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Preface

These are notes for the course Mathematical Physics at the university of Copenhagen for
students in their second or third year of study. The course consists of two parts the first of
which is on Classical Mechanics corresponding to the first three chapters, while the second
part is on Quantum Mechanics corresponding to the remaining three chapters. The two
parts can be read independently.

The main focus is on theoretical developments rather than elaborating on concrete
physical systems, which the students are supposed to encounter in regular physics courses.
Nevertheless, some examples are included for the purpose of illustration. The prerequisites
for the course are standard courses on calculus and linear algebra. We have tried to make
the notes essentially self-contained, but presumably some parts, such as the more technical
parts of Chapter 2 and the more abstract parts of Chapter 4, may be conceived as difficult
without some prior acquaintance with concepts like series expansions, function spaces and
normed spaces. The reader may prefer to skip those parts in a first reading and then return
for a more thorough study later.

October 2014
Bergfinnur Durhuus Jan Philip Solovej
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Chapter 1

Newtonian Mechanics

In these notes, classical mechanics will be studied as a mathematical model for the descrip-
tion of physical systems consisting of a certain (generally finite) number of particles with
fixed masses subject to mutual interactions and possibly to external forces as well.

From the 17th century onwards, beginning with Newton’s foundational work [10], such
”Newtonian” models have provided an accurate description of a vast variety of mechanical
systems, e. g. the solar system, and continue to be of fundamental importance in physics,
even though the advent of quantum mechanics and special relativity in the early 20th
century has revealed that Newtonian mechanics should be viewed as an approximation valid
only in a certain regime, nowadays called the classical regime. Moreover, classical mechanics
continues to be a significant source of motivation and inspiration for mathematical research
in subjects such as ordinary differential equations, calculus of variations, and differential
geometry.

1.1 Classical space-time

We shall begin – rather abstractly – by introducing the notion of space-time in classical
mechanics. A central paradigm of the classical framework is that time is absolute, which
reflects the universality of simultaneous events in classical space-time (in striking contrast
to special relativity where the simultaneity of events is relative).

The basic ingredient of the mathematical model of classical space-time we are about to
describe is a set,M, called the universe, and whose elements are referred to as events. It is
assumed that the events can be labeled by four real numbers, i. e., there exists a bijective
map x :M→ R4, called a coordinate system on M. Composing one coordinate system x
with a bijective map ψ : R4 → R4 we obtain a second coordinate system y = ψ ◦ x. Thus
coordinate systems are far from being unique. We call ψ the coordinate transformation
from x-coordinates to y-coordinates.

Next, we postulate the existence of two functions T : M×M → R and d : D → R,
where

D = {(p, q) ∈M×M | T (p, q) = 0}.

5



Chapter 1 Newtonian Mechanics 6

The function T is called the time-difference function and T (p, q) has the physical interpre-
tation of the lapse of time between the event p and the event q as measured by standard
clocks. Two events p and q are said to be simultaneous, if T (p, q) = 0 holds. Thus D
is the set of pairs of simultaneous events, and the physical interpretation of d(p, q) is the
(spatial) distance between the simultaneous events p and q. Note that the distance between
non-simultaneous events has no physical meaning and is not defined.

In view of the physical interpretation of the functions T and d, these must be subject
to further constraints, which bring in the Euclidean structure of three-dimensional space.
This is achieved by postulating the existence of a coordinate system x = (x1, x2, x3, t) such
that

d(p, q) = ‖x(p)− x(q)‖ , (p, q) ∈ D , (1.1)

and
T (p, q) = t(q)− t(p) , p, q ∈M , (1.2)

where we use the notation x = (x1, x2, x3) and ‖ · ‖ denotes the Euclidean norm in R3

defined by

‖x‖ =
√
x2

1 + x2
2 + x2

3 .

A coordinate system x fulfilling (1.1) and (1.2) will be called a Galilean coordinate system.
Likewise, we call x1(p), x2(p), x3(p) the space-coordinates and t(p) the time-coordinate of
the event p ∈M.

The relation (1.1) expresses the Euclidean nature of the distance d. A few remarks on
the Euclidean norm and its properties will be useful for the following discussion. We define
the scalar product (also called inner product) of two vectors x, y ∈ R3, written as 〈x, y〉 or
simply as x · y, by

x · y = 〈x, y〉 = x1y1 + x2y2 + x3y3 .

Note that
‖x‖2 = 〈x, x〉 > 0 for x 6= 0 = (0, 0, 0) ,

and it is clear from the definition that 〈x, y〉 is a linear real-valued function of x ∈ R3, for
fixed y, as well as of y for fixed x. Moreover, we have 〈x, y〉 = 〈y, x〉. We say, that 〈·, ·〉 is
a symmetric and positive definite bilinear form on R3.

Given two non-zero vectors x, y ∈ R3, we define the angle θ ∈ [0, π] between x and y
through the formula

cos θ =
x · y
‖x‖‖y‖

. (1.3)

Note that the definition (1.3) presupposes that the right-hand side belongs to the interval
[−1, 1], which is a consequence of the so-called Cauchy-Schwarz inequality; see Exercise 1.1
d). Furthermore, we say that x and y are orthogonal, written as x ⊥ y, if x · y = 0.

A mapping S : R3 → R3 is called an isometry if it preserves the Euclidean distance,
that is if

‖S(x)− S(y)‖ = ‖x− y‖ , x, y ∈ R3 .

It can be shown (see Exercise 1.2) that any isometry S : R3 → R3 is of the form

S(x) = a+ S0(x) ,
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where a ∈ R3 is a fixed vector and S0 is a linear isometry, also called an orthogonal
transformation. Moreover, any such orthogonal transformation is either a rotation around
an axis through 0 or it is a rotation around an axis through 0 composed with a reflection in a
plane through 0 (see Exercise 1.4). A matrix that represents an orthogonal transformation
with respect to the standard basis for R3 is called an orthogonal matrix, and the set of
orthogonal matrices is denoted by O(3). They are discussed further in Exercises 1.3 and
1.4.

The following result gives a characterization of coordinate transformations between
Galilean coordinate systems.

Proposition 1.1. Let x and y be two Galilean coordinate systems. Then there exists a
constant t0 ∈ R, a function ϕ : R→ R3 and a function A : R→ O(3), such that y = ψ ◦ x,
where

ψ(x, t) = (ϕ(t) +A(t)x, t− t0) , x ∈ R3 , t ∈ R . (1.4)

Remark. We see from equation (1.4) that the time coordinates with respect to x and
y are related by a constant shift. This property is commonly expressed by saying that
“time is absolute” in classical physics, since time is uniquely determined once a zero-point
has been chosen. Consequently, we shall in the following frequently restrict attention to
systems with a common time coordinate.

Proof of Proposition 1.1. Choose a fixed event q0 ∈ M and write x = (x, t) and
y = (y, s). Then, according to (1.2), we have

t(p)− t(q0) = s(p)− s(q0) , p ∈M ,

and hence
s(p) = t(p)− t0 , p ∈M , (1.5)

where t0 = t(q0)− s(q0).
Next, let p, q ∈M be two events such that t(p) = t(q). By (1.1), this means that p and

q are simultaneous events. Therefore, equation (1.1) implies

‖y(p)− y(q)‖ = ‖x(p)− x(q)‖ if t(p) = t(q), (1.6)

since x = (x, t) and y = (y, s) are both Galilean coordinate systems. Further, by the fact
that x : M → R4 is bijective, there exists a unique pτ ∈ M for each τ ∈ R such that
x(pτ ) = (0, 0, 0, τ) holds. Equivalently, this means that pτ = x−1(0, 0, 0, τ).

Defining

ϕ(τ) = y(pτ ) and Sτ (v) = y(x−1(v, τ))− ϕ(τ), for τ ∈ R and v ∈ R3, (1.7)

we claim that eq. (1.6) implies

‖Sτ (v)− Sτ (w)‖ = ‖v − w‖ for v, w ∈ R3. (1.8)

Indeed, setting p = x−1(v, τ) and q = x−1(w, τ), it follows that t(p) = t(q) = τ , and thus
the events p and q are simultaneous and (1.6) applies. It is clear that x(p) = v, x(q) = w,
and Sτ (v)− Sτ (w) = y(p)− y(q). Hence (1.8) holds true.



Chapter 1 Newtonian Mechanics 8

By (1.8), we see that Sτ : R3 → R3 is an isometry for any τ ∈ R fixed. In fact, we con-
clude from Exercise 1.3 that Sτ (v) must be a linear isometry, since Sτ (0) = y(x−1(0, τ))−
ϕ(τ) = y(pτ ) − y(pτ ) = 0. Hence, it follows from the remark about isometries above (see
also Exercise 1.4) that

Sτ (v) = A(τ)v, v ∈ R3 ,

where A(τ) ∈ O(3) is an orthogonal 3 × 3-matrix depending on τ . Inserting this into the
definition (1.7) of Sτ and recalling (1.5) we get the expression (1.4) for ψ = y ◦ x−1. 2

The spatial content of eq. (1.4) can be described geometrically as follows. As already
noted in the proof, the function ϕ describes the motion of the origin of x-coordinates with
respect to the coordinate system y. More precisely, setting x = 0 in (1.4), we see that ϕ(t)
is the y-coordinate set of the origin of x-coordinates at x-time t. Similarly, denoting by
ε1 = (1, 0, 0), ε2 = (0, 1, 0), ε3 = (0, 0, 1) the standard basis vectors of the vector space R3

and choosing two simultaneous events p, q at x-time t such that x(p) − x(q) = εi we see
that

y(p)− y(q) = A(t)εi = Ai(t) ,

where Ai(t) denotes the i’th column of A(t). In other words, the columns of A(t) are the
y-coordinates of the standard basis vectors in x-coordinate space at x-time t. As previously
mentioned (see also Exercise 1.4) the orthogonal matrix A(t) represents a rotation around
an axis through the origin, possibly composed with a reflection in a plane. We call A(t)
orientation preserving if the reflection is absent, and ψ is by definition orientation preserv-
ing if this is the case for all t. This allows us to characterize an orientation preserving
Galilean coordinate transformation as being the composition of a time-dependent rotation
around a (time-dependent) axis, represented by A(t), composed with a time-dependent
spatial translation, represented by ϕ.

1.2 Galilean principle of relativity and inertial systems

By a mechanical system we mean a finite collection of point-particles, called i = 1, . . . , N ,
each of which is identified by an event pi at any instant of time. More precisely, given
a Galilean coordinate system x = (x, t), a mechanical system consists of N trajectories
x1(t), . . . , xN (t), t ∈ R, in R3, whose form is determined by fundamental laws of motion,
and the essential goal of classical mechanics is to determine those laws and their conse-
quences. We shall restrict our attention to ordinary differential equations as candidates
for the fundamental laws of mechanics; in other words, the trajectories are determined as
solutions to a set of equations containing the space coordinates xi(t) and a number of their
derivatives w. r. t. time t. When discussing fundamental laws and principles, the particle
systems we have in mind are ideal in the sense that they serve as models for the whole
universe consisting of N particles. In practice, finite subsystems of the observed universe
that can be considered essentially isolated from the rest, often called closed systems, do to
a very good approximation obey the fundamental laws and, indeed, all experiments and
observations used to verify those laws are performed on such systems. Thus, the solar
system can to a good approximation be regarded as an isolated system on time scales that
are short compared to its rotation time around the center of the galaxy, approximately 108

years, with the sun and planets being treated as point particles.
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It is a well known experimental fact that the basic laws governing the behavior of
mechanical systems are not invariant under arbitrary Galilean coordinate transformations.
A falling body behaves differently in a coordinate system at rest at the surface of the earth
and in a freely falling system. In fact, the Galilean transformations are sufficiently general
that there are no interesting differential equations preserving their form under all such
transformations.

The Galilean principle of relativity, described in 1632 by Galilei in his treatise ”Dialogue
Concerning the Two Chief World Systems”[7], is an invariance principle restricting the
possible forms of the basic equations of motion for a mechanical system under a restricted
set of coordinate transformations. We formulate this principle as follows.

Galilean principle of relativity. There exist particular Galilean coordinate systems,
called inertial systems, in which the equations of motion for mechanical systems assume
identical form. Any coordinate system in uniform motion relative to an inertial system is
likewise an inertial system.

We shall discuss the invariance issue in more detail in the next section. The second part
of the statement can, in view of the results of the preceding section, be stated as follows:
If x is an inertial system of coordinates, and ψ : R4 → R4 is given by

ψ(x, t) = (a+ vt+Ax, t+ s) , x ∈ R3 , t ∈ R , (1.9)

then y = ψ◦x is also an inertial coordinate system. Here ϕ(t) = a+vt describes the motion
of the origin of x-coordinates on a straight line through a with constant velocity v in y-
coordinate space, and the matrix A represents a constant rotation of the x-coordinate axes
around a fixed axis through the origin of x-coordinates, possibly composed with reflection
in a fixed plane. The parameter s is a (fixed) time translation. We call ψ as given by (1.9)
an inertial coordinate transformation and denote it by ψ[a, s, v, A].

It is important to note, that the set of inertial coordinate transformations forms a group
with respect to composition of mappings.

Definition 1.2. A group is a set G with a distinguished element e ∈ G, called the identity
element, and two maps

G×G 3 (g, h) 7→ gh ∈ G, G 3 g 7→ g−1 ∈ G , (1.10)

called multiplication and inversion, respectively, such that

g1(g2g3) = (g1g2)g3, ge = eg = g, gg−1 = g−1g = e

for all g, g1, g2, g3 ∈ G.

The set O(3) of orthogonal matrices is a group with the standard matrix multiplication
and matrix inversion (see Exercise 1.3).

Thus, saying that the inertial coordinate transformations form a group means that the
composition of two such transformations is an inertial coordinate transformation, that the
inverse of an inertial coordinate transformation is also an inertial coordinate transformation
and that the identity mapping of R4 is an inertial coordinate transformation. The last
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property is obvious, since the identity mapping is obtained when a = s = v = 0 and A = I,
the 3× 3 identity matrix. The other two properties follow from the formula

ψ[a1, s1, v1, A1] ◦ ψ[a2, s2, v2, A2] = ψ[a1 + v1s2 +A1a2, s1 + s2, v1 +A1v2, A1A2] , (1.11)

which is obtained by straightforward computation (see Exercise 1.5). In particular, one
gets

ψ[a, s, v, A]−1 = ψ[−A−1(a− vs), −s, −A−1v, A−1] , (1.12)

and every inertial coordinate transformation can be decomposed into four basic types of
transformations:

time translation Ts = ψ[0, s, 0, I]

space translation Sa = ψ[a, 0, 0, I]

boost Bv = ψ[0, 0, v, I]

O(3)-transformation RA = ψ[0, 0, 0, A]

according to
ψ[a, s, v, A] = Ts ◦Bv ◦ Sa ◦RA. (1.13)

The group of inertial coordinate transformations is often called the Galilei group.

Remark 1.3. The Galilean principle of relativity was generalized by A. Einstein in 1905
beyond mechanical systems to include electromagnetism. Since its content is otherwise
the same, except that the notion of space-time and the definition of an inertial coordinate
system are different in special relativity, we shall in the following refer to the Galilean
principle of relativity simply as the principle of relativity.

1.3 Newton’s laws of motion

Having set the stage of classical space-time, we now proceed to formulate the physical
laws in terms of equations. More specifically, we will see that these so-called Newtonian
equations of motion are ordinary differential equations subject to restrictions imposed by
the Galilean principle of relativity.

An ordinary differential equation of order n > 1, describing the motion of a point x(t)
in Rk as a function of the variable t, is an equation of the form

dnx

dtn
= f(x,

dx

dt
, . . . ,

dn−1x

dtn−1
, t) , (1.14)

where f is a function with values in Rk defined on a subset Ω ⊆ Rkn × R. We will mostly
assume that Ω is the whole space Rkn × R and that f is a C∞-function, i.e. all its partial
derivatives exist and are continuous at all points of Ω. A solution to (1.14) is a function
x : I → Rk, where I is an interval, such that (x(t), x(1)(t), . . . , x(n−1)(t), t) ∈ Ω for t ∈ I,
and such that

x(n)(t) = f(x(t), x(1)(t), . . . , x(n−1)(t), t) t ∈ I .
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As usual, the i’th derivative x(i) of the vector function x = (x1, . . . , xk) is defined by
differentiating the coordinates:

x(i)(t) = (x
(i)
1 (t), . . . , x

(i)
k (t)) .

The variable t will in the following be chosen to be the time coordinate in some inertial
system x. For a system consisting of a single (point-)particle, we have k = 3 and x(t) is the
spatial coordinate set of the particle at time t. For a system consisting of N particles, we
collect their coordinate sets x1(t), . . . , xN (t) into one set x(t) = (x1(t), . . . , xN (t)) ∈ R3N ,
such that k = 3N in this case.

Let us first consider the case of a first order equation for a single particle

dx

dt
= f(x, t) .

Under an inertial coordinate transformation with A = I and s = 0, we have y = x+ a+ vt
and hence dy

dt = dx
dt + v. The equation can therefore be rewritten in the form

dy

dt
= f(y − a− vt, t) + v .

Thus, the two equations have identical form if and only if the function f fulfills

f(x, t) = f(x− a− vt, t) + v

for arbitrary x, a, v ∈ R3 and t ∈ R. Since the left hand side is independent of a it follows
that f is independent of x. Hence f(x, t) = f(t) fulfills f(t) = f(t) − v, which clearly is
impossible. We conclude that an equation of first order is incompatible with the principle
of relativity.

Next, consider an equation of second order for a single particle

d2x

dt2
= f(x,

dx

dt
, t) .

Under an inertial coordinate transformation with A = I and s = 0 we have d2x
dt2

= d2y
dt2

and
the equation can be rewritten as

d2y

dt2
= f(y − a− vt, dy

dt
− v, t) .

The two equations have the same form if and only if f satisfies

f(x, z, t) = f(x− a− vt, z − v, t)

for all x, z, a, v ∈ R3 and t ∈ R. As above this implies that f(x, z, t) = f(t) is independent
of x, z. Next, applying an inertial coordinate transformation with a = s = v = 0, we have

y = Ax and hence dy
dt = Adx

dt and d2y
dt2

= Ad2x
dt2

, since A is constant. Therefore, we can
rewrite the equation as

d2y

dt2
= Af(t) .
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Invariance of the equation requires

f(t) = Af(t) ,

which implies f(t) = 0, since 0 is the only vector invariant under arbitrary rotations. We
conclude that the only second order equation for a single particle that is compatible with
the principle of relativity is

d2x

dt2
= 0 .

The solutions to this equation are of the form

x(t) = a+ vt ,

where a, v ∈ R3 are constants. This means that the possible motions of the particle
are along straight lines with constant velocity v, which we recognize as the contents of
Newton’s first law of motion. We have shown that it is a consequence of the principle
of relativity and the assumption that the equation of motion is a second order differential
equation.

We promote this latter assumption to a general principle for systems with an arbitrary
number of particles, i .e. we postulate:

Newton’s second law. In an inertial system the equation of motion for a system of
N particles is a second order differential equation for the coordinates of the particles as
functions of time.

This means that the equation of motion is of the form

ẍi = fi(x, ẋ, t) i = 1, . . . , N , (1.15)

where x = (x1, . . . , xN ) and we have introduced the notation ẋ and ẍ for the first and
second time derivatives of x, respectively. As in the case of a single particle, the principle
of relativity implies constraints on the possible forms of the right hand side of (1.15).
One finds (see Exercise 1.6) that, as a consequence of invariance under translations and
boosts, f can depend only on the coordinate differences xi−xj and the velocity differences
ẋi − ẋj , 1 6 i < j 6 N . Furthermore, fi is independent of time t because of invariance
under time shifts Ts. We see that invariance of (1.15) under O(3)-transformations implies
(see Exercise 1.7) that the fi’s must obey the identity

fi(Ax1, . . . , AxN , Aẋ1, . . . , AẋN ) = Afi(x1, . . . , xn, ẋ1, . . . , ẋN ) . (1.16)

This requirement is, however, far from determining the form of the fi’s uniquely (see
Exercise 1.7).

A prime example of a mechanical system respecting the Galilean principle of relativity
is a system of N particles interacting according to the universal law of gravitation
which is the statement that (1.15) holds with

fi(x) =
∑
j 6=i

kj(xj − xi)
‖xj − xi‖3

, (1.17)
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where k1, . . . , kN are constants characteristic of the individual particles, i. e., ki does not
depend on which other particles the i’th one is brought into interaction with and it does
not depend on the chosen inertial coordinate system. By definition ki = Gmi, where

G = 6.670 · 10−14gm3/s2

is Newton’s constant , and mi is called the mass of particle i. Note that fi is independent
of the particle velocities ẋi and clearly fulfills (1.16). Note also that fi is singular if
other particle positions coincide with that of particle i. By measuring the accelerations ẍi
for a suitable set of particle configurations one can determine the masses mi from (1.15)
and (1.17) and once this has been done, equation (1.15) provides in principle a complete
description of the motion of the particles, as discussed in more detail below, apart from
the lack of a prescription how to deal with the possible occurrence of singularities when
particles coalesce.

The problem of solving (1.15) with fi given by (1.17) is often referred to as the N-body
problem. As is well known, the 2-body problem is exactly solvable. The standard way of
doing this is first to observe that the center of mass

xc =
m1

m1 +m2
x1 +

m2

m1 +m2
x2

has vanishing acceleration, i.e. the total momentum is conserved. Hence we can choose the
inertial system of coordinates such that xc is a rest at the origin which effectively reduces the
system of equations (1.15) to a one-particle problem that can be solved. Notice, however,
that although the one-particle problem mentioned also has the form of Newtons equation
(1.15) for N = 1 it is not invariant under inertial coordinate transformations, since it is
valid only in the particular inertial system chosen.

For N > 3 the complete solution to the N -body problem is a long standing unsolved
problem. If one of the masses, say m1, is much larger that the other ones, such as is the
case for the solar system, one can obtain an approximate solution by disregarding all terms
on the right-hand side of (1.15) not containing m1. This implies that the acceleration of
particle 1 vanishes and the acceleration of particle i for i > 2 only depends on x1 and xi.
It follows that, in the inertial system of coordinates where x1 = 0, the equations (1.15)
reduce to N − 1 independent one-particle equations as above. This is the approximation
used to obtain, e. g., the elliptic orbits of the planets around the sun.

Hence we see that, although the fundamental equations of mechanics are assumed to
be invariant under inertial coordinate transformations, the relevant equations describing
reductions or subsystems, or approximations to those equations, need not be invariant
under inertial coordinate transformations.

Multiplying the i’th equation (1.15) by the mass mi and defining the force Fi acting
on particle i by Fi = mifi we obtain the more familiar form of Newton’s second law

miẍi = Fi , i = 1, . . . , N . (1.18)

In particular, the gravitational force acting on a particle i in a system of N particles as
above is the sum

F gravi =
∑
j 6=i

F gravij (1.19)
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of individual contributions

F gravij = −Gmimj
xi − xj
‖xi − xj‖3

. (1.20)

from the other particles j 6= i.

Remark 1.4. Let us mention at this point that a more general and historically more
correct version of Newton’s second law is obtained by replacing mi on the left-hand side
of (1.15) by the so-called inertial mass m̄i. In this way, two characteristic constants are
associated with each individual particle, the inertial mass m̄i and the gravitational mass mi.
We leave it to the reader to contemplate that by observing the motion of two particles with
masses m1, m̄1 and m2, m̄2, respectively, obeying the general version of Newton’s second
law and subject to the gravitational interaction force given by (1.20) one can measure

m̄1

m̄2
and G

m1

m̄1
m2 .

By varying m̄1 one can hence determine the dependence of µ = m1
m̄1

on m̄1. It has been
found experimentally that the value of the ratio µ is a universal constant, which can be
set to 1 with the proper definition of Newton’s constant. The fact that µ is a universal
constant is called the equivalence principle. It’s validity has been implicitly assumed
in the formulation (1.18) of Newton’s second law and is particularly important as a basic
ingredient in the general theory of relativity. The origin of the equivalence principle dates
back to the investigations by Galilei around year 1600 of the motion of falling bodies and
has since then gained ever stronger experimental support. In particular, the famous Eötvös
experiment in 1889 and later refinements have shown that µ equals 1 with an accuracy of
order 10−10 for various substances. Furthermore, it constitutes the basis of Einstein’s
general theory of relativity form 1915.

Besides gravity the most important fundamental forces acting in the classical regime are
the electromagnetic forces. As mentioned earlier the complete laws of electromagnetism in
the form of Maxwell’s equations do not satisfy the principle of relativity in the form stated
above. However, for particle velocities small compared to the velocity of light and for small
particle accelerations such that radiation effects can be ignored the motion of N charged
particles is to a good approximation determined by (1.18) with

Fi = F gravi + F emi ,

where the electromagnetic force F emi on particle i is given by

F emi =
∑
j 6=i

F emij , (1.21)

with

F emij = Keiej
xi − xj
‖xi − xj‖3

+
K

c2
eiej ẋi ×

ẋj × (xi − xj)
‖xi − xj‖3

. (1.22)

Here the first term on the right-hand side is the Coulomb force and

K = 8.99 · 1012gm3/A2s4
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is called Coulomb’s constant , while

c = 2.998 · 108m/s

is the velocity of light, and the constant ei, characteristic of particle i, is called its charge.
The second term on the right-hand side of (1.22) is the magnetic contribution to F emi
arising from the motion of the other particles j 6= i. We remark that the mass of a charged
particle can be determined from Newton’s law by letting it interact with neutral particles,
i. e., particles with charge 0, where-after the charge can be determined from its interaction
with other charges particles. The reader may easily verify that the Coulomb force satisfies
the transformation property (1.16) and is invariant under boosts and translations. Also
the magnetic term in (1.22) satisfies (1.16) but obviously is not invariant under boosts. In
fact, this term can be viewed as a relativistic correction to the Coulomb interaction and
can under certain circumstances be ignored, but in other situations, for instance if particle
i is located in the vicinity of a steady current in a conducting wire, then F emi may be the
dominant force acting on particle i.

Comparing the Coulomb force with the gravitational force between, say, an electron
and a proton one finds that the ratio is of order 1037. In this sense the Coulomb attrac-
tion is much stronger than the gravitational attraction. However, the fact that the charge
can assume both positive and negative values, contrary to the mass, means that screening
effects may occur as witnessed by our every day experience with macroscopic bodies made
up of a large number of negatively charged electrons and an approximately equal number
of oppositely charged protons. For such approximately neutral subsystems the effective
interaction can well be dominated by the gravitational force, such as is the case for the
planets and the sun. Even for small neutral systems of molecular size the effective elec-
tromagnetic force falls off faster than quadratically with distance. On the other hand, the
electromagnetic forces between constituents of matter also give rise to effective macroscopic
forces such as elastic forces.

To sum up, the Newtonian description of the motion of a (system of) particle(s) is
based on the assumption that a force represented by a vector Fi(xi, t) ∈ R3 acts on each
particle i with coordinates (xi, t) and that Newton’s second law (1.18) holds in an inertial
system of coordinates. In principle the force Fi is derivable from fundamental interactions
satisfying the principle of relativity but in practice reductions or approximations violating
this principle may occur. Although we have here expressed Fi explicitly only as a function
of the coordinates of the particle i on which the force acts, it may depend on other variables,
including the particle velocities, as seen above. On the other hand, Fi does not depend
on higher derivatives of the coordinates since, otherwise, the equation would not be of
second order. Thus, in general, to determine the motion of a system of particles it is not
possible to solve the equation (1.18) for each individual particle. Instead, one must solve
simultaneously the whole system of coupled differential equations for the particles. This is
discussed further in Section 1.5 below.

1.4 Conservative force fields

In this section we shall discuss in some detail time independent forces and the concepts of
work and energy.
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A vector field is a function F : O → Rk, where O ⊆ Rk is an open set and k ∈ N is
fixed. If F represents a force acting on a (system of) particle(s) we call it a force field.
For a single particle in physical space we have k = 3, whereas for N interacting particles
in 3-dimensional space we naturally have k = 3N , as explained at the beginning of the
previous section. Other examples of vector fields in physics are the electric and magnetic
fields.

Definition 1.5. A curve in Rk is a continuous function γ : I → Rk defined on an interval
I ⊆ R. We say that γ is piecewise C1 if it has a continuous derivative except at finitely
many points t1 < t2 < · · · < tn, where the left and right derivatives are required to exist,
but may be different. Equivalently, γ is continuously differentiable in each sub-interval
[ti, ti+1], for each i = 0, 1, . . . , n, with the convention t0 = a, tn+1 = b.

Thinking of a curve γ as representing the trajectory of a (system of) particles we also
call γ a motion and the derivative γ̇(t) is called the velocity at time t, whenever it exists.

We say that a curve γ̃ : J → Rk is a reparametrization of the curve γ : I → Rk if
there exists a strictly monotone continuous function ϕ : J → I, with ϕ(J) = I such that
γ̃ = γ ◦ ϕ. If ϕ is increasing then γ and γ̃ are said to have the same orientation, and
otherwise they have opposite orientation.

Definition 1.6. Let F : O → Rk be a continuous force field and γ : [a, b]→ O a piecewise
C1-curve. We define the line integral, or work integral, of F along γ to be

Wγ(F ) =

∫ b

a
F (γ(t)) · γ̇(t)dt ,

where · denotes the standard scalar product on Rk. In case γ is not C1, the integral over
[a, b] is (as usual) defined as the sum of integrals over the sub-intervals on which γ is C1.

An important property of the work integral is that it is unchanged under orientation
preserving reparametrizations as a consequence of the following result.

Lemma 1.7. If γ and ϕ are as in Definition 1.5, with γ and ϕ piecewise C1 and ϕ
increasing, then

Wγ(F ) = Wγ◦ϕ(F ).

Proof. By suitably splitting the interval I into sub-intervals we may assume ϕ and γ to be
C1. Then the result follows by using integration by substitution with t = ϕ(s):

Wγ◦φ(F ) =

∫ d

c
F (γ(ϕ(s)) · γ̇(ϕ(s))ϕ′(s)ds =

∫ b

a
F (γ(t)) · γ̇(t)dt = Wγ(F ) .

A frequently used notation reflecting the reparametrization invariance of Wγ(F ) is

Wγ(F ) =

∫
γ
F · dr .

Note also that the work integral changes sign under a change of orientation of γ (see
Exercise 1.9).
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For a single particle of mass m moving along a curve γ the kinetic energy at time t is
defined as

Ekin(t) =
1

2
m‖γ̇(t)‖2 .

The following result shows that for a motion fulfilling Newton’s second law the work integral
of the force equals the change of the particle’s kinetic energy.

Theorem 1.8. For a particle of mass m moving along a C2-curve γ : I → O subject to
Newton’s second law (1.18) under the influence of a continuous force field F : O → Rk, the
identity

Ekin(t2)− Ekin(t1) =

∫ t2

t1

F (γ(t)) · γ̇(t)dt

holds for all t1, t2 ∈ I.

Proof. By differentiation and using Newton’s second law we arrive at

d

dt

(
1

2
m‖γ̇(t)‖2

)
= mγ̇(t) · γ̈(t) = F (γ(t)) · γ̇(t) .

Integrating both sides and using the fundamental theorem of calculus then gives the result.

As seen in Lemma 1.7 Wγ(F ) is invariant under increasing reparametrizations of γ. We
now consider a very important class of force fields for which the work integral depends only
on the end points of the motion. An equivalent way of saying this is that the work integral
along any closed curve, i.e. a curve with coinciding endpoints, is zero (see Exercise 1.10).

Definition 1.9. A continuous force field F : O → Rk is said to be conservative if

Wγ(F ) = 0.

for all piecewise C1-curves γ : [a, b]→ O with γ(a) = γ(b).

As we shall see below the gravitational force field (1.20) is conservative on the set where
it is defined (i. e., when no two particles are on top of each other). Examples of force fields
which are not conservative can be found in Exercise 1.11.

The next result gives a characterization of conservative force fields in terms of associated
potentials as follows.

Theorem 1.10. A continuous force field F : O → Rk is conservative if and only if there
exists a C1-function V : O → R, called a potential or potential energy of F , such that
F = −∇V .

Proof. If there exists a function V as stated in the theorem we have for all piecewise
C1-curves γ : [a, b]→ O that

Wγ(F ) = −
∫ b

a
∇V (γ(t)) · γ̇(t)dt = −

∫ b

a

d

dt
V (γ(t))dt = V (γ(a))− V (γ(b))

which vanishes if γ(a) = γ(b). Hence F is conservative.
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On the other hand, if F is conservative we shall now construct a function V such that
−∇V = F . By a simple argument we can assume O is pathwise connected, i. e., for all
points x, x0 ∈ O there exists a piecewise C1-curve γ : [a, b] → O such that γ(a) = x0 and
γ(b) = x. Let x0 be fixed and define

V (x) = −
∫ b

a
F (γ(t)) · γ̇(t)dt ,

where γ : [a, b] → O is any such piecewise C1-curve. Since F is conservative the value of
V (x) above does not depend on the choice of curve γ from x0 to x (see Exercise 1.10).

In order to differentiate V at x = (x1, . . . , xk) we use that O is open and choose
a ball B ⊆ O centered at x. Varying the first coordinate we consider another point
x′ = (x′1, x2, . . . , xk) in the ball B, and connect x to x′ by the curve µ : t→ x+(t, 0, . . . , 0) ,
along the first axis, where t is between 0 and x′1 − x1. In the definition of V (x′) we choose
the curve connecting x0 to x′ as the curve γ connecting x0 to x followed by µ from x to x′.
This gives

V (x′)− V (x) = −
∫ x′1

x1

F1(t, x2, . . . , xk)dt ,

where F1 is the first coordinate of F . It now follows from the fundamental theorem of
calculus that

V (x′)− V (x)

x′1 − x1
→ −F1(x)

as x′1 → x1. Applying the same argument for the other coordinates we conclude that
∇V (x) = −F (x). Since F is continuous it follows that V is C1.

The above result allows us to formulate the theorem of conservation of energy for a
single particle acted on by a conservative force.

Theorem 1.11. For a particle of mass m moving along a C2-curve γ : I → O according to
Newton’s second law under the influence of a conservative force field F = −∇V on O ⊆ R3,
the total energy

E(t) =
1

2
m‖γ̇(t)‖2 + V (γ(t))

is conserved in the sense that it is a constant function of t.

Proof. By differentiation we have from Newton’s second law

E′(t) = mγ̇(t) · γ̈(t) +∇V (γ(t)) · γ̇(t) = (mγ̈(t)− F (γ(t))) · γ̇(t) = 0.

A force field F : O → Rk, where O = Rk or O = Rk \ {0}, is rotationally invariant if
it fulfills

F (Ax) = AF (x) , x ∈ O ,

for all special orthogonal k × k-matrices A, i. e., A is invertible, A−1 = At and detA = 1.
If k = 3 this is equivalent to stating that F is invariant under the transformation (1.16)
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with N = 1 for all special orthogonal 3× 3-matrices A. It is easy to show that rotational
invariance implies that F can be written in the form

F (x) = f(‖x‖2)x , x ∈ O , (1.23)

where f is a function defined on [0,∞[ or on ]0,∞[. Examples of such forces are the
gravitational attraction of a point particle and the Coulomb force of a charged point particle
at the origin both of which have the form

F (x) =
k

‖x‖3
x , x 6= 0 . (1.24)

They have the property of being conservative as a consequence of the following result.

Theorem 1.12. All rotationally invariant force fields are conservative

Proof. Write F in the form (1.23). For a piecewise C1-curve γ : [a, b]→ O we then have

Wγ(F ) =

∫ b

a
f(‖γ(t)‖2)γ(t) · γ̇(t)dt

=
1

2

∫ b

a
f(‖γ(t)‖2)

d‖γ(t)‖2

dt
dt =

1

2

∫ ‖γ(b)‖2

‖γ(a)‖2
f(s)ds,

which explicitly depends only on the endpoints γ(a) and γ(b).

If we compare with how the potential V was defined in the proof of Theorem 1.10 we
see from the above proof that the potential of a spherically symmetric force field may be
chosen spherically symmetric, i.e. to depend only on ‖x‖. In particular, the potential of
the force (1.24) can be chosen to be

V (x) = − k

‖x‖
.

Next, consider N particles moving in R3 subject to a force field F : O → R3N , where
O = R3N or O = R3N

6= ≡ {x | xi 6= xj for all i 6= j}. Writing F = (F1, . . . , FN ),

where Fi : O → R3, this means that Fi(x) is the force acting on particle i if the particle
positions are given by x = (x1, . . . , xN ). We say that the forces Fi are conservative if F
is conservative as a force field on O ⊆ R3N . By Theorems 1.10 and 1.12 this means that
there is a C1-function V on O such that

Fi = −∇xiV (x1, . . . , xN ) .

We note the following immediate generalization of Theorem 1.11.

Theorem 1.13. For N particles with masses m1, . . . ,mN , moving along C2-curves
(γ1(t), . . . , γN (t)) according to Newton’s second law under the influence of conservative
forces Fi = −∇iV , the total energy

E =
∑
i

1

2
miγ̇i(t)

2 + V (γ1(t), . . . , γN (t))

is conserved.
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Proof. The statement follows from

E′(t) =
∑
i

miγ̇i(t) · γ̈i(t) +
∑
i

∇xiV (γ1(t), . . . , γN (t)) · γ̇i(t) = 0.

The gravitational force between N point-particles with masses m1, . . . ,mN located at
points x1, . . . , xN in R3 is conservative on O = R3N

6= . In fact, the potential

V (x1, . . . , xN ) = −
∑

16i<j6N

G
mimj

‖xi − xj‖
, (1.25)

fulfills

∇xiV (x1, . . . , xN ) =
∑
j 6=i

Gmimj
xi − xj
‖xi − xj‖3

. (1.26)

We end this subsection by giving a characterization of translation invariant conservative
forces.

Theorem 1.14. The potential of a translation invariant conservative force field F acting
on a system of N particles in R3 can be written as

V (x1, . . . , xN ) = W (x2 − x1, . . . , xN − x1) + F0 · (x1 + . . .+ xN ) , (1.27)

where W (y2, . . . , yN ) is a function of 3(N − 1) variables and F0 ∈ R3 is a constant vector.

Note that the last term in (1.27) is the potential of a constant force F0 acting on each
particle. One refers to the first term on the right-hand side, which depends on the relative
positions of the particles only, as the interior potential and to F0 as an exterior constant
force. The fact that the interior interaction is written with x1 as subtraction point is not
important, see Exercise 1.13.

Proof. Translation invariance means that F (x1, . . . , xN ) = F (x1 − a, . . . , xN − a), that is

∇xiV (x1, . . . , xN ) = ∇xiV (x1 − a, . . . , xN − a)

for all a ∈ Rk and all i = 1, . . . , N . This implies that

V (x1, . . . , xN ) = V (x1 − a, . . . , xN − a) + g(a),

for all a ∈ R3 and some function g : R3 → R with g(0) = 0. Differentiating this equation
w. r. t. a gives by the chain rule

∇g(a) =
N∑
i=1

∇xiV (x1 − a, . . . , xN − a) =
N∑
i=1

∇xiV (x1, . . . , xN ).

In other words, both sides of this equation are constant. Hence g(a) = b · a + c for some
b ∈ R3 and c ∈ R. Since g(0) = 0 we have c = 0. Hence g(a) = b · a.
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Choosing a = x1 gives

V (x1, . . . , xN ) = V (0, x2 − x1, . . . , xN − x1) + b · x1

= V (0, x2 − x1, . . . , xN − x1)− 1

N
b · ((x2 − x1) + . . .+ (xN − x1))

+
1

N
b · (x1 + . . .+ xN )

= W (x2 − x1, . . . , xN − x1) + F0 · (x1 + . . .+ xN ),

where

W (y2, . . . , yN ) = V (0, y2, . . . , yN )− 1

N
b · (y2 + . . .+ yN )

and F0 = 1
N b.

In the particular case N = 2, this result implies that the interior potential of two inter-
acting particles subject to translation invariant conservative forces is of the formW (x2−x1).
Hence the force with which particle 1 acts on particle 2 is F12 = −∇W (x2 − x1) which is
equal in size but opposite to F21 = ∇W (x2 − x1), the force with which particle 2 acts on
particle 1. This is the action-reaction principle or Newton’s third law. If we also as-
sume that the force field is invariant under rotations in R3 we get the strong action-reaction
principle that F12 = −F21 is directed along the line joining the particles (see Exercise 1.7).

1.5 Configuration space, phase space and state space

That the equation of motion for a particle is of second order is intimately connected to the
empirical fact that one can in general specify arbitrarily the location and the velocity of a
particle at a given instant of time, and once this has been done the motion of the particle
is uniquely determined by the acting forces, and similarly for systems of particles. The
following theorem on the existence and uniqueness of solutions to a second order differential
equation is crucial in this connection.

Theorem 1.15. Let f : Ω→ Rk be a C∞-function defined on an open subset Ω of R2k+1

and let x0, ẋ0 ∈ Rk and t0 ∈ R be given such that (x0, ẋ0, t0) ∈ Ω. Then there exists a
unique solution x : I → Rk to the equation

ẍ = f(x, ẋ, t) (1.28)

defined on a maximal open interval I such that t0 ∈ I and the initial conditions x(t0) = x0

and ẋ(t0) = ẋ0 hold.

We shall not prove this theorem here. A proof can be found in [3] §7. More detailed
results can be found in, e. g., [4]. The regularity assumption made for f is unnecessarily
strong, but, on the other hand, some regularity condition stronger than continuity is needed
(see Exercise 1.18).

In order to apply the theorem to the equations of motion for a system of N particles,

miẍi = Fi , i = 1, . . . , N , (1.29)
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we set as before k = 3N , x = (x1, . . . , xN ) , and f = (m−1
1 F1, . . . ,m

−1
N FN ) in terms

of which the equations take the form (1.28). Thus, assuming that each Fi is a C∞-
function of the positions and velocities of the particles and of time, we conclude that
there exists a unique maximal solution with prescribed initial values (x1(t0), . . . , xN (t0))
and (ẋ1(t0), . . . , ẋN (t0)).

A result analogous to Theorem 1.15 is valid for equations of arbitrary order n > 1, in
which case the values of x and all derivatives up to order n− 1 at some instant t0 need to
be specified in order to ensure existence and uniqueness of a solution. In particular, for a
first order equation the initial condition consists in specifying the value of x itself only, at a
given time. We shall make use of this instance of the theorem in Chapter 3 when discussing
Hamilton’s equations. For a third order equation one would need to specify location and
velocity as well as the acceleration at a given instant of time. Since this would be in conflict
with experience such an equation is not a candidate equation of motion.

Note that the theorem does not in general provide solutions defined on the full time
axis, called globally defined solutions, but only ensure existence on a subinterval. For linear
equations, that is when each Fi : R2k+1 → R2k is a linear function of x and ẋ, for fixed
time t, all solutions are in fact globally defined, but for non-linear Fi solutions may grow
arbitrarily large in finite time or develop other types of singularities (see Exercises 1.15
and 1.17). For the sake of simplicity, we will assume in the following that all solutions are
globally defined.

It is convenient to describe the solutions to (1.29) as motions in the phase space R6N

of the system. Here we think of phase space as the space of initial data, and a motion in
phase space is a function z : I → R6N , where I is an interval (see Definition 1.5). Theorem
1.15 asserts that specifying a point z0 = (x0, ẋ0) in phase space and a time t0 there is a
unique curve z : t→ (x(t), ẋ(t)) determined by (1.29) which passes through the given point
at time t0, i.e. such that z(t0) = z0. Assuming that all solutions are globally defined we
obtain in this way for each fixed t a mapping Ψt,t0 : R6N → R6N defined by

Ψt,t0(z0) = z(t) for z(t0) = z0 ∈ R6N .

Since this holds for all t0, t ∈ R it follows from Theorem 1.15 (see Exercise 1.16) that Ψt0,t

is bijective and fulfills

Ψt2,t1 ◦Ψt1,t0 = Ψt2,t0 and (Ψt1,t0)−1 = Ψt0,t1 (1.30)

for arbitrary t0, t1, t2 ∈ R. The family of maps Ψt,t0 , t, t0 ∈ R, is called the phase flow of
the equations (1.29).

It is also useful to describe the solutions to (1.29) as curves in configuration space
R3N , considered as the space of initial configurations in space of the system. Since the
initial positions alone do not determine the temporal development of the system there is
no analogue of the phase flow in configuration space. The dimension of configuration space
is half the dimension of phase space and is called the number of degrees of freedom of the
system.

Finally, let us mention that a point in phase space of a system of N particles is often
called a state of the system. Thus, given a state of the system at a given instant of time, its
state is determined at all times, provided the acting forces are known. This notion of state
is, however, too restrictive for some purposes. Thus, for typical thermodynamic systems,



Chapter 1 Newtonian Mechanics 23

the number of particles is sufficiently large that their individual positions and velocities
cannot be determined in practice. A more convenient description of such a macroscopic
system is obtained by using a probability distribution on phase space. More precisely, a
thermodynamic state of the system at a given time t0 is given by a non-negative function
p on phase space, fulfilling ∫

R6N

p(x, v)d3Nxd3Nv = 1 .

The probability distribution pt at time t is then given by

pt(x, v) = p(Ψ−1
t,t0

(x, v)) = p(Ψt0,t(x, v)) .

Note that Ψt0,t is the “backwards flow” from t to t0. The fact, that this is still a prob-
ability distribution is known as Liouville’s Theorem, which will be proven in Chapter 3.
Thermodynamic equilibrium states are defined as states that are invariant under the phase
flow in the sense that pt = p for all t.

As one can imagine, a general thermodynamic equilibrium state can be very complicated
as it depends on a large number of variables – the 6N variables labelling states of the
microscopic particles. In thermodynamics one is mostly concerned with states that depend
on a small number of macroscopic physical variables, e. g. volume and temperature, besides
the phase space variables.

As an example we consider N particles moving freely in a box [0, L]3 ⊆ R3 subject to the
assumption that when a particle hits the boundary of the box the component of its velocity
orthogonal to the boundary is reflected. The phase flow then preserves the lengths of the
individual velocities v1, . . . , vN . The so-called Maxwell-Boltzmann distribution provides
an example of a thermodynamic equilibrium state for such a system. It depends on the
volume V = L3 and temperature T > 0 of the system and is given by (see Exercise 1.19)

p(x1, . . . , xN , v1, . . . , vN ) = L−3N
N∏
i=1

[(
mi

2πkBT

)3/2

exp

(
−

1
2miv

2
i

kBT

)]
, (1.31)

where the constant kB = 1.38 × 10−23 Joule/Kelvin is Boltzmann’s constant . Since p
depends only on the lengths of the velocities which are unchanged during the time evolution,
it is a thermodynamic equilibrium state (see Exercise 1.19).

In this state the average kinetic energy, which equals the internal energy U of the ideal
gas, is (see Exercise 1.20)

U =
N∑
i=1

∫
1

2
miv

2
i p(x1, . . . , xN , v1, . . . , vN )d3Nxd3Nv =

3

2
NkBT. (1.32)

In Exercise 1.21 it is shown how to arrive at the ideal gas equation

PV = NkBT , (1.33)

where P denotes the pressure.
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1.6 Digression: Exact and closed differentials

In this section, we give a very brief introduction to the subject of differential forms, which
provides an elegant machinery engulfing line integrals, surface integrals and alike in a
unified and coordinate-independent manner. In particular, all the classical integral theo-
rems in vector calculus, such as the theorems of Gauss, Gauss–Green, and Stokes, can be
formulated in terms of differential forms as one strikingly simple formula:∫

∂A
α =

∫
A
dα .

Here dα denotes the so-called exterior derivative of a differential form α, and A is some
“reasonable” object which can be integrated over (e. g. a smooth curve) and ∂A is the
“boundary” of A (e. g., if A is a smooth curve, then ∂A consists of its endpoints). For a
basic introduction to the theory of differential forms, we refer to V.I. Arnol’d: Mathematical
Methods of Classical Mechanics, chapter 7.

Of course, the beauty of the theory of differential forms does not come without a price to
pay: an introduction requires a great deal of linear algebra and analysis. We shall here limit
ourselves to a very short digression into so-called differential 1-forms or simply 1-forms on
Rk, partly motivated by the characterization of conservative force fields in Theorem 1.10,
and to a brief discussion of their application in thermodynamics.

In previous sections we have discussed functions and vector fields on the configuration
space modeled by (a subset of) Rk, the coordinates of which have a common interpretation
and are measured in the same units. In particular, it makes good sense in this case to think
of the gradient of a function as a vector field in space, since the gradient at a point makes
sense as a vector independently of the orthogonal coordinate system chosen to calculate it
(see Exercise 1.14). It can, indeed, be characterized as pointing in the direction in which
the function has the fastest increase and its size is the derivative of the function in this
direction.

In physics, however, we frequently encounter functions f of several variables, that
represent fundamentally different quantities. In thermodynamics, for instance, one may
consider the pressure P (U, V ) of a system as a function of the internal energy U and the
volume V of the system. In this case, it is not too meaningful to think of the gradient of P
as a vector. In fact, the two components ∂P

∂U and ∂P
∂V have different units, hence the length

of such a vector or the angle between such vectors does not have any physical meaning.
Instead, it is more appropriate to introduce the notion of differential

dP =
∂P

∂U
dU +

∂P

∂V
dV ,

where dP, dU, dV are often interpreted as infinitesimal quantities.
We now give a rigorous definition of the differential of a function which attributes a

precise meaning to the expression above.

