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Abstract

These lectures begin by reviewing the evidence for S duality of the toroidally

compactified heterotic string in 4d that was obtained in the period 1992–94. Next

they review recently discovered dualities that relate all five of the 10d superstring

theories and a quantum extension of 11d supergravity called M theory. The study

of p-branes of various dimensions (some of which are D-branes) plays a central

role. The final sections survey supersymmetric string vacua in 6d and some of

the dual constructions by which they can be obtained. Special emphasis is given

to a class of N = 1 models that exhibit “heterotic-heterotic duality.”

Lectures presented at the ICTP Spring School (March 1996)

and at the TASI Summer School (June 1996)

1Work supported in part by the U.S. Dept. of Energy under Grant No. DE-FG03-92-ER40701.

http://arXiv.org/abs/hep-th/9607201v2
http://arXiv.org/abs/hep-th/9607201


1 Introduction

In the first superstring revolution (1984–85) we learned that there are just five superstring

theories, each of which admits a 10d Poincaré-invariant vacuum and has a perturbation

expansion that is consistent at every finite order.[1] Three of the theories have N = 1

supersymmetry in 10d (type I and the two heterotic theories), one has N = 2 supersymmetry

in 10d with the two supercharges having opposite chirality (type IIA) and one has N = 2

supersymmetry in 10d with the two supersymmetries having the same chirality (type IIB).

One of the theories is based on unoriented open and closed strings (type I) and the other four

are based on oriented closed strings. In short, each of the five theories appears to be quite

different from the others, with very distinctive features. Of course, we don’t really want five

theories, since there is only one universe to explain. So the hope that I and others expressed

in the mid 1980’s was that some of these might turn out to be equivalent or inconsistent,

but it wasn’t apparent how this could happen.

In the second superstring revolution (1994–??) we are learning that all of these different

superstring theories are consistent, but that they are non-perturbatively equivalent. Each

of them represents a perturbation expansion of a single underlying theory about a distinct

point in the moduli space of quantum vacua. Moreover, there is a sixth rather special point

in this moduli space characterized by an 11d Poincaré-invariant vacuum. The rules for doing

quantum mechanics in the 11d vacuum are not yet understood, but the answer (whatever it

is) has been named ‘M theory’. Some people believe that M theory is more fundamental than

the five superstring theories in 10d, but I do not share that viewpoint. Rather, for reasons

that will be explained in these lectures, I believe that it is on a roughly equal footing with the

type IIB superstring theory (or ‘F theory’). Each of these descriptions (extended by various

possible compactifications) gives access to different ‘patches’ of the space of quantum vacua.

A good analogy, which I heard first from Vafa (at the CERN workshop in June 1996), is that

the underlying theory is being defined in much the same way that one defines a manifold. A

manifold can be defined by giving a covering by open sets that are diffeomorphic to open sets

in Rn and by consistently defining transition functions on their overlaps. In the proposed

analogy, each of the superstring theories corresponds to one of the open sets, and the dualities

that characterize their non-perturbative equivalences correspond to the transition functions.
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From this viewpoint the various dualities could be viewed as part of the definition of the

underlying theory rather than as conjectured theorems that require proof. Of course, as in the

case of ordinary transition functions, they must satisfy a number of consistency conditions.

Exactly what consistency conditions are required has not yet been carefully spelled out.

There is a widespread belief that a deeper formulation of the theory ought to exist, and I

tend to share that belief, but it is also conceivable that the various perturbation expansions

and non-perturbative dualities constitute the best definition of the theory.

1.1 Duality Symmetries of Supergravity and Superstring Theories

There are three types of dualities that appear in superstring theory, which go by the names

of S, T , and U . Two theories, call them A and B, are said to be S dual if theory A at

strong coupling is equivalent to theory B at weak coupling (and vice versa). This means

that there is an exact map between the A and B descriptions that includes, among other

things the relation φA = −φB. Here φA and φB denote the respective dilaton fields, which

determine the string coupling constant λ according to the rule λ = exp < φ >. Theories A

and B are called T dual if theory A compactified on a space of large volume is equivalent to

theory B compactified on a space of small volume (and vice versa). This means, for example,

that some other scalar field t, the exponential of whose vev determines the volume of the

compactified dimensions, satisfies tA = −tB. T dualities can be checked order-by-order in

string perturbation theory, and therefore they were the first ones to be understood. Theories

A and B can be called U dual if theory A compactified on a space of large (or small) volume

is equivalent to theory B at strong (or weak) coupling. In this case tA = ±φB. This is not

exactly the definition of U duality that was originally proposed, but I feel it is in the spirit

of the original proposal and find it to be convenient. When present, each of these dualities is

supposed to constitute an exact quantum equivalence, which means that the two ‘theories’

should really be viewed as different descriptions of a single theory. It sometimes happens

that a single theory is self-dual under a group of these dualities. In this case, the dualities

are symmetries — discrete gauge symmetries, to be precise. This means that configurations

related by duality transformations describe equivalent vacua, which should be identified as

one and the same.

The appearance of a non-compact global symmetry group G is a characteristic feature
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of the supergravity theories that represent the low-energy effective action for the massless

modes of a superstring compactification. Typically, the group G is realized nonlinearly

by scalar fields that parametrize the homogeneous space G/H , where H is the maximal

compact subgroup of G. The first example of this phenomenon, with G = SL(2,R) and

H = U(1), was uncovered in 1976 in a version of N = 4 4d supergravity by Cremmer,

Ferrara, and Scherk.[2] Curiously, a discrete subgroup of the symmetry of this particular

example corresponds precisely to the example of S duality that was first recognized in string

theory – that of the toroidally compactified heterotic string. An analogous non-compact E7

symmetry was found in N = 8 4d supergravity by Cremmer and Julia in 1978,[3] and many

other examples were worked out thereafter.[4] The Cremmer–Julia example corresponds to

the toroidally compactified type II string, and combines S, T , and U dualities in a single

discrete group. (As mentioned above, this usage of the term ‘U duality’ differs a bit from

the one proposed by Hull and Townsend,[5] which refers to the entire group as ‘U duality.’)

The first proposal for the non-perturbative behavior of string theory was the 1990 sug-

gestion of Font et al.[6] that the SL(2,Z) subgroup of the SL(2,R) of Cremmer, Ferrara,

and Scherk should be an exact symmetry of the heterotic string toroidally compactified (in

the way described by Narain[7]) to 4d. They named this discrete symmetry group S du-

ality, because the N = 1 superfield (containing the axion and dilaton) that parametrizes

SL(2,R)/U(1) is often called S. That S duality should be an exact symmetry of the quan-

tum string theory was a bold conjecture, since a Z2 subgroup is an electric-magnetic duality

in which the coupling constant is inverted (gel → gmag ∝ 1/gel). Thus, it relates the strong

coupling limit to a weakly coupled description. This proposal extends the duality conjecture

of Montonen and Olive [11] from supersymmetric gauge theories to the superstring setting.

Since string theory had only been formulated in perturbation theory, the proposal of

Font et al., when it first appeared, seemed to me to be an intriguing but untestable sugges-

tion. In any case, the S duality conjecture was eventually picked up and pursued by Sen

and myself.[8, 9, 10] As we will see, non-trivial tests of S duality have been formulated and

verified. The technical tool that makes it possible to extract non-perturbative information

about theories that have only been defined perturbatively is supersymmetry. Specifically,

when there is enough supersymmetry, states belonging to ‘short representations’ of the su-

persymmetry algebra are exactly stable and have many of their properties protected from
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quantum corrections – both perturbative and non-perturbative. This will be discussed in

more detail later.

T duality, unlike S duality, holds order by order in string perturbation theory.[12] In

the simplest case – compactification on a circle – the group is Z2 and the transformation

corresponds to inversion of the radius (R → α′/R). Of course, as mentioned above, R is

determined by the value of a scalar field (a T modulus). As in the case of S duality, when T

duality is a symmetry of a single theory, it is a discrete gauge symmetry that is realized as

a field transformation, whereas when it relates two apparently different theories it is a field

identification.

1.2 The 4d Heterotic String

In the example of toroidal compactification of the heterotic string no supersymmetry is

broken, and in 4d there are 132 scalar fields that live on the Narain moduli space M6,22.

Narain spaces Mk,l are defined by

Mk,l = SO(k, l;Z)\SO(k, l)/SO(k)× SO(l). (1)

It is convenient to introduce this notation here, since we shall encounter various Narain spaces

in the course of these lectures. Recall that SO(k, l) is the noncompact form of SO(k + l)

that preserves a metric with k plus signs and l minus signs. The group SO(k)×SO(l) is its

maximal compact subgroup and the quotient space SO(k, l)/SO(k)×SO(l) is a homogeneous

space of dimension kl. The discrete group SO(k, l;Z) is an infinite group consisting of all

SO(k, l) matrices with integer entries. When l = k + 16, it is the subgroup of SO(k, l)

that preserves a certain even self-dual lattice of signature (k, l) introduced by Narain. A

homogeneous space is very smooth and well-behaved, but modding out by the discrete group

introduces orbifold singularities, corresponding to the fixed points of the discrete group, in the

moduli space. The T duality group for the 4d heterotic string is GT = SO(6, 22;Z), and the

132 scalar fields belong to 22 Abelian N = 4 gauge multiplets. In terms of compactification

from 10d, 21 of the scalars originate from the metric, 15 from the two-form Bµν , and 96 from

the 16 U(1) gauge fields that form the Cartan subalgebra of E8 ×E8 or SO(32).

The toroidally compactified heterotic string also contains two additional scalar fields –

called the axion χ and the dilaton φ – which belong to the N = 4 supergravity multiplet. The
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dilaton is the 10d dilaton shifted by a function of the other moduli such that the exponential

of its vev gives the 4d coupling constant. The 4d axion is the scalar field that is dual to

the two-form B in 4d. The supergravity theory that contains these fields is precisely the

one studied by Cremmer, Ferrara, and Scherk. They showed that χ and φ parametrize the

homogeneous space SL(2,R)/U(1). Actually, in the quantum theory, only the discrete S

duality subgroup SL(2,Z) is a symmetry, and the moduli space is

MS = SL(2,Z)\SL(2,R)/U(1). (2)

To see how this works, let us introduce a complex scalar field

ρ = χ + ie−2φ = ρ1 + iρ2 (3)

whose vev is < ρ >= θ/2π+i/λ2, where θ is the vacuum angle and λ is the coupling constant.

N = 4 Yang–Mills theories have vanishing β function, so that θ and λ are well-defined

independent of scale. In terms of ρ, the SL(2,Z) symmetry is realized by the non-linear

transformations

ρ→ aρ+ b

cρ+ d
,

(

a b
c d

)

∈ SL(2,Z). (4)

As usual, when instanton effects are taken into account, the continuous Peccei–Quinn sym-

metry χ→ χ+ b, is broken to the discrete subgroup for which b is an integer. This subgroup

and the inversion ρ→ −1/ρ generate the discrete group SL(2,Z) or, when matrices are not

distinguished from their negatives, PSL(2,Z). When θ = 0, a special case is inversion of

the coupling constant λ → 1/λ. In general, the SL(2,Z) symmetry of the theory is broken

completely by any specific choice of vacuum. Only when the vev of ρ is at one of the orbifold

points of the moduli space does some unbroken symmetry (Z2 or Z3) remain.

Mathematically, S and T duality are quite analogous in the 4d low-energy effective field

theory, even though their implications for string theory are dramatically different. This

analogy was one of the original motivations for proposing that S duality should also be a

symmetry. The massless bosonic fields of the toroidally compactified heterotic string are

the metric tensor gµν , the axion-dilaton field ρ, 28 Abelian gauge fields Aa
µ (6 from the 10d

metric, 6 from the 10d two-form, and 16 from the Cartan subalgebra), and the 132 moduli

parametrizing M6,22. These are the only massless bosonic fields at generic points in the
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classical moduli space. At the singular points, where there is enhanced gauge symmetry,

there are more. The 132 moduli are conveniently described as a symmetric 28 × 28 matrix

belonging to the group SO(6, 22):

MT = M, MTLM = L (5)

L =







0 I6 0
I6 0 0
0 0 I22





 . (6)

Under a T duality transformation given by an SO(6, 22;Z) matrix Ω satisfying ΩTLΩ = L

M → ΩMΩT , Aµ → ΩAµ , (7)

while gµν and ρ are invariant.

The 28 U(1) gauge fields Aa
µ give rise to 28 electric and 28 magnetic charges. A convenient

way to define them is to assume that space-time is asymptotically flat and use the asymptotic

behavior of the field strengths:

F a
0i ∼

qa
el

r3
xi F̃ a

0i ∼
qa
mag

r3
xi . (8)

The allowed charges are controlled by the asymptotic values of the moduli (ρ ∼ ρ(0) and

Mab ∼ M
(0)
ab ) and a pair of vectors αa, βa belonging to the Narain lattice, which is an even

self-dual Lorentzian lattice of signature (6,22). The formulas are

qa
el =

1

ρ
(0)
2

M
(0)
ab (αb + ρ

(0)
1 βb), qa

mag = Labβ
b . (9)

These formulas automatically incorporate the Dirac–Schwinger–Zwanziger–Witten quanti-

zation rules (i.e., the quantization condition for dyons in the presence of a θ angle). States

in the perturbative string spectrum carry electric charge only and therefore have βa = 0.

1.3 The 4d Type II Superstring

The type II (A or B) superstring compactified on T 6 is approximated at low-energy by N = 8

supergravity. The classical theory has a non-compact symmetry group E7,7. The natural

conjecture for the duality group in this case is the discrete subgroup E7(Z), which is defined

as the intersection of the continuous E7,7 group and the discrete group Sp(28;Z).[5] Written

6



in the 56-dimensional fundamental representation, it is evident that E7,7 is a subgroup of

the non-compact group Sp(28). (Later, in other contexts, the symbol Sp(n) will represent a

compact group.) The analog of the Narain moduli space in this case is

M = E7(Z)\E7,7/SU(8). (10)

The scalar fields of N = 8 supergravity parametrize this 70-dimensional space. As in the

N = 4 heterotic theory, there are once again 28 U(1) gauge fields. However, this time only

12 of their electric charges are excited (by Kaluza–Klein and winding excitations) in the

perturbative string spectrum. The remaining 16 electric charges and all of the magnetic

charges are only carried by non-perturbative excitations. One way of understanding this is

to note the decomposition

E7(Z) ⊃ SO(6, 6;Z) × SL(2,Z), (11)

which exhibits the T duality and S duality subgroups. With respect to this subgroup, the

fundamental 56 representation decomposes as 56 = (12, 2)+(32, 1). The 12 electric charges

that occur perturbatively are carried by states whose mass is finite at weak coupling in the

string metric. They are associated to the first term, as are the dual magnetic charges,

which give states whose mass is proportional to 1/λ2. The 16 electric and magnetic charges

associated to the 32-dimensional spinorial representation of SO(6, 6) turn out to be carried

by D-branes, and as a result they give masses proportional to 1/λ.

1.4 The BPS Condition

The N -extended 4d supersymmetry algebra (in 2-component notation) includes the anti-

commutator

{QI
α, Q

J
β} = ǫαβZ

IJ . (12)

The N(N−1)/2 central charges ZIJ = −ZJI are complex numbers whose real and imaginary

parts give the electric and magnetic charges associated with the N(N − 1)/2 U(1) gauge

fields in the N -extended 4d supergravity multiplet. The supersymmetry algebra implies that

the mass of any state is bounded below by its central charges. This bound, known as the

Bogomol’nyi bound, is very important. When the mass of a state attains the minimum value
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allowed for given charges (and moduli), the state is said to be BPS saturated. BPS states

belong to smaller representations of the algebra than are possible when the bound is not

saturated. There are actually several possibilities for how this can be achieved. To explain

this, it is convenient to make an SO(N) change of basis such that (in the case of N = 4, for

example)

Z =











0 Z1 0 0
−Z1 0 0 0

0 0 0 Z2

0 0 −Z2 0











. (13)

Thus we see that in the N = 4 case, even though the supergravity multiplet has six U(1)

gauge fields, a generic configuration can be described by only considering two electric and

two magnetic charges. In this case there are two ways to achieve BPS saturation. In

the first case, the mass satisfies the relations M = |Z1| = |Z2|. This gives ‘ultrashort’

multiplets, such as the 16-dimensional gauge multiplet. The second possibility for a BPS

state is M = |Z1| > |Z2|. The first case occurs when the electric charge vector αa and the

magnetic charge vector βa are parallel, while in the second case they are not parallel. Since

BPS states in the perturbative string spectrum are purely electric, they are necessarily of

the first type.

