Lecture Notes in Assembly Language

Short introduction to low-level programming

Piotr Fulmanski

té6dz, 12 czerwca 2015

Spis tresci

Spis tresci]
1 Before we begin 1
1.1 Simple assembler 1
1.1.1 Excercise 1 e 2
1.1.2 Excercise 2 3

1.1.3 Excercise 3 3

1.1.4 Excercise 4 L)

1.1.5 Excercise 5 6

1.2 Improvements, part I: addressing oL 8
1.2.1 Excercise 6 L 11

1.3 Improvements, part II: indirect addressing 11
1.4 TImprovements, part III: labels 0o 18
1.4.1 Excercise 7: find substring in a string 19

1.4.2 Excercise 8: improved polynomial 0L, 21

1.5 Improvements, part IV: flag register, 23
1.6 Improvements, part V: thestack L. 24
1.6.1 Excercise 12. L 26

1.7 Improvements, part VI — function stack frame 29
1.8 Finall excercises. o 34
1.8.1 Excercise 13 L 34
1.8.2 Excercise 14 L 34
1.8.3 Excercise 15 L. 34
1.8.4 Excercise 16 L 34

iii

iv

2

4 Basic CPU instructions

1.8.5 Excercise 17

First program

2.1 Compiling, linking
2.1.1 Compiler and compiling
2.1.2 Linker and linking
2.1.3 Summary

2.2 32-bit basic stand alone program
2.2.1 Code for NASM
2.2.2 Code for GNU AS
2.2.3 AT&T vs. Intel assembly syntax

2.3 64-bit basic stand alone program
2.3.1 Code for NASM
2.3.2 Code for GNU AS
2.3.3 Excercise 1

2.4 Multiple files

NASM syntax

3.1 Layout of a NASM source line
3.2 Pseudo-instructions
3.2.1 Declaring initialized data
3.2.2 Declaring uninitialized data
3.2.3 Including external binary files
3.2.4 Defining constants
3.2.5 Repeating instructions or data
3.3 Effective addresses
3.4 Constants
3.4.1 Numeric constants
3.4.2 String constants
3.4.3 Floating-point constants
3.4.4 Packed BCD constants

SPIS TRESCI

SPIS TRESCI

4.1

4.2

4.3

4.4

v
Utility instructions o 65
4.1.1 cbhbw ..o 65
4.1.2 cwd ..o 65
Arithmetic instructions Lo 65
421 div . ..o 65
4.2.2 Excercise 1o 67
4.23 add ..o 77
4.24 sub ... 7
425 mul ..o 77
4.2.6 idiv ..o 77
4.2.7 dmul ..o 7
4.2.8 CID . ..o e 77
4.2.9 Inc . ..o 77
4210 dec . . .o 7
Logic instructionso Lo 77
4.3.1 and ..o 7
4.3.2 0T . o e 77
4.3.3 mot . ..o 77
434 XOT . . L e e e e 7
4.3.5 shl . . . oo 77
4.3.6 shr . . . oo 7
4.3.7 test ..o 7
Jump instructions Lo oL 78
4401 Jmp .o 78
4.4.2 call . .. oo 78
443 JZ . . 78
4.4.4 JE . ..o 79
4.4.5 INZ ..o 79
4.46 JNE 79
4.4.7 JA L e 79
4.4.8 JINA . .o 79
4.49 JB .o 79

vi SPIS TRESCI
4.4.10 JNB . . o 79

4411 CMP, TESTand JE 79

4.4.12 LOOP e 80

4413 Jump exampleso 80

4.5 Transfer instructions 88
4.5.1 mov ..ol 88

4.5.2 call . ..o 88

4.5.3 push . . . Lo 88

454 POD - o 88

4.5.5 pusha 88

456 POPA . vt e e e e e 88

4.5.7 xchg . . . 88

5 Debugging with GDB 89
6 First program linked with a C library 91
6.1 32-bit basic program linked with a C library 91
6.1.1 Code for NASM e 91

6.1.2 GCC 32-bit calling conventions in brief 92

6.1.3 Excercise 93

6.2 64-bit basic program linked with a C library 96
6.2.1 Code for NASM 96

6.2.2 GCC 64-bit calling conventions in brief 97

6.2.3 Excercise 2 L 98

6.3 EXCErciSes 104
6.3.1 Excercise 104

6.3.2 Excercise 108

6.3.3 Excercise 110

7 FPU 113
7.1 FPUinternals o 114
7.1.1 FPU Data Registers 114

7.1.2 FPU Addressing Modes 116

SPIS TRESCI vii

7.1.3 FPU stack usage example Lo oo 116

7.2 FPU Status Register 117
7.2.1 Exception Flags 117

7.3 FPU Control Register 119
7.4 FPU Tag Word Register 119
7.5 Examples . .. oL 119
7.5.1 Instructions related to the FPU internals 119
7.5.2 FPU control word usage L o 123
7.5.3 FPU status word usage oo 124
7.5.4 FPUstackoverflow 126

7.6 EXCErcises e 131
7.6.1 EXcercise 131

8 File operations 135
8.1 File operations with Linux system calls. 135
8.1.1 Excercise 140

8.2 File operations with C functions 140
8.3 Command Line Parameters 140
8.4 Auxiliary code 143
8.5 Records e 145
8.6 EXCErCiSes e 145
8.6.1 Excercise 145

9 MMX 147
9.1 Introduction e 147
9.2 Single Instruction, Multiple Data (SIMD) technique 148
9.3 Eight 64-bit wide MMX registers L Lo 149
9.4 New data types« . . 150
9.5 New instructions L e 151
9.5.1 Add packed integers with PADDW 151
9.5.2 Multiply and Add Packed Integers with PMADDWD 152

9.5.3 Compare packed signed integers for greater than with PCMPGTW 152
9.5.4 Pack with signed saturation with PACKSSWB 152

viii

9.6 Examples
9.7 Excercise

9.7.1 Solution s

10 SSE

10.1 Streaming SIMD Extensions
10.2 Exampleo o

10.3 Excercise

11 RDTS — measure what is unmeasurable

11.1 Read time-stamp counter
11.2 Usage of the RDTS
11.2.1 Usageexample
11.2.2 Excercise e

12 Inline assembler

12.1 First fundamental problem
12.2 Second fundamental problem
12.2.1 Global variables
12.2.2 Local variables
12.3 Third fundamental problem

13 Introduction

13.1 Assembly language
13.2 Pre-x86 age — historical background
13.2.1 Intel 4004 L
13.2.2 Intel 8008
13.2.3 Intel 8080

13.2.4 An early x86 age — accidental birth of a standard

13.2.5 Mid-x86 age — conquest of the market
13.2.6 Late-x86 age — stone age devices
13.3 An overview of the x86 architecture
13.3.1 Basic properties of the architecture
13.3.2 Operating modes oo

SPIS TRESCI

SPIS TRESCI ix

14 Registers 213
14.1 General information 213
14.2 Categories of registers L L L e 216
14.3 x86 registers 218

14.3.1 16-bit architecture 218
14.3.2 32-bit architecture L 221
14.3.3 64-bit architecture 222
14.3.4 Miscellaneous/special purpose registers 223

15 Memory 227

15.1 Ttroduction e e e 227
15.1.1 Data representation —endianness 227
15.1.2 Memory segmentation Lo L0 o 227
15.1.3 Addressing mode L 229

15.2 Real mode 230
15.2.1 Addressing modes 232

15.3 Protected mode 233

15.4 Virtual memory Lo e 233

A 777 235

Bibliografia 237

Spis rysunkéw 239

Spis tabel 240

Skorowidz 241

| have no doubt that there are many perfect books and materials about programming in assembler
dedicated for Intel x86 family processors.

Unfortunatelly in my opinion none of them is perfect for didactic purposes. Even with a very good
book sometimes it's hard to prepare systematic and logic sequence of material which can start
from very beginning and finish at advanced topics.

My idea behind this book was not to replace existing assembler books but rather complement

them by creating book which can be used as one semestr introduction to this field. Working on this

X SPIS TRESCI

all the time | had in my mind didactic aim of it. Material presented in this book should be enought
for one semestr of lectures (30 hours) and tutorials (30 hours). The layout of this book is reflected
by main aim. Typically books like this start from instroduction to computer history and overview of
x86 familly architecture. This is good but not to perform classes: if | have lecture about history what

can | do on tutorials? So this is why ,theoretical” chapters are at the end of the book.

1. Lecture and tutorial (4 hours): chapter 1: section 1.1.
2. Lecture and tutorial (4 hours): chapter 1: section 1.2-1.4.
3. Lecture and tutorial (4 hours): chapter 1: section 1.5-1.7.

4. Lecture and tutorial (4 hours): chapter 1: section 1.8, chapter 2, chapter 4.

This book is not a reference book, it is an introductory book. It is therefore not suitable by itself
to learn how to professionally program in x86 assembly language, as some details have been left out
to make the learning process smoother. The point of the book is to help the reader understand how

assembly language works.

ROZDZIAY,

Before we begin

1.1 Simple assembler

Before we start, | think, that it's not bad idea to practise with a very simple assembler on very
simple machine. Proposed assembler differ a little bit from real assemblers but it's main advantage
is simplicity. Based on it, | want to introduce all important concepts.

We use decimal numbers and 5 digit instruction of the following format

operation code
I
XXXXX

I

opernad

The list of instruction is as follow

0 HLT stop the cpu

1 CPA copy value from memory to accumulator, M -> A

2 STO copy value from accumulator to memory, A -> M

3 ADD add value from specified memory cell to accumulator; result is stored
in accumulator, M + A -> A

4 SUB subtract from accumulator value from specified memory cell; result

is stored in accumulator A - M -> A

2 ROZDZIAL 1. BEFORE WE BEGIN

5 MUL multiply value from accumulator by value from specified memory cell;
result is stored in accumulator M * A -> A

6 BRA unconditional branche to instruction located at specified address

7 BRN conditional branche to instruction located at specified address if value
stored in accumulator is negative

8 BRZ conditional branche to instruction located at specified address if value

stored in accumulator is equal to zero

Accumulator is a dedicated memory cell located in CPU. Such dedicated memory cells are also
called register(s). Memory (RAM — random access memory) consist of 10000 cells with numbers
(addresses) from 0 to 9999. A sign-value representation is used to store negative/positive numbers
— when most significante digit is set to 0, the number is positive and negative otherwise (i.e. when
different than 0). All arithmetic instructions works on signed numbers. Instruction number 9 is reserved

for future extensions.

1.1.1 Excercise 1

Write a program to calculate sum of numbers located in address 6, 7 and 8; result store in address

9.

Address Value

0006 20
0007 30
0008 40

0009 result

Solution 1.1

Address Value Instruction Comment

0010 10006 CPA 6 ; A=20

0011 30007 ADD 7 ; A=20+30
0012 30008 ADD 8 ; A=20+30+40
0013 20009 STO 9

0014 00000 HLT

1.1. SIMPLE ASSEMBLER

1.1.2 Excercise 2

Write a program to calculate for given x a value of polynomial P

P(z)=ax+b
Address Value
0004 result
0005 X =2
0006 a=3
0007 b=4
Solution 2.1
Address Value Instruction Comment
0010 10006 CPA 6 ; A=3
0011 50005 MUL 5 ; A=3%2
0012 30007 ADD 7 s A=3%2+4
0013 20004 STO 4 ; Copy A to address 4
0014 00000 HLT ; Stop

1.1.3 Excercise 3
Write a program to calculate for given = a value of polynomial P
P(z) = ax® + b + cx +d

Address Value
0004 result

0005 X

2
0006 a-=

3
0007 b=4
0008 c=5

6

0009 d =

Solution 3.1

Address Value Instruction Comment

0010 10005
0011 50005
0012 50005
0013 50006
0014 20004
0015 10005
0016 50005
0017 50007
0018 30004
0019 20004
0020 10005
0021 50008
0022 30004
0023 20004
0024 10009
0025 30004
0026 20004
0027 00000
Solution 3.2

Address Value

0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020

10005
50005
50005
50006
20100
10005
50005
50007
20101
10005
50008

CPA
MUL
MUL
MUL
STO
CPA
MUL
MUL
ADD
STO
CPA
MUL
ADD
STO
CPA
ADD
STO

HLT

Instruction

CPA
MUL
MUL
MUL
STO
CPA
MUL
MUL
STO
CPA
MUL

b O b b 00 0 b N O OO O O O

ROZDZIAL 1.

; Copy x to accumulator (A=x)
; Multiply A by x, A=x"2

; Multiply A by x, A=x"3

; Multiply A by a, A=x"3*a

; Copy A to address 4 result
; Copy x to accumulator (A=x)
; Multiply A by x, A=x"2

; Multiply A by b, A=x"2x%b

; Add to A value from result
; Copy A to address 4 result
; Copy x to accumulator (A=x)
; Multiply A by c, A=xx*c

; Add to A value from address
; Copy A to address 4 result
; Copy d to accumulator (A=x)
; Add to A value from address
; Copy A to address 4 result

; Stop

Comment

; Copy x to accumulator (A=x)
; Multiply A by x, A=x"2

; Multiply A by x, A=x"3

; Multiply A by a, A=x"3*a

; Copy A to address 100

; Copy x to accumulator (A=x)
; Multiply A by x, A=x"2

; Multiply A by b, A=x"2xDb

; Copy A to address 101

; Copy x to accumulator (A=x)

; Multiply A by c, A=x*c

BEFORE WE BEGIN

4 result

4 result

1.1.

0021 20112
0022 10009
0023 30100
0024 30111
0025 30112
0026 20004
0027 00000
Solution 3.3

Address Value

0010
0011
0012
0013
0014
0015
0016
0017
0018

1.1.4 Excercise 4

10006
50005
30007
50005
30008
50005
30009
20004
00000

SIMPLE ASSEMBLER

STO
CPA
ADD
ADD
ADD
STO
HLT

Instruction

CPA
MUL
ADD
MUL
ADD
MUL
ADD
STO
HLT

102

100
101
102

L © o (0] (¢} ~ o

; Copy A to address 102

; Copy d to accumulator (A=d)

; Add x"3*a to accumulator (A=x"3*a+d)

; Add x"2%b to accumulator (A=x"3*a+x”~2*b+d)

; Add x*c to accumulator (A=x"3*a+x~2%b+x*c+d)
; Copy A to address 4 result

; Stop

Comment

; A=a

; A=ax

; A=ax + b

; A=(ax + b)x

; A=(ax+b)x+c

; A=((ax+b)x+c)x

; A=((ax+b)x+c)x+d

; Copy A to address 4 result

; Stop

Calculate a®, where a — integer number, b — integer nonnegative number.

Address Value

0001 a
0002 b
Solution 4.1

Address Value

0001
0002
0003

XXXXX
XXXXX

00001

Instruction Comment

a

b
1

’

Iterator

0004 XXXXX
0005 10003
0006 20004
0007 10002
0008 80015
0009 40003
0010 20002
0011 10004
0012 50001
0013 20004
0014 10002
0014 80007
0015 00000
Solution 4.2

Address Value
0001 XXXXX
0002 XXXXX
0003 00001
0004 00001
0005 10002
0006 80013
0007 40003
0008 20002
0009 10004
0010 50001
0011 20004
0012 60005
0013 00000

1.1.5 Excercise 5

result

CPA
STO
CPA
BRZ
SUB
STO
CPA
MUL
STO
CPA
BRZ
HLT

Instruction

a

b
1

=N W

N NN

result

CPA
BRZ
SUB
STO
CPA
MUL
STO
BRA
HLT

ROZDZIAL 1. BEFORE WE BEGIN

; Copy 1 to A

; Copy A to result

; Copy b to A

; Jump to 15 if A=b is zero
; Subtract 1 from A=b

; Copy A to b (A=b-1)

; Copy result to A

; Multiply A=result by a
; Copy A to result

; Copy b to A

; Jump to 7 if A=b < O

; Stop

Comment

; Iterator

; Copy b to A

; Jump if b<O

; Subtract iterator from b

; Save iterator

; Copy result to A

; Multiply A by a

; Save as result

; End loop - jump to the begining of the loop

; Stop

Calculate ¢, where a is nonnegative and b > 0.

1.1.

Address Value

0001
0002

a

b

SIMPLE ASSEMBLER

Integer part of division is stored at address 0003, fractional part at address 0004.

Solution 5.1

Address Value

0001
0002
0003
0004

0005

0006
0007
0008
0009

0010
0011
0012

0013

0014

0015
0016

XXXXX
XXXXX
0

XXXXX

00001

10001
40002
10002
20001

10003
30005
20003

60010

10001

20004
00000

Instruction Comment

a

b

result (integer part)

result (fractional part)

CPA
SUB
BRN
STO

CPA
ADD
STO

BRA

CPA

STO
HLT

16

; Constant value for counter

; Main part
; Copy a to A

; Subtract b

If A is negative than go to the end

; Copy a-b to a

Increment integer part

; Copy integer part to A

; Add constant 1 to A

; Save incremented integer part
; End increment

; Go to the begining of the loop

; Copy a to A
; Copy A=a to fractional part

; Stop

8 ROZDZIAL 1. BEFORE WE BEGIN

1.2 Improvements, part |: addressing

Studying the last excercise one can draw the following conclusion

e Instruction list missed instruction to increment or decrement given value. Without this, instead

of one instruction, three have to be used, sequence like

CPA X ; X - address of the value to increment
ADD Y ; add value from address Y (very often simply equal to 1)

STO X ; store X incremented by Y
That's why it's good to extend instruction list with two instructions

Ol1xxx INC address

02xxx DEC address

In this case we intentionaly avoid the number 9 as the first digit in the code (having in mind
that 9 was reserved for extensions) to get more handy ,pattern” for instructon numbering —

see next part of this chapter.

e Addressing mode used so far is a type of direct addressing e.g addressing which uses operand

as a value of memory address where actual argument is stored

+-code for ADD

|
| +-operand (0123)

|| Address Value
30123 | |
| (0122) | |
fmmmmm e > (0123) | 00035 |
(0124) | I

In the example above instruction ADD adds value (35) from the addres 0123. In other words,
operand points to memory cell and to execute this type of instruction two memory access are

needed: one to get instruction and second to get value.

1.2. IMPROVEMENTS, PART I: ADDRESSING 9

There are situation when it is useful to treat operand not as memory address but as value. For

example, when we want to add 5 to value in accumulator, instead of

ADD 35 ; we assume that value 5 is stored at address 35

more intuitive is to write

ADD 5 ; 5 is not an address but value

The question is:

— How to distinguish between these two variants?

— When operand treat as address and when as value?

To do this the following convention is used. Notation

inst number

means: executing instruction inst as a value (argument) use number taken from the address

number, while notation

inst (number)

means: executing instruction inst as a value (argument) use number number.

This leads to the second type of addressing — addressing when value is " in" instruction and is

accessible immediately after instruction read — so called immediate addressing.

+-code for ADD

|

| +-operand (0123) - value of the argument
I

I

30123

Introducing this type of addressing entails new codes for instruction because computers like

humans have to distinguisg variants of addressing

10

ROZDZIAL 1. BEFORE WE BEGIN

Direct addressing Immediate addressing

Human ADD 35 ADD (5)

Computer 30035 92305

9xxxx - to indicate extension of basic instruction set

x2xxx - addressing mode (2 for immediate, 1 byte length)

xx3xx - code for addition in basic instructions set

xxxx5b - immediate value - notice that this value is stored "in" instruction

Notice that value 5 is stored "in" instruction and there is no need of the next memory access
— it means that this type of instruction is faster. Unfortunately there is a problem: what about

instruction like

ADD (128)

It is not possible to squeeze value 128 and put "into” instruction like in case of value 5. The
solution for this is to put another code for addition which assumes that value of the argument

is put just after instruction, like in the following example

address value
X 93300 - add

x + 1 00128 - value for add of code 9230

9xxxxX - to indicate extension of basic instruction set
x3xxx - addressing mode (3 for immediate, 2 byte length)

xx3xx — code for addition in basic instructions set

This is in some sens a mixture of direct and immediate addresing: we have two memory access
(one for instruction and the second to get value) but argument is always located next to
instruction (after instruction) — we could say that we immediately know where the argument

is.

1.3. IMPROVEMENTS, PART II: INDIRECT ADDRESSING 11

1.2.1 Excercise 6

Calculate the dot product (sometimes scalar product or inner product) of two vectors of length 10.

Solution 6.1

You can try to find a solution but it seems to be unsolvable.

1.3 Improvements, part Il: indirect addressing

e This problem seems to be unsolvable without concept of memory indirect addressing. Notation

inst addr

means: executing instruction inst as an address of the argument use addr, while notation

inst [addr]

means: executing instruction inst as an address of the argument use value taken from the

address addr.

+-code for ADD [x]
|

->——+

+->-- finally: ADD [6] and it adds 123

| +-operand (6) —-->--+

| | Address
94306

| (0005)

+m————- > (0006)

(0007)

(0009)

Value

00009

00123

to acumulator

<-—+

9xxxx — to indicate extension of basic instruction set

x4xxx - addressing mode (4 for indirect)

12

ROZDZIAL 1. BEFORE WE BEGIN

xx3xx - code for addition in basic instructions set

We can think about [] "operator” as an substitution: having instruction inst [addr] take

value from the address addr, name it val, substitute [addr] by val and finally execute

instruction inst val.

Notice that in instruction set defined so far we have a mixture of addressing. For example ADD

xyz uses direct addressing (we add to the value stored in the accumulator value taken from address

xyz). On the other hand STO abc means: save value from accumulator at address abc. In this case

immediate addressing is used — destination address is known just after instruction is read and there

is no need for next memory access (like for ADD).

Taking into account all of the above an extension of the instruction set could be defined as follow

Instruction set is not correct!!!

General

00000 HLT stop the cpu

Direct

900xx
909xx
1xxxx
902xx

3XXXX

4xxXXX

bxxxx

906xx
907xx

908xx

(one-byte)

INC
DEC
CPA
STO
ADD

SUB

MUL

BRA

BRN

BRZ

increment value in memory at specified address

decrement value in memory at specified address

copy value from memory to accumulator, M -> A

copy value from accumulator to memory, A -> M

add value from specified memory cell to accumulator; result is stored
in accumulator, M + A -> A

subtract from accumulator value from specified memory cell; result

is stored in accumulator A - M -> A

multiply value from accumulator by value from specified memory cell;
result is stored in accumulator M * A -> A

unconditional branche to instruction located at specified address
conditional branche to instruction located at specified address if value
stored in accumulator is negative

conditional branche to instruction located at specified address if value

stored in accumulator is equal to zero

1.3. IMPROVEMENTS, PART II: INDIRECT ADDRESSING 13

Direct (two-byte)

91000 xxxxx INC

91900 xxxxx DEC

91100 xxxxx CPA

91200 xxxxx STO

91300 xxxxx ADD

91400 xxxxx SUB

91500 xxxxx MUL

91600 xxxxx BRA

91700 xxxxx BRN

91800 xxxxx BRZ

Immediate

O1xxx INC
02xxx DEC
921xx CPA
2xxxx STO
923xx ADD
924xx SUB
92bxx MUL
6xxxx BRA

Txxxx BRN

8xxxx BRZ

Immediate

(one-byte)

increment value in memory at specified address

decrement value in memory at specified address

copy value from accumulator to memory, A -> M

unconditional branche to instruction located at specified address
conditional branche to instruction located at specified address if value
stored in accumulator is negative

conditional branche to instruction located at specified address if value

stored in accumulator is equal to zero

(two-byte)

93000 xxxxx INC

93900 xxxxx DEC

93100 xxxxx CPA

93200 xxxxx STO

14

93300 xxxxx ADD
93400 xxxxx SUB
93500 xxxxx MUL
93600 xxxxx BRA
93700 xxxxx BRN
93800 xxxxx BRZ

Indirect (one-byte)

-- 940xx INC
-- 949xx DEC
941xx CPA
-— 942xx STO
943xx ADD
944xx SUB
945xx MUL
-- 946xx BRA
-- 957xx BRN
-— 948xx BRZ

Indirect (two-byte)

-- 95000 xxxxx INC
-- 95900 xxxxx DEC
95100 xxxxx CPA
-- 95200 xxxxx STO
95300 xxxxx ADD
95400 xxxxx SUB
95500 xxxxx MUL
-- 95600 xxxxx BRA
-- 95700 xxxxx BRN
-- 95800 xxxxx BRZ

ROZDZIAL 1.

BEFORE WE BEGIN

1.3. IMPROVEMENTS, PART II: INDIRECT ADDRESSING 15

Solution 6.2 — second approach (correct)

Address Value Instruction

0001 00010 ; Address of the first component of vector 1
0002 00020 ; Address of the first component of vector 2
0003 00000 ; Result

0004 00010 ; n — length of vector

0010 XXXXX ; First component of vector 1

0019 XXXXX ; Last component of vector 1

0020 XXXXX ; First component of vector 2

0029 XXXXX ; Last component of vector 2

0030 10004 CPA 4

0031 80040 BRZ 40

0032 94101 CPA [1]

0033 94702 MUL [2]

0034 30003 ADD 3

0035 20003 STO 3

0036 92001 INC 1

0037 92002 INC 2

0038 92904 DEC 4

0039 60030 BRA 30

0040 00000 HLT

Solution 6.3 — like second approach but incorrect

Previous solution is correct, but when the code is reallocated into other place in the memory, symbolic
names stays the same, but the binary code changes. In the realocated code in the example below (all

the code was shifted by 100) symbolic names are correct but their addresses are not.

Address Value Instruction

16 ROZDZIAL 1. BEFORE WE BEGIN

0101 address of the first component of vector 1
0102 address of the first component of vector 2
0103 result

0104 n - length of vector

0110 first component of vector 1

0119 last component of vector 1

0120 first component of vector 2

0129 last component of vector 2

0130 CPA 104

0131 BRZ 140

0132 CPA [101]

0133 MUL [102]

0134 ADD 103

0135 STO 103

0136 INC 101

0137 INC 102

0138 DEC 104

0139 BRA 130

0140 HLT

Explanation for this is obvious when binary codes for instructions is used.

Address Value Instruction

0101 00020 address of the first component of vector 1
0102 00030 address of the first component of vector 2
0103 00000 result

0104 00010 n - length of vector

0110 XXXXX first component of vector 1

1.3. IMPROVEMENTS, PART II: INDIRECT ADDRESSING

0119
0120

0129

0130
0131
0132
0133
0134
0135
0136
0137
0138
0139
0140
0141
0142

XXXXX

XXXXX

XXXXX

10014
80052
95100
00101
95500
00102
30103
20103
01101
01102
02104
60130
00000

last component of vector 1

first component of vector 2

last component of vector 2

CPA
BRZ
CPA

MUL

ADD
STO
INC
INC
DEC
BRA

HLT

104
142
[101]

[102]

103
103
101
102
104
130

17

Explanation is as follow: not all instructions are one byte length. That's why simple change in the

code entails "shift” of all instructions. Code

CPA [1]

generates machine code different than

CPA [101]

In the first case we have

Address Value

X

94101

and the second

CPA

Instruction

[1]

18 ROZDZIAL 1. BEFORE WE BEGIN

Address Value Instruction
X 95100 CPA [101]
x+1 00101

1.4 Improvements, part Ill: labels

e Problems with variable length instructions could be solved by the release of the explicit addresses
usage. Instead of them, labels are used to indicate "places” in the memory. With this an

"universal” solution of (1.2.1) could be as follow

Solution 6.4

Label / Value /

Address Instruction Comment
.data O ;start data block at address O
vil: XXXX ;first component of vector 1
XXXX ;last component of vector 1
v2: XXXX ;first component of vector 2
XXXX ;last component of vector 2
a_vl: vl ;address of the first component of vector 1
a_v2: v2 ;address of the first component of vector 2
result: 0 ;result
vec_len: 10 ;n — length of vector
.code 50 ;start code block at address 50
begin: CPA vec_len
BRZ end
CPA [a_v1]
MUL [a_v2]

ADD result

1.4.

IMPROVEMENTS, PART III: LABELS

end:

STO
INC
INC
DEC
BRA
HLT

result
a_vl
a_v2
vec_len

begin

1.4.1 Excercise 7: find substring in a string

Write a program to search substring in a string.

Solution 7.1

.data 1

string: 3211233210

substr:

ptrStr: string

1230

ptrSubStr: substr

isSubStr: O

counter: O

.code 200

begin:

CPA
BRZ
CPA
BRZ
SUB
BRZ

CPA
BRZ

[ptrSubStr]
end
[ptrStr]
end
[ptrSubStr]

equal

counter

begin

3

b

3

I

main

; Take substr[ptrSubStr] element from the substring

If zero than substring is empty (or ended), so go to end
Take string[ptrStr] element from the string

If zero than string is empty (or ended), so go to end
Subtract substr[ptrSubStr] element from substring

If zero than both elements are equal

If not then

If counter is nonzzero then

move string pointer,

19

20

INC
CPA
STO
CPA
STO
BRA

ptrStr
(substr)
ptrSubStr
V)
counter

begin

equal:

INC
INC
INC
BRA

end:

CPA
BRZ
CPA
SUB
STO

ptrStr
ptrSubStr
counter

begin

counter
stop
ptrStr
counter

isSubStr

stop:

HLT

Solution 7.2

ROZDZIAL 1.

; reset substring pointer,
; reset counter
; Move string pointer

; Reset substring pointer

; Reset counter

; Go to the beginning of the loop

; Move string pointer

; Move substring pointer

If counter is nonzero then

set isSubStr to point the beginning of the

substr in a string

This solution is not finished yet.

begin:

CPA
SUB
INC

[a_p]
[a_c]

a_c

BEFORE WE BEGIN

1.4. IMPROVEMENTS, PART III: LABELS

BRZ equal
CPA c_len
BRZ end
DEC c_len
CPA start_p
STO a_p

CPA p_len
STO iter_p
BRA begin

equal:

INC a_p
DEC iter_p
CPA iter_p
BRZ result

BRA begin

result:
CPA [a_c]
SUB p_len

STO znaleziono

end:

HLT

1.4.2 Excercise 8: improved polynomial

Solve the problem from the exercise 1.1.3 using solution from 1.1.4.

Solution 8.1

.data 0
; local variables for main code

coef: A ; coefficient A -- put an exact value here

22

pow:

varX:

coefl: co
powl: P
result:
counter:
;local var

bas:
power:
resT:
.code 20
;main
begin: CPA
STO
CPA
STO
BRA
loop: CPA
MUL
INC
INC

ADD

ROZDZIAL 1. BEFORE WE BEGIN

pA ; power for coef. A —-- put an exact value here

pC
pD

X ; put an exact value as X

ef ; put as value of coef. iterator address of A
ow ; put as value of power iterator address of pA
0

4 ; indicate the number of components

iables for power subprogram

varX ; prepare local data for subprogram

base

[powI]

power

powerStart ; call subprogram

resT ; return from subprogram - we have a result of base”pow
[coefI]

powl

coefl

result

1.5. IMPROVEMENTS, PART IV: FLAG REGISTER 23

STO result
DEC counter

CPA counter

BRN end

BRA begin
end: HLT
;subprogram

powerBegin: CPA (1)

STO resT
powerLoop: CPA power

BRZ powerEnd

DEC power

CPA resT

MUL base

STO resT

BRA powerLoop

powerEnd: BRA loop

1.5 Improvements, part IV: flag register

Consider now a following sequence of instructions we used in previous programs

DEC counter
CPA counter

BRN end

The idea behind this is very simple: decrease variable (an iterator) and if it is negative (or zero if
we use BRZ) then jump somewhere. The strange thing is that after we decrease our counter by DEC
we have to load it into accumulator because jump instructions can work only on values stored in
accumulator.

We can solve this if we take a following agreement: every numerical instruction (INC, DEC, ADD,
SUB, MUL) after execution sets some dedicated memory cells (registers) — called flags — located in

CPU (like accumulator is located in cpu):

24 ROZDZIAL 1. BEFORE WE BEGIN

e ZF: Zero Flag this flag is set to 1 if last instruction’s result is equal to zero, othervise is set to

0,.

e NF: Negative Flag this flag is set to 1 if last instruction’s result is neqative, othervise is set to

0:
Now we can introduce new jump instructions set
e BRNF: if last instruction's result is negative
e BRZF: if last instruction’s result is equal to zero
With this sequence

DEC counter
CPA counter

BRN end
can be substituted by more intuitive sequence

DEC counter

BRNF end

1.6 Improvements, part V: the stack

That's right — we can solve the problem (1.4.2) the way we proposed, but the method used to passing
argument is far from perfection. Better choice is to use some data structure which help us to keep a
correct order of the arguments — this is how we reach the concept of stack.

Generally speaking in computer science, a stack or LIFO (/ast in, first out) is an abstract data

type that serves as a collection of elements, with two principal operations:
e push — adds an element to the collection;
e pop — removes the last element that was added.

The term LIFO stems from the fact that, using these operations, the last element " popped off"
a stack in series of pushes and pops is the first element that was pushed in the sequence. This
is equivalent to the requirement that the push and pop operations occur only at one end of the

structure, referred to as the top of the stack. The nature of the pop and push operations means

1.6. IMPROVEMENTS, PART V: THE STACK 25

that stack elements have a natural order. Elements are removed from the stack in the reverse order
to the order of their addition. Therefore, the lower elements are those that have been on the stack
the longest.

If the stack is full and does not contain enough space to accept an entity to be pushed, the stack
is then considered to be in an overflow state — which results a well known runtime message: Stack
Overflow.

Notice one very important thing: stack in computers growth in direction of lower addresses. It

means that if element y is above x in a stack the address of y is lower than .

higher addresses

99999

XXXXX x <-- base of the stack
xxxxx—-1
XXXXX—2 ..

xxxxx-3 y <-- top of the stack

00000

lower addresses

direction of stack growth
To keep things working we also have to introduce two new registers in our CPU
e BP — to keep information about base of the stack,
e SP — to keep information about top of the stack.

with instruction

PUSH

POP

For example

26

PUSH
PUSH 5
PUSH (5)
POP

POP 5

ROZDZIAL 1. BEFORE WE BEGIN

add an element from accumulator to the stack;

add an element from address 5 to the stack;

add value 5 to the stack;

removes the last element that was added to the stack and
put it into accumulator;

removes the last element that was added to the stack and

put it at address 5.

1.6.1 Excercise 12

Set of examples is not correct Use stack to write a program which adds two arguments and saves

result in a variable.

a: - first number

b: - second number

result: sum of a and b

Solution 12.1 — an introduction: solution without a stack

.data 0
a: 2
b: 5

result: O

.code 10

return:

dodaj:

BRA
HLT

CPA
ADD
STO
BRA

dodaj

result

return

1.6. IMPROVEMENTS, PART V: THE STACK

Solution 12.2 — solution without a stack (incorrect)

Sketch of the second (incorrect) program

numbers: 5 7 8 12
tmp: O

result: 0 O
addrFrom: numbers
addrResult: result

counter: 2

; Some code to call add

add:

CPA [addrFrom]
INC addrFrom
ADD [addrFrom]
STO [addrResult]
INC addrFrom

INC addrResult

Solution 12.3 — solution with a stack (incorrect)

Sketch of the third (incorrect) program

result:

tmp:

PUSH (5)
PUSH (7)
CALL add

POP result

27

28 ROZDZIAL 1. BEFORE WE BEGIN

; Do something with a result

PUSH (8)
PUSH (12)
CALL add

POP result

; Do something with a result

add:
POP

STO tmp
POP

ADD tmp
PUSH

RET

Solution 12.4 — solution with a stack

.data O
a: 2
b: 5

wynik: O

.code 10

start: PUSH wynik
PUSH a
PUSH b
CALL dodaj
POP wynik

HLT

dodaj: CPA [SP + 1]

1.7. IMPROVEMENTS, PART VI - FUNCTION STACK FRAME 29

ADD [SP + 2]
STO [SP + 3]
RET 2

1.7 Improvements, part VI — function stack frame

The solution we found for improved polynomial with a stack (excercise ??) is almost perfect with
the exception of one unsolved problem: how do we know to which address should we return? The
problem is that we assumed that called function knows which function or part of the code was a
caller — in our case, "main” code — and we hardcoded this value in our function. What if we try to
call function from completely different place, for example other function? We return to "main” code
which wouldn’t be correct.

