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Before we begin

1.1 Simple assembler

Before we start, | think, that it's not bad idea to practise with wery simple assembler on very
simple machine. Proposed assembler differ a little bit from real assemblers but it's main advantage
is simplicity. Based on it, | want to introduce all important concepts.

We use decimal numbers and 4 digit instruction of the following format

operation code
I
XXXX

I

opernad
The list of instruction is as follow

0 HLT stop the cpu

1 CPA copy value from memory to accumulator, M -> A

2 STO copy value from accumulator to memory, A -> M

3 ADD add value from specified memory cell to accumulator; result is stored
in accumulator, M + A -> A

4 SUB subtract from accumulator value from specified memory cell; result
is stored in accumulator A - M -> A

5 BRA unconditional branche to instruction located at specified address
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6 BRN conditional branche to instruction located at specified address if value
stored in accumulator is negative

7 MUL multiply value from accumulator by value from specified memory cell;
result is stored in accumulator M * A -> A

8 BRZ conditional branche to instruction located at specified address if value

stored in accumulator is equal to zero

The number 9 is reserved for future extensions. Memory consist of 10000 cells with numbers (addres-
ses) from 0 to 9999. A sign-value representation is used to store negative/positive numbers — when
most significante digit is set to 0, the number is positive and negative otherwise (i.e. when different

than 0). All arithmetic instructions works on signed numbers.

1.1.1 Excercise 1

Write a program to calculate sum of numbers located in address 6, 7 and 8; result store in address

9.

Address Value

0006 20
0007 30
0008 40

0009 result

Address Value Instruction Accumulator
0010 1006 CPA 6 20

0011 3007 ADD 7 20+30

0012 3008 ADD 8 20+30+40
0013 2009 STO 9 no change
0014 0000 HLT

1.1.2 Excercise 2

Write a program to calculate for given x a value of polynomial P

P(x)=ax+b
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Address Value
0004 result
0005 x = 2

0006 a=3

0007 b=4

Address Value Instruction Accumulator
0010 1006 CPA 6 3

0011 7005 MUL 5 3%2

0012 3007 ADD 7 3%2+4

0013 2004 STO 4 no change
0014 0000 HLT

1.1.3 Excercise 3

Write a program to calculate for given x a value of polynomial P
P(z) = ax® + bz + cx + d

Address Value
0004 result
0005 X

2

0006 a =

3
0007 b=4
0008 c=5

6

0009 d =

Solution 3.1

Address Value Instruction
0010 1005 CPA 5

0011 7005 MUL 5

0012 7005 MUL 5

0013 7006 MUL 6

0014 2004 STO 4



0015 1005
0016 7005
0017 7007
0018 3004
0019 2004
0020 1005
0021 7008
0022 3004
0023 2004
0024 1009
0025 3004
0026 2004
0027 0000
Solution 3.2

Address Value

0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025

1005
7005
7005
7006
2100
1005
7005
7007
2101
1005
7008
2112
1009
3100
3111
3112

CPA
MUL
MUL
ADD
STO
CPA
MUL
ADD
STO
CPA
ADD
STO
HLT

Instruction

CPA
MUL
MUL
MUL
STO
CPA
MUL
MUL
STO
CPA
MUL
STO
CPA
ADD
ADD
ADD

A A © BN~ B O OB ™ N o1 oo

5
5
5
6
100
5

112

100
111
112

ROZDZIAL 1.

BEFORE WE BEGIN
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0026 2004 STO 4

0027 0000 HLT

Solution 3.3

Address Value Instruction Accumulator
0010 1006 CPA 6 a

0011 7005 MUL 5 ax

0012 3007 ADD 7 ax + b

0013 7005 MUL 5 (ax + b)x
0014 3008 ADD 8 (ax+b)x+c
0015 7005 MUL 5 ((axtb)x+c)x
0016 3009 ADD 9 ((ax+b)x+c)x+d
0017 2004 STO 4 no change
0018 0000 HLT

1.1.4 Excercise 4

Calculate a to the power b.

Address Value
0001 number 1

0002 number 2

Solution 4.1

Address Value Instruction
0001 XXXX a

0002 XXXX b

0003 0001 1

0004 XXXX result

0005 1003 CPA 3

0006 2004 STO 4

0007 1002 CPA 2

0008 8015 BRZ 15



0009 4003
0010 2002
0011 1004
0012 7001
0013 2004
0014 8007
0015 0000
Solution 4.2
Address Value
0001 XXXX
0002 XXXX
0003 0001
0004 XXXX
0005 1003
0006 2015
0007 1002
0008 8014
0009 4003
0010 2002
0011 1015
0012 7001
0013 2015
0014 5006
0015 0000

1.2 Improvements, part |

SUB
STO

SN W

CPA
MUL 1
STO 4
BRZ 7
HLT

Instruction
a

b

1
result
CPA 3
STO 4
CPA 2
BRZ 15
SUB 3
STO 2
CPA 4
MUL 1
STO 4
BRA 7
HLT

ROZDZIAL 1.

Studying the last excercise one can draw the following conclusion

BEFORE WE BEGIN

e Instruction list missed instruction to increment or decrement given value. Without this, instead

of one instruction, three have to be used, sequence like
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CPA X ; X - address of the value to increment
ADD Y ; add value from address Y (very often simply equal to 1)

STO X ; store X incremented by Y

That's why it's good to extend instuction list with two instruction

O1xx INC address

02xx DEC address

In this case we intentionaly avoid the number 9 as the first digit in the code (having in mind
that 9 was reserved for extensions) to get more handy ,pattern” for instructon numbering —

see next part of this chapter.

e Addressing mode used so far is a type of direct addressing e.g addressing which uses operand

as a value of memory address where actual argument is stored

+-code for ADD

|
| +-operand (123)

] Address Value
3123 | |
| (0122) | I
PR > (0123) | 0035 |
(0124) | |

In the example above instruction ADD adds value (35) from the addres 123. In other words,
operand points to memory cell and to execute this type of instruction two memory access are

needed: one to get instruction and second to get value.

There are situation when it is useful to treat operand not as memory address but as value. For

example, when we want to add 5 to value in accumulator, instead of

ADD 35 ; we assume that value 5 is stored at address 35
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more intuitive is to write

ADD 5 ; 5 is not an address but wvalue

The question is: how to distinguish between these two variants? when operand treat as address

and when as value? To do this the following convention is used. Notation

inst number

means: executing instruction inst as an value use number from the address number, while

notation

inst (number)

means: executing instruction inst as an value use number number.

This leads to the second type of addressing — addressing when value is "in" instruction and is

accessible immediately after instruction read — so called immediate addressing.

+-code for ADD
I

| +-operand (123) - value of the argument
I

I

3123

Introducing this type of addressing entails new codes for instruction because computer such as

humans have to distinguisg variants of addressing

Direct addressing Immediate addressing

Human ADD 35 ADD (5)

Computer 3035 9135

9xxx — to indicate extension of basic instruction set

x1xx - addressing mode (1 for immediate, 1 byte length)
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xx3x - code for addition in basic instructions set
xxx5 - immediate value - notice that this value is stored "in" instruction

Notice that value 5 is stored "in" instruction and there is no need of the next memory access

— it means that this type of instruction is faster. Unfortunately there is a problem: what about

instruction like
ADD (128)

It is not possible to squeeze value 128 and put "into” instruction like in case of value 5. The
solution for this is to put another code for addition which assumes that value of the argument

is put just after instruction, like in the following example

address value
X 9230 - add

x + 1 0128 - value for add of code 9230

This is in some sens a mixture of direct and immediate addresing: we have two memory access
(one for instruction and the second to get value) but argument is always located next to
instruction (after instruction) — we could say that we immediately know where the argument

is.
1.2.1 Excercise 5

Calculate the dot product (sometimes scalar product or inner product) of two vectors of length 10.

1.3 Improvements, part |l

e This problem seems to unsolvable without concept of memory indirect addressing. Notation
inst addr
means: executing instruction inst as an address of the argument use addr, while notation

inst [addr]
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means: executing instruction inst as an address of the argument use value from the address

addr.

+-code for ADD [x] ->-—-+

| +->-- finally: ADD [6] and it adds 123

| +-operand (6) —--->-—+ to acumulator
I
[ Address Value
9336 |
I (0005) |
Fm—————— > (0006) | 0009 | ---+
(0007) | | |

(0009) | 0123 | <—-+

We can think about [ ] "operator” as an substitution: having instruction inst [addr] take
value from the address addr, name it val, substitute [addr] by val and finally execute

instruction inst val.

Taking into account all of the above an extension of the instruction set could be defined as follow

Direct (one-byte) %Bezposrednie jednobajtowe

910x INC increment value in memory at specified address

919x DEC decrement value in memory at specified address

1xxx CPA copy value from memory to accumulator, M -> A

912x STO copy value from accumulator to memory, A -> M

3xxx ADD add value from specified memory cell to accumulator; result is stored
in accumulator, M + A -> A

4xxx SUB subtract from accumulator value from specified memory cell; result
is stored in accumulator A - M -> A

915x BRA unconditional branche to instruction located at specified address

916x BRN conditional branche to instruction located at specified address if value
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stored in accumulator is negative

Txxx MUL multiply value from accumulator by value from specified memory cell;
result is stored in accumulator M *x A -> A

918x BRZ conditional branche to instruction located at specified address if value

stored in accumulator is equal to zero

Direct (two-byte) %Bezposednie dwubajtowe

9000 xxxx INC
9010 xxxx CPA
9020 xxxx STO
9030 xxxx ADD
9040 xxxx SUB
9050 xxxx BRA
9060 xxxx BRN
9070 xxxx MUL
9080 xxxx BRZ

9090 xxxx DEC

Immediate (one-byte) %Natychmiastowe jednobajtowe

Oxxx HLT stop the cpu
O01xx INC
911x CPA
2xxx STO
913x ADD
914x SUB
bxxx BRA
6xxx BRN
917x MUL
8xxx BRZ

02xx DEC
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Immediate (two-byte) %Natychmiastowe dwubajtowe

9200 xxxx INC
9210 xxxx CPA
9220 xxxx STO
9230 xxxx ADD
9240 xxxx SUB
9250 xxxx BRA
9260 xxxx BRN
9270 xxxx MUL
9280 xxxx BRZ

9290 xxxx DEC

Indirect (one-byte) %Posrednie jednobajtowe

---- INC (not applicable)
931x CPA
--—- STO (not applicable)
933x ADD
934x SUB
--—- BRA (not applicable)
---- BRN (not applicable)
937x MUL
---- BRZ (not applicable)

---- DEC (not applicable)

Indirect (two-byte) %Posrednie dwubajtowe

---- xxxx INC (not applicable)

9410 xxxx CPA

-——-— xxxx STO (not applicable)
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9430
9440

9470

XXXX

XXXX

XXXX

XXXX

XXXX

XXXX

XXXX

ADD
SUB
BRA
BRN
MUL
BRZ
DEC

(not

(not

(not

(not

applicable)

applicable)

applicable)

applicable)

Notice that in instruction list some instruction are missed. Explanation for this is as folow.

Explain that direct addressing for jump or inc/dec is like indirect for addition.

Solution 5.2.1 — second approach

Address Value

0001
0002
0003
0004

0010

0019
0020

0029
0030
0031
0032
0033
0034
0035
0036
0037

0010

0020

0000

0010

XXXX

XXXX

XXXX

XXXX

1004

8040

9311

9732

3003

2003

0101

0102

Instruction

address of the first component of vector 1
address of the first component of vector 2
result

n - length of vector

first component of vector 1

last component of vector 1

first component of vector 2

last component of vector 2
CPA 4

BRZ 40

CPA [1]

MUL [2]

ADD 3

STO 3

INC 1

INC 2
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0038 0204 DEC 4
0039 5030 BRA 30
0040 0000 HLT

1.3.1 Solution 5.2.2 — bad second approach

Previous solution is correct, but when the code is reallocated into other place in the memory, symbolic
names stays the same, but the binary code changes. In the realocated code in the example below (all

the code was shifted by 10) symbolic names are correct but their addresses are not.

Address Value Instruction

0011 address of the first component of vector 1
0012 address of the first component of vector 2
0013 result

0014 n - length of vector

0020 first component of vector 1

0029 last component of vector 1

0030 first component of vector 2

0039 last component of vector 2

0040 CPA 14

0041 BRZ 50

0042 CPA [11]

0043 MUL [12]

0044 ADD 13

0045 STO 13

0046 INC 11

0047 INC 12

0048 DEC 14

0049 BRA 40

0050 HLT
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Explanation for this is obvious when binary codes for instructions is used.

Address Value Instruction

0011 0020 address of the first component of vector 1
0012 0030 address of the first component of vector 2
0013 0000 result

0014 0010 n - length of vector

0020 XXXX first component of vector 1
0029 XXXX last component of vector 1
0030 XXXX first component of vector 2
0039 XXXX last component of vector 2
0040 1014 CPA 14

0041 8050 BRZ 52

0042 9410 CPA [11]

0043 0011

0044 9470 MUL [12]

0045 0012

0046 3013 ADD 13

0047 2013 STO 13

0048 0111 INC 11

0049 0112 INC 12

0050 0214 DEC 14

0051 5040 BRA 40

0052 0000 HLT

Explanation is as follow: not all instructions are one byte length. That's why simple change in the

code entails "shift” of all instructions. Code

CPA [1]

generates machine code different than
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CPA [11]

In the first case we have

Address Value Instruction

X 9311 CPA [1]

and the second

Address Value Instruction
X 9410 CPA [11]
x+1 0011

1.4 Improvements, part Il

e Problems with variable length instructions could be solved by the release of the explicit addresses
usage. Instead of them, labels are used to indicate "places” in the memory. With this an

"universal” solution of (1.2.1) could be as follow

Label / Value /

Address Instruction Comment
.data O ;start data block at address O
vl: XXXX ;first component of vector 1
XXXX ;last component of vector 1
v2: XXXX ;first component of vector 2
XXXX ;last component of vector 2
a_vl: vl ;address of the first component of vector 1
a_v2: v2 ;address of the first component of vector 2
result: 0 ;result
vec_len: 10 ;0 - length of vector

.code 50 ;start code block at address 50
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begin:

end:

CPA vec_len

BRZ end

CPA [a_v1]

MUL [a_v2]

ADD result

STO result

INC a_v1

INC a_v2

DEC vec_len

BRA begin

HLT

1.4.1 Excercise 6

Solve the problem from the exercise 1.1.3 using solution from 1.1.4.

.data O

; local variables for main code

coef: A

pow: pA
pB
pC

varX: X

coefl: coef

powl: pow
result: 0
counter: 4

3

coefficient A -- put an exact value here

power for coef. A -- put an exact value here

put an exact

put as value

put as value

indicate the

value as X

of coef. iterator address of A

of power iterator address of pA

number of components

17
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;local variables for power subprogram

bas: 0

power: 0

resT: 0

.code 20

;main

begin: CPA varX ; prepare local data for subprogram
STO base
CPA [powI]
STO power

BRA powerStart ; call subprogram
loop: CPA resT ; return from subprogram - we have a result od base”pow
MUL [coefI]
INC powl
INC coeflI
ADD result
STO result
DEC counter

CPA counter

BRN end

BRA begin
end: HLT
;subprogram

powerBegin:  CPA $1
STO resT
powerLoop: CPA power
BRZ powerEnd
DEC power

CPA resT
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MUL base
STO resT
BRA powerLoop

powerEnd: BRA loop

1.5 Improvements, part IV

e Flag register???

DEC counter
CPA counter

BRN end

e That's right — we can solve the problem (1.4.1) the way we proposed, but the method used to
passing argument is far from perfection. Better choice is to use data structure which help us
to keep a correct order of the arguments — this is how we reach the concept of stack. Short

description of the stack put here.

Introduce stack. Notice one very important thing: stack in computers growth in direction of
lower addresses. It means that if element x is above y the address of y is lower than z. To

keep things working we also have to introduce two new registers in our CPU

— BP - to keep information about base of the stac,

— SP - to keep information about top of the stack.

with instruction

PUSH (rejestrowa i ewentualnie pamieciowe)

POP

1.5.1 Excercise 6 — second approach

1.5.2 Excercise 7

Calculate the dot product of two vectors using stack.
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1.5.3 Excercise 8

Find the value of the n-th element of the Fibonacci sequence.

1.6 Improvements, part V

The solution we found is almost perfect with the exception of one unsolved problem: how do we
know to which address should we return? The problem is that we assume that called function knows
which function or part of the case was a caller — in our case, "main” code — and we hardcoded this
value in our function. And what if we call function from completely different place, for example other

function? We return to "main” code which wouldn't be correct.

e Introduce frame stack to keep info about ret.

Frame stack:

higher addresses

| 2 | [ebp + 16] (3rd function argument)
| 5 | [ebp + 12] (2nd argument)

| 10 | [ebp + 8] (1st argument)

| RA | [ebp + 4] (return address)

| FP | [ebp] (old ebp value)

| | [ebp - 4] (1st local variable)

stack growth

1.6.1 Excercise 9

Funkcja dodajaca dwa argumentu i zwracajaca wynik.
a: 2 b: 5 wynik: 0 .code 10 BRA dodaj powrot: HLT
dodaj: CPA a ADD b STO wynik BRA powrot

teraz to samo, ale z dowma dodawaniami
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rozwiazanie ze stosem

a: 2 b: 5 wynik: 0 .code 10 start: PUSH wynik PUSH a PUSH b CALL dodaj POP wynik dodaj:
CPA [SP + 1] ADD [SP + 2] STO [SP + 3] RET 2

PUSH 2PUSH3 CALL dodaj CPA [SP + 1] ADD [SP + 2] STO [SP + 2] POP STO SP RET

1.6.2 Excercise 10

Solve once again the problem from the exercise 1.5.3 using improved stack.

1.7 Other excercises

1.7.1 Excercise 11

Program ktory dzieli dwie liczby calkowite i jako wynik podaje czesc calkowita i reszte

dzielna: 20

dzielnik: 7

reszta: 0

wynik: 0

start: CPA dzielna
BRZ koniec

BRN reszta_koniec
INC wynik

STO dzielna

BRZ koniec

BRA start

reszta_koniec:
CPA dzielna
STO reszta

koniec: HLT
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1.7.2 Excercise x

Program porzadkujacy liczby.

1.7.3 Excercise x

Program znajdujacy najmniejsza i najwieksza sposrod 4 liczb.

1.7.4 Excercise x
1.7.5 Excercise x

Find the greates comon divisors of two positive numbers. There are two possible approach to this

problem.

Using prime factorizations Greatest common divisors (nwd) can in principle be computed by
determining the prime factorizations of the two numbers and comparing factors. To compute,
for example, nwd(16, 36), we find the prime factorizations 16 =2-2-2-2and 36 =2-2-3- 3.

Notice that the "intersection” of the two expressions, which is 2 - 3 is nwd(16,36) = 6. In
practice, this method is only feasible for small numbers; computing prime factorizations in

general takes far too long.

