y < π

2
Asymptotes at y = ±π2

−3 −2 −1 1 2 3

x

−π/2

π/2 y

0

We use the inverse trigonometric functions with SOHCAHTOA to find the values of angles in right-angled
triangles in which two of the lengths of the sides have been given. Suppose we know that:

sin(θ) =
1

2

To find θ we can apply the inverse sine function to both sides of the equation.
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sin−1(sin(θ)) = sin−1

(
1

2

)
.

=⇒ θ = sin−1

(
1

2

)
.

=⇒ θ = 30◦.

We can use a calculator to find sin−1

(
1

2

)
= 30◦ or sin−1

(
1

2

)
=
π

6
radians.

Example: Using SOHCAHTOA find the size of the angles B,C and D in the right-angled
triangles below.

5
3

B

6

5
C 11

6

D

Solution: For shorthand we have used H to denote the hypotenuse, O the opposite and A the
adjacent.

1. We know the length of the hypotenuse and the opposite.

sin(θ) =
O

H
=⇒ sin(B) =

3

5
=⇒ B = sin−1

(
3

5

)
= 36.9◦ or 0.64 radians.

2. We know the length of the adjacent and the opposite.

tan(θ) =
O

A
=⇒ tan(C) =

6

5
=⇒ C = tan−1

(
6

5

)
= 50.2◦ or 0.88 radians.

3. We know the length of the hypotenuse and the adjacent.

cos(θ) =
A

H
=⇒ cos(D) =

6

11
=⇒ D = cos−1

(
6

11

)
= 56.9◦ or 0.99 radians.
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1.4 Hyperbolics

Basics

Another set of functions which appear often in physics are the hyperbolic functions. They are convenient
combinations of ex and e−x which have some useful properties and even share some properties with the
trigonometric functions. If you are unfamiliar with the functions ex and ln(x), refer to the following
resource for a detailed explanation: Exponential and Logarithmic Functions
The three main hyperbolic functions are:

� sinh(x) (pronounced ‘sinch’ or ‘shine’), which can also be written as

sinh(x) =
ex−e−x

2

−2 −1 1 2

x

−3

−2

−1

1

2

3 y

0

� cosh(x) (pronounced ‘cosh’), which can also be written as

cosh(x) =
ex+e−x

2

−3 −2 −1 1 2 3

x
1

2

3

4

5

y

0

� tanh(x) (pronounced ‘tanch’ or ‘than’), which can also be written as

tanh(x) =
ex − e−x

ex + e−x
=
e2x − 1

e2x + 1

−3 −2 −1 1 2 3

x

−1

1 y

0
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Some useful properties:

� sinh(x) is an odd function

� cosh(x) is an even function

� tanh(x) is an odd function

� tanh(x) has asymptotes at y = ±1

Example:

1. Evaluate tanh(ln
√

3)

2. Solve sinh(x)+ cosh(x) = 2

3. Using the exponential form of cosh(x) show that 2 cosh2(x)− cosh(2x) = 1

Solution:

1. Using the exponential form of tanh(x):

tanh(ln
√

3) =
e2 ln

√
3 − 1

e2 ln
√

3 + 1

=
3− 1

3 + 1

=
1

2

2. Using the exponential forms we get:

ex − e−x

2
+
ex + e−x

2
= 2

⇒ ex − e−x + ex + e−x = 4

⇒ 2ex = 4

⇒ ex = 2

⇒ x = ln(2)

3. Using the exponential form of cosh(x) we get:

2

(
ex + e−x

2

)2

−
(
e2x + e−2x

2

)

≡ e2x + 2 + e−2x − e2x − e−2x

2

≡ 2

2
= 1

Reciprocals and Inverses

Again these functions all have their inverse functions:

� sinh−1(x) = arsinh(x) = ln(x+
√
x2 + 1)

arsinh(x) has domain {x : x ≥ 1}

� cosh−1(x) = arcosh(x) = ln(x+
√
x2 − 1)

arcosh(x) has domain {x : x ≥ 1}
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� tanh−1(x) = artanh(x) = 1
2 ln(1 + x)− 1

2 ln(1− x)
artanh(x) has domain {x : −1 < x < 1}

As well as their reciprocal functions:

� cosech(x) = 1
sinh(x)

� sech(x) = 1
cosh(x)

� coth(x) = 1
tanh(x)

Identities

Hyperbolic function identities have very similar forms to the trigonometric identities however there is
one key difference outlined in Osborn’s rule. This rule states that all the identities for the hyperbolic
functions are exactly the same as the trigonometric identities, except whenever a product of two sinh
functions is present we put a minus sign in front. For example if a trigonometric formula involved a
sin2(x), then the corresponding hyperbolic formula would contain a − sinh2(x) instead.

Remember : tanh(θ) = sinh(θ)
cosh(θ) so Osborn’s rule applies for a tanh2(θ) as well!

Trigonometric Hyperbolic

cos2(θ) + sin2(θ) = 1 cosh2(x) − sinh2(x) = 1

sin(A ± B) = sin(A) cos(B) ± cos(A) sin(B) sinh(A ± B) = sinh(A) cosh(B) ± cosh(A) sinh(B)

cos(A ± B) = cos(A) cos(B) ∓ sin(A) sin(B) cosh(A ± B) = cosh(A) cos(B) ∓ sinh(A) sinh(B)

cos(2θ) = cos2(θ) − sin2(θ) cosh(2θ) = cosh2(θ) + sinh2(θ)

sin(2θ) = 2 sin(θ) cos(θ) sinh(2θ) = 2 sinh(θ) cosh(θ)

1 + tan2(θ) = sec2(θ) 1 − tanh2(θ) = sech2(θ)

1 + cot2(θ) = cosec2(θ) 1 − coth2(θ) = − cosech2(θ)
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Example:

1. Show that tanh2(x) + sech2(x) = 1

2. Simplify 1−
sinh(x)

√
cosh2(x)− 1

cosh2(x)

Solution:

1. Using the exponential forms we get:(
ex − e−x

ex + e−x

)2

+

(
2

ex + e−x

)2

=
e2x − 2 + e−2x

e2x + 2 + e−2x
+

4

e2x + 2 + e−2x

=
e2x − 2 + e−2x + 4

e2x + 2 + e−2x

=
e2x + 2 + e−2x

e2x + 2 + e−2x
= 1

2. Using cosh2(x)− sinh2(x) = 1 we can see that sinh(x) =
√

cosh2(x)− 1

⇒ 1−
sinh(x)

√
cosh2(x)− 1

cosh2(x)
= 1− sinh2(x)

cosh2(x)

⇒ 1− tanh2(x)

= sech2(x)

©University of Birmingham, 2015
31

http://creativecommons.org/licenses/by-nc-nd/4.0/


1.5 Parametric Equations

We can also express x and y in terms of a parameter t, which gives us two equations; x = f(t) and
y = g(t). We call these parametric equations. For example given the equation:

y = 9x2 + 5

We can convert this to a Parametric form such as:

x =
1

3
t

y = t2 + 5

Another trivial parametric form of the same equation is:

x = t

y = 9t2 + 5

There are actually infinitely many ways we can paramaterise each Cartesian equation but some are gen-
erally more useful than others.
In a physical system, it is often useful to represent trajectories of particles in terms of the time, using time
as the parameter. For example we can say that at time t, a particle has velocity v(t) and acceleration a(t).

Example: Parametrise the equation of a unit circle:

x2 + y2 = 1

Solution: By considering the identity cos2(θ) + sin2(θ) = 1, we can parameterise as:

x = cos(t)
y = sin(t)
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1.6 Polar Coordinates

You will already be familiar with coordinates in the form (x, y) meaning that we move x units in the
x-direction (along the x-axis) and y in the y-direction (along the y-axis). These are Cartesian coordi-
nates on the x, y-plane. Although Cartesian coordinates are very useful, there are sometimes situations
where it is much easier to use another coordinate system called Polar coordinates. These are coordi-
nates in the form (r, θ) where r is the distance to the point from the origin (0, 0) and θ is the angle,
in radians, between the positive x-axis and the line formed by r. This is all shown in the diagram below:

x

y

y = r sin(θ)

x = r cos(θ)

r

θ

So we could represent the above coordinate as (x, y) in Cartesian form or as (r, θ) in Polar form. From
trigonometry and Pythagoras’ theorem there are the following relationships:

� x = r cos(θ)

� y = r sin(θ)

� r =
√
x2 + y2

We can use the formulae above to allow us to convert between Polar and Cartesian coordinates.

Example:
(

3,
−π
4

)
is a Polar coordinate. What is the corresponding Cartesian coordinate?

Solution: So r = 3 and θ =
−π
4

. So using the formulae above gives:

x = r cos(θ) = 3× cos

(
−π
4

)
=

3
√

2

2

y = r sin(θ) = 3× sin

(
−π
4

)
=
−3
√

2

2

So our Cartesian coordinate is

(
3
√

2

2
,
−3
√

2

2

)
.

Example: (−2, 3) is a Cartesian coordinate. What is the corresponding Polar coordinate?

Solution: So we can write x = −2 and y = 3. Using the formulae above gives:
r =

√
x2 + y2 =

√
(−2)2 + 32 =

√
13

Now we can find θ.

x = r cos(θ)⇒ θ = cos−1
(x
r

)
= cos−1

(
−2√
13

)
= 2.158 · · · = 2.16 radians

So our Polar coordinate is (
√

13, 2.16).

It is also very useful to be able to convert from Cartesian equations to Polar equations and vice versa.
We do this by substituting the above relationships into the equation, so that the new equation only
contains terms in x and y, or r and θ. Sometimes it is necessary to first rearrange the relationships to
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make the substitution easier. For example, some integrals become much easier, and often trivial, once we
change the coordinate systems. It is also much easier to represent a radial field using polar coordinates.

Example:

1. Convert the Cartesian equation 3x2 − x = 12y + 1 into a Polar equation.

2. Convert the Polar equation r = −3 sin(θ) into a Cartesian equation.

Solution:

1. We substitute x = r cos(θ) and y = r sin(θ) into the equation.

3(r cos(θ))2 − (r cos(θ)) = 12(r sin(θ)) + 1

= 3r2 cos2(θ)− r cos(θ) = 12r sin(θ) + 1

This is now in Polar form, as all the terms are in r or θ and do not contain x or y.

2. We rearrange the relationship y = r sin(θ) so that sin(θ) =
y

r
. We can then rewrite the

equation as

r = −3
y

r

Multiplying through by r gives
r2 = −3y

Using the relationship r =
√
x2 + y2, we can write

x2 + y2 = −3y

x2 + y2 + 3y = 0

This is now in Cartesian form, as all the terms are in x or y and do not contain r or θ.
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1.7 Conics

Standard Equations of Conics

Conic sections are the family of curves obtained by intersecting a cone with a plane. This intersection
can take different forms according to the angle the intersecting plane makes with the side of the cone.
The standard conic sections are the circle, the parabola, the ellipse and the hyperbola. There are also
special cases, such as a point or a line, however these are trivial (sometimes called degenerate) so we
shall not cover them.

Conic Cartesian Equation Parametric Equation

Circle x2 + y2 = a2 x = cos(t), y = sin(t)

Parabola x = 4ay2 x = 4at2, y = t

Ellipse x2

a2
+ y2

b2
= 1 x = a cos(t), y = b sin(t)

Hyperbola x2

a2
− y2

b2
= 1 x = b tan(t), a sec(t)

In the case of an ellipse with centre at the origin (0,0), we can use that fact that it crosses the x-axis at
±a and crosses the y-axis at ±b. This fact can be extended to ellipses with a centre other than (0,0) by
translating these axes intercepts according to it’s position.
Note: The circle is a special case of the ellipse, when a = b

Translating Conics

In order to translate a conic (or any equation) in the x or y direction, we just have to add or subtract a
number from x or y respectively.

For example, if we wished to translate the conic y = 2x2 from the origin (0, 0) to the point (3,−1)
then we would subtract 3 from x and add 1 to y, ie x→ x− 3 and y → y + 1.
This would give the equation (y + 1) = 2(x− 3)2 ⇒ y = 2x2 − 12x+ 17.

Remember: To move a distance a in the x-direction, we substitute x = (x − a) into the equation.
To move a distance b in the y-direction, we substitute y = (y + b) into the equation.
Of course if we want to move a distance −a in the x-direction, for example, then we would substitute
x = (x+ a) into the equation instead.

Recognising Conics

The general equation of any conic is Ax2 + Bxy + Cy2 +Dx+ Ey + F = 0. When we see an equation
like this we know that it describes a conic, but to find out which conic it describes one has to manipulate
the equation into one of the equations given above. This is helpful in areas such as chaos, as we are

©University of Birmingham, 2015
35

http://creativecommons.org/licenses/by-nc-nd/4.0/


often faced with equations that we cannot solve and so we can only extract some of the information.
One method is to sketch a phase plot which is a graph drawn up from the given equation to allow us to
try understand what the equation describes in a physical system. In many cases we can manipulate the
given equation to take the form of a conic.

Example: Determine the conic described by the equation: 4x2 − 8x+ 8y2 + 32y + 20 = 0.

Solution: Notice that we can divide the entire equation by 4:

4x2 − 8x− 8y2 − 32y + 20 = x2 − 2x+ 2y2 + 4y + 5 = 0

The next step is to complete the square for both x and y:

((x− 1)2 − 1)− 2((y + 2)2 − 2 + 5 = 0

⇒ (x− 1)2 − 2(y + 2)2 = 4

⇒ (x− 1)2

4
− (y + 2)2

2
= 1

This is a hyperbola with its centre at (1,−2).

Physics Example: A particle’s motion is described by 9x2 + 4v2 + 10x6 = 36, where v is its
velocity and x is its displacement. Describe the motion of the particle for small displacements.

Solution: As the question only asks us to describe the particle’s motion for small displacements,
we can say that x is much less than one, so that x6 ' 0. We can simplify this equation to give
9x2 + 4v2 − 18x+ 8v ' 36 which is in the general form of a conic.

9x2 + 4v2 = 36

⇒ 9x2 + 4v2 = 36

⇒ x2

4
+
v2

9
= 1

This is an ellipse. Since a =
√

4 = 2 and b =
√

9 = 3, we can deduce that the ellipse crosses the
x-axis at x = −1 and x = 3, and crosses the v-axis at v = −4 and v = 2.
Physically, this situation describes Simple Harmonic Motion.
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1.8 Review Questions

Easy Questions

Question 1: If
f(x) = 3x2 + 2

and
g(x) = cos(4x)

find g ◦ f(x) and f ◦ g(x).

Answer:
g ◦ f(x) = cos(12x2 + 8)

f ◦ g(x) = 3 cos2(4x) + 2

Question 2: Find the inverse of the function f(x) if

f(x) =
sec

2
3 (x)

4
.

Answer:
f−1(x) = sec−1(8x

3
2 )

Question 3: Let

f(x) = e−x
2

cos(x)

is f(x) even or odd?

Answer:

f(x) is an even function.

Question 4: What is the period of the functions

1. cos(4x+ 2)

2. tan(3x)

3. sin
(

4x
5

)
Answer:

1.
π

2

2.
π

3

3.
5π

2

Question 5: Combine the parametric equations

y = 3t2 + 7

x = 4t+ 1

to give y as a function of x.

Answer:

y =
3x2

16
− 3x

2
+ 10
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Medium Questions

Question 6: Solve the inequality

|x+ 2|+ 3 ≥ 4x

Answer:

x ≤ 5

3

Question 7: Use the definitions of the hyperbolic functions to prove that

sinh(2x) = 2 sinh(x) cosh(x)

Question 8: Prove that

(sec θ − cosec θ)(1 + tan θ + cot θ) = tan θ sec θ − cot θ cosec θ

Question 9: The eccentricity of a hyperbola with center (0, 0) and focus (5, 0) is
5

3
. What is

the standard equation for the hyperbola?

Answer: The planes intersect on the line

x2

9
− y2

16
= 1

Question 10: What is the eccentricity of the ellipse 81x2 + y2− 324x− 6y + 252 = 0?

Answer: √
80

9

Hard Questions

Question 11: Sketch the curve
y =
√

3x+ 1.

Answer:

−1 1 2 3

x

1

2

3

y

0

g
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Question 13: Shetch the graph of the function

f(x) = e−x+1(x+ 1)2.

Answer:
−1 1 2 3 4 5 6 7 8 9 10

x

1

2

3

4

5

6

7
y

0

f

Question 12: Convert the polar equation

r = −8 cos θ

into cartesian coordinates.

Answer:
y =

√
−8x− x2
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2 Complex Numbers

2.1 Imaginary Numbers

Imaginary numbers allow us to find an answer to the question ‘what is the square root of a negative
number?’ We define i to be the square root of minus one.�� ��i =

√
−1

We find the other square roots of a negative number say −x as follows:�� ��√
−x =

√
x×−1 =

√
x×
√
−1 =

√
x× i

Example: Simplify the following roots:

1.
√
−9

2.
√
−13

Solution:

1.
√
−9 =

√
9×−1 =

√
9×
√
−1 = 3i

2.
√
−13 =

√
13×−1 =

√
13×

√
−1 =

√
13 i

2.2 Complex Numbers

A complex number is a number z that has both a real and an imaginary component. They can be written
in the form: �� ��z = a+ bi

where a and b are real numbers and i =
√
−1.

� a is the real part of z we denote this Re(z) = a.

� b is the imaginary part of z we denote this Im(z) = b.

� z∗ = a− bi is called the complex conjugate of z = a+ bi. To find the complex conjugate, we just
replace ‘i’ with ‘−i’. (Note that some books will use z̄ to represent a complex conjugate, rather
than z∗)

Just as there is a number line for real numbers, we can draw complex numbers on an x, y axis called
an Argand diagram with imaginary numbers on the y-axis and real numbers on the x-axis. Below is a
sketch of 2 + 3i on the Argand diagram below.

Re(z)

Im(z)

−3

−3i

−2

−2i

−1

−1i

1

1i

2

2i

3

3i 2 + 3i
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Example: Find the imaginary and real parts of the following complex numbers along with their
complex conjugates.

1. z = −3 + 5i

2. z = 1− 2
√

3 i

3. z = i

Solution:

1. For z = −3 + 5i we obtain Re(z) = −3, Im(z) = 5 and z∗ = −3− 5i

2. For z = 1 + 2
√

3 i we obtain Re(z) = 1, Im(z) = −2
√

3 and z∗ = 1 + 2
√

3 i

3. For z = i we obtain Re(z) = 0, Im(z) = 1 and z∗ = −i

Different Forms for Complex Numbers

When a complex number z is in the form z = a+ bi we say it is written in Cartesian form. We can also
write complex numbers in:

� Modulus-Argument (or Polar) form: z = r(cos(φ) + i sin(φ))

� Exponential form: z = reiφ

where the magnitude |z| (or modulus) of z is the length r. The reason for this is due to Euler’s Formula
which is presented below. �� ��|z| = r =

√
a2 + b2

and the argument of z is the angle φ (this must be in radians).�
�

�

arg(z) = φ = tan−1

(
b

a

)
This argument φ is usually between −π and π. Expressed mathematically this is −π < φ ≤ π. It is very
important that we check which quadrant of the Argand diagram our complex number lies in however,
since the above formula calculates the angle from the appropriate side of the x-axis whereas we usually
want the angle from the positive x-axis.

1. If z is in the first quadrant (+x,+y) then arg(z) is simply φ.

2. If z is in the second quadrant (−x,+y) then arg(z) = π − |φ|.

3. If z is in the third quadrant (+x,−y) then arg(z) is simply φ.

4. If z is in the fourth quadrant (−x,−y) then arg(z) = |φ| − π.

We can see on an Argand diagram the relationship between the different forms for representing a complex
number.
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Re(z)

Im(z)

−3

−3i

−2

−2i

−1

−1i

1

1i

2

2i

3

3i 2 + 3i

b

a

r

φ
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Example: Find the modulus and argument of the following complex numbers:

1. 3 + 3i

2. −4 + 3i

3. −3 + 3i

4. −3i

5. 4

Solution:

1. For 3 + 3i we obtain |z| =
√

32 + 32 =
√

18 and φ = tan−1

(
3

3

)
=
π

4
radians. Since z is in

the first quadrant, arg(z) = φ =
π

4
radians.

2. For −4 + 3i we obtain |z| =
√

(−4)2 + (3)2 = 5 and φ = tan−1

(
3

−4

)
= −0.64 radians. But

z is in the second quadrant so arg(z) = π − |φ| = 2.5 radians

3. For −3 − 3i we obtain |z| =
√

(−3)2 + (−3)2 =
√

18 and φ = tan−1

(
−3

−3

)
=
π

4
radians.

Since z is in the fourth quadrant, arg(z) = |φ| − π =
π

4
− π = −3π

4
radians.

4. For −3i we obtain |z| =
√

02 + (−3)2 = 3 and arg(z) = tan−1

(
−3

0

)
This calculation does not make sense since we can’t divide by zero. However from plotting

−3i on an Argand diagram the argument is clearly arg(z) = −π
2

radians. We could use the

fact that we are essentially solving 0 = r cos(φ) and −3 = sin(φ) simultaneously.

Re(z)

Im(z)

−3

−3i

−2

−2i

−1

−1i

1

1i

2

2i

3

3i

0− 3i

5. For 4 we obtain |z| =
√

42 + 02 = 4 and arg(z) = tan−1

(
0

4

)
= 0 radians.

Example: Express 4− 5i in modulus-argument form and exponential form.

Solution: First we need to find the modulus and argument.

|z| = r =
√

42 + (−5)2 =
√

41 and arg(z) = φ = tan−1

(
−5

4

)
= −0.90 radians

So in modulus-argument form r(cos(φ) + i sin(φ)) we obtain
√

41(cos(−0.90) + i sin(−0.90)).
In exponential form reiφ we obtain

√
41e−0.90 i.
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De Moivre’s Theorem

An important theorem when using complex numbers is De Moivre’s Theorem, which provides a formula
for calculating powers of complex numbers. The theorem states that when a complex number, z, in
the modulus-argument form, i.e. z = r(cosφ + i sinφ) is raised to the power n, where n ∈ N, we can
rearrange the expression by bringing the modulus to the power n and multiplying the argument by the
power n:

z = r(cosφ+ i sinφ)

⇒ zn = rn(cosnφ+ i sinnφ)

This also holds when the complex number is in exponential form:

z = reiφ

⇒ zn = rneinφ

Example: Using De Moivre’s Theorem, show that cos(2φ) = 2 cos2(φ)− 1.

Solution: Notice Re(cos(2φ) + i sin(2φ)) = cos(2φ).
By De Moivre’s Theorem,

cos(2φ) + i sin(2φ) = (cosφ+ i sinφ)2

= cos2 φ+ i sinφ cosφ+ i2 sin2 φ

The real part of this is cos2 φ− sin2 φ (as i2 = −1).

∴ cos(2φ) = cos2 φ− 1 + cos2 φ

= 2 cos2 φ− 1

Euler’s Formula

We saw in the Hyperbolics section that we can write hyperbolic functions in terms of exponentials.
There is a parallel to this involving the trigonometric functions, however we needed to understand com-
plex numbers first.

To determine these formulae, we begin with Euler’s formula:

eiθ = cos(θ) + i sin(θ)

If we substitute −θ instead of θ we get:

e−iθ = cos(θ)− i sin(θ)

since sin(θ) is an odd function and cos(θ) is an even function.

Now we can compute
eiθ + e−iθ = 2 cos(θ)

and hence,

cos(θ) =
1

2
(eiθ + e−iθ)

Similarly for sine, remembering the factor of i, we can write:

sin(θ) =
1

2i
(eiθ − e−iθ)
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Arithmetic of Complex Numbers

If we are given two complex numbers a + bi and c + di then the following rules for the arithmetic of
complex numbers apply:

1. Addition: (a+ bi) + (c+ di) = (a+ c) + (b+ d)i

Add the real parts and add the complex parts separately.

2. Subtraction: (a+ bi)− (c+ di) = (a− c) + (b− d)i

Same as addition but with subtraction.

3. Multiplication: (a+ bi)(c+ di) = (ac− bd) + (ad+ bc)i

Treat it as two sets of brackets and multiply out as normal. Then collect the real terms and
imaginary terms. Remember that i2 = −1.

4. Division:
a+ bi

c+ di
=
ac+ bd

c2 + d2
+
bc− ad
c2 + d2

i

Multiply the numerator and denominator by the conjugate of the denominator. This makes the
denominator a real number and the numerator the multiplication of two complex numbers.

Example: Find the following:

1. (2 + i) + (1− i)

2. (−4− 4i)− (−5i)

3. (1 + i)(2− 3i)

4.
1− i
2 + 3i

Solution:

1. (2 + i) + (1− i) = (2 + 1) + (1− 1)i = 3

2. (−4− 4i)− (−5i) = (−4− 0) + (−4− (−5))i = −4 + i

3. (1 + i)(2− 3i) = ((1× 2)− (1×−3)) + ((1×−3) + (1× 2))i = 5− i

4.
1− i
2 + 3i

=
(1× 2) + (−1× 3)

22 + 32
+

(−1× 2)− (1× 3)

22 + 32
i =
−1

13
− 5

13
i

Physics Example: A particle is described by a wavefunction Ψ. To calculate the probability
of finding this particle in a particular region, ΨΨ∗ needs to be calculated. When Ψ is in the form:

Ψ = a+ bi

calculate ΨΨ∗.

Solution: Since Ψ = a+ bi, this means that Ψ∗ = a− bi. Multiplying them together gives:

ΨΨ∗ = (a+ bi)(a− bi) Expand the brackets

= a2 + abi− abi− (bi)2 Simplify this

= a2 − b2i2 Simplify the i2

= a2 + b2

Note: a2 + b2 is also r2 if the complex number was in polar or exponential form. Since r is called
the modulus, ΨΨ∗ is often called the mod-squared distribution since it produces the modulus
squared.
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2.3 Applications of Complex Numbers

nth Roots of Unity

An nth root of unity, where n is a positive integer, is a complex number z = a+ bi such that

zn = 1

Before meeting complex numbers, the only solution to this equation that we could obtain is z = 1 (and
z = −1 if n is even). Now that we can apply complex numbers to this situation, we see that there are
actually n roots to this equation, however 1 is the only real root (in the case of an even n we have two
real roots z = ±1). In order to work out the other roots, we must apply de Moivre’s Theorem.

Example: Find all the solutions of the equation z3 = 1.

Click here for a video example

Solution: Begin by writing z in exponential form

z3 = (reiφ)3

= r3e3iφ

Now, since z = 1 is clearly one of the solutions, we know that the modulus of z is 1. The reason
for this is that r ≥ 1 and r3 = 1 so r = 1. A consequence of this is that the roots all lie on a
circle of radius 1. We also know that 1 can be written as 1ei(2πk), where k = 0,±1,±2.... Thus
the equation reduces to

e3iφ = ei(2πk)

By comparing the indices we can say that

3iφ = 2πki

⇒ φ =
2π

3
k

Therefore r = 1 and φ = 0,± 2π
3 ,±

4π
3 ...

Then

z = 1, ei
2π
3 , e−i

2π
3 , ei

4π
3 , e−i

4π
3 , ...

Finally, by thinking of these positions on a circle, note that

ei
4π
3 = e−i

2π
3

and similarly for other combinations of solutions. This leaves us with the three distinct solutions:

z = 1, ei
2π
3 , e−i

2π
3

Note: For zn = 1, we will always get n complex roots. It is also possible to apply this method to
complex numbers other than 1.

We can extend this technique to find roots of any complex number.
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Example: Find all the solutions of the equation z2 = 2i.

Solution: If we write this in modulus argument form we get

z2 = 2i = 2

(
cos

(
π

2

)
+ i sin

(
π

2

))
As sin(x) and cos(x) are periodic functions with a period of 2π it is true to say

z2 = 2i = 2

(
cos

(
π

2
+ 2πk

)
+ i sin

(
π

2
+ 2πk

))
By de Moivre’s theorem we know

z =
√

2

(
cos

(
π

4
πk

)
+ i sin

(
π

4
+ πk

))
At k = 0 we have the solution

z =
√

2

(
cos

(
π

4

)
+ i sin

(
π

4

))
At k = −1 we obtain

z =
√

2

(
cos

(
−3π

4

)
+ i sin

(
−3π

4

))
These are our solutions.

Note: As we had z2, we have two solutions. The reason for the k values used above is
that they give arguments in the range −π < θ ≤ π, which is the range for the principle
argument for complex numbers. With other values of k we would obtain either of the solutions
we had already achieved but with an argument out of the principle argument range.

Polynomials with Real Coefficients

We can use what we know about complex numbers and their complex conjugates to help us solve poly-
nomial equations with real coefficients that we could not previously solve.

When using the quadratic formula:

−b±
√
b2 − 4ac

2a

we would not have known what to do if b2 − 4ac was negative, however now we are able to solve this
square root using imaginary numbers.

Example: Solve the equation x2 + 3x+ 12 using the quadratic formula

Solution: So a = 1, b = 3 and c = 12 so the quadratic formula gives:

−b±
√
b2 − 4ac

2a
=
−3±

√
32 − 4× 1× 12

2× 1

=
−3±

√
−39

2

=
−3± i

√
39

2

This gives us x =
−3 + i

√
39

2
and x =

−3− i
√

39

2
.

Note: The two roots are complex conjugates of each other.
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The above example shows that we obtain two complex roots which are complex conjugates of each
other. In fact, if we obtain a complex root for any polynomial equation with real coefficients, the
complex conjugate of this root is always another root of the polynomial. This means that the roots of a
polynomial with real coefficients are either real numbers, pairs of complex conjugates, or a combination
of these. No polynomial with real coefficients has just one single complex root; they always come in
pairs.

Quadratic Equations with Complex Coefficients

When dealing with a quadratic equation with complex coefficients, the best way to approach solving the
equation is to complete the square.

Example: Given that the square roots of 3+4i are given by 2− i and −2+ i, solve the equation
z2 + (4 + 6i)z − 8 + 16i = 0 by completing the square.

Solution: By completing the square we obtain(
z + (2 + 3i)

)2 − (2 + 3i)2 − 8 + 16i = 0(
z + (2 + 3i)

)2 − 3− 4i = 0(
z + (2 + 3i)

)2
= 3 + 4i

As we are given the square roots of 3 + 4i it is clear to see that

z + (2 + 3i) = 2− i

z = −4i

OR
z + (2 + 3i) = −2 + i

z = −4− 2i

Phasors

Using the idea that a complex number can be written in the form Aeix allows us to understand phasors,
which can simplify mathematical tasks we face in physics, particularly in optics and AC circuits.
Consider Aeix and replace the x with ωt, Aeiωt, where ω is an angular frequency, this allows us to model
the complex number as a vector spinning around an origin. To understand this, think about plotting
Aeix on an Argand diagram. Now if x is time dependent, the angle to the real axis will also be time
dependent and this angle will increase as time moves forward but the magnitude of the complex number

will stay constant. i.e. the complex number will spin about the origin. Since ω =
2π

T
, where T is the

time period, we can say that t = T corresponds to one spin of the phasor as:

Aeiωt = Aei
2π
T t = Aei2π

The idea of phasors makes addition of sinusoidal functions a simple task as the real part of the complex
number on the phasor at any t value of Aeiωt−θ is completely equivalent to the value of A cos(ωt− θ) at
the same point. Here is an animated picture that shows this. Since we model the complex number as a
spinning vector, when adding more than one function together on a phasor we use vector addition. Here
is an animated picture that shows how why adding the complex numbers like vectors on a phasor works.
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Example: Simplify:

cos(ωt+ 30) + cos(ωt+ 150) + cos(ωt− 90)

1. By trigonometric identities

2. By use of phasors

Solution:

1. Using that cos(A+B) = cos(A) cos(B)− sin(A) sin(B) we obtain

cos(ωt) cos(30)− sin(ωt) sin(30) + cos(ωt) cos(150)−

sin(ωt) sin(150) + cos(ωt) cos(−90)− sin(ωt) sin(−90)

This is equivalent to:(√
3

3
−
√

3

3
+ 0

)
cos(ωt) +

(
− 1

2
− 1

2
+ 1

)
sin(ωt) = 0

2. Using phasors we can simply write:

e30i + e150i + e−90i = 0

Think about the Argand diagram; we end on a purely imaginary number and as we only
consider the real part of the phasor, the answer must be zero.
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2.4 Review Questions

Easy Questions

Question 1: Simplify the following roots:

1.
√
−101

2.
√
−256

Answer:

1.
√

101i

2. 16i

Question 2: Find the complex conjugate of the following complex numbers:

1. z = 2− 3i

2. z = 3

Answer:

1. z∗ = 2 + 3i

2. z∗ = 3

Question 3: Let z = 4− 2i and w = 7 + i. Evaluate the following:

1. z + w

2. w − z∗

3. w∗z

Answer:

1. 11− i

2. 3 + i

3. 26− 28i

Question 4: Simplify

z =
5 + i

2 + 3i

Answer:
z = 1− i

Question 5: Sketch the following complex numbers on an Argand diagram:

1. z = 1 + 5i

2. w = −2 + 4i
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Medium Questions

Question 6: Write the following complex numbers in modulus argument form:

1. z = 1−
√

3

2. w = −3

2
+

√
3

2
i

Answer:

1. z = 2(cos(−π3 ) + i sin(−π3 )

2. w =
√

3(cos( 5π
6 ) + i sin( 5π

6 )

Question 7: Write the following complex numbers in exponential form:

1. z = −2− 2
√

3i

2. w =

√
2

2
+

√
2

2
i

Answer:

1. z = 4e−
2π
3 i

2. w = e
π
4 i

Question 8: If
z = 3e

π
3 i

find z2 and z3 in the form a+ bi.

Answer:

z2 =
9

2
+

√
3

2
i

z3 = −27

Hard Questions

Question 9: Find, in exponential form, all the solutions of the equation

z5 = 1

Answer:
z = 1

z = e
2π
5 i

z = e
4π
5 i

z = e−
2π
5 i

z = e−
4π
5 i
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Question 10: Find, in exponential form, all the fourth roots of the complex number

z = −2 + 2
√

3i

Answer:
z =
√

2e
π
6 i

z =
√

2e
2π
3 i

z =
√

2e−
π
3 i

z =
√

2e−
5π
6 i

Question 11: Given that z = −3 + 2i is a root of the equation

z4 + 5z3 + z2 − 49z − 78

factorise the polynomial in terms of real factors.

Answer:
(z2 + 6z + 13)(z + 2)(z − 3) = 0
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3 Matrices

3.1 Introduction to Matrices

A matrix is defined as an array of numbers such as:(
3 1 8
0 −4 5

)
� Matrices come in different sizes. We write the size of the matrix as ‘rows×columns’. So the matrix

above is a 2× 3 matrix.

� We use capital letters such as A or B to denote matrices. (Often you will see matrices denoted as
a capital letter with double underlining, e.g. A)

� The numbers contained in a matrix are known as matrix elements. They are denoted aij where i
represents the row and j the column in which the element is in. For example in the above matrix
a11 = 3 and a23 = 5.

� Matrices with an equal number of rows and columns are called square matrices. For example the
2× 2 matrix below: (

1 −1
0 1

)
Note: Ordinary scalar numbers such as 14 can be considered as 1×1 matrices, e.g. (14).

Example: For the matrices below find the size of the matrix and the value of a21 and a33 if
possible.

1. A =


4 5 6
1 2 3
4 5 6
1 2 3



2. B =

 1
−1
40



3. C =

a b c
e d f
g h i


Solution:

1. The matrix A has 4 rows and 3 columns, hence is a 4× 3 matrix. Here a21 = 1 and a33 = 6.

2. The matrix B has 3 rows and 1 column, hence is a 3 × 1 matrix. Here a21 = −1 and a33

does not exist as this is a 3× 1 matrix.

3. The matrix C has 3 rows and 3 columns, hence it is a 3 × 3 matrix (also a square matrix).
Here a21 = d and a33 = i

Matrices are an excellent way of expressing large amounts of information or data in a small space.
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3.2 Matrix Algebra

Addition and Subtraction

Matrices can only be added or subtracted if they are of the same size. Suppose we are given the 2 × 2
matrices below:

A =

(
a11 a12

a21 a22

)
and B =

(
b11 b12

b21 b22

)
Then their sum is found by adding together corresponding matrix elements:�

�
�

A+B =

(
a11 a12

a21 a22

)
+

(
b11 b12

b21 b22

)
=

(
a11 + b11 a12 + b12

a21 + b21 a22 + b22

)
Subtraction works in exactly the same way:�

�
�

A−B =

(
a11 a12

a21 a22

)
−
(
b11 b12

b21 b22

)
=

(
a11 − b11 a12 − b12

a21 − b21 a22 − b22

)
In general if we are adding or subtracting two m× n matrices:

a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

am1 am2 · · · amn

±

b11 b12 · · · b1n
b21 b22 · · · b2n
...

...
. . .

...
bm1 bm2 · · · bmn

 =


a11 ± b11 a12 ± b12 · · · a1n ± b1n
a21 ± b21 a22 ± b22 · · · a2n ± b2n

...
...

. . .
...

am1 ± bm1 am2 ± bm2 · · · amn ± bmn


Note: Matrix addition and subtraction are commutative e.g. A+B = B +A.

Example: Calculate the following:

1.

(
1 1
4 0

)
+

(
−1 4
2 −3

)

2.

10
−3
0

−
−3

2
0



3.

(
9
−2

)
+

−9 0 1
13 13 0
9 0 9


Solution:

1.

(
1 1
4 0

)
+

(
−1 4
2 −3

)
=

(
1 + (−1) 1 + 4

4 + 2 0 + (−3)

)
=

(
0 5
6 −3

)

2.

10
−3
0

−
−3

2
0

 =

10− (−3)
−3− 2
0− 0

 =

13
−5
0


3. We can not add these matrices as they are of different sizes!
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Multiplication by a Constant

The simplest form of multiplication is where we multiply a matrix by a constant or scalar. We show
the rule on a 2× 2 matrix but it follows in the same way for any sized matrix we simply multiply every
element by the scalar. �

�
�

λA = λ

(
a b
c d

)
=

(
λa λb
λc λd

)

Example: Find the following:

1. 2

(
−1 2
0 4

)

2.

√
3

3

−9 0 3
12 12 0
3 0 3


Solution:

1. 2

(
−1 2
0 4

)
=

(
−1× 2 2× 2
0× 2 4× 2

)
=

(
−2 4
0 8

)

2.

√
3

3

−9 0 3
12 12 0
3 0 3

 =

−9×
√

3
3 0×

√
3

3 3×
√

3
3

12×
√

3
3 12×

√
3

3 0×
√

3
3

3×
√

3
3 0×

√
3

3 3×
√

3
3

 =

−3
√

3 0
√

3

4
√

3 4
√

3 0√
3 0

√
3



Matrix Multiplication

Suppose we want to find the product AB of the matrices A and B. Then:

� The number of columns of A must be equal to the number of rows of B.

� The product matrix has the same number of rows as A and the same number of columns as B.

Below is the rule for find the product of two 2× 2 matrices:�
�

�

AB =

(
a11 a12

a21 a22

)(
b11 b12

b21 b22

)
=

(
a11b11 + a12b21 a11b12 + a12b22

a21b11 + a22b21 a21b12 + a22b22

)
In general if we want to find the product AB of a m× l matrix A and k × n matrix B:

A =


a11 a12 · · · a1l

a21 a22 · · · a2l

...
...

. . .
...

am1 am2 · · · aml

 and B =


b11 b12 · · · b1n
b21 b22 · · · b2n
...

...
. . .

...
bk1 bk2 · · · bkn



so that AB =


c11 c12 · · · c1n
c21 c22 · · · c2n
...

...
. . .

...
cm1 cm2 · · · cmn


We calculate cij to be the scalar product of row i from the first matrix and column j from the second
matrix. (The scalar dot product will be covered more extensively in the section on ‘Vectors’.)
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Example: Find the following products:

1.

(
1 0
2 1

)(
3 1
2 1

)

2.

(
10 2 2
8 −1 4

)(
−5 −3
2 2

)
Solution:

1. As we are multiplying a 2 × 2 matrix by another 2 × 2 matrix the product matrix will also
be a 2× 2 matrix in the form below: (

a11 a12

a21 a22

)
We now calculate the elements of the product matrix above:

To find a11 we take the dot product of row 1 and column 1:

a11 =

(
1
0

)
•
(

3
2

)
= 1× 3 + 0× 2 = 3

To find a12 we take the dot product of row 1 and column 2:

a12 =

(
1
0

)
•
(

1
1

)
= 1× 1 + 0× 1 = 1

To find a21 we take the dot product of row 2 and column 1:

a21 =

(
2
1

)
•
(

3
2

)
= 2× 3 + 1× 2 = 8

To find a22 we take the dot product of row 2 and column 2:

a22 =

(
2
1

)
•
(

1
1

)
= 2× 1 + 1× 1 = 3

(
1 0
2 1

)(
3 1
2 1

)
=

(
3 1
8 3

)
2. The number of columns of the matrix on the left does not equal to the number of rows of

the matrix on the right hence this product can not be found!

