
cobol

#cobol



Table of Contents

About 1

Chapter 1: Getting started with cobol 2

Remarks 2

Standard Specification 2

Principal field of use 2

Category 2

Decimal Math 3

History 3

Structure 3

Data Descriptions 3

Procedural statements 4

Examples 4

Hello, world 4

Install gnu-cobol on Mac OS X 5

Chapter 2: ACCEPT statement 7

Remarks 7

Examples 8

ACCEPT statement 8

Chapter 3: ADD statement 10

Remarks 10

Examples 10

ADD statement 10

Chapter 4: ALLOCATE statement 12

Remarks 12

Examples 12

ALLOCATE statement 12

Chapter 5: ALTER statement 13

Remarks 13

Examples 13

A contrived example using ALTER 13



Chapter 6: CALL statement 15

Remarks 15

Examples 16

CALL statement 16

SLEEPY TIME 17

microfocus way 18

Using z/OS Language Environment thread delay service 18

Chapter 7: CANCEL statement 20

Remarks 20

Examples 20

CANCEL statement 20

Chapter 8: COMMIT statement 21

Remarks 21

Examples 21

COMMIT statement 21

Chapter 9: COMPUTE statement 22

Remarks 22

Examples 22

Advice: Use spaces around all components 22

Chapter 10: CONTINUE statement 24

Remarks 24

Examples 24

Placeholder 24

Chapter 11: COPY directive 25

Remarks 25

Examples 25

COPY record-layout. 25

Chapter 12: Data division 27

Introduction 27

Examples 27

Sections in Data Division 27



Level Number 27

Picture Clause 28

Chapter 13: DELETE statement 29

Remarks 29

Examples 29

Delete a record, key in primary key field 29

Chapter 14: DISPLAY statement 31

Remarks 31

Examples 31

DISPLAY UPON 31

Chapter 15: DIVIDE statement 33

Remarks 33

Examples 34

DIVIDE statement formats 34

Chapter 16: EVALUATE statement 35

Remarks 35

Examples 35

A three condition EVALUATE 35

Chapter 17: EXIT statement 36

Remarks 36

Examples 36

EXIT statement 36

Chapter 18: FREE statement 37

Remarks 37

Examples 37

FREE an allocation 37

Chapter 19: GENERATE statement 38

Remarks 38

Examples 38

GENERATE a detail line 38

Chapter 20: GnuCOBOL installation with GNU/Linux 39



Examples 39

GNU/Linux install 39

Chapter 21: GO TO statement 41

Remarks 41

Examples 41

GO statement 41

Chapter 22: GOBACK statement 42

Remarks 42

Examples 42

GOBACK 42

Chapter 23: How does the computational work in cobol? 43

Introduction 43

Examples 43

COMP-3 43

Common implementations 43

Chapter 24: IF statement 45

Remarks 45

Examples 45

IF with shortform conditionals 45

Chapter 25: INITIALIZE statement 46

Remarks 46

Examples 46

Various INITIALIZE clauses 46

Chapter 26: INITIATE statement 48

Remarks 48

Examples 48

INITIATE reporting control variables 48

Chapter 27: INSPECT statement 49

Remarks 49

Examples 49

INSPECT reformatting a date line 50



Chapter 28: Intrinsic Functions 51

Introduction 51

Remarks 51

Examples 53

FUNCTION TRIM example 53

UPPER-CASE 54

LOWER-CASE function 54

Chapter 29: MERGE statement 55

Remarks 55

Examples 55

MERGE regional data into master 55

Chapter 30: MOVE statement 58

Remarks 58

Examples 58

Some MOVE details, there are many 58

Chapter 31: MULTIPLY statement 60

Remarks 60

Examples 60

Some MULTIPLY formats 60

Chapter 32: OPEN statement 62

Remarks 62

Examples 62

OPEN sample, with LINAGE mini report 62

Chapter 33: PERFORM statement 65

Remarks 65

Examples 66

Inline PERFORM VARYING 66

Procedural PERFORM 66

Chapter 34: READ statement 67

Remarks 67

Examples 67



Simple READ from FD 67

Chapter 35: RELEASE statement 68

Remarks 68

Examples 68

RELEASE a record to a SORT INPUT PROCEDURE 68

Chapter 36: REPLACE directive 70

Remarks 70

Examples 70

REPLACE text manipulation sample 70

Chapter 37: RETURN statement 71

Remarks 71

Examples 71

RETURN a record to SORT OUTPUT PROCEDURE 71

Chapter 38: REWRITE statement 74

Remarks 74

Examples 74

REWRITE of records in a RELATIVE access file 74

Chapter 39: SEARCH statement 78

Remarks 78

Examples 79

Linear SEARCH 79

Binary SEARCH ALL 80

Chapter 40: SET statement 83

Remarks 83

Examples 84

SET pointer example 84

Chapter 41: SORT statement 86

Remarks 86

Examples 87

Sorting standard in to standard out 87

Chapter 42: START statement 89



Remarks 89

Examples 90

START example 90

Chapter 43: STOP statement 91

Remarks 91

Examples 91

STOP RUN 91

Chapter 44: String 92

Examples 92

STRINGVAL... Move -versus- STRING 92

Not an example, but .... 93

Chapter 45: STRING statement 94

Remarks 94

Examples 94

STRING example for C strings 94

Chapter 46: SUBTRACT statement 95

Remarks 95

Examples 95

SUBTRACT example 96

Chapter 47: SUPPRESS statement 97

Remarks 97

Examples 97

SUPPRESS example 97

Chapter 48: TERMINATE statement 98

Remarks 98

Examples 98

TERMINATE example 98

Chapter 49: UNLOCK statement 99

Remarks 99

Examples 99

UNLOCK record from a file connector 99



Chapter 50: UNSTRING statement 100

Remarks 100

Examples 100

UNSTRING example 100

Chapter 51: USE statement 102

Remarks 102

Examples 102

USE statement with Report Writer DECLARATIVES 102

Chapter 52: WRITE statement 105

Remarks 105

Examples 106

WRITE examples 106

Credits 107



About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version 
from: cobol

It is an unofficial and free cobol ebook created for educational purposes. All the content is 
extracted from Stack Overflow Documentation, which is written by many hardworking individuals at 
Stack Overflow. It is neither affiliated with Stack Overflow nor official cobol.

The content is released under Creative Commons BY-SA, and the list of contributors to each 
chapter are provided in the credits section at the end of this book. Images may be copyright of 
their respective owners unless otherwise specified. All trademarks and registered trademarks are 
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor 
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/cobol
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com


Chapter 1: Getting started with cobol

Remarks

COBOL is the COmmon Business Oriented programming Language.

Even though it has become a pronounceable name, COBOL is still treated as an acronym by the 
standards committee, and COBOL is the preferred spelling by the ISO and INCITS standards 
bodies.

Standard Specification

The current specification is

ISO/IEC 1989:2014 Information technology – Programming languages, their environments and 
system software interfaces – Programming language COBOL

That document was published in May of 2014 and can be purchased from various branches of 
standard bodies, officially homed at

http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=51416

Principal field of use

Business oriented. That usually means transaction processing. Banking, government agencies, 
and the insurance industry are major areas of COBOL application deployments. IBM mainframe 
systems usually have a COBOL compiler installed. There are upwards of 300 COBOL dialects in 
existence, with perhaps 10 or so versions taking the lion's share of deployments. Most of these 
compilers are proprietary systems, but free software COBOL is also available.

Category

COBOL is a procedural, imperative, compiled programming language. As of the COBOL 2002 
spec, Object Oriented features were added to the standard.

By design intent, COBOL is a very verbose programming language. Although algebraic form is 
allowed:

COMPUTE I = R * B

the initial intent was to use full words for computational descriptions and data manipulation:

MULTIPLY INTEREST-RATE BY BALANCE GIVING CURRENT-INTEREST ROUNDED MODE IS NEAREST-EVEN

This design decision has both champions and detractors. Some feel it is too verbose, while others 

https://riptutorial.com/ 2

http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=51416


argue that the syntax allows for greater readability in a business environment.

Decimal Math

COBOL is designed around decimal arithmetic, unlike most languages that use a binary internal 
representation. The COBOL spec calls for very precise fixed point decimal calculations, an aspect 
of the language that has been well regarded in financial sectors. COBOL also allows for USAGE 
BINARY, but leans towards decimal (base-10) representations.

History

COBOL dates back to the late 1950s, with initial implementations published in 1960.

U.S. Navy Rear Admiral Grace Hopper is often associated with COBOL, and championed on 
behalf of the language during the early stages of development. She was not the only person 
involved in the design and development of COBOL, by any means, but is often referred to as the 
Mother of COBOL.

Due to early backing by governments and large corporations, COBOL has been in wide use for 
many decades. It remains a point of pride for some, and a thorn for others, who see it as outdated. 
The truth likely lies somewhere in between these extreme views. When applied to transaction 
processing, COBOL is at home. When applied to modern web screens and networking 
applications it may not feel as comfortable.

Structure

COBOL programs are written in four separate divisions.

IDENTIFICATION DIVISION•
ENVIRONMENT DIVISION•
DATA DIVISION•
PROCEDURE DIVISION•

Data Descriptions

Being designed to handle decimal data, COBOL allows for PICTURE based data descriptions, in 
grouped hierarchies.

01 record-group. 
   05 balance        pic s9(8)v99. 
   05 rate           pic 999v999. 
   05 show-balance   pic $Z(7)9.99.

That defines balance as a signed eight digit value with two digits assumed after the decimal point. 
rate is three digits before and three digits after an assumed decimal point. show-balance is a 
numeric-edit field that will have a leading dollar sign, seven digits (zero suppressed) with at least 
one digit shown preceding two digits after a decimal point.

https://riptutorial.com/ 3



balance can be used in calculations, show-balance is only for display purposes and cannot be used 
in computational instructions.

Procedural statements

COBOL is a reserved keyword heavy language. MOVE, COMPUTE, MULTIPLY, PERFORM style 
long form words make up most of the standard specification. Over 300 keywords and 47 
operational statements in the COBOL 2014 spec. Many compiler implementations add even more 
to the reserved word list.

Examples

Hello, world

HELLO * HISTORIC EXAMPLE OF HELLO WORLD IN COBOL 
       IDENTIFICATION DIVISION. 
       PROGRAM-ID. HELLO. 
       PROCEDURE DIVISION. 
           DISPLAY "HELLO, WORLD". 
           STOP RUN.

The days of punch card layout and uppercase only inputs are far behind. Yet most COBOL 
implementations still handle the same code layout. Even current implementations follow the same 
(often even in uppercase,) compiled and in production.

A well-formatted modern implementation might look like:

*> Hello, world 
identification division. 
program-id. hello. 
 
procedure division. 
display "Hello, world" 
goback. 
end program hello.

With some implementations of COBOL, this can be shortened to:

display "Hello, world".

This format usually requires compile time switches to put a COBOL compiler into a relaxed syntax 
mode, as some of the normally mandatory DIVISION statements are missing.

COBOL assumes FIXED format sources by default, even in the current specification.

Pre-2002 COBOL

https://riptutorial.com/ 4



Column Area

1-6 Sequence Number Area

7 Indicator Area

8-12 Area A

12-72 Area B

73-80 Program Name Area

IBM mainframe text editors are still configured for this form in some cases.

Post 2002 and into COBOL 2014, Area A and B were merged and extended to column 255, and 
the Program Name Area was dropped.

Column Area

1-6 Sequence Number Area

7 Indicator Area

8- Program text Area

Column 8 thru an implementation defined column Margin R, is usually still limited to column 72, 
but allowed by spec to run up to column 255.

COBOL 2002 introduced FORMAT FREE source text. There is no Sequence Number Area, no 
Indicator Area, and source lines can be any length (up to an implementation defined Margin R 
limit, usually less than 2048 characters per line, commonly 255).

But the compiler starts out in FORMAT FIXED mode by default. There is usually a compilation 
switch or Compiler Directive Facility statement before free format source is recognized.

bbbbbb >>SOURCE FORMAT IS FREE

Where bbbbbb represents 6 blanks, or any other characters. (These are ignored as part of the initial 
default fixed format mode Sequence Number Area.)

Install gnu-cobol on Mac OS X

gnu-cobol is available via the homebrew system.

Open a terminal window from /Applications/Utilities/Terminal or use the keypress Command+Space 
and type "Terminal".

If you do not have the homebrew system installed, add it by typing, or copying and pasting into 
your terminal:

https://riptutorial.com/ 5



ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/install)"

Once the command has finished, type:

brew install gnu-cobol

That is it, you can now compile Cobol programs on your Mac.

Read Getting started with cobol online: https://riptutorial.com/cobol/topic/4728/getting-started-with-
cobol

https://riptutorial.com/ 6

https://riptutorial.com/cobol/topic/4728/getting-started-with-cobol
https://riptutorial.com/cobol/topic/4728/getting-started-with-cobol


Chapter 2: ACCEPT statement

Remarks

The COBOL ACCEPT statement is used to retrieve data from the system.

https://riptutorial.com/ 7



Examples

ACCEPT statement

https://riptutorial.com/ 8

http://i.stack.imgur.com/DdpJO.png


ACCEPT variable. 
ACCEPT variable FROM CONSOLE. 
 
ACCEPT variable FROM ENVIRONMENT "path". 
ACCEPT variable FROM COMMAND-LINE. 
 
ACCEPT variable FROM ARGUMENT-NUMBER 
ACCEPT variable FROM ARGUMENT-VALUE 
 
ACCEPT variable AT 0101. 
ACCEPT screen-variable. 
 
ACCEPT today FROM DATE. 
ACCEPT today FROM DATE YYYYMMDD. 
ACCEPT thetime FROM TIME. 
 
ACCEPT theday FROM DAY. 
ACCEPT theday FROM DAY YYYYDDD. 
 
ACCEPT weekday FROM DAY-OF-WEEK. 
 
ACCEPT thekey FROM ESCAPE KEY. 
 
ACCEPT username FROM USER NAME. 
 
ACCEPT exception-stat FROM EXCEPTION STATUS. 
 
ACCEPT some-data FROM device-name.

See http://open-cobol.sourceforge.net/faq/index.html#accept for more details.

Read ACCEPT statement online: https://riptutorial.com/cobol/topic/5512/accept-statement

https://riptutorial.com/ 9

http://open-cobol.sourceforge.net/faq/index.html#accept
https://riptutorial.com/cobol/topic/5512/accept-statement


Chapter 3: ADD statement

Remarks

Where rounded-phase is

Examples

ADD statement

ADD 1 TO cobol

https://riptutorial.com/ 10

http://i.stack.imgur.com/Y1j64.png
http://i.stack.imgur.com/Ts1Q9.png


This modifies the variable cobol. Overflow silently ignored.

