CS3101 Programming Languages (Lisp)

Lecture 1

Bob Coyne (coyne@columbia.edu)

% f f NIL
A B o]
Columbia University

March 10, 2017

1/ 70

Intro

Course Information

e When: 7 Weeks (10:10am-Noon on Fridays)

e Where: 417 Mathematics

e Who (instructor): Bob Coyne (coyne@cs.columbia.edu)
e Who (TA): Ben Kuykendall (brk2117@columbia.edu)

e Why: Lisp is fun (and powerful)!

2/ 70

Intro

Introduction to Lisp — Overview

e Class participation: 10%

e 5 homeworks (each due before the next class): 50%
These will be small programming exercises to reinforce what's
covered in class

e Project proposal: 10%

e Final project: 30% can be individuals or teams (up to 3 people)

3/ 70

Intro

Approximate Syllabus

March 10 Background: history, installing, resources. Basics: sym-
bols, evaluation, data types, lists, conditionals, functions,
lambda forms, Emacs, REPL, ...

March 24 More basics: Backquote, vectors, sequences, file system,
loop, format, packages, streams, debugger, compiling, ...

March 31 Macros etc: Macros, closures, reader macros, Error sys-
tem, performance tuning

April 7 Objects etc: Type system, CLOS, Structs, FFI, OS hooks...

April 14 External libraries: Quicklisp, ASDF, cl-json, cl-html, cl-
ppcre, drakma, ...

April 21 Al: Prolog in Lisp, knowledge representation, constraints,
unification

April 28 Lisp variants/offshoots (Elisp, Clojure, Scheme, Mathe-
matica, Parenscript)

4/ 70

Intro

Online Books and Language References

e Practical Common Lisp (Peter Seibel) — [excellent modern intro to Lisp]
http://www.gigamonkeys.com/book/

e Lisp Hyperspec — [very useful, nicely indexed language reference]
http://www.lispworks.com/documentation/HyperSpec/Front/index.htm

e Lisp Recipes (Edi Weitz) - [lots of practical info...access within Columbia network]
http://link.springer.com/book/10.1007%2F978-1-4842-1176-2

e On Lisp (Paul Graham) — [semi-advanced, but excellent]
http://www.paulgraham.com/onlisp.html

e Common Lisp — A Gentle Introduction to Symbolic Computation (Touretzky)
https://www.cs.cmu.edu/~dst/LispBook/book.pdf

e Common Lisp the Language (Guy Steele) — [The de-facto language specification]
https://www.cs.cmu.edu/Groups/AI/html/cltl/clt12.html

e Let over Lambda (Doug Hoyte) — [advanced on closures, etc]
http://letoverlambda.com/

5/ 70

http://www.gigamonkeys.com/book/
http://www.lispworks.com/documentation/HyperSpec/Front/index.htm
http://link.springer.com/book/10.1007%2F978-1-4842-1176-2
http://www.paulgraham.com/onlisp.html
https://www.cs.cmu.edu/~dst/LispBook/book.pdf
https://www.cs.cmu.edu/Groups/AI/html/cltl/cltl2.html
http://letoverlambda.com/

Intro

Useful websites and online resources

o CLiki
http://cliki.net

e Planet Lisp (a Lisp “meta” blog)
http://planet.lisp.org

e Quicklisp
https://www.quicklisp.org/beta/UNOFFICIAL/docs/

e Common Lisp Cookbook
http://cl-cookbook.sourceforge.net/index.html

e Lisp tutorials
http://lisp.plasticki.com/show?36

e Peter Norvig on Python for Lisp programmers
http://norvig.com/python-1lisp.html

6/ 70

http://cliki.net
http://planet.lisp.org
https://www.quicklisp.org/beta/UNOFFICIAL/docs/
http://cl-cookbook.sourceforge.net/index.html
http://lisp.plasticki.com/show?36
http://norvig.com/python-lisp.html

Intro

Lisp Implementations

In class, I'll be using SBCL and Lispworks

e SBCL: http://www.sbcl.org/platform-table.html
e Lispworks: http://www.lispworks.com/downloads/

e Allegro CL: http://franz.com/downloads/clp/survey
e Others: ABCL, CMUCL, CLISP, OpenMCL, ECL, SCL

https://common-lisp.net/~dlw/LispSurvey.html

7/ 70

http://www.sbcl.org/platform-table.html
http://www.lispworks.com/downloads/
http://franz.com/downloads/clp/survey
https://common-lisp.net/~dlw/LispSurvey.html

Intro

John McCarthy

John McCarthy was one of the founders of the discipline of ar-
tificial intelligence. He coined the term " artificial intelligence”
(Al), developed the Lisp programming language family, sig-
nificantly influenced the design of the ALGOL programming
language, popularized timesharing, and was very influential in
the early development of Al. McCarthy received many acco-
lades and honors, such as the Turing Award for his contribu-
tions to the topic of Al, the United States National Medal of
Science, and the Kyoto Prize. (from wikipedia)