Note: Matrix multiplication is NOT commutative i.e. in general AB 6= BA

Example:

Let A =

(
1 1
4 0

)
and B =

(
−1 4
2 −3

)
Then AB =

(
1 1
−4 16

)
and BA =

(
15 −1
−10 2

)
This shows

that matrix multiplication is not commutative as AB 6= BA.
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3.3 The Identity Matrix, Determinant and Inverse of a Matrix

The Identity Matrix

The Identity Matrix (or Unit Matrix) is a square matrix which is denoted I and has ‘1’ along the leading
diagonal (from top left to bottom right) with ‘0’ in all other positions.
The 2× 2 identity matrix is:

I2 =

(
1 0
0 1

)
The 3× 3 identity matrix is:

I3 =

1 0 0
0 1 0
0 0 1


In general the n× n identity matrix is:

In =


1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1


The Identity matrix has the property that when multiplied with another matrix it leaves the other matrix
unchanged: �� ��AI = A = IA

Example: (
3 4
8 9

)(
1 0
0 1

)
=

(
3 4
8 9

)
=

(
1 0
0 1

)(
3 4
8 9

)

Transpose of a Matrix

The transpose of a matrix is denoted AT and is obtained by interchanging the rows and columns of the
matrix. Visually, we may visualise this as ’reflecting’ elements about the leading diagonal. The rule for
a 3× 3 matrix A is: '

&

$

%

A =

a b c
d e f
g h i



AT =

a d g
b e h
c f i


Note: This formula can be extended to any square matrix.

Example: For the matrix A below find AT .

A =

3 4 7
8 9 11
1 2 6


Solution:

A−T =

3 8 1
4 9 2
7 11 6


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Determinant of a Square Matrix

The determinant of a square matrix is denoted |A| or ‘det(A)’. To find the determinant of a 2×2 matrix,
A, the following formula applies:�

�
�

For A =

(
a b
c d

)
the determinant is |A| = ad− bc

There exist more complicated methods for finding the determinants of 3×3 matrices and square matrices
of larger size. The first method shown below uses definitions and a provides more formal, general
approach, whereas the second method gives a very practical procedure which can be followed in almost
any case.
Method 1 (Formal):
First we will require some definitions:

� The (i, j)-minor of a matrix A is the determinant of the submatrix obtained by deleting the ith
row and jth column of A. We denote this submatrix as Mij(A).

� The (i, j)-cofactor of a matrix A is the matrix Cij(A) = (−1)i+jMij(A).

Now, in order to calculate the determinant of an n× n matrix, we calculate:�� ��det(A) = a11C11(A) + a12C12(A) + a13C13(A) + ...+ a1nC1n(A)

This is the formal explanation of how to calculate a determinant, however we can explain this in a less
technical way.
Method 2 (Informal):
If we have a 3× 3 matrix:

A =

a b c
d e f
g h i


we can write the above formula in a more practical way:�

�
�
�det(A) =

∣∣∣∣∣∣
a b c
d e f
g h i

∣∣∣∣∣∣ = a

∣∣∣∣e f
h i

∣∣∣∣− b ∣∣∣∣d f
g i

∣∣∣∣+ c

∣∣∣∣d e
g h

∣∣∣∣
This formula is obtained by working along the top row of the matrix and, for each element, following
this procedure:

1. Check the matrix of signs: 
+ − + · · ·
− + − · · ·
+ − + · · ·
...

...
...

. . .


and write down the sign that corresponds to the position of our element.

2. Write down the element we are considering.

3. Cover up the row and column containing the element.

4. Calculate the determinant for the submatrix of elements that are not covered up and multiply our
element by this determinant.

5. Move along the row to the next element and repeat steps 1-4.

We can also produce other formulae by completing the above procedure on different rows and columns,
however only one formula is adequate. In addition, this approach can be very easily extended to n × n
matrices.
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Two useful definitions are as follows:

� A matrix whose determinant is zero (|A| = 0) is said to be singular.

� A matrix whose determinant is non-zero (|A| 6= 0) is said to be non-singular.

Example: Find the determinant of the matrix A:

A =

(
1 −4
2 5

)
Solution:

|A| =
∣∣∣∣1 −4
2 5

∣∣∣∣ = (1× 5)− (−4× 2) = 13

Note: The matrix A is non-singular.

Example: Find the determinant of the matrix B:

B =

6 3 2
9 11 −3
7 8 4


Solution:

det(B) = 6

∣∣∣∣11 3
8 4

∣∣∣∣− 3

∣∣∣∣9 3
7 4

∣∣∣∣+ 2

∣∣∣∣9 11
7 8

∣∣∣∣
= 6
[
1× 4− (−3)× 8

]
− 3
[
9× 4− (−3)× 7

]
+ 2
[
9× 8− 11× 7

]
= 408− 171− 10

= 227

Note: The matrix B is non-singular.

Inverse of a Matrix

Only non-singular matrices have an inverse matrix. The inverse of a matrix A is denoted A−1 and has
the following property: �� ��AA−1 = A−1A = I

To find the inverse of a 2× 2 matrix A we have the following formula:�

�

�

�
A =

(
a b
c d

)
A−1 =

1

|A|

(
d −b
−c a

)
where |A| = ad− bc 6= 0

Note: There exists more complicated methods for finding the inverses of 3 × 3 matrices and square
matrices of larger size, which we will not discuss here.

Example: Find the inverse A−1 of the matrix A.

A =

(
1 −4
2 5

)
Solution: From the previous example on determinants we know that |A| = 13. So the inverse of A
is:

A−1 =
1

13

(
5 4
−2 1

)
=

(
5
13

4
13

− 2
13

1
13

)
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3.4 Review Questions

Easy Questions

In this section we will let

A =

1 3 5
3 −9 12
4 4 1


B =

 5 5 5
16 −4 −8
7 0 0


Question 1: Find A+B and B −A.

Answer:

A+B =

 6 8 10
19 −13 4
11 4 1


B −A =

 −4 −2 0
−13 −5 20
−3 4 1


Question 2: Show that AB 6= BA.

Question 3: What is 4×A.

Answer:

4A =

 4 12 20
12 −36 48
16 16 4


Question 4: What matrix X, when multiplied by A, gives A, i.e.

XA = A

Question 5: Find ABT .

Answer:

ABT =

45 −36 7
30 −12 21
45 40 28



Medium Questions

In this section we will let

A =

(
5 3
1 0

)
B =

(
3 9
1 −5

)

C =

7 −6 7
0 −2 1
4 0 8


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Question 6: Find the inverse of B.

Answer:

B−1 =

(
5
24

3
8

1
24 − 1

8

)

Question 7: Find the determinant of C.

Answer:

det(C)= −80

Question 8: Find X such that AX = B.

Answer:

X =

(
1 −5
1
3

34
3

)
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4 Vectors

4.1 Introduction to Vectors

When describing some quantities, just a number and units aren’t enough. Say we are navigating a ship
across the ocean and we are told that the port is 5km away but we don’t know in which direction we
have to sail. 5km due east would give us all the information that we need. This is an example of a
vector, a quantity that has magnitude and direction.

� Some physics related vector quantities are velocity, force, acceleration, linear and angular momen-
tum and electric and magnetic fields.

� Quantities that have just a magnitude are scalars. Examples of these are temperature, mass and
speed.

Notation: To distinguish vectors from scalars we write them with a line underneath, e.g. F is used as
the symbol for a force vector. We can also write them in bold type, e.g. F, or with an arrow above, e.g.
~F . In addition to this, if we want to specify a vector a from the point A to the point B, we can write
a = ~AB. Using this notation, a vector p from the origin to the point P would be p = ~OP .

Vectors in 2-D Space

A vector in 2-D space can be written as a combination of 2 base vectors, i being a horizontal vector (in
the x direction) and j being a vertical vector (in the y direction). They are both unit vectors meaning
that their length (magnitude) is 1. For an example the vector v = 2i+ 3j is shown below:

−2 −1 1 2 3

−2

−1

1

2

3

v

i

j

Note: The vector v above also describes all vectors that move 2 i units and 3 j units, they don’t have
to start at the origin. All the vectors in the graph below are exactly the same:

−4 −3 −2 −1 1 2 3 4

−4

−3

−2

−1

1

2

3

4

i

j

v

v

v

i

i

j

j

Writing a general 2-D vector u as a combination of the unit vectors would give:
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�
�

�



u = ai+ bj

Where a and b are real numbers

However, if we wish to specify a single point in space then we can use position vectors which always start
at the origin, for example p = ~OP .

Vectors in 3-D Space

Any vector in 3-D space can be written as a combination of 3 base vectors; i, j and k, each being the
unit vector in the x, y and z directions. Below is a diagram of the 3 axes with their respective unit
vectors:

x

y

z

i
j

k

Writing a general vector v as a combination of the unit vectors would give:�
�

�



v = ai+ bj + ck

Where a, b and c are real numbers

Representation of Vectors

A vector v can be written in the following forms:

1. Unit vector notation: �� ��v = ai+ bj + ck

The vector is displayed as the clear sum of it’s base vectors. In 3-D space those are the i, j and k
vectors.

2. Ordered set notation: �� ��v = (a, b, c)

The vector is in the same form as unit vector notation (a, b and c are the same numbers) but it is
more compact.

3. Column notation: �
�
�
�v =

 a
b
c


This is identical to ordered set notation apart from it being vertical. This form makes some
calculations easier to visualise, such as the dot product.

For example, the 2-D vector u shown below can be written as u = 4i+ 3j or u = (4, 3) or u =

(
4
3

)
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−1 1 2 3 4

−1

1

2

3

0

u

Magnitude of Vectors

If we know the lengths of each of the component vectors we can find the length (or magnitude) of the
vector using Pythagoras: �

�
�



For a vector v = ai+ bj + ck

Magnitude of v = | v | =
√
a2 + b2 + c2

For vector u = 4i+ 3j above we can calculate the magnitude |u | to be
√

42 + 32 =
√

16 + 9 =
√

25 = 5

Example: Find the magnitude of the following vectors:

1. (2, 6, 3)

2. i+ 7j + 4k

3.

√2√
2

0


Solution:

1. | (2, 6, 3) | =
√

22 + 62 + 32 =
√

4 + 36 + 9 =
√

49 = 7

2. |i+ 7j + 4k | =
√

12 + 72 + 42 =
√

1 + 49 + 16 =
√

66

3.

∣∣∣∣∣
√2√

2
0

∣∣∣∣∣ =

√√
2

2
+
√

2
2

=
√

2 + 2 =
√

4 = 2

Physics Example: A particle is moving with a velocity v of 20i − 15j ms−1. What is it’s
speed?

Solution: Since speed is the magnitude of velocity, we take the magnitude of the velocity vector.
This gives:

| 20i− 15j | =
√

202 + 152 =
√

625 = 25

The particle’s speed is 25 ms−1
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Unit Vectors

In an equation such as Newton’s Law of Gravitation:

F = −Gm1m2

r2

we may wish to specify in which direction the force F is acting.
In order to do this, we can introduce the idea of ‘unit vectors’. We have already defined a unit vector as
a quantity with magnitude (or length) of 1 and a direction. We denote a unit vector using the normal
notation for a vector, but with a ‘hat’, e.g. â is a vector with magnitude 1, in the direction of a. This
is very useful in specifying the direction of a physical quantity, since multiplying a quantity by a unit
vector does not change the magnitude of the quantity, but simply gives it a direction.
In the example of Newton’s Law of Gravitation above, we can multiply the right hand side of the equation
by the unit vector r̂ to signify that the force due to gravity, F , acts in the opposite direction (because of
the minus sign) to the radius r. The equation now reads:

F = −Gm1m2

r2
r̂

To calculate a unit vector we use the formula �


�
	û =

u

|u|

where û is a unit vector of u and |u| is the magnitude of u.

©University of Birmingham, 2015
65

http://creativecommons.org/licenses/by-nc-nd/4.0/


4.2 Operations with Vectors

Multiplication by Scalar

Scalar multiplication is when we multiply a vector by a scalar. We do this by multipling each component
of the vector by the scalar. This can be expressed as:�

�
�



λ× (x, y, z) = (λx, λy, λz)

Where λ is a real number

Note: Scalar multiplication only changes the magnitude of the vector while the direction stays the same.

Example: Simplify 7(−12, 4)

Solution: We multiply each component of the vector by 7 giving:

(7×−12, 7× 4) = (−84, 28)

Vector Addition and Subtraction

When we add or subtract two vectors we add or subtract each of the individual components of the
vectors. This can be expressed as:�

�
�



(a, b, c) + (x, y, z) = (a+ x, b+ y, c+ z)

Where (a, b, c) and (x, y, z) are both vectors using i, j and k.

If we are given two points, A and B, and wish to find the vector from A to B, i.e. ~AB, then we calculate�� ��~AB = ~OB −OA = b− a

where a and b are the position vectors or A and B, respectively.
IMPORTANT: If the vectors have a different number of base components, for example (3, 6) + (1, 0, 7)
then we cannot complete the addition. For all vector-on-vector operations both vectors need to have the
same number of base components.

Example: Calculate the following:

1. (2, 2, 0) + (5,−1, 3)

2. 3(a, 4a, 0)− a(7, 0,−1)

3. (1, 3, 8) + (2, 1,−5) + (−1, 2,−1)

Solution:

1. (2, 2, 0) + (5,−1, 3) = (2 + 5, 2− 1, 0 + 3) = (7, 1, 3)

2. 3(a, 4a, 0)−a(7, 0,−1) = (3a, 12a, 0)− (7a, 0,−a) = (3a−7a, 12a−0, 0 +a) = (−4a, 12a, a)

3. (1, 3, 8) + (2, 1,−5) + (−1, 2,−1) = (1 + 2− 1, 3 + 1 + 2, 8− 5− 1) = (2, 6, 2)

Example: Given A = (1, 3, 4) and B = (9,−3, 6) find the direction vector ~AB

Solution: We use the formula ~AB = b− a, so

~AB = (9,−3, 6)− (1, 3, 4)

= (8,−6, 2)
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Vector Multiplication: Dot Product

There are two ways of multiplying two vectors together. The first is the dot (or scalar) product which is
defined to be: �

�
�



A ·B = |A | |B | cos θ

Where θ is the angle between vectors A and B

IMPORTANT: Taking the dot product of two vectors produces a scalar quantity.
Given two vectors, the dot product can also be calculated in the following way:�

�
�
�

 a
b
c

 •
x
y
z

 = ax + by + cz

Note: The dot product can be thought of as how much one vector is pointing in the direction of the other.

θ

A

B

A cos θ

The part of A that goes in the same direction as B has a length of |A| cos θ, making the dot product the
length of B times the length of A that is in the same direction as B

Example: Calculate the following:

1.

 3
9
1

 •
 1
−2
10


2.

(
1
0

)
•
(√

2√
2

)
Solution:

1.

 3
9
1

 •
 1
−2
10

 = 3× 1 + 9× (−2) + 1× 10 = 3− 18 + 10 = −5

2.

(
1
0

)
•
(√

2√
2

)
= 1×

√
2 + 0×

√
2 =
√

2
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Physics Example: A charged particle has 2 forces acting on it: a resistive force from the
medium with a vector of (3,

√
7, 3) and an electromagnetic force from an electric field with a vector

of (−5, 3, 4). What is the angle between these two vectors?

Solution: To calculate this we find the dot product of the two vectors and then employ the definition
of the dot product to find the angle. The dot product of the two vectors is: 3√

7
3

 •
−5

3
4

 = 3× (−5) +
√

7× 3 + 3× 4 Simplify this

= −15 + 3
√

7 + 12 = −3 + 3
√

7 = 3(
√

7− 1) ≈ 4.937

Using the definition A · B = |A | |B | cos θ we can now find out what θ is. First we must find the
magnitudes of the two vectors:

|(3,
√

7, 3)| =
√

32 + 7 + 32 =
√

25 = 5 For the first vector

|(−5, 3, 4)| =
√

(−5)2 + 32 + 42 =
√

50 = 5
√

2 For the second vector

Putting all this information into the equation A ·B = |A | |B | cos θ gives us:

3(
√

7− 1) = 5× 5
√

2 cos θ Rearrange for cos θ

3(
√

7− 1)

25
√

2
= cos θ Take the arccos of both sides

θ = arccos(0.1396 . . . ) = 81.97◦ · · · = 82.0◦ to 3 s.f.

Note: The next example involves the use of integration. Since we have not yet covered integration in
this booklet, you may want to wait until you have some basic knowledge of integration before attempting
this question.

Physics Example: What is the work done w by the vector force F = (3ti+3j) N on a particle

of velocity v = (5i− tj) ms−1 in the time interval 0 < t < 3 s given that:

w =

∫ 3

0

F · v dt

Solution: First we must find the dot product F · v.

F · v = (3ti+ 3j) · (5i− tj) = 3t× 5 + 3× (−t) = 12t

Now we have found the dot product we can substitute it in the integral and solve.

w =

∫ 3

0

F · v dt

=

∫ 3

0

12t dt

=

[
6t2
]3

0

=

[
6× 32

]
−
[
6× 02

]
= 54 J
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Vector Multiplication: Cross Product

The cross product (or vector product) is defined to be:�� ��A×B = |A | |B | sin(θ) n̂

Where θ is the angle between the two vectors and n̂ is the unit vector in the direction perpendicular
to both A and B. Two perpendicular vectors are said to be orthogonal and two perpendicular unit
vectors are called orthonormal.
IMPORTANT: The cross product takes two vectors and produces a new vector. This new vector is
in the direction perpendicular to the plane that A and B are in. It is only possible to take the cross
product of two 3-D vectors (and technically 7-D vectors as well).

The cross product is also dependent on the order of the vectors that appear in the product. If we
change the order of the vectors in a cross product then our answer becomes negative. The vector points
in the opposite direction. �� ��a× b = −b× a

The right hand rule determines which way the vector produced will point. We use the rule as follows:
curl your fingers from the first vector in the cross product to the second vector and the direction your
thumb points is the direction of the vector produced by the cross product.

b

a
θ

In this case, a× b will point out of the page and b× a will point into the page.

Calculating the Cross Product (Method 1)

When using the standard base vectors of î, ĵ and k̂, we can calculate the cross product by considering
the cross product of the base vectors with each other:�� ��i× i = j × j = k × k = 0

�� ��i× j = −j × i = k
�� ��j × k = −k × j = i

�� ��k × i = −i× k = j

Taking the cross products of two vectors is just like expanding brackets. The cross product of two
general vectors,

(
ai+ bj + ck

)
×
(
xi+ yj + zk

)
, would give ax(i× i) + ay(i× j) + az(i× k) + . . . Fully

expanded and simplified gives:�
�

�



(
ai+ bj + ck

)
×
(
xi+ yj + zk

)
=
(
bz − cy

)
i+
(
cx− az

)
j +

(
ay − bx

)
k

Where a, b, c, x, y and z are real numbers
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Example: Calculate the following cross product using the method above: 3
1
−2

×
 2
−1
1


Solution: So to find this we use the formula below:(

ai+ bj + ck
)
×
(
xi+ yj + zk

)
=
(
bz − cy

)
i+
(
cx− az

)
j +

(
ay − bx

)
k

Now we can write the vectors in the question in the form of the rule so
(
ai+bj+ck

)
=
(
3i+1j−2k

)
and

(
xi+ yj + zk

)
=
(
2i− 1j + 1k

)
Hence a = 3, b = 1, c = −2, x = 2, y = −1 and z = 1 and therefore:(

3i+ 1j − 2k
)
×
(
2i− 1j + 1k

)
=
(
1× 1− (−2)× (−1)

)
i+
(
(−2)× 2− 3× 1

)
j +

(
3× (−1)− 1× 2

)
k

= −1i− 7j − 5k

This could also be written:  3
1
−2

×
 2
−1
1

 =

−1
−7
−5



Calculating the Cross Product (Method 2)

We can also calculate the cross product of two vectors,
(
ai + bj + ck

)
×
(
xi + yj + zk

)
, by considering

the determinant: ∣∣∣∣∣∣
i j k
a b c
x y z

∣∣∣∣∣∣
We calculate this determinant as discussed in the section on ‘Matrices’.

This results in the same formula as in the previous method, but using this method means that we do
not need to remember the formula since it is included in the expression for the determinant!

Example: Calculate the following cross product using the determinant method: 4
3
1

×
 1

6
−2


Solution: We can form a determinant and evaluate: 4

3
1

×
 1

6
−2

 =

∣∣∣∣∣∣
i j k
4 3 1
1 6 −2

∣∣∣∣∣∣
= i

∣∣∣∣3 1
6 −2

∣∣∣∣− j ∣∣∣∣4 1
1 −2

∣∣∣∣+ k

∣∣∣∣4 3
1 6

∣∣∣∣
= i
[
3× (−2)− 6× 1

]
− j
[
4× (−2)− 1× 1

]
+ k
[
4× 6− 1× 3

]
= −12i− (−9)j + 21k

= −12i+ 9j + 21k

We can also write:  4
3
1

×
 1

6
−2

 =

∣∣∣∣∣∣
i j k
4 3 1
1 6 −2

∣∣∣∣∣∣ =

−12
9
21


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Projection of one Vector onto another

If we have two non-parallel vectors u and v, we can find the component of u which is in the direction of
v. This is called the projection of v onto u. This is calculated by the following formula:�

�
�

proju(v) =

(
v · u
|u|

)
u

|u|

Triple Products

Now that we have defined the dot product and the cross product, we can look at what happens when
we want to multiply three vectors using different combinations of these operations.
Scalar Triple Product
The scalar triple product between three vectors a = (a1, a2, a3), b = (b1, b2, b3) and c = (c1, c2, c3) is
defined as �

�
�
�a · (b× c) =

∣∣∣∣∣∣
a1 a2 a3

b1 b2 b3
c1 c2 c3

∣∣∣∣∣∣
which produces a scalar. We can interpret the scalar triple product as the volume of a parallelepiped,
which is a cuboid where every side is a parallelogram.

We can use the scalar triple product to calculate the following volumes, where a, b and c are any
three mutually adjacent edges of the given shape.

� The volume of a parallelepiped is
V = |a · b× c|

� The volume of a pyramid is

V =
1

3
|a · b× c|

� The volume of a tetrahedron is

V =
1

6
|a · b× c|

We can also use the scalar triple product to show that three vectors, a, b and c, are coplanar, i.e.
they are all parallel to a common plane. To do this, we only need to show that

a · b× c = 0

Vector Triple Product
The vector triple product between three vectors a = (a1, a2, a3), b = (b1, b2, b3) and c = (c1, c2, c3) is
defined as �� ��a× (b× c) = (a · c)b− (a · b)c

which produces a scalar.
Note: the third possibility, a·b·c, is completely meaningless; the first product produces a scalar quantity,
which makes the second product impossible since we cannot perform a dot product between a scalar and
a vector.
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4.3 Vector Equations

Lines

Vector Equation of a Line
We can describe a straight line in space using vectors. Suppose we have a line L and wish to find an
expression for a general point on the line, R, then we start from a point on the line, P , and move along
the line until we get to R. In terms of an equation, this can be written as�� ��r = p+ λq

where r is a general position vector on the line, p is any position vector that gets us onto the line, q is a
vector in the direction of the line and λ is a constant. This is the vector equation of a line.
This approach is very intuitive. Essentially we are starting somewhere on the line, and moving in the
direction of the line, associating each point on the line to a different value of λ. Note that λ can be
positive or negative, which corresponds to moving forward along the line, or backwards, respectively.

We can write the equation for a line in a number of other forms, which each have advantages in different
situations.
Parametric Equation of a Line
By writing the vectors above in terms of their components, i.e. r = (x, y, z), p = (p1, p2, p3) and
q = (q1, q2, q3), we can obtain a parametric form of the equation in terms of the parameter λ:�

�

�

�
x = p1 + λq1

y = p2 + λq2

z = p3 + λq3

Cartesian Equation of a Line
From this, we can obtain the standard equation of a line by rearranging each of these equations to make
λ the subject and then equating all the expressions for λ:�



�
	λ =

x− p1

q1
=
y − p2

q2
=
z − p3

q3

Example: Find the equations of a line which passes through the points A = (2, 3,−1) and
B = (5, 2, 2)

Solution: We will first find the vector equation of the line. We begin by finding a direction vector
~AB = (5, 2, 2)− (2, 3,−1) = (3,−1, 3).

Now we formulate the equation choosing a point on the line. Since we are told that the line passes
through A and B, we can choose either of these. We will choose A. This gives us the vector
equation of the line:

r = (2, 3,−1) + λ(3,−1, 3)

Now to find the parametric equation we separate this into its three equations:

x = 2 + 3λ
y = 3− λ
z = −1 + 3λ

To find the standard equation we rearrange these three equations to make λ the subject. This
gives

λ =
x− 2

3
=
y − 3

−1
=
z + 1

3

Planes

A plane in 3-D space is a flat surface with zero thickness, often denoted as Π. This can be visualised as
a sheet of paper. A normal to a plane is a vector which is perpendicular to the plane. The orientation
of a plane can be specified by a normal vector.
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A plane has two normal vectors in opposite directions. We denote a unit normal vector as n̂.
We can find a normal vector to a plane by calculating the cross product of two direction vectors in the
plane.
Vector Equation of a Plane
If we have three points A, B and C which do not all lie in the same straight line (i.e. not collinear),
then they lie in a unique plane. We can write down a general equation for a plane by considering a point
on the plane, A, with position vector a, and deducing how we can get to any point on the plane, R. To
reach any point in 2-D space, we require two direction vectors. Think about an x, y-plane: we can get
anywhere on this surface by specifying a distance in the x-direction and a distance in the y-direction.
Similarly, by using the fact that we have three points in the plane, we can calculate two direction vectors
within the plane, for example ~AB and ~AC, and state that any linear combination of these will get us to
any point on the plane from an initial point A.
Using this analysis, we can see that the general vector equation of a plane is�

�
�
�

r = a+ λ ~AB + µ ~AC

= a+ λ(b− a) + µ(c− a)

Scalar Product Equation of a Plane
Using the concept of the normal vector to a plane, we can formulate another equation of the plane.
Given a point A, with position vector a, on the plane and the general point on the plane R, we know
that the direction vector ~AR also lies on the plane. Thus we know that the normal vector to the plane,
n is orthogonal to ~AR, so we can write that ~AR · n = 0. Therefore (r − a) · n = 0. Now expanding the
brackets gives us the scalar product equation of a plane:�� ��r · n = a · n = d

where d is a scalar calculated from a · n.
Cartesian Equation of a Plane
We can now easily deduce another equation of the plane by calculating the scalar products. If n =
(n1, n2, n3), and r = (x, y, z), then the cartesian equation of the plane is:�� ��n1x+ n2y + n3z = a · n = d

where d is a scalar calculated from a · n.
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4.4 Intersections and Distances

Shortest Distance from a Point to a Plane

The shortest distance between a point and a plane is always the length of the line that comes out of the
plane at a right angle and meets the point in question. If you are struggling to visualise this try using a
piece of paper as the plane and thinking about the shortest distance to points not on that piece of paper.
Therefore the distance we are trying to work out is parallel to the normal vector. If we work out a unit
vector in the direction of the normal and calculate the dot product between this unit vector and a line
from the point q to a point on the plane, this will give us the distance we want (The understanding of
this is tough and not the important part at this level, but make sure you remember the formulae!).

Consider the plane n.p = d and the point q not on the plane, the unit vector for the vector n is
equal to n

|n| . So the magnitude of the distance we want, D, is equal to:

D =

∣∣∣∣ n|n| . ~qp
∣∣∣∣ =
|n. ~qp|
|n|

~qp is the line from the point q to a point on the plane, p. If we let p = (x0, y0, z0) and q = (x1, y1, z1)
this simplifies further to:

D =
|(x1 − x0, y1 − y0, z1 − z0).n|

|n|

D =
|(x1 − x0, y1 − y0, z1 − z0).n|

|n|
If n = (A,B,C) our equation above becomes:

D =

∣∣A(x1 − x0) +B(y1 − y0) + C(z1 − z0)
∣∣

√
A2 +B2 + C2

As n.p = d we can rearrange this using that p = (x0, y0, z0) and n = (A,B,C) to give d = −Ax0 −
By0 − Cz0. Therefore:

D =

∣∣Ax1 +By1 + Cz1 + d
∣∣

√
A2 +B2 + C2

Example: Find the shortest distance between the plane Π = (1, 2, 3) +λ(2, 5, 7) +µ(2, 3, 6) and
the point q = (4, 5, 6)

Solution: We know the equation for the distance we want is:

D =

∣∣Ax1 +By1 + Cz1 + d
∣∣

√
A2 +B2 + C2

To find A,B,C and D we need to find the normal vector. To do this we need to do the cross
product of the two direction vectors:

n =

∣∣∣∣∣∣
i j k
2 5 7
2 3 6

∣∣∣∣∣∣ = (9, 2,−4)

To find D we us that n.p = d and therefore:

(9, 2,−4).(1, 2, 3) = d = 1

Therefore the distance we want is equal to:

D =

∣∣9(4) + 2(5) +−4(6) + 1
∣∣√

92 + 22 + (−4)2

=
23√
101
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Shortest Distance between Two Skew Lines

When two lines are not parallel and do not intersect we call them skew lines. To find the distance
between two skew lines there are various techniques but we will do it by constructing two parallel planes
from these skew lines and using this to find the perpendicular distance between them.
If we have two lines L1 = A+ λ~B and L2 = A′ + λ ~B′, to find a normal vector to both of these we just
need find the cross product between the direction vector of L1 and L2, ~B × ~B′. After this we can use
the plane equation n.p = d with the normal vector we worked out and a point on each line to construct
two parallel planes, Π1 and Π2.
To work out the distance between these planes, which is equal to the distance between the original skew
lines, we first note that Π1 can be described by n · p = d and Π2 can be described by the equation
n · p = d′ and therefore the distance between them is:

|d− d′|
|n|

Example: Find the shortest distance between the lines L1 : x − 2 = 1 − y = z+2
3 and L2 :

x+17
3 = −y + 3 = z+1

2 .

Click here for a video example

Solution: We can write the equations of the lines in the form:

L1 = (2, 1,−2) + t(1,−1, 3)

L2 = (−17, 3,−1) + s(3,−1, 2)

The cross product of the direction vectors is:

n =

∣∣∣∣∣∣
i j k
1 −1 3
3 −1 2

∣∣∣∣∣∣ = (1, 7, 2)

Constructing these into planes:
Finding Π1:

(1, 7, 2) · (2, 1,−2) = 5

Therefore
Π1 : (1, 7, 2) · p = 5

Finding Π2:
(1, 7, 2) · (−17, 3,−1) = 2

Therefore
Π1 : (1, 7, 2) · q = 2

Therefore the distance we want is:

|5− 2|√
12 + 72 + 22

=
3√
54

=

√
6

6
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Intersection between a Line and a Plane

If we wish to find the point of intersection, p, between a line and a plane then we must obtain the
equations for the line and the plane, and then solve as them as we would for simultaneous equations to
find a point which lies on both structures.

Example: Find the point of intersection P between the line

r = (2, 3, 1) + t(3, 3, 2)

and the plane
r · (1,−2, 4) = 5

Solution: Since we already have the equations for the line and plane, we can proceed to solve as
simultaneous equations, by substituting the equation of a point on the line into the equation for
the plane.

[(2, 3, 1) + t(3, 3, 2)] · (1,−2, 4) = 5

(2 + 3t, 3 + 3t, 1 + 2t) · (1,−2, 4)

(2 + 3t)− 2(3 + 3t) + 4(1 + 2t) = 5

2− 6 + 4 + 3t− 6t+ 8t = 5

⇒ 5t = 5

⇒ t = 1

This value of the parameter t corresponds to the point on the line which intersect with the plane.
Now we simply substitute this t value into the equation for the line.

p = (2, 3, 1) + (3, 3, 2) = (5, 6, 2)

Example: Given the plane
2x+ 3y + 3z = 6

and a line which is perpendicular to the plane and passes through the point Q : (5, 3, 7), find the
point where the line intersects the plane, P .

Solution: From the general equation of a plane r · n = d, we can deduce that a normal vector to
the plane is (2, 3, 3). Since the line is perpendicular to the plane and passes through the point Q,
we can write the vector equation of the line as

r = (5, 3, 7) + t(2, 3, 3)

Now, as before, we can solve these equations simultaneously to find the parameter t and hence
find P .

2(5 + 2t) + 3(3 + 3t) + 3(7 + 3t) = 6

10 + 4t+ 9 + 9t+ 21 + 9t = 6

10 + 9 + 21 + 4t+ 9t+ 9t = 6

⇒ 22t = −34

⇒ t =
34

22
=

17

11

Hence the point of intersection is

p =

(
89

11
,

84

11
,

128

11

)
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Intersection between Two Planes

Two planes, Π1 and Π2, which are not parallel to each other will intersect along a straight line l. In order
to find the direction vector of l, we can calculate the cross product of the normals of the two planes,
giving us a vector parallel to both planes, and hence the direction of the line of intersection. We can
then find a point of intersection, i.e. a point on the line, by setting y = 0 and solving the equations
of the two planes simultaneously to find x and z values. This will give us our equation for the line of
intersection of the two planes.

Example: Find an equation for the line of intersection of the two planes

Π1 : x− y − z = 1

and
Π2 : 2x+ 4y − 5z = 5

Click here for a video example

Solution: By considering the standard equation for a plane, r · n = d, we can deduce that the
normal vector to Π1 is

n1 = (1,−1,−1)

and the normal vector to Π2 is
n2 = (2, 4,−5)

Now we take the cross product of these normal vectors to find the direction vector for the line of
intersection

n1 × n2 =

∣∣∣∣∣∣
i j k
1 −1 −1
2 4 −5

∣∣∣∣∣∣
= (5 + 4,−2 + 5, 4 + 2)

= (9, 3, 6)

So a direction vector of the line of intersection is (3,1,2). Now we find a point which lies on both
planes. We set y = 0, and by looking at the equations of the planes, we get the two equations

x− z = 1
and

2x− 5z = 5

And we can solve these to get x = 2 and z = −1, so a point on the line is (2,0,-1). Finally we have
our equation for the line of intersection of the two planes.

r = (2, 0,−1) + t(3, 1, 2)
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Types of Intersection between Three Planes

If we have three planes, there are four possibilities:

� The three planes intersect each other at a single point.

� The three planes intersect along a single straight line.

� The planes do not all share any common points but they all intersect.

� The planes do not intersect and are parallel to each other.
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4.5 Review Questions

Easy Questions

Question 1: If
U = (1, 3,−1), V = (4, 5,−3),W = (−7, 3, 4)

find ~UW and ~UV .

Answer:
~UW = (−8, 0, 5)

~UV = (3, 2,−2)

Question 2: Find the magnitude of the vector u = (2,−4,
√

5).

Answer:
|u| = 5

Question 3: Find unit vector u which has magnitude 6 and has the same direction as the
vector v = (1,−2, 1).

Answer:
u = (

√
6, 2
√

6,
√

6)

Question 4: Find the unit vector, u1, with the same direction as u and the unit vectoru2 with
the opposite direction vector to u if

v = (0,
√

11, 5).

Answer:

u1 =

(
0,

√
11

6
,

5

6

)
u2 =

(
0,−
√

11

6
,−5

6

)

Question 5: If u = (2, 3,−6), v = (3, 11, 0) find

2v − 3u.

Answer:
(0, 13, 18)
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Medium Questions

Question 6: For each of the following pairs of vectors, determine whether they are perpendic-
ular:

1. u = (2, 4,−1), v = (6, 0, 12)

2. u = (3, 9, 1), v = (2,−2

3
, 1)

3. u = (4, 0, 0), v = (0, 5,−5)

Answer:

1. Yes

2. No

3. Yes

Question 7: Find the value of lambda which makes the two vectors, u and v, parrallel if

u = (1, λ, 4), v = (16,−2λ, 4).

Answer:
λ = ±4

Question 8: Find the v × u if
v = (2, 3,−1)

u = (−2,−2, 2).

Answer:
(5,−2, 4)

Question 9: Find the intersection between the planes Π1 and Π2 such that

Π1 : 3x+ y − 4z = 2

Π2 : x+ y = 18.

Answer: The planes intersect on the line

x+ 8

4
=

26− y
4

=
z

2

Question 10: Find the projection of v onto u if

v = (1, 4, 2)

u = (2, 5, 7).

Answer: (
12

13
,

30

13
,

42

13

)
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Hard Questions

Question 11: If a plane, Π, is parallel to the yz-plane and passes through the point (1, 2, 3),
what is the equation of the plane?

Answer:
x = 1

Question 12: If a plane, Π, passes through the points U = (1, 1, 3), V = (−1, 3, 2),W =
(1,−2, 5), what is the equation of the plane?

Answer:
x+ 4y + 6z = 23

Question 13: The mid-points of the sides AB, BC, CD and DA of a quadrilateral ABCD are
P , Q, R, S respectively. Show, using vectors, that PQRS is a parallelogram.

Hint: Take position vectors relative to an origin O and use the result that a quadrilateral with a
pair of opposite sides which are parallel and equal in length is a parallelogram.

Question 14: Find the angle, θ, between the vectors u = (−1, 1, 0) and v = (−1, 0, 1).

Answer:
θ =

π

3

Question 15: Find the shortest distance between the skew lines

L1 = (1, 2, 2) + s(4, 3, 2)

L2 = (1, 0,−3) + t(4,−6,−1).

Answer:
4 units
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5 Limits

5.1 Notation and Definitions

We often wish to find the value that a function f(x) approaches as x tends to a particular value. We
call this the limit of f(x) as x tends to a and it is denoted by

lim
x→a

f(x)

Limits have many uses including determining the behaviour of a function, calculating the value of an
infinite series, and providing a basis for all of calculus. They can also help us when plotting graphs.

As an example, we consider the function

f(x) =
x2 − 1

x− 1

at the point x = 1. Normally, we would just say that the function is undefined, since we would be
dividing by zero. However, as x approaches 1, f(x) actually approaches the value 2. In other words, if
we are infinitely close to the point x = 1, then f(x) is infinitely close to 2, however it never actually
reaches it. To represent this, we can write

lim
x→1

(
x2 − 1

x− 1

)
= 2

In the next section we will describe methods for proving this.

We can also have ‘one-sided limits’, which is where a function approaches two different values depending
on from which direction we approach the limit point. For example, the function

f(x) =
1

x

tends to minus infinity at x = 0 if we approach x = 0 from the left hand side, but it also tends to plus
infinity if we approach x = 0 from the right hand side. We can see this clearly by considering the graph

of f(x) =
1

x
:

−4. −3. −2. −1. 1. 2. 3. 4.

−4.

−3.

−2.

−1.

1.

2.

3.

4.

0
f

We can write these limits as

lim
x→0−

1

x
= −∞

lim
x→0+

1

x
=∞
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5.2 Algebra of Limits

We can use the algebra of limits to help us find the limits of functions. The rules included in the algebra
of limits are as follows:

� The limit of the sum of two functions is the same as the sum of the limits of the two functions:

lim
x→a

(
f(x)g(x)

)
= lim
x→a

f(x) + lim
x→a

g(x)

� The limit of the product of two functions is the same as the product of the limits of the two
functions:

lim
x→a

(
f(x) + g(x)

)
= lim
x→a

f(x)× lim
x→a

g(x)

� The limit of the quotient of two functions is the same as the quotient of the limits of the two
functions (provided limx→a g(x) 6= 0) :

lim
x→a

(
f(x)

g(x)

)
=

limx→a f(x)

limx→a g(x)

Essentially this means that operations with limits are linear.

5.3 Methods for Finding Limits

This section will consist of examples describing different methods of calculating limits.

Example: Calculate the limit:

lim
x→∞

x2 + x+ 1

2x2 + 1

Solution: We can use the algebra of limits and the fact that

lim
x→∞

1

x
= 0

to find this limit.
First, dividing top and bottom of the fraction by the highest power of x, we get

lim
x→∞

x2 + x+ 1

2x2 + 1
= lim
x→∞

1 + 1
x + 1

x2

2 + 1
x2

Now use the algebra of limits to separate this into individual limits:

1 + limx→∞

(
1
x

)
+ limx→∞

(
1
x2

)
2 + limx→∞

(
1
x2

)
=

1 + 0 + 0

2 + 0
=

1

2

This technique only works when we can write the expression in terms of limits which tend to zero.
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Example: Calculate the limit:

lim
x→1

x2 − 1

x− 1

Solution: We can rewrite this as

lim
x→1

x2 − 1

x− 1
= lim
x→1

(x+ 1)(x− 1)

x− 1

= lim
x→1

(x+ 1)

= 2

This technique works where we can eliminate the part of the function that causes the function to
become undefined.