ADD 1 TO cobol GIVING GnuCOBOL

This doesn't modify cobol, the result of the ADD being stored in GnuCOBOL. Again, overflow of the 
storage allocation silently ignored (the field will stay at its old value on size errors and there will be 
no exception raised).

ADD 
    a b c d f g h i j k l m n o p q r s t u v w x y z 
    GIVING total-of 
    ON SIZE ERROR 
        PERFORM log-problem 
    NOT ON SIZE ERROR 
        PERFORM graph-result 
END-ADD

Multiple inputs are allowed, with storage size testing explicit. COBOL has an intrinsic FUNCTION E, 
so it not a wise choice for a single letter identifier.

SIZE ERROR in COBOL is dependent on type and/or PICTURE. A PIC 9 field will only safely store 
values from 0 to 9, an intermediate result of 10 would trigger the ON SIZE ERROR phrase in that case.

Read ADD statement online: https://riptutorial.com/cobol/topic/5533/add-statement

https://riptutorial.com/ 11

https://riptutorial.com/cobol/topic/5533/add-statement


Chapter 4: ALLOCATE statement

Remarks

Allocate working storage for a BASED item, or allocate a give size of heap storage.

See also: FREE statement

Examples

ALLOCATE statement

01 pointer-var         usage POINTER. 
01 character-field     pic x(80) BASED value "Sample". 
 
ALLOCATE 1024 characters returning pointer-var 
ALLOCATE character-field 
ALLOCATE character-field INITIALIZED RETURNING pointer-var

See http://open-cobol.sourceforge.net/faq/index.html#allocate for more details.

Read ALLOCATE statement online: https://riptutorial.com/cobol/topic/5556/allocate-statement

https://riptutorial.com/ 12

http://i.stack.imgur.com/wulmr.png
http://open-cobol.sourceforge.net/faq/index.html#allocate
https://riptutorial.com/cobol/topic/5556/allocate-statement


Chapter 5: ALTER statement

Remarks

The much beloved ALTER statement. Changes the target of a GO TO paragraph.

No longer part of the COBOL standard, still supported by many compilers for reasons of backward 
compatibility. (The syntax diagram is dimmed to show that this is no longer standard COBOL).

Examples

A contrived example using ALTER

 identification division. 
 program-id. altering. 
 date-written. 2015-10-28/06:36-0400. 
 remarks. Demonstrate ALTER. 
 
 procedure division. 
 main section. 
 
*> And now for some altering. 
 contrived. 
 ALTER story TO PROCEED TO beginning 
 GO TO story 
 . 
 
*> Jump to a part of the story 
 story. 
 GO. 
 . 
 
*> the first part 
 beginning. 
 ALTER story TO PROCEED to middle 
 DISPLAY "This is the start of a changing story" 
 GO TO story 
 . 
 
*> the middle bit 
 middle. 
 ALTER story TO PROCEED to ending 
 DISPLAY "The story progresses" 
 GO TO story 
 . 
 
*> the climatic finish 
 ending. 
 DISPLAY "The story ends, happily ever after" 

https://riptutorial.com/ 13

http://i.stack.imgur.com/ytIYo.png


 . 
 
*> fall through to the exit 
 exit program.

With a run sample of

prompt$ cobc -xj -debug altering.cob 
This is the start of a changing story 
The story progresses 
The story ends, happily ever after 
 
prompt$ COB_SET_TRACE=Y ./altering 
Source:     'altering.cob' 
Program-Id: altering         Entry:     altering               Line: 8 
Program-Id: altering         Section:   main                   Line: 8 
Program-Id: altering         Paragraph: contrived              Line: 11 
Program-Id: altering         Statement: ALTER                  Line: 12 
Program-Id: altering         Statement: GO TO                  Line: 13 
Program-Id: altering         Paragraph: story                  Line: 17 
Program-Id: altering         Paragraph: beginning              Line: 22 
Program-Id: altering         Statement: ALTER                  Line: 23 
Program-Id: altering         Statement: DISPLAY                Line: 24 
This is the start of a changing story 
Program-Id: altering         Statement: GO TO                  Line: 25 
Program-Id: altering         Paragraph: story                  Line: 17 
Program-Id: altering         Paragraph: middle                 Line: 29 
Program-Id: altering         Statement: ALTER                  Line: 30 
Program-Id: altering         Statement: DISPLAY                Line: 31 
The story progresses 
Program-Id: altering         Statement: GO TO                  Line: 32 
Program-Id: altering         Paragraph: story                  Line: 17 
Program-Id: altering         Paragraph: ending                 Line: 36 
Program-Id: altering         Statement: DISPLAY                Line: 37 
The story ends, happily ever after 
Program-Id: altering         Statement: EXIT PROGRAM           Line: 41 
Program-Id: altering         Exit:      altering 
prompt$

See http://open-cobol.sourceforge.net/faq/index.html#alter for more details.

Read ALTER statement online: https://riptutorial.com/cobol/topic/5584/alter-statement

https://riptutorial.com/ 14

http://open-cobol.sourceforge.net/faq/index.html#alter
https://riptutorial.com/cobol/topic/5584/alter-statement


Chapter 6: CALL statement

Remarks

The COBOL CALL statement provides access to compiled library routines.

https://riptutorial.com/ 15



Examples

CALL statement

COBOL can use static linkage for the following statement. GnuCOBOL uses dynamic linkage by 
default for all external symbols known at compile time, even when the symbol is a literal:

https://riptutorial.com/ 16

https://i.stack.imgur.com/USCTk.png


CALL "subprogram" USING a b c *> run a (possibly static linked) sub program 
                              *> passing three fields 
 
CALL some-prog USING a b c    *> some-prog is a PIC X item and can be changed 
                              *> at run-time to do a dynamic lookup

This statement forces compile time link edit resolution. (Non standard, syntax extension):

CALL STATIC "subprogram" USING a b c

Fields in COBOL can be passed BY REFERENCE (the default, until overridden - overrides are sticky in 
a left to right order), BY CONTENT (a copy is passed BY REFERENCE), or in some cases directly BY 
VALUE:

CALL "calculation" USING BY REFERENCE a BY VALUE b BY CONTENT c RETURNING d 
    ON EXCEPTION DISPLAY 'No linkage to "calculation"' UPON SYSERR 
END-CALL 

COBOL is designed to be a BY REFERENCE language, so using BY VALUE can present issues. For 
instance, literal numerics have no explicit type and the COBOL spec has no explicit type 
promotion rules. Therefore developers have to worry about call frame setup with BY VALUE of 
literals.

See http://open-cobol.sourceforge.net/faq/index.html#call for more details.

SLEEPY TIME

CALL is also a way to extend COBOL functionality, and also to allow the reusability of code. It can 
also give access to "system" functionality.

This example illustrates ways to provide "sleep" functionality to IBM Mainframe COBOLs. Bear in 
mind that the requirement to do so is rare to the extent that usually when someone thinks they 
need to "sleep" for some reason, it is the wrong thing to do.

ILBOWAT0 is from the old COBOL-specific runtime era on Mainframes. BXP1SLP and BXP4SLP 
are Unix System Services (USS) routines which can be used by any language. Effectively they are 
Unix "sleep" requests.

The current IBM Mainframe Runtime (Language Environment (LE)) provides for inter-language 
communication, and the CEE3DLY LE services is shown in another example, Using z/OS 
Language Environment thread delay service.

ILBOWAT0 has been around for a very long time (perhaps more than 40 years), and you may still 
come across it. It's use should be replaced by CEE3DLY or BXP1SLP, whichever is the more 
appropriate for the particular requirement.

Sometimes you need to cause a program to sleep, or cause a Job to sleep for a while (after an 
FTP or NDM step), which are usually run as separate jobs, and you would need to sleep/loop 
looking for the resulting datasets.

https://riptutorial.com/ 17

http://open-cobol.sourceforge.net/faq/index.html#call
http://www.riptutorial.com/cobol/example/25430/using-z-os-language-environment-thread-delay-service
http://www.riptutorial.com/cobol/example/25430/using-z-os-language-environment-thread-delay-service


Here is a cute little COBOL program to do said task, calling the COBOL sleep programs available 
in OS/VS and perhaps other legacy and current mainframe operating environments.

       IDENTIFICATION DIVISION. 
       PROGRAM-ID.  SLEEPYTM. 
       ENVIRONMENT DIVISION. 
       DATA DIVISION. 
       WORKING-STORAGE SECTION. 
       01  WAIT-PARM. 
           05  WAIT-TIME            PIC S9(8) COMP VALUE 90. 
           05  WAIT-RESPONSE        PIC S9(8) COMP VALUE 0. 
           05  WAIT-PROGRAM-24BIT   PIC  X(8)      VALUE 'ILBOWAT0'. 
           05  WAIT-PROGRAM-31BIT   PIC  X(8)      VALUE 'BPX1SLP '. 
           05  WAIT-PROGRAM-64BIT   PIC  X(8)      VALUE 'BPX4SLP '. 
 
       PROCEDURE DIVISION. 
       GENESIS. 
           DISPLAY 'START CALLING WAIT PROGRAM' 
           CALL WAIT-PROGRAM-24BIT USING WAIT-TIME WAIT-RESPONSE 
           DISPLAY 'END   CALLING WAIT PROGRAM' 
           GOBACK 
PERIOD     .

microfocus way

For Microfocus, it uses the "SleepEx" API. As an example;

environment division. 
special-names. 
    call-convention 74 is winAPI. 
         : 
         : 
01  wSleep-time              pic 9(8) comp-5. 
01  wSleep-ok                pic 9(8) comp-5. 
         : 
         : 
move 10000 to wSleep-time  *>10seconds 
call winAPI "SleepEx" using by value wSleep-time 
                        by value 0 size 4 
              returning wSleep-ok 
end-call.

Using z/OS Language Environment thread delay service

You can call the CEE3DLY service in 24- 31- or 64- bit mode to delay a task to the nearest 
second. It is CICS save and will only delay the thread.

An example:

    IDENTIFICATION DIVISION. 
    PROGRAM-ID.  SLEEPYTM. 
    ENVIRONMENT DIVISION. 
    DATA DIVISION. 
    WORKING-STORAGE SECTION. 
    01  WAIT-PARM. 

https://riptutorial.com/ 18



      05  WAIT-SECS            PIC S9(8) COMP VALUE 90. 
      05  WAIT-FC              PIC X(12). 
 
    PROCEDURE DIVISION. 
 
      CALL CEE3DLY USING WAIT-SECS WAIT-FC 
 
      GOBACK.

You can see more detail here:

IBM Language Environment Callable Services - Sleep

Read CALL statement online: https://riptutorial.com/cobol/topic/5601/call-statement

https://riptutorial.com/ 19

http://www.ibm.com/support/knowledgecenter/SSLTBW_1.13.0/com.ibm.zos.r13.ceea300/clc3dly.htm
https://riptutorial.com/cobol/topic/5601/call-statement


Chapter 7: CANCEL statement

Remarks

The CANCEL statement ensures that a referenced program will be in an initial state the next time 
it is called, and to unload any resources for the module.

Examples

CANCEL statement

CALL "submodule" 
CALL "submodule" 
 
CANCEL "submodule" 
CALL "submodule"

Any static data in the working set of submodule will be in an initial state on the last CALL statement 
above. The second CALL will have any initial values set as left overs from the first CALL.

COBOL compilers can support physical cancel (object unloaded from memory) and/or virtual 
cancel (ensure an initial state, but leave the object available to the host operating environment). 
This is an implementation detail.

See http://open-cobol.sourceforge.net/faq/index.html#cancel for more details.

Read CANCEL statement online: https://riptutorial.com/cobol/topic/5600/cancel-statement

https://riptutorial.com/ 20

http://i.stack.imgur.com/gqOCK.png
http://open-cobol.sourceforge.net/faq/index.html#cancel
https://riptutorial.com/cobol/topic/5600/cancel-statement


Chapter 8: COMMIT statement

Remarks

Flushes ALL current locks, synching file I/O buffers.

This is a non standard extension, available with some COBOL implementations that support 
ROLLBACK features.

Examples

COMMIT statement

WRITE record 
COMMIT

Read COMMIT statement online: https://riptutorial.com/cobol/topic/6357/commit-statement

https://riptutorial.com/ 21

http://i.stack.imgur.com/6NJxL.png
https://riptutorial.com/cobol/topic/6357/commit-statement


Chapter 9: COMPUTE statement

Remarks

The COMPUTE statement allows for algebraic calculation expressions.

Rounded phrase is

Examples

Advice: Use spaces around all components

COMPUTE answer = 3*var-1

That is a reference to the variable var-1, and not var - 1.

COMPUTE answer = 3 * var - 1

https://riptutorial.com/ 22

http://i.stack.imgur.com/inJFi.png
http://i.stack.imgur.com/Gnep0.png


Recommended, opinion.

Read COMPUTE statement online: https://riptutorial.com/cobol/topic/6726/compute-statement

https://riptutorial.com/ 23

https://riptutorial.com/cobol/topic/6726/compute-statement


Chapter 10: CONTINUE statement

Remarks

The CONTINUE statement causes the flow of control to continue at the next statement. Not quite 
a no-op, as it can influence control flow when inside compound statement sequences, in particular 
IF/THEN/ELSE.

A handy? example is during early development and building with and without debugging aids.

CALL "CBL_OC_DUMP" USING structure ON EXCEPTION CONTINUE END-CALL

That code, while expensive, will allow for formatted memory dumps when the module CBL_OC_DUMP 
is linked into the executable, but will harmlessly fail when it is not. *That trick is only applicable 
during early stages of development. The expense of a dynamic lookup failure is not something to 
leave in active code, and those lines should be removed from the source as soon as any initial 
concerns are satisfied in alpha testing. On first day coding, it can be a handy aid. By second day 
coding ON EXCEPTION CONTINUE occurrences should be wiped clean.

Examples

Placeholder

This is contrived; but some COBOL programmers may prefer the positive clarity, versus using NOT 
in conditional expressions (especially with the logic error prone var NOT = value OR other-value).

 if action-flag = "C" or "R" or "U" or "D" 
     continue 
 else 
     display "invalid action-code" upon syserr 
     perform report-exception 
     exit section 
 end-if

Read CONTINUE statement online: https://riptutorial.com/cobol/topic/6981/continue-statement

https://riptutorial.com/ 24

http://i.stack.imgur.com/xZ1Kz.png
https://riptutorial.com/cobol/topic/6981/continue-statement


Chapter 11: COPY directive

Remarks

The COBOL version of the C #include preprocessor directive. Or, more historically accurate, 
COBOL came first, developed some 10 years earlier.

