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Lecture 0

Introduction

The particle physics master course will be given in the autumn semester of 2011 and
contains two parts: Particle Physics 1 (PP1) and Particle Physics 2 (PP2). The PP1
course consists of 12 lectures (Monday and Wednesday morning) and mainly follows the
material as discussed in the books of Halzen and Martin and Griffiths.

These notes are my personal notes made in preparation of the lectures. They can
be used by the students but should not be distributed. The original material is found
in the books used to prepare the lectures (see below).

The contents of particle physics 1 is the following:

• Lecture 1: Concepts and History

• Lecture 2 - 5: Electrodynamics of spinless particles

• Lecture 6 - 8: Electrodynamics of spin 1/2 particles

• Lecture 9: The Weak interaction

• Lecture 10 - 12: Electroweak scattering: The Standard Model

Each lecture of 2 × 45 minutes is followed by a 1 hour problem solving session.

The particle physics 2 course contains the following topics:

• The Higgs Mechanism

• Quantum Chromodynamics

In addition the master offers in the next semester topical courses (not obligatory) on
the particle physics subjects: CP Violation, Neutrino Physics and Physics Beyond the
Standard Model

Examination

The examination consists of two parts: Homework (weight=1/3) and an Exam (weight=2/3).
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2 Lecture 0. Introduction

Literature

The following literature is used in the preparation of this course (the comments reflect
my personal opinion):

Halzen & Martin: “Quarks & Leptons: an Introductory Course in Modern Particle
Physics ”:
Although it is somewhat out of date (1984), I consider it to be the best book in the field

for a master course. It is somewhat of a theoretical nature. It builds on the earlier work

of Aitchison (see below). Most of the course follows this book.

Griffiths: “Introduction to Elementary Particle Physics”, second, revised ed.
The text is somewhat easier to read than H & M and is more up-to-date (2008) (e.g.

neutrino oscillations) but on the other hand has a somewhat less robust treatment in

deriving the equations.

Perkins: “Introduction to High Energy Physics”, (1987) 3-rd ed., (2000) 4-th ed.
The first three editions were a standard text for all experimental particle physics. It is

dated, but gives an excellent description of, in particular, the experiments. The fourth

edition is updated with more modern results, while some older material is omitted.

Aitchison: “Relativistic Quantum Mechanics”
(1972) A classical, very good, but old book, often referred to by H & M.

Aitchison & Hey: “Gauge Theories in Particle Physics”
(1982) 2nd edition: An updated version of the book of Aitchison; a bit more theoretical.

(2003) 3rd edition (2 volumes): major rewrite in two volumes; very good but even more

theoretical. It includes an introduction to quantum field theory.

Burcham & Jobes: “Nuclear & Particle Physics”
(1995) An extensive text on nuclear physics and particle physics. It contains more

(modern) material than H & M. Formula’s are explained rather than derived and more

text is spent to explain concepts.

Das & Ferbel: “Introduction to Nuclear and Particle Physics”
(2006) A book that is half on experimental techniques and half on theory. It is more

suitable for a bachelor level course and does not contain a treatment of scattering theory

for particles with spin.

Martin and Shaw: “Particle Physics ”, 2-nd ed.
(1997) A textbook that is somewhere inbetween Perkins and Das & Ferbel. In my

opinion it has the level inbetween bachelor and master.

Particle Data Group: “Review of Particle Physics”
This book appears every two years in two versions: the book and the booklet. Both of

them list all aspects of the known particles and forces. The book also contains concise,

but excellent short reviews of theories, experiments, accellerators, analysis techniques,

statistics etc. There is also a version on the web: http://pdg.lbl.gov
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The Internet:
In particular Wikipedia contains a lot of information. However, one should note
that Wikipedia does not contain original articles and they are certainly not re-
viewed! This means that they cannot be used for formal citations.

In addition, have a look at google books, where (parts of) books are online avail-
able.
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About Nikhef

Nikhef is the Dutch institute for subatomic physics. Although the name Nikhef is kept,
the acronym ”Nationaal Instituut voor Kern en Hoge Energie Fysica” is no longer used.
The name Nikhef is used to indicate simultaneously two overlapping organisations:

• Nikhef is a national research lab funded by the foundation FOM; the dutch foun-
dation for fundamental research of matter.

• Nikhef is also a collaboration between the Nikhef institute and the particle physics
departements of the UvA (A’dam), the VU (A’dam), the UU (Utrecht) and the
RU (Nijmegen) contribute. In this collaboration all dutch activities in particle
physics are coordinated.

In addition there is a collaboration between Nikhef and the Rijks Universiteit Gronin-
gen (the former FOM nuclear physics institute KVI) and there are contacts with the
Universities of Twente, Leiden and Eindhoven.
For more information go to the Nikhef web page: http://www.nikhef.nl

The research at Nikhef includes both accelerator based particle physics and astro-
particle physics. A strategic plan, describing the research programmes at Nikhef can be
found on the web, from: www.nikhef.nl/fileadmin/Doc/Docs & pdf/StrategicPlan.pdf .

The accelerator physics research of Nikhef is currently focusing on the LHC exper-
iments: Alice (“Quark gluon plasma”), Atlas (“Higgs”) and LHCb (“CP violation”).
Each of these experiments search answers for open issues in particle physics (the state
of matter at high temperature, the origin of mass, the mechanism behind missing an-
timatter) and hope to discover new phenomena (eg supersymmetry, extra dimensions).
The LHC started in 2009 and is currently producing data at increasing luminosity. The
first results came out at the ICHEP 2010 conference in Paris, while the latest news of
this summer on the search for the Higgs boson and ”New Physics” have been discussed
in the EPS conference in Grenoble and the lepton-photon conference in Mumbai. So far
no convincing evidence for the Higgs particle or for New Physics have been observed.

In preparation of these LHC experiments Nikhef is/was also active at other labs:
STAR (Brookhaven), D0 (Fermilab) and Babar (SLAC). Previous experiments that
ended their activities are: L3 and Delphi at LEP, and Zeus, Hermes and HERA-B at
Desy.

A more recent development is the research field of astroparticle physics. It includes
Antares & KM3NeT (“cosmic neutrino sources”), Pierre Auger (“high energy cosmic
rays”), Virgo & ET (“gravitational waves”) and Xenon (”dark matter”).

Nikhef houses a theory departement with research on quantum field theory and
gravity, string theory, QCD (perturbative and lattice) and B-physics.

Driven by the massive computing challenge of the LHC, Nikhef also has a scientific
computing departement: the Physics Data Processing group. They are active in the
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development of a worldwide computing network to analyze the huge datastreams from
the (LHC-) experiments (“The Grid”).

Nikhef program leaders/contact persons:

Name office phone email

Nikhef director Frank Linde H232 5001 z66@nikhef.nl
Theory departement: Eric Laenen H323 5127 t45@nikhef.nl
Atlas departement: Stan Bentvelsen H241 5150 stanb@nikhef.nl
B-physics departement: Marcel Merk N243 5107 marcel.merk@nikhef.nl
Alice departement: Thomas Peitzmann N325 5050 t.peitzmann@uu.nl
Antares experiment: Maarten de Jong H354 2121 mjg@nikhef.nl
Pierre Auger experiment: Charles Timmermans - - c.timmermans@hef.ru.nl
Virgo and ET experiment: Jo van den Brand N247 2015 jo@nikhef.nl
Xenon experiment: Patrick Decowski H349 2145 p.decowski@nikhef.nl
Detector R&D Departement: Frank Linde H232 5001 z66@nikhef.nl
Scientific Computing: Jeff Templon H158 2092 templon@nikhef.nl
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History of Particle Physics

The book of Griffiths starts with a nice historical overview of particle physics in the
previous century. Here’s a summary:

Atomic Models

1897 Thomson: Discovery of Electron. The atom contains electrons as “plums in
a pudding”.

1911 Rutherford: The atom mainly consists of empty space with a hard and heavy,
positively charged nucleus.

1913 Bohr: First quantum model of the atom in which electrons circled in stable
orbits, quatized as: L = h̄ · n

1932 Chadwick: Discovery of the neutron. The atomic nucleus contains both
protons and neutrons. The role of the neutrons is associated with the binding
force between the positively charged protons.

The Photon

1900 Planck: Description blackbody spectrum with quantized radiation. No inter-
pretation.

1905 Einstein: Realization that electromagnetic radiation itself is fundamentally
quantized, explaining the photoelectric effect. His theory received scepticism.

1916 Millikan: Measurement of the photo electric effect agrees with Einstein’s
theory.

1923 Compton: Scattering of photons on particles confirmed corpuscular character
of light: the Compton wavelength.

Mesons

1934 Yukawa: Nuclear binding potential described with the exchange of a quan-
tized field: the pi-meson or pion.

1937 Anderson & Neddermeyer: Search for the pion in cosmic rays but he finds a
weakly interacting particle: the muon. (Rabi: “Who ordered that?”)

1947 Powell: Finds both the pion and the muon in an analysis of cosmic radiation
with photo emulsions.

Anti matter

1927 Dirac interprets negative energy solutions of Klein Gordon equation as energy
levels of holes in an infinite electron sea: “positron”.

1931 Anderson observes the positron.
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1940-1950 Feynman and Stückelberg interpret negative energy solutions as the positive
energy of the anti-particle: QED.

Neutrino’s

1930 Pauli and Fermi propose neutrino’s to be produced in β-decay (mν = 0).

1958 Cowan and Reines observe inverse beta decay.

1962 Lederman and Schwarz showed that νe 6= νµ. Conservation of lepton number.

Strangeness

1947 Rochester and Butler observe V 0 events: K0 meson.

1950 Anderson observes V 0 events: Λ baryon.

The Eightfold Way

1961 Gell-Mann makes particle multiplets and predicts the Ω−.

1964 Ω− particle found.

The Quark Model

1964 Gell-Mann and Zweig postulate the existance of quarks

1968 Discovery of quarks in electron-proton collisions (SLAC).

1974 Discovery charm quark (J/ψ) in SLAC & Brookhaven.

1977 Discovery bottom quarks (Υ ) in Fermilab.

1979 Discovery of the gluon in 3-jet events (Desy).

1995 Discovery of top quark (Fermilab).

Broken Symmetry

1956 Lee and Yang postulate parity violation in weak interaction.

1957 Wu et. al. observe parity violation in beta decay.

1964 Christenson, Cronin, Fitch & Turlay observe CP violation in neutral K meson
decays.

The Standard Model

1978 Glashow, Weinberg, Salam formulate Standard Model for electroweak inter-
actions

1983 W-boson has been found at CERN.

1984 Z-boson has been found at CERN.

1989-2000 LEP collider has verified Standard Model to high precision.
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Natural Units

We will often make use of natural units. This means that we work in a system where
the action is expressed in units of Planck’s constant:

h̄ ≈ 1.055 × 10−34Js

and velocity is expressed in units of the light speed in vacuum:

c = 2.998 × 108m/s.

In other words we often use h̄ = c = 1.
This implies, however, that the results of calculations must be translated back to

measureable quantities in the end. Conversion factors are the following:

quantity conversion factor natural unit normal unit
mass 1 kg = 5.61 × 1026 GeV GeV GeV/c2

length 1 m = 5.07 × 1015 GeV−1 GeV−1 h̄c/GeV
time 1 s = 1.52 × 1024 GeV−1 GeV−1 h̄/GeV

unit charge e =
√

4πα 1
√
h̄c

Cross sections are expressed in barn, which is equal to 10−24cm2. Energy is expressed
in GeV, or 109 eV, where 1 eV is the kinetic energy an electron obtains when it is
accelerated over a voltage of 1V.

Exercise -1:
Derive the conversion factors for mass, length and time in the table above.

Exercise 0:
The Z-boson particle is a carrier of the weak force. It has a mass of 91.1 GeV. It can
be produced experimentally by annihilation of an electron and a positron. The mass of
an electron, as well as that of a positron, is 0.511 MeV.

(a) Can you guess what the Feynman interaction diagram for this process is? Try to
draw it.

(b) Assume that an electron and a positron are accelerated in opposite directions and
collide head-on to produce a Z-boson in the lab frame. Calculate the beam energy
required for the electron and the positron in order to produce a Z-boson.

(c) Assume that a beam of positron particles is shot on a target containing electrons.
Calculate the beam energy required for the positron beam in order to produce
Z-bosons.

(d) This experiment was carried out in the 1990’s. Which method do you think was
used? Why?
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Lecture 1

Particles and Forces

Introduction

After Chadwick had discovered the neutron in 1932, the elementary constituents of
matter were the proton and the neutron inside the atomic nucleus, and the electron
circling around it. With these constituents the atomic elements could be described as
well as the chemistry with them. The answer to the question: “What is the world
made of?” was indeed rather simple. The force responsible for interactions was the
electromagnetic force, which was carried by the photon.

There were already some signs that there was more to it:

• Dirac had postulated in 1927 the existence of anti-matter as a consequence of his
relativistic version of the Schrodinger equation in quantum mechanics. (We will
come back to the Dirac theory later on.) The anti-matter partner of the electron,
the positron, was actually discovered in 1932 by Anderson (see Fig. 1.1).

• Pauli had postulated the existence of an invisible particle that was produced in
nuclear beta decay: the neutrino. In a nuclear beta decay process:

NA → NB + e−

the energy of the emitted electron is determined by the mass difference of the nuclei
NA and NB. It was observed that the kinetic energy of the electrons, however,
showed a broad mass spectrum (see Fig. 1.2), of which the maximum was equal
to the expected kinetic energy. It was as if an additional invisible particle of low
mass is produced in the same process: the (anti-) neutrino.

1.1 The Yukawa Potential and the Pi meson

The year 1935 is a turning point in particle physics. Yukawa studied the strong inter-
action in atomic nuclei and proposed a new particle, a π-meson as the carrier of the
nuclear force. His idea was that the nuclear force was carried by a massive particle

11
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Figure 1.1: The discovery of the positron as reported by Anderson in 1932. Knowing
the direction of the B field Anderson deduced that the trace was originating from an
anti electron. Question: how?
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Figure 1. The Beta Decay Spectrum for Molecular Tritium 
The plot on the left shows the probability that the emerging electron has a particular 

energy. If the electron were neutral, the spectrum would peak at higher energy and

would be centered roughly on that peak. But because the electron is negatively

charged, the positively charged nucleus exerts a drag on it, pulling the peak to a

lower energy and generating a lopsided spectrum. A close-up of the endpoint 

(plot on the right) shows the subtle difference between the expected spectra for 

a massless neutrino and for a neutrino with a mass of 30 electron volts. 

Figure 1.2: The beta spectrum as observed in tritium decay to helium. The endpoint
of the spectrum can be used to set a limit of the neutrino mass. Question: how?
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(in contrast to the massless photon) such that the range of this force is limited to the
nuclei.

The qualitative idea is that a virtual particle, the force carrier, can be created for a
time ∆t < h̄/2mc2. Electromagnetism is transmitted by the massless photon and has
an infinite range, the strong force is transmitted by a massive meson and has a limited
range, depending on the mass of the meson.

The Yukawa potential (also called the OPEP: One Pion Exchange Potential) is of
the form:

U(r) = −g2 e
−r/R

r

where R is called the range of the force.
For comparison, the electrostatic potential of a point charge e as seen by a test

charge e is given by:

V (r) = −e2 1

r

The electrostatic potential is obtained in the limit that the range of the force is infinite:
R = ∞. The constant g is referred to as the coupling constant of the interaction.

Exercise 1:

(a) The wave equation for an electromagnetic potential V is given by:

2 V = 0 ; 2 ≡ ∂µ∂
µ ≡ ∂2

∂t2
−∇2

which in the static case can be written in the form of Laplace equation:

∇2 V = 0

Assuming spherical symmetry, show that this equation leads to the Coulomb po-
tential V(r)
Hint: remember spherical coordinates.

(b) The wave equation for a massive field is the Klein Gordon equation:

2 U +m2 U = 0

which, again in the static case can be written in the form:

∇2 U −m2 U = 0

Show, again assuming spherical symmetry, that Yukawa’s potential is a solution
of the equation for a massive force carrier. What is the relation between the mass
m of the force carrier and the range R of the force?

(c) Estimate the mass of the π-meson assuming that the range of the nucleon force is
1.5 × 10−15 m = 1.5 fm.
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Yukawa called this particle a meson since it is expected to have an intermediate mass
between the electron and the nucleon. In 1937 Anderson and Neddermeyer, as well as
Street and Stevenson, found that cosmic rays indeed consist of such a middle weight
particle. However, in the years after, it became clear that two things were not right:

(1) This particle did not interact strongly, which was very strange for a carrier of the
strong force.

(2) Its mass was somewhat too low.

In fact this particle turned out to be the muon, the heavier brother of the electron.
In 1947 Powell (as well as Perkins) found the pion to be present in cosmic rays. They

took their photographic emulsions to mountain tops to study the contents of cosmic rays
(see Fig. 1.3). (In a cosmic ray event a cosmic proton scatters with high energy on an
atmospheric nucleon and produces many secondary particles.) Pions produced in the
atmosphere decay long before they reach sea level, which is why they were not observed
before.

1.2 Strange Particles

After the pion had been identified as Yukawa’s strong force carrier and the anti-electron
was observed to confirm Dirac’s theory, things seemed reasonably under control. The
muon was a bit of a mystery. It lead to a famous quote of Isidore Rabi at the conference:
“Who ordered that?”

But in December 1947 things went all wrong after Rochester and Butler published
so-called V 0 events in cloud chamber photographs. What happened was that charged
cosmic particles hit a lead target plate and as a result many different types of particles
were produced. They were classified as:

baryons: particles whose decay product ultimately includes a proton.

mesons: particles whose decay product ultimately include only leptons or photons.

Why were these events called strange? The mystery lies in the fact that certain (neutral)
particles were produced (the “V 0’s”) with a large cross section ( ∼ 10−27cm2), while they
decay according to a process with a small cross section (∼ 10−40cm2). The explanation
to this riddle was given by Abraham Pais in 1952 and is called associated production.
This means that strange particles are always produced in pairs by the strong interaction.
It was suggested that strange particle carries a strangeness quantum number. In the
strong interaction one then has the conservation rule ∆S = 0, such that a particle with
S=+1 (e.g. a K meson) is simultaneously produced with a particle with S=-1 (e.g. a
Λ baryon). These particles then individually decay through the weak interaction, which
does not conserve strangeness. An example of an associated production event is seen in
Fig. 1.4.
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Figure 1.3: A pion entering from the left decays into a muon and an invisible neutrino.



16 Lecture 1. Particles and Forces

Figure 1.4: A bubble chamber picture of associated production.
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In the years 1950 - 1960 many elementary particles were discovered and one started
to speak of the particle zoo. A quote: “The finder of a new particle used to be awarded
the Nobel prize, but such a discovery now ought to be punished by a $10.000 fine.”

1.3 The Eightfold Way

In the early 60’s Murray Gell-Mann (at the same time also Yuvan Ne’eman) observed
patterns of symmetry in the discovered mesons and baryons. He plotted the spin 1/2
baryons in a so-called octet (the “eightfold way” after the eighfold way to Nirvana in
Buddhism). There is a similarity between Mendeleev’s periodic table of elements and
the supermultiplets of particles of Gell Mann. Both pointed out a deeper structure of
matter. The eightfold way of the lightest baryons and mesons is displayed in Fig. 1.5
and Fig. 1.6. In these graphs the Strangeness quantum number is plotted vertically.

n

Σ Σ Σ

Ξ

p

Ξ

Λ

+

+0

− 0

−

Q=−1 Q=0

S=0

S=−1

S=−2

Q=+1

Figure 1.5: Octet of lightest baryons with spin=1/2.
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+−

Q=−1 Q=0 Q=1

K
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η

0

K
0

−
Κ0Κ−

+
S=1

S=0

Figure 1.6: Octet with lightest mesons of spin=0

Also heavier hadrons could be given a place in multiplets. The baryons with spin=3/2
were seen to form a decuplet, see Fig. 1.7. The particle at the bottom (at S=-3) had not
been observed. Not only was it found later on, but also its predicted mass was found to
be correct! The discovery of the Ω− particle is shown in Fig. 1.8.
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Ξ Ξ∗ ∗− 0
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Figure 1.7: Decuplet of baryons with spin=3/2. The Ω− was not yet observed when
this model was introduced. It’s mass was predicted.

Figure 1.8: Discovery of the omega particle.
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1.4 The Quark Model

The observed structure of hadrons in multiplets hinted at an underlying structure. Gell-
Mann and Zweig postulated indeed that hadrons consist of more fundamental partons:
the quarks. Initially three quarks and their anti-particle were assumed to exist (see Fig.
1.9). A baryon consists of 3 quarks: (q, q, q), while a meson consists of a quark and an
antiquark: (q, q). Mesons can be their own anti-particle, baryons cannot.

S=0

S=−1 Q=+2/3

Q=−1/3

s

d u S=+1 s

d

Q=+1/3Q=−2/3

S=0
u

Figure 1.9: The fundamental quarks: u,d,s.

Exercise 2:
Assign the quark contents of the baryon decuplet and the meson octet.

How does this explain that baryons and mesons appear in the form of octets, decu-
plets, nonets etc.? For example a baryon, consisting of 3 quarks with 3 flavours (u,d,s)
could in principle lead to 3x3x3=27 combinations. The answer lies in the fact that
the wave function of fermions is subject to a symmetry under exchange of fermions.
The total wave function must be anti-symmetric with respect to the interchange of two
fermions.

ψ (baryon) = ψ (space) · φ (spin) · χ (flavour) · ζ (color)

These symmetry aspects are reflected in group theory where one encounters expressions
as: 3 ⊗ 3 ⊗ 3 = 10 ⊕ 8 ⊕ 8 ⊕ 1 and 3 ⊗ 3 = 8 ⊕ 1.

For more information on the static quark model read §2.10 and §2.11 in H&M, §5.5
and §5.6 in Griffiths, or chapter 5 in the book of Perkins.

1.4.1 Color

As indicated in the wave function above, a quark has another internal degree of freedom.
In addition to electric charge a quark has a different charge, of which there are 3 types.
This charge is referred to as the color quantum number, labelled as r, g, b. Evidence
for the existence of color comes from the ratio of the cross section:

R ≡ σ(e+e− → hadrons)

σ(e+e− → µ+µ−)
= NC

∑

i

Q2
i

where the sum runs over the quark types that can be produced at the available energy.
The plot in Fig. 1.10 shows this ratio, from which the result NC = 3 is obtained.
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Figure 1.10: The R ratio.

Exercise 3: The Quark Model

(a) Quarks are fermions with spin 1/2. Show that the spin of a meson (2 quarks) can
be either a triplet of spin 1 or a singlet of spin 0.
Hint: Remember the Clebsch Gordon coefficients in adding quantum numbers.
In group theory this is often represented as the product of two doublets leads to
the sum of a triplet and a singlet: 2 ⊗ 2 = 3 ⊕ 1 or, in terms of quantum numbers:
1/2 ⊗ 1/2 = 1 ⊕ 0.

(b) Show that for baryon spin states we can write: 1/2⊗ 1/2⊗ 1/2 = 3/2⊕ 1/2⊕ 1/2
or equivalently 2 ⊗ 2 ⊗ 2 = 4 ⊕ 2 ⊕ 2

(c) Let us restrict ourselves to two quark flavours: u and d. We introduce a new
quantum number, called isospin in complete analogy with spin, and we refer to
the u quark as the isospin +1/2 component and the d quark to the isospin -1/2
component (or u= isospin “up” and d=isospin “down”). What are the possible
isospin values for the resulting baryon?

(d) The ∆++ particle is in the lowest angular momentum state (L = 0) and has
spin J3 = 3/2 and isospin I3 = 3/2. The overall wavefunction (L⇒space-part,
S⇒spin-part, I⇒isospin-part) must be anti-symmetric under exchange of any of
the quarks. The symmetry of the space, spin and isospin part has a consequence
for the required symmetry of the Color part of the wave function. Write down
the color part of the wave-function taking into account that the particle is color
neutral.

(e) In the case that we include the s quark the flavour part of the wave function
becomes: 3 ⊗ 3 ⊗ 3 = 10 ⊕ 8 ⊕ 8 ⊕ 1.
In the case that we include all 6 quarks it becomes: 6 ⊗ 6 ⊗ 6. However, this is
not a good symmetry. Why not?
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1.5 The Standard Model

The fundamental constituents of matter and the force carriers in the Standard Model
can be represented as follows:

The fundamental particles:
charge Quarks

2
3

u (up) c (charm) t (top)
1.5–4 MeV 1.15–1.35 GeV (174.3 ± 5.1) GeV

−1
3

d (down) s (strange) b (bottom)
4–8 MeV 80–130 MeV 4.1–4.4 GeV

charge Leptons

0 νe (e neutrino) νµ (µ neutrino) ντ (τ neutrino)
< 3 eV < 0.19 MeV < 18.2 MeV

−1 e (electron) µ (muon) τ (tau)
0.511 MeV 106 MeV 1.78 GeV

The forces, their mediating bosons and their relative strength:
Force Boson Relative strength
Strong g (8 gluons) αs ∼ O(1)

Electromagnetic γ (photon) α ∼ O(10−2)
Weak Z0,W± (weak bosons) αW ∼ O(10−6)

Some definitions:

hadron (greek: strong) particle that feels the strong interaction
lepton (greek: light, weak) particle that feels only weak interaction
baryon (greek: heavy) particle consisting of three quarks
meson (greek: middle) particle consisting of a quark and an anti-quark
pentaquark a hypothetical particle consisting of 4 quarks and an anti-quark
fermion half-integer spin particle
boson integer spin particle
gauge-boson force carrier as predicted from local gauge invariance

In the Standard Model forces originate from a mechanism called local gauge invari-
ance, which wil be discussed later on in the course. The strong force (or color force) is
mediated by gluons, the weak force by intermediate vector bosons, and the electromag-
netic force by photons. The fundamental diagrams are represented below.
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a:
γ

e+

e−

µ+

µ−

b: W

e−

νe

νµ
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c:
g

q

q

q

q

Figure 1.11: Feynman diagrams of fundamental lowest order perturbation theory pro-
cesses in a: electromagnetic, b: weak and c: strong interaction.

There is an important difference between the electromagnetic force on one hand, and
the weak and strong force on the other hand. The photon does not carry charge and,
therefore, does not interact with itself. The gluons, however, carry color and do interact
amongst each other. Also, the weak vector bosons carry weak isospin and undergo a
self coupling.

The strength of an interaction is determined by the coupling constant as well as the
mass of the vector boson. Contrary to its name the couplings are not constant, but
vary as a function of energy. At a momentum transfer of 1015 GeV the couplings of
electromagnetic, weak and strong interaction all have the same value. In the quest of
unification it is often assumed that the three forces unify to a grand unification force at
this energy.

Due to the self coupling of the force carriers the running of the coupling constants
of the weak and strong interaction are opposite to that of electromagnetism. Electro-
magnetism becomes weaker at low momentum (i.e. at large distance), the weak and the
strong force become stronger at low momentum or large distance. The strong interac-
tion coupling even diverges at momenta less than a few 100 MeV (the perturbative QCD
description breaks down). This leads to confinement: the existence of colored objects
(i.e. objects with net strong charge) is forbidden.

Finally, the Standard Model includes a, not yet observed, scalar Higgs boson, which
provides mass to the vector bosons and fermions in the Brout-Englert-Higgs mechanism.

