
UML and its Meaning

P. H. Schmitt

Winter 2002/2003



Contents

Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1 Introduction 14

1.1 History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.2 Set Theoretical Notation . . . . . . . . . . . . . . . . . . . . . 15

2 UML Class diagrams 20

2.1 Classes and Attributes . . . . . . . . . . . . . . . . . . . . . . 23

2.1.1 Example . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.1.2 Semantics . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.1.3 Comments . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2 Associations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2.1 Example . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2.2 Semantics . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2.3 Comments . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3 Role names . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3.1 Example . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3.2 Semantics . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3.3 Comments . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.4 Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.4.1 Example . . . . . . . . . . . . . . . . . . . . . . . . . . 29

1



2.4.2 Semantics . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.4.3 Comments . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.5 Subclasses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.5.1 Example . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.5.2 Semantics . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.5.3 Comments . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.6 Abstract Classes . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.6.1 Example . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.6.2 Semantics . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.6.3 Comments . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.7 Class Attributes . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.7.1 Example . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.7.2 Semantics . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.7.3 Comments . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.8 Association Class . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.8.1 Example . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.8.2 Semantics . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.8.3 Comments . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.9 Data Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.9.1 Example . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.9.2 Semantics . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.9.3 Comments . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.10 Enumerations . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.10.1 Example . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.10.2 Semantics . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.10.3 Comments . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.11 Aggregations and Compositions . . . . . . . . . . . . . . . . . 39

2.11.1 Example . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2



2.11.2 Semantics . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.11.3 Comments . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.12 Qualifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.12.1 Example . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.12.2 Semantics . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.12.3 Comments . . . . . . . . . . . . . . . . . . . . . . . . . 44

3 UML Object diagrams 45

4 OCL by Example 49

4.1 Contexts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.1.1 Comments . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2 Constraints with Attributes . . . . . . . . . . . . . . . . . . . 52

4.2.1 Example . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.2.2 Constraint Syntax . . . . . . . . . . . . . . . . . . . . 53

4.2.3 Meaning of the Constraint . . . . . . . . . . . . . . . . 53

4.2.4 Comments . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.3 Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.3.1 Example . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.3.2 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.3.3 Meaning of Types . . . . . . . . . . . . . . . . . . . . . 57

4.3.4 Comments . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.4 Constraints with Associations . . . . . . . . . . . . . . . . . . 57

4.4.1 Example . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.4.2 Constraint Syntax . . . . . . . . . . . . . . . . . . . . 58

4.4.3 Meaning of the Constraint . . . . . . . . . . . . . . . . 59

4.4.4 Comment . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.5 Navigation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.5.1 Example . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3



4.5.2 Constraint Syntax . . . . . . . . . . . . . . . . . . . . 61

4.5.3 Meaning of the Constraint . . . . . . . . . . . . . . . . 61

4.5.4 Comment . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.6 allInstances . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.6.1 Example . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.6.2 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.6.3 Meaning of allInstances . . . . . . . . . . . . . . . . . . 64

4.6.4 Comment . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.7 The iterate operation . . . . . . . . . . . . . . . . . . . . . . . 66

4.7.1 Example . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.7.2 Constraint Syntax . . . . . . . . . . . . . . . . . . . . 67

4.7.3 Meaning of the Constraint . . . . . . . . . . . . . . . . 67

4.7.4 Another Example . . . . . . . . . . . . . . . . . . . . . 68

4.7.5 Comment . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.8 Collecting Elements . . . . . . . . . . . . . . . . . . . . . . . . 69

4.8.1 Example . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.8.2 Constraint Syntax . . . . . . . . . . . . . . . . . . . . 70

4.8.3 Meaning of the Constraint . . . . . . . . . . . . . . . . 70

4.8.4 Comment . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.9 Selecting Elements . . . . . . . . . . . . . . . . . . . . . . . . 71

4.9.1 Example . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.9.2 Constraint Syntax . . . . . . . . . . . . . . . . . . . . 72

4.9.3 Meaning of the Constraint . . . . . . . . . . . . . . . . 72

4.9.4 Comment . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.10 Quantifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.10.1 Example . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.10.2 Constraint Syntax . . . . . . . . . . . . . . . . . . . . 74

4.10.3 Meaning of the Constraint . . . . . . . . . . . . . . . . 74

4



4.10.4 Comment . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.11 Refering to previous values . . . . . . . . . . . . . . . . . . . . 75

4.11.1 Example . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.11.2 Constraint Syntax . . . . . . . . . . . . . . . . . . . . 76

4.11.3 Meaning of the Constraint . . . . . . . . . . . . . . . . 77

4.11.4 Comment . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.12 Role Based Access Control . . . . . . . . . . . . . . . . . . . . 77

4.12.1 RBAC Core . . . . . . . . . . . . . . . . . . . . . . . . 78

4.12.2 Hierarchical RBAC . . . . . . . . . . . . . . . . . . . . 86

4.12.3 Static Separation of Duty Relations . . . . . . . . . . . 94

4.12.4 Dynamic Separation of Duty Relations . . . . . . . . . 94

4.13 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5 Systematic Introduction to OCL 96

5.1 Vocabulary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.1.1 A Bird’s Eye View . . . . . . . . . . . . . . . . . . . . 97

5.1.2 Basic Types and Operations . . . . . . . . . . . . . . . 98

5.1.3 Enumeration Types . . . . . . . . . . . . . . . . . . . . 99

5.1.4 Object Types . . . . . . . . . . . . . . . . . . . . . . . 99

5.1.5 Collection and Tupel Types . . . . . . . . . . . . . . . 101

5.1.6 Special Types and Operations . . . . . . . . . . . . . . 102

5.1.7 Type Hierarchy . . . . . . . . . . . . . . . . . . . . . . 103

5.2 Syntax of OCL Expressions . . . . . . . . . . . . . . . . . . . 103

5.3 Semantics of OCL Expressions . . . . . . . . . . . . . . . . . . 104

5.3.1 System States . . . . . . . . . . . . . . . . . . . . . . . 105

5.3.2 System States Conforming to a Class Diagram . . . . . 106

5.3.3 Interpreting OCL Expressions . . . . . . . . . . . . . . 106

5.4 Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5



6 Metamodelling Approach to OCL 109

6.1 OCL Syntax Through Diagrams . . . . . . . . . . . . . . . . . 110

6.1.1 Comment . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.2 IfExpression . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.3 LetExpression . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

7 State Charts by Example 115

7.1 States and Transitions . . . . . . . . . . . . . . . . . . . . . . 116

7.1.1 Example . . . . . . . . . . . . . . . . . . . . . . . . . . 116

7.1.2 Description . . . . . . . . . . . . . . . . . . . . . . . . 116

7.2 Completion States . . . . . . . . . . . . . . . . . . . . . . . . 117

7.2.1 Example . . . . . . . . . . . . . . . . . . . . . . . . . . 117

7.2.2 Description . . . . . . . . . . . . . . . . . . . . . . . . 117

7.3 Sequential Substates . . . . . . . . . . . . . . . . . . . . . . . 118

7.3.1 Example . . . . . . . . . . . . . . . . . . . . . . . . . . 118

7.3.2 Description . . . . . . . . . . . . . . . . . . . . . . . . 118

7.4 Concurrent Substates . . . . . . . . . . . . . . . . . . . . . . . 118

7.4.1 Example . . . . . . . . . . . . . . . . . . . . . . . . . . 118

7.4.2 Description . . . . . . . . . . . . . . . . . . . . . . . . 119

8 Introduction to Abstract State Machines 120

8.1 A New Model of Sequential Computation . . . . . . . . . . . . 121

8.1.1 The Sequential Time Postulate . . . . . . . . . . . . . 121

8.1.2 The Abstract State Postulate . . . . . . . . . . . . . . . 121

8.1.3 The Bounded Exploration Postulate . . . . . . . . . . . 122

8.1.4 Example: A Geometric Algorithm . . . . . . . . . . . . 124

8.1.5 What Is A Single Step? . . . . . . . . . . . . . . . . . . 128

8.1.6 Example: A Graph Algorithm . . . . . . . . . . . . . . 130

6



8.2 ASM Programs . . . . . . . . . . . . . . . . . . . . . . . . . . 131

8.2.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . 132

8.2.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . 134

8.2.3 Universality of Abstract State Machines . . . . . . . . 134

9 Introduction to Dynamic Logic 137

9.1 A Motivating Example . . . . . . . . . . . . . . . . . . . . . . 138

9.1.1 Comments . . . . . . . . . . . . . . . . . . . . . . . . . 142

9.2 Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

9.3 The Vocabulary . . . . . . . . . . . . . . . . . . . . . . . . . . 143

9.3.1 Parts of the Vocabulary . . . . . . . . . . . . . . . . . 143

9.3.2 Example . . . . . . . . . . . . . . . . . . . . . . . . . . 145

9.3.3 Comments . . . . . . . . . . . . . . . . . . . . . . . . . 145

9.4 Formulas and Terms of Dynamic Logic . . . . . . . . . . . . . 146

9.4.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . 146

9.4.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . 147

9.4.3 Comments . . . . . . . . . . . . . . . . . . . . . . . . . 147

9.5 Kripke Structures for Dynamic Logic . . . . . . . . . . . . . . 148

9.5.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . 148

9.5.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . 148

9.5.3 Comments . . . . . . . . . . . . . . . . . . . . . . . . . 149

9.6 Truth Definition in Kripke Structures . . . . . . . . . . . . . . 150

9.6.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . 150

9.6.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . 152

9.6.3 Comments . . . . . . . . . . . . . . . . . . . . . . . . . 152

9.7 Some DL Tautologies . . . . . . . . . . . . . . . . . . . . . . . 152

9.7.1 Listing . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

9.7.2 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

9.7.3 Comments . . . . . . . . . . . . . . . . . . . . . . . . . 155

7



9.8 Conditional Terms . . . . . . . . . . . . . . . . . . . . . . . . 155

9.9 Substitutions . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

9.9.1 Retrospective . . . . . . . . . . . . . . . . . . . . . . . 158

9.9.2 Substitutions in Dynamic Logic . . . . . . . . . . . . . 159

9.9.3 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

9.9.4 Comments . . . . . . . . . . . . . . . . . . . . . . . . . 165

9.10 Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

9.10.1 Example . . . . . . . . . . . . . . . . . . . . . . . . . . 166

9.11 Generalized Substitutions . . . . . . . . . . . . . . . . . . . . 166

9.11.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . 166

9.11.2 Definition . . . . . . . . . . . . . . . . . . . . . . . . . 167

9.12 Sequent Calculus . . . . . . . . . . . . . . . . . . . . . . . . . 169

9.12.1 Sequent Rules . . . . . . . . . . . . . . . . . . . . . . . 169

9.12.2 Proof Trees . . . . . . . . . . . . . . . . . . . . . . . . 170

9.12.3 Comments . . . . . . . . . . . . . . . . . . . . . . . . . 173

9.13 The Assignment Rule . . . . . . . . . . . . . . . . . . . . . . . 174

9.13.1 The Rule . . . . . . . . . . . . . . . . . . . . . . . . . 174

9.13.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . 174

9.13.3 Soundness Proof . . . . . . . . . . . . . . . . . . . . . 175

9.13.4 Comments . . . . . . . . . . . . . . . . . . . . . . . . . 175

9.14 A Branching Rule . . . . . . . . . . . . . . . . . . . . . . . . . 176

9.14.1 The Rule . . . . . . . . . . . . . . . . . . . . . . . . . 176

9.14.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . 176

9.14.3 Soundness Proof . . . . . . . . . . . . . . . . . . . . . 177

9.14.4 Comments . . . . . . . . . . . . . . . . . . . . . . . . . 177

9.15 A While Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

9.15.1 The Rule . . . . . . . . . . . . . . . . . . . . . . . . . 178

9.15.2 Example . . . . . . . . . . . . . . . . . . . . . . . . . . 178

8



9.15.3 Soundness Proof . . . . . . . . . . . . . . . . . . . . . 178

9.15.4 Comments . . . . . . . . . . . . . . . . . . . . . . . . . 179

9.16 Integer Induction Rule . . . . . . . . . . . . . . . . . . . . . . 179

9.16.1 The Rule . . . . . . . . . . . . . . . . . . . . . . . . . 179

9.16.2 Soundness Proof . . . . . . . . . . . . . . . . . . . . . 180

9.16.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . 180

9.16.4 Comments . . . . . . . . . . . . . . . . . . . . . . . . . 181

9.17 Assignments with Side Effects . . . . . . . . . . . . . . . . . . 181

9.17.1 The Rules . . . . . . . . . . . . . . . . . . . . . . . . . 181

9.17.2 Soundness . . . . . . . . . . . . . . . . . . . . . . . . . 181

9.17.3 Comments . . . . . . . . . . . . . . . . . . . . . . . . . 182

9.18 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

10 Set Theory 184

10.1 Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

10.2 The Natural Numbers . . . . . . . . . . . . . . . . . . . . . . 190

10.3 Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

10.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

11 Solutions to Exercises 194

11.1 Solutions to Chapter 2 . . . . . . . . . . . . . . . . . . . . . . 195

11.2 Solutions to Chapter 3 . . . . . . . . . . . . . . . . . . . . . . 195

11.3 Solutions to Chapter 4 . . . . . . . . . . . . . . . . . . . . . . 195

11.4 Solutions to Chapter 9 . . . . . . . . . . . . . . . . . . . . . . 195

11.5 Solutions to Chapter 10 . . . . . . . . . . . . . . . . . . . . . 199

12 Appendix: Predefined OCL Types 200

12.1 Basic Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

12.1.1 Integer . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

12.1.2 Real . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

9



12.1.3 String . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

12.1.4 Boolean . . . . . . . . . . . . . . . . . . . . . . . . . . 204

12.2 Enumeration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

12.3 Collection-Related Types . . . . . . . . . . . . . . . . . . . . . 205

12.3.1 Collection . . . . . . . . . . . . . . . . . . . . . . . . . 205

12.3.2 Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

12.3.3 Bag . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

12.3.4 Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . 211

12.4 Special Types . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

12.4.1 OclType . . . . . . . . . . . . . . . . . . . . . . . . . . 214

12.4.2 OclAny . . . . . . . . . . . . . . . . . . . . . . . . . . 215

12.4.3 OclState . . . . . . . . . . . . . . . . . . . . . . . . . . 216

12.4.4 OclExpression
(Not supported in Draft Standard . . . . . . . . . . . . 216

13 Appendix: Attribute Grammar for OCL 217

14 Appendix: Zermelo-Fraenkel Axiom System 233

15 Appendix: Axiom Systems for Sequent Calculi 235

15.1 The Axiom System S0 . . . . . . . . . . . . . . . . . . . . . . 236

15.2 The Axiom System Sfv
0 . . . . . . . . . . . . . . . . . . . . . . 237

15.3 Rules for Equality . . . . . . . . . . . . . . . . . . . . . . . . . 238

16 Appendix: Source Code 239

16.1 Java Programs . . . . . . . . . . . . . . . . . . . . . . . . . . 240

16.2 KeYProver Input . . . . . . . . . . . . . . . . . . . . . . . . . 242

16.2.1 Induction Proof Task . . . . . . . . . . . . . . . . . . . 242

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248

10



List of Figures

2.1 Class Person . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2 The review association . . . . . . . . . . . . . . . . . . . . . . 25

2.3 Review association with ordering . . . . . . . . . . . . . . . . 27

2.4 Class with operation . . . . . . . . . . . . . . . . . . . . . . . 29

2.5 Subclasses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.6 An abstract class with subclasses . . . . . . . . . . . . . . . . 32

2.7 A class with class scope attribute . . . . . . . . . . . . . . . . 34

2.8 An association class . . . . . . . . . . . . . . . . . . . . . . . . 35

2.9 Data types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.10 An enumeration type Boolean . . . . . . . . . . . . . . . . . . 38

2.11 An enumeration class . . . . . . . . . . . . . . . . . . . . . . . 39

2.12 An aggregation association . . . . . . . . . . . . . . . . . . . . 40

2.13 A composition association . . . . . . . . . . . . . . . . . . . . 41

2.14 A composite pattern . . . . . . . . . . . . . . . . . . . . . . . 42

2.15 Association with qualifier . . . . . . . . . . . . . . . . . . . . . 43

3.1 An object diagram . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2 An object diagram representing a list . . . . . . . . . . . . . . 48

4.1 Context diagram for attribute constraints . . . . . . . . . . . . 52

4.2 Simplified context diagram for association constraints . . . . . 58

4.3 Context diagram for association constraints . . . . . . . . . . 58

11



4.4 Constraints with navigation . . . . . . . . . . . . . . . . . . . 60

4.5 Context diagram for allInstances . . . . . . . . . . . . . . . . 63

4.6 Expanded context diagram for allInstances . . . . . . . . . . 65

4.7 Context class for constraint with iterate . . . . . . . . . . . . 66

4.8 Syntax of the iterate construct . . . . . . . . . . . . . . . . . . 67

4.9 The isAuthor operation . . . . . . . . . . . . . . . . . . . . . 69

4.10 Context class for select Example . . . . . . . . . . . . . . . . . 72

4.11 A context diagram for quantifiers . . . . . . . . . . . . . . . . 73

4.12 The operation addPaper . . . . . . . . . . . . . . . . . . . . . 75

4.13 A scenario for multiple uses of @pre . . . . . . . . . . . . . . . 76

4.14 Class diagram for RBAC core . . . . . . . . . . . . . . . . . . 79

4.15 The class User . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.16 The class Role . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.17 The class Session . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.18 The class Permission . . . . . . . . . . . . . . . . . . . . . . . 85

4.19 Class diagram for RBAC with hierarchy . . . . . . . . . . . . 86

4.20 Class HRole . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.21 Shorthand for Class HRole . . . . . . . . . . . . . . . . . . . . 89

4.22 The Class HUser . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.23 The Class HSession . . . . . . . . . . . . . . . . . . . . . . . . 92

4.24 Scenario from Excerise 4.13.2 . . . . . . . . . . . . . . . . . . 94

5.1 Top Level of Type Hierachy . . . . . . . . . . . . . . . . . . . 97

5.2 Top level meta model of OCL expressions . . . . . . . . . . . . 100

6.1 Top level meta model of OCL expressions . . . . . . . . . . . . 111

6.2 Class diagram for IfExpression . . . . . . . . . . . . . . . . . . 112

6.3 Class diagram for LetExpression . . . . . . . . . . . . . . . . . 113

7.1 A simple State Chart . . . . . . . . . . . . . . . . . . . . . . . 116

12



7.2 A State Chart with completioon state . . . . . . . . . . . . . . 117

7.3 A State Chart with sequential substates . . . . . . . . . . . . 118

7.4 A State Chart with concurrent substates . . . . . . . . . . . . 118

8.1 Constructing the centre point M . . . . . . . . . . . . . . . . 125

8.2 The circle touching three given points . . . . . . . . . . . . . . 127

8.3 Example of a reachability problem . . . . . . . . . . . . . . . . 131

9.1 The Program αRM . . . . . . . . . . . . . . . . . . . . . . . . 138

9.2 The Program αRM with assertions . . . . . . . . . . . . . . . . 139

9.3 The Program Snippet Using Arrays . . . . . . . . . . . . . . . 166

9.4 Example of a closed proof tree . . . . . . . . . . . . . . . . . . 171

9.5 Example of an open proof tree . . . . . . . . . . . . . . . . . . 172

9.6 Proof of ∃x(p(x)→ ∀yp(y))) . . . . . . . . . . . . . . . . . . . 173

13



Chapter 1

Introduction
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1.1 History

The Unified Modeling Language (UML) is a language for visualizing, spec-
ifying, constructing and documenting object-oriented software systems. It
has been widely accepted as a standard for modeling software systems and
is supported by a great number of CASE tools (Computer Aided Software
Engineering tools).