Definition 1.16. If f : O → R is a C1-function on an open set O ⊆ Rk we define the
differential of f at the point x ∈ O to be the linear map dfx : Rk → R given by

dfx(X) =

k∑
i=1

∂f

∂xi
(x)Xi, X = (X1, . . . , Xk) ∈ Rk .
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As usual, we identify the coordinates xi, i = 1, . . . , k, with the coordinate functions
x = (x1, . . . , xk) 7→ xi. The differential of xi is then given by

dxi(X) = Xi.

Note that dxi is the same map at all points. Hence we may write

dfx =
∂f

∂x1
(x)dx1 + . . .

∂f

∂xk
(x)dxk,

or simply

df =
∂f

∂x1
dx1 + . . .

∂f

∂xk
dxk,

where we have omitted explicit reference to the point at which the differential of f is
calculated. Thus df is a differential 1-form according to the following definition.

Definition 1.17. A (differential) 1-form ω on an open subset of O ⊆ Rk is a map from
O to the linear functions from Rk to R of the form1

ωx =
k∑
i=1

ωi(x)dxi,

where the functions ωi : O → R, i = 1, . . . , k, are continuous. Thus, for a vector X ∈ Rk
we have

ωx(X) =
k∑
i=1

ωi(x)Xi

If ω is the differential of a function, that is if there is a C1-function f : O → R such that
ω = df , we say that ω is an exact 1-form.

For any vector field F : O → Rk there is a corresponding 1-form ωF given by ωF =
F1dx1 + . . .+ Fkdxk or, equivalently,

ωF (X) = F ·X , X ∈ Rk .

For vector fields we introduced the notion of line integral in Definition 1.6. The corre-
sponding notion for 1-forms is defined as follows.

Definition 1.18. If ω =
∑k

i=1 ωidxi is a 1-form on an open set O ⊆ Rk and γ : I → O is
a piecewise C1-curve we define the line integral of ω along γ by∫

γ
ω =

∫
I
ωγ(t)(γ̇(t))dt =

k∑
i=1

∫
I
ωi(γ(t))γ̇i(t)dt.

Evidently, ∫
γ
ωF =

∫
γ
F · dr ,

for any vector field F , and consequently Theorem 1.10 for vector fields may be translated
into the following statement about 1-forms.

1Any map from O to the linear functions from Rk to R can be written in this form. The extra requirement
is that the coordinate functions ωi are continuous.
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Theorem 1.19. A 1-form ω defined on an open set O ⊆ Rk is exact if and only if
∫
γ ω = 0

for any closed piecewise C1-curve.

For a C2-function f : O → Rk it is well-known that

∂2f

∂xi∂xj
=

∂2f

∂xj∂xi
.

Thus, a 1-form ω =
∑k

i=1 ωidxi such that the functions ωi are C1, in which case we say
that ω is (of class) C1, can only be exact if

∂ωi
∂xj

=
∂ωj
∂xi

, (1.34)

for all i, j = 1, . . . , k.

Definition 1.20. A 1-form ω of class C1 is said to be closed if it satisfies the relation
(1.34) for all i, j = 1, . . . , k.

Hence, we have seen that exact differential forms are necessarily closed:

If ω is C1 and exact, then ω is closed

However, as can be seen by simple examples (see Exercise 1.23), the converse statement
is not true in general. But it turns out that this depends on the shape of the domain O
on which the differential is defined. A very useful sufficient condition ensuring that the
notions of exactness and closedness of 1-forms on O coincide l sufficient condition ensuring
that the notions of exactness and closedness of 1-forms on O coincide is that O is simply
connected , which means that any closed curve in O can be continuously deformed to a
point entirely within O. The following theorem is a precise statement of this result. A
proof in the case when O is a star-shaped set can be found in Exercise 1.24.

Theorem 1.21. If the open set O ⊆ Rk is simply connected then any 1-form ω on O of
class C1 is exact if and only if it is closed.

Remark 1.22. The set R2\{0} is not simply connected. Exercise 1.23 provides an example
of a 1-form which is closed but not exact on this set.

Example 1.23 (Magnetic fields in two dimensions). We consider a charged particle moving
in an open subset O of the two-dimensional plane R2 under the influence of a magnetic
field perpendicular to the plane of motion. Hence, the magnetic field is described by a
function B : O → R which equals the third component of the three-component magnetic
field vector.

A 1-form α = α1dx + α2dy on O is called a vector potential of B if B = ∂α2
∂x −

∂α1
∂y .

Hence, if α is closed the corresponding magnetic field vanishes. Strangely, this does not
necessarily mean that the vector potential has no effect. Indeed, if the differential is not
exact, it may have an observable effect on the motion of a quantum mechanical particle.
A particular instance is that of a charged particle moving in the set R2 \ {0} under the
influence of the vector potential given by the closed 1-form in Exercise 1.23. It is then
observed that the motion of the particle is different from that of a free particle. This effect
is called the Bohm-Aharonov effect.
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Definition 1.24. If ω is a 1-form on an open set O ⊆ Rk, we say that a continuous
function τ : O → R with τ not identically equal to zero, is an integrating factor for ω if
the differential τω is exact.

We quote without proof the following theorem on the existence of integrating factors
in the case of two variables.

Theorem 1.25. Any 1-form ω on O ⊆ R2 locally has an integrating factor, i. e. , for any
x ∈ O there exists a disc D ⊆ O centered at x, such that ω has an integrating factor on D.

Example 1.26 (Integrating factors, temperature and entropy). As a last example we
discuss a thermodynamical system described by two macroscopic variables U and V , the
internal energy and the volume, respectively. The pressure of the system, i. e., the force
per area exerted by the system on the boundary of its domain, is then a function P (U, V ).

The 1-form
ω = dU + P (U, V )dV

plays an important role in the thermodynamic description of such a system. The signif-
icance of this 1-form can heuristically be described as follows. If the system receives an
infinitesimal energy in the form of heat this will be either stored as an infinitesimal internal
energy dU or used for the system to do work, i. e., to change its volume infinitesimally.
The work done by the system in changing its volume by dV is PdV (why?). Thus the total
heat received by the system equals dU + PdV .

The 1-form ω is not exact, but it has an integrating factor, which is the reciprocal
temperature T (U, V )−1 (this is indeed a way to introduce the temperature). Thus there
exists a function S(U, V ) such that

dS = T (U, V )−1(dU + PdV ) .

The function S, which is determined in this way up to an overall additive constant, is
called the entropy of the system. The fact that the heat differential has an integrating
factor follows, at least locally, from Theorem 1.25, since the system depends only on two
variables U and V .

Examples of systems that depend on more than two variables can be obtained by
bringing several, say M , systems as above in thermal contact, meaning that they can
transfer their internal energies. Such a combined system is described by the total internal
energy U and the volumes V1, V2, . . . , VM of the individual subsystems. The heat differential
is in this case

ω = dU + P1dV1 + . . .+ PMdVM ,

where P1, . . . , PM are the pressures of the subsystems and are functions of U, V1, . . . , VM .
It is an important consequence of the so-called Second Law of Thermodynamics that ω has
the common temperature of the combined system as integrating factor, that is we have
again

TdS = dU + P1dV1 + . . .+ PMdVM ,

where the entropy S and temperature T are functions of U, V1, . . . , VM .
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Exercises

Exercise 1.1. Prove the following statements relating to the scalar product 〈·, ·〉 on R3.

a) If the vectors e1, e2, e3 ∈ R3 fulfill

〈ei, ej〉 =

{
1 if i = j

0 if i 6= j
,

then (e1, e2, e3) is a basis for R3. It is called an orthonormal basis for R3.

b) Let (e1, e2, e3) be an orthonormal basis for R3 and let v ∈ R3. Use the linearity
properties of the scalar product to show that the coordinate set (x1, x2, x3) of v with
respect to the basis (e1, e2, e3) is given by

xi = 〈v, ei〉 , i = 1, 2, 3 .

c) Use the linearity properties of the scalar product to verify the identities

〈v, w〉 =
1

2
‖v‖2 +

1

2
‖w‖2 − 1

2
‖v − w‖2

〈v, w〉 =
1

4
‖v + w‖2 − 1

4
‖v − w‖2

d) Derive the Cauchy-Schwarz inequality

|〈v, w〉| 6 ‖v‖‖w‖ , v, w ∈ R3 .

Hint. One possible way to proceed is to consider the polynomial f(x) = ‖v + xw‖2
and use that, since it is nonnegative, its discriminant must be less than or equal to
zero.

Exercise 1.2. Let S : R3 → R3 be an isometry. Prove that

S(v) = a+ S0(v) ,

where a ∈ R3 is a fixed vector and S0 : R3 → R3 is a linear isometry, in the following two
steps.

a) Set
a = S(0)

and define S0 by
S0(v) = S(v)− a , v ∈ R3 .

Verify that S0(0) = 0 and that S0 is an isometry, and use the first identity in Exer-
cise 1.1c) to show

〈S0(v), S0(w)〉 = 〈v, w〉 , v, w ∈ R3 .
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b) Show, using a), that

‖S0(λv)− λS0(v)‖2 = 0

‖S0(v + w)− S0(v)− S0(w)‖2 = 0 ,

and conclude that S0 is linear.

Exercise 1.3. Assume S0 : R3 → R3 is an orthogonal transformation and let A be the
3× 3-matrix representing S0 with respect to the standard basis (ε1, ε2, ε3) for R3, that is

S0(v) = Av , v ∈ R3 .

a) Show that the columns of A constitute an orthonormal basis for R3 and that this is
equivalent to

AtA = I ,

where At denotes the transpose of A (defined by substituting the columns of A by
the corresponding rows), and I is the 3× 3 identity matrix.

Conclude that A is invertible and that

A−1 = At . (1.35)

Matrices fulfilling (1.35) are called orthogonal matrices and the set of orthogonal
3× 3-matrices is denoted by O(3).

b) Show that A is an orthogonal matrix if and only if the corresponding orthogonal
transformation S0 maps an orthonormal basis to an orthonormal basis.

c) Show that I is an orthogonal matrix and that, if A,B are orthogonal matrices, then
AB and A−1 are also orthogonal matrices.

Exercise 1.4. In this exercise A denotes an orthogonal 3 × 3-matrix and S0 the corre-
sponding linear map, S0v = Av , v ∈ R3.

a) Let λ ∈ R. Show that the equation

Av = λv

has a solution v 6= 0 if and only if

det(A− λI) = 0 . (1.36)

Show that the left hand side of (1.36) is a third order polynomial in λ and that it
has at least one root λ1 ∈ R and conclude from ‖Av‖ = ‖v‖ that

λ1 = ±1.

b) Explain that there exists a vector v1 ∈ R3 such that

Av1 = λ1v1 and ‖v1‖ = 1 ,
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and that, given such a vector v1, there exist vectors v2, v3 ∈ R3 such that (v1, v2, v3)
is an orthonormal basis for R3.

Show that the matrix representing S0 with respect to the basis (v1, v2, v3) is of the
form λ1 0 0

0 a b
0 c d

 ,

where the columns (0, a, c) and (0, b, d) are orthogonal and of norm 1. Show that it
can be written in one of the following two forms:

B1 =

λ1 0 0
0 cos θ − sin θ
0 sin θ cos θ

 , B2 =

λ1 0 0
0 cos θ sin θ
0 sin θ − cos θ

 ,

for some θ ∈ [0, 2π[.

c) i) If λ1 = 1, show that B1 represents a rotation through an angle θ around the
v1-axis, i. e., show that vectors parallel to v1 are left invariant by S0 and that if v is
orthogonal to v1 then S0(v) is also orthogonal to v1 with same norm and forming an
angle θ with v.

ii) If λ1 = 1, show that B2 represents a rotation through an angle θ around the
v1-axis composed with reflection in the (v1, v2)-plane.

iii) If λ1 = −1, show that B1 represents a rotation through an angle θ around the
v1-axis composed with reflection in the (v2, v3)-plane.

iv) If λ1 = −1, show that B2 represents a rotation through an angle π around the
axis obtained by rotating the v2-axis through an angle θ/2 in the (v2, v3)-plane.

Exercise 1.5. Verify formulas (1.11), (1.12) and (1.13).

Exercise 1.6. Show that, for a system of N particles, the principle of relativity implies
that the force acting on a particle can depend only on the spatial coordinate differences
and the velocity differences in an inertial system of coordinates, and that it transforms
according to equation (1.16) under an inertial coordinate transformation ψ[0, 0, 0, A].

Exercise 1.7. a) Derive the expression (1.23) for a rotationally invariant force field in
R3.

b) Show, for the case of two interacting particles, that if the forces Fi, i = 1, 2, are of
the form

F1 = g1(‖x1 − x2‖)(x2 − x1) , F2 = g2(‖x1 − x2‖)(x1 − x2) ,

where g1 and g2 are C∞-functions on the positive real axis, then the equations of
motion (1.15) are invariant under inertial coordinate transformations.

c) Show, that if the forces are assumed to be independent of velocities then invariance
of the equations of motion under inertial coordinate transformations implies that the
forces must be of the form given above (for x1 6= x2).
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Exercise 1.8. a) Show that the force field F1(x, y) = (x2 + y, y2 + x) is conservative
on R2.

b) Find the work integral of F1 along a motion going in a straight line from (0, 0) to
(1, 0) and then in a straight line from (1, 0) to (1, 1).

c) Find the work integral for the force field F2(x, y) = (y2, x2) along the same motion
as above.

d) Is the force field F2 above conservative?

Exercise 1.9. Let F : Ω→ Rk be a continuous vector field and γ : [a, b]→ Ω a piecewise
C1 curve and ϕ : [c, d] → [a, b] a strictly monotone piecewise C1-function with ϕ(c) = b
and ϕ(d) = a. Let γ̃ = γ ◦ ϕ.

Show that ∫
γ
F · dr = −

∫
γ̃
F · dr

Exercise 1.10. Show that a force field is conservative if and only if the work integral of
the field along any piecewise C1-curve depends only on the endpoints of the motion.

Exercise 1.11. Show that the vector fields

F (x, y) = (−y, x) , (x, y) ∈ R2 ,

and

G(x, y) =

(
−y√
x2 + y2

,
x√

x2 + y2

)
, (x, y) ∈ R2 \ {(0, 0)} ,

are not conservative.
Hint. Evaluate the integrals of F and G along a suitable closed curve.

Exercise 1.12. Prove the relation (1.26) for the gravitational force.

Exercise 1.13. Given a function W (y2, . . . , yN ) of N − 1 variables in Rk show that there
exists a function W ′ of N − 1 variables in Rk such that

W (x2 − x1, x3 − x1, . . . , xN − x1) = W ′(x1 − x2, x3 − x2 . . . , xN − x2).

Exercise 1.14. a) Let f : R3 → R be a C1-function. For any 3× 3 matrix let gA(x) =
f(Ax). Show that ∇gA(x) = At∇f(Ax).

b) We want to investigate how the gradient changes under a coordinate transformation
given by an invertible 3 × 3 matrix A. Thus introduce new coordinates y = Ax. In
the new coordinates a C1-function f : R3 → R becomes g(y) = f(A−1y). Show,
using the result of the previous question, that if and only if the matrix A represents
an orthogonal transformation (see Exercise 1.3) does the gradient transform like a
vector, i. e. ∇g(y) = A∇f(A−1y), for all functions f .
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Exercise 1.15. Find all maximal solutions to the first order differential equation

dx

dt
= 1 + x2 , (x, t) ∈ R2 ,

and verify that they are not globally defined.

Exercise 1.16. Prove the relations (1.30) for the phase flow.

Exercise 1.17. Consider a particle in one dimension with potential energy U(x) = −x4,
i. e., its equation of motion is

mẍ = −U ′(x) = 4x3 .

a) Show that the energy

E =
1

2
mẋ2 − x4

is conserved.

b) Use a) to show that for a solution x(t), t ∈ [t1, t2], the time t2 − t1 it takes to move
from a point x1 to a point x2 is given by

t2 − t1 =

∫ x2

x1

dx√
2
m(E + x4)

,

assuming that x1 < x2 and that ẋ 6= 0 on [t1, t2].

c) Use b) to show that, for E > 0, the particle escapes to infinity in finite time, i. e.,
the solution is not globally defined.

Exercise 1.18. Consider the first order differential equation

dx

dt
= f(x, t) ,

where the continuous function f : R2 → R is defined by

f(x, t) =

{√
x if x > 0

0 if x < 0 .

Find two different solutions x1 and x2 such that x1(0) = x2(0) = 0.

Exercise 1.19. Use the fact that
∫∞
−∞ e

−x2dx =
√
π to show that the Maxwell-Boltzmann

distribution (1.31) is a probability distribution, i. e., that∫
p(x1, . . . , xN , v1, . . . , vN )d3Nxd3Nv = 1

Exercise 1.20. Use the fact that d
dα

∫∞
−∞ e

−αx2dx = −
∫∞
−∞ x

2e−αx
2
dx (can you prove

this?) and
∫∞
−∞ e

−x2dx =
√
π to show the identity (1.32). Show that the corresponding

relation in k space dimensions would be U = k
2NkBT . This is often referred to as the

equipartition of energy, i. e., that each degree of freedom contributes an equal amount
1
2NkBT to the total energy. If the particles have internal degrees of freedom they will also
contribute to the total energy.
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Exercise 1.21 (Ideal gas equation). We study again the system of N particles in the box
[0, L]3 given by the Maxwell-Boltzmann distribution (1.31). When a particle with velocity
v = (v1, v2, v3), v1 6 0, hits the wall x1 = 0 its velocity changes to (−v1, v2, v3). If its
mass is m then its momentum has therefore changed by the amount −2mv1 in the first
coordinate direction. The lost momentum, i. e. 2mv1, is said to be transferred to the wall.
The absolute value of the expected total transfer of momentum per unit time and unit area
is by definition the pressure P of the system.

Argue that a particle whose velocity component in the x1-direction is v1
i will hit the

wall x1 = 0 approximately
|v1i |t
2L times during a time interval of length t, for t large, and

hence that the momentum transfer to the wall per unit time by particle i is −mi(v
1
i )

2/L.
Use the result of the previous exercise to show that the expected transfer of momentum to
the wall per unit time and unit area by all particles equals −L−3NkBT . Hence we have
found that P = L−3NkBT which is the ideal gas equation (1.33).

Exercise 1.22 (Entropy of an ideal gas). Consider an ideal gas of N particles. We have
seen that the pressure P (U, V ) and temperature T (U, V ) are given as functions of the
energy U and volume V from the relations

V P (U, V ) = NkBT (U, V ), U =
3

2
NkBT (U, V ).

Show that T (U, V )−1 is an integrating factor for the heat differential

dU + P (U, V )dV

and that the entropy must be given by

S(U, V ) = NkB ln
(
C(V/N)(U/N)3/2

)
for some constant C independent of U and V . Show that C is independent of N if we
assume that S, V , and U are proportional to N .

Exercise 1.23. Consider the differential

α = − y

x2 + y2
dx+

x

x2 + y2
dy

defined on the set R2 \ {0}.

a) Show that α is a closed differential.

b) Show that if γ : [0, 2π] → R2 is the motion γ(t) = (cos(t), sin(t)) then
∫
γ α 6= 0 and

conclude that α is not exact.

Exercise 1.24. The purpose of this exercise is to prove Theorem 1.21 under the additional
assumption that the set O ⊆ Rk is star-shaped. By this, we mean that there exists a point
x0 ∈ O such that for all x ∈ O the line segment connecting x0 and x lies entirely in O.

Under this assumption, we can assume without loss of generality that x0 = 0 holds.
Then define the function V : O → R by

V (x) =
k∑
j=1

∫ 1

0
ωj(tx)xj dt .
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Briefly explain why V is well-defined. Next, verify that V has the desired property, i. e.

dV = ω on O ,

which means that
∂V

∂xi
(x) = ωi(x) for x ∈ O and i = 1, . . . , k .

To prove this, show (by using that ω is closed) the identity

∂V

∂xi
=

∫ 1

0
t
d

dt
ωi(tx) dt+

∫ 1

0
ωi(tx) dt .

Finally, integrate by parts to conclude the proof, also using that d
dtg(tx) = x · ∇g(tx) for

any differentiable function g of k variables.



Chapter 2

Lagrangian Mechanics

The main results of this chapter will be the formulation of Lagrangian mechanics and
Hamilton’s principle of least action which provide an interpretation of Newton’s equation
of motion as a variational equation under quite general circumstances. The value of this
reformulation of classical mechanics can hardly be overestimated, both as a tool for solving
concrete physics problems and as a mathematical framework for classical mechanics.

2.1 Calculus of variations

The calculus of variations is concerned with functionals and their extremal points or, more
generally, their stationary points. In fact, many fundamental equations in physics and
geometry arise from a so-called variational principle, and the calculus of variations defines
a rigorous framework for deriving such equations and studying their properties.

By a functional Φ we simply mean a mapping Φ : X → R, where X is some given
function space. Thus, a functional is just a real-valued function depending on functions.
For example, the assignment

Φ(γ) =

∫ 1

0
‖γ̇(t)‖ dt

defines a functional on the space of continuously differentiable functions γ from [0, 1] to Rk
or, in the notation of Definition 1.5 of Chapter 1, the space of C1 curves defined on [0, 1].
In geometric terms, the functional Φ(γ) given above is the length of the C1 curve γ. We
shall therefore in the following denote this functional by L instead of Φ (see Definition 2.2
below). Applying the calculus of variations to L the classical statement that the shortest
curve connecting to given points in Rk is a straight line will be demonstrated.

Having the application to classical mechanics in mind, we shall restrict ourselves hence-
forth to functionals defined on spaces of curves in Rk. For an open subset U of Rk the
space of C1-curves γ : [a, b] → U on the interval [a, b] will be denoted by C1([a, b],U).
For notational simplicity we shall mostly consider the case U = Rk although the central
results, such as Theorems 2.10 and 2.17, are valid for general open sets U with obvious
modifications. A similar statement holds true if C1([a, b],U) is replaced by the larger space
of piecewise C1-curves in U .

The space C1([a, b],Rk) is a clearly a vector space with standard pointwise addition of
functions and multiplication by constants. If ξ, η ∈ Rk are two given points, we shall also
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be considering the subset

C1
ξ,η([a, b],Rk) =

{
γ ∈ C1([a, b],Rk)

∣∣ γ(a) = ξ, γ(b) = η
}
.

In particular, the space C1
0,0([a, b],Rk) consists of curves that start and end at 0. This is a

linear subspace of C1([a, b];Rk).
We define the distance between two curves γ, γ′ in C1([a, b],Rk) to be ‖γ− γ′‖1, where

the norm ‖γ‖1 is given by

‖γ‖1 = max {‖γ(t)‖, ‖γ̇(t)‖ : t ∈ [a, b]} .

The following basic properties of the norm are easily verified:

i) ‖λγ‖1 = |λ|‖γ‖1 for all λ ∈ R.

ii) ‖γ + γ′‖1 6 ‖γ‖1 + ‖γ′‖1 (triangle inequality).

iii) ‖γ‖1 = 0 if and only if γ(t) = 0 for all t.

Having introduced a distance on the space C1([a, b];Rk), we can also define what con-
tinuity of a functional means.

Definition 2.1. A functional is a real-valued function Φ : DΦ → R defined on a subset
DΦ ⊆ C1([a, b],Rk). We say that Φ is continuous at γ ∈ DΦ if the following holds: for
every ε > 0 there exists a δ > 0 such that

|Φ(γ)− Φ(γ′)| < ε for all γ′ ∈ DΦ fulfilling ‖γ − γ′‖1 < δ .

Example 2.2. The following two classical examples of functionals on C1([a, b];Rk) will be
discussed in more detail later in this chapter:

a) The length functional

L(γ) =

∫ b

a
‖γ̇(t)‖dt =

∫ b

a

(
γ̇1(t)2 + · · ·+ γ̇k(t)

2
)1/2

dt. (2.1)

b) The free action (in geometry often referred to as the energy)

S0(γ) =
1

2

∫ b

a
‖γ̇(t)‖2dt =

1

2

∫ b

a
(γ̇1(t)2 + · · ·+ γ̇k(t)

2)dt. (2.2)

Both of these functionals are continuous. In fact, we find that

|L(γ)− L(γ′)| =
∣∣∣∣∫ b

a

(
‖γ̇(t)‖ − ‖γ̇′(t)‖

)
dt

∣∣∣∣ 6 ∫ b

a
‖γ̇(t)− γ̇′(t)‖dt 6 (b− a)‖γ − γ′‖1,

where the inequality ∣∣‖γ̇(t)‖ − ‖γ̇′(t)‖
∣∣ 6 ‖γ̇(t)− γ̇′(t)‖ ,

which follows from the triangle inequality above, has been used. It is now clear that, given
ε > 0, we can choose δ = ε/(b − a) in order to satisfy the continuity requirement for L.
The continuity of S0 is left as an exercise for the reader (see Exercise 2.1).
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Example 2.3. The functional Φ on C1([a, b],Rk) defined by

Φ(γ) =

{
1 if ‖γ‖1 > 1
0 if ‖γ‖1 6 1

is not continuous at all curves γ. We leave the (simple) proof of this fact to the reader.

For C1 functions f : O → R of finitely many variables we defined in Section 1.6 the
differential dfx : Rk → R which for each x ∈ O is a linear map. We now generalize this
notion to functionals.

Definition 2.4. A functional Φ, defined on DΦ = C1
ξ,η([a, b],Rk) or DΦ = C1([a, b],Rk),

is called differentiable at γ ∈ DΦ, if there exists a continuous and linear functional
dΦγ : C1

0,0([a, b],Rk)→ R such that

Φ(γ + h) = Φ(γ) + dΦγ(h) + r(h),

for all h ∈ C1
0,0([a, b],Rk), where the remainder term r(h) satisfies

lim
‖h‖1→0

r(h)

‖h‖1
= 0 .

More explicitly, this last condition means that for every ε > 0 there exists δ > 0 such that

|r(h)| ≤ ε‖h‖1

if ‖h‖1 ≤ δ. We call dΦγ the differential of Φ at γ.

Although it may seen quite technical at first reading this definition is entirely analogous
to the definition of differentiability for functions of several variables. It simply says that
there is a linear approximation to the functional Φ close to γ with an error r(h) which
goes to zero faster than linearly as ‖h‖1 → 0. In many examples, the error is explicitly
of quadratic order, that is |r(h)| 6 c‖h‖21 for some constant c. If Φ is differentiable at all
curves in its domain of definition we call Φ differentiable.

We list two important facts relating to differentiability in the following proposition
whose proof is deferred to Exercises 2.2 and 2.3.

Proposition 2.5. Let Φ be a functional defined on C1([a, b];Rk) or C1
ξ,η([a, b];Rk).

a) The differential dΦγ is unique, if it exists.
b) If Φ is differentiable at γ, then Φ is continuous at γ.

The next definition and the subsequent result have close analogues for functions of
finitely many variables.

Definition 2.6. If Φ is a differentiable functional defined on DΦ = C1([a, b],Rk) or DΦ =
C1
ξ,η([a, b],Rk), we call γ ∈ DΦ a stationary point of Φ if the differential dΦγ vanishes

on C1
0,0([a, b],Rk), that is

dΦγ(h) = 0

for all h ∈ C1
0,0([a, b],Rk).
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Theorem 2.7. Let Φ be a differentiable functional defined on DΦ = C1([a, b],Rk) or
DΦ = C1

ξ,η([a, b],Rk). If γ ∈ DΦ is an extremal point for Φ, i. e., a point where Φ
attains either a maximal or a minimal value, then γ is a stationary point for Φ.

Proof. Without loss of generality assume that Φ attains a local maximum at γ (otherwise,
replace Φ by −Φ), and consider the function

f(s) = Φ(γ + sh) , s ∈ R ,

for an arbitrary fixed h ∈ C1
0,0([a, b],Rk).

Using that Φ is differentiable and dΦγ(sh) = sdΦγ(h), we have

|f(s)− f(0)− sdΦγ(h)| 6 |r(sh)| ,

where r(sh)
‖sh‖1 → 0 as s → 0. It follows that the function f(s) is differentiable at s = 0 and

that f ′(0) = dΦγ(h). But since Φ has a local maximum at γ, it is clear that f(s) attains a
local maximum at s = 0, and we conclude that f ′(0) = 0 by usual single-variable calculus.
Therefore, we have dΦγ(h) = f ′(0) = 0. Since this holds for arbitrary h ∈ C1

0,0([a, b];Rk)
we have shown that dΦγ = 0, and hence γ is a stationary point for Φ.

2.2 Euler-Lagrange equations

The free action S0 defined in (2.2) is an example of a differentiable functional. This fact is
quite easy to verify directly using Definition 2.4. However, it is also a consequence of the
following general result concerning differentiability of a class of functionals that includes
both the length functional and the free action.

Definition 2.8. Let L : Rk × Rk × [a, b] → R be a continuous function. We define the
corresponding functional ΦL : C1([a, b],Rk)→ R by

ΦL(γ) =

∫ b

a
L(γ(t), γ̇(t), t)dt. (2.3)

The integral above makes sense since the integrand t 7→ L(γ(t), γ̇(t), t) is continuous. Func-
tionals of the form (2.3) are called Lagrange functionals and the function L is called a
Lagrange function, or Lagrangian, for the functional ΦL.

Theorem 2.9. If L(q, u, t) is a C2 function of its variables (q, u, t) ∈ Rk × Rk × [a, b],
then the functional ΦL given by (2.3) is differentiable at all γ ∈ C1([a, b],Rk), and for
γ ∈ C2([a, b],Rk) its differential is given by

dΦL
γ (h) =

∫ b

a

k∑
i=1

hi(t)

[
∂L

∂qi
(γ(t), γ̇(t), t)− d

dt

(
∂L

∂ui
(γ(t), γ̇(t), t)

)]
dt (2.4)

for h ∈ C1
0,0([a, b],Rk).
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Sketch of proof. We give here the main idea of the proof and its main steps. The complete
proof with technical details can be found in the appendix at the end of this chapter.

For γ ∈ C2([a, b];Rk) and h ∈ C1
0,0([a, b];Rk), one finds by using Taylor’s theorem for

L(q, u, t) (see the appendix for details) that

ΦL(γ + h)− ΦL(γ) =

∫ b

a

[
L(γ + h, γ̇ + ḣ, t)− L(γ, γ̇, t)

]
dt

=

∫ b

a

k∑
i=1

[
∂L

∂qi
hi +

∂L

∂ui
ḣi

]
dt+O(‖h‖21) = F (h) +R ,

where

F (h) =

∫ b

a

k∑
i=1

[
∂L

∂qi
hi +

∂L

∂ui
ḣi

]
dt and R = O(‖h‖21).

Clearly, F (h) is a linear functional, and one also verifies (see Exercise 2.5) that F (h) is
continuous. Hence Φ(γ) is differentiable and we have dΦγ(h) = F (h).

Finally, to bring F (h) into the desired form, we integrate by parts to obtain∫ b

a

k∑
i=1

∂L

∂ui
ḣi dt = −

∫ b

a

k∑
i=1

hi
d

dt

(
∂L

∂ui

)
dt+

(
k∑
i=1

hi
∂L

∂ui

)∣∣∣t=b
t=a

,

where the last term vanishes due to h(a) = h(b) = 0. This completes our sketch of the
proof of Theorem 2.9.

The next result is central and introduces the so-called Euler-Lagrange equations as an
equivalent characterization of stationary points of functionals ΦL(γ) of the form (2.3).

Theorem 2.10. Let L : Rk ×Rk × [a, b] is a C2 function and define the functional ΦL(γ)
by (2.3). Then γ ∈ C2([a, b],Rk) is a stationary point for ΦL if and only if γ satisfies the
system of differential equations

d

dt

(
∂L

∂ui
(γ(t), γ̇(t), t)

)
− ∂L

∂qi
(γ(t), γ̇(t), t) = 0 (2.5)

where i = 1, . . . , k. These equations are called the Euler-Lagrange equations for the
functional ΦL.

Proof. It is clear from the expression (2.4) for the functional dΦL that if γ satisfies the
Euler-Lagrange equations then dΦL

γ (h) = 0 for all h ∈ C1
0,0([a, b],Rk).

Conversely, if the curve γ is a stationary point for ΦL we have that dΦL
γ (h1, 0, · · · , 0) = 0

for all functions h1 ∈ C1
0,0([a, b],R), that is∫ b

a
h1(t)

[
∂L

∂q1
(γ(t), γ̇(t), t)− d

dt

(
∂L

∂u1
(γ(t), γ̇(t), t)

)]
dt = 0.

From Lemma 2.11 below we conclude that

∂L

∂q1
(γ(t), γ̇(t), t)− d

dt

(
∂L

∂u1
(γ(t), γ̇(t), t)

)
= 0

for all t ∈ [a, b]. This shows that eq. (2.5) holds when i = 1. Similarly it follows for
i = 2, 3, . . . , k.
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Lemma 2.11 (Fundamental Lemma of the Calculus of Variations). Letf : [a, b] → R be
continuous and suppose that∫ b

a
f(t)h(t)dt = 0 for all h ∈ C1

0,0([a, b],R).

Then f(t) = 0 for all t ∈ [a, b].

Proof. It suffices to show that f(t) = 0 for all t in the open interval (a, b). By continuity
of f(t) this implies f(a) = f(b) = 0 as well.

To show that f(t) = 0 for all t ∈ (a, b), we argue by contradiction as follows. Suppose
there exists t0 ∈ (a, b) such that f(t0) 6= 0. Without loss of generality, we can assume
that c := f(t0) > 0 holds. (Otherwise, we replace f by −f). By continuity, there is some
δ > 0 such that f(t) > c/2 for t ∈ (t0 − δ, t0 + δ). Now, we can choose (see Exercise 2.6) a
function h ∈ C1

0,0([a, b],R) with the following properties:

h(t) > 0 for t ∈ (t0 − δ, t0 + δ) and h(t) = 0 if t 6∈ (t0 − δ, t0 + δ).

Therefore, we can deduce∫ b

a
f(t)h(t) dt =

∫ t0+δ

t0−δ
f(t)h(t) dt > c/2

∫ t0+δ

t0−δ
h(t) dt > 0,

which gives the desired contradiction to
∫ b
a f(t)h(t) dt = 0.

We end this subsection by studying in more detail the extremal properties of the length
functional L and the free action S0. Given points ξ, η ∈ Rk we want to determine the
curves joining ξ and η that minimize the length or the free action. Of course, we expect
that the curves that minimize the length are straight line segments. The same turns out
to be the case for the free action, but there is a subtle difference, as we will see, due to the
fact that L is reparametrization invariant whereas S0 is not.

The free action is the functional corresponding to the Lagrangian L(q, u, t) = 1
2‖u‖

2.
This is clearly a C2-function and we can use Theorems 2.7 and 2.10 to conclude that C2-
curves that minimize the free action must satisfy the Euler-Lagrange equations. Since L
in this case is independent of q we get immediately

d

dt

∂L

∂ui
(γ̇(t)) = γ̈i(t) = 0 .

Integrating twice we get γ(t) = u0t+ q0, where q0, u0 ∈ Rk are integration constants that
are to be determined such that γ(a) = ξ and γ(b) = η. This gives the unique solution

γ0(t) = ξ +
η − ξ
b− a

(t− a) , (2.6)

representing the line segment from ξ to η.
The length functional L has the corresponding Lagrangian L(q, u, t) = ‖u‖. This is not

a C2-function at u = 0. If we restrict attention away from this point, and only consider
regular curves with non-vanishing velocity, we can still use the method above although we
did not exactly treat that case. Hence, a regular curve γ ∈ C2

ξ,η([a, b],Rk) that minimizes
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the length is a stationary point for L and satisfies the Euler-Lagrange equations. Using
that ∂‖u‖

∂ui
= ui
‖u‖ , for u 6= 0, and that ‖u‖ is independent of q, these equations take the form

d

dt

∂L

∂ui
(γ̇(t)) =

d

dt
(γ̇i(t)‖γ̇(t)‖−1) = 0, i = 1, . . . , k

This means that the direction γ̇(t)‖γ̇(t)‖−1 of the velocity vector γ̇(t) is a constant unit
vector e ∈ Rk, that is

γ̇(t) = f(t)e ,

where f is a positive C1-function on [a, b]. By integration this gives

γ(t) = ξ + F (t)e ,

where F (t) =
∫ t
a f(s)ds is a strictly increasing C2 function vanishing at a, and we have used

γ(a) = ξ. Using also γ(b) = η we get e = F (b)−1(η − ξ). This shows that the solutions
found are exactly the increasing C2-reparametrisations of the line segment γ0 given by
(2.6), which corresponds to the particular choice F (t) = t−a

b−a .
We emphasize that we have not yet proven that the curves found are really minimizers

for the respective functionals, but only that they are the only possible stationary points.
The additional arguments required to prove this are provided in Exercises 2.9 and 2.10.

2.3 Change of variables

In this section we discuss briefly how functionals and their differentials change under co-
ordinate transformations.

Definition 2.12. A C1 function ψ = (ψ1, . . . , ψk) : O → Rk defined on an open set
O ⊆ Rk is called a coordinate transformation if it is an injective map and

detDψ(q̃) 6= 0 (2.7)

for all q̃ ∈ O, where Dψ(q̃) is the Jacobian matrix of ψ,

Dψ(q̃) =


∂ψ1

∂q̃1
(q̃) · · · ∂ψ1

∂q̃k
(q̃)

...
. . .

...
∂ψk
∂q̃1

(q̃) · · · ∂ψk
∂q̃k

(q̃)

 .

The requirement (2.7) ensures by the inverse mapping theorem that the image U =
ψ(O) is an open subset of Rk and that the inverse mapping ψ−1 : U → O is a C1-function,
i.e. ψ−1 is also a coordinate transformation. If q = ψ(q̃), we think of q̃ ∈ O as new
coordinates being related to old coordinates q ∈ U by the function ψ.

Example 2.13. a) For the Galilean coordinate transformations introduced in Chapter 1
we have O = U = R4 and one easily sees that

Dψ(x, t) = A(t) ,

and hence detDψ(x, t) = ±1.
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b) The well known change from Cartesian coordinates (x1, x2) to polar coordinates (r, θ)
in the plane is given by

ψ(r, θ) = (r cos θ, r sin θ)

and O = R+ × (−π, π), while U = R2 \ {(x1, 0) | x1 6 0}. In this case,

Dψ(r, θ) =

(
cos θ −r sin θ
sin θ r cos θ

)
(2.8)

with detDψ(r, θ) = r.

Given a functional Φ : C1
ξ,η([a, b],U) → R and a coordinate transformation ψ : O → U

as above the transformed functional Φ̃ is defined on C1
ξ̃,η̃

([a, b],O), where ξ̃ = ψ−1(ξ), η̃ =

ψ−1(η), by
Φ̃(γ̃) = Φ(ψ ◦ γ̃) . (2.9)

In particular, for a Lagrange functional ΦL we get

Φ̃L(γ̃) =

∫ b

a
L(ψ(γ̃(t)), Dψ(γ̃(t)) ˙̃γ(t), t)dt =

∫ b

a
L̃(γ̃(t), ˙̃γ(t), t)dt = ΦL̃(γ̃) , (2.10)

where the chain rule
d

dt
ψ(γ̃(t)) = Dψ(γ̃(t)) ˙̃γ(t)

has been used and we have defined the transformed Lagrangian L̃ by

L̃(q̃, ũ, t) = L(ψ(q̃), Dψ(q̃)ũ, t) . (2.11)

Our goal is to demonstrate that a curve γ̃ in O is a stationary point of Φ̃ if and only if
the transformed curve γ = ψ ◦ γ̃ is a stationary point of Φ. For this we need the following
result.

Proposition 2.14. Let the functionals Φ̃ and Φ be related by a C3 coordinate transfor-
mation ψ as in (2.9). If Φ is differentiable at γ ∈ C1([a, b],U) then Φ̃ is differentiable at
γ̃ = ψ−1 ◦ γ and

dΦ̃γ̃(h) = dΦγ((Dψ ◦ γ̃)h) (2.12)

for h ∈ C1
0,0([a, b],Rk).

Proof. Since O is open and γ̃ lies in O we can choose ε > 0 small enough such that γ̃ + h
lies in O if ‖h‖1 6 ε. For such an h we set µ(t) = ψ(γ(t) + h(t)). By Taylor expanding the
function f(s) = ψ(γ̃(t) + sh(t)) to second order around s = 0 for fixed t and setting s = 1
we get that

ψi(γ̃(t) + h(t)) = ψi(γ̃(t)) +
k∑
j=1

∂ψi
∂q̃j

(γ̃(t))hj(t)

+
1

2

k∑
l,m=1

∂2ψi
∂q̃j∂q̃l

(γ̃(t) + sih(t))hl(t)hm(t) ,
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for some si ∈ [0, 1] depending on t. Since ψ is C2 the second derivatives on the right-
hand side of this equation are bounded by a constant independent of t for ‖h‖1 6 ε (see
Appendix 2.6 at the end of this chapter for a similar argument). Using the above equation
for i = 1, . . . , k it follows that

‖µ(t)− γ(t)−Dψ(γ̃(t))h(t)‖ 6M‖h(t))‖2 ,

for all t ∈ [a, b], where M is a constant and we have used that γ(t) = ψ(γ̃(t)). Similarly,

considering the function g(s) = d
dtψ(̃(t) + sh(t)) for fixed t and using that ψ is C3, we get

‖µ̇(t)− γ̇(t)− d

dt
Dψ(γ̃(t))h(t)‖ 6M(‖h(t)‖+ ‖ḣ(t)‖)2

for all t ∈ [a, b], if ‖h‖1 6 ε and provided M is chosen large enough and ε small enough.
The last two inequalities obviously imply

‖µ− γ − (Dψ ◦ γ̃)h‖1 6 4M‖h‖21 for ‖h‖1 6 ε . (2.13)

Recalling the definition of differentiability we have

Φ̃(γ̃ + h)− (̃γ) = Φ(µ)− Φ(γ)

= dΦγ(µ− γ) + r(µ− γ)

= dΦγ((Dψ ◦ γ̃)h+ r′(h)) + r(Dψ ◦ γ̃)h+ r′(h))

= dΦγ((Dψ ◦ γ̃)h) + dΦγ(r′(h)) + r(Dψ ◦ γ̃)h+ r′(h)) , (2.14)

where r(h) fulfills the requirements of Definition 2.4 and |r′(h)| is of second order in ‖h‖1
by (2.13). Using, finally, that dΦγ is continuous it follows easily that the last two terms in
(2.14) tend to zero faster than linearly as |h‖1 → 0. Since dΦγ((Dψ ◦ γ̃)h) is linear and

continuous in h this completes the proof that Φ̃ is differentiable at γ̃ if Φ is differentiable
at γ, and that (2.12) holds.

The converse statement follows from this by using that ψ−1 is a coordinate transfor-
mation.

As a direct consequence of Proposition 2.14 we get the desired result on stationary
points.

Corollary 2.15. If Φ, Φ̃ and ψ are given as in Proposition 2.14 then γ̃ ∈ C1
ξ̃,η̃

([a, b],O) is

a stationary point for Φ̃ if and only if γ = ψ ◦ γ̃ ∈ C1
ξ,η([a, b],U) is a stationary point for

Φ, where ξ = ψ(ξ̃), η = ψ(η̃).

Proof. Since ψ−1 is a coordinate transformation it suffices to show that if γ ∈ C1
ξ,η([a, b],U)

is a stationary point of Φ then γ̃ is a stationary point of Φ̃, that is dΦ̃γ̃ = 0 if dΦγ = 0.
But this is an immediate consequence of (2.12).

In the particular case, where Φ = ΦL is given by a Lagrangian L(q, u, t) this implies
that the Euler-Lagrange equations

d

dt

(
∂L

∂ui
(γ(t), γ̇(t), t)

)
− ∂L

∂qi
(γ(t)), γ̇(t)), t) = 0, i = 1, . . . , k, (2.15)
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hold for γ if and only if the Euler-Lagrange equations

d

dt

(
∂L̃

∂ũi
(γ̃(t), ˙̃γ(t), t)

)
− ∂L̃

∂q̃i
(γ̃(t), ˙̃γ(t), t) = 0 , i = 1, . . . , k, (2.16)

hold for γ̃ = ψ−1 ◦ γ, where L̃(q̃, ũ, t) is given by (2.11).

Remark 2.16. It is sometimes relevant to also consider time dependent coordinate changes
q = ψ(q̃, t), where for each fixed t ∈ R the map ψt : q̃)→ ψ(q̃, t) is defined on a fixed open
set O ⊆ Rk and satisfies the properties above, and ψ is assumed to be a C1 mapping of all
variables including t. We then denote by Dψ the Jacobian matrix w. r. t. q̃ and by ψ̇ the
partial time derivative. Given a functional Φ defined on C1

ξ,η([a, b],U) as above, such that

ψt(O) ⊆ U for all t, we define the transformed functional Φ̃ on C1
ξ̃,η̃

([a, b],O) by

Φ̃(γ̃) = Φ(ψ ◦ γ̃) ,

where ψ ◦ γ̃ (by a slight abuse of notation) here means the motion t 7→ ψ(γ(t), t) =
ψt(γ(t)), t ∈ [a, b], and ξ̃ = ψ−1

a (ξ), η̃ = ψ−1
b (η).

As before we find that if Φ = ΦL is a Lagrangian functional then Φ̃(γ̃) = ΦL̃(γ̃) where
the transformed Lagrangian L̃ is now given by

L̃(q̃, ũ, t) = L(ψ(q̃, t), Dψ(q̃, t)ũ+ ψ̇(q̃, t), t). (2.17)

Proposition 2.14 also holds for such time dependent coordinate transformations with
essentially the same proof. As a consequence, equation (2.15) also implies equation (2.16)
in this case with L̃ given by (2.17).

2.4 Hamilton’s principle

We now consider a system of N particles with masses m1,m2, . . . ,mN in an inertial system
of coordinates. As in Chapter 1 we use the notation x = (x1, . . . , xN ) for the particle
coordinates. Given a conservative force field F on U ⊆ R3N with corresponding potential
V : U → R, such that Fi = −∇V, i = 1, . . . , N , the Lagrangian L : U × R3N → R of the
particle system is defined by

L(x, v) =

N∑
i=1

1

2
mi‖vi‖2 − V (x) . (2.18)

The corresponding functional ΦL is called the action functional of the system; it will be
denoted by S and

S(γ) =

∫ t2

t1

(
N∑
1

1

2
mi‖γ̇i(t)‖2 − V (γ(t)

)
dt (2.19)

is called the action of the motion γ = (γ1, . . . , γN ). Notice that the free action S introduced
in (2.2) is indeed the action of a particle of unit mass moving freely without any force acting.

The following main result of the present chapter states that Newton’s equations for the
particle system in question are obtained as the Euler-Lagrange equations for the Lagrangian
(2.18).
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Theorem 2.17 (Hamilton’s principle). For a system of N particles with Lagrangian (2.18)
where V is a C2-function on U ⊆ R3N , it holds that a C2 curve γ is a stationary point for
the action functional S on the set C1

ξ,η([t1, t2],U), if and only if γ is a solution to Newton’s
equations of motion (1.18) subject to the conditions γ(t1) = ξ, γ(t2) = η.

Proof. We see that L given by (2.18) is a C2 function and hence γ is a stationary point
of S if and only if it satisfies the corresponding Euler-Lagrange equations. Using that
∂L
∂vi

= mivi these equations take the form

miγ̈i(t) +∇iV (γ(t)) = 0, i = 1, . . . , N,

which are exactly Newton’s equations.

It follows from Hamilton’s principle and Theorem 2.7 that if a C2 motion γ minimizes
(or maximizes) the action S on the set C1

ξ,η([t1, t2],U) then it is a solution of Newton’s
equations of motion. For this reason Hamilton’s principle is often referred to as the prin-
ciple of least action. As seen from the example treated in Exercise 2.15 the solutions to
the equations of motion are not always extremal points of the action.

Given L as above let ψ : O0 → R3 be a coordinate transformation of three variables and
denote the new coordinates of particle i by qi such that xi = ψ(qi), i = 1, . . . , N . Then ψ
gives rise to a coordinate transformation ψN of 3N variables defined by ψN (q1, . . . , qN ) =
(ψ(q1), . . . , ψ(qN )) on the set O = {(q1, . . . , qN ) ∈ O0

N | (ψ(q1), . . . , ψ(qN )) ∈ U}. Accord-
ing to (2.11) the transformed Lagrangian with respect to ψN is given by

L̃(q1, . . . , qN , u1, . . . , uN ) =
N∑
i=1

1

2
mi‖Dψ(qi)ui‖2 − V (ψ(q1), . . . , ψ(qN )) . (2.20)

In case ψ is time dependent we have instead

L̃(q1, . . . , qN , u1, . . . , uN , t) =

N∑
i=1

1

2
mi‖Dψ(qi, t)ui + ψ̇(qi, t)‖2 − V (ψ(q1, t), . . . , ψ(qN , t)) .

(2.21)
We also call L̃ the Lagrangian of the particle system in q-coordinates.

Now combining Hamilton’s principle with the equivalence of (2.15) and (2.16) for this
particular coordinate transformation we obtain the following result stating that Newton’s
equations can be written in Euler-Lagrange form with respect to any local system of coor-
dinates, inertial or not.

Corollary 2.18. For a system of N particles with Lagrangian (2.18) where V is a C2

function on U ⊆ R3N and a coordinate transformation x = ψ(q) defined on O0 ⊆ R3 we
have that Newton’s equations of motion expressed in q-coordinates take the form

d

dt

(
∇uiL̃(γ̃(t), ˙̃γ(t))

)
−∇qiL̃(γ̃(t), ˙̃γ(t)) = 0 , i = 1, . . . , N , (2.22)

in the sense that γ̃ = (γ̃1, . . . , γ̃N ) is a solution of this system of equations if and only if
γ = (ψ ◦ γ̃1, . . . , ψ ◦ γ̃N ) is a solution of Newton’s equations, and where L̃ is defined by
(2.20).

