Particle Physics

Quarks

Hadrons

• Particles having the same spin-parity (J^{π}) tend to have similar masses

FIGURE 17-7 Classifying the hadrons by their mass, intrinsic angular momentum, and intrinsic parity.

Quarks

- 100's of hadrons (baryons and mesons) are known
- Classified in terms of their properties (mass, spin, parity, baryon number, strangeness, isospin)
- Development of a schematic classification scheme allowed one to predict the properties of particles
- (a Periodic Table for particles)
- Eventually showed that all hadrons can be constructed from fundamental, point-like particles called quarks (and anti-quarks)

2

The Eightfold Way

- 1961: Gell-Mann, Ne'eman et al.
- Plot the known particles on Strangeness vs Isospin plots

3

1

The Eightfold Way

A building block?

Krane 18.12 & 13

Quarks

- All quarks are spin-1/2 fermions
- Fractional charge $+\frac{2}{3}e$ or $-\frac{1}{3}e$
- Baryon number = $+\frac{1}{3}$
- Intrinsic parity is +1
- Initially, 3 quark "flavours"

Flavour	Name	Charge (e)	
u	Up	+2/3	
d	Down	-1/3	
S	Strange	- 1/3	

The Eightfold Way

Successful in predicting particles

Are quarks real or just nice maths?

6

Mesons

• A quark-antiquark pair

 $q\overline{q}$

• Mesons have B = 0.

$$\left\{ +\frac{1}{3} - \frac{1}{3} = 0 \right\}$$

• 9 bound states (mesons) from the 3 basic quarks:

$u\overline{u}$	$u\overline{d}$	us	$d\overline{u}$	$d\overline{d}$	$d\overline{s}$	$s\overline{u}$	$s\overline{d}$	ss
η	$\pi^{\scriptscriptstyle +}$	K^{+}	π^{-}	π^0	K^0	K^{-}	\overline{K}^0	η'

- (The $\underline{\pi}^0$, η , η' are in fact admixtures of qq pairs)
- "Pseudoscalar Mesons"

Mesons

- These 9 mesons form an Octet (8) and a Singlet (1 – the η').
- Interchange quarks e.g.

$$d \leftrightarrow s \quad \& \quad \overline{d} \leftrightarrow \overline{s}$$

 $\eta' \Rightarrow (u\overline{u}, d\overline{d}, s\overline{s})$

$$\eta' \rightarrow \eta'$$

Same particle

$$K^0 = d \, \overline{s} \quad \rightarrow \quad \overline{K}^0 = \overline{d} s$$

Different particles

9

Baryons

- A quark triplet
- Baryons have B = +1. qqq
- Antiparticles have B = -1 $\overline{q} \ \overline{q} \ \overline{q}$ $p = uud, \quad n = udd$ $\Lambda^0 = uds, \quad \overline{\Lambda}^0 = \overline{u} \ \overline{d} \ \overline{s}$

Proton	u	u	d	uud
Q	+2/3	+2/3	-1/3	+1
Spin	+1/2	+1/2	+1/2	+1/2
В	1/3	1/3	1/3	+1
Т	+1/2	+1/2	+1/2	+1/2
T ₃	+1/2	+1/2	-1/2	+1/2
				11

Mesons

• Lowest energy state has the quark and antiquark spins $\uparrow \downarrow$ with l=0

$$\pi(\overline{q}) = -\pi(q)$$
 fermions

$$\therefore \quad \pi(q\overline{q}) = \pi(q) \cdot \pi(\overline{q}) \cdot (-1)^l = -1$$

• The lowest energy state of a meson has

$$J^{\pi} = 0^{-}$$

• Excited energy state has the quark and anti-quark spins $\uparrow \uparrow$ with l=0

$$J^{\pi} = 1^{-}$$

10

Baryons

• Lowest energy state has the quark spins $\uparrow \downarrow \uparrow$ with l=0

$$\pi(\overline{q}) = -\pi(q)$$
 fermions
$$\therefore \pi(qqq) = \pi(q) = +1$$

• The lowest energy state of a baryon has $J^{\pi}=rac{1}{2}^+$

 $\pi(\overline{q}\,\overline{q}\,\overline{q}) = \pi(\overline{q}) = -1$

• Excited energy state has the quark spins $\uparrow \uparrow \uparrow$ with l=0

$$J^{\pi} = \frac{3}{2}^+$$

Colour

- 19** Discovery of the Ω^-
- Strangeness: $S = -3 \implies sss$
- Spin = 3/2 so $\uparrow \uparrow \uparrow$
- 3 's' quarks, in the same quantum state violates Exclusion Principle.
- Introduce another property "Colour" or "Colour Charge"
- NOTHING to do with visual colour
- So, we have 3 quarks with the same 'flavour' i.e. 's' but different 'colours'.
- Red, Green & Blue so when they're combined, the resulting baryon is White i.e. 'Colour Neutral'.
- Mesons are also 'Colour Neutral' e.g. Red & Anti-Red

Charm

- 1974 Stanford and Brookhaven: Discovery of the J/ψ meson
- Cannot be constructed from the u, d, and s quarks and anti-quarks.
- Must be a fourth quark --- "Charm (c)".

$$q = \pm \frac{2}{3}e$$

 Yet another introduced property, u, d and s quarks have charm = 0. The c quark has charm = +1

14

Bottom ("Beauty")

- 1977 Fermilab: Discovery of the $\,Y\,$
- Cannot be constructed from the u, d, s and c quarks and anti-quarks.
- Must be a fifth quark --- "Bottom (b) or Beauty".

$$q = -\frac{1}{3}e$$

Top ("Truth")

- Reason to suspect there are 3 families of quark pairs, just like the 3 generations of leptons
- 1997 Fermilab: Evidence for the top quark

$$q = +\frac{2}{3}e$$

Quarks

Flavour	Name	Charge (e)
u	Up	+2/3
d	Down	-1/3
S	Strange	-1/3
С	Charm	+2/3
b	Bottom	-1/3
t	Тор	+2/3

13