8/ 70

Intro

Lisp history and dialects

o Lisp (LISt Processing) is the second oldest language (1958) still in common
use. Fortran was created one year earlier. Thanks to its simple syntax (lists)

and macros (to transform those lists), Lisp has been called a “programmable
programming language.”

e Highly influential: Introduced if-then-else construct; garbage collection;
read-eval-print loop; dynamic typing; incremental compilation; homoiconicity

and meta-programming, closures (via Scheme)...

e Multi-paradigm: functional, procedural, reflective, meta

Lisp 1.5
Maclisp
Interlisp
ZetalLisp
Scheme
Common Lisp
Emacs Lisp
AutoLISP
Racket
Arc

Clojure

1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010
Lisp 1.5
Maclisp
Interlisp
Lisp Machine Lisp
Scheme
Common Lisp
Emacs Lisp
AutoLISP
Racket
Arc

Clojure

2015

9/ 70

Intro

Lisp Machines — MIT Al Lab (circa 1975)

14
5 i
P il
el
5\ \(‘
Pl e

T LISP MACHIN =

MIT Artificial Intelligence L7

10/ 70

Intro

Commercial Lisp Machines circa 1980-1990

TI Explorer LMI Lambda Symbolics

U
I

11/ 70

Intro

Symbolics Keyboard

12/ 70

Intro and history

Lists, s-expressions, and cons cells
Data types

Evaluation

Misc operations

Variables and value binding

Flow of control

Defining functions

Evaluation and the Read

Emacs

13/ 70

Lists as programs and data — key idea of Lisp

Arithmetic expressions:
(+(*34)(*45))

Conditional expressions:
(when (> x 4) (print "bigger than 4"))

Flat and nested lists
(" columbia” "yale” "dartmouth” "penn” "cornell")
(0(123)(345)(6(78)))

Association lists and property lists
(("new jersey" :capital "trenton")
("alabama" :capital "montgomery")
("new york" :capital "albany") ...)

Variable assignment:
(setg x '((1 "one™) (2 "two") (3 "three")))

Function definition:
(defun cube (x) (* x x x))

14/ 70

Minimal syntax

No special syntax for operators and statements — just functional
application to arguments in lists

(FUNCTION arg0 argl arg3)

For example:
(+2345)=14

Including nested:
(+2(*34)5) =19

15/ 70

S-Expressions

Lisp programs and data consist of s-expressions (Symbolic expressions)

An s-expression can be an atom or list (including nested lists)
e An atom can be a symbol, string, array, structure, number...
e A list is sequence of cons cells linking s-expressions together

T

Examples
e (aaa 12 foo 44.0) is a flat list
e (nil "hello” (99.0 1/2) foo) is a nested list
e nil, "hello”, 99.0, 1/2, and foo are all atoms.

Lisp symbols are generally made upper case when they are read
(print (list 1 2 3)) automatically becomes (PRINT (LIST 1 2 3))

16/ 70

Cons Cells — used to represent lists

e A cons cell is a pair of pointers — First part is the car and
second part is the cdr

e The car and cdr point to any s-expression
e For a proper list, the CDR of last CONS cell points to nil

e Can represent: flat lists, nested lists (trees), even circular lists
and other structures.

e Dots omitted when cdris a list: '(a. (b . (c. nil))) = (abc)

17/ 70

Cons Cells — used to represent lists

(aardvark . nil) or (aardvark)

NIL
(abc)
(2] {e]+ Ao[ef—
S
(abc.d)
@ LIT J@E—'D

Diagrams from https://www.cs.cmu.edu/~dst/LispBook/book.pdf

18/ 70

https://www.cs.cmu.edu/~dst/LispBook/book.pdf

Lists

Cons Cells for NESTED or SHARED lists

((BLUE SKY) (GREEN GRASS) (BROWN EARTH))

[BN 2 ﬁ_ﬂ [?l_“ NIL
NIL II\HI\o—}—»NlL |I|o—*—»|I|0—)—0NIL
BLUE SKY GREEN GRASS BROWN EARTH

Two lists (TAKE A NAP) and (WHAT A NAP) sharing same (A NAP)

e

A NAP

WHAT

19/ 70

Circular Lists are possible

(setqcl '(abc)) = (abc)
(setf (cdddrcl) cl) == (abcabcabcabcabcabcabcabcabca..)
Print length controlled by *PRINT-LENGTH*

(setq cl '(a. a)) = (a. a)

(setf (carcl) cl) = ((((((# . a) . a) . a) . a). a). a)
Print depth controlled by *PRINT-LEVEL*

20/ 70

Alists — association lists

Alists provide a flexible lightweight way to store and retrieve data
associations

((@a.1)(b.2)(c.3)