The Unified Modeling Language (UML), version UML 1.1, was adopted as
a standard of the Object Management Group (OMG) November 14, 1997.
Work on UML was initialized by Grady Booch, James Rumbaugh and Ivar
Jacobson by the mid 1990s. The initial focus was to combine and unify the
Booch method with OMT, the method developed by James Rumbaugh, and
OOSE, Ivar Jacobson’s method. The UML project was gradually joined by
other researchers till a core team of about twenty finally hold responsible
for UML 1.1. Since 1997 the maintenance of the UML standard was taken
over by the OMG Revision Task Force (RTF). The current version as of this
writing is UML 1.3.

The standard document on UML is [OMG, 2000b]. A comprehensive account
of UML may be found in the books authored by the three pioneers [Rum-
baugh et al., 1998, Rumbaugh et al., 1999a] accompanied by the description
of a process model on the basis of UML in [Rumbaugh et al., 1999b]. The fast
road to learn UML is provided by [Fowler & Scott, 1997]. The Object Con-
straint Language (OCL) is part of UML [OMG, 2000a]. The only available
introduction at the time is [Warmer & Kleppe, 1999].

1.2 Set Theoretical Notation

We give a short review of the pieces of set theoretical notation used in the
following.

Basic concepts

1. A set is the combination of certain well-distiguished objects taken from
our visual or mental experience into one entity. The objects are called
the elements of the set.
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Let M denote a set, and m an object. The fact that m is an element
of M is denoted by m ∈M .

2. A function from a set M1 in a set M2 associates with an element m1 ∈
M1 a unique element m2 ∈ M2. If f is used to denote a function this
association is symbolically expressed as f(m1) = m2. The element m1

is called the argument and m2 the value of the function application
f(m1).

3. A relation describes properties of elements, pairs of elements or in gen-
eral n-tupels of elements. If r denotes a unary relation, and a is an
object, then r(a) denotes the fact that the relation a is true of the ob-
ject a. For a binary relation r2 and objects a1, a2 the symbolic notation
r2(a1, a1) expresses that the relation r2 is true of the pairs a1, a2.

We consider these three notions as basic. Therefore we do not attempt to
define them in terms of simpler or other concepts. Basic in the same sense
are also

1. The element relation, m ∈M , m is an element of the set M

2. Function application, f(a1, . . . , an), which denotes the value of the n-
ary function f applied to the arguments (a1, . . . , an).

3. Relation application, r(a1, . . . , an), which yields the value true, when
the n-ary relation r holds of the tupel (a1, . . . , an) and the value false
otherwise.

It is, of course, possible to construct mutual dependencies between these
three basic concepts. This is not necessary at the level of presentation of the
next 3 chapters.

The explanation given for sets is an attempt to translate Georg Cantor’s
explanation into English. Georg Cantor is the founding father of modern set
theory through his bold publication [Cantor, 1895].

In Cantor’s theory sets could be finite or infinite. In fact, it was the inclusion
and systematic treatment of infinite sets that made his work so provocatice
to the mathematicians of his time.
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Definition 1 (Subset)
A set N is called a subset of set M if every element of N is also an element
of M . In this situation M is also called a superset of N in this case. We
write N ⊆M in this case.

For small finite sets M we may define M by enumerating all its elements
M = {a1, . . . an}. The empty set is denoted by ∅. We use special reserved
symbols to denote frequently occuring sets: N, natural numbers, Z, integers,
Q, rational numbers, R, real numbers. In most cases, a set M will be defined
by singling out elements from a superset N that satisfy a certain property φ,
in symbols M = {x ∈ N | φ}.

There is still another common way do define particular sets: it starts by
singling out elements from a superset, but these elements are not collected
themselves into a new set. From these elements, say a1, . . . , ak new ones are
constructed, which we may denote by t(a1, . . . , ak), and these then form the
elements of the new set. We may compress this explanation into the formal
scheme M = {t(x1, . . . , xn) | φ(x1, . . . , xn)}.

Examples for defining sets

1. {x ∈ N | x is prime}

2. {x2 | x ∈ N and x is prime}

3. {x2
1 + x2

2 + x2
3 + x2

4 | xi ∈ Z}

Definition 2 (Functions)

1. A n-ary function f : M1 → M2 is called total if for every n-tupel
(a1, . . . , an) of elements from M1 the function value f(a1, . . . , an) is
defined. If this is not the case then f is called partial.

2. The set {f(a1, . . . , an) | a1, . . . , an ∈M1} is called the range of f .

3. If f : M1 → M2 is a unary function the set of all elements m ∈ M1

such that f(m) is definied, is called the domain of f .

Definition 3
Let r be a relation.
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1. The set {a | there exists b with r(a, b)} is called the domain of r

2. The set {b | there exists a with r(a, b)} is called the range of r

Definition 4
Let A, B be sets.

1. The intersection A ∩ B is the set of elements occuring both in A and
B, i.e. A ∩ B = {x | x ∈ A and x ∈ B}

2. The union A ∪B is the set of elements occuring either in A or B, i.e.

A ∪B = {x | x ∈ A or x ∈ B}

3. A and B are called disjoint, if they have no elements in common, i.e.
A ∩B = ∅.

Definition 5
Let A be a set.

1. The set of all subsets of A is denoted by Set(A), i.e.

Set(A) = {B | B ⊆ A}

Set(A) is also called the power set of A.

2. The set of all finite subset of A is denoted by Setω(A), i.e.

Setω(A) = {B | B ⊆ A and B is finite}

3. For each natural number n ∈ N the set of all subsets with exactly (at
most) n elements is denoted by Setn(A) (Set≤n(A)).

Definition 6
A bag is a collection where multiple occurences of objects are possible. Bags
are sometimes also called multisets.

If B is a bag and e an arbitrary object the function countB(e) denotes the
number of occurences of e in B.

While a set abstracts from the order and multiplicity of its objects a bag
only abstracts from their order.

Note that countB(e) > 0 is equivalent to e ∈ B.
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Examples {a, b, a, c, b} and {a, b, c} are the same set, but they are different
as bags. {a, b, a, c, b} and {c, b, a, b, a} are identical bags.
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Chapter 2

UML Class diagrams
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In UML class diagrams are used to model the static design view of a system.
They are the most commonly used diagram type. We will look at the elements
that make up class diagrams in detail one after the other. In each case we
will start with the graphical representation of the item in question, then give
its semantics and wrap up with comments.

Before we start on this tour we should explain our understanding of the term
semantics. So far all approaches to provide UML with a rigorous mean-
ing followed the same line of attack: they translated UML diagrams into a
formalism with well-understood semantics. Here is a non-exhaustive list of
papers on translations of UML into

1. the CASL-LTL language, an extension of CASL, [Reggio et al., 2000].

2. Z, [France, 1999] .

3. Object-Z, [Kim & Carrington, 1999] .

4. the logical language of PVS, [Krishnan, 2000].

5. MSM (Mathematical System Model), [Breu et al., 1998].

6. BOTL, [Distefano et al., 2000].

7. LSL, the Larch Shared Language, [Hamie et al., 1998, Hamie, 1998].

8. EER (extended entity relationship), [Gogolla & Richters, 1998] ,

9. Maude in [Álvarez & Alemán, 2000] .

10. COQ in [Russo, 2001] (???).

The main motivation for these translations in most cases was the extra benefit
that the translated models could be used as input to some reasoning or
analysis tool.

We will take a different avenue and describe the meaning of UML class dia-
grams by using only the simplest notions from set theory. This approach is
modeled after the long standing practise in mathematics, where the prover-
bial mathematical rigour is obtained without the use of a formalized language
or logic, natural language plus some notational conventions suffice. The main
goal is to keep things as simple as possible. A comparable stand is taken in
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[Cohen, 1998]. Also in [France, 1999], even though the formal language Z is
used, the emphasis is

. . . to develop precise semantics for UML notations, expressed in
a form that is widely understood (e.g., natural language), and
that supports rigorous analyses of the models.

It is our intention that the semantics described in this and the next chapter
will serve as an easily accessible common basis for translations of the kind
mentioned above. No knowledge of a particular formal language will be
presupposed. The informal but rigorous descriptions can then be cast into
the formal language of one’s own choice. There are also no principle obstacles
to formalize them in the uniform framework proposed in [Clark et al., 2000].

This being said, let’s get down to business. What is the meaning of a UML
model? This is made sufficiently clear in [Rumbaugh et al., 1998, pages
59–60]

One purpose of a model is to describe the possible states of a
system and their behavior. A model is a statement of potentiality,
of the possible collections of objects that might exist and the
possible behavior history that the objects might undergo. The
static view defines and constraints the possible configurations of
values that an executing system may assume. The dynamic view
defines the ways in which an executing system may pass from one
configuration to another. . . . . A particular static configuration
of a system at one instant is called a snapshot.

We will concentrate here on the static view only. A snapshot is also called
a configuration, or the static part of a system state. To get into the right
mood let us quote another paragraph from [Rumbaugh et al., 1998]

The static view defines the set of objects, values, and links that
can exist in a single snapshot. In principle, any combination
of objects and links that is consistent with a static view is a
possible configuration of the model. This does not mean that
every possible snapshot can or will occur.
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In the following we will thus describe for each model element what their
snapshots look like and what are its consistency requirements. As a rule
we will at first only consider the most important features of a model elment
and return later to add more advanced ones. Taken together the individual
descriptions will add up to a snapshot of a whole class diagram.

We work under the assumption that syntactical correctness of class diagrams
has been check. Therefore questions about meta-modeling will not be con-
sidered.

2.1 Classes and Attributes

2.1.1 Example
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Figure 2.1: Class Person

2.1.2 Semantics

In any snapshot a class is interpreted as a set of elements. There is no
requirement that the set be non-empty.

Attributes are functions from their class to their type. These functions may
be partial, i.e. they need not return a value for every element in their class.
The reason for partiality is, that we also want to cover situations where
attributes have not yet been initialized.
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We will use the same class and attribute names also for their semantic coun-
terparts in a snapshot. In every snapshot of the diagram shown in Figure
2.1 Person will be an arbitrary set. In the same snapshot there are also a set
String and functions name and e-mail from the set Person to the set String.

2.1.3 Comments

The type of an attribute, as described by the UML metamodel, is a role
name of an association between the metaclass Attribute and the metaclass
Classifier. It is not to be confused with the metaclass DataType. Any class,
interface or data type may occur as the type of an attribute.

UML allows multiplicities on attributes. Though by far the most common
multiplicity and the default is 1. Notice, even attributes of default multi-
plicity 1 will in our framework be considered as partial functions, since they
have no value before initialization.

We call attributes with multiplicities different from 1 set-valued attributes. A
set-valued attribute in class C of type T will in any snapshot be interpreted
as a function from C to the power set of T , i.e. the set of all subsets of
T . Restrictions on the cardinality of the set of values in any snapshot will
we added as a consistency requirement. An example of an attribute with
non-default multiplicity is the authors attribute in Figure 2.2.

Even the exceptional case of multiplicity 0 is explicitely included. This seems
to have not been widely accepted. In [Fowler & Scott, 1997] e.g. this possibil-
ity is not even mentioned. We would interpret an attribute with multiplicity
0 as a set valued function, whose value is always the empty set.

In most cases an attribute will be a total function. Partiality is neccessary
to allow for the situation that for newly created elements the value of an
attribute has not been initialized yet, see [Rumbaugh et al., 1998, pages 167
and 303].

As stated above, we try to get along in this chapter with minimal formality.
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multiplicities

Person

name:String

e-mail:String

Paper

authors[*]:Person

number:Int

*3

referee review

role name association name

Figure 2.2: The review association

2.2 Associations

2.2.1 Example

2.2.2 Semantics

An association r between classes C1 and C2 is interpreted in a snapshot as
a relation between the sets C1 and C2. For every pair of elements c1 from
C1 and c2 from C2 we use r(c1, c2) to denote that the relation r holds for c1
and c2. The best way to think of instances of an association is as pairs of
objects.
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A multiplicity is interpreted as a subset of the natural numbers.

0..1 is {0, 1}
0..∗ is the set of all natural numbers
∗ is same as previous line
1..3 is the set of all numbers between 1 and 3 including end

points
7 is the singleton set, consisting only of the number 7
15..19 is the set of all numbers between 15 and 19 including end

points
1..3, 7, 15..19 is the set theoretic union of the three previous sets

i.e., the seperator “,” acts as set theoretic union

If the C1-end of an association ass between C1 and C2 carries as multiplicity
the subset M of natural numbers any snapshot has to satisfy the consistency
requirement that for every element c2 in C2 the number of element from C1
in relation to c2 occurs in M . That is: look at the set {c1 ∈ C1 | ass(c1, c2)}.
determine its cardinality n and check wether n is in M . If the multiplicity is
1, thus M = {1}, then there has to be for every c2 ∈ C2 exactly one element
c1 ∈ C1 satisfying ass(c1, c2).

The same applies for multiplicities attached to the C2-end.

2.2.3 Comments

Role names get lost in this representation.

Names for associations are optional. In case there is no name we use role-
name1 - rolename2 instead. If the name review had been omitted in Figure
2.2 we would have called it the referee-paper relation.

Sofar we have only considered binary association, i.e. associations with just
two associations ends. A association with n association ends is interpreted
as an n-ary relation in any snapshot. All that was said above for binary
relations carries over to n-ary relations.
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multiplicities

Person

name:String

e-mail:String

Paper

authors[*]:Person

number:Int

*

{ordered}

3

referee review

role name association name ordering information

Figure 2.3: Review association with ordering

2.3 Role names

2.3.1 Example

2.3.2 Semantics

As pointed out in the comments in Section 2.2 role names get lost, when
interpreting an association as a relation. For this reason we present here
another way to look at associations and their association ends.

A binary association ass between classes C1 and C2 gives rise to two func-
tions f1 and f2. The first with domain C1 and the other with domain C2.
The range of function f1 depends on the multiplicity and further adorn-
ment attached to the association end at C2. If the multiplicity is 1 then
f1 : C1 → C2. If the multiplicity is ∗ then f1 : C1 → Set(S2). If the mul-
tiplicity is n for some n ∈ N then f1 : C1 → Setn(S2). Other multiplicities
are handled correspondingly. The same applies, of course, to f2. When we
comsider a particular class diagram the abstract notion, f1 and f2, will be
replaced by the role names attached at the C2 respectively at the C1 end of
the association.
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The review association in Figure 2.2 thus gives rise to the two functions

referee : Paper → Person
paper : Person → Set(Paper)

The UML Standard offers an ordering attribute for association ends with the
possible values unordered, this is the default, ordered and sorted. Figure 2.3
shows an example. In this case the range of the associated function is not
the set of subsets of the target class, but the set of (finite) sequences. In
Figure 2.3 the function paper will be of signature paper : C1→ Seq(C2).

An n-ary association will give rise to n functions in the same way as has been
described for binary relations.

If an association end carries an ordered label the UML Standard says nothing
about how to communicate what ordering should be used. This information
has to be obtained somehow. In Figure 2.3 it is plausible to order the papers
according to their numer attribute.

2.3.3 Comments

Since role names are optional we also have to make provisions in case they
are missing. In this case the name of the class attached at the particular
association end is used as a role name, in lower case letters.

Interpreting an association in the way described in this section the name of
the association does not appear anymore. The fact that the functions f1, f2
arise from one and the same association has to be expressed as a constraint
on snapshots of the diagram. For the functions referee and paper in the
diagram of Figure 2.2 these constraints read:

For every Person r and every paper p, if p is an element of paper(r) then r is
an element of referee(p) and vice versa: i.e. if r is an element of referee(p)
then p is an element of paper(r).
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Figure 2.4: Class with operation

2.4 Operations

2.4.1 Example

2.4.2 Semantics

According to the UML semantics description operations are conceptual con-
structs. Operations are services that can be requested from an object of their
class and will eventually be implemented. An implementation of an opera-
tion is called a method. Operations in a class diagram fix the number and
types of the actual parameters of their implementation and also the type of
the return value if it exists.

In our semantics operations are interpreted as transitions from one snapshot
to one or in the case of non-deterministic operations to more than one suc-
cessor snapshot. Set theoretically an operation is thus interpreted as a set of
pairs of snapshots.