For a time dependent coordinate transformation x = ψ(q, t) the same statement holds
with L̃ defined by (2.21) and γ(t) = (ψt(γ̃1(t)), . . . , ψt(γ̃N (t))).
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Example 2.19. The Lagrangian of the two-dimensional harmonic oscillator is given by

L(x1, x2, v1, v2) =
1

2
m(v2

1 + v2
2)− 1

2
k(x2

1 + x2
2)

where m, k are positive constants. The Euler-Lagrange equations are

mẍi(t) + kxi(t) = 0 , i = 1, 2 ,

where we use the notation (x1(t), x2(t)) instead of γ(t) for the particle trajectory. The
solutions to this equation are of the form

xi(t) = Ai cos(ωt+ ϕi) ,

where the amplitudes A1, A2 are non-negative constants, ω =
√

k
m is the angular frequency

of the oscillator, and ϕ1, ϕ2 are initial phases.
Transforming to polar coordinates (r, θ) and using (2.8) the Lagrangian takes the form

L̃(r, θ, u1, u2) =
1

2
m(u2

1 + r2u2
2)− 1

2
kr2 .

The equation of motion for r becomes

mr̈(t)−mr(t)θ(t) + kr(t) = 0 .

Since L̃ is independent of θ the corresponding equation of motion becomes a conservation
law,

d

dt
mr2θ̇ = 0 ,

stating that the angular momentum mr2θ̇ is a constant of the motion.

Definition 2.20. For a particle system with Lagrangian L̃(q, u) in q-coordinates the gen-
eralized momentum of particle i or the conjugate variable to qi is defined by

pi = ∇uiL(q, u) ,

and a variable qi is called cyclic if the Lagrangian is independent of qi.

Note that in an inertial system of coordinates it follows from (2.18) that the generalized
momentum equals the standard momentum

pi = mivi ,

and if qi is a cyclic variable then the generalized momentum pi is a constant of the motion,
that is

dpi
dt

=
d

dt
(∇uiL(γ(t), γ̇(t))) = 0 ,

if γ solves the equations of motion (2.22). We shall discuss conjugate variables further in
the next chapter.

We point out that while Newton’s equations in Chapter 1 have been treated as an
initial value problem, where the equations of motion are supplemented by initial values of
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the particle positions and velocities, the version obtained in Theorem 2.17 is a so-called
boundary value problem, where the positions ξ and η are specified at at two different times
t1 and t2. In particular, we emphasize that whereas Theorem 1.15 in Section 1.5 ensures
existence and uniqueness of a solution to the initial value problem there is no such result
available for boundary value problems. Indeed, it may happen in this case that no solution
exists or there may be several solutions. This is illustrated in Exercise 2.15.

Remark 2.21. In view of Hamilton’s principle one possible strategy for showing the exis-
tence of solutions to Newton’s equation with given boundary values would be to try to show
that there is a minimizer or maximizer for the action. It is well known that on Euclidean
space Rk a continuous function has extremal points on a closed and bounded set. This
property can be traced back to the fact that any such set is sequentially compact, i. e., that
any sequence of points in the set has a convergent subsequence. The corresponding result is
not true for closed and bounded subsets of C1

x,y([a, b],Rk) (see Exercise 2.19). Nevertheless,
in many cases it is still possible to conclude that functionals have minimizers or maximizers
by enlarging the set C1

x,y([a, b],Rk) to a space on which sequential compactness holds for
suitable subsets and in this way conclude that there is an extremal point which is a solution
to the Euler-Lagrange equations. This approach is beyond the scope of these notes and in
general requires discussing the theory of generalized functions, also called distributions.

2.5 Constrained motion

In this section we provide a formulation of Hamilton’s principle for constrained motion of
an N -particle system, that is each particle trajectory is constrained to be on a subset M
of R3. Besides the assumption that the motion takes place in a conservative force field
it is also assumed that the constraining force on each particle is orthogonal to the subset
M , which is frequently expressed by saying that the constraint is holonomic. Newton’s
equations for constrained motion of this kind turn out to be rather complicated but, as we
shall see, Hamilton’s principle for the motion can be adapted in a straight-forward way by
simply allowing only motions in M in the variation of the action.

First, let us restrict attention to the case where M is the graph of a C2 function
f : A→ R, where A ⊆ R2 is an open set. Thus

M =
{

(x1, x2, x3)
∣∣(x1, x2) ∈ A, x3 = f(x1, x2)

}
.

Henceforth, we set x′ = (x1, x2) such that x = (x′, x3).
Except for the assumption that the constraining force is perpendicular to the graph

this force is not explicitly given, but will be derived from the requirement that the motion
is constrained to M . As mentioned we assume that, additionally, the motion is influenced
by an external conservative force field F = −∇V , where V : R3N → R is C2. (Actually, V
only needs to be defined in some open set containing MN .)

Let us consider first a single particle of mass m in which case the motion is a C2 function
γ = (γ1, γ2, γ3) : I → M from an interval I to the graph M , and hence can be written
as γ(t) = (γ′(t), f(γ′(t)) where γ′ = (γ1, γ2) : I → R2 is the motion of the first pair of
coordinates of γ. Similarly we write the force as F = (F ′, F 3).
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Applying the chain rule, the acceleration in the third coordinate direction is given by

γ̈3(t) =

2∑
i,j=1

∂2f

∂xi∂xj
(γ′(t))γ̇i(t)γ̇j(t) +

2∑
i=1

∂f

∂xi
(γ′(t))γ̈i(t)

= γ̇′(t) ·D2f γ̇′(t) +∇f · γ̈′(t) , (2.23)

where we have introduced the Hesse matrix for f

D2f =

 ∂2f
∂x21

∂2f
∂x1∂x2

∂2f
∂x2∂x1

∂2f
∂x22


which, together with ∇f , is evaluated at γ′(t) in the second line of (2.23).

The total force on the particle is Ftot = F +Fc, where Fc is the constraining force, such
that Newton’s second law takes the form

mγ̈(t) = F + Fc.

Splitting both sides of the equation into components parallel to and perpendicular to M ,
the parallel part provides, as we shall see, the information needed to calculate γ′ and the
perpendicular part may then be used to calculate the constraining force Fc which, however,
we shall not need in the following. From multivariable calculus we know that the vector
(−∇f(x′), 1) ∈ R3 is perpendicular to the graph of f at the point (x′, f(x′)). Normalizing
this vector we get that

n = (1 + ‖∇f‖2)−1/2(−∇f, 1)

is a unit vector orthogonal to M at each of its points. Subtracting the normal components
of both sides of Newton’s equation we get

mγ̈(t)−m(γ̈(t) · n) = F − (F · n)n ,

where we have used that Fc is perpendicular to the graph such that Fc − (Fc · n)n = 0.
It turns out that, in order to determine γ′, we need only consider the first two coordi-

nates of this vector equation, that is

mγ̈′ −m(γ̈ · n)n′ = F ′ − (F · n)n′, (2.24)

where
n′ = −(1 + ‖∇f‖2)−1/2∇f .

It is not difficult to see that the equation for γ3(t) can be derived from this equation, but
this is not important for the present argument and is left as an exercise for the reader.
Using (2.23) we have

γ̈(t) · n = (1 + ‖∇f‖2)−1/2(γ̈3(t)− γ̈′(t) · ∇f)

= (1 + ‖∇f‖2)−1/2 γ̇′(t) ·D2f γ̇′(t) ,

and inserting this into (2.24) gives

mγ̈′(t) +m
γ̇′(t) ·D2f γ̇′(t)

1 + ‖∇f‖2
∇f = F ′(γ(t)) +

F 3(γ(t))− F ′(γ(t)) · ∇f
1 + ‖∇f‖2

∇f . (2.25)
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This equation implies, in particular, that the vector mγ̈′(t) − F ′(γ(t)) is parallel to
∇f(γ′(t)), which means that mγ̈′(t) and F ′(γ(t)) have identical components orthogonal to
∇f(γ′(t)). Hence, at points γ′(t) where ∇f 6= 0 we have

mγ̈′(t)−mγ̈′(t) · ∇f
‖∇f‖2

∇f = F ′(γ(t))− F ′(γ(t)) · ∇f
‖∇f‖2

∇f . (2.26)

Multiplying equation (2.25) by 1 + ‖∇f‖2 and equation (2.26) by ‖∇f‖2 and subtracting
the two equations we arrive at

mγ̈′(t) +m
(
γ̈′(t) · ∇f + γ̇′(t) ·D2fγ̇′(t)

)
∇f = F ′(γ(t)) + F 3(γ(t))∇f . (2.27)

Note that this equation may be written as γ̈′(t) = h(γ′(t), γ̇′(t)) for some C1 vector valued
function h. Thus, according to Theorem 1.14 there is a unique local solution γ′ near any
time t0 when initial conditions γ′(t0) and γ̇′(t0) are specified. This holds also more generally
for an N -particle system in which case we obtain N equations of the form (2.27) with
m, γ′, F replaced by mi, γ

′
i, Fi for i = 1, . . . , N . Our goal is now to show that this rather

complicated system of equations of motion follows from a simple Hamilton’s principle.

Theorem 2.22 (Hamilton’s principle for constrained motion).
Newton’s equations for the motion γ = (γ1, . . . , γN ) : [a, b] → MN for N particles con-
strained to lie on the graph M of a C2-function f : O → R, where O ⊆ R2 is open, such
that γi(t) = (γ′i(t), f(γ′i(t))) coincide with the Euler-Lagrange equations for the action

Sc(γ′) =

∫ b

a

(
1

2

N∑
i=1

miγ̇(t)2 − V (γ(t))

)
dt,

defined on C1([a, b],O). In other words, the constrained motion satisfies Hamilton’s prin-
ciple for the action functional for unconstrained motion restricted to the set of motions in
MN .

Proof. We again restrict attention to a single particle of mass m = m1, since the general
case follows by repeating the argument for each particle separately with the other particle
motions fixed. Thus we need to derive the Euler-Lagrange equations for the action given
with N = 1 and showing that they coincide with (2.27).

Since γ̇(t) = (γ̇′(t),∇f(γ′(t)) · γ̇′(t)) we may rewrite the action as

Sc(γ′) =

∫ b

a
L(γ′(t), γ̇′(t))dt,

where

L(q′, v′) =
1

2
m‖v′‖2 +

1

2
m(∇f(q′) · v′)2 − V (q′, f(q′)) .

The Euler-Lagrange equations then have the form

d

dt

(
mγ̇′(t) +m(∇f · γ̇′(t))∇f

)
= m(∇f · γ̇′(t))D2f γ̇′(t)−∇x′V (γ′(t), f(γ′(t)))− (∂x3V )(γ′(t), f(γ′(t)))∇f .

Recalling that −∇x′V = F ′ and −∂x3V = F 3, it is straightforward to see that this equation
is equivalent to (2.27).
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Example 2.23. Consider a pendulum consisting of a massless rod of length ` > 0 with
one end fixed at the point (0, 0, `) and with a point particle of mass m > 0 at the other
end. Under the influence of the constant gravitational force F = (0, 0,−mg) the particle
then performs a constrained motion on the sphere with radius ` and center (0, 0, `), that is

x2
1 + x2

2 + (x3 − `)2) = `2 .

Solving this equation for small oscillations around the equilibrium position x1 = x2 = 0
gives x3 = f(x1, x2), where

f(x1, x2) = `−
√
`2 − x2

1 − x2
2 , that is f(x′) = `−

√
`2 − ‖x′‖2 .

Using the potential V (x) = mg(x3 − `) the unconstrained action of the motion γ(t) =
(γ1(t), γ2(t), γ3(t)) is

S(γ) =

∫ b

a

(
1

2
m(‖γ̇‖2)−mg(γ3(t)− `)

)
dt .

Inserting γ(t) = (γ′(t), f(γ′(t))) gives the constrained action

Sc(γ′) =

∫ b

a

(
1

2
m

(
‖γ̇′(t)‖2 +

(γ′(t) · γ̇′(t))2

`2 − ‖γ′(t)‖2

)
+mg

√
`2 − ‖γ′(t)‖2

)
dt

with corresponding Lagrangian

L(x′, v′) =
1

2
m

(
‖v′‖2 +

(x′ · v′)2

`2 − ‖x′‖2

)
+mg

√
`2 − ‖x′‖2 .

After some reduction ones finds that the Euler-Lagrange equations then take the form

γ̈i(t) +
γ̈′(t) · γ′(t))
`2 − ‖γ′(t)‖2

γi(t) = −
(
‖γ̇′(t)‖2

`2 − ‖γ′(t)‖2
+

(γ′ · γ̇′(t))2

(`2 − ‖γ′(t)‖2)2

)
γi(t)− gγi(t)√

`2 − ‖γ′(t)‖2
,

for i = 1, 2. Clearly this is a quite complicated non-linear system of two coupled equations.
Notice, however, that the constant motion γ′(t) = (0, 0) is a solution and, more generally,
setting γ1(t) = ` sin θ(t) and γ2(t) = 0 one obtains for i = 1 the familiar form of the
equation of motion for the pendulum in the (x1, x3)−plane

θ̈(t) = −g
`

sin θ(t) .

Remark 2.24. Hamilton’s principle can be generalised in various ways. In particular,
one may consider motion in Rk for arbitrary integer k > 2. If M is again chosen to be
the graph of a C2 function of k − 1 variables and the constraining force is assumed to be
orthogonal to M , the proof of Hamilton’s principle given above can be generalized in a
straight-forward manner.

One can also consider more general subsets M than graphs of functions, but still require
that the constraining force is orthogonal the M . A particularly important class of sets
M ⊆ Rk to consider are those of the form

M = {φ(x′) | x′ ∈ O} ,
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where φ : O → Rk is a C2 function defined on an open set O ⊆ Rr and whose Jacobi
matrix Dφ(x′) has rank r, i. e., its columns are linearly independent, at all points x′. In
this case the constrained action Sc : C1([a, b],O) → R for a single particle, which is the
unconstrained action restricted to the set of constrained motions, is given by

Sc(γ′) =

∫ b

a

(
1

2
mγ̇(t)2 − V (γ(t))

)
dt,

where γ(t) = φ(γ′(t)). Hamilton’s principle then says that Newton’s equations for the
constrained motion are equivalent to the Euler-Lagrange equations for this restricted action.
We shall not prove this here since it requires geometric considerations beyond the scope of
these notes.

From a physical point of view one would expect that the constrained motion on M only
depends on M and not on the choice of function φ as long as φ(O) = M . In the language
of Hamilton’s principle this follows from the discussion of coordinate transformations in
Section 2.3. Indeed, choosing a C3 coordinate transformation ψ : Õ → O and setting
φ̃ = φ ◦ ψ we have M = φ(O) = φ̃(Õ), and the constrained action corresponding to φ̃ is
obtained as the transformed constrained action for φ. Hence, the results of Section 2.3 tell
us that the two sets of Euler-Lagrange equations are equivalent.

It is even possible to generalize Hamilton’s principle to time dependent constrained
motion, in which case φ : O × I → Rk is a C3 function of a time variable t in addition to
x′. Setting φt(x

′) = φ(x′, t), the set Mt = φt(O) to which the motion is constrained is time
dependent but the same principle as stated above still holds with γ(t) = φ(γ′(t), t).

2.6 Appendix

In this appendix we provide the full details of the proof of Theorem 2.9.

Notice first that the functional h 7→ dΦL
γ (h) defined in (2.4) is linear and continuous on

C1
0,0([a, b],Rk) (see Exercise 2.5). To prove differentiability of ΦL it then suffices to show

that ∣∣ΦL(γ + h)− ΦL(γ)− dΦL
γ (h)

∣∣ 6 C‖h‖21, (2.28)

for all h ∈ C1
0,0([a, b],Rk) with ‖h‖1 6 1 and some constant C > 0 depending only on L

and γ, since this implies that lim‖h‖1→0
r(h)
‖h‖1 = 0, using the notation in Definition 2.4.

For given h, let the continuous function f of two variables be given by

f(s, t) = L(γ(t) + sh(t), γ̇(t) + sḣ(t), t).

Then

ΦL(γ + h)− ΦL(γ) =

∫ b

a
(f(1, t)− f(0, t))dt (2.29)

Moreover, by the chain rule

∂sf(s, t) =
k∑
i=1

(
hi(t)

∂L

∂qi
+ ḣi(t)

∂L

∂vi

)
(γ(t) + sh(t), γ̇(t) + sḣ(t), t).
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Using that h(a) = h(b) = 0, an integration by parts on the right-hand side gives∫ b

a
∂sf(0, t)dt =

∫ b

a

k∑
i=1

(
hi(t)

∂L

∂qi
(γ(t), γ̇(t), t) + ḣi(t)

∂L

∂vi
(γ(t), γ̇(t), t)

)

=

∫ b

a

k∑
i=1

(
hi(t)

(
∂L

∂qi
(γ(t), γ̇(t), t)− d

dt

∂L

∂vi
(γ(t), γ̇(t), t)

))
= dΦL

γ (h). (2.30)

Combining (2.29) and (2.30) it is seen that in order to obtain (2.28) it is sufficient to show
that ∣∣∣∣∫ b

a
{f(1, t)− f(0, t)− ∂sf(0, t)}dt

∣∣∣∣ 6 C‖h‖21, (2.31)

if ‖h‖1 6 1.
Using the remainder estimate in Taylor’s formula the inequality

|f(1, t)− f(0, t)− ∂sf(0, t)| 6 1

2
M (2.32)

will hold if there exists a number M such that |∂2
sf(s, t)| 6 M for s ∈ [0, 1] and t ∈ [a, b].

By the chain rule, again, we have

∂2
sf(s, t) =

k∑
i,j=1

(
hi(t)hj(t)

∂2L

∂qi∂qj
+ ḣi(t)ḣj(t)

∂2L

∂vi∂vj
+ 2hi(t)ḣj(t)

∂2L

∂qi∂vj

)
,

where the 2nd order partial derivatives above should be evaluated at the point (γ(t) +
sh(t), γ̇(t) + sḣ(t), t). If ‖h‖1 6 1 and ‖γ‖1 6 K this point belongs to the closed and
bounded set

BK+1 ×BK+1 × [a, b],

where Br denotes the closed ball of radius r centered at the origin in Rk. Since it is assumed
that all second order derivatives of L are continuous it follows that they are bounded by
some number KL > 0 on this set. We hence have

|∂2
sf(s, t)| 6 4k2KL‖h‖21,

for all h with ‖h‖1 6 1. Consequently, (2.32) holds with M = 4k2KL‖h‖21.
In turn, from (2.32) it follows that (2.31) holds with C = 2(b − a)k2KL for all h such

that ‖h‖1 6 1. This completes the proof of Theorem 2.9.

Exercises

Exercise 2.1. Show that the free action S0 given by (2.2) is a continuous functional on
C1([a, b],Rk).



Chap. 2 Lagrangian Mechanics 53

Exercise 2.2. Show that the differential of a functional is uniquely determined if it exists.

Exercise 2.3. Show that a differentiable functional defined on C1
x,y([a, b],Rk) is continuous.

Exercise 2.4. Let f : [a, b]→ Rk be a continuous function and define

Φ(γ) =

∫ b

a
f(t) · γ(t)dt ,

where γ : [a, b] → Rk is a curve. Show that Φ is differentiable and equals its differential.
Determine the stationary points of Φ.

Exercise 2.5. Show that if γ ∈ C1([a, b],Rk) then the functional h 7→ dΦL
γ (h) defined on

C1
0,0([a, b],Rk) by (2.4), for a C2-function L, is linear and satisfies

|dΦL
γ (h)| 6 C‖h‖1,

for some constant C depending only on γ and L. Prove that dΦL
γ is continuous. (See also

Exercise 2.4.)

Exercise 2.6. Construct a function h with the properties used in the proof of Lemma 2.11.

Exercise 2.7. Let the functional ΦL be given by a Lagrange function, which does not
depend explicitly on t.

Show that, if γ is a solution to the corresponding Euler-Lagrange equations, then

E(t) = γ̇ · ∂L
∂γ̇

(γ(t), γ̇(t))− L(γ(t), γ̇(t))

is a constant function of t ∈ [a, b]. We say that E is a conserved quantity.

Exercise 2.8. Let the functional Φ be defined by

Φ(γ) =

∫ b

a

√
1 + γ̇(t)2

γ(t)
dt ,

where γ : [a, b]→ R+ is a positive C1 function.

a) Show that the corresponding Euler-Lagrange equation is

γγ̈ + γ̇2 + 1 = 0 .

b) To solve this equation, use first the result of Exercise 2.7 to show that any solution
γ fulfills

γ2 + (γγ̇)2 = constant .

Then proceed to find all solutions and verify that for given x, y > 0 there is exactly
one solution γ such that γ(a) = x and γ(b) = y.

Hint. It may be useful to rewrite the conservation equation in terms of y = γ2. The
correct form of the solutions is γ(t) =

√
−t2 +Bt+ C, where B,C are constants.
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Exercise 2.9. Let γ : [a, b]→ Rk be C1. Consider the functions g(t) = ‖γ(t)− γ(a)‖ and

f(t) =

∫ t

a
‖γ̇(s)‖ds.

Show that if γ(t) 6= γ(a) then f ′(t) > g′(t). (Hint. Use the Cauchy-Schwarz inequality.)
Conclude that a straight line minimizes the length functional.

Exercise 2.10. Show that the motion (2.6) minimizes the free action S0.
Hint. It may be useful to compute the value of S0 for the difference between an arbitrary
curve and the solution (2.6).

Exercise 2.11. Show that if L : R2k × [a, b]→ R is a C2 function then the functional ΦL

is differentiable at all γ ∈ C1([a, b],Rk) with a functional given by the expression in the
first line of equation (2.30).

Exercise 2.12. Show that the length functional in polar coordinates in the plane has the
form

L̃(γ̃) =

∫ b

a

√
ṙ(t)2 + r(t)2θ̇(t)2dt ,

where γ̃(t) = (r(t), θ(t)), for t ∈ [a, b].
Write also the free action S0 in polar coordinates and find the corresponding Euler-

Lagrange equations.

Exercise 2.13. Let the time dependent coordinate transformation of 2 variables be given
by

x1 = cos(ωt)x̃1 − sin(ωt)x̃2

y1 = sin(ωt)x̃1 + cos(ωt)x̃2 ,

corresponding to an orthogonal coordinate system rotating with constant angular velocity
ω relative to an inertial system around their common origin.

Consider a free particle in 2-dimensions, i. e., its motion is determined by the free action
S0.

a) Show that the transformed equations of motion can be written as the Euler-Lagrange
equations for a functional with a Lagrangian function which is independent of time.

b) Write down the equations of motion and interpret the different terms.

Exercise 2.14. Generalize the proof of Lemma 2.14 to time dependent coordinate trans-
formations.

Exercise 2.15. In this exercise we study the 1-dimensional motion of a particle of mass
m > 0 moving in a harmonic oscillator potential V : R→ R given by V (q) = 1

2kq
2, where

k > 0 is the spring constant. Thus the Lagrange function for this system is

L(q, v) =
1

2
mv2 − 1

2
kq2 ,

and we denote the corresponding action functional by S.
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a) Determine all solutions γ(t) to the equation of motion satisfying γ(0) = 0.

b) Show that all these solutions satisfy γ(π
√
m/k) = 0.

c) Conclude that the equation of motion with the boundary values γ(0) = 0 and
γ(π
√
m/k) = 0 has infinitely many solutions. Prove that all these solutions have

vanishing action S(γ) = 0.

d) Conclude that the equation of motion with the boundary values γ(0) = 0 and
γ(π
√
m/k) = x has no solution for all x ∈ R \ {0}.

e) Show that for all T > 0 and T 6∈
{
nπ
√
m/k

∣∣∣ n ∈ N
}

the equation of motion with

boundary values γ(0) = 0 and γ(T ) = 0 has exactly one solution and that this
solution also satisfies S(γ) = 0.

f) Prove that for all T > 0 we can find a C1 function γ : [0, T ]→ R with γ(0) = 0 and
γ(T ) = 0 such that the corresponding action S(γ) < 0, if the spring constant k > 0
is sufficiently large.

g) Show that for all T > 0 and all k > 0 we can find a C1 function γ : [0, T ]→ R with
γ(0) = 0 and γ(T ) = 0 such that the corresponding action S(γ) > 0.

h) Conclude that there are values of T > 0 and k > 0 such that the solutions to
the equation of motion with boundary values γ(0) = 0 and γ(T ) = 0 is neither a
minimizer nor a maximizer for the action S on the set C1

0,0([0, T ],R).

Exercise 2.16.

a) Consider the force field F : R2 → R2 given by

F (x, y) = (2x+ y, x+ 2y).

Show that F is a conservative force field.

b) Show that the motion (x(t), y(t)) = (e
√

3t, e
√

3t) solves Newton’s equations of motion
corresponding to a particle of mass m = 1 moving in the above force field.

c) Write down the action corresponding to a 2-dimensional motion of a particle of mass
m = 1 in the force field from (a) starting at time t = 0 and ending at time t = 1.
Calculate the action for the motion in b).

Exercise 2.17. A particle of charge e moving with velocity v in R3 in a magnetic field
B : R3 → R3 is subject to the Lorentz force ev×B where × here refers to the vector cross
product.

a) Consider motion γ(t) = (γ1(t), γ2(t), 0) in the xy-plane with the magnetic field being
(0, 0, B), where B : R2 → R. Show that Newton’s equations for a particle of mass m
and charge e become

mγ̈1(t) = eγ̇2(t)B(γ1(t), γ2(t))

mγ̈2(t) = −eγ̇1(t)B(γ1(t), γ2(t)).
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b) Show that if B is continuous then there exist vector fields A : R2 → R2, A(x, y) =
(A1(x, y), A2(x, y)) such that B(x, y) = ∂xA2(x, y)− ∂yA1(x, y) (see Example 1.23).
How many such vector fields can you find?

c) Show that Newton’s equations follow from Hamilton’s principle with Lagrange func-
tion

L(q, v) =
1

2
mv2 + eA(q) · v , q, v ∈ R2 .

Exercise 2.18. Write down the expression for the free action S0(γ) = 1
2

∫ b
a ‖γ̇(t)‖2dt in

spherical coordinates (r, θ, ϕ), given by

(x, y, z) = r(cos θ cosϕ, cos θ sinϕ, sin θ) ,

for r > 0,−π/2 6 θ 6 π/2, 0 6 ϕ 6 2π . Determine the corresponding Euler-Lagrange
equations and show that straight lines through the origin, with linear parametrization, are
solutions.

Exercise 2.19. Consider the sequence of functions gn : [−1, 1]→ R, n = 1, 2 . . .

gn(x) =


1, −1 6 x < −n−1

−nx, −n−1 6 x 6 n−1

−1, n−1 < x 6 1

a) show that gn ∈ C([−1, 1]), i.e., that gn continuous for all n.

b) Let fn(x) =
∫ x
−1 gn(y)dy for n = 1, 2, . . .. Argue that fn ∈ C1([−1, 1]) and that

‖fn‖1 6 1.

c) Let f∞(x) = 1 − |x|. Show that f∞ 6∈ C1([−1, 1]), but that it is piecewise C1, and
that

max
x∈[−1,1]

|fn(x)− f∞(x)| → 0, as n→∞.

d) A subset of C1([−1, 1]) is said to be sequentially compact if any sequence (fn) of
functions in the set has a convergent subsequence (fnk), i.e., a subsequence such that
‖fnk − f‖1 → 0 for some f ∈ C1([−1, 1]). Prove, using the result above that the unit
ball {f ∈ C1([−1, 1]) | ‖f‖1 6 1} in C1([−1, 1]) is not sequentially compact.



Chapter 3

Hamiltonian Mechanics

The main goal in this chapter is to reformulate the Euler-Lagrange equations for a me-
chanical system, discussed in Chapter 2, as a system of first order differential equations in
phase space, called Hamilton’s equations. Such a reformulation has several advantages.
On the one hand, it provides a natural basis for analyzing the phase flow of the system
and its qualitative properties. As we shall see, it also turns out to be a useful setting for
uncovering and investigating symmetries of the physical system and associated conserved
quantities. It should also be remarked that there is a close analogy between the Hamil-
tonian formalism of classical mechanics and the so-called canonical quantum mechanical
formalism whose deeper aspects we shall not have the possibility to discuss in these notes.

3.1 Convex functions

As a preparation for discussing Hamiltonian mechanics, we need first to introduce con-
vex functions and establish some of their basic properties. In our applications to classical
mechanics the convex functions under consideration are generally assumed to be differen-
tiable. However, non-differentiable convex functions occur naturally in thermodynamics
and statistical mechanics, e. g. in the description of phase transitions, and as such their
properties are highly relevant to physics. To attain a sufficient degree of generality we shall
therefore not assume differentiability except when explicitly stated.

Definition 3.1. For x, y ∈ Rk and 0 < α < 1 we say that the point αx + (1 − α)y is a
convex combination of x and y. This point is on the line segment between x and y and all
points on this line segment can be written in this way for some 0 6 α 6 1.

Definition 3.2. A subset C ⊆ Rk is said to be a convex set if, whenever x, y ∈ C, then
the whole line segment joining x and y is also in C. This may be rephrased as saying that

αx+ (1− α)y ∈ C for all 0 6 α 6 1 .

Evidently, the convex subsets of the real line R are exactly the intervals. A convex and
a non-convex set in the plane R2 are illustrated in Fig. 3.1. Examples of convex subsets of
Rk are, apart from Rk itself, the open balls

B(a; r) = {x ∈ Rk | ‖x− a‖ < r} , a ∈ Rk, r > 0 .

57
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Indeed, if x, y ∈ B(a; r) and 0 6 α 6 1, the triangle inequality yields

‖αx+(1−α)y−a‖ = ‖α(x−a)+(1−α)y‖ 6 α‖x−a‖+(1−α)‖y−a‖ < αr+(1−α)r = r ,

which proves the claim. Similarly, the closed balls

B(a; r) = {x ∈ Rk | ‖x− a‖ 6 r} , a ∈ Rk, r > 0 .

are convex.

Convex Not convex

x

y

x

y

Figure 3.1: A convex and a non-convex set in R2

Definition 3.3. A real-valued function f defined on a convex set C ⊆ Rk is said to be a
convex function if, for all x, y ∈ C and all 0 < α < 1, it holds that

f(αx+ (1− α)y) 6 αf(x) + (1− α)f(y) . (3.1)

The function is strictly convex if

f(αx+ (1− α)y) < αf(x) + (1− α)f(y) (3.2)

for all x, y ∈ C with x 6= y and 0 < α < 1.
We say that f is (strictly) concave if −f is (strictly) convex.

Inequality (3.1), resp. (3.2), expresses the fact that the graph of the function f lies
below, resp. strictly below, the (open) line segment joining the two points (x, f(x)) and
(y, f(y)) on the graph of f as illustrated in Figure 3.2.

Example 3.4.
a) A function f : Rk → R of the form

f(x) = a · x+ b , x ∈ Rk ,

where a ∈ Rk and b ∈ R is called affine. Such functions satisfy (3.1) with equality sign
holding (verify this) and are hence both convex and concave, their graphs being straight
lines.
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x+ (1−α) yα

f(x)+α f(y)(1−α)

x+(αf (1−α) y)

x y

f(y)

f

f(x)

Figure 3.2: Graphical illustration of inequality (3.1)

b) The function
g(x) = k‖x‖, x ∈ Rk,

is convex if k > 0, as a consequence of the triangle inequality (verify this). Note that in
this case g is not differentiable at x = 0.

The following lemma is useful for constructing convex functions from other convex
functions and will be applied repeatedly in the following.

Lemma 3.5.
a) Let f : C → R and g : C → R be two convex functions defined on the same convex

set C. Then λf + µg is a convex function on C, if λ, µ > 0.
b) Let I be an arbitrary set and for each i ∈ I let fi be a convex function defined on

a convex subset Ci of Rk. Define the function f by

f(x) = sup{fi(x) | i ∈ I}

for each x such that the sup on the right hand side is finite, that is f is defined on the set

C = {x ∈ Rk | x ∈ Ci for all i ∈ I, and fi(x) 6M for all i ∈ I for some M ∈ R}

Then f is a convex function.

Proof. The proof of a) is easy and is left for the reader. In order to prove b) we need to
argue first that C is a convex set. So let x, y ∈ C and choose Mx and My in R such that
fi(x) 6Mx and fi(y) 6My for all i ∈ I. For 0 < α < 1 we then have by (3.1) that

fi(αx+ (1− α)y) 6 αfi(x) + (1− α)fi(y) 6 αMx + (1− α)My
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for all i ∈ I, which shows that αx(1 − αy ∈ C and hence that C is convex. Choosing Mx

and My above to be sup{fi(x) | i ∈ I} and sup{fi(y) | i ∈ I}, respectively, and using the
definition of f the previous inequality states that

fi(αx+ (1− α)y) 6 αf(x) + (1− α)f(y)

for all i ∈ I. By the definition of supA for a set A ⊆ R as the smallest number larger than
or equal to all numbers in A this implies f(αx + (1 − α)y) 6 αf(x) + (1 − α)f(y). This
proves that f is convex.

The following characterization of convex functions of a single variable is particularly
useful for analyzing regularity properties such as continuity and differentiability of convex
functions in general.

Lemma 3.6. A function f : I → R of one variable defined on an interval I ⊆ R is convex
if an only if

f(x2)− f(x1)

x2 − x1
6
f(x3)− f(x1)

x3 − x1
6
f(x3)− f(x2)

x3 − x2
. (3.3)

holds for all x1, x2, x3 ∈ I such that x1 < x2 < x3. Moreover, f is strictly convex if and
only if (3.3) holds with strict inequalities.

x1 x2 x3

f

Figure 3.3: Graphical illustration of inequalities (3.3)

Proof. Let x1, x2, x3 be as stated and consider the two points (x1, f(x1)) and (x3, f(x3)) on
the graph of f and a third point (x2, y) on the vertical line through (x2, 0) (see Figure 3.3).
Clearly, (x2, y) is below the line segment s13 connecting (x1, f(x1)) and (x3, f(x3)) if and
only if the slope of s13 is larger than the slope of the line segment s12 connecting (x1, f(x1))
and (x2, y) and smaller than that of the line segment s23 connecting (x2, y) and (x3, f(x3)).
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In particular, (x2, f(x2)) is below s13 if and only is these inequalities holds for y = f(x2).
But this is exactly the contents of (3.3).

The statement for strictly convex functions is proven similarly.

Note that if we define the function mf (x, y) of two variables x, y ∈ I for x 6= y as the
slope of the line segment connecting (x, f(x)) and (y, f(y)), i. e.

mf (x, y) :=
f(x)− f(y)

x− y
, x, y ∈ I, x 6= y ,

the first inequality of (3.3) shows that mf is a monotone increasing function of y for y > x,
if x is kept fixed, while the second shows that this also holds true for y < x. Since mf

is symmetric in x and y we conclude that mf is a monotonic increasing function in each
variable separately.

We next apply this result to derive the following central fact about convex functions of
one variable.

Theorem 3.7. Let f : I → R be a convex function defined on an interval I ⊆ R. Then
the left and right derivatives

f ′−(x0) := lim
x→x0−

f(x)− f(x0)

x− x0
and f ′+(x0) := lim

x→x0+

f(x)− f(x0)

x− x0

exist at every interior point x0 in I. Moreover both f−(x) and f+(x) are monotone in-
creasing functions on the interior of I and fulfill

f ′−(x) 6 f ′+(x) and f ′+(x) 6 f ′−(y) if x < y . (3.4)

Proof. Let x0 be an interior point of I. Then there exist numbers x1 in I to the left of x0

and x3 to the right of x0 and for such numbers the inequality (3.3) holds with x2 replaced
by x0. In particular, we have

mf (x1, x0) 6 mf (x3, x0) .

Since the left hand side is an increasing function of x1 it converges as x1 → x0− to a limit
f ′−(x0 fulfilling

f ′−(x0) 6 mf (x3, x0) .

Using this inequality we get similarly that the right hand side converges as x3 → x0+ to a
limit f ′+(x0) and that

f ′−(x0) 6 f ′+(x0) .

This proves existence of f ′±(x0) and the former of the stated inequalities.
For x, y ∈ I we again consider (3.3) with x1 replaced by x, x3 replaced by y, and

x < x2 < y, such that
mf (x, x2) 6 mf (x2, y)

Here the left hand side decreases to f ′+(x) as x2 → x+ and hence

f ′+(x) 6 mf (x2, y) .
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Now, the right hand side of this inequality converges to f ′−(y) as x2 → y−. Hence f ′+(x) 6
f ′−(y) as claimed. Combining the two inequalities gives

f ′+(x) 6 f ′−(y) 6 f ′+(y) ,

which shows that f ′+ is increasing. Similarly, we get that f− is increasing. This finishes
the proof.

Note that (3.4) implies that if f ′−(x) 6= f ′+(x), then f ′− and f ′+ are not continuous at x.
Since a monotonic function has at most a countable number of discontinuities, it follows
that any convex function of one variable is differentiable everywhere except possibly at a
finite or countable number of points. We have already seen that non-differentiable convex
functions exist. Below we prove that convex functions are at least continuous at interior
points of their domain. Before doing we shall discuss differentiable convex functions in
more detail.

Proposition 3.8. Let f : I → R be a differentiable function defined on an open interval
I. Then f is convex if and only if f ′ is a monotonic increasing function on I. Moreover,
f is strictly convex if and only if f ′ is strictly increasing.

Proof. That f ′ is increasing on I if f is convex follows from Lemma 3.7. Assume next that
f ′ is increasing and let x1 < x2 < x3 be in I. By the mean value theorem there exist y1, y2

such that x1 < y1 < x2 < y2 < x3 and

mf (x1, x2) = f ′(y1) and mf (x2, x3) = f ′(y2) .

Since y1 < y2 we conclude that mf (x1, x2) 6 mf (x2, x3), which evidently implies that
(x2, f(x2)) lies below the line segment connecting (x1, f(x1)) and (x2, f(x2)). This proves
that f is convex.

The statement for strictly convex functions is proven similarly.

Corollary 3.9. Let f : I → R be a twice differentiable function defined on an open interval
I. Then f is convex if and only if f ′′(x) > 0 for all x ∈ I. Moreover, f is strictly convex
if f ′′(x) > 0 for all x ∈ I.

Proof. Since f ′ is differentiable it is well known that it is monotone increasing if and only
if f ′′ > 0 on I. Furthermore, f ′ is strictly increasing if f ′′ > 0 on I. Hence the corollary
follows from Proposition 3.8.

Corollary 3.10. Let f : C → R be a two times differentiable function defined on an open
convex set C ⊆ Rk. Then f is convex if and only if

n∑
i,j=1

∂2f

∂xi∂xj
(x) aiaj > 0 (3.5)

for all x ∈ C and all a = (a1, a2, . . . , ak) ∈ Rk. Moreover, if (3.5) holds with strict
inequality for all x ∈ C and all a 6= 0 in Rk, then f is strictly convex.
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Proof. Let x ∈ C and let a ∈ Rk \ {0} be given. Defining the affine function `x,a(t) =
x + ta, t ∈ R, we have that the function f ◦ `x,a is defined on an open interval Ix,a
containing 0 and is convex if f is convex (verify this!). Conversely, assume f ◦ `x,a is
convex for all choices of x ∈ C and a ∈ Rk \ {0}. For x1, x2 ∈ C, choose x = x1 and
a = x2 − x1 such that `x,a(t) = x1 + t(x2 − x1) = tx2 + (1− t)x1 for t ∈ [0, 1]. Using that
`x,a is convex we get

f(αx1 + (1− α)x2) = f(`x,a(1− α)) = f ◦ `x,a(α · 0 + (1− α) · 1))

6 αf ◦ `x,a(0) + (1− α)f ◦ `x,a(1) = αf(x1) + (1− α)f(x2)

for α ∈ [0, 1]. This shows that (3.1) holds and hence that f is convex. These considerations
prove that establishing convexity of a function f of k variables defined on a convex set C
is equivalent to showing convexity of all one-variable functions f ◦ `x,a, where x ∈ C and
a ∈ Rk, a 6= 0. We briefly express this latter property by saying that f is convex on any
line segment in C.

Clearly, f ◦ `x,a is a twice differentiable function if f is, and applying the chain rule
twice we get

(f ◦ `x,a)′′(t) =

n∑
i,j=1

∂2f

∂xi∂xj
(x+ ta) aiaj . (3.6)

Using Corollary 3.9 it follows by setting t = 0 in this identity that (3.5) holds if f is convex.
Conversely, if (3.5) holds it follows from Corollary 3.9 and (3.6) that f is convex.

The statement concerning strict convexity follows similarly.

Remark 3.11. A real k × k-matrix A = (aij) is called positive semi-definite if

〈x,Ax〉 =

n∑
i,j=1

aij xixj > 0 , for all x = (x1, . . . , xk) ∈ Rk . (3.7)

If strict inequality hold is (3.7) for all x 6= 0 then A is called positive definite.
For a twice differentiable function f of k variables the k × k-matrix D2f(x), whose

ij-matrix element equals ∂2f
∂xi∂xj

(x) is called the Hesse matrix of f at x (and was already

introduced for functions of two variables in Section 2.5). Hence Corollary 3.10 can be
expressed by saying that f is convex if and only if the Hesse matrix of f is positive semi-
definite at all points of C, and a sufficient condition for f to be strongly convex is that
D2f(x) is positive definite for all x ∈ C.

In case f is a C2 function we know that D2f(x) is a symmetric matrix. In this case it
can be shown that D2f(x) is positive semi-definite, resp. positive definite, if and only if
all its eigenvalues are non-negative, resp. positive (see Exercise 3.5).

Example 3.12. a) The function f(x) = xa, defined for x > 0, is C2 and f ′′(x) =
a(a− 1)xa−2. Using Corollary 3.10 it follows that f is convex if and only if a > 1 or
a 6 0.

b) The quadratic function f(x, y) = x2 + 3xy + 3y2 on R2 has constant Hesse matrix

D2f =

(
2 3
3 6

)
,
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which has eigenvalues 4 ±
√

13. Since these are positive f is strictly convex by
Corollary 3.10 and the previous remark.

We now return to the general convex functions. First, recall that a hyperplane in Rk is
a set of the form

H = {x ∈ Rk | N · x = c} , (3.8)

where c ∈ R is a constant and N ∈ Rk, N 6= 0, is called a normal vector to H, since N
is orthogonal to the vector x1 − x2 for any x1, x2 ∈ H. This also shows that if we set
H0 = {x ∈ Rk | N · x = 0} , and x0 is some point in H then H0 is a (k − 1)-dimensional
subspace of Rk and

H = x0 +H0 := {x0 + x | x ∈ H0} .

In other words, a hyperplane is a translated (k − 1)-dimensional subspace of Rk.
In particular, the graph of an affine function h(x) = µ · x + a, x ∈ Rk, where µ ∈ Rk

and a ∈ R are fixed, is a hyperplane in Rk+1

H = {(x, xk+1) | xk+1 = µ · x+ a , x ∈ Rk} (3.9)

with normal vector N = (µ,−1).
The following theorem establishes the existence of hyperplanes touching the graph of a

convex function f at any given point not on the boundary of its domain of definition and
such that the graph of f has no points below the hyperplane.

Theorem 3.13. Let f : C → R be a convex function defined on a convex set C ⊆ Rk. For
each interior point x0 ∈ C, there exists at least one vector µ ∈ Rk such that

f(x) > f(x0) + µ · (x− x0). (3.10)

The graph of the affine function h(x) = f(x0) + µ · (x − x0) is called a supporting
hyperplane for f at x0.

Moreover, the function f has partial derivatives at x0 if and only if the supporting
hyperplane is unique. In this case µ = ∇f(x0).

Proof. We give the proof first in the case of one variable, i. e. if k = 1.
That x0 is an interior point of C means that there is some open interval I ⊂ C such

that x0 ∈ I. From Theorems 3.6 and 3.7 follows that that the left and right derivatives µ±
of f at x0 exist and that

µ+ = inf{f(x)− f(x0)

x− x0
| x > x0} and µ− = sup{f(x)− f(x0)

x− x0
| x < x0} .

Hence, we have
f(x) > f(x0) + µ(x− x0)

for all x if and only if µ ∈ [µ−, µ+]. This proves the theorem for one variable.
For a convex function of several variables, the problem is more complicated. A proof of

the existence of a supporting hyperplane is contained in Exercise 3.9. The proof is based
on utilizing the functions f ◦ `x0,a as in the proof of Theorem 3.10. In particular, if the f
has partial derivatives the function f ◦ `x0,εi , where εi denotes a unit vector along the i’th
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coordinate axis, is a differentiable convex function of one variable, and we may apply the
result just proven to conclude that there is a unique supporting line along each coordinate
direction. Since the function is convex, it is not difficult to see that these lines span a
unique supporting hyperplane.

We note the following simple but important consequences concerning maxima and min-
ima of convex functions.

Corollary 3.14. The following holds for any convex function f : C → R of k variables.
a) If f has a maximum at an interior point x0 of C then f is constant on C. In particular,

any convex function assumes its maximal value, if it exists, on the boundary of its domain
of definition.
b) Any local minimum of f is also a global minimum of f . If f is differentiable at an

interior point x0 of C, then f has a minimum at x0 if and only if ∇f(x0) = 0.

Remark 3.15. The same statements, with ”maximum” and ”minimum” interchanged,
hold for concave functions.

Proof. Assume f has a maximum at an interior point x0 and let µ be as in Theorem 3.13.
Then f(x0) > f(x) > f(x0)+µ·(x−x0) for all x ∈ C. It follows that µ·(x−x0) 6 0, x ∈ C,,
and since x0 is an interior point of C this implies µ = 0. Hence f(x) = f(x0), x ∈ C, which
proves a).

Assume f has a local minimum at x0 ∈ C and let x ∈ C be arbitrary. Then the convex
function g(t) = f(tx+ (1− t)x0), t ∈ [0, 1] has a local minimum at t = 0. Hence,

h(t) =
g(t)− g(0)

t
> 0 for t > 0 small enough .

But h is an increasing function on [0, 1] by Lemma 3.6 and hence 0 6 h(1) = g(1)− g(0) =
f(x)− f(x0), i. e. f(x0) 6 f(x). This proves the first statement in b).

If f is differentiable at an interior point x0 of C and ∇f(x0) = 0, then Theorem 3.13
implies that µ = 0 in (3.10) and hence f has a minimum at x0. The necessity of the
condition ∇f(x0) = 0 for x0 to be a (local) minimmum of f is well known for any function
f differentiable at x0. This proves the second part of b).

One further important consequence of Theorem 3.13 is the following result.

Theorem 3.16. A convex function f : C → R defined on an open convex set C ⊆ Rk is
continuous.

Remark 3.17. If C is not an open set, then f can be discontinuous at the boundary of C,
even for k = 1. See Exercise 3.3 for a simple example.

Proof. We prove this first for convex functions of one variable. Let x− < x0 < x+ be in
the domain of f . Then by Lemma 3.6 we have (see Figure 3.4)

a− 6
f(x)− f(x0)

x− x0
6 a+ , for x− < x < x+ ,

where

a− =
f(x−)− f(x0)

x− − x0
, a+ =

f(x+)− f(x0)

x+ − x0
.
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Thus
|f(x)− f(x0)| 6 max{|a−|, |a+|}|x− x0| , for x− < x < x+ ,

which proves the continuity of f at x0.
Alternatively, one could prove the continuity of f(x) using the fact that the left and

right derivatives f ′−(x) and f ′+(x) exist. This alternative is left to the reader as an exercise.
Now assume k > 1 and let Qλ be a k-dimensional cube of side length λ > 0 centered

at x0. We choose λ small enough such that Qλ ⊆ C, which is possible since C is open.
By Corollary 3.14 we conclude that the restriction of f to Qλ must take its maximal

value at one of the 2k corner points of Qλ. If we let λ approach 0 the corners of Qλ will
trace out straight lines approaching x0. From the one-dimensional case we know that f is
continuous when restricted to each of these straight lines. Hence the values of f at the 2k

corners will approach f(x0) as λ tends to 0. We conclude that

lim
λ→0

max
x∈Qλ

f(x) = f(x0).

On the other hand, we know that f has a supporting hyperplane at x0, i. e., there exists
µ0 ∈ Rk such that

f(x) > f(x0) + µ0 · (x− x0).

It follows that limλ→0 minx∈Qλ f(x) = f(x0) and consequently

lim
λ→0

max
x∈Qλ

|f(x)− f(x0)| = 0 .

Hence we have shown that f is continuous at x0.

x− x+

Slope a−

Slope a+

x0

Figure 3.4: Continuity of convex function



Chap. 3 Hamiltonian Mechanics 67

3.2 Legendre transform

The Hamilton function of a mechanical system will be defined in Section 3.3 by applying a
so-called Legendre transformation to the Lagrange function L w. r. t. the velocity variables.
As discussed briefly in Section 3.5 this transformation also has important applications in
thermodynamics. We here give a definition of the Legendre transform first introduced
by W. Fenchel in 1949 and which does not assume the function to be neither convex nor
differentiable. This form of the Legendre transform is also called the Legendre-Fenchel
transform.