(defparameter *elephant-alistx*
>((:height . 10)
(:color . gray)
(:mammal? . t)
(:locations . (africa asia))))

(cdr (assoc :color *elephant-alistx*))
=> gray

21/ 70

Plists — property lists

Plists provide another flexible lightweight way to store and retrieve
data associations

A "1 B -2 ~C = 3 |NIL
(alb2c3)
(defparameter *elephant-plistx*
> (:height 10
:color gray

:mammal? t
:locations (africa asia)))

(getf *elephant-plist* :locations)
=> (AFRICA ASIA)

22/ 70

Intro and history

Lists, s-expressions, and cons cells

Data types

Evaluation

Misc operations

Variables and value binding

Flow of control

Defining functions

Evaluation and the Read-Eval-Print-Loop (REPL)
Emacs

23/ 70

Basic data types — each with their own test predicate

Symbols: T, NIL, foo-1, system-error, *database*, foo.bar, sb-unix:unix-fstat
(symbolp 'foo-1) — T

Numbers: 7, 33.33, #C(0.0 1.0), 343242342342342342
(numberp 33.0) - T

Strings: "artificial intelligence”, " Lisp”, " Barack Obama”
(stringp 'foo) — NIL

Characters: #\a, #\space
(characterp #\NEWLINE) — T

Lists: ((123)45(67(89)))
NIL is the empty list (), as well as being a symbol representing FALSE
(listp'(ad)) =T

More: vectors, structs, hash tables, arrays, CLOS objects, ...
(vectorp 343) — nil ... etc

24/ 70

Symbols

Symbols have an associated name, value, function, property list.

Value: (setq foo '(a b c d))
Function: (defun foo (x) (* x x))
Propertes: (setf (get 'foo :size) 22) (setf (get 'foo :length) 44)

Symbol-name, symbol-package, symbol-value, symbol-function, symbol-plist (or get)

can retrieve the above. E.g. (symbol-name 'foo) — "FOQ"

(describe ’foo)
FOO is a SYMBOL

NAME "FOO"

VALUE (ABCD

FUNCTION #<Function FOO 2009E892>

PLIST (:LENGTH 44 :SIZE 22)

PACKAGE #<The WORDSEYE package, 3462/4096 internal, 180/256 external>

Note: T, NIL, and keyword symbols (e.g. :FOO) evaluate to themselves

25/ 70

What is NIL?

NIL represents both FALSE and the empty list ().

;; it’s an atom
(atom nil) => T

;3 it’s a symbol
(symbolp nil) => T

;; it’s also a list
(listp nil) => T

;; it’s not a cons (unlike other lists)
(consp nil) => NIL

;3 it evaluates to itself
nil => NIL

;5 it’s a constant (value can’t be changed)
(constantp nil) => T
26/ 70

Symbols

E.g. *database*, house, add, my-name, T, NIL
Symbols exist in a package (namespace)
foobar = in current package (*package*)
cl-user is default user package
math:matrix = external in the MATH package
math::matrix = internal in the MATH package
:depth = special keyword package
#:G1067 = an uninterned symbol

e.g. *package* — #<package "common-lisp-user” >

Function names are symbols too (e.g. append, +, print etc)

27/ 70

Numeric Types

Type Example value Example function
Integer 7 (+25)
Single-float 0.33333334 (/13.0)
Double-float 0.3333333333333333D0 (/ 13.0d0)
Rational 1/3 (/39)
Complex #C(0.0 1.0) (sqrt -1.0)
Bignum 321466960818222453181624576 | (expt 4234324 4)

Ways of checking types
(type-of 3.0) — single-float
(typep 3.0 'number) — T
(typep 3.0 'float) — T
(integerp 3.0) — NIL
(numberp 3.0) — T

28/ 70

Evaluation

Intro and history

Lists, s-expressions, and cons cells

Data types

Evaluation

Misc operations

Variables and value binding

Flow of control

Defining functions

Evaluation and the Read-Eval-Print-Loop (REPL)
Emacs

29/ 70

Evaluation

Evaluating s-expressions

Numbers evaluate to themselves
34234 = 34234

T, NIL, and keyword symbols evaluate to themselves
NIL = NIL, T = T, :foo = :foo

Quoted symbols or lists are not evaluated
(+2311) = (4 23 11)
'foo = foo

Lists evaluate by applying first element to the rest
(+2311) = 34

Symbols evaluate to their values
(setq aaa (123 4))
aaa = (1234)
(eval '(+ 23 11)) = 34
bbb = Error: The variable BBB is unbound. [debugger]

30/ 70

Evaluating lists

Lists are evaluated by applying first element (a function, special operator, or
macro) to the rest (the arguments) in order to return a value or values.

e Functions evaluate all their arguments.

e Special operators can choose which arguments to evaluate

e Macros transform the whole form to another, controlling what is evaluated.
e Single quote (eg '(a b c)) prevents an argument from being evaluated.
Single quote is shorthand for the special operator QUOTE