Using Euclid’s algorithm A much more efficient method is the Euclidean algorithm, which uses
a division algorithm such as long division in combination with the observation that the nwd of
two numbers also divides their difference. If the arguments are both greater than zero then the

algorithm can be written as follows

nwd(a,a) = a

nwd(a,b) = nwd(a — b,b), ifa > b

nwd(a,b) = nwd(a,b —a), if b > a
Address Value

1000 number 1

1001 number 2

1.7.6 Solution x

Address Instruction Accumulator
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0200 1 1000

0201 4 1001 a

0202 6 0205 ax

0203 8 0212 ax+b

0204 5 0201 (ax+b)x

0205 3 1001 (ax+b) x+c

0206 2 1002 ((ax+b)x+c)x
0207 1 1001 ((ax+b)x+c)x+d

0208 2 1000
0209 1 1002

0210 2 1001
0211 5 0200
0212 0 0000

1.7.7 Excercise x

Write a program to calculate absolute value for given value v.

Address Value
1000 v

1001 result - abs(v)

Address Instruction Accumulator

0001 1 1000

0002 6 0004
0003 0 0000
0004 1 1001
0005 4 1000
0006 2 1000
0007 0 0000
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Introduction

In the beginning, Intel created the 8086
and its first 16-bit microprocessor.

And Intel said, Let there be x86: and there
was x86.

And Intel saw the x86, that it was good.

http://www.maximumpc.com/article/features/cpu_

retrospective_the_life_and_times_x86

2.1 Assembly language

Because this book is about assembly languages, let's try to understand what an assebly language is.

Simply speaking

Definition 2.1. an assembly language is a low-level programming language for a computer,
microcontroller, or other programmable device, in which each statement corresponds to a single

machine code instruction.

According to this definition it is not surprising, that each assembly language is specific to a
particular computer architecture which stays in contrast to most high-level programming languages,
which are generally portable across multiple systems. Assembly language is converted into executable
machine code by a utility program referred to as an assembler; the conversion process is referred to

as assembly, or assembling the code. There is usually a one-to-one correspondence between simple
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assembly statements and machine language instructions. In everyday language an assembly languages
is very often refered as assembler, but it's good to distinguish between these concepts.
The most natural language for every processor is a sequence or stream of bits. For example, the

instruction
10110000 01100001

tells an x86/1A-32 processor to move an immediate 8-bit value into a register. The binary code for
this instruction is 10110 followed by a 3-bit identifier for which register to use. The identifier for the
AL register is 000, so the following machine code loads the AL register with the data 01100001.
Although this type of language is most natural for computers, it is completelu useless for human.
This binary computer code can be made more human-readable by expressing it in hexadecimal as

follows
BO 61

Here, BO means Move a copy of the following value into AL, and 61 is a hexadecimal representation
of the value 01100001, which is 97 in decimal. A little bit beter but still far from perfection, mainly
because one number expressed many things like typ of operation (copy, 5 bits) and location (AL

register, 3 bits) in above example. The key idea behind assembly language is to
e separate all parts of instruction to make them independent from other,

e replace some binary sequences, like 10110, by something which is easier to remember or which

help human to figure out what are they represents.

Continuing our example, Intel assembly language provides the mnemonic MOV, which is an abbre-
viation of move, for instructions such as this, so the machine code above can be written as follows

in assembly language
MOV AL, 61ih ; Load AL with 97 decimal (61 hex)

and this is much easier to read and to remember, even without an explanatory comment after the
semicolon. What is more important, in many cases the same mnemonic such as MOV may be used
for a family of related instructions even thought that are represented by different binary sequences.
For example the Intel uses opcode 10110000 (BO0) to copy an 8-bit value into the AL register, while
10110001 (B1) to move it into CL.
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MOV AL, 1h ; Load AL with immediate value 1

MOV CL, 2h ; Load CL with immediate value 2

In each case, the MOV mnemonic is translated directly into an opcode by an assembler, and the
programmer does not have to know or remember which.

Each computer architecture has its own machine language. Computers differ in the number
and type of operations they support, in the different sizes and numbers of registers, and in the
representations of data in storage. While most general-purpose computers are able to carry out
essentially the same functionality, the ways they do so differ; the corresponding assembly languages

reflect these differences.

2.2 Pre-x86 age — historical background
e 1947: The transistor is invented at Bell Labs.

e 1965: Gordon Moore at Fairchild Semiconductor observes that the number of transistors on
a semiconductor chip doubles every year*. For microprocessors, it will double about every two

years for more than three decades.

e 1968: Gordon Moore, Robert Noyce and Andy Grove found Intel Corp. to make the business

of "INTegrated ELectronics.”

e 1969: Intel announces its first product, the world’s first metal oxide semiconductor (MOS)

static RAM, the 1101. It signals the end of magnetic core memory.

e 1971: Intel launches the world’s first microprocessor, the 4-bit 4004, designed by Federico
Faggin. The 2,000-transistor chip is made for a Japanese calculator, but Intel calls it " a micro-

programmable computer on a chip.”

e 1972: Intel announces the 8-bit 8008 processor. Teenagers Bill Gates and Paul Allen try to

develop a programming language for the chip, but it is not powerful enough.

e 1974: Intel introduces the 8-bit 8080 processor, with 4,500 transistors and 10 times the per-

formance of its predecessor.

*ftp://download.intel.com/museum/Moores_Law/Articles-Press_Releases/Gordon_Moore_1965_
Article.pdf


ftp://download.intel.com/museum/Moores_Law/Articles-Press_Releases/Gordon_Moore_1965_Article.pdf
ftp://download.intel.com/museum/Moores_Law/Articles-Press_Releases/Gordon_Moore_1965_Article.pdf
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e 1975: The 8080 chip finds its first PC application in the Altair 8800, launching the PC revolu-
tion. Gates and Allen succeed in developing the Altair Basic language, which will later become

Microsoft Basic, for the 8080.

e 1976: The x86 architecture suffers a setback when Steve Jobs and Steve Wozniak introduce the
Apple Il computer using the 8-bit 6502 processor from MOS Technology. PC maker Commodore

also uses the Intel competitor’s chip.

e 1978: Intel introduces the 16-bit 8086 microprocessor — a new age begins.

2.2.1 Intel 4004

The Japanese company Busicom had designed special purpose chipset for use in their Busicom 141-PF
calculator and commissioned Intel to develop it for production. However, Intel determined it was too
complex and would use non-standard packaging and so it was proposed that a new design produced
with standard 16-pin DIP packaging and reduced instruction set be developed. This resulted in the
4004, released by Intel Corporation in 1971, which was part of a family of chips, including ROM,
DRAM and serial to parallel shift register chips. The Intel 4004 was a 4-bit central processing unit
(CPU). It was the second complete CPU on one chip (only preceded by the TMS 1000), and also
the first commercially available (sold as a component) microprocessor.

Technical specifications.

e Approximately 2,300 transistors

e Maximum clock speed was 740 kHz

e Instruction cycle time: 10.8 us (8 clock cycles / instruction cycle)

e Instruction execution time 1 or 2 instruction cycles (10.8 or 21.6 ps), 46300 to 92600 instruc-

tions per second

e Separate program and data storage. Contrary to Harvard architecture designs, however, which
use separate buses, the 4004, with its need to keep pin count down, used a single multiplexed
4-bit bus for transferring:

— 12-bit addresses

— 8-bit instructions
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— 4-bit data words
e Instruction set contained 46 instructions (of which 41 were 8 bits wide and 5 were 16 bits wide)
e Register set contained 16 registers of 4 bits each
e Internal subroutine stack 3 levels deep.

If you want to know more... 2.1 (Harvard architecture). The term originated from the
Harvard Mark I computer, employed entirely separate memory systems to store instruc-
tions and data. The CPU fetched the next instruction and loaded or stored data simultaneously
and independently. This is in contrast to a Von Neumann architecture computer, in which both
wstructions and data are stored in the same memory system and must be accessed in turn. The
true distinction of a Harvard machine is that instruction and data memory occupy different ad-
dress spaces. In other words, a memory address does not uniquely identify a storage location (as
it does in a Von Neumann machine); you also need to know the memory space (instruction or

data) to which the address belongs.

2.2.2 Intel 8008

Originally known as the 1201, the Intel 8008 chip — early byte-oriented microprocessor introduced in
April 1972 — was commissioned by Computer Terminal Corporation (CTC) to implement an instruction
set of their design for their Datapoint 2200 programmable terminal. Intel didn’t believe there really
was a significant market for a general-purpose microcomputer-on-a-chip — John Frassanito recalls
that "Bob Noyce said it was an intriguing idea, and that Intel could do it, but it would be a dumb
move. He said that if you have a computer chip, you can only sell one chip per computer, while
with memory, you can sell hundreds of chips per computer.”[2]. What's more, if Intel introduced
their own processor, they might be seen as a competitor, and their customers might look elsewhere
for memory. As the chip was delayed and did not meet CTC's performance goals, the 2200 ended
up using CTC’s own TTL based CPU instead. An agreement permitted Intel to market the chip to
other customers after Seiko expressed an interest in using it for a calculator. Cooperation with CTC
explains the reason Intel to this day uses LSB/MSB byte order: because the Type 1 2200 used a serial
shift register memory, and that allowed propagating carries from LSB to MSB without requiring the
memory recirculate around to the previous byte.

Technical specifications.
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e 8-bit CPU with an external 14-bit address bus that could address 16KB of memory. The chip
(limited by its 18-pin DIP packaging) had a single 8-bit bus and required a significant amount

of external support logic. To verify

e Initial versions of the 8008 could work at clock frequencies up to 0.5 MHz, this was later

increased in the 8008-1 to a specified maximum of 0.8 MHz.
e Instructions took between 5 and 11 T-states where each T-state was 2 clock cycles.

e Register-register loads and ALU operations took 5T (20 us at 0.5 MHz), register-memory 8T
(32 ps), while calls and jumps (when taken) took 11 T-states (44 us).

e The 8008 was a little slower in terms of instructions per second (36,000 to 80,000 at 0.8 MHz)
than the 4-bit Intel 4004 and Intel 4040,[6] but the fact that the 8008 processed data eight bits
at a time and could access significantly more RAM still gave it a significant speed advantage

in most applications.

e The 8008 had 3,500 transistors.

2.2.3 Intel 8080

The Intel 8080 was the second 8-bit microprocessor designed and manufactured by Intel and was
released in April 1974. It was an extended and enhanced variant of the earlier 8008 design, with
assembly-language compatibility although without binary compatibilityt. It used the same basic in-
struction set as the 8008 and added some handy 16-bit operations to the instruction set as well.
Larger 40-pin DIP packaging allowed to provide a 16-bit address bus and an 8-bit data bus.

Architecture details and technical specifications.
e With 16-bit address bus, the Intel 8080 allowing an access to 64 KiB of memory.

e The processor had seven 8-bit registers (A, B, C, D, E, H, and L) where A was the 8-bit
accumulator and the other six could be used as either byte-registers or as three 16-bit register
pairs (BC, DE, HL) depending on the particular instruction. Some instructions also enabled HL
to be used as a (limited) 16-bit accumulator, and a pseudoregister, M, could be used almost

anywhere that any other register could be used and referred to the memory address pointed to

tThis sentence is very important and emphasizes differences between assembler (assembly-language) and
binary code — the same assembler may result in different binary code.
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by HL. It also had a 16-bit stack pointer to memory (replacing the 8008's internal stack), and

a 16-bit program counter.

e The processor maintains internal flag bits which show results of artithmetic and logical func-

tions. The flags are:

— sign — set 1 if result is negative,

— zero — set if the accumulator register is zero,

parity — set 1 if the number of 1 bits in the accumulator is even,

— carry — set if the last add operation resulted in a carry, or if the last subtraction operation

did not require a borrow,

— auxiliary carry — used for binary-coded decimal arithmetic.

The purpose of flag bits is that it simplify some operation — conditional branch instructions
could test the various flag status bits (set after last operation) and based on it decide to make

or not a jump. As en example consider the following set of instruction

e All the Intel 8080’s instructions were encoded in a single byte (including register-numbers, but
excluding immediate data), for simplicity. Some of them were followed by one or two bytes
of data, which could be an immediate operand, a memory address, or a port number. Like
larger processors, it had automatic CALL and RET instructions for multi-level procedure calls
and returns (which could even be conditionally executed, like jumps) and instructions to save
and restore any 16-bit register-pair on the machine stack. There were also eight one-byte
call instructions (RST) for subroutines located at the fixed addresses 00h, 08h, 10h,...,38h.
These were intended to be supplied by external hardware in order to invoke a corresponding

interrupt-service routine, but were also often employed as fast system calls.

e Although the 8080 was generally an 8-bit processor, it also had limited abilities to perform
16-bit operations. For example any of the three 16-bit register pairs (BC, DE, HL) or SP could
be loaded with an immediate 16-bit value (using LXI), incremented or decremented (using INX

and DCX), or added to HL (using DAD).
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e The Intel 8080 provided a separate stack space. One of the bits in the processor state word
indicates that the processor is accessing data from the stack. Using this signal, it was possible

to implement a separate stack memory space. However, this feature was seldom used.

e The 8080 was manufactured in a silicon gate process using a minimum feature size of 6 um.

e Approximately 6,000 transistors were used and the die size was approximately 20 mm?.

e The initial specified clock frequency limit was 2 MHz with common instructions having execu-

tion times of 4, 5, 7, 10 or 11 cycles.

Influence on industry

Until the 8080 was introduced, computer systems were usually created by computer manufacturers
as the entire computer, including processor, terminals, and system software such as compilers and
operating system and all other stuff. The 8080 has sometimes been labeled " the first truly usable
microprocessor”, although earlier microprocessors were used for calculators and other applications.
The 8080 was actually designed for just about any application.

The 8080 and 8085 gave rise to the 8086, which was designed as a source compatible (although
not binary compatible) extension of the 8085. This design, in turn, later spawned the x86 family
of chips, the basis for most CPUs in use today. Many of the 8080's core machine instructions and
concepts, for example, registers named A, B, C and D, as well as many of the flags used to control
conditional jumps, are still in use in the widespread x86 platform. 8080 Assembler code can still be

directly translated into x86 instructions; all of its core elements are still present.
2.2.4 An early x86 age — accidental birth of a standard
e 1975: Intel sarted project iIAPX 432.
e 1978: Intel introduces the 16-bit 8086 microprocessor.
e 1979: Intel introduces a lower-cost version of the 8086, the 8088, with an 8-bit bus.
e 1980: Intel introduces the 8087 math co-processor.

e 1981: IBM picks the Intel 8088 to power its PC.

e 1982: IBM signs Advanced Micro Devices as second source to Intel for 8086 and 8088 micro-

processors.
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In 1975 Intel started project iAPX 432 (short for intel Advanced Processor architecturet. This
project, if successfully implemented, would became a point in computer history when completely new
quality arise.

The preceding 8-bit microprocessors’' instruction sets were too primitive to support compiled
programs and large software systems. Intel now aimed to build a sophisticated complete system
in a few LSI chips, that was functionally equal to or better than the best 32-bit minicomputers
and mainframes requiring entire cabinets of older chips. This system would support multiprocessors,
modular expansion, fault tolerance, advanced operating systems, advanced programming languages,
very large applications, ultra reliability, and ultra security. Many advanced multitasking and memory
management features were implemented in hardware, leading to the design being referred to as a
Micromainframe. Because the 432 had no software compatibility with existing software the architects
had total freedom to do a novel design from scratch, using whatever techniques they guessed would be
best for large-scale systems and software. They applied fashionable computer science concepts from
universities, particularly capability machines, object-oriented programming, high-level CISC machines,
Ada, and densely encoded instructions. This ambitious mix of novel features made the chip larger and
more complex. The chip’s complexity limited the clock speed and lengthened the design schedule.
Not far from the beginning of the project it became clear that it would take several years and many
engineers to design all this. Meanwhile, Intel urgently needed a simpler interim product to meet
the immediate competition from Motorola, Zilog, and National Semiconductor. So Intel began
a rushed project to design the 8086 as a low-risk incremental evolution from the 8080, using
a separate design team. The mass-market 8086 shipped i8. As it turned out, despite the fact of
substitutional nature of 8086, it was good enough to begin the IBM PC age. When introduced
(1981), the 432 ran many times slower than contemporary conventional microprocessor designs such
as the Motorola 68010 and Intel 80286. Slow, uncompatible with existing software and technicaly

very complicated — this is not a recipe for success.

2.2.5 Mid-x86 age — conquest of the market

e 1982: Intel introduces the 16-bit 80286 processor with 134,000 transistors.

1984: IBM develops its second-generation PC, the 80286-based PC-AT. The PC-AT running

MS-DQOS will become the de facto PC standard for almost 10 years.

¥This project was initially named the 8800, as next step beyond the existing Intel 8008 and 8080 micropro-
Cessors.
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1985: Intel exits the dynamic RAM business to focus on microprocessors, and it brings out the
80386 processor, a 32-bit chip with 275,000 transistors and the ability to run multiple programs
at once. The Intel 80386 The Intel 80386 (GNU FDL 1.2)

1986: Compaq Computer leapfrogs IBM with the introduction of an 80386-based PC.

1987: VIA Technologies is founded in Fremont, Calif., to sell x86 core logic chip sets.

1989: The 80486 is launched, with 1.2 million transistors and a built-in math co-processor.
Intel predicts the development of multicore processor chips some time after 2000.

Late 1980s: The complex instruction set computing (CISC) architecture of the x86 comes under
fire from the rival reduced instruction set computing (RISC) architectures of the Sun Sparc,
the IBM/Apple/Motorola PowerPC and the MIPS processors. Intel responds with its own RISC
processor, the i860. The AMD Am486 The AMD Am486, an Intel 486 competitor (GNU FDL
1.2)

1990: Compagq introduces the industry's first PC servers, running the 80486.

1993: The 3.1 million transistor, 66-MHz Pentium processor with superscalar technology is

introduced.
1994: AMD and Compaq form an alliance to power Compaq computers with Am486 micropro-

cessors. Pentium Pro Intel’s Pentium Pro (GNU FDL 1.2)

1995: The Pentium Pro, a RISC slayer, debuts with radical new features that allow instructions
to be anticipated and executed out of order. That, plus an extremely fast on-chip cache and

dual independent buses, enable big performance gains in some applications.

1997: Intel launches its 64-bit Epic processor technology. It also introduces the MMX Pentium
for digital signal processor applications, including graphics, audio and voice processing.

1998: Intel introduces the low-end Celeron processor. AMD64 logo AMDG64, a rebranding of
x86-64

1999: VIA acquires Cyrix Corp. and Centaur Technology, makers of x86 processors and x87

CO-processors.

2000: The Pentium 4 debuts with 42 million transistors.

2.2.6 Late-x86 age — stone age devices

tutu
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e 2003: AMD introduces the x86-64, a 64-bit superset of the x86 instruction set.

