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Chapter 1

Introduction

The Standard Model of particle physics summarizes all we know about the
fundamental forces of electromagnetism, as well as the weak and strong
interactions (but not gravity). It has been tested in great detail up to ener-
gies in the hundred GeV range and has passed all these tests very well. The
Standard Model is a relativistic quantum field theory that incorporates the
basic principles of quantum mechanics and special relativity. Like quantum
electrodynamics (QED) the Standard Model is a gauge theory, however,
with the non-Abelian gauge group SU(3). ® SU(2)r ® U(1)y instead of
the simple Abelian U(1).,, gauge group of QED. The gauge bosons are the
photons mediating the electromagnetic interactions, the W- and Z-bosons
mediating the weak interactions, as well as the gluons mediating the strong
interactions. Gauge theories can exist in several phases: in the Coulomb
phase with massless gauge bosons (like in QED), in the Higgs phase with
spontaneously broken gauge symmetry and with massive gauge bosons (e.g.
the W- and Z-bosons), and in the confinement phase, in which the gauge
bosons do not appear in the spectrum (like the gluons in quantum chromo-
dynamics (QCD)). All these different phases are indeed realized in Nature
and hence in the Standard Model that describes it.

In particle physics symmetries play a central role. One distinguishes
global and local symmetries. Global symmetries are usually only approxi-
mate. Exact symmetries, on the other hand, are locally realized, and require
the existence of a gauge field. Our world is not quite as symmetric as the
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theories we use to describe it. This is because many symmetries are broken.
The simplest form of symmetry breaking is explicit breaking which is due to
non-invariant symmetry breaking terms in the classical Lagrangian of the
theory. On the other hand, the quantization of the theory may also lead to
explicit symmetry breaking, even if the classical Lagrangian is invariant. In
that case one has an anomaly which is due to an explicit symmetry breaking
in the measure of the Feynman path integral. Only global symmetries can
be explicitly broken (either in the Lagrangian or via an anomaly). Theories
with explicitly broken gauge symmetries, on the other hand, are inconsis-
tent (perturbatively and even non-perturbatively non-renormalizable). For
example, in the Standard Model all gauge anomalies are canceled due to
the properly arranged fermion content of each generation.

Another interesting form of symmetry breaking is spontaneous sym-
metry breaking which is a dynamical effect. When a continuous global
symmetry breaks spontaneously, massless Goldstone bosons appear in the
spectrum. If there is, in addition, a weak explicit symmetry breaking, the
Goldstone bosons pick up a small mass. This is the case for the pions,
which arise as a consequence of the spontaneous breaking of the approximate
global chiral symmetry in QCD. When a gauge symmetry is spontaneously
broken one encounters the so-called Higgs mechanism which gives mass to
the gauge bosons. This gives rise to an additional helicity state. This state
has the quantum numbers of a Goldstone boson that would arise if the
symmetry were global. One says that the gauge boson eats the Goldstone
boson and thus becomes massive.

The fermions in the Standard Model are either leptons or quarks. Lep-
tons participate only in the electromagnetic and weak gauge interactions,
while quarks also participate in the strong interactions. Quarks and lep-
tons also pick up their masses through the Higgs mechanism. The values of
these masses are free parameters of the Standard Model that are presently
not understood on the basis of a more fundamental theory. There are six
quarks: up, down, strange, charm, bottom, and top, and six leptons: the
electron, muon, tau, as well as their corresponding neutrinos. The weak
interaction eigenstates are mixed to form the mass eigenstates. The quark
mixing Cabbibo-Kobayashi-Maskawa (CKM) matrix contains several more
free parameters of the Standard Model. There is convincing experimental
evidence for non-zero neutrino masses. This implies that there are not only
additional free mass parameters for the electron-, muon-, and tau-neutrinos,



but an entire lepton mixing matrix. Altogether, the fermion sector of the
Standard Model has so many free parameters that it is hard to believe that
there should not be a more fundamental theory that will be able to explain
the values of these parameters.

There is a very interesting parameter in the Standard Model — the CP
violating QCD #-vacuum angle — which is consistent with zero in the real
world. The strong CP problem is to understand why this is the case. The
f-angle is related to the topology of the gluon field which manifests itself
e.g. in so-called instanton field configurations. The Standard Model can be
extended by the introduction of a second Higgs field which gives rise to an
additional U(1)pg symmetry as first suggested by Peccei and Quinn, and
it naturally leads to # = 0. The spontaneous breaking of the Peccei-Quinn
symmetry leads to an almost massless Goldstone boson — the axion. If this
particle would be found in experimental searches, it could be a first concrete
hint to the physics beyond the Standard Model.

