C++ Summary notes and exercises

June 4, 2012

These notes provide a guideline for the practical sessions based on the book “C++ Primer, Fourth
Edition By Stanley B. Lippman, Josée Lajoie, Barbara E. Moo Addison Wesley Professional”. Each
chapter should be read in parallel with the practical session. Some technical parts which are less
likely to be relevant for the numerical applications we are usually interested in physics will be omitted
(or only briefly commented). In each section we will provide a summary of the main points to keep
together with exercises. Each exercise will be provided in a zip file with a README file explaining
what you have to do and the source code solution that I produce.

In addition to this book, I will also extract some examples and exercises from “C++ by Dissection”
by Ira Pohl.

Contents
11 Getting started| 2
[1.1 Steps to create and compile a simple C++ program| 2
1.2 Input and Output| e 3
[1.2.1 Redirection| e 4
C3Comments . « « « « v v v e e e e e 4
[L4 Control structuresl o e 5
[L41 Theif statementl. 5
[1.42 whileand forl 5
1.5 Comment on class types| o e 6
12 Variables and basic data types| 6
2.1 Primitive built-in types|o e 7
[2.1.1 Arithmetic and logical operators| o oo 7
2.2 lateral constants| Lo o 8
3 Variabled oo 9
[2.3.1 Naming conventions| Lo e 9
2.3.2 Declaration and Initialisation|o L Lo oo 11
[2.3.3 Scopeof aname| L e 11
2.4 const qualifier|o 12
.. 12
[2.5.1 Quick introduction to functions|o Lo Lo 13
2.6 pedet] L e 14
2.7 Header filesl 15
[TLibrary Types] 15
[3.1 using declarations|o oo 15
3.2 Library string type| 16
B3 Tibrary type vector] o 19
BA Tterafors o oo 21

4 Arrays and Pointers|
[T Arrays L

[4.2.1 Pointers and Arrays|
4.3 Dynamic memory allocation & multi-dimensional arrays|

[F_Classes as data structures|

6 More on expressions and statements|
[6.1 Some types of behaviour to be awareoff 000 o 0oL
[6:2 Other types of eXpressions] v v v v i i e e e e e e e e

7 Functions

0 Classes

9.1 Recap and some further features| o L oL

9.2 The implicit this pointer |.o oo

9.3 Some scope rules|o

9.6.2 Copy controll e e e
[077 Overloading operators] o e

1 Getting started

23
23
25
28
30

33

36
36
36
39

43
43
48
50
30
o1
52

53
54
95
56
o7
58

This chapter of the book is supposed to: i) Explain the basic files structure of a basic C++ program
and explain how to compile simple programs; ii) Give you a flavour of some of the basic language
“words” so that you can write very simple programs, and an idea about the data structures to be

learned later on. It is only to get you started and everything will be discussed in more detail later.

1.1 Steps to create and compile a simple C++ program

To create an executable program you need to follow the steps:

1. Create a source code file (that’s just a text file), for example named programl.cpp (.cpp
means C++ source file). In that file you must have at least one function which is called
main and it is the function that the system calls when you execute the program.

int main(){

return 0;

}

Everything else your program does must be called from within this function directly or indirectly.
The body of the function is inside the block delimited by the braces {}. The dots denote your
source code. This function returns an integer as indicated in its prototype by the int (the first
line) and it has no arguments (for now). The last line is the only explicit statement in this
schematic example. All statements must end with *;”. The value 0 is usually a message of success
for the end of the run of the program. In fact, in C++, the last statement is assumed if omitted,
so strictly speaking, it does not have to be included.

2. From the terminal, go to the directory where your file has been saved and compile it by
invoking
$ g++ programl.cpp -o programl.exe

Here, g++ is the compiler which uses the source file programi.cpp to create the executable
object file (the -o, is a flag which means object file) programl .exe

3. Finally you can run yout program by invoking it directly from the command line like this (./
means current directory — this may be system dependent)

$./programl.exe

Comment If you need to interrupt your program (because it gets stuck or otherwise...) usually you
have to hit Ctrl4c. However this might be system dependent.

1.2 Input and Output

The C++ language does not include any facilities for input and output directly. However, in addition
to the language, there is the standard library which extends the language. Basically:

The Standard Library can be thought of as a set of functions and data types that are
coded in C++ somewhere in library files in your system. You can use functions or data
types in the library by including the relevant files in your source code.

To use the Input/Output facilities in the library you need to include a line in your source
file:

#include<iostream>
int main(){

when you compile your code, the relevant iostream files will then be looked for in some default
directories.
The basic statements for I/O (input output) are:

e Input: This is done through the cin object which usually appears in the code as std::cin. The
:: is the scope operator which says that cin is in the namespace std. This is a space of names

for the objects in the standard library, to avoid clashes with variables defined by the user. A
schematic input statement in a program would be

#include<iostream>
int main(){
std::cin >> varl >> var2 >> ...>> varN;

where >> is the input operator which reads from the standard input (usually what the user types
in the terminal, or a text file if we redirect the input — we will see how to do so) into the variables
varl, var2,..., varN. We can chain as many of these “reads” from the input, streamed in this
way into std::cin.

Comment: Some times you may want to send an “end-of-file” signal when entering input, to
let the program know you are done with providing input. This may be system dependent, but
usually for UNIX it is Ctrl4+d and for Windows Ctrl+z.

e Output: Similarly to the input stream there are 3 different output streams, which ordinarily
are all streamed into the terminal, but can be streamed to data files. These are std::cout,
std::clog and std::cerr. You can think of each of these streams’ purpose to output data,
log information about the run of the program for the user and error information for the user
respectively. A schematic input statement can be illustrated with std: :cout:

#include<iostream>
int main(){
std::cout << espressionl << expression2 << ...<< expresionN << std::endl;

where each expression will be printed in sequence. Similarly to the input operator, now we have
the output operator << which feeds into the stream the expressions to print out. In addition,
there is std::endl which is the end line manipulator. It’s effect is to print out the stream
imediately for the user to see (it flushed the stream). If not present it may be delayed and
printed later! Tt is important to use this when debugging code to keep track exactly where at
the point of the run of the program we are.

1.2.1 Redirection

The input stream can be read directly from an input file (inputfile.txt) by executing your program as

$./programl.exe < inputfile.txt

where < means redirection of the input to be read by the file in front, instead of the terminal. If the

program prompts the user to input any data, it will then be automatically read from the text file.
Similarly, one can redirect the output streams to files. For std::cout we use the > sign. For

std::cerr and std::clog one uses 2> and both are redirected to the same file, so for example

$./programl.exe > outfile.txt 2> infofile.txt

redirects the output of std::cout to outfile.txt and the output of std::cerr and std::clog to
infofile.txt.

Do the Exercise ExampleRedirectIO.zip: Hint: You need to include the header for the math
facilities of the standard library #include<cmath> so that the log(x) function is known.

1.3 Comments
Lines of code are commented by placing a double slash at the begining of the line

// This is a commented line

For blocks of lines one can use

/* This is a commented block of lines
L%/

1.4 Control structures

The most basic control structures we are introducing for now allow you to: i) test conditions and ii)
perform recurssive tasks.

1.4.1 The if statement

This allows you to test a condition or a set of conditions sequentially. The simplest usage is (schemat-
ically)

if (condition)
statement;

where if the condition is true then the statement is executed. If the code to be executed has several
statements then we must use a block in braces:

if (condition){
statementl;
statement2;
}

There is also a more general form where we can include an arbitrary number of elseif conditions to be
tested in case of failure and an optional else statement. The most general form is (schematically)

if (conditionl){
statementl;
statement2;

}

else if(condition2){
statement3;

}

else if(conditiond){
statementb;
statement6;

}

else{
statement7;
statement8;

}

1.4.2 while and for

The while statement allows for iterative execution of a block of statements while a condition is true.
The general form is

while(condition){
statements

}

The for statement is similar except that there is an integer iteration variable of type int which
keeps being increased. The general form is

for(int i=0; condition;i++){
statements

}

The first statement in the argument initializes the iterator, the second is a condition that is tested
each time the block statements are repeated and the last one is an incrementation of the iterator. Here
we use the ++ operator, which increments by one the integer i.

1.5 Comment on class types

In the next chapter we will go through the built in data types and keywords of the language. C++
provides an extra feature which allows to define classes. A class is a data type that can de defined by
the user and it can contain any structure of data. In addition, the operations on the data and how the
class type interacts with other class objects is defined in the class. For example it is usual to provide
an interface for a class type with std::cin, std::cout etc...

Introducing classes at this stage can become confusing. Instead we will skip to the next chapter to
learn first the basics of the language.

2 Variables and basic data types

In this chapter the basic data types of the language and the operators they support are presented.

2.1 Primitive built-in types

Type Meaning Minimum Size
bool boolean NA

char character 8 bits

wchar t wide character 16 bits

short short integer 16 bits

int integer 16 bits

long long integer 32 bits

float single-precision floating-point 6 significant digits
double double-precision floating-point 10 significant digits
long double |extended-precision floating-point | 10 significant digits

Table 2.1. C++: Arithmetic Types

In addititon to these types there is the void type which is used for example as the type returned
by a function which acts on some variables but does not return any value. Note that the size (in bits)
may depend on your machine achitecture. For example, in 64 bits machines usually a double holds
more digits.

The types int, bool, char (and the corresponding long or short versions) are known as integral
types and they hold integers, boolean (true or false) and characters (each character variable holds
a number corresponding to a character).

Types can be signed or unsigned. This is achieved by adding unsigned before the corresponding
type.

Note: You should be aware of the limits of the representation of the types above. If you enter
a value out of range (for example an integer that has too many digits), you will get a value that is
completely different. When coding you should be careful to make sure this does not happen otherwise
you will most definitely get wrong results and the code may still compile and run!

Regarding floating point number, the type float is usually not precise enough so it is standard
to use double for most numerical applications (though the longer version may be necessary in some
situations).

2.1.1 Arithmetic and logical operators

Though in the book this is only introduced later on. It makes more sense to introduce them right now
so that we can do some examples.

Each of these operators yields bool
Operator |Function Use
! logical NOT lexpr
Operator | Function Use = less than EXpr = expr
<= less than or equal expr <= expr
+ unary plus + expr
. > greater than expr > expr
- unary minus - expr
. multiplication |expr * expr >= greater than or equal | expr >= expr
A == equality expr == expr
/ division expr / expr
1= i i 1=
% remainder expr % expr . inequality EXpr = expr
. addition expr + expr && logical AND expr && expr
- subtraction expr - expr I logical OR expr || expr

Table 5.1. Arithmetic Operators Table 5.2. Relational and Logical Operators

The action of each of the arithmetic operators depends on the type to which it is applied. For example
division of integers yields the integer part of the result.

2.2 Literal constants

Literal integers and floating point numbers are entered in the usual way without or with a dot “.”. In
addition there are ways of specifying if integers are signed, unsigned, float or long:
128u /* unsigned #/ 1824UL /* unsigned long #*/
1L /* long */f 8Lu /* unsigned long */
Other examples including scientific notation are
3.14159F .ee1f 12.345L 0.
3.14159€8f 1E-3F 1.2345E1L Oed

Printable characters literal expressions are written in several forms:

1. In single quotes with the character inside
|a| |2| |'| [| "r"r b‘Lank

2. Through an escape sequence which starts with a slash \. One can have special escape sequences
for special characters such as:

newline \n horizontal tab \t
vertical tab \V backspace \b
carriage retumn \r formfeed A\
alert (bell) \a backslash WA
question mark \? single quote \'

double quote A"

Or a generalised escape sequence for any character in the character set, which consistes of a slash
with the number of the corresponding character

V7 (bell) Y12 (newline) 48 (blank)
@ (null) \B62 ('2') Y115 ('M')

For example for output (or later on when we introduce strings), it is useful to note how to write a
literal expression for an array of characters, i.e. a string. String literals are represented in double
quotes ‘. Some examples are

"Hello World!" // simple string literal
b // empty string literal
"\nCC\toptions\tfile. [cC]\n" // string literal using newlines and tabs

All string literals have in addition a null character at the end of the string.

Long forms, both for characters and strings, are specified by adding L before the corresponding
literal. To concatenate string literals one just writes them adjacent to each other with white space in
between.

2.3 Variables

We have used already variables in some examples before. Variables are objects whose values can
change through the execution. They are declared in the program by specifying the data type (which
determines the amount of storage needed) and the name of the variable.

2.3.1 Naming conventions

Variable names are usually lower case, but this is not a strict rule. Some keywords are reserved for the
language so they cannot be used as variable names:

Table 2.2. C++ Keywords

asm do if return try

auto double inlipe short typedef
bool dynamic_cast|int signed typeid
break else long sizeof typename
case enum mutable static union
catch explicit namespace static_cast |unsigned
char export new struct using
class extern operator switch virtual
const false private template void
const_cast | float protected this volatile
continue |for public throw wchar_t
default friend register true while
delete goto reinterpret_cast

Another rule is that an identifier cannot start with a digit. Underscores are also allowed. The following
tables show common conventions for identifiers, together with bad practices and illegal names

n
count
buff_size
bufferSize
q2345

cout

_Sysfoo
too__bad

Meaningful as documentation

C++ style—underscore separates words

Java and Pascal style—capital separates words

Obscure

Used in the standard library iostream

Underscore capital is for system use

Double underscore is for system use

Table 2.3 Valid Identifiers

Typically an integer variable

Table 2.4

lllegal as Identifiers

for

3q
-count

Keyword

Cannot start with digit

Do not mistake - for _

10

2.3.2 Declaration and Initialisation

Some examples on how to declare variables are as follows:

double salary, wage; // defines two variables of type double
int month,

day, year; // defines three variables of type int
std::string address; // defines one variable of type std::string

where several variables of the same type are declared on the same line, separated by commas.
Objects can be initialised in the following ways:

int ival(1024); // direct-initialization
int ival = 1824; // copy-initialization

For more complicated class types, we will see later that there may be more forms of initialising the
corresponding class objects. That is defined in the class itself by something called the constructor.

Initialisation may be done for several objects in one line, or with an arbitrarily complicated expres-
sion, including functions. For example

double price = 189.99, discount = 0.16;
double sale price = apply discount(price, discount);

where in the second line a there is a function apply_discount with two arguments, which will return
the value to initialise sale_price.

There is a way of declaring a variable without defining it (i.e. without reserving space in memory
and initialising it). This just declares the presence of the variable somewhere in the program which
will be defined there. This is done by using the extern keyword.

extern int 1i; // declares but does not define i
int i; /f declares and defines i

extern double pi = 3.1416; // definition

where we note in the last line that if we asign it a value then if becomes a definition as well. This is
useful to declare variables which are common to different files.

2.3.3 Scope of a name

A name of a variable, function or even data type may be restricted to certain files, or certain blocks
of code and may not be known to other blocks of code. The part of the program where a certain
name applies is called its scope. Scopes in C++ are usually delimited by curly braces. We have seen
already this for some of the control structures such as if, while, for. Variables are usually defined
from their point of declaration and are not known outside the scope defined by the curly braces where
they are.

In C++ it is usually good practice to define variables where they are used. Also you should avoid
using the same variable names in nested scopes, which may be confusing and create bugs.

