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Part I

Preliminaries: Quantum Field Theory



Chapter 1 What is a Quantum Field Theory?

Our aim in this course is to describe elementary particles. This description must
necessarily marry Quantum Mechanics (because particles are subatomic objects) and
Special Relativity (because, given their small masses, elementary particles are easily
relativistic).

1.1 Why the Schroedinger equation cannot work?

Remember that the Schroedinger equation in the abstract Hilbert space H is given
by

i
∂|ψ〉
∂t

= H|ψ〉 , (1.1)

where H is the Hamiltonian operator. Notice that we set ~ = 1 because we will work
most of the times in natural units, in which ~ = 1 = c. For a free particle in position
space this can be written as

i
∂ψ(t,x)

∂t
= − ~2

2m
∇2ψ(t,x) , (1.2)

where ψ(t,x) ≡ 〈x|ψ(t)〉 is the wave function. As we can see, time appears via a first
derivative, while space coordinates appear through second derivatives. Remembering
that Lorentz transformations mix time and space components, it is immediate to see that
the Schroedinger equation cannot be relativistically invariant. This is already a strong
indication that we will need to generalize Eq. (1.2) to a wave equation that is relativis-
tically invariant. A second problem emerges when marrying Quantum Mechanics with
special Relativity, which we will call the localization problem. The argument (due to
Bohr), goes as follows: consider a closed box containing one particle. Suppose one of
the walls of the box is mobile, in such a way that we can diminish the volume in which
the particle can move. This means that we can in principle localize the particle as much
as we want. We know however that quantum effects are important on scales of the order
of the Compton wavelength associated with the particle,

λC =
h

mc
=

2π

mc
. (1.3)

When the available volume inside the box becomes of the order V ∼ λ3
C ∼ 1/m3, the

uncertainty principle tells us that

pV 1/3 & 1 ⇒ p & m . (1.4)



1.2 How to construct a QFT

This means that localization in a relativistic theory implies that we have enough energy
to produce pairs, and our one-particle-quantum-mechanics theory ceases to be valid. We
thus conclude that

A relativistic quantum theory must be a many particle theory.

A quantum many body theory is what we call Quantum Field Theory (QFT).

1.2 How to construct a QFT

We now sketch the steps behind the construction of a QFT. Of course we will not
be able to enter into too many details, since the topic is very vast and a dedicated course
is needed to appreciate all the details. We will describe the general ideas behind the
construction of QFTs focussing only on the aspects that will be more relevant for us.

1.2.1 Creation and annihilation operators

The central object in the construction of a QFT is the notion of creation and
annihilation operators. We will start from a vacuum state without particles, |0〉, and
define creation and annihilation operators according to

a†p |0〉 = |p〉 , ap |0〉 = 0 . (1.5)

Here p is a multiindex label that can be written as

p = {p, λp} , (1.6)

where p is the particle 3-momentum and λp represent all other quantum numbers (spin,
charges, etc) needed to define the state of the particle. We focus for the moment on
creation and annihilation operators that create particles of definite momentum. Multi-
particle states are constructed from the vacuum by repeated application of the creation
operators according to

|p1, . . . , pN〉 = a†p1 . . . a
†
pN
|0〉 . (1.7)

Aswe know from the quantummechanics courses, particles are either bosons or fermions.
Bosons have states which are symmetric under exchange of quantum numbers, while
fermions have states which are antisymmetric. This property can be easily implemented
in the formalism requiring [

ap, a
†
q

]
= δλqλpδ

3(p− q) (1.8)

for bosons and {
ap, a

†
q

}
= δλpλqδ

3(p− q) (1.9)
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1.2 How to construct a QFT

for fermions.
It is also easy to see that the operator

Np ≡ a†pap (1.10)

counts the number of particles in the state with quantum numbers p, while the Hamilto-
nian operator is given by

H =
∑
p

Epa
†
pap , Ep =

{
p2

2M√
p2 +M2 ,

(1.11)

whereM is the mass of the particle.

1.2.2 The cluster decomposition

One of the properties we want to include in our multiparticle theory is the so-called
cluster decomposition. What this means can be understood as follows: take two very
far experiments, one located at point x and the other at point y. Unless we concoct
things in such a way to create a correlated state at the beginning of the experiment, what
will happen in one experiment should be independent from what happens in the other
experiment. This very physical and intuitive requirement goes under the name of cluster
decomposition. What does it imply? From the practical point of view it implies that the
probability for some event A to happen in the apparatus located at x and the probability
for some other event B to happen in the apparatus located at y should be multiplied to
compute the total probability,

P = PA(x)PB(y) . (1.12)

In quantum mechanics this means that the amplitude for the events to happen should
factorize as

A = AA(x)AB(y) , (1.13)

and that the time evolution of the experiment located at x should have nothing to do
with the time evolution of the experiment located at y. Since time evolution is given by
the exponential of the Hamiltonian operator, the cluster decomposition implies that we
should be able to schematically write the time evolution operator as

U =
∏
x

U(x) , (1.14)

where U(x) represents the time evolution of the events happening at x. This can be
automatically if the Hamiltonian can be written in terms of an Hamiltonian density as

H =

∫
d3xH(x) . (1.15)
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1.2 How to construct a QFT

Indeed, in this case we have schematically

U = e−iHt = e−i
∫
d3xH(x)t = e−i

∑
H(x)t =

∏
x

e−iH(x)t =
∏
x

U(x) (1.16)

which is the required factorization. Notice that this is a new element in the quantum
theory of many bodies which is not present in one-particle QM: interactions are local,
i.e. they depend on the position.

1.2.3 Field operators

As we just saw, the cluster decomposition forces us to write the Hamiltonian in
terms of positions variables x. Clearly, this feature is not present in the Hamiltonian of
Eq. (1.11). How shouldwe then proceed? The solution is to introduce field operators, i.e.
the analog of the creation and annihilation operators in position space. More specifically,
we introduce two operators

ψ(x) =
∑
p

up(x)ap , ψ†(x) =
∑
p

u∗p(x)a†p . (1.17)

We will specify the properties of the up(x) functions in a moment. The utility of such
operators comes from the fact that they can be used to write the Hamiltonian density
H(x).

Let us start discussing first the non-relativistic case. If we choose up(x) to be a
solution of the time-independent wave equation(

−∇2

2m
+ V (x)

)
up(x) =

(
p2

2m
+ V (x)

)
up(x) , (1.18)

then it can be easily shown that

H(x) = ψ†(x)

(
−∇2

2m
+ V (x)

)
ψ(x) , (1.19)

i.e. we are able to implement the cluster decomposition. It is interesting to observe that,
using the fact that the functions up(x) is a solution of the Schrodinger equation (i.e. they
form a complete set of orthogonal functions), we obtain[

ψ(x), ψ†(y)
]

= δ(3)(x− y),
{
ψ(x), ψ†(y)

}
= δ(3)(x− y), (1.20)

where the first expression is valid for bosons and the second for fermions. We see that
the field operators behave like creation and annihilation operators in position space.

We now introduce time dependence in the picture constructed so far. We can easily
pass to Heisenberg picture remembering that

ȧp = i [H, ap] , (1.21)
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1.2 How to construct a QFT

where the Hamiltonian is given in Eq. (1.11). We immediately obtain

ȧp =
∑
q

iEq
[
a†qaq, ap

]
=
∑
q

iEq

(
a†q [aq, ap] +

[
a†q, ap

]
aq

)
=
∑
q

iEq

(
− δλpλqδ3(p− q)

)
aq

= −iEp ap .

(1.22)

This equation can be immediately integrated to obtain

ap(t) = ap(0)e−iEp t . (1.23)

This result can be translated at the level of field operator:

ψm(x, t) = U †(t)

(∑
p

up(x)ap

)
U(t) =

∑
p

up(x)e−iEp tap =
∑
p

up(x, t)am(p).

(1.24)
We see that the time dependence can be simply implemented promoting the solution of the
time-independent Schrodinger equation to a solution of the time-dependent Schrodinger
equation. The immediate consequence is that the field operator ψ(x, t) satisfies the wave
equation [

i
∂

∂t
−
(
−∇2

2m
+ V (x)

)]
ψ(x, t) = 0 (1.25)

simply because the functions up(x, t) satisfies it.
We conclude with an interesting observation. We know that classical systems can

be quantized using the procedure known as canonical quantization (apart from some
ordering problems which will not interest us now). We have shown in Eq. (1.25) that the
field operator satisfies the Schrodinger equation. The questionwe set up to answer is: can
this result be obtained from canonically quantize the theory of a classical Schrodinger
field? The answer is yes, as we are now going to see. Take a classical field ψ(x). The
Schrodinger equation is obtained from an action of the form

S =

∫
d4xψ∗(x)

[
i
∂

∂t
−
(
−∇2

2m
+ V (x)

)]
ψ(x) (1.26)

applying the usual Euler-Lagrange equations of motion. As we know from Quantum
Mechanics, canonical quantization amounts to promote classical variables (the field, in
this case) to operators, with Poisson brackets giving the commutator according to

{·, ·} → i [·, ·] . (1.27)

Let us apply this procedure to the Schrodinger field. The only non-trivial Poisson bracket
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1.2 How to construct a QFT

is between the field and its conjugate momentum

π(x) =
δL
δψ̇

= iψ∗(x) . (1.28)

The Poisson brackets are given by

{ψ(x, t), π(y, t)} =

∫
d3z

(
∂ψ(x, t)

∂ψ(z, t)

∂π(y, y)

∂π(z, t)
− ∂ψ(x, t)

∂π(z, t)

∂π(y, y)

∂ψ(z, t)

)
= δ(3)(x− y) .

(1.29)

Thismeans that the commutator between the quantum Schrodinger field and its conjugate
momentum gives [

ψ(x, t), ψ†(y, t)
]

= δ(3)(x− y) , (1.30)

which is exactly the result expected from the procedure outline above. We thus ob-
tain a very important result: a classical field theory quantized according to canonical
quantization reproduces the results of a many-body theory.

1.2.4 Relativistic wave equations

We have seen in the previous section that the field operator ψ(x, t) satisfies the
wave equation. What are the wave equations that relativistic fields should satisfy? The
answer is well-known from the study of the Poincaré group. They are

(Klein−Gordon) (2 +m2)φ(x) = 0 ,

(Dirac) (/∂ −m)ψ(x) = 0 ,

(Proca) ∂µVµν(x) +m2Vν(x) = 0 ,

(1.31)

where in the Proca equation we have defined Vµν = ∂µVν − ∂νVµ. It can be shown
that these are the most general differential equations up to second order derivatives that
are covariant under Lorentz transformations. It can easily be shown that all the wave
equations imply that the fields must satisfy the Klein-Gordon (KG) equation, with the
other equations (like the Dirac or Proca one) imposing additional constraints on the
solutions. We will write our fields as

ϕA(x) =

∫
d3p
∑
λ

uλA(p)ϕKG(p, x)aλp , (1.32)

where A is a Lorentz index (for instance, a spinor index in the case of the Dirac spinor,
or the usual Lorentz index µ in the case of the Proca field). The index λ refers now to the
spin (or helicity, for massless particles) degrees of freedom. ϕKG(p, x) is the solution of
the KG equation. Since this equation is a wave equation, it admits plane wave solutions:
decomposing

ϕKG = ϕ0(t)eipx (1.33)

7



1.2 How to construct a QFT

and defining Ep =
√
p2 +M2, we obtain that the time dependent solution must obey

ϕ̈0 + E2
pϕ0 = 0, ⇒ ϕ±0 (t) = ϕ0(0)e∓iEpt, (1.34)

where the superscript (±) refers to positive and negative energy states, respectively.
With a redefinition of the field we can always fix ϕ0(0) = 1. We are thus forces to
introduce two types of fields: one with positive energy, the other with negative energy.
Although not clear right now, the negative-energy fields will play a fundamental role in
guaranteeing that causality is satisfied in the theory.

Putting all together, the relativistic quantum fields obeying the wave equations in
Eq. (1.31) are

(Klein−Gordon) φ(±)(x) =

∫
d3p ei(∓Ep t+p·x) a±p ,

(Dirac) ψ(±)(x) =

∫
d3p

∑
λ

uλ,±(p) ei(∓Ep t+p·x)aλ,±p ,

(Proca) V (±)
µ =

∫
d3p

∑
λ

ελ,±µ (p) ei(∓Ep t+p·x)aλ,±p ,

(1.35)

where u(p) and εµ(p) satisfy the Dirac and Proca equations, respectively. To simplify the
notation, we notice that the exponent in the exponential of the positive-energy solutions
can be written as −i(Ept − px) = −ipx in a relativistic invariant way. As for the
negative-energy solutions, we can always redefine p → −p in the integral, obtaining
+ipx in the exponent. Redefining also

uλ,+(p) = uλ(p), uλ,−(−p) = vλ(p), ελ,+µ (p) = ελµ(p), ελ,−µ (−p) = ε̄λµ(p), (1.36)

as well as
aλ,+(p) = aλ(p), aλ,−(−p) = b†λ(p), (1.37)

we can finally write

φ(+)(x) =

∫
d3p e−ipx a(p) , φ(−)(x) =

∫
d3p eipx b†(p),

ψ(+)(x) =

∫
d3p

∑
λ

uλ(p) e
−ipx)aλ(p) , ψ(−)(x) =

∫
d3p

∑
λ

vλ(p) e
ipxb†λ(p)

V (+)
µ (x) =

∫
d3p

∑
λ

ελµ(p) e−ipxaλ(p) , V (−)
µ (x) =

∫
d3p

∑
λ

ε̄λµ(p) eipxb†λ(p) .

(1.38)
The functions u(p), v(p), εµ(p) and ε̄µ(p) obey the Dirac and Proca equations in mo-
mentum space:

(/p−M)u(p) = 0, (/p+M)v(p) = 0,

pµε
µ(p) = 0, pµε̄

µ(p) = 0.
(1.39)

Notice that each one of the solutions are necessarily complex. We have explicitly written
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1.2 How to construct a QFT

the negative energy solution in terms of a new creation operator b†(p). As we are going
to see in the next chapter, this operator creates antiparticles, and is connected to the
possible charges that the field could carry. If a particle is its own antiparticle then we
can take b(p) = a(p).

The physical meaning of the negative-energy solutions is still quite unclear. Can
we disregard them completely? The answer is no. The reason is twofold:

The first problem is a problem of measurability. Take the Hamiltonian density
H(x). Since the Hamiltonian must be an observable, it must be hermitian. How-
ever, none of the positive-energy solutions in Eq. (1.35) are hermitian. This already
implies thatH(x) cannot be constructed out of the positive-energy solutions only,
but both positive-energy and negative-energy solutions must be present;
The second problem is a problem of causality. Take two points x and y at a
space-like separation. Since no signal can be exchanged between the two, it must
be possible tomeasureH(x) andH(y) simultaneously without changing the result
of the other measurement. In other words, H(x) and H(y) must be compatible
operators,

[H(x),H(y)] = 0 (x− y)2 < 0 . (1.40)

It turns out that both points above are solved if our quantum fields are constructed as

ϕA(x) = ϕ
(+)
A (x) + ϕ

(−)
A (x) , (1.41)

i.e. the positive and negative energy solutions must enter on the same foot in the quantum
field. We will study in detail the physical interpretation of the negative-energy solutions
in Section 2.2. 1

Let us conclude this section with a comment on the normalization of the fields. The
measure d3p in Eq. (1.35) is not Lorentz invariant, and the same is true for the commu-
tation/anticommutation relations of Eq. (1.30). The Lorentz invariant combinations are
given by

d3p

2Ep
, Ep δ

(3)(p− q) . (1.42)

This suggests that wewrite our field operators as integrals over d3p/(2Ep), using creation
operators

αm(p) ≡ (2π)3/2
√

2Ep am(p) , (1.43)

where the numerical factor (2π)3/2 is inserted for later convenience. Putting all together

1Another information that can be extracted from the fact that the positive and negative-energy solutions
must enter on equal foot is the spin-statistic theorem: bosons can only have integer spin, while fermions
can only have semi-integer spin.
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1.3 Lagrangians for free particles

we obtain that the typical relativistic quantum field can be written as

ϕA(x) =

∫
d3p

(2π)3 2Ep

∑
λ

(
uλA(p)αλ(p)e

−ipx + vλA(p)β†λ(p)e
ipx
)
. (1.44)

For real fields we can take β†λ(p) = a†λ(p) and vλA(p) = uλ∗A (p).

1.3 Lagrangians for free particles

As it happens in the case of the Schrodinger equation, we can obtain the same results
starting from a classical field theory and applying canonical quantization. A classical
field theory is defined in terms of a Lagrangian (density) which must be a scalar. This
forces us to consider only Lagrangians that are Lorentz invariant. The only case in
which this will not be completely straightforward is when massless spin 1 particles are
involved. We will study the subtleties of this case in next section. In this section we just
show the Lagrangian for spin 0, 1/2 and 1 free particles. They are

Lscalar = ∂µφ
†∂µφ−m2φ†φ ,

Lreal scalar =
1

2
(∂µφ)2 − 1

2
m2φ2 ,

LDirac = ψ̄(i/∂ −m)ψ ,

Lvector = −1

2
V †µνVµν +m2V †µVµ ,

Lreal vector = −1

4
(Vµν)

2 +
m2

2
(Vµ)2 .

(1.45)

We present in Appendix A the details of the computation.

1.4 Massive and massless spin 1 particles

Let us conclude this chapter pointing out a crucial point for all our subsequent
discussion. In Eq. (1.44) we have explicitly written a sum over polarizationsm, without
entering into any detail. We now discuss this point, since it plays an essential role in the
physics of photons.

We start by counting the number of (spin) degrees of freedom of amassive particle.
A particle of spin 0 has 2j + 1 = 1 degree of freedom. A particle of spin 1/2 has 2
degrees of freedom. A particle of spin 1 has 3 degrees of freedom. This means that the
sum over polarizations must be taken over 1, 2 and 3 states, respectively.

Let us focus on the case of spin 1, which will be the one for which the massless limit
will prove more subtle. In this case we need 3 polarization vectors εmµ (p). To understand
what form they take, it is useful to go back to the Proca equation in Eq. (1.31). Applying

10



1.4 Massive and massless spin 1 particles

∂ν and remembering the antisymmetry of Vµν we obtain the constraint ∂µVµ = 0. At the
level of polarization vectors this means that each polarization must satisfy pµεmµ (p) = 0.
We now use the so-called method of induced representations of the Lorentz group. It
amounts to the following observations:

To study the Lorentz transformations of objects that depend on the momentum
(like our polarization vectors), we start by choosing a reference momentum kµ in
which the description of the physics is particularly simple. We then write

p = Lk→p k , (1.46)

where Lk→p is an appropriate Lorentz transformation. We will see shortly that
this matrix is not uniquely defined, but can be multiplied on the right by any
Lorentz transformation that leaves k invariant. If we now apply a second Lorentz
transformation Λ to p, we can write

Λp = ΛLk→p k = Lk→Λp k = Lk→ΛpM k (1.47)

where in the last step we have introduced the matrix M belonging to the little
group of k, defined as the group of Lorentz transformations that leave k invariant,
Mk = k. This means that to study any Lorentz transformation Λ we can first
study the little group, and then boost using Lk→Λp;
In the case of our polarization vectors we define

εµm(p) = Lk→p ε
µ
m(k) ; (1.48)

For a massive particle we can choose k as the rest frame momentum, k = (m,0).
In this frame we can always choose the three polarization vectors according to

εµ±(k) =
1√
2

(0, 1,±i, 0) , εµL = (0, 0, 0, 1) . (1.49)

Notice that this is a complete basis when restricted to the 3-dimensional space.
The little group in this case is simply the rotation group SO(3), in such a way
that the only effect of a little group transformation on the polarization vectors is
to mix them one with the other. This means that a Lorentz transformation on the
polarization vectors amounts to

Λεµm(p) = ΛLk→pε
µ
m(k) = Lk→Λpε

µ
m(k) , (1.50)

i.e. they transform as usual 4 vectors.
We now turn to the case of a massless vector. In this case the reference momentum k

can at most be chosen as k = (E, 0, 0, E), and only two polarization vectors are needed,
which we can choose as

εµ±(k) =
1√
2

(0, 1,±i, 0) , (1.51)

11



1.5 Additional reading

exactly as in the massive case. Now comes the catch. Let us repeat the reasoning above
and inspect what happens with a transformation of the little group of k. Among the
transformations of the little group there are rotations around the z axis that simply mix
the polarization vectors among each other. There are, however, other elements in the
little group whose action is different. An example is given by the Lorentz transformation

M =


3/2 1 0 −1/2

1 1 0 −1

0 0 1 0

1/2 1 0 1/2

 . (1.52)

It is immediate to see that Mk = k, as it should be for an element of the little group.
When we apply it to εµ±(k) we obtain

Mε±(k) = ε±(k) +
1√
2E

k . (1.53)

This means that there are transformation in the little group that not only do not leave
the polarization invariant, but that they shift them in the direction of the momentum
k. It can be shown that this is a general result. But then applying a generic Lorentz
transformation we obtain

Λε±(p) = Lk→ΛpM ε±(k) = Lk→Λp (ε±(k) + αk) = ε±(Λp) + αΛp , (1.54)

where α is some constant. The main result is clear: when we embed a massless spin 1
particle in a vector field, the vector field does not transform as a 4-vector but it shift in
momentum space by a term proportional to the momentum itself. In position space this
means that a Lorentz transformation amounts to

V µ(x)→ Λµ
νV

ν(x) + ∂µξ(x) , (1.55)

since the shift proportional to the derivative amounts to a shift proportional to the
momentum. Notice that this transformation contains what is usually called “gauge
transformation”. We have recovered it here as a consequence of the redundancy of our
description (i.e. of the fact that we insist in embedding two degrees of freedom in a
4-component object). Let us stress the last point, since it is often a confusing point in
the literature: Eq. (3.6) is not a symmetry transformation, rather the statement that when
we want to describe a massless vector in terms of a 4-component object Vµ(x) we need
to admit that all the configurations that differ by a derivative are equivalent, i.e.

Vµ(x) ∼ Vµ(x) + ∂µξ(x) . (1.56)

In this sense, a gauge transformation is simply an expression of a redundancy and not a
symmetry transformation.
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1.5 Additional reading

S.Weinberg, “The Quantum Theory of Fields” vol. 1;
M.Peskin and Daniel Schroeder, “An Introduction To Quantum Field Theory”;
S.Coleman, “Lectures on Quantum Field Theory”;
M.Schwartz, “Quantum Field Theory and the Standard Model”.
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Chapter 2 Interactions in Quantum Field
Theory

In the previous chapter we have focused on free particles, i.e. on Lagrangians that
are at most quadratic in the fields. In this lecture we will introduce interactions, defined
as terms which are of cubic or higher order in L. For instance, interactions will be of the
form φ3, φ4, φψψ, or any other combination which is allowed by (i) Lorentz invariance,
(ii) symmetries, (iii) gauge invariance (if needed).

We will first explore the consequences of gauge invariance, and then turn on a
review of symmetries.

2.1 Consequences of gauge invariance

As we have seen, the mismatch between the number of degrees of freedom in a
massless vectorAµ and its physical (2) dof forces us to introduce an equivalence relation
that amounts to state that the physics cannot change in the presence of the longitudinal
degree of freedom,

Aµ(x)→ Aµ(x) + ∂µξ(x) . (2.1)

The simples coupling between Aµ and other particles, requiring Lorentz invariance, is
of the form

Lint = gAµJ
µ , (2.2)

where g is called the gauge coupling and J is called current. The current is an operator
that contains at least two fields. Our purpose in this section is to determine the possible
form of the current J .

Requiring Lint to be invariant under a gauge transformation implies

AµJ
µ →AµJµ + ∂µξ(x)Jµ

(by parts)

AµJ
µ − ξ(x)∂µJ

µ .

(2.3)

we see that Lint is invariant under the gauge transformation (i.e. it is not affected by the
unphysical longitudinal degree of freedom) only if

∂µJ
µ = 0 ⇔ gauge invariance (2.4)

Stated in another way:



2.2 Symmetries

Massless vectors can only couple to conserved currents.

As a reminder, in the presence of a conserved current ∂µJµ = 0 we have a conserved
charge

Q =

∫
d3xJ0 . (2.5)

This is conserved in the sense that

Q̇ =

∫
d3x∂0J

0 = −
∫
d3x∇ · J = 0 , (2.6)

where in the last step we have assumed the 3-current J to vanish sufficiently quickly
at infinity and used Gauss theorem. Conserved currents are a natural outcome of
symmetries, as we are now going to explore in detail.

2.2 Symmetries

Since we are talking about fields, the central results is Noether theorem: to any
continuous symmetry of the action corresponds a conserved current. We sketch below the
proof of the result. Continuous symmetries are transformations that depend continuously
on a parameter,

φ(x)→ φλ(x) . (2.7)

Since the parameter is continuous, we can consider infinitesimal transformations for
which λ� 1, and write

φ(x)→ φ(x) + λδφ(x) . (2.8)

The crucial observation to prove Noether theorem is to observe that the action S is
invariant if the variation of the Lagrangian under a symmetry transformation is a total
derivative,

δL = λ∂µF
µ . (2.9)

The variation of the Lagrangian is given by

δL = L(φ+ λδφ, ∂φ+ λ∂δφ)− L(φ, ∂φ)

' λ

[
δL
δφ
δφ+

δL
δ∂µφ

∂µδφ

]
.

(2.10)
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2.2 Symmetries

Using now the EoM δL/δφ = ∂µ(δL/δ∂µφ) we obtain

0 = δL − λ∂µF µ

=

(
∂µ

δL
δ∂µφ

)
δφ+

δL
δ∂µφ

∂µδφ− ∂µF µ

= ∂µ

[
δL
δ∂µφ

δφ− F µ

]
,

(2.11)

which suggests the identification of the conserved current with

Jµ ≡ δL
δ∂µφ

δφ− F µ . (2.12)

Notice that the expression of the current is not unique, since we can always shift Jµ →
Jµ+∂αA

αµ, whereAαµ is an antisymmetric object. Nevertheless, it is easy to show that
the chargeQ is not affected by the shift (assuming as usual thatAαµ vanishes at infinity).

What happens at the quantum level? The field φ is now a quantum operator, and
we know from Quantum Mechanics that the action of symmetries on operators is of the
form

U †(λ)φU(λ) = φλ , (2.13)

where for continuous symmetries U(λ) is a unitary matrix that can be written as

U(λ) = e−iλQ . (2.14)

The hermitian operator Q is the generator of the transformation. At the infinitesimal
level we have

(1 + iλQ)φ(1− iλQ) ' φ+ λδφ

φ+ iλ [Q, φ] ' φ+ λδφ
(2.15)

which implies
δφ ' i [Q, φ] . (2.16)

We say that Q generates the transformation. Remembering the Heisemberg EoM

Q̇ = i [H,Q] (2.17)

we conclude that Q is conserved when it commutes with the Hamiltonian H . It is
immediate to show that this is equivalent to requiring

U †(λ)H U(λ) = H , (2.18)

i.e. Q is conserved only when the Hamiltonian is invariant under the transformation
generated by Q.

The previous discussion applies to single particle QM. Does anything change in
QFT? Since operators are local, we can always write

H =

∫
d3xH(x) , Q =

∫
d3xQ(x) , (2.19)
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2.3 Example: conserved current of a Dirac fermion

where H is a usual the Hamiltonian density, while Q is the charge density. We have
immediately that the invariance of H under the symmetry implies

U †(λ)HU(λ) = H ⇒ [H, Q] = 0 . (2.20)

What happens with the commutator between H and Q? From charge conservation the
most we can conclude is that

Q̇ = i [H,Q] = i

∫
d3x [H,Q(x)] = 0 ⇒ [H,Q(x)] = i∇ · J(x) (2.21)

for some field J(x). The factor of i is inserted to make both sides anti-hermitian.
Remembering that the left hand side is simply proportional to Q̇ apart from a factor of
i, we conclude that even in QFT is is true that

Q̇ = −∇ · J , (2.22)

which is the quantum version of Noether theorem.
The crucial question is now: can we compute the conserved quantum current using

the classical formula coming from Noether theorem? The answer is yes. To convince
ourselves that this is the case, we consider the explicit example of a Dirac fermion field.

2.3 Example: conserved current of a Dirac fermion

We start from the free Dirac Lagrangian

L = ψ̄(iγµ∂µ −m)ψ . (2.23)

The Lagrangian is invariant under the phase transformation

ψ → e−iαψ , (2.24)

which at the infinitesimal level amounts to

ψ → ψ − iα ψ . (2.25)

We thus want to determine a charge operator such that

δψ(x) = −iψ(x). (2.26)

Since the only operators available are ψ and ψ† (or ψ̄), the charge operator will be a
function of such operators:

Q =

∫
d3xQ(ψx, ψ

†
x), (2.27)

where, for simplicity of notation, we denote all the fields by O(x) = Ox. Let us try the
simplest possibilities:

Qx = ψx: using the anticommutation relations
{
ψx, ψ

†
y

}
= δ3

xy we cannot simplify
the expression, which cannot thus be reduced to Eq. (2.26);

17



2.4 Antiparticles

Qx = ψ†x: again the anticommutation relation does not help and we cannot obtain
Eq. (2.26);
Qx = ψ†xψx: in this case we obtain

δψx = i

∫
d3y

[
ψ†yψy, ψx

]
= i

∫
d3y

[
ψ†y {ψy, ψx} −

{
ψ†y, ψx

}
ψy
]

= −i
∫
d3yδ3

xyψy

= −iψx,

(2.28)

which is exactly the result we wanted to obtain.
We can now use the Dirac equation to simplify the time derivative of Qx = ψ†xψx =

ψ̄xγ
0ψx, obtaining

Q̇x = −∇ · (ψ̄xγψx). (2.29)

� Exercise 2.1 Derive the previous result using the Dirac equation.

We thus deduce that the conserved 4-current associated to the transformation of Eq. (2.26)
is

Jµ = ψ̄γµψ. (2.30)

Let us now compute the Noether current and show that we obtain the same result at the
classical level. We start with the definition

Jµ = πµδφ− F µ , with ∂µF
µ = δL . (2.31)

We compute in turn the different terms:
We start with δL:

δL = L′ − L '
(
ψ̄ + iαψ̄

) (
i/∂ −m

)
(ψ − iαψ)− L

' iα
(
ψ̄(i/∂ −m)ψ − ψ̄(i/∂ −m)ψ

)
' 0 ,

(2.32)

so that we can choose F µ = 0;
The conjugate 4-momentum πµ is given by

πµ =
δL
δ∂µψ

= iψ̄γµ . (2.33)

We thus obtain that the Noether current is equal to

Jµ = ψ̄γµψ , (2.34)

exactly the result obtained in the quantum theory.
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2.4 Antiparticles

2.4 Antiparticles

After our discussion of the charge operator we are finally in the position to discuss
antiparticles. Let us first remind that a real field is written as

ϕA(x) =

∫
d3p

(2π)3 2Ep

∑
λ

(
uλA(p)αλ(p)e

−ipx + uλ∗A (p)α†λ(p)e
ipx
)
, (2.35)

while for complex fields we write

ϕA(x) =

∫
d3p

(2π)3 2Ep

∑
λ

(
uλA(p)αλ(p)e

−ipx + vλA(p)β†λ(p)e
ipx
)
. (2.36)

The difference between the two expressions lies in the second term, which for complex
fields is not constrained to be the complex conjugate of the first one. We also remind the
reader that the second term is the one associated with the negative-energy solutions. To
keep our notation compact, we will write

ϕ(x) = ϕ(+)(x) +
[
ϕ(+)(x)

]† (2.37)

for a real field and
ϕ(x) = ϕ(+)(x) + ϕ(−)(x) (2.38)

for a complex scalar field, leaving implicit all the Lorentz indices.
Suppose now we consider a particle which is charged under some symmetry. This

means that its one particle states are eigenstates of some charge operator

eiQ|p〉 = eiq|p〉 , (2.39)

where q is the charge of the particle (a number). At the level of creation and annihilation
operators this can immediately be written as[

Q,α†(p)
]

= +q α†(p) , [Q,α(p)] = −q α(p) . (2.40)

This implies that the fields with positive and negative energy will transform as[
Q,ϕ(+)(x)

]
= −q ϕ(+)(x) ,[

Q,ϕ(−)(x)
]

= +q ϕ(−)(x) .
(2.41)

Let us now see what happens with the total field operator. We remind that our purpose
is to write (Eq. (2.16))

[Q,ϕ(x)] = −i δϕ(x) , (2.42)

where the right hand side must be expressed in terms of ϕ(x) only. It is clear that in the
case of a real field we have

[Q,ϕ(x)] =
[
Q,ϕ(+)(x)

]
+
[
Q,
[
ϕ(+)(x)

]†]
= −q ϕ(+)(x) + q

[
ϕ(+)(x)

]†
.

(2.43)
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2.5 Scattering and Feynman rules

The only way to write this expression in terms of ϕ(x) only is to admit q = 0, i.e. a real
field cannot carry any non-trivial charge and cannot describe charged particles.

What happens in the case of a charged field? The situation now is different, since
there is nothing forcing the negative-energy part ϕ(−)(x) to have the same charge. More
specifically, we write

[Q,ϕ(x)] =
[
Q,ϕ(+)(x)

]
+
[
Q,ϕ(−)(x)

]
= −q(+) ϕ

(+)(x) + q(−) ϕ
(−)(x) .

(2.44)

We see that if we admit opposite charges,

q(−) = −q(+) ≡ −q (2.45)

then the right hand side of the expression can be recombined and be written in terms of
the total field ϕ(a) as

[Q,ϕ(x)] = −q ϕ(x) . (2.46)

We thus conclude that complex fields can carry charge, i.e. can create and destroy
charged particles. The consequence of the last point is of paramount importance: every
time we introduce an operatorα† that creates a particle with a non-trivial charge, wemust
also introduce an operator β† that creates particles with opposite charge. Remembering
that the ϕ(−)(x) field satisfies the same KG equation as the ϕ(+)(x)(x) field, we conclude
that this opposite charged particle created by β† has the same mass as the particle created
by α†. This particle is called antiparticle.

To summarize, we have concluded that as a consequence of causality (i.e. of the
fact that we need to write the field as in Eqs. (2.37) and (2.38)), the existence of particles
carrying non-trivial charge implies the existence of antiparticles with same mass but
opposite charge.

2.5 Scattering and Feynman rules

Once interactions are introduced, we open up the possibility of studying scattering
and decays in QFT. Let us give some details of what happens. The two most important
observables are the differential cross section associated to the process p1 + p2 → q1 +

q2 + . . . ,
dσ =

1

4
√

(p1 · p2)2 −m2
1m

2
2

1

S
|A|2 dΦn , (2.47)

and the decay width of an unstable particle p→ q1 + q2 + . . . ,

dΓ =
1

2M

1

S
|A|2 dΦn , (2.48)
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2.5 Scattering and Feynman rules

whereM is the mass of the mother particle. |A|2 is the squared matrix element, that will
depend on the theory under consideration. We will devote a good part of this section to
see how to compute this quantity. In both the expressions above, S = N ! whereN is the
number of identical particles in the final state, while dΦn is the n-particle phase space:

dΦn =
∏
i

d3qi
(2π)32Ei

(2π)4δ(4)(p1 + p2 − q1 − . . . ) , (2.49)

where the product is taken over all the particles in the final state. Wewill compute several
cross sections and decay widths in the following chapters. For reference, however, we
collect here the expression of the 2-body phase space computed in the CM frame of the
final particles:

dΦCM
2 =

dΩ

32π2

√(
1− (m−m′)2

s

)(
1− (m+m′)2

s

)
, (2.50)

wherem andm′ denote the masses of the particles in the final state, s is the squared CM
energy and dΩ is the element of solid angle between the two final state particles. Since
these formulas are derived in any book about QFT we will not show how the expressions
are obtained.

Before moving on to the computation of A, let us introduce two more important
quantities:

the luminosity L, defined as
L =

Ntot

σ
, (2.51)

where Ntot is the total number of events and σ is the total cross section. The
luminosity L is usually given by the experiments, and allows to compute the total
number of events once σ is known;
the branching ratio in a specific channel BRi. To define the branching ratio, we
first compute the total decay width ΓT =

∑
i Γi, where Γi is the decay width in

one specific channel i. We than define

BRi =
Γi
ΓT
. (2.52)

The branching ratio represents the probability for the unstable particle to decay in
the channel i.
We finally move to the computation of A. To this end, consider either a scattering

or a decay between initial state |i〉 and final state |f〉. We define the S-matrix as the
operator such that the amplitude for the |i〉 → |f〉 process can be written as

M = 〈f |S|i〉 . (2.53)

It is customary to write the S-matrix as S = 1 + iT . The matrix element A appearing
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2.5 Scattering and Feynman rules

in the expressions for the cross section and decay width is then defined as

A(i→ f) = 〈f |T |i〉 . (2.54)

To be more precise, we explicitly factorize a delta function to take into account 4-
momentum conservation, and we define

Tfi = (2π)4δ(Pin − Pfin)Ai→f . (2.55)

It can be shown that the S-matrix can be written as

S = T exp

(
−i
∫
d4xHint(x)

)
= 1−i

∫
d4xHint(x)+

1

2

∫
d4x

∫
d4yT (Hint(x)Hint(y)+. . .

(2.56)
The series is called Dyson series, and relies on the assumption that the interaction
HamiltonianHint depends on some small parameter overwhichwe are doing perturbation
theory. This is motivated by the fact that there are no known examples in 4-dimensions
of interacting theories for which we can compute exactly the S-matrix. The interaction
Hamiltonian contains terms which are of cubic or higher order in the quantum fields.
Examples are Hint(x) = λφ(x)4 or Hint(x) = gAµ(x)ψ̄(x)γµψ(x). In these examples
the Dyson series is an expansion in the (hopefully) small parameters λ or g.

The T symbol in the formula above denotes the time ordering operator

T (O(x)O(y)) = θ(x0 − y0)O(x)O(y) + θ(y0 − x0)O(y)O(x). (2.57)

The last ingredient we need in order to be able to do actual computations isWick theorem.
To state the theorem, we define the normal ordering of operators

: φ1φ2 := all creation operators on the left, (2.58)

and the Wick contraction

ϕ1ϕ2 ≡ DF (x1 − x2) = 〈0|ϕ1ϕ2|0〉 , (2.59)

whereDF is called Feynman propagator. We will study in Section 2.6 how to practically
compute such propagators. The statement of Wick theorem is

T (ϕ1 . . . ϕN) =: ϕ1 . . . ϕN + all possible contractions (also multiple ones) : (2.60)

Using Dyson series combined with Wick theorem we can compute any matrix elements
needed, once the interactions are given. From the practical point of view, Feynman
realized that the computation can be simplified using the so-called Feynman rules, that
are simply mnemonic rules that encode the content of the Dyson series. To fix the
notation, let us remind that a generic quantum field can be written as

ϕA(x) =

∫
d3p

(2π)3
√

2Ep

∑
λ

[
uλA(p)aλ(p)e−ipx + vλA(p)b†λ(p)eipx

]
, (2.61)

where a destroys particles, b† creates antiparticles and u, v are “polarizations” (spinors
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2.6 Propagators and gauge fixing

for spin 1/2 particles, polarization vectors for spin 1 particles etc).

The Feynman rules can be summarized as follows:
Factors involving the external particles: using the expression for quantum fields
in Eq. (2.61) we see that a wave function factor uλA(p) is associated with the aλ(p)

operator (i.e. with the destruction of a particle) while vλA(p) is associated with
b†λ(p), i.e. with the creation of an antiparticle. Conversely, the expression for
ϕ†A(x) shows that the creation of a particle must be associated with uλ†A (p) while
the destruction of an antiparticle must be associated with vλ†A (p). In the case of
fermions, the wave functions with † must be replaced by wave functions with the
Dirac-bar;
The propagator in momentum space is computed according to the procedure
outlined in Sec. 2.6;
Feynman rules for interactions are computed according to

i
δnL

δφ1 . . . δφn
,

where φ1, . . . , φn denote potentially different fields. This rule of thumb can be
justified by the path integral approach to QFT and is a practical way to take into
account possible permutation factors of identical legs in the vertex.

