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These notes constitute a year-long course in quantum field theory. The primary sources were:

David Tong’s Quantum Field Theory lecture notes. A clear, readable, and entertaining set of
notes, good for a first pass through first-semester quantum field theory.

Timo Weigand’s Quantum Field Theory lecture notes. Covers similar material, but from a
more careful, formal point of view; it opens with LSZ reduction and handles the canonical
quantization of gauge theories in far more detail. May be too dry for a first pass, but very
useful for clarifying points on a second pass.

David Skinner’s Advanced Quantum Field Theory lecture notes. An excellent second-semester
quantum field theory course with differential geometry and the Wilsonian point of view baked
in throughout. Also contains a thorough list of QFT books and resources.

Sidney Coleman’s Quantum Field Theory lecture notes. A classic course from the 1980s delivered
by a legendary physicist. When I was starting out, I had a very hard time understanding the
middle third, which introduces renormalization in a rather formal way. However, the first third
is a great introduction to the basics.

Peskin and Schroeder, Quantum Field Theory. The standard book with all the standard
conventions, from which many sets of lecture notes above draw inspiration. Part I is a standard,
clear introduction to the basics, though slightly sketchy when introducing interactions. Part II
covers renormalization, using the Wilsonian point of view more than other books. Part III is
exceptional, with great physical explanations and a deep exploration of practical computations
in QCD and the Standard Model at large.

Srednicki, Quantum Field Theory. A newer book with a focus on the path integral. Distinguished
by its clean, modular style and nontraditional ordering of topics by spin, which allows one to
encounter the conceptual novelties in interacting field theory, spinor representations, and gauge
symmetry separately. Has little on canonical quantization, but briefly covers topics beyond the
Standard Model. One downside is that it starts rather formal, and takes a long time to make
contact with familiar physics; the first third of the book covers just ¢ theory in six dimensions.
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e Schwartz, Quantum Field Theory and the Standard Model. A new book with a breezy, conver-
sational tone. Performs many concrete calculations with modern methods, and applications to
collider physics. Has clear and fresh explanations, but also sometimes sweeps issues under the
rug using vague arguments or ambiguous notation (according to a reviewer: “the logic can be
off-shell”). In my opinion, the main problem with this book is that it is especially sloppy in the
first 250 pages, which is exactly where students are most likely to get confused.

o Zee, Quantum Field Theory in a Nutshell. A fun book which focuses on the path integral and
includes applications to condensed matter. Covers a lot of ground extremely briefly. It might
not be literally impossible to learn quantum field theory by doing every calculation in the book
(as Zee continuously implores the reader), but it wouldn’t be an efficient route. For those with
some background already, the book is a great way to broaden knowledge.

e Weinberg, The Quantum Theory of Fields. A massive three-volume tome that addresses many
subtle points. The notation is dense and clunky, but this is done intentionally in the service of
making the logic as transparent and explicit as possible. There are many natural questions one
wants to ask when learning quantum field theory, that all the usual books seem to completely
ignore. Weinberg often has the answers; it is the book the books above refer to for the ground
truth. However, it is completely unsuitable as an introduction.

e Ryder, Quantum Field Theory. A friendly book which serves as a general introduction to particle
theory, deemphasizing cross sections but incorporating topics like monopoles, supersymmetry,
and differential geometry. It’s very readable, but has little detail on the more advanced parts
and no problems; best used as a supplement.

e Collins, Renormalization. A monograph focused on renormalization methods, which covers

many technical points skimmed over in standard books.

e Banks, Modern Quantum Field Theory. A brief summary from a string theorist’s point of view;
similar spirit to Skinner’s lecture notes. Completely useless if you don’t already know quantum
field theory (e.g. a full pass through Peskin, Srednicki, or Schwartz), but a fun and enlightening
read if you do. The chapter on renormalization is especially good.

e Weinberg, Classical Solutions in Quantum Field Theory. Contains clear and insightful discus-

sions of solitons, anomalies, and instantons.

e David Tong’s Gauge Theory lecture notes. An absolutely exceptional set of notes on special

topics in quantum field theory, with many references to original literature.

e Many insightful questions and answers on Physics.SE. I particularly recommend the answers
by Qmechanic, ACuriousMind, and Chiral Anomaly.

Starting to learn quantum field theory can be very rough, so some people say the standard books are
intentionally confusing, to make the authors look smart. Nothing could be further from the truth.
Writing a good textbook requires thousands of hours of work and years teaching with drafts of it,
which implies real devotion to students. The real issue is that these books were written for capstone
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courses, taken by theoretical particle physicists only, after four years of undergraduate courses and
two years of rigorous graduate courses. They assume you’ve already seen topics like relativistic
classical fields, representation theory, Green’s functions, and scattering theory. Nowadays, many
people want to learn quantum field theory earlier, and this mismatch makes it harder to start. Below
are some “student friendly” ways to help bridge the gap.

e David Tong’s Quantum Field Theory lecture notes. Yes, again. These notes follow the first 5
chapters of Peskin and Schroeder, but with lower density, keeping about half the detail and
adding double the explanation. This is a good balance for most new students. If you have a
strong understanding of undergraduate physics, I think this is the best place to start.

e Donoghue and Sorbo, A Prelude to Quantum Field Theory. This slim new book is adapted
from the lecture notes of an undergraduate course. It clearly explains some of the trickiest
topics for beginners, including renormalization, symmetry breaking, and the interpretation of
virtual particles, by relentlessly focusing on the simplest possible examples. The book is not
meant to be comprehensive — for instance, spinors are relegated to a few pages near the back.

But it is a fantastic source for supplemental reading.

e Greiner, Field Quantization. This crisp, clear book is used for introductory courses in Europe.
It roughly corresponds to the first 5 chapters of Peskin, but removes all handwaving, lays out
definitions and rules clearly, and includes many concrete worked examples, solved at the level
of detail a beginning student would want. It can be rather dry and tiring to read, but if you
prefer precision and have the time and energy, this might be the best choice.

e Lancaster and Blundell, Quantum Field Theory for the Gifted Amateur. A fun book which
briefly introduces a wide range of topics in both relativistic and nonrelativistic field theory.
Compared to the books above, this one goes in the opposite direction: it covers more topics
than your typical textbook, but suppresses a huge amount of detail. My main complaint with
this book is that it contains just enough to make you think you can flesh out the handwavy
arguments, but it’s missing just enough so that this would be nearly impossible for a new
student. As a result, I don’t recommend studying it closely if you're a beginner, but it’s a great
book for bedtime reading.

e Schwichtenberg, No-Nonsense Quantum Field Theory. This book again follows the first 5
chapters of Peskin and Schroeder, but it keeps about 1/4 of the detail and adds quadruple the
explanation, including reviews of basic quantum mechanics, special relativity, and Lagrangian
mechanics. In my opinion, if you plan on eventually getting a full understanding of quantum
field theory, e.g. at the level of Peskin and Schroeder, this book is not the right place to start.
It has no exercises, and it would be more efficient in the long run to back up and review
undergraduate physics directly. If you're self-studying for fun and want to read just one book
to see the basic ideas of quantum field theory, it would be better to go with:

o Zee, Quantum Field Theory, as Simply as Possible. This is an upgraded popular science book,
aimed at people who know calculus but essentially no physics. It’s packed full of charming
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historical anecdotes and vivid analogies. Like every popular book, these analogies are fragile
and not a replacement for real mathematics; the difference is that Zee points this out, and
constantly implores the reader to eventually graduate to real textbooks. This is a great option
for the casual reader who wants to get an idea of what particle physicists do.

e Klauber, Student Friendly Quantum Field Theory. A dense book where half of the first 5
chapters of Peskin and Schroeder are spelled out in extreme detail. Notation is kept completely
explicit throughout, leading to single equations that take up three whole lines in small font.
This book is praised by online reviewers, but I think keeping all details explicit actually inhibits
learning, because you’ll use a ton of mental energy to juggle boilerplate which should be left off
the page. With its obsessive focus on the mechanics of calculations, the book says very little
about the bigger picture. Worse, when it does address concepts, it makes some dubious claims,
and rants against strawman arguments from “established physicists.” Not recommended.

Further aspects of quantum field theory, such as discrete symmetries and spontaneous symmetry
breaking, are covered in the notes on the Standard Model. The most recent version is here; please

report any errors found to kzhou7@gmail.com.
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8 1. Scalar Fields

1 Scalar Fields

1.1 Classical Field Theory
We begin by reviewing the basics of classical field theory.

e We assume the field is described by an action of the form

Slo(x)] = / d'x £(6,0,0)

where L is called the Lagrangian density. The absence of explicit x-dependence of L is required
by translational invariance. The fact that S can be written in terms of a Lagrangian density
with a finite number of derivatives means that it is local; fields are only coupled to each other
at the same spacetime point.

e Under a field variation ¢ — ¢ + d¢, let the action change by §S. Then we define the functional
derivative by

68 = / dix &‘;i’:)w(x).

If we assume the variation d¢ goes to zero at infinity, typically done by fixing the field at
temporal endpoints and demanding it vanish at spatial infinity, then we can integrate by parts
neglecting boundary terms, giving

b _oL o

5¢p 06 MO(0up)
Classically, the field minimizes its action, and the equation of motion §5/d¢ = 0 is the Euler—
Lagrange equation.

e As an example, for the free real scalar field we have
1 1
L= 5(8u¢)2 - §m2¢2

from which we identify the kinetic energy density as g§2 /2 and the potential energy density as
(m%¢? + (V¢)?)/2. The equation of motion is the Klein-Gordan equation,

(8,0" +m2)p = 0.

e We will often use the Hamiltonian formulation, defining the canonical momentum and Hamil-
tonian by

7(x) = (.97/:, H=nx)p(x)—-L, H= /d3x H.
99(x)
Since we have chosen a preferred time direction, we will have to carefully check for Lorentz
invariance as we go. Note that the canonical momentum isn’t spatial momentum; it instead
measures momentum “in the field direction”. For example, for transverse waves on a horizontal

string, the canonical momentum is the vertical momentum.

e Suppose an infinitesimal transformation ¢ — ¢+d¢ modifies the Lagrangian by a total derivative,
L — L+ 0,F*", so that the action remains unchanged. Then

oL oL oL oL oL
0L =—90 ————0u(0p)=| =——0y==—= |0 ——00 | = K
£ = 565+ 35,5720 = (5 ~ gt zr) 90+ 2 (5,07%) =0
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e Therefore, we have

0S oL
ot = — o = ———0¢p — FH.
9= 50w T 5,0

When the equation of motion is satisfied, J,j* = 0, so j* is a conserved current; the spatial
integral of j¥ is the conserved charge. This is Noether’s theorem.

We now give some example applications of Noether’s theorem.

e Some symmetry transformations, such as Lorentz symmetry, can be viewed either actively or
passively. The active framework is more general and more straightforward, since it involves
only one “coordinate system”, so we focus on it.

e Sometimes, passive thinking can be useful to help write down the active transformation. For
example, if a passive transformation is x — 2/, then the equivalent active transformation maps
¢ — ¢ where ¢'(z') = ¢(x). More generally, all our active transformations will take the form
¢'(2') = F(¢(x)) by locality.

e For an infinitesimal passive translation z — = — a, we equivalently have ¢ — ¢’ where
¢'(z) = ¢(z + a) = (z) + a"0u0().
The Lagrangian changes by the total derivative a*0,L and the conserved current is
= a,(r,0"¢ — 0L L).
The four conserved currents above may be combined into the stress-energy tensor,
Th, =7to,¢ - 0L, 0,T", =0.

The conserved charges are the physical energy and momenta of the field; 7% = # is the energy
density and T is the momentum density. Note that these quantities are bilinear in the fields,
as physical observables generally are.

e It can be shown that Noether charges are tensorial. That is, if T#” is a tensor, then

QI/... _/dngOV"'

is a tensor as well, which is independent of the spatial surface used for the integral. For example,
the total energy and momentum form a four-vector. This fact is proven in the general setting
of curved spacetime, in the lecture notes on General Relativity.

e The energy-momentum tensor is ambiguous, as we could also take
e =TH + 9,1

where ' is antisymmetric in its first two indices, so © is also conserved. It is convenient to
choose T" so that © is symmetric, yielding the so-called Belinfante tensor, but this still leaves
further freedom; it is removed in general relativity, where the physical stress-energy tensor is
the one which appears in the Einstein field equation.


https://knzhou.github.io/notes/gr.pdf
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e Consider a passive Lorentz transformation z — z’ = Az. Infinitesimally we have
At =60, + wh,.

Then the Lorentz condition A¥,n°TAY_ = n*¥ reduces to w"” = —w"”, so Lorentz transforma-
tions are parametrized by antisymmetric matrices.

e As a result, we have the corresponding infinitesimal active transformation

¢'(x) = ¢(x) — W, 2" 0u(x)

with a similar transformation for £ by analogy with our results for translations, with w",z"
replacing a*. Then similarly the current is

1
j“ = _wPVTMp ¥ = iwpy(T’pr _ TMPxV)

where we used the antisymmetry of w,,. Note that this current is only conserved if T"" is
properly symmetrized.

e The six symmetries can hence be packaged into a rank three tensor, representing the relativistic
analogue of angular momentum density,

(TM)PT = gPTH — 27 THP.

For each choice of p and w, there is a conserved current. For spacelike indices we get angular
momentum, while choosing p = 0 and o = i gives “conservation of the velocity of the center
of energy”. When we work with spinor and vector fields, we’ll get more terms due to the
transformation of the fields themselves, which will correspond to spin angular momentum.

e Stepping back, a field is a map ¢ : M — T where M is the base manifold and T is the target
space. Translational symmetry can be thought of as either due to a “horizontal” change in M
(by  — x + dx) or due to a “vertical” change in T' (by ¢ — ¢ + dz ¢'). Above we've always
chosen the vertical option, and all infinitesimal changes can be written in this form. Allowing
horizontal transformations can be occasionally useful for clarity, and adds a factor dz, TH” to
the Noether current.

Note. Passive transformations need to be interpreted differently to count as symmetries. It is
trivially true that physics is invariant under a change of coordinates. The content of symmetry by
a passive transformation is that after such a transformation, the form of the equations remains the
same. For example, Maxwell’s equations look the same after a Lorentz transformation, but not after
a Galilean transformation. We won’t worry about this because we’ll only use active transformations.

Example. Consider the dilation symmetry
1
r—r =\, ¢)= ng(a:)

More generally, the power of A in the denominator is called the scaling dimension of the field. (It
cannot be intuitively interpreted passively since F' is nontrivial, unless we imagine the “rulers” we
use to measure ¢ change as well.) The dilation leaves the action

5= [ dta 500 - go*
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invariant, though a mass term would not be invariant. For an infinitesimal transformation A = 1 —e,
8¢ = ¢ + x1'0,¢.

Since the Noether current is linear in d¢, we can consider the two terms separately. The first term
straightforwardly gives m#d¢. The second term is just a translation, with x* replacing a*, so

gt = mto¢ + 2, T = (0"¢)(¢ + 2,0"¢) — "L,
Example. An internal symmetry. We consider the complex scalar field
£ =[0u0]* — m?|of?

which has a U(1) internal symmetry ¢ — e'®¢. Treating ¢ and ¢* as independent fields, the equation
of motion is

(0,0" +m?)p =0

along with its conjugate, and under the U(1) symmetry,
alA¢ =iag, alA¢* = —iag*, AL=0
which gives the conserved current
g =i[(0"¢")¢ — ¢"(0"9)].

This quantity corresponds to the particle number current; it is reminiscent of the probability current
in quantum mechanics, but j° can be positive or negative. This causes problems when interpreting
the Klein—-Gordan equation as a relativistic particle equation; as a field equation the negative sign
corresponds to antiparticles.

Note. Why can we treat ¢ and ¢* as independent? Consider the variation
AS ~ Adp+ AT 60",

Treating the variations as independent gives A = A* = 0. On the other hand, taking real and
imaginary variations gives A + A* = 0 which gives the exact same conclusion.

Another way to think about this is to write ¢ = ¢1 + i¢2 where the ¢; are real. Then the ‘extra’
degrees of freedom we get are the same as those when we use complex variations d¢;. This gives no
extra constraints because £ is analytic in the ¢;, so if £ vanishes along the real direction, it also
vanishes along the imaginary direction.

Note. Why is there no 1/2 in the complex scalar field Lagrangian? Classically, it doesn’t matter
because scaling the action has no effect. At the quantum level, fields must be canonically normalized
(for free fields, have a kinetic term with coefficient 1/2) for the fields to create conventionally
normalized particle states. We may define

_ 1t
V2

where the /2 factor ensures that ¢ is canonically normalized if the ¢; are. Then the Lagrangian in
terms of the real scalar fields ¢; has the desired factors of 1/2.

¢
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Example. Consider longitudinal vibrations of a spring, described by
g 1 2
L= 58— 500"
There are two symmetries, corresponding to shifts in M and shifts in T,
ox =a, d¢=a.

This is subtle, because both of these symmetries would appear to be translational symmetry, as
¢ is simply the displacement of a point on the spring; in this case it is essential to distinguish M
and T. The first symmetry corresponds to d¢ = a d,¢ and corresponds to translating everything;
it yields the momentum. The second symmetry heuristically to “translating the wave within the
spring” and yields the pseudomomentum | 7 dx.

Example. Electromagnetism is described by the Lagrangian
1
L= _ZFWFW’ F, =0,A, —0,A,.

The factor of —1/4 ensures that we have canonically normalized kinetic terms of the form Af /2.
However, the Ay field has no kinetic term at all, which will present some subtleties later. As
currently written, £ doesn’t depend on A, so

aﬁ o ]. 3Fa5 aﬁ_ 1 1 vy uv
0(0,4,) 28(8MA,,)F N 2(F FY)=-F

giving the equation of motion

o " =0.
We can also integrate by parts, so that the canonical momenta change, and forces dL/0A,, appear.
Of course, the equations of motion and all observable quantities remain the same. The naive stress-
energy tensor is neither symmetric or gauge invariant, and must be improved, as discussed in the
lecture notes on General Relativity.

Example. A massive vector field instead has the Lagrangian
1
4

There is still no kinetic term for Ay, but we no longer have a gauge symmetry. The Euler—Lagrange
equations are

1
L=—-F,F"+ §m2AuA“.

OuF™ +m*AY =0

and taking the divergence gives m29,A* = 0, so 9, A* = 0 automatically; in the case m? = 0 we
must impose this constraint by hand as a gauge fixing condition. Then the equation of motion
reduces to the Klein—-Gordan equation (9% + m?)A, = 0 as expected.

Note. Basic dimensional analysis. We have
[length™'] = [time™!] = [mass] = 1.
Starting from the action [S] = 0, we conclude
(L] =4, [da]=—4, [B]=1 [d=[4]=1

However, spinor fields will have dimension 3/2.
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1.2 Canonical Quantization

We begin by quantizing the real scalar field introduced previously.

e Motivated by the canonical commutators in quantum mechanics, we promote ¢ and 7w to
operators satisfying

[p(x), m(y)] = id(x —y)

with all other commutators equal to zero. Pointwise, these operators behave like z and p in
quantum mechanics, but the position/momentum is in field space, not physical space.

e Classically, the real scalar field is analogous to an infinite set of coupled harmonic oscillators,
which have independent normal modes. Thus we are motivated to Fourier transform. Now,

/dx P — (2%)36(p), /dp ePX = (27r)35(x)
which tells us that a net factor of 2w must be in the Fourier transform. We choose

To save space we drop the tilde, identifying the function by its argument. We also write

§(p) = (2m)*0(p) and §(p) = (2m)*6(p).

e Expanding the Hamiltonian, we have
1 .
H= 3 /dx (¢2 + (Vo)? +m2¢2) .

We may simplify these terms by plugging in the Fourier transform and using ¢(p) = ¢'(—p)
and 7(p) = 7 (—p), which holds because ¢(x) and 7(x) are self-adjoint, giving

H=1 / dp (1n(p) +w26(P)?) . wp = V2 + m?

2

where for an operator A, |A%2| = ATA. This describes decoupled harmonic oscillators with
frequency wy.

e Now, for the ordinary harmonic oscillator, H = (1/2)(p? + w?¢?), we define

By analogy, here we define

and find, for instance, that

The calculations are a little more complicated because both p and —p terms are present.
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e After working through the algebra, we find

¢(X) = / j%(apeipx + CLTpe_ip.x)’ 7-(()() = /dp (—’L) \/?(apeip.x _ aLe_ip'x).

We'll use this form of the field operators almost exclusively.

e Some calculation gives the commutation relations
lap, al] = §(p — q)

with all other commutators equal to zero. Applying these commutation relations in a slightly
long but straightforward calculation gives

1
H= /dpwpaLap t3 /dpwpé(O)
with a large divergent counterterm.

Note. We find a divergent constant for two reasons. The §(0) term is an IR divergence due to
the infinite size of our space. Generally, IR divergences signal that we are asking an unphysical
question. The integral of wy also diverges in the UV because the theory must break down at some
upper scale. For example, if we take the continuum limit of a lattice with spacing a, it should break
down at energy A ~ 1/a. We will be able to perform calculations at E < A using the machinery of
regularization and renormalization.

As an explicit example, we can instead quantize the Lagrangian

1 1
L= 5(8;@)2 - §m2¢2 -V

where 1} is a counterterm, and regularize by introducing a cutoff A. We choose Vj(A) so that the
vacuum energy density is a finite constant for every choice of A, then take the limit A — oo without
issue. The price is that our theory now no longer predicts the value of the vacuum energy density.
Generically, we would expect it to be some arbitrary number between zero and Mj‘;, (the cutoff
for quantum gravity), and to lie somewhere in the middle of the range. But we instead observe
a vacuum energy density about 10'?? times smaller than the maximum value. This is the “old
fashioned” way to explain the cosmological constant problem.

As we’ll see later, the reasoning here is not quite correct, but in the modern Wilsonian framework
the problem remains. Furthermore, we cannot simply ignore the vacuum energy entirely, defining
it to always be zero, because we can measure differences in it via the Casimir effect.

We now investigate the Hilbert space of our theory.

e In accordance with the remark above, we set the vacuum energy to zero. Another way to view
the vacuum energy is to think of it as an artifact of our quantization procedure; the map from
H(q,p) to H (¢,p) is not unique because ¢ and p commute but ¢ and p don’t. We may choose
to map H(a,a') to H (a,a') so that all the a’s are to the right, giving zero vacuum energy. The
resulting Hamiltonian is said to be normal ordered.
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e The spatial momentum is
i ; i i 1 i
P = /dxcé(X)a P(x) = /dpp ahap + 5 /dpp 4(0)

where the constant is zero by “symmetry”. (This can also be justified more carefully by
regulating the delta function in any way.) Thus in general we define the four-momentum

Pt = /dpp‘“a;r)ap, pﬂ = (Wp>p)

e The four-momentum operator satisfies the commutation relations
[P“,a;_.f,] :p“aL, [P, ap] = —ptap.

Since P* is self-adjoint, it has real eigenvalues. The commutation relations imply that a;[, raises
the P* eigenvalue by p*.

e Finally, we note that H = P is nonnegative, so we cannot apply aq indefinitely. In particular,
there must exist a state satisfying
aql0) =0

for all q. We postulate this state is unique and call it the vacuum state. By direct computation,
it has zero four-momentum, P*|0) = 0.

e The state aI,]O) has the correct relativistic dispersion relation for a particle of mass m, so we
interpret the state as containing one particle. Similarly, acting with n creation operators gives
an n-particle state. We can show that acting with only creation operators can’t take us back
to the vacuum. Thus, we have pinned down the structure of the Hilbert space using only the
commutation relations and the postulated vacuum state.

o As we’ll see later, the fact that the creation operators commute means that the particles obey
Bose statistics. The spin-statistics theorem states that all scalar particles (in a four-dimensional
relativistic field theory) must obey Bose statistics.

e We can directly promote all the quantities we found in the previous section (e.g. the stress-
energy tensor and the six Lorentz currents) to operators. For example, we can show that the
angular momentum of the one-particle state with zero momentum is zero, which shows that
our particles have zero spin.

We now explicitly define the one-particle states with relativistic normalization.
e We choose to normalize the one-particle states as
p) = \/2Ea}|0)

and more generally multiply for |/2E, for each creation operator aL for a multiparticle state.
Applying the commutation relations gives

(alp) = 2E,)#(p — q)

which implies that the identity on the one-particle Hilbert space is

dp
1one—particle :/2E’p><p’
p
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e The reason we prefer this form is the appearance of the Lorentz invariant measure. Note that
dp

apd(p? — m?)O(°) = / N

/ p#(p )0 (p") 2F,

Since the left-hand side is Lorentz invariant, dp/2E,, is as well.

e Similarly, (2E,)d(p — q) is Lorentz-invariant, since it gives one when integrated against the
Lorentz invariant measure. Thus the normalization of the one-particle states is Lorentz invariant;
when a Lorentz transformation A is represented as a unitary operator U(A), it will satisfy
U(A)|p) = |Ap), where Ap is defined as the spatial part of A(E,, p).

e Finally, we define the states |x) = ¢(x)|0). Using the commutation relations gives
(plx) = 7P

which is similar to how momentum and position eigenstates are related in quantum mechanics.
Then |x) represents a particle localized near x.

e There are no perfectly localized states in relativistic quantum field theory. Using the definition
above, (y|x) is not a delta function, but rather has range on the order of the Compton wavelength
1/m, which stems from the Lorentz invariant measure factor of 1/2E,,. Alternatively, one could
omit this factor, yielding perfectly localized “Newton—Wigner” states. However, these states
don’t transform nicely under Lorentz transformations, and in particular, they do not remain
localized states in other frames.

e Note that the quantum field has a factor of 1/,/2FE, rather than the Lorentz invariant 1/2E,,.
This is because the creation operators have to be multiplied by /2E, to give relativistically
normalized states, i.e. the expression is really (dp/2E,)\/2E, al.

Example. The complex scalar field. We take
L= (0,9)1(0"9) - m*¢'o

and treat ¢ and ¢! as independent fields. The conjugate momenta of ¢ and ¢ are 7 = ¢! and
7t = ¢ giving Hamiltonian
H=nn+Vol-Vo+m?¢e.

We perform canonical quantization by demanding
[b(x), w(y)] = [¢"(x), 7 ()] = i6(x —y)

with other commutators zero. As a result, the mode expansion is

d . ]
(,ZS(X) — / \/;)fp(apezp-x + bi)e—lp.X)

with a conjugate expression for ¢!, and 7 determined by 7 = (j)T. The quickest way to derive this
expression is to write ¢ = (¢1 + i2)/+/2 and simply add the real field results together, identifying
ap and b}; as the coefficients of the eP* and e "P* terms. We can also do this for 7, but note that
7 = (7 — im)/v/2. Finally, this method gives the commutators

[ap, af] = [bp, 0] = #(p — q)
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with all other commutators vanishing. Note that ¢ is now no longer Hermitian and therefore not
observable; this is acceptable as we generally observe only field bilinears. Constructing the Hilbert
space as before gives two independent types of particles. The momentum has mode expansion

Pt = /dpp“(ai,ap + prbp)
so that both particles have mass m. Finally, the Noether charge under the U(1) symmetry is
Q=i [ dx(r¢—¢'1") = /dp (prbI) - aiﬂp)
where we implicitly normal ordered ). Then the two types of particles carry opposite Noether
charge. When we study QED, we will identify this charge with the electric charge.

Example. Now suppose we have two complex scalar fields ¢, of equal mass. Then we have a U(2)
symmetry, with the generators of the SU(2) part being

Q' = i/dx (TaO o Pb — PaTap™)-

These generators satisfy the su(2) commutation relations; in the case of the proton and neutron, or
up and down quark, they generate isospin transformations.
1.3 Heisenberg Picture

To restore some of the Lorentz invariance, we switch to Heisenberg picture.

e Recall that in Heisenberg picture,
AH (1) = etHt AS o—iH"t
where we have assumed all Schrodinger operators are time-independent. In particular, the
Hamiltonian satisfies H® = H¥, and the time evolution is

d .
AT () = i[H, AT (1),

e Switching to Heisenberg picture preserves relations between operators as long as all operators
are evaluated at the same time. Then the commutators become equal time commutators,

laf (t), p] (t)] = i6y;.

e For fields, we will drop the indices. A Schrodinger field will have argument x, while a Heisenberg
field will have argument = = (¢,x). The equal time commutators are

[0(t, %), (L, y)] = id(x —y), [6(t,%),6(t,y)] = [(t,x),7(t,y)] = 0.

e The Heisenberg equation of motion for the fields is

o(t,x) = i[H, o(t,x)].
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Now, H doesn’t evolve in time, so we choose to evaluate it at time ¢, where

H(t,%) = gn2(t,%) + 5 (V6(1,%)) + sm*o(t,x)?

so we can apply the equal time commutation relations. We thus find

o(t,x) =n(t,x), @(t,x)= (V2 — m2)q§(t,x)

which correspond to the classical Hamilton’s equations. The first equation gives an easy way of
recovering the mode expansion for . The two together show the field ¢ obeys the Klein-Gordon
equation.

e The Heisenberg equations also ‘covariantize’, i.e. we can show that
d"p(x) = i[P", ¢(2)], @(a+a) = Tg(a)e .

e Finally, we compute the mode expansion in Heisenberg picture; we choose to keep the creation
and annihilation operators the same. We get factors like e tape_iH t in the field expansion; to
handle them note that

Hap =ap(H —wp), f(H)ap =apf(H —wp).

Commuting the creation and annihilation operators in this way gives

d 4 .
6(z) = | —2=(ape™" + ahe™).
\/ 2wy
Note that pz stands for p*z,,, with an apparent sign flip because of the (+ — ——) metric.
e The inverse expression is
{ ian S
ap = dx €' 9y p(x)
2wp

=
where f 0 g = f0g — gOf and the time in ¢(x) is arbitrary.
Finally, we return to the question of causality.

e Using the Heisenberg picture, we can think of measurements as taking place at different times;
conceptually O (t) represents a measurement of O at time .

e To understand this, suppose that O1(t1) and Oz(t2) commute. Then they have a common
eigenbasis |¢;) where the |1);) are nonevolving Heisenberg states. In Schrodinger picture,

|1i(t;)) is an eigenvector of O;.
Thus, if O is measured at t1, there is no statistical effect on a measurement of Oy at time to.
e Therefore, we say operators O (z) and Oz(y) on spacetime are local if
[01(x), O2(y)] = 0 when (z — y)? < 0.

This enforces causality: a measurement of O; cannot affect O superluminally.
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e Since the elementary observables are the fields ¢, we compute

Az —y) = [o(2), ¢(y)] = / I (-ivte=i) _ e=inly—0))

2wy,

Now, the integration measure and integrand are both Lorentz invariant, so if the separation is
spacelike we can switch to a frame where 20 = 0, giving factor (¢ *=¥) — ¢=P(x=¥)) which
integrates to zero as desired.

e More generally, the same calculation goes through for commutators of d,,¢, and all local operators
O(x) can be built out of ¢(x) and J,¢(z). Thus quantum fields maintain causality.

e For interacting fields, we cannot use the free mode expansion; the commutator turns out to be
an operator rather than a number. Working casually, we could show it also vanishes at spacelike
separation, but formally, we would take this as one of our axioms.

Next, we consider propagators and Green’s functions.
e Define |z) = ¢ (x)|0). To interpret |x), switch back to Schrodinger picture for
[z) = U(=)o(x)U(#)[0) = U(-t)o(x)|0) = U(-t)|x).

Since |x) is roughly a state with a particle at x, |z) is a state that has a particle at x after
evolution for a time ¢, so |z) has a particle at x. This particle exists for all times, both before
and after ¢, but is only well-localized at time t.

e Therefore, we define the propagator

Dia —y) = Ole()owo) = [ 5P erte

2wy,
which describes the amplitude for a particle to go from y to x.

e The commutator is D(x — y) — D(y — x). While the propagator is nonzero for spacelike
separations, the commutator is, because the amplitudes for propagation from x to y and y to
x cancel out! Note the interplay between the field intuition for ¢ (in the commutator) and the
particle intuition for ¢ (in the propagator).

e When we generalize this to the complex scalar field, we see that the amplitude for a particle
to go from x to y is canceled by the amplitude for an antiparticle to go from y to z. (For the
real scalar field, the particles are their own antiparticles.) This is generally the reason that a
multi-particle picture is necessary to preserve causality in relativistic quantum mechanics.

e We define the Feynman propagator
Dp(x —y) = (0[T¢(x)d(y)|0)

where time ordering means to order fields “later on left”, so that earlier fields are applied to
the state first. Then

Dp(z —y) =0(z° —y")D(z —y) + 0(° — 2°)D(y — )

= / dipeip-(xfy) (9(350 — y0)ein (@4 4 g(y0 — xO)eiwp(wO*y°)> .
2wy,
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e One can show that this is equal to the contour integral

p

—m?2 + e

where the p® integral is along the real axis. The two step function cases come from how we
close the contour, which affects which pole we pick up. To remember the sign, note that the ie
shifts the poles so we can Wick rotate to a contour that goes up the imaginary axis.

e Working in Fourier space makes the Feynman propagator easy to differentiate. We find
(02 +m2)Dp(z — y) = —id(z — y)

so it is a Green’s function for the Klein—Gordan equation. More generally, any of the four
possible pole prescriptions gives an independent Green’s function, including the retarded and
advanced Green’s functions.

e There are some inconsistencies in terminology here. In quantum mechanics, a propagator obeys
the equations of motion, while Green’s functions obey it up to a delta function driving. Thus a
propagator is used to propagate a solution for a homogeneous equation forward in time, while
a Green’s function is used to solve an inhomogeneous equation.

e However, in quantum field theory, we use the term “propagator” to denote an amplitude for a
particle to propagate from one point to another. Thus both D and Dpg are called propagators,
though only D is a propagator in the quantum mechanical sense; D is a Green’s function.

e The retarded propagator propagates modes to the future, while the Feynman propagator prop-
agates positive frequency modes forward in time and negative frequency modes backward in
the time. The Feynman propagator is not often used in classical field theory, since it is not
causal, and not even real, but plays an important role in perturbative quantum field theory,
which centers around time-ordered correlation functions.

e The very rough intuition for the Feynman propagator is that after quantization, an excitation
of a negative frequency mode going backwards in time corresponds to an antiparticle going
forwards in time. So the Feynman propagator propagates both particles and antiparticles
forwards in time.

Note. The classical complex scalar field has both positive and negative frequency modes. At the
classical level, this isn’t a problem, as both modes have positive energy. However, in the quantum
theory, we run into trouble because of the relation £ = hw, which ties frequency to energy. If the
field is regarded as a single-particle wavefunction, we find arbitrarily negative energy levels, which
plagued early attempts at relativistic quantum mechanics.

This problem is avoided in quantum field theory because each mode is associated not with
an eigenstate of the Hamiltonian, as in relativistic quantum particle mechanics, but with a set
of creation and annihilation operators. For instance, for the complex scalar field, we associate
a positive frequency mode with an annihilation operator but a negative frequency mode with a
creation operator, in the mode expansion

ape” P 4 bLeim).

_ [ _dp
p(x) = @<
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This is forced by canonical quantization. As a result, both aI, and bL increase the energy, avoiding
the negative energy levels.

In all cases, the quantization of a relativistic field yields pairs of positive and negative frequency
modes. These both must appear in the mode expansion; if one is associated with a creation operator,
the other must be associated with an annihilation operator. If there is an internal symmetry under
which the field has a definite charge, this implies that the positive and negative frequency modes
are associated with particles with opposite charges. This is how relativistic quantum field theory
predicts the existence of antimatter.

Note. Keeping track of a tricky sign. In Heisenberg picture, we have al ~ ¢! because a' increases
the energy, i.e. it makes a state behave like e=*, but in Heisenberg picture af(t) makes a particle
with no phase at time ¢, which means we need to run time backwards to t = 0 to see how it affects
the Heisenberg state, flipping the sign. Since we take a! to be time-independent in Heisenberg
twt

picture, the e** is absorbed into the exponent. Thus the coefficient of a positive frequency solution

(i.e. one proportional to e~™?) is an annihilation operator. For the same reason, if the field carries

a quantum number @), the action of the field on states generally lowers (). This minus sign will be
mostly invisible in the discussion below, but will occasionally pop up to cause confusion.

1.4 Quantum Mechanics

Finally, we connect our results above to ‘ordinary’ quantum mechanics. We begin with describing
attempts at nonrelativistic quantum mechanics.

e The Schrodinger equation has a conserved current

p =1, (VY — VY.

B 7
4= 2m

If ¢ is interpreted as a particle wavefunction, then it implies probability is conserved. In
particular, a Schrodinger equation for particles can’t account for particle creation or annihilation.

e On the other hand, if v is interpreted as a field, this conserved current comes from the U(1)
symmetry of the first-order Schrodinger Lagrangian

. 1
L= i — SV Ve = V(@)

In the early days, this conceptual distinction was not clearly made. Note that here the momen-
tum conjugate to v is simply 79*, so only 1) is needed as an initial condition.

e Historically, Schrodinger first invented the Klein—Gordan equation, with conserved current
j* =1i(¢* 0" — 0" ¢").

The issue is that if ¢ is interpreted as a wavefunction, then the probability density j° is not
positive definite. Moreover, there are negative energy states.

e In the context of the Klein—Gordan field theory, these problems are both fixed. There, j# is
interpreted as a charge current, not a probability current. Moreover, negative energy states are
avoided by the conceptual replacement of states by modes, as mentioned above.
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e Dirac attempted to solve these problems by constructing an equation that was first order in
time, giving the Dirac equation. The conserved current

gt =yt

has positive definite density j° = ). There remain negative energy solutions, which Dirac
resolved by postulating that all negative energy states were already occupied, by a “Dirac sea”.

e Despite these odd features, the Dirac equation was extremely successful. For instance, it
automatically accounted for all fine structure corrections, as well as the g-factor of the electron,
which is determined by minimal coupling rather than put in by hand. We further describe these
successes in the notes on Undergraduate Physics.

Note. Some further discussion of the Dirac sea. In the years following the Dirac equation, inter-
preting the negative energy solutions was a major issue. One obvious fix is to just dismiss them
as unphysical, but this was unsuitable for several reasons. First, the negative energy subspaces
for free electrons and, e.g. the electron in hydrogen were different, so the prescription was not
well-defined to begin with. Second, the positive energy states did not form a complete set, and if
one does not include the negative energy states as intermediate states in perturbation theory, one
gets the wrong results. And finally, the Zitterbewegung caused by interference between positive
and negative energy states was necessary to produce the Darwin term, which contributed to the
experimentally observed fine structure.

Dirac solved all of these problems at once by postulating the Dirac sea, interpreting positrons
as holes in the Dirac sea. It’s worth seeing how this is resolved within quantum field theory; it is
different from the resolution we saw earlier, which works for bosonic fields. For fermionic fields, the
modes are described by fermionic quantum harmonic oscillators, obeying {a,a’} = 1. However, the
occupied and unoccupied states are completely symmetric: one can just as easily define b = af and
bt = a. Hence in quantum field theory, we simply define particles in terms of the excitations about
the lowest-energy state, which is defined to be the vacuum. So by fiat, the vacuum has no particles
in it, and is energetically stable. The problematic negative energy modes of the Dirac equation
are reinterpreted as negative frequency modes of the Dirac field, for which we need to perform the
swap above. (This idea does not work for bosonic fields, as exchanging creation and annihilation
operators would yield the wrong commutation relation, [a, aT] = —1. If one insisted on interpreting
this as a set of creation and annihilation operators, then a would create states with negative norm,
leading right back to the negative probabilities fixed by passing to quantum field theory.)

In other words, in the Dirac equation we postulate the unwanted states are already occupied,
while in the Dirac field, we define the notion of “occupation” so that in the lowest energy state,
nothing is occupied. This might look like mathematical slight of hand. Indeed, in spirit the two are
just the same core idea described with different words. For example, one problem with the Dirac
sea is the resulting infinite charge density, which was thought to cancel out an infinite “bare” charge
of empty space. In quantum field theory, the exact same problem appears, because the naive charge
operator diverges when evaluated on the vacuum state. We remove this infinity by normal ordering,
which is essentially just subtracting out the contribution we don’t want. As another example, the
Dirac sea also provides an infinite mass density, which produces unwanted gravity. The exact same
problem appears in quantum field theory, where we must tune the cosmological constant to cancel
such contributions.

However, the Dirac field has legitimate conceptual advantages over the Dirac sea, especially in
situations where particles are created or destroyed. For example, one might be led by the Dirac sea
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to think that electron number must be conserved, though it isn’t in weak processes. (One might
think that beta decay, observed by the time of the Dirac sea, should have made the idea obviously
wrong. But at this time the neutron was not known: nuclei were thought to be made of protons and
“nuclear electrons”, so beta decay did conserve electron number.) It is also puzzling how the Dirac
sea is formed in the first place, since one needs just enough electrons to fill the sea and no more; it
seems the Dirac sea breaks the symmetry between matter and antimatter. But this problem lives
on in field theory, as the problem of baryogenesis.

Next, we recover the Schrodinger equation from quantum field theory.

e In order to revert to ‘ordinary’ quantum mechanics described by a Schrodinger equation, we
must take the nonrelativistic limit to avoid particle creation. We also need a conserved current
which will eventually serve as the probability current, which means the simplest option of a
real scalar field doesn’t work; we instead choose a complex scalar field.

e Taking the Klein-Gordan equation (9% + m?)¢ = 0 and setting ¢ = e~y /\/2m yields

oo XK=V

X="om

Noting that ¥/m < x, since the field is nonrelativistic, we recover the Schrodinger equation.
Similarly, we can go from the Klein—Gordan Lagrangian to the Schrodinger Lagrangian,

L=1ix X—%VX -Vx.

Note that the current j# reduces to the nonrelativistic expressions for p and j, where the factor
of v/2m converts between relativistic and nonrelativistic normalization. The reason p and j
look superficially different is that ¢ and y are related by only a time-varying phase; as usual
the deeper, relativistic theory “makes more sense”, uniting the two expressions.

e However, we are not done, because x is a classical field, not a quantum wavefunction. To put it
another way, the position remains a parameter, rather than an operator. However, we do have
a chance of recovering quantum mechanics if we quantize this field.

e Turning the crank of canonical quantization, we have

T=ix", M= _—Vx"Vx, X)X ()] = 6(x —y).

Unlike the usual canonical commutation relations, these can be solved by

x(x) = / dp ape™,  [ap,al] = §(p — q).

Hence antiparticles do not appear in the nonrelativistic limit, because the field equation is not
relativistic. Of course one could include them, but the formalism does not require them.

e The key structural difference is the following: the Lagrangian must be second order in space
derivatives to be a scalar (or, upon integrating by parts, quadratic in first spatial derivatives).
Lorentz invariance requires the Lagrangian to be second order in time, while without it the
Lagrangian may be first order in time, giving the simpler commutation relations above.
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e At this point, we have the so-called Schrodinger field theory. This formalism is useful in many-
body problems in atomic, nuclear, and condensed matter physics, even in situations where the
particle number is fixed, because it is second quantized and hence automatically accounts for
the symmetrization postulate.

e To describe fermions, we could instead quantize using the canonical anticommutation relations,
as we will for the Dirac field below. We can quantize either way, as statistics is only determined
by spin within relativistic field theory.

e The U(1) symmetry conserves the number of particles. To recover the Schrodinger equation,
we must define position and momentum operators. As before, we must have

2
p
H= /dp %a;r)ap, P = /dppanap
which are simply the usual definitions in nonrelativistic quantum field theory.

e We focus on single particle states, defining |x) = xf(x)|0) and

X = [ e e, XP) = xl)

where the latter property is just as expected for a position operator. Note that this step doesn’t
work in the relativistic case, because the analogues of the |x) states are not perfectly localized.

e Define a wavefunction by
v) = [ dxvole)

Then it is straightforward to verify that

xiy) = [aexul. Pl = [ ax(-ivo)), mwaﬁmQ;y%)m

Hence, by working with the wavefunctions directly, the canonical commutation relations are
satisfied and the wavefunction obeys the Schrodinger equation.

e A similar procedure works for the Dirac equation. We now can use either commutation relations
or anticommutation relations to quantize the field; choosing the latter, we preserve the commu-
tation relation between X and P because these operators are bilinear in the fields. However,
returning from the Dirac field to the Dirac equation for a single particle is a bit more subtle,
because of the issues of interpreting negative energy solutions. (add more detail)

e Note that the equation satisfied by the wavefunction of a single particle is the same as the
equation satisfied by the field as a whole! This was responsible for much confusion in the early
days of quantum mechanics, where it was thought that field theory resulted from quantizing the
wavefunction itself. That was a reasonable idea, since in those days it was also unclear how the
wavefunction was to be interpreted. Now we know that neither single particle wavefunctions
or classical fields come first; they both emerge from quantum fields, and this common origin is
the reason for their similarity.
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2 Interacting Scalar Fields

2.1 Spectral Representation

We now carefully treat interacting scalar fields.
e We consider an interacting Lagrangian
L=Lo+ Lint;, Lint = —Vint
where Vi is a power series in ¢ starting at cubic order.

e We still have Poincare symmetry, i.e. we still have unitary operators realizing these symmetries.
Thus we can still talk, for example, about the momentum of a state. We also still have the
equal-time commutation relations.

e We assume the full Hamiltonian has a unique vacuum |2) with zero four-momentum,
PHQ) =0.
Hence the vacuum is translation invariant, e’**|Q) = Q).

e Since we still have translation invariance, the Hamiltonian and 3-momentum commute, so we
can choose a basis of states with definite four-momentum,

H’/\p> = Ep()‘ﬂ)‘p)’ P‘/\p> = P‘)‘p>-

One can show that, by applying a Lorentz boost, we get a family of states |\p) for every A,
whose energies are E, = (p? + m?\)l/Q.

e The index A labels irreps of the Poincare group in the interacting Hilbert space. In a weakly
interacting theory, the sum includes “dressed” versions of the particles in the free theory, bound
states of those particles, and unbound multiparticle states. In the latter case, A has a continuum
of values, as necessary to specify the relative motion of the particles.

e In a strongly interacting theory, there is no sharp distinction between dressed particles and bound
states. The only meaningful distinction we can make is between multiparticle states and others,
because the continuous values of A for multiparticle states will have analytic consequences.

e Since the equation of motion is now nonlinear, the mode decomposition of ¢ is no longer useful.
Even at the classical level, such a decomposition doesn’t work because the interaction mixes the
modes. At the quantum level, we could formally expand ¢(z) in terms of ladder operators as in
the free field case, but as we’ll shortly see, these operators wouldn’t have a simple interpretation
in terms of creating and annihilating particles.

e The completeness relation, with relativistic normalization, is

dp
1= m><m+;/wrxp>up|.
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e Translation operators and Lorentz boost act on the field as

o(z) = e Fo(0)e ™", d(x) = U H(A)p(2")U(A)

where U(A) carries out the Lorentz transformation 2’ = Az. To check the signs, we can take
matrix elements on both sides and act on the states instead.

With this setup, we now compute the Feynman propagator.

o Consider (Q|¢p(x)|€2). Using the translational invariance of the vacuum, we find that (Q|¢(z)|Q2) =
(Q2|p(0)|€2) for all z. We can set the constant to zero by shifting the field, as this preserves the
canonical commutators.

e Therefore, inserting the identity in a correlation function,

oo =3 [ 70
where the vacuum term vanishes. Using the fact that the [Ap) have definite momentum,

(QUd(2)Ap) = (QUD(0)[Ap)e™ .

Q\¢ (@)[Ap) (Ap|6(y)[€2)

Next, applying a Lorentz boost such that |Ap) = U~1|\g),
(Q]¢(0)|Ap) = (AU U S0)U U Ap)e™P* = (2]¢(0)|Ao)
where we used the Lorentz invariance of the zero vector and the vacuum.

e Putting these results together, we have

(Qfo(x)(y)[12) = _’p(’”_y)HQW(O)Mo)IQ-

Doing the exact same manipulations for the time ordered correlator gives

(@I 6919 = 3 /dp e~ (]6(0) Ao} .

m + i€
e [t is useful to parametrize this result by mass,
QUT@6)I) = [ A ) Do~ b1
where

)
D%(x_vaz):/dp 2

T_’_Ke*ip(x*y), p(MQ) — Z!X(M o m)\)|<Q\¢( )|>\0>’2.

A

The quantity p(M?) is called the spectral function, and by its definition, it is real and positive.
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e Typically the spectral function will have poles for one-particle states and bound states. Mul-
tiparticle states have continuously “smeared out” poles, i.e. branch cuts. Separating out the
one-particle contribution,

p(M?) = §(M? —m?)Z + higher, Z = [(|¢(0)[10)|?

so that

ip(z—y) __Z /Oo 2 o b
/dxe QTSN = ot [ AP o)

The quantity Z is called the wavefunction renormalization, where Z = 1 when the theory is
free. We see that in an interacting theory, ¢(x) creates not only a one-particle state, but a
superposition of many kinds of states. However, as long as Z # 0, it has at least some amplitude
to create the single-particle states that we need to calculate scattering amplitudes.

e Note that this derivation was very general, and never required an expansion into creation and
annihilation operators; it works for any field operator, e.g. also for composite operators. However,
one can show that for bare fields (i.e. fields that satisfy [¢po(t,x), Orpo(t,y)] = id0(x —y)), the
spectral function has unit integral, and hence Z < 1.

e There is also a similar spectral representation for the Dirac field,

iZ3 ), u®(p)u’(p)
p2 —m?2 +ie

/ da ePTI(QITY () (y)|2) = +.y VZau'(p) = (Q(0)|p, ).

To derive it, we also need to keep track of how the Lorentz boosts above affect the field.

o Interactions could also render one-particle states unstable, e.g. by allowing them to decay to
lighter particles. Such states are not energy eigenstates at all. They instead appear in the
Fourier transform of the two-point function as poles off the real axis, as we’ll discuss later.
Another possible subtlety is that in a theory with massless particles, the branch cut extends
down to M? = 0.

Note. A cheap RG analysis. Consider interactions of the form \,¢". Since [£] =4 and [¢] = 1,
we have [A\,] =4 —n. We consider a few examples.

e For the cubic interaction, [A3] = 1, so the effect of the interaction is described by the dimen-
sionless parameter \3/E, where E is the energy scale of the process. (This is clearest in the
path integral picture, where \3/E estimates the action contribution.) Then the interaction is
strong at low energies, so it is called relevant.

e For the quartic interaction, [A4] = 0, and we say it is marginal.

e For the quintic interaction, [As] = —1, so its effect is described by AsE, which is weak at low
energies, so it is called irrelevant.

e Now suppose we have a fundamental theory defined at some high scale A. Then the dimensionless
coupling constant for ¢°> would be g5 = A)\5, where by naturalness we expect g5 = O(1). Then
the effect of the interaction at scale E is g5(E/A).
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e If A is taken to be the GUT scale or the Planck scale, then E//A is extremely small, so it is an
excellent approximation to ignore irrelevant terms.

e But there is a subtlety: consider the dimension 2 mass term. If the above argument worked, then
we would expect it to scale as A%2¢?, which implies a mass of order A. But clearly, there exist
plenty of particles with masses well below the Planck scale. This violation of naive dimensional
analysis can result from approximate symmetries, tuning, or nontrivial dynamics.

Note that this analysis depends on the spatial dimension. In six dimensions, [£] = 6, [¢] = 2, and
it is A¢ that is marginal.

2.2 The LSZ Reduction Formula

We now carefully define scattering amplitudes in terms of “in” and “out” states.

e We are still working in Heisenberg picture, so all states are “fixed in time”. Note that a better
way of thinking about Heisenberg picture is that all the states “extend through time”, so they
may be described by how they look at any given time.

e An in state |i,in) is a state which looks like several widely separated, incoming particles as
t — —oo. Similarly, an out state |f,out) is a state which has widely separated, outgoing
particles as t — oo. Here, ¢ and f are shorthand for a specification like “two particles, of
momenta p* and ¢"”. The asymptotic vacua are |vac,in) and |vac,out).

e The S matrix maps out states to in states,
|i,in) = S|i, out).
In most reasonable physical theories, we have
lvac, in) = |vac, out) = |Q), S|Q) =|Q), ST=5"1
We are interested in calculating the transition amplitudes
(f,out|i,in) = (f,in|S|i,in).

Hence these transition amplitudes are also called S-matrix elements. Note that all of these
states live in the full interacting Hilbert space.

e To formally construct the in states, we define an “in field” ¢, with the following properties.

— The in field is a free Klein-Gordan field ¢(z) which creates in states from |vac, in) as
t — —o0. Hence we have the mode expansion

—ipx T ipT
ain,pe” P+ ag, LePT).

_ [ _ap
Pin(z) = \/ij(

— Since the in states have mass m, where m is the single-particle mass in the full theory, the
in field must have mass m.
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— The in field approaches the interacting field as t — —oo in the sense that

(alo(x)|8) = VZ{alm()|B)

for all states as t — —oo. The constant v/Z is determined by setting |8) = |Q) and
|a) = |1p) and using the spectral form.

e The out field ¢,y has analogous properties as ¢ — co. The two are related by
bin(x) = Sous(w)S .
We now apply our setup to derive the LSZ reduction formula.
e For concreteness, consider the S-matrix element (p1, p2, out|qi, g2,in). We have

(p1,p2,0utlqr, g2, in) = \/2wq, <P1,P2,Out|a§n,q1 |g2,1n)

1 PP .
- Z/dxe qumao <p17p27OUt|¢in($)|QZ71n>’x0:t

1 R
= lim Zl/Q,/dxe’q”ao (p1, p2, out|p(x)|ge, in)

t——o0 2
.|.
in

t — —oo to match with the interacting field.

where we used the expression for a. in terms of ¢y, which holds for arbitrary ¢, then took

e The next step is to act with ¢(z) on the left to get rid of one of the out particles. This is only
possible if we have an out field, which requires a limit ¢ — 400, so we use

li t)y = 1li t)— [ dtoof(t).
Jim f(6) = lim f(1) / 0/ (t)
The first term will give us terms like (py, out|ge,in)d(p1 — q1) with another term with p; and
po swapped. These represent “disconnected” contributions to the S-matrix, i.e. one where the
first particle doesn’t scatter at all. We don’t care about them here because it can be recursively
computed from S-matrix elements with fewer particles.

e The connected term yields an integral over spacetime, and directly carrying out the derivatives
and integrating by parts yields

iZl/Q/dm e~ T (T, 4 m2)(p1, pa, out|B(z1)|ga, int).

There is a sticky point here, which is that the integration by parts is not legal, because e %1%
doesn’t go to zero at infinity. This occurs because momentum eigenstates unphysically cover all
of space. To define our in and our states properly, we should have constructed finite wavepackets
and worked with them from the start, but we sweep this under the rug to avoid the complication.

e Next, we would like to repeat this process for all of the other incoming and outgoing particles.
The only snag is that when we flip t - —o0 to t — +o00 with the identity above, the new fields
may be in the “wrong place” and can’t be commuted past the others. The fix is to replace the
correlation functions with time-ordered correlation functions, which automatically put the in
and out fields on the right side.
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e Carrying out this procedure and generalizing to n + r particles,

(P1y...,Dn,0ut|q,...,q,in) = Z disconnected

+(iZ1/2)"+r/dy1...d:c1...H v (O, +m?) [ [ e (Qay +m* QT o (1) - . $z1) - . [Q).
k l

This is the LSZ reduction formula, relating S-matrix elements to time ordered correlation
functions. Note that all momenta here are on-shell, since they are the momenta of asymptotic
particles, so we can’t treat the scattering of unstable particles.

e In momentum space, the connected part becomes

@z 2 [(=pk +m?) [ (a7 + m(QUT(p1) - dlar) - - . |)-

k 4

For the S-matrix element to be nonsingular, the time-ordered correlators must have a corre-
sponding pole structure, with a Feynman propagator factor giving poles for on-shell particles.

e Another useful rewriting is

dyy, ePEY¥ dag e (QUTP(y1) ... P(x1) ... |Q)
]_;[/ Yk l;[/ £ U1 1

2 <p17‘5‘q1, .
-m ¢ qé connected

:H iz )
k

Our goal now is to understand how to compute time-ordered correlators.

Note. In summary, in free field theory, the fields always create or destroy a particle near a point.
Then position-space correlation functions describe amplitudes for particle propagation between
those points, and LSZ states that momentum-space correlation functions are essentially equal to
S-matrix elements after removing the poles.

In an interacting field theory, ¢(x) still creates some kind of excitation near the point z (as
can be seen by its transformation properties) but it is generally a complicated combination of
single-particle and multiparticle states, as shown in the spectral representation. The point of the
LSZ reduction formula is that we can project out the part we want (i.e. above, single-particle states
of mass m) by looking at the residues of the appropriate poles, up to a V/'Z correction factor.

More generally, the LSZ reduction theorem means that any field can be used to compute S-matrix
elements of any kind of particle, as long as that field has nonzero overlap with the particle. For
example, we can compute S-matrix elements using the canonical momentum m(z), because it has
some amplitude to make single-particle states. For a complex scalar field, we can compute S-matrix
elements for bound particle-antiparticle pairs using the field ()9 ().

2.3 Time-Ordered Correlators

We compute time-ordered correlators in the interaction picture.

e In the interaction picture, we split
H= HO + Hint
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and evolve the states with Hj, and the operators with Hy. In particular, this means the
interaction picture field
¢I($) _ €ZH0t(Z)(O, X)e—ZHUt

act exactly like the free Heisenberg fields which we introduced earlier. They satisfy the Klein—
Gordan equation with the bare mass mg, not the physical mass m. Moreover, using the free
mode expansion to define ay p, the interacting annihilation operator annihilates the free vacuum
|0), not the interacting vacuum [€2).

e At general times, the Heisenberg picture operators are related by
o(t,x) = U (t)pr(t,x)U(t), U(t) = etHolte=H1,
Taking matrix elements of both sides shows that states evolve in interaction picture via U(t).

e Differentiating, U(t) obeys the equation

0

iU (t) = Hi()U(t), Hi(t) = ot f, e~ iHot

where Hj(t) is the interacting Hamiltonian in the interaction picture. The solution is

U(t) = Texp <—i / "t Hl(t’)>

0

t t t
= 1—i/ dtq H[(tl)—l—(—i)Q/ / dty dtQTHI(tl)H[(tQ)-‘I—...
0 0 JO

which is called Dyson’s equation. In general, we have

U(t,to) = Texp <_2-/tt i Hl(t,)>

0

and the time ordering ensures U (t1,t2)U (t2,t3) = U(t1,13).

e Next, we relate the interacting and free vacuum. Let H|n) = E,|n). Then
e 10) = 37 ) (o)
n

by inserting the energy basis. The vacuum state will have some nonzero energy Eq (as we
already used up our vacuum energy counterterm to set Ey = 0), but all other states will have
higher energy. Thus, sending time to infinity with a small damping,

efth‘0>

Q) = _—
) t—)o;gl—ie) e~ Eat(Q|0)

Note that we must assume (€2|0) is nonzero, which should be true if Hj, is ‘weak’. This trick
also fails if the theory has massless particles, which yield states of arbitrarily low energy.

e Next, note that

e~ |0} = e~HliHol |0y = [7(—1)T|0) = U(1)|0) = U(0, —1)|0)
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where we used Hy|0) = 0. Plugging this into a correlation function,

(Qo(x)(y)|Q) = lim  (|{0[e)[Pe >0~
t—o0(1—ic)
X (0]U(£,0) U (2%, 0)T¢;(x)U (2%, 0) U(y°, 0) o1 (y)U (5", 0) U (0, =) 0)
where we simply switched to interaction picture.

e Using the multiplication rule for U(t,t’), we have

(Qé(2)d(y)|2) = lim (101 [Pe ) =L (O|U (1, %) g1 (2)U (2°, y*) b1 (y)U (3, —1)[0).

—o00(1—1ie€)

We see that as long as the fields were time ordered, everything inside the expectation value is
automatically timed ordered!

e To deal with the prefactor, note that

. (0]U(t, —t)|0)
1 = (0|0 = 1 _
Q) = lim o et

Combining these results together and generalizing to n fields, we find

. . <0‘T¢I(x1) . '(bl(xn)U(tv —t)’())
<Q|T¢($1) s ¢(xn)‘Q> - tﬁoléglfie) <0’U<t, —t>‘0> :

We use Wick’s theorem to compute these interaction picture correlators. Since we’ll be working
exclusively with interaction picture fields from now on, we drop the subscript.

e We decompose the interaction picture field into positive and negative free modes,

d . d )
o) = 9@ 497w = [ g [ R aorn
p p

The plus and minus fields are easier to deal with because ¢ (z)|0) = (0|¢~ (z) = 0.

e Given an operator O define as a string of creation and annihilation operators, its normal ordering
:0: is the same string but with all the annihilation operators moved to the right. As long as O
does not have a c-number piece cI,

(0] :0:10) =0.

e Note that normal ordering is not a map on operators, but a map on strings of creation and
annihilation operators. For example, aa' —aa = 1 is an operator equation, but normal ordering
both sides gives 0 = 1.

e Now, for the product of two fields, we have
$(2)p(y) = ¢~ (2)d" (y) + &~ (2)¢" (y) + 6" (¥)¢ " (y) + o™ (2) ().

The first three terms are in normal order, but the last is not. Normal ordering both sides (which
is legal because we haven’t done anything nontrivial like applying commutation relations) gives

$(2)(y) =:0(2)p(y): +1o"(x), ™ (y)].
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e Applying this to a time-ordered pair of fields, we have

To(x)o(y) =:(x)p(y): +0(z° —y°)[¢T (), 6~ ()] +0(y° — 2°)[oT (v), ¢~ (x)].

The last two terms are c-numbers by the commutation relations. By taking the vev of both
sides, we see they must sum to the vev of T'¢(x)¢(y), i.e. the (bare) Feynman propagator, so

To(x)p(y) =:¢(x)d(y): +D%(z —y).

e More generally, for a string of n fields, we get 2" terms in total, (n!)? of which are already
normal ordered. For the other terms, we have to do some number of commutations to reach
normal ordering, each of which produces a two-point function.

e The full result can be written in terms of contractions, where contracting two fields removes
them from the normal ordering and produces a factor of their two-point function. Wick’s
theorem states that

T(¢1...0n) =:01...¢n: +all possible contractions

which includes terms with any number of contractions; here we write ¢; = ¢(z;).

e The sum includes terms which are not fully contracted, such as D%(xl — x2) :P3¢4:, which
vanish when we take the vev. The fully contracted terms all come from the term that begins
anti-normal ordered. We thus conclude

(O|T 1 ... ¢p2n|0) = DOF(iL‘l — @) D%(wzn_l, xop) + all other full contractions

while the time-ordered correlator of an odd number of fields vanishes.

2.4 Feynman Diagrams

We can represent the terms in Wick’s theorem diagrammatically.

e For (0|T¢y ... $yn|0), draw n points, then draw all possible diagrams made by connecting disjoint
pairs of points. For an edge from i to j, write down the factor D%(z; — z;).

e Interactions can be expanded order by order, e.g. for a ¢* interaction,

— 1 —iA
OITo()o(p)e V0140 Ol0) = OT6(a)o(m 01+ 01T o)o) [ = () o'+
The 1/n! factor in the Taylor series is always canceled by the permutation symmetry of the
vertices. Naively, the 1/4! factors are canceled because we have 4! contractions possible for each
factor of ¢4(z), but this is not true for symmetric diagrams; the overall result is that we must
divide by the symmetry factor of the diagram.

e This gives the position-space Feynman rules for (0|7¢(z1) ... ¢(zy)U (00, —0)|0).

— Draw a point for every ‘external’ point z;. These are the original fields in the correlator.

— Draw some internal vertices z; to account for the interaction. For every vertex, multiply
by —i\ and integrate over z;.
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— Draw directed lines between points until every external point is connected to one line, and
every internal vertex is connected to four.

— For a line from x to y, write down the Feynman propagator

{ —ip(a—
e~ w(@—y)

p? —md + i€

Dyl —y) = / dp
The orientation of the line doesn’t matter, since D%(z — y) = D%(y — z).

— Divide by the symmetry factor of the diagram and sum over all diagrams.

e Note that we can contract fields at a point to other fields at the same point, giving factors of
D%(O) which diverges. This is a loop diagram, which must be addressed by renormalization.

e To simplify this, we can perform the position integrals, leaving behind only momentum integrals.
If lines with momentum p; and po point into a vertex z and lines with momentum p3 and p4
point out, the position integral is

/dz P17 P2E T P32eIPAZ — §(p) | py — Py — py).

Therefore, we have the momentum-space Feynman rules shown below.

— Give each line a directed momentum p; and write down the factor

~ 1
DY(p) = —s—.
r(p) p? —md + ie

— For each vertex, multiply by
(*7)\)6 (Ein Di — Eout pj) .

— For each external point, multiply by e~%? if momentum p points out of the point, and eP*
if it points in.
— Integrate dp over each internal momentum.

— For each connected component that is a vacuum bubble, multiply by the volume of spacetime
VT.

Note that we are not computing the Fourier transforms of the correlators; we're computing the
exact same thing as before, but with some of the work already done for us.

e To explain the last rule, note that for vacuum bubbles, not all of the position integrals can be
performed. We are left with integrals parametrizing the location of each bubble,

/dz: §(0)=VT

where VT is the volume of the spacetime. This is generally what 6(0) means when it appears.

Next, we discuss how to handle disconnected diagrams.



35 2. Interacting Scalar Fields

e The nomenclature is a bit confusing. We say a diagram is connected if every vertex is connected,
in the graph theory sense, to an external point, i.e. there are no vacuum bubbles. We say a
diagram is fully connected if it has one connected component. Neither condition implies the
other. For example, a diagram with only a vacuum bubble is fully connected but not connected.

e Every diagram can be factorized into the product of a connected diagram and a diagram with
no external points, which we call a vacuum bubble. Then

Z all diagrams = (Z connected diagrams) (Z vacuum bubbles) .

e By applying our rules above to the case of zero external points, we have

lim  (0|U(t,—t)|0) = Zvacuum bubbles = Z

t—oo(1—ie)
which tells us that the correlator of Heisenberg fields is
(QUT Py ... 0| = Z connected diagrams with n external points.

We call the sum of the vacuum bubbles Z the partition function.

e The partition function has further structure. Let {V;} be the set of fully connected vacuum
bubbles. Then a vacuum bubble with n; copies of V; comes with the additional symmetry factor

[L; 1/ns!, so
Z = exp <Z fully-connected vacuum bubbles)

e On the other hand, by our previous work we have

lim  (O|U(t,—t)[0) = lim  [(Q|0)[2e T,

t—o0(1—ie€) t—o0(1—1€)

Taking the logarithm, the |(|0)|? term is finite and vanishes in the limit, giving

Eo= lim %logZ.

t—o00(1—ie€)
Thus the sum of fully-connected vacuum bubbles gives the vacuum energy.

e We can divide by V to get the vacuum energy density. On the right-hand side, this combines
with T to give the volume of the spacetime, which cancels with the factor of §(0) which comes
with every fully-connected vacuum bubble. This removes the IR divergence, though we still
have a UV divergence, which must be handled by renormalization.

Next, we introduce 1PI diagrams to compute the propagator.
e In perturbation theory, the exact propagator can be expanded as,
Dp(z —y) = (QTo(x)d(y)|2) = Z connected diagrams with 2 external points.

To organize the perturbation series, define a one-particle irreducible (1PI) diagram to be one
which cannot be separated into two separate nontrivial diagrams by cutting a single line.
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o We define
—iM*(p?) = Z all non-trivial 1PI diagrams

where the 1PI diagrams have incoming and outgoing momentum p?, and do not include factors
for the incoming/outgoing propagators or external points.

e We define the Fourier transform
Dp(x —y) = /dp e @Y Dp(p?).