That is why functions (subrutines) are frequently set up with a stack frame to know where to
return and to allow access to both function parameters, and automatic function variables. The idea
behind a stack frame is that each subroutine can act independently of its location on the stack, and
each subroutine can act as if it is the top of the stack. In other words, each subrutine can act as it
would be the only subrutine in a code.

When a function is called, a new stack frame is created at the current SP location. A stack frame
acts like a partition on the stack. All items from previous functions are higher up on the stack, and
should not be modified. Each current function has access to the remainder of the stack, from the
stack frame until the end of the stack page.

So how it works? When we want to call a function we have to perform a following sequence of

instruction

CALL function ; Jump to ’function’ address and push on the stack
; address of the next instruction

XXX ; Next instruction

function:
; Prepare stack to be safely use in our function
PUSH BP ; Save the current value of BP on the stack

; Move SP to BP (set BP as equal to SP)

30

CPA SP ;
STO BP 5

; Exact function code starts

; Do what you want to do

; Restore the stack

ROZDZIAL 1.

Read current top of the stack

BP now points to the top of the stack

; Move BP to SP (set SP as equal to BP)

CPA BP
STO SP
POP BP
RET ;

In the above code we have two new instructions:

Read current base of the stack

SP now points to the top of the stack

BEFORE WE BEGIN

Restore value of BP saved at the beginning

Pop value from the stack and jump to this address

e CALL — push on the stack address of the next instruction following this CALL instruction;

e RET — pop value from the stack and treating it as an address jump to instruction at this address.

Above sequence of instruction results in the following stack changes (we stop at the time when exact

function code starts):

Initial After
stack CALL
BP -> A1 BP -> Al
SP -> A2 A2

SP -> XXX Addr.

After

PUSH BP

BP -> A1l

A2

XXX Addr.
SP -> BP

After move

SP to BP

Al

A2
XXX Addr.

(BP, SP) -> BP

Here is a representation of the stack at the time when exact function code starts:

Frame stack:

higher addresses

1.7. IMPROVEMENTS, PART VI - FUNCTION STACK FRAME 31

Address Value (Meaning)

BP + 1 (return address)

BP (old BP value)

lower addresses

stack growth

When we want to call a function with some arguments and local variables very similar schema is

used.

PUSH ARG_N

PUSH ARG_1
CALL function ; Jump to ’function’ address and push on the stack
; address of the next instruction

XXX ; Next instruction

function:
; Prepare stack to be safely use in our function
PUSH BP ; Save the current value of BP on the stack
; Move SP to BP (set BP as equal to SP)
CPA SP ; Read current top of the stack
STO BP ; BP now points to the top of the stack

; "allocate" space for the M local variables

CPA SP ; Read current SP
SUB M ; Move SP down (allocate space for M variables)
STO SP ; Save SP

; Exact function code starts

32

CPA BP
STO SP
POP BP
RET N

ROZDZIAL 1. BEFORE WE BEGIN

; Do what you want to do

; Restore the stack

; Move BP to SP (set SP as equal to BP)

; Read current base of the stack

; SP now points to the top of the stack

; Restore value of BP saved at the beginning

; Pop value from the stack and jump to this address

; but before the jump the stack is lowered by N

One thing which should be explained is RET N instruction. This instruction pops N elements from the

stack and next jumps to instruction just after CALL. Saying the truth we don't carre about popped

elements so technicaly speaking RET N instruction does not pop N element from the stack but simply

move stack pointer by N to point lower elements — the easiest way to do it is simply subtract from

SP value N.

Generaly speaking we have a following (function) frame on a stack every time we call a function

(at the time when exact function code starts):

Frame stack:

higher addresses

Address

BP

BP

BP

BP
BP

BP

1+1
1
1
1-M

Value (Meaning)

(Nth function argument)

(1st function argument)
(return address)
(old BP value)

(1st local variable)

(Mth local variable)

1.7. IMPROVEMENTS, PART VI - FUNCTION STACK FRAME

lower addresses

stack growth

Solution 12.5 — solution with a stack and frame stack

.data O
a: 2
b: 5

wynik: O

.code 10

start: PUSH wynik
PUSH a
PUSH b
CALL dodaj
POP wynik

HLT

dodaj:
; Init the stack
PUSH BP
CPA SP
STO BP

; Make some computations
CPA [BP + 2]
ADD [BP + 3]
STO [BP + 4]

; Clean the stack
CPA BP
STO SP

34 ROZDZIAL 1. BEFORE WE BEGIN

POP BP

RET 2

1.8 Finall excercises

1.8.1 Excercise 13

Solve once again the problem from the exercise 7?7 using improved stack.

Solution 31.1
1.8.2 Excercise 14

Program porzadkujacy liczby.

Solution 14.1

1.8.3 Excercise 15

Program znajdujacy najmniejsza i najwieksza sposrod 4 liczb.

Solution 15.1

1.8.4 Excercise 16

Write a program to calculate absolute value for given value v.

Address Value
1000 v

1001 result - abs(v)

Solution 16.1

1.8.5 Excercise 17

Find the greates comon divisors of two positive numbers. There are two possible approach to this

problem.

1.8. FINALL EXCERCISES 35

Using prime factorizations Greatest common divisors (nwd) can in principle be computed by
determining the prime factorizations of the two numbers and comparing factors. To compute,
for example, nwd(16, 36), we find the prime factorizations 16 =2-2-2-2 and 36 =2-2-3-3.
Notice that the "intersection” of the two expressions, which is 2 - 3 is nwd(16,36) = 6. In

practice, this method is only feasible for small numbers; computing prime factorizations in

general takes far too long.

Using Euclid’s algorithm A much more efficient method is the Euclidean algorithm, which uses
a division algorithm such as long division in combination with the observation that the nwd of
two numbers also divides their difference. If the arguments are both greater than zero then the

algorithm can be written as follows

nwd(a,a) = a
nwd(a,b) = nwd(a — b,b), if a > b

nwd(a,b) = nwd(a,b —a), if b > a

Solution 17.1

ROZDZIAY,

First program

2.1 Compiling, linking. ..

This section is not correct!!! We postpone detailed discussion about compiling and linking to further
chapters. Now we want to introduce only some basic concepts behind both processes to allow us use

them while we will make our first program.

2.1.1 Compiler and compiling

A compiler is a computer program (or set of programs) that transforms source code written in a
programming language (the source language) into another computer language (the target language,
often having a binary form known as object code).[1] The most common reason for converting a
source code is to create an executable program.

The name "compiler” is primarily used for programs that translate source code from a high-level
programming language to a lower level language (e.g., assembly language or machine code). If the
compiled program can run on a computer whose CPU or operating system is different from the one
on which the compiler runs, the compiler is known as a cross-compiler. More generally, compilers are
a specific type of translators.

Compilation refers to the processing of source code files (.c, .cc, or .cpp) and the creation of
an 'object’ file. This step doesn’t create anything the user can actually run. Instead, the compiler
merely produces the machine language instructions that correspond to the source code file that was
compiled. For instance, if you compile (but don't link) three separate files, you will have three object

files created as output, each with the name jfilename; .o or filename; .obj (the extension will depend

37

38 ROZDZIAL 2. FIRST PROGRAM

on your compiler). Each of these files contains a translation of your source code file into a machine
language file — but you can’t run them yet! You need to turn them into executables your operating

system can use. That's where the linker comes in.

2.1.2 Linker and linking

In computer science, a linker or link editor is a computer program that takes one or more object
files generated by a compiler and combines them into a single executable file, library file, or another
object file.

A simpler version that writes its output directly to memory is called the loader, though loading
is typically considered a separate process.[1]

Linking refers to the creation of a single executable file from multiple object files. In this step, it
is common that the linker will complain about undefined functions (commonly, main itself). During
compilation, if the compiler could not find the definition for a particular function, it would just assume
that the function was defined in another file. If this isn't the case, there's no way the compiler would
know — it doesn’t look at the contents of more than one file at a time. The linker, on the other hand,

may look at multiple files and try to find references for the functions that weren't mentioned.

2.1.3 Summary

To understand linkers, it helps to first understand what happens " under the hood” when you convert
a source file (such as a C or C++ file) into an executable file (an executable file is a file that can be
executed on your machine or someone else’'s machine running the same machine architecture).

Under the hood, when a program is compiled, the compiler converts the source file into object
byte code. This byte code (sometimes called object code) is mnemonic instructions that only your
computer architecture understands. Traditionally, these files have an .OBJ extension.

After the object file is created, the linker comes into play. More often then not, a real program
that does anything useful will need to reference other files. In C, for example, a simple program to
print your name to the screen would consist of:

printf(Hello Christina); When the compiler compiled your program into an obj file, it simply put
a reference to the printf function. The linker resolves this reference. Most programming languages
have a standard library of routines to cover the basic stuff expected from that language. The linker
links your OBJ file with this standard library. The linker can also link your OBJ file with other OBJ

files. You can create other OBJ files that have functions that can be called by another OBJ file. The

2.2. 32-BIT BASIC STAND ALONE PROGRAM 39

linker works, almost like a word processor’s copy and paste. It " copies” out all the necessary functions
your program references and creates a single executable. Sometimes other libraries that are copied
out are dependent on yet other OBJ or library files. Sometimes a linker has to get pretty recursive
to do its job.

Note that not all operating systems create a single executable. Windows, for example, uses DLL's
that keep all these functions together in a single file. This reduces the size of your executable, but
makes your executable dependent on these specific DLLs. DOS used to use things called Overlays
(.OVL files). This had many purposes, but one was to keep commonly used functions together in 1
file (another purpose it served, in case you're wondering, was to be able to fit large programs into
memory. DOS has a limitation in memory and overlays could be "unloaded” from memory and other
overlays could be "loaded” on top of that memory, hence the name, "overlays”). Linux has shared
libraries, which is basically the same idea as DLL's (hard core Linux guys | know would tell me there

are MANY BIG differences).

Hope this helps you understand!

2.2 32-bit basic stand alone program

2.2.1 Code for NASM

../programs/first_program /hello.asm

This program demonstrates basic text output to a screen.
; No "C” library functions are used.

Calls are made to the operating system directly. (int 80 hex)

assemble: nasm —f elf hello.asm
; link: Id hello.o —o hello
run: ./hello
; output is: Hello World

section .data ; Data section

text: db "Hello_ World!", 10 ,; The string to print, 10=LF
len: equ $—text ; "$"” means "here”

len is a value, not an address

40 ROZDZIAL 2. FIRST PROGRAM

section .text ; Code section

global _start ; Make label available to linker
; We must export the entry point to the ELF linker or
; loader. They conventionally recognize _start as their

; entry point. Use Id —e foo to override the default.

_start: ; Standard |Id entry point
mov edx, len ; arg3: length of string to print
mov ecx, text ; arg2: pointer to string
mov ebx, 1 ; argl: where to write, so called file handler

; in this case stdout (screen)

mov eax, 4 ; System call number (sys_write)

int 0x80 ; Interrupt 80 hex, call kernel
o Exit

mov ebx, 0 ; Exit code, O=normal

mov eax, 1 ; System call number (sys_exit)

int 0x80 ; Interrupt 80 hex, call kernel

; End of the code

Verify correctnes of the code by assembling it

nasm —-f elf hello.asm

linking

1d hello.o -o hello

and finally running

./hello

If no errors were raported the result should be as follow

fulmanp@fulmanp-k2:~/assembler$./hello

Hello World!

If you want to know more. .. 2.1 (Making 32-bit code on 64-bit system with NASM). When

you try to make 32-bit program on 64-bit system assemby it as previously

2.2. 32-BIT BASIC STAND ALONE PROGRAM

nasm -f elf hello.asm

but link as

1d —-m elf_i386 hello.o -o hello

Such a program is a 32-bit program, which can be verified by readelf Uniz command

fulmanp@fulmanp-k2:~/assembler$ readelf -h hello
ELF Header:

Magic: 7f 45 4c 46 01 01 01 00 00 OO0 OO OO 00 00 00 0O

Class: ELF32

Data: 2’s complement, little endian
Version: 1 (current)

0S/ABI: UNIX - System V

ABI Version: 0

Type: EXEC (Executable file)
Machine: Intel 80386

Version: 0x1

Entry point address: 0x8048080

Start of program headers: 52 (bytes into file)
Start of section headers: 216 (bytes into file)
Flags: 0x0

Size of this header: 52 (bytes)

Size of program headers: 32 (bytes)

Number of program headers: 2

Size of section headers: 40 (bytes)

Number of section headers: 6

Section header string table index: 3

Presented code, without any changes, can be also assembled as 64-bit program® with

fulmanp@fulmanp-k2:~/assembler$ nasm -f elf64 hello.asm

fulmanp@fulmanp-k2:~/assembler$ 1d hello.o -o hello

*Note that this is not real 64-bit program.

42

ROZDZIAL 2. FIRST PROGRAM

fulmanp@fulmanp-k2:~/assembler$ readelf -h hello

ELF Header:
Magic:
Class:
Data:
Version:
0S/ABI:

ABI Version:

Type:

ELF64

7f 45 4c 46 02 01 01 00 00 00 00O OO 00 00 00 0O

2’s complement, little endian

1 (current)

UNIX -
0

System V

EXEC (Executable file)

Machine:
Version:

Entry point address:

Start of program headers:

Start of section headers:

Advanced Micro Devices X86-64
Ox1

0x4000b0

64 (bytes into file)

264 (bytes into file)

Flags: 0x0

Size of this header: 64 (bytes)
Size of program headers: 56 (bytes)
Number of program headers: 2

Size of section headers: 64 (bytes)
Number of section headers: 6

Section header string table index: 3

If you want to know more...

2.2 (Getting content of assembled file). If you wander abo-

ut content of assembled or linked file you can use xxd Unix command do dump these files in

"readable” format

fulmanp@fulmanp-k2:

0000000: 7£45 4c46

0000010: 0100 0300

0000020: 4000 0000

0000030: 0700 0300

0000040: 0000 0000

0000050: 0000 0000

~/assembler$ xxd hello.o

0101 0100 0000 0000 0000

0100 0000 0000 0000 0000

0000 0000 3400 0000 0000

0000 0000 0000 0000 0000

0000 0000 0000 0000 0000

0000 0000 0000 0000 0000

2.2. 32-BIT BASIC STAND ALONE PROGRAM 43

0000060: 0000 0000 0000 0000 0100 0000 0100 0000
0000070: 0300 0000 0000 0000 6001 0000 0dOO 0000 Caa.
0000080: 0000 0000 0000 0000 0400 0000 0000 0000
0000090: 0700 0000 0100 0000 0600 0000 0000 0000
00000a0: 7001 0000 2200 0000 0000 0000 0000 0000 p..."...........
00000b0: 1000 0000 0000 0000 0d0OO 0000 0300 0000
00000c0: 0000 0000 0000 0000 a001 0000 3100 0000 1...
00000d0: 0000 0000 0000 0000 0100 0000 0000 0000
00000e0: 1700 0000 0200 0000 0000 0000 0000 0000
00000£f0: €001 0000 7000 0000 0500 0000 0600 0000p.v.vvvuvnnn
0000100: 0400 0000 1000 0000 1f00 0000 0300 0000
0000110: 0000 0000 0000 0000 5002 0000 1b0OO 0000 Po.o.....
0000120: 0000 0000 0000 0000 0100 0000 0000 0000
0000130: 2700 0000 0900 0000 0000 0000 0000 0000 ’...............
0000140: 7002 0000 0800 0000 0400 0000 0200 0000 pP.......ovvuuvn..
0000150: 0400 0000 0800 0000 0000 0000 0000 0000
0000160: 4865 6c6c 6£20 576f 726c 6421 0a00 0000 Hello World!....
0000170: baOd 0000 00b9 0000 0000 bbO1 0000 O00b8
0000180: 0400 0000 cd80 bb0OO 0000 00b8 0100 0000
0000190: cd80 0000 0000 0000 0000 0000 0000 0000
00001a0: 002e 6461 7461 002e 7465 7874 002e 7368 ..data..text..sh
00001b0: 7374 7274 6162 002e 7379 6d74 6162 002e strtab..symtab..
00001c0: 7374 7274 6162 002e 7265 6c2e 7465 7874 strtab..rel.text
00001d0: 0000 0000 0000 0000 0000 0000 0000 0000
00001e0: 0000 0000 0000 0000 0000 0000 0000 0000
00001£f0: 0100 0000 0000 0000 0000 0000 0400 fiff
0000200: 0000 0000 0000 0000 0000 0000 0300 0100
0000210: 0000 0000 0000 0000 0000 0000 0300 0200
0000220: 0b0OO 0000 0000 0000 0000 0000 0000 0100
0000230: 1000 0000 0dOO 0000 0000 0000 0000 fi1ff
0000240: 1400 0000 0000 0000 0000 0000 1000 0200

0000250: 0068 656¢c 6¢c6f 2e61 736d 0074 6578 7400 .hello.asm.text.

44 ROZDZIAL 2. FIRST PROGRAM

0000260: 6c65 6e00 5f73 7461 7274 0000 0000 0000 1len._start......
0000270: 0600 0000 0102 0000 0000 0000 0000 0000

Notice that this is not real 64-bit program because you still use 32-bit registers and function call

convention — compare with section 2.3

Knowing that it works, now it's a time to explain why it works. Let’s study the code line by line.

Character ; starts comment which and extend to the end of the line.

e section .data

Start of the data section; mixing data and code is not allowed.

e text: db "Hello World!'", 10
Definition of the text to print ended by newline character(s). In this case we have code for

Linux operating system so we use line feed character (LF, decimal code: 10).

e len: equ $ - text
Definition of the constant value equal to: current address ($) minus address of the first element
of variable text — this should be equal to the length of the text we are going to print. Notice
that len is a value (constant of the compilation), not an address. If you prefer variables replace

this line by 1len dd $-text

e section .text

Start of the code (program) section; mixing data and code is not allowed.

e global _start
Make label available to linker. We must export the entry point to the ELF linker or loader.
They conventionally recognize _start as their entry point. Use 1d -e foo to override the

default.

e _start:

Label; standard 1d entry point.

e mov edx, len (or mov edx, [len] if you prefere variables than constants)

Move (copy, insert, put) to EDX register (RDX) length of the text to print — this would be

'EDX is a 32-bit register while RDX — 64-bit; in the whole book brackets are used to ditinguish 32-bit and
64-bit registers when both are in one sentence.

2.2. 32-BIT BASIC STAND ALONE PROGRAM 45

a third argument of the function we are going to call. In the first case length is a constant,
in the second we take it from variable. Talking about mov notice that copying data from one

memory cell to the other is not allowed

mov [dest], [src] ; this is not allowed

e edx
We deferred discussion about registers untill section 14. Here we have to mention basics about
registers so we could work throught next few sections. Generally speaking now we will use set

of registers whose names are created with the following pattern:

<register_name> ::= <name_prefix><letter><name_suffix>
<letter> ::=A | B| C| D | E

<name_prefix> =R | E

<name_suffix> =X | HI|L

where, for example, correct register names for letter A are

RAX, EAX, AX, AH, AL

In this case we are talking about register A and it's different parts and sizes

6 33 11 00 O
3 21 656 87 O

I I I [I
I I | LAH| | .AL| AH and AL: 8 bits

I I ... AX...| AX: 16 bits
I [...... EAX....... | EAX: 32 bits
[RAX ..o | RAX: 64 bits

e mov ecx, text
Copy to ECX register (RSI) address of the first element of the text — this would be a second

argument of the function we are going to call.

ROZDZIAL 2. FIRST PROGRAM

e mov ebx, 1
Copy to EBX register (RDI) value 1 — this would be a first argument of the function we are

going to call, so called file handler, indicating where to write (in this case stdout i.e. screen).

e mov eax, 4
Copy to EAX register (RAX) value 4 (1). This is a number of Linux function (sys_write)
we are going to call. Notice that these numbers are different for different architectures and

operation systems.

e int 0x80 (syscall)
Interrupt to call system function selected by EAX register (RAX). In this case this is sys_write
function which takes three arguments in registers EBX, ECX and EDX (RDI, RSI and RDX).

32-bit system function takes at most 6 arguments from registers EBX, ECX, EDX, ESI, EDI

and EBP. EAX is used to specify the number of a system function we are going to call.

64-bit system function takes at most 6 arguments from registers RDI, RSI, RDX, R10, R8, R9.
RAX is used to specify the number of a system function. Values in registers RCX and R11 are

destroyed.

More precisely: INT means interrupt, and the number 0x80 is the interrupt number. An interrupt
stransfers” the program flow to whomever is handling that interrupt. In Linux, 0x80 interrupt

handler is the kernel, and is used to make system calls to the kernel by other programs.

The kernel is notified about which system call the program wants to make, by examining the
value in the register EAX. Each system call have different requirements about the use of the
other registers. For example, a value of 1 in EAX means a system call of exit(); in this case

the value in EBX holds the value of the status code for exit ().

e mov ebx, O
Copy to EBX register (RDI) value 0 — this would be a first argument of the function we are
going to call, so called errorlevel, indicating whether program was terminated correctly or not

(0 means that everything was all right and program terminates normally).

e mov eax, 1 Copy to EAX register (RAX) value 1 (60). This is a number of Linux function

(sys_exit) we are going to call to terminate program.

2.2. 32-BIT BASIC STAND ALONE PROGRAM 47
e int 0x80 (syscall)
Interrupt to call system function selected by EAX register (RAX).

Sometimes, especially at the beginning of contact with the assembler, it's good to generate and
examine listfile.
Explain what is list file

For the above code, the content of listfile is generated with command
nasm -1 hello.lst hello.asm

and returns the following output

1 ; This program demonstrates basic text output to
2 ; No "C" library functions are used.

3 ; Calls are made to the operating system directl
4 ;

5 ; assemble: nasm -f elf hello.asm

6 ; link: 1d hello.o -o hello

7 ; run: ./hello

8 ; output is: Hello World!

9

10 section .data ; Data section

11

12 00000000 48656C6CEF20576F72- text db "Hello World!", 10 ; The string to pr
13 00000009 6C64210A

14 len equ $-text ; "$" means "here"

15 ; len is a value, not
16

17 section .text ; Code section

18

19 global _start ; Make label available
20 ; We must export the e
21 ; loader. They convent

22 ; entry point. Use 1d

48

23
24
25
26
27
28
29
30
31
32
33
34
35

00000000
00000006
0000000C
00000012
00000018

0000001A
00000020
00000026

66BA0OD000000
66B9 [00000000]
66BB01000000
66B804000000
CD80

66BB00000000
66B801000000
CD80

_start:

’

b

mov

mov

mov

mov

int

; Exit

mov

mov

int

ROZDZIAL 2. FIRST PROGRAM

edx,len
ecx,text
ebx,1
eax,4

0x80

ebx,0
eax,1

0x80

; End of the code

3

I

Standard 1d entry

arg3: length of stri

; arg2: pointer to str

argl: where to write
System call number (

Interrupt 80 hex, ca

Exit code, O=normal
System call number (

Interrupt 80 hex, ca

Reading this file, we can see that the first column from the left is simply the line number in the listing.

The second column is the relative address, in hex, of where the code will be placed in memory. The

third column is the actual compiled code.

For instance, in code CD80 value CD is the x86 opcode[4] for INT instruction INT imm8; 80 is the

decimal value 80 of interrupt vector number specified by immediate byte.

In code 66BAOD0O00000 Explain this

2.2.2 Code for GNU AS

Now take a look at the same program but written in differend dialect of assebler: GNU Assembler

(also GNU AS or simply GAS).

../programs/first_program /hello.s

/*

This program demonstrates basic text output to a screen.

No

"C" library functions are used.

Calls are made to the operating system directly.

assemble:

link:

run :

output is:

as hello.s —o hello.o

Id hello.o —o hello

./hello
Hello World

(int 80 hex)

2.2. 32-BIT BASIC STAND ALONE PROGRAM 49

.data # Data section
text: .ascii "Hello,World!\n" # The string to print, 10=LF
len = . — text # "." means "here"

len is a value, not an address

.text # code section
.global _start # Make label available to linker
We must export the entry point to the ELF linker or
loader. They conventionally recognize _start as their
entry point. Use Id —e foo to override the default.
_start: # Standard Id entry point
movl $len , %edx # arg3: length of string to print
movl $text, %ecx F# arg2: pointer to string
movl $1, %ebx # argl: where to write, so called file handler in this
case stdout (screen)
movl $4, %eax # System call number (sys_write)
int $0x80 # Interrupt 80 hex, call kernel
Exit
movl $0, %ebx # Exit code, O=normal
movl $1, %eax # System call number (sys_exit)
int $0x80 # Interrupt 80 hex, call kernel

End of the code

The code looks a little bit strange but is equivalent to previously presented NASM version what we

can verify assembling it
as hello.s -o hello.o
linking

1d hello.o -o hello
and finally runing

fulmanp@fulmanp-k2:~/assembler$./hello

Hello World!

50 ROZDZIAL 2. FIRST PROGRAM

If you want to know more. .. 2.3 (Making 32-bit code on 64-bit system with GNU AS). As
for NASM making 32-bit code on 64-bit system with GNU AS requires additional options usage

fulmanp@fulmanp-k2:~/assembler$ as --32 hello.s -o hello.o

fulmanp@fulmanp-k2:~/assembler$ 1d -m elf_i386 hello.o -o hello

fulmanp@fulmanp-k2:~/assembler$ readelf -h hello

ELF Header:

Magic: 7f 45 4c 46 01 01 01 00 00 OO0 00O OO OO 00 00 0O

Class:

Data:
Version:
0S/ABI:

ABTI Version:
Type:
Machine:
Version:

Entry point address:

Start of program headers:

Start of section headers:

ELF32

2’s complement, little endian
1 (current)

UNIX - System V

0

EXEC (Executable file)

Intel 80386

Ox1

0x8048074

52 (bytes into file)

204 (bytes into file)

Flags: 0x0

Size of this header: 52 (bytes)
Size of program headers: 32 (bytes)
Number of program headers: 2

Size of section headers: 40 (bytes)
Number of section headers: 6

Section header string table index: 3

In the previous example the NASM syntax (Intel syntax) was used while now the GNU AS (AT&T
syntax). See next section for more details; now only the most conspicuous differences would be

commented.

e GAS supports two comment styles:

2.2. 32-BIT BASIC STAND ALONE PROGRAM o1

— Multi-line comments. As in C multi-line comments start and end with mirroring slash-

asterisk pairs:

/*
comment

*/

— Single-Line comments. Single line comments have a few different formats varying on which
architecture is being assembled for. For the platforms: i386, x86-64 (and many others)

hash symbol (#)* is used.

In the source code instead of mov instruction movl is used®. It's specific to assemblers with

AT&T syntax. The 1 is a size suffix that tells the compiler that we are working with dwords
(double word = 4 bytes). To change the size, programmer changes the suffix (b, w, I, q for

byte, word, dword, and qword). In NASM syntax instruction size is inferred by the operands..

Register names are prefixed with %.

Constant value/immediate are prefix with $.

Opposite to the Intel syntax the source is on the left, and the destination is on the right.

2.2.3 AT&T vs. Intel assembly syntax

OK, GAS uses the AT&T assembly syntax (which is the UNIX standard) while NASM Intel syntax,

but what does that mean to as?

Register name Register names are prefixed with %. To reference EAX:

AT&T: ‘Yeax

Intel: eax

Source/Destination order In AT&T syntax the source is on the left, and the destination is on

the right — opposite to the Intel syntax. To load EBX with the value in EAX

¥Semicolons is used on: AMD 29K family, ARC, H8/300 family, HPPA,PDP-11, picoJava, Motorola, and
PowerPC; the at sign is used on the ARM platform; a vertical bar is used on 680x0; an exclamation mark on the
Renesas SH platform etc.

$However this example would work also for mov.

52 ROZDZIAL 2. FIRST PROGRAM

AT&T: movl %eax, Y%ebx

Intel: mov ebx, eax

Constant value/immediate value format Constant/immediate values are prefixed with $. To

load EAX with the address of the variable foo

AT&T: movl $foo, Yeax

Intel: mov eax, foo

To load EBX with 1

AT&T: movl $1, %ebx

Intel: mov ebx, 1

Operator size specification The instruction must be specified with one of b, w, or 1 to specify

the width of the destination register as a byte, word or longword (double word).

AT&T: movw %ax, %bx

Intel: mov bx, ax

Referencing memory Here is the canonical format for 32-bit addressing:

AT&T: immed32(basepointer,indexpointer,indexscale)

Intel: [basepointer + indexpointer*indexscale + immed32]
The formula to calculate the address is
immed32 + basepointer + indexpointer * indexscale

We don't have to use all those fields, but we have to use at least one of immed32 or basepointer.

For example

e Addressing a particular variable

AT&T: foo

Intel: [fool

e Addressing what a register points to

2.3. 64-BIT BASIC STAND ALONE PROGRAM

Intel Code AT&T Code
mov eax,l movl $1,%eax
mov ebx,0ffh movl $0xff,\Vebx
int 80h int $0x80
mov ebx, eax movl %eax, %ebx
mov eax, [ecx] movl (%ecx),%eax
mov eax, [ebx+3] movl 3(%ebx),%eax
mov eax, [ebx+20h] movl 0x20(%ebx) ,%eax
add eax, [ebx+ecx*2h] addl (%ebx,%ecx,0x2),%eax
lea eax, [ebx+ecx] leal (%ebx,l%ecx),l%eax
sub eax, [ebx+ecx*4h-20h] subl -0x20(%ebx,%ecx,0x4) ,%eax

Tabela 2.1: Intel vs. AT&T summary.

AT&T: (Y%eax)

Intel: [eax]

e Addressing a variable offset by a value in a register

AT&T: variable(%eax)

Intel: [eax + variable]

e Addressing a value in an array of integers (scaling up by 4)

AT&T: array(,’eax,4)

Intel: [eax*x4 + array]

o Offsets with the immediate value

AT&T: 1(%eax)

Intel: [eax + 1]

93

e Addressing a particular char in an array of 8-character records (EAX holds the number of

the record desired. EBX has the wanted char's offset within the record)

AT&T: array(’ebx,%eax,8)

Intel: [ebx + eax*8 + array]

The table 2.1 summarizes all major differences between Intel and AT&T syntax.

2.3 64-bit basic stand alone program

2.3.1 Code for NASM

54 ROZDZIAL 2. FIRST PROGRAM

Listing 2.1: ../programs/first_program/hello_64.asm

; This program demonstrates basic text output to a screen.
; No "C” library functions are used.

; Calls are made to the operating system directly.

; assemble: nasm —f elf64 hello64.asm

; link : Id hello64.0 —o hello64

;orun: ./hello64

; output is: Hello World

section .data ; Data section

text: db "Hello_World!", 10 ; The string to print, 10=LF
len: equ $—text ; "$" means "here”

; len is a value, not an address

section .text ; Code section

global _start ; Make label available to linker
; We must export the entry point to the ELF linker or
; loader. They conventionally recognize _start as their

; entry point. Use Id —e foo to override the default.

_start: ; Standard Id entry point
mov rdx, len ; arg3: length of string to print
mov rsi, text , arg2: pointer to string
mov rdi, 1 ; argl: where to write, so called file handler

; in this case stdout (screen)

mov rax, 1 ; System call number (sys_write)
syscall ; Call a system function

o Exit
mov rdi, O ; Exit code, O=normal
mov rax, 60 ; System call number (sys_exit)
syscall ; Call a system function

: End of the code

Verify correctnes of the code by assembling it

2.3. 64-BIT BASIC STAND ALONE PROGRAM 95

nasm -f elf64 hello_64.asm -o hello_64.0
linking

1d hello_64.0 -o hello_64

and finally runing

fulmanp@fulmanp-k2:~/assembler$./hello_64

Hello World!

For the explanation of the code, see desciption of the code in section 2.2.

Notice that taking code from section 2.2 and replacing all 32-bit registers with 64-bit equvalents
(e.g. replacing EAX with RAX), and even compiling it as 64-bit program the result we obtain is not
a real 64-bit program. Just as in expert notes 2.1 any of the programs is not truly 64-bit.

2.3.2 Code for GNU AS

2.3.3 Excercise 1

Write 64-bit ,hello word” program with AT&T syntax (GNU AS).

Solution

../programs/first_program /hello_64.s

NOT CORRECT !irirrrrrrrrrrrrrrrirind

; This program demonstrates basic text output to a screen.
No "C” library functions are used.

; Calls are made to the operating system directly. (int 80 hex)

; assemble: nasm —f elf64 hello64.asm
link : Id hello64.0 —o hello64
;orun: ./hello64
output is: Hello World
section .data ; Data section

text: db "Hello,World!", 10 ,; The string to print, 10=LF

56

len: equ $—text

section .text

global _start

_start:
mov
mov

mov

mov

syscall

o Exit
mov
mov

syscall

rdx
rsi

rdi

rax

rdi

rax

; End of the code

1

60

ROZDZIAL 2. FIRST PROGRAM

7

"$" means "here’

len is a value, not an address

Code section

Make label available to linker
We must export the entry point to the ELF linker or
loader. They conventionally recognize _start as their

entry point. Use Id —e foo to override the default.

Standard Id entry point

arg3: length of string to print

arg2: pointer to string

argl: where to write, so called file handler
in this case stdout (screen)

System call number (sys_write)

Call a system function

Exit code, O=normal
System call number (sys_exit)

Call a system function

2.4 Multiple files

Imagine that we want distribute our code acros many files, like this

File 1: routines.asm

os_return:

;some code to return to os

do_something:

;some code to do something

File 2: useRoutines.asm

2.4. MULTIPLE FILES 57

main:
call do_something ; call function from separate file to do something
maybe do something else here

call os_return ; call function from separate file to finish program
We can do this quite naural

../programs/first_program /routines.asm

section .data

strHello db "Hello", 10
strLen equ $ — strHello
sys_exit equ 1
sys_write equ 4
stdout equ 1

section .text

global do_something

global exit

do_something:

mov edx, strlLen
mov ecx, strHello
mov eax, sys_write
mov ebx, stdout
int 0x80
ret

exit:
mov eax, sys_exit
xor ebx, ebx
int 0x80
ret

../programs/first_program /useRoutines.asm

section .text

58 ROZDZIAL 2. FIRST PROGRAM

extern do_something
extern exit

global _start

_start:
call do_something
call exit

and compile, link and run almost usually

fulmanp@fulmanp-k2:~/assembler$ nasm -f elf -o routines.o routines.asm
fulmanp@fulmanp-k2:~/assembler$ nasm -f elf -o useRoutines.o useRoutines.asm
fulmanp@fulmanp-k2:~/assembler$ 1d -m elf_i386 -o testSeparateRoutines routines.o useRout
fulmanp@fulmanp-k2:~/assembler$./testSeparateRoutines

Hello
If we want to use GCC to link our code, we have to change it a little bit in useRoutines.asm:

../programs/first_program/useRoutines_for_gcc.asm

section .text

extern do_something
extern exit

global main

main :
call do_something

call exit

fulmanp@fulmanp-k2:~/assembler$ nasm -f elf -o routines.o routines.asm
fulmanp@fulmanp-k2:~/assembler$ nasm -f elf -o useRoutines_for_gcc.o useRoutines_for_gcc.
fulmanp@fulmanp-k2:~/assembler$ gcc -m32 -o testSeparateRoutine routines.o useRoutines_fo
fulmanp@fulmanp-k2:~/assembler$./testSeparateRoutine

Hello

ROZDZIAY,

NASM syntax

Content of this chapter is a shortcut of offical documentation ([6]).