2004: AMD demonstrates an x86 dual-core processor chip. Pentium D Intel's first dual-core

chip, the Pentium D
2005: Intel ships its first dual-core processor chip.

2005: Apple announces it will transition its Macintosh computers from PowerPCs made by

Freescale (formerly Motorola) and IBM to Intel's x86 family of processors.

2005: AMD files antitrust litigation charging that Intel abuses " monopoly” to exclude and limit

competition. (The case is still pending in 2008.)

2006: Dell Inc. announces it will offer AMD processor-based systems.

2.3 An overview of the x86 architecture

2.3.1 Basic properties of the architecture

tutu

2.3.2 Operating modes
Real mode

Real mode is an operating mode of 8086 and all later x86-compatible CPUs. Real mode is characte-

rized by
e a 20 bit segmented memory address space (only 1 MiB of memory can be addressed),
e direct software access to BIOS routines and peripheral hardware,
e lack of memory protection or multitasking at the hardware level.

All x86 CPUs compatible processors start up in real mode at power-on.

Protected mode

The Intel 80286, in addition to real mode, introduced to support protected mode, where

e addressable physical memory was expanded to 16 MB and addressable virtual memory to 1

GB,
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e provide protected memory, which prevents programs from corrupting one another.

The Intel 80386 introduced to support in protected mode for paging — a mechanism making it possible
to use paged virtual memory. This extension allows to develop many modern opeating systems like
Linux or Windows NT and in consequence the 386 architecture became the basis of all further
development in the x86 series.

Upon power-on, the processor initializes in real mode, and then begins executing instructions.
Operating system boot code may place the processor into the protected mode to enable more ad-
vanced features. The instruction set in protected mode is backward compatible with the one used in

real mode.

Virtual 8086 mode

The virtual 8086 mode is a sub-mode of operation in 32-bit protected mode. This is a hybrid operating
mode that allows real mode programs and operating systems to run under the control of a protected
mode supervisor operating system. This allows to running both protected mode programs and real
mode programs simultaneously. This mode is exclusively available for the 32-bit version of protected

mode; virtual 8086 mode does not exist in the 16-bit version of protected mode, or in long mode.

Long mode

The 32-bit address space of the x86 architecture was limiting its performance in applications requ-
iring large data sets. When designed a 32-bit address space would allow the processor to directly
address, unimaginably large in those days, data — 4 GiB, but relativeli fast this size was surpassed by
applications such as video processing and database engines. Using 64-bit addresses, one can directly
address 16 EiB (or 16 billion GiB) of data, although most 64-bit architectures don't support access to
the full 64-bit address space (AMD64, for example, supports only 48 bits, split into 4 paging levels,
from a 64-bit address).

AMD developed the 64-bit extension of the 32-bit x86 architecture that is currently used in x86
processors, initially calling it x86-64, later renaming it AMD64. The Opteron, Athlon 64, Turion 64,
and later Sempron families of processors use this architecture. The success of the AMD64 line of
processors coupled with the lukewarm reception of the IA-64 architecture forced Intel to release its

own implementation of the AMD64 instruction set. This was the first time that a major extension of
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the x86 architecture was initiated and originated by a manufacturer other than Intel. It was also the
first time that Intel accepted technology of this nature from an outside source.

Long mode is mostly an extension of the 32-bit instruction set, but unlike the 16 to 32-bit
transition, many instructions were dropped in the 64-bit mode. This does not affect actual binary
backward compatibility (which would execute legacy code in other modes that retain support for
those instructions), but it changes the way assembler and compilers for new code have to work.

Intel branded its implementation of AMD64 as EM64T, and later re-branded it Intel 64. In its
literature and product version names, Microsoft and Sun refer to AMDG64/Intel 64 collectively as
x64 in the Windows and Solaris operating systems respectively. Linux distributions refer to it either
as "x86-64", its variant "x86_64", or "amd64”. BSD systems use "amd64” while Mac OS X uses
"x86_64".
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Registers

Computer Science is no more about
computers than astronomy is about

telescopes.

Edsger W. Dijkstra

The computer was born to solve problems

that did not exist before.

Bill Gates

3.1 General information

A processor register is a small amount of storage available as part of a CPU or other digital
processor. Registers are typically at the top of the memory hierarchy, and provide the fastest way to

access data™.

If you want to know more... 3.1 (Out-of-order execution). In computer engineering, out-
of-order execution (OoOFE or OOE) is a paradigm to make use of instruction cycles that
would otherwise be wasted by a certain type of costly delay. In this paradigm, a processor executes

instructions in an order governed by the availability of input data, rather than by their original

*The term normally refers only to the group of registers that are directly encoded as part of an instruction,
as defined by the instruction set. However, modern high performance CPUs often have duplicates of these ”archi-
tectural registers” in order to improve performance via register renaming, allowing parallel and speculative
execution.

39
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order in a program. In doing so, the processor can avoid being idle while data is retrieved for
the next instruction in a program, processing instead the next instructions which are able to run
immediately. For instance, a processor may be able to execute hundreds of instructions while
a single load from main memory is in progress. Shorter instructions executed while the load is
outstanding will finish first, thus the instructions are finishing out of the original program order.

Ta cecha powodugje jednak, ze mikroprocesor musi pamietac rzeczywistq kolejnosé (zwykle po-
siada wiele kopii rejestrow, niewidocznych dla programisty) i uaktualniaé stan w oryginalnym
porzqdku, ale takze anulowaé (wycofywaé) zmiany, w przypadku gdy wystapil jakis bled podczas
wykonywania wezesniejszej instrukcji. Iustracja dla hipotetycznego mikroprocesora z dwiema jed-

nostkami wykonawczymai:

1.a=b+1
2. c=a+ 2
3.d=e+1
4. £f =4+ 2

Instrukcja nr 2 nie moze wykonaé sie przed pierwszg, bowiem jej argument zaleZy od wyni-
ku instrukcyi 1., podobnie instrukcja 4. zalezy od 3. Bez zmiany kolejno$ci procesor wykonalby
szereqgowo 4 instrukcje w zatoZonym porzedku, wykorzystujgc jednak tylko jedng jednostke wyko-

nawczq:

czas .

Jednak mozna wykonac rownolegle niezalezne od siebie instrukcje 1. i 3., nastepnie rowniez
rownolegle instrukcje 2. i 4. — w ten sposéb wykorzystane zostang obie jednostki wykonawcze,

takze czas wykonywania bedzie 2 razy mniejszy:

czas .
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If you want to know more... 3.2 (Register renaming). In computer architecture, register
renaming refers to a technique used to avoid unnecessary serialization of program operations
imposed by the reuse of registers by those operations. Consider this piece of code running on an

out-of-order CPU

1. a=b>»
2. a=a+1
3. b=a
4. a=c
5. a=a+ 2
6. c =a

Instructions 1, 2, and 8 are independent of instructions 4, 5, and 6, but the processor cannot
finish 4 until 3 is done, because 3 would then write the wrong value. Fortunately, we can eliminate
this restriction by changing the names of some of the registers making this code possible to be

executed as out-of-order

1. a=»>o
2. a=a+1
3. b=a
4. d=c
5. d=d+ 2
6. c=d

or the same but more clearly

1. a=b>d 4. d =c
2. a=a+1 5.d=d + 2
3. b=a 6. c=d

Now instructions 1, 2, and 8 can be executed in parallel with instructions 4, 5, and 6. When
possible, the compiler would detect the distinct instructions and try to assign them to a different

register. However, there is a finite number of register names that can be used in the assembly
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code. This is why many high performance CPUs have more physical registers than may be na-
med directly in the instruction set, so they rename registers in hardware to achieve additional

parallelism.

If you want to know more. .. 3.3 (Speculative execution). Speculative execution in computer
systems is doing work, the result of which may not be needed. This performance optimization
technique is very often used in pipelined processors and other systems. The main idea is to do
work before it is known whether that work will be needed at all, so as to prevent a delay that
would have to be incurred by doing the work after it is known whether it is needed. If it turns
out the work wasn’t needed after all, the results are simply ignored. The target is to provide more
concurrency if extra resources are available. For instance, modern pipelined microprocessors use

speculative execution to reduce the cost of conditional branch instructions.

3.2 Categories of registers

The most coarse division of registers based on the number of bits they can hold. We have, for
example, a set of an "8-bit registers” or a "32-bit registers”. More precise classification based on

registrs’ content or instructions that operate on themf.

e User-accessible registers — registers to which a user have an access to freely read and wri-
te. The most common division of user-accessible registers is into data registers and address

registers.

— Data registers can hold varius kind of data: numeric such as integer and floating-point,
characters, small bit arrays etc. In some older and low end CPUs, a special data register,

known as the accumulator, is used implicitly for many operations.

— Address registers hold addresses and are used by instructions that indirectly access main
memory (sometimes called primary memory when we consider the whole hierarchy of

computer's memory)?.

e General purpose registers (GPRs) — can store both data and addresses, i.e., they are com-

bined data/address registers.

TPlease note that some registers belongs to more than one category.

¥Nothe that some processors contain registers that may only be used to hold an address or only to hold
numeric values (in some cases used as an index register whose value is added as an offset from some address);
others allow registers to hold either kind of quantity.
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e Floating point registers (FPRs) — in many architectures dedicated registers to store floating

point numbers.

e Special purpose registers (SPRs) — hold program state; they usually include the program
counter (aka instruction pointer) and status register (aka processor status word (PSW)).
Processor status word is a register used as a vector of bits representing Boolean values to
store and control the results of operations and the state of the processor. Sometimes the
stack pointer is also included in this group. The very special kind of this type of registers
is an instruction register (IR). An instruction register stores the instruction currently being
executed or decoded. In simple processors each instruction to be executed is loaded into the
instruction register which holds it while it is decoded, prepared and finally executed, which can
take several steps. Some of the complicated processors use a pipeline of instruction registers
where each stage of the pipeline does part of the decoding, preparation or execution and then

passes it to the next stage for its step (see Instruction pipeline notes below).

e Control and status registers — there are three types: program counter, instruction registers

and processor status word.

e Vector registers hold data for vector processing done by SIMD instructions (Single Instruction,

Multiple Data).

e Embedded microprocessors can also have registers corresponding to specialized hardware ele-

ments.

If you want to know more... 3.4 (Instruction pipeline). An instruction pipeline is a
technique used to increase the number of instructions that can be executed by CPU in a unit
of time (refers as instruction throughput). Note, that pipelining does not reduce the time
to complete an instruction, but increases the number of instructions that can be
processed at once.

In this technique each instruction is split into a sequence of independent steps. Taking into

account e.g. the basic five-stage pipeline in a RISC machine the following steps are distinguished
e Instruction Fetch (IF),
e Instruction Decode and register fetch (ID),

e FExecute (EX),
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e Memory access (MEM),
o Register write back (WB).

Pipelining let the processor work on as many instructions as there are independent steps. This
approach is similar to an assembly line where many vehicles are build at once, rather than waiting
until one vehicle has passed through the whole line before admitting the next one. As the goal of
the assembly line is to keep each assembler productive at all times, pipelining seeks to use every
part of the processor busy with some instruction. Pipelining lets the computer’s cycle time be the
time of the slowest step, and ideally lets one instruction complete in every cycle.

Pipelining, among many benefits, leads also to problem known as a hazard. It arise because
a human programmer writing an assembly language program assumes the sequential-execution
model — model when each instruction completes before the next one begins. Unfortunately this
assumption is not true on a pipelined processor. Imagine the following two register instructions

to a hypothetical RISC processor that has the 5, aforementioned, steps

1. Add R1 to R2.

2. Move R2 to R3.

Instruction 1 would be fetched at time t1 and its execution would be complete at ts. Instruction
2 would be fetched at ta and would be complete at tg. The first instruction might deposit the
incremented number into R2 as its fifth step (register write back) at t5. But the second instruction
might get the number from R2 (to move to R3) in its second step at time t3. The problem is that
the first instruction would not have incremented the value by then. Such a situation where the
expected result is problematic is a hazard. A human programmer writing in a compiled language
might not have these concerns, as the compiler could be designed to generate machine code that

avoids hazards.

3.3 x86 registers

3.3.1 16-bit architecture

The original Intel 8086 and 8088 have fourteen 16-bit registers.
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e Four of them (AX, BX, CX, DX) are general-purpose registers (GPRs)%. Each can be divided
into two parts accessed independently as two separate bytes — for example high byte (or MSB
— most significant byte) of AX can be accessed as AH while low byte (or LSB — least significant

byte) as AL. Despite the generality of those registers, all of them have " predefined” meaning

— AX is an accumulator register used in arithmetic operations.

BX is a base register used as a pointer to data (located in segment register DS, when in

segmented mode).

— CX is a counter register used in shift/rotate instructions and loops.

DX is a data register used in arithmetic operations and |/O operations.

e There are two pointer registers: SP (stack pointer register) which points to the top of the stack

and BP (stack base pointer register used to point to the base of the stack.

e Two registers (S| and DI) are for array indexing. Sl is a source index register used as a pointer
to a source in stream operations. DI is a destination index register used as a pointer to a

destination in stream operations.
e Four segment registers (SS, CS, DS and ES) are used to form a memory address.

— SS — stack sgment — pointer to the stack.
— CS — code segment — pointer to the code.
— DS — data segment — pointer to the data.
— ES — extra segment — pointer to extra data ('E’ stands for 'Extra’).

e The FLAGS register used as processor status word contains — see table 3.1 and 3.2 for descrip-

tion of the meaning of a bits.

e The instruction pointer (IP) points to the next instruction that will be fetched from memory
and then executed (if no branching is done). This register cannot be directly accessed (read or

write) by a program.

§ Although each may have an additional purpose: for example only CX can be used as a counter with the loop
instruction.
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Bit  Abbreviation Description Category

1 1 Reserved

3 0 Reserved

5 0 Reserved

7 SF Sign flag Status

9 IF Interrupt enable flag Control

11 OF Overflow flag Status

14 NT Nested task flag (286+ only), always 1 on 8086  System
and 186

Tabela 3.1: Intel x86 FLAGS register.

AF  Carry of Binary Code Decimal (BCD) numbers arithmetic operations.

DF  Stream direction. If set, string operations will decrement their pointer
rather than incrementing it, reading memory backwards.

IOPL 1I/O Privilege Level of the current process.

NT  Controls chaining of interrupts. Set if the current process is linked to
the next process.

SF  Set if the result of an operation is negative.

ZF  Set if the result of an operation is Zero (0).
Tabela 3.2: Meaning of the Intel x86 FLAGS register.
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3.3.2 32-bit architecture

The 80386 extended the set of registers to 32 bits while retaining all of the 16-bit and 8-bit names
that were available in 16-bit mode. The new extended registers are denoted by adding an E (for
Extended) prefix; thus the core eight 32-bit registers are named EAX, EBX, ECX, EDX, ESI, EDI,
EBP, and ESP. The original 8-bit and 16-bit register names map into the least significant portion of

the 32-bit registers. There are two new segment registers

e FS — F segment — pointer to more extra data ('F' comes after 'E’ used to denote 16-bit extra

segment register ES).
e GS — G segment — pointer to still more extra data ('G’ comes after 'F').

What is important, all segment regiters were still 16-bit. The low half of the extenden 32-bit flag
register EFLAGS stay unchanged and is identical to FLAGS. New bits are introduced in high half of
the flag register — see table 3.3 and 3.4 for description of the meaning of a bits. Above mentioned
extension was natural and was not connected with any significant improvements in CPU architecture.

Later, 32-bit architecture were upgraded with new functionality significantly improve the performance.

1. With the 80486 a floating-point processing unit (FPU) was added, with eight 80-bit wide
registers: ST(0) to ST(7)Y.

2. With the Pentium MMX, eight 64-bit MMX integer registers were added (MMX0 to MMX?7,

which share lower bits with the 80-bit-wide FPU stack).

3. With the Pentium Ill, a 32-bit Streaming SIMD Extensions (SSE) control/status register
(MXCSR) and eight 128-bit SSE floating point registers (XMMO to XMM7) were added.

3.3.3 64-bit architecture

Starting with the AMD Opteron processor, the x86 architecture extended the 32-bit registers into
64-bit registers in a way similar to how the 16 to 32-bit extension took place — an R prefix identifies
the 64-bit registers (RAX, RBX, RCX, RDX, RSI, RDI, RBP, RSP, RFLAGS, RIP). Additional eight

64-bit general registers (R8-R15) were introduced. The least significant 32 bits of these registers

YBeing more precisely, registers: ST(0) to ST(7) works as an ”aliases” for directyle unaccessible registers
RO-R7.
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Bit Abbreviation Description Category

16 RF Resume Flag (3864 only) System

17 VM Virtual-8086 Mode (386+ only) System

18 AC Alignment Check (486SX+ only) System

19 VIF Virtual Interrupt Flag (Pentium-+) System

20 VIP Virtual Interrupt Pending flag (Pentium+) System

21 ID Identification Flag (Pentium+) System
Tabela 3.3: Intel x86 EFLAGS register (high half). Those bits that are not listed are reserved
by Intel.

Flag Set when...

AC Alignment Check. Set if alignment checking of memory references is

done.

ID  Identification Flag. Support for CPUID instruction if can be set.

RF  Response to debug exceptions.

VIF Virtual Interrupt Flag. Virtual image of IF.

VIP Virtual Interrupt Pending flag. Set if an interrupt is pending.

VM  Virtual-8086 Mode. Set if in 8086 compatibility mode.

Tabela 3.4: Meaning of the Intel x86 EFLAGS register (high half).

are available via a D suffix (R8D through R15D), the least significant 16 bits via a W suffix (R8W

through R15W), and the least significant 8 bits via a B suffix (R8B through R15B).

3.3.4 Miscellaneous/special purpose registers

1.

2.

3.

4.