These considerations are important in making comparisons of string states and black

holes. Static extremal black hole configurations with M = |Z1| = |Z2| turn out to pre-

serve one-half of the supersymmetry and to have a horizon of vanishing area (and hence no

Bekenstein–Hawking entropy). Ones with M = |Z1| > |Z2|, on the other hand, preserve only

one-quarter of the supersymmetry and have a horizon of finite area. There are analogous

statements that can be made in the N = 8 case. In that case, in order to obtain a finite-area

horizon, it is necessary that M equals only one of the four |Zi|’s so that seven-eighths of the

supersymmetry is broken. There has been dramatic progress recently in accounting for the

entropy of supersymmetric black holes with finite area horizons in terms of the counting of

microscopic string degrees of freedom. However, I will leave that (and generalizations) to

other lecturers.
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1.5 Tests of S Duality

T duality works perturbatively and is well understood, but how can we prove S duality

without knowing non-perturbative string theory? As yet, we cannot prove it, but we can

subject the conjecture to some non-trivial tests by focusing on BPS states. The essential fact,

pointed out long ago by Witten and Olive,[13] is that such states can receive no quantum

corrections – perturbative or nonperturbative – to their masses so long as the supersymmetry

remains unbroken. Thus, a non-trivial prediction of S duality, which we can attempt to check,

is that the multiplicities of BPS states are SL(2,Z) invariant. Note that since the vacuum

breaks S and T duality spontaneously, the BPS states do not form degenerate multiplets.

Let us now explore which states in the elementary string spectrum of the 4d heterotic

string saturate the Bogomol’nyi bound. Absorbing the moduli M (0) in the definition of the

Narain lattice, the BPS condition for purely electric states becomes

(Mass)2 =
1

16ρ
(0)
2

α̂a(I + L)abα̂
b =

1

8ρ
(0)
2

(α̂R)2 , (14)

where α̂Lα̂ = α̂R · α̂R − α̂L · α̂L. (α̂L is 22-dimensional and α̂R is 6-dimensional. They

correspond to the left-moving and right-moving internal momenta of the string.) Now we

should compare the free string spectrum, which is given by

(Mass)2 =
1

4ρ
(0)
2

[

1

2
(α̂L)2 +NL − 1

]

=
1

4ρ
(0)
2

[

1

2
(α̂R)2 +NR − δ

]

. (15)

NL and NR represent left-moving and right-moving oscillator excitations. The parameter

δ is 1/2 in the NS sector and 0 in the R sector. Alternatively, it is simply 0 in the GS

formulation. The factor of (ρ
(0)
2 )−1 appears because the mass is computed with respect to

the canonically normalized Einstein metric. It does not appear if one uses the string metric,

which differs by a dilaton-dependent Weyl rescaling. The Einstein metric is more natural

in the present context, because it is invariant under S duality transformations. Comparing

formulas, one sees that the Bogomol’nyi bound is saturated provided that NR = δ (which

gives eight bosonic and eight fermionic right-moving modes – the short representation of

N = 4) and NL = 1+ 1
2
α̂Lα̂. Thus, if α̂Lα̂ = 2n−2, for a non-negative integer n, then there

is a short N = 4 multiplet for every solution of NL = n. These states are only “electrically”

charged. The challenge is to find their predicted S duality partners. Specifically, every
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elementary string excitation of the type we have just described (~α = ~ℓ, ~β = 0) should have

magnetically charged partners with ~α = a~ℓ and ~β = c~ℓ. Since a and c are elements of an

SL(2,Z) matrix, they are relatively prime integers.

Sen has investigated the partners of electrically charged states with α̂Lα̂ = −2 (i.e.,

NL = 0).[14] He has shown that S duality partners with c = 1 can be identified with BPS

monopole solutions (and their dyonic generalizations) of the effective field theory. These

solutions saturate the bound, of course. Thus, as we have explained, they should persist

with exactly this mass in the complete quantum string theory. For c > 1, Sen argued that

one should examine multi-BPS dyon bound states. Specifically, he showed that the prediction

of S duality is that each multi-BPS dyon moduli space should admit a unique normalizable

harmonic form. Poincaré duality would give a second one unless it is self-dual or anti-self-

dual. He constructed such an anti-self-dual form explicitly for the case of c = 2,[15] providing

the first really non-trivial test of S duality. Progress toward extending this result to c > 2

has been made by Segal and Selby [16] and by Porrati.[17] More recently, a simpler and more

general proof has been constructed [18] using D-brane techniques. [19].

2 DUALITIES IN NINE DIMENSIONS

2.1 Introductory Comments

The five 10d superstring theories – types I, IIA, IIB and the E8 × E8 and SO(32) heterotic

– are related to one another by a rich variety of dualities. The dualities that require com-

pactification of only one spatial dimension, leaving a 9d Minkowski space-time, are sufficient

to show that all five are related to one another. This strongly suggests that they are best

regarded as different descriptions of a single underlying theory. Each one is better suited

to describing some portion of the moduli space of possible vacua than the others. In a

later section, we will discuss some of the additional dualities that emerge upon compactifi-

cation to 6d, but in this section we wish to explore what can be learned while retaining an

uncompactified R 9.

Two of the relevant dualities are T dualities, which can be understood perturbatively,

and therefore they were understood prior to the recent non-perturbative discoveries. When

the IIA and IIB theories are each compactified on a circle, so that altogether the space-time
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topology is R9 × S1, the two theories are T dual.[20, 21] This means that they describe

identical physics, provided that the radius of one circle is the inverse of the other one (in

string units). In a similar manner, one can show that the SO(32) and E8 × E8 heterotic

string theories are T dual when each of them is compactified on a circle.[7, 22] This heterotic

case is somewhat more subtle than the type II one. Wilson lines have to be included, as

part of the characterization of the compactification, in order to match corresponding points

in the moduli space of 9d vacua. The relevant moduli space in this case is the Narain space

M1,17 defined earlier.

The pair of T dualities described above provides two connections among the five su-

perstring theories. To see that all five are connected requires examining non-perturbative

dualities – analogs of the S duality of the 4d heterotic string discussed in Section 1. One

way of addressing the problem is to ask, for each of the five theories, whether the strong

coupling limit has a dual weakly coupled description. As in the case of the S duality of the 4d

heterotic string, the procedure is to identify a plausible candidate for an S dual description

and then to examine its consequences. The result is that an interesting and consistent story

emerges. In fact, it is so compelling that there can be little doubt about the truth of the

proposed dualities. So let me now say what they are.

The type I and SO(32) heterotic string theories are S dual.[23, 24] This means that the

respective dilatons are related by φI = −φH , so that the coupling constants (λ = e<φ>) are

reciprocal to one another. This identification is supported by the fact that both have the

same low-energy effective field theory descriptions (N = 1 supergravity coupled to SO(32)

super Yang–Mills in 10d). The field redefinition φI = −φH must be accompanied by a Weyl

rescaling of the metric to convert from one version of the action to the other. On the other

hand, the type IIB superstring in 10d is self-dual.[5] More precisely, there is an SL(2,Z)

S-duality group, very much like that of the 4d heterotic string, that is a gauge symmetry of

the theory. This will be described in detail later.

The strong coupling limits of the IIA and E8 × E8 theories turn out to provide quite

a different surprise. In each case there is an eleventh dimension (tenth spatial dimension)

that becomes large at strong coupling.[25, 23, 26] Specifically, the size of this dimension

scales as L11 ∼ λ2/3, where λ is the 10d coupling constant. Such a compact dimension is

completely invisible in perturbation theory (an expansion about λ = 0), which is why it
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passed unnoticed for so many years. In the IIA case, the hidden dimension is a circle S1,

whereas in the E8 × E8 case it is a line interval I, or (more precisely) an S1/Z2 orbifold.

This means that in the E8 × E8 case one can visualize the space-time as an 11d space-time

with two 10d faces, which are sometimes referred to as “end-of-the-world 9-branes,” since

they have nine spatial dimensions.[26] One of the E8 gauge groups is associated to each

face. In any case, at strong coupling the faces move apart and (away from the faces) the

theory is described by the same 11d bulk theory that describes the IIA theory at strong

coupling. This 11d theory is described in leading order in a low-energy expansion by 11d

supergravity, a classical field theory that was discovered almost 20 years ago.[27] It is not

yet known what is the correct algorithm that determines all the higher-dimension terms of

the low-energy expansion of the effective action, but since we are confident that there is

a consistent quantum theory, such an algorithm should exist. The unknown 11d quantum

theory is referred to as M theory. As we will discuss, certain of its supersymmetric solitons

are known, and they provide a handle on many of its interesting properties.

The equivalences discussed above can be summarized by the diagram in Figure 1. This

diagram is sufficient to show that the five superstring theories are all part of a single structure,

but it is by no means the whole story. There are a variety of other surprising dualities that

are only revealed upon compactification of additional dimensions. Some of these will be

described later.

The IIA/IIB T duality and the IIA/M S duality can be combined as a duality between

IIB theory on R9 × S1 and M theory on R9 × T 2. This viewpoint turns out to be very

powerful for understanding the structure of both the IIB and M theories separately, as will

be discussed in considerable detail. The T 2 is characterized by three real parameters – its

area AM and its modular parameter τ , which characterizes its complex structure up to an

SL(2,Z) transformation. Indeed, we will find that in 9d the SL(2,Z) modular group of

the torus precisely corresponds to the SL(2,Z) S duality group of the IIB theory. This

geometrization of S duality is quite profound.

There is an analogous duality relating M theory and the SO(32) theory (both type I

and heterotic). This duality can be understood as arising as a corollary of the first one

after modding out by a suitable Z2 symmetry. In this case, M theory compactified on a

cylinder C = I × S1 is dual to the SO(32) theory compactified on a circle S1. This also has
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Figure 1: Duality Connections.

consequences for both theories.

2.2 General Features of p-branes

M theory and the various superstring theories admit a rich variety of soliton solutions. When

the core of such a solution extends over p spatial dimensions (and one time dimension), the

soliton is called a p-brane. Of special interest are p-brane solitons that saturate a BPS

bound, which means that they preserve some fraction of the underlying supersymmetry. We

will focus on ones that preserve one-half of the supersymmetry, but ones that preserve a

smaller fraction, such as one-quarter or one-eighth, can be constructed.
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Supersymmetric p-branes are a natural generalization of the BPS states (0-branes) dis-

cussed in Section 1. In this case the relevant central charges in the supersymmetry algebra

are p-forms.[28] Their magnitudes give a lower bound on the p-brane tension Tp, which is

the mass per unit volume of the brane. Supersymmetry is preserved when the bound is sat-

urated. As in the case of the 0-branes, the BPS condition ensures that solutions of classical

low-energy supergravity field equations exhibit some features of the exact quantum string

theory, such as the relationship between the tension and the charge.

The supergravity solutions are non-singular in certain cases, so that the energy is smoothly

spread over a region surrounding a p-dimensional subspace. In other cases there are delta

function singularities at the core that can be compensated by postulating the presence of

“fundamental p-branes.” Many authors distinguish these two categories of p-branes by call-

ing them “solitonic” and “fundamental,” respectively. As far as I can tell, this is a distinction

that need not persist in the underlying quantum theory, rather it could just be an artifact

of formalism and approximations. Therefore, we regard both categories of p-brane solutions

as “solitonic” without focussing on this distinction. (See Ref. [29] for a review of p-brane

solutions.)

The effective supergravities in question contain various antisymmetric tensor gauge fields.

These can be represented as differential forms

An = Aµ1µ2...µn
dxµ1 ∧ dxµ2 ∧ . . . ∧ dxµn . (16)

In this notation, a gauge transformation is given by δAn = dΛn−1, and the gauge-invariant

field strength is Fn+1 = dAn. When interactions are included, these formulas are some-

times modified. The origin of p-branes can be understood by considering an action that

(schematically) has the structure [30]

S ∼
∫

dDx
√−g{R + (∂φ)2 + e−aφF 2

n+1 + . . .}. (17)

Here, φ represents a dilaton field, R is the scalar curvature, and a is a numerical constant

whose value depends on the particular theory. The dots include all the additional terms

required to make the theory locally supersymmetric. In this case it is meaningful to seek

BPS p-brane solutions, and it turns out that solutions exist for p = n−1 and p = D−n−3.

By a straightforward generalization of the nomenclature of Maxwell theory, it is natural to
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call these “electric” and “magnetic,” respectively. The electric p-brane, with p = n− 1, has

an n-dimensional world-volume. The fact that it is a source for “electric” charge is exhibited

by the coupling
∫

Aµ1...µn

∂xµ1

∂σ1
. . .

∂xµn

∂σn
dnσ, (18)

which generalizes the familiar j · A coupling of Maxwell theory.

A p-brane in D dimensions (let’s assume it is an infinite hyperplane, for simplicity) can

be encircled by a (D− p− 2)-dimensional sphere SD−p−2. Thus, the “electric charge” of the

p-brane is given by a straightforward generalization of Gauss’s law for point charges

QE ∼
∫

SD−p−2

∗F, (19)

where ∗F is the Hodge dual of F . In these lectures, we will not need to commit ourselves

to specific normalization conventions. Similarly, a dual (D − p − 4)-brane has “magnetic

charge”

QM ∼
∫

Sp+2

F. (20)

Note that the charge associated with a p-brane has dimension (length)D/2−2−p. This is

dimensionless when p = (D− 4)/2 – i.e., for point particles in 4d, strings in 6d, membranes

in 8d, etc. In these cases the electric and magnetic branes have the same dimensionality and

it is possible to have dyonic p-branes.

The charges of p-branes can also be described by generalizations of Coulomb’s law. So,

for an electric p-brane, as r → ∞

A ∼ QE

rD−p−3
ωp+1, (21)

where r is the transverse distance from the brane and ωp+1 is the volume form for the p-brane

world-volume. Similarly, for the dual magnetic (D − p− 4)-brane, as r → ∞

F ∼ QM

rp+2
Ωp+2, (22)

where Ωp+2 is the volume form on a sphere Sp+2 surrounding the brane. In this case it

is convenient to describe the magnetic field, rather than the potential, in order to avoid

introducing generalizations of Dirac strings. Of course, the distinction between electric and

magnetic branes is not so great, since it is often possible to make a duality transformation
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that replaces A by a dual potential Ã whose field strength dÃ is the dual of F = dA. From the

point of view of Ã, the original electric brane is magnetic and vice versa. Another significant

fact,[31] noted more than ten years ago, is that the Dirac quantization condition has a

straightforward generalization to the charges carried by a dual pair of p-branes: QEQM ∈
2πZ. This assumes appropriate normalization conventions, of course.

The crudest first approximation to classical p-brane dynamics is given by a straightfor-

ward generalization of the Nambu area formula for the string world-sheet action. This gives

an action proportional to the (p + 1)-dimensional volume induced by embedding the world

volume into the D-dimensional target space:

Seff = TP

∫

√

det Gαβ d
p+1σ, (23)

where

Gαβ = ηµν∂αx
µ∂βx

ν , α, β = 0, 1, . . . , p, (24)

and η is the metric (Minkowski, for example) of the target space. Just as for strings,

this formula is invariant under reparametrizations of the world volume. Also, it defines

the p-brane tension Tp – the universal mass per unit volume of the p-brane. Note that

Tp ∼ (mass)p+1.