Figure 1.12: Running of the coupling constants and possible unification point. On the
left: Standard Model. On the right: Supersymmetric Standard Model.
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Open Questions

• Does the Higgs in fact exist?

• Why are the masses of the particles what they are?

• Why are there 3 generations of fermions?

• Are quarks and leptons truly fundamental?

• Why is the charge of the electron exactly opposite to that of the proton. Or: why
is the total charge of leptons and quarks exactly equal to 0?

• Is a neutrino its own anti-particle?

• Can all forces be described in a single theory (unification)?

• Why is there no anti matter in the universe?

• What is the source of dark matter?

• What is the source of dark energy?



24 Lecture 1. Particles and Forces



Lecture 2

Wave Equations and Anti Particles

Introduction

In the course we develop a quantum mechanical framework to describe electromagnetic
scattering, in short Quantum Electrodynamics (QED). The way we build it up is that
we first derive a framework for non-relativistic scattering of spinless particles, which
we then extend to the relativistic case. Also we will start with the wave equations for
particles without spin, and address the spin 1/2 particles later on in the lectures (“the
Dirac equation’).

What is a spinless particle? There are two ways that you can think of it: either as
charged mesons (e.g. pions or kaons) for which the strong interaction has been “switched
off” or for electrons or muons for which the fact that they are spin-1/2 particles is
ignored. In short: it not a very realistic case.

2.1 Non Relativistic Wave Equations

If we start with the non relativistic relation between kinetic energy and momentum

E =
~p2

2m

and make the quantum mechanical substitution:

E → i
∂

∂t
and ~p→ −i~∇

then we end up with Schrödinger’s equation:

i
∂

∂t
ψ =

−1

2m
∇2ψ

In electrodynamics we have the continuity equation (“Gauss law”) which relates a
current to a change of charge:

~∇ ·~j = −∂ρ
∂t

25
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where j = the current density and ρ = the charge density.
This is a rather general law stat can be stated in words as: “The change of charge

in a given volume equals the current through the surrounding surface.”
Can we make use of the continuity equation in quantum mechnics? Let us mul-

tiply the Schrödinger equation from the left by ψ∗ and do the same for the complex
conjugates:

ψ∗ i
∂ψ

∂t
= ψ∗

(−1

2m

)

∇2ψ

ψ − i
∂ψ∗

∂t
= ψ

(−1

2m

)

∇2ψ∗

−
∂

∂t
(ψ∗ ψ)
︸ ︷︷ ︸

ρ

= −~∇ ·
[
i

2m

(

ψ ~∇ψ∗ − ψ∗ ~∇ψ
)]

︸ ︷︷ ︸

~j

In the result we can recognize again the continuity equation if we interpret the density
and current as indicated.

Example: Consider a solution to the Schrödinger equation for a free particle:

ψ = N ei(~p~x−Et) ( show it is a solution )

then:

ρ = ψ∗ ψ = |N |2

~j =
i

2m

(

ψ ~∇ψ∗ − ψ∗ ~∇ψ
)

=
|N |2
m

~p

Exercise 4:
Derive the expressions for ρ and ~j in the above example explicitly starting from the
Schrödinger equation and its complex conjugate.

2.2 Relativistic Wave Equations

If we start with the relativistic equation:

E2 = ~p2 +m2

and again make the substitution:

E → i
∂

∂t
and ~p→ −i~∇

then we end up with the Klein Gordon equation for a wavefunction φ:

− ∂2

∂t2
φ = −∇2φ+m2 φ
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or in 4-vector notation:
(

2 +m2
)

φ(x) = 0

or :
(

∂µ∂
µ +m2

)

φ(x) = 0

A solution is again provided by plane waves:

φ(x) = N e−ipµxµ

with eigenvalues E2 = ~p2 +m2

In the same way as before we can define a current density by multiplying the K.G.
equation for φ from the left with φ∗ and doing the same to the complex conjugate
equation:

−iφ∗
(

−∂
2φ

∂t2

)

= −iφ∗
(

−∇2φ+m2 φ
)

iφ

(

−∂
2φ∗

∂t2

)

= iφ
(

−∇2φ∗ +m2φ∗
)

+
∂

∂t
i

(

φ∗ ∂φ

∂t
− φ

∂φ∗

∂t

)

︸ ︷︷ ︸

ρ

= ~∇ ·
[

i
(

φ∗ ~∇φ− φ ~∇φ∗
)]

︸ ︷︷ ︸

−~j

where we can recognize again the continuity equation. In 4-vector notation it becomes:

jµ =
(

ρ,~j
)

= i [φ∗ (∂µφ) − (∂µφ∗)φ]

∂µj
µ = 0

Let us substitute the plane wave solutions φ = N e−ipx then:

ρ = 2 |N |2 E
~j = 2 |N |2 ~p

or : → jµ = 2 |N |2 pµ

Exercise 5:
Derive the expressions for ρ and ~j explicitly starting from the Klein Gordon equation.

But now we really have an interpretation problem! There are two solutions: E = ±
√
~p2 +m2.

The solution with E < 0 is difficult to interpret as it means ρ < 0.

Exercise 6:
The relativitic energy-momentum relation can be written as:

E =
√

~p2 +m2 (2.1)

This is linear in E = ∂/∂t, but we don’t know what to do with the square root of the
momentum operator. However, for small ~p we can expand the expression in powers of
~p. Do this up and including to order ~p2 and write down the resulting wave equation.
Determine the probability density and the current density.
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Figure 2.1: Dirac’s interpretation of negative energy solutions: “holes”

2.3 Interpretation of negative energy solutions

2.3.1 Dirac’s interpretation

In 1927 Dirac offered a new interpretation of the negative energy states. He introduced
a new wave equation which in fact was linear in time and space, which will be discussed
later on in the course. It turned out to automatically describe particles with spin 1/2.
At this point in the course we consider spinless particles. Stated otherwise: the wave
function ψ or φ is a scalar quantity as there is no individual spin “up” or spin “down”
component.

According to the Pauli exclusion principle, Dirac knew that there can not be two
identical particles in the same quantum state. Dirac’s picture of the vacuum and of a
particle are schematically represented in Fig. 2.1.

The plot shows all the avaliable energy levels of an electron. It’s lowest absolute
energy level is given by |E| = m. Dirac imagined the vacuum to contain an infinite
number of states with negative energy which are all occupied. Since an electron is
a spin-1/2 particle each state can only contain one spin “up” electron and one spin-
”down” electron. All the negative energy levels are filled. Such a vacuum (“sea”) is not
detectable since the electrons in it cannot interact, i.e. go to another state.

If energy is added to the system, an electron can be kicked out of the sea. It now
gets a positive energy with E > m. This means this electron becomes visible as it can
now interact. At the same time a “hole” in the sea has appeared. This hole can be
interpreted as a positive charge at that position. Dirac’s hope was that he could describe
the proton in such a way.
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2.3.2 Pauli-Weisskopf Interpretation

Pauli and Weiskopf proposed a simpler scheme in 1934 in which they re-interpreted the
opposite sign solutions of the Klein Gordon equation as the opposite charges:
ρ = electric charge density
~j = electric current density

and the − and + solutions indicate the electron and positron. The positron then had
of course the mass as the electron. The positron was discovered in 1931 by Anderson.

2.3.3 Feynman-Stückelberg Interpretation

The current density for a particle with charge −e and momentum (E, ~p) is:

jµ(−e) = −2e |N |2 pµ = −2e |N |2 (E, ~p)

The current density for a particle with charge +e and momentum (E, ~p) is:

jµ(+e) = +2e |N |2 pµ = −2e |N |2 (−E,−~p)

This means that the positive energy solution for a positron is the negative energy
solution for an electron.

Note that indeed the wave function Neipµxµ

= Neipµxµ

is invariant under: pµ → −pµ
and xµ → −xµ. So the wave functions that describe particles also describe anti-particles.
The negative energy solutions give particles travelling backwards in time. They are the
same as the positive energy solutions of anti-particles travelling forward in time. This
is indicated in Fig. 2.2.

e e

E>0 E<0

+ −

t

Figure 2.2: A positron travelling forward in time is an electron travelling backwards in
time.

As a consequence of the Feynman-Stückelberg interpretation the process of an ab-
sorption of a positron with energy −E is the same as the emission of an electron with
energy E (see Fig.2.3). In the calculations with Feynman diagrams we have made the
convention that all scattering processes are calculated in terms of particles and not an-
tiparticles. As an example, the process of an incoming positron scattering off a potential
will be calculated as that of an electron travelling back in time (see Fig. 2.4).

Let us consider the scattering of an electron in a potential. The probability of a
process is calculated in perturbation theory in terms of basic scattering processes (i.e.
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(+E,p)

emission

absorption

−e

+e

time

(−E,−p)

Figure 2.3: There is no difference between the process of an absorption of a positron
with pµ = (−E,−~p) and the emission of an electron with pµ = (e, ~p).

+

time x

e
e−

Figure 2.4: In terms of the charge current density jµ+(E,~p)(+e) ≡ jµ−(E,~p)(−e)
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Feynman diagrams). In Fig. 2.5 the first and second order scattering of the electron is
illustrated. To first order a single photon carries the interaction between the electron and
the potential. When the calculation is extended to second order the electron interacts
twice with the field. It is interesting to note that this scattering can occur in two
time orderings as indicated in the figure. Note that the observable path of the electron
before and after the scattering process is identical in the two processes. Because of our
anti-particle interpretation, the second picture is also possible. It can be viewed in two
ways:

• The electron scatters at time t2 runs back in time and scatters at t1.

• First at time t1 “spontaneously” an e−e+ pair is created from the vacuum. Later-
on, at time t2, the produced positron annihilates with the incoming electron, while
the produced electron emerges from the scattering process.

In quantum mechanics both time ordered processes (the left and the right picture)
must be included in the calculation of the cross section. We realize that the vacuum
has become a complex environment since particle pairs can spontaneously emerge from
it and dissolve into it!

2

x

e−
time

e−

x

x

e− e−

−e

x

xt
t1
2

t
t
1

Figure 2.5: First and second order scattering.
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2.4 The Dirac Deltafunction

The definition of the Dirac delta function is:

δ(x) =

{

0 for x 6= 0
∞ for x = 0

0

surface = 1

infinite

in such a way that:
∫ ∞

−∞
δ(x) dx = 1

In that case one has: f(x) δ(x) = f(0) δ(x) for any function f . Therefore:

∫ ∞

−∞
f(x) δ(x) dx =

∫ ∞

−∞
f(0) δ(x) dx = f(0)

∫ ∞

−∞
δ(x) dx = f(0)

Exercise 7:
The consequences of the definition of the Dirac Delta function are the following:

(a) Prove that:

δ(kx) =
1

|k|δ(x)

(b) Prove that:

δ (g (x)) =
n∑

i=1

1

|g′ (xi)|
δ (x− xi)

where the sum i runs over the 0-points of g(x), i.e.:g(xi) = 0.
Hint: make a Taylor expansion of g around the 0-points.

Exercise 8
Characteristics of the Dirac delta function:

(a) Calculate
∫ 3
0 ln(1 + x) δ(π − x) dx

(b) Calculate
∫ 3
0 (2x2 + 7x+ 4) δ(x− 1) dx

(c) Calculate
∫ 3
0 ln(x3) δ(x/e− 1) dx

(d) Simplify δ
(√

(5x− 1) − x− 1
)

(e) Simplify δ(sinx) and draw the function
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The Electromagnetic Field

3.1 Maxwell Equations

As we eventually want to calculate processes in QED, let us look at the electromagnetic
field and the photon. The Maxwell equations in vacuum are:

(1) ~∇ · ~E = ρ Gauss law

(2) ~∇ · ~B = 0 No magnetic poles

(3) ~∇× ~E +
∂ ~B

∂t
= 0 Faraday′s law of induction

(4) ~∇× ~B − ∂ ~E

∂t
= ~j Relate B field to a current

From the first and the fourth equation we can indeed derive the continuity equation:

~∇ ·~j = −∂ρ
∂t

In scattering with particles we want to work relativistic, so it would be suitable if
we could formulate Maxwell equations in a covariant way; i.e. in a manifestly Lorentz
invariant way.

To do this we introduce a mathematical tool: the potential Aµ =
(

V, ~A
)

. We note

at this point that the fields ~E, ~B are physical, while the potential is not. Remember
that the following identities are valid for any vector field ~A and scalar field V :

~∇×
(

~∇V
)

= 0 ( rotation of gradient is 0 )

~∇ ·
(

~∇× ~A
)

= 0 ( divergence of a rotation is 0 )

We choose the potential in such a way that two Maxwell equations are automatically
fullfilled:

1. ~B = ~∇× ~A
Then, automatically it follows that: ~∇ · ~B = 0.

33



34 Lecture 3. The Electromagnetic Field

2. ~E = −∂ ~A
∂t

− ~∇V
Then, automatically it follows that: ~∇× ~E = −∂(~∇× ~A)

∂t
− 0 = −∂ ~B

∂t
.

So, by a suitable defition of how the potential Aµ is related to the physical fields,
automatically Maxwell equations (2) and (3) are fullfilled.

Exercise 9:

(a) Show that Maxwell’s equations can be written as:

∂µ∂
µAν − ∂ν∂µA

µ = jν

Hint: Derive the expressions for ρ and ~j explicitly and note that ~∇×
(

~∇× ~A
)

=

−∇2 ~A+ ~∇
(

~∇ · ~A
)

(b) It can be made even more compact by introducing the tensor: F µν ≡ ∂µAν−∂νAµ.
Show that with this definition Maxwell’s equations reduce to:

∂µF
µν = jν

Intermezzo: 4-vector notation

Assume that we have a contravariant vector:

Aµ =
(

A0, A1, A2, A3
)

=
(

A0, ~A
)

then the covariant vector is obtained as:

Aν = (A0, A1, A2, A3) = gµνA
µ =

(

A0,−A1,−A2 − A3
)

=
(

A0,− ~A
)

since we use the metric sensor:

gµν = gµν =








1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1








There is one exception to this: ∂µ ≡ ∂
∂xµ . For the derivative 4-vector we then find:

∂µ =

(

∂

∂t
, ~∇
)

∂µ =

(

∂

∂t
,−~∇

)

which is opposite to the contravariant and covariant behaviour of a usual 4-vector Aµ

defined above.
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3.2 Gauge Invariance

Since we have introduced the potential Aµ as a mathematical tool rather than as a
physical field we can choose any Aµ potential as long as the ~E and ~B fields don’t change.
After re-examining the equations that define A we realize that there is a freedom to make
so-caled gauge transformations which do not affect the physical fields ~E and ~B:

Aµ → A′µ = Aµ + ∂µλ or

Aµ → A′
µ = Aµ + ∂µλ for any scalar field λ

In terms of the Voltage V and vectors potential ~A we have:

V ′ = V +
∂λ

∂t
~A′ = ~A− ~∇λ

Exercise 10:
Show explicitly that in such gauge transformations the ~E and ~B fields do not change:

~B′ = ~∇× ~A′ = ... = ~B

~E ′ = −∂
~A′

∂t
− ~∇V ′ = ... = ~E

The laws of physics are gauge invariant. This implies that we can choose any gauge
to calculate physics quantities. It is most elegant if we can perform all calculations in
a way that is manifestly gauge invariant. However, sometimes we choose a particular
gauge in order to make the expressions in calculations simpler.

A gauge choice that is often made is called the Lorentz condition, in which we choose
Aµ according to:

∂µA
µ = 0

Exercise 11:
Show that it is always possible to define a Aµ field according to the Lorentz gauge. To
do this assume that for a given Aµ field one has: ∂µA

µ 6= 0. Give then the equation
for the gauge field λ by which that Aµ field must be transformed to obtain the Lorentz
gauge.

In the Lorentz gauge the Maxwell equations simplify further:

∂µ∂
µAν − ∂ν∂µA

µ = jν now becomes :

∂µ∂
µAν = jν
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However, Aµ still has some freedom since we have fixed: ∂µ (∂µλ), but we have not
yet fixed ∂µλ! In other words a gauge transformation of the form:

Aµ → A′µ = Aµ + ∂µλ with : 2λ = ∂µ∂
µλ = 0

is still allowed within the Lorentz gauge ∂µA
µ = 0. However, we can in addition impose

the Coulomb condition:

A0 = 0 or equivalently : ~∇ · ~A = 0

At the same time we realize, however, that this is not elegant as we give the “0-
th component” or “time-component” of the 4-vector a special treatment. Therefore the
choice of this gauge is not Lorentz invariant. This means that one has to chose a different
gauge condition if one goes from one reference frame to a different reference frame. This
is allowed since the choice of the gauge is irrelevant for the physics observables, but it
sometimes considered “not elegant”.

3.3 The photon

Let us turn to the wave function of the photon. We start with Maxwell’s equation and
consider the case in vacuum:

2Aµ = jµ → vacuum : jµ = 0 → 2Aµ = 0

Immediately we recognize in each component the Klein Gordon equation of a quantum
mechanical particle with mass m = 0: (2 +m2)φ(x) = 0 (see previous Lecture). This
particle is the photon.

The plane wave solutions of the massless K.-G. equation are:

Aµ (x) = Nεµ (~p) e−ipνxν

with : p2 = pµp
µ = 0

We are describing a vector field Aµ since the field has a Lorentz index µ. The vector
εµ(~p) is the polarization vector: it has 4 components. Does this mean that the photon
has 4 independent polarizations (degrees of freedom)?

Let us take a look at the gauge conditions and we see that there are some restrictions:

• Lorentz condition:

∂µA
µ = 0 ⇒ pµ ε

µ = 0

This reduces the number of independent components to three. For the gauge field
this implies 2λ = 0 and we see that we can choose the gauge field as:

λ = iae−ipνxν

∂µλ = apµe−ipνxν
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where a is a constant. Thus the gauge transformation looks like

Aµ → A′µ = N
(

εµe−ipνxν

+ apµe−ipνxu
)

or, in terms of the polarization vector:

εµ → ε′µ = εµ + apµ

Therefore, different polarization vectors which differ by a multiple of pµ describe
the same physical photon.

• Coulomb condition:

We choose the zero-th component of the gauge field such that: ε0 = 0. Then the
Lorentz condition reduces to:

{

A0 = 0
~∇ · ~A = 0

⇒
{

ε0 = 0
~ε · ~p = 0

So, instead of 4 degrees of freedom (εµ) we now only have 2 independent polarization
vectors which are perpendicular to the three-momentum of the photon. If the photon
travels along the z-axis the polarization degrees of freedom can be:

• transverse polarizations:

~ε1 = (1, 0, 0) ~ε2 = (0, 1, 0)

• circular polarizations:

~ε+ =
−~ε1 − i~ε2√

2
~ε− =

+~ε1 − i~ε2√
2

Exercise 12
Show that the circular polarization vectors ε+ and ε− transform under a rotation of
angle φ around the z-axis as:

~ε+ → ~ε′+ = e−iφ~ε+

~ε− → ~ε′− = eiφ~ε−

or ~ε′i = e−imφ ~εi

Hence ~ε+ and ~ε− describe a photon of helicity +1 and -1 respectively.

Since the photon is a spin-1 particle we would expect mz = −1, 0,+1. How about
helicity 0? The transversality equation ~ε · ~p = 0 arises due to the fact that the photon is
massless. For massive vector fields (or virtual photon fields!) this component is allowed:
~ε//~p.
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3.4 The Bohm Aharanov Effect

Later on in the course we will see that the presence of a vector field ~A affects the phase
of a wave function of the particle. The phase factor is affected by the presence of the
field in the following way:

ψ′ = ei
q
h̄
α(~r,t)ψ

where q is the charge of the particle, h̄ is Plancks constant, and α is given by:

α(~r, t) =
∫

r
d~r′ · A(~r′, t)

Let us now go back to the famous two-slit experiment of Feynman in which he
considers the interference between two possible electron trajectories. From quantum
mechanics we know that the intensity at a detection plate positioned behind the two
slits shows an interference pattern depending on the relative phases of the wave functions
ψ1 and ψ2 that travel different paths. For a beautiful description of this see chapter 1 of
the “Feynman Lectures on Physics” volume 3 (“2-slit experiment”) and pages 15-8 to
15-14 in volume 2 (“Bohm-Aharanov”). The idea is schematically depicted in Fig. 3.1.

2

slits

detector

Intensity

coil
source ψ

1

ψ

Figure 3.1: The schematical setup of an experiment that investigates the effect of the
presence of an A field on the phase factor of the electron wave functions.

In case a field ~A is present the phases of the wave functions are affected, such that
the wave function on the detector is:

ψ = ψ1 e
iqα1(~r,t) + ψ2 e

iqα2(~r,t) =
(

ψ1 e
iq(α1−α2) + ψ2

)

eiqα2

We note that the interference between the two amplitudes depends on the relative phase:

α1 − α2 =
∫

r1
d~r′1A1 −

∫

r2
d~r′2A2 =

∮

d~r′ · ~A(~r′, t)

=
∫

S

~∇× ~A(~r′, t) · d~S =
∫

S

~B · d~S = Φ
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where we have used Stokes theorem to relate the integral around a closed loop to the
magnetic flux through the surface. In this way the presence of a magnetic field can
affect, (i.e. shift) the interference pattern on the screen.

Let us now consider the case that a very long and thin solenoid is positioned in the
setup of the two-slit experiment. Inside the solenoid the B-field is homogeneous and
outside it is B = 0 (or sufficiently small), see Fig. 3.2. However, from electrodynamics

we recall the ~A field is not zero outside the coil. There is a lot of ~A circulation around
the thin coil. The electrons in the experiment pass through this ~A field which quantum
mechanically affects the phase of their wave function and therefor also the interference
pattern on the detector. On the other hand, there is no B field in the region, so
classically there is no effect. Experimentally it has been verified (in a technically difficult
experiment) that the interference pattern will indeed shift.

A

B

Figure 3.2: Magnetic field and vector potential of a long solenoid.

Discussion:
We have introduced the vector potential as a mathematical tool to write Maxwells
equations in a Lorentz covariant form. In this formulation we noticed that the A-field
has some arbitraryness due to gauge invariance. Quantummechanically we observe,
however, that the A field is not just a mathematical tool, but gives a more fundamental
description of “forces”. The aspect of gauge invariance seems an unwanted (“not nice”)
aspect now, but later on it will turn out to be a fundamental concept in our description
of interactions.
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Exercise 13 The delta function

(a) Show that
d3p

(2π)32E
(3.1)

is Lorentz invariant (d3p = dpxdpydpz). Do this by showing that

∫

M(p) 2d4p δ(p2 −m2) θ(p0) =
∫

M(~p)
d3p

E
. (3.2)

The 4-vector p is (E, px, py, pz), and M(p) is a Lorentzinvariant function of p and
θ(p0) is the Heavyside function.

(b) The delta-function can have many forms. One of them is:

δ(x) = lim
α→∞

1

π

sin2 αx

αx2
(3.3)

Make this plausible by sketching the function sin2(αx)/(παx2) for two relevant
values of α.

(c) Show that another (important!) representation of the Dirac delta function is given
by

δ(x) =
1

2π

∫ +∞

−∞
eikx dk

To do this use the definition of Fourier transforms:

f(x) =
1

2π

∫ +∞

−∞
g(k) eikx dk

g(k) =
∫ +∞

−∞
f(x) e−ikx dx



Lecture 4

Perturbation Theory and Fermi’s
Golden Rule

4.1 Non Relativistic Perturbation Theory

Let us start to examine a scattering process: A + B → C + D. As an example we
take in mind the case where two electrons scatter in an electromagnetic potential Aµ as
schematically depicted in Fig. 4.1

µ

B

e

C

e− −

e

e

−

−

A

D

i
i

f

f

A

Figure 4.1: Scattering of two electrons in a electromagnetic potential.

The ingredients to calculate the counting rate for a scattering process: A+B → C+D
are:

1. The transition probability Wfi to go from an initial state ′′i′′ to a final state ′′f ′′.

2. The experimental conditions called the “flux” factor. It includes both the beam
intensity and the target density.

3. The Lorentz invariant “phase space” factor Φ (also referred to as dLIPS). It takes
care of the fact that experiments usually can not observe individual states but
integrate over a number of (allmost identical) states.

41
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The formula for the calculation of a (differential) cross section is:

dσ =
Wfi

Flux
Φ

Note that the “real” physics, (i.e. the Feynman diagrams) is included in the transition
probability Wfi. The flux and the phase space factors are the necessary “bookkeeping”
needed to compare the physics theory with a realistic experiment. (The calculation of
the phase space can in fact be rather involved.)

4.1.1 The Transition Probability

In order to calculate the transition probability we use the framework of non-relativistic
perturbation theory. In the end we will see how we can use the result in a Lorentz
covariant way and apply it to relativistic scattering.

Consider the scattering of a particle in a potential as depicted in Fig. 4.2 Assume
that before the interaction takes place, as well as after, the system is described by the
non-relativistic Schrödinger equation:

i
∂ψ

∂t
= H0 ψ

where H0 is the unperturbed Hamiltonian, which does not have a time dependence.
Solutions of this equation can be written in the as:

ψm = φm(~x) e−iEmt

with eigenvalues Em.
The φm form a complete set orthogonal eigenfunctions of: H0φm = Emφm, so:

∫

φ∗
m(~x) φn(~x) d

3x = δmn

t=0 

H

V(x,t)ψ
i

ψ
f

0

0H
t=T/2t=−T/2

Figure 4.2: Scattering of a particle in a potential.
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Assume that at t = 0 a perturbation occurs such that the system is described by:

i
∂ψ

∂t
= (H0 + V (~x, t)) ψ (4.1)

The solutions ψ can generally be written as:

ψ =
∞∑

n=0

an(t) φn(~x) e
−iEnt (4.2)

where an(t) is the coëfficient to find the system in state “n”.
To determine these coëfficients an(t) substitute 4.2 in 4.1:

i
∞∑

n=0

dan(t)

dt
φn(~x) e

−iEnt + i
∞∑

n=0

(−i) En an(t) φn(~x) e−iEnt =

∞∑

n=0

En an(t) φn(~x) e
−iEnt +

∞∑

n=0

V (~x, t) an(t) φn(~x) e
−iEnt

and the two terms proportional to En cancel.
Multiply the resulting equation from the left with: ψ∗

f = φ∗
f (~x) e

iEf t and integrate
over volume d3x to obtain:

i
∞∑

n=0

dan(t)

dt

∫

d3x φ∗
f (~x) φn(~x)

︸ ︷︷ ︸

δfn

e−i(En−Ef)t =

∞∑

n=0

an(t)
∫

d3x φ∗
f (~x) V (~x, t) φn(~x) e

−i(En−Ef)t

Next we use the orthonormality relation:

∫

d3x φ∗
m(~x) φn(~x) = δmn

so that we find:

daf (t)

dt
= −i

∞∑

n=0

an(t)
∫

d3x φ∗
f (~x) V (~x, t) φn(~x) e

−i(En−Ef)t

We will assume two simplifications:

• We prepare the incoming wave in a single state: The incoming wave is: ψi =
φi(~x) e

−iEit. In other words: ai(−∞) = 1 and an(−∞) = 0 for (n 6= i).

