
C++ Tutorial

Part I : Procedural Programming

C. David Sherrill
School of Chemistry and Biochemistry

School of Computational Science and Engineering
Georgia Institute of Technology

Purpose

 To provide rapid training in elements of C++ syntax,
C++ procedural programming, and C++ object-
oriented programming for those with some basic
prior programming experience

 To provide a handy programming reference for
selected topics

 To provide numerous, actual C++ code examples for
instruction and reference

Why C++?

 “Intermediate”-level language: allows for fine (low-
level) control over hardware, yet also allows certain
complex tasks to be done with relatively little code
(high-level)

 Good for scientific applications: produces efficient,
compiled code, yet has features that help one
develop and maintain a complicated, large code
(e.g., namespaces, object-oriented design)

Recommended reading

 These notes were developed during my reading of
“Sams Teach Yourself C++ in One Hour a Day,” 7th

Edition, by Siddhartha Rao (Sams, Indianapolis,
2012). I recommend the book, it’s readable and to
the point.

 A good mastery of C++ will probably require
working through a book like that one, and doing
some examples; notes like these only serve as a basic
introduction or a quick review

A Note on C++11

 This was originally supposed to be C++0x, with the
“x” filled in according to the year the new C++
standard was finalized (e.g., C++09 for 2009).
However, the standard took longer than expected,
and was only formalized in 2011. So, C++11 is what
was formerly referred to as C++0x.

 As of 2013, the new C++11 standards are not yet
fully implemented in many compilers. However, I
will try to note when any part of this tutorial is
relying on new C++11 syntax.

Chapter 1: Real Basics

 Very basic structure of a program

 Editing and compiling a program

 Basic printing with cout

 Basic input with cin

 A little about variables

A simple program: hello, world
// The next line includes the file iostream, which defines cout below

#include <iostream>

// Every C++ program should have a function called main that returns

// an integer

int main()

{

// Write "hello, world" to the screen

std::cout << "Hello, world!" << std::endl;

// Return 0 to the OS, indicating success

return(0);

}

Dissecting the example program

 Lines that start with // are comment lines and are ignored by the
C++ compiler. Comments in more complicated programs are very
important to help you remember what you did and why.

 Comments can, alternatively, be begin with /* and ended with */
(and can, in this form, span multiple lines)

 #include <iostream> is called an “include statement” and inputs the
file iostream at the top of the file; this “header file” contains
definitions (like std::cout) that we use later in the program

 Every line that actually does something (print, return) is called a
“statement” and needs to end with a semi-colon. “Include
statements” (see above) or the first line of a function definition
(e.g., int main()) do not need to end in semi-colons.

 Every C++ program must have a function called “main” and it
should return an integer. A return value of 0 is usually used for
success. Everything within the curly braces {} is part of the main()
function.

Very simple printing

 The line
std::cout << “Hello, world!” << std::endl;
actually does the printing. The “<<” operator pushes
things onto the “output stream”, std::cout. The
“std::” prefix just means that the “cout” object lives
in the “std::” (pronounced: standard) namespace.
Namespaces give us a way to specify which “cout”
we're talking about, in case there were more than
one.

 The “std::endl” is just code for an “end of line”
character; directing this to std::cout will cause a line
break in the printing to the screen.

Continuing statements across lines

Typically, a C++ compiler does not see “white space” (tabs, extra
spaces, line feeds, carriage returns, etc.). Hence, it's ok to
break up a statement across multiple lines, such as this:

std::cout << "Hello, world!"
<< std::endl;

One exception to this is that it's not ok to put a line break in the
middle of a string to be printed. To do that, you need to use
the “line continuation character,” \, like this:

std::cout << “Hello, \
world!\n” << std::endl;

Note that statements continuing into a new line are usually
indented. This is not required but is standard practice and
makes the code more readable.

Typing the program

 To test the program, you need to type it in. Programs
need to be typed into “plain text” files (like those
created by the Windows program Notepad, or the Linux
programs vi, emacs, gedit, etc.). You can't use a
standard word processor, because word processors do
not create “plain text” files.

 You must be very careful to type in everything exactly
as required by C++ syntax (semicolons where they need
to be, etc.)

 Files containing C++ code should end with a suffix like
“.cc” or “.cpp”. You can find the code for all the
examples in these notes in the files accompanying the
notes, under the relevant chapter. This one is under
“ch1/hello.cc”.

Compiling and running

 Now that we have a program, we can compile and run it. It's
supposed to print the line “Hello, world!” to the screen, and that's
it.

 In Linux, we can compile hello.cc by going into the directory with
that file, and typing
g++ -o hello hello.cc
assuming we're using the GNU C++ compiler, g++. This probably
also exists as “c++”. The part “-o hello” tells the compiler to
output the program to a file called “hello.” This is the program we
will actually run.

 To run the program, from the directory containing it, just type
“./hello”. The “./” indicates that the file is in the current working
directory. Running the program should create the message, “Hello,
world!” on the screen!

 I'm not including notes on compiling and running under Windows.
There should be examples of this process somewhere on the
internet.

More about namespaces

 We mentioned above that the “std::” prefix in front of “cout”
and “endl” denotes that these are items from the “standard
namespace.” This provides a way to denote which “cout” or
“endl” is meant, in case these symbols are used elsewhere in
the program in a different context.

 On the other hand, it is tedious to keep typing these “std::”
prefixes, especially for items we may use frequently. If we
avoid naming any other things “cout” and “endl”, we can tell
the compiler to assume a “std” prefix:
int main()
{
using namespace std;
cout << “Hello, world!” << endl;
return 0;

}

More about namespaces

 In the previous example, if a symbol isn't known, the
compiler will try appending a “std::” in front of it,
and then search again. Maybe this is a bit overkill if
we're only using “cout” and “endl” out of the std
namespace. Alternatively, we can specifically point
out that it's only these two symbols we want to avoid
typing “std::” in front of. We can replace the line
using namespace std;

with the lines
using std::cout;
using std::endl;

More Detailed Printing

 This cout printing is the fancy new C++ way.
Sometimes we want a little more control over the
formatting of the printing, which can be more directly
achieved using older, C-style printing. And the syntax
looks more obvious.

 C++ style:
cout << “Hello, world!” << endl;

 C style:
printf(“Hello, world\n”);

 printf() is a C function that prints things to the screen
according to some specified format (no special format
needed for this example). The “\n” character denotes a
line break (does the same thing as endl).

Hello, world! With C-style printing
// Don't need iostream anymore since we're not using cout

// but we do need to include stdio.h to make printf()
available

#include <stdio.h>

int main()

{

// Write "hello, world" to the screen

printf("Hello, world!\n");

return(0);

}

More printing
Example printing.cc (part 1 of 2):

#include <iostream>

#include <stdio.h>

using namespace std;

// Declare a function for some cout printing

void print_cout();

// Declare a function for some printf printing

void print_printf();

int main()

{

// First do cout printing

print_cout();

// Now do printf printing

print_printf();

return(0);

}

More printing, cont'd

Example printing.cc (part 2 of 2):

void print_cout()

{

cout << "My name is " << "David" << endl;

cout << "Two times two is " << 2*2 << endl;

cout << "2 / 3 = " << 2/3 << endl;

cout << "2.0 / 3.0 = " << 2.0/3.0 << endl;

}

void print_printf()

{

printf("My name is %s\n", "David");

printf("Two times two is %d\n", 2*2);

printf("2/3 = %d\n", 2/3);

printf("2.0/3.0 = %.2f\n", 2.0/3.0);

}

First look at functions
 The example program above does a few things: (1) introduces us to the use

of functions in a program (besides main()), (2) provides some more examples
of printing (strings and results of arithmetic), (3) compares and contrasts cout
vs printf() style printing, (4) shows examples of providing formats to printf()
printing

 A function declaration looks like this and must occur before the function is
called:
void print_cout();
and it declares that print_cout() is a function, and it doesn't return anything
(return type void). It also doesn't take any arguments (if it did, they would
be listed between the parentheses)

 A function definition can occur anywhere and provides what the function
actually does, e.g.,
void print_cout()
{
… function goes in lines here …
}

 There are no “return” statements in these functions because they don't return
anything (that's why their return type is listed as “void”)

Printing examples

 This line shows how multiple strings can be
concatenated and send to cout:
cout << "My name is " << "David" << endl;

 This line shows how to print an arithmetic result using
cout:
cout << "Two times two is " << 2*2 << endl;

 The same thing with printf uses a “format string.” The
“%d” symbol means “put an integer here, and the
integer will come after the end of the format string”:
printf("Two times two is %d\n", 2*2);

 “%s” means printf should insert a string here:
printf("My name is %s\n", "David");

Integer vs floating point arithmetic

 Notice that the line
cout << "2 / 3 = " << 2/3 << endl;
(or it's printf() equivalent) prints the number 0. That's
because 2 and 3 are interpreted as integers, and the
result will also be computed as an integer (rounded
down), which is 0. If we want a floating-point result,
we need to do this:
cout << "2.0 / 3.0 = " << 2.0/3.0 << endl;

 The above line prints out “0.666667”. What if we
wanted more (or fewer) digits? We can give the number
of digits with printf(). The following line tells printf()
to expect a floating point number after the format string,
and to print it to two digits after the decimal:
printf("2.0/3.0 = %.2f\n", 2.0/3.0);

Example input

 Finally, we conclude this short introduction with an
example of how to read data from the terminal. We
wouldn't normally do it this way (you'd typically
take command-line arguments or else read from a
data file). But if you ever want to prompt the user
for interactive input, the next example shows how
you could do it.

Using cin
Example cin-example.cc:

#include <iostream>

#include <string>

using namespace std;

int main()

{

// Declare an integer to store the user's input number

int number;

// Declare a string to store the user's input name

string name;

cout << "Enter an integer: ";

cin >> number;

cout << "Enter your name: ";

cin >> name;

// print the result

cout << name << " entered the number " << number << endl;

return 0;

}

Using cin

 If you compile and try this example, you'll see the
program prints
Enter an integer:
and then waits for the user to type a number and hit
Enter. It will then prompt for the user's name and
wait for the user to type it and hit enter. Then the
program will print something like this:
David entered the number 4

 You can see that “cin” is for input just like “cout” is
for output. But “cin” must have a variable to store
the information in. That's why we needed to declare
two variables, one an integer (for the number), and
one a string (for the name)

Multiple statements on one line

As a side-note, this is a good time to point out that a
line can contain more than one statement. For
example, in the previous program, the two lines

cout << "Enter an integer: ";

cin >> number;

could just as easily be written as

cout << "Enter an integer: "; cin >> number;

A little about variables

 Just like functions, we must declare variables before we
can use them. This tells the program “I'm going to use a
variable with this name, and it will have this type.” The
type of the variable might be an integer, a floating-point
number, a string, etc.