L’Hôpital’s Rule
In some cases we can use L’Hôpital’s rule to help us find the limit of a function, which states that for
two functions f(x) and g(x) such that

limx→a f(x) = limx→a g(x) = 0
or

limx→a f(x) = limx→a g(x) = ±∞

where the limit

lim
x→a

f ′(x)

g′(x)

exists (and f ′(x) is the derivative of f(x) as explained in the section on Differentiation), we can use the
formula �

�
�

limx→a

f(x)

g(x)
= limx→a

f ′(x)

g′(x)

Example: Calculate the limit:

lim
x→0

sin(x)

x

Solution: We must first test the conditions for the rule to work. Let f(x) = sin(x) and g(x) = x.
We can easily check that

lim
x→0

f(x) = lim
x→0

g(x) = 0

Now we need to check that the limit

lim
x→0

f ′(x)

g′(x)

exists, and if it does then by the rule, this limit is equal to the original limit.

f ′(x)

g′(x)
=

cos(x)

1

lim
x→0

cos(x) = 1

Hence the limit exists and so

lim
x→0

sin(x)

x
= lim
x→0

cos(x) = 1
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Example: Calculate the limit:

lim
x→0

1− cos(2x)

x2

Solution: We know that cos(2x) = 1− 2sin2(x) so our limit simplifies to:

lim
x→0

1−
(
1− 2 sin2(x)

)
x2

= 2

[
lim
x→0

sin2(2x)

x2

]

= 2

[
lim
x→0

sin(x)

x

]2

Using the above we know that

lim
x→0

sin(x)

x
= 1

Therefore

2

[
lim
x→0

sin(x)

x

]2

= 2[1]2 = 2
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5.4 Review Questions

Easy Questions

Question 1: What is the limit of the function

f(x) =
tan(x)

x

as x tends 0?
Answer:

lim
x→0

tan(x)

x
= 1

Question 2: What is the limit of the function

f(x) =
3x3 − 2x2 + x+ 4

5x3 + 34x2 + 4x+ 9

as x tends ∞?
Answer:

lim
x→∞

3x3 − 2x2 + x+ 4

5x3 + 34x2 + 4x+ 9
=

3

5

Question 3: What is the limit of the function

f(x) =
x

sin(x)

as x tends 0?
Answer:

lim
x→4

x

sin(x)
= 1

Question 4: What is the limit of the function

f(x) =
x2 + x− 2

x− 1

as x tends 1?
Answer:

lim
x→1

x2 + x− 2

x− 1
= 3

Medium Questions

Question 5: What is the limit of the function

f(x) =
sin(2x)

sin(x)

as x tends 0?
Answer:

lim
x→0

sin(2x)

sin(x)
= 2
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Question 6: What is the limit of the function

f(x) =
√
x+ 10−

√
x

as x tends ∞?

Hint: Use the difference of two squares.

Answer:
lim
x→∞

(√
x+ 10−

√
x
)

= 0

Question 7: What is the limit of the function

f(x) =

√
5x− 16−

√
x

x− 4

as x tends 4?
Answer:

lim
x→4

√
5x− 16−

√
x

x− 4
= 1
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6 Differentiation

6.1 Introduction to Differentiation

Recall that the equation of a straight line is of the form of y = mx+ c where m is the gradient and c is
the y-intercept. We can find the gradient m of a straight line using the triangle method with the formula
m = ∆x

∆y , where ∆x means ‘change in x’
Note: Remember that the gradient is a measure of how steep the graph is at a certain point.
As the gradient of a straight line is the same at every point on the line it is easy to find. With a curve
this is not the case. Consider the graph of y = 5e−x shown below. We will use the triangle method with
two different triangles and show that we get two different values for the gradient.
Using the triangle method with the triangle in the graph below gives:

gradient =
∆y

∆x
=
f(x2)− f(x1)

x2 − x1
=
y2 − y1

x2 − x1
=

0.68− 1.85

3− 1
= −1.17

Now if we use the triangle method again but this time with a larger triangle as in the graph below:

gradient =
∆y

∆x
=
f(x2)− f(x1)

x2 − x1
=
y2 − y1

x2 − x1
=

0.25− 1.85

3− 1
= −0.8

We have obtained two different values for the gradient of the curve. This is because the value of the
gradient is not the same at all points on the curve, unlike for a straight line. This should be obvious as
we can see that the steepness of the graph changes along the curve. This means it is quite hard to find
the gradient of a curve using the triangle method and so we need a new method.
Differentiation allows us to find the gradient of almost any graph. This works because when we differ-
entiate we are calculating how one variable changes due to a change in another (in other words the rate
of change). This is useful in physics; for example we might wish to find the acceleration of a particle by
considering the rate of change of velocity.
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Differentiation from First Principles

The properties of differentiation are born from the idea of calculating the gradient between two points
at the limit that the distance between them tends to zero. As shown in the previous section a gradient

is calculated by
f(x2)− f(x1)

x2 − x1
, but for differentiation we consider the points f(x+ dx) and f(x), where

dx is the infinitesimal distance between the two points i.e. The derivative, or gradient, of a point on a
curve is:

lim
dx→0

(
f(x+ dx)− f(x)

dx

)
Using this idea, it is possible to derive all the standard derivatives.

Example: Differentiate from first principles 4x2 :

Solution: The derivative of f(x) is defined above as

lim
dx→0

(
f(x+ dx)− f(x)

dx

)
so if we let f(x) = 4x2 we get that the derivative is

lim
dx→0

(
(x+ dx)2 − x2

dx

)
Consider

(x+ dx)2 − x2

dx

Expanding the brackets we obtain

x2 + 2xdx+ dx2 − x2

dx

This simplifies to
2x+ dx2

Therefore the derivative of 4x2 is
lim
dx→0

(2x+ dx2)

= 2x
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Example: Differentiate from first principles xn

Solution: The derivative of xn =

lim
dx→0

(
(x+ dx)n − xn

dx

)
Consider

(x+ dx)n − xn

dx

Using a binomial expansion (see section 11.4) of the bracketed terms gives

(xn + nxn−1dx+ 1
2n(n− 1)xn−2dx2 + ...)− xn

dx

This is equivalent to

nxn−1 +
1

2
n(n− 1)xn−2dx+ ...

Therefore the derivative of xn is

lim
dx→0

(nxn−1 +
1

2
n(n− 1)xn−2dx+ ...)

= nxn−1

Notation

When we use the triangle method we are finding ∆y
∆x where ∆ means ‘the difference in’. Similarly, when

we differentiate we are effectively drawing an infinitely small triangle to calculate the rate of change (or
gradient) of a tiny slice of the function. When differentiating y with respect to x we use the notation:

dy

dx

where the d means an infinitely small difference. (We don’t use ∆ any more since this represents a finite
difference).

� We say that dx is the differential of x.

� We say that
dy

dx
is the derivative of y with respect to x.

Example:

The derivative of x2, as shown above, is 2x. Using the notation above we would write this as:

If y = x2 then
dy

dx
= 2x

Recall that we can write a function as either y or f(x), leading to other notation for differentiation
displayed in the table below:

Function Derivative Pronunciation

y
dy

dx
‘d-y by d-x’ or ‘d-y d-x’

f(x) f ′(x) ‘f prime of x’ or ‘f dash of x’

f(x)
d

dx
(f(x)) ‘d by d-x of f of x’
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Note: We may sometimes refer to
d

dx
as the differential operator.

Example:

So if f(x) = x2 then we can write the derivative in the following ways:

f ′(x) = 2x

OR

d

dx
(x2) = 2x

IMPORTANT: When we find dy
dx we say we are ‘differentiating y with respect to x’. Now suppose

instead that we have the equation a = b2 then:

da

db
= 2b

This works in the same way as we have seen for x and y but in this case we have it in terms of a and b
and would say we are ‘differentiating a with respect to b’.
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6.2 Standard Derivatives

Differentiating Polynomials

A polynomial is an expression in the form

anx
n + an−1x

n−1 + · · ·+ a2x
2 + a1x+ a0

where

� an, . . . , a2, a1, a0 are constant coefficients.

� xn, xn−1, . . . , x2 are powers of a variable x.

A rather simple example of a polynomial is the quadratic x2 + 3x+ 1.
Differentiation finds the gradient of a curve at a given point. Suppose we want to find the gradient of a
polynomial function such as y = x3 + 1. How do we find this derivative?
As differentiation may be new to many readers we will begin slowly and first explain how to differentiate
the individual terms of a polynomial, for example x2, before moving on in the section on ‘how to
differentiate a sum’ to help us differentiate polynomial sums such as 4x3 + 1.
The general rule for differentiating polynomials is as follows:�



�
	If y = xn then

dy

dx
= nxn−1

You can remember this using the phrase: ‘power down the front, one off the power’.
For example:

� If we have y = x then this is the same as y = x1 so we have
dy

dx
= 1× x1−1 = 1.

� If we have y = x2 then we have
dy

dx
= 2× x2−1 = 2x.

Another important rule to remember is as follows:�



�
	If y = c for any constant c then

dy

dx
= 0.

We have only considered examples of polynomials up to the power of 2. The next example shows that
we can apply this rule to polynomials of higher powers.

Example: Differentiate y = x5.

Solution: From above we know that if y = xn then
dy

dx
= nxn−1. So in this example we have

n = 5. This gives the following answer:

dy

dx
= 5x5−1 = 5x4

We can also differentiate using this rule when x is raised to a negative power as shown in the next example.

Example: Differentiate y = x−1.

Solution: From above we know that if y = xn then
dy

dx
= nxn−1. So in this example we have

n = −1. This gives the following answer:

dy

dx
= −1× x−1−1 = −x−2

We can differentiate using this rule when x is raised to a fractional power as shown in the next example.
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Example: Differentiate y = x
1
2 .

Solution: So using the rule that if y = xn then
dy

dx
= nxn−1. We have n =

1

2
. This gives the

answer:

dy

dx
=

1

2
× x 1

2−1 =
x−

1
2

2
= 1

2
√
x

So far we have only considered polynomials which have a coefficient of 1. But how do we differentiate
y = 4x2 where the coefficient is equal to 4? When we have a coefficient a we have the rule:�



�
	If y = axn then

dy

dx
= a× n× xn−1

Note: The first rule that we discussed is just a special case of the above rule when a = 1.
So going back to y = 4x2 we can see that the coefficient a = 4 and x is raised to the power of n = 2. So

using the rule, if y = axn then
dy

dx
= a× n× xn−1. We have:

dy

dx
= 4× 2× x2−1 = 8x1 = 8x

IMPORTANT: When differentiating any function f(x) multiplied by some constant a, finding d
dx [af(x)],

we can take the constant a out of the derivative so:�



�
	d

dx

[
af(x)

]
= a

d

dx

[
f(x)

]
For example

d

dx
(2x3) = 2× d

dx
(x3) = 2× 3x2 = 6x2.

Example: Differentiate y = 4x−
1
2

Solution: This example combines everything we have looked at so far. So using the rule:

If y = axn then
dy

dx
= a× n× xn−1

we have a = 4 and n = −1

2
. This gives the answer:

dy

dx
= 4×−1

2
× x− 1

2−1 = −2x−
3
2

Physics Example: Coulomb’s Law states that the magnitude of the attractive force F be-
tween two charges decays according to the inverse square of the separating distance r:

F =
1

r2

If we plot a graph of F on the y-axis against r on the x-axis, what is the gradient?

Solution: To find the gradient we find the derivative with respect to r denoted
dF

dr
of:

F =
1

r2
= r−2

All the examples so far have only contained x and y however in this question we have the variables

F and r. We know y = xn then
dy

dx
= nxn−1, so with y as F and x as r and n = −2. We have:

dF

dr
= −2× r−2−1 = −2× r−3 = − 2

r3
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Below we have the rules for differentiating trigonometric functions:�



�
	If y = sin(x) then

dy

dx
= cos(x)

�



�
	If y = cos(x) then

dy

dx
= − sin(x)

�



�
	If y = tan(x) then

dy

dx
= sec2(x)

When we have constants multiplying the trigonometric functions and coefficients multiplying our x we
can use the following rules: �



�
	If y = a sin(bx) then

dy

dx
= a× b× cos(bx)

�



�
	If y = a cos(bx) then

dy

dx
= −a× b× sin(bx)

�



�
	If y = a tan(bx) then

dy

dx
= a× b× sec2(bx)

Note: These rules only work when x is being measured in radians.

Example: Differentiate:

1. y = sin(9x)

2. y = 4 cos
(x

2

)
3. y = −2 tan (−7x)

Solution: Using the rules above:

1. If y = a sin(bx) then
dy

dx
= a× b× cos(bx)

Note that we have y = sin(9x) so a = 1 and b = 9. So
dy

dx
= 9 cos(9x)

2. If y = a cos(bx) then
dy

dx
= −a× b× sin(bx)

Note that we have y = 4 cos
(x

2

)
so a = 4 and b =

1

2

dy

dx
= −4××1

2
× sin

(x
2

)
= −2 sin

(x
2

)
3. If y = a tan(bx) then

dy

dx
= a× b× sec2(bx)

Note that we have y = −2 tan (−7x) so a = −2 and b = −7
dy

dx
= (−2)×

(
−7 sec2 (−7x)

)
=

−14 sec2 (−7x) = 14 sec2 (7x)
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Physics Example: In X-ray crystallography, the Bragg equation relates the distance d be-
tween successive layers in a crystal, the wavelength of the X-rays λ, an integer n and the angle
through which the X-rays are scattered θ in the equation:

λ =
2d

n
sin θ

What is the rate of change of λ with θ?

Solution: The question is asking us to find
dλ

dθ
. So as n and d are constants we can use the rule:

If y = a sin(bx) then
dy

dx
= a× b× cos(bx)

So we have a =

(
2d

n

)
and b = 1 with λ as y and θ as x therefore:

dλ

dθ
=

(
2d

n

)
× 1× cos θ =

2d

n
cos θ.

Differentiating Exponential Functions

The exponential function ex is special, since when we differentiate ex, we just obtain ex again. This is
shown in the rule below: �



�
	If y = ex then

dy

dx
= ex

We can also differentiate when the x has a coefficient, for example y = e4x, and also when the exponential
is multiplied by a constant, for example y = 3ex. We combine these into the rule below:�



�
	If y = aebx then

dy

dx
= a× b× ebx

Example: Differentiate the following with respect to x:

1. y = e2x

2. y = 8 exp
(
−x

3

)
Solution:

1. Using the rule

If y = aebx then
dy

dx
= a× b× ebx

note y = e2x so a = 1 and b = 2 hence
dy

dx
= 2e2x

2. Using the rule

If y = aebx then
dy

dx
= a× b× ebx

note y = 8 exp
(
−x

3

)
so a = 8 and b = −1

3
hence

dy

dx
= 8×−1

3
× exp

(
−x

3

)
= − 8

3
e−

x
3

Differentiating Logarithmic Functions

We differentiate logarithmic functions using the rule shown below:
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�



�
	If y = ln(x) then

dy

dx
=

1

x

We can differentiate when the x has a coefficient, for example y = ln(4x), and also when the logarithmic
function has a coefficient, for example y = 3 ln(x). We combine these into the rule below:�



�
	If y = a ln(bx) then

dy

dx
=
a

x

Note: In the above rule, the b disappears and it forms a nice exercise in the practice of using the
laws of logarithms hence we have included the algebra in the next example. We do have to differenti-
ate a sum however so if you are unsure on that step then check out the next section for more information.

Example: For y = a ln(bx) find
dy

dx

Solution: Using laws of logarithms we can write y = a ln(bx) as:

y = a (ln(x) + ln(b))

Now differentiating this as a sum gives:

dy

dx
=

d

dx
[a(ln(x) + ln(b))]

=⇒ dy

dx
= a

d

dx
[ln(x)] + a

d

dx
[ln(b)]

Now as
d

dx
[ln(x)] =

1

x
and

d

dx
[ln(b)] = 0 as ln(b) is a constant, we have:

dy

dx
=
a

x

Note: This derivation is included as it provides an advanced example of the use of the laws of
logarithms with differentiation.

Example: Differentiate:

1. y = ln(3x)

2. y = −4

5
ln

(
x

2

)
Solution:

1. We use the rule:

If y = a ln(bx) then
dy

dx
=
a

x

Note that we have y = ln(3x) so a = 1 and b = 3. Hence
dy

dx
=

1

x

2. We use the rule:

If y = a ln(bx) then
dy

dx
=
a

x

Note that we have y = − 4

5
ln

(
x

2

)
so a = − 4

5
and b =

1

2
. Hence

dy

dx
= − 4

5
× 1

x
= − 4

5x
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Differentiating Hyperbolic Functions

Below we have the rules for differentiating hyperbolic functions:�



�
	If y = sinh(x) then

dy

dx
= cosh(x)

�



�
	If y = cosh(x) then

dy

dx
= sinh(x)

�



�
	If y = tanh(x) then

dy

dx
= sech2(x)

When we have constants multiplying the hyperbolic functions and coefficients multiplying our x we can
use the following rules: �



�
	If y = a sinh(bx) then

dy

dx
= a× b× cosh(bx)

�



�
	If y = a cosh(bx) then

dy

dx
= a× b× sinh(bx)

�



�
	If y = a tanh(bx) then

dy

dx
= a× b× sech2(bx)

Note: that the derivative of cosh(x) is sinh(x) and NOT − sinh(x). We can prove these derivatives by
differentiating the exponential forms of the hyperbolic functions:

Example: Differentiate cosh(x) by converting to the exponential form.

Solution: Begin by writing cosh(x) as

cosh(x) =
ex

2
+
e−x

2

Differentiating each term:
d

dx
cosh(x) =

ex

2
− e−x

2

= sinh(x)
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6.3 Differentiation Techniques

Differentiating a Sum

If we have multiple terms in the form of a sum, for example y = x3 + 8x + 1, then in order to find dy
dx ,

we apply the differential operator on each of the terms in turn. So in other words we differentiate each
part of the sum one by one.
Consider y = x3 + 8x+ 1. If we want to find dy

dx then we would apply the operator d
dx to both sides of

the equation giving us:

dy

dx
=

d

dx
(x3 + 8x+ 1) Now we apply the

d

dx
operator to each term.

=⇒ dy

dx
=

d

dx
(x3) +

d

dx
(8x) +

d

dx
(1) Now we differentiate each of the terms individually.

=⇒ dy

dx
= 3x2 + 8 + 0 Now simplify.

=⇒ dy

dx
= 3x2 + 8

Example: Differentiate the following:

1. y = ex + 4x6

2. y = ln(2x) +
1

3
sin(9x)

Solution:

1. To differentiate y we differentiate all of the terms individually. We use the rules for differen-
tiating exponentials and powers to get:

y = ex + 4x6 =⇒ dy

dx
= ex + 4× 6x5 = ex + 24x5

2. Again, we differentiate each term.

y = ln(2x) +
1

3
sin(9x) =⇒ dy

dx
=

1

x
+

1

3
× 9 cos(9x) =

1

x
+ 3 cos(9x)

Example: Differentiate z = cos(4t) + 6et + t5 + 2t2 + 7 with respect to t.

Solution: This question is different as our equation is not in terms of y and x, but instead in terms
of z and t. We treat this in the same way as if the terms were y and x, so we differentiate each
term individually.

dz

dt
= −4 sin(4t) + 6et + 5t4 + 4t
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Physics Example: An equation of motion is

s = ut+
1

2
at2

where s is the displacement of a body, t is the time that has passed and u and a are constants.

Find the velocity v =
ds

dt
of the body.

Solution: As with the previous example, we aren’t using x and y. We need to differentiate s with
respect to t to find the velocity.

v =
ds

dt
=

d

dt
(ut) +

d

dt

(
1

2
at2
)

We can now differentiate each of the terms

ds

dt
= u+

1

2
(2at) Then simplify

ds

dt
= u+ at

This confirms the equation of motion:
v = u+ at
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The Product Rule

Now suppose we want to differentiate y = x2 sin(x). We encounter the problem: How do we differentiate
a function that is the product of two other functions, in this case x2 and sin(x)?
To do this we need the product rule:�
�

�
�

If the function y = f(x) is written as the product of two functions say u(x) and v(x) so

y = f(x) = u(x)v(x) then
dy

dx
= u

dv

dx
+ v

du

dx

So returning to our example we have f(x) = x2 sin(x) with u = x2 and v = sin(x).

First we find that
du

dx
= 2x and

dv

dx
= cos(x) then we substitute into

dy

dx
= u

dv

dx
+ v

du

dx

=⇒ dy

dx
= x2 cos(x) + sin(x)2x

=⇒ dy

dx
= x(x cos(x) + 2 sin(x))

Example: Differentiate using the product rule:

1. y = x ln(x)

2. y = 6ex cos(x)

Solution:

1. Take u = x and v = ln(x).

We can now differentiate these to find that
du

dx
= 1 and that

dv

dx
=

1

x
Using the product rule:

dy

dx
= u

dv

dx
+ v

du

dx
Substitute in the quantities

dy

dx
= x

(
1

x

)
+ ln(x)

(
1
)

Expand and simply

dy

dx
= 1 + ln(x)

2. For this take u = 6ex and v = cos(x).

Now we differentiate those to find that
du

dx
= 6ex and

dv

dx
= − sin(x) By the product rule we

obtain:

dy

dx
= u

dv

dx
+ v

du

dx
Substitute in the expressions

dy

dx
= 6ex

(
− sin(x)

)
+ cos(x)

(
6ex
)

Expand the brackets

dy

dx
= −6ex sin(x) + 6ex cos(x) Take a factor of 6ex out

dy

dx
= 6ex

(
cos(x)− sin(x)

)
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Example: Differentiate y =
1

3
(x2 + 5x) sin(x).

Solution: This is a product of two functions and we must use the product rule.

Set u =
1

3
(x2 + 5x) and v = sin(x)

We can differentiate to find that
du

dx
=

1

3
(2x+ 5) and

dv

dx
= cos(x)

We now use the product rule:

dy

dx
= u

dv

dx
+ v

du

dx
Substitute in our expressions

dy

dx
=

1

3
(x2 + 5x)

(
cos(x)

)
+ sin(x)

(1

3
(2x+ 5)

)
Simplify by taking a factor of

1

3
out

dy

dx
=

1

3

(
(x2 + 5x) cos(x) + (2x+ 5) sin(x)

)
The end result may appear complicated and ugly but it is nicer than having all the brackets
expanded.
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The Quotient Rule

A quotient is a fraction of two functions, for example:

y =
x3

e3x

When we have a function in the form of a quotient we differentiate it using the quotient rule:�

�

�

�
If the function f(x) is written as a quotient such as

y =
u(x)

v(x)
then

dy

dx
=
v
du

dx
− udv

dx
v2

So returning to y =
x3

e3x
we have u = x3 and v = e3x.

Hence
du

dx
= 3x2 and

dv

dx
= 3e3x and v2 = e6x. Then substitute into quotient rule

dy

dx
=
v
du

dx
− udv

dx
v2

=⇒ dy

dx
=
e3x3x2 − x33e3x

e6x

=⇒ dy

dx
= 3x2e−3x(1− x)

Example: Differentiate y =
sin(x)

3 ln(x)
.

Solution: Just as in the previous example, we have u in the numerator and v in the denominator

of the quotient so u = sin(x) and v = 3 ln(x). We can now differentiate these to get
du

dx
= cos(x)

and
dv

dx
=

3

x
. Using the quotient rule we get that:

dy

dx
=
v
du

dx
− udv

dx
v2

Substitute in what we have

dy

dx
=

3 ln(x)× cos(x) − sin(x)× 3

x(
3 ln(x)

)2 We can simplify

dy

dx
=

3 ln(x) cos(x) − 3 sin(x)

x
9 ln(x)2

A factor of 3 can be taken out

dy

dx
=

ln(x) cos(x) − sin(x)

x
3 ln(x)2
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Example: Differentiate y =
x

e2x

Solution: We have a function x divided by a function e2x so to find the derivative the quotient

rule needs to be used. So u = x and v = e2x and therefore
du

dx
= 1 and

dv

dx
= 2e2x. We can now

employ the quotient rule to get:

dy

dx
=
v
du

dx
− udv

dx
v2

Substitute what we know in

dy

dx
=
e2x × 1− x× 2e2x

(e2x)2
Simplifying this by taking a factor of e2x out

dy

dx
=
e2x(1− 2x)

(e2x)2
The e2x on top cancels with one on the bottom

dy

dx
= e−2x(1− 2x)

Now that we know the quotient rule, we can prove the derivative of y = tan(x)

Example: Differentiate y = tan(x).

Solution: We begin by writing

y = tan(x) =
sin(x)

cos(x)

Now apply the quotient rule:

dy

dx
=

cos(x)
d

dx
(sin(x))− sin(x)

d

dx
(cos(x))

cos2(x)

=
cos2(x)− (− sin2(x))

cos2(x)

=
cos2(x) + sin2(x)

cos2(x)

=
1

cos2(x)

= sec2(x)

as we expected.

©University of Birmingham, 2015
103

http://creativecommons.org/licenses/by-nc-nd/4.0/


The Chain Rule

When we have a function inside of a function (called a composite function) we differentiate using the
chain rule. An example of a composite function is y = sin(x2 + 1). There are two functions sin(..) and
x2 + 1. We are applying the sin function to x2 + 1, thus making it a function inside a function, or a
composite function.
As was discussed in an earlier section, the general form of a composite function is:�� ��y = f(g(x))

where f and g are both functions. In the above example y = sin(x2+1) we would have f(g(x)) = sin(g(x))
and g(x) = x2 + 1.

To use the chain rule we use the following steps:

1. Introduce a new variable u to be equal to u = g(x).

2. Substitute u = g(x) into the expression y = f(g(x)) so that y = f(u).

3. Find
dy

du
and

du

dx
.

4. The derivative
dy

dx
can be found by this equation

dy

dx
=
dy

du
× du
dx

and then substitute u = g(x) back

in.

The chain rule is summarised in the box below:�
�

�
�

If y = f(g(x)) let u = g(x) hence y = f(g(x)) = f(u)

then
dy

dx
=
dy

du
× du

dx

Below we follow the steps of the chain rule to differentiate y = sin(x2 + 1):

1. Introduce a new variable u to be equal to g(x) (the inside function). For this example u = x2 + 1.

2. Substitute u = g(x) into the expression y = f(g(x)) so that y = f(u). As u = x2 + 1 this would
make y = sin(u).

3. Find
dy

du
and

du

dx
. In this example we have:

y = sin(u) =⇒ dy

du
= cos(u)

and

u = x2 + 1 =⇒ du

dx
= 2x

4. The derivative
dy

dx
can be found by this equation

dy

dx
=

dy

du
× du

dx
and then substitute back in

u = g(x).

=⇒ dy

dx
= cos(u)× 2x = 2x cos(x2 + 1)
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Example: Differentiate y = (x2 + 2)3 using the chain rule:

Solution: We take u = x2 + 2 and therefore y = u3.
Then we differentiate each of those to find:

du

dx
= 2x

dy

du
= 3u2

From the chain rule:

dy

dx
=
dy

du
× du

dx
Substitute in our expressions for

dy

du
and

du

dx

dy

dx
= 3u2 × 2x Substitute u = x2 + 2

dy

dx
= 6x(x2 + 2)2

Example: Given y = ln(x3) find
dy

dx
Solution: We take u = x3 which means that y = ln(u).
Then differentiate to find that:

du

dx
= 3x2 dy

du
=

1

u

From the chain rule
dy

dx
=
dy

du
× du

dx
we can see that:

dy

dx
=

1

u
× 3x2 Substitute u = x3

dy

dx
=

1

x3
× 3x2 Simplify further

dy

dx
=

3

x

Note: A faster solution would have been to use the laws of logarithms to notice that ln(x3) =
3 ln(x) and then differentiate, avoiding the use of the chain rule.

Example: Differentiate y = cos(e2x)

Solution: Let u = e2x therefore y = cos(u).
Differentiate to find:

du

dx
= 2e2x and

dy

du
= − sin(u)

Using the chain rule
dy

dx
=
dy

du
× du

dx
we can show that:

dy

dx
= − sin(u)× 2e2x Substitute that u = e2x

dy

dx
= −2e2x sin(e2x)
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Physics Example: The Maxwell Boltzmann Distribution is a probability distribution of
finding particles at certain speed v in 3 dimensions. It has the form of:

f(v) = Av2e−Bv
2

where A and B are positive constants. Using the chain rule and the product rule find
d

dv
f(v).

Solution: This example involves two steps, first of all the product rule is required to differentiate
the whole thing as f(v) is a product of two functions. The chain rule is also needed to differentiate

the exponential. Let’s call P = Av2 and Q = e−Bv
2

, thus making f(v) = P ×Q. From the product
rule:

d

dv
f(v) = P

dQ

dv
+Q

dP

dv

We have
dP

dv
= 2Av but we will need to use the chain rule to find

dQ

dv
.

We let u = −Bv2, making Q = eu. We can then calcuate that
du

dv
= −2Bv and that

dQ

du
= eu.

From here the chain rule tells us that:

dQ

dv
=
dQ

du
× du

dv
We substitute our expressions for for

dQ

du
and

du

dv

dQ

dv
= eu × (−2Bv) Substitute u = −Bv2

dQ

dv
= −2Bv · e−Bv2

Substituting into the previous equation (shown below) gives us:

d

dv
f(v) = P

dQ

dv
+Q

dP

dv
Substitute in what we have found

d

dv
f(v) = Av2(−2Bv × e−Bv2) + e−Bv

2 × 2Av This can be simplified

d

dv
f(v) = −2ABv3e−Bv

2

+ 2Av e−Bv
2

Take a factor of 2Av e−Bv
2

out

d

dv
f(v) = 2Av e−Bv

2

(1−Bv2)

Note: This example is more complicated since we are using both the product rule and the chain rule.
Even more advanced functions might require the use of many differentiation rules in a calculation of
their derivatives.
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Implicit Differentiation

Consider two variables x and y which are linked through an implicit formula, f(x, y) = 0. If we are asked

to find
dy

dx
there are many ways to achieve this:

� Firstly, we may be able rearrange to make y the subject of the equation then differentiate as normal.

� Secondly, if it is easier we could make x the subject and find
dx

dy
and, as seen in the next section,

the reciprocal of this is
dy

dx
.

� However neither of the above may be feasible, so we use implicit differentiation.

In the case above, where we have an implicit formula relating x and y, it may not be easy to rearrange

the equation to get y = f(x) or x = g(y). In this case, if we wish to find
dy

dx
, we use implicit differentia-

tion. To do this, we treat y as a function of x, i.e. y = y(x) and then simply differentiate each term by
x. Note that if we are differentiating a term involving y(x), we must use the chain rule where appropriate.

For example, consider our method for differentiating (x + 1)2 with respect to x. We use the chain
rule to obtain:

2(x+ 1)× 1

Now, if y = x+ 1, we can write (x+ 1)2 = y2 and differentiate this with respect to x to obtain

2y × dy

dx

Note that since y = x+ 1,

2(x+ 1)× 1 = 2y × dy

dx

and this equivalence allows us to see that implicit differentiation works.

Example: Find
dy

dx
if

y + x = 3x3 +
1

3
y3

Click here for a video example

Solution: Differentiating the left hand side gives

1× dy

dx
+ 1

Differentiating the right hand side gives

9x2 + y2 × dy

dx

Therefore
dy

dx
+ 1 = 9x2 + y2 dy

dx

Thus
dy

dx
=

9x2 − 1

1− y2
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Example: Find the value of
dx

dt
if

xt = cos(3t) + 4

at t = π.

Solution: Consider x as a function of t, i.e. x(t). On the left hand side of the equation we must
use the product rule to differentiate as we have x(t)× t. This gives

x+ t× dx

dt

Differentiating the right hand side of the equation gives

−3 sin(3t)

Therefore

x+ t× dx

dt
= −3 sin(3t)

At t = π we have that
xπ = cos(3π) + 4

xπ = 0 + 4

x =
4

π

Thus at t = π x =
4

π
.

Substituting these values in we obtain

4

π
+ π

dy

dx
= −3sin(3π)

Thus
dx

dt
= − 4

π2

©University of Birmingham, 2015
108

http://creativecommons.org/licenses/by-nc-nd/4.0/


Differentiating Inverse Functions

Here we look at how the derivative of the inverse of a function is related to the derivative of the original
function. The relationship is given in the following rule.'

&

$

%

If y = y(x), find x(y) and calculate
dx

dy

then
dy

dx
=

1(
dx

dy

)
then substitute y = y(x) into the equation we obtain.

This will become more clear with the help of an example:

Example: If we have y = 1
3x

1
5 , we may find it easier to find the inverse function and differentiate

this instead. Using the rule for differentiating inverse functions, find
dy

dx
.

Solution: First of all, we need to find x(y). To do this, we rearrange the function y = 1
3x

1
5 to make

x the subject.

y = 1
3x

1
5 Multiply both sides by 3

3y = x
1
5 Raise both sides to the power 5

243y5 = x

Now we need to calculate
dx

dy
:

dx

dy
= 5× 243y4

= 1215y4

Next, we use the rule above to find
dy

dx
:

dy

dx
=

1(
dx

dy

)

=
1

1215y4

=
1

1215
y−4

Finally, we must substitute y = 1
3x

1
5 back into the equation so that we have

dx

dy
in terms of x:

dy

dx
=

1

1215

(
1

3
x

1
5

)−4

=
1

15
x−

4
5

Although this method is not incredibly useful in this particular example, there are cases when the
derivative of an inverse function is far easier than that of the original function, and so this method can
save us a lot of time. The next section will give an important application of this method.
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Derivatives of Inverse Trigonometric and Hyperbolic Functions

Now that we have learnt the rule for differentiating inverse functions, we can find the derivatives of
inverse trigonometric functions: �



�
	If y = sin−1(x) then

dy

dx
=

1√
1− x2�



�
	If y = cos−1(x) then

dy

dx
=

−1√
1− x2�



�
	If y = tan−1(x) then

dy

dx
=

1

1 + x2

We will only provide the proof for one of these derivatives, as the proofs are all rather similar.

Example: Using the method for differentiating inverse functions, differentiate y = sin−1(x).

Solution: First of all, we need to write x in terms of y:

y = sin−1(x)⇒ x = sin(y)

Now we need to calculate
dx

dy
:

dx

dy
= cos(y)

Next, we use the rule above to find
dy

dx
:

dy

dx
=

1(
dx

dy

)

=
1

cos(y)

Notice that we can use the identity cos2(θ) + sin2(θ) = 1 to rewrite cos(y) as

cos(y) =

√
1− sin2(y)

and using our equation x = sin(y) we can write:

dy

dx
=

1

cos(y)
=

1√
1− x2

Similarly, we can find the derivatives of inverse hyperbolic functions:�



�
	If y = sinh−1(x) then

dy

dx
=

1√
1 + x2�



�
	If y = cosh−1(x) then

dy

dx
=

1√
x2 − 1�



�
	If y = tanh−1(x) then

dy

dx
=

1

1− x2

Note that we could also have found these derivatives by writing the inverse hyperbolic functions in log-
arithm form.

©University of Birmingham, 2015
110

http://creativecommons.org/licenses/by-nc-nd/4.0/


Differentiating Parametric Equations

We can also differentiate parametric equations to find
dy

dx
. The technique used to do this is to differenc-

tiate both y and x with respect to the parameter, t say, then use the rule:�



�
	dy

dx
=
dy

dt
× dt

dx

Example: Find
dy

dx
for the parametric equation:

y = 12t4 + 3

x = cos(t)

Solution: Fist we need to find
dy

dt
and

dt

dx
, it is easy to see that:

dy

dt
= 48t3

dx

dt
= − sin(t)

Using the rule for differentiating inverse functions we can see that:

dt

dx
= − cosec(t)

Then using
dy

dx
=
dy

dt
× dt

dx
, we can see that:

dy

dx
= −48t3 cosec(t)
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6.4 Stationary points

Stationary points occur when we have
dy

dx
= 0. This represents when the gradient of a curve is horizontal.

There are three types of stationary points:

1. Local maximum

We can see that when we pass through a maximum, the gradient goes from being positive i.e.
f ′(x) > 0 (or dy

dx > 0) to being negative i.e. f ′(x) < 0 (or dy
dx < 0).

2. Local minimum

We can see that when we pass through a minimum the gradient goes from being negative i.e
f ′(x) < 0 (or dy

dx < 0) to being positive i.e f ′(x) > 0 (or dy
dx > 0).

3. Point of inflection (or Saddle Point)

When we pass through a point of inflection we should note that the gradient does not change sign.

©University of Birmingham, 2015
112

http://creativecommons.org/licenses/by-nc-nd/4.0/


Example: Find the stationary point of y = x2

Solution: From the graph of y = x2 we can see that there is a minimum at x = 0 however we need
to find this algebraically.

−6 −4 −2 −0 2 4 6

10

20

30

x

y

First we need to find when
dy

dx
= 0. Now

dy

dx
= 2x and therefore

dy

dx
= 0 when x = 0.

So we know we have a stationary point at x = 0. In the next section we will discuss how to decide
whether this is a maximum, minimum or point of inflection.

Classifying Stationary Points

We now need to introduce the second derivative, which is denoted by:

d2y

dx2
or f ′′(x)

This means that we differentiate a function twice, so for example if we have y = x3 we would first find:

dy

dx
= 3x2

which we would then differentiate again to find:

d2y

dx2
= 6x

First Test
The second derivative is used to decide whether a stationary point is a maximum or a minimum. If we
have the point x where there is a stationary point then we substitute this value into the second derivative.

� If
d2y

dx2
> 0 we have a minimum.

� If
d2y

dx2
< 0 we have a maximum.

Unfortunately this test fails if we find that
d2y

dx2
= 0. In this case we could have a maximum, minimum

or point of inflection and we must carry out the following test in order to decide:
Second Test
First find two x values just to the left and right of the stationary point and calculate f ′(x) for each. Let
use denote the x value just to the left as xL and the one to the right as xR then:

� If f ′(xL) > 0 and f ′(xR) < 0 we have a maximum.

� If f ′(xL) < 0 and f ′(xR) > 0 we have a minimum.

� If f ′(xL) and f ′(xR) have the same sign (so both are either positive or negative) then we have a
point of inflection.
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Example: Find and classify the stationary points of y =
x4

4
− x2

2

Solution: First we find where
dy

dx
= 0. To find where the stationary points are.

dy

dx
= x3 − x = 0

=⇒ x(x2 − 1) = 0

=⇒ x(x− 1)(x+ 1) = 0

Therefore we have stationary points at x = 0, x = 1 and x = −1 to classify them we must find the
second derivative:

d2y

dx2
= 3x2 − 1

Now we substitute our x-values for the location of the stationary points into
d2y

dx2
.

� Now when x = 0 we have
d2y

dx2
= −1 hence

d2y

dx2
< 0 (negative) so this is a maximum.

� Now when x = 1 we have
d2y

dx2
= 2 hence

d2y

dx2
> 0 (positive) so this is a minimum.

� Now when x = −1 we again have
d2y

dx2
= 2 hence

d2y

dx2
> 0 (positive) so this is a minimum.

Example: Find and classify the stationary points of y = x3

Solution: First we find when
dy

dx
= 0 to find where the stationary points are.

dy

dx
= 3x2 = 0

=⇒ x = 0

Therefore we have one stationary point at x = 0. To classify this point we need to find the second
derivative:

d2y

dx2
= 6x

Now when x = 0 we have
d2y

dx2
= 0 hence our test has failed and we must carry out the further

test.
Now we need to pick x values close to either side of the stationary point at x = 0. So an x value
just to the left would be xL = −0.5 and one just to the right would be xR = 0.5.

Now as
dy

dx
= f ′(x) = 3x2 we obtain:

� f ′(xL) = 3(xL)2 = 3×−0.52 = 0.75 > 0

� f ′(xR) = 3(xR)2 = 3× 0.52 = 0.75 > 0

So both f ′(xL) > 0 and f ′(xR) > 0 are positive so are of the same sign. Hence the stationary
point at x = 0 is a point of inflection.
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Physics Example: The Lennard-Jones potential decribes the potential energy V between
two atoms separated by a distance r. The equation and graph of this function are shown below:

V (R) =
A

r12
− B

r6

V (r)

r

where A and B are constants. The two particles are at their equilibrium separation when the
potential is at a minimum (V is at a minimum). By differentiating this equation with respect to
r, find the equilibrium separation.
Solution: To find the minimum V we need to differentiate it and then set it equal to zero (find
dV
dr = 0). The value of r that this equation gives will be where the potential is a minimum.
Differentiating V with respect to r gives:

dV

dr
=
−12A

r13
+

6B

r7

We need to find when
dV

dr
= 0 so we need to solve the equation:

−12A

r13
+

6B

r7
= 0 Add

−12A

r−13
to both sides

6B

r7
=

12A

r13
Multiply each side by r13 and divide by 6B

r13

r7
=

12A

6B
Simplify both of the fractions

r6 =
2A

B
Take the 6th root of both sides

r =

(
2A

B

) 1
6

Hence at the equilibrium separation r =

(
2A

B

) 1
6

.
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6.5 Review Questions

Easy Questions

Question 1: Find
dy

dx
if

y =
x2 + 5

x2 − 5

Answer:
dy

dx
=
−20x

(x2 − 5)2

Question 2: Find
dy

dx
if

y =
√

1 + 2 tan(x)

Answer:
dy

dx
=

sec2(x)√
1 + 2 tan(x)

Question 3: Find
dy

dx
if

y = ln
(

tanh(
x

3
)
)

Answer:
dy

dx
= cosech(x) sech(x)

Question 4: Find
dy

dx
if

y = ln

(
1 + cosh(x)

cosh(x)− 1

)
Answer:

dy

dx
= −2 cosech(x)

Question 5: Find
dy

dx
if

y =
x2 + 5x− 3

3x
1
2

Answer:
dy

dx
=

1

2
x

1
2 +

5

6
x−

1
2 +

1

2
x−

3
2

Medium Questions

Question 6: Find the gradient of the circle

y2 + x2 = 25

at the point (3,−4)
Answer:

3

4
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Question 7: Find
dy

dx
if

y = ln(x3ex)

Answer:
dy

dx
=

3

x
+ 1

Question 8: Find
dy

dx
if

y = ln(x ln(x))

Answer:
dy

dx
=

ln(x) + 1

x ln(x)

Question 9: Find
dy

dx
if

y = ln(ex + e−x)

Answer:
dy

dx
= tanh(x)

Question 10: Find
dz

dp
if

z = ap

where a is a constant.
Answer:

dz

dp
= ap ln(a)

Hard Questions

Question 11: For x+ y = 100 prove that the product P = xy is a maximum when x = y and
find the maximum value of P .