128-bit SIMD registers XMMO0 - XMM15
256-bit SIMD registers YMMO - YMM15
512-bit SIMD registers ZMMO0 - ZMM31

control registers (CRO through 4, CR8 for 64-bit only) CRO Ten rejestr ma dtugos$¢ 32 bitéw
na procesorze 386 lub wyzszym. Na procesorze x86-64 analogicznie rejestr ten jak i inne kon-
trolne ma dtugos¢ 64 bitéw. CRO ma wiele réznych flag, ktére mogg modyfikowac podstawowe
operacje procesora. Nas jednak beda interesowaty szczegdlnie 6 bitéw tego rejestru - dolne 5
(od PE do ET) oraz najwyzszy bit (PG). Tabelka przedstawia rejestr CRO (domysinie dana
operacja jest wtaczona gdy bit jest ustawiony, czyli ma wartos¢ 1): Bit Nazwa Nazwa angielska
Opis 31 PG Paging Flag Jesli ustawiony na 1, stronicowanie wtaczone. Jedli bit ma wartos¢ 0

to wytaczone 30 CD Cache disable Wytacz pamie¢ cache 29 NW Not Write-Through Zapis do
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pamieci, czy przez cache 18 AM Aligment Mask Maska wyréwnania. Aby ta opcja dziatata musi
by¢ ustawiona na 1, bit AC z rejestréw flag procesora réwniez musi mie¢ warto$¢ 1 oraz poziom
uprzywilejowania musi wynosi¢ 3. 16 WP Write Protection Ochrona zapisu 5 NE Numeric Error
Numeryczny btad, wtacza wewnetrzne raportowanie btedéw FPU gdy jest ten bit ustawiony 4
ET Extension Type Typ rozszerzenia. Ta flaga méwi nam jaki mamy koprocesor. Jesli O to
80287, gdy 1 to 80387 3 TS Task switched Przetaczanie zadan, pozwala zachowaé zadania x87
2 EM Emulate Flag Jesli jest ustawiona nie ma zadnego koprocesora. W przeciwnym wypadku
jest obecnosé jednostki x87 1 MP Monitor Coprocessor Monitor Koprocesora, kontroluje in-
strukcje WAIT /FWAIT 0 PE Protection Enabled Jesli 1 system jest w trybie chronionym. Gdy
PE ma wartoé¢ 0 procesor pracuje w trybie rzeczywistym CR1 Ten rejestr jest zarezerwowany
i nie mamy do niego zadnego dostepu. CR2 CR2 zawiera warto$¢ bedaca btedem w adresowa-
niu pamieci (ang. Page Fault Linear Address). Jesli dojdzie do takiego bfedu, wéwczas adres
miejsca jego wystapienia jest przechowywany wtasnie w CR2. CR3 Uzywany tylko jedli bit PG
w CRO jest ustawiony.CR3 umozliwia procesorowi zlokalizowanie pofozenia tablicy katalogu
stron dla obecnego zadania. Ostatnie (wyzsze) 20 bitéw tego rejestru wskazuja na wskaznik
na katalog stron zwany PDBR (ang. Page Directory Base Register). CR4 Uzywany w trybie
chronionym w celu kontrolowania operacji takich jak wsparcie wirtualnego 8086, technologii
stronicowania pamieci, kontroli btedéw sprzetowych i innych. Bit Nazwa Nazwa angielska Opis
13 VMXE Enables VMX Wtacza operacje VMX 10 OSXMMEXCPT Operating System Support
for Unmasked SIMD Floating-Point Exceptions Wsparcie systemu operacyjnego dla niemasko-
walnych wyjatkéw technologii SIMD 9 OSFXSR Operating system support for FXSAVE and
FXSTOR instructions Wsparcie systemu operacyjnego dla instrukcji FXSAVE i FXSTOR 8 PCE
Performance-Monitoring Counter Enable Licznik monitora wydajnoéci. Jesli jest ustawiony roz-
kaz RDPMC moze by¢ wykonany w kazdym poziomie uprzywilejowania. Za$ jesli wartos¢ tego
bitu wynosi 0, rozkaz moze by¢ wykonany tylko w trybie jadra (poziom 0) 7 PGE Page Global
Enabled Globalne stronicowanie 6 MCE Machine Check Exception Sprawdzanie btedéw sprzeto-
wych jesli bit ten ma warto$¢ 1. Dzieki temu mozliwe jest wysSwietlenie przez system operacyjny
danych na temat tego btedu jak np w systemie Windows na " btekintym ekranie Smierci” 5 PAE
Physical Address Extension Jesli bit jest ustawiony to zezwalaj na uzycie 36-bitowej fizycznej
pamieci 4 PSE Page Size Extensions Rozszerzenie stronicowania pamieci. Jedli 1 to stronice
maja wielko$¢ 4 MB, w przeciwnym przypadku 4 KB 3 DE Debugging Extensions Rozszerzenie
debugowania 2 TSD Time Stamp Disable Jedli ustawione, rozkaz RDTSC moze by¢ wykonany
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tylko w poziomie uprzywilejowania 0 (czyli w trybie jadra), za$ gdy réwne 0 w kazdym poziomie
uprzywilejowania 1 PVI Protected Mode Virtual Interrupts Jesli ustawione to wtacza sprzetowe
wsparcie dla wirtualnej flagi przerwan (VIF) w trybie chronionym 0 VME Virtual 8086 Mode

Extensions Podobne do wirtualnej flagi przerwan

. debug registers (DRO through 3, plus 6 and 7)
. test registers (TR3 through 7; 80486 only)
. descriptor registers (GDTR, LDTR, IDTR)

. task register (TR)
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Memory

4.1 Itroduction

4.1.1 Data representation — endianness

x86 architecture use the little-endian format to store bytes of multibyte values. Oznacza to, ze
wielobajtowe wartosci s3 zapisane w kolejnosci od najmniej do najbardziej znaczacego (patrzac od
lewej strony), bardziej znaczace bajty beda miaty "wyzsze" (rosnace) adresy. Notice, that the order
of bytes is reversed but not bits. Zatem 32-bitowa warto$¢ B3B2B1B0 mogtaby by na procesorze
z rodziny x86 by¢ zaprezentowana w ten sposéb: Reprezentacja kolejnosci typu little-endian Byte 0
Byte 1 Byte 2 Byte 3 Przyktadowo 32-bitowa wartos¢ 1BA583D4h (literka h w Asemblerze oznacza
liczbe w systemie szesnastkowym, tak jak Ox w C/C++) mogtaby zosta¢ zapisana w pamieci mnie;
wiecej tak: Przyktad D4 83 A5 1B Zatem tak wyglada nasza wartos¢ (0xD4 0x83 0xA5 0x1B) gdy

zrobimy zrzut pamieci.

4.1.2 Memory segmentation

Memory segmentation is the division of computer's primary memory into segments or sections. The
size of a memory segment is generally not fixed* and may be even as small as a single byte. Segments
usually represent natural divisions of a program such as individual routines, data tables or simply data
and execution code part so concept of segmentation is not abstract idea to the programmer. With

every segment there are some basic information associated with it

*In a sense, that differnt segments could have different lengt.

o1
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length of the segment,

set of permissions,

information indicates where the segment is located in memory,

flag indicating whether the segment is present in main memory or not.

A process is allowed to make a reference into a segment if the type of reference is allowed by
the permissions, and the offset within the segment is within the range specified by the length of
the segment. Otherwise, a hardware exception such as a segmentation fault is raised. That is why
memory segmentation is one of the methods of implementing memory protectiont. The information
about location in memory might be the address of the first location in the segment, or the address
of a page table for the segment if the segmentation is implemented with paging. When a reference

to a location within a segment is made

e the offset within the segment will be added to address of the first location in the segment to

give the address in memory of the referred-to item (the first case);

e the offset of the segment is translated to a memory address using the page table (the second

case).

If an access is made to the segment that is not present in main memory, an exception is raised, and
the operating system will read the segment into memory from secondary storage. The part of CPU
responsible for translating a segment and offset within that segment into a memory address, and for
performing checks to make sure the translation can be done and that the reference to that segment
and offset is permitted is called a memory management unit (MMU).

With memory segmentation a linear address is obtained combining (typically by addition) the seg-
ment address with offset (within this segment). For instance, the segmented address ABCDh:1234h
has a segment selector of ABCDh, representing a segment address of ABCDh, to which we add the
offset, yielding the linear address 06EFOh + 1234h = 08124h.

If you want to know more... 4.1 (Paging). tutu - uzupelnic

f Another method is paging; both methods can be combined.
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4.1.3 Addressing mode

The addressing mode indicates the manner in which the operand is presented. There is a nice analogy

from real live. Generaly the following addressing mode could be considered.

e Immediate. In this type of addressing opperands are dostepne immediately after instruction is

read, because actual values are stored in the field.

For example:

XX - instruction code
aaa - field for operand 1

bbb - field for operand 2

xxaaabbb - binary sequence representing instruction

aaa - actual value of the operand 1

bbb - actual value of the operand 2

e Direct. In this type of addressing addresses of actual values are stored in the operand fields of

instruction

For example:

Address Value

xxaaabbb 1001 0010
[ 1010 0011
| +-———- > 1011 0100
I 1100 0101
U ——— > 1101 0110

Actual value of the operand 1 (0100) is uder address aaa (1011)

Actual value of the operand 2 (0110) is uder address bbb (1101)

e |ndirect.
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For example:

xx - instruction code
aaa - space for operand 1

bbb - space for operand 2

xxaaabbb - binary sequence representing instruction

aaa - actual value of the operand 1

bbb - actual value of the operand 2

The registers used for indirect addressing are BX, BP, SI, DI

e Base-index Considering an array, for example, BX contains the address of the beginning of the

array, and DI contains the index into the array.

For example:

xx — instruction code
aaa - space for operand 1

bbb - space for operand 2

xxaaabbb - binary sequence representing instruction

aaa - actual value of the operand 1

bbb - actual value of the operand 2

4.2 Real mode

During the late 1970s it became clear that the 16-bit 64-KiB address limit of minicomputers would
not be enough in the future. The 8086 prcessor was developed from the simple 8080 microprocessor
and primarily aiming at very small, inexpensive computers and other specialized devices. Thus simple
segment registers, enabling memory segmentation, were adopted which increased the memory address

width by (only) 4 bits. The effective 20-bit address space of real mode limits the addressable memory



4.2. REAL MODE 95

to 220 bytes, or 1,048,576 bytes. The number 20 is derived directly from the hardware design of the
Intel 8086, which had exactly 20 address pins.

Each segment begins at a multiple of 16 bytes, from the beginning of the linear (flat) address
space resulting in 16 byte intervals. The actual location of the beginning of a segment in the linear
address space can be calculated with multiplying segment number by 16. For example a segment
value of 000Ah (10) would give an linear address at 00AOh (160) in the linear address space. Then the
address offset can be added to the segment address: 000Ah:0000Bh (10:11) would be interpreted as
000Ah + 0000Bh = ABh (10-16+11 = 171) where ABh is the linear addresst. Since all segments are
64 KiB long (65536 - 16 = 1,048, 576), a single linear address can be mapped to up to 4096 distinct
segment :offset pairs. For example, the linear address 01234h (4660) can have the segmented
addresses 0000h:01234h (0 - 16 + 4660 = 0 + 4660), 0123h:0004h (291 - 16 + 46 = 4656 + 4),
00ABh:0784h (171 -16 4 46 = 2736 + 1924), etc. The 16-bit segment selector is interpreted as the
most significant 16 bits of a linear 20-bit address (called a segment address) of which the remaining
four least significant bits are all zeros. The segment address is always added with a 16-bit offset to
yield a linear address, which is the same as physical address in this mode (see image 77).

rysunek
rysunek

Now there is a tricky part. The last segment, FFFFh (65535) as we use 16 bits as a segment
selector, begins at linear address FFFFOh (1048560) — this is 16 bytes before the end of the 20 bit
address space range from 0 to 1,048,576. Thus with an offset of up to 65,536 bytes, one can access,
up to 65,520 (65,536-16) bytes past the end of the 20 bit 8088 address space. On the 8088, these
address accesses were wrapped around to the beginning of the address space such that FFFFh:00010h
(65535:16) would access address 0 and FFE8h: (65512:80) would access address 304 of the linear

address space.

Remark 4.1 (Segment length in real mode). Real mode segments are always 64 KiB long — in
practice it means only that no segment can be longer than 64 KiB than that every segment must
be 64 KiB long. Because in real mode there is no protection or privilege limitation, any program
can always access any memory (since it can arbitrarily set segment selectors to change segment
addresses with absolutely no supervision). Even if a segment could be defined to be smaller than

64 KiB, it would still be entirely up to the programs to coordinate and keep within the bounds of

tSuch address translations are carried out by the segmentation unit of the CPU.
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their segments. Therefore, real mode can just as well be imagined as having a variable length for

each segment, in the range 1 to 65536 bytes, that is just not enforced by the CPU.

4.2.1 Addressing modes
In real mode there are several addressing modes.

e Register addressing
mov ax, bx ; moves contents of register bx into ax
e Immediate
mov ax, 1 ; moves value of 1 into register ax
e Direct memory addressing
mov ax, [102h] ; Actual address is DS:0 + 102h
e Direct offset addressing

byte_tbl db 12,15,16,22,..... ; Table of bytes
mov al, [byte_tbl+2]

mov al,byte_tbl[2] ; same as the former
e Register Indirect
mov ax, [di]

The registers used for indirect addressing are BX, BP, S, DI

e Base-index
mov ax, [bx + di]

Considering an array, for example, BX contains the address of the beginning of the array, and

DI contains the index into the array.

e Base-index with displacement

mov ax, [bx + di + 10]
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4.3 Protected mode

In protected mode, a segment register no longer contains the physical address of the beginning of a
segment, but contain a "selector” that points to a system-level structure called a segment descriptor.
A segment descriptor contains the physical address of the beginning of the segment, the length of
the segment, and access permissions to that segment. The offset is checked against the length of
the segment, with offsets referring to locations outside the segment causing an exception. Offsets
referring to locations inside the segment are combined with the physical address of the beginning
of the segment to get the physical address corresponding to that offset. The segmented nature can
make programming and compiler design difficult because the use of near and far pointers affects

performance.

4.4 \Virtual memory
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First program

It should be familiar after reading

5.1 32-bit basic stand alone program

5.1.1 Code for NASM

../programs/first_program /hello.asm

;  This program demonstrates basic text output to a screen.

: No "C”

;  Calls are made to the operating system directly.

; assemble:
; link:

; orun: ./hello
; output is:
section .data
text:

len: equ $—text

section .text

db "Hello_ World!'!",

library functions are used.

(int 80 hex)

nasm —f elf hello.asm

Id hello.o —o hello

Hello World

; Data section

10 ; The string to print, 10=cr

; "$" means "here”
not an address

; len is a value,

; Code section

99
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global _start

_start:
mov
mov
mov
mov

int

o Exit
mov
mov

int

edx ,
ecx ,
ebx
eax ,

0x80

ebx,
eax ,

0x80

; End of the code

ROZDZIAL 5. FIRST PROGRAM

Make label available to linker

; We must export the entry point to the ELF linker or

loader. They conventionally recognize _start as their

entry point. Use Id —e foo to override the default.

Standard Id entry point

arg3: length of string to print

arg2: pointer to string

argl: where to write, so called file handler in this
System call number (sys_write)

Interrupt 80 hex, call kernel

Exit code, O=normal
System call number (sys_exit)

Interrupt 80 hex, call kernel

¢

rase stdou

Verify correctnes of the code by assembling it

nasm -f elf hello.asm

linking

1d hello.o -o hello

and finally runing

./hello

If no errors were raported the result should be as follow

fulmanp@fulmanp-k2:~/assembler$ ./hello

Hello World!

If you want to know more... 5.1 (Making 32-bit code on 64-bit system with NASM). When

you try to make 32-bit program on 64-bit system assembling it as previously

nasm -f elf hello.asm

but link as
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1d -m elf_i386 hello.o -o hello

Such a program is a 32-bit program, which can be verified by readelf Uniz command

fulmanp@fulmanp-k2:~/assembler$ readelf -h hello
ELF Header:

Magic: 7f 45 4c 46 01 01 01 00 00 00 00O OO OO0 00 00 0O

Class: ELF32

Data: 2’s complement, little endian
Version: 1 (current)

0S/ABI: UNIX - System V

ABI Version: 0

Type: EXEC (Executable file)
Machine: Intel 80386

Version: 0x1

Entry point address: 0x8048080

Start of program headers: 52 (bytes into file)
Start of section headers: 216 (bytes into file)
Flags: 0x0

Size of this header: 52 (bytes)

Size of program headers: 32 (bytes)

Number of program headers: 2

Size of section headers: 40 (bytes)

Number of section headers: 6

Section header string table index: 3

Presented code, without any changes, can be also assembled as 64-bit program with

fulmanp@fulmanp-k2:~/assembler$ nasm -f elf64 hello.asm
fulmanp@fulmanp-k2:~/assembler$ 1d hello.o -o hello
fulmanp@fulmanp-k2:~/assembler$ readelf -h hello
ELF Header:

Magic: 7f 45 4c 46 02 01 01 00 00 00 00 00 00 00 0O 0O

Class: ELF64
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Version:
0S/ABI:

ABT Version:
Type:
Machine:
Version:

Entry point address:

Start of program headers:

Start of section headers:
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2’s complement, little endian
1 (current)

UNIX - System V

0

EXEC (Executable file)
Advanced Micro Devices X86-64
Ox1

0x4000b0

64 (bytes into file)

264 (bytes into file)

Flags: 0x0

Size of this header: 64 (bytes)
Size of program headers: 56 (bytes)
Number of program headers: 2

Size of section headers: 64 (bytes)
Number of section headers: 6

Section header string table index: 3

If you want to know more...

5.2 (Getting content of assembled file). If you wander abo-

ut content of assembled or linked file you can use xxd Uniz command do dump these files in

"readable” format

fulmanp@fulmanp-k2:

0000000: 7£45 4c46

0000010: 0100 0300

0000020: 4000 0000

0000030: 0700 0300

0000040: 0000 0000

0000050: 0000 0000

0000060: 0000 0000

0000070: 0300 0000

0000080: 0000 0000

0000090: 0700 0000

~/assembler$ xxd hello.o

0101 0100 0000 0000 0000

0100 0000 0000 0000 0000

0000 0000 3400 0000 0000

0000 0000 0000 0000 0000

0000 0000 0000 0000 0000

0000 0000 0000 0000 0000

0000 0000 0100 0000 0100

0000 0000 6001 0000 0dOO

0000 0000 0400 0000 0000

0100 0000 0600 0000 0000
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00000a0: 7001 0000 2200 0000 0000 0000 0000 0000 p..."...........
00000b0: 1000 0000 0000 0000 0400 0000 0300 0000 ................
00000c0: 0000 0000 0000 0000 a001 0000 3100 0000 ............ 1...
00000d0: 0000 0000 0000 0000 0100 0000 0000 0000 ................
00000e0: 1700 0000 0200 0000 0000 0000 0000 0000 ................
00000£f0: 001 0000 7000 0000 0500 0000 0600 0000 ....p.......v...
0000100: 0400 0000 1000 0000 1f00 0000 0300 0000 ................
0000110: 0000 0000 0000 0000 5002 0000 1b0OO 0000 ........ Po.o.oo...
0000120: 0000 0000 0000 0000 0100 0000 0000 0000 ................
0000130: 2700 0000 0900 0000 0000 0000 0000 0000 ’...............
0000140: 7002 0000 0800 0000 0400 0000 0200 0000 pP.....evvvvvunnnn
0000150: 0400 0000 0800 0000 0000 0000 0000 0000 ................
0000160: 4865 6c6c 6£20 576f 726c 6421 0a00 0000 Hello World!....
0000170: baOd 0000 00b9 0000 0000 bbO1 0000 00b8 ................
0000180: 0400 0000 cd80 bb0OO 0000 00b8 0100 0000 ................
0000190: cd80 0000 0000 0000 0000 0000 0000 0000 ................
00001a0: 002e 6461 7461 002e 7465 7874 002e 7368 ..data..text..sh
00001b0: 7374 7274 6162 002e 7379 6d74 6162 002e strtab..symtab..
00001c0O: 7374 7274 6162 002e 7265 6c2e 7465 7874 strtab..rel.text
00001d0: 0000 0000 0000 0000 0000 0000 0000 0000 ................
00001e0: 0000 0000 0000 0000 0000 0000 0000 0000 ................
00001£f0: 0100 0000 0000 0000 0000 0000 0400 f1ff ................
0000200: 0000 0000 0000 0000 0000 0000 0300 0100 ................
0000210: 0000 0000 0000 0000 0000 0000 0300 0200 ................
0000220: 0bOO 0000 0000 0000 0000 0000 0000 0100 ................
0000230: 1000 0000 0400 0000 0000 0000 0000 fiff ................
0000240: 1400 0000 0000 0000 0000 0000 1000 0200 ................
0000250: 0068 656c 6c6f 2e61 736d 0074 6578 7400 .hello.asm.text.
0000260: 6c65 6e00 5£73 7461 7274 0000 0000 0000 1len._start......
0000270: 0600 0000 0102 0000 0000 0000 0000 0000 ................