 Variables are defined whenever we give them a value
(the value can change during the program, that's why it's
called a variable). Here, we give them a value by
pushing into them whatever the user input, with a line
like “cin >> number”.

 Strings were not originally built in as a basic variable
type to C or C++. That's why we need to add the
“#include <string>” line at the top, to set up the program
to use strings. Apart from this minor annoyance, C++11
has significant support for strings.

Summary

 This chapter has provided a very brief introduction
to some basic concepts like typing in and compiling
a program, printing, accepting user input, functions,
and variables. We will examine these concepts in
more detail in the following chapters.

Chapter 2: Variables and Constants

 Declaring and defining variables and constants

 Variable types

 How to change the value of a variable

 Scope of a variable

 Size of a variable in memory

 Inferring data type using “auto”

 Using typedef as a shorthand for long names of variable
types

 Constant expressions (constexpr)

 Enumerated data types (enum's)

Variables and Constants
 A variable is a quantity that can change during the course of a

program

 A constant is a quantity that does not change during the course of
a program

 A variable would be useful for storing a countdown timer, for
example. A constant would be useful for holding the value of π to
some desired accuracy (like 3.1415926)

 Both variables and constants are held in some memory location
by the program. There are also different types for variables and
constants (integers, floating-point numbers, strings, etc.)

 Other than not being able to change, constants behave like
variables: they are both quantities stored in some memory
location, and having a type. We will often use “variable” in a
generic sense to mean a variable or a constant. Admittedly, this
may be confusing, but this is often how programmers think of
them (and they may even speak of a “constant variable”!)

Declaring Variables

 To declare a variable, you give the type of the
variable and the name of the variable. For example,

int x;
double y;
bool z;

where x is an integer, y is a double-precision floating
point number, and z is a boolean (true or false)

 Once a variable has been declared, the compiler
knows its name and its type, and it can be used later
in the program

Defining Variables

 To define a variable, you simply give it a value. You
must have previously declared the variable. For
example,

int x;
x=10;

 It is more common to combine variable declaration
and definition in a combined statement like this:

int x = 10;

Variable Names

 Can't start with a number

 Can't contain spaces

 Can't contain arithmetic operators (+, -, *, / denote
addition, subtraction, multiplication, and division)

 Can't be the same as a C++ keyword

Example: Using and Changing Variables

Example vars1.cc:

#include <iostream>

using namespace std;

int main()

{

int number;

cout << "Enter an integer: ";

cin >> number;

number = number * 2;

cout << "Your number * 2 = " << number << endl;

return 0;

}

Changing a Variable

 From the previous example, we see that we can change the
contents of a variable with a statement like this:
number = number * 2
in this case, the old value of “number” is multiplied by 2,
and then the result is stored back in the variable “number”.
Effectively, “number” has its value doubled.

 This destroys the previous value of the variable. If we
wanted to keep the old value of the variable and have the
new value available, we'd need two variables, and could do
something like this:
int new_number = number * 2

Scope of a Variable

 A variable's “scope” consists of the parts of the program
where the variable is known

 In general, a variable is only available in the function where
it is declared (this is known as a “local variable”); you can't
use it elsewhere in another function without taking extra
steps

 A variable that is made available within an entire file or to
an entire program is called a “global variable”

 You can have two local variables in two different functions
with the same name. They won't have anything to do with
one another. Changing one will not change the other.

Scope Example

scope.cc example:

#include <iostream>

using namespace std;

void print_five();

int main()

{

int number = 4;

print_five();

cout << "number = " << number << endl;

return 0;

}

void print_five(void)

{

int number = 5;

cout << "number = " << number << endl;

}

Scope Example
 In this example, we demonstrate that the two variables named

“number” have nothing to do with one another. One is local to
the function main(), and the other is local to the function
print_five()

 Note we had to declare the function print_five() before we were
able to use it. We could do that inside main() (making the
function available for use within main()), or up above, outside
main, making the function available to any functions in scope.cc.
We chose the latter. This makes the function “global” within this
file. Function declarations are thus also local or global, just like
variable declarations!

 The variable “number” is set to 4 in main(), and it stays 4 inside
main(), even though another variable with the same name is set to
5 in the function print_five(), which is called after “number” in
main is set to 4, but before it is printed in main()

Global Variables

 Suppose we didn't want this behavior. Instead, we
want a variable, “number”, to be available as a single
variable throughout our file. We can take a clue
from how we made the function print_five() in our
previous example visible to the entire file (and not
just within main) by placing it up top in the file,
outside any function, e.g., we can declare a variable
like this:
int number = 4;
int main()
{
…
}

Global Variable Example

globals.cc example:

#include <iostream>

using namespace std;

void print_five();

int number = 4;

int main()

{

print_five();

cout << "number = " << number << endl;

return 0;

}

void print_five(void)

{

number = 5;

cout << "number = " << number << endl;

}

Global Example Comments

 In the previous example, “number” became a global
variable whose scope extends to the entire file.
There is no longer a need to declare the variable in
each function, it is declared once at the top of the
file.

 Any change to the variable anywhere in the file is
now reflected throughout the entire file

Types of Variables

 bool : true or false

 int: an integer

 float: a floating point number (like 2.385, etc.)

 double: a double-precision floating point number
(like above, but can carry more digits). This is
preferred over float for scientific applications to help
avoid roundoff errors.

 char : a single character (e.g., 'a', 'b', etc.)

Special Versions of the Common
Variable Types

 There are different modifiers that can be applied to
some of the standard variable types. For example:

 unsigned int : an integer that can't be negative

 int : on most machines, this only allows values in the
range -2,147,483,648 to +2,147,483,647 (about +/- 2E9)

 short int : on most machines, uses less memory and
allows values in the range -32,768 to +32,767

 long int : allows larger integers than a regular int; on
most machines, up to +/- 9E18

 long long int : may allow even larger numbers than a
long int (on many machines, it's really just the same as a
long int)

Special Versions, cont'd

 Can combine “unsigned” with “short,” “long,” or
“long long” to get, for example, short unsigned int

 Notice that “unsigned” allows us to store numbers
up to twice as large (at the expense of not having a
sign). This is because the one bit (0 or 1) formerly
used for the sign bit is now available, and each extra
bit allows us to count up to a number about twice as
large as before the bit was added. (With n bits, can
count up to 2n-1).

Numbers of Bits

 On a modern 64-bit machine, most quantities are
processed 64-bits at a time (one “word”). For
example a “double precision” floating point number
on a 64-bit machine is 64-bits (and a “float” is half
this, or 32 bits)

 8 bits per “byte”

 How many bits in an integer, float, double, etc, are
dependent on the machine and the compiler. But we
can use the “sizeof()” command to get the system to
tell us how big each variable type is.

wordlength.cc

Example wordlength.cc:

#include <stdio.h>

int main()

{

printf("Size of char = %ld\n", sizeof(char));

printf("Size of float = %ld\n", sizeof(float));

printf("Size of double = %ld\n", sizeof(double));

printf("Size of long double = %ld\n", sizeof(long double));

printf("Size of short int = %ld\n", sizeof(short int));

printf("Size of int = %ld\n", sizeof(int));

printf("Size of long int = %ld\n", sizeof(long int));

printf("Size of long long int = %ld\n", sizeof(long long int));

return 0;

}

Comments on wordlength.cc

 The sizeof() command takes one argument, the data
type (placed in parentheses), and it returns how much
memory is used to store that data type, in bytes

 In the previous example, we use C-style printing. The
format string now contains “%ld” because in C++, the
sizeof() function returns an (unsigned) long integer

 Try this on your system. On my system with the GNU
G++ compiler and a 64-bit machine, I get the following
results: char = 1, float = 4, double = 8, long double = 16,
short int = 2, int = 4, long int = 8, long long int = 8. It's
interesting that even on a 64-bit machine, by default only
32 bits are used to store an integer, and it takes “long
int” to force the compiler to use 64-bits.

overflow.cc

A simple example demonstrates why it's important to use a data type big enough to hold the

required data. If we want to multiply 2 billion by 2, this will overflow a regular integer

(causing the result to “wrap around” to a negative number). But it works when using long

int's

#include <stdio.h>

int main()

{

int p = 2000000000;

int q = p * 2;

printf("p*2 = %d\n", q);

long int lp = 2000000000;

long int lq = lp * 2;

printf("p*2 = %ld\n", lq);

return 0;

}

Output:

p*2 = -294967296

p*2 = 4000000000

bool and char types

 A variable of type bool can be true or false:
bool found = true;

 A variable of type char holds a single character.
Internally, the character is actually represented as an
integer, using the ASCII codes that map a character
to an integer. Thus, a char can be processed either as
a character or as an integer (although the integer can
only go up to 255 since it's just one byte)
char s = 'e'; // store the letter 'e'

Using auto to Infer Type

 In what at first appears to be a surprising, laziness-
enabling feature, C++11 can try to infer the data type of
a variable based on the value that is used in the
definition of the variable, e.g.,
auto Found=false; // can deduce it's a bool
auto Number=20000000000; // use a long int

 This seems somewhat pointless because the
programmer really ought to know the datatypes. But it
can be useful as a way to avoid figuring out more
complicated data types later on, when we start using
advanced features (e.g., what's the data type of an
iterator over a standard vector of integers? A
vector<int>::const_iterator. Maybe easier to let the
compiler figure that one out...)

Using Typedef

 Sometimes, the datatypes can have rather long
names (e.g., unsigned long int). These can be tedious
to type. We can use “typedef” to create a shorthand
notation in such cases:

typedef unsigned long int BIGINT;
BIGINT veclen;
BIGINT offset;

 If you have several variables of this type, then the
code is easier to type and read using typedef's.

Constants

 Constants have a type and a value and take up memory,
just like variables. But their values are not supposed to
change during the program.

 Advantages: By declaring something as a constant,
you're telling the compiler to watch out and not allow the
value to change. You are also providing the compiler
some extra information it might be able to use to speed
up the code.

 Disadvantages: Once you start using constants, you
can't treat them later on in the program as regular
variables. This can be annoying if you try to use
functions later on that expected real variables, not
constants. Keeping everything consistent is the price
you pay for declaring a constant.