Then Dp(p?) is computed with the same Feynman rules as Dp(x — y), but there are no factors
for external points.

e Therefore, we have the expansion
) 1

Cp?2—md tieq _ M)
p2—m2+tie

Dp(p®) = D% (p*) + Dy (p?)(—iM?(p*)) Dy (p*) + . ..

which gives the compact expression
i

DF(p2) - p? — (m% + M2%(p?)) +ie

This procedure is called Dyson resummation, and M?(p?) is the self-energy of the particle.

e Let m? be the first analytic pole of Dg(p?). Then we may write

17
Dr(p*) = 5 : + terms regular at m?>.

p? —m? +ie
Comparing this with the spectral representation, Z is the wavefunction renormalization and m
is the physical mass. Thus we have found a way to compute Z and m perturbatively.

2.5 Scattering Amplitudes

‘We now use LSZ to relate our correlators back to S-matrix elements.

e We return to our statement of LSZ, with n + r total incoming and outgoing particles,

dyy, €PrY dzg e M QT o (y1) ... d(x1) ... |Q)
1;[/ Yk 1;[/ 1 n 1

N Z AV (p \S\q >
:Il || Tyewe Tyewe
P pi—m2 ql?—m2

¢

connected

Above, all momenta are on-shell. The S-matrix element cannot cancel any of the poles, because
then it would be proportional to pi—m2 or q?—m2, and hence vanish entirely. Thus contributions
t0 S|connected cOme from correlation functions with n + r poles at m?.

e The only diagrams which produce such poles are fully connected diagrams. For example, if one
particle was in its own connected component, it would only contribute one factor of i.Z/(p? —m?)
from its propagator rather than the two it should. This lines up with our intuition that S|connected
gives scattering amplitudes where all particles participate together.
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e Every fully connected diagram can be decomposed as n + r exact propagators attaching to an
“amputated” diagram. Specifically, to amputate a leg, we start at some external point and cut
off as much as possible so that the diagram splits into two components, one of which contains
only that external point. Note that all 1PI diagrams are amputated but not vice versa.

e As we've seen above, each resummed propagator contributes iZ/(p? — m? + ie), plus a regular
piece which is not relevant to our calculation; these cancel with the factors on the right-hand
side of the LSZ reduction formula. Taking the Fourier transform has the sole effect of removing
the exponential factors for the external points.

e Therefore, the Feynman rules for (p1,...,pn|S|q1,- -, @) |connected are

— Add internal points and lines as specified earlier, giving every line a directed momentum.
— For each internal line of momentum p, multiply by
i
p? —md + i€’
— For each vertex, multiply by

(=N (Zin pi — Zout ;) -

— Integrate dp over each internal momentum and divide by the symmetry factor.

— Sum over fully-connected, amputated diagrams and multiply by vZ" .

Formally, vVZ =1 + O(A), so we can set Z = 1 for a lowest-order computation. We will always
get an overall factor of §(q1 +... + ¢ —p1+ ... — pn).

e For the physical computations which follow, we will almost never be interested in vacuum bubbles,
i.e. all diagrams will be connected. Hence we will rename “fully connected” to “connected” for
the rest of these notes; note that we’ve already been using this nomenclature to refer to the
connected S-matrix.

We will now introduce a naive version of perturbation theory which is easier to handle at tree level.

e Working in Schrodinger picture, we suppose that H = Hy + f(t)Hint, where f(t) is chosen so
the interaction adiabatically turns on and off. This makes calculations much easier, though we
lose generality. For example, if Hy is just taken to be the free part of H, then it is impossible
to describe the scattering of bound states, which fall apart when the interaction is turned off;
however, it is possible if Hy is chosen appropriately.

e We define an “in” state |i™(¢)) to be a state which approaches a free state for t — —o0,
[i*(=00)) = li(—00))

where |i™) evolves by H and |i) evolves by Hy, and i stands for a state specification like ‘two
one-particle wavepackets with momenta p and q approaching each other’.
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o We define the S-matrix by
(F(0)[S]i(0)) = (f*"*(0)[i™(0)).
Thus, when the particles in the free state |i(0)) are about to meet and pass through each other,
S takes them to a superposition of other free particle states in order to reproduce the dynamics

of an interaction. This definition is equivalent to our earlier one, though everything is evaluated
at time ¢ = 0 on the left rather than at t — —oo.

e Letting U and Uy be the full and free time evolution operators,

(

= (f(

= (£(0)|Un(00,0)U (0, —00)Up(—00, 0)|i(0))
= (f(0)|U1(00,0)U} (—00,0)[i(0))

= (f(0)|Ur (00, —0)[i(0))

which shows that S = Ur(oco, —00). In other words, the point of the adiabatic turn-off is that
it allows us to get a simple formal expression for the S-matrix itself. We can also show that
[S, Ho] = 0, so scattering does not change the free particle energy.

Calculations can also be done with the adiabatic approach introduced above.
e For concreteness we consider scalar Yukawa theory,
L= 10,01 + 5(0"9) ~ M2 — Jm*¢* — gty
in which case
S = Ur(oco, —o0) = T exp (—ig/dm wquﬁ)
where the fields above are interaction picture fields.

o We would like to calculate the amplitudes (f(0)[S]i(0)). For convenience, we construct the
states in interaction picture, i.e. we view [i(0))s = |i(0))1, so that particles in the initial state
are also created by interaction picture operators. Since the interaction picture states don’t
change at all (as the states are free), we drop the ¢ = 0 argument.

e Concretely, we call the real particles mesons and the complex particles nucleons, with
d~a+al, Yv~b+el, bl 4o
where b' creates a nucleon and ¢! creates an antinucleon. Then for meson decay,

i) = /2Epal|0), |f) = \/AEq, Eq,bl,cl,0).

e To lowest order in g, we have

(15 = 1) = —ig(f| /dw Yl (@)p(@)(@)]i).



39 2. Interacting Scalar Fields

This can be simplified using the commutation relations for free field creation and annihilation
operators; only one combination of operators gives a nonzero contribution. We find

(f18 = 1]i) = —igd(q1 + @2 — p)
in accordance with the Feynman rules above. To save space, we define
(fIS = 1) = (fliTi) = iM§(---)
since the delta function always appears, so that iM = —ig.

e For more complicated processes, we use Wick’s theorem, but slightly differently. Since the initial
and final states aren’t vacuum, we don’t care about full contractions; instead we want enough
fields left over to turn the initial and final states to vacuum. In this formalism, contractions
correspond to only internal lines in diagrams.

Example. Consider nucleon-nucleon scattering, ¢ — ¢, with
[i) = p1,p2) = \/AEp, Epybl, b5,10),  |£) = a1, 42) = \/4Fq, Bq;bl,b,,10)

and the O(g?) contribution to the S-matrix element is

—~

ig)Z ¥ 1 .
TG [ s T @) () o) (n2) b)) )

Then the only contraction which contributes is

T (1 (1) 1h(21) d (1)1 (w2)1) (w2) B(2)) D bt (1) (1) 0T (w2) e (w2): DYy — w2).

Since all the annihilation operators are moved to the right, we have

(fI M (@)@ (wa) e (xa): [i) = (f10T(21)9T (22)]0)(0leb (21 ) (w2) |i).
Expanding the fields into creation and annihilation operators, each piece has two terms, giving

dk ie'k (@1 —w2)

(—ig)® i(qre1+ i(qraa+ —i(pra1+ —i(praat
dzydxs (eZ(QLTI qa2) + PRICIES Q2331))(€ i(p1e1+paz2) +e i(p1x2 P2931)) T i

2
Doing the position integrals gives momentum-conserving delta functions, giving

M (2 i i
iM = (~ig) <(p1—q1)2—m2+(p1—cm)2—m2>

We dropped the ie because the denominator is never zero; to see this, work in the center of mass

frame where |p1| = |qi|. Then the timelike component of p; — ¢y is zero, so (p1 — ¢q1)% < 0. There
is also an O(g°) contribution when |i) = |f), which is not included in S — 1.

We can generalize this calculation into Feynman rules.

e The Feynman rules for computing iM, valid at tree level, are the following.

— Add internal vertices and lines as specified earlier, giving every line a directed momentum,
and conserving momentum at every vertex.
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— For each internal line of momentum p and mass m, multiply by i/(p? — m? + ie).
— For every vertex, multiply by —ig.
— Divide by the symmetry factor, and sum over tree-level diagrams, excluding the totally

disconnected diagram.

For complex scalar fields, we draw arrows on the lines to indicate the flow of particle number,
but define the direction of the momentum so that p¥ is positive for external legs. There is no
fixed convention for internal lines; there we might as well align the two.

e As another example, for ¢7) — 1), we have

M (—ia)? i i )
! (=i9) <(p1—q1)2—m2+(p1+p2)2—m2+z‘e

where the ie cannot be dropped in the second term, as it diverges when the incoming nucleons
form an on-shell meson. As we’ll describe in more detail later, this appears as a resonance peak
in the scattering cross section.

Note. The calculational formalism we have built up in this chapter is very different from the
material one learns in ordinary quantum mechanics. It’s important to keep in mind that quantum
field theory is in principle a special case of quantum mechanics, so the same techniques still work.
For example, one can calculate cross sections using the standard techniques of time-independent
perturbation theory, in a procedure particle physicists call “old-fashioned perturbation theory”, but
which atomic and optical physicists still commonly use. For example, one gets expressions like

dpr > (f|Hilk) (k| Hi|i)
M M~ Z E, — By,

for a process that occurs at second order. Old-fashioned perturbation theory doesn’t require learning
complex, abstract new tools such as the LSZ reduction theory. However, it relies on the Hamiltonian
and hence breaks Lorentz invariance. In particular, single Feynman diagrams break into multiple
diagrams in this formalism, one for each possible time ordering of the interaction vertices, making
calculations more complicated. (By combining pairs of such diagrams, one combines the energy
denominators 1/(E; — Ej) into Lorentz invariant Feynman propagators.) Old-fashioned perturbation
theory is covered in detail in these lecture notes, as well as Sakurai’s book Advanced Quantum
Mechanics, whose introduction contains forceful arguments in favor of studying such methods.

Note. Above, we have seen that the connected part of the S-matrix contains a single overall
momentum conserving delta function, so the connected amplitude M contains no delta functions.
In our treatment, this followed automatically from the structure of the perturbative expansion, in
terms of Feynman diagrams.

More generally, this result can be understood as a requirement of the cluster decomposition
principle, the notion that distant experiments should give uncorrelated results. To see this, first
note that the connected S-matrix can be defined independently of the dynamics; it is simply the
part of the S-matrix, for n-particle scattering, that cannot be constructed from combining S-matrix
elements for (n — 1)-particle scattering and lower. Thus, the connected S-matrix tells us about
the part of the scattering that involves all n particles together. Now, the S-matrix is unchanged
under translating all of the particles, which is equivalent in momentum space to requiring an
overall momentum conserving delta function. If there were further delta functions in the connected


http://bohr.physics.berkeley.edu/classes/221/notes/emdirac.pdf
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amplitude, it would imply that the connected S-matrix was invariant under translating a subset of
the particles, i.e. that these particles would continue to have an effect on the others if they were
translated arbitrarily far away. Hence this is forbidden by the cluster decomposition principle.

Following Weinberg, the fact that this result follows automatically from a local field description
is one of the key motivations for introducing quantum fields at all, rather than focusing on just the
particle states. For a masterful account with interesting historical asides, see his article What s
Quantum Field Theory, and What Did We Think It Is?

2.6 Physical Observables

We now link our scattering amplitudes to physical quantities. We begin with the potential energy
U(r) of two nucleons.

e At the classical level, a delta-function source for the meson field yields

e—mr

$(x) =

47y
where m is the meson mass. We would like to think of nucleons as such delta-function sources,
so that this gives the potential energy of two nucleons.

e To see this picture at the quantum level, we consider the process ) — 1) at tree level. We
work in the center of mass frame, so p = p; = —p2 and q = q1 = —q2. Then

1 1
iM=ig? - :
g(@—qﬁ+m2 @+qV—mJ
On the other hand, we know from nonrelativistic quantum mechanics that the amplitude for
this scattering is U(p — q) + U(p + q) in the first Born approximation, where we took into
account the fact that the v particles are identical. Then
. _ )\2 )\2
Up—q)=+——"—, = e
(p—aq) Pt

where A = g/2M and the extra factors of 2M are from the relativistic normalization. To get
the result for U(r), we have to work in spherical coordinates and perform a contour integral.

e The exact same logic holds for ¢) — 91). In this case, the s-channel doesn’t contribute because
it vanishes in the nonrelativistic limit, as long as M > m, but the t-channel contributes in
the same way, giving the exact same potential. Therefore, the force between a nucleon and
antinucleon is also attractive. In general, forces mediated by particles of even spin are universally
attractive.

e Similarly, in ¢* theory with Hi,, = A¢*/4! the tree-level amplitude is
IM = —i, ﬁ(p) x A, U(r) o d(r).
That is, the potential in ¢* theory has zero range.

e In general, the Born approximation is a useful way of relating the scattering amplitudes we
know how to compute to “position-space” quantities such as potentials. For example, we can
use it to relate the magnetic moment of the electron to its scattering amplitude off a fixed
background vector potential, which can be computed diagrammatically.


https://arxiv.org/abs/hep-th/9702027
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e For 2 — 2 scattering, the Mandelstam variables

s=(p1+p)? t=m—q) u=({— @)

appear frequently. We say that 1)1) — 1) has t-channel and u-channel diagrams at O(g?), while
Y1h — 1) has s-channel and t-channel diagrams. If the particles have masses m,

s—i—t—i—u:Zm?.

7

Suppose two identical particles scatter by an angle 6 in the center-of-mass frame. Then

s = 4F?

cm?

t=—2p*(1 —cosh), wu=—2p*(1+cosb).
In this frame, s determines the energy of each particle, while ¢ and u give directional information.
Next, we turn to the calculation of cross sections and decay rates.

e Let V be the spatial volume and T be the total time separating the asymptotic past and future.
Then ¢(0) = VT and §(0) = V, as we've seen earlier. We'll need these results because we will
encounter squared delta functions, which arise from working in an infinite space.

e By definition, the probability to transition from state |i) (with particles of momentum p;) to
|f) (with particles of momentum g;) is

o LISIP

(LAl

Under the relativistic normalization convention,

(1) = [T 2Fa(0) = [[2Ea, V. (ili) = [ 250,V

and the S matrix element is
[(FISI)? = [Myil8(pr — pr)? = IMpil*8(pr — pr)VT
where p; and pg are the total initial and final momenta.

e Next, we must integrate over the momenta of the particles in the final states, using
1
72— [ dp Vipa—#(p—a)
P

which gives

1 dq;
P=]] VT 2dIT,  dIT = — o) [] o,
< 2Epiv> /’./\/lle dil, d $(pr — p1) 2Eq

i J
If some of the particles in the final state are identical, the Lorentz invariant phase space dII
should contain 1/N! factors to avoid overcounting.
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e First, consider the decay rate of a particle with mass m. Taking a rate cancels the T. The
result is not Lorentz invariant, because of the factor of 1/Ep, but this is correct because it
accounts for time dilation. Usually we will work in the rest frame, where E, = m, giving

1
r=— ;|2 dIT
2m/|Mf|

If there are multiple decay channels, we must also sum over types of final states.

e Next, consider scattering of two particles with energies Fy and Es. Then we wish to calculate
the differential cross section

__ differential probability 1 1

~ unit time x unit lux = 4E; E,V F

| M i dIT.
The flux F' is the number of incoming particles per area per unit time.

e Working in the center of mass frame, the probability per volume is 1/V for each initial particle,
and the relative velocity is |vi — val, giving

1
B 4E1E2’V1

do

M ;)2 dIl.
_VQ‘I il

e The denominator is Lorentz-invariant under boosts along v; — va, but not others, since the
cross section can length contract. To see this, note that for velocities parallel to z,

EyEo|vi — va| = |Eap1 — E1pa| = |€uayuPi D5 .
Thus, the inverse of this quantity has precisely the Lorentz transformation quantities of the zy
component of an antisymmetric rank 2 tensor, which is precisely the geometrical representation
of an area element in the zy plane.
e Some other sources define the cross section in a slightly different, Lorentz invariant way,
B 1
4vrel (p1 - p2)

where the relative velocity (i.e. the speed of one particle in the frame of the other) is

do | M i |* dTT

2,,2
Urel = 1- T bR
(pl ']92)

This matches the boxed definition above in the center of mass frame, so it will make no difference
for these notes. On the other hand, in situations where the particles may not have opposite
momenta (such as in a thermal average) one has to be careful about which definition is used.

e For scattering with two particles in the final state, we are interested in the quantity do/dS2,
which can be found by writing dII = (dI1/d2) dQ2. One can show, in the CM frame,

|Q1’
dll = —————d)
(27m)2(4Ecm)

where q; is the final momentum, which gives

do _ 1 |
ds) 4E1E2|V1 — ng (27‘(’)2(4Ecm)

Myl
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e For all equal masses, this reduces to

do _ [Myl?

dQ  64m2E2 "

For example, we see that s-wave scattering is isotropic, and o o 1/s for ¢* theory. This is a
general phenomenon for scattering off pointlike sources.

e The traditional unit for a cross section is the typical cross sectional area of a uranium nucleus,
1barn = 10~* m? = 100 fm?

which corresponds to a scatterer whose radius is a few femtometers. For context, the total
cross section for proton-proton scattering is of order 100 mb, and the instantaneous luminosity
of the LHC is about 10nb~'s™!. The total integrated luminosity of the LHC so far is about
200fb~! = 0.2ab~!, while the future HL-LHC will accumulate 3ab~!.

e Finally, another useful case is a final state with three particles. In the CM frame, the momenta
q; lie in a common plane, called the event plane. It is useful to define

_ 2E
EICI’]fl7

T; T + x9 + T3 = 2.

In these variables, a laborious calculation shows that the phase space takes a very simple form,

E2
Al = =M g
12873 “r1AT2

where the right-hand side is implicitly supported only over the kinematically allowed region.

e The result is also simple in terms of the invariant masses of pairs,

miy = (p1 +p2)®, m35 = (P2 + p3)?
in which case 1

A= —
128m3E2

2 2

dm7isdmss.

e Again, there are implicit and messy theta functions on the right-hand side to mark the kine-
matically allowed region. Thus, the utility of this parametrization is really on the experimental
side. Plotting events in the (m?,, mgg) plane yields a Dalitz plot, and features of the plot can be
attributed to the scattering amplitude itself, and hence indicate physically interesting effects.
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3

Spinor Fields

3.1 Dirac Spinors

A set of relativistic classical fields transforms under a representation of the Lorentz group,

¢i(z) = R(A)ij¢; (A~ ).

We would thus like to classify representations of SO(1, 3).

e As we’ve seen, an infinitesimal Lorentz transformation takes the form

AMV = 5MV + wuu

where w*’ = —w"#. We may index the six independent Lorentz transformations with two
antisymmetric indices,
(JPOVY = Pty — phgp?.

Then any infinitesimal Lorentz transformation can be written as
[T 19 2Vl
Wy, = ) po (JPO)H,

and finite Lorentz transformations are given by exponentiation,
I 1 2Vl
AF, = exp QQpU(J ¥, ).

The factors of 1/2 are canceled by the antisymmetry of Q and J. Explicitly, Q19 = —Q9; =6
gives an active 6 rotation about z, while €g; = x; gives an active boost with rapidity x.

Note that while the generators are antisymmetric with indices raised, they aren’t with mixed
indices, so the A", are not unitary. Alternatively, Lorentz transformations preserve 1, V#V"
and not 4, V#VY. In general, there are no finite-dimensional unitary representations of a
noncompact Lie group like the Lorentz group.

Some explicit computation yields the Lorentz algebra so(1,3),
[‘]po7 J‘ru] — ,',]O'TJpV . np‘l’JO’V + npl/JO’T . nUVJpT.

We seek representations of this algebra. When we exponentiate them, we will generally find
a projective representation of the Lorentz group, i.e. a representation of its double cover
Spin(1,3) = SL(2,C). This is a bit strange, since classical fields don’t have phase ambiguities
like quantum states, but acceptable since the spinor field will not be directly measurable.

We construct the Dirac spinor representation starting from the Clifford algebra.

The Clifford algebra is a set of four matrices v* satisfying
" =20

That is, all of the y* anticommute with each other, and they square as
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e The lowest-dimensional representation of the Clifford algebra is four-dimensional. We will use
the Weyl/chiral representation,

0 01 i 0 o
=(10) (5 0)
We note the useful Pauli matrix identities
olod =69 4+ iekgk {0t 0l} =26, [of,07] = 2ieikoF.
Other representations can be constructed by replacing v* with V#V 1.

e The commutators of the v* are

1 0 p=0o| 1 1
e p’a: — Z~AP~NT _ Pl
i {(1/2)7”7" p%a} 2" T2

We claim the S*” form a representation of the Lorentz algebra. First, note that

4 1 4 1 v 1 4 1% 4
[S7,7°] = Sl " 2" = 57" = 5Py = A =

where we used anticommutation to cancel the two terms, picking up 7 terms. Next,

g 1 g 1 (o8 (o o g
[S%, 587 = SIS, P71 = 5 (V70" = AT Py T =Py )

where we used the commutator product rule and the previous result. Finally, applying v*v" =
25" 4+ " gives the result. Note that the v and S matrices contain complex numbers, so we
have a complex representation.

Next, we exponentiate the S to find a projective representation of SO(1,3).

e The S* act on a Dirac spinor field, i.e. a field with four complex components 1)*(x) so that
— 1 g
07(a) = ST (), SIA] = exp (52057 )

e To see this is a projective representation, we explicitly work out S[A] for rotations. For i # j,

1 i .o (a0
1j _ Zaiad — gk
SU=grr =g <0 a’f)‘

Defining the angle by Q;; = eijkgok, we have

e—i Pp-0/2 0
swl= (07 pon)

which is —1 for a 27 rotation.

e Similarly, for boosts, we define Qy; = x; and

1 /=" 0 e~ X0/2 0
07
S 2 < 0 O'i> o STA] ( 0 eX'U/2> .

We see the Dirac spinor splits into two components which transform identically under rotations
but oppositely under boosts.
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e Sources may differ on the signs of ¢ and x. Here we have taken the active point of view, so x
refers to the amount we actively change the spinor’s velocity. But x can also label the relative
velocity of a frame we transform into, which would give an extra minus sign.

e The Dirac spinor representation is not unitary. To see this at the level of the Clifford algebra,
note that unitarity requires S*" to be anti-Hermitian, which works if the v* are all Hermitian or
all anti-Hermitian. But since (7%)? =1 and (v")? = —1, 4% can only be picked to be Hermitian
and 7' can only be picked to be anti-Hermitian. Again, the issue comes from the indefinite
signature of 7.

3.2 The Dirac Action

We now build a Lorentz-invariant action using our Dirac spinor.
e Suppressing position arguments, we have
v = SIAY,  of = pTSTAL
Therefore, the naive guess 111 does not work because the S [A] are not unitary.

e For concreteness, we use a representation of the Clifford algebra where 7 is Hermitian and the
~* are anti-Hermitian, such as the chiral representation.

e In any specific representation, it is straightforward to show that
Py = (v#)1

which means 7° takes the adjoint of gamma matrices when pulled through them. (Since all
representations are related by unitary transformations, it suffices to show this result in any
representation — but it’s not straightforward to do it without ever picking one.) Then

(5")F = =510, SIA]T = 4°S[A] 1.

e Defining the Dirac adjoint 1) = 17?, we have
& = WS[A]Y = 9Ty S[A]T! = PS[A]

which implies that 1) is a Lorentz scalar.

e Moreover, ¢y*1) is a Lorentz vector. Since we have
e — PSIA] TS [A.
we need to show S[A]~14#S[A] = A¥,4”. For infinitesimal Lorentz transformations, this becomes
(=57, 9% = (J*7). "
We can directly verify this is true using computations we’ve already done.

e Similarly, one can show that ¢y*+”1) transforms as a Lorentz tensor, as does any combination
of more gamma matrices. Taking the symmetric part yields n**11), which is simply a multiple
of our Lorentz scalar. The new feature is the antisymmetric part, ¥S*”.
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e We use our scalar and vector to build the Dirac Lagrangian
L= E(Za —m)i, P = ’Y'uau-

Note that the factor of ¢ is necessary to make £ real, i.e. invariant under conjugation, to cancel
out a minus sign from integration by parts. We haven’t seen this issue before because our other
Lagrangians were second-order, requiring two integrations by parts.

e Using the trick of treating ¢» and 1) as independent fields, varying with respect to ¢ gives the
Dirac equation

(i —m)y = 0.

Varying with respect to ¢ gives the conjugate equation
. - - - .e
0" +mp =i d +m) =0
where the arrow indicates the derivative acts to the left.
e Each component of the Dirac spinor satisfies the Klein—Gordan equation, as
(i')/yau + m) (i')/uau - m)i/) = _(7#'7yauau + m2)¢ = _(82 + m2)1[) =0.

Thus the Dirac spinor describes four types of particles of mass m. The left-hand side contains a
‘factorization’ of the Klein—-Gordan operator 9% + m?, so the Dirac equation is sometimes called
the ‘square root’ of the Klein—-Gordan equation. Here it’s clear that the definition of a Clifford
algebra was originally chosen just to make this work out.

Next, we decompose the Dirac spinor into Weyl spinors.

e As we've seen, in the chiral representation of the Clifford algebra, the Lorentz transformations
are block-diagonal. Hence the Dirac spinor splits into two irreps, ¢ = (u4,u_), called Weyl
spinors, which transform as

up — e PO 2y, g — eTXT/2y,

The Weyl spinors are (1/2,0) and (0,1/2), or left-handed and right-handed respectively, and
the Dirac spinor is (1/2,0) & (0,1/2).

e Introducing the notation
ot =(1,0"), o'=(1,-0")

the Dirac Lagrangian can be written in terms of Weyl spinors as

L=iul ot Ouu_ + iuiﬁ“@umr - m(uiu, + uT_qu)

Therefore the mass term couples the Weyl spinors together. To get a theory with only one
Weyl spinor, we must set it to zero. The individual Weyl spinors satisfy the Weyl equations

ic"'Oyuy =0, iotOu_ =0.

e Suppose a classical field theory has n real degrees of freedom in configuration space at each
spatial point. Then it has 2n degrees of freedom per point in phase space, which become
2n/2 = n particles upon quantization. This yields n = 1 for a real scalar field and n = 2 for a
complex scalar field, as expected.
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e Now, the Dirac spinor naively has 16 real degrees of freedom in phase space. However, since
the Dirac equation is first-order, m; = i1ht, so the phase space is parametrized by ¢ and 7.
Then the phase space has real dimension 8, giving 4 particles upon quantization, i.e. a spin
up/down particle/antiparticle. Similarly the Weyl spinor yields 2 particles.

e Another way of saying this is that physical fermions must have constraints in their phase space;
it can be shown that we otherwise inevitably get negative-norm states.

e To define the Weyl spinors in an invariant way, define

45 = Oy ln243,

Then one can show
(", 4"1=0, (*)?=1

Given this definition, the matrices (y#, —i7°) form a five-dimensional Clifford algebra. Moreover,

choosing 7Y to be Hermitian and ' to be anti-Hermitian as before, 'y5T = 5.

e We can also show that [S,,,7°] = 0, so 7° is a ‘Lorentz scalar’. Then we have

-1 0 1 1
5 5 5
= Pr=—-(1- Pr=—-(1+
7 <0 1>, L 2( 7), R 2( 7)

where P;, and Pgr project on the left-handed and right-handed Weyl spinors.

3.3 Symmetries and Conserved Quantities

Next, we define parity symmetry.

e Conjugating a rotation by parity leaves it invariant, but conjugating a boost with parity flips
its sign. Thus we want parity to exchange the Weyl spinors,

Py (x,t) = Y (—x, ).
Thus, in the chiral representation,
P :ap(x,t) = y(=x, ).
The Dirac equation is parity invariant, since if ¥(x, t) satisfies it, so does Y99 (—x, t).

e Note that 17 transforms as a scalar under parity because ()2 = 1. However, for the vector

yH), the spacelike parts flip sign,
VY'Y = 0y = =y
which implies that 1y*1) transforms as a vector under parity.

e Similarly, 1)S*"1) transforms as a tensor under parity. We also have 1)y, which transforms
as a pseudoscalar, and 1)y°y*), which transforms as a pseudovector; both of these pick up an
extra sign flip due to the +°.
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e As we’ve seen above, the Dirac spinor is a certain representation of the Lorentz group and the
set of spinor bilinears is that representation’s tensor product with itself,

((1/2,0) 4+ (0,1/2))x((1/2,0) + (0,1/2)) = (0,0)+(1/2,1/2)+(1,0)+(0,1)+(1/2,1/2)4(0,0)

which decompose as 1 +4 + 3+ 3+ 4+ 1. The two 3’s are packaged together into the rank 2
antisymmetric tensor and correspond to self-dual and anti-self-dual tensors.

e The pseudoscalar and axial vector terms treat the u+ asymmetrically since they are not parity
invariant. In general, any theory that treats the uy asymmetrically is called a chiral theory (vs.
a vector-like theory). However, chiral theories can be parity invariant; for example, the term
&y respects parity if ¢ is a pseudoscalar.

Note. Sometimes people ask: why don’t the gamma matrices transform under Lorentz transforma-
tions, like everything else with a four-vector index does? The representation theory above shows the
right way to think about this. A gamma matrix is a set of Clebsch—Gordan coefficients which ex-
tracts the Lorentz vector representation from the tensor product of two Dirac spinor representations.
These coefficients don’t change under Lorentz transformations, for exactly the same reason that
ordinary Clebsch—Gordan coefficients for spin don’t. For example, for spin we have 1 C 1/2 x 1/2,
and the state |¢,m.) = |1,0) is always of the form (|1/2,1/2)[1/2, —1/2)+[1/2, —1/2)[1/2,1/2))/V/2.
This doesn’t depend on how you orient the z-axis, as long as you use the same z-axis to define the
m, states in the 1 and 1/2 representations, which of course we always do.

We now define charge conjugation symmetry and Majorana fermions.

e Naively, we would like to define charge conjugation of a classical field as just the complex
conjugate, as is suitable for a complex scalar field. But charge conjugation should commute
with Lorentz transformations, so the naive option doesn’t work since S[A] is not real.

e Instead, we define
Pl = oy
where C is a 4 x 4 unitary matrix satisfying
ChyC = (=)
in a general representation of the Clifford algebra where (v9)f =40 and (7))t = —4%.
e To check the transformation properties, we have
¥l — CS[ATw* = S[AJCY* = S[A]p'
as desired. The Dirac equation is also invariant. Complex conjugating it gives
(—id" —m)y* =0.
Multiplying on the left by C and pulling it through shows that 1(¢) obeys the Dirac equation.

e A Majorana spinor obeys the reality condition ¥(¢) = ¢. This constraint relates the two Weyl
spinors. Majorana spinors can have a mass, but they cannot have charges.
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e Finally, we can write C explicitly given a fixed basis for the Clifford algebra. In the chiral basis,
C = in?
2, %

because only +? is imaginary. In terms of the Weyl spinors, this implies u_ = —ic?u A

e Alternatively, in the Majorana basis,

o (0 o? 1 (ie® 0 s (0 —o? 5 [—iocl 0
T7\e? 0) T T o wed) T T \e2 0 ) T T 0 —ioct)"

Then all of the gamma matrices are pure imaginary, so the S[A] are real and C' = 1.

Note. This definition of the C matrix differs from the C' matrix appearing in the quantum charge
conjugation operation C. This is because this C arises from the classical charge conjugation on
fields, which in this case acts like C with an additional parity factor «g. This is explained further
in the notes on the Standard Model.

Note. We check the Lagrangian is invariant under charge conjugation. Consider the mass term,
D =910 = pTCTO0Y" = T (70) g,

This quantity is, naively, equal to its own transpose. However, we must account for the fact that
spinors are inherently anticommuting, and hence the classical fields here are really Grassmann
numbers; taking the transpose flips the sign because of the anticommutation. Then we get

— T —
v = 1Ty =Yy
as desired. Demanding the invariance of the 1Pt term forces
Ay — —A,

under charge conjugation, which intuitively is because 82AM = j, and j, — —j,. More generally,
for a non-abelian gauge theory, the gauge interaction term %’Az‘jd’j is invariant if

Iz I
Al — — A
This is sensible, as it’s just the usual rule for conjugating a Lie algebra representation.

Finally, we consider the continuous symmetries and conserved currents of the Dirac action.

e We begin with translational symmetry, treating v and 1) as independent as usual. Since the
Lagrangian does not depend on 0v, we have

TH = iyl " — i L.

We can further simplify this using the equations of motion, which state that £ vanishes on shell.
The total energy is then

E = /deOO = /dxwry% = /dx1/1T70(—i’yi8i +m)p.


https://knzhou.github.io/notes/sm.pdf
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e An infinitesimal Lorentz transformation gives
1
oYt = —w, 2" 9P + igpa(spg)aﬂwﬂ-
Expanding out the definitions yields w*” = Q. Now, the first term contributes the same thing
we saw for the scalar field, while the second term contributes a “spin” term,

(TP = aPTHT — g0 THP — i)y SP74h.

Upon quantization the latter will yield a spin of £1/2 for each particle. A similar spin/orbit
decomposition appears for general fields with spin.

e The Dirac action has an internal phase symmetry, 1) — e~ which yields
i = Pyt
where j"j is called the vector current. The conserved quantity is
Q= [axintu= [axviy
which we will see can be interpreted as the total particle number.

e When m = 0, the Weyl spinors decouple, so there is an additional independent symmetry given
by rotating the Weyl spinors in opposite directions,

P — eio‘75z/1, P — @ei‘ms.
This gives the ‘axial current’,
h = Py
which is an axial vector. Later, we will see that the axial symmetry is anomalous. In QED with

massless fermions, the Lagrangian has axial symmetry, but the current is not conserved in the
quantum theory.

3.4 Plane Wave Solutions
In this section, we find the classical plane wave solutions of the Dirac equation in the chiral basis.

e We consider a positive frequency plane wave 1(z) = u(p)e~?* where p° > 0. Then the Dirac

equation becomes
-m p-o
=0.
<p = _m> u(p)

Since the individual components satisfy the Klein-Gordan equation, p? = m?. Now we have

)= (o)

for some spinor u;. Defining mu; = /p - c€ and using the identity

(p-o)p-o)=p-p=m’

on the bottom spinor, we arrive at the general form

(75

We will conventionally normalize ¢ by £7¢ = 1.
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e Similarly, there are negative frequency solutions. Letting (z) = v(p)e®?® with p° > 0,

where we normalize n'n = 1. Note these classical field solutions vary in space as if they had
four-momentum —p. However, we will fix this sign discrepancy after quantization, so that the
corresponding particles indeed have four-momentum p.

e As a simple example, consider the positive frequency solution with mass m and p = 0,

u(p) = vm (g) :

To interpret ¢, recall that the angular momentum operator is J! = diag(c?/2,0°/2). Then &
describes the spin, with ¢ = (1,0)7 yielding spin up.

e Next, consider a boost along the 22 direction, p* = (E,0,0,p). Then for spin up,
1
E _ 3
V=7 (o)
1
E 3
Ve ()

u(p) =

In particular, in the massless case we have u(p) = (0,0,1,0)7. Similarly, for a massless spin
down field we have u(p) = (0,1,0,0).

e Define the helicity as the projection of spin along the direction of momentum,
i o 1 (pio® 0
h=—¢qp8ik == ).
o CUkP 2 ( 0 piot

Then the spin up solution above has positive/right-handed helicity and the spin down solution
has negative/left-handed helicity. In the massless case helicity coincides with chirality. When
a mass is added, helicity is no longer Lorentz invariant, and chirality is no longer conserved.
However, we’re playing a dangerous game here because we're assigning helicity to classical
solutions, while it is really a property of quantum states; this will lead to some extra sign flips.

e Now pick orthonormal bases £; and y; for the positive and negative frequency solutions. Then
u"T(p)us(p) = 2pod™, @ (p)u’(p) = 2mé"™, "1 (p)v*(p) = 2pod™, T (p)v°(p) = —2mé"

by direct expansion, using the identity (p-o)(p-&) = m?. Another useful identity is
u"f(p)v*(=p) = v (p)u’(—p) = 0.
e Finally, for outer products we have

> w(p)w(p) =p+m, Y v(p)T°(p)=p—m.

s

These combinations will appear in the numerator of the propagator.
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3.5 Quantizing the Dirac Field

Now we turn to the quantization of the Dirac field. We begin by naively imposing canonical
commutation relations.

o We recall the conjugate momentum is

T = gi 2@7 —MN

Perform the Legendre transform by H = 772/} — L, the Hamiltonian is
H= /dx¢(—i7i8¢ +m)y

as we found earlier when computing TH".

e Now, we impose the usual canonical commutators

[a(x), ¥} (y)] = dasd(x — ¥)

with all other commutators zero, and perform the mode expansion

P(x) = (byu® (P)e'P* + e o’ (p)e™PX).

\/ﬁ

Taking the conjugate gives

vi(x) = u(p)Te™P* 4 cpu(p) e™P).

\/ﬁ

Here, the spin indices s run from 1 to 2, the spinor indices o and 8 run from 1 to 4, and the
summation convention is used on the spin indices.

e By a similar computation to the scalar field case, we have the commutators
b5, b5 = 0" ¢(p—q), [ch.cy'l=—6"4(p—q)
with all others zero; note the appearance of the minus sign.
e To simplify the Hamiltonian, we apply the on-shell spinor condition
(=7'pi + m)u®(p) = 2"pou(P),  (v'pi +m)v*(p) = =7 pov°*(p)

so we simply have

) E S, ipx st,s —ipx
(04 m)i = [ dpy[ S B (p)e™ — eyl (p)e ™).

Note there is an extra minus sign here because e"’P* looks like e™*?*. Applying our spinor inner

product identities gives

H:/d’pE (b5 165 — cie /a‘pE (b5T05, — 5 es, + 4(0)).
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e Now, note that [H,c(p)] = E,cf(p) as usual for a creation operator; the extra minus sign in
the commutation relations cancels out the minus sign in the Hamiltonian. The problem is that
the particles created by ¢! have negative norm, as

e 10} 1> = (Ol[ep, e 1110) < 0

which violates unitarity, as we get negative probabilities. We can fix this by interpreting ¢’ as
an annihilation operator and ¢ as a creation operator, but then c¢ creates particles with negative
energy, so the spectrum is unbounded below. Either way, the theory is sick.

Note. The problem above can be traced backwards to the fact that the Hamiltonian for a spinor
field is linear in time derivatives, while that of a scalar field is quadratic, which can in turn be traced
back to the Lagrangian. This generalizes to higher spins. An integer spin field can be represented
using a number of vector indices, while a half-integer spin field must additionally have one spinor
index. The kinetic term of the Lagrangian must contract the spinor indices by a factor of v, (or
more properly, for a Weyl spinor index, a factor of ¢,,), whose Lorentz index must then be contracted
with a single derivative d,,. The remaining Lorentz indices simply come in pairs, so half-integer spin
fields have equations of motion with an odd number of derivatives.

The problem is fixed by switching to anticommutation relations.

e The spin-statistics theorem states that half-integer spin particles in a relativistic quantum field
theory must be fermions, i.e. must be quantized with anticommutation relations. Thus we
instead impose the canonical anticommutation relations

{¥a(x),9}(y)} = bagd(x —y)
which are equivalent to the anticommutation relations
{051 =6"bp—a), {ch.c'}=6"4p—q)
with all other anticommutators zero.
e All of our manipulations above go through unchanged, except that at the last step,

H= /d’pE (B5T05 — cest) = /dp Ey(b3105 + c5Tes, — #(0)).
Then both types of particles have positive energy and positive norm. The vacuum energy
contribution also comes out negative, canceling part of the boson contribution.

e We can construct the Hilbert space exactly as before, acting with the creation operators on the
vacuum. They both raise the energy, as

[H, 651 = Bpbst,  [H,c57] = Epcyl.

The anticommutation relations imply the Pauli exclusion principle: every mode can have either
zero or one particle. The anticommutation makes the multiparticle wavefunction antisymmetric,
as postulated in nonrelativistic quantum mechanics.
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As an example, the conserved charge from the internal vector symmetry is
Q:/dp bsTbs - s’r s)
‘ %
indicating that the ¢ particles have negative charge. We thus interpret them as antimatter.

One might wonder how the ¢ particles can have positive energy when they are the quantization
of a classical mode with negative frequency. Each of these modes can have occupancy either 0
or 1, and it is arbitrary which of these two states is labeled ‘unoccupied’. We thus define the
vacuum to be the lowest energy state, and for the vacuum to have all modes unoccupied. In
this new picture, the excitations created by ¢! are ‘holes’ in the Dirac sea.

The Dirac sea also explains why the vacuum energy comes out negative for fermionic fields. All
the bosonic degrees of freedom get zero-point energy fw/2, while all the negative frequency
fermionic degrees of freedom get Dirac sea energy —hw.

Since ¢/ makes a hole, every quantum number is flipped, so that C;T creates a particle with
momentum p and negative charge. It’s convenient to define the basis spinors so that c;T and

b;T have the same spin.

Next, we switch to Heisenberg picture, establish causality, and find the fermionic propagator.

In Heisenberg picture, the field simply becomes

P(x) = TP 4Tt (p) et

TE (bpu”(p)e

Next, we compute the anticommutator

iSap(x —y) = {ta(2), Y5(y)}-

Suppressing spinor indices and using the anticommutation relations, we have

ey = / f;’ (w*(p)@* (p)e~P@Y) 4 v* (p)T* (p)e?(*~¥)

2E,
= (i, + m)(D(z — y) — D(y — x))
where D(x —y) = (0|¢(z)¢(y)|0) is the propagator for a free scalar field.

_/ dp ((p+ m)e =Y 4 (p — m)eP@=v)y

Since D(z — y) vanishes for spacelike separations, S(z — y) and hence the anticommutator
vanishes for spacelike separations. Since all observables are fermion bilinears or combinations
thereof, observables commute at spacelike separations.

Next, we define the time-ordering symbol as

v@)d(y) ¥ >y
~(y)p(z) y° >a’
To see one reason the minus sign is necessary, note that at spacelike separations we have

P(x)h(y) = —(y)(x) by the above calculation. In such cases we can perform a boost to
change the time ordering of x and y, so the two cases in the time ordering must be equal.

T(¥(2)(y) = {
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e We define the Feynman propagator as

Sp(z —y) = (0|T%(x)y(y)[0).

By a similar calculation to above, we find
d ; d ~
Sr(e =) =0~ o) [ 32 (p+m)e e 000 ~ ) [ TR (g e
P

from which we conclude

prm

e~ p(z—y)
p? —m?2 +ie

Sl ~y) = (i@, + m)Di(e ~y) =1 [ dp
where Dp is the Feynman propagator for a free scalar theory. If we had used commutation
relations to quantize the field, we would have found an ugly, non-Lorentz invariant result.

e As expected, Sr is a Green’s function for the Dirac equation, since applying i@, — m gives
(p—m)(p+m) = p? —m? in the numerator. Because of this identity, the Feynman propagator is
sometimes formally written as Sp(p) = i(p —m)~'. Alternatively, we can think of the Feynman
propagator as a sum of Feynman propagators for each degree of freedom; in this picture the
numerator is a sum over polarizations. We will prove this more generally later.

e Normal ordering for fermionic fields is also defined with an extra minus sign for every interchange.
Thus the general method for normal and time ordering is to simply commute or anticommute,
neglecting all extra resulting terms. The proof of Wick’s theorem goes through as before, with
contractions yielding a factor of Sp.

e Contractions now come with signs, so that swapping any two v or 1 fields in the contraction
structure yields a factor of —1. If we draw lines connecting contracted fields, the number of
sign flips is the number of intersections of the lines.

e Note that the contraction of ¢ with 1, or of ¥ with v, is automatically zero. Then n-point
functions of spinor fields can only be nonzero if there are an equal number of 1 and 1) fields,
reflecting charge conservation.

e The proof of the LSZ reduction formula also goes through mostly as before, expect that the
poles are projected out by factors of i@ — m rather than 9 + m?.
3.6 Feynman Rules

In this section, we will illustrate the Feynman rules by a direct calculation in the interaction picture.
The same results can also be found by the same rigorous route followed for the scalar field, starting
with the LSZ reduction theorem.

e For concreteness we consider Yukawa theory,
1 1 — . _
L= (0u0)° = Sp*¢? +0(ih — m)v — Ay

where ¢ is a scalar field. We think of the v particles as nucleons and the ¢ particles as mesons
(specifically, pions). The Yukawa coupling here also appears in the same form between fermions
and the Higgs boson.
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e We now carefully work out ¥ — 11 scattering, with initial and final states

. stir o Tyt
i) = v/ 4Equprqu’O>v |f)=v AEy Eq by by 10)-

Note that taking the adjoint to get (f| reverses the order of the operators; we were careless
about this before because the operators commuted.

e The O()\?) contribution to (f|S — 1|i) is

—i)\)? — -
(;\)/dﬂﬁld@ T(p(z1)Y(z1)d(z1)Y(w2) Y (22)d(22))

where the two ¢ fields must be contracted, just as in scalar Yukawa theory.

e Next, we need to be careful about how the spinor indices are contracted. While we’ve kept this
implicit, there is a contraction between 1 and 1 in the interaction term, so explicitly

(1) (21) Y (22) Y (32): bfﬁbiﬂ\m
. dkldk? - m - n —i(kizatkoza)gm pn 1styrt
= — | ———=(21) - u" (k1)) (d(22) - u" (ka))e bic, b, bp 0 ' 0)
\/4FE, Ek,
where the dot indicates spinor contraction, and we picked up a sign from moving ¢ (z1) past
1 (z2). Applying the anticommutation relations gives two terms which differ by a sign.

e Finally, we need to take care of the final state. Each of the two terms above yields two possible
contraction structures, canceling the 1/2 in front of the amplitude. We are left with the position
integrations, which yield delta functions, finally giving

M = (=i))? ((us'(p’) ~ut(p) (@ (d) - u'(@) (@ () w (@)@ (d) - us(p))>

(¢ —p)* — p> +ic (¢ —p)* — p?+ie
e We can summarize our results with the following Feynman rules.
— For every incoming fermion with momentum p and spin 7, write down «"(p). For outgoing
fermions, write " (p).
— For incoming and outgoing antifermions write o"(p) and v"(p), respectively,
— Every vertex gives a factor of —iA.
— Every internal line gets a Feynman propagator,
i i(p+m)

5 ,  fermion: —

p? — p? +ie p

scalar: -
—m*= + 1€

— Conserve momentum at every vertex, and integrate dp over loop momenta.

— For every fermion line, draw an arrow indicating the flow of particle number, and contract
spinor indices along these lines. This is independent of the momentum flow arrows, though
the two can always be aligned for internal lines.

An easy way to remember the external fermion factors is to note that the matrix multiplications,
read left to right, always go opposite the particle flow lines.
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e There are also extra minus signs in various places.

— Interchange of identical particles gives a factor of —1. For example, the t-channel and
u-channel diagrams have opposite signs for ¥y — 1), as we saw above.

— Every closed fermion loop has a factor of —1. This is because we will always need an odd
number of swaps to ‘untangle’ all of the contractions. We write ‘tr’ to indicate the spinor
indices are contracted in a loop.

— Unfortunately, there are further signs that are more subtle, for which these two rules don’t
suffice. The most reliable way is to simply return to the level of contractions and count
the anticommutations necessary to form one. An equivalent diagrammatic method is to
redraw the diagram so that all fermion lines start on the left (in a standard order) and end
on the right; the sign is the sign of the permutation of the lines on the right.

e Finally, we can find the Yukawa potential in the nonrelativistic limit. For ¥ — 1) scattering,
note that the spinors become

u(p) = Vm @ . o(p) = v ( _55)

so the spin-dependence in the terms is just 558" and 676", so the interaction conserves
spin and is spin-independent. Besides that, the amplitude is the same as in Yukawa theory, so
the potential is attractive.

e Next, consider the process ¥1) — 1p. There is a sign flip from fermionic statistics as shown
above, but another sign flip from 78 s = —2m538/, which means nucleons and antinucleons
still attract. This is because forces mediated by spin 0 particles are universally attractive.

e More realistically, the pion is a pseudoscalar, so we should considering the coupling

Lyuk = — APyt

which obeys parity. Then the interaction vertex becomes —iAy®. In this case, the calculation
becomes significantly more complicated, since taking the naive nonrelativistic limit above just
yields zero. The result is a spin-dependent potential which goes as 1/r3 for massless pions. For
details, see the paper New Macroscopic Forces?


https://journals.aps.org/prd/abstract/10.1103/PhysRevD.30.130
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4 \Vector Fields

4.1 Gauge Symmetry

In this section, we quantize the electromagnetic field, finding several new obstacles due to the gauge
symmetry. For background on quantization with constraints used here, see the lecture notes on
String Theory. (finish, see Weinberg)

e Electromagnetism is described by the Lagrangian

1
L= —ZFWFW7 F, =0,A, - 0,A,

and satisfies the equations of motion and Bianchi identity
8MF‘LW:0, 8)\FMV—|-8MFZ,)\+8,/F>\#:0.
These each produce four equations, i.e. two of Maxwell’s equations each.

e Many of the degrees of freedom in A, are redundant, as we know the photon has only two
polarization states. The first issue is that Ay has no kinetic term, as the Lagrangian does
not depend on Ag. It is a ‘non-dynamical’ field, whose value is totally determined by initial
conditions for A; and A;.

e Intuitively, a kinetic term A% gives the action a ‘penalty’ for changing Ay, and hence gives
the field Ay some ‘inertia’. Without this inertia, action minimization always takes Ay(t) to
whatever minimizes the Lagrangian given A;(¢) and A;(t) at every time .

e More explicitly, we can solve for Ay (up to gauge symmetry) using its equation of motion,

A
V2A0+V~a—:0, Ao(x):/dx’

(V- (0A/0t))(X)
ot '

'

4drlx — x

Note that this equation of motion is equivalent to the constraint V- E = 0. We could plug this
expression for Ay back into the Lagrangian, eliminating Ag entirely, but this would be much
messier than just keeping Ag explicit.

e The Lagrangian also has a gauge symmetry
Ay(z) = Ay(z) + Opa(x)

where we assume «(z) — 0 as * — oo, under which the field strength is invariant. Classically,
we think of states related by a gauge transformation as the same physical state. The gauge
symmetry also takes away one degree of freedom because the gauge parameter o has one value
at every point, leaving two.

o Gauge symmetry places powerful constraints on the action. For example, as we will see in detail
for the non-abelian case, the Maxwell action is essentially the only possible kinetic term for a
photon which is gauge invariant, not irrelevant, and not a total derivative.


https://knzhou.github.io/notes/str.pdf
https://knzhou.github.io/notes/str.pdf
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e Since A is non-dynamical its conjugate momentum vanishes,
=0, 7n'=-F"=FE"
The Hamiltonian can be straightforwardly computed to be

1 1
H= /dx2E2+232 — Ao(V - E).

We hence recover the familiar electromagnetic field energy, with Ay serving as a Lagrange
multiplier which enforces Gauss’s law. Thus we have first-class constraints 70 = V- E = 0.

We will look at a few different gauges.

e Lorenz gauge is the condition d, A* = 0. This is always achievable since we can set 0%a = -0, A*
for any starting A*. This is not a complete gauge fixing, because 9%« = 0 has nontrivial solutions,
but Lorenz gauge is Lorentz invariant.

e Coulomb gauge is the additional restriction V - A = 0, which means Ag is time-independent in
vacuum; it is achievable by the same logic as Lorenz gauge. This is still not a complete gauge
fixing, because we may still apply gauge transformations with parameters a so that

a=Va=0.

Usually, we further require Ag = 0, which can be achieved by performing a final gauge transfor-
mation with v = Agt. This brings us to Coulomb gauge, which breaks Lorentz invariance, but
makes it easy to see the two independent polarizations.

e In Lorenz gauge and hence in Coulomb gauge, the equation of motion is §*4,, = 0.

e The counting of degrees of freedom can be a little puzzling. Intuitively, there is only “one degree
of freedom” in a(z), which is a function on spacetime. Lorenz gauge is also intuitively “one
constraint”, so it seems nothing should be left over. The point is that the remaining freedom is
of measure zero, as a solution to 92 = 0 can be specified by initial conditions on a hypersurface.
Similarly, after fixing Coulomb gauge, we have the freedom to perform gauge transformations
with & = V2a = 0, which again is of measure zero relative to what we started with.

e For a fixed four-vector n#, the axial gauge is n* A, = 0. We will not deal with axial gauge here,
but it is useful in Yang—Mills theory because ghost fields are not required.

4.2 Quantization in Coulomb Gauge

We begin with quantization in Coulomb gauge. This gauge is popular in atomic physics, where
the breaking of Lorentz invariance is not problematic, since the matter is typically nonrelativistic
anyway. However, it is especially difficult to perform renormalization with it.

e Since we have set Ag = 0, the classical plane wave solutions are
A(x) = /dpi(p)eip'x, p*=0

where £(p) is the polarization. The constraint V- A = 0 yields £ - p = 0.
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e For each momentum, there are two independent polarization vectors €,(p) satisfying

Er(p) p=0, er(p) : es(p) = Ors.

Note that it is impossible to choose the polarization vectors continuously by the hairy ball
theorem. However, this topological issue has no impact on scattering calculations.

e Naively, we would impose the canonical commutators
[Ai(x), Ej(y)] = 10i;6(x —y)

with all other commutators zero, but we must account for the constraints. Before gauge fixing,
we had the first-class constraints

=0, V-E=0.
In the process of gauge fixing, we imposed the additional constraints
A®=0, V-A=0

and now 70 = A = 0 are automatically satisfied since we have eliminated those variables
entirely. The remaining constraints are now second-class. They are not obeyed by the naive
commutators, as, for example,

[V-A(x),V-E(x)] =iV%(x —y) #0.

e The fix is to use the Dirac bracket, i.e. the modified bracket

4169, Bx0)) = (85 = 92 ) o= )

Then in momentum space, we have

[Ai(x), E(y)] = i/dp <5ij — p@'pj> P (x=¥)

Ip|?

so that 0;A; and 0;F; each have zero bracket with everything else.

e Formally, because our theory has constraints, we would like to define it on a subset of the full
phase space. However, explicitly reducing the three degrees of freedom to two would be quite
ugly. Thinking geometrically of Poisson brackets {f, g} as the rate of change of g under the
flow generated by f, the Dirac bracket amounts to adjusting the flows so that they stay on the
constraint manifold, giving the same result.

e Now, the usual mode expansion gives

Alx) = / S, (p)(ale®™ + arlem)

and
2
E(x) = / dp (—i)\/@ > e (p)(ape™* — alfe PX),
r=1

The polarizations €,(p) remain vectors, not operators, obeying the same constraints as before.
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e One can show that the commutation relations above lead to the usual result
la, a3 = 6"#(p — @)
with all others zero. This can be derived using the completeness relation for the polarizations,

p'p!
Ip|2

> ei(p)el(p) = 67 —

r=1

e Finally, we substitute our mode expansion back into the Hamiltonian, which gives

2
H= /d‘p|p|2aya;
r=1
which confirms the excitations all have energy p.

e Switching to Heisenberg picture and applying the completeness relation gives the propagator

_ _ i Pili\ —ip(z—y)

D;i(x —y) = (0|TA;(x)A;(y)|0) = [ dp———— [ 0;j — e PETY)

5o =0 = OTA LW = [an (05 P8

Unfortunately, the result is far from Lorentz invariant. Instead we’ll redo the quantization
procedure keeping Lorentz invariance explicit throughout.

Note. When treating the electromagnetic field, we typically either consider the quantized version,
or the classical limit, which arises out of states with many photons. However, it is also valid to
consider states with one photon, and see what the quantum theory says about them. For massive
fields, the one-particle states would be useful in the nonrelativistic limit, where there isn’t enough
energy to make more particles. For photons, this doesn’t apply, but considering one photon at a
time is still interesting since many processes involve only one, or a few photons.

We can write a general state containing one photon as

2
) = / ip Y e (D) (p)as[0).
r=1

Here, we are working with a basis of one-photon states that diagonalizes momentum p and helicity,
so Y, (p) is the “wavefunction in momentum /helicity space”. It is normalized in the usual way,

2
JES TSI
r=1

Unlike nonrelativistic quantum mechanics, in quantum field theory it is simpler to start in momentum
space. We can define a position operator by noting that, by the canonical commutation relations,
we should have x = —iV where the gradient is in momentum space. (This operator is formally
called the Newton—Wigner position operator. One can show that this is the unique candidate
for x which transforms appropriately under the Poincare group.) There is no problem in defining
a position space wavefunction, by taking the Fourier transform. Next, we can define the orbital
angular momentum L = x X p, which has the same value on one-photon states as the orbital angular
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momentum derived by Noether’s theorem for the fields. The spin S is already defined, taking values
+p depending on the polarization, and the helicity is h =p - S.
However, this has a serious problem, which can be seen by defining a vector-valued wavefunction

2
PB(p) =D e (p)ihr(p).
r=1

This wavefunction obeys the transverse constraint, p - ¥ (p) = 0, which means the position space
wavefunction obeys V -1(x) = 0. But in position space, the position operator just multiplies by x,
which does not preserve this property. More formally, Wigner’s classification tells us that photons
only occupy helicity states A = 41, with A = 0 forbidden. But x does not commute with helicity,
since it does not commute with p, so it introduces a A = 0 component. One can restrict x to the
A = £1 subspace, but then it no longer has the right transformation properties. This problem
also applies to L and S. Intuitively, these rotate the field rigidly in space, and the field value
itself, and rotating the two independently will turn transverse polarizations into longitudinal ones.
More generally, this problem does not occur for massive particles, where one can boost to the rest
frame and straightforwardly construct the operators there. For massless particles, the problem only
appears for helicities of |A| > 1, since otherwise there are no missing helicities.

Note that (p, k) is not the only choice for a complete set of commuting observables for one-
photon states. For example, if one wants to talk about angular momentum, one can diagonalize
(p,J?, J.,h) or (p,J?,.J,, P) where P is parity. The position space wavefunctions involve spherical
Bessel functions and spherical harmonics, and are known as vector multipole fields.

The obstruction above is usually described by mathematical physicists as saying that “the position
of a photon is meaningless”, which is probably overenthusiastic. There clearly is no problem with
confining a photon in a cavity or a beam.

Note. There are yet more subtleties even when the Newton—Wigner position operator exists. In this
case, there exist states that are perfectly localized in a given reference frame, but localization is not
Lorentz invariant: the very same state is not perfectly localized upon applying a boost. (However,
this might not be relevant in an experimental situation where the detector defines a preferred frame.)
Furthermore, the wavefunction spreads out faster than the speed of light, a result known as the
Hegerfeldt paradox. The easiest way to see that causality is not actually violated is to return to
the field picture. This is one of the reasons modern particle physics sources often avoid the topic of
one-photon wavefunctions: they have historically led to much confusion.

4.3 Gupta—Bleuler Quantization

Alternatively, we may impose the constraint at the level of the Hilbert space.

e We instead consider the new, “gauge-fixed” Lagrangian
1 1
4 2¢

where £ is a number. Naively, we have changed the theory, and this will be justified below by
showing the S-matrix is independent of &. But it’s more correct to say that the non-gauge-fixed

L=—"F,F" (0, A")?

theory isn’t defined as a quantum theory at all, and we’re really checking that the specific way
we gauge fix doesn’t matter. We’ll derive this again in a more satisfying way with the path
integral, where the extra term falls out naturally by restricting the integral to gauge-inequivalent
configurations.
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e To motivate this choice, note that if & were a field, the equations of motion would be
DPAF — (1 —1/€)0*d" A, =0, 0, A" =0
so & acts as a Lagrange multiplier that enforces Lorenz gauge.

e However, we don’t want the extra auxiliary field £, so we instead let £ be a number. A natural
choice is ¢ = 1, where the equation of motion becomes 9?A* = 0 as it is in Lorenz gauge.
However, note that the Lorenz gauge condition is not enforced, i.e. we don’t have 9, A* = 0.

e Next, we perform canonical quantization. The new term ensures all fields are dynamical,
0=-9,4", ' =0A"- A"
Below, it will be more convenient to integrate by parts, yielding the new canonical momenta,
1 .
L= —58#14,,8“14”, = —AF.
Next, we impose the Lorentz-invariant canonical commutation relations

[AM(X), Ty (Y)} = Z'?7W5(X - Y)

with all other commutators zero; note the extra minus sign, because of the minus sign in 7#.
We haven’t imposed any constraints, so there are no issues with Dirac brackets.

e Next, we perform the usual mode expansion, giving

(p)(a)\e 1px+a/\T sz)

%ﬂf

in Heisenberg picture, and

3
’p| . —ipx T ipz
:/d‘p\/2(+z) E ez(p)(ai‘,e P —ag e'’P?)
A=0

where the canonical momentum has a +i rather than a —i because m# = —A*.
e Consider a photon of momentum p* and let n* = (1,0,0,0). Then we define

— €, = n, is the timelike polarization

0
n
1

€

and ez are the transverse polarizations, obeying

e'-n:el-p:O, €.l =59
— ei is the longitudinal polarization, defined to be orthogonal to all the others,
€ O Pp = (P - 1)

and normalized to have norm —1.
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For example, when p* = (E,0,0, E), these are simply the standard basis for R*. Using these
definitions, we have the orthogonality and completeness relations

AN AN AN
€ -€ = 77 ) euey 77/\)\’ - T’HV'
e The resulting commutation relations for the creation/annihilation operators are

rt ’
[y, a3 1= - §(p — q).

Then there is a minus sign for the timelike polarizations, which have negative norm, as we
saw for the incorrectly quantized spinors. That is, our naive canonical quantization procedure
hasn’t given us a Hilbert space at all, because the inner product is not positive definite.

Next, we remove the unphysical degrees of freedom by imposing the Lorenz gauge constraint on
the naive Fock space.

e The simplest idea is to set 9, A" = 0 as an operator equation in Heisenberg picture, but this is
unacceptable as it sets 7° = 0. We can also attempt to identify a set of physical states by

0, AM W) = 0.
However, this is also too restrictive since not even the vacuum is a physical state.

e Finally, consider writing A4, = A:[ + A, where A;’ has positive frequency, and hence contains
only annihilation operators. Then we define physical states by the Gupta-Bleuler condition

8“A:[|\IJ) =0
so that the vacuum is indeed physical. This is equivalent to
(U'|0, A*|T) = 0.
That is, we demand the operator 9, A" is zero when restricted to the physical states.

e Explicitly, we define the one-photon states by

p.&) = V2[plaxal (p)I0), € = anmne™

AN

where £ is a polarization vector. Then we have
(a.€'Ip,&) = —2/pld(p —a) (&' - ).
e Using the strange convention above, the Gupta-Bleuler condition is simply
pufu =0.
This eliminates the negative-norm timelike photons, but we still have the zero-norm states

Ip.£5) o (af(p) — a}(p))[0)

which are combinations of timelike and longitudinal photons, with p* oc £&#. We need a relative
minus sign between the terms above, even though p*  (1,0,0, 1), because of the minus sign in
the commutation relations for timelike photons.
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e More generally, a basis for our Fock space contains elements of the form |¥) = |¢))|¢) where
|1)) contains transverse photons and |¢) contains timelike and longitudinal photons. Then the
allowed |¢) states satisfy the Gupta-Bleuler condition

(ap — ap)lg) =0

so that the allowed |¢) are of the form |¢,) = (agT - a?l’)T)"|O), which have zero norm for n > 0.

The presence of these states reflects the fact that Lorenz gauge is not a complete gauge fixing.

e We claim the zero-norm states decouple, in the sense that they have zero expectation value for
all gauge-invariant observables. For example, the Hamiltonian is

3
H—/d’p|p] <Za;) a;—aop a%).
i=1

However, the Gupta-Bleuler condition implies <¢|agTai’, - agTaop]qS) =0, so the |¢,) have zero

energy. Thus, for a free theory, one can think of the states |1))|¢,) as all being ‘gauge equivalent’
to 1) |¢o), yielding a Hilbert space where all states have positive norm.

e On the other hand, zero-norm states do affect the expectation value of A, as we have
(On]Ap(x)|Pn) = Oucr,  0MOuar = 0.

This is acceptable since A, is not gauge-invariant. Indeed, this is the exact analogue of the
remaining classical gauge freedom A, — A, + 0, with 049, = 0.

e We cannot ignore the zero-norm states entirely. In an interacting theory, they appear as
intermediate states in scattering processes, though we will see that the Ward identity guarantees
they decouple from initial and final states. They are also required to maintain Lorentz invariance,
because a boost can turn a transverse polarization into a partly longitudinal one.

e Finally, we have the Lorentz-invariant propagator
oV A
E
p

where above we worked with & = 1, the numerator comes from the sum of all four polarizations,

(0T Au(2) A, (1)[0) = / dp

)
p? + i€

and the minus sign ensures the right sign for the spacelike polarizations. The choice £ =1 is
called Feynman gauge, while ¢ — 0 is called Landau gauge. Landau gauge is the quantum
version of Lorenz gauge, as the Lorenz gauge condition is imposed exactly in this limit.

4.4 Coupling to Matter

Finally, we couple our theory of light to matter.

e While naively we can write down any Lorentz-invariant interaction term involving A,,, we must
be careful to maintain decoupling of the negative-norm and zero-norm states. By the Feynman
rules, a scattering amplitude involving an external photon of momentum & and polarization
Cu(k) has the form

M =, (k)M*,

Note that by the Feynman rules, M* depends on k but not on (.
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e The Ward identity states that
k,M* = 0.

This ensures the amplitude to produce a photon with (,(k) o k, is zero, which means the
zero-norm states decouple as desired. We’ll show later that the Ward identity implies that all
unphysical polarizations decouple.

e Suppose the coupling to matter takes the form A,j*. The classical equation of motion is
O, FM = j¥

which implies that d,j* = 0, so j# must be a conserved current. Heuristically, at the quantum
level, since j* creates photons we have

M) ~ [ doe (7] @)l
so the Ward identity follows from conservation of the current j*.

e More generally, it can be shown that j# must be the conserved current arising from a global
U(1) symmetry of the action. To maintain gauge invariance, this symmetry must be gauged.

We will justify these statements more carefully later; now we turn to some examples. Note that
different sources will differ on the sign of e below.

e First, consider coupling to Dirac fermions. We have a global U(1) symmetry from phase rotation
¥(x) — e~%)(x), where we have introduced a dimensionless coupling constant e, which yields
the conserved current j# = eiy1).

e The interaction term can be written neatly with the covariant derivative,
1 - .
L= _ZFWFW + (i) —m), D,y = 0,0 + ieA ).
We gauge the global symmetry to
A, = A+ 00, Y — e~ ey
where « is a general function of . Then the action is gauge-invariant because

Db — 9 (e p) +ie(Ay + dua) (e ")) = e D b

e Given the coupling A,j*, the component 49 can be interpreted as electric charge. Tracing back
to our earlier results, this shows that particles and antiparticles have charge +e. One can also
show that charge conjugation turns e to —e, as expected.

e Note that a gauge transformation with constant parameter is just the same as a global trans-
formation, which does not take us to the same physical state; this must be true because we
can infer a conservation law from the global symmetry. Only gauge transformations where the
parameter goes to zero at infinity are ‘true’ gauge transformations.
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e Next, we turn to scalar fields. A real scalar field has no suitable conserved current, so we focus
i

on a complex scalar field ¢, which has a symmetry ¢ — e¢7"**p and conserved current

i* = ie(pT "o — (0"p1)p).

