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More about this document 
Summary: 

The general balance rate equation for an arbitrary physical process is discussed.  Of primary 
importance is the physical meaning of the rate equation, its link to mathematics and how it can 
be used to estimate how a process variable evolves in time.  The concepts in this chapter are 
simple but fundamentally important to developing a facility with modeling physically processes. 
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Figure 1 Course Map 

 
• We will consider modeling a physical process. 
• Itinerary: 

- Parameter values and slopes 
- Process rate equations 
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1.2 Learning Outcomes 
 
The goal of this chapter is for the student to understand: 

• The dynamic nature of physical processes 
• How rate equations are used to give the evolution of process parameters over time (and 

space). 
• How the rate equations can be altered to make the solution more effective without 

introducing excessive errors. 

2 Estimating a parameter from its current value and its slope 
 
Just about everything in life is a dynamic process, else it could hardly be called life!  Things 
change; it’s a fact of life.  Even processes that appear static from the overall point of view are 
often dynamic on the local level.  For instance, the steady flow in a river is, at the local level, a 
dynamic flow of water through an area.  This can be also viewed as a flow into and out of an 
arbitrary volume.  So in general, we consider a parameter, Y, which could represent, 
temperature, pressure, density (of molecules, neutrons, …), etc., which in general is a function of 
time, t.  Over some time ∆t, the property Y may change from Y(t) to Y(t+∆t).  This change is 
denoted ∆Y: 
 Y Y(t t) Y(t)∆ = + ∆ −  (2.1) 
We estimate the rate of change of Y to be: 

 Y Y(t t) Y(t)
t t

∆ + ∆ −
=

∆ ∆
 (2.2) 

This is illustrated graphically in figure 2. 

Y
(t)

time, t

Y Y( t) Y(0)∆ = ∆ −
Y( t)∆

Y(0)

t∆

 
Figure 2 Y vs. t. 
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Of course, if ∆t is small enough, we can consider the change to be infinitesimal, denoted dt.  
Thus 

 
lim t 0

Y dY Y(t dt) Y(t)
t dt dt∆ →

∆ +
→ =

∆
−  (2.3) 

On the assumption that we will take incrementally small time steps, dt, we can rewrite equation 
2.3 to give the future value of Y(t+dt) in terms of the current value, Y(t), and the slope, dY/dt: 

 dYY(t dt) Y(t) dt
dt

 + = + ⋅ 
 

 (2.4) 

You should recognize this as a truncated Taylor’s Series: 

 ( ) ( )
2 k

2
2 k

dY 1 d Y 1 d YY(t dt) Y(t) dt dt dt
dt 2! dt k! dt

    + = + ⋅ + ⋅ + + ⋅ +    
     

… k …  (2.5) 

where the higher order terms can be dropped for sufficiently small dt.  So what we need now is 
the slope, dY/dt. 

3 Rate equations 
 
In general, we can write that the rate of change of a variable is equal to the net sum of all the 
sink and source rates for that variable, ie: 

 dY sources sinks
dt

= −∑ ∑  (3.1) 

Basically, this is just a statement of the fact that the change in a variable in a volume over time is 
just the net of what goes in and what goes out.  Here we have not explicitly stated what the sinks 
and sources are or what the specific dependencies of Y are.  In general, Y is a function of space 
and time but there could be other independent variables as well.  For example, in the case of 
neutrons, we often consider energy and angle as additional independent variables.  For the sake 
of the current discussion, however, we will limit ourselves to a single independent variable, e.g. 
time, only. 
 
Often, the sinks and sources are functions of Y and it is quite common for there to be systems of 
equations like equation 6 that are interdependent.   
 
A simple example of a rate equation is that for radioactive decay: 

 dN(t) N(t)
dt

= −λ  (3.2) 

where N is the nuclide concentration and λ is the decay constant. 
 
A more complicated example would be the case of a radioactive decay chain: 
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A
A A

B
A A B B

C
B B C C

dN (t) N (t)
dt

dN (t) N (t) N (t)
dt

dN (t) N (t) N (t)
dt

= −λ

= +λ −λ

= +λ −λ

 (3.3) 

 
Another example is particle beam attenuation: 

 dI(x) (x)I(x)
dx

= −Σ  (3.4) 

where I is the beam intensity, x is distance and Σ is the cross section, typically a function of x. 
 