Exercise Write a program which:

1. Writes a formatted header paragraph of text with several lines informing the user about: the
author of the program, the year and version of the program, A short abstract of the program
describing what it does (look at the most suitable characters from the table in the previous
sections, to format the text).

11

2. Prompts the user for an input integer and then computes the factorial of that number, using a
for loop. The program should report an error if the input number is negative and print an error
message (try to use the bell character to see what happens).

3. Test the program for increasing values of the input. Can you explain what’s happening. Repeat
the calculation using double and try again.

2.4 const qualifier

In many situations it is convenient to define constants, for example if there is a fixed dimension (which
you may want to change later and would be a pain to change all occurences in the program), or a
fundamental constant in your problem an you want an error to ocurr if there is some bug which changes
its value.

This is done by adding the keyword const to the data type and initialising the object. For example:

const int bufSize = 512; J// input buffer size

A constant is local to the scope where it is defined. To make a constant visible to several files, it
should be declared as external in all the files where it is used and defined in one of them. For example:

// file l.cc
/f defines and initializes a const that is accessible to other files
extern const int bufSize = fecnl);
// file 2.cc
extern const int bufSize; // uses bufSize from file 1
// uses bufSize defined in file 1
for (int index = 8; index !'= bufSize; ++index)
Sl

Exercise Write a program which computes the area under a parabola in a interval using a trapezium
rule. The program should:

1. Use a starting step of integration and compute a first estimate, and then repeat with a while
loop with a smaller step while the error estimate (obtained by comparing to the previous value)
is below a threshold.

2. You should define constants in your code which hold: the maximum number of subdivisions of
the integration domain, minimum number of subdivision (to start off with), and the goal for the
relative error.

3. The program prints the result with error estimate and error compared to the exact result.

4. Always comment your program with a lot of detail so that others reading it will quickly under-
stand it.

2.5 References

A reference is a compound type (i.e. defined in terms of another type) which works as an alias, by
referring to a object of the corresponding type. Operations on the reference act on the object it refers
to, so a reference is just another name for an object. Because it always has to refer to a specific object,
a reference must be initialised when it is defined.

A reference declaration and initialisation requires adding the character & attached to the name of
the alias:

12

int ival = 1824;

int &refval = ival; // ok: refval refers to ival

int &refvalz; // error: a reference must be initialized
int &refval3 = 18; // error: initializer must be an object

For example if we add to refVal or assign it to a variable ival, it will be modified or used respectively.
The rule for declaration is to attach the & character to the reference name. For example in multiple

references

int 1 = 1824, i2 = 2048;

int &r = 1, r2z = i2; J/ r is a reference, r2 is an int

int i3 = 1824, &ri = i3; // defines one object, and one reference

int &r3 = i3, &r4 = i2; // defines two references

const type references are references to constants, i.e.

const int ival = 1024;
const int &refVal = ival; // ok: both reference and object are const
int &ref2 = ival; J// error: non const reference to a const object

2.5.1 Quick introduction to functions

An essential feature of the language is to allow the definition of functions. Functions are essential to
produce structured code, because it allows to break a large project into smaller problems. A C++
program is essentially a set of functions which are called by the main function.

The basic structure of a function can be divided into a header and the body block of the function.
The header specifies the type of data to be returned, the name of the function, and list of arguments.
The body contains a list of statements and return statement at the end which returns the value of the
function.

returntype functionname(argl, arg2, ...){
statements...;
return returntypeVariable;

3

The header of the function can appear as a declaration of the function before it is defined, with a
; at the end

returntype functionname(argl, arg2, ...);

This is called a prototype and it is used by the compiler when it checks all the types declared in
the program. For a simple program with just one file it must appear before main. For example, the
following program

#include<iostream>

int main(){
printme() ;
}
void printme(){
std::cout« "Print"« std::endl;

}

will not compile because the function printme has not been declared before being used in main. The
correct form is to include its definition before, or the prototype:

13

#include<iostream>

void printme();

int main(){
printme() ;

}

void printme(){
std::cout« "Print"« std::endl;

}

This simple example also illustrates the point that a function may have no arguments and it may not

return anything (void).

The connection with references, appears when we consider functions with arguments. If the argu-
ments of a function is a data type which is not a reference, then the code wil create a copy of that
data type to be used in the function. This is called pass-by-value. However, at times one may want to
write functions which act on a variable and store the value of the computation directly in it without
having to create a copy (this is much more efficient for more complex data types which take up a lot
of memory space). This is known as call-by-reference.

An example of call-by-value:

In file compute_sum.cpp

#include <iostream>
using namespace std;

int compute_sum(int n) // sum from 1 to n
{
int sum = 0;
for (; n>@; --n) // value of n 1is changed
sum += n;
return sum;

}

int main()
{

int n =3, sum;

cout << n << endl; // 3 s printed
sum = compute_sum(n);
cout << n << endl; // 3 is printed
cout << sum << endl;

}

An example of a function which calls by reference is as follows

// ok: swap acts on references to its arguments
void swap(int &v1, int &v2)

{
int tmp = v2;
V2 = vl;
vl = tmp;

}

2.6 Typedef

Another type of alias is typedef. This allows to define a synonym for a certain data type which may be
convenient for readibility, or to simplify long types to make them easier to type. Examples of typedef
definitions are

14

typedef double wages; // wages is a synonym for double
typedef int exam score; // exam score is a synonym for int
typedef wages salary; // indirect synonym for double

and their usage later in the code

wages hourly, weekly; // double hourly, weekly;
exam score test result; // int test result;

2.7 Header files

Header files are a way of having declarations which are common to different source code files. For

example if your program is large you may want to break it down into several files where sets of related

functions are all grouped in a file. A header file allows to include the declarations of functions and

data types in your program which are common to several source files, and can be include in all of them

through an #include preprocessor directive. Then each source code file can be compiled separately.
Headers usually have an extension .h and are included in the following way

#include "headername.h'"

This form in quotes searches for the header file in the current directory. The form we have used for
example for #include<iostream> searches in the system pre-defined paths. In the form with quotes,
you can also specify a full path.

The compilation of several source code files can be done as follows

$ g++ -o executable sourcel.cpp source2.cpp source3.cpp ...

Exercise

1. Adapt the program compute_sum.cpp so that n is called by reference. Check what happens now
to the value of n.

2. Re-write one (or both) of the programs which compute the factorial or integral of a parabola,
with a function for each of the operations (taking as arguments either the integer or integration
limits respectively). Place the function in a separate source file and write a header to be included
in the two source files. Try to compile.

3 Library Types

The C++ standard library defines convenient library types for strings and vectors, (the corresponding
built in types arrays and pointers will be seen later). These come with iterator types for an easy access
to elements. These library types are higher level in the sense that we only need to know the operations
they support without worrying about the way they are stored in memory.

3.1 using declarations

To avoid having to use the scope operator repeatedly, one can write a using declaration at the top of
the source code. The general form is

using namespace: :name;

For example

15

#include <iostream=
// using declarations for names from the standard library
using std::cin;
using std::cout;
using std::endl;
int maini)
{
cout << "Enter two numbers:" << endl;
int vl, v2;
cin => vl => v2;
cout << "The sum of " << vl
<< " and " << v2
<< " is " << vyl + v2 << endl;
return 8;

}

where a using declaration was written for each name. In some cases however, it may be convenient
to declare not only some names in the namespace, but the entire namespace. For the standard library
this is particularly useful because you end up using a lot of names which are defined in the library and
it may become cumbersome to write std:: before each name. This is done by declaring the entire
namespace

using namespace std;

Using declarations are not used in header files. In header files, the full qualified name of the library
type must be used.
3.2 Library string type

This type supports variable length strings of characters, manages the memory and provides operations.
To use it one must include

#include <string>
using std::string;

or alternatively to the last using declaration, the entire standard namespace.

string sl1; Default constructor; s1 is the empty string

string s2(sl); Initialize s2 as a copy of s1

string s3("value"); |Initialize s3 as a copy of the string literal

string s4(n, 'c'); |Initialize s4 with n copies of the character 'c"’

Table 3.1. Ways to Initialize a string

The interface with cin, cout is such that each string read or write corresponds to a chain of
characters with no white space. A white space signals the end of the string. For example the following
code reads the first string which is typed before a white space and returns it

16

// Note: #include and using declarations must be added to compile this code

int main()
{
string s; // empty string
cin => s; // read whitespace-separated string into s
cout =< 5 << endl; // write s to the output
return 0;
H

One can read an unkown number of strings as follows

int main()
{
string word;
// read until end-of-file, writing each word to a new line
while (cin >> word)
cout =< word =< endl;
return ©;

}

To read an entire line we can use the getline string operation which reads a line until the newline
character is introduced (which is not stored in the string)

int main()
{
string line;
// read line at time until end-of-file
while (getline(cin, line))
cout << line << endl;
return 0;

}

The most commonly used string operations are

s.empty() |Returns true if s is empty; otherwise retumns false

s.5ize() Returns number of characters in s

s[n] Returns the character at position n in s; positions start at 0.

51 + 52 Returns a string equal to the concatenation of s1 and s2

51 = 52 Replaces characters in s1 by a copy of 52

vl == v2 Returns true if v1 and v2 are equal; false otherwise

=, =, ==, |Have their normal meanings

Table 3.2. string Operations

Notes

e The type returned by .size() is actually not an integer but a companion type of string. This is
necessary because you can easily read an entire file into a string whose size cannot be stored in a

17

regular unsigned int. That special type is string: :size_type and it should be used instead
of integers to avoid runtime errors.

e The + operator must have at least one string as argument (if all literals it does not work)

ok: adding a string and a literal
error: no string operand
ok: each + has string operand

string sl = "hello"; J// no punctuation
string s2 = "world";

string s3 =s1 + ", "; I/
string s4 = "hello" + ", "; I/
string s5 = s1 + ", " + "world"; //
string sé6 = "helle" + ", " + s2; //

error: can't add string literals

e The subscript of a string (when fetching an element) starts at 0. One can change the character
in position n by the character x for example through stri[n-1]=’x’

There’s a set of functions defined in the cctype header to process individual characters of a string:

Table 3.3. cctype Functions

Exercises:

isalnum(c) |TRueif cis a letter or a digit.

isalpha(c) |trueifcis aletter

iscntrl(c) |trueif cis a control character.

isdigit(c) |trueif cis a digit

isgraph(c) |trueif cis nota space butis printable.

islower(c) |trueif cis alowercase letter.

isprint(c) |TRueif cis a printable character.

ispunct(c) |TRueif cis a punctuation character.

isspace(c) |trueif cis whitespace.

isupper(c) |TRueif cis an uppercase letter.

isxdigit(c) |trueif c is a hexadecimal digit.

tolower(c) |If cis an uppercase letter, retumns its lowercase equivalent; otherwise returns ¢ unchanged.
toupper(c) |If cis alowercase letter, retumns its uppercase equivalent; otherwise retums ¢ unchanged.

1. Test the string input and output examples in this section

18

2. Do the following exercises from the C++ primer:

Exercise \Write a program to read two strings and report whether the strings are equal. If not, report which of the two
3.7: isthe larger. Now, change the program to report whether the strings have the same length and if not report
which is longer.
Exercise . - -
3.8: Write a program to read strings from the standard input, concatenating what is read into one large string.
“7* Print the concatenated string. Next, change the program to separate adjacent input strings by a space.
What does the following program do? Is it valid? If not, why not?
Exercise -
3.9: string s;
= cout =< s[@] =< endl;
Exercise
3.10: Write a program to strip the punctuation from a string. The input to the program should be a string of

characters including punctuation; the output should be a string in which the punctuation is removed.

3.3 Library type vector

This is a class template which allows to define variable size vectors of any type (including any user
defined type!), so it is a container (because it contains other objects). Without knowing anything
about the class we can just specify the type of the vector. We need to include #include<vector> and
a using statement either for the name vector or the whole standard namespace as before.

The generic ways of declaring are

vector<T> vl; vector that holds objects of type T;

Default constructor v1 is empty

vector<T= v2(vl); v2 is a copy of vl

vector<T> v3(n, 1i); |v3 has n elements with value 1

vector<T> v4(n); v4 has n copies of a value-initialized object

Table 3.4. Ways to Initialize a vector

Examples
vector<int> ivecl; J// ivecl holds objects of type int
vector<int> ivecZ(ivecl); J// ok: copy elements of ivecl into ivec2

vector<string> svec(ivecl); // error: svec holds strings, not ints

vector<int> ivec4(1®, -1); // 10 elements, each initialized to -1
vector<string= svec(l1®, "hil!"); // 10 strings, each initialized to "hi!"

If we do not specify a value, the vector is initialised for us.

19

Operations

v.empty() Returns true if v is empty; otherwise returms false

v.size() Returns number of elements in v

v.push_back(t) | Adds element with value t to end of v

v[n] Returns element at position nin v

vl = v2 Replaces elements in v1 by a copy of elements in v2
vl == v2 Returns TRue if v1 and v2 are equal

1=, <, ==, Have their normal meanings

=, and >=

Table 3.5. vector Operations

Just as for strings for each vector of a given type there is a size type vector<T>: :size_type.
One can add elements with the push_back() operation:

// read words from the standard input and store them as elements in a vector
string word;

vector<string> text; // empty vector
while (cin => word) {

text.push_back(word); // append word to text
1

and access an element (which must already exist!!) by specifying a subscript:

// reset the elements in the vector to zero
for (vector<int>::size type ix = 8; ix != ivec.size(); ++ix)
ivec[ix] = 8;

Note: Using the size() function is good programming practice rather than remembering the size
of the vector (since they can grow).

Exercises

1. Write a program to declare several vectors of diferent built in types and the string type, in all
the ways on the table at the beginning of the section and print their values.

2. Do the following exercises from, the C++ primer

20

Exergli; vectar. If there is an odd number, tell the user and print the value of the last element without summing it. Now
*==" change your program so that it prints the sum of the first and last elements, followed by the sum of the second
and second-to-last and so on.
Exercise
3.14: Read some text into a vector, storing each word in the input as an element in the vector. transform each word
into uppercase letters. Print the transformed elements from the vector, printing eight words to a line.
Is the following program legal? If not, how might you fix it?
Exercise . .
3.15: vector<int> ivec;
D ivec[@] = 42;
Exercise . . S . . .
3.16: List three ways to define a vector and give it 10 elements, each with the value 42. Indicate whether there is a

preferred way to do so and why.

3.4 Iterators

They are built in library types which allow to navigate through the elements of a vector. These are
in general safer than using integers and subscripting, for example, because they prevent accessing
elements outside the bounds of the vector (these can be serious bugs which are hard to find because
the code may compile and run apparently normally).

There is an iterator for each container type, for example for a vector of integers:

vector<int>::iterator iter;

Each vector container defines two functions which return a value with the type of the corresponding
iterator, they are the begin() function

vector<int>::iterator iter = ivec.begin();

which returns a value referring to the first element of the vector (same as ivec[0]); and the end()
function which returns a value beyond the last element, which is a sentinel indicating it refers to a
non-existing element, and cannot be increased!