Hint: Try finding
dP

dx
and

dP

dy
.

Answer:
Pmax = 2500

Question 12: Two positive quantities p and q vary in such a way that p3q = 9. Another
quantity z is defined by z = 16p+ 3q. Find values of p and q that make z a minimum and hence
find the minimum value of z.

Answer:
zmin = 32

Question 13: Find
dy

dx
if

y = xx

Answer:
dy

dx
= xx(ln(x) + 1)
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Question 14: Find
dy

dx
if

y = arccos(x) + 2 arcsin(x)

Hint: Consider each term separately

Answer:
dy

dx
=

1√
1− x2

Question 15: Show that if y = 3x2 + sin(2x), then

d2y

dx2
+ 4y = 12x2 + 6
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7 Partial Differentiation and Multivariable Differential
Calculus

7.1 Partial Differentiation

We often encounter quantities that depend on more than one variable. For example, the temperature T
in a room depends on where you are in the room, so T depends on the three directional vectors x, y and
z. We write T = T (x, y, z), which means that T is a function of three variables x, y and z. Another case
is the ideal gas equation:

p =
nRT

V

The pressure p of a gas depends on its volume V and its temperature T . This can be written as
p = p(V, T ). We often find it useful to calculate how one variable changes with another while the
remaining variables are taken to be constant.
As we have just seen, we can use the notation y = f(x, z) to mean that y is a function of x and z where
x, y, z are variables. For example:

y = x2 + zx

We use partial derivatives to differentiate functions with multiple variables. We do this by differentiating
with respect to one variable and treating the other variable as constant. So for y = f(x, z) the partial
derivative of a y with respect to x is denoted: (

∂y

∂x

)
z

This is pronounced ‘the partial derivative of y with respect to x’, or ‘partial y, partial x’.
The ∂x term informs us that we perform partial differentiation with respect to x while the subscript
variable, in this case z, is being considered as a constant (not every textbook uses the subscript notation).
We can use another notation for partial derivatives as follows:
If we have a function f = f(x, y, z), i.e. f depends on three variables x, y and z, then the partial
derivatives of f with respect to its three variables are:(

∂f

∂x

)
y,z

or fx(
∂f

∂y

)
x,z

or fy(
∂f

∂z

)
x,y

or fz

The second notation is often more convenient and saves time when we are solving questions involving
lots of partial derivatives.
In many cases, we can save time by dropping the subscript and the brackets and just writing(

∂y

∂x

)
z

=
∂y

∂x

as it is often implicit which variables are being kept constant, however you should always make sure that
you understand that we are only treating these variables as constant for the sake of partial differentia-
tion.
All of the rules for ordinary differentiation described in the previous chapter also apply to partial differ-
entiation.
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Example: Using our example y = x2 + zx, find
∂y

∂x
Solution: We note:

� The curvy symbol ∂ informs us that we perform partial differentiation.

� We are differentiating y with respect to x.

� We treat z as a constant.

So we differentiate the x2 term as usual to get 2x. Then we differentiate the zx term treating z as
a constant so this gives z. Hence:

∂y

∂x
= 2x+ z

Example: For y = 2 ln(z) + sin(zx) find
∂y

∂x
and

∂y

∂z

Solution: For
∂y

∂x
we treat z as a constant and differentiate with respect to x.

∂y

∂x
=

∂

∂x
2 ln(z) +

∂

∂x
sin(zx) Treating z as a constant

∂y

∂x
= 0 + z cos(zx) = z cos(zx)

For
∂y

∂z
we treat x as a constant and then differentiate with respect to z.

∂y

∂x
=

∂

∂z
2 ln(z) +

∂

∂z
sin(zx) Treating x as a constant

∂y

∂x
=

2

z
+ z cos(zx)
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Physics Example: The ideal gas equation is pV = nRT . Find:

1.

(
∂V

∂T

)
p

2.

(
∂T

∂p

)
V

Solution:

1. To be able to find

(
∂V

∂T

)
p

we must first make V the subject in the equation. This is done

by dividing both sides by p to produce V =
nRT

p
.

Now we differentiate with respect to T , taking p to be a constant.(
∂V

∂T

)
p

=
∂

∂T

(
nRT

p

)
Note

nR

p
is a constant.

(
∂V

∂T

)
p

=
nR

p

This is Charles’s law; at constant pressure, the volume of a gas is directly proportional to
the temperature.

2. We do the same process to find

(
∂T

∂p

)
V

. First make T the subject by dividing both sides

by nR to make T =
PV

nR
.

As before we then differentiate, treating V as a constant this time to get:(
∂T

∂p

)
V

=
∂

∂p

(
pV

nR

)
Note

V

nR
is a constant

(
∂T

∂p

)
V

=
V

nR

This is Gay-Lussac’s (or, the pressure) law; under fixed volume the pressure is proportional
to the temperature.
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7.2 Higher Order Partial Derivatives

As with ordinary differentiation, we can calculate second order partial derivatives or even higher orders.
This is done in exactly the same way as before, however, since we are handling functions which depend
on multiple variables, we can now differentiate functions with respect to one variable, and then with
respect to a different variable. For example, if we have a function f = f(x, y, z) then we can differentiate
with respect to x, and then differentiate with respect to y. This is written as:

∂2f

∂y∂x
or fxy

where we have dropped the subscript ‘z’ to simplify the notation.
We pronounce this as ‘the second partial derivative of f with respect to x and y’.
It is important to notice that in the first notation we write the order in which we are differentiating
backwards. We can understand the reason for this by writing out exactly what this notation means:
First we are differentiating f with respect to x:

∂f

∂x

We then differentiate this with respect to y:

∂

∂y

(
∂f

∂x

)
And so after expanding the brackets we have:

∂2f

∂y∂x

This is analogous to our notation for composite functions such as fg(x) where we apply g to x first, and
then apply f .
On the other hand, in the second notation given above, we write the subscripts in the same order in
which we differentiate.
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Example: Given the function f = x cos(z) + xz2 + zy2, find:

1.
∂2f

∂z2

2.
∂2f

∂x∂z

3.
∂2f

∂z∂x

Click here for a video example

Solution:

1. First we need to differentiate with respect to z:

∂f

∂z
= −x sin(z) + 2xz + y2

Now to get the second partial derivative with respect to z, we differentiate with respect to z
again:

∂2f

∂z2
= −x cos(x) + 2x+ 0

= −x cos(x) + 2x

2. First we need to differentiate with respect to z:

∂f

∂z
= −x sin(z) + 2xz + y2

Now to get the second partial derivative with respect to z and x, we now differentiate with
respect to x:

∂2f

∂x∂z
= − sin(x) + 2z + 0

= − sin(x) + 2z

3. First we need to differentiate with respect to x:

∂f

∂z
= cos(z) + z2 + 0

= cos(z) + z2

Now to get the second partial derivative with respect to x and z, we now differentiate with
respect to z:

∂2f

∂z∂x
= − sin(x) + 2z

= − sin(x) + 2z

Notice that in this example:
∂2f

∂x∂z
=

∂2f

∂z∂x

and so the order of partial differentiation does not matter. However this is not always the
case! When a function does not have continuous second order partial derivatives, then the
order of partial differentiation does matter!
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7.3 The Chain Rule with Partial Differentiation

We have already described the chain rule in a previous section, however it can be used with partial
differentiation to greatly simplify problems.
Say for example that we have a function f = f(x, y, z) which depends on the three variables x, y and

z. Now suppose that each of these x, y and z all depend on a single variable, t. If we want to find
df

dt
,

then we can solve the problem by substituting our expressions for x, y and z into f , so that we get an

equation in just one variable, t, and then differentiating to get
df

dt
. However, in many cases this method

would be extremely laborious and difficult, so we can use the chain rule to make the calculation simpler.
The following formula is incredibly useful for solving these types of problems:�

�
�



df

dt
=
∂f

∂x

dx

dt
+
∂f

∂y

dy

dt
+
∂f

∂z

df

dt

Although the formula looks rather complicated, in practice it is rather simple to compute.

Example: Given the function f = 2xy − y2, where x = t2 + 1 and y = t2 − t, find
df

dt
.

Solution: First, notice that we do not have z in our expression for f , so we can ignore the ‘z’ part
of the chain rule formula as the derivative of zero is just zero.
Begin by calculating all the derivatives and partial derivatives that we will need. These are:

dx

dt
= 2t

dy

dt
= 2t− 1

∂f

∂x
= 2y

∂f

∂y
= 2x− 2y

For the partial derivatives containing x or y, we should now substitute in our expressions for x
and y in terms of t:

∂f

∂x
= 2y = 2t2 − 2t

∂f

∂y
= 2x− 2y

= 2t2 + 2− 2t2 − 2t

= 2− 2t

Now that everything is in terms of t, we can apply the chain rule formula:

df

dt
=
∂f

∂x

dx

dt
+
∂f

∂y

dy

dt

2t× (2t2 − 2t) + (2− 2t)× (2t− 1)

= 4t3 − 8t2 + 6t− 2
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7.4 Gradients and ∇f
Note: In this section we will be using vectors. These are covered in their own section earlier on in the
booklet, so feel free to return to that section and recap the key concepts. In this section we will be using
the notation ~u with an arrow to represent a vector.
You should now be confident with calculating partial derivatives, however we have not yet mentioned
what a partial derivative actually means.
Similar to ordinary differentiation, a partial derivative represents the gradient of a function in a par-

ticular direction. For example,
∂f

∂x
represents the magnitude of the gradient of a function f parallel

to the x-axis.

Vector Fields

A vector field is an assignment of a vector to each point in space. This means that, for each point in
space, we can place an arrow representing the magnitude and direction of the field at that point. We
can denote a vector field as the vector quantity ~F where

~F = Fx~i+ Fy~j + Fz~k

= (Fx, Fy, Fz)

In other words, ~F consists of three functions Fx, Fy and Fz which each correspond to a different perpen-
dicular (or orthogonal) direction.
As you can imagine, vector fields are very useful for modelling fluids or other media where there is some
sort of ‘flow’.

The Gradient Operator, ∇
We can now define the gradient vector field as:�

�
�

∇f =

∂f

∂x
~i+

∂f

∂y
~j +

∂f

∂z
~k

where ∇f is pronounced ‘grad f’ or ‘nabla f’. The ∇ is known as the gradient operator.
This quantity gives us the rate of change of f at any point.

Since the operator ∇ is defined as
∂

∂x
~i+

∂

∂y
~j +

∂

∂z
~k

we can consider it as a vector in its own right. This allows us to perform operations between ∇ and
vector fields.
Note: Although ∇f is a vector quantity, we do not worry about underlining it or putting an arrow
above it (i.e. ∇ or ~∇). This is because ∇ always represents a vector and so we do not need to specify
that it is a vector.

Example: Given the function f = sin(xy) + x2z2, find ∇f .

Solution: We start be calculating all the partial derivatives that we need:

∂f

∂x
= y cos(xy) + 2xz2

∂f

∂y
= x cos(xy)

∂f

∂z
= 2x2z

Now we substitute these derivatives into the formula for ∇f :

∇f = (y cos(xy) + 2xz2)~i+ (x cos(xy))~j + (2x2z)~k

©University of Birmingham, 2015
125

http://creativecommons.org/licenses/by-nc-nd/4.0/


Physics Example: The electric potential at a point (x, y, z) of a point charge placed at the
origin is given by:

V =
Q

4πεo

1

r
=

Q

4πεo

1√
x2 + y2 + z2

where Q, π and ε0 are constants. Calculate ∇V .

Solution: As before, we first calculate all the partial derivatives that we will need:

∂V

∂x
=

Q

4πεo
× 2x×−1

2

1

(x2 + y2 + z2)−
3
2

=
Q

4πεo

x

r3

∂V

∂y
=

Q

4πεo
× 2y ×−1

2

1

(x2 + y2 + z2)−
3
2

=
Q

4πεo

y

r3

∂V

∂z
=

Q

4πεo
× 2z ×−1

2

1

(x2 + y2 + z2)−
3
2

=
Q

4πεo

z

r3

Now we substitute these derivatives into the formula for ∇V :

∇V =
Q

4πεo

x

r3
~i+

Q

4πεo

y

r3
~j +

Q

4πεo

z

r3
~k

=
Q

4πεor3
(x~i+ y~j + z~k)

=
Q

4πεor3
~r

=
Q

4πεor2
~̂r

Notice that this is the same as the equation for the electric field strength, so we have essentially
proved the relation ~E = ∇V .

Directional Derivatives

Now that we can use ∇f , we can find the gradient of a function f in any direction. We call this a
directional derivative, and it is calculated as follows:
The directional derivative of f at a point ~a, in the direction of the unit vector ~u is:�� ��Duf(~a) = ~u · ∇f(~a)

Note: ~u ·∇f(~a) is a scalar product (or dot product) and so the directional derivative is a scalar quantity,
not a vector.
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Example: Let
f(x, y, z) = xy2z3

Find the directional derivative of f at the point (1, 1, 1) in the direction to the point (3, 2, 3).

Solution: We first find the gradient of f .

∇f = y2z3~i+ 2xyz3~j + 3xy2z2~k

At the point (1, 1, 1),

∇f(1, 1, 1) =~i+ 2~j + 3~k

Now we must find the unit vector in the direction from (1, 1, 1) to (3, 2, 3).

(3, 2, 3)− (1, 1, 1) = (2, 1, 2)

⇒ ~u =
2~i+~j + 2~k√
22 + 12 + 22

=
1

3
(2~i+~j + 2~k)

Finally, we use the formula for the directional derivative to obtain

Duf(1, 1, 1) = ~u · ∇f(1, 1, 1)

=
1

3
(2, 1, 2) · (1, 2, 3)

=
2

3
+

2

3
+ 2

=
10

3
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7.5 Other Operations with ∇
The Laplace operator, ∇2

Since ∇f is a vector, we can take the scalar product ∇ · (∇f). We often write this as ∇2f . Using our
method for calculating scalar products, we can interpret this in the following way:

∇2f = ∇ · (∇f) =
∂

∂x

(
∂f

∂x

)
+

∂

∂y

(
∂f

∂y

)
+

∂

∂z

(
∂f

∂z

)

=
∂2f

∂x2
+
∂2f

∂y2
+
∂2f

∂z2

In other words, we calculate the second derivative of f with respect to each of its variables, and then
add these derivatives together.
This is known as the ‘Laplacian of f ’ or ’del squared of f ’. We call ∇2 the ‘Laplacian operator’.
Note: The Laplacian is a scalar.

The Divergence of ~F

Given a vector field ~F , we can calculate the object ∇ · ~F . This is often written as div(~F ) and is called

the ‘divergence of ~F ’. It represents how much the vector field expands (or contracts) about a particular
point. It can also be thought of as the rate of change of volume of a flow.
We define the divergence of ~F as:�



�
	div(~F ) = ∇ · ~F =

∂Fx
∂x

+
∂Fy
∂y

+
∂Fz
∂z

We differentiate each part of ~F with respect to its corresponding direction variable, i.e. Fx is the part
of ~F that acts in the x direction, so we differentiate Fx with respect to x.
We often call ∇· the ‘divergence operator’.
Note: The divergence is a scalar quantity.

Example: Calculate the divergence of the vector field ~F = (x3y2, z cos(y), z2 − x− y)

Solution: Using the formula:

div(~F ) =
∂

∂x
(x3y2) +

∂

∂y
(z cos(y)) +

∂

∂z
(z2 − x− y)

= 3x2y − z sin(y) + 2z

The Curl of ~F

Given a vector field ~F , we can calculate the object ∇× ~F . This is often written as curl(~F ) and is called

the ‘curl of ~F ’. It represents how much the vector field rotates (or swirls) about a particular point.

We define the curl of ~F as:�

�

�

�
curl(~F ) = ∇× ~F =

∣∣∣∣∣∣∣∣
~i ~j ~k
∂

∂x

∂

∂y

∂

∂z
Fx Fy Fz

∣∣∣∣∣∣∣∣ =

(
∂Fz
∂y
− ∂Fy

∂z

)
~i+

(
∂Fx
∂z
− ∂Fz

∂x

)
~j +

(
∂Fy
∂x
− ∂Fx

∂y

)
~k

We often call ∇× the ‘curl operator’.
Note: The curl is a vector quantity.
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Example: Calculate the curl of the vector field ~F = (y + z − 2, xyz2, y3 tan(z))

Solution: Using the formula:

curl(~F ) =

∣∣∣∣∣∣∣∣
~i ~j ~k
∂

∂x

∂

∂y

∂

∂z
y + z − 2 xyz2 y3 tan(z)

∣∣∣∣∣∣∣∣
=

(
∂

∂y
(y3 tan(z))− ∂

∂z
(xyz2)

)
~i+

(
∂

∂z
(y+z−2)− ∂

∂x
(y3 tan(z))

)
~j+

(
∂

∂x
(xyz2)− ∂

∂y
(y+z−2)

)
~k

= (3y2 tan(z)− 2xyz)~i+ (1− 0)~j + (yz2 − 1)~k

= (3y2 tan(z)− 2xyz)~i+~j + (yz2 − 1)~k

For first year physics, an understanding of the proofs for the divergence and curl of a vector field is
not required, however it is useful to remember and be able to apply the formulae.

Identities with div, grad and curl

Given vector fields ~F and ~G, a scalar function f and the scalars α and β, some useful identities involving
the new operations we have just discussed are as follows:

� The divergence operator is linear, i.e.

∇ · (α~F + β ~G) = α∇ · (~F ) + β∇ · (~G)

� The curl operator is linear, i.e.

∇× (α~F + β ~G) = α∇× (~F ) + β∇× (~G)

� The curl of grad(f) is zero, i.e.
curl(∇f) = ∇× (∇f) = 0

� The divergence of grad(f) is the Laplacian, i.e.

div(∇f) = ∇ · (∇f) = ∇2f

� The divergence of curl(~F ) is zero, i.e.

div(curl ~F ) = ∇ · (∇× ~F ) = 0
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7.6 Applications of Partial Differentiation

Lagrange Multipliers

If we have a problem in which we wish to minimise or maximise a function f(x, y, z) subject to the
constraint g(x, y, z) = 0, then we can use the method of Lagrange Multipliers. Examples of when
this is useful is when we wish to find the maximum distance from a point to a sphere, or the largest
rectangular box which fits inside an ellipsoid. We call these types of problems constrained extreme
value problems.
In order to solve these problems, we introduce the Lagrangian function:�� ��L(x, y, z;λ) = f(x, y, z) + λg(x, y, z)

We then find the stationary equations of this function and find each variable x, y and z if terms of the
constant λ. We then substitute our equations for the variables into our constraint and calculate the
possible values for λ. Finally, we substitute the values for λ into our equations for the three variables
and hence calculate the (x, y, z) which correspond to the maxima and minima.
The stationary equations of the Lagrangian function are:�

�

�

�
Lx = fx + λgx = 0
Ly = fy + λgy = 0
Lz = fz + λgz = 0
Lλ = g(x, y, z) = 0

where Lx is the partial derivative of L with respect to x and so on.
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Example: Using the method of Lagrange multipliers, find the maximum and minimum distance
from the point (-2,1,2) to the sphere x2 + y2 + z2 = 1

Solution: We know that the distance from (-2,1,2) to the point (x, y, z) is given by

d =
√

(x+ 2)2 + (y − 1)2 + (z − 2)2

When d approaches a maximum or minimum, so does d2, so let us choose

f(x, y, z) = d2 = (x+ 2)2 + (y − 1)2 + (z − 2)2

with the constraint
g(x, y, z) = x2 + y2 + z2 − 1 = 0

Then our Lagrangian function is

L(x, y, z) = (x+ 2)2 + (y − 1)2 + (z − 2)2 + λ(x2 + y2 + z2 − 1)

Now we write out our stationary equations:

Lx = 2(x+ 2) + 2λx = 0⇒ x = − 2

1 + λ

Ly = 2(y − 1) + 2λy = 0⇒ y =
1

1 + λ

Lz = 2(z − 2) + 2λz = 0⇒ z = − 2

1 + λ
Lλ = x2 + y2 + z2 − 1 = 0

Substituting our three equations for the variables into Lλ allows us to find the values of λ which
correspond to the minima and maxima of the problem.(

− 2

1 + λ

)2

+

(
1

1 + λ

)2

+

(
− 2

1 + λ

)2

= 1

⇒ 4 + 1 + 4 = (1 + λ)2

⇒ λ = 2 or λ = −4

So by substituting these values of λ into our equations for x, y and z, we find that the point on the
sphere which gives the minimum distance is (− 2

3 ,−
1
3 ,

2
3 ) and the point which gives the maximum

distance is ( 2
3 ,

1
3 ,−

2
3 )

Finally, we can substitute these points into our expression for the distance f(x, y, z) to get dmin = 2
and dmax = 4.
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7.7 Review Questions

Easy Questions

Question 1: Find fx, fy and fz if

f = z cos(y) + x

Answer:
fx = 1

fy = −z sin(y)

fz = cos(y)

Question 2: Find fx if
f = x sin(xy)

Answer:
fx = sin(xy) + xy cos(xy)

Question 3: Find fxx, fyy and fxy if

f = x sin(y) + yx2

Answer:
fxx = 2y

fyy = −x sin(y)

fxy = cos(y) + 2x

Question 4: Find
∂z

∂x
if the equation

yz − ln(z) = x+ y

defines z as a function of x and y.

Hint: You will need to use implicit partial differentiation in this question. Refer to the section on
implicit differentiation in the previous chapter if you need to.

Answer:
∂z

∂x
=

z

yz − 1

Question 5: Using the chain rule, find
∂z

∂t
if

z = 2xy − y2

x = t2 + 1, y = t2 − 1

and express the result in terms of t.

Answer:
∂z

∂t
= 4t(t2 + 1)
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Medium Questions

Question 6: Find ∇f if
f =

(
y2 + sin(z)

)
e−x

Answer:
∇f = −

(
y2 + sin(z)

)
e−x~i+ 2ye−x~j + e−x cos(z)~k

Question 7: Let
f(x, y, z) = x2z + yz3

Find the directional derivative of f at the point (1, 3, 2) in the direction to the point (2, 1, 3).

Answer:

Duf(1, 3, 2) =
25√

6

Question 8: Calculate div ~F if

~F = (x2y,−xze2y, x2y2)

Answer:
div ~F = 2xy − 2xze2y

Question 9: Calculate curl ~F if

~F = (xyz, x2 cos(z), exy)

Answer:
curl ~F = (xexy + x2 sin(z))~i− (yexy − xy)~j + (2x cos(z)− xz)~k

Question 10: Find ∇2f if
f = 3x3y2z3

Answer:
∇2f = 18xy2z3 + 6x3z3 + 18x3y2z

Hard Questions

Question 11: Using the chain rule, find
∂w

∂t
if

w = exyz

x = ts, y = s2, z = t− s

Hint: You may wish to calculate all the partial derivatives you will need and substitute them into
the formula for the chain rule.

Answer:
∂w

∂t
= etss2

(
(t− s)s+ 1

)
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Question 12: By considering the function

f = x2yz + exyz

show that div(∇f) = ∇2f .

Question 13: Recall the relations between Cartesian coordinates and polar coordinates:

x = r cos(θ) and y = r sin(θ)

Find rx and θx.

Hint: Use implicit partial differentiation on two formulae r2 = x2 + y2 and tan(θ) =
x

y
.

Answer:
rx = cos(θ)

θx = − sin(θ)

r

Question 14: Consider f
(
g(x, y), h(x, y)

)
, where x = x(t) and y = y(t, s). Find ft and fs.

Hint: You will need to use the chain rule multiple times.

Answer:

ft =
∂f

∂g

(
∂g

∂x

dx

dt
+
∂g

∂y

∂y

∂t

)
+
∂f

∂h

(
∂h

∂x

dx

dt
+
∂h

∂y

∂y

∂t

)

fs =
∂f

∂g

∂g

∂y

∂y

∂s
+
∂f

∂h

∂h

∂y

∂y

∂s

Question 15: Use Lagrange multipliers to find the maximum and minimum values of the
function

f(x, y) = x2y

subject to the constraint
g(x, y) = x2 + y2 − 3 = 0

Answer:
fmin = −2 and fmax = 2

©University of Birmingham, 2015
134

http://creativecommons.org/licenses/by-nc-nd/4.0/


8 Integration

8.1 Introduction to Integration

Integration is the opposite of differentiation so it helps us find the answer to the question:

‘Suppose we have
dy

dx
= 2x then what is y?’

From the previous section we know the answer is y = x2 +C, where C is a constant. So we say that the
integral of 2x is x2 + C.
Note: We have an infinite number of solutions to the above question as the constant C could be any
number!

Graphically, we know that differentiation gives us the gradient of a curve. Integration, on the other
hand, finds the area beneath a curve.

y

a b
x

Suppose we wish to find the area under the curve between the x values a and b in the graph above. Then
we could find an approximate answer by creating the dashed rectangles above and adding their areas.
Now, we can see this does not give a perfect answer, however the smaller the width of the rectangles the
smaller the error in our answer would be.
So if we could use rectangles of an infinitely small width we would find an answer with no error. This is
what integration does. It creates an infinite number of rectangles under the curve all with an infinitely
small width and sums their area to find the total area under the curve.

−2. −1. 1.

−2.

−1.

1.

2

0

So integration could be used to find the area shaded (between x = −2 and x = 1) on the graph of
y = x2− 2 above. Note that integration always finds the area between the curve and the x-axis, so when
the curve is below the x-axis, integration finds the area above the curve and below the x-axis as depicted
above.
Note: If the area we are finding is below the x-axis then we get a negative answer when we integrate.
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This means that if we are integrating to find the area shaded in blue above, we will need to separate
our calculation into two parts: one to calculate the area under the x-axis and one to calculate the area
above the x-axis. We would then have to add up the modulus of our two areas to get the total positive
area.

Notation

We use the fact that the integral of 2x is x2 +C to help introduce the following notation for integration.
If we want to integrate 2x we write this as:∫

2x dx = x2 + C or

∫
dx 2x = x2 + C

� The

∫
tells us we need to integrate.

� The dx tells use to integrate with respect to x. So we could write

∫
2z dz = z2 + C but in this

case we have integrated with respect to z.

� We call

∫
2x dx = x2 + C the integral.

� We call the expression that we are integrating the integrand. So in this case the integrand is 2x.

Another notation which we can use is the following:
If we have the function f(x) then we write the integral of this as F (x). So if f(x) = 2x then F (x) = x2+C.
Integration finds the area under the curve. So if we want to find the area between two points on the
x-axis, say a and b, we use the following notation:∫ b

a

f(x) dx

This tell us we want to find the integral of f(x) and then use that information to find the area under
the curve between a and b. We call a and b the ‘limits’ of this integral. We find the area by using the
formula below: �

�
�



∫ b

a

f(x) dx = F (b)− F (a)

Note: This is explained in detail in the section on definite integrals.

� When we are given limits then we have a definite integral.

� When we are not given limits then we have an indefinite integral.

Rules for Integrals

Integration is a linear operation. This means that:

1. We can split up a sum into separate integrals. For example

∫
(x3 + 2x + 7) dx =

∫
x3 dx +∫

2x dx +

∫
7 dx. Note that each of these integrals will result in a constant, however since these

are all arbitrary numbers, we can combine them into a single constant C.

2. We can take constants out of the integral. For example

∫
6x4 dx = 6

∫
x4 dx. Note that the

constant resulting from the integral will be multiplied my 6 too, however as it is arbitrary we can
incorporate the 6 into the constant and just have one constant C.
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8.2 Standard Integrals

Integrating Polynomials

When we are differentiating xn we multiply by n and then reduce the power on x by 1. When integrating
we do the opposite. First we ‘add 1 to the power, then divide by this new power’. In general we have
the rule: �

�
�



∫
xn dx =

xn+1

n+ 1
+ C

Note: This rule works for all values of n apart from n = −1. If we were to use the rule with n = −1 we

would have x0

0 +C. This would have us dividing by 0 which would be undefined. The integral of x−1 is
discussed on the next page.

Example: Find the integrals of the following:

1. x2

2. 2x+ 6x2

3. x(x+ 3)

Solution:

1. We are being asked to find

∫
x2 dx, so using the rule

∫
xn dx =

xn+1

n+ 1
+ C

∫
x2 dx =

x2+1

2 + 1
+ C This can be simplified

=
x3

3
+ C

2. We are being asked to find

∫
(2x+ 6x2) dx.

When integrating multiple terms we do each of them individually in turn. This means that:∫
(2x+ 6x2) dx =

∫
2x dx+

∫
6x2 dx Constants are taken out of the integral

= 2

∫
x dx+ 6

∫
x2 dx We can now integrate

= 2
x1+1

1 + 1
+ 6

x2+1

2 + 1
+ C This can be simplified

= x2 + 2x3 + C

3. First we expand the brackets to produce x2 + 3x. Then we integrate this:∫
(x2 + 3x) dx =

x2+1

2 + 1
+ 3

x1+1

1 + 1
+ C This can be simplified

=
1

3
x3 +

3

2
x2 + C
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Integrating x−1

We recall that if we differentiate ln(x) we get x−1. Since integration is the opposite of differentiation,
when we integrate x−1 we get ln(x). �



�
	

∫
x−1 dx = ln |x|+ C

Note: The | signs on either side of the x mean the modulus (or the absolute value) of x as we dis-
cussed on the section on the modulus function. For example |5| = 5 and | − 5| = 5. It is important in
this integral as we can input a negative value of x into x−1 however we cannot take the log of a negative x.

Example: Find the following integral:∫
x2 + 2x3 − 4x4

x3
dx

Solution: The fraction can be simplified, by dividing each term on the numerator by x3. This
reduces the original integral to:∫

x2 + 2x3 − 4x4

x3
dx =

∫ (
1

x
+ 2− 4x

)
dx Integrate each term individually

= ln |x|+ 2x+
−4

2
x2 + C Simplify the terms

= ln |x|+ 2x− 2x2 + C
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Integrating Exponential Functions

We can recall that: �



�
	If y = eax then

dy

dx
= a× eax

So when we are differentiating eax we multiply the exponential by the coefficient of the power. When
integrating we do the opposite so we divide by the coefficient of the power. In general we have:�



�
	

∫
eax dx =

eax

a
+ C

Example: Evaluate the following integrals:

1.

∫
e6x dx

2.

∫
(ex + 4e−3x ) dx

3.

∫
9e3z dz

Solution:

1. Using the rule

∫
eax dx =

eax

a
+ C and dividing by the coefficent of the power we find:

∫
e6x dx =

e6x

6
+ C

2. First we should break up the integral across the sum:∫
(ex + 4e−3x) dx =

∫
ex dx+ 4

∫
e−3x dx

Now we can apply the rule above to get:∫
ex dx+ 4

∫
e−3x dx =

ex

1
+ 4× e−3x

−3
+ C = ex − 4e−3x

3
+ C

3. Using the rule above but this time with respect to z, we find:∫
9e3z dz = 9

∫
e3z dz = 9×

(
e3x

3
+ C

)
= 3e3x + C ′

where C ′ = 9C is just another constant.
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Integrating Trigonometric Functions

By recalling the derivatives of sin(x), cos(x) and tan(x), we can formulate the following rules by consid-
ering the reverse operations: �



�
	

∫
cos(ax) dx =

sin(ax)

a
+ C

�



�
	

∫
sin(ax) dx =

− cos(ax)

a
+ C

�



�
	

∫
sec2(ax) dx =

tan(ax)

a
+ C

Notice that when we integrate sin(x) we get − cos(x).
Note: The integral of tan(x) is more complicated and will be discussed in a later section.

Example: Evaluate the following integrals:

1.

∫
cos(4x) dx

2.

∫
6 sin(3x) dx

3.

∫ (
5 cos(−x) + sec2(3x)

)
dx

Solution:

1. Using the rule

∫
cos(ax) dx =

sin(ax)

a
+ C a we find:

∫
cos(4x) dx =

sin(4x)

4
+ C

2. First we should note

∫
6 sin(3x) dx = 6

∫
sin(3x) dx

Now we can apply the rules above to get:∫
6 sin(3x) dx = 6

∫
sin(3x) dx = 6× − cos(3x)

3
+ C = −2 cos(3x)

3. Splitting up the integral and extracting constants gives:∫ (
5 cos(−x) + sec2(3x)

)
dx = 5

∫
cos(−x) dx+

∫
sec2(3x) dx

Now by applying the above rules we get:∫
5 cos(−x) + sec2(3x) dx = 5

∫
cos(−x) dx+

∫
sec2(3x) dx

= 5× sin(−x)

−1
+

tan(3x)

3
+ C

= −5 sin(−x)− tan(3x)

3
+ C
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Integrating Hyperbolic Functions

By recalling the derivatives of sinh(x), cosh(x) and tanh(x), we can formulate the following rules by
considering the reverse operations: �



�
	

∫
cosh(ax) dx =

sinh(ax)

a
+ C

�



�
	

∫
sinh(ax) dx =

cosh(ax)

a
+ C

�



�
	

∫
sech2(ax) dx =

tanh(ax)

a
+ C

Note: The integral of tanh(x) is more complicated and will be discussed in a later section.

Example: Evaluate the following:

1.

∫
2 sinh(2x) dx

2.

∫ (
sech2(−3x)− 9 cosh(2x)

)
dx

Solution:

1. First we should note

∫
2 sinh(2x) dx = 2

∫
sinh(2x) dx

Using the rule

∫
sinh(ax) dx =

cosh(ax)

a
+ C, we find:

2

∫
sinh(2x) dx =

2 cosh(2x)

2
+ C

= cosh(2x) + C

2. Splitting up the integral and extracting constants gives:∫ (
sech2(−3x)− 9 cosh(2x)

)
dx =

∫
sech2(−3x) dx− 9

∫
cosh(2x) dx

Now by applying the above rules we get:∫ (
sech2(−3x)− 9 cosh(2x)

)
dx =

∫
sech2(−3x) dx− 9

∫
cosh(2x) dx

=
tanh(−3x)

−3
− 9

sinh(2x)

2
+ C

= −1

3
tanh(−3x)− 9

2
sinh(2x) + C
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8.3 Finding the Constant of Integration

In the integrals so far we have always had a constant of integration denoted +C at the end. Consider
the functions y = x2, y = x2 + 2 and y = x2− 5, as shown on the graph below. These all differentiate to
2x. When integrating 2x we don’t know whether the actual answer is y = x2, y = x2 + 2 or y = x2 − 5
so we give the general answer of y = x2 + C.

−4 −3 −2 −1 1 2 3 4

−6

−4

−2

2

4

6

8

10

12

0

y

x

If we are given the gradient of a curve and a point that the curve goes through, we can find the full
equation of the curve and therefore a value of C. This is called using boundary conditions.

Example: A curve of gradient 4x5 passes through the point (1, 2). What is the full equation
of the line?

Solution: We know the gradient is 4x5 meaning
dy

dx
= 4x5. Hence we have:

y =

∫
4x5 dx Now we integrate

y =
4

6
x6 + C Simplify the fraction

y =
2

3
x6 + C

We now have an expression for y in terms of x however it has a constant C in it. Since we know
a point (1, 2) that the curve passes through we can find this constant. So when x = 1 we have
y = 2. Substituting this into the equation gives:

2 =
2

3
× 16 + C Rearrange to find C

4

3
= C

We now substitute the value of C into the equation from before to find our answer:

y =
2

3
x6 +

4

3
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8.4 Integrals with Limits

Integrals represent the area under a graph. The probability of finding an electron between two points or
the energy needed to separate two atoms can be represented as the area under a curve and we can use
integration to find their value. Definite integrals are ones evaluated between two values (or limits):�

�
�



∫ b

a

f(x) dx =

[
F (x)

]b
a

= F (b)− F (a)

� The braces

[
..

]b
a

with a and b signify that we will evaluate the integral between these two limits.

� The numerical answer produced by F (b)− F (a) represents the area under the curve.

Below is a function f(x) integrated between the limits a and b with the shaded area being

∫ b

a

f(x) dx

x

y = f(x)

a b

Note: There is no need to find C when doing this since the constants will cancel out. When evaluating
between the two points we will have

(
F (b) + C

)
−
(
F (a) + C

)
= F (b)− F (a) + C − C = F (b)− F (a)

Example: Calculate

∫ 4

0

x dx

Solution: We first integrate with respect to x.∫ 4

0

x dx =

[
1

2
x2

]4

0

Substitute the limits in[
1

2
x2

]4

0

=

[
1

2
× 42

]
−
[

1

2
× 0

]
= 8

We can verify this answer by seeing that the area in question is a triangle:

1 2 3 4

1

2

3

4

0

y

x

We could have easily found the area of the triangle without integration but when we have more
complicated functions then we must use integration.
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Example: Find

∫ π

0

sin(x) dx

Solution: To begin we will integrate the function:∫ π

0

sin(x) dx =

[
− cos(x)

]π
0

Evaluate this at the limits[
− cos(x)

]π
0

=
(
− cos(π)

)
−
(
− cos(0)

)
Evaluate the cosines(

− cos(π)
)
−
(
− cos(0)

)
= −(−1) + 1 = 2

The integral is 2, which means that the area under the curve from 0 to π is 2 as shown below.

x

y

π1
2
π

Physics Example: The force on a charged particle, A, due to a second charged particle, B,
is given by

F =
qq0

4πε0r2

Where Q is the charge of A, q is the charge of B and r is the distance of A from B. The subsequent
motion of A means it travels from r = 1 to r = 4, what is the work done on A.

Solution: The work done on the particle is given by

W =

∫ b

a

F (r) dr

Therefore

W =

∫ 4

1

Qq

4πε0r2
dr

=

[
−Qq
4πε0r

]4

1

=
−Qq
16πε0

+
Qq

4πε0r

=
−3Qq

16πε0r
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8.5 Integration Techniques

Integrating Odd and Even Functions over Symmetric Limits

In some cases where we have symmetric limits (i.e. both limits are the same distance from the origin
but in opposite directions) we can use a trick to simplify integrals of odd and even functions.

Generally, we can use the rules:

� If the function f(x) is even then ∫ +a

−a
f(x) dx = 2

∫ a

0

f(x) dx

� If the function f(x) is odd then ∫ +a

−a
f(x) dx = 0

If the integrand is neither odd nor even then we must solve using other methods and cannot simplify
using these rules.

Example: Evaluate the following integrals using the simplification rules above:

1.

∫ π

−π
sin(x) dx

2.

∫ 3

−3

x2 dx

Solution:

1. Note that the integrand sin(x) is an odd function. Therefore we can easily solve this using
the rule for integrating an odd function over symmetric limits.∫ π

−π
sin(x) dx = 0

2. Note that the integrand x2 is an even function, so we can use the rule for integrating an even
function over symmetric limits which simplifies this to∫ 3

−3

x2 dx = 2

∫ 3

0

x2 dx

= 2

[
1

3
x3

]3

0

= 18
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Using Identities to Solve Integrals

We can use our trigonometric and hyperbolic identities to convert some expressions into a form that we
can easily integrate. For example, we may find it difficult to integrate cos2(x), however we can use the
double angle formula to rearrange this into an expression in terms of cos(2x), which is something we
can integrate. This kind of technique is something that you will become comfortable with the more you
practice!

Example: Evaluate the following integrals:

1.

∫
sin2(x) dx

2.

∫
2 cos(x) sin(x) dx

3.

∫
2 tanh2(x) dx

Solution:

1. We can rearrange the double angle formula cos(2x) = cos2(x)− sin2(x) as follows:

cos(2x) = cos2(x)− sin2(x)⇒ cos(2x) = 1− 2 sin2(x)

⇒ sin2(x) =
1

2

(
1− cos(2x)

)
and use this to simplify the integral.∫

sin2(x) dx =

∫
1

2

(
1− cos(2x)

)
dx

Splitting up the integral and extracting constants gives:∫
1

2

(
1− cos(2x)

)
dx =

1

2

∫
1 dx− 1

2

∫
cos(2x) dx

=
1

2
x− 1

4
sin(2x) + C

2. We can use the double angle formula sin(2x) = 2 cos(x) sin(x) to simplify the integral.∫
2 cos(x) sin(x) dx =

∫
sin(2x) dx

= −1

2
cos(2x) + C

3. We can use the identity 1− tanh2(x) = sech2(x) to simplify the integral.∫
2 tanh2(x) dx =

∫
2
(
1− sech2(x)

)
dx

= 2

∫
1 dx− 2

∫
sech2(x) dx

= 2x− 2 tanh(x) + C
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Integration by Substitution

If we have an integral that we cannot directly integrate, then we can transform it into something that
we can more easily integrate using a substitution, or change of variable. This approach arises from the
fact that we can differentiate a function of a function using the formula:�



�
	dy

dx
=
dy

du

du

dx

where y = (u(x)), or in other words, y is a function of u and u is a function of x. This formula was
discussed in the section on the Chain Rule.
This method relies heavily on intuition and knowledge of differentiation and standard integrals, as we
choose our substitution so that our integral becomes closer to something that we know how to integrate.
We do this by choosing a substitution x = x(u) and then writing our integral in terms of only u. This
gives us an expression of the form: ∫

y(x) dx =

∫
y(u) dx

However, notice that we are now integrating a function of u with respect to x! This would of course give

us that the integral is equal to zero. But, since we have a relationship between x and u, we can find
dx

du
.