An example that involves space and time would be the one speed neutron balance equation: 

 n ( , t) 1 ( , t)    = S( , t)  Σ ( , t) -   ( , t)at v t
∂ ∂

≡ −
∂ ∂
r r r r Ji∇ rφ φ  (3.5) 

as defined in Reactor Physics: Basic Definitions and Perspectives, Section 8. 
 
For the moment, though, only one point needs to be made clear:   

• Whatever the details of the governing rate equations, they all look like equation 6 in 
general form.  If we can estimate the values of the sinks and sources, we have directly 
an estimate of the rate of change of the variable in question.  And from that estimate, 
we can update the value of Y at a future time. 

So the calculational procedure is quite straightforward (in principle): 
• Estimate the sinks and sources 
• Calculate dY/dt (equation 3.1) 
• Calculate Y(t+dt) from equation 2.4 or 2.5. 

 
What could be easier?  Well, the devil is in the details, as they say.  Typically, the equation sets 
that we obtain when we model a physical process can only be solved analytically for special, 
simple cases.  We usually resort to a numerical process to generate the answers we are looking 
for.  But no matter what technique we use to solve the problem at hand, it is important to keep 
the physical process model clearly in mind when you are mired in the mathematics.  And that 
physical process is invariably a form of the rate equation, i.e. equation 6, which is nothing more 
than a statement of the fact that the change in a variable in a volume over time is just the net of 
what goes in and what goes out. 
 

4 Steady state 
 
A special case of the above that is encountered quite often is the steady state wherein dY/dt = 0.  
Because the steady state is such an important case, the model derivation is often developed from 
the steady state.  Consequently, it is often difficult to see the rate form that is implicit in the 
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model.  But it is there and the reader would be wise to seek it out even when it is not evident 
since solution schemes often present themselves when a steady state process is viewed as a 
transient process that comes to a steady state.  An example of this is the solution to the steady 
state neutron diffusion equation, equation 3.5.  As we shall see, the iterative solution to that 
equation is less intuitive than solving the transient form. 
 

5 Stiff Systems 
 
Systems of equations that have vastly different time constants (or eigenvalues, if you wish to be 
use a more mathematical term) are called stiff.  They are stiff in the sense that the equations with 
the longer time constants will not change hardly at all (ie are stiff) in the time it takes the other, 
less stiff, equations to change drastically, perhaps by orders of magnitude.  Obviously, if you 
want to capture the full solution details, you would need to use a small ∆t to capture the rapidly 
changing variations of the equations with short time constants, and you would need to simulate 
for a long time (many iterations) to capture the slow change in the equations with the long time 
constants.  The usual mathematical approach to mitigate this problem is to use an implicit 
numerical algorithm (see the chapter on Numerical Methods).  This permits the use of large ∆t’s 
for stiff systems but it comes at the expense of having to invert matrices.  Of course, any method 
that uses large ∆t’s will not see the fine detail in the time evolution of the equations with the 
short time constants, but if you are only interested in the long term behaviour, that is of no 
consequence.  With the simple explicit approach, you are forced to calculate the fine structure, 
whether you want it or not! 
 

5.1 Altering Reality 
 
There is an alternative to taking a mathematical approach to mitigate the stiffness problem.  Why 
not change the problem to be solved into one that is easier to handle?  By way of an example, 
let’s say that you need to solve the following two equations: 

 

( )1 2 1
1 2 1

1

2 2
2 2

2

1

2

dy y y10 y y , ie is 0.1 sec
dt

dy y0.1y , ie is 10 sec
dt

Initial conditions:
y (0) 0
y (0) 1

−
= − + ≡ τ

τ

= − ≡ − τ
τ

=
=

 (5.1) 

Variable y2 has a time constant that is 100 times linger than y1 so you would expect y1 to change 
much more rapidly than y2.  Solving this system numerically with a ∆t = 0.01 sec gives a 
solution as shown in figure 3. 
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Figure 3 Stiff system example. 