The operations on iterators are as follows:

e Dereferencing: it allows to access the element an iterator refers to and it is done through the
dereference operator *:

*iter = 0;
This statement, for example, sets the current element that iter refers to, to zero.

e Increment: This moves the iterator to refer to the next element ++iter;

e Positive or negative shift by an integer: iter+n or iter-n returns an iterator of the same type
referring to a position ahead or behind the current element.

e Comparison: Through the operations ==, |=

There is also a difference_type similar to size_type which holds the distance between two iterators
(and it is guarateed to be large enough for the largest distance between any two iterators) so

iterl-iter2;

21

Read a set of integers into a vector. Calculate and print the sum of each pair of adjacent elements in the

returns a difference_type.
Here is an example of a comparison between subscripting

// reset all the elements in ivec to ©
for (vector<int=::size type ix = @; ix != ivec.size(); ++ix)
ivec[ix] = 8;

and using iterators

// equivalent loop using iterators to reset all the elements in ivec to @
for (vector<int=::iterator iter = ivec.begin();
iter != ivec.end(); ++iter)
*iter = 0; // set element to which iter refers to ©

const_iterator type : Thisis another type defined by each container which is a “read only” iterator,
in the sense that it refers to the elements of a vector (and thus can equally be used to navigate through
the vector), but cannot be used to change the value of the elements of the vector. The difference is
that when we dereference a const_iterator using *, we get a reference to a constant type. The use
of this type of iterator may be safer in some “read-only” situations.

Examples:

e Standard usage:

// use const iterator because we won't change the elements
for (vector<string=::const_iterator iter = text.begin();
iter != text.end(); ++iter)
cout << *iter << endl; // print each element in text

e An error:

for (vector<string=::const_iterator iter = text.begin();
iter !'= text.end(); ++ iter)
*iter = " "; // error: *iter is const

e Possible confusion:

vector<int> nums(18); // nums is nonconst

const vector<int=::iterator cit = nums.begin();

*cit = 1; // ok: cit can change its underlying element
+Cit; // error: can't change the value of cit

e More examples:

const vector<int> nines(1@, 9); // cannot change elements in nines

// error: cit2 could change the element it refers to and nines is const

const vector<ints::iterator cit2 = nines.begin();

J// ok: it can't change an element value, so it can be used with a const vector<int=
vector<int>::const iterator it = nines.begin();

*it = 10; // error: *it is const

++1t; // ok: it isn't const so we can change its value

22

Exercises

Exerglls;‘ Redo the exercises from Section 3.3.2 (p. 96), using iterators rather than subscripts to access the elements in the
T vector.
Exercise
3.18: Write a program to create a vector with 10 elements. Using an iterator, assign each element a value that is
twice its current value.
Exercise

3.19: Test your previous program by printing the vector.

Exercise
3.20: Explain which iterator you used in the previous programs, and why.

Exercise

3.21: When would you use an iterator that is const? When would you use a const_iterator. Explain the difference

between them.

Consider the following way of locating the middle element of a vector
vector<int>::iterator mid = vi.begin() + vi.size() / 2;

What happens if we compute mid as follows:
Exercise
3.22: vector<int=::iterator mid = (vi.begin() + vi.end()) / 2;

4 Arrays and Pointers

These are lower level equivalents to vectors and iterators respectively, which are built into the language.
The main disadvantages are that arrays are fixed size and these types do not provide simple operations
to: add elements; to make sure we don’t exceed bounds; to check sizes, etc...

However they are still used in the implementations of class types, because they are more efficient.
For example, the implementation of vectors and strings in the standard library will most definitly have
arrays of the type of the corresponding types involved. As a rule of thumb, arrays and pointers should
be used mostly in class definitions, otherwise vectors and iterators should be used because they are
safer and will prevent bugs (or help debuging).

4.1 Arrays

Just like vectors they are compound types consisting of a type specifier and a dimension. The type
can be any built in data type or class type. With the exception of references (there are no arrays of
references), the element type can be compound as well.

To initialise the array we need to specify the dimention in brackets [], either with a literal constant
or an expression which yields a constant which must be known at compile time:

// both buf size and max_files are const
const unsigned buf size = 512, max_files = 20;

int staff size = 27; // nonconst

const unsigned sz = get size(); // const value not known until run time
char input_buffer[buf size]; // ok: const variable

string fileTable[max files + 1]; // ok: constant expression

double salaries[staff size]; // error: non const variable

int test scores[get size()]; // error: non const expression

int vals[sz]; // error: size not knmown until run time

23

Elements can be initialised explicitly by providing a comma-separated list in braces, otherwise the ele-
menst are initialised as the corresponding types, or undefined. When initialised explicitly the compiler
may infer the dimension of the array if not specified.

int ia[] = {0, 1, 2}; // an array of dimension 3

If the dimension is specified and the list is smaller, then the remaining elements are initialised to zero
or the default constructor if a class type

const unsigned array size = 5;

// Eguivalent to ia = {®, 1, 2, 8, 0}

// 1a[3] and ia[4] default initialized to ©

int ialarray size] = {8, 1, 2};

// Eguivalent to str _arr = {"hi", "bye", "", "", ""}

// str_arr[2] through str arr[4] default initialized to the empty string
string str_arr[array_size] = {"hi", "bye"};

For arrays of characters, since string literals contain the null character at the end, one has to be careful
to take that into account in the dimension of the array (if specified). Examples:

char cal[] = {'C", '+', "+'}; // no null

char ca2[] = {'C", "+', "+', '"\@'}; // explicit null
char ca3[] = "C++"; // null terminator added automatically
const char ch3[6] = "Daniel"; // error: Daniel is 7 elements

Warning: There is no copy or asignment for arrays (it has to be done through a loop element by
element).

Operations on arrays We access elements by subscripting in the same way as for vectors. There
is an integer like type size_t which is the correct type to be used for the index. Similarly to vectors
the index runs from 0 to size-1. It is the responsibility of the programmer to make sure that the index
is within the bounds.

In the following example, a for loop steps through the 10 elements of an array, assigning to each the value of its index:

int main()
{
const size t array size = 18;
int ia[array_size]; // 10 ints, elements are uninitialized

// loop through array, assigning value of its index to each element
for (size t ix = ©; ix != array size; ++ix)

ia[ix] = ix;
return @;

24

Using a similar loop, we can copy one array into another:

int main()

{

const size t array size = 7;
int ial[]l ={®, 1, 2, 3, 4, 5, 6 };
int ia2[array_size]; // local array, elements uninitialized

// copy elements from ial into ia2

for (size t ix = @; ix != array size; ++ix)
ia2[ix] = ial[ix];
return 0;

Do the following exercises from the C++ primer:

Exercise
4.6:

Exercise
4.7:

Exercise
4.8:

Exercise
4.9:

This code fragment intends to assign the value of its index to each array
element. It contains a number of indexing errors. Identify them.

const size t array size = 18;

int ialarray_size];

for (size t ix = 1; ix <= array size; ++ix)
ia[ix] = ix;

Write the code necessary to assign one array to another. Now, change the

code to use vectors. How might you assign one vector to another?

Write a program to compare two arrays for equality. Write a similar
program to compare two vectors.

Write a program to define an array of 10 ints. Give each element the same
value as its position in the array.

4.2 Pointers

These are the lower level equivalent of iterators, for arrays. They are compound objects. A pointer is
simply an object that points to the address (location) in memory, which it holds. A big difference is

that, unlike iterators, pointers can point at a single object, not just the elements of a cointainer like

iterators do.

Initialisation

Pointers are declared by adding * together with the identifier we want to declare as a pointer variable
(the * must come together with every pointer variable declared, not with the type specified for the

container!).

vector<int> *pvec; // pvec can point to a vector<int=
int *#ipl, *ip2; // ipl and ip2 can point to an int
string #pstring; // pstring can point to a string
double *dp; // dp can point to a double

Note: Pointer declarations make more sense when read from left to right!

25

The values of a pointer can be: i) a memory address, ii) one past the end of an object, iii) or
zero (means no value and should be used instead of uninitialised pointers which will produce VERY
dangerous bugs),

int ival = 1824;

int *pi = B; // pl initialized to address no object

int #pi2 = & ival; // pi2 initialized to address of ival

int *pi3; // ok, but dangerous, pi3 is uninitialized

pi = piz; // pil and pi2 address the same object, e.g. ival
piz = 8; // pi2 now addresses no object

There are only four kinds of values that may be used to initialize or assign to a pointer:

1. A constant expression with value 0 (e.g., a const integral object whose value is zero at compile
time or a literal constant 0)

2. An address of an object of an appropriate type
3. The address one past the end of another object
4. Another valid pointer of the same type

Some examples of these rules are as follows
int ival;
int zero = 0;

const int c_ival = ©;
int #*pi = ival; // error: pil initialized from int value of ival

pi = zero; // error: pi assigned int value of zero
pi = c_ival; // ok: c_ival is a const with compile-time value of @
pi = 8; J// ok: directly ipitialize to literal constant @

double dval;
double *pd = &dval; // ok: initializer is address of a double
double *pd2 = pd; // ok: initializer is a pointer to double

int *pi = pd; // error: types of pi and pd differ
pi = &dval; // error: attempt to assign address of a double to int #

The reason why types must match is because pointers provide indirect access to an object, and the
operations which are supported are determined by such type (hence the types must match).

void pointers

This is a special case when the pointer does not have a type specification and it simply holds an address
in memory. Thus this is used only to pass addresses around through functions or comparison to other

pointers.

double obj = 3.14;

double *pd = &obj;

// ok: void* can hold the address value of any data pointer type
void *pv = &obj; // obj can be an object of any type

pv = pd; // pd can be a pointer to any type

26

Exercises

Explain the rationale for preferring the first form of pointer declaration:

Exerzlls;. int *ip; // good practice
D int* ip; // legal but misleading
Explain each of the following definitions. Indicate whether any are illegal and if so why.
(a) int#* ip;
. (b) string s, *sp = 8;
Exercise. (c) int i; double* dp = &i;
B (d) int* ip, ip2;
(e) const int 1 =0, *p = i;
(f) string *p = NULL;
Exercise

4.12: Given a pointer, p, can you determine whether p points to a valid object? If so, how? If not, why not?

Why is the first pointer initialization legal and the second illegal?

Exercise int i = 42;
4.13: vold *p = &i;
long *1p = &1;

Operations on pointers

The basic operations are: Dereferencing (similar to iterators),

string s("hello world");
string *sp = &s; // sp holds the address of s
cout <<*sp; // prints hello world

change value of object

*sp = "goodbye"; // contents of s now changed

and asign new address

string s2 = "some value";
sp = &s2; // sp now points to s2

Some examples with schematics

27

spl sl

string sl ("some value"); | _I_..| some value |
string *spl = &sl; -

sp2 s2
string s2("another"); | | | th |
string *sp2 = &s2; another
/ / assign through sp1 spl sl
// value in s1 changed _
*spl = "a new value"; anew value
// assign to sp1 spl s2
,;;:;pi ;:r;];r;i‘:s toa dr_ﬁcerent object | | | another
- r

Note: Do not confuse pointers with references. Unlike the last line of the last example, references
cannot be re-bound, i.e. we cannot change a reference to refer to a different object by asigning it after
it is declared (and thus initialised), so for example

int &ri = ival, &riz = ival2;
ri = riz; J/ assigns ival2 to ival

has changed the value of ival to be the same as ival2 and the references stayed the same.

Pointers to pointers

Pointers are themselves objects in memory. They, therefore, have addresses that we can store in a pointer:
int ival = 1824;

int *pi = &ival; // pi points to an int
int *#*ppi = π // ppl points to a pointer to int

which yields a pointer to a pointer. We designate a pointer to a pointer by using *#*. We might represent these objects as
pPpi pi ival
T 1024

As usual, dereferencing ppi yields the object to which ppi points. In this case, that object is a pointer to an int:

int *pi2 = #ppi; // ppl points to a pointer

To actually access ival, we need to dereference ppi twice:

cout << "The value of ival\n"

<< "direct value: " << ival << "\p"
<< "indirect value: " << *pi << "\n"
<< "doubly indirect value: " << **ppi
<< endl;

4.2.1 Pointers and Arrays

An array element can be accessed through a pointer. The name of an array is actually a pointer to
the first element of the array:

28

int ia[] = {90,2,4,6,8};
int *ip = ia; // ip points to ia[®@]

or if we want to point to another element

ip = &ial4]; // 1ip points to last element in ia

Pointer arithmetic and dereferencing

Similarly to iterators one can advance or go back positions in memory or find distances between point-

ers by using pointer arithmetic. To advance to a new element (or subtract to go backwards)

ip = ia; J/ ok: ip points to ia[@]
int *ip2 = ip + 4; // ok: 1p2 points to ia[4], the last element in ia

If a pointer points to an array, it is equivalent to use this arithmetic or to subscript as for the

corresponding array, i.e.

int *p = &ia[2]; // ok: p points to the element indexed by 2
int j = pl[l]; // ok: p[l] equivalent to *i(p + 1},

I7 p[1l] is the same element as ia[3]
int k = p[-2]; // ok: p[-2] is the same element as ia[@]

Important: Note that dereferrencing and pointer arithmetic do NOT commute (parenthesis are

essential!) so

int last = #(ia + 4); // ok: initializes last to 8, the value of ia[4]

is not the same as
last = *ia + 4; // ok: last = 4, equivalent to ia[@0]+4

The difference between pointers yields a type ptrdiff_t

ptrdiff t n = ip2 - ip; // ok: distance between the pointers

Note: It is up to the user to be careful enough not to go beyond bounds to invalid addresses.

The computation of the pointer to “one position past end” is also possible (as for iterators) however

it has to be controled by the user!

const size t arr_size = 5;

int arr[arr_size] = {1,2,3,4,5};

int #p = arr; // ok: p points to arr[@]

int #*p2 = p + arr_size; // ok: p2 points one past the end of arr
Iz use caution -- do not dereference!

Example

Print an array using pointers

const size t arr sz = 5;
int int arrfarr sz] ={ @, 1, 2, 3, 4 };
// pbegin points to first element, pend points just after the last
for (int *pbegin = int arr, *pend = int arr + arr _sz;
pbegin != pend; ++pbegin)
cout << #*pbegin =< * '; // print the current element

29

rest of memory

of1f2]s]4]

T

pbegin

I

pend

Pointers to const, const pointers and const pointers to const

These are pointers which cannot change the value of the object they point to. They can be asigned
the address of an object which is not a const but they cannot change their value. They are usually
used in argument definition of functions if we want to ensure they are not changed

double dval = 3.14; // dval is a double; its value can be changed

cptr = &dval; // ok: but can't change dval through cptr
dval = 3.14159; // dval 1s not const

#cptr = 3.14159; // error: cptr is a pointer to const
double *ptr = &dval; // ok: ptr points at non-const double
*ptr = 2.72; // ok: ptr is plain pointer

cout << *cptr; // ok: prints 2.72

One can also have constant pointers (i.e. the address they point to, cannot be changed and must be
initialised when declared)

int errNumb = ©;
int *const curkErr = &errNumb; // curErr is a constant pointer

which however can be used to change the value of the object they point to

if (*curkrr) {
errorHandler()};
*CUurerr = 0; // ok: reset value of the object to which curgErr is bound

}

Finally, one can have const pointers to const where neither the pointer nor the object pointed at can
be changed
const double pi = 3.14159;

// pl ptr is const and points to a const object
const double *const pi_ptr = π

Exercises

1. Write code to change the value of a pointer (test various types). Write code to change the value
to which the pointer points (test various types).