Let us give a concrete example: the Feynman rules associatedwithHint(x) = −Lint(x) =

−gAµ(x)ψ̄(x)γµψ(x):

= igγµ. (2.62)

We will see more examples in the following chapters.
Once the amplitude is computed we need to compute its squared modulus in order

to have an expression for the observables. In this process we usually encounter the
following “polarization sums”:∑

λ

uλ(p)ūλ(p) = /p+m,∑
λ

vλ(p)v̄λ(p) = /p−m,

∑
λ

ελµ(p)ελ∗ν (p) =

{
−gµν massless

−gµν + pµpν
m2 massive

(2.63)

With these sum polarizations it is possible to eliminate all the wave function dependence
for a dependence on momenta, masses and metric tensors, allowing for a much simpler
computation.
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2.6 Propagators and gauge fixing

As we saw in the previous section, a fundamental role in the computation of the
matrix elements is played by propagators, i.e. the two-point-functions

〈
0|Tϕ†(x)ϕ(y)|0

〉
that measure the amplitude for a particle to be created in x and destroyed in y. As a
practical rule, we remind that the propagators can be computed from the quadratic (or
free) part of the Lagrangian. We first write it schematically as

Lfree =

{
ϕ†(x)O(∂,m)ϕ(x) (complex)
1
2
ϕ(x)O(∂,m)ϕ(x) (real)

(2.64)

for complex and real fields, respectively. To obtain the Lagrangian written in the form
above integration by parts can be used. We then write the expression in momentum
space with the replacement ∂µ → −ipµ. The propagator is then given by

propagator = iO(−ip,m)−1 , (2.65)

In the case of massive scalar, fermion and vector fields we obtain
p→

=
i

p2 −m2
,

p→
=

i

/p−m
=
i(/p+m)

p2 −m2
,

p→
=

−i
p2 −m2

(
gµν − pµpν

m2

)
.

(2.66)

The only non-trivial result is the last one, which we will now derive in detail. Let us
start with the Lagrangian in momentum space. It reads

Lmom
free = V †µ

[
−
(
p2 −m2

)
gµν + pµpν

]
Vν . (2.67)

To invert the tensor appearing in this expression we observe that for any momentum p

we can define two projectors

P µν
T ≡ gµν − pµpν

p2
, P µν

L ≡
pµpν

p2
, (2.68)

which project in the transverse and longitudinal direction with respect to p. It is easy to
check that PT and PL have the usual properties of projectors. Given a tensor written as

Aµν = aP µν
T + bP µν

L , (2.69)

its inverse is given by
(Aµν)−1 =

1

a
P µν
T +

1

b
P µν
L . (2.70)

It is just amatter of algebra to see that applying this procedure to the tensor− (p2 −m2) gµν+

pµpν exactly reproduces the propagator written above.
An important point that emerges from the inspection of the propagators in Eq. (2.66)

is that while them→ 0 limit is smooth in the scalar and fermion case, there is singularity
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in the vector case. This is again a manifestation of the difference between the number of
degrees of freedom in a massive (3) and in a massless (2) vector. We see immediately
that the reason behind the singularity is the fact that the tensor −p2gµν + pµpν to be
inverted in the massless case is purely transverse,−p2gµν +pµpν = −p2P µν

T , and cannot
thus be inverted. To allow for the computation of the propagator of a massless vector we
thus need to add “by hand” a longitudinal term in the Lagrangian. This term is usually
called “gauge fixing term” because a longitudinal term necessarily breaks explicitly1
gauge invariance. A common choice is to consider the Lagrangian

Lmassless vector = −1

4
(Vµν)

2 − 1

2ξ
(∂µV

µ)2 . (2.71)

The operator in position space is

O(∂) = 2gµν −
(

1− 1

ξ

)
∂µ∂ν . (2.72)

This gives the propagator
p→

=
−i
p2

(
gµν − (1− ξ)p

µpν

p2

)
. (2.73)

Different values of ξ correspond to different gauge choices. For instance ξ = 1 is usually
called Feynman gauge.

2.7 Example: the fermion-fermion to fermion-fermion
scattering

Let us put together all the ingredients we have presented in the previous sections
and write the expression for the matrix element of a process. We take the interaction
Hint(x) = −L(x) = −gAµ(x)ψ̄(x)γµψ(x) and consider the process ψ(p1)ψ(p2) →
ψ(p3)ψ(p4). In order to draw all possible diagrams we first fix the external particle lines
and then try to connect them in all possible ways using the interactions at our disposal.
For the current case we have

p1 p3

p2 p4

(2.74)

where the blob denotes all possible ways of connecting the fermion lines using the vertex
and respecting the directions of the arrows. Since our vertex involves one outgoing
fermion, one ingoing fermion and one massless vector, we see that we can connect the
lines of the external particles in two ways: (i) p1 with p3 and p2 with p4 or (ii) p1 with

1We will see in the following chapters that there can also be a “spontaneous” breaking.
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2.8 Effective Field Theories

p4 and p2 with p3. We will thus have two independent amplitudes, each corresponding
to one of the possible connections:

p1 p3

↓ p3 − p1

p2 p4

= A1 = [ū3(igγµ)u1]Dµν(p3 − p1) [ū4(igγν)u2] . (2.75)

p1 p4

↓ p4 − p1

p2 p3

= A2 = [ū4(igγµ)u1]Dµν(p4 − p1) [ū3(igγν)u2] . (2.76)

where Dµν(p) is the massless vector propagator of E. (2.73). The overall amplitude for
the process is given by the sum A = A1 +A2.

Given a 2→ 2 process, it is customary to define the Mandelstam variables

s = (p1 + p2)2,

t = (p1 − p3)2,

u = (p1 − p4)2.

(2.77)

Notice that only two of the Mandelstam variables are independent, since the following
relation is always valid:

s+ t+ u =
∑
i

m2
i , (2.78)

where the sum is taken over the masses of all the external particles. Going back to
the amplitudes in Eqs. (2.75) and (2.76), we see that the squared photon momentum
corresponds to the t variable in the first case and to the u variable in the second case.
For this reason, the diagram in Eq. (2.75) is called t-channel while the one in Eq. (2.76)
is called u-channel.

2.8 Effective Field Theories

Given a certain set of fields, we can write infinite interaction terms in L. The
question that arises is thus: are all interactions equally relevant?

To answer this question we need to keep in mind that

ALL THEORIES IN PHYSICS HAVE A LIMITED RANGE OF VALIDITY.

Stated in more technical terms, all theories in physics are Effective Theories (they are
effective only in a certain range of validity). QFT is no exception, and every time we
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2.8 Effective Field Theories

write a QFT we are implicitly assuming that the theory we are considering is valid only
for a limited range of energies/scales. In this case we use the term Effective Field Theory
(EFT). This view (called Wilsonian) is a useful way to organize the terms in L.

To be more quantitative, let us call Emax ≡ Λ the maximum energy at which the
EFT is valid. Λ is called cutoff of the EFT. Let us consider the theory of a massless
spin-0 particle obeying a Z2 symmetry

φ→ −φ . (2.79)

The Lagrangian is

L =
1

2
(∂φ)2 − λ4φ

4 − λ6φ
6 − κ4φ

2(∂φ)2 − κ6φ
4(∂φ)2 + . . .

=
1

2
(∂φ)2 − λ4φ

4 − g6

Λ2
φ6 − h6

Λ2
φ2(∂φ)2 − h8

Λ4
φ4(∂φ)2 + . . .

(2.80)

In the second line we have used dimensional analysis to write the dimensionful couplings
in terms of the only scale available, the cutoff Λ.

Since dimensional analysis plays a fundamental role in our discussion, before
turning to amplitudes it is important to discuss the dimension of an amplitude involving
n particles. From Eqs. (2.55) and (2.53) we obtain immediately that

[An] = 4 + [M] . (2.81)

To compute [M] we observe that an amplitude involving n particles involves n factors
of (relativistically normalized) creation or annihilation operators. From Eq. (1.43) we
immediately conclude that [M] = −n, and finally

[An] = 4− n. (2.82)

Let us now look at some amplitudes:
4-points amplitudes: according to the argument above, theymust be dimensionless.
We thus write

A2→2 ∼ λ4 +
h6

Λ2
E2 + . . . (2.83)

where in the second term we have insert a typical energy scale for the process
(for instance, it is of the order of the CM energy of the scattering) to make the
dimensions right. We are not bothering in keeping track of the numerical factors
appearing in the Feynman rules because they are not important for our argument.
We see that at sufficiently low energies we have

A2→2 → λ4 as E → 0 , (2.84)

i.e. only the lowest dimensional coupling survives;
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2.8 Effective Field Theories

6-points amplitudes:

A2→4 ∼
g6

Λ2
+

(
λ4 +

h6E
2

Λ2

)2
1

E2
∼ g6

Λ2
+
λ2

4

E2
+
h2

6E
2

Λ2
+ 2

λ4h6

Λ2
, (2.85)

where in the first term we have inserted the (massless) scalar propagator necessary
to obtain the 6-point amplitude. Again, we see that at low energies

A2→4 →
λ2

4

E2
as E → 0 , (2.86)

i.e. only the lowest dimensional coupling survives.
This suggests to organize the Lagrangian as

L = Lkin + L4︸ ︷︷ ︸
survives when E→0

+
1

Λ
L5 +

1

Λ2
L6 + . . . (2.87)

The part of the Lagrangian that survives as E → 0 is called “renormalizable” for
historical reasons. This means that we can organize our discussion in inverse powers of
Λ, and start our discussion with the renormalizable Lagrangian.

The fact that only a limited number of terms are important in the low energy/large
distance limit is not peculiar of QFT.Another familiar example is given by the potential of
a static distribution of charge of typical size a. We know from classical electrodynamics
that at a distance R� a we have

Φ =
Q0

R
+
Qi

1R
i

R3
+
Qij

2 R
iRj

R5
+ . . . (2.88)

where the terms refer to the monopole, dipole, quadrupole and higher order multipoles,
respectively. Each multipole grows with the size of the object according to Qα ∼ aα. It
is clear that a measurement performed at very large distances will be sensitive only to the
monopole term (i.e. from very far away, every charge distribution looks like a point-like
charge). Diminishing the distanceR between the charge and the experimental apparatus
allows us to probe higher multipoles: first the dipole, then the quadrupole etc. Clearly,
when R ∼ a the expansion completely breaks down, and we need the full expression of
the potential to make predictions (i.e. we need to change our description). Exactly the
same reasoning is behind the idea of EFT in QFT: for energiesE � Λ only the operators
of smallest dimensions will be probed by experiments. As the energy increases, more
and more operators are necessary, until we reachE ∼ Λ and a new description is needed.

The analogy with the electrostatic potential highlight also another fundamental fact
about the long distance/high energy limit: since fewer terms are relevant, accidental
symmetries appear which are not symmetries of the whole problem. In Eq. (2.88) the
monopole term is completely invariant under rotations, since it depends only on the
magnitude of the distance R. The symmetry of the monopole is thus SO(3). When
the dipole is important, we see we do not have anymore the freedom of performing
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2.9 Additional exercises

arbitrary rotations: only those that will leave invariant Qi
1 will be symmetries of the

system. The symmetry is hence reduced to SO(2), the group of rotations around a
fixed axis (determined by Qi

1). Finally, when the quadrupole term is important, also the
SO(2) symmetry is lost. We will be back on the point of symmetries many times in the
following chapters.

2.9 Additional exercises

� Exercise 2.2 Consider the following interaction Lagrangian:

Lint = yφψ̄ψ + h.c. (2.89)

where φ is a real scalar and ψ a Dirac Fermion. They have masses mφ and mψ,
respectively.

Compute the cross section ψψ̄ → ψψ̄;
Compute the decay width φ→ ψψ̄.

� Exercise 2.3 Repeat the computations of the previous exercise considering the following
Lagrangian between a massive vector Vµ and a Dirac fermion ψ:

Lint = yVµψ̄γ
µψ + h.c. (2.90)

2.10 Additional reading

S.Weinberg, “The Quantum Theory of Fields” vol. 1;
M.Peskin and D.Schroeder, “An Introduction To Quantum Field Theory”;
S.Coleman, “Lectures on Quantum Field Theory”;
M.Schwartz, “Quantum Field Theory and the Standard Model”;
D. B. Kaplan, “Lectures on Effective Field Theory” (link);
R. Penco, “An Introduction to Effective Field Theories” (link);
T.Cohen, “As scales become separated: lectures on effective field theoy” (link).
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Chapter 3 Quantum Electrodynamics

In nature, Quantum Electrodynamics is the theory of a massive electron (or, more
in general, of massive charged particles) and of a massless photon. To construct the
Lagrangian of the theory we will start from the free particle Lagrangians of the electron
and of the photon, and add a linear coupling between Aµ and a conserved current made
out of electrons. As we know from the previous chapter, the free fermion Lagrangian is
invariant under a phase transformation, and admits a Noether current. Overall we obtain

L = −1

4
(Fµν)

2 + ψ̄
(
i/∂ −m

)
ψ − eqAµψ̄γµψ , (3.1)

where e is the electric charge (defined positive) and q = −1 is the actual electron charge.
This notation is convenient because it is customary to write all electric charged in units
of the electron charge (i.e. factorizing explicitly a factor of e).

3.1 Covariant derivatives

A more compact way to write the Lagrangian of Eq. (3.1) is by means of the idea
of “covariant derivative”

Dµψ ≡ ∂µψ + ieqAµψ . (3.2)

In terms of the covariant derivative the Lagrangian simply reads

L = ψ̄
(
i /D −m

)
ψ . (3.3)

In our approach, the covariant derivative is simply a compact way of writing the La-
grangian. There is however another way to get to the same result, by invoking the
so-called “gauge principle”:

1. promote the phase transformation under which the free fermion Lagrangian is
invariant to a local transformation

ψ(x)→ eiα(x)ψ(x) ; (3.4)

2. The free-fermion Lagrangian is no longer invariant under the local transformation,
but it transforms according to

ψ̄(i/∂ −m)ψ → ψ̄(i/∂ −m)ψ − ∂µα(ψ̄γµψ) ; (3.5)

3. The easiest way to restore the invariance is to add the linear −eq Aµψ̄γµψ inter-



3.2 Amplitudes and gauge invariance

action. The Lagrangian is thus invariant under the gauge transformation

ψ(x)→ eiα(x)ψ(x)

Aµ(x)→ Aµ(x)− 1

eq
∂µα .

(3.6)

In this simple case the two approaches (adding a linear coupling between the photon
and a conserved current and requiring invariance under a local phase transformation) are
completely equivalent. We will see soon that in more complicated cases like scalar QED
the gauge principle allows to get to the correct answer in a quicker a simpler fashion.
It is worth however to stress that the gauge principle is nothing more than a recipe to
ensure that the physics is invariant under the gauge transformation Aµ → Aµ + ∂µξ.

Notice that it is inconvenient to have the photon transformation depending on the
fermion charge, while the fermion transformation does not depend on q. This may be
problematic if more charged particles are present, since the photon transformation cannot
make the Lagrangian invariant. The simple way out is to redefine α(x) → qα(x). We
thus obtain that the gauge transformation is

ψ(x)→ eiqα(x)ψ(x)

Aµ(x)→ Aµ(x)− 1

e
∂µα .

(3.7)

Why isDµ called a covariant derivative? To understand this point we need to look
at how Dµψ transforms under the gauge transformation of Eq. (3.6):

Dµψ → (∂µ + ieqAµ − iq∂µα) eiqα(x)ψ

= (iq∂µα)eiqαψ + eiqα∂µψ + ieqAµe
iqαψ − (iq∂µα)eiqαψ

= eiqα(x)Dµψ ,

(3.8)

i.e. the covariant derivative inherits the same transformation as the object to which it is
applied to. 1

3.2 Amplitudes and gauge invariance

Another aspect of gauge invariance becomes clear if we look at the amplitudes for
processes with photons in the external legs. In this case we need to make sure that we
do not excite longitudinal degrees of freedom which are unphysical. We remind that
longitudinal degrees of freedom are those whose polarization vectors are parallel to the
momentum. Invariance under a gauge transformation has precisely the role to eliminate

1A similar line of reasoning leads to covariant derivatives in general relativity.
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3.2 Amplitudes and gauge invariance

such degrees of freedom via the identification

εµ(p) ∼ εµ(p) + ξpµ . (3.9)

When we consider processes with external photons the polarization vectors εµ will ap-
pear in the amplitude, we can check whether the amplitude vanishes once we substitute
εµ(p) → pµ. If the amplitude does not vanish, then the theory is not consistent, since
longitudinal photons are interacting with other particles in the theory.

Let us considerCompton scattering as an explicit example, i.e. the process eγ → eγ.
There are two diagrams contributing to the amplitude

+ (3.10)

The amplitude results (themomenta are fixed according to e(p1)+γ(q1)→ e(p2)+γ(q2))

A =Mµνε∗µ(q2)εν(q1) (3.11)

with

Mµν = ūp2(ieqγ
µ)i

/p1
+ /q1

+m

(p1 + q1)2 −m2
(ieqγν)up1

+ ūp2(ieqγ
ν)i

/p1
− /q2

+m

(p1 − q2)2 −m2
(ieqγµ)up1 .

(3.12)

Gauge invariance amounts to

qν1Mµν = 0 = qµ2Mµν . (3.13)

Let’s check that this identities are true. We first observe that the denominators are equal
to

(p1 + q1)2 −m2 = m2 + 2p1 · q1 −m2 = 2p1 · q1

(p1 − q2)2 −m2 = m2 − 2p1 · q2 −m2 = −2p1 · q2

(3.14)

To simplify the amplitude we will use the fact that the spinors satisfy the equations of
motion

(/p−m)up = 0 , ūp(/p−m) = 0 (3.15)

and the identity
/a/b = 2ab− /b/a . (3.16)
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We thus have

qµ2Mµν = ūp2

[
/q2

(/p2
+ /q2

+m)γν

2p1q1

−
γν(/p1

− /q2
+m)/q2

2p1q2

]
up1

= ūp2

[
/q2/p2

+m/q2

2p2q2

− γν /
p

1/q2
+m/q2

p1q2

]
up1

= ūp2

[
2p2q2 − (/p1

−m)/q2

2p2q2

γν − γν
2p1q2 − /q2

(/p1
−m)

2p1q2

]
up1

= 0

(3.17)

using the EoM. The same procedure applies when we contract with qν1 .

3.3 Scalar QED

Wewill now discuss how to write the theory of a spin-0 massive particle interacting
with a massless photon. We will use the amplitude approach of the previous section. As
usual, we will start by coupling linearly the photon with the conserved current associated
with

L = |∂µφ|2 −m2|φ|2 , (3.18)

which reads
Jµ = i

(
∂µφ†φ− φ†∂µφ

)
. (3.19)

Our starting point is thus the Lagrangian

L = |∂µφ|2 −m2|φ|2 − 1

4
(Fµν)

2 + eqAµi
(
∂µφ†φ− φ†∂µφ

)
. (3.20)

The amplitude for the process under consideration is

+ . (3.21)

It is clear that we need the Feynman rule for the scalar-scalar-photon vertex. Feynman
rules for derivative interactions are not completely straightforward to derive. We will
use a simple trick, that will give us the correct answer. Imagine each scalar line to be
associated to a particle (and not to an antiparticle). We schematically write

φ ∼ ae−ipx , φ† ∼ a†eipx , (3.22)

where we are not writing the integration over the momenta and the various numerical
factors appearing in the complete expression. Derivatives acting on such fields give

∂µφ ∼ −ipµφ , ∂µφ
† ∼ ipµφ

† , (3.23)

i.e. derivatives produce factors of momenta. In particular, a factor ip is associated with
the creation of a particle of momentum p, while −ip is associated with the destruction
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3.3 Scalar QED

of a particle with momentum p. The Feynman rule can thus be computed considering
the usual factor of i from Dyson formula and a factor of ieq present in the interaction
Lagrangian, becoming

pin → pout →
= i(ieq) (ipµout + ipµin) = −ieq(pin + pout)

µ . (3.24)

We are now in the position of computing the amplitude for Compton scattering. We
obtain

A =Mµν
scalarε

∗
µ(q2)εν(q1) , (3.25)

with

Mµν
scalar = −i(−ieq)2

[
(2p2 + q2)ν(2p1 + q1)µ

(p1 + q1)2 −m2
+

(2p2 − q1)µ(2p1 − q2)ν

(p1 − q2)2 −m2

]
.

(3.26)
Let us now check gauge invariance. Contracting with qν2 we obtain

qν2M
µν
scalar = ie2q2qν2

[
(2p2 + q2)ν(2p1 + q1)µ

(p1 + q1)2 −m2
+

(2p2 − q1)µ(2p1 − q2)ν

(p1 − q2)2 −m2

]
= ie2q2

[
2p2q2(2p1 + q1)µ

2p1q2

− (2p2 − q1)µ2p1q2

2p1q2

]
= ie2q2 (2p1 − 2p2 + 2q1)µ

= 2ie2q2qµ2 .

(3.27)

If we instead contract with qµ1 we obtain

qµ1M
µν
scalar = 2ie2q2qν1 . (3.28)

As we can see, these expressions do not vanish, i.e. gauge invariance is not respected
in the Lagrangian of Eq. (3.20). What goes wrong? Inspecting Eq. (3.20) we see that
we are adding derivative interactions to the Lagrangian, which modify the expression of
the Noether current. This means that the Noether current we are coupling the photon
to is not the correct one. To understand how to correct for this problem, we proceed
systematically and try to first infer which term we need to add toMµν

scalar to recover
gauge invariance, and then we will translate them into new operators in the Lagrangian.
We thus seek to write

Mµν
tot =Mµν

scalar +Mµν
new , (3.29)

withMµν
new such to recover gauge invariance:

qν2M
µν
tot = 0 , qµ1M

µν
tot = 0 . (3.30)
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This translates into the conditions
qν2Mµν

new = −2ie2q2qµ2 ,

qµ1Mµν
new = −2ie2q2qν1 .

(3.31)

To infer the form of Mµν
new we proceed as follows: we first write all possible tensor

structures that can be constructed out of qµ1 and qµ2 imposing gauge invariance. We
obtain

Mµν
new = α gµν + β qµ1 q

ν
2 . (3.32)

We then observe that the dimension of the new constants appearing are [α] = 0 and
[β] = −2. Using our EFT arguments we know that in the very low energy limit only the
therm proportional to α will be relevant, meaning that it is this term alone that should
be able to restore gauge invariance. This is true if

Mµν
new = −2ie2q2 gµν . (3.33)

This is giving us a very important information: to restore gauge invariance we must have
a new vertex in the theory,

µ ν

= −2ie2q2 gµν , (3.34)

which must come from an addition term in the Lagrangian of the form

Lnew = −e2q2AµA
µφ†φ . (3.35)

The total Lagrangian thus results in

L = |∂µφ|2 −m2 |φ|2 − 1

4
(Fµν)

2

+ ieqAµ
(
∂µφ†φ− φ†∂µφ

)
− e2q2AµA

µφ†φ

= |∂µφ+ ieqAµφ|2 −
1

4
(Fµν)

2 .

(3.36)

We see that we can again write the Lagrangian in terms of the covariant derivative, as it
already happened for spinor QED. This is a general result: the gauge principle provides
us with a simple and systematic way to construct theories in which gauge invariance is
guaranteed from the very beginning.

3.4 When a symmetry is not a symmetry: anomalies

As we saw at the beginning of this chapter, massless vectors must couple to con-
served currents to guarantee that gauge invariance is respected. We derived the conserved
current in the cases of spinor and scalar QED using Noether theorem, i.e. with a com-
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3.4 When a symmetry is not a symmetry: anomalies

pletely classical procedure. The natural question is now: can quantum effects spoil
current conservation? Quite surprisingly, the answer is yes. When the conservation of
a current is spoiled by quantum effects we say that the current is anomalous, or that the
theory has an anomaly.

Anomalies are a very deep and quite complicated subject of QFT, so we will not
enter into the details of any computation, simply limiting ourselves to give a few “recipes”
useful to establish whether a current is anomalous or not. More informations can be
found in any advanced QFT book. Another useful reference are these lecture notes.

Consider a situation in which we have a current JµA associated with a charge QA,
and we want to understand whether this current is anomalous. In QED we then obtain

∂µJ
µ
A =

[∑
fL

QfL
A

(
QfL
e

)2 −
∑
fR

QfR
A

(
QfR
e

)2

]
e2

32π2
εµναβFµνFαβ . (3.37)

In the previous expression the sum over fL is over all left handed fermions, while the sum
over fR is over all right handed fermions, with QA and Qe, respectively, their charges
associated with the JA and electromagnetic current. The result is valid both for “global”
current (i.e. currents associated to symmetries of the Lagrangian not coupled to any
massless vector) and for “local” currents (i.e. currents coupled to some massless vector).

We see that as long as any fermion has a left handed and right handed component
with equal charges the anomaly vanishes. This is the case in spinor QED2, and every
time this happens we say that the fermion is “vector-like”. More general situations will
emerge later on in our study of electroweak interactions. When the left handed and right
handed components transform in different ways the fermions are called chiral and so is
the theory.3

Another type of anomaly emerges from the coupling with gravity (gravitational
anomalies). In a quantum theory the graviton is the massless spin 2 mediator of the
gravitational force, and it is usually embedded in a symmetric tensor hµν for a Lorentz
invariant description. Since hµν has 10 independent components, while the physical
graviton has only two polarizations as the photon, it is clear that a gauge redundancy
must be present to take care of the redundant degrees of freedom. The condition that
ensures that there are no gravitational anomalies is∑

fL

QfL
A −

∑
fR

QfR
A = 0 . (3.38)

This condition must always be satisfied for the theory to have the possibility of being

2Notice that there is nothing to be checked in scalar QED, since it is a theory without fermions.
3It is important to observe that, from the point of view of Lorentz symmetry, left and right handed fermions
are two different objects. This allows to give them different quantum numbers without spoiling Lorentz
invariance.
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3.5 Loops and renormalization

consistently coupled to gravity.

3.5 Loops and renormalization

Up to this point we have always considered processes at tree-level. Loop processes
are however of fundamental importance, and contain an extremely rich physics. As we
are going to see, the Standard Model of particle physics is compatible with data only
when loop processes are considered, making it one of the greatest successes of QFT.
Loops are however a quite delicate subject, since they have the counterintuitive property
of giving infinite contributions to amplitudes. For this reason, the process of making
sense of the theory proceeds in two steps: (i) regularization (in which a well defined
procedure is established to deal with infinities) and (ii) renormalization (in which the
infinities are eliminated from the observables).

Once more we will not enter into too many details, but we will just point out a few
essential facts:

We will always use dimensional regularization, i.e. we will perform the loop
integrals in d = 4 − ε dimensions. All the results will depend on ε, and we will
take the ε→ 0 limit only at the end of the computation, after having renormalized
the theory;
The parameters in the Lagrangian are not physical parameters but are called “bare”
parameters. To connect them to physical quantities we need a renormalization
procedure that connects them to some observable. This can be done in two ways:

counter terms: we write the bare parameters as a0 = aR + δa, where aR is
the (finite) renormalized parameter and δa is the (infinite) counter-term that
cancel the loop divergencies;
direct renormalization: we trade the bare parameters for observables from the
very beginning, without splitting them in renormalized and counter-terms.

In both cases the final observable will be finite and well defined. Both procedures
can be found in the literature, and it is useful to be aware of the existence of both.

It is probably useful to analyze an example to highlight the problem and the solution.
We take QED as example, although what we are saying is generic. The loop corrections
are of the form shown in Fig. 3.1. Let us focus on the photon propagator corrections,
which will lead us to the idea of running coupling. We begin by denoting by e0 the
electric charge appearing in the QED Lagrangian in Eq. (3.1) to remember that it is a
bare parameter. In addition, we redefine the photon field to absorb the electric charge,
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3.5 Loops and renormalization

Figure 3.1: Radiative corrections in QED.

Aµ → Aµ/e0. We obtain

L = ψ̄
(
i/∂ −m

)
ψ + Aµψ̄γ

µψ − 1

4e2
0

(Fµν)
2 . (3.39)

Written in this form, it is clear that the electric charge is connected to the photon
propagator. As a matter of fact, it can be shown the vertex correction (right panel in
Fig.3.1) and the electron propagator corrections (middle panel in Fig.3.1) cancel each
other in the computation of any physical amplitude. To fix the notation, let us denote the
blob appearing in the photon propagator by

µ
q→ q→

ν = iΠµν(q2) = i
(
q2Π(q2)gµν + Π′(q2)qµqν

)
, (3.40)

where q is the momentum flowing into the blob. The tensor decomposition follows
remembering that the blob must be symmetric under the µ ↔ ν exchange. Moreover,
we have inserted a factor q2 in the first term to make the dimensions of Π and Π′ equal.
The blob will contain all the loop corrections which are one particle irreducible 4, at
any given order (one loop, two loops etc). The blob in (3.40) will be contracted with
photons, and must satisfy the usual gauge invariance conditions. In this case they read

qµΠµν(q2) = 0 = qνΠ
µν(q2). (3.41)

We obtain
qµΠµν(q2) = qµ

(
q2Π(q2)gµν + Π′(q2)qµqν

)
= q2

(
Π(q2) + Π′(q2)

)
qν

⇒ Π′(q2) = −Π(q2)

⇒ Πµν(q2) = q2Π(q2)P µν
T ,

(3.42)

where PT is the projector defined in Eq. (2.68). Notice that we did not take q2 = 0 to
allow for off-shell photons (as they are in a propagator). Before analyzing how the loop
corrections affect the electric charge let us notice that the photon propagator following
from Eq. (3.39) is

p→
=
−ie2

0

p2

(
gµν − (1− ξ)p

µpν

p2

)
≡ Dµν

0 . (3.43)

4One particle irreducible means that they cannot be separated into two disjointed diagrams by cutting any
one of the internal lines.

38



3.5 Loops and renormalization

We are now in a position to include all photon propagator corrections. To this end the
photon propagator including radiative corrections is given by

+ + + . . . (3.44)

Denoting the full propagator by Dµν we have

Dµν = Dµν
0 +Dµα

0 Παβ(q2)Dβν
0 + . . .

= −ie
2
0

q2
(P µν

T + ξP µν
L )− ie

2
0

q2
[e2

0Π(q2)]2P µν
T − i

e2
0

q2
[e2

0Π(q2)]2P µν
T + . . .

= −ie
2
0

q2

[
1 + e2

0Π(q2) +
(
e2

0Π(q2)
)2

+ . . .
]
P µν
T − i

e2
0

q2
ξP µν

L

= −ie
2
0

q2

1

1− e2
0Π(q2)

P µν
T − i

e2
0

q2
ξP µν

L .

(3.45)

We observe two interesting facts: (i) the gauge dependent part does not receive radiative
corrections (because PTPL = 0) and (ii) the transverse part prompt us to define an
energy-dependent coupling

e2(q2) ≡ e2
0

1− e2
0Π(q2)

. (3.46)

This is the so-called running coupling, since it chances non-trivially with energy. We
can now proceed with our renormalization program: we connect the running coupling
to an observable and trade e0 for such observable. Suppose the running coupling is
measured at very small energies, as experimentally happens in real life 5. Inverting the
previous equation, we can write

e2
0 =

e2(0)

1 + e2(0)Π(0)
, ⇒ e2(q2) =

e2(0)

1− e2(0)[Π(q2)− Π(0)]
. (3.47)

Any divergence present in Π(q2) will cancel out from the combination Π(q2) − Π(0),
leaving the result finite and expressed solely in terms of observables.

Before concluding this section, let us compute explicitly Π(q2) in spinor QED at
one loop. We can use the results of Appendix E, obtaining
µ ν

= iΠµν(q2) = iq2Π(q2)P µν
T

⇒ Π(q2) = −
Q2
f

36π2

[
5 + 3

(
1

ε̃
+ log

µ2

m2
f

)
+

12m2
f

q2
+ 3(2m2

f + q2)f(q2,mf ,mf )

]
(3.48)

where Qf is the fermion electric charge, 1/ε̃ = 1/ε + log(4π)− γE (with γE the Euler

5We will get back on this point in the next section

39



3.5 Loops and renormalization

constant) and

f(q2,mf ,mf ) =

√
q2(q2 − 4m2

f )

q4
log

2m2
f − q2 +

√
q2(q2 − 4m2

f )

2m2
f

 . (3.49)

� Exercise 3.1 Derive the previous result using Package X.

When more than one charged fermion is considered we must sum over their individual
contributions. As we can see from the previous result, the explicit loop computation is
precisely a transverse tensor as expected from gauge invariance. Moreover, notice that
the limit q2 → 0 is smooth, and we have

Π(q2 = 0) = −
Q2
f

12π2

(
1

ε
+ log

µ2

m2
f

)
. (3.50)

As expected, the combination Π(q2)− Π(0) is finite.
Let us notice that, according to the meaning of q2, different phenomena happen:
suppose q2 = t or u, i.e. the photon propagator is in the t (or u)-channel of a
process, and q2 represent the exchange momentum between the initial and final
states. It is immediate to check that in this case q2 < 0, and we write q2 = −Q2

with Q2 > 0. Inspecting Eq. (3.48) we see that in this regime the argument of the
square root and of the logarithm are always positive, and e2(Q2) is an increasing
function of Q2. The electric charge hence increases as the energy increases or,
equivalently, as the distance diminishes;
suppose now q2 = s, i.e. the photon propagator is in the s-channel of a process. In
this case q2 > 0, and we see that the argument of the logarithm becomes negative
for q2 > 4m2

f , signal the existence of a branching cut beginning at q2 = 4m2
f .This

is to be expected from general arguments (more specifically, the optical theorem):
when q2 > 4m2

f the fermion-antifermion pair running in the loop can be produced
on-shell, generating an imaginary part of the photon self energy.

Let us now go back to the running of the electric coupling. When −Q2 � m2
f we have

e2(−Q2) =
e2(0)

1− e2(0)
12π2

(
log Q2

m2
f
− 5

3

) . (3.51)

It is customary to write the variation of of the electric charge with the energy as
de

d logQ
=
Q2
f e

3

12π2
. (3.52)

This is an example of a Renormalization Group Equation (RGE), which must be solved
with the boundary condition that for Q = 0 we must obtain e2(0). More generically, it
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can be shown that
de

d logQ
≡ βe =

(∑
f

2

3
Q2
f +

∑
s

1

3
Q2
s

)
e3

16π2
, (3.53)

where the subscript f denotes Weyl fermions and s denotes complex scalars.6 This
form of the RGE can be computed with any renormalization procedure. It turns out
that the MS procedure in which only the terms proportional to 1/ε are considered in the
counter-terms simplifies the computation drastically. Of course, writing the RGE as in
Eq. (3.52) we lose completely any information about the fermion mass. Notice however
that expanding Eq. (3.47) for −Q2 � m2

f we obtain

e2(−Q2) ' e(0)2 +
e(0)4

60π2

Q2

m2
f

, (3.54)

in such a way that even for Q2 ∼ m2
f we have e(−Q2)

Q2∼m2
f' e2(0), at least as long as

the coupling e is in the perturbative regime. We thus get to an important conclusion:
the electric charge essentially does not run below the fermion threshold Q2 ∼ m2

f .
This condition can be imposed by hand in the solution to Eq. (3.53), considering the
contribution of virtual particles only above its mass.

3.6 Extracting the parameters from data

How is the value of the electric coupling e(0) extracted from experiments? Various
techniques are available nowadays, among which measurements in atomic physics and
involving the quantum Hall effect. The most precise determination is obtained using
Penning traps to infer the anomalousmagneticmoment of the electron. Themeasurement
is so precise that we will use it as an input parameter in the comparison between the
Standard Model and data in Chapter 8. What is the anomalous magnetic moment of the
electron?

In the non-relativistic limit, the Dirac equation in the presence of an electromagnetic
field reduces to

H =
p2

2M
+ V − e

2M
B · (L+ gS) , (3.55)

whereB is the magnetic field,L is the orbital angular momentum andS is the spin angu-
lar momentum. The coupling g is called the Landè coupling, andmeasures the difference
between how the magnetic field couples to the orbital and spin angular momenta. The
prediction of the Dirac equation is g = 2. To show this we take the non-relativistic (NR)
limit of our QED theory. This is done realizing that the NR limit amount to a p � M

6For aDirac fermionwe thus need to consider both theLHandRHcomponents explicitly in the computation.
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limit, in which the total energy of a free particle can be written as E = M + p2/(2M),
with the second term smaller than the first one. In the time evolution of states we can
thus write exp(−iEt) ' exp(−iMt − ip2t/(2M)), with the first term the dominant
one. It is thus convenient to isolate explicitly this term, and write the QED spinor field
as

Ψ(x)→ e−iMtΨ(x). (3.56)

After this substitution, the new Ψ(x) is the NR fermion field. We use capital greek
letters for reasons that will become clear momentarily. Another problem that we must
face is: what happens to antiparticles? We know that no antiparticles are present in
the NR limit because there is not enough energy to excite them. Thus we will have to
somehow “lose” some component of the spinor field going in the NR limit. We will see
how this happens in a moment.

Let us now apply the NR transformation in Eq. (3.56) to write the QED Lagrangian
in terms of the NR field. The Lagrangian results in

LNR = Ψ†
[
i
∂

∂t
+ iγ0γ ·∇ + (1− γ0)M

]
Ψ. (3.57)

Inspecting the previous Lagrangianwe see that the leading term inside the square brackets
is given by the mass term, which is proportional to (1− γ0). We can now introduce two
projectors

P± =
1± γ0

2
, (3.58)

completely analogous to the chirality projectors PL/R, and write Ψ = P+Ψ + P−Ψ ≡
ψ+χ. Using the algebra of the Dirac matrices, the NR Lagrangian above can be written
in terms of the χ and ψ fields as follows:

LNR = χ†
[
i
∂

∂t
+ 2M

]
χ+ iψ†

∂

∂t
ψ + i

[
ψ†γ0γ ·∇χ+ χ†γ0γ ·∇ψ

]
. (3.59)

We can understand what is happening looking at the order of magnitude of the different
terms. In the first square bracket the first term is of the order of the kinetic energy of the
particle associated with χ, and is thus much smaller than the mass term because we are
in the NR regime. All the other terms involve either time or space derivatives, and are
thus either of the order of the momentum or of the energy. The term linear in 2M is thus
the dominant one, and is associated with χ. This means that χ is heavier than ψ, and
can be integrated out at energies E �M . This is connected to the idea of EFT already
discussed: when E �M there is not enough energy to excite the χ particle, and we can
thus eliminate it from the Lagrangian. In order integrate out χ in a consistent way we
can invoke path integral techniques, which tell us that we must compute the equations
of motion for χ and substitute them back in the Lagrangian in order for χ to completely
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disappear from the theory in a consistent way. The EoM are:[
i
∂

∂t
+ 2M

]
χ+iγ0γ·∇ψ = 0 ⇒ χ =

−iγ0γ

i ∂
∂t

+ 2M
·∇ψ ' −iγ

0γ ·∇ψ

2M
+. . . (3.60)

where in the last step we have expanded in 1/M , sinceM is a large scale in the NR limit.
Inserting this solution in the Lagrangian and considering only terms up to O(M−1) one
obtains

LNR = ψ†
[
i
∂

∂t
+

∇2

2M

]
ψ + . . . (3.61)

Notice that we obtained precisely the Lagrangian for a quantum Schroedinger field,
see Eq. (1.26). In order to make contact with the Hamiltonian of the Dirac equation
in an external electromagnetic field we switch on the QED coupling with a photon
Aµ = (Φ,A) and repeat the previous deduction. The EoM now reads

χ =
−iγ0γ

i ∂
∂t

+ 2M
· [∇− ieA]ψ ' −iγ

0γ · [∇− ieA]ψ

2M
+ . . . (3.62)

For the previous expansion to make sense we also need the typical scale of the EM field
to be much smaller than the fermion mass M . Substituting back in the Lagrangian we
need to pay attention to the fact that the operatorD ≡∇− ieA does not commute with
itself because of the derivative. The Lagrangian results in

L = ψ†
[
i
∂

∂t
− γiγkDiDk

2M

]
ψ. (3.63)

We now write γiγk in terms of the commutator and anticommutator to separate the
symmetric and antisymmetric contributions. The symmetric one is simplified observing
that the algebra of the Dirac matrices amounts to

{γµ, γν} = 2gµν ⇒
{
γi, γj

}
= −2δij. (3.64)

As for the antisymmetric part, a simple computation shows that we can write[
γi, γj

]
= −4iεijkSk, S =

1

2

(
σ 0

0 σ

)
, (3.65)

where we have defined the spin operator S. The last ingredient we need is the antisym-
metric combination of the (spatial) covariant derivatives:

DiDk −DkDi = −ie
(
∂iA

k − ∂kAi
)

= ieFik. (3.66)

In the last step we have used the fact that Fik = ∂iAk−∂kAi = −(∂iA
k−∂kAi) because

of the lower position of the indices. Finally, we report here the contraction[
γi, γj

]
Fij = 8iS ·B, (3.67)
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whereB is the magnetic field. Putting all together we obtain

γiγkDiDk =

({
γi, γk

}
2

+

[
γi, γk

]
2

)
DiDk

= −D2 +

[
γi, γk

]
2

DiDk −DkDi

2

= −D2 +

[
γi, γk

]
(ieFik)

4

= D2 − 2eS ·B.

(3.68)

The NR Lagrangian finally results in

L = ψ†
[
i
∂

∂t
− γiγkDiDk

2M

]
ψ

= ψ†
[
i
∂

∂t
+
D2

2M
+

e

M
B · S

]
ψ.