Although we technically cannot do ordinary algebra with differentials such as dx, in this case it is okay
to think of this in terms of normal multiplication and division. Of course we know that we can write

x =
x

u
u, so we can also write dx =

dx

du
du. This enables us to write the formula:�



�
	

∫
y(x) dx =

∫
y(u)

dx

du
du

Now we are integrating with respect to u. In this way, we have changed the variable of our integral from
x to u.
We can also make a substitution u = u(x), however then we must use the rule for differentiating an

inverse function to find
dx

du
.

Remember: Once we have our solution in terms of u, we must always remember to return back to our
original variable x.
This method will become clearer with the help of some examples.
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Example: Evaluate the integral: ∫
1

2x+ 3
dx

Solution: We make the substitution u = 2x+ 3. To calculate
dx

du
we need to first calculate

du

dx
and

then use the rule for differentiating an inverse product. (alternatively we could find x in terms of
u, i.e. x(u), however in general it is simpler to use the method that we are using in this example)

du

dx
= 2

⇒ dx

du
=

1(
du

dx

) =
1

2

Now we can write: ∫
1

2x+ 3
dx =

∫
1

u

dx

du
du

=

∫
1

u
× 1

2
du

=
1

2
ln |u|+ C

However, since our original integral was in terms of x, we must now substitute our expression
u = 2x+ 3 back into our solution, so that our solution is also in terms of x.∫

1

2x+ 3
dx =

1

2
ln |2x+ 3|+ C

Example: Evaluate the integral: ∫
1√

1− x2
dx

Solution: For integrals such as this, intuition tells us that we should use the substitution x = sin(u).

Now we need to calculate
dx

du
.

dx

du
= cos(u)

Substituting these into the formula and using the identity cos2(θ) + sin2(θ) = 1 gives∫
1√

1− x2
dx =

∫
1√

1− sin2(u)
× cos(u) du

=

∫
1√

cos2(u)
× cos(u) du

=

∫
cos(u)

cos(u)
du

=

∫
1 du = u+ C

Now rewrite x = sin(u) as u = sin−1(x) and substitute into our solution so that everything is in
terms of x: ∫

1√
1− x2

dx = sin−1(x) + C

©University of Birmingham, 2015
148

http://creativecommons.org/licenses/by-nc-nd/4.0/


Example: Evaluate the integral: ∫
2xex

2+1 dx

Solution: By picking an intelligent substitution, we can make this integral very simple. Choose our

substitution to be u = x2 +1. Now calculate
dx

du
using the rule for differentiating inverse functions:

dx

du
=

1(
du

dx

) =
1

2x

Substitute these into the formula:∫
2xex

2+1 dx =

∫
2xeu

1

2x
du

=

∫
eu du

= eu + C

Notice that our choice of substitution allowed us to eliminate the 2x.
Now substitute u = x2 + 1 into our solution∫

2xex
2+1 dx = ex

2+1 + C

Example: Evaluate the integral: ∫
tan(x) dx

Solution: First, we write ∫
tan(x) dx =

∫
sin(x)

cos(x)
dx

Now make the substitution u = cos(x), so that

dx

du
=

1(
du

dx

) = − 1

sin(x)

Plug these expressions into the formula:∫
tan(x) dx =

∫
sin(x)

u
×− 1

sin(x)
dx

=

∫
−1)

u
dx

= − ln |u|+ C

Now substitute u = cos(x) back in:∫
tan(x) dx = − ln | cos(x)|+ C
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The integral of tan(x) is an example of a ‘Logarithmic Integral’. This is when we have an integral of
the form ∫

f ′(x)

f(x)
dx

In other words, the numerator is the derivative of the denominator. In this case, we can just use the
rule: �

�
�



∫
f ′(x)

f(x)
dx = ln |f(x)|+ C

Example: Evaluate the integral: ∫
1√

25 + 4x2
dx

Solution: First, we must rearrange the integrand into the form
1√

1 + α2x2
by dividing top and

bottom of the fraction by 5:
1

5
√

1 + 4
25x

2

For integrals such as this, intuition tells us that we should use the substitution x = 5
2 sinh(u)

(where 5
2 = 1

α ). Now we need to calculate
dx

du
.

dx

du
= 5

2 cosh(u)

Substituting these into the formula and using the identity cosh2(θ)− sinh2(θ) = 1 gives∫
1

5

√
1 +

4

25
x2

dx =

∫
1

5
√

1 + sinh2(u)
× 5

2
cosh(u) du

=

∫
1

5
√

cosh2(u)
× 5

2 cosh(u) du

=

∫
cosh(u)

2 cosh(u)
du

=

∫
1

2
du =

1

2
u+ C

Now rewrite x = 5
2 sinh(u) as u = arsinh( 2

5x) and substitute into our solution so that everything
is in terms of x: ∫

1√
25 + 4x2

dx = 1
2 arsinh( 2

5x) + C
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Example: Evaluate the integral: ∫
2√

4x2 − 8x+ 3
dx

Solution: First, we must rearrange the integrand into a form for which we can make a substitution
by completing the square on the polynomial.∫

2√
4x2 − 8x+ 3

dx =

∫
2√

4(x− 1)2 − 1
dx

Now, we can see that the substitution x =
1

2
cosh(u)− 1 will be suitable so we will also need

dx

du
.

dx

du
=

1

2
sinh(u)

Now substitute these expressions into the formula and use the identity cosh2(u)− sinh2(u) = 1.∫
2√

4x2 − 8x+ 3
dx =

∫
2√

cosh2(u)− 1
× 1

2
sinh(u) dx

=

∫
sinh(u)

sinh(u)
dx

=

∫
1 dx

= u+ C

Now rearrange x =
1

2
cosh(u)− 1 to make u the subject and substitute this in for u:∫

2√
4x2 − 8x+ 3

dx = arsinh(2(x− 1)) + C

If we are integrating between limits, i.e. finding a definite integral, then we have two approaches to
dealing with these:

� Method 1: We can leave the limits in terms of the original variable x and then evaluate the limits
after we have converted our solution back in terms of x.

� Method 2: Alternatively, we can use our substitution to change our limits so that they correspond
to the new variable u. If we choose to do this, then we do not need to rewrite our solution in
terms of the original variable; we can just evaluate the limits directly.

Whichever method we use, it is very important that we indicate which variable the limits are in terms
of.

In the next example, we will evaluate an indefinite integral using both methods.
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Example: Evaluate the definite integral:∫ x=
√

3

x=1

1

1 + x2
dx

Solution:

� Method 1: We can use the substitution x = tan(u). Then
dx

du
= sec2(u).

Substituting these into the formula and using the identity 1 + tan2(θ) = sec2(θ) gives:∫ x=
√

3

x=1

1

1 + x2
dx =

∫ x=
√

3

x=1

1

1 + tan2(u)
× sec2(u) du

=

∫ x=
√

3

x=1

sec2(u)

sec2(u)
du

=

∫ x=
√

3

x=1

1 du =
[
u
]x=
√

3

x=1

Then rearranging x = tan(u) to u = tan−1(x) and substituting gives:

=

[
tan−1(x)

]x=
√

3

x=1

Then evaluate the limits as usual∫ x=
√

3

x=1

1

1 + x2
dx =

[
tan−1(x)

]x=
√

3

x=1

= tan−1(
√

3)− tan−1(1)

=
π

3
− π

4
=

π

12

� Method 2: Again, use the substitution x = tan(u). Then
dx

du
= sec2(u). Now substitute

the x-limits into x = tan(u) and find the u-limits:
When x =

√
3, u = π

3 . When x = 1, u = π
4 .

Substituting all of these into the formula and using the identity 1 + tan2(θ) = sec2(θ) gives:∫ u=π
3

u=π
4

1

1 + x2
dx =

∫ u=π
3

u=π
4

1

1 + tan2(u)
× sec2(u) du

=

∫ u=π
3

u=π
4

sec2(u)

sec2(u)
du

=

∫ u=π
3

u=π
4

1 du =
[
u
]u=π

3

u=π
4

Then evaluate the limits as usual∫ x=
√

3

x=1

1

1 + x2
dx =

[
u
]u=π

3

u=π
4

=
π

3
− π

4
=

π

12

As you can see, both methods give the same answer, however there is generally less room for
error in the second method.
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Integration by Parts

In the section on differentiation we discussed the product rule. Since integration is the inverse of differ-
entiation, we can use the product rule in a different form in order to integrate certain types of functions.
You will remember the product rule as:�



�
	d

dx

(
uv
)

= v
du

dx
+ u

dv

dx

where u = u(x) and v = v(x) are functions of x.
We can rearrange this rule and integrate the whole equation with respect to x to obtain:�



�
	

∫
u
dv

dx
dx = uv −

∫
v
du

dx
dx

The trick to using this formula is to write the function we want to integrate as u
dv

dx
, choosing u and

dv

dx

so that we can use our standard rules for integration and differentiation to find v(x) and
du

dx
. Again, this

is a technique that you will get better at with practice.
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Example: Evaluate the following integrals:

1.

∫
x cos(x) dx

2.

∫
xex dx

Solution:

1. Begin by choosing u(x) = x and
dv

dx
= cos(x).

Now we need to find
du

dx
by differentiating u(x) = x and v(x) by integrating

dv

dx
= cos(x).

du

dx
= 1

v(x) = sin(x)

Then we substitute these into the formula∫
x cos(x) dx = x sin(x)−

∫
1× sin(x) dx

And integrate the last term

= x sin(x)− (− cos(x)) + C

= x sin(x) + cos(x) + C

2. Begin by choosing u(x) = x and
dv

dx
= ex.

Now we need to find
du

dx
by differentiating u(x) = x and v(x) by integrating

dv

dx
= ex.

du

dx
= 1

v(x) = ex

Then we substitute these into the formula∫
xex dx = xex −

∫
1× ex dx

And integrate the last term
= xex − ex + C
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We can also use integration by parts to integrate ln(x).

Example: Evaluate the integral: ∫
ln(x) dx

Solution: We cannot directly integrate ln(x), however we can differentiate it, so choose u(x) = ln(x)

and
dv

dx
= 1.

Now we need to find
du

dx
by differentiating u(x) = ln(x) and v(x) by integrating

dv

dx
= 1.

du

dx
=

1

x

v(x) = x

Then we substitute these into the formula∫
ln(x) dx = x ln(x)−

∫
x

x
dx

= x ln(x)−
∫

1 dx

And integrate the last term
= x ln(x)− x+ C

In some cases, we may be required to apply integration by parts multiple times, as shown in the next
example.

Example: Evaluate the integral: ∫
x2ex dx

Solution: Begin by choosing u(x) = x2 and
dv

dx
= ex.

Now we need to find
du

dx
by differentiating u(x) = x2 and v(x) by integrating

dv

dx
= ex.

du

dx
= 2x

v(x) = ex

Then we substitute these into the formula∫
x2ex dx = x2ex −

∫
2xex dx

= x2ex − 2

∫
xex dx

Now we must apply integration by parts again to the resulting integral. Note that we have already

calculated

∫
xex dx in a previous example, so we will just give the final solution here.

=

∫
x2ex dx = x2ex − 2

(
xex − ex

)
+ C

= x2ex − 2xex + 2ex + C
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Integration using Partial Fractions

Sometimes we will be presented with an integral of the form∫
S + Tx

P +Qx+Rx2
dx

where P,Q,R, S and T are constants.
We cannot integrate this directly, so we need to find a way of ‘breaking it down’ into smaller parts which
we can integrate.
Suppose we want to add the two expressions:

6

x+ 3
+

2

x− 4

=
6(x− 4)

(x+ 3)(x− 4)
+

2(x+ 3)

(x− 4)(x+ 3)

=
6(x− 4) + 2(x+ 3)

(x+ 3)(x− 4)

=
8x− 18

x2 − x− 12

As you can see, this has resulted in an expression in the form above. We also note that we can integrate∫ (
6

x+ 3
+

2

x− 4

)
dx = ln |x+ 3|+ ln |x− 4|+ C

so we would like to have a method for obtaining A and B in the following equation:

S + Tx

P +Qx+Rx2
=

A

x− a
+

B

x− b

which would allow us to manipulate the first function into a form which we can integrate.
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Example: Resolve the expression
1

x2 + 3x+ 2

into partial fractions and hence find its integral.

Solution: First, factorise the denominator:

1

x2 + 3x+ 2
=

1

(x+ 1)(x+ 2)

Now write in the form:
1

(x+ 1)(x+ 2)
=

A

x+ 1
+

B

x+ 2

We now need to solve this for A and B. Multiply both sides by (x+ 1)(x+ 2) to give

1 = A(x+ 2) +B(x+ 1)

There are two methods for solving this:
Method 1: Collect the terms in each power of x and compare coefficients:

1 = x(A+B) + (2A+B)

⇒ A+B = 0 and 2A+B = 1

⇒ A = 1 and B = −1

Method 2: Notice that when x = −2, we have an expression only in terms of A. So we can easily
find B:

1 = 0 +B(−2 + 1)⇒ B = −1

Similarly for x = −1:
1 = A(−1 + 2) + 0⇒ A = 1

Regardless of which method we use, the result is that we can now write:

1

x2 + 3x+ 2
=

1

x+ 1
− 1

x+ 2

and therefore ∫
1

x2 + 3x+ 2
dx = ln |x+ 1| − ln |x+ 2|+ C

= ln

∣∣∣∣x+ 1

x+ 2

∣∣∣∣+ C

Note: It is important to remember which numerator (A or B) corresponds to which denominator,
as it can be easy to get confused between them.

We can actually apply this approach to ANY fraction of two polynomials, provided the denominator
is of higher order than the numerator (i.e. includes a higher power of x).
Three important points to note are the following:

� We can perform the same procedure if the numerator is of the form Px+Q.

� If we have an x2 inside one of the denominator brackets, for example
1

(x2 + 4)(x− 5)
then we must

write our partial fractions equation as:

1

(x2 + 4)(x− 5)
=

A

(x− 5)
+
Bx+ C

(x2 + 4)

and solve for A, B and C. (Note: If using Method 2, we can find A as before, and then set x = 0
to find C, and consequently find B)
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� If we have a repeated root of the denominator, such as
1

(x− 1)2(x+ 5)
, then we must write our

partial fractions equation as:

1

(x− 1)2(x+ 5)
=

A

(x+ 5)
+

B

(x− 1)
+

C

(x− 1)2

and solve for A, B and C as before.

Example: Resolve the expression
x+ 2

(x− 1)2(x+ 5)

into partial fractions and hence find its integral.

Solution: First, write in the form:

x+ 2

(x− 1)2(x+ 5)
=

A

(x+ 5)
+

B

(x− 1)
+

C

(x− 1)2

We now need to solve this for A, B and C. Multiply both sides by (x− 1)2(x+ 5) to give

x+ 2 = A(x− 1)2 +B(x− 1)(x+ 5) + C(x+ 5)

We will use Method 2 in this example. Notice that when x = 1, we have

1 + 2 = 0 + 0 + 6C ⇒ C =
1

2

When x = −5:

−5 + 2 = A(−1− 5)2 + 0 + 0⇒ A = − 1

12

Now since we cannot find B by eliminating the other variables, we will just have to choose a value
of x and solve for B (since we now know A and C). For convenience let’s pick x = 0.
When x = 0:

0 + 2 = A− 5B + 5C ⇒ 2 = − 1

12
− 5B +

5

2

⇒ B =
7

60

So finally we can write:

x+ 2

(x− 1)2(x+ 5)
=

−1

12(x+ 5)
+

7

60(x− 1)
+

1

2(x− 1)2

Then integrating gives:∫
x+ 2

(x− 1)2(x+ 5)
dx = − 1

12
ln |x+ 5|+ 7

60
ln |x− 1|+ 1

2(1− x)
+ C

where we have found the third term using standard integration of polynomials.
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Reduction Formulae

Reduction formulae provide a means to hugely simplify some integrals which would otherwise be very
demanding to solve. In particular, this approach applies to the integration of functions which are raised
to a power n ≥ 0.
If we have an integral ∫

f(x)n dx

then we use the notation:

In =

∫
f(x)n dx

e.g.

I2 =

∫
f(x)2 dx

I5 =

∫
f(x)5 dx

Reduction formulae allow us to find a formula which can be used to calculate In for any n ≥ 0, however
we are required to obtain an initial integral. For example if we know I0, a reduction formula could enable
us to find I1, I2 and so on. This type of relation, where we find a value in terms of previous values in
the sequence, is called a recurrence relation.
Consider the integral

In =

∫
xnex dx

If we can find a formula which allows us to find In given In−1, then by finding an initial value, say I0,
we will be able to find In for all n ≥ 0.
In order to find a reduction formula we are required to use integration by parts one or more times to
reduce the integral. Recall the formula for this technique:�



�
	d

dx

(
uv
)

= v
du

dx
+ u

dv

dx

We will now find a reduction formula for the above integral.

We use integration by parts, choosing u = xn and
dv

dx
= ex.

Now we can find
du

dx
= nxn−1 and v = ex.

Use the integration by parts formula

In =

∫
xnex dx = xnex −

∫
ex(nxn−1) dx

= xnex − n
∫
exxn−1 dx

Now notice that the integral in the second term is the same as the initial integral, but replacing n with
n− 1. This means that we can write the following:

= xnex − nIn−1 dx

So we have deduced the reduction formula:

In = xnex − nIn−1

Now, if we wished to find I2 =

∫
x2ex dx then we can use this formula, rather than integrating by parts

twice.
We begin by calculating

I0 =

∫
ex dx = ex

Then it follows from the reduction formula that

I1 = xex − I0 = (x− 1)ex
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And so finally
I2 = x2ex − 2I1 = x2ex − (x− 1)ex = (x2 − x+ 1)ex

Example: Find a reduction formula for

In =

∫ π
2

0

sinn(x) dx

Solution: We begin by rewriting the integral as

In =

∫ π
2

0

sin(x) sinn−1(x) dx

Now using integration by parts with u = sinn−1(x) and
dv

dx
= sin(x) gives

In = −
[

cos(x) sinn−1(x)

]π
2

0

− (n− 1)

∫ π
2

0

− sinn−2 cos2(x) dx

= 0 + (n− 1)

∫ π
2

0

sinn−2 cos2(x) dx

Using the identity cos2(x) + sin2(x) = 1, we get

In = (n− 1)

∫ π
2

0

sinn−2(x)(1− sin2(x))) dx

= (n− 1)

∫ π
2

0

sinn−2(x) dx+ (n− 1)

∫ π
2

0

sin2(x) dx

Notice that the integral in the third term is In, and so moving this onto the left hand side of the
equation, we have

nIn = (n− 1)

∫ π
2

0

sinn−2(x) dx

⇒ In =
n− 1

n
In−2

Note that this reduction formula only applies when we have the limits 0 and π
2 . The general

reduction formula for

∫
sinn(x) dx is actually:

In = − 1

n
cos(x) sinn−1(x) +

n− 1

n
In−2
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Example: Find the reduction formula for the integral:∫ π
2

0

sechn(x) dx

Solution: Notice ∫ π
2

0

sechn(x) dx =

∫ π
2

0

sech2(x) sechn−2(x) dx

In this form we can use integration by parts (

∫
u
dv

dx
dx = uv −

∫
v
du

dx
dx) to simplify the inte-

grand. Choosing sech2(x) to be
dv

dx
, and sechn−2 to be u.

We know that the integral of sech2(x) is tanh(x), and the derivative of sechn−2 is (n −
2)(sechn−3(x))(− sech(x) tanh(x)).
Therefore ∫ π

2

0

sech2(x) sechn−2(x) dx

=

[
sechn−2(x) tanh(x)

]π
2

0

− (n− 2)

∫ π
2

0

tanh(x)(sechn−3(x))(− sech(x) tanh(x)) dx

=
3

25
× 4n−2 −

∫ π
2

0

tanh2(x) sechn−2(x) dx

Using that tanh2(x) = sech2(x)− 1 we get∫ π
2

0

tanh2(x) sechn−2(x) dx =

∫ π
2

0

sechn(x)− sechn−2(x) dx

=

∫ π
2

0

sechn(x) dx−
∫ π

2

0

sechn−2(x) dx

Therefore∫ π
2

0

sechn(x) dx =
3

25
× 4n−2 − (n− 2)

(∫ π
2

0

sechn(x) dx−
∫ π

2

0

sechn−2(x) dx

)

By taking the term −(n− 2)

∫ π
2

0

sechn(x) dx over to the left hand side, we get that

(n− 1)

∫ π
2

0

sechn(x) dx =
3

25
× 4n−2 + (n− 2)

∫ π
2

0

sechn−2(x) dx

Finally if

In =

∫ π
2

0

sechn(x) dx

we have shown that

(n− 1)In =
3

25
× 4n−2 + (n− 2)In−2
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8.6 Constructing Equations Using Integrals

Using the idea of infinitesimals we can set up integrals to solve a variety of problems. Considering a
system as infinitely many small segments and using integration to add up all these segments is a powerful
tool in physics.

Consider a strip of paper of width 2cm and length 10cm, it is trivial to say that the area of the paper is
2×10 = 20cm2 but we will use this example to understand how an integral can ba used to solve problems.

We consider a small segment of the paper, a distance x from the left hand side of the strip, with
width 2cm and length dx. We can say that the area of this segment is 2 × dx = 2dx. Now using the

idea that the area of the whole strip of paper could be made up of infinitely many of these infinitesimal
strips we can add up all the infinitesimal areas using integration to get an answer for the total area of
the strip of paper, i.e.

Area =

∫ 10

0

2 dx

The limits are obtained from the fact that the distance of the first segment is x = 0m and the distance
of the last segment is at x = 10m. Solving this integral gives

Area =

[
2x

]10

0

=

[
2× 10

]
−
[
2× 0

]
= 20cm2

Example: Use the fact that the circumference of a circle is 2πr, where r is the radius of the
circle, and the technique of integration to obtain an equation for the area of the circle.

Click here for a video example

Solution: Consider the circle as made up of an infinite amount of rings centred at the centre of
the circle with a infinitesimal width dx.

A general ring a distance x from the centre of the circle has circumference is 2πx.
We approximate the area of this ring as

2πx× dx

To find the area of the circle we must add up all the areas of the rings that make up the circle i.e.∫ r

0

2πx dx

The limits are chosen at x = 0 as this is the smallest possible ring and at x = r as this is the
largest possible ring. ∫ r

0

2πx dx =

[
πx2

]r
0

=

[
πr2

]
−
[
0

]
= πr2
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This idea can be stretched to volumes of shapes, for example we can consider a sphere. We already know
that for a sphere:

Volume =
4

3
πr3

where r is the radius of the sphere. However, using integration and the fact that we know the surface
area of the sphere is 4πr2 we can derive this equation for the volume.

Consider an elementary shell centred at a distance x from the centre of the sphere with width dx.
We can approximate the volume of this shell as:

4πr2 × dx

Using integration, we add up all the elementary shells from the centre of the sphere to the edge, i.e.

Volume =

∫ r

0

4πx2 dx

=

[
4

3
πx3

]r
0

=

[
4

3
π × r3

]
−
[

4

3
π × 02

]
=

4

3
πr3

Example: Use the fact that the area of a circle is πr2, where r is the radius of the circle, and
the technique of integration to obtain an equation for the volume of a cone of base radius R and
height h.

Click here for a video example

Solution: Consider an elementary disk with width dx and a radius r at a distance x from the point
of a cone.
As the width of the disk is infinitesimal we can approximate the volume of the disk to be πr2×dx.
Therefore to add up all the volumes of the infinitesimal disks we need to compute the integral:

Volume =

∫ h

0

πr2 dx

However r is not a constant so we cannot solve this integral yet. To allow us to continue we need
to find r as a function of x. Note that

tan(θ) =
r

x
=
R

h

Therefore

r =
Rx

h

Substituting this back into our integral gives

Volume =

∫ h

0

π
R2x2

h2
dx

=

[
π
R2

3h2
× x3

]h
0

=

[
π
R2

3h2
× h3

]
−
[
π
R2

3h2
× 03

]
=

1

3
πR2h
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8.7 Geometric Applications of Integration

Arc Length

We can use integration to help us find the exact length of a curve between the points a and b.
In order to do this we aim to sum up all the infinitesimal lengths ds, i.e. we want to calculate

s =

∫ b

a

ds

Since we will usually be working in 2-D space, this is not simple to calculate, so we can use Pythagoras
to write

ds =
√
dx2 + dy2

and hence

s =

∫ b

a

ds =

∫ b

a

√
dx2 + dy2

Then pulling a dx out of the square root, we obtain the formula:�
�

�

s =

∫ b

a

√
1 +

(
dy

dx

)2

dx

Example: Find the arc length between the points x = 0 and x = ln(3) on the curve y = cosh(x)

Solution: We know that the formulae for the arc length on a curve is

∫ b

a

√
1 +

(
dy

dx

)2

dx

So first we need to find out what
dy

dx
is. In this case, where y = cosh(x),

dy

dx
= sinh(x).

Therefore the arc length that we are asked to work out is equal to∫ ln(3)

0

√
1 + sinh2(x) dx

Using the identity cosh2(x) = 1 + sinh2(x) this is equivalent to∫ ln(3)

0

cosh(x) dx

=

[
sinh(x)

]ln(3)

0

=
1

2
(eln(3) − e− ln(3) − e0 + e0)

=
1

2

(
3− 1

3

)
=

8

6
=

4

3
units
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Surface Area of a Revolution

When we rotate a curve once around the x-axis, we form a solid 3-D shape. We can find the surface area
of this shape between x = a and x = b using integration.

If we consider an infinitesimal piece of the curve ds at a point x at height y, then the contribution to
the total surface area of the revolution from this piece is

dA = ds× circumference = ds× 2π × radius

Therefore we can write

A =

∫ b

a

ds× 2π × radius

Using the relation ds =
√
dx2 + dy2 from the previous section,

A = 2π

∫ b

a

y
√
dx2 + dy2

and then pulling a dx out of the square root, as before, we get the formula:�
�

�

A = 2π

∫ b

a

y

√
1 +

(
dy

dx

)2

dx

Example: Find the surface area of revolution between the points x = 0 and x = 1 on the curve
y = 1

3x
3

Solution: We know that the formula for the surface area of revolution of a curve is

A = 2π

∫ b

a

y

√
1 +

(
dy

dx

)2

dx

So first we need to find out what
dy

dx
is. In this case, where y = 1

3x
3,
dy

dx
= x2.

Therefore the surface area of revolution is equal to

2π

∫ 1

0

1

3
x3
√

1 + x4 dx

Using the substitution u = 1 + x4 we get that
du

dx
= 4x3, therefore

dx

du
=

1

4x3
. This allows us to

write

2π

∫ 1

0

1

3
x3
√

1 + x4 dx = 2π

∫ 2

1

1

12

√
u du

= 2π

[
1

18
u

3
2

]2

1

=
1

9
(2
√

2− 2) square units
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Volume of a Revolution

We can also find the volume of a revolution between x = a and x = b using integration. By looking at
the diagram in the previous section and considering an infinitesimal slice of the volume, we can deduce
that

dV = area× width of slice

= πy2 × dx

Thus we have the following formula for the volume of a revolution:�
�

�

V = π

∫ b

a

y2dx

Example: Find the volume of revolution between the points x = 0 and x = π
4 on the curve

y = sec(x)

Solution: We know that the formulae for the volume of revolution of a curve is

V = π

∫ b

a

y2 dx

. Therefore the volume of revolution that we are asked to work out is equal to

π

∫ π
4

0

sec2(x) dx

This is a standard integral so we can quote the answer as

π

[
tan(x)

]π
4

0

= π(1− 0) = π cubic units

©University of Birmingham, 2015
166

http://creativecommons.org/licenses/by-nc-nd/4.0/


8.8 Review Questions

Easy Questions

Question 1: Evaluate the definite integral∫ 3

1

5x− 4

x3
dx

Answer:
14

9

Question 2: Evaluate the integral ∫
2

4x2 − 9
dx

Answer:
1

6
ln

∣∣∣∣3− 2x

3 + 2x

∣∣∣∣+ C

Question 3: Evaluate the definite integral∫ 3π
4

0

4 cos(−4x+ π) dx

Answer:
0

Question 4: Evaluate the integral ∫
4e3x(3x− 7)2 dx

Answer:
4

3
e3x(9x2 − 48x+ 65) + C

Question 5: Evaluate the integral ∫
4e3x(3x− 7)2 dx

Answer:
4

3
e3x(9x2 − 48x+ 65) + C

Medium Questions

Question 6: Use integration to obtain an expression for the volume of a cylinder in terms of
it’s radius and height.
Answer:

V = πr2h
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Question 7: Evaluate the integral∫
sin3(3x) cos5(3x) dx

Hint: Use the substitution u = sin(3x)

Answer:

1

12
sin4(3x)− 2

18
sin6(3x) +

1

24
sin8(3x) + C

Question 8: Evaluate the integral ∫ √
a2 − x2 dx

Hint: Use the substitution u = a sin(θ)

Answer:
a2

2
sin−1

(
x

a

)
+

(
x

2

)√
a2 − x2 + C

Question 9: Evaluate the integral ∫
ex cos(x) dx

Answer:
1

2
ex
(

sin(x) + cos(x)
)

+ C

Question 10: Evaluate the integral ∫ ∞
−∞

e−x
2

dx

Hint: Consider the graph of the integrand

Answer:
0

Hard Questions

Question 11: Find the reduction formulae for

In =

∫
tann(x) dx

Answer:

In = −In−2 +
1

n− 1
tann−1(x)
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Question 12: Evaluate the integral ∫
x+ 1√
1 + x2

dx

Hint: Split the integrand up into two separate terms.

Answer: √
1 + x2 + sinh−1(x) + C

Question 13: Evaluate the integral∫
ax dx (a > 0)

Answer:
ax

ln(a)
+ C

Question 14: Evaluate the integral ∫
arctan(x)

x2 + 1
dx

Hint: Try integration by parts.

Answer:
1

2
arctan2(x) + C

Question 15: Evaluate the integral∫
1

√
x− 1 +

√
(x− 1)3

dx

Hint: Rearrange the integrand before trying to Evaluate the integral.

Answer:
2 arctan(

√
x− 1) + C
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9 Multiple Integration

We have already discussed the definite integral of a function of one variable, f(x), between x = a and
x = b, and how it can be used to calculate the area enclosed by the function and the x-axis within
the interval. We explained how integration essentially separates the area into many small slices and
calculates the sum of these slices as their size becomes infinitely small. We can now extended this idea
to functions of more than one variable, such as f(x, y) and f(x, y, z).

9.1 Double Integrals (Plane Surface Integrals)

Whereas with single integrals we are calculating an area, double (or plane surface) integrals allow us to
calculate the volume enclosed by a surface by integrating a function of two variables. In order to do this
we consider a region S of the x, y-plane and the function z = f(x, y) which describes a surface, where z
gives the height of the surface at the point (x, y). We can then define the plane surface integral of f(x, y)
as the volume enclosed by the surface above the region S. We can write this as�



�
	V =

∫∫
S

f(x, y) dS

where dS is an infinitesimal section of the area S. We can imagine this by thinking of separating the
volume into infinitely many pillars, each with volume z dS = f(x, y) dS, and then adding up all of these
volumes to get the total volume. This works in exactly the same way as with single integration, however
now we are calculating a volume and will have two sets of limits: limits on x and limits on y.

Note that if f(x, y) = 1 then the height of the surface is constant and hence∫∫
S

1 dS

simply calculates the area of the surface S, and so is effectively a single integral.

Double Integrals in Cartesian Coordinates

When working with Cartesian coordinates, we can write the infinitesimal area dS as

dS = dx dy

meaning it is a square area with length dx in the x-direction and length dy in the y-direction. Now if
we wish to find the plane surface integral of f(x, y) over the area

S =
{

(x, y) : a ≤ x ≤ b, c(x) ≤ y ≤ d(x)
}

then we calculate the integral

V =

∫∫
S

f(x, y) dS =

∫ b

a

∫ d(x)

c(x)

f(x, y) dydx

Physicists are often lazy and so we may also write this as∫ b

a

dx

∫ d(x)

c(x)

dy f(x, y)

Notice that in all cases where the region of integration is not rectangular, y will also depend on x, and
so our limits on y must be written in terms of x.

In order to calculate the above integral, we simply integrate with respect to one variable, treating
the other as constant, and then integrate with respect to the other variable. So if we are integrating
with respect to y and then with respect to x, we can think of this as calculating the area under the curve
z = f(c, y) as in the previous chapter, where c is a constant, and then adding up all the areas for every
single value of the constant c by integrating with respect to x, giving us the total volume of the shape.
Similarly, we could perform the exact same procedure in reverse, integrating with respect to x and then
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with respect to y, however it is often important to choose the order of integration intelligently. For
example, in the above equation, since our y limits depend on x whilst our x limits are simple numbers,
and must integrate with respect to y first. We can then simply calculate∫ b

a

(∫ d(x)

c(x)

f(x, y) dy

)
dx

using our techniques of integration from before. Notice that this is why we have written dydx in this
order above: because we are integrating with respect to y and then with respect to x.

Example: Calculate ∫∫
S

(3− x− y) dS

where S is the region bounded by the x and y axes and the lines x = 1 and y = 2

Solution: By inserting the limits, we can write this integral as∫∫
S

(3− x− y) dS =

∫ 1

0

∫ 2

0

(3− x− y) dydx

now we integrate with respect to y:

=

∫ 1

0

[
3y − xy − y2

2

]2

0

dx

=

∫ 1

0

(4− 2x) dx

Now we integrate with respect to x, since y is no longer present in our equation.

=

[
4x− x2

]1

0

= 4− 1

= 3

Notice that since none of our limits depended on the other variable we could have integrated with
respect to x first and then y to give the same answer, i.e.∫ 2

0

∫ 1

0

(3− x− y) dxdy
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Example: Calculate ∫∫
S

(x2y + 2x) dS

where S =
{

(x, y) : 1 ≤ x ≤ 2y, 0 ≤ y ≤ 3
}

Solution: By inserting the limits, we can write this integral as∫∫
S

(x2y + 2x) dS =

∫ 3

0

∫ 2y

1

(x2y + 2x) dxdy

Since our x limits depend on y, we must integrate with respect to x first, treating y as a constant.

=

∫ 3

0

[
1

3
x3y + x2

]2y

1

dy

=

∫ 3

0

(
1

3
y4 + y2 − 1

3
y − 1

)
dy

Now we integrate with respect to y, since x is no longer present in our equation.

=

[
1

15
y5 +

1

3
y3 − 1

6
y2 − y

]3

0

=
81

5
+ 9− 3

2
− 3

=
207

10

We can also deduce what the limits of integration are if we are given a region over which we want to
integrate. For example, we wish to find the integral∫∫

S

f(x, y) dS

where S is the region bounded by the triangle with vertices (0,0), (1,0), (1,1). We can sketch this triangle
on the x, y-plane very easily. From this sketch we can see that x goes from x = 0 to x = 1. Now, we

cannot write that y goes from y = 0 to y = 1 because y depends on x. Think about how the limits on y
change as x changes, for example when x = 0.5, y can only go from y = 0 to y = 0.5. By looking at the
diagram we can deduce that our region is defined by:

S =
{

(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ x
}
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Thus our integral can be written as∫∫
S

f(x, y) dS =

∫ 1

0

∫ x

0

f(x, y) dydx

Equally, we could have calculated different limits by looking at how the x limits change as y changes.
which would give

S =
{

(x, y) : y ≤ x ≤ 1, 0 ≤ y ≤ 1
}

⇒
∫∫

S

f(x, y) dS =

∫ 1

0

∫ 1

y

f(x, y) dxdy

So we can write ∫ 1

0

∫ x

0

f(x, y) dydx =

∫ 1

0

∫ 1

y

f(x, y) dxdy

We can also use the idea that ∫∫
S

1 dS

is the area of the surface S to find the area enclosed by two functions. For example, say we want to find
the area enclosed between the two functions y = x2 and y = 2x− x2, then we can find the limits of the
surface S and simply compute the above integral. Sketching a graph can help to find limits, however
we can also do this algebraically. First we want to find the points where these functions intersect, so
we solve them simultaneously to find that they intersect at (0, 0) and (1, 1). Now we know that x has
the limits x = 0 and x = 1 however, as before, we must remember that the limits for y will depend on
x since the region is not rectangular. we notice that x2 > 2x − x2 for all x within [0, 1], and so we can
write that the limits on y are y = x2 to y = 2x− y2. We now have our limits so can write our integral
in full and solve: ∫ 1

0

∫ 2x−x2

x2

1 dydx

=

∫ 1

0

[
y
]2x−x2

x2 dx

=

∫ 1

0

(2x− x2)− x2 dx

=

∫ 1

0

2x− 2x2 dx

=

[
x2 − 2

3
x3

]1

0

=
1

3
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Changing the Order of Integration

Whilst the order of integration does not actually change the result, sometimes it is essential to choose
the most appropriate order when integrating a function which cannot be integrated with respect to some
variables. Being able to change the order of integration can also help simplify calculations. The above
approach of using a diagram can allow us to do this. For example, consider the integral∫ 1

0

dx

∫ 1

√
x

ey
3

dy

We cannot integrate ey
3

, however by changing the order of integration, we can get it into a form which
we can integrate. Consider the sketch of the region on the x, y-plane represented by the limits Now we

can work out how the x limits change as y changes. We can see that y goes from y = 0 to y = 1. Note
that the curve y =

√
x is the same as x = y2. Now look at a general point y = y, then x goes from x = 0

to x = y2. So we can rewrite our integral as∫ 1

0

dy

∫ y2

0

ey
3

dx

Since our function does not contain x, we can write the integral as follows, however note that even though
this notation looks as if there are two separate integrals, we are still integrating the entire function with
respect to both x and y.

=

∫ 1

0

ey
3

dy

∫ y2

0

1 dx

=

∫ 1

0

ey
3[
x
]y2
0
dy

=

∫ 1

0

y2ey
3

dy

We now have an integral that we can compute, by using the substitution u = y3, giving∫ 1

0

dx

∫ 1

√
x

ey
3

dy =

∫ 1

0

ey
3

dy

∫ y2

0

1 dx =

[
ey

3

3

]1

0

=
e− 1

3
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Double Integrals in Polar Coordinates

As you might expect, we can also compute double integrals using polar coordinates by specifying the
region S in terms of an angle θ and a radius r. It is beneficial to understand that if we hold θ constant
and change r, we simple get a straight half-line stretching out from the origin at an angle θ to the x-axis.
Alternatively, if we hold r constant and change θ, we get a circle of radius r with its centre at the
origin. The lines formed by holding one variable constant and changing the other are called coordinate
lines. In addition, since these two coordinate lines intersect at right angles, we call polar coordinates an
orthogonal coordinate system. Note that Cartesian coordinates are orthogonal also.
Now we must deduce how to find an area dS of a polar coordinate system. Clearly, if we start at a
point on the surface and increase r by dr, (keeping θ constant) then we have generated an element of
length dr, just as we do with Cartesian coordinates. If we keep r constant and increase θ by dθ, then we
actually create a small arc of length rdθ (note that this is not just dθ) and so the element of area which
we form is dS = rdrdθ. This means that when we are integrating with respect to polar coordinates, we
have the double integral �



�
	

∫∫
S

f(r, θ) rdrdθ

In other words, we must always multiply our function by r before we integrate when using polar coordi-
nates.

Remember that we can convert between Cartesian and Polar coordinates using the relations:

Cartesian → Polar

x = r cos(θ)
y = r sin(θ)

Polar → Cartesian

r =
√
x2 + y2

θ = tan−1

(
y

x

)
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Example: Evaluate the integral ∫∫
S

(x2 + y2) dS

where S = {(r, θ) : 1 < r < 2, π3 < θ < π
2 }.

Solution: Since our region of integration is given in terms of polar coordinates, we must change
our integral from Cartesian to polar coordinates, by using the formulae above. Using the relation
r2 = x2 + y2, remembering that in polar coordinates dS = r dr dθ and inserting the limits, we can
write the integral as ∫ π

2

π
3

∫ 2

1

r2 × r dr dθ

Remember that we can integrate in any ordersince all th limits are constant, however in this
example we will integrate with respect to r first.∫ π

2

π
3

(∫ 2

1

r3 dr

)
dθ =

∫ π
2

π
3

[
r4

4

]2

1

dθ

=

∫ π
2

π
3

15

4
dθ

Now we integrate with respect to θ

=

[
15

4
θ

]π
2

π
3

=
15

4

(
π

2
− π

3

)
=

5π

8
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9.2 Triple Integrals (Volume Integrals)

We can extend this further to functions of three variables. An integral of a function of three variables is
called a triple (or volume) integral and can represent the mass of a body. In order to compute these we
consider a solid enclosed by the region V of the x, y, z-space and the function f(x, y, z) which describes
the density of the volume. We can then define the volume integral of f(x, y, z) as the total mass of the
body in the region V . We can write this as

V =

∫∫∫
V

f(x, y, z) dV

where dV is an infinitesimal section of the volume V . A volume integral is far harder to visualise than
a single or double integral, however the calculation is almost identical, albeit with an extra variable of
integration. Essentially, we are adding up the mass of infinitesimal sections of the volume to get the
total mass. Of course, in the case of triple integrals we will have three sets of limits: limits on x, limits
on y and limits on z.