Due to some of the design decisions in COBOL (no arguments for PERFORM as the primary reason), 
many data structure access sequences need to break the DRY principle. Names of structure 
components need to be repeated in the ENVIRONMENT DIVISION, the DATA DIVISION and 
possibly many times in the PROCEDURE DIVISION. This is usually handled by adding 
copybooks. Record declarations and access code are tucked away in separate files and the COPY 
statement is the only repeated source. A change to the copybook keeps all uses of name spelling 
and data layout in synch, instead of requiring multiple edits to multiple files when a change occurs.

Examples

COPY record-layout.

program-one.

FD important-file. 
01 file-record. 
   COPY record-layout. 
 
DATA DIVISION. 
01 memory-record. 

https://riptutorial.com/ 25

https://en.wikipedia.org/wiki/Don%27t_repeat_yourself
http://i.stack.imgur.com/CNHkq.png


   COPY record-layout. 
 
PROCEDURE DIVISION. 
   ... 
   COPY record-move. 
   ... 
   COPY record-move.

program-two.

   DATA DIVISION. 
 
   01 print-record. 
      COPY record-layout. 
   ... 
 
   PROCEDURE DIVISION. 
   ... 
   print-line. 
       COPY record-move.

Read COPY directive online: https://riptutorial.com/cobol/topic/6982/copy-directive

https://riptutorial.com/ 26

https://riptutorial.com/cobol/topic/6982/copy-directive


Chapter 12: Data division

Introduction

DATA DIVISION is one of the four parts that make up a COBOL program. It contains statements 
describing the data used by the program. It consists of four sections: FILE SECTION, WORKING-
STORAGE SECTION, LOCAL-STORAGE SECTION and LINKAGE SECTION.

Examples

Sections in Data Division

SECTIONs in COBOL can be required or optional, depending on which DIVISION they are in.

DATA DIVISION. 
FILE SECTION. 
FD SAMPLE-FILE 
01 FILE-NAME PIC X(20). 
WORKING-STORAGE SECTION. 
01 WS-STUDENT PIC A(10). 
01 WS-ID PIC 9(5). 
LOCAL-STORAGE SECTION. 
01 LS-CLASS PIC 9(3). 
LINKAGE SECTION. 
01 LS-ID PIC 9(5).

In the above example, 01's are level numbers.

Level Number

Level number is used to specify the level of data in a record. They are used to differentiate 
between elementary items and group items. Elementary items can be grouped together to create 
group items.

01: Record description entry. Group level number is always 01.•

DATA DIVISION. 
WORKING-STORAGE SECTION. 
01 WS-NAME               PIC X(25).   ---> ELEMENTARY ITEM 
01 WS-SURNAME            PIC X(25).   ---> ELEMENTARY ITEM 
01 WS-ADDRESS.                        ---> GROUP ITEM 
   05 WS-HOUSE-NUMBER    PIC 9(3).    ---> ELEMENTARY ITEM 
   05 WS-STREET          PIC X(15).   ---> ELEMENTARY ITEM 

02 to 49: Elementary items•
66: Rename Clause items•
77: Items which cannot be sub-divided.•

https://riptutorial.com/ 27



88: Level 88 is a special level number used to improve the readability of COBOL programs 
and to improve IF tests. A level 88 looks like a level under another variable, but it's not. It 
does not have a PICTURE, but it does have a value. A level 88 is always associated with 
another variable and is a condition name for that variable.

•

 01 YES-NO PIC X. 
 88 ANSWER-IS-YES VALUE "Y".

Both of the following conditions test whether YES-NO is equal to "Y":

 IF YES-NO = "Y" 
 IF ANSWER-IS-YES

A level 88 condition name can be used for an alphanumeric or numeric variable.

Picture Clause

The PICTURE CLAUSE defines two things about a variable: the size of the variable (the number 
of bytes used in memory for the value) and the type of data that can be stored in the variable.

Read Data division online: https://riptutorial.com/cobol/topic/10859/data-division

https://riptutorial.com/ 28

https://riptutorial.com/cobol/topic/10859/data-division


Chapter 13: DELETE statement

Remarks

The DELETE statement deletes records from mass storage. Some compilers allow the DELETE 
statement to be used with a FILE clause, to delete FD names (along with any associated indexing 
structures that may be required by the database management engine in use).

Examples

Delete a record, key in primary key field

   identification division. 
   program-id. deleting. 
 
   environment division. 
   configuration section. 
 
   input-output section. 
   file-control. 
       select optional indexed-file 
       assign to "indexed-file.dat" 
       status is indexing-status 
       organization is indexed 
       access mode is dynamic 
       record key is keyfield 
       alternate record key is altkey with duplicates 
       . 
 
   ... 
 
   procedure division. 
 
   move "abcdef" to keyfield 
 
   *> Delete a record by index 
   delete indexed-file record 
      invalid key 
          display "No delete of " keyfield end-display 
      not invalid key 

https://riptutorial.com/ 29

http://i.stack.imgur.com/oINXC.png


          display "Record " keyfield " removed" end-display 
   end-delete 
 
   perform check-delete-status 
 
   ...

Read DELETE statement online: https://riptutorial.com/cobol/topic/7063/delete-statement

https://riptutorial.com/ 30

https://riptutorial.com/cobol/topic/7063/delete-statement


Chapter 14: DISPLAY statement

Remarks

The DISPLAY statement causes data to be transferred to hardware or software of the operating 
environment. DISPLAY comes in two forms, UPON device or for display of SCREEN data. Environment 
variables can also be set with DISPLAY UPON in some implementations of COBOL, along with other 
extensions for data transfer of graphics or other device specific needs.

Examples

DISPLAY UPON

DISPLAY "An error occurred with " tracked-resource UPON SYSERR 
 
DISPLAY A, B, C UPON CONSOLE 
 
DISPLAY group-data UPON user-device 
    ON EXCEPTION 
        WRITE device-exception-notice 
    NOT ON EXCEPTION 

https://riptutorial.com/ 31

http://i.stack.imgur.com/P7XKM.png


        WRITE device-usage-log 
END-DISPLAY

UPON CONSOLE is a default, rarely written. Messages with DISPLAY are one way of debugging 
COBOL code, but many COBOL programs are transactional in nature, and might not ever interact 
with a human operator once a job is submitted.

Read DISPLAY statement online: https://riptutorial.com/cobol/topic/7082/display-statement

https://riptutorial.com/ 32

https://riptutorial.com/cobol/topic/7082/display-statement


Chapter 15: DIVIDE statement

Remarks

The COBOL DIVIDE statement divides one numeric item into others setting data items to the 
quotient and, optionally, the remainder.

ROUNDED phrase:

Default is TRUNCATION if no rounded phrase specified. Default ROUNDED mode is NEAREST-TOWARD-ZERO 
(rounding down) unless other specified. So called Banker's rounding is NEAREST-EVEN.

https://riptutorial.com/ 33

http://i.stack.imgur.com/86Pc8.png


Examples

DIVIDE statement formats

DIVIDE a INTO b c d

Data item b, c, and d are changed as b/a, c/a and d/a.

DIVIDE a INTO b GIVING c

Data item c is changed as b/a.

DIVIDE a BY b GIVING c

Data item c is changed as a/b.

DIVIDE a INTO b GIVING q REMAINDER r

Data items q and r are set with results of b/a

DIVIDE a BY b GIVING q REMAINDER r

Data items q and r are set with results of b/a

All DIVIDE result fields may have ROUNDED MODE IS clauses.

All DIVIDE statements may have ON SIZE ERROR and NOT ON SIZE ERROR declarative statements 
included to catch invalid results given the type and size of the result fields.

Read DIVIDE statement online: https://riptutorial.com/cobol/topic/7081/divide-statement

https://riptutorial.com/ 34

http://i.stack.imgur.com/VzagT.png
https://riptutorial.com/cobol/topic/7081/divide-statement


Chapter 16: EVALUATE statement

Remarks

The EVALUATE statement is a multiple branch, multiple join, conditional test and selection structure.

Examples

A three condition EVALUATE

EVALUATE a ALSO b ALSO TRUE 
    WHEN 1 ALSO 1 THRU 9 ALSO c EQUAL 1 PERFORM all-life 
    WHEN 2 ALSO 1 THRU 9 ALSO c EQUAL 2 PERFORM life 
    WHEN 3 THRU 9 ALSO 1 ALSO c EQUAL 9 PERFORM disability 
    WHEN OTHER PERFORM invalid 
END-EVALUATE

Read EVALUATE statement online: https://riptutorial.com/cobol/topic/7083/evaluate-statement

https://riptutorial.com/ 35

http://i.stack.imgur.com/odJev.png
https://riptutorial.com/cobol/topic/7083/evaluate-statement


Chapter 17: EXIT statement

Remarks

The COBOL EXIT statement is a terminating flow control verb.

EXIT comes is a few flavours:

bare EXIT is a common end point for a series of procedures.•
EXIT PARAGRAPH, EXIT SECTION provides a means of exiting a structured procedure without 
executing any of the subsequent statements.

•

EXIT FUNCTION, EXIT METHOD, EXIT PROGRAM marks the logical end of a module of code.•
EXIT PERFORM breaks out of a inline perform loop.•
EXIT PERFORM CYCLE causes an inline perform loop to begin the next iteration.•

Examples

EXIT statement

PERFORM VARYING counter FROM 1 BY 1 UNTIL counter > 10 
    IF debug-override THEN EXIT PERFORM 
    IF counter = 5 THEN EXIT PERFORM CYCLE 
    PERFORM some-miracle 
END-PERFORM

Read EXIT statement online: https://riptutorial.com/cobol/topic/7084/exit-statement

https://riptutorial.com/ 36

http://i.stack.imgur.com/PBpvY.png
https://riptutorial.com/cobol/topic/7084/exit-statement


Chapter 18: FREE statement

Remarks

The FREE statement frees allocated memory for one or more identifiers, either by POINTER or from 
a BASED working storage identifier. Use after FREE is illegal.

Examples

FREE an allocation

01 field-1 PIC X(80) BASED. 
 
ALLOCATE field-1 
 
*> use field-1 
 
FREE field-1 
 
*> further use of field-1 will cause memory corruption

Read FREE statement online: https://riptutorial.com/cobol/topic/7162/free-statement

https://riptutorial.com/ 37

http://i.stack.imgur.com/hOauL.png
https://riptutorial.com/cobol/topic/7162/free-statement


Chapter 19: GENERATE statement

Remarks

The COBOL GENERATE statement is an optional statement supported if the compiler includes the 
Report Writer feature.

Examples

GENERATE a detail line

GENERATE detail-line

Read GENERATE statement online: https://riptutorial.com/cobol/topic/7161/generate-statement

https://riptutorial.com/ 38

http://i.stack.imgur.com/YJosY.png
https://riptutorial.com/cobol/topic/7161/generate-statement


Chapter 20: GnuCOBOL installation with 
GNU/Linux

Examples

GNU/Linux install

For most GNU/Linux distributions, a version of GnuCOBOL is available in the repositories. GnuCOBOL 
was originally OpenCOBOL, rebranded when the project became an official GNU project. Many 
repositories are still using open-cobol as the package name (as of August 2016).

For Fedora, and other RPM based package managers

sudo yum install open-cobol

For Debian, Ubuntu and APT based packages

sudo apt install open-cobol

This is usually version 1.1 of the compiler suite, and will deal with the compile time and runtime 
dependencies required when using GnuCOBOL.

From source, (hosted on SourceForge at https://sourceforge.net/projects/open-cobol/) you will 
need.

A C compiler suite; build-essential (or similar)•
BerkeleyDB and BerkelyDB development headers; libdb, libdb-dev (or similar names)•
GNU Multi-Precision numeric library; libgmp, libgmp-dev•
A version of curses; ncurses, ncurses-dev•
The source kit, gnucobol-1.1.tar.gz (or better, gnucobol-2.0.tar.gz)•
(For changing the compiler sources, GNU Autoconf tools are also required).•

From a working directory, of your choice:

prompt$ tar xvf gnucobol.tar.gz 
prompt$ cd gnucobol

To see the possible configuration options, use:

prompt$ ./configure --help

Then

prompt$ ./configure 
prompt$ make

https://riptutorial.com/ 39

https://sourceforge.net/projects/open-cobol/)


Assuming dependencies are in place and the build succeeds, verify the pre-install with

prompt$ make check

or

prompt$ make checkall

That runs internal checks of the compiler (make check) and optionally runs tests against the NIST 
COBOL85 verification suite (make checkall). Version 1.1 of OpenCOBOL covers some 9100 NIST 
tests, recent versions cover more than 9700 test passes. The NIST COBOL85 testsuite is no 
longer maintained, but is a very comprehensive and respectable set of tests. COBOL is highly 
backward compatible, by design intent, but new COBOL 2002 and COBOL 2014 features are not 
part of the NIST verification suite.

The internal checks cover some 500 tests and sample code compiles.

If all is well, the last step is

prompt$ sudo make install

Or, for systems without sudo, become the root user for make install or use a ./configure prefix that 
does not require super user permissions. The default prefix for source builds is /usr/local.

If more than one build has occurred on the machine, and local libraries are re-installed, this needs 
to be followed up with

prompt$ sudo ldconfig

To ensure that the linker loader ld cache is properly refreshed to match the new compiler install.

cobc will be ready for use.

cobc --help for quick help, info open-cobol (or info gnucobol) for deeper help, and visit http://open-
cobol.sourceforge.net/ for links to the Programmer's Guide and a 1200+ page FAQ document.

Installation problems, issues or general questions can be posted to the GnuCOBOL project space, 
in the Help getting started Discussion pages on SourceForge.

Read GnuCOBOL installation with GNU/Linux online: 
https://riptutorial.com/cobol/topic/5446/gnucobol-installation-with-gnu-linux

https://riptutorial.com/ 40

http://open-cobol.sourceforge.net/
http://open-cobol.sourceforge.net/
https://riptutorial.com/cobol/topic/5446/gnucobol-installation-with-gnu-linux


Chapter 21: GO TO statement

Remarks

The much beloved GO TO. COBOL includes named paragraphs and sections, along with other 
labels, and any of them can be the target of a GO statement. 

Examples

GO statement

GO TO label 
 
GO TO label-1 label-2 label-3 DEPENDING ON identifier-1 
 
GO TO label OF section 
 
GO.

The last line example indicates that an ALTER statement is in play, and another part of the code will 
specify which actual label is the target of the jump.

Read GO TO statement online: https://riptutorial.com/cobol/topic/7163/go-to-statement

https://riptutorial.com/ 41

http://i.stack.imgur.com/CcCO7.png
https://riptutorial.com/cobol/topic/7163/go-to-statement


Chapter 22: GOBACK statement

Remarks

The COBOL GOBACK statement is a return. Unlike EXIT PROGRAM, or STOP RUN, GOBACK always returns 
one level. If the current module is "main", GOBACK will return to the operating system. If the current 
module is a subprogram, GOBACK will return to the statement after a call.

Examples

GOBACK

identification division. 
program-id. subprog. 
procedure division. 
display "in subprog" 
goback. 
 