• We will assume that the inital condition is true during the time that the pertur-
bation happens! This implies that we work with a weak interaction. In fact this is

the lowest order in perturbation theory in which we replace
∞∑

n=0

by just one term:

n = i. It means that af (t) << 1 is assumed at all times.
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Then we get:

daf (t)

dt
= −i

∫

d3x φ∗
f (~x) V (~x, t) φi(~x) e

−i(Ei−Ef)t

Our aim is to determine af (t):

af (t
′) =

∫ t′

−T/2

daf (t)

dt
dt = −i

∫ t′

−T/2
dt
∫

d3x
[

φf (~x) e
−iEf t

]∗
V (~x, t)

[

φi(~x) e
−iEit

]

We define the transition amplitude Tfi as the amplitude to go from state i final state f
at the end of the interaction:

Tfi ≡ af (T/2) = −i
∫ T/2

−T/2
dt
∫

d3x φ∗
f (~x, t) V (~x, t) φi(~x, t)

Finally we take the limit: T → ∞. Then we can write the expression in 4-vector
notation:

Tfi = −i
∫

d4x φ∗
f (x) V (x) φi(x)

Note:
The expression for Tfi has a manifest Lorentzinvariant form. It is true for each Lorentz
frame. Although we started with Schrödinger’s equation (i.e. non-relativistic) we will
always use it: also for relativistic frames.

1-st and 2-nd order perturbation

What is the meaning of the initial conditions: ai(t) = 1, an(t) = 0 ? It implies that the
potential can only make one quantum perturbation from the initial state i to the final
state f . For example the perturbation: i→ n→ f is not included in this approximation
(it is a 2nd order perturbation).

If we want to improve the calculation to second order in perturbation theory we
replace the approximation an(t) = 0 by the first order result:

daf (t)

dt
= −i Vfi ei(Ef−Ei)t

+ (−i)2




∑

n6=i
Vni

∫ t

−T/2
dt′ ei(En−Ei)t

′



 Vfn e
i(Ef−En)t

where we have assumed that the perturbation is time independent and introduced the
notation:

Vfi ≡
∫

d3xφ∗
f (~x) V (~x) φi(~x)

See the book of Halzen and Martin how to work out the second order calculation. A
graphical illustration of the first and second order perturbation is given in Fig. 4.3.
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V

fi

fn

ni
space

time

i

f

i

f
1−st order 2−nd order

V V

Figure 4.3: First and Second order approximation in scattering.

Can we interpret |Tfi|2 as the probability that a particle has scattered from state i
to state f? Consider the case where the perturbation is time independent. Then:

Tfi = −i Vfi
∫ ∞

−∞
dt ei(Ef−Ei)t = −2πi Vfi δ (Ef − Ei)

The δ-function expresses energy conservation in i → f . From the uncertainty princple
it can then be inferred that the transition between two exactly defined energy states
Ei and Ef must be infinitely seperated in time. Therefore the quantity |Tfi|2 is not a
meaningfull quantity. We define instead the transition probability per unit time as:

Wfi = lim
T→∞

|Tfi|2
T

The calculation of the transition probability is non-trivial as it involves the square of a
δ-function. A proper treatment is rather lengthy1 and involves the use of wave packets.
Instead we will apply a “trick”. If we assume that the interaction occurs during a time
period T from t = −T/2 until t = +T/2 we can write:

|Wfi| = lim
T→∞

1

T
|Vfi|2

∫ ∞

−∞
dt ei(Ef−Ei)t ·

∫ T/2

−T/2
dt′ ei(Ef−Ei)t′

= |Vfi|2 2πδ (Ef − Ei) · lim
T→∞

1

T

∫ T/2

−T/2
dt′

︸ ︷︷ ︸

T

The δ-function in the first integral implies that there is only contribution for Ef equal
to Ei in the second integral.

Then we note that the arbitrary chosen time period T drops out of the formula such
that the transition probability per unit time becomes:

Wfi = lim
T→∞

|Tfi|2
T

= 2π |Vfi|2 δ (Ef − Ei)

This is the transition probability for a given initial state into a specific final state.

1see e.g. the book by K.Gottfried, “Quantum Mechanics” (1966), Volume 1, sections 12, 56.
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In particle physics experiments we typically have:

• Well prepared initial states

• An integral over final states that are reached: ρ(Ef )dEf .

Finally we arrive at Fermi’s Golden rule:

Wfi = 2π
∫

dEf ρ (Ef ) |Vfi|2 δ (Ef − Ei)

= 2π |Vfi|2 ρ (Ei)

Exercise 14
Assume that there is a constant perturbation potential between t = −T/2 and t = T/2.
(a) Write down the expression for Tfi at time T/2 and do the integral over t.
(b) Write down the expression for Wfi. Show that this expression corresponds to the
one in the lecture in the limit that T → ∞.
(c) Assume that density for final states ρ(Ef ) is a constant and perform the integral
over all final states dEf . Compare it to the expression of Fermi’s Golden rule.

Hint:
∫+∞
−∞

sin2x
x2 dx = π

4.1.2 Normalisation of the Wave Function

Let us assume that we are working with solutions of the Klein-Gordon equation:

φ = N e−ipx

We normalise the wave function in a given volume V to 1:

∫

V
φ∗ φ dV = 1 ⇒ N =

1√
V

The probability density for a Klein Gordon wave is given by (see Lecture 2):

ρ = 2 |N |2 E ⇒ ρ =
2E

V

In words: in a given volume V there are 2E particles. The fact that ρ is proportional to
E is needed to compensate for the Lorentz contraction of the volume element d3x such
that ρ d3x remains constant. The volume V is arbitrary and in the end it must drop
out of any calculation of a scattering process.
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beam

target

A B

Figure 4.4: A beam incident on a target.

4.1.3 The Flux Factor

The flux factor or the initial flux corresponds to the amount of particles that pass each
other per unit area and per unit time. This is easiest to consider in the lab frame.
Consider the case that a beam of particles (A) is shot on a target (B), see Fig. 4.4

The number of beam particles that pass through unit area per unit time is given by
|~vA| nA. The number of target particles per unit volume is nB. The density of particles
n is given by n = ρ = 2E

V
such that:

Flux = |~vA| na nb = |~vA|
2EA
V

2EB
V

Exercise 15
In order to provide a general, Lorentz invariant expression for the flux factor replace ~vA
by ~vA − ~vB and show using: ~vA = ~PA/EA and ~vB = ~PB/EB, that:

Flux = 4
√

(pA · pB)2 −m2
Am

2
B / V

2

4.1.4 The Phase Space Factor

How many quantum states can be put into a given volume V ? Assume the volume is
rectangular with sides Lx, Ly, Lz. A particle with momentum p has a “size” given by:
λ = 2π/p. Using periodic boundary conditions to ensure no net particle flow out of the
volume we see that the number of states with a momentum between ~p = (0, 0, 0) and
~p = (px, py, pz) is

N = nx ny nz =
Lx
λx

Ly
λy

Lz
λz

=
Lxpx
2π

Lypy
2π

Lzpz
2π

=
V

(2π)3 px py pz
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Figure 4.5: Schematic calculation of the number of states in a box of volume V .

An alternative view is given by Burcham & Jobes on page 305. The number of final
states is given by the total size of the available phase space for the final state divided
by the volume of the elementary cell: h3 (within an elementary cell states cannot be
distinguished):

N =
1

h3

∫

dx dy dz dpx dpy dpz =
V

(2π)3 h̄3

∫

dpx dpy dpz =
V

(2π)3 px py pz

As a consequence, the number of states with momentum between ~p and ~p+ d~p (i.e.
between (px, py, pz) and (px + dpx, py + dpy, pz + dpz) ) is:

dN =
V

(2π)3 dpx dpy dpz

The wave functions were normalized according to
∫

V ρdV = 2E, therefore the number
of states per particle is:

#states/particle =
V

(2π)3

d3p

2E

For a process in the form A + B → C + D + E + .... with N final state particles the
Lorentz invariant phase space factor is:

dΦ = dLIPS =
N∏

i=1

V

(2π)3

d3pi
2Ei
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4.1.5 Summary

Finally we arrive at the formula to calculate a cross section for the process

Ai +Bi → Cf +Df + ...

dσfi =
1

flux
Wfi dΦ

Wfi = lim
T→∞

|Tfi|2
T

Tfi = −i
∫

d4x ψ∗
f (x) V (x) ψi(x)

dΦ =
N∏

i=1

V

(2π)3

d3~pi
2Ei

flux = 4
√

(pA · pB)2 −m2
Am

2
B / V

2

Exercise 16
Show that the cross section does not depend on the arbitrary volume V .

Exercise 17
Why is the phase space factor indeed Lorentz invariant? (Hint: Just refer to a previous
exercise.)
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4.2 Extension to Relativistic Scattering

The transition amplitude of the scattering process A + B → C +D, for incoming and
outgoing plane waves φ = Ne−ipx takes the form:

Tfi = −i NANBNCND (2π)4 δ(pA + pB − pC − pD) M

where M is the so-called Matrix element and the delta function takes care of the energy
and momentum conservation in the process.

To find the transition probability we square this expression:

|Tfi|2 = |NANBNCND|2 |M|2
∫

d4x e−i(pA+pB−pC−pD)x ×
∫

d4x′ e−i(pA+pB−pC−pD)x′

= |NANBNCND|2 |M|2 (2π)4 δ4(pA + pB − pC − pD) × lim
T,V→∞

∫

TV
d4x

= |NANBNCND|2 |M|2 (2π)4 δ4(pA + pB − pC − pD) × lim
T,V→∞

TV

This gives for the transition probability per unit time and volume:

Wfi = lim
T,V→∞

|Tfi|2
TV

= |NANBNCND|2 |M|2 (2π)4 δ (pA + pB − pC − pD)

Indeed we see that the delta funtion provides conservation of energy and momentum.

The cross section is again given by2:

dσ =
Wfi

Flux
Φ2

The phase space factor is:

Φ2 =
V d3pC

(2π)3 · 2EC
V d3pD

(2π)3 · 2ED
and the Flux factor is:

Flux = 4
√

(pA · pB)2 −m2
A m

2
B / V

2

Taking it all together with N = 1
√
V :

dσ =
1

V 4
|M|2 (2π)4δ4 (pA + pB − pC − pD)· V 2

4
√

(pA · pB)2 −m2
Am

2
B

· V d3pC

(2π)3 2EC

V d3pD

(2π)3 2ED

In this formula the arbitrary volume factors V cancel again.

2Usually we will write this as:

dσ =
|M|2
Flux

dΦ

and absorb the delta function in the phase space factor.
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We finally have for the cross section of A+B → C +D:

dσ =
(2π)4 δ4 (pA + pB − pC − pD)

4
√

(pA · pB)2 −m2
Am

2
B

· |M|2 · d3pC

(2π)3 2EC

d3pD

(2π)3 2ED

Similarly the formula for decay A→ C +D is:

dΓ =
(2π)4 δ4 (pA − pC − pD)

2EA
· |M|2 · d3pC

(2π)3 2EC

d3pD

(2π)3 2ED

Exercise 18 (See also H&M Ex. 4.2)
Calculate the two particle phase space in the interaction A+B → C +D.

(a) Start with the expression:

Φ2 =
∫

(2π)4 δ4 (pA + pB − pC − pD)
d3 ~pC

(2π)3 2EC

d3 ~pD

(2π)3 2ED

Do the integral over d3pD using the δ function and show that we can write:

Φ2 =
∫ 1

(2π)2

p2
f dpf dΩ

4ECED
δ (EA + EB − EC − ED)

where we have made use spherical coordinates (i.e.: d3pC = |pC |2dpC dΩ) and of
pf ≡ |pC |.

(b) In the C.M. system we can write:
√
s ≡ W = EA +EB. Show that the expression

becomes (hint: calculate dW/dpf ):

Φ2 =
∫ 1

(2π)2

pf
4

(
1

EC + ED

)

dW dΩ δ (W − EC − ED)

So that we finally get:

Φ2 =
1

4π2

pf
4
√
s
dΩ

(c) Show that the flux factor in the center of mass is:

F = 4pi
√
s

and hence that the differential cross section for a 2 → 2 process in the center of
mass frame is given by:

dσ

dΩ

∣
∣
∣
∣
∣
cm

=
1

64π2s

pf
pi

|M|2

For the decay rate A→ B + C one finds (4pi
√
s→ 2EA = 2mA):

dΓ

dΩ

∣
∣
∣
∣
∣
cm

=
1

32π2m2
A

pf |M|2
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Lecture 5

Electromagnetic Scattering of
Spinless Particles

Introduction

In this lecture we discuss electromagnetic scattering of spinles particles. First we de-
scribe an example of a charged particle scattering in an external electric field. Second
we derive the cross section for two particles that scatter in each-others field. We end
the lecture with a prescription how to treat antiparticles.

In classical mechanics the equations of motion can be derived using the variational
principle of Hamilton which states that the action integral I should be stationary under
arbitrary variations of the generalized coordinates qi, q̇i: δI = 0, where:

I =
∫ t1

t0
L(qi, q̇i)dt with L(qi, q̇i) = T − V

This leads to the Euler Lagrange equations of motion (see Appendix A):

d

dt

∂L
∂q̇i

=
∂L
∂qi

.

These may also be written in the form

ṗi =
∂L
∂qi

with pi =
∂L
∂q̇i

,

the generalized (or canonical) momentum.

5.1 Electrodynamics

How do we introduce electrodynamics in the wave equation of a system? The Hamilto-
nian of a free particle is:

H ψ =
~p2

2m
ψ

53
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In the presence of an electromagnetic field the equation of movement is:

~F =
d~p

dt
= q

(

~E + ~v × ~B
)

The Hamiltonian that leads to the desired equation of motion is (see e.g. Jackson):

H ψ =
[

1

2m

(

~p− q ~A(~r, t)
)2

+ qΦ(~r, t)
]

ψ

This means that we replace the kinematic energy and momentum by the canonical
energy and momentum: E → E − qΦ and ~p→ ~p− q ~A. In 4-vec notation:

pµ → pµ − qAµ

This is called minimal substitution contains the essential physics of electrodynamics.

Exercise 19
The Lagrangian for a charged particle moving in a electromagnetic field is:

L =
1

2
m~v2 + q~v · ~A(~r, t) − qΦ(~r, t)

(a) Show that for a uniform magnetic field, we may take:

V = 0, ~A =
1

2
~B × ~r

If we choose the z-axis in the direction of ~B we have in cylindrical coordinates
(r, φ, z):

V = 0, Ar = 0, Aφ =
1

2
Br, Az = 0

Hint: In cylindrical coördinates the cross product is defined as:

~∇× ~A =

(
1

r

∂Az
∂φ

− ∂Aφ
∂z

,
∂Az
∂z

− ∂Az
∂r

,
1

r

[
∂ (rAφ)

∂r
− ∂Ar

∂φ

])

(b) Write down the Lagrangian in cylindrical coördinates

(c) Write out the Lagrangian equations:

d

dt

(

∂L
∂q̇α

)

=
∂L
∂qα

in the cylindrical coördinates.

(d) Show that the equation of motion in terms of the coordinate φ̇ yields (assume
r=constant):

φ̇ = 0 or φ̇ = −qB
m

i.e. that it is in agreement with the law:

~F =
d~p

dt
= q

(

~E + ~v × ~B
)
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In quantum mechanics we make the replacement pµ → i∂µ, such that we have now:

∂µ → ∂µ + iqAµ

This is the heart of quantum electrodynamics. As we will see later in the lectures
this substitution is mandatory in order make the theory quantum electrodynamics lo-
cally gauge invariant! (This was exactly the substitution in the example of the Bohm-

Aharanov effect where ~p→ ~p− q ~A in the phase of the wave function.)
Start with the free particle Klein-Gordon equation:

(

∂µ∂
µ +m2

)

φ = 0

and substitute ∂µ → ∂µ − ieAµ for a particle with charge −e:

(∂µ − ieAµ) (∂µ − ieAµ) φ+m2φ = 0

which is of the form: (

∂µ∂
µ +m2 + V (x)

)

φ = 0

from which we derive for the perturbation potential:

V (x) = −ie (∂µA
µ + Aµ∂

µ) − e2A2

Since e2 is small (α = e2/4π = 1/137) we can neglect the second order term: e2A2 ≈ 0.

φ

H

V(x,t)i

f

0

0H

φ

Figure 5.1: Scattering potential

From the previous lecture we take the general expression for the transition amplitude:

Tfi = −i
∫

d4x φ∗
f (x) V (x) φi(x)

= −i
∫

d4x φ∗
f (x) (−ie) (Aµ∂

µ + ∂µA
µ) φi(x)

Use now partial integration to calculate:
∫

d4x φ∗f ∂µ (Aµ φi) =
[

φ∗f A
µ φi

]∞

−∞
︸ ︷︷ ︸

=0

−
∫

∂µ
(

φ∗f
)

Aµ φi d
4x
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note that at t = −∞ and at t = +∞: Aµ = 0.

We then get:

Tfi = −i
∫

−ie
[

φ∗
f (x) (∂µφi(x)) −

(

∂µφ
∗
f (x)

)

φi(x)
]

︸ ︷︷ ︸

jfi
µ

Aµ d4x

We had the definition of a Klein-Gordon current density:

jµ = −ie [φ∗ (∂µφ) − (∂µφ
∗)φ]

In complete analogy we now define the “transition current density” to go from initial
state i to final state f :

jfiµ = −ie
[

φ∗
f (∂µφi) −

(

∂µφ
∗
f

)

φi
]

so that we arrive at:

Tfi = −i
∫

jfiµ Aµ d4x

This is the expression for the transition amplitude for going from free particle solution i
to free particle solution f in the presence of a perturbation caused by an electromagnetic
field.

If we substitute the free particle solutions of the unperturbed Klein-Gordon equation
in initial and final states we find for the transition current of spinless particles:

φi = Ni e
−ipix ; φ∗

f = N∗
f e

ipfx

jfiµ = −eNiN
∗
f

(

piµ + pfµ
)

ei(pf−pi)x

Verify that the conservation law ∂µjfiµ = 0 holds. From this equation it can be derived
that the charge is conserved in the interaction.

5.2 Scattering in an External Field

Consider the case that the external field is a static field of a point charge Z located in
the origin:

Aµ =
(

V, ~A
)

=
(

V,~0
)

with V (x) =
Ze

4π|~x|
The transition amplitude is:

Tfi = −i
∫

jµfi Aµ d
4x

= −i
∫

(−e)NiN
∗
f

(

pµi + pµf
)

Aµ e
i(pf−pi)x d4x
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Insert that Aµ =
(

V,~0
)

and thus: pµ Aµ = E V :

Tfi = i
∫

eNiN
∗
f (Ei + Ef ) V (x) ei(pf−pi)x d4x

Split the integral in a part over time and in a part over space and note that V (~x) is not

time dependent. Use also again:
∫

ei(Ef−Ei)tdt = 2π δ (Ef − Ei) to find that:

Tfi = ieNiN
∗
f (Ei + Ef ) 2π δ (Ef − Ei)

∫ Ze

4π|~x| e
−i(~pf−~pi)~x d3x

Now we make use of the Fourier transform:

1

|~q|2 =
∫

d3x ei~q~x
1

4π|~x|

Using this with ~q ≡ (~pf − ~pi) we obtain:

Tfi = ieNiN
∗
f (Ei + Ef ) 2π δ (Ef − Ei)

Ze

|~pf − ~pi|2

The next step is to calculate the transition probability:

Wfi = lim
T→∞

|Tfi|2
T

= lim
T→∞

1

T

∣
∣
∣NiN

∗
f

∣
∣
∣ [2π δ (Ef − Ei)]

2

(

Ze2 (Ei + Ef )

|~pf − ~pi|2
)2

We apply again our “trick” (or calculate the integral explicitly and let T → ∞):

lim
T→∞

[2π δ (Ef − Ei)]
2 = 2π δ (Ef − Ei) · lim

T→∞

∫ T/2

−T/2
dt ei(Ef−Ei)t

= 2π δ (Ef − Ei) · lim
T→∞

∫ T/2

−T/2
ei0tdt

︸ ︷︷ ︸

T

= lim
T→∞

2π δ (Ef − Ei) · T

Putting this back into Wfi we obtain:

Wfi = lim
T→∞

1

T
· T |NiNf |2 2π δ (Ef − Ei)

(

Ze2 (Ei + Ef )

|~pf − ~pi|2
)2

The cross section is given by1:

dσ =
Wfi

Flux
dLips

1Note that E = m0γ and ~p = m0γ~v so that ~v = ~p/E.
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with :

Flux = ~v
2Ei
V

=
~pi
Ei

2Ei
V

=
2~pi
V

dLips =
V

(2π)3

d3pf
2Ef

Normalization : N =
1√
V

→
∫

V
φ∗φdV = 1

In addition, from energy and momentum conservation we write E = Ei = Ef and
p = |~pf | = |~pi|

Putting everything together:

dσ =
1

V 2
2π δ (Ef − Ei) ·

(

Ze2 (Ei + Ef )

|~pf − ~pi|2
)2

· V

2 |~pi|
V

(2π)3

d3pf
2Ef

Note that the arbitrary volume V drops from the expression!
Use now d3pf = p2

f dpf dΩ and |pf | = |pi| = p to get:

dσ =
1

(2π)2 δ (Ef − Ei)

(

Ze2 (Ei + Ef )

|~pf − ~pi|2
)2 p2

f dpf dΩ

2|~pi| 2Ef

=
1

(2π)2 δ (Ef − Ei)










Ze2 (Ei + Ef )

2p2 (1 − cos θ)
︸ ︷︷ ︸

4p2 sin2 θ/2










2

p dp dΩ

4E

now, since E2 = m2 + ~p2, use p dp = E dE such that:

p dp dΩ

4E
δ (Ef − Ei) =

dE δ (Ef − Ei) dΩ

4
=
dΩ

4

We arrive at the expression for the differential cross section:

dσ =

(

Ze2E

4πp2 sin2 θ/2

)2

dΩ

or:

dσ

dΩ
=

Z2E2e4

16π2p4 sin4 θ/2
=

Z2E2α2

p4 sin4 θ/2

In the classical (i.e. non-relativistic) limit we can take E → m and Ekin = p2

2m
such

that:

dσ

dΩ
=

Z2m2α2

4m2E2
kin sin4 θ/2

=
Z2α2

4E2
kin sin4 θ/2

the well known Rutherford scattering formula.
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5.3 Spinless π −K Scattering

Let us proceed to the case of QED scattering of a π− particle on a K− particle. We
ignore the fact that pions and kaons also are subject to the strong interaction (e.g. we
could consider scattering at large distances).

Aµ γ

A : π−

B : K−

C : π−

D : K−

We know from the previous calculation how a
particle scatters in an external field. In this case
the field is not external as the particles scatter
in each others field. How do we deal with it?

Ansatz:
Consider first only the pion. It scatters in the field of the kaon. How do we find the field
generated by the kaon? This field is again caused by the transition current jµBD of the
scattering kaon. The field is then found by solving Maxwell’s equations for this current
(adopting the Lorentz gauge condition):

∂ν∂
νAµ = jµBD = −eNBN

∗
D (pµB + pµD) ei(pD−pB)x

(see the previous section.)
Since ∂ν∂

νe−iqx = −q2 e−iqx we can verify that

Aµ =
e

q2
NBN

∗
D (pµB + pµD) ei(pD−pB)x = − 1

q2
jµBD ,

where we have used that q = (pD− pB) = −(pC − pA) is the 4-vector momentum that is
transmitted from the pion particle to the kaon particle via the Aµ field, i.e. the photon.

In this case the transition amplitude becomes:

Tfi = −i
∫

jµAC Aµ d
4x = −i

∫

jµAC
−1

q2
jBDµ d4x = −i

∫

jµAC
−gµν
q2

jνBD d
4x

Note:

1. The expression is symmetric in the two currents. It does not matter whether we
scatter the pion in the field of the kaon or the kaon in the field of the pion.

2. There is only scattering if q2 6= 0. This is interesting as for a “normal” photon
one has q2 = m2 = 0. It implies that we deal with virtual photons; i.e. photons
that are “off mass-shell”.

Writing out the expression we find:

Tfi = −ie2
∫

(NAN
∗
C) (pµA + pµC) ei(pC−pA)x · −1

q2
· (NBN

∗
D) (pµB + pµD) ei(pD−pB)x d4x
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Next, do the integrals over x in order to obtain the energy-momentum conservation
δ-functions:

Tfi = −ie2 (NAN
∗
C) (pµA + pµC)

−1

q2
(NBN

∗
D)

(

pBµ + pDµ
)

(2π)4 δ4 (pA + pB − pC − pD)

Usually this is written in terms of the matrix element M as:

Tfi = −i NANBN
∗
CN

∗
D (2π)4 δ4 (pA + pB − pC − pD) · M

with : − iM = ie (pA + pC)µ
︸ ︷︷ ︸

vertex factor

· −igµν
q2

︸ ︷︷ ︸

propagator

· ie (pB + pD)ν
︸ ︷︷ ︸

vertex factor

−igµν

q2

A

B

C

D

ie(pA + pC)µ

ie(pB + pD)µ

The matrix element M contains:

a vertex factor: for each vertex we introduce the
factor: iepµ, where:
· e is the intrinsic coupling strength of the par-
ticle to the e.m. field.
· pµ is the sum of the 4-momenta before and af-
ter the scattering (remember the particle/anti-
particle convention).

a propagator: for each internal line (photon) we
introduce a factor −igµν

q2
, where:

· q is the 4-momentum of the exchanged photon
quantum.

Using Fermi’s golden rule we can proceed to calculate the relativistic transition
probability:

Wfi = lim
T,V→∞

|Tfi|2
TV

= lim
T,V→∞

1

TV
|NANBN

∗
CN

∗
D|2 |M|2

∣
∣
∣(2π)4δ4 (pA + pB − pC − pD)

∣
∣
∣

2

Again we use the “trick” :

δ(p) = lim
T,V→∞

1

(2π)4

∫ +T/2

−T/2
dt

∫ +V/2

−V/2
d3x eipx

such that

lim
T,V→∞

1

TV
|δ4(p)|2 =

1

TV
TV δ(p)

We get for the transition amplitude:

Wfi = |NANBNCND|2 |M|2 (2π)4 δ4 (pA + pB − pC − pD)
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For the scattering process: A+B → C +D the cross section is obtained from:

dσ =
Wfi

Flux
dLips

Flux = 4
√

(pA · pB)2 −m2
Am

2
B/V

2

dLips =
V

(2π)3

d3pC
2EC

V

(2π)3

d3pD
2ED

The volume V cancels again and we obtain:

dσ =
(2π)4 δ4 (pA + pB − pC − pD)

4
√

(pA · pB)2 −m2
Am

2
B

|M|2 d3pC

(2π)3 2EC

d3pD

(2π)3 2ED

which leads to the differential cross section for 2 → 2 electromagnetic scattering is (see
exercise 18):

dσ

dΩ
=

1

64π2

1

s

∣
∣
∣
∣
∣

~pf
~pi

∣
∣
∣
∣
∣
|M|2

We will work it out for the relativistic case that: E = p, i.e. m ≈ 0.

pµA = (p, p, 0, 0)

pµB = (p,−p, 0, 0)

pµC = (p, p cos θ, p sin θ, 0)

pµD = (p,−p cos θ,−p sin θ, 0)

qµ = (pD − pB)µ = (0, p(1 − cos θ),−p sin θ, 0)

p
C 

p
B

Ap

p
D

q2
θ

We calculate the matrix element and the differential cross section using:

(pA + pC)µ = (2p, p(1 + cos θ), p sin θ, 0)

(pB + pD)µ = (2p,−p(1 + cos θ),−p sin θ, 0)

to get:

(pA + pC)µ gµν (pB + pD)ν = p2 (6 + 2 cos θ)

q2 = −2p2 (1 − cos θ)

We then find for the matrix element:

−iM = ie (pA + pC)µ
−igµν
q2

ie (pB + pD)ν

M = e2
p2 (6 + 2 cos θ)

2p2 (1 − cos θ)
= e2

(

3 + cos θ

1 − cos θ

)
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and then:

|M|2 =
(

e2
)2
(

3 + cos θ

1 − cos θ

)2

Finally we obtain from:
dσ

dΩ
=

1

64π2

1

s

p

p
|M|2

the cross section (α = e2/4π):

dσ

dΩ
=

1

64π2

1

s

(

e2
)2
(

3 + cos θ

1 − cos θ

)2

=
α2

4s

(

3 + cos θ

1 − cos θ

)2

This is the QED cross section for spinless scattering.

