
An Introduction to Prolog Programming

1

What is Prolog?

• Prolog (programming in log ic) is a logic-based programming
language: programs correspond to sets of logical formulas and
the Prolog interpreter uses logical methods to resolve queries.

• Prolog is a declarative language: you specify what problem you
want to solve rather than how to solve it.

• Prolog is very useful in some problem areas, such as artificial
intelligence, natural language processing, databases, . . . , but
pretty useless in others, such as for instance graphics or
numerical algorithms.

2

Facts

A little Prolog program consisting of four facts:

bigger(elephant, horse).

bigger(horse, donkey).

bigger(donkey, dog).

bigger(donkey, monkey).

3

Queries

After compilation we can query the Prolog system:

?- bigger(donkey, dog).

Yes

?- bigger(monkey, elephant).

No

4

A Problem

The following query does not succeed!

?- bigger(elephant, monkey).

No

The predicate bigger/2 apparently is not quite what we want.

What we’d really like is the transitive closure of bigger/2. In
other words: a predicate that succeeds whenever it is possible to go
from the first animal to the second by iterating the previously
defined facts.

5

Rules

The following two rules define is bigger/2 as the transitive
closure of bigger/2 (via recursion):

is_bigger(X, Y) :- bigger(X, Y).

is_bigger(X, Y) :- bigger(X, Z), is_bigger(Z, Y).

↑ ↑

“if” “and”

6

Now it works

?- is_bigger(elephant, monkey).

Yes

Even better, we can use the variable X:

?- is_bigger(X, donkey).

X = horse ;

X = elephant ;

No

Press ; (semicolon) to find alternative solutions. No at the end
indicates that there are no further solutions.

7

Another Example

Are there any animals which are both smaller than a donkey and
bigger than a monkey?

?- is_bigger(donkey, X), is_bigger(X, monkey).

No

8

Terms

Prolog terms are either numbers, atoms, variables, or compound
terms.

Atoms start with a lowercase letter or are enclosed in single quotes:

elephant, xYZ, a_123, ’Another pint please’

Variables start with a capital letter or the underscore:

X, Elephant, _G177, MyVariable, _

9

Terms (cont.)

Compound terms have a functor (an atom) and a number of
arguments (terms):

is_bigger(horse, X)

f(g(Alpha, _), 7)

’My Functor’(dog)

Atoms and numbers are called atomic terms.

Atoms and compound terms are called predicates.

Terms without variables are called ground terms.

10

Facts and Rules

Facts are predicates followed by a dot. Facts are used to define
something as being unconditionally true.

bigger(elephant, horse).

parent(john, mary).

Rules consist of a head and a body separated by :-. The head of a
rule is true if all predicates in the body can be proved to be true.

grandfather(X, Y) :-

father(X, Z),

parent(Z, Y).

11

Programs and Queries

Programs: Facts and rules are called clauses. A Prolog program is
a list of clauses.

Queries are predicates (or sequences of predicates) followed by a
dot. They are typed in at the Prolog prompt and cause the system
to reply.

?- is_bigger(horse, X), is_bigger(X, dog).

X = donkey

Yes

12

Built-in Predicates

• Compiling a program file:

?- consult(’big-animals.pl’).

Yes

• Writing terms on the screen:

?- write(’Hello World!’), nl.

Hello World!

Yes

13

Matching

Two terms match if they are either identical or if they can be made
identical by substituting their variables with suitable ground terms.

We can explicitly ask Prolog whether two given terms match by
using the equality-predicate = (written as an infix operator).

?- born(mary, yorkshire) = born(mary, X).

X = yorkshire

Yes

The variable instantiations are reported in Prolog’s answer.

14

Matching (cont.)

?- f(a, g(X, Y)) = f(X, Z), Z = g(W, h(X)).

?- p(X, 2, 2) = p(1, Y, X).

15

The Anonymous Variable

The variable _ (underscore) is called the anonymous variable.
Every occurrence of _ represents a different variable (which is why
instantiations are not being reported).

?- p(_, 2, 2) = p(1, Y, _).

Y = 2

Yes

16

Answering Queries

Answering a query means proving that the goal represented by that
query can be satisfied (according to the programs currently in
memory).