Examples
(+2311) = 34
(quote hello) = hello
(append '(ab) '(cde)) = (abcde)

Note: multiple values can be returned:
(floor 3.4 4) -3 .6

31/ 70

Evaluation

Special Operators

A special form is a form with special syntax, special evaluation
rules, or both, possibly manipulating the evaluation environment,
control flow, or both. A special operator has access to the
current lexical environment and the current dynamic environment.
Each special operator defines the manner in which its
subexpressions are treated — which are forms, which are special
syntax, etc. Lisp contains 25 special operators:

block letx* return-from
catch load-time-value setq

eval-when locally symbol-macrolet
flet macrolet tagbody
function multiple-value-call the

go multiple-value-progl throw

if progn unwind-protect
labels progv

let quote

32/ 70

Special Operators — Examples

(quote (a b c))
— return argument without evaluating it. Same as '(a b c)

(if (< x 5) (print "big") (print "small"))
— Evaluate first term and then, depending on value, evaluates (and returns) ONE of
remaining arguments

(progn (setq x 33) (print (4 x 4)))
— Evaluate all its arguments in order, returning final value

(setq seconds-in-day (* 24 60 60))
— Assigns a value to a variable. The value arg is evaluated, but not the variable

(let ((i 10) (j 10))
(print "adding 2 and 3")
(print (+ i })))
— Binds lexical variables and then evaluates all remaining arguments (the body) in
order and returns final value

33/ 70

Evaluation

Macros

Macros allow arbitrary evaluation of their arguments. A macro
works by transforming the whole form (operator and arguments)
into a new form. This new macroexpanded form is substituted into
the calling code in place of the original form. In creating the new
form, it can arbitrarily evaluate and transform its arguments.

For example, DEFUN is defined by Lisp itself as a built-in macro
that associates a function definition with a name.

Another of a built-in macro is INCF, which increments a variable:

(macroexpand '(incf x)) —

(LET* ((#:G1057 1)
(#:NEW1056 (+ X #:G1057)))
(SETQ X #:NEW1056))

34/ 70

Intro and history

Lists, s-expressions, and cons cells

Data types

Evaluation

Misc functions

Variables and value binding

Flow of control

Defining functions

Evaluation and the Read-Eval-Print-Loop (REPL)
Emacs

35/ 70

Equality

EQ (identity), EQL (like EQ, but for numbers and characters), EQUAL (like EQL but
for equivalent lists), EQUALP (like EQUAL but ignoring case), = (for numbers only)

(
(
(
(
(

setq foo '(c d)) — (c d)
setq bar '(c d)) — (c d)
setq baz foo) — (c d)

setq bar2 (cons 33 foo)) — (33 c d)

setq baz2 'foo) — foo

(eq foo bar) — NIL

Different objects

(equal foo bar) — T

Equivalent lists

(eq foo baz) —» T

Same object

(equal foo baz) — T

Same object, no need to check element equality

(eql (car bar2) 33) - T

Equivalent numbers are EQL

(eq (car bar2) 33) — 77

Probably T, but don’t count on it!

(equal "foo” "FOO") — NIL

EQUAL is case sensitive

(equalp "foo” "FOO") — T

EQUALP is case insensitive

(equal 'foo "FOO") — NIL

FOO is symbol. "FOQO" is string.

(equal 33 (car bar2)) — T

Equivalent numbers

(= pi foo) — ERROR

= requires numbers, else signals an error

(eq baz2 foo) — NIL

FOO points to a list, baz2 points to a symbol

(eq (cdr bar2) foo) —» T

Same object

36/ 70

Some list operations

(cons3'(456)) — (3456)

(car '(456)) — 4

(cdr '(4 5 6)) — (5 6) ; same as rest

(nth2’(abcdefg)) — c; also can use first, second, third, etc
(nthedr2'(abcdefg)) > (cdefg)

(length '(abcdefg) —7

(reverse '(abcdefg)) > (gfedcba)

(position 'c'(abcdefg)) — 2

(append '(abc)’(de)'(12)) > (abcdel?)
(list 123 (ab)) — (123 (ab))

(setq *list* '(1 2 3))
(push :foo *list*)
list — (:foo 12 3)
(pop *list*)
list — (12 3)

37/ 70

Some destructive list operations

;;; nreverse is like reverse but modifies the lists to avoid copying.
(setq *list* '(abcdefg))
(nreverse *list*) — (g fedcb a)

*list¥ —» (gfedcba)

;1; nconc is like append but modifies some of the lists to avoid copying.
(setq *Ist1* '(a nap) *Ist2* '(take) *Ist3* '(what))
(nconc *Ist2* *Ist1*) — (take a nap)
(nconc *Ist3* *Ist1*) — (what a nap)
|st2 — (take a nap)
Ist3 — (what a nap)
(eq (cdr *Ist2*) (cdr *Ist3*)) — T

38/ 70

Some numeric operations

Many of these take arbitrary number of arguments. Some return multiple values.