A particular case of operations are queries, i.e. operations that do not have
side effects. They are treated differently in UML/OCL in that they may oc-
cur within OCL expressions. We interprete queries as partial functions in all
snapshots having in addition to the specified arguments one more argument,
whose type is the class of the operation. The only consistency requirements
are that the declared argument and value types of an operation and its im-
plicit argument are respected. Note, the meaning of operations with side
effects cannot be defined by a function.
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2.4.3 Comments

2.5 Subclasses

2.5.1 Example
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Figure 2.5: Subclasses

2.5.2 Semantics

If C1 is a subclass of D in a class diagramm CD then in any snapshot of CD
C1 is a subset of D. In general there is no further requirement, i.e. if C1 and
C2 are all subclasses of D then C1 and C2 need not be disjoint nor is the
union of C1 and C2 required to be all of D. UML allows to add the following
constraints to the subclass relationship (see [OMG, 2000b, page 2-36])
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• complete

• disjoint

• incomplete

• overlapping

If a subclass relationship carries the constraint disjoint then we require that
in any snapshot its subclasses will be interpreted as mututally disjoint sets.
If it carries the constraint complete then we require that the union of its
subclasses equals the superclass.

In any snapshot of the class diagram shown in Figure 2.5 there is no common
element of the sets ShortPaper and LongPaper and there may be elements
in Paper that do not belong neither to LongPaper nor to ShortPaper.

2.5.3 Comments

In [Evans et al., 1999] the subclass relationship is also translated into the
subset relation.

The completeness requirement:

If C1, . . . , Ck are all subclasses of D then we also require in any
snapshot that D is the union of C1 and C2 and . . .Ck.

It looks innocuous but has dramatic consequences. If C is the only subtype
of D in a class diagram then C and D would have exactly the same elements
in all snapshots. As a further consequence multiple inheritance would also
be problematic. If C is the only subclass of both D1 and D2 then in all
snapshots C, D1, and D2 would coincide.

If C is a subclass of D then in any snapshot all attributes of D, being
interpreted as functions on D, are also defined on C and yield of course the
same value. Thus the above semantics implies inheritance of attributes in a
very strong sense. This seems however reasonable.

The concept of subclass is understood as direct, or one-step subclass. If
we want to talk about subclasses of subclasses, and so on, we use the term
hereditary subclass.
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There are people supporting a dissenting vote, that subclasses should not be
repesented as subsets, but rather be interpreted in a broader sense that a
subclass behaves like its superclasses. See e.g. [Bittner & Koch, 2000].

2.6 Abstract Classes

2.6.1 Example

���������

	�

��������������������������� �
��
�!#"��$�%�'&(�#�

)+*-,/.10124365�7�. 89,/:-;�2<365�7�.

Figure 2.6: An abstract class with subclasses

The class name of an abstract class is typeset in italics.

2.6.2 Semantics

An abstract class is interpreted as the disjoint union of all its subclasses. If a
subclass is again abstract this explanation is to be understood recursively. An
abstract class without subclasses does not have any elements in all snapshots.
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2.6.3 Comments

There is not much of a distinction between a class and an abstract class in
our semantics. The usual explanation that an abstract class does not have
direct elements but may have indirect elements, does not make sense in a set
theoretic setting. Compare the quotation from [Rumbaugh et al., 1998, page
114].

The distinction between modeling a class as abstract or concrete
is not as fundamental or clear-cut as it might first appear. It is
more a design decision about a model than an inherent property.

The notion of a direct element does not exist in set theory. One could make
it precise in the following way: Let a collection of sets be given and S one of
them. An element of S is called a direct element of S if there is no subset of
S containing it.

From the semantics point of view the only difference between the class dia-
grams in Figures 2.5 and 2.6 is the disjointness requirement in the former.

2.7 Class Attributes

2.7.1 Example

The class attributes, also called class scope attributes or static attributes,
are shown by underlining their name and type, see [Rumbaugh et al., 1998,
page 169].

2.7.2 Semantics

The idea is that class attributes are not attached to the instances of a class
but to the class as a whole. How does this fit into our semantic framework?
There are three possibilites

1. We present the most systematic version first. In Chapter 4 we will
come to know the meta-type (or as you might also say, meta-class)
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Figure 2.7: A class with class scope attribute

OclType, which will in any snapshot of a class diagram CD contain,
among others, all classes in CD as elements. Class attributes will be
interpreted as partial functions on OclType. We require that a class
attribute attr in class C will only be defined for C and its subclasses
and undefined for all other elements of OclType.

2. The second version proceeds as in the case of normal (i.e. instance
scope) attributes, but adds as an additional constraint that the value
of the function attr is the same for all elements in C.

3. We favour this third version. A class attribute attr:T of a class C
is interpreted as an element in T . Reference to this element is made
through a constant C.attr. Note, that C.attr is viewed as one token,
not as a function application.

2.7.3 Comments

It is apparent from the previous section that class attributes do not fit well
into an object-oriented world. They are, by definition, not attached to an
object. Either one involves the meta-level, where classes themselves now are
objects or one departs in some way from the object oriented view.

Figure 2.7 shows two typical class attributes. Paper.totalnumber is supposed
to hold the total number of papers received at any given time during the

34



submission process, while Paper.sumpages gives the sum of the number of
pages.

2.8 Association Class

2.8.1 Example
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Figure 2.8: An association class

2.8.2 Semantics

An association class is conceived as both a class and an association. In any
snapshot an association class attached to a binary association is interpreted
as a set of pairs. An association class attached to an n-ary association is inter-
preted as a set of n-tupels. The consistency requirements of the association
an association class is attached to carry over to the class itself.
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2.8.3 Comments

One would expect that there should be some way to access the first and
second entry of an instance of an association class. And indeed there is, as
will be explained in Chapter 4 on OCL.

The main reason for introducing association class is that one may attach
attributes to instances of an association. The attribute recommend in Figure
2.8 is, as explained in the section on attributes, in any snapshot interpreted
as a function of its class, in this case Report, to its target class, in this case
the enumeration class Marks. Strictly speaking recommend takes just one
argument, but since this argument is a pair of elements, we may think of
recommend as the UML-way to speak about a binary function.

2.9 Data Types

2.9.1 Example

2.9.2 Semantics

The interpretation of a data type is the same in all snapshots. Data types
have no attributes. All operations defined on data types are queries, i.e. they
do not have any side effect.

2.9.3 Comments

The intention of the meaning of data types is explained in [Rumbaugh et al.,
1998, page 247]

A data type is a descriptor of a set of values that lack identity
(independent existence and the possibility of side effects).
...
Their semantics are mathematically defined outside the type-
building mechanisms in a language.

In our set theoretic setting a set of values lacking identity is made precise as
a set whose interpretation is the same in all snapshots and has no attributes.
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Figure 2.9: Data types

It is not possible to create new instances of a data type. The indentity of an
data value is just its value, no further distinctions by attributes are possible.

The standard document describes in [OMG, 2000b, Section 2.7] only the data
types used for defining the metamodel of UML.

At the time of writing this text it is not clear whether the data types used
in the UML metamodel are meant to coincide with the data types in OCL.
In Figure 2.10 the OCL data types for integers and strings are shown. The
interpretation of the data types Integer,String, Real is understood in the
mathematical sense. In particular they are infinite sets. Further refinements
of data types to language types, i.e. data types defined in the syntax of a
particular programming language are possible, see [Rumbaugh et al., 1998,
page 323].
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Figure 2.10: An enumeration type Boolean

2.10 Enumerations

2.10.1 Example

Enumerations are special user-defined data types. They are distinguished
from other classes by the string � enumeration � in the name compart-
ment, see e.g. Figure 2.11. Additional tags like� enumeration� are called
stereotypes in UML. Stereotypes are used to extend or modify the semantics
of UML model elements but should not change the structure of pre-existing
model elements.

2.10.2 Semantics

In any snapshot an enumeration class is interpreted as the set containing
exactly the enumeration literals listed in its attribute compartment. Notice,
the interpretation of an enumeration class, like all other data types does not
change. It remains constant in all snapshots.

2.10.3 Comments

Another example of an enumeration type, taken from [Rumbaugh et al., 1998,
page 268], is shown in Figure 2.10. Note, that enumeration types may also
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Figure 2.11: An enumeration class

contain operations. It is required though, that all operations be queries, i.e.
have no side effects.

2.11 Aggregations and Compositions

We return to section 2.2 and take a closer look at the concept of associations.
The ends of an association may be adorned with one of the labels

• none

• aggregate

• composite

The well-formedness of UML diagrams requires that at most one end of an
association carries a label different from none.
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2.11.1 Example

none is the default and usually omitted. An aggregation is shown as a hollow
diamond adornment at the corresponding end of the association. A compo-
sition is shown as a solid-filled diamond adornment.

aggregation icon

Letter String

*

*

occurs in

role name

Figure 2.12: An aggregation association

2.11.2 Semantics

On the level of our mathematical semantics there is no differecne between an
arbitrary associations and an aggregation or composition. In any case the
association is a set of pairs.

There are intentional differences though. Aggregation and composition are
used to represent the relationship between a whole and its parts. The parts
of an aggregation may be used multiply. In contrast, if an object is used in
a composition it is consumed; it cannot appear twice in the same or another
composition. A typical example of an aggregation are train itineraries. A
city, or station, may occur in many itineraries without being consumed. An
example of a composition are necklaces made of beads: here an individual
bead can occur only once and only in one necklace. Another example is
shown in Figure 2.13
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Figure 2.13: A composition association

As remarked there is no difference in the mathematical representation of
an arbitrary association and an aggregation or composition on the level of
an individual association. On the level of UML diagrams that may contain
many aggregations and compositions one usually requires that there is no
cycle of associations of these kinds. This is to avoid the situation that an
object is part of itself. Also consecutive aggregation and composition links
are required to be transitive: if object a is part of a part of b, then a is also
a part of b.

2.11.3 Comments

We quote from [Rumbaugh et al., 1998, page 148]

In spite of the few semantics attached to aggregation, evrybody
thinks it is necessary (for different reasons). Think of it as a
modeling placebo.

A very typical situation involving aggregation and subclasses is the class
diagram for the composite pattern shown in Figure 2.14. It shows two kinds
of components, composite components and those that cannot be be further
decomposed, here called leaves. If a composite object c is an aggregation of
the components c1, . . . ck, the ci are called the children of c. This terminology
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suggests to image composite objects as trees. The children of a composite
object may themselfs again be composite or they may be leaves. For a full
description of the composite pattern, see [Gamma et al., 1995, page 164]

Component

operation()

Leaf

operation()

Composite

operation()

add(c:Component)

remove(c:Component)

getChild(n:int)

*

children

Figure 2.14: A composite pattern
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2.12 Qualifiers

2.12.1 Example

Qualifiers are drawn as rectangles below or to the side of a class box. They
should be smaller in size then the attached class. Within the qualifier box
one or more attributes may occur. The syntax qualifier attributes is the same
than that of class attribute. The only difference is that qualifier attributes
cannot have initial values. The qualifier box and the qualifier attributes
are part of the associations, not of the class next to them. Qualifiers may
only occur in binary associations. They may occur at both association ends
simultaneously, though this is an exceptional case.

Building

name:String

Lecture Hall

0..1

1

qualified class

qualifier

target class

qualifier attribute

Figure 2.15: Association with qualifier
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2.12.2 Semantics

The association in Figure 2.15 associates lecture halls with buildings. Every
lecture hall is, of course, housed in a unique building. One the other hand,
there may be more than one lecture hall in one building. If we name a
building and a name then there is no lecture hall in this building by that
name or there is exactly one. This is part of the information contained in
diagram 2.15.

The qualified association in Figure 2.15 may e.g. be represented as two
functions. One function, describing the part from bottom to top, let us call
it location associates with every lecture hall a building an a name, location :
Lecture Hall → Building × String. Another function, let us call it hall
is a two place function associating with every pair of building and string a
lecture hall. hall : Building × String → Lecture Hall This is a partial
function.

2.12.3 Comments

After all, we see that there are ways to express functions with more than one
argument in UML.
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Chapter 3

UML Object diagrams
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Object diagrams are another means, in addition to class diagrams, for mod-
eling the static view of a system. It is very important to understand that
they operate on a level different from the level of class diagrams. The nodes
in object diagrams are individual object. In the object diagram shown in
Figure 3.1 five object exists, three of class Person and two of class Paper.
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Figure 3.1: An object diagram

Attributes in object diagrams are assigned definite values and also the asso-
ciation among objects are shown.

While class diagrams limit potential snapshots of the modeled system, ob-
ject diagrams represent snapshots. We will infact from now one make no
difference between snapshots and object diagrams and will use these terms
interchangably.

At the level of object diagrams multiplicities at associations ends are always
1.
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It makes sense to ask wether an object diagram Dobj conforms to a given
class diagram C. That is to say

• Are the values of attributes in Dobj of the type specified in C?

• Does Dobj observe the multiplicity constraints of C?

• Are the associations occuring in Dobj declared in C?

In this sense the object diagram in Figure 3.1 conforms to the class diagram
in Figure 2.2. We also notice that Lars Letitbe reviews a paper co-authered
by himself. Certainly an indication that further constraints should be added.

Object diagrams are used much less than class diagrams.

In Figure 3.2 we see two further examples of object diagrams. The lefthand
diagram conforms to the class diagram 2.14, while the righthand diagram
does not. It contains a child-association between leafs, which is not specified
in Figure 2.14. The object diagram on the lefthand side may be viewed
as the three-element list 〈element1, element2, element3〉. The diagram in
Figure 2.14 requires that the child object element2 associated with element1
is of type Component. element2 is declared to be of type Composite. Since
Composite is a subclass of Component this constraint is satisfied.
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Figure 3.2: An object diagram representing a list
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Chapter 4

OCL by Example
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The Object Contraint Language (OCL) is part of the UML Standard, [OMG,
2001, Chapter 6]. An easy introduction is available through the book
[Warmer & Kleppe, 1999]. Material on a precise semantics of OCL is con-
tained in the volume [Clark & Warmer, 2002]. See in particular the contri-
bution [Gogolla & Richters, 2002].

OCL was introduced to express subtleties and nuances of meaning that di-
agrams cannot convey by themselves. It was first developed in 1995 by Jos
Warmer and Steve Cook. The most extensive use of OCL so far is within
the UML standard itself, where it is used in the semantics description of the
UML meta model.

OCL is percieved by its creators as a formal language. On the other hand
they put emphasis on the fact that OCL is not designed for people who have
a strong mathematical background. We quote from [Warmer & Kleppe, 1999,
Preface]

The users of OCL are the same people as the users of UML: soft-
ware developers with an interest in object technology. OCL is
designed for usability, although it is underpinned by mathemati-
cal set theory and logic.

We will first present some of the basic features of OCL expressions by exam-
ple. Then, in a second step, attempt a systematic description.

4.1 Contexts

Every OCL constraint needs a UML diagram D it refers to. Without D,
constraints cannot be formulated let alone their meaning be determined. We
refer to D as the context diagram of an OCL constraint. OCL constraints can
be attached to every model element in D. We will only treat the case where
constraints are added to a class diagram. This is by far the most frequently
occuring case. Two basic context modes need to be distinguished

• The classifier context.

• The operator context.
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The general form of a constraint in classifier context is

context ( c :)? typeName
inv expressionName? : OclExpression

The trailing question mark ? indicates optional elements; OCL keywords
are set in boldface. ’typeName’ will typically be the name of a class in the
fixed UML diagram. We will explain other possibilities later. It is possible to
introduce a name for easy referencing of expressions. The optional parameter
c will act very much like a variable of the type given by type name in the
following OCL expression. Variable is here to be understood in the way it is
used in formal logic. A header may define more than one expression:

context ( c :)? typeName
inv expressionName1? : OclExpression1

. . .

. . .
inv expressionNamen? : OclExpressionn

Constraints for an operator context look like this:

context ( c :)? typeName ::opName(p1: type1; . . . ;pk: typek ):rtype
{pre,post} expressionName? : OclExpression

Here opName is meant to be the name of an operator defined on the given
class. The list of parameters p1 . . . pk may be empty and the return type,
rtype, may be missing or both. As above, an operator constraint may contain
more than one expression.

4.1.1 Comments

In the headers just shown OCL expressions have to be of type Boolean. Also
the stereotype inv can only appear in a classifier context while the stereotypes
pre and post can only show up in operator contexts.
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We have added the optional parameter( c :)? also in the operator context
to set it on equal footing with classifier contexts, though we have seen no
example of this in the literature.

4.2 Constraints with Attributes

4.2.1 Example
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Figure 4.1: Context diagram for attribute constraints

Here is our first and simple example of an OCL contraint in the context of
the diagram in Figure 4.1. Since a diagram usually contains more than one
model element a further focus is needed. This is provided by the header.

context Paper
inv number ≥ 1
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In our example the header contains a class name, here Paper. The attributes
used in the constraint then have to be attributes declared in this context class.
The actual constraint is prefixed by the key word inv. This signifies that the
constraint is to be an invariant of its context class.

Equivalent notational variations of the constraint in classifier context are:

context Paper
inv self .number ≥ 1

context c:Paper
inv c.number ≥ 1

context c:Paper
inv startCount : c.number ≥ 1

context Paper
inv startCount : number ≥ 1

Here is an example of an operator constraint for the same context diagram
(see Figure 4.1).

context c:Paper::evaluate()
pre c.status = submitted
post c.status = accept or c.status = reject

This constraint states pre- and postconditions for the operation evaluate in
class Paper.

Variations, as shown above, are also possible for operator constraint.

4.2.2 Constraint Syntax

The syntax mimics access to attributes in object-oriented programing lan-
guages: a designator for an object followed by a dot followed by the name of
the attribute. The default designator is self .

4.2.3 Meaning of the Constraint

The meaning of the example constraint in classifier context is that the number
attribute of any object should be greater or equal to 1. In colloquial terms:
the numbering of the papers in our scenario starts with 1.
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More precisely an attribute constraint of the general form relation(c.attr) is
evaluated in an object diagramDobj . It is true, if for all object o of the context
class the value o.attr of the attribute attr in Dobj satisfies the constraints,
set up by relation. Thus self or c may be viewed as (implicitely) universally
quantified variables.

The meaning of the above example of a constraint in operator context says
that in the state reached after calling the evaluate() method the value of
the attribute status will be one of accept or reject. But, this can only be
guaranteed when the precondition is satisfied. In this example the precon-
ditions asks that before calling evaluate the value of the status attribute
equals submitted. If c.status is undef then no claim is made what will be
true after calling evaluate. Even trickier, the specification as it stands, does
also make no claim what happens, when evaluate is called from an object c
in a state where c.status equals accept.