2.3 Specific p-branes

Let us now examine what BPS p-branes occur in the theories of most interest to us. We begin

with 11d supergravity, the low-energy effective field theory for M theory. 11d supergravity has

three massless fields: the metric gµν (with 44 physical polarizations), the gravitino ψµ (with

128 physical polarizations), and a three-form potential Cµνρ (with 84 physical polarizations).

By the reasoning given above one expects to find two kinds of branes associated with C: an

electric 2-brane [45, 32] and a magnetic 5-brane,[33] and this is indeed the case, even though

11d supergravity has no dilaton field. These branes have a number of interesting properties,

which we will return to later.

The only anomaly-free 10d theories with N = 1 supersymmetry have as their massless

sector N = 1 supergravity coupling to either SO(32) or E8×E8 super Yang–Mills matter.[34]

The relevant antisymmetric tensor gauge field that couples to p-branes is the two-form poten-

tial B belonging to the supergravity multiplet. In this case the electric p-brane is a 1-brane,
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which is the heterotic string.[35] Its magnetic dual is a 5-brane.[36] Type I strings cannot be

found in this way, because they are not BPS (and hence not stable).

Type IIA supergravity in 10d can be understood as arising from compactification of M

theory on a circle.[25, 23] Doing this, the 11d metric gives rise to the 10d metric, a one-form

A, and a dilaton φA. Specifically, if g(10) denotes the IIA string metric,

g
(11)
MNdx

MdxN = e−2φA/3g(10)
µν dxµdxν + e4φA/3(dx11 − Aµdx

µ)2. (25)

Identifying the string coupling constant λ = e<φA>, one sees that R11 ∼ λ2/3, as was asserted

earlier. Also, the 11d three-form C decomposes in 10d into a three-form C and a two-form

B.

The IIA theory has six kinds of p-branes:2 p = 0, 6 associated to A; p = 1, 5 associated

to B; p = 2, 4 associated to C. Some of these have a simple interpretation in terms of

the 2-brane and 5-brane in 11d. The 2-brane and 5-brane in 10d are given by a straight

dimensional reduction and the 1-brane and 4-brane in 10d are given by a double dimensional

reduction. The fact that a p-brane solution in D dimensions implies that there is also one

in D − 1 dimensions (for p < D − 3) after compactification on a circle depends crucially on

the BPS property. This allows one to form an infinite periodic array of parallel p-branes in

D dimensions, and then a periodic identification gives a single p-brane in D− 1 dimensions.

Double dimensional reduction is more straightforward: one dimension of the p-brane wraps

around the circular dimension of the space-time. The 0-brane and 6-brane couple to the

Kaluza–Klein gauge field A, and can therefore be called Kaluza–Klein p-branes. The charge

carried by a KK 0-brane is interpreted as momentum in the 11th dimension. Their role in

11d is simply to allow this momentum to be excited. The dual 6-brane, on the other hand,

has a tension that diverges in the decompactification limit. Thus, there is no corresponding

soliton in 11d Minkowski space.

Let us now consider the most interesting case of all – type IIB superstrings in 10d.[38] In

the NS-NS sector there is a 2-form potential B(1). The fundamental IIB string is electrically

charged with respect to this field. In addition, the R-R sector has a zero-form χ, a two-form

B(2), and a four-form A4. The four-form A4 has a self-dual field strength (dA4 = ∗dA4),

something that is possible only when the number of spatial dimensions minus the number of

2Another possibility, 8-branes, will not be considered here. (See Ref. [37].)
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time dimensions is a multiple of four.

Formally, a zero-form gives a (−1)-brane and a 7-brane, both of which are rather special.

A (−1)-brane has a point-like world volume. After a Wick rotation, it can be interpreted

as a kind of instanton called a D-Instanton. Its magnetic dual, a 7-brane, is also special.

Whenever p = D − 3, the presence of the brane gives rise to a conical deficit angle in the

geometry of the transverse plane, a fact that is artfully exploited by F theory.[39] Here, we

will only consider branes with p < D− 3. The four-form A4 gives rise to a self-dual 3-brane.

It has an identified electric and magnetic charge, because
∫

S5 F5 =
∫

S5 ∗F5. Thus, A4 only

gives one kind of p-brane. Finally, we turn to the two forms B(1)
µν and B(2)

µν . Each can couple

to an electric 1-brane or a magnetic 5-brane. However, as we will argue, these 1-branes or

5-branes can form bound states. Thus, we will get an infinite family of strings labelled by

two electric charges (q1, q2) and an infinite family dual magnetic 5-branes labelled by two

magnetic charges.

2.4 Type IIB String Solitons

As has already been noted, the type IIB superstring in 10d has two two-form potentials, B(1)
µν

and B(2)
µν . Therefore, string-like solutions can, in general, carry a pair of charges

qI ∼
∫

S7

∗dB(I), I = 1, 2. (26)

Let us construct these solutions explicitly. To make the SL(2,R) symmetry of the su-

pergravity field equations manifest, it is convenient to introduce a two-component vector

notation

H = dB =

(

dB(1)

dB(2)

)

. (27)

It is also convenient to combine the RR scalar χ and the dilaton φ into a complex scalar

field

ρ = χ+ ie−φ, (28)

and to represent the vev of this field by

< ρ >= ρ0 = χ0 + ie−φ0 =
θ

2π
+

i

λB
. (29)
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The field ρ is very similar to the axion-dilaton field of the 4d heterotic theory described in

Section 1. Indeed, as in that case, it transforms nonlinearly under an SL(2,R) transfor-

mation Λ =

(

a b
c d

)

, by the rule ρ → aρ+b
cρ+d

. There are differences of detail, however. For

example, the imaginary part of ρ is e−φ here, whereas in Section 1 it was e−2φ. It is also

convenient to introduce the symmetric SL(2,R) matrix

M = eφ

(

|ρ|2 χ
χ 1

)

, (30)

which transforms by the simple rule

M → ΛMΛT . (31)

The B fields transform linearly by the rule B → (ΛT )−1B, while the canonical metric gµν

and the four-form A4 are invariant. Note that since the dilaton transforms, the IIB string

metric

g(B)
µν = eφ/2gµν , (32)

is not SL(2,R) invariant. For this reason, it is convenient to use the canonical metric for

the time being.

The string-like solutions of the IIB supergravity field equations that we are seeking have

A4 and all fermi fields equal to zero. While it is difficult to formulate a convenient action

that gives the complete field equations (because the field strength of A4 is self-dual), it is

not hard to find the action that gives the field equations with A4 and the fermi fields set

equal to zero. It is

S =
∫

d10x
√−g(R− 1

12
HT

µνρMHµνρ +
1

4
tr(∂µM∂µM−1)). (33)

This action is manifestly invariant under global SL(2,R) transformations. The solution we

seek consists of a string-like soliton along the x1 axis with B charges (q1, q2) and vacuum

defined by ρ(r) ∼ ρ0 as r → ∞, where r2 = ~x · ~x, and ~x refers to the eight transverse

directions x2, x3, . . . , x9. Also, the metric should approach the Minkowski metric as r → ∞.

Our problem was solved some time ago by Dabholkar, et al., for a special case, namely

~q = (1, 0) and ρ0 = i.[40] This solution, which has χ = 0 and B(2)
µν = 0, arose in considering

the heterotic string, which does not contain the fields χ and B(2)
µν . However, its equations
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agree with the ones being considered here when they are set to zero. Using the SL(2,R)

symmetry of the IIB theory, the solution of Dabholkar, et al., can be transformed to give a

IIB solution with charges (q1, q2) and ρ(r)∼ρ0.[41] The solution obtained in this way is given

by

ds2 = A−3/4(−dt2 + (dx1)2) + A1/4d~x · d~x

B
(I)
01 = qI∆

−1/2
(q1,q2)

A−1

ρ =
i(q2χ0 + q1|ρ0|2)A1/2 − q2e

−φ0

i(q1χ0 + q2)A1/2 + q1e−φ0
, (34)

where

A = 1 +
Q∆

1/2
(q1,q2)

r6
, (35)

∆(q1,q2) = eφ0 |q1 − q2ρ0|2, (36)

and the charge Q is a constant proportional to the tension scale T
(B)
1 and the 10d Newton

constant.

While classically q1 and q2 are arbitrary real numbers, quantum mechanically they must

be integers. This follows (by the same reasoning Dirac used to explain the quantization

of electric charge) from the existence of 5-branes and the Dirac quantization condition.

Later, we will argue that stability requires that q1 and q2 should actually be relatively-prime

integers. By allowing all pairs of relatively prime integers, we define an infinite family of

string-like solitons, which form an irreducible SL(2,Z) multiplet. Note that if, for a given

string solution, ρ0 is analytically continued outside the fundamental region F of SL(2,Z),

then the SL(2,Z) transformation that brings ρ0 back inside F will redefine the charges of

the string.

By considering the asymptotic behavior of the metric component g00 for r → ∞, one can

read off the “ADM tension” of the string[41]

T(q1,q2) = ∆
1/2
(q1,q2)

T
(B)
1 . (37)

To get a sense of the meaning of this equation, it is convenient to restrict to the special case

χ0 = 0, so that ρ0 = i/λB. Then the tension of the (q1, q2) string in the canonical metric is

T(q1,q2) = (λBq
2
1 + λ−1

B q2
2)

1/2T
(B)
1 . (38)
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Converting to the IIB string metric, redefines this by a factor of λ
−1/2
B , giving

T̃(q1,q2) = (q2
1 + λ−2

B q2
2)

1/2T
(B)
1 . (39)

Thus, in the string metric, the fundamental string tension is a constant, T̃(1,0) = T
(B)
1 . The

D-string, which carries RR charge only, on the other hand has tension T̃(0,1) = λ−1
B T

(B)
1 . The

scaling T ∼ λ−1 is characteristic of D-branes in the string metric.[42] This is to be contrasted

with ordinary solitons, like the ‘t Hooft–Polyakov monopole, which have T ∼ λ−2.

As is typical of BPS mass formulas, the tensions we have found satisfy a triangle inequality

T(p1+q1,p2+q2) ≤ T(p1,p2) + T(q1,q2), (40)

and equality requires that ~p and ~q are parallel. This means that if q1 and q2 are relatively

prime, a string with charges (q1, q2) and tension T(q1,q2) is absolutely stable, protected by

charge conservation and a “tension gap” (the analog of a mass gap) from decay into multiple

strings. On the other hand, a string with charges (nq1, nq2) is at the threshold for decay into

n(q1, q2) strings. Whether one has a bound state or not, in such a case, is a delicate issue

whose answer depends on the particular problem. We will show that the duality relation to M

theory requires that only strings with q1 and q2 relatively prime be included. This conclusion

is supported by a bound-state analysis carried out by Witten.[43] One way of stating the

conclusion is that q1 fundamental strings and q2 D-strings (all of which are parallel) can form

a single bound state if and only if q1 and q2 are relatively prime. It should also be noted

that the (−q1,−q2) string is the orientation-reversed (q1, q2) string.

2.5 Compactification of IIB Theory on a Circle

Let us now consider type IIB string theory compactified on a circle of radius RB (and circum-

ference LB = 2πRB). Since all of the (q1, q2) strings are related by SL(2,Z) transformations,

they are all equivalent and any one of them can be weakly coupled. However, when one is

weakly coupled, all the others are necessarily strongly coupled. Nevertheless, let us consider

an arbitrary (q1, q2) string and write down the spectrum of its 9d excitations in the limit of

weak coupling. This is given by standard string theory formulas:

M2
B =

(

m

RB

)2

+ (2πRBnT(q1,q2))
2 + 4πT(q1,q2)(NL +NR). (41)
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Here m is the Kaluza–Klein excitation number and n is the string winding number. NL

and NR are excitation numbers of left-moving and right-moving oscillator modes, and the

level-matching condition is

NR −NL = mn. (42)

Now our purpose is to use this formula for all the (q1, q2) strings simultaneously. However,

the formula is completely meaningless at strong coupling, and (as we have said) at most one

of the strings is weakly coupled. The appropriate trick in this case is to consider only BPS

states - ones belonging to short supersymmetry multiplets. They are easy to identify, being

given by either NL = 0 or NR = 0. (Ones with NL = NR = 0 are ultrashort.) For these

states the mass formula should be exact, even at strong coupling. Therefore, it can be used

for all the strings at the same time. In this way, we obtain reliable mass formulas for a very

large part of the spectrum – much more than appears in perturbation theory. Of course, the

appearance of this rich spectrum of BPS states depends crucially on the compactification.

Using eqs. (36) and (37), the winding-mode term in eq. (41) contains the factor

n2∆(q1,q2) = eφ0 |ℓ1 − ℓ2ρ0|2, (43)

where (ℓ1, ℓ2) = n(q1, q2). There is a unique correspondence between the three integers

n, q1, q2 and an arbitrary pair of integers ℓ1, ℓ2. The integer n is the greatest common division

of ℓ1 and ℓ2. The only ambiguity is whether to choose n or −n, but since n is (oriented)

winding number and the (−q1,−q2) string is the orientation-reversed (q1, q2) string, the two

choices are actually equivalent. Thus BPS states are characterized by three integers m, ℓ1, ℓ2

and oscillator excitations corresponding to NL = |mn|, tensored with a 16-dimensional short

multiplet from the NR = 0 sector (or vice versa).

2.6 Comparison with M Theory on a Torus

Let us now consider 11d M theory compactified on a torus. The torus is characterized by a

complex modulus τ = τ1 + iτ2 (as usual) and by its area AM , measured in the 11d canonical

metric. If the two periods of the torus are 2πR11 and 2πR11τ , then AM = (2πR11)
2τ2. In

terms of coordinates z = x+ iy on the torus, a single-valued wave function has the form

φℓ1,ℓ2 ∼ exp
{

i

R11

[

xℓ2 −
y

τ2
(ℓ2τ1 − ℓ1)

]}

. (44)
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These characterize Kaluza–Klein excitations. The contribution to the mass-squared is given

by the eigenvalue of −∂2
x − ∂2

y ,

1

R2
11

(

ℓ22 +
1

τ 2
2

(ℓ2τ1 − ℓ1)
2

)

=
|ℓ1 − ℓ2τ |2
(τ2R11)2

. (45)

Our purpose is to match BPS states of M theory on T 2 and IIB theory on S1. Clearly, this

term has the right structure to match the string winding-mode terms described at the end

of the last subsection, provided that we make the identification[41, 44]

τ = ρ0. (46)

The normalizations of the two terms we are matching are not the same, but that is because

they are measured in different metrics. The matching tells us how to relate the two metrics,

a formula to be presented soon. For now, let me emphasize that the identification τ = ρ0 is

a pleasant surprise, because it implies that the non-perturbative SL(2,Z) symmetry of the

IIB theory, after compactification on a circle, can be reinterpreted as the modular group of

a toroidal compactification! Of course, once the symmetry is established for finite RB, it

should also persist in the limit RB → ∞.

To go further, we also need an M theory counterpart of the term (m/RB)2 in the IIB

string mass formula. Here there is also a natural candidate: wrapping M theory 2-branes

so as to cover the torus M times. If the 2-brane tension is T
(M)
2 , this gives a contribution

(AMT
(M)
2 m)2 to the mass-squared. Matching the normalization of this term, as well as the

Kaluza–Klein term, one learns that the metrics are related by

g(M) = β2g(B), (47)

where

β2 = A
1/2
M T

(M)
2 /T

(B)
1 , (48)

and that the compactification volumes are related by

(T
(B)
1 L2

B)−1 =
1

(2π)2
T

(M)
2 A

3/2
M . (49)

Since all the other factors are constants, this gives (for fixed τ = ρ0) the scaling law LB ∼
A

−3/4
M .
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We still have the oscillator excitations of the type IIB string BPS mass formula to account

for. Their M theory counterparts must be excitations of the wrapped 2-brane. Unfortunately,

since the quantization of the 2-brane is not yet understood, this cannot be checked. The

story could be turned around at this point to infer what the BPS excitation spectrum of

wrapped 2-branes must be. Maybe, trying to understand this spectrum will lead to a better

understanding of 2-brane quantization. In any case, assuming that this works, we have found

that Kaluza–Klein excitations of the type IIB theory compactified on a circle correspond to

wrappings of the 2-brane on the torus and that Kaluza–Klein modes of M theory on the

torus correspond to windings of an infinite family of type IIB strings on the circle.