5.4 Particles and Anti-Particles

We have seen that the negative energy state of a particle can be interpreted as the
positive energy state of its anti-particle. How does this effect energy conservation that
we encounter in the δ-functions? We have seen that the Matrix element has the form
of:

M ∝
∫

φ∗
f (x) V (x) φi(x) dx

Let us examine four cases:

• Scattering of an electron and a photon:

k

pi

pf

M ∝
∫ (

e−ipfx
)∗

e−ikx e−ipix dx

=
∫

e−i(pi+k−pf)x dx

= (2π)4 δ (Ei + ω − Ef ) δ
3
(

~pi + ~k − ~pf
)

⇒ Energy and momentum conservation are
guaranteed by the δ-function.

• Scattering of a positron and a photon:

k

−pi

−pf

Replace the anti-particles always by particles by
reversing (E, ~p→ −E,−~p) such that now:
incoming state = −pf , outgoing state = −pi:

M ∝
∫ (

e−i(−pi)x
)∗

e−ikx e−i(−pf )x dx

=
∫

e−i(pi−pf+k)x dx

= (2π)4 δ (Ei + ω − Ef ) δ
3
(

~pi + ~k − ~pf
)
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• Electron positron pair production:

k

p−

-p+

M ∝
∫ (

e−ip−x
)∗

e−i(−p++k)x dx

=
∫

e−i(k−p+−p−)x dx

= (2π)4 δ (k − p− − p+)

• Electron positron annihilation:

-p+

p−

k M ∝
∫ (

e−i(k−p+)x
)∗

e−i(p−)x dx

=
∫

e−i(p−+p+−k)x

= (2π)4 δ (p− + p+ − k)

Exercise 20
Decay rate of π0 → γγ:

(a) Write down the expression for the total decay rate Γ for the decay: A→ C +D

(b) Assume that particle A is a π0 particle with a mass of 140 MeV and that particles
C and D are photons. Draw the Feynman diagram for this decay

(i) assuming the pion is a uū state.

(ii) assuming the pion is a dd̄ state.

(c) For the Matrix element we have: M ∼ fπ e
2, where for the decay constant we

insert fπ = mπ.

(i) Where does the factor e2 come from?

(ii) What do you think is the meaning of the factor fπ? Describe it qualitatively.

(d) The π0 is actually a uū+ dd̄ wave with 3 colour degrees of freedom.

(i) Give the expression for the decay rate.

(ii) Calculate the decay rate expressed in GeV.

(iii) Convert the rate into seconds using the conversion table of the introduction
lecture.

(iv) How does the value compare to the Particle Data Group (PDG) value?
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Lecture 6

The Dirac Equation

Introduction

It is sometimes said that Schrödinger had first discovered the Klein-Gordon equation
before the equation carrying his own name, but that he had rejected it because it was
quadratic in ∂

∂t
. In Lecture 2 we have seen how indeed the Klein-Gordon equation leads

to the interpretation of negative probabilities: ρ = 2|N |2E, where the energy can be:
E = ±

√
~p2 +m2.

To avoid this problem Dirac in 1928 tried to make a relativistic correct equation that
was linear in ∂

∂t
. He wanted to combine the merits of a linear combination (no negative

probabilites) with the relativistic correctness of the K.G. equation. Since he wanted the

equation to be linear in ∂
∂t

, Lorentz covariance requires it to be also linear in ~∇.
What Dirac found, to his own great surprise, was an equation that describes particles

with spin 1
2
, i.e. the fundamental fermions. At the same time he predicted the existence

of anti-matter. This was not taken serious untill 1932, when Anderson found the anti-
electron: the positron.

6.1 Dirac Equation

Write the Hamiltonian in a general form1:

Hψ = (~α · ~p+ βm) ψ (6.1)

with coëfficients α1, α2, α3, β. These must be chosen such that after squaring one finds:

H2ψ =
(

~p2 +m2
)

ψ

Let us try eq 6.1 and see what happens:

H2ψ = (αipi + βm)2 ψ with : i = 1, 2, 3

=




 α2

i
︸︷︷︸

=1

p2
i + (αiαj + αjαi)

︸ ︷︷ ︸

=0 i>j

pipj + (αiβ + βαi)
︸ ︷︷ ︸

=0

pim+ β2

︸︷︷︸

=1

m2




 ψ

1Here ~α · ~p = αxpx + αypy + αzpz
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So we have the following requirements:

• α2
1 = α2

2 = α2
3 = β2 = 1

• α1, α2, α3, β anti-commute with each other.

Note that Dirac discovered this just a few years after the beginning of the formulation of

quantum mechanics and commuting operators. He was highly interested in the mathematical

behaviour of the operators.

Immediatly we conclude that ~α, β cannot be ordinary numbers, but that they must
be matrices. They now operate on a wave function which has become a column vector
(called a spinor). This was not believed when Dirac first published his theory.

The lowest dimensional matrices that have the desired behaviour are 4× 4 matrices
(see the book of Aitchison (1972) chapter 8; section 1). The choice of the (~α, β) is
however not unique. Here we choose the Dirac-Pauli representations:

~α =

(

0 ~σ
~σ 0

)

; β =

(

I 0
0 −I

)

where ~σ are the Pauli matrices:

σ1 =

(

0 1
1 0

)

; σ2 =

(

0 −i
i 0

)

; σ3 =

(

1 0
0 −1

)

Note that the physics is independent of the representation. It only depends on the
anti-commuting behaviour of the operators. Another representation is the Weyl repre-
sentation:

~α =

(

−~σ 0
0 ~σ

)

; β =

(

0 I
I 0

)

Exercise 21

(a) Write a general Hermitian 2 × 2 matrix in the form

(

a b
b∗ c

)

where a and c

are real. Write then b = s + it and show that the matrix can be written as:
{(a+ c) /2} I + sσ1 − tσ2 + {(a− c) /2}σ3

How can we conclude that ~α and β cannot be 2 × 2 matrices?

(b) Show that the ~α and β matrices in both the Dirac-Pauli as well as in the Weyl
representation have the required anti-commutation behaviour.

One can show using the fact that the energy must be real (see Aitchison) that the
αi and β matrices are Hermitian:

α†
i = αi ; β† = β



6.2. Covariant form of the Dirac Equation 67

6.2 Covariant form of the Dirac Equation

We had
Hψ = (~α · ~p+ βm) ψ

Now we replace: H → i ∂
∂t

, ~p→ −i~∇ to find:

i
∂

∂t
ψ =

(

−i~α · ~∇ + βm
)

ψ

Multiply this equation from the left side by β (note that β2 = 1):

iβ
∂

∂t
ψ = −iβ~α · ~∇ψ +mψ

iβ
∂

∂t
ψ + iβ~α · ~∇ψ −mψ = 0

(

iβ
∂

∂t
ψ + iβα1

∂

∂x
+ iβα2

∂

∂y
+ iβα3

∂

∂z

)

ψ −mψ = 0

in which we see a nice symmetric structure arising. We write the equation in a covariant
notation:

(iγµ∂µ −m) ψ = 0

with : γµ = (β, β~α) ≡ Dirac γ−matrices

In fact the Dirac eq. are really 4 coupled differential equations:

for each
j=1,2,3,4

:
4∑

k=1





3∑

µ=0

i (γµ)jk ∂µ −mδjk



 (ψk) = 0

or :














i














. . . .

. . . .

. . . .

. . . .
︸ ︷︷ ︸

γµ














· ∂µ −








1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1







·m





















ψ1

ψ2

ψ3

ψ4








=








0
0
0
0








or even more specific:

[(

11 0
0 −11

)

i∂

∂t
+

(

0 σ1

−σ1 0

)

i∂

∂x
+

(

0 σ2

−σ2 0

)

i∂

∂y
+

(

0 σ3

−σ3 0

)

i∂

∂z
−
(

11 0
0 11

)

m

]








ψ1

ψ2

ψ3

ψ4








=








0
0
0
0








Take note of the use of the Dirac (or spinor) indices (j, k = 1, 2, 3, 4) simultaneously
with the Lorentz indices (µ = 0, 1, 2, 3).

On the other hand, there is an alternative and very short notation: an electron is
described by:

(iγµ∂µ −m)ψ = 0 ⇒ (i 6∂ −m)ψ = 0
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while the equation:
i 6∂ ψ = 0

contains everything you want to know about a neutrino (assuming m = 0).

6.3 The Dirac Algebra

From the definitions of ~α and β we can derive the following relation:

γµγν + γνγµ ≡ {γµ, γν} = 2gµν

Thus: (

γ0
)2

= 11 ;
(

γ1
)2

=
(

γ2
)2

=
(

γ2
)2

= −11

Also we have the Hermitean conjugates:

γ0† = γ0 ; β† = β

γi
†

=
(

βαi
)†

= αi
†
β† = αiβ = −γi

Then the relation
{

γk, γ0
}

= 0 implies:

γkγ0 = −γ0γk = γ0γk
†

thus : γ0γkγ0 = γ02
γk

†
= γk

†

In general:

γµ† = γ0γµγ0

In words this means that we can undo a hermitean conjugate γµ†γ0 by moving a γ0

“through it”: γµ†γ0 = γ0γµ

Furthermore we can define:

γ5 = iγ0γ1γ2γ3 =

(

0 11
11 0

)

with the characteristics:

γ5† = γ5
(

γ5
)2

= 11
{

γ5, γµ
}

= 0

6.4 Current Density

Similarly to the case of the Schrödinger and the Klein-Gordon equations we can derive
a continuity equation to determine the current density jµ: Write the Dirac equation as:

iγ0∂ψ

∂t
+ iγk

∂ψ

∂xk
−mψ = 0 k = 1, 2, 3
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We work now with matrices, so instead of complex conjugates we use Hermitean conju-
gates:

−i∂ψ
†

∂t
γ0 − i

∂ψ†

∂xk

(

−γk
)

−mψ† = 0

But now we have a problem! The additional − sign in
(

−γk
)

disturbs the Lorentz
invariant form of the equation. This means we cannot use this equation.
We can restore Lorentz covariance by multiplying the equation from the right by γ0.
Or, in other words, we can define the adjoint spinor as: ψ = ψ†γ0.

Dirac spinor :








ψ1

ψ2

ψ3

ψ4








Adjoint Dirac spinor :
(

ψ1, ψ2, ψ3, ψ4

)

The adjoint Dirac equation the becomes:

−i∂ψ
∂t
γ0 − i

∂ψ

∂xk
γk −mψ = 0 k = 1, 2, 3

Now we multiply the Dirac equation from the left by ψ and we mulitply the adjoint
Dirac equation from the right by ψ:

(

i∂µψγ
µ +mψ

)

ψ = 0

ψ (i∂µγ
µψ −mψ) = 0

+

ψ (∂µγ
µψ) +

(

∂µψγ
µ
)

ψ = 0

We recognize again the continuity equation:

∂µj
µ = 0 with : jµ =

(

ψγµψ
)

6.4.1 Dirac Interpretation

Consider

j0 = ψγ0ψ = ψ†γ0γ0ψ = ψ†ψ =
4∑

i=1

|ψi|2 > 0

Therefore the probability density is always greater then 0! This is the historical moti-
vation of Dirac’s work.

However, we had seen in the Pauli-Weiskopf interpretation that jµ =
(

ρ,~j
)

was the
charge current density. In that case:

jµ = −eψγµψ

is the electric 4-vector current density (just as we used it before). In the Feynman-
Stückelberg interpretation the particle solution with negative energy is the antiparticle
solution with positive energy.
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Note:
In the case of Klein-Gordon waves, the current of an antiparticle (jµ = 2|N |2pµ) gets
a minus sign w.r.t. the current of the particle, due to reversal of 4-momentum. In
order to keep this convention an additional, ad-hoc, − sign is required for the current
of a spin-1/2 antiparticle (e.g. positron). This additional − sign between particles and
antiparticles is only required for fermionic currents and not for bosonic currents. It
is related to the spin-statistics connection: bosonic wavefunctions are symmetric, and
fermionic wavefunctions are anti-symmetric. In field theory2 the extra minus sign is
related to the resulting fact that bosonic field operators follow commutation relations,
while fermionic field operators follow anti-commutation relations. This was realized
first by W.Pauli in 1940. In conclusion: fermionic anti-particle currents get an ad-hoc
additional − sign to maintain the Feynman-Stückelberg interpretation!

If we use the ansatz: ψ = u(p)e−ipx for the spinor ψ then we get for the interaction
current density 4-vector:

jµfi = −eu†fγ0γµuie
i(pf−pi)x

= −eufγµuie−iqx

jµfi = −e ( uf )




 γµ









 ui




 · e−iqx

Exercise 22: Traces and products of γ matrices
For the γ matrices we have:

γµγν + γνγµ = 2 gµν

Use this relation to show that:

(a) 6a 6b+ 6b 6a = 2 (a · b)

(b) i) γµγ
µ = 4

ii) γµ 6a γµ = −2 6a
iii) γµ 6a 6b γµ = 4 (a · b)
iv) γµ 6a 6b 6c γµ = −2 6c 6b 6a

(c) i) Tr 11 = 4

ii) Tr (odd number of γµ’s) = 0

iii) Tr (6a 6b ) = 4 (a · b)
iv) Tr (6a 6b 6c 6d ) = 4 [ (a · b)(c · d) − (a · c)(b · d) + (a · d)(b · c) ]

(d) i) Tr γ5 = Tr i γ0γ1γ2γ3 = 0

ii) Tr γ5 6a 6b = 0

iii) Optional excercise for ”die-hards”: Tr γ5 6a 6b 6c 6d = −4 i εαβγδ a
αbβcγdδ

where εαβγδ = +1(−1) for an even (odd) permutation of 0,1,2,3; and 0 if two
indices are the same.

2See Aitchison & Hey, 3rd edition §7.2



Lecture 7

Solutions of the Dirac Equation

7.1 Solutions for plane waves with ~p = 0

We look for free particle solutions of:

(iγµ∂µ −m) ψ = 0

A quick way to get wave solutions with ~p = 0 is to realize that this implies −i~∇ ψ = 0,
or that the wavefunction ψ has no explicit space dependence. In that case the Dirac
equation (iγµ∂µ −m) ψ = 0 reduces to iγ0 ∂ψ

∂t
= mψ, or written in the Dirac-Pauli

representation:
(

11 0
0 −11

) (
∂ψA

∂t
∂ψB

∂t

)

= −i m
(

ψA
ψB

)

⇒ ψ =

(

ψA
ψB

)

=

(

e−imt ψA(0)
e+imt ψB(0)

)

where the solution is given immediately. Note that ψA represents a two-component
spinor with positive energy and ψB a two-component spinor with negative energy. In
the following, however, we will follow the standard textbook method to derive the Dirac
solutions.

Exercise 23
Each of the four components of the Dirac equation satisfies the Klein Gordon equation:
(∂µ∂

µ +m2)ψi = 0.
Show this explicitly by operating on the Dirac equation from the left with: γν∂ν .
Hint: Use the anticommutation relation of the γ-matrices.

Ansatz:
This suggests to try the plane wave solutions:

ψ(x) = u(p) e−ipx

Since ψ(x) is a 4-component spinor, also u(p) is a 4-component spinor. After substitution
in the Dirac equation we find what is called the Dirac equation in the momentum

71



72 Lecture 7. Solutions of the Dirac Equation

representation:

(γµpµ −m) u(p) = 0

or : (6p −m) u(p) = 0

Remember that the Dirac equation is a linear set of equations (use here the Pauli-Dirac
representation):

[ (

11 0
0 −11

)

E −
(

0 σi
−σi 0

)

pi −
(

11 0
0 11

)

m

] (

uA
uB

)

= 0

In fact we can recognize two coupled equations:

{

(~σ · ~p) uB = (E −m)uA
(~σ · ~p) uA = (E +m)uB

where uA and uB are now each two component spinors.
Let us first look at solutions for a particle at rest: ~p = 0:

{

(~σ · ~p) uB = (E −m)uA
(~σ · ~p) uA = (E +m)uB

⇒
{

E uA = m uA
E uB = −m uB

For these equations there are 4 independent solutions, the eigenvectors:

u(1) =








1
0
0
0








, u(2) =








0
1
0
0








, u(3) =








0
0
1
0








, u(4) =








0
0
0
1








with eigenvalues: E = m, m, −m, −m, respectively.
u(1), u(2) are the positive energy solutions of e−.
u(3), u(4) are the negative energy solutions of e− and thus the positive energy solutions
of e+.

We define the antiparticle solutions as follows:

v(1)(p) = u(4)(−p)
v(2)(p) = −u(3)(−p)

The −sign in u(3) is chosen such that the charge conjugation transformation (see later)
implies u(1) → v(1) and u(2) → v(2).
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7.2 Solutions for moving particles ~p 6= 0

Again look at:

{

(~σ · ~p) uB = (E −m)uA
(~σ · ~p) uA = (E +m)uB

Choose now for the two E > 0 solutions:

u
(1)
A =

(

1
0

)

, u
(2)
A =

(

0
1

)

Then it follows:

u
(1)
B =

~σ · ~p
E +m

u
(1)
A =

~σ · ~p
E +m

(

1
0

)

u
(2)
B =

~σ · ~p
E +m

u
(2)
A =

~σ · ~p
E +m

(

0
1

)

So, the two independent solutions are:

u(1) =

(

u
(1)
A

u
(1)
B

)

, u(2) =

(

u
(2)
A

u
(2)
B

)

Analogously: choose for the two E < 0 solutions:

u
(3)
B =

(

1
0

)

, u
(4)
B =

(

0
1

)

then it follows:

u
(3)
A =

~σ · ~p
E −m

u
(3)
B = − ~σ · ~p

|E| +m

(

1
0

)

u
(4)
A =

~σ · ~p
E −m

u
(4)
B = − ~σ · ~p

|E| +m

(

0
1

)

So, the two independent solutions are now:

u(3) =

(

u
(3)
A

u
(3)
B

)

, u(4) =

(

u
(4)
A

u
(4)
B

)

To gain insight, let us write them out in more detail.
Use the explicit representation:

~σ · ~p =

(

0 1
1 0

)

px +

(

0 −i
i 0

)

py +

(

1 0
0 −1

)

pz

we find:

(~σ · ~p) u(1)
A =

(

pz px − ipy
px + ipy −pz

) (

1
0

)

=

(

pz
px + ipy

)

and similar for u
(2)
A , u

(3)
B , u

(4)
B .



74 Lecture 7. Solutions of the Dirac Equation

Then we find the solutions:

electron spinors : u(1) = N









1
0
pz

E+m
px+ipy

E+m









, u(2) = N









0
1

px−ipy

E+m−pz

E+m









positron spinors : v(1) = N









px−ipy

|E|+m
−pz

|E|+m
0
1









, v(2) = N









−pz

|E|+m
−(px+ipy)
|E|+m
−1
0









and we can verify that the u(1) - u(4) solutions are indeed orthogonal.

Exercise 24
Show explicitly that the Dirac equations describes relativistic particles. To do this
substitute the expression:

uB =
~σ · ~p
E +m

uA into uA =
~σ · ~p
E −m

uB

Hint: Work out the product (~σ · ~p)2 in components.

7.3 Particles and Anti-particles

The spinors u(p) of matter waves are solutions of the Dirac equation:

(6p −m) u(p) = 0 ⇒ solutions with p0 = E > 0

For the antiparticles (the solutions v(p)) we have substituted v(p) = u(−p). Remember
that we interpret an antiparticle as a particle travelling back in time. Let us make the
same substitution in the Dirac equation (for negative p0 !):

(− 6p −m) u(−p) = 0 ⇒ replaced p→ −p

Then we find for solutions with the new p0 (=E>0) the Dirac equation for anti-particles:

(6p +m) v(p) = 0
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7.3.1 The Charge Conjugation Operation

The Dirac equation for a particle in an electromagnentic field is obtained by substituting
∂µ → ∂µ + iqAµ in the free Dirac equation. For an electron (q = −e) this leads to:

[γµ (i∂µ + eAµ) −m]ψ = 0 .

Similarly, there must be a Dirac equation describing the positron (q = +e):

[γµ (i∂µ − eAµ) −m]ψC = 0 ,

where the positron wave function ψC is obtained by a one-to-one correspondence with
the electron wave function ψ. Let us assume that the positron wave function can be
obtained using a charge conjugation matrix C, which operates as follows:

ψC = C ψ
T

= Cγ0ψ∗ .

We note that ψ is the “row-wise” solution of the adjoint Dirac equation (while ψ† is not!

- see previous lecture) and ψ
T

is the associated column vector (like ψ).
Let us take the complex conjugate of the electron equation:

[−γµ∗ (i∂µ − eAµ) −m]ψ∗ = 0

Assume that there is a matrix (Cγ0), such that:

−(Cγ0)γµ∗ = γµ(Cγ0)

then we can use the complex conjugated electron equation to show that:

(Cγ0) [−γµ∗ (i∂µ − eAµ) −m]ψ∗ = 0

[γµ (i∂µ − eAµ) −m]Cγ0ψ∗ = 0

and that we indeed obtain the positron equation if ψC = Cγ0ψ∗.
A possible choice of the matrix (Cγ0) can be shown to be:

Cγ0 = iγ2 =








1
−1

−1
1








.

7.4 Normalisation of the Wave Function

We choose again (similar to the Klein-Gordon case) a normalisation of the wave function
such that there are 2E particles in a unit volume:

∫

V
ρdV =

∫

ψγ0ψ dV =
∫

ψ†γ0γ0ψdV =
∫

ψ†ψdV
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Substitute now the plane wave solution: ψ = u(p) e−ipx:
∫

ρdV =
∫

u†(p) eipx u(p) e−ipx dV = u†(p)u(p)
∫

V
dV

Choose the unit volume and normalise to 2E:
∫

V
dV = 1 ; u†(p)u(p) = 2E

where for u we must substitute: u1(p), u2(p), v1(p), v2(p). Using orthogonality of the
solutions we get the relations:

u(r)† u(s) = 2E δrs r, s = 1, 2

v(r)† v(s) = 2E δrs r, s = 1, 2

Explicit calculation gives:

u(1)† u(1) = N2
(

1, 0,
pz

E +m
,
px − ipy
E +m

)









1
0
pz

E+m
px+ipy

E+m









= 2E

..... ⇒ N2

(E +m)2







(E +m)2 + p2
x + p2

y + p2
z

︸ ︷︷ ︸

E2−m2







= 2E

..... ⇒ N2

(E +m)2 (2E (E +m)) = 2E

⇒ N =
√
E +m

Analogously for u(2), v(1), v(2).

7.5 The Completeness Relation

Let’s look again at the Hermitian conjugate Dirac equation for the adjoint spinors u, v:

Dirac : (6p −m)u = 0

Look at : [(γµpµ −m) u = 0]† ⇒ u†
(

γµ†pµ −m
)

= 0

Multiply this from the right side by γ0:

u†γµ†γ0pµ − u†γ0m = 0

Use now: γµ† = γ0γµγ0 to find:

u†γ0

︸ ︷︷ ︸

u

γµ γ0γ0

︸ ︷︷ ︸

1

pµ − u†γ0

︸ ︷︷ ︸

u

m = 0

then : uγµpµ − um = 0
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The conjugate Dirac equation is therefore:

u (6p −m) = 0

Also in exactly the same way:

(6p +m) v = 0 ⇒ v (6p +m) = 0

We can now (see exercise 25) derive the completeness relations:

∑

s=1,2

u(s)(p) u(s)(p) = (6p +m)

∑

s=1,2

v(s)(p) v(s)(p) = (6p −m)

Note: u u is not an inproduct but we have
here 4x4 matrix relations:







.

.

.

.







·(....) =




 γµ




·pµ+




 11




·m

These relations will be used later on in the calculation of the Feynman diagrams.
(Note:

∑

s=3,4 u
(s)(p) u(s)(p) =

∑

s=1,2 v
(s)(−p) v(s)(−p) = −(6p +m) )

Exercise 25: (See also H&M p.110-111 and Griffiths p. 242)
The spinors u, v, ū and v̄ are solutions of respectively:

(6p−m) u = 0

(6p+m) v = 0

ū (6p−m) = 0

v̄ (6p+m) = 0

(a) Use the orthogonality relations:

u(r)† u(s) = 2E δrs

v(r)† v(s) = 2E δrs

to show that:

ū(s) u(s) = 2m

v̄(s) v(s) = −2m

(b) Show that: (~σ · ~p)2 = |~p|2

(c) Derive the completeness relations:
∑

s=1,2

u(s)(p) ū(s)(p) = 6p+m

∑

s=1,2

v(s)(p) v̄(s)(p) = 6p−m
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7.6 Helicity

The Dirac spinors for a given momentum p have a two-fold degeneracy. This implies
that there must be an additional observable that commutes with H and p and the eigen-
values of which distinguish between the degenerate states.
Could the extra quantum number be spin? So, eg.: u(1) = spin “up”, and u(2) =spin “down”?
No! Because spin does not commute with H (see exercise 26).

Exercise 26: (Exercise 7.8 Griffiths, see also Exercise 5.4 of H & M)
The purpose of this problem is to demonstrate that particles described by the Dirac
equation carry “intrinsic” angular momentum (~S) in addition to their orbital angular

momentum (~L). We will see that ~L and ~S are not conserved individually but that their
sum is.

(a) Compare the Dirac equation

(γµpµ −m)ψ = 0 ,

with Schrödinger’s equation
Hψ = Eψ ,

and derive an expression for the Hamiltonian H from this (see previous lecture).

(b) The orbital angular momentum is ~L = ~r × ~p. Show that [pi, xj] = −iδij and use

this to show that ~L does not commute with H:
[

H, ~L
]

= −iγ0 (~γ × ~p) .

(c) Show that ~S, given by:

~S =
1

2
~Σ =

1

2

(

~σ 0
0 ~σ

)

also does not commute with H:
[

H, ~S
]

= iγ0 (~γ × ~p) .

We see from (b) and (c) that the sum of the commutators is equal to 0, and

therefore ~J = ~L+ ~S is conserved.

The fact that spin is not a good quantum number can also be realised upon inspec-
tion of the solutions u:

u(1) =









1
0
pz

E+m
px+ipy

E+m









So solutions can have: px 6= 0 & py 6= 0 & pz 6= 0.
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The spin operator is defined as:

~Σ =

(

~σ 0
0 ~σ

)

If it commutes, the states should be eigenstates of the spin operator and we expect:

~Σ u(1) = s u(1) ?