2. Write a program that uses pointers to set the elements in an array of ints to zero.

4.3 Dynamic memory allocation & multi-dimensional arrays

Arrays (as we have seen so far) have the limitation of having a fixed size and to be available only to
the block where they are declared. Even though their size is fixed, it can be determined at run time by
using some dynamical memory allocation facilities in the language. The main thing to be aware of is
that when we dynamically allocate an array, it continues to exist unless explicitely freed. When a C++
program runs it has a finite amout of memory availlable for allocation (called the free store or heap)
so it is important to free dynamically allocated arrays, after they are used. In C++, to dynamically
allocate memory one used the new and delete expressions.

Defining a Dynamic Array

This is done by declaring a pointer to the first element of the array of a certain type, and then allocating
space with new some examples are as follows

int *pia = new int [10]; // The array is uninitialised for 10 integers

30

string *psa = new string [12]; // The array is value initialise for class type objects
by the default constructor

int *pia2 = new int [10](); // The array is value-initialised with 10 integers to zero.
This is done through the parenthesis for built-in types

where we have noted the difference between uninitialised and value-initialised arrays. This distinction
is important, for example for dynamically allocated arrays of constants, which must be value initialised
using the parethesis for built in types, otherwise we get an error.

The examples above are for arrays of fixed size determined when the code is written. However, the
big advantage is to be able to determine the array size at run time:

size_t n = get_size(); //Let’s assume there is a function which determines the size of
the array while running...

int *p = new int [n]; // The array will be uninitialised with size n as determine while
running the code

//Then the rest of the program follows and uses the array...

We should note that if the size determined at run time is 0, the code still works.

The final step is to free the memory after we are done with using the array. A good rule of thumb
is to think about the point in the code where the array will be freed, at the same time as we write its
declaration to allocate it, and write the delete statement imediatelly to avoid forgetting. For the last
example the statement is

delete [] pia;

For each new statement we must have a delete statement like this one to free the memory.

Given the following new expression, how would you delete pa?

Exercise
4.27: int *pa = new int[1@];

Exercise
4.28: Write a program to read the standard input and build a vector of ints from values that are read. Allocate an array of the same size as

the vector and copy the elements from the vector into the array.

Initialising a vector from an array

There is a constructor for vectors which allows to do so, by specifying a first argument which is a
pointer to the first element of the array we want to pass and another pointer which points to one past
the last element of the array we want to pass (i.e. we can also pass a portion of an array as well):

const size t arr size = 6;

int int_arr[arr_size] {e@, 1, 2, 3, 4, 5};

// ivec has 6 elements: each a copy of the corresponding element in int arr
vector<int> ivec(int arr, int arr + arr_size);

// coples 3 elements: int _arr[1], int_arr[2], int_arr[3]
vector<int> ivec(int arr + 1, int arr + 4);

31

Exercise
4.32: Write a program to initialize a vector from an array of ints.

Exercise
4.33: Write a program to copy a vector of ints into an array of ints.

Exercise Write a program to read strings into a vector. Now, copy that vector into an array of character pointers. For each element in the
4.34: vector, allocate a new character array and copy the data from the vector element into that character array. Then insert a pointer to the
character array into the array of character pointers.

Exercise

4.35: Print the contents of the vector and the array created in the previous exercise. After printing the array, remember to delete the character

arrays.

Multidimensional arrays
These are arrays of arrays and are initialised by adding another bracket || with the dimension. Let’s
look at some examples.

// array of size 3, each element is an array of ints of size 4
int ia[3][4];

int ia[3][4] = { /* 3 elements, each element is an array of size 4 #*/
{®, 1, 2, 3} , /* 1initializers for row indexed by @ */
{4, 5, 6, 7} , /* 1initializers for row indexed by 1 #/

{8, 9, 18, 11} /* initializers for row indexed by 2 */
+

// equivalent initialization without the optional nested braces for each row
int ia[3][4] = {0,1,2,3,4,5,6,7,8,9,108,11};

// explicitly initialize only element @ in each row

int ia[3][4] = {{@®}, {4}, {8} }

// explicitly initialize row ©
int ia[3]1[4] = {@, 3, 6, 9};

Note, in particular, the very different behaviour of the last two examples! Subscripting is done as
usual, with one pair of brackets for each dimension.

One can have multidimensional arrays with any number of dimensions. We should keep in mind
that multidimensional arrays are actually arrays of pointers.

Actually it is useful to think about multi-dimensional arrays in terms of pointers. This allows for
an easy dynamic allocation of multidimensional arrays.

For example, if we need to allocate a n by n matrix of doubleswhere n is determined at run time,
one would write

double ** matrix = new double * [n]; //Declare a pointer to pointer of type double, and
allocate n pointers to double one for each row of the array
for(size_t i = 0; i'=n;i++){

matrix[i]= new double [n]; //Looop over the dynamically allocated rows and allocate
space for the columns

for(size_t j = 0; j!=n;j++) //Looop over the dynamically allocated rows and columns
to initialise to the sum of their positions

matrix[i] [j]l=i+j; //Looop over the dynamically allocated rows and columns to initialise

to the sum of their positions

}

In the previous example one can have more nested “indices” i.e. pointers to pointers to pointers... It
is important to free the memory after it is used. The easiest way is to copy the declarations with the

32

new statement, invert the order and replace the new statements by delete.

for(size_t i = 0; il=n;i++)
delete [] matrix[i];
double delete [] matrix;

The only difference is that we do not specify the type of the pointer for the delete statement.

Exercises

1. Write a program which reads the elements of two matrices of doubles from the standard input,
determining the size of each matrix from the first line, and then returns the elements of the
product and difference of the two matrices.

2. Write a program to read n square matrices (number of matrices and dimension specified by the
user), compute all possible pairs of products and print the result for the user.

5 Classes as data structures

Classes allow us to define our own data types and the operations they support. We have already seen
some examples of class types such as the library type string. We were able to learn how to use this
data type and its operations without having to go into the details of how it is implemented.

The definition of a give class involves:

e An interface: Which consists on the operations/functions that the user is able to execute on
class types and it may also contain variables (data) that the user may manipulate directly.

e An implementation: Which are typically variables (data) and functions which are hidden when
the class type is used but are essential to make it work.

This paradigm of separating the interface from the implementation is useful, because we may change
the inner workings of the class (its implementation) without having to change the code that uses it.
There are two ways of defining a class using two different keywords. The most common one in
C++ is the class keyword, but one can also use the struct keyword which is inherited from C. The
only difference between the two is the default behaviour. Let’s present them and contrast.
A class is defined usually in a separate file. The general structure is

class ClassName{
public:
//Declarations which define the operations, the functions which are public for the user
to use, and the data types which the user might access directly
private:
//Hidden declarations of data types which hold the class data, and functions which are
used to make its operations and functions work.
3
The set of operations and data types defining the class are called the members of the class. The
keywords, public and private are access lables, which indicate whether the members can be accessed
directly in the code or not. The rule is that whenever an access lablel is specified, it is valid until the
next line with an access label (which changes the access again). The default behaviour for classes is
that when the “first” access label is omitted (at the top of the definition), is that whathever is declares
there is set to be private. The struct keyword is exactly the same as class except for this default
behaviour which is opposite, i.e. if we don’t specify the “first” access label it is implicitly public.
One can see in this structure the separation from the interface and implementation, so the abstract
operations and functions that characterize the data type we want to create, are separate from how
those operations are implemented in the code which defines the class

33

The declaration of the data members are done exactly in the same way as in normal code, so in
a first approach one can use a class simple as a way of encapsulating various data types to make a
convenient data sructure. In that case the use of the struct keyword may be more descriptive (since
there is only public data and no acces labels are necessary).

Let’s look at a first example which defines the coordinates of a point in 2D:

struct point {
double x, y;
I

Now if we want to declare several 2D points in the main code we just declare it as a usual variable
point pl, p2, p3;

According to the default rules all member in this case are public and they can be accessed through
the dot “.” operator which is the member access operator. So for example, to asign values to the
coordinates and calculate the distance squared from the origin of point p1 we would write

pl.x=2.3;
pl.y=-4.2;
double distance = (pl.x)*(pl.x)+(pl.y)*(pl.y);

An equivalent definition using the keyword class would be (note how the keyword public is now
mandatory)

class point {
public:
double x,y;
3
Similarly to the built in data types, we can have pointers to structures. Then to access members we
have to dereference first (with parethesis) and use the dot operator after. However there is an operator
(arrow operator ->) to avoid having to do so each time:

DOinIGl’_ to_structure -> member_name

An equivalent construct is given by
(*pointer_to_structure) . member_name

Some examples are as follows:

Table 4.1 Declarations and Initialization

point w, *p = &w; point v[5];

w.x = 1; w.y=4; v[0] = w;

Expression Equivalent Expression Value
W.X p -> X ik
W.y PRty 4
v[0].x VvV -> X il
¢p) .y PiEaY i

A more complete example:

In file struct_pointl.cpp

// Compute an average point
struct point { double x, y; };

point average(const point* d, int size)

{
point sum = {0, 0};
for (int i = 0; 1 < size; i++) {
sum.x 4= d->x;
sum.y += d->vy;
d++; // d is dterator accessing each point
1
sum.x = sum.Xx / size;
sum.y = sum.y / size;
return sum;
}
int main(Q)
{
point datal[5] = { {1.0, 2.0}, {1.0, 3.3},
{5.1, 0.5}, {2.0, 2.0}, {0, @} };
point average_point;
average_point = average(data, 5);
cout << "average point = (" << average_point.x
<< ", " << average_point.y << ") " << endl;
}

In addition to having data members, in C++ one can also have member functions. It is more usual to
use the class keyword in C++. So we will do so from now on and start by illustrating a class with
public members functions. Let’s re-write the previous example:

In file point4.cpp

class point {
public: // place public members first
void print() const { cout << "(" << x << "," <<y << ")"; }
void print(const string& name) const;
void set(double u, double v) { x =u; y =v; }
void plus(point c);
private:
double x, y;

};

int main()

{
point wl, w2;
wl.set(@, 0.5);
w2.set(-0.5, 1.5);
cout << "\npoint wl = ";
wl.print();
cout << "\npoint w2 ;
w2.print();
cout << endl;

35

Exercises:

1. Design a C++ structure to store a dairy product name, portion weight, calories, protein, fat,
and carbohydrates. Twenty-five grams of American cheese have 375 calories, 5 grams of protein,
8 grams of fat, and 0 carbohydrates. Show how to assign these values to the member variables
of your structure. Write a function that, given a variable of type struct dairy and a weight in
grams (portion size), returns the number of calories for that weight.

2. Write a class point that has three coordinates x, y, and z, where the coordinates are private.
How can you access the individual members? Create a function which is external to the class
and computes the dot product between two point variables (pass the points by reference as we
have seen some weeks ago).

6 More on expressions and statements

6.1 Some types of behaviour to be aware of

Logical statements We have used logical operators repeatedly in the examples of the previous
sections. A point that we haven’t mentioned which one has to be careful with is that relational
operators are left associative. Thus, if we try to chain expessions, such as

if(1 < i < 3){

};
the result will be first to check if 1<i and then the boolean result of that comparison will be compare

to 3.
Regarding bool variables, another point to keep in mind is that it is usually bad practice to test

equality of a bool variable to a bool literal (such as if (boolvar==true)), because it is an extra oper-
ation that is not needed since we can simply test the value of the bool variable itself (if (boolvar)).

The ++ and — operators One point to keep in mind about the increment (++) and decrement
(-) operators is that they come in two forms:

e Prefix form : ++i or --i: This will first increment the value of the variable and then it will
return the incremented value.

e Postfix form : i++ or i--: This will return the value of the variable and then increment it.

If this behaviour does not make a difference, then the first form is preferred. This is because for the
second form, the original value of the variable has to be stored in addition to increment it, so that
such value can be returned.

int 1 =8, j;
j=++1i; // =1, 1=1: prefix yields incremented value
j=1++; // j =1, 1 = 2: postfix yields unincremented value

6.2 Other types of expressions

The sizeof operator This returns a value of type size_t which is the size in bytes of the object.
This value is a compile time constant. The possible forms are

sizeof (type name);
sizeof (expr);
sizeof expr;

36

and examples

Sales item item, *p;

// three ways to obtain size required to hold an object of type Sales item
sizeof(Sales_item); // size reguired to hold an object of type Sales item
sizeof item; // size of item's type, e.g., sizeof(Sales_item)

sizeof #p; // size of type to which p points, e.g., sizeof(Sales item)

// sizeof(ia)/sizeof(*ia) returns the number of elements in ia
int sz = sizeof(ia)/sizeof(*1ia);

Comma expressions These are series of statement which are executed sequentially from left o right.
The value returned by the expression is the one of the rightmost expression. Example:

int cnt = ivec.size();
J// add elements from size... 1 to ivec
for(vector<int=::size type ix = 0;
ix !'= ivec.size(); ++ix, --cnt)
ivec[ix] = cnt;

Precedence It is very important to keep in mind the rules of precedence and how operators associate
with each other in a compound expression. The default precedence rules can be overriden by using
parenthesis, and such should be done whenever in doubt. For the usual arithmetic operators, the rules
are the usual ones. However, for logical, assignment operators, etc... what you think the behaviour
is, may be very different from what it actually is! A table of precedence rules is in section 5.10 of the
C++ primer which you can consult.

Another point to keep in mind is that the order in which operands of an operator are evaluated is
not always necessarily defined, for example

// oops! language does not define order of evaluation
if (ia[index++] < ia[index])

The new and delete statements We have already seen how these statements can be used to
dynamically allocate memory for arrays. These should be important statements, for class design so
let’s dissect in more detail their properties:

1. The new statement, returns a pointer to a newly allocated object of the type that is specified.
Thus this can be used for any data type (not just arrays), including single objects.

int i; // named, uninitialized int variable
int #*pi = new int; // pi points to dynamically allocated,
// unnamed, uninitialized int

One can initialise the newly allocated object using direct initialisation

int i(1024); J// value of 1 is 1024

int *pi = new int(1824); // object to which pi points is 1824
string s(1@, '9'); /f value of s is "9999999999"
string *ps = new string(le, '9'); J/ *ps 1s "9999999999"

otherwise, the default is used. However it is usually a bad idea to rely on this behaviour! If we
want to use explicit value initialisation we add ()

37

2.

string *ps = new string(); // initialized to empty string
int *pi = new int(); // pi points to an int value-initialized to @
cls *pc = new cls(); // pc points to a value-initialized object of type cls

As we have seen before, as a general guideline, for every new statement we should have a delete

statement, to free the memory as soon as we do not need it anymore. This must always be

applied only to an object that has been dynamically allocated. Examples:

int i;

int *pi = &i;

string str = "dwarves";
double #*pd = new double(33);

delete str; // error: str is not a dynamic object
delete pi; // error: pl refers to a local
delete pd; // ok

After deletion, the value of the object becomes undefined, though a valid address is still held in

the pointer!