Definition 3.18. Let f : A→ R be a function defined on a subset A ⊆ Rk. The Legendre
transform f∗ of f is defined by

f∗(p) = sup{x · p− f(x) | x ∈ A}

for all p ∈ Rk where this supremum on the right hand side is finite. We shall denote the
domain of f∗ by Df∗ and call p the conjugate variable to x.

Let us first note the following important fact.

Theorem 3.19. The Legendre transform f∗ of any function f of k variables is a convex
function.

Proof. This follows immediately from Lemma 3.5 b) by setting I = A and fx(p) = p ·
x − f(x), p ∈ Rk, for each x ∈ A and noting that fx is an affine function, and hence also
convex.

It should be noted that Df∗ is non-empty if and only if f is bounded below by some
affine function. The following result furnishes a key link between the Legendre transform
and supporting hyperplanes.

Proposition 3.20. Let f : C → R be a convex function of k variables and let x0 ∈ C.
Then the graph of the function h(x) = f(x0) + p · (x− x0) is a supporting hyperplane for f
at x0 ∈ C if and only if p ∈ Df∗ and f(x0) + f∗(p) = p · x0. In particular, the conclusion
holds for

p = ∇f(x0) , (3.11)

if x0 is an interior point of C at which the partial derivatives of f exist.

Proof. By definition the graph of h is a supporting hyperplane for f if and only if

p · (x− x0) + f(x0) 6 f(x), x ∈ C ,

that is
p · x− f(x) 6 p · x0 − f(x0) , x ∈ C .

This is, however, equivalent to p ∈ Df∗ and f∗(p) = p · x0 − f(x0). This proves the first
claim. The second claim then follows from the last part of Theorem 3.13.
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In view of the latter statement of Proposition 3.20, one way to approach the Legendre
transform for differentiable convex functions, frequently used in mechanics, is to define p by
(3.11) and attempt to solve this equation for x in terms of p and then express p ·x−f(x) in
terms of p. In case the function f is quadratic, the equation to be solved is linear and can
be dealt with by techniques known from linear algebra. However, in general this approach
is cumbersome since it requires solving non-linear equations and discussing whether the
solution is unique. The definition of f∗ given above avoids these problems altogether.

Example 3.21. We may calculate the Legendre transform of the function f(x) = xa/|a|,
defined for x > 0 where a 6= 0, by maximizing gp(x) = xp− xa/|a|.

Consider first the case a > 1. If p 6 0 the supremum of gp is 0. If p > 0 the maximum
occurs when p = axa−1/|a| = xa−1, i. e. x = p1/(a−1). Thus

f∗(p) = p1/(a−1)p− a−1pa/(a−1) = pb/b ,

where b = a
a−1 . Note that a−1 + b−1 = 1 and a, b > 1.

Next consider a < 0. If p > 0 then the supremum of gp is infinite. For p = 0
the supremum is 0. For p < 0 the maximum occurs if p = axa−1/|a| = −xa−1, i.e.,
x = |p|1/(a−1). Thus for a < 0, f∗ is defined for p 6 0 and

f∗(p) = |p|1/(a−1)p− |p|a/(a−1)/|a| = (−1− |a|−1)|p|a/(a−1) = −|p|b/b ,

where again b = a
a−1 = |a|

|a|+1 .

Finally consider 0 < a < 1. If p > 0 then the supremum of gp(x) is again infinite. If
p 6 0 then the supremum is 0. Thus f∗ is defined for p 6 0 and f∗(p) = 0. In this case
the Legendre transform is not very useful.

Example 3.22. The Legendre transform of an affine function f(x) = µ · x + b is defined
only for p = µ and in this case f∗(µ) = −b.

Proposition 3.23. Let f : A → R be a function defined on a set A ⊂ Rk, such that
Df∗ 6= ∅. Then A ⊆ Df∗∗ and

f(x) > f∗∗(x) for all x ∈ A .

Moreover, if A is open and g : C → R is any convex function such that A ⊆ C and
g(x) 6 f(x) for all x ∈ A, then f∗∗(x) > g(x) for all x ∈ A, i. e., f∗∗ is the largest convex
function that is smaller than or equal to f on A.

Proof. The first statement follows straight away from the fact that for all x ∈ A and all
p ∈ Df∗ we have x · p− f∗(p) 6 f(x) by the definition of f∗.

Assume now that A is open and let x0 ∈ A. Then x0 is an interior point of C, and
since g is convex there is a supporting hyperplane for g at x0, i. e., there exists µ0 ∈ Rk
such that

g(x) > µ0 · (x− x0) + g(x0)

for all x ∈ C. In particular, we have for all x ∈ A that

µ0 · x0 − g(x0) > µ0 · x− g(x) > µ0 · x− f(x) .
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Thus
µ0 · x0 − g(x0) > f∗(µ0)

and consequently
f∗∗(x0) > µ0 · x0 − f∗(µ0) > g(x0).

Corollary 3.24. Let f : C → R be a convex function defined on an open convex set C ⊆ Rk.
Then f∗∗(x) = f(x) for all x in C.

Proof. Using g = f in the previous proposition we get that f(x) 6 f∗∗(x) for all x ∈ C.
Together with Proposition 3.23 this proves that f = f∗∗ on C.

Proposition 3.25. If f : C → R is a convex function defined on the open convex set
C ⊆ Rk such that f∗∗ is strictly convex, then f∗ has partial derivatives at all interior points
p of Df∗ and x(p) = ∇f∗(p) is the unique point in Df∗∗ at which f∗∗ has a supporting
hyperplane with normal vector (p,−1).

In particular, if f : Rk → R is strictly convex and p is an interior point of Df∗, then
∇f∗(p) exists and is the unique solution to the equation

∇f(x) = p . (3.12)

Proof. Let p0 be an interior point of Df∗ . According to Theorem 3.13 we must show that
f∗ has a unique supporting hyperplane at p0.

By Corollary 3.20 we know that the graph of the function k(p) = f∗(p0)+x0 ·(p−p0) is
a supporting hyperplane for f∗ at p0 if and only if x0 ∈ Df∗∗ and f∗∗(x0) = p0 ·x0−f∗(p0).
This implies that the graph of the function h(x) = f∗∗(x0) + p0 · (x− x0) is a supporting
hyperplane for f∗∗ at x0. Assume now that x′0 is another point in Df∗∗ such that the graph
of the function h′(x) = f∗∗(x′0) + p0 · (x− x′0) is a supporting hyperplane at x′0. Then the
inequalities

f∗∗(x) > f∗∗(x0) + p0 · (x− x0) and f∗∗(x) > f∗∗(x′0) + p0 · (x− x′0)

hold for all x ∈ Df∗∗ . By inserting x = x′0 into the former and x = x0 into the latter one
obtains

f∗∗(x′0)− f∗∗(x0) = p · (x′0 − x0) .

Using this we then get

f∗∗(αx0 + (1− α)x′0) > f∗∗(x0) + (1− α)p · (x′0 − x0) = αf∗∗(x0) + (1− α)f∗∗(x′0)

for 0 < α < 1. But this contradicts strict convexity of f∗∗ and therefore x0 is uniquely
determined by p. This proves uniqueness of the supporting hyperplane for f∗ at p0 and
Theorem 3.13 implies x0 = ∇f∗(p0). This proves the first part of the proposition.

In case C = Rk, we obviously have f = f∗∗ by Corollary 3.24. Hence we conclude as
before that ∇f∗(p) exists, if p is an interior point of Df∗ , and that f has a supporting
hyperplane with normal vector (p,−1) at the unique point x(p) = ∇f∗(p). But Theo-
rem 3.13 tells us that this is equivalent to x(p) being a solution to (3.12). This completes
the proof.
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3.3 Hamilton’s equations

We turn to the application of the Legendre transform in mechanics and consider a me-
chanical system with Lagrange function L(q, v, t), which will be assumed to be defined on
a set A× B × R, where A and B are open subsets of Rk. Convexity of L as a function of
v will be a key property in order to apply the results of the previous section, hence B will
be assumed to be a convex set. In fact, in most applications we have B = Rk. Thus, for
the mechanical models considered in Chapter 2, whether constrained or unconstrained, it
is easily seen by inspection that the Lagrange function can be written in the form

L(q, v, t) = ‖A(q, t)v + b(q, t)‖2 + h(q, t) (3.13)

where A is a non-singular square matrix function, b a vector function, and h a scalar
function of coordinates and time. It follows that in all these cases the Lagrange function
is a strictly convex function of v ∈ Rk for fixed q and t (see Exercise 3.16).

Instances of Lagrange functions not of the form (3.13) occur in the Lagrangian fomu-
lation of relativistic mechanics. In particular, a standard form of L for a free relativistic
particle of mass m > 0 is

L(v) = −mc
√
c2 − ‖v‖2 , (3.14)

where c is the velocity of light. This function is independent of position x such that A = R3,
while B = {v ∈ R3 | ‖v‖ < c} is an open ball on which L is convex. Systems with La-
grangians of this and more general type can also be handeled in the Hamiltonian formalism
as developed below, but in order to avoid technical complications we shall henceforth only
consider the case B = Rk.

Definition 3.26. Given a Lagrange function L : A × Rk × R → R which is a convex
fucntion of v for fixed q and t, the Legendre transform w. r. t. v for fixed q and t will be
denoted by H and is called the Hamilton function or Hamiltonian corresponding to L,
that is

H(q, p, t) = sup
v∈B

(v · p− L(q, v, t)) . (3.15)

It will be assumed that the interior C of the set of points p such that the right hand side of
(3.15) is finite, is independent of q and t, and hence we consider H as a function defined
on the open set A× C × R.

If L is a strictly convex C1 function of v, then Proposition 3.25 implies that we may
write

H(q, p, t) = v(q, p, t) · p− L(q, v(p, q, t), t), (3.16)

where v(q, p, t) is determined as the unique solution to the equations

pi =
∂L

∂vi
(q, v, t), i = 1, . . . , k , (3.17)

so pi is the generalized momentum corresponding to the coordinate qi.
In particular, we have seen in Chapter 2 that a Lagrangian for a system of N particles

interacting via a potential V in an inertial system of coordinates is given by

L(x, v, t) =

N∑
i=1

1

2
mi‖vi‖2 − V (x),
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where qi, vi ∈ R3, for i = 1, . . . , N , and we have k = 3N . In this case pi = ∇viL(q, v) = mivi
is the standard momentum and the Hamilton function

H(q, p) =
N∑
i=1

p2
i

2mi
+ V (q)

is seen to be identical to the energy function.
Our goal is now to rewrite the Lagrange equations of motion for mechanical system in

terms of the Hamiltonian.

Theorem 3.27. Let the Lagrangian L(q, v, t) be a C2-function on A × Rk × R, where
A ⊆ Rk is open, and assume the Hesse martix of L w. r. t. v(

∂2L

∂vi∂vj

)
(3.18)

is positive definite at all points of A × R × R. If γ(t), t ∈ I , is a solution to the Euler-
Lagrange equations corresponding to L, then the curve (q(t), p(t)), t ∈ I, where

qi/t) = γi(t) and pi(t) =
∂L

∂vi
(γ(t), γ̇(t), t) (3.19)

for i = 1, . . . , k, is a solution to Hamilton’s equations

q̇i(t) =
∂H

∂pi
(q(t), p(t), t) , ṗi(t) = −∂H

∂qi
(q(t), p(t), t) , i = 1, . . . , k . (3.20)

Conversely, given a solution (q(t), p(t)), t ∈ I, to Hamilton’s equations, then γ(t) = q(t) is
a solution to the Euler-Lagrange equations.

Remark 3.28. We shall henceforth use the notation ∂L
∂v for the gradient of L w. r. t. v and

similarly for the gradients of H w. r. t. q and p. With this notation Hamilton’s equations
can be written as

q̇ =
∂H

∂p
, ṗ = −∂H

∂q
.

Proof. By Corollary 3.10 L is a strictly convex function of v. As already noted it follows
from Proposition 3.25 that for any (q, p, t) ∈ A×C×R there exists a unique v(q, p, t) ∈ Rk
such that

∂L

∂v
(q, v(q, p, t), t) = p , (3.21)

and that

v(q, p, t) =
∂H

∂p
(q, p, t) . (3.22)

On the other hand, ∂L∂v (q, v, t) belongs to the domain of the Legendre transform of L(q, v, t)
with respect to v for all v ∈ Rk as a consequence of Proposition 3.20. Since the Hesse
matrix (3.18) is regular, it follows from the inverse mapping theorem that the image of the
function v → ∂L

∂v (q, v, t) is an open subset of Rk, which hence must be equal to C. In other

words, for fixed q and t the function v → ∂L
∂v (q, v, t) maps Rk bijectively onto C and its

inverse function is p→ ∂H
∂p (q, p, t).
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Assume now that γ : I → A is a solution to the Euler-Lagrange equations. Defining
(q(t), p(t)) by (3.19) it follows from the equivalence of equations (3.21) and (3.22) that q(t)
satisfies the first of Hamilton’s equations. Moreover, the second of Hamiltons equations
takes the form

d

dt

(
∂L

∂v
(γ(t), γ̇(t), t)

)
= −∂H

∂q
(q(t), p(t), t) , (3.23)

and hence follows from the Euler-Lagrange equations if we prove that

∂H

∂q
(q, p, t) = −∂L

∂q
(q, v, t). (3.24)

In order to see this we first note that since ∂L
∂v is a C1 function the inverse mapping theorem

implies that v(q, p, t) as given by (3.22) is a C1 function. Applying the chain rule we hence
obtain from (3.16)

∂H

∂qi
(q, p, t) =

k∑
j=1

∂vj
∂qi

(q, p, t) pj −
k∑
j=1

∂L

∂vj
(q, v(q, p, t), t)

∂vj
∂qi

(q, p, t)− ∂L

∂qi
(q, v(q, p, t), t)

= −∂L
∂qi

(q, v(q, p, t), t),

where we have used (3.21). This proves the first part og the theorem.
Assume next that (q, p) : I → A × C is a solution to Hamilton’s equations and set

γ(t) = q(t). From the equivalence of (3.21) and (3.22) and the first of Hamilton’s equations
we then get that p(t) is given by (3.19) and hence the second Hamilton’s equation has the
form (3.23), which as we have seen is equivalent to the Euler-Lagrange equations. This
completes the proof.

In the rest of this section we shall assume that the Hamiltonian H = H(p, q) does not
depend on time t, and that H is a C2 function defined on the open set A× Rk ⊆ R2k.

For such Hamiltonians H, it follows from the existence and uniqueness result for first
order differential equations, briefly discussed below Theorem 1.15, that there exists a unique
solution (p(t), q(t)) to Hamilton’s equations defined on a maximal time interval around
t = 0, for each choice of initial conditions q(0) = q0 ∈ A and p(0) = p0 ∈ Rd. The following
discussion is based on the additional assumption that the solution (p(t), q(t)) is globally
defined, i. e., defined for all times t ∈ R, for any choice of (q0, p0). This is not the case for
arbitrary Hamiltonians H, but one can impose quite natural conditions on H which ensure
this property of solutions. For instance, if the level set

HE = {(p, q) : H(p, q) = E}

is closed and bounded for all E ∈ R, then all solutions are globally defined. Assuming
this to be the case, we can in a similar way as in Section 1.5 define the Hamiltonian flow
Ψt : A× Rk → A× Rk, t ∈ R, by

Ψt(q0, p0) = (q(t), p(t)),

where (q(t), p(t)) is the solution to Hamilton’s equations such that (q(0), p(0)) = (q0, p0).
It is a fact, that if H is a C2 function on A×Rk then Ψt(q, p) is a C2 function of (q0, p0, t) ∈
A× Rk × R (see e. g. [4]).
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From the uniqueness of solutions to Hamilton’s equations with given initial conditions
at time t = 0, we conclude that the following group property holds:

Ψt+s = Ψt ◦Ψs for all t, s ∈ R.

Furthermore, it is clear that Ψt=0 is the identity map on A× Rk. In particular, these facts
show that Ψt is a bijective map on A × Rk for any t ∈ R, and the inverse map of Ψt is
Ψ−1
t = Ψ−t.

As in Chapter 1 we call the space of initial values A × Rk the phase space of the me-
chanical system under consideration. As compared to the definition given in Chapter 1, the
velocity variables vi have been replaced by the generalized momenta pi. In the description
of a particle system w.ṙ. t. an inertial system of coordinates this only means a rescaling of
variables, since in that case pi = mivi, as we have seen.

A key property of the Hamiltonian flow is that it preserves volume in phase space. This
result is known as Liouville’s theorem whose precise formulation is as follows.

Theorem 3.29 (Liouville’s Theorem). Suppose that the Hamiltonian H, defined on the
open set A × Rk ⊆ R2k, satisfies the assumptions stated above and let Ψt, t ∈ R, be the
corresponding Hamiltonian flow. Then

detDΨt(q, p) = 1, for all t ∈ R, q ∈ A, p ∈ Rk, (3.25)

where DΨt is the 2k × 2k Jacobi matrix of the map Ψt on A× Rk.

Proof. Since Ψt=0 is the identity map, the identity (3.25) obviously holds for t = 0. Hence,
it is sufficient to show that

d

dt
detDΨt = 0 for all t ∈ R. (3.26)

Recall that Ψs+t = Ψt ◦Ψs for all s, t ∈ R. Applying the chain rule, we get

DΨs+t = (DΨt ◦Ψs)DΨs

and hence
det(DΨs+t) = det(DΨs ◦Ψt) det(DΨt).

Differentiating this identity w. r. t. s gives

d

ds
det(DΨs+t) =

d

ds
det(DΨs ◦Ψt) det(DΨt) ,

where we observe that on the left hand side d
ds can be replaced by d

dt . Using this and
setting s = 0 we obtain

d

dt
det(DΨt) =

d

ds
det(DΨs ◦Ψt)

∣∣∣
s=0

det(DΨt) ,

from which it follows that it suffices to prove (3.26) for t = 0. For this purpose let us first
note that, as a consequence of Exercise (3.20), we have

d

dt
det(DΨt)|t=0 = Tr

d

dt
D(Ψt)|t0,
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where Tr denotes the trace of a matrix. Furthermore, since Ψ is C2, we can interchange
the order of differentiation, so

d

dt
DΨt = D

d

dt
Ψt.

Next, we find

d

dt
(Ψt)|t=0 = (q̇(0), ṗ(0)) =

(
∂H

∂p1
, . . . ,

∂H

∂pk
,−∂H

∂q1
, . . . ,−∂H

∂qk

)
,

where the last equation follows from Hamilton’s equations and the fact that Ψt is its
associated flow. Hence

(
D
d

dt
Ψt

)
t=0

=



∂2H
∂q1∂p1

· · · ∂2H
∂qk∂p1

∂2H
∂p21

· · · ∂2H
∂pk∂p1

...
. . .

...
...

. . .
...

∂2H
∂q1∂pk

· · · ∂2H
∂qk∂pk

∂2H
∂p1∂pk

· · · ∂2H
∂p2k

−∂2H
∂q21

· · · − ∂2H
∂qk∂q1

− ∂2H
∂p1∂q1

· · · − ∂2H
∂pk∂q1

...
. . .

...
...

. . .
...

− ∂2H
∂q1∂qk

· · · −∂2H
∂q2k

− ∂2H
∂p1∂qk

· · · − ∂2H
∂pk∂qk


and therefore

Tr
d

dt
D(Ψt)|t=0 =

k∑
i=1

( ∂2H

∂qi∂pi
− ∂2H

∂pi∂qi

)
= 0.

This proves (3.26) for t = 0 and hence concludes the proof of the theorem.

Let us explain why Liouville’s theorem, in the way stated above, implies the “preser-
vation of volume under the Hamiltonian flow” as previously mentioned. Let Σ ⊂ A × Rk
be a set of finite volume

µ(Σ) =

∫
Σ
dkq dkp.

More concretely, the reader may think of an open bounded set. Under the motion of the
system starting at time t = 0 in a state in Σ, the system ends up after time t in a state
q(t), p(t)) in Ψt(Σ). Expressed differently, under the Hamiltonian flow Ψ the subset Σ
of phase space flows after time t to Ψt(Σ). Using the standard transformation rule for
integrals in Euclidean space and Theorem 3.29, we have

µ(Ψt(Σ)) =

∫
Ψt(Σ)

dkq dkp =

∫
Σ
| detDΨt|︸ ︷︷ ︸

= 1

dkq dkp = µ(Σ) ,

which expresses the fact that the Hamiltonian flow preserves the volume in phase space.
An important application of Liouville’s theorem is in establishing the so-called Poincaré

recurrence phenomenon: Under reasonable assumptions, a mechanical system always re-
turns (after sufficiently long time) arbitrarily close to its initial state. Of course, the
resolution of the seemingly paradoxical statement lies in the fact that “sufficiently long”
can actually mean time scales longer than age of the universe.

Here is a precise formulation of the mentioned recurrence theorem.
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Theorem 3.30 (Poincaré recurrence theorem). Consider a mechanical system whose mo-
tion obeys Hamilton’s equations with Hamiltonian obeying the conditions of Theorem 3.29.
Suppose that Σ ⊂ A× Rk is open and has finite volume µ(Σ) < ∞, and assume that Σ is
invariant under Ψt, i. e. Ψt(Σ) ⊆ Σ for all t ∈ R.

Then the following is true: For any time T > 0 and any neighborhood U ⊂ Σ, there
exists a time t > T and x ∈ U such that Ψt(x) ∈ U .

Proof. Let n = 0, 1, 2, 3, . . . be a natural number. For notational convenience, we define

gn(U) = Ψt=nT (U).

Note that g0(U) = U holds, since Ψ0 is the identity map.
Now, observe that the sets

U, g1(U), g2(U), g3(U), · · · , gn(U) · · · (3.27)

all have equal volume, µ(gn(U)) = µ(U) > 0 for all n ∈ N, as a consequence of the volume
preserving property of Ψt. Suppose that these sets never intersect, i. e., gk(U) ∩ gl(U) = ∅
for all k 6= l. Then

µ(Σ) > µ

( ∞⋃
n=0

gn(U)

)
=
∞∑
n=0

µ(U) = +∞,

where the inequality follows from the invariance of Σ and the first equality from the dis-
jointness of the sets gn(U). This contradicts our assumption µ(Σ) <∞.

Hence there must exist k > l > 0 and l > 0 such that

gk(U) ∩ gl(U) 6= ∅.

This implies
gk−l(U) ∩ U 6= ∅,

thanks to the fact that gn+m(U) = gn(gm(U)). (The reader is urged to check this detail.)
Finally, let y ∈ gk−l(U) ∩ U and put n = k − l. Then y = gn(x) for some x ∈ U . That

is, we have x ∈ U and y = gn(x) = Ψt=nT (x) ∈ U . Hence, the desired conclusion holds for
t = nT where n > 1 is some natural number.

Example 3.31. For a system with Hamilton function as in Theorem (3.30) the set

ΣE = {(q, p) ∈ A× Rk|H(p, q) < E}

is open since H is continuous. It is also invariant under the Hamiltonian flow as an
immediate consequence of the theorem on conservation of energy proven below.

In many cases ΣE is also a bounded set. Just to take one specific example, consider
the k-dimensional harmonic oscillator whose Hamilton function defined on R2k and given
by

H(q, p) =
‖p‖2

2m
+

1

2
k‖q‖2 ,

where m and k are positive constants. In this case, ΣE is empty for E 6 0 while (q, p) ∈ ΣE

for E > 0 implies ‖q‖ <
√

2mE and ‖p‖ <
√

2E
k , and hence ΣE is bounded. Now let q0, p0)
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be any initial condition and choose E > H(q0, p0). Given any neighborhood U of (q0, p0)
no matter how small there exists by Theorem 3.30 for any T > 0, no matter how large, an
x in U ∩ ΣE and a t > T such that ψt(x) ∈ U ∩ ΣE .

The reader may easily extend these arguments to systems consisting of a single particle
in Rk of mass m > 0 in a potential V (q) differentiable on Rk such that V (q) → ∞ as
‖q‖ → ∞.

As the final result of this section we next prove the announced extension of Theorem 2.5
on energy conservation.

Theorem 3.32 (Conservation of energy). If H(q, p) is a C1-function independent of time
and (q(t), p(t)) is a solution to the corresponding Hamilton’s equations, then

d

dt
H(q(t), p(t)) = 0.

Proof. By the chain rule we calculate

d

dt
H(q(t), p(t)) =

k∑
i=1

∂H

∂qi
(q(t), p(t))q̇i(t) +

∂H

∂pi
(q(t), p(t))ṗi(t)

=

k∑
i=1

∂H

∂qi
(q(t), p(t))

∂H

∂pi
(q(t), p(t))− ∂H

∂pi
(q(t), p(t))

∂H

∂qi
(q(t), p(t)) = 0.

3.4 Noether’s Theorem

The final topic to be discussed in the classical mechanics part of these notes is the notion
of symmetries and conservation laws.

We consider a system described by a Lagrange function L(q, v) independent of time
and defined on A×Rk, where A ⊆ Rk is open. In this section a coordinate transformation
ψ : A→ A will simply be called a transformation. Recalling Definition 2.12 of coordinate
transformations, this means that ψ is a transformation if it is a bijective C1 mapping from
A onto A and fulfills

detDψ(q) 6= 0,

for all q ∈ A. A one-parameter family of transformations is a collection of transformations
ψs indexed by a parameter s ∈]−a, a[, where a > 0. It is called a C2 family if the function
(q, s)→ ψs(q) from A×]− a, a[ to A is C2. In this case we will denote the derivative with
respect to s by ψ′s(q), whereas the Jacobian with respect to q is denoted by Dψs(q). In view
of the transformation rule (2.11) for Lagrange functions under coordinate transformations
it is natural to define a symmetry of a mechanical system as follows.

Definition 3.33. A transformation ψ is a symmetry of a mechanical system described
by the Lagrange function L, and L is called invariant under ψ, if

L(ψ(q), Dψ(q)v) = L(q, v) for all q ∈ A, v ∈ Rk.
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Example 3.34.
a) Let A ∈ O(3) be a 3× 3 orthogonal matrix. Then the linear transformation ψ(q) =

Aq is a symmetry of a system described by a Lagrangian function of the form

L(q, v) =
1

2
mv2 − V (‖q‖),

where m > 0 and V : [0,∞)→ R is a C1 function. (See Exercise 3.21.)

b) The one-parameter family of transformations on Rk given by ψs(q) = q+svo, s ∈ R,
is a one-parameter family of symmetries of the free action S0(γ) = 1

2

∫ t2
t1
‖γ̇(t)‖2dt for any

fixed v0 ∈ Rk (see Exercise 3.22). Since ψs is a translation in the direction of v0 this
expresses translation invariance of S0.

Theorem 3.35 (Noether’s Theorem). If ψs : A → A, −a < s < a, is a C2 family of
symmetries of a system described by a C2 Lagrange function L : A × Rk → R, then the
function

I(q, v) = ∇vL(q, v) · ψ′0(q)

is an integral of the motion, or a conserved quantity.
This means that if γ(t) is a solution to the Euler-Lagrange equations for L, then

d

dt
I(γ(t), γ̇(t)) = 0.

Proof. Using the Euler-Lagrange equations and the chain rule we calculate

d

dt
I(γ(t), γ̇(t)) =

d

dt

(
∇vL(γ(t), γ̇(t))

)
ψ′0(γ(t)) +∇vL(γ(t), γ̇(t))Dψ′0(γ(t))γ̇(t)

= ∇qL(γ(t), γ̇(t))ψ′0(γ(t)) +∇vL(γ(t), γ̇(t))Dψ′0(γ(t))γ̇(t) . (3.28)

On the other hand, differentiating both sides of the identity

L(ψs(q), Dψs(q)v) = L(q, v) ,

which holds for all s ∈ (−a, a) since ψs is a symmetry, yields

0 =
d

ds
L(ψs(q), Dψs(q)v)s=0 = ∇qL(q, v)ψ′0(q) +∇vL(q, v)Dψ′0(q)v .

Inserting (γ(t), γ̇(t)) for (q, v) in this identity it follows that the expression in the last line
of (3.28) vanishes. This completes the proof.

Example 3.36. Consider a mecanical system whose motion fulfills the Euler-Lagrange
equations corresponding to a C2 Lagrange function L(q, v) defined on the open set A×Rk ⊆
R2k, and assume L is invariant under translations ψ(q) = q + sv0 (see Example 3.34 b)).
Using that ψ′0(q) = v0 the integra of motion is

I(q, v) = ∇vL(q, v) · v0 ,

which is the component of the generalized momentum along v0. If v0 can be chosen
arbitrarily in some subspace of Rk this means that component of the generalized momentum
p(t) along this subspace is constant.
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3.5 Legendre transform in thermodynamics

The purpose of this section is to indicate briefly the use of the Legendre transform in
thermodynamics and statistical mechanics.

It is an important property of thermodynamic functions that they are either convex or
concave. As an example, the entropy S(U, V ) of a thermodynamic system is a monotone
increasing concave function of total energy U at fixed volume V . The inverse function
U(S, V ) which gives the total energy as a function of S and V is thus a convex function of
S (see Exercise 3.6). The negative of the Legendre transform of this function w. r. t. S is
called the free energy

F (T, V ) = −U∗(T, V ) = − sup
S

(TS − U(S, V )) = inf
S

(U(S, V )− TS).

The conjugate variable to S is called T , since it is indeed the temperature of the system.
The free energy is the amount of work that the system can perform in a thermodynamic
process at constant temperature. Not all the total energy U is available.

At the critical temperature of a phase transition the free energy may not be differen-
tiable. At a boiling point of a liquid, for example, the temperature does not change while
the liquid turns into vapor. Since, as we have seen in Example 1.26, the temperature is the
derivative of U w. r. t. S at constant V the entropy increases linearly with the total energy
during the phase transition. This is again reflected in a jump in the derivative of the free
energy, see Figure 3.5.

S1 S2

Tc

S

U

T

F=−U*

Slope −S1

Slope −S2

Figure 3.5: Tc is a critical temperature of a phase transition

The fact that the temperature and entropy are conjugate variables and that the free
energy and the total energy are related by a Legendre transformation is an expression of
what is called equivalence of ensembles.

We illustrate this for the ideal gas. In Section 1.5 we discussed the state defined by
the Maxwell-Boltzmann probability distribution. Being a probabilistic state, it should be
thought of as describing an ensemble of systems: observing one system at random from
the ensemble the probability of finding the particles in that system with certain positions
and momenta is determined by the Maxwell-Boltzmann distribution. The corresponding
ensemble is referred to as the canonical ensemble, and we recall that in the Maxwell-
Boltzmann distribution for N particles the states with momenta p1, . . . , pN have relative
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weight

exp

(
−
∑N

i=1
1
2‖pi‖

2

kBT

)
irrespective of the particle positions inside some finite volume V , assuming here that all
particles have mass 1.

A different emsemble, called the microcanonical ensemble is defined by attributing
equal weight to all states with total energy

∑N
i=1

1
2‖pi‖

2 less than some U . Here U is as
a free variable characterizing the distribution, whereas in the canonical ensemble it is the
temperature that occurs as a free variable in the distribution of states.

Although different, the two ensembles provide equivalent descriptions of the ideal gas
in the limit N →∞ and they are related by a Legendre transformation.

To understand this we must explain how the entropy and free energy are defined in
terms of the distributions. We introduce the partition functions for the two ensembles as
the normalization constants for the weights defining them, that is

Zcan(T, V,N) = (N !)−1V N

∫
exp

(
−
∑N

i=1
1
2‖pi‖

2

kBT

)
d3Np

Zmicro-can(U, V,N) = (N !)−1V N

∫
∑N
i=1

1
2
‖pi‖2<U

1 d3Np ,

where the factor (N !)−1 comes from treating the particles as indistinguishable. The free
energy and entropy are given by

FN (T, V ) = −kBT lnZcan(T, V,N), SN (U, V ) = kB lnZmicro-can(U, V,N). (3.29)

These two functions are not directly related by a Legendre transformation for finite values
of N . But the leading order term of FN (T, V ) as N → ∞ equals the Legendre transform
of the corresponding leading order term of U w. r. t. S for fixed V as demonstrated in
Exercise 3.27. This is a consequence of the probabilities in both cases concentrating on
states with a fixed total energy. Moreover the leading order terms of the entropy and
free energy coincide with the standard expressions as quoted in Exercise 3.26 (see also
Exercise 1.22).

Equivalence of the micro-canonical and canonical ensembles for more general systems
than the ideal gas can also be demonstrated, but this issue goes beyond the scope of these
notes.

Exercises

Exercise 3.1. Show that the intersection of two convex subsets of Rk is convex.

Exercise 3.2. Determine which of the following functions of one variable are convex on
their natural domain of definition:

x2,
1

1 + x2
, exp(x), ln(x),

√
1 + x2, |x− 2|
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Exercise 3.3. Show that the function

f(x) =

{
0, 0 6 x < 1
1, x = 1

defined on [0, 1] is convex and discontinuous.

Exercise 3.4. Let a ∈ R, b ∈ Rk, and let A be a positive semidefinite matrix. Show that
the function

f(x) = a+ 〈b, x〉+
1

2
〈x,Ax〉

is convex on Rk, and that it is strictly convex if A is positive definite.

Exercise 3.5. Show that a symmetric k× k-matrix A is positive semi-definite, resp. pos-
itive definite, if and only if all its eigenvalues are non-negative, resp. positive.
Hint. Show first, that if B is a regular k × k-matrix, then A is positive (semi-)definite if
and only if the same holds for BAB−1.

Exercise 3.6. Show that if f : I → R is a monotone, strictly increasing, and concave
function defined on an interval I ⊆ R, then f(I) is an interval and the inverse function
f−1 : f(I)→ R is convex.

Exercise 3.7. Let f : C → R be a convex function of k variables, let α1, . . . , αm > 0
be non-negative real numbers such that

∑m
i=1 αi = 1, and let x1, . . . , xm ∈ C. Show that

Jensen’s inequality

f

(
m∑
i=1

αixi

)
6

m∑
i=1

αif(xi) (3.30)

holds.
Hint. Note that for m = 2 Jensen’s inequality coincides with (3.1). Show first for general
m that the point

x0 = α1x1 + . . .+ αmxm (3.31)

belongs to C. This can be done by induction: For m = 3 one can rewrite

x0 = α1x2 + (1− α1)

(
α2

1− α1
x2 +

α3

1− α1
x3

)
,

assuming that α1 6= 1. Noting that the coefficients of the linear combination in parenthesis
are non-negative with sum 1, one concludes that the expression in parenthesis is in C and
hence that x0 ∈ C. A similar rewriting for m > 3 combined with induction proves that
x0 ∈ C in general, and can also be used to prove (3.30).

We note that a linear combination as in (3.31), with non-negative coefficients adding
up to 1, is called a convex combination. Geometrically, the convex combination x0 is the
average of the points x1, . . . , xm with corresponding weights α1, . . . , αm.

Exercise 3.8. Use Jensen’s inequality to show that the the arithmetic mean is bigger than
or equal to the geometric mean:

x1 + . . .+ xm
m

> (x1 · · ·xm)1/m for x1, . . . , xm > 0 .

Hint. Use that the exponential function ex is convex.
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Exercise 3.9. This exercise serves to show that a convex function f : C → R defined on
an open convex set C ⊂ Rk has supporting hyperplanes at all points in C, even when the
function does not have partial derivatives.

a) Show that for all x0 ∈ C and v ∈ Rk

µx0(v) = lim
t→0+

t−1(f(x0 + tv)− f(x0)) = inf
t>0

t−1(f(x0 + tv)− f(x0))

exists. Hint. Use the argument proving the existence of µ± in Theorem 3.13.

b) Show that µx0 from a) satisfies

µx0(sv) = sµx0(v) and µx0(v + w) 6 µx0(v) + µx0(w)

for all s > 0 and v, w ∈ Rk. Hint. For the last inequality use that f is convex.

c) Show that the graph of h(x) = f(x0) + p · (x− x0) is a supporting hyperplane for f
at x0 if and only if

µx0(v) > p · v

for all v ∈ Rk.

We shall use induction on the dimension k to show that f has a supporting hyperplane at
all points. The case k = 1 was treated in the proof of Theorem 3.13. We assume the result
holds in k − 1 dimensions. We want to prove it in dimension k. Thus we have p′ ∈ Rk−1

such that for all v′ ∈ Rk−1 we have µx0(v′) > p′ · v′. Let e be a unit vector in the k-th
coordinate direction.

d) Use this induction hypothesis and the second result from question b) to show that
for all v′, w′ ∈ Rk−1

p′ · v′ − µx0(v′ − e) 6 −p′ · w′ + µx0(w′ + e).

Use this together with the first property in (b) to show that we can choose pk ∈ R
such that

sup
v′∈Rk−1

(
p′ · v′ − µx0(v′ − se)

)
6 spk 6 inf

w′∈Rk−1

(
−p′ · w′ + µx0(w′ + se)

)
,

for all s > 0.

e) Use the result of (d) to conclude that

(p′ + pke) · (v′ + vke) 6 µx0(v′ + vke)

for all v′ ∈ Rk−1 and all vk ∈ R. Conclude that the graph of f(x0) + p · (x− x0) is a
supporting hyperplane for f at x0 if p = p′ + pke.

f) Use the construction of the supporting hyperplane in (e) to show that the hyperplane
is unique if and only if f has partial derivatives at x0.



Chap. 3 Hamiltonian Mechanics 82

Exercise 3.10. Show that the function

f(x) = a+ |x− b| , x ∈ R ,

is convex and find its Legendre transform. Here a and b are arbitrary real constants.

Exercise 3.11. Show that the function

f(x) = (|x|+ 1)2

defined on R is convex and determine its Legendre transform.

Exercise 3.12. Let f : D → R be a convex function of k variables and denote its Legendre
transform by f∗ : E → R. Moreover, let a ∈ R and b ∈ Rk be fixed and denote by D′ and
E′ the translated sets D′ = {p+ b | p ∈ D}, E′ = {p+ b | p ∈ E}.

a) Show that the Legendre transform of the function f1 : D → R defined by

f1(x) = a+ b · x+ f(x) , x ∈ D

has domain of definition E′ and is given by

f∗1 (p) = f∗(p− b)− a , p ∈ E′ .

b) Show that the Legendre transform of the function f2 : D′ → R defined by

f2(x) = f(x− b) , x ∈ D′

has domain of definition E and is given by

f∗2 (p) = b · p+ f∗(p) , p ∈ E .

Exercise 3.13. Determine the Legendre transform exp∗ of the exponential function exp
on R.

Exercise 3.14. Let f : Rn → R be the quadratic function defined by

f(x) =
1

2
xtAx , x ∈ Rn ,

where A is a symmetric, positive definite matrix.
Show that the Legendre transform f∗ of f is given by

f∗(p) =
1

2
ptA−1p , p ∈ Rn ,

either by using that f is a convex C2 function or by rewriting x · p− f(x) as the difference
of two quadratic expressions.
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Exercise 3.15. Show that if f is any function and x is in the domain of f and p is in the
domain of its Legendre transform then the inequality

x · p 6 f(x) + f∗(p)

holds. It is sometimes called Young’s inequality.
As an application, prove that for all x, y > 0 and all a, b > 1 with a−1 + b−1 = 1 we

have

xy 6
xa

a
+
yb

b
.

Exercise 3.16. Show that if A is a non-singular k×k-matrix and b ∈ Rk, then the function
f(x) = ‖Ax+ b‖2 is strictly convex on Rk. Calculate its Legendre transform.

Exercise 3.17. Consider the gravitational potential of two masses m1,m2 > 0 placed at
the points q1, q2 ∈ R3:

V (q1, q2) = −Gm1m2‖q1 − q2‖−1.

a) Write down the Lagrangian and the Hamiltonian for this two-body problem.

b) Write down Hamilton’s equations for the system.

Exercise 3.18. Let A : R3 → R3 be a C2 vector field. We consider the magnetic field
B : R3 → R3 that has A as its vector potential, that is B = ∇×A. The Lagrangian for a
particle of mass m > 0 and charge e moving in this magnetic field is

L(q, v) =
1

2
mv2 + eA(q) · v.

Find the corresponding Hamiltonian and write down Hamilton’s equations.

Exercise 3.19. Consider two particles of masses m1,m2 > 0 at positions q1, q2 ∈ R3 and
with velocities v1, v2 ∈ R3, whose motion is determined by the Euler-Lagrange equations
for the Lagrangian

L(q1, q2, v1, v2) =
1

2
m1v

2
1 +

1

2
m2v

2
2 − V (q2 − q1),

where V is a C2 function on R3.

a) Argue that the center of mass

Q =
m1q1 +m2q2

m1 +m2

is a point between q1 and q2.

b) Define the coordinate transformation ψ with inverse

ψ−1(q1, q2) = (Q, q2 − q1)

Determine ψ.

c) Find the Lagrangian in the new coordinates (Q, q) where q = q2 − q1.
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d) Find the Hamiltonian in the new coordinates.

Exercise 3.20. Let A(t) be a k×k-matrix whose entries are C1 functions of time t. Show
that if A(0) = I, then (

d

dt
detA

)
(0) = TrA′(0).

Exercise 3.21. Prove that the linear transformation in Example 3.34 a) is really a sym-
metry of the given system.

Exercise 3.22. Verify the claim in Example 3.34 b).

Exercise 3.23. Consider a 2-dimensional system with Lagrangian

L(q, v) =
1

2
mv2 − V (‖q‖)

where m > 0 and V : [0,∞)→ R is a C2 function.

a) Show that

ψs(x, y) = (cos(s)x− sin(s)y, sin(s)x+ cos(s)y), x, y, s ∈ R

defines a C2 family of symmetries of the system.

b) Determine the integral of the motion I corresponding to this continuous symmetry
according to Noether’s Theorem.

Exercise 3.24. Consider a single particle in a conservative force field whose corresponding
potential V (x) is rotationally invariant, i. e., it depends on ‖x‖ only.

a) Write down the Lagrange function in spherical coordinates. (One may use Exer-
cise 2.18 for this purpose.)

b) Determine the Hamilton function in spherical coordinates, find the cyclic coordinates
and the corresponding conserved generalized momenta.

Exercise 3.25. Consider 3 particles with massesm1,m2,m3 > 0 at positions q1, q2, q3 ∈ R3

in an inertial system and interacting through a conservative force given by the potential

(q1, q2, q3) 7→ V (q1 − q2) + V (q1 − q3) + V (q2 − q3),

where V : R3 → R is a C2-function.

a) Write down the Lagrange function and show that ψ : R9 × R→ R9 given by

ψs(q1, q2, q3) = (q1 + (s, 0, 0), q2 + (s, 0, 0), q3 + (s, 0, 0))

for s ∈ R defines a C2 family of symmetries of the problem.

b) Determine the integral of the motion given by Noether’s Theorem.
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Exercise 3.26. The entropy of an ideal gas of N particles, total energy U > 0, and volume
V > 0, is

S(U, V ) = NkB ln
(
C0(V/N)(U/N)3/2

)
,

where kB is Boltzmann’s constant and C0 > 0 is some constant. We assume N is kept
fixed in this problem.

a) Determine the temperature T (U) and pressure P (U, V ) such that

T (U)dS = dU + P (U, V )dV.

b) Determine the inverse function U(S, V ) of U 7→ S(U, V ) and show that U(S, V ) is
monotone increasing and convex as a function of S.

c) Determine the free energy F (T, V ) of the ideal gas defined as the Legendre transform
of S 7→ U(S, V ).

Exercise 3.27. This exercise serves to illustrate the equivalence of ensembles for the ideal
gas.

a) If f : [0,∞)→ R is a continuous function then using polar coordinates in all dimen-
sions we obtain the formula∫

Rn
f(‖x‖)dnx = ωn

∫ ∞
0

f(r)rn−1dr

for some constant ωn. Using that∫
Rn
e−‖x‖

2
dnx =

(∫ ∞
−∞

e−t
2
dt

)n
= πn/2

show that ωn = 2πn/2Γ(n/2)−1, where the Gamma function is given by Γ(u) =∫∞
0 e−uun−1. Check the formula in the case n = 2. Recall that Γ(n) = (n − 1)! for

integer n.

b) Use the result of the previous question to calculate the free energy and entropy in
(3.29).

c) Using the approximation in Stirling’s formula limu→∞ u
−1(Γ(u)− (u ln(u)− u)) = 1

we replace Γ(u) by u ln(u)−u in the formula for the entropy above (also replace lnN !
by N lnN −N). Show that in this approximation the formula agrees with what was
found in Exercise 1.20.

d) Show that in the large particle number approximation used in the previous question
the Legendre transform of the total energy U(S, V ) as a function of entropy S is
−F (T, V ) (minus the free energy) as a function of temperature T .

e) (Difficult) Show that this is a consequence of the probabilities in both cases concen-
trating on the set of states where the total energy is exactly U for the micro-canonical
ensemble and 3

2NkBT for the canonical ensemble.



Chapter 4

Hilbert Spaces

In the present chapter and the next the mathematical apparatus necessary for a proper
discussion of quantum mechanics in Chapter 6 will be developed. The notion of Hilbert
space turns out to be the right concept encompassing the structural properties of the state
spaces of quantum mechanical systems, of which the so-called superposition principle may
be the most prominent feature. Our goal in this chapter is to introduce the fundamental
tools of Hilbert space theory. Although some of the examples and exercises are motivated
by physical applications later on, the content is mainly mathematical and can be viewed
as a further developement of the theory of inner product spaces known from linear algebra
to the case of infinite dimensional vector spaces.

4.1 Inner product spaces

In the following both complex and real vector spaces will be treated. With L denoting
either R or C let us recall that a vector space over L is a set E equipped with addition and
scalar multiplication, which are maps (x, y) → x + y from E × E to E and (λ, x) → λx
from L× E to E, respectively, satisfying the well known vector space axioms.

Examples of real vector spaces are known from linear algebra: they include Rk and the
space F(M,R) of real functions defined on a set M with pointwise addition and multipli-
cation by real numbers. Similarly, Ck and the set F(M,C) of complex valued functions
on a set M with pointwise addition and multiplication by complex numbers are complex
vector spaces. If M is a subset of Rk then the set C(M,C) of continuous functions is a
subspace of F(M,C), since the of two continuous functions is a continuous function and
multiplication of a continuous function by a number is also a continuous function. Other
interesting examples of subspaces of F(M,C) will be encountered in the following.

We turn to the definition of inner product spaces.

Definition 4.1. Let E be a vector space over L (= R or C). An inner product, also
called a scalar product, on E is a map 〈 · | · 〉 : E × E → L, satisfying the following
conditions (where 0 denotes the null-vector in E):

86
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i) 〈x|x 〉 > 0 for all x ∈ E \ {0}

ii) 〈x|y 〉 = 〈 y|x 〉,for all x, y ∈ E

iii) 〈x+ y|z 〉 = 〈x|z 〉+ 〈 y|z 〉, for all x, y, z ∈ E

iv) 〈x|λy 〉 = λ〈x|y 〉 for all λ ∈ L and x, y ∈ E

If 〈 · | · 〉 is an inner product on E the pair (E, 〈 · | · 〉) is called an inner product space.

Note that 〈x|x 〉 > 0 in i) means that 〈x|x 〉 is a real positive number. In the case
L = R, complex conjugation in ii) is of course superfluous.

The last two conditions above express that the map y → 〈x|y 〉 from E into L is linear
for each fixed x ∈ E. Combining this with ii) it follows that

〈x+ y|z 〉 = 〈x|z 〉+ 〈 y|z 〉 and 〈λx|y 〉 = λ〈x|y 〉 (4.1)

for all x, y, z ∈ E and λ ∈ L. This is expressed by saying that the inner product is conjugate
linear in the first variable. In the case L = C a map from E×E → C, which is linear in the
second variable and conjugate linear in the first variable is often said to be a sesqui-linear
form on E. Thus we have seen that an inner product on a complex vector space E is
a sesquilinear form on E. Conversely, any sesqui-linear form, satisfying the property i),
which is referred to as saying that the form is positive definite, is an inner product. To
show this it only remains to show that ii) is satisfied. Note first that by the linearity in
the second variable

〈x | 0 〉 = 0 for all x ∈ E .

In particular, it follows that 〈 0|0) = 0 and thus i) implies

〈x|x 〉 = 0⇔ x = 0 , x ∈ E . (4.2)

Together with i) this shows that 〈x|x 〉 ∈ R for all x ∈ E. Applying

〈x+ y|x+ y 〉 = 〈x|x 〉+ 〈 y|y 〉+ 〈x|y 〉+ 〈 y|x 〉

it then follows that 〈x|y 〉 + 〈 y|x 〉 ∈ R, which shows that Im〈x|y 〉 = −Im〈 y|x 〉 for all
x, y ∈ E. Replacing x by ix and using the sesqui-linearity we find i〈x|y 〉 − i〈 y|x 〉 ∈ R,
and consequently Re〈x|y 〉 = Re〈 y|x 〉. Hence, ii) holds as claimed.

Given an inner product the norm ‖x‖ of x ∈ E is defined by

‖x‖ =
√
〈x|x 〉 .

From i) above it follows that
‖x‖ > 0 for x 6= 0 , (4.3)

and from iv) and (4.1) follows that

‖λx‖2 = 〈λx|λx 〉 = λλ〈x|x 〉 = |λ|2‖x‖2 ,

that is
‖λx‖ = |λ|‖x‖ . (4.4)
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Below, as a consequence of the Cauchy-Schwarz’ inequality in Theorem 4.10 we will show
the triangle inequality

‖x+ y‖ 6 ‖x‖+ ‖y‖ , x, y ∈ E . (4.5)

Hence, the norm ‖ · ‖ defined here actually satisfies the conditions i)–iii) characterizing
a norm as discussed in Section 2.1. In particular, it defines a natural distance between
vectors x, y in E by

d(x, y) = ‖x− y‖ . (4.6)

Of special importance in what follows is that the norm defines a notion of convergence of
sequences in E:

Definition 4.2. Let (xn)n∈N be a sequence in an inner product space E, that is a function
from N into E whose value at n ∈ N is denoted by xn. We say that the sequence is
convergent with limit x ∈ E, and write xn → x for n→∞ or limn→∞ xn = x, if

‖xn − x‖ → 0 for n→∞ .