Recall: Programs are lists of facts and rules. A fact declares
something as being true. A rule states conditions for a statement
being true.

17

Answering Queries (cont.)

• If a goal matches with a fact, then it is satisfied.

• If a goal matches the head of a rule, then it is satisfied if the
goal represented by the rule’s body is satisfied.

• If a goal consists of several subgoals separated by commas, then
it is satisfied if all its subgoals are satisfied.

• When trying to satisfy goals with built-in predicates like
write/1 Prolog also performs the associated action (e.g.
writing on the screen).

18

Example: Mortal Philosophers

Consider the following argument:

All men are mortal.

Socrates is a man.

Hence, Socrates is mortal.

It has two premises and a conclusion.

19

Translating it into Prolog

The two premises can be expressed as a little Prolog program:

mortal(X) :- man(X).

man(socrates).

The conclusion can then be formulated as a query:

?- mortal(socrates).

Yes

20

Goal Execution

(1) The query mortal(socrates) is made the initial goal.

(2) Prolog looks for the first matching fact or head of rule and
finds mortal(X). Variable instantiation: X = socrates.

(3) This variable instantiation is extended to the rule’s body, i.e.
man(X) becomes man(socrates).

(4) New goal: man(socrates).

(5) Success, because man(socrates) is a fact itself.

(6) Therefore, also the initial goal succeeds.

21

Programming Style

It is extremely important that you write programs that are easily
understood by others! Some guidelines:

• Use comments to explain what you are doing:

/* This is a long comment, stretching over several

lines, which explains in detail how I have implemented

the aunt/2 predicate ... */

aunt(X, Z) :-

sister(X, Y), % This is a short comment.

parent(Y, Z).

22

Programming Style (cont.)

• Separate clauses by one or more blank lines.

• Write only one predicate per line and use indentation:

blond(X) :-

father(Father, X),

blond(Father),

mother(Mother, X),

blond(Mother).

(Very short clauses may also be written in a single line.)

• Insert a space after every comma inside a compound term:

born(mary, yorkshire, ’01/01/1980’)

• Write short clauses with bodies consisting of only a few goals.
If necessary, split into shorter sub-clauses.

• Choose meaningful names for your variables and atoms.

23

Lists in Prolog

One of the most useful data structures in Prolog are lists. The
objective of this lecture is to show you how lists are represented in
Prolog and to introduce you to the basic principles of working with
lists.

An example for a Prolog list:

[elephant, horse, donkey, dog]

Lists are enclosed in square brackets. Their elements could be any
Prolog terms (including other lists). The empty list is [].

Another example:

[a, X, [], f(X,y), 47, [a,b,c], bigger(cow,dog)]

Internal Representation

Internally, the list

[a, b, c]

corresponds to the term

.(a, .(b, .(c, [])))

That means, this is just a new notation. Internally, lists are just
compound terms with the functor . (dot) and the special atom []

as an argument on the innermost level.

We can verify this also in Prolog:

?- X = .(a, .(b, .(c, []))).

X = [a, b, c]

Yes

The Bar Notation

If a bar | is put just before the last term in a list, it means that
this last term denotes a sub-list. Inserting the elements before the
bar at the beginning of the sub-list yields the entire list.

For example, [a, b, c, d] is the same as [a, b | [c, d]].

Examples

Extract the second element from a given list:

?- [a, b, c, d, e] =

X = b

Yes

Make sure the first element is a 1 and get the sub-list after the
second element:

?- MyList = [1, 2, 3, 4, 5], MyList =

MyList = [1, 2, 3, 4, 5]

Rest = [3, 4, 5]

Yes

Head and Tail

The first element of a list is called its head. The rest of the list is
called its tail. (The empty list doesn’t have a head.)

A special case of the bar notation — with exactly one element
before the bar — is called the head/tail-pattern. It can be used to
extract head and/or tail from a list. Example:

?- [elephant, horse, tiger, dog] = [Head | Tail].

Head = elephant

Tail = [horse, tiger, dog]

Yes

Head and Tail (cont.)

Another example:

?- [elephant] = [X | Y].