(3.69)

Comparing with Eq. (3.55) we see that, as anticipated, g = 2.
What type of terms contribute, in general, to the magnetic moment of fermions?

Since we must search for couplings between the external magnetic field and the system
spin, the obvious choice is to look for operators that involve the field strength Fµν (since
the field strength contains directly the magnetic –and electric – fields). The smallest
dimensional operator is thus

Odipole = Ψ̄σµνΨFµν , σµν =
i [γµ, γν ]

2
. (3.70)

In the NR limit this operator simplifies to

ONRdipole = 2i
(
ψ†γψ

)
·E − 4

(
ψ†Sψ

)
·B (3.71)

and thus, as expected, there is a contribution to the magnetic moment of the fermion.
The first term is instead a coupling between the fermion current and the electric field.

� Exercise 3.2 Derive the previous result.

The question is now: do quantum corrections modify the tree-level value of the
magnetic moment? The answer is yes, and as we are going to see, the correction will be
proportional to

αe ≡
e2

4π
, (3.72)

allowing to measure the electric charge from the measurement of the magnetic moment
of the electron. In fact, what radiative corrections in QED do is to generate the dipole
operator, and thus corrections to the magnetic dipole moment. The radiative corrections
that will give us this contribution are depicted in the last diagram of Fig. 3.1. The most
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general form of this 1PI diagram is
q2

q1

p = ū2 (f1γ
µ + f2q

µ
1 + f3q

µ
2 )u1, (3.73)

where f1...3 may be functions of invariant products of the momenta. Notice that we
did not write a term linear in p = q2 − q1 because this would not be independent from
the terms with qµ1,2 because of momentum conservation. Moreover, we can use gauge
invariance to simplify further the expression. To this end, let us suppose that the fermions
are on-shell, so that we can apply

/q1u1 = mu1, ū2 /q2 = mū2. (3.74)

Keeping the photon off-shell (in such a way that the kinematics is consistent) we obtain

pµū2 (f1γ
µ + f2q

µ
1 + f3q2µ)u1 = ū2/pu1 + (f2 p · q1 + f3 p · q2) ū2u1

= mū2u1 −mū2u1 + (f2 p · q1 + f3 p · q2) ū2u1

= (f2 p · q1 + f3 p · q2) ū2u1.

(3.75)
Kinematics tells us that

p · q1 = −p
2

2
= −p · q2, (3.76)

which inserted in the previous equation allows to conclude that f2 = f3. We can thus
write

q2

q1

p = ū2 (f1γ
µ + f2(qµ1 + qµ2 ))u1, (3.77)

The last piece of information we need is the Gordon identity, valid for on-shell fermions:

ū2γ
µu1 =

1

2m

(
(q1 + q2)µū2u1 + ipαū2σ

µαu1

)
. (3.78)

This identity allows us to express the terms proportional to the momenta in terms of σµν

(the Dirac structure needed to understand what the loop contribution to the magnetic
moment is) and the fermion momenta. This separation of terms makes clear that the
vertex will have two terms: (i) a term proportional to γµ: the corrections to this term
will enter in the definition of the renormalized electric charge; (ii) a term proportional to
σµν and hence to the fermion spin, that corresponds to the dipole moments. Moreover,
since the measurement is done at very low energy, we will only worry to compute the
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vertex function in the p→ 0 limit.
At the 1-loop level the only diagram we need to worry about is

q2

q1

pq = (−ieq)3

∫
d4q

(2π)4
ū2γ

µ
i(/q + /q2 +M)

(q + q2)2 −M2
γα

i(/q + /q1 +M)

(q + q1)2 −M2
γνu1

−i
q2

(
gµν − (1− ξ)q

µqν

q2

)
.

(3.79)
A straightforward but tedious computation gives

q2

q1

p→ 0q =
e3

16π2M
ū2σ

αβu1pβ + . . . , (3.80)

where the dots represent terms containing γµ (both finite and divergent) that, as we
already said, are important for the renormalization of the electric charge.

� Exercise 3.3 Do explicitly the 1-loop computation above using Package-X.

It is easy to see that the amplitude just computed can be represented by the following
additional term in the Lagrangian:

∆L = − e3

32π2M
Ψ̄σµνΨFµν , (3.81)

which is exactly of the form we were looking for. Combining this result with Eq. (3.71)
we finally obtain

LNR = ψ†
[
i
∂

∂t
+
D2

2M
+

e

2M

(
2 +

α

π

)
B · S

]
ψ. (3.82)

The loop contribution thus forces the magnetic moment to deviate from its tree-level
value and is thus called anomalous magnetic moment. We are going to come back to
the measurement of α via the anomalous magnetic moment of the electron in Chapter 8.

3.7 Higher dimensional terms

We conclude this chapter with some comments about the effect of higher dimen-
sional operators. As we already discussed many times, the Wilsonian picture of QFT
dictates that the renormalizable theory of Eq. (3.1) just displays the terms relevant in the
E � Λ limit. As we move to higher energy, additional terms suppressed by increas-
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ing powers of Λ must be considered. Alternatively, if these higher dimensional terms
generate physical effects not generated by the renormalizable Lagrangian we can hope
to detect them, opening a window on the Wilson coefficiets of such higher dimensional
terms.

In this section we are going to focus on two effects generated by higher dimensional
operators:

The dimension-5 operator
cMDM

Λ
Ψ̄σµνΨFµν (3.83)

gives an additional contribution to the magnetic dipole moment. If this contribu-
tion is comparable to QED loop corrections then it would modify the value of α
extracted from experiments, changing other predictions;
The dimension-5 operator

cEDM
Λ

Ψ̄σµνγ5ΨFµν (3.84)

gives a contribution to the electron dipole moment. To understand why the former
operator contributes to the magnetic dipole while the latter contributes to the latter
it is useful to write the explicit form of the Dirac matrices in the two cases:

γ0σµνFµν =

(
0 2iσ ·E

−2iσ ·E 0

)
+

(
0 −2σ ·B

−2σ ·B 0

)
= 2iγ ·E − 4S ·B,

γ0σµνFµνγ5 =

(
0 2iσ ·E

2iσ ·E 0

)
+

(
0 −2σ ·B

2σ ·B 0

)
,

= 4iγ0S ·E − 2γ ·B.

(3.85)

The last expression has been obtained comparing the matrix structures in the two
cases. As we see, a magnetic dipole operator generates a coupling between the
magnetic field and the spin of the fermion, while the electric dipole operators
generates a coupling between the electric field and the spin of the fermion.
The electric dipole operator is important because it violates the CP (charge conju-
gation/parity) symmetry of the renormalizable QED Lagrangian. The parity and
charge conjugation transformations are

Parity Charge conjugation

ψ → γ0ψ ψ → iγ0γ2ψ̄T

Aµ → (−1)µAµ Aµ → −Aµ

(3.86)

where (−1)µ = 1 for µ = 0 and (−1)µ = −1 for µ = i. The total effect on useful
quantities appearing in the Lagrangian is summarized in Tab. 3.1.
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ψ̄ψ iψ̄γ5ψ ψ̄γµψ ψ̄γµγ5ψ ψ̄σµνψ ψ̄σµνγ5ψ ∂µ
P +1 −1 (−1)µ −(−1)µ (−1)µ(−1)ν −(−1)µ(−1)ν (−1)µ

C +1 +1 −1 +1 −1 −1 +1

Table 3.1: Transformation of useful quantities under parity and charge conjugation.

� Exercise 3.4 Derive explicitly the results of the table.

It is easy to see that the renormalizable QED Lagrangian is invariant under the
combined action of C and P (an operation called CP). At the level of d = 5

operators we instead have

Ψ̄σµνΨFµν → [−(−1)µ(−1)ν ]2 Ψ̄σµνΨFµν = Ψ̄σµνΨFµν

Ψ̄σµνΨFµν → − [(−1)µ(−1)ν ]2 Ψ̄σµνΨFµν = −Ψ̄σµνΨFµν
(3.87)

We see that the electric dipole operator violates P and hence CP , unlike all other
terms. This computation elucidates two points: (i) as already discussed, the low
energy Lagrangian has more symmetry than the higher order terms, and (ii) since
the symmetry breaking effect is absent at the renormalizable level, we can search
for it experimentally. An electron dipole moment has been searched extensively,
with no positive result found. To be compatible with observations (especially the
recent measurement from the ACME collaboration) the coefficient in front of the
electric dipole operators must satisfy

cEDM
Λ

. 10−29 e cm ' 3× 10−19 e

me

. (3.88)

This bound implies that either Λ is a very large scale, or that for some reason the
coefficient cEDM is very small. Either way, the very fact that the d = 5 operator
produces a physical effect that is not predicted by the d ≤ 4 terms allows to put
very strong bounds on the coefficient of such an operator.

3.8 Additional readings

S.Weinberg, “The Quantum Theory of Fields” vol. 1;
M.Peskin and D.Schroeder, “An Introduction To Quantum Field Theory”;
S.Coleman, “Lectures on Quantum Field Theory”;
M.Schwartz, “Quantum Field Theory and the Standard Model”;
R. Penco, “An Introduction to Effective Field Theories” (link);
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Part II

Strong interactions: Quantum
Chromodynamics



Chapter 4 The quark model and SU(3)

4.1 Mesons and baryons properties

We start our discussion of strong interactions reminding the reader about the ob-
served structure of hadrons. Along the first half of the XX century a plethora of new
particles were discovered and some basic facts emerged:

hadrons can be distinguished between mesons (either with spin 0 or spin 1) and
baryons (spin 1/2 or 3/2). Typically the baryons are much heavier than the spin 0
mesons, and somewhat heavier than the vector mesons;
the light spin 0 mesons are pseudoscalar, i.e. they are odd under a parity transfor-
mation;
the light pseudoscalar mesons are (in order of increasing mass): three pions (π0

and π±) with masses around 140MeV; four kaon states (the neutralK0 and K̄0 and
the charged K±) with masses around 500 MeV; the η particle, with mass around
550 MeV. Given the similarity between their masses, we will consider them as a
unique pseudoscalar octect;
in reactions involving hadrons it was discovered a new conserved quantum number,
the strangeness. A diagram with a classification of the pseudoscalars in terms of
their electric charge and strangeness is shown in Fig. 4.1;
the spin 1/2 baryons are (in order of increasing mass): neutron (n) and proton
(p), with mass around 938 MeV; Λ0, with mass around 1116 MeV; the Σ system
(Σ0 and Σ±), with mass around 1192 MeV; the Ξ system (Ξ0 and Ξ−), with mass

Figure 4.1: Classification of the light pseudoscalar mesons in terms of their electric charge q
and of their strangeness s.



4.1 Mesons and baryons properties

Figure 4.2: Classification of the spin 1/2 baryons in terms of their electric charge q and of their
strangeness s.

Figure 4.3: Classification of the spin 3/2 baryons in terms of their electric charge q and of their
strangeness s.

around 1315 MeV. One more time, given the similarity between their masses, we
will consider the system of spin 1/2 baryons as a unique baryon octect;
a classification in terms of electric charge and strangeness can be given also for
the spin 1/2 baryons. It is shown in Fig. 4.2;
the spin 3/2 baryons are (again in order of increasing mass): the ∆ system (∆−,
∆0, ∆+ and ∆++), with masses around 1232 MeV; the Σ∗ system (Σ∗−, Σ∗0 and
Σ∗+) with masses around 1385 MeV; the Ξ∗ system (Ξ∗− and Ξ∗0) with masses
1532 MeV; the Ω−, with mass 1672 MeV. We will consider them as organized in
a decuplet;
the classification of the spin 3/2 baryons in terms of their electric charge and
strangeness is shown in Fig. 4.3.

A rationale behind these seemingly unrelated properties came in 1961 when Gell-Mann
and Ne’eman proposed to interpret mesons and baryons as bound states of elementary
quarks. The idea is as follows: suppose there exist more fundamental degrees of freedom
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u, d and s, whose bound states organize themselves in the mesons and baryon octects and
in the baryon decuplet. Notice that since mesons and baryons are bosons and fermions,
respectively, the quarks cannot be scalar particles, but must be fermions. Let us discuss
a bit more in detail the situation, since it will justify our subsequent findings. Since
the quarks are spin 1/2 particles, the spin of their bound states can simply be computed
combining many spin 1/2 representations of the rotation group. The result is well known
from Quantum Mechanics: in terms of spin and dimensions1 we have

1

2
× 1

2
= 0A + 1S , 2× 2 = 1A + 3S . (4.1)

The subscriptsA and S indicate the antisymmetric and symmetric combinations, respec-
tively. The result can easily be derived using the techniques familiar from the Quantum
Mechanics courses. We will now take a detour to discuss a generic tensor method to
understand these results.

4.2 Detour: tensor methods in group theory

It is well known that group theory plays a fundamental role in the discussion of
symmetries in Physics. A reach subject is the one of the representations of a group.
We can summarize the situation as follows: consider a certain group element g ∈ G.
The group G, as well as the element g, are abstract object at this point. It is useful
to find concrete expressions for the elements g (for instance, in terms of matrices).
When we do this we say that we are searching for representations of the group. Let
us focus on matrix representations from now on, since they are those that will play a
major role in what follows. The dimension of the space on which the matrices of the
representation are acting is called the dimension of the representation. For instance,
the spin 1 representation in Eq. (4.1) is acting on a 3 dimensional space and can be
represented by a 3× 3 matrix.

Let us now specialize our discussion to the SU(N) groups. They are defined as the
set of matrices U such that

U †U = 1 , detU = 1 . (4.2)

The representation in a N -dimensional space is called “fundamental” representation,
and consists of the U matrices themselves. We will denote it withN. Consider now the
case in which two set of matrices {A} and {B} give a representation of the group. If

1We remind the reader that a spin j representation has dimension 2j + 1.
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there exist an invertible matrix P such that

B = P−1AP (4.3)

then the two representations are equivalent and they count as a unique representation.
This is the case of the complex conjugate representation N̄ given by the matrices {U∗}
when N = 2. We thus write 2̄ ∼ 2 (for SU(2)) to denote that the two representations
are equivalent. For all N ≥ 3, the complex conjugate representation N̄ is instead a
representation independent fromN.

The last concept we need for the moment is the one of irreducible representation.
We will not be interested in the precise mathematical definition, rather on understanding
what this means. To be concrete, we will consider an example taken from SU(2): the
representation 4. As we know from Eq. (4.1), we can decompose 4 = 1A + 3S . What
does this mean? It means that if we take an object in the 4-dimensional space on which
4 is acting and we apply an SU(2) transformation, the 4 components of the object will
in general transform one in the other. However, there is a basis of the space in which the
4× 4 matrix U4 can be decomposed as

U4 =

(
U3 0

0 U1

)
. (4.4)

We see that in this basis the space on which the 4 is acting is “splitted” into a 3-
dimensional space and a 1-dimensional space, and the two subspaces do not mix with
each other under the action of U4. This decomposition cannot be further extended, and
we say that 3 and 1 are irreducible representations.

Our task will now be to describe one way to obtain such irreducible representations.
Let us start with a tensor ui, i = 1, . . . , N , transforming in the fundamentalN. Under a
SU(N) transformation the tensor transforms as

ui → Uijuj . (4.5)

Its complex conjugate instead transforms as

u∗i → U∗iju
∗
j = u∗j(U

†)ji (4.6)

Let us now introduce some notation that will simplify the index manipulation. We define
raised and lowered indices as

Uij ≡ U j
i , U∗ij ≡ Ū i

j , u∗i ≡ ūi . (4.7)

With this notation the tensor transformations become

ui → U j
i uj , ūi → Ū i

jū
j , (4.8)

i.e. the order of the indices is exactly the one expected. The unitary conditions U †U =
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4.2 Detour: tensor methods in group theory

1 = UU † become
Ūk

iU
m

k = δmi , U k
i Ū

m
k = δmi . (4.9)

The fact that the determinant of SU(N) matrices is unity can be expressed using the
identity

εi1...iNU j1
i1

. . . U jN
iN

= detU εj1...j2 = εj1...j2 , (4.10)

where εi1...iN is the Levi-Civita tensor with N indices. The same identity applies also
for the conjugate representation. Using Eqs. (4.9) and (4.10) we immediately conclude
that the δ and ε symbols are invariant under SU(N) transformations.

Let us now take the 2-tensor uiuj . Under an SU(N) transformation it transforms
according to the product

uiuj → UikUjmukum . (4.11)

This is a representation of SU(N) of dimension N2, which we will call N ×N. How
do we find the irreducible representations embedded inN×N? A general method is to
try to decompose as much as possible the tensor in terms of the invariant objects, i.e. δij
and εi1...iN . Notice that for the first we have a “covariant” and a “contravariant” index,
while for the ε symbols all the indices are either covariant or contravariant.

Let us discuss what happens in a simple example for which we already know the
answer, i.e. 2× 2 in SU(2). From the tensor point of view we write

uivj =
1

2
εijε

mnumvn +

(
uivj −

1

2
εijε

mnumvn

)
. (4.12)

The first term is the antisymmetric combination of the 4 independent entries of ui and
vj , and it amounts to 1 combination. The combination between brackets is completely
symmetric, and contains thus 3 independent combinations of the parameters. We thus
recover

2× 2 = 1A + 3S (4.13)

as expected.

� Exercise 4.1 Show that the combination between brackets in Eq. (4.12) is the symmetric
combination.

Notice that the decomposition in symmetric/antisymmetric components is always pos-
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4.2 Detour: tensor methods in group theory

sible, independently from N . For instance, for SU(3) we obtain

uivj =
1

2
εijkε

kmnumvn +

(
uivj −

1

2
εijkε

kmnumvn

)
= Aij + Sij .

(4.14)

The combination between brackets has dimension 6, being the symmetric combination
of two objects with three entries each. As for the first combination, we know that it
must be of dimension 3. In SU(3) we however have two inequivalent 3-dimensional
representations, the fundamental 3 and the antifundamental 3̄. Which one of the two
appears here? To understand this point, let us apply SU(3) transformations:

εijkε
kmnumvn → εijkε

kmnU r
m U s

n urvs . (4.15)

We now use Eq. (4.10) to write

εvmn U r
m U s

n = Ū v
t ε
trs , (4.16)

and we finally obtain

εijkε
kmnumvn → εijkε

kmnU r
m U s

n urvs = Ūk
tεijkε

trsurvs . (4.17)

As we see the central object is the combination εkmnumvn ≡ zk, fromwhich we conclude
that

εkmnumvn ∼ 3̄ . (4.18)

Putting all together we finally obtain

3× 3 = 6 + 3̄ . (4.19)

Notice that in SU(3) (and only for this group) the antifundamental can be represented
by either

Aij or zk , (4.20)

with the two representations connected by a Levi-Civita tensor via

Aij = εijkz
k . (4.21)

What happens if we multiply one fundamental and one antifundamental representation?
In this case we cannot use the Levi-Civita tensor for the decomposition, but we must use
the Kronecker delta, since it has the right combination of indices. More specifically, for
a generic SU(N) we write

uiv
j =

1

N
δji (v

kuk) +

(
uiv

j − 1

N
δji (v

kuk)

)
= δjiS + (Ad)ji .

(4.22)

The first term contains a unique (invariant) combination of u and v, and it has thus
dimension 1. It is called the singlet S.
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� Exercise 4.2 Show that the singlet S does not transform.

The second term has dimension N2 − 1. It is called the adjoint representation Ad.
For SU(3) this implies

3× 3̄ = 1 + 8 . (4.23)

It is important to notice that the adjoint representation transforms as

(Ad)ij → U k
j Ū

i
m(Ad)mk = Ujk(Ad)kmU

∗
im =

[
U(Ad)U †

]
ji
⇒ (Ad)→ U(Ad)U † .

(4.24)
We can now move on considering higher order tensors. The computation quickly be-
comes rather cumbersome, although systematic and general techniques can be developed
to deal with such situations. For some example, we refer the reader to these lectures.
Let us however show one example that will be important for us, i.e. the product of three
fundamentals of SU(3). We have

uivjwk = ui (Ajk + Sjk) ⇔ 3× 3× 3 = 3× (3̄ + 6) . (4.25)

We have already worked out the product 3× 3̄ = 1+8: defining zk ≡ εkmnvmwn/2 we
have

uiAjk = uiεjkmz
m = εjkm

[(
uiz

m − 1

3
δmi (zrur)

)
+

1

3
δmi (zrur)

]
, (4.26)

where again the first term is the8 representationwhile the second term is the1. We notice
that 1 is the completely antisymmetric combination, while the octect 8 is antisymmetric
in two of the indices.

As for 3×6, we try to decompose the product uiSjk in terms of Levi-Civita tensors
as much as possible:

uiSjk =
1

3
εijmε

mnpunSpk +
1

3
εikmε

mnpunSjp

+

(
uiSjk −

1

3
εijmε

mnpunSpk −
1

3
εikmε

mnpunSjp

)
.

(4.27)

The combination between brackets is completely symmetric in the three indices i, j and k,
and has thusN(N + 1)(N + 2)/3! = 10 components. The remaining two combinations
can be written in the form εijm(Ad)mk and are thus another way to write the adjoint
representation. Notice that the 8 representation we have just obtained is symmetric
in two of the indices, unlike the one we found above. This will prove important in
Section 4.4. Putting all together we have

uivjwk = εijkS + εjkmA
m
i +

(
εijmB

m
k + εikmB

m
j

)
+ Sijk , (4.28)
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4.3 The eightfold way and isospin

where

S =
1

3
zrur ,

Ami = uiz
m − 1

3
δmi (zkuk) ,

Bm
k =

1

3
εmnpunSpk ,

Sijk = uiSjk −
1

3
εijmε

mnpunSpk −
1

3
εikmε

mnpunSjp ,

(4.29)

where we remind once more that Ami is antisymmetric under v ↔ w while Bm
k is

symmetric under the same exchange. This can be schematically written as

3× 3× 3 = 1A + 8MA
+ 8MS

+ 10S . (4.30)

In the formula aboveMA denotes the “mixed antisymmetric” combination (antisymmet-
ric in two of the indices) whileMS denotes the “mixed symmetric” combination.

� Exercise 4.3 Show that the singlet combination appearing in the 3× 3× 3 product is

εijkuivjwk .

� Exercise 4.4 Compute explicitly the expression of the 8MA
and 8MS

representations in
terms of the components of u, v and w.

4.3 The eightfold way and isospin

Let us now show why the previous discussion about group theory is relevant for the
description of mesons and baryons. We recall that the pseudoscalar mesons appear to
form an octect, while baryons come either in an octect (for spin 1/2) or in a decuplet (for
spin 3/2). We can thus (with Gell-Mann and Ne’eman) interpret the results are follows:

Mesons can appear in an octect if they are bound states of a quark-antiquark pair
q̄q, transforming respectively as a 3 and 3̄ of SU(3);
Baryons can appear in octects and decuplet if they are bound states of three quarks
qqq;
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the triplet of quarks is denoted by

q = (u, d, s)T , (4.31)

with u= up quark, d= down quark and s= strange quark. The SU(3) under which q ∼ 3

is called “flavor” SU(3)F (not to be confused with the “color” SU(3)c that we will
encounter soon). Were the flavor SU(3)F an exact symmetry of the Hamiltonian then
the members of the octect and decuplet would be exactly degenerate. Since this is not
observed in nature (the masses of the members of the multiplets are slightly different)
we conclude that SU(3)F is only an approximate symmetry of nature. We will come
back later on the origin of the breaking.

Let us now discuss how to construct the adjoint matrix of mesons looking at their
quark constituents. According to Eq. (4.22) the pseudoscalar meson octect corresponds
to

Πk
i = q̄kqi −

1

3
δki (q̄q) =


2uū−dd̄−ss̄

3
ud̄ us̄

dū −uū+2dd̄−ss̄
3

ds̄

sū sd̄ −uū−dd̄+2ss̄
3


k

i

. (4.32)

The off-diagonal mesons are defined as π+ ≡ ud̄, π− ≡ dū, K+ = us̄, K− = sū,
K0 = ds̄ and K̄0 = sd̄. With this choice we immediately see that the electric charge of
the quarks are

qu =
2

3
, qd = −1

3
, qs = −1

3
. (4.33)

For the diagonal components some care must be taken, since the tracelesness condition
implies that only two independent combinations are present. The established choice is

π0 =
uū− dd̄√

2
, η =

uū+ dd̄− 2ss̄√
6

. (4.34)

In terms of these combinations we finally obtain the meson matrix written as

Π =


π0
√

2
+ η√

6
π+ K+

π− − π0
√

2
+ η√

6
K0

K− K̄0 −
√

2
3
η

 . (4.35)

Notice that this matrix is hermitian.

� Exercise 4.5 Show that the matrix Π has exactly the form shown in terms of the mesons
defined in Eq. (4.34).

Inspecting the experimental masses of the quarks we see that the strange quark is much
heavier than the up and down quarks. This means that at very low energies we can
ignore the s-quark (remember the idea of EFT outlined in Section 2.8). Moreover, the
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up and down quark masses are quite similar between each other. The approximate flavor
symmetry is reduced to SU(2)F acting on the first two components of the SU(3)F

defined above (i.e. on the u and d quarks only), and is called isospin. More specifically
we can write

U =

(
U2 0

0 1

)
, (4.36)

where U2 ∈ SU(2)F . Notice that(
u

d

)
∼ 2 of SU(2)F , (4.37)

i.e. (u, d) is an isospin doublet. Since the mass difference between the u and d quark
masses is small, we expect the isospin symmetry to be a much better symmetry than
SU(3)F . How does SU(2)F act on the mesons? Remembering Eq. (4.24) and defining
the combinations

π =

(
π0
√

2
π+

π− − π0
√

2

)
, K =

(
K+

K0

)
, (4.38)

the SU(2)F transformation acts as

π → U2πU
†
2 , K → U2K , η → η . (4.39)

We thus expect the pions to behave like a triplet of SU(2)F and the kaons to behave
like a doublet. This implies that we expect the pions to have similar masses between
themselves, and the kaons to have similar masses among themselves. This is precisely
what happens in Nature, confirming that isospin is a pretty good symmetry. More
information about the mesons’ quantum numbers can be found in these lecture notes.
We will postpone to next section the discussion of the baryon quark composition, since
a proper discussion requires the introduction of a further ingredient: color symmetry.

4.4 Color

We start by defining our notation. A generic hadronic state will be denoted by

ψhadr = ψS × ψF × . . . , (4.40)

where ψS is the spin state and ψF is the flavor state (i.e. the quark content). The dots
denote any additional quantum number that will be needed to completely define the state.
It is our purpose to show how a new quantum number, the color, is needed for the hadron
states to exist. Let us now go back to Fig. 4.3 and focus on the ∆++ particle. This is a
spin 3/2 particle with electric charge ++. This means that we must have ∆++ = uuu,
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with all three fermions with spin aligned in the same direction. We can write

∆++ = A123 [u↑u↑u↑] , (4.41)

where A is the total antisymmetrization operator needed to construct the physical state
out of three fermions. Clearly the antisymmetrization operation vanishes when applied
over three identical states (Pauli principle), giving the absurd result ∆++ = 0. Since
the ∆++ particle has been observed in Nature, there is clearly some missing ingredient
in our reasoning. The way out is to postulate the existence of a new quantum number,
which we will call color. To survive the antisymmetrization of the state the color must
take three different values, which we will call r (red), b (blue) and g (green). The ∆++

particle will be thus given by

∆++ = A123 [u↑,ru↑,bu↑,g] , (4.42)

where the antisymmetrization is taken over the color indices too. More in detail, we can
think that any time we speak about a quark we are really speaking about three states,
each one with its own color:

u =


ur

ug

ub

 , d =


dr

dg

db

 , etc. (4.43)

The compact notation we will use is ua, da, . . . with the index a taking 3 possible values.
An SU(3)c transformation acts only on the color indices, “shuffling” them around as
ua → U b

a ub. Analyzing baryons decays it appears that there are no selection rules
imposed by the new quantum number. This can be interpreted as an indication that the
different colors of the three up quarks must combine to form a state that is a color singlet.
We already know how to arrange for this: if we suppose that the color charge is associated
with an SU(3)c symmetry and that the up quark transforms in the fundamental, then we
immediately conclude that a color singlet can be constructed as

1 ∼ εabcu↑,au↑,bu↑,c . (4.44)

The same reasoning can be immediately extended to all the members of the baryon
decuplet, that can be color singlets in exactly the same way:

B = εabcqaqbqc , (4.45)

where a, b, c are color indices and each quark will have additional spin indices that we
do not show explicitly. The mesons are also color singlets, since the antiquark will
transform in the antifundamental of SU(3)c:

M = q̄aqa . (4.46)
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Let us now go back to the baryons. In Section 4.3 we did not show explicitly the quark
content of the octect. As a matter of fact we discovered that two octect representations,
8MA

and8MS
, appear in the product of three fundamentals ofSU(3)F . Having introduced

the concept of color, we are now in a position to finally discuss this point. The technical
details are rather tedious and not particularly illuminating, so we will limit ourselves to
point out some basic points:

As we saw above, the correct description of a baryon state is given by

ψhadr = ψS × ψF × ψc , (4.47)

where S, F and c denote, respectively, spin, flavor and color. Since baryons are
fermions their state must be completely antisymmetric under quark exchange. We
know from Eq. (4.45) that the color part of the state is already completely anti-
symmetric. To construct physical states we must thus take completely symmetric
combinations ψS × ψF ;
We saw in Eq. (4.30) that 3× 3× 3 = 1A + 8MA

+ 8MS
+ 10S;

The analysis of the spin product of three quarks gives 2×2×2 = 2MA
+2MS

+4S;
Putting together all this facts, we conclude that

The completely symmetric combination of spin 3/2 is the 10S , since the
product 4S × 10S is completely symmetric. This implies that spin 3/2
baryons must come in a decuplet, as observed in nature;
The completely symmetric combination of spin 1/2 is a linear combination
of the products 2MA

× 8MA
and 2MS

× 8MS
. It is interesting to observe

that the quark content of both octects is the same (with different symmetry
properties, as we observed above, which must be taken into account in the
physical states). It is schematically given by

Ami |quark content ∼ Bm
i |quark content ∼


uds uus uud

dds uds udd

dss uss uds

 . (4.48)

The standard form of the physical baryon octect matrix is

B =


1√
2
Σ0 + 1√

6
Λ0 Σ+ p

Σ− − 1√
2
Σ0 + 1√

6
Λ0 n

−Ξ− Ξ0 − 2√
6
Λ0

 . (4.49)

Following the discussion around Eq. (4.36) we conclude that, in terms of
SU(2)F isospin, theΣ system behaves like a triplet while (p, n) and (Ξ−,Ξ0)

both behave like doublets. This explains the similarity between their masses.
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4.5 Additional readings

W.K.Tung, “Group Theory in Physics”;
H.Georgi, “Lie algebras in Particle Physics”;
A.Bettini, “Introduction to Elementary Particle Physics”.
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Chapter 5 Quantum Chromo Dynamics
(QCD)

The main intuition behind QCD is the following: what happens if we associate
the color charge with a force, and we identify such force with the strong interactions
responsible for the existence of mesons and baryons? We will devote this chapter to the
construction of such QFT. As of today, the compatibility between QCD predictions and
data is remarkable, and there is consensus on the fact that QCD is the theory of strong
interactions. It is nowadays included in the Standard Model of particle physics as one
of the fundamental interactions of the subatomic world.

5.1 Some facts about Lie algebras

Before starting our discussion about color, it is useful to fix some notions about Lie
algebras. As already pointed out in the previous section, the SU(N) group is defined by
the condition

U †U = 1 , detU = 1 . (5.1)

Let us start by counting the number of parameters needed to describe aU(N)matrix. We
know that U is aN ×N complex matrix, and has thus 2N2 real parameters. The unitary
condition U †U = 1 is a set of N2 conditions, and we end up with 2N2 −N2 = N2 real
parameters. The parameters needed to describe a SU(N) matrix are insteadN2−1 (the
N2 needed to describe the unitary matrix from which we need to subtract one parameter
needed to impose the detU = 1 condition).

The parameters needed to describe the SU(N) matrices take values in R and are
among the groups called Lie groups. The theory of Lie groups is a very reach subject,
and we will not enter in any detail here. It is sufficient to remind the reader the following
fundamental fact: any element of the Lie group can be reconstructed studying the
behavior of a neighborhood of the identity, where we can always write

U = eiα
ATA . (5.2)

where the αA’s areN2−1 small real parameters. TheN ×N matrices TA are called the
generators of the Lie algebra. They are hermitian matrices. This can be easily shown
expanding the exponential form of the group element up to first order in the parameters.



5.1 Some facts about Lie algebras

We obtain

U †U '
(
1− iαA(TA)†

) (
1 + iαATA

)
' 1 + i

(
TA − (TA)†

)︸ ︷︷ ︸
0

. (5.3)

The detU = 1 condition can be implemented remembering the identity

det
(
eA
)

= etrA , (5.4)

from which we conclude that the generators must be traceless, trTA = 0. An interesting
property emerges when considering the group closure property U1U2 = U3 stating that
the product of two group elements is a group element. Writing them in exponential
form, we need to guarantee that

eiα
ATAeiβ

ATA = eiγ
ATA (5.5)

for some set of parameters γA. Expanding up to second order in the parameters we
can show that the only way for the previous equation to be true is if the commutator
[TA, TB] = TATB − TBTA is proportional to a generator,[

TA, TB
]

= ifABCTC . (5.6)

The real numbers fABC are called “structure constants” of the algebra. It can be shown
that the structure constants are completely antisymmetric in their indices, and that the
Lie algebra obeys the Jabobi identity[

TA,
[
TB, TC

]]
+
[
TB,

[
TC , TA

]]
+
[
TC ,

[
TA, TB

]]
= 0 , (5.7)

which can be immediately translated in terms of the structure constants:

fBCMfAMN + fCAMfBMN + fABMfCMN = 0 . (5.8)

This has an interesting consequence: rearranging the indices and defining −ifABC =

(tA)BC we obtain [
tA, tB

]
CN

= ifABM(tM)CN . (5.9)

� Exercise 5.1 Check explicitly that the previous formula is true.

This means that the structure constants fill up the matrix elements of a representation
of the group. Since the indices C and N take values between 1 and N2 − 1 (because
they must equal the number of generators), this representation has dimension N2 − 1,
exactly the dimension of the adjoint representation we found in the discussion around
Eq. (4.22). To make contact with Eq. (4.24) we observe that any complexN ×N matrix
M can always be decomposed asM = M01 + MATA, where

{
M0,MA

}
are a set of
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complex parameters. If this matrix transforms in the adjoint then it must be traceless,
and we end up withM = MATA. Its transformation is given by

M → UMU † =
(
1 + iαATA

)
M
(
1− iαATA

)
= M + iαA

[
TA,M

]
= MCTC + iαAMB

[
TA, TB

]
=
[
MC − fABCαAMB

]
TC

⇒MC →MC − fABCαAMB = MC + iαA(tA)CBM
B ,

(5.10)

which is exactlywhatwe expect from an object transforming in the adjoint representation.
Let us conclude with the explicit form of the generators of the SU(2) and SU(3)

groups. For the former group we have

TA =
σA

2
, (5.11)

where σA are the Pauli matrices, while for SU(3) we have

TA =
λA

2
, (5.12)

where λA are the so-called Gell-Mann matrices

λ1 =


0 1 0

1 0 0

0 0 0

 , λ2 =


0 −i 0

i 0 0

0 0 0

 , λ3 =


1 0 0

0 −1 0

0 0 0

 ,

λ4 =


0 0 1

0 0 0

1 0 0

 , λ5 =


0 0 −i
0 0 0

i 0 0

 ,

λ6 =


0 0 0

0 0 1

0 1 0

 , λ7 =


0 0 0

0 0 −i
0 i 0

 , λ8 = 1√
3


1 0 0

0 1 0

0 0 −2

 .

(5.13)
We use the standard nomenclature for these matrices. For both SU(2) and SU(3) we
are normalizing the generators as

tr(TATB) =
δAB

2
. (5.14)

5.2 Color transformations and gluons

The first step we need to take is to understand how to construct a theory in which
the charge associate itself in triplets of SU(3)c. This means that any of the quarks
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introduced so far (u, d and s) will transform as

qi → U j
i qj , (5.15)

where U ∈ SU(3)c. In order to construct the theory of strong interactions we proceed as
we did for QED, coupling the new mediators (called gluons) to some conserved current
associated with SU(3)c. To compute the charge associated with such symmetry we start
from the free quark Lagrangian

LQCD = q̄
(
i/∂ −m

)
q , (5.16)

and we apply Noether theorem. According to the discussion in Section 2.2 we need to
consider the infinitesimal transformation

U ' 1 + iαATA , (5.17)

where the TA are the generators of the group belonging to the Lie algebra. The Noether
current associated with this transformation is

JAµ = q̄γµTAq , (5.18)

thus we see that we have one conserved current for each generator. As we saw in Sec 5.1
and SU(N) group has N2 − 1 generators. It is important to notice that, in general,
the generator will have off-diagonal elements, in such a way that the current connects
different types of fermions. Let us now introduce the gluons. Since we have N2 − 1

generators, we need to introduce the same number of gluons, and couple each one to one
current. We obtain

LQCD = q̄
(
i/∂ −m

)
q − gsGA

µ q̄γ
µTAq

= iq̄γµ
(
∂µ + igsG

A
µT

A
)
q −mq̄q .

(5.19)

Once more we see that we can write the interactions in our theory in terms of a covariant
derivative. The parameter gs appearing the is strong coupling (or QCD coupling). What
about the gluon’s kinetic term? Things are more complicated with respect to the QED
case. To appreciate the difference let us first study how the gluons transform under
an SU(3)c transformation. We can obtain this information requiring Dµq → UDµq,
i.e. requiring the covariant derivative to transform covariantly. Defining the matrix
Gµ ≡ GA

µT
A we obtain

(Dµq)
′ =
(
∂µ + igsG

′
µ

)
q′

= ∂µ(Uq) + igsG
′
µUq

= (∂µU)q + U∂µq + igsG
′
µUq

!
= U∂µq + igsUGµq .

(5.20)
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Solving for G′µ we obtain

G′µ = U Gµ U
† +

i

gs
(∂µU)U † . (5.21)

It is interesting to compute the transformation of each of theGA
µ components, expanding

the expression above in the Lie algebra basis. We obtain

(GA
µ )′TA =

(
1 + iαBTB

)
GC
µT

C
(
1− iαDTD

)
+

i

gs
(i∂µα

A)TA
(
1− iαBTB

)
= GA

µT
A + iαBGC

µ

[
TB, TC

]
− 1

gs
∂µα

ATA .

(5.22)

The expression above can be written in terms of the structure constants
[
TB, TC

]
=

ifBCATA as
GA
µ → GA

µ −
1

gs
∂µα

A − fABCαBGC
µ . (5.23)

We stress two interesting facts: (i) the second term on the right hand side of Eq. (5.23)
corresponds to the usual gauge transformation, as expected for a massless particle, and
(ii) the third term is a non-trivial transformation appearing due to the non-abelian nature
of the SU(3)c group. This behavior is different from the one we discussed for QED, and
is reminiscent of what happens for matter fields, which have non-trivial transformations
under the symmetry group because of their non-vanishing charge. The conclusion is thus
immediate: unlike the photon, the eight gluons carry color charge and, as a consequence,
they behave non-trivially under a symmetry transformation. Nevertheless, comparing
with the transformation of fields in the fundamental, Eq. (5.17), we see that the gluons
do not transform in the fundamental but rather in the adjoint.

5.3 The gluon kinetic term and the complete QCD
Lagrangian

We now discuss how to write down the gluon kinetic term. We know that the correct
equations ofmotion for amassless spin-1 field are obtained if a term−(∂µG

A
ν −∂νGA

µ )2/4

is present in the Lagrangian. We immediately identify a problem: this kinetic term
is invariant under the gauge transformation alone, but is not invariant once the non-
abelian term in Eq. (5.23) is considered. To solve the problem we will try to add some
terms to recover gauge invariance (as we did in Section 3.3). Let us first compute the
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5.3 The gluon kinetic term and the complete QCD Lagrangian

transformations of ∂µGν − ∂νGµ:

∂µGν − ∂νGµ → ∂µ

(
UGνU

† +
i

gs
∂νUU

†
)
− ∂ν

(
UGµU

† +
i

gs
∂µUU

†
)

= U (∂µGν − ∂νGµ)U † + [(∂µU)Gν − (∂νU)Gµ]U †

− U
[
Gµ(∂µU

†)−Gν(∂µU
†)
]

+
i

gs

[
(∂νU)(∂µU

†)− (∂µU)(∂νU
†)
]
.