Non-trivial topology also arises for the electroweak gauge field. This
leads to an anomaly in the fermion number — or more precisely in the
U(1)p4r global symmetry of baryon plus lepton number. In particular,
baryon number itself is not strictly conserved in the Standard Model. This
has been discussed as a possible explanation of the baryon asymmetry in the
universe — the fact that there is more matter than anti-matter. It is more
likely that baryon number violating processes beyond the Standard Model
are responsible for the baryon asymmetry. For example, in the SU(5) grand
unified theory (GUT) baryon number violating processes appear naturally
at extremely high energies close to the GUT scale. Although the U(1)p.
symmetry is explicitly broken by an anomaly, the global U(1)g_; symmetry
remains intact both in the Standard Model and in the SU(5) GUT, at least if
the neutrinos were massless. This would, in fact, be quite strange (an exact
symmetry should be local, not global) and we now know that neutrinos are
indeed massive. A grand unified theory that naturally incorporates massive
neutrinos is based on the symmetry group SO(10). In this model B — L
is also violated and all exact symmetries are locally realized. In addition,
the so-called see-saw mechanism gives a natural explanation for very small
neutrino masses.

Despite these successes of grand unified theories, they suffer from the hi-
erarchy problem — the puzzle how to stabilize the electroweak scale against
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the much higher GUT scale. This may be achieved using supersymmetric
theories which would lead us to questions beyond the scope of this course.
Another attempt to avoid the hierarchy problem is realized in technicolor
models which have their own problems and are hence no longer popular.
Still, they are interesting from a theoretical point of view and will therefore

also be discussed.

In this course we will not put much emphasis on the rich and successful
detailed phenomenology resulting from the Standard Model. Of course,
this is very interesting as well, but would be the subject for another course.
Instead, we will concentrate on the general structure and the symmetries of
the Standard Model and some theories that go beyond it.



Part 1

FUNDAMENTAL
CONCEPTS
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Chapter 2

Concepts of Quantum Field
Theory and the Standard
Model

These lectures are an introduction to the Standard Model of elementary par-
ticle physics — the relativistic quantum field theory that summarizes all we
know today about the fundamental structure of matter, forces, and symme-
tries. The Standard Model is a gauge theory that describes the strong, weak,
and electromagnetic interactions of Higgs particles, leptons, and quarks me-
diated by gluons, W- and Z-bosons, and photons. In addition, it describes
the direct (not gauge-boson-mediated) self-couplings of the Higgs field as
well as the Yukawa couplings of the Higgs field to leptons and quarks. In
this Chapter we discuss fundamental concepts and basic principles of field
theory in order to pave the way for a systematic exposition of the subject in
the rest of the lectures. In particular, we emphasize the fundamental roles
of locality, symmetries, and hierarchies of energy scales. We also provide
an overview of the historical development of particle physics and quantum
field theory.

13
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2.1 Point Particles versus Fields at the Clas-
sical Level

Theoretical physics in the modern sense was initiated by Sir Isaac New-
ton who published his “Philiosophiae Naturalis Principia Mathematica” in
1687. This spectacular eruption of genius provides us with the description of
classical point particle mechanics, in terms of ordinary differential equations
for the position vectors Z,(t) of the individual particles (a € {1,2,..., N})
as functions of time t. Classical mechanics is local in time, because New-
ton’s equation contains infinitesimal time-derivatives d7,(t)/dt*, but no fi-
nite time-differences t — t’. On the other hand, Newtonian mechanics is
non-local in space, because the finite distances |¥, — &| between differ-
ent particles determine instantaneous forces, including Newtonian gravity.
Hence, in classical mechanics there are fundamental differences between
space and time. In point particle theories the fundamental degrees of free-
dom, which are the particle positions Z,(t), are mobile: they move around
in space. As a consequence, at almost all points space is empty, i.e. nothing
is happening there, except if a point particle occupies that position.

The fundamental degrees of freedom of a field theory, namely the field
values ®(Z, t) are immobile, because they are attached to a given space point
Z at all times t. In this case, it is the field value ® — and not the position
Z — which changes as a function of time. In a field theory, space plays a
very different role than in point particle mechanics. In particular, it is not
empty, because field degrees of freedom exist at all points Z at all times t.
Fluid dynamics is an example of a nonrelativistic classical field theory in
which the mass density enters as a scalar field ®(7,¢). The classical field
equations are partial differential equations (involving both space- and time-
derivatives of ®(Z,t)) which determine the evolution of the fields. Hence,
in contrast to point particle theories, field theories are local in both space
and time.