Pre- and postconditions are seen as part of a contract. The method agrees
that after its execution the postcondition is true. But, it is the obligation
of the caller of a method to ensure that the precondition holds. The OCL
standard does not make any commitment what should happen, when the
contract is brocken. A thorough discussion of the possible variation points
in the semantics of pre- and postconditionsis contained in [Hennicker et al.,
2001] .

This explanation of the meaning of pre- and postconditions avoided the ques-
tion, what is the meaning of an operation itself. We will come back to this
question in Section 4.11.

4.2.4 Comments

The UML standard does not mention the problem of termination. Is it
assumed in general that every method call always terminates? Or, if we state
a postcondition, does that involve the claim that the method terminates, or
at least terminates in all states where the precondition is satisfied? We take
the position that no commitment to termination is involved with the pre- and
postconditin concept. This is what is called the partial correctness notion in
the literature. The situation is different, if an operation op is declared a
query, by using the stereotype � query �. Then it is assumed that op
terminates on every input.
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4.3 Types

OCL is a typed language. Every expression has a uniquely determined type.
The syntex of expressions is restricted by typing rules. We distinguish the
following types

1. Model types
Every class form the context diagram of an OCL constraint is a type.

2. Basic types
There are 4 basic OCL types: Integer, Real, Boolean and String

3. Enumeration types
These are user defined types.

4. Collection types
The collection types in OCL are Set, Bag, Sequence.

5. Special types
Special types are a tricky issue in OCL. We mention here only the type
OclAny. A complete listing can be found in Section 12.4.

Subtyping is also part of the OCL type concept. For type expressions T1, T2

the direct subtype relation T1 < T2 is defined by the following rules:

1. If T1, T2 are model types then T1 < T2 holds exactly when in the contex
UML diagram T1 is a subclass of T2.

2. Integer < Real.

3. For all type expressions T , not denoting a collection type,

(a) Set(T ) < Collection(T )

(b) Bag(T ) < Collection(T )

(c) Sequence(T ) < Collection(T )

4. If T is a model, basic or enumeration type then
T < OCLAny.
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5. If T1 < T2 and C is any of the type constructors Collection, Set, Bag,
Sequence, then C(T1) < C(T2).

The subtype relation denoted by � is the transitive, reflexive closure of the
direct subtype relation < If T1 � T2 holds, we also say that T1 conforms to
T2.

4.3.1 Example

Looking at Figure 4.1 we discover the following types:

• We fix the context context p:Person

Then the expressions p.name and p.e-mail have as type the basic type
String.

• In the context context c:Paper

Then c.number has basic type Integer, c.status is of model type
Status, c.authors is of collection type Set(Person).

4.3.2 Syntax

Type expressions, that is expression that denotes types, are rather sim-
ple in OCL. Basic, model, enumeration and special types are denoted by
their names. If T is a type expression that this not a collection type then
Collection(T ), Set(T ), Bag(T ), Sequence(T ) are also type expressions.

Note, that Set(Set(T )) is not a legal type expression.

The UML standard gives a complete listing of the operations available for
the built-in types of OCL, i.e. the basic, special, and collection types. This
listing also fixes the typing information of these operations. The typing
information for attributes and associations (see the next section) are given
in the constex UML diagram. For this reason types appear not very often
explicitely in OCL expression. They do in variable declarations.
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4.3.3 Meaning of Types

In a snapshot types are interpreted as set of objects plus an additional symbol
⊥, that denotes undefined.

If T is a class in a context diagram CD and consequently a model type in
OCL, then in any snapshot of CD the meaning of T is the set of all objects
in the class T in this snapshot. The meaning of the basic types is as one
would expect. Note, the interpretation of these types is independent of any
particular context diagram or snapshot. The meaning of an enumeration
type T is also evident, it is the set of its literals.

If a type T is interpreted in a snapshot by a set M of objects then Set(T ),
Bag(T ), Sequence(T ) are interpreted as the set of subsets of M , of all bags
of elements from M , of all sequences of elements from M . The interpretation
of Collection(T ) is the union of o the interpretations of Set(T ), Bag(T ),
Sequence(T ).

That leaves for the moment only the special type OCLAny to be explained.
The interpretation ofOCLAny in a snapshot is the set of all objects contained
in one of the sets interpreting a model, basic or enumeration type.

4.3.4 Comments

It has been one of the basic design decisions of OCL to forbid nested set
operations. The main motivation was to keep things simple. There are
proposals to drop this restriction.

Notice, that OclAny despite its name is not a supertype of everything. Col-
lection types are not subtypes of OclAny.

4.4 Constraints with Associations

4.4.1 Example

This constraint refers to the context diagram in Figure 4.2.
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Figure 4.2: Simplified context diagram for association constraints

context c:Paper
inv c.author <> c.referee
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Figure 4.3: Context diagram for association constraints

The following constraint refers to the context diagram in Figure 4.3.

context c:Paper
inv c.author -> intersection(c.referee) -> isEmpty

4.4.2 Constraint Syntax

The variable self or c may be followed by a dot and the name of an associa-
tion. Depending on the multiplicity of the association the evaluation will be
a single object or a set of object. There are a number of built-in operations
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on sets in OCL, intersection and isEmpty are among them, see 12.3 for a
complete listing. If exp is an OCL expression that evaluates to a set M , the
application of an operation with name op to M is then denoted by exp ->
op.

4.4.3 Meaning of the Constraint

Consider an expression of the form c.assoc (or self .assoc). To determine a
meaning we need an object diagram Dobj and an assigment of an object a to
c. Then the meaning of c.assoc is the set of all objects b such that a and b are
related by assoc in Dobj. OCL is not very systematic here: if the multiplicity
of assoc is 1, the the result of the evaluation is not a one-element set, but
the element itself.

If the source-end of the association assoc carries the stereotype� ordered�
the meaning of c.assoc is the sequence of all objects b such that a and b are
related by assoc.

4.4.4 Comment

The use of the separator -> instead of the dot ”.”, is a purely syntactical
device, meant to make it easy for the reader to spot the occurences of set
operations. Assume that in a specification the -> symbols get inadvertently
changed into dots. Then you would be able to restore the original text unam-
biguously. There is one tiny exception to this. Consider an OCL expression
self.f with f an association with multiplicity [0..1] at the value-end of f .
The standard [OMG, 1999a, Subsection 7.5.5] allows to access self.f as a set
or as an instance, i.e. self.f.g and self.f → g are both well-formed expres-
sions, where g is a set operation (think e.g. of isEmpty). See, also [Fowler &
Scott, 1997, Section 3.6.1]. We will not lose much sleep over this issue.

4.5 Navigation

4.5.1 Example

The following constraints refer to the context diagram in Figure 4.4.

59



���������
	

�
�������������������
����������� �������
���!�

��"�# ���

�%$��'&�(���)+*-,%./�10����
)'(��
��$'��2
���3�54����

6 ������78�
	

�
�9�
�'� �����������!�

:;
<>=@?A=�<-=�=

<-=@B�CD=@E
<-=@B�CF=@E/=�GIH
J�H
=�<-K

L

:LNM5O J�CF<

:
M5O J�CF<>=�GIK>=�K-K-CDP�Q

Figure 4.4: Constraints with navigation
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context c:Paper
inv not(c.authors -> includes(c.session.chair))

context p:Person
inv p.reviewed papers.session.chair ->includes(p)

The first constraint says, that no author or co-author of a paper presented
at a session should be chair of this session.

The second constraint says, that every referee should be chair of a session
that contains a paper he reviewed.

4.5.2 Constraint Syntax

If e is an OCL-expression, that evaluates in a single object or a set of objects
of class C, and assoc is an association between class C and another class,
say C1, then e.assoc is a legal OCL expression. This process can be iterated.

4.5.3 Meaning of the Constraint

Consider an expression of the form c.a1.a2. Let Dobj be an object diagram
and o an object of the same type as c.

The simplest case occurs, when the target multiplicity of a1 is 1. Let o1

be the unique object associated with o via a1. Then the whole expression
consists of objects that are related by a2 to o1.

Otherwise, let M1 be the set of object related to o by the association a1.
Then the meaning of the whole expression c.a1.a2 is the set of all elements
that are related via a2 to at least one elment in M1.

The process of evaluating expressions following along repeated association
links through a diagram has been called navigation. So far, we have learnt
the basic principles of navigation. There is more to come.

We have already come across sets in OCL and in the last section also se-
quences did show up. There is a third kind of collections used in OCL: bags,
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or multisets, as they are sometimes called. Sets, bags, sequence are refered
to in OCL as collections and the three-element listing is exhaustive.

What does this have to do with navigation? Consider the second constraint
from above

context p:Person
inv p.reviewed papers.session.chair ->includes(p)

and an object diagram Dobj where p is interpreted as MrImportant.
MrImportant was the referee, among others, of the papers All about Nothing
and More of the Same. Both papers will be presented in the section All or
Nothing. Evaluating the expression p.reviewed papers.session by following
the links in the associations reviewed papers and session, we notice that
session All or Nothing occurs twice.

For this reason the designers of OCL decided that the evaluation of an asso-
ciation applied to a set-valued or bag-valued expression will be a bag. What
happens, when an association is applied to a sequence? Then the result will
again be a sequence. What happens if the source is a bag and the target end
of the association is label as ordered? Then the result should be a sequence.

4.5.4 Comment

Let us look again at the OCL expression c.a1.a2, already mentioned above.
Assume c.a1 evaluates to a set of objects and for every d in this set, also d.a2

evaluates to a set. Then one could imagine c.a1.a2 to evaluate to a set of
sets. The designers of OCL decided against this. Sets of sets, where ever they
arise, are immediatedly f lattened, e.g.. the set {{1, 3, 5}, {4, 8, 9}, {2, 6, 10}}
is turned into {1, 3, 5, 4, 8, 9, 2, 6, 10}. Of course, flattening a set M results
in a set very different from M , but usually it is the flattened set or bag one
is interested in.
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Figure 4.5: Context diagram for allInstances

4.6 allInstances

4.6.1 Example

In the context of the diagram in Figure 4.5 the following constraints are
possible:

context Person
inv Person.allInstances ->forAll(p | p.e-mail.size ≥ 3)

context Paper
inv Paper.allInstances ->forAll(p1, p2 |

p1 <> p2 implies p1.number <> p2.number)

The first constraint says that the e-mail address of every person is a string of
length at least 3. The second constraints says that the numbering of papers
is unique, i.e. different papers get different numbers. forAll is another set
operator and corresponds to universal quantification, see 12.3.

4.6.2 Syntax

If C is a type symbol then C.allInstances is a legal OCL expression. In
greater detail: allInstances is an operation on the predefined OCL type
OclType. This is what is sometimes called a meta-type.
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4.6.3 Meaning of allInstances

The interpretation of OclType is the set of all types present in a fixed context.
This includes model types as well as predefined OCL types. It is never
mentioned in the standard and related documents, but OclType should not
be an element of it own interpretation.

Since OclType is a concept on the meta-level, understanding its meaning
requires familarity with abstraction. OclType is not interpreted as the set
of names of classes. Rather, every class is conceived as an abstract object.
For the class Person there is an abstract object oPerson, and this object is
an element of the interpretation of OclType. oPerson.name will evaluate to
the string Person.

If C a type symbol then the expression C.allInstances evaluates in a snap-
shot D to the set of all instances of class C in D.

It is an (implicit) assumption of OCL that all occuring sets should
be finite. For this reason it has been stipulated that expressions like
Integers.allInstances evaluate to ⊥ (undefined). If C is a collection type,
say C = Set(T ) for a model type T , then C.allInstances should also evalu-
ate to ⊥, since it would result in a set of sets of objects of type T , also not
permitted in OCL.

The problems with allInstances bear some resemblance to the problems
with class attributes and operations addressed in Section 2.7. We prefer
the following solution. For every model class C a constant symbol (opera-
tion symbol with 0 arguments) C.allInstances is available. As with class
attributes we consider C.allInstances as one token. This is in accordance
with the position towards allInstances in [Boldsoft et al., 2002].

4.6.4 Comment

The concept of OclType has always been controversial. The same applies to
the operation allInstances on OclType. Its use has been discouraged, see
[OMG, 2001, Paragraph 6.5.11] and [Warmer & Kleppe, 1999]. There are
OCL expressions where allInstances is outright superfluous, as in the first
example above, which can equivalently be written as
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context p:Person
inv p.e-mail.size ≥ 3
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Figure 4.6: Expanded context diagram for allInstances

Avoiding the use of allInstances in the second example is not so simple. It
requires extending the original context diagram (in Figure 4.5) as shown in
Figure 4.6. The class Conference has been newly introduced. An appropri-
ate reformulation of the second constraint above could be

context Conference
inv self.submitted papers ->forAll(p1, p2 |

p1 <> p2 implies p1.number <> p2.number)

Here is another elegant solution

context p1,p2:Papers
inv p1 <> p2 implies p1.number <> p2.number)

This is, at the moment, not legal OCL syntax, since the declaration of two
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variables in the contect class is not supported.

The initial submission [Boldsoft et al., 2002] to the UML 2.0 OCL Request
for Proposals proposes to omit OclType alltogether. This proposal integrates
a meta-model for OCL into the already existing meta-model of UML. Most
of the operations for OclType then become superfluous, since they are inher-
ited within the meta-model. This applies, in fact, for all operations except
allInstances.

4.7 The iterate operation

4.7.1 Example
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Figure 4.7: Context class for constraint with iterate

In the context of the class in Figure 4.7 the following constraint

context p:Papers
inv Papers.allInstances -> iterate(x:Paper ; y:Int = 0 | y+x.pages)

= Papers.totalnumber

expresses that fact that the class scope attribute sumpages is the sum of the
number of pages taken over all papers.
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4.7.2 Constraint Syntax

The general form of the iterate construct is shown in Figure 4.8 subject to
the following restrictions:

1. y ist different from x,

2. t does not contain y,

3. t0 does not contain x nor y,

iterator variable term of sort T , initial term

range formula t -> iterate(x : S; y : T = t0 | u)

accumulator variable term of sort T , step term

Figure 4.8: Syntax of the iterate construct

4.7.3 Meaning of the Constraint

Consider an expression exp of the form t -> iterate(x; y = t0 | u). We
describe how to compute the meaning of exp, assuming that we know already
how to evaluate the subexpressions t,t0 and u. Subexpression t evaluates to a
set of objects, say A = {a1, . . . , an} and t0 to an object m0. Subexpression u
will typically contain both variables x and y. So, if we supply objects a for x
and m for y then evaluation of u will yield an object m′, we will write this as
m′ = u(a,m). After this preliminaries we are ready for the evaluation of exp.
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We start with m0, as definied above. We continue with mi+1 = u(ai+1, mi).
Then mn is the value of exp.

This definition depends in general on the ordering of the elements
{a1, . . . , an}. If t is of type sequence then we, naturally, use the order given
by the sequence. In the other cases the UML standard leaves the issue unre-
solved. It seems sensible to require that it is the user’s responsibility to make
sure, that he only uses the iterate construct on sets when its result does not
depend on the order of the elements in the set.

4.7.4 Another Example

The built-in type String provides the operation substring to access the sub-
string between positions lower and upper in given string, see Subsection
12.1.3. The are other operations on strings that one would wish to have
available, e.g. does string2 occur in string as a substring? Or, even better,
the set of all positions in string, wher an occurence of string2 begins. So
let us add a new opperation occurences. Following the style used in the
standard, see the Appendix 12 this leads to:

string.occurences(string2:String):Set(Integer) The set of positions in
string where an occurence of string2 as a substring starts. Strings
start with position 0.
pre : string2.size =< string.size
post: result = { 0 .. (string.size - string2.size) } -> iterate(x;y={} |

if string.substring(x,x+string2.size-1) = string2
then y -> including(x)
else y)

This easily allows us to introduce further useful operations, like

string.substringOcc(string2:String):Boolean True if string2 occurs at
least once as a substring in string.
post: result = (string2.size =< string.size) and

not (string.occurences(string2) -> isEmpty)
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4.7.5 Comment

Most of the operations on sequences, bags and sets can be reduced to an
application of iterate.

The expression
t− > forAll(x | a)

where t is an expression of type Set(T ), x is a variable of type T , and a is
an expression of type Boolean can be equivalently expressed by

t− > iterate(x; y : Boolean = true | y and a)

where y has been chosen to not appear in a.

Here, are some comments on the built-in type String.

The standard does not determine the starting position of strings. Here we
assume that the first position is 0.

The specification of the substring operation is underdetermined. It does not
require the obvious precondition lower ≤ upper, nor does is say what the
result should be in case upper < lower.

4.8 Collecting Elements

4.8.1 Example

Paper

author:Person

number:Int

Conference

name:String

totalnumber:Integer

Boolean:isAuthor(name:String)

submitted

papers

Figure 4.9: The isAuthor operation

The diagram shown in Figure 4.9 extends our running scenario by adding a
new operation isAuthor to the conference class. This operation takes one
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argument name of type String and returns a Boolean value. We want this
value to be true if an author by the name name has submitted a paper.

context c:Conference::isAuthor(name:String)
pre true
post result = c.sp->collect(p | p.author.name)->includes(name)

Here we have used sp to abbreviate submitted papers.

This is our first example of an operation that returns a value, and also our
first encoounter with the OCL key word result. This may be used in post
conditions of operation constraints and refers to the returned value of the
operation.

Also the collect operation is new. In the above example

c.sp->collect(p | p.author.name)

denotes the set of names of authors of submitted papers. Note, that we have
for the start simplified things a bit, by assuming a unique author for each
paper.

4.8.2 Constraint Syntax

The collect operation may be applied to collections s and has the general
form

s->collect( var | expr )

where expr is an arbitrary OCL expression typically containing the variable
var. If var is clear form the context the abbreviated form

s->collect( expr )

may be used.

4.8.3 Meaning of the Constraint

If s is a set, bag, or sequence then
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s->collect( var | expr )

denotes the set, bag, or sequence of all elements expr when var is instantiated
in turn with all elements in s.