In addition, the important notion of a Cauchy sequence will be needed.

Definition 4.3. A sequence (xn)n∈N in an inner product space E is called a Cauchy
sequence, if for all ε > 0 there is an N ∈ N such that

‖xn − xm‖ < ε for all n,m > N ,

(which is sometimes written as ‖xn − xm‖ → 0 as n,m→∞).

The proof of the following result relies only on the triangle inequality and is deferred
to Exercise 4.1.

Proposition 4.4. Every convergent sequence in an inner product space E is a Cauchy
sequence.

Hilbert spaces are inner product spaces for which the converse holds:

Definition 4.5. If every Cauchy sequence in an inner product space E is convergent then
E is called a complete inner product space or a Hilbert space.

As is well known and easy to verify, the set of real numbers R with usual addition and
multiplication of numbers is a real vector space. In fact, it is also easily seen that standard
multiplication also furnishes an inner product on R and that the distance between two
real numbers x and y w. r. t. this inner product is the usual distance |x − y|. It is a
fundamental property of the real numbers that the resulting inner product space is also
complete. Indeed, this property turns out to be equivalent to the so-called supremum
property stating that every non-empty set of real numbers with an upper bound has a
supremum, i. e., a least upper bound. We have made use of this property previously in these
notes and will take it for granted as a defining property of the real numbers distinguishing
them from the rational numbers. Hence R is a Hilbert space. As will be seen, this prime
example of a Hilbert space serves as a building block for other Hilbert spaces. Among these
we have already in Chapter 1 encountered Rk with standard inner product 〈x|y 〉 = x · y.
In the next example we discuss Rk and its complex analogue Ck in some more detail as
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examples of finite dimensional Hilbert spaces. Later in this section it will be shown that
all finite dimensional inner product spaces are complete. Important instances of infinite
dimensional inner product spaces that are not Hilbert spaces are likewise provided in the
following example.

Example 4.6.

a) The canonical inner product on Rk is assumed to be familiar to the reader from linear
algebra, and is given by

〈x|y 〉 = x1y1 + . . .+ xkyk (4.7)

for x = (x1, . . . , xk), y = (y1, . . . , yk) ∈ Rk. Evidently, the right hand side of (4.7)
is symmetric in x and y and is linear in each variable. Moreover, since 〈x|x 〉 =
x2

1 + · · · + x2
k is is clear that 〈x|x 〉 = 0 if and only if x = 0. Hence 〈 ·|· 〉 is an inner

product on Rk in the sense of Definition 4.1 and the corresponding distance is the
standard Euclidean distance given by

‖x− y‖ =
√

(x1 − y1)2 + . . .+ (xk − yk)2 .

In Exercise 4.2 it is shown that Rk is complete and hence a Hilbert space, as a
consequence of the fact that R is complete.

b) It is straight-forward to verify that Ck is a complex vector space with addition and
multiplication by (complex) scalars defined by

x+ y = (x1 + y1, . . . , xk + yk) , λx = (λx1, . . . , λxk)

for x = (x1, . . . , xk), y = (y1, . . . , yk) ∈ Ck , λ ∈ C. The canonical inner product on
Ck is defined by

〈x|y 〉 = x1y1 + . . .+ xkyk .

It is left as an exercise for he reader to show that the requirements i) – iv) in Def-
inition 4.1 are fulfilled and we refer to Exercise 4.2 for a proof that Ck is complete
w. r. t. this inner product.

c) On the vector space C([a, b]) of continuous complex functions on the interval [a, b] a
standard inner product is defined by

〈 f |g 〉 =

∫ b

a
f(x)g(x)dx (4.8)

for f, g ∈ C([a, b]). More generally, for any positive continuous function ρ defined on
[a, b] an inner product 〈 · | · 〉ρ is defined by

〈 f |g 〉ρ =

∫ b

a
f(x)g(x)ρ(x)dx . (4.9)

The reader should recall that the integral of a continuous complex function is obtained
by integrating the real an imaginary part, that is if f = Ref + iImf then∫ b

a
f(x)dx =

∫ b

a
Ref(x)dx+ i

∫ b

a
Imf(x)dx . (4.10)
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Then f →
∫ b
a f(x)dx defines a linear map from C([a, b]) into C, which immediately

implies that 〈 · | · 〉ρ satisfies iii) and iv) in Definition 4.1. Property ii) follows from∫ b

a
f(x)dx =

∫ b

a
f(x)dx .

Finally, i) is a consequence of the fact that if f is continuous and f ≥ 0 then∫ b
a f(x)dx = 0 if and only if f = 0, which follows by an argument similar to (but

simpler than) the one given in the proof of Lemma 2.11.

Note that if ρ and ρ denote the maximum and the minimum of the positive continuous
function ρ on [a, b] such that 0 < ρ 6 ρ 6 ρ < +∞, then

ρ‖f‖ 6 ‖f‖ρ 6 ρ‖f‖

for f ∈ C([a, b]), where ‖ · ‖ and ‖ · ‖ρ are the norms corresponding to the inner
products (4.8) and (4.9), respectively.

d) Let `0(N) denote the set of complex sequences (xn)n∈N that vanish from a certain
step, that is sequences having only a finite number of elements different from 0. The
set `0(N) is then a subspace of the vector space of all complex sequences, which with
our previous notation is the space F(N,C). On `0(N) we define an inner product by

〈 (xn)|(yn) 〉 =
∞∑
n=1

xnyn , (4.11)

where the sum on the right has only finitely many terms different from 0 (and thus
obviously is convergent). That this defines an inner product on `0(N) is seen as in
the case of Ck.

4.2 Orthogonality

Let now (E, 〈 · | · 〉) be an inner product space. Two vectors x, y ∈ E are called orthogonal,
also written x⊥y, if 〈x|y 〉 = 0. More generally, a vector x ∈ E is orthogonal to a subset
A ⊆ E, also denoted x⊥A, if x is orthogonal to all vectors in A, and for two subsets A,B
of E the notation A⊥B means that all vectors in A are orthogonal to all vectors in B, in
which case A and B are called orthogonal.

The orthogonal complement A⊥ of A is defined to be the set of all vectors orthogonal
to A, that is

A⊥ = {x ∈ E | 〈x|y 〉 = 0 for all y ∈ A} . (4.12)

We note that by iii) and iv) in Definition 4.1 A⊥ is a subspace of E for any subset A ⊆ E.
For the same reason

A⊥ = (spanA)⊥ . (4.13)

Here spanA is the subspace of E consisting of all linear combinations of vectors from A.
A family (xi)i∈I of vectors from E, where I is any index set, is said to be an orthogonal

family, if the vectors in the family are pairwise orthogonal, that is if 〈xi|xj 〉 = 0, whenever
i 6= j. If, moreover, ‖xi‖ = 1 for all i ∈ I we say that the family is orthonormal.
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A family (xi)i∈I of vectors from E is said to be linearly independent if any finite subset
of (xi)i∈I is linearly independent.

Lemma 4.7. Let (xi)i∈I be an orthogonal family in E, such that xi 6= 0 for all i ∈ I. Then
(xi)i∈I is a linearly independent family.

Proof. Let (xi1 , . . . , xin) be a finite subfamily of (xi)i∈I and assume that λ1, . . . , λn ∈ L
satisfy λ1xi1 + . . .+λnxin = 0. Calculating the inner product of both sides of this equation
with xij we arrive at

λ1〈xij |xi1 〉+ . . .+ λn〈xij |xin 〉 = 0 .

Using that 〈xij |xik 〉 = 0 for k 6= j this gives λj〈xij , xik 〉 = 0. Hence λj = 0 because
〈xij |xij 〉 6= 0, since xij 6= 0. Since this holds for each j = 1, . . . , n, the proof is complete.

The following generalization of Pythagoras’ theorem will be used repeatedly below.

Theorem 4.8. Let (x1, . . . , xn) be a finite orthogonal family. Then

‖
n∑
i=1

xi‖2 =

n∑
i=1

‖xi‖2 .

Proof. We have

‖
n∑
i=1

xi‖2 =

〈
n∑
i=1

xi

∣∣∣ n∑
j=1

xj

〉
=

n∑
i,j=1

〈xi|xj 〉

=
n∑
i=1

〈xi|xi 〉 =
n∑
i=1

‖xi‖2 ,

where the third equality is due to the fact that only the diagonal terms corresponding to
i = j contribute to the sum by the orthogonality assumption.

The next theorem is also well known from elementary linear algebra.

Theorem 4.9. Let (e1, . . . , en) be a finite orthonormal family in E. For all vectors x ∈ E
there is a unique vector u ∈ span{e1, . . . , en} such that

x− u ∈ {e1, . . . , en}⊥.

It is given by

u =

n∑
i=1

〈 ei|x 〉ei . (4.14)

and may be characterized as the unique vector in span{e1, . . . , en} with the shortest distance
to x wrt. the norm ‖·‖. The vector u given by (4.14) is called the orthogonal projection
of x on the subspace span{e1, . . . , en}.

Moreover, Bessel’s inequality

n∑
i=1

|〈 ei|x 〉|2 ≤ ‖x‖2 (4.15)

holds for all x ∈ E.
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Proof. All vectors u ∈ span{e1, . . . , en} can be written in the form u = λ1e1 + . . .+ λnen,
where λ1, . . . , λn ∈ L. Calculating the inner product with ei on both sides of this equation
we arrive at 〈 ei|u 〉 = λi〈 ei|ei 〉 = λi since 〈 ei|ei 〉 = 1. Hence

u =
n∑
i=1

〈 ei|u 〉ei (4.16)

for u ∈ span{e1, . . . , en}. But x− u ∈ {e1, . . . , en}⊥ is equivalent to 〈x− u|ei 〉 = 0 for all
i = 1, . . . , n. Thus 〈x|ei 〉 = 〈u|ei 〉 for i = 1, . . . , n . Together with (4.16) this gives the
first part of the theorem.

If v ∈ span{e1, . . . , en} then x− v = (x− u) + (u− v) where (x− u)⊥(u− v). Thus

‖x− v‖2 = ‖x− u‖2 + ‖u− v‖2 ≥ ‖x− u‖2 ,

with equality if and only if u = v.
Bessel’s inequality follows from Theorem 4.8 if we note that x = u + (x − u) where

u⊥(x− u), since then

‖x‖2 = ‖u‖2 + ‖x− u‖2 ≥ ‖u‖2 =
n∑
i=1

|〈 ei|x 〉|2 .

In the last step we have used that ‖〈x|ei 〉ei‖2 = |〈x|ei 〉|2 .

From Bessel’s inequality we may now derive the Cauchy-Schwarz inequality:

Theorem 4.10. If E is an inner product space then for all x, y ∈ E we have

|〈x|y 〉| ≤ ‖x‖ ‖y‖. (4.17)

Proof. If y = 0 then both sides of the inequality are zero. If y 6= 0 then ‖ 1
‖y‖y‖ = 1 and it

follows from (4.15) with n = 1 and e1 = 1
‖y‖y that

∣∣ 〈x ∣∣∣ 1

‖y‖
y

〉 ∣∣∣ ≤ ‖x‖ ,
from which (4.17) follows after multiplication by ‖y‖ on both sides.

As the final result of this section we derive the triangle inequality (4.5) from Cauchy-
Schwarz’ inequality:

‖x+ y‖2 = 〈x+ y|x+ y 〉 = ‖x‖2 + 〈x|y 〉+ 〈 y|x 〉+ ‖y‖2

= ‖x‖2 + 2Re〈x|y 〉+ ‖y‖2

≤ ‖x‖2 + 2|〈x|y 〉|+ ‖y‖2

≤ ‖x‖2 + 2‖x‖ ‖y‖+ ‖y‖2

= (‖x‖+ ‖y‖)2 .



Chap. 4 Hilbert Spaces 93

4.3 Continuity of the inner product

In the following we will repeatedly make use of the fact that the inner product 〈 · , · 〉 :
E × E → L is continuous. This is seen as follows. Let x0, y0 ∈ E be given and choose
x, y ∈ E such that ‖x− x0‖ ≤ δ and ‖y − y0‖ ≤ δ where δ > 0 is given. Then

|〈x|y 〉 − 〈x0|y0 〉| = |〈x|y − y0 〉+ 〈x− x0|y0 〉|
≤ |〈x|y − y0 〉|+ |〈x− x0|y0 〉|
≤ ‖x‖ ‖y − y0‖+ ‖x− x0‖ ‖y0‖
≤ δ(‖x‖+ ‖y0‖)
≤ δ(‖x0‖+ δ + ‖y0‖) . (4.18)

Here we have used the Cauchy-Schwarz inequality and that ‖x‖ = ‖(x − x0) + x0‖ ≤
‖x− x0‖+ ‖x0‖ ≤ ‖x0‖+ δ.

Since the last expression in (4.18) tends to 0 as δ → 0 we conclude that for all ε > 0
there is a δ > 0 such that |〈x|y 〉 − 〈x0|y0 〉| < ε if ‖x− x0‖ ≤ δ and ‖y − y0‖ ≤ δ. This is
exactly the definition of continuity of the inner product at (x0, y0).

The continuity may equivalently be stated as saying that for all sequences (xn) and
(yn) in E we have that

〈xn|yn 〉 → 〈x0|y0 〉 as n→∞ , (4.19)

if xn → x0 and yn → y0 as n→∞.

Definition 4.11. A series
∞∑
n=1

xn with terms in a vector space E equipped with a norm is

said to be convergent, if the sequence of partial sums (sk)k∈N defined by

sk =

k∑
n=1

xn (4.20)

is convergent in E as k →∞. The limit limk→∞ sk is then called the sum of the series and

is also denoted by
∞∑
n=1

xn.

From (4.19) and iii) in Definition 4.1 it follows that〈 ∞∑
n=1

xn

∣∣∣ y〉 =

〈
lim
k→∞

k∑
n=1

xn

∣∣∣ y〉 = lim
k→∞

k∑
n=1

〈xn|y 〉 =

∞∑
n=1

〈xn|y 〉 (4.21)

and likewise that 〈
y
∣∣∣ ∞∑
n=1

xn

〉
=

∞∑
n=1

〈 y|xn〉 (4.22)

for any convergent series
∞∑
n=1

xn in E and all y ∈ E.

Another consequence of the continuity of the inner product is that A⊥ = (A)⊥ for any
subset A ⊆ E. Here A denotes the closure of the set A, that is the set of all limit points
of sequences in A. In fact, if x ∈ A⊥ and y ∈ A there is a sequence (yn) in A such that
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y = limn→∞ yn, and so we conclude that 〈x | y 〉 = limn→∞〈x | yn 〉 = 0, which shows that
x⊥y. Since y ∈ A was arbitrary we have shown that A⊥ ⊆ (A)⊥. The opposite inclusion
follows immediately from A ⊆ A. Together with (4.13) this implies that

A⊥ = (spanA)⊥ = (spanA)⊥ . (4.23)

We call spanA the closed subspace spanned by A and will denote it by spanA.
Similarly, it it seen in Exercise 4.11 that A⊥ is a closed subspace of E for any subset

A ⊆ E (that is to say A⊥ = A⊥).

4.4 Hilbert spaces

It is well known from linear algebra that any finite dimensional inner product space E
has orthonormal bases. If we let (e1, . . . , en) denote such a basis. If x ∈ E we denote by
x = (x1, . . . , xn) ∈ Ln the coordinates of x w. r. t. this basis such that

x = x1e1 + . . .+ xnen .

According to Pythagoras’ Theorem 4.8 we have

‖x‖ = (|x1|2 + . . .+ |xn|2)1/2 .

It follows that the map (x1, . . . , xn) 7→ x1e1 + . . .+ xnen is a linear isometry from Ln onto
E and the inverse map is x 7→ ((x, e1), . . . , (x, en)). Since the vector space Ln is known to
be complete w. r. t. the standard norm, we conclude that E is also complete. Thus we have
seen that any finite dimensional inner product space is a Hilbert space.

For general Hilbert spaces we will see that the completeness requirement ensures that
several key properties of finite dimensional inner product spaces generalize to the infinite
dimensional case.

We shall first consider two important examples of infinite dimensional Hilbert spaces.

Example 4.12.

a) The space `0(N) defined in Example 4.6 d) is not complete. In fact, let

xn = (1, 1
2 ,

1
3 , . . . ,

1
n , 0, 0, . . . )

for n ∈ N. Then xn ∈ `0(N) and

‖xn − xm‖2 =

n∑
k=m+1

1

k2
if m ≤ n ,

and since the series
∞∑
k=1

1
k2

is convergent it follows that the sequence (xn)n∈N is a

Cauchy sequence in `0(N). The sequence (xn)n∈N is, however, obviously not conver-
gent in `0(N). Thus `0(N) is not a Hilbert space.
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Let us instead consider the larger subspace `2(N) of F(N,C) consisting of sequences
of complex numbers (xn)n∈N that are square summable in the sense that

∞∑
n=1

|xn|2 < +∞ .

That `2(N) is a subspace of F(N,C) is seen as follows. Let (xn) and (yn) be two
sequences in `2(N) and recall the well-known inequality |a + b|2 ≤ 2(|a|2 + |b|2) for
complex numbers a, b (which is actually Cauchy-Schwarz’ inequality for the vectors
(1, 1) and (a, b) in C2). This gives

∞∑
n=1

|xn + yn|2 ≤ 2

∞∑
n=1

|xn|2 + 2

∞∑
n=1

|yn|2 < +∞ ,

and thus (xn) + (yn) ∈ `2(N). Since we also have λ(xn) = (λxn) ∈ `2(N) if λ ∈ C
it follows that `2(N) is a subspace of F(N,C). Furthermore, the inequality |ab| ≤
1
2(|a|2 + |b|2) for a, b ∈ C implies

∞∑
n=1

|xnyn| 6
1

2

∞∑
n=1

(|xn|2 + |yn|2) <∞ ,

such that

〈 (xn) | (yn) 〉 =
∞∑
n=1

xnyn

is well defined for all (xn), (yn) in `2(N), since the series above is absolutely convergent
(see the definition of absolute convergence in Exercise 4.12). It is now clear that this
provides an extension of the inner product (4.11) on `0(N) to an inner product on
`2(N) which will be called the canonical inner product on `2(N).

It will now be shown that `2(N) with this inner product is a Hilbert space. Thus
assume that (xn)n∈N is a Cauchy sequence in `2(N) and write xn = (xn1 , x

n
2 , . . . ). For

every k ∈ N the inequality |xnk − xmk | ≤ ‖xn − xm‖ clearly holds and implies that
the sequence (xnk)n∈N is a Cauchy sequence in C. Since C is complete it follows that
this sequence converges to a limit xk ∈ C. Setting x = (x1, x2, . . . ), we claim that
x ∈ `2(N) and that xn → x as n→∞.

In order to prove the claim, let ε > 0 and choose N ∈ N such that

K∑
k=1

|xnk − xmk |2 ≤
∞∑
k=1

|xnk − xmk |2 = ‖xn − xm‖2 ≤ ε2

for all n,m ≥ N and all K ∈ N. Taking the limit m→∞ of the first sum then yields
K∑
k=1

|xnk − xk|2 ≤ ε2 for n ≥ N and all K ∈ N, and consequently

‖xn − x‖2 =
∞∑
k=1

|xnk − xk|2 ≤ ε2

for n ≥ N . This shows that xN−x ∈ `2(N) and hence that x = xN−(xN−x) ∈ `2(N),
and also that xn → x as n→∞ as claimed.
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b) The space C([a, b]) with standard inner product (4.8) is not complete as we shall now
discuss. The norm on this space is given by

‖f‖2ρ =

∫ b

a
|f(x)|2ρ(x)dx .

Let fn denote the function on [0, 2] which is equal to 0 on [0, 1], grows linearly from
0 to 1 on [1, 1 + 1

n ] and is equal to 1 on [1 + 1
n , 2] (draw the graph!), It is easy to see

that (fn) is a Cauchy sequence in C([0, 2]) w. r. t. the norm ‖ · ‖, but that it is not
convergent in C([0, 2]).

As in the discussion of `0 the space C([a, b]) can also be extended to a Hilbert space
L2([a, b]) consisting of square integrable functions on [a, b], that is to say functions
f : [a, b]→ C such that ∫ b

a
|f(x)|2 dx <∞ .

Here, the integral refers to a generalization of the Riemann integral, called the
Lebesgue integral. This also entails a generalization of what is meant by functions
or rather what is meant by two functions being equal. The details of this is beyond
the scope of these notes. Only the following three facts will be needed below:

i) Two functions f and g in L2([a, b]) are considered to be equal if∫ b

a
|f(x)− g(x)|2 dx = 0 ,

and this is expressed by saying that f is equal to g almost everywhere on [a, b], or
that f(x) = g(x) for almost all x ∈ [a, b]. This is, in particular, true for any two
functions that differ at only finitely many points of the interval. This strictly speaking
means that L2([a, b]) is not a space of functions, but of classes of functions that agree
almost everywhere. The proof that L2([a, b]) is a vector space with inner product
given by (4.8) can now be completed as for `2(N) above. That L2([a, b]) is a Hilbert
space is one of the fundamental results in measure theory known as the Riesz-Fischer
Theorem.

ii) L2([a, b]) is a minimal extension of C([a, b]) in the sense that the closure (C([a, b])
in L2([a, b]) is equal to all of L2([a, b]). This is also expressed by saying that C([a, b])
is dense in L2([a, b]), because it means that every f ∈ L2([a, b]) can be approximated
arbitrarily well by elements in C([a, b]).

iii) In contrast to the Riemann integral the Lebesgue integral is defined on an arbi-
trary interval I ⊆ R and for continuous positive functions it agrees with the improper
Riemann integral. Thus, the Hilbert space L2(I) can be defined for all intervals I,
including the real axis R. Note, however, that if I is an infinite interval or if it is not
closed, then L2(I) does not contain all continuous functions. Instead it holds that the
subspace C0(R) consisting of all continuous functions vanishing outside a closed and
bounded subinterval of I is contained as a dense subspace in L2(I). In Section 5.5
it will used that the same holds for the subspace C∞0 (R) consisting of C∞ functions
vanishing outside a closed and bounded subinterval of I.
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Finally, we also remark that for an arbitrary positive continuous weight function ρ on
[a, b] the space C([a, b]) with inner product (4.9) can be extended to a Hilbert space
L2([a, b], ρ), and more generally a Hilbert space L2(I, ρ) with inner product

〈 f |g 〉 =

∫
I
f(x)g(x)dx

is defined for any interval I and any continuous positive weight function ρ on I.

For more details on measure theory and Lebesgue integration the interested reader
may consult [11] or volume I of [13].

In the following H will denote a Hilbert space with inner product 〈 · | · 〉. Any subspace
X of H is an inner product space with the inner product defined as the restriction of 〈 · | · 〉
to X ×X. Then X ⊆ H is a Hilbert space if and only if X is a closed subspace of H, that
is if X = X (see Exercise 4.13). In particular, all finite-dimensional subspaces of H are
closed.

We shall make use of the following extension of Pythagoras’ theorem to infinite orthog-
onal sets.

Theorem 4.13. Let (xi)i∈N be an orthogonal family in a Hilbert space H. Then
∞∑
i=1

xi is

convergent in H if and only if
∞∑
i=1

‖xi‖2 < +∞ ,

and

‖
∞∑
i=1

xi‖2 =
∞∑
i=1

‖xi‖2 . (4.24)

Proof. Since H is a Hilbert space
∞∑
i=1

xi is convergent in H if and only if the sequence of

partial sums (sn) is a Cauchy sequence. This means that for all ε > 0 there is an N ∈ N
such that

‖sn − sm‖2 = ‖
n∑

i=m+1

xi‖2 =

n∑
i=m+1

‖xi‖2 ≤ ε2 (4.25)

for all n > m ≥ N where we have used Theorem 4.8. Since R is also complete we have on
the other hand that

∑∞
i=1 ‖xi‖2 is convergent if and only if the sequence (rn) given by

rn =

n∑
i=1

‖xi‖2

is a Cauchy sequence in R. This means that for all ε > 0 there is an N ∈ N such that

|rn − rm| =
n∑

i=m+1

‖xi‖2 < ε2 (4.26)

for all n > m ≥ N . The first claim in the theorem follows by comparing (4.25) and (4.26).
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Finally, the continuity of x 7→ ‖x‖ and Theorem 4.8 imply

‖
∞∑
i=1

xi‖2 = ‖ lim
n→∞

n∑
i=1

xi‖2 = lim
n→∞

‖
n∑
i=1

xi‖2 = lim
n→∞

n∑
i=1

‖xi‖2 =
∞∑
i=1

‖xi‖2 ,

which shows that (4.24) holds.

In order to extend the notion of orthonormal basis to the infinite dimensional case,
recall first that an orthonormal basis in a finite dimensional inner product space H can
be characterized as an orthonormal family that spans H. If H is infinite dimensional it
is instead required that an orthonormal basis spans a dense subspace, that is a subspace
whose closure equals the whole of H. Since, as noted above, any finite dimensional subspace
of an inner product space is closed, the two requirements coincide for finite dimensional
spaces and the following definition of an orthonormal basis is, indeed, an extension of the
finite dimensional version.

Definition 4.14. An orthonormal basis for A Hilbert space H is an orthonormal family
(ei)i∈I in H such that span{ei | i ∈ I} = H .

It should be emphasized that for infinite dimensional vector spaces this notion of or-
thonormal basis is different from the purely algebraic notion of a basis, where it is required
that the basis spans the whole vector space.

Since H⊥ = {0} it follows from (4.23) that

{ei | i ∈ I}⊥ = {0} ,

for any orthonormal basis (ei)i∈I for H. This means any orthonormal basis is a maximal
orthonormal family in H in the sense that there is no vector e ∈ H with ‖e‖ = 1, such
that e together with (ei)i∈I is an orthonormal family. The converse that any maximal
orthonormal family in H is an orthonormal basis will be shown in Theorem 4.16 below.

Note that the definition of orthonormal basis implies that any orthonormal family
(ei)i∈I is an orthonormal basis for span{ei | i ∈ I}.

Any Hilbert space has an orthonormal basis. This claim, however, relies on what is
known as the axiom of choice, which will not be discuss here. In the following we shall
restrict attention to Hilbert spaces that have an orthonormal basis which is either finite or
countable, where countable means that the basis vectors can be labeled by natural numbers
(or equivalently by integers). Such Hilbert spaces are called separable.

It is known from elementary linear algebra that in finite dimensional vector spaces
all bases have the same number of elements equal to the dimension of the space. In
Exercise 4.21 it is demonstrated that in an infinite dimensional separable Hilbert space all
orthonormal bases are infinite and have countably many elements.

Example 4.15. In the space `2(N) discussed in Example 4.12 a) an orthonormal basis
(εi)i∈N is obtained by letting εi be the sequence with all elements equal to 0 except element
number i which is set to 1, that is

(εi)j =

{
1 for j = i

0 for j 6= i .
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That this is an orthonormal basis follows by observing that it is obviously an orthonormal
family and that span{εi | i ∈ N} = `0(N) whose closure is `2(N) (see Exercise 4.18). We
call (εi)i∈N the canonical orthonormal basis for `2(N).

In Section 4.6 a particularly useful orthonormal basis for the space L2([−a, a]), a > 0,
will be discussed. By translation one can then obtain an orthonormal basis for L2([a, b])
for any a < b. In Exercise 4.20 a construction of a different type of orthonormal basis for
L2([0, 1]) is described.

4.5 Orthonormal expansions

Our goal in this section is to generalize the familiar expansion of vectors w. r. t. orthonormal
bases for finite dimensional Hilbert spaces to the case of infinite dimensional separable
Hilbert spaces. Actually, all results in this section generalize to non-separable Hilbert
spaces but we shall not discuss this here.

Let (ei)i∈N be an orthonormal family in H (assumed to be infinite dimensional) and

consider a vector x ∈ H. According to Bessel’s inequality (4.15)
n∑
i=1
|(x, ei)|2 ≤ ‖x‖2 for

all n ∈ N. Since the terms ‖xi‖2 are non-negative this implies the following generalized
version of Bessel’s inequality:

∞∑
i=1

|〈 ei|x 〉|2 ≤ ‖x‖2 . (4.27)

By Theorem 4.13 together with (4.27) we therefore conclude that the series
∞∑
i=1
〈 ei|x 〉ei is

convergent in H. If we write

u =

∞∑
i=1

〈 ei|x 〉ei (4.28)

it is clear that u ∈ span{ei | i ∈ N}. From Definition 4.11 of convergence of a series the
vector u could in principle depend on the order in which we perform the sum in (4.28),
i. e., on the chosen ordering of the basis vectors e1, e2, e3, . . .. That this is not the case is a
consequence of the following key result.

Theorem 4.16. Let (ei)i∈N be an orthonormal family in the separable Hilbert space H.
To any vector x ∈ H there is a unique vector u ∈ span{ei | i ∈ N} such that

x− u ∈ {ei | i ∈ N}⊥ ,

and u is given by (4.28). In particular, u does not depend on the order of the summation
and we also write

u =
∑
i∈N
〈 ei|x 〉ei .

Among all vectors in span{ei | i ∈ N} the vector u has the shortest distance to x.

Proof. The vector u given by (4.28) satisfies that for each j ∈ N

〈 ej |u 〉 =

〈
ej

∣∣∣ ∞∑
i=1

〈 ei|x 〉ei

〉
=

∞∑
i=1

〈 ei|x 〉〈 ej |ei 〉 = 〈 ej |x 〉 .
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This shows that 〈 ej |x− u 〉 = 0 for all j ∈ N, that is x− u ∈ {ej | j ∈ N}⊥, and therefore
proves the existence of u. The uniqueness is demonstrated below.

If v ∈ span{ei | i ∈ N} is arbitrary then u − v ∈ span{ei | i ∈ N} and hence by
Pythagoras’ Theorem

‖x− v‖2 = ‖x− u‖2 + ‖u− v‖2 > ‖x− u‖2.

This proves the last claim of the theorem. If v moreover, fulfills that x− v ∈ {ei | i ∈ N}⊥
then u − v = (x − v) − (x − u) ∈ {ei | i ∈ N}⊥ = (span{ei | i ∈ N})⊥. In particular,
〈u− v|u− v 〉 = 0 and hence u = v showing that u is unique.

The following result on orthonormal bases is of fundamental importance in many ap-
plications of Hilbert space theory.

Theorem 4.17. For an orthonormal family (ei)i∈N in a separable Hilbert space H the
following statements are equivalent

(i) (ei)i∈N is an orthonormal basis in H.

(ii) {ei | i ∈ N}⊥ = {0}.

(iii) The orthonormal expansion

x =
∑
i∈N
〈 ei |x 〉ei

holds for all x ∈ H .

(iv) Parseval’s identity

‖x‖2 =
∞∑
i=1

|〈 ei |x 〉|2 (4.29)

holds for all x ∈ H.

Proof. It has previously been shown that (i) ⇒ (ii). The implication (ii) ⇒ (iii) follows
from Theorem 4.16 since x = u with the notation used there. That (iii) ⇒ (iv) follows
immediately from (4.24).

Finally, assume that (iv) holds and let x ∈ H. Then

‖x−
n∑
i=1

〈 ei|x 〉ei‖2 = ‖x‖2 −
n∑
i=1

|〈 ei|x 〉|2 → 0 for n→∞ ,

which shows that span{ei | i ∈ I} is dense in H and hence (iv) ⇒ (i).

A further consequence of Theorem 4.16 is the projection theorem:

Theorem 4.18. Let X be a closed subspace of a separable Hilbert space H. Then for each
x ∈ H there exist unique vectors u ∈ X and v ∈ X⊥ such that

x = u+ v . (4.30)
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Proof. Since X is a closed subspace of the separable Hilbert space H then X is a separable
Hilbert space (see Exercise 4.19). Thus, there exists an orthonormal basis (ei)i∈I for X,
where I is finite or equal to N. Hence X = span{ei | i ∈ I}. The claim is now an immediate
consequence of Theorems 4.9 and 4.16.

As seen previously, the vector u in (4.30) may also be characterized as the vector in X
with the shortest distance to x.

In general, if two subspaces V and W of a vector space E satisfy that any vector x ∈ E
can be uniquely written as x = v + w, where v ∈ V and w ∈ W then V and W are called
complementary subspaces of E, which is also expressed by writing E = V ⊕W or saying
that E is the direct sum of V and W .

Hence Theorem 4.18 can be rephrased as saying that

H = X ⊕X⊥

for any closed subspace X of H. The vector u in (4.30) is called the orthogonal projection
of x onto X and as shown above it can be calculated as

u =
∑
i∈I
〈 ei|x 〉ei , (4.31)

where (ei)i∈I is an orthonormal basis for X.
Since X⊥ is also a closed subspace of H we have H = X⊥⊥ ⊕X⊥. If we use that any

vector x ∈ X⊥⊥ may be written uniquely as x = u + v, with u ∈ X and v ∈ X⊥ and the
obvious inclusion X ⊆ X⊥⊥ (why?) we see that, in fact, u = x and v = 0. Thus

X = X⊥⊥

for every closed subspace X of H. It then follows that v in (4.30) is the orthogonal
projection of x onto X⊥.

Proposition 4.19. Let X be a closed subspace in a separable Hilbert space H. Assume
(ei)i∈I is an orthonormal basis for X and (ej)j∈J is an orthonormal basis for X⊥. Then
the combined family (ei)i∈I∪J is an orthonormal basis for H.

More generally, let Xn, n = 1, 2, 3, . . . be a sequence of closed subspaces of H fulfilling

i) Xn⊥Xm, if n 6= m.

ii) The linear span of all Xn, n = 1, 2, 3, . . . is a dense subspace of H.

Then the combination of any sequence of orthonormal bases for the individual subspaces
Xn into one family (in any order) forms an orthonormal basis for H.

Proof. We refer to Exercise 4.22 for the argument.

4.6 Fourier series

The celebrated theory of Fourier series which has its origin in J. Fourier’s 1807 analysis
of the heat equation may be conveniently formulated in terms of orthonormal expansions.
We shall now discuss this very briefly.
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The relevant Hilbert space is H = L2([−a, a]), where a > 0, with inner product

〈 f |g 〉 =
1

2a

∫ a

−a
f(θ)g(θ) dθ .

We have included the factor 1
2a for convenience. The key result about Fourier series is

stated in the next theorem. We will give a proof based on the Stone-Weierstrass theorem
(see e. g. [12], Chapter 5).

Theorem 4.20. Let the functions en ∈ C([−a, a]) be given by

en(θ) = ein
π
a
θ , θ ∈ [−a, a] , n ∈ Z .

Then (en)n∈Z is an orthonormal basis in H = L2([−a, a]).

Proof. That (en)n∈Z is an orthonormal family is seen from the calculation

〈 en|em 〉 =
1

2a

∫ a

−a
en(x)em(x)dx

=
1

2a

∫ a

−a
ei(m−n)π

a
θ dθ

=

 1
2a

[
a

i(m−n)πe
i(m−n)π

a
θ
]a
−a

= 0 for n 6= m

1
2a [x]a−a = 1 for n = m ,

.

Here we have used that en is a periodic function of θ ∈ R with period 2a.
It remains to prove that span{en | n ∈ Z} = H. To conclude this we note that it

is enough to show that C([−a, a]) ⊆ span{en | n ∈ Z} since C([−a, a]) = H as already
remarked. It is thus enough to show that for all functions f ∈ C(−a, a) and all ε > 0 there
is an f1 ∈ span{en | n ∈ Z} such that

‖f − f1‖ < ε . (4.32)

To see this we first choose a function (why is this possible?) f2 ∈ C([−a, a]) such that
f2(−a) = f2(a) = 0 and

‖f − f2‖ <
ε

2
. (4.33)

Then f2 may be extended to a continuous periodic function on R with period 2a. It then
follows from the Stone-Weierstrass theorem that there is a function f1 ∈ span{en | n ∈ Z},
such that

|f2(θ)− f1(θ)| < ε√
4a

, θ ∈ [−a, a] .

Hence
‖f2 − f1‖ <

ε

2
. (4.34)

From (4.33), (4.34), and the triangle inequality we arrive at (4.32).
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If for f ∈ L2([−a, a]) we define the Fourier coefficients cn(f) by

cn(f) =
1

2a

∫ a

−a
f(θ)e−in

π
a
θ dθ , (4.35)

the above theorem and Theorem 4.19 imply that

f(θ) =
∑
n∈Z

cn(f)ein
π
a
θ . (4.36)

This series is called the Fourier series for f . We emphasize that it converges in the Hilbert
space L2([−a, a]), that is with respect to the L2-norm ‖ ·‖. More precisely, this means that

‖
N∑

n=−N
cn(f)en − f‖ → 0 for N →∞ .

It is important to realize that this is not the same as uniform or pointwise convergence.
For a discussion of uniform and pointwise convergence of Fourier series we refer the reader
to more advanced texts on the subject.

Exercises

Exercise 4.1. Prove Proposition 4.4. Hint. Use the triangle inequality (4.5).

Exercise 4.2.

a) Show that a sequence (xn)n∈N in Rk (or Ck) is convergent, respectively a Cauchy
sequence, w. r. t. the standard norm if and only if each coordinate sequence

(xin)n∈N , i = 1, . . . , k,

is convergent, respectively a Cauchy sequence, in R (or C), where we use the notation
xn = (x1

n, . . . , x
k
n).

b) Use a) to conclude that Rk and Ck are complete for any k > 2, assuming that R is
complete.

Exercise 4.3. Consider the finite dimensional complex Hilbert space H = Ck, with stan-
dard inner product.

Show that ((1, 0, . . . , 0), (0, 1, 0 . . . , 0), . . . , (0, . . . , 0, 1)) is an orthonormal basis for H.

Exercise 4.4. Show that in a complex inner product space E the polarization identity
holds:

〈x|y 〉 =
1

4
(‖x+ y‖2 − ‖x− y‖2 + i‖x− iy‖2 − i‖x+ iy‖2) , x, y ∈ H .
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Exercise 4.5. Let E be a complex inner product space and let n ∈ N, a ∈ C be such that
an = 1 and a2 6= 1. Show that the generalized polarization identity

〈x|y 〉 =
1

n

n−1∑
ν=0

aν‖aνx+ y‖2 .

holds for all x, y ∈ E.

Exercise 4.6. Show that (sinnθ)n∈N is an orthogonal family in C([0, π]) with inner product
given by (4.8).

Exercise 4.7. Determine a1, a2, a3 ∈ C such that∫ π

0
| cos θ −

3∑
n=1

an sinnθ|2dθ

is as small as possible.

Exercise 4.8. Consider the Hilbert space H = L2([−1, 1]) with the inner product

〈 f |g 〉 =

∫ 1

−1
f(t)g(t)dt

and the elements f1, f2, g ∈ H given by f1(t) =
√

3/2 t, f2(t) =
√

5/2 t2, and g(t) = 1.
Show that f1, f2 are orthonormal and find the closest vector to g in span{f1, f2}.

Exercise 4.9. Let the polynomials p0(x), p1(x), . . . be given such that pn(x) is a polynomial
of degree n in the variable x with the coefficient of xn being 1 and (p0(x), p1(x), . . .) being
an orthogonal family in C([0, 1]) with inner product given by (4.8) . Find p0(x), p1(x) and
p2(x).

Exercise 4.10. Show that (sin(n− 1
2)θ)n∈N is an orthogonal family in C([0, π]) with inner

product given by (4.8).

Exercise 4.11. Let H be a Hilbert space. Show that for any subset A ⊆ H the subset
A⊥ is a closed subspace of H.

Exercise 4.12. A series
∑∞

n=1 xn with terms in a vector space E eaquipped with a norm
‖ · ‖ is called absolutely convergent if

∑∞
n=1 ‖xn‖ <∞.

Show that any absolutely convergent series with terms in a Hilbert spaceH is convergent
in H.

Exercise 4.13. Let H be a Hilbert space. Show that a subspace X of H is a Hilbert space
if and only if X is closed. Show also that the closure of a subspace of H is itself a subspace
(here the continuity of addition and of scalar multiplication must be used).

Exercise 4.14. Let H be a Hilbert space and let (en)n∈N be an orthonormal family in H.

a) Show that the series
∑∞

n=1
1
nen is convergent in H and determine for which α ∈ R

the series
∑∞

n=1 n
αen is convergent in H.
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b) Determine the orthogonal projection of the vectors e1±2e2 on the subspace spanned

by the vector
∑∞

n=1 n
−1en. You may use that

∑∞
n=1

1
n2 = π2

6 .

Exercise 4.15. Show that limn→∞
∫ π

0 log θ sinnθdθ = 0 .
Hint. Use Bessel’s inequality (4.27) for the orthogonal family in Exercise 4.6.

Exercise 4.16. Let (ei)i∈N be an orthonormal basis for the Hilbert space H. Show that
the following generalization of Parseval’s equation holds for all x, y ∈ H:

〈x|y 〉 =
∞∑
i=1

〈x|ei 〉〈 ei|y 〉 .

Exercise 4.17. Consider the inner product space `0(N) defined in Example 4.6 d). Let

X =

{
(xn)n∈N ∈ `0(N) |

∞∑
n=1

xn
1

n
= 0

}
.

Show that X is a closed subspace of `0(N) and that X ⊕X⊥ 6= `0(N).

Exercise 4.18. Argue that `0(N) is dense in `2(N). In other words, show that any sequence
x in `2(N) is the limit of a convergent sequence (xn)n∈N in `0(N).
Hint. Let xn be the sequence whose elements coincide with those of x up to the n-th
element and vanish afterwards.

Exercise 4.19.

a) Show that a Hilbert space H is separable if and only if it has a countable dense
subset.

Hint. For the if-part one may use the Gram-Schmidt procedure to construct an
orthonormal basis.

b) Let H be a separable Hilbert space. Show that any infinite subset M of H has a
countable dense subset.

Hint. Let {xi | i ∈ N} be a countable dense subset of H. For i, n ∈ N let xi,n denote
any arbitrarily chosen point in {x ∈ M | ‖x − xi‖ 6 1

n} assuming that this set is
non-empty. Otherwise let xi,n be an arbitrarily chosen point in M . Now show that
{xi,n | i, n ∈ N} is a countable dense subset of M .

c) Show that a closed subspace X of a separable Hilbert space is itself a separable
Hilbert space. Hint. Use the characterization of separability found in question a)
and the result of b).

Exercise 4.20. (Difficult) Consider the Hilbert space H = L2([0, 1]) with the inner prod-
uct 〈 f |g 〉 =

∫
f(θ)g(θ)dθ. Let F0 : R → R be given by F0(t) = 1 if 0 6 t < 1 and

F (t) = −1 if 1 6 t < 2. Define fn, n = 0, 1, 2, . . . by

Fn(t) = 2n−1F0(2nt).

Let fn,k ∈ H, n = 0, 1, 2, . . ., k = 0, 1, . . . , 2n−1 − 1 be given by

fn,k(θ) = fn
(
θ − k2n−1

)
, θ ∈ [0.1]
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a) Show that the family (fn,k|n = 0, 1, 2, . . . , k = 0, 1, . . . , 2n−1 − 1) is a countable
orthonormal family.

b) Show that the subspace

span{fn,k | n = 0, 1, 2, . . . , N, k = 0, 1, . . . , 2n−1 − 1}

consists of all functions that are constant on the intervals [k2−N , (k + 1)2−N ), k =
0, 1, . . . , 2−N − 1.

c) Show that

C1([a, b]) ⊆ span{fn,k | n = 0, 1, 2, . . . , k = 0, 1, . . . , 2n−1 − 1}.

Hint. Use the Mean Value Theorem.

d) Conclude from the information L2([0, 1]) = C1([a, b]) that (fn,k|n = 0, 1, 2, . . . , k =
0, 1, . . . , 2n−1 − 1) is an orthonormal basis for L2([0, 1]).

Exercise 4.21. Show that if H is an infinite dimensional separable Hilbert space then all
orthonormal bases are infinite and have countably many elements.
Hint. From the characterization of separability in Exercise 4.19 we know that H has a
countable dense set D. Given an orthonormal basis (e1, e2, . . . ) show that the open balls

Bi = {x ∈ H | ‖x− ei‖ < 1} , i ∈ N ,

centered at basis vectors are disjoint. Argue that these balls have non-empty intersection
with D and then that the orthonormal basis is at most countable.

Exercise 4.22. Prove Proposition 4.19.



Chapter 5

Operators on Hilbert spaces

In this chapter we first recall in the first two sections some basic facts known from ele-
mentary linear algebra about matrix representations of linear mappings defined on finite
dimensional real or complex Hilbert spaces. Linear mappings defined on infinite dimen-
sional Hilbert spaces are introduced in Section 5.3, including some illustrative examples.
As is usual, we generally use the name linear operator or just operator instead of linear
mapping in the following. For the sake of technical simplicity the main focus is on con-
tinuous (also called bounded) operators, although many operators relevant in physics, such
as differential operators, are actually not bounded and will also be discussed to the extent
needed.

The adjoint of an operator is defined and the basic properties of the adjoint opera-
tion are established. This allows the introduction of self-adjoint operators (corresponding
to symmetric or Hermitian matrices) which together with diagonalizable operators (cor-
responding to diagonalizable matrices) are the subject of Section 5.4. The relevance of
self-adjoint operators for quantum mechanics is that they represent physical quantities and
may be regarded as corresponding to real functions on phase space in classical mechanics.
This will be explained in more detail in the next chapter.

In the final Section 5.5 unitary operators (corresponding to orthogonal matrices) are
introduced and the Fourier transformation is discussed as an important example.

5.1 Operators on finite dimensional real Hilbert spaces

In this section H denotes a real Hilbert space of dimension dimH = N < ∞ with inner
product 〈 · | · 〉, and α = (e1, . . . , eN ) denotes an orthonormal basis for H. For any given
vector x ∈ H its coordinates w. r. t. α will be denoted by x1, . . . , xN , that is x = x1e1 +
. . .+ xNeN , and x will denote the corresponding coordinate column vector,

x =

x1
...
xN

 .

107
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It is a fact to be noted that every linear mapping A from H to a second Hilbert space
H ′, whose norm we denote by ‖ · ‖′, is continuous. Indeed, for x = x1e1 + . . .+ xNeN ∈ H
it holds that

Ax = x1Ae1 + . . .+ xNAeN (5.1)

and therefore
‖Ax‖′ = ‖x1Ae1 + . . .+ xNAeN‖′

≤ |x1| ‖Ae1‖′ + . . .+ |xN | ‖AeN‖′

≤ (‖Ae1‖′ + . . .+ ‖AeN‖′) max{|x1|, . . . , |xN |}
≤ (‖Ae1‖′ + . . .+ ‖AeN‖′)‖x‖ ,

where the triangle inequality has been used and also

‖x‖2 = |x1|2 + . . .+ |xN |2 ≥ (max{|x1|, . . . , |xN |})2.

This shows that A is bounded in the sense that there exists a constant c > 0, such that

‖Ax‖′ 6 c ‖x‖ for all x ∈ H . (5.2)

The norm ‖A‖ of a bounded operator A : H → H ′ is by definition the smallest number c
for which the bound (5.2) holds. Equivalently,

‖A‖ = sup{‖Ax‖′ | ‖x‖ = 1} , (5.3)

see Exercise 5.4.
As shown in Exercise 5.5 an operator A : H → H ′, where H and H ′ are arbitrary

Hilbert spaces of finite or infinite dimension, is continuous if and only if it is bounded.
Thus, we have shown the previously announced fact that if H is of finite dimension, then
every operator A : H → H ′ is bounded and hence continuous.

For the sake of simplicity let us now assume that H = H ′. As is well known from linear
algebra a linear operator A : H → H is represented w. r. t. the basis α by an N×N -matrix
A
=

in the sense that the relation between the coordinate set for a vector x ∈ H and its

image y = Ax is given by
y = A

=
x . (5.4)

Moreover, matrix multiplication is defined in such a way that if the operators A and B on
H are represented by the matrices A

=
and B

=
w. r. t. the same basis α, then the composition

AB is represented by the matrix product A
=
B
=

w. r. t. α. Since the basis α is orthonormal

the matrix elements aij , 1 ≤ i, j ≤ N , of A
=

are given by the formula

aij = 〈 ei|Aej 〉 (5.5)

as a consequence of the following calculation:

yi = 〈 ei|Ax 〉 = 〈 ei|x1Ae1 + . . .+ xNAeN 〉 =
N∑
j=1

〈 ei|Aej 〉xj . (5.6)
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Now let A∗ denote the operator on H represented by the transpose A
=

t of A
=

. Using

equation (5.5) it follows that

〈 ej |Aei 〉 = aji = 〈 ei|A∗ej 〉 = 〈A∗ej |ei 〉 ,

where in the last step the symmetry of the inner has been product. Exploiting the linearity

properties of the inner product this gives for x =
N∑
j=1

xjej and z =
N∑
i=1

ziei in H:

〈x|Az 〉 =

N∑
i,j=1

xjzi〈 ej |Aei 〉 =

N∑
i,j=1

xjzi〈A∗ei|ej 〉 = 〈A∗x|z 〉 . (5.7)

We claim that the validity of this identity for all x, z ∈ H implies that A∗ is uniquely
determined by A and does not depend on the choice of orthonormal basis α. Indeed, if the
operator B on H satisfies 〈x|Az 〉 = 〈Bx|z 〉 for all x, z ∈ H, then 〈A∗x−Bx|z 〉 = 0 for all
x, z ∈ H, and hence A∗x−Bx ∈ H⊥ = {0} for all x ∈ H. This shows that A∗x = Bx for all
z ∈ H, that is A∗ = B. The operator A∗ is called the adjoint operator of A. If A = A∗, we
say that A is self-adjoint. It follows from the definition of A∗ that the self-adjoint operators
on a real finite dimensional Hilbert space are precisely those operators that are represented
by symmetric matrices w. r. t. an arbitrary orthonormal basis for H.