In the preceding discussion it was not specified exactly how the M theory 2-brane wraps

on the torus when it “covers it m times.” There are a variety of different possible maps that

could define the mapping, and it should be specified which ones are allowed and what is the

proper way to count them. I do not have a complete answer to this question, but there is

one comment that may prove useful. In the simpler problem of M theory compactified on

a circle, the IIA string in 10d arises from wrapping one cycle of a toroidal 2-brane on the

spatial circle.[46] If one were to wrap the circle m times, instead, this would appear to give

a IIA string of m times the usual tension. However, it is quite clear that no such string

exists, so such a configuration must be unstable to decay into m strings. Perhaps the rule

is that one cycle should be wrapped only once and the dual one m times, but this requires

identifying a preferred cycle on the torus. The only preferred cycle in the problem is the one

defined by the Kaluza–Klein excitation.

2.7 Matching p-branes

We have conjectured that M theory compactified on a torus of area AM and modular pa-

rameter τ is identical to type IIB string theory compactified on a circle of circumference LB

and vacuum parameter ρ0. The conjecture was supported by matching BPS 0-branes in 9d,

which dictated how to match parameters (τ = ρ0, etc.). We can carry out additional tests of

the proposed duality, and learn interesting new relations at the same time, by also matching

BPS p-branes with p > 0 in 9d.[47] Here we will describe the results for p = 1, 2, 3, 4, though

other cases can also be analyzed.

Let us start with p = 1 (strings) in 9d. Trivial reduction of the IIB strings in 10d gives

24



strings with the same charges (q1, q2) and tensions T(q1,q2) in 9d. The interesting question is

how these should be interpreted in M theory. The way to do this is to start with a 2-brane

of toroidal topology in M theory and to wrap one of its cycles on a (q1, q2) homology cycle

of the spatial torus. The minimal length of such a cycle is

L(q1,q2) = 2πR11|q1 − q2τ | = (AM∆(q1,q2))
1/2. (50)

Thus, this wrapping gives a 9d string whose tension is

T
(11)
(q1,q2)

= L(q1,q2)T
(M)
2 . (51)

The superscript 11 emphasizes that this is measured in the 11d metric. To compare with

the IIB string tensions, we use eqs. (47) and (48) to deduce that

T(q1,q2) = β−2T
(11)
(q1,q2)

= (∆(q1,q2))
1/2T

(B)
1 . (52)

This agrees with the result in subsection 4, showing that this is a correct interpretation.

To match 2-branes in 9d we must wrap the IIB theory 3-brane on the circle and compare to

the M theory 2-brane. The wrapped 3-brane gives a 2-brane with tension LBT
(B)
3 . Including

the metric conversion factor, the matching gives

T
(M)
2 = β3LBT

(B)
3 . (53)

Combining this with eqs. (48) and (49) gives the identity

T
(B)
3 =

1

2π
(T

(B)
1 )2. (54)

It is remarkable that the M theory/IIB theory duality not only relates M theory tensions

to IIB theory tensions, but it implies a relation involving only IIB tensions. The 3-brane

tension is a constant in the canonical metric, but using eq. (32) it scales as λ−1
B in the string

metric, as expected for a D-brane.

Wrapping the M theory 5-brane on the spatial torus gives a 9d 3-brane, which can be

identified with the IIB theory 3-brane reduced to 9d. This gives

T
(M)
5 AMβ

4T
(B)
3 , (55)
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which combined with eqs. (48) and (54) implies that

T
(M)
5 =

1

2π
(T

(M)
2 )2. (56)

This corresponds to satisfying the Dirac quantization condition with the minimum allowed

product of charges.3

The matching of 4-branes works similarly. The IIB theory has an infinite family of 5-

branes with tensions T
(B)
5(q1,q2)

. Wrapping a cycle on the spatial circle gives a family of 9d

4-branes with tensions LBT
(B)
5(q1,q2)

. This should match the 4-branes obtained by wrapping

the M theory 5-brane on a (q1, q2) homology cycle of the spatial torus. Thus,

T
(M)
5 L(q1,q2) = β5LBT

(B)
5(q1,q2)

. (57)

Combined with eqs. (48), (49), (50), and (56), this implies that the IIB 5-brane tensions are

given by

T
(B)
5(q1,q2)

=
1

(2π)2
(∆(q1,q2))

1/2(T
(B)
1 )3. (58)

In this case q1 is the magnetic RR charge and q2 is the magnetic NS-NS charge. Thus, the

tension of a 5-brane with pure RR charge scales as λ
1/2
B and the tension of one with pure

NS-NS charge scales as λ
1/2
B . Converting to the string metric, these become λ−1

B and λ−2
B ,

respectively, as expected for a D-brane and an ordinary soliton.

The matching of 5-branes in 9d works differently. The M theory 5-brane reduced to 9d

corresponds in the IIB picture to the Kaluza–Klein 5-brane, which couples magnetically to

the U(1) gauge field associated to the isometry of the circle. Similarly, the two-parameter

family of IIB theory 5-branes corresponds to the two-parameter family of Kaluza–Klein 5-

branes, in the M theory description, which couple magnetically to the two U(1) gauge fields

associated to the two isometries of the torus.

2.8 Implications of the Duality

What does the IIB/M theory duality mean? Certain facts are an immediate consequence of

the scaling rule LB ∼ A
−3/4
M . Namely, compactifying M theory on a torus and letting AM →

0, while holding τ fixed, gives the IIB theory in 10d in the limit. Similarly, compactifying

3According to Ref. [48], it corresponds to one-half of the minimum product. The result given here has
been confirmed by D-brane arguments, so I am quite sure it is correct.
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the IIB theory on a circle and letting LB → 0, for fixed modulus ρ0, gives M theory in 11d

in the limit.

When LB and AM are finite, and the vacuum has only 9d Poincaré symmetry, one might

ask “how many compactified dimensions are there?” From the IIB viewpoint there is one,

and from the M theory viewpoint there is two. Is one of these answers better than the other?

Can they be combined and regarded as three compact dimensions? To see what is happening

it is instructive to list the 9d massless bosonic fields showing their corresponding M theory

and IIB descriptions.
M theory IIB theory

g(M)
µν g(B)

µν

g(M)
µα B

(α)
µ9

g
(M)
αβ ρ, g

(B)
99

Cµνρ Aµνρ9

Cµνα B(α)
µν

Cµναβ g
(B)
µ9

(59)

The indices α, β = 1, 2 refer to the two internal directions of the M theory torus, the index

9 refers to the IIB theory circle, and µ, ν are 9d indices. What the list demonstrates is

that which fields are “matter” and which ones are “geometrical” is subjective, depending on

whether you adopt an M theory or IIB theory viewpoint. Both viewpoints are valid, and

neither is preferable to the other. So, how many compact dimensions there are is just a

matter of how the fields are labelled! However, there is no straightforward choice of labelling

that exhibits three compact dimensions. In my opinion, some of the recent suggestions that

these theories can be derived from 12d are effectively counting the dimensions of both the

torus and the circle.

The tests and implications of the M theory/IIB theory duality that we have presented

so far are certainly not the only ones. For example, there are other solitons – intersecting

p-branes, for example – that break 3/4 or 7/8 of the supersymmetry.[49] They still have

good BPS saturation properties, so that they are under control. It would be instructive to

consider the matching of these solitons in 9d, too, something that has not yet been done.
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2.9 M Theory/SO(32) Theory Duality

As we mentioned at the beginning of this section, there is a second duality that is closely

related (and, therefore, quite similar) to the one we have been discussing. It relates M theory

compactified on S1/Z2 × S1 to SO(32) theory compactified on S1.[50] Since S1/Z2 can be

regarded as a line interval I, S1/Z2 ×S1 can be regarded as a cylinder C. We will choose its

height to be L1 and its circumference to be L2 = 2πR2. The circumference of the circle on

which the SO(32) theory is compactified is denoted LO = 2πRO in the canonical 10d metric.

Before describing p-brane matching in 9d, let us briefly review the Horava–Witten picture

of the E8 ×E8 heterotic string theory.[26] Compactification of M theory on S1/Z2 = I gives

a space-time with two 10d faces, separated by a distance L1 ∼ λ
2/3
H , where λH is the coupling

constant of the E8 ×E8 theory in 10d. The two 10d faces are sometimes called “end-of-the-

world 9-branes.” Each of them carries the gauge fields for one of the two E8’s. For reasons

that will be explained in the next section, M theory 2-branes are allowed to terminate on

a face, so that the boundary of the 2-brane is a circle inside the face. In this picture, an

E8 × E8 heterotic string is a cylindrical 2-brane suspended between the two faces, with one

E8 current algebra associated to each boundary. This cylinder (or strip) is well approximated

by a string living in 10d when the separation L1 is small. Since perturbation theory in λH

is an expansion about L1 = 0, the fact that there really are eleven dimensions and that the

string is actually a membrane is invisible in that approach.

The story described above is very similar to the relation between the IIA superstring

and M theory. In that case the compact dimension is a circle and the IIA string arises from

wrapping the M theory 2-brane around the circle. Thus, in a sense, the non-perturbative

E8×E8 theory just involves modding out the non-perturbative IIA theory by a Z2. (This is a

bit glib, since the rules for carrying out the modding in M theory, which is not a string theory,

are not so obvious.) Similarly, the type I SO(32) string theory in 10d can be constructed as

a Z2 orientifold of the type IIB theory in 10d. Thus, the duality we are considering now can

be viewed as arising from modding out the previous one by a Z2 on both sides. However,

in the following we will treat it as a separate problem instead of attempting to exploit that

picture. Because of the similarity of the two problems, fewer details will be provided this

time.
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The SO(32) theory in 10d has both a type I and a heterotic description, which are S dual.

That is, their coupling constants, λ = e<φ>, satisfy λ
(0)
H = (λ

(0)
I )−1. As before, we match

supersymmetry-preserving (BPS) branes in 9d. Recall that in the SO(32) theory, there is

just one two-form field Bµν , and the p-branes that couple to it are the SO(32) heterotic

string and its magnetic dual, which is a 5-brane. The type I open and closed strings do not

carry a conserved charge and are not BPS. This is the reason that they can break. So from

the type I viewpoint it is clear that the heterotic string can give a 0-brane or a 1-brane in

9d and that the dual 5-brane can give a 5-brane or a 4-brane in 9d. In each case, the issue

is simply whether or not one cycle wraps around the spatial circle.

Now we need to find the corresponding 9d p-branes from the M theory viewpoint, to

understand why they are the only ones, and to explore what can be learned from matching

tensions. We described how the E8 × E8 string arises in 10d from wrapping the M theory

2-brane on I. Subsequent reduction on a circle can clearly give a 0-brane or a 1-brane. But

why is there no BPS 2-brane in 9d? When the 2-brane is forced to be in a 10d boundary,

rather than in the 11d bulk, it becomes breakable (non-BPS). The technical reason (see the

next section) is that there is no 3-form gauge field on the boundary (or in the 10d reduction).

The story for the five-brane is just the reverse. Whereas the 2-brane must wrap on the I

dimension, the five-brane must not do so. As a result it gives a 5-brane or a 4-brane in 9d

according to whether or not it wraps around the S1 dimension. So, altogether, both pictures

give the electric-magnetic dual pairs (0, 5) and (1, 4) in 9d.

From the p-brane matching one learns that

λ
(0)
H =

L1

L2

. (60)

Thus, the SO(32) heterotic string is weakly coupled when the spatial cylinder of the M theory

compactification is a thin ribbon (L1 ≪ L2). This is consistent with the earlier conclusion

that the E8 × E8 heterotic string is weakly coupled when L1 is small. Conversely, the type

I string is weakly coupled for L2 ≪ L1, in which case the spatial cylinder is long and thin.

The Z2 transformation that inverts the modulus of the cylinder, L1/L2, corresponds to the

type I/heterotic duality of the SO(32) theory. Since it is not a symmetry of the cylinder it

implies that two different-looking string theories are S dual. This is to be contrasted with

the SL(2,Z) modular group symmetry of the torus, which accounts for the self-duality of
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the IIB theory.

The p-brane matching in 9d gives the relation

L1L
2
2T

(M)
2 =





T
(0)
1 L2

0

2π





−1

, (61)

which is the analog of eq. 49. As in that case, it tells us that for fixed modulus L1/L2, one

has the scaling law LO ∼ A
−3/4
C , where AC = L1L2 is the area of the cylinder. Eq. 56 relating

T
(M)
2 and T

(M)
5 is reobtained, and one also learns that

T
(O)
5 =

1

(2π)2

(

L2

L1

)2

(T
(O)
1 )3. (62)

In the heterotic string metric, where T
(O)
1 is a constant, this implies that T

(O)
5 ∼ (λ

(O)
H )−2,

as is typical of a soliton. In the type I superstring metric, on the other hand it implies that

T
(O)
1 ∼ 1/λ

(O)
I and T

(O)
5 ∼ 1/λ

(O)
I , consistent with the fact that both are D-branes from the

type I viewpoint. So, what kind of object you have depends very much on your point of

view.

2.10 Some Remarks on the Origins of Chirality in M Theory

In its heyday (around 1980) there were two major reasons for being skeptical about 11d

supergravity. The first was its evident lack of renormalizability, which led to the belief

that it does not approximate a well-defined quantum theory. The second was its lack of

chirality (i.e., its left-right symmetry), which suggested that it could not have a vacuum

with the chiral structure required for a realistic model. Our attitude towards both these

issues now needs to be reconsidered. First, we now view 11d supergravity as a low-energy

effective description of M theory. As such, it seems reasonable to believe that there is a

well-defined quantum interpretation. The situation with regard to chirality is also changed.

Here the new ingredients are the branes – the 2-brane and 5-brane, as well as the end-of-the-

world 9-branes. They can and do introduce left-right asymmetry (consistent with anomaly

cancellation requirements).

In the duality between M theory on a torus and IIB theory on a circle, that we have been

discussing, the issue of chirality already appears. In the limit that the area AM of the torus

vanishes, one obtains the IIB theory in 10d, which is a chiral theory. Let’s track down the
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M theory origins of the chiral asymmetry. One question is whether it is property of the limit

AM → 0, or whether it is already visible in 9d. Let’s look at this question first from the IIB

viewpoint.

The chiral fields of the IIB theory in 10d are the massless fermions and the four-form

A4, whose field strength is self-dual. This means that the associated physical degrees of

freedom belong to parity non-invariant representations of the massless little group, spin (8).

Compactifying on a circle, they give BPS Kaluza–Klein towers of excitations with M2
n =

(n/RB)2. These belong now to representations of the massive 9d little group, which is also

spin (8). Indeed, it is obvious that these are the same parity non-invariant representations

we started with. So, in this sense, one could say that these massive excitations are chiral.

Certainly, they account for the chirality of the massless 10d field in the decompactification

limit. The massive 4-form modes in 9d are described by complex fields (combining n and

−n). Dropping the index n, they satisfy a free wave equation of the form A4 ∼ im ∗ F5.[51]

Taking the exterior derivative, F5 ∼ imd(∗F5). Even though there is no manifestly covariant

action in 10d for a 4-form with a self-dual field strength, there is one for this massive complex

4-form in 9d:

L(A4) ∼
∫

F ∗

5 · F5d
9x+ im

∫

A∗

4 ∧ F5. (63)

As expected, this has a parity-violating mass term. The number of propagating modes

described by such a Lagrangian is the same for m 6= 0 as it is for m = 0. This structure is

quite similar to the much-studied “topologically massive gauge theory” in 3d: [52]

L(A1) ∼
∫

F2 · F2d
3x+m

∫

A1 ∧ F2. (64)

One difference is that the construction can be carried out for real fields in dimensions 4k−1

whereas complex fields are required in dimensions 4k + 1.