(5.24)
We see that only the first term has a simple transformation under the action of the
symmetry. In order to cancel the other terms we try with the simplest object that can
be constructed out of Gµ and is antisymmetric under µ↔ ν exchange, the commutator
[Gµ, Gν ]:

[Gµ, Gν ]→
[
UGµU

† +
i

gs
∂µUU

†, UGνU
† +

i

gs
∂νUU

†
]

= U [Gµ, Gν ]U
† − i

gs
[(∂µU)Gν − (∂νU)Gµ]U †

− i

gs
U
[
Gµ(∂νU

†)−Gν(∂µU
†)
]
− 1

g2
s

[
(∂νU)(∂µU

†)− (∂µU)(∂νU
†)
]

(5.25)

where we have used the property (∂µU)U † = −U(∂µU
†).

� Exercise 5.2 Prove that the identity (∂µU)U † = −U(∂µU
†) is true.

Comparing the two expressions we see that the combination

Gµν = ∂µGν−∂νGµ+igs [Gµ, Gν ] , ⇒ GA
µν = ∂µG

A
ν −∂νGA

µ−gsfBCAGB
µG

C
ν (5.26)

transforms in the adjoint and contains the usual field strength. An invariant term in the
Lagrangian is thus given by

Lgluon = κ tr[(Gµν)
2], (5.27)

where the constant κ must be chosen to guarantee canonical kinetic terms. Using the
normalization of Eq. (5.14) for the generators the previous Lagrangian amounts to:

Lgluon = κ tr[TATB]GA
µνG

B
µν =

κ

2
δABGA

µνG
B
µν , (5.28)

from which we conclude that the correct choice is κ = −1/2. Finally, the gluon kinetic
term is given by

Lgluon = −1

4
(GA

µν)
2 , (5.29)

with GA
µν defined in Eq. (5.26).
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αs(MZ
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Figure 5.1: Variation of the strong coupling with energy: points are experimental data, while
the continuous line is the QCD prediction. Taken from this link this link.

The complete QCD Lagrangian is given by

LQCD = −1

4
(GA

µν)
2 + q̄

(
i /D −mq

)
q . (5.30)

This Lagrangian is essentially the classical Lagrangian for QCD, and it is valid in the
tree approximation (i.e. when no loops are considered) once a gauge fixing term is
introduced. The extension to higher orders in perturbation theory requires however one
more ingredient, the so-called ghost Lagrangian. The problem is once more connected
to the longitudinal degrees of freedom present in the gluon field: at loop level, these
states contribute to the physical amplitude, and spoil completely gauge invariance. The
invariance can be recovered adding new unphysical fields (the ghosts, which being un-
physical appear only in the internal lines of any amplitude) with precisely the coefficient
needed to cancel the contribution from the unphysical gluon polarization. Although the
procedure seems rather ad-hoc the way we introduced it, it is justified by the Faddeev-
Popov method (see any advanced book on QFT for a thorough treatment, and Aitchison,
ch. 4, for a more intuitive treatment).

5.4 Radiative corrections

As we saw in Sec. 3.5 in the case of QED, radiative corrections induce a running of
the coupling. This is a general result in QFT, and QCD is no exception. It can be shown
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that the β function of the coupling of a non-abelian gauge theory is
dg

d log µ
= βg = − g3

16π2

(
11

3
T (RAd)−

2

3
T (RF )− 1

3
T (RS)

)
. (5.31)

The quantity T (Ri) is the index of the representation Ri, for the gauge fields (adjoint),
Weyl fermion fields F and complex scalar fields S, defined in the terms of the generators
TAR as

tr(TAR T
B
R ) = T (R)δAB . (5.32)

The trace is taken over all species. For a non-abelianSU(N) theory, explicit computation
gives

T (RAd) = N , T (Rfund) =
1

2
(5.33)

for the adjoint and fundamental representations, respectively. In the case of QED we
recover the result obtained in Sec. 3.5 once we consider that both the LH and RH fermion
must be considered, and we have

T (RF ) =
∑
fL

Q2
fL

+
∑
fR

Q2
fR

= 2
∑
f

Q2
f ⇒ βe =

(∑
f

Q2
f

)
e3

12π2
. (5.34)

We stress that βe > 0 independently on the number of fermions. Let us now consider
the case of QCD:

βgs = − g3
s

16π2

(
11

3
× 3− 2

3
× 2nq

)
= − g3

s

16π2

33− 2nq
3

,

(5.35)

where nq denotes the number of quarks contributing to the running. Since we will
have at most nq = 6, we conclude that, unlike QED, βgs < 0, i.e. the QCD coupling
grows larger and larger at low energies. Gauge theories in which this happens are called
asymptotically free, since their coupling becomes smaller at higher energies, in such a
way that they approximate a free theory in this regime. This result was derived in 1973
by Politzer and, independently, by Gross and Wilczek, and it awarded the trio the Nobel
prize in 2004. As we are going to see in Section 6, the fact that the QCD coupling
becomes strongly interacting at low energy is believed to be the origin of the meson and
baryon spectra discussed at the beginning of this chapter.

We conclude this section noticing that a useful measure of perturbativity/non-
perturbativity can be given in terms of

αs ≡
g2
s

4π
. (5.36)

More specifically, we consider the theory non-perturbative when αs � 1, while the limit
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of perturbativity is reached when αs ∼ 1. For QCD this happens around a scale

ΛQCD ∼ 1 GeV . (5.37)

We present in Fig. 5.1 the variation of the strong coupling with energy.

5.5 Extracting αs from experiments

The strong coupling αs can be measured in several physical processes. Clearly we
cannot measure the value of αs in the very low energy regime, since in this energy range
the predictions of perturbation theory are not reliable. Measurements can however be
performed for higher energy. We show in Fig. 5.2 a summary of measurements with
their errors. We can see that, with few exceptions, all the data samples are compatible
with the others at the 1 σ level.

5.6 Additional readings

S.Weinberg, “The Quantum Theory of Fields” vol. 1;
M.Peskin and D.Schroeder, “An Introduction To Quantum Field Theory”;
S.Coleman, “Lectures on Quantum Field Theory”;
M.Schwartz, “Quantum Field Theory and the Standard Model”;
D. B. Kaplan, “Lectures on Effective Field Theory” (link);
R. Penco, “An Introduction to Effective Field Theories” (link);
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Figure 5.2: Comparison between different measurements of the strong coupling. Taken from
this link.
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Chapter 6 Confinement, the emergence of
mesons and spontaneous

symmetry breaking

In this section we will discuss qualitatively the emergence of the meson and baryons
bound states in the regime in which the QCD coupling becomes non-perturbative. Since
in this regime our perturbative techniques cannot be use, the QCD Lagrangian is useless
to make predictions. Wewill then turn to the problem of how to find appropriate effective
Lagrangians apt to describe the essential features of the physics of mesons.

6.1 Confinement and its heuristic consequences

Let us start by commenting that there is still no formal proof of confinement in any
non-abelian gauge theory. 1 We can nevertheless outline the qualitative picture which
has been established over the last decades. As usual, let us start with a QED analogy.
Take two electrically charged particles at a certain distance d. They interact via photon
exchange, which are not self interacting. As d is increased, the electric field lines tend to
spread out, diminishing the electric flux in the region between the two charges. Consider
now QCD in the non-perturbative regime, and consider the force between two quarks.
It is mediated by gluon exchange. As the distance between the two quarks increases the
chromo-electric field does not spread out because of self-interactions, but tends to form a
“flux tube” (or string) in the region between the two quarks, effectively biding the quarks
in a bound state. Increasing the distance between the two quarks the energy per unit
length of the string increases linearly with the distance, until it becomes energetically
favorable to create a quark anti-quark pair out of the vacuum and two new strings are
formed. 2

It is believed that an effective way to describe color confinement is to state that the
expectation value of the quark bilinear in the vacuum is driven to a non-vanishing value
by the non-perturbative interactions, i.e.

〈0|q̄q|0〉 6= 0 . (6.1)

1The problem of confinement is in fact one of the seven Millennium Prize Problems, whose solution would
award USD 1 million.
2Historically, one of the first motivations for the study of string theory came from the study of confinement
and hadron physics.



6.2 Spontaneous symmetry breaking

Notice that the operator q̄q is a Lorentz scalar. As we are going to see in next section,
when scalar operators have a non-vanishing expectation value with the vacuum the
phenomenon of spontaneous symmetry breaking may occur. The expectation value of
any operator in the vacuum of the theory is called Vacuum Expectation Value (vev).

6.2 Spontaneous symmetry breaking

As we discussed above, in the non-perturbative regime of QCD our perturbative
computations are completely unreliable. It would thus seems that the description of
mesons and baryons is an impossible task. As we are now going to see this is not
so, and as a matter of fact it is possible to write an effective Lagrangian that describe
the mesons (and the baryons, in some energy regime). The starting point is Eq. (6.1)
and the QCD Lagrangian, Eq. (5.30). The masses of the light quarks u, d and s are
much lighter that the QCD scale in Eq. (5.37) (we remind thatmu ∼ md ∼MeV, while
ms ∼ 100 MeV). When considering QCD in its non-perturbative regime we can thus,
in first approximation, neglect the quark masses. 3 With this approximation the QCD
Lagrangian is given by

LQCD = −1

4
(GA

µν)
2 + q̄Li /DqL + q̄Ri /DqR , (6.2)

where we remind the reader that q = (u, d, s)T . We have explicitly separated the LH
from the RH spinor components to stress that each quark kinetic term is invariant under
the transformations

qL → ULqL , qR → URqR , (6.3)

where UL,R are two different unitary matrices. The classical QCD Lagrangian in the
massless quark limit is thus invariant under U(3)L × U(3)R transformations. This
classical symmetry that acts in a different way on the different chiral components of the
quark field is called chiral symmetry. It is convenient to decompose the symmetry group
as

U(3)L × U(3)R = U(1)V × U(1)A × SU(3)L × SU(3)R . (6.4)

The U(1)V symmetry is called the “vector” U(1) because the LH and RH components
transform with the same phase. The corresponding charge is called “baryon number”.
It remains an exact symmetry even when the quark masses are turned on again. The

3The heavier quarks have all masses above ΛQCD and will not play any role in what follows. The c and
b quarks can form meson states, but they cannot be described with the techniques to be developed in this
section. The t quark, on the other hand, is very short lived and it is believed to decay much before any
bound state can be formed.
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U(1)A symmetry is called “axial” because the LH and RH components transform with
opposite phases. Although we will not enter in details, this is an example of anomalous
symmetry. The remaining chiral symmetry SU(3)L × SU(3)R is non-anomalous, but
only an approximate symmetry of QCD, since it is explicitly broken by the quark masses.

� Exercise 6.1 Show explicitly that the quark mass term is not invariant under a chiral
transformation, making thus the chiral symmetry only an approximate rather than an
exact symmetry.

Let us now see what happens to the classical symmetries when we transform the vacuum
in Eq. (6.1). First, let us write the vacuum as

〈0|q̄q|0〉 = 〈0|q̄RqL|0〉+ h.c. 6= 0 (6.5)

Under the non-anomalous symmetries we obtain

U(1)V : 〈0|q̄RqL|0〉 →
〈
0|q̄Re−iαBeiαBqL|0

〉
= 〈0|q̄RqL|0〉 ,

SU(3)L × SU(3)R : 〈0|q̄RqL|0〉 →
〈

0|q̄RU †RULqL|0
〉
.

(6.6)

We see that the vacuum is invariant under a baryon number transformation, but is
invariant under a chiral transformation only for the special case UL = UR. We are thus
encountering a situation in which a symmetry of the Lagrangian is not a symmetry of
the vacuum. Whenever this happens we say that the symmetry is spontaneously broken.
The remaining symmetry of the vacuum is called “unbroken group”. In the case of chiral
symmetry, the breaking pattern is

SU(3)L × SU(3)R → SU(3)V , (6.7)

where SU(3)V is the vector subgroup for which LH and RH components transform in
the same way, UL = UR.

The physics of spontaneous symmetry breaking is very reach, and we defer the
reader to QFT texts for thorough treatments. Here we instead take a semi-heuristic
approach to get to some useful results.

6.2.1 Spontaneous symmetry breaking for a perturbative system

As we have seen in the previous section, the vacuum expectation value (vev) of the
q̄q operator dictates the symmetries of the theory. To be more precise, let us go back to
Eq. (2.16), i.e. to the transformation of a field under a symmetry transformation:

δφ0(x) = i [Q, φ0(x)] ≡ φ(x) .

75



6.2 Spontaneous symmetry breaking

In the last step we have simply recognized that the variation δφ0(x) of the φ0(x) field
must itself be a field, that we will call φ(x). We now take the expectation value of φ(0)

between two vacuum states:

〈0|φ(x) |0〉 ≡ 〈φ〉 = i 〈0|Qφ0(x)− φ0(x)Q |0〉 . (6.8)

We have two possible situations:
1. 〈φ〉 = 0 is consistent only if Q |0〉 = 0, i.e. if the vacuum is invariant under the

symmetry transformation. In this case we say that the symmetry is conserved, or
that it is realized in the Wigner-Weyl mode;

2. 〈φ〉 6= 0 is consistent only if Q |0〉 6= 0, i.e. when the vacuum is not invariant
under the symmetry transformation. In this case we say that the symmetry is
spontaneously broken, or that it is realized in the Nambu-Goldstone mode.

The second situation correspond to the results we have seen in the previous section, in
which the vev of an operator dictates the symmetry of the theory.

It is important to stress an important consequence of this discussion: only scalar
operators can acquire a non-vanishing vev. To understand this point let us suppose that
〈ψ〉 6= 0 for a fermion field (the same reasoning can be repeated for fields with any
spin > 0). Since under a Lorentz transformation we have ψ → Sψ, we immediately
see that S〈ψ〉 6= 0, i.e. that Lorentz symmetry is spontaneously broken. Physically this
means that it is no longer true that all the inertial reference frames are equivalent, in
stark contrast with experimental results 4. The only way to break internal symmetries
without breaking Lorentz symmetry at the same time is to allow only scalar operators to
acquire non-trivial vevs. This is precisely what happens with the q̄q operator: although
it is made by quark fields, the combination q̄q is a Lorentz scalar, and as such can acquire
a non-vanishing vev without breaking Lorentz symmetry.

Having established that to determine whether spontaneous symmetry breaking
(SSB) is happening we need to study the vev of scalar operators, we now need to
understand how to compute such vevs. Let us first start from a completely classical
field theory. In this case the vacuum is identified by the configuration of the φ field
that corresponds to minimum energy, i.e. that constant field value (to be called v) that
minimizes the potential. Notice that v is a solution of the equation of motion L′[v] = 0

and is thus a stationary configuration of the action. To translate such result to the quantum
theory we can use the path integral approach to QFT, since it allows to compute 〈φ〉.
In the semiclassical limit ~ → 0, the path integral will be dominated by the stationary

4The possibility of Lorentz symmetry violation has been extensively searched for experimentally. Up to
now no experimental deviation from the predictions of Lorentz symmetry has been found.

76



6.2 Spontaneous symmetry breaking

configuration v and the φ expectation value results

〈0|φ|0〉 = lim
~→0

∫
Dφφ e

i
~S(φ) = v . (6.9)

We can thus have a semiclassical idea of whether a theory breaks spontaneously a
symmetry analyzing its potential. 5

Consider now for simplicity the simplest possible case: a scalar theory with a U(1)

symmetry. The potential in this case is given by

V (φ) = µ2φ†φ+ λ(φ†φ)2 =
1

2
µ2(a2 + b2) +

λ

4
(a2 + b2)2 , (6.10)

where we have written the complex φ field in terms of its real and imaginary part as
usual, φ = (a + ib)/

√
2. This potential is extremized by (from now on we will use the

short handed notation 〈φ†φ〉 to indicate the vev of some operator, φ†φ in this case)

v2 = 〈φ†φ〉 = 〈a〉2 + 〈b〉2 =

 0 for µ2 > 0√
−µ2

λ
for µ2 < 0

(6.11)

Remembering that the parameters in the Lagrangian (and hence in the potential) are not
physical parameters, we can admit a negative µ2. We see that the extremum equation
identifies a family of vacua 〈φ†φ〉 without specifying any phase, making all these vacua
equivalent. Let us now study when the extrema can be a minimum. To this end, we need
to analyze the matrix of second derivatives of the potential, computed in the extremum.
Using the f = (a, b) basis we obtain

V ′′|extremum =

(
µ2 + λ(3〈a〉2 + 〈b〉2) 2λ〈a〉〈b〉

2λ〈a〉〈b〉 µ2 + λ(〈a〉2 + 3〈b〉2)

)
. (6.12)

When µ2 > 0 we have 〈a〉 = 0 = 〈b〉, and we see that the two scalars are degenerate,
both with squared mass equal to µ2. When µ2 < 0 we can parametrize the vacua as
〈a〉 = v cosα, 〈b〉 = v sinα, and the matrix of second derivatives becomes

V ′′|v = −2µ2

(
cos2 α sinα cosα

sinα cosα cos2 α

)
. (6.13)

This matrix has vanishing determinant, signaling the existence of a massless physical
state. Such state is called a Nambu-Goldstone boson (NGB). As we are now going to
show, the appearance of NGBs is typical of spontaneous symmetry breaking. However,
before turning to the general proof of the NGBs masslessness, let us observe that
computing the EoM from the potential above gives

(2 + µ2)a = −λa(a2 + b2)

(2 + µ2)b = −λb(a2 + b2)
(6.14)

5Quantum loops can be systematically included in this approach via the so-called Coleman-Weinberg
1-loop potential.
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6.2 Spontaneous symmetry breaking

which are clearly incorrect, since they predict a negative squared scalar mass. The
problem is that we are expanding the theory around the 〈φ〉 = 0 vacuum, instead that
around the correct non-trivial vacuum. To correct for this inconsistency we shift the
scalar fields according to

φ→ 〈a〉+ i〈b〉+
a+ ib√

2
= veiα +

a+ ib√
2

, (6.15)

where the new a and b fields have vanishing vevs. Moreover, we already know that
one scalar state should completely disappear from the potential to ensure that its mass
is always vanishing. This can be achieved explicitly writing the scalar field in the
parametrization

φ = e
iπ(x)√

2v

(
v +

h(x)√
2

)
. (6.16)

In this parametrization π(x) is the NGB field, while h(x) is the massive field. We
choose the exponential parametrization for the NGB because it automatically guarantees
its disappearance from the potential, since V depends only on the combination φ†φ. It
will be important in the following to notice that the exponential parametrization makes
clear that the NGB shifts under a global U(1),

φ→ eiαφ ⇒ π(x)→ π(x) +
√

2vα . (6.17)

This shift symmetry explains why no potential can be present for the NGB, since all
π(x) polynomials necessarily break the symmetry. The only terms which are allowed
are those that involve ∂µπ(x), which are clearly invariant under the shift symmetry since
α is a constant.

� Exercise 6.2 Verify explicitly that the NBG disappears from the potential (but not from
the kinetic term). Compute explicitly the mass of the h scalar.

6.2.2 Goldstone theorem

We will now generalize the results of our U(1) example to more general situations.
Consider a theory of n real scalar fields φi, i = 1, . . . , n which is invariant under

a continuous symmetry G. Suppose moreover that there is a vacuum configuration
v = (v1, . . . , vn) which is left invariant by a subgroup H ⊂ G, in such a way that

hv = v , h ∈ H . (6.18)

The themassmatrix ∂2V/∂φi∂φj has dimG−dimH vanishing eigenvalues, correspond-
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6.2 Spontaneous symmetry breaking

ing to the NGBs of the theory.
To prove the result we observe that the invariance of the theory under a G transfor-

mation can be stated as

V (φ) = V (φ+ iαATAφ) ' V (φ) + iαATAij φj
∂V

∂φi
. (6.19)

This implies that
TAij φj

∂V

∂φi
= 0 ∀A. (6.20)

We now compute the mass matrix deriving the previous equation:
∂2V

∂φm∂φi
TAij φj +

∂V

∂φi
TAij δmj = 0

minimum−→ M2
miT

A
ij vj = 0 (6.21)

We see that there are two possibilities:
1. the generator ofH are defined as those generators that annihilate the vacuum. For

these operators the previous equation is automatically satisfied;
2. theG generators that are not inH do not annihilate the vacuum. This implies that
TAij vj 6= 0 must correspond to a vanishing eigenvalue of the scalar mass matrix.

The number of vanishing eigenvalues equals the number of generators for which TAij vj 6=
0, which is dimG − dimH . The generators that do not annihilate the vacuum generate
the coset G/H .

There is a nice way to write the scalar field that simplifies the derivation of the
physical properties of the NGBs. As we saw above, the NGBs are associated with
the directions TAij vj 6= 0. Moreover, we know that their mass must vanish, implying
that they must somehow disappear from the scalar potential (for if they had a non-
trivial potential, they would in general have a non-vanishing mass). Let us start from the
vacuum configuration v. To simplify the notation, let us callUA the unbroken generators
(the generators of H) and BA the broken generators (the generators of G/H). We take
them to satisfy the orthogonality condition tr(BAUB) = 0. Moreover, the commutation
relations are in general[
UA, UB

]
= ifABCUC ,

[
UA, Bα

]
= ifAαβBβ ,

[
Bα, Bβ

]
= ifαβγBγ + ifαβAUA ,

(6.22)
where, for clarity of notation, we have denoted with capital latin letters the indices of
the unbroken generators and with greek letters the indices of the broken generators.

To the vacuum configuration we add the scalar fields which are not NGBs, i.e. those
associated with the eigenvectors UAv = 0. We call h such scalars. Since they are by
definition the scalar associated with the unbroken generators, it is clear that the h vector
is parallel to v in the scalar field space. We now apply a G transformation to this state,
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6.3 Chiral symmetry and the CCWZ construction

obtaining

φ = e
i
πA(x)BA√

2v

(
v +

h√
2

)
. (6.23)

In writing the previous expression we have inserted a factor 1/
√

2 to properly normalize
the real scalar fields, and we have used the fact that only the BA generators give a non-
vanishing action on the vev. In addition, we have promoted the parameters of the G/H
transformation to NGBs fields, normalized to v = ||v||. Notice that since by definition
any G transformation leaves the potential invariant, as we saw in the U(1) case above
the vacuum is not unique and we can always apply any G transformation to align along
any convenient direction. The physics will not depend on our choice.

6.3 Chiral symmetry and the CCWZ construction

After developing some essential facts about spontaneous symmetry breaking, we
are in the position to go back to chiral symmetry breaking. As we saw in our discussion
around Eq. (6.6), the quark condensate plays the role of the vacuum v of the previous
discussion, and drives the breaking

SU(3)L × SU(3)R → SU(3)V . (6.24)

The main point that will allow us to write a Lagrangian describing the light mesons is
the following: since all the mesons composed by the u, d and s quark are much lighter
than the QCD scale ΛQCD, we postulate that they are NGBs of the spontaneous breaking
of chiral symmetry. In a first stage we will set to zero the quark masses, and work with
massless mesons. We will later on see how to generate the small mesons masses from
the small quark masses. Let us first count the number of states to confirm that there is
a hope that our treatment gives the correct Lagrangian. If everything works, we should
obtain an octect of mesons. This is indeed the case: according to Goldstone theorem,
chiral symmetry breaking should produce 8 + 8 − 8 = 8 NGBs, exactly the octect we
were expecting.

As we saw in the previous section, the NGBs can be associated with the exponential
matrix

u(π) = e
iπa(x)BA√

2f , (6.25)

where BA are the broken generators. For chiral symmetry breaking it can be shown that
the coset SU(3)L × SU(3)R/SU(3)V is isomorphic to SU(3), so that we can identify
the generators BA with the Gell-Mann matrices.

However, unlike what happens in perturbative spontaneous symmetry breaking,
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6.3 Chiral symmetry and the CCWZ construction

there is no notion of potential here, and we have no way to compute the value of the vev
from the QCD parameters. How should we then write a Lagrangian for the NGBs? It
was shown in two seminal papers by Callan-Coleman-Wess-Zumino (CCWZ) already
in 1968-1969 that the only object we need to construct the Lagrangian for the NGBs is
the matrix u(π) of Eq. (6.25), since the rest follows from symmetry arguments.

Let us sketch the CCWZ argument. The main observation is that, at least around
the identity, any element g ∈ G can be written as

g = eiπ
αBα/feiα

AUA = u(π)h . (6.26)

Let us now focus on u and apply a G transformation. Using the form above we have

u(π)→ gu(π) = g′ = u(π′)h(g, π) , (6.27)

wherewe have denoted explicitly that the decomposition after the transformation depends
on the transformed NGBs π′, on the old NGBs π and on the transformation applied g.
We thus deduce immediately

u(π′) = gu(π)h†(g, π) , (6.28)

where g is a global transformation while h is a local transformation, since it depends on
π(x). This transformation is clearly non-linear, but it becomes linear once we specialize
to g = h. In fact, the matrix of NGBs transforms in the adjoint of theH subgroup, when
g = h.

We can construct an object that transforms simply under the unbroken subgroupH
as follows: define an object (called Maurer-Cartan one form)

αµ = −iu†(π)∂µu(π) ≡ dµ + Eµ (6.29)

that lives in the Lie algebra of G (because of the derivative). The dµ and Eµ objects are
defined as the projections along the broken and unbroken generators, respectively:

dµ = dαµB
α , Eµ = EA

µ U
A. (6.30)

Remembering that the generators can always be choses such that tr(BAUB) = 0, we see
that

αµ → hαµh
†︸ ︷︷ ︸

G=H+G/H

+ ih∂µh
†︸ ︷︷ ︸

H

, (6.31)

where we have denoted explicitly the part of the Lie algebra to which each term belongs.
We thus conclude that

dµ → hdµh
†

Eµ → hEµh+ ih∂µh
† .

(6.32)
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6.3 Chiral symmetry and the CCWZ construction

� Exercise 6.3 Show that expanding the NGB exponential up to O(π2), we have

dαµ =
∂µπ

α

f
− fρσα

2f 2
∂µπ

ρπσ + . . . ,

EA
µ = −f

αβA

2f 2
∂µπ

απβ + . . .

(6.33)

The lowest dimensionalH invariant can be constructed only out of dµ, and the resulting
Lagrangian (called chiral Lagrangian at order p2) reads

L =
f 2

2
tr(dµdµ) . (6.34)

Notice that the Lagrangian contains an infinite tower of higher dimensional operators, all
suppressed by increasing powers of f . We can also include termswith 4, 6, . . . derivative.
We thus obtain an effective theory, where effective has two meanings: (i) it is effec-
tive because it is non-renormalizable, and (ii) it is effective because it is an effective
description of meson physics based on symmetries rather than on the QCD Lagrangian.

Before concluding this chapter, we discuss two last points: (i) how to make contact
with the meson matrix in Eq. (4.35), and (ii) how to include the quark masses in the
chiral Lagrangian.

Let us start with the first point. First of all let us notice that the approximate SU(3)F

flavor symmetry we discussed early on is naturally identified with the approximate
SU(3)V in the chiral symmetry approach. Since the symmetry breaking pattern we want
to analyze is SU(3)L×SU(3)R → SU(3)V , we need to generalize the CCWZ approach
to a non-simple group. 6 This is easily done repeating the above argument for all the
factors. We thus define

uL → gLuLh
† , uR → gRuRh

† , (6.35)

one for each of the factors in SU(3)L × SU(3)R. We also define two different Maurer-
Cartan forms,

αLµ = −iu†L∂µuL , αRµ = −iu†R∂µuR . (6.36)

This is useful because taking now the difference

αLRµ = αLµ − αRµ (6.37)

we obtain an object that transforms in the adjoint of H , αLRµ → hαLRµ h†. It is now an
easy manipulation with unitary matrices to show that

αLRµ = −iu†L(∂µU)uR = iu†R(∂µU
†)uL , U = uLu

†
R → gLUg

†
R . (6.38)

In the last step we have introduced a matrix that transforms exactly as the meson matrix
we discussed early in this chapter when we take an SU(3)V transformation gL = gR.

6Loosely speaking, non-simple groups are those that can be written as products, like SU(3)L × SU(3)R.
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6.3 Chiral symmetry and the CCWZ construction

We thus identify it as the exponential of the meson matrix in Eq. (4.35). The O(p2)

Lagrangian thus read

L =
f 2

2
tr(αLRµ αLRµ ) =

f 2

2
tr(∂µU

†∂µU) . (6.39)

Let us now discuss how to explicitly include quark masses, i.e. an explicit chiral
symmetry breaking. The idea is to use again the symmetries of the problem to try to
deduce the terms that can contain the quark mass matrix Mq. Before discussing this
issue, let us stress that, in complete generality,

the dependence of observables on the parameters of the theory is completely determined
by symmetry selection rules apart from O(1) factors.

A detour: the classical pendulum. Let us give an example from classical physics: the
simple pendulum. The pendulum is a system characterized by its mass m, its length
` and the dynamics is generated by the gravity acceleration g. It is well known that
dimensional analysis gives for the frequency

ω = O(1)
√
g/`. (6.40)

What is less known is that dimensional analysis is simply the set of selection rules due
to dilatations of some quantity. For instance, for space and time dilatations we have

x→ λxx,

t→ λtt.
(6.41)

This transformation correspond to the freedom of choosing an arbitrary unit for each of
the quantities. Let us look at the Lagrangian of the system:

L =
m

2
ẋ2 − V =

m`

2
θ̇2 −mg`(1− cos θ). (6.42)

If we apply the dilatation transformation to the kinetic term we obtain
m

2
ẋ2 → λ2

x

λ2
t

m

2
ẋ2. (6.43)

Comparing with the right hand side, we see that we can obtain the same transformation
rule provided ` → λx`. We are taking a parameter and assign to it a well-defined
transformation rule under the symmetry. If we now require complete covariance of the
Lagrangian (i.e. we require the potential term to have the same transformation rule under
the symmetry as the kinetic term) we see that we must require

g → λx
λ2
t

g. (6.44)

Again, we take a fixed parameter and assign it fictitious transformation rules. What
happens at the level of equation of motion? A quick look at the Euler-Lagrange equations
shows that the EoM must be covariant under the dilatation symmetry, hence we must
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6.3 Chiral symmetry and the CCWZ construction

expect the quantities appearing (the frequency, for instance) to be covariant objects. This
fixes univocally the combinations of parameters that can appear.

We now go back to the inclusion of quark masses in the chiral Lagrangian. The idea
is exactly the same as in the case of the pendulum: we can assign fictitious transformation
rules to the parameters of the theory to formally recover invariance under some symmetry.
We then write our “observable” (the effective Lagrangian, in this case) in terms of the
parameters respecting the symmetry selection rules. We start fro the QCD mass term

LQCD,mass = −q̄LMqqR + h.c. (6.45)

We know that this term breaks explicitly SU(3)L × SU(3)R. If we however imagine
that the mass term transforms as

Mq → gLMqg
†
R , (6.46)

chiral invariance is recovered. The idea is thus to promote Mq to a spurion, i.e. an
object that has a well defined transformation under the symmetry it breaks, and to use
the spurion to construct the Lagrangian at the meson level. This means that we can write

L =
f 2

2
tr(∂µU

†∂µU) + fµ2 tr(UM †
q ) + h.c. (6.47)

where µ2 is a new dimensionful parameter that cannot be fixed by symmetry arguments
but must be deduced from experiments. Of course, a priori nothing dictates that this
procedure, based on symmetries, should work. Remarkably, however, the predictions
for the meson masses that can be extracted from the chiral Lagrangian are in remarkable
agreement with the experiments.

� Exercise 6.4 Using the chiral Lagrangian withMq compute the meson masses in terms
of the quark masses and of the parameters f and µ2.

Using spurion techniques we can also include other types of explicit chiral symmetry
breaking. One important example are the interactions with the photon. The argument
proceeds as follows: imagine we gauge SU(3)L×SU(3)R introducing couplings of the
form

Lint = q̄Lγ
µLµqL + q̄Rγ

µRµqR , (6.48)

in the QCD Lagrangian. In the case of the photon we know that

Lµ = Rµ = eQAµ , Q = diag

(
2

3
,−1

3
,−1

3

)
. (6.49)

Since this coupling is not of the form V A
µ λ

A, i.e. cannot be written as an object of
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the adjoint of SU(3), it constitutes an explicit breaking of the chiral symmetry. We
can recover the global SU(3)L × SU(3)R symmetry promoting Lµ and Rµ to spurions
that transform in the adjoint of SU(3)L and SU(3)R, respectively. But we can do even
more: if we promote SU(3)L × SU(3)R to a local symmetry, the kinetic part of the
QCD Lagrangian is no longer invariant under the local chiral transformation, but the
non invariant piece can be reabsorbed using a “gauge transformation” of the Lµ and Rµ

objects, whose transformation now becomes

Lµ → gL(x)Lµg
†
L(x) + i∂µgL(x)g†L(x), Rµ → gR(x)Rµg

†
R(x) + i∂µgR(x)g†R(x).

(6.50)
We are obtaining a neat result: the effect of Lµ and Rµ can be obtained simply by
including them in a covariant derivative defined as

DµU = ∂µU + iLµU − iURµ . (6.51)

� Exercise 6.5 Show that the covariant derivative must take the form of Eq. (6.51) for
DµU to transform asDµU → gL(x)DµUgR(x) with Lµ and Rµ transforming as normal
gauge fields.

The final Lagrangian is thus given by

L =
f 2

2
tr(DµU

†DµU) + fµ2 tr(UM †
q ) + h.c. (6.52)

and contains masses and gauge interactions of the mesons.

6.4 Additional exercises

� Exercise 6.6 Consider an effective interaction between a neutral fermion χ and quarks
of the form

L =
c

Λ2
(χ̄γµχ) (q̄γµq) , (6.53)

where q is the triplet of light quarks. The fermion χ has massmχ:
Compute the color and spin averaged cross section qq̄ → χχ̄;
Write the chiral Lagrangian including such term. Which mesons decays are
generated?
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6.5 Additional readings

Although we have not discussed them in these lectures, vector mesons play an
important role in low energy QCD. Compute the decay width of the ρ → χχ̄

decay using the matrix elements listed in the Appendix of arXiv:2011.04735.

6.5 Additional readings

S.Weinberg, “The Quantum Theory of Fields” vol. 1;
M.Peskin and D.Schroeder, “An Introduction To Quantum Field Theory”;
S.Coleman, “Lectures on Quantum Field Theory”;
M.Schwartz, “Quantum Field Theory and the Standard Model”;
R. Penco, “An Introduction to Effective Field Theories” (link);

86

https://arxiv.org/pdf/2011.04735.pdf
https://arxiv.org/pdf/2006.16285.pdf


Part III

Electroweak interactions: The
Standard Model of Particle Physics



Chapter 7 The Standard Model

This chapter will be devoted to the bottom-up construction of the Electroweak
Theory, i.e. the theory that unifies weak and electromagnetic interactions. We will
start with a sketch of the history from the 1930’s to the end of the 1960’s, showing
how to put together many of the concepts already developed in the previous chapters
to properly describe the physics of weak interactions. We will then construct explicitly
the Standard Model (the theory of strong and electroweak interactions) and compute its
main phenomenological consequences.

7.1 Weak interactions

7.1.1 Weak interactions

In the first half of the XX century the experimental observation of decays whose ori-
gin could not be traced to electromagnetic or strong interactions suggested the existence
of a new type of interaction. These decays are observed to have much longer lifetimes
than decays mediated by strong interactions. Since the lifetime of a process is inversely
proportional to its coupling, the new type of interactions were called weak interactions.
For simplicity, in our discussion we will focus on the following two processes:

β − decay : n→ peν̄e

µ− decay : µ→ eνµν̄e .
(7.1)

The first attempt to describe these 4-fermion processes was made by Fermi already in
1933 via the phenomenological Lagrangians

Lβ = −G
(β)

√
2

[p̄Γn] [ēΓ′νe] ,

Lµ = −G
(µ)

√
2

[ν̄µΓµ] [ēΓ′νe] ,

(7.2)

where, as customary, we have denoted the fields with the same symbol as the particles
they are describing. Γ and Γ′ are Lorentz structures in the list {1, γ5, γ

µ, γµγ5, σ
µν}

chosen in such a way to guarantee Lorentz invariance. Fermi wrote its theory choosing
Γ = 1 = Γ′, but it was soon realized that different Lorentz structures where possible.
Different Lorentz structures correspond to different angular behaviors of the decaywidth,
and can be experimentally tested. An example is shown in Fig. 7.1 for various Γ and
Γ′ structures. Measuring the number of events as a function of the angle allows to
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Figure 7.1: Number of events (in arbitrary units) as a function of the electron’s angle (measured
with respect to some arbitrarily defined direction). As can be seen, different Dirac structures in
Eq. (7.2) give different angular dependence that can be experimentally distinguished one from
the other. The plot has been generated with MADGRAPH@NLO.

distinguish between various possibilities. Over the two following decades it became
clear that the correct form of the Lagrangian is

Lβ = −G
(β)

√
2

[p̄γµ(1− aγ5)n] [ēγµ(1− γ5)νe] ,

Lµ = −G
(µ)

√
2

[ν̄µγ
µ(1− γ5)µ] [ēγµ(1− γ5)νe] ,

(7.3)

where a = 1.2695± 0.0029 can be extracted from baryon decays and is a consequence
of the composite nature of protons and neutrons. This form of the Lorentz structure is
called V-A because it consists of a vector current γµ minus an axial current γµγ5. This
point deserve to be stressed: only LH fermions interact via weak interactions. 1

Notice that from dimensional analysis we conclude immediately that
[
G(µ)

]
=[

G(β)
]

= −2 in energy units. The Fermi Lagrangian is thus non-renormalizable.
Moreover, experimentally it was found that G(µ) ' G(β) ≡ GF ' 1.16 × 10−5 GeV.
The equality between two seemingly unrelated processes suggests a deeper structure in
the weak interactions. Interpreting GF = 1/Λ2 as a proxy for the cutoff of the theory,
and inserting the experimental value, we obtain

Λ ∼ 300 GeV . (7.4)

1Since only LH fermions couple to weak interactions, it would be natural to write the theory in terms of
Weyl spinors only, without bothering to work with Dirac fermions. We show in Appendix C how this is
done, while we in the main text we use the more common Dirac notation.
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7.1 Weak interactions

As usual, as long as the energy of the process considered is E � Λ there is no need
to worry about whatever physics appears at the cutoff. However, when E ∼ Λ the
predictions of the Fermi theory become completely unreliable, and we need to consider
how to UV complete the theory. This is the task we set up to accomplish in this section.

Although a priori there is no reason for the weak interactions to have a behavior
similar to QED and QCD, let us suppose the interactions can be written as the coupling
between a vector particle and a current. We will follow here loosely the historical
developments due toGlashow (1961),Weinberg (1968) and Salam (1969). The discovery
of the theory of electroweak interactions won them the Nobel prize in 1979. This is
precisely the structure that appears in the theories we already know. Let us start with the
leptons. Inspecting Eq. (7.3) we discover that it can be written as the product

Lµ = −4GF√
2
J (µ)
α J (e)†

α , J (f)
α = ν̄fγαPLf = ν̄fLγαfL, (7.5)

where PL = (1−γ5)/2 is the LH projector. Can J (i)
α be written in the form of a current?

Clearly it will not be a current like the electromagnetic one, since unlike in QED it
involves two different fermions. It can however be written in the form of a non-abelian
current ψ̄iγµTAijψj , since we know from the discussion in Section 5.2 that such currents
connect fermions of different types. Let us thus introduce a doublet

LL ≡

(
νL

eL

)
, (7.6)

where we leave the lepton flavor implicit. We will often simply write LL ≡ L, leaving
implicit the fact that this is a doublet of LH fermions. We thus want to write

Jα = L̄γατ
+L , τ+ =

(
0 1

0 0

)
. (7.7)

It is immediate to check that the τ+ generator does precisely the job we need it to do.
Moreover, we recognize τ+ as an element of the SU(2) algebra, since it can be written
in terms of the usual SU(2) generators τA = σA/2 as

τ+ = τ 1 + iτ 2 . (7.8)

Unexpectedly, it seems that the structure of a non-abelian SU(2) gauge theory is emerg-
ing from the known form of the weak interactions. Notice that the conjugate current can
be written as

J†α = L̄γατ
−L , τ− =

τ 1 − iτ 2

2
. (7.9)

Overall, we are lead to consider two linear combinations of the SU(2) generators to
write the weak interactions appearing in muon decay. For compactness of notation, we
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will denote such currents as

J+
µ = L̄γµτ

+L , J−µ = L̄γµτ
−L . (7.10)

We are now going to take seriously this hint and suppose that weak interactions are
somehow an SU(2) non-abelian gauge theory, with L transforming as a 2 of SU(2).
Since only LH fermions appear in the current we call this group SU(2)L. Moreover, we
predict the existence of a third current (not experimentally observed when the theory
was written down in the 1960s) whose generator is τ 3:

J3
µ = L̄γµτ

3L . (7.11)

Notice that the J±µ currents involve one neutral and one charged fermion, in such a way
that they have non-trivial transformations under electromagnetism:

J±µ → e∓iαJ±µ . 2 (7.12)

They are called charged currents. On the contrary, the τ 3 generator is diagonal, and it
connects fermions of the same charge, with no net charge change. The current J3

µ is
thus a neutral current. The main prediction of the model is thus the existence of neutral
currents.