However, the naive coupling j*A,, doesn’t work, because j* depends on 0. Then if we add the
term j* A, to the Lagrangian, the conserved quantity associated with the U(1) global symmetry
changes, so j* is no longer conserved!

e It’s possible to fix this by manually adding terms, but a simpler, reliable method is ‘minimal
coupling’, i.e. replacing partial derivatives with covariant derivatives as above. We define

: 1 v
D¢ = (Op +iedy)d, L=— Ful" + (Duo) D o — m?¢l ¢
which is gauge-invariant by the same reasoning. The interaction terms are
Lin = = (ie(610"0 — (9"61)0) A, — 24,4910

which includes a two-photon vertex with a factor of 2. The equation of motion can be read off
by minimal coupling,
(D, D" +m?*)¢ = 0.

e The new conserved current associated with the U(1) global symmetry is
" =ie(¢'DM¢ — (D"¢)T¢)

and one can check that Ly = —j'* A, as required. But this final result would have been rather
difficult to guess without the benefit of the covariant derivative. Also note that to lowest order
in e, the coupling is —j*A,,. This is a universal result for gauge theories.

Note. What if we wished to introduce a mass term for the photon field? The Proca action is

1 1
E = 71F,U,VF‘MV + §m2AuA‘u.
The second term is not gauge invariant, so the theory does not have a gauge symmetry. The

equation of motion is
O FH + m2AY =0

so that, as long as the mass term is nonzero, we automatically have 9, A* = 0. Plugging this back
into the equation of motion yields the Klein—-Gordan equation,

(0% 4+ m?)AF = 0.

Hence we have three massive degrees of freedom. The quantization of this theory is much more
straightforward than the quantization of QED. We have only the second-class constraints 0, A* = 0
and 7 = 0, and Dirac brackets get the job done.

In fact, it is possible to obtain the Proca action from a gauge invariant action by gauge fixing;
this is called the Stuckelberg trick. The Stuckelberg action is

1

£:4

1
Fpu ™+ 5 (m A, — up)>.
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The action has the gauge symmetry
0A, = Oue, 00 = me.

We recover the Proca action by gauge fixing ¢ = 0. The benefit of starting from the Stuckelberg
action is that the gauge symmetry constrains the divergences that may appear in perturbation theory,
allowing one to prove the theory is renormalizable. Since the ¢ field is eaten, the Stuckelberg theory
can be thought of as the abelian Higgs model in the limit where the Higgs is very heavy, and
decouples. The Stuckelberg trick doesn’t work for a non-abelian gauge theory, at least in this form,
as in that case 0 A, is more complicated.

4.5 Feynman Rules for QED

Now we write down the Feynman rules for scattering amplitudes QED, in Feynman gauge.

e Each interaction vertex has two fermion legs and one photon leg, and gives the factor —iey*.
Here, the spinor indices are contracted along the fermion lines as usual, while the Lorentz
indices are contracted along photon lines. Momentum is conserved at each vertex and loop
momenta are integrated as usual.

e Internal lines get the Feynman propagators,
ip+m —int
fermion: L, photon: “ —.
p% —m?2 +ie p? + i€

External fermion receive the usual factors, while incoming and outgoing photons of momentum

p receive factors €,(p) and €,(p), respectively. As with the fermion factors, this can be derived
from the LSZ analysis for photon fields or less rigorously in the interaction picture.

Strictly speaking, both external fermion and photon lines should receive factors of v/Z. and
Vv Z 4, respectively. We ignore these issues for now because we are focusing on tree-level QED.

For charged scalars, we have the Feynman rules

s q —ie(p+q)u and + 2ie’n,,
» T

The factor of 2 arises because the A“AM(;S% term has two identical particles but no compensating
factor of 1/2!. Note that for the sign to be right in the first term, the momentum arrows need
to be oriented along the particle flow arrows.

Note. If we had quantized in Coulomb gauge, we would have more work to do. In the presence
of matter, we no longer have Ay = 0. Instead we find V24, = —e;° and we may eliminate Ay by

substituting
.O /
JU (1)
Ag(x,t) =e [ dx' -1~
o(x,1) / Am|x — x/|
However, this makes the action nonlocal in j. Thus we have both a non-Lorentz invariant propagator
and a nonlocal current-current interaction. With some effort, they can be combined into the Lorentz

invariant propagator above.
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Symmetries give us some useful identities.

e If we had quantized with a general £ above, we would have found the propagator

(- 02 ).

b

a p? +ie
We will show later that we always get the same quantum theory regardless of the value of &.

e For now, we can show that £ doesn’t matter at tree level. For concreteness, consider s-channel
electron-positron scattering, with incoming momenta p and ¢q. Then the photon has momentum
p + q, and the extra term above contributes

v(p)v*(Pu + gu)ulq) = (@(p)p)ulq) + v(p)(du(q)) = (m —m)v(p)u(g) =0

where we used the on-shell spinor conditions,

(p —m)u(p) = u(p)(p —m) = (p + m)v(p) = v(p)(p + m) = 0.
Similar reasoning holds for all tree-level diagrams.

e The Ward identity gives a useful result for polarization sums. Define M* as above and let
k* o (1,0,0,1). Then the Ward identity implies

kyME =0, M= M.

Now, the sum over physical polarizations is
2
DM = MU 4 M2 = MU 4 [MP2 4 [MP2 — MO = = MPM?
A=1

by the Ward identity, so we can replace a sum over physical polarizations with a sum over all
polarizations; this will be useful in some QED calculations.

e This result shows why it is possible to ignore the negative-norm states: the amplitudes to
produce the unphysical states cancel out. Let P be the projector onto the space of transverse
polarizations. Then our result above heuristically says

stps = sts.

Using the unitarity of the S-matrix on the entire Fock space, we have (PSP)!(PSP) = P.
Then the restriction of the S-matrix to the subspace of transverse polarizations is unitary, as
desired.

e Note that unphysical polarizations are still produced in intermediate states, as shown by the
photon propagator being proportional to 7,,. We cannot simply ignore these unphysical
polarizations entirely, because the transverse polarizations alone are not Lorentz invariant; one
can perform a Lorentz transformation on the field to convert a transverse polarization into an
unphysical one. That is, gauges that restrict to transverse polarizations only, such as Coulomb
gauge, are necessarily not Lorentz invariant.
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e In the case of a massive vector field, there is no gauge symmetry; instead we have three physical
polarizations and a single negative-norm polarization with e*(k) o k*. In this case, a direct
application of the Ward identity k,M* = 0, which still holds, is enough to show the unphysical
state decouples.

Example. Compton scattering. Two diagrams contribute to the amplitude iM, as shown below.

£, () Eanlq) ) JJJ £oulg)
LLLLL JJJ‘H + LLLLLﬂ
u(p)

u(p) u(p)

u(p)

oz (B dEmv (B MmN
= z(_ze)Qu (p,) ( 'u(p_l_ q)g — m2 . + U(p — q,)g — m2 £ u (}5) Einegut
If we wish to sum over final polarizations and average over initial polarizations, we could use the
identity derived above from the Ward identity. Alternatively, we can use this result to check the
Ward identity. Setting e, = ¢, we get
2p-q 2p" - q

(P+q?—m>  (p —q)*—m?
where we used the on-shell spinor equations and ¢ = ¢q¢ = 0. Note that the Ward identity doesn’t
hold for each diagram individually; it is a result for amplitudes, not diagrams.

M x =1—-1=0

Finally, we recover the Coulomb potential.

e First, consider electron-electron scattering, with the following amplitude.

o [B(0" )y u(P)] [a(7").u(d)]
(p' —p)?

= —i(—ie)

e In the nonrelativistic limit, the spinors become u(p) — vm(&,€)7T. Then the only term in the
spinor contractions that contributes is ¢ = 0 (which means the interaction is mediated by a
timelike photon) giving a numerator of (2m)?, canceling the relativistic normalization.

e Working in the center-of-mass frame, the process is elastic, so the denominator gives a factor
of —(Ap)? where Ap is the momentum transfer. The nonrelativistic amplitude for scattering
is M ~ —iU(Ap) by the Born approximation, giving

U(p) = NG
which is a repulsive Coulomb potential.

e Next, we consider electron-positron scattering. In this case, we pick up a sign flip from fermionic
statistics, as in Yukawa theory. In Yukawa theory, there was an second sign flip since vv — —2m,
but here we instead have 77°v — 2m. Then all the logic above goes through as before, and the
result is an attractive Coulomb potential.
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e Thus, we have shown that while forces mediated by spin-0 particles are universally attractive,
forces mediated by spin-1 particles are not. One might say the sign flip really comes from the
negative norm of the timelike photon.

e The same sign flip can be found in scalar QED. For example, we have:

(2m)?

)2@+ﬂw@+¢»
_(ﬁ'_ia"r)Q

w-pr

= —iny, (—ie

Then particles with the same charge repel, and again only Ay contributes. If we flipped the
charge of one of the incoming scalars, then we would get a sign flip because the momentum
factors are correlated with the charge flow, giving attraction.

Note. More intuition for the sign. We consider coupling to a current j#, so that at lowest order
the energy of interaction of two currents is

EN/MWWTMMMM

We work with a massive photon for simplicity. Naively, since each component of A, satisfies
the Klein-Gordan equation, we should sum over all four polarizations, giving a numerator of 7, .
However, since we automatically have d,A* = 0, the polarizations satisfy k"¢, = 0, or equivalently
we are missing the “timelike” polarization e ~ k*, called so because it is (1,0, 0,0) in the particle’s
rest frame. Then in a general frame, we have
v
S e k) =~ +
A

This gives the propagator for a massive vector,

— N + ikukl,/m2
k2 —m?2+ie

Dw/(k’) =

Now we take the mass to zero. For a massless photon, we can only couple to a conserved current,
so that k,J#(k) = 0 and the singular second term vanishes; then the spacelike components have the
usual sign and the timelike component has the opposite sign. This is why parallel currents attract
in electromagnetism but like charges repel!

Note. Guessing the propagator for gravity. In general, the numerator of a propagator is simply
the sum of projections onto polarizations. Define the spin 1 numerator as —G . (k), we have

as can be checked by explicit computation in the rest frame. Now for spin 2, there are five matrix
polarizations satisfying
pela) — pv (a)
ke, =0, n'e, =0

v
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which project away the spin 1 and spin 0 components. Applying these constraints to the most
general candidate built out of G, and k,, gives

Gu)\Gya + G[LUGV)\ - (Q/B)G;LVG)\O'
k2 —m? + ie

Dyyo(k) =1

where the overall constant can be found by evaluating in the rest frame. Gravity couples to the
stress-energy tensor, and its conservation means we can replace G, with 7,,. It turns out that in
proper GR, the massless limit converts the 2/3 to a 1.

The sign of the gravitational force is determined by the sign of Dgg o, which is indeed positive.
(Another way of understanding this is that the sign flip for spin 1 occurs twice; universal attraction
holds for even spins.) Pressure is also attractive by the same amount as energy density, since
D;; s = Doo 00, as we know from the notes on General Relativity.


https://knzhou.github.io/notes/gr.pdf
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5 Quantum Electrodynamics

5.1 Cross Sections and Spin Sums
In this section, we do an extended example to demonstrate ‘technology’ for QED calculations.

e We consider eTe™ — ptu~, which is simple since there is only one diagram, the s-channel.

We set the initial spin polarizations to s and s’ and the final polarizations to r and 7’.

e Applying the Feynman rules, we have

- 2
iM@ﬁUWUZSQ@MﬂW%@MM%WWMH» q=p+p =k+Fk.

Often, the initial state is unpolarized, and the detector cannot measure the polarization of the
final state. Then the squared amplitude relevant for the cross section is

M= 5 3 5SS M)
S s’ r oo

e Using the identities (v°)T = 4% and 799#1" = (v#*)f, we have
(g us)* = usyHvg.

A similar rule holds in general: the gamma matrices just reverse in order, and there’s an

additional sign flip for every factor of 7° since 7°4°7? = —+® = (—+°)'. For example,

(s 'y Pus)* = Ty’ v oy .
In our current case, the total squared amplitude has two factors,

1et

|M |’?ot = 4 E (ES’YHUSIESVYVUS)(i’/‘//YMU'I‘E’I‘/YV/UT/)
ss'rr!

where we suppress momentum arguments.

e We can simplify this using the completeness relations
Z us(p)us(p) = p + me, Z vs(p)Vs(p) = p — my.
S S

Carefully keeping track of spinor indices, we find spinor traces, giving

1et

dqt
More generally, we will have multiple diagrams that contribute, so the squared amplitude will
have cross-terms.

|M|%ot = tl"((;'ﬁ + me)')’“(p// —me)v”) tr((k/[l - mu)')’u(% =+ mu)')’u)'
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e Thus, we need to evaluate the traces of gamma matrices. We use the identities
tr(odd number of ¥#) =0, try#y” =4An*, ka7 = 40P — Pyt + nHontP).
For pseudoscalar and pseudovector interactions, we will also need

tr(y°(zero to three ¥*)) =0, try°yHy"y 77 = —4iel?,

e These identities can generally be proven by inserting the identity, in terms of ()2 or (7°)2,
and using the anticommutation relations; the v° identities can be shown by noting that the
result must be a totally antisymmetric tensor.

e A more general technique is to recall that S[A]~!y#S[A] = A*,y”. Therefore, if we “transform”
each gamma matrix on the left-hand side by conjugating by S[A], the trace remains invariant,
but the right-hand side transforms like a Lorentz tensor, or a pseudotensor if v° appears. Thus,
the right-hand side must be a Lorentz invariant (pseudo)tensor, which can only be built from
n* and e*P?. This fixes the answer in all cases above, and is also useful for larger traces.

e We can express antisymmetrized products of gamma matrices as

5

7y’ = i

7 .
— 5 mno" 7 1Y, APyl = POy P

In fact, the identity, v*, v“4¥1, v#~° and 4° form a basis for the space of 4 x 4 matrices; we
used this when analyzing all Dirac bilinears above.
e Finally, we have
V=4 Y= =297 A=A AP = =207
However, these particular identities change in dimensional regularization, as we’ll see below.

e Sometimes it’s useful to rearrange things using the Clifford algebra,
P4 =2p-q—dp-

e Note that the 7° identities use the convention

0123
e =1, e€p2=—-1

This is the opposite of the convention in general relativity, where the volume form naturally
has lowered indices, so €123 = /|g| > 0.

e Applying these identities to our result and setting me to zero gives

64
M2, = 8q4 (0B )+ (& - k)oK + (- )m2)

Working in the center of mass frame, let the initial energies of the particles be F, and let the
outgoing muon come out at an angle 6 from the incoming electron. Then

My =€’ (1 + mZ/EQ +(1- mZ/Ez) cos? 9) .



77 5. Quantum Electrodynamics

e Finally, we may substitute this into the 2 — 2 scattering cross section and integrate for

4o 9 9 e?
o= 3Ecm\/1+mH/E(1+mu/2E ), a= s

Here, the factor in parentheses is determined by the dynamics of QED, while everything else is

determined by the “kinematics”, i.e. by dimensional analysis and the volume of available phase
space. For example, for Ecp, > m,, we must have o o< 1/ E2_ by dimensional analysis.

Note. A taste of real experimental particle physics. Currently, there are many experiments searching
for the dark photon, a hypothetical particle whose motivation is described in the notes on Cosmology.
The dark photon acts like the regular photon, but it has a mass m 4/ and couplings ee to fermions,
where € is the kinetic mixing parameter. Accelerator experiments attempt to produce the dark
photon and detect its decay. The dominant production channel depends on the experiment, such
as whether it uses lepton or hadron beams, but some important production channels are:

e Electron-positron annihilation, ete™ — yA’. At high energies, the rate for this is € smaller
than the rate for ete™ — 7.

e A’ Bremsstrahlung. Most processes can also produce an A’ by attaching it to a fermion line.

e Meson decay. For example, pions can decay as m° — v+, though we won’t be able to calculate
this rate for some time. However, it is simply related to the rate for 7% — ~vA’.

The A’ can then decay, e.g. through A’ — eTe™, which is trivial to calculate given what we already
know, or through A’ — 77, which is somewhat more tricky. The way we detect this decay
depends on the lifetime of the A’, which generally scales as 7 ~ 1/T' ~ 1/ae?m 4. The dark photon
will travel a distance ~yer, but the opening angle of the decay products is ~ 1/, so the quantity
that determines experimental resolution turns out to be

103>2 10 MeV

{~cr ~ (1075m) <
€

mA/

For ¢ < 10 pm, the decay is “prompt”, i.e. it happens at the same point as production, up to the
detector resolution. In this case, individual dark photon events look like background events, but they
can be found by computing the invariant mass of the decay products and looking for a statistically
significant bump at m 4. For larger ¢, we enter the “displaced” regime, where the decay products
can be measured to be coming from a point away from the interaction point. Here the signal
rate tends to be lower, but measuring a displaced decay dramatically cuts down on backgrounds.
Finally, if ¢ is larger than the detector, we enter the “long-lived” regime, where the dark photon
flies out undetected. These can be detected by looking for “missing energy/momentum”, but this
procedure introduces its own backgrounds and uncertainties. Alternatively, one can search for the
dark photon’s decay inside a shielded secondary detector, far downstream of the main detector.
These events would be very rare, but backgrounds are very low. Furthermore, in this case the
dark photon doesn’t need to be traced back to the event that produced it, so we can enhance the
luminosity by using a “beam dump”, crashing a beam into a wall rather than colliding it with another
beam. Every one of these options is being considered by several completed, ongoing and proposed
experiments around the world, including BaBar, Belle 11, APEX, MAMI, MESA, DarkLight, HPS,
DarkQuest, NA48, and NA42 (for prompt and displaced decays) and GAZELLE, CODEXb, FASER,
MATHUSLA, E137, E141, E774, NA64, CHARM, NuCal, and NA62 (for long-lived particles).


https://knzhou.github.io/notes/cos.pdf
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5.2 Ward-Takahashi Identity

In this section, we justify the statements about the Ward identity made earlier. We begin by
covering the Schwinger-Dyson equations.

e For simplicity, consider a free real scalar field. The classical equation of motion is

575_— 2 m2 xTr) =

The quantum Heisenberg fields also satisfy the same equation.
e For the two-point function, we have
(0% +m®)i(0|Td(x)p(21)]0) = &(x — a1)

where the delta function comes from differentiating a step function, and we use the equal-time
commutation relations. By extending this reasoning, we have the Schwinger—Dyson equation

OIT Z550(w1)-..- 6an)l0) = S OITo(1) . (e)3(w = ) .- ()]0

j=1

where the hat indicates a missing argument; it is the analog of the classical ‘equations of motion’
for correlation functions.

e Heuristically, the Schwinger-Dyson equation says that correlation functions in classical field
theory obey the classical equations of motion, while correlation functions in quantum field
theory are corrected by ‘contact terms’ which correspond to the emission and absorption of
virtual particles; accordingly, classical field theory Feynman diagrams have no loops.

e Off-shell, the Noether current associated with the symmetry d¢(x) satisfies

) 68
a,u]“ = _5¢(x) dp(x)

so the Schwinger—Dyson equations become

n

0u(0IT (@) (1) . .. §(0)[0) +i Y (O[T h(x1) ... §(x;)66(2)(x — ;) ... $(4)[0) = 0.

J=1

This result is called the Ward—Takahashi identity; it is the analog of classical current conservation
for correlation functions. They are generalized in Yang—Mills to the Slavnov-Taylor identities.

e We have only justified these results for a free theory, but the same results hold for an interacting
theory, where §5/0¢(x) simply gets more complicated; we will justify this with the path integral
later. One caveat is that correlation functions generally involve divergent loop integrals that
must be regulated. If we cannot find a regulator that respects the classical symmetry, then the
symmetry is anomalous and does not hold at the quantum level.

Now we see how these results imply the Ward identity.
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e By the LSZ reduction formula, a scattering amplitude involving an external photon |k*, £#(k))
and n other external particles has the form

(Fli) ~ €7 (k) /dxe“mag OITA(x)... |0).

e In Feynman gauge, the classical equation of motion for A* is 9?A* = j*. Then we have
O2(0|T Ay() ... |0) = (0|Tju(z)...|0) + contact terms

where the contact terms contract our photon with another external photon. This represents a
disconnected contribution and hence doesn’t contribute to the connected S-matrix.

e Now set ¥ = k#. Integrating by parts turns the momentum into a derivative, giving
0"(0|Tj,(z) . ..|0) = contact terms

by the Ward—Takahashi identity. Since j* is the conserved current associated with the U(1)
symmetry of the electron field, we get a contact term for each external electron. None of these
terms contribute to the S-matrix because in each term, the momentum of one external leg will
be displaced by £k from where it should be; this proves the Ward identity.

e Alternatively, backing up a step and removing the LSZ pole cancellation factors, we have derived
an identity between off-shell momentum-space correlation functions, where a correlation function
involving an external photon is equal to a sum of correlation functions without it, where the
external electron momenta are shifted by +k. This is the form of the Ward—Takahashi identity
presented in Peskin, where it is proven diagrammatically.

Note. More generally, any amplitude M*” "'e,(}) e(f) ... will vanish if any nonzero number of the €(®)
are made longitudinal. However, in non-abelian gauge theory the equations of motion are more
complicated, and the above argument is not applicable. It turns out that the amplitude still vanishes
if any one of the ¢ are made longitudinal, but the rest must be transverse.

This leads to some subtleties. For processes involving off-shell gluons, we cannot naively replace
sums over physical polarizations with 7, as we did for QED. However, the extra contribution due
to including the extra unphysical polarizations can be cancelled by ghosts. For example, in the
amplitude for gg — gg, the extra unphysical contribution can be cancelled by adding the amplitude
for qg — c¢. This latter amplitude contributes negatively to the cross section, which is possible
because the ghosts have negative norm.

We now explicitly link current conservation and gauge invariance.

e Write the action as
S = Sa[A] + Sint[A, ] + Se[d].

In retrospect, we see that our derivation of the Ward identity only requires .S to have a global
continuous symmetry with conserved current j# that couples to A* as

5Sint[A7 gb] 71
54, 7

This is the first step in the derivation, and conservation of j* is the second.
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e We claim that if A* couples to a conserved current in a massless vector theory, the action S must
be gauge invariant. To see this, consider the global continuous symmetry ¢(x) — ¢(x) 4+ edp(x),
which leaves S invariant. If we promote € to €(x), then

08 = /dxj“({)ue(a:) = —/dm (0u)")e(x)

where the first step follows by Lorentz invariance, and because .5 is zero when €(x) is constant.
Comparing this to our earlier expression shows that j# = j#.

e Next, using our original hypothesis we have

(SSint " .
/dm <5A# +37 >8#e(x)—0.

As we’ve just seen, the second term is the change in the action due to the local transformation
d(x) = P(x) + e(x)dp(x). The first term is the change in the action due to the local transfor-
mation A, — A, + J,€(z), where we used the fact that S4[A] is gauge invariant. Thus we have
shown that the full action has a gauge symmetry.

e The converse of this statement follows from running the steps in reverse. If there is a gauge
symmetry, taking e constant gives a global symmetry with conserved current j#, and the
variation of the action under the gauge transformation is

6Sint o o
/da: <5Au +7J >8Me(a:)_0

as before. Since 0,€(x) is arbitrary, the term in brackets is zero.

e In the case of a massive vector theory, there is no gauge invariance, but the Ward identity still
holds if A* couples to a conserved current j#. A map of equivalences is given below.

WQ"Q—Tﬁ !{qllo.i i{'

Wurc\ (%HW &N A’/W{@S b canm/ﬁjy

g{z(ou‘o,ﬂn} of
w1 Pl\‘ysfﬂ'  Fofe

Congisfnt ”\w\/ Jouage fhvan ance (ff M“N/eJJ)
All of these statements are so closely related that the Ward identity is sometimes called a
statement of ‘current conservation’ or ‘gauge invariance’.
5.3 Electron Self-Energy

Next, we give a quick overview of radiative corrections.

e We will call the parameters in the Lagrangian bare parameters, and write the bare fermion
mass as mg. The bare propagator is the tree-level propagator,

(e L M0) o i
Si(z —y) = [ dpe—Ple—y) W T 70 /d ip(z—y)
r@=y) / pe p? —mi +ie pe P —mo + ie

where the latter notation is just suggestive, motivated by ‘factoring the difference of squares’.
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e We define the electron self-energy ¥(p) by the sum of 1PI diagrams,

A——(P)—B = —iZ(p)as

By Dyson resummation, the full propagator is
7

dp e~ PE@=Y)
/pe P —mo — X(p) +ie

and hence we call X(p) the self-energy of the electron. Note the self-energy has two spinor
indices which contract with the spinor indices of the incoming and outgoing electron.

e Similarly, we consider the full photon propagator. It is corrected by Dyson resummation of the
1PI contribution,

IT; "\/‘\J'\/\Jv = 11" (¢%)

and I1"V(g?) is called the self-energy of the photon or the vacuum polarization.

e Finally, the interaction vertex receives radiative corrections, and summing all these corrections
gives the effective vertex,

7 7 7
)PP’\—{— A—i— = /P%’\\z —iel*(p, p’).

We only count amputated diagrams, which in this case coincide with 1PI diagrams.

e Generally, we will find UV divergences from virtual particles with arbitrarily high momenta;
they must be tamed by regularization. There are also IR divergences for loops with photons;
these cancel against IR divergences from the radiation of soft photons.

Note. One strange feature of Dyson resummation is that it involves summing over diagrams of all
orders, even though we only calculate the 1PI diagrams (and most other things) to a fixed order.
For instance, if we calculate the sum of 1PI diagrams up to O(e?), then the Dyson sum includes
additional contributions of O(e*) and higher. But this extra accuracy seems pointless, because there
are also 1PI diagrams of O(e*) we're neglecting!

The real point is that in processes where the intermediate propagator is nearly on-shell, the higher-
order terms in the Dyson sum become important. To see this, note that > ~ mg on dimensional
grounds, so each term in the Dyson series is suppressed relative to the last by a factor

e2my eQm%
~Y

%(p®) Dy (p) ~ :

(p”) DE(p”) p—mo P —m
This ratio can be large when p? — mg is small enough, in which case the entire Dyson series has to
be summed to get an accurate answer, even at O(e?). That is, in some situations we must sum over

diagrams of all orders merely to ensure accuracy at a fixed order.
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We need to perform Dyson resummation for the photon propagator for a similar reason. For
processes with low-energy photons, the full Dyson series needs to be summed to get an accurate
result, and the result is the “running coupling” where the effective strength of the electromagnetic
interaction varies with energy, as described below. A more obscure example of this phenomenon
occurs when two nonrelativistic charged particles scatter. The propagator for photon exchange in
the t-channel can be very large, since 1/t ~ 1/v2. In this case, all the “ladder” diagrams involving n
photon exchanges are comparable in size, and must be summed to get an accurate result. The result
is a complex structure with resonant peaks corresponding to the bound states of the particles, which
matches what one finds using the nonrelativistic Schrodinger equation. These kinds of calculations
are not covered in standard introductory textbooks, but can be found in Quantum FElectrodynamics
by Berestetskii, Lifshitz, and Pitaevskii.

In the rest of this section, we calculate the one-loop electron self-energy in detail.

e The one-loop contribution is due to emission and absorption of a virtual photon, with

o (il + ) (=)
—122@) = (_16)2/6% (k2 — m(Q) +ie)((p — k)l; — p? + ie)

where we have applied the Feynman rules in Feynman gauge and introduced a small photon
mass pu to regulate the IR divergence.

e To handle the denominator, we turn it into a square with the identity

1 1 dx
AB /0 (zA+ (1 — z)B)?

which generalizes to

1 ! (n —1)!
— = duy...dans i1 .
A .. A, /0 R (Zx ) (141 + ... + 2 A"

The measure is normalized so that

/ldml...d:vn(nl)!(S(inl) =1.
0 i

e After some simplification and a change of variable, we find
2 [ Y (F +mo)y 2 2 2
iYao(p) = e / dm/dﬁ,“ l=k—zp, A=—x(1—2x)p°+zp”+(1—z)mj.
0 — 1€
This form is useful because the denominator has a simple dependence on the integration variable.

Note that the £ term in the numerator vanishes because it is odd in /.

e Next, we perform a Wick rotation to Euclidean space. Note that the d¢® integral above can
be viewed as a contour integral, with poles in the second and fourth quadrants. Then we can
rotate the contour to go along the positive imaginary axis.
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We parametrize the rotated contour with the real variable EQE, so that (0 = iﬁ%. Hence d¢° = idﬁ%,
picking up a factor of i, and

ar . m dlg 2 042
/W:Z(‘1> /(KQE—FA—ie)m’ b = (tp)" +£-£

where the sign flip occurs because the metric for (€%, €) is negative definite. Finally, we drop
the ie and regard the integral as an integral in real Euclidean space R*.

In our case, we would like to evaluate the UV-divergent integral

7 / aly
A GETNE
The simplest method is a hard UV cutoff at » = A, which gives
I ~log(A%/A)

which is a log-divergence. However, this method breaks gauge invariance, since a gauge trans-
formation can introduce arbitrarily high Fourier modes.

We instead regulate the integral with dimensional regularization (DR), using d = 4 — € dimensions.

For the angular part, note that for integer d, we have

o7rd/2
I'(d/2)

/ dQy = Vol (8971 =

where I'(n) = (n — 1)! and I'(2) has poles at z = 0,—1, —2,.... This formula may be derived

by taking the identity
d
72 = (/dme_m2>

and evaluating the right-hand side in d-dimensional spherical coordinates. We then define this
to hold for all d € C. Some useful special cases are

Vol(S') =27,  Vol(S?%) =4, Vol(S?) = 2n°.

Therefore, using this result, the measure in d dimensions with spherical symmetry is

_ i rdp ()P d(p?)
d’p = Vol($"™) (2m)? — (4m)?/20(d/2)”

Thus our integral generalized to d dimensions is

; 1 00 ud/2—1 J Ad/2_2 1d d)2 . /21
d<4w>d/2r<d/2>/o (u+A)? u(47r)d/2r(d/2)/o ze 1 —a)

where we substituted x = A/(u + A). This integral can be evaluated using the beta function,

L(a)T(5)

1
B(a, p) = /0 dea®'(1—z)f~t = Totd)
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e More generally, for an arbitrary power of p in the numerator, we have

Py 1 1 Ta+9Hre-a-19)
/ddp(pz _ A)b =i(—-1) b(4w)d/2 Ab—a—d/2 IQ‘(b)F(g) :

by similar logic, where the sign factors come from flipping the negative-definite Euclidean
signature. Some useful special cases of this result are

/ddp p? i A (47:)2/2 Alid/2F (2 ; d) :
/ddp (p? —1A)2 - (47:)d/2 AQEd/QF (4 ; d) ;
2 . B
/ddp (p? l—) A2 621(477;1/2 Alid/zr‘ <2 5 d> ;
2 . B
/ddp (p? Z—) A)3 B Z(4ﬂz)d/2 AQEd/ZF <4 9 d) .

Note that we generally end up with a factor of 1/(4m)2, which suppresses the contribution of
the loop; this is called a loop factor.

e In Euclidean signature, we have the same result with no ¢ or sign factors,

1 1 Fla+HT(b—a—9)

k2a
/ddk‘(kz T AP - (47)/2 Ab—a—d]2 F(b)l“(g)

e An alternate way to derive this result is to use Schwinger parametrization. Before doing the
angular integral, we note that

11 /OO duu™temue
a® T(n) Jo '

If we apply this to the denominator, then we would have

k,2a 1 b—1_—uA —uk?1.2a
/ddk(k2+A)b = F(b)/duu e /ddk:e k

in Euclidean signature. After doing the angular integral, the inner integral is merely a gamma
function after substitution, and so is the outer integral, giving the same result.

e Finally, we need to handle numerators, which involve spinors and the metric. We define

gwjg;u/ =d
and the Lorentz-invariant phase space as
-1
d a’ bj
L ps = <§ ) .
LIPS § by H 9 Epj

J

Formally, we suppose there are d four-dimensional gamma matrices satisfying {v#,v"} = 2¢"",
so that the trace of the identity in spinor space is still 4.
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e As a result, spinor identities that involve metric contractions change, such as
Vv =d, ¥y =2—d)y"
and
VA Py = AP+ (d = 47" A A T = =297 + (4= d)y Py

We also assume there exists a matrix 75 so that {vs,v,} = 0, though this runs into some
subtleties with anomalies, as we’ll see below.

e For the final step, we substitute d = 4 — € and take the limit ¢ — 07, using
1
D)=~ —7+0(e), z°=1+elogz+ O().
€
where « is the Euler-Mascheroni constant. For the other poles of I, we use I'(z + 1) = 2I'(z),

~ 2100

1+3
4 2

F&—1%2—2—1+7+0@) (e—2) = o

e Note that dimensional regularization is just a formal technique. It is merely a perturbative
regularization scheme, and it does not provide a definition of the path integral in d = 4.

Note. A proof of our identity for the beta function. Let us define

1
C(a, B) :/0 dr =11 —2)P 1,

We wish to prove that this coincides with the definition of B(«, 3) in terms of the gamma function.
By integration by parts, it is straightforward to see that

Cla—1,8+1) = L 0(a, )

Furthermore, by writing z =1 — (1 — z), we have
Cla+1,8)=C(a,8) = Cla, B+ 1).

It is easy to see using the gamma function recursion relation I'(z + 1) = zI'(z) that the gamma
function obeys the same relations. Since C(1,1) = B(1,1), the above relations imply that B and C
agree on integers; using their similar asymptotic behaviors suffices to show they are equal.

We now apply this technique to our divergent integral.
e Applying our results, we find
. I(2-4d/2)
T (4m)d2A2—df2
We now set d = 4 — € and taking the limit € — 0. The dimensions of /; depend on d, so we

introduce a compensating mass scale M, giving

1 /2 M? 5 ~
=1 _— — _ — - 2
1y 11_% ()2 <6 + log + O(e)> , M?*=4mxe "M"=.

Simplifying the numerator with spinor identities gives

o [ 2
Ya(p) = lim 2/0 dz ((2 —€/2)mo — (1 — €/2)zp) (i + log ]\i) .



86 5. Quantum Electrodynamics

e The same result can be carried out in Pauli—Villars regularization, where we subtract off a loop
diagram containing a fictitious massive particle of mass A in place of the photon. This is a
better approach than the hard-cutoff, and introducing an arbitrary mass scale M gives

A—oo 2T

! A? M?
Yao(p) = lim ;/0 dz (2mo — xp) (log 3]3\4—2 + log A) :

The momentum-dependent terms are the same, while the log-divergence matches with that seen
with the hard cutoff, and translates to a 1/e pole in DR.

To understand the consequences of the self-energy, we recall the spectral representation.

e Applying the spectral representation, we have
i _iZ
p—mo—X(p) p-—m

The physical mass m is the location of the lowest-lying pole, and hence satisfies

+ terms analytic at m.

p—mO—E@mtmzo.

We can extract the residue Z3 by differentiating with respect to p here, giving

d¥(p)

Zyt=1- ' :
dp |,
p—m

In both equations above, the equality p = m looks rather strange, though it’s straightforward
to use. It is a valid shortcut for a more correct procedure, as justified here.

e Since we are working to lowest order in «, the mass shift is
dm =m —mg = Xa(p = mo) + O(a?)
where we evaluated Yo at mg rather than m since the resulting error is second-order.

e We need to interpret the fact that the correction dm is divergent. The parameter m is physical,
while mg can never be measured directly. Hence we interpret our mass renormalization as a
definition of mg in terms of m in terms of the regularization parameters (e.g. € and M). As the
regularization is removed, mg diverges, but this is acceptable since it is not physical. The cost
of this interpretation is that m is now an input rather than an output of the theory.

Note. In classical electrodynamics, the UV divergence of the mass is even worse, as

2
5m~/de2~a/rffT~aA.
r

The reason the divergence is less strong in quantum electrodynamics is that when mg = 0, the
electron separates into two uncoupled Weyl spinors, which must remain massless. Then assuming
dm is analytic in my, the leading term is linear in mg, and for that term the dependence on A must
be logarithmic; indeed, we have dm ~ mqlog(A?/m3).


https://physics.stackexchange.com/questions/211499/spinor-field-normalisation-from-poles-in-the-propagator/343321#343321
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5.4 Photon Self-Energy

Next, we consider the photon self-energy on general grounds.

e By Lorentz invariance, its tensorial structure can only depend on n*¥ and ¢*¢”. By the Ward
identity, the photon self-energy is also transverse, ¢"II,,(q) = 0. (Note that this does not
imply the photon propagator is transverse; instead, this depends on the gauge.) We give a more
detailed justification of this fact in section 10.3.

e Therefore, the relative magnitude of the two terms is fixed, as

1" (q) = <77“” - q;g) f(@®).

Heuristically, iII*(q) is regular at ¢> = 0 because poles can only come from single-particle
massless intermediate states. (This is a bit too quick; there are subtleties here, but they don’t
apply to QED in four dimensions.)

e Therefore, we can pull out a ¢? factor from f(¢?) to give
i (q) = (0" — ¢"¢")(¢?)

with IT(¢?) also regular at ¢ = 0. Note that when we talk about regularity, we always imagine
a UV cutoff, since II"(q) is UV divergent.

e As a result, when we apply Dyson resummation, only the transverse part of the propagator is
affected. In general R gauge, the exact propagator is

Aun(q) = A0, (q) + A), (TP (¢)AY,(q) + . ..

. —1 QuQV) —1 quqy
= o (e — 2} e B
¢*(1 - II(¢%)) ( g 2 ¢

Then in Landau gauge £ = 0, we have propagator

0 = =gy (=)

We see the photon remains massless, since I1(¢?) is regular at ¢ = 0, and

1

Zs = 1197

e Explicitly, one can show that at one-loop, under DR,

20 ! 2 M?
s(¢?) = —=—1i drxz(l — Ztlog— ), A=m2—z(1-2z)¢*
2(q%) — lim ; rxx(l —x) (6 + log A ) my —z(l — x)q
If we had instead used a hard cutoff, we would have found a correction to I15”(g) proportional
to ", violating the Ward identity. We will see later than in the path integral formulation,
such anomalous symmetries occur because the path integral measure is not invariant under the
classical symmetry.
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The photon field renormalization leads to a running coupling.

e Consider electron-electron scattering by an intermediate photon of momentum ¢. Then the
amplitude is proportional to

(—ieg)?
1—1I(¢?)
and we are thus motivated to define the effective coupling

e(?) = ——

V1I-T(4)

Note that there are other processes that contribute, e.g. by the exchange of two photons.
However, to ‘lowest order’ this is a good estimate of the total scattering amplitude.

e As with the electron mass, I1(¢?) is divergent, so we define the physical /renormalized coupling

€0
e=—— = eg\/ Z3.

/1 —10(0)

As before, we then flip this around and regard it as an expression for the divergent bare quantity
ep in terms of the physical quantity e.

e Therefore, the effective coupling and physical coupling are related at one-loop order by

1 —TI5(0) e?
)= — 27210 = ——— +0(a?
(@) 1 —a(g?) () 1 —TIx(¢?) ()
where n 9
N 2N _ 2 _ m
Iz (q7) = 1z(q”) — 112(0) = T J dz (1 — z)log m2 — z(1 — 2)¢2

where we replaced mg with m, which is accurate up to O(a?) terms. Physically, this result
tells us that the interaction between electrons gets stronger at high energies; note that the
unphysical renormalization scale M has dropped out.

e The e that appears in Coulomb’s law, which corresponds to the typical quoted value o ~ 1/137,
applies at very low energies. At energies ¢* ~ m%/v, we instead have av ~ 1/128.

Note. Heuristically, the vertex renormalization is really what renormalizes the charge e, if we think
of e as the coefficient of the vertex factor. But as we’ll see below, this effect is exactly canceled by the
renormalization of the electron field Z5. The effect we’ve computed above is really a renormalization
of the electromagnetic field, but since its effects always appear in tandem with an electron-field
interaction, it can be thought of as renormalizing the charge.

Note. Interpreting the running coupling. In the nonrelativistic limit, the potential is

e2

a1 - Tly(—[af?))

and the real-space potential is found by Fourier transform. Taking the inverse Fourier transform is
tricky, since for high |q| the II5 factor provides a branch cut; doing this yields the Uehling potential.

Viq) =
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Alternatively, for low |gq| we can simply expand I, in a Taylor series. The zeroth order term
slightly modifies e, while the |q|? term contributes a constant to V(q) and hence a delta function
to the potential. This slightly lowers the energy of the 2s state in hydrogen relative to the 2p state,
producing the Lamb shift.

In the opposite limit, we consider a high-energy scattering where the photon is in the ¢-channel
or u-channel, so —¢? > m?. Then

2¢.2 2 -1
@) L (1- Log— =T
47 3 7 exp(5/3)m?

by straightforward calculation. This diverges for very high energies at the Landau pole of QED.

aeﬁ(q2) =

5.5 Vertex Renormalization

Finally, we turn to the renormalization of the QED vertex.

e We denote the amputated resummed QED vertex as

W =-ie,4(p.p)

amputated

e Keeping track of the fermion field renormalization, the following amplitude

is of the form

—1 v reY [ —1./ . vl
M~ () (ieaZa () up) gt~ LA a0 e T 4 ).

e The most general form possible is
I = Ay" + B(p" +p") + C(p" = p").

Since the I'*" is sandwiched between on-shell spinors, we can replace all factors of p and 9 with
m. Then the coefficients can only depend on ¢?. The Ward identity requires the amplitude to
vanish when I'* is contracted with g, setting C' = 0.
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e Next, we use the Gordan identity

A
2m 2m

7

>U(p), St = 10"

A )y ulp) = ) (

to arrive at the conventional form

Shv
TH(p,p) = y*Fi(q?) + i 5 v

F 2
o 5(q%),

where F(¢?) and Fy(g?) are called form factors.
e The first form factor 6 F; is both UV and IR divergent. At one loop with PV regularization,

1 A2 (1-2)(1-
5F1(q2):20;/0 dedydz §(z +y + 2 — 1) (long 4 xﬁ y)q2+(1—4z+22)m%>

where A = —2yq® + (1 — z)ng + 1?2, and p is a photon mass that regulates the IR divergence.
e Similarly, one finds that

2m3z(1 — 2)

1
6Fy (%) = ;/0 drdydzo(x +y+ 2z — 1) A

™
which is luckily finite. This remains true at all orders in perturbation theory.

e In the limit of small momentum transfer ¢ — 0, only F} contributes, so we define the vertex
renormalization

Lm I (p + q,p) = Z7 '4*|
q—0

The Ward—Takahashi identity can be used to show that Z; = Zs, so
lim ZoT"(p + ¢,p) = 7"
q—0

and at each order in perturbation theory,

SF1(0) = —025.

e Comparing this with our scattering amplitude, the physical charge at ¢ = 0 is eg(Z2/Z1)V/Z3 =
eov/ 43 as found earlier. As a physical application, this means that electrons and muons have
the same bare charge if and only if they have the same physical charge.

e One can show that the F5 form factor affects the magnetic moment of the electron, by

ge Q
- "9 =24+ 215(0), Fy(0) = —.
p=5 S g=2+ »(0), F2(0) 5

This is one of the most famous predictions of QED.
Note. When one speaks of the physical charge of a particle, one almost always means the charge

e(p) evaluated at zero momentum, e(0)? ~ 1/137. This is the quantity relevant to all experiments
besides those in high energy physics.
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At this point one could make a metaphysical objection: what does it mean for a “fundamental
constant of nature” to be scale-dependent? Isn’t the amount of charge on the electron fixed? The
point is that there is no such thing as a direct measurement of the charge itself; instead we only
measure how strongly the electron interacts in various situations. We’ve found that the effective
interaction strength changes depending on the scale u of the process, and there’s nothing strange,
physically or metaphysically, about that. The only reason one might think it was strange is that
the dependence happens to be very weak at low p, where most experiments historically took place.
But once we frame it this way, e(0) stops appearing particularly fundamental at all; the truly
fundamental constants are defined at high scales.

5.6 Renormalized Perturbation Theory

Next, we step back and review the structure of the loop corrections.

e For a systematic treatment of UV divergent diagrams, it suffices to consider amputated, 1PI
UV divergent diagrams; all other UV divergent diagrams can be built from them.

e As we’ll show later, it is possible to classify the divergent 1PI diagrams by power counting. In
the case of QED, the only ones are the photon propagator, the electron propagator, and the
vertex, all of which we’ve studied above. At one-loop order we found, in PV,

1 A . . 1 A 1 A .
My (¢?) = c(() ) log i + finite, —iXa(p) = aé Jmo log i + ag )plog i + finite

and A
—il5(p',p) = b(()l)7“ log i + finite

where M is the renormalization scale and A is the cutoff.

e Later, we will show that this structure persists to all orders in perturbation theory. Then the
UV divergences are completely described by the four divergent constants ag, ai, by, and cg,
where e.g. a((]l) is the O(«) term of ag.

e In bare perturbation theory, we write the Lagrangian in terms of bare parameters mg and eg
and impose a finite cutoff A, or in DR, a nonzero e. We then compute the physical electron
mass m, the physical coupling e, and the field renormalizations Zs and Z3 in terms of myg, eq,
and A. The renormalization step is to regard mg and ey as functions of m, e, and A, and vary
them as A — oo so that m and e remain fixed.

e Finally, we perform the usual perturbation theory, e.g. expanding in powers of eg with a cutoff
A. If the preceding step has been performed correctly, then when the answers are written in
terms of m and e, all divergences will cancel out of scattering amplitudes.

e In practice, we only compute m(my, eg, A) and e(mg, eg, A) to some loop order in ey. Then we
must compute the scattering amplitudes to the same order in eg.

e It might be disturbing that we are expanding in the formally divergent parameter ey. In
fact, this is acceptable because ey diverges only logarithmically, and the theory of QED has a
reasonable cutoff so that eg(A) is still small. However, we will reformulate perturbation theory
without eg below.
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e In general, a theory is renormalizable if there are only a finite number of UV divergent resummed
amputated 1PI diagrams. If there are m fields and n such diagrams, then m divergent constants
can be absorbed into field renormalizations, while n —m are absorbed into bare couplings. The
n — m bare couplings must then be specified by measurements of physical couplings.

e Philosophically, the UV divergences signal that our theory must break down at some high
scale, where some unknown physics takes over. The process of renormalization parametrizes
our ignorance about this new physics into n — m observables that must be measured. A
renormalizable theory is one where this process only requires a finite number of experimental
inputs. A truly fundamental theory must be UV finite, as string theory is believed to be.

e Finally, recall that our regularization schemes introduce an arbitrary mass scale M. The results
don’t depend on M, but higher-order corrections for a process with energy scale E contain
factors of log E/M. Then the perturbation theory converges fastest when M ~ E.

Example. Consider the following contribution to the amplitude for Compton scattering.

1/2 1/2
ZZ Z2
p p
1/2 1/2
Z3 Z3
The amplitude takes the form
1 .
(230 2y)— —— (73 %ieT Zy).

ng—mo —E(p)

/2

As we've already seen, e = eng is the finite physical charge. The factor ['*Z5 is also finite, since

T (p+ q,p) = Y"F1(¢%) + finite, Fy(¢?) = 1+ §F1(0) + finite

so that the divergent part of I'*Zs is 675 + 0F1(0) = 0 at each order in perturbation theory, as
argued earlier. Finally, the propagator is

! ! ! + ! (finite t lytic i )
— = —— (finite terms analytic in p = m).
ZQP*TTLO*E(p) p—m ZQ p
The extra terms are finite because they come from the second and higher derivatives of (), which
are finite, as the divergences in X(j) are proportional to mg and p.

We can also use renormalized perturbation theory, which works explicitly with physical parameters.
In this formulation, the action depends on the cutoff/renormalization parameters just as before, but
we split it into a finite, cutoff-independent “renormalized” piece and an infinite, cutoff-dependent
“counterterm” piece.
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The Lagrangian, called the bare Lagrangian, is

L= —%FQ + E(’L@ — mo)T/J — eOJ’Y“ZZJA,u-

We recall the exact two-point functions for photons and electrons have coefficients of Z3 and
Zo respectively. We thus define the renormalized fields

1/2 1/2
Av =72 = 2%,
so that two-point functions of the renormalized fields have no such factors.

We can thus rewrite the Lagrangian in terms of the renormalized fields as

1 — . " r
L = = ZsF2 4 Za0,(id) — o)y — 2223 et Ay

This is simply a change of variables; the Lagrangian itself is unchanged. The Feynman rules for
the renormalized fields have no Z factors, the fermion has mass m = Zymyg, and the coupling
ise = ZgZé/ 260. Applying these rules yields the same results as the original Feynman rules.

Next, we split the (bare) Lagrangian into the renormalized Lagrangian and the counterterms.
We further define the parameters e and m by

e =Zie, Zomg=m++6m

to be given a physical interpretation below. Letting Z; = 14 9;, and suppressing the r subscript,
the Lagrangian splits as

L=LW4 @
= (—1F2 + (i) — m)yp — ezﬁv%%) + <—163F2 + (102 — O ) — 651¢7“¢A”) :

The perturbation parameter is now e. The four counterterms 1, d2, d3, and d,, are are defined
order by order in a = €2/4w. The new arbitrary parameters e and m will be chosen to be more
physically meaningful than eg and my.

The Feynman rules for £() have no Z factors, mass m, and coupling e. They are UV divergent
in the exact same way as before, but with mq and e replaced with m and e. The terms in £3
lead to additional diagrams, such as

> > > = l(f) ‘52 _6111)‘

The dependence on the bare parameters is entirely captured by the counterterms.
The one-loop electron self-energy takes the form
—isM(p) = - (p) +i(psy” — o))

where Egl) is the piece due to £7(~1). Similarly, the photon self-energy in Landau gauge is

i (q) = i(g*n™ — ¢q”) (TP (¢?) — o).
Finally, the vertex factor is

—ieT " (p + q,p) = —ieTW" (p + ¢, p) — iertst.
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e Next, we determine the counterterms, which depend on the cutoff, by renormalization conditions.
In the on-shell scheme, we let m be the physical mass of the electron and e be the physical
charge measured at ¢ = 0. By construction, we also require the propagators to have no Z-factors
at the physical mass poles. Then we have four conditions,

d . .
Zr(p) =0, -5 =0, I(¢% =0, —iel(p,p) = —iex”
dp
p:m ]ﬁ:m q2:0

which fix the values of the counterterms order by order in « in terms of e, m, and the cutoff.
We have removed all dependence on ey and mg, and when the regularization is removed, all
amplitudes are finite functions of e and m.

e At two-loop order, we have two-loop diagrams involving renormalized fields and second-order
contributions to the counterterms such as 552). In addition, one-loop diagrams containing
first-order counterterms like 5%1) also contribute.

e We assumed that the counterterms above were sufficient to absorb all UV divergences. As
before, we can do this with finitely many counterterms only for a renormalizable theory.

Note. There’s a fair deal of historical confusion about renormalization. Many sources phrase the
procedure above in terms of “adding counterterms” to “cancel divergences”. This is not a good
way of thinking about it, because adding terms to a Lagrangian changes the theory. We are simply
working with a single Lagrangian the entire time, whose terms may be formally divergent but whose
physical predictions are always finite.

However, this naive picture is redeemed in Wilsonian renormalization. As we will see later, the
bare Lagrangian is the fundamental Lagrangian, while the renormalized Lagrangian can be thought
of as the effective Lagrangian after integrating out high-energy modes. The parameters in the
effective Lagrangian are closely related to physically measurable ones, because loop integrals are
cut off at a low scale and hence have little effect. The counterterm consists of the terms added to
the fundamental Lagrangian as we perform Wilsonian RG flow down to the low scale.

Note. There are a wide variety of ways to set the counterterms, called subtraction schemes. For
example, in minimal subtraction, we use dimensional regularization and let the counterterms have
zero finite part, so they’re only series in 1/e. This is more computationally efficient, and the standard
in modern calculations. Alternatively, in the off-shell scheme, we do the same thing as the on-shell
scheme, but let m above be an arbitrary parameter rather than the physical mass. Note that the
bare Lagrangian doesn’t depend on the subtraction scheme; it only affects the split into Efnl) + 57(«2).

Whenever a subtraction scheme contains a mass parameter, such as the p parameter in DR,
we have a continuum RG flow by changing the parameter. In the on-shell scheme, there is no
continuum RG, though we have the Wilsonian RG as always.

Note. The point of these other subtraction schemes is to improve perturbation theory. Generically,
a loop integral will give logarithmic factors like log(s/A2), so

S
M(s) N)\—i—)\QlogE—i—....
We may define the renormalized coupling to be the physical coupling at some arbitrary scale sq,

)\R = M(So)
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so that the perturbation series becomes
9 S
M(s) N)\R+)\Rlogs—+....
0

Then if s is very far from sg, the perturbation series doesn’t converge quickly. Thus it’s very useful
to be able to adjust so as needed. The continuum RG gives a differential equation for M(sg) as sg
is varied, essentially resumming the perturbation series.

5.7 Physical Interpretation

We now give some insight into the meaning of renormalization using simple toy models.

e We consider the general problem of fitting a quantum mechanical model to data. We try a
candidate class of Hamiltonians H () with parameters 6, which output predictions v(#), such
as energy eigenvalues. We then compute the predictions to data to infer 6.

e An important point is that the parameters # need not have a direct physical meaning. For
example, different models of quarks will have significantly different quark masses in 8, and this
is acceptable because quark masses are not physically measurable.

e Parameters that are model-independent and directly measurable by experiment, such as the
physical electron mass, are called renormalized or dressed parameters, in contrast to bare
parameters. The purpose of renormalization is to reparametrize H(6) as Hyen(6ren) so that
ideally the 6, are directly measurable, or at least can be easily inferred from the data.

e As a trivial example, consider a two-state system with

0 0 -1 A
H(g,A) = Ho + gVh, H0—<O w>’ VA—<A O>

where A plays a role like a UV cutoff. The energy eigenvalues are

1
Ei:§<w—gi\/(w+g)2+4g2A2).

If A is a very large number, the outputs F4+ are extremely sensitive to changes in g, indicating
a poor choice of parametrization.

e To avoid this problem, we could reparametrize in terms of E1, but these quantities are somewhat
complicated. A simpler option is to use gren = gA, giving the renormalized Hamiltonian

- renj\_1 ren
Hren(grenaA) = ( g g ) .

Gren w

In this case, the energy levels are less sensitive to gren for large A. The reparametrization is so
nice that we can even take the limit A — oo and find a finite result.

e Situations of this form typically arise when there is a naturally large parameter, such as a
volume or energy cutoff. Note that taking A — oo is not logically necessary; in the Wilsonian
picture we never do this because realistic theories will have some finite cutoff. The point is that
after a successful renormalization we have removed the extreme sensitivity to A, so we could
take A — oo if we wanted to; either way it shouldn’t affect the experimental outputs.
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Next, we turn to perturbation theory.

e Usually, for practical reasons, we expand perturbatively about a reference Hamiltonian Ho(u),
where p = pu(0). For example, the decomposition H = Hy + gV expands about Hp(w). The
energy levels are

2A2 272

E.=—g- 1= +0(s"), Ei=w+T—1+0().

e We see that ¢ is a bad expansion parameter because for large A, we require g << A~! instead of
the typical g < 1. Alternatively, it is impossible to expand in g at all in the limit A — oc.

e On the other hand, after renormalization and taking the limit A — oo, we have

I 9
E_ = _%—I_O(gfen)? E1 :w—l_%—i_O(gfen)

which is a perfectly well-behaved series. Thus the quality of the perturbation series depends
on the parametrization 6.

e As another example of this phenomenon, consider the Taylor series of the logarithm,

o
log(1 + g) :Z
k=1

This only converges for |g| < 1. But if we expand in terms of z = g/(g + 2), we have

1+z =2
log(1 + g) =10g<1_z> =
0

which converges for |z| < 1 and hence for all Reg > —1, much faster than the original series.
The singularity at g = —1 remains at z = —1, but all Reg > —1 are ‘sucked into’ the region
|z| < 1.

e The quality of the perturbation series also depends on the choice Hy(u) as well as the specific
value of u. Since the total Hamiltonian is always the same, these choices do not affect the exact
results, but they can affect the accuracy of a truncated series expansion. One might worry that
this reduces predictivity; thus a good choice of p is one which minimizes the sensitivity of the
results to changes in u.

e As an example, consider finding z(¢) for a particle in the potential V(z) = ax? + ex* at a large
time t = T, so that T is the large parameter. Then z(T) depends very sensitively upon the bare
parameters a and b. Now suppose we attempt a perturbative expansion. Taking Hy = p?/2m is
clearly a very poor choice; a more reasonable choice is Hy = p?/2m + az?. However, expanding
in € gives a bad perturbation series; the terms in the series depend on 71" and diverges for
T — oo.

e The solution is to work in terms of a renormalized frequency. We set
2

p
HO—%—i—ch c:a—i-che”



97 5. Quantum Electrodynamics

so that Hy describes a harmonic oscillator with the same period as the anharmonic oscillator.
Then if we perform a first-order expansion in €, we can set the ‘counterterm’ ¢; so that the
first-order correction is small for all T'. Similarly to perform a second-order expansion we would
have to also determine cs.

e The sensitivity to T has been reduced; changing variables from (a,€) to (¢, €’), where ¢ is the
renormalized frequency and e describes the amount of anharmonicity. The result 2(7") depends
sensitively on €, but not on €.
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6 Amplitudes

6.1 Introduction

In this section, we consider some of the properties of amplitudes, i.e. the quantities M(i — f)
simply related to S-matrix elements.

e Amplitudes are constrained by Poincare invariance. Note that
(f,0utli,in) = (f,out|UT(A, a)U(A, )i, in)

where U(A, a) is our representation of the Poincare group. We know how it must act on the in
and out states, since these are just combinations of independent single particles, and using this
gives us a relation between two amplitudes.

e Specifically, let us label the incoming particles with momenta p;, little group indices o;, and
discrete labels n; for the particle type, and likewise with primes for the outgoing particles. Then
Stproinid potngy = exp (iap A, (Spi — Xpi)")
<\ S TIoS0.wm)) | [ STT05, WA | Stapaumbiasatony
{eur 1 {o3} 1

In other words, we just pick up the expected transformations for the momenta and little group
labels. Here, we’ve omitted a convention-dependent normalization factor.

e We pick up additional constraints from internal symmetries, which are defined to be those that
change the particle type label n;, without changing the momenta.

e Scattering amplitudes are analytic in the momenta, so we can analytically continue them “off-
shell”. At the perturbative level, we can define this analytic continuation by simply demanding
that off-shell amplitudes can be computed using the same Feynman rules as on-shell ones.

e A simple reason this is useful is that diagrammatically, off-shell amplitudes could appear as
internal parts of larger, on-shell amplitudes.

e Another reason is that they appear when one has an external source,
L= Lo+ Lint — J(z)d().

In this case, one has a Feynman rule where a particle can appear out of the source, with a factor
iJ(x). The diagrams that contribute to the vacuum-to-vacuum transition amplitude Z[J], at
n™ order in J, have n copies of this vertex.

e Taking the Fourier transform, since J(k) can have support off-shell, the resulting amplitude
is just an m-particle off-shell scattering amplitude times factors of i.J(k;). This is important
because, as we’ll see later, Z[J] is what the path integral naturally computes.

e There is one more direct interpretation of off-shell amplitudes. We recall that the S-matrix in
the adiabatic formalism is S = U(co, —00). With the external source,

H=Ho+ Hint + J(z)p(x).
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Now, suppose we work in interaction picture by treating Hg + Hint as the “free” Hamiltonian.
In this case, the interaction picture fields are what we usually call the Heisenberg fields, and
the vacuum-to-vacuum amplitude is

Z[J) = (QIS19) = (Q|T exp (—z’ / de<x>¢H<x>) ).

By Taylor expanding the right-hand side, we see that n-particle off-shell amplitudes are just
the Fourier transforms of the vev of the time-ordered product of n Heisenberg fields.

e This point is important because we usually take for granted that symmetries work for off-shell
amplitudes or amplitudes with external currents just as they do for on-shell amplitudes, which
is not strictly justified. If we define off-shell amplitudes in terms of Heisenberg fields, then
we can establish this rigorously. For example, this ensures that momentum is conserved in
off-shell amplitudes, beyond perturbation theory, where it is clear from the Feynman diagram
expansion.

Another useful consequence of analytic continuation is crossing symmetry.

e Crossing symmetry is the statement that

M@dP)+... = )=M(.. = ...+ ¢(-p))

where ¢(p) represents a particle with four-momentum p, and <]3(—p) represents an antiparticle
with momentum —p. Note that it is impossible for both sides above to be on-shell, so this
statement must be understood in terms of analytic continuations.

e For scalars, crossing symmetry can easily be shown perturbatively with the Feynman rules,
as for every diagram with ¢ incoming there is a corresponding diagram with o outgoing. For
spinors and vectors, one picks up factors for the external polarizations, which can lead to extra
sign flips; however, these can be removed if one uses appropriate conventions for the off-shell
polarization vectors.

e Crossing symmetry can also be shown nonperturbatively using the LSZ reduction formula. This
gives an analytic formula for S-matrix elements which only distinguishes between in and out
particles by the sign of the energy in the Fourier transform. Analytically continuing a positive
energy to a negative one thus yields a crossed S-matrix element.

e For 2 — 2 scattering, crossing symmetry is especially simple in terms of the Mandelstam
variables. For example, for the process a +b — ¢+ d with Mandelstam variables s, ¢, and « and
scattering amplitude f(s,t,u), crossing symmetry implies that the amplitude for ¢+ b — @+ d,
in terms of its Mandelstam variables s, ', u/, is f(u/,t',s"). An equivalent way of saying this
is that upon expressing (s',t',u’) back in terms of (s,¢,u), the amplitude is the exact same
analytic function f(s,t,u).

e Also note that applying crossing symmetry to switch all incoming particles to outgoing ones,
and vice versa, just yields the S-matrix element related by CPT.
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6.2 The Optical Theorem

The unitarity of the S-matrix leads to useful constraints.
e We recall that we have defined
S=1+iT, T =M$(Epim— Zpout)-
The unitarity condition StS =1 gives

—i(T —=TH =T'T.

e To make this more explicit, we take matrix elements of both sides, suppressing “in” and “out”
labels, and introduce a resolution of the identity on the right-hand side. Canceling a delta
function from both sides, and considering a 2 — 2 scattering for concreteness, we have

— i(M(k1k2 — p1p2) — M (p1p2 — kiks))

= Z <H/ §§Z> M*(p1p2 = {@i )M (kiks — {q:})d (k1 + k2 — Zqi),

n

In a more abbreviated notation, this is

2Tm M(a — b) = Z/dﬂf/\/l*(b—) fiM(a — f).
f

This is the optical theorem.

e The optical theorem is most useful when a and b are the same state. For a one-particle state,
the right-hand side is just the decay rate, up to some constants, so

ImM(a —a) = mAZF(a — ) =mal,.
f

It’s not clear if the left-hand side makes sense for an unstable particle, because such particles
can’t appear in asymptotic states. One needs to do more work to resolve this, but we’ll just
ignore it. (resolve)

e For a two-particle state, the right-hand side gives the total scattering cross section, up to some
constants, and we have

Im M(a — a) = 2EmPem0tot (@ — anything)

where pen 18 the momentum of either particle in the center of mass frame.

e These results have precisely the same interpretation as in the notes on Undergraduate Physics.
The imaginary part of the forward scattering amplitude is precisely the amount by which the
amplitude for remaining in the same state is depleted, so it is sensible that this is related to
the probability to end up in a different state.


https://knzhou.github.io/notes/phy.pdf
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e The optical theorem is especially useful when we work perturbatively, because it relates con-
tributions from different orders in perturbation theory. For example, we will see that the
leading contribution to Im M(a — a) is at loop level, while the right-hand sides have leading
contributions at tree level. Thus, even if we didn’t know the full theory, unitarity can still be
used to constrain loop level amplitudes given tree level ones. This will be formalized below by
“cutting rules”.

Next, we give an explicit example of the optical theorem. We focus on a 2 — 2 scattering and
consider M as an analytic function of s, defined by the Feynman rules.

e First, it’s worth noting that typically, we expect the imaginary part of M, for real s, to vanish.
This is a bit confusing because the Feynman rules have many factors of 7, but we can trace
them as follows.

— Vertices always come with a factor of i, e.g. because they come from expanding e*fint?

along with a momentum conserving delta function.

— Edge (i.e. Feynman propagators) always come with a factor of ¢ in the numerator, along
with an integral over four-momentum dp.

— Each seemingly real integral over four-momentum is secretly a purely imaginary number,
because the integral over p° can be thought of as a contour integral, which yields 27 times
the residues of relevant poles. This might sound unfamiliar but it isn’t strange, because
this is precisely the reverse of the logic that let us introduce four-momentum integrals in
the first place.

— Thus, each edge secretly comes with an extra factor of i, as does every vertex (since delta
functions remove these four-momentum integrals).

Since edges and vertices each come with two factors of i, the amplitude is real. Alternatively,
if we use the delta functions to do as many four-momentum integrals as possible, then the
number of remaining integrals is the number of loops. Then the total number of factors of 7 is
the number of vertices, plus edges, plus faces (loops) mod 2, which is zero by Euler’s formula.

e The idea that a loop gives a factor of ¢ is also consistent with our previous treatment of
renormalization. All of our renormalization schemes (dimensional regularization, Pauli-Villars,
or a Wilsonian cutoff) begin by Wick rotating the integral over p°, giving a factor of i.

e Another way of thinking about this is that, as a distribution,

Im p?—'nll?ize = F7ro(p* —m?).
In a typical loop integral, where only one propagator can be on-shell at once, this yields an
imaginary number, making the amplitude overall real. But there is a chance for the amplitude
to become imaginary if multiple propagators go on-shell at once. And if the intermediate states
in a diagram are on-shell, then we can “cut” the diagram in half, giving diagrams contributing
to the right-hand side of the optical theorem.

o Now we treat this explicitly. First, we note that at low s, we are “below threshold” to produce
on-shell intermediate states, so we have
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Both sides are analytic, so by analytic continuation we have, for all real s,
Re M (s +ie) = Re M(s —ie), Im M(s+ ie) = —TIm M(s — ie).

At threshold, M(s) picks up a branch cut along the real axis, across which the imaginary part
is discontinuous. The physically measured quantity corresponds to M(s + i€), which is related
to the discontinuity across the cut by

Disc M(s) = 2i Im M(s + ie€).

e As an example, we consider ¢* theory. For 2 — 2 scattering, at loop level we have s, ¢, and
u-channel diagrams. The latter two don’t give rise to branch cuts, so we focus on the s-channel.

pa| =

—q 5+a
kl kz

Let k = k1 + ko be the total incoming momentum.
e Applying the Feynman rules, this diagram yields

)\2

d
(M) = 5 1

/ (/2= q)* —=m? +ie)((k/2 + q)* —m? + ie)’

Now we consider the (contour) integral over ¢°. In the center of mass frame, k = (k%,0), and
defining Eq = +/|q|? + m? as usual, the integral has poles at

1 1
¢ = 51&’ + (Eq —ic), ¢° = —§k0 + (Eq — i€).

To perform the integral, we close the contour downward, picking up the residues of the poles in
the lower half-plane. Only the pole at ¢° = —(1/2)k? + E4 will contribute to the discontinuity,
and accounting for it is equivalent to replacing

1
(k)2 +q)? —m? +ie

— —id(k/2+¢)* —m?)

in the original integral.

e Straightforwardly performing the integral gives

(M) = —i =2 = | 4B.E .
M) = =i 2Bq (W —EBq?—E3 2272 ), ©° aldl5 g, B0 — 25y)

A [ dq 1 A1 /°° 1 1

The integrand has a pole at Eq = kY/2, which thus produces a branch cut if the integral goes
over it, k% > 2m. To find the discontinuity across the branch cut, note that

1 1
— =P
KO —2BEq+ie kO —2E,

Find(k° — 2Eq)
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so we may replace this factor with a delta function. This is equivalent to replacing

1

(/2 — q)2 —m? + ie — —if((k/2 = q)* —m?)

in the original integral. (Of course, the original integral is also divergent and must be regularized.
We don’t need to talk about a specific regulator here, however, because any reasonable regulator
must preserve unitarity.)

e Now we return to the original integral, rewriting the loop integral as

/dq—/dpl/dpﬂg(pl +p2 — k).