... 
 
call "subprog" 
goback.

The first GOBACK above will return from subprog. Assuming the second is inside the main procedure, 
GOBACK will return to the operating system.

Read GOBACK statement online: https://riptutorial.com/cobol/topic/7173/goback-statement

https://riptutorial.com/ 42

http://i.stack.imgur.com/TjRBh.png
https://riptutorial.com/cobol/topic/7173/goback-statement


Chapter 23: How does the computational 
work in cobol?

Introduction

Computational clause is used to describe type of storage used in COBOL. It is used for 3 ways: 
COMP-1, COMP-2 and COMP-3. The most common form of computational is COMP-3. It 
frequently is just called "COMP" by programmers.

Examples

COMP-3

Data item is stored in packed decimal format in COMP-3. Packed-decimal format means that each 
byte of storage (except for the low order byte) can contain two decimal numbers. The low-order 
byte contains one digit in the leftmost portion and the sign (positive or negative) in the rightmost 
portion.

"Zoned decimal format" in the image below is the default storage for a number in COBOL.

01 WS-NUM PIC 9(5) USAGE IS COMP-3 VALUE 21544.

Computational storage is frequently used to reduce the size of a file.

Common implementations

https://riptutorial.com/ 43

https://i.stack.imgur.com/bbLGX.png


How comp, comp-1 ... comp-5 are implemented is implementation dependent.

Format     Normal Implementation 
 
Comp       Big endian binary integer 
Comp-1     4 byte floating point 
Comp-2     8 byte floating point 
 
Comp-3     Packed decimal 123 is stored as x'123c' 
 
Comp-5     Binary Integer optermised for performance. 
           Big Endian on the Mainframe, Little Endian on Intel Hardware

Ibm Compilers normally support Comp, Comp-4, Comp-5 in sizes of 2,4,8 bytes. GNU Cobolo 
support sizes of 1,2,4,8.

Comp-1, Comp-2 fields are defined without a picture clause:

03 Floating-Field      Comp-1. 
03 Double-Field        Comp-2

For other Comp's are picture is entered:

03 Big-Endian           Pic S9(4) Comp. 
03 Packed-Decimal       Pic S9(5) Comp.

Read How does the computational work in cobol? online: 
https://riptutorial.com/cobol/topic/10873/how-does-the-computational-work-in-cobol-

https://riptutorial.com/ 44

https://riptutorial.com/cobol/topic/10873/how-does-the-computational-work-in-cobol-


Chapter 24: IF statement

Remarks

The conditional expression and selection statement. Use of explicit scope terminators is 
recommended. COBOL conditional expressions allow shortforms, where the current identifier (and 
conditional) is assumed through multiple condition tests, unless explicitly given.

IF A = 1 OR 2 ...

is equivalent to

IF A = 1 OR A = 2 ...

Examples

IF with shortform conditionals

IF A = 1 OR 2 THEN 
    perform miracles 
END-IF 
 
IF A = 1 OR 2 AND B = 1 THEN 
    perform rites-of-passage 
ELSE 
    perform song-and-dance 
END-IF

IF statements can be terminated with full stop or explicit scope terminator END-IF. Use of periods 
for scope termination is no longer recommended. Full stops mean just that in the case of nested 
IF, all nesting is terminated at the first full stop ., and any subsequent code will be outside the IF 
block.

Read IF statement online: https://riptutorial.com/cobol/topic/7174/if-statement

https://riptutorial.com/ 45

http://i.stack.imgur.com/Nkbbz.png
https://riptutorial.com/cobol/topic/7174/if-statement


Chapter 25: INITIALIZE statement

Remarks

The INITIALIZE statement sets selected data to specified values.

Where category-name is:

Examples

Various INITIALIZE clauses

https://riptutorial.com/ 46

http://i.stack.imgur.com/wciOg.png
http://i.stack.imgur.com/bEu08.png


01  fillertest. 
    03 fillertest-1 PIC 9(10) value 2222222222. 
    03 filler       PIC X     value '|'. 
    03 fillertest-2 PIC X(10) value all 'A'. 
    03 filler       PIC 9(03) value 111. 
    03 filler       PIC X     value '.'. 
 
INITIALIZE fillertest 
 
INITIALIZE fillertest REPLACING NUMERIC BY 9 
 
INITIALIZE fillertest REPLACING ALPHANUMERIC BY 'X' 
 
INITIALIZE fillertest REPLACING ALPHANUMERIC BY ALL 'X' 
 
INITIALIZE fillertest WITH FILLER 
 
INITIALIZE fillertext ALL TO VALUE

Giving:

fillertest on start: 
2222222222|AAAAAAAAAA111. 
fillertest after initialize: 
0000000000|          111. 
fillertest after initialize replacing numeric by 9: 
0000000009|          111. 
fillertest after initialize replacing alphanumeric by "X": 
0000000009|X         111. 
fillertest after initialize replacing alphanumeric by all "X": 
0000000009|XXXXXXXXXX111. 
fillertest after initialize with filler: 
0000000000           000 
fillertest after initialize all to value: 
2222222222|AAAAAAAAAA111.

Read INITIALIZE statement online: https://riptutorial.com/cobol/topic/7179/initialize-statement

https://riptutorial.com/ 47

https://riptutorial.com/cobol/topic/7179/initialize-statement


Chapter 26: INITIATE statement

Remarks

The INITIATE statement initializes internal Report Writer control fields. Most of a report writer setup 
occurs in the DATA DIVISION with very brief PROCEDURE DIVISION statements. Once initialized, GENERATE 
does all the hard work of control break and paging of reports.

Examples

INITIATE reporting control variables

INITIATE report-1 report-2

Read INITIATE statement online: https://riptutorial.com/cobol/topic/7180/initiate-statement

https://riptutorial.com/ 48

http://i.stack.imgur.com/r9M6T.png
https://riptutorial.com/cobol/topic/7180/initiate-statement


Chapter 27: INSPECT statement

Remarks

The INSPECT statement is a scan and replace verb in COBOL.

Where tallying-phrase is:

replacing-phrase is:

missing image

before-after-phrase is:

Examples

https://riptutorial.com/ 49

http://i.stack.imgur.com/DAq5A.png
http://i.stack.imgur.com/Axg4L.png
http://i.stack.imgur.com/FLkhl.png


INSPECT reformatting a date line

GCobol identification division. 
       program-id. inspecting. 
 
       data division. 
       working-storage section. 
       01  ORIGINAL            pic XXXX/XX/XXBXX/XX/XXXXXXX/XX. 
       01  DATEREC             pic XXXX/XX/XXBXX/XX/XXXXXXX/XX. 
 
       procedure division. 
 
       move function when-compiled to DATEREC ORIGINAL 
 
       INSPECT DATEREC REPLACING ALL "/" BY ":" AFTER INITIAL SPACE 
 
       display "Formatted function WHEN-COMPILED " ORIGINAL 
       display " after INSPECT REPLACING         " DATEREC 
 
       goback. 
       end program inspecting.

Giving:

Formatted function WHEN-COMPILED 2010/03/25 23/05/0900-04/00 
 after INSPECT REPLACING         2010/03/25 23:05:0900-04:00

Read INSPECT statement online: https://riptutorial.com/cobol/topic/7182/inspect-statement

https://riptutorial.com/ 50

https://riptutorial.com/cobol/topic/7182/inspect-statement


Chapter 28: Intrinsic Functions

Introduction

Intrinsic Functions are included in the COBOL standard as a set of functions that return values 
from a specific algorithm, given zero or more arguments. These intrinsic functions are provided as 
a facility of the compiler and runtime system. The return items are temporary COBOL fields, and 
can be character data, bit fields, or numeric values.

Examples include trigonometric functions, date time routines, data type conversions, standard 
deviation, and other support algorithms.

Remarks

COBOL 2014 lists the following standard Intrinsic Functions:

======================================== ========== 
Intrinsic Function                       Parameters 
======================================== ========== 
FUNCTION ABS                             1 
FUNCTION ACOS                            1 
FUNCTION ANNUITY                         2 
FUNCTION ASIN                            1 
FUNCTION ATAN                            1 
FUNCTION BOOLEAN-OF-INTEGER              2 
FUNCTION BYTE-LENGTH                     1 
FUNCTION CHAR                            1 
FUNCTION CHAR-NATIONAL                   1 
FUNCTION COMBINED-DATETIME               2 
FUNCTION COS                             1 
FUNCTION CURRENCY-SYMBOL                 0 
FUNCTION CURRENT-DATE                    0 
FUNCTION DATE-OF-INTEGER                 1 
FUNCTION DATE-TO-YYYYMMDD                Variable 
FUNCTION DAY-OF-INTEGER                  1 
FUNCTION DAY-TO-YYYYDDD                  Variable 
FUNCTION DISPLAY-OF                      Variable 
FUNCTION E                               0 
FUNCTION EXCEPTION-FILE                  0 
FUNCTION EXCEPTION-FILE-N                0 
FUNCTION EXCEPTION-LOCATION              0 
FUNCTION EXCEPTION-LOCATION-N            0 
FUNCTION EXCEPTION-STATEMENT             0 
FUNCTION EXCEPTION-STATUS                0 
FUNCTION EXP                             1 
FUNCTION EXP10                           1 
FUNCTION FACTORIAL                       1 
FUNCTION FORMATTED-CURRENT-DATE          1 
FUNCTION FORMATTED-DATE                  2 
FUNCTION FORMATTED-DATETIME              Variable 
FUNCTION FORMATTED-TIME                  Variable 
FUNCTION FRACTION-PART                   1 
FUNCTION HIGHEST-ALGEBRAIC               1 
FUNCTION INTEGER                         1 

https://riptutorial.com/ 51



FUNCTION INTEGER-OF-BOOLEAN              1 
FUNCTION INTEGER-OF-DATE                 1 
FUNCTION INTEGER-OF-DAY                  1 
FUNCTION INTEGER-OF-FORMATTED-DATE       2 
FUNCTION INTEGER-PART                    1 
FUNCTION LENGTH                          1 
FUNCTION LENGTH-AN                       1 
FUNCTION LOCALE-COMPARE                  Variable 
FUNCTION LOCALE-DATE                     2 
FUNCTION LOCALE-TIME                     2 
FUNCTION LOCALE-TIME-FROM-SECONDS        2 
FUNCTION LOG                             1 
FUNCTION LOG10                           1 
FUNCTION LOWER-CASE                      1 
FUNCTION LOWEST-ALGEBRAIC                1 
FUNCTION MAX                             Variable 
FUNCTION MEAN                            Variable 
FUNCTION MEDIAN                          Variable 
FUNCTION MIDRANGE                        Variable 
FUNCTION MIN                             Variable 
FUNCTION MOD                             2 
FUNCTION MODULE-CALLER-ID                0 
FUNCTION MODULE-DATE                     0 
FUNCTION MODULE-FORMATTED-DATE           0 
FUNCTION MODULE-ID                       0 
FUNCTION MODULE-PATH                     0 
FUNCTION MODULE-SOURCE                   0 
FUNCTION MODULE-TIME                     0 
FUNCTION MONETARY-DECIMAL-POINT          0 
FUNCTION MONETARY-THOUSANDS-SEPARATOR    0 
FUNCTION NATIONAL-OF                     Variable 
FUNCTION NUMERIC-DECIMAL-POINT           0 
FUNCTION NUMERIC-THOUSANDS-SEPARATOR     0 
FUNCTION NUMVAL                          1 
FUNCTION NUMVAL-C                        2 
FUNCTION NUMVAL-F                        1 
FUNCTION ORD                             1 
FUNCTION ORD-MAX                         Variable 
FUNCTION ORD-MIN                         Variable 
FUNCTION PI                              0 
FUNCTION PRESENT-VALUE                   Variable 
FUNCTION RANDOM                          Variable 
FUNCTION RANGE                           Variable 
FUNCTION REM                             2 
FUNCTION REVERSE                         1 
FUNCTION SECONDS-FROM-FORMATTED-TIME     2 
FUNCTION SECONDS-PAST-MIDNIGHT           0 
FUNCTION SIGN                            1 
FUNCTION SIN                             1 
FUNCTION SQRT                            1 
FUNCTION STANDARD-COMPARE                Variable 
FUNCTION STANDARD-DEVIATION              Variable 
FUNCTION STORED-CHAR-LENGTH              1 
FUNCTION SUM                             Variable 
FUNCTION TAN                             1 
FUNCTION TEST-DATE-YYYYMMDD              1 
FUNCTION TEST-DAY-YYYYDDD                1 
FUNCTION TEST-FORMATTED-DATETIME         2 
FUNCTION TEST-NUMVAL                     1 
FUNCTION TEST-NUMVAL-C                   2 
FUNCTION TEST-NUMVAL-F                   1 

https://riptutorial.com/ 52



FUNCTION TRIM                            2 
FUNCTION UPPER-CASE                      1 
FUNCTION VARIANCE                        Variable 
FUNCTION WHEN-COMPILED                   0 
FUNCTION YEAR-TO-YYYY                    Variable 
======================================== ==========

GnuCOBOL adds

======================================== ========== 
FUNCTION CONCATENATE                     Variable 
FUNCTION SUBSTITUTE                      Variable 
FUNCTION SUBSTITUTE-CASE                 Variable 
======================================== ==========

The keyword FUNCTION is required unless source (or compile time option) includes

ENVIRONMENT DIVISION. 
CONFIGURATION SECTION. 
REPOSITORY. 
    FUNCTION ALL INTRINSIC.

Where ALL INTRINSIC can be a list of functions to be used without the FUNCTION prefix in PROCEDURE 
DIVISION statements.

The LENGTH function has a sorted history. Some compilers include a LENGTH reserved word. For 
GnuCOBOL, this reserved word is only recognized when used in the phrase LENGTH OF, the OF 
token is required to disambiguate the function from the older reserved word extension.

Examples

FUNCTION TRIM example

01 some-string PIC X(32). 
 
... 
 
MOVE "    a string literal" TO some-string 
 
DISPLAY ":" some-string ":" 
DISPLAY ":" FUNCTION TRIM(some-string) ":" 
DISPLAY ":" FUNCTION TRIM(some-string LEADING) ":" 
DISPLAY ":" FUNCTION TRIM(some-string TRAILING) ":"

Showing

:    a string literal            : 
:a string literal: 
:a string literal            : 
:    a string literal:

https://riptutorial.com/ 53



UPPER-CASE

MOVE FUNCTION UPPER-CASE("Hello World!") TO SOME-FIELD 
DISPLAY SOME-FIELD

Output

HELLO WORLD!

LOWER-CASE function

MOVE FUNCTION LOWER-CASE("HELLO WORLD!") TO SOME-FIELD 
DISPLAY SOME-FIELD

Output

hello world!