The most fundamental classical field theory is James Clark Maxwell’s
electrodynamics of electric and magnetic fields E(Z,t) and B(Z,t), which
was published in 1864. In fact, this theory (in quantized form) is an inte-
gral part of the Standard Model. Although this was not known at the time,
Maxwell’s electrodynamics is a relativistic classical field theory, which is in-
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variant against space-time translations and rotations forming the Poincaré
symmetry group. Newton’s point particle mechanics, on the other hand,
is invariant under Galileian instead of Lorentz boosts. Thus, it is nonrel-
ativistic and hence inconsistent with the relativistic space-time underlying
Maxwell’s electrodynamics.

Albert Einstein’s special theory of relativity from 1905 modified Newton’s
point particle mechanics in such a way that it becomes Poincaré invariant.
Indeed, in the framework of Einstein’s special relativity, charged point parti-
cles can interact with classical electromagnetic fields in a Poincaré invariant
manner. On the other hand, relativistic point particles cannot interact di-
rectly with each other, and thus necessarily remain free in the absence of
a mediating electromagnetic field. This follows from Heinrich Leutwyler’s
non-interaction theorem for relativistic systems of N point particles [?],
which extended an earlier study of the N = 2 case [?]. Indeed, in the rela-
tivistic Standard Model quantum field theory the point particle concept is
completely abandoned and all “particles” are in fact just field excitations,
which Frank Wilczek sometimes calls “wavicles”. This is a very useful dis-
tinction which allows us to avoid confusions that might otherwise arise quite
easily. In particular, while a Newtonian point particle has a completely well-
defined position Z,, a wavicle does not.

2.2 Particles versus Waves in Quantum The-
ory

Quantum mechanics (as formulated by Werner Heisenberg in 1927 and by
Erwin Schrédinger in 1927) applies the basic principles of quantum theory
— namely unitarity which implies the conservation of probability — to New-
ton’s point particles. As a consequence, the particle positions &, (which are
still conceptually completely well-defined) are then affected by quantum un-
certainty. This is described in terms of a wave function W(Zy, 7o, ..., Ty, t),
which obeys the nonrelativistic Schrodinger equation — a partial differential
equation containing derivatives with respect to time as well as with respect
to the N particle positions Z,. It is important to note that (unlike ®(Z,t))
U(Zy, @y, ...,2ZN,t) is not a field in space-time, but just a time-dependent
complex function over the N-particle configuration space (1, Zs,...,Zx).
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A time-dependent state in a quantum field theory, on the other hand, can be
described by a complex-valued wave functional W[® (&), t], which depends on
the field configuration ®(Z), and obeys a functional Schrodinger equation.

When one discusses quantum mechanical double-slit experiments, one
says that the resulting interference pattern is a manifestation of the wave
properties of quantum particles. This does not mean that such a particle
is a quantized wave excitation of a field. It is just a point particle with a
conceptually completely well defined position, which is, however, affected by
quantum uncertainty. In particular, as long as the position of the particle is
not measured, it can go through both slits simultaneously, until it hits the
detection screen which registers its (unambiguously defined) position. Only
after repeating this single-particle experiment a large number of times, the
detected positions of the individual particles give rise to an emerging inter-
ference pattern. In the context of quantum mechanics, particle-wave duality
just means that point particles are described by a quantum mechanical wave
function W (&, 7o, ..., TN, t).

When a classical electromagnetic wave is diffracted at a double slit, it
shows an interference pattern for very different reasons. As a field exci-
tation, the wave exists simultaneously at all points in a region of space.
In fact, unlike a point particle, it does not even have a well-defined posi-
tion. In contrast to the experiment with quantum mechanical point par-
ticles, the interference pattern arises immediately as soon as the classical
wave reaches the detection screen. When one repeats this experiment at
the quantum level with individual photons, the interference pattern again
emerges only after the experiment has been repeated a large number of
times. The “particle” character of photons is usually emphasized in the
context of the Compton effect. However, while we may be used to think-
ing of an electron as a point particle with position Z, (perhaps affected by
quantum uncertainty), we should definitely not think about a photon in a
similar way. As a quantized wave excitation of the electromagnetic field, a
photon does not even have a well-defined position in space. What do we
then mean when we talk about the photon as a “particle”? Unfortunately,
in our casual language the term “particle” is associated with the idea of
a point-like object, which is not what a photon is like. Frank Wilczek’s
term “wavicle” serves its purpose when it prevents us from thinking of a
photon as a tiny billiard ball. At the end, only mathematics provides an
appropriate and accurate description of “particles” like the photon. In the
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mathematics of quantum field theory, particle-wave duality reduces to the
fact that “particles” actually are “wavicles”, i.e. quantized wave excitations
of fields.