It is known from linear algebra, that every symmetric N ×N -matrix A
=

can be diago-

nalized by an orthogonal matrix, that is there exists an orthogonal N ×N -matrix O
=

such

that
O
=

−1A
=
O
=

= D
=
, (5.8)

where D
=

= ∆(λ1, . . . , λN ) is an N ×N diagonal matrix with the eigenvalues λ1, . . . , λN of

A
=

in the diagonal. That O
=

is orthogonal means that the columns (and therefore also the

rows) of O
=

form an orthonormal basis for RN , which is equivalent to

O
=

tO
=

= I
=
, (5.9)

where I denotes the N ×N identity matrix. This also means that O
=

is orthogonal if and

only if O
=

is invertible and

O
=

t = O
=

−1 . (5.10)

Equation (5.8) expresses that the columns of O
=

are eigenvectors for A
=

. Therefore, we

conclude that for every symmetric matrix A
=

there exists an orthonormal basis for RN

(with standard inner product) consisting of eigenvectors for A
=

.

Let now A
=

represent a self-adjoint operator A w. r. t. the basis α as above, and let the

orthogonal matrix O
=

= (oij) be chosen according to (5.8). Let O : H → H denote the

operator represented by the matrix O
=

w. r. t. α. Furthermore, let D : H → H denote the

operator represented by D
=

w.r.t. α, that is

Dei = λiei , i = 1, . . . , N . (5.11)
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Then equation (5.8) is equivalent to

O−1AO = D , (5.12)

since the matrix representing O−1AO w. r. t. α is O
=

−1A
=
O
=

.

Similarly, equations (5.9) and (5.10) are equivalent to

O∗O = 1 (5.13)

and
O∗ = O−1 , (5.14)

respectively, where 1 denotes the identity operator on H. An operator O fulfilling (5.14) is
called an orthogonal operator. Thus orthogonal operators are precisely those operators that
are represented by orthogonal matrices w. r. t. an arbitrary orthonormal basis.

Setting
fi = Oei , i = 1, . . . , N ,

it follows that
〈 fi|fj 〉 = 〈Oei|Oej 〉 = 〈O∗Oei|ej 〉 = 〈 ei|ej 〉 = δij , (5.15)

which means that (f1, . . . , fN ) is an orthonormal basis for H. In other words, orthogonal
operators map orthonormal bases to orthonormal bases.

It now follows from (5.11) and (5.12) that

Afi = AOei = ODei = O(λiei) = λiOei = λifi . (5.16)

A vector x ∈ H \ {0} with the property that the image Ax is proportional to x, i. e., such
that there exists λ ∈ R fulfilling

Ax = λx , (5.17)

is called an eigenvector for A, and λ is called the corresponding eigenvalue. Thus, equations
(5.15) and (5.16) imply that for every self-adjoint operator A on a finite dimensional real
Hilbert space there exists an orthonormal basis consisting of eigenvectors for A. We say
that such a basis diagonalizes A, since the matrix representing A w. r. t. this basis is the
diagonal matrix D

=
whose diagonal entries are the eigenvalues of A.

5.2 Operators on finite dimensional complex Hilbert spaces

In this section H denotes a finite dimensional complex Hilbert space with inner product
〈 · |· 〉 and α = (e1, . . . , eN ) again denotes an orthonormal basis for H.

By the same argument as in the previous section (see (5.1)) every operator A : H → H
is bounded. By the same calculations as those leading to (5.6) A is represented w. r. t. α
by the complex matrix A

=
= (aij), where

aij = 〈 ei|Aej 〉 , 1 ≤ i, j ≤ N .



Chap. 5 Operators on Hilbert Spaces 111

Let A∗ denote the operator represented w. r. t. α by the matrix A
=

∗, called the Hermitian

conjugate of A
=

, obtained from A
=

by transposition and complex conjugation, that is

〈 ej |Aei 〉 = aji = 〈 ei|A∗ej 〉 = 〈A∗ej |ej 〉 .

For x =
N∑
j=1

xjej and z =
N∑
i=1

ziei in H it then follows that

〈x|Az 〉 =
N∑

i,j=1

xjzi〈 ej |Aei 〉 =

N∑
i,j=1

xjzi〈A∗ej |ei 〉 = 〈A∗x|z 〉 .

By a similar argument as in the previous section it follows that the operator A∗ is uniquely
determined by A. It is called the adjoint operator of A, and A is called self-adjoint if
A = A∗. It follows, in particular, that for a self-adjoint operator A it holds that A

=

∗ =

A
=

. Matrices for which this relation holds are called Hermitian. Notice that addition

and multiplication of complex matrices are defined in the same way and satisfy the same
basic laws of calculation as for real matrices. Moreover, well known concepts such as
rank and determinant are defined in an analogous manner. Results and proofs can be
transferred directly from the real to the complex case. It suffices here to mention that a
quadratic matrix is regular, or invertible, if and only if its determinant is different from
zero. Moreover, for a quadratic matrix A

=
the relation

detA
=

∗ = detA
=
,

follows immediately from detA
=

t = detA
=

.

The complex counterpart of an orthogonal operator is called a unitary operator. More
specifically, U : H → H is called unitary if it fulfills

U∗U = 1 , (5.18)

that is
U∗ = U−1 . (5.19)

Letting U
=

denote the matrix representing U w. r. t. α, equation (5.18) is equivalent to

U
=

∗U
=

= I
=
. (5.20)

A matrix U
=

fulfilling (5.20) is called unitary and it is easily seen that this is equivalent to

the statement that the columns of U
=

form an orthonormal basis for CN . In particular, a

real unitary matrix is the same thing as an orthogonal matrix.
Evidently, equation (5.18) implies

〈Ux|Uy 〉 = 〈U∗Ux|y 〉 = 〈x|y 〉 , x, y ∈ H , (5.21)

which is expressed by saying that any unitary operator U preserves the inner product.
Setting x = y yields

‖Ux‖ = ‖x‖ , x ∈ H , (5.22)

and thus U is an isometry. The following result shows, among other things, that (5.22) is
in fact equivalent to U being unitary.
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Theorem 5.1. Let U : H → H be a linear operator on a finite dimensional Hilbert space
H. The following four statements are equivalent.

(i) U is unitary.

(ii) U preserves the inner product.

(iii) U is an isometry.

(iv) U maps an orthonormal basis onto an orthonormal basis for H.

Proof. Above it has been shown (i) ⇒ (ii) ⇒ iii).

(iii) ⇒ (ii): This follows by using the polarization identity for the two sesquilinear forms
〈x|y 〉 and 〈Ux|Uy 〉. Indeed, if U is an isometry, it follow that

〈Ux|Uy 〉 = 1
4

3∑
ν=0

iν‖U(x+ iνy)‖2 = 1
4

3∑
ν=0

iν‖x+ iνy‖2 = 〈x|y 〉

for arbitrary x, y ∈ H.

(ii) ⇒ (i): The relation 〈Ux|Uy 〉 = 〈x|y 〉 can be rewritten as 〈x|U∗Uy 〉 = 〈x|y 〉. This
holds for all x, y ∈ H if and only if U∗U = 1. This proves that (i) and (ii) are in fact
equivalent.

We have now demonstrated that (i), (ii) and (iii) are equivalent.

(ii) ⇒ (iv): Setting fi = Uei condition b) implies

〈 fi|fj〈= 〉Uei|Uej 〉 = 〈 ei|ej 〉 = δij , 1 ≤ i, j ≤ N ,

which shows that (f1, . . . , fN ) is an orthonormal basis for H.

(iv) ⇒ (iii): For x = x1e1 + . . .+ xNeN ∈ H condition d) and Pythagoras’ theorem imply

‖Ux‖2 = ‖x1Ue1 + . . .+ xNUeN‖2 = |x1|2 + . . .+ |xN |2 = ‖x‖2 ,

which proves the claim.
This finishes the proof of the theorem.

In relation to Theorem 5.1 it should be noted that for any pair of orthonormal bases
(e1, . . . , eN ) and (f1, . . . , fN ) for H there is exactly one operator U , which maps the first
basis onto the second, that is

Uei = fi , i = 1, . . . , N ,

and it is given by
U(x1e1 + . . .+ xNeN ) = x1f1 + . . .+ xNfN .

This operator is unitary by Theorem 5.1.
Eigenvectors and eigenvalues for an operator A : H → H are defined as in the previous

section (cf. (5.17)), except that the eigenvalue now may assume complex values instead
of real values only. Moreover, A is called diagonalizable if there exists an orthonormal
basis for H consisting of eigenvectors for A. Equivalently, this means that there exists an
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orthonormal basis (f1, . . . , fN ) w. r. t. which A is represented by a diagonal matrix. Indeed,
if (f1, . . . , fN ) is an orthonormal basis consisting of eigenvectors such that Afi = λifi,
i = 1, . . . , N , then

aij = 〈 fi|Afj 〉 = 〈 fi|λjfj 〉 = λjδij , 1 ≤ i, j ≤ N .

Conversely, if (f1, . . . , fN ) is an orthonormal basis such that

aij = 〈 fi|Afj 〉 = λjδij , 1 ≤ i, j ≤ N ,

then

Afj =
N∑
i=1

〈Afj |fi 〉fi =
N∑
i=1

λjδijfi = λjfj

for 1 ≤ j ≤ N .
In view of the discussion in the previous section it is natural to ask if every self-adjoint

operator A on H is diagonalizable. The answer is yes, and the same holds for unitary
operators, as will be seen in Section 5.4.

We end this section by looking at a couple of simple examples.

Example 5.2. a) Let H be a 2-dimensional complex Hilbert space and let α = (e1, e2) be
an orthonormal basis for H. Consider the operator A on H, which is represented w. r. t. α
by the matrix

A
=

=

(
1 i
−i 1

)
.

Then A is self-adjoint since A
=

∗ = A
=

. The eigenvalues of A can be determined by solving

the characteristic equation det(A
=
− λI

=
) = 0, since this condition ensures (as in the case of

real matrices) that the system of linear equations (A
=
− λI

=
)x = 0 has a non-trivial solution

x =

(
x1

x2

)
, which is equivalent to stating that the vector x = x1e1 +x2e2 satisfies Ax = λx.

The characteristic equation is

det

(
1− λ i
−i 1− λ

)
= (1− λ)2 − 1 = 0 ,

which gives λ = 0 or λ = 2. For λ = 0 the equation (A
=
− λI

=
)
(
x1
x2

)
= 0 is equivalent to

x1 + i x2 = 0 , whose solutions are of the form t
(

1
i

)
, t ∈ C.

For λ = 2 a similar calculation gives the solutions t
(

1
−i
)
, t ∈ C.

Two normalized eigencolumns corresponding to λ = 0 and λ = 2, respectively, are then

x1 =
1√
2

(
1
i

)
and x2 =

1√
2

(
1
−i

)
.

The matrix

U
=

=
1√
2

(
1 1
i −i

)
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is seen to be unitary, and so A is diagonalizable since

U
=

−1A
=
U
=

= U
=

∗A
=
U
=

=

(
0 0
0 2

)
.

The unitary operator represented by U
=

w. r. t. α, maps the basis α onto the orthonormal

basis
(

1√
2
(e1 + ie2), 1√

2
(e1 − ie2)

)
consisting of eigenvectors for A.

b) The real matrix

O
=

=

(
1√
2
− 1√

2
1√
2

1√
2

)
is seen at to be orthogonal by inspection. It has no real eigenvalues and is therefore not
diagonalizable over R.

On the other hand, considering it as a complex matrix representing an operator O on
a 2-dimensional complex Hilbert space H w. r. t. an orthonormal basis α = (e1, e2), then
O is unitary. Its eigenvalues are found by solving

det

(
1√
2
− λ − 1√

2
1√
2

1√
2
− λ

)
= 0 .

This gives λ = 1√
2
(1±i) . Corresponding eigencolumns for O

=
are as in the previous example

x1 = 1√
2

(
1
i

)
and x2 = 1√

2

(
1
−i
)
.

Since

U
=

∗O
=
U
=

=

(
1+i√

2
0

0 1−i√
2

)
,

we conclude that O is diagonalizable and that
(

1√
2
(e1+ie2), 1√

2
(e1−ie2)

)
is an orthonormal

basis for H that diagonalizes O.

5.3 Operators on infinite dimensional Hilbert spaces.

In the remainder of this chapter H, H1 and H2 denote arbitrary separable Hilbert spaces
over L, where L denotes either R or C. Results are mostly formulated for the case where
the Hilbert spaces are infinite dimensional, but all results hold with obvious modifications
for finite dimensional Hilbert spaces as well.

We shall use the notation B(H1, H2) for the set of bounded operators from H1 to H2 and
set B(H) = B(H,H). See (5.2) for the definition of a bounded operator. In Exercise 5.4
it is shown that B(H1, H2) is a vector space and that the norm defined by (5.3) fulfills the
standard requirements (4.3)–(4.5).
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Given an operator A ∈ B(H) and an orthonormal basis (ei)i∈N for H the matrix

(aij) =


a11 · · · a1n · · ·
...

...
an1 · · · ann · · ·

...
...

 (5.23)

that represents A w. r. t. (ei)i∈N is defined by the same formula as in the finite dimensional
case

aij = 〈 ei|Aej 〉 . (5.24)

The coefficients of the orthonormal expansion

Ax =

∞∑
i=1

yiei ,

for a vector x =
∞∑
j=1

xjej ∈ H, are then given by

yi = 〈 ei|Ax 〉 =

〈
ei

∣∣∣ ∞∑
j=1

xjAej

〉
=
∞∑
j=1

xj〈 ei|Aej 〉 . (5.25)

Here the second equality follows from linearity and continuity of A:

Ax = A
(

lim
N→∞

N∑
j=1

xjej
)

= lim
N→∞

A
( N∑
j=1

xjej
)

= lim
N→∞

N∑
j=1

xjAej =
∞∑
j=1

xjAej ,

(5.26)

and similarly the last equality follows from linearity and continuity of 〈 ei|x 〉 as a function
of x. From (5.24) and (5.25) it is seen that

yi =

∞∑
j=1

aijxj ,

which is the infinite dimensional version of (5.4) and, in particular, shows that the matrix
(5.23) determines the operator A uniquely.

In the infinite dimensional case, matrix representations are generally of rather limited
use since calculations involve infinite series and can only rarely be performed explicitly.
Moreover, the notion of determinant is not immediately generalizable to the infinite di-
mensional case, which implies that the standard method for determining eigenvalues and
eigenvectors is not available any more. The coordinate independent operator point of view
to be developed in the following will turn out more advantageous. It is useful first to
introduce a few concrete examples of operators on infinite dimensional Hilbert spaces.
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Example 5.3.
a) Let H = `2(N) and define for x = (xn)n∈N ∈ `2(N) the sequence

Ax = (
1

n
xn)n∈N . (5.27)

Since
∞∑
n=1

1

n2
|xn|2 6

∞∑
n=1

|xn|2 = ‖x‖2 , (5.28)

it follows that Ax ∈ `2(N) so that equation (5.27) defines a mapping A from H to H. It is
easily seen that A is linear (verify this!), and from (5.28) it then follows that ‖A‖ 6 1. In
fact, ‖A‖ = 1, because equality holds in (5.28) for the sequence (1, 0, 0, . . .).

More generally, let a = (an)n∈N be a bounded (complex) sequence of numbers and set
‖a‖u = sup{|an| | n ∈ N}. For x = (xn)n∈N ∈ `2(N) define the sequence

Max = (anxn)n∈N . (5.29)

Noting that
∞∑
n=1

|anxn|2 6 ‖a‖2u‖x‖2 ,

it follows that Max ∈ `2(N). Hence, equation (5.29) defines a mapping Ma from H to H. It
is easily seen that Ma is linear and the previous inequality then shows that ‖Ma‖ 6 ‖a‖u.
In fact, ‖Ma‖ = ‖a‖u, because Maen = anεn, where εn denotes the n’th vector in the
canonical orthonormal basis for `2(N), and as a consequence we get ‖Ma‖ > ‖Maεn‖ = |an|
for all n ∈ N, which yields ‖Ma‖ > ‖a‖u.

Viewing (an)n∈N and x = (xn)n∈N in (5.29) as functions on N, the operatorMa is defined
by multiplication by the function (an)n∈N. For this reason it is called the multiplication
operator defined by the sequence (an)n∈N. Note, that w. r. t. the canonical orthonormal
basis the operator Ma is represented by the diagonal matrix ∆(a1, a2, . . . ) (verify this!).

b) Let H = L2([a, b]), where [a, b] is a closed bounded interval, and let f : [a, b] → C
be a continuous function. Since f is continuous it is bounded and

|f(x)g(x)| 6 ‖f‖u|g(x)| , x ∈ [a, b] , (5.30)

where
‖f‖u = max{|f(x)| | x ∈ [a, b]}

is the uniform norm of f. It follows that f · g ∈ H if g ∈ H, and so

Mfg = f · g , g ∈ H , (5.31)

defines a mapping Mf from H to H. Since Mf is clearly linear in g and (5.30) implies

‖Mfg‖ 6 ‖f‖u‖g‖ ,

it holds that Mf is a bounded operator on H, and the norm of Mf fulfills ‖Mf‖ ≤ ‖f‖u.
It is shown in Exercise 5.7 that, in fact, ‖Mf‖ = ‖f‖u holds. The operator Mf is called
the multiplication operator defined by the function f .



Chap. 5 Operators on Hilbert Spaces 117

c) Let H = `2(N) and set

T (x1, x2, x3, . . .) = (0, x1, x2, x3, . . .)

for (x1, x2, x3, . . .) ∈ `2(N). It is evident that T (x1, x2, x3, . . .) ∈ `2(N) and that

‖T (x1, x2, x3, . . .)‖ = ‖(0, x1, x2, x3, . . .)‖ .

Furthermore, it is easily verified that the mapping T : H → H so defined is linear. Hence,
T is a bounded operator on H with norm 1, in fact an isometry. T is sometimes called the
right shift operator on `2(N).

d) Let H = L2([−π, π]) with the standard inner product normalized by the factor
1

2π as in Section 4.6, and let (en)n∈Z denote the orthonormal basis, where en(θ) = einθ.

Setting D = −i ddθ , we have
Den = nen , (5.32)

and D acts, of course, linearly on the subspace span{en | n ∈ Z}, whose closure is
L2([−π, π]). However, D is not a bounded operator on this space, since ‖D‖ > ‖Den‖ = |n|
for all n ∈ Z. As a consequence, D cannot be extended to a bounded operator on the whole
space H. This is a general feature of so-called differential operators. As will be discussed
at the end of Section 5.4, D has a natural extension to a larger domain, which is the
appropriate domain for applications in quantum mechanics.

e) Let again H = L2(I) where I = [a, b] is a closed bounded interval and let ϕ :
I × I → C be continuous. For x ∈ I and f ∈ H we define

(φf)(x) =

∫
I
ϕ(x, y)f(y)dy . (5.33)

In order to see that (φf)(x) is well defined by this formula it is useful to note that the
continuous function ϕx : y → ϕ(x, y) belongs to L2(I) for every x ∈ I, and that the right
hand side of (5.33) is the inner product of ϕx and f in H. Applying the Cauchy-Schwarz
inequality then yields

|(φf)(x)|2 6
∫
I
|ϕ(x, y)|2dy · ‖f‖2 , (5.34)

which implies that (5.33) defines a function φf on I.
To show that φf belongs to H it suffices to prove that it is continuous. For this purpose,

notice first that f is integrable since

∫ b

a
|f(x)|dx 6 (b− a)

1
2

(∫ b

a
|f(x)|2dx

) 1
2

as a consequence of Cauchy-Schwarz’ inequality again. Let now ε > 0 and choose
K >

∫
I |f(x)|dx. Since ϕ is continuous and I is closed and bounded there exists1 a δ > 0,

such that |ϕ(x, y)−ϕ(x′, y′)| < ε
K for all (x, y), (x′, y′) ∈ I× I fulfilling |x−x′|, |y−y′| < δ.

1It is known from basic analysis that any continuous complex valued function f on a closed and bounded
subset of Rk is uniformly continuous in the sense that for all ε > 0 there is a δ > 0 such that for all x, y in
the domain of f , ‖x− y‖ < δ ⇒ |f(x)− f(y)| < ε.



Chap. 5 Operators on Hilbert Spaces 118

In particular, |ϕ(x, y)− ϕ(x′, y)| < ε
K for all y ∈ I and all x, x′ ∈ I, such that |x− x′| < δ.

From this follows that

|(φf)(x)− (φf)(x′)| ≤
∫
I
|(ϕ(x, y)− ϕ(x′, y))f(y)|dy 6 ε

K

∫
I
|f(x)|dx < ε ,

when |x− x′| < δ. This shows that φf is continuous.
It now follows from (5.34) that φf ∈ H and that

‖φf‖2 6
∫
I

∫
I
|ϕ(x, y)|2dydx · ‖f‖2 . (5.35)

Since φf clearly depends linearly on f , we have shown that (5.33) defines a bounded
operator φ on L2(I), whose norm fulfills

‖φ‖ 6
( ∫

I

∫
I
|ϕ(x, y)|2dydx

)1
2 .

In general, equality does not hold here.
The operator φ is called an integral operator and the function ϕ is called its kernel.

Operators of this kind play an important role in the theory of differential equations.

We now aim at defining, for an arbitrary operator A ∈ B(H1, H2), the adjoint operator
A∗ ∈ B(H2, H1). It is not convenient to make use of a matrix representation of A, since it
is not clear in the infinite dimensional case that the Hermitian conjugate matrix represents
a bounded everywhere defined operator. Instead, we take (5.7) as the defining equation for
A∗ (see Theorem 5.5 below). First, however, some preparatory work is needed.

The dual space to the Hilbert space H, which is denoted by H∗, is defined as

H∗ = B(H,L) .

The elements of H∗ are thus continuous linear functions from H to L. These are also called
continuous linear forms on H. Let us define, for y ∈ H, the function `y : H → L by

`y(x) = 〈 y|x 〉 , (5.36)

where 〈 · | · 〉 is the inner product on H. Then `y is linear. The Cauchy-Schwarz inequality
gives

|`y(x)| ≤ ‖x‖ ‖y‖ , y ∈ H ,

from which it follows that `y ∈ H∗ and that

‖`y‖ ≤ ‖y‖ . (5.37)

The following theorem tells us that all continuous linear forms on H are of (or can be
represented in) the form (5.36).

Theorem 5.4 (Riesz’ representation theorem). Let H be a Hilbert space over L. The
mapping y → `y, where `y ∈ H∗ is given by (5.36), is a bijective isometry from H onto
H∗, that is for every ` ∈ H∗ there exists exactly one vector y ∈ H such that ` = `y, and
the norm identity

‖`y‖ = ‖y‖ (5.38)

holds.
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Proof. As already noted y → `y is a well defined mapping from H into H∗. From (5.36)
follows that

`y+z = `y + `z and `λy = λ`y (5.39)

for y, z ∈ H and λ ∈ L, i. e., the mapping y → `y is conjugate linear.
That it is isometric can be seen as follows. If y = 0 then `y = 0, so ‖`y‖ = ‖y‖ = 0.

For y 6= 0, set x = ‖y‖−1y such that ‖x‖ = 1. Since

|`y(x)| = |〈 y|‖y‖−1y 〉| = ‖y‖

it follows that ‖`y‖ ≥ ‖y‖. Together with (5.37) this proves (5.38). That (5.38) is equivalent
to y → `y being an isometry now follows from (5.39), since

‖`y − `z‖ = ‖`y−z‖ = ‖y − z‖

for y, z ∈ H.
Knowing that the mapping y → `y is isometric and conjugate linear, it is obviously also

injective. It remains to show that for every ` ∈ H∗ there exists a y ∈ H such that ` = `y.
Evidently, `0 = 0 so it can be assumed that ` 6= 0. Then X = `−1({0}) 6= H, and since {0}
is a closed subspace of L and ` is continuous, it follows that X is a closed subspace of H.
Hence H = X ⊕X⊥ by Theorem 4.18 and X⊥ 6= {0}.

In fact X⊥ is a one-dimensional subspace of H. In order to see this, choose e ∈ X⊥\{0}
with ‖e‖ = 1, and let z ∈ X⊥ be arbitrary. Then `(e) 6= 0 and

`(z) =
`(z)

`(e)
`(e) = `

(
`(z)

`(e)
e

)
which shows that z − `(z)

`(e)e ∈ X. On the other hand, it also holds that z − `(z)
`(e)e ∈ X

⊥,

since X⊥ is a subspace. Using X ∩X⊥ = {0} it follows that z = `(z)
`(e)e, which shows that e

is a basis for X⊥.
Every vector in H can therefore be written in the form x+λe, where x ∈ X and λ ∈ L.

The action of ` can then be written as

`(x+ λe) = `(x) + λ`(e) = λ`(e) = 〈 `(e)e |x+ λe 〉 ,

which shows that ` = `y where y = `(e)e. Here, the linearity of ` as well as the fact that
x⊥e have been used.

Dirac introduced in his classic monograph [5] the notation 〈 y| for `y and called it a
bra-vector, whereas a vector x in H was called a ket-vector and denoted by |x〉. With this
notation (5.36) takes the form

〈 y|(|x 〉) = 〈 y|x 〉 ,

and by Theorem 5.4 the mapping
|x〉 → 〈x|

from H to H∗ is bijective. In the following, we shall make use of the Dirac notation when
advantageous, in particular in Chapter 6.
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Notice that (5.38) is equivalent to

‖x‖ = sup{|〈x|y 〉| | ‖y‖ ≤ 1} (5.40)

for x ∈ H. For later use we remark that, as a consequence, the norm of an operator
A ∈ B(H1, H2) is given by

‖A‖ = sup{|〈Ax|y 〉| | x ∈ H1, y ∈ H2 , ‖x‖ , ‖y‖ ≤ 1} . (5.41)

We are now ready to introduce the adjoint A∗ of a bounded operator A.

Theorem 5.5. Let H1 and H2 be Hilbert spaces and A ∈ B(H1, H2). There exists a unique
operator A∗ ∈ B(H2, H1) which fulfills

〈Ax|y 〉 = 〈x|A∗y 〉 , x ∈ H1 , y ∈ H2 . (5.42)

Moreover,
‖A‖ = ‖A∗‖ . (5.43)

Proof. For any given y ∈ H2 the mapping x→ 〈 y|Ax 〉 belongs to H∗1 , being a composition
of A and `y. By Theorem 5.4 there exists a unique vector z ∈ H1, such that

〈 y|Ax 〉 = 〈 z|x 〉 , x ∈ H1 . (5.44)

Since z depends only on y for the given operator A, a mapping A∗ : H2 → H1 is defined by
setting A∗y = z. By taking the complex conjugate of both sides of (5.44) it follows that
A∗ satisfies (5.42).

That A∗ is a linear mapping can be seen as follows. For given y, z ∈ H2 the defining
relation

〈Ax|y + z 〉 = 〈x|A∗(y + z) 〉 , x ∈ H1 (5.45)

holds, while on the other hand

〈Ax|y + z 〉 = 〈Ax|y 〉+ 〈Ax|z 〉
= 〈x|A∗y 〉+ 〈x|A∗z 〉
= 〈x|A∗y +A∗z 〉 , x ∈ H1 .

(5.46)

Since A∗ is uniquely determined by (5.42), it follows by comparing (5.45) and (5.46) that

A∗(y + z) = A∗y +A∗z .

Similarly,
A∗(λy) = λA∗y

for λ ∈ L and y ∈ H1 follows from

〈Ax|λy 〉 = 〈x|A∗(λy) 〉

and
〈Ax|λy 〉 = λ〈Ax|y 〉 = λ〈x|A∗y 〉 = 〈x|λA∗y 〉

for x ∈ H1.
That A∗ is bounded and that ‖A‖ = ‖A∗‖ follows immediately from (5.41) and (5.42).



Chap. 5 Operators on Hilbert Spaces 121

In case H1 = H2 = H an operator A ∈ B(H) is called self-adjoint if A = A∗, which by
(5.42) means that

〈Ax|y 〉 = 〈x|Ay 〉 , x, y ∈ H .

Self-adjoint operators play a particularly important role in operator theory, similar to that
of symmetric matrices in linear algebra, as will be further discussed in the next section.

Example 5.6. a) Let Ma be the multiplication operator on `2(N) defined in Example 5.3
a). In order to determine the adjoint operator one may start by calculating the left hand
side of (5.42) and rewrite it in the form of the right hand side as follows, for x = (xn)n∈N
and y = (yn)n∈N:

〈Max | y 〉 =

∞∑
n=1

anxn yn =

∞∑
n=1

xn an yn = 〈x |Ma y 〉 ,

where a = (an)n∈N. This shows that

M∗a = Ma .

In particular, Ma is self-adjoint if and only if a is a real sequence.

b) Let Mf be the multiplication operator on L2([a, b]) defined in Example 5.3 b). In a
similar way as in a) one gets for g, h ∈ L2([a, b]) that

〈Mfg |h 〉 =

∫ b

a
f(x)g(x)h(x)dx =

∫ b

a
g(x) f(x)h(x)dx = 〈 g |Mfh 〉 ,

from which it follows that
M∗f = Mf ,

and in particular Mf is self-adjoint if and only if f is a real function.

c) Let φ be the integral operator on L2(I) defined in Example 5.3 e). By interchanging
the order of integrations (Fubini’s theorem) at one stage one gets for f, g ∈ L2(I) that

〈φf |g 〉 =

∫
I

(∫
I
φ(x, y)f(y)dy

)
g(x)dx =

∫
I

∫
I
f(y)φ(x, y)g(x)dydx

=

∫
I

∫
I
f(y)φ(x, y)g(x)dxdy =

∫
I

(
f(x)

∫
I
φ(y, x)g(y)dy

)
dx .

From this calculation one reads off the action of φ∗ to be given by

(φ∗g)(x) =

∫
I
φ(y, x)g(y)dy .

In other words, φ∗ is the integral operator on L2(I) whose kernel is ϕ(y, x).

d) Let T denote the right shift operator on `2(N) defined in Example 5.3 c). For
x = (xn)n∈N and y = (yn)n∈N in `2(N) one gets

〈Tx|y 〉 = x1y2 + x2y3 + x3y4 . . . = 〈x|(y2, y3, y4, . . .) 〉 ,
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from which it follows that
T ∗y = (y2, y3, y4, . . .) .

The operator T ∗ is called the left shift operator on `2(N). Note that T ∗T = 1 and TT ∗ 6= 1
(see Exercise 5.8). It is not possible for an operator on a finite dimensional Hilbert space
to fulfill both of these identities (why?).

e) Consider the differential operator D defined in Example 5.3 d). By partial integration
one gets for functions f, g ∈ span{en | n ∈ Z} (with notation as in Example 5.3)

〈Df |g 〉 =
1

2π

∫ π

−π
−i df
dθ
g(θ) dθ

=
[
if(θ)g(θ)

]π
−π
− i 1

2π

∫ π

−π
f(θ)

dg

dθ
dθ = 〈 f |Dg 〉 ,

where it is used that the first term after the second equality sign vanishes since f and g
are periodic with period 2π. Below we explain how to define the adjoint for unbounded
operators such as D, in general. It will transpire that despite the identity above, D is not
self-adjoint, but it can be extended to an operator D̄ such that D̄ = D̄∗, as will be further
discussed is Example 5.19.

The following useful properties of adjoint operators are worth noting:

i) (A+B)∗ = A∗ +B∗, for A,B ∈ B(H1, H2)

ii) (λA)∗ = λA∗, for A ∈ B(H1, H2)

iii) (BA)∗ = A∗B∗, for A ∈ B(H1, H2), B ∈ B(H2, H3)

iv) A∗∗ = A, for A ∈ B(H1, H2) ,

where H1, H2 and H3 are (separable) Hilbert spaces. Properties i) and ii) can be shown in
a way similar to the linearity of A∗ in the proof of Theorem 5.5 and are left for the reader.
Property iii) follows similarly by comparing

〈BAx|y 〉 = 〈x|(BA)∗y 〉

and
〈BAx|y 〉 = 〈B(Ax)|y 〉 = 〈Ax|B∗y 〉 = 〈x|A∗(B∗y) 〉 = 〈x|A∗B∗y 〉

for x ∈ H1, y ∈ H3.
By complex conjugation of both sides of (5.42) one gets

〈A∗y|x 〉 = 〈 y|Ax 〉 , y ∈ H2 , x ∈ H1 .

Comparison with (5.42) finally shows that A∗∗ = A.

We end this section with a brief discussion of adjoints of unbounded operators. With
the exception of the operator D in Example 5.3 d) we have up to now discussed operators
defined everywhere on a Hilbert space. An operator A from H1 into H2 is called densely
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defined if its domain of definition D(A) is a subspace whose closure equals H1 or, equiv-
alently, whose orthogonal complement is {0}. If A is densely defined and bounded, i. e.,
fulfills (5.2) for all x ∈ D(A), then it can be extended uniquely to a bounded operator
defined everywhere on H1, see Exercise 5.9. In this case the adjoint of A can be defined
simply as the adjoint of its extension to H1. For unbounded densely defined operators, such
as D in Example 5.3 d), this method is not applicable. Nevertheless, a proper definition of
the adjoint A∗ can be given as follows.

As the domain of A∗ one takes the subspace

D(A∗) = {y ∈ H2 | x→ 〈 y|Ax 〉 is a bounded linear form on D(A)} .

If y ∈ D(A∗) the extension result quoted above implies that the linear form x → 〈 y|Ax 〉
has a unique extension to a bounded linear form on H1. Hence, by Theorem 5.4, there
exists a unique vector A∗y in H1 such that

〈Ax|y 〉 = 〈x|A∗y 〉 , x ∈ D(A) . (5.47)

This defines A∗ on D(A∗). That D(A∗) is a subspace of H2 and that A∗ is linear on this
subspace is shown in the same way as for bounded operators. Note that it may happen
that A∗ is not densely defined.

With this definition a densely defined operator A from H into H is called self-adjoint
if A = A∗, that is if

D(A∗) = D(A) and 〈Ax|y 〉 = 〈x|Ay 〉 for x, y ∈ D(A) .

As seen in Example 5.6 e) the operator D with domain span{en | n ∈ Z} satisfies the
latter of these requirements, which is expressed by saying that D is symmetric. However, it
does not satisfy the first requirement concerning domains. Although D is densely defined,
since {en | n ∈ Z} is an orthonormal basis for L2([−π, π]), the domain of D∗ is bigger as
will be further discussed in Example 5.19. Thus D is symmetric but not self-adjoint.

5.4 Diagonalizable operators and self-adjoint operators.

This section is devoted to a discussion of some basic notions and results relating to diag-
onalizable operators on separable Hilbert spaces. A rather straight-forward generalization
of the finite dimensional version of the notion of a diagonalizable operator discussed in Sec-
tions 5.1 and 5.2 will be used. It is a basic result from linear algebra that every self-adjoint
operator on a finite dimensional real Hilbert space is diagonalizable. The corresponding
result for the infinite dimensional case (the spectral theorem) requires a further extension
of the notion of a diagonalizable operator than we offer in these notes. In technical terms
the main focus will be on operators with discrete spectrum (consisting of the eigenvalues
of the operator), although examples of operators with continuous spectrum will also occur.

Definition 5.7. Let A ∈ B(H). A scalar λ ∈ L is called an eigenvalue of A, if there exists
a vector x 6= 0 in H, such that

Ax = λx . (5.48)
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A vector x 6= 0 fulfilling (5.48) is called an eigenvector for A corresponding to the eigenvalue
λ, and the subspace of all vectors fulfilling (5.48) (that is the set of eigenvectors and the
null-vector) is called the eigenspace corresponding to λ and is denoted by Eλ(A).

The kernel or null-space N(A) for an operator A ∈ B(H1, H2) is defined as

N(A) = {x ∈ H1 | Ax = 0} .

which is the same thing as E0(A). By continuity of A it follows that N(A) = A−1({0}) is
a closed subspace of H1, since {0} is a closed subspace of H2. This also follows from

N(A) = (A∗(H2))⊥ ,

which is a direct consequence of the definition of A∗.
In particular, it follows that λ ∈ L is an eigenvalue of A ∈ B(H) if and only if

N(A− λ) 6= {0} ,

and the eigenspace Eλ(A) = N(A− λ) is a closed subspace of H.

Definition 5.8. An operator A ∈ B(H) is called (unitarily) diagonalizable, if there exists
an orthonormal basis (fi)i∈N for H consisting of eigenvectors for A. Equivalently, this
means that A is represented by a diagonal matrix w. r. t. (fi)i∈N, which can be seen as in
the previous section. The basis (fi)i∈N is then said to diagonalize A.

The following characterization of bounded diagonalizable operators is useful.

Theorem 5.9. An operator A ∈ B(H) is diagonalizable if and only if there exists an
orthonormal basis (fi)i∈N for H and a bounded sequence (λi)i∈N in L, such that

Ax =
∞∑
i=1

λi〈 fi|x 〉fi , x ∈ H . (5.49)

In that case λ1, λ2, λ3, . . . are exactly the eigenvalues of A (possibly with repetitions) and
the eigenspace corresponding to a given eigenvalue λ ∈ L is given by

Eλ(A) = span{fi | i ∈ N , λi = λ} . (5.50)

Moreover,
‖A‖ = sup{|λi| | i ∈ N} . (5.51)

Proof. Suppose A ∈ B(H) is diagonalizable and let (fi)i∈N be an orthonormal basis consist-

ing of eigenvectors for A, such that Afi = λifi, i ∈ N. The image of x =
∞∑
i=1
〈 fi|x 〉fi ∈ H

is then given by (see (5.26))

Ax =

∞∑
i=1

〈 fi|x 〉Afi =

∞∑
i=1

λi〈 fi|x 〉fi
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as desired. Since
|λi| = ‖λifi‖ = ‖Afi‖ ≤ ‖A‖ ‖fi‖ = ‖A‖

for i ∈ N, it follows that
sup{|λi| | i ∈ N} ≤ ‖A‖ . (5.52)

Assume, conversely, that A is given by (5.49), where (fi)i∈N is an orthonormal basis,
and the sequence (λi)i∈N is bounded, such that

sup{|λi| | i ∈ N} ≡M < +∞ .

Then

‖Ax‖2 =
∞∑
i=1

|λi〈 fi|x 〉|2 ≤M2‖x‖2 ,

which shows that
‖A‖ ≤M = sup{|λi| | i ∈ N} . (5.53)

Inserting x = fi into (5.49) it is seen that

Afi = λifi .

Hence λ1, λ2, . . . are eigenvalues of A.
That there are no other eigenvalues is seen as follows. Suppose

Ax = λx ,

where λ ∈ L and x ∈ H \ {0}. Then

∞∑
i=1

λi〈 fi|x 〉fi = λx =
∞∑
i=1

λ〈 fi|x 〉fi ,

which implies
λi〈 fi|x 〉 = λ〈 fi|x 〉 for all i ∈ N .

Since x 6= 0 there exists i0 ∈ N, such that 〈 fi0 |x 〉 6= 0, and this implies λ = λi0 and that
〈 fi|x 〉 = 0 for λi 6= λi0 . This proves (5.50).

Finally, (5.51) follows from (5.52) and (5.53).

Example 5.10. Let H0 be a closed subspace of a Hilbert space H and let Px denote
the orthogonal projection of a vector x ∈ H onto H0, that is Px ∈ H0 is determined by
x − Px = (1 − P )x ∈ H⊥0 . It is clear from this characterization of Px that it depends
linearly on x, and hence P is a linear operator on H called the orthogonal projection onto
H0. An expression for Px is obtained from Theorem 4.16 or equation (4.31) as

Px =
∑
i∈I
〈 fi|x 〉fi , x ∈ H , (5.54)

where (fi)i∈I is any orthonormal basis for H0.
Letting (fj)j∈J be an orthonormal basis for H⊥0 the two orthonormal bases together

form an orthonormal basis (fi)i∈I∪J for H by Proposition 4.19 (and since H is separable
it can be assumed that I ∪ J = N). Together with (5.54) this shows that P has the form
(5.49) with λi = 1 for i ∈ I and λi = 0 for i ∈ J . In particular, the only eigenvalues of
P are 1 and 0, provided I 6= ∅ and J 6= ∅, and the corresponding eigenspaces are H0 and
H⊥0 , respectively. (Clearly, P = 0 if I = ∅ whereas P = 1 for J = ∅).
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Returning to the diagonalizable operator A given by (5.49) and noting that the orthog-
onal projection Pi onto the subspace Hi = span{fi} is given by

Pix = 〈 fi|x 〉fi , x ∈ H , (5.55)

it follows that the representation (5.49) of A can be rewritten in the form

Ax =
∞∑
i=1

λiPix , x ∈ H , (5.56)

which is expressed by writing

A =

∞∑
i=1

λiPi . (5.57)

It is worth noting that the series (5.57) does generally not converge w. r. t. the norm on
B(H), i. e. the operator norm. In fact, this is the case only if λi → 0 for i→∞. Otherwise,
(5.57) only makes sense when interpreted as (5.56).

The operator A given by (5.57) is represented by the diagonal matrix ∆(λ1, λ2, . . . )
w. r. t. (fi)i∈N. Hence the adjoint operator A∗ is represented by the diagonal matrix
∆(λ1, λ2, . . . ) w. r. t. (fi)i∈N. That is

A∗ =
∞∑
i=1

λiPi . (5.58)

In particular, A is self-adjoint if and only if its eigenvalues are real. This is e. g. the case
for orthogonal projections, cf. Example 5.10.

At this point a brief remark on Dirac notation is appropriate. Given a ket-vector |x〉
and a bra-vector 〈y|, the linear operator on H defined by

|z〉 → 〈y|z〉|x〉

is naturally denoted by |x〉〈y|. In particular, if |e〉 is a unit vector in H, the orthogonal
projection onto the subspace spanned by |e〉 is |e〉〈e|. More generally, if A is a diagonalizable
operator, the form (5.49) is written in Dirac notation as

A =
∞∑
i=1

λi|fi〉〈fi| .

As a special case, the expression (5.54) for the orthogonal projection P onto a closed
subspace H0 of H takes the form

P =
∞∑
i=1

|fi〉〈fi| ,

where (fi)i∈N is an arbitrary orthonormal basis for H0. When applied to |x〉, this is just
another way of expressing formula (4.31) for the orthogonal projection:

P |x〉 =

∞∑
i=1

|fi〉〈fi|x〉 .
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If the eigenvalues λi are all different in the preceding discussion, in particular in (5.57),
then Pi is the orthogonal projection onto the eigenspace Eλi(A), which in this case is
one-dimensional. This latter property is also expressed by saying that the eigenvalues are
non-degenerate. In general, however, the eigenvalues are not non-degenerate and it may
be advantageous to combine the terms in (5.57) corresponding to identical eigenvalues into
one term. This can be done by letting µi, i = 1, 2, 3, . . . denote the sequence of different
eigenvalues of A in some order and defining Qi to be the orthogonal projection onto the
eigenspace Eµi(A). Using Proposition 4.19 it follows by similar arguments as given above
that

A =
∑
i

µiQi and
∑
i

Qi = 1 , (5.59)

when interpreted in the same fashion as equation (5.57). The orthogonal projections Qi
are called the spectral projections of A.

In the remainder of this section various versions (but not the most general one) of the
so-called spectral theorem will be discussed, Its main virtue is to ensure diagonalizability
of important classes of operators, of which special focus will be on self-adjoint operators.

That the eigenvalues of a self-adjoint operator are real, holds generally (and not only for
diagonalizable operators). Likewise, the eigenspaces corresponding to different eigenvalues
are orthogonal, which for diagonalizable operators is evident from (5.50) in Theorem 5.9.
These facts are contained in the following lemma.

Lemma 5.11. Let A ∈ B(H) be self-adjoint. Then

a) Every eigenvalue of A is real.

b) If λ1 and λ2 are two different eigenvalues of A, then the two corresponding eigenspaces
are orthogonal.

c) If H0 is a subspace of H such that A H0 ⊆ H0, then A(H⊥0 ) ⊆ H⊥0 .

Proof. a) Assume Ax = λx, x ∈ H \ {0}. Then

λ‖x‖2 = 〈x|λx 〉 = 〈x|Ax 〉 = 〈Ax|x 〉 = 〈λx|x 〉 = λ‖x‖2 ,

which implies that λ = λ, since ‖x‖ 6= 0.
b) Assume Ax1 = λ1x1 and Ax2 = λ2x2. Since λ1, λ2 ∈ R by a) it follows that

(λ1 − λ2)〈x1|x2 〉 = 〈λ1x1|x2 〉 − 〈x1|λ2x2 〉
= 〈Ax1|x2 〉 − 〈x1|Ax2 〉
= 〈x1|Ax2 〉 − 〈x1|Ax2 〉 = 0 ,

which gives 〈x1|x2 〉 = 0, since λ1 − λ2 6= 0. Hence x1 ⊥ x2.
c) Let x ∈ H⊥0 and y ∈ H0 be arbitrary. Then

〈Ax|y 〉 = 〈x|Ay 〉 = 0

since Ay ∈ H0. This shows that Ax ∈ H⊥0 , and the claim is proven.
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A subspace H0 as in Lemma 5.11 c) is called an invariant subspace for A. Thus c) above
can be expressed by saying that the orthogonal complement to an invariant subspace for
a self-adjoint operator A ∈ B(H) is also an invariant subspace for A. If H0 is closed such
that H = H0 ⊕ H⊥0 , this means that A can be split into two operators A1 ∈ B(H0) and
A2 ∈ B(H⊥0 ) in the sense that

Ax = A1x1 +A2x2

for x = x1 + x2, x1 ∈ H0, x2 ∈ H⊥0 . We then write

A = A1 ⊕A2 .

These remarks suffice to prove the finite dimensional versions of the spectral theorem.

Theorem 5.12. Every self-adjoint operator A : H → H on a finite dimensional complex
Hilbert space H is diagonalizable.

Proof. Choose an arbitrary orthonormal basis α for H and let A
=

be the matrix representing

A w. r. t. α. By the fundamental theorem of algebra the characteristic polynomial

p(λ) = det(A
=
− λI)

has a root, and hence A has an eigenvalue. Call it λ1 and let e1 be a corresponding
normalised eigenvector. The subspace H0 = span{e1} is then clearly invariant under A.
Writing accordingly A = A1 ⊕A2 as above, it is clear that A2 is a self-adjoint operator on
the subspace H⊥0 of one dimension lower than H. Hence the proof can be completed by
induction.

The assumption that H is a complex vector space is essential in the argument above,
since the fundamental theorem of calculus only garantees the existence of complex roots.
However, by Lemma 5.12 a) the roots are real for any symmetric real matrix and the
argument carries through also in the real case. For completeness, we state the result in the
following theorem.

Theorem 5.13. Every self-adjoint operator A on a finite dimensional real Hilbert space
H is diagonalizable.

Theorem 5.12 is easily generalizable to so-called normal operators, i. e., operators com-
muting with their adjoint.

Theorem 5.14. Suppose A is an operator on a finite dimensional complex Hilbert space
such that

AA∗ = A∗A

Then A is diagonalizable.
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Proof. Write

A = U + iV where U =
1

2
(A+A∗) and V =

1

2i
(A−A∗) .

Then U and V are self-adjoint and they commute,

UV = V U ,

since A and A∗ commute. By Theorem 5.12, U is diagonalizable, and we can write

U = λ1P1 + · · ·+ λkPk ,

where λ1, . . . , λk are the different eigenvalues of U and Pi is the orthogonal projection onto
Eλi(U). Since V commutes with U it follows that each eigenspace Eλi(U) is invariant
under V (see Exercise 5.10), and evidently V is self-adjoint when restricted to this sub-
space. By Theorem 5.12 there exists an orthonormal basis of eigenvectors for V for each
of the eigenspaces Eλi(U). Together these bases form an orthonormal basis consisting of
eigenvectors for both U and V and hence they are also eigenvectors for A.

Since unitary operators clearly are normal the theorem can be applied to conclude that:

Corollary 5.15. Any unitary operator on a finite dimensional complex Hilbert space is
diagonalizable.

It is worth noting that the corresponding result does not hold for orthogonal operators
on a real Hilbert space. For instance, a rotation in the plane through an angle different
from 0 and π has no eigenvalues at all (see also Example 5.2 b)).

An example of an infinite dimensional analogue of Theorems 5.12 and 5.13 is the fol-
lowing spectral theorem for Hilbert-Schmidt operators, which turns out to by quite usefull
in various contexts, but whose proof is beyond the scope of these notes. Before stating the
theorem let us define the class of operators in question.

Definition 5.16. An operator A : H → H on a Hilbert space H is said to be a Hilbert-
Schmidt operator if ∑

i∈N
‖Aei‖2 <∞

for any orthonormal basis (ei)i∈N for H.

It can be shown that if the condition holds for one orthonormal basis then it holds for
all orthonormal bases. Important examples of Hilbert-Schmidt operators are provided by
the integral opertors as defined in Example 5.3 e) for which one can show that

∑
i∈N
‖Aei‖2 =

∫ b

a

∫ b

a
|ϕ(x, y)|2dxdy .