Literal Constants

 We have already encountered a sort of trivial case of
constants, e.g.,
int number=4;
where the “number” is a variable, but the right-hand
side (4) is certainly a constant.

 Another example would be a string constant, like
“Hello, world!” in
cout << “Hello, world!”

Declaring a constant

 A “const” specifier is placed before a normal
variable declaration. For example,
const double pi = 3.1415926;

says that “pi” is a double-precision value that will not
change during the program (certainly we won't be re-
defining pi during the course of the program!)

 After something is declared a constant and defined,
its value cannot be overwritten (e.g., can't say pi =
5.0 at some future point in the program)

 Otherwise, we use this just like we use a regular
variable

constexpr

 constexpr is similar to “const”, but it means
“constant expression.” It is new to C++11. It can be
used to indicate that the results of a function are
always the same (constant) and can be evaluated
once at compile time, and not every time the function
is called. This can speed up the program if the
function is called often.
constexpr double EstPi() { return 333.0 / 106.0; }
constexpr double TwoPi() { return 2.0 * EstPi();}

Enumerated Constants

 C++ also has an elegant “enumerated” datatype that
lists a set of options symbolically. Internally, the
compiler converts each option into an integer. The
user can specify what integer to map to what enum
option --- but working with the internal integer
representation goes counter to the spirit of enums,
where the whole point is that using a word symbol is
more natural than a number

 First one specifies an enum datatype by giving it a
name and listing all the possible values it can have.
Then this datatype can be used to create new
variables. The variables have to have a value that is
one of the allowed values for the enum.

Enum Example

enum Directions {
South,
North,
East,
West

};
Directions heading = South;

#define

 With support for constants in C++, there is no longer
a reason to use the pre-processor directive #define.
However, this was the way constants were specified
in C, and hence #define statements are still
frequently encountered.

 #define PI 3.1415926
would define the symbol PI with the value of
3.1415926. It acts as an alias. Everywhere PI is
encountered in the code, it is replaced by
“3.1415926”. This is inferior to the new mechanism,
because the compiler doesn't know anything about
the datatype of PI in the #define version.

Naming Variables

 The programmer should take extra care to use
meaningful variable (or constant) names. This
makes the code easier to understand, which helps
everyone (including the programmer, if he or she
ever has to work on the code again! You'd be
surprised how much of your own code you can forget
after a year or two.)

 For example, variable names like found, converged,
or TotalEnergy are superior to f, con, or E.

Chapter 3: Arrays and Strings

 Static arrays

 Dynamic arrays

 C-style strings

 C++-style strings

Arrays

 An array is an ordered collection of items of the
same type

 In C++, an array is accessed by giving the name of
the array and which element of the array you want
(e.g., value[4])

 Array numbering in C++ starts from 0. So, the first
element in an array is indicated by [0], the second
element by [1], etc.

Declaring and defining static arrays

 A static array is one whose length is defined once (as a
constant) and does not change during the program (the length
of the array just refers to the number of elements contained in
the array)

 To create an array called “coord” to contain 3 values (for x, y,
and z), you could do this:
double coord[3];

 To set the values, you could use
coord[0] = 0.1; coord[1] = 3.4; coord[2] = 9.7;

 Alternatively, you could set the values at the same time as
declaring the array:
double coord[3] = {0.1, 3.4, 9.7}; // contains initializing values

 You can access array elements using variables as well as
constants, e.g.,
next_coord = coord[i]; // i is an integer (from 0-2)

More about initialization

 To initialize every element of the array to the same
value, just do something like this:
double coord[3] = {0.0}; // all three values will be
0.0

 You can also let the compiler figure out the length of
the array if you give all the initial values, like this:
double coord [] = {0.1, 0.2, 0.5}; // compiler knows a
“3” should go in the []

Arrays in memory

 You can have an array of any type of data (double-precision
numbers, integers, characters, even user-defined datatypes)

 When a static array is declared, the compiler figures out how
long it is, and how much memory it takes to store one of the
items of data. Then it creates a contiguous stretch of memory
whose size is equal to the memory required per item times the
number of items

 For an array “coord” of 3 double-precision words, coord[0] is
stored first in a space consisting of sizeof(double) bytes,
followed by coord[1] taking another sizeof(double) bytes,
followed by coord[2] taking a final sizeof(double) bytes. It's
up to the compiler to worry about exactly where in memory all
this is located (the symbol “coord” will “point” to the
beginning of the allocated memory)

Using arrays

 Get the n-th element of an array:
result = value[n];

 Store a number in the n-th element of an array:
value[n] = result;

 Do NOT attempt to get or set an array element beyond the length of the array.
In our coordinate example, trying
result = coord[3]; // fails!
is a bad idea because “coord” only has length 3 (and therefore only elements
[0], [1], and [2] --- remember, we start counting from 0)

 Setting an array element beyond the allocated length can cause “segmentation
fault” runtime errors. If you're unlucky, doing this might accidentally
overwrite some other chunk of memory used elsewhere in the program,
leading to a bug that is very hard to track down. This is one of the most
common C++ programming errors. Tools like “valgrind” exist to help you
catch such errors.

Arrays in memory

 You can have an array of any type of data (double-precision
numbers, integers, characters, even user-defined datatypes)

 When a static array is declared, the compiler figures out how
long it is, and how much memory it takes to store one of the
items of data. Then it creates a contiguous stretch of memory
whose size is equal to the memory required per item times the
number of items

 For an array “coord” of 3 double-precision words, coord[0] is
stored first in a space consisting of sizeof(double) bytes,
followed by coord[1] taking another sizeof(double) bytes,
followed by coord[2] taking a final sizeof(double) bytes. It's
up to the compiler to worry about exactly where in memory all
this is located (the symbol “coord” will “point” to the
beginning of the allocated memory)

Multi-Dimensional arrays

 Suppose instead of one set of coordinates in 3D (x, y, and z
values), we need multiple sets of 3D coordinates. We need an
array of arrays. We can do this in C++.

 Let's say we have two sets of 3D coordinates. They could be
initialized as follows:
double coordinates[2][3] = { {0.1, -0.3, 4.2}, {1.0, 0.1, 0.2} };

 Now coordinates[0] refers to the first set of coordinates, and
coordinates[1] refers to the second set of coordinates. To get
the x coordinate of the second set of coordinates, that would be
coordinates[1][0] (assuming we stored x first, then y, then z).
The z coordinate from the first set of coordinates would be
coordinates[0][2].

 Clearly 2D arrays like this are logical ways to store 2D
matrices. The first index refers to the row of the matrix, and
the second index refers to the column, e.g.,
matrix[row][column].

Dynamic arrays

 Remember that a static array is one whose
dimensions are given as constants in the array
declaration, and they do not change during the
program (although the contents of the array can
certainly change!)

 A dynamic array is one in which the dimensions are
variables determined at runtime; the size of the array
might change during the computation

 There are various ways to create dynamic arrays in
C++. One of the easiest and more modern ways to
do this is using the built-in “vector” capability

Dynamic arrays with std::vector
vector.cc:

#include <iostream>

#include <vector>

using namespace std;

int main()

{

vector<int> values(2);

values[0] = 31;

values[1] = 42;

cout << "Length of array 'values' is " << values.size() << endl;

cout << "values[0] = " << values[0] << endl;

cout << "values[1] = " << values[1] << endl;

// Now make the array grow by another value!

values.push_back(53);

cout << "Length of array 'values' is " << values.size() << endl;

cout << "values[2] = " << values[2] << endl;

return 0;

}

Output:

Length of array 'values' is
2
values[0] = 31
values[1] = 42
Length of array 'values' is
3
values[2] = 53

Comments on vector.cc

 There are some slightly mysterious things going on
in the previous example: the array declaration takes
the type inside < > symbols, there is a “push_back”
function, etc. Don't worry, we'll get to these things
later.

 Nevertheless, it should be basically clear from the
context what the program does and how it works.

Strings

 In C, there was not a built-in data type for strings.
Instead, a string was treated as an array of characters.
Knowing this is useful because much C or early C++
code exists that uses such kinds of strings, and it is
good to be able to interact with this code.

 Newer versions of C++ include a built-in string type

C-style strings

 Allocate just like an array, it's just that it's now an array of
characters

 A special “null character” (denoted `\0`) is stored at the end of
the string to indicate the end-of-string. If this terminator is
missing, then bad things happen (e.g., statements that try to
print the string will keep printing characters until they
eventually reach this character somewhere else in memory),

 To store a 5-character name, one must allocate 6 characters: 5
for the name, and one for the null character.

 Keeping up with all these details is why C-style strings are
disfavored compared to the newer C++-style strings

 Other useful functions for C-style strings are strcpy (copy a
string), strlen (get a string length), strcmp (compare two strings
--- note, if they match, the return value is zero, which is a little
confusing), etc. To use these functions, #include <cstring>

C-style strings

c-string.cc:

#include <iostream>

#include <cstring>

using namespace std;

int main()

{

char name[] = "David Sherrill";

cout << name << endl;

name[5] = '\0';

cout << name << endl;

strcpy(name, “Rollin”);

cout << name << “ has “ < < strlen(name) << “ characters.” << endl;

return 0;

}

Program output:
David Sherrill
David
Rollin has 6 characters

C++-style strings

 Safer for programming because they can scale their
size dynamically and the programmer doesn't need to
worry about making sure the terminating null
character is in the right place

 Easier to manipulate with high-level syntax

 To use, #include <string>

C++-style strings

c++-string.cc:

#include <iostream>

#include <string>

using namespace std;

int main()

{

string FirstName("David");

string SecondName("Sherrill");

string FullName = FirstName + " " + SecondName;

// The next line prints "David Sherrill" with a space between names

cout << FullName << endl;

return 0;

}

C++-style strings

 Safer for programming because they can scale their
size dynamically and the programmer doesn't need to
worry about making sure the terminating null
character is in the right place

 Easier to manipulate with high-level syntax

 To use, #include <string>

Chapter 4: Operators and Expressions

 Math operators

 Logic operators

 L-values and r-values

 Expressions

Operators

An “operator” is something that transforms data.
Common operators in C++ are as follows:

 = : Assignment operator, takes the value on the right
and puts it into the variable on the left.

 + : Addition operator

 - : Subtraction operator

 * : Multiplication operator

 / : Division operator

 % : Modulus operator (remainder after a division)

 … and others to be discussed in this section

Assignment operator

 A typical use of the assignment operator is as follows:
int x = 3;
This declares a variable called x, which is an integer, and assigns to it the
value 3.