If we make the two replacements above, we simply put the momenta p; on shell, and integrating
the pg against the delta functions produces the standard factors for Lorentz invariant phase
space, giving

[ dpy d
Disc M(k) = 2 Tm M(k) = ;/22122?25@1 +pa— k).
1

This is precisely the prediction of the optical theorem, where the 1/2 in front is the phase space
factor for identical final particles, and the A2 is the squared matrix element.

e This logic above can be generalized to yield “Cutkosky cutting rules” to compute the disconti-
nuity of any diagram:

— Cut through the diagram, so that it falls apart into two pieces, separating the initial and
final particles.

— For each cut, replace 1/(p* — m? + ie) — —if(p* — m?).

— Sum over all possible cuts.
This can be used to prove the optical theorem to all orders in perturbation theory.

e Another way to arrive at this is to note that the Feynman propagator and retarded propagator
differ only in that the retarded propagator has both poles in the upper half plane, so

Dp(p) = Dr(p) + EL5(p° — Ep).
P
If we apply this formula to all propagators in a loop, then the resulting term consisting of
a product of only retarded propagators has zero contour integral, by closing the contour in
the lower half plane. By applying the formula in reverse, we recover terms with Feynman
propagators, but each term has at least one delta function, thereby reducing a loop amplitude
to a tree amplitude.

e We could also treat the example by just evaluating the integral explicitly in, e.g. dimensional
regularization, in which case the discontinuity appears through a logarithm.

e Now consider applying the same logic to particles with spin. The right-hand side of the
optical theorem will involve spin sums, e.g. for decay into two fermions ¥ (p1)1(p2) we get
tr((p, +m)(p, —m)), as shown in the previous section. The optical theorem hence requires

that the numerator of a propagator must involve a sum over physical spin states.
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e For Dirac fermions this is clearly true, as p +m indeed appears in the numerator. The result
is also clearly true for massive vectors. But for massless vectors, the spin sum is over the two
physical polarizations, while the propagator numerator is £&-dependent! However, as we’ve seen,
we can replace the spin sum with n*¥ by the Ward identity, and we can freely choose £ =1 by
gauge invariance to make the propagator match.

Next, we apply the optical theorem to unstable particles.

e Recall that we wrote the exact propagator for a scalar particle as

i
Dp(p?) =
7= mg = M)
where —iM?(p?) was the sum of all 1PI diagrams. On the other hand, these same diagrams
can be used to compute 1 — 1 forward scattering, and the LSZ reduction formula gives

M(p = p) = =ZM?*(p?).

e Suppose that the scalar particle is stable. Then by the optical theorem, M(p — p) is real, so
the self-energy is real, which implies that the pole of the propagator is simply shifted along the
real axis, as we’ve seen before.

e If the particle can decay, then M?2(p?) acquires an imaginary part, shifting the pole off the real
axis. In this case, the particle is not an asymptotic state, so we can’t assign it an unambiguous
mass; equivalently, we have some freedom over what to call the mass. A reasonable choice for
a slowly decaying particle is to let m be the “real pole mass”,

m? —m3 — Re M%(m?) = 0.
Then for p? ~ m?, the exact propagator is

17

Dp(p?) ~ '
F(p°) P2 —m2 —iZ Im M2(p?)

For particles such as the bottom quark, which immediately hadronize, the standard choice is
to instead use the MS mass.

o If the propagator appears in the s-channel of a Feynman diagram, then the cross section obeys

1 > 1
o(s) o s—m2—iZImM2(s)|  (s—m2)2+ (ZIm M2(s))2

which gives a Breit-Wigner resonance peak. The optical theorem thus tells us that the width
of this peak is related to the particle’s decay rate,

Z
I = —=Im M?(m?).
m

Above we have treated Im M?(p?) as a constant near the peak, so this holds in the case of narrow
resonances, I' < m. For broad resonances, there can be deviations from the Breit—Wigner shape.
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e Suppose we are searching for a weakly coupled particle produced in the s-channel of a scattering
process. There is naively a paradox here. If we consider just the first half of the Feynman
diagram, involving the on-shell production of the new particle, then there is only one vertex,
so the cross section scales as g?. But if we consider the full Feynman diagram, which includes
the particle’s subsequent decay, then there are two vertices and the cross section scales as g*.

e The resolution is that in the full diagram, we should perform the integral [ o(s)ds to get the
full rate, and the sharp peak of the Breit-Wigner distribution gives a factor of 1/T" o 1/g¢.
Therefore, the two calculations give equivalent results. This enhancement was used by LEP
when it ran at the Z-pole.

e The above story does not hold if the kinematics are such that the weakly coupled particle is
always far off-shell; in that case the diagram cannot be cut, and the rate scales as g*. Also, there
is a limit to how long in g one can probe, because for sufficiently low g the particle becomes so
long-lived that it does not decay before exiting the detector.

e If we trace through the definitions above, the shifted pole in s is below the real axis, while
for stable particles, the physical values of s were ie above the real axis. So if we place the
multiparticle branch cut along the real axis, we reach this pole by analytically continuing
downward through it, so the pole is really on the “second sheet”.

Finally, we discuss unitarity bounds.

e Consider a 2 — 2 elastic scattering in the CM frame. The total cross section is

1

7l = 3orE2,

/dcosG |M(6)]?

where 6 is the final angle between the particles. In quantum field theory, the partial wave
expansion is simply the decomposition

M(0) =167 _ a;(2j + 1)P;(cos b).

Jj=0

e By logic similar to the nonrelativistic version of the partial wave expansion,
167 =, . 5
Tel = 3 2(23 + 1)a|™.
cm _]:O

e The optical theorem gives us the relation
Im/\/l(0 = O) = 2EcmPemOiot = 2EemPem0el

where oot is the cross section for scattering into any final state. This yields

. cm . 2
>_(2j+DIma; = =5 (25 +1)ay
Jj=0 j=0
In fact, the sum on j can be dropped, by considering scattering of angular momentum eigenstates
rather than plane waves.
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For simplicity, consider the ultrarelativistic limit, where pc¢y, ~ Ecp, /2. Then
Ima; > |a;[?
which is the interior of a circle of unit diameter in the complex plane, centered at i/2, so

1
laj] <1, 0<Ima; <1, |Rea;| < 7

The coefficients a; can be computed order by order in perturbation theory. If the partial wave
unitarity bound is violated at some order, we say the theory violates “perturbative unitarity”.
This doesn’t mean that the theory violates unitarity; rather, it means that the results of
perturbation theory cannot be trusted, and we must switch to a new description that can be.

This was one of the main motivations for searching for the Higgs boson. If one calculates
the amplitude for WTW = — WTW ™ in the Standard Model without including the diagrams
with the Higgs boson, the amplitude scales as M ~ g¢>E? /m%,v, leading to a breakdown of
perturbative unitarity above a few hundred GeV. However, adding the diagrams involving the
Higgs precisely cancels this growth.

Another useful fact is the Froissart bound: the total cross section cannot grow faster than
log?(Ecm) at high energies.

Finally, recall that the spectral representation writes the exact time-ordered two-point function
as a combination of bare Feynman propagators with positive spectral weight. This implies that
propagators cannot fall off faster than 1/p? at large p?.

For example, the theory

1 5 O 5
has a propagator that falls off as 1/p* at large p?. Thus, it is tempting to use this to construct
a UV finite quantum field theory, but the point above forbids this. As we’ll see later, terms like
this do appear in effective theories, but this is acceptable because this behavior only kicks in
as we approach the cutoff, at which point infinitely many other terms become important and
the naive calculation of the propagator falls apart.

6.3 Polology (TODO)
6.4 Soft Theorems

In this section, we use the soft limit and Lorentz invariance to establish strong constraints on how

massless particles can interact.

Consider an arbitrarily complicated amplitude with an incoming particle of momentum p;,
My (pi). Now suppose a photon of momentum ¢ is emitted off that particle’s incoming line,
giving the amplitude M, (p;, q).

For concreteness, we suppose the particle is a scalar with charge e. Using the Feynman rules of
scalar QED, and assuming the photon polarization is real to avoid having to write €;, everywhere,

i(pf + (Pl — g*)

Mi(pi, q) = (ie) =2 =2 exMo(pi — q).
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Since external particles are on-shell, we have p% = m? and ¢% = 0. Since the photon polarizations
are transverse, q*¢, = 0. Thus, we have

Dbi

7

M;(pi,q) =e

.;Mo(m —q).

e Next, we take the soft limit of small ¢, which strictly speaking means |q - p;| < |p; - pi| for all
external momenta p; and py. Then we have

(3

M;(pi, q) = <€ = €> Mo(pi).

e Now, consider the total scattering amplitude M (q) involving all of the original particles in My,
and an extra outgoing soft photon with momentum ¢. To compute this, we need to sum over all
possible attachment points for the photon. However, the “soft factor” that we pick up is large
only when the photon attaches to an on-shell particle. For generic amplitudes, this can only
happen on external lines or in loops, but in loops the on-shell part is softened by an integration
over momenta, so the contributions of external lines dominate.

e Repeating the reasoning above, we find that when we attach the photon on incoming particles,
we get a factor of the charge e@);, while attaching the photon on outgoing particles gives the
same result with the opposite sign. Thus,

~ Dbi-e Pi€
M(Q)Ne Z szi‘q Z szi'q M0~

% incoming 1 outgoing

e Now, the amplitude M(q) must be Lorentz invariant. Under a Lorentz transformation, the
amplitude can only pick up a trivial phase factor due to the little group action on the photon.
But we also know that in general, a Lorentz transformation shifts the polarization vector,
€y — €4 + qu, which changes the amplitude by

el D> Q- > QMo
% incoming 7 outgoing
Demanding this be zero implies conservation of the charge the photon couples to.

e Note that we have already shown that a photon must couple to a conserved current using
the canonical formalism, but this derivation is much more minimal, requiring only Lorentz
invariance of the S-matrix and the soft limit.

Next, we generalize this derivation.

e First, it’s not clear that the logic above holds for any type of external particle. Let’s suppose
that the particle is a scalar, but the interaction vertex is arbitrary,

= —iel', (p, q).
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e In general, we can write the vertex in terms of form factors,
T =2p"F(p?,¢%,p- q) + ¢"G*, ¢*p - q).
The form factor G is irrelevant because ¢*¢, = 0.

e Since p?> = m? and ¢ = 0, the dependence of F' can be written as
p-q
v =2F (1)

by dimensional analysis. In the soft limit, the vertex simplifies further to 2p*F(0). Thus
everything goes through as before, with F'(0) being the definition of the conserved charge, as
we’ve already seen in QED.

e For a minimally coupled Dirac spinor, we would instead pick up the factor
@ (p+m) = Zu (p)z’(p)

in the numerator. However, we end up getting precisely the same result, by the identity
Hs(p)'y“usl(p) = 2p"5%Y.
The analysis proceeds similarly for a non-minimally coupled Dirac spinor.

e Next, we consider a massless spin 2 field. Such a field has two polarizations €, satisfying

nz
"€ =0, 1n"eu =0.
Under a little group transformation, we have
€ — € + NGy + quhy + Agugy

where A, and A depend on the little group transformation in a way we do not write out here.

e Therefore, the Ward identity must be that for any amplitude involving such an external particle,
M = €, M", we must have

qM" =g M"Y =0
so that the amplitude is properly Lorentz invariant.

e Now we can repeat our above argument. By similar logic, an arbitrary interaction vertex is

ql

= —iI'"(p, q) = —2ip* p”F<p q) ,
\\p—i—q m

~

where the index structure must be p*p”, because we cannot use factors of ¢* as the polarizations
are transverse, and we cannot use factors of n*¥ as the polarizations are traceless.
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e Therefore, in the soft limit,

M v (4 v
- D; €uvp; = D; €uvp;

% incoming i outgoing

By Lorentz invariance, this must vanish if we substitute €., — gq,A,, so

Mo, [ > FOpy— ) E(0)pf | =0.

¢ incoming i outgoing

However, we already know that the sum of incoming and outgoing momenta must be equal, by
momentum conservation. So the quantity above can only vanish in general if the FZ(O) are all
equal, which means that massless spin 2 particles must couple with universal strength. This is
indeed the case for the only massless spin 2 particle we know of, the graviton.

e For higher spin, the soft limit becomes even more restrictive. For massless spin 3,

o B =Y F0)pp

¢ incoming 4 outgoing

but when combined with momentum conservation, this only has solutions for general momenta
if the F;(0) are all zero. As a result, higher spin massless particles cannot mediate long-range
forces, though they can mediate interactions with a faster falloff.

e One loophole is the case of continuous spin particles, which contain all possible helicities. These
evade the reasoning above because their little group transformation is more general than just a
phase, but rather can mix different helicity states, thereby allowing them to interact.

e By applying this reasoning to two soft particles, one can get further constraints. For example,
it is possible to show that Yang—Mills theory is essentially the unique theory of interacting
massless spin 1 particles (e.g. the quartic gauge boson interaction that appears in Yang—Mills is
required by the soft limit). Similar reasoning can be used to constrain the graviton self-coupling,
in a way that matches what appears in the Einstein—Hilbert action.

(what about half-integer helicity?) (what about scalar QED, where you can couple
to 2 soft photons?)


https://arxiv.org/abs/1302.1198

110 7. Path Integrals in Zero Dimensions

7 Path Integrals in Zero Dimensions

7.1 Introduction
We begin by specifying what a quantum field theory is, from the path integral perspective.
e First, we specify the space where the fields live, usually a smooth manifold with metric (M, d).

— For most applications to particle physics, we choose (M, g) = (R* 7).

In cosmology, we choose a different background metric, e.g. an FRW metric.

— For most applications in condensed matter, we choose (M,g) = (R3,4) where § is the
Euclidean metric.

The worldsheet description of string theory uses (X, [g]) where ¥ is a Riemann surface and
g is a metric defined up to conformal equivalence.

— Applications of quantum field theory to knot theory typically use an orientable three-
manifold M with no metric at all.

In all cases, we regard the metric as fixed; making it dynamical requires quantum gravity.
e The fields are maps ¢ : M — N where N is called the target space.

— Ordinary nonrelativistic quantum mechanics can be thought of as a d = 1 quantum field
theory living on the interval I = [0, 1] called the worldline, with target space R3.

— In particle physics, pions live in a coset space, so N = G/H for Lie groups G and H.

In string theory, some of the worldsheet fields map to a Calabi-Yau manifold N.

In gauge theories, the gauge field is a connection on a principal G-bundle P — M, and
matter charged under this field is a section of a an associated vector bundle £ — M specified
by a representation of G.

e Let C denote the space of field configurations on M. Typically, C is an infinite-dimensional
function space. An action is a function S : C — R. The critical set where 65 = 0 correspond to
classical solutions, where the variation ¢ should be thought of as an exterior derivative.

e We usually assume the action is local, so that, e.g. for a single scalar field ¢,

S[8] = /M dlx JGL(H(x), 06(z), .. ).

This is a very strong constraint; local actions are a very small subset of the set of all actions.
Classically, the Euler-Lagrange equations become integro-differential equations, leading to
action at a distance, which we think of as unphysical. However, nonlocal actions do appear in
quantum field theory and must be treated carefully. We'll often suppress the ,/g.

Next, we consider what we want to compute.

e The most important quantity to compute is the partition function

2= [po o (-5

where we are working in Euclidean signature, D¢ is some sort of measure over the set of field
configurations, and the integral makes sense if M is closed and compact. This depends only on
S, the space M, the metric g, and A, not on the fields, which are the integration variables.
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e Conceptually, the exponential factor damps the impact of ‘wild’ field configurations with rapid
fluctuations. We’ve seen the ‘fight’ between the two in statistical mechanics, where the e=#H
factor favors smooth field configurations, but rapidly varying configurations are favored by
sheer numbers; it is “the eternal struggle between energy and entropy”. This leads to rich and
unexpected phenomena such as phase transitions.

e In the case of quantum field theory, the issues are even worse, since the configuration spaces
are infinite-dimensional. We won’t deal with these issues, but we will pay respect to them by
using only Euclidean path integrals, which are somewhat nicer.

¢ We also may want to compute correlation functions, defined as

<H Oi{¢]> — 5 [poew (-2 [Toua

Mathematically, we are computing moments of the probability distribution Dege=5/" /Z. We
call the O; operator insertions, which will make sense once we relate path integration to the
canonical picture.

e Often we are interested in local operators, such as ¢?(z)9¢(x)9,¢(x) or e?@), but we can also
consider nonlocal operators. For example, the Wilson loop

it s (- )

depends on the value of the gauge field A along the loop I'. Again, correlation functions of such
operators don’t depend on the fields themselves, only on the theory.

e Formal differentiation of the partition function allows us to recover correlation functions of
operators in the action. For example, if the action has a term

0= )\/ diz ¢ (z)
M
then differentiating with respect to A\ gives

a—z = —/D¢e—5[¢1/ﬁ/ d ¢t = —Z%@.

Thus, correlation functions tell us about the response of the partition function to changes in
the parameters of the theory.

e Similarly, suppose we add a source term to the action,
Slo) > Siél + [ e J(@)0i(a).
M

Then the sources J;(x) are fields, and Z is a functional of it; varying with respect to it gives
correlation functions of local operators

S+ T500/h ). () = (s
5,] () /ng Oi(zi) = Z2(0;(x;)).

Repeating this procedure, we have

(O1(21) ... Op(an)) =
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e The most common case is when the operators O; are just the fields; for example, with one scalar

field we have
(=n)" " 2Z[J]

Z 6J(z1)...0J(zn) | o

However, there’s no reason we can’t do this for composite operators, i.e. operators that are

(0(z1) ... p(an)) =

nonlinear in the fields. For example, under a metric variation

80 = 5 [ e VaTu(e)dg™ @)

which implies that
2h  dlogZ

Vo(x) 69" (@)

where everything is evaluated at the background metric, dg = 0.

= (Tw(2))

Next, we link path integrals to the Hilbert space.

e Suppose our manifold M has boundaries, 9M = U; B;. Then to specify the path integral, we
must choose boundary conditions on the B;. For each B;, the set of boundary conditions forms
a Hilbert space H;, so the path integral defines a map Z : ®;H; — C by

Z|B;]| = / D e S0/,
¢lB;=wi

We won’t specify an inner product on the H;, because it’s unknown how to define it in general.

e An important special case is M = N x I where [ is an interval of length T with respect to the
metric g on M. Then the path integral gives a map

AN x (=1
UT):H—H, (01|U(T)|go) :/ D Siln,

Bl N x{0y=%0

This is simply the time evolution operator. However, it is difficult to show that this map is
unitary; that’s one of the advantages of the canonical picture.

e Now we take a detour in classical field theory, i.e. considering only the action and not integrating
over the fields. The variation of the action takes the form

L

J d—1
6(8M¢)5¢\/§d T

§S[¢] = (bulk eom) d¢ + Z/ n'
i 7B

where we allow the variation to be nonzero on the boundary. Define the field momentum

oL
= VI gy

For example, when M is a constant time slice of flat spacetime, then m(t) = 6£/3¢(t).
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e Now, the variation 0 maps functions on H to one-forms, since 6S[¢] is a number, so we may
extend its definition so it is an exterior derivative on differential forms. Then

0= 8286 eom = |

o A dpdi e — / o Adpd .
Nx{T}

Nx{0}

This implies that there is a conserved quantity

9) :/ o A dpdi!
N

which is a symplectic form on the space of fields. The symplectic form defines a Poisson bracket,
and its conservation implies Liouville’s theorem. This is the structure that we aim to quantize
in canonical quantization, replacing brackets with commutators.

e For example, for the canonical quantization on (R*,7) of the free real scalar field,

@) = [ T2 (ealp) + el (p)) . (900 7)) = B~ ).

The commutation relations are only canonical at equal times, since the symplectic form is
defined on timeslices. We defined ¢(z) on all of spacetime, rather than timeslices, but this
isn’t a big difference since the values of ¢ and 7 on one timeslice determine it everywhere, so
boundary values and full solutions are equivalent.

e Next, we look at the state space. A general state on the boundary Hilbert space is
v = [l vid = @)

where we are vague about the inner product and measure. That is, a general state is a
superposition of |p) states, each of which correspond to a function on N, representing a definite
field configuration.

e In canonical quantization, we used wavefunctions that were polynomials, with monomials

/N i U X)O1) ()

interpreted as n-particle states. For example, the monomial ¢(x) corresponds to the state
#(x)]0), i.e. a single particle at x. This state is a superposition of the states |¢), weighting
states with larger ¢(x) more.

e Assuming our particles are bosons, n-particle states live in the Fock space
H=Coh»V &Sym’V & Sym’V & ...

where V is the one-particle Hilbert space. Working in the Fock basis, which is not always
available, is analogous to expanding a solution to the quantum harmonic oscillator in terms of
Hermite polynomials (times Gaussian weights). The general problem is analogous to working
in the position basis in quantum mechanics, which is mathematically much trickier.

e If M is non-compact, there may be a region that is asymptotically far away. Then to define the
path integral, we must specify asymptotic values of the fields. The simplest choice is ¢ — 0,
but another important choice is ¢ — ¢; in the asymptotic past and ¢ — ¢ in the asymptotic
future, in which case the path integral gives the scattering amplitude (¢¢|¢;). These are related
to correlation functions by the LSZ reduction formula.
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7.2 Zero Dimensional Field Theory

We begin with the case of zero dimensions, where some important ideas will appear simply.

e If our spacetime M is zero-dimensional and connected, it must be a single point. There is no
metric, and the Lorentz group is trivial, so all of its representations are; all fields are scalars.
In the path integral, fields are just maps from the single point to R, so C = R.

e The path integral measure D¢ becomes the usual measure d¢ on R and the partition function

z_ / dpe=5@/N
R

is an ordinary real integral.

e The action can’t have derivatives, so there are no kinetic terms. We’ll usually choose it to be a
polynomial, such as S(¢) = m?¢?/2 + g¢* /4!, where the highest term must have even degree
and positive coefficient for the partition function to converge. We can think of the coupling
constants as coordinates on an infinite-dimensional ‘space of theories’.

e The partition function is a function of these coupling constants, Z = Z(m?2,g,...). We denote
the free partition function Zy to be the partition function where the action is quadratic.

e Correlation functions are defined as
1
() =5 [ dos@e s,
Z Jr

The only restriction is that f cannot grow so fast the integral diverges; in practice we restrict f to
be polynomial. Thinking of e=5(®)/" ag a probability distribution, (f) is simply the expectation
value of f.

e Again, we can recover correlation functions from the partition function. For example,

) = G g Zm® N

where the action has terms g,¢”/p!.
Now we turn to some explicit computations in a free field theory.

e We consider n fields ¢* with action

1

S(0) = GM(6,0) = 3 M’

where M,y is real, positive-definite and symmetric. Then the partition function

is a Gaussian integral.
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e We may diagonalize M using an orthogonal transformation, which leaves the measure invariant.
Then applying the standard Gaussian integral,

n/2
R m det M

e More generally, we can consider a linear source term,
1 1~ ~ 1 ~ _
S(9) = 5M(9,0) + J - & = 5M(6,0) = M (], ]), ¢=¢+M (]

where the shift from ¢ to (;NS removes the linear term and leaves the measure invariant. Then

Z(J) = exp (M_;(;%]J)> 2.

e Now we consider the correlation function (P(¢)) where P is a polynomial in the n fields. By
linearity, it suffices to let P be a monomial. We will treat the case where P is a product of
linear factors ¢(¢) = £ - ¢, so we compute

_ L[ e M@o T g
(06(0) . ty(0) = 5 [ doe 10
If p is odd, the integrand is odd in ¢ and hence the integral vanishes. For p = 2k,
1
_ 1o M(6,9)/2hT(6)
(O0)- o) = 5 [ Hz -~
_ (=™ / o H 0 - 8, e~ M(6.0)/2h=1(@)/h
ZO n = J=0
2k ok
“TI&- 9, s e~ M(6:6)/2h-1(6) /1
i=1 2o Jre J=0

_ 2k ﬁ&' L0y (erl(J,J)/Qh)
i=1

Every factor of 9 pops out a factor of M ~!(¢;, J). Each of these factors must be differentiated
with respect to J, to leave a factor of M ~1(¢;,¢;), since we set J = 0 at the end.

J=0

e For example, for a two-point function

(1($)la(d)) = M~ (01, 42)

and more generally

(1(0) . Lak(e)) =H* > HM (Cay: bs,)

pairs (a;,b;) 1=1

where, for example, the four-point function has three terms. We call M ! the (free) propagator;
it is simply the inverse of the kinetic term. When all the ¢; are the same,

2k
(- 0% = P22

The terms can be represented with free field Feynman diagrams with 2k external points.

(RM~L(e, 0))E.
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e The result we've just proven is called Wick’s theorem. In the context of probability theory, it’s
a result about moments of the Gaussian distribution called Isserlis’ theorem.

e For fermionic variables that anticommute, §46° = —0°0¢, the starting point is
/d”é’d"@ exp(M(0,0) +7-0+6-n) = M) det M
and we can use this to derive an analogue of Wick’s theorem.

7.3 Perturbation Theory

Next, we turn to perturbation theory.

e In general, we can’t evaluate the path integral exactly for an interacting theory, even in zero
dimensions. We might hope to Taylor expand in the small parameter h. However, the radius
of convergence is zero, because the integral diverges in the region Re(h) < 0.

e However, it is possible to obtain an asymptotic expansion. Suppose S(¢) has a global minimum
at ¢g. Then the method of stationary phase gives

w2 f(do)e S0/
det (0,055 (o))

/ d"¢ f(p)e 5O/ ~ (27h) (1+ hA; + 124 +...)

as h — 07, where the first term is the ‘semiclassical’ term. This is an asymptotic series.

e In general, an asymptotic series ), a,h" for I(h) means that

N
o1 n
i, e 1) - 3

so the truncated series is arbitrarily good for fixed N and sufficiently small A. But we cannot
make the series arbitrarily good for fixed h. Instead, for sufficiently high N, the error goes back
up; the entire series diverges.
e Consider a single scalar field with action S(¢) = m2¢?/2 + A¢*/4! where we need A > 0 for
convergence and m? > 0 to get a unique minimum at ¢y = 0. The leading term is
—S(do)
(2mp)l2 ¢ " _ V2mh

V5" (¢o) ™

Going further, we can construct an asymptotic series by expanding the action,

Z(mQ, )\) _ d¢ 67(m2¢2/2+)\¢4/4!)/ﬁ — d¢ efm2¢2/27iz i ;)\ " ¢4n.
R R =0 n!

It is illegitimate to exchange the sum and integral because the integral does not converge when
A is negative. However, we can cut off the sum and then exchange the finite sum, for

N n N n
ZmA )~y ! G;) /Rd¢e_m2¢2/2¢4" = @Zi (-m) T'(2n +1/2)

n! m n! \ 3Im4
=0 =0

where we recognized the integral representation of the gamma function, and the ~ denotes
asymptotic equality, i.e. equality in the limit A — 0*.



117 7. Path Integrals in Zero Dimensions

e Expanding the gamma function, we have the asymptotic series

ZmﬁA%V¢%m§6<4m>"MD@m! - %m<1_hA :%h%Q_”>.

m m? npl4n(2n)!  m 8m* ' 384 m8

n=0
Note that up to the overall factor of v/27h, the series only depends on the combination AA.
Thus our series can either be thought of as a semiclassical expansion in A, or a weak coupling
expansion in A, and this is generally true for graphs with a fixed number of external lines by
some graph theory.

nlogn nlogn

e The series is asymptotic, because n! ~ e , so the numerical factor goes as e . Then even-
tually it overwhelms the exponential suppression, and the series has zero radius of convergence.

However, it is possible to recover Z from this asymptotic series using Borel summation.

e The theory is well-defined if m? < 0, but then our asymptotic series is invalid, because we end
up integrating a divergent Gaussian. The issue is that we expanded about a maximum instead
of a minimum. In physical terminology, we have expanded about an ‘unstable vacuum’ and
found tachyons.

We can also find this series via Feynman diagrams.

e There are two Feynman rules: a propagator is i/m? and a four-point vertex is —\/A. Note
that various factors of i are different since we are in Euclidean signature. Here, since the path

S

integral’s integrand is proportional to e~ every vertex comes with a factor of —1.

e The partition function is the sum of graphs with zero external points. For instance,

zxzo—@+8+©+©©©+88+--
242 212 2y2

T SR S 2 LB

8m4 48m38 16ms 128m8

The hard part is explaining the numerical factors, which we do below.

e We let a graph be a Feynman diagram where every vertex and edge has a distinguishable label,
and let D,, be the set of graphs with n vertices. Adding the labels introduces overcounting;
formally the group G,, = (S4)™ x S,, performs arbitrary relabelings, and we have overcounted
by a factor of |G,|. Then

Z = /—m\\" |D,,
A ~ <) | Dn| |Gl = (4D)"nl,  Zy = Z(m2,0)
0

n=0

where the dimensional factors are just from the Feynman rules. Meanwhile, we have

1Dyl = (4n — 1)(4n — 3)... (3)(1)

which reproduces the coefficients we found before.
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e There is another way to find the factors |D,|/|G,|. Note that G,, acts on D,,, partitioning it
into orbits O,. Each orbit I' € O, is a ‘topological graph’, i.e. a graph without labellings. Then
the orbit-stabilizer theorem states that

G| . |Aut |

where AutI' is the stabilizer of any element of I'. The quantity |AutT'| is also called the
symmetry factor. For example, for the lowest order term, we can flip within each loop and
interchange the loops, giving a symmetry factor of 8.

e Finally, we can then express our sum as a sum over orbits,

z e —v@) (— \)u(D)

Zy 4= [AutT] (m2)em’

This recovers the usual Feynman diagram expansion.

o [t is useful to define the free energy or Wilsonian effective action by W = —hlog Z, so

2 e (~WHWo) /I
Zo

Then by the standard combinatoric argument, W contains only connected diagrams; note that
the empty diagram is not connected. Note that because of the sign, W is really the opposite of
the sum of connected diagrams.

Note. The explicit combinatoric argument. Let F(T') be the contribution of a Feynman graph
without the symmetry factor. We may expand any graph as the product of disconnected pieces,

k
|Aut(T] ... TP) Hnj )| Aut(T;)|", Hr”a =[[F@;m
Jj=1 J

Therefore we have

Z  «— F() F<H Fn) DI F(T;)
2y ; |Aut(T") Z ZH n;! (’AUt )‘) - ; [Aut(I';)]

i [aut (IL,T9) | &5

Therefore, W is the opposite of the sum of connected vacuum graphs,

F(T)

connected I’

In a general quantum field theory, since Z sums over vacuum graphs, it measures the ‘vacuum to

vacuum’ transition amplitude e~/ where E is the vacuum energy. Then W directly measures

the vacuum energy.

Note. Counting powers of i. Propagators are proportional to & and vertices are inversely propor-
tional to A, so a graph contributes i) where £(I') = e(T') — v(T') 4+ 1 in the expansion for W. For a



119 7. Path Integrals in Zero Dimensions

connected graph, this is the number of loops by Euler’s theorem, as loops are just faces of a planar
graph, and the ‘outside face’ doesn’t count.
To count powers of A in detail, let there be v, vertices with a fields. Then for vacuum graphs,

2e = cha
a

where we suppress the I' argument, so
a
Ezl—l—e—;va:l—l—;(Q—l)va.

The A° term is from classical field theory, and corresponds to tree-level diagrams; there are none
here because we're focusing on vacuum diagrams. The 7' term comes from one-loop diagrams,
and we see above that such diagrams only have quadratic vertices. This makes sense, because
the semiclassical contribution comes from integrating over fluctuations in the Gaussian (quadratic)
ensemble, and hence only depends on the quadratic part of the action. Finally, all vacuum graphs
with an interaction vertex are two-loop or higher. Note that while loops correspond to powers of i
in general, the result may be shifted by a constant by field insertions, external states, and external
sources.

7.4 Effective Actions

Zero-dimensional field theory also provides simple examples of effective theories.

e Consider two real scalar fields with

m? M? A
S(o,x) = 7¢2 + 7}(2 + Z¢2X2'

Then we have propagators i/m? and h/M?, and a vertex —\/h.
e We can then expand the partition function as we did before,
w[2]- O+ Q0O+ CO
_ hAA N K222 N R2A2 h2)2
- 4Am2M?Z  16miM* 16m*M?*  8miM*

We can also compute expectation values of powers of ¢, represented by external points,

_ R AR2 A2B3 A28 A2h3
" m2 2miAM?  AmSM4  2mSMA  AmSM*

e Now suppose that we only want to evaluate correlation functions of ¢. For example, the mass
M of the x may be very high, so we cannot produce it in an experiment. Then it is useful to
“integrate out” the y, defining the effective action

Seff(¢) = —hlog </ dx eS(¢7X)/h> .
R

Then correlation functions of ¢ can be evaluated with the weight e~ Ses(®)/h
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e In this case, the action is quadratic in x, so we can explicitly compute

—S(0)/h _ —m2¢?/2n 2rh
/Rdxe e M2+)\¢2/2'

However, in general we must use perturbation theory. Here we have, exactly,

2 2
_mt b A ) M
Seft(¢) = 2¢+210g(1+2M2¢>+210 5T

We ignore the final term, which is a constant, but its appearance is a manifestation of the
cosmological constant problem.

e By expanding the logarithm, the effective action takes the form

2
_Meg o Mg A6 6 o _ 2, hA
Sen(9) = S A O A G e =T gy
so we have a mass renormalization, and an infinite set of couplings
3h A2 A3 i1, (2K) AP
M= A= By e = (DT e g

We note that all these effectives are quantum effects, since they are proportional to A, and they
are suppressed by powers of M.

e We can compute the effective action diagrammatically. It is a polynomial in ¢, where the
contribution to the ¢™ term comes from diagrams with n external ¢ fields, only connected
diagrams are used since we take the logarithm, and only x propagators appear since the ¢ is

A2

m2

A
__ e 7 a2
=-59 ~or?

not dynamical:

/\3
 48MS

¢ &+ -

4_16A44

Terms that depend only on ¢ can be simply pulled out of the integral; here we have represented
the original mass term using a diagram with a special green vertex. The solid lines aren’t ¢
propagators; they’re for visual convenience, to separate the ¢ fields from their vertices.

e In this theory, all contributions to Seg(¢) have one x loop, so the corrections to the couplings
are O(h). In general, the corrections will each themselves be asymptotic series in 4. We can
imagine the process of integrating out y as ‘zooming out’ until we can’t see the loop.

e Using the effective action, it is much easier to compute (¢?) to O(\?),

o -

h Agh?

2 6
Mot zmeff
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In general, we think of the world as a series of nested effective field theories. As a result,
every field theory has an infinite amount of terms, i.e. all terms allowed by symmetry, and
every computation is actually using an effective action. However, if the new physics is at a
much higher energy scale, the effective action will look like a low-order polynomial because only
renormalizable terms are significant.

Note. We've talked about two kinds of effective action, WW and Seg. These are essentially the same;
consider adding an external current, so the action becomes S[¢,.J]. Then W[J] is the effective
action for J after integrating out ¢. Since we’ve done everything with J = 0, only vacuum diagrams
appear in the expansion for W, but generally there would be external J points just like in Seg. Both
W and S.g are examples of Wilsonian effective actions.

There’s yet another kind of effective action, the 1PI effective action.

e As we've seen above, the effective action W][J] is the effective action for J once the field ¢ has
been integrated out; it is analogous to the Helmholtz free energy F'(H) for a magnet. However,
for an isolated system there is no clear external source.

e In thermodynamics, we deal with this by switching to the Gibbs free energy G(M). By
minimizing G(M), we may find the equilibrium magnetization M = (s(x)). We can perform a
simple minimization because G(M) already accounts for thermal effects, unlike H (s(x)).

e Similarly, in quantum field theory we Legendre transform from the effective action W(J) to
the 1PI effective action I'(®), where the ‘classical field” ® is the vev in the presence of a source,

D = ().
We will see that minimizing I'(®) can tell us about phase transitions, just like G(M).

e Explicitly, note that

ow h 0 1
- __ " = —(S+Jé)/h _ —(S+J¢)/h

aJ
so that ® = 9WW/0J, analogous to the relation M = —90F/0H.

e We define the quantum effective action I'(®) by the Legendre transformation

T(®) =W(J) - ®J|

Then by the usual logic for Legendre transformations,
or
0P

and assuming the Legendre transformation is invertible, we can transform back and forth
between W(J) and I'(®).

J:

e To understand the meaning of I'(®), note that when J = 0, possible values for ® correspond to
extrema of I'. Then in higher dimensions, the action .S yields the classical equations of motion
0S/6¢ = 0 while I' yields the ‘quantum’ equations of motion for 6I'/§® = 0 which account
for quantum effects. In zero dimensions these are simply algebraic equations, but in higher
dimensions we can have nontrivial spatial dependence, yielding solitons.
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e Next, we define a quantum theory by a path integral of ®, where we let I'(®) play the role of
the classical action. We define

e~ Wr(J)/g — /d<1> o~ (L(@)+J2)/g

where g takes the formal role of A, which is in I'(®). As before, this means
- {4
W) =Yg W)
=0

where ng)(J ) is the sum of all ¢-loop connected Feynman graphs built from I'(®).

e Next, suppose we take the limit ¢ — 0. Then only the tree-level connected Feynman graphs
contribute; alternatively, the path integral is dominated by the minimum of the argument of
the exponential, so

lim W (J) = WO (J) = T(®) + J& =W(J).
9—0 J=—9or
0P
Therefore, the connected graphs built from the classical action S(¢) + J¢ are equal to the tree
graphs built from the effective action I'(®) 4+ J®, another sense in which I' includes quantum

corrections to S.

e Diagrammatically, every connected diagram is a tree whose vertices are one-particle irreducible
(1PI) graphs. Therefore, we can interpret I'(®) as the sum of 1PI graphs built from S(¢), where
a 1PI diagram with n external ¢ fields contributes to the ®” term/vertex in I'(®).

e Explicitly, suppose we have fields ¢* and sources J,. Then

2
1
oW h8<

_haJanb - ",

n 1 —(S(@*)+Jad®)/li b\ _ jpa by /aa b\ — /a b\conn
sy [ 0 CEIIING) = (5~ ()6 = (6

The first term contains both connected and disconnected diagrams, but the disconnected ones
are canceled out by the second term, leaving the connected correlation function, also called the
exact propagator. It is the quadratic term in W[J], as expected.

e On the other hand, note that

82W GCI)b &] ! 82F !
a b\ conn a

0] = —h = —h =—h =h| ——— .
< >J 6Ja0Jb &Ia (8@[,) <8(I)b8q>a>

That is, the exact propagator is the inverse of the quadratic term of the 1PI effective action,
which is exactly what we expect.

e To connect this to diagrams, note that we have the diagrammatic recurrence relation
connected ~ connected x 1PI x connected

which is indeed compatible with what we found.
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e For more than two external fields, we can continue differentiating VW with respect to J. The
details are messy, but the key identity is
0 aJ 0 2\conn\—1 0
9% ~owas ~ ) gy
That is, adding another external ® leg to I' is the same as adding another external J to W and
amputating the resulting leg; this is exactly how 1PI diagrams are produced.

e In general dimension, I' is extensive and dividing it by the spacetime volume gives the effective
potential Vog(®). As in thermodynamics, the effective potential must be convex; taking the
convex hull is the same as the Maxwell construction for the var der Waals gas.

Note. There are various sign flips above, so W[J] and I'[®] are not really the sum of connected
and 1PI diagrams, but rather the sum up to a sign. Explicitly, we have

W[J] _ Z (_1)n—1 Jn<¢n>conn’ F[(I)] _ Z iq)n<¢n>1PI

n! n!
n n

as can be shown using the identities above. The only exception is the case n = 2 for the 1PI effective
action. Note that for n > 2, the n'" order terms in the action contribute directly to <¢”>1PI, but
the quadratic terms don’t contribute directly to II. This is because we treated the quadratic part of
the action as ‘free’ and hence differently from the ‘interacting’ part when setting per perturbation
theory. By summing a geometric series, we hace

1
2yconn 2\ __
which implies that the quadratic term of the 1PI effective action is
(@) (p*)~h = p® —m? —1(p?)

with an extra inverse bare propagator.

I(p?) = Z 1PI diagrams

Example. In the case of no external sources, J = 0, we have

W([0] = I'[®]

AT /0d=0
Thus, by plugging in the equilibrium value of ®, we get a relationship between the set of connected
vacuum bubbles and the set of 1PI diagrams. For example, in the simple case ® = 0 we find

Z connected vacuum bubbles = Z 1PI vacuum bubbles
which holds because all non-1PI connected vacuum bubbles have tadpoles, which vanish when ® = 0.

Note. Here we make the analogy with statistical mechanics more explicit.

e We consider a magnet with spin field s(z) and energy E(s). Then the partition function is
z_ / ds e~ BE(s)~Hs)
where H is an external field. We define the Helmholtz free energy by

F(H) = —;_)logZ

where we integrated out the spin field, leaving a function of the external field. We leave the
dependence on 1" implicit, because in quantum field theory its analogue h can’t be varied.
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e We define the magnetization M = (s) = —9F/0H. This is the spin seen on a macroscopic scale,

accounting for thermal corrections. We define the Gibbs free energy
GM)=FH)+MH, — =

by Legendre transform so it is directly a function of M.

To compute the equilibrium value of M, we simply find the minima of G. That is, we don’t
have to do a path integral over configurations of M, so G ‘accounts for thermal corrections’. In
particular, it’s easy to tell where phase transitions occur.

For example, in the ferromagnetic phase transition, the energy is minimized by having the spins
aligned, but thermal effects favor disorder; we can tell which wins by looking at G(T', M). In
quantum field theory, an analogue is the Coleman-Weinberg potential: a ¢* theory can exhibit
spontaneous symmetry breaking because the effective potential has a nonzero minimum.

7.5 Fermionic Fields

We now turn to the description of fermionic fields.

A fermionic field is an anticommuting field. In zero dimensions, there is no notion of spin, but
in d = 3 4+ 1 fermionic fields have half-integer spin by the spin-statistics theorem.

The Grassmann algebra is an algebra over the complex numbers, generated by n elements ¢
that anticommute, °6° = —°0%. Note that scalar multiplication still commutes, 8%« = a#®
for ao € C. Also, products of an even number of Grassmann numbers commute with everything,
so they are ‘bosonic’.

Every Grassmann number squares to zero, so a general element of the algebra is

1

1
F0) = a+ paf* + =Gaya, 00" + ... + ]

2!

where we can take the coefficients to be totally antisymmetric.

hay..a,0" ...0%

Next, we define differentiation and integration. The derivative is defined by

00° Oa

06~ % ga

so it anticommutes with multiplication by a Grassmann number,

0 0

— "+ 0" =L

00° 00° @
where the derivatives act on everything to the right, i.e. on a test function. Then the Grassmann
derivative obeys a product rule with an extra minus sign. (Note the spatial derivative of a

product of Grassmann fields obeys the product rule, with no extra signs.)

=0, acC

To define the integral, we consider the case of one Grassmann number, so the most general
function is f(0) = o + pf. We demand the integral be linear, so

/d@(a—l—p@)za/d@—l—p/d&@.
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We also demand invariance under a shift of the integration variable by 7. For complex 7,
/d@f(@) :/dHf(H—i-n) = (a—l—ﬂﬁ)/d@—i—p/d@@.

e Using our choice of normalization for the measure, we conclude

/d&l:o, /d99:1.

More generally, nn can be Grassmann valued, which shows that the df integral of anything not
linear in # vanishes; in particular, Grassmann differentiation and integration are equal!

e Using the definition of integration, we find

9
/ a0 55 F(6) =0

since the derivative removes the term linear in 6. This allows us to integrate with parts, though
there’s an extra sign flip.

e If we have n Grassmann variables #%, we define d"0 = df" . ..d6", so

/dneel...e”:1

with all lower-order terms integrating to zero, and in general,

/d"@ M .. Q% = e,

e Next, consider a change of variables ¢ = Né‘&b. Then by linearity,
/ drge'™ ... 6" = Nj* .. Nj» / dr 96" ... 0% = Nt NP = (det N)e o

which shows that
d"0 = (det N)d"o'.
This is the exact opposite of the transformation for bosons, e.g. df = 2d(26).

e It is also occasionally useful to consider Grassmann Dirac delta functions, which obey

/ dnd(n—6)f(n) = 1(6).

By considering the general form f(n) could take, we see that 6(n —0) =n — 6.

Note. Concretely, the 8% can be thought of as one-forms, and the product can be thought of as
the wedge product. The Grassmann integral [ d" can be thought of as integration of a differential
form over R"™, where only the integral of a top-dimensional form is nonzero.

Next, we consider a simple calculation in a fermionic free field theory.
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e To get a nontrivial theory, we need two fermionic fields, #' and #2. The action must be bosonic,
so it must be even in the fields, so we must have

1
5(0) = §A9192.

Then the partition function is simply

A A
_ 2 —S(G)/h: 2 _Dplp2) &
Z /d@e /d9<1 2ﬁ90> o

where we took a Taylor expansion. Note that S is Grassmann-valued, but 2 is not.

e More generally, consider 2m fermionic fields 8¢ with
1
S(0) = 5Aabeaeb

where A is antisymmetric. Then the partition function is

1\ 1
Zo = / d>mg e AW00)/2h — <_2h> — / d?™0 Agyay - - - Aayy, a0 ... 092M

where we used the fact that only the m™ order term can contribute.

o We define the Pfaffian of a 2m x 2m antisymmetric matrix A by

1
Pfaff A = mﬁal"'GQmAmm cee Aa2m71a2m

and one can show that
(Pfaff A)* = det A.

Thus we conclude that
det A
hn
while for free bosons we had the A’s in the numerator and the determinant in the denominator.

Zy =+

e We can also consider sources,
1
5(97 77) = iAabgagb + naﬂb

where the source 1 must be fermionic. As before, we may complete the square for

1 —1\ca — 1 —1\a
S(0,m) = 5(0° + (A7) ™) Aap(0” + na(A™)®) + S1a(A7H) " my

where the two cross-terms are equal because A is antisymmetric and 6 and n anticommute.

e Therefore, the partition function is
I
2ol = exp (=347 00 2000

which allows us to compute the two-point function as

h? 02Z4(n)

Z0(0) 9ngOmy

<9a06> — _ h(Afl)ab

n=0

where we use Taylor expansion and the fact that derivatives anticommute with Grassmann
numbers. This is just the same as the bosonic result: the free propagator is always the inverse
of the kinetic term.
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e The fact that functions of a finite number of Grassmann variables can always be represented
as polynomials means that in d = 0, all fermionic path integrals can be evaluated exactly. In
higher dimensions, we use Grassmann-valued fields which contain infinitely many independent
Grassmann variables, and turn to perturbation theory with Feynman diagrams.

Note. Strictly speaking, all fermionic fields in relativistic quantum field theory must be Grassmann
numbers, even when we are performing canonical quantization. For example, as we will see in
the notes on the Standard Model, a Majorana mass term cannot be written down in a classical
Lagrangian unless the spinors are anticommuting variables; otherwise the term vanishes identically.
One might worry our classical analysis of the Dirac Lagrangian missed some sign flips. The
results are unchanged as long as we define 7 = 9L/ O as a derivative to the right of £ acting to
the left, and H = 7T¢ — L. Practically speaking, just as there are ambiguities when going from a
classical to a quantum theory (which are, e.g. fixed by normal ordering and other prescriptions),
there are ambiguities when going from a classical to a semiclassical theory, where the spinors become
Grassmann valued. As with normal ordering, we pick the conventions so that the results work.

We now give an example where supersymmetry makes a path integral much easier to evaluate.

e Consider a theory with one bosonic field ¢ and two fermionic fields ¢ and 19, normalizing the

V2T

measure so that

We suppose the action takes the special form

(6,101, 1b2) = %(%)2  rthad?h

where h(¢) is a real-valued polynomial and Oh is its derivative with respect to ¢. This action
has the most general possible fermionic term, so this just restricts the purely bosonic piece.

e Now consider the zero-dimensional supersymmetry transformations

0¢p = €11 + €2tp2, 01 = €20h, 2 = —€10h
where the ¢; are fermionic. Then the action transforms as

6S = 0h 0*h (e191 + e2109) — (e20h)120*h — 11 (—€10h)0*h = 0

and is thus invariant; one can show the measure is invariant as well. We also have §2 = §3 =

[61, 2] = 0.

e Now consider the variation §O of some operator O(¢, ;). Then

1 1

(60) = — / dod*p e 060 = — / dpd? 5(e=°O).
2 2

Now, the quantity in parentheses is at most linear in the 1);, so the terms that come from

varying ; don’t depend on ; and hence integrate to zero. The terms that come from varying

¢ are total derivatives in ¢. Then (§O) = 0.
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e Now suppose we choose O = (9g)1; for some g(¢). Setting €7 = —ea = €, we have
0= (60) = e(9gdg — O*gra).

But this is also the first-order change of the action under the deformation h — h + g. That
is, we can replace h in the action with any h + g as long as we don’t change the behavior at
infinity. In particular, if ¢ = h, then we can scale h up. Then the path integral only depends
on regions right around extrema of ¢, a phenomenon known as localization.

e We can explicitly find the partition function. Near an extremum ¢,, we have

&
2

2
*

W(B) = h(da) + (6 — 6.)% S(e 1) = Z(d — 64)? + cathrths.
2

The contribution to the partition function is

1% / dgd2ep e~ @=12(1 _ ¢ apay) = C;T / dg e 0=007/2 = B _ ign(c,)

Var Vet
e Then the full partition function is

2= Y sign(@hls.).

extrema ¢

This is a very simple result: if h has odd degree, then the partition function is zero, and if h
has even degree, the partition function is +1.

e Localization is also useful for computing correlation functions of operators ;. We are interested
in supersymmetry-invariant operators, 60 = 0. On the other hand, if O = §O’ then the
correlator is automatically zero. Thus the nontrivial observables in the theory correspond to
the cohomology of §. That is, one can use supersymmetric quantum field theories to compute
the cohomologies of interesting spaces.
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8 Path Integrals in Higher Dimensions

8.1 Quantum Mechanics

Finally, we turn to quantum mechanics, a one-dimensional quantum field theory.

e We recall that we usually consider fields of the form z : M — N where (N, g) is a Riemannian
manifold. In the one-dimensional case, M is either the circle S', parametrized by t € [0,T)
with endpoints identified, or the interval I, parametrized by ¢ € [0, T].

e For every time ¢, z(t) is a point in N. We let 2%(¢) denote its coordinates; specifically this is
the pullback to M by z of coordinates on a patch of N. A standard choice of action is

1

St = [ Gomla)ita + V(@)
M 2

where gqp(x(t)) is the pullback to M of the Riemannian metric on N, and V : N — R is a

‘potential’ and V' (z(t)) is its pullback. We’ve implicitly chosen the metric on M to be the

Euclidean metric 64 = 1.

e Directly varying this action gives the Euler—Lagrange equation

d%x® b dav 1

— 5" = g"(@) 25, T = 56" (Obgea + Deba — Dagoe)

which is simply the geodesic equation. However, there is no minus sign on the right-hand side
because of the Wick rotation ¢ — ¢t. In Euclidean signature, F = —ma because a picks up a

factor of i2 in the Wick rotation.

e We interpret the target space N as being the space where we live, and z(t) as the trajectory
of a quantum particle; we call either M or (M) C N the worldline of the particle. However,
note that we usually interpret M as being the space where we live, and N as an abstract space
of fields, e.g. a Grassmann algebra for fermion fields. Even within quantum mechanics, with
two particles N is no longer space, but a configuration space with twice the dimension.

Next, we recover the path integral picture from standard quantum mechanics.

e We work in the Hilbert space H = L?(N) with Hamiltonian

1 1 0 0
H=-A A= a O
2= v, Vg 0xe (\/ﬁg Gacb>

where A is the Laplacian on (N, g).

e We define the heat kernel

Kr(yo,v1) = (v1le " |yo) = (y1, T|yo, 0)

representing the amplitude for a particle to travel from yg to y; in time 7', in Schrodinger and
Heisenberg picture respectively. In the Heisenberg picture expression, |y;,t) is defined as an
eigenvector of §(t) with eigenvalue y;.
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e The heat kernel obeys the differential equation

0
aKt@ y)+ HKy(z,y) =0

which is the Schrodinger equation in Euclidean signature, with A = 1.

e In the case where N = R"™, the metric is gqp = g, and V = 0, we have the usual heat kernel

1 |z —yf?

It can be shown that for a general metric, the heat kernel has this form for small ¢, specifically

1 d(z,y)?
A Ko@) ~ Grxpam @) eXp( N

where d(x,y) is the geodesic distance from x to y and a(z) is a polynomial in the Riemann
curvature tensor.

e The heat kernel can be rewritten by inserting copies of the identity, giving

ni/2 At (d(wigr, 2)\ >
. n ’L-‘rlvx’L)
<y1|€ ’y0> lm <27TAt) / H d"z;a -Tz €xp [ 2 < At ) .

This recovers the path integral, if we may define

1 nN/2
Dx = li "
e (27rAt> / H d"wialwi)

If the paths are differentiable, then the sum over (d(z;y1,;)/At)? converges to the integral
over ggi®i? and we recover the path integral expression

Kr(y0,y1) :/ Dxe™
Crlyo,y1)

where S is the action we wrote down earlier with V' = 0, and Cp[yo,y1] specifies boundary
conditions x(0) = yo and z(T") = y;.

Next, we turn to the computation of correlation functions.

e A local operator is one which depends on the field (in this case, x) at only one point of the
worldline. For example, any function O : N — R corresponds to a local operator O. Let |y, t)
be the Heisenberg state that will be peaked at y at time t. Then in Heisenberg picture,

(Y1, T|O(t)|yo, 0) = (y1,0le T T=DO0)e |y, 0) = (y1 e T O™ |yp)

where the final expression is in Schrodinger picture.
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e Inserting a complete set of states, we find this is equal to

/ d"x O(x)Kr_s(y1, 2) K¢ (,90) = / Dz e 5 O(x(t)).

Cr [ylvyO]

Therefore, in general correlation functions are computed from the path integral by

(1, T|On(ty) . .. O1(t1)]yo, 0) :/

Daze ¥ [ Oi(a(t:)).
Crlyo,y1] i

Note that we don’t need to divide by a partition function here, because the normalization is
implicitly in the definition of the path integral measure.

e Note that when we insert complete sets of states, we find a path of the form (y,0) — (z1,t1) —
. = (Tp, tn) — (y1,T) and integrate out the internal points to get an arbitrary path (yo,0) —
(y1,T). This is only possible if the points are in time order, as otherwise we’d end up with an
integral over paths that go forward and backward in time. Then

n

(w1, TIT [ [ Oi(t:)lyo. 0) :/ Dae ¥ [[ Oi(x(t:)).
i=1 Crlyo,y1]

=1

This is fitting, as we know the O; commute, but the O; do not, and time ordering makes
everything inside it effectively commute. Time-ordered products appear ubiquitously when
dealing with the path integral, and we will often drop the time-ordering symbol.

e Note that if there are no derivative terms, positions at arbitrarily close times ‘decouple’, and
the path integral splits into individual independent integrals for each time. Then all correlation
functions split as

(O1(t1)Oa(t2)) = (O1(t1))(Oa(t2))

so there are no nontrivial correlations. This corresponds to the statement that fields without
kinetic terms are nondynamical and do not propagate.

e More generally, we can consider operators that depend on derivatives of x. In particular, the
canonical momentum for our action is
oL )
Pa = 9ia GabT
so we could replace the function O(z%,i®) with the operator @ = O(i%, g*(2)py). However,
this is also puzzling because the latter depends on an ordering prescription while the former
does not. One can simply define O to be normal ordered, but we would like to understand
where this comes from in the path integral.

Note. Such ordering problems also occur in canonical quantization. Here, given the Poisson bracket
structure {f, g} = h we would like to define operators satisfying [f, §] = i h which act irreducibly
on the Hilbert space. However, the Groenewald-van Hove theorem states that this is impossible
in general; in fact, it’s even impossible for polynomials in the positions and momenta, once we go
beyond quadratics. The idea of quantizing a classical system in general remains ambiguous.

To understand ordering problems, we carefully examine the continuum limit.
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e For a free particle in one dimension, let 0 < t_ <t <ty <T. Then
[ Do Saate) = e MO e ety
Crlyo,y1]

and
/ DreSx(t)i(ty) = (yr|e HTDae Tl pe=HE )0y,
Crlyo,y1]

Taking the limits ¢ty — ¢ from above and t_ — ¢ from below, the difference of the right-hand
sides is nonzero, as

(]e” TT=V[z ple " yo) = (y1]e AT |yo).

e To take the same limits on the left-hand side, we explicitly restore the discretization At. Then
the furthest we can take the limit is

Tt — Tp—At r Ti4At — Tt
— 2 )
At At

This is a discretized second derivative times x;At, which would vanish in the limit At — 0 if
our paths were smooth. However, we integrate over paths that are not even differentiable.

w(t)i(t-) —x()i(tsy) — o

e More explicitly, the part of the path integral that depends on xy is

Tt — Tt—At Tt At — Tt
/dl't KAt(xtJrAt,-Tt) <$t — Tt > KAt(l'tal'tht)

At At

but using the known form of the heat kernel, this is equal to
0
— [ dxy fﬁt% (KAt(fUtJrAt, l‘t)KAt(-Tt, JUt—At)) = K2At($t+At, $t—At)
t

by integration by parts. Performing the other integrals gives (y1|e 7 |yg) as desired. Similarly,
the operator ordering in the Hamiltonian is also determined by the discretization procedure.

e To understand the result more quantitatively, note that

1 2
K — = e (@y*/2t

has ((z — y)?) = t, typical for a diffusion process. Then a typical derivative is actually O(v/At)

instead of O(1), allowing it to contribute in ways it naively should not. For example, changing

a forward derivative to a backward derivative within a single timeslice yields a change of

2
Tii At — Tt TNt — Tt Tt4At — Tt
T4 At t Att — Tt Las Att = At <t+Att> = O(l)

Hence the operator ordering is hidden in the discretization procedure.
Next, we consider the issue of the path integral measure.

e Naively, we may take the limit of infinitely many position-space integration measures to yield
the path integral measure Dzx. Alternatively, one might want to do this in Fourier space, taking
the limit of arbitrarily high frequencies; in this picture it is clear we only need a countable
infinity of integrations. However, both these limits do not exist.
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e We say du is a Lebesgue measure on R” if it assigns a strictly positive volume

vol(U) = /U du

to every non-empty open set U, is translationally invariant, and if for every x € RP there is at
least one open neighborhood U, of x with finite volume. A standard choice is dy = dPx.

e There is no non-trivial Lebesgue measure on a vector space with countably infinite dimension.
Let C(L) denote an open hypercube of side length L. Dividing it gives

vol(C(L)) > 2Pvol(C(L/2)).

Then if D — oo, the only way for the measure to remain finite is for vol(C'(L/2)) to go to zero,
so the measure of any hypercube must be zero. Since the dimension is countably infinite any
open set can be covered with countably many cubes, so the measure is identically zero.

e For the path integral in one dimension, there is a nontrivial measure,

. 1 nN/2 N-1 . At Tty — Tt; 2
d“_zvhinoo<27mt> /Z[[ldmi P _2( At ) '

This is called the Wiener measure, and it necessarily involves the Dz and e 51! factor together.
It evades the above theorem because it is not translationally invariant, i.e. shifting one of the
x; changes the measure.

e In higher dimensions, the naive generalization of the Wiener measure does not generally exist,
but it is believed that quantum field theories that are asymptotically free, such as Yang—Mills,
do have a continuum limit. However, a continuum limit almost certainly doesn’t exist for
general relativity or quantum electrodynamics, and probably doesn’t exist for the Standard
Model. This is acceptable in practice because we can just treat them as effective theories.

8.2 Effective Quantum Mechanics

In this section, we give some examples of calculations in quantum mechanics.

e First, we consider a circular worldline with two fields = and y, with action

1, 1. 1 A
S[xay} = /Sl 5752 + 5?/2 + V(xay) dt, V(I,y) = 5(777,2332 —+ M2y2) + Z‘,[/,2y2.

As a quantum mechanical system, it’s two coupled harmonic oscillators in periodic time 7'. In
quantum field theory language, it’s a theory of two interacting fields with masses m and M.

e Using the usual procedure, we arrive at the Feynman rules

1/(k? +m?) 1/(k? + M?) B

where k is the worldline momentum, which is quantized in units 27 /7.
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e Alternatively, we can integrate out the y field, giving

1 T d2 A d? A -1/2
/Dy exp <—2/0 dty <_dt2 +M? + 2x2) y) ~ det <—dt2 + M?+ 2x2>

where we integrated by parts with the boundary terms canceling by periodicity, and then
performed a formal Gaussian integral. Therefore the effective action is

T 2 2
1., m*, 1 d 9 A o
= - - -1 —— + M+ =
Set[z] /0 dt (2;13 t57 > t3 0gdet< 712 + t35%
e We also know that logdet(AB) = logdet A + log det B, so

logdet(AB) = trlog A + trlog B.

We also define the worldline Green’s function G(t,t') by

d2
— = M?) G(t,t) = 6(t —1t).
(g~ ) 6ty =t~ 1)
Explicitly, it can be shown that

1 /
G(t, t/) _ m Z 6—M\t—t +nT|
nez

e Then we can expand the new term perturbatively as

d> 5 A, d> ) &2 J\ a2
trlog(—dtz—i-M +2x)—trlog<—dt2+M>+trlog 1—A ﬁ_M 5 ]

The first term is a divergent constant, while the next term can be expanded in a series. The
inverse is simply the Green’s function, and the trace is over time, giving

2
—’\/ dtG(t,t)xQ(t)—)\/ dtdt’ G(t', )z*(t)G(t, ) x> (') + . ..
2 Sl SlXSI

with the general term
G A" 2 2 2
-y dty ... dty Gty t1)22(t)G(t1, ta)z (ta) . .. G(tp_1,tn)x>(tn)
— 2nn, (S1)n

so that we generate an infinite series of new interactions as usual.

e The striking new feature is that the new interactions are non-local in time. To understand this,
we consider the Feynman diagrams for the first two terms,

z(t) z(t) G, 1) z(t)
IG(t) S
(%) 2()d G:1) Ny

Since the y field is dynamical, it has its own propagator which allows it to move around on the
worldline, so integrating it out gives a nonlocal interaction.
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e To estimate the size of the nonlocal interactions, we Taylor expand in t — ¢’ for
/dtdt’G(t,t’)sz(t)a:Q(t’) = /dtdt’G(t,t’)th(t) (2?(t) + 2z()2@)(t—t) +...).

Note that G(t,t') only depends on ¢ — ¢’ through the combination M (¢t —t'). Then we can
integrate over ¢ — t, giving a power of 1/M for every time derivative. The terms look like

z4(t)  two derivatives  four derivatives

dt + ) - - +
M M M

where we’ve suppressed numerical factors, and all terms are quartic in . Therefore, as long as

the derivatives are small in units of M1, we can truncate the series and get a local action.

e Note that we have a double expansion in A and M. The former is relatively innocuous, but the
latter breaks down for energies on the scale of M, where all terms are important; if we continue
to try to use only a few terms, we’ll find violations of unitarity, signaling that perturbation
theory is breaking down. To fix it in a tractable way, we must ‘un-integrate out’ the y field.

e This same scenario was important in the discovery of the W boson. Fermi’s theory of weak
decay was an effective theory that had integrated out the W boson, but which led to a violation
of unitarity at high energies.

Note. Perturbative unitarity violation is a typical feature of nonrenormalizable theories. For
example, consider the innocuous case of massless ¢% theory in d = 4, with interaction term A¢%/M?2.
The coupling constant gives a mass scale M where perturbation theory must break down. Specifically,
the lowest-order contribution to 2¢ — 4¢ scattering is
A A2 A2
MNW, |M|2Nma O’Nmﬁ

where we included the p? factor by dimensional analysis. Then for p > M the cross section violates
unitarity bounds. The full nonperturbative result could still be unitary, but in reality the most
common case is that some new physics takes over. This situation looks a bit different from the
infinite tower of terms found above, but it’s really the same, since these terms will be generated by
renormalization.

Next, we show the worldline approach to perturbative quantum field theory. In this approach, we
think about the particles of a quantum field theory in terms of ordinary quantum mechanics.

e The simplest way to describe a relativistic particle is to consider maps = : [0,7] — R™ with

Sla] = /0 "t [ Gy

where G is the metric on R™ and ¢ is interpreted as a parameter; this is just the standard path
length action, and it is invariant under diffeomorphisms of the worldline.

e We claim that this is equivalent to the action

Slavel = [ e va (36ulola 05+ 1))

where we vary with respect to both the worldline metric g on M and the fields . Without the
square root, this naively looks like the nonrelativistic action. The difference is that now we’re
dealing with a one-dimensional quantum gravity theory, since g is varied too.
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e The metric g is specified by a single function /g = |e| with g = e72. The Riemann tensor
vanishes, so the Einstein-Hilbert term vanishes. The Einstein equation is simply

ool L (Caslw)ii — OV (x)) =0

2
Ty = ——77—
Vg ogt le]

which yields
1 b

Q.

t) = €2(t) = ——Gap(x)i®aP.
oult) = (1) = 715 Gunle)
We see the metric is non-dynamical; it is simply determined by a constraint.

e Plugging this into our action S[g,z] in the case V(z) =V} gives

Szl = Vo /M it \/Gop(w)i o

which is the geometrically natural action we encountered earlier.

e To see this another way, the momentum conjugate to the field z% is

oL 1 b

Pa

so the Einstein equation gives the constraint
G (z)papy + V() =0
which becomes the Klein-Gordan equation, where m? = V. The Hamiltonian is
H = pai® — L =p* +m?

which vanishes on shell; this occurs generically for reparametrization-invariant theories. (typos
here?)

e To see this a third way, we can perform the path integral explicitly in the case where G is
the Minkowski metric. In one dimension, diffeomorphisms of the worldline, which are gauge
transformations, let us set gz = 1. Then integrating over all possible metrics is equivalent
to integrating over T, which is called a Schwinger parameter. In formal language, we are
integrating over the moduli space of Riemannian metrics.

e With fixed T, the propagator is

(yle™ ™ a) = / dpdq (ylp)(ple™"""q) (qlz) = / dp Py =T " +m?)

Integrating over T', we indeed find the propagator for a free scalar field in the target space,

oo 00 ip(z—y)
/ dT/ Dre :/ dT (yle AT |z) = /dp622.
0 Crlz,y] 0 pT+m

e We would like to use one-dimensional quantum gravity to describe interacting scalar fields.
We can do this by summing over possible topologies of M, replacing the worldline I with a
worldgraph I'. More elaborate setups allow us to include spin.
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e Specifically, to compute an r-point correlation function, we sum over all graphs with r endpoints,
where, e.g. for ¢* theory all vertices have four edges. Each edge e has a Schwinger parameter
T. integrated over (0,00). Each vertex has a position, which is also integrated over, produc-
ing momentum-conserving delta functions, and an appropriate factor involving the coupling
constant. As usual, we also divide by the symmetry factor.

e Explicitly, in ¢* theory one contribution to the propagator is

T3

Ty 15

I e e U

which yields the factor

)\ o0 o0 oo
/ dTl/ Dxe_s/ dTg/ Daze_s/dz/ dTg/ Dre
4 0 Cry [z,2] 0 Cr,[y,2] 0 Cry2,2]

which simplifies to what we know from the Feynman rules,

A e i e df eP(z—2) oia(y—2) il(2—2) Y il etp(z—y)
_4/ PO 2+ m2 2 m? __4/ P+ m22(2 + m2)

e The formalism we’ve used here is called the worldline approach to quantum field theory, a
predecessor to the modern path integral formulation using fields. (The quantum gravity inter-
pretation came much later.) It is explicitly perturbative, since it directly deals with particles

and Feynman diagrams.

e In d =2 and d = 3, we have a Riemann tensor but no Weyl tensor, so gravitational degrees of
freedom do not propagate and the path integral for quantum gravity can be performed. The
standard approach to string theory is just the case d = 2, where the graph becomes a Riemann
surface, and we sum over the topologies of this surface. This approach is thus a perturbative
picture of “string field theory”, a mysterious subject about which little is known.