Having identified where the chirality resides in 9d, we can now ask how these states orig-

inate in the 11d description. The answer is immediate, because one of the things we learned

from studying the M theory/IIB theory duality is that type IIB Kaluza–Klein excitations on

S1 correspond to M theory wrapping modes of the 2-brane on T 2. Therefore, the massive

chiral modes in 9d must arise from wrapping the 2-brane. The 2-brane world-volume theory

itself is 3d, so one might think it could not be chiral. However, it contains a “charge” cou-

pling to the background 3-form gauge field
∫

Cµνρdx
µ ∧ dxν ∧ dxρ, and this is precisely the

31



relevant chiral term. The 3-form gives a U(1) gauge field in 9d with two indices in internal

directions (Cµ12), and the massive chiral modes due to n units of wrapping carry n units

of electric charge, as measured by this gauge field in 9d. The corresponding field in the

IIB picture is the Kaluza–Klein gauge field gµ9. (This correspondence already appeared in

eq. (59).)

3 WHICH BRANES CAN END ON WHICH?

In considering the Horava–Witten description of the E8 ×E8 heterotic string, we concluded

that in M theory a 2-brane can terminate on an end-of-the-world 9-brane. This section

discusses, with several examples, the general question of when one supersymmetric (BPS)

brane is allowed to terminate on another one. Following Strominger, we argue that charge

conservation is an essential consideration.[53] However, we will discover that there is also

a subtle “wormhole” construction, which gives additional possibilities. The basic idea is

explained by D-branes, which are defined as p-branes on which strings can terminate.[42]

The type II (A or B) fundamental string carries a conserved charge and couples electrically

to the NS-NS sector two-form gauge field Bµν . When a string carrying this kind of conserved

charge has an end, flux associated with a U(1) gauge field emerges from the end into the D-

brane. This means that there is a point electric charge on the end of the string (explaining

Chan–Paton factors), and that the D-brane world-volume theory contains a U(1) gauge

field Aα, which can assume a suitable configuration to carry away the flux. An interesting

generalization is the case of N coincident D-branes when the [U(1)]N gauge symmetry of

the individual D-branes gets extended to a non-Abelian U(N) gauge symmetry. Let us turn

now to specific examples of branes ending on branes.

3.1 Three Examples

An example of a D-brane is the 2-brane of type IIA string theory in 10d. As with all type

II D-branes, massless fields of the world-volume theory form an N = 1 10d gauge multiplet,

restricted to the brane. The vector Aµ of the 10d gauge theory decomposes into a three-vector

Aα and seven scalars φi in the world-volume theory. The scalars can be regarded as collective

coordinates for excitations of the brane in the seven transverse dimensions or as Goldstone
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bosons for broken translational symmetries. Similarly, the world-sheet fermions corrspond

to broken supersymmetries. The gauge field Aα carries off the flux when a type IIA string

terminates on the 2-brane. From the point of view of this gauge field, the charge on the end of

the string is electric. However, there is a dual magnetic picture, which is also interesting. The

world-volume theory of the 2-brane can be recast by a duality transformation (dA = ∗dφ8)

that replaces Aα by an eighth scalar φ8.[54, 55] This scalar is a zero-form gauge field, and

from its point of view the charge on the end of the string is magnetic. However, a more

profound viewpoint is that φ8 represents excitations in an eighth transverse dimension, so

that the 2-brane actually lives in an 11d space-time. This strongly suggests that, after the

duality transformation, one is describing the 2-brane of M theory. But this raises a paradox:

M theory in 11d Minkowski space does not have strings that can terminate on the 2-brane,

so what is the strong coupling description of a configuration consisting of a type IIA string

ending a 2-brane? I’ll return to this question later in this section.

Let’s now consider the Dirichlet 5-brane of the type IIB theory. By the same reasoning

as before, the 6d world-volume theory in this case contains a six-vector Aα and four scalars

φi representing transverse excitations. Let us once again replace the U(1) gauge field Aα

by a dual gauge field. In 6d the dual gauge field is a three-form. As explained in Section

2.2, a 2-brane can couple electrically to a three-form. Thus, BPS 2-branes can live inside

the 5-brane. What this means is that the 3-brane of the IIB theory can terminate on the

5-brane.[53] Its boundary is a 2-brane, and the charge that exists on its boundary gives

rise to electric flux of the three-form gauge field of the 5-brane. Equivalently, had we not

made a duality transformation, it would give magnetic flux of the original U(1) gauge field.

Thus, it is consistent with charge conservation for a type IIB 3-brane to terminate on a

Dirichlet 5-brane. The SL(2,Z) duality symmetry of the type IIB theory can be invoked to

draw additional conclusions. Under an SL(2,Z) transformation the 3-brane is invariant, but

the Dirichlet 5-brane, which carries B(I)
µν magnetic charges (0, 1), can be transformed into a

(q1, q2) 5-brane. This implies that the 3-brane is allowed to terminate on any of the 5-branes.

As a third example, let us consider the M theory 5-brane. Its massless sector consists

of a 6d N = 2 tensor supermultiplet.[56, 57] The bosons in this multiplet are a two-form

gauge field Bαβ , with a self-dual field strength (dB = −∗ dB), and five scalars φi describing

transverse excitations of the 5-brane in 11d. The fact that this is the appropriate multiplet
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can be argued in many different ways. Here we will simply remark that this is the only

matter supermultiplet with the correct supersymmetry, and it contains the desired number

of scalar fields. The two-form can couple to a self-dual string, which can be identified as the

boundary of 2-brane that ends on the 5-brane. Thus, the M theory 2-brane can terminate

on the M theory 5-brane, but not on another 2-brane. Thus, the M theory 5-brane can

be regarded as a higher-dimension analog of a D-brane. Rather than being defined as an

object on which an open string can end, it is an object on which an open membrane can

terminate. The reason that the D-brane picture is so powerful is that open strings can be

quantized, and they can be used to describe excitations of the D-brane. We do not have

this kind of mathematical control for open membranes, so the D-brane picture is less useful

(at the present time) in the case of M theory. However, compactification on a circle makes

it clear that this is really more than an analogy. If the compactification is arranged so that

one dimension of both the 2-brane and the 5-brane are wrapped on the spatial circle, then

the resulting 10d picture precisely corresponds to a IIA string ending on a IIA 4-brane. This

4-brane is a standard D-brane.

3.2 Parallel p-branes

When a p1-brane is allowed to end on a p2-brane, then it is also possible to consider a pair of

parallel p2 branes with an open p1-brane suspended between them. To be clear what we are

talking about, let me emphasize that all the branes under consideration are supersymmetric

(BPS) branes carrying conserved charges. This means (for p2 < D − 3) that a pair of

parallel p2-branes (infinite hyperplanes) is a stable configuration because the forces between

the branes cancel in such a case. If one imagines attaching an open p1-brane that connects

them, its tension would cause some bending of the p2-branes in the vicinity of the junction.

As far as I know, explicit field configurations that realize this picture have not been studied,

but the qualitative picture is clear. In any case, the main reason to be interested in such

configurations is as a way of thinking about quantum excitations of a system of parallel

p-branes. New classical configurations are more of a curiosity.

As the separation of two p2-branes becomes small, the “length” ℓ of the p1-brane becomes

small. In this case, it can become a good approximation to view the pair of p2-branes (and

the intervening space) as a single p2-dimensional system and the collapsed p1-brane as a
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(p1 − 1)-brane of tension TNC = ℓ Tp1
inside this p2-dimensional space. The subscript NC

denotes ‘non-critical’, since the tension of such branes can be arbitrarily small (as ℓ → 0).

Note that in the case of the E8 × E8 heterotic string the vanishing of the tension as ℓ → 0

can be compensated by a Weyl rescaling of the metric so that there is a finite tension in

the limit. In other cases, such as the ones to be discussed here, such a rescaling is not

appropriate, and the non-critical (p1 − 1)-brane has a spectrum of excitations that become

massless as ℓ → 0. These excitations should be viewed as possible excitations of a pair of

nearly coincident p2-branes.

A word of warning is in order here. The solitons that are being described as “p di-

mensional” are given by field configurations that spread to some extent in the transverse

dimensions. As explained to me by Maldacena, in certain cases the limit in which the length

ℓ → 0 can result in the size of transverse spread becoming large at the same time. Then

the simple geometric picture becomes misleading. Most of the considerations that follow do

not require taking a limit ℓ → 0, so they are not subject to this criticism. The limit only

appears when one wants to identify non-critical branes.

The specific example that we will focus on here is a pair of parallel 3-branes in 9d. Our

purpose in doing this is to extract additional implications of the duality between M theory

compactified on a torus and type IIB theory compactified on a circle. We have already seen

that a single 3-brane in 9d can be viewed equally as a IIB 3-brane or as an M-theory 5-brane

wrapped on the spatial torus. Now we wish to extend this picture to a pair of parallel 3-

branes including the possibility of suspending other branes between them. The plan is to

first consider parallel 3-branes of the IIB theory and then parallel 5-branes of M theory.

3.3 Parallel 3-branes of Type IIB Theory

Since 3-branes of IIB theory are D-branes, fundamental (1, 0) type IIB strings can end on

them. Also, such a string can be suspended between a pair of parallel 3-branes. The 4d world-

volume theory of this system is a U(2) gauge theory, spontaneously broken to U(1) × U(1)

when the separation ℓ > 0. The open string introduces a unit of electric charge for a U(1)

subgroup. (The appropriate U(1) is the one inside the SU(2) factor.) The sign of the charge

is tied to the orientation of the string. An SL(2,Z) duality transformation gives the same

configuration with the fundamental (1, 0) string replaced by a (q1, q2) string. In this case the
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lightest modes have mass

M = ℓ T(q1,q2) = ℓ(q2
1 + λ−2

B q2
2)

1/2T
(B)
1 , (65)

where we have used the results of Section 2.4 for the tension of (q1, q2) strings. This formula,

which can be generalized to include a θ angle, agrees with the BPS formula for dyons of the

N = 4 gauge theory in 4d. Thus, this picture relates the conjectured SL(2,Z) duality of

N = 4 gauge theory in 4d to that of type IIB superstring theory in 10d. Note that in this

example it is 0-branes that are becoming massless as ℓ → 0. This implies that only states

with spin J ≤ 1 have M → 0 as ℓ → 0. This picture is also applicable in 9d if a dimension

orthogonal to the brane is compactified.

3.4 Parallel 5-branes of M Theory

As we have explained, an M theory 2-brane can end on a 5-brane, and, therefore, a 2-brane

can be suspended between a pair of parallel 5-branes. To make contact with the results in

preceding subsection, we wish to take this configuration and compactify on a spatial torus in

such a way that we end up with a string suspended between 3-branes in 9d. The interesting

point is that this can be done such that the string is a (q1, q2) string. This is to be expected

because the torus is responsible for the SL(2,Z) duality.

To give a specific realization suppose that the 5-brane spatial coordinates are in the

x2, x3, x4, x5, x6 hyperplane, and the other coordinates are fixed at two sets of values on the

two 5-branes. Now suppose that the x2 and x3 coordinates are compactified to form the

spatial torus. This implies that the 5-branes are wrapped on the torus, giving parallel 3-

branes in 9d. Now consider a 2-brane connecting the two 5-branes. To get a string in 9d we

want only one of its coordinates to be wrapped. Therefore, suppose it lies in a plane defined

by x1, x
′

2, with the other coordinates fixed. Here x′2 is a line in the x2 - x3 plane, and hence

on the spatial torus. It belongs to the (q1, q2) homology class if it satisfies q2x2 = q1x3. In

this way, we obtain what we wanted, a (q1, q2) string suspended between parallel 3-branes in

9d. This is the dual description of the configuration obtained in the preceding subsection
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3.5 A Paradox and its Resolution

In the preceding subsection we considered an M theory 2-brane suspended between parallel

5-branes and showed that it could be wrapped on a spatial torus to give a (q1, q2) string

suspended between parallel 3-branes. An alternative possibility would be to wrap two di-

mensions of the 5-branes and no dimensions of the 2-brane on the spatial torus. This gives

a 2-brane suspended between parallel 3-branes in 9d. What is the IIB interpretation of

this configuration? The only simple guess is an open 3-brane suspended between parallel

3-branes. This is not allowed, however, because the boundary of a 3-brane is a 2-brane and

the world-volume theory does not contain the gauge field needed to carry off its flux. Before

explaining the right answer, let us first examine an analogous problem for which the answer

is known.

The IIA theory in 10d can have a string suspended between a pair of parallel 4-branes,

since they are D-branes. As we remarked earlier, this is interpreted in M theory as a

wrapping of an 11d configuration consisting of a 2-brane suspended between parallel 5-branes.

But what is the M theory interpretation of a string suspended between parallel 2-branes?

The two problems seem quite analogous, but the interpretations are rather different. The

simplest guess, an open 2-brane suspended between parallel 2-branes is not allowed by charge

conservation, so that is not the answer. The correct answer, which we will now describe, was

presented by Aharony, Sonnenschein, and Yankielowicz.[58]. (I first heard it from Polchinski.

Later, Yankielowicz explained it to me in detail and drew my attention to ref. [58].)

Consider an M theory 2-brane in a “wormhole” configuration. This means one smooth

surface consisting of parallel 2-branes connected by a throat . As described, there are actually

two anti-parallel branes connected by a throat. Such a configuration is highly unstable. The

size of the throat would grow rapidly eating up the branes. To stabilize the configuration

one must flip-over one of the two faces to make them parallel. This can be achieved by

rotating one of them by π in a plane orthogonal to the throat – the x3 - x4 plane, say.

This rotation involves no self-intersections of the surface, but since more than three spatial

dimensions are required, it is somewhat difficult to visualize. In any case, after doing this we

have two parallel branes connected by a throat. This configuration is consistent with charge

conservation and represents an excitation of a BPS system.
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Now the desired 10d configuration – an open string suspended between parallel 2-branes

– can be obtained by compactification on a circle. The geometry is a bit subtle, however.

Suppose y is the compact coordinate of the spatial circle, and x2 and x3 are the coordinates

that parametrize one of the faces. Now imagine going around a circle on the face that encloses

the throat. By continuity with the connecting tube (the throat), which is wrapped around

the y direction, it is clear that this circle also winds around the y direction. The coordinate

y corresponds to the scalar field of the M theory 2-brane world volume, which was called φ8

earlier when we introduced it as a zero-form dual of a U(1) gauge field. The throat is a source

of y (or φ8) magnetic charge on the end faces, since
∮

dy 6= 0 when the contour encloses the

throat. In the dual formulation, appropriate to the IIA description of the membrane, φ8

is replaced by a U(1) gauge field Aα and this magnetic charge is re-interpreted as electric

charge. This matches the picture expected from the D-brane viewpoint, showing that we

have found the correct M theory interpretation.

Now it is clear what the answer to the original problem – the IIB interpretation of a

2-brane suspended between parallel 3-branes in 9d – should be. The correct 10d picture is a

parallel 3-branes connected by a throat, altogether forming one smooth surface. Again one

of the 3-branes must be flipped over to ensure that they are parallel and not anti-parallel.

Compactification on a circle is then arranged so that one dimension of the connecting throat

is wrapped leaving a 2-brane from the 9d viewpoint. The throat again introduces a magnetic

charge
∮

dy. In 9d this is best viewed in the dual picture in which y is replaced by a two-form,

since the 3-brane has a 4d world volume. A two-form is just what is needed to carry off the

flux associated to the charge on the string-like boundary of a 2-brane. So, again, there is a

consistent picture.