When Paul Adrien Maurice Dirac discovered his relativistic equation for
the electron in 1928, the 4-component Dirac spinor was initially interpreted
as the wave function of an electron or positron with spin up or down. How-
ever, due to electron-positron pair creation, it turned out that the Dirac
equation does not have a consistent single-particle interpretation. In fact,
the Dirac spinor is not a wave function at all, but a fermionic field whose
quantized wave excitations manifest themselves as electrons and positrons.
In other words, not only photons but all elementary “particles” are, in
fact, wavicles. When the Dirac field is coupled to the electromagnetic field
one arrives at Quantum Electrodynamics (QED), whose construction was
pioneered by Freeman Dyson, Richard Feynman, Julian Schwinger, and Sin-
Itiro Tomonaga. QED is an integral part of the Standard Model in which all
elementary “particles”, including quarks, leptons, and Higgs particles, are
quantized wave excitations of the corresponding quark, lepton, and Higgs
fields. Unlike point particles, quark, lepton, and Higgs fields can interact
directly in a relativistic manner, even without the mediation by gauge fields.

Although in the Standard Model all “particles” are, in fact, wavicles,
one often reads that quarks or electrons are “point-like” objects. What can
this possibly mean for a wavicle that does not even have a well-defined po-
sition in space? Again, this is a deficiency of our casual language, which is
properly resolved by the unambiguous mathematics of quantum field the-
ory. What the above statement actually means is that even the highest
energy experiments have, at least until now, not revealed any substructure
of quarks or electrons, i.e. they seem truly elementary. The same is not
true for protons or neutrons, which actually consist of quarks and gluons.
Interestingly, while being “point-like” in the above sense, an electron is at
the same time infinitely extended. This is because electrons are charged
“particles” which are surrounded by a Coulomb field that extends to infin-
ity. In reality, this field is usually screened by other positive charges in the
vicinity of the electron.

This discussion should have convinced the reader that particle physics
is not at all concerned with point particles. Perhaps it should better be
called “wavicle physics”. However, as long as we are aware that our ca-
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sual language is not sufficiently precise in this respect, the nomenclature is
secondary. In the mathematics of quantum field theory, all “particles” are
indeed quantized waves.

2.3 Classical and Quantum Gauge Fields

Although it also contains non-gauge-field-mediated couplings between quark,
lepton, and Higgs fields, in the Standard Model gauge fields play a very
important role, because they mediate the fundamental strong, weak, and
electromagnetic interactions. While the classical Maxwell equations can be
expressed entirely in terms of the electromagnetic field strengths E and B ,
which form the field strength tensor F,, = 0,4, — 0,A,, in relativistic
quantum field theory gauge fields are described by the vector potential A,,.
Even in the nonrelativistic quantum mechanics of a charged point particle,
an external magnetic field B =V x A enters the Schrédinger equation via
the vector potential A, which forms a covariant derivative together with the
momentum operator. In particular, the Aharonov-Bohm effect is naturally
expressed through a line integral of the vector potential. While the field
strength F),, is gauge invariant and thus physical, the vector potential can
be gauge transformed to A}, = A, + 0,¢, where ¢(7,) is an arbitrary local
gauge transformation function of space and time. When we work with vec-
tor potentials, we use redundant gauge variant variables to describe gauge
invariant physical observables. While this is a matter of choice in classical
theories, it seems unavoidable in quantum theories. In particular, in the
quantum mechanics of a charged point particle, the complex phase ambi-
guity of the wave function turns into a local gauge freedom. Similarly, in
quantum field theory the complex phase of a Dirac spinor is gauge variant,
but it can be combined with the gauge variant vector potential to form the
gauge invariant QED Lagrangian. Gauge invariance is a local symmetry
which must be maintained exactly in order to guarantee that no unphysical
effects can arise due to the redundant gauge variant variables.

Since a local gauge symmetry just reflects a redundancy in our theoreti-
cal description of the gauge invariant physics, it has different physical conse-
quences than a global symmetry. Both for gauge and for global symmetries,
the Hamiltonian of the theory is invariant under symmetry operations. In
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case of a global symmetry (at least in the absence of spontaneous symmetry
breaking), this implies that physical states belong to (in general nontriv-
ial) irreducible representations of the symmetry group. As a consequence,
there are degeneracies in the spectrum whenever an irreducible representa-
tion is more than 1-dimensional. In case of a gauge symmetry, on the other
hand, all physical states are gauge invariant, i.e. they belong to a trivial
1-dimensional representation of the local gauge group. Hence, gauge sym-
metries do not give rise to degeneracies in the spectrum of physical states.
Indeed the gauge variant eigenstates of the gauge invariant Hamiltonian
are exiled from the physical Hilbert space, by imposing the Gauss law as a
constraint on physical states.