3.1 Layout of a NASM source line

Each NASM source line contains (unless it is a macro, a preprocessor directive or an assembler

directive) some combination of the four fields
label: instruction operands ; comment

The presence or absence of any combination of a label, an instruction and a comment is allowed. Of
course, the operand field is either required or forbidden by the presence and nature of the instruction
field.

NASM uses backslash (\) as the line continuation character; if a line ends with backslash, the
next line is considered to be a part of the backslash-ended line.

An identifier may also be prefixed with a $ to indicate that it is intended to be read as an identifier
and not a reserved word.

Almost any floating-point instruction that references memory must use one of the prefixes

DWORD, QWORD or TWORD to indicate what size of memory operand it refers to.

mov eax, [vecl+ecx*4] ; Load [ecx] component of vectorl
imul dword[vec2+ecx*4] ; Multiply eax by [ecx] component of vector2
; Notice that we have to specify the size

; of memory operand it refers to (dword).

99

60 ROZDZIAL 3. NASM SYNTAX

3.2 Pseudo-instructions

Pseudo-instructions are things which, though not real x86 machine instructions, are used in the

instruction field anyway because that's the most convenient place to put them.

3.2.1 Declaring initialized data

NASM defines number of pseudo-instructions to declare initialized data in the output file.

db 0x55 ; just the byte 0xb5

db 0x55,0x56,0x57 ; three bytes in succession

db ’a’,0x55 ; character constants are 0K

db ’hello’,13,10,°$’ ; so are string constants

dw 0x1234 ; 0x34 0x12

dw a’ ; 0x61 0x00 (it’s just a number)
dw ’ab’ ; 0x61 0x62 (character constant)
dw ’abc’ ; 0x61 0x62 0x63 0x00 (string)
dd 0x12345678 ; 0x78 0x56 0x34 0x12

dd 1.234567e20 ; floating-point constant

dq 0x123456789abcdef0 ; eight byte constant

dq 1.234567e20 ; double-precision float
dt 1.234567e20 ; extended-precision float
dt 3.14159265358979323 ; pi

3.2.2 Declaring uninitialized data

NASM defines number of pseudo-instructions to declare uninitialized data. Each takes a single ope-
rand, which is the number of bytes, words, doublewords or whatever to reserve and are designed to

be used in the BSS section of a module.

buffer: resb 64 ; reserve 64 bytes
wordvar: resw 1 ; reserve a word
realarray: resq 10 ; array of ten reals
ymmval: resy 1 ; one YMM register

zmmvals: resz 32 ; 32 ZMM registers

3.3. EFFECTIVE ADDRESSES 61

3.2.3 Including external binary files

INCBIN pseudo-instruction includes a binary file verbatim into the output file. It can be called in one

of these three ways:

incbin "file.dat" ; include the whole file
incbin "file.dat",1024 ; skip the first 1024 bytes
incbin "file.dat",1024,512 ; skip the first 1024, and

; actually include at most 512

3.2.4 Defining constants

EQU defines a symbol to a given constant value: when EQU is used, the source line must contain a
label. The action of EQU is to define the given label name to the value of its (only) operand. This

definition is absolute, and cannot change later. For example:
message db ’hello, world’

msglen equ $-message

3.2.5 Repeating instructions or data

The TIMES prefix causes the instruction to be assembled multiple times.
zerobuf: times 64 db O

The argument to TIMES is not just a numeric constant, but a numeric expression, so you can do

things like

buffer: db ’hello, world’

times 64-$+buffer db ’ ’

which will store exactly enough spaces to make the total length of buffer up to 64.

3.3 Effective addresses

An effective address is any operand to an instruction which references memory. Effective addresses,
in NASM, have a very simple syntax: they consist of an expression evaluating to the desired address,

enclosed in square brackets. For example:

62 ROZDZIAL 3. NASM SYNTAX

wordvar dw 123
mov ax, [wordvar]
mov ax, [wordvar+1]
mov ax, [es:wordvar+bx]

More complicated effective addresses, such as those involving more than one register, work in exactly

the same way:

mov eax, [ebx*2+ecx+offset]
mov ax, [bp+di+8]
mov eax, [ebx+8,ecx*4] ; ebx=base, ecx=index, 4=scale, 8=disp

3.4 Constants

3.4.1 Numeric constants

A numeric constant is simply a number. NASM allows you to specify numbers in a variety of number
bases, in a variety of ways: you can suffix H or X, D or T, Q or O, and B or Y for hexadecimal,
decimal, octal and binary respectively. NASM accept the prefix Oh for hexadecimal, 0d or Ot for
decimal, 0o or Oq for octal, and Ob or Oy for binary. Numeric constants can have underscores (_)
interspersed to break up long strings.

Some examples (all producing exactly the same code):

mov ax,200 ; decimal

mov ax,0200 ; still decimal

mov ax,0200d ; explicitly decimal
mov ax,0d200 ; also decimal

mov ax,0c8h ; hex

mov ax,$0c8 ; hex again: the 0 is required
mov ax,0xc8 ; hex yet again

mov ax,0hc8 ; still hex

mov ax,310q ; octal

mov ax,3100 ; octal again

mov ax,00310 ; octal yet again

mov ax,0q9310 ; octal yet again

3.4. CONSTANTS

mov

mov

mov

mov

mov

ax,11001000b
ax,1100_1000b
ax,1100_1000y
ax,0b1100_1000

ax,0y1100_1000

63

; binary

; same binary constant

; same binary constant once more
; same binary constant yet again

; same binary constant yet again

3.4.2 String constants

String constants are character strings used in the context of some pseudo-instructions, namely the

DB family and INCBIN (where it represents a filename.) They are also used in certain preprocessor

directives. The following are equivalent:

db
db
dd
dd
db

3.4.3 Floating-point constants

’hello’

)h),)e7’7li’)17’)oJ

’ninechars’

’nine’,’char’,’s’

’ninechars’,0,0,0

; string constant

; equivalent character constants
; doubleword string constant

; becomes three doublewords

; and really looks like this

Floating-point constants are acceptable only as arguments to DB, DW, DD, DQ, DT, and DO, or

as arguments to the special operators

_float8

Om

float80e

Some examples:

db
dw
dd
dd
dd
dq
dq
dq
dq
dt

-0.2

-0.5

1.2
1.222_222_222
Ox1p+2
Ox1p+32

1.e10

1.e+10

1.e-10

_float8

float1281

floatl6 float32 float64__

and __float128h__.

; "Quarter precision"

; IEEE 754r/SSE5 half precision
; an easy one

; underscores are permitted

; 1.0x272 = 4.0

; 1.0x2732 = 4 294 967 296.0

; 10 000 000 000.0

; synonymous with 1.e10

; 0.000 000 000 1

3.141592653589793238462 ; pi

64 ROZDZIAL 3. NASM SYNTAX

mov rax,__float64__(3.141592653589793238462)

3.4.4 Packed BCD constants

x87-style packed BCD constants can be used in the same contexts as 80-bit floating-point numbers.
They are suffixed with p or prefixed with Op, and can include up to 18 decimal digits.
As with other numeric constants, underscores can be used to separate digits.

For example:

dt 12_345_678_901_245_678p
dt -12_345_678_901_245_678p
dt +0p33

dt 33p

ROZDZIAY,

Basic CPU instructions

Typically instruction set is divided into four basic groups:
e arithmetic,
e logic,
e jump
e transfer.

We add to this list one more group: utility instructions.

4.1 Utility instructions

4.1.1 cbw

4.1.2 cwd

4.2 Arithmetic instructions

4.2.1 div

The DIV (unsigned divide) divides unsigned the value in the AX, DX:AX, EDX:EAX, or RDX:RAX
registers (dividend) by the source operand (divisor) and stores the result in the AX (AH:AL), DX:AX,

EDX:EAX, or RDX:RAX registers. The source operand can be a generalpurpose register or a memory

65

66

ROZDZIAL 4. BASIC CPU INSTRUCTIONS

location. The action of this instruction depends on the operand size (dividend/divisor). Division using

64-bit operand is available only in 64-bit mode. Instruction formats:

Operand Size Dividend Divisor Quotient Remainder Maximum Quotient
Word/byte AX r/m8 AL AH 255
Doubleword/word DX:AX r/m16 AX DX 65,535
Quadword/doubleword

EDX:EAX r/m32 EAX EDX 2732 - 1
Doublequadword/
quadword RDX:RAX r/m64 RAX RDX 2764 - 1

As a good test let's try to write a code to print numbers.

../programs/basic_cpu_instructions/inst_64_div.asm

section .data

global _start

_start:
mov dx, O
mov ax, 16
mov cx, b5
div cX

Exit

mov rdi, rax
s mov rdi, rdx
mov rax, 60
syscall

. End of the code

Data section

dividend — higher half
dividend — lowere half
divisor

div dx:ax by cx

Use exit code to get result
Quotient

or

Remainder

System call number (sys_exit)

Call a system function

[uncomment quotient, comment remainder]

fulmanp@fulmanp-k2:~/assembler$ nasm -f elf64 inst_64_div.asm

fulmanp@fulmanp-k2:~/assembler$ 1d inst_64_div.o -o inst_64_div

fulmanp@fulmanp-k2:~/assembler$./inst_64_div

4.2. ARITHMETIC INSTRUCTIONS

fulmanp@fulmanp-k2:~/assembler$ $7

3: nie znaleziono polecenia

[comment quotient, uncomment remainder]
fulmanp@fulmanp-k2:~/assembler$ nasm -f elf64 inst_64_div.asm
fulmanp@fulmanp-k2:~/assembler$ 1ld inst_64_div.o -o inst_64_div
fulmanp@fulmanp-k2:~/assembler$./inst_64_div
fulmanp@fulmanp-k2:~/assembler$ $7

1: nie znaleziono polecenia

If we know how DIV works we can try to implement function to print numbers.

4.2.2 Excercise 1

Write a program to print numbers.

67

Solution 1.1

../programs/basic_cpu_instructions/inst_64_print.asm
section .data ; Data section
transTab db "0123456789" ; Translation Table

section .bss

result: resb 16 ; Reserve space for result

; Max 16 digit

section .text

global _start

_start:
Put data to print into
; edx:eax
mov edx, 0
mov eax, 12345

jmp printNumber ; Let's print

68

ROZDZIAL 4. BASIC CPU INSTRUCTIONS

; Print number code: begin

;o Init

printNumber:

mov

ebx, re

; Prepare data

sult ; Set ebx to point begin of the buffer

printLoop:
mov ecx, 10
div ecx ; Div edx:eax by ecx
mov ecx, [transTab 4 edx] ; Copy ASCIl value of reminder to ECX
mov [ebx], ecx ; Copy ECX to ’'result’ buffer
inc ebx ; Move to the next byte in the buffer
mov edx, 0 ; Restore edx
cmp eax, O ; Compare EAX with immediate value: 0
jne printLoop ; Jump if operands of previous CMP instruction
; are not equal — keep looping until EAX
; Is zero which means that all digits are
; converted. When done go to
; the print part
; Print result buffer
print:
sub ebx, result; Calculate length of string to print
mov rdx, rbx ; arg3: length of string to print
mov rsi, result; arg2: pointer to string
mov rdi, 1 ; argl: where to write, so called file handler
; in this case stdout (screen)
mov rax, 1 ; System call number (sys_write)
syscall ; Call a system function
o Exit
mov rdi, O ; Exit code, O=normal
mov rax, 60 ; System call number (sys_exit)
syscall ; Call a system function

: End of the code

fulmanp@fulmanp-k2

:”/assembler$ nasm -f elf64 inst_64_print.asm

4.2. ARITHMETIC INSTRUCTIONS 69

fulmanp@fulmanp-k2:~/assembler$ 1d inst_64_print.o -o inst_64_print
fulmanp@fulmanp-k2:~/assembler$./inst_64_print
54321

Our solution works but it's far from perfection: number 12345 was printed as 54321. Let's try to fix

it.
Solution 1.2
../programs/basic_cpu_instructions/inst_64_print_02.asm
section .data ; Data section
transTab db "0123456789" ; Translation Table

section .bss

result: resb 16 ; Reserve space for result

; Max 16 digit

section .text

global _start

_start:

; Put data to print into

; edx:eax
mov edx, 0
mov eax, 32123
jmp printNumber ; Let’'s print

; Print number code: begin
;o Init
printNumber:

mov ebx, result + 15 ; Set ebx to point end of the buffer HERE

; Prepare data
printLoop:

mov ecx, 10

70 ROZDZIAL 4. BASIC CPU INSTRUCTIONS

div ecx ; Div edx:eax by ecx

mov ecx, [transTab 4 edx] ; Copy ASCIl value of reminder to ECX
; This copy reads 4 bytes
; Because now we print from right to left
; so when we print 4—byte blok it will erase
; previous digits.

This is why previous instruction:

; mov [ebx], ecx ; Copy ECX to ’'result’ buffer HERE
; have to be raplace by

mov [ebx], cl ; Copy 1 byte from ECX (which is CL)

to 'result’ buffer HERE

dec ebx ; Move to the previous byte in the buffer HERE
mov edx, O ; Restore edx

cmp eax, 0 ; Compare EAX with immediate value: 0

jne printLoop ; Jump if operands of previous CMP instruction

are not equal — keep looping until EAX
; Is zero which means that all digits are
; converted. When done go to

; the print part

; Print result buffer

print:
xor rax, rax ;. HERE
mov eax, result + 15 + 1 ; HERE new
sub eax, ebx ; Calculate length of string to print HERE
mov rdx, rax ; arg3: length of string to print
Xxor rsi, rsi ;. HERE new
mov esi, ebx , arg2: pointer to string HERE
mov rdi, 1 ; argl: where to write, so called file handler
; in this case stdout (screen)
mov rax, 1 ; System call number (sys_write)
syscall ; Call a system function
o Exit
mov rdi, O ; Exit code, O=normal
mov rax, 60 ; System call number (sys_exit)
syscall ; Call a system function

: End of the code

4.2. ARITHMETIC INSTRUCTIONS 71

fulmanp@fulmanp-k2:~/assembler$ nasm -f elf64 inst_64_print_02.asm
fulmanp@fulmanp-k2:~/assembler$ 1d inst_64_print_02.0 -o inst_64_print_02
fulmanp@fulmanp-k2:~/assembler$./inst_64_print_02

32123

All changed parts of the code are marked by HERE string. General idea of the changes is clear:
print digits in oposite dirrection, from end of the buffer to the begin. To do this, we have to set index
to the last element of the buffer and decrease it every new character. Please not very subtle change

in the code - rename ECX to CL. Explanation for this is as follow. Instruction
mov ecx, [transTab + edx]

copy ASCII value of reminder to ECX register. This copy reads 4 bytes. Because now we print from

right to left so when we print 4-byte blok it will erase previous digits. This is why previous instruction
mov [ebx], ecx

have to be raplace by

mov [ebx], cl

when we copy 1 byte from ECX (which is CL) to 'result’ buffer. Without the changes described above

this result is not correct

fulmanp@fulmanp-k2:~/assembler$ nasm -f elf64 inst_64_print_02.asm
fulmanp@fulmanp-k2:~/assembler$ 1d inst_64_print_02.0 -o inst_64_print_02
fulmanp@fulmanp-k2:~/assembler$./inst_64_print_02

34565

This could be explained as follow

We want to print 32123

When print

3 -> transTab -> 3456

result:

111111

72

0123456789012345
3456

When print

2 -> transTab -> 2345

result:
111111
0123456789012345
3456
2345

When print

1 -> transTab -> 1234

result:
111111
0123456789012345
3456
2345
1234

When print

2 -> transTab -> 2345

result:
111111
0123456789012345
3456
2345
1234

2345

ROZDZIAL 4. BASIC CPU INSTRUCTIONS

4.2. ARITHMETIC INSTRUCTIONS

When print

3 -> transTab -> 3456

result:
111111
0123456789012345
3456
2345
1234
2345
3456
[l - we take last digit from every position

34565

Solution 1.3
This solution is dedicated to MacOS

../programs/nie_moje/fj_liczba.asm

73

; Author: Justyna Firkowska

; System: Mac OS X, NASM 32— bit

; Assemble: nasm —f macho liczba.asm
; Link: Id liczba.o —o liczba

: Run: ./liczba

section .data

Digits db "0123456789"

section

.bss

Result: resb 8 , rezerwuje 8 bajtow na wynik

section

global

start:

.text

start

74

mov eax,
mov ebx,

mov ebp,

ROZDZIAL 4. BASIC CPU INSTRUCTIONS

12345 ; zapisuje liczbe do wypisania w eax
0xA ; ustawia dzielnik na 10
Result + 6 , zapisuje Result + 6 w ebp

jnz printLoop

; skacze do petli

; dzieli eax przez 10 (wynik —> edx)

[Digits + edx] ; zapisuje wartosc ASCIl w cl

printLoop:
div ebx
mov cl,
mov [ebp], cl
dec ebp

xor edx, edx

inc eax

dec eax

jnz printLoop

jz print

print:

mov [Result+7],

’

’

; zapisuje cl w buforze Result
;, przechodzi do kolejnego bajtu w buforze

zeruje reszte z dzielenia

przechodzi do wypisywania

byte OxA ,; dodaje znak nowej linii do wyniku

push 0x8 ; wstawia max dlugosc (8 bajtow) na stos
push Result , wstawia wynik na stos
push 0x1 ; FD stdout (miejsce wypisania — ekran)
mov eax, O0x4 ; sys_write call
push eax ; Push call (BSD)
int 0x80 ;. Call
add esp, 0x10 ; czysci stos
;o Exit
mov eax, Ox1 ; sys_exit call
push 0x0 ; Exit_code 0
int 0x80 ;. Call
farale
Solution 1.4

Different approach with a stack

4.2. ARITHMETIC INSTRUCTIONS

../programs/nie_moje/kk_print.asm

; Works for numbers up to 2764 — 1

; Author:

; Assemble:
; Link:

> Run:

SECTION .data

Konrad Kosmatka

nasm —f elf64 print.asm —o print.o

Id print.o —o print

./print

dqg 18446744073709551615 ;

char:
number:
SECTION .text
global _start
_start:
push rbp
mov rbp, rsp
loop:
mov rdx, 0
mov rax, [number]
mov rbx, 10
div rbx
push rdx
cmp rax, O
je print
mov [number], rax
jmp loop
print:
cmp rsp, rbp
je return
pop rbx
mov rdx, 1
mov rax, 0’
mov [char], rax
add [char], rbx
mov rsi, char
mov rdi, 1

; data section

2764 — 1

;zapis obecnego base pointer na stos

‘teraz stos sie zaczyna od obecnego miejsca

;zerowanie rdx
;wczytanie dzielnej
;,wczytanie dzielnika

cdzielenie

;wrzucenie reszty z dzielenia na stos

;czy iloraz jest rowny 07

;tak — wyswietl wynik (ze stosu)

;nie — zapis iloraz w miejsce dzielnej
;w petli

,Czy na stosie jeszcze cos jest?
;nie, koniec
,tak, pobieramy

;arg3 — wypisujemy jeden znak
;wczytaj znak zera

;zapisz znak zera do zmiennej char
;dodaj reszte z dzielenia

;arg2 — wskaznik na string

;argl — stdout

76 ROZDZIAL 4. BASIC CPU INSTRUCTIONS

mov rax, 1 ,Ssys_write
syscall
jmp print ;w petli

return:
pop rax ; przywracamy
mov rbp, rax ; stos (w sumie niepotrzebne)
mov rdi, O ; return exit code (0=normal)
mov rax, 60 ; system call number (sys_exit)
syscall

777

4.3. LOGIC INSTRUCTIONS 7

4.2.3 add
4.2.4 sub
4.2.5 mul
4.2.6 idiv
4.2.7 imul
4.2.8 cmp
4.2.9 inc
4.2.10 dec

4.3 Logic instructions

43.1 and
4.3.2 or

4.3.3 not
4.3.4 xor
4.3.5 shl

4.3.6 shr
4.3.7 test

On x86, test does a binary AND between the operands, just does not save the result anywhere. cmp
subtracts the second operand from the first without actually modifying the first operand.

In other words, if you wanted to check if bit 6 (01000000b = 26 = 64) is set in register ch, then
you'd use test ch, 64. If you wanted to see if ch is less than/equal to/greater than 64, then you'd do
cmp ch, 64.

Remember, the difference is that cmp does a subtraction, and test a binary AND operation, with
the result discarded and only the flags affected. They are two very different operations.

i Hi, I'm a rookie in assembly language, this ; question just came up my mind, so | post it ;

here in the hope that someone would explain ; more details about the topic. j j when test to see if a

78 ROZDZIAL 4. BASIC CPU INSTRUCTIONS

variable contains ; a zero value, people ususally use ; ; TEST reg,reg j JZ Lablel ; ; alternatively, ;
i CMP reg,0 i JE Labell ; ; is also correct, ; So, what's the difference ? ; and any other important

things which pertinent ; is also welcome here. thanx in advance :))))

The test and cmp instructions are aliases for and and sub respectively except that test and cmp

only update the flags. Therefore:
test eax, eax ; sets flags like and eax, eax jz @eax;s.ero
cmp eax, 0 ; sets flags like sub eax, 0 je @eax;s,ero

Note that je and jz are aliases for each other. It is true that x - x == 0, so if you cmp eax, eax

(sub eax, eax), then the result will be 0 and the machine will set ZF (zero flag) to 1.
Here's an example that shows how these 2 instructions differ:
test eax, 1 jnz Qeax;s,ddjc@neveryranchjoQneveryranch
cmp eax, 1 jnz @eax;s,otonejcQeax;s,erojoQeax;sinty,in
Here test is only checking the least significant bit, so if eax == 0 then the jnz will not be taken.

If eax == 1 then the jnz will be taken. Both CF (carry flag) and OF (signed overflow flag) are cleared

to 0 by test, so a jc/jo after a test will never branch.

The cmp works a bit differently as you can see. eax - 1 == 0 only if eax == 1, so jnz is taken if
eax !|= 1. The only case where sub eax, 1 will underflow is when eax == 0, so if CF is set then we
know eax was 0. Also, OF will be set if eax == -231sinceeazwillwraparoundto231 — 1.

-Matt

4.4 Jump instructions

UZUPELNICH! Roznice pomiedzy JNA a JBE!! http://www.cs.ubbcluj.ro/ dadi/ac/doc/

nga904.html

441 jmp
4.4.2 call
443 JZ

Jump short if zero (ZF = 1).

http://www.cs.ubbcluj.ro/~dadi/ac/doc/nga904.html
http://www.cs.ubbcluj.ro/~dadi/ac/doc/nga904.html

4.4. JUMP INSTRUCTIONS

444 JE

Jump short if equal (ZF=1).

445 INZ

Jump short if not zero (ZF=0).

4.4.6 IJNE

Jump short if not equal (ZF=0).

44.7 JA

Jump short if above (CF=0 and ZF=0).

448 JNA

Jump short if not above (CF=1 or ZF=1).

449 IJB

Jump short if below (CF=1).

4410 IJNB

Jump short if not below (CF=0).

4.4.11 CMP, TEST and JE

Consider code like this

TEST eax, eax

JE error

79

which cold be very confusing to what this does. Aren’t the values in EAX and EAX the same? What is

it testing? If TEST is doing the AND operation and they (both EAX) are the same values, wouldn't

it just return EAX?

Once again. ..

80 ROZDZIAL 4. BASIC CPU INSTRUCTIONS

CMP subtracts the operands and sets the Zero Flag if the difference is zero (which means that
operands are equal).

TEST sets the Zero Flag if the the result of the AND operation is zero. If two operands are
equal, their bitwise AND is zero if and only if both are zero. It also sets the Sign Flag if the top bit
is set in the result, and the Parity Flag if the number of set bits is even.

JE (Jump if Equals)* tests the Zero Flag and jumps if the flag is set.

So simply speaking,

TEST eax, eax

JE error

jumps to error if the EAX is zero.

4.4.12 LOOP

Performs a loop operation using the ECX or CX register as a counter. Each time the LOOP instruction
is executed, the count register is decremented, then checked for 0. If the count is 0, the loop is
terminated and program execution continues with the instruction following the LOOP instruction.
If the count is not zero, a near jump is performed to the destination (target) operand, which is
presumably the instruction at the beginning of the loop. If the address-size attribute is 32 bits, the
ECX register is used as the count register. Otherwise, the CX register is used.

The target instruction is specified with a relative offset (a signed offset relative to the current
value of the instruction pointer in the EIP register). This offset is generally specified as a label in
assembly code, but at the machine code level, it is encoded as a signed, 8-bit immediate value, which

is added to the instruction pointer. Offsets of =128 to +127 are allowed with this instruction.

4.4.13 Jump examples

../programs/basic_cpu_instructions/jmp_loop_test1_-32.asm

section .data

a: dgq b

b: dq 7

r: db "ag==_b", 10
k: db "koniec", 10

*Which is an alias of JZ (Jump if Zero).

4.4. JUMP INSTRUCTIONS

section .text

global _start

_start:
mov eax, [a]
cmp eax, [b]

jne dalej

mov eax, 4
mov ebx, 1
mov ecx, r
mov edx, 7

int 0x80

dalej:
mov eax,
mov ebx,

mov ecx,

N xR

mov edx,

int 0x80

mov eax, 1
mov ebx, 0

int 0x80

../programs/basic_cpu_instructions/jmp_loop_test2_32.asm

section .data

a: dq 7

b: dq 7

r: db "agy==_b", 10
n: db "ag!=_ b", 10

section .text

global _start

_start:

82

mov eax,

[a]
[b]

cmp eax,

jne else._

ROZDZIAL 4. BASIC CPU INSTRUCTIONS

; if(a =b)

push r
jmp endif_
else_:
; else
push n
endif_:
mov eax,
mov ebx,
mov ecx,

edx

0x80

mov
int
mov eax,
ebx

0x80

mov

int

[esp]

../programs/basic_cpu_instructions/jmp_loop_test3_-32.asm

section .data
dq 7

dq
db
db

db

5

"au>ub",

3z

uau<ubn’

ﬂ

"a,=,b",

section .text

global _start

_start:
mov eax, [a]

[b]

mov ebx,

10
10
10

4.4. JUMP INSTRUCTIONS

cmp eax, ebx

jng elseif._

; if(a > b)

push w

jmp endif_
elseif_:
;cmp eax, ebx

jnl else_

; else if(a < b)

push m

jmp endif_

else_:

7

else

push r

endif_:

mov
mov
mov
mov

int

mov
mov

int

eax, 4
ebx, 1
ecx, [esp]
edx, 6
0x80

eax, 1
ebx, 0
0x80

83

../programs/basic_cpu_instructions/jmp_loop_test4_32.asm

section

string:

.data

db "tekst_ktorego,nie bedzie_ widac",

len: equ $ — string

section

global

.text

_start

10

84 ROZDZIAL 4. BASIC CPU INSTRUCTIONS

_start:

mov ecx, string
petla:

mov byte [ecx], ’*’;

inc ecx

cmp byte [ecx], 10

jne petla

mov eax, 4

mov ebx, 1

mov ecx, string
mov edx, len

int 0x80

mov eax, 1
mov ebx, 0

int 0x80

../programs/basic_cpu_instructions/jmp_loop_test5_32.asm

section .data
string: db "tego_nie_bedzie_widacywidac,tylko,to", 10

len: equ $ — string

section .text

global _start

_start:
mov ecx, string
while_:
cmp byte [ecx], .’
je endwhile_
cmp byte [ecx], 10

je endwhile_

mov byte [ecx], ’*’;

inc ecx

4.4. JUMP INSTRUCTIONS

jmp while_

endwhile_:

mov eax, 4

mov ebx, 1

mov ecx, string
mov edx, len

int 0x80

mov eax, 1
mov ebx, 0

int 0x80

85

../programs/basic_cpu_instructions/jmp_loop_test6_32.asm

section .data
string: db "jakis,tekst", 10
len: equ $ — string

n: dd 8
section .text
global _start
_start:

mov ecx, 0

for_:

cmp ecx, [n]

jnb endfor._
mov byte [string + ecx], ’*’;
inc ecx
jmp for_
endfor_:

mov eax, 4
mov ebx, 1
mov ecx, string

mov edx, len

86 ROZDZIAL 4. BASIC CPU INSTRUCTIONS

int 0x80

mov eax,
mov ebx, 0

int 0x80

../programs/basic_cpu_instructions/jmp_loop_test7_32.asm

section

string db

section

global

.data
’a’, 10

.text

_start

_start:

mov ecx, 10
petla:

inc byte [string]

loop petla

4
1

mov eax,

mov ebx,

mov ecx, string

edx, 2

0x80

mov
int
mov eax,
ebx ,

0x80

mov

int

../programs/basic_cpu_instructions/jmp_loop_test8_32.asm

section .data

string db "abcdefg", 10
len equ $ — string

section .text

global _start

4.4. JUMP INSTRUCTIONS

_start:
mov eax, string
mov ecx, len — 1
petla:
add [eax], dword 4
inc eax

loop petla

mov eax, 4

mov ebx, 1

mov ecx, string
mov edx, len

int 0x80

mov eax, 1
mov ebx, 0

int 0x80

../programs/basic_cpu_instructions/jmp_loop_test9_32.asm

; LOOP

;, LOOPE — JE

; LOOPNE — JUNE
;, LOOPZ — JZ

; LOOPNZ — JUNZ

section .data

strl: db "to,jest_jakis_tekst", 10
lenl: equ $ — strl

str2: db "xyzinny, te#st...", 10

len2: equ $ — str2
section .text
global _start
_start:

mov ecx, len2

petla:

mov al, [strl + ecx]

88

cmp

al, [str2 4+ ecx]

loopne petla

mov

mov

mov
mov
mov
mov

int

mov
mov
mov
mov

int

mov
mov

int

byte [strl 4+ ecx],
byte [str2 + ecx],

eax, 4
ebx, 1
ecx, strl

edx, lenl

0x80
eax, 4
ebx, 1

ecx, str2
edx, len2

0x80

eax, 1
ebx, 0
0x80

ROZDZIAL 4. BASIC CPU INSTRUCTIONS

4.5 Transfer instructions

45.1

4.5.2

4.5.3

454

455

4.5.6

4.5.7

mov
call
push
pop
pusha
popa

xchg

ROZDZIAY,

Debugging with GDB

code 2.1 from section 2.3

fulmanp@fulmanp-k2:~/assembler$ nasm -f elf64 hello_64.asm -o hello_64.0
fulmanp@fulmanp-k2:~/assembler$ 1d hello_64.0 -o hello_64
fulmanp@fulmanp-k2:~/assembler$./hello_64

Hello World!

fulmanp@fulmanp-k2:~/assembler$ cat hello_64.1st

1 section .data
2
3 00000000 48656C6C6F20576F 72— text: db "Hello World!", 10

4 00000009 6C64210A

5 len: equ $-text

6

7 section .text

8

9 global _start

10

11 _start:

12 00000000 BAODOO0O0O0OO mov rdx, len
13 00000005 48BE- mov rsi, text

14 00000007 [0000000000000000]

89

90

15
16
17
18
19
20
21
22
23

0000000F

00000014
00000019

0000001B
00000020
00000025

BF01000000

B801000000
OF05

BF00000000
B83C000000
OF05

ROZDZIAL 5. DEBUGGING WITH GDB

mov

mov

syscall

mov
mov

syscall

rdi,

rax,

rdi,

rax,

60

ROZDZIAY,

First program linked with a C library

6.1 32-bit basic program linked with a C library

6.1.1 Code for NASM

../programs/first_program /hello_c.asm

; This program demonstrates basic text output to a screen.

; It needs to be linked with a C library — pintf "C" library functions is used.

; assemble: nasm —f elf hello.asm

; link: gcc hello.o —o hello

; orun: ./hello

; output is: Hello World

section .data ; Data section

text db "Hello_ World!", 10, O , The string to print, 10=cr, O=null

; null terminated string have to be used

; in order to use printf function

section .text ; Code section
extern printf ; The C function, to be called
global main ; Make label available to linker

91

92 ROZDZIAL 6. FIRST PROGRAM LINKED WITH A C LIBRARY

main : ; Standard gcc entry point
push text ; Address of control string for printf function
call printf ; Call C function
add esp, 4 ; pop stack 1 push times 4 bytes
Exit
mov eax,0 ;. Normal, no error, return value
ret ; Return

. End of the code

Verify correctnes of the code by assembling it
nasm -f elf hello_c.asm -o hello_c.o
linking

gcc hello_c.o -o hello_c

and finally runing

fulmanp@fulmanp-k2:~/assembler$./hello_c

Hello World!

If you want to know more... 6.1 (Making 32-bit program linked with a C library on 64-bit
system). Making 32-bit program linked with a C library on 64-bit system requires the following

commands (on my Linuz, the gcc-multilib package had to be installed.)

fulmanp@fulmanp-k2:~/assembler$ nasm -f elf hello_c.asm -o hello_c.o
fulmanp@fulmanp-k2:~/assembler$ gcc -m32 hello_c.o -o hello_c
fulmanp@fulmanp-k2:~/assembler$./hello_c

Hello World!
To understand this code, we have to understand calling conventions (more about this in the

chapter 77).

6.1.2 GCC 32-bit calling conventions in brief

Writing assembly language functions that will link with C, and using gcc, we must obey the gcc

calling conventions.

6.1.

32-BIT BASIC PROGRAM LINKED WITH A C LIBRARY 93

e Parameters are pushed on the stack, right to left, and are removed by the caller after the

call.

e After the parameters are pushed, the call instruction is made, so when the called function

gets control, the return address is at [esp], the first parameter is at [esp+4], etc.

e Using any of the following registers: EBX, ESI, EDI, EBP, DS, ES and SS we must save and

restore their values. In other words, these values must not change across function calls.

e A function that returns an integer value should return it in EAX, a 64-bit integer in EDX:EAX,

and a floating point value should be returned on the fpu stack top.