Since the RH fermions eR (and νR in case it exists 3) do not take part in the
electroweak interactions they cannot be part of any SU(2)L current. This leads to the
hypothesis that they are SU(2)L singlets, i.e. they belong to the 1 representation.

We now move on and try to write the SU(2) invariant Lagrangian for the lepton
doublet. Using our general procedure for non-abelian gauge theories we know that

LSU(2)L = L̄i /DL , DµL = ∂µL+ igWA
µ τ

AL , (7.13)

where we calledWA
µ the triplet of SU(2)L gauge bosons, withA = 1, 2, 3. A few points

are worth to be stressed:
Since L transforms as a 2 of SU(2)L and eR as a 1, we cannot combine LH and
RH fermions in a mass term. It is thus already clear that additional ingredients
will be needed to generate fermion masses;
Two of the gauge bosons must have non-vanishing electric charge, while the one
associated with τ 3 will be neutral. We can write explicitly the charged vectors in
terms of W 1

µ and W 2
µ comparing with the electric charge of the currents: from

Eq. (7.12) we know that J±µ have electric charge ∓1, respectively; to preserve
electromagnetism, we must thus couple J+

µ with a vector of electric charge +1

2It is worth emphasizing that the± superscript refers to the SU(2) generators and not to the electric charge.
As a matter of fact, the electric charge is inverted with respect to the ±.
3As of 2021 there is still no experimental confirmation of the existence of the RH neutrino component.
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and J−µ with a vector with electric charge −1. The identification is thus

W 1
µτ

1 +W 2
µτ

2 = W 1
µ

τ+ + τ−

2
+W 2

µ

τ+ − τ−

2i

=
W 1
µ − iW 2

µ

2
τ+ +

W 1
µ + iW 2

µ

2
τ− .

(7.14)

We see immediately that the generators τ± couple to complex combinations of
the gauge bosons W 1,2

µ (as it should, since only charged fields can carry electric
charge). The normalized states are

W+
µ ≡

W 1
µ − iW 2

µ√
2

, W−
µ ≡

W 1
µ + iW 2

µ√
2

, (7.15)

in terms of which we can write

DµL =

(
∂µ − i

g√
2
W+
µ − i

g√
2
W−
µ τ
− + gW 3

µτ
3

)
L . (7.16)

We know from QED that (at least) another neutral current must exist in nature, the
EM current. It would be tempting to identify our prediction J3

µ with JEMµ . This
however cannot work, since we know that the EM current is not chiral (it couples
in the same way to LH and RH fermions) and it cannot couple to neutrinos (since
they are electrically neutral), while the neutral current of weak interactions have
the form

J3
µ = ν̄LγµνL − ēLγµeL (7.17)

and thus couples to neutrinos.

7.1.2 Electroweak unification

We are left with a puzzle: the structure of weak interactions force us to introduce
a neutral current J3

µ, but this current cannot be identified with JEMµ . There are two
possible ways to procede: (i) we modify the multiplet structure of the theory extending
SU(2)L to some larger group, trying to identify some of the components with the EM
current, or (ii) we admit that we must extend our gauge group to include an additional
factorU(1) to account for the EM current. Both ways have been pursued in the literature,
and it is ultimately an experimental matter to determine which of the two possibilities
is the correct one. In 1973 the first experimental confirmations of a neutral current
independent from the EM one was discovered, confirming the second option above. Let
us thus follow this path and add a U(1) group to our gauge theory. The first question we
need to answer is: should we identify this U(1) with U(1)EM? A priori, the answer is
no: the gauge theory SU(2) × U(1) have two neutral currents (one is the non-abelian
J3
µ and the other one is the one associated with U(1)), and the most general possibility is

for the EM current to be a linear combination of the two. Let us thus call the new factor
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U(1)Y , where Y stands for hypercharge.
Our gauge theory will now be

GEW = SU(2)L × U(1)Y , (7.18)

which is called electroweak (EW) group. We need to understand how electromagnetism
emerges from this picture. First of all, we observe that since SU(2)L acts in different
ways on the LH and RH components of a fermion, it is quite natural to assume that we
can assign different hypercharges to the LH and RH components. This means that our
theory will be chiral, i.e. LH and RH fermion components will have different charges
under GEW .

Since we are now gauging also U(1)Y a new vector boson must be added to the
spectrum, which we will call Bµ. A generic covariant derivative will thus be written as

Dµ = ∂µ + igWA
µ T

A + ig′BµY , (7.19)

where TA are the SU(2)L generators in the appropriate representation (i.e. TA = τA for
the doublets and TA = 0 for the singlets) and Y is a matrix proportional to the identity
(because it is associated with a U(1) group that must commute with SU(2)L). We will
write it as Y = y1. The Lagrangian for a generic multiplet can be written as

L = iψ̄ /∂ψ − g√
2
W+
µ ψ̄γ

µT+ψ − g√
2
W−
µ ψ̄γ

µT−ψ

− gW 3
µ ψ̄γ

µT 3ψ − g′Bµψ̄γ
µY ψ .

(7.20)

We will now assign the quantum numbers Y to guarantee that the EM current appears.
To do this, we admit that the physical photon A will be a linear combination ofW 3 and
B and we call Z the orthogonal combination. They are defined via

B = cos θWA− sin θWZ , W 3 = sin θWA+ cos θWZ , (7.21)

where θW is called weak (or Weinberg) angle. A priori the value of θW is completely
free, and it must be fixed by experiments. As we are going to see in next chapter, θW
is small but not negligible, i.e. the physical photon is not a pure B as we could have
initially imagined. In terms of A and Z the neutral current Lagrangian can be rewritten
as

LNC = ψ̄γµ
(
g sin θWT

3 + g′ cos θWY
)
ψAµ + ψ̄γµ

(
g cos θWT

3 − g′ sin θWY
)
ψ Zµ .

(7.22)
To identify the first term with the EM current we need

g sin θWT
3 + g′ cos θWY = eQ , (7.23)

where Q is the electric charge. Notice that Y always appears in the combination g′Y , in
such a way that we have the freedom to rescale all the hypercharges by a common factor,
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provided we rescale g′ by the inverse factor. We can use this freedom to fix arbitrarily
one of the hypercharges. Conventionally we choose

yL = −1

2
. (7.24)

Using this in the definition of the electric charge, Eq. (7.23), we obtain(
g sin θW−g′ cos θW

2
0

0 −g sin θW+g′ cos θW
2

)
=

(
0 0

0 −e

)
. (7.25)

We deduce
tan θW =

g′

g
and e =

gg′√
g2 + g′2

. (7.26)

We thus get a prediction: if we can determine the gauge couplings g and g′ from
experiments then we can determine the value of the electric charge. Inserting these
results in the general definition Eq. (7.23) we can determine the charge matrix as

Q = T 3 + Y. (7.27)

Using this formula we can immediately compute the hypercharge of the SU(2)L singlets:
from T 3 = 0 we deduce that YfR = QfR , i.e. for RH fermions the hypercharge is indeed
the electric charge.

Notice now that nothing of what we said depended on the family of leptons. As a
matter of fact, Eq. (7.5) tells us that the SU(2)L structure is the same for the leptons of
the first two generations, and nothing suggests that our construction cannot be repeated
verbatim to any lepton family (including the third one). Once more, this is ultimately
an experimental fact, and we accept that experiments have confirmed until now that the
EW interactions obey lepton universality, i.e. the representations of the lepton doublets
and singlets are independent on the generation,

Li ∼ 2−1/2 , eiR ∼ 1−1 , i = e, µ, τ. (7.28)

Before extending our discussion to quarks (and, ultimately, to hadrons), a further
essential point must be discussed: how do we obtain the Fermi Lagrangian Eq. (7.5)
at low energy starting from the SU(2)L × U(1)Y gauge Lagrangian? It is clear that
the Fermi Lagrangian can be obtained by a Feynman diagram in which theW boson is
exchanged. Let us write the amplitude for µ→ eνµν̄e using the gauge Lagrangian:

µ

νµ

W

e

νe

=Mgauge(µ(p)→ e(p1) + νµ(p2) + ν̄e(p3))

=
g2

2
[ūp2γ

µPLup]
−1

(p− p2)2
ηµν [ūp1γ

νPLvp3 ]

(7.29)

94



7.2 How to give mass to a gauge boson

The amplitude we obtain from the Lagrangian in Eq. (7.5) is instead

µ

νµ

W

e

νe

=MFermi(µ(p)→ e(p1) + νµ(p2) + ν̄e(p3))

=
4GF√

2
[ūp2γ

µPLup] [ūp1γ
µPLvp3 ]

(7.30)

The fermion structure is the correct one, but the amplitudeMgauge does not produce for
us the typical cutoff of the Fermi theory, Λ ∼ G

−1/2
F , since the denominator can be made

smaller and smaller as the energy becomes smaller and smaller. We conclude that theW
boson cannot be massless, if we are to obtain the Fermi theory as the low energy limit
of our gauge theory. Stated in another way: there is no natural mass scale associated
with a massless vector, while the Fermi Lagrangian suggests that the scale Λ ∼ G

−1/2
F

should somehow emerge from the gauge theory.
The solution is easy: we need a vector boson to implement the gauge theory, but

we need it to be massive. In this way, there is a natural mass scale associated with it, and
we have a chance of being able to correctly reproduce the Fermi theory. Ignoring for
the moment the problem of how to do so in a consistent way (we will come back to this
issue in Sec. 7.2), let us check whether our intuition works. Using the massive vector
propagator in Eq. (2.66) the gauge amplitude becomes

µ

νµ

W

e

νe

=Mgauge(µ(p)→ e(p1) + νµ(p2) + ν̄e(p3))

=
g2

2
[ūp2γ

µPLup]
−1

(p− p2)2 −m2
W

(
ηµν −

(p− p2)µ(p− p2)ν
m2
W

)
[ūp1γ

νPLvp3 ]

[take the low energy limit (p− p2)2 � m2
W ]

' g2

2m2
W

[ūp2γ
µPLup] [ūp1γ

µPLvp3 ]

(7.31)
which is exactly of the form of the Fermi amplitude once we identify

4GF√
2

=
g2

2m2
W

. (7.32)

We conclude that the SU(2)L × U(1)Y gauge theory we have developed in this section
can be compatible with the low energy Fermi theory provided we find a way to give mass
to the W boson. Surprisingly, such phenomenon is connected with the spontaneous
symmetry breaking phenomenon discussed in Sec. 6.2.
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7.2 How to give mass to a gauge boson

As we saw in the previous section, we need to add aW mass term to the SU(2)L×
U(1)Y gauge Lagrangian. To bemore specific, also theZ bosonmust becomemassive, to
avoid the problem of unseen low energy neutral currents which do not have the right low
energy limit. The Lagrangian of a massive vector was already presented in Eq. (1.45),
so that naively it looks like it is sufficient to add by hand a W and Z mass term to the
gauge Lagrangian to obtain the desired result. Things are not so simple, however. Our
whole discussion have been based on the Yang-Mills construction in which theWA and
B vectors shift under a gauge transformation,

WA
µ → WA

µ −
1

g
∂µα

A − εABCαBWC
µ ,

Bµ → Bµ −
1

g′
∂µβ ,

(7.33)

where we explicitly used the SU(2)L structure constants fABC = εABC and we called
αA and β the parameters of a SU(2)L × U(1)Y transformation. A mass term added
by hand in the Lagrangian is clearly not gauge invariant, casting doubts over our whole
procedure. The question we want to address in this section is: can we give mass to the
gauge bosons without spoiling gauge invariance?

Let us discuss before the case of a U(1) gauge boson. We would like to be able to
write the Lagrangian (see App. A)

L = Lmatter −
1

4
(Vµν)

2 +
m2

2
(Vµ)2 , (7.34)

in a way which is invariant under a gauge transformation. A problem which is not
apparent from the previous Lagrangian is that the theory of a massive vector boson is
not well behaved at high energies. An heuristic argument to see why this happens is to
remember that the massive vector boson field obeys ∂ · V = 0. Let us see what this
means at the level of polarization vectors. Aligning the z-axis along the momentum
direction, kµ = (E, 0, 0, k), we obtain the three independent transverse polarizations

ε1 = (0, 1, 0, 0), ε2 = (0, 0, 1, 0), ε3 =

(
k

m
, 0, 0,

E

m

)
. (7.35)

The polarization vectors satisfy k · εi = 0 and ε2i = −1. When E � m the third
polarization vector tends to

ε3 →
(
E

m
, 0, 0,

E

m

)
(7.36)

and dominates over the other two because of the large ratio E/m. Processes with
external vector bosons will thus grow with E2/m2, which no matter how small the
coupling with matter is, diverges at very high energies, destabilizing the unitarity of the
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theory. Another aspect of this problem can be seen from the vector boson propagator
−i

k2 −m2

(
gµν − kµkν

m2

)
. (7.37)

Again we see that for very high energies k � m the first term vanishes, while the second
one tends to become a constant. This also spoils the high energy behavior of the theory,
because when the propagator is embedded in a loop it receives contributions that are UV
sensitive. The theory of a massive vector is thus an EFT.

What we want to do is to find a way to recover gauge invariance in the theory and, in
doing so, make the massive vector phenomenology well behaved at high energies. The
trick (due to Stuckelberg) to achieve gauge invariance is to decompose the vector field
as

Vµ = Aµ −
∂µπ

f
. (7.38)

We have inserted the massive scale f for dimensional consistency. This decomposition
clearly has some sort of gauge invariance through the transformation

Aµ(x)→ Aµ(x)− ∂µξ(x)

g
, π(x)→ π(x) +

f

g
ξ(x). (7.39)

We have already encountered scalar fields that shift under a symmetry: in the case of
a global symmetry, they were the NGBs associated with the spontaneous breaking of
that symmetry (see Sec. 6.2 and, more specifically, Eq. (6.17)). This heuristic argument
leads us to suspect that if the global symmetry associated with gauge invariance is
spontaneously broken, then the gauge bosons may become massive “absorbing” the
NGBs as their longitudinal degrees of freedom. This phenomenon is called the -Brout-
Englert-Higgs-Anderson phenomenon (Englert and Higgs were awarded the Nobel prize
in 2013 for this discovery). Let us see how this construction cures the bad high energy
behavior described above. The massive Lagrangian of Eq. (7.34), written in terms of
Aµ and π, is given by

L = −1

4
(Aµν)

2 +
m2

2
(Aµ)2 +

1

2

m2

f 2
(∂µπ)2 +m2∂µπAµ. (7.40)

The previous Lagrangian has two interesting features: (i) we need f = m to guarantee
a canonical kinetic term for π(x), and (ii) we observe the presence of a strange “kinetic
mixing” ∂µπAµ whose interpretation is problematic. The correct solution to the problem
of the mysterious kinetic mixing was given by ’t Hooft in 1971: since the theory is gauge
invariant and Aµ has the same transformation as a massless vector, let us add a suitably
chosen gauge fixing term to L. The choice

Lgf = − 1

2ξ
(∂µA

µ +mξπ)2 (7.41)

has the virtue that it eliminates completely the kinetic mixing from the Lagrangian. With

97



7.2 How to give mass to a gauge boson

the addition of such gauge fixing we can compute the Aµ and π propagators:

(Aµ)
−i

k2 −m2

(
gµν − (1− ξ) kµkν

k2 − ξm2

)
(π)

i

k2 − ξm2
.

(7.42)

We see that the Aµ propagator now vanishes in the k � m limit, at least as long as
ξ 6= ∞. We thus recover the good high energy behavior of the theory as we wanted.
The price we have to pay is to have a gauge dependent π propagator, signaling that the
π mass term is a complete gauge artifact. This is consistent with the fact that, after all,
we are still describing a massive vector field with three physical components. The fact
that we find it convenient to decompose it in terms of the (Aµ, π) fields is a useful trick
that allows us to recover a good high energy behavior and to see clearly the connection
with spontaneous symmetry breaking.

To confirm the connection with spontaneous symmetry breaking let us analyze
scalar QED when we have spontaneous symmetry breaking. The Lagrangian will be
invariant under the gauge transformation

φ→ eiξ(x)φ(x)

Aµ → Aµ −
1

g
∂µξ(x) ,

(7.43)

but we assume that the vacuum spontaneously breaks the U(1) symmetry. As we did in
Sec. 6.2 we parametrize the scalar field as

φ(x) = eiπ(x)/(
√

2v)

(
v +

h√
2

)
. (7.44)

Applying a gauge transformation with parameter ξ(x) = −π(x)/(
√

2v) we obtain

φ→ v +
h√
2
,

Aµ → Aµ −
1√
2gv

∂µπ(x) ≡ Vµ .
(7.45)

This is precisely of the form of Eq. (7.38) once we identify f =
√

2gv. This confirms our
suspicion: in a gauge theory we can always eliminate the NGBs from the scalar sector
making them explicitly the longitudinal degree of freedom of the vector field, which can
now acquire mass. Since in this case π(x) does not appear as a massless state in the
spectrum it is customary to call it “would-be NGB” or “eaten-up NGB”. To compute the
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vector mass we focus on the covariant derivative part of the Lagrangian:

|Dµφ|2 = |∂µφ+ igVµφ|2

= |∂µφ|2 + g2(Vµ)2|φ|2 − igVµ
(
∂µφ

†φ− φ†∂µφ
)

=
1

2
(∂µh)2 + g2(Vµ)2

(
v +

h√
2

)2

=
1

2
(∂µh)2 +

2g2v2

2
(Vµ)2 +

√
2g2v(Vµ)2h+

g2

2
(Vµ)2h2 .

(7.46)

As in scalar QED without symmetry breaking we have trilinear and quadrilinear inter-
actions hV V and hhV V , but we also have explicitly a vector mass term. Comparing
with the expression for f found above, we conclude f = mV . The gauge in which
the would-be NGBs completely disappear from the Lagrangian is called unitary gauge
because it makes explicit the particle spectrum of the theory. In this gauge, however, it
is not clear how the bad high energy behavior described above is cured.

7.3 The Higgs boson

The conclusion of the previous section is clear: we can obtain massive W and Z
bosons in the SU(2)L × U(1)Y theory provided we add a scalar which breaks sponta-
neously the EW symmetry. Since we observe a massless photon in nature, the U(1)EM

must survive symmetry breaking and cannot be broken by the vacuum. The symmetry
breaking pattern we need to consider is thus

SU(2)L × U(1)Y → U(1)EM . (7.47)

Since this pattern represents the spontaneous breaking of the electroweak symmetry it
is often called “electroweak symmetry breaking” (EWSB). Let us count the number of
broken generators: since SU(2)L has 3 generators while the U(1) groups have each one
generator, we conclude that we have (3 + 1) − 1 = 3 broken generators. This number
beautifully matches the number of massive gauge bosons we want to obtain (two charged
and one neutral), suggesting that there is no need to enlarge the gauge group to obtain a
UV completion of the Fermi theory.

What about the scalar? There is a certain degree of arbitrariness in the choice of
the scalar properties. For sure it must contain at least three real scalars to provide for the
three would-be NGBs, and it must have non-trivial transformations under both SU(2)L

and U(1)Y to ensure the symmetry breaking pattern. The smallest non-trivial SU(2)L

representation is the doublet 2 while to allow for a non-trivial hypercharge we must take
each of the doublet components complex. The minimal representation for the scalar
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boson will thus be
H ∼ 2yH . (7.48)

where the hypercharge is still unfixed. The scalar H is called the Higgs doublet. Notice
that H contains 4 real scalar degrees of freedom, hence after symmetry breaking we
expect one of real scalar to be still part of the spectrum, since it will not be absorbed by
the vector bosons. This scalar, which we will call h, is the Higgs boson discovered in
2012 at the CERN-LHC. Let us denote for the moment

H =

(
φ1

φ2

)
. (7.49)

We know thatH must develop a non-trivial vev to break spontaneously the EW symmetry
to QED. In general the vacuumwill populate both doublet entries. We remind the reader,
however, that all the directions of the vacuum are equivalent, and that we can use an
EW transformation to align it along any direction we find convenient. We apply the
following transformations:(

v1

v2

)
SU(2)L−→

(
0

veiα

)
U(1)Y−→

(
0

v

)
≡ 〈H〉 , v =

√
v2

1 + v2
2 . (7.50)

By assumption, a U(1)EM transformation must leave the vacuum invariant

eiαQH 〈H〉 = 〈H〉 ⇒ QH〈H〉 = 0 →

(
1
2

+ yH 0

0 −1
2

+ yH

)(
0

v

)
=

(
0

0

)
.

(7.51)
This selects yH = 1/2 as the Higgs doublet hypercharge. We conclude that the minimal
particle content that ensures EWSB is

H ∼ 21/2 . (7.52)

The exponential parametrization of the Higgs doublet must be given in terms of the
broken generators, of which we now deduce the explicit form. To do so, we apply a
gauge transformation to 〈H〉 trying to single out the broken generators. We obtain

ei(α
ATA+βY )〈H〉 = ei[α

ATA+β(Q−T 3)]〈H〉

=
(
define

{
ξ1, ξ2, ξ3

}
=
{
α1, α2, α3 − β

})
= eiξ

ATA+iβQ〈H〉

= eiξ
ATA〈H〉 6= 0

(7.53)

This means that we for the purpose of writing the exponential parametrization of the
Higgs doublet we can always choose the broken generators as the SU(2)L generators,
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obtaining

H = eiπ
A(x)TA

(
0

v + h√
2

)
. (7.54)

As anticipated, the scalar h is the physical Higgs boson.
Before concluding this section, let us comment on an interesting consequence of

Eq. (7.52). We have introduced the Higgs doublet as a mean to give mass to the gauge
bosons of the theory in a way that does not spoil the gauge invariance procedure. Now
that we have the representations of the leptons and of the Higgs doublet, however, we
can write down the most general Lagrangian SU(2)L × U(1)Y invariant:

L = L̄i /DL+ ēRi /DeR + |DµH|2 − V (H)− L̄YeeRH + h.c. (7.55)

Notice that in addition to the Higgs doublet potential V (H) (that must guarantee EWSB)
there is a term of the form fermion-fermion-scalar called Yukawa term. Since it is
the first time that we encounter a term like this, let us analyze in detail its invariance.
Everything rests on the observation that each of the fields L, eR and H must be thought
as carrying different indices, one for each non-trivial transformation they undergo. For
instance, L is a LH Dirac spinor (hence it must carry a Lorentz index a) and is also an
SU(2)L doublet (hence it must carry an index A which represents the two non-trivial
entries of the doublet). Analogously, eR must carry a Lorentz index (but not an SU(2)L

index, since it is a singlet) andH must carry an SU(2)L index (but not a Lorentz index,
since it is a Lorentz scalar). Writing all indices explicitly, we have

LaA, eR,b, HB, (7.56)

where capital letters denote the SU(2)L doublet indices and small letters denote spinor
Lorentz indices. Under a Lorentz transformation we have

(Lorentz) LaA → S b
a LbA , eR,b → S c

b eR,c, HA → HA, (7.57)

while under an SU(2)L transformation we have

(SU(2)L) LaA → U B
A LaB , eR,b → eR,b, HA → U B

A HB. (7.58)

Finally, under an hypercharge transformation we have

(U(1)Y ) LaA → e−iα/2LaA, eR,b → e−iαeR,b, HA → eiα/2HA. (7.59)

We are now in a position to check the overall invariance of the Yukawa term. As we
did discussing the complex conjugate representation in Sec. 4.2, complex conjugation
corresponds to raising the index. Moreover, we remind the reader that the combination
L̄ = L†γ0 transform as

L̄aA → L̄bA(S−1) a
b . (7.60)
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We obtain
L̄aAeR,aHA → L̄bB(S−1) a

b U
A

B eiα/2S c
a e
−iαeR,cU

C
A eiα/2HC

= (S−1) a
b S

c
a︸ ︷︷ ︸

δcb

U A
B U C

A︸ ︷︷ ︸
δCB

eiα/2e−iαeiα/2︸ ︷︷ ︸
1

L̄bBeR,cHC

= L̄aAeR,aHA

(7.61)

which is invariant as expected. From the practical point of view we do not need to go
through this process every time. To check the invariance of any term in the Lagrangian
we can proceed as follows: (i) we only write Lorentz invariant terms to begin with, (ii)
we check the invariance of the term with respect to the gauge transformation. Let us
apply this procedure to the Yukawa term. Given our particle content L, eR and H there
are two Lorentz invariant terms that we can write:

L̄eRH and L̄eRH
∗ . (7.62)

Under SU(2)L we have L̄ → L̄U † and H → UH . What are the invariants that can
be constructed out of two SU(2)L fundamentals? For sure L̄H → L̄U †UH = L̄H is
invariant. However, one more invariant can be constructed, remembering that the εAB
tensor is a SU(2)L invariant:

εABLAHB → εABU C
A U D

B︸ ︷︷ ︸
εCD

LCHD . (7.63)

This invariant can be written in matrix form as LT εH . Taking the complex conjugate
we conclude that L†εH∗ is also a SU(2)L invariant. This means that we can define an
“epsilon-contracted” doublet H̃ ≡ εH∗ and write the two terms as

L̄eRH, L̄eRH̃ . (7.64)

We stress once more that both terms are Lorentz and SU(2)L invariant by construction.
We now only need to check hypercharge invariance: for L̄eRH we have +1/2(L̄) −
1(eR) + 1/2(H) = 0, while for L̄eRH̃ we have +1/2(L̄)− 1(eR)− 1/2(H̃) = −1 6= 0,
selecting L̄eRH as the only Lorentz and gauge invariant term that can be constructed in
the Lagrangian.

What is themeaning of theYukawa term? Let us focus on the case of one generation,
in which Ye is simply a complex number (we will come back to the three generation case
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in Sec. 7.5). In the unitary gauge we have

LY ukawa = YeL̄eRH

= Ye

(
ν̄L, ēL

)
eR

(
0

v + h√
2

)

= YeēLeR

(
v +

h√
2

)
.

(7.65)

We see that the term proportional to v provides a mass term for the electron, while the
term proportional to h is a trilinear interaction of the form h-fermion-fermion. We thus
conclude that the Higgs boson is responsible not only for the gauge boson masses, but
for the lepton masses as well.

7.4 Including quarks

The inclusion of quarks was historically more challenging, since as we saw there
are no free quarks in nature. Instead of going through the history of how quarks were
introduced in the game, let us interpret the β-decay process n→ peν̄e in terms of quarks
and from there deduce the properties we need. Remember that the quark content of a
neutron is udd while the one of a proton is uud. It is thus immediate to conclude that in
β-decay what happens is that a d-quark in the neutron becomes a u-quark in the proton,
with the other two quarks being simple spectators of the process. This means that we
can write the β-decay Fermi Lagrangian as

Lβ = −G
(β)

√
2

[ūγµ(1− γ5)d] [ēγµ(1− γ5)νe] . (7.66)

The only non obvious thing is what happens with the non-perturbative a factor of
Eq. (7.3). Since it is a factor that takes into account the non-perturbative QCD inter-
actions that bind the proton and the neutron we will simply assume that the underlying
interactions at the quark level satisfy the V −A structure already discussed for leptons.
Once more, only experiments can determine whether this assumption is correct. No
experimental deviation from the consequences of this hypothesis has been observed so
far.

Eq. (7.66) has exactly the same structure as the lepton part of Eq. (7.3). Motivated
by this correspondence, we assemble the LH and RH quarks in analogy with what we
have done for leptons:

QL =

(
uL

dL

)
≡ Q ∼ 2yQ , uR ∼ 1yu , dR ∼ 1yd . (7.67)

What is left to do is determine the hypercharges of the fields. Proceeding as with the
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leptons we find immediately that

yQ =
1

6
, yu =

2

3
, yd = −1

3
. (7.68)

� Exercise 7.1 Show explicitly that the values of the hypercharges listed above are the
correct ones.

7.5 The Standard Model of Particle Physics

We are finally in a position to write down the complete SM Lagrangian. First of
all we collect the representations of the fields. These representations are independent
on the family, i.e. all the families (both in the lepton and quark sector) have exactly the
same gauge representations. In the case of the quark we remember that they transform
non-trivially also under the QCD group SU(3)c, so that we define the SM as a gauge
theory based on

SU(3)c × SU(2)L × U(1)Y . (7.69)

We write the fields representations as (RSU(3)c ,RSU(2)L)y:

leptons Li ∼ (1,2)−1/2 , e
i
R ∼ (1,1)−1

quarks Qi ∼ (3,2)1/6, u
i
R ∼ (3,1)2/3, d

i
R ∼ (3,1)−1/3

(7.70)

We have explicitly added a family index i = 1, 2, 3 to stress that the structure repeats
across families. The Standard Model (SM) Lagrangian then reads

LSM = Lgauge + Lfermion + LH + LY uk , (7.71)

where

Lgauge = −1

4
(GA

µν)
2 − 1

4
(W a

µν)
2 − 1

4
(Bµν)

2 + LGF+GH ,

Lfermion = L̄ii /DLi + ēiRi /De
i
R + Q̄ii /DQi + ūiRi /Du

i
R + d̄iRi /Dd

i
R,

LH = |DµH| − V (H),

LY uk = L̄iY ij
e e

j
RH + Q̄iY ij

d d
j
RH + Q̄iY ij

u u
j
RH̃ .

(7.72)

where we have explicitly written the family indices. We now discuss each term in turn.
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7.5.1 Gauge Lagrangian

The gauge Lagrangian is given by the gauge bosons kinetic terms, constructed in
terms of the field strengths

GA
µν = ∂µG

A
ν − ∂νGA

µ − fABCGB
µG

C
ν ,

W a
µν = ∂µW

A
ν − ∂νW a

µ − εabcW b
µW

c
ν ,

Bµν = ∂µBν − ∂νBµ.

(7.73)

The additional termLGF+GH contains the gauge fixing and ghost terms, needed to ensure
the unitarity of the theory.

7.5.2 Fermion Lagrangian

The fermion Lagrangian simply consists of the sum over all possible fermions with
the appropriate covariant derivative. For instance, for the SU(2)L doublets we have

DµL =
(
∂µ + igW a

µT
a
L + ig′BµYL

)
L,

DµQ =
(
∂µ + igsG

A
µT

A
c + igW a

µT
a
L + ig′BµYQ

)
Q,

(7.74)

where we denote with TAc and T aL the SU(3)c and SU(2)L generators, respectively, and
as we already said the matrices YL and YQ are proportional to the identity. What about
the flavor? In writing the SM Lagrangian we have neglected the possibility that the
kinetic terms can connect to different flavors. Take the case of the lepton doublet L, for
which we can write

L̄iKij
L i /DL

j (7.75)

for some hermitian kineticmatrixK. After all, we have repeatedly stressed that the gauge
transformation does not depend on the family. Moreover, we know that the objects in
the Lagrangian are not physical, hence the possibility of a non diagonal kinetic term
in flavor space cannot be discarded a priori. Suppose we write all our kinetic terms in
off-diagonal form in flavor space. Since the matrices Kf are hermitian, we know that
they can be diagonalized by a unitary transformation

Kf = UfK
diag
f U †f , (7.76)

where Uf is a unitary matrix in flavor space. Redefining the fields to absorb the unitary
matrices we obtain diagonal kinetic terms of the form

f̄ ikif i /Df
i , (7.77)

where ki is the Kf eigenvalue. To bring the kinetic term in canonical form we can now
redefine f i → f i/

√
ki. The main conclusion is that we can always bring the kinetic

Lagrangian in a form which is canonical and diagonal in flavor space. We will thus
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directly work in this flavor basis from the very beginning. We are going to see later on
that more flavor transformations will be needed to go into a basis in which the fields are
mass eigenstates.

Before moving on, let us explicitly work out the form of the interactions between
the fermions and the gauge bosons. We stress once more that these fermions still do not
have a well-defined mass, so these interactions should be considered as an intermediate
step towards the computation of the couplings between the physical gauge bosons and
the physical fermions. Remembering the definition of charge we write

gWA
µ T

A
L + g′BµY =

g√
2
W+
µ T

+ +
g√
2
W−
µ T

− + g (sWAµ + cWZµ)T 3
L

+ g′ (cWAµ − sWZµ)Y

=
g√
2
W+
µ T

+ +
g√
2
W−
µ T

− +
√
g2 + g′2

[
sW cW (T 3

L + Y )Aµ

+ (c2
WT

3
L − s2

WY )Zµ
]

=
g√
2
W+
µ T

+ +
g√
2
W−
µ T

− + eQAµ +
√
g2 + g′2(T 3

L − s2
WQ)Zµ.

(7.78)
We have denoted with sW and cW the sine and cosine of the weak angle, and we have
used the definitions of electric charge Q = T 3

L + Y and of the physical A and Z bosons.
As expected, the photon couples via eQ. As for the Z boson, notice that s2

W measures
how much the Z coupling is deformed from a pure V −A current (that would be simply
proportional to T 3

L).

7.5.3 Higgs Lagrangian

TheHiggs Lagrangian is given by theHiggs doublet kinetic term and by its potential.
For our construction to be relevant for the phenomenology of particle physics, we need
the potential to have a non-trivial family of vacua to trigger EWSB. It is easier to do the
computation directly in matrix form. The kinetic part of the Higgs Lagrangian can be
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written in the unitary gauge as

DµH = ∂µH + igW a
µT

A
LH + ig′BµYHH

=

(
0
∂µh√

2

)
+
i

2

(
gW 3

µ + g′Bµ

√
2gW+

µ√
2gW−

µ −gW 3
µ + g′Bµ

)(
0

v + h√
2

)

=

(
0
∂µh√

2

)
+ i

(
eAµ +

√
g2 + g′2

(
1
2
− s2

W

)
Zµ

g√
2
W+
µ

g√
2
W−
µ −1

2

√
g2 + g′2Zµ

)(
0

v + h√
2

)

=

 i g√
2
W+
µ

(
v + h√

2

)
∂µh√

2
− i

2

√
g2 + g′2Zµ

(
v + h√

2

) .

(7.79)
We can see immediately that there is no trace of the photon field in the Higgs covariant
derivative. To compute the masses of the gauge bosons and the interactions between
the Higgs boson and the gauge vectors we take the squared modulus of the expression
above. We obtain

|DµH|2 =
(∂µh)2

2
+

[
g2

2
W+
µ W

−
µ +

g2 + g′2

4
(Zµ)2

](
v +

h√
2

)2

=
(∂µh)2

2
+

[
g2v2

2
W+
µ W

−
µ +

(g2 + g′2)v2

4
(Zµ)2

](
1 +

h√
2v

)2
(7.80)

from which we can identify immediately theW and Z masses:

m2
W =

g2v2

2
, m2

Z =
(g2 + g′2)v2

2
. (7.81)

Eq. (7.80) contains the first predictions of the SM: the trilinear and quadrilinear couplings
of the form hV V and hhV V are proportional to the vector mass; moreover, we can define
the so-called ρ parameter in terms of theW and Z masses as

ρ ≡ m2
W

m2
Zc

2
W

= 1 (in the SM at tree− level) . (7.82)

� Exercise 7.2 Suppose that instead of takingH ∼ 21/2 we allow for larger representations,
H ∼ RyH . What is the value of the ρ parameter in this case? Show that only a handful
of representations ensure ρ = 1 at tree-level.

We now turn to the analysis of the Higgs doublet potential. It is easy to convince
ourselves that the most general gauge invariant potential is

V (H) = −µ2
HH

†H + λ(H†H)2 . (7.83)

EWSB will happen for µ2
H > 0 (we have appropriately chosen the sign in front of the
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Higgs quadratic term to be positive to avoid the appearance of minus signs later on in
the computation). We can trade the two parameters µ2 and λ appearing in the Higgs
potential for two physical parameters. The convenient choice is to take the vev v and the
mass of the Higgs bosonm2

h = ∂2V/∂h2|min. We obtain

v2 =
µ2
H

2λ
, m2

h = −µ2
H + 6λv2 , (7.84)

a result that can also be states as

µ2
H =

m2
h

2
, λ =

m2
h

4v2
. (7.85)

� Exercise 7.3 Verify this result.

The potential can be written in a way that makes clearer the non-trivial vacuum structure
of the theory. To this end we use the minimum equation to trade µ2

H = 2λv2, obtaining

V (H) = −2λv2H†H + λ(H†H)2 = λ
(
H†H − v2

)2
+ const (7.86)

where we have added a constant term to complete the square. As long as we do not
couple the SM to gravity we are free to shift the value of the zero energy point of the
theory as we please. The last form of the potential is particularly convenient to deduce
the form of the Higgs boson self interactions:

V (H) = λ
(
H†H − v2

)2

= λ

(
h2

2
+
√

2vh

)2

=
λ

4
h4 + 2λvh3 + 2λv2h2

=
m2
h

16v2
h4 +

m2
h

2v
h3 +

1

2
m2
hh

2 .

(7.87)

As happened in the case of the gauge bosons, also the Higgs boson interactions are all
proportional to its mass. This is another prediction of the SM.

7.5.4 Yukawa Lagrangian

We finally discuss the Yukawa Lagrangian in Eq. (7.72). Notice that this term is
already written in the basis in flavor space in which the kinetic terms are canonical and
flavor diagonal. In general, the Yukawamatrices Ye,u,d are generic complex matrices, i.e.
in general the will not be diagonal. We can however apply unitary flavor transformations
to any of the these terms to try to make the Yukawa matrices diagonal. Once this is done,
the mass terms given by these terms will be diagonal and we will be in the so-called
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“fermion mass basis” in which each fermion field has a well defined mass and can excite
a physical particle out of the vacuum.

To this end we recall a result from linear algebra: a generic complex matrix can
always be decomposed as

Y = ULYdiagU
†
R , (7.88)

where Ydiag is a diagonal matrix with positive definite entries and UL,R are unitary
matrices. In the SM case this decomposition can be applied to the Yukawa matrices in
flavor space. What we want to do is to apply a unitary flavor transformation to the SM
fermions to try to leave only the diagonal matrix in the Yukawa terms. More specifically
we write

Ye = UeLY
diag
e U †eR , Yu = UuLY

diag
u U †uR , Yd = UdLY

diag
d U †dR . (7.89)

The SM Yukawa term becomes (we use the bold notation to denote vectors in flavor
space) 4

LY uk = L̄YeeRH + Q̄YddRH + Q̄YuuRH̃

= L̄UeLY
diag
e U †eReRH + Q̄UdLY

diag
d U †dRdRH + Q̄UuLY

diag
u U †uRuRH̃ .

(7.91)

If we now apply the unitary flavor transformation

fR → UfRfR (7.92)

on the RH fermions we completely eliminate the unitary matrices on the right of the
diagonal Yukawa matrices in all three terms. The same cannot be done for the unitary
matrices on the left of the diagonal Yukawa matrices, however, since there are only two
doublets available (L and Q). The lepton term is not a problem, since we can perform
the transformation

L→ UeLL (7.93)

that completely diagonalizes the lepton Yukawa term. For the quark terms we choose to
transform

Q→ UuLQ (7.94)

making the last term diagonal. Our final result is

LY uk = L̄Y diag
e eRH + Q̄U †uLUdLY

diag
d dRH + Q̄Y diag

u uRH̃. (7.95)

Notice that since the kinetic term was already proportional to the identity in flavor space

4Tomake the notation clearer, we stress that when flavor indices are not explicitly shown we are considering
the vectors in flavor space

L = (Le, Lµ, Lτ ), eR = (eR, µR, τR) (7.90)

and analogous for the quarks.
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it is not modified by any of the unity transformations performed so far.
Let us now go into the unitary gauge, in which we already know that the particle

spectrum is manifest. We have

LY uk = L̄Y diag
e eRH + Q̄U †uLUdLY

diag
d dRH + Q̄Y diag

u uRH̃

= ēLY
diag
e eR

(
v +

h√
2

)
+ ūLY

diag
u uR

(
v +

h√
2

)
+ d̄L(U †uLUdL)dR

(
v +

h√
2

)
.

(7.96)
With the exception of the last term we have obtained that the term proportional to the
Higgs vev is diagonal and represent the mass matrix of the leptons and up-type quarks.
To bring also the last term in diagonal form we perform one last rotation on the LH down
quarks. We first define the so-called Cabibbo-Kobayashi-Maskawa (CKM) matrix

VCKM ≡ U †uLUdL . (7.97)

Notice that being the product of unitary matrices, the CKM matrix is itself a unitary
matrix. We then apply the unitary transformation

dL → VCKMdL (7.98)

to bring also the last term in diagonal form. We finally obtain

LY uk =
[
ēLMeeR + ūLMuuR + d̄LMddR

](
1 +

h√
2v

)
+ h.c. (7.99)

where we have defined the diagonal fermion mass matrices as

Mf = Y diag
f v , f = e, u, d. (7.100)

Once more we find that the interaction between the Higgs boson and other particles is
proportional to the particle mass. Notice that in the SM neutrinos are massless, since
we do not introduce RH neutrinos.