Note that if f(x, y, z) = 1 then the density throughout the volume is constant and hence∫∫∫
V

1 dV

simply calculates the volume of the solid, and so is essentially a double integral.

Triple Integrals in Cartesian Coordinates

We treat a triple integral with respect to Cartesian coordinates in exactly the same way as we do with
double integrals in Cartesian coordinates, except that we have an extra variable, z. This means that our
infinitesimal volume is dV = dxdydz, and if V =

{
(x, y, z) : a ≤ x ≤ b, c(x) ≤ y ≤ d(x), g(x, y) ≤ x ≤

h(x, y)
}

, then our integral takes the form∫ x=b

x=a

∫ y=d(x)

y=c(x)

∫ z=h(x,y)

z=g(x,y)

f(x, y, z) dzdydx

Note that our limits on z depend on both x and y, so in this case we must integrate with respect to z,
then with respect to y and finally with respect to x. With triple integrals in particular, it is often helpful
to label our limits so that we know which limits correspond to each variable.

If our region of integration is a cuboid, i.e. is bounded by six rectangular planes with edges parallel
to the axes, then our limits for all three variables will just be numbers and so we can integrate in any
order we choose.
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Example: Calculate ∫∫∫
V

xyz dV

where V =
{

(x, y, z) : 1 ≤ x ≤ 2, 2 ≤ y ≤ 3, 0 ≤ z ≤ 2
}

Solution: By inserting the limits, we can write this integral as∫∫∫
V

xyz dV =

∫ z=2

z=0

∫ y=3

y=2

∫ x=2

x=1

xyz dxdydz

We can now integrate this in a similar way to a double integral with rectangular limits. First we
will integrate with respect to x.

=

∫ z=2

z=0

∫ y=3

y=2

[
1

2
x2yz

]2

1

dydz

=

∫ z=2

z=0

∫ y=3

y=2

3

2
yz dydz

Now we can integrate with respect to y, since x no longer appears in our integral.

=

∫ z=2

z=0

[
3

4
y2z

]3

2

dz

=

∫ z=2

z=0

15

4
z dz

And finally since our function only includes z, we can integrate with respect to z

=

[
15

8
z2

]2

0

=
60

8
=

15

2

Note that we could have integrated in any order to obtain the same answer.

As with double integrals, we can usually find the limits of a region of integration from a given shape.
For example, we want to evaluate the integral∫∫∫

V

3x dV

where V is the region bounded by the planes x = 0, y = 0, z = 0 and x + 2y + x = 3. We first need
to find the limits on x, y and z. Clearly the lower limit of all the variables is zero, so now we just need
to find the upper limits. By sketching or imagining the diagram, we can see that x takes its maximum
value when z = y = 0, thus our upper x limit is x = 3. Now, since the upper limits of y and z depend on
x, they vary as x varies. Again by consideration of the diagram, the upper y limit occurs when z = 0, so
by substituting this into x+ 2y + z = 3, and rearranging to make y the subject gives the upper y limit
as y = 1

2 (3−x). Finally, to find the upper z limit, we simply rearrange the equation of the slanted plane
to make z the subject, i.e. z = 3− x− 2y. We now have all our limits and can write the integral as∫ x=3

x=0

∫ y= 1
2 (3−x)

y=0

∫ z=3−x−2y

z=0

3x dzdydx

Now we integrate with respect to z (since our z limits contain x and y)

=

∫ x=3

x=0

∫ y= 1
2 (3−x)

y=0

3x(3− x− 2y) dydx

=

∫ x=3

x=0

∫ y= 1
2 (3−x)

y=0

9x− 3x2 − 6xy dydx
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Then we integrate with respect to y now that z no longer appears in the integral

=

∫ x=3

x=0

9

2
x(3− x)− 3

2
x2(3− x)− 3

4
xy(3− x)2 dx

=

∫ x=3

x=0

3

4
x3 − 9

2
x2 +

27

4
x dx

And finally we integrate with respect to x

=

[
3

16
x4 − 3

2
x3 +

27

8
x2

]3

0

=
81

16

Example: Using a triple integral with cartesian coordinates, find the volume of a sphere with
radius 2, centred at the origin.

Solution: Remember that we can use the integral∫∫∫
V

1 dV

to find the volume of the solid represented by V . To do this, we need to find the limits of the three
variables x, y and z. Similarly to the example above, we note that since our solid is a sphere at
the origin with radius 2, the limits on x are x = −2 and x = 2. The equation of this sphere is

x2 + y2 + z2 = 4

and by considering the diagram of this, we can deduce that the limits on y occur when z = 0,
giving y = ±

√
4− x2. Finally our limits on z are found by rearranging the equation of the sphere:

z = ±
√

4− x2 − y2. Thus our integral can be rewritten as:

∫ x=2

x=−2

∫ y=
√

4−x2

y=−
√

4−x2

∫ z=
√

4−x2−y2

z=−
√

4−x2−y2
dzdydx

=

∫ x=2

x=−2

∫ y=
√

4−x2

y=−
√

4−x2

2
√

4− x2 − y2 dydx

We can then integrate with respect to y using the substitution y =
√

4− x2 sin(u) to give

=

∫ x=2

x=−2

π(4− x2) dx

where we have left out the calculation as a similar example has already been covered in a previous
section. We can then finally integrate with respect to x since x is the only remaining variable.[

4πx− πx3

3

]2

−2

= π(16− 16

3
)

=
32π

3

as we would expect from the standard formula V =
4πa3

3
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Triple Integrals in Cylindrical Coordinates

When we wish to change variables when using triple integrals, we have two options: cylindrical co-
ordinates or spherical coordinates. Cylindrical coordinates are a straightforward extension of two
dimensional polar coordinates into three dimensions, where we simply add a z axis extending from the
origin of the polar circle and perpendicular to r and θ. The relations between Cartesian and cylindrical
coordinates are thus:

Cartesian → Cylindrical

x = r cos(θ)
y = r sin(θ)

z = z

Cylindrical → Cartesian

r =
√
x2 + y2

θ = tan−1

(
y

x

)
z = z

Note: When using θ = tan−1

(
y

x

)
remember to check which quadrant θ belongs to.

By comparison with polar coordinates, we must remember that the element of volume dV = r drdθdz,
so that a triple integral using cylindrical coordinates is�



�
	

∫∫∫
V

f(r, θ, z) r drdθdz
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Example: The region bounded by the surface of the paraboloid z = 2−x2− y2 and the surface
of a cone z = x2 + y2 is given by

D + {(x, y, z) : x2 + y2 ≤ 1,
√
x2 + y2 ≤ z ≤ 2− x2 − y2}

Use a triple integral to find the volume of this region.

Solution: We can see that a change of coordinate system to cylindrical coordinates would be wise
in this example. To help with the limits, we will rewrite the region D in terms of cylindrical
coordinates. Since r2 = x2 + y2, we can deduce that r ≤ 1. Also remember that r is always
non-negative as it is a radius. Now θ rotates around a full circle and z is restricted by the surfaces
of the paraboloid and cone.

D = {(r, θ, z) : 0 ≤ r ≤ 1, 0 ≤ θ ≤ 2π, r ≤ z ≤ 2− r2}

We can now form an integral to find the volume of D.∫ 2π

0

∫ 1

0

∫ 2−r2

r

1 r dz dr dθ

Integrating with respect to z first gives∫ 2π

0

∫ 1

0

r(2− r2 − r) dr dθ

=

∫ 2π

0

∫ 1

0

(r − r3) dr dθ

Now we integrate with respect to θ.

=

∫ 1

0

2π(r − r3) dr

Finally we integrate with respect to r.

= 2π

[
r2

2
− r4

4

]1

0

=
π

2
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Triple Integrals in Spherical Coordinates

An alternative coordinate system is spherical coordinates which is less easy to visualise than previous
coordinate systems, however it is not all that much more difficult. We imagine a radius of a sphere
ρ and two angles: θ which is the same angle as θ in cylindrical coordinates and rotates around the z
axis, and then an azimuthal angle φ which represents the angle of our radius from the positive z-axis to
the negative z-axis. Note that φ can only take values between 0 and π since it only rotates through a
half-circle. Our relations between the various coordinate systems are:

Cartesian → Spherical

x = ρ sin(φ) cos(θ)
y = ρ sin(φ) sin(θ)
z = ρ cos(φ)

Spherical → Cartesian

ρ =
√
x2 + y2 + z2

θ = tan−1

(
y

x

)
φ = cos−1

(
z

ρ

)
Cylindrical → Spherical

r = ρ sin(φ)
θ = θ

z = ρ cos(φ)

Note: When using θ = tan−1

(
y

x

)
remember to check which quadrant θ belongs to.
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Example:

1. Find the cylindrical coordinate and spherical coordinate of a point P with Cartesian coordi-
nate (1,1,1).

2. We can express the surface of an infinite cylinder C of radius R in cylindrical coordinates
using the limits C = {(r, θ, z) : r = R, 0 ≤ θ ≤ 2π −∞ ≤ z ≤ ∞}. Find this surface in
terms of Cartesian and spherical coordinates.

Solution:

1. Cylindrical: We can use the relations between Cartesian and cylindrical coordinates to find

r =
√

12 + 12 =
√

2

z = z = 1

θ = arctan

(
1

1

)
=
π

4

Since the point (1, 1) lies in the first quadrant. So the point P in cylindrical coordinates is

(
√

2,
π

4
, 1)

Spherical: We can use the relations between Cartesian and spherical coordinates to
find

ρ =
√

12 + 12 + 12 =
√

3

φ = arccos

(
1

3

)
=
π

4

θ = arctan

(
1

1

)
=
π

4

Since the point (1, 1) lies in the first quadrant. So the point P in spherical coordinates is

(
√

3,
π

4
,
π

4
)

We could also have solved this problem by considering a diagram of the point, and writing
on all our variables.

2. Cartesian: We can use the relations between Cartesian and cylindrical coordinates to find

r = R =
√
x2 + y2

z = z

So the surface of C in Cartesian coordinates can be described by C = {(x, y, z) : x2 + y2 =
R2,−∞ ≤ z ≤ ∞}

Spherical: We can use the relations between Cartesian and spherical coordinates to
find

R = ρ sin(φ)⇒ ρ =
sin(φ)

R

Now, as before θ rotates through a full circle, and because we have an infinite cylinder,
φ rotates through a full half-circle, giving the surface of C in spherical coordinates as

C = {(ρ, φ, θ) : ρ =
sin(φ)

R
, 0 ≤ φ ≤ π, 0 ≤ θ ≤ 2π}

Once again, we must now reconsider what our element of volume is by increasing each variable
by an infinitesimal amount and working out the total volume produced. First, by increasing ρ by dρ
whilst keeping θ and φ constant, we generate a length dρ. Now increase θ by dθ and keeping ρ and φ
constant we obtain a length ρ sin(φ)dθ. Finally we increase φ by dφ whilst keeping the other variables
constant, which gives an arc of length ρdφ. Putting all of this together we obtain the element of volume
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dV = ρ2 sin(φ) dρdθdφ, so that a triple integral using spherical coordinates is�



�
	

∫∫∫
V

f(ρ, θ, φ) ρ2 sin(φ) dρdφdθ

We will now repeat a previous example question on calculating the volume of a sphere to emphasise the
usefulness of spherical coordinates in certain situations.

Example: Using a triple integral with spherical coordinates, find the volume of a sphere with
radius 2, centred at the origin.

Solution: Remember that we can use the integral∫∫∫
V

1 dV

to find the volume of the solid represented by V . To do this, we need to find the limits of the three
variables ρ, θ and φ. Starting with θ, we can see that the limits are θ = 0 to θ = 2π as it describes
a full circle. Now the radius ρ is orthogonal to θ and so its limits are just numbers, in this case
r = 0 to r = 2. Finally, we consider φ and notice that once again, φ is orthogonal to the other
variables and so the limits are φ = 0 to φ = π. We can now write our integral as:∫ 2π

0

∫ π

0

∫ 2

0

1ρ2 sin(φ)dρdφdθ

Since our limits are all independent of each other, we integrate with respect to each variable in
any order. We will start with θ.

=

∫ π

0

∫ 2

0

2πρ2 sin(φ)dρdφ

Then integrate with respect to φ

=

∫ 2

0

2πρ2

[
− cos(φ)

]π
0

dρ

=

∫ 2

0

4πρ2dρ

Finally integrate with respect to ρ

= 4π

[
1

3
ρ3

]2

0

=
8× 4π

3

=
32π

3

as we would expect from the standard formula V =
4πa3

3
and have obtained from a previous

example. This example demonstrates that a change of coordinate system can massively simplify
calculations.
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Example: Using spherical coordinates, find the mass of a solid sphere of radius a which is
centred on the origin, given that it has a mass density given by

f(x, y, z) = b

(
z

a

)4

Solution: We can write the mass as an integral

M = b

∫∫∫
V

(
z

a

)4

dV

where in spherical coordinates,

V = {(ρ, φ, θ) : 0 ≤ r ≤ a, 0 ≤ φ ≤ π, 0 ≤ θ ≤ 2π}

and
z = ρ cos(φ)

Thus our integral can be written as

M =
b

a4

∫ a

0

∫ π

0

∫ 2π

0

ρ4 cos4(φ)× ρ2 sin(φ) dθ dφ dρ

Since each of our sets of limits do not depend on one of the integration variables, the order
of integration does not matter so we can separate this integral into three separate integrals as
follows, and then evaluate each part individually.

=
b

a4

(∫ a

0

ρ6 dρ

)(∫ 2π

0

dθ

)(∫ π

0

sin(φ) cos4(φ) dφ

)

=
b

a4

[
ρ7

7

]a
0

[
θ

]2π

0

∫ π

0

sin(φ) cos4(φ) dφ

We can solve the third integral using the substitution u = cos(φ) to obtain

= 2π
ba3

7

[
cos5(φ)

5

]π
0

=
4πρa3

35
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9.3 Review Questions

Easy Questions

Question 1: Evaluate

I =

∫∫
S

xy dS

where
S = {(x, y) : 3 ≤ x ≤ 4, 0 ≤ y ≤ 2}

Answer:
I = 7

Question 2: Evaluate

I =

∫∫
A

(x2 + y) dA

where A is the triangle with vertices at (4,−1), (7,−1) and (7, 5).

Hint: First find the equations of the lines of the triangle.

Answer:

I =
675

2

Question 3: Using a double integral, find the area enclosed between the two curves

y = x2 and y = 2x− x2

Hint: Remember to find where the curves intersect first.

Answer:

Area =
1

3

Note: This question can also be done using single integration.

Question 4: By considering the region of integration, change the limits on the integral

I =

∫ ln(3)

0

∫ 3

ex
f(x, y) dydx

so that we could integrate with respect to x first.

Answer:

I =

∫ 3

1

∫ ln(y)

0

f(x, y) dxdy
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Question 5: By converting to polar coordinates, evaluate

I =

∫∫
R

y2

x2
dA

where R is part of the ring 0 < a2 ≤ x2 + y2 ≤ b2 lying in the first quadrant and below the line
y = x.

Hint: Remember dA = r drdθ in polar coordinates.

Answer:

I =
4− π

8
(b2 − a2)

Medium Questions

Question 6: Evaluate the integral

I =

∫ 1

0

∫ 3

2

∫ 2

0

x2z + y dxdydz

Answer:

I =
19

3

Question 7: Let T be the tetrahedron bounded by the planes x = 0, y = 0, z = 0 and
x+ 2y + z = 2. Evaluate the integral

I =

∫∫∫
T

x dV

Answer:

I =
1

3

Question 8: The point P is given in spherical coordinates as
(

3,
π

4
,
π

3

)
. Find the Cartesian

and cylindrical coordinates of the point P .

Answer:

Cartesian:

(
3
√

2

4
,

3
√

6

4
,

3
√

2

2

)
Cylindrical:

(
3
√

2

2
,
π

3
,

3
√

2

2

)

Question 9: Using a triple integral with the appropriate coordinate system, find the volume
of a body bounded by the surfaces x2 + y2 = 4, z = 0 and z = 2.
Answer:

V olume = 8π
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Question 10: By changing the order of integration, evaluate

I =

∫ 1

0

∫ 1

x1/4

ey
5

dxdy

Answer:

I =
e− 1

5

Hard Questions

Question 11: Evaluate

I =

∫∫∫
D

(y2 + x2) dV

where D is the region bounded by the cylinders x2 + y2 = 1 and x2 + y2 = 4 and the planes x = y,
x = 0, z = 0 and z = 1.

Hint: Use cylindrical coordinates.

Answer:

I =
15π

16

Question 12: A solid cone has boundary surfaces x2 + y2 = z2 and z = 1. The density of
the cone at point (x, y, z) is z. Find the mass of the cone using a triple integral in both spherical
coordinates and cylindrical coordinates.

Answer:

V olume =
2π

3

Question 13: By changing to cylindrical coordinates, evaluate the integral

I =

∫∫∫
R

ze−(x2+y2+z2)dV

where
R = {(x, y, z) : −∞ < x, y <∞, 0 ≤ z ≤ 1}

Answer:
I =

π

2
(1− e−1)

Question 14: Evaluate the integral

I =

∫ 1

0

∫ y

0

xy

x2 + y2
dxdy

Answer:

I =
1

4
ln 2
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Question 15: Using a triple integral in spherical coordinates, find the volume of a cone of
height h and radius a.

Answer:

V olume =
1

3
πa2h
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10 Differential Equations

10.1 Introduction to Differential Equations

Definitions and Classifications

A differential equation is an equation involving an unknown function and one or more of its derivatives.
Solving a differential equations involves looking for a function (or functions) that satisfies the equation.
Some simple examples of differential equations are:

�

dy

dx
+ x = y

�

d2x

dt2
+
dx

dt
+ x = 0

� (x+ y)
dy

dx
= 2

The general form of an Ordinary Differential Equation is:

f(x, y, y′, y′′, ..., y(n)) = 0

where x is the independent variable, y is the dependent variable and y′ =
dy

dx
, y′′ =

d2y

dx2
, etc... are

derivatives of y. Our aim when solving an ordinary differential equation is to find the function y(x)
which satisfies this equation.
We will often refer to Ordinary Differential Equations as ‘ODEs’. (There are other types of differential
equation, such as Partial Differential Equations, or ‘PDEs’, which will not be discussed in this booklet.)
In order to characterize differential equations, we will use the following definitions:

� The order of a differential equation is the highest derivative, y(n), that appears in the equation.

� A differential equation is linear if the power on the dependent variable and all its derivatives is
1 and there are no terms which contain a product of these. In other words, we can write the
differential equation as a linear combination of the dependent variable and its derivatives. The
equation is called non-linear if the power on either the dependent variable or any of its derivative
is higher than 1 or the equation contains terms which include a product of these.

� The degree of a differential equation is the power on the highest order derivative.

� A differential equation is homogeneous if the dependent variable, y, or any of its derivatives are
present in all the terms. Consequently, y = 0 is always a solution of a homogeneous equation.

� A differential equation is autonomous if the independent variable, x, is not explicitly present in
the equation.

Examples of classifications of ODEs:

1. (x+ y)2 dy

dx
= 3 is a non-linear inhomogeneous ODE of first order and first degree.

2.
d2y

dx2
+ y = x3 is a linear inhomogeneous ODE of second order and first degree.

3. 2
d2s

dt2
+
ds

dt
= 2s+ s cos(t) is a linear homogeneous ODE of second order and first degree.

4.

(
d3y

dx3

)2

= y2 is a non-linear homogeneous autonomous ODE of third order and second

degree.
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Conditions

We have two types of extra conditions:

� If we specify the dependent variable and/or some of its derivatives at a particular point then we
call these Initial Conditions

� If we specify these conditions at different points we call these Boundary Conditions

In this booklet, however, we will just refer to both types of condition as boundary conditions.
Boundary conditions are often in the form y(x0) = y0 which means that when x = x0, then y = y0.
They can also be in the form y(n)(x0) = y0, which means that when x = x0, then the nth derivative of y
is equal to y0. When we are solving a differential equation subject to a boundary condition, we call the
problem an initial-value problem.

The Superposition Principle

The Superposition Principle states that if we have any two solutions, y = u1(x) and y = u2(x), to a
linear homogeneous ordinary differential equation, then y = αu1(x) + βu2(x) is also a solution for any
constants α and β.
We must adapt this theorem slightly when considering linear inhomogeneous ordinary differential equa-
tions as follows: For any two solutions, y = u1(x) and y = u2(x), to a linear inhomogeneous
ordinary differential equation, then y = yP + αu1(x) + βu2(x) is also a solution for any constants α and
β and yP is the particular solution.
This theorem enables us to use a variety of techniques to find solutions to linear ODEs, which we will
encounter later on in this chapter.
Important: The Superposition Principle only applies to linear ODEs.
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10.2 First Order ODEs

Solution by Direct Integration

The most simple form of an ODE is: �


�
	dy

dx
= f(x)

In this case we simply need to integrate the function f(x), as we saw in the previous chapter on
Integration.
For example, given the ODE:

dy

dx
= 3x2

we would integrate to get
y = x3 + C

where C is a constant of integration, as usual.
This is called the general solution of the ODE. It is general because we have an arbitrary constant
and so this solution describes an infinite number of curves corresponding to an infinite number of
constants of integration. To find a particular solution, in which we would have no unknown constants,
we require an additional piece of information in the form of a boundary condition.
We do this by simply substituting in our boundary conditions and thereby calculating C from the
equation. For example, in the above problem, if we are given the initial condition y(0) = 2, then we
substitute x = 0 and y = 2 into the general solution, giving:

2 = 0 + C ⇒ C = 2

Hence our particular solution to this initial-value problem is

y = x3 + 2

Note: We can always check if our answer is a solution by substituting it into the ODE.

Solution by direct integration is actually a special case of the following method, separation of variables,
which occurs when the function g(y) = 1.

Separation of Variables

If we have a differential equation in the form:�


�
	dy

dx
= f(x)g(y)

where f(x) is a function of only x and g(y) is a function of only y, then we can use the method of
separating the variables which works by rewriting our differential equation into the form:�



�
	dy

g(y)
= f(x) dx

so that we have all the y’s on the left hand side of the equation and all the x’s on the right hand side so
that we can integrate each side with respect to one variable.�



�
	

∫
dy

g(y)
=

∫
f(x) dx
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Example: If
dy

dx
=

4x3

y2
, use the method of separation of variables to find the function y.

Solution: First we need to get the differential equation into the correct form with all the x’s on
the right hand side and all the y’s on the left. Multiplying both sides by y2 gives:

y2 dy = 4x3 dx

We can now integrate both sides; the left with respect to y and the right with respect to x:∫
y2 dy =

∫
4x3 dx

1

3
y3 =

4x4

4
+ C

y3 = 3x4 + C ′

y =
3
√

3x4 + C ′

where C ′ = 3C and is a constant.

Example: If
dy

dx
=

sin(−x) + e4x

y2
then use the method of separation of variables to find an

expression for y in terms of x.

Solution: So first we need to get the differential equation into the correct form will all the x’s on
the right hand side and all the y’s on the left. So we have:

y2 dy =
(

sin(−x) + e4x
)
dx

We can now integrate both sides, the left with respect to y and the right with respect to x:∫
y2 dy =

∫ (
sin(−x) + e4x

)
dx Split up the integral on the right

∫
y2 dy =

∫
sin(−x) dx+

∫
e4x dx Integrate both sides

y3

3
= cos(−x) +

e4x

4
+ C Multiply both sides by 3

y3 =
3

4
e4x + 3 cos(−x) + 3C Take the cube root of both sides

y =

(
3

4
e4x + 3 cos(−x) + C ′

) 1
3

Where C ′ = 3C
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Physics Example: The force between two particles is modelled to be:

F =
12ε

a0

[(
a0

r

)13

−
(
a0

r

)7
]

Given that force is the negative derivative of potential, i.e. F = − d

dr
U , and at r = a0, U = −ε

calculate the potential between the two particles.

Solution: This is a problem of seperating variables so first we set up the problem:

− d

dr
U =

12ε

a0

[(
a0

r

)13

−
(
a0

r

)7
]

Turn this into a nicer form with negative powers

− d

dr
U =

12ε

a0

[
a13

0 r−13 − a7
0 r
−7

]
Multiply by dr and integrate both sides

−
∫
dU =

∫
12ε

a0

[
a13

0 r−13 − a7
0 r
−7

]
dr Take the constant

12ε

a0
out of the integral

−U =
12ε

a0

∫ [
a13

0 r−13 − a7
0 r
−7
]
dr Now integrate the right hand side

−U =
12ε

a0

(
− a13

0

12
r−12 +

a7
0

6
r−6

)
+ C This simplifies down

U = ε
(
a12

0 r−12 − 2a6
0 r
−6
)

+ C

Now find C by substitution (r = a0, U = −ε)

−ε = ε
(
a12

0 a−12
0 − 2a6

0 a
−6
0

)
+ C Simplify this

−ε = ε
(
1− 2

)
+ C

−ε = −ε+ C

0 = C

Back into our equation we get, U = ε
(
a12

0 r−12 − 2a6
0 r
−6
)
.

Note: This is another form of the Lennard-Jones 6-12 potential, with a0 being the equilibrium
seperation and ε being the energy needed to move the particles apart to infinity.
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The Integrating Factor Method

Equations of the form �



�
	dy

dx
+ g(x)y = f(x)

are linear and can be solved using the method of integrating factor. In order to use this method, we must
always ensure that our differential equation is in the form above and that there is nothing multiplied by

the
dy

dx
.

Our objective is to write our equation in the form

d

dx

(
I(x)y

)
= I(x)f(x)

by finding an integrating factor I(x). This form is beneficial because we can now directly integrate
this to find the solution.
The formula for the integrating factor is: �

�
�
�I(x) = e

∫
g(x)

We then simply need to find
1

I(x)

∫
I(x)f(x) dx

. For example, given the equation

x
dy

dx
+ 2y = x2 − x+ 1

we begin by dividing everything by x to get the equation in the correct form:

dy

dx
+ 2

y

x
= x− 1 +

1

x

Now we can compare this equation to our general form for these equations, and note that f(x) = x−1+
1

x

and g(x) =
2

x
. Now, we can find the integrating factor as follows:

I(x) = e
∫
g(x) dx = e

∫ 2

x
dx

= e2 ln |x| = x2

Now we can write the ODE as

d

dx

(
x2y

)
= x2(x− 1 +

1

x
) = x3 − x2 + x

and so we only need to solve

y =
1

x2

∫
(x3 − x2 + x) dx

=
1

x2
(
1

4
x4 − 1

3
x3 +

1

2
x2 + C)

=
1

4
x2 − 1

3
x1 +

1

2
x+ Cx−2
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Example: Find the general solution of the following differential equation:

dy

dx
+ 2xy = 6x

Solution: The integrating factor is

I(x) = e
∫

2x dx = ex
2

And as the theory tells us that
d(yI(x))

dx
= 6xI(x)

(Where f(x) = 6x)

This implies that

yex
2

=

∫
6xex

2

dx

Knowing that ex
2

differentiates to 2xex
2

allows us to assume that 2xex
2

integates to give ex
2

.
Therefore we if write the equation above as

yex
2

= 3

∫
2xex

2

dx

Then is it easy to see that

yex
2

= 3ex
2

+ C

Therefore
y = 3 + Ce−x

2

Example: Find the solution to the initial value problem:

dy

dx
+
−2y

x
= 8x2

If x = 1 at y = 0

Solution: The integrating factor is

I(x) = e

∫ −2
x dx = e−2 ln x = x−2

And as
d(yI(x))

dx
= f(x)I(x)

An f(x) = 8x2 This implies that

yx−2 =

∫
8 dx

Therefore
yx−2 = 8x+ C

Using the Boundary Conditions, we ge that 0 = 8 + C and therefore C = −8
Our final answer is then

y = 8(x3 − x2)
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Equations of the Form
dy

dx
= f( y

x
)

If we have a homogeneous differential equation of the form�


�
	dy

dx
= f( yx )

then we cannot always use separation of variables, so we use the change of variable V = y/x in order to
get our equation into a more manageable form. We can then usually separate the variables and integrate
with respect to this new variable.
Note: In this case, the word homogeneous has a different meaning to the one described on page 194.
We can write these types of equations in an alternate form:�

�
�

dy

dx
=
F (x, y)

G(x, y)

In order to use this method, the functions F (x, y) and G(x, y) must be homogeneous functions of degree
one, meaning that they satisfy the condition:

F (kx, ky) = kF (x, y)

For example, if we have the differential equation

dy

dx
=
y +

√
x2 − y2

x

then F (x, y) = y+
√
x2 − y2 satisfies the above relation since ky+

√
k2x2 − k2y2 = k(y+

√
x2 − y2), and

clearly so does G(x, y) = x. Now that we have checked the condition, we can then use the substitution
V = y/x⇒ y = V x. We then have:

dy

dx
=
dV x

dx
= V + x

dV

dx

So the equation becomes:

x
dV

dx
=
V x+

√
x2 − V 2x2

x
− V = V +

√
1− V 2 − V

⇒ x
dV

dx
=
√

1− V 2

This equation is separable and so we can write:∫
1√

1− V 2
dV

∫
1

x
dx

and then integrate this using the methods in the Integration chapter to give:

arcsin(V ) = ln |x|+ C ⇒ V = sin(ln |x|+ C)

Now we must remember to return to the original variable y by substituting V = y/x:

y = x sin(ln |x|+ C)
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Example: Find the general solution of the following differential equation:

5xy2 dy

dx
= x3 + 2y3, x > 0

Solution: Rearranging the equation we get

dy

dx
=
x3 + 2y3

5xy2

which is an equation in the form
dy

dx
= F (x,y)

G(x,y) where F and G are homogeneous equations.

Using the substitution v = y
x we obtain get

dy

dx
= v +

dv

dx
and y = xv

Using this to re-write the equation gives

v + x
dv

dx
=
x3 + (xv)3

5x(xv)2

Dividing by x3 on the top and bottom of the fraction gives

v + x
dv

dx
=

1 + v3

5v2

Using the technique of separating the variables gives∫
1

x
dx =

∫
5v2

1− 3v3
dx

The integral on the left hand side is a standard integral but the right hand side is more difficult.
However it can be done simply enough with the right trick. Notice that the derivative of 1− 3v3

with respect to v is −9x3. Therefore we can get this integrand to a standard inspection integral
by rewriting it as

−5

9

∫
−9v2

1− 3v3
dx

(An integral in the form of

∫
f ′(x)

f(x)
dx)

Integrating both sides gives

ln |x| = −5

9
ln |1− 3v3|+ c

Rewriting c as ln |k| and using log rules this equation simplifies further to

ln

∣∣∣∣x(1 + 3v3)5/9

k

∣∣∣∣ = 0

As ln(1) = 0 we know
x(1 + 3v3)5/9

k
= 1

and with further rearranging

v =

(
(kx )

9
5 − 1

3

) 1
3
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Equations of the Form
dy

dx
+ f(x)y = g(x)yk

Equations of the form �



�
	dy

dx
+ f(x)y = g(x)yk

are often called Bernoulli equations. Clearly we cannot simply separate the variables, but if we use the
substitution z = y1−k we can get round this. Differentiating with respect to x gives:

dz

dx
= (1− k)y−k

dy

dx

On rewriting the original equation as

y−k
dy

dx
+ f(x)y1−k = g(x)

and now substituting our substitution in, we obtain:

dz

dx
+ (1− k)f(x)z = (1− k)g(x)

We can now solve this equation using an integrating factor as before.
For example, given the equation

dy

dx
+ xy =

y

x

, we rewrite as

y
dy

dx
+ xy2 = x

Now, use the substitution z = y2 and differentiate this to get:

dz

dx
= 2y

dy

dx

Substituting these into our equations gives:

dz

dx
+ 2xz = 2x

We can now solve this using an integrating factor e
∫

2x dx to get

z = 1 + Ce−x
2

Then, returning to the original variable

y2 = 1 + Ce−x
2
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Example: Find the general solution of the following differential equation:

2
dy

dx
+ 4xy = 2xy4 = 0

Solution: Rearranging the equation we get

2y−4 dy

dx
+ 2

2x

y3
= −2x

Dividing by 2 gives

y−4 dy

dx
+

2x

y3
= −x

Using the substitution z = y1−k with k = 4 gives
dz

dx
= −3y−4 dy

dx
, which allows us to get

dz

dx
− 6xz = 3

Using that the integrating factor is

e
∫
−6x dx = e−3x2

we obtain

ze−3x2

=

∫
3xe−3x2

dx

Rewriting this as

ze−3x2

= −1

2

∫
−6xe−3x2

dx

allows us to integrate by inspection

ze−3x2

= −1

2
e−3x2

+ C

Which implies

z =
−1

2
+ Ce3x2

And in turn

y =
1

(Ce3x2 − 1
2 )

1
3

©University of Birmingham, 2015
200

http://creativecommons.org/licenses/by-nc-nd/4.0/


10.3 Second Order Differential Equations

A second order differential equation is an equation of the form f(y, y′, y′′) = 0. In this section we will
only be considering linear second order ODE and our aim when given this type of equation is to find
y(x).
When we are tasked with solving a second order ODE the first question we must ask is whether the
equation we’re given is homogeneous or not. A general second order ODE is:

a
d2y

dx2
+ b

dy

dx
+ cy = f(x)

where a, b and c are constants.
This is a homogeneous function if f(x) = 0 since the dependent variable y then appears in all the
terms. i.e.

a
d2y

dx2
+ b

dy

dx
+ cy = 0

Homogeneous Second Order Constant Coefficient Differential Equations

To solve a homogeneous second order ODE we predict a general solution of y = emx. From this we can
determine that

dy

dx
= memx

and that
d2y

dx2
= m2emx

Substituting this in to our general equation of a homogeneous second order ODE we obtain

am2emx + bmemx + cemx = 0

OR
emx(am2 + bm+ c) = 0

As we know that an exponential term (in this case the emx) cannot equal zero we know that am2 +bm+c
must equal zero. Solving this quadratic equation (called the auxiliary equation or characteristic
equation of the ODE) will give us the values of m for which y = emx is a solution of the second order
ODE given.
However there are three cases when solving a quadratic equation: it can have two real roots, one
repeated root or no real roots. Each of these cases requires a different trial function in order to solve the
equation.
Case 1: Two Real Roots
For the case when the equation has two real roots, we have two solutions to the second order ODE
y = em1x and y = em2x. We simplify this to one solution by adding them together using the superposition
principle. However to allow this to be a general solution which encompasses all different possible solutions
dependent on initial conditions, we put an arbitrary constant in front of both terms.
i.e. For a homogeneous second order ODE with two solutions to the auxiliary equation, m1 and m2, we
give the general solution as

y = Aem1x +Bem2x

where A and B are arbitrary.
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Example: Solve the initial value problem

d2y

dx2
+ 2

dy

dx
− 24 = 0

if x = 0 at y = 8 and
dy

dx
= 122

Solution: The auxiliary equation is

m2 + 2m− 24y = 0

This factorises to
(m− 4)(m+ 6) = 0

So has two real roots;
m = 4

m = −6

Therefore the general solution is
y = Ae4x +Be−6x

If at x = 0, y = 8
8 = A+B

dy

dx
= 4Ae4x − 6Be−6x

If at x = 0,
dy

dx
= 122

122 = 4A− 6B

Solving these equations simultaneously yields the answer

A = 17

B = −9

Then the particular solution to this problem is

y = 68e4x + 54e−6x

Case 2: One Repeated Root
For this case, we use a general solution of the form

y = emx(A+Bx)

An understanding of why this is the case is not necessary but it is important to remember the general
form.
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Example: Find the general solution to the second order ODE:

d2y

dx2
+ 6

dy

dx
+ 9 = 0

Solution: The auxiliary equation is
m2 + 6m+ 9 = 0

This factorizes to
(m+ 3)2 = 0

So has one repeated root
m = −3

Therefore the general solution is
y = e−3x(A+Bx)

Case 3: No Real Roots (Complex Roots)
In the case where the roots are m = α± iβ, using the solution from case one we obtain

y = Ae(α+iβ)x +Be(α−iβ)x

Taking out the common factor of eα we obtain

eαx(Aeiβx +Be−iβx)

Converting the complex parts to modulus-argument form

eαx(A(cos(βx) + i sin(βx)) +B(cos(−βx) + i sin(−βx))

As cosine is an even function and sine is an odd function we can simplify this further

eαx(A(cos(βx) + i sin(βx)) +B(cos(βx)− i sin(βx)))

eαx((A+B) cos(βx) + (A−B)i sin(βx))

Combining the constants we obtain

eαx(A′ cos(βx) +B′ sin(βx))

This is the general form we use when solving a second order ODE of this type.

Example: Solve the initial value problem

d2y

dx2
+ 64 = 0

if at x = π, y = 8 and at x = π
8 , y = 3

Solution: The auxiliary equation is
m2 + 64 = 0

This has complex roots of
m = ±8i

Therefore the general solution is

y = A cos(8x) +B sin(8x)

If at x = π, y = 8⇒ A = 1
If at x = π

8 , y = 3⇒ B = −3
Therefore the solution to the problem is:

y = cos(8x) +−3 sin(8x)
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Note: There is no need to derive the general formulae each time you do a question, all three are quotable.

Inhomogeneous Second Order Differential Equations

An inhomogeneous second order ODE has the general from

a
d2y

dx2
+ b

dy

dx
+ cy = f(x)

where f(x) 6= 0.
To solve these is slightly more laborious however is not particularly difficult. The first step is to solve
the corresponding homogeneous equation (which has the same left hand side, but setting f(x) to 0). The
solution we get with this technique is called the complementary function. After this, to complete the
solution, we need to find the particular integral.
To find the particular integral we need to consider the f(x) term on the right hand side of the equation.
We choose a ‘trial function’ dependent on the form of f(x). Here is a table showing which trial function
to make for each case:

f(x) Trial Function

Polynomial of degree n Axn + Bxn−1 + Cxn−2 + ...

ekx Cekx

cos(kx) and/or sin(kx) C cos(kx) + D sin(kx)

Note: If f(x) is a product of two or three of the terms given in the left hand column of the table, we use
a trial function that is the product of the corresponding trial functions given in the right hand column
of the table.
After choosing the right trial function we proceed to differentiate it one and then twice, and substitute

these into the equation as
d2y

dx2
,
dy

dx
and y correspondingly. By comparing the coefficients of the terms on

either side of the equation we can get values for all arbitrary constants. Once these are found we know
the particular integral.
The final general solution is

y(x) = yCF (x) + yPI(x)

Where yCF (x) is the complementary function and yPI(x) is the particular integral.
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Example: Solve the second order ODE

d2y

dx2
− 9y = 2x2 + x

Solution: Consider the corresponding homogeneous equation:

d2y

dx2
− 9y = 0

and solve as before.
m2 − 9 = 0

Therefore m = ±3
Therefore the complementary function is

yCF = Ae3x +Be−3x

For the particular integral we will make the trial function Cx2 +Dx+ E.

yPI = Cx2 +Dx+ E

d(yPI)

dx
= 2Cx+D

d2(yPI)

dx2
= 2C

Substituting these into the original equation we get:

2C − 9Cx2 − 9Dx− 9E = 2x2 + x

Then equating the coefficients of sine and cosine:

−9C = 2⇒ C = −2

9

−9D = 1⇒ D = −1

9

2C − 9E = 0⇒ E =
4

81

The final solution is:

y = Ae3x +Be−3x − 2

9
x2 − 1

9
x+

4

81
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Example: Solve the second order ODE

d2y

dx2
+ 15

dy

dx
+ 50y = 4 cos(x)

Solution: Consider the corresponding homogeneous equation:

d2y

dx2
+ 15

dy

dx
+ 50y = 0

and solve as before.
m2 + 15m+ 50 = 0

This factorizes to give (m+ 5)(m+ 10) = 0
Therefore m = −5 or m = −10
Therefore the complementary function is

yCF = Ae−5x +Be−10x

For the particular integral we will make the trial function C cos(x) +D sin(x).

yPI = C cos(x) +D sin(x)

d(yPI)

dx
= −C sin(x) +D cos(x)

d2(yPI)

dx2
= −C cos(x)−D sin(x)

Substituting these into the original equation we get:

−C cos(x)−D sin(x) + 15(−C sin(x) +D cos(x)) + 50(C cos(x) +D sin(x)) = 4 cos(x)

Then equating the coefficients of sine and cosine:

15D − 49C = 4

49D − 15C = 0

D = − 15

544

C = − 49

544

The final solution is:

y = Ae−5x +Be−10x − 49

544
cos(x)− 15

544
sin(x)
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Example: Solve the second order ODE

12
d2z

dy2
+ 32

dz

dy
+ 5 = 25e4x cos(x)

Solution: Solving the corresponding homogeneous equation: The auxiliary equation is

12m2 + 32m+ 5 = 0

This factorizes to give (2m+ 5)(6m+ 1) = 0
Therefore the complementary function is

zCF = Ce−
5
2y +De−

1
6y

For the particular integral we will use the trial function e4y(A cos(y) +B sin(y)).

zPI = e4y(A cos(y) +B sin(y))

d(zPI)

dx
= 4e4y(A cos(y) +B sin(y)) + e4y(−A sin(y) +B cos(y))

d2(zPI)

dy2
= 16e4y(A cos(y) +B sin(y)) + 4e4y(−A sin(y) +B cos(y))+

4e4y(−A sin(y) +B cos(y)) + e4y(−A cos(y)−B sin(y))

Substituting these into the original equation we get:

12(16e4y(A cos(y) +B sin(y)) + 4e4y(−A sin(y) +B cos(y))+4e4y(−A sin(y) +B cos(y)) +
e4y(−A cos(y)−B sin(y))) + 32(4e4y(A cos(y) +B sin(y)) + e4y(−A sin(y) +B cos(y))) +

5(e4y(A cos(y) +B sin(y))) = 25e4y cos(y)

313A+ 128B = 25
128A+ 313B = 0

A = 0.0684 (3sf)

B = 0.0279 (3sf)

zPI = e4y(0.0684 cos(y) + 0.0279 sin(y))

The final solution is:

z = Ce−
5
2y +De−

1
6y + e4x(0.0684 cos(y) + 0.0279 sin(y))
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Physics Example: The motion of a damped driven oscillator is described by

d2θ

dt2
+ b

dθ

dt
= λ cos(ωt)

where θ is the angle of the pendulum from equilibrium, t is time, ω is the angular frequency and
λ and b are constants. Find the general solution for this ODE.