Knowing that it works, now it's a time to explain why it works. Let's study the code line by line.



64

ROZDZIAL 5. FIRST PROGRAM

Character ; starts comment which and extend to the end of the line.

section .data

Start of the data section; mixing data and code is not allowed.

text: db "Hello World!", 10

Definition of the text to print.

len: equ $ - text

Definition of the constant value equal to: current address ($) minus address of the first element
of variable text — this should be equal to the length of the text we are going to print. Notice
that len is a value (constant of the compilation), not an address. If you prefer variables replace

this line by 1len dd $-text

section .text

Start of the code (program) section; mixing data and code is not allowed.

global _start
Make label available to linker. We must export the entry point to the ELF linker or loader.
They conventionally recognize _start as their entry point. Use 1d -e foo to override the

default.

_start:

Label; standard 1d entry point.

mov edx, len (or mov edx, [len] if you prefere variables than constants)

Move (copy, insert, put) to EDX register (RDX)* length of the text to print — this would be
a third argument of the function we are going to call. In the first case length is a constant,
in the second we take it from variable. Talking about mov notice that copying data from one

memory cell to the other is not allowed
mov [dest], [src] ; this is not allowed

mov ecx, text
Copy to ECX register (RSI) address of the first element of the text — this would be a second

argument of the function we are going to call.

*EDX is a 32-bit register while RDX — 64-bit; in the whole book brackets are used to ditinguish 32-bit and

64-bit registers when both are in one sentence.
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e mov ebx, 1
Copy to EBX register (RDI) value 1 — this would be a first argument of the function we are

going to call, so called file handler, indicating where to write (in this case stdout i.e. screen).

e mov eax, 4
Copy to EAX register (RAX) value 4 (1). This is a number of Linux function (sys_write)
we are going to call. Notice that these numbers are different for different architectures and

operation systems.

e int 0x80 (syscall)
Interrupt to call system function selected by EAX register (RAX). In this case this is sys_write
function which takes three arguments in registers EBX, ECX and EDX (RDI, RSI and RDX).

32-bit system function takes at most 6 arguments from registers EBX, ECX, EDX, ESI, EDI

and EBP. EAX is used to specify the number of a function.

64-bit system function takes at most 6 arguments from registers RDI, RSI, RDX, R10, RS,
R9. RAX is used to specify the number of a function. Values in registers RCX and R11 are

destroyed.

e mov ebx, O
Copy to EBX register (RDI) value 0 — this would be a first argument of the function we are
going to call, so called errorlevel, indicating whether program was terminated correctly or not

(0 means that everything was all right and program terminates normally).

e mov eax, 1 Copy to EAX register (RAX) value 1 (60). This is a number of Linux function

(sys_exit) we are going to call to terminate program.

e int 0x80 (syscall)

Interrupt to call system function selected by EAX register (RAX).

Sometimes, especially at the beginning of contact with the assembler, it's good to generate and

examine listfile
nasm -1 hello.lst hello.asm

List file tutu

For the above code, the content of listfile is generated as follow
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00000000 48656C6C6F20576F72-

00000009

00000000
00000006
0000000C
00000012
00000018

0000001A

6C64210A

66BA0OD000000
66B9 [00000000]
66BB01000000
66B804000000
CD80

66BB0O0000000
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;  This program demonstrates basic text output to

; No "C" library functions are used.

; Calls are made to the operating system directl

; assemble:
; link:
; run:

; output is:

section .data

text db "Hello World!",

nasm -f elf hello.asm

1d hello.o -o hello

./hello

Hello World!

len equ $-text

section .text

global _start

_start:
mov
mov
mov
mov

int

; Exit

mov

edx,len
ecx,text
ebx,1
eax,4

0x80

ebx,0

; Data section

10 ; The string to pr

; "$" means "here"

; len is a value, not

; Code section

; Make label available
; We must export the e
; loader. They convent

; entry point. Use 1d

; Standard 1d entry

; arg3d: length of stri
; arg2: pointer to str
; argl: where to write
; System call number (

; Interrupt 80 hex, ca

; Exit code, O=normal
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33 00000020 66B801000000 mov eax,1 ; System call number (
34 00000026 CD8O int 0x80 ; Interrupt 80 hex, ca
35 ; End of the code

Reading this file, we can say that tutu

5.1.2 Code for GNU AS

Now take a look at the same program but written in differend dialect of assebler: GNU Assembler

(also GNU AS or simply GAS).

../programs/first_program /hello.s

/* This program demonstrates basic text output to a screen.
x* No "C" library functions are used.

x Calls are made to the operating system directly. (int 80 hex)

* assemble: as hello.s —o hello.o

* link: Id hello.o —o hello

* run;: ./hello

* output is: Hello World

*/

.data # Data section

text: .ascii "Hello,World!\n" # The string to print, 10=cr
len = . — text # "." means "here"

# len is a value, not an address

.text # code section
.global _start # Make label available to linker
# We must export the entry point to the ELF linker or
# loader. They conventionally recognize _start as their
# entry point. Use Id —e foo to override the default.
_start: # Standard Id entry point
movl $len, %edx # arg3: length of string to print
movl $text , %ecx # arg2: pointer to string
movl $1, %ebx # argl: where to write, so called file handler in this c3se stdout
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movl $4, %eax # System call number (sys_write)

int $0x80 # Interrupt 80 hex, call kerne
4 Exit

movl $0, %ebx # Exit code, O=normal

movl $1, %eax # System call number (sys_exit)

int $0x80 # Interrupt 80 hex, call kerne

# End of the code

The code looks a little bit strange but is equivalent to previously presented NASM version what we

can verify assembling it
as hello.s -o hello.o
linking

1d hello.o -o hello
and finally runing

fulmanp@fulmanp-k2:~/assembler$ ./hello

Hello World!

If you want to know more. .. 5.3 (Making 32-bit code on 64-bit system with GNU AS). As
for NASM making 32-bit code on 64-bit system with GNU AS requires additional options usage

fulmanp@fulmanp-k2:~/assembler$ as --32 hello.s -o hello.o
fulmanp@fulmanp-k2:~/assembler$ 1d -m elf_i386 hello.o -o hello
fulmanp@fulmanp-k2:~/assembler$ readelf -h hello

ELF Header:

Magic: 7f 45 4c 46 01 01 01 00 00 OO0 00O OO 00 00 00 0O

Class: ELF32

Data: 2’s complement, little endian
Version: 1 (current)

0S/ABI: UNIX - System V

ABI Version: 0

Type: EXEC (Executable file)

Machine: Intel 80386
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Version: 0x1

Entry point address: 0x8048074

Start of program headers: 52 (bytes into file)
Start of section headers: 204 (bytes into file)
Flags: 0x0

Size of this header: 52 (bytes)

Size of program headers: 32 (bytes)

Number of program headers: 2

Size of section headers: 40 (bytes)

Number of section headers: 6

Section header string table index: 3

The main reason for this is different syntax used by NASM (Intel syntax) and GNU AS (AT&T
syntax). See next section for more details; now only the most conspicuous differences would be

comment.
e GAS supports two comment styles:

— Multi-line comments. As in C multi-line comments start and end with mirroring slash-

asterisk pairs:

/*
comment

*/

— Single-Line comments. Single line comments have a few different formats varying on which
architecture is being assembled for. For the platforms: i386, x86-64 (and many others)
hash symbol (#)' is used.

e In the source code instead of mov instruction movl is used. It's specific to assemblers with
AT&T syntax. The 1 is a size suffix that tells the compiler that we are working with dwords
(double word = 4 bytes). To change the size, programmer changes the suffix (b, w, |, q for

byte, word, dword, and qword). In NASM syntax instruction size is inferred by the operands..

TSemicolons is used on: AMD 29K family, ARC, H8/300 family, HPPA,PDP-11, picoJava, Motorola, and
PowerPC; the at sign is used on the ARM platform; a vertical bar is used on 680x0; an exclamation mark on the
Renesas SH platform etc.

tHowever this example would work also for mov
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e Register names are prefixed with %.
e Constant value/immediate are prefix with $.

e Opposite to the Intel syntax the source is on the left, and the destination is on the right.

5.1.3 AT&T vs. Intel assembly syntax

OK, GAS uses the AT&T assembly syntax (which is the UNIX standard) while NASM Intel syntax,

but what does that mean to as?

Register name Register names are prefixed with %. To reference EAX:

AT&T: ‘Yeax

Intel: eax

Source/Destination order In AT&T syntax the source is on the left, and the destination is on

the right — opposite to the Intel syntax. To load EBX with the value in EAX

AT&T: movl %eax, Y%ebx

Intel: mov ebx, eax

Constant value/immediate value format Constant/immediate values are prefixed with $. To

load EAX with the address of the variable foo

AT&T: movl $foo, Y%eax

Intel: mov eax, foo
To load EBX with 1

AT&T: movl $1, %ebx

Intel: mov ebx, 1

Operator size specification The instruction must be specified with one of b, w, or 1 to specify

the width of the destination register as a byte, word or longword (double word).

AT&T: movw %ax, %bx

Intel: mov bx, ax
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Referencing memory Here is the canonical format for 32-bit addressing:

AT&T: immed32(basepointer,indexpointer,indexscale)

Intel: [basepointer + indexpointer*indexscale + immed32]
The formula to calculate the address is
immed32 + basepointer + indexpointer * indexscale

We don't have to use all those fields, but we have to use at least one of immed32 or basepointer.

For example

e Addressing a particular variable

AT&T: foo

Intel: [foo]
e Addressing what a register points to

AT&T: (%eax)

Intel: [eax]
e Addressing a variable offset by a value in a register

AT&T: variable(%eax)

Intel: [eax + variable]
e Addressing a value in an array of integers (scaling up by 4)

AT&T: array(,’eax,4)

Intel: [eax*x4 + array]
o Offsets with the immediate value

AT&T: 1(eax)

Intel: [eax + 1]

e Addressing a particular char in an array of 8-character records (EAX holds the number of

the record desired. EBX has the wanted char’s offset within the record)

AT&T: array(%ebx,%eax,8)

Intel: [ebx + eax*8 + array]
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5.2 64-bit basic stand alone program

5.2.1 Code for NASM

../programs/first_program/hello_64.asm

This program demonstrates basic text output to a screen.

No "C” library functions are used.

Calls are made to the operating system directly. (int 80 hex)

assemble:
link:
run:

output is:

section .data

text: db "Hello_,World!'!",

len :

section .text

global _start

_start:

’

’

mov
mov
mov
mov

syscall

Exit
mov
mov

syscall

nasm —f elf64 hello64.asm
Id hello64.0 —o hello64
./hello64

Hello World

equ $—text

rdx
rsi
rdi

rax

rdi

rax

End of the code

1

60

; Data section

10 ; The string to print, 10=cr
; "$" means "here”

; len is a value, not an address

; Code section

; Make label available to linker
; We must export the entry point to the ELF linker or
; loader. They conventionally recognize _start as their

; entry point. Use Id —e foo to override the default.

; Standard Id entry point

; arg3: length of string to print

; arg2: pointer to string

; argl: where to write, so called file handler in this
; System call number (sys_write)

; Call a system function

; Exit code, O=normal
; System call number (sys_exit)

; Call a system function

q

rase stdou
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Verify correctnes of the code by assembling it
nasm -f elf64 hello_64.asm -o hello_64
linking

1d hello_64.0 -o hello_64

and finally runing

fulmanp@fulmanp-k2:~/assembler$ ./hello_64

Hello World!

For the explanation of the code, see desciption of the code in section 5.1.
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Notice that taking code from section 5.1 and replacing all 32-bit registers with 64-bit equvalents

(e.g. replacing EAX with RAX), and even compiling it as 64-bit program the result we obtain is not

a real 64-bit program. Just as in expert notes 5.1 any of the programs is not truly 64-bit.

5.3 32-bit basic program linked with a C library

5.3.1 Code for NASM

../programs/first_program /hello_c.asm

This program demonstrates basic text output to a screen.

It needs to be linked with a C library — pintf "C” library functions

assemble: nasm —f elf hello.asm
; link: gcc hello.o —o hello
run: ./hello
; output is: Hello World

section .data ; Data section

text db "Hello_ World!", 10, O , The string to print, 10=cr, O=null
null terminated string have to be used

; in order to use printf function

section .text ; Code section

is used.
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extern printf ; The C function, to be called
global main ; Make label available to linker
main : ; Standard gcc entry point
push text ; Address of control string for printf function
call printf ; Call C function
add esp, 4 ; pop stack 1 push times 4 bytes
Exit
mov eax,0 ;. Normal, no error, return value
ret ; Return

; End of the code

Verify correctnes of the code by assembling it
nasm -f elf hello_c.asm -o hello_c.o
linking

gcc hello_c.o -o hello_c

and finally runing

fulmanp@fulmanp-k2:~/assembler$ ./hello_c

Hello World!

If you want to know more... 5.4 (Making 32-bit program linked with a C library on 64-bit
system). Making 32-bit program linked with a C library on 64-bit system requires the following

commands (on my Linuz, the gcc-multilidb package had to be installed.)

fulmanp@fulmanp-k2:~/assembler$ nasm -f elf hello_c.asm -o hello_c.o
fulmanp@fulmanp-k2:~/assembler$ gcc -m32 hello_c.o -o hello_c
fulmanp@fulmanp-k2:~/assembler$ ./hello_c

Hello World!

To understand this code, we have to understand calling conventions (more about this in the

chapter 77).
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5.3.2 GCC 32-bit calling conventions in brief

Writing assembly language functions that will link with C, and using gcc, we must obey the gcc

calling conventions.

e Parameters are pushed on the stack, right to left, and are removed by the caller after the

call.

e After the parameters are pushed, the call instruction is made, so when the called function

gets control, the return address is at [esp], the first parameter is at [esp4]+, etc.

e Using any of the following registers: EBX, ESI, EDI, EBP, DS, ES and SS we must save and

restore their values. In other words, these values must not change across function calls.

e A function that returns an integer value should return it in EAX, a 64-bit integer in EDX:EAX,

and a floating point value should be returned on the fpu stack top.

5.3.3 Excercise

Write in assembler an equivalent of the folowing C program running on 32-bit system

../programs/first_program /simple_printf_32.c
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#include <stdio.h>

int main ()

{

char charl=’a’;

char strl[]="abcdefgh";

int intl=123;

int hex1=0x1234ABCD:
float fltl=1.234e-3;
double flt2=-123.4e300;

printf("printf test:\ncharacter=Jc\nstring=Y%s\ninteger=%d\ninteger(hex)=%X\nflogq

charl, strl, intl, fltl, flt2);

return O0;

/*
/*
/*
/*
/*
/*

hex1 ,

Sample
Sample
Sample
Sample
Sample
Sample

character x/
string x/
integer x/
hexadecimal x*/
float =/
double x/

t=%f\ndou
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../programs/first_program/simple_printf 32.asm

section

; Format string for printf

form_s:

; Other data

charl: db ’a’

strl: db "abcdefgh",0

intl: dd 123

hexl: dd 0x1234ABCD

fltl: dd 1.234e-3

flt2: dq —123.4e3

section .bss

flttmp: resq 1

section .text

extern printf

global main

main:
fld dword [fltl]
fstp qword [flttmp]
push dword [flt2+4]
push dword [flt2]
push dword [flttmp+4]
push dword [flttmp]
push dword [hex1]

.data

’

’

’

’

’

db "printf,test:",10,"character=yc" ,10,"string=%s",10,"integer=%d" ,10,"intg

Sample
Sample
Sample
Sample

character

C string (needs 0)

integer

hexadecimal

32— bit
64— bit

floating point (float)
floating point (double)

The data segment containing statically—allocated

variables — free space allocated for the future use

Statically—allocated variables without an explicit

initializer; 64—bit temporary for printing fltl
Code section
The C function, to be called

Make label available to linker

Standard gcc entry point

Note that printf will NOT ACCEPT single precision floats.

We have to convert them to double precision floats:
convert 32— bit to 64—bit via 80— bits FPU stack

Floating load makes 80— bit, store as 64— bit
Push last argument first
64 bit
64 bit
64 bit

64 bit

floating (bottom)

(top)

(bottom)

(top)

point
floating point
floating point
floating point

Hex constant

ger (hex):
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push dword [intl] ; Constant pass by value

push strl ; "string” pass by reference

push dword [charl] ; a’

push form_s ; Address of format string

call printf ; Call C function

add esp, 36 ; Pop stack 10«4 bytes

mov eax, 0 ; Exit code, O=normal

ret ; Main returns to operating system

The code assembly, link and run as previously
e as a 32-bit program on 32-bit system to test and complete

e as a 32-bit program on 64-bit system

fulmanp@fulmanp-k2:~/assembler$ nasm -f elf32 simple_printf_32.asm -o simple_printf_
fulmanp@fulmanp-k2:~/assembler$ gcc -m32 simple_printf_32.0 -o simple_printf_32
fulmanp@fulmanp-k2:~/assembler$ ./simple_printf_32

printf test:

character=a

string=abcdefgh

integer=123

integer (hex)=1234ABCD

float=0.001234

double=-1.234000e+302

Notice that in this program a new section, the BSS section, was used. The name .bss or bss
usually is used by compilers and linkers for a part of the data segment containing uninitialized varia-
bles statically-allocated variables represented solely by zero-valued bits initially (i.e., when execution
begins). It is often referred to as the bss section or bss segment.

The BSS segment gets its name from abbreviation "Block Started by Symbol” — a pseudo-op
from the old IBM 704 assembler, carried over into UNIX, and there ever since. Some people like to
remember it as " Better Save Space”. Since the BSS segment only holds variables that don't have

any value yet, it doesn't actually need to store the image of these variables. The size that BSS will
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require at runtime is recorded in the object file, but BSS (unlike the data segment) doesn't take up

any actual space in the object file[3].