This is not possible as can be seen by requiring the equation:

(

~σ 0
0 ~σ

)









(

1
0

)

(

pz/ (E +m)
(px + ipy) / (E +m)

)









?
=

s









(

1
0

)

(

pz/ (E +m)
(px + ipy) / (E +m)

)









to be true for any px, py, pz.
However, it can be made to work if we define the helicity λ as:

λ =
1

2
~Σ · p̂ ≡ 1

2

(

~σ · p̂ 0
0 ~σ · p̂

)

We could interpret the helicity as the “spin component in the direction of movement”.
(Or: we choose px = py = 0 and consider only σz in the equation above). In this case
the orbital angular momentum is zero by definition and and J = S is conserved.

One can verify that indeed λ commutes with the Hamiltonian H = ~α · ~p+ βm:
[

H, ~Σ · p̂
]

= ... = 0

Choose ~p = ((0, 0, p). For the spin component in the direction of movement we have
the eigenvalues:

1

2
(~σ · p̂) uA =

1

2
σ3uA = ±1

2
uA

1

2
(~σ · p̂) uB =

1

2
σ3uB = ±1

2
uB

Positive helicity = spin and momentum parallel
Negative helicity = spin and momentum anti-parallel
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Exercise 27: (Exercise 5.5 of H & M)

(a) Use the equations
(~σ · ~p)uA = (E +m)uB (7.1)

to show that, for a non-relativistic electron with velocity β, uB is een factor 1
2
β

smaller then uA. In a non-relativistic description ψA and ψB are often called
respectively the “large” and “small” components of the electron wavefunction.

(b) Show that the Dirac equation for an electron with charge −e in the non-relativistic
limit in an electromagnetic field Aµ = (A0,A) reduces to the Schrödinger-Pauli
equation

(
1

2m

(

~p+ e ~A
)2

+
e

2m
~σ ·B − eA0

)

ψA − ENRψA , (7.2)

where the magnetic field ~B = ~∇× ~A, and the non-relativistic energy ENR = E−m.
Assume that |eA0| << m.
Do this by substituting pµ + eAµ for pµ in eq 7.1 and solve the equations for ψA.
Use:

~p× ~A+ ~A× ~p = −i~∇× ~A ,

where ~p = −i~∇.
The term with eA0 in 7.2 is a constant potential energy that is of no further
importance. The term with ~B arises due to the fact that ~p and ~A don’t commute.
In this term we recognise the magnetic field:

−~µ · ~B = −g e

2m
~S · ~B .

Here g is the gyromagnetic ratio, i.e. the ratio between the magnetic moment
of a particle and its spin. Classicaly we have g = 1, but according to the Direc
equation (~S = 1

2
~σ) one finds g = 2. The current value of (g− 2)/2 is according to

the Particle Data Book

(g − 2)/2 = 0.001159652193 ± 0.000000000010

This number, and its precision, make QED the most accurate theory in physics.
The deviation from g = 2 is caused by high order corrections in perturbation
theory.



Lecture 8

Spin 1/2 Electrodynamics

8.1 Feynman Rules for Fermion Scattering

With the spinor solutions of the Dirac equation we finally have the tools to calculate
cross section for fermions (spin-1/2 particles). Analogously to the case of spin 0 particles
(K.G.-waves) we determine the solutions of the Dirac equations in the presence of a
perturbation potential. So we work with the free spin-1/2 solutions ψ = u(p) e−ipx that
satisfy the free Dirac equation: (γµp

µ −m)ψ = 0.
In order to introduce an electromagnetic perturbation we make again the substitution

for a particle with q = −e: pµ → pµ + eAµ. The Dirac equation for an electron then
becomes:

(γµp
µ −m)ψ + eγµA

µψ = 0 (8.1)

Again, we would like to have a kind of Schrödinger equation, ie. an equation of the type:

(H0 + V )ψ = Eψ

In order to get to this form, we multiply eq 8.1 from the left by γ0:

→
(

γ0γµp
µ − γ0m

)

ψ + eγ0γµA
µψ = 0

→
(

E − γ0γkpk − γ0m
)

ψ = −eγ0γµA
µψ

→ Eψ =
(

γ0γkpk + γ0m
)

︸ ︷︷ ︸

H0=~α·~p+βm

ψ − eγ0γµA
µ

︸ ︷︷ ︸

V

ψ

For such a theory we can write, in analogy to spinless scattering:

Tfi = −i
∫

ψ†
f (x) V (x) ψi(x) d

4x

Note, that the difference with the case of the KG solutions in spinless scattering is that
we had:

Tfi = −i
∫

ψ∗
f (x) V (x) ψi(x) d

4x

where we now have Hermite conjugates instead of complex conjugates.

81
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We substitute for the potential: V (x) = −eγ0γµA
µ to obtain the expression:

Tfi = −i
∫

ψ†
f (x)

(

−eγ0γµA
µ(x)

)

ψi(x)d
4x

= −i
∫

ψf (x) (−e) γµψi(x)Aµ(x) d4x

For the current density we had in a previous lecture the expression:

jµ = −eψγµψ

So we find, in complete analogy to the spinless particle case:

Tfi = −i
∫

jfiµ Aµ d4x

with jfiµ = −e ψf γµ ψi
= −euf γµ ui ei(pf−pi)x

and jfiµ can be interpreted as the electromagnetic transition current between state i and
state f .

Remember that:
jfiµ = ( uf )




 γµ









 ui




 =

(

jfi
)

µ

Similar to the spinless case we will use the Aµ solutions of the Maxwell equations
to determine the Feynman rules for scattering of particle with spin. Consider again the
case in which particle 1 scatters in the field of particle 2: ie. we consider the interaction:
A+B → C +D:

q2

uA

uB

uC

uD

jµ(1)

jµ(2)
We had from Maxwell:

2Aµ = jµ(2)

to which the solution was:

Aµ = − 1

q2
jµ(2)

The transition amplitude is then again:

Tfi = −i
∫

j(1)
µ

−1

q2
jµ(2) d

4x = −i
∫

jµ(1)
−gµν
q2

jν(2) d
4x

which is symmetric in terms of particle (1) and (2). We insert the explicit expression
for the current:

jµfi = −eufγµui ei(pf−pi)x
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to obtain:

Tfi = −i
∫

−euCγµuA ei(pC−pA)x · −gµν
q2

· −euDγνuB ei(pD−pB)x d4x

So that we arrive at the “Feynman Rules”:

Tfi = −i (2π)4 δ4 (pD + pC − pB − pA) · M

−iM = ie (uCγ
µuA)

︸ ︷︷ ︸

vertex

· −igµν
q2

︸ ︷︷ ︸

propagator

· ie (uDγ
νuB)

︸ ︷︷ ︸

vertex

without spin: with spin:

1 1
ie (pf + pi)

µ ui uf
ieγµ

Figure 8.1: Vertex factors for left: spinless particles, right: spin 1/2 particles.

Exercise 28:
A spinless electron can interact with Aµ only via its charge; the coupling is proportional
to (pf + pi)

µ. An electron with spin, on the other hand, can also interact with the
magnetic field via its magnetic moment. This coupling involves the factor iσµν (pf − pi).
The relation between the Dirac current and the Klein-Gordon current can be studied as
follows:

(a) Define the antisymmetric σµν tensor as:

σµν =
i

2
(γµγν − γνγµ)

Show that the Gordon decomposition of the Dirac current can be made:

ufγ
µui =

1

2m
uf
[

(pf + pi)
µ + iσµν (pf − pi)ν

]

ui

Hint: Start with the term proportional to σµν and use: γµγν + γνγµ = 2gµν and
use the Dirac equations: γνpiνui = mui and ufγ

νpfν = muf .

(b) (optional) Make exercise 6.2 on page 119 of H& M which shows that the Gordon
decomposition in the non-relativistic limit leads to an electric and a magnetic
interaction. (Compare also to exercise 27.)
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8.2 Electron - Muon Scattering

We proceed to use the Feynman rules to calculate the cross section of the process:
e−µ− → e−µ−. We want to calculate the unpolarized cross section:

• The incoming particles are not polarized. This implies that we average over spins
in the initial state.

• The polarization of the final state particles is not measured. This implies that we
sum over the spins in the final state.

The spin summation and averaging means that we replace the matrix element by:

|M|2 → |M|2 =
1

(2sA + 1) (2sB + 1)

∑

Spin

|M|2

where 2sA + 1 is the number of spin states of particle A and 2sB + 1 for particle B. So
the product (2sA + 1) (2sB + 1) is the number of spin states in the initial state.

−iM = −igµν

q2

e− : uA

µ− : uB

e− : uC

µ− : uD

ieuCγ
µuA

ieuDγ
νuB

We have to take the square of the diagram and sum over all spin states. For a given
spin state:

−iM = −e2 uCγµuA
−i
q2

uDγµuB

|M|2 = e4
[

(uCγ
µuA)

1

q2
(uDγµuB)

] [

(uCγ
νuA)

1

q2
(uDγνuB)

]∗

=
e4

q4
Lµνelectron L

muon
µν

Intermezzo:
If

M = AµBµ

then

|M|2 = [AµBµ] [AνBν ]
∗

= (A0B0 − A1B1 − A2B2 − A3B3) (A∗
0B

∗
0 − A∗

1B
∗
1 − A∗

2B
∗
2 − A∗

3B
∗
3)

= |A0|2|B0|2 − A0A
∗
1B0B

∗
1 − A0A

∗
2B0B

∗
2 − A0A

∗
3B0B

∗
3
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−A1A
∗
0B1B

∗
0 + |A1|2|B1|2 + A1A

∗
2B1B

∗
2 + A1A

∗
3B1B

∗
3

−A2A
∗
0B2B

∗
0 + A2A

∗
1B2B

∗
1 + |A2|2|B2|2 + A2A

∗
3B2B

∗
3

−A3A
∗
0B3B

∗
0 + A3A

∗
1B3B

∗
1 + A3A

∗
2B3B

∗
2 + |A3|2|B3|2

= αµνβµν

with : αµν = AµAν∗

βµν = BµBν
∗

Next we proceed to take into account the spin. We have:

|M|2 =
1

(2sA + 1)

1

(2sB + 1)

∑

Spin

|M|2 =
1

4

e4

q4
Lµνelectron L

muon
µν

with : Lµνelectron =
∑

e−spin

[uCγ
µuA] [uCγ

νuA]∗

Lµνmuon =
∑

µ−spin

[uDγ
µuB] [uDγ

νuB]∗

Lµν is called the lepton tensor.
We have now split the sum over all spinstates in a sum over electron spins and a

sum over muon spins. So, for each vertex there is a tensor Lµν which has the form:

Lµν =




( u )




 γµ









 u











︸ ︷︷ ︸

a number




( u )




 γν









 u











∗

︸ ︷︷ ︸

a number

These numbers are called: bilinear covariants. Their general form is ψ (4 × 4)ψ and they
have specific properties under Lorentz transformations (see Halzen & Martin section 5.6
or Griffiths section 7.3 for characteristics). They will also appear in the weak interaction
later on, but there they will have a different form then the pure vector form: ψγµψ.

Note: To do the spin summation is rather tedious. The rest of the lecture is just
calculations in order to do this!

Since we work with numbers complex conjugation is the same as hermitean conju-
gation:

[uCγ
νuA]∗ = [uCγ

νuA]†

while [uCγ
νuA]† =

[

u†Cγ
0γνuA

]†
=
[

u†Aγ
ν†γ0uC

]

=
[

uAγ
0γν†γ0uC

]

= [uAγ
νuC ]

⇒ Complex conjugation just reverses the order in the product!
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Using this aspect we then write for the lepton tensor:

Lµνe =
∑

e spin

(uCγ
µuA) · (uAγνuC)

Next we write out the tensor explicitly in all components and we sum over all incoming
spin states s and over all outgoing spins s′:

Lµνe =
∑

s′

∑

s

u
(s′)
Cα γ

µ
αβ u

(s)
Aβ · u

(s)
Aγ γ

ν
γδ u

(s′)
Cδ ·

where α, β, γ, δ are the individual matrix element indices that take care of the matrix
multiplication.

At this point we apply Casimir’s Tric:

Get the factor u
(s′)
Cδ all the way up in front such that it falls outside the summation over

s. Why can we do this?
Because we have written out all terms of the matrix multiplication in indices; i.e. in
numbers. The behaviour of the matrix multiplication is still valid because of the sum
rules of the indices!

So, now we have:

Lµνe =
∑

s′
u

(s′)
Cδ u

(s′)
Cα

︸ ︷︷ ︸

( 6pC +m)δα

γµαβ ·
∑

s

u
(s)
Aβ u

(s)
Aγ

︸ ︷︷ ︸

( 6pA +m)βγ

γνγδ

and we can use the completeness relations (see previous lecture)1:

∑

s

u(s) u(s) =6p +m

(Remember that these are 4 × 4 relations which are valid for each component.)
So we use the completeness relations in order to do the sums over the spins!

The result is:
Lµνe = (6pC +m)δα γ

µ
αβ (6pA +m)βγ γ

ν
γδ

Here is the next trick: look at the indices α, β, γ, δ; they are components of 4×4
matrices. Perform the sum over the indices α, β, γ and say that the result is: A. Then
we find that Lµνe ∝ Aδδ and we have to do the remaining sum over δ, which means that
we take the trace of the matrix. In other words, the fact that we sum over all indices
means:

Lµνe = Tr [(6pC +m) γµ (6pA +m) γν ]

1for anti-fermions this gives an overall “−” sign in the tensor: Lµν
e

→ −Lµν
e

for each particle →
anti-particle.
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Where are we at this point? We look at the reaction e−µ− → e−µ− and we have:

|M|2 =
1

(2sA + 1) (2sB + 1)

∑

Spin

|M|2

=
1

(2sA + 1) (2sB + 1)

e4

q4
Lµνe Lm

µν

with : Lµνe = Tr [(6pC +m) γµ (6pA +m) γν ]

Lm
µν = Tr [(6pD +m) γµ (6pB +m) γν ]

In order to evaluate these expressions we make use of trace identities.

Intermezzo: Trace theorems

• In general:

– Tr (A+B) = Tr(A) + Tr(B)

– Tr (ABC) = Tr (CAB) = Tr (BCA)

• For γ-matrices: from the definition: γµγν + γνγµ = 2gµν it follows:

– Tr (odd number of γµ’s = 0). ⇒ only 0 on the diagonal.

– Tr (γµγν) = 4 gµν . ⇒ note that this is a matrix of traces!

– Tr (6a 6b ) = 4 a · b
– Tr (6a 6b 6c 6d ) = 4 [ (a · b) (c · d) − (a · c) (b · d) + (a · d) (b · c) ]

We are calculating:

Lµνe = Tr [(6pC +m) γµ (6pA +m) γν ] .....write it out.....

= Tr [ 6pC γµ 6pA γν ]
︸ ︷︷ ︸

case 2

+ Tr [mγµmγν ]
︸ ︷︷ ︸

case 1

+ Tr [6pC γµmγν ]
︸ ︷︷ ︸

3γ′s⇒0

+ Tr [mγµ 6pA γν ]
︸ ︷︷ ︸

3γ′s⇒0

Case 1: Tr [mγµmγν ] = m2Tr [γµγν ] = 4m2gµν

Case 2: Tr [6pC γµ 6pA γν ] =?
Use the rule for Tr (6a 6b 6c 6d ) with a = pC and c = pA, but what are b and d?
⇒ b must be chosen such that γα · b = γµ. ⇒ b = gαµ.
⇒ d must be chosen such that γβ · d = γν . ⇒ d = gβν .
Therefore (note that µ and ν are Lorentz-indices while the trace theorem works
in Dirac space!):

Tr [6pC γµ 6pA γν ]
= 4

[(

pCαg
αµ
) (

pAβg
βν
)

− (pαCpAα)
(

gαµgβνgαβ
)

+ (pCαg
αν)

(

pAβg
βµ
)]

= 4 [pµCp
ν
A + pνCp

µ
A − (pC · pA) gµν ]
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Finally we find for the tensors:

Lµνe = 4
[

pµCp
ν
A + pνCp

µ
A −

(

pC · pA −m2
e

)

gµν
]

Lm
µν = 4

[

pDµpBν + pDνpBµ −
(

pD · pB −m2
m

)

gµν
]

To recapitulate, the matrix element for e−µ− → e−µ−:

|M|2 =
1

(2sA + 1) (2sB + 1)
· e

4

q4
· Lµνe Lm

µν

and will just fill in the results of the tensors we just calculated:

Lµνe Lm
µν = 4

[

pµCp
ν
A + pνCp

µ
A −

(

pC · pA −m2
e

)

gµν
]

· 4
[

pDµpBν + pDνpBµ −
(

pD · pB −m2
m

)

gµν
]

= 16 ·
(pC · pD) (pA · pB) + (pC · pB) (pA · pD) − (pC · pA) (pD · pB) + (pC · pA)m2

m

(pC · pB) (pA · pD) + (pC · pD) (pA · pB) − (pC · pA) (pD · pB) + (pC · pA)m2
m

− (pC · pA) (pD · pB) − (pC · pA) (pD · pB) + (pC · pA) (pD · pB) · 4 − (pC · pA)m2
m · 4

+m2
e (pD · pB) +m2

e (pD · pB) − 4m2
e (pD · pB) + 4m2

em
2
m

= 32 ·
[

(pA · pB) (pC · pD) + (pA · pD) (pC · pB) −m2
e (pD · pB) −m2

m (pA · pC) + 2m2
em

2
m

]

We then obtain:

|M|2 =
1

2
· 1

2
· e

4

q4
· Lµνe Lm

µν

= 8
e4

q4

[

(pC · pD) (pA · pB) + (pC · pB) (pA · pD) −m2
e (pD · pB) −m2

m (pA · pC) + 2m2
em

2
m

]

−iM =

q2

e−

µ−

e−

µ−

ieuCγ
µuA

ieuDγ
νuB

p
C 

p
B

Ap

p
D

q2
θ

Figure 8.2: e−µ− → e−µ− scattering. left: the Feynman diagram. right: the scattering
process.

Let us consider the ultrarelativistic limit; ie. we ignore the masses of the particles
with respect to their momentum. Also we use the Mandelstam variables:

s ≡ (pA + pB)2 = p2
A + p2

B + 2 (pA · pB) ≃ 2 (pA · pB)

t ≡ (pD − pB)2 ≡ q2 ≃ −2 (pD · pB)

u ≡ (pA − pD)2 ≃ −2 (pA · pD)
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In addition we have the following relations following from energy and momentum
conservation (pµA + pµB = pµC + pµD):

(pA + pB)2 = (pC + pD)2

(pD − pB)2 = (pC − pA)2

(pA − pD)2 = (pB − pC)2

⇒ pA · pB = pC · pD
pD · pB = pC · pA
pA · pD = pB · pC

such that:

(pA · pB) (pC · pD) =
1

2
s

1

2
s =

1

4
s2

(pA · pD) (pC · pB) =
(

−1

2
u
) (

−1

2
u
)

=
1

4
u2

q4 = (pD − pB)4 = t2

Then the ultrarelativistic limit gives us:

|M|2 =
8e4

t2

(
1

4
s2 +

1

4
u2
)

= 2e4
(

s2 + u2

t2

)

We define the particle momenta now according to Fig. 8.2:

Take now: pA = (p, p, 0, 0) pC = (p, p cos θ, p sin θ, 0)
pB = (p,−p, 0, 0) pD = (p,−p cos θ,−p sin θ, 0)

We get the for the Mandelstam variables:

s = 4p2 t = −2p2 (1 − cos θ) u = −2p2 (1 + cos θ)

and we finally obtain the differential cross section:

dσ

dΩ

∣
∣
∣
∣
∣
c.m.

=
1

64π2
· 1

s
· |M|2

=
α2

2s
· 4 + (1 + cos θ)2

(1 − cos θ)2

with α =
e2

4π
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8.3 Crossing: the process e+e− → µ+µ−

We will use the “crossing” principle to obtain |M|2(e+e−→µ+µ−) from the result of |M|2(e−µ−→e−µ−)

B

An anti−particle is a particle where
p is replaced by −p. The diagram in 
terms of particles is:

e e

µ µ

− −

− −−

e

e

µ

µ

µ

e

e

µ

− −

+ +

−e µe µ+ +−µ−e−µ−e−

p

p’ p’

p’ p’

A
p

B

p
C

Dp

A

B

C

D

p’ p’

−p’−p’

A

B

C

D

P

P

P

P

Replace:

A

B

C

D

P’

−P’

−P’

P’

A

D

C

Figure 8.3: The principle of crossing. Use the anti-particle interpretation of a particle
with the 4-momentum reversed in order to related the Matrix element of the “crossed”
reaction to the original one.

So we replace in the previously obtained result:

s = 2 (pA · pB) → −2 (p′A · p′D) = u′

t = −2 (pA · pC) → 2 (p′A · p′B) = s′

u = −2 (pA · pD) → −2 (p′A · p′C) = t′

such that we have2:

|M|2e−µ−→e−µ− = 2e4
s2 + u2

t2

|M|2e−e+→µ−µ+ = 2e4
u′2 + t′2

s′2

“t-channel”: q2 = t

“s-channel”:
q2 = s

2We ignored two times the ”−” sign introduced by replacing fermions by antifermions!
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Again we go to the center of mass:

pA = (p, p, 0, 0, )

pB = (p,−p, 0, 0, )
pC = (p, p cos θ, p sin θ, 0, )

pD = (p,−p cos θ,−p sin θ, 0, )

p
C 

p
B

Ap

p
D

q2
θ

We calculate the Mandelstam variables:

s = 2 (pA · pB) = 4p2

t = −2 (pA · pC) = −2p2 (1 − cos θ)

u = −2 (pA · pD) = −2p2 (1 + cos θ)

We immediately get for the matrix element:

|M|2 = 2e4
t2 + u2

s2
= e4

(

1 + cos2 θ
)

This means that we obtain for the cross section:

dσ

dΩ
=
α2

4s

(

1 + cos2 θ
)

To calculate the total cross section for the process we integrate over the azimuthal angle
φ and the polar angle θ:

σ
(

e+e− → µ+µ−
)

=
4

3
π
α2

s

Exercise 29:
Can you easily obtain the cross section of the process e+e− → e+e− from the result of
e+e− → µ+µ−? If yes: give the result, if no: why not?

Exercise 30: The process e+e− → π+π−

We consider scattering of spin 1/2 electrons with spin-0 pions. We assume point-
particles; i.e. we forget that the pions have a substructure consisting of quarks. Also we
only consider electromagnetic interaction and we assume that the particle masses can
be neglected.

(a) Consider the process of electron - pion scattering: e−π− → e−π−. Give the matrix
element M for this process.

(b) Use the principle of crossing to find the matrix element for e+e− → π+π−

(Note: watch out for ad-hoc −-sign: see footnotes previous pages for antiparticles!)

(c) Determine the differential cross section dσ/dΩ in the center-of-mass of the e+e−-
system
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Lecture 9

The Weak Interaction

In 1896 Henri Becquerel observed that Uranium affected photographic plates. He was
studying the effect of fluorescence, which he thought was caused by the X-rays that
were discovered by Wilhelm Röntgen. To test his hypothesis he wanted to observe that
this fluorescence radiation also affected photographic plates. He discovered by accident
that the Uranium salt he used also affected the photographic plate when they were not
exposed to sunlight. Thus he discovered natural radioactivity.

We know now that the weak interaction in nature is based on the decay: n→ p+ e− + νe
and has a lifetime of τ = 886s.

n
p+

e−

νe

Compare the lifetimes of the following decays:

weak : π− → µ−νµ τ = 2.6 · 10−8 sec

µ− → e−νeνµ τ = 2.2 · 10−6 sec

with : e.m. : π0 → γγ τ = 8.4 · 10−17 sec

strong : ρ→ ππ τ = 4.4 · 10−23 sec (Γ = 150 MeV)

and realise that the lifetime of a process is inversely proportional to the strength of the
interaction. Note in addition that:

1. All fermions “feel” the weak interaction. However, when present the electromag-
netic and strong interactions dominate.

2. Neutrino’s feel only the weak interaction. This is the reason why they are so hard
to detect.

93
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9.1 The 4-point interaction

Based on the model of electromagnetic interactions Fermi invented in 1932 the so-
called 4-point interaction model, introducing the Fermi constant as the strength of the
interaction: GF ≈ 1.166 · 10−5GeV−2

νe

n

e−

p+
The “Feynman diagram” of the 4-point in-
teraction “neutrino scattering on a neutron”
has the following matrix element:

M = GF (upγ
µun) (ueγµuν)

This is to be compared to the electromagnetic diagram for electron proton scattering:

q2

e−

p+

e−

p+ Here the matrix element was:

M =
4πα

q2
(upγ

µup) (ueγµue)

1. e2 = 4πα is replaced by GF

2. 1/q2 is removed

We take note of the following facts of the weak interaction:

1. The hadronic current jhµ has ∆Q = 1, the leptonic current has ∆Q = −1. We
refer to this as: charged currents, since there is a net charge transferred from the
hadron current to the lepton current. We will see later that neutral weak currents
turn out to exist as well.

2. There is a coupling constant GF , which now plays a similar rôle as α in QED.

3. There is no propagator; ie. a “4-point interaction”.

4. The currents have what is called a “vector character” similar as in QED. This
means that the currents are of the form ψγµψ.

The vector character of the interaction was in fact just a guess that turned out successful
to describe many aspects of β-decay. There was no reason for this choice apart from
similarity of QED. In QED the reason that the interaction has a vector behaviour is the
fact that the force mediator, the foton, is a spin-1, or vector particle.

In the most general case the matrix element of the 4-point interaction can be written
as:

M = GF

(

ψp (4 × 4) ψn
) (

ψe (4 × 4) ψν
)

where (4 × 4) are combinations of γ-matrices. Lorentz invariance of the interaction puts
restrictions on the form of the bilinear covariants of any possible interaction.
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For any possible theory (or “force”) the bilinear covariants can be of the following type:

current # components # γ-matrices spin

Scalar ψψ 1 0 0
Vector ψγµψ 4 1 1
Tensor ψσµνψ 6 2 2
Axial vector ψγµγ5ψ 4 3 1
Pseudo scalar ψγ5ψ 1 4 0

Table 9.1: Possible forms of the bilinear covariants. σµν ≡ i
2
(γµγν − γνγµ). Note that

the total number of components is 16.

In the most general case the 4-point weak interaction can be written as:

M = GF

S,P,V,A,T
∑

i,j

Cij (up Oi un) (ue Oj uν)

where Oi, Oj are operators of the form S, V , T , A, P .
It can be shown with Dirac theory (see eg. Perkins: “Introduction to High Energy
Physics”, 3rd edition, appendix D) that:
S, P , T interactions in n→ peνe imply: helicity e = helicity νe,
V , A, interactions in n→ peνe imply: helicity e = -helicity νe.