X = elephant

Y = []

Yes

Note: The tail of a list is always a list itself. The head of a list is
an element of that list. The head could also be a list itself (but it
usually isn’t).

Appending Lists

We want to write a predicate concat_lists/3 to concatenate
(append) two given lists.

It should work like this:

?- concat_lists([1, 2, 3, 4], [dog, cow, tiger], L).

L = [1, 2, 3, 4, dog, cow, tiger]

Yes

Solution

The predicate concat_lists/3 is implemented recursively. The
base case is when one of the lists is empty. In every recursion step
we take off the head and use the same predicate again, with the
(shorter) tail, until we reach the base case.

Do More

Amongst other things, concat_lists/3 can also be used for
decomposing lists:

?- concat_lists(Begin, End, [1, 2, 3]).

Begin = []

End = [1, 2, 3] ;

Begin = [1]

End = [2, 3] ;

Begin = [1, 2]

End = [3] ;

Begin = [1, 2, 3]

End = [] ;

No

Built-in Predicates for List Manipulation

append/3: Append two lists (same as our concat_lists/3).

?- append([1, 2, 3], List, [1, 2, 3, 4, 5]).

List = [4, 5]

Yes

length/2: Get the length of a list.

?- length([tiger, donkey, cow, tiger], N).

N = 4

Yes

Membership

member/2: Test for membership.

?- member(tiger, [dog, tiger, elephant, horse]).

Yes

Backtracking into member/2:

?- member(X, [dog, tiger, elephant]).

X = dog ;

X = tiger ;

X = elephant ;

No

Example

Consider the following program:

show(List) :-

member(Element, List),

write(Element),

nl,

fail.

Note: fail is a built-in predicate that always fails.

What happens when you submit a query like the following one?

?- show([elephant, horse, donkey, dog]).

Example (cont.)

?- show([elephant, horse, donkey, dog]).

elephant

horse

donkey

dog

No

The fail at the end of the rule causes Prolog to backtrack. The
subgoal member(Element, List) is the only choicepoint. In every
backtracking-cycle a new element of List is matched with the
variable Element. Eventually, the query fails (No).

More Built-in Predicates

reverse/2: Reverse the order of elements in a list.

?- reverse([1, 2, 3, 4, 5], X).

X = [5, 4, 3, 2, 1]

Yes

More built-in predicates can be found in the reference manual.

Arithmetic Expressions in Prolog

Prolog comes with a range of predefined arithmetic functions and
operators. Expressions such as 3 + 5, for example, are valid Prolog
terms.

So, what’s happening here?

?- 3 + 5 = 8.

No

Matching vs. Arithmetic Evaluation

The terms 3 + 5 and 8 do not match. In fact, when we are
interested in the sum of the numbers 3 and 5, we can’t get it
through matching, but we need to use arithmetic evaluation.

We have to use the is-operator:

?- X is 3 + 5.

X = 8

Yes

The is-Operator

The is-operator causes the term to its right to be evaluated as an
arithmetic expressions and matches the result of that evaluation
with the term on the operator’s left. (The term on the left should
usually be a variable.)

Example:

?- Value is 3 * 4 + 5 * 6, OtherValue is Value / 11.

Value = 42

OtherValue = 3.81818

Yes

Example: Length of a List

Instead of using length/2 we can now write our own predicate to
compute the length of a list:

len([], 0).

len([_ | Tail], N) :-

len(Tail, N1),

N is N1 + 1.

Functions

Prolog provides a number of built-in arithmetic functions that can
be used with the is-operator. See manual for details.

Examples:

?- X is max(8, 6) - sqrt(2.25) * 2.

X = 5

Yes

?- X is (47 mod 7) ** 3.

X = 125

Yes

Relations

Arithmetic relations are used to compare two arithmetic values.

Example:

?- 2 * 3 > sqrt(30).

Yes

The following relations are available:

=:= arithmetic equality =\= arithmetic inequality

> greater >= greater or equal

< lower =< lower or equal

Examples

Recall the difference between matching and arithmetic evaluation:

?- 3 + 5 = 5 + 3.

No

?- 3 + 5 =:= 5 + 3.