Notice how y1, with its shorter time constant, rapidly evolves while y2, with its longer time 
constant, evolves much more slowly.  In this simple example, y2 is simply decaying away and is 
a source for y1.  Variable y1 goes in quickly and settles down to a pseudo steady state, ie a state 
that is in equilibrium with its environment but is not quite steady because its boundary 
conditions are changing.  In this case y2 represents a boundary or external influence on y1. 
 
The fast moving y1 forces us to take small ∆t’s.  But if we are only interested in the long term 
behaviour, ie, are not interested in the initial “growing in” period, we can safely adjust τ1 to 
something closer to τ2 without affecting the long term solution.  This is true because, once y1 has 
“grown in”,  

 ( )1
1 2 1

dy 0 10 y y y y
dt 2≈ = − + ⇒ ≈  (5.2) 

so the value of τ1 is not in the long term solution to y1, leaving us free to “fudge” the problem 
definition to make it more amenable to solution.  Prudence dictates that we adjust τ1 to be τ2/10 
so that it y1 is still significantly faster than y2 but not so fast as to force us to use a ∆t that is 
much smaller than the ∆t needed to get a reasonable solution to y2. 
 
A physical example, to set the idea firmly, would be that of placing a solid object in your 
outstretched hand, palm up, and then raising your hand.  The differential equation for the 
object’s motion would involve a force balance in which your hand is providing the boundary 
condition.  The object’s motion will be identical to that of your hand, except for the detailed 
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motion involving the compression of your skin.  If we were not interested in this detailed motion, 
then we could safely use a crude model for the compression (say with a time constant just faster 
than the time constant of the overall motion) or ignore the compression altogether (equivalent to 
setting y1=y2 in the above). 
 
No, it is not mathematically elegant; but elegance can take on many forms and, to an engineer, 
this has a touch of elegance since it gives an acceptably good solution at very low cost, 
numerically.  We’ll use this notion to efficiently and effectively solve the neutron diffusion 
equations developed in other chapters.   

5.2 The Fudge Factor Approach Applied to Systems 
 
Consider a systems of coupled equations with different time constants, such as: 

 dY AY B
dt

= +  (5.3) 

where, for a 3x3 system: 

  (5.4) 
1 11 12 13 1

2 21 22 23 2

3 31 32 33 3

y a a a y b
y a a a y b
y a a a y b

       
       =       
              

�
�
�

1

2

3

+

where, perhaps 

  (5.5) 
1 1

2 2

1

y
y
y C precursor concentration

= φ
= φ
= ⇐

or 

 
1 1

2 2

1

y
y
y N fuel concentration

= φ
= φ
= ⇐

 (5.6) 

The coefficients aij determine the rates of change of yi.  For the flux, the aij contain velocity 
factors; for C, the aij terms contain λ’s, etc.  
 
Note that it is the dy/dt on the L.H.S. that contains the reference to the time scale within the dt 
portion of the term.  It is here that we can stretch and shrink the time scale, if we so desire, to 
slow down a fast transient or speed up a slow one.  Note that the steady state, ie, when the rate 
terms on the L.H.S. → 0, ie: 
 0 AY B= +  (5.7) 
would not be altered if fudge factors were introduced into the L.H.S. of equation 5.3 as follows: 

 dYF AY
dt

B= +  (5.8) 

or 
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  (5.9) 
1 1 11 12 13 1 1

2 2 21 22 23 2

3 3 31 32 33 3 3

F 0 0 y a a a y b
0 F 0 y a a a y b
0 0 F y a a a y b

         
         =         
                  

�
�
�

2+

The F factors are our time scale adjustment factors. 
 
A specific example might be the one speed, one dimensional, homogeneous, transient neutron 
diffusion equation in finite difference form: 

 
( )t t t

p p
w p E a p2 2 2

F D 2D D S
v t

+∆φ − φ
p= φ − φ + φ −∑ φ +

∆ ∆ ∆ ∆
 (5.10) 

where v∆t has been replaced by v∆t/F.  In terms of the unknown flux using the semi-implicit 
algorithm: 

 

t t t t
p w E2 2

t t
p

a2

v t D D S
F

v t 2D1
F

+∆

+∆

∆
p

 φ + φ + φ + ∆ ∆ φ =
 ∆  + + ∑  ∆  

 (5.11) 

If we were to choose F = v, this would be equivalent to setting v = 1, ie, we would be making 
things change more slowly.  Effectively, dy/dt is reduced by a factor F, making it less “twitchy”. 
 This is okay if you don’t want to track the details of dy/dt and you just want the steady state, or 
pseudo steady state solution. 
 