Read Intrinsic Functions online: https://riptutorial.com/cobol/topic/7580/intrinsic-functions

https://riptutorial.com/ 54

https://riptutorial.com/cobol/topic/7580/intrinsic-functions


Chapter 29: MERGE statement

Remarks

The MERGE statement will merge one or more like formatted COBOL data files into a single 
output file. The programmer can assume control over theOUTPUT PROCEDURE, which uses the RELEASE 
statement, or use internal COBOL runtime mechanisms with the GIVING clause.

Examples

MERGE regional data into master

GCobol >>SOURCE FORMAT IS FIXED 
      *> *************************************************************** 
      *> Purpose:   Demonstrate a merge pass 
      *> Tectonics: cobc -x gnucobol-merge-sample.cob 
      *> *************************************************************** 
       identification division. 
       program-id. gnucobol-merge-sample. 
 
       environment division. 

https://riptutorial.com/ 55

http://i.stack.imgur.com/7XZQJ.png


       configuration section. 
       repository. 
           function all intrinsic. 
 
files  input-output section. 
       file-control. 
           select master-file 
               assign to "master-sample.dat" 
               organization is line sequential. 
 
           select eastern-transaction-file 
               assign to "east-transact-sample.dat" 
               organization is line sequential. 
 
           select western-transaction-file 
               assign to "west-transact-sample.dat" 
               organization is line sequential. 
 
           select merged-transactions 
               assign to "merged-transactions.dat" 
               organization is line sequential. 
 
           select working-merge 
               assign to "merge.tmp". 
 
data   data division. 
       file section. 
       fd master-file. 
          01 master-record     pic x(64). 
 
       fd eastern-transaction-file. 
          01 transact-rec      pic x(64). 
 
       fd western-transaction-file. 
          01 transact-rec      pic x(64). 
 
       fd merged-transactions. 
          01 new-rec           pic x(64). 
 
       sd working-merge. 
          01 merge-rec. 
             02 master-key     pic 9(8). 
             02 filler         pic x. 
             02 action         pic xxx. 
             02 filler         PIC x(52). 
 
      *> *************************************************************** 
      *> not much code 
      *>     trick.  DEP, CHQ, BAL are action keywords.  They sort 
      *>     descending as DEP, CHQ, BAL, so main can do all deposits, 
      *>     then all withdrawals, then balance reports, for each id. 
      *> *************************************************************** 
code   procedure division. 
       merge working-merge 
           on ascending key master-key 
              descending key action 
           using eastern-transaction-file, 
                 western-transaction-file, 
                 master-file 
           giving merged-transactions 
done   goback. 

https://riptutorial.com/ 56



       end program gnucobol-merge-sample.

Read MERGE statement online: https://riptutorial.com/cobol/topic/7183/merge-statement

https://riptutorial.com/ 57

https://riptutorial.com/cobol/topic/7183/merge-statement


Chapter 30: MOVE statement

Remarks

MOVE is the workhorse of COBOL. Data is moved from literal or identifier to one or more identifiers. 
COBOL has a distinction between elementary and group MOVE. Elementary data is type 
converted from source to destination. Group data is moved as a byte array, without regard to field 
types with a structure. Numeric fields are moved from right to left, high order digit truncation with 
zero fill (normally). Alphanumeric character data is moved left to right, right end character 
truncation with space fill. There are quite a few rules on how MOVE goes about its business, with 
both BINARY and PICTURE DISPLAY data forms, and group hierarchies all accounted for.

Examples

Some MOVE details, there are many

01 a PIC 9. 
01 b PIC 99. 
01 c PIC 999. 
 
01 s PIC X(4). 
 
01 record-group. 
   05 field-a PIC 9. 
   05 field-b PIC 99. 
   05 field-c PIC 999. 
01 display-record. 
   05 field-a PIC Z. 
   05 field-b PIC ZZ. 
   05 field-c PIC $Z9. 
 
*> numeric fields are moved left to right 
*> a set to 3, b set to 23, c set to 123 
MOVE 123 TO a b c 
 
*> moves can also be by matching names within groups 
MOVE a TO field-a OF record-group 
MOVE b TO field-b OF record-group 
MOVE c TO field-c OF record-group 
MOVE CORRESPONDING record-group TO display-record 
 
*> character data is moved right to left 
*> s will be set to xyzz 
MOVE "xyzzy" TO s

https://riptutorial.com/ 58

http://i.stack.imgur.com/Ko0pL.png


Read MOVE statement online: https://riptutorial.com/cobol/topic/7263/move-statement

https://riptutorial.com/ 59

https://riptutorial.com/cobol/topic/7263/move-statement


Chapter 31: MULTIPLY statement

Remarks

The MULTIPLY statement multiplies numeric data setting the result to one or more identifiers of 
numeric type.

Where rounded-phrase is

Examples

Some MULTIPLY formats

MULTIPLY 5 BY a 

https://riptutorial.com/ 60

http://i.stack.imgur.com/CG2es.png
http://i.stack.imgur.com/ldXYi.png


 
MULTIPLY a BY b 
    ON SIZE ERROR 
        PERFORM error-handling 
    NOT ON SIZE ERROR 
        PERFORM who-does-that 
END-MULTIPLY 
 
MULTIPLY a BY b GIVING x ROUNDED MODE IS PROHIBITED 
                       y ROUNDED MODE IS NEAREST-EVEN 
                       z ROUNDED

Read MULTIPLY statement online: https://riptutorial.com/cobol/topic/7264/multiply-statement

https://riptutorial.com/ 61

https://riptutorial.com/cobol/topic/7264/multiply-statement


Chapter 32: OPEN statement

Remarks

The COBOL OPEN statement initiates file processing. File resources in COBOL are defined in the 
ENVIRONMENT DIVISION, named in FD (File Descriptor) paragraphs. These fd names are used to 
access physical disk files and various options are specified in a SELECT clauses in the FILE-CONTROL 
paragraph of the INPUT-OUTPUT SECTION. A programmer is expected to test a FILE STATUS identifier for 
status and error codes.

Modes include INPUT, OUTPUT, I-O and EXTEND.

Examples

OPEN sample, with LINAGE mini report

COBOL ***************************************************************** 
      * Example of LINAGE File Descriptor 
      * Tectonics: $ cocb -x linage.cob 
      *            $ ./linage <filename ["linage.cob"]> 
      *            $ cat -n mini-report 
      ***************************************************************** 
       IDENTIFICATION DIVISION. 
       PROGRAM-ID. linage-demo. 
 
       ENVIRONMENT DIVISION. 
       INPUT-OUTPUT SECTION. 
       FILE-CONTROL. 
           select optional data-file assign to file-name 
               organization is line sequential 
               file status is data-file-status. 
           select mini-report assign to "mini-report". 
 
       DATA DIVISION. 
       FILE SECTION. 
       FD  data-file. 
       01  data-record. 
           88 endofdata        value high-values. 
           02 data-line        pic x(80). 
       FD  mini-report 
           linage is 16 lines 

https://riptutorial.com/ 62

http://i.stack.imgur.com/qto0e.png


               with footing at 15 
               lines at top 2 
               lines at bottom 2. 
       01  report-line         pic x(80). 
 
       WORKING-STORAGE SECTION. 
       01  command-arguments   pic x(1024). 
       01  file-name           pic x(160). 
       01  data-file-status    pic 99. 
       01  lc                  pic 99. 
       01  report-line-blank. 
           02 filler           pic x(18) value all "*". 
           02 filler           pic x(05) value spaces. 
           02 filler           pic x(34) 
               VALUE "THIS PAGE INTENTIONALLY LEFT BLANK". 
           02 filler           pic x(05) value spaces. 
           02 filler           pic x(18) value all "*". 
       01  report-line-data. 
           02 body-tag         pic 9(6). 
           02 line-3           pic x(74). 
       01  report-line-header. 
           02 filler           pic x(6) VALUE "PAGE: ". 
           02 page-no          pic 9999. 
           02 filler           pic x(24). 
           02 filler           pic x(5) VALUE " LC: ". 
           02 header-tag       pic 9(6). 
           02 filler           pic x(23). 
           02 filler           pic x(6) VALUE "DATE: ". 
           02 page-date        pic x(6). 
 
       01  page-count          pic 9999. 
 
       PROCEDURE DIVISION. 
 
       accept command-arguments from command-line end-accept. 
       string 
           command-arguments delimited by space 
           into file-name 
       end-string. 
       if file-name equal spaces 
           move "linage.cob" to file-name 
       end-if. 
 
       open input data-file. 
       read data-file 
           at end 
               display "File: " function trim(file-name) " open error" 
               go to early-exit 
       end-read. 
 
       open output mini-report. 
 
       write report-line 
           from report-line-blank 
       end-write. 
 
       move 1 to page-count. 
       accept page-date from date end-accept. 
       move page-count to page-no. 
       write report-line 
           from report-line-header 

https://riptutorial.com/ 63



           after advancing page 
       end-write. 
 
       perform readwrite-loop until endofdata. 
 
       display 
           "Normal termination, file name: " 
           function trim(file-name) 
           " ending status: " 
           data-file-status 
       close mini-report. 
 
      * Goto considered harmful?  Bah!  :) 
       early-exit. 
       close data-file. 
       exit program. 
       stop run. 
 
      **************************************************************** 
       readwrite-loop. 
       move data-record to report-line-data 
       move linage-counter to body-tag 
       write report-line from report-line-data 
           end-of-page 
               add 1 to page-count end-add 
               move page-count to page-no 
               move linage-counter to header-tag 
               write report-line from report-line-header 
                   after advancing page 
               end-write 
       end-write 
       read data-file 
           at end set endofdata to true 
       end-read 
       . 
 
      ***************************************************************** 
      * Commentary 
      * LINAGE is set at a 20 line logical page 
      *  16 body lines 
      *   2 top lines 
      *   A footer line at 15 (inside the body count) 
      *   2 bottom lines 
      * Build with: 
      * $ cobc -x -Wall -Wtruncate linage.cob 
      * Evaluate with: 
      * $ ./linage 
      * This will read in linage.cob and produce a useless mini-report 
      * $ cat -n mini-report 
      ***************************************************************** 
       END PROGRAM linage-demo.

Read OPEN statement online: https://riptutorial.com/cobol/topic/7288/open-statement

https://riptutorial.com/ 64

https://riptutorial.com/cobol/topic/7288/open-statement


Chapter 33: PERFORM statement

Remarks

The PERFORM statement transfers control to one or more procedures and returns control 
implicitly when the sequence completes. PERFORM can also be used for inline loops withing the 
scope of the PERFORM.

The VARYING phrase allows for nesting with one or more AFTER clauses, and the conditional test can 
be BEFORE (default) or AFTER each loop.

The THRU clause of a procedural perform assumes sequential top down control flow from procedure-
1 through the end of procedure-2. THRU is a contentious issue, and many programmers prefer 
PERFORM by SECTION rather than using THRU paragraphs. Some shops may mandate PERFORM THRU with 
an explicit exit point paragraph, others may ban the use of THRU finding it more difficult to debug.

Procedural perform:

Inline perform:

Where varying-phrase is:

https://riptutorial.com/ 65

http://i.stack.imgur.com/bniXN.png
http://i.stack.imgur.com/jq7le.png


Examples

Inline PERFORM VARYING

PERFORM VARYING TALLY FROM 1 BY 1 UNTIL TALLY > 5 
    DISPLAY TALLY 
END-PERFORM

Procedural PERFORM

PERFORM some-paragraph

Read PERFORM statement online: https://riptutorial.com/cobol/topic/7334/perform-statement

https://riptutorial.com/ 66

http://i.stack.imgur.com/323kR.png
https://riptutorial.com/cobol/topic/7334/perform-statement


Chapter 34: READ statement

Remarks

The READ statement is a staple of COBOL transaction processing programming. Reads data from 
external storage into working store. With or without locks or sharing, sequentially, by random 
access, or by key. Declarative clauses for AT END may also be specified, but some programmers 
prefer explicit FILE STATUS testing.

As each file resource may contain any type of record in any given slot, COBOL is a "read a file", 
"write a record" language, READ takes a filename (FD) and it is up to the programmer to place the 
record in an appropriate structure if heterogeneous data is saved in the file.

Examples

Simple READ from FD

READ data-file

Read READ statement online: https://riptutorial.com/cobol/topic/7336/read-statement

https://riptutorial.com/ 67

http://i.stack.imgur.com/kZQUR.png
https://riptutorial.com/cobol/topic/7336/read-statement


Chapter 35: RELEASE statement

Remarks

The RELEASE statement is used to give records to the COBOL SORT algorithm under programmer 
controlled conditions.

Examples

RELEASE a record to a SORT INPUT PROCEDURE

This is a contrived sample. It sorts records based on an ALPHABET that has upper and lower case 
characters together, with A and a swapped compared to the other letters. This was done on 
purpose to demonstrate the possibilities. The SORT algorithm reader retrieves records using 
RELEASE in the INPUT PROCEDURE. The OUTPUT PROCEDURE uses RETURN for the SORT algorithm writer.

GCobol >>SOURCE FORMAT IS FIXED 
      ****************************************************************** 
      * Purpose:   A GnuCOBOL SORT verb example 
      * Tectonics: cobc -x sorting.cob 
      *     ./sorting <input >output 
      *   or simply 
      *     ./sorting 
      *   for keyboard and screen demos 
      ****************************************************************** 
       identification division. 
       program-id. sorting. 
 
       environment division. 
       configuration section. 
      * This sets up a sort order lower/upper except for "A" and "a" 
       special-names. 
           alphabet mixed is " AabBcCdDeEfFgGhHiIjJkKlLmMnNoOpPqQrRsStTu 
      -"UvVwWxXyYzZ0123456789". 
 
       input-output section. 
       file-control. 
           select sort-in 
               assign keyboard 
               organization is line sequential. 
           select sort-out 
               assign display 
               organization is line sequential. 
           select sort-work 
               assign "sortwork". 
 
       data division. 

https://riptutorial.com/ 68

http://i.stack.imgur.com/nsojp.png


       file section. 
       fd sort-in. 
          01 in-rec        pic x(255). 
       fd sort-out. 
          01 out-rec       pic x(255). 
       sd sort-work. 
          01 work-rec      pic x(255). 
 
       working-storage section. 
       01 loop-flag        pic x value low-value. 
 
       procedure division. 
       sort sort-work 
           on descending key work-rec 
           collating sequence is mixed 
           input procedure is sort-transform 
           output procedure is output-uppercase. 
 
       display sort-return. 
       goback. 
 
      ****************************************************************** 
       sort-transform. 
       move low-value to loop-flag 
       open input sort-in 
       read sort-in 
           at end move high-value to loop-flag 
       end-read 
       perform 
           until loop-flag = high-value 
               move in-rec to work-rec 
               RELEASE work-rec 
               read sort-in 
                   at end move high-value to loop-flag 
               end-read 
       end-perform 
       close sort-in 
       . 
 