So far we have been only concerned with the transformations needed to bring the
Yukawa terms in a diagonal form to identify the fermion masses. We now go back to the
other terms in the SMLagrangian and check if the unitary transformations in flavor space
we have applied had some effect. Let us first start summarizing the transformations that
lead us to the fermion mass basis:

eR → UeReR dR → UdRdR uR → UuRuR

L =

(
νL

eL

)
→ UeL

(
νL

eL

)
Q =

(
uL

dL

)
→ UuL

(
uL

dL

)
→

(
uL

VCKMdL

)
(7.101)

There is clearly no effect on the Higgs Lagrangian, since it does not involve fermions.
Also, we have repeatedly insisted on the fact that the fermion kinetic terms cannot
be affected by the unitary transformations, since they are proportional to the identity
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in flavor space. The only terms we need to worry about are thus the vector-fermions
interactions. Their general form was already computed in Eq. (7.78). Let us start with
the neutral interactions involving A and Z. It is immediate to see that these interactions
are of the form f̄Lγ

µfL or f̄RγµfR, i.e. being neutral they involve the same type of
fermions. The unitary transformations we have performed cannot thus modify the form
of the neutral interactions. The situation is different for the charged interactions. We
have

Lcharged =
g√
2
W+
µ

(
Q̄γµT+Q+ L̄γµT+L

)
+ h.c.

=
g√
2
W+
µ (ν̄Lγ

µeL + ūLγ
µVCKMdL) + h.c.

(7.102)

We discover that charged interactions in the quark sectors are not flavor diagonal. They
are said to mediate tree-level flavor changing charged currents. We will come back on
the flavor changing charged currents when discussing the experimental confirmations
of the SM in Section 8.2.4. For the moment it is interesting to count the parameters
in the CKM matrix. We will keep free the number of generations N because some
important information can be extracted allowing for N 6= 3. At the end we will
specialize to the N = 3 case. A generic U(N) matrix has N2 real parameters. Since
SO(N) ⊂ U(N), we identify N(N − 1)/2 of the parameters with angles. We are thus
left withN2−N(N − 1)/2 = N(N + 1)/2 parameters, which can only be phases. Are
all these parameters real? The answer is no: fields redefinitions can be used to absorb
some of the phases in the fields, since this transformation does not affect the physics.
From Eq. (7.102) it is clear that we can transform uL and dL independently. However,
only the relative phases matter, since transforming uL and dL in the same way does not
affect the CKMmatrix at all. We thus conclude that we can absorb 2N − 1 phases. This
leaves N(N + 1)/2− (2N − 1) = (N2 − 3N + 2)/2 = (N − 1)(N − 2)/2 phases in
the CKM matrices. The count of physical parameters is thus

parameters =
N(N − 1)

2
(angles) +

(N − 1)(N − 2)

2
(phases) . (7.103)

If we lived in a world with only two generations then all the phases could be absorbed
in the LH quark fields and the CKM would be completely real. Since we live in a world
with 3 generations, though, the CKM matrix has 3(angles) + 1(phase) = 4 parameters.

7.6 Consistency of the Standard Model

We have constructed the SM using a bottom up approach, introducing the mini-
mum number of ingredients needed to correctly reproduce the experimental data. Our
approach has been to construct a non-abelian gauge theory based on SU(3)c×SU(2)L×
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U(1)Y , giving mass to the appropriate gauge bosons using EWSB. Before considering
EWSB, though, we need to couple the gauge bosons to conserved currents. Our argu-
ment has been completely classical, but as already noticed in Section 3.4 we need to
make sure that no anomaly is present at the quantum level. The divergence of any current
can be written as

∂µJ
a
µ =

(∑
LH

A(RL)−
∑
RH

A(RR)

)
dabc

128π2
εµναβ(gF b

µν)(gF
c
αβ), (7.104)

where
A(R)dabc = tr

(
T a
{
T b, T c

})
(7.105)

is called “anomaly coefficient”. The indices a, b and c can refer to different gauge groups.
We discuss in turn the various possibilities:
SU(3)3

c : the anomaly coefficient for SU(3)3
c is non trivial. However, we do not

have to worry about its computation because QCD is a vector-like theory in which
LH and RH fermions transform in the same way (both uL and uR are SU(3)c

triplets for any generation, and the same is true for dL and dR). We thus conclude
that A(RL)− A(RR) = 0 for any quark, and there is no anomaly;
SU(2)3

L: using
{
T aL, T

b
L

}
=
{
τa, τ b

}
= δab we see that the anomaly coefficient is

proportional to tr(τa) = 0 and hence it vanishes;
SU(3)cSU(2)2

L: using again
{
T aL, T

b
L

}
=
{
τa, τ b

}
= δab and the fact that theGell-

Mann matrices are traceless we again conclude that this contribution vanishes;
SU(2)LSU(3)2

c : in this case only Q contributes, since it is the only fermion
charged under both SU(2)L and SU(3)c. Since the space of weak and color
charges mutually commute, the anomaly coefficient reduces to tr(τa)tr(λbλc) = 0

and again vanishes. We can convince ourselves that this is the case also with an
explicit computation. We explicitly exhibit both the SU(2)L and SU(3)c charges
writing the quark doublet asQ = (u1

L, u
2
L, u

3
L, d

1
L, d

2
L, d

3
L)T where the superscripts

denote color. In this basis the symmetry generators are T ac = 12 ⊗ λa and
T aL = τa ⊗ 13. The anomaly coefficient is thus equal to

tr
(
T aL
{
T bc , T

c
c

})
= tr

(
τa ⊗

{
λb, λc

})
= tr(τa)tr

(
λbλc

)
= 0 ; (7.106)

SU(3)cSU(2)2
L: analogously to what happens above, this anomaly coefficient also

vanishes;
SU(3)cU(1)2

Y and SU(2)LU(1)2 and SU(3)cSU(2)LU(1)Y : they all vanish fol-
lowing the argument above;
U(1)Y SU(2)2

L and U(1)SU(3)2
c : in this case the anticommutator is non trivial,

and we need to guarantee that tr(YfL − YfR) = 0 to cancel the anomaly. This is
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the first non trivial constraint we obtain. Explicitly we have

tr(YfL) = 3(gen′s)×
[
3(color)×

(
1

6
+

1

6

)
+

(
−1

2
− 1

2

)]
= 0,

tr(YfR) = 3(gen′s)×
[
3(color)×

(
2

3
− 1

3

)
+ (−1)

]
= 0.

(7.107)

The anomaly coefficient vanishes. We notice that this is also the anomaly coef-
ficient that enters the computations of the gravity-gravity-U(1)Y anomaly, which
thus also vanishes;
U(1)3

Y : the last anomaly coefficient that must be checked is the pure abelian one
involving the hypercharge only. We have

tr(Y 3
fL

) = 3(gen′s)×

[
3(color)×

([
1

6

]3

+

[
1

6

]3
)

+

([
−1

2

]3

+

[
−1

2

]3
)]

= −2

3
,

tr(Y 3
fR

) = 3(gen′s)×

[
3(color)×

([
2

3

]3

+

[
−1

3

]3
)

+ (−1)3

]
= −2

3
.

(7.108)
Again the total anomaly coefficient vanishes.
Gravity: the only possible non-trivial anomaly coefficient is the hypercharge one.
We have

tr(YfL) = 3(gen′s)×
[
3(color)×

(
1

6
+

1

6

)
+

(
−1

2
+−1

2

)]
= 0,

tr(YfR) = 3(gen′s)×
[
3(color)×

(
2

3
− 1

3

)
+ (−1)

]
= 0 .

(7.109)

The SM can thus also be coupled consistently with gravity.
We thus conclude that the SM is a consistent gauge theory also at quantum level, being
free from anomalies. It is important to notice that anomaly cancellation is guaranteed
inside each generation. This is a consequence of lepton and quark universality.

7.7 Exact and approximate global symmetries of the SM

We conclude this chapter analyzing the symmetries of the SM Lagrangian. As
we are going to see, some of these symmetries will be exact, others will only be
approximate. We will not bother writing down the global symmetries associated with
the gauge transformations, since they are symmetries of the Lagrangian by construction.
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7.7.1 Symmetries of the kinetic terms: flavor symmetry and
lepton/baryon number

While no additional symmetry is present in the Higgs kinetic term, there is a non-
trivial flavor symmetry in the fermion kinetic Lagrangian. As we already observed,
as long as we do not worry about the Yukawa terms, we are free to perform a unitary
transformation on any fermion without changing the form of the kinetic term. This
means that there is a global symmetry

U(3)Q × U(3)u × U(3)d × U(3)L × U(3)e ≡ U(3)5 (7.110)

acting on the flavor indices of each fermion term. This symmetry is called flavor
symmetry. Although it is a symmetry of the kinetic part of the fermion Lagrangian, this
symmetry is explicitly broken by the Yukawa terms

−LY uk = L̄YeeRH + Q̄YddRH + Q̄YuuRH̃. (7.111)

As we know from Sec. 7.5, the Yukawa matrix in the lepton sector can be completely
diagonalized by a bi-unitary transformation, while the same is not true for the quark
sector, in which only one of the two Yukawa matrices can be diagonalized. This means
that we have a U(1)3 symmetry in the lepton sector

(e,ν)i → eiαi(e,ν) (7.112)

in which each generation transforms independently, and we have a U(1) symmetry in
the quark sector under which

(u,d)→ ei
α
3 (u,d). (7.113)

The three U(1) symmetries in the lepton sector are called individual lepton numbers
(one for each of the electron, muon and tau flavors) while the U(1) symmetry in the
quark sector is called baryon number. The overall symmetry is thus

U(1)B × U(1)e × U(1)µ × U(1)τ . (7.114)

� Exercise 7.4 Check that baryon number and the individual lepton numbers are anoma-
lous. What are the non-anomalous combinations that can be taken without considering
gravitational anomalies? How does the inclusion of gravitational anomalies change the
previous conclusion?

The symmetries just described can be used to count the number of physical parameters
coming from the Yukawa sector. The counting can be performed as follows: we first
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7.7 Exact and approximate global symmetries of the SM

identity the total number of parameters. We then observe that the Yukawa matrices
explicitly break the flavor symmetries in such a way that only the broken generators can
affect such Yukawa couplings (after all, an unbroken transformation is a symmetry of the
Yukawa term and, by definition, cannot change it). The number of physical parameters
is thus

#physical parameters = #parameters−#broken generators. (7.115)

Let us use this counting to deduce the number of physical parameters in the lepton and
quark sectors:

In the lepton sector we start with (3 × 3) × 2 = 18 real parameters (those of a
3× 3 complex matrix). The initial symmetry is U(3)L×U(3)e, explicitly broken
to U(1)3. The number of broken generators is thus 9 + 9− 3 = 15. We conclude
that there are 18 − 15 = 3 physical parameters in the lepton sector, given by the
three charged leptons masses;
In the quark sector we start with 36 parameters in the two Yukawa matrices Yd
and Yu. The initial symmetry is U(3)Q × U(3)u × U(3)d, explicitly broken to
U(1)B. The number of broken generators is thus 3× 9− 1 = 26, and the number
of physical parameters is 36− 26 = 10. These are the six quark masses (3 for the
up-type quarks and 3 for the down-type quarks), while the remaining 4 parameters
are those appearing in the CKM matrix.

7.7.2 Discrete symmetries

Let us now analyze what happens to the discrete symmetries P (parity) and C
(charge conjugation). Parity and Charge conjugation take a particularly simple form for
fermions once we use the Weyl basis for the gamma matrices,

γµ =

(
0 σµ

σ̄µ 0

)
, (7.116)

in which we have

ψ(t,x)
P−→ γ0ψ(t,−x) , ψ(t,x)

C−→ −iγ2ψ(t,x)∗ . (7.117)
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Under a CP transformation we thus have
∂µ → ∂µ,

ψ̄1ψ2 → ψ̄2ψ1,

ψ̄1γ5ψ2 → ψ̄2γ5ψ1,

ψ̄1γ
µψ2 → −ψ̄2γµψ1,

ψ̄1γ
µγ5ψ2 → −ψ̄2γµγ5ψ1,

V µ → −V †µ ,

h→ h.

(7.118)

� Exercise 7.5 Show that the fermionic transformations above are correct.

What happens in the SM? It is easy to check that the kinetic terms, the mass terms,
the interactions with the Higgs boson and the neutral currents are all CP invariant. The
same applies to the charged interactions between leptons. The only term which is not
manifestly invariant is the quark charged interactions, for which we have

LCC =
g

2
√

2
W+
µ ūγ

µ(1− γ5)VCKMd+
g

2
√

2
W−
µ d̄γ

µ(1− γ5)V †CKMu , (7.119)

where we have already seen that the unitary CKM matrix has in general one complex
phase. Applying a CP transformation we obtain

LCC
CP−→ g

2
√

2
W−
µ d̄γ

µ(1− γ5)VCKMu+
g

2
√

2
W+
µ ūγ

µ(1− γ5)V †CKMd. (7.120)

The only way for CP to be respected is for the CKM matrix to be real, which in general
will not be true. We conclude that CP is explicitly violated in the SM with three
generations.

7.7.3 Chiral symmetry

As we already saw discussing mesons, there is an approximate chiral symmetry
SU(3)L × SU(3)R in the QCD Lagrangian of the three light quarks, which is broken
by the quark masses, by the EM interactions and by the weak interactions. We already
saw the main utility of such symmetry in the construction of the Chiral Lagrangian in
Chapter 6.2.

7.7.4 Custodial symmetry

Custodial symmetry is an approximate non-abelian symmetry whose origin can be
traced back to the Higgs potential, but whose consequences can be seen already in the
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Fermi Lagrangian. Let us first see how custodial symmetry manifest at low energy. As
we saw in Section 7.1.2, we can derive Fermi theory from the SM looking at amplitudes
in the E � mW,Z regime, when the propagator collapses to 1/m2

W,Z . We can obtain the
same result proceeding in the following way: from the gauge part of the SM Lagrangian

Lgauge = −1

2
|W+

µν |2−
1

4
(Zµν)

2+m2
W |W+

µ |2+
m2
Z

2
(Zµ)2+

g√
2

(
W+
µ J

+
µ + h.c.

)
+
√
g2 + g′2ZµJ

Z
µ

(7.121)
we can compute the equations of motions of the vectors bosons. We obtain(

2 +m2
W

)
W+
µ = − g√

2
J−µ ,(

2 +m2
Z

)
Zµ = −

√
g2 + g′2JZµ .

(7.122)

Ignoring the kinetic terms (i.e. setting 2 → 0) we get the W and Z bosons as static
fields, which can be completely eliminated from the Lagrangian by direct substitution:

Lgauge = m2
W |W+

µ |2 +
m2
Z

2
(Zµ)2 +

g√
2

(
W+
µ J

+
µ + h.c.

)
+
√
g2 + g′2ZµJ

Z
µ

= m2
W

∣∣∣∣ −gJ−µ√
2m2

W

∣∣∣∣2 +
m2
Z

2

[
−
√
g2 + g′2JZµ
m2
Z

]2

+
g√
2

( −gJ−µ√
2m2

W

J+
µ + h.c.

)
+
√
g2 + g′2

−
√
g2 + g′2JZµ
m2
Z

= − g2

2m2
W

J+
µ J
−
µ −

g2 + g′2

2m2
Z

(JZµ )2 .

(7.123)

This has to be compared with the Fermi theory enlarged to include neutral interactions,

LFermi = −4GCC
F√
2
J+
µ J
−
µ −

4GNC
F√
2

(JZµ )2 = −4GCC
F√
2

[
J+
µ J
−
µ +

GNC
F

GCC
F

(JZµ )2

]
. (7.124)

We define the ρ parameter via

ρ =
GNC
F

GCC
F

, (7.125)

i.e. the ρ parameter measures how much the charged current and neutral current inter-
actions differ at low energy. Experimentally this parameter is close to 1. What is the
prediction of the SM? Using the expressions for the vector boson masses in Eq. (7.81)
we obtain

ρ =
g2 + g′2

m2
Z

m2
W

g2
= 1 (tree− level). (7.126)

Once radiative corrections are included the ρ parameter receives only small corrections.
We thus suspect that there is an approximate symmetry protecting its value from being
much different from unity. This symmetry is what is called custodial symmetry. The
symmetry can be identified writing the charged currents as J± = J1∓ iJ2 and defining
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∆ρ = ρ− 1 in the Fermi Lagrangian. We obtain

LFermi = −4GCC
F√
2

[
(J1
µ)2 + (J2

µ)2 + (JZµ )2 + ∆ρ(JZµ )2
]
. (7.127)

In the ∆ρ → 0 limit we see that the three currents J1
µ, J2

µ and JZµ behave like a triplet
of SO(3). This is the custodial symmetry protecting the ρ parameter. Experimentally,
∆ρ . 0.01.

Given the fact that the relation ρ = 1 is ultimately due to the gauge bosons masses,
we suspect that the origin of custodial symmetry lies in the would-be NGBs, i.e. in the
Higgs doublet sector. This suspicion is confirmed noticing that, as we are now going to
show, the Higgs potential has an enhanced SO(4) symmetry, spontaneously broken to
the custodial SO(3). To see this it is convenient to not work in unitary gauge, leaving
the would-be NGB explicitly in the scalar sector:

H =

(
χ1+iχ2√

2
h+iχ3√

2

)
, (7.128)

where χ1,...,3 and h are the real components of the Higgs doublet. We now remember that
the basic invariant appearing in theHiggs potential isH†H = (χ2

1+χ2
2+χ2

3+h2)/2. Last
expression can bewritten asH†H ≡ φTφ/2, wherewe have defined the real 4-component
object φ = (χ1, χ2, χ3, h)T = (χ, h)T . This means that the basic SU(2)L × U(1)Y

invariant is actually invariant under a symmetry acting on φ as

φ→ Oφ, (7.129)

provided OTO = 1. This is an SO(4) symmetry, We conclude that, as promised, the
Higgs doublet scalar potential is invariant under an accidental SO(4) symmetry. What
happens when we turn on the Higgs doublet vev? Using the SO(4) symmetry we can
always align the vev along the h direction, i.e.

〈φ〉 =


0

0

0
√

2v

 . (7.130)

This vacuum is preserved by all those 4-dimensional rotations that act on the first
three components only, i.e. by the SO(3) subgroup of SO(4). This is the custodial
symmetry we were mentioning above. To make clearer the connection between what
happens in the scalar sector and the properties of the gauge boson let us observe that
SO(4) ∼ SU(2)L × SU(2)R, i.e. the generators of the SO(4) Lie algebra can always
be rearranged into two independent pairs of SU(2) generators. For later convenience we
will denote these SU(2) groups with the subscripts L andR. They must not be confused
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with the chiral symmetry. The Higgs doublet is more conveniently written as a 2 × 2

matrix
Φ =

(
H̃|H

)
, (7.131)

where we remind the reader that H̃ = iσ2H
∗. The SO(4) ∼ SU(2)L × SU(2)R

transformation can be taken to be

Φ→ ULΦU †R, (7.132)

while the invariant appearing in the Higgs potential can be written as H†H = det Φ.
The Higgs Lagrangian is thus

LH =
1

2
〈DµΦ†DµΦ〉 −

(
−µ2 det Φ + λ[det Φ]2

)
. (7.133)

On the vacuum

〈Φ〉 =

(
v 0

0 v

)
, (7.134)

and we see that this is left invariant by a diagonal transformation UL = UR, i.e. the
diagonal subgroup SU(2)V can be identified with the custodial SO(3). The matrix
representation of the Higgs doublet is useful because it makes clear various facts:

The SU(2)L transformation acts as the global version of the gauged SU(2)L. This
justifies its name;
The SU(2)R group contains the global hypercharge transformations. It can be
explicitly checked that they are generated by T 3

R;
Given the observations above, we can write the Higgs covariant derivative as

DµΦ = ∂µΦ + igW a
µT

a
LΦ− ig′BµΦT 3

R. (7.135)

Under a (global) SU(2)L transformation theW bosons transform as

W a
µT

a
L → ULW

a
µT

a
L U

†
L, (7.136)

i.e. they areSU(2)L andSU(2)V triplets. Thismeans that they transform precisely
as the would-be NGBs χ introduced above. The J1,2,3

µ currents, when promoted
to custodial spurions, behave themselves as custodial triplets, thus justifying what
we found in Eq. (7.127). We see immediately that LH is left invariant by this
transformation. On the other hand, applying a (global) SU(2)R transformation we
obtain

ΦT 3
R → ΦU †RT

3
R 6= ΦT 3

RU
†
R, (7.137)

because a generic SU(2)R transformation does not commute with T 3
R. The La-

grangian is thus non-invariant under this piece of the custodial transformation,
meaning that a non-vanishing g′ explicitly breaks custodial symmetry.
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Another source of explicit custodial breaking is given by the Yukawa couplings.
Introducing the 2-components object QR = (uR, dR)T for each family, we can
write the Yukawa Lagrangian as

L = −Q̄Φ

(
Yu 0

0 Yd

)
QR. (7.138)

This term in the Lagrangian would be invariant under custodial symmetry only if
Yu = Yd, a case which is clearly not compatible with our experimental observa-
tions, since it would imply the exact degeneracy of the up and down-type quarks
of all generations. We conclude that Yukawa couplings constitute another source
of explicit custodial symmetry breaking.
Finally, we notice that the sources of explicit custodial breaking (g′ and the Yukawa
couplings) will contribute at loop level to ∆ρ. The small experimental deviation
from 1 can thus be explained as an effect of such breaking.

7.8 Additional exercises

� Exercise 7.6 Consider an extension of the SM in which a scalar particle T ∼ (1,3, 0) is
added.

1. Enumerate all new invariants that can be added to LSM ;
2. What are the charges of the scalar fields contained in T ? Compute them explicitly;
3. Compute the scalar mass matrix supposing 〈T 〉 = 0;
4. Compute the scalar mass matrix supposing 〈T 〉 6= 0;
5. Is it true that in the last case the neutrinos get a non-vanishing mass? Justify your

answer;
6. Compute Γ(T 0 → νν̄), where T 0 is the neutral component in T .

� Exercise 7.7 Suppose we extend the SM with an additional U(1)X symmetry, whose
associated gauge boson will be called Xµ.

1. Is it true that we can write a term BµνXµν in the Lagrangian? Why?
2. Is it true that we can write a termWA

µνXµν in the Lagrangian? Why?
3. Suppose the Higgs boson is charged under theU(1)X . What changes in the pattern

of EWSB?
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7.8 Additional exercises

� Exercise 7.8 Compute the cross section e+e− → µ+µ− in the SM as a function of the
center-of-mass energy

√
s.

� Exercise 7.9 Compute the annihilation cross section e+e− → W+W− in the SM as a
function of the center-of-mass energy

√
s.

� Exercise 7.10 Compute the annihilation cross section e+e− → e+e− in the SM as a
function of the center-of-mass energy

√
s.

� Exercise 7.11 We want to construct a theory based on the symmetry breaking pattern
SU(3)1 × SU(2)2 → SU(3)c, where SU(3)c is the usual color group. Which scalar
representation would you add to the theory to achieve this symmetry breaking? Justify
your answer.

� Exercise 7.12 How can we include the effects of weak interactions in the chiral La-
grangian?
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Chapter 8 Experimental confirmations of the
Standard Model

In the previous chapter we have constructed the Standard Model, outlining some
of its experimental consequences. In this chapter we look more thoroughly to the SM
predictions and to data. It is worth emphasizing from the beginning that there is a
spectacular agreement between the SM predictions and experimental results.

8.1 An overview of data

As we saw, the SM was proposed in the 1960’s. At that time, the known particles
were the u, d and s quarks, as well as the first two generations of leptons. During the
1970s various fundamental discoveries were made:

experimental observation of neutral current processes at the Gargamelle experi-
ment in 1973. The processes observed were νe → νe, νp → νp and νn → νn,
exactly the processes predicted by the exchange of a Z boson;
the third generation of leptons was discovered in 1975 via the first experimental
detection of the τ charged lepton;
the charm quark was discovered in 1974, completing the second generation of
quarks;
in 1978 the bottom quark was discovered, with the same quantum numbers of the
down and strange quarks.

By the end of the 1970s it was clear that the SM had good chances of being a successful
theory. The only missing elements were the top quark (to close the third generation
of quarks), the W and Z bosons (although charged and neutral currents were indirect
evidence of their existence) and the Higgs boson. TheW and Z bosons were discovered
in 1983 at the UA1 and UA2 experiments, completing the gauge structure of the SM.
The top quark was discovered by the Fermilab-Tevatron accelerator (with pp̄ collisions)
in 1995, while the Higgs boson was discovered only in 2012 at the CERN-LHC (via pp
collision).

Interestingly, many properties of the top quark and Higgs boson were known before
their discovery thanks to the precision programundergone at theCERN-LEP experiments
during the 1990s. The LEP-I and LEP-II accelerators collided e+e− at a center-of-mass
(CM) energy of

√
s ' mZ (LEP-I) and up to

√
s = 210 GeV (LEP-II). Since the initial
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state is leptonic, the environment is not “polluted” by too many QCD events, and the
typical precision reached was of the order of h. As already mentioned, the agreement
with the SM predictions was very good.

The LEP experimental program was too rich to present here all the results. We
will thus content ourselves to give a taste of how the data-theory comparison is done.
The idea is pretty simple: suppose the theory depends on N parameters. What we
need to test the theory are N ′ > N measurements, N of which will be used to create
a 1 : 1 correspondence with the parameters. These are called input parameters. Once
this is done, all the parameters are expressed in terms of observed quantities, and we
can compute the observables corresponding to the remaining N ′ −N measurements in
terms of known quantities. If the predictions agree with the measurements the theory is
valid; if not, we need to consider a different theory.

We present here a list of measurements involving the SM gauge sector:
1. electron magnetic moment

ge
2

= 1.0011 · · · ± 2.8× 10−13 , (8.1)

used to extract the electromagnetic fine structure constant αe;
2. Muon lifetime

τ−1
µ = 2.99598× 10−19 GeV , (8.2)

used to extract the Fermi constant GF ;
3. Z mass at the pole

mZ = 91.1876± 0.0021 GeV ; (8.3)

4. W mass at the pole
mW = 80.385± 0.015 GeV ; (8.4)

5. Polarization asymmetry

Ae =
σ(e−Le

+
L → Z)− σ(e−Re

+
R → Z)

σ(e−Le
+
L → Z) + σ(e−Re

+
R → Z)

= 0.1515± 0.0019 ; (8.5)

6. Total Z boson decay width

ΓZ = 2.4952± 0.0023 GeV. (8.6)

More observables have been measured, but we will not consider them here. Notice that
we can distinguish between low energy measurements (electron magnetic moment and
muon lifetime) and measurements performed at the Z-pole (all the others in the list).
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8.2 Predictions at tree-level

8.2 Predictions at tree-level

Wenow turn to the predictions of the SMat tree-level. We discuss in turn predictions
in the gauge and in the flavor sector.

8.2.1 Gauge sector

The parameters in the gauge sector of the SM are the gauge bosons masses and
couplings. They can all be expressed in terms of the three parameters

{g0, g
′
0, v0} ↔

{
e0, s

2
0, v

2
0

}
, (8.7)

where s2
0 is the square of the weak angle. We use the subscript 0 to remember that

these are the parameters appearing in the Lagrangian, and must not be confused with
the experimental observables. The choice of the second set of variables will make some
computation simpler. 1

Let us follow the program outlined above: we need to choose three experimental
quantities and express the parameters g, g′ and v in terms of these quantities. Once this
is done, we use the SM to make predictions about the other experimentally measured
observables and compare with data. We will choose the three better measured quantities
as input parameters: ge (from which we will extract αe(0) at zero energy), GF andmZ ,
in such a way that we need to connect{

e0, s
2
0, v0

}
↔ {αe, GF ,mZ} . (8.8)

8.2.1.1 Extracting the parameters 1: αe from the electron magnetic
moment

The computation of the electron magnetic moment was one of the first QFT com-
putations to be found compatible with experiments (Schwinger, 1948). The result is now
know in QED at 5-loop. For our purposes we just consider the 1-loop result

ge − 2 =
αe(0)

π
=

e2
0

4π2
. 2 (8.9)

Using the value of the electron magnetic moment given in Eq. (8.1) we obtain

αe(0) =
(
137.03 · · · ± 4.4.× 10−8

)−1
. (8.10)

1There is a caveat: using s20 as parameter we are implicitly assuming lepton universality. While this is a
feature of the SM, it is important to be aware that in more generic models this feature may not be present,
and s20 will not be a good variable.
2Notice that since we are not considering loop corrections, the electric coupling is not running and we do
not need to worry about the scale at which it is computed.
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8.2.1.2 Extracting the parameters 2: GF from the muon decay
width

As already said, the Fermi constant GF is extracted from the muon decay width.
More specifically, we look at the µ → eνµν̄e decay, which constitutes basically 100%

of the branching ratio. Given the importance of this process, let us compute explicitly
Γ(µ → eνµν̄e) in the Fermi theory. The amplitude for the process µ(p0) → νµ(p1) +

e(p2) + ν̄e(p3) is
iA =

−4iGF√
2

(ū1γ
µPLu0) (ū2γµPLv3) . (8.11)

The averaged squared amplitude thus results in

|A|2 =
1

2

16G2
F

2
tr (ū1γ

µPLu0ū0γ
αPLu1) tr (ū2γµPLv3v̄3γαPLu2)

= 4G2
F tr
(
/p1γ

µPL( /p0 +mµ)γαPL
)

tr
(
( /p2 +me)γµPL /p3γαPL

)
= 64G2

F (p0 · p3)(p1 · p2).

(8.12)

The main difficulty is now to integrate over the three-body phase space. Following the
Particle Data Group prescription (see the documents “Kinematics”) we have 3

dΓ =
1

(2π)3

1

32m3
µ

|A|2dm2
12dm

2
23 , (8.13)

wherem2
ij = (pi + pj)

2. For a fixed value ofm2
12 them2

23 integration is in the interval

(e2+e3)2−(
√
e2

2 −m2
2+
√
e2

3 −m2
3)2 ≤ m2

23 ≤ (e2+e3)2−(
√
e2

2 −m2
2−
√
e2

3 −m2
3)2,

(8.14)
where

e2 =
m2

12 −m2
1 +m2

2

2m12

, e3 =
M2 −m2

12 −m2
3

2m12

(8.15)

in terms of the masses mi of the final states and of the massM of the initial state. The
m2

12 integration instead in in the interval

(m1 +m2)2 ≤ m2
12 ≤ (M −m3)2 . (8.16)

The previous equations follow from the analysis of the kinematics endpoints. In our case
we obtain

Γ(µ→ νµeν̄e) =
G2
F

192π3

(
m5
µ − 8m2

em
3
µ +

8m6
e

mµ

− m8
e

m3
µ

+ 12m4
emµ log

m2
µ

m2
e

)
. (8.17)

� Exercise 8.1 Derive the result above.

3Another reference in which explicit formulas for multi-particle phase spaces can be found is 1210.7939.
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Since the electron and muon masses are well measured, we can use the experimental
value of τµ to extract

GF = 1.16393× 10−5 GeV−2. (8.18)

Notice that at tree level in the SM we have

GF =

√
2g2

0

8m2
W0

=

√
2g2

0

8
g20v

2
0

2

=
1

2
√

2v2
0

, (8.19)

from which we obtain
v0 ' 174 GeV. (8.20)

8.2.2 Extracting the parameters 3: Z mass

At tree level in the SM the Z mass is the easiest of the input parameters, since we
simply have

m2
Z =

g2
0 + g′20

2
v2

0 =
e2

0

2s2
0(1− s2

0)
v2

0 . (8.21)

8.2.3 Putting all together: the SM gauge sector at tree-level

Let us now put everything together and express the SM parameters {g, g′, v} in
terms of the observables {αe(0), GF ,mZ} at tree level. From the relations

αe(0) =
e2

0

4π
, GF =

1

2
√

2v2
0

, m2
Z =

e2
0

2s2
0(1− s2

0)
v2

0 (8.22)

we obtain
e0 =

√
4παe(0) ' 0.312224 · · · ± 9× 10−7,

s2
0 =

1

2

1−

√
GFm2

Z(GFm2
Z −

√
4παe(0))

GFm2
Z

 ' 0.23178(1),

v0 =
1

23/4
√
GF

' 174.287(1) GeV.

(8.23)

We have estimated the errors with a simple quadrature propagation to have an idea of
their size. These values allow us to make predictions for other observables at tree level
in the SM. For instance, theW mass becomes

mW =
g0√

2
v0 =

e0

2s0

v0 = 80.907(3) GeV. (8.24)

We see that our prediction is not in agreement with data (as a matter of fact, we are
roughly 35σ away from the measured value). The same is true for other observables. We
thus conclude that the SM predictions at tree-level are not compatible with experiments.
As we are going to see in Section 8.3, loop corrections will make the SM predictions
compatible with data, marking one of the greatest successes of Quantum Field Theory.
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8.2.4 Flavor sector

Before turning to the loop corrections in the gauge sector, let us comment on the
experimental confirmations in the flavor sector. As we saw in the previous chapter one
of the main phenomenological predictions of the SM is that charged current interactions
are mediated by the CKM matrix VCKM

LCC =
g√
2
W+
µ ūLγ

µVCKMdL + h.c. (8.25)

The SM prediction is that such matrix is unitary. The unitarity condition can be
expressed as ∑

i

V ∗ikVij = δjk ⇒ V ∗1kV1j + V ∗2kV2j + V ∗3kV3j = 0 (8.26)

for j 6= k. This is the sum of three complex numbers, i.e. a triangle in the complex
plane. To check the SM predictions we need to check the closure of one of such triangles
in the complex plane. To understand which choice of k and j flavor indices is more
convenient we need some information about the structure of the CKM matrix. A useful
phenomenological parametrization of the CKM matrix is due to Wolfenstein (1983)

V W
CKM =


1− λ2

2
λ Aλ3(ρ− iη)

−λ− iAλ5η 1− λ2

2
Aλ2

Aλ3(1− ρ− iη) −Aλ2 − iAηλ4 1

 , (8.27)

where λ ' 0.23 is the Cabibbo angle. This matrix is unitary until O(λ4). Since λ is
small, we see that the third generation of quarks does not interact much with the first
two.

The standard choice for the unitary triangle is k = d and j = b, i.e.
VudV

∗
ub

VcdV ∗cb
+
VtdV

∗
tb

VcdV ∗cb
+ 1 = 0 . (8.28)

The experimental program aiming to measure the CKM matrix elements to check the
closure of the unitary triangle is extremely reach, and would deserve a series of separate
lectures. 4 Here we just limit ourselves to give an example of how the sides of the triangle
can be measured.

Let us focus on Vud which, according to the Wolfenstein parametrization, gives us
a measurement of the Cabibbo angle λ. The key process is the u→ d transition. What
are possible physical processes in which this transition happens? We can list (i) Nuclear
β-decay (for instance 3 H →3 He or 14C → 14N), (ii) β-decay in which a free neutron
decays in a free proton, and (iii) pion decays π+ → π0eν or π+ → µν. At the level of

4See fo instance arXiv:1501.05283 and arXiv:1711.03624 for some relatively recent lecture sets of good
quality.
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8.3 Predictions at loop level and the triumph of the Standard Model

Fermi Lagrangian the operators involved are always the same. What changes, however,
are the initial and final states involved in the hadronic part. To compute the amplitudes
for the decay we thus need to know the matrix elements

〈N ′|ūLγµdL|N 〉, 〈p|ūLγµdL|n〉, 〈π0|ūLγµdL|π+〉, 〈0|ūLγµdL|π+〉. (8.29)

Such matrix elements cannot be computed from first principles, but must be extracted
from experiments. Their form can be inferred using Lorentz and CP covariance, as well
as SU(3)V selection rules (see arXiv:1711.03624 for a nice discussion of these points).
In the case of the pions we can also use Chiral Perturbation Theory with the inclusion
of the interactions with leptons, but this approach clearly cannot work for the nucleons
or, even worse, for the nuclei involved in the β-decay.

� Exercise 8.2 Using the techniques we introduced in Chapter 6.3 compute the decay
width Γ(π+ → π0eν̄). Hint: it is convenient to introduce that coupling with the W
boson using the same techniques used to include the coupling with photons.

8.3 Predictions at loop level and the triumph of the
Standard Model

We are finally ready to discuss the loop predictions of the SM and compare it with
data. Given the complexity of the subject we will not attempt a complete treatment. We
will instead simply consider the so-called oblique (or universal) corrections, analogous
to the universal corrections considered in our discussion of QED radiative corrections
in Sec. 3.5. It is important to stress from the very beginning a technical complication:
while in QED the oblique corrections, computed as corrections to the photon propagator,
are gauge invariant, this is not so for non-abelian gauge theories (in particular the SM).
To recover gauge invariance some universal contribution to the vertex function must be
included in the self energies, making the computation not so straightforward. We will
not perform the complete computation, simply referring the interested reader to the clear
treatments of Nucl.Phys.B 322 (1989) 1-54 and Nucl.Phys.B 350 (1991) 25-72.

The general idea is the same we used in Sec. 8.2.1: (i) we identify the input
parameters, (ii) we compute them in terms of the parameters of the Lagrangian, (iii) we
invert the relations in such a way that the parameters of the Lagrangian are expressed
in terms of the observables, and (iv) we predict other quantities in terms of the input
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parameters to compare with experiments. In Sec. 8.2.1 we traded {αe(0), GF ,mZ} ↔
{e0, s

2
0, v0}. It will now be convenient to trade {αe(0), GF ,mZ} ↔ {e2

0, s
2
0,m

2
Z0}.

When considering loop corrections we need to carefully identify how to express the
observables in terms of the parameters. In the case of the SM three difficulties arise:

The vector vacuum polarization is of the form

Πµν = ΠT (q2)gµν + ΠL(q2)qµqν . (8.30)

We have already seen that, in the case of the photon, only the ΠT (q2) term is
relevant, since the other vanishes when contracted with the conserved fermion
current. The same reasoning cannot be applied to massive vectors: as we saw, the
massive vectors in the SM couple to currents that are non-conserved even at the
classical level. This is due to the fact that the interactions are chiral, inducing an
axial term Jµ5 = f̄γµγ5f in the current;
Loop corrections generate a vacuum polarization ΠAZ (for instance, imagine a
fermion loop with a photon on one side and a Z boson on the other);
Not all the vacuum polarizations are gauge invariant. The difficulty arises because
of the non-abelian nature of theW and Z interactions, and is not present in QED.

We will not give a complete treatment of all these difficulties, since it would be more
technical than the level of these lectures. Let us simply outline the solutions of the
various problems:

The longitudinal part of the vector polarization is irrelevant also for massive
vectors. It is easy to show that, when the fermions are on-shell, the divergence of
this term is proportional to the fermion mass. In momentum space this implies
qµJ

µ
5 ∝ mf . Since the fermions we will be interested in are very light, this term

can be safely neglected in all computations. This means that even for massive
vectors the only term that will matter is the transverse correction to the propagator,
ΠT (q2). To simplify the notation, we will drop the subscript T , leaving implicit
that the only vacuum polarization correction that matter is the transverse one;
To eliminate the mixing generated by ΠAZ we will diagonalize again the neu-
tral vector sector, to identify the correct physical states. We will perform this
diagonalization explicitly below;
To guarantee a gauge invariant result we need to consider also the universal
corrections of the trilinear vertex functions. Once this is done, all the vector
polarizations are completely gauge invariant. To make this clear, we introduce the
notation

ΠXY = ΠXY (0) + q2Π′XY (q2) (8.31)
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(notice that, although the notation suggests otherwise, the second term coincides
with the derivative of ΠXY only in q2 = 0. We use this notation to conform to
what can usually be found in the literature). In particular, gauge invariance implies
that all the vacuum polarizations associated with photons are proportional to q2 as
in QED:

ΠAA = q2Π′AA(q2), ΠAZ = q2Π′AZ(q2), (8.32)

with both Π′AA and Π′AZ finite in the q2 → 0 limit.

� Exercise 8.3 Show that ∂µJµ5 ∝ mf .

Let us now diagonalize explicitly the neutral vector sector taking into account radia-
tive corrections. The diagonalization is more transparent writing the Lagrangian in
momentum space. To do so, we express the fields as

A(x) =

∫
d4p

(2π)4
e−ipxA(p) =

∫
d4q

(2π)4
eiqxA(−p), (8.33)

where the choice between A(p) and A(−p) is dictated by the need of simplifying the
expression in such a way that∫

d4xei(p−q)x = (2π)4δ(p− q) (8.34)

appears. For instance, the action of a real scalar field in momentum space reads

S =

∫
d4x

(
1

2
∂µφ∂µφ−

m2

2
φ2

)
=

∫
d4x

∫
d4p

(2π)4

∫
d4q

(2π)4

1

2
e−i(p−q)xφ(−q)

(
pq −m2

)
φ(p)

=

∫
d4p

(2π)4

1

2
φ(−q)

(
p2 −m2

)
φ(p)

=

∫
d4p

(2π)4
Lp.