+2111)~>5
*¥23) —
/23)»2/3

/ 2 3.0) — 0.6666667

(

(

(

(

(<22) = NIL
(>2-4-9) 5T
(> 2 'two) — ERROR
(<=22) =T
(>=23.0) — NIL
(float 2) — 2.0
(ceiling 2.2) — 3-0.8
(floor 2.2) — 2 0.2
(rem 11 3) —

(mod 11 3) —

(
(

min 3 -1 88) — -1
max 3 -1 88) — 88

39/ 70

Logical connectives

AND and OR can “short-circuit” evaluation when current condition determines result.

(and form1 form2 form3 ...) — Tests if all forms are not NIL. Returns last value or NIL
(or form1 form2 form3 ...) — Tests if any form is not NIL. Returns that value or NIL
(not form) — returns T if form’s value is NIL, else returns NIL

(defparameter *max* 99)
(defparameter *min* 0)
(defvar *current* 22)
(if (and (numberp *currentx*)
(<= *current* min)
(>= *current* min))
(print :ok)
(print :bad-or-out-of-range))

==> :0K

40/ 70

Printing and formatting strings

(format destination control-string arguments*)
destination: T for standard output, NIL to produce a string, else a STREAM object
control-string: See reference for details. Here are the most basic format directives:

“a for lisp object (from argumentsx*).
“s like "a but strings get printed in quotes.

~% outputs a NEWLINE
* (format t "Today is ~a" "sunday") prints: Today is sunday

* (format t "Today is “s" "sunday") prints: Today is "sunday"

(print string &optional stream)
* prints string to *standard-output* or a STREAM object (optional argument).

princ is like print but omits surrounding quotes.
* (print "hello”) prints: "hello”
* (princ "hello”) prints: hello
Multiple outputs to the same string:
* (with-output-to-string (s) (princ "2+3 is " s) (princ (+ 2 3) s)) — "243is 5"

41/ 70

Intro and history

Lists, s-expressions, and cons cells

Data types

Evaluation

Misc operations

Variables and values

Flow of control

Defining functions

Evaluation and the Read-Eval-Print-Loop (REPL)
Emacs

42/ 70

Variable types

Lexical variables — When a lexical variable is bound, its value can be accessed by
name only within a certain textual (lexical) block. Its binding is said to have lexical
scope. Function parameter variables and variables bound by LET (unless declared
special) are lexically scoped and cannot be referenced by name from the outside.

Special variables (aka dynamic variables) have indefinite scope and can be accessed
from anywhere. A special variable value must be declared as such.

Global variables are special variables that have a top-level value.
(defvar *something*) ;; declared special but globally unbound
(defparameter *current-year* 2017) ;; declared special and given a global value
Constants (and NIL, T, and keyword symbols) have indefinite scope but fixed value
(defconstant +days-per-week+ 7) ;; by convention, constants use plus signs

(let ((+days-per-week+ 8))
(print +days-per-week+))
Error: Cannot bind +DAYS-PER-WEEK+ -- it is a constant.

43/ 70

Lexical variable bindings

(progn
(let ((x 3)
(format t “value of X is "a "%” x)
(let ((x 5))
(format t ”value of X is “a "%” x))
(format t value of X is “a “%” x))
(format t “value of X is "a “"%” x))
value of X is 3
value of X is b
value of X is 3

Error: The variable X is unbound.

...Because the last reference to X is outside the lexical scope of the
LET

44/ 70

Special variable bindings and dynamic extent

;55 By convention, special variables use asterisks.
(defvar *animal-name* "donkey")
(defun print-animal-name ()

(format t "*animal-name* bound to

s “%" *animal-name*))

(progn
(print-animal-name)

(let ((*animal-name* "horse"))
(print-animal-name)))
animal-name bound to: "donkey"
animal-name bound to: "horse"

45/ 70

Dynamic variable binding experiment

(defvar *yy* 3)

(defun print-yy-value () (print *yy*))

(defun set-yy () (setq *yy* :blah) (print *yy*))

(defun bind-set-yy () (let (xyy*) (setq *yy* :bloo) (print *yy*)))

(let ((xyy* 44))
(setq *yy* 22)
(print-yy-value) => 22

(set-yy) => :blah
(print-yy-value) => :blah (value changed within dynamic extent)
(bind-set-yy) => :bloo (change value within a new dynamic extent)

(print-yy-value) => :blah (Outer value NOT CHANGED)
)

46/ 70

Control Flow

Intro and history

Lists, s-expressions, and cons cells

Data types

Evaluation

Misc operations

Variables and value binding

Flow of control

Defining functions

Evaluation and the Read-Eval-Print-Loop (REPL)
Emacs

47/ 70

Control Flow

Basic Flow of Control

PROGN, IF, COND, CASE, ECASE, WHEN, UNLESS: All return a value and can be
nested.