 Note that the object on the left-hand side has to be a variable that can hold a
value. This is often called an “lvalue” by the compiler (something on the left-
hand side of an assignment operator). Variables make valid lvalues because
they can take a value. But constants, for example, are not lvalues because
they cannot change their values. So, a statement like
5 = 3;
is invalid because 5 is not a valid lvalue

 The above example line may seem like one no programmer would ever write.
But this is actually a very common mistake, because programmers often write
something like this as part of a test to check if two values are equal. This is
NOT to be done with the = operator. To check equality, use the == operator
(two equals signs), described later.

 Things that can be on the right-hand side of an assignment operator
(variables, constants) are called “r-values”

Math operators example

mathops.cc:

#include <iostream>

using namespace std;

int main()
{

cout << "2+3 = " << 2+3 << endl;
cout << "2-3 = " << 2-3 << endl;
cout << "2*3 = " << 2*3 << endl;
cout << "2%3 = " << 2%3 << endl;

}

Program output:
2+3 = 5
2-3 = -1
2*3 = 6
2%3 = 2

Modulus operator, %

 Hopefully everything in the previous example is
pretty obvious, but perhaps the last statement might
not be:

cout << ''2%3 = '' << 2%3 << endl;

prints the value 2. The modulus operator, %, does a
division and then prints the remainder. So, 2%3 is
the remainder of 2 divided by 3. Remember we're
dealing with integers (which is always true if we're
using %). So, 3 does not go into 2 (or, it goes into 2
zero times), so the result of the division is 0, and the
remainder is 2.

Increment and decrement operators,
++ and --

 Very frequently we need to increase the value of a variable by
one (especially if we're counting something). We could do this
simply by:

x = x + 1;

but this is so common that there's a shortcut operator for this:

x++;

 Likewise, there is a decrement operator, --, that decrements a
variable by 1:

x = x – 1;
is the same as
x--;

Increment/decrement example

 incdec.cc:

#include <iostream>

using namespace std;

int main()

{

int x = 3;

cout << "Started x at " << x << endl;

x++;

cout << "After x++, now x is = " << x << endl;

x--;

cout << "After x--, now x is = " << x << endl;

}

Program output:

Started x at 3
After x++, now x is = 4
After x--, now x is = 3

More about ++, --

 We can also include the increment and decrement operators as
part a larger statement or mathematical expression. For
example,

int x =3, y = 5;
y = x++; // this makes y (and x) be 4
cout << x++ << endl; // this prints 5

 Note that the above uses of ++ have a dual role: they increment
AND they allow the incremented value to be used in an
assignment or a print statement (etc.)

 What if you wanted to print the value of x and THEN
increment it by one? This can still be done by using ++ as a
prefix operator instead of a postfix operator, e.g.,
int x = 3; cout << ++x << endl; // this prints 3 and THEN
makes x=4

 Analogous statements hold for the decrement operator --

Operators +=, -=, *=, /=

 Frequently we want to take a variable, do some math
operation on it, and put the result back into the variable.
We can do this the long way, e.g.,

int x = 3; x = x + 2; // yields x=5

or the short way

int x = 3; x += 2; // also yields 5, but shorter

 x += 2 is a shortcut for x = x + 2;

 x -= 2 is a shortcut for x = x – 2;

 x *= 2 is a shortcut for x = x * 2;

 x /= 2 is a shortcut for x = x / 2;

Equality operators (==, !=)

 Earlier we made the point that = is an assignment
operator, not a test of equality. Tests of equality use
the equality operator, ==. Use of this operator
returns a boolean value (true or false). For example:

bool n = (2 == 3); // makes n 'false'
bool m = (1 == 1); // makes m 'true'
int x = 2, y = 3;
bool p = (x++ == y); // makes p 'true'

 != is an “inequality” operator that checks if two
quantities are not equal:
bool n = (2 != 3); // makes n 'true'

Relational operators (<, >, <=, >=)

 Just as we can check for equality or inequality, we
can also check if values are greater than (>), less than
(<), greater than or equal to (>=), or less than or
equal to (<=). The results again are booleans.

bool n = (2 > 3); // false
bool m = (1 > 1); // false
bool p = (1 >= 1); // true
int x = 2, y = 3;
bool q = (x <= y); // true

The logical NOT operator (!)

 We can reverse the value of a boolean result by the
logical NOT operator, denoted by the ! character

bool n = (2 > 3); // false
bool m = !(2 > 3); // true

 NOT takes 'true' and makes it 'false', or 'false' and
makes it 'true'

The logical AND operator (&&)

 AND (denoted &&) is a “binary” operator, like the +
operator, in that it requires two operands to work
with. If both operands are true, then the AND results
to true. Otherwise, the result is false:

bool n = (2 > 3) && (1 == 1); // false
bool m = (3 > 2) && (1 == 1); // true

 We can string &&'s together; if we do, ALL the
pieces have to be true for the result to be true:

bool n = (3 > 2) && (1 == 1) && (2 >= 2); // true

The logical OR operator (||)

 OR (||) is also a binary operator. It evaluates to true
if either of its operands are true.

bool n = (2 > 3) || (1 == 1); // true b/c (1==1) is

bool m = (2 > 3) || (3 > 4); // false b/c neither is

The logical XOR operator (^)

 The XOR (^), is for “exclusive OR”. It evaluates to
true if one and only one of the operands is true.

bool n1 = (3>2) ^ (1==1); // both true, XOR false
bool n2 = (3<2) ^ (1==1); // one true, XOR true
bool n3 = (3<2) ^ (1==2); // both false, XOR false

Expressions

 An expression is simply a bit of code that evaluates
to a value. For example, in the statement
cout << “2+3 = “ << 2+3 << endl;

2+3 is an expression that evaluates to 5.

 Logic tests are also expressions, because they
evaluate to True or False. For example,

(2+3 == 5)
evaluates to True

Use of equality, relational, and logical
operators

 The true power of the kinds of operators we've been
discussing becomes apparent when we see how they
can be used for program flow control. That is, we
can use them to let the program decide what to do
next based on the data it currently has. Although
program flow is an upcoming topic, we will go ahead
and demonstrate the “if” statement in conjunction
with the operators we've been discussing.

The 'if' statement

 'if' checks a boolean result and if it is true, then it executes
some statement. For example,
if (3==2)
cout << “Wow, 3=2? I'm surprised” << endl;

 If more than one line is to be executed by the 'if' statement,
then the lines must be grouped into a “code block” designated
by curly braces:
if (age > 65) {
cout << “Qualifies for senior discount” << endl;
price *= 0.85; // 15% discount

}

 It's a good idea to always use the braces, even if the 'if' needs to
execute only one line, because that way if you add a line later,
you don't have to remember to add the braces (common
mistake that can be hard to spot).

 Lines in the 'if' block to be executed are usually indented to
make the program more readable.

if/else

 Frequently we want to do one thing if the test
evaluated by 'if' comes up true, but another thing if it
comes up false. We can do that with the 'if/else'
combination.

if (age > 65) {
cout << “Qualifies for senior discount” << endl;
price *= 0.85; // 15% discount

}

else { // this section executes if (age <= 65)
cout << “Normal price” << endl;

}

Flow control with more elaborate logic

 The previous tools allow us to contruct rather
elaborate flow control for complex situations.

 Suppose we have a senior citizen discount for
customers 65 or over. But we have plenty of
customers on Friday, so the discount doesn't apply on
Fridays. But if the customer is 80 or over, the
discount will apply any day.

 Analyzing the above rules, we want the discount to
apply IF (a) the customer is 80 or over, OR (b) the
customer is over 65 and it's not Friday. The next
example shows how to check for this.

Logic example

discount.cc

#include <iostream>

using namespace std;

int main()
{
int age = 70;
string day("Sunday");

if ((age >= 80) || (age >= 65 && day != "Friday"))
cout << "Discount applies" << endl;

else
cout << "Discount does not apply" << endl;

}

Program output:
Discount applies

Grouping in logic statements

Notice the use of parentheses in the previous example:

if ((age >= 80) || (age >= 65 && day != "Friday"))

The parentheses make it clear that
(age >= 80)

is one way to get the discount, and that
(age >= 65 && day != “Friday”)

is the other way to get the discount (and since either way
works, there is an OR operator between the two possibilities).

If we didn't have the parentheses, it wouldn't be clear that the day
!= “Friday” condition is grouped with the age>=65 condition.
You should always carefully figure out the grouping of logic
conditions and apply parentheses where necessary to make the
grouping clear to the programmer and the compiler.

Operator precedence

 Similarly to the previous example, arithmetic operations should
be grouped by parentheses to make the order of operations
clear to the user

 There are “rules of precedence” that determine what order a
complex set of operations will be carried out in. In principle,
these rules could be used by the programmer to write code that
will execute correctly. But it might be impossible to
understand without someone doing needless work to trace the
order of operations. Make things easy on yourself and on
others. Just use parentheses.

 For example, the result of the following operation may not be
obvious:
int x = 10*3-6/2+1;
but the following is obvious:
int x = (10*3)-(6/2)+1; // 28

 FYI, * and / are evaluated first, followed by + and -

Faster && evaluations

Note: In an expression containing a sequence of AND
statements, like

if ((x>3) && (y>2) && (z>1))

As soon as any AND conditions fail, the program
leaves the expression and moves on to the next
statement. Therefore, to speed up execution, put the
statement most likely to fail (or easiest to check)
first.

Bitwise operators

 The logic operators (AND, OR, XOR, NOT) each have a
corresponding “bitwise” version that acts on individual bits (1's
and 0's) making up an integer.

 The bitwise versions use single symbols: & (AND), | (OR), ^
(XOR), and ~ (NOT).

 For example, the integer 4 is represented in binary as 100, and
the integer 3 in binary is 011. The binary OR for these two
integers is just the binary OR for each bit separately. The first
bit yields 1 (1 OR 0 is 1), the second bit yields 1 (0 OR 1 is 1)
and the third bit yields 1 again (0 or 1 is 1). So, all three bits
were 1, giving an answer of 111, which as an integer is 7. Thus
4|3=100|011=111=7.

 When applied to an integer, >> is a “bit shift” operator and will
shift all the bits a given number of places to the right. << shifts
the bits a certain number of places to the left. For example,
Num >> 2 shifts the bits in integer Num 2 places to the right.