2.4 Ultraviolet Divergences, Regularization,
and Renormalization

Field theories have a fixed number of fundamental field degrees of freedom
attached to each point in space. In continuous space, the total number of
field degrees of freedom is thus uncountably large. While this is no problem
in classical field theory, where the solutions of the field equations are smooth
functions of space and time, quantum fields undergo violent fluctuations
which give rise to ultraviolet divergences. In order to obtain meaningful
finite answers for physical quantities, quantum fields must be regularized
by introducing an ultraviolet cut-off. This is necessary because, most likely,
quantum fields in continuous space are ultimately not the correct degrees
of freedom that Nature is built from at ultra-short distances of the order of
the Planck length Ipjanec = 1072° m. The corresponding energy scale is the
Planck scale Mpianac &~ 10'¢ TeV, at which gravity, which is extremely weak
at low energies, becomes strongly coupled. Although string theory provides
a promising framework for its formulation, an established non-perturbative
theory of quantum gravity, which is valid all the way up to the Planck scale,
currently does not exist. Fortunately, we need not know the ultimate high-
energy theory of everything before we can address the physics in the TeV
energy regime that is accessible to present day experiments, in which the
Standard Model has been tested with great scrutiny. Whether there are
strings, some tiny wheels turning around at the Planck scale, or some other
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truly fundamental degrees of freedom, the currently accessible low-energy
physics is insensitive to those details.

In order to mimic the effects of the unknown ultimate ultra-short dis-
tance degrees of freedom, one can introduce an ultraviolet cut-off in many
different ways. It is, however, important that the cut-off procedure does not
violate any gauge symmetries, because otherwise unphysical redundant vari-
ables would contaminate physical results. In perturbation theory, the most
efficient way to introduce a gauge invariant cut-off is dimensional reqular-
1zation, 1.e. analytic continuation in the space-time dimension away from 4.
Beyond perturbation theory, the lattice reqularization, in which space-time is
replaced by a 4-dimensional hyper-cubic grid of discrete lattice points, pro-
vides a natural cut-off that again allows us to maintain gauge invariance. In
this case, the lattice spacing a, i.e. the distance between nearest-neighbor
lattice points, acts as an ultraviolet cut-off. Unlike in continuous space-
time, in lattice field theory the number of field degrees of freedom becomes
countable, which removes the divergences in physical observables. Still, in
order to obtain meaningful physical results, one must take the continuum
limit @ — 0. This is achieved by tuning the coupling constants in the La-
grangian in such a way that the long-distance continuum physics becomes
insensitive to the lattice spacing. This process is known as renormalization.

2.5 The Standard Model: Renormalizabil-
ity, Triviality,
and Incorporation of Gravity

The gauge, Higgs, lepton, and quark fields of the Standard Model all have
specific gauge transformation properties. They also transform appropri-
ately under the space-time transformations of the Poincaré group. The
Lagrangian of the Standard Model comprises all terms that are gauge as
well as Poincaré invariant combinations of fields. It is important to note
that the Standard Model is renormalizable, i.e. a finite number of terms
in the Lagrangian is sufficient to remove the ultraviolet divergences. In
particular, terms with coupling constants of negative mass dimension are
irrelevant and need not be included in the Standard Model. Its renormaliz-
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ability implies that the Standard Model could, at least in principle, be valid
up to arbitrarily high energy scales. However, there is a caveat: the issue
of “triviality”. There is overwhelming evidence, but no rigorous proof, that
the Higgs sector of the Standard Model becomes non-interacting (and thus
trivial) when one removes the cut-off all the way to infinity.

While renormalizability implies that the Standard Model physics is in-
sensitive to the ultraviolet cut-off, it is not necessarily physically meaningful
to send the cut-off to infinity. In particular, one would expect that, at some
energy scale, either near or high above the TeV scale accessible to current
experiments, new physics beyond the Standard Model could be discovered.
In that case, the scale A at which new physics arises would provide a physical
cut-off for the Standard Model, which would no longer provide an accurate
description of the physics above that energy scale. The Standard Model
would then still remain a consistent low-energy effective field theory. How-
ever, as one reaches higher and higher energies approaching A, more and
more non-renormalizable terms with negative mass dimension (suppressed
by inverse powers of A) would have to be added to the effective Lagrangian.