(progn form*)
— executes all forms unconditionally. Returns value of last

(cond ((test form*) (test form*) (test form*) (t form*) ...))
— T is optional catchall

(if test then-form else-form)
(when test form*)
(unless test form*)

(case test-var (val form*) (val form*) (t val-n))
— T is optional catchall

(case test-var ((val*) form*) (val* form*) (t form*))
— can test for list membership

ecase like case but signals error if no match

48/ 70

Control Flow

lteration: do, dotimes, dolist, loop

(DOTIMES (x 10) (DOLIST (x ’(a b c))
(print x)) (print x))
(LOOP for x below 10 (LOOP for x in ’(a b ¢)
do (print x)) do (print x))
(D0 ((x 0 (+ x 1))) (let ((1st ’(a b c)))
((= x 10)) (D0 ((x (car 1st) (car 1st)))
(print x)) ((not 1st))
(setq 1st (cdr 1st))
(print x)))

49/ 70

Control Flow

lteration
(D0 ((x 1 (+ x 1)) ; initial bindings and successive assignments
(y 1 (xy2)))
(> x5 v ; termination condition and return value

;3 body (executed each time through the loop)
(format t "y="a.." y))

y=1..y=2..y=4..y=8..y=16..
32

(LOOP for x from 1
for y = 1 then (x y 2)
until (> x 5)
finally (return y)
do (format t "y="a.." y))

y=1..y=2..y=4..y=8..y=16..
32

50/ 70

Control Flow

Example Loop vs Do vs Dotimes

(loop for i from O to 10 by 2
collect (x i 1))
=> (0 4 16 36 64 100)

(do ((result nil)
10 (+1i2))
((>=1i 11) (nreverse result))
(push (* i i) result))
=> (0 4 16 36 64 100)

(let (result)
(dotimes (i 11)
(when (evenp i)
(push (* i i) result)))
(nreverse result))
=> (0 4 16 36 64 100)

51/ 70

Defining Functions

Intro and history

Lists, s-expressions, and cons cells

Data types

Evaluation

Misc operations

Variables and value binding

Flow of control

Defining functions

Evaluation and the Read-Eval-Print-Loop (REPL)
Emacs

52/ 70

Defining Functions

Defining Functions

Lisp programs consist of functions that can be defined with defun.

(defun name (parameterx*)
"optional documentation string"
body-form*)

Parameter* can optionally include non-fixed argments &optional, &keyword, &rest in
that order. Optional and keyword args can also specify defaults.

(defun foo (a b) (list a b))
* (foo 2 3) => (2 3)

(defun foo (a b &optional c (d :hello)) (list a b c d))
* (foo 1 2 3) => (1 2 3 :hello)

(defun foo (a b &key c) (list a b ¢ d))
* (foo 2 3 :c 88) => (2 3 88 nil)

(defun foo (a b &rest args) (list (list a b) args))
* (foo 2 3 22 33 44 55) => ((2 3) (22 33 44 55))

53/ 70

Defining Functions

Defining functions examples

(defun dist (x1 y1 x2 y2)
(sqrt (+ (expt (— x1 x2) 2)
(expt (— y1 y2) 2))))

* (dist 0034) —+ 5.0

(defun palindrome—string (string)
(concatenate ’string string (reverse string)))

* (palindrome—string ”blog”) — “bloggolb”

(defun palindrome—list (Ist)
(append Ist (reverse 1st)))

* (palindrome—list ‘(abc)) - (A B C C B A)

54/ 70

Defining Functions

Another simple example — using an Alist

(defparameter *colors*

’((red :rgb (1 0 0) :example "cherry")
(green :rgb (0 1 0) :example "leaf")
(blue :rgb (0 0 1) :example "sky")
(yellow :rgb (1 1 0) :example "sun")
(white :rgb (1 1 1) :example "cloud")
(black :rgb (0 0 0) :example "ink")))

(defun describe-color (color)
(let ((entry (assoc color *colorsx*)))
(if entry
(format nil ""a “a is the color of ~a"
color (getf (cdr entry) :rgb) (getf (cdr entry) :example))
(format nil "RGB unknown for ~a" color))))

* (describe-color ’blue)
"BLUE (0 0 1) is the color of sky"

55/ 70

Defining Functions

Functions as first class objects

Many built-in Lisp functions take other functions as arguments.

To specify a function argument and not have it be evaluated, you can use
#' (which is shorthand for the special operator function).

(sort sequence predicate), where predicate is a comparitor function that
takes two arguments and returns NIL or non-NIL (eg T).