8.3 Quantum Statistical Mechanics

Our results above are also useful for thermal/statistical field theory (SFT). First we’ll lay out the
analogies between SFT and QFT, distinguishing Euclidean and Lorentzian signature explicitly.

e Consider a QFT with fields ¢ : M — N where dim M = D, so
Zqrr = / Dg ™/,
Wick rotation flips the sign the relative signs of the potential and kinetic terms, giving
ZqrT = /D¢€_SE/E, B==

That is, we have

QFT in D spacetime dimensions ~ classical SF'T in D spatial dimensions
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in the sense that their partition functions are simply related. For example, for D = 1 we have
quantum mechanics ~ classical SFT in 1 spatial dimension.
We’ve been making this correspondence implicitly above.

e A different correspondence starts with a quantum SFT defined on D spatial dimensions. Parti-
tion functions in SF'T have the form of a path integral, but with a periodic imaginary “time”,

Zser = tre” M =% (nle”Mn) =} / D e 5e/l = / Dy e 5e/m,
n n Y Ct[n,n] C[M xSt
Here Sg is the Euclidean action in D + 1 spatial dimensions. Hence we have
quantum SFT in D spatial dimensions ~ classical SF'T in D + 1 spatial dimensions

where one dimension in the classical SFT has period t = hf5.

e To compute an amplitude in such a theory, integrals [ dk are replaced with sums over discrete
frequencies in the periodic time direction. In the high temperature limit 8 — 0, only the zero
frequency matters, so we recover classical SF'T in D dimensions. Hence the high temperature
limit of a quantum SFT in D dimensions is a classical SFT in D dimensions, as expected.

e As we saw in the notes on Undergraduate Physics, amplitudes in quantum mechanics are related
to matrix elements of the thermal density matrix p = e in quantum statistical mechanics,
if the time evolution is taken to be imaginary. The diagonal elements of p are of course the
occupancies, but the off-diagonal elements are harder to interpret.

e Conceptually, the reason that Zgpr doesn’t have boundary conditions but Zspr does is because
the time direction in a QFT is infinite, and the ie damping automatically projects out the
vacuum at temporal infinity. By contrast, Zgpr doesn’t have a dynamical time at all.

Next we show how to perform computations in quantum statistical mechanics.

e In quantum statistical mechanics, our goal is to compute thermal expectation values. Quantum
statistical mechanics takes place in zero spatial dimensions and periodic time, so

<HO > sy Do I1; Ose 52"

Jejgny Do e/

i
e More explicitly, in the case of a one-dimensional harmonic oscillator,

f dr 2" fCt[m,x] Do e—Se/h
= f I fCt o] D¢ e—Se/h

where the time period ¢ = A8, and the Euclidean action is

1 1 M m de\? k& 1 ("B A N m d? K
—— = —— dr — | — == d D D=——— 4+ —.
Il ()] h/o "2 <d7> T3t 2/0 T, nart " h

Here we pulled the ™ out of the functional integral, because it doesn’t depend on 7. However,
we can formally consider 7-dependent operators, which behave just as in quantum mechanics.
In particular, we get T-ordered correlators on the left-hand side.

n

(x


https://knzhou.github.io/notes/phy.pdf
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e As before, we may define a generating functional

210 = / Dar(r) exp ( / i %m(T)ﬁxm + J(T)x(7)> .

0

Then (z™) may be obtained by differentiating with respect to J(0) and then setting J(7) = 0.

e By the same logic as in the zero-dimensional theory, for a free theory Z[J] may be written in
terms of the imaginary time Green’s function,

ZJ) = Z|[0] exp <; /deT/ J(T)G(T — T/)J(T/)> ., D,G(r—7)=0(r—7), G(0)=G(Bh).

e Since the Green’s function takes place in periodic time, we take a Fourier series,

2m™n

1 Wn T _ ant
G(T)_mzn:gne ) Wn = BFL7 nEZ

where the w,, are the Matsubara frequencies. Plugging this into the defining equation,

1 w? ; K
G _ - WnT _ o
(7) ﬁﬁzcﬂth%e v V' m

n

hu) ew|7—| e_w|7—|
G(r) = 2% (ehﬁw 1 T 1 — e—hBw

as can be shown by contour integrating the latter.

This is equivalent to

Now we give some explicit examples of computations.
e Correlators may be expanded by Wick’s theorem. For example, we have

(@t =0, (2% = G(0).

To extend to an arbitrary imaginary time, we define the “Heisenberg” operators

2(7) = /e HT/h,

One must take some care, since Z(7) is not Hermitian. Now we have
(Tz(11)x(12)) = G(T1 — 72)

while higher correlators are also decomposed by Wick’s theorem.

e Using the form of the Green’s function, we have

hw 1 1
oy Jw oLl
<x>_l{(65h‘”—1+2>'

Using (H) = 2(V) = kG(0) and H = hw(f + 1/2), we find the Bose-Einstein distribution.
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e We can compute the position probability distribution by using our knowledge of the moments.
Alternatively, we can perform the computation in one step, as the probability distribution is

(0(Z —x0)) = /c‘[k‘ <6ik(£_$0)> = /dke_ikxoz[i;ﬁ)(f)] = /dke‘ikmoe_kQG(o)/Q

where we used the explicit form of Z[.J]. Thus, we conclude
6—2:%/26'(0)
V/27G(0)

In the low temperature limit this gives the ground state probability distribution, while in the
high temperature limit this gives the Boltzmann distribution.

(0(& — o)) =

e For the harmonic oscillator, the computations done above can also be done in the “Heisenberg”
picture. Starting with the usual creation and annihilation operators, define

6(7’) _ eH‘r/haefHT/hj a’r _ eHT/haTefHT/h'
Again we must be careful, as @' (1) # (@(7))'. Integrating the Heisenberg equation of motion,
a(t) =e“a, al(r)=e"Tal.

e Now we may straightforwardly compute imaginary time-dependent thermal averages,

—WwT

1
Z(B)

e
1 — e P’

(@(r)al(0)) = tre PHa(r)at (0)

Using the relationship between & and a' and @, which continues to hold with 7-dependence, we
may compute (Z(7)Z(0)), which agrees with the Green’s function computed above.

e We can set up perturbation theory with Feynman diagrams just as we did earlier. For example,
for the anharmonic oscillator with a A\#*/4! term, we have

B Sg | [ A4\ Ao g
Z)\[J] —/DI'(T) exp <_h+/0 dTJ.’L'—Fh.’L' = exp _4'h/0 dTW Z()[J]

where Sg is the Euclidean action for the harmonic oscillator. We can then expand the expo-
nential in a series, using our simple expression for Zy[J], and simplify each term by Wick’s
theorem. Each set of contractions yields a Feynman diagram.

e Hence we have the following Feynman rules for computing the partition function Z[0].

— Draw n internal points at times 7;.

— For every point, multiply by —\/A and integrate over ;.

Contract the 4n edges pairwise. For each edge, write G(1; — 7;).
— Multiply by Zp[0] and sum over all contractions.
Summing over contractions, we get equivalence classes of diagrams, where we must divide by

the symmetry factor as usual. We can evaluate correlators similarly, though now there are
external points.
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8.4 Quantum Fields

Finally, we generalize to quantum fields, returning to Lorentzian signature, and tie up some loose
ends from the previous sections.

e For a scalar field, we may define field eigenstates by
$(2)|6(z)) = ¢(w)|(x))

and similarly field momentum eigenstates |7(z)), and use them to construct a path integral as
before using the formal completeness relation

[ Do) 1o} (9(x)| = [ D) ImG) (0] = 1.
The path integral then yields the transition amplitude between two states |¢,) and |¢p).

e In relativistic quantum field theory, we are usually interested in vacuum expectation values,
since they appear in the LSZ reduction formula. If we let the vacuum be |€2), then we can isolate
it from arbitrary boundary conditions, as long as they have some overlap with the vacuum
state, by taking the time to infinity in a slightly imaginary direction. The result is

/ Do(a) e T Os(as)
1=1

QT[]0 = lim
el T—o00(1—1€) /D¢(m) eis

where the paths on the right-hand side run from —7 to 7', and the denominator cancels out
the phase and overlap factors, so that (2|/2) = 1. We will keep this implicit below.

e Taking the time to infinity this way effectively provides an infinitesimal damping which makes
the path integral converge. It is always necessary in the definition of the path integral, even in
Lorentzian signature, and it is what makes the transition to Euclidean signature natural. It is
equivalent to add an e term in the action like

LD (m? —ie)¢?.

This manifestly yields the expected ie in the Feynman propagator. In all cases, whenever we

write m?, we really mean m? — ie.

e A general state of the quantum field is a superposition of the field eigenstates, so it is a
wavefunctional of the classical field configurations. For example, the vacuum wavefunctional
can be computed from the path integral as

@)= tim [ Do) e

ti——oo(1—1ie€)
where the final boundary condition is ¢(z) and the initial boundary condition is arbitrary.

e The partition function can be interpreted as the vacuum to vacuum amplitude,

(Qle~ T Q) = / Dé(z) e*® = Z[0] = sum of vacuum diagrams
time T’

which implies that it is equal to e *#7 where E is the vacuum energy, which is generally

divergent. Thus dividing by Z[0] to compute expectation values is equivalent to renormalizing

the vacuum energy to zero. Then WI[0] is simply the vacuum energy times 7.
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Since Dirac fields are complex, we’ll also have to deal with complex Grassmann numbers.

e We can construct complex Grassmann numbers from real Grassmann numbers, e.g.

1 1
0= —(m +im), 0°=——(m —in).
\/5(771 ”72) \/5(771 “72)

Using the change of variables formula derived earlier,

/ d9*df 00* = (—i)(i) / dnadn mme = 1.

For multiple Grassmann variables we define d"0d"0* = df,,d0}, ... d01d0]. Note that db;db; is
Grassmann-even.

e By convention, we take complex conjugation to reverse the order of products, (0n)* = n*0*.

e A complex Gaussian integral takes the form
/ d"0drg* e~ 0 Ml = / d"od"g* e~ =i 5imb = TTm; = det M
i
where the m; are the eigenvalues of M. Note that the derivation of this formula does not require

0* to be the conjugate of #, and that the final result has no square root.

e The partition function with anticommuting sources x and x* is
Z(X) — /dnedne* e—&jMijGj—i-x;*Gi—i-G;‘Xi

and performing the shift § — @ + M~y yields
Z(x) = (det M) eXi M iaxs

Note that M must be antisymmetric. When n is odd, M has a zero eigenvalue and hence M !
does not exist, so the above formula does not apply.

e In the case of a Dirac field, there is an independent Grassmann algebra at every point in
spacetime, and we write

U(z) = Zwma:)

where the ¢;(x) are a basis of four-component spinors, and the 1; form a basis of the Grassmann
algebra at x. In particular, this is how one should think of relativistic spinors even on the
classical level; otherwise, the anticommutativity must be put in ‘by hand’ upon quantization.

e As an example, in d = 4, every interaction of the form (1)1)® is trivial, because there are only
eight independent Grassmann variables at every point. This is physically sensible, because
interactions are contact interactions, and we cannot put five Dirac fermions at the same point.

Next, we explicitly construct the fermionic path integral using coherent states.
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e We consider a single fermionic degree of freedom, e.g. a single mode that could be occupied by
one kind of fermion. We construct the path integral using coherent states,

DY) = Yl)

where v is a complex Grassmann number and 1& is an annihilation operator. The operators 1[1
and ¢! obey

{4y =1
with all other anticommutators zero. Note that we are allowing ‘scalar multiplication’ with
Grassmann numbers in our Hilbert space, though our final answers will be ordinary numbers.

e We postulate a unique ground state |0) so that ¢)|0) = 0 and define 9|0) = |1). Then there are
no other states. The desired coherent state is

1) = 10) — ¥[1).
To show this very explicitly, note that
PlY) = —y|1) = pip[1) = vdiT0) = 10) = ¥ly).

It is easy to make a mistake, as everything can have Grassmann parity. The matrix elements
of 1) are Grassmann numbers, and the state |¢) itself has Grassmann coefficients.

e To make the analogy clearer, note that
it
[¥) = e™"""|0).
In the bosonic case, coherent states are defined as
+
alp) = plp), ) = e [0).
The latter expression is identical up to a sign.

e The complex conjugate state (1| is defined by

Wl = (le*, (W] = (0] — (1j* = (0le~".

The inner product of two coherent states is

/

(l0) = (010) + (1" [1) = 14 g7y = eV
e Finally, the completeness relation is
[ v =1,
This result holds because the left-hand side is equal to |0)(0] + |[1)(1].

We now use this setup to compute transition amplitudes.
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e We compute the transition amplitude

(ple Uty H = i M)

for a quadratic Hamiltonian. As in the bosonic path integral, we split the time interval by
inserting copies of the identity.

e Each copy comes with a factor of
/ i (e 0 )e i Va ().
Expanding the exponential, we find

—iM Lk T 5
(e Oy) = (1 = iy Mapjt) (4 [hy) = eViwi¥iem Wi Mvadt,

Then some of the phase factors telescope, and we find
N N
(g tylhisti) = ngnoo/ [T dvsdey exp | Y =t (i — v) — i6tH (W], ;)
j=1 §=0

- / Dy D et dt (97155 -1)

and in the usual case the quantity in parentheses is the Lagrangian.

e Now, the Dirac field is a relativistic field, so the field operator necessarily contains both creation
and annihilation operators. Hence the interpretation is somewhat different from above, but the
same manipulations work. In this case we integrate DyYDy and define the generating functional

Z[n7 77] = /D¢D1/1 eis[wva}+iﬁ¢+i@n
and by the same manipulations in the bosonic case, we have

1 0 -0 _
0,0) () intea) |

where we pick up an extra minus sign by anticommutation.

(QUTY (1) p(22)|Q2) = 7

e By our earlier result for a Gaussian integral with linear sources, the Feynman propagator is
again the inverse of the kinetic term —i(i@) — m), recovering the usual result in Fourier space.

Note. As mentioned earlier, spinors should be Grassmann-valued in classical field theory, leading
to tricky signs. We defined the complex conjugate so that (0102)* = 0367, and define the transpose
of a single Grassmann number to do nothing. Then for spinor fields v,

(P11p2)" = =3 ¥

because the terms in the sum have the order of the Grassmann variables flipped. But more nicely,
I T\« —
(@rtbe)t = —(¥3 ¥y )" = ¥l 4

so the adjoint simply applies to everything in flipped order.
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8.5 Symmetries of the Path Integral

In this section, we derive the Ward—Takahashi identities. They are exact, nonperturbative relations
between correlation functions that result from symmetries of the path integral. We begin by
reviewing Noether’s theorem.

e We work in curved spacetime using the language of differential forms, restating every result in
coordinates. Consider the infinitesimal transformation

bc¢(x) = €f(d,0u0).

The transformation is local if f depends only on the fields and their derivatives at z, in which
case it is generated by the vector

0

Vi = /M @'z V5 1(8,00) 557

acting on the space of fields.

e This transformation is a symmetry if it leaves the action invariant. Now, we introduce the
so-called “Noether trick”, promoting € to be spacetime-dependent. Since we have a symmetry
for constant €, the variation of the action should depend only on derivatives of €, so we can
always find some j so that

deS[gp) = — /M xj A\ de = — /M A%z /g g" ju(x)0pe().

One can check j is just the conserved current found in the usual proof of Noether’s theorem.

e When the equations of motion hold, the action is invariant under any infinitesimal change in
the fields, 0.S[¢] = 0. Integrating by parts and choosing €(x) to have compact support,

dx*j=0,(v99"j,) = 0.

o We define the charge @ on a hypersurface N of codimension one by

Q) = [ = [ ey g
N N
where gy is the metric pulled back to N and n* is a unit normal.

e Now consider two such hypersurfaces Ny and N; bounding a region M’. Then

Q[Nﬂ—Q[No]:/aM,*j://d*jzo.

That is, the charge depends on N only through its homology class. In the simple case where
the N; are constant time-slices of Minkowski space, this means () is conserved in time.

Example. For the complex scalar field we have

Slé] = /M 0B A+ +V(6]%)
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where we write conjugation with a bar to avoid confusion with the Hodge star. Then by direct
computation, the current is j = i(¢dp — ¢d¢) and for a time-slice,

QIN] =i /N +(6dd — Bdo) — i / dx 30 — B0

The canonical momenta are

so the charge is
Q=i [ dx(¢m —é7)
which indeed generates the transformations by Poisson brackets.

Note. Dynamical symmetries are symmetries of the equations of motion that are not symmetries
of the Lagrangian; they are associated with integrable systems. For example, for a free particle, the
Lagrangian has an O(n) symmetry, while the equation of motion has a GL,,(R) symmetry because
it only requires the particle to move uniformly on a line.

Next, we turn to symmetries in the quantum theory.

e In the quantum theory, the local field transformation ¢ — ¢’(¢) must leave the product of the
path integral weight and measure invariant to be a symmetry,

Dpe S0 = Dyl =511,

This is necessary and sufficient, but since we have more experience with symmetries of the
action from classical field theory, we often use those and hope the measure is invariant as well.

e For example, suppose S[¢] only depends on the derivatives of ¢. Then classically we have
the shift symmetry ¢(z) — ¢(x) + ¢o. It would appear that the measure would obviously be
invariant, but the measure is not defined without regularization, and the regularized measure
might not be invariant.

o If M = T? we might expand ¢(z) in a Fourier series, then cut off the sum. Since the constant
translation only affects the lowest Fourier mode, and the regularized measure integrates over
all values of this coefficient, the measure is indeed invariant.

e As another example, consider rotational symmetry in Euclidean space. The action is SO(d)
invariant if it is a scalar under rotation. We can regularize the path integral by integrating
over all Fourier modes where the SO(d) invariant quantity p#p, is less than some cutoff; this
is slightly more subtle for SO(d — 1,1) in Minkowski space. Alternatively, we can regularize by
replacing space with a lattice, but this breaks SO(d) down to the lattice’s point group.

e Sometimes we may run into tradeoffs, where only some symmetries can be preserved, and we
may intentionally choose which to lose. A worse situation is when there doesn’t exist any
regulator that preserves a symmetry, in which case the symmetry is said to be anomalous; it is
said to be incompatible with quantum mechanics itself.
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e For example, QED in four dimensions with a massless fermion is conformally invariant, but there
is a conformal anomaly; indeed, the beta functions are nonzero in DR, with a hard cutoff, and
on a lattice. It’s possible to prove that a symmetry is anomalous by considering the geometry
and topology of the space of fields, using sophisticated mathematics such as the Atiyah-Singer
index theorem.

e The Standard Model contains a number of anomalies, such as the global symmetry of baryon
number. In general, it’s acceptable for global symmetries to be anomalous, but not gauge
symmetries, since we lose the Ward identity and hence unitarity. The hypercharges in the
Standard Model are fixed by requiring gauge anomalies to vanish.

e Consider operators whose only variation under a symmetry transformation is through the
transformation of the field, e.g. scalar operators for rotations. Then O(¢) — O(¢’), and on a
compact manifold M we have

/D¢ o519l Hoz(¢($z)) - /D¢/G—S[¢/] H O0i(¢ (z;)) = /qu e~ S10] H Oi(¢ (1))
where we simply renamed the dummy variable in the first step, then defined ¢’ in terms of ¢

and used the definition of a symmetry in the second.

e Therefore, we conclude (leaving the time ordering implicit)

(01(¢(21)) - - On(d(xn))) = (O1(¢ (21)) - .. On(¢' (zn)))-

In general, we will call any identity between correlation functions derived from a symmetry a
Ward or Ward—Takahashi identity. This is an example of a ‘global’ Ward—Takahashi identity.

Example. Consider the U(1) symmetry of a complex scalar field,
6 =" 6=¢ ="

The path integral measure is invariant under this symmetry as long as we integrate over as many
modes of ¢ as we do of ¢. Therefore for O; = ¢"i¢"", we have

(O1(@1) . On(an)) = €220 (1) ... On(an))-
Then correlators vanish unless they contain the same number of ¢ and ¢ fields.

Example. If the action and path integral measure are translationally invariant, and the operators
O; depend on z only through their dependence on ¢(z), then

(O1(x1) ... On(xn)) = (O1(z1 —a) ... Op(xy — a))

so correlators only depend on position differences. Similarly, Lorentz invariance ensures that
correlators can only depend on the invariant interval between the insertion points.

Note. Formally, the path integral measure picks up a Jacobian factor,

- ()
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In the case of the transformation described above, we have

5 o ()
Sofy) V) eI =0l my) e
and hence the Jacobian is o <5¢’(x)> . <65f(¢(x))>
560(y) 00y) /)

Then classical symmetries linear in the fields should remain symmetries in the quantum theory,
because the argument of the determinant is field-independent, so the Jacobian is just a constant
that cancels out. However, this formal argument is deceptive, because we are working with an
undefined, “ideal” path integral measure. Instead we must check invariance directly.

These results roughly correspond to charge conservation, but we can derive more powerful identities
that correspond to current conservation, usually called the Ward—Takahashi identities. To warm
up, we derive the Schwinger—Dyson and Ward—Takahashi identities in standard notation.

e We consider the partition function of a generic theory Z[J]| and a transformation

¢(x) = ¢'(z) = ¢(z) + eAd(z),

not necessarily a symmetry, which leaves the measure invariant. Then infinitesimally

Z[J] = /p¢ei(5[¢]+¢-»7) — /ng' e (S10']+6"-T) _ /Dqﬁ ci(Slel+¢-J) <1 44 (g*; + J) eA(b)

which shows that

[ poectseren [y ((S(Z(Sy) " J(y)) A(y) = 0.

e Next, we consider the specific transformation that shifts the field at one point,
Ap(y) = 0y — )

which should leave a reasonable measure invariant; this shift-invariance was the motivation
behind our definition of Grassmann integration. Then we find

05 i(S[e)+J-¢) _
/Dgf) <5¢(x)+<](:c))e + =0

which states that the classical equations of motion hold in vacuum expectation.

e To get relationships between correlation functions, we act by n field derivatives 6/id.J(z;). This
yields one term with n factors of ¢, and n terms with n — 1 factors of ¢, where one of the
derivatives hits the J(z) factor. Setting J = 0 gives

5S4 & N
<6¢(a;) 11 <Z5(a?i)> =1 ; <<Z5(x1) c(xi)o(z — ) ... ¢>(96n)>

where the hat denotes a missing argument. This is the Schwinger-Dyson equation, as we derived
earlier. Letting X stand for all the fields, it can be concisely written as

<5£Z:>X>:i<aié>>'

Indeed, here X can be any function of the fields.
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e The classical equivalent of a time-ordered correlator is just a product of numbers,

(p(x1) .. ¢(xn)) = d(21) .. d(2n)

so in the classical limit, the left-hand side is zero as 65/d¢(x) = 0. Thus the contact terms on
the right encode the difference between classical products and quantum correlation functions.

e Asan example, consider a free scalar field. Then the Schwinger—Dyson equation for n = 1 reduces
to the statement that the Feynman propagator is a Green’s function for the Klein—Gordan
operator; the contact term supplies the required delta function. For an interacting theory, we
would instead find a relationship between the two-point correlator and higher correlators, which
we can use to organize a perturbative expansion.

e To derive the Ward—Takahashi identities, we do the same procedure, but for a classical global
symmetry associated with a field change d¢. Here we have

Ad(y) = 3y — 2)66(x), %wm — 0, (x).

Assuming this transformation leaves the measure invariant as well, we have

/qu ei(S[qﬂ—l—d)'J)(_@Mj“(x) + J(z)do(x)) = 0.

Taking derivatives as before gives the Ward—Takahashi identity

O <j”(:r) 11 ¢<xz~>> = i3 (o) . Ba)5d(@)( — w1) . H(an))

i=1

where the derivative acts on z. In the case n = 0, we see the current j* is conserved in
expectation, 0, (j*) = 0.

Note. It is conventional in theoretical physics to write the Schwinger-Dyson equation as, e.g.

08 .
W¢(y) =id(z —y)
and call this an “operator equation”, even though the two sides are not equal as operators on
the Hilbert space. The sociological reason behind this is that statements about operators are
difficult to make, since they are fraught with short-distance singularities. In the mathematical
physics community, these difficulties are addressed in a formalism which replaces operators with
operator-valued distributions. In the theoretical physics community, these issues are avoided by
simply redefining the phrase “operator equation” to mean something weaker. The operator equation
01 = Oy means that
(01X) = (02X)

for any product of operators in X involving fields evaluated at times different from those of O; and
Os. (If the times matched, we would pick up extra contact terms.)

Next, we rederive the Ward—Takahashi identity a bit more generally. We will work in curved
spacetime, and use symmetries of the path integral, which need not be classical symmetries.
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e We consider an infinitesimal symmetry of the path integral, ¢ — ¢ = ¢ + €d¢p, where € is
constant. Then if we allow € to vary in space, falling off at infinity to avoid boundary terms,

Z:/Dqﬁ’e_s[‘ﬁ/] :/Dqﬁe_s[qﬂ <1—/ >|<j/\de>
M

as we saw classically, but the variation of the measure may also contribute to j. Then

0= [ wti@) nde= [ ew)ds (i)
M M
which implies that j#(x) is a conserved current in expectation, d,(j*(x)) = 0.
e Now, as before, we introduce local operators which transform as
O — 0 =0+650.

Accounting for both the change in the action and measure, and the operators, we find

/M () Nd <j($) Hoz’(ﬂ?i)> =-> <€(ﬂfi)50i($i) 11 Oj(xj)> :

i=1 i=1 j#i
Note that the exterior derivative d acts on x, and the correlators are time-ordered as usual.

e To finish up, we would like to strip off the parameter e(z). Note that

€(2:)00;(x) = /

M

*0(x — 7)e(x)00;(x;) = / Oz — x;)e(z)00;(xi)\/g de.

M

Having expressed both sides as integrals, we simply have

d * <j(x) 11 (’)i(xi)> =—%> Oz —x) <(5(’),~(a:i) Hoj(xj)> :
=1

i=1 jF#i
This is the Ward—Takahashi identity in a curved spacetime. In more pedestrian notation, in
flat spacetime, this reduces to

Ay <j“(:n) H(’)Z-(xi)> ==Y d(x— ) <50i(xi) Hoj(xj)> :
=1

i=1 i

e Next, we integrate over z to investigate charge conservation. Consider integrating over some
region M’ C M with §M’ = Ny — Ny, as we studied classically, where M’ contains all the points
z;. Then

n

@QIN1 ] Os(=:)) = (QINo] [ Oi(i)) = =D _(60u(:) [ Oj(;))-
i i i=1 i

If M is compact without boundary and M’ = M, the left-hand side vanishes, and

n

> (00i(@) [ ] 0;(x;)) = 0

i=1 i

which is just the infinitesimal form of the global Ward—Takahashi identity under the symmetry
generated by Q.
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e If M has a boundary, we pick up extra terms. For example, we saw earlier that correlation
functions of ¢ vanish if they have nonzero U(1) charge. In this more general context, they
vanish unless their charge is equal to the difference of the initial and final U(1) charges.

e A more subtle example is when M is non-compact. In this case we must impose boundary
conditions at infinity, e.g. that the field approaches a constant that is a minimum of the effective
potential. This can result in spontaneous symmetry breaking.

Note. We may use the Ward—Takahashi identity to show that the conserved charge generates the
symmetry transformation. We integrate over a spacetime region bounded by t = ¢t_ and ¢t = ¢,
where the time interval contains ) but none of the other z¥. Then

n

(Q(t1)01(21)Y) = (Q(t-)O1(z1)Y) = (601 (z1)Y), Y =[] Oi(ws).

=2

Taking the limits t_ — 29 and ¢t; — 29, the left-hand side becomes a commutator because the
correlators are time-ordered. Since Y is arbitrary, we conclude

Q,0] =-50
as an operator equation in the Hilbert space.

Finally, we relate quantum symmetries to symmetries of the 1PI effective action.

e Under the infinitesimal symmetry ¢ — ¢' = ¢ + €f(p, dp) we have

2= [ Do oxp (- (81+ [ wso@))
=i/D¢@m<—;<5wkﬁA/hJ@MK@>>

_ 2] <1 -4 /M de<x><f<¢,8¢>>J)

where the expectation value is taken in the presence of the source J. Then we have
| dza@)r0,00) = 0.

o Next, we evaluate the current at

Ial) = =Sk (6 =

to give

Jr[@] B
/M dz 0P (x) (f(¢,09)) s = 0.

Therefore, the effective action is invariant under the transformation
= 0 =P +e(f(¢,00))

which involves expectation values of the transformations, which can be rather complicated. This
result is called a Slavnov—Taylor identity.
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e When the symmetry is linear, i.e. f is linear in the fields, we have

(f(0,00)) 15 = [(®,09)

so the effective action is invariant under the transformation
P — & =P+ ef(P,00).

Therefore, all symmetries of the classical action linear in the fields, under which the path
integral measure is invariant, become symmetries of the quantum 1PI action. For example, this
result ensures that a ¢3 coupling cannot be generated in ¢* theory by Zo symmetry, that O(n)
symmetry is preserved in the O(n) model, and that Lorentz invariance is preserved.
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9 Wilsonian Renormalization

9.1 Effective Actions
We now turn to the Wilsonian picture of quantum field theory.

Note. Consider a bead constrained to a steel hoop, in classical mechanics. The hoop itself has
degrees of freedom, but they cost a huge amount of energy to excite. Then minimizing the action
means that the hoop is in the ground state; plugging this back into the action gives a Lagrange
multiplier than constrains the location of the bead. This is inherently a low-energy description,
since the hoop can be excited by, e.g. smashing it with a sledgehammer.

In quantum field theory the situation is subtler, because we no longer have to sit at a minimum
of the action. Instead, quantum fluctuations appear which involve degrees of freedom at arbitrarily
high energies, e.g. in loop integrals. The content of renormalization is that it is still possible to
calculate at low energies without knowing what those high-energy degrees of freedom are.

e We consider a scalar field theory with action
1
d d—d;
Sholee] = /d @ 50" + ZAO 9i00i().

The subscript Ag refers to the UV cutoff, which must be included to define the path integral.
The O;(x) are arbitrary local operators with dimensions d; > 0, where the dimensions are found
with ordinary dimensional analysis, and the g;y are defined so they are dimensionless.

e The partition function is
Z10(gi0) = / Dip e Srolel/h
C>°(M)<a,

where C°°(M)<p, is the space of smooth functions on M with momenta bounded by Ag. There
are also IR divergences, which we can regulate by putting the system in a box.
e Since C*(M)<y, is a vector space, we may split the modes as
o(r) = ¢(x) + x(x), ¢ C®(M)<p, x€C®(M)nn) De=D¢Dx.

Integrating over the high-energy modes x gives the effective action
Sil6) = ~hlog | D exp(—Say 6+ XI/).
C=(M)(a,n0)

We can iterate this process, yielding a semigroup called the renormalization group. Note that
the effective action W[J] is just a Wilsonian effective action with A = 0.
e Setting i = 1, we may separate out the kinetic terms of the action as

Saold + x] = S°[8] + S°Ix] + Siv[e, ]

where there are no ¢y mixing terms by momentum conservation. Therefore the interaction
terms, which include mass terms, obey

Sin[g] = —log/ Dy exp(—S°[x] — Siv [, x])
€ (M) (a,A0)
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which yields effective couplings g;(A). Note that if we expand the right-hand side in powers of
S}{lot, the even-power terms contribute with an extra minus sign, and the logarithm ensures we
only sum over connected diagrams.

e By definition, we must have
Za(9i(A)) = Z4,(gi0)

because both sides are the same integral; the left-hand side depends on A through both the
cutoff and the couplings. We can also include external currents to have partition functions Z[.J].
Then we have Z)[J] = Z),[J] as long as J has no Fourier components in (A, Ag].

e Therefore, the total derivative with respect to log A is zero,

d2x(9) _ < 0 ) Za(g) = 0.
A

dlogA  \ dlogA
This is an example of an RG equation, which we’ll generically call a Callan-Symanzik equation.

9gi(A) 0
0log A Og;

‘gi

e It will be useful to adjust our definitions to maintain canonical normalization of the kinetic
term. With a generic initial action, the effective action will have the form

5101 = [ de Dors0,0 + SN2 (N0w)

where n; is the number of factors of ¢ in O;(x), and we have redefined g;(A) to pull out factors
of Zx. We then define the renormalized field

1/2
0 =2)"
so that S§T[] has a canonically normalized kinetic term and dimensionless couplings g;(A).

e For convenience, we define the beta function

B0 (0)) = s = (s — () + ¥,

where the first term is just from the variation of the explicit power of A, and the second
represents the inherently quantum effect of integrating out high-energy modes. This term
generically depends on all of the couplings; for example a ¢% vertex can renormalize a ¢* vertex
by contracting two of the legs. It also depends on the field renormalization.

e We define the anomalous dimension ~4 of the field ¢ by

_ 10logZy
T =Ty dlog A~

This is essentially what the beta function for the kinetic term would be, if we weren’t fixing
its normalization, and it appears in the RG flow of correlation functions. More generally, for
multiple fields we would have a matrix of wavefunction renormalization factors, since the fields
may mix as modes are integrated out. In practice, this matrix can be computed perturbatively,
as we saw in the notes on Statistical Field Theory.

We now use our setup to compute correlation functions.


https://knzhou.github.io/notes/sft.pdf
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o We define the n-point correlator

(6(@1)... $an)) = =

2 C>(M)<a

Doe N ¢(z1) ... dn(z).

In terms of the canonically normalized field, this is

(@a1) .. dlaa)) = 2" (p(@r) . plaa)) = 2T (1, 2as i(A)
where all other factors cancel out due to division by Z.

e As long as the ¢ insertions involve modes with energy less than A, we can compute the ¢
correlator in either the original theory or the effective theory. Therefore we have

—n/2n(n)

ZPT D (s gi(sA)) = 20T (@, s gi(M)

sA
for s < 1. Taking the differential gives the Callan-Symanzik equation

A - Ty G 51 Y yoees Iy Gi =0.

e It is also useful to consider an “autonomous” RG transformation, where the cutoff A remains
the same. To do this, we perform the change of variables

¥ =sz, @) =2V 2(x)

where the new field ¢ is chosen so that the kinetic term is invariant,

[t @0 = [ dis@0@)? = [ dis (@6

If ¢(x) has UV cutoff k = sA, then ¢/(2/) has UV cutoff & = A where £’ is formally the
Fourier conjugate to /. Note that all of the dimensionless couplings are left invariant by
this transformation. (Equivalently, everything dimensionful transforms with its engineering
dimension.)

e At this point, the physical UV cutoff scale has not actually been changed; we have merely
performed a change of coordinates. We next perform an active rescaling of the metric so that
physical distances shrink by a factor of s. Then the new primed metric coordinates match the
old unprimed metric coordinates.

e The composition of these steps (integrating out, changing to primed coordinates, actively rescal-
ing the metric, renaming primed coordinates to unprimed) leaves A and the metric invariant,
but changes the dimensionless couplings from g;(A) to g;(sA). It is hence an autonomous RG
transformation.

e It can be a bit puzzling to physically interpret the rescaling. In the nonrelativistic context, one
might imagine pointing a camera at a physical sample. Then scaling the metric corresponds to
“zooming out” the camera. In high energy physics, we would not include the scaling at all: we
should not physically rescale the UV cutoff because it represents the scale of new physics. The
calculational issues that would arise in the absence of rescaling are moot, because we do not
use Wilsonian RG in practice for high energy physics anyway; we instead use “continuum RG”.
However, for the remainder of this section we will include the rescaling.
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e Integrating out by a factor of s and then rescaling by a factor of s gives

n ZA\"?
MG = () T i)

7 n/2 (n)
= <S2dZA> 1Y (sx1,...,8%n; gi(sA)).

Finally, replacing x; with x;/s gives
(n) 2-a 20 " w)
Ly (/s an/s1gi(A)) = (3 - ZA) L@, 2ns gi(sA)).

For s — 0, this says we can study the long-distance behavior of our theory by consider correlation
functions at fixed separation, but using the couplings in the low-energy effective theory, which
is intuitive.

e Taking the differential, every factor of the field scales as if the field had mass dimension

Ag=(d—2)/2+4

so the anomalous dimension is the difference between the scaling dimension and the naive
classical dimension. Note that we pick up a minus sign here since mass dimension is inverse to
length dimension.

9.2 RG Flow

Next, we consider the general picture of RG flow.

e A critical point is a point where all of the beta functions vanish, so the couplings are scale
independent. A simple example is the Gaussian critical point, where g = 0. At a nontrivial
fixed point, quantum effects exactly cancel the classical scaling; this usually requires strong
coupling, since the classical terms are always O(1).

e Now, the anomalous dimension ~4 is only a function of the couplings, so at a critical point it is
scale-invariant as well, v4(g;) = 7;- Then we have

(2)

2
- A

Dlog A (z,9)

so that T® oc A™27, By Lorentz invariance, correlation functions only depend on |z — y|. By
classical dimensional analysis,

(e(2)o(y)) = AT°G(A|z — yl, g7).

Combining these results together, we have

d—2 *
@, o A c(g;)
FA (xayagi)_A2A¢‘x_y‘2A¢'

This power-law behavior of correlation functions is typical at critical points; this is just a special
case of our more general result above.
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e Performing an RG step at a critical point leaves the partition function invariant, since it leaves
the couplings invariant. On the other hand, an RG step is composed of (1) integrating out
degrees of freedom, (2) changing to primed coordinates, and (3) rescaling the metric. The first
two never change the partition function by definition. Hence at a critical point, the partition
function is invariant under rescaling the metric alone, g"* — e*?¢"”. Now we have

0 - W(x)% — g™ () <5955(x)> x 59 () Ty ()

so at an RG critical point, the spacetime integral of (T, ) is zero.

e All known examples of Lorentz invariant, unitary QFTs that are scale invariant are actually

2Q(x)

invariant under conformal transformations g"” — e g¥. Tt is believed this is true in general;

it has been proven in d = 2 and is an open question in high dimensions. Assuming this holds,
at RG critical points (7%, (z)) = 0.

We now linearize about a critical point.

e Near a critical point, at g 4 dg;, the beta functions are
Bi = Bijog; + O(6g°).

Let 0; be an eigenvector of B;; and let its eigenvalue be A; — d, so the coupling scales as

oi(A) = <f\\0> B 7i(Ao).

The definition of A; is slightly different from that of Ay because we are taking the couplings
to be dimensionless but the field to be dimensionful.

e Classically, we would have A; = d;, but more generally o; has an anomalous dimension
vi = Ay —d;

which is defined analogously to the anomalous dimension for ¢. For the Gaussian fixed point,
all anomalous dimensions are zero, as we’ll show below.

e [t is a bit of an approximation to assign o; a classical dimension, because in general the o; will
be complicated linear combinations of all the operators. However, when the corrections are
‘weak’ the off-diagonal elements of B;; are small compared to the classical diagonal terms, and
the eigenvectors are close to the classical ones.

e Now imagine starting near a critical point and turning on the coupling to any operator with
A; > d. Then the coupling becomes smaller as the scale A is lowered, so we say the corresponding
operator is irrelevant, as it does not affect long-distance physics; we just flow back to the critical
point.

e More generally, the critical surface C is the set of points that flow back to the critical point
under RG flow; then the irrelevant operators provide coordinates for C in the neighborhood of
the critical point.
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e Couplings with A; < d instead grow as the scale is lowered, and are called relevant; RG
flow instead drives us away from the critical surface. This flow may eventually terminate at a
different critical point, or in exotic cases perform a limit cycle. Since each new field or derivative
increases A\; classically, there are finitely many relevant operators for fixed d.

e In the classical approximation, and the convention where couplings have dimensions, irrelevant
operators have couplings with negative mass dimension, and relevant operators have couplings
with positive mass dimension. Then it is clear that a mass term is relevant.

e A marginal coupling is an RG eigenvector with A; = d, or equivalently about the Gaussian
fixed point, d; = d. In this case, we need to expand to second order about the fixed point,
yielding a weak, logarithmic dependence on A. Depending on the sign of the next term, the
coupling is marginally irrelevant or marginally relevant. Note that the kinetic term is exactly
marginal by definition.

Note. Consider calculating the beta function to first order about the Gaussian fixed point. This is
equivalent to considering diagrams with only one vertex, so renormalization only goes one way. For
example, ¢5 can renormalize ¢* but not vice versa. The matrix Bi;; is thus upper-triangular with
the classical values on the diagonal, so all anomalous dimensions are zero. The only effect is that
the eigenvectors are slightly tilted.

We must go to second order to figure out what classically marginal operators do. Note that in
most practical computations in particle physics, we are implicitly expanding about the Gaussian
fixed point. Also note that while the dimensionless couplings change, the dimensionful couplings
are approximately constant.

Note. Given a term A\;O; in a weakly coupled field theory, its contribution to the action for a field
configuration of energy E < A is \; E®~? by dimensional analysis. We don’t use A here because
the field configuration can’t know what A is. To show this more quantitatively, consider a field
configuration with lengthscale L ~ 1/k and dimensionless amplitude b= ¢/k. Then

2
[as @ ~&. [aemier~ o [ as@oper ~ wrerigr,

Assuming the kinetic term dominates, when we perform the path integral, configurations with QE ~1
dominate. Then the contribution of a term depends on k just as our dimensional analysis suggests.
Then a dimensionless coupling g; has effect

B A;—d
AS; ~ gi <A)

where the kinetic term has AS ~ 1. This measures the effect of the term on observable quantities
derived from the action, such as cross sections. The tree-level RG evolution of g; simply states
that AS; is independent of A. Because loops are sensitive to A, anomalous dimensions appear at
loop-level.

Relevant terms such as masses are more important at £ < A, while all irrelevant terms become
important as E approaches A. For marginal terms, which are the majority of couplings we consider,
the value of g; itself is a good estimate of its effect, so perturbation theory really does break down
when g; is O(1).
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Example. For a scalar field d = 4 with Zs symmetry near the gaussian fixed point, we have
relevant: 1,¢%, marginal: ¢*, (9¢)>

and everything else is irrelevant. The physical mass is independent of the cutoff, as one would expect.
In d = 3, ¢* becomes relevant while ¢% becomes marginal. In d = 2, the field is dimensionless, so

relevant: 1,¢%,¢%,..., marginal: (3¢)2, $2(94)?, .. ..
That is, we get an infinite series of relevant terms, which is quite rare.

Note. The origin of universality. The theory space is generically infinite-dimensional. Now consider
the finite-dimensional set of theories obtained by starting from an RG fixed point, turning on a
relevant operator, and performing RG flow, creating a ‘renormalized trajectory’. By the discussion
above, every initial condition will approach a renormalized trajectory, so theories in the IR are
described by a finite number of parameters.

If we continue RG flowing into the deep IR, we often end up at a trivial fixed point, like the
“infinite temperature” fixed point in statistical field theory, since we integrate out all massive particles.
Alternatively, we may end up at a nontrivial fixed point/CFT, such as the Wilson-Fisher fixed
point, where the particles are massless; renormalization exactly cancels the tree-level mass.

We now consider a converse question, more relevant to particle physics: is it possible to fix a
low-energy theory at scale A while sending the cutoff Ay to infinity?

e The simplest case is when Sy, is on the critical surface C. Then taking Ay — oo gives Siﬁ
exactly at the critical point. Since C has finite codimension, we have to tune a finite number of
parameters to do this, e.g. the temperature in a statistical field theory.

e Theories such as QCD and Yang—Mills are not CFTs, but instead have relevant and marginally
relevant terms in their actions. In this case, to fix the low-energy theory we must modify the
high-energy theory as Ag varies, which is done perturbatively by adding counterterms. For
example, we could parametrize the high-energy theory as

Saole] = SK'[¢] + hScr[p, Ao)
so that the counterterms vanish when A = Ag. The counterterms are tuned so that the limit

Si'le + ]

e~ ST/ = Jim Dy exp (— 7

— Scrlo + X, Ao]>
Ag—o0 COO(M)(A,AO]

exists. We separate out the counterterms explicitly to organize perturbation theory. In pertur-
bation theory, we work order by order in A, canceling the (regularized) divergences produced by
the bare action Siﬁ by counterterms. The extra factor of A is because the one-loop divergences
are canceled by tree-level counterterm diagrams, and so on.

o We need our low-energy theory to lie on a renormalized trajectory. Then the counterterms are
chosen so that, as Ag is increased, S, gets closer and closer to the critical point along the
renormalized trajectory. Then there’s one counterterm for each relevant operator, as we’ve seen
perturbatively, and the continuum limit is the critical point.
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e The existence of relevant operators leads to a fine-tuning problem. Suppose we have a very high,
fixed cutoff Ag = Apjanck.- Then if the dimensionless coupling at scale A is not extremely large,
the dimensionless coupling at scale Ag must be extremely small. This is ‘unnatural’, because we
expect a fundamental theory, where the couplings can be calculated, to have O(1) dimensionless
couplings. Note there’s no problem with having very large or very small dimensionless couplings
in an effective theory.

e Marginally relevant operators aren’t nearly as problematic as log(Apjanck/1 TeV) ~ 40 isn’t
huge, where 1TeV is about the minimum possible cutoff A for the Standard Model.

e In the case of a mass term, the only way to avoid unnaturalness would be to have m ~ Ag,
i.e. we need particles so heavy we can’t even produce them at A in the first place.

e More generally, we could include finite coefficients for irrelevant operators in Sy,. This affects the
required tuning for the relevant operators, since the two will renormalize each other. However,
the effects of the irrelevant operators will disappear exactly in the limit Ag — oco. The point is
that we only need one fine tuning for each relevant parameter.

e Note that generically, we should always think of every operator as being present. Even the
points on a renormalized trajectory don’t only have the relevant couplings turned on; instead
these relevant couplings immediately turn on all others, so in general every coupling is nonzero,
though the irrelevant operators remain small because they decay away as they’re produced.

e As a result, the true coefficient of an irrelevant operator in the IR isn’t nearly as small as naive
is that the value of the coupling in the UV is
irrelevant to the value in the IR, since the quick initial decay washes it out; irrelevant operators
are still present in Siﬁ even when Ag — oo, but with small coefficients.

b

scaling suggests. The real meaning of “irrelevan

Now suppose that our low-energy effective theory contains an irrelevant operator with a large
coefficient, which is often required to match experimental results.

e In this case, there is no hope of our theory lying on a renormalized trajectory. Since there are
infinitely many irrelevant operators, which generically all renormalize each other, we now need
an infinite number of counterterms and an infinite number of renormalization conditions.

e Moreover, the counterterm coefficients apparently diverge in the limit Ag — 0o, so we cannot
take the continuum limit. Instead, we say the theory comes with a cutoff A.uiof

e Specifically, Acytoft is the scale where the dimensionless irrelevant couplings are O(1). Now, the
theory is perfectly predictive at energies E < Acutoff, because the effects of more irrelevant
terms are suppressed by more powers of E/Acytoff, SO we can truncate the Lagrangian after a
few terms. On the other hand, perturbation theory breaks down as E approaches Acytofr- All of
the terms become important at once, and we cannot determine all of the couplings with finite
data, so the theory is not predictive.

e Generally, what must happen is that new physics takes over. This means that we switch to a
new set of degrees of freedom (i.e. new fields, or even non-fields, such as in the Ising model)
where the theory is either renormalizable or effective with a higher cutoff, at which point we
can truncate the Lagrangian and do calculations again.
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e Another possibility is a Landau pole, where a coupling diverges at finite energy, such as the
marginally irrelevant coupling in QED. In practice this just means that new physics must take
over before then. If it doesn’t, then the theory is ‘quantum trivial’, meaning that the only way
for it to have a continuum limit is for the coupling to be exactly zero.

e The usual exposition of the Landau pole uses a perturbatively computed beta function. This
isn’t valid since perturbation theory breaks down; instead we must establish a Landau pole
nonperturbatively, through lattice simulations. Simulations of ¢* theory indicate a Landau
pole indeed exists, so the theory is quantum trivial. On the other hand, simulations of QED
indicate that we don’t hit the Landau pole; instead chiral symmetry breaking occurs.

e The Standard Model is also suspected to be quantum trivial, through the marginally irrelevant
quartic Higgs interaction. Of course, this isn’t the main reason we suspect the Standard Model
to be incomplete, or even a minor reason. A more compelling reason is the hierarchy problem:
the Higgs mass is relevant, so as the usual logic goes, the Standard Model must be extended at
the TeV scale to preserve naturalness. A critical evaluation of this argument is given here.

e A final possibility is that we simply flow to some unknown UV fixed point. This is the hypothesis
of the asymptotically safe approach to quantum gravity. In this case, new physics need not
take over, and our description can be valid up to arbitrarily high energies.

e All of these issues also occur in reverse for relevant couplings, such as in QCD, where the
coupling would naively hit a Landau pole at Aqcp ~ 1GeV. In this case, confinement and
chiral symmetry breaking occur; we must describe the dynamics in terms of hadrons rather
than quarks and gluons.

Note. Relating our results to the old picture of perturbative renormalization.

e In the old picture, the counterterms are divergent order by order in h. Here, they are perfectly
finite. This is simply because limits don’t commute with sums; for instance,
lim e ™ =0
T—r00

but all the individual terms in the Taylor series for e™* diverge as x — co. If we always maintain
a finite cutoff and do the path integral exactly, there are never any divergences.

e Before, we thought of the regularization scale Ag as an unphysical scale that had to be sent to
infinity at the end of the calculation. Now, we think of it as a physical cutoff, beyond which
might lie new physics. Taking Ag to infinity is not essential, and not physical.

e Before, in renormalized perturbation theory, we thought of a bare Lagrangian as composed of
a renormalized Lagrangian plus counterterms. Now, we identify the bare Lagrangian with the
fundamental theory, at scale Ag, and the renormalized Lagrangian with the effective theory, at
scale A.

e Before, we thought of irrelevant (nonrenormalizable) operators as dangerous and relevant (su-
perrenormalizable) operators as benign. Now, we see that turning on an irrelevant operator
changes nothing in the IR, while relevant operators present fine-tuning problems.


https://knzhou.github.io/writing/Relaxation.pdf
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e Before, we identified a renormalizable theory as one that required only a finite number of
counterterms to absorb the infinities. Now, we think of a renormalizable theory as one that
admits a sensible continuum limit.

Note. Conventions differ between SF'T and high energy QFT, for physical reasons. In SFT, we
typically know the UV theory and want to find the TR behavior, so we keep A the same by rescaling;
the only thing that matters about the atomic cutoff is that it’s very far away. In high energy physics,
we know the IR behavior and are trying to find the UV behavior, so we keep the variation of A
explicit; this is what we’ve done above.

There is also another convention, which is whether to work with dimensionless couplings by pulling
out factors of A, or to work with dimensionful couplings. For concreteness, consider £ D m?¢?.
In a free theory, integrating out UV degrees of freedom keeps the dimensionful coupling m? the
same. However, one could also consider the dimensionless coupling g = m?/A? (common in QFT),
or stick with dimensionful couplings but keep A the same by rescaling (common in SFT). These
are essentially the same idea phrased in different ways. In both cases, the coupling will grow.

Philosophically, in SFT, the slogan is to “find something relevant”. This is because we’re
interested in macroscopic behavior, and the atomic scale is so small that all effects of irrelevant
operators are completely undetectable. The fact that relevant operators require fine tuning is
acceptable because there is fine tuning in the lab, e.g. by tuning the temperature to a phase
transition. In QFT, we already know the low-energy physics, and irrelevant operators are useful
as a window into higher-energy physics. Relevant operators are a larger problem because there is
nothing outside the universe that does the tuning.

Note. Before, we've argued that contributions to the action from various operators go as g;(E/A)> ¢,
However, naive power counting can break down because of loops. For instance, in scalar field theory
with a hard cutoff, a ¢% loop renormalizes the ¢* coupling at one-loop as

5 g6 (N dk
g4 ~ p kz _ m2 ~ g6
which is too large. This occurs because only the external legs are fixed at energy FE, while particles

in the loop can go up to A. But if we regulate with a mass-independent scheme such as DR, we get
a result compatible with power counting,

2¢ A=<k m2 m2  m2
0ga ~ 9ol / ~ 5 + 96 logﬁ = O(m?/A?).

A2 k2—m2 e A2 TPA2

That is, DR removes the A? power divergence entirely; intuitively DR “only sees logarithmic
divergences”, which show up as 1/e terms that are subtracted out. Thus, if we don’t use something
like DR, it is difficult to self-consistently truncate the Lagrangian in an EFT. It is still possible, but
one has to carefully keep track of counterterms, which can remove the contributions that violate
naive power counting. (In this sense, it’s the same as using a regulator that violates a symmetry:
it’s perfectly legal, but requires counterterms to be added with care.) For this reason, MS is used
almost universally in practical EFT calculations.

Note. It is tempting to say that if a dimension-6 operator is measured with coefficient 1/A2, then
new physics appears at scale A. This is deceptive, because operators come with UV couplings.
What we really can conclude is that if nothing UV completes the theory, then the theory becomes
strongly coupled at scale A. It is perfectly possible for new particles to appear at a lower scale.
Indeed, there are many very small couplings in the SM, such as the electron Yukawa coupling, to
which this reasoning applies.
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9.3 Calculating RG Evolution

Next, we present an explicit, though somewhat impractical method for computing RG evolution.

e Concretely, we would like to evaluate
Sk'fe) = ~1og | Dy exp(~5°] — SE[6 + X))
°(M)(a,A0]

but this is hard in general, as the right-hand side is a general interacting path integral. The

__ qint
general approach is to expand e SKoo+x]

GRS WO / dz v(x)

as a series in Y,

G 0 0 -spgl
5o(0)° ) XX Sy e L T

then perform the x path integral. Note that we’re Taylor expanding in position space, since
eventually we want an action in position space.

e When we perform the x path integral, we get factors of the position space propagator,

Da(e.y) / p etp(z—y)
Az, y) = P —5—-
A<|p|<Ag p* +m?

Now the trick is to consider an infinitesimal RG step, A = Ag — §A, so that

1 ATISA Ab
D _ dQ) e MP(x—y)
N0 = G o 0

This is an enormous improvement, because we only need keep track of terms linear in A, which
means we only want diagrams with a single x propagator.

e Therefore, only the zeroth and second order terms in the Taylor expansion matter, and an
explicit calculation yields Polchinski’s equation,

ositlg) sSi sSi st
“DlogA = [ dady 5o(0) DMV 5g0y DAY sty

More concretely, let g, be the coefficient of ¢". Then schematically we have

gn gr-l—l gn—r-l—l gn+2
which corresponds with the intuition of zooming out, shrinking y propagators to points.

e Note that since the action is local, we must have = y in the second term to get a nonzero result.
On the other hand, we can have z # y in the first term, leading to non-local contributions,
as the x propagator falls off as e™V AZFm?r /r?3. As usual, we simply Taylor expand to get a
series of local terms with derivatives.
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e Note that the variation of the action is

oS _oL oL
0p(z) — ¢  "0(0ue)

so Polchinski’s equation indeed accounts for the derivative terms.

e It’s convenient to rewrite Polchinski’s equation as

int 52 int
gefs ] _ —/dxdyDA(x,y)es @] ¢t =1logA

ot 69 (x)do(y)
which has the general form of a heat equation, with the ‘Laplacian’
52
A:/dxd Dp(z,y) ————.
v A ) S 60 0)

The eigenfunctions of the Laplacian grow or decay exponentially under RG flow; they are simply
the RG eigenvectors we’ve seen earlier.

Next, we use the local potential approximation to explicitly compute RG evolution.

e We work in d > 2 near the Gaussian fixed point. Then besides the kinetic term, all operators
involving derivatives are irrelevant, so we restrict attention to actions of the form

S¢) = /ddm ~0" 0,0 + V(9) ZAd k(d—2) g%),¢ &

where for simplicity we’ve imposed Zo symmetry. Neglecting the derivative interactions is called
the local potential approximation, and works for slowly varying fields.

e Next, we set up our approximation somewhat differently. Before, we expanded e‘skn[‘z’“d,
yielding a Gaussian path integral for x. Now we instead write

S+ = ST+ [ do S (@)% + 5x2V7(6) +
so that we maintain a nontrivial action for .

e We now consider an infinitesimal RG step dA and work in momentum space. Then the
momentum-space propagators are not small, but every loop picks up a factor of JA, so we
only consider one-loop graphs. Note that there are no tree level graphs at all since the action
is even in y, though we could also relax this assumption.

e We claim that one-loop graphs can only contain the y? vertex. To prove this rigorously, let
there be v; copies of the x* vertex. Then Euler’s identity gives

e — Z v =0—-1
i
where £ is the number of loops. Since there are no external lines,
Qe—ZiU €—1+Zi_2v-
- : (2] - : 2 K3
K2 (]

Therefore only vs can be nonzero, and we recover a quadratic action for y, which is tractable.
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e The types of diagrams that contribute are shown below.

Now, suppressing the position-dependence of ¢, the action for x becomes

o= [ w0 (4 5V0) 5
d—1 -
S W V) [ a9 anR-Ad),

e Performing the Gaussian integration, we find

—5ASf[g] _ /D -S@[x,¢] —C .~ N2
e = Xe = A2 + V”((b)

where N is the number of momentum modes. To regularize this, we put the theory in a box of
side length L and use periodic boundary conditions, giving

vol(S9-1)

d—1 d
oy ATIALY

N =
We can thus rewrite our result as

oaS°T[g] = aAP"15A / dx log(A? + V" (¢(2)))

where we restored the position-dependence of ¢, turning a factor of L? into an integral over x.

e Finally, expanding the logarithm gives an infinite series of corrections,

2k

dgor oy A kd-2) 9 2 |
dlog A (k(d —2) — 2)gok — al o7 log(A” +V"(¢)) o

where the first term is from the classical scaling. For example, the first two terms are

dg2 _ aga dga
dlog A 92

age 3agi
- , =(d—4)gs — + .
1+g2" dlogA ( )94 at+gs (14 g2)?

For example, we see that in d = 4, g4 is marginally irrelevant.

e Looking back, we’ve traded one kind of complexity for another. In the local potential approx-
imation, the beta functions are exact at one loop, but can contain arbitrarily high powers of
the couplings. In Polchinski’s equation, the beta functions are also exact at one loop, and
are linear in the couplings, but we need to account for all derivative terms. One can think of
the local potential approximation as solving for the derivative term couplings in terms of the
non-derivative ones, and plugging them back into the beta functions to eliminate them.
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Using our result, we can explicitly look at some simple RG flows.

e First, we consider the Gaussian fixed point. Linearizing the beta function about it gives

Bor = (k(d — 2) — d)gor — agor+2-

Thus as anticipated, there are no anomalous dimensions since the matrix B in ; = B;jg;j is
upper-triangular, though the eigenvectors are mixed a bit.

e In d = 4, we see that the mass term is relevant, while ¢% and higher couplings are irrelevant,
as expected. To understand g4, we expand to quadratic order for

3 9
64 - 167'('2 94
so that the quartic interaction is marginally irrelevant; explicitly,
1672
AN=—-——
918 = Fiog(Ao/A)

where Ag is an integration constant, we need Ay > A for g4 > 0, ensuring stability, and the
theory has a Landau pole at Ag = A.

e The fact that a dimensionless coupling implies an energy scale is known as dimensional trans-
mutation. We’ve already seen this for irrelevant couplings, which give a natural cutoff for the
effective field theory; marginal couplings have the scale appear in a logarithm. There’s nothing
puzzling about this, since all theories come with a natural energy scale, the cutoff A.

e We can find another critical point in d = 4 — ¢, the Wilson—Fisher fixed point, where

1 1
g2 = _66 + 0(62), ga = %6 + 0(62)a 92k = 0(62) for k> 2.

Staying near d = 4, where g4 is marginal, allows us to find a nontrivial fixed point without
requiring strong coupling.

e Linearizing about the fixed point gives

dlng @i) B (6/30_ : _a(lj 6/6)> (ggj>

which has eigenvalues €/3 — 2 and ¢, so only one direction is relevant. Explicitly, we have

1 1

__L €
deq_. l6m2 " 3272

= (4m) @2 T(d)2)

(1 —~ + log 4m) 4+ O(e?).

More sophisticated techniques can be used to show that the Wilson—Fisher fixed point indeed
exists in d = 3 and d = 2.

e The RG flows in three dimensions are shown below.
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g2 A

>

Theories in region I flow to an interacting massive theory in the IR, and have the Gaussian
theory as the continuum limit. Theories in region II are similar, but exhibit spontaneous
symmetry breaking since go < 0. Theories on the red line have the Wilson—Fisher fixed point
as their continuum limit, while all others have no continuum limit at all.

e The situation in two dimensions in more complicated, as all of the operators ¢?" are marginal.
It turns out there are infinitely many fixed points, where the n* fixed point can be reached from
the Gaussian fixed point by turning on ¢2"+1). The n' fixed point has n relevant operators,
which are essentially ¢2, ¢%, ..., ¢*". This result can be derived by conformal field theory.

9.4 Effective Field Theories

In this section, we give an array of examples of effective field theories, illustrating the general way
of thinking about theories in the Wilsonian picture.

Example. In some cases, we can pick up extra symmetries just from the requirement of renormaliz-
ability; such symmetries are called “accidental” or “emergent”. A familiar example is the emergence
of rotational symmetry for a lattice spin system. As another example, consider electromagnetism
with several fermions, where the most general renormalizable Lagrangian is

L _ _ _ S
1oz Z3F" Fu + (Z1)ij¥p, PV, + (ZR)ij¥ r, YR, + Mijtbp, R, + Mijp, L,

Here, Z,/r/3 are general wavefunction renormalizations. To have a real Lagrangian, we require

L=

Z1,r to be Hermitian. Note that we have no Majorana masses since the fields are charged.
We can dramatically simplify the Lagrangian by defining

Yr = Styy, ¥R = Srig
so the Lagrangian for the primed fields has
Zy =81 7.8, Zk=SLZrSkr, M' =S} MSg.

Then it is possible to choose Sz, so that Z) is the identity, and similarly choose Sk so that Z7, is
the identity, giving the usual kinetic terms. We can still redefine Sp,/r by unitaries, which we can
use to make M diagonal. Dropping the primes,

1

L= @Z?,FWFW + Z%(ID + m;);.

)
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Then the number of ¢; particles is conserved, but this is an accidental symmetry; it could be broken
by a nonrenormalizable term such as }ijl@ﬂ“%@kww. In the Standard Model, this is the origin
of baryon and lepton number symmetry.

Note. More generally, it is believed that there are no continuous global symmetries in a quantum
theory of gravity. Then from this perspective, all continuous symmetries we’ve found in particle
physics are accidental! One piece of evidence in favor of this picture is Hawking radiation. The
formation and evaporation of a black hole does not conserve baryon or lepton number, but it does
conserve gauge quantum numbers, such as electric charge, since they may be measured by flux
integrals at infinity. In string theory, it is a folk theorem that all exact symmetries, even discrete
symmetries, are gauge symmetries.

Example. The Schrodinger field has kinetic term V21)/2m. Since the coefficient 1/2m has negative
mass dimension, the operator is irrelevant. Hence upon renormalization, the Hamiltonian should
have all terms allowed by symmetry, giving
2 2 4
H ~ 2p—m <1—|—a15L2—|—a25ﬁ+...> + V(r)
where the factors of m are put in by dimensional analysis. Note that here we are thinking of the
renormalized theory which has no cutoff, A — oo, so the only mass scale is m.

This theory is perfectly predictive at energies where p? < m?, despite the infinitely many
unknown parameters a;. But when p? ~ m?, perturbation theory breaks down and all of the a; are
important. The Schrodinger field can be UV-completed to either the Klein—-Gordan or Dirac field,
both of which are renormalizable.

Example. The classic example of an effective field theory is the 4-Fermi theory for 5 decay,

L~ GF@pwnaewu

where we suppress gamma matrices and spinor indices. Similar operators can be used to describe
the decay of the muon; this is used to determine

1 2
CGr = <292.9 GeV)

which indicates the energy where the theory breaks down; higher-dimension terms contribute in
a series in p?Gr. The specific values of these terms may be found by UV completing the 4-Fermi
theory to the electroweak theory.

Sticking with only the dimension 6 term, the 4-Fermi theory is quite predictive. It can compute
relations between decay rates, and angular distributions of decays. One can also include loops to
get genuinely quantum predictions, which appear in cross sections as logarithmic dependence on
the external momenta.

Example. Light scattering; or, why the sky is blue. We consider Rayleigh scattering of visible
light off a nitrogen molecule, where the wavelength of the light is much larger than the size of the
atom. We assume the photon energy is too weak to excite the molecule, so we can ignore its internal
degrees of freedom and model it as a complex scalar field ¢. The molecule remains at rest since it
is heavy, so we break Lorentz invariance, allowing us to use the four-velocity v* = (1,0,0,0) in our
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Lagrangian. Finally, the nitrogen molecule is electrically neutral, so the minimal coupling vanishes,
D,¢ = 0,¢.

Given this setup, the kinetic term is ﬂTiv‘@#qb, which shows that ¢ has mass dimension 3/2.
Here, we can use relativistic dimensional analysis because the photon is relativistic, and the nitrogen
is static. The effective interactions are

int _ 91 2,2 | 92 2 2
where the ¢; are dimensionless and the higher terms are suppressed by more powers of A. Now
consider the tree-level contribution to ¢ + v — ¢ + v scattering. Since the field F' contains a
derivative, the amplitude is proportional to w? and hence the cross section is proportional to w?,

4
29
o ngG.

Thus we get the frequency dependence of Rayleigh scattering almost for free! Note that when the
scatterer is comparable in size to the wavelength, our effective field theory breaks down and we
enter the regime of Mie scattering. It also breaks down once the light can excite the atom, which
creates a Lorentzian scattering peak.

Example. Light propagation in an insulator. In vacuum, the unique gauge, Lorentz, and parity
invariant action we can write for the photon is

1 1
ﬂmz/mmﬁ—B?
4 Ho
Now we suppose the light propagates in a medium, whose degrees of freedom are modeled with
additional fields ®. The Euler-Lagrange equations become

5Smt
MF, = pody, Ju(x) = AV (2)"

For example, in a conductor, we might ignore higher energy bands for the electrons, so A would be
the band gap. Then in an insulator, A has the same interpretation, but since the Fermi surface lies
in a band gap there are no relevant degrees of freedom at all! Then it would appear that S must
contain only irrelevant terms. But the insulator also picks out a preferred frame of reference, so we

can write down non-Lorentz invariant terms,
int 1 2 2
SYUA, @] = d:):i(er —xmB*+...)
where the dimensionless couplings x.(A) and x,,(A) are the susceptibilities. Then light can travel

at a different speed, and this is the leading effect an insulator has. More generally, a crystalline
insulator breaks rotational symmetry, so we can have

in 1
SE1A@) = [ do g (G BE; — (on)y BB + ...

which leads to birefringence. At higher orders, we will find nonlinear terms such as £4/A?, yielding
nonlinear optical effects.
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Note. Quantum gravity may also be treated as an effective field theory. The action is

S[g]_/dx\/fg<x+w]:G>

where the dimensions are
[)‘] = 47 [g,w/} = Oa [R] = [689] = 27 [G] = -2

In particular, one can see the metric is dimensionless because in flat spacetime its elements are
simply 6. Perturbing about the flat metric,

gzd—%\/@h

where h is scaled to have canonically normalized kinetic terms. Higher-order terms in h come with
positive powers of G and hence negative powers of My, so they are all irrelevant. Their form can
be obtained from taking the most general diffeomorphism invariant action,

S 9] = /da: V=9 (coA* + c1A’R + c3R? + c3R" Ry + ca R P Ry + . ...

where the ¢; are dimensionless, and ordinary GR only uses ¢y and ¢;. In the UV, either new
degrees of freedom appear, such as strings, or the theory flows to a fixed point, a proposal known
as asymptotic safety. (Note that “asymptotic freedom” as used above is just the case where this
fixed point is the Gaussian fixed point.)