6.1.3 Excercise

Write in assembler an equivalent of the folowing C program running on 32-bit system

../programs/first_program /simple_printf_32.c

#include <stdio.h>

int main ()

{

char charl=’a’; /* Sample
char strl[]="abcdefgh"; /x Sample
int intl=123; /+* Sample
int hex1=0x1234ABCD; /+* Sample
float fltl=1.234e-3; /+* Sample

double flt2=-123.4e300; /+ Sample

printf("printf test:\ncharacter=Jc\nstring=Ys\ninteger=/d\ninteger(hex)=%X\nflog

character x/
string x/
integer x/
hexadecimal x/
float x/
double x/

charl, strl, intl, hexl, fltl,6 flt2);

return O;

Solution

../programs/first_program/simple_printf 32.asm

section .data

t=%f\ndou

94

; Format string for printf

ROZDZIAL 6. FIRST PROGRAM LINKED WITH A C LIBRARY

db "printf test:",10,"character=Yc" ,10,"string=%s" ,10,"integer=%d" ,10,"int¢

db "abcdefgh",0

dd 0x1234ABCD
dd 1.234e-3

dq —123.4e3

form_s:

; Other data

charl: db ‘’a’

strl:

intl: dd 123

hexl:

fltl:

flt2:

section .bss

flttmp: resq 1

section .text

extern printf

global main

main :
fid dword
fstp qword
push dword
push dword
push dword
push dword
push dword
push dword
push strl
push dword
push form_s
call printf

[flt1l]
[flttmp]

[flt2 +4]
[flt2]
[flttmp +4]
[flttmp]
[hex1]
[intl]

[charl]

7

7

’

’

Sample «character

Sample C string (needs 0)
Sample integer

Sample hexadecimal

32— bit floating point (float)
64— bit floating point (double)

The data segment containing statically—allocated

variables — free space allocated for the future use

Statically—allocated variables without an explicit

initializer; 64—bit temporary for printing fltl

Code section

The C function, to be called

Make label available to linker

Standard gcc entry point

Note that printf will NOT ACCEPT single precision floats.

We have to convert them to double precision floats:
convert 32— bit to 64— bit via 80— bits FPU stack
Floating load makes 80—bit, store as 64— bit
Push last argument first

64 bit floating point (bottom)

64 bit floating point (top)

64 bit floating point (bottom)

64 bit floating point (top)

Hex constant

Constant pass by value

"string” pass by reference

g

Address of format string
Call C function

ger (hex):

6.1. 32-BIT BASIC PROGRAM LINKED WITH A C LIBRARY 95

add esp, 36 ;, Pop stack 10«4 bytes
mov eax, O ; Exit code, O=normal
ret ; Main returns to operating system

The code assembly, link and run as previously

e as a 32-bit program on 32-bit system to test and complete; now | have only 64bit system

e as a 32-bit program on 64-bit system

fulmanp@fulmanp-k2:~/assembler$ nasm -f elf32 simple_printf_32.asm -o simple_printf_
fulmanp@fulmanp-k2:~/assembler$ gcc -m32 simple_printf_32.o0 -o simple_printf_32
fulmanp@fulmanp-k2:~/assembler$./simple_printf_32

printf test:

character=a

string=abcdefgh

integer=123

integer (hex)=1234ABCD

float=0.001234

double=-1.234000e+302

Notice that in this program a new section, the BSS section, was used. The name .bss or bss
usually is used by compilers and linkers for a part of the data segment containing uninitialized varia-
bles statically-allocated variables represented solely by zero-valued bits initially (i.e., when execution

begins). It is often referred to as the bss section or bss segment.

The BSS segment gets its name from abbreviation "Block Started by Symbol” — a pseudo-op
from the old IBM 704 assembler, carried over into UNIX, and there ever since. Some people like to
remember it as " Better Save Space”. Since the BSS segment only holds variables that don't have
any value yet, it doesn't actually need to store the image of these variables. The size that BSS will
require at runtime is recorded in the object file, but BSS (unlike the data segment) doesn't take up

any actual space in the object file[3].

96 ROZDZIAL 6. FIRST PROGRAM LINKED WITH A C LIBRARY

6.2 64-bit basic program linked with a C library

6.2.1 Code for NASM

../programs/first_program /hello_c_64.asm

section .data ; Data section

text: db "Hello_ World!", 10, O ,; The string to print, 10=cr, O=null
null terminated string have to be used

in order to use printf function

section .text ; Code section

extern printf ; The C function, to be called
global main ; Make label available to linker
main : ; Standard gcc entry point

mov rdi, text , 64—bit ABIl passing order: RDI, RSI,
mov rax, 0 ; printf is varargs, so RAX counts # of non—integer

arguments being passed

call printf ; The C function, to be called
Exit

mov rax,0 ; Normal, no error, return value

ret . Return

End of the code

Verify correctnes of the code by assembling it

nasm -f elf64 hello_c_64.asm -o hello_c_64.0
linking

gcc hello_c_64.0 -o hello_c_64

and finally runing

fulmanp@fulmanp-k2:~/assembler$./hello_c_64
Hello World!

6.2. 64-BIT BASIC PROGRAM LINKED WITH A C LIBRARY 97

To understand this code, we have to understand calling conventions (more about this in the

chapter 77).

6.2.2 GCC 64-bit calling conventions in brief

Writing assembly language functions that will link with C, and using gcc, we must obey the gcc
calling conventions. Notice that the 64-bit calling conventions differs from 32-bit calling conventions

and are different for different operating systems. The most important points are (for 64-bit Linux)

e Parameters are passing from left to right and as many parameters as will fit in registers. The

order in which registers are allocated, are

— For integers and pointers: RDI, RSI, RDX, RCX, R8, R9.

— For floating-point (float, double): XMMO0, XMM1, XMM2, XMM3, XMM4, XMMS5,
XMM6, XMM7.

e If needed, additional parameters are pushed on the stack, right to left, and are removed by the

caller after the call.

e After the parameters are pushed, the call instruction is made, so when the called function gets

control, the return address is at [ESP], the first memory parameter is at [ESP + 8], etc.

e Variable-argument subroutines require a value in RAX for the number of vector registers used.
In other words when a function taking variable-arguments is called, RAX must be set to the
total number of floating point parameters passed to the function in vector registers. See below

for more explanation.

e The only registers that the called function is required to preserve (the calle-save registers) are:

RBP, RBX, R12, R13, R14, R15. All others are free to be changed by the called function.
e The callee is also supposed to save the control bits of the XMCSR and the x87 control word.
e Integers are returned in RAX or RDX:RAX, and floating point values are returned in XMMO or
XMM1:XMMO.
RAX value for variable-argument subrutines

In the x86_64 ABI, if a function has variable arguments then AL (which is part of EAX) is expected

to hold the number of vector registers used to hold arguments to that function. For example

98

ROZDZIAL 6. FIRST PROGRAM LINKED WITH A C LIBRARY

printf ("%d", 1);

has an integer argument so there’s no need for a vector register, hence AL is set to 0. On the other

hand, if we change this example to

printf ("%f", 1.0f);

then the floating-point literal is stored in a vector register and, correspondingly, AL is set to 1

movsd
leaq
movl

call

LC1(%rip), %xmmO
LCO(Y%rip), %rdi
$1, Y%eax

_printf

As we can expect the code

printf ("%f %f", 1.0f, 2.0f);

will cause the compiler to set AL to 2 since there are two floating-point arguments

movsd
movapd
movsd
leaq
movl

call

LCO(%rip), %xmmO
%xmm0, %xmml
LC2(%rip), %xmmO
LC1(%rip), %rdi
$2, Yeax

_printf

6.2.3 Excercise 2

Write a 64-bit program from excercise 6.1.3.

Solution

../programs/first_program //simple_printf_64.asm

section

.data ; Data section

Format string for printf

form_s:

Other

db "printf test:",10,"character=Yc" ,10,"string=%s",10,"integer=/d" ,10,"int¢

data

ger, (hex)

6.2. 64-BIT BASIC PROGRAM LINKED WITH A C LIBRARY

charl: db ’a’ ; Sample character

strl: db "abcdefgh",0 ; Sample C string (needs 0)

intl: dd 123 ; Sample integer
hexl: dd 0x1234ABCD ; Sample hexadecimal
fltl: dd 1.234e-3 ; 32— bit floating point (float)
flt2: dq —123.4e3 ; 64— bit floating point (double)
section .bss ; The data segment containing statically—allocated
; variables — free space allocated for the future use
flttmp: resq 1 ; Statically—allocated variables without an explicit

; initializer; 64— bit temporary for printing fltl

section .text ; Code section

extern printf ; The C function, to be called

global main ; Make label available to linker

main : ; Standard gcc entry point
fld dword [fltl] ; Convert 32— bit to 64—bit via 80—bits FPU stack
fstp qword [flttmp] , Floating load makes 80— bit, store as 64— bit
mov rdi, form_s ; 64— bit ABIl passing order: rdi,
mov rsi, [charl]

mov rdx, strl
mov rcx, [intl]

mov r8, [hexl]

movsd xmm0, [flttmp] ; Simple movss xmm0, [fltl] doesn’'t work,

; printf needs 64— bit floating—points numbers

; (floats and doubles)

movsd xmml, [flt2]

mov rax, 2 ; printf is varargs, so EAX counts # of non—integer

, arguments being passed

sub rsp, 8 ; Tricky part. Add some stack space to frame.

; The stack must be 16—byte aligned.

call printf ;, The C function, to be called

add rsp, 8 ; Remove added stack space

99

100 ROZDZIAL 6. FIRST PROGRAM LINKED WITH A C LIBRARY

Exit
mov rax,0 ; Normal, no error, return value
ret ; Return

; End of the code

The code assembly, link and run as previously

fulmanp@fulmanp-k2:~/assembler$ nasm -f elf64 simple_printf_64.asm -o simple_printf_64.o
fulmanp@fulmanp-k2:~/assembler$ gcc simple_printf_64.o0 -o simple_printf_64
fulmanp@fulmanp-k2:~/assembler$./simple_printf_64

printf test:

character=a

string=abcdefgh

integer=123

integer (hex)=1234ABCD

float=0.001234

double=-1.234000e+302

Notice the tricky part of the code. Some stack space is added to frame. Why? The stack must be
16-byte aligned and is 16-byte aligned at the beginning of main(). The call instruction pushed the
8-byte return address onto the stack, which misaligns it and causes you to move RSP by some odd
multiple of 8 bytes to realign it. A good question is why a misaligned stack causes a seg fault only
when using a vector register (a register! not the stack!) —hello_c_64.asm works preety fine witthout

this.

If you want to know more... 6.2 (Prying assembler code generated by GCC). Sometimes,
when we drop into troubles, it’s very useful to inspect code (working code) generated by some

tools, like GCC. Having code as follow

../programs/first_program /simple_printf 64.c

#include <stdio.h>

int main ()

{
double flt1=1.234e—3; /* Sample float x/

6.2. 64-BIT BASIC PROGRAM LINKED WITH A C LIBRARY 101

printf("printf,float=fe\n", /x Format string for printf x/
flt1);

return 0;

we can type
fulmanp@fulmanp-k2:~/assembler$ gcc -S simple_printf_64.c -o simple_printf_64_dis.s
to get code we can follow (notice that presented code is compatible with ATET syntaz).

../programs/first_program/simple_printf 64 _dis.s

.file "simple_printf_64.c"
.section .rodata
.LC1:
.string "printf,float=Je\n"
.text
.globl main
.type main, @Qfunction
main :
.LFBO:
.cfi_startproc
pushq %rbp
.cfi_def_cfa_offset 16
.cfi_offset 6, —16
movq %rsp, %rbp
.cfi_def_cfa_register 6
subq $16, %rsp
movabsq $4568883643445681349, %rax
movqg %raz, —8(%rbp)
movl $.LC1, %eax
movsd —8(%rbp), Jwmmo
movq %rax, %rdi
movl $1, %eax
call printf
movl $0, %eax
leave
.cfi_def_cfa 7, 8

ret

.cfi_endproc

102 ROZDZIAL 6. FIRST PROGRAM LINKED WITH A C LIBRARY

.LFEOQ:
.Si1ze main, .—main
.ident "GCC:, (Ubuntu/Linaro, 4.6.3-1ubuntub5) ,4.6.3"
.section .note. GNU—stack ,"",@progbits

To get code compatible with Intel syntax use

fulmanp@fulmanp-k2:~/assembler$ gcc -S -masm=intel simple_printf_64.c -o simple_printf_64

../programs/first_program/simple_printf_64_dis.asm

.file "simple_printf_64.c"
.intel_syntax noprefic
.section .rodata

LC1:
.string "printf,float=Je\n"
.text
.globl main
.type main, @Qfunction

main :

.LFBO:
.cfi_startproc
push rbp
.cfi_def_cfa_offset 16
.cfi_offset 6, —16
mov rbp, rsp
.cfi_def_cfa_register 6
sub rsp, 16
movabs raxr, 4563333643445681349
mov QWORD PTR [rbp —8], raz
mov eax, OFFSET FLAT:.LC1
movsd zmm0, QWORD PTR [rbp —8]
mov rdi, razx
mov eax, 1
call printf
mov ear, 0
leave
.cfi_def_cfa 7, 8

ret

.cfi_endproc

6.2. 64-BIT BASIC PROGRAM LINKED WITH A C LIBRARY 103

.LFEOQ:
.s81ze main, .—main
.ident "GCC:, (Ubuntu/Linaro, 4.6.3-1ubuntub5) ,4.6.3"
.section .note. GNU—stack ,"",@progbits

or having compiled file dissasembly it

fulmanp@fulmanp-k2:~/assembler$ gcc simple_printf_64.c -o simple_printf_64_dis

fulmanp@fulmanp-k2:~/assembler$ objdump -d --disassembler-options=intel simple_printf_64_

simple_printf_64_dis: file format elf64-x86-64

Disassembly of section .init:

[... cut ...]

00000000004004£f4 <main>:

4004f4: 55 push rbp
4004£f5: 48 89 e5 mov rbp,rsp
4004£8: 48 83 ec 10 sub rsp,0x10

4004fc: 48 b8 cb5 3c 2b 69 cb movabs rax,0x3f5437c5692b3cch
400503: 37 54 3f

400506: 48 89 45 £8 mov QWORD PTR [rbp-0x8],rax
40050a: b8 1c 06 40 00 mov eax,0x40061c

40050f: f2 Of 10 45 £8 movsd xmmO,QWORD PTR [rbp-0x8]
400514: 48 89 c7 mov rdi,rax

400517: b8 01 00 00 00 mov eax,0x1

40051c: e8 cf fe ff ff call 4003f0 <printf@plt>
400521: b8 00 00 00 00 mov eax,0x0

400526: c9 leave

400527: c3 ret

400528: 90 nop

400529: 90 nop

104

40052a:
40052b:
40052c:
400524:
40052e:
400521 :

[... cut

90
90
90
90
90
90

6.3 Excercises

6.3.1 Excercise

ROZDZIAL 6. FIRST PROGRAM LINKED WITH A C LIBRARY

nop
nop
nop
nop
nop

nop

Write a program calculating a dot product of two vector (of integers) of fixed size.

Solution

../programs/basic_cpu_instructions/dot_product_cpu_32.asm

section .data

fmt_t: db
fmt_s: db
vecl: dd
vec2: dd

res: dd

"vecl1=%3d,,vec2=%3d,res=%3d", 10, O

"result is %d",
1, 2, 3, 4,
18, 17, 16, 15,

18, 34, 48, 60,
0

section .text

extern printf

global main

main :

mov ecx,

mov ebx,

8

10, 0
5, 6, 7, 8
14, 13, 12, 11
70, 78, 84, 88 ; results of multiplication
; final result — should be 480

Set counter as 0

Set number of iteration

6.3. EXCERCISES 105

loop: ; do—while loop begin
mov eax, [vecl + ecx x 4] ; Load [ecx] component of vector 1
imul dword [vec2 + ecx *x 4] ; Multiply eax by [ecx] component of vector 2

; Result is in EDX:EAX but we take only
; bottom half of it. The question is:
; how to compute with all 64 bits?

add [res], eax ; Increase final result

push ecx ; Save ecx before printf call to protect them

; from destruction

push dword [res] ; Constant pass by value
push dword [vec2 + ecx x 4] ; Constant pass by value
push dword [vecl + ecx x 4] ; Constant pass by value
push fmt_t ; Address of format string
call printf ; Call C function
add esp, 16 ; Pop stack 4x4 bytes
pop ecx ; Restore ecx after printf call
inc ecx ; Increase value of the counter
cmp ecx, ebx ; While condition test
jne loop ; do—while loop end

; Print final result

push dword [res] ; Constant pass by value
push fmt_s ; Address of format string
call printf ; Call C function
add esp, 8 ; Pop stack 2«4 bytes
o Exit
mov eax, 0 ; Exit code, O=normal
ret ; Main returns to operating system

. End of the code

Compare this code with code generated from file

../programs/basic_cpu_instructions/dot_product_cpu_32.c

106 ROZDZIAL 6. FIRST PROGRAM LINKED WITH A C LIBRARY

#include <stdio.h>

int main(){
int vecl[] = { 1, 2, 3, 4, 5, 6, 7, 8};
int vec2[] = { 18, 17, 16, 15, 14, 13, 12, 11};
int res = 0;
int i = 0;

for (i=0;i<8++i){
res += vecl[i] * vec2[i];

printf("vecl1=%3d,,vec2=%3d,yres=%3d\n", vecl[i], vec2[i], res);

printf("result, is %d\n", res);

return 0;
}
by GCC
../programs/basic_cpu_instructions/dot_product_cpu_32.s
.file "dot_product_cpu_32.c"
.intel_syntax noprefix
.section .rodata
.LCO:
.string "vecl1=%3d,_vec2=%3d,res=%3d\n"
.LC1:
.string ‘“"resultyis_ %d\n"
.text
.globl main
.type main, @function
main:
.LFBO:
.cfi_startproc
push rbp
.cfi_def_cfa_offset 16
.cfi_offset 6, —16
mov rbp, rsp
.cfi_def_cfa_register 6

6.3. EXCERCISES

sub
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov

jmp

.L3:

mov
cdqe
mov
mov
cdqe
mov
imul
add
mov
cdqe
mov
mov
cdqe
mov
mov
mov

mov

rsp, 80
DWORD PTR
DWORD PTR
DWORD PTR
DWORD PTR
DWORD PTR
DWORD PTR
DWORD PTR
DWORD PTR
DWORD PTR
DWORD PTR
DWORD PTR
DWORD PTR
DWORD PTR
DWORD PTR
DWORD PTR
DWORD PTR
DWORD PTR
DWORD PTR
DWORD PTR
.L2

[rbp —80],
[rbp —76],
[rbp —72],
[rbp —68],
[rbp —64],
[rbp —60],
[rbp —56],
[rbp —52],
[rbp —48],
[rbp —44],
[rbp —40],
[rbp —36],
[rbp —32],
[rbp —28],
[rbp —24],
[rbp —20],
[rbp—8], O
[rbp—4], 0
[rbp—4], 0O

0 N o a b~ w N

11

eax, DWORD PTR [rbp —4]

edx, DWORD PTR [rbp—80+rax x4]

eax, DWORD PTR [rbp —4]

eax, DWORD PTR [rbp—48+rax x4]

eax, edx

DWORD PTR [rbp —8], eax
eax, DWORD PTR [rbp —4]

edx, DWORD PTR [rbp—48+rax x4]

eax, DWORD PTR [rbp —4]

esi, DWORD PTR [rbp—80+rax 4]

eax, OFFSET FLAT:.LCO
ecx, DWORD PTR [rbp —8]

rdi, rax

107

108

ROZDZIAL 6. FIRST PROGRAM LINKED WITH A C LIBRARY

mov eax, 0

call printf

add DWORD PTR [rbp —4], 1
L2:

cmp DWORD PTR [rbp —4], 7

jle .L3

mov eax, OFFSET FLAT:.LC1

mov edx, DWORD PTR [rbp —38]

mov esi, edx

mov rdi, rax

mov eax, 0

call printf

mov eax, 0

leave

.cfi_def_cfa 7, 8

ret

.cfi_endproc

.LFEO:

.size main, .—main

.ident "GCC:,(Ubuntu/Linaro_ 4.6.3-1ubuntub) ,4.6.3"

.section .note.GNU-—stack ,"",Q@progbits
6.3.2 Excercise
Write a program to cipher data with XOR cipher.
Solution

../programs/basic_cpu_instructions/xor_cipher_32.asm

section .data
fmt_t: db "%3d.%3d.%3d, (%c)uxory%3dy, (%) u=1%3d", 10, O;
tte: db "The,secret,text,to encrypt", 10, 0 ; text to encrypt
ttel: equ $ — tte — 2 ; tte length
pass: db "password", 10, O
passl: equ $§ — pass — 2
section .text

6.3. EXCERCISES

extern printf

global main

main :

xor edx, edx

mov ebx, ttel ; Set max number of iterations
XO0r ecx, ecx ; Set text counter as 0
rpc: ; Reset password counter
X0or eax, eax ; Set password counter as 0
loop:
mov dl, [tte + ecx]
xor dl, [pass + eax]
push ecx ; Save ECX and EAX before printf call
push eax ; them from destruction
push dword edx ; XOR result
push dword [pass + eax] ; Second argument of XOR
push dword [pass + eax] ; ASCIl code of the second argument

and dword [esp], 000000FFh ; Cut the least significant byte
push dword [tte + ecx] ; First argument of XOR

push dword [tte + ecx] ; ASCIl code of the first argument
and dword [esp], 000000FFh;

push dword eax

push dword ecx

push fmt_t ; Address of format string

call printf ; Call C function

add esp, 32 ; Pop stack 84 bytes

pop eax ;, Restore registers after printf call

pop ecx

to protect

109

110 ROZDZIAL 6. FIRST PROGRAM LINKED WITH A C LIBRARY

inc eax
inc ecx

cmp eax, passl

je rpc
cmp ecx, ebx ; While condition test
jne loop ; do—while loop end
o Exit
mov eax, 0 ; Exit code, O=normal
ret ; Main returns to operating system

; End of the code

6.3.3 Excercise

Modify code from the last excercise to get function allows to crypr / encrypt message®.

Solution

../programs/basic_cpu_instructions/xor_cipher_32.asm

section .data

fmt_t: db "%3d.%3d,%3d, (%c)uxory%3dy (%) u=,%3d", 10, O;

tte: db "The,secret,text,to encrypt", 10, 0 ; text to encrypt
ttel: equ $ — tte — 2 ; tte length
pass: db "password", 10, O

passl: equ $ — pass — 2

section .text

extern printf

global main

main :

xor edx, edx

*In the XOR cipher case exactly the same code is used to crypt / encrypt message

6.3. EXCERCISES

mov ebx, ttel ; Set max number of iterations
XOor ecx, ecx ; Set text counter as 0
rpc: ; Reset password counter
Xor eax, eax ; Set password counter as 0
loop:

mov dl, [tte + ecx]
xor dl, [pass + eax]
push ecx ; Save ECX and EAX before printf call
push eax ; them from destruction
push dword edx ; XOR result
push dword [pass + eax] ; Second argument of XOR
push dword [pass + eax] ; ASCIl code of the second argument
and dword [esp], 000000FFh ; Cut the least significant byte
push dword [tte + ecx] ; First argument of XOR
push dword [tte + ecx] ; ASCIl code of the first argument
and dword [esp], 000000FFh;
push dword eax
push dword ecx
push fmt_t ; Address of format string
call printf ; Call C function
add esp, 32 ; Pop stack 84 bytes
pop eax ; Restore registers after printf call
pop ecx
inc eax
inc ecx
cmp eax, passl
je rpc
cmp ecx, ebx ; While condition test

jne loop

; do—while loop end

to protect

111

112 ROZDZIAL 6. FIRST PROGRAM LINKED WITH A C LIBRARY

Exit
mov eax, O Exit code, O=normal

ret Main returns to operating system

End of the code

ROZDZIAY,

FPU

A must read document about FPU, like any other aspect of the Intel architecture, is [4]. Here only
some kind of summary is given, so for detailed description see this document. To compensate this

inconvenience more examples of codes would be provided.

The x87 Floating-Point Unit (FPU), also known as a co-processor, used to be an option when the
first PCs came on the market. It provides high-performance floating-point processing capabilities and
supports the floating-point, integer, and packed BCD integer data types together with the floating-
point processing algorithms and exception handling architecture defined in the IEEE Standard 754 for
Binary Floating-Point Arithmetic. Modern PCs are now all provided with a co-processor. It is worth
to note that although the original PC-XT architecture (especially CPU) has evolved considerably
over the years, the FPU itself has not changed apparently during that same period. The entire set
of assembler instructions for the FPU is relatively small — the main difficulty is to avoid some of the

pitfalls peculiar to the FPU.

The FPU executes instructions from the processor’'s normal instruction stream. The state of
the FPU is independent from the state of the basic execution environment and from the state of
SSE/SSE2/SSE3 extensions. However, the FPU and MMX instructions share state because the MMX
registers are aliased to the x87 FPU data registers. Therefore, when writing code that uses FPU and

MMX instructions, the programmer must explicitly manage the x87 FPU and MMX state.

113

114 ROZDZIAL 7. FPU

7.1 FPU internals

The FPU represents a separate execution environment within the 1A-32 architecture. This execution
environment consists of eight 80-bit data registers (from R0 to R7*) and the following special-purpose

registers:

e status register (16-bit),

control register (16-bit),

tag word register (16-bit),

last instruction pointer register (48-bit),

last data (operand) pointer register (48-bit),

e opcode register (11-bit).

7.1.1 FPU Data Registers

The FPU data registers consist of eight 80-bit registers. Values are stored in these registers in the

double extended-precision floating-point format

77 66 0
98 43 0
SEEEECCCCCCCCC

|1 |

| significand or coefficient (64 bits)
I

| exponent (15 bits)

|

sign (1 bit)

When floating-point, integer, or packed BCD integer values are loaded from memory into any of the
FPU data registers, the values are automatically converted into double extended-precision floating-

point format (if they are not already in that format). When computation results are subsequently

*Note that RO-R7 are internal names and can not be used by programmer. Instead fo this ST(0)-ST(7) are
used what would be clarified further.

7.1. FPU INTERNALS 115

transferred back into memory from any of the x87 FPU registers, the results can be left in the double
extended-precision floating-point format or converted back into a shorter floating-point format, an
integer format, or the packed BCD integer format.

The eight FPU data registers are treated as a register stack. All addressing of the data registers
is relative to the register on the top of the stack. The register number of the current top-of-stack
register is stored in the TOP field in the FPU status word. The current TOP register is named as
ST(0) or simply ST, and ST(i) is used to specify the i-th register from TOP in the stack where
i={0,...,7}.

FPU Data Register Stack

XXX
xxx ST(2)
xxx ST(1)
xxx ST(0) <--- TOP: 100

XXX

N W s o0 oy N

XXX
1 xxx

0 xxx

Growth stack: stack growth from higher register (R7) to lower (RO).

Load operations decrement TOP by one and load a value into the new top-of-stack register,
and store operations store the value from the current TOP register in memory and then increment
TOP by onef. We can think about load operation as equivalent to a push and a store operation as
equivalent to a pop.

If a load operation is performed when TOP is at 0, register wraparound occurs and the new value
of TOP is set to 7. The floating-point stack-overflow exception indicates when wraparound might
cause an unsaved value to be overwritten. Many floating-point instructions have several addressing
modes that permit the programmer to implicitly operate on the top of the stack, or to explicitly

operate on specific registers relative to the TOP.

fNote that load and store operations are also available that do not push and pop the stack.

116 ROZDZIAL 7. FPU

7.1.2 FPU Addressing Modes

e Stack mode. In this mode an instruction is written without any arguments — by default registers

ST(0) and ST(1) are used. In this case both arguments are replaced by the result of instruction.

FADD --> FADDP ST(1), ST(0) --> ST(1) + ST(0) -> ST(1) and free ST(0)

e Register mode. In this mode two arguments are used: ST(0) and ST(i).

FADD ST(0), ST(i) --> ST(0) + ST(i) -> ST(0)
FADD ST(i), ST(0) --> ST(i) + ST(0) -> ST(i)

e Register mode with stack pop. In this mode source argument is on the top of the stack and
destination in register ST(i). When instruction is completed, source argument is poped from a

stack.

FADDP ST(i), ST(0) --> ST(i) + ST(0) -> ST(i) and free ST(0)

e Mode with memory argument. In this mode source argument is taken from memory and desti-

nation is located in ST(0).

FADD memory --> ST(0) + memory -> ST(0)

7.1.3 FPU stack usage example

Typically the stack structure of the FPU registers and instructions are used in the following way.
Assume that we want to calculate simple dot product of two vectors: v; = [1.2,3.4] and vy = [5.6, 7.8]
(and that TOP contains 100 which means that register R4 is the top of the stack). We can do this

with code:

FLD [vecl]
FMUL [vec2]
FLD [vecl + 8]
FMUL [vec2 + 8]

FADD ST(1)

7.2. FPU STATUS REGISTER 117

e FLD [vec1] This instruction decrements the stack register pointer (TOP) and loads the value
1.2 from memory into ST(0) (physical register R4). At this moment all registers RO-R7, except

R4, are empty.

e FMUL [vec2]
The second instruction multiplies the value in ST(0) by the value 5.6 from memory and stores
the result in ST(0). At this moment all registers RO-R7, except R4 in which value 6.72 is stored,

are empty.

e FLD [vecl + 8]
The third instruction decrements TOP and loads the value 3.4 in ST(0). At this moment only

registers R4 (in which value 6.72 is stored) and R3 (with value 3.4) are nonempty.

e FMUL [vec2 + 8]
The fourth instruction multiplies the value in ST(0) by the value 7.8 from memory and stores
the result in ST(0). At this moment only registers R4 (in which value 6.72 is stored) and R3

(with value 26.52) are nonempty.

e FADD ST(1)
The fifth instruction adds the value from ST(0) and the value from ST(1) and stores the result
in ST(0). At this moment only registers R4 (in which value 6.72 is stored) and R3 (with value

33.24) are nonempty.

If we use for example FADDP (which adds ST(0) to ST(1), store result in ST(1), and pop the

register stack) the only nenempty registers would be R4 (with value 33.24) referenced as ST(0).

7.2 FPU Status Register

The 16-bit FPU status register indicates the current state of the floating-point unit. The FPU sets

the flags in this register to show the results of operations.

7.2.1 Exception Flags

e IE, Invalid Operation, bit 0

118 ROZDZIAL 7. FPU

e DE, Denormalized Operand, bit 1

e ZE, Zero Divide, bit 2

e OE, Overflow, bit 3

e UE, Underflow, bit 4

e PE, Precision, bit 5

e SF, Stack Fault Flag, bit 6
The stack fault flag indicates that stack overflow or stack underflow has occurred. The FPU
explicitly sets the SF flag when it detects a stack overflow or underflow condition, but it does
not explicitly clear the flag when it detects an invalid-arithmetic-operand condition. When this
flag is set, the condition code flag C1 indicates the nature of the fault: overflow (C1 = 1) and
underflow (C1 = 0). The SF flag is a "sticky” flag, meaning that after it is set, the processor

does not clear it until it is explicitly instructed to do so (for example, by an FINIT/FNINIT).

e ES, Error Summary Status, bit 7

e CO,...,C3, Condition Code, bit 8, 9, 10 and 14
The four condition code flags (CO through C3) indicate the results of floating-point compari-
son and arithmetic operations. These condition code bits are used principally for conditional

branching and for storage of information used in exception handling.

e TOP, Top of Stack (TOP) Pointer, bits 11 through 13
TOP is a pointer to the FPU data register that is currently at the top of the FPU register

stack. This pointer is a binary value from 0 to 7.

B, FPU busy, bit 15

7.3. FPU CONTROL REGISTER 119

Rounding Mode RC Field Description

Setting
(binary)
Round to nearest 00 Rounded result is the closest to the infinitely precise
(even) result. If two values are equally close, the result is the
even value (that is, the one with the least-significant
bit of zero). Default mode.
Round down 01 Rounded result is closest to but no greater than the
infinitely precise result.
Round up 01 Rounded result is closest to but no less than the infi-
nitely precise result.
Round toward ze- 11 Rounded result is closest to but no greater in absolute
ro (Truncate) value than the infinitely precise result.

Tabela 7.1: Rounding Modes and Encoding of Rounding Control (RC) Field

7.3 FPU Control Register

The 16-bit control word controls the precision of the x87 FPU, rounding method used and also
contains the FPU floating-point exception mask bits.

Bits 0 through 5 are exception mask bits.

The precision-control (PC) field (bits 8 and 9 of the FPU control word) determines the precision
(64, 53, or 24 bits) of floating-point calculations made by the FPU. By default precision double
extended precision, which uses the full 64-bit significand, is used.

The rounding-control (RC) field of the FPU control register (bits 10 and 11) controls how the
results of FPU floating-point instructions are rounded (see table 7.1).

Bits 6,7 and 13-15 are not used.

7.4 FPU Tag Word Register

The 16-bit tag word indicates the contents of each the 8 registers in the FPU data-register stack
(one 2-bit tag per register). The tag codes indicate whether a register contains a valid number (00),
zero (01), or a special floating-point number as NaN, infinity, denormal, or unsupported format (10),

or whether it is empty (11).

7.5 Examples

7.5.1 Instructions related to the FPU internals

120

ROZDZIAL 7. FPU

Listing 7.1: ../programs/fpu/fpu_test_01_32.asm

section .data

fmt: db 10,"exception:%d",10,"top:,%d" ,10,"R7,%d" ,10,"R6,%d" ,10,"R5,%d",

10,"R4,%4" ,10,

section .bss

env: resd 7

section .text

extern printf

global main

main :

finit

fldl

fld1

fldl

fld1

call aux_print

faddp st3, stO

call aux_print
;o Exit

mov eax, O
ret

; Auxiliary print code

aux_print:

fstenv [env]

n R3|_,%d" ,

’

7

10,"R2,%d4" ,10,"R1,%d" ,10,"RO %d", 10, O

We will need 28 bytes for saving the current

FPU operating environmen

Initialize FPU
Push +1.0 onto the FPU register stack.

Call auxiliary print code
Add ST(0) to ST(i) (in this case i=3),
store result in ST(i), and pop the

register stack.

Exit code, O=normal

Main returns to operating system

Saves the current FPU operating environment
at the memory location specified with

the destination operand

7.5. EXAMPLES

Xor eax, eax

mov ax, [env+38]

mov ecx, O

loop:
mov ebx, eax
and ebx, 3

shr eax, 2

push ebx

inc ecx
cmp ecx, 8

jne loop

Xor eax, eax
fstsw ax

mov ebx, eax

shr bx, 11
and bx, 7
push ebx

mov ebx, eax

TXXXXXXXxXIxxxxx1

and bx, 0000000001000001b

push ebx
push fmt
call printf

add esp, 44

ret

: End of the code

1

Copy to AX contents of the FPU tag word

Set counter as 0

do—while loop begin

Extract bits 0 and 1
Shift right to extract next two bits
in next iteration

Save extracted two bits on the stack

Increase value of the counter
While condition test

do—while loop end

Clear eax register

Save status word

Shift ax right by 11 to get top—of—stack
(TOP) pointer value

A bit—wise AND of the two operands:

BX and binary pattern 111

Save TOP on the stack

Prepare to extract some exceptions flags
bit 7 — Stack Fault (64 decimal)
bit 1 — Invalid Operation (1 decimal)

; A bit—wise AND of the two operands:

BX and binary pattern 1

Save some status word’'s bits on the stack

Address of format string
Call C function
Pop stack 11x4 bytes

121

122 ROZDZIAL 7. FPU

The code should be easy to understand thanks to comments. Bellow an extended information about

some parts are presented.

e finit
FINIT sets the FPU control, status, tag, instruction pointer, and data pointer registers to their
default states. The FPU control word is set to 037FH (round to nearest, all exceptions masked,
64-bit precision). The status word is cleared (no exception flags set, TOP is set to 0). The
data registers in the register stack are left unchanged, but they are all tagged as empty (11B).