In 1958 Goldhaber et. al. measured experimentally that the weak interaction is of
the type: V , A, (ie. it is not S, P , T ). See Perkins ed 3, §7.5 for a full description of
the experiment. The basic idea is the following.
Consider the electron capture reaction: 152Eu + e− →152 Sm∗(J = 1) + ν

1/2

+ e− + =+1/2νλ

+ e− + λ =ν −1/2

Eu152 + e− 152
Sm* + ν

B)

A)
1/21/2 1

11/2

By studying the consecutive decay 152Sm∗ →152 Sm + γ it was observed that only
case B actually occurred. In other words: neutrino’s have helicity -1/2. From this it
was concluded that in the weak interaction only the V , A currents are involved and not
S, P , T !
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9.1.1 Lorentz covariance and Parity

Let us consider a Lorentz transformation: x′ν = Λνµx
ν . The Dirac equation in each of

the two frames is then, respectively:

iγµ
∂ψ(x)

∂xµ
−mψ(x) = 0

iγν
∂ψ′(x′)

∂x′ν
−mψ′(x′) = 0

For the wave function there must exist a relation with an operator S, such that:

ψ′(x′) = Sψ(x)

Since the Dirac spinor is of the form ψ(x) = u(p) e−ipx, S is independent of x and only
acts on the spinor u. The Dirac equation after the Lorentz transformation becomes:

iγν
∂S (ψ(x))

∂x′ν
−mS (ψ(x)) = 0

and if we act on this equation by S−1 from the left:

iS−1γν
S (∂ψ(x))

∂x′ν
−mS−1Sψ(x) = 0

This equation is consistent with the orginal Dirac equation if the relation
S−1γνS = Λνµγ

µ holds and we used that ∂/∂xµ = Λνµ ∂/∂x
′ν .

Let us now take a look at the parity operator which inverts space: ie. t→ t ; ~r → −~r.
The parity Lorentz transformation is:

Λµν =








1
−1

−1
−1








Which is the “Dirac” operator that gives: ψ′(x′) = Sψ(x)?
The easiest way is to find it is to use the relation: S−1

p γµSp = Λµνγ
ν = (γ0,−γ1,−γ2,−γ3),

or, more explicitly, to find the matrix Sp for which:

S−1
p γ0Sp = γ0

S−1
p γkSp = −γk

which has the solution Sp = γ0.
Alternatively, we can get the parity operator from the Dirac equation. Assume that

the wave function ψ (~r, t) is a solution of the Dirac equation:

(

γ0
∂

∂t
+ γk

∂

∂xk
−m

)

ψ (~r, t) = 0
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then, after a parity transformation we find:
(

γ0
∂

∂t
− γk

∂

∂xk
−m

)

ψ (−~r, t) = 0

So, ψ (−~r, t) is not a solution of the Dirac equation due to the additional - sign!
Multiply the Dirac equation of the parity transformed spinor from the left by γ0, to
find:

γ0

(

γ0
∂

∂t
− γk

∂

∂xk
−m

)

ψ (−~r, t) = 0

⇒
(

γ0
∂

∂t
γ0 + γk

∂

∂xk
γ0 −mγ0

)

ψ (−~r, t) = 0

⇒
(

γ0
∂

∂t
+ γk

∂

∂xk
−m

)

γ0ψ (−~r, t) = 0

We conclude that if ψ (~r, t) is a solution of the Dirac equation, then γ0ψ (−~r, t) is also
a solution (in the mirror world).
In other words: under the parity operation (S = γ0): ψ (~r, t) → γ0ψ (−~r, t).

An interesting consequence can be derived from the explicit representation of the γ0

matrix:

γ0 =

(

11 0
0 −11

)

from which it is seen that the parity operator has an opposite sign for the positive and
negative solutions. In other words: fermions and anti-fermions have opposite parity.

What does this imply for the currents in the interactions? Under the Parity operator
we get:

S : ψψ → ψγ0γ0ψ = ψψ Scalar

P : ψγ5ψ → ψγ0γ5γ0ψ = −ψγ5ψ Pseudo Scalar

V : ψγµψ → ψγ0γµγ0ψ =

{

ψγ0ψ
−ψγkψ Vector

A : ψγµγ5ψ → ψγ0γµγ5γ0ψ =

{

−ψγ0ψ
ψγkψ

Axial Vector.

We had concluded earlier that the weak matrix element in neutron decay is of the
form:

M = GF

V,A
∑

i,j

Cij (upOiup) (ueOjuν)

But: if there is a contribution from vector as well as from axial vector then we must
have parity violation!
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9.2 The V − A interaction

It turns out that the only change that is needed in the pure vector coupling of Fermi is:

(ue γ
µ uν) →

(

ue γ
µ 1

2

(

1 − γ5
)

uν

)

This is the famous V −A interaction where the vector coupling and the axial vector cou-
pling are equally strong present. The consequence is that there is maximal violation
of parity in the weak interaction.

Exercise 31: Helicity vs Chirality

(a) Write out the chirality operator γ5 in the Dirac-Pauli representation.

(b) The helicity operator is defined as λ = ~σ · p̂. Show that helicity operator and the
chirality operator have the same effect on a spinor solution, i.e.

γ5 ψ = γ5

(

χ(s)

~σ·~p
E+m

χ(s)

)

≈ λ

(

χ(s)

~σ·~p
E+m

χ(s)

)

= λ ψ

in the ultrarelativistic limit that E >> m.

(c) Explain why the weak interaction is called left-handed.

For neutron decays there is a complication to test the V − A structure since the
neutron and the proton are not point particles. The observed matrix element for neutron
decays is:

M =
GF√

2

(

upγ
µ
(

CV − CAγ
5
)

un
) (

ueγµ
(

1 − γ5
)

uν
)

It has the follwing values for the vector and
axial vector couplings:
CV = 1.000 ± 0.003, CA = 1.260 ± 0.002
However, the fundamental weak interaction
between the quarks and the leptons are pure
V − A.

e

n p+

ν
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9.3 The Propagator of the weak interaction

The Fermi theory has a 4-point interaction: there is no propagator involved to transmit
the interaction from the lepton current to the hadron current. However, we know now
that forces are carried by bosons:

• the electromagnetic interaction is carried by the massless photon which gives rise
to a → 1

q2
propagator

• the weak interaction is carried by the massive W , Z bosons, for which we have
the propagators: 1

M2
W

−q2 and 1
M2

Z
−q2 .

Let us consider an interaction at low energy; ie. the case that M2
W >> q2. In that case

the propagator reduces to 1
M2

W

.

g
W

g

strength: ∼ GF√
2

∼ g2

8M2
W

We interpret the coupling constant g of the weak interaction exactly like e in QED.
How “weak” is the weak interaction? In QED we have: α = e2

4π
= 1

137

In the weak interaction it turns out: αw = g2

4π
= 1

29

The interaction is weak because the mass MW is high! The intrinsic coupling constant
is not small in comparison to QED. As a consequence it will turn out that at high
energies: q2 ∼M2

W the weak interaction is comparable in strength to the electromagnetic
interaction.

9.4 Muon Decay

Similar to the process e+e− → µ+µ− in QED, the muon decay process µ− → e−νeνµ is
the standard example of a weak interaction process.

µ

ν
ν
e

e
µ−(p)

(k’)

(k)

−(p’)

W
µ(p)−

νµ (k)

e−(p’)

νe(−k’)

Figure 9.1: Muon decay: left: Labelling of the momenta, right: Feynman diagram. Note
that for the spinor of the outgoing antiparticle we use: uνe

(−k′) = vνe
(k′).

Using the Feynman rules we can write for the matrix element:

M =
g√
2




 u(k)

︸ ︷︷ ︸

outgoing µν

γµ
1

2

(

1 − γ5
)

u(p)
︸ ︷︷ ︸

incoming µ






1

M2
W

︸ ︷︷ ︸

propagator

g√
2




 u(p′)
︸ ︷︷ ︸

outgoing e

γµ
1

2

(

1 − γ5
)

v(k′)
︸ ︷︷ ︸

outgoing νe





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Next we square the matrix element and sum over the spin states, exactly similar
to the case of e+e− → µ+µ−. Then we use again the tric of Casimir as well as the
completeness relations to convert the sum over spins into a trace. The result is:

|M|2 =
1

2

∑

Spin

|M|2 =
1

2

(

g2

8M2
W

)2

· Tr
{

γµ
(

1 − γ5
)

(6p ′ +me) γ
ν
(

1 − γ5
)

6k ′
}

· Tr
{

γµ
(

1 − γ5
)

6k γν
(

1 − γ5
)

(6p +mµ)
}

Now we use some more trace theorems (see below) and also GF√
2

= g2

8M2
W

to find the result:

|M|2 = 64G2
F (k · p′) (k′ · p)

Intermezzo: Trace theorems used (see also Halzen & Martin p 261):

Tr (γµ 6a γν 6b ) · Tr (γµ 6c γν 6d ) = 32 [(a · c) (b · d) + (a · d) (b · c)]
Tr
(

γµ 6a γνγ5 6b
)

· Tr
(

γµ 6c γνγ5 6d
)

= 32 [(a · c) (b · d) − (a · d) (b · c)]
Tr
(

γµ
(

1 − γ5
)

6a γν
(

1 − γ5
)

6b
)

· Tr
(

γµ
(

1 − γ5
)

6c γν
(

1 − γ5
)

6d
)

= 256 (a · c) (b · d)

The decay width we can find by applying Fermi’s golden rule:

dΓ =
1

2E
|M|2 dQ

where : dQ =
d3p′

(2π)3 2E
· d3k

(2π)3 2ω
· d3k′

(2π)3 2ω′ · (2π)4 δ4 (p− p′ − k′ − k)

with :E = muon energy

E ′ = electron energy

ω′ = electron neutrino energy

ω = muon neutrino energy

First we evaluate the expression for the matrix element. We have the relation
(p = (mµ, 0, 0, 0)):

p = p′ + k + k′ so : (k + p′) = (p− k′)

We can also see the following relations to hold:

(k + p′)
2

= k2
︸︷︷︸

=0

+ p′2
︸︷︷︸

m2
e≈0

+2 (k · p′)

(p− k′)
2

= p2

︸︷︷︸

m2
µ≡m2

+ k′2
︸︷︷︸

=0

−2 (p · k′)
︸ ︷︷ ︸

mω′
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Therefore we have the relation: 2 (k · p′) = m2 − 2mω′, which we use to rewrite the
matrix element as:

|M|2 = 64G2
F (k · p′) (k′ · p) = 32G2

F

(

m2 − 2mω′
)

mω′

We had the expression for the decay time:

dΓ =
1

2E
|M|2 dQ =

16G2
F

m

(

(m2 − 2mω′
)

mω′ dQ

(E is replaced by m since the decaying muon is in rest). For the total decay width we
must integrate over the phase space:

Γ =
∫ 1

2E
|M|2 dQ =

16G2
F

m

∫ (

(m2 − 2mω′
)

mω′ dQ

We note that the integrand only depends on the neutrino energy ω′. So, let us first
perform the integral in dQ over the other energies and momenta:

∫

other
dQ =

1

8 (2π)5

∫

δ (m− E ′ − ω′ − ω) δ3
(

~p′ + ~k′ + ~k
) d3~p′

E ′
d3~k′

ω′
d3~k

ω

=
1

8 (2π)5

∫

δ (m− E ′ − ω′ − ω)
d3~p′ d3~k′

E ′ω′ω

since the δ-function gives 1 for the integral over ~k.
We also have the relation:

ω = |k| = |~p′ + ~k′| =
√
E ′2 + ω′2 + 2E ′ω′ cos θ

where θ is the angle between the electron and the electron neutrino. We choose the
z-axis along ~k′, the direction of the electron neutrino. From the equation for ω we
derive:

dω =
−2E ′ω′ sin θ

2
√
E ′2 + ω′2 + 2E ′ω′ cos θ

︸ ︷︷ ︸

ω

dθ ⇔ dθ =
−ω dω
E ′ω′ sin θ

Next we integrate over d3~p′ = E ′2 sin θ dE ′ dθ dφ with dθ as above:

dQ =
1

8 (2π)5

∫

δ (m− E ′ − ω′ − ω)
E ′2 sin θ

E ′ dE ′ dθ dφ
d3~k′

ω′
1

ω

=
1

8 (2π)5 2π
∫

δ (m− E ′ − ω′ − ω) dE ′ dω
d3~k′

ω′2

(using the relation: E ′ sin θ dθ = − ω
ω′
dω).

Since we integrate over ω, the δ-function will cancel:

dQ =
1

8 (2π)4

∫

dE ′ d
3~k′

ω′2
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such that the full expression for Γ becomes:

Γ =
2G2

F

(2π)4

∫ (

m2 − 2mω′
)

ω′ dE ′ d
3~k′

ω′2

Next we do the integral over k′ as far as possible with:
∫

d3~k′ =
∫

ω′2 sin θ′ dω′ dθ′ dφ′ = 4π
∫

ω′2 dω

so that we get:

Γ =
G2
Fm

(2π)3

∫

(m− 2ω′) ω′ dω′ dE ′

Before we do the integral over ω′ we have to determine the limits:

• maximum electron neutrino energy:
ω′ = 1

2
m

• minimum electron neutrino energy:
ω′ = 1

2
m− E ′

e

ν e−

e−

ν

ν
ν

e

µ

µ

Therefore we obtain the spectrum:

dΓ

dE ′ =
G2
Fm

(2π)3

∫ 1

2
m

1

2
m−E′

(m− 2ω′) ω′ dω′ =
G2
Fm

2

12π3
E ′2

(

3 − 4
E ′

m

)

which can be measured experimentally.
Finally we obtain for the decay of the muon:

Γ ≡ 1

τ
=
G2
F m

5

192 π3

A measurement of the muon lifetime: τ = 2.19703 ± 0.00004 µs determines the Fermi
coupling constant: GF = (1.16639 ± 0.00002) ·10−5GeV−2. This is the standard method

to determine GF or g2

M2
W

.

9.5 Quark mixing

In muon decay we studied the weak interaction acting between leptons: electron, muon,
electron-neutrino and muon-neutrino. We have seen in the process of neutron decay
that the weak interaction also operates between the quarks. All fundamental fermions
are susceptible to the weak interaction. Both the leptons and quarks are usually ordered
in a representation of three generations:

Leptons :

(

νe
e

) (

νµ
µ

) (

ντ
τ

)

Quarks :

(

u
d

) (

c
s

) (

t
b

)
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In a first assumption the charged current weak interaction works inside the generation
doublets:

W

νe e−g

W

νµ µ−
g

W

ντ τ−g

W

u dg

W

c s
g

W

t bg

To test the validity of this model for quarks let us look at the examples of quark
diagrams of pion decay and kaon decay:

1. pion decay

π− → µ−νµ
Γπ− ∝ g4

M4
W

∝ G2
F

W
π−

u

d

g g µ−

νµ

2. kaon decay

K− → µ−νµ
This decay does occur!

??−
u

g µ−

νµW
s

K

9.5.1 Cabibbo - GIM mechanism

We have to modify the model by the replacements:

d → d′ = d cos θc + s sin θc

s → s′ = −d sin θc + s cos θc

or, in matrix representation:
(

d′

s′

)

=

(

cos θc sin θc
− sin θc cos θc

)(

d
s

)

where θc is the Cabibbo mixing angle.
In terms of the diagrams the replacement implies:

W

u d
g

⇒
W

u d′
g

=
W

u d
g cos θc

+
W

u s
g sin θc

Both the u, d coupling and the u, s coupling exist. In this case the diagrams of pion
decay and kaon decay are modified:
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1. Pion decay

π− → µ−νµ
Γπ− ∝ G2

F cos2 θc
π−

u

d

g µ−

νµW

θgcos

2. Kaon decay

K− → µ−νµ
ΓK− ∝ G2

F sin2 θc s

−
u

g µ−

νµW

θ
K

gsin

In order to check this we can compare the decay rate of the two reactions. A proper
calculation gives:

Γ (K−)

Γ (π−)
≈ tan2 θc ·

(
mπ

mK

)3
(

m2
K −m2

µ

m2
π −m2

µ

)2

As a result the Cabibbo mixing angle is observed to be:

θC = 12.8o

The couplings for the first two generations are:

W

u d
g cos θc

W

c s
g cos θc

W

u s
g sin θc

W

c d
g sin θc

︸ ︷︷ ︸

Cabibbo “favoured′′ decay

︸ ︷︷ ︸

Cabibbo “suppressed′′ decay

Formulated in a different way:

• The flavour eigenstates u, d, s, c are the mass eigenstates. They are the solution
of the total Hamiltonian describing quarks; ie. mainly strong interactions.

• The states

(

u
d′

)

,

(

c
s′

)

are the eigenstates of the weak interaction Hamiltonian,

which affects the decay of the particles.

The relation between the mass eigenstates and the interaction eigenstates is a rota-
tion matrix: (

d′

s′

)

=

(

cos θc sin θc
− sin θc cos θc

)(

d
s

)

with the Cabibbo angle as the mixing angle of the generations.
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9.5.2 The Cabibbo - Kobayashi - Maskawa (CKM) matrix

We extend the picture of the previous section to include all three generations. This
means that we now make the replacement:

(

u
d

) (

c
s

) (

t
b

)

⇒
(

u
d′

) (

c
s′

) (

t
b′

)

with in the most general way can be written as:





d′

s′

b′




 =






Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb






︸ ︷︷ ︸

CKM−matrix






d
s
b






The “g” couplings involved are:

W

u dVud

W

u sVus

W

u bVub

W

c dVcd

W

c sVcs

W

c bVcb

W

t dVtd

W

t sVts

W

t bVtb

It should be noted that the matrix is not uniquely defined since the phases of the
quark wavefunctions are not fixed. The standard representation of this unitary 3 × 3
matrix contains three mixing angles between the quark generations θ12, θ13, θ23, and one
complex phase δ:

VCKM =






c12c13 s12s13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13
s12s23 − c12c23s13e

iδ −c12s23 − s12c23s13e
iδ c23c13






where sij = sin θij and cij = cos θij.

In the Wolfenstein parametrization this matrix is:

VCKM ≈






1 − λ2/2 λ Aλ3 (ρ− iη)
−λ 1 − λ2/2 Aλ2

Aλ3 (1 − ρ− iη) −Aλ2 1






It can be easy seen to includes 4 parameters:

3 real parameters : λ, A, ρ
1 imaginary parameter : iη
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This imaginary parameter is the source of CP violation in the Standard Model. It
means that it defines the difference between interactions involving matter and those
that involve anti-matter.

We further note that, in case neutrino particles have mass, a similar mixing matrix
also exists in the lepton sector. The Pontecorvo-Maki-Nakagawa-Sakata matrix UPMNS

is then defined as follows:





νe
νµ
ντ




 =






U11 U12 U13

U21 U22 U23

U31 U32 U33






︸ ︷︷ ︸

PMNS−matrix






ν1

ν2

ν3






In a completely similar way this matrix relates the mass eigenstates of the leptons (ν1,
ν2, ν3) to the weak interaction eigenstates (νe, νµ, ντ ). There is an interesting open
question whether neutrino’s are their own anti-particles (”Majorana” neutrino’s) or not
(”Dirac” neutrino’s). In case neutrinos are of the Dirac type, the UPMNS matrix has
one complex phase, similar to the quark mixing matrix. Alternatively, if neutrinos are
Majorana particles, the UPMNS matrix includes three complex phases.

It is currently not clear whether the explanation for a matter dominated universe lies
in quark flavour physics (”baryogenesis”) or in lepton flavour physics (”leptogenesis”)
and whether it requires physics beyond the Standard Model. It is however interesting
to note that there exist 3 generations of particles!
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Exercise 32: Pion Decay
Usually at this point the student is asked to calculate pion decay, which requires again
quite some calculations. The ambitious student is encourage to try and do it (using some
help from the literature). However, the exercise below requires little or no calculation
but instead insight in the formalism.

(a) Draw the Feynman diagram for the decay of a pion to a muon and an anti-neutrino:
π− → µ−νµ.

Due to the fact that the quarks in the pion are not free particles we cannot just apply
the Dirac formalism for free particle waves. However, we know that the interaction is
transmitted by a W− and therefore the coupling must be of the type: V or A. (Also,
the matrix element must be a Lorentz scalar.) It turns out the decay amplitude has the
form:

M =
GF√

2
(qµfπ)

(

u(p)γµ
(

1 − γ5
)

v(k)
)

where pµ and kµ are the 4-momenta of the muon and the neutrino respectively, and q is
the 4-momentum carried by the W boson. fπ is called the decay constant.

(b) Can the pion also decay to an electron and an electron-neutrino? Write down the
Matrix element for this decay.
Would you expect the decay width of the decay to electrons to be larger, smaller,
or similar to the decay width to the muon and muon-neutrino?
Base your argument on the available phase space in each of the two cases.

The decay width to a muon and muon-neutrino is found to be:

Γ =
G2
F

8π
f 2
π mπ m

2
µ

(

m2
π −m2

µ

m2
π

)2

The measured lifetime of the pion is τπ = 2.6 · 10−8s which means that fπ ≈ mπ. An
interesting observation is to compare the decay width to the muon and to the electron:

Γ(π− → e−νe)

Γ(π− → µ−νµ)
=

(

me

mµ

)2 (
m2
π −m2

e

m2
π −m2

µ

)2

≈ 1.2 · 10−4 !!

(c) Can you give a reason why the decay rate into an electron and an electron-neutrino
is strongly suppressed in comparison to the decay to a muon and a muon-neutrino.
Consider the spin of the pion, the handedness of the W coupling and the helicity
of the leptons involved.
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Lecture 10

Local Gauge Invariance

In the next three lectures the Standard Model of electroweak interactions will be intro-
duced. We will do this via the principle of gauge invariance. The idea of gauge invariance
forms now such a firm basis of the description of forces that I feel it is suitable to be
discussed in these lectures. As these lectures are not part of a theoretical master course
we will follow a - hopefully - intuitive approach. Certainly we will try to focus, as we
did before, on the concepts rather then on formal derivations.
A good book on this topic is:
Chris Quigg, “Gauge Theories of the Strong, Weak, and Electromagnetic Interactions”,
in the series of “Frontiers in Physics”, Benjamin Cummings.

10.1 Introduction

The reason why we chose the Lagrangian approach in field theory is that it is particularly
suitable to discuss symmetry or invariance principles and conservation laws that they are
related to. Symmetry principles play a fundamental role in particle physics. In general
one can distinguish1 in general 4 groups of symmetries. There is a theorem stating that
a symmetry is always related to a quantity that is fundamentally unobservable. Some
of these unobservables are mentioned below:

• permutation symmetries: Bose Einstein statistics for integer spin particles and
Fermi Dirac statistics for half integer spin particles. The unobservable is the
identity of a particle.

• continuous space-time symmetries: translation, rotation, acceleration, etc. The re-
lated unobservables are respectively: absolute position in space, absolute direction
and the equivalence between gravity and accelleration.

• discrete symmetries: space inversion, time inversion, charge inversion. The unob-
servables are absolute left/right handedness, the direction of time and an absolute
definition of the sign of charge. A famous example in this respect is to try and

1T.D. Lee: “Particle Physics and Introduction to Field Theory”

109



110 Lecture 10. Local Gauge Invariance

make an absolute definition of matter and anti-matter. Is this possible? This
question will be addressed in the particle physics II course.

• unitary symmetries or internal symmetries: gauge invariances. These are the sym-
metries discussed in these lectures. As an example of an unobservable quantity
we can mention the absolute phase of a quantum mechanical wave function.

The relation between symmetries and conservation laws is expressed in a fundamental
theorem by Emmy Noether: each continuous symmetry transformation under which the
Lagrangian is invariant in form leads to a conservation law. Invariances under external
operations as time and space translation lead to conservation of energy and momentum,
and invariance under rotation to conservation of angular momentum Invariances under
internal operations, like the rotation of the complex phase of wave functions lead to
conserved currents, or more specific, conservation of charge.

We believe that the fundamental elementary interactions of the quarks and leptons
can be understood as consequences of gauge symmetry priciples. The idea of local gauge
invariant theory will be discussed in the first lecture and will be further applied in the
unified electroweak theory in the second lecture. In the third lecture we will calculate the
electroweak process e+e− → γ, Z → µ+µ−, using the techniques we developed before.

10.2 Lagrangian

In classical mechanics the Lagrangian may be regarded as the fundamental object, lead-
ing to the equations of motions of objects. From the Lagrangian, one can construct “the
action” and follow Hamilton’s principle of least action to find the physical path:

δS = δ
∫ t2

t1
dt L (q, q̇) = 0

where q, q̇ are the generalized coordinate and velocity.

Exercise 33:
Prove that satisfaction of Hamilton’s principle is guaranteed by the Euler Lagrange
equations:

∂L

∂q
=

d

dt

(

∂L

∂q̇

)

The classical theory does not treat space and time symmetrically as the Lagrangian
might depend on the parameter t. This causes a problem if we want to make a relativis-
ticaly covariant theory.

In a field theory the Lagrangian in terms of generalized coordinates is replaced L(q, q̇)
by a Lagrangian density in terms of fields φ (x) and their gradients:

L (φ (x) , ∂µφ (x)) where L ≡
∫

d3x L (φ, ∂µφ)
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The fields may be regarded as a separate generalized coordinate at each value of its
argument: the space-time coordinate x. In fact, the field theory is the limit of a system
of n degrees of freedom where n tends to infinity.

In this case the principle of least action becomes:

δ
∫ t2

t1
d4x L (φ, ∂µφ) = 0

where t1, t2 are the endpoints of the path.
This is guaranteed by the Euler Lagrange equation:

∂L
∂φ (x)

= ∂µ
∂L

∂ (∂µφ (x))

which in turn lead to the equation of motion for the fields.
Note: If the Lagrangian is a Lorentz scalar, then the theory is automatically relativistic
covariant.

What we will do next is to try and construct the Lagrangian for electromagnetic and
weak interaction based on the idea of gauge invariance (or gauge symmetries).

Exercise 34: Lagrangians versus equations of motion

(a) Show that the Euler Lagrange equations of the Lagrangian

L = LfreeKG =
1

2
(∂µφ) (∂µφ) − 1

2
m2φ2

of a real scalar field φ leads to the Klein-Gordon equation.

For a complex scalar field one can show that the Lagrangian becomes:

L = |∂µφ|2 −m2 |φ|2

(b) Show that the Euler Lagrange equations of the Lagrangian

L = LfreeDirac = iψ̄γµ∂
µψ −mψ̄ψ

leads to the Dirac equation:

(iγµ∂µ −m)ψ(x) = 0

and its adjoint. To do this, consider ψ and ψ̄ as independent fields.

(c) Show that the Lagrangian

L = LEM = −1

4
(∂µAν − ∂νAµ) (∂µAν − ∂νAµ) − jµAµ = −1

4
F µνFµν − jµAµ

leads to the Maxwell equations:

∂µ (∂µAν − ∂νAµ) = jν

Hence the current is conserved (∂νj
ν = 0), since F µν is antisymmetric.
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10.3 Where does the name “gauge theory” come

from?

The idea of gauge invariance as a dynamical principle is due to Hermann Weyl. He
called it “eichinvarianz” (“gauge” = “calibration”). Hermann Weyl2 was trying to find
a geometrical basis for both gravitation and electromagnetism. Although his effort was
unsuccesfull the terminology survived. His idea is summarized here.

Consider a change in a function f(x) between point xµ and point xµ + dxµ. If the
space has a uniform scale we expect simply:

f(x+ dx) = f(x) + ∂µf(x)dxµ

But if in addition the scale, or the unit of measure, for f changes by a factor (1 + Sµdxµ)
between x and x+ dx, then the value of f becomes:

f(x+ dx) = (f(x) + ∂µf(x)dxµ) (1 + Sνdxν)

= f(x) + (∂µf(x) + f(x)Sµ) dxµ +O(dx)2

So, to first order, the increment is:

∆f = (∂µ + Sµ) f dxµ

In other words Weyl introduced a modified differential operator by the replacement:
∂µ → ∂µ + Sµ.