(sort '(22 88 11 99 -44) #'<)
-44 11 22 88 99)

(

(sort '(22 88 11 99 -44) #'>)
(99 88 22 11 -44)
(
(

sort '(22 88 11 99 -44) (function >))
99 88 22 11 -44)

56/ 70

Defining Functions

Functions as first class objects

Use funcall or apply to call a function object.

(APPLY #’% °(2 3 4 5))
120

(defun plot (fn min max step)
(loop for i from min to max by step do
(loop repeat (FUNCALL fn i) do (format t "x*"))
(format t "~%")))

(plot #’exp 0 4 .5) or (plot (function exp) 0 4 .5)

*

*ok

*oHok

oAk KK

ok KKK

kKKK K

KA KKK KKK KKK KK

SRR KK KK KKK KK KK KK ook ok ok K ok ok ok ok

oKk K KKK KKKk KRR KKK KK KKKk Kk Kok
57/ 70

Defining Functions

Lambda functions

Lisp functions don't need names. Create an anonymous function with
lambda.

(defun collect (sequence test)
(loop for i in sequence
when (funcall test i)
collect 1))

(collect (11 22 0 44 21 -7 9)
(lambda (x) (zerop (mod x 11))))
(11 22 0 44)

(collect ’(-4 11 aa 22 "foo" 0 44 21 -7 9)

(lambda (x) (and (numberp x) (plusp x))))
(11 22 44 21 9)

58/ 70

Defining Functions

Mapping functions

Mapcar and other mapping functions make it very easy to apply
an arbitrary function to elements of a list.

(defun range (min max &optional (incr 1))
(loop for i from min to max by incr
collect 1))

(range 1 10 2)
=> (13579

(MAPCAR #’sqrt (range 1 5))
=> (1.0 1.4142135 1.7320508 2.0 2.236068)

(MAPCAR (lambda (x) (cons x (if (oddp x) "ODD" "even")))
(range 1 5))
=> ((1 . "0DD") (2 . "even") (3 . "ODD")
(4 . "even") (5 . "0ODD"))

59/ 70

Naming Conventions

Defining Functions

Intra-word separators

remove-item

dash vs underscore, camelCase

Special variables

PRINT-LENGTH

surround with asterisks

Constants +FASL-FILE-VERSION+ surround with + signs
Internal low-level function %MEMORY-BARRIER with percent
Predicates EVENP, SYMBOLP often end with "-p” or “p”
“Destructive” functions nreverse, nconc start with “n”
Dotted lists LIST* trailing * on function

60/ 70

Defining Functions

Comments

Comments begin with a semi-colon (with three conventions).
;55 triple at beginning of line
(defun foo (x)

;; double above indented text
(print "hello")

(print "goodbye")) ; single at end of line

#|

comment regions between these characters
| #

;;; comment an s-expression using a reader macro
#+skip(defun foo (x) (print "this is all commented out"))

61/ 70

Intro and history

Lists, s-expressions, and cons cells

Data types

Evaluation

Misc operations

Variables and value binding

Flow of control

Defining functions

Evaluation and the Read-Eval-Print-Loop (REPL)
Emacs

62/ 70

REPL

Evaluation and the Read-Eval-Print-Loop (REPL)

When an s-expression is typed to the REPL it is first read. This
converts the character form into an s-expression. |.e. something
within parentheses will be converted to a LIST. Sequences of
characters within double quotes will be converted into strings. Etc.

The REPL then evaluates the s-expression. If the s-expression is a:
List: the first element is applied to the rest of the arguments
Symbol: the symbol's value is used
Other atom: the atom evaluates to itself

The evaluation step (above) returns a value or values that the
REPL then prints. If the evaluation resulted in an error, then the
interactive debugger is invoked.

This process is repeated (looped) for each successive input.

63/ 70

REPL

Using the REPL

Useful things to do in the REPL:

(apropos STRING-OR-SYMBOL)
Find names of matching functions

(describe OBJECT)
describe the given object

debugging variables
* Rk kXX automatically set to last 3 returned values in REPL
+, +4, +++ — automatically set to last 3 inputs to REPL

(trace function-name)
(untrace function-name)
trace or untrace the given function

64/ 70

REPL

Trace example

CL-USER> (defun fact (n)
(if (=n 1)
1

(* n (fact (- n 1)))))
FACT

CL-USER> (trace fact)
(FACT)

CL-USER> (fact 4)
0: (FACT 4)
1: (FACT 3)
2: (FACT 2)
3: (FACT 1)
3: FACT returned 1
2: FACT returned 2
1: FACT returned 6
0: FACT returned 24
24

65/ 70

REPL

Debugger

(defun fact (%)
(if (= x 1)
nil ; #** OOPS! *x
(x x (fact (- x 1))))) ==>
FACT

(fact 4) ==>
Error: In * of (1 NIL) arguments should be of type NUMBER.
1 (continue) Return a value to use.
2 Supply a new second argument.
3 (abort) Return to level O.
4 Return to top loop level O.