Of course, even though the interaction of gravity with matter is “irrelevant”, it is very relevant
to everyday life! This is because the gravitational interactions between the particles in macroscopic
objects add up coherently, a fact which is not captured in our simple analysis above.

Note. Multiple kinds of renormalizability. So far we’ve been talking about Wilsonian renormal-
izability, which, near the Gaussian fixed point, simply corresponds to having no couplings with
negative mass dimension. However, historically renormalizability was defined by demanding that
all the divergences in a theory could be absorbed by redefinitions of the couplings already in the
Lagrangian, which in turn must have a finite number of terms; we will call this counterterm renor-
malizability. In our picture, this means the Lagrangian must include all renormalizable terms
consistent with symmetries; for instance, massless ¢* theory is not permitted. (Thus counterterm
renormalizability is obliquely related to naturalness.) The main point is that it directly demands
that all predictions up to arbitrary energy can be made given a finite number of parameters.

By contrast, in an effective field theory one requires more and more parameters to get an
accurate prediction as one goes to higher energies. In practice, one fixes a desired precision, and
then computes up to the order in 1/A required (or more generally, to the required order in the
power counting parameter), neglecting all effects associated with higher-order terms. Then it is
useful to say an EFT is renormalizable if it is renormalizable in the historic sense, at each order
of the power counting expansion. (That is, divergences can appear associated with higher-order
terms, but they can be simply neglected.) For example, ¢® theory is renormalizable at this sense,
even though it induces a ¢® coupling, because the ¢® coupling is order 1/A*, while the ¢% coupling
is only order 1/A2. EFTs are discussed further in the notes on the Standard Model.

Note. Counterterm renormalizability can be much more difficult to show than Wilsonian renor-
malizability, though the two are related.


https://knzhou.github.io/notes/sm.pdf
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e Consider the linear sigma model, a case with spontaneously broken global symmetry. Naively,
there are more divergences than there are free parameters, so it looks like the theory is not
renormalizable. But the divergences are still constrained by the broken SO(n) symmetry, which
is still present but nonlinearly realized, so “secret symmetry yields secret renormalizability”.

e Consider a gauge theory. The gauge symmetry constrains the terms in the Lagrangian, but it
does not manifestly constrain the divergences, because we need to gauge fix before quantization;
that is, the divergences never “see” the gauge symmetry. Thus renormalizability is nontrivial,
but can be proven using Ward identities. Using BRST symmetry, one can also prove Yang—Mills
is indeed renormalizable.

e Now consider Yang—Mills with an explicit mass term mQA“AM. This makes the analysis of
renormalizability even more difficult because the propagator no longer falls off at high momenta,
so superficial degrees of divergence get worse. However, it turns out that it is renormalizable if
and only if the gauge group is abelian.

e The Standard Model is more complicated, as it is a gauge theory with spontaneous symmetry
breaking. 't Hooft proved its renormalizability in 1971 and we can perform this proof explicitly
by working in R¢ gauge, introduced in the notes on the Standard Model.

These nontrivial facts should not be confused with Wilsonian renormalizability, which is easy
to see in all these cases. Sometimes, counterterm and Wilsonian renormalizability are called
perturbative and nonperturbative renormalizability. However, Wilsonian renormalizability does not
imply counterterm renormalizability, e.g. in the case of quantum gravity if it were asymptotically
safe. Here perturbative renormalizability fails because it expands about the Gaussian fixed point,
while the nonperturbatively the theory is determined by a different fixed point in the UV.


https://knzhou.github.io/notes/sm.pdf
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10 Perturbative Renormalization

10.1 Power Counting

In this section, we explore the systematics of perturbative renormalization. We begin by estimating
the degree of divergence of a Feynman diagram.

e We consider a scalar field theory with a ¢™ interaction. Consider a connected diagram with V'
such vertices, I internal propagators, F external lines, and L loops. Euler’s formula gives

L=1-V+1
while counting the number of edges in two different ways gives

nV =2I+F

e The momentum integral will contain L d%k integrals and I factors of 1 /k?, so we define the
superficial degree of divergence
D =dL —-2I.

We estimate M ~ AP, so diagrams with D > 0 are superficially divergent, diagrams with D = 0
are superficially log-divergent, and diagrams with D < 0 are superficially finite. Note that for
particles with half-integer spin, propagators would instead contribute as 1/k.

e Superficially divergent diagrams can actually be finite due to a symmetry. Moreover, superficially
finite diagrams may diverge: the superficial estimate assumes that all of the loop momenta are of
the same order A, but divergences can come from regions where only some of the loop momenta
are large. One can show, rather tediously, that all such divergences come from superficially
divergent subdiagrams.

e Rewriting D in terms of V' and E, we have

d—2 d—2
D=d—(d-n2=2\v_2"ZF
( "y ) 2

Note that the quantity in brackets is simply the mass dimension of the ¢™ coupling, while the
coefficient of E is simply the mass dimension of the field. This generalizes straightforwardly to
multiply types of vertices and fields.

e We see in general that more external lines decreases D, while more internal vertices increases
or decreases D depending on the dimension of V. We say that a theory is (power-counting)

— renormalizable if the number of superficially divergent amplitudes is finite, but superficial
divergences appear at every order in perturbation theory,
— superrenormalizable if the number of superficially divergent diagrams is finite,
— nonrenormalizable if the number of superficially divergent amplitudes is infinite.
In general, the couplings in a renormalizable or superrenormalizable theory all have nonnegative

mass dimensions, while in a superrenormalizable theory the dimensions are all strictly positive.
A single coupling with negative mass dimension renders a theory nonrenormalizable.
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e Ignoring the issue of divergent subdiagrams, if a theory is (power-counting) renormalizable,
then at every order in perturbation theory only a finite number of divergent diagrams appear,
parametrized by a finite number of divergent constants.

e The BPHZ theorem ensures that divergent subdiagrams cannot change these conclusions; the
divergences there are simply canceled by “counterterm subdiagrams”, requiring no new countert-
erms to be introduced. The proof is by giving an explicit algorithm to perform this cancellation,
and it is nontrivial because of the possibility of “overlapping divergences”, where two divergent
subdiagrams overlap, and hence their loop integrals can’t be treated separately.

Note. A glimpse of higher-order renormalization. Consider the following two-loop diagram in QED.

This diagram contains two overlapping divergences. It is canceled by the counterterm diagrams

shown below.

When ks is large, the points x, y, and z are “close together”, so the divergence is canceled by the
first counterterm diagram. Similarly, the second counterterm diagrams accounts for the divergence
where ki is large, while the third accounts for the divergence where both k; and ko are large. In
DR, such a divergence appears as a double pole in e.

As an example, we apply power counting to QED.

e In QED, the interaction term is ei) A1y and the superficial degree of divergence of an amplitude
with FE, external photons and FE. external electrons is

D:4—E7—%Ee

since [e] = 0. The theory is hence renormalizable.
e The amplitudes with D > 0, that don’t vanish automatically by Lorentz invariance, are:

— The vacuum energy with D = 4.

— The photon tadpole with D = 3, and the three-photon amplitude with D = 1.

— The four-photon amplitude with D = 0.

— The photon propagator with D = 2, the electron propagator with D = 1, and the renor-
malized vertex with D = 0.

Only the amplitudes in the final group are important, as we’ll justify below.

e The vacuum energy is divergent, and we can absorb it with a vacuum energy counterterm. Since
it has no observable consequences, we typically ignore it entirely by normal ordering.
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e The one-photon and three-photon amplitudes all vanish by symmetry. QED is invariant under
charge conjugation, j* — —j* which requires A*¥ — —A¥. Therefore a correlation function
of an odd number of photons vanishes, a result known as Furry’s theorem. Diagrammatically,
each diagram cancels against another with all of the electron loops reversed.

e The four-photon amplitude is finite by the Ward identity. To see this, let the amplitude be A#¥F7,
By the Ward identity, k, A**?? = 0, which implies that the amplitude must be proportional to
something like g"" k% — gHo kY.

e To show this more explicitly, the divergent part of one diagram is

AP / ar. TE Y B )

K8
and there are five more diagrams corresponding to the different ways to attach the photons to

the electron loop. Using spherical symmetry, we simplify the integral to
YZZN /dk tr (YO Ry 2y 03
L4
which can be simplified using the standard trace identities. Finally, symmetrizing over uvpo
to account for the six diagrams yields zero.

YPy¥any7) (

TNayoeNasoy + perms.)

e Pulling this factor out leaves an amplitude with D = —1, which is hence finite. One might
naively think this means the amplitude is proportional to 1/A and hence vanishes, but the
four-photon vertex is nonzero; it mediates light-by-light scattering. The point is that D only
gives us the UV dependence of the amplitude on A, while the finite contribution comes from
the IR part of the loop integral.

e Finally, we arrive at the propagators. In our one-loop analysis of QED we found they were only
logarithmically divergent, and this is indeed guaranteed by symmetries as we see below. For
the degree of divergence, it suffices to look at the self energies.

e The electron self energy takes the form
Ao—i-AlZﬁ—l-Agpz—i-...

and has mass dimension 1. Then the only place a linear divergence can appear is in the Ay
coefficient. Now, Ay is an analytic function in the electron mass,

2

AoNA—l—melog(...)—i-%log(...)—k....

When m, = 0 the theory has an axial symmetry, by opposite rotations of the left and right-
handed Weyl spinors; then a mass term cannot be generated by renormalization. Thus Ag has
no term independent of m, and the divergence is at most logarithmic in A.

e The photon self energy has mass dimension 2 and takes the form
" ~ Byt + B2quqy + Bynuwd® + . ..
where quadratic divergences can come from By. But we saw that the Ward identities required
™ = ("q* — ¢"¢")(q?)

where II(q?) is regular in ¢. Then we must have By = 0.
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e These results ensure that the divergences of QED can be absorbed by renormalizing terms
already present in the Lagrangian. For example, if By had been nonzero, we would have had a
quadratic divergence independent of ¢ in II#¥. This could only be absorbed by adding a term
A, A to the Lagrangian, which would break gauge invariance. Similarly, if the four-photon
amplitude had been divergent, we would have had to add the term (AMA“)2. Of course, these
terms would appear, and be necessary, in QED with a massive “photon”.

e The more general lesson here is that, in order to absorb all divergences, a renormalizable theory
must contain all renormalizable terms that are allowed by symmetry, and no more.

Note. The logic above requires that the divergent part of an amplitude be written as a polynomial
in external momenta, with divergent coefficients. To see this in general, note that we may simply
differentiate any superficially divergent loop integral D + 1 times with respect to external momenta
to get a convergent integral (ignoring the issue of divergent subdiagrams), which has a finite result.
Integrating D + 1 times produces a finite piece plus the advertised divergent polynomial. The finite
piece contains all the analytically nontrivial dependence on the external momenta, such as the
logarithms.

10.2 Renormalization of ¢* Theory

In this section, we perform renormalization in ¢* theory with a hard cutoff. We will consider
the renormalization of the propagator and the ¢* coupling. Equivalently, we are computing the
quadratic and quartic terms in the 1PI effective action.

e We consider the action ) ) \
Shol@] = / dz 5 (09)* + 5m?¢? + 530"

where we are working in four dimensions and Euclidean signature. We work perturbatively,
which means we are near the Gaussian fixed point, so A is marginal.

e The exact propagator/connected two-point function in momentum space is

A = [ de (o) 0 = oo

which II(k?) is the sum of 1PI diagrams, by the usual geometric series argument.

e The terms in II(k?) up to two loops are shown below.

Here, a dotted line denotes an amputated propagator, i.e. they are not associated with 1/(p?4+m?)
factors. At one loop, the contribution is simply

[p]<Ao pPm? 2(2m)*

H(kQD_A/ dp Vol($3) /Ao Pdp  xm? AT udy
2 o pP*+m?2 21672 J, 1+u
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Here, we used Vol(S3) = 272 and let u = p?/m?. We see the appearance of the generic 1/1672
“loop factor” that appears in four dimensions. Explicitly performing the integral gives

(k> A A2 21og (1 AS
( )3_327r2 5 —m~log +W

which has a quadratic and a logarithmic divergence.

e To “cancel” these divergences, we “add counterterms” to the action, subject to the same caveats
as before. That is, we work with the action

Saole] + hST[0, Ao),  ST[9, Ao] = / dz %52(0@2 + %5m2¢2 T %w‘l.

Note that this is rather different from what we did earlier, where we started from the low-energy
effective action we wanted and added counterterms to get the high-energy action. At this point,
the terms Sy, and SCT have no physical meaning individually.

e At O(h), the counterterms contribute two diagrams,

—k%57 —om?
......... N R YR
so that )
Hl loop k2 _ k25Z 5 2 A A2 21 1 A0
() = =k70Z —om” = 555 (Ao —mlog { 1405

and we must choose 67 and ém? so the result is finite.

e At two loops, the corresponding counterterm diagrams have one loop, as shown.

VA —om?
"""" N B U U sn

e Since the counterterms guarantee we get finite results, we may take the continuum limit Ay — oo
while fixing our action to match experiment. This is done by requiring the exact propagator have
a pole at p? = —mlz)hyS
‘weighing’ a stable particle, or more generally by looking for peaks in cross sections for processes
involving the exchange of the particle.

with residue one, where mpyys is the physical mass, which is measured by

e Quantitatively, this means we require

2 9 o

H(_mf)hys) =Mm" = Mphyss k2 =0.

2___ 2
k= mphys

Note that these are only constraints on the total action; we are still free to pick how it is split
into Sy, and SCT. In the on-shell scheme, we choose Sy, so that the parameter m is equal to
the physical mass, so

oIl
8]6‘2 k2:—m2

Hence, in the on-shell scheme Sj, does have a physical meaning, being roughly equivalent to

I(—m?) =0, = 0.

the low-energy effective action encountered in Wilsonian renormalization. However, in other
schemes Sy, has no direct interpretation.
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e In our case, at one loop we have

8Z =0 5m2——i A2 —m?lo 1+Ai
=5 T T3gp2 \00 & m?

so that the one loop correction exactly vanishes. This is rather special; the reason it happened
is that the loop is a tadpole, which doesn’t depend on the external momenta at all. The tadpole
only renormalizes the mass, so its effects may be entirely canceled by a counterterm. One can
reformulate perturbation theory so that all tadpoles are set to zero from the start, reflecting
the fact that they don’t affect the physics.

e More generally, a loop will generate an infinite series of terms, such as ¢?, (3¢)?, and all higher
derivatives, though the higher derivative terms will be suppressed by powers of Ay rather than
divergent. The on-shell scheme only fixes II and its derivative at a single point, so loop effects
can be seen away from this point, e.g. in virtual particle exchange.

Next, we turn to the renormalization of the quartic coupling, which we take to mean the quartic
part of the 1PI effective action.

e The one-loop corrections come from the graphs below.
o1, KN Qﬁl‘\‘ Z o1 P

¢2' \¢3 (ZSQ//' \\\(Zﬁg ¢2 Tl 'd)?

Letting the external momenta k; all flow into the diagram, the diagrams sum to

,\2/A0 dp ( 1 N 1 N 1 )
2 p2+m2 (p+k:1+k:2)2+m2 (p+k‘1+k4)2+m2 (p+k:1+k:3)2+m2 '

Since the external momenta also flow through the loop, we generate an infinite series of derivative
terms, as anticipated above.

e The contribution to the pure quartic coupling A comes from the momentum-independent part,

3X2 hodp 3\2 A} A}
- = log (14+-%) — 52—
2 (p2+m?)2 3272 m? A§ + m?

which is logarithmically divergent. One possible choice for the counterterm is

3\2 A2

The quartic term in the 1PI effective action is the negative of the sum of 1PI diagrams, so

3hN2 m? m?
Aeff = A — 1 14+ — — .
eff 327r2(0g< +A3)+m2+Ag>

This choice ensures that in the continuum limit, Aeg = A, in the spirit of the on-shell scheme.

e The contributions for terms with more derivatives come in a power series in k?/ A(Z), and are
hence finite, vanishing in the continuum limit Ag — oo.
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e The integrals here are essentially the same as in Wilsonian renormalization. There, we integrated
loops over momenta in [A, Ag], getting a renormalized coupling constant. Here, we are integrate
over momenta in [0, Ag] in essentially the same expressions. Hence in the limit Ay — oo the
functional dependence is the same. This mean we know, e.g. that a marginal coupling gets
logarithmically divergent corrections.

e While the above is true at one loop, matters are complicated at higher loops due to divergent
subdiagrams, and we need the BPHZ theorem to ensure the divergences don’t get worse than
expected. But the Wilsonian intuition makes it clear that the BPHZ procedure must work.

e We now do a full calculation to see the derivative terms explicitly. Using Feynman’s trick,

1 1 ! dx
(p+ki2)? +m2p? +m? /0 [2((p + k12)2 + m2) + (1 — 2)(p2 + m?)]2

so completing the square gives the loop integral

V/ldx/dg t=p—zxk M? =m? 4+ 2(1 — 2)k?
2 0 (£2+M2)27 =P 125 - 12

Note that integrating over the region |p| < Ag is the same as integrating over the region |¢| < Ay
up to error terms of order |k12|/A, which vanish in the continuum limit Ay — oo. For simplicity,
we discard these terms now.

e Working in spherical coordinates, we get a factor of Vol(S®) for

/ /A2 €2d 62 B 2/1dx o A3+M2+ M2 B
@+mz =" S VR VIR VP

Keeping only terms that survive in the continuum limit, our three loop diagrams yield

A2 1 A2 A2 A2
—— [ dxl 0 1 0 1 0 —
32772/0 v Ogm2—x(1—az)s+ Ogmz—x(l—x)t+ Ogmz—x(l—x)u 3

where the Mandelstam variables are
(k1 + ko), t=—(k1+ k)% u=—(k1+k3)%

e Using the same choice of counterterm as in our rough calculation above, the quartic term in
the effective action is

iz [t x(1—x)s x(1—x)t z(1—2z)u

Since this expression is in momentum space, expanding to get powers of the Mandelstam
variables yields derivative terms. As expected, these terms correspond to no UV divergences,
since they are irrelevant. But they are nonzero, because they are generated by the ¢* coupling.

e At this point, we can compute everything else using just tree-level diagrams. For example, the
amplitude for ¢* scattering only contains one diagram, the quartic vertex, which is —§4T'/§¢* =
A(k;). Similarly for ¢ scattering we have
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so we only need the ¢?, ¢*, and ¢° terms in I'[¢].

Note. A subtlety with getting a “pure coupling” is that with a hard cutoff, the effective action
in momentum space is not analytic! Concretely, if the coupling is f(k), then RG modifies it by
an analytic function times step functions in the external momenta. This was not a problem here,
but in general, computing f(0) by taking zero external momenta will not give the same result as
computing f(k) for nonzero k, expanding in a Taylor series in k, and taking the constant term. The
proliferation of step functions is one reason the hard cutoff is not practical.

Another fact we know from the Wilsonian picture is that irrelevant couplings in the high-energy
theory should not affect anything at low energies. We can see this explicitly by including irrelevant
couplings from the start.

e In this case, we take the action

Swold) = [ do 500 + P + V(@) V()= Y gu o

k>2

We would like to compute the $?™ coupling in the 1PI effective action. At one loop, all such
diagrams have the form below.

This is merely the O(h) contribution to the effective action we’ve seen in the zero-dimensional
case; it can also be found by expanding the functional determinant det(—V?2+m?2+V"(¢))~'/2.

e We already know that the derivative terms are suppressed by powers of k/Ag, so we focus on
the renormalization of the $?™ coupling. A one-loop graph with e propagators contributes

€ 1 d A(Q) e = 1
1%
/de(p+K.)2+m2N/pze"’ log Ag e=2
j=1 J .
finite but nonzero e > 2.

¢2k+2 (1—k)'

For each vertex , we also pick up a factor of A(Q)

e Therefore, the only divergent one-loop diagrams are the mass and quartic vertex diagrams,
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which we’ve already considered. Almost all other one-loop diagrams vanish in the continuum
limit, but we find finite contributions from

where all of the vertices are ¢*. That is, in the continuum limit the effective strength of
the irrelevant interactions is totally fixed by the A¢? coupling, while the original high-energy
irrelevant couplings play no role at all, just as in the Wilsonian picture.

Note. This result is very different from what we got by naive power counting, where we concluded
that a single irrelevant coupling made every amplitude diverge. The difference is that there, we fixed
the value of the dimensionful coupling. This corresponds to thinking about an effective field theory
(e.g. the dimensionful masses should be fixed to match experiment), and indeed one cannot take the
continuum limit of an effective field theory, and one should require infinitely many counterterms.

By contrast, here we’ve been thinking about Sj,, the action of a fundamental theory. Then
we’ve been fixing the dimensionless couplings, since they should all be presumably O(1), and there
is no issue with irrelevant couplings.

Finally, we repeat our calculations using DR and MS.
e First, we consider the mass renormalization. We define the dimensionless coupling g(u) by

A=)

where j is an arbitrary mass scale. Then the one-loop correction to I1(k?) is

(k%) > —;g(u)/f—d/dp __9m*® (ﬂ)4_dr (1 - d)

p? +m? 2(4m)d/2 \m 2
by our usual DR formulas, with some extra signs due to the Euclidean signature.

e Setting d = 4 — € and expanding as usual, we find
g(wym?* (2 Ay’
- — 1 —1 (0]
3272 (e vHloe| T +0(e)

as € — 01. In MS we choose the counterterm

om* =

1672

to remove the divergence only, while in MS we choose

2 /9 m2 2
<6 — v +log 47r> ) Hlloop(kQ) = 9(1) <log % - 1) .

2 glpwm
om =
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The one-loop mass correction now depends on pu, but this is perfectly acceptable, as p is part
of the specification of the renormalization scheme. If we sum the corrections to all orders,
must drop out, since we should just arrive back at the pole mass. Note that the pole mass is
no longer equal to m, as we’re not using the on-shell scheme.

e Next, we turn to the quartic coupling, where the 1PI diagrams are
2, 4—d

9> / a’p
2 (2 +m?2)((p+ k1 + k2)2 +m?)

We set the external momenta k; to zero to focus on the pure quartic coupling, giving

392 I )4—d d 392 (2 472
= T'(f2—-—=)= - — 1 .
2(4m) /2 <m 2) =g\ T le e | 1O
Then in the MS scheme we have

2
o= 9
3272

+ 2 other channels.

2 N 3hg* () , 1 >
<E - ’Y—|—10g477> o Geri(p) = g(p) — Wlogm + O(n7)

where we restored A to emphasize the one-loop effect is quantum.

e If we work to all orders, the dependence of geg(x) on p must drop out, because it’s just the ¢*
coefficient of the effective action. Therefore its derivative is zero,

d.geff _
dlog

This is a “continuum RG” equation, not to be confused with a Wilsonian RG equation.

e Differentiating our result and keeping only the lowest order terms, we have

dg 3hg?

Blg) = dlogp 1672

+ O(h?)

where the classical term, independent of &, vanishes since the ¢* coupling is marginal. Therefore,
at one loop the coupling is marginally irrelevant.

e Separating and integrating, we find

1 1 3h | 1 () = 1672 1
S I T T3 Tog(Aga/n)

= + fo)
gw)  g(p) 167

at least at one-loop order. The fact that a dimensionless initial condition can be exchanged for
a dimensionful scale, Ays, where the coupling diverges, is called dimensional transmutation.

Note. Interpreting the running coupling g(x). The amplitude to all orders can’t depend on p, but
changing p modifies each of the terms. Generically, we have a perturbation series in g(u) log(u?/E?)
where F is the energy scale of the process. Thus we can significantly improve the convergence of the
series if we take u =~ F. In particular, when u =~ F the sum of the series g.g is well-approximated
by its first term g(u). Thus g(u) estimates the strength of interactions at energy scale .

Previously, we used the on-shell scheme, where the coupling e was fixed. Using this fixed coupling
we computed the one-loop amplitude for eTe™ — eTe™ by exchange of a photon with momentum
g, and found it depended on ¢?, yielding a running coupling. While the particulars were different,
in both cases the running coupling referred to the fact that the vertices in the 1PI effective action
are momentum-dependent.
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Note. The energy scale u is not to be interpreted as a cutoff, but it does have a relationship. Note
that DR integral measures take the form f ap . For positive €, we have more momentum modes
at energies less than pu, and less at energies greater than p. DR removes a greater and greater
fraction of the momentum modes as their energy increases, acting like a smooth cutoff.

Of course, there’s more to DR than just that, because DR is defined in more subtle way that
preserves symmetries, but this can lead to some useful intuition. Note that the density of momentum
modes starts to be significantly changed when (p/u)¢ ~ 1 + elog(p/p) is significantly greater than
one, which corresponds to elog(p/u) ~ 1. Treating this momentum scale as a UV cutoff, p ~ A, we
have 1/e ~ log(A/u). This is the reason 1/€ poles in DR correspond to logarithmic divergences in
cutoff regularization.

10.3 Renormalization of Quantum Electrodynamics

Finally, we revisit QED from a more sophisticated perspective.

e We work in Euclidean signature. In a theoretical context, we would define the action as
1 _
S[A, ] = /ddx 12 P B 0B+ m)y, B =9 +id

Under these conventions we have

in general dimensions, so the kinetic term is irrelevant when d < 4. Then the only relevant and
marginal terms are topological ones, such as the Chern—Simons term, and this normalization
is convenient for highlighting this fact: irrespective of normalization, the topological terms
dominate the kinetic ones.

e However, when we do practical calculations for QED in d = 4, we would like the photon field
to be canonically normalized. This is done by multiplying it by e~!, giving

S0 = [ dla P + 5@+ b+ ichdd, D =B+ icd

so that the photon field now has the usual dimension [A] = (d — 2)/2 and the kinetic term is
marginal in all dimensions. There is no contradiction: while being marginal or relevant depends
on the normalization, the Chern—Simons term is more relevant in all normalizations. We’ll use
this convention below and suppress the d dependence.

e The Clifford algebra is modified since the metric is, giving

{'Vu’%/} = 20,1, (,yM)T = —H, trAPyT = 4677
so that 70 is no longer distinguished. Then the boost generators

?

7%
o 4

"]
are Hermitian, reflecting the fact that SO(d) is compact, and the action is real, and

(777 %) = A5V — 6PV 67 4 547 5VP)
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e To find the classical photon propagator, we expand the kinetic term in momentum space, for

B~ =

/ dx FWE,, = i / dk (—i) (k" AY (—k) — KV AP (—k))i(k, A, (k) — k, AL (k)
=5 [aww <5W ’“j) Au(~k) A, (R).

The propagator is the inverse of the kinetic term, and one possible inverse is

1 k. k
0 _ 14
AL, () = <5,w - 22) |

The other possibilities are indexed by the { parameter in R¢ gauge. Here we have chosen
Landau/Lorenz gauge, " A, () = 0 or equivalently k*Af, (k) = 0.

e Next, we define the exact photon propagator
Bul) = [ da e (21,(2).4,(0)

and by the usual argument, denoting the sum of 1PI diagrams as I1”,,

ANV(k) = Agu(k) + Agp(k)ng(k)AOUV +
e Using the Ward identity, we can show that

k. k,
(k) = K (k’2) s P = (WV - Zz) :

The quantity in brackets is just an idempotent projection operator, k# P, = 0, so the series
sums to

A° (K
Aﬂu(k) = 1 —M;(U;)

e Since A, (k) is the inverse of the quadratic term in the 1PI effective action Seg,

B = / dk (1 — 7(k))R? (W B "/‘Zf) At

Then in position space, we get a wavefunction renormalization of 1 —7(0), along with an infinite
series of derivative interactions suppressed by powers of the electron mass.

Note. Showing that the photon self-energy is transverse. By diagrammatics, we have
(55) (k) = T (k) + (ITATIY™ (k)
where j#* = ¢y*1). Then the Ward identity ensures
k,(IT + IIAIT)* = 0.

Expanding order by order and using the fact that II starts at order e gives k,II"V = 0, as claimed.
Note that in both this proof and our earlier proof, we’ve had to work perturbatively. Indeed, the
statement does not hold in general; it fails in the case of spontaneous symmetry breaking.
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Now we turn to the one-loop contribution to II?7 (k).

e We use dimensional regularization, defining the dimensionless coupling g by e = p*~%¢?(p).
The only diagram that contributes is

APW@NAU
k

—

where there is no symmetry factor, since the electron and positron are distinct.
e Applying the Feynman rules, we have
ISop (k) = —u'%(ig)? / dptr (e
1loop i}i)—km Z(p*k)er

where we picked up a minus sign from the fermion loop. As in the canonical formalism, we can
understand this minus sign by going back to the level of contractions. When we apply Wick’s
theorem, we will always need to perform an odd number of Grassmann anticommutations to

get the spinors all ‘in order’. Equivalently, the path integral for fermions gives det(I) +m) in
the numerator rather than the denominator, and taking a logarithm gives the sign.

e Simplifying, the loop integral becomes

/d tr ((—ip + m)y* (—i(p — k) + m)7)
T md) (-2 m?)

We begin by using the Feynman trick to complete the square, turning the denominator into

1 dx 1 dx
/0 (P +m2)(1—2)+ ((p— k)2 + m2)z)2 /0 ((p = kz)? + m? + k2z(1 — 2))*

We then shift p — p 4 kx, noting that this also changes the numerator.

o Next, we apply the trace identities, giving

po
Hl loop

_ L numerator
(k) = 4p? d92/dp/0 dz CEwNER A=m?+ k21 —2)

where the numerator is
—(p+ k) (p — (1 — 2))° + (p+ ka) - (p— K(1 — )8 — (p+ ka)7 (p — k(1 — ))° + m26.

e We can dramatically simplify the numerator using symmetry. All terms odd in p must vanish,
while since the integral is isotropic we may replace

2 1 17
plp¥ — 85” pg.

We finally use two of our DR results to find

I oop = (K077 — kPK7) 1 100p ()
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as required by the Ward identity, where

_ 8A(wr@e-d/2) (! 2\ 20
Wlloop(kQ) o (47)d/2 /0 dz z(1 —z) (A) .

Finally, setting d = 4 — ¢ yields

2 1 2 A7 2
7r1100p(k2) = —927(:;) /0 drz(l —x) <e — v+ log AN ) )

Next, we set the counterterms.

e As argued earlier, we require three counterterms for QED, which are
1 — _
SCTA, ) = / du 6237 F" Py + 02 YD + Sm .

Here we’ve used Z; = Z5 to combine the electron field strength renormalization and the vertex
renormalization into one term. This guarantees the counterterm Lagrangian is gauge invariant,
as it must be if our regulator preserved gauge invariance.
e In MS the §Z3 counterterm contributes
N\NANNY
—07Z3

with

2

9" (1) (2

073 = — - — log 4w | .
3 1272 <e v+ og W)

Thus, the total one-loop contribution is

2 1 2 2
m” +x(l —x)k
T11oop(K?) = 927(:;) /0 dr z(1 — z)log ;(ﬂ ) :

e The logarithm produced here is typical for loop corrections. Moreover, it creates a branch cut
for the photon propagator in the region m? 4+ (1 — x)k? < 0. This is inaccessible for real
Euclidean momenta, but in Lorentz signature with kg = £ we have

z(1 — z)(E? — k?) > m?
so the branch cut starts at F = 2m, the threshold for creating a real electron-positron pair.

e Now, reverting to our original normalization of the photon field, where the coefficient of the
kinetic term is 1/e?, we find

1 1-=(0) 1 h w2

. = + log —.
Pe 92w gA(p) 1222 " m?

where we explicitly restore factors of h. Note that there is no contribution from the vertex
renormalization because, as we’ve shown, the covariant derivative D, = 0,, + ieA,, is renormal-
ized as a ‘single piece’ (i.e. Z; = Z3) and hence is absorbed by a field renormalization of
alone, without changing e.



186 10. Perturbative Renormalization

e Setting Jgesr/0log 1 to zero gives

3
50) = "W o), ) =

o1
h log(Aqep /1)’

where we set a(me) = g?(me)/4n = 1/137. That is, the QED coupling is marginally irrelevant
and there is a Landau pole.

AqeD = 10286 GeV

Note. How are our results here compatible with our earlier analysis of QED? In this section, we
think in terms of the 1PI effective action. For simplicity, we set m = 0. Then

L= iFOQ + Yo@io + ieotho Aotho.

This is gauge invariant because the interactions are built from the covariant derivative D = 0+iegAy.
The effective Lagrangian in Fourier space takes the form

LS LRNE + 212f2<q2>w3$w3 +ieofi(a.p)05 " Ao".

Here, we're using an abbreviated notation where superscripts stand for momenta; we get this
momentum dependence because the effective action has an infinite series of derivative terms. The
parameters Zy, Zs, and Z3 are defined by

1

= f2(q2)‘q2:m§7 Z = fl(q7p)‘q2:0

1

2
73 = f3(q )‘q2:07

1
Zs
where m, is the pole mass of the electron, in this case zero. Therefore, at low momenta, we have

11 1_ ieg—
£ ZZFg + Z%@@Do + 71%40%/)0-

We are thus motivated to define the renormalized fields and renormalized /physical coupling

A o Zy
A= —, =—, e=—+\/Z3e€
7 (0 7 7, V2o

which gives
1 _ _ 1 _ _
L= EZgFQ + Zopp + iZ1ep Ay, LTS ZF2 + Yy + e A

Therefore, e is a direct measure of the all-orders interaction strength at low momentum. In terms
of these rescaled fields and couplings, the covariant derivative in £ is D = 0 + i(Z1/Z2)eA. On
the other hand, £ is built from 0 + ieA. Hence conceptually the result Z; = Z5 tells us that the
effective action is built from covariant derivatives in the same way as the original action.

We are now working solely in terms of physical variables, which is the essential point of renormal-
ization. The last step is to split £ into a finite and “counterterm” part. In renormalized perturbation
theory, we set the finite part of £ equal to £ evaluated at on-shell momenta, i.e. low momenta
here. The running coupling arises because the coefficient of ) Ay in £ depends on momentum.

In MS, we instead set the counterterm to have a simple form; then the parameters in the finite
part of £ are not physical parameters; instead we have an ‘MS mass’ and ‘MS coupling’ e(u). But
as argued earlier, e(u) is physically meaningful because it approximates the coefficient of ¥ A1 in
£ at momentum scale p.
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Note. The MS scheme is a bit strange, since it does not have “decoupling”. The coupling continues
to run even when we are far below the mass of the electron, even though one would intuitively
think the electron should have no effect at these energies. As another example, applying MS to the
SU(5) GUT, all three gauge couplings are equal at all energies, since MS knows nothing about the
symmetry breaking. This is perfectly consistent, as the full perturbation series in principle sums to
the same thing, but not physically transparent.

An alternative scheme that makes the decoupling explicit is to demand that the quantum
corrections vanish at an arbitrary scale k? = p2, which is the MOM/momentum space subtraction
scheme. That is, we set

hg*(u) [ 2 Arp®
575 = — dra(l—z) (2 -~y +1
3 272 /0 va(l-x) e rtlos m2 + z(1 — z)p?

so the total one-loop contribution is

2 1 m? +z(1 — x)k?
(k) = hg%(QM)/O drx(1 — z)log <m21$8—$322) + O(h?).

Then the beta function is

B = W) /ld 2®(1 - 2)*p?

272 T2 +z(1 — x)p?

which indeed goes to zero when u < m, freezing av =~ 1/137. This is an example of the Appelquist—
Carazzone decoupling theorem. In general, a mass-dependent (or “physical”) scheme is one where
the beta function depends explicitly on the renormalization scale u, and hence explicitly on the
particle mass m. Decoupling only holds for mass-dependent schemes, which include this scheme
and a hard cutoff, where A plays the role of the renormalization scale.

The disadvantage of mass-dependent schemes is that perturbation theory is harder; we’ve seen
that for a hard cutoff the loops are not small. Thus in practice, a modified version of MS is used,
where the decoupling is put in by hand. We consider two theories, one with an electron, valid
for 4 > me, and one with no electron, valid for y < m.. We perform renormalization in both
theories with MS or another mass-independent scheme and match physical quantities at p = m,,
such as S-matrix elements. At leading order, this means that g(u) is continuous at p = me, and
stops running below m,.. However, at higher orders, or if we choose p # m,, the coupling jumps
discontinuously at the matching. This is a “threshold correction”, and must be computed carefully
to get, e.g. gauge coupling unification to work out correctly.

This method is called “continuum EFT” in contrast to “Wilsonian EFT”, since we never have a
momentum cutoff. The idea is so common today that it is often used implicitly. For example, the
QCD beta function is written in terms of ny, the “number of light quarks”. But in MS all of the
quarks contribute in the same way to the beta function, regardless of mass. The standard g(u) for
QCD is actually using successive matchings, integrating out each heavy quark as we pass its mass.

Note. The first two terms of the beta function, corresponding to the one-loop and two-loop
contributions, are independent of the subtraction scheme, provided that we maintain canonical
normalization. Changing the normalization clearly adds terms to the beta function even at tree
level; in this case that corresponds to setting Z = 1 at the physical mass pole. We did this for MS
but not for our other scheme, which instead sets Z =1 at pu.

Note. In MS, the mass is not the same as the pole mass, so what is its physical meaning? One
can think of the mass term as like any other renormalized coupling. For example, the up quark
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mass provides an extra two-point vertex in QCD scattering problems. The MS mass at scale
approximates the overall all-order effect of this interaction term at tree level. (Note that there is
nothing preventing MS mass terms from being negative!) The PDG gives most quark masses as
MS masses (the universal choice for modern theory calculations), since there is no way to define a
pole mass for them. But its top quark mass is a “Pythia” mass, meaning it’s simply what one gets
by fitting to Pythia, which has no direct link to any theoretical calculation. When speaking of the
mass of any fundamental particle, we need to specify the scheme in which it’s defined.

Finally, we prove that Z; = Zs using the Ward—Takahashi identity.
e Starting from the global U(1) symmetry of QED,
= =€, =iy

we may apply the Ward-Takahashi identity to find

(g (@)p(x1)p(w2)) = —id(x — 21) (Y (1) (22)) + 10(x — w2) (Y (21)1(x2))-

Note that the presence of gauge fixing terms makes no difference here, because we’re only
considering global symmetry transformations. However, we will see an alternate derivation
below that uses the local symmetry.

e We define the exact electron propagator by Fourier transforming the two-point function,

(W (k)Y (—ks)) = /dwl dia €172~ 22 (4 (21 ) (22)) = F(k1 — k2)S (k)

where we defined .

= z e () =
S = [ de e @@)T0) = g
and Y(f) is the sum of 1PI diagrams.
o We define the exact vertex by
(G (R)Y (k)Y (—ka)) = 8(p + k1 — k) S(k1)T (K1, k) S (k2).

To understand this expression, consider computing the left-hand side diagrammatically. Here,
it can be useful conceptually to draw a ‘phantom’ photon attached to z, though no such photon
field actually appears in the correlator. The lowest-order term is 7,, so indeed

I',,(k1, k2) = v, + quantum corrections.

At one-loop order, either the 1) and v can emit and reabsorb a photon. This has nothing to
do with the vertex, and is accordingly absorbed by the S(k;) and S(k2) factors. Recalling that
1PI and amputated diagrams are equivalent for three external fields, we end up computing the
sum of 1PI diagrams with an external photon and two external fermions.

e Finally, taking the Fourier transform of the Ward-Takahashi identity,
(k1 — ko) uS(k1)IH (K1, k2)S(k2) = iS(k1) — iS(k2)
which is equivalent to
(ky — ko)TH(ky, ko) = i8S (ko) — 1S~ (ky).

This result relates the vertex to electron kinetic term in the 1PI effective action.
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e To extract the desired result, differentiate with respect to k1 and then take k1, ko — k for

.0 1 .0

Thus, at lowest order in k, the effective action looks like

515 (o + i S8 ) DY

so the covariant derivative D is renormalized as a single piece. Expanding our result in a
series in k shows that interactions must come in the form ¥ DP.

10.4 The Euler—Heisenberg Lagrangian

Finally, we sketch the derivation of the Euler—-Heisenberg Lagrangian, which results from integrating
out the electron. Remarkably, this result was first derived in 1936, long before renormalization was
understood or Feynman diagrams were introduced.

o We expect we should be able to integrate out the electron because it appears quadratically in
the QED action,

S(4,6] = [ do g P B + W + ).

Since the electron is fermionic, we get a functional determinant in the numerator,

1
Ceg[A] = 4/d:c FME,, — hlogdet(I) +m).

Here, the determinants are in both spinor space and functional space.
e To understand the functional determinant better, note that we can expand

log det(I) +m) = logdet(@ + m) + trlog(1 +ie(d +m) 1 A)

where we used log det M = trlog M. The first term comes from an electron loop vacuum bubble.
The other term gives an infinite series in powers of A,

o0 . n n

. _ —ie

trlog(1 +ie(@-+ m) ™ A) = = > S [ TLaws 1S 1)) - S(omr, ) Alia)
n=1 i=1

where the trace on the right is just a Dirac trace, and the functional trace is handled by

the integration. All terms odd in A vanish by Furry’s theorem, and S(z;,x;+1) is the Dirac

propagator, i.e. the inverse of the kinetic term.

e Thus the diagrams that contribute are

0 Qo K

so the effective action has interaction terms for any even number of photons. To make the
calculation tractable, we will assume the electromagnetic field is constant while taking the trace,
which is equivalent to neglecting derivative terms; from an effective field theory standpoint this
is valid if we consider light with frequency much less than the electron mass.
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e As a result, the first diagram contributes only to vacuum energy, the second renormalizes the
photon field, and all the others produce new interactions, which mediate light-by-light scattering.
Thus the Euler—Heisenberg Lagrangian is useful when considering high-intensity, low-frequency
light.

e We now turn to the explicit evaluation of logdet() + m). Since the trace of an odd number of
gamma matrices vanishes, we must have

trlog(I) + m) = trlog(—I + m)

which gives

trlog(1) + m) = = (logdet(I) + m) + logdet(—I) + m)) = % log det(—]D2 +m?).

N =

e Next we can simplify lD2 as
2 WAV 1 v 1 v “w v
D" =9"y"DyD, = 5{7“77 }4_5[7#77 |') DuDy = D"Dy — eS* .

The same manipulations yield the electron’s magnetic moment in the Dirac equation.

e Therefore, we want to evaluate the functional

1
3 trlog(—D? + eS" F,,, +m?)

:;trlog<—((a+ieA)2+m2) ((1) (1)>+6<(B+6E)'0 (B—?E)-rf))

where the o are the usual Pauli matrices and the electromagnetic field is constant.

e Suppressing the spinor indices temporarily, we can perform the functional trace in position
space, giving

1 1
Ceg[A] = /daj ZF’“’FW + §<m\ log(—D? + eS* F,,, + m?|z).

To remove the logarithm, we use the asymptotic relation

d
> s
o—sX

lim = —log(soX) + finite
s

SO—>0+ S0

to find
1 2 Uy 2 : 1 [*ds —sm?/2 —s(—D2%+eS*YF,,)
5<$|10g(—D +eSHF,, +m)|x) = lim 5 —e (x|e w)| ).
S

o S

Thus the problem has been reduced to nonrelativistic quantum mechanics; we essentially have
to find the energy eigenstates of the Pauli equation in position space. For example, in the case
of a constant magnetic field, the solutions are Landau levels.
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e A complicated calculation yields the effective Lagrangian
1 e [*ds 2 Re cosh(esX)
~-F¥F,, — i —e T =
4 v sog%+ 6472 / s © Im cosh(esX)

Finally, we need to handle the UV divergences, which occur for small s. Expanding the integrand

as a series in es, we find

Recosh(esX) . 4 2 0262 , 7~ ) \
T oe X FwFy=—5+-F"F,, —— ( (F"F ~(F"™F 0
Imcosh(esX)6 Hy=p €252 + 3 W e ( )+ 4( w) | +0(€%)

and the first two terms are a vacuum energy and photon field renormalization, which we

PR, Fry, X =+E?2-B2+E-B.

S0

remove by minimal subtraction, and all other terms are finite. This yields the Euler—Heisenberg
Lagrangian. It is fully nonperturbative in e, since the real expansion parameter is E/me.

Note. One might wonder what the most general terms in the series above look like. In particular,
is it true that every term is built out of F2 ~ E? — B2 and FF ~ E - B? One slick way to prove
this is to consider the complex vector E + iB. Boosts correspond to imaginary rotations of this
vector, so rotations and boosts together cover all possible rotations. But the only invariant of a
vector with respect to rotation is its square, and

(E+iB) - (E +iB) = (E? — B?) + 2i(E - B).
Note that this proof only works in d = 4.

10.5 Scalar QED

As a final example, we’ll consider the one-loop renormalization of scalar QED in (+ — ——) signature
with MS. Note that switching from MS to MS is equivalent to using “12\/[75 = ,uﬁ/[s47re*'y throughout,
so if we define 1 = g5, we won’t need to add extra “macaroni and pie” to the counterterms. We
will use a new technique, to be explained below, that can compute the beta functions from only the
divergent parts of the counterterms, hence displaying the simplicity of the MS scheme.

e The scalar QED Lagrangian is
1
L= 0udl” = m|@f* = L " Fy gw — ieAy (670" ¢ — §067) + €? Ay AG" ).

Here we must include a ¢* interaction because it is consistent with the symmetries, or equiva-
lently because it may be generated by the other interaction terms. The Feynman rules are:

k

k/ N 7’
S N N SRR
’L,/ \\_J\
—ie(k+ k'), 2ie?g,., —i\
(V) -3
_igpu )
k2 4 ie k2 —m?2 + ie

ek, (k), € (k) for incoming and outgoing photons respectively
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However, for this analysis, we will work in Landau gauge, so the photon propagator comes with
a factor of P, = n,, — quq,,/q2 rather than just 7,,. As we’ll see, this sets many diagrams to
zero, shortening the analysis.

e Relabeling all the fields above as bare fields with 0 subscripts, and defining physical fields as
Ao Zs

_Po_ A=20
VZsy' V73

6= -7

Z3eq
we have
2 2 g2 43 v
L= 22’8M¢’ - Z’mm ’(b‘ - ZF F;u/
A
= D 10l" = iZ1eAu(97 016 — $0"9") + Zac® A, AMG"6.

Here we have Z, = Z12 /Z2, and we should have Z; = Z. In the calculations below we will not
assume these results, but rather directly compute the Z; at one-loop order in DR and MS to
demonstrate they hold.

e Defining Z; = 1 + §;, it is convenient to split the Lagrangian as
L=Lo+ L1+ L

where

1 0
Lo = 0,0 = mP|9* = TP Fu,  Low = 82|0u0f — 6um?|$f — ZFF,

and £ contains the interactions. Below we will work to order O(e?) and O()) in the Z;.
First, we consider the photon propagator.

e As we've seen before, the exact photon propagator remains transverse in Landau gauge, as

A% (K
Aw/(k) = 1_/:_((]{:)2)

where 7(k?) is determined by the sum of 1PI diagrams,
I, (k*) = k*r(k*) P,
which is transverse by the Ward identity.

e At order e?, we have the contributing diagrams:

- -~ ’
”k+l N\ \‘ e
! .,
fgk/\‘ l I?sk/\ + M + W
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e Since Z; = 1 + O(e?), we can replace Z; and Zj in the first two diagrams with just 1, giving

i (k) = (—ie)®i? / e flf;l_g);(ff(; i )
(20)e*nHi /62 i(Z3 — 1)(K*n — kPEY).

The first two terms can be combined into

N#v
e?/@g @ E @ =y V= @RI R =2+ k)2 —m?)n.

e Applying Feynman parameters as usual, this term becomes

/dac/dq 5, q=1{+xk, A= —2(1 —z2)k? +m?.
Replacing ¢ with ¢ in N#¥, it simplifies to
N® ~ Aghq” + (1= 22)°KMEY = 2(¢* + (1 — 2)*k® — m*)n™”

where we removed terms odd in ¢ as they integrate to zero. We replace ¢*¢” — ¢*n*"/D by
isotropy, leaving two standard DR integrals.

e Performing these integrals with the standard formulas and then performing the z integral gives

TTUY . € v v 1 1 4—d .
I (k2) = zeQ'u (kMEY — k277“ ) <23 -1+ §(4ﬂ)d/2f < 5 > —i—ﬁmte)

where € = 4 — d, with the transverse structure required by the Ward identity. The finite parts
are momentum-dependent and can be used to compute the running coupling, as in QED.

e In this section, we’ll work with MS, and hence can ignore the finite parts. Then we have

ez 1

Ja=1-— -
3 2472 €

at one loop. We will use this later to recover the running coupling by another way.

Note. In QED, we used the Ward—Takahashi identity associated with the global U(1) symmetry to
derive Z1 = Zs. For variety, we can do the same here using a somewhat different setup, essentially
using the Schwinger—Dyson equation corresponding to a U(1) gauge transformation. In this case,
we must account for the gauge fixing term, which in R¢ gauge is

1
LD Ly = —2?(8“14#)2.

The bare photon propagator is now

1

A, (k) = e <77;w —(1-973 > = % <P,“,(k) +§k212€”> .
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Now, the sum of 1PI diagrams remains transverse, so the additional non-transverse piece is unaffected
when we sum over 1PI diagrams, giving the exact propagator

_ P kK,
k2(1 — m(k?)) k2 -
The strategy we will use to derive our relations is to start with the generating functional with

currents. Schematically, consider some local symmetry ¢ — ¢’ = ¢ + €(x)d¢ under which the path
integral measure is invariant. Then we have

217] = / D HST8+69) _ / D HSH 460 _ / D i (S81+69) (1+i(55+ / de JM,)),

Therefore, we must have
/Dqﬁ H(S[81+¢J) <55+ /d:c J5¢> —0.

Integrating by parts to get an overall factor of €(x), we can use the fact that e(x) is arbitrary to peel

Apw (k) +¢

it off and remove the dx integral, leaving an correlation function identity. Since we are working with
the generating functional, we can differentiate with respect to J to yield identities for higher-point
functions.

In this context, we will use the gauge transformation

dp(x) = iea(x)p(x), dAL(x) = Oua(x).
In this case .5 is solely due to the gauge fixing term Ly,

= — x}ax 2 Pz
08 = /dg()f)auA().

We also get three terms from the variations of the currents, so we have, suppressing x arguments,
- * * " 1
/ DPDG* DA, 'Sl Aule " +¢" I+ Au) / dx <—£a828MA”> + J*6¢ + Jop* —iJHSA, = 0.

Integrating by parts to get a factor of o(z) and using the fact that a(z) is arbitrary, we have

£
Dividing by Z[J#, J*, J] puts this in terms of the connected generating functional W[J#*, J*, J],
1,9, OW , ow , ow
- —ieJ” J(x)—— + 9, J"(x) = 0.
D5y e @y T @ T oI @)

Acting with (6/6J*(y))(6/6J(2)) on both sides and setting the currents to zero,

1
<—(‘928#A“ +iedJ* —ied* J + i@uJ“> =0.

2323M<Au(w)¢(y)¢(2)>c +ied(y — x){(¢(2)9"(2))e — ied(z — x){(¢"(x)B(y))e = 0.

The last two terms are exact scalar propagators, while the first term is the product of the exact
photon propagator, two exact scalar propagators, and the exact three-point vertex. However, upon
a Fourier transform the derivatives on the photon propagator yield
1
3

This reduces the identity we have here to the Ward—Takahashi identity we saw earlier for QED, and
the proof continues in the same way.

K2R A (k) = K.
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Next, we consider the scalar propagator, where Landau gauge will be somewhat useful.

e The scalar propagator iIl,(k?) has five contributions:

/’>~\
>YJJ\§\’\7> + D> 4+ >N S>>
k k k k k

k+l

Here, the final diagram contains both the d9 and §,, counterterms.

e The second diagram is a “scaleless” integral, and using the DR formulas gives an answer of
zero. But this is too quick: the DR formulas are not actually valid at all, because there does
not exist any value of d for which a scaleless integral converges (i.e. it is always either UV or
IR divergent), so there are no values of d to analytically continue from!

e A glib way to justify the result is to say “the DR answer has to depend on p, but there are no
other mass scales in the integral, so what else could it be?” A bit more seriously, the integral
can be IR regulated, in which case the DR formulas legitimately give

. ; v ) P l/
() > (2Ziichn™) (i) [ de™ s
;

The resulting integral is proportional to m% /€ in DR, which vanishes in the limit m., — 0.

e The first diagram contributes

il (k%) D (—iZye)*(—i)i / a P”V%)(Ei -t Z)?M_(%fk)

in Landau gauge, and since £, P*" = 0 we have

, 402k — (k- 0)?
iy (k%) D —62/(% 54(((6—1— k:)(2 — %2))

where we again set Z; = 1 since we only want the O(e?) terms.

e The denominator can be simplified using Feynman parameters,

/ J /1 “d dxydxy
€((€+k —m?) o T — 21 — 22) + 222 + 21 (( + k)2 — m2))3

The x2 dependence drops out, so evaluating the x2 integral and renaming x; to =z,

1 B 2/ (1 —2x)dx
AL+ K2 —m?2) (0% + 220 - k + xk? — am?)3’

Using the usual shift ¢ = ¢ + zk we have
1, (k2) q k) (1 — e\ 12 2
iy (k%) D —8¢? dx d’q , A=—z(1l—2x)k +m-.
Applying isotropy and a standard DR formula we find

T, (k%) D —i— =~ k2.
7 ¢( ):) 7 s
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e Next, for the scalar loop contribution, we have
al A1l
. 2 . . . 2
by a standard DR formula.
e For comparison, the counterterms contribute

iy (k%) D idak?® — i8,m?

from which we conclude )
3e” 1 Al
Zo=1+—-——, Zp=1+_-—5-.
2 872 € " 812 €
Note. A bit more about scaleless integrals in DR. The argument above is sketchy, because it
requires a separate IR regulator; in principle DR can handle both UV and IR divergences by itself.
Within pure DR, the justification for setting the integral to zero is the ‘t Hooft—Veltman conjecture,
which simply states that “no inconsistencies” arise from doing this.
A bit more precisely, a proper treatment of DR would begin with a list of postulates that DR
integrals must obey, just as we begin with postulates for Grassmann integration. Changing notation
for clarity, these postulates are linearity, shift invariance, and the scaling

/ d’p f(\p) = A ¢ / dp f(p).

It can be shown (e.g. in Collins) that these postulates essentially uniquely determine the DR

prescription. The result is equivalent to how we’ve presented DR earlier: take the measure to be

d%p = p®1Q, dp, do the integral for the d where it is defined, and analytically continue in d.
Now, using linearity, we can split the scaleless integral as

I = ‘ﬁ:/d‘g€2_/c-t‘g7712
02 2(02 —m?) 2(02 —m?)
where m is an arbitrary scale, thereby converting it into two ordinary DR integrals. Both integrals
are convergent in an open region of the complex plane, so they may be analytically continued as
usual, and the standard DR formulas apply as d — 4. We find that as long as the €’s and u’s used
in each are the same, the two results cancel, yielding the desired result. Further arguments can be
used to show that, due to the DR postulates, [ d¢ (£%)* = 0 for any a.

Of course, in this view the 't Hooft—Veltman conjecture simply reduces to the conjecture that
these postulates do not lead to inconsistencies. (This is by no means guaranteed, as inconsistencies
can arise when we try to account for spinors and the associated «*.) The “proof” for our purposes
is simply experience. However, it turns out that it will eventually lead to trouble, in the form of
“renormalons”, i.e. poor convergence at large orders in perturbation theory, which are connected to
the fact that the QFT perturbation series is asymptotic.

Note. There are more subtleties for integrals which are simultaneously UV and IR divergent, like

ar

Using the same trick as above, we can split this into a UV divergent and an IR divergent integral,
which are each evaluated in DR with (eyv, puv) and (err, pr) respectively. The integrals converge
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for eyy > 0 and er < 0 respectively, and the integral is zero when we take eyy = €r. The subtlety
here is that this integral cannot simply be ignored, because the counterterm, being a UV quantity,
only can cancel the 1/eyy pole; something else is required to cancel the 1/eg pole. That is, the
UV and IR divergences are conceptually distinct. (think more about this)

Now we consider the vertices, where clever choices for the external momenta will greatly simplify
the calculation in Landau gauge.

e First, we consider the one-loop corrections to the three-point vertex V3“ .

H\/\/K/\/\] _>'_"\" =
) l /’ ‘\ k

R e S I S s T i e A
1 §l+k k ! k N

These are renormalized by Zj. Since we only care about the divergence structure, we are free

to choose any external momenta we want, so we choose the incoming ¢ to have zero momentum
and the outgoing ¢ to have k. Then in the second and third diagrams, the left vertex yields
a factor of ¢, which vanishes when contracted with the P*”(¢) from the photon propagator in
Landau gauge.

e The remaining terms take the form
P,y(0)(¢ + 2k)P
2((L+ k)% +m?)
(20 + k)M
(2 +m2)((L+ k)2 +m?)

Upon Feynman parametrization, shifting the loop momentum, and integrating over x, the final

iV (k,0) = ieZyk* + (iZle)(—2iZ46277“”)(—i)2/c‘w

+ (—iZa\)(iZ1€) (=i / at

term is proportional to £# and hence vanishes by symmetry. Evaluating the remaining integral
by the usual methods gives

3e? 1

812 €’

e Next, consider the four-point, scalar-scalar-photon-photon vertex. In this case, a convenient

Zy =1+

choice is to set all external momenta to zero, so that only five diagrams survive.

- - >-,:"_\- -

For each of the first two diagrams, there is another diagram which swaps how the photon lines
attach. Then we have

ﬂ/ZW(O,O,O) = —2iZ462’I7‘LW + (_21.2462)2(_1')2/%%(45)::”2) + (H o V)
0PN [t G o)
1

+ (—iZ2A) (—2iZse* ™ ) (—i)? / E Ty
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All of these may be evaluated in the usual ways to find
5t 1
8n2e’

We’ve now shown Z; = Zy = Z,, as expected and required by general considerations above.

Zy=1+

e Finally, consider the four-scalar vertex. Again we may set all external momenta to zero, giving
the remaining diagrams below.

12 A 13, ) 13 ,">}\‘ .7 3
R <. P <. + Lot 1'\
3’4& 3.‘4 4’£ i\s 2’7' \‘>’,' 3‘4

N AN TR T NN AN s
+ P O SO e S SO
§I \\<" \? f( ‘\<,' \§

Note that the first three have a symmetry factor of 2. The first two and the last three all have
the same structure, giving
P (0) P (€)

1 ) 9, .9 1

which may be evaluated in the usual ways to find

et BA\ 1
o 1602 ) o

2méN 1672 ) €

1 1
iV4(0,0,0) = —iZ)\\ + (2 + 2) (—22‘Z462)2(—i)2/d€

ZA:1—|—<

We now consider the running couplings.

e One of the best features of MS is that we can read off the beta functions directly from the Z;,
without ever having to compute the momentum-dependence of the vertices. We note that

ey = Z;l/Q;f/Ze, Ao = ZQ_QZAM)\.
The Z; may be expanded in a series in the couplings e and ), and in 1/e.

e The key result is that the ey and A\g are independent of . Now note that

2

L loget Slogu+
= ——5 oge — 10
4872 € & 9 OB H

Differentiating with respect to log  on both sides and letting 8. = de/dlog 11, we have

_ €
log eg = log(Z, 1/2)—|—loge—|— §log,u,+...

2
€e es 1

0="% )

2 A+ 2472 EIB
Solving for 8 and taking the limit e — 0 (crucially, before the limit e — 0), we get

e e2 1\ " €e e? 1 el
e o= ) =
b 2 < +247T26> * 2 < 247T26>+ 82 T

which is the beta function in scalar QED.
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e A slightly more complicated calculation along the same lines gives

1

Ox = Ton2

(5A% — 6Ae? + 24e?) + ...

for the quartic coupling.

e For reference, the analogous factors for QED are

2 5 2 2
¢ Zp=1-m - & g1
672€

I1=Zyg=1— —+ —_—
! 2 8m2e’ m 2m2¢’

where Z3 immediately gives the QED beta function

e3

b= 152

by the same argument as in scalar QED.
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11 Non-Abelian Gauge Theory
11.1 Classical Yang—Mills

Before beginning, we review classical pure Yang—Mills theory to establish notation.
o We consider a Lie group H with Lie algebra b, so every h € H can be written as
h=e9% o=q,0% T*eh.

Here the generators T satisfy
by _ ; pab
[Ta7T ] =if*.T"
Note that conventions differ here, as one can flip the sign of g, a, or A,. In our current

convention, also used by Peskin and Schroeder, the covariant derivative comes with a minus
sign, D ~ 9 —igA, and gauge transformations come with plus signs.

e The Lie algebra contains a symmetric bilinear form called the Killing form,
kP =T TP
which is invariant under the adjoint action,
RTh™' o hTPh™! = T o T.

Note that when we focus on the Lie algebra alone, we usually take the infinitesimal version of
this equation by setting h ~ 1 — iga, for

(79,7 o T® +T% o [T, T%] = 0
as defined earlier.
e For an abstract Lie algebra, the Killing form is defined as we’ve seen earlier,
KO = tr[T%, [T°, ]].
On the other hand, for a matrix Lie group where the generators are traceless we have
T oT® = tr TT°.
We will normalize generators in the fundamental representation as
ToTb = %5“’7

and think of all generators below as being in the fundamental representation. There’s no reason
to do this at this point, but when we introduce physical matter, it will be in the fundamental
representation, so we’ll only need one set of generators.

e Under a gauge transformation U(z) = €9%(*) the gauge potential /connection transforms as

Ay > UAU — ;(c%U)U’l
where infinitesimally we have

A, — A, + Dy, Dy =0ua—iglA,, al

where we have defined the covariant derivative acting on a h-valued field. Note that A, doesn’t
transform in a representation of H, but the difference of two A,’s transforms in the adjoint.
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It will be useful to write the above in components,
D, a® = 9,0 + gAZacf“bc.
The same applies to any other quantity transforming in the adjoint.

e We define the curvature/field strength as
F = ;[D“, Dy] = 0,4y — 8,A, —iglA,, A,
as can be shown by acting with both sides on a “test object”.
e The field strength transforms in the adjoint representation, so that
F, —UF, U = F, +igla, F,] + O(a?).
Since the covariant derivative obeys the Jacobi identity, we have the Bianchi identity,
D, F.3+ DgFo + Do Fg, = 0.

e The pure Yang—Mills Lagrangian is

L= —% tr F, FM = —%FﬁyF‘“’“.

Note that this automatically contains terms cubic and quartic in A.
e To derive the equation of motion, it is useful to note that
0F,, = D,0A, — D,0A,.
Then the variation of the action is proportional to
tr(F, (010 AY +ig[AH,6A"])) = —tr(0AYDME,,)

using the fact that §A* is in the adjoint, the cyclic property of the trace, and integration by
parts. Since §A* is arbitrary, and the Killing form is nondegenerate, we have the equation of
motion

D,F" = 0,F" —ig[A,, F*"] = 0.

e Matter fields in a representation R will be introduced through the Lagrangian
LOYED —m)p,  (ip —m)p =0, &= 9% = (1+iga® TRy + O(a?).
The covariant derivative acts on % in whatever representation it transforms in,
Dyt = Ouihi — ig A% (Th)ijibj
which leads to the interaction term

LD g AL (Th)ijabj-
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e The matter provides a current for the gauge fields, so that the equation of motion is
Dy PR =¥, JH = — gy Thap.

By the transformation properties of D, F'*”, we see that J” transforms in the adjoint. Acting
with D, on both sides and using symmetry, we have D, J# = 0, so the current is “covariantly
conserved” rather than conserved; this can also be shown with the equation of motion for .

e In fact, there is no gauge-invariant conserved current in this theory. This result is a special
case of the Weinberg—Witten theorem, which states that any theory with a global non-abelian
symmetry under which massless spin 1 particles are charged does not admit a gauge-invariant
conserved current.

e The second part of the Weinberg—Witten theorem implies that any theory with a conserved,
Lorentz-covariant energy-momentum tensor cannot contain a massless particle of spin 2. This
rules out scenarios where the graviton is a composite particle and space is fundamentally flat.

Note. The reason the classical Yang—Mills equations are not relevant to everyday life is best seen
in the “theoretical” normalization, where the Yang-Mills action has a prefactor 1/g%h. Then the
classical limit is the weak coupling limit. However, in everyday life we're looking at the low energy
limit, and since Yang—Mills is asymptotically free, this is precisely where the coupling is strong!

Note. The statements made above are straightforward to prove by expanding in components, but
one can show them using differential forms, in a clean index-free notation. We define

A = —igA

and hereafter work with A’, dropping the prime. We regard A as as one-form and suppress explicit
wedge products. Then the transformation of A is

A= UAU —(dU)U =vAU Y 4 UdU L.

Taking the exterior derivative of both sides,

dA — (dU)AU L 4+ U(dAU —UAdU ! + (dU)(dU )
where we picked up a minus sign from anticommuting d and A. Similarly, we have

A2 S UA U Y+ UAWAU Y + U@UHYUAU L + U AU HU(dU D).

This may be simplified by noting that 0 = d(UU 1) = U(dU ') + (dU)U !, giving

A2 S UA2U Y+ UA@U™Y) — (dU)AU Y — (dU)(dUY).
Adding these expressions, we see that

F S UFU™Y, F=dA+ A%

In this notation, the covariant derivative is

D=d+ A, F=D>
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Furthermore, the Bianchi identity is simply DF = 0. To prove this, note that the A in D acts on
F' by commutator, so

DF = dF + AF — FA = d(A?) + AdA+ A% — (dA)A — A® =0

where we expanded d(A?) = (dA)A — AdA. In this notation, the usual kinetic term is tr(F x F),
and the theta term is tr F2. Expanding the theta term, we have

tr F2 = tr((dA)(dA) + A%dA + (dA) A% + AY).

Due to the trace, the final term vanishes while the second and third term are in fact equal. This is
easiest to see by expanding explicitly in components. For instance,

tr A* = A2 A> A° Ad tr(TOT T daH d” dacP da®

utviipio

which vanishes because the trace is symmetric under cyclic permutations while the wedge product
on the right is antisymmetric. In fact, we have

tr F? = dtr (AdA—|— §A3> .

where the quantity differentiated is the Chern—Simons current. This result will play a role in the
theory of anomalies below.

11.2 Faddeev—Popov Quantization

First, we discuss some of the challenges associated with quantizing the theory.

e In canonical quantization, we again find that

m=---=o0
A

as in QED, so it is a non-dynamical field which enforces the constraint
D;F” =0
which is the non-abelian generalization of Gauss’s law.

e Asin QED, we can enforce the constraints using Dirac brackets, as we did in Coulomb gauge.
Alternatively, we can quantize naively and then restrict our Hilbert space to a ‘physical’ Hilbert
space, as we did in the Gupta-Bleuler method. However, these methods are more involved for
non-abelian gauge theory because the constraints are more complicated.

e Again as in QED, we still have a gauge symmetry. The gauge symmetry must always be fixed to
define the quantum theory in the first place; for instance, with a gauge symmetry the propagator
is not defined since the kinetic term is not invertible.

e Unlike for QED, we will first quantize using the path integral, which is much easier. To handle
first-class constraints/gauge redundancies, we restrict the path integral to integrate over only
one point in each gauge orbit. Note that in Yang—Mills, there are no second-class constraints,
so we don’t have to worry about them.
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Next, we formally introduce the Faddeev—Popov method.

e Let A be the space of all gauge fields A,(x), and let H be the space of gauge transformations.
The physically inequivalent gauge field configurations live in the quotient space A/H, where
we identify

A~ Al AP = RALL + L(9,h)h
g
Thus we want to define the path integral partition function as

Z= du[A] €51
A/H

but this is computationally inconvenient, since A/H is complicated. In the Faddeev—Popov
method, we cleverly insert the identity to equate this path integral with another path integral
over all of A.

e Specifically, note that the naive path integral measure DA over A factors as

/ADA:/Hdu[h] /A/HdN[A].