4.8.4 Comment

The collect operation can be defined using the iterate operation:

set->collect(x |expr ) : Set(T) = set->iterate(x; acc : Set(T) = Set{} |
acc->including(expr) )

where expr is an OCL expression of type T.

Let us go back to the example of this section and drop the simplification
on the author attribute, i.e. we now use the attribute authors of type
Sequence(String). Then

c.sp->collect(p | p.authors.name)

evaluates to the bag of all strings that appear as others of a submitted paper.
Notice, that immediate implicit flattening occurs: we do not obtain a set (or
bag) of sets of names, but one flattened set of names.

It has become quite customary to abbreviate OCL expressions of the kind
s->collect( e | e.attribute) by s.attribute.

4.9 Selecting Elements

4.9.1 Example

Figure 4.10 contains a class operation countShortPapers that may be defined
by the following constraint:

context Paper::countShortPapers():Integer
pre true
post result =

Paper.allInstances->select(p | p.pages < 10)->size
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Paper

authors[*]:Person

number:Int

pages:Int

countShortPapers():Integer

Figure 4.10: Context class for select Example

The select operation applied to the set Paper.allInstances produces the subset
of all papers p from this set satisfying the condition p.pages < 10. Finally
the size of this subset is determined by calling the built-in function size and
returned as the result of the operation countShortPapers().

4.9.2 Constraint Syntax

The syntax of the select operation parallels that of collect. It may be applied
to collections s and has the general form

s->select( var | expr )

where expr is an OCL expression of type Boolean typically containing the
variable var. If var is clear form the context the abbreviated form

s->select( expr )

may be used.

4.9.3 Meaning of the Constraint

If s is a set, bag, or sequence then

s->select( var | expr )

denotes the set, bag, or sequence of all elements p from s satisfying expr, i.e.
such that epxr evaluates to true.
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4.9.4 Comment

The select operation can be defined using the iterate operation:

s->select(x | expr ) : Set(T) = s->iterate(x; acc : Set(T) = Set{} |
if expr then acc->including(x)
else acc endif)

where s is of type Set(T ) and expr is an OCL expression of type Boolean.

4.10 Quantifiers

4.10.1 Example

Person

name:String

e-mail:String

Paper

authors[*]:Person

number:Int

status:Status

�enumeration�

Marks

accept

reject

weakly accept

weakly reject

Report

recommend:Marks

�enumeration�

Status

received

withdrawn

accept

reject

*3

referee

review

Figure 4.11: A context diagram for quantifiers

In the context of Figure 4.11 the following contraint may be formulated:
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context p:Papers
inv p.referee -> forAll( ref:Person | ref.Report.recommend = reject)

implies p.status = reject

This constraint formulates the requirement that every paper, such that all
referees recommend rejection should receive status reject. Notice, that the
constraint effects navigation from a paper p to the set of its referees, and
from there to the association class Report and its attribute recommend. This
is our first example of navigation into an association class.

4.10.2 Constraint Syntax

The forAll operation may be applied to collections s and has the general
form

s->forAll( var:Type | expr )

where expr is an OCL expression of type Boolean typically containing the
variable var. If var is clear form the context the abbreviated form

s->forAll( expr )

may be used. A similar syntax applies for the exists operation:

s->exists( var:Type | expr )

4.10.3 Meaning of the Constraint

The meaning of the constraints

s->forAll( var:Type | expr )
s->exists( var:Type | expr )

is as one would expect. In a particular snapshot D the Boolean expression
expr is evaluated for every element a in the set, bag, or sequence s. If the
result is always true the forAll operation evaluates also to true. If at least
once the value true occurs the exists operation evaluates to true. For empty
collections forall is always true and exists is always false.
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4.10.4 Comment

The forAll operation is usually called universal quantification and the exists
operation existential quantification

Universal and existential quantification can be expressed using the iterate
operation.

s->forAll(x | expr ) = s->iterate(x; acc : Boolean = true | acc and expr)

s->exists(x | expr ) = s->iterate(x; acc : Boolean = false | acc or expr)

4.11 Refering to previous values

4.11.1 Example
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Figure 4.12: The operation addPaper

The diagram shown in Figure 4.12 extends our running scenario by adding a
new operation addPaper to the conference class. Having the conference class
at our disposal it makes more sense to record the number of submitted papers
as an attribute to this class. At some previous diagrams we totalnumber was
modeled as a class attribute of the class Paper, see Figures 4.7 or 4.1.

context c:Conference::addPaper()
pre true
post totalnumber = totalnumber@pre + 1
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The OCL expression totalnumber@pre refers to the value of the attribute
totalnumber before the evaluation of the operation addPaper. The expres-
sion totalnumber without suffix refers of course to the value of this attribute
after execution of addPaper.

4.11.2 Constraint Syntax

The suffix @pre can only be used in postconditions. Then it can be attached
to arbitrary attribute and association names. Multiple occurences of @pre in
an expression are perfectly possible. Consider the diagram in Figure 4.13 We
think of People as the class of customers of a bank. There is an attribute pa in
People that associates with every costumer his personal assistant. Personal
assistants as all other employees of the bank have a phone number. Assume
the bank, or a branch of it, moves into a new building. Phone numbers
may change and also the distribution of the customers among the personal
assistance was reconsidered on this occasion. The method m effects all these
changes. For c : People there are in OCL four possible expressions refering
to phone numbers

c.pa.phone the new phone number of the current p.a.
c.pa@pre.phone the new phone number of the previous p.a.
c.pa.phone@pre the old phone number of the current p.a.
c.pa@pre.phone@pre the old phone number of the previous p.a.
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Figure 4.13: A scenario for multiple uses of @pre
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4.11.3 Meaning of the Constraint

We have not seen operator constraints since Section 4.2. Then, we postponed
the question, what in the meaning of an operation? Now, is the right place
to come back to it. Of course, we all have some intuitive meaning what an
operation should be. In particular, when we think of an implementation of
a methods, e.g. as a Java method. But, at the level of an UML/OCL spec-
ification there is no implementation. All we have at this stage of program
development is the declaration that there should be a method of a given
signature. That is to say, it is specified which objects may call the method,
what are the types of possible arguments, if any, what is the result type, if
any. The only further information if given in the form of pre- and postcondi-
tions. For this to make sense, we need to know possible starting states of an
operation and their corresponding end states. This leads us to the definition,
that the meaning of an operation m is a set ρ(m) of pairs of states. If (S1, S2)
is a pair in ρ(m) then m called in S1 will terminate in state S2. This also
encodes the possibility of non-termination: if for S1 there is no pair in ρ(m)
with S1 as its first component, then m started in S1 does not terminated.
Furthermore, this definition also leaves open the issue of non-determinism.
It is not exluded that (S1, S2) and (S1, S3) with S2 6= S3 occur in ρ(m). If
one whishes to consider only deterministic operations, which will be the case
for most of the time, then one has to stipulate that ρ(m) is a partial function
rather than an arbitrary relation, i.e. for all (S1, S2) and (S1, S3) in ρ(m) the
equality S2 = S3 follows.

4.11.4 Comment

4.12 Role Based Access Control

One of the most challenging problems in managing large net-
worked systems is the complexity of security administration. To-
day, security administration is costly and prone to error because
administrators usually specify access control lists for each user on
the system individually. Role based access control (RBAC) is a
technology that is attracting increasing attention, particularly for
commercial applications, because of its potential for reducing the
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complexity and cost of security administration in large networked
applications.

With RBAC, security is managed at a level that corresponds
closely to the organization’s structure. Each user is assigned one
or more roles, and each role is assigned one or more privileges
that are permitted to users in that role. Security administration
with RBAC consists of determining the operations that must be
executed by persons in particular jobs, and assigning employees
to the proper roles. Complexities introduced by mutually exclu-
sive roles or role hierarchies are handled by the RBAC software,
making security administration easier.

This quote is taken from the RBAC web-page1 of NIST, the National Insti-
tute of Standards and Technology. Besides maintaining this topical web-page
NIST is also involved in standardization efforts in the area of RBAC, see [Fer-
raiolo et al., 2000]. We will present in this section an UML/OCl model of the
most important features of this standard, following its subdivision into the
four parts as given by the captions of the following subsections. Concerning
the class Permission we haven taken a slightly more abstract view than in the
[Ferraiolo et al., 2000] in that we treat permissions as an atomic concept and
do not consider the association of objects and operations with permissions.

4.12.1 RBAC Core

Figure 4.14 shows the main classes and associations of the core model of
rule based access control. The association ua, user assignment, establishes a
relation between users and roles. A user may be assigned multiple roles and
a role may be associated with more then one users. The same many-many-
relationship also holds true for the association pa, permission assignment.
On the other hand every session has a unique user associated via sra, session
role assignment. But a user may run more than one session.

Note also the role names assigned users, assigned permissions, user-
sessions, session roles and session user.

For s:Session we will use the abbreviation s.avail session perms for
s.session roles.permission.

1http://csrc.nist.gov/rbac/
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User Role Permission

Session

ua ** pa **

*

1session user

sessions

user sessions

sra

*

*

session roles

assigned users assigned permissions

Figure 4.14: Class diagram for RBAC core

The only OCL invariant constraint added to Figure 4.14 at this level of the
model is

context u:User
inv u.role->includesAll(u.sessions.session roles)

Figure 4.15 shows the attributes and operations on class User. There is only
one, rather simple, attribute, the name of a user. The intended meaning
of the operations is described by operation constraints. The following OCL
constraints are basically translations from the formal description in [Ferraiolo
et al., 2000] using Z.

context u:User::assignUser(r:Role)
pre not(r.assigned users->includes(u))
post r.assigned users = r.assigned users@pre->including(u)
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Figure 4.15: The class User

context u:User::deassignUser(r:Role)
pre r.assigned users->includes(u)
post r.assigned users = r.assigned users@pre->excluding(u) and

u.user sessions =
u.user sessions@pre->reject(s : s.session roles->includes(r))

context u:User::addUser(c:Name)
pre User->forAll(u1 : u1.name <> c)
post User->exists( u1 | User@pre->excludes( u1)

and u1.name = c and
User = User@pre->including(u1))

We have used a shortcut notation here. User->forAll(. . . ) is not legal OCL
syntax. It should correctly read User.allInstances->forAll(. . . ). We will use
this shortcut consistently in the following: If C is a class from the context
diagram then C-> will be shorthand for C.allInstances->.

One would have liked to write the last constaint as
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context u:User::addUser(c:Name)
pre User->forAll(u : u.name <> c)
post User = User@pre->includes(new) and

new.name = c

But, OCL does not provide for this. There is however a shorthand no-
tation for User@pre->excludes(u1) namely u1.oclIsNew(). Thus the above
constraint could also be written as:

context u:User::addUser(c:Name)
pre User->forAll(u1 : u1.name <> c)
post User->exists( u1 | u1.oclIsNew

and u1.name = c and
User = User@pre->including(u1))

context u:User::deleteUser()
pre true
post User = User@pre->excluding(u) and

Session =
Session@pre->reject(s : u.user sessions->includes(s))

context u:User::assignedRoles()
pre true
post result = u.role

context u:User::userPermissions()
pre true
post result = u.role.permission

Attributes and operations for the class Role can be seen in Figure 4.16. Here
are their definitions via pre- and postconditions.
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Figure 4.16: The class Role

context r:Role::grantPermission(p:Permission)
pre true
post r.assigned permissions =

r.assigned permissions@pre->including(p)

context r:Role::revokePermission(p:Permission)
pre r.assigned permissions->includes(p)
post r.assigned permissions =

r.assigned permissions@pre->excluding(p)
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context r:Role::addRole(c:Name)
pre Role->forAll(r : r.name <> c)
post Role->exists( r1 | Role@pre->excludes( r1)

and r1.name = c and
Role->forAll( w |
Role@pre->includes(w) or w = r1))

context r:Role::deleteRole()
pre true
post Role = Role@pre->excluding(r) and

Session =
Session@pre->reject(s : s.session roles->includes(r))

context r:Role::rolePermissions()
pre true
post result = r.assigned permissions

context r:Role::assignedUsers()
pre true
post result = r.assigned users

context s:Session::addActiveRole(u:User,r:Role)
pre r.assigned users->includes(u) and

s.session user = u and not (s.session roles->includes(r))
post s.session roles = s.session roles@pre->including(r)
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Figure 4.17: The class Session

context s:Session::dropActiveRole(u:User,r:Role)
pre r.assigned users->includes(u) and

s.session user = u and s.session roles->includes(r)
post s.session roles = s.session roles@pre->excluding(r)

context s:Session::createSession(u:User,ars:Set(Role),id:String)
pre Sessions->forAll(s : s.session ID <> id) and

u.au->includesAll(ars)
post u.user sessions->exists( s1 | u.user sessions@pre->excludes( s1)

and s1.session ID = id and
u.user sessions->forAll( w |
u.user sessions@pre->includes(w) or w = s1)) and
s.session roles = ars

Here, the variable name ars refers to active role set.
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context s:Session::deleteSession(u:User)
pre s.session user = u
post Session = Session@pre->excluding(s) and

u.user sessions = u.user sessions@pre->excluding(s)

context s:Session::sessionRoles()
pre true
post result = s.session roles

context s:Session::sessionPermissions()
pre true
post result = s.session roles.assigned permissions

context s:Session::checkAccess(op:Operation,obj:Object)
pre true
post result = s.session roles.assigned permissions->

exists(p | p.operation = op and p.object = obj)

Permission

name:Name

object:Object

operation:Operation

Figure 4.18: The class Permission

Figure 4.18 shows the last class to be considered for the RBAC core. The
class Permission does not have any operations or methods. The attributes
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use the classes Objects and Operations that are assumed to be available. The
standard [Ferraiolo et al., 2000] states that Permission is a subset of the
cartesian product of Object and Operation. The mathematical content of
this stipulation is covered by the following constraint:

context p1, p2:Permission
inv (p1.object = p2.object and p1.operation = p2.operation)

implies p1 = p2

4.12.2 Hierarchical RBAC

HUser HRole Permission

HSession

ua ** pa **

*

1session user

sessions

user sessions

sra

*

*

session roles

rh

* *senior junior

assigned users assigned permissions

Figure 4.19: Class diagram for RBAC with hierarchy

The hierarchical role-based access model is obtained by adding one further
association to the core model, named rh for role hierarchy in Figure 4.19. It
establishes a relation between a junior role r1 and a senior role r2, which we
denote by r1 lrh r2. (In [Ferraiolo et al., 2000] the notation r1νr2 is used for
r1lrhr2.) The transitive closure of lrh is denoted by <rh (In [Ferraiolo et al.,
2000] r1o r2 is used.) Also the classes are changed from Role to HRole, User
to HUser and Session to HSession. The class Permission remains unchanged.
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In the following we will make use of the following abbreviations

1. r.senior+ := HRole->
iter(r1 ; y:Set(HRole) = r.senior | y->union(y.senior))

2. r.senior* := HRole->
iter(r1 ; y:Set(HRole) = { r } | y->union(y.senior))

Notice the subtle difference between these two definitions: r.senior* contains
all elements of r.senior+ and in addition also the role r itself.

Also notice the at first glance suprising fact that the iterator variable r1 does
not occur in the step formula. What is the effect of the step term? Well, it
adds to the accumulator y all roles that are one level above of at least one
role in y. How often do we want to repeat this? As long as new elements are
still added. It would be very complicated to add a condition to the effect that
the addition of new roles is repeated till the set y does not grow anymore.
On the other hand it is save to say that the number of all elements in HRole
is an upper bound on the number of necessary iterations. This is the only
function of the iterator r1.

Two types of hierachies are considered:

1. General role hierachies, where <rh is only assumed to be a partial order,

2. Limited role hierachies, where <rh is assumed to be a tree ordering, i.e.
multiple inheritance is not allowed.

We formulate both constraints as invariants of the class HRole.

context r,r1:HRole
inv GeneralRH :

r.senior-> includes r1 implies
not (HRole->exists(r2 |

r.senior+-> includes r2 and r2.senior+-> includes r1))
and
r.senior+->exludes(r)

As usual y.senior is shorthand for y->collect(s | s.senior). GeneralRH is the
name of the invariant.
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The first part of the invariant GeneralRH says that the relation r.senior->
includes r1 (in pretty print written as rlr1) is an immediate successor rela-
tion with the more general relation <rh. In ordinary mathematical notation
this requirement reads ∀r, r1(r l r1 → ¬∃r2(r <rh r2 ∧ r2 <rh r1)

The second conjunction of GeneralRH exculdes cylces in <rh.

In the limited role hierarchy multiple inheritance of roles is not allowed, this
is to say a role cannot have two seniors.

context r,r1,r2:HRole
inv LimitedRH : GeneralRH and

(r.senior->includes(r1) and r.senior->includes(r2))
implies r1 = r2

Alternatively:

context r:HRole
inv LimitedRH : GeneralRH and

r.senior->size()≤1

Of course, we could have obtained the same effect by changing in Figure 4.19
the * multiplicity at the senior end of the association rh to 1.