Yes

Recall the operator precedence of arithmetics:

?- 2 + 3 * 4 =:= (2 + 3) * 4.

No

?- 2 + 3 * 4 =:= 2 + (3 * 4).

Yes

Defining Operators

New operators are defined using the op/3-predicate. This can be
done by submitting the operator definition as a query. Terms using
the new operator will then be equivalent to terms using the
operator as a normal functor, i.e. predicate definitions will work.

For the following example assume the big animals program has
previously been compiled:

?- op(400, xfx, is_bigger).

Yes

?- elephant is_bigger dog.

Yes

Query Execution at Compilation Time

It is possible to write queries into a program file (using :- as a
prefix operator). They will be executed whenever the program is
compiled.

If for example the file my-file.pl contains the line

:- write(’Hello, have a beautiful day!’).

this will have the following effect:

?- consult(’my-file.pl’).

Hello, have a beautiful day!

my-file.pl compiled, 0.00 sec, 224 bytes.

Yes

?-

Operator Definition at Compilation Time

You can do the same for operator definitions. For example, the line

:- op(200, fy, small).

inside a program file will cause a prefix operator called small to be
declared whenever the file is compiled. It can be used inside the
program itself, in other programs, and in user queries.

Backtracking, Cuts and Negation

Backtracking

Choicepoints: Subgoals that can be satisfied in more than one way
provide choicepoints. Example:

..., member(X, [a, b, c]), ...

This is a choicepoint, because the variable X could be matched with
either a, b, or c.

Backtracking: During goal execution Prolog keeps track of
choicepoints. If a particular path turns out to be a failure, it jumps
back to the most recent choicepoint and tries the next alternative.
This process is known as backtracking.

Example

Given a list in the first argument, the predicate permutation/2

generates all possible permutations of that list in the second
argument through backtracking (if the user presses ; after every
solution):

permutation([], []).

permutation(List, [Element | Permutation]) :-

select(Element, List, Rest),

permutation(Rest, Permutation).

Example (cont.)

?- permutation([1, 2, 3], X).

X = [1, 2, 3] ;

X = [1, 3, 2] ;

X = [2, 1, 3] ;

X = [2, 3, 1] ;

X = [3, 1, 2] ;

X = [3, 2, 1] ;

No

Problems with Backtracking

Asking for alternative solutions generates wrong answers for this
predicate definition:

remove_duplicates([], []).

remove_duplicates([Head | Tail], Result) :-

member(Head, Tail),

remove_duplicates(Tail, Result).

remove_duplicates([Head | Tail], [Head | Result]) :-

remove_duplicates(Tail, Result).

Problems with Backtracking (cont.)

Example:

?- remove_duplicates([a, b, b, c, a], List).

List = [b, c, a] ;

List = [b, b, c, a] ;

List = [a, b, c, a] ;

List = [a, b, b, c, a] ;

No

Introducing Cuts

Sometimes we want to prevent Prolog from backtracking into
certain choicepoints, either because the alternatives would yield
wrong solutions (like in the previous example) or for efficiency
reasons.

This is possible by using a cut, written as !. This predefined
predicate always succeeds and prevents Prolog from backtracking
into subgoals placed before the cut inside the same rule body.

Example

The correct program for removing duplicates from a list:

remove_duplicates([], []).

remove_duplicates([Head | Tail], Result) :-

member(Head, Tail), !,

remove_duplicates(Tail, Result).

remove_duplicates([Head | Tail], [Head | Result]) :-

remove_duplicates(Tail, Result).

Cuts

Parent goal: When executing the subgoals in a rule’s body the
term parent goal refers to the goal that caused the matching of the
head of the current rule.

Whenever a cut is encountered in a rule’s body, all choices
made between the time that rule’s head has been matched
with the parent goal and the time the cut is passed are final,
i.e. any choicepoints are being discarded.

Exercise

Using cuts (but without using negation), implement a predicate
add/3 to insert an element into a list, if that element isn’t already
a member of the list. Make sure there are no wrong alternative
solutions. Examples:

?- add(elephant, [dog, donkey, rabbit], List).