5.4 64-bit basic program linked with a C library

5.4.1 Code for NASM

../programs/first_program /hello_c_64.asm

section .data ; Data section

text: db "Hello_ World!", 10, O , The string to print, 10=cr, O=null
; null terminated string have to be used

; in order to use printf function

section .text ; Code section
extern printf ; The C function, to be called
global main ; Make label available to linker
main : ; Standard gcc entry point
mov rdi, text ; 64—bit ABI passing order: rdi, rsi,
mov rax, O ; printf is varargs, so EAX counts # of non—integer

, arguments being passed

call printf ; The C function, to be called

o Exit
mov rax,0 ; Normal, no error, return value
ret ; Return

; End of the code

Verify correctnes of the code by assembling it

nasm -f elf64 hello_c_64.asm -o hello_c_64.0
linking

gcc hello_c_64.0 -o hello_c_64

and finally runing
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fulmanp@fulmanp-k2:~/assembler$ ./hello_c_64

Hello World!

To understand this code, we have to understand calling conventions (more about this in the
chapter ?7).
5.4.2 GCC 64-bit calling conventions in brief

Writing assembly language functions that will link with C, and using gcc, we must obey the gcc
calling conventions. Notice that the 64-bit calling conventions differs from 32-bit calling conventions

and are different for different operating systems. The most important points are (for 64-bit Linux)

e Parameters are passing from left to right and as many parameters as will fit in registers. The

order in which registers are allocated, are

— For integers and pointers: RDI, RSI, RDX, RCX, R8, R9.

— For floating-point (float, double): XMM0, XMM1, XMM2, XMM3, XMM4, XMM5,
XMM6, XMM7.

e If needed, additional parameters are pushed on the stack, right to left, and are removed by the

caller after the call.

e After the parameters are pushed, the call instruction is made, so when the called function gets

control, the return address is at [ESP], the first memory parameter is at [ESP + 8], etc.
e Variable-argument subroutines require a value in RAX for the number of vector registers used.

e The only registers that the called function is required to preserve (the calle-save registers) are:

RBP, RBX, R12, R13, R14, R15.All others are free to be changed by the called function.
e The callee is also supposed to save the control bits of the XMCSR and the x87 control word.

e Integers are returned in RAx or RDX:RAX, and floating point values are returned in XMMQO or
XMM1:XMMO.

5.4.3 Excercise

Write a 64-bit program from excercise 5.3.3.
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Solution
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../programs/first_program/simple_printf 64.asm

section

.data

’

; Format string for printf

db "printf,test:",10,"character=yc" ,10,"string=%s",10,"integer=%d" ,10,"intg

form_s:
; Other data
charl: db ‘’a’
strl: db "abcdefgh",0
intl: dd 123
hexl: dd 0x1234ABCD
fltl: dd 1.234e-3
flt2: dq —123.4e3
section .bss
flttmp: resq 1
section .text
extern printf
global main
main:
fld dword [fltl]
fstp qword [flttmp]
mov rdi, form_s
mov rsi, [charl]
mov rdx, strl
mov rcx, [intl]
mov r8, [hexl]
movsd xmm0, [flttmp]

’

’

Data section

Sample character

Sample C string (needs 0)
Sample integer

Sample hexadecimal

32— bit floating point (float)
64— bit floating point (double)

The data segment containing statically—allocated

variables — free space allocated for the future use

Statically—allocated variables without an explicit

initializer; 64—bit temporary for printing fltl

Code section

The C function, to be called

Make label available to linker

Standard gcc entry point

Convert 32— bit to 64— bit via 80— bits FPU stack
Floating load makes 80— bit, store as 64— bit

64— bit ABIl passing order: rdi, rsi,

Simple movss xmm0O, [fltl] doesn’'t work, because

printf needs 64— bit floating—points numbers

ger (hex):
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(floats and doubles)

movsd xmml, [ flt2]

mov rax, 2 ; printf is varargs, so EAX counts # of non—integer
arguments being passed

sub rsp, 8 ; Tricky part. Add some stack space to frame. Why?
The stack must be 16—byte aligned.

call printf ; The C function, to be called
add rsp, 8 ; Remove added stack space

Exit

mov rax,0 ; Normal, no error, return value
ret ; Return

; End of the code

The code assembly, link and run as previously

fulmanp@fulmanp-k2:~/assembler$ nasm -f elf64 simple_printf_64.asm -o simple_printf_64.o
fulmanp@fulmanp-k2:~/assembler$ gcc simple_printf_64.0 -o simple_printf_64
fulmanp@fulmanp-k2:~/assembler$ ./simple_printf_64

printf test:

character=a

string=abcdefgh

integer=123

integer (hex)=1234ABCD

float=0.001234

double=-1.234000e+302

Notice the tricky part of the code. Some stack space is added to frame. Why? The stack must be
16-byte aligned and is 16-byte aligned at the beginning of main(). The call instruction pushed the
8-byte return address onto the stack, which misaligns it and causes you to move RSP by some odd
multiple of 8 bytes to realign it. Why a misaligned stack causes a seg fault only when using a vector
register (a register! not the stack!) isn't entirely clear to me. Probably a lack of understanding of

how varargs work. . .

If you want to know more... 5.5 (Prying assembler code generated by GCC). Sometimes,
when we drop into troubles, it’s very useful to inspect (working) code generated by some tools,

like GCC. Having code as follow
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../programs/first_program /simple_printf_64.c

#include <stdio .h>

int main ()

{
double flt1=1.234e—3; /+ Sample float */

printf("printf,float=4e\n", /x Format string for printf x/
fit1);

return 0;

we can type
fulmanp@fulmanp-k2:~/assembler$ gcc -S simple_printf_64.c -o simple_printf_64_dis.s
to get code we can follow (notice that presented code is compatible with ATET syntax).

../programs/first_program /simple_printf 64_dis.s

.file "simple_printf_64.c"
.section .rodata

.LC1:
.string "printf,float=Je\n"
.text
.globl main
.type main, @Qfunction

main :

.LFBO0:
.cfi_startproc
pushq %rbp
.cfi_def_cfa_offset 16
.cfi_offset 6, —16
movq %rsp, %rbp
.cfi_def_cfa_register 6
subq $16, %rsp
movabsq $4563333643445681349, %razx
movq Jraz, —8(%rbp)
movl $.LC1, %eax
movsd —8(%rbp ), Jwmmo

movq %rax, %rdi
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movl $1, %eax
call printf
movl $0, %eax
leave
.cfi_def_cfa 7, 8
ret

.cfi_endproc

.LFEQ:
.Stze main, .—main
.ident "GCC:, (Ubuntu/Linaro, 4.6.3-1ubuntub) 4.6.3"
.section .note. GNU—stack ,"",@progbits

To get code compatible with Intel syntax use

fulmanp@fulmanp-k2:~/assembler$ gcc -S -masm=intel simple_printf_64.c -o simple_printf_64

../programs/first_program/simple_printf_64_dis.asm

.file "simple_printf_64.c"
.intel_syntax mnoprefiz
.section .rodata

LC1:
.string "printf,float=Je\n"
.text
.globl main
.type main, @Qfunction

main :

.LFBO:
.cfi_startproc
push rbp
.cfi_def_cfa_offset 16
.cfi_offset 6, —16
mov rbp, rsp
.cfi_def_cfa_register 6
sub rsp, 16
movabs raxr, 4563383836483445681349
mov  QWORD PTR [rbp—8], raz
mov eax, OFFSET FLAT:.LC1
movsd xzmm(0, QWORD PIR [rbp —8]

mov rdi, razx
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mov eax, 1

call printf

mov eax, 0
leave
.cfi_def_cfa 7, 8
ret

.cfi_endproc

.LFEQ:
.s8tze main, .—main
.ident "GCC:, (Ubuntu/Linaro, 4.6.3-1ubuntub) 4.6.3"
.section .note. GNU—stack ,"",@progbits

or having compiled file dissasembly it

fulmanp@fulmanp-k2:~/assembler$ gcc simple_printf_64.c -o simple_printf_64_dis

fulmanp@fulmanp-k2:~/assembler$ objdump -d --disassembler-options=intel simple_printf_64_

simple_printf_64_dis: file format elf64-x86-64

Disassembly of section .init:

[... cut ...]

00000000004004£f4 <main>:

4004f4: 55 push rbp
4004£f5: 48 89 e5 mov rbp,rsp
4004£8: 48 83 ec 10 sub rsp,0x10

4004fc: 48 b8 c5 3c 2b 69 ¢c5 movabs rax,0x3f5437c5692b3cch
400503: 37 54 3f

400506: 48 89 45 £8 mov QWORD PTR [rbp-0x8],rax
40050a: b8 1c 06 40 00 mov eax,0x40061c

40050f: f2 Of 10 45 £8 movsd xmmO,QWORD PTR [rbp-0x8]
400514: 48 89 c7 mov rdi,rax

400517: b8 01 00 00 00 mov eax,0x1
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40051c:
400521:
400526:
400527
400528:
400529:
40052a:
40052b:
40052c:
400524:
40052e:
400521 :

[... cut

e8 cf fe ff ff
b8 00 00 00 00
c9
c3
90
90
90
90
90
90
90
90

call 4003f0 <printf@plt>
mov eax,0x0
leave

ret

nop

nop

nop

nop

nop

nop

nop

nop

85
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Basic CPU instructions

../programs/basic_cpu_instructions/jmp_loop_test1_-32.asm

section .data

a: dq
b: dq
r: db
k: db

5
7

"a,==_b",

"koniec",

section .text

global

_start
mov
cmp

jne

mov
mov
mov
mov

int

dalej:
mov

mov

_start
eax, [a]
eax, [b]
dalej
eax, 4
ebx, 1
ecx, r
edx, 7
0x80
eax, 4
ebx, 1

10
10

87
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mov ecx, k

mov edx, 7

int 0x80

mov eax, 1

mov ebx, 0

int 0x80

../programs/basic_cpu_instructions/jmp_loop_test2_32.asm

section .data
a: dq 7
b: dq 7

r: db "ag==_b", 10

n: db "ag!=,b", 10

section

global

_start:

mov

cmp

7

.text

_start

eax, [a]

eax, [b]

else_

if(a = b)

push r

jmp
else_:

’

endif_

else

push n

endif_:

mov
mov
mov
mov

int

eax, 4
ebx, 1
ecx, [esp]
edx, 7
0x80




mov eax, 1
mov ebx, 0

int 0x80
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../programs/basic_cpu_instructions/jmp_loop_test3_32.asm

section .data

a: dq 7

b: dq 5

w: db "a > b", 10
m: db "a_ < b", 10
r: db "a, =4 b", 10

section .text

global _start

_start:
mov eax, [a]

mov ebx, [b]

cmp eax, ebx

jng elseif._

; if(a > b)

push w

jmp endif_
elseif_:
;cmp eax, ebx

jnl else_

; else if(a < b)

push m

jmp endif_
else_:

; else

push r

endif_:
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mov eax, 4

mov ebx, 1

mov ecx, [esp]

mov edx, 6

int 0x80

mov eax, 1

mov ebx, 0

int 0x80

../programs/basic_cpu_instructions/jmp_loop_test4_32.asm

section .data
string: db "tekst ktorego,nie bedzie,widac", 10
len: equ $ — string
section .text
global _start
_start:

mov ecx, string
petla:

mov byte [ecx], ’*’;

inc ecx

cmp byte [ecx], 10

jne petla

mov eax, 4

mov ebx, 1

mov ecx, string

mov edx, len

int 0x80

mov eax, 1

mov ebx, 0

int 0x80
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section .data
string: db "tego_nie_bedzie_widacywidac,tylko,to", 10

len: equ $ — string

section .text

global _start

_start:
mov ecx, string
while_:
cmp byte [ecx], .’
je endwhile_
cmp byte [ecx], 10

je endwhile_

mov byte [ecx], ’*’;

inc ecx

jmp while_

endwhile_:

mov eax, 4

mov ebx, 1

mov ecx, string
mov edx, len

int 0x80

mov eax, 1
mov ebx, 0

int 0x80

../programs/basic_cpu_instructions/jmp_loop_test6_32.asm

section .data
string: db "jakis_ tekst", 10
len: equ $ — string

n: dd 8
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section .text

global _start

_start:

mov ecx, 0
for_:

cmp ecx, [n]

jnb endfor._

mov byte [string + ecx], ’*’;

inc ecx
jmp for_

endfor_:

mov eax, 4

mov ebx, 1

mov ecx, string
mov edx, len

int 0x80

mov eax, 1
mov ebx, 0

int 0x80

../programs/basic_cpu_instructions/jmp_loop_test7_32.asm

section .data

string db ’a’, 10

section .text

global _start

_start:

mov ecx, 10
petla:

inc byte [string]

loop petla




mov eax, 4
mov ebx, 1
mov ecx, string
mov edx, 2

int 0x80

mov eax, 1
mov ebx, 0

int 0x80
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../programs/basic_cpu_instructions/jmp_loop_test8_32.asm

section .data
string db "abcdefg", 10

len equ $ — string

section .text

global _start

_start:
mov eax, string
mov ecx, len — 1
petla:
add [eax], dword 4
inc eax

loop petla

mov eax, 4

mov ebx, 1

mov ecx, string
mov edx, len

int 0x80

mov eax, 1
mov ebx, 0

int 0x80
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../programs/basic_cpu_instructions/jmp_loop_test9_32.asm

: LOOP

;, LOOPE — JE

; LOOPNE — JNE
;, LOOPZ — JZ

; LOOPNZ — JUNZ

section .data

strl: db "to,jest_jakis,tekst", 10
lenl: equ $ — strl

str2: db "xyzinny_te#st...", 10

len2: equ $ — str2

section .text

global _start

_start:
mov ecx, len2

petla:
mov al, [strl 4 ecx]
cmp al, [str2 4+ ecx]

loopne petla

mov byte [strl 4 ecx], ’*’;

mov byte [str2 4 ecx], ’*’;

mov eax, 4
mov ebx, 1
mov ecx, strl
mov edx, lenl

int 0x80

mov eax, 4
mov ebx, 1
mov ecx, str2
mov edx, len2

int 0x80




mov eax, 1
mov ebx, 0

int 0x80
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6.0.4 Excercise

Write a program calculating a dot product of two vector (of integers) of fixed size.

Solution
../programs/basic_cpu_instructions/dot_product_cpu_32.asm
section .data
fmt_t: db "vec1=%3d,_,vec2=%3d_res=%3d", 10, O
fmt_s: db "result is_ %d", 10, O
vecl: dd 1, 2, 3, 4, 5, 6, 7, 8
vec2: dd 18, 17, 16, 15, 14, 12, 11
; 18, 34, 48, 60, 70, 84, 88 ; results of multiplication
res: dd 0 ; final result — should be 480
section .text
extern printf
global main
main :

mov ecx, 0

mov e

loop:

bx, 8

mov eax,

; Set counter as 0

: Set number of iteration

[vecl + ecx x 4]

imul dword [vec2 + ecx * 4]

add [res], eax

do—while loop begin

Load [ecx] component of vector 1

Multiply eax by [ecx] component of vector 2
Result is in EDX:EAX but we take only
bottom half of it. The question is:
how to compute with all 64 bits?

Increase final result
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push

push
push
push

ecx

dword
dword

dword

[res]
[vec2 + ecx x 4]
[vecl + ecx x 4]

7

7

Save ecx

Constant
Constant

Constant
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before printf call

pass by value
pass by value

pass by value

to protect them from

push fmt_t
call

add

printf
16

esp,

pop ecx

inc ecx

cmp ecx, ebx

jne loop

; Print final

push dword [res] ; Constant pass by value
push fmt_s ; Address of format string
call printf ; Call C function
add esp, 8 ; Pop stack 10«4 bytes
- Exit
mov eax, O ; Exit code, O=normal
ret ; Main returns to operating system

; End of the code

result

; Address of format string
; Call C function

; Pop stack 4x4 bytes

; Restore ecx after printf call

; Increase value of the counter

: While condition test

; do—while loop end

Compare this code with code generated from file

../programs/basic_cpu_instructions/dot_product_cpu_32.c

#include <stdio.h>

int main(){
int vecl[] = 1, 2, 3, 4, 5, 6, 7, 8}
int vec2[] = { 18, 17, 16, 15, 14, 13, 12, 11};
int res = 0;
int i = 0;

for (i=0;i<8++i){

destruct



res += vecl[i] * vec2[i];

printf("vecl1=%3d, vec2=%3d res=%3d\n", vecl[i], vec2[i], res);

printf("resultyis,%d\n", res);

97

return O;
}
by GCC
../programs/basic_cpu_instructions/dot_product_cpu_32.s
.file "dot_product_cpu_32.c"
.intel_syntax noprefix
.section .rodata
.LCO:
.string "vec1=Y3d,_vec2=%3d,res=%3d\n"
.LC1:
.string "result,is,%d\n"
.text
.globl main
.type main, @function
main:
.LFBO:

.cfi_startproc

push rbp
.cfi_def_cfa_offset 16
.cfi_offset 6, —16

mov rbp, rsp
.cfi_def_cfa_register 6

sub rsp, 80

mov  DWORD PTR [rbp —80], 1
mov  DWORD PTR [rbp —76], 2
mov  DWORD PTR [rbp —72], 3
mov  DWORD PTR [rbp —68], 4
mov  DWORD PTR [rbp —64], 5
mov  DWORD PTR [rbp —60], 6
mov  DWORD PTR [rbp —56], 7
mov  DWORD PTR [rbp —52], 8
mov  DWORD PTR [rbp —48], 18
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mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
jmp

.L3:
mov
cdqe
mov
mov
cdqe
mov
imul
add
mov
cdqe
mov
mov
cdqe
mov
mov
mov
mov
mov
call
add

L2:
cmp
jle
mov
mov
mov

mov

DWORD PTR
DWORD PTR
DWORD PTR
DWORD PTR
DWORD PTR
DWORD PTR
DWORD PTR
DWORD PTR
DWORD PTR
DWORD PTR
.L2

[rbp —44],
[rbp —40],
[rbp —36],
[rbp—32],
[rbp —28],
[rbp —24],
[rbp —20],
[rbp—8], 0
[rbp—4], 0
[rbp—4], 0O

17
16
15
14
13
12
11

eax, DWORD PTR [rbp —4]

edx, DWORD PTR [rbp—80+rax x4]

eax, DWORD PTR [rbp —4]

eax, DWORD PTR [rbp—48+rax x4]

eax, edx

DWORD PTR [rbp —8], eax
eax, DWORD PTR [rbp —4]

edx, DWORD PTR [rbp—48+rax x4]

eax, DWORD PTR [rbp —4]

esi, DWORD PTR [rbp—80+rax*4]

eax, OFFSET FLAT:.LCO
ecx, DWORD PTR [rbp —8]

rdi, rax
eax, O
printf

DWORD PTR [rbp —4], 1

DWORD PTR [rbp —4], 7

.L3

eax, OFFSET FLAT:.LC1
edx, DWORD PTR [rbp —38]

esi, edx

rdi, rax
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mov eax, O
call printf
mov eax, O
leave

.cfi_def_cfa 7, 8
ret

.cfi_endproc

.LFEO:
.size main, .—main
.ident "GCC:, (Ubuntu/Linaro_ 4.6.3-1ubuntub) ,4.6.3"
.section .note.GNU-—stack ,"",Q@progbits

99

6.0.5 Excercise

Write a program to cipher data with XOR cipher.