In the UML model of hierarchical role-based access control also new opera-
tions will be added to the classes. Figure 4.20 shows the HRole class which
arises from the class Role by adding four new operations. Instead of repeat-
ing every attribute and operation from the previously encountered class Role
we introduce the shorthand notation shown in Figure 4.21.

context r:HRole::addInheritance(r1:HRole)
pre r <> r1 and not (r.senior*->including(r1))

and not (r1.senior*->including(r))
post r.senior->including(r1) and

HRole->forAll(r2,r3 | ((r2 <> r or (r3 <> r) implies
(r2.senior->includes(r3) iff r2.senior@pre->includes(r3))

Here senior* is as above and A iff B is an abbreviation of (A implies B)
and (B implies A)
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Figure 4.20: Class HRole
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Figure 4.21: Shorthand for Class HRole
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Using usual mathematical notation, as is done to a considerable extend in
the specification language Z one could write r1 <rh r instead of the OCL
expression r1.senior*->including(r). The above constraint would then read:

context r:HRole::addInheritance(r1:HRole)
pre r <> r1 and r 6<rh r1 and r1 6<rh r
post r <rh r1 and

HRole->forAll(r2,r3 | ((r2 <> r) or (r3 <> r)) implies
(r2 <rh r3 iff r2 <rh @pre r3))

context r:HRole::deleteInheritance(r1:HRole)
pre r.senior->includes(r1)
post r.senior->excludes(r1) and

HRole->forAll(r2,r3 | ((r2 <> r or (r3 <> r) implies
r2.senior->includes(r3) iff r2.senior@pre->includes(r3)

context r:HRole::addAscendant(c:Name)
pre HRole->forAll(r : r.name <> c)
post HRole->exists( r1 | HRole@pre->excludes( r1)

and r1.name = c and
r.senior->includes( r1) and
HRole = HRole@pre->including(r1))

context r:HRole::addDescendant(c:Name)
pre HRole->forAll(r : r.name <> c)
post HRole->exists( r1 | HRole@pre->excludes( r1)

and r1.name = c and
r1.senior->includes( r) and
HRole = HRole@pre->including(r1))
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context r:HRole::authorizedUsers():Set(HUser)
pre true
post result =

r.senior*.assigned users

Here senior* is an abbreviation for

r.senior* := HRole->
iter(r1 ; y:Set(HRole) = r.senior | y->union(y.senior))

This constraint reflects the assumption that a user that has a a role r may
also act in the roles r1 with r1 ≤rh r. If we start with a role r and ask what
are the assigned users, then we collect all users assigned to r itself but also
all users that are assigned to roles r2 with r ≤rh r2.

Finally, we come to consider the query operation rolePermissions(), which
was already part of the class Role, but has nevertheless been listed again in
the HRole definition. The reason is, that its meaning is redefined in HRole:

context r:HRole::rolePermissions()
pre true
post result = r.junior*.assigned permissions

This covers the new class HRole. Now we turm to the modified class HUser.
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Figure 4.22: The Class HUser
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context u:HUser::authorizedRoles():Set(HRole)
pre true
post result =

HRole->select( r | r.senior*.assignedUsers->includes(u))

The query operation userPermissions() already occured in the class User. It
is listed again in the class HUser in Figure 4.22 since it is redefined. The
wisdom of this decision could be debated. An alternative would have been to
retain the operation userPermissions() unchanged and add a new one, called
e.g. authorizedUserPermissions(). But, we stick as closely as possible to the
proposal in [Ferraiolo et al., 2000].

context u:HUser::userPermissions():Set(Permission)
pre true
post result =

u.authorizedRoles.permission

Finally we turn to the modified class HSession:
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Figure 4.23: The Class HSession

context s:HSession::addActiveRole(u:HUser,r:HRole)
pre r.authorizedUsers->includes(u) and

s.session user = u and not (s.session roles->includes(r))
post s.session roles = s.session roles@pre->including(r)

The only difference to the constraint on addActiveRole in class Session is,
that assigned users has been replaced by authorizedUsers.
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context s:HSession::createSession(u:HUser, ars:Set(HRole),id:String)
pre HSessions->forAll(s : s.session ID <> id) and

u.authorizedRoles->includesAll(ars)
post u.user sessions->exists( s1 | u.user sessions@pre->excludes( s1)

and s1.session ID = id and
u.user sessions->forAll( w |
u.user sessions@pre->includes(w) or w = s1)) and
s.session roles = ars

The only difference is that u.au has been replaced by u.authorizedRoles.

As mention above, the class Permission remains unchanged. This is true
in our case, since we did not really look inside it. In general, there will
be operations or attributes in Permission. Even if those are not redefined, it
might be necessary to change the type declarations, e.g. from User to HUser.

Lemma 1 From the constraints given above the following two invariants can
be derived:

1. context r1, r2:HRole
inv UserInheritance:

r1.senior*->includes(r2) implies
r1.authorizedUsers()->includesAll(r2.authorizedUsers())

2. context r:HRole
inv PermissionInheritance:

r1.senior*->includes(r2) implies
r2.rolePermissions()->includesAll(r1.rolePermissions())

Using r <rh s for r.senior*->includes(s) and concrete syntax of set theory
these constraints can slao be presented as:

context r1, r2:HRole
inv UserInheritance:

r1 <rh r2 implies
r2.authorizedUsers() ⊆ r1.authorizedUsers()
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context r:HRole
inv PermissionInheritance:

r1 <rh r2 implies
r2.rolePermissions() ⊆ r2.rolePermissions()

Proof:

4.12.3 Static Separation of Duty Relations

4.12.4 Dynamic Separation of Duty Relations

4.13 Exercises

Exercise 4.13.1 Is Set(Integer)� Collection(Real) true?

Supplier Date

Good

** supplier

delivery days

*

11 supplier

*

order

Figure 4.24: Scenario from Excerise 4.13.2
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Exercise 4.13.2 Consider the scenario in Figure 4.24. A shopping center
holds contracts with a number of suppliers in which the weekly orders of goods
are agreed upton. There is also a fixed arrangement on the day(s) of the week
a supplier delivers and a schedule what goods are delivered at each delivery
date.

1. Formulate an OCL constraint that states that the order for each supplier
is to be understood as the total weekly order.

2. Formulate an OCL constraint that states that the order is to be under-
stood as order per delivery.
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Chapter 5

Systematic Introduction to
OCL
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po In this chapter we will give a complete description of the syntax and
semantics of OCL expressions and contraints. Having read the definition
by examples in Chapter 4 the reader should now be ready to understand a
more concise definition. The first part will contain a rigorous mathemat-
ical definition of syntax and semantics of OCL. In a asecond part we will
investigate syntax and semantics definition using UML/OCL itself. It is un-
avoidable that we repeat here some material that has already been covered
in the previous chapter.

We try to stick as close as possible to the draft standard [Boldsoft et al.,
2002]

5.1 Vocabulary

5.1.1 A Bird’s Eye View
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Figure 5.1: Top Level of Type Hierachy

A vocabulary Σ = (T ,Ω, <) for OCL expressions consists of the following
parts

1. A set T of types,
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2. A set Ω of operations,

3. A type hierarchy <.

Every operation f ∈ Ω is endowed with typing information, written as f :
t1×, . . . ,×tn → t0. with ti ∈ T . We call t0 the result type and t1, . . . , tn the
argument types. The typing information for f is usually referred to as the
signature of f .

An operation c with signature c : → tis usually called a constant or more
precisely a constant symbol.

Furthermore < is a binary relation on the set T .

Some parts of the vocabulary depend on a fixed UML class diagram D. In
contexts where this dependence is crucial we will write ΣD = (T D,ΩD, <D)

At the next level of detail the sets T and Ω are brocken down into disjoint
subsets (see Figure 5.1):

T = Texpr(T0)
T0 = TB ∪ TE ∪ TC ∪ TS

Ω = ΩB ∪ ΩE ∪ ΩC ∪ ΩS ∪ ΩColl

1. TB set of symbols for basic types,

2. TE set of symbols for enumeration types,

3. TC set of symbols for object types (also known as model types),

4. TS set of symbols for special types.

5. Texpr(T0) is the set of symbols for composite types constructed from
T0.

5.1.2 Basic Types and Operations

TB = {Integer, Real, Boolean, String}

The operations ΩB are listed in Appendix 12 or in the draft standard [Bold-
soft et al., 2002, Section 6.4].

Within TB the only generalisation relation is

Integer < Real
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5.1.3 Enumeration Types

The set of enumeration types TE is completely determined by the UML class
diagram D.

TE = {C | C is class in D with stereotype enumeration}

ΩE is the set of all enumeration literals occuring in the enumeration classes
in TE. If lit is an enumeration literal in C then lit has signature lit :→ C,
i.e. literals are treated as operations without arguments.

5.1.4 Object Types

The set of object types is again completely determined by the UML class
diagram D. With every class C in D we associate a unique type name tC .
In this text we will as a rule use for tC the name of C.

TC = {tC | C a class in D}

Also the hierarchy relation < on TC is determined by D.

The operations ΩC come in four parts

1. Attribute operations

2. Query operations

3. Association operations

4. Predefined operations

Attribute operations For every attribute a in class C from D with value
type C1 there is an operation a ∈ ΩC with signature

a : tC → tC1

If a is a static attribute then its signature is

a : → tC1
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Query operations For every operation op in class C of diagram D which
is stereotyped isQuery there is an operation op ∈ ΩC with signature

op : tC × t1 × . . .× tn → tC1

where ti ∈ T , tC , tC1
∈ TC with C1 the result type of op and t1, . . . , tn the

types of the arguments of op.

If op is a query with class scope (static query) then the argument type tC is
dropped in the above signature.

Association operations For the purpose of this definition we consider
only binary associations. It should be obvious how to extend it to associations
among more than two classes.

��� �������	�

���
�� 
���
�����������

Figure 5.2: Top level meta model of OCL expressions

For every association assoc in the diagram D with the notation from Figure
5.2 there will be two operations f12 and f21 in ΩC . We will use the name of
the association end end2 as a name for f12, if end2 is given in D, otherwise
we use the name of class C2 starting with a lower case letter. To name f21

we use end1 if given and the name of class C1 otherwise. The signature of
f12 will be

f12 : tC1
→ target type2

Here target type2 depends on the multiplicity m2.

target type2 =















C2 if m2 = 1
Set(C2) if m2 6= 1
Sequence(C2) if m2 6= 1 and end2

is decorated by ordered
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The OCL standard sets the case m2 = {0, 1} apart and proposes the signa-
ture

f12 : tC1
→ C2

in this case, with the understanding that f12 is a partial function, i.e. could be
not defined for some argument values. We strongly discourage this practice.

The signature of f21 is

f21 : tC2
→ target type1

where target type1 depends in the same way on m1.

Predefined operations For every class C in diagram D ΩC contains a
operation symbol allinstancesC of type Set(tC).

5.1.5 Collection and Tupel Types

The set Texpr(T0) is defined by

1. If t ∈ T0 then t ∈ Texpr(T0).

2. If t ∈ T0 then

(a) Set(t) ∈ Texpr(T0).

(b) Sequence(t) ∈ Texpr(T0).

(c) Bag(t) ∈ Texpr(T0).

(d) Collection(t) ∈ Texpr(T0).

3. If t1, . . . , tn ∈ T0 and l1, . . . , ln are names for labels then
Tuple(l1 : t1, . . . , ln : tn) ∈ Texpr(T0).

Nested version The new standard allows to nest type constructors. Thus
Texprnest(T0) is defined by

1. If t ∈ T0 then t ∈ Texprnest(T0).

2. If Texprnest(T0) then
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(a) Set(t) ∈ Texprnest(T0).

(b) Sequence(t) ∈ Texprnest(T0).

(c) Bag(t) ∈ Texprnest(T0).

(d) Collection(t) ∈ Texprnest(T0).

3. If t1, . . . , tn ∈ Texpr
nest(T0) and l1, . . . , ln are names for labels then

Tuple(l1 : t1, . . . , ln : tn) ∈ Texprnest(T0).

We will in our description stick with the old, unnested version.

For every applicable type t the following generalisation relations are in force

Set(t) < Collection(t), Bag(t) < Collection(t), Sequence(t) < Collection(t)

The operations in Ωcoll are listed in Appendix 12. This operations allow you
to manipulate sets.

Here are additional operations, called constructors, that create sets.

For every class t ∈ T0 and every natural number n ≥ 0 the following opera-
tions are in Ωcoll:

mkSetnt : t× t× . . .× t → Set(t)
mkBagn

t : t× t× . . .× t → Bag(t)
mkSequencen

t : t× t× . . .× t → Sequence(t)

5.1.6 Special Types and Operations

There are just three special types

TS = {OCLAny,OCLState, OCLV oid}

and ΩS = {⊥}, where ⊥ is a constant symbol of type OCLV oid, i.e. has
signature

⊥: → OCLV oid

OCLAny is a supertype of all types and OCLV oid is a subtype of all types
in TB ∪ TE ∪ TC .
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5.1.7 Type Hierarchy

Let us first collect all generalisation relations that have been stated scattered
over the last subsections:

1. Integer < Real,

2. tC1
< tC2

if in the diagram D C1 is declared a subclass of C2,

3. Set(t), Bag(t), Sequence(t) < Collection(t),

4. If t1 < t2 then Set(t1) < Set(t2), Bag(t1) < Bag(t2),
Sequence(t1) < Sequence(t2), Collection(t1) < Collection(t2),

5. If t1 < t′1, . . . , tn < t′n then
Tuple(l1 : t1, . . . , ln : tn) < Tuple(l1 : t′1, . . . , l

′
n : tn)

6. t < OCLAny, OCLV oid < t for all t ∈ TB ∪ TE ∪ TC .

The relation ≺ is the transitive closure of the hierarchy relation<, i.e. the
least relation in T satisfying

1. If t1 < t2 then t1 ≺ t2.

2. ≺ is transitive.

As usual we use t � s to stand for t ≺ s or t = s. t � s is read as t conforms
to s.

5.2 Syntax of OCL Expressions

Let Σ = (T ,Ω, <) be a fixed vocabulary. The following definition are all
understood with reference to Σ: If necessary we will write more precisely
Exprt(Σ) instead of Exprt. Besides the symbols from Σ we assume that
there an infinite set V art of variables available for every type t. It will
sometimes be convenient to have a notation V ar for the set of all variables,
i.e. V ar =

⋃

t∈T V art. We introduce by simultaneous inductive definition
for every type t the set Exprt of OCL expressions of type t. We will at the
same time also define the set free(e) of free variables for every expression e.
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Definition 7

1. If v ∈ V art then v ∈ Exprt.
free(v) = {v}.

2. If s : → t is a constant symbol in Ω then s ∈ Exprt.
free(s) = {}.

3. If f ∈ Ω has signature f : t1 × . . . × tn → t and ei, for 1 ≤ i ≤ n
are expressions of type t′i such that t′i � ti for all 1 ≤ i ≤ n then
f(e1, . . . , en) ∈ Exprt.
free(f(e1, . . . , en)) =

⋃

1≤i≤n free(ei)

4. If e1 ∈ ExprBoolean and e2,e3 in Exprt2 , Exprt3 such that t2 and t3 both
conform to t then if e1 then e2 else e3 endif is in Exprt.
free(if e1 then e2 else e3 endif) = free(e1) ∪ free(e2) ∪ free(e3).

5. If v ∈ V art1 , e1 ∈ Exprt1 , e ∈ Exprt then
let v = e1 in e is in Exprt.
free(let v = e1 in e) = free(e1) ∪ free(e) \ {v}.

6. If e1 ∈ ExprCollection(t1), v1 ∈ V art1 , v2 ∈ V art, e2, e3 ∈ Exprt then
e1 → iter(v1; v2 = e2 | e3) is in Exprt.
This syntacial construct is subject to the variable conditions that vi 6∈
free(e1) ∪ free(e2) for i = 1, 2.
free(e1 → iter(v1; v2 = e2 | e3)) = free(e1) ∪ free(e2) ∪ free(e3) \
{v1, v2}

7. If e is an expression and t a type then (e isTypeOf
t
) ∈ ExprBoolean

and (e isKindOf t) ∈ ExprBoolean with free(e isTypeOf
t
) = free(e)

and free(e isKindOf t) = free(e).

8. (e asType
t
) to be done

5.3 Semantics of OCL Expressions

We will first describe the structures that will serve as semantic domains
for the interpretation of OCL expressions and in the next subsection define
the interpretation itself. At this point we only interpret OCL expressions
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themselves, not the meaning of OCL expressions used as invariants or pre-
and postconditions. This has to wait.

5.3.1 System States

A system state for the vocabulary Σ = (T ,Ω, <), usually denoted by σ
associates with every item s from the vocabulary a semantic interpretation
σ(s). Here is the full definition

Definition 8

1. For every type t ∈ T σ(t) is a set.

2. For every function symbol f : t1 → t2 in Ω the semantic interpretation
σ(s) is a function from σ(t1) to σ(t2).

The following constraints have to be satisfied by σ.

1. If t1 < t2 for ti ∈ T then σ(t1) ⊆ σ(t2).

2. σ(OCLV oid) = {⊥} here ⊥ serves as a special symbol for the undefined
element.

3. For every t ∈ T its interpretation contains at least ⊥, i.e. ⊥∈ σ(t).

4. For every basic or enumeration type t its interpretation σ(t) has its
fixed usual meaning plus ⊥, e.g. σ(Integer) = Z ∪ {⊥} etc.

5. The interpretation σ respects the usual meaning of the collection type
constructors. E.g. σ(Set(t)) is the set of all subsets of σ(t), of course
plus ⊥.

6. σ(OCLAny) =
⋃

{σ(t) | t ∈ TB ∪ TE ∪ TC}
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5.3.2 System States Conforming to a Class Diagram

Let D be a class diagram, and ΣD = (T D,ΩD, <D) the vocabulary associated
with it.

Definition 9 A system state σ is said to conform to the class diagram D if
is satisfies

1. The multiplicity constraints of all associations in D.

2. If C1, . . . , Cn are all direct subclasses of class C in D and this sub-
classing is marked disjoint then the sets σ(C1), . . . , σ(Cn) are mutually
disjoint.

3. If C1, . . . , Cn are all direct subclasses of class C in D and this subclass-
ing is marked complete then

σ(C) = σ(C1) ∪ . . . ∪ σ(Cn).

4.

5.3.3 Interpreting OCL Expressions

In order to attach with an OCL expressen e an unambigous meaning we need
in addition to a fixed system state a mechanism to fix the meaning of free
variables. Variable assigments will do this job.

Definition 10

1. A variable assigment β is a function defined on the set V ar of all
variables such that for any t ∈ T and x ∈ V art β(x) ∈ σ(t).

2. An environment I is a pair (σ, β) of a system state σ and a variable
assigment β.

We are now ready to explain rigorously the meaning of arbitrary OCL ex-
pressions with respect to a fixed environment I.
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Definition 11 Let I be a fixed environment (σ, β). For any OCL expression
e of type t its meaning I(e) is an element of σ(t) inductively defined as follows

1. If e ∈ V ar then I(e) = β(e).

2. If e is a constant symbol of type t then I(e) = σ(e).

3. If e = f(e1, . . . , en) for some f ∈ Ω with signature f : t1 × . . .× tn → t
and ei ∈ Exprt′

i
such that t′i � ti for all 1 ≤ i ≤ n then

I(e) = σ(f)(I(e1), . . . , I(en)) .