Here, we will take p[h] to be the Haar measure over H, which is shift-invariant,

e Now consider a Lie-algebra valued gauge fixing function F', such as F(A) = 0,4", so that
F(A) = 0 once on every gauge orbit, say F(A") = 0. Then we have

OF (AM)
oh

1= / du[H] 6[F(AM)M (AR,  M(A") = det
H

which holds in analogy with the delta function identity

of
ox

1= [ dzslf)

e Inserting the identity, we have

/ DA = / du[h]/ DAGS[F(AM)] M (AM).

A H A

Next, we make the nontrivial assumption that we can find a measure DA so that
DA =DA"

which means the gauge symmetry is not anomalous. Upon relabeling, we thus have

/ADA: (/I{du[h]>ADA6[F(A)] M(A).
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e Equating this to our other expression for | 4 DA and canceling a factor of the volume of H, we
find that the partition function is

Z:/DA(S[F(A)]M(A) eSlAl
A

where we used the fact that the action was gauge-invariant.

e Next, we find a more explicit expression for M. Using the shift-invariance of the Haar measure
we can bring the delta function peak to the identity,

1 :/ dulh) S|[F(AMM(AM), A= Aho
H

so that the peak is at h(z) = e. Expanding h = €', we get

. . . F(A~

1= /da O[F(AY)|M(AY), M(A%) = det M
) (0%

for a suitably normalized Lie algebra measure da. Using the chain rule,

OF(A~)  OF(A*)0A~  9F(A%)
da 9Ae da  9Ao

D,..

e Finally, using the gauge invariance of DA and S[A], we have the partition function

AF(A)
A,

Z= / DAS[F(A)] det App e, App = Dy
A

Note that the covariant D, acts on the Lie algebra, in the adjoint representation. Similarly, we
may define expectation values of gauge invariant operators.

Note. In the absence of matter, the measure is, formally, automatically invariant under gauge
transformations. Infinitesimally we have

Aif = AZ + 0" + igfadeAZae.

The Jacobian factor is o

0A
Ko usa . spopabe . c
det A det <6V5b + 196l f" )

where the determinant is over both color and Lorentz indices. Using det(1+ A) = 1+tr(A4)+0O(A4?),

la

no_ : _
det gAb ~ 1+igf*a=1

by the antisymmetry of the structure constants, so we pick up no Jacobian at all.

Note. In more mathematical language, we begin with a principal G-bundle P — M and pick a
‘base-point’ connection Ag. Then any connection can be written as

A=Ay +5A, SAc A
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The space A is an affine space, i.e. a vector space without an origin, and there is a natural inner
product on it, obtained by integration over the manifold along with contraction by the Killing form,
giving a natural path integral measure.

We want to integrate over connections on the bundle, but note that A counts a connection and
the very same connection with a different local trivialization as distinct. Hence we want to integrate
over A/G where G is the space of all gauge transformations; note this is much larger than G. The
space A/G is much more complicated than A, and it is unclear how to define a measure on it.

The purpose of the Faddeev—Popov procedure is to write the desired path integral over A/G in
terms of a path integral over all of A but with a delta function, which is easier to handle. Many
sources describe this procedure essentially in reverse, starting with a naive path integral over all of
A and then “factoring out the volume of G”.

Note. Gauge fixing is more complicated in the non-abelian case. It’s difficult to show that Lorenz
gauge can even be attained. A worse problem is the Gribov ambiguity: generically gauge orbits
intersect the gauge slice more than once. To see this, note that A is a principal bundle over A/G
with structure group G, and a gauge slice is equivalent to a global section. Thus we require the
bundle to be trivial,

A=BxG.

Since A is a vector space, it has trivial homotopy groups. However, it can be shown that G doesn’t,
giving the result. We won’t worry about the ‘Gribov copies’ since we’ll only work perturbatively.

At this point, we have a path integral with a DA measure, but it contains inconvenient extra factors.
We now perform a few more tricks to absorb these terms into the action.

e First, we rewrite the delta function as an action contribution by introducing a new field, called
the Nakanishi-Lautrup field. The simplest way to do this is

S[F(A) = / DB%(z) ') A B @F (),

Since F'(A) is Lie-algebra valued, B(z) = B®*(z)T* is as well and hence transforms in the
adjoint; it is a bosonic scalar. The auxiliary field just acts like a Lagrange multiplier. Note
that B*F* is not gauge-invariant and we shouldn’t expect it to be, because we are using the
delta function to do gauge fixing.

e Next, we can simplify the determinant using the general formula
/ do*de e Mis = det M.
Since the Faddeev—Popov matrix acts on the Lie algebra, we have
det App = [ Dapeemi 4 () ureto)”
where ¢ and ¢ are h-valued Grassmann fields, called Faddeev—Popov ghosts and anti-ghosts,
which transform in the adjoint. Note that we have added a factor of —i to App. This is allowed

since it merely multiplies Z[.J] by a phase and will ensure a canonical kinetic term for the ghosts
in the gauge we’ll use below.
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e The ghosts are fermionic scalars, violating the spin-statistics theorem; this is allowed because
the theorem assumes a positive-definite norm, but the ghost states do not have one. Their
role is to cancel the unphysical polarizations of the Yang-Mills field: if the A, field has 4
polarizations, the ghosts heuristically have —2 because of their fermionic statistics, which cause
them to contribute oppositely in loops.

e Now, the partition function is
A B 1
Z = /D[A,B,c, eSABed g — /dx <—4(Fl‘fy)2 + BF%(A) +c“(Ach)“>

which is the desired form. However, we can make it even more convenient.

e Our gauge fixing condition was F'(A) = 0, but we could also have required F'(A(x)) = f(x) for
any h-valued function f(z). We may also integrate over f with a Gaussian weight,

S[F(A)] = /Dfé[F(A) _ flemse S dn i@ @)

The point of this manipulation is that we do not need an auxiliary field; we may simply perform
the integral over f, using the delta function, to get a contribution to the action quadratic in F,

g = 1 1
_ = iS[Ac,c _ a \2 ara | —=a a
Z = /D[A,c,c}e Az, S—/d:c (—4(FW) — e FF 2 (Aero) >

o Alternatively, we can express the delta function using the auxiliary field as before, then integrate
over f. This gives

R 1
Z = /D[A,B,c,  eSBed g — /dm <—4(ng)2 + BF* + gB“B“ —I—EG(AFPC)a) .

Both of these results are commonly used, and integrating out B in the latter gives the former.
e Specializing to F(A) = 0,A", we have
App = 0"D,,

so the former action becomes

Z= /D[A,c, edtAed g = /d:): <—i(F;j,,)2 - QZF“FG +ca(—8“D#c)a> :

This is known as R¢ gauge.

e We now revisit QED. In R, gauge, we recover the gauge-fixed QED action we had postulated
earlier. The covariant derivative D, in the adjoint representation is simply 0,, giving a de-
terminant factor of det(—d?). This is independent of the gauge field, so we factor it out as a
constant; this is why we didn’t see ghosts in QED. However, we can encounter ghosts in QED
if we use other gauges.

e The choice £ = 0 is called Landau gauge, while £ = 1 is called Feynman gauge; we often use it
by default. In the path integral, it’s conceptually clear the results do not depend on &, since &
just parametrizes how we do the gauge fixing.
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Example. The axial gauge, F/(A) = n*A,. In this case we have

OF(A)
Arp = 55Dy =Dy

The ghosts automatically decouple, because when we use the delta function, the dependence on
App on A, via n*A, vanishes. Then det App is simply a constant which can be ignored. The
downside is that the gauge explicitly breaks Lorentz invariance.

Alternatively, we can perform the same integration over f as above, giving

1
4

(Fo)? 215( BAL)? —entDye.

In this case it is straightforward, if a bit tedious, to invert the quadratic part of the Lagrangian to

L

find the propagator for A,, which gives

i0ab < U A L e U k”k”) '

'AHV —
iy (F) k-n (k-n)?

k24 e

Note that the interaction vertex between the ghosts and gauge boson contains the factor n,A*, and
hence is proportional to
§

k-n
Hence in the limit & — 0 where the gauge condition is exactly imposed, all diagrams where a ghost
attaches to a gluon vanish, so the ghosts decouple as we’d expect. A useful special case of this
gauge is light cone gauge, the limit & — 0 with n? = 0, giving

10ab w ktnY + ntkY
k-n '

n“A'Zby(k’) = — 5abk‘y.

AR () =
Ban (h) = 725

11.3 Canonical Quantization

Next, we proceed to the canonical quantization of Yang—Mills theory.

e Motivated by the path integral treatment above, we take the gauge-fixed Lagrangian

§

1
- 2

£=-4

(F%,)? — 9"B*A% + 2B*B* + 9"¢* D "

where the derivatives only act on the field immediately to their right.

e The field momenta are

oL
0Ag

—_ Fa/LO’ H? — @ — —Ca, H% — aBa = — 87 Hg = 8Ea = Ca — gfabcAgcC.

ap _
Iry =

The conjugate momentum of A° still vanishes, but this is just because we have the auxiliary
field B. We can eliminate B by plugging in its equations of motion.

e Next, we perform canonical quantization, imposing the usual commutation relations

[Au(t,x), I, a(t,y)] = inuwd(x —y).
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Then by direct computation, we find for spacelike j and k,
[A5(t,x), A} (1, y)] = i6°0);0(x —y).
Meanwhile, we have
[A5(t, %), B"(t,y)] = i6"6(x —y).
e Since the ghosts were Grassmann variables, we impose the anti-commutation relations
{e(t,%), (¢, y)} = {e*(t, ), TIg(t,y)} = i0"8(x — y).

We also define

A=, (E“)T =—c"
which ensures that £ = £, yielding a unitary S-matrix.

e At this point we would usually construct the Fock space, but Yang—Mills is an intrinsically
interacting theory. Thus the spectrum will contain complicated bound states, e.g. hadrons and
glueballs. On the other hand, to compute S-matrix elements it suffices to define ‘in’ and ‘out’
states via the LSZ reduction formula. These asymptotic states are free fields, which are fully
renormalized but have gauge coupling g = 0.

e Therefore, we instead consider the free Lagrangian

£
2
We set £ =1 and integrate out B® using the equation of motion B* = -9/ Aj, giving

[45(t. %), A (1, y)] = —i6nd(x — y)

1 a a a Aa a a —a a
Lo = —4(0u45 Oy A%L)? — 9B A% + 2BB® + 9" 9,

just as we had in QED.

e The gauge field and ghost field have free mode expansions,

AW):/ %;6% N (as(k)e ™ + agT(k)e®), e(k,A) - e(k, X) = v

and

() Je 77 e (p)er

dp a(
= | —c
J2E, P
with the commutation relations
(a8t (k), a% (K)] = 6%k — k), {c*(p),e" (0))} o {&*(p), & (p)} = 66 (p — P').

Thus we have negative norm and zero norm gluon states, as well as zero norm ghost states.

e The physical Hilbert space Hppys must have a positive-definite norm. In addition, the S-matrix
must be unitary when restricted to Hpys, i.e. the unphysical states must decouple. This is
much more difficult to guarantee, but it follows if we define Hp,ys using a symmetry of the full
interacting theory, as in this case the S-matrix respects this symmetry by assumption.

e We cannot use gauge symmetry for this purpose, because we had to fix the gauge to quantize
at all. In QED, we used the U(1) global symmetry, which gave the Ward—Takahashi identities.
But in a non-abelian gauge theory, this is complicated by the ghost and auxiliary fields. Instead,
we will use the more subtle BRST symmetry.
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11.4 BRST Symmetry

BRST symmetry is a fermionic global symmetry of the interacting, gauge-fixed Yang—Mills La-
grangian, which roughly corresponds to gauge symmetry when applied to the gauge field alone. It
is theoretically useful because it allows us to recover some of the consequences of gauge symmetry,
even though the Lagrangian is gauge-fixed.

e We begin with the gauge-fixed Lagrangian

1 §
L — _ZF;}VF“V(Z + 5

We define a. Grassmann odd operator S so that

BYB® + B9, A% + ¢%(~9" D,,c)".

SA, =—Dyc=—(0uc+ig[Au,c]), Sc= %gfabccbcct“ = g[c, d, Se=-B, SB=0.

Note that Sc is nonzero since ¢ is Grassmann odd. Also note that Sc is not just the conjugate
of S¢. We regard ¢ and ¢ as independent real Grassmann fields, not conjugates of each other.

e Note that S obeys a graded Leibniz rule: if ¢ is Grassmann odd,
S(cA) = (Sc)A — c¢(SA).
We now show S?® = 0 for any ® € {4, c,¢, B}. This is obvious for B and ¢, and we have

cyclic
SZC o tafabCfbdecccdce x 14 ( Z f@bCfbd@) cccdce -0

cde
by the Jacobi identity. The proof that S2A# = 0 is similar, but more complicated.
e Now, for a product of any two fields, we have
S2(D1Dy) = S(SPy Py + B1SDy) = FSP; Sy + SP; SPy = 0

where we used S?®; = 0 and the fact that S flips the Grassmann parity. Similar logic applies
for any product of fields, which implies S is nilpotent, S? = 0.

e Next, we note the Lagrangian has the form
L= —EF“ Fre — S (O AT + é’C‘B"L
4w ¢ nT e

as can be shown by direct expansion. Then SL = 0, where the first term vanishes by gauge
invariance and the second by nilpotence. We define the BRST symmetry transformation by

0D = €SP

where € is a constant independent Grassmann number, so 6L = 0. Note that the BRST
transformation preserves the Grassmann parity, and obeys the Leibniz rule without grading.

e By Noether’s theorem, we can construct the conserved current and charge

oL .
e _— @ L = 0 = U.
J % 8((%([)1)56 1, OuJ 0, @ /de , Q=0
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Upon canonical quantization, one can show that we find a BRST charge operator QT = Q which
generates the BRST transformation, by

@ X]=isX
where the bracket is a commutator or anticommutator depending on whether X is bosonic or

fermionic. The conservation of Q is expressed as [lﬁI , Q] = 0, and the nilpotency of the BRST
transformation implies

Q*=0.

The continuous symmetries of the Yang—-Mills Lagrangian are Lorentz invariance, global gauge
invariance, BRST invariance, ghost number (a U(1) assigning +1 charge to ¢® and —1 to ¢*), and
anti-ghost translation invariance ¢ — ¢ + x. In fact, the Lagrangian already contains all terms
consistent with these symmetries whose coefficients have nonnegative mass dimension. Upon
renormalization, BRST symmetry will ensure that the separate appearances of g renormalize
in the same way, providing identities analogous to Z; = Zs in QED.

There are some minor variations we can consider. We can easily include matter fields, which,
like the gauge field, transform as under a gauge transformation with gauge parameter o = —ec,

51/% = —igecat%-wj.
It is straightforward to show that S%; as well.

We could also integrate out the B field, in which case the only change is

1 1
Se=_F0 ==
3 3

in R gauge. However, to show that S 2¢ = 0, we have to use the equation of motion for the ghost
field. This is a general phenomenon: if we eliminate auxiliary fields, then often symmetries that

0, A¥

held off-shell will only hold on-shell, reducing their power.

We now use the BRST operator to define a cohomology and physical Hilbert space.

Since Q2 = 0, it defines a cohomology.

— An element |¢) € ker Q is called Q-closed.
— An element |¢) € im Q is called Q-exact. All exact states are closed.

— For |¢) exact, note that

(W) = (MQTQIY) = (XIQ%Ix) = 0.

Then all exact states are null. More generally, all exact states are orthogonal to all closed
states, and any two closed states differing by an exact state have the same norm. Physically,
an exact state is gauge-equivalent to vacuum.

— We define the Q—cohomology by

ker(QA)'
im(Q)

Then there is a well-defined inner product on cohom(Q).

cohom(Q) =
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e Consider the variation of the time evolution operator
. ) 1
U =exp (i/H¢—£dt>, Ez—ZFl‘fVF’“’a—SgZ)

under a change in the gauge fixing condition F'(A) = 0. Only S depends on F', so
Sp(a|U1B) = (alispSv|8) = (aliSsry|B) = (a|Qdry — 5rQ|B).

For this to vanish for all d g1, we require Q| B) = 0. Since the time-evolution of physical states
should not depend on the gauge choice, the physical Hilbert space must be BRST closed.

e Within this space, the BRST exact states have zero overlap with all other states and hence can

never be measured. Thus we identify Hp}ys = cohom(Q).

e We can explicitly find the physical Hilbert space for the free in/out states. The states are

45 (1)) = > enk, N)ag(1)]0),  [e*(k)) = T(K)|0),  [e*(k)) =T (K)|0)
A

and we don’t have separate B states since B ~ JA. The BRST transformation is
SA, = -0, Sc=0, Sc=-B=-0A, SB=0
where we work in Feynman gauge.
e Therefore, the BRST charge acts as
QlAP(K)) = aklc (K)),  Qle*(K)) =0, QI (K)) = Bk A%(K))
where a, 8 # 0. Since Q2 =0, we have k2 = 0. We now drop the a index.
e The states that are BRST closed must have no ¢ excitations, and moreover
[€) = &ul A (K))
is only closed if {#k,, = 0, removing one of the unphysical polarizations.

e Note that ¢ excitations are BRST exact, as is k#|A,(k)). Therefore, the physical one-particle
Hilbert space consists of states

[¥) = "Au(k)), k*=0, &'k, =0
where &# ~ & + kP, These are indeed the two degrees of freedom we want.

e Next, we check unitarity of the S-matrix. Since £ = £, the S-matrix is unitary on the entire
Fock space. Letting |v) be a basis,

> (ST (1S18) = (alB).
gl
The nontrivial thing to check is that it is unitary on Hppys,
> (ol STIxr) (xr|Slwr) = (¢rlr),  |67), [¥r) € Hpnys
XT

where |x7) is a basis for Hppys.
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e Since Q commutes with H , it commutes with S, so

QS|vr) = SQlyr) = 0.

Therefore, S maps ker Q to itself. However, it can and does produce BRST exact states. These
don’t spoil unitarity because such states are orthogonal to BRST closed states. Explicitly,

(orlvr) = (orl ST (VSlvr) =D (érlSTIxr) (xr|Slbr)

v XT

as desired. Here, v ranges over physical states, BRST exact states, and states that are not
BRST closed, and the latter two don’t contribute by the arguments above.

e In the special case of QED in Lorenz gauge, the ghosts automatically decouple, and the con-
straints above reduce to the Gupta-Bleuler condition dA*|¢)) = 0. The difference in the
non-abelian case is that such a constraint is not preserved by time evolution, as we can create
BRST exact states.

e Accordingly, the Ward identity k,M" = 0 does not hold in the non-abelian case, and this
is related to the nonexistence of a conserved current. Instead, we use the BRST current to
construct Slavnov-Taylor identities, which can be used to prove decoupling just like the Ward
identities. The Slavnov—Taylor identities also ensure the gluon remains massless, as the Ward
identities did for the photon.

e To see the role of the ghosts, note that the optical theorem relates a loop amplitude to a
production amplitude squared, where the latter sums over physical external particles. Only
two gauge boson polarizations are physical, but all four run around the loop. To maintain the
optical theorem and hence unitarity, the ghosts also run around the loop with an extra factor
of —1, canceling the unphysical polarizations. In the abelian case, the ghosts aren’t necessary
because the unphysical polarizations contribute nothing to loop amplitudes.

11.5 Perturbative Renormalization

Next, we show the non-abelian gauge theories are asymptotically free. We continue to follow the
Peskin and Schroeder conventions.

e By the same reasoning as in QED, the gauge boson propagator is

b —ig" P
D) = S (- a-on8 ).

The propagator is diagonal in color space. Incoming gauge bosons get €, (k,\) and outgoing
gauge bosons get €*};(k, ).

e Next, in our convention the gauge boson interaction terms are

2
b b 9~ rabe pad b d
LD gf*n"ror Ay A, AL — Zf“ CfrenttnT A AL ALAG.
For the cubic Feynman rule, note that every interaction comes with an automatic factor of
i, while the derivative contributes —ip* for incoming momentum p. There are six distinct
contractions, yielding:
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a, wbel
gf*c[g" (k — p)P

Py = +977(p — )"
b,v 71\ ¢ p + 97 (q — k)"

e As for the quartic interaction, there are 4! ways to perform the contractions. It turns out that
they come in identical groups of 4, canceling the 1/4 factor and giving six terms:

a, b, v _,L-gQ [fabEfcde (gppgua _g;w'gup)
— + facefbde (g,uugpa _g;ufgup)

ade pbces pv po _ _pup Vo
. do + (9" 97— ")

e Next, when we include matter fields in a representation t%, they have the interaction
a,p

/& : -

where again our convention’s sign is flipped. The propagator is the same as usual, with an extra
d;; in flavor space.

e Finally, we consider the ghost fields, where
LD (0" Dye)® =e*(—9*6°")c" + g f**e ot (Al ).

The resulting Feynman rules are shown below.

'6ab
P <o p — ! -
D
b, p
st = —gfept
a""ﬂ) e

The propagator is just the usual one, but it has a direction because the ghosts are fermionic;
also note that a ghost loop contributes a factor of —1. To get the ghost vertex, we integrate by
parts to put the derivative on ¢®. Also note that here, p is outgoing rather than incoming.

Next, we briefly discuss the “group theory” factors that appear in amplitudes.

e In QED, we saw that the spinor-related parts of amplitudes could be constructed by following
every fermion line, then writing the entries right-to-left. Similarly, in QCD, we get color factors
by following the quark lines, with a generator t* every time a gluon attaches. The ordering is
the same: reading matrix indices along the fermion line will give them ordered right-to-left.

e We also get color factors from gluons, since they themselves are colored. These yield products
of structure factors, which are essentially matrix products in the adjoint representation, since

(tik)bc — Z‘fabc.
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e We define the Dynkin index and quadratic Casimir as
tr(thth) = T(R)6™, 14t} = C(R)

with implicit summation over repeated indices and an identity in the second result. Conven-
tionally, we normalize the generators so that

1
T(F) ==
() =5
which implies that
C(F)—]\ﬂ_l—é T(A)=C(A)=N =3
2N ¥ B T

Here F' stands for the fundamental representation.
o We also often get factors of the dimensions of these representations,
d(FY=N=3, d(A)=N?-1=8.

Further rules for computing these constants are given in the lecture notes on Group Theory,
but these will suffice for our purposes.

Example. The process qg — qg at tree level. There are three diagrams:

Py 1,P2 LPy D,02,€; Nel J:P2
; K
a,qy,&, b,q..&.  0,94.¢, J.P2 a,qs, & b,Q2.82

which are in the s-channel, u-channel, and ¢-channel respectively. We’ll focus on the color factors,
since the kinematics are quite complicated. Setting the quark mass to zero for simplicity, we have
iy, +9y)

M = 9253’ (pg)}{; ¢1u5(p1) t?’ktzi

and

Z(Fﬁ - gz)

M, = gy (p2)¢, ”

fous(p1) itk

and
— —1i *Pp UV (VU v v
My = g°Ty (p2)7 us(p1) <t> FtSesPel (0P (qn + @) + 0™ (@1 — 2q2)” + 1" (g2 — 2q1)") -

where repeated color indices are not summed. Upon squaring, and summing over final spins and
averaging over initial spins, we get complicated expressions involving traces of up to eight gamma
matrices, which can be simplified using the Clifford algebra. Ignoring this, we get, for example,

M2~ (208) 50 (t71)5 = (8017) s (B4 ] = (27853 (¢4°),.
Summing over final colors and averaging over initial colors, and keeping only the color factor,

11 1
2 bragasb 2
| M| 33 tr(t°ttt”) = —24d(F)C(F) = —.


https://knzhou.github.io/notes/grp.pdf
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As another example, we have

2 1 abc pabd cc_i abe abc_i _}
M2 o fo0e fe a(10°) = ST (F) 2 fo = T (F)C(AY(A) = .

As a final example,

MM ~ % Fove te(t0ete€) = 4% FU (1 1) = 2 U e (tth) = 2 C(A)(AT(F)

48
Now we proceed to computing the beta function of Yang—Mills. (todo)
[ ]
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12 Solitons

12.1 Kinks

We begin with a brief introduction to solitons.

Solitons are stable, spatially localized smooth solutions of classical PDEs. We will focus on
their description in classical field theory. Often, we will find that they “connect distinct vacua”,
giving them topological stability. The solitons have a topological charge that makes them
distinct from the vacuum.

To have soliton solutions, we need nonlinear equations, which can be achieved by nontrivial
interactions between fields, or by self-interaction, as in ¢* theory.

Solitons can be quantized, at which point we can interpret them as particles. For example,
solitons carry energy and momentum. By Lorentz invariance, a stationary soliton with energy
FEy can be boosted to yield moving solitons, obeying

E? = p? +m?
where the mass of the soliton is m = Ey. Solitons can also interact with each other like particles.

However, solitons cannot be seen by perturbing about a vacuum state. Instead, we fix a soliton
solution and treat it as a background for quantization. This is difficult, as we typically can’t
write down exact soliton solutions; we won’t consider this subject too closely.

Another feature that distinguishes solitons is that ordinary quantum particles have masses
proportional to A, since £ = hw, while the masses of solitons are independent of A.

We will focus on a few types of solitons, all in relativistic field theory.

— In one spatial dimension, we have kink solutions.

— In two spatial dimension, we have vortices. We will also investigate solitons in nonlinear o
models.

— In three spatial dimensions, we have Skyrmions.

Nonrelativistic solitons include domain walls in ferromagnets and two-dimensional “baby”
Skyrmions in exotic magnets. Solitons also appear in cosmology, where we can have domain
walls, cosmic strings, and monopoles.

Skyrmions are solitons in an effective field theory of interacting pions, representing the (fermionic)
nucleons. They were pioneered by Skyrme, who had the strong philosophical opinion that all
fermionic fields had to be emergent in this way. Though the skyrmion approach is not particu-
larly accurate in real QCD, it was famously shown by Witten to be a good description in the
large N, limit.
Finally, we comment on quantization. Typically, for a field whose particles have mass m and
coupling g, solitons classically have energy and size
1
B~ e =
g m

in natural units; this will hold for our examples below.
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e Then the Compton wavelength of a soliton is
1
A~ — ~ gl
E g

Therefore, we don’t expect quantization to significantly affect the soliton when the coupling is
weak; we simply find perturbative corrections to E. The fact that E diverges as ¢ — 0 also
indicates the solitons cannot be seen in perturbation theory.

e We can also have some insight in the strong coupling regime. For example, the sine-Gordan
theory and massive Thirring model are dual, with strong coupling in one mapping to weak
coupling in the other, and solitons exchanging with elementary particles. Hence there is no
intrinsic difference between an elementary particle and a soliton; all that matters is which
viewpoint is more convenient for calculation in a particular regime.

Next, we introduce the basic kink solution.

e We work in 1+ 1 dimensions with metric diag(1, —1). The action is

S = /d% (;amaw — U(qb)) .

The equation of motion is
au

H — =
0,0 + o 0
which is called a nonlinear Klein-Gordan equation.
e For explicit calculations, it will be useful to work ‘nonrelativistically’. We define ¢ = 0p/0t
and ¢ = 0¢/0z with
1 12 1 2
L=T-V, T= 5(;5 de, V= §¢ + U(¢) dz.
e We are interested in static solutions, which obey ¢"” = dU/d¢. We choose the potential
1 22
U9) = 51— )

so two static solutions to the field equations are the vacua ¢(x) = £1. There are soliton
solutions that connect these vacua.

e There are plenty of other choices, such as

U(p)=1—coso

which is called the sine-Gordan theory since the field equation contains sin ¢. This theory is
integrable, which means that we can find explicit exact solutions involving interacting solitons.

e Sticking with our original choice, the field equation is

"= -2(1-¢%)9.
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This is a nonlinear second order differential equation, so instead we think in terms of energy.
By Noether’s theorem, we have a conserved energy

1. 1
B= [ 38+ 56° + U@ da
which is simply V' for a static solution. For static solutions, the action is proportional to V and
is also extremized, which means that E is minimized.

e We shift U(¢) so that it is nonnegative, and its minimum value is zero. Then finite energy
solutions have fixed boundary conditions U(£o00). Now, we define the function W by

W@=;<2Zf.

Now the energy is quadratic, so we may complete the square for
1 aw\?
E=-[¢*+(——) d
o (%) @
1 ,_dW\? dW d¢
== — ) det+ | ——d
J@$m)x/wmm

:;/(¢;€Zf¢wﬂwwww—wwemm.

e Since the second term is fixed, the energy is minimized if the first term vanishes, so

aw

o=+

while the energy of the solution is
B = (W (¢(00)) — W(=00))

where we take the positive solution. Moreover, any soliton will have at least this energy; this is
an example of a so-called Bogomolny bound.

e Note that the equation ¢ = dU/d¢ for static solutions is equivalent to that of a particle of
unit mass and position z(t) in the potential —U. This is just like the situation for instantons,
and provides some intuition.

e In the case of the ¢* kink, we have
1
W =¢—-¢>
030

Fixing the boundary conditions ¢(o0) = 1 and ¢(—o0) = —1, we have E' = +4/3. Since the

energy is positive, we take the plus sign, so M = 4/3 and
oW

d¢

where a is a constant of integration, the position of the soliton. We thus call a a modulus (or

1—¢?, ¢(z) =tanh(z — a)

collective coordinate) of the solution, and the set of possible moduli is the moduli space; in this
case it is R.
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e We can also have moving kink solutions, by simply performing a Lorentz transformation,
¢(x,t) = tanhy(x — vt).
It is useful to focus on slowly moving solitons. Then
o(x,t) = tanh(z — a(t)), a(t) =vt
which looks like a static solution with a time-dependent modulus.

e We can write the action in terms of the time-varying modulus in this ‘adiabatic’ approximation.
We have ¢ = —a¢/, so

1, 1 1
T:/2¢>2dm: 2a2/¢’2dg;: §Md2

where the final result can be simply written down using Lorentz invariance or computed by
an ugly integral. Alternatively, the Bogomolny equation shows that the two terms in the F
integral above contribute equally, which means that the integral of ¢'? is just M.

e Meanwhile, V' doesn’t depend on a, so it is simply 4/3, and we have the particle Lagrangian

1 4
L=_-Ma*— -
2" T3

This is an ‘effective field theory’ style approach; we are restricting our variational problem in
field space to a ‘valley’ given by static solutions, parametrized by a(t).

e The soliton Lagrangian has the equation of motion
Mi =0, a(t)=uvt+ag

which is exactly what we found above. Geometrically, we can think of the equation of motion
as the geodesic equation on the moduli space R, where M specifies the metric. This is trivial
here, but generalizes to higher-dimensional systems and multi-soliton dynamics.

e In general, zero modes arise whenever a soliton breaks a symmetry in the Lagrangian; in this
case the soliton breaks translational symmetry. Later we’ll see more complex examples where
a soliton breaks an internal symmetry, i.e. it carries a conserved charge.

12.2 Dynamics of Kinks

Next, we consider interactions of kinks.

e In our current theory, there aren’t multi-kink solutions. However, we can ask how a solution
consisting of a kink and anti-kink behaves.

e First, it’s useful to look at conserved quantities. We have
T, = "¢, — 6L L.

The energy is the integral of T, giving the same result we found earlier. The momentum is

P:-/Toldxz—/wdx.
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For our moving kink solution ¢ = tanh(z — a(t)) we have, by the same tricks as above,
P=Ma
which is what we would expect for a particle of mass M.

e Next, we would like to compute the interaction force between a widely separated kink and
antikink, as only this regime is analytically tractable. Let the kink and antikink be located at
+a, and let b be a point in between them far away from each of them; we’ll show the result
doesn’t depend sensitively on b. We define the momentum of the kink as

b
P=- / 0@ da.
—0oQ
By conservation of energy-momentum we have

(9tT01 + alel = O
e The force on the kink is defined as

b b
F:P:—/ 3tT01 de/ &ch1 dﬂf:Tll(b):<—;¢2—;¢/2+U>

z=b
e To make further progress, we need to explicitly write down ¢. An approximate solution is
¢(z) = tanh(x 4+ a) — tanh(z —a) =1 =¢1 + 2 — 1

as long as a > 1. We will assume that the kinks are initially at rest, ¢ = 0, though they will
begin moving as they exert a force on each other.

e Next, at the point b, ¢2 — 1 and hence ¢/, are small, so we expand to first order in them,

. dU
F= <2¢% +U(¢1) — $16 + (d2 — 1)cz¢(¢1)>m_b’

The first two terms cancel out by the Bogomolny equation; physically they must cancel because
a kink cannot exert a force on itself.

e Next, the field equation gives (dU/d¢)(¢1) = ¢/, so we have
F = (=¢i5 + (¢2 — 1))z
This is as far as we can go without using the explicit solution.
e To keep the calculations manageable we use the asymptotic form of tanh,
$1(2) ~ 1 — 27200 gy 1 — 262E0)

which is valid when zx is far from both 4-a. The factors of 2 here are called the ‘amplitude of
the tail’. Plugging this in and simplifying,

F = 32¢74%0

where the value of b drops out.
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e To understand this solution better, we restore parameters to find
F =2m2A%ems

where s = 2a is the separation, A is the amplitude of the tail, and m is the mass of the quanta
in the theory. But this looks just like the result from tree-level exchange of quanta of mass
m. Physically, applying perturbation theory makes sense because the interaction happens at b,
where the field is close to vacuum.

e Evidently, the kink and antikink attract, eventually colliding. We have to resort to numerics
to find what happens. Generally, if the kinks are moving slowly, they annihilate into ‘meson
radiation’. If they are moving very quickly, they can bounce off each other.

Next, we turn to kinks in sine-Gordan theory.

e In this case, the potential has minima at multiples of 2,

U(¢) =1— cos o, (Z‘Z = 28111%.
The Bogomolny equation is

d

cTﬁ = 2sin g, o(x) = 4tan_1(ex_“)

which describes a kink that interpolates between 0 and 27, with M = 8.

e However, there is no solution to the Bogomolny equations which interpolates between 0 and
4. The reason is that sine-Gordan kinks repel each other (since we know a kink and antikink
attract), no matter how far apart they are. Thus the energy can be continually lowered by
bringing the kinks further apart; there are no static multi-kink solutions.

e We can describe dynamical multi-kink solutions. One explicit example is

_1 vsinhyx

z,t) =4tan~ !t ——
$(@:1) cosh yvt
Physically, the kinks move towards each other until ¢ = 0, then bounce off each other, so
evidently they repel. There is also a “breather” solution consisting of a kink and antikink
bound together and oscillating.

e We might expect that a system of many kinks and antikinks, all with different velocities, will
behave in a complicated way. Numerical simulations indicate that the result is simple; there is
no energy loss due to “radiation”. This is because the sine-Gordan theory is integrable.

e Since everything is periodic modulo 27, we can choose to physically identify ¢ ~ ¢ + 27w. Then
we have ¢ : R — S! and the boundary condition is ¢(z) = 0 at infinity.

e For a topological approach to classifying solitons, we can compactify R to get ¢ : S* — S', and
solitons are classified by their winding number, i.e. their homotopy class in 71 (S'). We call this
winding number the topological charge Q).
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We can also take a “physics” style approach. Define the topological current

1 1
jl‘ - %e/ﬂjayqb = %(89%1)7 _8t¢)7 601 =1.

This current is conserved by the symmetry of mixed partial derivatives. This is remarkable
because it is completely independent of the field equations, making its conservation topological
rather than dynamical.

The conserved charge associated with the current is

Q:i/fdx:;%/&@dx

which is simply the topological charge ) as defined earlier.

Finally, we can define () geometrically. The target space S' has a normalized volume form

/wzl
Sl

Given a mapping ¢ : R — S we can pullback the volume form,

where one example is w = d¢/27.

and we define the degree of the map to be

Q= [ow=g [Fas

which agrees with the previous expressions.

Next, we briefly discuss quantization of the kink.

At the simplest level, we can use the moduli space approximation,

1 P2
L=-Md*, H=_—
2 oM

and hence upon canonical quantization we get the ordinary Schrodinger equation for a free

particle of mass M. Stationary states take the plane wave form

: h2 k2
Y(a) = ek, P=hk, E=-+r.

Note that the wavefunction is on the moduli space.

More properly, we would quantize the field about a kink solution; this is similar to quantizing
a field in a curved spacetime, in that we just generalize the usual plane-wave mode expansion.
For example, one can form wavepackets far from the kink that don’t feel it at all, while there
are also modes that are “bound to the kink”, and look like the kink’s shape wobbling.
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e The zero-point energies of these modes provide an infinite renormalization of the kink mass.
This is acceptable, since we get a finite result when we subtract it against the zero-point energy
of the vacuum solution. The remainder is a finite shift to the kink mass, which is indeed small
when the coupling is weak.

e This computation will be complicated by the presence of zero-frequency modes. These corre-
spond to moduli, and we can’t ignore them; they remain important even when the coupling
goes all the way to zero. Accounting for the moduli alone and ignoring all other terms in the
Lagrangian is exactly what we did above.

e Another way to see the weak coupling requirement is to say that the soliton is essentially
unchanged by quantization if there is a length scale L, much smaller than the kink size, where
the size of the quantum fluctuations is small; this is the same requirement to treat the electro-
magnetic field classically. One can show explicitly this is equivalent to weak coupling.

e In the case of strong coupling, the soliton typically survives in the quantum theory, but it
doesn’t behave anything like the classical soliton.

12.3 Vortices

We will first attempt to find vortices in the simplest possible model, a complex scalar field in 2 + 1
dimensions.

e We take the Lagrangian

1 A 2\?
£ = 500700 -3 (1P - )

where the potential is minimized for |¢| = v = \/p?/A.

e We expect solitons on topological grounds. Letting ¢ = pe’® and defining the winding number

Nzl/dﬁ‘Va
2 C

we find that IV takes integer values. On the other hand, it appears that N must be zero if ¢ is
non-singular since we can shrink the loop to zero. Thus for N to be nonzero, there must be at
least one point where ¢ vanishes. The solutions with nonzero N = n are topologically stable
with vorticity n € Z.

e To make further progress we must solve the field equations
V26— A(|g]> = v*)¢ = 0.

We will try the rotationally symmetric ansatz ¢(x) = f(r)e??. Also, if we demand symmetry
by a reflection about the z-axis followed by complex conjugation, f(r) must be real.

e There is a general reason the ansatz will work. Naively, taking an ansatz makes the equations
of motion overdetermined, so we generically have no solutions at all. But suppose the action is
invariant under a group of transformations GG, and the ansatz has the most general possible form
invariant under G. A variation of the ansatz can be decomposed into a part that is G-invariant
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and a part that is not, where the second part averages to zero upon integration. Thus the
only nontrivial equations of motion come from G-invariant variations, so the ansatz has enough
parameters to generically yield a solution. A similar principle in quantum mechanics is that
energy eigenstates have the symmetries of the Hamiltonian.

e However, we do need to look at variations that are not G-invariant to determine whether G-
invariant solutions are stable, since physically there will be external influences that slightly
break the symmetry.

e Now, plugging into the equations of motion gives a single equation for the single function f,

2
df+1ﬁ—i+A(v2—f2)f=0

dr2  rdr 12

so we indeed get a solution, by the general reasoning above, with f(0) = 0 and f(o0) = v.

e However, the solution has infinite energy, because

1 dr
> [ glopooy ~ [

which diverges logarithmically. Such configurations could be physically relevant, i.e. we would
have a finite energy per vortex if we had a finite density of vortices, but a single vortex is not
physically meaningful.

It’s possible to understand this result using general scaling reasoning.

e The energy of a finite-energy, static solution ¢ can be written as E = I + Iy, where the gradient
energy/ “kinetic energy” I is bilinear in the first derivatives of ¢ and the potential energy Iy
is an integral of V (¢).

e Now consider the scaled field ¢(x) = ¢(Ax). In D spatial dimensions,
E\) =PI + 2Py
Since ¢ is a static solution, it locally minimizes the energy, so dE/d\ = 0 at A = 1, giving
0=(D—-2)Ix+ DIy.
This places strong restrictions on solitons.

— For D =1, we get Ix = Iy, which is a generalization of a result we found earlier.

— For D = 2, we require Iyy = 0. This rules out non-singular solitons in our model above,
since ¢ must vanish at some point, so we cannot have |¢| = v everywhere. Solitons can exist
in more complicated models, such as the O(3) sigma model. However, then E(\) = A2~ P I
is independent of A, so the soliton is neutrally stable against expansion and contraction.

— For D > 3, we require Iy = Iy = 0, so the only solution is the constant vacuum solution.

This result is a version of Derrick’s theorem, and forbids simple solitons in D > 1.
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e Solitons can evade Derrick’s theorem in several ways. They can have infinite energy (as for our
vortices), they can necessarily vary in time (which we won’t consider), or they can be unstable
or neutrally stable against compression, as we saw for D = 2. In this last case, however, this
means we don’t actually have stable solitons at all: when the soliton size shrinks close to the
lattice cutoff, the topological obstruction fades away and the soliton can vanish entirely.

e Thus, in order to have stable finite-energy static solitons, we must add more structure to the
theory. One example is an abelian Higgs model, where the energy is now

1 1
E=Ir+Ix+Iv, Ir=3 /dDa: tr Fy,  Ix = 3 /dDa: (Dj¢)*(D;).

The new term I transforms differently under scaling.

e We now consider the scaled fields

6(z) = 5(\),  Alx) = M(M)

where the factor of A is necessary to maintain the functional form of Ix. Then
EN) = X"PIp + X7 PIg + X\ PLy,

which is stationary at A = 1 if
(D—-4)Ip+ (D—-2)Ig+ DIy =0

which allows soliton solutions in D =2 and D = 3.

e Note that in pure Yang-Mills, we have only Ir, in which case a neutrally stable soliton exists
only when D = 4. These solitons are just Yang—Mills instantons in spacetime dimension d = 4,
after a Wick rotation to D = 4. The neutral stability indicates that instantons have any size.

We will next investigate vortices in the abelian Higgs model in 2 + 1 dimensions.
e We have a complex scalar field ¢ and a U(1) gauge potential a, with

11 D N A .
EZ_ZFWF +§(Du¢) (D ¢)_Z [ ) D¢ = 0u¢ +ieAyud.

The gauge transformations take the form
¢(x) = “Mg(a),  Au(z) = Au(z) - 9uA(2).
Under such a gauge transformation, the winding number transforms as

N—>N+e/d£-VA:N
27T C

as long as A is nonsingular and single-valued, so our topological argument still works.
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e Taking spatial components with ¢ = pe’®, we find
D¢ = e*(Vp +ip(Va — eA))

which means the gradient energy is zero at large distances if
1
A =-—Va.
e

Hence the energy does not diverge as it did above.

e Evaluating the winding number by a loop at large r, for a solution with vorticity n,

1 2
n=— de-vaze/de-Aze/d%B, o=
2m Jo 2r Jo 27 e
so we find a quantized magnetic flux. Since the field is pure gauge at large r, the flux is localized
at small 7.

e We now consider a static vortex solution with n = 1. We work in the gauge Ap = 0 and take
the ansatz
, a(evr
P(x) = vell f(evr), Aj(x) = ejkjck (evr)
where f and a are real. This is the most general ansatz with the same symmetries we used for
the global vortex case. The boundary conditions are

er

which ensure the vortex is nonsingular at the origin, and has finite energy.

e There is no closed-form analytic solution, but the form of the solution is intuitive. When |¢| # 0,
the gauge field acquires a mass, so it is energetically costly to have a magnetic field. Hence it
is localized near the origin, where |¢| is small. Since the magnetic energy depends on B2, it
favors a larger vortex core, but the potential for ¢ favors a smaller vortex core. The relative
strength of these two effects is determined by the ratio \/e?.

e Also note that the same vortex solution can be written in other gauges, though it will no longer
appear rotationally symmetric.

Next, we consider multiple vortices.

e We may also consider the interaction of vortices. Two vortices will interact through both the ¢
field and the A, field. Since the former is spin zero, it mediates a universally attractive force,
while the latter makes like-charged vortices repel. Hence at large distances, the interaction is
determined by the field with the slower falloff; the vortices attract if and only if mg < ma4, or
equivalently \/e? < 1/2.

e It’s harder to say what will happen at smaller distances, since the problem becomes nonlinear,
but numerical simulations indicate that the sign of the force only depends on whether mg/m 4
is greater or less than one. When they are equal, vortices don’t interact at all, and there are
static solutions with multiple vortices.
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e Otherwise, such static solutions don’t exist, but we can still find a static solution consisting
of a single vortex with n > 1. However, when the force between vortices is repulsive, such a
vortex is not energetically stable.

e This result is important for superconductivity, which is described by the same theory, but in
three dimensions; our vortices are replaced with vortex lines. Consider forcing a magnetic flux
through a superconductor by applying a field; it will then be energetically favorable to form
vortices.

e In a type I superconductor, the superconductivity is lost at a relatively low external field, while
a type II superconductor can persist up to a much higher field in a mixed state where the flux is
confined to separated vortex lines. Physically, type I superconductors have \/e? < 1/2, so the
vortex lines attract, combining into extended regions where the superconductor breaks down.
In a type II superconductor they repel, forming a lattice.

12.4 Vortices and Homotopy

Next, we formalize our statements with homotopy theory.

e We consider a theory with symmetry group G broken down to H, so the vacuum manifold
is M = G/H. In two spatial dimensions, we consider a loop at spatial infinity (or at least
well-separated from the vortex cores), which yields a loop in field space. Then naively, if this
loop is not homotopic to the trivial loop, it must contain a soliton.

e However, there is a subtlety in this standard argument. When we consider homotopy of loops,
we deform the loop while fixing a base point. However, when we consider the stability of solitons,
we allow arbitrary variations of the field; there is no point on the loop where the field value is
fixed. We are considering loops up to “free homotopy”.

e As a specific example, consider the setup shown below.

The loops f and g are not homotopic, but they are related by g ~ afa~!. Hence they are freely
homotopic. More generally, the set of loops up to free homotopy is the set of conjugacy classes

of 71’1(./\/1).

e Note that the set of conjugacy classes is not a group! Given multiple vortices, there are multiple
paths that go around all of them, whose corresponding loops lie in different conjugacy classes.

e We must also account for gauge invariance. One can show that the freedom due to gauge
transformations keeps loops within the same free homotopy class, so we don’t have to further
modify our conclusions.



229 12. Solitons

e Below, we will focus on the abelian case, where these subtleties do not appear, as all conjugacy
classes have one element. In this case, the quantum numbers of vortices simply add.

Example. In the models above, the symmetry group was U(1) and completely broken, so M = U(1),
and (M) indexes the vortices.

Example. Consider SO(n) broken to SO(n — 1), which occurs when a scalar field transforming in
the vector representation of SO(n) acquires a vev. Then M = S"~! and for N > 3, (M) = 0, so
there are no topologically stable vortices.

Example. Consider an SO(3) gauge theory with two scalar fields transforming in the vector
representation, with the potential

A A
V(9.) = 7 (@° —0d)* + F0¢ —10)* +g(- %%
If g is negative, the vevs are parallel, and the symmetry is broken to U(1). If g is positive they
must be orthogonal, so the SO(3) symmetry is completely broken, so M = SO(3) and w1 (M) = Zs.
Hence we have Zy vortices, where a combination of two is topologically trivial. A simple ansatz is

¢ =14(0,0,1), x =uvyf(r)(cos,sinf,0), A;= ejk:%ka(:)(0,0, 1)

where the latter two are just an embedding of the U(1) gauged vortex.

Note. Consider the case vy > vy above. Then if we integrate out the ¢ field, we are left with a
U(1) gauge theory, and a combination of two vortices is topologically stable, even though it isn’t
in the original SO(3) gauge theory. This is due to energetics. The deformation that takes two Zo
vortices to the untwisted configuration must involve a non-constant ¢ field at intermediate stages,
but if vy > v, this has a very large energy cost. The lesson here is that topological stability is not
absolute; it can be ‘effective’ like everything else in field theory.

Note. There is some freedom in the gauge groups. In the previous example, we could have taken
gauge group SU(2), in which case a Zy symmetry would remain when g > 0. We get the same
vacuum manifold, as M = SU(2)/Zs = SO(3).

Example. The electroweak sector of the Standard Model has
G=SU@2)xU(l), H=U@1), M=5

because the Higgs vev can take any value with the same norm. Since 71(S®) = 0, there are no
topological vortices. On the other hand, consider a theory with a local U(1) symmetry but only a
global SU(2) symmetry. Then a vortex configuration with

0= (f(ro)ei">

is indeed topologically stable, as unwinding it would cost an infinite amount of SU(2) gradient
energy. Such a vortex is called a semilocal vortex. As before, we must have f(0) = 0 to avoid a
singularity.
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However, the semilocal vortex has a different source of instability. Recall that we can use a local
SU(2) symmetry to set the upper component of ¢ to zero everywhere, without loss of generality.
With a global SU(2) symmetry, we must consider the more general possibility

o= (yen):

2 so a vortex may be unstable to the formation of

The scalar potential is minimized if f2 4 ¢?> = v
larger and larger regions where f(r) = 0, as long as g(r) = v. By the topological arguments, the
vorticity must still remain at spatial infinity, but it will become unobservable at any finite radius.

This instability occurs when the U(1) gauge coupling is small compared to the scalar self-coupling.

Example. Alice strings. Consider an SO(3) gauge theory with a Higgs field in the 5, i.e. an
traceless symmetric 3 x 3 matrix transforming as

¢ — RORT.
Also suppose that V(¢) is minimized when two of its eigenvalues are equal, so
¢ = Rdiag(a,a, —2a)R" = a(1 — 3ee’), e = Rey.

Then the vacuum manifold is S?/Zy with fundamental group Zs. To find the unbroken gauge group,
note that the vacuum remains invariant under rotations about the e axis, but it is also invariant
under a 7 rotation about the e’ axis, where €’ is an arbitrary vector perpendicular to e. These
operations do not commute; instead the group is

U(1) % Zs = Pin(2).

Of course, these results are consistent with the general principle M = G/H.

Now consider a vortex solution described by e(f) = R(0)eq at large distances. If R() traverses
a nontrivial path through S?/Zs, then the vortex is topologically stable. If it is present, it is
not possible to define the charge of a particle under the unbroken U(1) subgroup unambiguously,
because it is generated by rotations about e, and following e around a circle flips the sign. In order
to remove the ambiguity, one may perform a gauge transformation so that e is constant everywhere,
except for a “branch cut” running out to infinity, across which it flips. Then we may say the sign
of the charge flips upon crossing the branch cut. In three dimensions, the vortices become strings,
and the branch cuts become surfaces. The location of the surface is not gauge invariant, but its
existence is, leading to the term “Alice strings”.

Now consider two charges and an Alice string that closes on itself to make a circular loop. We
consider two particles with the same charge starting next to each other; this is a physical statement,
as it means that, e.g. they cannot annihilate. If we transport one of them in a circle that goes
through the loop, it will come back with the opposite charge, and hence the two particles can
annihilate; hence this ambiguity in the charge has a real physical effect. We can define the total
charge of the system of the two charges and string at all times by a flux integral at infinity, and
this must be conserved, so charge must have been transferred to the string. But since the surface
associated with the string is arbitrary, it is meaningless to ask when the transfer occurred; hence
we have a system where the total charge is defined but cannot be unambiguously localized!
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Example. A non-abelian fundamental group. Consider the same theory as above, with a potential
that is minimized when the eigenvalues of ¢ are all distinct,

¢ = Rdiag(a1,a2,a3)R", a1 # ag # a3.

This vacuum is invariant under only the identity and rotations by 7 about the z, y, and z axes,
which form the Klein four group. To find 7(M), it is more convenient to use the universal cover
G = SU(2). The unbroken group H has eight elements, {+I, +0,, +0,, +0,} forming the quaternion
group. Since G is simply connected,

m(G/H) = m(H)

so the fundamental group is non-abelian.

12.5 Quantizing Vortices (TODO)
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13 Monopoles (TODO)

We begin by reviewing topological defects in general, in the SM and GUT theories.

For a theory with vacuum manifold M = G/H, the topological defects are classified by my(M)
(domain walls), w1 (M) (vortices/strings), ma(M) (monopoles), and 73(M) (textures).

The behavior of these objects changes dramatically if there is gauge symmetry, as in the SM.
We call these defects with gauge symmetry “local”, in contrast to “global” textures.

Only local strings and monopoles are interesting as cosmological defects, because global strings
and monopoles have infinite energy. However, collections of global strings or monopoles can
have finite energy and play a role in other contexts, such as the Kosterlitz—Thouless transition.

The global/local distinction is not relevant for domain walls; one could add a discrete gauge
symmetry, but this doesn’t do much because it doesn’t produce a gauge field. Local textures are
a bit trivial because the field lies in the vacuum manifold at all points, so the energy vanishes.
Textures are instead interpreted as other vacuum states. (right? anything else?)

In the SM, the relevant groups are G' = SU(2); x U(1)y and H = U(1)4, and M =2 S3. (This
is easier to see by considering the possible states of the Higgs doublet, which takes values in
C2.) As a result, the only possible defects are local textures, which are not interesting.

Using results from the notes on Geometry and Topology, for the SU(5) GUT, G is connected
and simply connected and H = SU(3)¢ x U(1) 4, so

7T1(G/H):7T0(H):O, WQ(G/H)Zﬂ'l(H):Z

This yields monopoles, but not other topological defects. But for more complex GUTs, symmetry
breaking generally occurs in multiple stages, and generically produces cosmic strings.

Cosmologically, there are strong constraints on domain walls and (local) monopoles coming
from high-scale physics; both generically contain far too much energy and must be inflated
away if they appear. Cosmic (local) strings are acceptable, but CMB measurements show they
cannot play a dominant role in structure formation. Global textures were once hypothesized to
play a role in structure formation, but this has also been ruled out.


https://knzhou.github.io/notes/gt.pdf
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14 Anomalies

14.1 Pion Decay

We begin with an overview of anomalies.

A anomaly is a symmetry of a classical theory that is not present in the quantum theory.
Specifically, anomalies mean the Ward—Takahashi identities will no longer hold. They arise
because the theory cannot be regularized without breaking the symmetry, or equivalently
because the path integral measure cannot be chosen to be invariant.

Anomalies can apply to either gauge or global symmetries. A gauge anomaly is dangerous
because it destroys the Ward identities, and hence prevents the decoupling of unphysical states,
leading to violation of unitarity. Thus we must arrange our theories so that all gauge anomalies
cancel. Such a theory is called ‘anomaly free’.

Global anomalies are not dangerous, and are instead ubiquitous. For example, the U(1)p baryon
number symmetry is anomalous, and this allows for nonconservation of baryon number, which
is required for baryogenesis.

We will see that anomalies are infrared effects, resulting from massless particles in the spectrum.
This leads to the idea of anomaly matching, which relates the spectrum of massless particles
above and below a phase transition. In renormalizable gauge theories, anomalies arise exclusively
from chiral fermions.

More specifically, consider a theory with gauge group G and global symmetry group G, with
currents j* and j*. It will turn out that anomalies can be computed by considering correlators
of three currents, each of which may be from G or G, at one-loop order with a massless particle
in the loop.

For reasons that will become clear later, we will write, e.g. the anomaly resulting from three
j*’s as tr(GGG). As a result, there are four important cases.

— tr(GGG) corresponds to an anomalous gauge symmetry, which is dangerous for the reasons
explained above. The Ward-Takahashi identities correspond roughly to d,j* ~ F'F.

- tr(GGé) and tr(Géé) may correspond to either an anomalous gauge symmetry or an
anomalous global symmetry, depending on how we regularize the theory; for consistency
we always choose the latter. This results in a non-conserved global current, 8,J“ ~ FF.
For historical reasons, this is called a chiral anomaly.

— Note that many anomalies of this mixed form automatically vanish, because tr(7g) = 0 for
any generator of a semi-simple Lie group.

- tr(éé@) corresponds to a 't Hooft anomaly. These do not cause nonconservation of the
current, d,j# ~ 0, but they are an obstruction to gauging G. It is these anomalies that are
used in anomaly matching.

— There are also linear /mixed/gravitational anomalies of the form tr(G grav?®) or tr(G grav?)
where two of the external legs are gravitons. These cause nonconservation of a current
in the presence of spacetime curvature. This can be understood in terms of the previous
anomalies by working with a vierbein, in which case coupling to gravity is like coupling to
an SO(3,1) gauge field.
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e Since F'F is a total derivative term, one might think that an anomalous global symmetry still
has a conserved charge. However, this is not true if we account for instantons, the subject of
the next chapter, which can occur in non-abelian gauge theories. For gravitational anomalies,
there are also corresponding gravitational instantons.

e Finally, quantum field theories generically break scale invariance. In this case the anomaly is
called the trace anomaly, since scale invariance makes the energy-momentum tensor traceless,
and it is proportional to the S-function. Conformal field theories are trace anomaly free.

e Historically, anomalies were first encountered in the computation of the decay rate for 7% — ~~,
where the chiral anomaly has an effect. In this context, it is also called an ABJ anomaly or the
axial anomaly.

e The anomalies we have described above are sometimes called “perturbative” anomalies, in the
sense that they can be computed using perturbative techniques. There are also more subtle
anomalies, such as Witten’s global SU(2) anomaly (not to be confused with the anomalies of
global symmetries we've considered above), which states that an SU(2) gauge theory with an
odd number of fermions in the fundamental representation is inconsistent.

First, we consider the decay 7° — ~v in the context of QCD with the up and down quark.

e An overview of the symmetries of the theory is given in the notes on the Standard Model. As
a quick summary, the symmetry group is

G=U) xUQ1)g x SU(2) x SU(2)g.

This is spontaneously broken to

G = U(l)v X SU(Q)V

by the formation of the quark condensate. The U(1)y symmetry is the total quark number,
while the symmetry U(1)gm € SU(2)y is gauged. The spontaneously broken symmetries U(1) 4
and SU(2) 4 correspond to the 7’ and the pions, respectively.

e However, we should also account for the quark masses. Equal masses for the up and down
quark break the symmetry group explicitly to

G = U(l)v X SU(Q)V

independent of the quark condensate. In this context SU(2)y is known as isospin. It is broken
by the up-down quark mass difference, which we neglect.

e Now, suppose the 70 couples to the proton 1 by the interaction
Ling = AT )
and it decays to photons by a proton loop, where the proton has mass m.

e The two contributing diagrams are shown below.


https://knzhou.github.io/notes/sm.pdf

235 14. Anomalies

The diagrams may be computed in the usual way. The amplitude is superficially divergent, of
the form [ d*k/k®, but the combination of the two terms turns out to be finite, with

2 2,3
_« ATme
6413 m?2

2
Ae 1x 2%

_ vpo p o
M= 747727716“ Pel e, a4,

e To make the result more quantitative, we need to find the value of A\. In the context of chiral
perturbation theory, this coupling is related at tree level to the nucleon mass by A = m/ fr, so

2 3
o my

= .
6473 [2

e Alternatively, the computation can be done by current algebra. The key fact is that the neutral
pion is a Goldstone boson associated with the spontaneous breaking of SU(2)4. The three
pions satisfy

Q12 (@) (p)) = i€ Fapy,  j3 = Tro 7P

where W can be taken to be either (p,n) or (u,d). The neutral pion corresponds to a = 3.

e Now, if we had used ¥ = (u, d) instead, there would be contributions from both up quark loops
and down quark loops, of which there are N colors, giving an overall factor of

N

N (/37 - (1/37) = 5

in the amplitude, where the minus sign comes from the negative isospin of the down quark, and
we get ¢° factors from the two photon vertices. Hence the pion decay rate was an early test
that N =3 in QCD.

e One might complain that higher-order effects in QCD should be significant. The above result
is only accurate because the chiral anomaly is exact at one loop, as we’ll see below.

e The fact that the spinor ¢ in the loop has a mass means that it violates U(1) 4 axial symmetry,
3 = 9y, Bt = 2imyy°y.
This basic fact holds whether we think of the loop as containing nucleons or quarks.

e Now, the calculation we did above essentially says that

2
e 1
327‘(‘2 %EMVpO—F;LVFpO'

(Alpy°plA) = i
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where F),, is a background electromagnetic field. But then we have

2
(A]9,5"°|A) = ——

tom2 " it

which means that the axial current is not conserved in a background electromagnetic field, even
when we take the mass m to zero! Hence our simple calculation shows us something strange is
going on with the axial symmetry — an anomaly is present.

e The reason the chiral anomaly is important here is that, if one reasoned from chiral symmetry
alone, the decay rate should be much smaller. Naively we could have a term in the effective
Lagrangian of the form

62

~ 82 fr

where the f, is by dimensional analysis, and the extra 1/47? is because we are dealing with a

Lef Woe“”p”FWFpg

loop effect. This yields the same result that we found above.

e This is surprising since the pion is a Goldstone boson of SU(2) 4, and hence should not have a
non-derivative coupling. We know that SU(2) 4 is not an exact symmetry, so such a coupling
may arise due to the breaking of SU(2)4 by the quark masses. But it must be proportional to
my + mg o< m2, and hence smaller by a factor of m2/f2, giving a result that is too small.

e The resolution comes from the chiral anomaly, which in this case shows that there is a violation
of SU(2)4 symmetry independent of the quark masses. We know that under an SU(2)4
transformation with a = 3, the 70 field shifts, 67 = §F,. When the quarks are integrated out,

2

e
1672 f,

Lo O — TP, v Fpo

almost exactly as expected by the naive argument. This is the vertex in the effective theory
that replaces the triangle diagrams.

e In the language we used above, the ¥ decay rate is due to an SU(2) U (1)%,; anomaly. There
is also a U(1)4U(1)%,; anomaly. However, what distinguishes U(1)4 is that it is anomalous
even in pure QCD, by a U(1) 45U (3)% anomaly. This has a large effect on the mass of the 7’
because QCD is strongly coupled, resolving the U(1)4 problem.

14.2 Triangle Diagrams

Next, we compute the anomaly directly, starting with a massless Dirac fermion. In this case we
have the global symmetry U(1)4 x U(1)y.

e We consider the correlation function (j%°(x)j*(y)j*(z)). Under an axial transformation we
have §j#* = 0, so the Ward—Takahashi identity is simply

0a (3 (x)" (y)5" (2)) = 0.

This correlator is closely related to the pion decay amplitude, but without the external lines or
the coupling constants.
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Defining

WM (P, a1, a2)8 (0 — a1 — ¢2) = /dwdydz ePTe VM2 (790 (2) ()" (2))

and applying the Feynman rules, we find at one loop

v = favu (i (100))

Using standard identities, we may show

. kPqs kPqS v
o Mg"" = diee [ dk 2 ! :
Pas e / <k2(k+q2)2 "RE-ar) T Lo

By Lorentz invariance the integrals must be proportional to ¢/¢{ and ¢5qJ respectively, and
hence vanish when contracted with the Levi—-Civita symbol. So naively it looks like the Ward-
Takahashi identity is obeyed.

Similarly, by contracting with q}“ we find

L oY o (k—aq)’(k+q2)° (k—q)’(k+q)”
Q5" = i /dk ((k—q1)2(k+q2)2 (k—q2)2(k+q1)2>'

If we shift k — k + g1 in the first term and & — k + g2 in the second, the integral vanishes
identically, so naively it looks like the vector current is conserved as well.

However, this calculations are deceptive. If an integral is regularized, the integration variable can
always be shifted, but we haven’t done any regularization here. In fact, our standard regulators
don’t work, because DR has trouble with v° and PV explicitly breaks chiral symmetry by
introducing a massive fermion. One can still make sense of linearly divergent integrals, but
their value changes upon a shift.

To see this, consider the integral

A(a) :/dwf(x—i-a) — f(x)

where the integration bounds are oo, and f(x) goes to a constant at infinity. Naively the
integral is zero by shifting the first term, but by Taylor expanding we have

Aa) = /d:c af’(x) + higher derivatives = a(f(c0) — f(—0))

where the higher derivatives don’t contribute since f goes to a constant at infinity. This result
holds regardless of whether or how we regulate f(z) at infinity.

By similar reasoning, one can show that for the linearly divergent integral

(0% o o 3 [e% ka
A@%—/%@wwmwwwmxkg&F@w—Ag

where kg is a Euclidean momentum, we have
i
A%(g) = Aa®
(a%) 327277

where the factor of 7 comes from Wick rotation.
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e Returning to the vector current calculation above, the quadratic divergences cancel, while for
the linear divergence gives )
qiM?HV _ WEQW)Uqug-
Hence it appears the vector current is not conserved. The resolution is that the definitions of the
loop momenta k are independent between the two contributing diagrams. In other words, by
choosing the k’s we did above, we had implicitly fixed a regularization scheme for the correlator.

e We may choose the vector current to be conserved by shifting k — k + ¢ in the first diagram,
which fixes K — k + ¢o in the second by Bose symmetry. Then the linear divergences cancel
exactly, but one can show that

1
paM?W = mewpaqi’qg.

Taking the most general possible shift & — k + b1q1 + bago it can be shown that it is impossible

to preserve both the vector and axial symmetry; we choose to preserve the former.

e To compare with what we found earlier, we can relate correlation functions to matrix elements
by LSZ reduction. The form of the LSZ reduction formula for photons is

(f]3) = ie“/d:ce_ikx(—82) L {Ay(z). ).

By the Schwinger—Dyson equation associated with the classical equation of motion —82A“ = Ju,
(fli) = ie”/daj e~k (ju(z)...) + contact terms

where the latter do not contribute to S-matrix elements and hence don’t matter here.

e Applying the LSZ reduction formula, we have

(41,3205 (0)10) = (ig)*epe,, (iM* (p, q1,q2)#(p — 1 — g2)).

Therefore, contracting both sides with p,, we have

2

. g - »
(1, 21003 (2)|0) = —ﬁﬁ“”” Q1pq20€uc,e DT 1L O(gh)

where the higher-order terms vanish by the one-loop exactness of the anomaly. This is consistent
with the operator equation )
Dt = —#&”PUFMVFW.
Note. We haven’t proven the above operator equation, only that a certain matrix element of both
sides matches. Later, we will use the path integral to give a more general proof, which establishes
that the two sides are equal when placed inside arbitrary time-ordered correlation functions.

The reason we hesitate to work with the actual operators is because they are difficult to define:
quantum fields are operator-valued distributions and hence two fields at the same point can’t be
multiplied, but j*° contains products of this form. In this case, we can “regularize” by point-splitting,
separating the two v fields in j*° and connecting them with a Wilson line,

- z+€/2
7 = im P(x + /279 exp (—ie/ dz" A;AZ)) (@ —e€/2).

—€/2
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Taking the limit carefully proves the desired operator equation. This somewhat old-fashioned
approach is given in detail in chapter 19 of Peskin and Schroeder. In modern high-energy theory,
many simply circumvent this issue by working exclusively with the path integral. In this language,
an “operator” is just defined as any expression that can go under a path integral, and an “operator
equation” is defined to be any statement that holds underneath a path integral up to contact terms.

Note. As stated above, dimensional regularization has problems with 7°. So far, we’ve mostly
treated dimensional regularization as a series of ad hoc rules. That is, we assume that the trace
obeys the usual properties (linearity, cyclicity), and further assume that

{4 =20", {1,791 =0, ¥ =1
These properties can be used to derive others; for instance,

dtrys = tr(vs7 ) = — tr(ys7uy") = —dtrys

which implies that tr-s = 0 for all d # 0. If tr~ys is to be meromorphic in d, then tr~s; = 0 for all d.
If 4% really could satisfy all these properties simultaneously, the axial anomaly would vanish.
However, other results would come out incorrect. For instance, it can be shown that

(4 —d)tr(v57u 1Y) =0

which this trace to be zero for all d, including d = 4, making many amplitudes vanish identically,
and giving completely wrong physical results.