      ****************************************************************** 
       output-uppercase. 
       move low-value to loop-flag 
       open output sort-out 
       return sort-work 
           at end move high-value to loop-flag 
       end-return 
       perform 
           until loop-flag = high-value 
               move work-rec to out-rec 
               write out-rec end-write 
               return sort-work 
                   at end move high-value to loop-flag 
               end-return 
       end-perform 
       close sort-out 
       . 
 
       exit program. 
       end program sorting.

Read RELEASE statement online: https://riptutorial.com/cobol/topic/7337/release-statement

https://riptutorial.com/ 69

https://riptutorial.com/cobol/topic/7337/release-statement


Chapter 36: REPLACE directive

Remarks

The REPLACE directive is part of the COBOL standard preprocessor. Replacements are made before 
compilation begins.

Examples

REPLACE text manipulation sample

REPLACE ==magic-number== BY ==65535==.

Read REPLACE directive online: https://riptutorial.com/cobol/topic/7459/replace-directive

https://riptutorial.com/ 70

https://i.stack.imgur.com/fmBBm.png
https://riptutorial.com/cobol/topic/7459/replace-directive


Chapter 37: RETURN statement

Remarks

The RETURN statement controls when data is sent to the internal COBOL sort algorithm writer, as 
part of an OUTPUT PROCEDURE. Post sort data can be transformed under programmer control before 
being returned and written to the output file by the sort algorithm.

Examples

RETURN a record to SORT OUTPUT PROCEDURE

This is a seedwork sample. The SORT OUTPUT PROCEDURE could manipulate the sorted records before 
they are returned to the write portion of the internal COBOL sort algorithm. In this case, no 
transformation is done, work-rec is directly moved to out-rec.

GCobol >>SOURCE FORMAT IS FIXED 
      ****************************************************************** 
      * Purpose:   A GnuCOBOL SORT verb example 
      * Tectonics: cobc -x sorting.cob 
      *     ./sorting <input >output 
      *   or simply 
      *     ./sorting 
      *   for keyboard and screen demos 
      ****************************************************************** 
       identification division. 
       program-id. sorting. 
 
       environment division. 
       configuration section. 
      * Set up a sort order where lower and upper case stay together 
       special-names. 
           alphabet mixed is " aAbBcCdDeEfFgGhHiIjJkKlLmMnNoOpPqQrRsStTu 
      -"UvVwWxXyYzZ0123456789". 
 
       input-output section. 
       file-control. 

https://riptutorial.com/ 71

http://i.stack.imgur.com/3FCtz.png


           select sort-in 
               assign keyboard 
               organization is line sequential. 
           select sort-out 
               assign display 
               organization is line sequential. 
           select sort-work 
               assign "sortwork". 
 
       data division. 
       file section. 
       fd sort-in. 
          01 in-rec        pic x(255). 
       fd sort-out. 
          01 out-rec       pic x(255). 
       sd sort-work. 
          01 work-rec      pic x(255). 
 
       working-storage section. 
       01 loop-flag        pic x value low-value. 
 
       procedure division. 
       sort sort-work 
           on descending key work-rec 
           collating sequence is mixed 
           input procedure is sort-reader 
           output procedure is sort-writer. 
 
       display sort-return. 
       goback. 
 
      ****************************************************************** 
       sort-reader. 
       move low-value to loop-flag 
       open input sort-in 
       read sort-in 
           at end move high-value to loop-flag 
       end-read 
       perform 
           until loop-flag = high-value 
               move in-rec to work-rec 
               release work-rec 
               read sort-in 
                   at end move high-value to loop-flag 
               end-read 
       end-perform 
       close sort-in 
       . 
 
      ****************************************************************** 
       sort-writer. 
       move low-value to loop-flag 
       open output sort-out 
       return sort-work 
           at end move high-value to loop-flag 
       end-return 
       perform 
           until loop-flag = high-value 
               move work-rec to out-rec 
               write out-rec end-write 
               RETURN sort-work 

https://riptutorial.com/ 72



                   at end move high-value to loop-flag 
               end-return 
       end-perform 
       close sort-out 
       . 
 
       exit program. 
       end program sorting.

Read RETURN statement online: https://riptutorial.com/cobol/topic/7338/return-statement

https://riptutorial.com/ 73

https://riptutorial.com/cobol/topic/7338/return-statement


Chapter 38: REWRITE statement

Remarks

The REWRITE statement logically replaces existing records on mass storage.

Examples

REWRITE of records in a RELATIVE access file

GCobol >>SOURCE FORMAT IS FIXED 
      *> *************************************************************** 
      *> Purpose:   RELATIVE file organization  REWRITE example 
      *> Tectonics: cobc -g -debug -W -x relatives.cob 
      *> *************************************************************** 
       identification division. 
       program-id. relatives. 
 
       environment division. 
       configuration section. 
       repository. 
           function all intrinsic. 
 
       input-output section. 
       file-control. 
           select optional relatives 
               assign to "relatives.dat" 
               file status is filestatus 
               organization is relative 
               access mode is dynamic 
               relative key is nicknum. 
 

https://riptutorial.com/ 74

https://i.stack.imgur.com/HytlW.png


       data division. 
       file section. 
       fd relatives. 
          01 person. 
             05 firstname      pic x(48). 
             05 lastname       pic x(64). 
             05 relationship   pic x(32). 
 
       working-storage section. 
       77 filestatus pic 9(2). 
          88 ineof value 1 when set to false is 0. 
 
       77 satisfaction pic 9. 
          88 satisfied value 1 when set to false is 0. 
 
       77 nicknum   pic 9(2). 
 
       77 title-line pic x(34). 
          88 writing-names value "Adding, Overwriting.  00 to finish". 
          88 reading-names value "Which record?         00 to quit". 
       77 problem   pic x(80). 
 
       screen section. 
       01 detail-screen. 
          05           line 1 column 1  from title-line erase eos. 
          05           line 2 column 1  value "Record: ". 
          05 pic 9(2)  line 2 column 16 using nicknum. 
          05           line 3 column 1  value "First name: ". 
          05 pic x(48) line 3 column 16 using firstname. 
          05           line 4 column 1  value "Last name: ". 
          05 pic x(64) line 4 column 16 using lastname. 
          05           line 5 column 1  value "Relation: ". 
          05 pic x(32) line 5 column 16 using relationship. 
          05 pic x(80) line 6 column 1  from problem. 
 
       01 show-screen. 
          05           line 1 column 1  from title-line erase eos. 
          05           line 2 column 1  value "Record: ". 
          05 pic 9(2)  line 2 column 16 using nicknum. 
          05           line 3 column 1  value "First name: ". 
          05 pic x(48) line 3 column 16 from firstname. 
          05           line 4 column 1  value "Last name: ". 
          05 pic x(64) line 4 column 16 from lastname. 
          05           line 5 column 1  value "Relation: ". 
          05 pic x(32) line 5 column 16 from relationship. 
          05 pic x(80) line 6 column 1  from problem. 
 
      *> -*********-*********-*********-*********-*********-*********-** 
       procedure division. 
       beginning. 
 
      *> Open the file and find the highest record number 
      *> which is a sequential read operation after START 
           open input relatives 
 
           move 99 to nicknum 
           start relatives key is less than or equal to nicknum 
               invalid key 
                   move concatenate('NO START' space filestatus) 
                     to problem 
                   move 00 to nicknum 

https://riptutorial.com/ 75



               not invalid key 
                   read relatives next end-read 
           end-start 
 
      *> Close and open for i-o 
           close relatives 
           open i-o relatives 
 
      *> Prompt for numbers and names to add until 00 
           set writing-names to true 
           set satisfied to false 
           perform fill-file through fill-file-end 
               until satisfied 
 
           close relatives 
 
      *> Prompt for numbers to view names of until 00 
           open input relatives 
 
           set reading-names to true 
           set satisfied to false 
           perform record-request through record-request-end 
               until satisfied 
 
           perform close-shop 
       . 
       ending. 
           goback. 
 
      *> get some user data to add 
       fill-file. 
           display detail-screen. 
           accept detail-screen. 
           move spaces to problem 
           if nicknum equal 0 
               set satisfied to true 
               go to fill-file-end 
           end-if. 
       . 
       write-file. 
           write person 
               invalid key 
                   move concatenate("overwriting: " nicknum) to problem 
                   REWRITE person 
                       invalid key 
                           move concatenate( 
                               exception-location() space nicknum 
                               space filestatus) 
                           to problem 
                   END-REWRITE 
           end-write. 
           display detail-screen 
 
       . 
       fill-file-end. 
       . 
 
      *> get keys to display 
       record-request. 
           display show-screen 
           accept show-screen 

https://riptutorial.com/ 76



           move spaces to problem 
           if nicknum equals 0 
               set satisfied to true 
               go to record-request-end 
           end-if 
       . 
 
      *> The magic of relative record number reads 
       read-relation. 
           read relatives 
               invalid key 
                   move exception-location() to problem 
               not invalid key 
                   move spaces to problem 
           end-read 
           display show-screen 
       . 
 
       record-request-end. 
       . 
 
      *> get out <* 
       close-shop. 
           close relatives. 
           goback. 
       . 
       end program relatives.

Read REWRITE statement online: https://riptutorial.com/cobol/topic/7460/rewrite-statement

https://riptutorial.com/ 77

https://riptutorial.com/cobol/topic/7460/rewrite-statement


Chapter 39: SEARCH statement

Remarks

The COBOL SEARCH statement comes in two forms. Linear top to bottom SEARCH and a binary SEARCH 
ALL algorithm. Binary SEARCH ALL assumes a sorted table suitable for a binary search with no 
elements out of order.

SEARCH statement

Linear SEARCH

Binary SEARCH ALL

https://riptutorial.com/ 78

https://i.stack.imgur.com/Z8WAj.png
https://i.stack.imgur.com/IMjhJ.png


Examples

Linear SEARCH

GCobol >>SOURCE FORMAT IS FIXED 
      *> *************************************************************** 
      *> Purpose:   Demonstration of the SEARCH verb 
      *> Tectonics: cobc -x searchlinear.cob 
      *> *************************************************************** 
       identification division. 
       program-id. searchlinear. 
 
       data division. 
 
       working-storage section. 
       01 taxinfo. 
          05 tax-table occurs 4 times indexed by tt-index. 
             10 province       pic x(2). 
             10 taxrate        pic 999v9999. 
             10 federal        pic 999v9999. 

https://riptutorial.com/ 79

https://i.stack.imgur.com/CKWYk.png


       01 prov                 pic x(2). 
       01 percent              pic 999v9999. 
       01 percentage           pic zz9.99. 
 
      *> *************************************************************** 
       procedure division. 
       begin. 
 
      *> *************************************************************** 
      *> Sample for linear SEARCH, requires INDEXED BY table 
      *> populate the provincial tax table; 
      *>  *** (not really, only a couple of sample provinces) *** 
      *> populate Ontario and PEI using different field loaders 
       move 'AB' to province(1) 
       move 'ON' to province(2) 
       move 0.08 to taxrate(2) 
       move 0.05 to federal(2) 
       move 'PE00014000000000' to tax-table(3) 
       move 'YT' to province(4) 
 
      *> Find Ontario tax rate 
       move "ON" to prov 
       perform search-for-taxrate 
 
      *> Setup for Prince Edward Island 
       move 'PE' to prov 
       perform search-for-taxrate 
 
      *> Setup for failure 
       move 'ZZ' to prov 
       perform search-for-taxrate 
 
       goback. 
      *> *************************************************************** 
 
       search-for-taxrate. 
           set tt-index to 1 
           search tax-table 
               at end display "no province: " prov end-display 
               when province(tt-index) = prov 
                   perform display-taxrate 
           end-search 
       . 
 
       display-taxrate. 
           compute percent = taxrate(tt-index) * 100 
           move percent to percentage 
           display 
               "found: " prov " at " taxrate(tt-index) 
               "," percentage "%, federal rate of " federal(tt-index) 
           end-display 
       . 
 
       end program searchlinear.

Binary SEARCH ALL

GCobol >>SOURCE FORMAT IS FIXED 
      *> *************************************************************** 

https://riptutorial.com/ 80



      *> Purpose:   Demonstration of the SEARCH ALL verb and table SORT 
      *> Tectonics: cobc -x -fdebugging-line searchbinary.cob 
      *> *************************************************************** 
       identification division. 
       program-id. searchbinary. 
 
       environment division. 
       input-output section. 
       file-control. 
           select optional wordfile 
           assign to infile 
           organization is line sequential. 
 
       data division. 
       file section. 
       fd wordfile. 
           01 wordrec          pic x(20). 
 
       working-storage section. 
       01 infile               pic x(256) value spaces. 
          88 defaultfile       value '/usr/share/dict/words'. 
       01 arguments            pic x(256). 
 
      *> Note the based clause, this memory is initially unallocated 
       78 maxwords             value 500000. 
       01 wordlist             based. 
          05 word-table occurs maxwords times 
              depending on wordcount 
              descending key is wordstr 
              indexed by wl-index. 
             10 wordstr        pic x(20). 
             10 wordline       usage binary-long. 
       01 wordcount            usage binary-long. 
 
       01 file-eof             pic 9 value low-value. 
          88 at-eof            value high-values. 
 
       01 word                 pic x(20). 
 
      *> *************************************************************** 
       procedure division. 
       begin. 
 
      *> Get the word file filename 
       accept arguments from command-line end-accept 
       if arguments not equal spaces 
           move arguments to infile 
       else 
           set defaultfile to true 
       end-if 
 
      *> *************************************************************** 
      *> Try playing with the words file and binary SEARCH ALL 
      *>   requires KEY IS and INDEXED BY table description 
 
      *> Point wordlist to valid memory 
       allocate wordlist initialized 
 
       open input wordfile 
 
       move low-value to file-eof 

https://riptutorial.com/ 81



       read wordfile 
           at end set at-eof to true 
       end-read 
 
       perform 
           with test before 
           until at-eof or (wordcount >= maxwords) 
               add 1 to wordcount 
               move wordrec to wordstr(wordcount) 
               move wordcount to wordline(wordcount) 
               read wordfile 
                   at end set at-eof to true 
               end-read 
       end-perform 
 
       close wordfile 
 
      *> ensure a non-zero length table when allowing optional file 
       evaluate true                  also file-eof 
           when wordcount = 0         also any 
               move 1 to wordcount 
               display "No words loaded" end-display 
           when wordcount >= maxwords also low-value 
               display "Word list truncated to " maxwords end-display 
       end-evaluate 
 
    >>D display "Count: " wordcount ": " wordstr(wordcount) end-display 
 
      *> Sort the words from z to a 
       sort word-table on descending key wordstr 
 
      *> fetch a word to search for 
       display "word to find: " with no advancing end-display 
       accept word end-accept 
 
      *> binary search the words for word typed in and display 
      *> the original line number if/when a match is found 
       set wl-index to 1 
       search all word-table 
           at end 
               display 
                   word " not a word of " function trim(infile) 
               end-display 
           when wordstr(wl-index) = word 
               display 
                   word " sorted to " wl-index ", originally " 
                   wordline(wl-index) " of " function trim(infile) 
               end-display 
       end-search 
 
      *> Release memory ownership 
       free address of wordlist 
 
       goback. 
       end program searchbinary.