Even in the absence of new physics close to currently accessible en-
ergy scales, the triviality of the Standard Model is a rather academic issue,
because the Planck scale already provides a finite (yet extremely high) en-
ergy scale at which the Standard Model must necessarily be replaced by a
more complete theory that should include non-perturbative quantum grav-
ity. While gravity is usually not considered as belonging to the Standard
Model, it can be incorporated perturbatively as a low-energy effective the-
ory, provided that Poincaré invariance is maintained as an exact symmetry.
This is necessary because in Einstein’s theory of gravity, 7.e. in general rela-
tivity, global Poincaré invariance is promoted to a (necessarily exact) gauge
symmetry. In contrast to some claims in the literature, it is not true that
gravity resists quantization in the context of quantum field theory. While
Einstein gravity is not renormalizable, i.e. at higher and higher energies
more and more terms enter the Lagrangian, it can be consistently quan-
tized as a low-energy effective field theory. This theory is expected to break
down at the Planck scale, where gravity becomes strongly coupled.
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2.6 Fundamental Standard Model Parame-
ters

The Standard Model Lagrangian contains a large number of free parame-
ters, whose values can only be determined by comparison with experiments.
Remarkably, in the minimal version of the Standard Model there is only one
dimensionful parameter, which determines the vacuum value v = 246 GeV
of the Higgs field as well as the Higgs boson mass. The masses of the heavy
W= and Z° gauge bosons, which mediate the weak interaction, are given
by My = gv and M, = \/g? + ¢’*v, where g and ¢’ are the dimension-
less gauge coupling constants associated with the Standard Model gauge
groups SU(2), and U(1)y, respectively. The strong interactions between
quarks and gluons are described by Quantum Chromodynamics (QCD) —
an SU(3). color gauge theory — which is another integral part of the Stan-
dard Model. Since scale invariance is broken by quantum effects, by dimen-
sional transmutation the dimensionless SU(3). gauge coupling g; is traded
for the dimensionful QCD scale Aqep = 0.260(40) GeV. Strongly inter-
acting particles, including protons, neutrons, and other hadrons, receive
the dominant portion of their masses from the strong interaction energy of
quarks and gluons, which is proportional to Agcp, and only a small fraction
of their masses is due to the non-zero quark masses. The masses of quarks,
mq = Y4v, and of leptons, m; = y;v, are products of v with the dimensionless
Yukawa couplings y, and y;. Quarks and leptons arise in three generations
with the same quantum numbers, but with different masses. The mixing
angles between the quark or lepton fields of the different generations are
additional fundamental Standard Model parameters, whose values can only
be determined experimentally.

In the original minimal version of the Standard Model the neutrinos were
massless particles, because only left-handed neutrino fields were considered.
Since the discovery of neutrino oscillations, it is clear that (at least some)
neutrinos must have a non-zero mass. This naturally suggests to extend
the minimal Standard Model by adding right-handed neutrino fields. In
this way further dimensionful parameters, the Majorana masses M,, of
the right-handed neutrinos, enter the Standard Model Lagrangian. A mass
mixing mechanism — also known as the see-saw mechanism — leads to small
neutrino masses, provided that M, > v. The parameters M, , set the scale
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A at which new physics beyond the minimal Standard Model arises. The
low-energy effects of this new physics — in particular, the non-zero neutrino
masses — can also be described correctly by adding non-renormalizable
terms to the minimal Standard Model Lagrangian, which are suppressed by
the inverse of the scale A = M,,,.

In view of the large number (of about 25) free parameters, one may ex-
pect that there could be an even more fundamental structure beyond the
Standard Model that would allow us to understand the origin of its free pa-
rameters. Ultimately, the Standard Model will definitely break down at the
Planck scale, when non-perturbative quantum gravity comes into play. The
minimal Standard Model has already been extended by new physics associ-
ated with the Majorana neutrino mass scale M, ,, and there is no reason to
believe that no further extensions will be necessary before we reach Mpjapcx-
The extensions might include techni-color theories, supersymmetric theo-
ries, grand unified theories (GUT), or other structures that have been a
subject of intense theoretical investigation. At the time of the writing of
these notes, there is no conclusive experimental evidence for physics beyond
the Standard Model. There is evidence for dark matter, which might be of
supersymmetric origin, but could also simply be related to right-handed
Majorana neutrinos. The idea of cosmic inflation suggests that there could
be an inflaton field. Then there is evidence for dark energy — i.e. vac-
uum energy — which might arise as dynamical quintessence or as a static
cosmological constant A.. The latter is just a free low-energy parameter of
Einstein gravity, another being Newton’s constant GG, which determines the
Planck scale Mppanac = /fic/G. When we include perturbative quantum
gravity as well as right-handed neutrino fields in the Standard Model, we
can currently not exclude that it might be valid all the way up to the Planck
scale.