One can see this in analogy in electrodynamics in the replacement of the momen-
tum by the canonical momentum parameter: pµ → pµ − qAµ in the Lagrangian, or in
Quantum Mechanics: ∂µ → ∂µ + iqAµ , as was discussed in the earlier lectures. In this
case the “scale” is Sµ = iqAµ. If we now require that the laws of physics are invariant
under a change:

(1 + Sµdxµ) → (1 + iqAµdxµ) ≈ exp (iqAµdxµ)

then we see that the change of scale gets the form of a change of a phase. When he later
on studied the invariance under phase transformations, he kept using the terminology
of “gauge invariance”.

10.4 Phase Invariance in Quantum Mechanics

The expectation value of a quantum mechanical observable is typically of the form:

〈O〉 =
∫

ψ∗Oψ

If we now make the replacement ψ(x) → eiαψ(x) the expectation value of the observable
remains the same. We say that we cannot measure the absolute phase of the wave

2H. Weyl, Z. Phys. 56, 330 (1929)
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function. (We can only measure relative phases between wavefunctions in interference
experiments, see eg. the CP violation observables.)

But, are we allowed to choose a different phase convention on, say, the moon and
on earth, for a wave function ψ(x)? In other words, we want to introduce the concept
of local gauge invariance. This means that the physics observable stays invariant under
the replacement:

ψ(x) → ψ′(x) = eiα(x)ψ(x)

The problem that we face is that the Lagrangian density L (ψ(x), ∂µψ(x)) depends
on both on the fields ψ(x) and on the derivatives ∂µψ(x). The derivative term yields:

∂µψ(x) → ∂µψ
′(x) = eiα(x) (∂µψ(x) + i∂µα(x)ψ(x))

The second term spoils the fact that the transformation is simply an overall (unobserv-
able) phase factor. It spoils the phase invariance of the theory. But, if we replace the
derivative ∂µ by the gauge-covariant derivative:

∂µ → Dµ ≡ ∂µ + iqAµ

and we require that the field Aµ at the same time transforms as:

Aµ(x) → A′
µ(x) = Aµ(x) −

1

q
∂µα(x)

then we see that we get an overall phase factor for the covariant derivative term:

Dµψ(x) → Dµψ
′(x) = eiα(x)

(

∂µψ(x) + i∂µα(x)ψ(x) + iqAµ(x)ψ(x) − iq
1

q
∂µα(x)ψ(x)

)

= eiα(x)Dµψ(x)

As a consequence, quantities like ψ∗Dµψ will now be invariant under local gauge
transformations.

10.5 Phase invariance for a Dirac Particle

We are going to replace in the Dirac Lagrangian:

∂µ → Dµ ≡ ∂µ + iqAµ(x)

What happens to the Lagrangian?

L = ψ̄ (iγµDµ −m) ψ

= ψ̄ (iγµ∂µ −m)ψ − qAµψ̄γ
µψ

= Lfree − Lint
with:

Lint = JµAµ and Jµ = qψ̄γµψ

which is the familiar current we discussed in previous lectures.
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Exercise 35: Gauge invariance

(a) (i) Consider the Lagrangian for a complex scalar field:

L = |∂µφ|2 −m2 |φ|2 .

Make a transformation of these fields:

φ(x) → eiqαφ(x) ; φ∗(x) → e−iqαφ∗(x) .

Show that the Lagrangian does not change.

(ii) Do the same for the Dirac Lagrangian while considering the simultaneous
transformations:

ψ(x) → eiqαψ(x) ; ψ̄(x) → e−iqαψ̄(x)

(iii) Noether’s Theorem: consider an infinitesimal transformation: ψ → ψ′ =
eiαψ ≈ (1 + iα)ψ. Show that the requirement of invariance of the Dirac
Lagrangian (δL(ψ, ∂µψ, ψ̄, ∂µψ̄) = 0) leads to the conservation of charge:
∂µj

µ = 0, with:

jµ =
ie

2




∂L

∂ (∂µψ)
ψ − ψ̄

L
∂
(

∂µψ̄
)



 = −eψ̄γµψ

(b) (i) Start with the Lagrange density for a complex Klein-Gordon field

L = (∂µφ)∗ (∂µφ) −m2φ∗φ

and show that a local field transformation:

φ(x) → eiqα(x)φ(x) ; φ∗(x) → e−iqα(x)φ∗(x)

does not leave the Lagrangian invariant.

(ii) Replace now in the Lagrangian: ∂µ → Dµ = ∂µ + iqAµ and show that the
Lagrangian now does remain invariant, provided that the additional field
transforms with the gauge transformation as:

Aµ(x) → A′
µ(x) = Aµ(x) − ∂µα(x) .

(c) (i) Start with the Lagrange density for a Dirac field

L = iψ̄γµ∂µψ −mψ̄ψ

and show that a local field transformation:

ψ(x) → eiqα(x)ψ(x) ; ψ̄(x) → e−iqα(x)ψ̄(x)

also does not leave the Lagrangian invariant.
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(ii) Again make the replacement: ∂µ → Dµ = ∂µ + iqAµ where again the gauge
field transforms as:

Aµ(x) → A′
µ(x) = Aµ(x) − ∂µα(x) .

and show that the physics now does remain invariant.

In fact, the full QED Lagrangian includes also the so-called kinetic term of the field
(the free fotons):

LQED = Lfree − JµAµ −
1

4
FµνF

µν

with F µν = ∂νAµ − ∂µAν , where the A fields are given by solutions of the Maxwell
equations (see lecture 3):

∂µF
µν = Jν .

10.6 Interpretation

What does it all mean?
We started from a free field Lagrangian which describes Dirac particles. Then we re-
quired that the fields have a U(1) symmetry which couples to the charge q. In other
words: the physics does not change if we multiply by a unitary phase factor:

ψ(x) → ψ′(x) = eiqα(x)ψ(x)

However, in order to obtain this symmetry we must then introduce a gauge field, the
photon, which couples to the charge q:

Dµ = ∂µ + iqAµ(x)

and which transforms simultaneously as:

A′
µ(x) = Aµ(x) − ∂µα(x)

the familiar gauge invariance of the electromagnetic field (see Lecture 3: α ⇒ λ)!
This symmetry is called local gauge invariance under U(1) transformations. While

ensuring the gauge invariance we have obtained the QED Lagrangian that describes the
interactions between electrons and photons!
Note:
If the photon would have a mass, the corresponding term in the Lagrangian would be:

Lγ =
1

2
m2AµAµ

This term obviously violates local gauge invariance, since:

AµAµ → (Aµ − ∂µα) (Aµ − ∂µα) 6= AµAµ

Conclusion: the photon must be massless. Later on, in the PPII course, it will be
discussed how masses of vector bosons can be generated in the Higgs mechanism.
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10.7 Yang Mills Theories

The concept of non abelian gauge theories is introduced here in a somewhat historical
context as this helps to also understand the origin of the term weak iso-spin and the
relation to (strong-) isospin.

Let us look at an example of the isospin system, i.e. the proton and the neutron. Let
us also for the moment forget about the electric charge (we switch off electromagnetism
and look only at the dominating strong interaction) and write the free Lagrangian for
nucleons as:

L = p̄ (iγµ∂µ −m) p+ n̄ (iγµ∂µ −m) n

or, in terms of a composite spinor ψ =

(

p
n

)

:

L = ψ̄ (iγµ I ∂µ − I m) ψ with I =

(

1 0
0 1

)

If we now, instead of a phase factor as in QED, make a global rotation in isospin
space:

ψ → ψ′ = exp

(

i
~τ · ~α

2

)

ψ

where ~τ = (τ1, τ2, τ3) are the usual Pauli Matrices 3 and ~α = (α1, α2, α3) is an arbitrary
three vector. We have introduced a SU(2) phase transformation of special unitary 2x2
transformations (i.e. unitary 2x2 transformations with det=+1).

What does it mean? We state that, if we forget about their electric charge, the
proton and neutron are indistinguishable, similar to the case of two wavefunctions with
a different phase). It is just convention which one we call the proton and which one
the neutron. The Lagrangian does not change under such a global SU(2) phase rotation.
Imposing this requirement on the Lagrangian leads (again Noether’s theorem) to the
conserved current (use infinitesimal transformation: ψ → ψ′ = (1 + i

2
~τ · ~α)ψ):

δL =
∂L
∂ψ

δψ +
∂L

∂ (∂µψ)
δ (∂µψ) +

∂L
∂ψ̄

δψ̄ +
∂L

∂
(

∂µψ̄
)δ
(

∂µψ̄
)

=
δL
∂ψ

i

2
~τ · ~αψ +

δL
∂ (∂µψ)

i

2
~τ · ~α (∂µψ) + ...

=

(

∂µ
∂L

∂ (∂µψ)

)

i

2
~τ · ~α ψ +

∂L
∂ (∂µψ)

i

2
~τ · ~α (∂µψ)

= ∂µ ~α ·
(

i

2

∂L
∂ (∂µψ)

~τψ

)

where the Euler Lagrange relation has been used to eliminate ∂L/∂ψ. The equation can
be written in the form of the continuity equation with corresponding conserved current:

∂µ~j
µ = 0 with ~jµ = ψ̄γµ

~τ

2
ψ .

3a representation is: τ1 =

(
0 1
1 0

)

, τ2 =

(
0 −i
i 0

)

, τ3 =

(
1 0
0 −1

)

,
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However, as this is a global gauge transformation, it implies that once we make a
definition at given point in space-time, this convention must be respected anywhere in
space-time. This restriction seemed unnatural to Yang and Mills in a local field theory.

Can we also make a local SU(2) gauge transformation theory? So, let us try to define
a theory where we chose the isospin direction differently for any space-time point.

To simplify the notation we define the gauge transformation as follows:

ψ(x) → ψ′(x) = G(x)ψ(x)

with G(x) = exp
(
i

2
~τ · ~α(x)

)

But we have again, as in the case of QED, the problem with the transformation of
the derivative:

∂µψ(x) → G (∂µψ) + (∂µ G) ψ

(just write it out yourself).
So, also here, we must introduce a new gauge field to keep the Lagrangian invariant:

L = ψ̄ (iγµ Dµ − Im) ψ with ψ =

(

p
n

)

and I =

(

1 0
0 1

)

where we introduce the new covariant derivative:

I∂µ → Dµ = I∂µ + igBµ

where g is a new coupling constant that replaces the charge e in electromagnetism. The
object Bµ is now a (2x2) matrix:

Bµ =
1

2
~τ ·~bµ =

1

2
tabaµ =

1

2

(

b3 b1 − ib2
b1 + ib2 −b3

)

~bµ = (b1, b2, b3) are now three gauge fields. We need now 3 fields rather then 1, one for
each of the generators of the symmetry group of SU(2): τ1, τ2, τ3.

We want get again a behaviour:

Dµψ → D′
µψ

′ = G (Dµψ)

because in that case the Lagrangian ψ̄ (iγµDµ −m)ψ is invariant for local gauge trans-
formations. If we write out the covariant derivative term we get:

D′
µψ

′ =
(

∂µ + igB′
µ

)

ψ′

= G (∂µψ) + (∂µG)ψ + igB′
µ (Gψ)

If we compare this to the desired result:

D′
µψ

′ = G (∂µψ + igBµ)ψ

= G (∂µψ) + igG (Bµψ)
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then we see that the desired behaviour is obtained if the gauge field transforms simul-
taneously as:

igB′
µ (Gψ) = igG (Bµψ) − (∂µG)ψ

which must then be true for all values of the nucleon field ψ. Multiplying this operator
equation from the right by G−1 we get:

B′
µ = GBµG

−1 +
i

g
(∂µG)G−1

Although this looks rather complicated we can again try to interpret this by comparing
to the case of electromagnetism, where Gem = eiqα(x).
Then:

A′
µ = GemAµG

−1
em +

i

q
(∂µGem)G−1

em

= Aµ − ∂µα

which is exactly what we had before.

Exercise 36: (not required)
Consider an infinitesimal gauge transformation:

G = 1 +
i

2
~τ · ~α |αi| << 1

Use the general transformation rule for B′
µ and use Bµ = 1

2
~τ ·~bµ to demonstrate that

the fields transform as:
~b′µ = ~bµ − ~α×~bµ −

1

g
∂µ~α

(use: the Pauli-matrix identity: (~τ · ~a)(~τ ·~b) = ~a ·~b+ i~τ · (~a×~b)).

So for isospin symmetry the baµ fields transform as an isospin rotation and a gradient
term. The gradient term was already present in QED. The rotation term is new. It
arises due to the non-commutativity of the 2x2 isospin rotations. If we write out the
gauge field transformation formula in components:

b′
l
µ = blµ − ǫjkl α

j bk − 1

g
∂µα

l

we can see that there is a coupling between the different components of the field. This
is called self-coupling of the field. The effect of this becomes clear if one also considers
the kinetic term of the isospin gauge field (analogous to the QED case):

LSU(2) = ψ̄ (iγµDµ −m) ψ − 1

4
~Fµν ~F

µν

Introducing the field strength tensor:

Fµν =
1

2
~Fµν · ~τ =

1

2
F a
µντ

a
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the Lagrangian is usually written as (using the Pauli identity tr(τaτ b) = 2δab):

LSU(2) = ψ̄ (iγµDµ −m) ψ − 1

2
tr (FµνF

µν)

with individual components of the field strength tensor:

F l
µν = ∂νb

l
µ − ∂µb

l
ν + g ǫjkl b

j
µ b

k
ν

The consequence of the last term is that the Lagrangian term FµνF
µν contains contri-

butions with 2, 3 and 4 factors of the b-field. These couplings are respectively referred
to as bilinear, trilinear and quadrilinear couplings. In QED there’s only the bilinear
photon propagator term. In the isospin theory there are self interections by a 3-gauge
boson vertex and a 4 gauge boson vertex.

10.7.1 What have we done?

We modified the Lagrangian describing isospin 1/2 doublets ψ =

(

p
n

)

:

LfreeSU(2) = ψ̄ (iγµ∂µ −m) ψ

We made the replacement ∂µ → Dµ = ∂µ + igBµ with Bµ = 1
2
~τ ·~bµ, to obtain:

LSU(2) = ψ̄ (iγµDµ −m) ψ

= LfreeSU(2) −
g

2
~bµ · ψ̄γµ~τψ

= LfreeSU(2) − LinteractionSU(2)

= LfreeSU(2) −~bµ · ~Jµ

where ~Jµ = g
2
ψ̄γµ~τψ is the isospin current.

Let us compare it once more to the case of QED:

LU(1) = LfreeU(1) − Aµ · Jµ

with the electromagnetic current Jµ = qψ̄γµψ

We have neglected here the kinetic terms of the fields:

LSU(2) = ψ̄ (iγµDµ −m) ψ − 1

2
trFµνF

µν

which contains self-coupling terms of the fields.
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10.7.2 Assessment

We see a symmetry in the

(

p
n

)

system: the isospin rotations.

• If we require local gauge invariance of such transformations we need to introduce
~bµ gauge fields.

• But what are they? ~bµ must be three massless vector bosons that couple to
the proton and neutron. It cannot be the π−, π0, π+ since they are pseudoscalar
particles rather then vector bosons. It turns out this theory does not describe the
strong interactions. We know now that the strong force is mediated by massless
gluons. In fact gluons have 3 colour degrees of freedom, such that they can be
described by 3x3 unitary gauge transformations (SU(3)), for which there are 8
generators, listed here:

λ1 =






0 1 0
1 0 0
0 0 0




 λ2 =






0 −i 0
i 0 0
0 0 0




 λ3 =






1 0 0
0 −1 0
0 0 0






λ4 =






0 0 1
0 0 0
1 0 0




 λ5 =






0 0 −i
0 0 0
i 0 0




 λ6 =






0 0 0
0 0 1
0 1 0






λ7 =






0 0 0
0 0 −i
0 i 0




 λ8 =

1√
3






1 0 0
0 1 0
0 0 −2






The strong interaction will be discussed later on in the particle physics course.
Next lecture we will instead look at the weak interaction and introduce the concept
of weak iso-spin.

• Also, we have started to say that the symmetry in the p, n system is only present
if we neglect electromagnetic interactions, since obviously from the charge we can
absolutely define the proton and the neutron state in the doublet. In such a case
where the symmetry is only approximate, we speak of a broken symmetry rather
then of an exact symmetry.



Lecture 11

Electroweak Theory

In the previous lecture we have seen how imposing a local gauge symmetry requires a
modification of the free Lagrangian such that a theory with interactions is obtained. We
studied:

• local U(1) gauge invariance:

ψ (iγµDµ −m) ψ = ψ (iγµ∂µ −m) − qψγµψ
︸ ︷︷ ︸

Jµ

Aµ

• local SU(2) gauge invariance:

ψ (iγµDµ −m) ψ = ψ (iγµ∂µ −m) − g

2
ψγµ~τψ

︸ ︷︷ ︸

~Jµ

~bµ

For the U(1) symmetry we can identify the Aµ field as the photon and the Feynman
rules for QED, as we discussed them in previous lectures, follow automatically. For the
SU(2) case we hoped that we could describe the strong nuclear interactions, but this
failed.

Let us now, instead of the strong isospin doublet ψ =

(

p
n

)

introduce the following

doublets:

ψL =

(

νL
eL

)

and ψL =

(

uL
dL

)

and we speak instead of “weak isospin” doublets. Note that the fermion fields have an
L index (for “left-handed”). These left handed states are defined as:

νL =
1

2
(1 − γ5) ν uL =

1

2
(1 − γ5) u

eL =
1

2
(1 − γ5) e dL =

1

2
(1 − γ5) d

with the familiar projection operators:

ψL =
1

2
(1 − γ5) ψ and ψR =

1

2
(1 + γ5) ψ

121
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(Remember: for massless particles” ψL = ψ−helicity and ψR = ψ+helicity.)

The origin of the weak interaction lies in the fact that we now impose a local gauge
symmetry in weak isospin rotations of left handed fermion fields. This means that if
we “switch off” charge we cannot distinguish between a νL and a eL or a uL and a
dL state. The fact that we only impose this on left handed states implies that the
weak interaction is completely left-right asymmetric. (Intuitively this is very difficult
to accept: why would there be a symmetry for the left-handed states only?!). This is
called maximal violation of parity.

It will turn out that the three vector fields (b1, b2, b3 from the previous lecture) can
later be associated with the carriers of the weak interaction, the W+,W−, Z bosons.
However, these bosons are not massless. An explicit mass term (LM = Kbµb

µ) would
in fact break the gauge invariance of the theory. Their masses can be generated in a
mechanism that is called spontaneous symmetry breaking and involves a new hypothet-
ical particle: the Higgs boson. The main idea of the symmetry breaking mechanism is
that the Lagrangian retains the full gauge symmetry, but that the ground state, i.e. the
vacuum, is no longer at a symmetric position. The realization of the vacuum selects a
preferred direction in isospin space, and thus breaks the symmetry. Future lectures will
discuss this aspect in more detail.

To construct the weak SU(2)L theory we start again with the free Dirac Lagrangian
and we impose SU(2) symmetry (but now on the weak isospin doublets):

Lfree = ψL (iγµ∂µ −m) ψL

Again we introduce the covariant derivative:

∂µ → Dµ = ∂µ + igBµ with Bµ =
1

2
~τ ·~bµ

then:

Lfree → Lfree −~bµ · Jµweak

with the weak current:

Jµweak =
g

2
ψLγ

µ~τψL

This is just a copy from what we have seen in the strong isospin example.

The model for the weak interactions now contains 3 massless gauge bosons (b1, b2, b3).
However, in nature we have seen that the weak interaction is propagated by 3 massive
bosons W+,W−, Z0.

From the Higgs mechanism it turns out that the physical fields associated with b1µ
and b2µ are the charged W bosons:

W±
µ ≡ b1µ ∓ ib2µ√

2
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11.1 The Charged Current

We will use the definition of theW -fields to re-write the first two terms in the Lagrangian
of the weak current:

L = Lfree + Lintweak
with Lintweak = −~bµ · ~Jµweak = −b1µJ1µ − b2µJ

2µ − b3µJ
3µ

The charged current terms are:

LCC = −b1µJ1µ − b2µJ
2µ

with:
J1µ =

g

2
ψL γ

µ τ1 ψL ; J2µ =
g

2
ψL γ

µ τ2 ψL

Exercise 37:

Show that the re-definition W±
µ =

b1µ∓ib2µ√
2

leads to:

LCC = −W+
µ J

+µ −W−
µ J

−µ

with: J+µ =
g√
2
ψL γ

µ τ+ ψL ; J−µ =
g√
2
ψL γ

µ τ− ψL

and with: τ+ =

(

0 1
0 0

)

and τ− =

(

0 0
1 0

)

So, for the physical fields W+ and W− the leptonic currents are:

J+µ =
g√
2
νL γ

µ eL ; J−µ =
g√
2
eL γ

µ νL

or written out with the left-handed projection operators:

J+µ =
g√
2
ν

1

2

(

1 + γ5
)

γµ
1

2

(

1 − γ5
)

e .

Note that we have the identity:
(

1 + γ5
)

γµ
(

1 − γ5
)

= γµ + γ5γµ − γµγ5 − γ5γµγ5

= γµ − 2γµγ5 +
(

γ5
)2
γµ

= 2γµ
(

1 − γ5
)

such that we get for the leptonic charge raising current (W+):

J+µ = g

2
√

2
ν γµ (1 − γ5) e
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and for the leptonic charge lowering current (W−):

J−µ = g

2
√

2
e γµ (1 − γ5) ν .

Remembering that a vector interaction has an operator γµ in the current and an axial
vector interaction a term γµγ5, we recognize in the charged weak interaction the famous
“V-A” interaction.

The same is true for the quark-currents and we can recognize the following currents
in the weak interaction:

Charge raising:

W+

e−

νe

W+

d

u

Charge lowering:

W−

e−

νe

W−

d

u

11.2 The Neutral Current

11.2.1 Empirical Appraoch

The Lagrangian for weak and electromagnetic interactions is:

LEW = Lfree − Lweak − LEM
Lweak = W+

µ J
+µ +W−

µ J
−µ + b3µJ

µ
3

LEM = aµJ
µ
EM

Let us again look at the interactions for leptons ν, e, then:

Jµ3 =
g

2
ψL γ

µ τ 3 ψL =
g

2
νL γ

µ νL − g

2
eL γ

µ eL

(

we used : τ3 =

(

1 0
0 −1

))

JµEM = q e γµ e = q (eL γ
µ eL) + q (eR γ

µ eR)

Exercise 38:
Show explicitly that:

ψ γµ ψ = ψL γ
µ ψL + ψR γ

µ ψR

making use of ψ = ψL + ψR and the projection operators 1
2
(1 − γ5) and 1

2
(1 + γ5)
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Experiments have shown that in contrast to the charged weak interaction, the neutral
weak current associated to the Z-boson is not purely left-handed, but:

JµfNC =
g

2
ψ
f
γµ

(

Cf
V − Cf

Aγ
5
)

ψf

where Cf
V and Cf

A are no longer equal to 1, but they are constants that express the
relative strength of the vector and axial vector components of the interaction. Their
value depends on the type of fermion f , as we will see below.

Taking again the leptons ψ =

(

ν
e

)

we get:

JµNC =
g

2
ν γµ

(

Cν
V − Cν

Aγ
5
)

ν +
g

2
e γµ

(

Ce
V − Ce

Aγ
5
)

e

At this point we introduce the left-handed and right-handed couplings:

CR ≡ CV − CA CV =
1

2
(CR + CL)

CL ≡ CV + CA CA =
1

2
(CL − CR)

then:
(

CV − CAγ
5
)

= CV − CA
︸ ︷︷ ︸

CR

(

1 + γ5

2

)

+ CV + CA
︸ ︷︷ ︸

CL

(

1 − γ5

2

)

so that we can write:

ψ γµ
(

CV − CAγ
5
)

ψ =
(

ψL + ψR
)

γµ (CRψR + CLψL) = CR ψRγ
µψR + CL ψLγ

µψL .

For neutrino’s we have Cν
L = 1 and Cν

R = 0. So, for leptons the observed neutral
current can be written as:

JµNC =
g

2
(νL γ

µ νL) +
g

2
(Ce

L eL γ
µ eL) +

g

2
(Ce

R eR γ
µ eR)

We had for the electromagnetic current:

JµEM = q (eL γ
µ eL) + q (eR γ

µ eR)

and for the SU(2) current:

Jµ3 =
g

2
(νL γ

µ νL) − g

2
(eL γ

µ eL)

We now insert that Jµ3 is in fact a linear combination of JµNC and JµEM :

Jµ3 = a · JµNC + b · JµEM
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• look at the νL terms: a = 1
• look at the eR terms: g

2
Ce
R + q · b = 0 ⇒ Ce

R = −2qb
g

• look at eL terms : g
2
Ce
L + q · b = −g

2
⇒ Ce

L = −1 − 2qb
g

Therefore:

CV =
1

2
(CR + CL) ⇒ Ce

V = −1

2
− 2q

g
b

CA =
1

2
(CL − CR) ⇒ Ce

A = −1

2

The vector coupling now contains a constant b which gives the ratio in which the SU(2)
current (g

2
) and the electromagnetic current (q) are related. The constant b is a constant

of nature and is written as b = sin2 θ: where θ represents the weak mixing angle.
We will study this more carefully below.

11.2.2 Hypercharge vs Charge

Again, we write down the electroweak Lagrangian, but this time we pose a different
U(1) symmetry (see H&M1, Chapter 13):

LEW = Lfree − g ~JµSU(2) ·~bµ − g′

2
JµY aµ

where Y is the so-called hypercharge quantum number.
The U(1) gauge invariance in now imposed on the quantity hypercharge rather the
charge, and it has a coupling strength g′/2.

As before we have the physical charged currents:

W±
µ =

b1µ ∓ ib2µ√
2

.

For the neutral currents we say that the physical fields are the following linear combi-
nations:

Aµ = aµ cos θw + b3µ sin θw (massless)

Zµ = −aµ sin θw + b3µ cos θw (massive)

and the origin of the name weak mixing angle for θw becomes clear.
We can now write the terms for b3µ and aµ in the Lagrangian:

−gJµ3 b3µ −
g′

2
JµY aµ = −

(

g sin θwJ
µ
3 + g′ cos θw

JµY
2

)

Aµ

−
(

g cos θwJ
µ
3 − g′ sin θw

JµY
2

)

Zµ

≡ −qJµEMAµ − gZJ
µ
NCZµ

1Halzen and Martin, Quarks & Leptons: “An Introductory Course in Modern Particle Physics”
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The weak hypercharge is introuced in complete analogy with the strong hypercharge,
for which we have the famous Gellmann - Nishijima relation: Q = I3 + 1

2
YS. In the

electroweak theory we use: Q = T3 + 1
2
Y which means:

JµEM = Jµ3 + 1
2
JµY

then, indeed, for the Aµ field we have:

−g sin θw

(

Jµ3 +
g′ cos θw
g sin θw

· 1

2
JµY

)

= −eJµEM ,

provided the following relation holds:

g sin θw = g′ cos θw = e .

The weak mixing angle is defined as the ratio of the coupling constants of the SU(2)L
group and the U(1)Y group:

tan θw =
g′

g
.

For the Z-currents we then find:

−
(

g cos θwJ
µ
3 − g′

2
sin θw · 2 (JµEM − Jµ3 )

)

Zµ

= ...