Read SEARCH statement online: https://riptutorial.com/cobol/topic/7462/search-statement

https://riptutorial.com/ 82

https://riptutorial.com/cobol/topic/7462/search-statement


Chapter 40: SET statement

Remarks

The COBOL SET statement sets values, and operating environment data. It can be argued that SET 
was overused by the committee, as it has over a dozen documented syntax formats.

https://riptutorial.com/ 83



Examples

SET pointer example

SET handle TO returned-pointer 

https://riptutorial.com/ 84

https://i.stack.imgur.com/DYlHc.png


SET handle UP BY LENGTH(returned-pointer) 
SET ADDRESS OF buffer-space TO handle 
MOVE buffer-space TO work-store 
DISPLAY "Second element is " work-store

Read SET statement online: https://riptutorial.com/cobol/topic/7461/set-statement

https://riptutorial.com/ 85

https://riptutorial.com/cobol/topic/7461/set-statement


Chapter 41: SORT statement

Remarks

The COBOL SORT statement can be used to sort files and tables in working storage.

SORT file

SORT table

https://riptutorial.com/ 86

https://i.stack.imgur.com/iatOV.png


Examples

Sorting standard in to standard out

GCobol* GnuCOBOL SORT verb example using standard in and standard out 
       identification division. 
       program-id. sorting. 
 
       environment division. 
       input-output section. 
       file-control. 
           select sort-in 
               assign keyboard 
               organization line sequential. 
           select sort-out 
               assign display 
               organization line sequential. 
           select sort-work 
               assign "sortwork". 
 
       data division. 
       file section. 
       fd sort-in. 
          01 in-rec        pic x(255). 
       fd sort-out. 
          01 out-rec       pic x(255). 
       sd sort-work. 
          01 work-rec      pic x(255). 
 
       procedure division. 
       sort sort-work 
           ascending key work-rec 
           using  sort-in 
           giving sort-out. 
 
       goback. 
       exit program. 
       end program sorting.

https://riptutorial.com/ 87

https://i.stack.imgur.com/XZOrk.png


Read SORT statement online: https://riptutorial.com/cobol/topic/7463/sort-statement

https://riptutorial.com/ 88

https://riptutorial.com/cobol/topic/7463/sort-statement


Chapter 42: START statement

Remarks

The START statement provides a way to position a read in a file for subsequent sequential retrieval 
(by key).

The key relational can include (but is not limited to):

KEY IS GREATER THAN•

KEY IS >•

KEY IS LESS THAN•

KEY IS <•

KEY IS EQUAL TO•

KEY IS =•

KEY IS NOT GREATER THAN•

KEY IS NOT >•

KEY IS NOT LESS THAN•

KEY IS NOT <•

KEY IS NOT EQUAL TO•

KEY IS NOT =•

https://riptutorial.com/ 89

https://i.stack.imgur.com/frfm5.png


KEY IS <>•

KEY IS GREATER THAN OR EQUAL TO•

KEY IS >=•

KEY IS LESS THAN OR EQUAL TO•

KEY IS <=•

Examples

START example

start indexing 
   key is less than 
       keyfield of indexing-record 
   invalid key 
       display "bad start: " keyfield of indexing-record 
       set no-more-records to true 
   not invalid key 
       read indexing previous record 
           at end set no-more-records to true 
       end-read 
end-start

Read START statement online: https://riptutorial.com/cobol/topic/7464/start-statement

https://riptutorial.com/ 90

https://riptutorial.com/cobol/topic/7464/start-statement


Chapter 43: STOP statement

Remarks

The STOP statement terminates the current run unit.

A now deemed obsolete extension to STOP RUN is STOP literal, which will pause a program until a 
response from the console is given, at which point execution will resume. This could be handy for 
things like, "go get the big box of paper and load up the special printer".

STOP is a hard program end, GOBACK is a slightly nicer way of returning to the operating system or 
caller module, especially in subroutines that may have no business terminating a run.

Examples

STOP RUN

STOP RUN

Read STOP statement online: https://riptutorial.com/cobol/topic/7466/stop-statement

https://riptutorial.com/ 91

https://i.stack.imgur.com/2TO2Y.png
https://riptutorial.com/cobol/topic/7466/stop-statement


Chapter 44: String

Examples

STRINGVAL... Move -versus- STRING

   IDENTIFICATION DIVISION. 
   PROGRAM-ID.  STRINGVAL. 
   ENVIRONMENT DIVISION. 
   DATA DIVISION. 
   WORKING-STORAGE SECTION. 
 
   01  WORK-AREAS. 
       05 I-STRING        PIC X(08) VALUE   'STRNGVAL'. 
 
       05 O-STRING        PIC XBXBXBXBXBXBXBX. 
          88  O-STRING-IS-EMPTY     VALUE   SPACES. 
 
   PROCEDURE DIVISION. 
   GENESIS. 
 
       PERFORM MAINLINE 
 
       PERFORM FINALIZATION 
 
       GOBACK 
 
        . 
 
 
   MAINLINE. 
 
       DISPLAY 'STRINGVAL EXAMPLE IS STARTING !!!!!!!!!!!!!!' 
 
       DISPLAY '=== USING MOVE STATEMENT ===' 
       MOVE I-STRING TO O-STRING 
       DISPLAY 'O STRING= ' O-STRING 
 
       DISPLAY '=== USING STRING STATEMENT ===' 
       SET O-STRING-IS-EMPTY    TO  TRUE 
       STRING I-STRING ( 1 : 1 ) DELIMITED BY SIZE 
           ' ' DELIMITED BY SIZE 
           I-STRING ( 2 : 1 ) DELIMITED BY SIZE 
           ' ' DELIMITED BY SIZE 
           I-STRING ( 3 : 1 ) DELIMITED BY SIZE 
           ' ' DELIMITED BY SIZE 
           I-STRING ( 4 : 1 ) DELIMITED BY SIZE 
           ' ' DELIMITED BY SIZE 
           I-STRING ( 5 : 1 ) DELIMITED BY SIZE 
           ' ' DELIMITED BY SIZE 
           I-STRING ( 6 : 1 ) DELIMITED BY SIZE 
           ' ' DELIMITED BY SIZE 
           I-STRING ( 7 : 1 ) DELIMITED BY SIZE 
           ' ' DELIMITED BY SIZE 
           I-STRING ( 8 : 1 ) DELIMITED BY SIZE 
           ' ' DELIMITED BY SIZE 
           INTO O-STRING 

https://riptutorial.com/ 92



 
       DISPLAY 'O STRING= ' O-STRING 
 
        . 
 
 
   FINALIZATION. 
 
       DISPLAY 'STRINGVAL EXAMPLE IS COMPLETE !!!!!!!!!!!!!!' 
 
        . 
 
   END PROGRAM STRINGVAL.

Not an example, but ....

seemed the only way to add a comment. One thing that's easy to forget is that if you string some 
variables like the example above, and the resulting length is SHORTER than what was originally in 
the receiving variable (o- string above) then"trailing"characters are left in place.

For example, if o- string contained "the string contains this data" and you string together "fred & 
Bert", then o- string will contain "fred & Bertontains this data" (if I counted right).

Summa summary, get into the habit of ALWAYS moving spaces into your receiving variable before 
you start stringing.

Read String online: https://riptutorial.com/cobol/topic/7039/string

https://riptutorial.com/ 93

https://riptutorial.com/cobol/topic/7039/string


Chapter 45: STRING statement

Remarks

The STRING statement concatenates the partial or complete contents of multiple fields into a single 
result.

Examples

STRING example for C strings

*> Strip off trailing zero bytes 
STRING c-string DELIMITED BY LOW-VALUE INTO working-store

Read STRING statement online: https://riptutorial.com/cobol/topic/7468/string-statement

https://riptutorial.com/ 94

https://i.stack.imgur.com/C6THp.png
https://riptutorial.com/cobol/topic/7468/string-statement


Chapter 46: SUBTRACT statement

Remarks

The SUBTRACT statement is used to subtract one, or the sum of two or more, numeric data items 
from one or more items, and set the values of one or more identifiers to the result.

rounded-phrase

Examples

https://riptutorial.com/ 95

https://i.stack.imgur.com/ZCMpk.png
https://i.stack.imgur.com/Yyj8C.png


SUBTRACT example

SUBTRACT item-a item-b item-c FROM account-z ROUNDED MODE IS NEAREST-EVEN 
    ON SIZE ERROR 
        DISPLAY "CALL THE BOSS, Account `Z` is OUT OF MONEY" END-DISPLAY 
        PERFORM promisary-processing 
    NOT ON SIZE ERROR 
        PERFORM normal-processing 
END-SUBTRACT

Read SUBTRACT statement online: https://riptutorial.com/cobol/topic/7465/subtract-statement

https://riptutorial.com/ 96

https://riptutorial.com/cobol/topic/7465/subtract-statement


Chapter 47: SUPPRESS statement

Remarks

The SUPPRESS statement inhibits the printing of a report group. COBOL Report Writer feature.

Examples

SUPPRESS example

SUPPRESS PRINTING

Read SUPPRESS statement online: https://riptutorial.com/cobol/topic/7470/suppress-statement

https://riptutorial.com/ 97

https://i.stack.imgur.com/Kcqbf.png
https://riptutorial.com/cobol/topic/7470/suppress-statement


Chapter 48: TERMINATE statement

Remarks

The TERMINATE statement is a COBOL Report Writer feature. Terminates the processing on the 
given report names.

Examples

TERMINATE example

TERMINATE report-1 report-2 report-summary

Read TERMINATE statement online: https://riptutorial.com/cobol/topic/7467/terminate-statement

https://riptutorial.com/ 98

https://i.stack.imgur.com/eINcg.png
https://riptutorial.com/cobol/topic/7467/terminate-statement


Chapter 49: UNLOCK statement

Remarks

The UNLOCK statement explicitly releases any record locks associated with a file connector.

Examples

UNLOCK record from a file connector

UNLOCK filename-1 RECORDS

Read UNLOCK statement online: https://riptutorial.com/cobol/topic/7471/unlock-statement

https://riptutorial.com/ 99

https://i.stack.imgur.com/CJLVF.png
https://riptutorial.com/cobol/topic/7471/unlock-statement


Chapter 50: UNSTRING statement

Remarks

The UNSTRING statement separates a sending field and places results in multiple receiving fields.

Examples

UNSTRING example

UNSTRING Input-Address 
    DELIMITED BY "," OR "/" 
    INTO 
        Street-Address DELIMITER D1 COUNT C1 
        Apt-Number DELIMITER D2 COUNT C2 
        City DELIMITER D3 COUNT C3 
        State DELIMITER D4 COUNT C4 

https://riptutorial.com/ 100

https://i.stack.imgur.com/Zg3vn.png


        Zip-Code DELIMITER D5 COUNT C5 
    WITH POINTER ptr-1 
    ON OVERFLOW 
        SET more-fields TO TRUE 
END-UNSTRING

Read UNSTRING statement online: https://riptutorial.com/cobol/topic/7581/unstring-statement

https://riptutorial.com/ 101

https://riptutorial.com/cobol/topic/7581/unstring-statement


Chapter 51: USE statement

Remarks

The USE statement specifies procedures to be used

for error and exception handling in addition to those provided by other facilities•
before printing of a designated report group•
after detection of designated exception conditions•

Obsolete usage includes specifying procedures to be used during DEBUGGING, and extensions 
include adding interstitial procedures for program start and end.

Examples

USE statement with Report Writer DECLARATIVES

https://riptutorial.com/ 102

https://i.stack.imgur.com/F35Xk.png


035700 PROCEDURE DIVISION. 
035800 
035900 DECLARATIVES. 
036000 
036100 DEPT-HEAD-USE SECTION. USE BEFORE REPORTING DEPT-HEAD. 
036200 DEPT-HEAD-PROC. 
036300     SET DE-IX TO +1. 
036400     SEARCH DEPARTMENT-ENTRY 
036500         WHEN DE-NUMBER (DE-IX) = PRR-DEPARTMENT-NUMBER 
036600             MOVE ZEROS TO DE-GROSS (DE-IX), DE-FICA (DE-IX), 
036700                           DE-FWT (DE-IX), DE-MISC (DE-IX), 
036800                           DE-NET (DE-IX). 
036900 
037000 DEPT-HEAD-EXIT. 
037100     EXIT. 
037200 
037300 EMPL-FOOT-USE SECTION. USE BEFORE REPORTING EMPL-FOOT. 
037400 EMPL-FOOT-PROC. 
037500     MOVE PRR-EMPLOYEE-KEY TO WS-EMPLOYEE-KEY. 
037600 
037700 EMPL-FOOT-EXIT. 
037800     EXIT. 
037900 
038000 DEPT-FOOT-USE SECTION. USE BEFORE REPORTING DEPT-FOOT. 
038100 DEPT-FOOT-PROC. 
038200     MOVE DEPT-FOOT-GROSS TO DE-GROSS (DE-IX). 
038300     MOVE DEPT-FOOT-FICA TO DE-FICA (DE-IX). 
038400     MOVE DEPT-FOOT-FWT TO DE-FWT (DE-IX). 
038500     MOVE DEPT-FOOT-MISC TO DE-MISC (DE-IX). 
038600     MOVE DEPT-FOOT-NET TO DE-NET (DE-IX). 
      *     SUPPRESS PRINTING. 
038700 
038800 DEPT-FOOT-EXIT. 
038900     EXIT. 
039000 
039100 COMP-FOOT-USE SECTION. USE BEFORE REPORTING COMP-FOOT. 
039200 COMP-FOOT-PROC. 
039300     PERFORM COMP-FOOT-CALC 
039400         VARYING WPCD-IX FROM +1 BY +1 
039500         UNTIL WPCD-IX > +6. 
039600     GO TO COMP-FOOT-EXIT. 
039700 
039800 COMP-FOOT-CALC. 
039900     SET DE-IX TO WPCD-IX. 
040000     SET WPCC-IX TO +1. 
040100     COMPUTE WPC-PERCENT (WPCD-IX WPCC-IX) ROUNDED = 
040200         ((DE-GROSS (DE-IX) / CO-GROSS) * 100) + .5. 
040300     SET WPCC-IX TO +2. 
040400     COMPUTE WPC-PERCENT (WPCD-IX WPCC-IX) ROUNDED = 
040500         ((DE-FICA (DE-IX) / CO-FICA) * 100) + .5. 
040600     SET WPCC-IX TO +3. 
040700     COMPUTE WPC-PERCENT (WPCD-IX WPCC-IX) ROUNDED = 
040800         ((DE-FWT (DE-IX) / CO-FWT) * 100) + .5. 
040900     SET WPCC-IX TO +4. 
041000     COMPUTE WPC-PERCENT (WPCD-IX WPCC-IX) ROUNDED = 
041100         ((DE-MISC (DE-IX) / CO-MISC) * 100) + .5. 
041200     SET WPCC-IX TO +5. 
041300     COMPUTE WPC-PERCENT (WPCD-IX WPCC-IX) ROUNDED = 
041400         ((DE-NET (DE-IX) / CO-NET) * 100) + .5. 
041500 
041600 COMP-FOOT-EXIT. 

https://riptutorial.com/ 103



041700     EXIT. 
041800 
041900 END DECLARATIVES.

Read USE statement online: https://riptutorial.com/cobol/topic/7582/use-statement

https://riptutorial.com/ 104

https://riptutorial.com/cobol/topic/7582/use-statement


Chapter 52: WRITE statement

Remarks

The WRITE statement releases logical records to an output or input-output storage resource, and for 
logical positioning of lines within a logical page.