Both the instruction and data pointers are cleared.

e f1di
FLDX where X is one of the following values: 1, L2T, L2E, PI, LG2, LN2, Z push one of seven
commonly used constants (in double extended-precision floating-point format) onto the FPU
register stack. The constants that can be loaded with these instructions include +1.0 (1), +0.0
(Z), log210 (L2T), logze (L2E), 7 (Pl), log1p2 (LG2), and log.2 (LN2).

e faddp st3, stO
Adds the destination and source operands and stores the sum in the destination location. In
this case FADDP ST(i), ST(0) (for i=3) add ST(0) to ST(i), store result in ST(i), and pop

the register stack.

The destination operand is always an FPU register; the source operand can be a register or
a memory location. Source operands in memory can be in single-precision or double-precision
floating-point format or in word or doubleword integer format. Please check [4] for reference

to other floating point add instruction (FADD/FADDP/FIADD).

e fstenv
Instruction fstenv saves the current FPU operating environment at the memory location
specified with the destination operand, and then masks all floating-point exceptions. The FPU

operating environment consists of the FPU

— control word,

status word,
— tag word,

— instruction pointer,

7.5. EXAMPLES 123

— data pointer,

— and last opcode.
Figures 8-9 through 8-12 in [4], show the layout in memory of the stored environment, depen-
ding on the operating mode of the processor (protected or real) and the current operand-size

attribute (16-bit or 32-bit). In virtual-8086 mode, the real mode layouts are used. According

to this 14 or 28 bytes are needed to save all values.

e mov ax, [env+8]
Copy to AX contents of the FPU tag word. Next we will extract every 2-bits pair and associate

it with floating-point register.

7.5.2 FPU control word usage

This code also should be easy to follow. Please make some test with rounding and find some examples

how it works.

Listing 7.2: ../programs/fpu/fpu_test_02_32.asm

section .data

fmt: db "result_is_ %d", 10, O

a: dq 2.5

b: dgq 3.0

section .bss

tmp: resq 1

buf: resw 1

section .text

extern printf

global main

main :

finit ; Initialize FPU

124

fstcw [buf]

; Save control word

TXXXXTIXXXXXXXXXX

ROZDZIAL 7. FPU

or word [buf], 0000110000000000b ; Bits 11—10 controls rounding:
; 00 round to nearst (def),
; 01 round down,
; 10 round up,
;11 round toward zero

fldcw [buf] ; Load updated control word

fld qword [a] ; Load a to FPU

fmul gword [b] ; Multiply by b

fist dword [tmp] ,; Cast result to int

push dword [tmp]

push fmt

call printf

add esp, 8

o Exit
mov eax, 0 ; Exit code, O=normal
ret ; Main returns to operating system

. End of the code

7.5.3 FPU status word usage

Listing 7.3: ../programs/fpu/fpu_test_03_32.asm

section .data

fmt: db "status_wordgvalue_ %d", 10, O
a: dq 2.5

b: dg 0.0

section .bss

tmp: resq 1

buf: resw 1

section .text

7.5. EXAMPLES 125

extern printf

global main

main :
finit ; Initialize FPU
fld qword [a] ; Load a to FPU
fdiv qword [b] ; Divide by b

Xor eax, eax

fstsw ax ;. Stores the current value of the FPU status word
in the destination location. The destination
operand can be either a two—byte memory location

or the AX register.

push eax
push fmt
call printf
add esp, 8

Exit
mov eax, 0 ; Exit code, O=normal
ret ; Main returns to operating system

End of the code

Result of execution is below

fulmanp@fulmanp-k2:~/assembler$ nasm -f elf fpu_test_03_32.asm
fulmanp@fulmanp-k2:~/assembler$ gcc -m32 fpu_test_03_32.0 -o fpu_test_03_32
fulmanp@fulmanp-k2:~/assembler$./fpu_test_03_32

status word value 14340

Decimal value 14340 is equal to binary 11100000000100 which means that the ZE (Zero Divide) flag

was set. Also we can see that TOP has decimal value 7 (111 binary).

126 ROZDZIAL 7. FPU

7.5.4 FPU stack overflow

Next program tests what will happend when we try to load into FPU more than 8 numbers.

Listing 7.4: ../programs/nie_moje/kk_fpu_overflow.asm

; Author: Konrad Kosmatka

;, Assemble: nasm —f elf kk_fpu_overflow.asm —o kk_fpu_overflow.o
; Link: gcc —m32 —o kk_fpu_overflow kk_fpu_overflow.o

; Run: ./kk_fpu_overflow

global main

extern printf

section .data

fmt: db "x=%f", 10, O

vli: dg 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0
len: dd 10

section .bss

tmp: resq 1

section .text

main :

finit

Xor eax, eax

push eax
loop:
pop eax

fld qword [v1+48xeax]

cmp eax, [len]

je exit
inc eax
push eax

fst qword [tmp]
push dword [tmp+4]
push dword [tmp]
push fmt

call printf

7.5. EXAMPLES 127

add esp, 12

jmp loop

exit:
mov eax, O

ret

The result is

fulmanp@fulmanp-k2:~/assembler$ nasm -f elf kk_fpu_overflow.asm
fulmanp@fulmanp-k2:~/assembler$ gcc -m32 kk_fpu_overflow.o -o kk_fpu_overflow
fulmanp@fulmanp-k2:~/assembler$./kk_fpu_overflow

x=1.000000

x=2.000000

x=3.000000

x=4.000000

x=5.000000

x=6.000000

x=7.000000

X=-nan

X=-nan

X=—nan

Note that only 7 values are stored correctly although we have 8 registers. The question is: why?

Below are some premises. First notice that if we replace
fmt: db "x=)f", 10, O
by
fmt: db "x=%X %X", 10, O
everything seems to be ok

fulmanp@fulmanp-k2:~/assembler$ nasm -f elf kk_fpu overflow_hex.asm -o kk_fpu_overflow_he
fulmanp@fulmanp-k2:~/assembler$ gcc -m32 -o kk_fpu_overflow_hex kk_fpu_overflow_hex.o

fulmanp@fulmanp-k2:~/assembler$./kk_fpu_overflow_hex

128 ROZDZIAL 7. FPU

x=0 3FF00000
x=0 40000000
x=0 40080000
x=0 40100000
x=0 40140000
x=0 40180000
x=0 401C0000
x=0 40200000
x=0 FFF80000

x=0 FFF80000
The same correct behaviour is when real numbers are replaced by integers. To verify this replace

tmp: resq 1

fmt: db "x=Yf", 10, 0

fst qword [tmp]
push dword [tmp+4]
push dword [tmp]

push fmt
by

tmp: resd 1

fmt: db "x=Yd", 10, O

fist dword [tmp]
push dword [tmp]

push fmt

fulmanp@fulmanp-k2:~/assembler$ nasm -f elf kk_fpu overflow_int.asm -o kk_fpu_overflow_in
fulmanp@fulmanp-k2:~/assembler$ gcc -m32 -o kk_fpu_overflow_int kk_fpu_overflow_int.o

fulmanp@fulmanp-k2:~/assembler$./kk_fpu_overflow_int

7.5. EXAMPLES 129

x=1
x=2
x=3
x=4
x=5
x=6
x=7
x=8
x=-2147483648

x=-2147483648

What is surprissing if we change the first code we used for testing stack overflow (listing 7.4)

into 64-bit code

Listing 7.5: ../programs/nie_moje/kk_fpu_overflow64.asm

Author: Konrad Kosmatka
Assemble: nasm —f elf64 kk_fpu_overflow64.asm —o kk_fpu_overflow64.0
Link: gcc —o kk_fpu_overflow64 kk_fpu_overflow64.o0
Run: ./kk_fpu_overflow64

global main

extern printf

section .data

fmt: db "x=%f", 10, O

vi: dg 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0

len: dd 10

section .bss

tmp: resq 1

section

main :

finit

Xor rax,

push

.text

rax

rax

130 ROZDZIAL 7. FPU

loop:
pop rax

fld qword [v1+8*rax]

cmp rax, [len]
je exit
inc rax
push rax

fst gqword [tmp]

mov rdi, fmt

mov rax, 1

movq xmm0, qword [tmp]

call printf

jmp loop

exit:
mov rdi, O ; return exit code (0O=normal)
mov rax, 60 ; system call number (sys_exit)
syscall

the results are correct.

fulmanp@fulmanp-k2:~/assembler$ nasm -f elf64 kk_fpu_overflow64.asm -o kk_fpu_overflow64.
fulmanp@fulmanp-k2:~/assembler$ gcc -o kk_fpu_overflow64 kk_fpu_overflow64.o
fulmanp@fulmanp-k2:~/assembler$./kk_fpu_overflow64

x=1.000000

x=2.000000

x=3.000000

x=4.000000

x=5.000000

x=6.000000

x=7.000000

x=8.000000

X=-nan

X=—nan

7.6. EXCERCISES 131

7.6 Excercises

7.6.1 Excercise

Write a program calculating a dot product of two fixed size vectors (of floating points components).

Solution

Listing 7.6: ../programs/fpu/dot_product_fpu_32.asm

section .data

fmt_t: db "vec1=%6.3f,_ vec2=%6.3f res=%6.3f", 10, O

fmt_s: db "result_ is_ %6.3f", 10, O

vecl: dgq 1.0, 2.0, 3.0, 40, 5.0, 6.0, 7.0, 8.0

vec2: dq 18.0, 17.0, 16.0, 15.0, 14.0, 13.0, 12.0, 11.0

; 18.0, 34.0, 48.0, 60.0, 70.0, 78.0, 84.0, 88.0 ; results of mul.

res: dgq 0.0 ; final result — should be 480.0
section .bss ; The data segment containing statically—allocated

; variables — free space allocated for the future use
flttmp: resq 1 ; Statically—allocated variables without an explicit

; initializer; 64—bit temporary for printing fltl

section .text

extern printf

global main

main :
mov ecx, O ; Set counter as 0
mov ebx, 8 ; Set number of iteration
finit ; Initialize FPU
loop: ; do—while loop begin

fld qword [vecl + ecx * 8] ; Load [ecx] component of vector 1

132 ROZDZIAL 7. FPU

fmul gword [vec2 + ecx x 8] ; Multiply by [ecx] component of vector 2
fadd ; Increase final result

fst qword [flttmp] ; Floating load makes 80— bit, store as 64— bit
push ecx ; Save ecx before printf call to protect them

: from destruction

; Prepare data for printing partial

; dot product results

push dword [flttmp+4] ; 64 bit floating point (bottom)
push dword [flttmp] ; 64 bit floating point (top)

push dword [vec2 + ecx x 8 + 4] ; 64 bit floating point (bottom)
push dword [vec2 + ecx = 8] ; 64 bit floating point (top)

push dword [vecl + ecx x 8 + 4] ; 64 bit floating point (bottom)
push dword [vecl + ecx x 8] ; 64 bit floating point (top)

push fmt_t ; Address of format string

call printf ; Call C function

add esp, 28 ; Pop stack 7«4 bytes

pop ecx ; Restore ecx after printf call

inc ecx ; Increase value of the counter
cmp ecx, ebx - While condition test
jne loop ; do—while loop end

; Print final result

push dword [flttmp+4] ; 64 bit floating point (bottom)
push dword [flttmp] ; 64 bit floating point (top)
push fmt_s ; Address of format string

call printf ; Call C function

add esp, 12 ; Pop stack 3x4 bytes

o Exit

7.6. EXCERCISES 133

mov eax, O ; Exit code, O=normal
ret ; Main returns to operating system

; End of the code

ROZDZIAY,

File operations

8.1 File operations with Linux system calls

Before you start, please check the table 8.1 on the page 136 where you can find important file Linux
system calls for 32-bit and 64-bit x86 (notice that system call numbers are different for 32-bit and
64-bit but fortunately the order of arguments stays the same).

Now let's take a look at some source code listed in 8.1.

Listing 8.1: ../programs/files/file_base_64.asm

assemble: nasm —f elf64 file_.name.asm
link : Id file_.name.o —o file_name
;orun: ./file_name

section .data

text: db "Running...", 10

len_text: equ $—text

errl: db "Cannot openyinput,file", 10, O

len_errl: equ $—errl

err2: db "Cannot open output,file", 10, O

len_err2: equ $—err2

file_in: db "data_in.txt", O

135

136 ROZDZIAL 8. FILE OPERATIONS

Name EAX EBX (RDI) ECX (RSI) EDX (RDX) Description

close 6 (3) file descriptor Closes the given file de-
scriptor.

mkdir 39 directory name permission mode Creates the given direc-
(83) (null termina- tory.
ted)

3 (0) file descriptor buffer start buffer size Reads into the given
buffer.

4 (1) file descriptor buffer start buffer size Writes the buffer to the

file descriptor.

Tabela 8.1: Important file Linux system calls for 32-bit x86 (and 64-bit in parenthesis).

file_out: db "data_out.txt", 0

buffer: db ’Hello, world!’

buf_size: equ $—buffer
section .bss

fd_in resb 1
fd_out resb 1
section .text

global _start

_start:

8.1. FILE OPERATIONS WITH LINUX SYSTEM CALLS

’

1

’

’

’

137

simple info print
mov rdx, len_text ; arg3: length of string to print
mov rsi, text ; arg2: pointer to string
mov rdi, 1 ; argl: where to write, so called file handler
; in this case stdout (screen)
mov rax, 1 ; System call number (sys_write)
syscall ; Call a system function
open input file
;mov rdx, len ; arg3: permission mode
; mode specifies the mode to use in case a new file
, is created.
; This argument must be supplied when O_.CREAT or O_TMPFILE is
; specified in flags,; if neither O.CREAT nor O_TMPFILE is
, specified, then mode is ignored.
mov rsi, O ; arg2: option list:
; from fcntl.h
; http://Ixr.free—electrons.com/source/include/uapi/asm—gene
; IMPORTANT: use correct (for your system) fcntl.h file
; O_RDONLY 00000000 /+ open for reading only x/
mov rdi, file_in ; argl: pointer to file name
mov rax, 2 ; System call number (sys_open)
syscall ; Call a system function
cmp rax, O ; check if file descriptor in rax is greater than 0 (ok)
jle errorl ; cannot open file
mov [fd_in], rax ; store file descriptor of input file

open

mov

mov

output file

rdx, 07000

rsi, 2101q

arg3: permission mode (octal)

700

The first character (0Oxxx) controls the SUID, SGID,
and Stickbit.

rwX————— =

We want to set if off, so use 0.

arg2: option list:

ric/fentl.|

138

ROZDZIAL 8. FILE OPERATIONS

from fcntl. h

O_-WRONLY 00000001 /+ open for writing only x/
O_.CREAT 00000100 /x create if nonexistant x/
O_APPEND 00002000 /x set append mode x/

mov rdi, file_out ;, argl: pointer to file name
mov rax, 2 ; System call number (sys_open)
syscall ; Call a system function
cmp rax, O ; check if file descriptor in rax is greater than 0 (ok)
jle error2 ;, cannot open file
mov [fd_out], rax , store file descriptor of output file
. write data to a file
mov rax, 1 ; System call number (sys_write)
mov rdi, [fd_out] ; argl: file descriptor
mov rsi, buffer ; arg2: message address
mov rdx, buf_size ; arg3: buffer length
syscall
; close input file
mov rdi, [fd_in] ; argl: pointer to file name
mov rax, 3 ; System call number (sys_close)
syscall ; Call a system function
; close output file
mov rdi, [fd_out] ; argl: pointer to file name
mov rax, 3 ; System call number (sys_close)
syscall ; Call a system function
jmp exit
; error section
errorl: ; Cannot open input file
mov rdx, len_errl ; arg3: length of string to print

8.1. FILE OPERATIONS WITH LINUX SYSTEM CALLS 139

mov rsi, errl ; arg2: pointer to string
mov rdi, 1 ; argl: where to write, so called file handler

; in this case stdout (screen)

mov rax, 1 ; System call number (sys_write)
syscall ; Call a system function
jmp exit
error2: ; Cannot open output file
mov rdx, len_err2 ; arg3: length of string to print
mov rsi, err2 ; arg2: pointer to string
mov rdi, 1 ; argl: where to write, so called file handler

; in this case stdout (screen)

mov rax, 1 ; System call number (sys_write)
syscall ; Call a system function
jmp exit

; finall section — exit

exit:
mov rdi, O ; Exit code, O=normal
mov rax, 60 ; System call number (sys_exit)
syscall ; Call a system function

; End of the code

How this code works now?
1. Print simple message: Runinng. ..

2. Try to open input file in read only mode. If this fails, jump to error section, print error message

and finish the program.

3. Try to open output file in write only mode. If a file exists, a file pointer is set at the end to
append new data. If a file not exists, should be ceated. If this procedure fails, jump to error

section, print error message and finish the program.
4. Write data to a file. In this case a simple message Hello, world! is used.

5. Close input, outout files, jump over error section and finish th program.

fulmanp@fulmanp-k2:~/assembler$ 1s -1 | grep txt

140 ROZDZIAL 8. FILE OPERATIONS

fulmanp@fulmanp-k2:~/assembler$ echo ’Test message in input file.’ > data_in.txt
fulmanp@fulmanp-k2:~/assembler$ 1s -1 | grep txt

-rw-rw-r-—- 1 fulmanp fulmanp 28 maj 31 10:54 data_in.txt
fulmanp@fulmanp-k2:~/assembler$ cat data_in.txt

Test message in input file.

fulmanp@fulmanp-k2:~/assembler$ nasm -f elf64 file_base_64.asm
fulmanp@fulmanp-k2:~/assembler$ 1d file_base_64.0 -o file_base_64
fulmanp@fulmanp-k2:~/assembler$./file_base_64

Running. ..

fulmanp@fulmanp-k2:~/assembler$ 1s -1 | grep data

-rw-rw-r-- 1 fulmanp fulmanp 28 maj 31 10:54 data_in.txt
“IWX—————- 1 fulmanp fulmanp 13 maj 31 12:26 data_out.txt
fulmanp@fulmanp-k2:~/assembler$./file_base_64

Running. ..

fulmanp@fulmanp-k2:~/assembler$ 1ls -1 | grep data

-rw-rw-r-— 1 fulmanp fulmanp 28 maj 31 10:54 data_in.txt
“IWX-————-- 1 fulmanp fulmanp 26 maj 31 12:26 data_out.txt
fulmanp@fulmanp-k2:~/assembler$ cat data_out.txt

Hello, world!Hello, world!

How this code should work? Note that although we have created input file, this file is not used

— see excercise section below for fix.

8.1.1 Excercise

Based on code from listing 8.1 write a program which copy contents of input file to output file.

8.2 File operations with C functions

8.3 Command Line Parameters

Listing 8.2: ../programs/files/command_line_32.asm

section .data

8.3. COMMAND LINE PARAMETERS

fmt_argc: db "Number of arguments: %d",
fmt_argv: db "Argument number: %3d,%s",
section .bss

argc: resd 1

argv: resd 1

section .text
extern printf
global main
main :

mov ecx, [esp+4]

mov edx, [esp+38]

mov [argc], ecx

mov [argv], edx

push dword [argc]
push fmt_argc
call printf

add esp, 8

mov ecx, [argc]
mov ebx, 0
print_argv:

push ecx

mov eax, [argv]

mov edx, [eax + 4xebx]
push edx

push ebx

push fmt_argv

call printf
add esp, 12
add ebx, 1

pop ecx

10,
10,

0
0

141

142 ROZDZIAL 8. FILE OPERATIONS

loop print_argv

ret

fulmanp@fulmanp-k2:~/assembler$ nasm -f elf command_line_32.asm -o command_line_32.0
fulmanp@fulmanp-k2:~/assembler$ gcc -m32 -o command_line_32 command_line_32.0
fulmanp@fulmanp-k2:~/assembler$./command_line_32 foo bar

Number of arguments: 3

Argument number: 0 ./command_line_32
Argument number: 1 foo
Argument number: 2 bar

Listing 8.3: ../programs/files/command_line_64.asm

section .data

fmt_argc: db "Number of arguments: %d", 10, O

fmt_argv: db "Argument number:.%3d,%s", 10, O

section .bss
argc: resq 1

argv: resq 1

section .text
extern printf
global main
main:
mov [argc], rdi
mov [argv], rsi
mov rsi, [argc]
mov rdi, fmt_argc
mov rax, O

call printf

8.4. AUXILIARY CODE

xXor

rcx, rcx

mov rcx, [argc]

mov rbx, 0

print_argv:

push rcx

mov rax, [argv]

mov rdx, [rax + 8xrbx]
mov rsi, rbx

mov rdi, fmt_argv

mov rax, O

call printf

add rbx, 1

pop rcx

loop print_argv

ret

143

fulmanp@fulmanp-k2:~/assembler$ nasm -f elf64 command_line_64.asm

-0 command_line_64.0

fulmanp@fulmanp-k2:~/assembler$ gcc -o command_line_64 command_line_64.0

fulmanp@fulmanp-k2:~/assembler$./command_line_64 foo bar

Number of arguments: 3

Argument number:

Argument number: 1 foo

Argument number: 2 bar

8.4 Auxiliary code

0 ./command_line_64

While working with files with numbers we can treat them as text or binary files. Text are more useful

for humans but binary are more handy for computers (and assemblers). To convert text file to binary

we can use simple C program.

Listing 8.4: ../programs/files/converter.c

144 ROZDZIAL 8. FILE OPERATIONS

#include <stdio.h>

int main(int argc, char *x argv){
double x;

FILE xfin , *xfout;

fin = stdin; //fopen(argv[1],” rt"”);
fout = stdout; //fopen(argv[2],” rt");

if (fin && fout){
if (!feof(fin))
while (1){
fscanf(fin, "%1f", &x);
if (feof (fin))
break ;
fwrite (&x , sizeof(double), 1, fout);

If we assume that we have source file converter_in.txt
65 66 67
then we can run our converter as showned below

fulmanp@fulmanp-k2:~/assembler$ cat converter_in.txt | ./converter > converter_out.txt
fulmanp@fulmanp-k2:~/assembler$ xxd converter_out.txt

0000000: 0000 0000 0040 5040 0000 0000 0080 5040 @PQ...... pe

0000010: 0000 0000 00cO 5040 ..., PQ

The result is a binary file with 24 bytes:
e Bytes 0-7: 0000 0000 0040 5040 represents 64-bit value 6.500000e+01,
e Bytes 8-15: 0000 0000 0080 5040 represents 64-bit value 6.600000e+-01,
e Bytes 16-23: 0000 0000 00c0O 5040 represents 64-bit value 6.700000e+01.

Now we can read easily such a file directly in our assembler.

8.5. RECORDS 145

8.5 Records

Need examples... See: http://mirror.easyname.at/nongnu//pgubook/ProgrammingGroundUp-1-0-books:
pdf, chapter 6

8.6 Excercises

8.6.1 Excercise

Write a program similar to program from excercise 7.6.1 (listing 7.6) for calculating a dot product

of two fixed size vectors (of floating points components) but data should be read from a file.

http://mirror.easyname.at/nongnu//pgubook/ProgrammingGroundUp-1-0-booksize.pdf
http://mirror.easyname.at/nongnu//pgubook/ProgrammingGroundUp-1-0-booksize.pdf

ROZDZIAY,

MMX

9.1 Introduction

The one think we can say about MMX (Multi-Media eXtensions) is that this is not a multipurposes
technology. Being more precisely, the set of instruction is very specyfic and is optimized for special type
of applications — MMX is useles in other types of programms. For example among 24* instructions
defined by MMX there are only three, very specific types of multiplication represented by PMADDWD,
PMULHW, PMULLW. Reasons for that a very well explained in [5].

The definition of MMX technology resulted from a joint effort between Intel’s microprocessor
architects and software developers. A wide range of software applications was analyzed, including
graphics, MPEG video, music synthesis, speech compression, speech recognition, image processing,
games, video conferencing and more. These applications were broken down to identify the most
compute-intensive routines, which were then analyzed in details using advanced computer-aided
engineering tools. The results of this extensive analysis showed many common, fundamental charac-

teristics across these diverse software categories. The key attributes of these applications were:
e Small integer data types (for example: 8-bit graphics pixels, 16-bit audio samples)
e Small, highly repetitive loops
e Frequent multiplies and accumulates

e Compute-intensive algorithms

*57 taking into account all variants: for example there is PADD mnemonic with three different sufixes — B,
W and D, so we have different mnemonic and sometimes different opcodes for the same mnemonic.

147

148 ROZDZIAL 9. MMX

e Highly parallel operations

MMX technology is designed as a set of basic, general purpose integer instructions that can be easily
applied to the needs of the wide diversity of multimedia and communications applications'. The

highlights of the technology are

Single Instruction, Multiple Data (SIMD) technique

Eight 64-bit wide MMX registers

Four new data types

24 new instructions

9.2 Single Instruction, Multiple Data (SIMD) technique

According to Flynn's taxonomy SIMD (Single instruction, multiple data) is one of basic compu-
ter architectures. It describes computers with multiple processing elements that perform the same

operation on multiple data points simultaneously.

sourcel: a3 a2 al a0
source2: | b3 | b2 | bl | Dbo
e
+(0)+ +(0)+ +(0)+ +(0o)+
| | I I
a3 o b3 a2 o b2 al o bl a0 o b0

Notice that we have different arguments (a0-a3 and b0-b3)

but the same operation o.

Thus, such machines exploit data level parallelism, but not concurrency: there are simultaneous (pa-
rallel) computations, but only a single process (instruction) at a given moment. SIMD is particularly
applicable to common tasks like adjusting the contrast in a digital image or adjusting the volume of

digital audio. Modern CPU designs include SIMD instructions in order to improve the performance of

tGenerality of this approach is, in my opinion, questionable. For example, MMX support packed doubleword
type but either it’s impossible to implement dot product on 4-byte integers (very, very possible) or I dont’t know
how to do it (much less possible).

9.3. EIGHT 64-BIT WIDE MMX REGISTERS 149

multimedia use. MMX technology uses the single instruction, multiple data technique for performing
arithmetic and logical operations on bytes, words, or doublewords packed into MMX registers. For
example, the PADDSW instruction adds 4 signed word integers from one source operand to 4 signed

word integers in a second source operand and stores 4 word integer results in a destination operand.

9.3 Eight 64-bit wide MMX registers

The MMX register set consists of eight 64-bit registers, that are used to perform calculations on the
MMX packed integer data types (see next section to read about new data types). What is worth
to note is that MMX registers are not a new and separate set of registers. As it was mentioned in
chapter 7 the MMX and FPU instructions share state because the MMX registers are aliased to the

x87 FPU data registers. The most frequently explanation for this design choice are [9]

e MMX had to substantially improve the performance of multimedia, communications, and other

numeric intensive applications

e MMX had to be kept independent of the current microarchitectures, so that it would scale
easily with future advanced microarchitecture techniques and higher processor frequencies in

future Intel processors.

e MMX processors had to retain backwards compatibility with non-MMX processors. Software

must run without modification on a processor with MMX technology.

e They had to ensure the coexistence of of existing applications and new applications using MMX

technology.

This last point is important. Modern processors and operating systems can run multiple applications
simultaneously. New applications which used the new MMX instructions had to be able to multitask
with any other applications. This put some constraints on the MMX technology definition. They
couldn’t create a new MMX state or mode (in other words, no new registers) because then operating
systems would have needed to be moditfied to take care of these new additions. The main technique for
maintaining compatibility of MMX technology was to "hide” it inside the existing floating-point state
and registers (current operating systems and applications are designed to work with the floating-point
state). An operating system doesn’t need to know if MMX technology is present, since it's hidden in
the floating-point state. Applications have to check for the presence of MMX technology, and if it's

built into the processor they use the new instructions.

150 ROZDZIAL 9. MMX

Saying the truth, explanation as mentioned above does not convince me. Notice that SSE in-
struction set (see chapter 10), which is floating point equivalent of MMX, introduced a physicaly
new set of registers. Backward compatibility was an Intel’s excuse for inconvinients they gave to
programmers. The truth was that with such a design goals a new technology was introduced at the

lowest cost.

9.4 New data types

MMX technology introduced the following 64-bit data types to the |A-32 architecture:

64-bit packed byte integers — eight packed bytes (eight 8-bit integers)

64-bit packed word integers — four packed words (four 16-bit integers)

64-bit packed doubleword integers — two packed doublewords (two 32-bit integers)

64-bit quadword — one quadword

When performing computer arithmetic, an operation may result in an out-of-range condition,
where the true result cannot be represented in the destination format. The MMX technology provides

three ways of handling out-of-range conditions:

Wraparound arithmetic With wraparound arithmetic, a true out-of-range result is truncated
(that is, the carry or overflow bit is ignored and only the least significant bits of the result are
returned to the destination). Wraparound arithmetic is suitable for applications that control the
range of operands to prevent out-of-range results. If the range of operands is not controlled,
however, wraparound arithmetic can lead to large errors. For example, adding two large signed

numbers can cause positive overflow and produce a negative result.

Signed saturation arithmetic With signed saturation arithmetic, out-of-range results are limi-
ted to the representable range of signed integers for the integer size being operated on. For
example, if positive overflow occurs when operating on signed word integers, the result is " sa-
turated” to 7FFFH, which is the largest positive integer that can be represented in 16 bits; if

negative overflow occurs, the result is saturated to 8000H.

Unsigned saturation arithmetic With unsigned saturation arithmetic, out-of-range results are

limited to the representable range of unsigned integers for the integer size. So, positive overflow

9.5. NEW INSTRUCTIONS 151

when operating on unsigned byte integers results in FFH being returned and negative overflow

results in 00H being returned.

Saturation arithmetic provides an answer for many overflow situations. For example, in color cal-
culations, saturation causes a color to remain pure black or pure white without allowing inversion.
It also prevents wraparound artifacts from entering into computations when range checking of so-
urce operands it not used. MMX instructions do not indicate overflow or underflow occurrence by

generating exceptions or setting flags in the EFLAGS register.

9.5 New instructions
Generaly speaking MMX introduced 24 new instructions, grouped into the following categories:

Data transfer

Arithmetic

e Comparison

Conversion

Unpacking

Logical

e Shift

Empty MMX state instruction (EMMS)

Bellow we show few examples of MMX instructions to give a brief overview of the ideas behind them.

9.5.1 Add packed integers with PADDW

This example shows a packed add word with wrap around.

a3 | a2 | al | aO=FFFFh| movq mmO, [edx]
b3 | b2 | b1 | b0=0003h| movq mml, [esi]
a3 + b3 | a2 + b2 | al + bl | a0 + bO=| paddw mmO, mml

| | | 0002h |

152 ROZDZIAL 9. MMX

It performs four additions of the eight, 16-bit elements, with each addition independent of the others
and in parallel. In this case, the rightmost result exceeds the maximum value representable in 16-bits
thus it wraps around. FFFFh + 0003h would be a 17-bit result of value 10002. The 17th bit is lost

because of wrap around, so the result is 0002.

9.5.2 Multiply and Add Packed Integers with PMADDWD

This example shows the instruction used for multiply-accumulate operations, which is fundamental

to many algorithms based on matrix (vectors) multiplication.

a3 | a2 | al | a0 | movq mm0, [edx]
b3 | b2 | b1 | b0 | movq mml, [esi]
a3 * b3 + a2 * b2 | al * bl + a0 * b0 | praddwd mmO, mml

PMADDWD multiplies the individual signed words of the destination operand (first operand) by the
corresponding signed words of the source operand (second operand), producing temporary signed,
doubleword results. The adjacent doubleword results are then summed and stored in the destination
operand. For example, the corresponding low-order words (15-0) and (31-16) in the source (b0 and
b1) and destination (a0 and al) operands are multiplied by one another and the doubleword results

are added together and stored in the low doubleword of the destination register (31-0).

9.5.3 Compare packed signed integers for greater than with PCMPGTW

PCMPGTW performs a signed compare for the greater value of the packed word integers in the
destination operand (first operand) and the source operand (second operand). If a data element in
the destination operand is greater than the corresponding date element in the source operand, the

corresponding data element in the destination operand is set to all 1s; otherwise, it is set to all Os.

1 I 4 | 5 | 7 I movq mmO, [edx]
2 | 3 | 6 | 7 I movq mml, [esi]
0000h | FFFFh | 0000h | 0000h | pcmpgtw mmO, mml

9.5.4 Pack with signed saturation with PACKSSWB

Converts packed signed word integers into packed signed byte integers (PACKSSWB), using satu-

ration to handle overflow conditions. Converts 4 packed signed word integers from the destination

9.6. EXAMPLES 153

Instruction Extension Description

PMADDWD mm, mm/m64 MMX Multiply the packed words in mm by the packed
words in mm/m64, add adjacent doubleword re-
sults, and store in mm.
PMADDWD xmml, xmm2/m128 SSE2 Multiply the packed word integers in xmm1 by
the packed word integers in xmm?2/m128, add
adjacent doubleword results, and store in xmm]1.
VPMADDWD xmml, xmm2, xmm3/m128 AVX Multiply the packed word integers in xmm2 by
the packed word integers in xmm3/m128, add
adjacent doubleword results, and store in xmm1.
VPMADDWD ymml, ymm2, ymm3/m256 AVX2 Multiply the packed word integers in ymm2 by
the packed word integers in ymm3/m256, add
adjacent doubleword results, and store in ymm1.

Tabela 9.1: PMADDWD variants

operand (first operand) and 4 signed word integers from the source operand (second operand) into

8 packed signed byte integers and stores the result in the destination operand.

a3 I a2 | al | a0 I movq mmO, [edx]
b3 | b2 | b1l | b0 | movq mml, [esi]
b3’ b2’ |b1’ |b0’ |a3’ |a2’ |al’ |a0’ | packsswb mmO, mml

If a signed word integer value is beyond the range of a signed byte integer (that is, greater than 7FH
for a positive integer or greater than 80H for a negative integer), the saturated signed byte integer
value of 7Fh or 80h, respectively, is stored in the destination.

Notice that althought we are talking now about MMX instructions all of them are also a part of

further extensions like SSE or AVX. For example PMADDWD has variants described in the table 9.1.