One can dynamically allocate constant objects and delete them. The rule is that the object must
be initialised when created, which means that for built in types we must initialise explicitly, and

for class types we may omit initialisation because the default constructor is applied:
// allocate and initialize a const object
const int *pci = new const int(1824);

// allocate default initialized const empty string
const string *pcs = new const string;

Type conversion When a certain operation involves different types, one of the types may be con-
verted to the other one before the operation can be carried out. The main arithmetic conversions can
be understood from looking at some examples:

bool flag; char cval;

short sval; unsigned short usval;

int ival; unsigned int wival;

long lval; unsigned long wulval;

float fval; double dval;

3.14159L + 'a‘'; // promote 'a' to int, then convert to long double
dval + ival; // ival converted to double

dval + fval; f// fval converted to double

ival = dval; // dval converted (by truncation) to int

flag = dval; // if dval is @, then flag is false, otherwise true
cval + fval; // cval promoted to int, that int converted to float
sval + cval; // sval and cval promoted to int

cval + lval; // cval converted to long

ival + ulval; // ival converted to unsigned long

usval + ival; // promotion depends on size of unsigned short and int

uival + lval; // conversion depends on size of unsigned int and long

There is little point on memorising all the conversion rules in mind, so I refer to section 5.12 of the

Ctt

primer for other conversion rules involving other built in data types and class types.
Explicit conversion may be achieved which is called a cast. The general form is

cast-name<type>(expression) ;

where cast-name is one of the following cast operators:

38

e static_cast: This performs a conversion explicitly at compile time.

double d = 97.08;
// cast specified to indicate that the conversion is intentional
char ch = static cast<char=(d);

e const_cast: It removes the “constancy” property of the value returned by the variable. An
example is if we have a function which contains an argument which is not of const type which
it doesn’t change, but we want to pass the value of a variable which is of const type, so we need
to remove the constancy property. Then form example

const char *pc_str;
char #*pc = string_copy(const_cast<char*=(pc_str)};

e dynamic_cast and reinterpret_cast: These will be covered later. The first is the equivalent
of the static_cats operator for dynamically allocated objects.

As a general rule, casting should be avoided unless strictly necessary.

Exercises

1. Write a program that writes the size of each of the built-in types. Also test other types we have
been using such as class types from the standard library.

2. Write a program that dynamically allocates a two dimensional array and try to obtain its size
information using sizeof.

6.3 Further control structures

The switch statement This provides a way to avoid nested if statements, by running through
a list of cases. This statement compares the value of an arbitrary expression (which must yield an
integral result) to the value of each of the cases (which must be an integral result). Let’s look at an
example:

39

char ch;
J// initialize counters for each vowel
int aCnt = 8, eCnt = 8, iCnt = @,
oCnt = @, ulnt = 0;
while (cin == ch) {
// if ch is a vowel, increment the appropriate counter
switch (ch) {
case 'a':
+acnt;
break;
case 'e':
+elnt;
break;
case 'i':
++iCnt;
break;
case 'o':
++oCnt;
break;
case 'u':
++uCnt;
break;
}
1
J// print results
cout << "Number of wvowel
<< "Number of wvowel
<< "Number of vowel
<< "Number of vowel
<< "Number of vowel

» A" << alnt << "\n’
AEY == elnt =< "\n"'
Vt" << iCnt << "\n'
V" << oCnt << "\n'
VI << uCnt << endl;

E O k- @

An important behaviour to keep in mind is that execution continues to test all the cases unless the

break statements are present. This should always be present unless you really mean to do so, because
it may create unexpected errors.
An example of intentional absence of break is:

int vowelCnt = ©;

switch (ch)
{
// any occurrence of a,e,i,o,u increments vowelCnt
case 'a'
case 'e'
case 'i'
case '0
case 'u':
++vowelCnt;
break;

or equivalently

switch (ch)

{
// alternative legal syntax
case 'a': case 'e': case 'i': case 'o': case 'u':
++vowelCnt;
break;
}

In addition, just as for the else statement, we may include a default line to be executed:

40

// if ch is a vowel, increment the appropriate counter
switch (ch) {
case 'a':
+alnt;
break;
J// remaining vowel cases as before
default:
++othercnt;
break;

Some comments on for loops We have already seen for loops in some detail. Some further rules
to keep in mind are:

e Any part of the header of a for loop can be omitted by using a null statement. Null statements
should always be commented!

vector=string=::iterator iter = svec.begin();
for{ /* null */ ; iter != svec.end(); ++iter) {
cout << *iter; // print current element
// 1f not the last element, print a space to separate from the next one
if (iter+l != svec.end())
cout << " ";

e Multiple definitions (of the same type though) and multiple expressions may be included through
Comma statements. For example:

const int size = 42;
int val = 8, ia[size];
// declare 3 variables local to the for loop:
// ival is an int, pi a pointer to int, and ri a reference to int
for (int ival = @, *pi = ia, &ri = val;

ival !'= size;

++ival, ++pi, ++ri)

fro...

The do while statement This is similar to the for loop except that the test statement is only
performed after each cycle in the loop so it is executed at least once. Because of such, loop variables
(or any variable that is tested in the statement) have to be defined before the loop. Also note that the
block always ends with a semi-colon ;

Example:

// repeatedly ask user for pair of numbers to sum
string rsp; // used in the condition; can't be defined inside the do
do {
cout =< "please enter two values: ";
int vall, valz;
cin >> vall >> val2;
cout << "The sum of " << vall << " and " =< val2
<< " = " << yall + val2 << "\n\n"
<< "More? [yes][no] ";
cin >> rsp;
} while (!rsp.empty() & rsp[@] != 'n");

The break statement This stops the nearest enclosing while, for, do while or switch loop. A
break statement is only legal when it is inside a loop. It can be inside an if statement, only when the

41

if itself is inside a loop.
Example:

string inBuf;
while (cin == inBuf && !inBuf.empty()) {
switch(inBuf[@]) {
case '-':
// process up to the first blank
for (string::size type ix = 1;
ix '= inBuf.size(); ++ix) {
if (inBuf[ix] = ' ")
break; // #1, leaves the for loop
fro...
}
// remaining '-' processing: break #1 transfers control here
break; // #2, leaves the switch statement
case '+':
fro...
} // end switch

// end of switch: break #2 transfers control here
Y // end while

The continue statement This terminates the current loop iteration skiping directly to the next
run around the loop. Example:

string inBuf;
while (cin >> inBuf && !'inpBuf.empty()) {
if (inBuf[®] 1= ' ')
continue; // get another input
// still here? process string ...

}
Exercises
Exercise There is one problem with our vowel-counting program as we've implemented it: It doesn't count capital
6.7: letters as vowels. Write a program that counts both lower- and uppercase letters as the appropriate
vowelthat is, your program should count both 'a' and 'A" as part of aCnt, and so forth.
Exercise
6.8: Modify our vowel-count program so that it also counts the number of blank spaces, tabs, and newlines read.
Exercise . . .
6.9: Modify our vowel-count program so that it counts the number of occurrences of the following two-character
sequences: ff, f1, and fi.
Write a small program to read a sequence of strings from standard input looking for duplicated words. The
program should find places in the input where one word is followed immediately by itself. Keep track of the
largest number of times a single repetition occurs and which word is repeated. Print the maximum number
Exercise

of duplicates, or else print a message saying that no word was repeated. For example, if the input is
6.12:

how, now now now brown cow cow

the output should indicate that the word "now" occurred three times.

42

Write a small program that requests two strings from the user and reports which string is
lexicographically less than the other (that is, comes before the other alphabetically). Continue to solicit the
user until the user requests to quit. Use the string type, the string less-than operator, and a do while
loop.

Exercise
6.18:

7 Functions

Functions are essential to any elaborate project. They can be thought of as a way of extending the
capabilities of the built in operators, such that they can take an arbitrary number of operands.

7.1 Function parameter list & argument passing

We have already seen the basic structure of a function definition in previous chapters. We have also
seen that any built in data-type can be an argument (including an empty list) or a return type of a
function. However there are some restrictions to this rule in the way such types are passed or returned.

Parameter list Similarly to the local variables, the parameters of a function provide local storage.
The difference is that they are initialised from the arguments that are passed when the function is
called. The number and type of arguments passed to a function must match the function definition or
must be given by an expression that can be implicitely converted to the correct type (we will see an
exception below). The types are checked at compile time, so if they do not match an error message
will be issued.

Ezxample of errors:

int myreturn(int i1){ // Definition of a simple function
return il;//which returns its integer argument

}

int main(){
myreturn("abcd"); //error... mno rule to convert char* to int
int a=1;
double f=1.2;
myreturn(a,f); //error... wrong number of arguments
myreturn(); //error... arguments expected

myreturn(a); //ok
myreturn(a*2-1); //ok
myreturn(f); //ok
return 0;

We will see how to pass functions themselves as arguments, later on.

Argument passing As mentioned above, when the parameter of a function is not of reference type,
then the corresponding argument is copied to the function when it is called (so the original argument
cannot be accessed/changed by the function). Otherwise, if a reference, then the parameter is just a
name for the argument which is used directly without copy.

Non-reference parameters:

e Pointer parameters - What is passed to the function is a copy of the pointer variable which
points to a certain object. In this case the function can change the value of the object that the
argument pointer points to, but not the value of the pointer, since what is used in the function
is a local copy of the pointer:

43

vold reset(int *ip)

{
*ip = @; // changes the value of the object to which ip points
ip = 8; // changes only the local value of ip; the argument is unchanged
1
so when we call ...
int i = 42;
int *p = &i;
cout == "i: " =< ¥p << '\n'; // prints 1: 42
reset(p); // changes *p but not p
cout << "i: " << *p << endl; // ok: prints i: @

For example to avoid the value of the object the pointer points to, to be changed, we should
declare it instead as a pointer to const.

e const parameters - Because of the rule that a local copy is created, we can pass either a const
or non-const argument because a local copy will be created anyway (the reverse is also true).
Thus in the case of non-reference types, const can be seen just as a way of ensuring the value
of this argument is not changed as the function is executed.

Passing arguments as a copy is not enough if we want to: i) change the value of the argument, ii) pass
a large object, which may be inefficient, iii) pass an object for which copy is not possible, etc... In
such case, pointers or non-reference paramaters will be necessary.

Reference Parameters We have already seen an example of parameters passed by reference.
The swap function is a typical example for which a copy would not work, because the local copies of
the object would be swaped instead of the original objects.

Another usage of reference parameters is to return additional information from the function. Let’s
look at an example where a function is supposed to find whether a certain integer occurs in an vector,
return an iterator which refers to the first occurrence, and also we want to return the number of
occurrences of such integer:

// returns an iterator that refers to the first occurrence of value
// the reference parameter occurs contains a second return value
vector<int=::const_iterator find wval(

vector<int=::const_iterator beg, // first element
vector<int=::const iterator end, // one past last element
int value, // the value we want
vector<int=::size type &occurs) // number of times it occurs
{
// res iter will hold first occurrence, if any
vector<int=::const iterator res iter = end;
occurs = 0; // set occurrence count parameter
for (; beg !'= end; ++beg)
if (*beg == value) {
J/f remember first occurrence of value
if (res_iter == end)
res iter = beg;
++occurs; // increment occurrence count
}
return res iter; // count returned implicitly in occurs
}

which we would call for example as
iterfirst = find_val(ivec.begin(),ivec.end(),42,counter);

We may also want to pass a large object as a reference, just because it is inneficient to copy it, but
we may at the same time want to prevent it is changed. In that case we can use a const reference to

44

avoid copy but have the same behaviour. For example:

// compare the length of two strings
bool isShorter(const string &sl, const string &s2)

{
}

In general, a rule of good practice is to declare references which are not supposed to be changed as
const.

Another important rule for reference arguments, is that we cannot pass an expression or an
argument that can in principle be implicitely converted to the data type of the reference. Let’s look
at some examples:

return sl.size() < s2.size();

// function takes a non-const reference parameter
int incri{int &val)

{
return ++val;
1
int main()
{
short vl = @;
const int v2 = 42;
int v3 = incr(vl); // error: vl is not an int
v3 = incr(v2); // error: v2 is const
v3 = incr(@); f// error: literals are not lvalues
v3 = incrivl + v2); // error: addition doesn't yield an lvalue
int v4 = incr(v3); // ok: v3 is a non const object type int
}

Passing a reference to a pointer In this case, we are able to change the value of the pointer,
and the obect it points to. For example, the swap function would become:

// swap values of two pointers to int
void ptrswap(int #*&v1, int *&v2)

int *tmp = v2;
V2 = vl;
vl = tmp;
}
int main{()
{
int 1 = 10;
int j = 28;
int #pi = &i; // pl points to i
int *pj = &j; // pj points to j
cout << "Before ptrswap():\t*pi: "
<< ¥pl << "\t¥pj: " << ¥p] << endl;
ptrswap(pi, pj); // now pi points to j; pj points to i
cout << "After ptrswap():\t*pi: "
<< *pl << "\t#*pj: " << *pj << endl;
return @;
}

45

Exercises:

Exer:;s; Write a program to take two int parameters and generate the result of raising the first parameter to the
=" power of the second. Write a program to call your function passing it two ints. Verify the result.
Exercise

7.4: Write a program to retumn the absolute value of its parameter.

Exerc;s; Write a function that takes an int and a pointer to an int and retumns the larger of the int value of the
"™* walue to which the pointer points. What type should you use for the pointer?
Exercise R
7.6: Write a function to swap the values pointed to by two pointers to int. Test the function by calling it and

printing the swapped values.

Vector and other container parameters It is usually good practice to pass an iterator to the
vector (or another container) to be processed, as an argument to a function, instead of the container
itseld. If the container must really be passed, then it should be done by reference. An example is:

// pass iterators to the first and one past the last element to print
void print(vector<int>::const iterator beg,
vector<int=::const_iterator end)

while (beg !'= end) {
cout << *beg++;
if (beg !'= end) cout =< " "; // no space after last element

}

cout << endl;

Array parameters Because arrays cannot be copied, they are passed using pointers. Be aware that
whenever the parameter of a function is an array, a pointer is being passed, for example:

J// three equivalent definitions of printValues

void printValues(int*) { /* ... */ }
void printvValues(int[]) { /* ... */ }
void printValues(int[1@]) { /* ... */ }

the two second syntaxes are usually not good practice because they may be misleading, in particular
the dimension in the third example is ignored by the compiler! The first form is the one that is good
practice, because it corresponds explicitely to what is being passed.

Similarly to other data types, arrays are passed as reference or non-reference types, and const or
non-const.

Non-reference array parameters These are always converted to a pointer to the first element
of the array which is then copied. As for other types, if we do not want to change the value of the
array elements such parameter should be defined as a pointer to const

// f won't change the elements in the array
vold f(const int*) { /* ... */ }

46

Passing an array by reference In this special case, the size of the array is not ignored! This is
because a reference to the array is passed, so the array is not converted to a pointer. The compiler will
check the size of the parameter and the argument being passed at compile time (which must match).
For example:

// ok: parameter is a reference to an array; size of array is fixed

void printValues({int (&arr)[10]) { /* ... */ }
int main()
{

int i =8, j[2] = {6, 1};

int k[1©] = {0,1,2,3,4,5,6,7,8,9};

printValues(&L); // error: argument is not an array of 10 ints
printvalues(j); // error: argument is not an array of 10 ints
printValues(k); // ok: argument is an array of 18 ints

return 0;

}

Note that the parentheses are necessary in (& arr) [10] because the subscript operator has higher
precedence.