List = [elephant, dog, donkey, rabbit] ;

No

?- add(donkey, [dog, donkey, rabbit], List).

List = [dog, donkey, rabbit] ;

No

Solution

add(Element, List, List) :-

member(Element, List), !.

add(Element, List, [Element | List]).

Problems with Cuts

The predicate add/3 does not work as expected when the last
argument is already instantiated! Example:

?- add(dog, [dog, cat, bird], [dog, dog, cat, bird]).

Yes

Summary: Backtracking and Cuts

• Backtracking allows Prolog to find all alternative solutions to a
given query.

• That is: Prolog provides the search strategy, not the
programmer! This is why Prolog is called a declarative
language.

• Carefully placed cuts (!) can be used to prevent Prolog from
backtracking into certain subgoals. This may make a program
more efficient and/or avoid the generation of (wrong)
alternatives.

• On the downside, cuts can destroy the declarative character of
a Prolog program (which, for instance, makes finding mistakes
a lot more difficult).

Prolog’s Answers

Consider the following Prolog program:

animal(elephant).

animal(donkey).

animal(tiger).

. . . and the system’s reaction to the following queries:

?- animal(donkey).

Yes

?- animal(duckbill).

No

The Closed World Assumption

In Prolog, Yes means a statement is provably true. Consequently,
No means a statement is not provably true. This only means that
such a statement is false, if we assume that all relevant information
is present in the respective Prolog program.

For the semantics of Prolog programs we usually do make this
assumption. It is called the Closed World Assumption: we assume
that nothing outside the world described by a particular Prolog
program exists (is true).

The \+-Operator

If we are not interested whether a certain goal succeeds, but rather
whether it fails, we can use the \+-operator (negation). \+ Goal

succeeds, if Goal fails (and vice versa). Example:

?- \+ member(17, [1, 2, 3, 4, 5]).

Yes

This is known as negation as failure: Prolog’s negation is defined as
the failure to provide a proof.

Negation as Failure: Example

Consider the following program:

married(peter, lucy).

married(paul, mary).

married(bob, juliet).

married(harry, geraldine).

single(Person) :-

\+ married(Person, _),

\+ married(_, Person).

Example (cont.)

After compilation Prolog reacts as follows:

?- single(mary).

No

?- single(claudia).

Yes

In the closed world described by our Prolog program Claudia has
to be single, because she is not known to be married.

Where to use \+
Note that the \+-operator can only be used to negate goals. These
are either (sub)goals in the body of a rule or (sub)goals of a query.
We cannot negate facts or the heads of rules, because this would
actually constitute a redefinition of the \+-operator (in other words
an explicit definition of Prolog’s negation, which wouldn’t be
compatible with the closed world assumption).

Disjunction

We already know conjunction (comma) and negation (\+). We also
know disjunction, because several rules with the same head
correspond to a disjunction.

Disjunction can also be implemented directly within one rule by
using ; (semicolon). Example:

parent(X, Y) :- father(X, Y); mother(X, Y).

This is equivalent to the following program:

parent(X, Y) :- father(X, Y).

parent(X, Y) :- mother(X, Y).

Example

Write a Prolog program to evaluate a row of a truth table. (Assume
appropriate operator definitions have been made beforehand.)

Examples:

?- true and false.

No

?- true and (true and false implies true) and neg false.

Yes

Solution

% Falsity

false :- fail.

% Conjunction

and(A, B) :- A, B.

% Disjunction

or(A, B) :- A; B.

Solution (cont.)

% Negation

neg(A) :- \+ A.

% Implication

implies(A, B) :- A, !, B.

implies(_, _).

Note

We know that in classical logic ¬A is equivalent to A→⊥.
Similarly, instead of using \+ in Prolog we could define our own
negation operator as follows:

neg(A) :- A, !, fail.

neg(_).

Summary: Negation and Disjunction

• Closed World Assumption: In Prolog everything that cannot
be proven from the given facts and rules is considered false.

• Negation as Failure: Prolog’s negation is implemented as the
failure to provide a proof for a statement.

• Goals can be negated using the \+-operator.

• A disjunction of goals can be written using ; (semicolon).
(The comma between two subgoals denotes a conjunction.)