9.6 Examples
On the listing 9.1 usage of the instructions from section 9.5 is presented.

Listing 9.1: .. /programs/mmx/mmx_basic_example_64.asm

section .data
vecl: dw 65534, 2, 65534, 4
vec2: dw 1, 65534, 3, 4
65535, 0, 1, 8 ; results of paddw

154 ROZDZIAL 9. MMX

; 65534 = 1111 1111 1111 1110 (2) = —2(U2 16— bit)

; -2, —4, —6, 16 ; results of pmaddwd — partial
; —6, 10 ; results of pmaddwd — final

; 0, 65535, 0, 0 ; results of pcmpgtw

; 65534 = 1111 1111 1111 1110 (2) = —2(U2 16— bit)

; 1111 1110 (2) = —2(U2 8- bit)
; 0..x56..0 1111 1110 (2) = 254(U2 64— bit)

; or

; 1..x56..1 1111 1110 (2) = —2(U2 64— bit)
;=22 =241 -2 34 ; packsswb

; but display

; =22 -2414 3 =2

, because of calling convention

fmt2: db "Result: %6d4,,%64", 10, O
fmt4: db "Result: %6d4,,%6d,,.%64,,%464", 10, O
fmt8: db "Result: %64,,%6d,.%64,,%6d,,%6d,, %64, %6d,,%64", 10, O
section .text
extern printf
global main
main :
movq mm0, [vecl]

paddw mmO, [vec2] ; Add Packed Integers

call printf_4

movq mm0, [vecl]

pmaddwd mm0, [vec2] ; Multiply and Add Packed Integers

call printf_2

movq mm0, [vecl]

pcmpgtw mm0, [vec2] ; Compare Packed Signed Integers for Greater Than

call printf_4

9.6. EXAMPLES

movq

mm0, [vecl]

packsswb mmQ, [vec2]

call

ret

printf_2:
xor
movd

mov

psrlq

xor
movd

mov

mov
mov
call

ret

printf_4:
xor

or

movq
and

mov

psrlq

movq
and
mov

psrlq

movq

printf_8

rax, rax

eax, mm0

rsi, rax
mm0, 32
rax, rax

eax, mm0

rdx , rax
rdi, fmt2
rax, O
printf
rbx , rbx
rbx , OFFFFh
rax , mmO
rax, rbx
rsi, rax
mm0, 16
rax , mmO
rax, rbx
rdx, rax
mm0, 16
rax , mmO

’

Pack with Signed Saturation

155

156

and

mov

psrlq

movq
and

mov

mov
mov
call

ret

printf_8:

xXor

movq
and
cbw
cwde
cdqe
mov

psrlq

movq
and
cbw
cwde
cdqe
mov

psrlq

movq
and
cbw
cwde
cdqe

mov

rax, rbx
rcx, rax
mm0, 16
rax , mmO
rax, rbx
rg , rax
rdi, fmt4
rax, O
printf
rbx , rbx
rbx , OFFh
rax , mm0
rax, rbx
rsi, rax
mm0, 8
rax , mmO
rax, rbx
rdx , rax
mm0, 8
rax , mmO
rax, rbx
rcx, rax

ROZDZIAL 9. MMX

9.6.

EXAMPLES

psrlq mm0,
movq rax,
and rax,
cbw

cwde

cdqe

mov r8,

psrlq mm0,
movq rax,
and rax,
cbw

cwde

cdqe

mov r9,

psrlq mm0,

mmO0

rbx

rax

mmO0

rbx

rax

; End of registers — stack part begins

; Now args are from right to left

movq
and
cbw
cwde
cdqe
push

psrlq

movq
and
cbw
cwde
cdqe
push

psrlq

mov(q

and

rax,

rax,

rax

mmO,

rax,

rax,

rax

mmoO,

rax,

rax,

mm0

rbx

mm0

rbx

mm0

rbx

157

158 ROZDZIAL 9. MMX

cbw
cwde
cdqe
push rax

psrlq mm0, 8

mov rdi, fmt8
mov rax, 0
call printf
add rsp, 24

ret

fulmanp@fulmanp-k2:~/assembler$ nasm -f elf64 mmx_basic_example_64.asm -o mmx_basic_examp
fulmanp@fulmanp-k2:~/assembler$ gcc -o mmx_basic_example_64 mmx_basic_example_64.0

fulmanp@fulmanp-k2:~/assembler$./mmx_basic_example_64

Result: 65535, o, 1, 8

Result: -6, 10

Result: 0, 655635, 0, 0

Result: -2, 2, -2, 4, 1, 4, 3, -2

0.7 Excercise

Write a program calculating a dot product of two vector (of 16-bit integers) of fixed size.

9.7.1 Solution

Taking into account everything we know about MMX it is not possible to write with MMX equivalent
of the code 7.6 from chapter 7 or this equivalen would be very impractical. That's why MMX
implementation of dot product would be ,tuned” for MMX instruction set and works only for 16-bit

integers.

../programs/mmzx/dot_product_mmx_32.asm

section .data

fmt_t: db "MMX=%d,_rest=%d4d", 10, O

fmt_p_.mmx: db "partial,result of_ mmx,part%3d4", 10, 0

9.7. EXCERCISE

db "partialjresultof non mmx, part,%3d", 10, 0

db "final_result %34", 10, O

fmt_p:
fmt_f:
vecl: dw 1, 2,
vec2: dw 18, 17,
; 18, 34,
res: dd 0
section .text
extern printf
global main
main:
mov edx, vecl
mov esi, vec?2
mov ecx, 10
mov ebx, ecx
and ebx, 3
shr ecx, 2
push edx
push ecx
push ebx
push ecx
push fmt_t
call printf
add esp, 12
pop ecx
pop edx
loop-mmx :
movq mm0, [edx]

pmaddwd mmoO,

movd

eax,

mmO0

’

3, 4, 5, 6, 7, 8, 9,10

16, 15, 14, 13, 12, 11, 10, 9
48, 60, 70, 78, 84, 88, 90, 90 ; results of mul.

final result — should be 660

ecx = the number of 16— bit integers

Copy ecx to ebx

We are going to take four 16— bit integers at once
so we need the number of integers left (remainder
of division ecx/4) i.e. ebx = ebx % 4

Division by 4 — integer part of division: ecx/4

Print integer part and remainder

; Copy four 16— bit integers into MMO register

[esi]

159

160

psrlg mm0, 32

movd edi, mm0
add eax, edi

add [res], eax
add edx, 8 ;
add esi, 8

push esi ;
push edx

push ecx

push ebx

push eax

push fmt_p_mmx
call printf

add esp, 8

pop ebx

pop ecx

pop edx

pop esi

loop loop_mmx

cmp ebx, 0
je end_nonmmx_part
mov ecx, ebx

loop_nonmmx :

Xxor eax, eax
push edx ;
mov ax, [edx]

imul word [esi] ;
add [res], eax
pop edx

add edx, 2

add esi, 2

push esi
edx

push

push ecx

Save EDX to prevent

Four 16— bit integers = 4 x 2 byte = 8 byte

Print partial result of MMX part

; if ebx = 0 then jump end_nonmmx_part

it from destruction by IMUL

Result is in DX:AX

; Print partial result of non MMX part

ROZDZIAL 9. MMX

9.7. EXCERCISE 161

push eax
push fmt_p
call printf
add esp, 8

pop ecx
pop edx
pop esi

loop loop_nonmmx

end_nonmmx_part:

push dword [res] ; Print final result
push fmt_f
call printf

add esp, 8

Exit
mov eax, O ; Exit code, O=normal
ret ; Main returns to operating system

. End of the code

fulmanp@fulmanp-k2:~/assembler$ nasm -f elf dot_product_mmx_32.asm -o dot_product_mmx_32.
fulmanp@fulmanp-k2:~/assembler$ gcc -m32 -o dot_product_mmx_32 dot_product_mmx_32.0
fulmanp@fulmanp-k2:~/assembler$./dot_product_mmx_32

MMX=2, rest=2

partial result of mmx part 160

partial result of mmx part 320

partial result of non mmx part 90

partial result of non mmx part 90

final result 660

There is no difference between 32-bit and 64-bit code; the following code for simplicity focus only

on MMX part.

../programs/mmx/dot_product_mmx_64.asm

section .data

162

vecl: dw

vec2: dw

; 9,16,21,24,25,24,21,16 ;

dd 0
fmt: db

res:

section

extern

global

main :

mov

mov

mov

loop-mmx :
movq
pmaddwd
movd
psrlq
movd
add
add
add
add

loop

mov
mov
mov
call

ret

1, 2, 3, 4, 5,6, 7,8

9, 8, 7, 6, 5, 4, 3,2

results of mul.
result — should be 159

10, 0

; final

"Result:_ %3d",

ROZDZIAL 9. MMX

.text

printf

main

rex, 2 ; Integer part of division: len(vecl)/4
; For simplicity we assume no fractional part

rll, vecl

ri2, vec2

mmO0, [rll]

mm0, [r12]

eax, mm0

mm0, 32

ebx, mm0

eax, ebx

[res], eax

rl1l1, 8
r12, 8
loop_mmx
rsi, [res]
rdi, fmt
rax, O
printf

fulmanp@fulmanp-k2:~/assembler$ nasm -f elf64 dot_product_mmx_64.asm -o dot_product_mmx_6

fulmanp@fulmanp-k2:~/assembler$ gcc —o dot_product_mmx_64 dot_product_mmx_64.0

9.7. EXCERCISE 163

fulmanp@fulmanp-k2:~/assembler$./dot_product_mmx_64

Result: 156

Better solution (faster) of this excercise could be found in [7]. To verify if it's realy better, reader

could use RDTS instruction — see chapter 11.

ROZDZIAY,

10.1 Streaming SIMD Extensions

SSE

Like MMX is tuned for working with bytes or words (8 or 16-bit integers) the SSE (Streaming SIMD

Extensions) is tuned for working with single-precision floating-point values.

10.2 Example

Let's take a look into simple SSE instructions example.

../programs/sse/sse_example_01_64.asm

global _start

section .data
fmt: db "%6.3f,%6.3f,%6.3f,%6.3f", 10, O
vecl: dd 1.2, 3.4, 5.6, 7.8
vec2: dd 8.7, 6.5, 4.3, 2.1
;. mulps 10.44, 22.1, 24.08, 16.38
; addps 19.14, 28.6, 28.38, 18.48

section .bss

; packed single—precision floating—point values

align 16 ; Need by fxsave because: "The destination operand [of FXSAVE]

;, contains the first byte of the memory image, and it must
; be aligned on a 16—byte boundary. A misaligned destination

; operand will result in a general—protection (#GP) exception

165

166 ROZDZIAL 10.

; being generated (or in some cases, an alignment check
; exception [#AC]).”
fxsave_area: resb 512 ; free space for fxsave structure
flttmp : resq 1 ; temporary value for conversion from single
; to double precision floating—point number

section .text

extern printf
global main
main :

; Move Unaligned Packed Single—Precision Floating—Point Values
movups xmm0, [vecl]
call print_xmm
movups xmml, [vec2]

; Multiply Packed Single—Precision Floating—Point Values
mulps xmm0, xmml
call print_xmm

; Add Packed Single—Precision Floating—Point Values
addps xmm0, xmml

call print_xmm

ret

print_xmm :
fxsave [fxsave_area]
; get first 4 bytes from 160—175 bytes of FXSAVE area to get
; first single—precision floating—point number from xmm0 register
fld dword [fxsave_area + 160]
fstp qword [flttmp]
movsd xmm0, [flttmp]
;, get next 4 bytes
fld dword [fxsave_area + 164]
fstp qword [flttmp]
movsd xmml, [flttmp]
fld dword [fxsave_area + 168]
fstp qword [flttmp]

movsd xmm2, [flttmp]

SSE

10.3. EXCERCISE 167

fld dword [fxsave_area + 172]
fstp qword [flttmp]

movsd xmm3, [flttmp]

mov rdi, fmt

mov rax, 4

call printf

fxrstor [fxsave_area]

ret

fulmanp@fulmanp-k2:~/assembler$ nasm -f elf64 sse_example_01_64.asm -o sse_example_01_64.
fulmanp@fulmanp-k2:~/assembler$ gcc -o sse_example_01_64 sse_example_01_64.0
fulmanp@fulmanp-k2:~/assembler$./sse_example_01_64

1.200 3.400 5.600 7.800

10.440 22.100 24.080 16.380

19.140 28.600 28.380 18.480

10.3 Excercise

Write a program calculating a dot product of two vectors (of floating points) of fixed size.

Solution

../programs/sse/dot_product_sse_32.asm

section .data

fmt_t: db "SSE=%d,_rest=%d", 10, O

fmt_p_sse: db "partial,result on,sse.%8.3f.,%8.3f,%8.3f,%8.3f", 10, O

fmt_p: db "partial,result,ony,fpu,%8.3f", 10, O

fmt_f_sse: db "final_ resultgongsse, %8.3f %8.3f, %8.3f,%8.3f", 10, 0O

fmt_f: db "final_result_ %8.3f", 10, O

vecl: dd 1.0, 20, 3.0, 40, 50, 6.0, 7.0, 8.0, 9.0, 10.0

vec2: dd 18.0, 17.0, 16.0, 15.0, 14.0, 13.0, 12.0, 11.0, 10.0, 9.0
results of mul

; 18.0, 34.0, 48.0, 60.0, 70.0, 78.0, 84.0, 88.0, 90.0, 90.0

res: dd 0.0 ; final result — should be 660.0

section .bss

168

ROZDZIAL 10. SSE

flttmp: resq 1
buf_p: resd 4
buf_s: resd 4
section .text
extern printf
global main
main:
mov edx, vecl
mov esi, vec2
mov ecx, 10 ; ecx = the number of 32— bit floating—point (FP) values
mov ebx, ecx ; Copy ecx to ebx
and ebx, 3 ; We are going to take four 32—bit FP at once so we
; need the number of FP left (remainder of division ecx/4)
; i.e. ebx = ebx % 4
shr ecx, 2 ; Division by 4 — integer part of division: ecx/4
push edx ; Print integer part and remainder
push ecx
push ebx
push ecx
push fmt_t
call printf
add esp, 12
pop ecx
pop edx

Xorps xmm7, xmm7

loop_sse:
movups xmm0, [edx] ; Copy four 32—bit floating—point values from
; vector 1 into XMMO register.
movups xmml, [esi] ; Copy four 32—bit floating—point values from

; vector 2 into XMMI register.

10.3. EXCERCISE

mulps xmm0, xmml ;

addps xmm7, xmmO ;
add edx, 16 ;
add esi, 16

movups [buf_p], xmmO

movups [buf_s], xmm7

push edx
push ecx

; Print partial

; The contents of the XMM registers are printed,
left which

; the right to the
; (from the left

; Fourth argument

fld dword [buf_p]
fstp qword [flttmp]
push dword [flttmp+4]
push dword [flttmp]

; Third argument
fld dword [buf_p+4]
fstp qword [flttmp]
push dword [flttmp+4]
push dword [flttmp]

; Second argument

fld dword [buf_p+8]
fstp qword [flttmp]
push dword [flttmp+4]
push dword [flttmp]

; First argument
fld dword [buf_p+12]
fstp qword [flttmp]
push dword [flttmp+4]
push dword [flttmp]
push fmt_p_sse
call printf
add esp, 36

; Print accumulated sum

Multiply of the four packed single—precision

floating—point values.

Add to final four 32— bit floating—point values

Four 32— bit

floats = 4 x 4 byte =

; Write back the result of partial

16 byte

multiplication

;. Write back the result of accumulated sum

’

’

result of SSE part

to the right).

Convert 32— bit to 64— bit via 80— bits

64 bit
64 bit

floating point (bottom)

floating point (top)

Convert 32— bit to 64— bit via 80— bits

64 bit
64 bit

floating point (bottom)

floating point (top)

Convert 32— bit to 64— bit via 80— bits

64 bit
64 bit

floating point (bottom)
floating point (top)

Convert 32— bit to 64— bit via 80— bits

64 bit
64 bit

floating point (bottom)

floating point (top)

FPU

FPU

FPU

FPU

so the order (direction)

stack

stack

stack

stack

169

is from

is a reverse order of the components in our vectors

170

; Fourth argument

fld dword [buf_s] ;
fstp qword [flttmp]
push dword [flttmp+4] ;
push dword [flttmp] ;
; Third argument
fld dword [buf_s+4] ;
fstp qword [flttmp]
push dword [flttmp+4] ;
push dword [flttmp] ;

; Second argument

fld dword [buf_s+8] ;

fstp qword [flttmp]

push dword [flttmp+4] ;

push dword [flttmp] ;
; First argument

fld dword [buf_s+12] ;

fstp qword [flttmp]

push dword [flttmp+4] ;

push dword [flttmp] ;

push fmt_f_sse

call printf

add esp, 36

pop ecx

pop edx

;loop loop_sse ; Only the

; with loop

dec ecx

jnz loop_sse

fldz

cmp ebx, 0
je end_nonsse_part
mov ecx, ecx
loop_nonsse:

fld dword [edx + ecx x* 4]

fmul dword [esi + ecx x 4]

Convert 32— bit to 64— bit via 80— bits

64 bit floating point (bottom)
64 bit floating point (top)
Convert 32— bit to 64— bit via 80— bits

64 bit
64 bit

floating point (bottom)

floating point (top)

Convert 32— bit to 64— bit via 80— bits

64 bit
64 bit

floating point (bottom)

floating point (top)

Convert 32— bit to 64— bit via 80— bits

64 bit
64 bit

floating point (bottom)

floating point (top)

offsets of —128 to +127 are allowed

instruction.

; Set FPU to 0

ROZDZIAL 10. SSE

FPU

FPU

FPU

FPU

; if ebx = 0 then jump end_nonsse_part

; Load component of vector 1

; Multiply by component of vector 2

stack

stack

stack

stack

10.3. EXCERCISE

fadd

fst

push
push
push

push
push

push
call

add

pop
pop
pop

inc

cmp

jne

qword [flttmp]

ecx
edx

esi

dword [flttmp +4]
dword [flttmp]

fmt_p
printf
esp, 12

esi

edx

ecx

ecx

ecx, ebx

loop_nonsse

end_nonsse_part:

;. Combine final

fld
fld
fld
fld
fadd
fadd
fadd
fadd

fst

push

dword
dword
dword

dword

[buf_s]
[buf_s+4]
[buf_s+8]
[buf_s+12]

qword [flttmp]

dword [flttmp +4]

result from SSE

’

’

Increase partial fpu result

Floating load makes 80—bit, store as 64— bit

Save registers before printf call to protect

them from destruction

64 bit floating point (bottom)

(top)

64 bit floating point
Address of format string
Call C function

Pop stack 7«4 bytes

Restore registers after printf call

Increase value of the counter

While condition test

do—while loop end

and FPU part

Load component from XMM register bits 0— 31
Load component from XMM register bits 32— 63
Load component from XMM register bits 64— 95
Load component from XMM register bits 96—127

Floating load makes 80—bit, store as 64— bit

64 bit floating point (bottom)

171

172 ROZDZIAL 10. SSE

push dword [flttmp] ; 64 bit floating point (top)
push fmt_f ; Address of format string
call printf ; Call C function

add esp, 12 ; Pop stack 7«4 bytes

Exit

mov eax, O ; Exit code, O=normal

ret ; Main returns to operating system
; End of the code

fulmanp@fulmanp-k2:~/assembler$ nasm -f elf dot_product_sse_32.asm -o dot_product_sse_32.
fulmanp@fulmanp-k2:~/assembler$ gcc -m32 -o dot_product_sse_32 dot_product_sse_32.0
fulmanp@fulmanp-k2:~/assembler$./dot_product_sse_32

SSE=2, rest=2

partial result on sse 60.000 48.000 34.000 18.000

final result on sse 60.000 48.000 34.000 18.000

partial result on sse 88.000 84.000 78.000 70.000

final result on sse 148.000 132.000 112.000 88.000

partial result on fpu 90.000

partial result on fpu 180.000

final result 660.000

When | was preparing this program | encountered the following problem

fulmanp@fulmanp-k2:~/assembler$ nasm -f elf dot_product_sse_32.asm -o dot_product_sse_32.

dot_product_sse_32.asm:96: error: short jump is out of range

Why? The SSE loop (starting at loop_sse:) is very long — there are many instructions. Intel docu-
mentation about LOOP instruction (eg. [4], page 891) says

Each time the LOORP instruction is executed, the count register is decremented, then checked
for 0. If the count is 0, the loop is terminated and program execution continues with the instruction
following the LOOP instruction. If the count is not zero, a near jump is performed to the destination

(target) operand, which is presumably the instruction at the beginning of the loop.

10.3. EXCERCISE 173

The target instruction is specified with a relative offset (a signed offset relative to the current
value of the instruction pointer in the IP/EIP/RIP register). This offset is generally specified as a label
in assembly code, but at the machine code level, it is encoded as a signed, 8-bit immediate value,
which is added to the instruction pointer. Offsets of -128 to +127 are allowed with this instruction.

That's why code

label:
loop-body

loop label
works fine, but code

label:
loop-body
more-code-added

loop label

does not work and error " short jump out of range" appears. The solution is obvious. Because the
LOOP instruction can’t jump to a distance of more than 127 bytes we need to change code to use

DEC ECX with JNZ instructions. For example

mov ecx, 10
label:
loop-body

loop label
become

mov ecx, 10
label:

loop-body

more—-code-added

dec ecx

jnz loop

ROZDZIAY,

RDTS — measure what is

unmeasurable

11.1 Read time-stamp counter

The Time Stamp Counter (TSC) is a 64-bit register which counts the number of cycles since reset.
The instruction RDTSC returns the TSC in EDX:EAX. In x86-64 mode, RDTSC also clears the higher
32 bits of RAX. Its opcode is OF 31.

Notice that the time-stamp counter measures "cycles” and not "time". For example, two bilions
cycles on a 2 GHz processor is equivalent to one second of real time, while the same number of cycles
on a 1 GHz processor is two second of real time. Thus, comparing cycle counts only makes sense on
processors of the same speed. To compare processors of different speeds, the cycle counts should be
converted into time units

c

§=—

f

where s is time in seconds, ¢ is the number of cycles and f is the frequency.

11.2 Usage of the RDTS

Prevent from out-of-order execution

Out-of-order execution (see) is a nice feature but impede any optimization activities. We may

encounter this problem trying to measure time. That is why the obvious approach showned on listing

175

176 ROZDZIAL 11. RDTS - MEASURE WHAT IS UNMEASURABLE

Speed [GHz] Max time for 32-bit counter [s] Max time for 64-bit counter [days| ([years])

0.5 8.5899 427008 (1169.88)

1 4.2949 213504 (584.942)
1.5 2.8633 142336 (389.962)
2 2.1474 106752 (292.471)
2.5 1.7179 85401 (233.977)
3 1.4316 71168 (194.981)
1 a b

Tabela 11.1: Maximum TSC value and real time for selected frequencies.

11.1 is not good.

Listing 11.1: .. /programs/rdtsc/01.asm

rdtsc ; Read time stamp counter

mov [time], eax ; Copy counter into variable
; Do something

rdtsc ; Read time stamp

sub eax, [time] ; Find the difference

Instead of this we have to follow the pattern showned on listing 11.2 where CPUID instruction is used.
CPUID can be executed at any privilege level to serialize instruction execution. Serializing instruction
execution guarantees that any modifications to flags, registers, and memory for previous instructions
are completed before the next instruction is fetched and executed. ([4], CPUID description). See also

[4], " Serializing Instructions” in chapter 8, volume 3A.

Listing 11.2: .. /programs/rdtsc/02.asm

cpuid ; Force all previous instructions to complete
rdtsc ;, Read time stamp counter
mov [time], eax ; Copy counter into variable

; Do something

cpuid ; Wait for [something] to complete before RDTSC
rdtsc ;, Read time stamp counter
sub eax, [time] ; Find the difference

Now the RDTSC instructions will be guaranteed to complete at the desired time in the execution
stream. Of course this approach take into account the cycles it takes for the CPUID instruction to
complete, so the programmer must subtract this from the recorded number of cycles. A must know

think about the CPUID instruction is that it can take longer to complete the first couple of times it

11.2. USAGE OF THE RDTS 177

is called. Thus, the best policy is to call the instruction three times, measure the elapsed time on the

third call, then subtract this measurement from all future measurements|8].

Caching data nad code
11.2.1 Usage example

Now we will try measure execution time (number of cycles) for base arithmetical instructions for

integers.

../programs/rdtsc/rdtsc_ex_02.asm

section .data
fmt: db "subtime=Y%d,_ add=%d sub=%d_ mul=%d, div=%d", 10, O
X : dd 6

y: dd 3
section .bss
subtime: resd 1
t_add: resd 1
t_sub: resd 1
t_mul: resd 1
t_div: resd 1
section .text
extern printf
global main

main :

; Make three warm—up passes through the timing routine to make

; sure that the CPUID and RDTSC instruction are ready

cpuid
rdtsc

mov [subtime], eax

178 ROZDZIAL 11. RDTS - MEASURE WHAT IS UNMEASURABLE

cpuid
rdtsc
sub eax, [subtime]

mov [subtime], eax

cpuid
rdtsc
mov [subtime], eax
cpuid
rdtsc
sub eax, [subtime]

mov [subtime], eax

cpuid
rdtsc
mov [subtime], eax
cpuid
rdtsc
sub eax, [subtime]

mov [subtime], eax

; Only the last value of subtime is kept
; subtime should now represent the overhead cost of the

; MOV and CPUID instructions

; ADD

mov ecx, [x]

mov ebx, [y]
cpuid

rdtsc

mov [t_add], eax
add ecx, ebx
cpuid

rdtsc

sub eax, [t_add]

mov [t_add], eax

;. SUB

mov ecx, [Xx]

11.2. USAGE OF THE RDTS

mov ebx, [y]
cpuid

rdtsc

mov [t_sub], eax
sub ecx, ebx
cpuid

rdtsc

sub eax, [t_sub]

mov [t_sub], eax

; MUL
mov ecx, [x]
mov ebx, [y]
cpuid
rdtsc
mov [t_mul], eax
imul ecx, ebx
cpuid
rdtsc
sub eax, [t_mul]

mov [t_mul], eax

; DIV
xor edx, edx
mov ecx, [x]
mov ebx, [y]
cpuid
rdtsc
mov [t_div], eax

mov eax, ecXx

; idiv ebx ; If this line

; B

; No idea why?!

cpuid
rdtsc
sub eax, [t_div]

mov [t_div], eax

; Print results

is uncommented have

d w obliczeniach zmiennoprzecinkowych (core dumped)

179

180

push
push
push
push
push
push
call

add

Exit
mov

ret

dword [t_div]
dword [t_mul]
dword [t_sub]
dword [t_add]

dword [subtime]

fmt
printf
esp, 24
eax, O

; End of the code

ROZDZIAL 11. RDTS - MEASURE WHAT IS UNMEASURABLE

; Address of format string

Call C function

; Pop stack 7«4 bytes

Exit code, O=normal

; Main returns to operating system

fulmanp@fulmanp-k2

:"/assembler$ nasm -f elf rdtsc_ex_02.asm -o rdtsc_ex_02.0

fulmanp@fulmanp-k2:~/assembler$ gcc -m32 rdtsc_ex_02.0 -o rdtsc_ex_02

fulmanp@fulmanp-k2:~/assembler$./rdtsc_ex_02

subtime=259294, add=2660 sub=5562 mul=2848 div=43133

subtime=9274,
subtime=7803,

subtime=8735,

add=2228 sub=2160 mul=2119 div=1904
add=2390 sub=2403 mul=2268 div=1782
add=2403 sub=2363 mul=2362 div=1687

subtime=7655, add=2241 sub=2200 mul=2444 div=1755

subtime=11313, add=2403 sub=2349 mul=2336 div=1782

subtime=7587, add=2241 sub=2228 mul=2228 div=1728

subtime=14823, add=2943 sub=3038 mul=3159 div=2309

The same test for floating point numbers.

../programs/rdtsc/rdtsc_ex_01.asm

section

.data

fmt: db "subtime=%d,_ ,add=%d sub=%d_ mul=%d, div=%d4d", 10, O

11.2. USAGE OF THE RDTS

X dq 6.0
y: dq 3.0

section .bss

subtime: resd 1

t_add: resd 1

t_sub: resd 1
t_mul: resd 1
t_div: resd 1

section .text

extern printf

global main

main :

; Make three warm—up passes through the timing routine to make

sure that the CPUID and RDTSC instruction are ready

’

cpuid
rdtsc
mov [subtime], eax
cpuid
rdtsc
sub eax, [subtime]

mov [subtime], eax

cpuid
rdtsc
mov [subtime], eax
cpuid
rdtsc
sub eax, [subtime]

mov [subtime], eax

cpuid

181

182 ROZDZIAL 11. RDTS - MEASURE WHAT IS UNMEASURABLE

rdtsc
mov [subtime], eax
cpuid
rdtsc
sub eax, [subtime]

mov [subtime], eax

; Only the last value of subtime is kept
subtime should now represent the overhead cost of the

7

; MOV and CPUID instructions

; ADD
fld gword [x]
fld qword [y]
cpuid
rdtsc
mov [t_add], eax
fadd
cpuid
rdtsc
sub eax, [t_add]

mov [t_add], eax

. SUB
fld gword [x]
fld qword [y]
cpuid
rdtsc
mov [t_sub], eax
fsub
cpuid
rdtsc
sub eax, [t_sub]

mov [t_sub], eax

; MUL
fld gqword [x]
fld qword [y]
cpuid

11.2. USAGE OF THE RDTS

rdtsc

mov [t_-mul], eax
fmul

cpuid

rdtsc

sub eax, [t_mul]

mov [t_mul], eax

; DIV

fld qword [x]
fld gword [y]
cpuid

rdtsc

mov [t_div], eax
fdiv

cpuid

rdtsc

sub eax, [t_div]

mov [t_div], eax

: Print results

push dword [t_div]
push dword [t_mul]
push dword [t_sub]
push dword [t_add]
push dword [subtime]
push fmt

call printf

add esp, 24

;o Exit
mov eax, O
ret

: End of the code

Address of format string
Call C function
Pop stack 7«4 bytes

Exit code, O=normal

Main returns to operating system

183

fulmanp@fulmanp-k2:~/assembler$ nasm -f elf rdtsc_ex_Ol.asm -o rdtsc_ex_0l.o

fulmanp@fulmanp-k2:~/assembler$ gcc -m32 rdtsc_ex_01l.o0 -o rdtsc_ex_01

184 ROZDZIAL 11. RDTS - MEASURE WHAT IS UNMEASURABLE

fulmanp@fulmanp-k2:~/assembler$./rdtsc_ex_01
subtime=29133, add=28849 sub=29592 mul=29862 div=29255

subtime=111618, add=96714 sub=95675 mul=38502 div=29592
subtime=8788, add=6277 sub=6372 mul=124983 div=102708
subtime=7439, add=5697 sub=5724 mul=6561 div=6750
subtime=10058, add=7776 sub=8154 mul=8667 div=8316
subtime=7533, add=5845 sub=5845 mul=5468 div=5697
subtime=13217, add=7722 sub=7749 mul=7776 div=10004
subtime=9963, add=5845 sub=5926 mul=8316 div=5724

In both cases the results are difficult to interpretation. | will appreciate any help in this field. This
explanation seems to be reliable [10]: The Time Stamp Counter has, until recently, been an excellent
high-resolution, low-overhead way of getting CPU timing information. With the advent of multi-
core/hyper-threaded CPUs, systems with multiple CPUs, and hibernating operating systems, the
TSC cannot be relied on to provide accurate results — unless great care is taken to correct the
possible flaws: rate of tick and whether all cores (processors) have identical values in their time-
keeping registers. There is no promise that the timestamp counters of multiple CPUs on a single
motherboard will be synchronized. In such cases, programmers can only get reliable results by locking
their code to a single CPU. Even then, the CPU speed may change due to power-saving measures
taken by the OS or BIOS, or the system may be hibernated and later resumed (resetting the TSC).
In those latter cases, to stay relevant, the counter must be recalibrated periodically (according to the
time resolution the application requires).

On an older machine (Asus Eee PC 900HD) we have reproducible results for both integerers

fulmanp@fulmanp-eee-900hd: ~/assembler$ nasm -f elf rdtsc_ex_02.asm -o rdtsc_ex_02.0
fulmanp@fulmanp-eee-900hd: ~/assembler$ gcc rdtsc_ex_02.0 -o rdtsc_ex_02
fulmanp@fulmanp-eee-900hd: ~/assembler$./rdtsc_ex_02

subtime=214, add=213 sub=213 mul=214 div=166

11.2. USAGE OF THE RDTS 185

subtime=214, add=213 sub=213 mul=214 div=166
and floating point numbers

fulmanp@fulmanp-eee-900hd: “/assembler$ nasm -f elf rdtsc_ex_Ol.asm -o rdtsc_ex_0l.o
fulmanp@fulmanp-eee-900hd: ~/assembler$ gcc rdtsc_ex_0l.o0 -o rdtsc_ex_01
fulmanp@fulmanp-eee-900hd: ~/assembler$./rdtsc_ex_01

subtime=214, add=213 sub=213 mul=215 div=247

subtime=214, add=213 sub=213 mul=215 div=247

11.2.2 Excercise

Use RDTSC instruction to compare dot product programs from previous sections.

Solution

ROZDZIAY,

Inline assembler

Every time we want to get code like

../programs/inline/idea_01.c

// Some C
// language code

int foo_g;

int fooFunction(int foo, int bar) {

// Assembler part inserted here

// Some C
// language code

we have to ralize of the three fundamental problems

1. How to "insert” assembler code to high level language.

2. How to pass variables to an assembler or the same in other words: how to enable that low

level language — assembler — access variables created by high levele languages — C/C++. This

problem could be divided into two subproblems according to the type of variable

e global variable,

187

188 ROZDZIAL 12. INLINE ASSEMBLER

e |ocal variable.

3. How to return something from low level to high level language.

12.1 First fundamental problem

Assembler part in C high level language begins keyword asm® followed by left bracket (and end by
right bracket)

../programs/inline/idea_02.c

// C code

asm (<assembler routine>);

// C code

<assembler routne> ::= {"_ assembler instrction,"}x

This basic form could be replaced by more sophisticated (extended)

Listing 12.1: .. /programs/inline/idea_03.c

// C code
asm (<assembler routine> : output : input : modify);

// C code

where the data that will be used as input, output for the asm are specified as well as which registers
or memory will be modified. No particular input/output/modify field is compulsory. Regardless of the
form, every single assembler instruction have to be followed by new line sequence

n. Add example for code without new-line char You can also use the keyword volatilel after asm

which prevent an assembler instruction from being deleted, moved significantly, or combined.

../programs/inline/idea_03_02.c

// C code
asm volatile (<assembler routine> : output : input : modify);

// C code

*Or __asm__ in case of conflict with asm.
tOr __volatile__ in case of conflict with volatile.

12.2. SECOND FUNDAMENTAL PROBLEM 189

12.2 Second fundamental problem

12.2.1 Global variables
Basic example of inline assembler could be as follow

../programs/inline/example_01.c

#include <stdio.h>

int foo = 0;

void incFoo () {

asm (

"mov$foo,%rax\n"

"add $1, (rax)\n"

);

int main() {

incFoo (),
incFoo ()
incFoo (),

printf("Variable \"foo\" after three calls: %d\n", foo);

return 0;

compiled and run in usual way

fulmanp@fulmanp-k2:~/assembler$ gcc example_0l.c -o example_O01
fulmanp@fulmanp-k2:~/assembler$./example_01

Variable "foo" after three calls: 3

This code shows how to get an access to global high level language's variable from inline assembler
— simply use the name of this variable in your assembler code. Other thing is assembler syntax — as

you can notice, AT&T syntax is used®. For global variables we can set register constraints on variable

YAT&T syntax is default but switch to Intel syntax is also possible.

190 ROZDZIAL 12. INLINE ASSEMBLER

declaration or simply speaking tie variables to certain hardware registers. This is done at the variable
declaration. The following example ties the variable foo to register RBX throughout the life of the

program

../programs/inline/idea_04.c

int register foo asm("rax")=0;

../programs/inline /example_02.c

#include <stdio.h>
register int foo asm("ebx");
void incFoo () {
asm (
"mov,%hebx ,%eax\n"

"add_ $1, (heax)\n"

"mov%heax ,hebx\n"

{

int main (

)

foo = 0;

incFoo ();
)

incFoo ();
incFoo ();

printf("Variable \"foo\",after three calls: %d\n", foo);

return 0;

When the variable type is not matched with the type of target hardware register, you will receive a
compilation error notice. Need example for this. After a variable is tied to a specific register, it is not

possible to use another register to hold the same variable. Need example for this.