= − e

cos θw sin θw

(

Jµ3 − sin2 θwJ
µ
EM

)

Zµ

So we see that:
JµNC = Jµ3 − sin2 θw J

µ
EM

which is in agreement with what we had obtained earlier:

Jµ3 = a · JµNC + b · JµEM with a = 1 and b = sin2 θw

11.2.3 Assessment

We introduce a symmetry group SU(2)L⊗U(1)Y and describe electroweak interactions
with:

−
(

g ~JµL ·~bµ +
g′

2
JµY · aµ

)

The coupling constants g and g′ are free parameters (we can also take e and sin2 θw).
The electromagnetic and neutral weak currents are then given by:

JµEM = Jµ3 +
1

2
JµY

JµNC = Jµ3 − sin2 θwJ
µ
EM = cos2 θwJ

µ
3 − sin2 θw

JµY
2
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and the interaction term in the Lagrangian becomes:

−
(

eJµEM · Aµ +
e

cos θw sin θw
JµNC · Zµ

)

in terms of the physical fields Aµ and Zµ.

11.3 The Mass of the W and Z bosons

In the electroweak model as introduced here, the gauge fields must be massless, since ex-
plicit mass terms (∼ φµφ

µ) are not gauge invariant. In the Standard Model the mass of
all particles are generated in the mechanism of spontaneous symmetry breaking, intro-
ducing the Higgs particle (see later lectures.) Here we just give an empirical argument
to predict the mass of the W and Z particles.

1. Mass terms are of the following form:

M2
φ = 〈φ |H|φ〉 for any field φ

2. From the comparison with the Fermi 4-point interaction we find:

GF√
2

=
g2

8M2
W

⇒ M2
W =

√
2g2

8GF

=

√
2

8GF

e2

sin2 θ

Thus, we get the following predictions:

MW =

√
√
√
√

√
2

8GF

e

sin θw
= 81 GeV

MZ = MW (gz/g) = MW/cos θ = 91 GeV

11.4 The Coupling Constants for Z → ff

For the neutral Z-current interaction we have for the interaction in general:

−igZ JµNC Zµ = −i g

cos θw

(

Jµ3 − sin2 θwJ
µ
EM

)

Zµ

= −i g

cos θw
ψfγ

µ
[
1

2

(

1 − γ5
)

T3 − sin2 θwQ
]

︸ ︷︷ ︸

1

2(C
f
V
−Cf

A
γ5)

ψf · Zµ

which we can represent with the following vertex and Feynman rule:

Z0

f

f
−i g

cos θw
γµ

1

2

(

Cf
V − Cf

Aγ
5
)
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with:

Cf
L = T f3 −Qf sin2 θw

Cf
R = −Qf sin2 θw

⇒ Cf
V = T f3 − 2Qf sin2 θw

Cf
A = T f3

fermion T3 Q Y Cf
A Cf

V

νe νµ ντ +1
2

0 −1 1
2

1
2

e µ τ −1
2

−1 −1 −1
2

−1
2

+ 2 sin2 θw
u c t +1

2
+2

3
1
3

1
2

1
2
− 4

3
sin2 θw

d s b −1
2

−1
3

1
3

−1
2

−1
2

+ 2
3
sin2 θw

Table 11.1: The neutral current vector and axial vector couplings for each of the fermions
in the Standard Model.

Exercise 39:
What do you think is the difference between an exact and a broken symmetry?
Can you make a (wild) guess what spontaneous symmetry breaking means?
Which symmetry is involved in the gauge theories below? Which of these gauge sym-
metries are exact? Why/Why not?

(a) U1(Q) symmetry

(b) SU2(u-d-flavour) symmetry

(c) SU3(u-d-s-flavour) symmetry

(d) SU6(u-d-s-c-b-t) symmetry

(e) SU3(colour) symmetry

(f) SU2(weak-isospin) symmetry

(f) SU5(Grand unified) symmetry

(g) SUSY
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Lecture 12

The Process e−e+ → µ−µ+

12.1 The Cross Section of e−e+ → µ−µ+

Equipped with the Feynman rules of the electroweak theory we proceed to calculate
the cross section of the electroweak process: e−e+ → γ, Z → µ−µ+ . We assume the
following kinematics:

−θ

µ

µ

ee

+

−

+

Figure 12.1: Kinematics of the process e−e+ → µ−µ+.

There are two Feynman diagrams that contribute to the process:

Mγ : γ

e+

e−

µ+

µ−

MZ :
Z

e+

e−

µ+

µ−

Figure 12.2: Feynman diagrams contributing to e−e+ → µ−µ+

In complete analogy with the calculation of the QED process e+e− → e+e− we obtain
the cross section using Fermi’s Golden rule:

dσ =
|M|2

F
dQ

With the phase factor dQ flux factor F :

dQ =
1

4π2

pf
4
√
s
dΩ

131
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F = 4pi
√
s

σ
(

e−e+ → µ−µ+
)

=
1

64π2
· 1

s
· |M|2

The Matrix element now includes:

Mγ = −e2
(

ψmγ
µψm

)

· gµν
q2

·
(

ψeγ
νψe

)

MZ = − g2

4 cos2 θw

[

ψmγ
µ
(

Cm
V − Cm

A γ
5
)

ψm
]

· gµν − qµqν/M
2
Z

q2 −M2
Z

·
[

ψeγ
ν
(

Ce
V − Ce

Aγ
5
)

ψe
]

The propagator for massive vector bosons (Z-boson) is discussed in Halzen & Martin
§6.11 and §6.12. The wave equation of a massless spin-1 particle is:

2
2Aµ = 0 ⇒ i

−gµν
q2

(

2
2 +M2

)

Zµ = 0 ⇒ i
−gµν + qµqν/M

2

q2 −M2

We can simplify the propagator of the Z if we ignore the lepton masses. In practice
this means that we work in the limit of high-energy scattering. In that case the Dirac
equation becomes:

ψe (i∂µγ
µ −m) = 0 ⇒ ψe (γµpµ,e) = 0

Since pe = 1
2
q we also have:

1

2
ψe (γµqµ) = 0 ⇒ qµ · qν/M2

z = 0

Thus the propagator simplifies:

gµν − qµqν/M
2
Z

q2 −M2
Z

→ gµν
q2 −M2

Z

Thus we have for the Z-exchange matrix element the expression:

MZ =
−g2

4 cos2 θw

1

q2 −M2
Z

·
[

ψm γ
µ
(

Cm
V − Cm

A γ
5
)

ψm
] [

ψe γµ
(

Ce
V − Ce

Aγ
5
)

ψe
]

.

To calculate the cross section by summing over Mγ and MZ is now straightforward but
a rather lengthy procedure: applying Casimir’s trick, trace theorems, etc. Let us here
try to follow a different approach.

We rewrite the MZ matrix element in terms of right-handed and left-handed cou-
plings, using the definitions: CR = CV − CA ; CL = CV + CA. As before we have:

(

CV − CAγ
5
)

= (CV − CA) · 1

2

(

1 + γ5
)

+ (CV + CA) · 1

2

(

1 − γ5
)

.
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Thus:
(

CV − CAγ
5
)

ψ = CRψR + CLψL .

Let us now look back at the QED process:

Mγ =
−e2
s

(

ψmγ
µψm

) (

ψeγµψe
)

with (see previous lecture):

(

ψmγ
µψm

)

=
(

ψLm γ
µ ψLm

)

+
(

ψRm γ
µ ψRm

)

(

ψeγµψe
)

=
(

ψLe γµ ψLe
)

+
(

ψRe γµ ψRe
)

The fact that there are no terms connecting L-handed to R-handed (ψRm γµ ψLm)
actually implies that we have helicity conservation for high energies (i.e. neglecting
∼ m/E terms) at the vertices:

R R L L

or:
L

R

R

L

Figure 12.3: Helicity conservation. left: A right-handed incoming electron scatters into
a right-handed outgoing electron and vice versa in a vector or axial vector interaction .
right: In the crossed reaction the energy and momentum of one electron is reversed: i.e.
in the e+e− pair production a right-handed electron and a left-handed positron (or vice
versa) are produced. This is the consequence of a spin=1 force carrier. (In all diagrams
time increases from left to right.)

As a consequence we can decompose the unpolarized QED scattering process as a
sum of 4 cross section contributions (Note: e+R ≡ ψLe etc.(!))

dσ

dΩ

unpolarized

=
1

4
{ dσ

dΩ

(

e−Le
+
R → µ−

Lµ
+
R

)

+
dσ

dΩ

(

e−Le
+
R → µ−

Rµ
+
L

)

dσ

dΩ

(

e−Re
+
L → µ−

Lµ
+
R

)

+
dσ

dΩ

(

e−Re
+
L → µ−

Rµ
+
L

)

}

where we average over the incoming spins and sum over the final state spins.

Let us look in more detail at the helicity dependence (H&M §6.6):



134 Lecture 12. The Process e−e+ → µ−µ+

Final state:

z−axis

z’−axis

θ

µ

µ

+

−

e+ e−

Initial state:

In the initial state the e− and
e+ have opposite helicity (as they
produce a spin 1 γ).

The same is true for the final state
µ− and µ+.

So, in the center of mass frame, scattering proceeds from an initial state with JZ =
+1 or −1 along axis ẑ into a final state with J ′

Z = +1 or −1 along axis ẑ′. Since the
interaction proceeds via a photon with spin J = 1 the amplitude for scattering over an
angle θ is then given by the rotation matrices1.

djm′m(θ) ≡
〈

jm′|e−iθJy |jm
〉

where the y-axis is perpendicular to the interaction plane.

In the example we have j = 1 and m,m′ = ±1

d1
1 1(θ) = d1

−1−1(θ) =
1

2
(1 + cos θ)

d1
1−1(θ) = d1

−1 1(θ) =
1

2
(1 − cos θ)

From this we can see that:

dσ

dΩ

(

e−Le
+
R → µ−

Lµ
+
R

)

=
α2

4s
(1 + cos θ)2 =

dσ

dΩ

(

e−Re
+
L → µ−

Rµ
+
L

)

dσ

dΩ

(

e−Le
+
R → µ−

Rµ
+
L

)

=
α2

4s
(1 − cos θ)2 =

dσ

dΩ

(

e−Re
+
L → µ−

Lµ
+
R

)

Indeed the unpolarised cross section is obtained as the spin-averaged sum over the
allowed helicity combinations (see lecture 8): 1

4
· [(1) + (2) + (3) + (4)] =

dσ

dΩ

unpol

=
1

4

α2

4s
2
[

(1 + cos θ)2 + (1 − cos θ)2
]

=
α2

4s

(

1 + cos2 θ
)

.

1See H&M§2.2:

e−iθJ2 |j m〉 =
∑

m′

dj
m m′(θ) |j m′〉

and also appendix H in Burcham & Jobes
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Now we go back to the γ, Z scattering. We have the individual contributions of the
helicity states, so let us compare the expressions for the matrix-elements Mγ and MZ :

Mγ = −e
2

s

[ (

ψLm γ
µ ψLm

)

+
(

ψRm γ
µ ψRm

) ]

·
[ (

ψLe γµ ψLe
)

+
(

ψRe γµ ψRe
) ]

MZ = − g2

4 cos2 θw

1

s−M2
Z

[

Cm
L

(

ψLm γ
µ ψLm

)

+ Cm
R

(

ψRm γ
µ ψRm

) ]

·
[

Ce
L

(

ψLe γµ ψLe
)

+ Ce
R

(

ψRe γµ ψRe
) ]

At this point we follow the notation of Halzen and Martin and introduce:
e−L,R(p) ≡ ψL,Re(p), e

+
L,R(p) ≡ ψR,Le(−p), µ−

L,R(p) ≡ ψL,Rm(p), µ+
L,R(p) ≡ ψR,Lm(−p).

Since the helicity processes do not interfere, we can see (Exercise 40 (a)) that:

dσ

dΩ γ,Z

(

e−Le
+
R → µ−

Lµ
+
R

)

=
α2

4s
(1 + cos θ)2 · |1 + r Cm

L C
e
L|2

dσ

dΩ γ,Z

(

e−Le
+
R → µ−

Rµ
+
L

)

=
α2

4s
(1 − cos θ)2 · |1 + r Cm

RC
e
L|2

with:

r =
g2

e2
1

4 cos2 θw

s

s−M2
z

=

√
2GFM

2
Z

e2
s

s−M2
Z

.

where we used that:

GF√
2

=
g2

8M2
W

=
g2

8M2
Z cos2 θw

.

Similar expressions hold for the other two helicity configurations.

We note that there is a strange behaviour in the expression of the cross section of
the Z-propagator. When

√
s → MZ the cross section becomes ∞. In reality this does

not happen (that would be unitarity violation) due to the fact that the Z-particle itself
decays and has an intrinsic decay width ΓZ . This means that the cross section has a
Breit Wigner resonance shape. We are not going to derive it, but refer to the literature:
e.g. Perkins2.

Alternatively, a simple argument followed by H&M §2.10 goes as follows: The wave
function for a non-stable massive particle state is:

|ψ (t)|2 = |ψ (0)|2 e−Γt with Γ the lifetime.

ψ (t) ∼ e−iMt e−
Γ

2
t with M the mass.

2Perkins: Introduction to high energy Physics 3rd ed. §4.8.
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As function of the energy of the e+e−

pair the state is described by the Fourier
transform:

χ(E) =
∫

ψ(t)eiEtdt ∼ 1

E −M + (iΓ/2)
.

Such that experimentally we would observe:

|χ (E)|2 =
A

(E −M)2 + (Γ/2)2 ,

the so-called Breit-Wigner resonance shape.

Breit Wigner

A=10
M=20
Γ=2.5

E

0

1

2

3

4

5

6

0 5 10 15 20 25 30 35 40

In the propagator for the z-boson we replace:

1

s−M2
Z

→ 1

s−
(

MZ − iΓZ

2

)2 =
1

s−
(

M2
Z − Γ2

z

4

)

+ iMZΓZ

We observe two changes:

1. The maximum of the distribution shifts from M2
Z →M2

Z − Γ2
Z

4
.

2. The expression will be finite because of the term ∝MZΓZ

For our expressions in the process e−e+ → γ, Z → µ−µ+ it means that we only replace:

r =

√
2GFM

2
Z

e2
· s

s−M2
Z

by r =

√
2GFM

2
Z

e2
· s

s−
(

MZ − iΓZ

2

)2

The total unpolarized cross section finally becomes the average over the four L, R
helicity combinations. Inserting “lepton universality” Ce

L = Cµ
L ; Ce

R = Cµ
R and therefore

also: Ce
V = Cµ

V ; Ce
A = Cµ

A , the expression becomes (by writing it out):

dσ

dΩ
=

α2

4s

[

A0

(

1 + cos2 θ
)

+ A1 (cos θ)
]

with A0 = 1 + 2Re(r) C2
V + |r|2

(

C2
V + C2

A

)2

A1 = 4Re(r) C2
A + 8|r|2C2

VC
2
A

In the Standard Model we have: CA = −1
2

and CV = −1
2

+ 2 sin2 θ .
The general expression for e−e+ → γ, Z → µ−µ+ is (assuming seperate couplings for

initial and final state):

A0 = 1 + 2Re(r) Ce
VC

f
V + |r|2

(

Ce
V

2 + Ce
A

2
) (

Cf
V

2
+ Cf

A

2
)

A1 = 4Re(r) Ce
AC

f
A + 8|r|2 Ce

VC
f
VC

e
AC

f
A
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To summarize, on the amplitude level there are two diagrams that contribute:

Mγ : γ

e+

e−

µ+

µ−

MZ :
Z

e+

e−

µ+

µ−

Introducing the following notation:

dσ

dΩ
[Z,Z] = Z · Z ∝ |r|2

dσ

dΩ
[γZ] = γ · Z ∝ Re (r)

dσ

dΩ
[γ, γ] = γ · γ ∝ 1

Explicitly, the expression is:

dσ

dΩ
=

dσ

dΩ
[γ, γ] +

dσ

dΩ
[Z,Z] +

dσ

dΩ
[γ, Z]

with
dσ

dΩ
[γ, γ] =

α2

4s

(

1 + cos2 θ
)

dσ

dΩ
[Z,Z] =

α2

4s
|r|2

[(

Ce
V

2 + Ce
A

2
)(

Cf
V

2
+ Cf

A

2
)(

1 + cos2 θ
)

+ 8Ce
VC

f
VC

e
AC

f
A cos θ

]

dσ

dΩ
[γ, Z] =

α2

4s
Re|r|

[

Ce
VC

f
V

(

1 + cos2 θ
)

+ 2Ce
AC

f
A cos θ

]

Let us take a look at the cross section close to the peak of the distribution:

r ∝ s

s−
(

Mz − iΓZ

2

)2 =
s

s−
(

M2
z −

Γ2
Z

4

)

+ iMZΓZ

The peak is located at s0 = M2
Z − Γ2

Z

4
.

In Exercise 40 (b) we show that:

Re(r) =
(

1 − s0

s

)

|r|2 with |r|2 =
s2

(

s−
(

M2
Z − Γ2

Z

4

))2

+M2
ZΓ2

Z

This shows that the interference term is 0 at the peak.

In that case (i.e. at the peak) we have for the cross section terms:

A0 = 1 + |r|2
(

Ce
V

2 + Ce
A

2
) (

Cf
V

2
+ Cf

A

2
)

A1 = 8|r|2
(

Ce
V C

e
A C

f
V C

f
A

)
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The total cross section (integrated over dΩ) is then:

σ(s) =
G2
FM

4
Z

(

s−
(

M2
Z − Γ2

Z

4

))2

+M2
ZΓ2

Z

· s
6π

(

Ce
V

2 + Ce
A

2
) (

Cf
V

2
+ Cf

A

2
)

.

Ecm [GeV]
σ ha

d 
[n

b]

σ from fit
QED unfolded

measurements, error bars
increased by factor 10

ALEPH
DELPHI
L3
OPAL

σ0

ΓZ

MZ

10

20

30

40

86 88 90 92 94

Figure 12.4: left: The Z-lineshape as a function of
√
s. right: The Lineshape parameters

for the lowest order calculations and including higher order corrections.

12.2 Decay Widths

We can also calculate the decay width:

Γ
(

Z → ff
)

f

f

which is according Fermi’s golden rule:

Γ
(

Z → ff
)

=
1

16π

1

MZ

∣
∣
∣M

∣
∣
∣

2

=
g2

48π

Mz

cos2 θw

(

Cf
V

2
+ Cf

A

2
)

=
GF

6
√

2

M3
Z

π

(

Cf
V

2
+ Cf

A

2
)

Using this expression for Γe ≡ Γ(Z → e+e−) and Γf ≡ Γ(Z → ff) we can re-write:

σ(s) =
12π

M2
Z

· s
(

s−
(

M2
Z − Γ2

Z

4

))2

+M2
ZΓ2

Z

· ΓeΓf .
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Close to the peak we then find:

σpeak ≈
12π

M2
Z

ΓeΓf
Γ2
Z

=
12π

M2
Z

BR(Z → ee) ·BR(Z → ff)

Let us now finally consider the case when f = q (a quark). Due to the fact that
quarks can be produced in 3 color-states the decay width is:

Γ(Z → qq) =
GF

6
√

2

M3
Z

π

(

Cf
V

2
+ Cf

A

2
)

·NC

with the colorfactor NC = 3. The ratio between the hadronic and leptonic width:
Rl = Γhad/Γlep can be defined. This ratio can be used to test the consistency of the
standard model by comparing the calculated value with the observed one.

12.3 Forward Backward Asymmetry

The forward-backward asymmetry can be defined using the polar angle distribution. At
the peak and ignoring the pure photon exchange:

dσ

d cos θ
∝ 1 + cos2 θ +

8

3
AFB cos θ

This defines the forward-backward asymmetry with:

A0,f
FB =

3

4
AeAf where Af =

2Cf
VC

f
A

C2
V + C2

A

The precise measurements of the forward-backward asymmetry can be used to determine
the couplings CV and CA.

0.01

0.014

0.018

0.022

20.6 20.7 20.8 20.9

Rl

A
0,

l

fb

68% CL

l+l−

e+e−

µ+µ−

τ+τ−

αs

mt

mH

combined in plots with SLD resultsFigure 12.5: left: Test of lepton-universality. The leptonic Afb vs. Rl. The contours
show the measurements while the arrows show the dependency on Standard Model
parameters. right: Determination of the vector and axial vector couplings.
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12.4 The Number of Light Neutrino Generations

Since the total decay width of the Z must be equal to the sum of all partial widths the
following relation holds:

ΓZ = Γee + Γµµ + Γττ + 3Γuu + 3Γdd + 3Γss + 3Γcc + 3Γbb +Nν · Γνν

From a scan of the Z-cross section as function of the center of mass energy we find:

ΓZ ≈ 2490 MeV

Γee ≈ Γµµ ≈ Γττ = 84 MeV CV ≈ 0 CA = −1

2

Γνν = 167 MeV CV =
1

2
CA =

1

2

Γuu ≈ Γcc = 276 MeV CV ≈ 0.19 CA =
1

2

Γdd ≈ Γss ≈ Γbb = 360 MeV CV ≈ −0.35 CA = −1

2

(Of course Γtt = 0 since the top quark is heavier than the Z.)

Nν =
ΓZ − 3Γl − Γhad

Γνν
= 2.984 ± 0.008 .

Figure 12.6: The Z-lineshape for resp. Nν = 2, 3, 4.
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Figure 12.7: Standard Model fit of the predicted value of the Higgs boson.
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Exercise 40:

(a) Show how the unpolarised cross section formula for the process e+e− → Z, γ → µ+µ−

can be obtained from the expression of the helicity cross sections in the lecture:

dσ

dΩ

(

e−L/Re
+
R/L → µ−

L/Rµ
+
R/L

)

=
α2

4s
(1 ± cos θ)2

∣
∣
∣1 + r Ce

L/RC
µ
L/R

∣
∣
∣

2

(b) Show, using the expression of r from the lecture, that close to the peak of the
Z-lineshape the expression

Re(r) =
(

1 − s0

s

)

|r|2

with s0 = M2
z − Γ2

z/4 holds.

(c) Show also that at the peak:

σpeak ≈
12π

M2
z

ΓeΓµ
Γ2
Z

(d) Calculate the relative contribution of the Z-exchange and the γ exchange to the
cross section at the Z peak.
Use sin2 θW = 0.23, Mz = 91GeV and ΓZ = 2.5GeV .

(e) The actual line shape of the Z-boson is not a pure Breit Wigner, but it is asym-
metrical: at the high

√
s side of the peak the cross section is higher then expected

from the formula derived in the lectures.
Can you think of a reason why this would be the case?

(f) The number of light neutrino generations is determined from the “invisible width”
of the Z-boson as follows:

Nν =
ΓZ − 3Γl − Γhad

Γν

Can you think of another way to determine the decay rate of Z → νν̄ directly?
Do you think this method is more precise or less precise?



Appendix A

Variational Calculus

This appendix is a short reminder of variational calculus leading to the Euler Lagrange
equations of motion. Let us assume that we have a cartesian coordinate system with
coordinates x and y, and consider the distance between an initial position (x0, y0) and a
final position (x1, y1). We ask the simple question: “What is the shortest path between
the two points in this space?”

Assume that the path of the particle can be represented as y = f(x) = y(x). So
y(x0) = y0 and y(x1) = y1.

Consider now the distance dl of two infinitesimal close points:

dl =
√

dx2 + dy2 =

√
√
√
√
√dx2



1 +

(

dy

dx

)2


 =
√

1 + y′2dx

with y′ = dy/dx.
The total length from (x0, y0) to (x1, y1) is:

l =
∫ x1

x0

dl =
∫ x1

x0

√

1 + y′2dx .

The problem is to find the function y(x) for which the l is minimal. The variational
principle states that for the shortest path this integral should be stationary for possible
different paths; i.e. for different functions of y(x).

To find the solution we shall look at a more general case. Assume that the path
length is given by the integral:

I =
∫ x1

x0

f(y, y′)dx .

In the above example we have f(y, y′) = f(y′) =
√

1 + y′2.
According to the variational principle the physics path is obtained via δI = 0. First

we consider the infinitesimal change

δf =
∂f

∂y
δy +

∂f

∂y′
δy′

143
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where δy′ = δ
(
dy
dx

)

= d
dx

(δy).
So we find:

δf =
∂f

∂y
δy +

∂f

∂y′
d

dx
(δy)

and the variation of the integral is:

δI =
∫ x1

x0









∂f

∂y
δy

︸ ︷︷ ︸

(1)

+
∂f

∂y′
d

dx
(δy)

︸ ︷︷ ︸

(2)









dx .

The 2-nd term can be integrated in parts:

(2) = −
∫ x1

x0

d

dx

∂f

∂y′
δy dx+

[

∂f

∂y′
δy

]x1

x0
︸ ︷︷ ︸

=0

The second term is zero due to the boundary conditions (the initial and final point are
fixed: δy = 0.)
Therefor a the stationary path requires:

δI =
∫ x1

x0

[

∂f

∂y
− d

dx

(

∂f

∂y′

)]

δy(x) dx = 0 .

This is obtained when the integrand is 0, or:

∂f

∂y
− d

dx

∂f

∂y′
= 0

For the straight line example above we had f(y′) =
√

1 + y′2, such that ∂f/∂y = 0 and
∂f/∂y′ = y′/

√
1 + y′2. So the variational principle states that:

d

dx

(

y′√
1 + y′2

)

= 0

or that y′ is a constant (dy/dx = a) and the solution is therefore: y = ax+ b.

In mechanics involving conservative forces we apply the stationary action principle
to the Lagrangian function (L), which depends on the generalized coordinates (qi, q̇i):

L (qi, q̇i) = T − V

such that we write for the equation of motion:

d

dt

∂L
∂q̇i

=
∂L
∂qi

.

Hamilton’s principle states that the action integral

I =
∫ t1

t0
L (qi, q̇i) dt

is stationary: δI = 0.



Appendix B

Some Properties of Dirac Matrices
αi and β

This appendix lists some properties of the operators αi and β in the Dirac Hamiltonian:

Eψ = i
∂

∂t
ψ =

(

−i~α · ~∇ + βm
)

ψ

1. αi and β are Hermitean.
They have real eigenvalues because the operators E and ~p are Hermitean. (Think
of a plane wave equation: ψ = Ne−ipµxµ

.)

2. Tr(αi) = Tr(β) = 0.
Since αiβ = −βαi, we have also: αiβ

2 = −βαiβ. Since β2 = 1, this implies:
αi = −βαiβ and therefore Tr(αi) = −Tr(βαiβ) = −Tr(αiβ2) = −Tr(αi), where
we used that Tr(A ·B) = Tr(B · A).

3. The eigenvalues of αi and β are ±1.
To find the eigenvalues bring αi, β to diagonal form and since (αi)

2 = 1, the square
of the diagonal elements are 1. Therefore the eigenvalues are ±1. The same is
true for β.

4. The dimension of αi and β matrices is even.
The Tr(αi) = 0. Make αi diagonal with a unitary rotation: UαiU

−1. Then, using
again Tr(AB) = Tr(BA), we find: Tr(UαiU

−1) = Tr(αiU
−1U) = Tr(αi). Since

UαiU
−1 has only +1 and −1 on the diagonal (see 3.) we have: Tr(UαiU

−1) =
j(+1) + (n − j)(−1) = 0. Therefore j = n − j or n = 2j. In other words: n is
even.
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