Solution

../programs/basic_cpu_instructions/xor_cipher_32.asm

section .data

fmt_t: db "%3d.%3d.%3dy (%c)uxory%3dy, (he) u=n%3d", 10, O;

tte: db "The, secret,text,to encrypt", 10, 0 ; text to encrypt

ttel: equ $ — tte — 2 ; tte length

pass: db "password", 10, O

passl: equ $§ — pass — 2

section .text

extern printf

global main

main :

xor edx, edx

mov ebx, ttel ; Set max number of iterations
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XOr ecx, ecx

rpc:

Xor eax, eax

loop:

mov dl, [tte 4+ ecx]

xor dl, [pass + eax]

push ecx

push eax

push dword edx

push dword [pass + eax]

push dword [pass + eax]

and dword

[esp],

push dword [tte 4+ ecx]

push dword [tte + ecx]

and dword

push dword eax

push dword ecx

push fmt_t
call

add

printf

esp, 32
pop eax
pop ecx
inc eax
inc ecx

cmp eax, passl

je rpc
cmp ecx, ebx
jne loop
o Exit

mov eax, O

000000FFh ;
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; Set text counter as 0
; Reset password counter

; Set password counter as 0

; Save ECX and EAX before printf call to protect

; them from destruction

; XOR result

; Second argument of XOR

; ASCIl code of the second argument
Cut the least significant byte
; First argument of XOR

; ASCIl code of the first argument

[esp], 000000FFh;

; Address of format string
; Call C function

; Pop stack 8+«4 bytes

;, Restore registers after printf call

; While condition test

; do—while loop end

; Exit code, O=normal
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ret ; Main returns to operating system

; End of the code

6.0.6 Excercise

Modify code from the last excercise to get function allows to crypr / encrypt message*.

Solution

../programs/basic_cpu_instructions/xor_cipher_32.asm

section .data

fmt_t: db "%3d,%3d.%3d, (%c)uxory%3dy (%e)u=1%3d", 10, O;

tte: db "The, secret,text,to encrypt", 10, 0 ; text to encrypt
ttel: equ $§ — tte — 2 ; tte length
pass: db "password", 10, O

passl: equ $§ — pass — 2

section .text

extern printf

global main

main :

xor edx, edx

mov ebx, ttel ; Set max number of iterations
XO0r ecx, ecx ;. Set text counter as 0
rpc: ; Reset password counter
Xor eax, eax ; Set password counter as 0
loop:
mov dl, [tte + ecx]
xor dl, [pass + eax]

*In the XOR cipher case exactly the same code is used to crypt / encrypt message
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push
push

push
push
push
and

push
push
and

push
push
push
call

add

pop
pop

inc
inc
cmp

je r

cmp

jne loop

;o Exit
mov

ret

; End of the
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ecx ; Save ECX and EAX before printf call to protect
eax ; them from destruction
dword edx ; XOR result
dword [pass + eax] ; Second argument of XOR
dword [pass + eax] ; ASCIl code of the second argument
dword [esp], 000000FFh ; Cut the least significant byte
dword [tte + ecx] ; First argument of XOR
dword [tte + ecx] ; ASCIl code of the first argument
dword [esp], 000000FFh;
dword eax
dword ecx
fmt_t ; Address of format string
printf ; Call C function
esp, 32 ; Pop stack 84 bytes
eax ; Restore registers after printf call
ecx
eax
ecx
eax, passl

pc
ecx, ebx
eax, O

; While condition test

; do—while loop end

; Exit code, O=normal

; Main returns to operating system

code
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FPU — to be stack, or not to be a

stack, that is the question

A must read document about FPU, like any other aspect of the Intel architecture, is [4]. Here only
some kind of summary is given, so for detailed description see this document. To compensate this

inconvenience more examples of codes would be showned.

7.1 FPU internals

7.2 Instructions related to the FPU internals
../programs/fpu/fpu_test_01_32.asm

section .data

fmt: db 10,"overflow:,%d",10,"top:,%d" ,10,"R7,%d4" ,10,"R6,%d4" ,10,"R5,%d" ,10,"R4,%d"

section

env .

buf:

section

.bss

resd 7

resw 1

.text

103

10,"R3,%d
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extern printf

global main

main :

fld1
fld1
fld1
fld1
call ptw

faddp st3, stO

call ptw
o Exit
mov eax, 0 ; Exit code, O=normal
ret ; Main returns to operating system

;, Auxiliary print code

ptw:
fstenv [env] ; saving fpu state
Xor eax, eax

mov ax, [env+38]

mov ecx, 0 ; Set counter as 0

loop: ; do—while loop begin

mov ebx, eax

and ebx, 3 ; Extract bits 0 and 1
shr eax, 2 ; Shift right to extract next two bits
push ebx
inc ecx ; Increase value of the counter
cmp ecx, 8 ; While condition test
jne loop ; do—while loop end

XO0or eax, eax ; Clear eax register
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fstsw ax

mov ebx, eax

shr bx, 11
and bx, 7
push ebx

mov ebx, eax

TxxXxxxxxxx1xxxxxl

and bx, 0000000001000001b

push ebx
push fmt
call printf

add esp, 44

ret

; End of the code

7

v

’

i

Save status word

Shift ax right by 11 to get top—of—stack pointer valy

;A bit—wise AND of the two operands:

ax and binary pattern 111

64 — Stack Fault + 1 — Invalid Operation

’

7

; A bit—wise AND of the two operands:

ax and binary pattern 1

Address of format string
Call C function
Pop stack 11x4 bytes

../programs/fpu/fpu_test_02_32.asm

section .data

fmt: db "resultgis %d4d",
a: dq 2.5
b: dgq 3.0

section .bss

tmp: resq 1

buf: resw 1

section .text

extern printf

global main

main :

10,

0
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fstcw [buf] ; Save control word
SXXXXTIXXXXXXXXXX
or word [buf], 0000010000000000b ; Bits 11—10 controls rounding:
; 00 round to nearst (def),
; 01 round down,
; 10 round up,

; 11 round toward zero

fldcw [buf] ; Load updated control word
fld qword [a] ; Load a to FPU

fmul qword [b] ; Multiply by b

fist dword [tmp] , Cast result to int

push dword [tmp]
push fmt
call printf

add esp, 8

- Exit
mov eax, O ; Exit code, O=normal
ret ; Main returns to operating system

; End of the code

7.2.1 Excercise

Write a program calculating a dot product of two vector (of floating points) of fixed size.

Solution

../programs/fpu/dot_product_fpu_32.asm

section .data

fmt_t: db "vec1=Y%6.3f, vec2=%6.3f_ res=%6.3f", 10, O

fmt_s: db "result_is_ %6.3f", 10, O

vecl: dg 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0

vec2: dq 18.0, 17.0, 16.0, 15.0, 14.0, 13.0, 12.0, 11.0

; 18.0, 34.0, 48.0, 60.0, 70.0, 78.0, 84.0, 88.0 ; results of mul.
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res: dg 0.0

; final result — should be 480.0

section .bss ; The data segment containing statically—allocated
; variables — free space allocated for the future use
flttmp: resq 1 ; Statically—allocated variables without an explicit

; initializer; 64—bit temporary for printing fltl

section .text

extern printf

global main

main :

mov ecx, O

mov ebx, 8

fldz

loop:

fld qword [vecl + ecx x 8]

fmul qword [vec2 4 ecx x 8]

fadd

fst qword [flttmp]

push ecx

push dword [flttmp+4]
push dword [flttmp]

Set counter as 0

Set number of iteration

do—while loop begin
Load [ecx] component of vector 1
Multiply eax by [ecx] component of vector 2

Increase final result

Floating load makes 80—bit, store as 64— bit

Save ecx before printf call to protect them

from destruction

64 bit floating point (bottom)
64 bit floating point (top)

push dword [vec2 + ecx x 8 + 4] ; 64 bit floating point (bottom)

push dword [vec2 + ecx x 8]

push dword [vecl + ecx

*

push dword [vecl + ecx x 8]

64 bit floating point (top)

8 + 4] ; 64 bit floating point (bottom)

64 bit floating point (top)
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push fmt_t ; Address of format string
call printf ; Call C function
add esp, 28 ; Pop stack 7x4 bytes
pop ecx ; Restore ecx after printf call
inc ecx ; Increase value of the counter
cmp ecx, ebx ; While condition test

jne loop ; do—while loop end

; Print final result

push dword [flttmp+4] ; 64 bit floating point (bottom)
push dword [flttmp] ; 64 bit floating point (top)
push fmt_s ; Address of format string
call printf ; Call C function
add esp, 12 ; Pop stack 3x4 bytes
- Exit
mov eax, O ; Exit code, O=normal
ret ; Main returns to operating system

; End of the code
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MMX

8.1 Multi-Media eXtensions

The one think we can say about MMX is that this is not a multipurposes tehnology. Being more
precisely, the set of instruction is very specyfic and is optimized for special type of applications —
MMX is useles in other types of programms. For example among 24* instructions defined by MMX
there are only three, very specific types of multiplication represented by PMADDWD, PMULHW,
PMULLW. Reasons for that a very well explained in [5].

The definition of MMX technology resulted from a joint effort between Intel’s microprocessor
architects and software developers. A wide range of software applications was analyzed, including
graphics, MPEG video, music synthesis, speech compression, speech recognition, image processing,
games, video conferencing and more. These applications were broken down to identify the most
compute-intensive routines, which were then analyzed in details using advanced computer-aided
engineering tools. The results of this extensive analysis showed many common, fundamental charac-

teristics across these diverse software categories. The key attributes of these applications were:
e Small integer data types (for example: 8-bit graphics pixels, 16-bit audio samples)
e Small, highly repetitive loops
e Frequent multiplies and accumulates

e Compute-intensive algorithms

*57 taking into account all variants: for example there is PADD mnemonic with three different sufixes — B,
W and D.
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e Highly parallel operations

MMX technology is designed as a set of basic, general purpose integer instructions that can be easily
applied to the needs of the wide diversity of multimedia and communications applications'. The

highlights of the technology are
e Single Instruction, Multiple Data (SIMD) technique
o FEight 64-bit wide MMX registers
e Four new data types

e 57 new instructions

8.1.1 Single Instruction, Multiple Data (SIMD) technique

tutu

8.1.2 Eight 64-bit wide MMX registers

MMX had a couple of design goals which are very important. For the most part they were listed earlier,
but I'm going to list them again, since they really are important. MMX had to substantially improve
the performance of multimedia, communications, and other numeric intensive applications MMX had
to be kept independent of the current microarchitectures, so that it would scale easily with future
advanced microarchitecture techniques and higher processor frequencies in future Intel processors.
MMX processors had to retain backwards compatibility with non-MMX processors. Software must
run without modification on a processor with MMX technology. They had to ensure the coexistence
of of existing applications and new applications using MMX technology.

This last point is important. Modern processors and operating systems can run multiple appli-
cations simultaneously (aka multitasking). New applications which used the new MMX instructions
had to be able to multitask with any other applications. This put some constraints on the MMX
technology definition. They couldn't create a new MMX state or mode (in other words, no new
registers) because then operating systems would have needed to be modified to take care of these

new additions.

tGenerality of this approach is, in my opinion, questionable. For example, MMX support packed doubleword
type but either it’s impossible to implement dot product on 4-byte integers (very, very possible) or I dont’t know
how to do it (much less possible).
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The main technique for maintaining compatibility of MMX technology was to " hide” it inside the
existing floating-point state and registers (current operating systems and applications are designed to
work with the floating-point state). An operating system doesn’t need to know if MMX technology
is present, since it's hidden in the floating-point state. Applications have to check for the presence

of MMX technology, and if it's built into the processor they use the new instructions.

8.1.3 Four new data types

tutu

8.1.4 24 new instructions

tutu

8.1.5 Excercise

Write a program calculating a dot product of two vector (of 16-bit integers) of fixed size.

Solution

Taking into account all the above, it is not possible to write with MMX equivalent of the code 7.2.1
from chapter 7 or this equivalen would be very impractical. That’s why MMX implementation of dot

product would be ,tuned” for MMX instruction set and works only for 16-bit integers.

../programs/mmzx/dot_product_mmx_32.asm

section .data

fmt_t: db "MMX=%d,_rest=%d", 10, O

fmt_p-mmx: db "partial_ result_of mmx_ party . uu%3d", 10, 0

fmt_p: db "partial, result, of,non_ mmx_part.%3d4", 10, O

fmt_f: db "final_result_ %3d", 10, O

vecl: dw 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

vec2: dw 18, 17, 16, 15, 14, 13, 12, 11, 10, ©9

; 18, 34, 48, 60, 70, 78, 84, 88, 90, 90 ; results of mul.

res: dd 0 ; final result — should be 660

section .text

extern printf
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global

main :

main

ROZDZIAL 8. MMX

mov edx, vecl

mov esi, vec?2

mov ecx, 10 ; ecx = the number of 32— bit integers

mov ebx, ecx ; Copy ecx to ebx

and ebx, 3 ; We are going to take four 16— bit integers at once so we need th
; integers left (remainder of division ecx/4) i.e. ebx = ebx % 4

shr ecx, 2 ; Division by 4 — integer part of division: ecx/4

push edx ; Print integer part and remainder

push ecx

push ebx

push ecx

push fmt_t

call printf

add esp, 12

pop ecx

pop edx

loop_mmx:
movq mm0, [edx] ; Copy four 16— bit integers into MMO register

pmaddwd mmo,

movd

eax, mm0

psrlg mm0, 32

movd

add

edi, mmO

eax, edi

[esi]

add [res], eax

add
add

push
push
push
push

edx, 8

esi, 8

esi
edx
ecx

ebx

; Four 16— bit integers = 4 x 2 byte = 8 byte

; Print partial result of MMX part

e number
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push eax
push fmt_p_mmx
call printf

add esp, 8

pop ebx
pop ecx
pop edx
pop esi

loop loop_-mmx

cmp ebx, 0

je end_nonmmx_part ; if ebx = 0 then jump end_nonmmx_part

mov ecx, ebx
loop_nonmmx :
Xxor eax, eax
push edx ; Save EDX to prevent it from destruction by IMUL
mov ax, [edx]
imul word [esi] ; Result is in DX:AX
add [res], eax
pop edx
add edx, 2
add esi, 2

push esi ; Print partial result of non MMX part
push edx

push ecx

push eax

push fmt_p

call printf

add esp, 8

pop ecx
pop edx
pop esi

loop loop_nonmmx

end_nonmmx_part:
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push
push
call

add

Exit
mov

ret

dword [res]
fmt_f
printf

esp, 8

eax, O

; End of the code

’

Print final result

’

’

Exit code, O=normal

Main returns to operating system

ROZDZIAL 8. MMX

Better solution (faster) of this excercise could be found in [6]. To verify if it's realy better, reader

could use RDTS instruction — see chapter 10.
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SSE

9.1 Streaming Simd Extensions

Like MMX is tuned for working with bytes or words (8 or 16-bit integers) the SSE is tuned for working

with single-precision floating-point values. If you need doubles, read next chapter.

9.1.1 Excercise

Write a program calculating a dot product of two vector (of floating points) of fixed size.

Solution

../programs/sse/dot_product_sse_32.asm

section .data

fmt_t: db "SSE=%d,_rest=%d", 10, O

fmt_p_sse: db "partial,result on,sse.%8.3f.,%8.3f,%8.3f,%8.3f", 10, O
fmt_p: db "partial,result,on,fpu,%8.3f", 10, O

fmt_f_sse: db "final_ resultgon_sse,  %8.3f %8.3f,%8.3f,%8.3f", 10, 0O
fmt_f: db "final_result, %8.3f", 10, O

vecl: dd 1.0, 2.0, 3.0, 4.0, 50, 6.0, 7.0, 8.0, 9.0, 10.0
vec2: dd 18.0, 17.0, 16.0, 15.0, 14.0, 13.0, 12.0, 11.0, 10.0, 9.0

18.0, 34.0, 48.0, 60.0, 70.0, 78.0, 84.0, 88.0, 90.0, 90.0 ; results of 1
res: dd 0.0 ; final result — should be 660.0
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’

section .bss
flttmp: resq 1
buf_p: resd 4
buf_s: resd 4
section .text
extern printf
global main
main :

mov edx, vecl

mov esi, vec?2

mov ecx, 10

mov ebx, ecx ;

and ebx, 3 ;

shr ecx, 2 ;

push edx ;

push ecx

push ebx

push ecx

push fmt_t

call printf

add esp, 12

pop ecx

pop edx

Xorps xmm7, xmm7
loop_sse:

movups xmm0, [edx]

movups xmml, [esi]
mulps xmmO, xmml

addps xmm7, xmmO

ROZDZIAL 9. SSE

ecx the number of 32—bit floating—point (FP) values

Copy ecx to ebx
We are going to take four 32— bit FP at once so we need the num
ebx = ebx % 4

FP left (remainder of division ecx/4) i.e.

Division by 4 — integer part of division: ecx/4

Print integer part and remainder

; Copy four 32— bit floating—point values from vector 1 into X

; Copy four 32— bit floating—point values from vector 2 into X

; Multiply of the four packed single—precision floating—point

ber of

MMO regis
MM1 regis

values.

; Add to final four 32—bit floating—point values



9.1. STREAMING SIMD EXTENSIONS 117

add edx, 16 ; Four 32— bit floats = 4 = 4 byte = 16 byte

add esi, 16

movups [buf_p], xmmO ; Write back the result of partial multiplication
movups [buf_s], xmm7 ; Write back the result of accumulated sum

push edx

push ecx

; Print partial result of SSE part

; The contents of the XMM registers are printed, so the order (direction) is from
, the right to the left which is a reverse order of the components in our vectors
; (from the left to the right).