12.2.2 Local variables

The most intuitive would be to use global variables approach.

12.2. SECOND FUNDAMENTAL PROBLEM 191

../programs/inline/example_07.c

#include <stdio.h>

void incFoo () {

int foo = 0;

asm (
"mov$foo,%rax\n"

"add $1, (%irax)\n"

int main() {

incFoo ();
incFoo ();
incFoo ();

printf("Variableu\"foo\"uafteruthreeucalls:U%d\n", foo);

return 0;

Unfortunately this is not a corret solution

fulmanp@fulmanp-k2:~/assembler$ gcc -m32 example_07.c -o example_07
example_07.c: In function ‘main’:
example_07.c:20:56: error: ‘foo’ undeclared (first use in this function)

example_07.c:20:56: note: each undeclared identifier is reported only once for each funct

Access to local variables uses extended form of inline assembler (see listing 12.1). The output
and input fields must consist of an operand constraint string followed by a C expression enclosed in
parentheses. The output operand constraints must be preceded by an = which indicates that it is
an output. There may be multiple outputs, inputs, and modified registers. Each "entry” should be
separated by commas (,) and there should be no more than 10 entries total. The operand constraint

string may either contain the full register name, or an abbreviation.

192 ROZDZIAL 12.

Letter Meaning

%orax | Yeax

%rbx | %ebx

%orex | Yoecx

%ordx / %edx

Yorsi | Yoesi

%rdi / %edi

constant

memory
orr Allows GCC to assign (select) register.
Variable is located in memory or register.
long long variable (64bit) is loaded to EAX:EDX.
Reuse previously ”binded” variable.

=00 5 Hgmalol oe

o
—_
w©

Tabela 12.1: The operand constraint.

Let's study the first example.

Listing 12.2: ../programs/inline/example_04.c

INLINE ASSEMBLER

#include <stdio.h>

void foo() {

int bar;

printf("Value before assembler section: bar=%d\n", bar);
asm (
"movl,$1,%0"
// output
"r" (bar) // input
// modify
)

printf("Value after assembler section: bar=%d\n", bar);

int main() {

foo ();

return O;

12.2. SECOND FUNDAMENTAL PROBLEM 193

Notice that
e Variable bar is a type of input variable and is binded to register selected by GCC.

e Notation %0 is used to refer to the first variable defined in assembler part — in this case bar is

the first variable.

e The result

fulmanp@fulmanp-k2:~/assembler$./example_04
Value before assembler section: bar=0

Value after assembler section: bar=0

is not exactly what we wanted to get; the variable bar is defined as input and that's why

cannot be changed.
Next example

Listing 12.3: ../programs/inline/example_05.c

#include <stdio.h>

void foo() {
int barO, barl;

printf("Value before assembler section: bar0=%d, bari=%d\n",bar0, barl);
asm (
"movl, $1,%1\n"
"movly%1l,%0\n"
"=r" (bar0) // output
"r" (barl) // input
// modify
)i

printf("Value after assembler section: bar0=%d, bari=%d\n",6bar0, barl);

int main() {

foo ();

194 ROZDZIAL 12. INLINE ASSEMBLER

return O0;

and result of running it

fulmanp@fulmanp-k2:~/assembler$ gcc -m32 example_05.c
fulmanp@fulmanp-k2:~/assembler$./a.out
Value before assembler section: bar0=-601972, bar1=-144661459

Value after assembler section: bar0O=1, bar1=-144661459

shows some aspects of input and output type variables. As we can see, variable declared in input

section could be used in assembly code: sequence

movl $1, %1
movl %1, %0

copy value 1 to GCC selected register number 1 (%1) which represents variable bar1 and then copy
value from register %1 to GCC selected register number 0 which represents variable bar0. Final
result is correct, so we conclude that intermediate use of register %1 was correct — the value 1 was
transferred to bar0 via barl — but we cannot see any changes in barl because it wasn't declared
as "viewable" (output) type.

Now we can present fixed code from listing 12.2 and 12.3.

Listing 12.4: ../programs/inline/example_04_fix.c

#include <stdio.h>

void foo () {

int bar;

printf("Value_ before assembler section: bar=%d\n",h bar);
asm (
"movl_$1,%0"
"=r" (bar) // output
// input
// modify
);

printf("Value after assembler section: bar=%d\n", bar);

12.2. SECOND FUNDAMENTAL PROBLEM 195

int main() {

foo ();

return 0;

fulmanp@fulmanp-k2:~/assembler$./example_04_fix
Value before assembler section: bar=0

Value after assembler section: bar=1

../programs/inline/example_05_fix.c

#include <stdio.h>

void foo () {
int barO, barl;

printf("Value_before assembler section: bar0=%d, bari=%d\n", bar0, barl);
asm (
"movl,$1,%1\n"
"movly%1l,%0\n"
"=r" (bar0), "=r" (barl) // output
// input
// modify
);

printf("Value after assemblersection: bar0=%d, bari=%d\n", bar0, barl);
int main() {
foo ();

return 0;

196 ROZDZIAL 12. INLINE ASSEMBLER

fulmanp@fulmanp-k2:~/assembler$./example_05_fix
Value before assembler section: bar0=-3987300, bar1=-144612307

Value after assembler section: bar0=1, baril=1

Next example shows two more things.

../programs/inline /example_06.c

#include <stdio.h>

int weightedSum (fool, weightl, foo2, weight2) {

int sum;

asm (
"mullyy%%ebx\n"
"movlyyuhheax, hhecx\n"
"movl, %3, ukh%heax\n"
"mull,,%4\n"
"addl, %%ecx, %%eax\n"
"movlyyuhheax, %0\n"
:"=d" (sum) // output
// input: eax:=fool, ebx=weightl, ?=foo2, ?=weight2
:"a" (fool), "b" (weightl), "r" (foo2), "r" (weight2)

// modify
)i

return sum;

int main() {
int res = weightedSum(3,5,7,11);
printf("Result,=,%d\n",res);

return O0;

You may have noticed that registers are now prefixed with %% rather than %. This is necessary when
using the output/input/modify fields because register aliases (numbers from %0 to %9) based on the
extra fields can also be used. Intention of this code should be clear: we want to calculate weighted

sum of two variables. Unfortunately the code doesn't work

fulmanp@fulmanp-k2:~/assembler$./example_06

Result = 180

12.2. SECOND FUNDAMENTAL PROBLEM 197

Clobber list

Some instructions clobber some hardware registers. We have to list those registers in the clobber-list,
i.e. the modify field after the third : in the assembler code. This is to inform GCC that we will use
and modify them ourselves. So GCC will not assume that the values it loads into these registers
will be valid. We shoudn't list the input and output registers in this list. Because, GCC knows that
assembler uses them (because they are specified explicitly as constraints). If the instructions use any
other registers, implicitly or explicitly (and the registers are not present either in input or in the
output constraint list), then those registers have to be specified in the clobbered list.

In our code clobbered register is ECX. We use it, for example in line
movl YY%eax, %%ecx
That is why we have to inform GCC about that in modify field — see fixed version of this code.

../programs/inline/example_06_fix.c

#include <stdio.h>

int weightedSum (fool, weightl, foo2, weight2) {
int sum;
asm (
"mull,,%%ebx\n"
"movl, ,%%eax, %%ecx\n"
"movl, ,%3,u%%eax\n"
"mull,,%4\n"
"addl, ,%%ecx , %%eax\n"

"movl,y%heax, ,%0\n"

:"=d" (sum) // output
:"a" (fool), "b" (weightl), "r" (foo2), "r" (weight2) // input: eax:=fool, ehx=weightl
"ecx" // modify

);

return sum;

int main() {
int res = weightedSum(3,5,7,11);
printf("Result,=,%d\n",res);

return O0;

198 ROZDZIAL 12. INLINE ASSEMBLER

fulmanp@fulmanp-k2:~/assembler$./example_06_fix

Result = 92

12.3 Third fundamental problem

This problem was solved in previous sections. As we have seen, we can return value using variables

binded to registers declared in output section of inline code.

ROZDZIAY,

Introduction

In the beginning, Intel created the 8086
and its first 16-bit microprocessor.

And Intel said, Let there be x86: and there
was x86.

And Intel saw the x86, that it was good.

http://www.maximumpc.com/article/features/cpu_

retrospective_the_life_and_times_x86

13.1 Assembly language

Because this book is about assembly languages, let's try to understand what an assebly language is.

Simply speaking

Definition 13.1. an assembly language is a low-level programming language for a computer,
microcontroller, or other programmable device, in which each statement corresponds to a single

machine code instruction.

According to this definition it is not surprising, that each assembly language is specific to a
particular computer architecture which stays in contrast to most high-level programming languages,
which are generally portable across multiple systems. Assembly language is converted into executable
machine code by a utility program referred to as an assembler; the conversion process is referred to

as assembly, or assembling the code. There is usually a one-to-one correspondence between simple

199

http://www.maximumpc.com/article/features/cpu_retrospective_the_life_and_times_x86
http://www.maximumpc.com/article/features/cpu_retrospective_the_life_and_times_x86

200 ROZDZIAYL 13. INTRODUCTION

assembly statements and machine language instructions. In everyday language an assembly languages
is very often refered as assembler, but it's good to distinguish between these concepts.
The most natural language for every processor is a sequence or stream of bits. For example, the

instruction
10110000 01100001

tells an x86/1A-32 processor to move an immediate 8-bit value into a register. The binary code for
this instruction is 10110 followed by a 3-bit identifier for which register to use. The identifier for the
AL register is 000, so the following machine code loads the AL register with the data 01100001.
Although this type of language is most natural for computers, it is completelu useless for human.
This binary computer code can be made more human-readable by expressing it in hexadecimal as

follows
BO 61

Here, BO means Move a copy of the following value into AL, and 61 is a hexadecimal representation
of the value 01100001, which is 97 in decimal. A little bit beter but still far from perfection, mainly
because one number expressed many things like typ of operation (copy, 5 bits) and location (AL

register, 3 bits) in above example. The key idea behind assembly language is to
e separate all parts of instruction to make them independent from other,

e replace some binary sequences, like 10110, by something which is easier to remember or which

help human to figure out what are they represents.

Continuing our example, Intel assembly language provides the mnemonic MOV, which is an abbre-
viation of move, for instructions such as this, so the machine code above can be written as follows

in assembly language
MOV AL, 61h ; Load AL with 97 decimal (61 hex)

and this is much easier to read and to remember, even without an explanatory comment after the
semicolon. What is more important, in many cases the same mnemonic such as MOV may be used
for a family of related instructions even thought that are represented by different binary sequences.
For example the Intel uses opcode 10110000 (BO0) to copy an 8-bit value into the AL register, while
10110001 (B1) to move it into CL.

13.2. PRE-X86 AGE — HISTORICAL BACKGROUND 201

MOV AL, 1h ; Load AL with immediate value 1

MOV CL, 2h ; Load CL with immediate value 2

In each case, the MOV mnemonic is translated directly into an opcode by an assembler, and the
programmer does not have to know or remember which.

Each computer architecture has its own machine language. Computers differ in the number
and type of operations they support, in the different sizes and numbers of registers, and in the
representations of data in storage. While most general-purpose computers are able to carry out
essentially the same functionality, the ways they do so differ; the corresponding assembly languages

reflect these differences.

13.2 Pre-x86 age — historical background
e 1947: The transistor is invented at Bell Labs.

e 1965: Gordon Moore at Fairchild Semiconductor observes that the number of transistors on
a semiconductor chip doubles every year*. For microprocessors, it will double about every two

years for more than three decades.

e 1968: Gordon Moore, Robert Noyce and Andy Grove found Intel Corp. to make the business

of "INTegrated ELectronics.”

e 1969: Intel announces its first product, the world's first metal oxide semiconductor (MOS)

static RAM, the 1101. It signals the end of magnetic core memory.

e 1971: Intel launches the world’s first microprocessor, the 4-bit 4004, designed by Federico
Faggin. The 2,000-transistor chip is made for a Japanese calculator, but Intel calls it " a micro-

programmable computer on a chip.”

e 1972: Intel announces the 8-bit 8008 processor. Teenagers Bill Gates and Paul Allen try to

develop a programming language for the chip, but it is not powerful enough.

e 1974: Intel introduces the 8-bit 8080 processor, with 4,500 transistors and 10 times the per-

formance of its predecessor.

*ftp://download.intel.com/museum/Moores_Law/Articles-Press_Releases/Gordon_Moore_1965_
Article.pdf

ftp://download.intel.com/museum/Moores_Law/Articles-Press_Releases/Gordon_Moore_1965_Article.pdf
ftp://download.intel.com/museum/Moores_Law/Articles-Press_Releases/Gordon_Moore_1965_Article.pdf

202 ROZDZIAYL 13. INTRODUCTION

e 1975: The 8080 chip finds its first PC application in the Altair 8800, launching the PC revolu-
tion. Gates and Allen succeed in developing the Altair Basic language, which will later become

Microsoft Basic, for the 8080.

e 1976: The x86 architecture suffers a setback when Steve Jobs and Steve Wozniak introduce the
Apple Il computer using the 8-bit 6502 processor from MQOS Technology. PC maker Commodore

also uses the Intel competitor’s chip.

e 1978: Intel introduces the 16-bit 8086 microprocessor — a new age begins.

13.2.1 Intel 4004

The Japanese company Busicom had designed special purpose chipset for use in their Busicom 141-PF
calculator and commissioned Intel to develop it for production. However, Intel determined it was too
complex and would use non-standard packaging and so it was proposed that a new design produced
with standard 16-pin DIP packaging and reduced instruction set be developed. This resulted in the
4004, released by Intel Corporation in 1971, which was part of a family of chips, including ROM,
DRAM and serial to parallel shift register chips. The Intel 4004 was a 4-bit central processing unit
(CPU). It was the second complete CPU on one chip (only preceded by the TMS 1000), and also
the first commercially available (sold as a component) microprocessor.

Technical specifications.

e Approximately 2,300 transistors

e Maximum clock speed was 740 kHz

e Instruction cycle time: 10.8 us (8 clock cycles / instruction cycle)

e Instruction execution time 1 or 2 instruction cycles (10.8 or 21.6 us), 46300 to 92600 instruc-

tions per second

e Separate program and data storage. Contrary to Harvard architecture designs, however, which
use separate buses, the 4004, with its need to keep pin count down, used a single multiplexed
4-bit bus for transferring:

— 12-bit addresses

— 8-bit instructions

13.2. PRE-X86 AGE — HISTORICAL BACKGROUND 203

— 4-bit data words
e Instruction set contained 46 instructions (of which 41 were 8 bits wide and 5 were 16 bits wide)
e Register set contained 16 registers of 4 bits each
e Internal subroutine stack 3 levels deep.

If you want to know more... 13.1 (Harvard architecture). The term originated from the
Harvard Mark I computer, employed entirely separate memory systems to store instruc-
tions and data. The CPU fetched the next instruction and loaded or stored data simultaneously
and independently. This is in contrast to a Von Neumann architecture computer, in which both
instructions and data are stored in the same memory system and must be accessed in turn. The
true distinction of a Harvard machine is that instruction and data memory occupy different ad-
dress spaces. In other words, a memory address does not uniquely identify a storage location (as
it does in a Von Neumann machine); you also need to know the memory space (instruction or

data) to which the address belongs.

13.2.2 Intel 8008

Originally known as the 1201, the Intel 8008 chip — early byte-oriented microprocessor introduced in
April 1972 — was commissioned by Computer Terminal Corporation (CTC) to implement an instruction
set of their design for their Datapoint 2200 programmable terminal. Intel didn’t believe there really
was a significant market for a general-purpose microcomputer-on-a-chip — John Frassanito recalls
that "Bob Noyce said it was an intriguing idea, and that Intel could do it, but it would be a dumb
move. He said that if you have a computer chip, you can only sell one chip per computer, while
with memory, you can sell hundreds of chips per computer.”[2]. What's more, if Intel introduced
their own processor, they might be seen as a competitor, and their customers might look elsewhere
for memory. As the chip was delayed and did not meet CTC's performance goals, the 2200 ended
up using CTC's own TTL based CPU instead. An agreement permitted Intel to market the chip to
other customers after Seiko expressed an interest in using it for a calculator. Cooperation with CTC
explains the reason Intel to this day uses LSB/MSB byte order: because the Type 1 2200 used a serial
shift register memory, and that allowed propagating carries from LSB to MSB without requiring the
memory recirculate around to the previous byte.

Technical specifications.

204 ROZDZIAYL 13. INTRODUCTION

e 8-bit CPU with an external 14-bit address bus that could address 16KB of memory. The chip
(limited by its 18-pin DIP packaging) had a single 8-bit bus and required a significant amount

of external support logic. To verify

e Initial versions of the 8008 could work at clock frequencies up to 0.5 MHz, this was later

increased in the 8008-1 to a specified maximum of 0.8 MHz.
e Instructions took between 5 and 11 T-states where each T-state was 2 clock cycles.

e Register-register loads and ALU operations took 5T (20 us at 0.5 MHz), register-memory 8T
(32 ps), while calls and jumps (when taken) took 11 T-states (44 us).

e The 8008 was a little slower in terms of instructions per second (36,000 to 80,000 at 0.8 MHz)
than the 4-bit Intel 4004 and Intel 4040,[6] but the fact that the 8008 processed data eight bits
at a time and could access significantly more RAM still gave it a significant speed advantage

in most applications.

e The 8008 had 3,500 transistors.

13.2.3 Intel 8080

The Intel 8080 was the second 8-bit microprocessor designed and manufactured by Intel and was
released in April 1974. It was an extended and enhanced variant of the earlier 8008 design, with
assembly-language compatibility although without binary compatibility®. It used the same basic in-
struction set as the 8008 and added some handy 16-bit operations to the instruction set as well.
Larger 40-pin DIP packaging allowed to provide a 16-bit address bus and an 8-bit data bus.

Architecture details and technical specifications.
e With 16-bit address bus, the Intel 8080 allowing an access to 64 KiB of memory.

e The processor had seven 8-bit registers (A, B, C, D, E, H, and L) where A was the 8-bit
accumulator and the other six could be used as either byte-registers or as three 16-bit register
pairs (BC, DE, HL) depending on the particular instruction. Some instructions also enabled HL
to be used as a (limited) 16-bit accumulator, and a pseudoregister, M, could be used almost

anywhere that any other register could be used and referred to the memory address pointed to

tThis sentence is very important and emphasizes differences between assembler (assembly-language) and
binary code — the same assembler may result in different binary code.

13.2. PRE-X86 AGE — HISTORICAL BACKGROUND 205

by HL. It also had a 16-bit stack pointer to memory (replacing the 8008's internal stack), and

a 16-bit program counter.

e The processor maintains internal flag bits which show results of artithmetic and logical func-

tions. The flags are:

— sign — set 1 if result is negative,

— zero — set if the accumulator register is zero,

parity — set 1 if the number of 1 bits in the accumulator is even,

— carry — set if the last add operation resulted in a carry, or if the last subtraction operation

did not require a borrow,

— auxiliary carry — used for binary-coded decimal arithmetic.

The purpose of flag bits is that it simplify some operation — conditional branch instructions
could test the various flag status bits (set after last operation) and based on it decide to make

or not a jump. To better understand this please read section 1.5.

e All the Intel 8080’s instructions were encoded in a single byte (including register-numbers, but
excluding immediate data), for simplicity. Some of them were followed by one or two bytes
of data, which could be an immediate operand, a memory address, or a port number. Like
larger processors, it had automatic CALL and RET instructions for multi-level procedure calls
and returns (which could even be conditionally executed, like jumps) and instructions to save
and restore any 16-bit register-pair on the machine stack. There were also eight one-byte
call instructions (RST) for subroutines located at the fixed addresses 00h, 08h, 10h,...,38h.
These were intended to be supplied by external hardware in order to invoke a corresponding

interrupt-service routine, but were also often employed as fast system calls.

e Although the 8080 was generally an 8-bit processor, it also had limited abilities to perform
16-bit operations. For example any of the three 16-bit register pairs (BC, DE, HL) or SP could
be loaded with an immediate 16-bit value (using LXI), incremented or decremented (using INX

and DCX), or added to HL (using DAD).

206 ROZDZIAYL 13. INTRODUCTION

e The Intel 8080 provided a separate stack space. One of the bits in the processor state word
indicates that the processor is accessing data from the stack. Using this signal, it was possible

to implement a separate stack memory space. However, this feature was seldom used.

e The 8080 was manufactured in a silicon gate process using a minimum feature size of 6 um.

e Approximately 6,000 transistors were used and the die size was approximately 20 mm?.

e The initial specified clock frequency limit was 2 MHz with common instructions having execu-

tion times of 4, 5, 7, 10 or 11 cycles.

Influence on industry

Until the 8080 was introduced, computer systems were usually created by computer manufacturers
as the entire computer, including processor, terminals, and system software such as compilers and
operating system and all other stuff. The 8080 has sometimes been labeled " the first truly usable
microprocessor”, although earlier microprocessors were used for calculators and other applications.
The 8080 was actually designed for just about any application.

The 8080 and 8085 gave rise to the 8086, which was designed as a source compatible (although
not binary compatible) extension of the 8085. This design, in turn, later spawned the x86 family
of chips, the basis for most CPUs in use today. Many of the 8080's core machine instructions and
concepts, for example, registers named A, B, C and D, as well as many of the flags used to control
conditional jumps, are still in use in the widespread x86 platform. 8080 Assembler code can still be

directly translated into x86 instructions; all of its core elements are still present.
13.2.4 An early x86 age — accidental birth of a standard
e 1975: Intel sarted project iIAPX 432.
e 1978: Intel introduces the 16-bit 8086 microprocessor.
e 1979: Intel introduces a lower-cost version of the 8086, the 8088, with an 8-bit bus.
e 1980: Intel introduces the 8087 math co-processor.

e 1981: IBM picks the Intel 8088 to power its PC.

e 1982: IBM signs Advanced Micro Devices as second source to Intel for 8086 and 8088 micro-

processors.

13.2. PRE-X86 AGE — HISTORICAL BACKGROUND 207

In 1975 Intel started project iAPX 432 (short for intel Advanced Processor architecturet. This
project, if successfully implemented, would became a point in computer history when completely new
quality arise.

The preceding 8-bit microprocessors’' instruction sets were too primitive to support compiled
programs and large software systems. Intel now aimed to build a sophisticated complete system
in a few LSI chips, that was functionally equal to or better than the best 32-bit minicomputers
and mainframes requiring entire cabinets of older chips. This system would support multiprocessors,
modular expansion, fault tolerance, advanced operating systems, advanced programming languages,
very large applications, ultra reliability, and ultra security. Many advanced multitasking and memory
management features were implemented in hardware, leading to the design being referred to as a
Micromainframe. Because the 432 had no software compatibility with existing software the architects
had total freedom to do a novel design from scratch, using whatever techniques they guessed would be
best for large-scale systems and software. They applied fashionable computer science concepts from
universities, particularly capability machines, object-oriented programming, high-level CISC machines,
Ada, and densely encoded instructions. This ambitious mix of novel features made the chip larger and
more complex. The chip’'s complexity limited the clock speed and lengthened the design schedule.
Not far from the beginning of the project it became clear that it would take several years and many
engineers to design all this. Meanwhile, Intel urgently needed a simpler interim product to meet
the immediate competition from Motorola, Zilog, and National Semiconductor. So Intel began
a rushed project to design the 8086 as a low-risk incremental evolution from the 8080, using
a separate design team. The mass-market 8086 shipped i8. As it turned out, despite the fact of
substitutional nature of 8086, it was good enough to begin the IBM PC age. When introduced
(1981), the 432 ran many times slower than contemporary conventional microprocessor designs such
as the Motorola 68010 and Intel 80286. Slow, uncompatible with existing software and technicaly

very complicated — this is not a recipe for success.

13.2.5 Mid-x86 age — conquest of the market

e 1982: Intel introduces the 16-bit 80286 processor with 134,000 transistors.

e 1984: IBM develops its second-generation PC, the 80286-based PC-AT. The PC-AT running

MS-DQOS will become the de facto PC standard for almost 10 years.

¥This project was initially named the 8800, as next step beyond the existing Intel 8008 and 8080 micropro-
Cessors.

208

ROZDZIAYL 13. INTRODUCTION

1985: Intel exits the dynamic RAM business to focus on microprocessors, and it brings out the
80386 processor, a 32-bit chip with 275,000 transistors and the ability to run multiple programs

at once.
1986: Compaq Computer leapfrogs IBM with the introduction of an 80386-based PC.
1987: VIA Technologies is founded in Fremont, Calif., to sell x86 core logic chip sets.

1989: The 80486 is launched, with 1.2 million transistors and a built-in math co-processor.

Intel predicts the development of multicore processor chips some time after 2000.

Late 1980s: The complex instruction set computing (CISC) architecture of the x86 comes under
fire from the rival reduced instruction set computing (RISC) architectures of the Sun Sparc,
the IBM/Apple/Motorola PowerPC and the MIPS processors. Intel responds with its own RISC

processor, the i860.
1990: Compagq introduces the industry's first PC servers, running the 80486.

1993: The 3.1 million transistor, 66-MHz Pentium processor with superscalar technology is

introduced.

1994: AMD and Compaq form an alliance to power Compaq computers with Am486 micropro-

Cessors.

1995: The Pentium Pro, a RISC slayer, debuts with radical new features that allow instructions
to be anticipated and executed out of order. That, plus an extremely fast on-chip cache and

dual independent buses, enable big performance gains in some applications.

1997: Intel launches its 64-bit Epic processor technology. It also introduces the MMX Pentium

for digital signal processor applications, including graphics, audio and voice processing.
1998: Intel introduces the low-end Celeron processor.

1999: VIA acquires Cyrix Corp. and Centaur Technology, makers of x86 processors and x87

CO-processors.

2000: The Pentium 4 debuts with 42 million transistors.

13.3. AN OVERVIEW OF THE X86 ARCHITECTURE 209

13.2.6 Late-x86 age — stone age devices

2003: AMD introduces the x86-64, a 64-bit superset of the x86 instruction set.
e 2004: AMD demonstrates an x86 dual-core processor chip.
e 2005: Intel ships its first dual-core processor chip.

e 2005: Apple announces it will transition its Macintosh computers from PowerPCs made by

Freescale (formerly Motorola) and IBM to Intel's x86 family of processors.

e 2005: AMD files antitrust litigation charging that Intel abuses " monopoly” to exclude and limit

competition. (The case is still pending in 2008.)

e 2006: Dell Inc. announces it will offer AMD processor-based systems.

13.3 An overview of the x86 architecture

13.3.1 Basic properties of the architecture

tutu

13.3.2 Operating modes
Real mode

Real mode is an operating mode of 8086 and all later x86-compatible CPUs. Real mode is characte-

rized by
e a 20 bit segmented memory address space (only 1 MiB of memory can be addressed),
e direct software access to BIOS routines and peripheral hardware,
e lack of memory protection or multitasking at the hardware level.

All x86 CPUs compatible processors start up in real mode at power-on.

Protected mode

The Intel 80286, in addition to real mode, introduced to support protected mode, where

210 ROZDZIAYL 13. INTRODUCTION

e addressable physical memory was expanded to 16 MB and addressable virtual memory to 1

GB,
e provide protected memory, which prevents programs from corrupting one another.

The Intel 80386 introduced to support in protected mode for paging — a mechanism making it possible
to use paged virtual memory. This extension allows to develop many modern opeating systems like
Linux or Windows NT and in consequence the 386 architecture became the basis of all further
development in the x86 series.

Upon power-on, the processor initializes in real mode, and then begins executing instructions.
Operating system boot code may place the processor into the protected mode to enable more ad-
vanced features. The instruction set in protected mode is backward compatible with the one used in

real mode.

Virtual 8086 mode

The virtual 8086 mode is a sub-mode of operation in 32-bit protected mode. This is a hybrid operating
mode that allows real mode programs and operating systems to run under the control of a protected
mode supervisor operating system. This allows to running both protected mode programs and real
mode programs simultaneously. This mode is exclusively available for the 32-bit version of protected

mode; virtual 8086 mode does not exist in the 16-bit version of protected mode, or in long mode.

Long mode

The 32-bit address space of the x86 architecture was limiting its performance in applications requ-
iring large data sets. When designed a 32-bit address space would allow the processor to directly
address, unimaginably large in those days, data — 4 GiB, but relativeli fast this size was surpassed by
applications such as video processing and database engines. Using 64-bit addresses, one can directly
address 16 EiB (or 16 billion GiB) of data, although most 64-bit architectures don't support access to
the full 64-bit address space (AMDG64, for example, supports only 48 bits, split into 4 paging levels,
from a 64-bit address).

AMD developed the 64-bit extension of the 32-bit x86 architecture that is currently used in x86
processors, initially calling it x86-64, later renaming it AMDG64. The Opteron, Athlon 64, Turion 64,
and later Sempron families of processors use this architecture. The success of the AMD64 line of

processors coupled with the lukewarm reception of the |1A-64 architecture forced Intel to release its

13.3. AN OVERVIEW OF THE X86 ARCHITECTURE 211

own implementation of the AMD64 instruction set. This was the first time that a major extension of
the x86 architecture was initiated and originated by a manufacturer other than Intel. It was also the
first time that Intel accepted technology of this nature from an outside source.

Long mode is mostly an extension of the 32-bit instruction set, but unlike the 16 to 32-bit
transition, many instructions were dropped in the 64-bit mode. This does not affect actual binary
backward compatibility (which would execute legacy code in other modes that retain support for
those instructions), but it changes the way assembler and compilers for new code have to work.

Intel branded its implementation of AMD64 as EM64T, and later re-branded it Intel 64. In its
literature and product version names, Microsoft and Sun refer to AMDG64/Intel 64 collectively as
x64 in the Windows and Solaris operating systems respectively. Linux distributions refer to it either
as "x86-64", its variant "x86_64", or "amd64”. BSD systems use "amd64” while Mac OS X uses
"x86_64".

ROZDZIAY,

Registers

Computer Science is no more about
computers than astronomy is about

telescopes.

Edsger W. Dijkstra

The computer was born to solve problems

that did not exist before.

Bill Gates

14.1 General information

A processor register is a small amount of storage available as part of a CPU or other digital
processor. Registers are typically at the top of the memory hierarchy, and provide the fastest way to

access data*.

If you want to know more... 14.1 (Out-of-order execution). In computer engineering,
out-of-order execution (OoOE or OOE) is a paradigm to make use of instruction cycles that
would otherwise be wasted by a certain type of costly delay. In this paradigm, a processor executes

instructions in an order governed by the availability of input data, rather than by their original

*The term normally refers only to the group of registers that are directly encoded as part of an instruction,
as defined by the instruction set. However, modern high performance CPUs often have duplicates of these ”archi-
tectural registers” in order to improve performance via register renaming, allowing parallel and speculative
execution.

213

214 ROZDZIAYL 14. REGISTERS

order in a program. In doing so, the processor can avoid being idle while data is retrieved for
the next instruction in a program, processing instead the next instructions which are able to run
immediately. For instance, a processor may be able to execute hundreds of instructions while
a single load from main memory is in progress. Shorter instructions executed while the load is
outstanding will finish first, thus the instructions are finishing out of the original program order.

Ta cecha powoduje jednak, Ze mikroprocesor musi pamietac rzeczywistq kolejno$é (zwykle po-
siada wiele kopii rejestrow, niewidocznych dla programisty) i uwaktualniaé stan w oryginalnym
porzqdku, ale takze anulowaé (wycofywaé) zmiany, w przypadku gdy wystapil jakis blgd podczas
wykonywania wezesniejszej instrukcji. Iustracja dla hipotetycznego mikroprocesora z dwiema jed-

nostkam: wykonawczymi:

)
1]
)
+
N

'_h
1]

d + 2

Instrukcja nr 2 nie moze wykonac sie przed pierwszqg, bowiem jej arqgument zalezy od wyni-
ku wnstrukcyi 1., podobnie instrukcja 4. zalezy od 3. Bez zmiany kolejnosci procesor wykonatby
szeregowo 4 instrukcje w zatoZonym porzedku, wykorzystujec jednak tylko jedng jednostke wyko-

nawczq:

czas .

Jednak mozna wykonac rownolegle niezalezne od siebie instrukcje 1. i 3., nastepnie rowniez
réownolegle instrukcje 2. i 4. — w ten sposéb wykorzystane zostang obie jednostki wykonawcze,

takze czas wykonywania bedzie 2 razy mniejszy:

czas .

14.1. GENERAL INFORMATION 215

If you want to know more... 14.2 (Register renaming). In computer architecture, register
renaming refers to a technique used to avoid unnecessary serialization of program operations
imposed by the reuse of registers by those operations. Consider this piece of code running on an

out-of-order CPU

1. a=»>»
2. a=a+1
3. b=a
4. a=c
5. a=a+ 2
6. c =a

Instructions 1, 2, and 3 are independent of instructions 4, 5, and 6, but the processor cannot
finish 4 until 3 is done, because 3 would then write the wrong value. Fortunately, we can eliminate
this restriction by changing the names of some of the registers making this code possible to be

executed as out-of-order

1. a=b>»
2. a=a+1
3. b=a
4. d =c
b.d=d+ 2
6. c=d

or the same but more clearly

2. a=a+1 5.d=d+ 2

Now instructions 1, 2, and 8 can be executed in parallel with instructions 4, 5, and 6. When
possible, the compiler would detect the distinct instructions and try to assign them to a different

register. However, there is a finite number of register names that can be used in the assembly

216 ROZDZIAYL 14. REGISTERS

code. This is why many high performance CPUs have more physical registers than may be na-
med directly in the instruction set, so they rename registers in hardware to achieve additional

parallelism.

If you want to know more. .. 14.3 (Speculative execution). Speculative execution in compu-
ter systems is doing work, the result of which may not be needed. This performance optimization
technique is very often used in pipelined processors and other systems. The main idea is to do
work before it is known whether that work will be needed at all, so as to prevent a delay that
would have to be incurred by doing the work after it is known whether it is needed. If it turns
out the work wasn’t needed after all, the results are simply ignored. The target is to provide more
concurrency if extra resources are available. For instance, modern pipelined microprocessors use

speculative execution to reduce the cost of conditional branch instructions.

14.2 Categories of registers

The most coarse division of registers based on the number of bits they can hold. We have, for
example, a set of an "8-bit registers” or a "32-bit registers”. More precise classification based on

registrs’ content or instructions that operate on themf.

e User-accessible registers — registers to which a user have an access to freely read and wri-
te. The most common division of user-accessible registers is into data registers and address

registers.

— Data registers can hold various kind of data: numeric such as integer and floating-point,
characters, small bit arrays etc. In some older and low end CPUs, a special data register,

known as the accumulator, is used implicitly for many operations.

— Address registers hold addresses and are used by instructions that indirectly access main
memory (sometimes called primary memory when we consider the whole hierarchy of

computer’s memory)?.

e General purpose registers (GPRs) — can store both data and addresses, i.e., they are com-

bined data/address registers.

TPlease note that some registers belongs to more than one category.

¥Nothe that some processors contain registers that may only be used to hold an address or only to hold
numeric values (in some cases used as an index register whose value is added as an offset from some address);
others allow registers to hold either kind of quantity.

