4 types of interaction ("force") known in Nature

	Relative Strength
Gravitational	10 ⁻³⁹
Weak	10-7
Electromagnetic	10-2
Strong	1

 All interactions are the result of the exchange of virtual field quanta ("Gauge Bosons" – they have to be bosons to conserve angular momentum)

Field Quanta

The Standard Model

	Field Quantum
Gravitational	graviton
Weak	W^{\pm}, Z^0
Electromagnetic	photon
Strong	gluon

All are spin-1 except the graviton which is spin-2

There are 8 gluons e.g. red – anti-blue

Matter

2

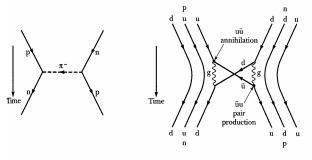
4

- The fundamental particles comprising "ordinary matter" i.e. atoms, are
 - e^{-} u quark d quark $\begin{pmatrix} p = uud \\ n = udd \end{pmatrix}$
- The FIRST GENERATION comprises $\left\{ e^{-}, V_{e}, u, d \right\}$
- The SECOND GENERATION comprises $\left\{ \mu^{-}, \nu_{\mu}, s, c \right\}$
- The THIRD generation comprises
 - $\left\{\tau^{-}, v_{\tau}, b, t,\right\}$

3

1

Generations


• The generations are 'identical' except for the masses of the particles (tabulated in MeV/c²)

up	down	strange	charm	bottom	top
336	338	540	1,500	5,000	174,000

electron	muon	tau
0.511	105.7	1,777

(Colour) Force between nucleons (Yukawa)

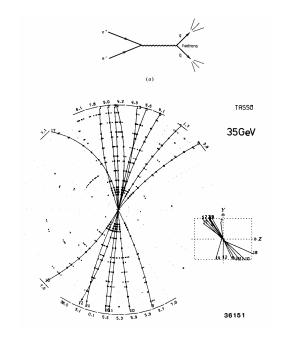
- Yukawa explained the force between nucleons in terms of the exchange of virtual pions
- The same process can be explained in QCD

• Each quark in the proton and neutron constantly emits and absorbs virtual gluons and thereby creates and annihilates virtual

 $q\overline{q}$ pairs (i.e., Mesons)

Serway 15.13

QCD


- According to QCD, quarks and gluons carry 'colour' and experience a 'colour force'
- No isolated quarks or gluons have ever been observed (i.e. you cannot directly observe colour)

(a) A $q\bar{q}$ pair is formed in a highenergy collision and begins to separate. (b) and (c) As the q and \bar{q} move apart, energy is stored in the color field and then creates more $q\bar{q}$ pairs. (d) The many resulting quarks cluster together into color-neutral baryons and mesons, which can separate indefinitely as two "jets" of hadrons. 7

5

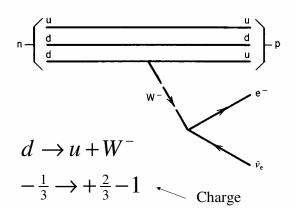
Hadron jets

• Electron-positron annihilation experiments show the hadron jets which result from the quark-anti-quark pairs (DESY – Germany)

8

6

Asymptotic Freedom Confinement


- The force ('coupling') between quarks gets stronger with separation
- Inside a hadron, the quarks behave as more or less free particles
- Gross, Wilczek and Politzer Nobel 2004

The Weak Interaction

- The Weak interaction is mediated by three bosons W^+, W^-, Z^0
- Rubbia and van der Meer Nobel 1984
- Short-range, the bosons are massive
- The Weak interaction governs the stability of particles
- It is responsible for the decay of the *c*, *s*, *b* and *t* quarks into the more stable *u* and *d* quarks
- It is also responsible for the decay of the heavier leptons (μ and τ) into the stable electrons
- Glashow, Salam & Weinberg unified the Weak and EM interactions (Nobel 1979) ¹⁰

The Weak Interaction

• e.g.
$$n \rightarrow p + e^- + \overline{V}_e$$

NB: the leptons are NOT connected DIRECTLY to the quarks

The Standard Model Problems

- Gravity ? Doesn't have the same 'structure' as the other 3 forces
- The values of the Quark and Lepton masses cannot be explained
- Why are there 3 generations of particles ? (everyday matter comprises particles only from generation-1).
- A fraction (1/4) of the matter in the Universe is cold, dark matter which are not SM particles.
- Particles acquire mass through interactions with the Higgs field (Higgs boson). What type of interaction is this ?

9

The Standard Model Problems

- Dark Energy ? The expansion of the Universe is accelerating due to Dark Energy. What is it ?
- 'Inflation' the Universe underwent a rapid expansion in the first fraction of a second after the Big Bang. Cannot be SM physics !
- If the Big Bang were simple a burst of energy the Universe should have evolved with equal parts of matter and antimatter – annihilation – Universe should be energy alone
- {Supersymmetry ? Strings ? Branes ? }
- [Gordon Kane's article in Scientific American Vol 15 (3), 2005
- Also, Chris Quigg's article, April 1985]