Bitwise operators example

#include <iostream>

using namespace std;

int main()
{
int z;

z = 3 & 4; // 011 & 100 = 000 = 0
cout << "3&4 = " << z << endl;
z = 3 | 4; // 011 | 100 = 111 = 7
cout << "3|4 = " << z << endl;
z = 7 ^ 4; // 111 | 100 = 011 = 3
cout << "7^4 = " << z << endl;
z = 4 >> 2; // 100 >> 2 = 001 = 1
cout << “4>>2 = “ << z << endl;

}

Program output:
3&4 = 0
3|4 = 7
7^4 = 3
4>>2 = 1

Truth of numbers

In C++, 0 evaluates as false, and all other numbers
evaluate as true

The Ternary ?: Operator

(expression1) ? (expression2) : (expression3)

If expression1 is true, then return the value of
expression2, otherwise return the value of
expression3

z = (y%2) ? 1 : 0;

In this example, if y is odd, then y%2 has a remainder
(making expression1 true), and therefore z=1.
Otherwise, z=0.

Chapter 5: Program Flow Control

 More about if, else, and else if

 switch/case statements

 Loops: while, do, do...while, for

 break and continue statements

Nested if/else
We can have if/else statements inside if/else statements. For

example, see nested-if.cc:

#include <iostream>

using namespace std;

int main()
{
int donation;
cout << "Enter your donation amount in dollars: ";
cin >> donation;

if (donation > 300) {
cout << "You are now a member of our Patron's club!" << endl;
if (donation > 1000) {
cout << "Our president will contact you personally to thank you." << endl;

}
}
else {

cout << "Thank you very much for your donation." << endl;
}

}

The else if statement
Sometimes we have a chain of conditions that need to be evaluated.

The “else if” statement helps with these. The first condition
satisfied will determine what grade is printed, and once a grade is
printed, the other checks will not be tested.

grade.cc:

int main()
{
int grade;
cout << "Enter the student's numerical grade: ";
cin >> grade;

if (grade >= 90)
cout << "A" << endl;

else if (grade >= 80)
cout << "B" << endl;

else if (grade >= 70)
cout << "C" << endl;

else if (grade >= 60)
cout << "D" << endl;

else
cout << "F" << endl;

}

switch/case
Useful if there are only a few possibilities and we want to do

something different for each one. Often used with the enum data
type. Each section usually ends with a “break” statement, otherwise
the code keeps executing as one goes down the cases in the switch
statement. The “default” case catches any un-listed cases.

switch-case.cc:
int main()
{

enum category { Faculty, Staff, Grad, Undergrad };
int employee = Staff;

switch(employee) {
case Faculty:
cout << "Your parking fee is $400." << endl;
break;

case Staff:
cout << "Your parking fee is $350." << endl;
break;

case Grad:
cout << "Your parking fee is $200." << endl;
break;

case Undergrad:
cout << "Your parking fee is $100." << endl;
break;

default:
cout << "Wrong input, employee category not recognized." << endl;
break;

}
}

while loops

The while statement keeps executing a code block until
a given condition is no longer fulfilled. Here's a
countdown timer example that prints numbers from
10 to 0 in decreasing order:

while.cc:

int main()
{
int counter = 10;

while (counter >= 0) {
cout << counter << endl;
counter--;

}

}

Program output:
10
9
8
7
6
5
4
3
2
1
0

do...while loops

The do...while statement is like the while statement but
it ensures the code block executes at least once. In
this example, the counter will print once even if the
user enters a negative number.

do-while.cc:

int main()
{
int counter;
cout << "Where should I start the countdown? ";
cin >> counter;

do {
cout << counter << endl;
counter--;

} while (counter >= 0);

}

for loops

The for loop is the most commonly encountered loop in
C++. We set a variable (usually an integer) to some
initial value, we loop as long as some condition is met,
and at each iteration, we typically increment or
decrement the variable. The general syntax is:

for (var = initial_value;
exit condition executed at beginning of each loop;
statement executed at end of each loop) {

code block executed each loop;

}

Example:
for (int i=0; i<5; i++) { // prints i from 0 to 4,
not 5

cout << “i = “ << i << endl;
}

Nested for loops

You can have a for loop inside another for loop. For
example, we might want to print out all the elements
of a matrix.

print-matrix.cc:

int main()
{
int matrix[2][2] = { {0, 1}, {2, 3} };

cout << "Printing 2x2 matrix:" << endl;

for (int row=0; row < 2; row++) {
for (int col=0; col < 2; col++) {
cout << matrix[row][col] << " ";

}
cout << endl; // line break at end of row

}

}

Output:

Printing 2x2 matrix:
0 1
2 3

The continue statement

Inside a loop, “continue” hops back up to the
beginning of the loop

continue.cc:

int main()
{
int counter;
cout << "Printing all odd numbers between 1 and 5, inclusive: " << endl;
for (int i=1; i<=5; i++) {

if (i%2 == 0) continue; // skip the even ones
else cout << i << " ";

}
cout << endl;

}

The break statement

We briefly encountered “break” above in the switch/case
example. It breaks out of a switch/case statement or a
loop. The example below also demonstrates a for loop
with an empty middle statement (no simple condition is
checked at the beginning of the loop).

break.cc:

int main()
{
int counter;
cout << "Find first odd number > 3 that's divisible by 3: " << endl;
for (int i=4; ;i++) {

if ((i%2 != 0) && (i%3 == 0)) { // not even, and divisible by 3
cout << "Found it! It's " << i << endl;
break;

}
}

}

Chapter 6: Functions

 The purpose of functions

 Defining vs declaring functions

 Sending values to functions

 Getting values from functions

 Pass-by-value

 References

 Inline functions

The purpose of functions

The primary purpose of functions is for code re-use. If
you need to repeat a certain piece of code more than
a few times, it is much better to implement it as a
function --- this allows the code to be defined just
once, and then called as many times as needed.
Then, if changes are required, only the one function
needs to be changed, not many repeated instances of
the code. This makes the code much easier to
maintain.

Example: The grade list

In Chapter 5 we looked at program flow control and the “if
/ else if / else” structure using the example grade.cc, in
which the user typed a numerical score and the program
printed out the corresponding letter grade according to a
built-in table (90+ = A, 80+ = B, etc.).

Suppose we want to automate this procedure and have the
program read a list of numerical scores and then print
them out along with the corresponding grades. We'd
probably store the scores in a file that could be read; let's
skip this part for now and just write the scores into the
program. It would be silly to repeat the score-to-grade
translation code for every score in the list; instead, we
put it into a function that can be called as many times as
desired.

gradelist.cc, Part I
#include <iostream>
#include <vector>
#include <string>

using namespace std;

int main()
{
char grade(int score); // declare the function grade()

vector<int> scores; // no parentheses if we want to make an empty vector
// We could imagine reading the scores from a file and pushing them
// into the scores vector one at a time, until the end of file is
// reached. For simplicity, here we'll just directly push back 3 values.
scores.push_back(67);
scores.push_back(93);
scores.push_back(82);

for (int i=0; i<scores.size(); i++) {
int thisScore = scores[i];
char thisGrade = grade(thisScore); // here we call function grade()
cout << "Score " << thisScore << " is grade " << thisGrade << endl;

}
}

Analysis of Part I

 vector<int> scores;
The numerical scores are put in a vector that holds integers.
Writing it this way instead of, say, scores(3), sets up an empty
vector and we can add however many scores to it, one at a
time, with the push_back() function

 int thisScore = scores[i]; char thisGrade = grade(thisScore);
Within the loop over scores, we use variables thisScore and
thisGrade. Note that they are declared as type int and char,
respectively, inside this loop. This means these variables will
only exist within the loop (their scope is restricted to the loop).
That's fine because we don't need/want them outside the loop.

 We set the grade according to
char thisGrade = grade(thisScore);
This is where we call the function grade(), we pass it the
current score as an argument, and it returns to us a single
character representing the corresponding grade ('A', 'B', etc.)

Function declaration

 Near the top of the program we have
int main()
{

char grade(int score);
…
}

 This bit of code is known as the declaration of function
grade(). It is also called the function signature or the function
prototype. It tells the program we are about to use a function
called grade. It takes as input a single value, an integer, and it
returns as output a character (here, the grade 'A', 'B', 'C', 'D', or
'F'). The variable(s) used as input to the function are called the
function arguments or parameters. It only matters how many
and of what type: the names used for function arguments (here,
score) are irrelevant in the declaration and they don't have to
match those given subsequently in the function definition (see
below).

Scope of function declarations

In this example, we declared function grade() inside function main().
That means we can only use function grade() inside function
grade() inside function main(), just like any variable declared inside
function main() can only be used inside function main().

If we wanted to use grade() in other functions in the program (there
aren't any other functions in this simple example, but there would
be in a typical program), then we would need to declare grade()
outside the scope of main(). To make grade() usable by the entire
file grade.cc, we move it outside of main() like this:

char grade(int score);

int main()
{
vector<int> scores;
…

}

gradelist.cc, Part II

/ Here we define the function grade()
// The function converts a numerical score into a letter
grade
char grade(int score)
{
if (score >= 90)

return('A');
else if (score >= 80)

return('B');
else if (score >= 70)

return('C');
else if (score >= 60)

return('D');
else

return('F');
}

Function definition

 The above listing, Part II of gradelist.cc, is the function
definition. It defines what the function actually does.
The definition needs to be consistent with the
declaration in the sense that they need to use the same
name for the function, and they need to agree on how
many arguments, what type they are, and what order
they're in.

 The function definition can use different names for the
function arguments than the function declaration
(although this can be poor practice because it can get
confusing). Nevertheless, the names in the first line of a
function definition must be consistent with the body of
the definition. Since we called the input integer 'score'
in the first line of the definition, we stick to this name in
the body of the function (e.g., if (score >= 90) ...).

Analysis of Part II

 Note that our grade() function has all the bases covered:
the final “else return('F');” ensures that no matter what
score is input into the function, we always get a letter
grade character out of it. If a function is supposed to
return a character, then the programmer must ensure that
the function will always return a character, no matter
what input it has been passed.

 What if the programmer tries to mess with the function
and provide it invalid input, like calling it with a
floating-point number instead of an integer grade? For
example, grade(90.3)? Because we declared and defined
grade() to take integers, this will result in a compiler
error when we try to compile the program. If we have
non-integer scores, we would need to re-write the
program to work with floats or doubles instead of
integers.