14.2. CATEGORIES OF REGISTERS 217

e Floating point registers (FPRs) — in many architectures dedicated registers to store floating

point numbers.

e Special purpose registers (SPRs) — hold program state; they usually include the program
counter (aka instruction pointer) and status register (aka processor status word (PSW)).
Processor status word is a register used as a vector of bits representing Boolean values to
store and control the results of operations and the state of the processor. Sometimes the
stack pointer is also included in this group. The very special kind of this type of registers
is an instruction register (IR). An instruction register stores the instruction currently being
executed or decoded. In simple processors each instruction to be executed is loaded into the
instruction register which holds it while it is decoded, prepared and finally executed, which can
take several steps. Some of the complicated processors use a pipeline of instruction registers
where each stage of the pipeline does part of the decoding, preparation or execution and then

passes it to the next stage for its step (see Instruction pipeline notes below).

e Control and status registers — there are three types: program counter, instruction registers

and processor status word.

e Vector registers hold data for vector processing done by SIMD instructions (Single Instruction,

Multiple Data).

e Embedded microprocessors can also have registers corresponding to specialized hardware ele-

ments.

If you want to know more... 14.4 (Instruction pipeline). An instruction pipeline is a
technique used to increase the number of instructions that can be executed by CPU in a unit
of time (refers as instruction throughput). Note, that pipelining does not reduce the time
to complete an instruction, but increases the number of instructions that can be
processed at once.

In this technique each instruction is split into a sequence of independent steps. Taking into

account e.g. the basic five-stage pipeline in a RISC machine the following steps are distinguished
e Instruction Fetch (IF),
e Instruction Decode and register fetch (ID),

e FExecute (EX),

218 ROZDZIAYL 14. REGISTERS

e Memory access (MEM),

e Register write back (WB).

Pipelining let the processor work on as many instructions as there are independent steps. This
approach is similar to an assembly line where many vehicles are build at once, rather than waiting
until one vehicle has passed through the whole line before admitting the next one. As the goal of
the assembly line is to keep each assembler productive at all times, pipelining seeks to use every
part of the processor busy with some instruction. Pipelining lets the computer’s cycle time be the
time of the slowest step, and ideally lets one instruction complete in every cycle.

Pipelining, among many benefits, leads also to problem known as a hazard. It arise because
a human programmer writing an assembly language program assumes the sequential-execution
model — model when each instruction completes before the next one begins. Unfortunately this
assumption is not true on a pipelined processor. Imagine the following two register instructions

to a hypothetical RISC processor that has the 5, aforementioned, steps

1. Add R1 to R2.

2. Move R2 to R3.

Instruction 1 would be fetched at time t1 and its execution would be complete at ts. Instruction
2 would be fetched at ta and would be complete at tg. The first instruction might deposit the
incremented number into R2 as its fifth step (register write back) at t5. But the second instruction
might get the number from R2 (to move to R3) in its second step at time t3. The problem is that
the first instruction would not have incremented the value by then. Such a situation where the
expected result is problematic is a hazard. A human programmer writing in a compiled language
might not have these concerns, as the compiler could be designed to generate machine code that

avoids hazards.

14.3 x86 registers

14.3.1 16-bit architecture

The original Intel 8086 and 8088 have fourteen 16-bit registers.

14.3. X86 REGISTERS 219

e Four of them (AX, BX, CX, DX) are general-purpose registers (GPRs)®. Each can be divided
into two parts accessed independently as two separate bytes — for example high byte (or MSB
— most significant byte) of AX can be accessed as AH while low byte (or LSB — least significant

byte) as AL. Despite the generality of those registers, all of them have " predefined” meaning

— AX is an accumulator register used in arithmetic operations.

BX is a base register used as a pointer to data (located in segment register DS, when in

segmented mode).

— CX is a counter register used in shift/rotate instructions and loops.

DX is a data register used in arithmetic operations and |/O operations.

e There are two pointer registers: SP (stack pointer register) which points to the top of the stack

and BP (stack base pointer register used to point to the base of the stack.

e Two registers (S| and DI) are for array indexing. Sl is a source index register used as a pointer
to a source in stream operations. DI is a destination index register used as a pointer to a

destination in stream operations.
e Four segment registers (SS, CS, DS and ES) are used to form a memory address.

— SS — stack sgment — pointer to the stack.
— CS — code segment — pointer to the code.
— DS — data segment — pointer to the data.
— ES — extra segment — pointer to extra data ('E’ stands for 'Extra’).

e The FLAGS register used as processor status word contains — see table 14.1 and 14.2 for

description of the meaning of a bits.

e The instruction pointer (IP) points to the next instruction that will be fetched from memory
and then executed (if no branching is done). This register cannot be directly accessed (read or

write) by a program.

§ Although each may have an additional purpose: for example only CX can be used as a counter with the loop
instruction.

20 ROZDZIAL 14. REGISTERS

N

Bit Abbreviation Description Category

1 1 Reserved

3 0 Reserved

5 0 Reserved

7 Sign flag Status

9 Interrupt enable flag Control

11 OF Overflow flag Status

14 NT Nested task flag (286+ only), always 1 on 8086 System
and 186

Tabela 14.1: Intel x86 FLAGS register.

AF Carry of Binary Code Decimal (BCD) numbers arithmetic operations.

DF Stream direction. If set, string operations will decrement their pointer
rather than incrementing it, reading memory backwards.

IOPL I/O Privilege Level of the current process.

NT Controls chaining of interrupts. Set if the current process is linked to
the next process.

SE Set if the result of an operation is negative.

ZF Set if the result of an operation is Zero (0).

Tabela 14.2: Meaning of the Intel x86 FLAGS register.

14.3. X86 REGISTERS 221

14.3.2 32-bit architecture

The 80386 extended the set of registers to 32 bits while retaining all of the 16-bit and 8-bit names
that were available in 16-bit mode. The new extended registers are denoted by adding an E (for
Extended) prefix; thus the core eight 32-bit registers are named EAX, EBX, ECX, EDX, ESI, EDI,
EBP, and ESP. The original 8-bit and 16-bit register names map into the least significant portion of

the 32-bit registers. There are two new segment registers

e FS — F segment — pointer to more extra data ('F' comes after 'E’ used to denote 16-bit extra

segment register ES).
e GS — G segment — pointer to still more extra data ('G’ comes after 'F').

What is important, all segment regiters were still 16-bit. The low half of the extenden 32-bit flag
register EFLAGS stay unchanged and is identical to FLAGS. New bits are introduced in high half of
the flag register — see table 14.3 and 14.4 for description of the meaning of a bits. Above mentioned
extension was natural and was not connected with any significant improvements in CPU architecture.

Later, 32-bit architecture were upgraded with new functionality significantly improve the performance.

1. With the 80486 a floating-point processing unit (FPU) was added, with eight 80-bit wide
registers: ST(0) to ST(7)Y.

2. With the Pentium MMX, eight 64-bit MMX integer registers were added (MMX0 to MMX?7,

which share lower bits with the 80-bit-wide FPU stack).

3. With the Pentium Ill, an eight 128-bit SSE floating point registers (XMMO0 to XMM7) were
added. There is also a new 32-bit control/status register, MXCSR. Please read chapter 10 for

more details.

4. In March 2008 Intel proposed Advanced Vector Extensions (AVX) instruction set which was
first supported by Intel with the Sandy Bridge processor shipping in Q1 2011 and later on
by AMD with the Bulldozer processor shipping in Q3 2011. AVX provides new features, new
instructions and a new coding scheme. With this also a new set of registers were introduced:
the width of the SIMD register file is increased from 128 bits to 256 bits, and renamed from
XMMO-XMM7 to YMMO-YMM?7 (an existig SSE registers (XMM0-XMM?7) are mapped to
lower 128-bits of YMMO-YMMTY registers). Please read chapter 7?7 for more details.

TBeing more precisely, registers: ST(0) to ST(7) works as an ”aliases” for directly unaccessible registers RO-R7.

222 ROZDZIAL 14. REGISTERS

Bit Abbreviation Description Category

16 RF Resume Flag (3864 only) System

17 VM Virtual-8086 Mode (386+ only) System

18 AC Alignment Check (486SX+ only) System

19 VIF Virtual Interrupt Flag (Pentium-+) System

20 VIP Virtual Interrupt Pending flag (Pentium+) System

21 ID Identification Flag (Pentium+) System
Tabela 14.3: Intel x86 EFLAGS register (high half). Those bits that are not listed are reserved
by Intel.

Flag Set when...

AC Alignment Check. Set if alignment checking of memory references is

done.

ID Identification Flag. Support for CPUID instruction if can be set.

RF Response to debug exceptions.

VIF Virtual Interrupt Flag. Virtual image of IF.

VIP Virtual Interrupt Pending flag. Set if an interrupt is pending.

VM Virtual-8086 Mode. Set if in 8086 compatibility mode.

Tabela 14.4: Meaning of the Intel x86 EFLAGS register (high half).

14.3.3 64-bit architecture

Starting with the AMD Opteron processor, the x86 architecture extended the 32-bit registers into

64-bit

registers in a way similar to how the 16 to 32-bit extension took place — an R prefix identifies

the 64-bit registers (RAX, RBX, RCX, RDX, RSI, RDI, RBP, RSP, RFLAGS, RIP). Additional eight

64-bit

general registers (R8-R15) were introduced. It also introduces a new naming convention:
RO is RAX.

R1 is RCX.

R2 is RDX.

R3 is RBX.

R4 is RSP.

R5 is RBP.

R6 is RSI.

R7 is RDI.

14.3. X86 REGISTERS 223

R8, R9, R10, R11, R12, R13, R14, R15 are the new registers and have no other names.

ROD-R15D are the lowermost 32 bits of each register. For example, ROD is EAX.

ROW-R15W are the lowermost 16 bits of each register. For example, ROW is AX.

ROB-R15B are the lowermost 8 bits of each register. For example, ROB is AL.

SSE instruction set, as we mentioned in section 14.3.2, originally added eight new 128-bit registers
known as XMMO through XMM7. The AMD64 extensions from AMD (originally called x86-64) added
a further eight registers XMM8 through XMM15, and this extension is duplicated in the Intel 64
architecture. The registers XMM8 through XMM15 are accessible only in 64-bit operating mode.

In x86-64 mode we have more AVE registers named YMMO through YMM15.

ZMMX0-ZMMX31

14.3.4 Miscellaneous/special purpose registers

There are registers on the 80386 and higher processors that are not well documented by Intel. These
are divided in control registers, debug registers, test registers and protected mode segmentation

registers.

1. CRO Ten rejestr ma dtugos¢ 32 bitéw na procesorze 386 lub wyzszym. Na procesorze x86-64
analogicznie rejestr ten jak i inne kontrolne ma dtugos$¢ 64 bitéw. CRO ma wiele réznych flag,
ktére moga modyfikowaé podstawowe operacje procesora. Tabela 14.5 przedstawia rejestr CRO

(domyslnie dana operacja jest wtaczona gdy bit jest ustawiony, czyli ma wartos¢ 1):
2. CR1 Ten rejestr jest zarezerwowany i nie mamy do niego zadnego dostepu.

3. CR2 CR2 zawiera warto$¢ bedaca btedem w adresowaniu pamieci (ang. Page Fault Linear
Address). Jesli dojdzie do takiego btedu, wéwczas adres miejsca jego wystapienia jest przecho-

wywany wtasnie w CR2.

4. CR3 Uzywany tylko jesli bit PG w CRO jest ustawiony. CR3 umozliwia procesorowi zlokalizowanie
pofozenia tablicy katalogu stron dla obecnego zadania. Ostatnie (wyzsze) 20 bitéw tego rejestru

wskazuja na wskaznik na katalog stron zwany PDBR (ang. Page Directory Base Register).

224 ROZDZIAL 14. REGISTERS

Bit Flag Name Description

30 CD Cache disable Wytacz pamieé cache

18 AM Aligment Mask Maska wyréwnania. Aby ta opcja dziatata musi
by¢ ustawiona na 1, bit AC z rejestrow flag pro-
cesora réwniez musi mie¢ wartosé 1 oraz poziom
uprzywilejowania musi wynosié¢ 3.

5 NE Numeric Error Numeryczny blad, wlacza wewnetrzne raporto-
wanie bltedéw FPU gdy jest ten bit ustawiony

3 TS Task switched Przetaczanie zadan, pozwala zachowaé zadania
x87

1 MP Monitor Coprocessor Monitor Koprocesora, kontroluje instrukcje WA-
IT/FWAIT

Tabela 14.5: CRO register flags

5. CR4 Uzywany w trybie chronionym w celu kontrolowania operacji takich jak wsparcie wirtu-

alnego 8086, technologii stronicowania pamieci, kontroli btedéw sprzetowych i innych. Tabela

14.6 przedstawia rejestr CR4.
6. debug registers (DRO through 3, plus 6 and 7)
7. test registers (TR3 through 7; 80486 only)
8. descriptor registers (GDTR, LDTR, IDTR)

9. task register (TR)

14.3. X86 REGISTERS

13 VMXE Enables VMX Wtlacza operacje VMX

OSFXSR Operating sys- Wsparcie systemu operacyjnego dla
tem support instrukcji FXSAVE i FXSTOR
for FXSAVE

and FXSTOR
instructions

7 PGE Page Global Ena- Globalne stronicowanie
bled

5 PAE Physical Address Jesli bit jest ustawiony to zezwalaj
Extension na uzycie 36-bitowej fizycznej pa-
mieci

Debugging Rozszerzenie debugowania

Extensions

1 PVI Protected Mode Jedli ustawione to wlacza sprzetowe
Virtual Interrupts wsparcie dla wirtualnej flagi prze-
rwan (VIF) w trybie chronionym

Tabela 14.6: CR4 register flags

225

ROZDZIAY,

Memory

15.1 Itroduction

15.1.1 Data representation — endianness

x86 architecture use the little-endian format to store bytes of multibyte values. Oznacza to, ze
wielobajtowe wartosci sg zapisane w kolejnosci od najmniej do najbardziej znaczacego (patrzac od
lewej strony), bardziej znaczace bajty beda miaty "wyzsze" (rosnace) adresy. Notice, that the order
of bytes is reversed but not bits. Zatem 32-bitowa wartos¢ B3B2B1B0 mogtaby by na procesorze
z rodziny x86 by¢ zaprezentowana w ten sposéb: Reprezentacja kolejnosci typu little-endian Byte 0
Byte 1 Byte 2 Byte 3 Przyktadowo 32-bitowa warto$¢ 1BA583D4h (literka h w Asemblerze oznacza
liczbe w systemie szesnastkowym, tak jak Ox w C/C++) mogtaby zosta¢ zapisana w pamieci mniej
wiecej tak: Przyktad D4 83 A5 1B Zatem tak wyglada nasza warto$¢ (0xD4 0x83 0xA5 0x1B) gdy

zrobimy zrzut pamieci.

15.1.2 Memory segmentation

Memory segmentation is the division of computer's primary memory into segments or sections. The
size of a memory segment is generally not fixed* and may be even as small as a single byte. Segments
usually represent natural divisions of a program such as individual routines, data tables or simply data
and execution code part so concept of segmentation is not abstract idea to the programmer. With

every segment there are some basic information associated with it

*In a sense, that differnt segments could have different lengt.

227

228 ROZDZIAL 15. MEMORY

length of the segment,

set of permissions,

information indicates where the segment is located in memory,

flag indicating whether the segment is present in main memory or not.

A process is allowed to make a reference into a segment if the type of reference is allowed by
the permissions, and the offset within the segment is within the range specified by the length of
the segment. Otherwise, a hardware exception such as a segmentation fault is raised. That is why
memory segmentation is one of the methods of implementing memory protection’. The information
about location in memory might be the address of the first location in the segment, or the address
of a page table for the segment if the segmentation is implemented with paging. When a reference

to a location within a segment is made

e the offset within the segment will be added to address of the first location in the segment to

give the address in memory of the referred-to item (the first case);

e the offset of the segment is translated to a memory address using the page table (the second

case).

If an access is made to the segment that is not present in main memory, an exception is raised, and
the operating system will read the segment into memory from secondary storage. The part of CPU
responsible for translating a segment and offset within that segment into a memory address, and for
performing checks to make sure the translation can be done and that the reference to that segment
and offset is permitted is called a memory management unit (MMU).

With memory segmentation a linear address is obtained combining (typically by addition) the seg-
ment address with offset (within this segment). For instance, the segmented address ABCDh:1234h
has a segment selector of ABCDh, representing a segment address of ABCDh, to which we add the
offset, yielding the linear address 06EFOh + 1234h = 08124h.

If you want to know more... 15.1 (Paging). tutu - uzupelnic

f Another method is paging; both methods can be combined.

15.1. ITRODUCTION 229

15.1.3 Addressing mode

The addressing mode indicates the manner in which the operand is presented. There is a nice analogy

from real live. Generaly the following addressing mode could be considered.

e Immediate. In this type of addressing opperands are dostepne immediately after instruction is

read, because actual values are stored in the field.

For example:

xx — instruction code
aaa - field for operand 1

bbb - field for operand 2

xxaaabbb - binary sequence representing instruction

aaa - actual value of the operand 1

bbb - actual value of the operand 2

e Direct. In this type of addressing addresses of actual values are stored in the operand fields of

instruction

For example:

Address Value

xxaaabbb 1001 0010
[1010 0011
[> 1011 0100
I 1100 0101
TR > 1101 0110

Actual value of the operand 1 (0100) is uder address aaa (1011)

Actual value of the operand 2 (0110) is uder address bbb (1101)

e |ndirect.

230 ROZDZIAL 15. MEMORY

For example:

xx - instruction code
aaa - space for operand 1

bbb - space for operand 2

xxaaabbb - binary sequence representing instruction

aaa - actual value of the operand 1

bbb - actual value of the operand 2

The registers used for indirect addressing are BX, BP, SI, DI

e Base-index Considering an array, for example, BX contains the address of the beginning of the

array, and DI contains the index into the array.

For example:

xx — instruction code
aaa - space for operand 1

bbb - space for operand 2

xxaaabbb - binary sequence representing instruction

aaa - actual value of the operand 1

bbb - actual value of the operand 2

15.2 Real mode

During the late 1970s it became clear that the 16-bit 64-KiB address limit of minicomputers would
not be enough in the future. The 8086 prcessor was developed from the simple 8080 microprocessor
and primarily aiming at very small, inexpensive computers and other specialized devices. Thus simple
segment registers, enabling memory segmentation, were adopted which increased the memory address

width by (only) 4 bits. The effective 20-bit address space of real mode limits the addressable memory

15.2. REAL MODE 231

to 220 bytes, or 1,048,576 bytes. The number 20 is derived directly from the hardware design of the
Intel 8086, which had exactly 20 address pins.

Each segment begins at a multiple of 16 bytes, from the beginning of the linear (flat) address
space resulting in 16 byte intervals. The actual location of the beginning of a segment in the linear
address space can be calculated with multiplying segment number by 16. For example a segment
value of 000Ah (10) would give an linear address at 00AOh (160) in the linear address space. Then the
address offset can be added to the segment address: 000Ah:0000Bh (10:11) would be interpreted as
000Ah + 0000Bh = ABh (10-16+11 = 171) where ABh is the linear addresst. Since all segments are
64 KiB long (65536 - 16 = 1,048, 576), a single linear address can be mapped to up to 4096 distinct
segment :offset pairs. For example, the linear address 01234h (4660) can have the segmented
addresses 0000h:01234h (0 - 16 + 4660 = 0 + 4660), 0123h:0004h (291 - 16 + 46 = 4656 + 4),
00ABh:0784h (171 -16 4 46 = 2736 + 1924), etc. The 16-bit segment selector is interpreted as the
most significant 16 bits of a linear 20-bit address (called a segment address) of which the remaining
four least significant bits are all zeros. The segment address is always added with a 16-bit offset to
yield a linear address, which is the same as physical address in this mode (see image 77).

rysunek
rysunek

Now there is a tricky part. The last segment, FFFFh (65535) as we use 16 bits as a segment
selector, begins at linear address FFFFOh (1048560) — this is 16 bytes before the end of the 20 bit
address space range from 0 to 1,048,576. Thus with an offset of up to 65,536 bytes, one can access,
up to 65,520 (65,536-16) bytes past the end of the 20 bit 8088 address space. On the 8088, these
address accesses were wrapped around to the beginning of the address space such that FFFFh:00010h
(65535:16) would access address 0 and FFE8h: (65512:80) would access address 304 of the linear

address space.

Remark 15.1 (Segment length in real mode). Real mode segments are always 64 KiB long — in
practice it means only that no segment can be longer than 64 KiB than that every segment must
be 64 KiB long. Because in real mode there is no protection or privilege limitation, any program
can always access any memory (since it can arbitrarily set segment selectors to change segment
addresses with absolutely no supervision). Even if a segment could be defined to be smaller than

64 KiB, it would still be entirely up to the programs to coordinate and keep within the bounds of

tSuch address translations are carried out by the segmentation unit of the CPU.

232 ROZDZIAL 15. MEMORY

their segments. Therefore, real mode can just as well be imagined as having a variable length for

each segment, in the range 1 to 65536 bytes, that is just not enforced by the CPU.

15.2.1 Addressing modes
In real mode there are several addressing modes.

e Register addressing
mov ax, bx ; moves contents of register bx into ax
e Immediate
mov ax, 1 ; moves value of 1 into register ax
e Direct memory addressing
mov ax, [102h] ; Actual address is DS:0 + 102h
e Direct offset addressing

byte_tbl db 12,15,16,22,..... ; Table of bytes
mov al, [byte_tbl+2]

mov al,byte_tbl[2] ; same as the former
e Register Indirect
mov ax, [di]

The registers used for indirect addressing are BX, BP, S, DI

e Base-index
mov ax, [bx + di]

Considering an array, for example, BX contains the address of the beginning of the array, and

DI contains the index into the array.

e Base-index with displacement

mov ax, [bx + di + 10]

15.3. PROTECTED MODE 233

15.3 Protected mode

In protected mode, a segment register no longer contains the physical address of the beginning of a
segment, but contain a "selector” that points to a system-level structure called a segment descriptor.
A segment descriptor contains the physical address of the beginning of the segment, the length of
the segment, and access permissions to that segment. The offset is checked against the length of
the segment, with offsets referring to locations outside the segment causing an exception. Offsets
referring to locations inside the segment are combined with the physical address of the beginning
of the segment to get the physical address corresponding to that offset. The segmented nature can
make programming and compiler design difficult because the use of near and far pointers affects

performance.

15.4 Virtual memory

DODATEK

-~
3\
-~

NASM

32-bit program on 32-bit system

nasm -f elf hello.asm

1d hello.o -o hello
32-bit program on 64-bit system

nasm -f elf hello.asm

1d -m elf_i386 hello.o -o hello
32-bit program on 64-bit system (but it's not true 64-bit program)

nasm -f elf64 hello.asm

1d hello.o -o hello
64-bit program on 64-bit system

nasm -f elf64 hello_64.asm -o hello_64

1d hello_64.0 -o hello_64
32-bit program linked with a C library on 32-bit system

nasm -f elf hello_c.asm -o hello_c.o

gcc hello_c.o -o hello_c

235

236 DODATEK A.

32-bit program linked with a C library on 64-bit system

nasm -f elf32 simple_printf_32.asm -o simple_printf_3

gcc —-m32 simple_printf_32.0 -o simple_printf_32
64-bit program linked with a C library on 64-bit system

nasm -f elf64 hello_c_64.asm -o hello_c_64.0

gcc hello_c_64.0 -o hello_c_64

GNU AS

32-bit program on 32-bit system

as hello.s -o hello.o

1d hello.o -o hello
32-bit program on 64-bit system

as --32 hello.s -o hello.o

1d -m elf_i386 hello.o -o hello

777

[1]

2]

[3]

[4]

[3]

[6]

[7]

(8]

Bibliografia

David Salomon, Assemblers and Loaders, http://www.davidsalomon.name/assem.

advertis/asl.pdf, retrived 2013-01-17.

Lamont Wood, Forgotten PC history: The true origins of the personal computer,
August 8, 2008 (Computerworld), http://www.computerworld.com/s/article/print/
9111341/Forgotten_PC_history_The_true_origins_of_the_personal_computer, retri-

ved on 2013-03-13.

Peter van der Linden, Expert C Programming: Deep C Secrets, Prentice Hall 1994, p. 141, (retri-
ved on 2013-04-22, http://books.google.pl/books?id=4vm2xK3yn34C&pg=PA141&redir_

esc=y#v=onepage&q&f=false)

IntelR) 64 and IA-32 Architectures. Software Developer’'s Manual. Combined Volumes: 1,
2A, 2B, 2C, 3A, 3B and 3C, http://www.intel.com/content/www/us/en/processors/

architectures-software-developer-manuals.html, retrived on 2013-04-05.

Intel MMX™ Technology Overview, March 1996, retrived on 2013-05-09 from http://www.

zmitac.aei.polsl.pl/Electronics_Firm_Docs/MMX/overview/24308102.pdf.

The NASM Language retrived on 2015-03-13 from http://www.nasm.us/doc/nasmdoc3.

html

Using MMX™ Instructions to Compute a 16-Bit Vector, March 1996, retrived on 2013-05-01
from http://software.intel.com/sites/landingpage/legacy/mmx/MMX_App_Compute_

16bit_Vector.pdf.

Using the RDTSC Instruction for Performance Monitoring, Intel Corporation, 1997, retrived on

2013-04-29, from http://www.ccsl.carleton.ca/~ jamuir/rdtscpml.pdf.

237

http://www.davidsalomon.name/assem.advertis/asl.pdf
http://www.davidsalomon.name/assem.advertis/asl.pdf
http://www.computerworld.com/s/article/print/9111341/Forgotten_PC_history_The_true_origins_of_the_personal_computer
http://www.computerworld.com/s/article/print/9111341/Forgotten_PC_history_The_true_origins_of_the_personal_computer
http://books.google.pl/books?id=4vm2xK3yn34C&pg=PA141&redir_esc=y#v=onepage&q&f=false
http://books.google.pl/books?id=4vm2xK3yn34C&pg=PA141&redir_esc=y#v=onepage&q&f=false
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://www.zmitac.aei.polsl.pl/Electronics_Firm_Docs/MMX/overview/24308102.pdf
http://www.zmitac.aei.polsl.pl/Electronics_Firm_Docs/MMX/overview/24308102.pdf
http://www.nasm.us/doc/nasmdoc3.html
http://www.nasm.us/doc/nasmdoc3.html
http://software.intel.com/sites/landingpage/legacy/mmx/MMX_App_Compute_16bit_Vector.pdf
http://software.intel.com/sites/landingpage/legacy/mmx/MMX_App_Compute_16bit_Vector.pdf
http://www.ccsl.carleton.ca/~jamuir/rdtscpm1.pdf

238 BIBLIOGRAFIA

[9] MMX technology, retrived on 2013-05-09, from http://web.cs.wpi.edu/ matt/courses/

csb63/talks/powwie/p3/mmx.htm.

[10] Time Stamp Counter, retrived on 2015-05-10, from http://en.wikipedia.org/wiki/Time_

Stamp_Counter.

http://web.cs.wpi.edu/~matt/courses/cs563/talks/powwie/p3/mmx.htm
http://web.cs.wpi.edu/~matt/courses/cs563/talks/powwie/p3/mmx.htm
http://en.wikipedia.org/wiki/Time_Stamp_Counter
http://en.wikipedia.org/wiki/Time_Stamp_Counter

Spis rysunkow

239

2.1

7.1

8.1

9.1

11.1

12.1

14.1
14.2
14.3

14.4
14.5
14.6

Spis tabel

Intel vs. AT&T summary. 000 53
Rounding Modes and Encoding of Rounding Control (RC) Field 119
Important file Linux system calls for 32-bit x86 (and 64-bit in parenthesis). 136
PMADDWD variants e e e 153
Maximum TSC value and real time for selected frequencies. 176
The operand constraint. L L e 192
Intel x86 FLAGS register. e 220
Meaning of the Intel x86 FLAGS register. 220
Intel x86 EFLAGS register (high half). Those bits that are not listed are reserved by

Intel. . . o o e 222
Meaning of the Intel x86 EFLAGS register (high half). 222
CRO register flags o 224
CR4 register flags oL 225

240

accumulator, 40
assember, 25
assembling, 25
assembly, 25

language, 25

execution
out-of-order, 37

speculative, 37, 39

hazard, 42

instruction
pipeline, 41

pointer, 40

labels, 16

language
assembly, 25

little endian, 49

long mode, 36

memory

protected, 35

virtual, 35
memory management unit, 50
memory protection, 50
memory segmentation, 49
mode

long, 36

protected, 35

real, 35

Skorowidz

virtual, 36

page table, 50

paging, 35

processor status word, 40
program counter, 40

protected mode, 35

real mode, 35

register, 37
accumulator, 40, 42
address, 40
control and status, 41
data, 40
destination index, 43
floating point, 40
general purpose, 40
instruction, 40
instruction pointer, 40
processor status word, 40
program counter, 40, 41
renaming, 37, 38
source index, 43
special purpose, 40
stack pointer, 40, 43

base, 43

status, 40
user-accessible, 40
vector, 41

register base, 42

register counter, 42

241

242 SKOROWIDZ

register data, 42

segmentation fault, 50

stack pointer, 40

virtual mode, 36

	Spis treści
	1 Before we begin
	1.1 Simple assembler
	1.1.1 Excercise 1
	1.1.2 Excercise 2
	1.1.3 Excercise 3
	1.1.4 Excercise 4
	1.1.5 Excercise 5

	1.2 Improvements, part I: addressing
	1.2.1 Excercise 6

	1.3 Improvements, part II: indirect addressing
	1.4 Improvements, part III: labels
	1.4.1 Excercise 7: find substring in a string
	1.4.2 Excercise 8: improved polynomial

	1.5 Improvements, part IV: flag register
	1.6 Improvements, part V: the stack
	1.6.1 Excercise 12

	1.7 Improvements, part VI – function stack frame
	1.8 Finall excercises
	1.8.1 Excercise 13
	1.8.2 Excercise 14
	1.8.3 Excercise 15
	1.8.4 Excercise 16
	1.8.5 Excercise 17

	2 First program
	2.1 Compiling, linking…
	2.1.1 Compiler and compiling
	2.1.2 Linker and linking
	2.1.3 Summary

	2.2 32-bit basic stand alone program
	2.2.1 Code for NASM
	2.2.2 Code for GNU AS
	2.2.3 AT&T vs. Intel assembly syntax

	2.3 64-bit basic stand alone program
	2.3.1 Code for NASM
	2.3.2 Code for GNU AS
	2.3.3 Excercise 1

	2.4 Multiple files

	3 NASM syntax
	3.1 Layout of a NASM source line
	3.2 Pseudo-instructions
	3.2.1 Declaring initialized data
	3.2.2 Declaring uninitialized data
	3.2.3 Including external binary files
	3.2.4 Defining constants
	3.2.5 Repeating instructions or data

	3.3 Effective addresses
	3.4 Constants
	3.4.1 Numeric constants
	3.4.2 String constants
	3.4.3 Floating-point constants
	3.4.4 Packed BCD constants

	4 Basic CPU instructions
	4.1 Utility instructions
	4.1.1 cbw
	4.1.2 cwd

	4.2 Arithmetic instructions
	4.2.1 div
	4.2.2 Excercise 1
	4.2.3 add
	4.2.4 sub
	4.2.5 mul
	4.2.6 idiv
	4.2.7 imul
	4.2.8 cmp
	4.2.9 inc
	4.2.10 dec

	4.3 Logic instructions
	4.3.1 and
	4.3.2 or
	4.3.3 not
	4.3.4 xor
	4.3.5 shl
	4.3.6 shr
	4.3.7 test

	4.4 Jump instructions
	4.4.1 jmp
	4.4.2 call
	4.4.3 JZ
	4.4.4 JE
	4.4.5 JNZ
	4.4.6 JNE
	4.4.7 JA
	4.4.8 JNA
	4.4.9 JB
	4.4.10 JNB
	4.4.11 CMP, TEST and JE
	4.4.12 LOOP
	4.4.13 Jump examples

	4.5 Transfer instructions
	4.5.1 mov
	4.5.2 call
	4.5.3 push
	4.5.4 pop
	4.5.5 pusha
	4.5.6 popa
	4.5.7 xchg

	5 Debugging with GDB
	6 First program linked with a C library
	6.1 32-bit basic program linked with a C library
	6.1.1 Code for NASM
	6.1.2 GCC 32-bit calling conventions in brief
	6.1.3 Excercise

	6.2 64-bit basic program linked with a C library
	6.2.1 Code for NASM
	6.2.2 GCC 64-bit calling conventions in brief
	6.2.3 Excercise 2

	6.3 Excercises
	6.3.1 Excercise
	6.3.2 Excercise
	6.3.3 Excercise

	7 FPU
	7.1 FPU internals
	7.1.1 FPU Data Registers
	7.1.2 FPU Addressing Modes
	7.1.3 FPU stack usage example

	7.2 FPU Status Register
	7.2.1 Exception Flags

	7.3 FPU Control Register
	7.4 FPU Tag Word Register
	7.5 Examples
	7.5.1 Instructions related to the FPU internals
	7.5.2 FPU control word usage
	7.5.3 FPU status word usage
	7.5.4 FPU stack overflow

	7.6 Excercises
	7.6.1 Excercise

	8 File operations
	8.1 File operations with Linux system calls
	8.1.1 Excercise

	8.2 File operations with C functions
	8.3 Command Line Parameters
	8.4 Auxiliary code
	8.5 Records
	8.6 Excercises
	8.6.1 Excercise

	9 MMX
	9.1 Introduction
	9.2 Single Instruction, Multiple Data (SIMD) technique
	9.3 Eight 64-bit wide MMX registers
	9.4 New data types
	9.5 New instructions
	9.5.1 Add packed integers with PADDW
	9.5.2 Multiply and Add Packed Integers with PMADDWD
	9.5.3 Compare packed signed integers for greater than with PCMPGTW
	9.5.4 Pack with signed saturation with PACKSSWB

	9.6 Examples
	9.7 Excercise
	9.7.1 Solution

	10 SSE
	10.1 Streaming SIMD Extensions
	10.2 Example
	10.3 Excercise

	11 RDTS – measure what is unmeasurable
	11.1 Read time-stamp counter
	11.2 Usage of the RDTS
	11.2.1 Usage example
	11.2.2 Excercise

	12 Inline assembler
	12.1 First fundamental problem
	12.2 Second fundamental problem
	12.2.1 Global variables
	12.2.2 Local variables

	12.3 Third fundamental problem

	13 Introduction
	13.1 Assembly language
	13.2 Pre-x86 age – historical background
	13.2.1 Intel 4004
	13.2.2 Intel 8008
	13.2.3 Intel 8080
	13.2.4 An early x86 age – accidental birth of a standard
	13.2.5 Mid-x86 age – conquest of the market
	13.2.6 Late-x86 age – stone age devices

	13.3 An overview of the x86 architecture
	13.3.1 Basic properties of the architecture
	13.3.2 Operating modes

	14 Registers
	14.1 General information
	14.2 Categories of registers
	14.3 x86 registers
	14.3.1 16-bit architecture
	14.3.2 32-bit architecture
	14.3.3 64-bit architecture
	14.3.4 Miscellaneous/special purpose registers

	15 Memory
	15.1 Itroduction
	15.1.1 Data representation – endianness
	15.1.2 Memory segmentation
	15.1.3 Addressing mode

	15.2 Real mode
	15.2.1 Addressing modes

	15.3 Protected mode
	15.4 Virtual memory

	A ???
	Bibliografia
	Spis rysunków
	Spis tabel
	Skorowidz