2.7 Hierarchies of Scales and Approximate
Global Symmetries

In the minimal Standard Model extended by perturbative quantum gravity
we encounter four dimensionful parameters: the Planck scale, Mpjana =
10* GeV, derived from Newton’s constant, which determines the strength
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of gravity, the vacuum expectation value v ~ 10717 Mpjane of the Higgs field,
the QCD scale Aqep & 1072 Mppanek, and the cosmological constant AV~
1073 Mpianec. Why are these scales so vastly different, or, in other words,
what is the origin of these hierarchies of energy scales? Since, according
to our present understanding, these scales are free parameters, answering
these questions requires to go beyond the Standard Model or perturbative
quantum gravity. Staying within the framework of these theories, one can
at least ask whether the hierarchies may arise naturally. At first glance,
it may seem unnatural that the QCD scale is so much smaller than the
Planck scale. However, QCD’s property of asymptotic freedom provides an
explanation for this hierarchy, because, without unnatural fine-tuning of the
strong coupling constant g, Aqcp is exponentially suppressed with respect
to the ultraviolet cut-off, which we may identify with Mpjancx.

The same is not true for the hierarchy between the electroweak scale and
the Planck scale. The puzzle to understand why v < Mpianec is known as
the hierarchy problem, which has no natural solution within the Standard
Model because the self-coupling of the Higgs field is not asymptotically free.
Potential solutions of the hierarchy problem may be associated with new
physics beyond the Standard Model, such as, for example, supersymmetric
or techni-color models. Despite intensive investigations, at the time of the
writing of these notes there is no experimental evidence for these ideas.
In a non-perturbative context supersymmetry may, in fact, be unnatural,
because the construction of the symmetry itself may require fine-tuning.

The fact that A. < Mpanek confronts us with the cosmological con-
stant problem — the most severe hierarchy problem in all of physics. If the
correct theory of non-perturbative quantum gravity would have a property
like asymptotic freedom, one may speculate that the cosmological constant
problem might find a natural explanation. Alternatively, one may invoke
the anthropic principle. One then relates the value of A, to the fact of our
own existence. Alternative Universes with a larger negative or positive cos-
mological constant would either collapse or expand very quickly. In these
cases, it seems unlikely that intelligent life could evolve. The idea of eternal
cosmic inflation actually provides us with an incredible number of different
Universes, forming a very large Multiverse. If the Multiverse indeed exists,
which is a matter of speculation, we can only evolve in a pocket Universe
with hospitable hierarchies of energy scales. The anthropic principle should,
however, be invoked only as a last resort, when all alternative explanations
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fail. In particular, the somewhat cheap anthropic-principle-based explana-
tions of various hierarchies should not prevent us from thinking hard about
everything that can possibly be understood without invoking this principle.

The Standard Model provides us with even more hierarchy puzzles.
While the dimensionless Yukawa coupling y; of the heavy top quark is of
order 1, such that the mass of the top quark m; = y,v = 174 GeV is near the
electroweak scale v, the Yukawa couplings of the light up and down quarks
are much smaller, v, yq ~ 107°, such that m,, mg; < Aqcp. The hierarchy
between the masses of the light quarks and the QCD scale gives rise to
an approximate global SU(2), x SU(2)g chiral symmetry. Its SU(2).—g
isospin subgroup manifests itself in the hadron spectrum and “explains” why
proton and neutron have almost the same mass. However, this is a proper
explanation only if we take the hierarchy m,,ms < Aqcp for granted.
However, since we don’t understand the origin of the experimental values of
the quark masses, we should admit that the approximate isospin symmetry
and thus the almost degenerate proton and neutron masses appear just as
an “accident”. As intelligent beings, we recognize the symmetry (although
we may not understand its origin) and utilize it to simplify our theoretical
investigations.

2.8 Local and Global Symmetries

As we have discussed in Section 2.3, local symmetries — i.e. gauge symme-
tries — must be exact in order to prevent unphysical effects of the redun-
dant gauge variables. This includes Poincaré symmetry, which is promoted
to a gauge symmetry in the context of general relativity. Gauge invari-
ance is very restrictive and, in combination with renormalizability, implies
large predictive power, with only one free parameter — the gauge coupling
constant associated with the corresponding gauge group. Other non-gauge-
mediated interactions, as, for example, the Yukawa couplings between Higgs
and quark or lepton fields, give rise to a much larger number of free param-
eters and thus restrict the predictive power of the theory.