(8.35)

We see that with the action written in momentum space we can read immediately the
inverse of the propagator. Applying the same procedure to the vector boson Lagrangian
of the SM including radiative corrections we obtain

Lq = −1

2
q2A2 +

1

2
q2Π′AAA

2 − 1

2

(
q2 −m2

Z0 − ΠZZ

)
Z2

+ q2Π′AZAZ + e0AJEM +
e0

s0c0

ZJZ

−
(
q2 −m2

W0 − ΠWW

)
W+W− +

g0√
2
W+J+ + h.c.

(8.36)

where we have suppressed all Lorentz indices. The Z current can be written as (see
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Eq. (7.78))
JZ = J3L − s2

0JEM . (8.37)

We can see clearly that there is a mixing (which is called kinetic, since it depends on q2)
between the photon and the Z bosons. As with mass mixing, also kinetic mixing signals
the fact that we are still not dealing with physical states (we do not expect a physical
state to change into another particle while propagating). We thus need to diagonalize
the kinetic terms. To do so we proceed as follows:

We first redefine
A→ A√

1− Π′AA
(8.38)

to make the kinetic term of the photon canonical (i.e. simply proportional to q2

without any other momentum dependence);
Once this is done, we shiftA→ A+ξZ with ξ chosen in such away that themixing
term proportional to Π′AZ is eliminated from the Lagrangian. It is immediate to
verify that we must choose

ξ =
Π′AZ√

1− Π′AA
. (8.39)

� Exercise 8.4 Compute explicitly ξ and verify the claim above.

After these manipulation we obtain

Lq = −1

2
q2A2 − 1

2

[
q2

(
1− (Π′AZ)2

1− Π′AA

)
−m2

Z0 − ΠZZ(q2)

]
Z2

+
e0√

1− Π′AA
AµJ

µ
EM +

e0

s0c0

ZJ3L −
e0

s0c0

(
s2

0 − s0c0
Π′AZ

1− Π′AA

)
ZJEM

−
(
q2 −m2

W0 − ΠWW

)
W+W− +

g0√
2
W+J+ + h.c.

(8.40)
We are now in a position to extract the physical consequences from the Lagrangian
Eq. (8.40). Since we expect the vacuum polarizations to be (at least) 1-loop suppressed,
we will work to first order in the Π’s. First of all, we see that we recover the running
electric charge

e2(q2) =
e2

0

1− Π′AA(q2)
. (8.41)

We obtain the same result as in QED. Let us now turn to the operative definition of
the Fermi constant. We can define it as the zero energy limit of the charged current
amplitude. A small difficulty arises, however: since the W boson in unstable, the
vacuum polarization can develop a non-vanishing imaginary part which, according to

131



8.3 Predictions at loop level and the triumph of the Standard Model

the Optical Theorem (see Appendix D), can be written as

Im[ΠWW (q2)] =
√
sΓW , (8.42)

where s = q2 and ΓW the totalW decay width. An immediate consequence of this fact
is that we need to worry only about the real part of ΠWW in our computations. It is
useful to define the physical (or pole)mass as the value of the pole of the real part of the
propagator,

m2
W −m2

W0 − Re[ΠWW (m2
W )] = 0 . (8.43)

Going back to the definition of the Fermi constant, we obtain

MCC = −4GF√
2
J+J− = lim

q2→0

e2
0

2s2
0

1

q2 −m2
W0 − Re[ΠWW (q2)]− i

√
sΓW

J+J−

= − e2
0

2s2
0

1

(1− s2
0)m2

Z0 + Re[ΠWW (0)]
J+J−,

(8.44)
from which we immediately conclude

4GF√
2

=
e2

0

2s2
0

1

(1− s2
0)m2

Z0 + Re[ΠWW (0)]
. (8.45)

We finally turn to the operative definition of the Z boson mass. The situation is
conceptually similar to that of theW boson. What is measured in the experiments is the
pole mass, defined to be the zero of the inverse propagator:

m2
Z

(
1− [Π′AZ(m2

Z)]2

1− Π′AA(m2
Z)

)
−m2

Z0 − ΠZZ(m2
Z) = 0

m2
Z − ΠZZ(m2

Z)−m2
Z0 ' 0.

(8.46)

We now have all the ingredients we need to carry on the precision program: We were
able to find three expressions connecting the measured parameters {αe(0), GF ,mZ} to
the bare parameters {e2

0,m
2
Z0, s

2
0}. The relations can be inverted to express the bare

parameters in terms of the inputs. To simplify the expressions, it is convenient to define
the tree-level value of the squared of the weak angle,

s2
tree =

1

2
− 1

2

(
1− e2(0)√

2GFm2
Z

)1/2

. (8.47)

We obtain

e2
0 ' e2(0)

(
1− Π′AA(0)

)
,

m2
Z0 ' m2

Z − Re[ΠZZ(m2
Z)],

s2
0 ' s2

tree

[
1− c2

tree

c2
tree − s2

tree

ΠR

]
,

(8.48)

with
ΠR =

Re[ΠWW (0)]

c2
treem

2
Z

− Re[ΠZZ(m2
Z)]

m2
Z

+ Π′AA(0). (8.49)
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We are now in the position to make predictions. We focus on the poleW mass

m2
W = m2

W0 + Re[ΠWW (m2
W )] = (1− s2

0)m2
Z0 + Re[ΠWW (m2

W )]

= c2
treem

2
Z + Re[ΠWW (m2

W )]− c2
treeRe[ΠZZ(m2

Z)] +
s2
treec

2
tree

c2
tree − s2

tree

ΠR

= c2
treem

2
Z

(
1 +

Re[ΠWW (m2
W )]

c2
treem

2
Z

− Re[ΠZZ(m2
Z)]

m2
Z

+
s2
tree

c2
tree − s2

tree

ΠR

)
.

(8.50)

The explicit computation of the vacuum polarizations can be done using the results in
Appendix E.

� Exercise 8.5
Compute explicitly the vacuum polarizations entering in the poleW mass;
Verify that all the divergences cancel out (pay particular attention to the role played
by the CKM matrix).

Once radiative corrections are included the SM prediction of the poleW mass is

mW = 80.368 GeV, (8.51)

now in good agreement with experiments. This is but an example of the remarkable
success of the SM in predicting observables.

8.4 Electroweak parameters

The procedure we have described in the previous section can be employed even
if additional particles not present in the SM are considered. As a matter of fact, the
precision tests of the SM and its success are a powerful tool in setting bounds on possible
new states. To contain our discussion to a well motivated example, let us introduce the
so-called “electroweak (or precision) parameters” S, T and U . Our starting point
are the vacuum polarizations in Eq. (8.31). It will be convenient to consider such
vacuum polarizations in the original (W 3

µ , Bµ,W
+
µ ,W

−
µ ) basis, rather than in the mass

eigenbasis.:

Π33(q2) = Π33(0) + q2Π′33(q2), ΠBB(q2) = ΠBB(0) + q2Π′BB(q2),

Π3B(q2) = Π3B(0) + q2Π′3B(q2), ΠWW (q2) = ΠWW (0) + q2Π′WW (q2).
(8.52)
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In terms of the vacuum polarizations in the physical basis, we can write

Π33 = s2
0ΠAA + c2

0ΠZZ + 2s0c0ΠAZ ,

ΠBB = c2
0ΠAA + s2

0ΠZZ − 2s0c0ΠAZ ,

Π3B = s0c0 (ΠAA − ΠZZ) + (c2
0 − s2

0)ΠAZ .

(8.53)

Let us now suppose that the new physics states are heavier than the SMparticles 5, in such
a way that q2 � Λ2. In this regime it is safe to set q2 = 0 in the Π′XY form factors. This
leaves uswith 8 form factors: {ΠWW (0),Π33(0),Π33(0),Π3B(0),Π′WW (0),Π′33(0),Π′33(0),Π′3B(0)}.
Not all of them are free: gauge invariance requires the two constraints

ΠZZ(0) =
Π33(0)

c2
0

=
ΠBB(0)

s2
0

=
Π3B(0)

−s0c0

, (8.54)

to be satisfied, leaving 6 of the 8 initial parameters. We now to take into account how
these parameters affect the inputs. Inspecting Eq. (8.48) we see that, among the Π′(0)’s,
only ΠAA(0) enters and is thus determined in terms of the input parameters. Among
the Π(0)’s, on the other hand, we see that ΠWW (0) and ΠZZ(0) are involved. These
three constraints diminish the number of independent form factors from 6 to 3. Three
convenient combinations are

T =
Π33(0)− ΠWW (0)

m2
W

,

S =
g

g′
Π′3B(0),

U = Π′33(0)− Π′WW (0).

(8.55)

The interpretation is as follows: T and U measure the amount of custodial symmetry
breaking (i.e. the difference between the W± and W 3 vectors) at order q0 and q2,
respectively. The S-parameter, on the other hand, measures the total contribution to the
W 3−B kinetic mixing, and is thus a way of “counting” the additional contribution from
new physics. Once physical observables are written in terms of the EW parameters, they
can be used to put bounds on the new physics contributions.

We conclude this section commenting on what happens when the hierarchy between
the SM and new physics states is not sufficiently large to justify the approximation
Π′(q2) ' Π′(0). When this happens, it is customary to extend the expansion in Eq. (8.31)
up to order O(q4):

ΠXY (q2) ' ΠXY (0) + q2Π′XY (0) +
(q2)

2

2
Π′′XY (0). (8.56)

5We will get back to this point using EFTs techniques in Sec. 9.2.
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This introduces 4 new form factors. The convenient definitions are

W =
m2
W

2
Π′′33(0), Y =

m2
W

2
Π′′BB(0),

V =
m2
W

2
(Π′′33(0)− Π′′WW (0)) , X =

m2
W

2
Π′′3B(0).

(8.57)

These additional form factors can also be used in the expressions for the physical
observables, and bounds can be imposed from data. We will show in Sec. 9.2 that only
the T , S, W and Y parameters are generated by d = 6 operators, while the others are
generated at higher orders.

8.5 Further consequences

8.5.1 Number of active neutrino species

One of the main results of the LEP experiment is the precise measurement of the
total and partial Z decay width. The total decay width is

ΓZ = Γqq + Γ`` + Γνν , (8.58)

where Γqq is the sum over all hadronic (quark) channels, Γ`` is the sum over all charged
leptonic channels and Γνν is the sum over all neutrino contributions. Experimentally
only charged particles can be detected, i.e. Γqq and Γee can be directly measured. What
is left is called the invisible decay width. There is still the problem of how to measure
ΓZ and Γνν in an independent way.

We can use once more the optical theorem to compute the total decay width ΓZ ,
since it appears in the complete Z propagator. A measurement of σ(e+e− → hadrons)

with
√
s = mZ (the pole Z mass) was performed at LEP I, and can be written as

σ ∼
∣∣∣∣ 1

q2 −m2
Z + imZΓZ

∣∣∣∣
q2'm2

Z

∼ 1

(q2 −m2
Z)2 +m2

ZΓ2
Z

. (8.59)

This is the so-called Breit-Wigner distribution. The maximum corresponds to p2 = m2
Z

and can be used to extract informations about the mass of the decaying particle, while the
width of the curves at half height can be used to extract ΓZ . The current measurements
are

ΓZ = (2.4952± 0.0023) GeV,

Γee = (83.984± 0.086) MeV,

Γqq = (1744± 2.0) MeV,

Γνν = (499.0± 1.5) MeV.

(8.60)
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This must be compared with the SM predictions (for one generation)

Γee =
GFm

3
Z

3
√

2π

[(
−1

2
+ s2

w

)2

+ s4
w

]
' 83 MeV,

Γuu =
3GFm

3
Z

3
√

2π

[(
1

2
− 2

3
s2
w

)2

+
4

9
s4
w

]
' 280 MeV,

Γdd =
3GFm

3
Z

3
√

2π

[(
−1

2
+

1

3
s2
w

)2

+
1

9
s4
w

]
' 370 MeV,

Γνν =
GFm

3
Z

4× 3
√

2π
' 165 MeV.

(8.61)

For simplicity we consider only the tree-level predictions, which are sufficient for our
purposes.

� Exercise 8.6 Compute and check the formulas above.

The number of neutrinos can be extracted from

Nν =
ΓZ − (3Γee + 3Γdd + 2Γuu)

Γνν
∼ 3. (8.62)

This gives two fundamental informations: (i) there are only three active neutrinos
(neutrinos coupled to the Z boson), and (ii) the invisible decay width of the Z boson
is saturated by the neutrino contribution, leaving only a small contribution available for
other invisible states that may be present in theories that extend the SM.

8.5.2 The ρ parameter

Using the loop formalism described above we can now compute the radiative cor-
rections to the ρ parameter. The easiest way is to consider the effective loop Lagrangian
in Eq. (8.40) and compute the Fermi Lagrangian along the lines of Sec. 7.7.4. Some
straightforward algebra allows to deduce that

∆ρ =
Re [ΠWW (0)]

c2
0m

2
Z0

− Re [ΠZZ(0)]

m2
Z0

=
Re [ΠWW (0)]

m2
W

− Re [ΠZZ(0)]

m2
Z

(8.63)

to the lowest order in the radiative corrections. Notice that ∆ρ = −T .

8.5.3 Flavor Changing Neutral Currents

Let us consider Flavor Changing Neutral Processes, i.e. processes in which the
flavor of the particles is changed but not their electric charge. For historical reasons
these processes are called Flavor Changing Neutral Currents (FCNC). At tree level, the
only processes that can change flavor are mediated by the W bosons and involve the
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CKM matrix. These are thus Flavor Changing Charged Currents, and not FCNC. An
example is given by the β-decay d → ueν̄e considered in Sec. 7.4, in which there is a
changing in the quark flavor, but also in the electric charge. At loop level the situation
is different, and we can have FCNCs. An example is given by the process b → sγ, for
which the Feynman diagram is

b
W

s

u, c, t γ
(8.64)

where the photon line can be attached to both the W of fermion line. The only gauge
invariant operator that can describe this amplitude is

Ob→sγ = s̄Lσ
µνbRFµν (8.65)

together with its hermitian conjugate. Interestingly, symmetry arguments allow us to
infer the form of the Wilson coefficient:

It must be proportional to the electric charge e, given the presence of the photon
(remember that, with the exception of the kinetic term, the photon field always
appears in the combination eAµ, and the interactions are thus invariant under the
rescaling e→ λe, Aµ → Aµ/λ);
It must be suppressed by a loop factor. We explicitly write this as 1/(16π2);
It must be proportional to g2, since it involves two vertices with theW boson;
Finally, it must be proportional to the bottom massmb. This can be understood as
follows: the gauge invariant operator involves the LH s-quark and the RH b-quark.
Weak interactions, on the other hand, involve sL and bL. To flip the chirality from
bL to bR we need an insertion of the only operator that involves both chiralities, i.e.
the b-quark mass. The same reasoning can be applied to the operator involving
bL and sR. The coefficient in this case is proportional to ms � mb and we can
neglect it in first approximation.

Putting everything together we obtain

cb→sγ =
g2

16π2

emb

m2
W

∑
i

VibV
∗
isF

(
m2
i

m2
W

)
, (8.66)

where F is the explicit loop function (called Inami-Lim function). We expect it to be
O(1), since we have already explicitly factorized the loop factor. We have explicitly
inserted a factor m2

W in the denominator to give the correct dimensions to the Wilson
coefficient. We can make further progress observing that mu,c � mW , in such a way
that for the light up-type quarks we can Taylor expand the F function, obtaining

F

(
m2
u,c

m2
W

)
' F (0) +

m2
u,c

m2
W

F ′(0) + . . . (8.67)
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Notice that we can always redefine F (0) = 0 simply shifting the F function according
to F (x) → F (x) − F (0). This shift cannot affect the physics, since the F (0) factor
is multiplied by

∑
i VibV

∗
is = 0. This result follows from unitarity. Since, on the other

hand, mt ' 2mW , it is clear that we cannot expand in the top-quark mass, and the top
contribution will be O(1). Let us now explicitly expand the sum in Eq. (8.66):∑

i

VibV
∗
isF

(
m2
i

m2
W

)
' VubV

∗
us

m2
u

m2
W

F ′(0) + VcbV
∗
cs

m2
c

m2
W

F ′(0) + VtbV
∗
tsF

(
m2
t

m2
W

)
∼ λ4 m

2
u

m2
W

F ′(0) + λ2 m
2
c

m2
W

F ′(0) + λ2F

(
m2
t

m2
W

)
∼ λ2F

(
m2
t

m2
W

)
.

(8.68)
Remembering that the Cabibbo angle is small, we obtain that the dominant contribution
from the top quark is very suppressed, since we expect

cb→sγ ∼
g2

16π2

emb

m2
W

λ2 (8.69)

apart from O(1) numbers. This suppression is often called GIM suppression, from
a seminal paper by Glashow-Iliopoulos-Maiani (Phys.Rev.D 2 (1970) 1285-1292) that
first observed that FCNC were suppressed in the SM by factors much more sever than
a simple loop suppression. Historically, the GIM paper was published when only the
u, d and s quarks were known and discussed 1-loop kaons mixings. At that time, it
allowed for the prediction of the existence of a fourth quark (what would be later known
as charm) to guarantee the suppression of the kaon mixing. What we have presented in
this section is the modern version of the GIM mechanism, which takes into account also
the top quark.

8.6 The Higgs boson

We conclude this chapter with an overview of the properties of the Higgs boson
(discovered only in 2012 at the CERN-LHC by the ATLAS and CMS experiments). As
we have seen in Ch. 7, the Higgs particle interactions with the other SM states are

Lint =

(
m2
WW

+W− +
m2
Z

2
Z2

)(
1 +

h√
2v

)2

−
(
ēLMeeR + ūLMuuR + dLMddR

)(
1 +

h√
2v

)
,

(8.70)

i.e. they are all proportional to the mass of the state. This prediction can be tested
experimentally. We show the most recent experimental results in Fig. 8.1. From the
practical point of view, in order to produce or detect the Higgs boson decays at colliders,
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Figure 8.1: Higgs couplings versus particle mass measured in the ATLAS (left panel) and CMS
(right panel) experiments at the CERN-LHC. Taken from this and this links.
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Figure 8.2: Feynman diagrams for the main Higgs boson production modes at a hadron collider:
(a) gluon fusion, (b) Vector-boson fusion, (c) Higgs-strahlung (or associated production with a
gauge boson at tree level from a quark-quark interaction), (d) associated production with a gauge
boson (at loop level from a gluon-gluon interaction), (e) associated production with a pair of top
quarks (there is a similar diagram for the associated production with a pair of bottom quarks),
(f-g) production in association with a single top quark. Taken from this link.
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the favorite channels are those involving the heaviest particles: either a bb̄ pair or a
WW ∗ or ZZ∗ pair, in which ∗ means that one of the states is off-shell. 6 The problem
with such channels is practical: they have huge backgrounds, and are thus difficult to
detect experimentally. The processes that actually allowed for the Higgs discovery in
2012 actually appear at loop level: h→ γγ and GG→ h. The main Higgs production
mechanisms are shown in Fig. 8.2, while we present in Fig. 8.3 the total production
cross section in pp collisions (left panel) and the branching ratio in the different channels
(right panel). As in illustration of the current status of the measurements, we show in
Fig. 8.4 the comparison between data and the SM prediction (the vertical line).

6This is due to the fact thatmW = 80.4 GeV,mZ = 91 GeV whilemh = 125 GeV, i.e. theWW and ZZ
pairs cannot contain two on-shell states by Lorentz invariance.
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Part IV

Beyond the renormalizable Standard
Model



Chapter 9 Higher dimensional operators

As we already mentioned in Section 2.8, the modern view on QFT is that the
renormalizable SM is only the low energy limit of a more fundamental theory, and must
come with a tower of operators of increasing dimensions. Let us discuss some of the
physical consequences of the higher dimensional operators.

9.1 Dimension 5

At the level of dimension 5 the only operator that can be constructed out of the
particle content of the SM is

L5 =
Cij
Λ

(LiH)(LjH), (9.1)

where we used the two-component notation for the fermions (see App. C) and i and j
are flavor indices. The operator above is calledWeinberg operator. It is worth stressing
that for our assumption to be correct we must require Λ� v.

� Exercise 9.1Show that theWeinberg operator is the only dimension 5 operator that can be
constructed with the SM field content and is invariant under SU(3)c×SU(2)L×U(1)Y

transformations.

Once we consider the Higgs doublet vev we obtain

L5 =
Cijv

2

Λ
νiνj, (9.2)

a Majorana mass term for neutrinos. The first effect we encounter in our journey through
the higher dimensional operators is the generation of a mass for the only fermion that is
massless in the SM. One possible interpretation of this fact is that the origin of neutrino
masses is different from the origin of the other fermion masses in the SM. Moreover, we
expect neutrino masses to be smaller than the masses of the other fermions, since

mf ∼ yv, mν ∼ C
v

Λ
v � Cv. (9.3)

If we look at data, we see that the mass of the lightest charged fermion (the electron) is
me = 0.5 MeV, while for neutrinos we havemν . 1 eV, i.e. there is difference of about
5 orders of magnitude between neutrino masses and the lightest charged lepton. We thus
conclude that there are indications for a qualitative agreement between the expectations
of the EFT and data, although it is worth stressing that there arewell motivated extensions



9.1 Dimension 5

of the SM in which neutrino masses are generated by additional physics with a mass
scale below or at the EW scale. We will get back in the next chapter on possible origins
of the Weinberg operator.

For the moment we just observe that the fact that neutrinos are nowmassive implies
that we have to worry about the diagonalization of the neutrino mass matrix. The
situation is now similar to the one we already encountered in Sec. 7.5.4: we have to
diagonalize simultaneously two matrices in the lepton sector (the lepton Yukawa Ye and
the neutrino mass matrix Mν = Cv2/Λ), with only three fields available to absorb the
matrices needed to diagonalize the matrices (eL, eR and νL). The mismatch between the
diagonalization matrices of Ye andMν causes the appearance of the analog of the CKM
matrix in the lepton sector, the so-called PMNS (Pontecorvo-Maki-Nakagawa-Sakata),
generating the charged current flavor violating coupling

LCC =
g√
2
W−
µ eLγ

µUPMNSνL + h.c. (9.4)

� Exercise 9.2 If neutrino masses are generated by the Weinberg operator the neutrinos
are Majorana particles. How this changes the counting of the parameters appearing in
the PMNS matrix as compared to the counting of parameters appearing in the CKM
matrix?

Another important consequence of the Weinberg operator is that it explicitly violates
lepton number. We see here one of the most important facts regarding the accidental
symmetries of the SM: such accidental symmetries of the d = 4 Lagrangian will be in
general broken by the d > 4 operators. They are thus good approximate symmetries of
nature only when Λ� v, and their small breaking can be searched experimentally as an
indication of the presence of new physics beyond the SM. A good example are the flavor
violating decays

µ→ eγ, τ → µγ, µ→ eee, (9.5)

which have been (and are being) experimentally searched. For instance, the MEG
experiment puts a very strong bound on the first process,

BR(µ→ eγ) < 4.3× 10−13 @90%C.L. (9.6)

What is the prediction for massive neutrinos? We can estimate such contribution with a
reasoning analogous to the one we used in Sec. 8.5.3. We obtain

cµ→eγ ∼ e
g2

16π2

mµ

m2
W

∑
i=1,2,3

UeiU
∗
µi

(
mνi

mW

+ . . .

)
. 10−19GeV−1, (9.7)
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where we explicitly used the fact that the coefficient must vanish in the mνi → 0 limit
to expand the last term. This is justified by the fact that in this limit lepton number is
recovered, and the loop diagrammust vanish because of symmetry. Using our estimate to
compute the BR in the SM with massive neutrinos it is immediate to convince ourselves
that the prediction is many orders of magnitude below the current experimental limit.
As we are going to see in next section, however, dimension 6 operators can contribute
to this observable.

9.2 Dimension 6

Many more operators appear at the level of dimension 6. The complete non-
redundant list include 59 operators (without including flavor), and is extended to a list
of 2499 independent operators once flavor indices are included (see arXiv:1008.4884).
The analysis of all the physical effects of the d = 6 operators is beyond our scope, but
it is interesting to list at least some consequences. One fact we must be aware of is that
not all the d = 6 operators that can be written are independent: fields redefinitions can
be used to eliminate operators in favor of others, and various “basis” of operators can
be found in the literature (see for instance arXiv:1508.05895 for a translator between
different basis).

9.2.1 Modification of the input parameters

One of the striking effects of the d = 6 operators is that they can modify the input
parameters, changing the d = 4 SM predictions. More specifically, the operator

H†H(DµH)†(DµH) (9.8)

gives an additional contribution to the Z boson mass, while the operator

(L̄iγµT aLL
j)(Q̄mγµT aLQ

n) (9.9)

can modify the Fermi constant extraction for the correct choice of flavor indices. Clearly
this happens when the coefficients give contributions to physical observables that are
not too small. The great phenomenological success of the SM already tells us that such
contributions, if present, must be smaller than the SM ones.
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9.2.2 Electroweak parameters

Another interesting effect of the d = 6 operators is that they contribute to some of
the EW parameters of Sec. 8.4. More specifically we have∣∣H†DµH

∣∣ (T )(
H†T aLH

)
W a
µνBµν (S)

(∂ρBµν)
2 (Y )(

∂ρW
a
µν

)2
(W )

(9.10)

All the other EW parameters are instead generated by higher dimensional operators.
Experimental bounds on the EW parameters can be used to set limits on the Wilson
coefficients of the operators listed.

9.2.3 FCNCs

Finally, we notice that there are new contributions to FCNC. For instance, µ→ eγ

receives a contributions from

L̄iσµνHejRBµν , L̄iσµνT aLHe
j
RW

a
µν , (9.11)

and b→ sγ receives contributions from

Q̄iσµνHdjRBµν , Q̄iσµνT aLHd
j
RW

a
µν . (9.12)

Many more contributions can be listed that would affect all the sectors of the SM. Their
analysis goes however beyond the scope of these lectures
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Part V

Drawbacks of the Standard Model



As we saw in the previous chapters, the SM is an extremely successful theory.
Nevertheless, there are some experimentally observed phenomena that are still not
explained by the SM, as well as some theoretical aspects that are not clear. We devote
this chapter to a brief discussion of each of the following topics:

Experimental drawbacks:
Neutrino masses
Cosmological observations: dark matter and the matter/antimatter asymme-
try

Theoretical drawbacks:
The hierarchy problem
Charge quantization
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Chapter 11 Cosmological observations

11.1 Dark Matter

11.2 The matter/antimatter asymmetry



Chapter 12 The Hierarchy problem



Chapter 13 Charge quantization



Appendix Lorentz invariant Lagrangians for
free particles (INCOMPLETE)

In this Appendix we will use Lorentz convariance to write the most general La-
grangians for spin 0, 1/2 and 1 particles.

A.1 Spin 0

A spin-0 particle can be embedded in a scalar field φ obeying

U †(Λ)φU(Λ) = φ. (A.1)

To write down the most general Lagrangian we will limit ourselves to the lower dimen-
sional terms. Up to quadratic order in the φ’s and in the derivatives we have

L = a(∂φ)2 + b(2φ)φ+ cφ2. (A.2)

Remembering that integrations by parts are allowed in the action, and that total derivative
can be disregarded because they do not modify the equations of motions, we see that for
the second term we have

b

∫
d4x(2φ)φ = b

∫
d4x(∂µ∂

µφ)φ

= (by parts)

= −b
∫
d4x(∂φ)2,

(A.3)

i.e. it is completely equivalent to the first one. We will thus keep only the a term. The
equations of motions are

2a2φ− 2cφ = 0 ⇒ 2φ− c

a
φ = 0. (A.4)

This is precisely the KG equation provided we identify c/a = −M2. With this informa-
tion the Lagrangian results

L = a
[
(∂φ)2 −M2φ2

]
. (A.5)

The constant a is not determined, although a simple computation shows that we need
a > 0 to guarantee positive energy. It is conventional to fix a = 1/2, and we obtain

L =
1

2
(∂φ)2 − M2

2
φ2. (A.6)
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A.2 Spin 1/2

The theory of Lorentz group tells us that the transformations of left handed (LH)
and right handed (RH) fermions are

ψL → e−i(α+iβ)σ/2ψL ≡ ULψL,

ψR → e−i(α−iβ)σ/2ψR ≡ URψR.
(A.7)

The parameters α and β parametrize the boost and rotations. In terms of the usual
transformation rules of a 4-vector V µ = (V 0,V ) we have

δV 0 = −β · V ,

δV i = −βiV 0 + εijkαjV k.
(A.8)

Notice that the UL,R matrices are not unitary, but we have

U−1
L = U †R, U−1

R = U †R. (A.9)

Another important identity involves the determinant of a matrix written in terms of the
Levi-Civita symbol:

εi1...iNUm1
i1

. . . UmN
iN

= detUεm1...mN . (A.10)

Specializing to the 2-dimensional representation of the Lorentz group we have that the
product ψLψL ≡ εabψaLψ

b
L is Lorentz invariant:

εabψaLψ
b
L → εabUad

L U
be
L ψ

d
Lψ

e
L = εdeψdLψ

e
L (A.11)

We thus conclude that the products

ψ†RψL, ψ
†
LψR, ψLψL, ψRψR, (A.12)

are all Lorentz invariant. It is now easy to show that the 4-component object

(ψ†LψL, ψ
†
LσψL) (A.13)

transforms as a 4-vector, and can thus be combined with a derivative to form a Lorentz
invariant object. To make the notation more compact we define σ̄µ = (1,−σ) to rewrite

(ψ†LψL, ψ
†
LσψL) = ψ†Lσ̄

µψL. (A.14)

The case of the RH spinors can be treated in a similar fashion. In this case the 4-vector
is given by

iψ†Rσ
µψR, σµ = (1,σ). (A.15)

It is interesting to observe that any RH fermion can be converted to a LH fermion. The
key observation is

ε σi ε = σ∗i ⇒ U∗R = −εULε (A.16)
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where ε ≡ iσ2. Comparing with Eq. (A.7) shows immediately that εψ∗R transforms as a
LH fermion:

εψ∗R → εU∗Rψ
∗
R

= −ε2ULεψ∗R
= ULεψ

∗
R.

(A.17)

We can thus just work with one type of spinor. The notation commonly employed is the
one of Weyl fermions:

ψ ≡ ψL, ψc ≡ εψ∗R. (A.18)

The last expression can be inverted asψR = −ε(ψc)∗ ≡ −εψ̄c, implying that the invariant
product ψ†RψL can be written as

ψ†RψL = ψcεψ ≡ ψcψ = ψψc. (A.19)

In the last step we have used the antisymmetry of ε combined with the anticommuting
nature of the spinor fields. The other combination can be written as

ψ†LψR = −ψ̄εψ̄c ≡ ψ̄ψ̄c = ψ̄cψ̄. (A.20)

Notice that the definition of the product with the “barred” quantities differs by a minus
sign from the definition of the product with “unbarred” quantities. As for the 4-vectors,
an explicit computation shows that

ψ†Rσ
µψR = (ψc†σ̄µψc)∗. (A.21)

This completely solves the problem of the Lorentz invariants. We can write the generic
Lagrangian as

L = iψ†σ̄µ∂µψ + iψc†σ̄µ∂µψ
c + cψψ + dψcψd + eψcψ + h.c. (A.22)

for generic complex coefficients c, d, and e. The equations of motion can be computed
applying δ/δψ† and δ/δψc†. These derivatives are themselves anticommuting, a fact that
must be taken into account when deriving products. We obtain

iσ̄µ∂µψ + 2c∗εψ∗ + e∗εψc∗ = 0,

iσ̄µ∂µψ
c + 2d∗εψc∗ + e∗εψ∗ = 0.

(A.23)

Observing now that (σ · ∂)(σ̄ · ∂) = 2 and applying the proper operator to the equations
of motion we obtain

2ψ + 4|c|2ψc + 2(c∗e+ e∗c)ψc + |e|2ψ = 0,

2ψc + 4|d|2ψc + 2(d∗e+ e∗d)ψ + |e|2ψc = 0.
(A.24)

To interpret these equations we first consider what happens if only one between ψ or ψc

is present in the theory. When only ψ is present we obtain(
2 + 4|c|2

)
ψ = 0, (A.25)
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which is a KG equation. We thus interpret c as a mass parameter. More precisely, we
identify

c ≡ −mψ

2
, (A.26)

wherem is called theMajoranamass of theψ particle. A reasoning completely analogous
applies when only ψc is present, leading to identity

d ≡ −mψc

2
(A.27)

with the Majorana mass for the ψc particle. Notice that Majorana mass terms in the
Lagrangian can be forbidden by symmetries (for instance by a U(1) symmetry). Let us
now suppose this is the case and that Majorana masses are not present in L. If only one
between ψ or ψc is present (i.e. e = 0) then the state is necessarily massless,

2ψ = 0 or 2ψc = 0. (A.28)

If on the other hand the ψcψ term is present, then we obtain(
2 + |e|2

)
ψ = 0, and

(
2 + |e|2

)
ψc = 0. (A.29)

In this case we identify e with another type of mass, called Dirac mass:

e = −M. (A.30)

Notice that ψ and ψc are degenerate in mass. This is the familiar case of a Dirac fermion
(called in this way precisely because it has a non-vanishing Diracmass). Tomake contact
with the usual notation, we define a set of 4 gamma matrices

γµ =

(
0 σµ

σ̄µ 0

)
(A.31)

and the Dirac 4-component spinor as

ψ =

(
ψL

ψR

)
, ψ̄ = ψ†γ0, (A.32)

to write
LDirac = iψ†σ̄µ∂µψ + iψc†σ̄µ∂µψ

c −Mψcψ + h.c.

= ψ̄ + iγµ∂µψ −Mψ̄ψ.
(A.33)

It is a simple computation to show the equivalence between the two expressions.
Finally, we discuss the case in which both Majorana and Dirac masses are present.

To clarify the meaning of the equations of motion in this case it is convenient to define
(ψ, ψc)T and write(

2 0

0 2

)(
ψ

ψc

)
+

(
|M |2 + |mψ|2 m∗ψM +mψM

∗

m∗ψcM +mψcM
∗ |M |2 + |mψc|2

)(
ψ

ψc

)
= 0. (A.34)

156



A.2 Spin 1/2

The matrix containing the mass terms can be written asM†M, where

M =

(
mψ M

M mψc

)
. (A.35)

The source of the confusion in the interpretation of the mass matrix is due to the fact
that the mass matrix M is not diagonal. The idea to give a physical interpretation
in this case is the following: neither the ψ nor the ψc field represents a physical state
with well-defined mass. To obtain fields representing physical particles we redefine
(ψ, ψc)T in such a way that the mass term becomes diagonal. This can be achieved in the
following way: since theM†M matrix is hermitian, it can be diagonalized by a unitary
transformation:

U †M†MU =M2
diag =

(
M2

1 0

0 M2
2

)
, (A.36)

whereM1,2 are real and positive parameters. Defining now(
ψ

ψc

)
= U

(
ψ1

ψ2

)
, (A.37)

we obtain the equation of motion(
2 0

0 2

)(
ψ1

ψ2

)
+

(
M2

1 0

0 M2
2

)(
ψ1

ψ2

)
= 0. (A.38)

The fields ψ1,2 now represent particles of well defined mass,M1,2, respectively. Can all
this can be inferred directly from the Lagrangian? Focussing on the mass term only we
have

−Lmass =
mψ

2
ψ2 +

mψc

2
(ψc)2 +Mψcψ + h.c.

=
1

2
(ψ, ψc)TM

(
ψ

ψc

)
.

(A.39)

The matrix M can thus be read off directly from the Lagrangian. Notice however
that there is an obstacle to the diagonalization of such matrix: M is a complex (non-
hermitian) matrix, so it is not obvious whether it can be diagonalized by some unitary
transformation (recall that we need unitary transformations not to mess up with the
canonical form of the kinetic terms). To understand this point, we go back to Eq. (A.36)
and observe that there is a second hermitian matrix that can be constructed out ofM,
namelyMM†. In general [

M†M,MM†] 6= 0, (A.40)

implying thatMM† can be diagonalized by a unitary matrix which is different from U .
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A.3 Spin 1

We will call such matrix V :

V †MM†V =M2
diag =

(
M2

1 0

0 M2
2

)
. (A.41)

The eigenvalues ofMM† are the same as those ofM†M, since det(MM† − λ) =

det(M†M− λ). Combining the diagonalization equations forM†M andMM† we
obtain

V †MU =

(
M1 0

0 M2

)
≡Mdiag. (A.42)

We conclude that any complex matrix can be diagonalized by a bi-unitary transforma-
tion. In the fermion case under consideration we can say something more, since theM
matrix is symmetric:

M =MT ⇒ M∗ =M†. (A.43)

Using the fact thatM†
diag =Mdiag =M∗

diag we obtain

Mdiag =M†
diag = U †M†V = U †M∗V

=M∗
diag = V TM∗U∗

(A.44)

The two expressions are compatible only if V T = U †. This concludes our derivation:
any symmetric matrixM can be diagonalized by a unitary transformation

UTMU =

(
M1 0

0 M2

)
≡Mdiag. (A.45)

Going back to the mass Lagrangian and redefining the fields according to Eq. (A.37) we
obtain

−Lmass =
mψ

2
ψ2 +

mψc

2
(ψc)2 +Mψcψ + h.c.

=
1

2
(ψ, ψc)TM

(
ψ

ψc

)

=
1

2
(ψ1, ψ2)TMdiag

(
ψ1

ψ2

)
,

(A.46)

which is now written completely in terms of mass eigenstates. Needless to say, since
the transformation we are performing on the states is unitary, the canonical form of the
kinetic term is exactly preserved.

A.3 Spin 1

The Lorentz transformation of a massive spin-1 field is

U †V αU = Λα
βV

β. (A.47)
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A.3 Spin 1

To construct a Lorentz invariant Lagrangian is thus sufficient to correctly contract the
indices. The most general Lagrangian containing at most two fields and two derivatives
is

L = aVµ2V µ + bVµ∂
µ∂αVα + cVµV

µ. (A.48)

A possible term (∂µV
µ)2 has been integrated by parts and contributes to the second

term. The equation of motion in position space is

[(a2 + c) gµα + b∂µ∂α]Vα = 0. (A.49)

This equation can be converted to momentum space using

Vα = εαe
−ikx. (A.50)

We obtain (
ak2 − c

)
εα + b(k · ε)kα = 0. (A.51)

This equation has two kinds of solutions:
TRANSVERSE: k · ε = 0. Identifying c/a = m2

V we obtain the KG equation

(k2 −m2
V )ε⊥α = 0. (A.52)

Since V has 4 components and k · ε = 0 is one constraint, we have three possible
ε⊥ solutions;
LONGITUDINAL: εα ∝ kα. In this case we obtain a KG equation identifying
c/(a+ b) = m2

L.
Notice that the two solutions above correspond to the decomposition

V = V ⊥ + ∂α(x). (A.53)

What we want to do now is to eliminate the scalar degree of freedom α(x) from the
4-components vector field. This can be achieved setting a+ b = 0, since for this choice
there is no longitudinal solution. With this choice it is easy to determine the final form
of the Lagrangian:

L = −1

4
(Vµν)

2 +
m2
V

2
(V )2. (A.54)

The final form is obtained choosing conventionally a = 1/2. As expected, the mas-
sive vector field has 3 independent components, one for each of the three independent
transverse polarizations.
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Appendix More details on the baryon
quark-spin content
(INCOMPLETE)

For a good discussion of what follows in the context of isospin see this lectures.
We start by observing once more that the three quark state must be completely

antisymmetric, being the quarks fermions. As we saw in Eq. (4.44), the color part
is already antisymmetric. This means that the other quantum numbers must organize
themselves in a symmetric way. The other quantum numbers that we must consider are
spin and flavor SU(3)F . Let us start from the spin. We know how to combine three spin
1/2 particles, and we immediately obtain

2× 2× 2 = 2 + 2 + 4 . (B.1)

We obtain a spin 3/2 object (the 4 representation) and two spin 1/2 objects (the two 2

representations). We can gain further insight looking at the symmetry properties of the
states using the Clebsh-Gordan coefficients:1

Sz = 3/2 1/2 −1/2 −3/2

S = 3/2 |↑↑↑〉 |↑↑↓〉+|↑↓↑〉+|↓↑↑〉√
3

|↑↓↓〉+|↓↑↓〉+|↓↓↑〉√
3

|↓↓↓〉
S = 1/2 ψS+(S) = (|↑↑↓〉+|↑↓↑〉)−2|↓↑↑〉√

6
ψS−(S) = − (|↓↑↓〉+|↓↓↑〉)−2|↑↓↓〉√

6

S = 1/2 ψS+(A) = |↑↑↓〉−|↑↓↑〉√
2

ψS−(A) = |↓↑↓〉−|↓↓↑〉√
2

(B.2)
We see that the spin 3/2 states are completely symmetric under exchange of any pair of
quarks. The same is not true for the spin 1/2 states, for which ψS±(S) are symmetric and
ψS±(A) are antisymmetric under exchange of the last two quarks. These states are known
as “mixed symmetric” states.