Multi-dimensional arrays These are actually arrays of pointers, so it is clear to pass them as
such:

// first parameter is an array whose elements are arrays of 10 ints
void printValues(int (* matrix)[10], int rowSize); though it is possible to do it in the
following way (where the first dimension has been omitted on purpose because it is not used)

// fTirst parameter is an array whose elements are arrays of 18 ints
void printValues(int matrix[][18], int rowSize);

Note: It is up to the programmer to manage arrays passed to functions. The most common way of
preventing errors such as going beyond bounds are:

e Put a marker in the last element of the array itself which denotes the end of the array (an
example are C-style character strings which contain the termination character).

o Use strategies similar to the standard library: Pass pointers to the begining of the array, and one
past the endo of the array

void printvalues(const int *beg, const int *end)

{
while (beg != end) {
cout << *beg++ << endl;
}
}
int main()
{
int j[2] = {0, 1};
// ok: j is converted to pointer to 8th element in j
Iy j + 2 refers one past the end of j
printvalues(j, j + 2);
return 8;
}

e Faxplicitely pass a size parameter

47

// const int ia[] is equivalent to const int* ia
// size is passed explicitly and used to control access to elements of ia
void printValues(const int ia[], size t size)

{
for (size t i = 0; 1 != size; ++1i) {
cout =< ia[i] =< endl;
}
}
int main()
{
int j[1 ={98, 1}%}; // int array of size 2
printValues(j, sizeof(j)/sizeof(*j));
return 9;
}
Exercises:
Exercise
7.13: W|'1te a program to calculate the sum of the elements in an array. Write the function three times, each one
using a different approach to managing the array bounds.
Exercise

7.14: Write a program to sum the elements in a vector<double=.

e Go back to the integrate parabola program. Create a function which takes as argument iterator
variables to run through a vector which contains several intervals of integration, and which uses
such intervals to repeatedly use IntegrateParabola and average out the result of all integrations.

e Re-write the previous program passing an array by reference.

7.2 The return statement

There are two forms of this statement:

No value returned: return;
This is used for void functions which do not return anything:

// ok: swap acts on references to its arguments
vold swap(int &v1, int &v2)

// if values already the same, no need to swap, just return
if (vl == v2)
return;
// ok, have work to do
int tmp = v2;
v2 = vl;
vl = tmp;
// no explicit return necessary

}

A function of this type can also return a function which also has a void return type:

48

void do_swap(int &1, int &v2)

{

int tmp = v2;

V2 = vl;

vl = tmp;

// ok: void function doesn't need an explicit return
}

void swap(int &1, int &v2)

if (vl == v2)
return false; // error: void function cannot return a value
return do_swap(vl, v2); // ok: returns call to a void function

Return a value of the function return type:
return statement;
This must be an expression which is either of the correct type, or can be implicitely converted. The
only exception is for the main() function, for which a return 0; statement may be omitted since the
compiler implicitely inserts that.

One can also return a reference, with the WARNING that this cannot be a local object!

// find longer of two strings
const string &shorterString(const string &sl, const string &s2)

{
}

The same rule applies for a function which returns a pointer, i.e. it should NEVER return a local
pointer.
An interesting property of returning references is that they are Lvalues:

return sl.size() < s2.size() 7 sl : s52;

char &get val(string &str, string::size type ix)

return str[ix];

}

int main()

{
string s("a value");
cout << 5 << endl; // prints a value
get val(s, @) = 'A"; // changes s[8] to A
cout << s << endl; // prints A value
return 8;

1

Note that functions can recursively call themselves (except for main()):

// recursive version greatest common divisor program
int rgecd(int vl, int v2)

{
if (v2 1= @) // we're done once v2 gets to zero
return rged(v2, v1%v2); // recurse, reducing v2 on each call
return vl;
}

49

Exercises

Exercise
7.20: Rewrite factorial as an iterative function.

What would happen if the stopping condition in factorial were:
Exercise
7.21: if (val !'= @)

7.3 Declaration & default arguments

As we have seen in previous chapters, a function must be declared before it is used. Usually the
prototype goes into a header file that is included at the top of the source code file.

Another property of functions is that there may be a list of arguments (they must always be the
last ones in the prototype) which have default values. As such, they may be omitted when the function
is called. If the first default is omitted, all have to be omitted. For example:

string screenInit(string::size type height = 24,
string::size type width = 88,
char background = * * };

which can be called as:
string screen;

screen = screenInit(); // eguivalent to screenInit (24,80,' ')
screen = screenInit(66); // equivalent to screenInit (66,88,"' ")
screen = screenInit(66, 256); // screenInit(ee6,256,' ')
screen = screenInit(66, 256, '#');

Default arguments may be an expression which can be evaluated at run time, and may be specified
in the prototype or function definition. It is however best practice to place it in the prototype in
headers, because the default can be specified only once.

An example of some of the rules above:

string::size type screenHeight();

string::size type screenWidth(string::size type);

char screenDefault(char = ' '):

string screenInit(
string::size type height = screenHeight(),
string::size type width = screenWidth(screenHeight()),
char background = screenDefault());

7.4 Inline functions

Functions have several advantages as seen above. However, there is the drawback that calling a function
is slower than evaluating the corresponding expression. If one wants to avoid this, one can define an
inline function (by adding the label inline before the data type), which is expanded at each point of
the program where it is called. The compiler will usually do so, however it should be kept in mind
that this is only a request. Inline function definitions should always appear in headers, and whenever
they are changed, the source files where they are included must be recompiled.

Let’s look at some examples. Assume that you have the following inline function defined in a
header:

50

J/ inline version: find longer of two strings
inline const string &
shorterString(const string &sl, const string &s2)

{
}

return sl.size() < s2.size() 7 sl : s2;:

then

cout =< shorterString(sl, s2) << endl;

would be expanded during compilation into something like

cout << (sl.size() < s2.size() ? s1 : s2)
<< endl;

Exercise: An important habit for any programmer is to be able to come up with test programs for
the features (s)he is trying to implement.

1. Come up with a test program that uses a function to perform a mathematical operation, contains
2 arguments which must always be suplied and 2 others that are optional and are related to
controlling the precision of your calculation. Write the main function such that it tests the case
when none, 1 or 2 default arguments are supplied.

2. Think about a repetitive short function that may be used a lot in a specific calculation and write
and test and inline function.

7.5 Overloaded functions

These are functions (within a common scope) which have the same name, but different parameter list.
Typical examples are the arithmetic operations which act on diferent types. Similarly, one may define
our own overloaded functions. Example:

Record lookup(const Account&); // find by Account

Record lookup(const Phone&); // find by Phone

Record lookup(const Name&); J/f find by Name

Record rl, r2;

rl = lookup(acct); // call version that takes an Account
r2 = lookup(phone); // call version that takes a Phone

The main restrictions are:
e If only the return type differs, then, that’s an error
e If both return type and parameter list match then it is just a redeclaration.
e If only non-reference parameters differ by being of const type, then it is just a redeclaration.
e The previous point does not apply to reference parameters

One should be careful not to abuse overloading, because the extra information by using different
function names may be useful and make the program less obscure.
Let’s look at some examples and the way the matching is done (this can become tricky):

void f();

void f(int);

void f(int, int);

void f(double, double = 3.14);

f(5.6); // calls void f(double, double)

51

void ff(int);
void ff(short);
ff('a'); // char promotes to int, so matches f(int)

7.6 Pointers to functions

This is an extremely useful construct that allows for example to define functionals acting on functions.
For example, if we want to build an integrator based on a numerical integration rule, we would like to
be able to pass a function as an argument to be integrated.

A function pointer, points to a particular type in the same way as a pointer to a data type. It
points to a function with certain return type and paramater list types regardless of the function name:

// pf points to function returning bool that takes two const string references
bool (#pf)(const string &, const string &);

the parenthesis are essential, otherwise the star * would refer to the return type which would be a
pointer. Because repeating this type of declarations may become cumbersome, creating a typedef by
adding the keword to the previous example is useful. The name of the defined type is the one assigned
to the pointer to function declaration in that case.

Notes:

e the name of a function is a pointer to that function, so if we use the name without calling the
value is a pointer to the function which returns the address of the function.

e a pointer to a function can only be asigned a pointer of the same type or an expression which
has a value 0, so there is no conversion between different type pointers to functions.

string::size type sumlLength(const string&, const string&);
bool cstringCompare(char*, char#);
// pointer to function returning bool taking two const string&

cmpFcn pf;
pf = sumLength; // error: return type differs
pf = cstringCompare; // error: parameter types differ

pf = lengthCompare; // ok: function and pointer types match exactly

e 3 function can be called through a pointer to function.

typedef bool (*cmpFcn)(const string &, const string &);

// compares lengths of two strings
bool lengthCompare(const string &, const string &);

cmpFecn pf = lengthCompare;

lengthCompare("hi", "bye"}; // direct call

pf("hi", "bye"); // equivalent call: pfl implicitly dereferenced
(*pf)("hi", "bye"); // equivalent call: pfl explicitly dereferenced

e A function parameter can be a pointer to function!

52

/* useBigger function's third parameter is a pointer to function
*# that function returns a bool and takes two const string references
* two ways to specify that parameter:
*/
// third parameter is a function type and is automatically treated as a pointer to
= function
vold useBigger(const string &, const string &,
bool(const string &, const string &));
// equivalent declaration: explicitly define the parameter as a pointer to function
vold useBigger(const string &, const string &,
bool (*)(const string &, const string &));

e One can also return a pointer to function. The explicit declaration is very confusing, so the best
strategy is to write a typedef

// PF is a pointer to a function returning an int, taking an int* and an int
typedef int (*PF)(int*, int);
PF ff(int); s/ ff returns a pointer to function

e One can asign an overloaded function to a pointer to function, as long as there is a definition
with matching argument type and return type.

Exercises

1. Write a function which performs the matrix multiplication of any two matrices for which the
product is defined and overload it for all possible built in types that can represent the matrix
entries. In your main file use both, arrays which are entered directly, and arrays that are entered
by the user, using dynamic memory allocation.

2. Re-Write the Integrate Parabola exercise, so that one of its arguments is a pointer to function,
that is the function to be integrated. Write several functions to be integrated using the simple
integration rule and write a main program which keeps calling the new Integrate routine and
returns the integral of the function over the interval.

8 The I/O library

In this section we will see some further features of input/output streams, many of which are common
with the istream type object cin and the ostream type object cout. We will introduce filestreams
and stringstreams to read/write to files and strings. An important property of these new streams is
that they are derived from the a base class defining istream and ostream. This is related to the
concept of inheritance which we will not cover. The main idea is that all the operations from the base
class are supported by the derived class, so any code we have written for the base class already works
for the derived class.

The streams we will now address are summarised in the following table, and inheritance hierarchy

53

Header |Type

iostream | istream reads from a stream
ostream writes to a stream

iostream reads and writes a stream; derived from istream and ostream,

fstream |ifstream, reads from a file; derived from istream
ofstream writes to a file; derived from ostream

fstream, reads and writes a file; derived from iostream

sstream |istringstream reads from a string; derived from istream

ostringstream writes to a string; derived from ostream

stringstream reads and writes a string; derived from iostream
Table 8.1. 10 Library Types and Headers

Figure 8.1. Simplified iostream Inheritance Hierarchy

- —_—
(ostream \. (istream |
. < N /
. — 3
/ T — \
/ . -~ \
/ e
/ N \
/ [iostream) 1
/ — \

; i . / S .
4 ™ / N,) ™,
| ofstream | / \ ,flfstream)
N S / Y \ _/

/ \
o ~ R
| stringstream)| £fstream |
\ AN y
/ . ~ g . ™
| ostringstream | | istringstream |
_ y, \

8.1 Condition states

All streams have members (data types or functions) which hold/retrieve information about the state
of the stream. We have already seen such an example when testing cin for true or false. However,
it is possible to obtain more fine grained information:

54

strm::iostate Name of the machine-dependent integral type, defined by each iostream class that is
used to define the condition states.

strm: :badbit strm: :iostate value used to indicate that a stream is corrupted.

strm::failbit strm: :iostate value used to indicate that an 10 operation failed.

strm: :eofbit strm: :iostate value used to indicate the a stream hit end-of-file.

s.eof() true if eofbit in the stream s is set.

s.fail() true if failbit in the stream s is set.

s.bad() TRue if badbit in the stream s is set.

s.good() true if the stream s is in a valid state.

s.clear() Reset all condition values in the stream s to valid state.

s.clear(flag) Set specified condition state(s) in s to valid. Type of flag is strm::iostate.

s.setstate(flag) Add specified condition to s. Type of flag is strm: :iostate.

s.rdstate() Returns current condition of s as an strm: :iostate value.

Here is an example of interrogating a stream and managing errors:

int ival;
// read cin and test only for EOF; loop is executed even if there are other I0 failures
while (cin >> ival, !cin.eof()) {

if (cin.bad()) // input stream is corrupted; bail out
throw runtime error("I0 stream corrupted");

if (cin.fail()) { // bad input
cerr<< "bad data, try again"; // warn the user
cin.clear(istream::failbit); // reset the stream
continue; // get next input

}

// ok to process ival

}

An example of how to access the condition state:

// remember current state of cin

istream::iostate old state = cin.rdstate();
cin.clear();

process_input(); // use cin

cin.clear(old state); // now reset cin to old state

8.2 Output buffer

In the begining of the course we have mentioned that endl forces the output buffer holding the output
that should be written to the terminal through cout to be flushed. The same applies for other output
streams, they are held in a buffer which get’s flushed when:

1. endl is used; flush is used; the unitbuf manipulator is set, so that after each output line, it is
flushed.

2. The program ends normally

3. If the buffer gets full and then it happens automatically

95

4. If we tie the output stream to an input stream in which case whenever the input stream is used,
the output stream is flushed.

Examples:
cout << "hil" << flush; // flushes the buffer; adds no data
cout << "hi!" << ends; // inserts a null, then flushes the buffer
cout << "hi!" << endl; // inserts a newline, then flushes the buffer

cout << unitbuf << "first" << " second" << nounitbuf;

is equivalent to writing

cout << "first" << flush << " second" << flush;

The nounitbuf manipulator restores the stream to use normal, system-managed buffer flushing.

One can tie an output stream to an input stream

cin.tie(&cout); // illustration only: the library ties cin and cout for us
ostream *old tie = cin.tie();
cin.tie(0); // break tie to cout, cout no longer flushed when cin is read

cin.tie(&cerr); // ties cin and cerr, not necessarily a good idea!
/o
cin.tie(0); // break tie between cin and cerr

cin.tie(old_tie); // restablish normal tie between cin and cout

8.3 File streams

The fstream header defines three types to support file 10:
1. ifstream, derived from istream, reads from a file
2. ofstream, derived from ostream, writes to a file.
3. fstream, derived from iostream, reads and writes the same file.

These support all the operations in iostream with the addition of open and close functions, and their
own constructors.

To use a file stream, we need to define/declare input objects (just like cin) and output objects
(like cout, cerr or clog).