Functions with no arguments, and type void

 It's perfectly fine to have a function that takes no
arguments; that just means the function does the same
thing every time it's called. In such a case, one can
either just have an empty argument list (e.g., func()) or
replace the argument list with the keyword “void” (e.g.,
func(void)) in the declaration and definition. When
calling the function, it would be called like “func()” with
no arguments.

 Likewise, if the function doesn't return anything, we say
it returns “void”.

 As an example, let's consider a function that prints some
kind of banner (maybe just a simple row of asterisks). It
doesn't need arguments for input, and it doesn't need to
return anything. It just prints. Such a function is
presented in example banner.cc.

Example banner.cc

#include <iostream>

using namespace std;

int main()
{
void banner(void);

banner();
cout << "Hello world!" << endl;
banner();

}

void banner(void)
{
cout << "**" << endl;

}

Program output:

Hello world!

Functions with multiple arguments

 It's easy to generalize to the case of multiple
arguments in a function: in the declaration and
definition, just list the arguments one at a time, with
their types. Strictly speaking, one does not need to
give the arguments names in the declaration, but it is
common practice to do so.

 For example, consider a function that computes the
hypoteneuse (the long side) in a right triangle,
according to the Pythagorean theorem, c =
sqrt(a2+b2), where sqrt() is the square root function
(defined in C++ by the cmath header file).

Example hypoteneuse.cc

#include <iostream>
#include <cmath>

using namespace std;

int main()
{
double hypoteneuse(double a, double b);
double a, b, c; // three sides of a right triangle
cout << "Enter the length of side a of right triangle: ";
cin >> a;
cout << "Enter the length of side b of a right triangle: ";
cin >> b;
c = hypoteneuse(a, b);
cout << "The length of the hypoteneuse c is " << c << endl;
return 0;

}

double hypoteneuse(double a, double b)
{
double c = sqrt(a*a + b*b);
return c;

}

Functions with default parameters

 Frequently, we will call a function with one (or more) of
the arguments being the same from call to call. In such
a case, it can be more convenient to assign a default
value to this argument.

 For example, we could use the ideal gas law, PV=nRT,
to calculate the product of pressure times volume (PV) if
we know the number of moles of gas (n), the gas
constant (R), and the temperature in Kelvin (T). We
might typically assume 1 mole of gas (n=1), and just
vary the temperature (T). But we'd like to retain the
flexibility to do computations with different numbers of
moles of gas (n) on occasion. Having a function expect
a default value n=1 is the solution.

Example gas-law.cc
#include <iostream>

using namespace std;

int main()
{
double PV(double T, double n = 1.0); // default values here
double PV1 = PV(298.0);
cout << "PV for n=1 and T=298 is " << PV1 << " atm*L" << endl;
double PV2 = PV(298.0, 2.0); // this time don't use default n
cout << "PV for n=2 and T=298 is " << PV2 << " atm*L" << endl;
return 0;

}

// function computes pressure-volume product PV = nRT, given T and n
// T is in Kelvin, n is in moles, and P*V is in atmospheres * Liters
double PV(double T, double n) // default values not here again
{

double R = 0.08206; // in L*atm/(mol*K)
double PV = n * R * T;
return(PV);

}
Program output:
PV for n=1 and T=298 is 24.4539 atm*L
PV for n=2 and T=298 is 48.9078 atm*L

Overloaded functions

 In the previous example, we saw how the same
function could be called with different numbers of
parameters, depending on whether some of the
parameters are left at their default values or not

 Function overloading generalizes this concept: if we
have two (or more) functions that behave similarly
but act on different data types, we can call these
functions by the same name, and the correct function
will be called depending on the arguments that are
passed.

Example format-print.cc:
#include <iostream>
#include <stdio.h> // for printf() below

using namespace std;

int main()
{
void format_print(int a);
void format_print(double a);
int a = 42;
double b = 3.1415926;
format_print(a);
format_print(b);
return 0;

}

void format_print(int a)
{
printf("%4d\n", a); // print an integer within 4 spaces

}

void format_print(double a)
{
printf("%4.2lf\n", a); // print a double within 4 spaces,

// and 2 digits after the decimal
}

Program output:
42

3.14

Recursion

Recursion is when a function calls itself. This can be very
useful, but one also has to be very careful to make sure
that the recursion eventually stops --- otherwise, the
recursion could go on forever and the program will
never stop running.

In the next example, we use recursion to compute the
factorial of an integer. For example, 5! = 5*4*3*2*1 =
120. Since this is a simple sequence, we can evaluate
the factorial of a number n by multiplying n by the
factorial of (n-1). We just have to be sure to stop when
we reach 1.

Note: this routine only works for modest-sized integers,
otherwise we will overflow the integer we're storing the
result in.

Example of recursion (factorial.cc)

#include <iostream>

using namespace std;

int main()
{
int factorial(int a);
int x = 5;
cout << x << " factorial is " << factorial(5) << endl;
return 0;

}

int factorial(int a)
{
if (a == 1) return 1;
else return(a * factorial(a-1));

}

Output:
5 factorial is
120

Function parameters are
“pass by value”

 When a function is called, the values of variables are
passed to the function, not the variables themselves.
This means that any change to a variable inside the
function does not change the variable in the calling
function.

Example pass-by-value.cc
include <iostream>

using namespace std;

int main()
{
int square(int x);
int x = 2;
cout << "Before calling square(), x is " << x << endl;
int x2 = square(x);
cout << "The square is " << x2 << endl;
cout << "After calling square(), x is " << x << endl;
return 0;

}

int square(int x)
{
x = x * x;
return(x);

}

Program output:
Before calling square(), x is
2
The square is 4
After calling square(), x is 2

References

Sometimes the “pass by value” convention in C++ is
inconvenient. We occasionally want a change to a
variable's value to be reflected in the calling
function. In such cases, we can use a “reference”.
You can think of a reference as a way of telling the
compiler we don't want to pass a copy of the
variable, but we want to pass the variable itself (this
is sometimes called “pass by reference”).

This is trivially easy to accomplish: we just add an
ampersand (&) after the type of the variable(s) we
want to be a reference. We do this in the function
delaration and also in the function definition.

Reference example (swap.cc)
#include <iostream>
using namespace std;

int main()
{
void swap(int& x, int& y); // void swap(int &x, int &y); also works
int a = 1, b = 2;
cout << "a = " << a << " b = " << b << endl;
swap(a,b);
cout << "a = " << a << " b = " << b << endl;
return 0;

}

void swap(int&x, int& y)
{
int temp;
temp = x;
x = y;
y = temp;

}

Output:
a = 1 b = 2
a = 2 b = 1

Inline functions

When a function is called, there is some computational overhead
associated with it. For typical functions that are only called a modest
number of times, this is not noticeable. However, if a small function is
called many, many times, then the program will be slowed down by all
the function calls.

Inline functions were created to handle this situation. The “inline”
directive asks the compiler to expand the function right where it is
called during compilation (“at compile time”), instead of issuing a
function call while the program is running (“at runtime”). It is as if the
programmer cut and pasted the function contents everywhere the
function is called --- but the compiler does the dirty work for us.

A disadvantage of inline functions is that they cause the compiled code to
become significantly larger; hence, they are only recommended for
very short functions.

Specifying inline functions

The inline function should be defined before where it is called. The
function does not need to be declared.

Any functions defined inside a class definition are assumed to be
inlined.

#include <iostream>
using namespace std;

inline double half(double a)
{
return(a/2.0);

}

int main()
{
double x = 22.4;
double y = half(x);
cout << "x = " << x << " y = " << y << endl;
return 0;

}

Chapter 7: Pointers and Dynamic Memory
Allocation

 Pointers

 Dynamic memory allocation: new/delete,
malloc()/free()

 const and pointers, const and references

 Trapping failures to new/malloc()

 Common pointer problems

 Using pointers or references for greater efficiency in
function calls

 NULL pointers

Defining pointers

 A pointer is a variable that holds a memory address;
typically this is the location in memory associated
with some other variable

 For example, variable “x” may hold an integer, and
that integer may be stored in main memory at some
location such as (in hexidecimal) 0x329a. We could
store that memory location (0x329a) in a special
variable called a pointer (with some other name, like
“x_ptr”). That way we'd know where variable “x” is
located in memory

 Knowing the memory location of “x” gives us more
control over “x”

Pointer example

Example pass-pointer.cc:
#include <iostream>

using namespace std;

int main()
{
int square(int* x);
int x = 2;
cout << "Before calling square(), x is " << x << endl;
int x2 = square(&x);
cout << "The square is " << x2 << endl;
cout << "After calling square(), x is " << x << endl;
return 0;

}

int square(int* x)
{
*x = (*x) * (*x);
return(*x);

}

Output:
Before calling square(), x is
2
The square is 4
After calling square(), x is 4

Overview of the example

 The pass-pointer.cc example is the same as the pass-by-
value.cc example in the previous chapter, except that we
converted the function square() to take a pointer to an integer
instead of an integer. That is, when we call square(), we are
passing the memory location of the integer we want to square,
not the integer itself.

 Because we have the memory location of the variable, we can
manipulate it directly and change it in the subroutine --- just
like a reference

 Original C did not have references; pointers were the original
way to handle references (although they are more general and
more powerful in some circumstances than references)

 Note that function calls involving pointers are still pass-by-
value; the value we pass is now the value of the memory
location

Details of the example

 The function declaration is “int square(int* x)”. The star indicates that
we are passing not an integer, but a pointer to an integer. Like the &
sign denoting a reference, the * sign can go anywhere between the type
(int) and the variable (x). For example, “int square(int *x)” is also
valid.

 The first line of the function definition also uses a star in the same
way: “int square(int* x)”.

 When calling the function, we pass not the value of x, but the memory
location of x. In this context, an ampersand (&) takes the address of x.
Thus we call the function like this: “int x2 = square(&x);”

 Inside the function, because we passed a memory address, “x” now
refers to the memory location holding the original variable “x”, not the
original variable “x” itself. In this example, we don't want to
manipulate the memory address of x, we want to manipulate the value
it holds. We use “*x” to mean “the variable being held at memory
location x”.