We can already draw some conclusion. Since the spin 3/2 states are completely
symmetric in spin, they must be completely symmetric in SU(3)F as well. The only
completely symmetric representation in Eq. (4.30) is the 10: spin 3/2 baryons must
come in a flavor decuplet. This is exactly what is observed in nature.

The case of the spin 1/2 baryons is more complicated, since we need to combine
states that are mixed symmetric in both spin and flavor to form a completely symmetric
combination. To establish our notation, we will call Pij the operator that permutes the

1For a thorough discussion, see these lectures.

https://www.physics.umd.edu/courses/Phys741/xji/chapter3.pdf
https://www.physics.umd.edu/courses/Phys741/xji/chapter3.pdf


ij pair of indices. For the spin states we immediately have

P23ψ
S
±(S) = ψS±(S) , P23ψ

S
±(A) = −ψS±(A) . (B.3)

Turning to the flavor states, we know that the only objects with mixed symmetry prop-
erties are the two 8 representations of Eqs. (4.28)-(4.30). We will call ψF (S) the mixed
symmetric combination and ψF (A) the mixed antisymmetric one. They obey

P23ψ
F (S) = ψF (S) , P23ψ

F (A) = −ψF (A) . (B.4)

We now apply the permutation P12 to start the construction of the completely antisym-
metric state. For the spin states we have

P12ψ
S(S) = −1

2
ψS(S) +

√
3

2
ψS(A) , P12ψ

S(A) =

√
3

2
ψS(S)− 1

2
ψS(A) , (B.5)

while for the flavor states we obtain

P12ψ
F (S) = −2ψF (S) +

3

2
ψF (A) (B.6)
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Appendix The Standard Model with Weyl
fermions

Since the SM is a chiral theory, it would be natural to write its Lagrangian using
Weyl spinors, instead of Dirac spinors. This is what we will do in this Appendix. We
remind the reader of a result that we have derived in App. A: the RH fermion ψR can
be written in terms of a LH fermion as ψR = −εψ̄c. Let us now introduce the van der
Waerden notation: we assign an indexψL → ψα to the LH fields, and a different “dotted”
index ψR = −εψ̄c → ψ̄cα̇ to those fields that correspond to the RH transformations. In
terms of these fields we also define the invariant products

ψχ = ψαχα, ψ̄χ̄ = ψ̄α̇χ̄
α̇. (C.1)

Notice that these expressions are consistent with Eqs. (A.19) - (A.20): with the new
notation we obtain

ψ̄ψ =
(
ψ̄α̇ ψcα

)(0 1

1 0

)(
ψα

ψ̄cα̇

)
= ψ̄α̇ψ̄

cα̇ + ψcαψα

= ψ̄ψ̄c + ψψc.

(C.2)

In terms of the van der Waerden notation any Dirac spinor can be written as

ψL =

(
ψ

0

)
, ψR =

(
0

ψ̄c

)
(C.3)

This implies that the ψ representations will match those of ψL, while the representations
of ψc will be the conjugate of those of ψR. The representations of the SM particle
content under SU(3)c × SU(2)L × U(1)Y are thus

L ∼ (1,2)−1/2 ,

Q ∼ (3,2)1/6 ,

ec ∼ ((1),1)+1 ,

uc ∼ (3̄,1)−2/3 ,

dc ∼ (3̄,1)1/3 .

(C.4)

The SM Lagrangian has precisely the same form as before,

LSM = Lgauge + Lfermions + LH + LY uk . (C.5)



The Higgs and gauge Lagrangians are not affected by the use of Weyl fermions, while
the other two terms can now be written as
Lfermions = L†iσ̄µDµL+Q†iσ̄µDµQ+ ec†iσ̄µDµe

c + uc†iσ̄µDµu
c + dc†iσ̄µDµd

c ,

LY uk = H†LYee
c +H†QYdd

c +HT εQYuu
c .

(C.6)
Everything can now be repeated as we did with Dirac fermions.
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Appendix The optical theorem



Appendix A collection of loop integrals

We collect in this appendix some useful expressions involving 1-loop integrals. We
draw heavily from the very nice review 0709.1075. Historically, the decomposition is
based on the work of Passarino and Veltman (Nucl. Phys. B160 (1979) 151), ’t Hooft
and Veltman (Nucl. Phys. B153 (1979) 365), and Melrose (Nuovo Cimento XL A
(1965) 181).

From the practical point of view it is possible to compute the loop integrals using
automated tools like Package X or FeynCalc, with the loop functions listed below.

E.1 Scalar one-point function

The scalar one-point function reads

A0(m) = −m2(
m2

4πµ2
)
D−4
2 Γ(1− D

2
) = m2(∆− log

m2

µ2
+ 1) +O(D − 4), (E.1)

with the UV-divergence contained in

∆ =
2

4−D
− γE + log 4π (E.2)

and γE is Euler’s constant. The terms of order O(D − 4) are only relevant for two- or
higher-loop calculations.

E.2 Scalar two-point function

The two-point function is given by

B0(p10,m0,m1) = ∆−
∫ 1

0

dx log
[p2

10x
2 − x(p2

10 −m2
0 +m2

1) +m2
1 − iε]

µ2
+O(D − 4)

= ∆ + 2− log
m0m1

µ2
+
m2

0 −m2
1

p2
10

log
m1

m0

− m0m1

p2
10

(
1

r
− r) log r

+O(D − 4),
(E.3)

where r and 1
r
are determined from

x2 +
m2

0 +m2
1 − p2

10 − iε
m0m1

x+ 1 = (x+ r)

(
x+

1

r

)
. (E.4)

The variable r never crosses the negative real axis even for complex physical masses (m2

has a negative imaginary part!). For r < 0 the iε prescription yields Im r = ε sgn(r− 1
r
).

Consequently the result (E.3) is valid for arbitrary physical parameters.



E.3 Scalar three-point function

E.3 Scalar three-point function

The general result for the scalar three-point function valid for all real momenta and
physical masses can be brought into the symmetric form

C0(p10, p20,m0,m1,m2) =

−
∫ 1

0

dx

∫ x

0

dy[p2
21x

2 + p2
10y

2 + (p2
20 − p2

10 − p2
21)xy

+ (m2
1 −m2

2 − p2
21)x+ (m2

0 −m2
1 + p2

21 − p2
20)y +m2

2 − iε]−1 (E.5)

=
1

α

2∑
i=0

{∑
σ=±

[
Li2
(y0i − 1

yiσ

)
− Li2

(y0i

yiσ

)
+η
(

1− xiσ,
1

yiσ

)
log

y0i − 1

yiσ
− η
(
−xiσ,

1

yiσ

)
log

y0i

yiσ

]

−
[
η(−xi+,−xi−)− η(yi+, yi−)− 2πiθ(−p2

jk)θ
(
−=(yi+yi−)

)]
log

1− yi0
−yi0

}
,

with (i, j, k = 0, 1, 2 and cyclic)

y0i =
1

2αp2
jk

[
p2
jk(p

2
jk − p2

ki − p2
ij + 2m2

i −m2
j −m2

k)

−(p2
ki − p2

ij)(m
2
j −m2

k) + α(p2
jk −m2

j +m2
k)
]
,

xi± =
1

2p2
jk

[
p2
jk −m2

j +m2
k ± αi

]
,

yi± = y0i − xi±, (E.6)

α = κ(p2
10, p

2
21, p

2
20),

αi = κ(p2
jk,m

2
j ,m

2
k) (1 + iεp2

jk),

and κ is the Källén function

κ(x, y, z) =
√
x2 + y2 + z2 − 2(xy + yz + zx). (E.7)

The dilogarithm or Spence function Li2(x) is defined as

Li2(x) = −
∫ 1

0

dt

t
log(1− xt), |arg (1− x)| < π. (E.8)

The η-function compensates for cut crossings on the Riemann-sheet of the logarithms
and dilogarithms. For a, b on the first Riemann sheet it is defined by

log(ab) = log(a) + log(b) + η(a, b). (E.9)

All η-functions in (E.5) vanish if α and all the massesmi are real. Note that α is real in
particular for all on-shell decay and scattering processes.
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E.4 Scalar four-point function

E.4 Scalar four-point function

The scalar four-point function D0(p10, p20, p30,m0,m1,m2,m3) can be expressed
in terms of 16 dilogarithms.

Before we give the result we first introduce some useful variables and functions.
We define

kij =
m2
i +m2

j − p2
ij

mimj

, i, j = 0, 1, 2, 3, (E.10)

and rij and r̃ij by
x2 + kijx+ 1 = (x+ rij)(x+ 1/rij), (E.11)

and
x2 + (kij − iε)x+ 1 = (x+ r̃ij)(x+ 1/r̃ij). (E.12)

Note that for real kij the rij’s lie either on the real axis or on the complex unit circle.
Furthermore

P (y0, y1, y2, y3) =
∑

0≤i<j≤3

kijyiyj +
3∑
j=0

y2
j , (E.13)

Q(y0, y1, 0, y3) = (1/r02 − r02)y0 + (k12 − r02k01)y1 + (k23 − r02k03)y3,(E.14)

Q(y0, 0, y2, y3) = (1/r13 − r13)y3 + (k12 − r13k23)y2 + (k01 − r13k03)y0.(E.15)

and x1,2 is defined by
r02r13

x

{[
P (1,

x

r13

, 0, 0)− iε
][
P (0, 0,

1

r02

, x)− iε
]

−
[
P (0,

x

r13

,
1

r02

, 0)− iε
][
P (1, 0, 0, x)− iε

]}
(E.16)

= ax2 + bx+ c+ iεd = a(x− x1)(x− x2),

where

a = k23/r13 + r02k01 − k03r02/r13 − k12,

b = (r13 − 1/r13)(r02 − 1/r02) + k01k23 − k03k12,

c = k01/r02 + r13k23 − k03r13/r02 − k12,

d = k12 − r02k01 − r13k23 + r02r13k03. (E.17)

In addition we introduce

γkl = sign<[a(xk − xl)], k, l = 1, 2, (E.18)
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E.4 Scalar four-point function

and
xk0 = xk, s0 = r̃03,

xk1 = xk/r13, s1 = r̃01,

xk2 = xkr02/r13, s2 = r̃12,

xk3 = xkr02, s3 = r̃23.

(E.19)

as well as
x

(0)
kj = lim

ε→0
xkj as rij = lim

ε→0
r̃ij. (E.20)

Finally we need

η̃(a, b̃) =


η(a, b) for b not real,
2πi
[
θ(−= a)θ(−= b̃)− θ(= a)θ(= b̃)

]
for b < 0,

0 for b > 0

(E.21)

with b = limε→0 b̃.
Then the result for real r02 can be written as

D0(p10, p20, p30,m0,m1,m2,m3) =
1

m1m2m3m4a(x1 − x2){
3∑
j=0

2∑
k=1

(−1)j+k
[
Li2(1 + sjxkj) + η(−xkj, sj) log(1 + sjxkj)

+ Li2(1 +
xkj
sj

) + η(−xkj,
1

sj
) log(1 +

xkj
sj

)

]
+

2∑
k=1

(−1)k+1

[
η̃(−xk, r̃02)

[
log(r02xk) + log

(
Q(

1

x
(0)
k

, 0, 0, 1)− iε
)

+ log
(Q(0, 0, 1, r02x

(0)
k )

d
+ iεγk,3−ksign(r02= r̃13)

)]
+ η̃(−xk,

1

r̃13

)

[
log
( xk
r13

)
+ log

(
Q(

r13

x
(0)
k

, 1, 0, 0)− iε
)

+ log
(Q(1, 0, 0, x

(0)
k )

d
+ iεγk,3−ksign(= r̃13)

)]
−
[
η̃(−xk,

r̃02

r̃13

) + η(r̃02,
1

r̃13

)

] [
log
(r02xk
r13

)
+ log

(
Q(

r13

x
(0)
k

, 1, 0, 0)− iε
)

+ log
(Q(0, 0, 1, r02x

(0)
k )

d
+ iεγk,3−ksign(r02= r̃13)

)]
+ η(r̃02,

1

r̃13

)η̃(−xk,−
r̃02

r̃13

)

]}
. (E.22)

In the case that |rij| = 1 for all rij , the result reads:
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E.5 UV-divergent parts of tensor integrals

D0(p10, p20, p30,m0,m1,m2,m3) =
1

m1m2m3m4a(x1 − x2){
3∑
j=0

2∑
k=1

(−1)j+k
[
Li2(1 + sjxkj) + η(−xkj, sj) log(1 + sjxkj)

+ Li2(1 +
xkj
sj

) + η(−xkj,
1

sj
) log(1 +

xkj
sj

)
]

+
2∑

k=1

(−1)k+1

[
η(−xk,

1

r13

)

[
log
( r13

x
(0)
k

P (1,
x

(0)
k

r13

, 0, 0)− x
(0)
k

r13

εbγk,3−k

)
+ log

(x(0)
k

r13

)]

+ η(−xk, r02)

[
log
( 1

r02x
(0)
k

P (0, 0, 1, r02x
(0)
k )− r02x

(0)
k εbγk,3−k

)
+ log(r02x

(0)
k )

]

−
[
η(−xk,

r02

r13

) + η(r02,
1

r13

)

][
log
( r13

r02x
(0)
k

P (0, 1,
r02x

(0)
k

r13

, 0)− r02x
(0)
k

r13

εbγk,3−k

)
+ log

(r02x
(0)
k

r13

)]
+
(

1− γk,3−ksign(b)
)
η(−xk,−

r02

r13

)η(r02,
1

r13

)

]}
.

ε is understood as infinitesimally small.

E.5 UV-divergent parts of tensor integrals

For practical calculations it is useful to know the UV-divergent parts of the tensor
integrals explicitly. We give directly the products of D − 4 with all divergent one-loop
tensor coefficient integrals appearing in renormalizable theories up to terms of the order
O(D − 4)

(D − 4)A0(m) = −2m2,

(D − 4)B0(p10,m0,m1) = −2,

(D − 4)B1(p10,m0,m1) = 1,

(D − 4)B00(p10,m0,m1) = 1
6
(p2

10 − 3m2
0 − 3m2

1),

(D − 4)B11(p10,m0,m1) = −2
3
,

(D − 4)C00(p10, p20,m0,m1,m2) = −1
2
,

(D − 4)C00i(p10, p20,m0,m1,m2) = 1
6
,

(D − 4)D0000(p10, p20, p30,m0,m1,m2,m3) = − 1
12
.

(E.23)

All other scalar coefficients defined in (??) and (??) are UV-finite.
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Appendix A brief introduction to cosmology

We present in this section a very brief introduction to cosmology, useful to under-
stand the results of Sec. 11.

F.1 Homogeneity, isotropy and expansion

We all know how the universe looks like locally, i.e. in the solar system. One
surprising feature is that, when considering scales larger than about 100 Mpc, experi-
mentally our universe looks homogeneous and isotropic. Such result can be partially
inferred from galaxy surveys like the SLOAN digital telescope, although the measure-
ment is clearly very difficult. Why do we say then that the universe is homogeneous?
The reason is two-fold: (i) the predictions from the theory in which homogeneity is
built-up from the very beginning are very successful, and (ii) homogeneity is related to
isotropy in a non-trivial way. Isotropy states that as we stand in any point, the universe
will look the same in any direction. It is very hard to construct a model of universe in
which we have isotropy but not homogeneity, at least as long as we imagine isotropy
not to be only a property valid locally around us and we suppose that all observers see
isotropy. Moreover, we have a very strong experimental evidence for isotropy, given by
the Cosmic Microwave Background (CMB) map. This map measures radiation coming
from all possible directions, with a wavelength of the order of µm and an almost perfect
black-body spectrum. Once the so-called dipole radiation is subtracted 1, the CMB map
shows that the background radiation we measure is isotropic to a very good degree, with
photons with an energy such that their temperature is

TCMB = 2.7 K. (F.1)

The measured violation of isotropy is of the order of ∆T/T ∼ 10−5, i.e. extremely
small. This allows us to conclude that the universe is indeed homogeneous and isotropic,
at least on large scales. Clearly it is not so at small scales, at which wemeasure structures
like planets, stars, galaxies and clusters. In fact, all the structures we see today are due
to the small violations of isotropy measured in the CMB map. It is believed that such
deviations are generated by quantum effects in the primordial stage of evolution called
inflation.

A second piece of information that we must be aware of is the fact that the universe

1Dipole radiation is due to the Earth motion.
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is expanding. All galaxies we observe are receding from us, with an expansion which is
accelerating.

More quantitatively, to describe the universe we will use General Relativity and
implement the hypothesis of homogeneity and isotropy in the metric. Such hypothesis
turns out to be quite restrictive, allowing only for the Friedmann-(Lemaitre)-Robertson-
Walker (FRW) metric:

ds2 = dt2 − a2(t)

(
dr2

1− kr2
+ r2(dθ2 + sin2 θdφ2)

)
≡ dt2 − a2(t)γijdr

idrj. (F.2)

The temporal part of themetric is the same as inMinkowski space. As for the spatial part,
the parameter k can take values {−1, 0,+1} in units of the space curvature according to
the type of universe described (open, flat or closed). The “radius” r is called “comoving
radius”, while a(t) is called scale factor. Conventionally, its value today is fixed to
a0 = 1. The form of the FRW metric guarantees homogeneity and isotropy. Notice that
the comoving coordinates are constant, i.e. they do not depend on time. What depends
on time is the scale factor and, through it, the physical distances R:

R(t) = a(t)r. (F.3)

Locally we can measure the velocity with which nearby galaxies are receding from us,
observing

Ṙ ' H0R, H0 ' 70
km/s

Mpc
. (F.4)

Comparing with Eq. (F.3) we immediately deduce

Ṙ = ȧr =
ȧ

a
R. (F.5)

We are thus lead to consider the Hubble parameter

H(t) =
ȧ(t)

a(t)
, (F.6)

whose value today is H0. We will always use the subscript 0 to denote quantities
computed today.

F.2 Consequences of expansion

Expansion plays a fundamental role in explaining current observations. Consider
for instance the CMB map that, as already mentioned, shows an almost perfect black
body spectrum. From statistical mechanics we know that a black body spectrum is
produced once the system achieves a maximum entropy state, i.e. after the photons
have scattered many times. How many scatterings does a typical CMB photon undergo
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during his history? We can estimate such number computing the optical depth

τ =
ctuniverse
`mfp

, (F.7)

where tuniverse is the approximate age of the universe and `mfp is the photon mean
free path, i.e. the average distance that a photon can travel between two scatterings.
The oldest objects we see in the universe date back to t ∼ 13 Gyr, so that we will
take tuniverse ∼ 10 Gyr. As for the mean free path, we estimate it considering photon
scattering off electrons via Thomson processes:

`mfp =
1

σTne
, σT =

8π

3

α2

m2
e

' 6.6× 10−25 cm2, ne ' 2× 10−7 e

cm3
. (F.8)

The Thomson cross section can be easily computed from a tree level diagram for the
γe → γe process. The quantity ne is the local electron density, taken here as a proxy
of the total electron density in the universe). The result is that the typical CMB photon
underwent on average just very few scattering τ ∼ 10−3. How do we then explain the
almost perfect black body spectrum we observe? The way out is to consider expansion:
since the universe is expanding, the electron density grows larger as we go backwards in
time. The correct estimate for the optical depth is

τ =

∫ tuniverse

0

dt cσTne(t), (F.9)

and it is clear that it can be much larger than our naive estimate. Another very interesting
consequence of expansion is that the photon energy is redshifted. To see this let us
consider the free photon action in the FRW metric:

S = −1

4

∫
d4r
√
−ggµνgαβFµαFνβ. (F.10)

Since realistic photons have wavelengths much smaller than any possible universe curva-
ture, it is a good approximation to set k = 0 in the FRW metric, i.e. we take γij = δij in
Eq. (F.2). 2 The length element with this approximation can be simplified by introducing
the conformal time

dt = a(t)dη, (F.11)

in terms of which we can write

ds2 = a2(η)
(
dη2 − dr · dr

)
. (F.12)

We obtain a length element proportional to theMinkowski one apart from an overall scale
factor: gµν = a2(η)ηµν , where ηµν is the Minkowski metric. Its inverse and determinant
are given by

gµν =
1

a2(η)
ηµν ,

√
−g = a4(η), (F.13)

2Experimental evidence, mainly from the CMB, points in any case towards a spatially flat universe.
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in such a way that the action in the (η, r) coordinates simply reads

S = −1

4

∫
d4r
√
−gηµνηαβFµαFνβ. (F.14)

We obtain the action of a photon in Minkowski space. The equation of motion in the
(η, r) coordinates is thus simply solved by a plane wave solution

A(λ)
µ = e(λ)

µ e−i(kη−k·r), (F.15)

wherek is the conformal or comovingmomentum of the photon. The physicalmomentum
can be inferred from the fact that

k · r = k · R
a(t)

=
k

a(t)
·R = p ·R ⇒ p =

k

a(t)
, E =

k

a(t)
. (F.16)

The photon momentum and energy diminish with time, since they are inversely propor-
tional to the scale factor. We now define the redshift z(t) as

a(t) ≡ 1

1 + z(t)
. (F.17)

Since the scale factor today has a value a0 = 1, the redshift is such that z0 = 0. The
earlier in the cosmological history, the larger the value of the redshift. In terms of the
redshift the photon energy can be written as

E(t′) = k (1 + z(t′)) =
1 + z(t′)

1 + z(t)
E(t). (F.18)

Take now t′ = temis as the time of photon emission and t = t0 as the time at which we
measure the signal of such photon:

E(temis) = (1 + z(temis))Eobs. (F.19)

The energy at emission was larger than the energy at observation, i.e. the photon energy
is redshifted in its propagation. As we are going to see in Sec. F.4, this has important
effects on the photon distribution.

F.3 Dynamics of a(t) and Friedmann equations

Let us now study how the scale factor a depends on time (or, equivalently, on
redshift). The dynamics of the universe is found solving the Einstein equations

Rµν −
1

2
gµνR = 8πGTµν (F.20)

together with the covariant conservation of the energy-momentum tensor, ∇µT
µν = 0.

The hypothesis of homogeneity and isotropymust be valid also for the energy-momentum
tensor of our universe. Isotropy implies that the off-diagonal terms must vanish (they
would introduce preferred directions in spacetime), reducing the for of the Tµν tensor to

T00 = ρ, Tij = −pa2(t)γij. (F.21)
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ρ and p are the energy density and effective pressure, respectively. Homogeneity fur-
thermore implies that ρ = ρ(t) and p = p(t) can only depend on time. This is the same
energy-momentum tensor we would obtain for a perfect fluid. Inserting it in the Einstein
and covariant conservation equations we obtain the so-called Friedmann equations

H2 =
8πG

2
ρ− k

a2
, ρ̇ = −3H(ρ+ p). (F.22)

In what follows we will always set k = 0, since it is at least an excellent approximation
for our universe. To close the system of equations we also need the equation of state
p = wρ. We will be interested in the following fluids: dust (w = 0), radiation (w = 1/3)
and cosmological constant (w = −1). The general solution to

ρ̇ = −3(1 + w)H (F.23)

is

ρ(t) =


const

a3(1+w)
w 6= −1

const w = −1
or

{
ρ0 (1 + z)3(1+w) w 6= −1

ρ0 w = −1
(F.24)

As for the solution of the first Friedmann equation, it is convenient to introduce the
critical density

ρc =
3H2

0

8πG
(F.25)

and, for each component of the universe, Ωi = ρi/ρc. Observations (CMB, baryon
acoustic oscillations) today point to

Ωb ' 0.04,

ΩM ' 6× Ωb ' 0.3,

ΩΛ ' 0.7,

ΩR ' 10−5,

(F.26)

where b stands for baryons (i.e. normal matter),M stands for the total amount of matter,
Λ stands for the cosmological constant and R for radiation. As we can see, the total
amount of matter is about a factor of 5÷ 6 larger than the total amount of baryons. This
is one of the evidences for the existence of Dark Matter. The first Friedmann equation
can now be written as

H2 =
8πG

3

[
ρΛ + ρM(0)(1 + z)3 + ρR(0)(1 + z)4

]
(F.27)

or
H = H0

√
ΩΛ + ΩM(1 + z)3 + ΩR(1 + z)4. (F.28)

Depending on the value of z, some notable moments in the cosmological history can
already be identified:

Λ domination: when did the cosmological constant contribution start to dominate?
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We can estimate when this happened imposing

ΩΛ ' ΩM(1 + zΛ)3 ⇒ zΛ ' 0.3. (F.29)

The cosmological constant domination is thus a pretty recent cosmological event.
For z ' 0.3 the matter contribution is the dominant one in the universe;
Radiation domination: moving even backwards in time we arrive at a moment in
which radiation dominates over the other components. This equality moment can
be estimated as

ΩM(1 + zeq)
3 = ΩR(1 + zeq)

4 ⇒ zeq ' 3.4× 103. (F.30)

Other notable moments in the history of the universe are recombination, whenH atoms
are formed (zREC ' 1400) and primordial nucleosynthesis (or Big Bang Nucleosynthe-
sis, BBN), when nuclei are formed (zBBN ∼ 109).

F.4 Distribution functions for free particles

Let us consider the distribution function f(R,p) of free particles, which depends
on the physical coordinate R and the physical momentum p. For a FRW universe
there cannot be any position dependence, and the only dependence on the momentum
must be through its modulus, p = |p|. Since the distribution function is defined as
f(p) = d3n/d3p and we know that the physical momentum scales as pa =const and the
number density n must fall as a−3 because of the universe expansion, we conclude that
the distribution function must be constant in time. This allows us to reach two important
conclusions: (i) the form of the distribution function does not change with time and (ii)
the only possible argument of f is p(t)a(t) = const.

The previous observations allow to explain why the CMB photons have a Planckian
distribution: if in the past the photons were in thermal equilibrium, then after they
exit from the equilibrium state (at decoupling) their distribution function maintains the
same functional form. The CMB observation thus tells us that in the past the universe
passed an equilibrium stage. We look now at the Planckian distribution at the moment
of decoupling:

f(p) =
1

(2π)3

1

eED/TD − 1
. (F.31)

Remembering that we must have f(ap) = f(aE), we conclude that the temperature
must itself depend on time, and we must have

ED
TD

=
aDED
aDTD

=
a(t)E(t)

aDTD
. (F.32)
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The argument of the distribution takes the usual form provided we define

T (t) =
aDTD
a(t)

. (F.33)

This confirms our previous conclusion: the temperature grows going backwards in time,
and thus the universe can have been in a thermal equilibrium state.

The situation is different for massive particles. The dependence f(ap) is still the
same, but the actual form

F.5 Equilibrium and non-equilibrium processes

As we have seen, CMB observations suggest that the universe passed through a
period of thermodynamical equilibrium in his history. Let us point out that, in a sense,
thermal equilibrium is “boring”, since nothing is happening (the interactions are so fast
that everything behaves basically in the same way). Interesting physics happens when
we have departures from equilibrium. In this section we will first define some interesting
quantities useful to describe equilibrium states (number and energy density, pressure)
and then discuss how to describe the departure from the equilibrium state introducing
the Boltzmann equation.

F.5.1 Equilibrium

The central object we will use to describe the equilibrium state is the equilibrium
phase space distribution

f(p) =
1

e(E−µ)/T ∓ 1
. (F.34)

In the previous expression the minus sign applies to bosons (Bose-Einstein distribution),
the plus sign to fermions (Fermi-Dirac distribution) and µ is the chemical potential,
defined as

µ =
∑
i

µiQi, (Qi = conserved quantity). (F.35)

In the limit E − µ� T the∓1 term in the denominator can be discarded and we obtain
the Maxwell-Boltzmann distribution

fMB(p) = e−(E−µ)/T . (F.36)

The phase space distribution can be used to define three important quantities: the number
density n, the energy density ρ and the pressure p of the system:
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Number density of a species i:

ni = gi

∫
d3p

(2π)3
f(p) =


gi
ζ(3)
π2 T

3 (relativistic boson)
3
4
gi
ζ(3)
π2 T

3 (relativistic fermion)

gi
(
miT
2π

)3/2
e−(mi−µi)/T (non− relativistic particle)

(F.37)
In the previous expression gi denotes the number of degrees of freedom (for
instance, gi = 2 for a Weyl fermion, gi = 4 for a Dirac fermion, gi = 2 for a
massless vector etc.);
Energy density of a species i:

ρi = gi

∫
d3p

(2π)3
E(p) f(p) =


gi
π2

30
T 4 (relativistic boson)

7
8
gi
π2

30
T 4 (relativistic fermion)

mini + 3
2
niT (non− relativistic particle)

(F.38)
A useful definition is the one of “total energy density in radiation”:

ρR =
π2

30
g∗T

4, g∗ =
∑
b

gb +
7

8

∑
f

gf . (F.39)

Combining ρR ∼ T 4 with ρR ∼ a−4 we recover T ∼ a−1, which is the redshift
relation already discussed;
Pressure of a species i:

pi = gi

∫
pz>0

d3p

(2π)3

2p2
z

E(p)2
f(p) =

{
ρi
3

(relativistic particle)

ni � ρiT (non− relativistic particle)
(F.40)

This definition is easily justified: consider a set of particles with velocity vz =

pz/E(p) moving towards a wall. The total pressure on the wall will be

p =
∆momentum

dtdS

=
2pz × (#incident particles)

dtdS

=
2pz × (f(p)d3pdSvzdt)

dtdS

=
2p2

z

E(p)
f(p)d3p.

(F.41)

This justify the equation used above. We can also rewrite this expression in
an equivalent form using the isotropy of momentum, that implies p2

z = p2/3.
Moreover, the symmetry of the integrand under a pz → −pz reflection implies
that ∫

pz>0

d3p =
1

2

∫
d3p.
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Putting all together, an alternative definition of the pressure is

pi = gi

∫
d3p

(2π)3

p2

3E(p)2
f(p). (F.42)

From the results above we immediately conclude that the equation of state is w = 1/3

for radiation and w ' 0 for non-relativistic matter.
When talking about thermal equilibrium we are actually talking about two different

types of equilibrium:
kinetic equilibrium: fast number-conserving interactions force the phase space
distribution to be like in Eq. (F.34). An example is γe↔ γe;
chemical equilibrium: fast number-changing interactions of the type γγ ↔ e−e+

force the chemical potentials of the two sides of the reaction to be equal. In
general, given a reaction A1 +A2 + · · · ↔ B1 +B2 + . . . , chemical equilibrium
implies µA1 + µA2 + · · · = µB1 + µB2 + . . . . This has important consequences.
First of all, bremmstrahlung processes like ee→ eeγ force µγ = 0. Using now the
γγ ↔ e+e− we immediately conclude that µe− = µe+ , i.e. the chemical potentials
of an antiparticle is the opposite of the one of the corresponding particle.

F.5.2 Out-of-equilibrium processes

As we have seen in the previous section, equilibrium is associated with fast in-
teractions. This implies that non-equilibrium processes are somehow associated with
reactions becoming slow. To describe the time evolution of a system that is going out of
equilibrium we use the Boltzmann equation, a differential equation describing the time
variation of the number density of a certain species. We now derive this equation.

Let us start by considering a reaction

1 + 2↔ 3 + 4. (F.43)

We are interesting in computing the time variation Ṅ1, where N1 is the number of
particles of type 1 contained in a physical volume V . Notice that we can always write

Ṅ1 =
change due to reactions

time
, (F.44)

where the right hand side will depend on the type of interactions. Before computing this
term, we observe that the physical volume V can always be written as V = a3Vcomoving,
with the comoving volume constant by definition. We can thus explicitly compute Ṅ1 as
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follows:

Ṅ1 =
d

dt
(n1V ) =

d

dt
(n1a

3Vcomoving)

= ṅ1V + 3ȧa2n1Vcomoving

= (ṅ1 + 3Hn1)V.

(F.45)

These terms represent the variation in N1 due to the expansion of the universe. We now
move to the computation of the collision term. We have

change due to reactions

time
= −N12Ṗ12→34 +N34Ṗ34→12, (F.46)

whereNij is the number of ij pair in the physical volume V and Ṗij→km is the probability
per unit time for the reaction ij → km to happen. Supposing that there is no correlation
between the number of different species of particles present in the physical volume V ,
the number of pairs can be written as

Nij =

∫
d3pi

(2π)3

d3pj
(2π)3

fifjV
2. (F.47)

The probability per unit time for the reaction ij → km to happen is instead given by the
usual formula involving the S-matrix element 3

Ṗij→km =

∫
d3pk

(2π)3/V

d3pm
(2π)3/V

d

dt

|〈km|S|ij〉|2

〈ij|ij〉〈km|km〉
. (F.48)

Remembering now that
d

dt
|〈km|S|ij〉|2 = (2π)4V δ4(pi + pj − pk − pm) |Mij→km|2 (F.49)

and that, with box quantization, the state normalization is

〈i|i〉 = 2EiV, (F.50)

we can rewrite the term NijṖij→km as

NijṖij→km =

∫
d3pi

(2π)3/V

d3pj
(2π)3/V

d3pk
(2π)3/V

d3pm
(2π)3/V

fifj
(2π)4V δ4(pin − pfin) |Mij→km|2

(2EiV )(2EjV )(2EkV )(2EmV )

= V

∫
dΠidΠjdΠkdΠmfifj(2π)4δ4(pin − pfin) |Mij→km|2 ,

(F.51)
where we have introduced the usual relativistic phase space measure

dΠi =
d3pi

(2π)32Ei
.

3More correctly, we should include factors of (1±fk)(1±fm) inside the integral of the following formula,
where the minus sign applies to fermions and the plus sign to bosons. We however suppose that the system
is sufficiently diluted to neglect such terms.
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We are finally in a position ofwriting theBoltzmann equation for the 12↔ 34 interaction:

ṅ1 + 3Hn1 = −
∫
dΠ1dΠ2dΠ3dΠ4(2π)4δ4(pin − pfin)

(
f1f2 |M12→34|2 − f3f4 |M34→12|2

)
= −

∫
dΠ1dΠ2 (f1f2 σ12→34v − f3f4 σ34→12v) ,

(F.52)
where in the last step we used the definition of cross section. This equation can be
generalized to arbitrary reactions (for instance decays or 3→ 2 processes).

The rest of this section will be devoted to the simplification of the Boltzmann
equation. We will make the following assumptions (that must be checked case by case
in explicit cases):

We will assume time reversal symmetry:

M12→34 = M34→12;

We will suppose the 3, 4 particles to be in kinetic equilibrium:

f3f4 = f eq3 f
eq
4 ;

We will approximate the equilibrium distributions as Maxwell-Boltzmann:

f eq3 f
eq
4 = e−(E3+E4)/T = e−(E1+E2)/T = f eq1 f

eq
2 ,

where we have used energy conservation (which is enforced by the delta function
in the integral);
We will suppose

f1,2 ∝ f eq1,2 ⇒ f1,2 =
n1,2

neq1,2
f eq1,2.

Putting together these hypothesis we can simplify the collision integral into the following
expression:

ṅ1 + 3Hn1 = − (n1n2 − neq1 n
eq
2 )

∫
dΠ1dΠ2f

eq
1 f

eq
2 σv

neq1 n
eq
2︸ ︷︷ ︸

〈σv〉

, (F.53)

where we have defined the thermally averaged cross section 〈σv〉. This factor is com-
pletely fixed by the theory under consideration.

In order to solve this differential equation it is convenient to introduce the yield

Y ≡ n

s
, (F.54)

where in the denominator we have introduced the entropy density

s ≡ ρ+ p

T
=

2π2

45
g∗ST

3, g∗S =
∑
b

gb

(
Tb
T

)3

+
7

8

∑
f

gf

(
Tf
T

)3

. (F.55)

The concept of entropy density is useful because, as long as we neglect the temperature
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dependence of g∗S , we have
sa3 = const, (F.56)

i.e. there is conservation of entropy in a comoving volume. This implies that ṡ = −3Hs.
Using the yield we can write

ṅ+ 3Hn = sẎ . (F.57)

We now change variable to x ≡ m/T , where m is the mass of the particle on which
number density evolution we are interested to:

d

dt
=
dx

dt

d

dx
= −m

T 2
Ṫ
d

dx
= −xṪ

T

d

dx
. (F.58)

To compute Ṫ we suppose that the evolution happens during the radiation dominated era
in which ρR ∝ T 4. Deriving with respect to time we obtain

ρ̇R = 4ρR
Ṫ

T
= −3HρR

4

3
⇒ Ṫ = −HT. (F.59)

In the last step we have used the Friedmann equation. Putting all together we obtain
d

dt
= xH

d

dx
, (F.60)

and the Boltzmann equation written in terms of the yield Y1 is
dY1

dx
= −〈σv〉s

xH
(Y1Y2 − Y eq

1 Y eq
2 ) . (F.61)

We now specialize to the case in which 21̄ i.e. we consider the annihilation process
11̄↔ 34. We will also suppose that no asymmetry is present, i.e. n1 = n̄1. We obtain

dY

dx
= −〈σv〉s

xH

(
Y 2 − [Yeq]

2
)
. (F.62)

The equation can be further rearranged writing s = neq/Yeq:
1

Yeq

dY

dx
=
neq〈σv〉
xH

(
Y 2

Y 2
eq

− 1

)
. (F.63)

The last expression not only motivates the definition of the thermal rate

Γ ≡ neq〈σv〉, (F.64)

but also makes clear that the fundamental quantity to compute the time evolution of the
yield is the ratio Γ/H . More specifically, we see that

when Γ/H � 1 we have approximately dY/dx ' 0, i.e. there is no longer
evolution in the yield, i.e. the species is no longer in equilibrium. This means that
ṅ/n ' ṡ/s = −3H , i.e. n ∼ a−3;
when Γ � H we have Y ' Yeq. This can be intuitively understood observing
that, in the limit of very large Γ/H , the left hand side must remain finite, forcing
the term in brackets to be small. A more thorough derivation can be found in
Phys.Rev.D 32 (1985) 3261.
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The transition between the two regimes happens when Γ ' H . This moment defines the
so-called freeze-out of the species under consideration. When freeze-out happens, the
species decouples from the thermal bath and evolves independently from it.

Let us now estimate when neutrinos decouple from the thermal bath. We will not
give a precise treatment but just look at an order-of-magnitude estimate. We need to
compute the thermal rate Γ. Since neutrinos are very light, we can take the number
density of a relativistic particle, n ∼ T 3. The typical reactions that keep the neutrinos
in contact with electrons are mediated by theW and Z boson, and we can thus estimate
σv ∼ G2

F and
〈σv〉 ∼ G2

FT
2, (F.65)

where the factor of T 2 must be inserted by dimensional analysis. The Hubble parameter
during radiation domination can be approximated as

H ∼ T 2

MPL

, (F.66)

where we have defined the reduced Planck massM−2
PL = 8πGN/3. We can thus estimate

the freeze-out temperature as

G2
FT

5
FO ∼

T 2
FO

MPL

⇒ TFO ∼ 2 MeV. (F.67)

Neutrino decoupling thus happens right after BBN. After freeze-out neutrinos are decou-
pled from the thermal bath and the form the so-called νCB, neutrino cosmic background.
It is interesting to compute also the neutrino temperature after decoupling. We will show
why it does not coincide the photon temperature. At freeze-out neutrinos and photons
have the same temperature, since they were just in thermal equilibrium with each other.
After decoupling, both Tγ and Tν scale as a−1. At temperature of the order T ∼ me the
electrons become non-relativistic and exit from the thermal bath. When this happens,
the entropy in e± pairs is transferred to the photons, increasing their temperature. We
can estimate this change in Tγ in the following way: for T & me the particles in thermal
equilibrium include photons (g = 2) and electrons (g = 4), producing g∗S = 11/2. For
T � me only the photons are in equilibrium, giving g∗S = 2. Entropy conservation per
comoving volume requires

g∗Sa
3T 3 = const. (F.68)

Computing this quantity at the moment of e± annihilation we obtain
11

2
T 3
> = 2T 3

<, (F.69)

where T> and T< denote the photon temperature before and after annihilation. We thus
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see that

T< =

(
11

4

)1/3

T> ⇒ Tν =

(
4

11

)1/3

Tγ. (F.70)

In the last step we have identified T> = Tν (because neutrinos are not affected by the e±

annihilation) and T< = Tγ , the photon temperature after annihilation.
We conclude this chapter with a remark about the Boltzmann equation in Eq. (F.52).

Remembering that
n1 =

∫
dVphysf(p) (F.71)
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