Type :b for backtrace or :c <option number> to proceed.
Type :bug-form "<subject>" for a bug report template or :? for other options.

WORDSEYE 58 : 1 >

66/ 70

REPL

Debugger

WORDSEYE 56 > (fact 4)

Error: In * of (1 NIL) arguments should be of type NUMBER.
1 (continue) Return a value to use.
2 Supply a new second argument.
3 (abort) Return to level O.
4 Return to top loop level O.

Type :b for backtrace or :c <option number> to proceed.
Type :bug-form "<subject>" for a bug report template or :? for other options.

WORDSEYE 58 : 1 > :b
Call to ERROR

Call to *

Interpreted call to FACT
Interpreted call to FACT
Interpreted call to FACT
Interpreted call to FACT
Call to EVAL

WORDSEYE 59 : 1 >

67/ 70

Emacs

Intro and history

Lists, s-expressions, and cons cells

Data types

Evaluation

Misc operations

Variables and value binding

Flow of control

Defining functions

Evaluation and the Read-Eval-Print-Loop (REPL)

Emacs

68/ 70

Emacs

Getting started

Make sure you have first installed Lispworks or SBCL/Emacs/Slime
(See install.pdf in courseworks2)

To write lisp code you generally have a buffer or buffers with your code and use
emacs commands to compile it. You switch to the REPL to run/test as you
work.

To create a buffer, type c-x c-f to emacs (or the Lispworks editor). Give your
file a name that ends in " .lisp” (eg "my-code.lisp”). This will tell the editor
that you are editing lisp vs random text. You can save your file with c-x c-s or
write it to a new location with c-x c-w.

Put a package declaration at the top of the file. For now, just use (in-package
:cl-user).

Then add your code below. Remember to keep it formatted/indented (using
c-m-q). You can use c-c c-c (in GNU Emacs) or c-sh-c (in the Lispworks editor)
to compile the Lisp form under the cursor, which will often point out errors.

See Emacs Cheat Sheet (next slide) and online documentation for more.

69/ 70

Emacs Help

- Tutorial: c-h t

- Index of help commands: c-h ?

- Search for command: c-h a

- Describe command: c-h w

- Describe command: m-x apropos
- Describe key binding: c-h ¢
General

- Abort command (eg search): c-g
- Search: c-s (forward), c-r (rev)

- Search&repl: m-% [type values]

- Mark region: c-SPACE and move
- Exit: ¢-x c-c

- Load E-lisp file: m-x load-file

- Eval E-lisp expr: m-:

Panes

- Two panes (horiz): c-x

- Two panes (vert): c-x 2

- Single pane (selected one): c-x 0
- Switch focus to other pane: ¢-x o
Files and buffers

- Select buffer: c-x b [type name]

- List buffers: c-x c-b

- Open file: c-x c-f [type name]

- Save: c-x c-s

- Save as: ¢-x c-w [type name]

- Kill buffer: c-x k [select buffer]

- Create shell buffer: m-x shell

Lisp

- Start Lisp: m-x slime

- Compile Lisp form: c-c c-c

- Eval Lisp form: c-m-x

- Format/indent s-expr: c-m-q

- Symbol complete c-m-i, c-c TAB
- Find Lisp definition: m-.

- TAB will indent or complete

- SPACE will show function arglists
- REPL buffer: *slime-repl sbcl*

- Debugger buffer: *sldb sbcl/0*
- Yank prev REPL cmd: m-p

- Yank next REPL cmd: c-p
Deleting/restoring

- Char: cd

- Word: m-d

- S-expr: c-m-d

- Kill line (store): c-k

- Delete/store marked region: c-w
- Store marked region: m-w

- Yank (paste) stored text: c-y

+ Undo: ¢/ or c--

Misc text

- Upper case: m-u

- Lowercase: m-I

- Open newline: c-o

- Transpose s-expressions: c-m-t

Emacs

E macs C h €a t S h eet Tour: https://www.gnu.org/software/emacs/tour/

Move cursor

f Forward a character

b Backward a character

f Forward a word

b Backward a word

-m-f Forward s-expression

b Backward s-expression
c-p Move to prev REPL cmd
c-n Move to next REPL cmd

c—
c-
m—
m—
c
c-m-
c-c
c-¢c

c-n Next line

c-p Previous line

c-a Beginning of line

c-e End of line

c-a Beginning of s-expression
c-e End of s-expression

c-m-u UP s-expression

m-v Backward a page
c-v forward a page
c-1 Center on page
m-< File beginning
m-> File end

Useful extensions

- Swap current buffer: c-;

- Select REPL buffer: c-m-;
- Select shell buffer: c-,

- Comment region: c-=

- Uncomment region: c-&

70/ 70

https://www.gnu.org/software/emacs/tour/

	Lists
	Types
	Evaluation
	Misc
	Variables
	Control Flow
	Defining Functions
	REPL
	Emacs