 Unlike the pass-by-value.cc example, this example does change the
original variable x inside the function square(), because we are
manipulating the original location of the data, not a copy of it

More about memory addresses

Memory addresses are usually very long numbers
expressed in hexadecimal. For example, code such
as the following:

int main()
{
int x = 2;
int* x_ptr = &x;
cout << "The memory location of x is: " << x_ptr << endl;
return 0;

}

produces the output

The memory location of x is: 0x7fff5ad428ac

Memory locations are determined by the computer at
runtime and may differ each time the program is run

Sizes of pointers

As we just saw, pointers contain long memory
addresses. They have to be large enough to hold
these long memory addresses. Hence, the size of a
pointer is frequently larger than the size of the data it
points to. For example, although a character is only
one byte (8 bits), a pointer to a character (or any
other data type) will typically be 64-bits for a 64-bit
operating system

Uses for pointers

There are two main uses for pointers:

 Pointers are an alternative to references. Because the
syntax for references is simpler (no need for lots of
asterisks everywhere), references are now preferred
for this use

 Pointers allow one to dynamically allocate memory
for arrays, and to access and traverse arrays

Accessing arrays with pointers
Example print-array.cc:
#include <iostream>
using namespace std;

int main()
{
void print_array(int* x, int

length);
int x[3] = {2, 4, 8};
print_array(x, 3);
return 0;

}

void print_array(int* x, int length)
{
cout << "Printing array:" << endl;
for (int i=0; i<length; i++) {

cout << x[i] << " ";
}
cout << endl;

}
Output:
Printing
array:
2 4 8

The name of an array is a
pointer; we don't need to
pass &x to print_array()
because x is already a
pointer

Traversing arrays with pointers

We can use an alternative syntax in the print_array()
function from the previous example:

void print_array(int* x, int length)
{
cout << "Printing array:" << endl;
for (int i=0; i<length; i++) {

cout << *x++ << " ";
}
cout << endl;

}

Now instead of accessing element i of x via x[i], we use *x++.
*x gets the value of the variable pointed to by x, and the ++
increments the pointer to point to the next item in the array
(after *x is determined). Variable i is only used to count.

Dynamic memory allocation

In the last example, we made array x to contain 3
elements in main():
int x[3] = {2, 4, 8};

This is an example of static memory allocation; the
compiler knows at compile time that an array of 3
integers is needed.

But what if we don't know how many integers we need
until after the program has started running? Syntax
like the following does not work:
int n=3;
int x[n] = {2, 4, 8}; // won't work

Dynamic memory allocation

Dynamic memory allocation is a way to allocate memory
(for, e.g., an array) whose size isn't necessarily known at
runtime. We previously saw examples of using the
Standard Template Library (STL) “vector” to do such a
thing. Dynamic allocation of basic arrays may be more
efficient if we have larger-sized arrays. To allocate an
integer array of length n (where n is a variable), we do:

int n = 3;
int* array = new int[n];

We can also use this style even if we do know the length at
compile time, e.g.,

int* array = new int[3]; // also works

Freeing memory

If we allocate an array like this:

int* ptr = new int[10];

then when we're done with it, we should free the memory
using

delete[] ptr; // frees the memory pointed to by ptr

We must handle this step ourselves; the pointer itself will
be deleted when it goes out of scope (e.g., at the end of a
function it's defined in), but the memory it points to will
not automatically be deleted --- unless we use “smart
pointers” (see below).

Allocating/deleting a single variable

We've seen how to dynamically allocate an array, and
how to delete it. For a single variable, the
corresponding syntax for a variable of type “Type”
is:

Type* ptr = new Type;
delete ptr;

Note there are no brackets in the delete call.

malloc() and free()

The “new/delete” syntax is the preferred C++ way to allocate and
delete variables dynamically

The old way to do this in C was to use malloc() (memory
allocation) and free(). Many programs still use malloc()/free(),
so it's good to be familiar with them

malloc() takes a number of bytes to allocate. If we want to
allocate, say, 3 integers, then we compute the number of bytes
as (3*sizeof(int)). malloc() returns a pointer of type (char*).
Usually we convert this pointer to the type we want with a
“cast”, like this:
int* array = (int*) malloc(3*sizeof(int));

When we're done with the array, we free up the memory for other
uses by passing the pointer to the function free(), like this:
free(array);

Example of new/delete, free/malloc

Example dynamic-allocation.cc:
#include <iostream>
#include <malloc.h> // for malloc() and free() calls
below
using namespace std;

int main()
{
void print_array(int* x, int length);
int* arr1 = new int[3];
int* arr2 = (int*) malloc(3*sizeof(int));
for (int i=0; i<3; i++) {

arr1[i] = i;
arr2[i] = i*2;

}
print_array(arr1, 3);
print_array(arr2, 3);
delete[] arr1; // made with new, must use delete[]
free(arr2); // made with malloc, must use free()
return 0;

}

void print_array(int* x, int length)
{
cout << "Printing array:" << endl;
for (int i=0; i<length; i++) {

cout << *x++ << " ";
}
cout << endl;

}

Output:
Printing
array:
0 1 2
Printing
array:
0 2 4

Pointers and const

We've seen before that “const” designates a variable as a
constant: it does not change. When we talk about
pointers and const, there are three possibilities:

const int* ptr – ptr is a pointer to a constant int. The
pointer could change (it could point to something else),
but the thing it points to can't change.

int* const ptr – ptr is a constant pointer to an int. The
pointer cannot point to anything else. But the int it
points to could change.

const int* const ptr – ptr is a constant pointer to a constant
int. Neither ptr nor what it points to can change.

This is easiest to remember as follows: “const” modifies
the type or variable name immediately to its right.

const example

Our print_array() function does
not change the values pointed
to: hence, we could tell the
compiler we are passing a
pointer to constant ints.

Could we go on to make x a
“const int* const x”? No,
because we increment x inside
print_array(). However,
because C++ is call by value, x
is only incremented inside
print_array(), not outside it. So
x in main() isn't changed
anyway.

Example print-array3.cc:
#include <iostream>
using namespace std;

int main()
{
void print_array(const int* x, int

length);
int x[3] = {2, 4, 8};
print_array(x, 3);
return 0;

}

void print_array(const int* x, int length)
{
cout << "Printing array:" << endl;
for (int i=0; i<length; i++) {

cout << *x++ << " ";
}
cout << endl;

}

Another const example

We can rework the
previous example to
make use of a constant
pointer to a constant int,
we just have to avoid the
“*x++” call inside
print_array(). That's
easily accomplished (see
right).

example print-array4.cc:
#include <iostream>
using namespace std;

int main()
{
void print_array(const int* const x, int length);
int x[3] = {2, 4, 8};
print_array(x, 3);
return 0;

}

void print_array(const int* const x, int length)
{
cout << "Printing array:" << endl;
for (int i=0; i<length; i++) {

cout << x[i] << " ";
}
cout << endl;

}

When are const's worth it?

Example print-array4.cc looks basically the same as print-
array.cc but it has const's everywhere. Why bother?

Using const when appropriate is considered good
programming practice because it gives an extra clue to
the compiler about what should be allowed to change
when. In return for this extra information, the compiler
will provide an error if the const rules are ever broken.
This can be a way to track down bugs easier.

On the other hand, one must admit that keeping track of all
the const's can be a bit of trouble for the programmer.
The cost/benefit analysis of using them must ultimately
be decided by the programmer.

Passing arguments to functions as pointers
or references for efficiency

We have seen that both references and pointers allow us a way to
have the program modify the parameters passed to a function.

Often it is advantageous to use pointers or references as function
arguments even if we do not need to change the values of the
parameters in a function.

Because function calls in C++ are pass-by-value, all the
arguments are copied when the function is called. If they are
simple integers, doubles, etc., or reference variables or
pointers, this is no big deal, it's just a few bytes per argument.
But if one of the arguments is a data structure or class, there
can be enormous overhead copying it before it is passed to the
function. Hence, for such large data types as
classes/structures, it is better to pass a reference or pointer,
even if we don't intend to modify that argument.

const and references

If we did want to pass an argument to a function as a
reference for reasons of efficiency, but we didn't
want the function to modify that argument, we could
tell the compiler this by adding “const” to the
argument, like so:
void compute_something(const int& number);

Note that the original variable “number” in the
calling function need not be a “const int” --- we are
only treating it as a const int within this function.
C++ also allows us to declare the function like this:
void compute_something(int& const number);

which will be equivalent for references.

Pointer problems

Pointers are very powerful, but that power can easily get a programmer
into trouble. Debugging problems with pointers is the hardest thing
about programming in C++. Here are some tips to keep in mind:

Always free dynamically allocated memory when you're done with it.
Failure to do this means the program starts eating up more and more
memory: a memory leak. Use “delete” after “new,” and free() after
malloc() --- and never mix these up.

Never free memory more than once. If you have two pointers pointing to
the same chunk of allocated memory, only call delete/free on one of
them.

Never attempt to free memory you never actually wound up allocating
(for example, this can happen if the allocation is inside an “if”
statement but the code to free the memory is outside the “if”).

Never attempt to access memory beyond that actually allocated. If you
created an array of length 3, don't try to access the fourth element.

Don't try to access a location in memory after it has been freed with
delete/free.

Memory corruption

If pointers are not handled properly, it is possible to wind up with
a pointer pointing to memory it shouldn't point to. If the
program writes to this memory, in the best case, the program
catches that something is wrong, and we get a segmentation
fault or other error. In the worst case, the write actually occurs
--- but with unpredictable results! Suddenly, an array that held
perfectly good data now becomes corrupted because new data
has been written into it by accident, when the new data was
supposed to go into some other memory location.

Such a situation gives rise to “non-local” effects, when one part
of the program that used to work perfectly now no longer does,
because the data it uses got corrupted by a pointer going wrong
in some completely different part of the code. This can be
very hard to debug. Debugging tools like “valgrind” are useful
in such situations.

NULL pointers

To help avoid some of the common mistakes with pointers, it's
good to initialize all pointers to NULL if we are not
immediately assigning them a valid memory address when
they are defined. This is a good idea because a definition like
this:

int* ptr; // bad --- could point anywhere until address assigned
// (and we might forget to assign it a valid address!)

creates a pointer that points to some random memory location.
If we use it before we assign it a value, all sorts of mayhem
can ensue. It is safer in a situation like this to assign the
pointer immediately to NULL; then we can easily check
whether the pointer points to a valid memory address, or
whether it points to NULL.

int * ptr = NULL; // good --- we can check for NULL before
// we try to use the pointer

What if dynamic allocation fails?

If the computer is low on available memory, then dynamic
memory allocation (whether via new or free) might fail.
If this happens, our program will crash soon thereafter,
unless we can detect the failure to allocate, and handle it
gracefully.