In contrast to gauge symmetries, global symmetries such as isospin are
in general only approximate and result from an (often not understood) hi-
erarchy of energy scales. For example, the discrete symmetries of charge
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conjugation C and parity P are broken by the weak but not by the electro-
magnetic and strong interactions. Due to the hierarchy Aqcp < v, which
“explains” the weakness of the W- and Z-boson-mediated interactions (but
whose origin is again not understood), C- or P-violating processes are rela-
tively rare. In the Standard Model the origin of C- and P-violation is the
chiral nature of the theory — the fact that left- and right-handed quark or
lepton fields transform differently under SU(2), x U(1)y gauge transfor-
mations. This is characteristic of a chiral gauge theory. While interactions
between gauge and matter fields may break C and P, they leave the com-
bined symmetry CP intact.

In the Standard Model, CP-violating processes arise only due to mixing
between the three generations of quarks and leptons, and they are hence
even rarer. It is an open question whether these sources of CP violation
are sufficiently strong to explain the observed baryon asymmetry between
matter and anti-matter in the Universe. It is still a puzzle — known as the
strong CP problem — why the self-interactions of the gluons respect CP
symmetry, i.e. why the experimental value of the QCD vacuum angle 6 is
compatible with zero. A potential explanation beyond the Standard Model
(which still awaits experimental confirmation) is related to an approximate
U(1)pq Peccei-Quinn symmetry, which would be associated with a new light
particle — the axion.

Remarkably, as a result of the CPT theorem, the combination CPT of
CP with time-reversal T is an exact symmetry of any relativistic field theory.
In fact, the CPT symmetry is indirectly protected by the necessarily exact
Poincaré symmetry, which acts as the gauge symmetry of general relativity.

Exact global symmetries other than CPT are, however, suspicious. In
fact, they should either be gauged or explicitly broken. In the minimal
version of the Standard Model without right-handed neutrino fields, the
difference between baryon and lepton number B — L is an exact global
symmetry. In the SO(10) GUT extension of the Standard Model, U(1)p_,
is indeed gauged and appears as a subgroup of the SO(10) gauge group. In
the extended Standard Model with additional right-handed neutrino fields
only, on the other hand, the global U(1)p_y symmetry is explicitly broken
by Majorana mass terms. Fermion number conservation modulo 2 then still
remains as an exact global symmetry. However, just as CPT, this symmetry
automatically follows from Poincaré invariance.
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2.9 Explicit versus Spontaneous Symmetry
Breaking

As we just discussed, gauge symmetries must be exact, while global sym-
metries are in general only approximate. A simple source of explicit global
symmetry breaking are non-invariant terms in the Lagrangian. A typical
example is the SU(2), x SU(2)g chiral symmetry of QCD, which is ex-
plicitly broken by the non-zero Yukawa couplings between the light up and
down quarks and the Higgs field.

QCD with massless up and down quarks, on the other hand, has an exact
chiral symmetry. Interestingly, this symmetry does not manifest itself di-
rectly in the QCD spectrum, because it is spontaneously broken. This means
that, despite the fact that the Hamiltonian of massless QCD is invariant
against SU(2)r, x SU(2) g chiral symmetry transformations, its ground state
is not. In fact, there is a continuous family of degenerate vacuum states of
massless QCD, which are related to each other by chiral transformations. In
the process of spontaneous symmetry breaking, one of these ground states is
selected spontaneously. This state is still invariant against transformations
in the unbroken SU(2).—g isospin subgroup of SU(2), x SU(2)g. Small
fluctuations around the spontaneously chosen vacuum state cost energy in
proportion to the magnitude of their momentum, and thus manifest them-
selves as massless particles — known as Goldstone bosons. As a consequence
of spontaneous chiral symmetry breaking, which reduces SU(2), x SU(2)r
to its unbroken SU(2)—g isospin subgroup, there are three massless Gold-
stone bosons — the charged and neutral pions 7%, 7°, and 7. In the real
world with non-zero up and down quark masses, chiral symmetry is not
only spontaneously but, in addition, also explicitly broken. As a result,
the pions turn into light (but no longer massless) pseudo-Goldstone bosons,
whose squared masses are proportional to the product of the quark masses
and the chiral order parameter, which is proportional to A%CD.

The Higgs sector of the Standard Model also has an SU(2), x SU(2)g
symmetry. However, 