4. If e = f(e1, . . . , en) for f ∈ Ω and e1, . . . , en ∈ Expr then

I(e) = σ(f)(I(e1), . . . , I(en))

5. If e = (if e1 then e2 else e3 endif) for e1, e2,e3 in Expr, then

I(e) =

{

I(e2) if I(e1 = true
I(e3) if I(e1 = false

6. If e = (let v = e1 in e0) then

I(e) = (σ, βa
v )(e0)

with a = I(e1).

As usual βa
v (w) =

{

β(w) if v 6= w
a if v = w

7. If e = e1 → iter(v1; v2 = e2 | e3) with e1 ∈ ExprSequence(t1) and I(e1) =
〈a1, . . . , ak〉. Then

I(e) = Ik(v2)

where Ii = (σ, βi) is defined as follows. For w 6∈ {v1, v2} we have for
all 0 ≤ i ≤ k βi(w) = β(w). The remaining values, βi(v1) and βi(v2),
are defined by the following recursion:

β0(v1) = a1

β0(v2) = I(e2)
βi+1(v1) = ai+1 for 0 ≤ i < k
βi+1(v2) = Ii(e3) for 0 ≤ i < k

If e1 has type Set or Bag then I(e) is defined by choosing non-
deterministically a sequence s = 〈a1, . . . , ak〉 such that the set (resp.
bag) of elements of s equals I(e1).
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8. I(e isTypeOf
t
) = true if I(e) ∈ I(t) and for all types t′ with t′ < t

I(e) 6∈ I(t′).

Otherwise I(e isTypeOf
t
) = false.

I(e isKindOf t) =

{

true if I(e) ∈ I(t)
false otherwise

5.4 Comments

1. Discuss wether in Definition 7 Item 5 v 6∈ free(e1) should be added.

2. Item 3 in Definition 7

• If f ∈ Ω has signature f : t1 × . . .× tn → t and ei, for 1 ≤ i ≤ n
are expressions of type t′i such that for all 1 ≤ i ≤ n

(a) either t′i � ti

(b) or there is a type t′′i with t′′i � ti and t′i =
C(t′′i ) where C is one of the collection operators
Collection, Set, Bag, Sequence, Tupel.

then f(e1, . . . , en) ∈ Exprt.
free(f(e1, . . . , en)) =

⋃

1≤i≤n free(ei)

To get a picture of what is happening assume g is a function mapping
objects from the set M to objects in N . Let furthermore M0 ⊆ M .
What is g(M)? First of all, we observe that there is a type mismatch,
g expects an argument of element type and is faced with a argument
of set type. Nevertheless, it is common practise to accept g(M) and
attach as ist meaning the set {g(m) | m ∈M}.

5.5 Exercises
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Chapter 6

Metamodelling Approach to
OCL

109



6.1 OCL Syntax Through Diagrams

Figure 6.1 shows the top level of the class hierarchy of OCL expressions. It
is a very useful diagram to get an overview, what syntactical entities are
involved, what are they named, how do they connect to the UML meta
model. So we see, that every new syntactic entity introduced for OCL is a
model element in the sense described in the core package of the UML meta
model. Also we see, that OCL expressions come in 6 different froms. Detailed
information will follow.

6.1.1 Comment

This information about OCLExp contained in Figure 6.1 could also be cap-
tured by a grammar rule

OclExpression ::= IfExp | VariableExp | LetExp |
PropertyCallExp | LiteralExp | OclMessageExp

where all occuring names are non-terminals.

6.2 IfExpression

The simplest of OCL expressions are If expressions. We use them to explain
how to interpret diagrams as the one shown in Figure 6.2. This diagram
explains, what is called the abstract syntax, in this case of If expressions.
The diagram says, every If expression is made up of three component parts
called condition, thenExpression and elseExpression. All parts are manda-
tory, occur at most once, and are OCL expressions. There however further
constraints, not visible from the diagram in Figure 6.2. The condition part
has to be an expression of type Boolean and the thenExpression and elseEx-
pression must have comparable types, i.e. the type of one is a subtype of the
other.
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ModelElement
(from core)

Collection-
LiteralPart

Variable-
Declaration

�enumeration�
CollectionKind

Collection-
Item

Collection-
Range

Unspecified-
ValueExp

OclMessageArg

OclExpressions

IfExp VariableExp LetExp Property-
CallExp

LiteralExp OclMessage-
Exp

Figure 6.1: Top level meta model of OCL expressions
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IfExp

OclExpression

1

thenExpression

1 condition

1

elseExpression

Figure 6.2: Class diagram for IfExpression
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Figure 6.3: Class diagram for LetExpression
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6.3 LetExpression

6.4 Exercises
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Chapter 7

State Charts by Example
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This Chapter contains an exposition of UML state charts.

7.1 States and Transitions

7.1.1 Example

initial state

A B

states

C

final state

events

e1

e2

Figure 7.1: A simple State Chart

7.1.2 Description

Figure 7.1 shows the basic concepts of UML state charts: states, transitions,
events. States are graphically represented as boxes, transitions as arrows and
events occur as labels to transitions. There are two specials states in Figure
7.1: the initial state, denoted by a solid circle, and the final state, denoted
by a solid circle surrounded by another circle. In UML state charts both
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are special kinds of states, called pseudo states, and set apart from the other
states. This is in contrast to most definitions of finite automata, where initial
and final states are subsets of the set of all states. Transitions outgoing from
pseudo states may not be labeled by events. There is no transition outgoing
from the final state.

7.2 Completion States

7.2.1 Example

Idle

Search

supply search goal

shutoff

Figure 7.2: A State Chart with completioon state

7.2.2 Description

Figure 7.2 shows a state chart with a transition form state search to state
idle without label. In this case search is called a completion state. The
state itself is defined by the duration of an activity. In the case of Figure
7.2 we think of a search engine that is activated by the event of transmitting
a search goal. The machine remains in state search as long as the search
takes and then changes back to idle.
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Idle

Search

connect
search engine
active

supply search goal

shutoff

s

Figure 7.3: A State Chart with sequential substates

7.3 Sequential Substates

7.3.1 Example

7.3.2 Description

7.4 Concurrent Substates

7.4.1 Example

Idle

Search

connect1
search engine 1
active

connect2
search engine 2
active

supply search goal

shutoff

s1

s2

Figure 7.4: A State Chart with concurrent substates
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7.4.2 Description
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Chapter 8

Introduction to Abstract State
Machines
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8.1 A New Model of Sequential Computation

In this section we present an approach to a formal definition of computabil-
ity, which extends the usual approaches using e.g. Turing Machines. This
approach has been advocated by Yuri Gurevich since 1984. The earliest ref-
erence is probably [Gurevich, 1984]. The most concise exposition to date is
[Gurevich, 2000]. We also used [Reisig, 2001].

8.1.1 The Sequential Time Postulate

Definition 12 (Sequential Time Postulate) An algorithm A is deter-
mined by

1. A set S(A) of states,

2. A subset I(A) of S(A), called the initial states of A,

3. A function τA : I(A)→ I(A), called the one-step transformation of A.

Definition 13 (Run) A run of an algorithm A is a finite or infinite se-
quence 〈Xi〉 of states such that

1. X0 is an initial state, i.e. X0 ∈ I(A),

2. For every index i in the sequence τA(Xi) = Xi+1.

Comments This definition incorporates a particular way of treating the
end of a run, if the run terminates. A state X ∈ S(A) is final if τA(X) is
not defined. One could alternatively have introduced an explicit set F(A) of
final states. This is not a crucial decision.

8.1.2 The Abstract State Postulate

Definition 14 (Abstract State Postulate) Let A be an algorithm.

1. The states of A are structures of first-order logic.
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2. All states of A have the same finite vocabulary, ΣA.

3. The one-step transformation τA does not change the base set of any
state.

4. The sets of states S(A) and I(A) are closed under isomorphism.

5. Any isomorphism between states X and Y is also an isomorphism be-
tween τA(X) and τA(Y ).

Comments The vocabulary ΣA will typically be many-sorted.

Requirement 4 is probably the least palatable. If we want to talk about an
algorithm on the natural numbers N, why should we be forced to consider
isomorphic copies of N? This also introduces the set theoretic problem,
that the class of all isomorphic copies of N is not a set. Of course, there
are standard ways to deal with this problem. But, could it not have been
avoided alltogether? It turns out that all that is needed in the development
of a theory of sequential algorithms so far is Lemma 3 below (see page 124).
We suggest to take the claim of this Lemma as a postulate and waive closure
under isomorphism.

8.1.3 The Bounded Exploration Postulate

Definition 15 (Updates) Let A be some algorithm, and X a state in S(A).

1. A location of X is a pair (f, ā) where f is a function symbol and ā is
a sequence of elements from X. The length of the sequence ā coincides
with the arity of f .

2. If (f, ā) is a location for X then ContentX(f, ā) is the element fX(ā).
Here fX is the interpretatin of the function symbol f in X,

3. An update for X is a tripel (f, ā, b) where (f, ā) is a location for X and
b is an element of X.

4. An update (f, ā, b) is trivial if b = ContentX(f, ā).

5. Two updates (f1, ā1, b1), (f2, ā2, b2) clash if f1 = f2, ā1 = ā2 and b1 6=
b2.
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6. A set of updates ∆ is consistent if if does not contain two clashing
updates.

Definition 16 Let X be a state, ∆ a consistent set of updates for X. Then
X + ∆ is the state Y with the same base set as X and the interpretation of
function symbols f given by:

fY (ā) =

{

fX(ā) if there is no c such that (f, ā, c) ∈ ∆,
b if (f, ā, b) ∈ ∆.

Lemma 2 If X, Y are two first-order structures with the same vocabulary
and the same base set then there is a unique consistent set ∆ of non-trivial
updates such that Y = X + ∆

Proof Obvious, see also [Gurevich, 2000].

Definition 17 If A is an algorithm given by (S(A), I(A), τA), then we de-
note for every X ∈ S(A) the unique set ∆ satisfying X + ∆ = τA(X) by
∆(A,X).

Definition 18 (Bounded Exploration Postulate) Let A be an algo-
rithm. Then there exists a finite set T of (ground) terms in the vocabulary
of ΣA such that for any two states X, Y such that

tX = tY for all t ∈ T

then
∆(A,X) = ∆(A, Y )

The set T is called the set of critical terms for A. In [Gurevich, 2000] T is
called a bounded exploration witness for A.

The following definition sums up our considerations so far

Definition 19 (Sequential Algorithm) A sequential algorithm A is an
object determined by (S(A), I(A), τA) satisfying the postulates 12, 14 and
18.
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Comments

Lemma 3 Let A be an algorithm and T its finite set of critical terms and
T1 the smallest set of terms containing T and all subterms of terms in T .

For any state X ∈ S(A) and any update (f, (a1, . . . , aj), a0) ∈ ∆(A,X) there
is for every i, 0 ≤ i ≤ j a term ti ∈ T1 such that tXi = ai.

Proof Assume for the sake of a contradiction that for some i, 0 ≤ i ≤ j
we have ai 6= tX for all t ∈ T1. Let Y be an isomorphic copy of X arising
from replacing ai by a new element b, i.e. b does not occur in the base set of
X and ai does not occur in the base set of Y . By the postulate 14 Y is also
a state in S(A). It is easy to see that for all t ∈ T1 we have tX = tY . Thus
by 18 we have ∆(A,X) = ∆(A, Y ). Thus (f, (a1, . . . , aj), a0) ∈ ∆(A, Y ), but
this contradicts the fact the ai is not in the base set of Y .

This is basically the argument given in [Gurevich, 2000, Lemma 6.2].

Corollary 4 Let A be an algorithm. Then there is a finite number n such
that for all states X the set ∆(A,X) has not more than n elements.

Proof Let T be the finite set of critical terms of A and T1 the smallest set
of terms containing T and all subterms of terms in T . Obviously T1 is still
finite. From this the finiteness claim obviously follows.

8.1.4 Example: A Geometric Algorithm

One of the advantages of the definition of an algorithm given in Definition
19 is the fact that no coding in natural numbers or any other fixed data
structure is required. An algorithm may be described at any chosen level of
abstraction. We want to illustrate this by a geometric algorithm A3C , which
determines for three given points P1, P2, P3 in the plane the centre M of the
circle that hits all three points.

The structures in S(A3C) will be many-sorted structure with the sorts Point,
Line, Circle, and PairOfPoints. The intuitive meaning of the last sort,
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Figure 8.1: Constructing the centre point M
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PairOfPoints, is a set of at most two points. Thus also the case of a one-
element set of points and also the empty set of points is included.

Next, we have to decide which geometric operations we assume to be available
to determine the point M? Roughly speaking, we will allow all operations
that can be effected with compass and ruler. More precisely the vocabulary
ΣA3C

consists of

circle : Point× Point× Point→ Circle
intersectL : Line × Line→ Point
line : PairOfPoints→ Line
intersectC : Circle× Circle→ PairOfPoints
P1 : → Point
P2 : → Point
P3 : → Point
M : → Point

For any structure U ∈ S(A3C) = (U, I) we define that

1. circle(Q1, Q2, Q3) is the circle with centre Q1 and radius r given by the
distance between Q2 and Q3. If Q2 = Q3 the circle is identified with
the singleton set {Q1}.

2. intersectL(L1, L2) is the point, in which the lines L1, L2 intersect or
undef if L1, L2 are parallel.

3. line(S) is the uniquely defined line through the points Q1, Q2 if S =
{Q1, Q2} with Q1 6= Q2, and undef otherwise.

4. intersectC(C1, C2) is the set of points common to C1 and C2. If C1 =
C2 then intersectC(C1, C2) is undef .

A structure U ∈ S(A3C) = (U, I) is an initial structure of A3C , i.e. U ∈
I(A3C) if

1. If I(P1), I(P2), I(P3) are points not lying on a line.

2. I(M) is undefined.

For structures U ∈ I(A3C) the one-step transformation τ3C(U) = W, where
the only change inW with respect to U is in the interpretation of the constant
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Figure 8.2: The circle touching three given points
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M . This is given by:

IW (M) = intersectLU (l1, l2)

with

l1 = lineU (intersectCU (C1, C2))
l2 = lineU (intersectCU (C3, C4))
C1 = circleU (P1, P1, P2)
C2 = circleU (P2, P1, P2)
C3 = circleU (P2, P2, P3)
C4 = circleU (P3, P2, P3)

τ3C is not defined for non-initial structures. Thus runs for the algorithm A3C

are very simple: they start with an initial structure U0 ∈ I(A3C), proceed
with U1 = τ3C(U0), and that is the end. Some simple reasoning shows that
IU1(M) is defined. Thus τ3C(U1) is not defined, the run is completed.

8.1.5 What Is A Single Step?

One of the constituent features of Definition 19 is the one-step transformation
τ . But what exactly is one step? Most steps can be broken down into simpler
steps. Is there a notion of atomic steps? We want to shed some light on this
issue by the following example.

The vocabulary Σsq of algorithm Asq contains only one sort Int and a con-
stant symbol const. The typical structure in S(Asq) has as it universe U the
set of integers There is no restriction on IU(const). All of S(Asq) is obtained
by taking isomorphic copies. We further stipulate I(Asq) = S(Asq). For
U ∈ S(Asq) the one-step transformation τsq(U) =W is obtained by

IW(const) = IU(const)2

This makes sense immediately for the typical structures with universe equal
to the set of integers. In the remaining cases the effect of the squaring opera-
tion is mimicked by isomorphic transfer. Is Asq given by (S(Asq), I(Asq), τsq)
a sequential algorithm? The structure U with universe the set of integers and
IU(const) = 2. is certainly in S(Asq) and ∆(Asq,U) = {(const, 〈〉, 4)}. The
set of critical terms T can at most be T = {const}. This would contradict
Lemma 3. Thus Asq is not a sequential algorithm.
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Let the vocabulary Σ+
sq be Σsq ∪ {+}. In structures U ∈ SA+

sq the symbol
+ is interpreted as addition. Otherwise the algorithm A+

sq coincides with
Asq. By the same argument A+

sq still does not satisfy the requirements of a
sequential algorithm. Only when we extend the vocabulary further to include
also multiplication ∗ will A+,∗

sq satisfy the requirement of Definition 19.

This seems to contradict our experience, that we can write an algorithm
computing the square function by using addition only. The crucial point
to observe here, is the fact that the notion of one-step transformation does
exlude loops. Here is the correct set-up of an algorithm Asquare computing
the square function by using addition only.

The vocabulary Σsquare contains the two sorts Int and Bool and the function
symbols

input : → Int
output : → Int
counter : → Int
0 : → Int
+ : Int× Int→ Int
= : Int× Int→ Bool
< : Int× Int→ Bool
− : Int→ Int
minus1 : Int→ Int
& : Bool × Bool → Bool

The universe of all structures U in S(Asquare) is the disjoint union of the
set of all integers and the Boolean values {true, false}. The symbols 0, +,
=, <, −, & are interpreted as usual and also minus1 will be as expected,
i.e. IU(minus1)(n) = n − 1. I(input) may be any number. For initial
structures U we require IU(output) = IU(counter) = 0. For U ∈ S(Asquare)
the one-step transformation function τsquare(U) equals W. The only symbols
whose interrpetation may possibly change in passing from U toW are input,
counter and output.

if input < 0 then IW(input) = IU(−(input))
if input > 0 & counter = 0 then IW(counter) = IU(input)
if input > 0 & counter > 0 then IW(counter) = IU(minus1(counter))

IW(output) = IU(output+ input)

It can be easily checked that for every initial structure U ∈ I(Asquare) there
is only one run. This run is finite and for its final stateW we get IW(output)
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is the square of IU(input).

8.1.6 Example: A Graph Algorithm

We set out to describe an algorithm AG0 for testing reachability within
graphs. On our way to an eventual solution we will discover some subtleties
of definition 19.

The states of AG0 will be two-sorted first-order structures, containting the
sorts Bool and Node. The universe U of any structure in S(AG0) will be the
disjoint union U = UBool ∪ UNode. Where UBool always equals {true, false},
while UNode may be any non-empty set.