The announced spectral theorem can then be formulated as follows.

Theorem 5.17. Every self-adjoint Hilbert-Schmidt operator A on a separable Hilbert space
H is diagonalizable.



Chap. 5 Operators on Hilbert Spaces 130

The difficult step in the proof of this result is to establish the existence of an eigenvalue.
Having done so, the proof can be completed in a similar way as in the finite dimensional
case. Details of the proof can be found in e. g. [6].

We end this section by two examples of which the first contains some further discussion
of multiplication operators providing prototypes of self-adjoint operators that cannot be
diagonalized in the sense of Definition 5.8, and the second one discusses self-adjointness of
the unbounded differential operator of Example 5.3 d).

Example 5.18. Let H = L2([0, 3]), and let f : [0, 3]→ R denote the function

f(x) = x , x ∈ [0, 3] .

Since f is real, Mf is a self-adjoint operator by Example 5.6 b).
The operator Mf has no eigenvalues, which is seen as follows. Assume Mfg = λg for

some λ ∈ R and some function g ∈ H. This means that (f − λ)g = 0 almost everywhere.
But since f − λ is 6= 0 almost everywhere, it follows that g = 0 almost everywhere, that is
g = 0 ∈ H, which shows that λ is not an eigenvalue.

In particular, it follows that Mf is not diagonalizable in the sense of Definition 5.8.
Let us next consider the multiplication operatorMf1 defined by the function f1 : [0, 3]→

R, where

f1(x) =


x for 0 6 x 6 1

1 for 1 6 x 6 2

x− 1 for 2 6 x 6 3 .

Note that f1 is constant and equal to 1 on the interval [1, 2] and strictly increasing outside
this interval. Since f1 is real Mf1 is self-adjoint. We claim that 1 is the only eigenvalue of
Mf1 . Indeed, if λ 6= 1 then f1 − λ 6= 0 almost everywhere in [0, 3], and it follows as above
that λ is not an eigenvalue. On the other hand, f1 − 1 = 0 on [1, 2] and f1 − 1 6= 0 outside
[1, 2]. It follows that Mf1g = g, if and only if g = 0 almost everywhere in [0, 3] \ [1, 2]. The
set of functions fulfilling this requirement is an infinite dimensional closed subspace of H,
that can be identified with L2([1, 2]), and which hence equals the eigenspace E1(Mf1).

Clearly, Mf1 is not diagonalizable in the sense of Definition 5.8.

The primary lesson to be drawn from this example is that self-adjoint operators in gen-
eral are not diagonalizable in the sense of Definition 5.8. However, as mentioned previously,
it is a principal result of analysis, called the spectral theorem for self-adjoint operators, that
they are diagonalizable in a generalized sense. It is outside the scope of this course to for-
mulate and even less to prove this result. Interested readers are referred to e. g. [13].

Example 5.19. Consider again the operator D defined in Example 5.3 d). Keeping the
same notation, it follows from equation (5.32) that D is given on the domain span{en | n ∈
Z} by

Df =
∑
n∈Z

n〈 en|f 〉 en . (5.60)
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This formula can be used to define an extension D̄ of D by extending the domain of
definition to the largest subspace of L2([−π, π]) on which the right hand side is convergent,
i. e., to the set

D(D̄) = {f ∈ L2([0, 2π]) |
∑
n∈Z

n2|〈 en|f 〉|2 <∞} ,

on which D̄f is given by the right hand side of (5.60). Defining the adjoint D̄∗ as at the
end of Section 5.3 it is then not difficult to show that D̄ is a self-adjoint operator, see
Exercise 5.17.

5.5 The Fourier transformation as a unitary operator.

The Fourier transformation is an indispensable tool in both physics and mathematics. In
this section we give a brief introduction to the Fourier transformation in one variable with
special emphasis on its interpretation as an operator on L2(R). The discussion will be
further extended to several variables in Chapter 6.

First, we need a generalization of the notion of a unitary operator as defined in Sec-
tion 5.2 in the finite dimensional case.

Definition 5.20. Let H1 and H2 be Hilbert spaces. An operator U ∈ B(H1, H2) is unitary
if it is bijective and

U−1 = U∗

or, equivalently, if
U∗U = idH1 and UU∗ = idH2 .

Note that, contrary to the finite dimensional case, the relation U∗U = idH1 does not
imply the relation UU∗ = idH2 , or vice versa, if H1 and H2 are of infinite dimension, see
Exercise 5.8. As a consequence, Theorem 5.1 needs to be modified as follows in order to
cover the infinite dimensional case.

Theorem 5.21. Let U : H1 → H2 be a bounded linear operator. The following four
statements are equivalent.

a) U is unitary.

b) U is surjective and preserves the inner product.

c) U is surjective and isometric.

d) U maps an orthonormal basis for H1 into an orthonormal basis for H2.

The proof is identical to that of Theorem 5.1 with minor modifications and is left to
the reader.

Example 5.22. Let H be a Hilbert space with orthonormal basis (ei)i∈N. The mapping
C : H → `2(N) which maps the vector x to its coordinate sequence w. r. t. (ei)i∈N, that is

Cx = (〈 ei|x 〉)i∈N
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is unitary. Indeed, C is an isometry by Parseval’s equality (4.27), and C is surjective
because, if a = (ai)i∈N ∈ `2(N) then Cx = a, where x =

∑∞
i=1 aiei.

Thus every separable Hilbert space can be mapped onto `2(N) by a unitary operator.
We say that every separable Hilbert space is unitarily isomorphic to `2(N).

The Fourier transformation provides an additional, highly non-trivial, example of a
unitary operator, which we turn to now without giving detailed proofs. For a full account
the reader is referred to volume II of [13].

If f is an integrable function on R, its Fourier transform f̂ is the function on R defined
by

f̂(p) =
1√
2π

∫
R
f(x)e−ipx dx , p ∈ R . (5.61)

The first fundamental result about the Fourier transform is that, if f is a C∞ function
vanishing outside some bounded interval, then f̂ is a C∞ function that is both integrable
and square integrable, and ∫

R
|f(x)|2 dx =

∫
R
|f̂(p)|2 dp . (5.62)

It is clear that the set C∞0 (R) of C∞ functions that vanish outside some bounded interval is
a subspace of L2(R) and that the mapping f → f̂ is linear on this subspace. As mentioned
in Example 4.12 b), the closure of C∞0 (R) equals L2(R). Hence, by the extension result of
Exercise 5.9, the mapping f → f̂ has a unique extension to an operator F : L2(R)→ L2(R),
which moreover is isometric by (5.62). It is called the Fourier transformation on L2(R).

The second result of fundamental importance is the inversion theorem, which states
that for f ∈ C∞0 (R) the identity

f(x) =
1√
2π

∫
R
f̂(p)eipx dp , x ∈ R (5.63)

holds. In operator language this equation can also be written as

F ◦ F̄(f) = f , (5.64)

where F̄ is defined by the same procedure as F except that p is replaced by −p in (5.61),
i. e.

F̄(f)(p) = F(f)(−p) .
By continuity of F and F̄ equation (5.64) holds for all f ∈ L2(R). In particular, F is
surjective and by Theorem 5.20 it follows that F is a unitary operator on L2(R), whose
adjoint is F̄ .

The outcome of the preceding discussion can be stated as the following main result of
this section.

Theorem 5.23. The Fourier transformation F defined for f ∈ C∞0 (R) by

F(f)(p) =
1√
2π

∫
R
f(x)e−ipx dx , p ∈ R ,

extends uniquely to a unitary operator on L2(R), whose adjoint is given by

F∗(f)(p) = F(f)(−p) , p ∈ R .
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Exercises

Exercise 5.1. Let H be a 3-dimensional complex Hilbert space and let A : H → H be
the operator represented by the matrix2 3 + i 2i

0 2 0
i 1− i 2


w. r. t. an orthonormal basis α = (e1, e2, e3). Find the matrix that represents A∗ w. r. t. α,
and determine A∗(e1 + ie2 − e3).

Exercise 5.2. Let A be the linear operator on C3 represented by the matrix2 0 −i
0 2 0
i 0 2


w. r. t. the canonical basis for C3. Show that A is self-adjoint, and find its eigenvalues as
well as an orthonormal basis for C3 which diagonalizes A.

Exercise 5.3. Let H and α be as in Exercise 5.1 and let U be the linear operator on H
represented by the matrix 1

6 + i
2

1
6 −

i
2 −2

3
1
6 −

i
2

1
6 + i

2 −2
3

−2
3 −2

3 −1
3

 .

w. r. t. α.
Show that U is unitary.
Show that 1, −1, i are eigenvalues of U , and find an orthonormal basis for H which

diagonalizes U .

Exercise 5.4. Let A : E → E′ be a bounded operator between inner product spaces as
defined by equation (5.2).

Show that the norm ‖A‖ is given by (5.3). Show also the following properties of the
norm:

‖A‖ > 0 if A 6= 0 ,

‖λA‖ = |λ|‖A‖ ,
‖A+B‖ 6 ‖A‖+ ‖B‖ ,
‖CA‖ 6 ‖C‖‖A‖ ,

where λ ∈ L and the operators B : E → E′, C : E′ → E′′ are bounded (E′′ being an inner
product space).

Exercise 5.5. Show that a linear operator A : E → E′ between inner product spaces is
bounded if and only if it is continuous.
Hint. Show first by using linearity that A is continuous if and only if it is continuous at 0.
To show that continuity implies boundedness it may be useful to argue by contradiction.
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Exercise 5.6. Let H be a finite dimensional Hilbert space over L and define the following
three subsets of operators on H:

GL(H) = {A ∈ B(H) | A is invertible, i.e. A is bijective} ,
O(H) = {O ∈ B(H) | O is orthogonal} , if L = R ,
U(H) = {U ∈ B(H) | U is unitary} , if L = C .

Show that

a) If A,B ∈ GL(H) then AB ∈ GL(H) and A−1 ∈ GL(H),

b) O(H) ⊆ GL(H) and U(H) ⊆ GL(H),

c) If A,B ∈ O(H) then AB ∈ O(H) and A−1 ∈ O(H), and similarly if O(H) is replaced
by U(H).

Show likewise the corresponding statements for GL(n), O(n) and U(n), denoting the sets
of invertible, orthogonal and unitary n× n-matrices, respectively.

GL(H), O(H) and U(H) are called the general linear, the orthogonal and the unitary
group over H, respectively.

Exercise 5.7. Show that the norm of the multiplication operator in Example 5.3 b) is
given by

‖Mf‖ = ‖f‖u .

Exercise 5.8. Let H be an infinite dimensional Hilbert space and let (ei)i∈N be an ortho-
normal basis for H.

Show that there exists exactly one operator T ∈ B(H) such that

Tei = ei+1 , i ∈ N ,

and that T is an isometry, that is ‖Tx‖ = ‖x‖, x ∈ H.
Find T ∗ and show that

T ∗T = 1 and TT ∗ 6= 1 .

Exercise 5.9. Let A be a densely defined operator from H1 to H2 and assume A is
bounded.

Show that A has a unique extension to a bounded operator Ā defined everywhere on
H1 in the following two steps.

a) Since A is densely defined there exists for every x ∈ H1 a sequence (xi) in D(A) that
converges to x. Show that the sequence (Axi) is convergent in H2 and that its limit
only depends on x and not on the choice of sequence (xi) converging to x.

b) With notation as in a) set
Āx = lim

i→∞
Axi

and show that Ā is a bounded linear operator that extends A.
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Exercise 5.10. Assume that U and V are two commuting bounded operators on a Hilbert
space H. Show that each eigenspace Eλ(U) is invariant under V , i. e., if x is an eigenvector
for U with eigenvalue λ or equals 0, then the same holds for V x.

Exercise 5.11. Let H be a Hilbert space and let f be a function given by a power series

f(z) =
∞∑
n=0

cnz
n , |z| < ρ ,

where ρ > 0 is the corresponding radius of convergence2. Show that for an operator
A ∈ B(H) with ‖A‖ < ρ the series

∞∑
n=0

|cn| ‖An‖

is convergent (in R) and that the series

∞∑
n=0

cnA
nx

is convergent in H for all x ∈ H. The sum is then denoted by f(A)x, that is

f(A)x =
∞∑
n=0

cnA
nx .

Verify that f(A) is a bounded linear operator on H.
Assume now that H is finite dimensional and that α = (e1, . . . , en) is an orthonormal

basis for H, and let A
=

be the matrix representing A w. r. t. α. Show that the series

∞∑
n=0

cn(A
=

n)ij

is convergent in C for all 1 ≤ i, j ≤ n, and that the so defined matrix f(A
=

), where

(f(A
=

))ij =

∞∑
n=0

cn(A
=

n)ij ,

represents the operator f(A) w. r. t. α.

Exercise 5.12. Let A and f be given as in Exercise 5.11. Show that if A is diagonalizable,
then f(A) is also diagonalizable and that

f(A) =
∑
i∈I

f(λi)Pi ,

if A is given by (5.57).

2A series of the form
∑∞
n=0 cnz

n, where cn are complex numbers and z is a complex variable is called a
power series. There exists a number ρ > 0 called the radius of convergence of the power series such that
the series is absolutely convergent for |z| < ρ and is divergent for |z| > ρ.
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Exercise 5.13. Let H be a complex Hilbert space and let A ∈ B(H). Define eA as in
Exercise 5.11 by using the power series for the exponential function. Show that

e(t+s)A = etAesA , s, t ∈ C ,

and conclude that eA is invertible, and that

(eA)−1 = e−A .

Does the identity eA+B = eAeB hold for arbitrary A,B ∈ B(H) ?

Exercise 5.14. Let H be a Hilbert space. A function x : R → H with values in H is
called differentiable at t0 ∈ R if there exists a vector a ∈ H, such that

‖(t− t0)−1(x(t)− x(t0))− a‖ → 0 as t→ t0 .

As usual, the vector a is then denoted by x′(t0) or by dx
dt (t0):

lim
t→t0

(t− t0)−1(x(t)− x(t0)) = x′(t0) in H .

Show, using notation as in Exercise 5.13 that the function y(t) = etAx is differentiable
on R for all x ∈ H and fulfills

dy

dt
= Ay .

In case A is self-adjoint this differential equation is a special case of the Schrödinger
equation describing the time-evolution of a quantum mechanical system as will be discussed
in more detail in Chapter 6.

Exercise 5.15. Let σj , j = 1, 2, 3 denote the so-called Pauli matrices given by

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

Verify that

σ2
j =

(
1 0
0 1

)
, j = 1, 2, 3 ,

and use this to calculate eiθσj defined as in Exercises 5.11 and 5.13 for θ ∈ C and j = 1, 2, 3.

Exercise 5.16. Show that if P ∈ B(H) fulfills P ∗ = P and P 2 = P , then P is the
orthogonal projection onto X = P (H).

Exercise 5.17. Let H be a Hilbert space with orthonormal basis (ei)i∈N and let (λi)i∈N
be a sequence in L, not necessarily bounded.

a) Show that the equation

Ax =
∞∑
i=1

λi〈 ei|x 〉ei (5.65)

defines a densely defined operator with domain

D(A) = {x ∈ H |
∞∑
i=1

|λi〈 ei|x 〉|2 <∞} .
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b) Show that the adjoint of the operator A in a) has the same domain of definition as
A and is given by the formula

A∗x =
∞∑
i=1

λi〈 ei|x 〉ei . (5.66)

c) Deduce from a) and b) that A is self-adjoint if and only if λi is real for all i ∈ N.

Exercise 5.18.

a) Find the Fourier transform of the function

g(x) =

{
1, x ∈ [0, 1]
0, x 6∈ [0, 1] .

b) Show for any integrable function f on R that the inequality

|f̂(p)| 6
∫
R
|f(x)|dx

holds for all p ∈ R.

c) Show that if the function f on R is integrable, real and fulfills f(x) = f(−x) for all
x ∈ R, then f̂ is real, and if moreover f(x) > 0 , x ∈ R, then f̂ assumes its maximal
value at p = 0. What is this value?

Exercise 5.19. Let f : R → C be integrable and define the function fa by fa(x) =
f(x− a) , x ∈ R. What is f̂a(p) expressed in terms of f̂?

Exercise 5.20. Let H1 and H2 be two Hilbert spaces with inner products denoted by
〈 · | · 〉1 and 〈 · | · 〉2, respectively. The Cartesian product H1 × H2 is then a vector space
with addition and scalar multiplication defined by

(u1, u2) + (v1, v2) = (u1 + v1, u2 + v2) , λ(u1, u2) = (λu1, λu2)

for u1, v1 ∈ H1, u2, v2 ∈ H2 and λ ∈ L.

a) Show that an inner product is defined on H1 ×H2 by

〈 (u1, u2)|(v1, v2) 〉 = 〈u1|v1 〉1 + 〈u2|v2 〉2 , u1, v1 ∈ H1, u2, v2 ∈ H2 ,

and that with this inner product it is a Hilbert space.

b) Show that in the Hilbert space H1 ×H2 from a) it holds that

(H1 × {0})⊥ = {0} ×H2 .

The subspace H1 × {0} can naturally be identified with H1 and similarly {0} × H2 can
be identified with H2. Recalling the definition of direct sum in Section 4.5 the previous
equality can equivalently be stated as

H1 ×H2 = H1 ⊕H2 .

It is therefore customary to use the notation u1 ⊕ u2 for (u1, u2).
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Exercise 5.21. A linear map A : D → H from a subspace D of a Hilbert space H to the
Hilbert space itself is said to be a closed operator if its graph

G(A) = {u⊕Au | u ∈ D}

is a closed subspace of H ⊗H.

a) Show that a bounded operator A ∈ B(H) is a closed operator.

b) Let (en)n∈N be an orthonormal basis for H and (λn)n∈N be a sequence of complex
numbers. Consider the mapping A : D → H given by

D =
{
x ∈ H

∣∣∣ ∞∑
n=1

|λn〈 en|x 〉|2 <∞
}
,

Ax =

∞∑
n=1

λn〈 en|x 〉en, for x ∈ D .

Show that A is a closed operator.

Exercise 5.22. Let D̄ be the unbounded operator on H = L2([−π, π]) defined in Exam-
ple 5.19 and let (en)n∈Z denote the orthonormal basis for H given by

a) Find the Fourier coefficients 〈 en|g 〉 for the function g(θ) = θ, θ ∈ [−π, π], for all
n ∈ Z and show that g ∈ C1([−π, π]) but g 6∈ D(D̄).

b) Use the result in a) and Parseval’s identity to show that the infinite series
∑∞

n=1 n
−2

is convergent and determine its value.

c) Show that the function h(θ) = |θ|, θ ∈ [−π, π], satisfies

h ∈ D(D̄), h 6∈ C1([−π, π]).

d) Let
C1

=([−π, π]) = {f ∈ C1[−π, π] | f(−π) = f(π)} ,

and show by integration by parts that if f ∈ C1
=([−π, π]) then

〈 en| − if ′ 〉 = n〈 en|f 〉 .

e) Use the result of d) to show that C1
=([−π, π]) ⊆ D(D̄) and that D̄f = −if ′ for all

f ∈ C1
=([−π, π]).



Chapter 6

Quantum mechanics

In this chapter we use the mathematical formalism developed in the two preceding chapters
to first set up the fundamental principles of Quantum Mechanics and second to analyse
in some detail some rather simple concrete systems. Moreover, some general phenomena
implied by the formalism and its interpretation, such as the implementation of symmetries
and their relation to conservation laws, will be discussed.

6.1 The quantum mechanical formalism

The realization, by Heisenberg, that the position and momentum of a quantum mechanical
particle cannot be measured simultaneously renders phase space as introduced in Chap-
ters 1 and 3 inappropriate for quantum mechanics and inevitably implies that the notion
of state for a quantum mechanical system is profoundly different from that of classical
mechanics. We shall not in these notes try to derive the new mathematical formalism
needed for the description of quantum phenomena from more basic principles, but rather
be content with the fact that so far it has been found satisfactory and consistent with
observed phenomena ever since it was proposed by Dirac [5] and von Neumann [9] at the
beginning of the 1930’ies.

The formalism is conveniently described in the form of the following three postulates
concerning the state space, the observable quantities, and the time development of quantum
mechanical systems.

As we have seen in Chapter 3 the states of a classical mechanical system are labelled by
points in phase space. In quantum mechanics the states are vectors in a complex Hilbert
space.

Postulate 1. (The state space) The state space for a quantum mechanical system is a
Hilbert space H over the complex numbers, such that states are represented by non-zero
vectors, and two such vectors ϕ and ψ represent the same state if and only if ϕ = cψ
for some scalar c. By normalization one can also say that states are represented by unit
vectors in H, where two unit vectors represent the same state if they deviate by a phase
factor eiα.

139
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The vector space structure of H encompasses the so-called superposition principle: if ϕ
and ψ represent two different states of the system, then any non-trivial linear combination
c1ϕ + c2ψ is also a possible state of the system, called a superposition of the two states.
This principle, responsible for observed interference phenomena, has no analogue in classical
mechanics.

Postulate 2. (Observables) Measurable physical quantities associated with the system
are represented by self-adjoint (generally unbounded) operators on H, which are called the
observables of the system. If the observable A is diagonalizable with (different) eigenvalues
λ1, λ2, . . ., then these are the possible values that the corresponding physical quantity can
assume, and the probability of measuring the value λi in the normalized state ψ equals
〈ψ|Piψ 〉, where Pi is spectral projection onto the eigenspace Eλi(A).

A similar interpretation holds for more general observables. For instance, the possible
results of a measurement of a quantity represented by a general self-adjoint operator A
is an element in the spectrum of A defined as the set of λ ∈ C for which (A − λ) does
not have a bounded inverse. The reader is referred to Exercises 6.4 and 6.5 for details on
the spectra of diagonalizable operators and multiplication operators, respectively. For the
sake of simplicity the main focus in these notes will be on diagonalizable observables A, in
which case

A =
∞∑
i=1

λiPi , and
∞∑
i=1

Pi = 1 ,

as a consequence of (5.59) (with notation Pi instead of Qi for the spectral projections). A
normalized state ψ can be written as

ψ =
∞∑
i=1

Piψ ,

and since eigenspaces corresponding to different eigenvalues are orthogonal, Pythagoras’
theorem implies

∞∑
i=1

‖Piψ‖2 = ‖ψ‖2 = 1 , (6.1)

which shows that the numbers ‖Piψ‖2 can, indeed, be interpreted as probabilities. It is
part of the interpretation of the formalism that if a measurement of the observable A yields
the result λi, then the system is in the state Piψ after the performance of the measurement.

The average or expectation value of (the physical quantity represented by) A, when
repeatedly measured for the system prepared in the state ψ, equals

∞∑
i=1

λi|〈ei|ψ〉|2 = 〈ψ|A|ψ〉 ,

where the equality holds if ψ is in the domain D(A) of A. Here, the last expression for
the average value holds for arbitrary observables A, diagonalizable or not, as originally
proposed by Max Born in 1926.

As in the case of classical mechanics the notion of state can be extended by considering
probabilistic averages of states. Given states represented by normalized vectors ψ1, ψ2 . . .
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in H and real positive numbers (probabilities) λ1, λ2 . . . > 0 with
∑∞

j=1 λj = 1 one obtains
a probabilistically mixed state by defining the expectation value of any observable A to be

∞∑
j=1

λj〈ψj |Aψj〉.

A state of this form is called a mixed state whereas a state represented by just one normal-
ized ψ is called a pure state. Mixed states are relevant for quantum thermodynamics, for
instance as positive temperature states. They will not be discussed further here.

The third postulate deals with the time evolution of a quantum system, which will be
defined as an analogue of the flow on state space in classical mechanics. Clearly, it must be
assumed that time evolution preserves the total probability. In view of Postulates 1 and 2
this means that it must map unit vectors to unit vectors. Together with the requirement
of time reversibility it can be argued that time evolution must be represented by unitary
operators in the following sense.

Postulate 3 (The time evolution). The time evolution of the system from time t1 to time
t2 is given by a unitary operator

U(t2, t1) : H → H ,

in the sense that if the system is in the state ψ at time t1 then it will be in state U(t2, t1)ψ
at time t2, and the function U(t′, t) satisfies the flow relation

U(t3, t2)U(t2, t1) = U(t3, t1)

for all t1, t2, t3 ∈ R. Moreover, U(t′, t)ψ is assumed to be a continuous function from R×R
to H for all ψ ∈ H.

It is difficult to study this general type of time evolution and usually further assumptions
on differentiability are required. We will focus on evolutions that are time translation
invariant, which amounts to assuming that the evolution only depends on the time elapsed
and not on when it started, that is to say U(t2, t1) = U(t2 − t1, 0). Using the notation
U(t) = U(t, 0), Postulate 3 takes the following form in this case.

Postulate 3’. The time evolution of the system is given by a function U(t), t ∈ R,
taking values in the unitary operators on H such that a state represented by ψ ∈ H at
time t1 evolves to the state represented by U(t2 − t1)ψ at time t2. Moreover, U(t) forms a
one-parameter group in the sense that

U(t+ s) = U(t)U(s), U(0) = 1 (6.2)

for all t, s ∈ R, and it is strongly continuous, i. e., U(t)ψ is a continuous function of t for
all ψ ∈ H.

We state without proof the following important result on the structure of strongly
continuous unitary one-parameter groups.
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Theorem 6.1 (Stone’s Theorem). Let U(t), t ∈ R, be a strongly continuous unitary one-
parameter group on a Hilbert space H. Then1

D = {φ ∈ H | U(t)φ is differentiable at t = 0}

is a dense subspace of H and the operator A : D → H defined by

Aψ = i
dU(t)ψ

dt

∣∣∣
t=0

, ψ ∈ D

is a self-adjoint (generally unbounded) operator called the generator of the one-parameter
group.

Conversely, given a (densely defined) self-adjoint operator A : D(A) → H then there
exists a strongly continuous unitary one-parameter group such that A is its generator.

This result leads directly to the quantum analogue of the Hamiltonian in classical
mechanics.

Definition 6.2. If A is the generator of the time evolution of Postulate 3’ then H = ~A,
where ~ = 1.055×10−34Js is the reduced Planck constant, is called the Hamilton operator
or Hamiltonian of the system, that is

Hψ = i~
dU(t)ψ

dt

∣∣∣
t=0

, ψ ∈ D(H). (6.3)

The physical quantity represented by the Hamiltonian is by definition the total energy of
the system.

Assuming that the relation (6.3) holds, then ψ(t) = U(t)ψ fulfills

ψ(t)− ψ(t0) = U(t0)(U(t− t0)ψ − ψ) = (U(t− t0)− 1)U(t0)ψ .

The first equality immediately shows that ψ(t) is differentiable at t = t0. Using the second
equality, it then follows that U(t0)ψ ∈ D(H) and that

i~
dψ(t)

dt

∣∣∣
t=t0

= U(t0)Hψ = HU(t0)ψ = Hψ(t) .

Thus, ψ(t) satisfies the Schrödinger equation

i~
dψ(t)

dt
= Hψ(t) . (6.4)

In quantum mechanics this equation is the analogue of Hamilton’s equations in classical
mechanics, and in both cases the Hamiltonian plays the role as generator of the time
evolution.

Although Stone’s Theorem will not be proven here the fact that the Hamiltonian H is
symmetric is a consequence of the following simple calculation for φ, ψ ∈ D(H):

0 =
d

dt
〈U(t)ϕ|U(t)ψ〉 =

i

~
(〈HU(t)ϕ|U(t)ψ〉 − 〈U(t)ϕ|HU(t)ψ〉) .

1See Exercise 5.14 for the definition of differentiability of vector valued functions
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Setting t = 0 then gives
〈Hϕ|ψ〉 = 〈ϕ|Hψ〉 ,

showing that H is symmetric.
It is worth noting that the previous calculation still holds if ψ(t) is a solution of the

Schrödinger equation with H selfadjoint and time-dependent. It hence shows that any such
solution has constant norm and so defines a unitary time evolution provided a solution
exists for any initial value ψ0 ∈ H. This would then correspond to a general unitary time
evolution U(t′, t) as described in Postulate 3.

If H is time independent the corresponding unitary one-parameter group is written as

U(t) = e−
i
~Ht . (6.5)

In case H is bounded, the right hand side can be defined as a unitary one-parameter group
with generator − i

~H in terms of the power series expansion of the exponential function
as demonstrated in Exercises 5.13 and 5.14. If H is unbounded the situation is more
complicated and the standard way to define the right hand side of (6.5) is by use of the
general spectral theorem for self-adjoint operators mentioned towards the end of Section 5.4.

A state of a quantum system is called an equilibrium state if it does not change with
time. If such a state is represented by the normalized vector ψ it must satisfy

U(t)ψ = e−i~
−1α(t)ψ

for some function α : R → R. Using that U(t) is a strongly continuous unitary one-
parameter group it follows (see Exercise 6.2) that α(t) can be chosen to be of the form
α(t) = Et for all t ∈ R for some E ∈ R. It follows that ψ ∈ D(H) with

Hψ = Eψ , (6.6)

that is ψ is an eigenvector of H with eigenvalue E. Thus the state represented by ψ
corresponds to a state with well-defined energy E.

Another aspect worth stressing is an inherent ambiguity in the choice of state space and
observables for a given system that results from the application of unitary transformations.

Suppose a given state space H and associated observables for the system in question
have been determined, and let U : H → H ′ be a unitary operator from H onto a Hilbert
space H ′. Define, for any observable A on H, the operator A′ on H ′ by

A′ = UAU∗ .

Then A′ is self-adjoint (see Exercise 6.3 for this and the exact definition of UAU∗ if A is
unbounded). Since U preserves the inner product by Theorem 5.21, a second equivalent
description, or representation, of the same system is obtained by letting H ′ be the state
space, such that Uψ ∈ H ′ represents the same state as ψ ∈ H, and by letting A′ represent
the same physical quantity as A. Of course, the explicit form of the observables depends
on the choice of representation.

A common method for obtaining a representation for a given system is by applying
a quantization procedure to the corresponding classical system (if it exists). A standard
representation obtained in this way is the Schrödinger representation, where the state space
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is chosen to be the space of square integrable functions, also called wave functions, on the
configuration space of the classical system, the observable representing a coordinate is the
corresponding multiplication operator and the observable corresponding to a (generalized)
momentum is the corresponding derivative operator multiplied by ~

i . The Schrödinger
representation for a single particle is defined more precisely in Example 6.3 below and in
Section 6.3, where the so-called momentum representation will be introduced as well.

Finally, we mention that the preceding postulates are usually supplemented by a certain
technical condition called irreducibility, which ensures that sufficiently many observables
are available. One way of formulating this is to require that the state space H cannot be
split into a non-trivial direct sum

H = H1 ⊕H2 ,

where H1 and H2 are invariant under all observables. This condition may be regarded
as the replacement of the property possessed by classical systems that any state can be
characterized by the values assumed in the state by a certain collection of observables, such
as the coordinates and the associated (generalized) momenta. We shall, however, not make
essential use of this condition below.

Example 6.3 (Schrödinger representation). In the following sections we shall discuss in
detail a particle moving in k-dimensional Euclidean space. The state space for such a
particle in the Schrödinger representation will be chosen to be the space L2(Rk) of square
integrable functions of k variables. It is a fundamental result of integration theory in several
variables, that L2(Rk) is a Hilbert space with inner product given by

〈 f |g 〉 =

∫
Rk
f(x)g(x)dx , f, g ∈ L2(Rk) , (6.7)

and remarks i)-iii) of Example 4.12 b) pertaining to the case k = 1 extend in a straight-
forward way to the multi-variable case. In particular, the space C∞0 (Rk) of C∞ functions
vanishing outside some ball of finite (but arbitrary) radius is dense in L2(Rk).

The observable corresponding to the i’th coordinate xi of the position of the particle is
the unbounded self-adjoint multiplication operator (see Exercise 6.5) Mxi with domain

D(Mxi) =

{
ψ ∈ L2(Rk)

∣∣∣∣∫
Rk
|xiψ(x)|2dx <∞

}
.

The operator Mxi has no eigenvalues (why?). It is thus not possible to talk about a
particle with a definite position. Given an interval [a, b] ⊂ R, a < b, there exist normalized
functions ψ ∈ L2(Rk) that are zero outside [a, b]× Rk−1. Since

〈ψ|Mx1 |ψ〉 ∈ [a, b] ,

for such functions it is natural to interpret these functions as describing states for which the
particle’s first coordinate belongs to [a, b]. For a general normalized function ψ ∈ L2(Rk)
the integral ∫

x1∈I
|ψ(x)|2dx
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is interpreted as the probability of finding the particle with x1 in the interval I = [a, b].
Indeed, defining the operator P 1

I : L2(Rk)→ L2(Rk) by

P 1
I ψ(x) =

{
ψ(x), x1 ∈ I

0, x1 6∈ I
(6.8)

it is easy to see that P 1
I is an orthogonal projection (see Exercise 6.6) and that

〈
ψ
∣∣P 1
I

∣∣ψ〉 =

∫
x1∈I
|ψ(x)|2dx .

Since the projection P 1
I has eigenvalues 0 and 1, the average value is precisely the proba-

bility of measuring the eigenvalue 1, that is of finding the particle with first coordinate in
[a, b]. Similar remarks of course apply to the other coordinates and we hence are able to
conclude that the function |ψ(x)|2 can be interpreted as the probability density for finding
the particle in some region of space.

To complete the specification of the Schrödinger representation for a single particle the
observable representing its momentum must be defined. This will be done in Section 6.3.

6.2 Transformations and symmetries in quantum mechanics

It is natural to define transformations of a quantum system with state space H to be
bijective maps on states with the following property: if the states represented by the
unit vectors φ and ψ are transformed to states represented by the unit vectors φ′ and ψ′,
respectively, then

|〈φ′|ψ′〉|2 = |〈φ|ψ〉|2.

It is a fundamental theorem of Wigner and Bargmann that any such transformation can
be implemented by a unitary or an anti-unitary operator V on H, where an anti-unitary
operator means a conjugate linear bijective isometry. To say that the transformation is
implemented by V means, more precisely, that the state represented by ψ is transformed
to the state represented by V ψ for all states ψ. Note that, if V implements a given
transformation then the same holds for eiθV for any θ ∈ R. In these notes a transformation
is simply defined to be a unitary or anti-unitary operator on the state space H. Although
one can in general not avoid anti-unitary transformations, for instance in relation to the
time-reversal transformation (see Exercise 6.7), we shall focus on unitary transformations
in the following. A symmetry is defined to be a transformation that preserves the time
evolution. This is expressed more precisely in the next definition.

Definition 6.4. A transformation of a quantum mechanical system with state space H
is a unitary (or anti-unitary) operator V : H → H. If θ ∈ R then V and eiθV represent
the same transformation.

A symmetry of a quantum mechanical system with state space H and unitary time
evolution U(t), t ∈ R, is a unitary operator V such that

U(t)V = V U(t) (6.9)

for all t. We say that V commutes with the time evolution.
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The set of symmetries of a quantum system form a group (see Definition 1.2), whose
structure depends on the system. Hence, we are interested in groups of transformations
and their representations, defined as follows.

Definition 6.5. If G is a group and H is a complex Hilbert space, then a mapping ρ :
G→ B(H) is called a unitary representation of G if ρ(g) is a unitary operator and

ρ(gh) = ρ(g)ρ(h)

for all g ∈ G. It is called a projective (unitary) representation if there exists a
function ω : G×G→ R such that

ρ(gh) = eiω(g,h)ρ(g)ρ(h). (6.10)

The representations natural to quantum mechanics are the projective representations
since multiplying a unitary by a complex number of modulus one does not change the
transformation it represents.

We note that the strongly continuous unitary one-parameter groups in Stone’s Theorem
are, in fact, unitary representations of the additive group of real numbers. Stone’s Theorem
thus characterizes all such representations if they additionally satisfy the strong continuity
property. This allows us to formulate a quantum mechanical version of Noether’s theorem:

Theorem 6.6 (Quantum Noether’s Theorem). Assume that V : R → B(H) is a strongly
continuous unitary one-parameter group of symmetries of a quantum system with state
space H and unitary time evolution U(t), t ∈ R. Then the generator A of V is a conserved
quantity, that is a self-adjoint operator fulfilling

U(t)∗AU(t) = A, t ∈ R . (6.11)

That the relation (6.11) specifies that A represents a conserved quantity may be un-
derstood as follows. If the system is in a state represented by ψ at time t = 0, then it is in
a state represented by U(t)ψ at time t. Consequently, the expected value of A at time t is

〈U(t)ψ,AU(t)ψ〉 = 〈ψ,U(t)∗AU(t)ψ〉 = 〈ψ,Aψ〉,

and hence is independent of time.

Proof of Theorem 6.6. Since V (s) is a symmetry we have

U(t)∗V (s)U(t) = V (s)

for all s, t ∈ R. Letting both sides of this equation act on an element ψ in the domain
of A and differentiate w. r. t. to s it follows that U(t)ψ is in the domain of A and that
U(t)∗AU(t)ψ = Aψ.

Conservation of energy in quantum mechanics follows immediately as a special case of
this result.

Corollary 6.7. The total energy of a quantum mechanical system represented by the Hamil-
tonian H is a conserved quantity.
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Proof. From the one-parameter property (6.2) we find that

U(t)U(s) = U(t+ s) = U(s)U(t).

Hence U(s) is for all s ∈ R a symmetry of system.

Our goal in Section 6.4 is to discuss the implementation of Galilei transformations in
quantum mechanics. In order to do this it is convenient first to discuss the momentum
representation for a quantum particle moving in Rk. The momentum representation is
closely connected to the Fourier transform from Section 5.5.

6.3 The momentum representation

In Section 5.5 the Fourier transform in one variable was introduced as a unitary operator
on L2(R). In this section, the generalization to k variables is given and at the same time
variables are subject to a scaling relevant to quantum mechanics.

The space of rapidly decreasing functions of k variables S(Rk) consists of C∞ functions
on Rk whose derivatives all decay faster that any power at infinity. More precisely,

S(Rk) = {f ∈ C∞(Rk) | ‖x‖N∂n1
x1 · · · ∂

nk
xk
f(x) is a bounded function of x

for all n1, . . . , nk, N = 0, 1, 2, . . . } .

The set S(Rk) contains the space C∞0 (Rk) of C∞ functions vanishing outside some bounded
set. Since the latter set is dense in L2(Rk) it follows that S(Rk) is also dense in L2(Rk).
Moreover, it is clear that if f ∈ S(Rk) then all partial derivatives of f to any order also
belong to S(Rk).

The ~-Fourier transform of a function f ∈ S(Rk) is defined by

F~f(p) = (2π~)−k/2
∫
Rk
e−i~

−1p·xf(x)dx, p ∈ Rk .

For ~ = 1 and k = 1 this definition coincides with the Fourier transform defined in Sec-
tion 5.5. Hence, the notaton F = F~=1 and Ff = f̂ will be used in the following. It is a
fundamental result that the isometry property (5.62) for rapidly decreasing functions ex-
tends to the multi-variable case. By a change of variables (see Exercise 6.8) it then follows
that ∫

Rk
|F~f(p)|2dp =

∫
Rk
|f(x)|2dx , f ∈ S(Rk) , (6.12)

and thus F~ can be extended as in the one-variable case to an isometry on all of L2(Rk).
The following lemma is instrumental for the use of Fourier analysis in the theory of

differential equations.

Lemma 6.8. The Fourier transformation F~ maps S(Rk) bijectively onto itself and the
following formulas hold for f ∈ S(Rk):

F~(~∂xjf)(p) = (ipj)F~f(p) (6.13)

F~(xjf)(p) = i~∂pjF~f(p) , (6.14)

for j = 1, . . . , k.
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The first formula follows by integration by parts, and the second by differentiating both
sides of the formula defining F~f and then differentiating under the integral sign on the
right-hand side. See Exercise 6.9 for the details of the proof in the case k = 1, ~ = 1.

It follows as in Section 5.5 that the extension of F~ to L2(Rk) is a unitary operator
whose inverse F∗~ is given by the multi-variable inversion formula

(F∗~f)(x) = (F−1
~ f)(x) = (2π~)−k/2

∫
Rk
ei~
−1p·xf(x)dx, p ∈ Rk ,

for f ∈ S(Rk).
As a consequence of (6.13) we obtain

~
i
F~∂xjf(p) = pjF~f(p) ,

for j = 1, . . . , k. Applying the inverse Operator F∗~ on both sides yields

~
i
∂xjf = F∗~ ◦Mpj ◦ F~f , f ∈ S(Rk) .

Since Mpj is a self-adjoint operator by Exercise 6.5 with domain

D(Mpj ) =

{
f ∈ L2(Rk)

∣∣∣∣∫
Rk
|p2
j |f(p)|2 dp <∞

}
, (6.15)

this formula can be used to extend the operator −i∂xj to a self-adjoint operator Dj given
by

~Dj = F∗~ ◦Mpj ◦ F~ (6.16)

whose domain is

D(Dj) = {f ∈ L2(Rk) |
∫
Rk
p2
j |F~f(p)|2 dp <∞} ,

see Exercise 6.3.
By definition the self-adjoint operator ~Dj is the observable representing the momentum

of a particle along the xj-axis in the Schrödinger representation as announced previously
in Section 6.1. Since Mpj has no eigenvalues, the same holds for Dj and we conclude that
there are no states in H in which the particle has a well defined position or a well defined
momentum.

An equivalent description of the particle is obtained by applying the Fourier transform
F~ to the Schrödinger representation. The Hilbert space H ′ = F~H is again L2(Rk), that
will be distinguished from H by denoting the corresponding variable by p instead of x.
The momentum observable now becomes

F~(~Dj)F∗~ = Mpj

by (6.16). The position observable, on the other hand, becomes

F~ ◦Mxj ◦ F∗~ = −~Dj ,
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which is obtained in the same way as (6.16) by using the expression for F∗~ . The so
obtained representation is commonly referred to as the momentum representation, since
the probability density for a particle in the normalized state F~ψ for having momentum
p now equals |F~ψ(p)|2 by the same arguments as previously used in Example 6.3 for the
position observable in the Schrödinger representation.

For use in the next section it will now be shown that the multiplication operators in
the momentum representation can be characterized as the operators that commute with
translations in the Schrödinger representation, also called translation invariant operators.

Theorem 6.9. Let Ta : L2(Rk) → L2(Rk) for a ∈ Rk be the translation operator defined
by

Taψ(x) = ψ(x− a) . (6.17)

Then a bounded operator A : L2(Rk) → L2(Rk) satisfies ATa = TaA for all a ∈ Rk if and
only if F~AF∗~ is a multiplication operator, in other words, there exists a bounded function
g : Rk → C such that

A = F∗~Mg(p)F~.

Proof. Observe first that Ta is an isometry; in fact, it is a unitary operator with inverse
T −1
a = T−a. Moreover, for ψ ∈ S(Rk)

(F~Taψ)(p) = (2π~)−k/2
∫
Rk
e−i~

−1p·xψ(x− a)dx = (2π~)−k/2
∫
Rk
e−i~

−1p·(x+a)ψ(x)dx

= e−i~
−1p·aF~ψ(p) ,

that is
Ta = F∗~Mexp(−i~−1p·a)F~ ,

since both sides are bounded operators and S(Rk) is dense in L2(Rk). Setting A′ = F~AF∗~
it follows that the relation TaA = ATa is equivalent to

A′Mexp(−i~−1p·a) = Mexp(−i~−1p·a)A
′. (6.18)

It is immediate that if A′ is of the form A′ = Mg(p) for any function g, then it satisfies
this relation. It remains to prove the converse, that any operator A′ satisfying this relation
must be of the form A′ = Mg(p).

As a first step let us show that the relation

A′Mf(p) = Mf(p)A
′ (6.19)

holds for any function f ∈ S(Rk). Indeed, set f̃ = F∗~f and apply F~ on both sides to
obtain

f(p) = F~f̃(p) = (2π~)−k/2
∫
Rk
e−i~

−1p·af̃(a)da , p ∈ Rk . (6.20)

Multiplying both sides of this equation by ψ ∈ L2(Rk) gives

Mf(p)ψ = (2π~)−k/2
∫
Rk
f̃(a)(Mexp(−i~−1p·a)ψ)da
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interpreted as an integral with values in L2(Rk). The integral on the right hand side of
(6.20) can be approximated by a Riemann sum uniformly in p (see Exercise 6.10). From
this follows that the last integral above can be approximated in L2-norm by a Riemann
sum with values in L2(Rk). Using the linearity and continuity of A′ this implies that

A′Mf(p)ψ) = (2π~)−k/2
∫
Rk
f̃(a)(A′Mexp(−i~−1p·a))ψda .

Next, by invoking (6.18) one gets

A′Mf(p)ψ = (2π~)−k/2
∫
Rk
f̃(a)(A′Mexp(−i~−1p·a))ψda

= (2π~)−k/2
∫
Rk
f̃(a)(Mexp(−i~−1p·a)A

′)ψda

= (Mf(p)A
′)ψ ,

which is exactly (6.19).
To conclude the proof consider the function h(p) = e−p

2
which clearly belongs to S(Rk)

and is 6= 0 for all p. Define g(p) = h(p)−1(A′h)(p), p ∈ Rk. We claim that A′ = Mg(p).

In order to see this, let ψ ∈ C∞0 (Rk) be arbitrary and notice that ψ/h also belongs to
C∞0 (Rk). Using (6.19) this implies

A′ψ = A′Mψ/hh = Mψ/hA
′h = Mψ/h(gh) = Mgψ.

Since this is true for all ψ ∈ C∞0 (Rk), which is a dense subset of L2(Rk), it holds for all
ψ ∈ L2(Rk), and hence A′ = Mg(p).

It is common to write g(~D) as a short hand for the operator F∗~Mg(p)F~, thus indicating
that such operators can be thought of as functions of the partial derivative operators. These
are examples of the type of operators called pseudo-differential operators.

6.4 Galilei invariance in quantum mechanics

As formulated in Chapter 1 the principle of relativity states that the fundamental equa-
tions of motion of a classical mechanical system are invariant under the group of inertial
transformations, the Galilei group. In the quantum mechanical formalism the analogous
statement would be that the Galilei group acts as a group of transformations on the sys-
tem, in the sense that there exists a unitary projective representation of the Galilei group
on the state space. A more elaborate explanation of this statement in the case of a single
particle moving in R3 is as follows. The way it is defined in Section 1.2, the Galilei group
acts on space-time and not on the state space of the classical particle. However, since the
state of the particle at any time is assumed to be determined via the equations of motion
by the state at time t = 0, the state space can be identified with the set of space-time
motions {(x(t), t) | t ∈ R}, say, such that the state (x0, v0) is identified with the graph
{(x(t), t) | t ∈ R} of the motion with initial condition (x(0), ẋ(0)) = (x0, v0). In this way,
the Galilei group acts on the state space. More precisely, the group element ψ[a, s, v, A]
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acts on the state {(x(t), t) | t ∈ R} according to (1.9)

ψ[a, s, v, A]{(x(t), t) | t ∈ R} = {(a+ vt+Ax(t), t+ s) | t ∈ R}
= {(a− vs+ vt′ +Ax(t′ − s), t′) | t′ ∈ R} . (6.21)

For s = 0 this gives

ψ[a, 0, v, 1]{(x(t), t) | t ∈ R} = {(a+ vt+Ax(t), t) | t ∈ R} .

The requirement that the right hand side of this equation is (the graph of) a motion,
together with the assertion that the motion is uniquely determined by the initial condition,
immediately implies that all motions are of the form x(t) = x0 + v0t. Inserting this into
(6.21), the group action in terms of initial conditions is given by

ψ[a, s, v, A](x0, v0) = (a− vs+A(x0 − v0s), v +Av0) .

In particular, for time translations where a = v = 0 and A = I, it follows that

T−s(x0, v0) = (x0 + v0s, v0) ,

which is exactly the motion in state space with initial condition (x0, v0), when s is inter-
preted as time.

The purpose of this section is to carry out similar arguments for a quantum particle
moving in R3. To be specific, we show that there is a natural unitary projective repre-
sentation of the Galilei group on the state space in the Schrödinger representation, and
that under certain natural assumptions the requirement that it acts as a group of trans-
formations determines the time evolution of the free particle uniquely up to a trivial phase
factor. The problem of determining all possible unitary projective representations of the
Galilei group will not be pursued here, and some technical calculations in this section will
be left as exercises to the reader. In a first reading it may be wise to skip these exercises.

Recall that the Galilei group is generated by space translations Sa, boosts Bv, O(3)-
transformations RA, and time translations Ts. In order to construct the desired unitary
projective representation ρ, we start by defining the unitary operators ρ(Sa) = Ta, ρ(Bv) =
Bv, and ρ(RA) = RA, for a, v ∈ R3 and A ∈ O(3), on the Schrödinger state space H =
L2(R3). As already indicated by the chosen notation, the natural candidate for Ta is
the translation operator on H defined by (6.17) of the previous section. As remarked in
the proof of Theorem 6.9 these are indeed unitary operators, and for a normalized wave
function ψ the probability density |Taψ|2 has the same value at x+ a as the value of ψ at
x for any x ∈ R3. That is to say, the action of Ta is to translate the probability density for
the position of the particle by the vector a. In the following we shall stick to this choice of
Ta. By a similar argument we define RA by

(RAψ)(x) = ψ(A−1x) , x ∈ R3 . (6.22)

Since | detA| = 1 it follows by changing variables from x to y = A−1x in the integral
defining the L2-norm of the RAψ, that RA is a unitary operator on H, and its inverse is
obviously RA−1 (see Exercise 6.11).