So if you were solving the multigroup equations, you’d have: 

 

1

11 12 13 1 1
2

21 22 23 2 2

31 32 33 3 3
3

d
dt a a a b

d a a a b
dt

a a a bd
dt

φ 
 

φ      
φ        = φ +      

     φ       φ 
  

 (5.12) 

For a slightly sub-critical reactor, φ1, representing the fast neutrons, would decay quickly until it 
was in balance with its source, which is the thermal fission (α φ3).  Since φ3 is moving much 
more slowly, you’d waste a lot of CPU grinding along at a ∆t such that 

 1
1 a12

2Dv t 0.1 (to stay stable) ∆ +∑ ≤ ∆ 
 (5.13) 

If you set , you’d get just as accurate decay profile once you got past the initial 
adjustment.  So set  

1 2v v 10v= � 3
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1
1 1

3

2
2 2

3

3 3

v 1F v
v 10
v 1F v
v 10

F 1 v v

= ⋅ ⇒ =

= ⋅ ⇒ =

= ⇒ =

3

3

3

10v

10v  (5.14) 

Use the same reasoning when you are dealing with the precursor equations, fuel depletion, or, 
indeed, any stiff system.   
 
Using equation 5.3 as a specific example, we have a fast and thermal flux and delayed precursors 
that are far slower: 

 

1

1 11 12 13
2

2 21 22 23 2

3 31 32 33

d
dtF 0 0 a a a b

d0 F 0 a a a b
dt

0 0 F a a a C bdC
dt

φ 
 

φ      
φ       = φ      

           
 
  

1 1

2

3

 
 +  
  

 (5.15) 

Let’s say that we are interested in the precursor transient.  Set F3 = 1 for that equation since you 
want accuracy in time.  Set the time step size, ∆t, for stability and accuracy, such that, say 
  (5.16) ( )t 0.01  for the precursor equation.∆ ≤"
Set F1 and F2 as follows: 

 

11
1

33

22
2

33

1 aF
10 a
1 aF

10 a

= ⋅

= ⋅
 (5.17) 

so that the flux equations will be moving much slower than is the true physical case but about 10 
times faster than the precursor equation.  This should be fast enough that the fluxes are in pseudo 
steady state and are presenting themselves appropriately to the precursor equation.  In each 
particular case, you should experiment with various F factors because the off diagonal terms and 
non-linearities may have a large effect on system dynamics. 
 
If there were other equations in the system that were even slower moving that the precursor 
equations (fuel depletion, for example), then you can leave those equations alone (ie, set their F’s 
= 1) or even just use their steady state solution since they will not be changing significantly in 
the time that the precursors are changing.  You might recalculate the slower equations on an 
infrequent basis, say every 100 ∆t steps or so, depending on the speed of those slow equations 
and the cost of recalculation. 
 
Use your engineering judgment.  You will be amazed at how effective a simply written code 
using only straight forward rate equations can be for solving a wide range of problems in an 
effective manner. 
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6 Final words 
 
The above probably is self evident to you and not particularly profound.  What is surprising, 
though, is how infrequently common sense is uttered.  The above may be simple.  But it is no 
less essential and fundamental for all that. 
 

7 Exercises 
 

7.1 Simple decay question 
 
Consider the process of equation 3.2.  Solve for N(t) analytically given N(0).  Write a pseudo-
code for solving equation 7 numerically. 
 

7.2 Decay chain question 
 
Consider the process of equation 3.3.  The analytical solution is messy but if we can assume that 
process has reached a pseudo-steady state, the solution is easy.  What is it?  Also, write a 
pseudo-code for solving equation 8 numerically. 
 

7.3 Simple attenuation question 
 
Consider the process of equation 3.4.  Solve for I(x) analytically given I(0), stating clearly what 
simplification must be made to do so.  Write a pseudo-code for solving equation 9 numerically.  
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