; Fourth argument

fid dword [buf_p] ; Convert 32— bit to 64—bit via 80—bits FPU stack
fstp qword [flttmp]
push dword [flttmp—+4] ,; 64 bit floating point (bottom)
push dword [flttmp] ; 64 bit floating point (top)
; Third argument
fld dword [buf_p+4] ; Convert 32— bit to 64—bit via 80— bits FPU stack
fstp qword [flttmp]
push dword [flttmp+4] ,; 64 bit floating point (bottom)
push dword [flttmp] ; 64 bit floating point (top)
; Second argument
fid dword [buf_p+8] ; Convert 32—bit to 64—bit via 80—bits FPU stack
fstp qword [flttmp]
push dword [flttmp+4] , 64 bit floating point (bottom)
push dword [flttmp] ; 64 bit floating point (top)
; First argument
fld dword [buf_p+12] , Convert 32— bit to 64—bit via 80— bits FPU stack
fstp qword [flttmp]
push dword [flttmp+4] ,; 64 bit floating point (bottom)
push dword [flttmp] ; 64 bit floating point (top)

push fmt_p_sse
call printf
add esp, 36
; Print accumulated sum
; Fourth argument
fid dword [buf_s] ; Convert 32—bit to 64—bit via 80—bits FPU stack
fstp qword [flttmp]
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push
push
: Third
fld
fstp
push
push

dword [flttmp +4]
dword [flttmp]
argument

dword [buf_s+4]
qword [flttmp]
dword [flttmp+4]
dword [flttmp]

; Second argument

ROZDZIAL 9. SSE

64 bit
64 bit

floating point (bottom)
floating point (top)

Convert 32— bit to 64— bit via 80— bits FPU stack

64 bit floating point (bottom)

64 bit floating point (top)

fld dword [buf_s+8] ; Convert 32— bit to 64—bit via 80— bits FPU stack
fstp qword [flttmp]
push dword [flttmp+4] ,; 64 bit floating point (bottom)
push dword [flttmp] ; 64 bit floating point (top)
; First argument
fid dword [buf_s+12] , Convert 32— bit to 64— bit via 80— bits FPU stack
fstp qword [flttmp]
push dword [flttmp—+4] ,; 64 bit floating point (bottom)
push dword [flttmp] ; 64 bit floating point (top)
push fmt_f_sse
call printf
add esp, 36
pop ecx
pop edx
;loop loop_sse ; Only the offsets of —128 to +127 are allowed with loop instruct]
dec ecx
jnz loop_sse
fldz ; Set FPU to 0

cmp ebx, 0

je end_nonsse_part

mov ecx,

ecx

loop_nonsse:

fld dword [edx + ecx x* 4]

fmul dword [esi + ecx x 4]

fadd

fst

qword [flttmp]

; if ebx = 0 then jump end_nonsse_part

; Load component of vector 1
; Multiply by component of vector 2
; Increase partial fpu result

; Floating load makes 80—bit, store as 64— bit
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push
push
push

push
push

push
call

add

pop
pop
pop

inc

cmp

jne

ecx
edx
esi
dword [flttmp +4]
dword [flttmp]
fmt_p
printf
esp, 12
esi
edx
ecx
ecx
ecx, ebx
loop_nonsse

end_nonsse_part:

; Combine final

fld
fld
fld
fld
fadd
fadd
fadd
fadd

fst

push
push

push

call

dword [buf_s]
dword [buf_s+4]
dword [buf_s+8]
dword [buf_s+12]

qword [flttmp]

dword [flttmp +4]
dword [flttmp]

fmt_f

printf

7

result from SSE
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Save registers before printf call to protect them

from destruction

64 bit floating point (bottom)
64 bit floating point (top)
Address of format string

Call C function

Pop stack 7«4 bytes

Restore registers after printf call

Increase value of the counter

While condition test

do—while loop end

and FPU part

Load component
Load component
Load component

Load component

Floating load makes 80—bit,

from XMM
from XMM
from XMM
from XMM

register
register
register

register

64 bit floating point (bottom)

64 bit floating point (top)

Address of format string

Call C function

bits
bits
bits

bits

0— 31
32— 63
64— 95
96—127

store as 64— bit
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add esp, 12 ; Pop stack 7«4 bytes

Exit

mov eax, O ;. Exit code, O=normal

ret ; Main returns to operating system
. End of the code

Preparing this program | encountered the following problem

fulmanp@fulmanp-k2:~/assembler$ nasm -f elf dot_product_sse_32.asm -o dot_product_sse_32.

dot_product_sse_32.asm:96: error: short jump is out of range

Why? The SSE loop (starting at loop_sse:) is very long — there are many instructions. Intel docu-
mentation about LOOP instruction (eg. [4], page 891) says

Each time the LOOP instruction is executed, the count register is decremented, then checked
for 0. If the count is 0, the loop is terminated and program execution continues with the instruction
following the LOOP instruction. If the count is not zero, a near jump is performed to the destination
(target) operand, which is presumably the instruction at the beginning of the loop.

The target instruction is specified with a relative offset (a signed offset relative to the current
value of the instruction pointer in the IP/EIP/RIP register). This offset is generally specified as a label
in assembly code, but at the machine code level, it is encoded as a signed, 8-bit immediate value,
which is added to the instruction pointer. Offsets of -128 to +127 are allowed with this instruction.

That's why code

label:
loop-body

loop label

works fine, but code

label:
loop-body
more—code—added

loop label



9.1. STREAMING SIMD EXTENSIONS 121

does not work and error "short jump out of range” appears. The solution is obvious. Because the
LOOP instruction can’t jump to a distance of more than 127 bytes we need to change code to use

DEC ECX with JNZ instructions. For example

mov ecx, 10
label:
loop-body

loop label
become

mov ecx, 10
label:

loop-body

more-code-added

dec ecx

jnz loop
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RDTS — measure what is

unmeasurable

10.1 Read time-stamp counter

The Time Stamp Counter (TSC) is a 64-bit register which counts the number of cycles since reset.
The instruction RDTSC returns the TSC in EDX:EAX. In x86-64 mode, RDTSC also clears the higher
32 bits of RAX. Its opcode is OF 31.

Notice that the time-stamp counter measures "cycles” and not "time". For example, two bilions
cycles on a 2 GHz processor is equivalent to one second of real time, while the same number of cycles
on a 1 GHz processor is two second of real time. Thus, comparing cycle counts only makes sense on
processors of the same speed. To compare processors of different speeds, the cycle counts should be
converted into time units

s = fraccf

where s is time in seconds, c is the number of cycles and f is the frequency.
10.2 Usage of the RDTS
Prevent from out-of-order execution

../programs/rdtsc/01.asm

rdtsc ; Read time stamp counter

123
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Speed [GHz] Max time for 32-bit counter [s] Max time for 64-bit counter [s]

0.5 8.5899
1 4.2949
1.5 2.8633
2 2.1474
2.5 1.7179
3 1.4316
1 a b

Tabela 10.1: Maximum TSC value and real time for selected frequencies.

mov [time], eax ; Copy counter into variable
; Do something
rdtsc ; Read time stamp

sub eax, [time] ; Find the difference

../programs/rdtsc/02.asm

cpuid ; Force all previous instructions to complete
rdtsc ; Read time stamp counter
mov [time], eax ; Copy counter into variable

; Do something

cpuid ; Wait for [something] to complete before RDTSC
rdtsc ; Read time stamp counter
sub eax, [time] ; Find the difference

Now the RDTSC instructions will be guaranteed to complete at the desired time in the execution
stream. Of course this approach take into account the cycles it takes for the CPUID instruction to
complete, so the programmer must subtract this from the recorded number of cycles. A must know
think about the CPUID instruction is that it can take longer to complete the first couple of times it
is called. Thus, the best policy is to call the instruction three times, measure the elapsed time on the

third call, then subtract this measurement from all future measurements|7].

Caching data nad code

10.2.1 Usage example

../programs/rdtsc/rdtsc_ex_0l.asm

section .data
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fmt: db "subtime=%d,_ add=%d_ sub=%d_ mul=%d, div=%d4d", 10, O
X : dq 6.0
y: dg 3.0

section .bss

subtime: resd 1
t_add: resd 1
t_sub: resd

t_mul: resd

e =S =

t_div: resd

section .text

extern printf

global main

main :

; Make three warm—up passes through the timing routine to make

; sure that the CPUID and RDTSC instruction are ready

cpuid
rdtsc
mov [subtime], eax
cpuid
rdtsc
sub eax, [subtime]

mov [subtime], eax

cpuid
rdtsc
mov [subtime], eax
cpuid
rdtsc
sub eax, [subtime]

mov [subtime], eax




126 ROZDZIAL 10. RDTS - MEASURE WHAT IS UNMEASURABLE

cpuid
rdtsc
mov [subtime], eax
cpuid
rdtsc
sub eax, [subtime]

mov [subtime], eax

; Only the last value of subtime is kept
; subtime should now represent the overhead cost of the
. MOV and CPUID instructions

’

;, Floating point test start

; ADD
fld qword [x]
fld gqword [y]
cpuid
rdtsc
mov [t_add], eax
fadd
cpuid
rdtsc
sub eax, [t_add]

mov [t_add], eax

; SUB
fld qword [x]
fld qword [y]
cpuid
rdtsc
mov [t_sub], eax
fsub
cpuid
rdtsc
sub eax, [t_sub]

mov [t_sub], eax

;. MUL
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fld gword [x]
fld qword [y]
cpuid

rdtsc

mov [t_mul], eax
fmul

cpuid

rdtsc

sub eax, [t_mul]

mov [t_-mul], eax

DIv

fld gword [x]
fld qword [y]
cpuid

rdtsc

mov [t_div], eax
fdiv

cpuid

rdtsc

sub eax, [t_div]

mov [t_div], eax

Print results

push dword [t_div]
push dword [t_mul]
push dword [t_sub]
push dword [t_add]
push dword [subtime]
push fmt

call printf

add esp, 24

Exit
mov eax, 0O
ret

End of the code

Address of format string
Call C function

Pop stack 7«4 bytes

Exit code, O=normal

Main returns to operating system
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../programs/rdtsc/rdtsc_ex_02.asm

section .data

fmt: db "subtime=%d,_ add=%d_ sub=%d_ mul=%d div=%d4d", 10, O
X : dd 6
y: dd 3

section .bss

subtime: resd 1
t_add: resd 1
t_sub: resd 1
t_mul: resd 1

1

t_div: resd
section .text
extern printf
global main
main:

; Make three warm—up passes through the timing routine to make

; sure that the CPUID and RDTSC instruction are ready

cpuid
rdtsc
mov [subtime], eax
cpuid
rdtsc
sub eax, [subtime]

mov [subtime], eax

cpuid
rdtsc
mov [subtime], eax
cpuid

rdtsc
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sub eax, [subtime]

mov [subtime], eax

cpuid
rdtsc
mov [subtime], eax
cpuid
rdtsc
sub eax, [subtime]

mov [subtime], eax

; Only the last value of subtime is kept
; subtime should now represent the overhead cost of the

; MOV and CPUID instructions

; Floating point test start

; ADD

mov ecx, [x]

mov ebx, [y]
cpuid

rdtsc

mov [t_add], eax
add ecx, ebx
cpuid

rdtsc

sub eax, [t_add]

mov [t_add], eax

;. SUB

mov ecx, [x]

mov ebx, [y]
cpuid

rdtsc

mov [t_sub], eax
sub ecx, ebx
cpuid

rdtsc

sub eax, [t_sub]
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mov [t_sub], eax

: MUL
[x]
[v]

mov ecx,

mov ebx,
cpuid
rdtsc

mov [t_-mul], eax

imul ecx, ebx
cpuid

rdtsc

sub eax, [t_mul]

mov [t_mul], eax

; DIV

edx
[x]
[yl

xor edx,
mov ecx,
mov ebx,
cpuid
rdtsc

mov [t_div], eax

mov eax, ecx
cidiv ebx

cpuid

rdtsc

sub eax, [t_div]

mov [t_div], eax

ROZDZIAL 10

RDTS - MEASURE WHAT IS UNMEASURABLE

; Print results
push dword [t_div]
push dword [t_mul]
push dword [t_sub]
push dword [t_add]
push dword [subtime]
push fmt ; Address of format string
call printf ; Call C function
add esp, 24 ; Pop stack 7«4 bytes
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o Exit
mov eax, 0 ; Exit code, O=normal
ret ; Main returns to operating system

; End of the code

10.2.2 Excercise

Write a program calculating a dot product of two vector (of floating points) of fixed size.

Solution
../programs/sse/dot_product_sse_32.asm
section .data
fmt_t: db "SSE=%d,_rest=%d", 10, O
fmt_p_sse: db "partial,result,on,sse %8.3f.,%8.3f,%8.3f,%8.3f", 10, O
fmt_p: db "partial,result,on,fpu,%8.3f", 10, O
fmt_f_sse: db "final_ resultgongsse, %8.3f %8.3f,%8.3f,%8.3f", 10, O
fmt_f: db "final_result_ %8.3f", 10, O
vecl: dd 1.0, 2.0, 3.0, 4.0, 50, 6.0, 7.0, 8.0, 9.0, 10.0
vec2: dd 18.0, 17.0, 16.0, 15.0, 14.0, 13.0, 12.0, 11.0, 10.0, 9.0
; 18.0, 34.0, 48.0, 60.0, 70.0, 78.0, 84.0, 88.0, 90.0, 90.0 ; results of n
res: dd 0.0 ; final result — should be 660.0
section .bss
flttmp: resq 1
buf_p: resd 4
buf_s: resd 4
section .text
extern printf
global main

main :

mul.
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mov
mov

mov

mov

and

shr

push
push
push
push
push
call
add
pop
pop

edx
esi ,

ecx ,

ebx

ebx ,

ecx,

edx
ecx
ebx

ecx

vecl
vec?2

10

ecx

fmt_t

pri
esp
ecx

edx

ntf
, 12

’

Xorps xmm7, xmm7

loop_s

se .

movups xmm0,

movups xmml,

[edx]

[esi]

mulps xmmO, xmml

addps xmm7, xmmO

add edx, 16 ; Four 32— bit floats = 4 x* 4 byte = 16 byte

add esi, 16

movups [buf_p], xmm0 ; Write back the result of partial multiplication
movups [buf_s], xmm7 ; Write back the result of accumulated sum

push edx

push ecx

; Print partial

; The contents of the XMM registers are printed, so the order (direction) is from

; the right to the

; (from the

left to the right).

result of SSE part

; Fourth argument

fld

dword [buf_p] ; Convert 32— bit to 64—bit via 80— bits FPU stack

left which is a reverse order of the components in our vectors

ROZDZIAL 10. RDTS - MEASURE WHAT IS UNMEASURABLE

ecx = the number of 32— bit floating—point (FP) values
Copy ecx to ebx

We are going to take four 32— bit FP at once so we need the num
FP left (remainder of division ecx/4) i.e. ebx = ebx % 4

Division by 4 — integer part of division: ecx/4

Print integer part and remainder

; Copy four 32— bit floating—point values from vector 1 into X
; Copy four 32— bit floating—point values from vector 2 into X
; Multiply of the four packed single—precision floating—point

; Add to final four 32— bit floating—point values

ber of

MMO regis
MM1 regis

values.
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fstp
push
push
; Third

fld

fstp
push
push

qword [flttmp]
dword [flttmp+4]
dword [flttmp]
argument

dword [buf_p+4]
qword [flttmp]
dword [flttmp +4]
dword [flttmp]

; Second argument

fld

fstp
push
push

; First

fld

fstp
push
push
push
call
add

: Print

dword [buf_p+8]
qword [flttmp]
dword [flttmp+4]
dword [flttmp]
argument

dword [buf_p+412]
qword [flttmp]
dword [flttmp +4]
dword [flttmp]
fmt_p_sse

printf

esp, 36

accumulated sum

; Fourth argument

fld

fstp
push
push

: Third

fld

fstp
push
push

dword [buf_s]
qword [flttmp]
dword [flttmp+4]
dword [flttmp]
argument

dword [buf_s+4]
qword [flttmp]
dword [flttmp +4]
dword [flttmp]

; Second argument

fld
fstp
push
push
; First
fld

dword [buf_s+8]

qword [flttmp]
dword [flttmp +4]
dword [flttmp]
argument

dword [buf_s+12]

64 bit floating point (bottom)

64 bit floating point (top)
Convert 32— bit to 64— bit via 80— bits FPU stack

64 bit
64 bit

floating point (bottom)

floating point (top)

Convert 32— bit to 64— bit via 80— bits FPU stack

64 bit
64 bit

floating point (bottom)

floating point (top)

Convert 32— bit to 64— bit via 80— bits FPU stack

64 bit
64 bit

floating point (bottom)

floating point (top)

Convert 32— bit to 64— bit via 80— bits FPU stack

64 bit
64 bit

floating point (bottom)

floating point (top)

Convert 32— bit to 64— bit via 80— bits FPU stack

64 bit
64 bit

floating point (bottom)
floating point (top)

Convert 32— bit to 64— bit via 80— bits FPU stack

64 bit
64 bit

floating point (bottom)

floating point (top)

Convert 32— bit to 64— bit via 80— bits FPU stack
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fstp qword [flttmp]

push dword [flttmp—+4] ,; 64 bit floating point (bottom)
push dword [flttmp] ; 64 bit floating point (top)
push fmt_f_sse

call printf

add esp, 36

pop ecx

pop edx

;loop loop_sse ; Only the offsets of —128 to +127 are allowed with loop instructi
dec ecx

jnz loop_sse

fldz Set FPU to 0

cmp ebx, 0
je end_nonsse_part
mov ecx, ecx
loop_nonsse:

fld dword [edx + ecx x 4]

fmul dword [esi + ecx x 4]

fadd

fst qword [flttmp]

push ecx
push edx
push esi
push dword [flttmp+4]
push dword [flttmp]
push fmt_p
call

add

printf
esp, 12

pop esi
pop edx

pop ecx

ROZDZIAL 10. RDTS - MEASURE WHAT IS UNMEASURABLE

if ebx = 0 then jump end_nonsse_part

Load component of vector 1
Multiply by component of vector 2
Increase partial fpu result

Floating load makes 80—bit, store as 64— bit

Save registers before printf call to protect them

from destruction

64 bit floating point (bottom)
64 bit floating point (top)
Address of format string
Call C function

Pop stack 7«4 bytes

Restore registers after printf call
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inc

cmp

jne

ecx
ecx, ebx
loop_nonsse

end_nonsse_part:

; Increase value of the counter

; While condition test

; do—while loop end

; Combine final result from SSE and FPU part

fld
fld
fld
fld
fadd
fadd
fadd
fadd

fst

push
push

push
call

add

o Exit
mov
ret

- End

dword [buf_s]
dword [buf_s+4]
dword [buf_s+8]
dword [buf_s+12]

qword [flttmp]

dword [flttmp +4]
dword [flttmp]

fmt_f
printf
esp, 12

eax, 0O ;

’

of the code

Exit
Main

; Load component
; Load component
; Load component

; Load component

; Floating load makes 80— bit,

from XMM
from XMM
from XMM
from XMM

register
register
register

register

; 64 bit floating point (bottom)

; 64 bit floating point (top)

; Address of format string

; Call C function

; Pop stack 7«4 bytes

code, O=normal

returns to operating system

bits
bits
bits

bits

0— 31
32— 63
64— 95
96—-127

store as 64— bit
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processor status word, 40
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register, 37
accumulator, 40, 42
address, 40
control and status, 41
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floating point, 40
general purpose, 40
instruction, 40
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program counter, 40, 41
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special purpose, 40
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register data, 42

segmentation fault, 50

stack pointer, 40

virtual mode, 36
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