It was emphasized earlier that the N = 4 gauge theory that describes the world-volume

theory of a pair of parallel 3-branes has an infinite spectrum of dyons with J ≤ 1 whose

mass vanishes as ℓ → 0. They were interpreted in terms of strings suspended between the

3-branes. Now we have seen that in 9d there can also be a suspended 2-brane, which gives a

noncritical string as ℓ → 0. The string modes describe states of arbitrarily high spin whose

mass vanishes as ℓ→ 0 in the effective N = 4 4d gauge theory.
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3.6 Three-String Junctions

The definition of a D-brane as a p-brane on which a type II string can end has to be

interpreted carefully for p ≤ 1. For example, in the case of IIB strings, we found that there

is an infinite family of strings with Bµν charges (q1, q2), where q1 and q2 are relatively prime

integers. The (1, 0) string is the fundamental string and the (0, 1) string is the D-string.

A naive interpretation of ‘a fundamental string ending on a D-string’ is described as the

junction of three string segments, one of which is (1, 0) and two of which are (0, 1). This

is not correct, however, because the charge on the end of the fundamental string results in

flux that must go into one or the other of the attached string segments changing the string

charge in the process. In short, the three-string junction must satisfy charge conservation.[58]

This means that an allowed junction that describes the joining of three strings has charges

(q
(i)
1 , q

(i)
2 ), i = 1, 2, 3 such that q

(i)
1 and q

(i)
2 are relatively prime for each value of i and

∑

i q
(i)
1 =

∑

i q
(i)
2 = 0. The configuration is stable if the three strings are semi-infinite and the

angles are chosen so that tensions, treated as vectors, add to zero. It would be interesting

to construct the corresponding solution of the supergravity field equations. I expect it to

be supersymmetric and, therefore, to have the usual nice BPS properties. For example, a

periodic array could be formed so that compactification on a circle would give the same

configuration in 9d.

Given the three-string junction in 9d, it is natural to ask about its 11d M theory in-

terpretation. The answer is easily found and very pleasing. In 11d one could consider a

three-membrane junction which consists of a single smooth surface. Topologically it is the

same as the “pants diagram,” which describes the world sheet for a closed string breaking

into two closed strings. Of course, in the present problem the time coordinate is suppressed

and the surface is just a spatial diagram (like real pants).

Now we want to compactify on a torus to 9d in such a way that one dimension of each of

the three protruding 2-branes is wrapped on the torus. Labelling the three 2-branes by an

index i = 1, 2, 3, we want the circular coordinate of the ith 2-brane to wrap on a (q
(i)
1 , q

(i)
2 )

homology cycle of the torus. It is a simple geometrical fact that this is only possible if
∑

i q
(i)
1 =

∑

i q
(i)
2 = 0. Thus, we reproduce the three-string junction in 9d with exactly the

desired properties.
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This three-string junction could prove to be useful in future studies. For example, one

might wish to consider a collection of wrapped, intersecting 3-branes as part of a study of

black holes in string theory. Excitations of such a system would be represented by open

strings connecting the 3-branes. However, it would also be possible to have open strings

ending on three different 3-branes if they are joined by a junction of the kind we have

described. Of course, given the existence of the three-string junction, one can also build up

more complicated networks, similar to φ3 Feynman diagrams.

4 6D STRING VACUA WITH EXTENDED SUPER-

SYMMETRY

Compactification to 9d was sufficient to demonstrate that there are dualities connecting

all superstring theories to one another as well as to M theory. Also, we learned that the

dualities in 9d provide non-perturbative information about these theories. In this section we

will survey many (possibly all) superstring vacua with extended supersymmetry in 6d. The

next section will give a much less complete survey of 6d vacua with N=1 supersymmetry. In

the process, many new dualities that give additional insights into the structure of the theory

will appear.

Since vacua are characterized by their unbroken supersymmetry and massless spectrum,

among other things, we need to know what the possibilities are in 6d. Massless particles are

specified by representations of the little group, which is spin (4) or SU(2)×SU(2). Labelling

representations by SU(2)×SU(2) multiplicities, one can have the following massless particles

graviton : (3, 3)
gravitino : 2(3, 2) or 2(2, 3)

self dual tensor : (3, 1) or (1, 3)
vector : (2, 2)
spinor : 2(2, 1) or 2(1, 2)
scalar : (1, 1).

(66)

Parity interchanges the two SU(2)’s. Thus, the fermions and self-dual tensors are chiral,

while the other particles are not. The factors of two in the fermion multiplicities appear be-

cause a Weyl spinor in 6d is necessarily complex. The supersymmetry type can be labelled by

the number of gravitinos of each chirality. The maximal case (32 supercharges) corresponds
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to (2, 2) or N = 4 and is non-chiral. There are two N = 2 possibilities, just as in ten dimen-

sions: (1, 1) or IIA is non-chiral and (2, 0) or IIB is chiral. N = 1 or (1, 0) supersymmetry

is also chiral. One might also consider (4, 0), (3, 1), (3, 0), and (2, 1) supersymmetries, but I

believe that none of these is possible.4

4.1 Vacua with (2,2) Supersymmetry

Let us begin with maximal (2, 2) unbroken supersymmetry. In this case there is a unique

massless multiplet – the supergravity multiplet. One way to determine its particle is by

decomposing the massless fields of 11d supergravity into 6d pieces. The result is as follows:

bosons : (3, 3)+5(3, 1)+5(1, 3)+16(2, 2)+25(1, 1)
fermions : 4(3, 2) + 4(2, 3) + 10(2, 1) + 10(1, 2).

(67)

The U duality group in this case is SO(5, 5;Z) and the moduli space, parametrized by the

25 scalar fields, is M5,5 .

A string vacuum with this amount of supersymmetry and this massless sector can be

obtained either by compactifying the type IIB theory on T 4 or M theory on T 5. Each con-

struction explains a subgroup of the U duality group. The type IIB theory compactification

gives a T duality group SO(4, 4;Z) from the T 4; in the M theory compactification, the mod-

ular group of T 5 accounts for an SL(5,Z). The complete answer, SO(5, 5;Z), is the smallest

group that contains both of these as subgroups. Once again, we see the power of M the-

ory/IIB theory duality. By considering both at the same time one can make deductions that

are not apparent from either viewpoint separately. The multiplicities of the other boson fields

are given by SO(5, 5) representations. Thus, for example, the 16 vectors belong to a spinor

representation, which is real for this signature. The 10 tensors ((3, 1) and (1, 3)) belong to

the fundamental representation of SO(5, 5). The fact that three-form field strengths mix

with their duals under the duality group is a higher-dimension analog of electric-magnetic

duality, and is a hallmark of an S duality. The fermions belong to representations of the

denominator algebra – SO(5) × SO(5) in this case – in constructions of this type.

4A gravity supermultiplet has been proposed for the (2, 1) case,[59] but it gives gravitational anomalies
that cannot be cancelled.
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4.2 Vacua with (1, 1) Supersymmetry

Let us now consider vacua with non-chiral 2A supersymmetry. In this case the gravity

supermultiplet consists of

bosons : (3, 3) + (3, 1) + (1, 3) + 4(2, 2) + (1, 1)
fermions : 2(3, 2) + 2(2, 3) + 2(2, 1) + 2(1, 2).

(68)

In addition there can be massless vector supermultiplets, whose content is

(2, 2) + 4(1, 1) + 2(2, 1) + 2(1, 2). (69)

When there are n Abelian vector multiplets, so that the gauge group is [U(1)]n, the duality

group is SO(4, n;Z), and the moduli space M4,n is spanned by the 4n scalar fields belonging

to the vector multiplets. The additional scalar field in the supergravity multiplet, which can

be identified as the dilaton, has a moduli space R, so that the complete moduli space is

M4,n ×R.

Toroidal compactification of the heterotic string to 6d gives a vacuum with (1, 1) super-

symmetry and n = 20, which is the standard Narain result.[7] Note that the compactification

of 20 left-moving dimensions gives rise to the 20 vector fields belonging to the vector su-

permultiplets, whereas the compactification of 4 right-moving dimensions gives the 4 vector

fields belonging to the supergravity multiplet.

The heterotic string vacuum described above (with n = 20) has a dual description given

by the type IIA string compactified on K3.[5] We won’t present a complete discussion of this

result, which will be discussed by other lecturers, but simply verify that the massless field

content works out correctly. Compactification on K3 breaks half the supersymmetry that is

present in 10d, giving the desired (1, 1) supersymmetry, so it suffices to check the bosonic

field content. To do this, we need some basic facts about the cohomology and the moduli

space of K3. As usual for a compact connected 4-manifold, b0 = 1 and b4 = 1. Furthermore

b1 = b3 = 0, so the only non-trivial cohomology is H2. It has 22 generators, which can

be chosen to be 3 self-dual 2-forms (b+2 = 3) and 19 anti-self-dual 2-forms (b−2 = 19). The

moduli space of complex structure deformations, for a K3 of fixed volume, is M3,19, which is

57 dimensional. Including the volume of the manifold, there are 58 moduli altogether. This

implies that the 6d zero modes obtained form the 10d metric consist of the 6d metric and
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58 scalar fields. Altogether, the massless bosonic IIA fields on K3 give

gµν → (3, 3) + 58(1, 1)
φ → (1, 1)
Aµ → (2, 2)
Bµν → (3, 1) + (1, 3) + 22(1, 1)
Cµνρ → 23(2, 2).

(70)

One of the 23 vectors obtained from Cµνρ arises because a 3-form in 6d is equivalent (by a

duality transformation) to a vector. These multiplicities agree precisely with those of (1, 1)

supergravity coupled to 20 vector supermultiplets.

The 6d duality between the heterotic string on T 4 and the IIA string on K3 can be lifted

to a 7d duality.[23] Since the IIA theory can be viewed as M theory on S1, it is plausible that

one can identify this S1 with one of the S1’s inside the T 4 used to compactify the heterotic

theory. Decompactifying this S1 then leaves a 7d duality between M theory compactified

on K3 and the heterotic theory compactified on T 3. This duality also passes all the checks

that have been made. For example, the duality group computed from both viewpoints is

SO(3, 19;Z) and the moduli space is M3,19 × R.

It is even possible to go one more step and to lift this duality to 8d using “F theory.”[39]

This topic is beyond the scope of these lectures, so let’s just state the result. On the one hand,

consider the heterotic string compactified on T 2, which has a duality group SO(2, 18;Z) and

a moduli space M2,18 × R. The F theory dual description consists of a non-perturbative

type IIB vacuum, which can be formally described as a compactification from 12d to 8d on a

special class of K3 manifolds – those that have an elliptic fibration. Remarkably, the moduli

space of these K3’s is given by a M2,18 subspace of the M3,19 moduli space of K3’s, so that

the matching of moduli spaces required for the duality again works beautifully.

The 6d duality between the heterotic string theory on T 4 and the IIA string theory on

K3 is an S duality. One way to see this is by comparing low-energy effective supergravity

Lagrangians and noting that the field mapping between the two descriptions includes

φH = −φIIA, (71)

as well as a duality transformation of the two-form potential. This relation between dilaton

fields implies that the coupling constants are reciprocal to one another, which is S duality.

This also means that the heterotic and type IIA strings, both of which occur in the 6d theory,
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are electric–magnetic duals of one another. When one is regarded as fundamental, the other

must be viewed as a soliton. This observation is the key to understanding their 10d origins.

In the 10d IIA theory the magnetic dual of the IIA string is the 5-brane. Thus, the heterotic

string in 6d arises from wrapping a 5-brane of topology K3× S1 on the spatial K3, leaving

a string (S1) in 6d.[60, 61, 62] The corresponding BPS soliton of the 6d supergravity field

equations has been constructed explicitly.[63, 61] The converse story, which must surely be

true too, is less well established. It requires that the IIA string in 6d should arise from

wrapping a 5-brane of the 10d heterotic theory on the spatial T 4.

We have now found two entirely different constructions of heterotic strings as M theory

solitons. The first one (discussed in Section 2.9) arises from wrapping the M theory 2-brane

on S1/Z2 = I. The second one, which we have just found, entails wrapping the M theory

5-brane on K3. Later, we will discuss a class of vacua in which both kinds of heterotic strings

can occur at the same time.

In the heterotic picture, perturbative reasoning shows that there is enhanced gauge sym-

metry at singular points of the moduli space M4,20. It is interesting to ask where the

additional massless states come from in the dual description. The mechanism, which is non-

perturbative, is that the singular points of the moduli space correspond to limits in which a

two-cycle on the K3 shrinks to a point.[23, 64] Type IIA 2-branes wrapped on the two-cycle

give 0-branes in 6d whose mass is proportional to the area of the two cycle. There is an ADE

classification of the two-cycles on K3 that can vanish, which has just the properties required

to account for the symmetry enhancement that is obtained in the dual heterotic description.

We have explained that a type IIA vacuum in 6d should have a duality group SO(4, n;Z)

and a moduli space M4,n × R, and then we presented a pair of dual constructions for

the special case n = 20. It is natural to ask whether other values of n are also possible.

Constructions that give other values of n are conveniently described from the M theory

viewpoint. The n = 20 result, itself, can be viewed as arising from M theory compactified on

K3× S1, since type IIA theory is M theory compactified on S1. To generalize this, the idea

is to replace the compact space by (K3×S1)/Zh. For this to work, one needs to restrict to a

class of K3’s having a Zh discrete symmetry, and then to combine the action of the generator

of this group with a rotation by 2π/h on the circle. This ensures that there are no fixed

points, so that a smooth manifold results. The h = 2 case was analyzed in ref. [65]. The
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possible discrete symmetries of K3’s have been classified by the mathematician Nikulin.[66]

Chaudhuri and Lowe have applied his results to the problem at hand to conclude that the

complete set of possibilities is given by [67]

h = 2 → n = 12
h = 3 → n = 8
h = 4 → n = 6

h = 5, 6 → n = 4
h = 7, 8 → n = 2.

(72)

Thus, there are consistent string vacua for these values of n. The h = 5 and 6 constructions

give the same massless spectrum and moduli space, but it is not known whether they are

completely identical. (The same remark applies to h = 7, 8.) It is also not known whether

other n values could be obtained by other constructions that have not yet been considered.

In the special case of h = 2 a dual construction is known.[68] One starts with the E8×E8

heterotic string compactified on T 4, and mods out by a Z2 that interchanges the two E8’s.

Clearly, this reduces the rank by 8 (reducing n from 20 to 12).

4.3 Vacua with (2, 0) Supersymmetry

Type IIB supersymmetry in 6d admits two massless supermultiplets. The gravity supermul-

tiplet particle content is

(3, 3) + 4(2, 3) + 5(1, 3) (73)

and the tensor supermultiplet particle content is

(3, 1) + 4(2, 1) + 5(1, 1). (74)

A superstring vacuum with IIB supersymmetry in 6d can be obtained by compactifying the

type IIB superstring on K3. The resulting massless bosons in 6d are as follows:

gµν → (3, 3) + 58(1, 1)
φ, χ → 2(1, 1)

B(1)
µν , B

(2)
µν → 2(3, 1) + 2(1, 3) + 44(1, 1)

A+
µνρλ → 3(1, 3) + 19(3, 1) + (1, 1).

(75)

This shows that the massless content is given by the gravity multiplet plus 21 tensor multi-

plets.
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Since the particle content is chiral, there are potential gravitational anomalies. In six

dimensions these are characterized by eight-forms. Up to a common overall normalization,

the contributions of each of the chiral fields is as follows:

2(2, 3) : 49
72

trR4 − 43
288

(trR2)2

2(1, 2) : 1
360

trR4 + 1
288

(trR2)2

(1, 3) : 7
90

trR4 − 1
36

(trR2)2.

(76)

Combining these with weights corresponding to one gravity multiplet and nT tensor multi-

plets, one finds that the sum vanishes provided that nT = 21. Thus, nT = 21, the result

we found by K3 compactification of the IIB superstring, is the only value that can give a

consistent anomaly-free theory.[69]

The vacua with nT = 21 have the duality group SO(5, 21;Z) and the moduli space M5,21

parametrized by the 105 scalars in the tensor multiplets. Note that there are no scalars

in the gravity supermultiplet, so that this is the complete moduli space. This also means

that the dilaton must be one of these 105 scalar fields. Compactifying further on a circle

to 5d gives one more scalar field corresponding to the radius of the circle. There are no

other new scalars, since the 6d theory has no vector fields. Then the moduli space becomes

M5,21 × R. This 5d model has the same supersymmetry, massless fields, and moduli space

as the heterotic string compactified to 5d, so it is natural to conjecture that they are dual.