Solution: Solving the corresponding homogeneous equation:

m2 + bm = 0

This factorizes to give m(m+ b) = 0
Therefore m = 0 or m = −b
Therefore the complementary function is

θCF = Ae0t +Be−bt = A+Be−bt

For the particular integral we will make the trial function C cos(ωt) +D sin(ωt).

θPI = C cos(ωt) +D sin(ωt)

d(θPI)

dt
= −Cω sin(ωt) +Dω cos(ωt)

d2(θPI)

dt2
= −Cω2 cos(ωt)−Dω2 sin(ωt)

Substituting these into the original equation we get:

−Cω2 cos(ωt)−Dω2 sin(ωt) + b(−Cω sin(ωt) +Dω cos(ωt)) = λ cos(ωt)

Then equating the coefficients of sine and cosine:

−Cω2 + bDω = λ

−Dω2 − Cbω = 0

C =
λ

b2 − ω2

D =
λb

ω(b2 − ω2)

The final solution is:

θ = A+Be−bt
λ

b2 − ω2
cos(ωt) +

λb

ω(b2 − ω2)
sin(x)
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Equations with Dangerous Terms

The technique described above only works when f(x) in not proportional to a term in the complementary
function. For example if we have a complementary function of

y = Ae12x +Be7x

but
f(x) = 6e12x

then as one of the terms in the complementary function is Ae12x which is proportional to f(x) we cannot
choose our trial function as Ce12x as the table would suggest.
When this happens, to solve the problem, we use the trial function multiplied by x. So in this example
we would use:

Cxe12x

However, in our example, if the complementary function had been y = e12x(A + Bx) (in the case of
having a repeated root), even when the trial function was multiplied by x it would still be proportional
to Bxe12x and therefore our trial function would fail again, our technique to solve this is to multiply by
x again and therefore we would use:

Cx2e12x
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Example: Solve the second order ODE

d2y

dx2
+ 4

dy

dx
+ 4 = 7e−2x

Solution: Solving the corresponding homogeneous equation: The auxiliary equation is

m2 + 4m+ 4 = 0

This factorizes to give (m+ 2)2 = 0
Therefore the complementary function is

yCF = e−2x(A+Bx)

For the particular integral we would normally make the trial function Ce−2x. But as f(x) is
proportional to the first term in the complementary function, so we have to multiple it by an x.

Cxe−2x

However, this is proportional to the second term in our complementary function so again we must
multiplied by an x.

Cx2e−2x

yPI = Cx2e−2x

d(yPI)

dx
= 2Cxe−2x − 2Cx2e−2x

d2(yPI)

dx2
= 2Ce−2x − 4Cxe−2x − 4Cxe−2x + 4Cx2e−2x

Substituting these into the original equation we get:

2Ce−2x − 4Cxe−2x − 4Cxe−2x + 4Cx2e−2x + 4(2Cxe−2x − 2Cx2e−2x) + 4(Cx2e−2x) = 7e−2x

2Ce−2x = 7Ce−2x

⇒ 2C = 7

C =
7

2

yPI =
7

2
x2e−2x

The final solution is:

y = e−2x(A+Bx) +
7

2
x2e−2x
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10.4 Setting Up Differential Equations

Knowing how to solve a differential equation is an essential skill, however in physics one must be able to
create the differential equation from the physical situation in the first place. As explained previously, a
derivative is the rate of change of a function with respect to the given variable. A strong understanding
of this concept is key to success in this section. It is hard to picture how the gradient is the rate of
change of the dependent variable with respect the independent variable so we can understand it with
examples.
Physically we understand velociy as how fast something moves, but mathematically we define it as the
rate of change of displacement with respect to time. The two ideas are actually one and the same when
one understands rate of changes; how fast something moves is a measure of how far they have travelled
(the change in displacement) in a specified time (with respect to time).

Physics Example: A particle is released from rest at t = 0 and x = 0, its subsequent velocity
is described by the equation

v = 3t− 45t2 + 3

How what the particles displacement function of time, x(t)?

Solution: We know that the velocity is equal to the rate of change of displacement with respect to
time, i.e.

v =
dx

dt

So
dx

dt
= 3t− 45t2 + 3

By using the method of separation of variables we obtain:∫
x dx =

∫
3t− 45t2 + 3 dt

and therefore:
x2

2
=

3t2

2
− 15t3 + 3t+ C

Using the boundary conditions we deduce that C must equal 0.
Our final answer is:

x =
√

3t2 − 30t3 + 6t

With the understanding of what a derivative is we are able to convert physical situations into mathemat-
ical equations which increases our understanding of the situation at hand and allows us to predict what
will happen if the variables alter. For example if we are told ‘in radioactive decay the rate of change of
one nuclear species into another depends on the amount of un-decayed material present.’ We can say
that:

dN

dt
= −λN

Where N is the number or un-decayed nuclei and λ is the proportionality constant (there is a minus sign
as N is decreasing). Now we have this equation, we could solve for N(t) and make predictions for the
amount of un-decayed material at any time.
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Physics Example: Determine the time dependence of the temperature of a cup of tea, T(t).

Solution: If we assume that the loss of heat of the cup of tea is proportional to its temperature we
can say that:

dT

dt
= −αT

Where α is a constant of proportionality. Separating the variable we get:∫
1

T
dT =

∫
−αdt

ln |T | = −αt+ C

If we let T = T0 at t = 0 we obtain that

C = ln |T0|

Finally we re-arrange:
ln |T | − ln |T0| = −αt

ln

∣∣∣∣ TT0

∣∣∣∣ = −αt

T = T0e
−αt

Physics Example: What happens to an un-powered boat which has an initial velocity v0

and is moving in a viscous medium such that the viscous force on the boat is proportional to the
velocity of the boat? Produce an equation for the time dependence of the boat’s velocity.

Solution: Note that ‘the viscous force on the boat is proportional to the velocity of the boat’. This
suggests that the resistive force on the boat, R, can be described by:

R = λv

Where λ is a constant of proportionality and v is the velocity of the boat.
From Newton’s second law of motion we know that ‘resultant force = mass × acceleration’ or
F = ma. Using this we say:

−R = −λv = ma

Acceleration is the rate of change of velocity (how much the velocity changes in a unit time) so we
can say that:

−λv = m
dv

dt

Separating the variables gives: ∫
−λ dt =

∫
m

v
dv

−λt = m ln |v|+ C

At t = 0 we know that v = v0, therefore:

−λ× 0 = m ln |v0|+ C

C = −m ln |v0|

Substituting this in and rearranging gives

v = v0e
−λt
m

The question asks what happens to the boat as time goes on so we need to use this equation to
predict what happens as t increases. It is clear to see that an increase of t will mean that the
exponential term will be less than one and decreasing, i.e. the boat will slow down and stop at
time t =∞.
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The following example is harder than the previous two but it is built on the same idea of converting a
situation to equations using rates of change.

Physics Example: A bath tub of volume of 100L is filled with a mixture of 90% water and
10% alcohol. If the plug hole is opened, 1 litre of fluid is lost every minute. A hose is turned on
and put in the tub at t = 0. It sprays 1 litre of a mixture of 50% water and 50% alcohol into the
tub every 30 seconds. At t = 0 the plug hole is also opened. How long does it take for the mixture
in the tub to be 50% water and 50% alcohol?

Solution: The best way to tackle this problem is to consider each liquid a separately. If we consider
water only and define W as the total water in the bath, Wh as the net water from the hose and
Wp as the net water through the plug hole:
The hose is putting a constant volume of half a litre into the tub every 30 seconds, so we can state
that:

dWh

dt
=

1

2
× 1

30
=

1

60

The plug hole is releasing a constant volume of liquid but the amount of water released is dependent
on the ratio of water to alcohol in the tub:

dWp

dt
= − 1

30
× W

100
= − W

3000

So the net loss/increase of water is described by:

dW

dt
=
dWh

dt
+
dWp

dt
=

1

60
− W

3000

Solving this with separation of variables we obtain:∫
−dW
W

3000 −
1
60

=

∫
dt

= −3000 ln |W − 50| = t+ C

This rearranges to give:

W = e
−t+C
3000 + 50

Or
W = C ′e

−t
3000 + 50

At t=0 there are 90L of water so
90 = C ′e

0
3000 + 50

⇒ C ′ = 40 So we obtain
W = 40e

−t
3000 + 50

If W = 50
50 = 40e

−t
3000 + 50

40e
−t

3000 = 0

Therefore the split of water and alcohol will be even only as t tends to ∞.

You can check this by considering the alcohol rather than the water.

This idea is very useful in all areas of physics but for a 1st year physics course it is mainly seen in the
skills course.
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10.5 Review Questions

Easy Questions

Question 1: Find the solution to this initial value problem

dy

dx
= ex, y(0) = 1

Answer:
y(x) = ex

Question 2: Solve
dy

dx
=

1

2
(1− y2)

Subject to the initial condition y(0) = −2

Answer:

coth

(
x

2
− ln(3)

2

)

Question 3: Solve the second order differential equation

dx

dt
− 3

dx

dt
+ 2y = 0

Answer:
x(t) = Aet +Be2t

Question 4: Solve the differential equation

(y + 1)2 dy

dx
= −x3

Answer:
(y + 1)3

3
= −x

4

4
+ C

Question 5: Solve the first order differential equation

dx

dt
= 5x− 3

Answer:

x(t) =
1

5
e5t+5C +

3

5
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Medium Questions

Question 6: Solve the differential equation

x
dy

dx
= y + x3 + 3x2 − 2x

Answer:

y(x) =
x3

2
+ 3x2 − 2x ln(x) + Cx

Question 7: Solve the differential equation

x
dy

dx
+ y = xy3(1 + ln(x))

Answer:

y(x) =

(
− 4

9
x− 2

3
x ln(x) +

C

x2

)− 1
2

Question 8: Taking x and the dependent variable to solve the equation

y ln(y)dx+ (x− ln(y))dy = 0

Answer:

x(y) =
ln(y)

2
+

C

ln(y)

Question 9: Find yin terms of xif
dy

dx
+ xy =

x

y

Answer:
y(x) =

√
1 + Ce−x2

Question 10: Find the solution of the second order differential equation

d2y

dx2
− 2

dy

dx
+ 10y = ex

Answer:

y(x) = ex(A cos(3x) +B sin(3x)) +
1

9
ex

Hard Questions

Question 11: Solve the differential equation

x
dy

dx
− (y +

√
x2 − y2) = 0

Answer:
y(x) = x sinh(ln(x) + C)
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Question 12: Solve second order ODE

d2y

dx2
+ 9y = x cos(x)

Hint: Try the particular integral (ax+ b) cos(x) + (cx+ d) sin(x).

Answer:

y(x) = A cos(3x) +B sin(3x) +
x

8
cos(x) +

1

32
sin(x)

Question 13: Solve the second order differential equation

d2y

dx2
− 4y = e2x

Hint: Be careful with the particular integral.

Answer:
y(x) = Ae2x +Be−2x +

x

4
e2x

Question 14: Solve the differential equation

d2y

dx2
− 4

dy

dx
+ 4y = (x3 + x)e2x

Hint: Be careful with the particular integral.

Answer:

y(x) =

(
x5

20
+
x3

6
+Bx+A

)
e2x
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11 Series and Expansions

11.1 Sequences

For completeness, we will briefly discuss what we mean by ‘sequences’, as this will lead directly into the
next section on ‘series’. A sequence is an ordered list of numbers such as

1, 4, 9, 16, ...

or
3, 5, 7, 9, ...

where the ‘...’ means that the list does not end. This should appear familiar from the section on ‘sets’,
however note that in the case of sequences, the numbers are ordered. We can generalise a sequence by
writing

a1, a2, a3, ..., an, ...

where an is called the nth term of the sequence.
Formally, a sequence is a function between the natural numbers N and the real numbers R. For example,
the functions displayed above would represent the functions an = n2 and bn = 2n + 1 respectively. So
for example if we wish to find the nth term of the first sequence, we just need to calculate n2. We can
also find the function corresponding to a simple sequence by inspection, by looking at the differences
between the terms in the sequence and using our knowledge of different functions.
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Example:

1. Find the first four terms of the sequence an = 1
n+1

2. Find the 6th term, the 18th term and the 2015th term of the sequence bn = 3n− 4.

3. Find the formula which yields the sequence 9, 11, 13, 15, ...

Solution:

1. Since we are only asked to find the first four terms, we just need to substitute n = 1,
n = 2, n = 3 and n = 4 into the formula.

a1 =
1

1 + 1
=

1

2

a2 =
1

2 + 1
=

1

3

a3 =
1

3 + 1
=

1

4

a4 =
1

4 + 1
=

1

5

2. We must substitute the values n = 6, n = 18 and n = 2015 into the formula.

b6 = 3× 6− 4 = 14

b18 = 3× 18− 4 = 50

b2015 = 3× 2015− 4 = 6041

3. First we look at the difference between each consecutive term and see that to get from one
term to the next we add 2. This means that to get from each value of n to the nth term in
our sequence, we have to multiply n by 2. So far our formula looks like cn = 2n + α. Now
we need to find α by substituting the first term into this equation:

9 = 2× 1 + α

⇒ 9− 2 = α

⇒ α = 7

So our formula is cn = 2n+ 7.
It is a good idea to check that the formula works for the first few terms in the sequence:

2× 2 + 7 = 4 + 7 = 11

2× 3 + 7 = 6 + 7 = 13

We are often interested in the behaviour of sequences as n gets increasingly large. In particular, it is
useful to know if a function tends to ±∞ or converges to a real number. We will give a brief, informal
description of what these behaviours mean, however we will not give methods for proving them.

� A sequence tends to infinity if after some point A the sequence can be made as large as we like.
Note that a sequence tends to minus infinity if after some point A the sequence can be made
as small as we like.

� A sequence converges to a real number ` if for any ε > 0, |an − `| < ε for all n ≥ N . In other
words, after some point N , each consecutive term in the sequence can be made as close as we like
to `.
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11.2 Summations

A finite sum of real numbers,
a1 + a2 + a3 + a4 + ...+ aN

is denoted by
N∑
n=1

an

where the ‘n = 1’ below the summation symbol declares which value of n we begin summing from and the
‘N ’ above the symbol declares which value of n we stop summing at. Notice also that the ‘an’ represents
the formula which we use to calculate each term in the sum, just as in the previous section on sequences.
We call n the ‘index of summation’.

Example:

1. Calculate the sum:
8∑

n=2

(−1)nn

2. Calculate the sum:
4∑

n=1

1

n

Solution:

1. We are required to add up all terms in the sequence an = (−1)nn from n = 2 to n = 8.
Note that the (−1)n is positive for even n and negative for odd n.

8∑
n=2

n = 2− 3 + 4− 5 + 6− 7 + 8 = 5

2. We are required to add up all terms in the sequence an = 1
n from n = 1 to n = 4.

4∑
n=1

1

n
=

1

1
+

1

2
+

1

3
+

1

4
=

25

12
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11.3 Series

A ‘series’ is an infinite sum of real numbers and is denoted by

a1 + a2 + a3 + a4 + ...

where, as before, the ‘...’ means that the series does not end.
We can also represent a series using the notation for a summation, ie.

∞∑
n=1

an

where the ‘n = 1’ below the summation symbol declares which value of n we begin summing from and
the ‘∞’ above the symbol tells us that this is an infinite sum. Notice that the notation here is the same
as in the section on ‘summations’, however we have replaced N with ∞.

As with sequences, it can be useful to know the behaviour of a series as n gets increasingly large. To
this end, we use the idea of a partial sum sN , where

sN =

N∑
n=1

an

A series can do one of two things:

� A series may converge to a real number s. This happens when a series can be made as close as
we like to s as we add more and more terms to the summation. If the sequence of partial sums

sN =

N∑
n=1

an

converges, then the infinite series also converges.

� If a series does not converge, then it is said to diverge. This is when a series either becomes
increasingly large (or small) as we add more terms to it, or else does something where it does not
converge to a single real number. If the sequence of partial sums

sN =

N∑
n=1

an

diverges, then the infinite series also diverges.

Arithmetic and Geometric Series

Arithmetic Series One special type of sequence is called an arithmetic sequence. The general form of
this type of sequence is:

an = an−1 + d , a1 = α

where α is a constant. In words, this means that to get to the next term in the sequence, we add d to
the previous term.

The terms of this sequence can be added up to give an arithmetic series:

SN =

N∑
n=1

[a1 + (n− 1)d]

This sum can be can be simplified:

SN =

N∑
n=1

a1 +

N∑
n=1

(n− 1)d

= Na1 + d

N∑
n=2

(n− 1)

©University of Birmingham, 2015
220

http://creativecommons.org/licenses/by-nc-nd/4.0/


= Na1 + d

N−1∑
n=1

n

We now need to consider a different sum S′ =

M∑
n=1

n. By writing out this sum we obtain

S′ = 1 + 2 + ...+ (M − 1) +M

Writing this again backwards gives

S′ = M + (M − 1) + ...+ 2 + 1

Adding these together produces
2S′ = M × (M + 1)

and hence

S′ =

M∑
n=1

n =
1

2
M(M + 1)

By replacing M in the above formula with (N − 1) as in SN we deduce:

SN =

N∑
n=1

[a1 + (n− 1)d] = Na1 +
1

2
d(N − 1)(N)

Therefore �� ��SN = 1
2N
(
2a1 + d(N − 1)

)
Note

a1 + aN = 2a1 + d(N − 1)

So �� ��SN = 1
2N(a1 + aN )

Example: Find the sum of the arithmetic series

SN =

N∑
n=0

[
4 + (n− 1)3

]
when

1. N = 7

2. N = 28

Solution: Using SN = 1
2N
(
2a1 + d(N − 1)

)
:

1. S7 =

7∑
n=0

[
4 + (n− 1)3

]
=

1

2
× 7
(
2× 4 + 3(7− 1)

)
= 91

2. S28 =

28∑
n=0

[
4 + (n− 1)3

]
=

1

2
× 28

(
2× 4 + 3(28− 1)

)
= 1246
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Example: Find the sum of the arithmetic series

S5 =

5∑
n=0

[
3 + (n− 1)9

]

Solution: As a5 = 3 + (5− 1)9 = 39 and using SN = 1
2N(a1 + aN ) we can deduce that

S5 =
1

2
N(3 + 39) = 21

Geometric Series

Another special sequence is a geometric sequence. This type of sequence has the general form:

an = an

Again the terms of this sequence can be summed, this gives a geometric series:

SN =

N∑
n=0

an

This sum can be re-written to give the formula for the sum of the geometric series:�
�

�

SN =

N∑
n=0

an =
1− aN

1− a

It is also useful to know that the ‘sum to infinity’ of this series is:�
�

�

S∞ =

∞∑
n=0

an =
1

1− a
, |a| < 1

Example: Find the sum of the geometric series

SN =

N∑
n=0

7(0.5n)

when

1. N = 5

2. N =∞

Solution:

1. S5 =

5∑
n=0

7(0.5n) = 7

( 5∑
n=0

(0.5n)

)
= 7× 1− 0.55

1− 0.5
= 7× 1.9375 = 13.5625

2. S∞ =

∞∑
n=0

7(0.5n) = 7

( ∞∑
n=0

(0.5n)

)
=

7

1− 0.5
= 14
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Power Series

An important type of series, which will come in handy in the next section, is power series. A power
series about the point x = x0 is an expression of the form

f(x) =

∞∑
n=0

an(x− x0)n

= a0 + a1(x− x0) + a2(x− x0)2 + ...

where x is a variable and the an are constants.
Power series always have a radius of convergence. This is used to describe for exactly which values the
series will converge. A power series with radius of convergence R will converge for any x such that
|x− x0| < R and will diverge for any x such that |x− x0| < R. For |x− x0| = R, we cannot say whether
the power series converges or not. Note that if R =∞, the power series converges for all x, and if R = 0,
the power series converges only when x = x0.

Note: A strong understanding of the radius of convergence is not needed.

Adding and Subtracting Power Series

It is possible to add and subtract power series. If we consider the series

∞∑
n=0

an(x− x0)n with the radius

of convergence R1 > 0 and

∞∑
n=0

bn(x− x0)n with the radius of convergence R2 > 0, then:

∞∑
n=0

an(x− x0)n ±
∞∑
n=0

bn(x− x0)n =

∞∑
n=0

(an ± bn)(x− x0)n

This new sum has the radius of convergence R ≥ min{R1, R2}

Example: Add the two series
∞∑
n=0

(n+ 2)xn

∞∑
n=0

(3n− 2)xn

Solution: These add to give:

∞∑
n=0

(n+ 2 + 3n− 2)(xn) =

∞∑
n=0

4nxn

Multiplying Power Series

It is also possible to multiply power series. If we consider the series

∞∑
n=0

an(x − x0)n with the radius of

convergence R1 > 0 and

∞∑
n=0

bn(x− x0)n with the radius of convergence R2 > 0, then:

∞∑
n=0

an(x− x0)n ×
∞∑
n=0

bn(x− x0)n =

∞∑
n=0

(cn)(x− x0)n

Where cn is given by:
a0bn + a1bn−1 + a2bn−2 + ...+ anb0

This new sum has the radius of convergence R ≥ min{R1, R2}.
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Differentiating Power Series

Finally it is possible to differentiate power series.

If we consider the series f(x) =

∞∑
n=0

an(x− x0)n which converges for |x− x0| < R, where R > 0 then f

is differentiable on (x0 −R, x0 +R) and

f ′(x) =

∞∑
n=1

nan(x− x0)n−1

This means that for all values of x for which f(x) converges, f(x) is differentiable and can be differenti-
ated by differentiating each term separately.
This idea is used to calculate means and help calculate variances of generation physics in probability and
random processes.

Example: Differentiate the following series:

∞∑
n=0

(
n4 + 34

11n
)xn

Solution: This differentiates to give:

∞∑
n=0

n(
n4 + 34

11n
)xn−1

=

∞∑
n=0

(
n4 + 34

11
)xn−1
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11.4 Expansions

Order and Rate of Growth

A useful technique when approximating functions is to collect terms by their ‘order’ and eliminate terms
that can be considered negligible. For example, if we have a function f(x) which can be expanded
to f(x) = ax + bx3 + cx5 and we a considering how the function behaves for small values of x (i.e.
x ≈ 0) then we can approximate the function by removing terms that do not contribute much. Since x
is small, x3 will be very small and x5 will be incredibly small. Therefore we can remove the term cx5

since it will not contribute to the total function. We may even wish to remove the term bx3, depend-
ing on how small the values of x that we are considering are and how accurate we want our function to
be. This technique is especially useful where we have an infinite series of terms and we wish to truncate it.

We say that higher powers of x are of higher order and lower powers of x are of lower order. We
can also produce a hierarchy on rate of growth of different functions. In general we can express this as
follows: �� ��c < xs < λx < x!

where c, s and λ are constants and we are considering the rate of growth as we increase the variable x.
In other words, this means that, for example, x! will always eventually beat an exponential term λx as
x increases, and so on.
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Binomial Expansions

In physics, when trying to describe the world around us with mathematics, the equations that are most
accurate are often very complicated. To allow us to be able to simplify these equations we can use a
binomial expansion. It is a way to eliminate terms of an equation that affect the result in such a small
way that we can consider them negligible. The general binomial expansion for the integer n is:�

�
�

(a+ b)n =

n∑
k=0

(
n

k

)
an−kbk

The binomial co-efficient
(
n
k

)
is defined as

n!

k!(n− k)!
. Therefore this expands to:�



�
	(a+ b)n =

n!

n!0!
an +

n!

1!(n− 1)!
an−1b+

n!

2!(n− 2)!
an−2b2 + ...+

n!

(n− 1)!1!
a2bn−1 +

n!

n!0!
bn

Note: 0! = 1. If you are interested to find out why click here.
However in physics it is often helpful to use the fact that we can take out a factor of a from the bracketed

term:

a

(
1 +

b

a

)n
= a

(
n!

n!0!
1n +

n!

1!(n− 1)!
1n−1

(
b

a

)
+

n!

2!(n− 2)!
1n−2

(
b

a

)2

+ ...+
n!

n!0!

(
b

a

)n)

Simplifying to:

a

(
1 +

b

a

)n
= a

(
1 +

n!

1!(n− 1)!

(
b

a

)
+

n!

2!(n− 2)!

(
b

a

)2

+ ...+

(
b

a

)n)

= a

(
1 + n

(
b

a

)
+

1

2
n(n− 1)

(
b

a

)2

+
1

6
n(n− 1)(n− 2)

(
b

a

)3

+ ...

)
The reason behind using this form of the expansion rather than the general form is that it allows us to
use the physical relationship between the variables a and b to simplify the expression. The most common
use of this is for when b << a (b is much smaller than a) which allows us to confidently say that b

a is
very small, and each time the power is increased on this term it will become increasing small until after
a certain point the influence of this term is negligible and we can approximate the equation by taking
out all the negligible terms as discussed in the previous section on ‘order’.

Generally we can use the formula:

(1 + x)n = 1 + nx+
1

2
n(n− 1)x2 +

1

6
n(n− 1)(n− 2)x3 + ...
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Physics Example: The electric field due to an electric dipole is described by:

E =
1

4πε0

(
q

(r − a
2 )2
− q

(r + a
2 )2

)
Where q is the charge of each particle, a is the separation of the particles and r is the distance
from the center of the dipoles. Simplify the expression for distances where a << r.

Solution: By taking out a factor of q, then putting both fractions over a common denominator we
obtain :

E =
q

4πε0

(
(r + a

2 )2 − (r − a
2 )2

(r − a
2 )2 × (r + a

2 )2

)
Expanding the top of the fraction gives:

E =
q

4πε0

(
r2 + ar + a2

4 − r
2 + ar − a2

4

(r − a
2 )2 × (r + a

2 )2

)

=
2arq

4πε0

(
1

(r − a
2 )2 × (r + a

2 )2

)
Notice this is equivalent to:

E =
2arq

4πε0

(
1(

(r − a
2 )× (r + a

2 )
)2)

Which is equivalent to:

E =
2arq

4πε0

(
1

(r2 − a2

4 )2

)
Consider the term:

1

(r2 − a2

4 )2

This is equivalent to:

r−4

(
1− a2

4r2

)−2

Using a binomial expansion gives:

r−4

(
1− a2

4r2

)−2

= r−4

(
1− 2

(
a2

4r2

)
+ 3

(
a2

4r2

)2

− 4

(
a2

4r2

)3

+ ...

)

As a << r we can assume that
a2

4r2
and the higher order terms,

(
a2

4r2

)2

,

(
a2

4r2

)3

,

(
a2

4r2

)4

etc,

are negligible.

Therefore r−4

(
1− a2

4r2

)−2

simplifies to just r−4.

In turn this means that

E =
2arq

4πε0

(
1

(r2 − a2

4 )2

)

≈ 2arq

4πε0

(
1

r4

)
=

aq

2πε0r3

Therefore:

E =
1

4πε0

(
q

(r − a
2 )2
− q

(r + a
2 )2

)
≈ aq

2πε0r3

Using this simplified form of the equation saves a lot of time when calculating predictions for
experiments done with electric dipoles.
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Taylor Series

One of the most powerful techniques we can use in physics is Taylor series. This enables us to write
many functions as an infinite power series. As in the previous section on the binomial expansion, we can
then find an approximation of the function by considering small values of x and ignoring terms which
are negligible. Just as mentioned in the section on power series, it is worth noting that many Taylor
series of functions only work for a certain range of x values and so has a radius of convergence R. In the
case where x0 = 0, we call the expansion a Maclaurin series.

We can usually find a Taylor expansion for a function f(x) using the following formula:�
�

�

f(x) =

∞∑
n=0

f (n)(x0)

n!
(x− x0)n

where f (n)(x0) is the nth derivative of f(x), evaluated at x0.

By expanding out the sum, this can be written as:�



�
	f(x) = f(x0) + f ′(x0)(x− x0) +

f ′′(x0)

2!
(x− x0)2 +

f ′′′(x0)

3!
(x− x0)3 + ...

This means that if we can differentiate a function multiple times then we can find its Taylor expansion.
However, in some cases, calculating the Taylor series of a function using this formula can be very la-
borious and so it is often useful to know by heart the Taylor series for some simple functions, and use
products of these to find Taylor series of more complicated function. Here are the expansions of some
common functions:

� For all x ∈ R,

ex = 1 + x+
x2

2!
+
x3

3!
+ ...+

xn

n!
+ ...

� For all x ∈ R,

sin(x) = x− x3

3!
+
x5

5!
+ ...+ (−1)n

x2n+1

(2n+ 1)!
+ ...

� For all x ∈ R,

cos(x) = 1− x2

2!
+
x4

4!
+ ...+ (−1)n

x2n

(2n)!
+ ...

� We can use the binomial expansion to find the Taylor series for (1 +x)n, however it only works for
|x| < 1.

(1 + x)n = 1 + nx+
1

2!
n(n− 1)x2 +

1

3!
n(n− 1)(n− 2)x3 + ...
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Example:

1. Using the appropriate Taylor series, find e2 up to the first six terms.

2. Using the general formula for the Taylor series of a function, prove the above Taylor series
for cos(x) about x = 0 for the first three non-zero terms.

3. Find the first six terms of the Taylor series for eix and hence deduce Euler’s formula: eix =
cos(x) + i sin(x).

Solution:

1. We use the above formula for ex and substitute x = 2.

e2 = 1 + 2 +
22

2
+

23

3!
+

24

4!
+

25

5!
+ ...

= 1 + 2 +
4

2
+

8

6
+

16

24
+

32

120
+ ...

= 1 + 2 + 2 +
4

3
+

2

3
+

4

15
+ ...

≈ 109

15
≈ 7.27

Comparing this to the actual value of e2 ≈ 7.39, we see that our approximation is not far off
and would converge to the actual value as we include more terms in our series.

2. Use the formula for the general Taylor series of a function. By differentiating f(x) = cos(x)
we have:

f ′(x) = − sin(x)

f ′′(x) = − cos(x)

f ′′′(x) = sin(x)

f ′′′′(x) = cos(x)

Then

cos(x) = cos(0)− sin(0)x− cos(0)

2
x2 +

sin(0)

3!
+

cos(0)

4!
+ ...

= 1− 0 +
x2

2
+ 0 +

x4

4!
+ ... = 1 +

x2

2
+
x4

4!
+ ...

as required.

3. Using the Taylor series for ex with x = ix, and by considering powers of i, we get:

eix = 1 + ix+
(ix)2

2!
+

(ix)3

3!
+

(ix)4

4!
+

(ix)5

5!
+ ...

= 1 + ix− x2

2!
− ix

3

3!
+
x4

4!
+ i

x5

5!
+ ...

Collecting the real and imaginary terms:

eix =

(
1− x2

2!
+
x4

4!
+ ...

)
+ i

(
x− x3

3!
+
x5

5!
+ ...

)
Now by comparing this with the Taylor series for sin(x) and cos(x), we have

eix = cos(x) + i sin(x)

©University of Birmingham, 2015
229

http://creativecommons.org/licenses/by-nc-nd/4.0/


Example: Find the power series of e4x sin(x) up to and including x4.

Solution: We know that:

ex = 1 + 4x+
16x2

2!
+

64x3

3!
+ ...+

(4x)n

n!
+ ...

sin(x) = x− x3

3!
+
x5

5!
+ ...+ (−1)n

x2n+1

(2n+ 1)!
+ ...

Therefore:

e4x sin(x) = (1 + 4x+
16x2

2!
+

64x3

3!
+ ...+

(4x)n

n!
+ ...)(x− x3

3!
+
x5

5!
+ ...+ (−1)n

x2n+1

(2n+ 1)!
+ ...)

We can see that when we expand the brackets there will be no term including x0 (or constant term).

We can also see that the only term that includes x1 will be when the first term in each
series is multiplied together, 1 and x. So the first term in our answer will be

x

To get a term including x2 we can multiply together 4x with x. Therefore our second term in our
answer is

4x2

The term including x3 can be found by multiplying 1 with
−x3

3!
as well as multiplying

16x2

2!
with

x. Therefore the third term in our answer is

−x3

3!
+

16x3

2!
=

47x3

6

To find the last term in our series we need to look how we will get terms including x4. We will

obtain this from multiplying the terms 4x with
−x3

3!
and

64x3

3!
with x. Therefore the fourth and

final term we are looking for is
−2x4

3
+

32x4

3
= 10x4

Therefore:

e4x sin(x) = x+ 4x2 +
47x3

6
+ 10x4
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Example: What is the Taylor series up to and including the term of order x3 for

ex

1− x

if |x| < 1.

Solution: We know that the Taylor series for ex is:

ex = 1 + x+
x2

2!
+
x3

3!
+ ...+

xn

n!
+ ...

And that the Taylor series for 1
1−x is:

1

1− x
= 1 + x+ x2 + x3 + ...+ xn + ...

Therefore

ex

1− x
= (1 + x+ x2 + x3 + ...+ xn + ...)(1 + x+

x2

2!
+
x3

3!
+ ...+

xn

n!
+ ...)

Expanding this and collecting like terms gives:

ex

1− x
= 1 + 2x+

5x2

2
+

8x3

3
+ ...
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11.5 Review Questions

Easy Questions

Question 1: What are the first 4 terms of the sequence given by

an = (an−1)2 + 3

if:

� a1 = 4,

� a1 = −2,

� a1 = 0?

Question 2: Find the sum of the finite series:

S =

4∑
n=0

n3 + 2n+ 1

Answer:
125

Question 3: Find the sum of the finite series:

S =

6∑
n=0

2n

Answer:
127

Question 4: Find the sum of the infinite series:

S =

∞∑
n=0

0.7n

Answer:
10

3

Question 5: What is

SN =

17∑
n=1

[3 + (n− 1)2]

Answer:
323
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Medium Questions

Question 6: Find first 4 terms of the binomial expansion of

(2 + 3x)6

.
Answer:

64 + 576x+ 2160x2 + 4320x3

Question 7: Find the Taylor expansion of sin(x) and ex using the formulae to find a Taylor
expansion.
Answer:

sin(x) = x− x3

3!
+
x5

5!
+ ...+ (−1)n

x2n+1

(2n+ 1)!
+ ...

ex = 1 + x+
x2

2!
+
x3

3!
+ ...+

xn

n!
+ ...

Question 8: Find the first 4 terms of

ex sin(x)

using the Taylor expansions derived in the previous question.
Answer:

x+ x2 +
x3

3
− x5

30

Hard Questions

Question 11: Use a Taylor expansion to prove that

lim
x→0

sin(x)

x
= 1
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12 Operators

12.1 Introduction to Operators

Operators are covered more extensively in the second year, however it is useful to have a basic under-
standing of what an operator is and why they are used. An operator takes its name from the fact that
it is something that acts on a function as opposed to acting on numbers. In first year we are mainly
concerned with Hermitian operators, as all physical observables (quantities) can be represented by a
Hermitian operator in quantum mechanics. This is written as:

ÂΨ = aΨ

The above equation is an example of an eigenvalue equation, where a is an eigenvalue of the operator
Â and Ψ is an eigenfunction. We denote operators with a ‘hat’, and eigenvalues are always real constants.
An operator may have multiple eigenvalues, each representing a possible measurement of the physical
observable in question. However, these eigenvalues are the only values that the observable can take
for that particular wavefunction. If an operator acts on a wavefunction and does not return a constant
multiplied by the wavefunction, then we cannot measure the observable represented by the operator for
this wavefunction and the wavefunction is said to not be an eigenfunction of the observable. This is due
to the Heisenberg Uncertainty Principle, which will not be covered here. Some examples of important

operators in quantum mechanics are:

� The momentum operator (in the x-direction):

p̂x = i~
∂

∂x

� The kinetic energy operator:

T̂ = − ~2

2m

∂2

∂2x

� The total energy operator:

Ê = i~
∂

∂t

So if we have a wave represented by a wavefunction, Ψ(x), and we wish to find the kinetic energy of this
wave, we would calculate

T̂Ψ(x) = − ~2

2m

∂2

∂2x
Ψ(x)

If this returned an expression of the form aΨ, then we know that the kinetic energy of this wave is a.
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Physics Example:

1. Using the operators defined above, show that Ψ(x, t) = A sin(kx− ωt) is an eigenfunction of
kinetic energy and find the eigenvalue.

2. Using the operators defined above, show that Ψ(x, t) = Ae−i(kx−ωt) is an eigenfunction of
momentum (in the x-direction) and find the eigenvalue.

Solution:

1. We are required to calculate

− ~2

2m

∂2

∂2x
Ψ(x, t) = − ~2

2m

∂2

∂2x
A sin(kx− ωt)

= − ~2

2m
Ak cos(kx− ωt)

=
~2

2m
Ak2 sin(kx− ωt)

=
~2k2

2m
Ψ(x, t)

Therefore Ψ(x, t) is an eigenfunction of kinetic energy with eigenvalue ~2k2

2m . The physi-
cal significance of this is that if we measure the kinetic energy of a wave with the given

wavefunction, it will have a kinetic energy of = ~2k2

2m .

2. We are required to calculate

i~
∂

∂x
Ψ(x, t) = i~

∂

∂x
Ae−i(kx−ωt)

= i~×−ikAe−i(kx−ωt)

= −(i)2~kAe−i(kx−ωt)

= ~kAe−i(kx−ωt)

= ~kΨ(x, t)

Therefore Ψ(x, t) is an eigenfunction of momentum with eigenvalue ~k. The physical signif-
icance of this is that if we measure the momentum of a wave with the given wavefunction,
it will have a momentum of ~k.

©University of Birmingham, 2015
235

http://creativecommons.org/licenses/by-nc-nd/4.0/


12.2 Review Questions

Question 1: What will be obtained if the operator

Ô = 2x
d

dx

acts on the function
f(x) = 3 cos(x2).

Answer:
−12x2 sin(x2)

Question 2: If

P̂ = 13 cos(x)
d

dx

and
f(x) = 4x2

what is P̂ 2f(x)?

Answer:
P̂ 2f(x) = 1352 cos2(x)

Question 3: If

Q̂ =
d

dx

what is the general form of the eigenfunctions for this operator?

Hint: What differentiates to give itself?
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13 Mechanics

In many mechanics questions it can be instructive to draw diagrams of the scenario in order to visualise
what is happening and avoid making mistakes. The examples in this booklet do not include diagrams as
being able to draw a diagram from a piece of text is a useful skill that comes with practice.

13.1 Dimensional Analysis

Physicists measure quantities in different units which depends on what we are measuring, for example
we measure distance in metres and time in seconds. In physics, we often use a large variety of equations
which provide relationships between physical quantities and we can use dimensional analysis to check that
these equations make sense physically. Physical quantities have units (such as metres) and dimensions
which tell us what sort of quantity we are measuring (for example length or time). Below is a table of
some typical quantities in physics with their units and dimensions.

Quantity Units Dimensions

Distance (s) metres (m) L (length)

Time (t) seconds (s) T (time)

Mass (m) kilograms (kg) M (mass)

Velocity (v) ms−1 LT−1

Acceleration (a) ms−2 LT−2

Force (F ) Newtons (N) or kg ms−2) MLT−2

Density (ρ) kg m−3 ML−3

Viscosity (µ) kg m−1s−1 ML−1T−1

Occasionally we may wish to derive or come up with our own equation for a particular scenario however
it can be difficult to check if an equation really does represent the correct scenario, and so it is useful
to have a means of checking that the equation makes physical sense. One method which we can use to
do this is dimensional analysis, which uses the idea that any physical equation must be dimensionally
correct, in other words it must have the same units on both sides. For example, v = u + at is dimen-
sionally correct, since the dimensions on both sides are ms−1 and so are the same, however the equation
v = a has dimensions of velocity, ms−1, on the left but units of acceleration, ms−2 on the right hand
side, therefore this second equation makes no sense and cannot be physically correct.

We can check that an equation is dimensionally correct by writing the equation in terms of its dimensions
and checking that everything matches up. For example, we could write v = u+ at as

[LT−1] = [LT−1] + [LT−2][T ]

where we write the dimensions of each variable in square brackets. By usual algebra we can obtain

[LT−1] = 2[LT−1]

however since we are only considering dimensions, we can ignore dimensionless constants and so the
equation is dimensionally correct. A dimensionless quantity has no units and so we can write its dimen-
sions as [1]. Examples of dimensionless quantities are π, amount of substance (mol) and angles measured
in radians (rad).

This technique can tell us if an equation does not make physical sense, however it cannot necessar-
ily confirm that the equation is correct for the scenario. This is because there are often multiple ways
for an equation to be dimensionally correct and because dimensional analysis does not take into account
constants.