One can either declare first the stream objects we want to use as:

ifstream infile; // unbound input file stream

ofstream outfile; // unbound output file stream
and then bind them to files with a given name
infile.open("in"); // open file named "in" in the current directory
outfile.open("out"); // open file named "out" in the current directory

or use a constructor that does both (we are assuming ifile and ofile are strings, note that they
msut be converted to C-style strings!):

// construct an ifstream and bind it to the file named ifile
ifstream infile(ifile.c str());

// ofstream output file object to write file named ofile
ofstream outfile(ofile.c str());

Let’s look at some common operations:

Checking if open was successful.

56

// check that the open succeeded
if (tinfile) {
cerr << "error: unable to open input file: "
<< ifile << endl;
return -1;

Rebinding (re-using) a file stream.

ifstream infile("in"); // opens file named "in" for reading
infile.close(); // closes "in"
infile.open("next"); // opens file named "next" for reading

Clearing a stream before re-using.

ifstream input;
vector<string>::const iterator it = files.begin();
// for each file in the vector
while (it != files.end()) {
input.open(it->c str()); // open the file
// if the file is ok, read and "process" the input

if (!input)

break; // error: bail out!
while(input >> s) // do the work on this file

process(s);
input.close(); // close file when we're done with it
input.clear(); // reset state to ok
++1it; // increment iterator to get next file

}

Neglecting the clear would cause only the first file to be read, since the stream would be in an
error state or end-of-file. If we re-use a stream we must always clear it!!!!

8.3.1 File modes

The file stream constructor has a default argument to set the files in one of the following modes:

in open for input

out open output

app seek to the end before every write

ate seek to the end immediately after the open

trunc |truncate an existing stream when opening it

binary|do IO operations in binary mode

Table 8.3. File Modes

where out, app, trunc areexclusive of ofstream, fstream, and in isexclusive of ifstream, fstream

57

Example:

// output mode by default; truncates file named "filel"

ofstream outfile("filel");

// equivalent effect: "filel" is explicitly truncated

ofstream outfile2("filel", ofstream::out | ofstream::trunc);

// append mode; adds new data at end of existing file named "file2"
ofstream appfile("file2", ofstream::app);

Note that a mode is an aribute of a file not a stream, i.e.

ofstream outfile;

// output mode set to out, "scratchpad" truncated
outfile.open("scratchpad", ofstream::out);
outfile.close(); // close outfile so we can rebind it
// appends to file named "precious"
outfile.open("precious", ofstream::app);
outfile.close();

// output mode set by default, "out" truncated
outfile.open("out");

Here are some valid combinations of modes:

out open for output; deletes existing data in the file
out | app open for output; all writes at end of file
out | trunc same as out
in open for input
in | out open for both input and output;
positioned to read the beginning of the file
in | out | trunc|open for both input and output,
deletes existing data in the file

Table 8.4. File Mode Combinations
Finally an example of a standard function for opening a file, bind it to an input stream and checking

the state.

// opens in binding it to the given file
ifstream& open file(ifstream &in, const string &file)

{
in.close(); // close in case it was already open
in.clear(); // clear any existing errors
// if the open fails, the stream will be in an invalid state
in.open(file.c_str()); // open the file we were given
return in; // condition state is good if open succeeded

}

8.4 String streams

The sstream header defines:

e istringstream, derived from istream, reads from a string
e ostringstream, derived from ostream, writes to a string
e stringstream, derived from iostream, reads and writes a string

Note that only the functions which are common with iostream are allowed, not the ones that fstream
supports! The extra operations supported are:

58

stringstream strm; Creates an unbound stringstream.

stringstream strm(s); |Creates a stringstream that holds a copy of the string s.

strm.str() Returns a copy of the string that strm holds.

strm.str(s) Copies the string s into strm. Returns void.

Table 8.5. stringstream-Specific Operations

Using stringstream.

string line, word; // will hold a line and word from input, respectively
while (getline(cin, line)) { // read a line from the input into line
// do per-line processing
istringstream stream(line); // bind to stream to the line we read
while (stream >> word){ // read a word from line

// do per-word processing

}
}

Using stringstream for conversion/Formatting We can use string streams to convert numeric
values to a string:

int vall = 512, val2 = 1024;
ostringstream format message;
// ok: converts values to a string representation
format message << "vall: " << vall << "\n"
<< "val2: " << val2 << "\n";

And to extract back:

// str member obtains the string associated with a stringstream
istringstream input istring(format message.str());

string dump; // place to dump the labels from the formatted message

// extracts the stored ascii values, converting back to arithmetic types
input _istring >> dump >> vall >> dump >> val2;

cout =< vall << " " << val2 << endl; // prints 512 1024

EXERCISES:

Exercise Write a function that takes a_n_d rgturns an i_stream&. Thr—?‘ function
8.3: sh_ould reac_l the stream until it hits end-of-file. The function should _
print what it reads to the standard output. Reset the stream so that it
is valid and return the stream.

Exercise
8.4: Test your function by calling it passing cin as an argument.

Because ifstream inherits from istream, we can pass an ifstream
object to a function that takes a reference to an istream. Use the
function you wrote for the first exercise to read

a named file

Exercise
8.6:

59

Exercise Write a function to open a file for input and read its contents into a
8.9: vector of strings, storing each line as a separate element in the

vector.
Exel;l:g_ Rewrite the previous program to store each word in a separate
=7 element.
Exercise

8.13: Write a program similar to open file that opens a file for output.

Exercise Write a program to store each line from a file in a vector<string>.
8.16: Now use an istringstream to read each line from the vector a word
at a time.

9 C(lasses

We have already seen that classes allow us to define our own data types, and member functions

associated with that abstract type we wish to define. They also allow for a way to encapsulate the
details of the implementation, so that once we have defined a class, it behaves as an independent unit
which is easier to debug and optimise, so that it can be later used by any program. Another advantage
is that the implementation and the interface are done separately, so that if we have to change the
implementation due to bugs, performance, etc... the client code stays the same. In this section we will
look at some further features of class definition, and how to control further the data types created and
their behaviour.

9.1 Recap and some further features

Let us look at the Sales_item class that was mentioned in the begining of the course.

class Sales item {
public:

// operations on Sales item objects

double avg price() const;

bool same isbn(const Sales item &rhs) const

{ return isbn == rhs.isbn; }

// default constructor needed to initialize members of built-in type

Sales item(): units sold(@), revenue(0.0) { }
private:

std::string isbn;

unsigned units sold;

double revenue;

T
double Sales item::avg price() const

if (units sold)

return revenue/units sold;
else

return 0;

}

There are several things in this class that we have already talked about, such as the keywords public
and private and the definition of member data and functions. Anoter thing to recall is that if a
function is const, it means that it will not change the values of the data members of the class.

The constructor One novelty of the example above is that there is a member function with the same
name as the class. This is called the constructor and it is a function which can take no arguments or a
number of arguments. Besides the special property of having the same name as the class, it contains a

60

colon and an initializer list before the function arguments, which defines the initial values of the data
of the class. Finally a constructor has no return type.

Constructor functions can be overloaded, and the definition that it used is determined by the
arguments provided to the constructor when an object of that class type is declared.

Example of overloading:

class Sales item;
// other members as before
public:
// added constructors to initialize from a string or an istream
Sales item(const std::string&);
Sales item(std::istream&);
Sales item();

Y

and its use

// uses the default constructor:

// 1isbn is the empty string; units soldand revenue are @

Sales item empty;

// specifies an explicit isbn; units soldand revenue are 0

Sales item Primer 3rd Ed("0-201-82470-1");

// reads values from the standard input into isbn, units sold, and revenue
Sales item Primer 4th ed(cin);

Note: Similarly to the constructor, other member functions can also be overloaded, provided a
suitable definition is provided. Another point to keep in mind is that member functions which are
defined inside the class definition are implicitely inline. It is also possible to declare them explicitly
inline as usual.

Besides being called in the forms above, we can also call the constructor to dynamically allocate
memory by using the class name

// constructor that takes a string used to create and initialize variable
Sales item Primer 2nd ed("0-201-54848-8");

// default constructor used to initialize unnamed object on the heap
Sales item *p = new Sales item();

Typedefs Using typedefs is useful for two reasons:

e Firstly it provides a better way to name types which have to be resolved for several scopes.

e Secondly, the user of the class may just use those internal types defined in the classs without
the worry of how they are implemented, and also the implementation itself may change later,
without the code using the class. For example:

class Screen {
public:
// interface member functions
typedef std::string::size type index;
private:
std::string contents;
index cursor;
index height, width;
Y

Forward declarations It is possible to declare a class without defininig it. This is called a forward
declaration

class ClassName;

61

This can be
declarations

Exercises

Exercise
12.1:

Exercise
12.2:

Exercise
12.3:

Exercise
12.4:

Exercise
12.11:

Exercise
12.19:

Exercise
12.20:

used only in a limited number of ways, since their members are not yet defined. Forward
can only be used to define pointers or references to that class type.

Write a class named Person that represents the name and
address of a person. Use a string to hold each of these
elements.

Provide a constructor for Person that takes two strings.

Provide operations to return the name and address. Should
these functions be const? Explain your choice.

Indicate which members of Person you would declare as
public and which you would declare as private. Explain
your choice.

Define a pair of classes X and Y, in which X has a pointer to Y,
and Y has an object of type X.

Provide one or more constructors that allows the user of this
class to specify initial values for none or all of the data
elements of this class:

class NoName {
public:

// constructor(s) go here ...
private:

std::string *pstring;

int ival;

double
h

Explain how you decided how many constructors were
needed and what parameters they should take.

Choose one of the following abstractions (or an abstraction of
your own choosing). Determine what data is needed in the
class. Provide an appropriate set of constructors. Explain
your decisions.

(a) Book
(d) Vehicle

(b) Date
(e) Object

(c) Employee
(f) Tree

9.2 The implicit this pointer

Member functions have an extra implicit parameter which is a pointer to the class type object to which
they are bound. It is called the this pointer, and it may be thought of as a pointer to the class type

object which calls the member function.
Let’s look at an example of a Screen class with the following data:

62

class Screen {
public:
// interface member functions
private:
std::string contents;
std::string::size type cursor;
std::string::size type height, width;
h

and the following member functions:

class Screen {
public:
typedef std::string::size type index;
// implicitly inline when defined inside the class declaration
char get() const { return contents[cursor]; }
// explicitly declared as inline;
will be defined outside the class declaration
inline char get(index ht, index wd) const;
// inline not specified in class declaration, but can be defined inline later
index get cursor() const;
/...
}
// inline declared in the class declaration; no need to repeat on the definition
char Screen::get(index r, index c) const
{
index row = r * width; // compute the row location
return contents[row + c]; // offset by c to fetch specified character

// not declared as inline in the class declaration, but ok to make inline
in definition
inline Screen::index Screen::get cursor() const

{
}

return cursor;

Let’s assume we add the following to the class definition

class Screen {

public:
// interface member functions
Screen& move(index r, index c);
Screen& set(char);
Screen& set(index, index, char);
// other members as before

I
Screen& Screen::set(char c)
{
contents[cursor] = c;
return *this;
}
Screen& Screen::move(index r, index c)
{
index row = r * width; // row location
CUrsor = row + c;
return *this;
}

The this pointer is const, so the object address to which this is bound cannot be changed, though
the object itself can be changed. If the member function is itself const, then neither can be changed.
Using the class definition above, now we can chain a serie of actions on the same screen:

// move cursor to given position, set that character and display the screen
myScreen.move(4,0).set('#').display(cout);

63

and an example of when we have to be careful with const functions, if we define the function display

Screen myScreen;

// this code fails if display is a const member function

// display return a const reference; we cannot call set on a const
myScreen.display().set('*');

as const
This can be solved by overloading the function:

class Screen {
public:
// interface member functions
// display overloaded on whether the object is const or not
Screen& display(std::ostream &os)
{ do display(os); return =*this; }
const Screen& display(std::ostream &os) const
{ do _display(os); return *this; }
private:
// single function to do the work of displaying a Screen,
// will be called by the display operations
void do display(std::ostream &os) const
{ os << contents; }
// as before

Y

Now, when we embed display in a larger expression, the nonconst version will be called. When we
display a const object, then the const version is called:

Screen myScreen(5,3);

const Screen blank(5, 3);

myScreen.set('#').display(cout); // calls nonconst version
blank.display(cout); // calls const version

9.3 Some scope rules

Since class member functions are often defined outside the class definition, it is important to note some
scope rules. We have already seen that members are accessed through the dot operator.

When defining a member function one needs to specify the scope of the function in its name, and
then everything following is in the same scope. For example:

char Screen::get(index r, index c) const

{
index row = r * width; // compute the row location
return contents[row + c]; // offset by ¢ to fetch specified character
}
Note that the return type is not after such scope resolution, so it may not be in class scope! For
example:
class Screen {
public:

typedef std::string::size type index;
index get cursor() const;

};
inline Screen::index Screen::get cursor() const
{
return cursor;
}

Further rules for name lookup are as follow:

e Declarations in the class containing other defined type members (other class types for example):

64

1. First definitions within the current class scope which are before the use of the name are
looked up.

2. If the previous step fails, types which are defined in the current class scope after, and types

which are defined in global scope, before the class definition are looked up.
Example:

typedef double Money;
class Account {
public:
Money balance() { return bal; }
private:
Money bal;
/...
}

e Name lookup in Class member function definitions:

1. First check the local scope of the function.

2. Then check declarations for all members of the class to which the function belongs.

3. Finally if not found, declarations that appear before the member function are checked.

Exercise

Extend your version of the Screen class to include the move,
set, and display operations. Test your class by executing the
expression:

Exercise [View full width]
12.13: //
move cursor to given position, set that character and
= display the screen
myScreen.move(4,0).set('#').display(cout);

Exercise It is legal but redundant to refer to members through the this
12.14: pointer. Discuss the pros and cons of explicitly using the this
pointer to access members.

9.4 Friends

This is a mechanism which allows a class type, or function, which are not members of the class to
have access to the private members of the class. Such “friends” are declared anywhere in the class by

writing the keword friend followed by the class or the function name which are granted access to the
private members of the class.

Example: Consider the Screen class introduced before. We might want to have a window manager,
that manages several Screens on a display, which will have to have access to private members of the
Screen class

class Screen {
// Window Mgr members can access private parts of class Screen
friend class Window Mgr;
// ...restofthe Screen class

1

65

so that the window manager may use the private members as follows

Window Mgré&
Window Mgr::relocate(Screen::index r, Screen::index c,

Screen& s)
{
// ok to refer to height and width
s.height += r;
s.width += c;
return *this;
}

A friend can be a non-member function, an entire class, or a function of a class that was defined
before. It is usually a good idea to restrict friend access, so the latter is sometimes useful. An example
of making a function which is member of another class, a friend would be in the previous example, to
give access only to a function of the window manager:

class Screen {
// Window Mgrmust be defined before class Screen
friend Window Mgré&
Window Mgr::relocate(Window Mgr::index,
Window Mgr::index,
Screen&);
// ...restofthe Screen class

};

An important point to keep in mind in this example, is that we must be careful about the order
in which these definitions are provided. This is because a friend function, must know about the class
members with which it is friend. So in this example, we would need:

e first Window_Mgr would have to be defined, together with a declaration of their members, so that
the Screen class can declare relocate as a friend

e Then Screen has to be defined, before relocate is defined, because the members of Screen will
have to be known for the definition of relocate

e Finally relocate can be defined.