In C-style malloc(), if malloc() fails, it returns NULL. So,
we can check like this:

double *array;

if ((array = (double *) malloc(length*sizeof(double))) == NULL)
{

fprintf(stderr,"init_array: trouble allocating memory \n");
fprintf(stderr,"size = %ld\n",size);
// do something to abort here

}
else return(array);

Handling failure of “new”

If we use the more modern “new” to create memory dynamically,
we can catch allocation failures using “exception handling”
and the try/catch structure. std::bad_alloc is a pre-defined
exception. More on exception handling later.

Example catch-new-failure.c:
#include <iostream>
using namespace std;

int main()
{
try {

int* ptr = new int[9982381213]; // too big?
cout << "Created memory." << endl;
delete[] ptr;

}
catch (bad_alloc) {

cout << "Failure to allocate memory." << endl;
}
return 0;

}

new(nothrow)

If this exception handling business seems to
complicated for now, one can alternatively tell new
to return NULL (like malloc()) instead of throwing
an exception.

Example new-nothrow.cc:
#include <iostream>
using namespace std;

int main()
{

int* ptr = new(nothrow) int[9982381213]; // too big?
if (ptr != NULL) {

cout << "Created memory." << endl;
delete[] ptr;

}
else

cout << "Failure to allocate memory." << endl;

return 0;
}

Smart pointers

Keeping track of whether or not we need to free
dynamically allocated memory, and when, can be a
bit of a pain. That's why “smart pointers” were
created.

A smart pointer is a C++ class that tracks when it is ok
to free dynamically allocated memory, and it
facilitates the automatic freeing of such memory at
the appropriate time. Otherwise, it acts like a regular
pointer.

This incredibly useful technique is most often
associated with classes, so we will defer further
discussion to Part II of the notes.

Chapter 8: Streams

 Stream basics

 Formatting std::cout output

 Reading variables and strings from std::cin

 File streams

 Writing a file

 Reading a file

 Stringstream

Stream basics

Our first example was the “Hello, world!” program, which prints
out a simple message:

std::cout << “Hello, world!” << std::endl;

This is already an example of streams... std::cout is an output
stream that prints to “standard output,” i.e., the screen.
Similarly, std::cin is an input stream that reads from the
keyboard:

std::cin >> number;

Streams in C++ are a generic way to handle input and output.
The stream insertion operator, <<, can be used to write to the
screen, to a file, to a device, etc. Likewise, the stream
extraction operator, >>, can be used to read from the keyboard,
from a file, etc. We just replace std::cin and std::cout with
whatever stream we need!

Popular C++ Streams

std::cout – standard output, usually prints on the screen /
terminal window

std::cin – standard input, usually reads from the keyboard

std::cerr – standard output stream for errors, usually prints
on the screen like cout, but could be “redirected”
elsewhere

std::fstream – input/output for files

std::ofstream – output stream for files

std::ifstream – input stream for files

std::stringstream – read/write from/to strings; useful for
formatting strings or using strings for data conversions

Formatting cout output

We can format the output coming out of cout in
various ways. We do this by using “manipulators”
on the stream. We already know about std::endl,
which inserts a newline character. Other
manipulators are:

 dec – interpret as decimal

 hex – interpret as hexadecimal

 oct – interpret as octal

 fixed – use fixed-point notation (default)

 scientific – use scientific notation (e.g., 6.626E34)

More manipulators

The following additional manipulators are available if we
#include <iomanip>:

 setprecision – give number of digits to print after
decimal

 setw – set the width of the field to print in

 setfill – set a character to fill in empty space

 setbase – set the base, like using dec/hex/oct in previous
slide

 setiosflag – set flags using a bitwise mask; available
flags are of type std::ios_base::fmtflags.

 resetiosflag – restore default values to flags set by
setiosflag

Formatted cout example 1
Example print-numbers.cc:
#include <iostream>
#include <iomanip>
using namespace std;

int main()
{
int x = 255;
cout << "decimal: x = " << x << endl;
cout << "octal : x = " << oct << x << endl;
cout << "hex : x = " << hex << x << endl;
cout << setiosflags(ios_base::hex|ios_base::showbase|ios_base::uppercase);
cout << "In hex with base notation: x = " << x << endl;
cout << resetiosflags(ios_base::hex|ios_base::showbase|ios_base::uppercase);
cout << "After resetting flags: x = " << x << endl;

}

Program output:
decimal: x = 255
octal : x = 377
hex : x = ff
In hex with base notation: x = 0XFF
After resetting flags: x = 255

Formatted cout example 2
Example print-numbers2.cc:
#include <iostream>
#include <iomanip>
using namespace std;

int main()
{

double h = 6.62606957E-34; // Planck's constant in J*s
cout << "h = " << h << endl;
cout << "Setting precision to 4 digits after the decimal" << endl;
cout << setprecision(4);
cout << "h = " << h << endl;
cout << "Print h (right-aligned) in a field 12 spaces long" << endl;
cout << "h = " << setw(12) << h << endl;
cout << "Note: setprecision() affects future numbers sent to cout" << endl;
cout << " but setw() only affects the very next thing sent to cout" << endl;

}

Program output:
h = 6.62607e-34
Setting precision to 4 digits after the decimal
h = 6.626e-34
Print h (right-aligned) in a field 12 spaces long
h = 6.626e-34
Note: setprecision() affects future numbers sent to cout
but setw() only affects the very next thing sent to cout

cin example
We can use std::cin to read plain old data types from the

keyboard. It also reads strings … however, it assumes
whitespace characters (e.g., a space) begin a new string. To
read a string with spaces in it, we need to use getline(cin,
string).

Example cin.cc:
#include <iostream>
using namespace std;

int main()
{
int i;
string a;
cout << "Enter an integer:" << endl;
cin >> i;
cout << "You entered " << i << endl;
cout << "Enter a string with no spaces:" << endl;
cin >> a;
cout << "You entered " << a << endl;
cout << "Enter a string with spaces:" << endl;
getline(cin, a);
cout << "You entered " << a << endl;

}

Example program input/output:
Enter an integer:
32
You entered 32
Enter a string with no spaces:
David Sherrill
You entered David
Enter a string with spaces:
You entered Sherrill

File streams

We can read and write files with streams in a very similar fashion as we use cin
to read from the keyboard or cout to write to the screen.

1. #include <fstream>

2. create a file stream variable, like this:
fstream outFile;

3. Open the file by providing the filename and any arguments saying whether
this is for input, output, or both; if the file is human-readable text (default) or
non-human-readable binary format (allowing more compact files), whether
the new file should delete any existing file of this filename (“trunc” option)
or whether it should append onto existing files (“app” option), etc. For
example:
outFile.open(“output.dat”, ios_base::out|ios_base::trunc)

4. Alternatively, steps 2+3 can be combined in a constructor like this:
fstream outFile(“output.dat”, ios_base::out|ios_base::trunc);

5. Make sure the file is open before reading/writing:
if (outFile.is_open()) {

// do stuff
outFile.close(); }

File stream options

 ios_base::in – open file for reading

 ios_base::out – open file for writing

 ios_base::binary – open binary file (text is the default)

 ios_base::trunc – delete any file that might already exist
with this name (default)

 ios_base::app – append to the end of any existing file
with this name

 ios_base::ate – start working at the bottom of the file

Note: by default, files will be open for both read and write
access, if neither ios_base::in nor ios_base::out are
specified.

Writing to a text file
Example writefile.cc:
#include <iostream>
#include <fstream>
using namespace std;

int main()
{
ofstream outFile;
outFile.open("summary.txt", ios_base::out);
if (outFile.is_open()) {
cout << "Beginning to write file summary.txt" << endl;
outFile << "Here is your summary:" << endl;
outFile << "Everything is working well today!" << endl;
outFile.close();
cout << "Done writing to file!" << endl;

}

return 0;
}

This creates a text file called “summary.txt” in the current working directory and prints a couple
of lines to it.

Reading a text file
#include <iostream>
#include <fstream>
using namespace std;

int main()
{
ifstream inFile;
// read the file we wrote in writefile.cc
inFile.open("summary.txt", ios_base::in);
if (inFile.is_open()) {
cout << "Beginning to read file summary.txt" << endl << endl;
string lineIn;
while (inFile) {
getline(inFile, lineIn); // read entire line at a time
if (lineIn.length() > 0) // final read attempt will return a blank line
cout << lineIn << endl; // print line if not empty

}
inFile.close();
cout << endl << "Done reading from file!" << endl;

}
else {
cout << "Error: Could not open file for reading." << endl;

}
return 0;

}

Reading beyond end-of-file

• Notice in the previous example that or final getline
returns a blank line (with length 0). After this
happens, inFile returns false on the next test of
while(inFile). We need to remember to do special
handling of this blank line whenever we use getline
inside of a “while(inFile)” block

• Perhaps surprisingly, if we were to keep trying to
read additional lines with getline(), we would keep
getting more blank lines, rather than an I/O error

• Similarly, if a file open fails and we try to use
getline(), we will also just get blank lines

C-style file I/O

The C++ tools are perfectly adequate for reading and
writing files, but so are the older, C-style functions.
You may encounter the C-style I/O functions if you
work with an older code base. The syntax is
different, but the C functions are fairly analogous to
the C++ functions.

Stringstream

Stringstream is a special stream that can read and write
basic data types (integers, doubles, etc.) as well as
strings. This allows one to convert basic data types
to/from strings (e.g., an integer to a string, or vice
versa).

To use stringstream, #include <sstream>

To create a stringstream,
stringstream sStream;

The next example shows how to convert a double-
precision number to a string, and vice-versa, using
stringstream

Example stringstream.cc:
#include <iostream>
#include <sstream>
using namespace std;

int main()
{
stringstream stream1, stream2;
double x = 1.29312, y;
string a;

// convert double into a string
stream1 << x; // push double x into the stringstream
stream1 >> a; // pull x out of the stringstream into a string
cout << "String = " << a << endl; // print the string (NOT the stringstream)

// convert string back to a double... need to use *new* stringstream
stream2 << a; // push string onto stringstream
stream2 >> y;
cout << "Double = " << y << endl;

return 0;
}

// stringstream2.cc
#include <iostream>
#include <sstream>
using namespace std;

int main()
{
int t = 4, result = 42;
stringstream ss;

ss << "Try " << t << " gave a value of " << result;
cout << ss.str() << endl; // convert to string for printing

// Let's reuse the stringstream. Reset it by replacing
// the string it contains with a blank one.
ss.str(std::string());

ss << "Hello, world!";
cout << ss.str() << endl;

}
Program output:
Try 4 gave a value of 42
Hello, world!