We can use dimensional analysis to determine an estimate for a relation between some quantities by
considering the dimensions of the quantities.
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Physics Example: A student predicts that the drag force F experienced by a sphere of radius
R when immersed in a fluid of viscosity µ and travelling at a velocity v is:

F = kµR2v

where k is a dimensionless constant. Check whether this equation is correct or not. If it is incorrect,
find a relation between these variables which is dimensionally correct

Solution: Write the equation in terms of its dimensions

[MLT−2] = [1][ML−1T−1][L2][LT−1]

Now use ordinary multiplication to simplify the right hand side and check if it is equal to the left
hand side.

RHS = [ML−1T−1][L3T−1]

= [ML2T−2]

But
[MLT−2] 6= [ML2T−2]

so the equation is not dimensionally correct. By simply consideration of the dimensions of the
quantities, we can easily see that we can correct the equation by reducing the power of R by 1.
Thus our correct equation is

F = kµRv

which we can check has the correct dimensions in a similar way to above.

We can also use dimensional analysis to find the dimensions of a quantity, given an equation for which
we know the dimensions of the other quantities.

Physics Example: The following equation for the gravitational attractive force is dimension-
ally correct:

F = −Gm1m2

r2

Find the dimensions of the constant G.

Solution: We can rearrange the equation to make G the subject and then write the equation in
terms of its dimensions whilst ignoring scalar multiples (in this case the ‘−1’):

G =
Fr2

m1m2

G =
[MLT−2][L2]

[M ][M ]

We then use normal multiplication to simplify the dimensions

= [ML3T−2][M−2]

= [M−1L3T−2]

Thus the dimensions of G are kg−1m3s−2
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Physics Example: A researcher expects that the frequency of oscillation ω of a star depends
on the gravitational constant G, the density ρ of the star and the radius R of the star R.

Solution: We can write this above statement as

ω = kGaρbRc

where k is a dimensionless constant and a, b and c are constant powers of the quantities which we
need to find. We now write our equation in terms of dimensions

[T−1] = [1][M−1L3T−2]a[ML−3]b[L]c

= M−a+bL3a−3b+cT−2a

Then we compare the powers of each of our quantities to get a set of simultaneous equations:

−a+ b = 0
3a− 3b+ c = 0
−2a = −1

Which gives

a = 1
2

b = 1
2

c = 0

Now substituting these values in, we find that a dimensionally correct equation is

ω = k
√
Gρ

Notice that the frequency of oscillation does not depend on the radius of the star!
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13.2 Kinematics

The basic ideas of kinematics evolve from the concepts of velocity and acceleration. In mathematics,
average velocity is defined as

v =
s(t2)− s(t1)

t2 − t2
where t1 is the initial time, t2 is the final time, s is the displacement from the origin and v is the velocity.
Both velocity v and displacement s are vectors, whereas their magnitudes are called speed and distance
respectively and these are scalar quantities. By taking the limit of this as t2 → t1 the instantaneous
velocity is obtained and is defined as

v =
ds

dt

or the rate of change of displacement with respect to time. Similarly acceleration is defined as

a =
dv

dt

or the rate of change of velocity with respect to time. Combining both of these definitions together gives:

a =
dv

dt
=

d

dt

ds

dt
=
d2s

dt2

For a body travelling at velocity v and not accelerating you will have been taught that v =
s

t
. When

considering the same body but with a constant acceleration a, this equation still holds but using the
average velocity during the movement, which yields the equation�



�
	s =

(u+ v)

2
t

Keeping the assumption that acceleration is constant and using the definitions above it is true to say∫
d2s

dt2
dt =

∫
a dt

⇒ v = at+ C

If at t = 0 the motion we are describing has initial velocity u this implies�� ��v = u+ at

Furthermore: ∫
v dt =

∫
ds

dt
dt =

∫
u+ a dt

⇒ s = ut+
1

2
at2 + C

If it is assumed that s = 0 and t = 0 then it follows C = 0, so:�� ��s = ut+ 1
2at

2

Finally by combining both of these results one more useful equation falls out. By solving for t in both
equations, substituting one into the other and re-arranging the result we arrive at:�� ��v2 = u2 + 2as

The equations in boxes are often called SUVAT equations, and they are invaluable in mechanics problems
where there is a constant acceleration.
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Example: A particle is dropped from rest at a height 5 metres from the floor, with what speed
will the particle hit the floor?

Solution: The information we know about when the ball hits the floor is (taking downwards to be
positive):

s = 5m

u = 0ms−1

a = 9.81ms−2

Using that
v2 = u2 + 2as

And substituting what we know gives

v2 = 02 + 2× 9.81× 5

⇒ v =
√

98.1 = 9.90ms−1 (3sf)

Example: A stunt car drives up a ramp angled at 30◦ to the horizontal. The car leaves the top
of the ramp, at a height 10m from the ground, at 30ms−1. What will be the greatest height the
car reaches?

Solution: At the top of the car’s motion the vertical velocity will be zero since it will stop moving
upwards and begin to fall. Using this we can deduce the height we want. The information we
know about the vertical motion of the car at its highest point in its motion is (taking upwards to
be positive):

v = 0ms−1

u = 30 sin(30) = 15ms−1

a = −9.81ms−2

Using that
v2 = u2 + 2as

and substituting what we know gives

02 = 152 + 2×−9.81× s

⇒ s = 11.5m (3sf)

However this is the height above the ramp and not the total height we want. So our final answer
is:

10 + 11.5 = 21.5m
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Example: A parkour runner jumps horizontally off a building at v = 3ms−1. If the height of
the building is 2.5 meters, how far will the parkour runner land from the base of the building?

Solution: If we consider the vertical motion first we can work out the how long the parkour runner is
in the air for and use this with horizontal motion to find the distance in question. The information
we know the runner’s vertical motion at the point he hits the floor is (taking downwards to be
positive):

s = 2.5m

u = 0ms−1

a = 9.81ms−2

As we are trying to work out the time of the jump we will use

s = ut+
1

2
at2

Substituting what we know gives

2.5 = 0t+
1

2
× 9.81× t2

⇒ t =

√
5

9.81
= 0.713s (3sf)

Now that we know the time of the flight we know enough about the horizontal at the point he hits
the floor to work out the distance we want.

u = 3ms−1

a = 0ms−2

t = 0.713s

Using

s = ut+
1

2
at2

We can deduce that

s = 3× 0.713 +
1

2
× 0× 0.7132

⇒ s = 2.14m (3sf)
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13.3 Newton’s Laws

Newton’s Laws of Motion

In order to understand what makes an object move, we consider Newton’s laws of motion, which in-
troduce the concept of force and provide some very important relations between different forces and
acceleration. Force (usually denoted as F ) is a vector quantity and is measured in Newtons, N.

The First Law
Newton’s first law of motion states that

A body will remain at rest, or continue to move at constant velocity, unless an external
unbalanced force acts on it.

This means that a force acting on a body is what causes the body to move. The law also explains that
a force causes a change in velocity and does not sustain a velocity, as Aristotle wrongly deduced. By
unbalanced force, we mean there is a resultant force acting on the object that is not zero.

The Second Law
Newton’s second law of motion describes the relationship between the mass m of a body, the acceleration
a of the body and the resultant force F acting on the body as�� ��F = ma

This is a vector equation (i.e. F = ma) and since mass is a scalar and force and acceleration are vectors,
this means that the acceleration of a body is in the same direction as the force acting on it. The resultant
force acting on a body is the vector sum of all the individual forces acting on it. For example if we had
an object being pushed in two opposite directions with the same magnitude of force, the resultant force
on the object would be zero, even though there are two forces acting on it.

The Third Law
Finally, Newton’s third law of motion states that

For every action there is an equal and opposite reaction

meaning that if a body pushes against another object and exerts a force on it, the object will exert a
force of equal magnitude against the body, in the opposite direction to the original force.

Gravity

In mechanics, the force due to gravity is called the weight which we denote as W . Using Newton’s
second law we can obtain the relation �� ��W = mg

where we call g the acceleration due to gravity and is the acceleration of an object due to it’s weight.
On Earth, g generally takes the value g = 9.81ms−1 however on other planets and at extreme heights on
Earth, g can take other values. It is important to understand the difference between mass and weight.
Mass, measured in kg, is a quantity representing ‘how much stuff’ a body contains and is constant
regardless of where the object is. On the other hand, weight is a force which depends on the mass of
a body and the strength of the gravitational field which the body is in. For example, an object on the
Moon would have the same mass as an identical object on Earth, but its weight would be less since the
Moon’s gravitational field is weaker. Newton also formulated another law which gives the force due to
gravity which acts between two masses m1 and m2. Newton’s law of gravitation states that�



�
	F = −Gm1m2

r2

where F is the force acting on each mass (it acts on both masses but in opposite directions due to
Newton’s third law), r is the distance between the masses and G is called the gravitational constant with
the value G = 6.67× 10−23. Note that the minus sign indicates that the force is attractive rather than
repulsive.
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Friction

Aristotle theorised that a force acting on a body causes a body to maintain its velocity and accelerate
when the force is increased. Newton proved this to be incorrect and stated in his first law of motion that
an external force causes a body to change its velocity, and a body will maintain its velocity without the
presence of a force. Aristotle’s approach initially appears to agree with physical intuition. Consider a
ball rolling along a carpet; unless we continuously push it along, it will slow down, whereas Newton’s law
suggests that it should keep moving at a steady pace without anything helping it along. The reason for
this is that there is a decelerating force due to the ball getting slowed by the tiny ridges and bumps
in the carpet. We call this force friction, and the strength of this force depends on the smoothness of
the surface the object is moving across, and the reaction force acting on the object. Thus the inequality
for the force due to friction is �� ��FN ≤ µR

where µ is called the coefficient of friction of the surface and is a constant between zero and one. R is
the reaction force described in Newton’s third law which acts perpendicular away from the surface and
FN is the force due to friction and is a vector which acts to oppose the movement of the object.

Example: A particle of mass 3kg is projected up a rough slope, inclined at 30◦ to the horizontal,
with velocity 3ms−1. If the coefficient of friction between the particle and the slope is 0.7, what
distance s up the slope does the particle travel?

Solution: As the particle is in motion the friction takes its maximum value.

FN = µR

Finding the resultant force up the slope and using Newton’s second law of motion will allow us to
find the acceleration, a, of the particle. The resultant force up the slope is:

−3g sin(30)− 0.7× 3g cos(30) = −32.6N (3sf)

Thus
−32.6 = ma = 3a

⇒ a = −10.9ms−1 (3sf)

Using v2 = u2 + 2as and the information we have we obtain

02 = 32 + 2×−10.9× s

Therefore
s = 4.12m (3sf)

Example: A box of mass 5kg lies on a rough slope inclined at an angle θ to the horizontal. If
the coefficient of friction between the particle and the slope is 0.5, What is the greatest value of θ
for which the box will not slip down the slope?

Solution: At the point of slipping the friction acting on the box takes its maximum value.

FN = µR

Resolving forces acting parallel to the slope gives:

−5g sin(θ) + 0.5× 5g cos(θ) = 0 (3sf)

Thus
tan(θ) = 0.5

⇒ θ = 26.6◦ (3sf)
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Air Resistance

In all the examples when using the SUVAT equations air resistance was ignored, this was due to the
assumption that acceleration was constant. When including air resistance this is no longer the case
as this resistance is proportional to velocity, the two simple cases we will consider are either directly
proportional or proportional to the square of the velocity. In reality it can be very hard to obtain an
equation for the air resistance. To solve these types of problems it is best to use Newton’s second law of
motion.

Case 1: An air resistance of R = mkv
Consider a particle of mass m falling in the Earth’s gravitational field. There is an air resistance of
magnitude R = mkv where v is the particle’s velocity and k is a constant. Find an equation for the
velocity of the particle in terms of time, v(t).

Resolving the forces vertically, taking downwards to be positive, we obtain that the resultant force
is mg −mkv and therefore by Newton’s second law of motion we obtain:

mg −mkv = ma

g − kv = a

dv

dt
= g − kv∫

1

g − kv
dv =

∫
dt

−1

k
ln(g − kv) = t+ C

If we assume that v = 0 at t = 0 then C = −1
k ln(g)

Substituting this in we get:

−1

k
ln(g − kv) = t− 1

k
ln(g)

And upon rearranging we obtain:

v =
g

k
(1− e−kt)

It is worth mentioning that in this equation as t tends to infinity the velocity of the particle tends g
k ,

which is the terminal velocity of the particle, the maximum speed the particle will achieve when falling.
This occurs due to the air resistance increasing until it equals the weight of the particle and by Newton’s
first law of motion it will no longer accelerate and will continue with constant velocity.

Case 2: An air resistance of R = mkv2

Consider the same particle of mass m falling in the Earth’s gravitational field. This time there is an air
resistance of magnitude R = mkv2 acting on it, where v is the particle’s velocity and k is a constant.
Find an equation for the velocity of the particle in terms of time, v(t).

Resolving the forces vertically taking downward to be positive we obtain that the resultant force is
mg −mkv2 and therefore by Newton’s second law of motion we can say:

mg −mkv2 = ma

g − kv2 = a

dv

dt
= g − kv2∫

1

g − kv2
dv =

∫
dt

Rearranging this gives:
1

k

∫
1

g
k − v2

dv =

∫
dt
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Therefore

1

k

√
k

g
artanh

(
v

√
k

g

)
= t+ C

If we assume that v = 0 at t = 0 then C = 0

1

k

√
k

g
artanh

(
v

√
k

g

)
= t

Upon rearranging we obtain

v =

√
g

k

(
1− e−2

√
kgt

1 + e−2
√
kgt

)
If we let t tend to infinity to find the terminal velocity, the equation yields v =

√
g

k
.
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13.4 Conservation Laws

In physics, there are some quantities which are conserved, meaning that there is a constant amount of
them in any closed system. A closed system is a system in which no external forces or changes affect
the system, and so it can be thought of as ‘cut off’ from the rest of the universe. Two examples of
‘conservation laws’ will be considered here, which will enable us to solve physical problems.

Conservation of Momentum

Momentum can be thought of as ‘mass in motion’ or the ‘unstoppability’ of a body and is defined by the
formula �� ��p = mv

where p is the momentum, m is the mass of the body and v is the velocity of the body. A body which
is at rest has zero momentum.

We can also define the impulse of a force as the force multiplied by the time over which the force
acts. This is equivalent to the change in momentum of the object the force is acting on. We can write
this as an equation: �� ��I = Ft = ∆p

Conservation of momentum states that the total momentum before an event is equal to the total momen-
tum after an event, this idea is specifically useful when dealing with questions on collisions or explosions.
In this booklet, we will only consider collisions of two objects.

Note: Momentum is a vector quantity.

Example: Two particles, A and B, collide. Before the collision A was travelling with 3ms−1 and
B was travelling with 5ms−1 in the opposite direction. After the collision, A travels in the same
direction as before the collision but with speed 1ms−1 and B’s direction of motion has reversed
and it still travels with 5ms−1. If B has a mass of 3kg, what is the mass, m, of A?

Solution: Taking the direction of A’s motion to be positive we get the initial momentum of the
system as:

m× 3− 3× 5 = 3m− 15

The final momentum of the system is:

m× 1 + 3× 5 = m+ 15

Using conservation of momentum we obtain:

3m− 15 = m+ 15

⇒ m = 15kg
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Example: Two particles, L1 and L2 have a head on collision. Particle L1 was travelling at
30ms−1 just before the collision and had a mass 4kg, L2 was travelling at 15ms−1 in the opposite
direction to L1 just before the collision and had a mass 7kg. After the collision the two particles
coalesce, what is the speed of the combined two particles, v? Which direction are they moving in
after the collision?

Solution: Taking the original direction of L1’s motion to be positive we have that the initial
momentum of the system is:

30× 4− 15× 7 = 15kg ms−1

The final momentum of the system is:

(4 + 7)× v = 15kg ms−1

Therefore

v =
15

11
= 1.36ms−1 (3sf)

As the velocity is positive we know that the direction of the coalesced particles is in the same
direction as L1’s original motion.

An elastic collision is one in which there is no loss of kinetic energy. In physics, the vast majority
of collisions are inelastic, meaning that some kinetic energy is lost during the collision (however we can
often model a collision as being elastic for simplification). In order to do calculations for these inelastic
collisions, we must know the coefficient of restitution, e, of the collision. This is a property which
depends on the materials of both objects in the collision and is defined as:�



�
	e =

speed of separation of objects

speed of approach of objects
=
vb − va
ua − ub

where ua and ub are the velocities of the two particles A and B before the collision, and va and vb are
the velocities of the two particles A and B after the collision. For elastic collisions, e = 1.

Example: A particle of mass 2kg is moving at a constant velocity of 5ms−2. It collides with
a wall and bounces back in the opposite direction to its original motion. If the coefficient of
restitution of the collision is e = 0.7, with what speed, v, does the ball bounce back with? What
is the impulse that acts on the particle?

Solution: As we know

e =
speed of separation of the particles

speed of approach of particles

In this example the wall can be considered to be a particle that doesn’t move before or after
the collision. So the equation becomes (taking the direction of the particle’s original motion as
positive):

0.7 =
0− (v)

5− 0

Therefore
v = −(0.7× 5) = −3.5ms−1

So the velocity of the particle after the collision is 3.5ms−1 in the negative direction. To find the
impulse that acts on the particle we need to find the change in momentum, i.e.

I = final momentum− initial momentum

I = (2×−3.5)− (2× 5) = −17kg ms−1

Therefore the impulse that acts on the particle is 17kg ms−1 in the negative direction.
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Example: A particle A of mass 6kg is travelling in the positive direction with velocity 5ms−1

when it collides with a particle B of mass m, travelling in the opposite direction with velocity
2ms−1. After the collision, both particles are travelling in the positive direction, A with velocity
v and B with velocity 4ms−1. If the coefficient between the two particles is e = 0.4, what is the
mass of B?

Solution: In order to use the conservation of momentum to find the mass of B, we need to know
all the initial and final velocities of the two particles. To find the final velocity of A, v, we can use
restitution:

e =
vb − va
ua − ub

⇒ 0.4 =
4− v

5− (−2)

⇒ v = 1.2ms−1

Now we can use the conservation of momentum to find the mass of B

6× 5−m× 2 = 6× 1.2 +m× 4

⇒ m(2 + 4) = 6(5 + 1.2)

⇒ m = 6.2kg

Conservation of Energy

If a body applies a constant force to an object, the work done by the body on the object is defined as the
force the body applies to the object, multiplied by the distance travelled by the object in the direction
of the force whilst the force is being applied. As an equation, this is written as�� ��W = Fd

Energy is a measure of an object’s ability to do work, measured in joules (J), and it can be transferred to
other objects or converted into different forms. Energy cannot be created or destroyed. There are many
types of energy however the two main types we will consider are kinetic and potential energy. Kinetic
energy is the energy a body possesses by virtue of its motion. The equation we use to quantify it is:�� ��KE = 1

2mv
2

where KE is kinetic energy, m is mass and v is velocity.
In mechanics we often encounter two main types of potential energy: elastic potential energy and grav-
itational potential energy. Elastic potential energy is the stored energy in a stretched elastic material,
this energy is released when the elastic material is allowed to return to it’s original shape. The equation
we use to quantify this type of energy is: �� ��EPE = 1

2kx
2

where EPE is elastic potential energy, k is the spring constant of the extension material and x is the
extension of the material.
Gravitational potential energy is the stored energy in a body due to its position in a gravitational field.
When quantifying gravitational potential energy we consider the energy between two points. To do this
we set an appropriate reference height at which we say that the gravitational potential energy is zero
and calculate the gravitational potential energy relative to this height. For example, we often choose the
Earth’s surface as the reference height and calculate the gravitational potential energy at a distance h
above the surface. �� ��GPE = mgh

where GPE is gravitational potential energy, m is the mass of the body, g is the acceleration due to
gravity at that point and h is the height above the reference point.
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Note: Normally all types of potential energy can just be referred to as PE, however to distinguish
between them clearly in this booklet we will use EPE for elastic potential energy and GPE for gravita-
tional potential energy.

Conservation of energy allows us to state that in a closed system the total energy before an event
(the initial energy) equals the total energy after the event (the final energy). This idea provides an
alternative approach to solving many problems in mechanics.

Note: Energy is a scalar quantity.

Example: A ball of mass 1kg is thrown vertically upwards from the ground with speed 10ms−1.
What is the maximum height the ball reaches?

Solution: We set the reference height as the ground level at which we state the ball has no
gravitational potential energy. This allows us to say that at this point the ball has only kinetic
energy at the moment it’s thrown, the magnitude of which is:

KE =
1

2
mv2 =

1

2
× 1× 102 = 50J

When the ball is at its maximum height during its motion, h say, the velocity of the ball is 0ms−1.
Therefore it’s energy is purely gravitational potential energy with magnitude:

GPE = mgh = 1× 9.81× h = 9.81h

From conservation of energy we can say that the kinetic energy the ball was thrown with is equal
to the gravitational potential energy it has at the maximum height of it’s motion, i.e.

50 = 9.81h

Therefore the height we are trying to work out, h, is:

h =
50

9.81
= 5.10m (3sf)
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Example: A man pushes a wagon, of mass 10kg from rest up a slope inclined 60◦ to the
horizontal. After the man has pushed the wagon 10m, they are travelling at a velocity of 3ms−1.
What is the work done by the man in pushing the wagon 10m up the slope?

Solution: If we set our reference height (at which we consider the gravitational potential energy
to be zero) as the man and wagon’s starting point, we can see that the initial energy of the
system is zero; this is because they ‘start from rest’. However the final energy (the energy when
they are 10m up the slope) is not zero as the man and wagon now have kinetic energy (they are
now moving) as well as gravitational potential energy (their vertical height has increased). The
increase in energy of the wagon is equal to the work done by the man.

The increase in kinetic energy of the wagon is:

1

2
mv2 =

1

2
× 10× 32 − 0 = 45J

The increase in gravitational potential energy of the wagon is:

mgh = 10× 9.81× 10 sin(60◦) = 85.0J

Note: The height used to work out the gravitational potential energy is the vertical height the
man travels only.

Therefore the work done by the man is:

45 + 85.0 = 130J

Note: We used 10 sin(60◦) for h when calculating the final gravitational potential energy as this
is the vertical height that the wagon rose.
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13.5 Oscillatory Motion

Definitons and Concepts

Oscillatory (or periodic) motion occurs often in physics, in particular in areas such as astrophysics and
mechanics. In order to effectively study periodic motion, we will need to identity and define some new
quantities:

� The period (T ) is the time required to complete a full cycle, measured in seconds (s).

� The frequency (f) is the number of cycles completed in one second. Frequency is measured in
Hertz (Hz) and is related to the period by �



�
	f =

1

T

� The displacement (x) is the vector distance moved from equilibrium and is measured in metres
(m). It is either positive or negative, depending on its direction from equilibrium.

� The amplitude (A) is the maximum distance from equilibrium and is measured in metres (m).

� The angular frequency (ω) is a measure of the rate of rotation of the cycle. It is measured in
radians per second (rad s−1) and is related to frequency and period by�



�
	ω = 2πf =

2π

T

Simple Harmonic Motion

One of the most simple types of oscillatory motion occurs when there is a ‘restoring force’ acting which is
directly proportional to the displacement. This type of oscillation is called simple harmonic motion
(SHM) and an oscillator which undergoes SHM is called a harmonic oscillator. In the case of a particle
attached to a spring, this occurs when the spring obeys Hooke’s law. If the spring has spring constant
k, then the restoring force acting on the particle is�� ��F = −kx

where there is a minus sign because the restoring force acts in the opposite direction to the displacement
from the origin, towards the equilibrium position.

From Newton’s second law of motion, we can then state that the acceleration also acts to oppose the
displacement, and is given by

a = − k
m
x

By consideration of dimensional analysis, we can define the angular frequency as�
�
�

ω =

√
k

m

We know that acceleration is the second derivative of displacement with respect to time, so we can write
the above as �� ��ẍ = −ω2x

where ẍ is a short notation for
d2x

dt2
(equally ẋ =

dx

dt
). An object whose motion is described by this

equation is undergoing simple harmonic motion. Now we can find an equation for the displacement x
of the oscillator by solving this differential equation. We can use the methods for solving second order
ODEs as described in a previous section, or we can simply appeal to our knowledge of derivatives to
deduce that a solution to this ODE is �� ��x = A cos(ωt+ φ)
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where the oscillator begins its motion at the furthest point from the origin. This then gives:

ẋ = −Aω sin(ωt+ φ)

ẍ = −Aω2 cos(ωt+ φ) = −ω2x

which satisfies the differential equation. The constant φ represents the phase angle of the oscillator
which tells us at what point in the cycle the motion was at t = 0.

Example: A particle moves along the x-axis and its displacement from equilibrium is described
by

x = sin

(
π

3
t

)
1. Show that the particle is a simple harmonic oscillator.

2. Find the period and amplitude of the particle’s motion.

3. Find the maximum velocity of the particle during its motion.

Solution:

1. We need to show that the particle obeys the equation

ẍ = −ω2x

We differentiate our equation for x twice to find ẍ.

ẋ = 5× π

3
cos(

π

3
t)

ẍ = −5×
(
π

3

)2

sin(
π

3
t)

= −
(
π

3

)2

x

Hence the equation for simple harmonic motion is satisfied and ω =
π

3
.

2. The amplitude is the maximum displacement which we can find from maximising sin

(
π

3
t

)
.

The maximum value of sin(..) is 1 and so the amplitude is 5m. The period is found using

the formula ω =
2π

T
. Thus

T =
2π
π
3

= 6s

3. The velocity of the particle is calculated in the first part of this question and is

v = ẋ = 5× π

3
cos(

π

3
t)

Using a similar technique to how we found the amplitude, the maximum velocity is when

cos(
π

3
t) = 1, and hence the maximum velocity is

vmax =
5π

3

Another note of interest is that the energy of a simple harmonic oscillator continuously changes
between kinetic energy and potential energy. At x = 0, the oscillator has only kinetic energy and no
potential energy since it is moving at maximum velocity and there is no acceleration or deceleration,
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whereas at x = A, the oscillator has only potential energy and no kinetic energy because it is not
moving and is experiencing its greatest restoring force. Due to conservation of energy, this means that
the maximum kinetic energy is equal to the maximum potential energy, and so we can use this to solve
problems. The graph below shows the kinetic energy (green line) and potential energy (red line) of a
simple harmonic oscillator which begins at the equilibrium position. The straight black line represents
the total energy of the oscillator.

Energy

Time

f

ga

Example: A particle of mass 3kg is attached to a spring of spring constant k = 10 Nm−1 and
is displaced horizontally by 0.3m from equilibrium. The particle then undergoes horizontal simple
harmonic motion. Find the maximum velocity of the particle.

Solution:
Since the motion all happens in a horizontal direction, the maximum potential energy is entirely
elastic potential energy and occurs at the maximum displacement. Thus

EPE =
1

2
kx2

=
1

2
× 10× (0.3)2

= 0.45J

Using conservation of energy for SHM, the maximum potential energy is equal to the maximum
kinetic energy. This gives

0.45 =
1

2
mv2

⇒ v =

√
2× 0.45

3

=

√
30

10
≈ 0.55ms−1 (3sf)

Damping

We have only considered idealised oscillators so far but in real life, all oscillators experience a damping
force. A damping force is one that opposes the motion of the oscillator and reduces, restricts or prevents
the oscillations. A linear damping force is proportional to the oscillator’s velocity and acts in the opposite
direction to the velocity. An example of a linear damping force is friction, however other, non-linear,
damping forces are possible but are not considered in first year physics. If we add a linear damping term
into the SHM equation we obtain:

d2x

dt
= −ω2x− αdx

dt
where α is a constant of proportionality.

There are different types of linear damping forces:

� Overdamped - The amplitude of the oscillator exponentially decreases to zero without oscillating.

� Critically damped - The oscillator returns to equilibrium as quickly as possible without oscillat-
ing.

� Underdamped - The system oscillates (at reduced frequency compared to an undamped case)
with the amplitude gradually decreasing to zero.
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Forced Oscillations

In first year you will also encounter a forcing term in an equation describing an oscillator. This term
describes a driving force which supplies energy to the oscillator and can take different forms. Two
common forms of the driving force are as follows:

� A sinusoidal driving force with the general form F (t) =
1

m
F0 sin(ωt).

� A step input with the general form

F (t) =

{
ω2

0 , if t ≥ 0

0, if x < 0

If we were to have an oscillator with a linear damping force and a sinusoidal driving force, the
equation describing its motion would have the form:

d2x

dt2
+ α

dx

dt
+ ω2x =

1

m
F0 sin(ωt)

Resonance

If a system is displaced from equilibrium and the left alone, it will oscillate with a natural frequency.
If we apply a driving force to the system then we will obtain a forced oscillation which will oscillate
with a driving frequency. The driving frequency does not have to be equal to the natural frequency,
however if the driving frequency is close to the natural frequency of the system, then the system will
resonate. This causes the amplitude of the oscillation to increase. The maximum amplitude occurs
when the driving frequency is exactly equal to the natural frequency and thus in this case the system
has the maximum energy it could obtain due to the driving force.

Resonance can occur in any physical system where there is periodic motion and a driving force. Physi-
cists and engineers often try to avoid resonance in machinery and electronics as it can be destructive; for
example if a company of soldiers marches in step across a bridge at the natural frequency of the bridge,
the bridge will resonate and the resulting increase in amplitude may tear the bridge apart. Similarly,
the reason that a tumble dryer vibrates and makes a loud noise is because the driving force due to the
rotation has a similar frequency to the tumble dryer itself, and hence there is resonance.
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13.6 Circular Motion

Moment and Torque of a Force

The torque, or moment of a force, is defined as the magnitude of the force multiplied by the perpendicular
distance from the pivot to the line of action of the force. It is a measure of the turning effect of the force
and can be calculated using the equation: �� ��Moment = Fd

where F is the magnitude of the force and d is the perpendicular distance from the pivot to the line of
action of the force.

Note: The units of a moment are newton metres (Nm).

Centripetal Force and Motion in a Circle

Many situations in physics involve objects moving in a circular motion around a point, for example
charged particles travelling perpendicular to a magnetic field, satellites orbiting the Earth at a constant
height and even cars driving around corners. The motion in these cases is described using many of the
same techniques and definitions as in the section on oscillatory motion, however we are now considering
motion in two dimensional space, rather than one dimensional.

An object travelling in circular motion does so because it experiences a constant force which acts perpen-
dicular to its motion. This is called the centripetal force and causes the object to accelerate towards
the centre of a circular path. Since this force does not have a component acting in the same direction as
the motion, the object travels around the circle at a constant speed, however since velocity is a vector
and has a direction, the velocity is constantly changing, and therefore the object is accelerating despite
moving at a constant speed.

The centripetal force is given by �


�
	F =

mv2

r

where m is the mass of the object, v is the velocity of the object and r is the radius of the circle which
the object describes. This force always acts towards the centre of the circle, regardless of where the
object is on the circle.

From Newton’s second law, we can determine the formula for the acceleration due to change of direction:�


�
	a =

v2

r
= ω2r

Another useful formula for centripetal motion can be obtained by considering how quickly the object
moves around the circle. The distance the object travels is the circumference of a circle, given by

C = 2πr

and the time taken to complete one cycle is the time period T . Therefore, the speed with which the
object moves around the circle is the circumference divided by the time period, or:�



�
	v =

2πr

T
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Physics Example: A woman attaches a ball of mass 1kg to a string of length 0.75m and
swings the ball horizontally above her head 90 times in one minute. Calculate the centripetal force
that acts on the ball due to the string.

Solution:
First, we notice that the length of the string will be equivalent to the radius of the circle that
the ball describes and so r = 0.75. We now deduce the frequency of rotation by remembering

that frequency is the number of rotations per second and so f =
90

60
= 1.5Hz. We can use the

equation relating frequency and period to obtain the velocity of the ball:

v =
2πr

T
= 2πrf = 2.25πms−1

Finally we use the equation for the centripetal force to find the force acting on the ball due to the
string

F =
mv2

r
=

1× (2.25π)2

0.75
= 66.6N (3sf)

Physics Example: If the moon makes a complete orbit around the Earth every 28 days
calculate the distance between the Moon and the Earth’s centre. You may assume the mass of the
Earth is 6× 1024kg and G = 6.67× 10−11.

Solution: The centripetal force of the moon’s orbit is the force due to gravity, therefore we can say

GMm

r2
=
mv2

r

Where M is the mass of the Earth, m is the mass of the moon, r is the separation of the Earth
and the Moon and v is the velocity of the moon.

r =
GM

v2

We know that v =
2πr

T
where T is the time of one orbit. Therefore

r =
GMT 2

4π2r2

r3 =
(6.67× 10−11)(6× 1024)(28× 24× 60× 60)2

4π2

r =

(
(6.67× 10−11)(6× 1024)(28× 24× 60× 60)2

4π2

) 1
3

Therefore

r ≈ 3.9× 108m
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13.7 Variable Mass

In all above sections, we have only considered bodies with a constant mass. However, in some situations
this is not the case, for example a rocket loses mass as it travels from the surface of the earth due to
burning fuel. In the event that mass is not a constant we turn to the impulse-momentum principle
which states that the change of linear momentum of the whole system in a time interval, δt, will be equal
to impulse of external forces acting on the whole system in time interval δt.

To understand this principle it is useful to consider a simple example. A body, B, of mass m is falling
due to gravity with velocity v picking up mass as it travels (the extra mass is not moving in this example).

We consider the body B to pick up a mass of δm in a time δt while its traveling. The initial mo-
mentum (before the mass, δm has been collected) is

mv + δm× 0 = mv

After the mass has been collected the new mass is m + δm and the velocity of the particle will have
changed, we will call this new velocity v + δv. Therefore the final momentum (after the mass dm has
been collected) is

(m+ δm)× (v + δv)

The force that is acting during this event is the weight of both M and δm, i.e. mg + (δm)g. So the
impulse of external forces acting on the system is

(mg + δm)g × δt

Using the impulse-momentum principle we can state:

(m+ δm)× (v + δv)−mv = (mg + δm)g × δt

Expanding this gives
mδv + vδm+ δm× δv = mgδt+ gδm× δt

As δm and δv are infinitesimal (very small) when they are multiplied together we they are even smaller
and thus we ignore these terms. This yields

mδv + vδm = mgδt+ gδm× δt

Dividing each term by dt gives

m
δv

δt
+ v

δm

δt
= mg + gδm

If we take limits as δt→ 0 and using the fact that δm→ 0 we have

m
dv

dt
+ v

dm

dt
= mg

Now we have an equation in a useful form, for example this could be modelled to predict the size or
speed of hail stones when they hit the ground.
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Example: A rocket has initial mass M0. It propels itself by ejecting mass at a constant rate
k per unit time with speed u relative to the rocket. the rocket is launched from rest vertically
upwards. Determine an expression for the velocity of the rocket at time t and show your workings.

Solution: We say that at a time t the rocket is travelling at a velocity v and has mass m, after a
short time, δt, the rocket loses a small amount of mass, −δm (negative because it’s a loss of mass).
The initial momentum (before the ejection of mass) is mv.
The velocity of the rocket after the ejection of mass has changed so we will call it v + δv. The
ejected mass, −δm has a speed u relative to the rocket new velocity so the ejected mass has velocity
(v + δv − u). Therefore the final momentum of the system (when the mass is ejected) is

(m− (−δm))(v + δv) + (−δm)(v + δv − u)

(m+ δm)(v + δv)− δm(v + δv − u)

The only external force acting on the system is the weight of the rocket and the ejected mass, so
the impulse of external forces acting on the system is[

− (m− (−δm))g − (−δm)g
]
δt = −mgδt

Both terms are negative as the weight acts downwards.
Using the impulse-momentum principle it is true to say:

(m+ δm)(v + δv)− δm(v + δv − u)−mv = −mgδt

Expanding and simplifying this gives

mδv + δmu = −mgδt

Dividing by δt gives

m
δv

δt
+
δm

δt
u = −mg

If we take limits as δt→ 0 and using the fact that δm→ 0 and δv → 0 we have

m
dv

dt
+
dm

dt
u = −mg

Now we have an equation that we can use to answer the question asked. First note that

dm

dt
= −k

Therefore
m = −kt+ C

Using this and the fact that at t = 0, m = M0 we obtain that

m = M0 − kt

Substituting this into our equation gives

(M0 − kt)
dv

dt
− ku = −(M0 − kt)g

Rearranging this gives
dv

dt
=

ku

M0 − kt
− g

Solving this and using that v = 0 at t = 0 gives

v = u ln

(
M0

M0 − kt

)
− gt
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13.8 Review Questions

Easy Questions

Question 1: Using dimensional analysis, show that the following equation is dimensionally
correct.

vs = k

√
p

ρ

where vs is the speed of sound through a gaseous medium, p is the pressure of the medium, ρ is
the density of the medium and k is a dimensionless constant.

Hint: You may need to look up the dimensions of some of these quantities.

Question 2: The radius, R, of a shockwave from a nuclear explosion depends on the energy
of the explosion, E, the density of the air, ρ, and the time that has elapsed, t. Use dimensional
analysis to express R as a function of the other quantities.

Answer:
R = kE

1
5 ρ−

1
5 t

2
5

Question 3: A ball is thrown upwards from a height of 1.5m with a velocity of 6ms−1. What
is the maximum height s that the ball will reach?

Answer:

s = 3.34m (3sf)

Question 4: On the planet Zabrox, an alien throws a space-rock off the edge of a space-cliff so
that it leaves his hand 2m above the clifftop. The space-cliff is 13m high. The space-rock initially
has a vertical velocity of 8ms−1. Given that the acceleration due to gravity on the planet Zabrox
is two-thirds that of Earth, and considering only the vertical motion of the space-rock, find the
time taken t for the space-rock to reach the bottom of the space-cliff and find its instantaneous
velocity v when it reaches the bottom.

Answer:

t = 3.69s (3sf)
v = 12.7ms−1 (3sf)

Question 5: A girl throws a paper aeroplane horizontally with an initial velocity of 2ms−1.
Calculate the horizontal distance s the paper aeroplane travels before it reaches the ground, 5m
below.

Hint: You will have to consider the vertical motion and the horizontal motion separately.
Answer:

s = 2.02m (3sf)

Medium Questions

Question 6: A rod of length 5m, and uniform mass 5kg, is balancing on a pivot such that the
pivot is a distance 2m from one end of the rod. In order for the system to be in equilibrium a force,
F , is applied to the end of the rod that is closest to the pivot. Find the magnitude and direction
of F .
Answer:

F =
5

4
g N
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Question 7: Two 64kg stick figures are performing an extreme blob jump. One stick figure
stands atop a 7.0m high platform with a 256kg boulder. A second stick figure stands on a partially
inflated air bag known as a blob (or water trampoline). The first stick figure rolls the boulder off
the edge of the platform. It falls onto the blob, catapulting the second stick figure into the air.
What is the maximum height, h, to which the second stick figure can rise? Assume that stick
figures, boulders, and blobs obey the law of conservation of energy.

Answer:
h = 8m

Question 8: A particle, P , with mass 2kg is travelling at 5ms−1 when it collides with a second
particle, Q, with mass mkg, which is at rest. After the collision P reverses its direction of travel
and moves with a velocity 2ms−1 and Q travels in the same direction to P ’s original velocity with
velocity 4ms−1. What is the mass of Q?

Answer:

m =
7

2
kg

Question 9: A particle, A, with mass 4kg is travelling at 3ms−1 when it collides with a second
particle, B, with mass mkg, which is traveling in the opposite direction to A but with an equal
speed. After the collision A reverses its direction of travel and moves with a velocity 2ms−1. What
is the mass of B and the velocity, v, it travels at after the collision if the coefficient of restitution

betweeen the particles is
1

3
?

Answer:

m =
20

3
kg

v = 0ms−1

Question 10: Predict the mass of the Earth given that the distance from the center of the
Earth’s core to the center of the moon is 384, 000km.
Answer:

5.73× 1024kg

Question 11: A ferris wheel has a diameter of 80m and takes 12 minutes to complete one
revolution. Find the centripetal acceleration a of each capsule.

Answer:
a = 3.05× 10−3ms−2 (3sf)

Hard Questions

Question 12: A rain drop falls under gravity and gains mass in a way such that

dm

dx
= km.

Find velocity as a function of time.

Answer: √
g

k

1− e−2t
√
gk

1 + e−2t
√
gk
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Question 13: A particle, P , of mass 15kg, is dropped from rest. If the resistance to motion
felt by P is 3v, where v is the velocity P falls at, and it takes 2 seconds for P to reach the ground,
what is the velocity of P when it hits the ground?

Answer:
v = 14.3ms−1

Question 14: A particle, Q, of mass 2kg, is dropped from rest. If the resistance to motion felt
by Q is 10v2v, where v is the velocity Q falls at, and it takes 15 seconds for Q to reach the ground,
what is the velocity of Q when 1 second before it hits the ground?

Answer:
v = 1.4ms−1

Question 15: A crate of mass 3kg rests in limiting equilibrium on a rough ramp inclined at 30◦

to the horizontal. The coefficient of friction between the crate and the ramp is 1/3. A horizontal
force of magnitude F Newtons is applied to the crate so that the equilibrium is broken and the
crate just begins to move up the ramp. Calculate the force F .
Answer:

F = 33.2N
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