Another important note regarding overloaded functions which are friends of a class. The rule is that
for every overloaded version, a friend declaration must be present. Example:

// overloaded storeOn functions

extern std::ostream& storeOn(std::ostream &, Screen &);

extern BitMap& storeOn(BitMap &, Screen &);

class Screen {
// ostream version of storeOn may access private parts of Screen objects
friend std::ostream& storeOn(std::ostream &, Screen &);
/...

};

Exercises

Exercise
12.34: Define a nonmember function that adds two Sales item objects.

Exercise

12.35: Define a nonmember function that reads an istream and stores what

it reads into a Sales item

9.5 Static Class members

Static Class members, are members which are shared among all class objects that are defined. This
might be useful for example to keep a count of objects of a certain class type that have been defined.

66

In some sense, these are members which are global to all class objects, while not being accessible
generically in the user code. Static objects can be data or member functions. static member functions
do not have a this pointer because they are not bound to any particular object.

The main advantages of using static members rather than globals are as follows:

1. The name of a static member is in the scope of the class, thereby avoiding name collisions with
members of other classes or global objects.

2. Encapsulation can be enforced. A static member can be a private member; a global object
cannot.

3. It is easy to see by reading the program that a static member is associated with a particular
class. This visibility clarifies the programmer’s intentions.

Let us look at an example of static member declaration with public and private members, where the
class is bank account with an owner:

class Account {
public:
// interface functions here
void applyint() { amount += amount * interestRate; }
static double rate() { return interestRate; }
static void rate(double); // sets a new rate
private:
std::string owner;
double amount;
static double interestRate;
static double initRate();

Y
and its usage:

Account acl;
Account *ac2 = &acl;

// equivalent ways to call the static member rate function
double rate;

rate = acl.rate(); // through an Account object or reference

rate = ac2->rate(); // through a pointer to an Account object

rate = Account::rate(); // directly from the class using the scope operator
Note:

e Just like other members, static members can be accessed inside the class definitions without the
scope resolution operator.

e The static keyword appears only inside the definition in the class, where the member is declared,
and if the member is defined outside, the keyword is NOT repeated. In the example above:
void Account::rate(double newRate)

{
}

interestRate = newRate;

e Static members must be defined exactly once, because unlike other members they are not ini-
tialised by a constructor.

e Static data members cannot be initialised in the class definition like other data members, with
the exception of integral static const, if a constant expression

67

class Account {
public:
static double rate() { return interestRate; }
static void rate(double); // sets a new rate
private:
static const int period = 30; // interest posted every 30 days
double daily tbl[period]; // ok: period is constant expression

};

e Another interesting property is that, since static members are not part of the object, but instead
are shared, they can be of the class type itself

class Bar {

public:
/...
private:
static Bar meml; // ok
Bar *mem2; // ok
Bar mem3; // error
h

Similarly, a static data member can be used as a default argument:

class Screen {

public:
// bkground refers to the static member
// declared later in the class definition
Screen& clear(char = bkground);

private:
static const char bkground = '#';

I

Exercise Dgﬁne a class named Foo that has a singlg data member_ o_f type int.
12.38: Cve the class a constructor that takes an int value and initializes the
data member from that value. Give it a function that returns the value
of its data member.

Exercise Given the class Foo defined in the previous exercise, define another
12.39: class Bar with two static data elements: one of type int and another
of type Foo.

Using the classes from the previous two exercises, add a pair of
Exercise static member functions to class Bar. The first static, named
12.40: FooVal, should return the value of class Bar's static member of type
Foo. The second member, named callsFooVal, should keep a count
of how many times xval is called.

Exercise Given the classes Foo and Bar that you wrote for the exercises to
12.41: Section 12.6.1 (p. 470), initialize the static members of Foo. Initialize
the int member to 20 and the Foo member to 0.

9.6 Constructors, copy control and destructors

9.6.1 More on constructors

We have seen that constructors are member functions which have no return type and are executed
automatically when a class type object is declared. A special feature is the initialiser list which is run
to initialise the class objects. Some properties are as follows:

68

e If the initialiser list is not provided, the class will initialise its data members using the default
constructor for each member.

e If there is no default constructor for a member, then an initialiser is required.

e The initialiser expression can be any valid expression

e The order in which members are initialised follows the order of declaration in the class. This is
relevant when a member is initialised in terms of other members.

class X {
int i;
int j;

public:
// run-time error: i is initialized before j
X(int val): j(val), i(j) { }

}i

e As for any other function, the constructor can have default arguments. This can be particu-
larly useful to create a class with default constructor where one of the members has no default

constructor
class Sales item {
public:
// default argument for book is the empty string
Sales item(const std::string &book = ""):

isbn(book), units sold(®), revenue(0.0) { }
Sales item(std::istream &is);
// as before

}i

The default constructor If there is no default constructor being defined, the compiler tries to
define a synthesized default constructor. It is usually good practice to define the constructor instead
of relying on this default behaviour whenever other constructors are defined. The default constructor
is not called with parethesis!!!, only the object name is used:

Sales_item myobj(); // ok: but defines a function, not an object
if (myobj.same isbn(Primer 3rd ed)) // error: myobj is a function

Implicit conversions Another useful behaviour to be aware of, is that a constructor with a single

parameter, defines an implicit conversion from the parameter type to the class type.

class Sales item {

public:
// default argument for book is the empty string
Sales item(const std::string &book = ""):

isbn(book), units sold(®), revenue(0.0) { }
Sales item(std::istream &is);
// as before

1

Each of these constructors defines an implicit conversion. Accordingly, we can use a string or an istream
where an object of type Sales item is expected:

string null book = "9-999-99999-9";

// ok: builds a Sales itemwith @ units soldand revenue from
// and isbn equal to null book

item.same isbn(null book);

This behaviour can be avoided by declaring the corresponding constructor explicit, the only restric-
tion being that this keyword can appear only inside the class definition:

69

class Sales item {

public:
// default argument for book is the empty string
explicit Sales item(const std::string &book = ""):

isbn(book), units sold(®), revenue(0.0) { }
explicit Sales item(std::istream &is);
// as before

}i

so that when used...

item.same isbn(null book); // error: string constructor is explicit
item.same isbn(cin); // error: istream constructor is explicit

The explicit keyword means that we can use the constructor in an initialisation, as long as it is done
explicitely, i.e. by using the class name to call the constructor:

string null book = "9-999-99999-9";

// ok: builds a Sales itemwith @ units soldand revenue from

// and isbn equal to null book
item.same isbn(Sales item(null book));

9.6.2 Copy control

The copy constructor This is a constructor with a single parameter which is usually a const
reference to an object of the same type as the class.

class Foo {

public:
Foo(); // default constructor
Foo(const Foo&); // copy constructor
/...

Y

It can be used to:

e Explicitly or implicitly initialise an object from another of the same type. Some examples
contrasting copy-initialisation with direct initialisation

string null book = "9-999-99999-9"; // copy-initialization

string dots(10, '.'); // direct-initialization
string empty copy = string(); // copy-initialization
string empty direct; // direct-initialization

Note that copy initialisation is only ok when the class type suports copy. For example istream
variables do not allow copy:

ifstream filel("filename"); // ok: direct initialization

ifstream file2 = "filename"; // error: copy constructor is private
// This initialization is okay only if

// the Sales item(const string&) constructor is not explicit

Sales item item = string("9-999-99999-9");

e Copy a non-reference object to be returned by a function, or similarly, a non-reference parameter
of a function

// copy constructor used to copy the return value;
// parameters are references, so they aren't copied
string make plural(size t, const string&, const string&);

e Initialise elements of a container or a list of elements in an array: An example for a vector:

70

// default string constructor and five string copy constructors invoked
vector<string> svec(5);

and with an array, where copy initialisation is used

Sales item primer eds[] = { string("0-201-16487-6"),
string("0-201-54848-8"),
string("0-201-82470-1"),
Sales item()

};

If we do not provide a copy constructor, the compiler will synthesize one for us, which simply copies
member by member. For example:

class Sales item {
// other members and constructors as before
private:

std::string isbn;

int units sold;

double revenue;

};

the synthesized Sales_item copy constructor would look something like:

Sales item::Sales item(const Sales item &orig):

isbn(orig.isbn), // uses string copy constructor
units_sold(orig.units_sold), // copies orig.units_sold
revenue(orig. revenue) // copy orig.revenue

{ } // empty body

The assignment operator This is an overloaded operator (=) which is responsible for assigning
an object of class type to another. We will look at overloaded operators next, an example is:

class Sales item {

public:
// other members as before
// equivalent to the synthesized assignment operator
Sales item& operator=(const Sales item &);

};

Similarly to the copy construct, there is a synthesized assigment operator that assigns member by
member. For Sales_item an assignment operator could be

// equivalent to the synthesized assignment operator
Sales item&
Sales item::operator=(const Sales item &rhs)

{
isbn = rhs.isbn; // calls string::operator=
units sold = rhs.units sold; // uses built-in int assignment
revenue = rhs.revenue; // uses built-in double assignment
return *this;

}

The Destructor This is another special member function which is responsible for deallocating an
object. This is called automatically whenever an object of the class type is destroyed

71

// p points to default constructed object
Sales item *p = new Sales item;

{
// new scope
Sales item item(*p); // copy constructor copies *p into item
delete p; // destructor called on object pointed to by p
} // exit local scope; destructor called on item

Note that the destructor is not run on a reference or pointer to a dynamically allocated object that
goes out of scope (a delete must be done explicitly). Similarly, for containers:

{

Sales item *p = new Sales item[1@]; // dynamically allocated

vector<Sales item= vec(p, p + 10); // local object

/o

delete [] p; // array is freed; destructor run on each element
} // vec goes out of scope; destructor run on each element

As a general rule, usually an explicit definition of a destructor is needed whenever copy or assignment
are needed. If not defined, the compiler always defines one for us which deletes each element in reverse
order. The object to which a pointer member points to is not destroyed, only the pointer itself.

The form of a destructor is similar to a constructor except that there is no return type or parameters
and a tilde 7 is added:

class Sales item {
public:
// empty; no work to do other than destroying the members,
// which happens automatically
~Sales item() { }
// other members as before

1

Exercises

Exercise Assume we have a class named NoDefault that has a constructor that
12.23: takes an int but no default constructor. Define a class C that has a
member of type NoDefault. Define the default constructor for C.

Compile the following code:

f(const vector<int>&);

int main() {
vector<int> v2;
f(v2); [/ should be ok
f(42); // should be an error
return 0;

Exercise
12.30:

What can we infer about the vector constructors based on the error
on the second call to f? If the call succeeded, then what would you
conclude?

72

Given the following sketch of a class, write a copy constructor that
copies all the elements. Copy the object to which pstring points, not

the pointer.
struct NoName {
Exercise NoName(): pstring(new std::string), i(0), d(@) { }
13.4: private:

std::string *pstring;
int i;
double d;

}

Define an Employee class that contains the employee's name and a
Exercise unigue employee identifier. Give the class a default constructor and a
13.10: constructor that takes a string representing the employee's name. If
the class needs a copy constructor or assignment operator, implement
those functions as well.

9.7 Overloading operators

This allows for a behaviour of our class types, which are similar to the built in types. This should
be used with care when there is an obvious an natural reason to overload an operator. For example,
overloading the + operator to represent division o members would clearly be a bad idea. The most
common overloaded operators are the shift operators. As an example of usefulness of overloading,
compare

cout << "The sum of " << vl << " and " << v2
<< " is " << vl + v2 << endl;

to the more verbose code that would be necessary if 10 used named functions:

// hypothetical expression if I0 used named functions
cout.print("The sum of ").print(vl).
print(" and ").print(v2).print(" is ").
print(vl + v2).print("\n").flush();

Overloaded operators are functions which special names with the keyword operator and a parameter
list corresponding to the operands. For example, the declaration of an overloaded + operator in the
class Sales_item would be

class Sales item;
// other members as before
public:
// added constructors to initialize from a string or an istream
Sales item(const std::string&);
Sales item(std::istream&);
Sales item();

Y

The operators that are allowed to be overloaded are:

73

" x|/ % ~
& - ! ' -
< |> |e= |s= ++ --
<<|>> |== |I= && [
+=(-= |/= %= "= &=
=[*= |<<=[>>= |[[] 0

->* new|new []|delete|delete []

Table 14.1. Overloadable Operators

The main rules for overloading operators are:

At least one of the operands of the overloaded operator must be of class type, otherwise we would
be overloading a built in operator! Similarly we cannot defined new operators for built in types.

Precedence and associativity cannot be changed (it is the same as for built in types)

Short circuit evaluation is not preserved

Class member operator seem to have one less parameter, which however corresponds to the this

pointer

// member binary operator: left-hand operand bound to implicit this pointer
Sales item& Sales item::operator+=(const Sales item&);

// nonmember binary operator: must declare a parameter for each operand
Sales item operator+(const Sales item&, const Sales item&);

Often, overloaded operators which are non-member functions are made friends to classes. An

example of such is:

class Sales item {
friend std::istream& operator>>
(std::istream&, Sales item&);
friend std::ostream& operator<<
(std::ostream&, const Sales item&);
public:
Sales item& operator+=(const Sales item&);
I

Sales item operator+(const Sales item&, const Sales item&);

Exercise: Write a class which has a dynamically allocated pointer to hold a position in N-
dimensions. Include a constructor and default destructor and overloaded input and output operators.

74

	1 Getting started
	1.1 Steps to create and compile a simple C++ program
	1.2 Input and Output
	1.2.1 Redirection

	1.3 Comments
	1.4 Control structures
	1.4.1 The if statement
	1.4.2 while and for

	1.5 Comment on class types

	2 Variables and basic data types
	2.1 Primitive built-in types
	2.1.1 Arithmetic and logical operators

	2.2 Literal constants
	2.3 Variables
	2.3.1 Naming conventions
	2.3.2 Declaration and Initialisation
	2.3.3 Scope of a name

	2.4 const qualifier
	2.5 References
	2.5.1 Quick introduction to functions

	2.6 Typedef
	2.7 Header files

	3 Library Types
	3.1 using declarations
	3.2 Library string type
	3.3 Library type vector
	3.4 Iterators

	4 Arrays and Pointers
	4.1 Arrays
	4.2 Pointers
	4.2.1 Pointers and Arrays

	4.3 Dynamic memory allocation & multi-dimensional arrays

	5 Classes as data structures
	6 More on expressions and statements
	6.1 Some types of behaviour to be aware of
	6.2 Other types of expressions
	6.3 Further control structures

	7 Functions
	7.1 Function parameter list & argument passing
	7.2 The return statement
	7.3 Declaration & default arguments
	7.4 Inline functions
	7.5 Overloaded functions
	7.6 Pointers to functions

	8 The I/O library
	8.1 Condition states
	8.2 Output buffer
	8.3 File streams
	8.3.1 File modes

	8.4 String streams

	9 Classes
	9.1 Recap and some further features
	9.2 The implicit this pointer
	9.3 Some scope rules
	9.4 Friends
	9.5 Static Class members
	9.6 Constructors, copy control and destructors
	9.6.1 More on constructors
	9.6.2 Copy control

	9.7 Overloading operators