To avoid problems of this sort, we need to give a more constructive definition of dimensional
regularization. For example, Collins defines integrals in non-integer dimensions axiomatically in
chapter 4. One consistent way to define 75 is to take 4° = 7944242 in all dimensions. This
formally means that 7° anticommutes with 4 of the gamma matrices, and commutes with d — 4
of them, breaking Lorentz invariance. Practically, this means that to evaluate loop integrals, we
must split the loop momentum as ¢ = ¢ + £, , where the two pieces have 4 and d — 4 components,
respectively, and treat the latter piece like a typical dimensional regularization integral in d — 4
dimensions. This is used to derive the axial anomaly in chapter 19 of Peskin and Schroeder.

There are other methods for defining ~5, which are described in chapter 13 of Collins and this
paper. For instance, one can proceed naively if one only is interested in amplitudes with an even
number of v5’s. This is used in chapter 21 of Peskin and Schroeder to handle one-loop computations
in the Standard Model.

Now we reflect on our result.

e We see that we may choose which symmetry to preserve; we could also choose to preserve
neither. If we give the Dirac fermion a charge, we must choose the vector symmetry to be
preserved to avoid a gauge anomaly. If we give the fermion a mass, then axial symmetry is
automatically broken and we may regulate with PV, so none of the subtleties above apply.

e The reason we considered this correlator was that taking more currents would yield divergences
weaker than a linear one. Also, we needed one or three axial currents, because we need an odd
number of 7% matrices (otherwise they can cancel out and we can use DR) and at least one
vector current to check vector current conservation. However, we could also derive the axial
anomaly by considering a correlator of three axial currents.


https://link.springer.com/article/10.1007%2Fs100520100573
https://link.springer.com/article/10.1007%2Fs100520100573
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e In general, anomalies in four dimensions are studied with triangle diagrams, while anomalies in
2n dimensions are studied with (n + 1)-gons. Moreover, we don’t need to look at higher-loop
diagrams since the chiral anomaly is one-loop exact. (why not 2 currents?)

e In general, for QED with any number of Dirac fermions, the gauge anomaly can be made to
vanish by similar manipulations. However, for a single left-chiral Weyl fermion, this is not the
case. The photon couples to the current

it = vy Pra.

The factors of Pr, can be manipulated to show that

GLipin) = 5 (G5"5") = (535D
The former vanishes when contracted with any of the momenta, as we may use DR there. Now
we can have p,(j§'j*j") = 0 or qi,(J§5#j¥) = 0, but not both. Then the Ward-Takahashi

identity for j# cannot be satisfied, and QED with a single Weyl fermion is inconsistent.

e Now suppose we have a left-chiral and right-chiral Weyl fermion with different charges. In this
case the gauge boson A, couples to

it R = QLU P + Qryn* Pr.

Since the mass is zero, there is no mixing between left-chiral and right-chiral fermions, so the
contributions just add, giving

1
. . . 3. - 3 /- 3 3
(ULriLritr) = QLULILIL) + QrURIRIR) 2 5(Qk — QL)M™.
Hence the theory is consistent if Q7 = Qrg.

e Another way to understand the relative minus sign is to convert the right-chiral Weyl fermions
to left-chiral Weyl fermions, which flips their charge; then the total anomaly is just proportional
to >, Q?. In the case of a non-chiral gauge theory, every @); is paired with another of the
opposite sign, which guarantees the sum is zero.

e In general, we only need to worry about vector symmetries being anomalous if the gauge theory
is chiral. And chiral fermions in four dimensions must be massless, so we only need the low-
energy spectrum; the chiral anomaly is an infrared effect. This allows us to check gauge anomaly
cancellation in the Standard Model below. (However, we shouldn’t forget that axial symmetries
can be anomalous even in non-chiral theories, as we saw in 7° decay.)

e By generalizing the computation of the triangle diagram to a non-abelian gauge symmetry, for
a massless Dirac fermion in a representation R, we have

2
. g Vpo a a a a
Ou"® = 7o T(R)7 (9, A% — 0,A43)(9,A% — ,A3) + Og”)

which suggests the result

D" = — g° T(R)e"P°FO F% = — 9
s 1672 pv= po 1672

by gauge invariance; it can properly be derived by computing square and pentagon diagrams.

Pty By F oo
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e By the LSZ logic above, this anomaly will also affect Ward—Takahashi identities for correlation

gauge bosons.

e Massive fermions don’t contribute to the chiral anomaly, because there we can simply use PV
regularization. Hence the chiral anomaly is an infrared effect. Note that the (historically prior)
calculation we presented above can obscure this, since it makes it look like anomalies are due
to loop divergences.

14.3 Anomalies from the Path Integral

Next, we see how anomalies can arise from the path integral.

e We consider the quantity
Z(A) = /D\Ifmfeis(f‘), S(A) = /dx\I/(ilD)\Il, D, =9, —igA,

for a fixed background gauge field A, under which the Dirac fermion ¥ transforms in a repre-
sentation R. Formally, we have

Z(A) = det(ilD)
but this expression must be regularized.

e Now consider a spacetime-dependent axial U(1) transformation,

/

V(z) = e @1 Y(z), T(z) = U(x)e s,

If the measure were invariant, we would have
Z(A) = /D\I/'D\I/’ exp <z/dx\lf’(le)\I/'> = /D\I’D\If exp <z/dx\I/(ZlD)\If —|—jff‘(x)3ua(x)>

where we used invariance of the measure in the second step. Integrating by parts and setting
this equal to Z(A), we have (9,j%) = 0. If we had other operators present, we would have this
result up to contact terms, which is precisely the Ward—Takahashi identity.

e Now we consider the Jacobian of the transformation more closely. We have
J(z,y) = 6(z — y)e @B DYDY = (det J) 2DUDY

where the negative power is due to Grassmann variables, and
(det J) ™2 = exp (—2trlog J) = exp <2i / dx az) tr(o(x — 33)75)>

where the trace is over spin and group indices.

e Again, this result is meaningless without regularization, as the delta function is infinite and the
trace vanishes. Since we need to regularize Z(A) in any case, we should use 1P, so we replace

for a mass M that will be taken to infinity. This replaces the delta function with a Gaussian
in a gauge-invariant way, as we’ll see below. Other cutoff functions would also work.
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e [f one is unsatisfied, one can also define the path integral more explicitly, using the same method
we use for instantons below. That is, we expand ¥ in a basis of suitably orthonormalized
eigenfunctions of D,

and define the measure by DU = [, day,, with a similar definition for DU. One can then derive
the Jacobian above more carefully, getting

(0@ — 2)%5) = 3 Bu(2)776u(a)

which is equally divergent without regularization, but less manifestly nonsensical. One can then

X /M2

regulate the sum by adding a factor of e , then switch to a plane wave basis, recovering

the expression above.

e Next, moving the derivative through the exponential with the identity
f(@)ek = e (9 + ik)

we have
5z — 1) — / 2l k(@) g~ (D—K)2 /M2

Expanding the exponential, we have
1
—(iP —})* =~k +i{k. D} + I = K + 2ik- D+ D* + S [*,4"1D, Dy

where we used standard gamma matrix identities and v*4” = ({y*,7"} + [v*,~"])/2. Finally,
we replace D, D, with [D,, D,|/2 =igF,, /2.

e Finally, rescaling k by M, we have

5(:1: _ y) N M4/dk‘ ez’Mk(a;—y)e—kQ62ik~D/M+D2/M2+igFW,[7“,'7”]/4M2'

Therefore, we have

tré(m _ x)% o MA / dk e—k2 tr eQik-D/M+D2/M2+igFHV[’y“,v”]/4M2,75‘

e We now expand the exponential in powers of 1/M, where only terms up to M ~* survive the
M — oo limit. The only way to get a nonzero trace is to have four gamma matrices, so we get

;2

. 2
Zg v a Zg Vpo —k2
<4M2> & Fyw Fpo 7,7 110° 7% s = -7 tr(FWFpa)/dke g

szl
2

tré(z—x)ys — /dke

using standard identities, where the remaining trace is over the group. The Gaussian integral is

dhe = L
/ ¢ (4rr)2

where the factor of i is from Wick rotation, and the denominator is the usual loop factor.
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e Putting everything together, we have
i 2

-2 .
(det J)™* = exp ( 1672

/ dx az)e"P? tr FWFPU> .

Thus, the invariance of Z(A) implies that

2
<auj;§ + #ewa tr FWFW> =0

with the same holding up to contact terms in correlators, as desired.
Now we reflect on the result.

e Taking a(z) to be constant, we have additionally shown that a chiral redefinition of a fermion
field can induce extra terms in the Lagrangian, which is important for understanding the strong
CP problem.

e The Adler—Bardeen theorem states that the anomaly is one-loop exact. It can be proven by a
careful study of Feynman diagrams, or by noting that we never expanded in g above. (right?)

e By direct computation, we see the divergence of the current is a total derivative,
2
eMPtr By Flpe = 0y (46‘“’”0 tr(A,0,As — 3igA,,ApAg)>

where the quantity in brackets is called a Chern—Simons current. In particular, given an
anomalous symmetry, we can construct an alternative current that is conserved. However, note
that this current is not gauge-invariant.

e Note that the total value of the axial charge cannot change for topologically trivial configurations.
Such changes must be mediated via instantons, but instantons don’t exist for U(1) gauge fields,
so the axial charge is conserved even if the current locally isn’t.

e A better proof for the one-loop exactness of the anomaly uses topology. Imagine higher-order
corrections to the anomaly. The most general answer has the form

C%jffx = f(g)gQE‘“’p” tr ) Foo

by dimensional analysis and parity invariance. Integrating over spacetime,

AQa = f(g)/d:L‘gQE“”pUtrFWFpg.

Assuming the gauge group is non-abelian, both the integral and the left-hand side are integers,
so f(g) cannot depend on g, and hence is one-loop exact. (This proof doesn’t work in the
abelian case because both sides vanish identically.)

e A similar derivation can be used for any even dimension d = 2n, giving

2g™
5 +1 e 2n
Opg"” = (=1)" mem F2 B - Flgn pon-

Note that in d = 2, anomalies only arise from abelian gauge groups, as otherwise tr F},, = 0.
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Note. The meaning of an anomaly for a global symmetry can be described directly in terms of the
path integral as follows. Suppose j* is the current for a global symmetry. We can formally couple
the symmetry to a background gauge field, which in the simplest case can be done by adding j#A,
to the Lagrangian for a background field A, giving a partition function Z[A]. The symmetry can
be gauged if we add in the Yang-Mills action for A, and integrate Z[A] over gauge-inequivalent A,,.
This cannot be done if the global symmetry is anomalous, which occurs precisely when Z[A] is not
gauge-invariant.

14.4 Anomalies in the Standard Model

Next, we show gauge anomaly cancellation in the SM, introducing non-abelian anomalies.

e In the SM, we have the three currents jE, jﬁ and j:, which couple to SU(3)¢, SU(2)r and
U(1)y respectively. (For brevity, we’ll drop the subscripts.) Gauge anomaly cancellation requires

Oulipdbiy) =0
for all combinations of ¢, j, and k.

e In the case where all of the currents are j}j, we have the U(1)3 anomaly

2
9t~ (X0 0| e Bt
left right

where B, is the U(1) field strength and g is the associated coupling.
e For the anomaly to vanish, we need
0= (Y7 - Y} - V})+3(2Y5 - Y - Y))

where the 3 accounts for color charge, the 2 accounts for the two members in a doublet, and
we’ve added a right-handed neutrino for later.

e Plugging in the numbers

1 1 2 1
YL:_§7 }/8:_]-7 Y]/:O, YQ:E’ Yu:* Yd:_f

we find the anomaly vanishes for each generation, but not for the quarks or leptons individually.

e Next, consider triangle diagrams with three of the same non-abelian current. Here a fermion v
in a representation R contributes to the current as

Jp = i(TR)ii"T;.
Therefore, the two diagrams pick up factors of tr(TI%TI%TI%) and tr(TRTET 1%) respectively.

e By substituting T87% = ([T4,T%] + {T4,T%})/2, we have

/ 1
tr(TRTRTR) = STrf™ + Jdif°,  dii* = 26(TH{TH, T})).
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The quantity d%’c is a totally symmetric rank 3 tensor. In the case of SU(n), there is only one
such tensor, so we have
df, = A(R)dape

abc —

where dgp. is defined with the generators in the fundamental representation, and A(R) is called
the anomaly coefficient of the representation R.

e The term proportional to f%¢ contributes through the difference of the diagrams and is UV
divergent. However, it does not contribute to the anomaly; instead it merely renormalizes the
three gauge boson vertex.

e The term proportional to daRb . contributes to the anomaly by

2
-[La g abc _pvpo b b
aﬂ]” (z) = ZA(RZ) - Z A(R;) 1287T2d etr F;LVFpU
left right

where F),, is the associated gauge field strength and g is the coupling. The overall factor is
fixed by U(1), where we have T® = 1 and hence d*¢ = 4.

e Since T% = —(T$)T, the anomaly coefficient obeys
A(R) = —A(R).

Since the representations of SU(2) are all pseudoreal, there is no SU(2)? anomaly because
the anomaly coefficients all vanish. Moreover, there is no SU(3)? anomaly because QCD is
non-chiral. The anomaly coefficient obeys the useful identities

A(R1 @ Ry) = A(R1) + A(R2),  A(R1 @ Rp) = A(R1)d(Rz) + d(R1)A(Ro)
so we can compute anomaly coeflicients by building up from the fundamental.

Now we consider the mixed anomalies involving different currents. In this case, the trace is taken
over matrices which are tensor products of the matrices associated with each group factor.

e An SU(n)U(1)? anomaly would be proportional to tr(7%{1,1}) o trT& = 0, so they auto-
matically vanish. Similarly, any anomaly with exactly one factor of SU(2) or SU(3) vanishes.
Therefore, the only cases to check are SU(3)2U(1) and SU(2)2U(1).

e One has to be careful when applying this point: not all SU(n)U(1)? anomalies vanish, only
those where SU(n) x U(1) is a symmetry. For example, the SU(2)4U(1)? anomaly does not
vanish, and this is precisely what accounts for the decay 7° — 7.

e The SU(3)2U(1) anomaly only receives contributions from quarks, of the form
Y tr({T%,T%}) o 6%
which means the overall contribution is
5% (6Yg — 3Y, — 3Yy) =0

where the right-handed quarks contribute negatively as usual.
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e The SU(2)%U(1) anomaly receives contributions from left-handed fields only, giving
(5ab(2YL + 6YQ) = 0.

e The final constraint is from the gravitational anomaly, which comes from diagrams with two
external gravitons and one external gauge boson. We find
Oty o tr(T]%)e“"p"RWangaﬁ.
Since the generators of SU(n) are traceless, the only constraint is from grav?U (1), which gives

Sy Y vi-o

left right

e In summary, we have four constraints on six hypercharges. There are two two-parameter families
of allowed hypercharges, one of which is ruled out by demanding Yy # 0. The other is

a b 2 b a b
L 2 b7 e a b7 v b7 Q 6+37 u 3+37 d 3+3

Note that we may also swap Yy and Y, and Y, and Y,,, since the constraints don’t distinguish

a

between them; there is also an arbitrary hypercharge normalization we’ve neglected. The
coupling a corresponds to hypercharge as it is in the SM, while b corresponds to B — L.

e No matter what the values of a and b are, we must have Y7, 4+ 3Yg = 0 exactly, indicating that
the electron and proton have exactly opposite electric charges. However, for general b #£ 0, the
neutron is not electrically neutral, and charge is not quantized.

o If there is no right-handed neutrino, or if it is Majorana, then we must have Y,, = 0, implying
b = 0 and therefore fixing the SM hypercharges up to scaling. On the other hand, if the opposite
is true, then it is possible to extend the Standard Model by gauging both U(1)y as in the usual
Standard Model, and U(1)p_r.

For more about anomaly coefficients, see the notes on Group Theory. Next, we consider global
anomalies in the Standard Model.

e Recall the U(1)4 axial symmetry considered earlier. We cannot compute an anomaly from a
U (1)?4 triangle diagram, because there is nothing 0, jffl can be equal to. Instead the anomaly is
due to U(1)aU(1)%,, since the latter is associated with the electromagnetic gauge group.

e By similar reasoning, all anomalies for a global symmetry G come from GH? triangle diagrams,
where H is one of the gauge groups of the SM. We must use H? since the trace of a single
factor is zero.

e Two important global symmetries are baryon number and lepton number. Now, we have
anomalies due to SU(2)2U(1)p and SU(2)?U(1)z, giving

2
. : 9
0" = Oug"™ > g5 PTWE W,

where ny, = 3 is the number of generations. But if there is a sterile neutrino, U(1)p_y, is
nonanomalous, as we saw earlier, so it can be gauged. Such gauge bosons are common in grand
unified theories and cause baryon number violation. Note that in neutral atoms, such a gauge
boson would couple to neutron number. If gauged U(1)p_p is unbroken, it would need an
exceptionally small coupling. If it is broken, the gauge boson mass is at least 3.5 TeV.


https://knzhou.github.io/notes/grp.pdf
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e The right-hand side is a total derivative, which means that baryon and lepton number are
conserved perturbatively. However, there are SU(2) instantons for which the right-hand side
integrates to a nonzero value over spacetime; these mediate violation of baryon and lepton
number. The rate for this process is extremely small, but at high temperatures, it can be much
higher because the transitions are caused by thermal fluctuations rather than quantum effects.
In this case, we say the process is mediated by sphalerons.

e There are also anomalies due to U(1)3-U(1)p and U(1)3U(1),. However, since there are no
U(1) instantons, such anomalies cannot lead to global nonconservation of baryon or lepton
number, so they are less important.

e Next, we consider theta terms. The theta term of U(1)y has no physical effects, because there
are no U(1) instantons. The theta term of SU(2) may be rotated away by the SU(2)?U(1)p
anomaly. There is also an SU(2)?U (1), anomaly, which matches the U(1)p anomaly so that
U(1)p—r is nonanomalous.

e However, the theta term of SU(3) cannot be removed. The reason that we could easily remove
the theta term of SU(2) was because of the chiral structure of the weak force; rotating all
quarks contributes to the anomaly because SU(2) only couples to left-handed quarks.

e For SU(3), we may try SU(3)2U (1) since U(1) 4 is chiral, but U(1) 4 is not a symmetry of the
SM because of the quark masses. Instead, such an axial transformation changes the phases of
the quark Yukawa couplings, and the invariant quantity is

0 =6 —argdet M

where M is the quark mass matrix. The fact that @ is observed to be zero within experimental
error is the strong CP problem, as explained further in the notes on the Standard Model.

Note. A bit more about baryon and lepton number violation. In order to see what an SU(2)r,
instanton does, we note there are 12 SU(2)r, doublets in the SM (3 families of left-handed leptons,
and 3 x 3 families and colors of left-handed quarks). The number of corresponding particles changes
by 1 in each, so for a unit instanton we have

AL, =AL,=AL, =1, AB=3.

Of course such a process must still conserve energy, electric charge, and color charge. Also note that
instantons can’t make isolated protons decay, because baryon number is violated in multiples of 3.

Finally, we describe the technique of anomaly matching.

e Asan example, consider pure QCD with three massless quark flavors, where the global symmetry
is G = SU(3), x SU(3)gr x U(1)y. There are no SU(3)?G anomalies, which ensures G remains
a symmetry in a background gauge field, though there are G3 anomalies.

e We now imagine gauging the symmetry G with an arbitrarily weak coupling. The G® anomalies
now render the theory inconsistent, but they can be removed by adding spectator fermions.
They are only coupled to the existing particles through the gauge field, and can be effectively
decoupled by taking the gauge coupling arbitrarily small.


https://knzhou.github.io/notes/sm.pdf
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e Now consider the low-energy theory where quarks are confined. Since anomalies are infrared
effects, gauge anomaly cancellation must still hold. This must be due to massless particles in
the spectrum, which could be either Goldstone bosons or massless hadrons.

e Suppose the latter occurs, so SU(3)r, x SU(3)g is not spontaneously broken, and consider the
SU(3)3 anomalies. In the deconfined phase, the left-handed quarks each contribute A(fund) = 1,
and there are three colors, so the spectator fermions contribute an anomaly coefficient of —3.

e Now, for the anomalies to be canceled in the confined phase, color singlet fermions constructed
from quarks must provide a total anomaly coefficient of 3. We have

3x3x3=10+8+8+1
and the 8 cannot contribute since it is a real representation. To evaluate A(10), note
A(6) = A(3x3)=A(3) =3A(3) +3A(3) — A(3) =T

and

A(10) = A(6 x 3) — A(8) = 3A(6) + 6A(3) — A(8) = 27.

Hence a 10 of baryons can only contribute in multiples of 27. Thus, for consistency, pure QCD
with three flavors must have spontaneous chiral symmetry breaking!

e In real QCD, chiral symmetry breaking indeed occurs, and the anomalies are transferred over
to the Goldstone bosons. For example, anomaly matching allows us to conclude there must be
a U(1),0U(1)?, anomaly, where U(1),0 C SU(2)4 is associated with the 7°. Indeed, this was
our original motivating example.
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15 Instantons

15.1 Quantum Mechanics

An instanton is a classical solution of the equations of motion with finite, non-zero action. They
can be used to describe transitions between vacuum states in a semiclassical approximation.

e First, consider ¢* theory,
1 1
£ = 50,00"6 — Sm? = g6,
In the classical case, we are free to scale the Lagrangian. Letting ¢’ = g¢, we have

7&1 /u/_12/2_/4
5_92(2a#¢8¢ g — ¢

which means that g is not a physical parameter.

e In the quantum case, the scale of the Lagrangian is set by &, so g is important; the physically

relevant quantity is
L 1

1
Z = (z0 00" +... ).
h g2h (2 M¢ (ZS
Then the relevant dimensionless parameter is g2k, and an expansion in % is the same as an
expansion in g, as we’ve seen before.

e Our approximations will be semiclassical and hence require weak coupling. However, they will
extract nonperturbative information essentially by the WKB approximation, which says that
the probability of barrier penetration for a particle of unit mass is

T(E)| = exp <_711 / dr \/2(V = E)> (1+ O(h))

1
which is zero to all orders in A.

e We can’t imagine barrier penetration as a classical process, because the velocity would be
imaginary in the classically forbidden region. But this is exactly what we would expect if we
worked in Euclidean (imaginary) time. This motivates us to consider Euclidean solutions.

e Specifically, Euclidean solutions are precisely those which maximize the WKB probability of
barrier penetration. To see this, consider the system

L=/;f—W®

and consider a tunneling path q(s) between minima, where ds? = dq?, q(0) = qo, q(s) = qy.

The tunneling amplitude is approximately e~5/2 where

B= z/osf ds \/2(V(a(s) — E).
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o In the case where the motion is between maxima, and hence classically allowed, Jacobi’s principle
tells us these paths correspond to stationary points of the action. By similar reasoning, for
tunneling between minima, the paths minimize the Euclidean action

Sy = /: dr (; (j‘j)Q 4 V(q))

which has the potential negated.

e The equation of motion is

dzqi . oV
dr?2  Og;
and the particle is at rest at the start and end of the path q(7), so
L) _v@-r B-vi
2 dr - q ) - do)-

e Explicitly, the Euclidean action of the path is

Tf

sia = [ aravi@ - via) + [ drvia)

0 70
and the first term is simply B/2 upon a change of variables, so

B

5= Sp(q) — Se(qo)

where qq is the trivial path qo(7) = qo.

e Such a Euclidean solution is called an ‘instanton’ because it is centered around some point of
Euclidean time. However, this is not physically related to real time; at this point it’s simply
some parameter related to s. Originally, instantons were called pseudoparticles.

e We may also consider tunneling out of a metastable minimum. In this case, the WKB amplitude
goes across the potential barrier, but the Euclidean solution goes out and ‘bounces’ back in,
doubling the action. Hence we have

B = Sg(@) — Se(qo).

Physically, the amplitude for a particle in the minimum qg to stay there falls exponentially
in time, with the exponent being proportional to e B/2, Alternatively, one can say the state
peaked in qp has complex energy. This could be made more precise by starting with a system
where qq is a true minimum and analytically continuing to the system considered here.

e It is clear here that there are many possible escape paths, and we’ve just found the most
probable one. The other reasonably likely escape paths are simply perturbed about the most
probable one, and their effect on B can be found perturbatively.

Next, we’ll turn to the path integral, which is better at calculating the subleading corrections.
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e Setting m = h = 1 and restricting to one dimension,

z(T/2)=xy 2
(xyle T |2;) = / Dre "5, H= Py V(z)
o(~T/2)=; 2

where Sg is the Euclidean action as above. Expanding in energy eigenstates, H|n) = E,|n),
(sle™ ™ |zi) = e T (@ gln) (n|a;)
n
so for large T', we may compute the energy and wavefunction of the lowest energy states by
evaluating the path integral.

e To define the measure, we choose a set of orthonormal functions x, (7) vanishing at the bound-
aries and choose T obeying the boundary conditions; this is equivalent to the usual Dx measure
up to a constant Jacobian. Then we define the measure by

z(r) =Z(1) + Z enn(T), D= NH den

where N is a divergent normalization factor.

e In the semiclassical limit, we expand around stationary points of S. Suppose T is the only one;
it obeys the classical equations of motion in the potential —V (z). We let the basis functions
xn(t) be eigenfunctions of the second variational derivative of S at T,

B d?z,,
dt?

+ V'(@)xn = M.
Expanding about the stationary point, the path integral is a Gaussian, so

(wgle T |z;) = Ne 5@ T A 21+ O(h)) = Nem @ det(—02 + V" (z)) /2.

Higher order terms here come from the higher-order variation of the action with respect to c,.

e This result is a generalization of the usual functional determinants seen in field theory. In that
case, we usually only explicitly perform path integrals when the action is quadratic, in which
case the functional determinant det 625|z is independent of Z and diagonalized by plane waves.

Example. A trivial example. Let z; = 2y = 0 and consider a potential with a minimum at x =0
and V(0) = 0. Then the only solution for T is the constant Z = 0, where S = 0, so

(0le~HT|0) = N det(—8? + w?) V21 + O(R)), w=V"(0).

To evaluate the functional determinant, note the eigenvalues are

mn? 9

)\nzﬁ—{—w

so we have
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The constant N is fixed by matching with the result for the free particle, w = 0, giving

1 H <1 N w2T2)1/2 1 <sinh(wT)>1/2
VvarT = m2n? VorT wT ’

Taking the limit 7" — oo and neglecting exponentially small terms, and restoring A,

N det(—9? +w?)~2 = 1/16_“]71/2
mh

which implies that the ground state energy is hw/2 + O(h?), and

N det(—92 + w?) 712 =

(z=0/n=0)= ﬁ(1 + O(h)).

These are indeed the correct semiclassical results.

Next, we consider the extended example of the double well.

e Consider an even potential with minima at +a with V(a) = 0 and V" (a) = w?. We will compute
(ale=H7T|a) and (ale "7 |—a)

motionless at +a, but we also have the ‘instanton’ solution that moves from —a to a, and the

semiclassically. As before, we have classical solutions that stay

‘anti-instanton’ that moves from a to —a.
e Since we’ll take T to infinity anyway, we take this limit now. Then the instanton solutions have

dx T dz!
— =2V = .
dr ) TETF /0 V92

Such a solution is called an instanton centered at 7. They are like solitons, but localized in
Euclidean time rather than space. The action of an instanton is

So = /dt;(dx/dt)Q +V = /dt (dz/dt)? = / dz V2V

—a

zero energy, and

e For large times, when x approaches a, the equation of motion is

dx

— =w(la—=

5 —wla—1)

which is exponential decay, so instantons have size on the order of 1/w. Then in the 7' — oo
limit, we must account for multi-instanton solutions, where the instanton separation is O(T),
since they are approximate solutions to the equation of motion.

e Consider a solution with n widely separated instantons, centered at t1,...,t,, with
T/2>t >...>ty >-T/2.

The action of this solution is nSy. The functional determinant is

N det(—8% + V(@) V2 = | ZewT/2gn
T
where the factor K accounts for how each instanton modifies the functional determinant. We
may multiply by K™ because the effect of each instanton on the spectrum of fluctuations is
localized about each one, and they are widely separated.
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e Integrating over the instanton locations gives a factor of T /n!, so we have

—Som\n
—HT| \ _ [¥W _—uT/2 (Ke™>T)
(ale la) = ,/ﬂ_e g -
neven
and carrying out the sums gives

<:]ZCL’€_HT|CL> — \/EG—UJT/Q eXp(Ke_SOT) :FQexp(_Ke—SoT)
™

e Thus, we have two low-lying energy eigenstates, with energies

1
EL = §w:|:Ke_SO.

These are the two expected energy eigenstates, consisting of even and odd combinations of the
ground states of the two wells; the degeneracy is broken by barrier tunneling. Unlike the WKB
approximation, the path integral allows us to calculate the preexponential factor K, and if we
worked to more accuracy, we could find higher-order corrections.

e Above, we have assumed we were working with an ‘instanton gas’, i.e. that the instantons were
too widely separated to affect each other. To check self-consistency, note that the largest term
in the series ) 2"/n! comes when z ~ n, so

n~ KTe %,
If the instanton has characteristic size §7, we require
(67)Ke ™0 <« 1.
On dimensional grounds K ~ 1/§7, so we just need Sy > h, which we’ve already assumed.
e To compute the value of K more carefully, formally we would have

| det(—02 + w?) 1/2
| det(—02 4+ V(7))

However, this is not well-defined because the functional determinant in the denominator has a

zero eigenvalue. This zero mode results because the instanton breaks time translation invariance.
. o o172

Explicitly, it is x1 = S, ' “dz/dt.

e Making the zero mode into a collective coordinate and evaluating its contribution explicitly,
G\ 1/2
- (3)
27

where the prime denotes exclusion of the zero mode. The remaining determinants can be
computed using standard methods.

det(—92 + w?) 1/2
det/(—02 + V"(x))

Example. Consider a periodic potential with minima at the integers. By similar reasoning,

o ) w\1/2 _ 1 B _
(rle ™jo) = (;) e wT/QZﬁ(Ke RS A S

n,n
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where n is the number of instantons and n’ is the number of anti-instantons. Using the identity
2w ei&(afb)

dab = df
b 0 2
we have ) )
1/2 TdO ...
Gole 8T = (8> e_“’T/Z/ — ¢lU==3+)% exp (2KT cos fe™°)..
s o 2m

Then the Hamiltonian is diagonalized by states of the form |0) where
g 1
(0]7) = €% E(0) = 3w +2Ke %0 cos .

These |6) states are analogous to the “6-vacua” we will encounter in gauge theories.

Example. Decay from a metastable vacuum. We consider a local minimum at x = a with V(a) =0
and wish to compute the rate of decay. Naively, the instanton solutions Z(7) are bounces, and we
can sum over any number of bounces, giving the answer

—So n
(a\e_HT]b> _ /fe—wT/Q Z W — /fe—wT/Z exp (K€_SOT)
™ : s
det(—02 + w?)

where as before,
1/2
27 det’ (=02 + V" (7))

We expect the amplitude to decay exponentially, or equivalently for the state in the well to have a

1/2

complex energy. Hence taking the logarithm, at large times we have

1
Ey = §w — Ke™ %,

We get the desired imaginary part because there is a mode with a negative eigenvalue, which renders
K imaginary. To see this, note that the equation for the eigenfunctions x, has the form of the
Schrodinger equation, and hence the mode with lowest eigenvalue should have no nodes. However,
since the instanton solution bounces, the zero mode has one node, and hence there is one lower
mode. This implies that the instanton solution is merely a saddle, not a minimum, of the potential.

To understand this, suppose the ‘bounce’ occurs at x = b, and consider the family of solutions
that bounce at x = ¢. Then Sg(c) has a local minimum at ¢ = 0, corresponding to the trivial
solution, and an extremum at ¢ = b corresponding to the instanton; hence it must be a maximum.

The reason that the bounce can be a local minimum of the barrier penetration integral B but not
a local minimum of Sg is that they have different boundary conditions. In our earlier calculations,
both were restricted over paths that went from one minimum to the other. But in this case, we're
just going from one minimum back to itself, and B has the additional constraint that the paths
must bounce at x = ¢. (However, note that we must always consider minima of B, since otherwise
our approximation will give a completely wrong result.)

Sk
A Imec

N // /b\‘\ ) (

» Rec
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To integrate over this mode, we must essentially perform the integral

J— /°° de_ st
oo V2T

This integral seems to diverge. To get a sensible result, we deform the contour as shown above,

which gives a finite result. In the semiclassical limit, the only contribution to the integral comes
from the vertical region near ¢ = b, where we may apply the steepest descent approximation to get

tmJ = Je 505" ()2

where the factor of 1/2 is because we only have half of the Gaussian peak; this is the factor of 1/2
we anticipated on intuitive grounds earlier. Hence

K:Z<SO>1/2
2\ 27

So det(—02 + w?)
2 ) |det/ (=02 + V" (T))

det(—02 + w?) 1/2

det'(—02 + V"(z))

and the decay rate is

1/2
—So

= 2ImFEy = (

Note. The ideas above generalize directly to field theory. For the instantons to have finite B, the
deviation of the fields from their initial value must be localized in space as well as time, resulting
in additional zero modes; integrating over them gives a factor of the volume of the space. There
will also be additional UV divergences that must be renormalized.

It’s subtle why tunneling should be permitted in field theory at all. Naively, there are infinitely
many degrees of freedom that all have to tunnel at once, giving an infinite suppression; this is
exactly why spontaneous symmetry breaking is possible in quantum field theory but not in quantum
mechanics. The first caveat is that in d = 1 + 1, the tunneling can occur by the formation and
separation of domain walls, which incurs a finite cost; this corresponds to the Mermin—Wagner
theorem. The second is gauge symmetry, which allows instantons to tunnel between vacua while
being locally gauge-equivalent to zero on almost all of space, avoiding an infinite energy cost.

Note. The above formalism, based on analytic continuation to a Euclidean potential, is almost
universally used in quantum field theory, but physically opaque. The instanton trajectories we sum
over in Euclidean time bear no resemblance to the tunneling events occurring in physical time. (As
they say, “you can’t eat an instanton”.) For a more physical approach based on the Minkowski path
integral, see this paper and this paper.

15.2 Yang-Mills Vacua
We will work primarily in Ag = 0 gauge, and begin with some classical subtleties.
e We use conventions where
F =0,A, —0,A, —ie[A,, A)], D,=0,—ieA,

and normalize generators so that tr(T%T?) = §% /2.


https://arxiv.org/abs/1602.01102
https://arxiv.org/abs/1604.06090
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e In the gauge Ay = 0, the Lagrangian is

1 .
[’:trA?_iter%? Fo; = A;.

The dynamical variables are the A;, and the conjugate momenta are
IV = 7Y,
Note that we are working in the non-abelian case, but we suppress group indices.
e The classical equations of motion are
D, F" =0,

By comparison, if we had not fixed the gauge, it would have been D, F*” = 0. Hence we are
missing the Gauss’s law constraint

C(x) = D,F"(x) = D;TV (x) = 0.
However, the equations of motion do imply C'(x) = 0.

e Physically, we have the freedom to make time-independent gauge transformations. If we view
them as genuine symmetries, then they yield conserved charges, which correspond to the
conservation of C'(x). Specifically, for a gauge transformation generated by A(x) which vanishes
at spatial infinity, the Noether charge is

Ch = 2/dx tr D;A(x)TF (x) = —Q/dx tr A(x) D;T (x) = —2/dx tr A(x)C(x).
By Noether’s theorem, Cy is conserved for any A(x), so C'(x) is. Hence we can just restrict to
configurations where C'(x) = 0.
e The Lagrangian is in the standard 7' — V form with quadratic kinetic energy, so going to

Fuclidean signature is straightforward, with

1
Lp = tr(044;)% + St Fl, wa=r.

Conventionally, we take 0123 — (123 — (1234 _ 1

e Finally, we may include a field A4(z) which acts as a Lagrange multiplier that enforces Gauss’s
Law, in which case the Euclidean Lagrangian becomes

1
Lp= 5urF,?S, rs € {1,2,3,4}

along with the boundary conditions Fj; = 0 on the temporal boundaries. This procedure, of
first eliminating Ay, then rotating to Euclidean spacetime, then introducing Ay, is a bit longer
than the naive approach but avoids some subtleties.

In Ay = 0 gauge, there are topologically distinct vacua.
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Vacuum configurations have F),,, = 0, which implies in our gauge that
v
A;j=-G719;G
Y
where G(x) is an element of the gauge group, which we take to be SU(2).

We assume that G tends to a constant Go, as r — 00, to be justified later, giving a map
S3 — SU(2). The homotopy classes of such maps are classified by m3(SU(2)) = Z.

To see why homotopy classes are relevant, we need to distinguish between ‘large’ and ‘small’
gauge transformations. Gauge transformations map G(x) to A(x)G(x). A small gauge transfor-
mation is one that can be built from a series of infinitesimal gauge transformations, with gauge
functions A(x) that vanish at spatial infinity. Large gauge transformations instead connect
vacua in different homotopy classes.

Physically, small gauge transformations must be ‘do nothing’ transformations, but it is ambigu-
ous whether large gauge transformations are; this is a choice that affects the theory. For our
purposes, it won’t matter; we’ll choose them to not be ‘do nothing’ transformations for clarity.

We can explicitly compute the homotopy class by the integral

1

NGl =51z

6ijk/dx trGflaiGG”E)jGG*l@kG

which is normalized so that if G is taken to be in the fundamental representation of SU(2),
with T, = 0,/2, then N[G] is the usual winding number. In the case of gauge group SU(2)
only, it is also the Brouwer degree of the mapping G.

To see this, note that near a point where G is equal to Gy,
G(x) = Goexp(iogAy(x)) = Go(I 4 iogA\y(x)).
Plugging this in, we find the spatial integral of
1
2472 1272

However, this is precisely the Jacobian factor for the transformation from the spatial coordinates

€ tr(040p00)0iNa0jApOp A = TR e D Ny 0 Ay A = le_zﬁijkaiAlajAZ&cA&

x; to the group coordinates A,, and 272 is simply the area of S3.
An example of a configuration with unit winding number is
g1(x) = exp(itqoaf(r))
where f(r) is any monotonic function with f(0) = —7 and f(c0) = 0.
Next, we have the useful identity
N[G1G3] = N[G1] + N[G2].

Here the error term is

1 ..

@ewk / dx tr (G710;G10;G2G3 20, GoGy t + 0,G2G5 ' G 19;G1 G 0kGh)

and it can be shown to vanish using the product rule, the antisymmetry of €%, and the fact
that the G; tend to a constant at infinity.
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e Also note that for an infinitesimal gauge transformation, the winding number is the integral of

1 1 ..
ﬁwk@i/\laﬂ\za}c/\s = ﬁfl]kai(AlajAQ&cAS)
which is a total derivative, so the winding number is zero. Hence N[G] is invariant under

continuous deformations/small gauge transformations.

e Next, we define the current

2 2% 2 2i
o= I eweo gy (A,,apAg - ;)gAl,ApA(,) = %EWW tr (AVF,M - ;gAuApAo> :

872 72

The current is not gauge invariant, but it has a gauge-invariant divergence,

2

. ] ] 1 v,
5" = #tr Fu PP, W = ST E,,.

To verify this equation, note that the term quartic in A, on the right-hand side drops out by

contraction with the Levi-Civita symbol.

e The charge associated with this current is

o0 _ g ik 2ig
Qa= /deA = @ dx 7" tr Aiij + ?AzA]Ak .

Therefore, for a vacuum configuration we have
Qa = N[G].
Next, we consider tunneling between these vacua.

e Consider a sequence of finite energy configurations A,(x,t) interpolating between two vacuum
configurations with winding numbers N; and N,. We have

/ dz 05" = / dx (Joja + 0ijs)

which can be reduced to integrals over the bounding surface, conventionally depicted as a
cylinder. The first term yields Ny — N, while the second is a surface integral over r = oo,
whose only contribution in Ag = 0 gauge is from the A;Fy; term. However, for finite energy
configurations Fp;, must fall off faster than 1/ 32 so A; must fall off faster than 1/ /2 and
hence this term vanishes in the limit » — oo. Thus,

2

AN = lg7r2 /dm trFWFW.

e Note that our derivation above is agnostic over whether t is real or Euclidean time. In the
context of Euclidean time, the most important vacuum tunneling solutions will be instantons.
They connect vacua with N differing by 1, and hence obey

1672
g

/d:c tr FWZ:"’“’ =
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e In the quantum theory, the state can be regarded as a wavefunctional of classical field configu-
rations. The C generate small gauge transformations, and the Gauss’s law constraint means
Cj = 0. Hence the wavefunctional must be constant on classical vacua related by small gauge
transformations, in the same way that a wavefunction with L, = 0 is independent of 8. From
this point on we ignore these states.

e Next, we have vacua |n) related by large gauge transformations, indexed by an integer n. These
are not energy eigenstates, as tunneling between the vacua can occur.

e We define an operator T by
T|n) = |n+1)

and note that by gauge invariant, 7' commutes with the Hamiltonian. Then the energy eigen-
states diagonalize T. They are the 6-vacua,

10) = e n).

The #-vacua cannot evolve into each other, and this property extends to Fock spaces built upon
these vacua. Hence we could simply regard 6 as a constant of nature.

e When we perform the path integral, we must sum over gauge field configurations with all
possible winding numbers. The net effect is that living in |#) is equivalent to ignoring such
configurations, at the cost of adding the term

2

fg ~
A[:: Wter‘yF}j/

to the Lagrangian. This is a total derivative, but has nonperturbative effects.

Note. The conclusions above depend on the gauge we’re choosing. For example, in the axial gauge
A3 = 0, Ag(m,y,o,t) :0, Al(x,0,0,t) = 0, Ao(0,0,0,t) =0

the gauge fixing is complete; there is a one-to-one relationship between F),, and A, and hence
one classical vacuum, where A, = 0. Intuitively, this is because the first condition leaves only
z-independent gauge transformations; the second condition fixes z and leaves only z-independent
and y-independent gauge transformations, and so on, leaving only global gauge transformations.

In this gauge, the winding number of the vacuum is always zero. Instanton configurations still
exist, connecting this vacuum to itself. However, in the surface integral of n,j considered above,
only the sides of the cylinder contribute rather than the caps; the ‘charge’ created by an instanton
flows out to spatial infinity. In this picture, the 6 term is not a consequence of the #-vacuum, but
simply a parameter in the Lagrangian. (This viewpoint also holds in Ay = 0 gauge, so the theta
term would be the sum of a bare, Lagrangian term and the effective term from living in a 6 vacuum.)
The fundamental difference between this gauge and the previous one is that this one counts the
large gauge transformations as ‘do nothing’ transformations. However, the 6 term has the same
consequences in both pictures.

A simple analogy is given by the Lagrangian

1
L= 530’42 — K(1 —cosa).
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For o € R, it describes a particle of mass B moving in a periodic potential, and the energy eigenstates
are the analogues of the 6-vacua. However, we can also regard « as an angle, in which case the
Lagrangian describes a pendulum with moment of inertia B. The analogue of the 6 term is

0 .

:ﬂa

AL

and appears in either case.

15.3 Yang—Mills Instantons

Next, we take a closer look at the instanton solutions. First, we take a detour into topology.

e We compactify Euclidean spacetime to S* and consider G-bundles over S*. We may cover S*
with two patches, which overlap on the “equator” S3. Here the gauge fields are related by

II i -
Al =UA U - g(apU)U L
We would like to classify all topologically distinct bundles.
e First, we consider the simpler situation of a U(1)-bundle over S?, where
I I_
Ay — Ay = —0pA
on the overlap region. We define

1
L= / d*z P1F,,

where the 2P are coordinates on S2. This quantity is manifestly gauge invariant.
e Next, we claim [ is a topological invariant, i.e. it does not change under a smooth deformation
I I I I II II
A, = AL+ 04, Ay — A) + 604,
In particular, it is continuous from one patch to the next, i.e. on the overlap region
I 41
0A, =04,
Now the integrand is a total derivative, and
50 = - [ Pac5r,, = = [ dray(i5A,) =
1= L 08pg = 50 x Op(e ) =0

since S? has no boundary.

e Similarly, the value of I itself is

1
I = 27r/alQ:UQ,,(equq) :/d2z8pjp.

However, it is incorrect to simply set this to zero, because the current varies from patch to
patch; it is not gauge invariant. Instead, we split it into integrals over the two hemispheres,
yielding two integrals over the equator 3,

1 I 1T 1
=g | dtyena) - A = o /E dl, 19, A
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which is simply the winding number of the map A : ¥ — U(1). Hence we have related I; to the
winding number, a topological invariant of the fibre bundle. The integrand of I; is called the
first Chern class/form and I; itself is called the first Chern number; the Chern class/form is
only locally the derivative of the Chern—Simons 1-form.

e In four dimensions, we have the second Chern number

¢
I, = /d4x P15ty Fpg Frs.

3272

Again, this is a topological invariant, but now we have
SATN = UsATU .
Under a deformation we have

2 2
g 4 g 4
0l = 167‘(2/d ePI™ ¢ qu5Fr8 = @ d*x Pl terqDT(SAS

where the covariant derivative is taken with respect to the unperturbed potential. Now
LTS tr By D0 Ag = P90, (tr Fpgd Ag) — €P18 tr( Dy Fpg)0 A

and the second term vanishes by the Bianchi identity. The first term is gauge invariant, so by
the same argument as before §1, = 0 since S* has no boundary.

e Next, to relate Is to the topology of the bundle, we have shown above that

92

3972 —— "ty Fp  Frg = PJA

The current j% is the Chern—Simons 3-form, and is not gauge invariant. Hence by the same
argument as above, we have

- /E ds, (% — ;)

where ¥ is the ‘equator’ with topology S3.

e An explicit computation shows that

1 .

38 =G4 = ST e UTOUUT O, UUTOU — 50, (tr U 0,UA).
T

The second term, while not gauge invariant, is non-singular everywhere on S3. That is, it can

be computed using only the gauge field on a single patch. Then since S® has no boundary, the

integral of this term vanishes, leaving

1

I
27 un2

e L / ds, tr Uro,UU 10, UU10,U.
¥

As shown above, for G = SU(2) is is simply the winding number that counts the number of
times SU(2) is covered as one goes over Y. Hence the bundles are classified by m3(S%).
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More generally, they are classified by 73(G). Bott’s theorem states that any continuous mapping
from S3 into a simple Lie group G can be continuously deformed into a mapping into an SU(2)
subgroup of G. Hence our analysis holds unchanged for more general gauge groups. For a
general compact Lie group, the U(1) factors don’t matter, while each other factor gives an
independent winding number.

Finally, we return to the tricky business of justifying the boundary conditions.

Mathematically, a gauge transformation is a fiber-preserving automorphism P — P, and a large
gauge transformation is one which is not connected to the identity. In particular, all gauge
transformations preserve transition functions and hence the instanton number. They simply
are basis changes for the fibers, which change the description of the connection.

The transition functions between two patches are sometimes called gauge transformations, but
they are completely different objects; they characterize the structure of the bundle itself and
are fixed prior to the introduction of the connection.

Now, the vacua and instantons were classified in different ways. The vacua are invariant under
spatial gauge transformations; whether or not they are invariant under large spatial gauge
transformations depends on the convention. The instantons, counted by the Chern number,
are invariant under arbitrary continuous deformations of the gauge field, which include gauge
transformations as a subset, as well as under large gauge transformations because the Chern
form is gauge invariant. While instantons correspond to nontrivial fiber bundles over S*, vacua
are all trivial fiber bundles over S°.

In the case of instantons, one can shrink one of the patches to a very small region, which makes
the transition functions singular. Naively, without the machinery of bundles, this looks like a
singularity in the gauge field; one example is the Dirac string for the magnetic monopole.

As we’ll see below, we can write down instanton gauge fields on R?*, but they will always
be singular in at least one point. If this is the point at infinity, the instanton can described
as the ‘winding of the gauge field at long distances’, allowing a sensible description without
bundles. Alternatively, in the bundle language, the winding number of instanton is encoded
in the transition function between this gauge field and a trivial gauge field in a topologically
trivial patch containing the point at infinity.

A more common approach in practice, which we will use below, is to take the gauge field to be
constant at x — oo but singular at # = 0. This is equally valid, and in the bundle language the
winding would be encoded in the transition function between the gauge field in an infinitesimal
patch containing the origin, and a patch containing everything else.

The compactification to S* is a mathematical tool rather than a physical requirement. The
physical content of an instanton is that it is a local minimum of the Euclidean action. Compact-
ification of S* is only necessary to get topologically nontrivial fibre bundles, where the instanton
number is additionally invariant under all continuous deformations, but this requirement has
nothing to do with the physical business of computing tunneling rates: since instantons have
finite sizes, modifying boundary conditions at infinity doesn’t affect the Euclidean action.

Note that there are two definitions of ‘topological’ going on here. Both the Chern and Chern—
Simons forms are topological terms in the sense that they don’t depend on the metric, but
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only the Chern form is invariant under arbitrary deformations of the gauge field. These two
types of terms yield topological information about the spacetime manifold and bundles over it,
respectively. In the special case where the bundle is the tangent bundle, we can use it to get
topological information about the manifold; the Gauss—Bonnet theorem is one example.

e Instantons are sometimes mistakenly called “vacua”. The confusion arises from the fact that
one may take an instanton background and perturb around it to compute subleading corrections,
just like one does for a vacuum.

e It is simple to justify the condition A,(x) — const in the physical gauge, since this is required
by the uniqueness of the vacuum A,(x) = 0.

e The situation is more subtle in Ay = 0 gauge. If we do not take this condition, the quantity
N[G] will not be an integer, intuitively because there is a singular winding ‘near the point at
infinity’. On the other hand, the difference of N[G] for two vacua will always be an integer,
because it’s simply the instanton number. Hence by performing a large gauge transformation
we can always set N[G] to an integer, and instantons will preserve this. Hence we can really
just take A,(x) to be constant without loss of generality.

We now find explicit instanton solutions on R* using the 't Hooft symbols.

e The trick is to use the relation between s0(4) and su(2) @ su(2). Define the matrices

¢, — 1Tp p:1,2,3’ e;r,: -7, p=1,2,3
I p=4 I p=41

where the 7, are the usual Pauli matrices. Then for an SO(4) vector V},, define

Va—iVz =Vp—iVy

:T g ey
V=eVp <V2—iV1 V4+iV3>’ detV =V, V,.

Then V is a unitary matrix times a multiple of the identity. We map the other way by

1
Vp = 3 trVe,.

e Rotations of V), can be implemented on V' by
V U 'VUg, UL, UgeSU2)

where we need Ur/Ug to be unitary to preserve the form of V' and special unitary to preserve
the determinant. Since the transformation Uy, = Ur = —I does nothing, we conclude

SO(4) = (SU(2) x SU(2))/Zs.
e To compute the effect of an infinitesimal transformation, let
UL — e—iwar’ UR — e—in-T.
Then infinitesimally we have

OV =i(wr - 1)V —iV(wg - T).
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e By some messy but direct calculation, we can show this implies
0Vp = (Wi + WiTlhe) Ve
and the numbers n{;q are best written in terms of the matrices
Npg = My Tj = —i(epeg — Opgl), Tpg = ThhgTj = —i(e;,eq — Opgl).

e These matrices are antisymmetric, with the nonzero 771]511 and ﬁ%q fixed by

nzkj = 77?]’ = €ijky My = —Ts = Oik
This implies that 7,, is self-dual and 7, is anti-self-dual,

1 1

Mlpg = 5 Cpars'lrs; Tlpg = 2€pqr8ﬁrs-

Above, we have seen that 77, determines the effect of Uy, while 7,, determines the effect of Ug.
This is because an antisymmetric rank two SO(4) tensor transforms as (1,0) & (0,1) under
SU(2) x SU(2). These two terms each transform trivially under one of the SU(2) factors, and
are self-dual and anti-self-dual.

e Finally, we will use the identities
Npggr = — 20y — 30,1, MpgTlgr = — 20T, — 30,1
Next, we explicitly construct the unit instanton. It is convenient to proceed without gauge fixing.

e We can bound the action by noting that F2, = F2,, so

TS

1 1 ~ 1 ~ 1 - 82
/d4x 5 tr F2 = /d4x 1 tr(F2 + F2) = /d4$ 1 tr(Fps — Frs)? + /d4a: 5 tr FrsFrg > gizk:
where k is the instanton number. The unit instanton has k = 1 and locally minimizes the
action, which means its action is 872/¢? and the field strength is self-dual. In the case of k < 0,

we may flip a sign above to conclude that anti-instantons have anti-self-dual field strength.

e The result above is a Bogomolny bound, and it is useful because imposing self-duality requires
solving only a first-order differential equation, while naively we would have to solve a second-
order differential equation.

o We take the ansatz
Ap = npqxqf(f"Z)
with the corresponding field strength

df
d(z2)’

Foq = 2ngpf + 2(grarp — Uprxrl‘q)f/ - ig[nprnqs]wrmsf2, =

Requiring self-duality imposes constraints on f(z?).
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e By rotational invariance, it suffices to examine the fields along the positive x4 axis, where
Fyj = =20i; f —ignia, njale® >, Fra = =204 f — 2npaz” f'
and the self-equality condition F}; = €;;F}4 reduces to

1 1
r_ 2 - - -
f_ gf7 f g$2+)\2

e Therefore, the unit instanton solution, also called the BPST instanton, is

:} Tlpgxq AjZZ Mgy
P g2 4 A2 P g xZ A

The parameter A\ gives the characteristic size of the instanton; all values of A\ are allowed by the
scale invariance of classical Yang—Mills. The anti-self-dual anti-instanton has the same form,
with 7,4 replaced with 7j,,,. The field strength is

2 A
g (22 + A2)2°

Note that this falls off as 1/2* even though A, falls off as 1/z. This is because the leading
large-distance component of A, is pure gauge.

Fpq =

e Alternatively, by taking a gauge transformations, we have
= 2
g LT
Pooga?(x? 4+ N2)
In terms of bundles over S%, the original gauge field is singular at the point at infinity, while

this gauge field is singular at the origin. Such a singularity is necessary, since the fiber bundle
is nontrivial.

e Yet another way to write the unit instanton is to let

Ty +1X-T 22 ? 1
0= A= (o)) 000

This works because G wraps around SU(2) once in an S® slice at constant |z|. Multiple
instantons can be found by taking powers of G. Finally, one can explicitly transform this to
Ag = 0 gauge, giving explicit tunneling between vacua with different winding.

15.4 Physical Consequences

Finally, we investigate the physical consequence of instantons. First we connect them to anomalies.

e Consider a theory of Ny massless fermions. The U(1)4 symmetry is anomalous by

W Nyg? -
Oujs = 85?2 tr Fpy 1V

We can form a divergenceless current
J5 =5 —2N1jy

where j’; is as defined above; this current is not gauge invariant.
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e In the Ay = 0 gauge, the instanton corresponds to tunneling between vacua of different winding
number; moreover this current vanishes at spatial infinity. Hence we have a conserved charge

Q5:nR—nL—2an

where n is the winding number of the gauge field. Hence a change in winding number must be
accompanied by a change in fermion chirality,

A(ng —np) = 2N;An.

e To understand exactly how this happens, we consider the Dirac equation. The Hamiltonian for
a single particle is

L 0 ol 0
H=—-idDj, o =~"% = <O —o—j>
in a particular representation of the v* matrices. The four-component fermions naturally split
into a pair of two-component Weyl fermions, where

Hp = —io’D;j, H =ioc’D; = —Hp.

e Now we work in the Dirac sea picture. Both Hy, and Hp have both positive and negative energy
eigenstates, and we suppose all the negative energy states are filled. During the tunneling
process, A, is not in a vacuum state, so the fermion spectrum changes; however it must be the
same in both the initial and final states. However, the spectrum can ‘flow’ as shown below.

Here the heavy line is the zero of energy. If the change is slow, the adiabatic theorem holds,
so that the initial Dirac sea turns into a Dirac sea plus a right-chiral particle and a left-chiral
negative energy hole, corresponding to a right-chiral positive energy antiparticle.

e Even if the adiabatic theorem does not hold, the Hamiltonian only couples fermion fields of
the same chirality, so any transitions between states do not affect the change in net chirality.
Similarly, the initial state need not be the vacuum state.

e The fact that the instanton number is generally equal to the number of energy levels that cross
zero can be proven with an index theorem, which we won’t go into here.

e Now consider the physical gauge. In this case, the vacua have been gauge transformed to all
have the same winding number. However the effect of the instanton of course cannot be gauged
away; the spectral flow occurs as before. Then the charge @5 is not conserved, which appears
paradoxical. The resolution is that, as we’ve seen already, the current jf; does not vanish at
spatial infinity in this gauge; instead it yields a finite surface integral.
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e The chirality-violating processes associated with instantons can be represented by a nonlocal
effective Lagrangian density,

Ny
Lo = Ce 518N T (D) @3

s=1

where we must integrate over the positions of the fermion fields, w is a fixed Dirac spinor
transforming under the fundamental representation of the gauge group which depends on the
gauge orientation of the instanton, and C' is obtained from the one-loop corrections to the
instanton. The Hermitian conjugate of this term accounts for the anti-instanton, and one
must also integrate over instanton positions and scales. One may also integrate over gauge
orientations of w to get a gauge-invariant result.

e To solve the U(1) problem of QCD, note that if we define

Ms = (Gryw)(WqLs)
then the anticommutativity of the fermion fields implies

Ny )
H(ast)(EQLs) = Nif‘ det M.

s=1

The chiral transformations of the quark fields are
ar = Urar, ar — Urgr, M — ULMUL

under which det M is not invariant for a U(1)4 transformation. Hence U(1)4 is explicitly
broken when one accounts for instanton effects, and so is not a spontaneously broken symmetry.

e Computing the coefficient C' amounts to evaluating functional determinants as we did for
quantum mechanical tunneling, to find how the action varies as the instanton solution is
deformed. We must also integrate over collective coordinates. The troublesome coordinate is
the instanton size; we find a divergence due to large instantons, where the gauge coupling is
strong. Hence unless we have a natural cutoff on the instanton size, it is difficult to estimate
C. We only know that in QCD, instanton effects are significant.

Note. However, the U(1)4 problem is a bit more confusing when one thinks in terms of #-vacua
instead of Lagrangian terms. The charge associated with U(1)4 generates # translations. Hence
it appears the U(1)4 symmetry is spontaneously broken by the choice of a # vacuum, and hence
should yield a PNBG.

Formally, any explicitly broken symmetry can be thought of as a spontaneously broken symmetry
by enlarging the Hilbert space (i.e. treating the symmetry breaking parameter as a spurion), but it
will not correspond to a physical excitation. The key property that distinguishes U (1) 4 breaking from
the genuine spontaneous rotational symmetry breaking of a ferromagnet is that the magnetization
M(x) is a local field which can have local excitations, while 6 is a global property of the state, so it
doesn’t make sense to promote it to 6(x). We dwell on this point because often the introduction of
the axion is oversimplified to saying that “axions result from promoting 6 to a field”. As shown in
the notes on the Standard Model, one has to work a bit harder than that!


https://knzhou.github.io/notes/sm.pdf
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Note. A very similar phenomenon occurs in the simpler context of QED with a massless fermion in
d = 2, where we can do the calculations simply and explicitly. In this case, the particles are either
right-movers or left-movers, with the numbers nr and ny separately conserved. The axial charge,
proportional to ng — ny, is violated by the anomaly,

A(ng —np) = /d2$ %EWFW.

To relate this to spectral flow, suppose we adiabatically turn on a constant A! field, and for simplicity
compactify space to length L. The Hamiltonian for a Weyl field is

H = /dxd)T(—ialDa)w, a =~ =45
Splitting this into right-moving and left-moving components,
H— / di (—iv (@ — ieA )y + il (B —ieA' )

The eigenfunctions of the covariant derivative the form e** with k = 27n/L, which implies the
corresponding single-particle eigenstates of H have the energies

Ef =k, —eA', E,=—(k,—eA").

Suppose we shift A' by AA! = 27w /eL. Then spectral flow occurs in exactly the same manner as
we saw above for d = 4, changing nrp — ny, by —2. Correspondingly, we have

/ P S F,, = / dtdz S9yA, = —2
2w ™

as expected. We can understand the spectral flow in a very concrete way: turning on the A; field
corresponds to giving an equal impulse eAA! to each particle. This affects the Dirac sea as follows:

E E

$AE

-]
=

The impulse creates right-moving particles and left-moving antiparticles, violating axial charge
conservation.

This derivation didn’t need instantons: we just postulated a background field configuration,
nonzero over all space. Instantons are necessary to get a nontrivial result if we also require the
fields to vanish quickly at infinity, i.e. they are the only contributions that matter in the infinite
volume limit, where constant field configurations like this one would have infinite action.

Note. As with all anomaly effects, the result depends on the UV regularization. This is because
the spectral flow affects energy levels all the way to positive and negative infinity. For example, if
we had a hard cutoff, then spectral flow would never change the charges; in the above example, for
example, the creation of low-energy right-moving particles would be compensated by the creation
of high-energy right-moving antiparticles. But we cannot just use this regulator because, as we’ve
seen before, it would ultimately lead to an anomaly in the vector current, rendering the theory
inconsistent.
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Next, we investigate baryon number violation.

In the SU(2) x U(1) electroweak theory there are also instantons. The Higgs acquires its usual
vev at infinity but vanishes at the center of the instanton. The Higgs vev hence breaks the
classical scale invariance, by favoring a smaller instanton size. As a result the integration over
instanton size is finite, peaking around A ~ 1/(¢).

Fach electroweak instanton leads to a violation of baryon and lepton number by
AB=AL=3

where the factor of 3 is from the three generations. The effective Lagrangian is nonlocal at the
electroweak scale and hence, at longer distances, one can approximate the terms as local. For
example, an instanton could mediate the scattering process p+mn —p+et + et + 7.

The rate of the associated processes is suppressed by

2
27/.2 2 o302 2
(6 81 /g) e 167~ sin Qw/e ~ 10 161

where we evaluated e at the Z mass, since the typical instanton size is set by the electroweak
scale. The universe contains about 107® protons and has an age of about 10'° years, or 10*°
times a typical strong interaction time of 10723 seconds. Hence baryon number violation by
instantons appears to be completely negligible.

However, one can also travel between different vacua by thermal fluctuations, rather than
quantum tunneling. For every path connecting two vacua in spacetime, there is a point of
highest energy; the minimum of all such maxima determines the thermal fluctuation rate. Such
a solution is called a sphaleron, and it heuristically looks like the “midpoint” of the unit instanton
solution. In particular, it has half-integer winding number. Sphalerons shouldn’t be confused
with instantons: instantons are spacetime configurations that are minima of the Euclidean
action, while sphalerons are spatial configurations that are saddle points of the energy.

Since a sphaleron is a critical point of the potential, it corresponds to a static solution (in
Ap = 0 gauge) of the field equations. Since it is a saddle point, it is unstable, leading to its
name; sphaleron is etymologically related to “slippery”.

The size of the sphaleron is set by the Higgs vev, leading to the estimate
4
Eopp ~ —2 ~ 10GeV
g

where g is the SU(2) gauge coupling. We then estimate I' ~ e~ =on/T though a more accurate
calculation would give T’ ~ e~ Fspn/T where the free energy Fypn accounts for finite temperature
corrections to the effective potential, which change the expectation value of the Higgs field.

More quantitatively, the rate per spacetime volume goes as

- TheFoon/T T < Fyp
T4k T 2 Foyn

where the 7% is by dimensional analysis, and the casework occurs because electroweak symmetry
is unbroken for T' 2 Fypp.
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e In any case, it is clear that at temperatures near or above that of the electroweak phase transition,
baryon number violation can be significant. Depending on the model, this can be an obstacle to
baryogenesis, diluting existing baryon number asymmetry, or the reason for baryogenesis itself.

Next, we discuss the QCD 6 term.

e As we’ve motivated above, the Yang—Mills Lagrangian contains the 6 term

092 - 692 loa
AL = 162 tr £, FM = me“”p tr Fly Flo.

Such a term does not contribute classically but can in quantum mechanics.

e As a simple analogue, consider a particle on a ring, at angular coordinate «, and

1 0
L=-Ba*+ —a.
g o

The conjugate momentum to « is
0
J=Bd&+ —
s
is quantized and takes on integer values, so for J = n,

1 0\°
E,=— —— .
"~ 9B (” 27r>
Hence a total derivative term affects the spectrum, though 6 only matters up to multiples of

2m. For example, when 6§ = 0 or § = 7, the energy levels are doubly degenerate; in both cases
this is a consequence of time reversal symmetry.

e Now add a potential energy K (1 — cosa) where K > 1/B, so we may think of the particle as
a rigid pendulum. In this case, the 8 dependence only comes from tunneling processes, so the
f-dependence of the energy levels is exponentially suppressed.

e As for the physical consequences of the 6 term, we cannot consider the #-dependence of the
vacuum energy, since 6 is fixed. (However, such dependence is important when there is an
axion.) The 6 term also cannot explain observed CP violating processes, such as kaon decay,
because neutron EDM requirements mean € must be extremely small. In fact, no effects of the
f term have ever been observed. This is the strong CP problem.

Finally, we describe the Witten effect.

e The Witten effect links the 6 term to the electric charge of magnetic monopoles. Here we must
distinguish between two senses of the electric charge: the quantity that is coupled to electric
fields which can be measured by their Coulomb tail, and the conserved Noether charge @,
associated with phase rotations.

e Now consider a global U(1) transformation composed with a gauge transformation,

I, = TDL(0/19]), 56 =0

in a theory with gauge coupling e where SU(2) is broken to U(1) by a triplet, and the bold
refers to SU(2) indices.
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e The Noether charge is
an/dxmj-nj

where the conjugate momentum IT7 is

oL :
I = — R0
7 0(0A,)

which implies that when 6 = 0,
eQ,, = /dej&'FJO — /dx (@-(&;.FJO) —&>.DjFﬂ'0).
The field equation DijO = ¢ x D% shows the second term vanishes, so
eQy = /dQSj&)-FJ'O = Qg

where electric charge is defined by the unbroken U(1)) subgroup. Since the Noether charge @,
is conjugate to a periodic value, it is an integer, so the charge is quantized.

e Adding the 6 term changes the conjugate momenta to

. . fe2 .
IV =F° -~ JdMFy,
™

and repeating the steps above, using the Bianchi identity €/ leijl = 0 gives

N Ge? .- ed (eQn

— | 28 Fi0 — JKlG . F,, = - .

Qu= [ @86 P - £ MG By = Q- 5 (“D

e However, the Noether charge remains quantized to integer values. Thus, a monopole with
magnetic charge Qs = 47 /e must have electric charge

0
QE:ne+e—
2T

for some integer n. Note that the result is periodic in € as required.

e This can be understood by looking at the monopole from a distance, where it looks like a point
charge. The Lagrangian is that of ordinary electromagnetism with the additional term

fe?
AL=——E-B
872
so that the abelian Gauss’s law becomes
fe?
V-E—-—V-B=
82 p

where p is a purely electric source, which vanishes for a monopole. Hence magnetic charge must
be accompanied by electric charge.

e This doesn’t contradict the fact that the 6 term does not affect the equations of motion, because
for trivial gauge bundles V - B vanishes identically. It can only be nonzero if the bundle is
nontrivial, in which case the 6 term, which is still a total derivative, cannot be converted to a
vanishing surface integral at infinity; instead we get a contribution at the overlap of the patches.

e Note that the Witten effect is totally independent of instantons; it only relies on there being
a f term in the Lagrangian. This term is thought of as “caused” by instantons for historical
reasons.
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