In fact, this is a consequence of two dualities that we have already discussed: Type IIA on

K3 ∼ heterotic on T 4 and IIA on S1 ∼ IIB on S1. In the heterotic picture, the scalar field

that corresponds to the R factor in the moduli space is the dilaton. Thus, we have a U

duality: the heterotic string compactified on T 5 at strong coupling corresponds to the type

IIB string on K3 × S1 at large radius of the S1. In particular, the strong-coupling limit

of the 5d heterotic string is six dimensional. This is analogous, of course, to the fact that

the strong-coupling limit of the 10d type IIA string or E8 × E8 heterotic string is eleven

dimensional.

The 6d theory with IIB supersymmetry and 21 tensor supermultiplets has another dual

description given by M theory compactified on the orbifold T 5/Z2.[70, 71] The Z2 acts on

each of the five circles of the torus, which introduces 32 orbifold points. Including the

other six space-time dimensions, they are 32 orbifold planes. In units where an M theory
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5-brane carries one unit of magnetic charge, it turns out that each of these orbifold planes

carries −1/2 unit of magnetic charge. The charge cannot be cancelled locally, but it can be

cancelled globally by introducing 16 5-branes. This is necessary, since the total charge on a

compact space must vanish. One can then account for the massless field content as follows:

Compactification of 11d supergravity on T 5/Z2 gives an untwisted sector consisting of the

gravity multiplet and five tensor multiplets. Each of the 5-branes introduces an additional

tensor multiplet, so that altogether there are 21 of them, as required. The 5-branes can be

represented as points on the T 5/Z2, and their coordinates are controlled by the five scalar

fields in the tensor multiplet associated to the 5-brane. The 25 scalar fields belonging to the

other five tensor multiplets arise from zero modes of the 11d metric and three-form on T 5.

The 6d theory contains, among other things, self-dual solitonic strings whose tension can

become arbitrarily small in suitable limits. In terms of the IIB superstring compactified

on K3, their appearance can be traced to singular limits in which a two-cycle on the K3

shrinks to a point.[72] The reason for this is that the self-dual 3-brane can wrap around

the cycle, leaving a string in the 6d space-time whose tension is proportional to the area of

the two-cycle. In the IIA case, the corresponding mechanism gave 0-branes with an ADE

classification. Here it gives non-critical strings with an ADE classification. The existence

of strings whose tension can become small, so that they effectively decouple from gravity,

is an interesting phenomenon. It would be very desirable to have a better understanding of

their properties, because they seem to encode in a deep way the essential features of N = 4

gauge theory. The point is that, compactifying further to 4d on T 2, windings of the string

around the two cycles of the torus give electric and magnetic charge in 4d.[73] The SL(2,Z)

duality of N = 4 gauge theory derives from that of the torus (again!). The appearance of

non-critical strings can also be understood in terms of the description in terms of M theory

compactified on T 5/Z2.[71] In this case, there are 16 “parallel” 5-branes, represented by

points on the compact space. Since an M theory 2-brane can be suspended between parallel

5-branes, when a pair of 5-branes approach one another this 2-brane is approximated by a

string whose tension is proportional to the separation of the 5-branes.
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5 6DSTRINGVACUA WITH N = 1 SUPERSYMME-

TRY

The preceding section described various possibilities for superstring vacua with extended

supersymmetry in 6d. The supersymmetry was very constraining, so the classification pre-

sented was reasonably complete. In the case of N = 1 supersymmetry in 6d the story

becomes much more complex. Each time the number of supersymmetries or the number

of uncompactified dimensions is decreased, new issues arise. While our ultimate goal is to

understand vacua with N = 1 or N = 0 in 4d, I am most comfortable proceeding in steps,

absorbing the lessons at one stage before moving on to the next one. The cutting edge,

where the understanding is increasing most rapidly at the present time, is for vacua with

N = 1 in 6d or with N = 2 supersymmetry in 4d. I will only discuss the former, and even

this will not be complete. Many, but not all, 4d vacua with N = 2 can be obtained from

these by a subsequent T 2 compactification.

N = 1 supersymmetry in 6d admits four kinds of massless supermultiplets:

gravity : (3, 3) + 2(2, 3) + (1, 3)
tensor : (3, 1) + 2(2, 1) + (1, 1)
vector : (2, 2) + 2(1, 2)
hyper : 2(2, 1) + 4(1, 1).

(77)

In general, a 6d N = 1 string vacuum will give one gravity multiplet, nT tensor multiplets, nV

vector multiplets, and nH hyper multiplets. Since all models of this kind are chiral, anomaly

cancellation always provides non-trivial constraints.[34, 74] For example, cancellation of the

trR4 term in the anomaly eight-form gives the requirement

nH + 29nT = nV + 273. (78)

In this section we will discuss N = 1 models constructed in a number of different ways.

One approach is compactification of the SO(32) theory on a smooth K3. Such models

can have non-perturbative symmetry enhancement when 5-branes are included. A second

approach is K3 compactification of the E8 × E8 theory. Non-perturbatively, this can be

regarded as M theory compactified on K3× S1/Z2. In this case there is freedom associated

with dividing the instanton number between the two E8’s as well as the possibility of includ-

ing 5-branes. A third approach that we will mention, which turns out to be dual to one of
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the E8 × E8 compactifications, is based on T 4/Z2 orbifold compactification of the SO(32)

theory.

5.1 General Considerations

For the most part we will consider models with nT = 1, in which case eq. (78) simplifies to

nH = nV +244. When nT = 1 it is possible to give a manifestly covariant effective action for

the massless modes. The point is that the two-form with self-dual field strength in the gravity

multiplet and the two form with anti-self-dual field strength in the tensor multiplet can be

combined and represented by a two-form with an unconstrained field strength. Another

advantage of nT = 1 is that anomaly cancellation can be achieved by straightforward analogs

of the techniques introduced for 10d models in Ref. [34]. (Otherwise, a generalization given

in Ref. [75] is required.) In the nT = 1 case, with a semi-simple gauge group G =
∏

Gα,

anomaly cancellation is possible if the anomaly eight-form factorizes into a product of two

four-forms. This means that I8 ∼ X4 ∧ X̃4, where

X4 = trR2 −
∑

α

vαtrF 2
α (79)

X̃4 = trR2 −
∑

α

ṽαtrF 2
α. (80)

Here Fα is the Yang–Mills two-form associated to the group Gα, given by matrices in a

convenient (fundamental, for instance) representation of the Lie algebra. The vα, ṽα are

numerical constants.

Anomaly cancellation is achieved by assigning non-trivial Yang–Mills and local Lorentz

gauge transformation assignments to the two-form Bµν , choosing its field strength to be

gauge invariant (H = dB+ Chern–Simons terms), and adding a suitable counterterm of the

form
∫

B ∧ X̃4 to the effective action. Taking the exterior derivative of the field strength H

gives the Bianchi identity dH ∼ trR2 −∑

vαtrF 2
α. Under the S-duality transformation

φ→ −φ, H → e−2φ ∗H, (81)

the Bianchi identity is intercharged with the one-loop corrected field equations

d(e−2φ ∗H) ∼ trR2 −
∑

ṽαtrF 2
α. (82)
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When there are also U(1) factors in the gauge group, there can be additional terms in

the anomaly eight-form of the structure F ∧ Y6, where F is the U(1) field-strength two-

form and Y6 is a six-form. When such terms appear, anomaly cancellation can still be

achieved provided there is a suitable scalar field χ that transforms under the U(1) gauge

transformation (χ→ χ+Λ). In this case its gauge-invariant field strength has the structure

dχ − A. This results in the U(1) gauge field eating the scalar χ to become massive. Then

there is no longer an unbroken U(1) gauge symmetry, but at least the theory is consistent.

There is an analogous mechanism in 4d, which has been known for a long time.[76] However,

in 4d a scalar is dual to a 2-form, so that this is just a dual description of the same mechanism

as in 10d. In 6d that is not the case.

The constants vα in the form-form X4 have a simple interpretation, pointed out in

Ref. [77], provided the group
∏

Gα can be realized by a perturbative heterotic string construc-

tion. In this case the factor Gα is realized in the world-sheet theory as an affine Kac–Moody

Lie algebra. For a level nα representation vα is given by

vαtrF 2
α =

nα

hα

TrF 2
α. (83)

We use the symbol ‘tr’ for traces in the fundamental representation and ‘Tr’ for traces in the

adjoint representation. Here, hα is the dual Coxeter number of the group Gα. In practice,

the only cases we will encounter are at level one (nα = 1). In this case one can show that

v = 2 for an SU(n) or Sp(n) group, v = 1 for an SO(n) group, v = 1/3 for E6, v = 1/6 for

E7, and v = 1/30 for E8.

We will mostly be interested here in K3 compactifications. In this case, integrating

the four-form Bianchi identity over the K3 manifold gives a consistency condition for the

compactification. Specifically, in the SO(32) case, one obtains the condition

n1 + n5 = 24. (84)

Here, 24 arises is the Euler number of the K3 manifold and n1 is the number of instantons

embedded in the SO(32) gauge group, (i.e., the second Chern class of the gauge bundle).

The integer n5 is the number of 5-branes in the solution. These 5-branes correspond to

delta-function sources in dH at isolated points on the K3, filling the 6d space-time. Their

appearance is a non-perturbative phenomenon. In the case of E8 × E8 models compactified
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on K3, the integrated Bianchi identity gives a very similar consistency condition

n1 + n2 + n5 = 24. (85)

Here n1 and n2 denote the number of instantons embedded in each of the two E8 factors,

and n5 is again the number of (non-perturbative) 5-branes. The study of branes in Section

2 showed that 5-branes of M theory (or E8 ×E8 theory) and 5-branes of SO(32) theory are

quite different. This will be reflected here by the fact that inclusion of 5-branes has very

different implications for the 6d vacua in the two cases.

5.2 K3 Compactification of the SO(32) Theory

The SO(32) theory can be viewed either as a heterotic string theory or a type I string

theory since the two descriptions are S dual. To make contact with the interpretation of the

constants vα in the preceding subsection, the heterotic interpretation is appropriate. Let us

begin with perturbative vacua with n1 = 24 and n5 = 0, which were understood a long time

ago.[74]

To describe the instantons in the SO(32) gauge group, one must select an SU(2) subgroup

in which to embed them. One choice (but not the only possible one, as we will see later) is

to consider the decomposition SO(32) ⊃ SO(28)×SU(2)×SU(2) and embed the instantons

in one of the two SU(2)’s. This leaves an unbroken SO(28)×SU(2) gauge symmetry. Using

appropriate index theorems, one can compute the number of hypermultiplet zero modes

belonging to each representation of this group. Such an analysis gives the hypermultiplet

content 10(28, 2) + 65(1, 1). Note that altogether there are 1
2
28 · 27 + 3 = 381 vector

multiplets and 560+65 = 625 hyper multiplets, which satisfies the condition nH = nV +244.

The contribution of each of these fields to the anomaly polynomial can be computed using

formulas in Refs. [74, 78, 79]. One finds

X4 = trR2 − trF 2
1 − 2trF 2

2 (86)

X̃4 = trR2 + 2trF 2
1 − 44trF 2

2 . (87)

Note that v1 = 1 for the SO(28) factor and v2 = 2 for the SU(2) factor, as expected for level-

one representations. The potential of scalar fields has many flat directions. At special values
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one can get symmetry enhancement, the maximal case being SO(28) × [SU(2)]6. However,

the generic situation is for symmetry breaking (“Higgsing”) to occur. The gauge symmetry

can be broken to SO(8) but not further.

Let us now go beyond perturbation theory and include 5-branes in the vacuum configu-

ration. This problem was studied first by Witten, who identified the 5-branes as instantons

that have shrunk to zero size, what he called “small instantons.”[80] From the type I view-

point the SO(32) 5-branes (as well as the heterotic strings) are D-branes. In a type II

theory a single D-brane carries a U(1) gauge symmetry, and when n of them coincide the

group is enhanced to U(n). However, the projections that give a type I theory modify these

rules. For example, the 32 coincident 9-branes that fill the space-time are responsible for

the SO(32) gauge symmetry from the type I viewpoint. Dynamical 5-branes in the type I

theory correspond to a group of four stuck together from the type II viewpoint. (This is the

minimal unit, as long as the compactification manifold is smooth.) It turns out that such a

dynamical 5-brane carries a Sp(1) = SU(2) gauge group, and that when n of them coincide

the symmetry is enhanced to Sp(n).[80] The number n5 in the condition n1 + n5 = 24 refers

to the number of dynamical 5-branes, and so the maximum number allowed is 24.

The example with the largest gauge group is achieved by taking n1 = 0 and n5 = 24 and

then taking the 24 5-branes to coincide. This means that they are all at the same point on the

K3 manifold. In this case the unbroken gauge symmetry in 6d is G = SO(32)×Sp(24). This

group has rank 40, which is the world record for 6d models, as far as I know. The massless

spectrum of this theory contains vector multiplets belonging to SO(32)× Sp(24). From the

type I viewpoint, the SO(32) vector multiplets arise as zero modes of 99 open strings, i.e.,

open strings connecting 9-branes to 9-branes. Similarly, the Sp(24) vector multiplets arise

from 55 open strings, strings connecting 5-branes to 5-branes. The massless hyper multiplets

turn out to be as follows: 55 strings give an Sp(24) antisymmetric tensor (1, 1127) + (1, 1);

59 strings give 1
2
(32, 48); the K3 moduli give 20(1, 1). The factor of 1/2 appears because it

is possible to have “half hyper multiplets” when they belong to a pseudoreal representation

of a symmetry group. (Fundamental representations of symplectic groups are pseudoreal.)

Altogether there are 1672 vector multiplets and 1916 hypermultiplets, which again satisfies

the condition nH = nV + 244.
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The factorized anomaly polynomial of the SO(32) × Sp(24) model has [79]

X4 = trR2 − trF 2
1 (88)

X̃4 = trR2 + 2trF 2
1 − 2trF 2

2 . (89)

The point to be noted is that the SO(32) group has a perturbative heterotic string inter-

pretation, and it appears in X4 with v1 = 1, as expected. The Sp(24) group, on the other

hand, is non-perturbative from the heterotic string viewpoint, and it does not appear in X4.

The “small instanton” model described above can be generalized in two ways. One is to

consider n5 < 24 and to embed n1 = 24−n5 units of instanton number in the SO(32) group.

In this case the maximal non-perturbative gauge group is Sp(n5). The second generalization

is to allow the n5 5-branes to come apart into groups of {n5i} with
∑

n5i = n5. Then the

non-perturbative gauge group is
∏

Sp(n5i).

We have discussed the significance of the vα’s in X4, but not the ṽα’s in X̃4. Sagnotti has

shown that supersymmetry considerations imply that the kinetic terms of the gauge fields

have the form [75]
∑

α

(vαe
−φ + ṽαe

φ)tr(Fα · Fα), (90)

where φ is the heterotic dilaton. At weak coupling (φ → −∞) the perturbative vα term

dominates. However, as the coupling is increased the second term becomes important. In

particular, if it happens that ṽα < 0, then there is a singularity (divergent coupling constant)

at φ = φ0, where

e2φ0 = −vα/ṽα. (91)

Duff and collaborators have argued that this singularity is associated with the vanishing of a

string tension.[81] Specifically, they argue that there are solitonic dyonic strings in 6d whose

electric and magnetic charges (p, q) are proportional to (vα, ṽα) and whose tension is given

by T(p,q) = pe−φ + qeφ. Thus, the tension of such a string vanishes at the singularity. In

the examples that have been discussed so far the SO(n) group has v1 = 1 and ṽ1 = −2,

and, therefore, its coupling constant diverges for e2φ0 = 1/2 = −p/q. Thus, a (1,−2) string

becomes tensionless. These theories are well-defined for weak coupling (eφ0 ≪ 1) and should

continue smoothly up to the singularity at e2φ0 = 1/2. At that point one expects a phase
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transition to take place. Beyond that point, our formulas are no longer applicable. Later,

we will speculate about what happens at the phase transition.