To obtain Bv it is convenient to turn to the momentum representation and note that
the boost Bv should have the effect of increasing the momentum of the particle by mv,
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if m > 0 denotes the particle mass. In other words, a natural candidate for Bv is the
translation operator Tmv in momentum space. Recalling from the proof of Theorem 6.9 that
the translation operator Ta in the Schrödinger representation corresponds to the unitary
multiplication operator M

e−i~−1a·p in the momentum representation, we are led to assert
that Bv is a multiplication operator in the Schrödinger representation given by

(Bvψ)(x) = ei~
−1mv·xψ(x) , x ∈ Rk . (6.23)

Finally, the natural operator representing a time tranlation Ts is the time evolution operator
U(−s) from Postulate 3’ by analogy with the classical case discussed above. The operator
ρ(ψ[a, s, v, A]) representing a general element of the Galilei group of the form (1.13) will
be denoted by U(a, s, v, A) and is defined by

U(a, s, v, A) = U(−s)BvTaRA . (6.24)

In order to show that this defines a projective representation of the Galilei group we need
to show that (6.10) holds. Taking into account the explicit form (1.11) of the multiplication
law for the Galilei group, this means that

U(a1, s1, v1, A1)U(a2, s2, v2, A2) =

eiω(a1,s1,v1,A1,a2,s2,v2,A2)U(a1 + v1s2 +A1a2, s1 + s2, v1 +A1v2, A1A2) (6.25)

for all a1, a2, v1, v2 ∈ R3, s1, s2 ∈ R, and A1, A2 ∈ O(3), and some real function ω. There
are two separate issues involved in this task: it still remains to define the one-parameter
group U(t), and only after this has been done can (6.25) be verified.

Disregarding time translations in the first instance, it follows from the definitions of
Ta, Bv andRA and from equation (6.24) that the action of U(a, 0, v, A) on a state ψ ∈ S(R3)
is given by

U(a, 0, v, A)ψ(x) = ei~
−1mv·xψ(A−1(x− a)) , (6.26)

and by a straight-forward calculation which is left as an exercise for the reader (see Exer-
cise 6.15) it is seen that (6.25) is indeed satisfied for s1 = s2 = 0 with

ω(a1, 0, v1, A1, a2, 0, v2, A2) = −~−1ma1 · (A1v2) . (6.27)

For later use let us also determine the form of U(a, 0, v, A) in the momentum representation.
Applying the Fourier transformation on both sides of (6.26) gives

F~U(a, 0, v, A)ψ(p) = (2π~)−3/2

∫
R3

e−i~
−1(x·p−mv·x)ψ(A−1(x− a))dx

= (2π~)−3/2

∫
R3

e−i~
−1(A·x+a)·(p−mv)ψ(x)dx

= e−i~
−1(p−mv)·aF~ψ(A−1(p−mv)) ,

where At = A−1 is used in the last step. Hence, if φ ∈ S(R3) is a state in the momentum
representation, it follows that the operator F~U(a, 0, v, A)F∗~ takes the form

F~U(a, 0, v, A)F∗~φ(p) = e−i~
−1((p−mv)·a)φ(A−1(p−mv)) . (6.28)
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Now let us return to the problem of including time translations. Setting s2 = 0, a1 =
v1 = v2 = 0 and A1 = A2 = I in (6.25) gives

U(a1, s1, 0, I)U(a2, s2, 0, I) = eiαU(a1 + a2, s1 + s2, 0, I) ,

where the phase factor eiα depends on a1, a2, s1, s2. If α vanishes identically this implies
that U(s) = U(0,−s, 0, A) and Ta = U(a, 0, 0, I) commute for all s and a. In the following
we assume this to be the case. Notice that this means that space translations are assumed
to be symmetries of the system and by Noether’s theorem it implies that the generators of
translations, which are the components of the momentum, are conserved.

On the other hand, the boost operators do not commute with time translations, which
is seen from the following calculation using (6.25):

BvU(s) = U(0, 0, v, I)U(0,−s, 0, I) = eiω
′U(−vs,−s, v, I)

= eiα
′
U(s)BvT−vt 6= U(t)Bv , (6.29)

where α′ is some phase depending on v and t, and vt 6= 0 is assumed in the last step.
Incidentally, this implies that the phase ω in (6.25) cannot vanish identically, no matter
how Bv is defined, as long as Ta represents translation by a. In fact, otherwise it could be
concluded that

TaBv = U(a, 0, 0, I)U(0, 0, v, I) = U(a, 0, v, I)

and
BvTa = U(0, 0, v, I)U(a, 0, 0, I) = U(a, 0, v, I) ,

and hence Bv would commute with Ta for all v, a. But, as seen in Theorem 6.9, any operator
commuting with translations is a multiplication operator in the momentum representation.
Hence, both Bv and U(s) would be multiplication operators in the momentum represention.
In particular they would commute, which contradicts (6.29).

We are now ready to state the main result of this section.

Theorem 6.10. Let Ta,RA,Bv be defined by (6.17), (6.22),(6.23), and let U(t) be a strongly
continuous unitary one-parameter group on L2(R3), which commutes with Ta, a ∈ R3, and
has the property that U(a, s, v, A) defined by (6.24) obeys (6.25).

Then there exists a constant e0 such that

U(t) = F∗~Mexp(−it~−1( p
2

2m
+e0))
F~ , (6.30)

and (6.25) is then satisfied with

ω(a1, s1, v1, A1, a2, s2, v2, A2) = −~−1m(1
2s2v

2
1 + (a1 + s2v1) · (A1v2)) . (6.31)

Proof. First, note that by (6.25)

U(a+ vt, 0, v, A)U(t) = e−iω2(a,v,A,t)U(a,−t, v, A) ,

where ω2(a, v,A, t) = −ω(a+ vt, 0, v, A, 0,−t, 0, I). Since U(a,−t, v, A) = U(t)U(a, 0, v, A)
it follows that

U(t)U(a, 0, v, A) = eiω2(a,v,A,t)U(a+ vt, 0, v, A)U(t) (6.32)
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for all a, v ∈ R3, A ∈ O(3), and t ∈ R.
As already noted, since U(t) commutes with Ta it has the form U(t) = F∗~Mg(p,t)F~ for

some function g(p) by Theorem 6.9. Using that U(t) is a strongly continuous unitary one-
parameter group, one concludes that g(p) is purely imaginary and proportional to t such
that U(t) = F∗~Mexp(−i~−1h(p)t)F~, where h(p) is a real-valued function (see Exercise 6.2).

The relation (6.32) can now be written

Mexp(−i~−1h(p)t)F~U(a, 0, v, A)F∗~ = eiω2(a,v,A,t)F~U(a+ vt, 0, v, A)F∗~Mexp(−i~−1h(p)t) .

According to (6.28) this is equivalent to

−th(p)− (p−mv) · a = ~ω2(a, v,A, t)− (p−mv) · (a+ vt)− th(A−1(p−mv)) ,

that is
th(p) = −~ω2(a, v,A, t) + (p−mv) · vt+ th(A−1(p−mv)) . (6.33)

Inserting p = mv gives

ω2(a, v, A, t) = −t~−1(h(mv)− h(0)).

Now insert this and p = 0 into (6.33) to arrive at

h(0) = (h(mv)− h(0))−mv · v + h(−A−1mv) .

From this identity it is easily deduced that h(−A−1mv) is independent of A and so
h(−A−1mv) = h(mv) by either choosing A = −I or to be a rotation that rotates v to
−v. Thus, the resulting form of h is

h(mv) =
1

2
m‖v‖2 + h(0) .

Setting e0 = h(0) it is seen that (6.30) holds and that

ω2(a, t, v, A) = −1
2~
−1mt‖v‖2 (6.34)

It is straight-forward to check that (6.33) now holds for all a, v, p, A, and t. Hence (6.32)
holds. It is also a straight-forward calculation to check that (6.32) together with (6.27)
imples that (6.25) holds with ω given by (6.31). We leave this for the reader to check in
Exercise 6.16.

We have thus concluded the construction of a projective unitary representation (6.26)
of the Galilei group for a single particle in R3 with no internal degrees of freedom. Projec-
tive unitary representations of the Galilei group corresponding to particles with internal
degrees of freedom such as spin and to multi-particle systems can also be accomplished.
Although we shall not here discuss how and in what sense one may obtain all possible
projective unitary representations of the Galilei group, it is worth while noting that the
basic philosophy is that different representations represent different physical systems.

The value e0 may be interpreted as the internal energy of the particle. For a particle
without internal degrees of freedom it may consistently be set to 0, which results in the
free time evolution

U(t) = F∗~Mexp(t‖p‖2/2mi~)F~ , (6.35)

to be discussed further in the next section.
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6.5 The free particle

From (6.35) follows that the time evolution in the momemtum representation is given by
unitary multiplication operators

Û(t) = F~U(t)F∗~ = Mexp(t‖p‖2/2mi~) , t ∈ R ,

from which we read off that the Hamiltonian in the momentum representation is the self-
adjoint operator

Ĥ = M‖p‖2/2m ,

that is multiplication by the classical energy of a particle with mass m and momentum p.
It is precisely for this reason that it is natural to interpret m as being the mass and p as
being the momentum variable.

In the Schrödinger representation the Hamiltonian is

H = F∗~M‖p‖2/2mF~ ,

which is a self-adjoint operator by Exercises 6.3 and 6.5 with domain

D(H) =

{
ψ ∈ L2(R3)

∣∣∣∣ ∫
R3

‖p‖2|F~ψ(p)|2dp <∞
}
.

Using Lemma 6.8 it follows in the same way as discussed for the partial derivative operators
in Section 6.3 that H is a self-adjoint extension of the operator

− ~2

2m
(∂2
x1 + ∂2

x2 + ∂2
x2) = − ~2

2m
∆ ,

where ∆ = ∂2
x1 + ∂2

x2 + ∂2
x2 is the Laplace operator originally defined on C2

0 (R3). Hence we
write

H =
~2

2m
(D2

1 +D2
2 +D2

3) .

In view of the preceding discussion it is natural to define the free quantum mechanical
particle in Rk in the Schrödinger representation by asserting its state space to be L2(Rk)
and its Hamiltonian to be

H =
~2

2m
(D2

1 + · · ·+D2
k)

with domain

D(H) =

{
ψ ∈ L2(Rk)

∣∣∣∣ ∫
Rk
‖p‖2|F~ψ(p)|2dp <∞

}
.

Of course, this operator is again a self-adjoint extension of the operator

− ~2

2m
∆ = − ~2

2m
(∂2
x1 + · · ·+ ∂2

xk
)

defined on C2
0 (Rk).

It is clear that H is a positive operator in the sense that all its expectation values are
positive since

〈ψ|H|ψ〉 =
1

2m

∫
Rk
‖p‖2|F~ψ(p)|2dp > 0,
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if ψ 6= 0. The positivity can also be seen explicitly in the Schrödinger representation at
least for functions ψ ∈ S(Rk). Indeed, for such functions one gets by using integration by
parts that

−
∫
Rk
ψ(x)∆ψ(x)dx =

∫
Rk
|∇ψ(x)|2dx (6.36)

(see Exercise 6.17).
The Schrödinger equation in the momentum representation takes the form

i~
d

dt
φ(t, p) =

1

2m
‖p‖2φ(t, p) .

The solution to this equation is of course

φ(t, p) = e−i
p2

2m~ tφ0(p) ,

provided the initial value φ(0, ·) = φ0 belongs to D(Mp2/2m).
The solution to the Schrödinger equation

i
d

dt
ψ(t) =

~2

2m
(D2

1 + · · ·+D2
k)ψ(t)

in the Schrödinger representation with initial value ψ0 is obtained by applying the inverse
Fourier transformation to the solution in the momentum representation with initial value
F~ψ0:

ψ(t) = F~
∗(e

‖p‖2
2mi~ tF~ψ0) .

Note that two integrations are involved on the right, one for each of the two Fourier
transformations. It turns out that one of the integrations can be performed explicitly,
yielding the result

ψ(t, x) =
( m

2π~it

) k
2

∫ ∞
−∞

eim
‖x−y‖2

2~t ψ0(y) dy ,

valid for ψ0 ∈ S(Rk). This formula can e. g. be used to analyze the spreading in time of
the wavefunction due to the uncertainty of momentum as can be found in most text books
on introductory quantum mechanics.

6.6 The free particle on a circle

Contrary to the free particle moving on the unbounded real line, a particle constrained to
a finite region of space can have eigenstates of definite momentum. A simple example of
this phenomenon is the free particle whose configuration space is S1, the unit circle in R2

centered at the origin. Since functions on S1 can be identified with functions on (−π, π],
when parametrizing the circle by the angular variable θ, such that

(x, y) = (cos θ, sin θ) ,

the state space in the Schrödinger representation is taken to be

H = L2((−π, π]) = L2([−π, π])
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with inner product normalized as in Section 4.6. The two coordinate variables are repre-
sented by the multiplication operators Mcos and Msin and the momentum is represented
by the differential operator ~D̄ defined in Example 5.19. The two multiplication operators
are self-adjoint by Example 5.6 b) and D̄ is self-adjoint by Exercise 5.17.

The Hamiltonian is defined by analogy with the free particle on the line as

H =
~2

2m
D̄2 ,

where m is called the mass of the particle. Since en (with notation as in Section 4.6) is an
eigenvector for D̄ with eigenvalue n it follows that en is likewise an eigenvector for H with
eigenvalue

En =
~2n2

2m
.

Thus H is an unbounded diagonalizable operator given by

H =
~2

2m

∑
n∈Z

n2|en〉〈en|

and with domain

D(H) =

{
ψ ∈ L2([−π, π])

∣∣∣∣∣∑
n∈Z

n4|〈en|ψ〉|2 <∞

}
.

The possible values of the (kinetic) energy of the particle are En , n = 0, 1, 2, 3 . . . , and for
each positive energy value En there correspond two momentum eigenstates e±n of opposite
momenta ±~n.

The time evolution operator e−
i
~Ht has the same eigenvectors en as H with correspond-

ing eigenvalues e−
i
~Ent (see Exercise 5.12 for the case where H is bounded). This means

that e−
i
~Ht is diagonalizable and given by

e−
i
~Ht =

∑
n∈Z

e−
i~
2m

n2t|en〉〈en| ,

which also shows explicitly that it is unitary. Indeed, it can be shown that the solution to
the Schrödinger equation

i
dψ(t)

dt
=

~
2m

D̄2ψ(t) (6.37)

with initial condition ψ(0) = ψ0 is given by

ψ(t) =
∑
n∈Z

e−
i~
2m

n2t〈en|ψ0〉en , (6.38)

provided ψ0 ∈ D(H). Note that while ψ(t) is well defined by (6.38) for all ψ0 ∈ H, the
Schrödinger equation (6.37) only makes sense if ψ(t) ∈ D(H) for all t ∈ R. Hence the
above statement requires showing that if ψ0 ∈ D(H), then ψ(t) defined by (6.38) belongs
to D(H) for all t ∈ R and provides a solution to (6.37) with initial condition ψ(0) = ψ0.
We refrain from giving the detailed argument here (see, however, Exercise 5.14 for the case
where H is bounded).
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As mentioned, the states en , n ∈ Z, are characterized by having well defined momenta
~n. However, the position operators Mcos and Msin have no eigenvalues, and the same
holds for Mθ. Consequently, states in which the particle has a well defined position do not
exist. However, for any normalized state ψ represented by a wave function that vanishes
(almost everywhere) outside an interval I = [θ1, θ2] contained in [−π, π] it is clear that

〈ψ|Mθ|ψ〉 ∈ I ,

and it follows by arguments similar to those for the free particle on the real line that the
(closed) subspace L2(I) of functions in H vanishing outside I is naturally interpreted as
consisting of states for which the particle is localized in the interval I. Obviously, the
function in L2(I) closest to a given function ψ ∈ H is the function coinciding with ψ on I,
so the orthogonal projection PI onto L2(I) is given by

PIψ(θ) =

{
ψ(θ) if θ ∈ I
0 if θ /∈ I .

In particular, the probability that the particle in a state ψ is located in the angular interval
I is

‖PIψ‖2 =

∫
I
|ψ(θ)|2dθ .

which means that |ψ(θ)|2 is the probability density for finding the particle at (cos θ, sin θ).

6.7 The harmonic oscillator

The one-dimensional harmonic oscillator is the system consisting of one particle constrained
to a line and acted on by a linear force. Thus the state space is the same as for the free
particle, H = L2(R), and the position and momentum operators are also the same. The
Hamiltonian, on the other hand, is obtained by adding the potential, now regarded as a
multiplication operator, which is quadratic to the free particle Hamiltonian. More precisely
we define

H0 = − ~2

2m

d2

dx2
+

1

2
kx2 , (6.39)

where k is a positive constant. Since both operators in the above sum are unbounded,
appropriate attention has to be paid to the domain of H0. Our strategy will be to take as
the domain ofH0 the space S(R) of rapidly decreasing functions and to find an orthonormal
basis of eigenvectors Ωn , n = 0, 1, 2, 3, . . . , in this space. Once this has been accomplished
H0 can be extended to a self-adjoint operator H in a similar way as done for the operator
D in Example 5.19.

First, let us note that since both d
dx and Mx2 evidently map S(R) into itself, the same

holds for H. Second, let us introduce the two operators

A =
d

dx
+ cx and A† = − d

dx
+ cx , (6.40)

where

c =

√
mk

~
. (6.41)
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For reasons that will become clear below A† is called a raising operator and A a lowering
operator . Given any f ∈ S(R) a simple calculation yields

(A†Af)(x) = −d
2f

dx2
+ c2x2f(x)− cf(x) ,

that is

H0 =
~2

2m
(A†A+ c) on S(R) . (6.42)

In addition, one easily verifies the relation

A†A = AA† − 2c on S(R) ,

which is commonly written as
[A,A†] = 2c , (6.43)

where
[A,A†] = AA† −A†A

is the commutator of A and A†. From (6.42) it is seen that a state Ω ∈ S(R) which satisfies

AΩ = Ω′ + cΩ = 0 (6.44)

is an eigenstate for H0 with eigenvalue E0 = ~2
2mc . But (6.44) is a linear first order dif-

ferential equation whose solutions are proportional to e−cx
2/2. Since c > 0, this function

belongs to S(R) (see Exercise 6.20). In particular, it is square integrable and there exists
a constant a > 0 such that the function

Ω0(x) = a e−cx
2/2 (6.45)

has L2-norm 1.
The key to obtain more eigenstates for H0 is to observe that if Ω ∈ S(R) is an eigenstate

for A†A with eigenvalue λ then, as a consequence of (6.43), the state A†Ω, provided it is
non-zero, is an eigenstate of A†A with eigenvalue λ+ 2c:

A†A(A†Ω) = A†(A†A+ 2c)Ω = A†(λ+ 2c)Ω = (λ+ 2c)A†Ω .

Since S(R) is evidently invariant under A†, we conclude by induction that the states

Ωn = an(A†)nΩ0 , n = 0, 1, 2, 3, . . . , (6.46)

all of which are non-zero as will be seen below, are eigenstates for H0 with corresponding
eigenvalues

En =
~2

2m
(2nc+ c) = ~ω(n+

1

2
) , n = 0, 1, 2, 3, . . . , (6.47)

where

ω =

√
k

m

is the frequency of the classical harmonic oscillator. Here the coefficients an > 0 are chosen
such that Ωn has norm 1. It will now be shown that En , n = 0, 1, 2, . . . , is the exhaustive
list of energy levels for H0 (and its extension H) by establishing the following result:
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Theorem 6.11. The set (Ωn)n=0,1,2,... is an orthonormal basis for L2(R).

Proof. Note first that, for f, g ∈ S(R),

〈f |Ag〉 =

∫
R
f(x)(g′(x) + xg(x))dx

= lim
R→∞

∫ R

−R
f(x)g′(x)dx+

∫
R
xf(x)g(x)dx

= lim
R→∞

{
[f(x)g(x)]R−R −

∫ R

−R
f ′(x)g(x)dx

}
+

∫
R
xf(x)g(x)dx

=

∫
R

(−f ′(x) + xf(x))g(x)dx

= 〈A†f |g〉 .

(6.48)

This shows that the domain of the adjoint of the (unbounded) operator A contains S(R)
and that A∗ coincides with A† on this space.

Combining (6.42) and (6.48) it follows that

〈f,H0g〉 = 〈H0f, g〉 , f, g ∈ S(R) , (6.49)

showing that H0 is symmetric on S(R). Since the eigenfunctions Ωn belong to S(R), the
proof of Lemma 5.11 b) still applies to show that Ωn is orthogonal to Ωm for n 6= m. Hence
(Ωn)n=0,1,2,... is an orthonormal set in L2(R).

It remains to show that

{Ωn | n = 0, 1, 2, . . . }⊥ = {0} .

Defining the function φp for fixed p ∈ R by

ϕp(x) = eixpΩ0(x) , x ∈ R ,

it suffices to establish the following two facts:

1) φp ∈ span{Ωn | n = 0, 1, 2, . . . } for all p ∈ R
2) {ϕp | p ∈ R}⊥ = {0} .

Indeed, if 1) and 2) hold, then

{Ωn | n = 0, 1, 2, . . . }⊥ = span{Ωn | n = 0, 1, 2, . . . }⊥ ⊆ {ϕp | p ∈ R}⊥ = {0}

as desired.
From the definition of Ωn it follows that it has the form

Ωn(x) = Pn(x)e−cx
2/2 ,

where Pn is a polynomial of order n. As a matter of fact, this is obviously the case for
n = 0 and then it follows easily by induction for all n, since

A†(Pn(x)e−cx
2/2) = (2cxPn(x)− P ′n(x))e−cx

2/2 ,



Chap. 6 Quantum Mechanics 161

where 2cxPn(x) is a polynomial of order n+ 1 while P ′n(x) is of order n− 1, if Pn(x) is of
order n. In particular, it follows that Ωn 6= 0 for all n = 0, 1, 2, . . . as claimed previously,
and that

span{Ωn | n = 0, 1, 2, . . . } = {QΩ0 | Q polynomial} .

In order to establish 1) above it therefore suffices to show that for any given p ∈ R and
any ε > 0 there exists a polynomial Q such that

‖ϕp −QΩ0‖2 =

∫
R
a2|eixp −Q(x)|2e−cx2dx < ε2 . (6.50)

Let Tn(x) be the n’th Taylor polynomial for exp,

Tn(x) =
n∑
k=0

xk

k!
.

Note that Tn(ix) = Cn(x) + iSn(x) where Cn and Sn are the corresponding Taylor poly-
nomials for cos and sin, respectively, and Taylors formula with remainder for sin and cos
then implies for each R > 0 the existence of an n such that

|eixp − Tn(ixp)| < ε

2a
√
R

for x ∈ [−R,R] .

Moreover, the bound

|Tn(ipx)| 6
n∑
k=0

|px|k

k!
6 exp(|xp|)

trivially holds for all x and p and implies

|eixp − Tn(ixp)|2e−cx2 6 4e2|xp|−cx2 .

Since the last function is integrable (verify this!) it is possible to choose R > 0 such that∫
|x|>R

4e2|xp|−cx2 <
ε2

2a2
.

With this choice of R and n one finally obtains

‖ϕp − Tn(ixp)Ω0‖2 =

∫ R

−R
a2|eixp − Tn(ixp)|2e−cx2dx+

∫
|x|>R

a2|eixp − Tn(ixp)|2e−cx2dx

6
∫ R

−R
a2

(
ε

2a
√
R

)2

dx+

∫
|x|>R

4a2e2|xp|−cx2 dx

<
ε2

2
+
ε2

2
= ε2 .

Thus, setting Q(x) = Tn(ixp) the estimate (6.50) holds and 1) is proven.
In order to verify 2), assume that f ∈ L2(R) is orthogonal to all ϕp , p ∈ R, that is∫

R
f(x)Ω0(x)eixpdx = 0 for all p ∈ R .
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By definition of the Fourier transformation this means that F(fΩ0) = 0. Since F is an
isometry this implies fΩ0 = 0 and hence f = 0, since Ω0 is a positive function. This proves
2) and thereby the theorem. �

Having found an orthonormal basis of eigenvectors forH0, this operator can be extended
to a self-adjoint operator H by the same procedure as used in Example 5.19. This means
that H is defined by the formula

Hψ = ~ω
∞∑
n=0

(n+
1

2
) 〈Ωn|ψ〉 Ωn (6.51)

on the domain

D(H) =

{
ψ ∈ H

∣∣∣∣∣
∞∑
n=0

(n+
1

2
)2 |〈Ωn|ψ〉|2 < ∞

}
,

or in Dirac notation

H = ~ω
∞∑
n=0

(n+
1

2
) |Ωn〉〈Ωn| .

To see that this is really an extension of H0, let ψ ∈ S(R) and use (6.49) to write

~ω(n+
1

2
)〈Ωn|ψ〉 = 〈H0Ωn|ψ〉 = 〈Ωn|H0ψ〉 .

Since H0ψ ∈ L2(R) it follows that

~2ω2
∞∑
n=0

(n+
1

2
)2 |〈Ωn|ψ〉|2 = ‖H0ψ‖2 <∞

and hence ψ ∈ D(H). This shows that S(R) ⊆ D(H) and

Hψ = ~ω
∞∑
n=0

(n+
1

2
) 〈Ωn|ψ〉 Ωn =

∞∑
n=0

〈Ωn|H0ψ〉Ωn = H0ψ.

The energy levels of the oscillator are given by (6.47). The time evolution operator

e−i
i
~H is unitary and given by

e−i
i
~H =

∞∑
n=0

e−iω(n+ 1
2

)t |Ωn〉〈Ωn| .

Thus the solution to the Schrödinger equation (6.4) with initial value ψ0 is in this case
given by

ψ(t) =

∞∑
n=0

e−iω(n+ 1
2

)t 〉〈Ωn|ψ0〉Ωn , (6.52)

provided ψ0 ∈ D(H).
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Remark 6.12. The eigenfunctions Ωn have independent interest and are well known from
classical analysis. In case c = 1 they are called Hermite functions and the polynomials Pn
are, up to normalization, called the Hermite polynomials. The first few of them are given
in Exercise 6.22. A detailed analysis of the Hermite functions allows one to carry out the
sum in (6.52) obtaining an integral formula for the solution (see e. g. [8] p. 19.)

It is a consequence of Lemma 6.8 that if c = 1 then

F ◦ H0 = H0 ◦ F .

In other words, F commutes with H0 on S(R). Applying both sides to Ωn implies

H0(FΩn) = ~ω(n+
1

2
)FΩn .

Since the eigenstate forH0 corresponding to eigenvalue ~ω(n+ 1
2) is unique up to a constant

multiple there exists a constant cn such that

Ω̂n = cnΩn .

This formula shows that the Fourier transformation is a diagonalizable operator with the
Hermite functions as eigenfunctions and corresponding eigenvalues equal to cn. One can
show (see Exercise 6.21) that cn = (−i)n, that is the Fourier transformation has four
different eigenvalues ±1,±i.

6.8 Stability and the hydrogen atom

One of the early triumphs of quantum mechanics was to explain the stability of the hy-
drogen atom. Stability is an important notion in physics. This last section is devoted to a
brief introductory discussion of this topic.

As seen in Section 6.4 the kinetic energy of a particle is a positive quantity if normalized
in such a way that the kinetic energy is zero if the particle is at rest, or more precisely nearly
zero if the particle is nearly at rest, since in quantum mechanics it cannot be completely
at rest.

The potential energy, however, may be negative and so the total energy of a system
may be negative. Through interactions one system can transfer energy to other systems
without violating conservation of energy. A system which may possess an arbitrarily large
negative energy could in this way be a source of an infinite amount of energy and would
be unstable.

Definition 6.13. A quantum mechanical system with state space H and Hamiltonian H
is said to be stable if

E0 = E0(H) = inf{〈ψ|H|ψ〉 | ψ ∈ D(H) normalized } > −∞.

The quantity E0 is called the ground state energy of the system and if there is a normalized
ψ ∈ D(H) such that E0 = 〈ψ|H|ψ〉 then we say that ψ is a ground state. (A ground state
is not necessarily unique.)
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Theorem 6.14. If ψ is a normalized ground state of a stable quantum mechanical system
with Hamiltonian H and with ground state energy E0 = E0(H), then ψ is an eigenvector
of H with eigenvalue E0, that is

Hψ = E0ψ .

Moreover, E0 is smallest eigenvalue of H.

Proof. For any φ ∈ D(H) the function

E(t) =
〈ψ + tφ|H|ψ + tφ〉
〈ψ + tφ|ψ + tφ〉

.

is well defined in a sufficiently small interval around 0 such that ψ + tφ 6= 0, and it fulfills
E(t) > E(0) = E0. Since E(t) is the ratio of two polynomials of degree at most two it is
differentiable and E′(0) = 0. Using that 〈ψ|ψ〉 = 1 and 〈ψ|H|ψ〉 = E0 a straight-forward
calculation gives

E′(0) = 〈ψ|H − E0|φ〉+ 〈φ|H − E0|ψ〉 = 0 .

Replacing φ by iφ (which is also in D(H)) in this identity yields

0 = i〈ψ|H − E0|φ〉 − i〈φ|H − E0|ψ〉 .

These two last identities now imply 〈φ|H|ψ〉 = E0〈φ|ψ〉 for all φ ∈ D(H). Since D(H) is
dense in H it follows that Hψ = E0ψ.

If λ is another eigenvalue of H corresponding to a normalized eigenvector ψλ ∈ D(H)
then λ = 〈ψλ|H|ψλ〉 > E0.

Note that E0 is called the ground state energy even if there is no state corresponding
to this energy, i. e. no ground state (see Exercise 6.18).

The definition of stability given above assumes that the Hamiltonian of the system is
known. In many cases one only has knowledge of an operator H̃ on some dense domain
D(H̃) on which it is not necessarily self-adjoint, but where

E0(H̃) = inf{〈ψ|H̃|ψ〉 | ψ ∈ D(H̃) normalized } > −∞.

If H̃ is not self-adjoint it is not the Hamiltonian of a quantum mechanical system. We will
nevertheless say that H̃ is stable in this case. It is a fundamental result which will not be
proven here that in this case there is a self-adjoint extension H, known as the Friedrichs
extension, of H̃ such that

E0(H) = E0(H̃).

That H is a self-adjoint extension of H̃ means that it is a self-adjoint operator H : D(H)→
H such that

D(H̃) ⊆ D(H), and H̃φ = Hφ, for all φ ∈ D(H̃).

The Friedrichs extension H is the Hamiltonian of a stable quantum mechanical system. It
is possible that there is a ground state in the domain of H but that it is not in the smaller
domain of H̃. Thus, although the ground state energy is determined by the operator H̃
this may not be the case with the ground state itself.
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The state space of the hydrogen atom, where the nucleus is considered as infinitely
heavy, is the same as for the free particle, namely L2(R3). The operator

H̃ = − ~2

2m
∆− e2

‖x‖
(6.53)

defined on the space C2
0 (R3) of twice continuously differentiable functions on R3) that

vanish outside a bounded set, is taken as the starting point for defining the Hamiltonian.
Here m is the mass of the electron and −e < 0 is its charge. The first term in H is the
kinetic energy operator and the second term is the (Coulomb) potential energy due to the
attraction of the electron with charge −e to the nucleus with charge +e.

In Exercise 6.23 the reader is asked to verify that H̃ is well defined on C2
0 (R3). It will

be shown below that H̃ is a densely defined symmetric operator, which therefore has a
self-adjoint Friedrichs extension H.

In the preceding considerations the fact that the electron has an internal degree of
freedom called its spin has not been taken into account. To do so would require replacing
the state space L2(R3) by the Hilbert space

H = L2(R3)× L2(R3)

of square integrable functions with two components representing spin components. How-
ever, for the discussion here the spin is not important and we will focus on showing that H̃
is stable and determine its ground state energy, which will also be the ground state energy
of hydrogen.

Classically, the hydrogen atom would be described by the Hamilton function

H(p, q) =
p2

2m
− e2

‖q‖
, (q, p) ∈ R3 × R3 .

Clearly, this function can become arbitrarily negative and thus the hydrogen atom is not
stable classically. In quantum mechanics, on the other hand, it is stable as shown in the
subsequent theorem. In physics textbooks the stability of hydrogen is often explained from
the Heisenberg uncertainty relation. It is in principle correct that the stability of hydrogen
is related to the uncertainty principle, but the stability does not follow from the standard
form of the Heisenberg uncertainty relations (see Exercise 6.25).

Theorem 6.15. Let Ω ⊆ Rk be an open set and V ∈ C(Ω). Assume that 0 < ψ ∈ C2(Ω)
and that (−∆− V )ψ(x) = λψ(x) for some λ ∈ R and all x ∈ Ω. Then, for all functions φ
in the set C1

0 (Ω) of C1 functions on Ω that vanish outside a closed and bounded set inside
Ω, the following inequality holds:∫

Ω
|∇φ(x)|2dx−

∫
Ω
V (x)|φ(x)|2dx > λ

∫
Ω
|φ(x)|2dx

Proof. Given φ ∈ C1
0 (Ω) one can write φ = fψ, where f ∈ C1

0 (Ω) (why?). By using the
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same integration by parts as in (6.36) one then obtains∫
Ω
|∇φ(x)|2dx−

∫
Ω
V (x)|φ(x)|2dx

=

∫
Ω

[
ψ2|∇f |2 + |f |2|∇ψ|2 +

(
f∇f + f∇f

)
ψ∇ψ

]
dx−

∫
Ω
V |fψ|2dx

>
∫

Ω

[
|f |2|∇ψ|2 +

(
f∇f + f∇f

)
ψ∇ψ

]
dx−

∫
Ω
V |fψ|2dx

=

∫
Ω

[
|f |2|∇ψ|2 +∇(|f |2)ψ∇ψ

]
dx−

∫
Ω
V |fψ|2dx

=

∫
Ω

[
|f |2ψ(−∆− V )ψ

]
dx = λ

∫
Ω
|φ(x)|2dx ,

where the last step again follows by integration by parts.

Recalling the identity

〈φ| −∆− V |φ〉 =

∫
|∇φ(x)|2dx−

∫
V (x)|φ(x)|2dx ,

which holds if φ ∈ C2
0 (Rk) by (6.36), the previous theorem loosely speaking states that

for an operator of the form −∆ − V (a Schrödinger operator) an eigenfunction which is
positive must correspond to the lowest eigenvalue.

Corollary 6.16. The hydrogen atom is a stable quantum mechanical system and its ground
state energy is E0(H̃) = −me4

2~2 .

Proof. Consider the function ψ(x) = e−me
2‖x‖/~2 defined on the set Ω = R3 \ {0}. For any

x ∈ Ω a straightforward calculation shows that (− ~2
2m∆− e2‖x‖−1)ψ(x) = −me4

2~2 ψ(x). The

fact that 〈φ|H̃|φ〉 > −me4

2~2 for any normalized φ ∈ C2
0 (Ω) follows from the previous theorem

by using again (6.36) to get

〈φ|H̃|φ〉 =
~2

2m

∫
Ω
|∇φ(x)|2dx− xe2

∫
Ω
‖x‖−1|φ(x)|2dx .

It is not difficult to show that any function φ ∈ C2
0 (R3) can be obtained as a limit in L2(R3)

of functions φn ∈ C2
0 (Ω) in such a way that, as n→∞,

~2

2m

∫
|∇φn(x)|2dx− e2

∫
‖x‖−1|φn(x)|2dx→ ~2

2m

∫
|∇φ(x)|2dx− e2

∫
‖x‖−1|φ(x)|2dx .

Hence 〈φ|H̃|φ〉 > −me4

2~2 for all normalized φ ∈ C2
0 (R3), and it follows that E0(H̃) > −me4

2~2 ,
which concludes the proof that hydrogen is stable.

To establish E0(H̃) 6 −me4

2~2 one constructs in a similar way a sequence of normalized
functions ψn ∈ C2

0 (Ω) converging to ψ/‖ψ‖ in L2(R3) such that

~2

2m

∫
|∇ψn(x)|2dx− e2

∫
‖x‖−1|ψn(x)|2dx→ −me

4

2~2

as n → ∞. The details of the construction of φn and ψn are left to the reader (see
Exercise 6.26).
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One may, in fact, completely determine the spectrum of the hydrogen Hamiltonian to
be {

− me4

2~2n2

∣∣∣n = 1, 2, . . .
}
∪ [0,∞) .

The details of the proof, however, go beyond the scope of these notes.

Exercises

Exercise 6.1. Show that if a map U : (−a, a) → B(H) for a > 0 maps into the unitary
operators on a Hilbert space H and satisifes (6.2) for s, t, s + t ∈ (−a, a) then U can be
extended to a map on all of R satisfying (6.2) for all s, t ∈ R.

Exercise 6.2. Assume that U(t) is a strongly continuous unitary one-parameter group on
a Hilbert space H and that U(t)ψ = eiα(t)ψ for some ψ ∈ H and α : R→ R, with α(0) = 0.

a) Show that if α is continuous then α(t+ s) = α(t) +α(s) for all t, s ∈ R and conclude
that for all t ∈ R we must have α(t) = α(1)t.

b) Show that α need not be continuous, but that one can always find one α with the
above property which is continuous.

Exercise 6.3. Let A be a (possibly unbounded) self-adjoint operator on H1 and let U ∈
B(H1, H2) be unitary, where H1 and H2 are Hilbert spaces.

Show that the operator UAU∗ with domain of definition

D(UAU∗) = {y ∈ H2 | U∗y ∈ D(A)}

is a selfadjoint operator on H2. Show also that A and UAU∗ have the same eigenvalues
and that

Eλ(UAU∗) = UEλ(A)

for all λ.

Exercise 6.4. For the operator in Exercise 5.17 show that

spec(A) = {λ1, λ2, . . .}.

is the spectrum of A, i. e., that λ 6∈ spec(A) if and only if (A− λ) has a bounded inverse.
That means that there exists an operator B ∈ B(H) such that (A−λ)Bx = x for all x ∈ H
and B(A− λ)x = x for all x ∈ D(A).
Hint. Argue that B must be the operator Bx =

∑∞
i=1(λi − λ)−1(x, ei)ei and that this

operator is bounded if and only if λ 6∈ spec(A).

Exercise 6.5. Let H = L2(Rk) and f ∈ C(Rk) be a continuous function.

a) Show that
(Mfψ)(x) = f(x)ψ(x), ψ ∈ L2(Rk)

defines a possibly unbounded densely defined operator with domain

D(Mf ) =

{
ψ ∈ L2(Rk)

∣∣∣∣∫
Rk
|f(x)ψ(x)|2dx <∞

}
.
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b) Show that the adjoint of the operator Mf in (a) is M∗f = Mf and in particular that
it has the same domain of definition as Mf .

Hint. That D(Mf ) ⊆ D(M∗f ) and that M∗f coincides with Mf on D(Mf ) follows

by using the Cauchy-Schwarz inequality for the integral
∫
Rk f(x)ψ(x)φ(x)dx. To

obtain D(M∗f ) ⊆ D(Mf ) one can assume ψ ∈ D(M∗f ) and then insert for φ in the

integral just mentioned the function that equals fψ on the box [−R,R]k and van-
ishes elsewhere, and which belongs to D(Mf ) (why?). One can then deduce that∫

[−R,R]k |f(x)ψ(x)|2dx is bounded by a constant for all R > 0 and consequently that

ψ ∈ D(Mf ).

c) Deduce that Mf is self-adjoint if and only if f is real.

d) Show that the set

spec(Mf ) = f(Rk)

is the spectrum of Mf , i. e., that λ 6∈ spec(Mf ) if and only if (Mf −λ) has a bounded
inverse. That means that there exists an operator B ∈ B(L2(Rk)) such that (Mf −
λ)Bx = x for all x ∈ L2(Rk) and B(Mf − λ)x = x for all x ∈ D(Mf ).

Hint. Argue that B must be the operator B = M(f−λ)−1 and that this operator is
bounded if and only if λ 6∈ spec(Mf ).

Exercise 6.6. Show that the map (6.8) is an orthogonal projection and determine the
eigenspaces corresponding to the eigenvalues 0 and 1.

Exercise 6.7.

a) Show that if V : H → H is a unitary or anti-unitary operator on a Hilbert space
H and if U(s), s ∈ R, is a strongly continuous unitary one-parameter group with
generator A then V ∗U(s)V, s ∈ R, is a strongly continuous unitary one-parameter
group with generator ±V ∗AV (+ if V is unitary and − if V is anti-unitary).

b) A time reversal transformation for a quantum mechanical system with state space
H and unitary time evolution U(t) is a unitary or anti-unitary operator J : H → H
such that J∗U(t)J = U(−t), t ∈ R.

Show for such a time-reversal operator J that J∗HJ = ±H.

Show also that if one insists on the energy of free particles being non-negative after
time reversal then J∗HJ = H. Show that this requirement implies that J must be
anti-unitary.

Exercise 6.8. Show by a change of variables that the identity (6.12) holds for all ~ > 0,
if it holds for ~ = 1.

Exercise 6.9.

a) Prove the identity (6.13) for ~ = k = 1 by using partial integration (see e. g. the
proof of equation (6.48)).
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b) Show the identity (6.14) for ~ = k = 1 by writing∣∣∣∣∣ f̂(p)− f̂(p0)

p− p0
+ ix̂f(p0)

∣∣∣∣∣ =

∣∣∣∣∫ ∞
−∞

(
e−ixp − e−ixp0

p− p0
+ ixe−ixp0

)
f(x)dx

∣∣∣∣
6
∫ ∞
−∞

∣∣∣∣∣e−ix(p−p0) − 1

p− p0
+ ix

∣∣∣∣∣ |f(x)|dx

and split the integral into a contribution I1 from [−R,R] and a contribution I2 from
R \ [−R,R]. Then estimate I1 by using the inequality∣∣∣∣∣e−ix(p−p0) − 1

p− p0
+ ix

∣∣∣∣∣ 6 |p− p0|ReR , |x| 6 R , |p− p0| 6 1 ,

which can be obtained by Taylor expanding the exponential function, and estimate
I2 by using ∣∣∣∣∣e−ix(p−p0) − 1

p− p0
+ ix

∣∣∣∣∣ 6 3|x| , x ∈ R ,

which can be obtained from the mean value theorem applied to cos and sin. By
choosing R > 0 large and p close enough to p0 one then shows that the first expression
above can be made arbitrarily small in a similar way as in the estimates used for
proving 1) in the proof of Theorem 6.11.

c) Use a) and b) to conclude that F maps S(R) into itself.

Exercise 6.10. Let f ∈ S(R) and show that the integral∫ ∞
−∞

e−ipxf(x)dx

can be approximated by appropriately chosen Riemann sums

FN (p) =

N∑
j=1

e−ipxjf(xj)(xj+1 − xj)

in such a way that

lim
N→∞

sup
p∈R

∣∣∣∣FN (p)−
∫ ∞
−∞

e−ipxf(x)dx

∣∣∣∣ = 0.

Exercise 6.11. Show that the map ρ : O(3)→ B(L2(R3)) given by

(ρ(A)ψ)(x) = ψ(A−1x)

is a unitary representation of the orthogonal group.
Hint. Use the transformation theorem for integrals and the fact, that detA = ±1.
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Exercise 6.12.

a) Show that the set Sn of all bijective maps of {1, 2, . . . , n} forms a group with multi-
plication being composition of maps and inverse being the inverse map. The group
Sn is called the permutation group and its elements are called permutations.

b) Find the number of elements in Sn.

c) For σ ∈ Sn define the matrix Aσ by

Aσij =

{
1, if i = σ(j)
0, otherwise

The number (−1)σ = detAσ is called the sign of the permutation σ. Show that
(−1)σ ∈ {−1, 1} and that (−1)στ = (−1)σ(−1)τ for all σ, τ ∈ Sn.

d) Show that the maps Sn 3 σ 7→ U±σ ∈ B(Cn)) given by

U±σ (x1, . . . , xn) = (±1)σ(xσ−1(1), . . . , xσ−1(n))

are unitary representations of the group Sn. We here use the notation that (+1)σ = 1.

Exercise 6.13. Show that if ρ is a unitary representation of a group G and e ∈ G is the
neutral element satisfying that eg = ge = g for all g ∈ G then ρ(e) = 1.

Exercise 6.14. Let the operators Ta,RA and Bv be defined by (6.17), (6.22) and (6.23)
and let U(a, s, v, A) be given by (6.24).

a) Show that T0 = B0 = R0 = 1 and that

U(−s) = U(0, s, 0, I), Bv = U(0, 0, v, I), Ta = U(a, 0, 0, I), RA = U(0, 0, 0, A).

b) What should the function ω in (6.25) satisfy in order for (6.24) to be consistent with
(6.25)?

Exercise 6.15. Show that the unitary operators in (6.26) satisfy

U(a1, 0, v1, A1)U(a2, 0, v2, A2) = e−im~−1A1v2·a1U(a1 +A1a2, 0, v1 +A1v2, A1A2)

and thus defines a projective representation of the part of the Galilei group that excludes
time translations.

Exercise 6.16. Complete the calculation of ω at the end of the proof of Theorem 6.10.

Exercise 6.17. Show the formula (6.36) for all functions ψ ∈ S(Rk).

Exercise 6.18. Show that a free particle in Rk is stable with ground state energy zero,
but that there is no ground state.

Exercise 6.19. Consider a free particle of mass m moving on the circle S1. Determine the
time evolution if the initial normalized state is represented by ψ0 = 2−1/2e1 + 2−1/2e−2.



Chap. 6 Quantum Mechanics 171

Exercise 6.20.

a) Verify that Ω0 belongs to S(R), by using appropriate asymptotic properties of exp.

b) Show that QΩ0 belongs to S(R) for any polymomial Q.

Exercise 6.21.

a) Show by using Lemma 6.8 that

F ◦A† = −i A† ◦ F

and deduce that
cn = (−i)nc0 ,

where cn is defined as in Remark 6.12.

b) Use that F is isometric to argue that |cn| = 1 and then use the form of Ω0 to conclude
that

c0 =
1

2π

∫ ∞
−∞

e−x
2/2dx = 1,

and hence that cn = (−i)n , n = 0, 1, 2, . . . .

Exercise 6.22.

a) Show that Ωn is an even function if n is even and an odd function if n is odd.

b) The Hermite polynomial Hn is defined as follows:

Let
Ωn(x) = Pn(x)ex

2/2

be the n’th (normalized) eigenfunction for the harmonic oscillator with c = 1. Then

Hn(x) = bnPn(x) = 2nxn + . . . ,

that is the normalization factor bn is chosen such that the highest order term in
Hn(x) has coefficient 2n.

Show that
H0(x) = 1

H1(x) = 2x

H2(x) = 4x2 − 2

H3(x) = 8x3 − 12x .

Exercise 6.23.

a) Use polar coordinates to show that if ψ ∈ C2
0 (R3) then ‖x‖−1ψ(x) ∈ L2(R3).

b) Show that the hydrogen operator (6.53) is well defined as an operator H̃ : C2
0 (R3)→

L2(R3).
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Exercise 6.24.

a) Show that the inequality

〈ψ|~2D2|ψ〉+mk〈ψ|x2|ψ〉 > ~
√
mk

holds for all normalized wave functions ψ ∈ S(R) and all constants m, k > 0.

Hint. Think of
√
mk as a variable quantity.

b) Use a) to derive the Heisenberg uncertainty relation

〈ψ|~2D2|ψ〉〈ψ|x2|ψ〉 > 1

4
~2

for any normalized wave function ψ ∈ S(R).

Exercise 6.25. If ψ ∈ S(R3) the Heisenberg uncertainty relation (see Exercise 6.24) states
that (∫

R3

‖x‖2|ψ(x)|2dx
)(∫

R3

ψ(x)(−∆ψ(x))dx

)
>

1

4
.

a) Let H̃ be the hydrogen operator (6.53). Use the uncertainty relation to show the
following inequality holds all ψ ∈ S(R3):

〈ψ|H̃|ψ〉 > ~2

8m

(∫
R3

‖x‖2|ψ(x)|2dx
)−1

− e2

∫
R3

‖x‖−1|ψ(x)|2dx. (6.54)

b) Given any C > 0 find a normalized function ψ ∈ S(R3) such that the right hand side
of (6.54) is smaller than −C, thus demonstrating that the inequality (6.54) cannot
be used to prove stability of hydrogen.

Exercise 6.26. Complete the details of the proof of Corollary 6.16.

Exercise 6.27. Let U(t) be a strongly continuous unitary one-parameter group on a
Hilbert space H and let V be a unitary operator on H. Assume that

U(t)V = exp(iθ(t))V U(t) (6.55)

for all t ∈ R and some function θ : R→ R.

a) Show that there must be an e0 ∈ R such that (6.55) is satisfied with θ(t) = e0t.

Hint. Use the approach of Exercise 6.2.

b) Show that the generator A of U(t) satisfies V ∗AV = A− e0.

c) Show that if U(t) is the time evolution of a stable quantum mechanical system (see
Definition 6.13) then e0 = 0. Show in particular, that in this case time translations
commute with space translations.

d) Give an example of a strongly continuous unitary one-parameter group U(t) and a
unitary V satisfying (6.55) with θ 6= 0.

Hint. Think of Galilei transformations.
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Exercise 6.28. Let Ω0 be the ground state of the harmonic oscillator defined in (6.45).
Define

Ωa,v = ei~
−1mv·xΩ0(x− a).

(Compare with the Galilei transformation in (6.26).) Argue that Ωa,v ∈ S(R) and show
that it is a unit eigenvector of the operator A in (6.40). What is the eigenvalue?
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