WRITE sequential

WRITE random

https://riptutorial.com/ 105

https://i.stack.imgur.com/iKYKy.png


Examples

WRITE examples

WRITE record-buff 
 
WRITE indexed-record 
    WITH LOCK 
    ON INVALID KEY 
        DISPLAY "Key exists, REWRITING..." END-DISPLAY 
        PERFORM rewrite-key 
END-WRITE 
IF indexed-file-status NOT EQUAL ZERO THEN 
    DISPLAY "Write problem: " indexed-file-status UPON SYSERR 
    END-DISPLAY 
    PERFORM evasive-manoeuvres 
END-IF 
 
WRITE record-name-1 AFTER ADVANCING PAGE 
 
WRITE record-name-1 FROM header-record-1 
    AFTER ADVANCING 2 LINES 
    AT END-OF-PAGE 
        PERFORM write-page-header 
        PERFORM write-last-detail-reminder 
END-WRITE

Read WRITE statement online: https://riptutorial.com/cobol/topic/7583/write-statement

https://riptutorial.com/ 106

https://i.stack.imgur.com/4lqh5.png
https://riptutorial.com/cobol/topic/7583/write-statement


Credits

S. 
No

Chapters Contributors

1
Getting started with 
cobol

4444, Abhishek Jain, Bharat Anand, Brian Tiffin, Community, 
Joe Zitzelberger, ncmathsadist

2 ACCEPT statement Brian Tiffin

3 ADD statement Brian Tiffin

4
ALLOCATE 
statement

Brian Tiffin

5 ALTER statement Brian Tiffin

6 CALL statement
4444, Bill Woodger, Brian Tiffin, infoRene, Jeffrey Ranney, Joe 
Zitzelberger, Simon Sobisch

7 CANCEL statement Brian Tiffin

8 COMMIT statement Brian Tiffin

9
COMPUTE 
statement

Brian Tiffin

10
CONTINUE 
statement

Brian Tiffin

11 COPY directive Brian Tiffin

12 Data division Bulut Colak

13 DELETE statement Brian Tiffin

14 DISPLAY statement Brian Tiffin

15 DIVIDE statement Brian Tiffin

16
EVALUATE 
statement

Brian Tiffin

17 EXIT statement Brian Tiffin

18 FREE statement Brian Tiffin

19
GENERATE 
statement

Brian Tiffin

https://riptutorial.com/ 107

https://riptutorial.com/contributor/1464444/4444
https://riptutorial.com/contributor/3857465/abhishek-jain
https://riptutorial.com/contributor/5373329/bharat-anand
https://riptutorial.com/contributor/1848585/brian-tiffin
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/344249/joe-zitzelberger
https://riptutorial.com/contributor/467379/ncmathsadist
https://riptutorial.com/contributor/1848585/brian-tiffin
https://riptutorial.com/contributor/1848585/brian-tiffin
https://riptutorial.com/contributor/1848585/brian-tiffin
https://riptutorial.com/contributor/1848585/brian-tiffin
https://riptutorial.com/contributor/1464444/4444
https://riptutorial.com/contributor/1927206/bill-woodger
https://riptutorial.com/contributor/1848585/brian-tiffin
https://riptutorial.com/contributor/6363485/inforene
https://riptutorial.com/contributor/6879561/jeffrey-ranney
https://riptutorial.com/contributor/344249/joe-zitzelberger
https://riptutorial.com/contributor/344249/joe-zitzelberger
https://riptutorial.com/contributor/5027456/simon-sobisch
https://riptutorial.com/contributor/1848585/brian-tiffin
https://riptutorial.com/contributor/1848585/brian-tiffin
https://riptutorial.com/contributor/1848585/brian-tiffin
https://riptutorial.com/contributor/1848585/brian-tiffin
https://riptutorial.com/contributor/1848585/brian-tiffin
https://riptutorial.com/contributor/5335059/bulut-colak
https://riptutorial.com/contributor/1848585/brian-tiffin
https://riptutorial.com/contributor/1848585/brian-tiffin
https://riptutorial.com/contributor/1848585/brian-tiffin
https://riptutorial.com/contributor/1848585/brian-tiffin
https://riptutorial.com/contributor/1848585/brian-tiffin
https://riptutorial.com/contributor/1848585/brian-tiffin
https://riptutorial.com/contributor/1848585/brian-tiffin


20
GnuCOBOL 
installation with 
GNU/Linux

Brian Tiffin

21 GO TO statement Brian Tiffin

22 GOBACK statement Brian Tiffin

23
How does the 
computational work 
in cobol?

Bruce Martin, Bulut Colak

24 IF statement Brian Tiffin

25
INITIALIZE 
statement

Brian Tiffin

26 INITIATE statement Brian Tiffin

27 INSPECT statement Brian Tiffin

28 Intrinsic Functions Brian Tiffin, MC Emperor

29 MERGE statement Brian Tiffin

30 MOVE statement Brian Tiffin

31
MULTIPLY 
statement

Brian Tiffin

32 OPEN statement Brian Tiffin

33
PERFORM 
statement

Brian Tiffin

34 READ statement Brian Tiffin

35 RELEASE statement Brian Tiffin

36 REPLACE directive Brian Tiffin

37 RETURN statement Brian Tiffin

38 REWRITE statement Brian Tiffin

39 SEARCH statement Brian Tiffin

40 SET statement Brian Tiffin

41 SORT statement Brian Tiffin

https://riptutorial.com/ 108

https://riptutorial.com/contributor/1848585/brian-tiffin
https://riptutorial.com/contributor/1848585/brian-tiffin
https://riptutorial.com/contributor/1848585/brian-tiffin
https://riptutorial.com/contributor/646723/bruce-martin
https://riptutorial.com/contributor/5335059/bulut-colak
https://riptutorial.com/contributor/1848585/brian-tiffin
https://riptutorial.com/contributor/1848585/brian-tiffin
https://riptutorial.com/contributor/1848585/brian-tiffin
https://riptutorial.com/contributor/1848585/brian-tiffin
https://riptutorial.com/contributor/1848585/brian-tiffin
https://riptutorial.com/contributor/507738/mc-emperor
https://riptutorial.com/contributor/1848585/brian-tiffin
https://riptutorial.com/contributor/1848585/brian-tiffin
https://riptutorial.com/contributor/1848585/brian-tiffin
https://riptutorial.com/contributor/1848585/brian-tiffin
https://riptutorial.com/contributor/1848585/brian-tiffin
https://riptutorial.com/contributor/1848585/brian-tiffin
https://riptutorial.com/contributor/1848585/brian-tiffin
https://riptutorial.com/contributor/1848585/brian-tiffin
https://riptutorial.com/contributor/1848585/brian-tiffin
https://riptutorial.com/contributor/1848585/brian-tiffin
https://riptutorial.com/contributor/1848585/brian-tiffin
https://riptutorial.com/contributor/1848585/brian-tiffin
https://riptutorial.com/contributor/1848585/brian-tiffin


42 START statement Brian Tiffin

43 STOP statement Brian Tiffin

44 String Jeffrey Ranney, Michael Simpson

45 STRING statement Brian Tiffin

46
SUBTRACT 
statement

Brian Tiffin

47
SUPPRESS 
statement

Brian Tiffin

48
TERMINATE 
statement

Brian Tiffin

49 UNLOCK statement Brian Tiffin

50
UNSTRING 
statement

Brian Tiffin

51 USE statement Brian Tiffin

52 WRITE statement Brian Tiffin

https://riptutorial.com/ 109

https://riptutorial.com/contributor/1848585/brian-tiffin
https://riptutorial.com/contributor/1848585/brian-tiffin
https://riptutorial.com/contributor/6879561/jeffrey-ranney
https://riptutorial.com/contributor/4809250/michael-simpson
https://riptutorial.com/contributor/1848585/brian-tiffin
https://riptutorial.com/contributor/1848585/brian-tiffin
https://riptutorial.com/contributor/1848585/brian-tiffin
https://riptutorial.com/contributor/1848585/brian-tiffin
https://riptutorial.com/contributor/1848585/brian-tiffin
https://riptutorial.com/contributor/1848585/brian-tiffin
https://riptutorial.com/contributor/1848585/brian-tiffin
https://riptutorial.com/contributor/1848585/brian-tiffin

	About
	Chapter 1: Getting started with cobol
	Remarks
	Standard Specification
	Principal field of use
	Category
	Decimal Math

	History
	Structure
	Data Descriptions
	Procedural statements
	Examples
	Hello, world
	Install gnu-cobol on Mac OS X


	Chapter 2: ACCEPT statement
	Remarks
	Examples
	ACCEPT statement


	Chapter 3: ADD statement
	Remarks
	Examples
	ADD statement


	Chapter 4: ALLOCATE statement
	Remarks
	Examples
	ALLOCATE statement


	Chapter 5: ALTER statement
	Remarks
	Examples
	A contrived example using ALTER


	Chapter 6: CALL statement
	Remarks
	Examples
	CALL statement
	SLEEPY TIME
	microfocus way
	Using z/OS Language Environment thread delay service


	Chapter 7: CANCEL statement
	Remarks
	Examples
	CANCEL statement


	Chapter 8: COMMIT statement
	Remarks
	Examples
	COMMIT statement


	Chapter 9: COMPUTE statement
	Remarks
	Examples
	Advice: Use spaces around all components


	Chapter 10: CONTINUE statement
	Remarks
	Examples
	Placeholder


	Chapter 11: COPY directive
	Remarks
	Examples
	COPY record-layout.


	Chapter 12: Data division
	Introduction
	Examples
	Sections in Data Division

	Level Number
	Picture Clause

	Chapter 13: DELETE statement
	Remarks
	Examples
	Delete a record, key in primary key field


	Chapter 14: DISPLAY statement
	Remarks
	Examples
	DISPLAY UPON


	Chapter 15: DIVIDE statement
	Remarks
	Examples
	DIVIDE statement formats


	Chapter 16: EVALUATE statement
	Remarks
	Examples
	A three condition EVALUATE


	Chapter 17: EXIT statement
	Remarks
	Examples
	EXIT statement


	Chapter 18: FREE statement
	Remarks
	Examples
	FREE an allocation


	Chapter 19: GENERATE statement
	Remarks
	Examples
	GENERATE a detail line


	Chapter 20: GnuCOBOL installation with GNU/Linux
	Examples
	GNU/Linux install


	Chapter 21: GO TO statement
	Remarks
	Examples
	GO statement


	Chapter 22: GOBACK statement
	Remarks
	Examples
	GOBACK


	Chapter 23: How does the computational work in cobol?
	Introduction
	Examples
	COMP-3
	Common implementations


	Chapter 24: IF statement
	Remarks
	Examples
	IF with shortform conditionals


	Chapter 25: INITIALIZE statement
	Remarks
	Examples
	Various INITIALIZE clauses


	Chapter 26: INITIATE statement
	Remarks
	Examples
	INITIATE reporting control variables


	Chapter 27: INSPECT statement
	Remarks
	Examples
	INSPECT reformatting a date line


	Chapter 28: Intrinsic Functions
	Introduction
	Remarks
	Examples
	FUNCTION TRIM example
	UPPER-CASE
	LOWER-CASE function


	Chapter 29: MERGE statement
	Remarks
	Examples
	MERGE regional data into master


	Chapter 30: MOVE statement
	Remarks
	Examples
	Some MOVE details, there are many


	Chapter 31: MULTIPLY statement
	Remarks
	Examples
	Some MULTIPLY formats


	Chapter 32: OPEN statement
	Remarks
	Examples
	OPEN sample, with LINAGE mini report


	Chapter 33: PERFORM statement
	Remarks
	Examples
	Inline PERFORM VARYING
	Procedural PERFORM


	Chapter 34: READ statement
	Remarks
	Examples
	Simple READ from FD


	Chapter 35: RELEASE statement
	Remarks
	Examples
	RELEASE a record to a SORT INPUT PROCEDURE


	Chapter 36: REPLACE directive
	Remarks
	Examples
	REPLACE text manipulation sample


	Chapter 37: RETURN statement
	Remarks
	Examples
	RETURN a record to SORT OUTPUT PROCEDURE


	Chapter 38: REWRITE statement
	Remarks
	Examples
	REWRITE of records in a RELATIVE access file


	Chapter 39: SEARCH statement
	Remarks
	Examples
	Linear SEARCH
	Binary SEARCH ALL


	Chapter 40: SET statement
	Remarks
	Examples
	SET pointer example


	Chapter 41: SORT statement
	Remarks
	Examples
	Sorting standard in to standard out


	Chapter 42: START statement
	Remarks
	Examples
	START example


	Chapter 43: STOP statement
	Remarks
	Examples
	STOP RUN


	Chapter 44: String
	Examples
	STRINGVAL... Move -versus- STRING
	Not an example, but ....


	Chapter 45: STRING statement
	Remarks
	Examples
	STRING example for C strings


	Chapter 46: SUBTRACT statement
	Remarks
	Examples
	SUBTRACT example


	Chapter 47: SUPPRESS statement
	Remarks
	Examples
	SUPPRESS example


	Chapter 48: TERMINATE statement
	Remarks
	Examples
	TERMINATE example


	Chapter 49: UNLOCK statement
	Remarks
	Examples
	UNLOCK record from a file connector


	Chapter 50: UNSTRING statement
	Remarks
	Examples
	UNSTRING example


	Chapter 51: USE statement
	Remarks
	Examples
	USE statement with Report Writer DECLARATIVES


	Chapter 52: WRITE statement
	Remarks
	Examples
	WRITE examples


	Credits