5.3 K3 Compactification of the E8 × E8 Theory

Perturbative vacua of the E8 × E8 heterotic string compactified on K3 have n5 = 0 (no

5-branes) and n1 + n2 = 24. Let us begin by considering the special case n1 = 24, n2 = 0,

which corresponds to embedding all 24 units of instanton number into one of the two E8

factors. A maximal subgroup of E8 is E7 × SU(2). So if we embed the instantons in this

SU(2), this leaves an unbroken E8 × E7 gauge symmetry. In this case application of index

theorems give massless hypermultiplets transforming as 10(1, 56) + 65(1, 1). Just as in the

SO(28)× SU(2) model of the preceding subsection, there are 381 vector multiplets and 625

hypermultiplets. The factorized anomaly eight-form has

X4 = trR2 − 1

30
trF 2

1 − 1

6
trF 2

2 (92)

X̃4 = trR2 +
1

5
trF 2

1 − trF 2
2 . (93)

Note that v1 = 1/30 and v2 = 1/6 are the values expected for E8 and E7, respectively. By

giving vevs to scalars corresponding to flat directions one can find enhanced gauge symmetry

as large as E8 ×E7 × [SU(2)]5, or symmetry breaking giving a complete Higgsing of the E7

leaving only an unbroken E8. Note that the E8 kinetic term becomes singular for φ → φ0,

where e2φ0 = 1/6. At this point a (1,−6) string becomes tensionless.

The second possibility for perturbative vacua of the E8 × E8 heterotic string theory on

K3 is to embed some instantons in each of the E8’s. It is not possible to have n = 1, 2, 3, so

the possibilities are

n1 ≥ n2 = 24 − n1 ≥ 4. (94)

Embedding all instantons in SU(2) subgroups can leave an unbroken E7 × E7. The hy-

permultiplets in this case are 1
2
(n1 − 4)(56, 1) + 1

2
(n2 − 4)(1, 56) + 62(1, 1). Half integer

coefficients are allowed, because the 56 is a pseudoreal representation of E7. The factorized

anomaly polynomial is now

X4 = trR2 − 1

6
trF 2

1 − 1

6
trF 2

2 (95)
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X̃4 = trR2 +
(

1 − n1

12

)

trF 2
1 +

(

1 − n2

12

)

trF 2
2 . (96)

It is interesting to ask whether any of these models could be a dual description of the

perturbative SO(32) string compactification. Certainly the groups we have found in the two

cases are different. However, in the case of the SO(32) model it was possible to Higgs to an

SO(8) subgroup leaving X4 = trR2 − trF 2 and X̃4 = trR2 + 2trF 2, where F refers to the

SO(8). In the case of the E7×E7 models under consideration here, it is possible to completely

Higgs one E7 and to Higgs the other to SO(8). Then, using the rule trE7
F 2 → 6trSO(8)F

2, we

are left with X4 = trR2−trF 2 and X̃4 = trR2+
(

6 − 1
2
n2

)

trF 2. Thus, the two SO(8) models

have the same anomaly polynomials (and the same massless field content) for n1 = 16,

n2 = 8. Thus, it is plausible (and supported by other studies) that perturbative SO(32)

compactifications and perturbative (16, 8) E8 × E8 compactifications on K3 give the same

moduli space of models. Of course, the portion of the moduli space that is visible in each

approach is different. To find SO(28) from the E8×E8 approach or E7×E7 from the SO(32)

approach would require discovering the appropriate unHiggsing.

Now, let us move beyond perturbation theory and consider E8 × E8 models with 5-

branes. The 5-branes of E8 × E8 are the 5-branes of M theory, which we saw carry a (2, 0)

tensor multiplet. But the compactification on K3 cuts the supersymmetry in half leaving

N = 1. The (2, 0) tensor multiplet decomposes into a N = 1 tensor multiplet plus a N = 1

hypermultiplet. This is to be contrasted with the SO(32) 5-branes, which carry a (1, 1) vector

multiplet (that decomposes into a N = 1 vector multiplet and a N = 1 hypermultiplet). So

SO(32) 5-branes carry vector multiplets, and that is why we found that they give rise to

additional (non-perturbative) gauge symmetry. The E8 × E8 5-branes, on the other hand,

do not have vector multiplets and they do not give additional gauge symmetry. Rather, each

E8 × E8 5-brane adds a tensor multiplet (and a hypermultiplet). Thus, by including them,

we obtain models with nT = n5 + 1 tensor multiplets. When SO(32) 5-branes coincided, we

found that the 55 strings connecting them gave massless gauge bosons resulting in enhanced

gauge symmetry. When E8 × E8 5-branes coincide, the 2-branes connecting them give

tensionless strings.[82, 83]

Let’s begin with the extreme case n5 = 24, n1 = n2 = 0.[83] Since there are no instantons

to embed, the E8 × E8 gauge symmetry is unbroken (so that nV = 496). The number of
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tensor multiplets is nT = 25. The 24 5-branes each give a hypermultiplet, and there are also

20 of them associated to the K3 moduli, so nH = 44. Note that these numbers satisfy the

anomaly condition nH + 29nT = nV + 273.

The E8 ×E8 theory – viewed as M theory with two boundaries – has no anomalies in the

bulk (where it is non-chiral), only on the boundaries.[26] The anomaly cancellation condition,

therefore, requires that the anomaly form be expressible as a sum of two factorized pieces,

one associated to each boundary. This structure, which persists after K3 compactification,

was analyzed by Seiberg and Witten.[83] They found, in general, that for n1 + n2 ≤ 24 and

n5 = 24 − n1 − n2 the anomaly polynomial can be written in the form

(

1

2
trR2 − A1

)(

n1 − 8

4
trR2 − n1 − 12

2
A1

)

+
(

1

2
trR2 −A2

)(

n2 − 8

4
trR2 − n2 − 12

2
A2

)

, (97)

where

Ai =
∑

α

vαitrF
2
αi. (98)

Here (n1, A1) and (n2, A2) are associated to the two boundaries. Remarkably, when n1+n2 =

24, so that nT = 1, this can be recast as a single factorized expression.

One would like to have a global view of the moduli space of N = 1 vacua in 6d. On

the face of it, it would seem that there should (at least) be a separate component for each

possible number of tensor multiplets nT ≤ 25. The reason is that a tensor multiplet contains

a tensor field B−

µν with an anti-self-dual field strength, and the only way such a field can

acquire mass is by joining up with another tensor field B+
µν , whose field strength is self-dual.

However, the only massless B+
µν belongs to the gravity supermultiplet, and it must stay put

if the supersymmetry doesn’t change. This simple argument can be evaded, but this requires

something remarkable to happen.

In the M theory picture of the E8×E8 theory, we have argued that extra tensor multiplets

correspond to 5-branes in the bulk. One could imagine the number of 5-branes changing

by emission or absorption by an end-of-the-world 9-brane.[83] Inside the 9-brane it can

presumably turn into an instanton. To see the transition, one should consider a 5-brane in

the bulk very close to one of the 9-branes. In this case a 2-brane which can be suspended

between them, is approximated by a string whose tension vanishes as the 5-brane approaches
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the 9-brane. So once again the proposed phase transition is associated with the appearance

of a string of vanishing tension.[84] This is just what one needs to evade the argument in the

preceding paragraph. When a string goes to zero tension, all its modes go to zero mass, and

this undoubtedly includes an infinite number of massive Bµν fields. This makes it possible

for the B−

µν of the tensor multiplet to pair up with a B+
µν . The idea is that B(n)

µν breaks

up into B(n)+
µν and B(n)−

µν , but then, on the other side of the transition, B(n)−
µν joins up with

B(n+1)+
µν to become massive again, leaving B(1)+

µν available to pair with B−

µν from the tensor

multiplet. In view of the physical picture of the transition in terms of 5-brane emmission and

absorption from 9-branes it seems likely that this actually happens and so there might be

a single connected moduli space of N = 1 vacua in 6d. Altogether, as required by eq. (78),

the massless tensor multiplet is replaced by 29 massless hypermultiplets.

5.4 Models Without Phase Transitions

We have seen that there are singularities, associated with the appearance of tensionless

strings, at specific value of the dilaton whenever one of the ṽα parameters is negative. Indeed

this phenomenon occurs in almost all the models we have considered. However, referring

to eq. (96), there are no negative ṽα’s for the special case n1 = n2 = 12. Thus the (12, 12)

models, in which the instantons are embedded symmetrically into the two E8 factors could

have smooth continuations from weak coupling to strong coupling.[77] Specifically, this E7 ×
E7 model lies on one branch of an interesting moduli space of models. These models, in

general, have a gauge group of the form G = GF ×GD, where GF is realized perturbatively

by “fundamental” heterotic strings and GD is realized non-perturbatively by “dual” heterotic

strings. The specific example we have here is a somewhat degenerate case, since it has

GF = E7 ×E7, and GD = 0.

Where do these two kinds of heterotic strings come from? Non-perturbatively, the vacua

we are considering correspond to M theory compactified on K3 × S1/Z2. Recall that we

found two different ways to make heterotic strings in M theory: 1) as a 2-brane suspended

between end-of-the-world 9-branes, or (equivalently) as a 2-brane wrapped on S1/Z2; 2) as

a 5-brane (of topology K3 × S1) wrapped on K3. The claim is that the first construction

gives the “fundamental” heterotic string with its associated gauge group GF , and the second

one gives the “dual” heterotic string with its associated gauge group GD.
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In this class of (12, 12) models there is an S duality that interchanges the role of the two

strings. This is reflected in the structure of the factorized anomaly polynomial, which has

X4 = trR2 −
∑

α

vαtrF 2
α (99)

X̃4 = trR2 −
∑

i

vitrF
2
i , (100)

where GF =
∏

Gα and GD =
∏

Gi. We will refer to these models as DMW models, since

they were introduced by Duff, Minasian, and Witten.[77] The parameters vα and vi take the

perturbative values (listed earlier) for Gα and Gi, respectively. Thus the GF field strengths

do not appear in X̃4 and the GD field strengths do not appear in X4. The S duality

transformation φ → −φ,H → e−2φ ∗ H interchanges the Bianchi identity and the field

equation for H . This means that it interchanges X4 and X̃4, and hence GF and GD. Thus

in one picture GF is realized perturbatively and GD is realized non-perturbatively, while

after the S duality transformation the situation is reversed. In this case the duality is called

“heterotic string – heterotic string duality.”[85] This duality is to be contrasted with the

“type IIA string – heterotic string duality” discussed earlier.

By a remarkable coincidence, a dual type I construction of the same class of models was

discovered independently by Gimon and Polchinski,[86] and posted to the hep-th archives on

the same day as the Duff, Minasian, Witten paper. (For earlier related work see ref. [87].)

The GP construction considers type I superstrings compactified on the orbifold T 4/Z2. This

orbifold, which is a singular limit of a K3, has 16 fixed points. To make a consistent model,

it is necessary to arrange for the cancellation of certain tadpoles introduced by the orientifold

projection used to define the type I theory. This requires the introduction of 32 Dirichlet

9-branes and 32 Dirichlet 5-branes. The 9-branes would give an SO(32) gauge group in 10d,

but after the compactification on T 4/Z2 to 6d it turns out that “99 open strings” can give

at most a U(16) gauge group. This can be Higgsed to various subgroups. We will refer to

the gauge group arising in this way as G9. The 32 5-branes are required to clump in groups

of four (as in subsection 2), so they give eight dynamical 5-branes.

Recall the SO(32) condition n1 + n5 = 24. This is satisfied in the GP model by n5 = 8.

The reason that the model has n1 = 16 is that each of the orbifold points contains a “hidden”

instanton, as can be demonstrated by blowing up the singularity.[88] However, this blow-

up does not give the n1 = 16, n5 = 8 model described in subsection 2. The reason for
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this is that the instantons are embedded in the SO(32) group differently than they were

in the examples discussed previously. The relevant embedding uses the maximal subgroup

SO(4n) ⊃ Sp(n) × SU(2) for the case n = 8. This accounts for the fact that an Sp(8)

gauge group can be obtained when the 5-branes coincide away from the orbifold points.

At an orbifold point it is possible to have one-half of a dynamical 5-brane (which is two

Dirichlet 5-branes). This means that there are 215 topological sectors according to which of

the orbifold points have a half-integral number of 5-branes attached. In fact, a T duality

transformation (on the T 4/Z2) interchanges the 5-branes and 9-branes, so there are also 215

topological sectors for the 9-branes, giving 230 altogether.

It turns out that there are new non-perturbative anomalies that rule out most of these

topological sectors. The issue, roughly, (see Ref. [88] for details) is that these sectors would

give states belonging to the wrong spin(32) conjugacy classes. Consistency allows for there to

be either 0, 8, or 16 half 5-branes attached to orbifold points and similarly for the 9-branes.

Thus, in view of the symmetry between them, there are altogether six topologically distinct

sectors.

Let us now consider the gauge groups that can be obtained in the GP construction. As

we have seen before, if n dynamical 5-branes coincide at a non-singular point of T 4/Z2,

the 55 open strings connecting them give a Sp(n) gauge group. If, on the other hand,

m/2 dynamical 5-branes coincide at one of the T 4/Z2 orbifold points, the 55 open strings

connecting them turn out to give a U(m) gauge group. Thus, altogether, the gauge group

arising from 55 open strings is [86]

G5 =
∏

I

U(mI) ·
∏

J

Sp(nJ)

1

2

∑

mI +
∑

nJ = 8. (101)

The largest group possible – U(16) – is realized if all of the 5-branes are at a single orbifold

point. This satisfies the non-perturbative criterion given above. The structure of G9, the

group given by 99 open strings is exactly the same, as required by T duality. Thus altogether

the gauge group of a GP model is G = G5 × G9 ⊆ U(16) × U(16). The U(1) factors are

broken by the mechanism described earlier,[88] so actually Gmax = SU(16) × SU(16).

There are various massless hyper multiplets in the spectra of 99, 59, and 55 open strings.
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Aside from U(1) terms of the form F ∧ Y6, they result in an anomaly polynomial X4 ∧ X̃4

with

X4 = trR2 − 2
∑

α

trF 2
α (102)

X̃4 = trR2 − 2
∑

i

trF 2
i , (103)

where, now, G5 =
∏

Gα and G9 =
∏

Gi. The reason that the coefficients are all vα = vi = 2

is because the groups are unitary or symplectic groups, for which v = 2 is the perturbative

value. Note that in the GP construction the entire G5 ×G9 is realized perturbatively, since

both factors are associated with weakly coupled open strings. Moreover, the interchange of

the two groups G5 ↔ G9 is achieved by a T duality transformation.

Clearly the DMW and GP models are closely related, but what is the exact correspon-

dence? In the DMW picture the two groups are carried by two kinds of heterotic strings,

related by an S duality, whereas in the GP picture the two groups are carried by two kinds of

open strings, related by a T duality. Recall that in the 10d SO(32) theory the group was also

carried by either heterotic or open strings. In that case the heterotic string is a BPS soliton

of a type I theory, and the two descriptions are S dual. In the 6d problem being considered

now, the story is similar. Both kinds of heterotic strings, F and D, are solitons (D-branes,

in fact) of the type I description.[88] One corresponds to the 10d heterotic string and the

other corresponds to the dual 10d 5-brane wrapped on the orbifold. T duality interchanges

these two solitons. It is less straightforward to look for the open strings in the heterotic

construction since they are not BPS solitons. Altogether, the DMW and GP models are U

dual, since the mapping between them turns the S duality of the DMW picture into the T

duality of the GP picture. This is an example of “duality of dualities.” These models also

have dual descriptions in terms of type IIA theory [89] and F theory,[90] but since I’ve gone

on long enough already, that will have to wait for another occasion.
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