The vocabulary ΣG0 contains the following function symbols

edge : Node×Node→ Bool
start : → Node
finish : → Node
true : → Bool
false : → Bool
reachable : Node→ Bool

S(AG0) consists of all ΣG0-structures U = (U, I) such that UBool =
{true, false}, I(true) = true, I(false) = false, and UNode 6= ∅.

I(AG0) consists of all U ∈ S(AG0) with

1. {n ∈ UNode | I(reachable)(n) = true} = {I(start)}, i.e. in an inital
state the start node is the only node marked reachable.

Finally for U = (U, IU) ∈ S(AG0) the one-step transformation τG0 of AG0 has
to be defined. If IU(reachable(finish)) = true, then τG0(U) is not defined.
Otherwise τG0(U) =W = (W, IW ) with

for all n ∈ UNode IW (reachable)(n) = true iff IU(reachable)(n) = true or
there is n0 ∈ UNode with Iu(edge)(n0, n) = true and IU(reachable)(n0) =
true.

Is AG0 thus defined an algorithm? If yes, then there exists by the postulate
18 a set of critical terms T . The terms in T are of no particular interest to
us at this moment, we are only interested in the number k of elements in T .
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start

n1 n2 . . . n
r

finish

Figure 8.3: Example of a reachability problem

Look at the graph in Figure 8.3 where we have chosen r (the number of
successor nodes of start) to be greater than k. Let U0 be the structure in
I(AG0) whose graph part is given by the graph in Figure 8.3 and U1 =
τG0(U0). Then ∆(AG0,U0) contains at least the locations

{(reachable, 〈n1〉, true), . . . , (reachable, 〈nr〉, true)}

By Lemma 3 there exists a term ti ∈ T such that tU0

i = ni for all 1 ≤ i ≤ r.
Since all the nodes ni are different, r > k and there are only k elements is
T , this is a contradiction. AG0 is not a sequential algorithm?

The problem here is that AG0 does too many updates in parallel.

muss ab hier noch ergänzt werden

8.2 ASM Programs

In the previous section we have introduced a precise and abstract notion
of algorithm (see Definition 19). Part of this definition was the one-step
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transformation τ . There was no restriction on how τ should be defined,
as long as this was done unambigously. In this section we will turn to an
approach that is closer to main stream computer science. We will describe an
abstract, programing language. Programs in this language go by the name
of rule or more precisely Abstract State Machine rule (ASM rule, for short).
We then consider the same set-up as in Definition 12, with the only, but

notable difference, that the transformation if effected by a program or ASM
rule.

8.2.1 Definition

Definition 20 (ASM Rule) Let Σ be a fixed vocabulary. We assume that
Bool is a sort of Σ. A term in Σ is called a Boolean term if it is of sort
Bool.

1. If φ is a Boolean term and R1, R2 are rules then

if φ then R1 else R2 endif

is a rule,

2. If R1, . . .Rk are rules then

par
R1
...
Rk

endpar

is a rule,

3. If f is an n-place function symbol in Σ, t0, t1, . . . tn are Σ-terms then

f(t1, . . . tn) := t0

is a rule.

For any ASM rule R and any Σ-structure U in S the result of applying R
in the state U , denoted by τR(U), will be defined as U + R(U) for a set of
updates R(U).
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Definition 21 (Update of Rules) Let R be an ASM rule of vocabulary Σ
and U a Σ-structure.

1. If R is of the form f(t1, . . . tn) := t0 then

R(U) = {(f, 〈a1, . . . , an〉, a0)}

where ai = tUi . Here (f, ā, a0) is a location, see Definition 15.

2. If R is of the form

par
R1
...
Rk

endpar

then
R(U) = R1(U) ∪ . . . ∪Rk(U)

3. If R is of the form if φ then R1 else R2 endif then

R(U) =

{

R1(U) if φU = true
R2(U) otherwise

Definition 22 (Transformation of an ASM Rule) Let R be an ASM
rule and U an eligible structure then

τR(U) = U +R(U)

For an explanation of of ”+”, see Definition 16. If RU) is inconsistent then
τR(U) is not defined.

Definition 23 (Sequential Abstract State Machine) A sequential Ab-
stract State Machine B of vocabulary Σ is given by:

1. A ASM program R of vocabulary Σ,

2. A set S(B) of Σ-structures closed under isomporphism,

3. A subset I(B) of S(B), called the initial states of B,

Lemma 5 Let B be a sequential Abstract State Machine of vocabulary Σ
given by (S(B), I(B), R) then (S(B), I(B), τR) is an sequential algorithm
(see Definition 19).
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Proof: Easily checked.

8.2.2 Examples

As a first example let us look again at the one-step transformation τsquare

from Subsection 8.1.5.

par
if (input < 0) then input := −(input)
endif
if (input > 0 & counter = 0) then counter := input

else par
counter := minus1(counter)
output := output + input
endpar

endif
endpar

As a convention let us agree that rules, or updates that are written vertically
one below the other are implicitely understood to be executed in parallel.
Then the above ASM rule looks:

if (input < 0) then input := −(input) endif
if (input > 0 & counter = 0) then counter := input

else counter := minus1(counter)
output := output+ input

endif

8.2.3 Universality of Abstract State Machines

The purpose of this subsection is to prove:
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Theorem 6 Let A be a sequential algorithm of vocabulary ΣA given by
(S(A), I(A), τA) then there is a ASM rule R of vocabulary ΣA such that
τR coincides with τA on S(A), i.e.

(S(A), I(A), τA) = (S(A), I(A), τ ∗R)

if τ ∗R denotes the restriction of τR to S(A).

This theorem has first been formulated and proved in [Gurevich, 2000].

Lemma 7 For any state X of A there is a ASM rule RX such that RX =
∆(X).

Proof: This is easy. Assume ∆(X) = {(fi, 〈a
i
1, . . . , a

i
ni
〉, bi) | i = 1 . . . k}

By the accessability lemma 3 there are terms si
j and ti such that (si

j)
X = ai

j

and (ti)X = bi. Thus RX :

par
f1(s

1
1, . . . , s

1
n1

) := t1

...

...
fk(s

k
1, . . . , s

k
nk

) := tk

endpar

satisfies RX(X) = ∆(X)

Note, that RX(Y ) = ∆(Y ) does not hold for arbitrary Y .

Definition 24 (T -similar states) Let T be a set of ground terms. Two
states X,Y are called T -similar if for ayn pair t1, t2 ∈ T

tX1 = tX2 ⇔ tY1 = tY2

Lemma 8 If X, Y are TA-similar states of the algorithm A, then

RX(Y ) = ∆(Y )
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Proof First assume that X and Y are disjoint. Let Z be the structure
isomorphic to Y , where the universe of Z is obtained by replacing every
element tY by tX for all t ∈ T . By the assumption of the lemma the function
F : Y → Z:

F (y) =

{

y if y 6= tY for all t ∈ T
tX if y = tY

is surjective and injective and may thus be extended to an isomorphism from
Y onto Z, as intended. Since for all t ∈ T we have tX = tZ we get by the
defining property of the set of critical terms ∆(Z) = ∆(X) = RX(X). From
this we see immediately ∆(Y ) = RX(Y ).
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Chapter 9

Introduction to Dynamic Logic
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For a thorough introduction to Dynamic Logic we recommend [Harel, 1984]
or [Kozen & Tiuryn, 1990] or the recent book [Harel et al., 2000] . A nice
example how to use propositional dynamic logic may be found in [Shilov &
Yi, 2001].

We start our introduction in the next section by an example that shows how
Dynamic Logic can be used to verify programs. Treatment of the example
will appeal more to intution than precise definitions. This will be made
up for in the remaining sections of this chapter where the individual parts
of Dynamic logic will looked at separately and rigorous definitions will be
provided.

9.1 A Motivating Example

int a, b, z;
z = 0;
while (b! = 0)

{ if ((b/2) ∗ 2 == b)
{a = 2 ∗ a;
b = b/2; }

else
{z = z + a;
a = 2 ∗ a;
b = b/2; }

}

Figure 9.1: The Program αRM

Figure 9.1 shows a program written in a simple while language. Variable
declarations, type information and input-output functions have been omitted
or kept to a minimum at this level of abstraction. An executable Java version
of this program is given in Appendix 16.1. The algorithm implemented by
this program is sometimes refered to as Russian peasant’s multiplication. We
abbreviate the program in Figure 9.1 by αRM and will use it to illustrate the
basic concepts of Dynamic Logic and to demonstrate program verification.
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To express formal properties of programs assertions are used. These are
frequently placed within the program code, see Figure 9.2. An assertion
is understood to be a statement containing a boolean expression that the
programmer believes to be true at the time the statement is executed.

int a, b, z;
z = 0;
assert x

.
= a ∧ y

.
= b;

while (b! = 0)
assert a ∗ b + z

.
= x ∗ y;

{ if ((b/2) ∗ 2 == b)
{a = 2 ∗ a;
b = b/2; }

else
{z = z + a;
a = 2 ∗ a;
b = b/2; }

}
assert b

.
= 0;

assert z
.
= x * y;

Figure 9.2: The Program αRM with assertions

It is a very typical situation that one wants to assert that after some compu-
tation the input values have been processed in some specific manner. E.g. in
Figure 9.2 we assert that after the while-loop the program variable z equals
the value of the product of the variables a and b before the while-loop was
entered. This can be accomplished by the use of new variables, sometimes
called external variables. This are x and y in the above example. At the
beginning of the program the external variables are declared equal to the
program variables. Furthermore external variables are chosen such that they
do not occur within the program itself, i.e. they will be changed by the
program.

Dynamic Logic takes a different approach. Rather than using formulas within
programs it uses programs within formulas. This proves more flexible in many
cases and allows to express properties that cannot be obtained by program
annotation.
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Instead of placing assert F ; after some program segment α, we write [α]F .
Later, also the form 〈α〉F will be introduced and the differences explained.

If programm αRM is started in a program state where the values of the
program variables a and b are the integers A and B, then it is supposed to
terminate with the value of z equal to the product A ∗ B of A and B. This
claim written as a Dynamic Logic formula reads as follows:

∀aint, bint, xint, yint, zint(x
.
=int a ∧ y

.
=int b→ [αRM ] z

.
=int x ∗ y) (9.1)

How would we prove such a statement? It is a sensible strategy to unravel the
program αRM . At a first step we get αRM = z = 0;αRMwhile. Here αRMwhile

denotes the rest of the program αRM after the first assigment command has
been chopped off. In this section we apply proof rules intuitively. Later
we will see formal definitions of these rules. Obviously, after the command
z = 0 has been executed the value of z at the beginning of the execution of
αRMwhile equals 0. This the claim 9.1 reduces to

∀aint, bint, xint, yint, zint (x
.
=int a ∧ y

.
=int b ∧ z

.
=int 0

→ [αRMwhile] z
.
=int x ∗ y)

(9.2)

The next job is to unravel the while-program αRMwhile. One way to do this
is via invariants. The general pattern goes as follows: to prove that after
execution of a while program while(B){body} the statement A is true one
searches for another statement Inv, called an invariant such that

1. Inv is true before execution of the while-program.

2. Inv ∧B → [body]Inv can be proved.

3. Inv ∧ ¬B → A is true.

For the program αRMwhile the invariant

a ∗ b + z
.
=int x ∗ y

works. Thus claim 9.2 will be established once the following three claims
have been proved:

∀aint, bint, xint, yint, zint (x
.
=int a ∧ y

.
=int b ∧ z

.
=int 0

→ a ∗ b+ z = x ∗ y)
(9.3)
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∀aint, bint, xint, yint, zint (a ∗ b + z = x ∗ y
→ [αRMbody ] a ∗ b+ z = x ∗ y)

(9.4)

∀aint, bint, xint, yint, zint (a ∗ b + z = x ∗ y ∧ b
.
= 0

→ z = x ∗ y)
(9.5)

The claims 9.3 and 9.4 are obvious, so we will concentrate on 9.4 for the rest.
Here αRMbody is the body of the while loop, i.e.

if((b/2) ∗ 2 == b){a = 2 ∗ a; b = b/2; } else{z = z + a; a = 2 ∗ a; b = b/2; }

Notice, that 9.4 deviates from the general pattern in that the condition (b! =
0) of the while loop does not occur at the lefthand side of the implication.
The reason is, that it will not be needed in the argument. So we omitted it
from the start.

Notice that the branching condition of the if statement (b/2) ∗ 2 == b just is
a round-about way to express that b is even. Let us abbreviate the program
αRMbody as

if(even(b)){branch0} else{branch1}

A formula of the form [αRMbody ]A is then treated as a case distinction and
decomposed into two claims, one for each branch of the if construct.

∀aint, bint, xint, yint, zint (a ∗ b + z = x ∗ y ∧ even(b)
→ [αbranch0

] a ∗ b + z = x ∗ y)
(9.6)

∀aint, bint, xint, yint, zint (a ∗ b + z = x ∗ y ∧ odd(b)
→ [αbranch1

] a ∗ b + z = x ∗ y)
(9.7)

The remaining programs αbranch0
and αbranch1

only contain assigment com-
mands. We can mimic the effect of these programs by performing the sub-
stitutions corresponing to these assigments in the formula following the box
operator. This does not work in general, but it suffices here. This leads us
to the following to claims:

∀aint, bint, xint, yint, zint (a ∗ b + z = x ∗ y ∧ even(b)
→ (2 ∗ a) ∗ (b/2) + z = x ∗ y)

(9.8)

∀aint, bint, xint, yint, zint (a ∗ b+ z = x ∗ y ∧ odd(b)
→ (2 ∗ a) ∗ (b/2) + z + a = x ∗ y)

(9.9)
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9.1.1 Comments

The assert construct supported by Java 1.4 is not a full-blown design-by-
contract facility, it can help support an informal design-by-contract style
of programming. So, one should be careful carrying the similarities of this
programming language construct with Dynamic Logic formulas too far.

The method of invariants used above is but one method to handle while-
loops. Sometimes it is very tricky to find an invariant that does the job.
Other methods, e.g. symbolic evaluation, will be considered later.

9.2 Prerequisites

The chapters and sections upto this one were written to be accessible without
a background in logic. This is no longer possible for the aims of the present
chapter. We will assume that the reader is familiar with the basic concepts
of first-order predicate logic. In particular he should understand the items
in the following list

• a signature Σ specifies a set Func of functions symbols and a set Pred
of predicate symbols. Function symbols of arity 0 are called constant
symbols. Predicate symbols of arity 0 are treated like propositional
variables.

• By Term, or more precisely TermSigma we denote the set of all terms
in signature Σ.

• By Fml, or more precisely FmlΣ we denote the set of all first-order
formulass in signature Σ.

• If x is a variable, t, s are terms in Term, A a formula in Fml then the
term s(t/x) results from s by replacing every occurrence of x in s by
t. F (t/x) is obtained from F by replacing every free occurrence x in F
by t.

• Structures for first-order predicate logic are denote by M or variants
and consist of a universe M and an interpretation function I, M =
(M, I).
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• Variable assignments are usually denoted by β,

• Given a state (M = (M, I), β), the interpretation (I, β)(t) of a term
t ∈ T is an element from M .

• Given a state (M = (M, I), β) it is possible to evaluate the truth value
(I, β)(φ) of any formula φ ∈ FML. (M, β) |= φ is equivalent to
(I, β)(φ) = 1.

• We distinguish bound and free variables.

• It is not strictly necessary but would help to know the basic syntax and
semantics of modal logic.

9.3 The Vocabulary

In Section 9.1 we have already seen examples of formulas of Dynamic Logic.
So far we depend on a rather vague understanding of the meaning of these
formulas. A precise definition of the semantics of Dynamic Logic still has
to wait till section 9.6. Here we are only concerned with the syntax. Two
observations are important here. There are syntactic constructs, the angular
〈〉 and square brackets [ ], that go beyond first-order logic. These are modal
operators. The text within brackets of both kinds is obviously very different
from the text outside. The first category is called the program part, the
second the logical part.

In modal logic the modal operators occur in the simple forms 2, 3, or in
multi-modal logics in the indexed forms 2i, 3i. In Dynamic Logic modal
operators are much more complex. For every program π there will be modal
operators 〈π〉 and [π].

9.3.1 Parts of the Vocabulary

We will present right from the start a typed version of Dynamic Logic. To
fix a particular instance of Dynamic Logic we have to decide on a vocabulary.
The vocabulary comes in two parts

• A vocabulary for the logical part,
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• A vocabulary for constructing programs,

The vocabulary for the logical part consists of

1. A set Type of types,

2. A set Σ of function and relation symbols.

Σ itself is made up of different parts

Σ = Σf
nr ∪ Σf

r ∪ Σr
nr ∪ Σr

r

Σf
nr contains the non-rigid function symbols, Σf

r the rigid function symbols
and respectively Σr

nr and Σr
r the non-rigid and rigid relation symbols. Intu-

itively rigid function and relation symbols do not change in the system model
under consideration. Typically, one may think of functions and relations on
data types, like addition and the ≤-relation on integers. With every
n-ary function symbol f we associate the types s1, . . . , sn of its arguments
and its value type s. This information is frequently presented in the form
f : s1 × . . .× sn → s. With every n-ary relation symbol r we associate the
types of its arguments, r : s1 × . . .× sn.

Equality
.
=s is a predicate symbol, always assumed to be present in Σr

r for
every type s ∈ Type.

For every type s ∈ Type there will be an unlimited reservoir of variables
xs, ys, xs

i , y
s
k of type s.

Function symbols may have 0 arguments, then they are called constants. Also
relation symbols may have 0 arguments, then they are called propositional
variables.

The syntax of the program part offers a much wider range of possibilities.
Possible choices are the language of regular programs (see examples 3 and 8
in Exercise 9.18.2), the while programs one encounters in computation theory
(see 1 and 5 in Figure 9.18.2) or real world programming languages , like Java
( 2 in Figure 9.18.2). Little can be said at this general level.

We should however not fail to mention one important distinction, that be-
tween propositional and first-order Dynamic Logic. In propositional Dy-
namic Logic there is analogous to the concept of a propositional variable on
the logical side the concept of an atomic program on the program side. A
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propositional variable has no internal structure, all we know is that it may
have the value true or false . Likewise, atomic programs have no internal
structure, all they do is to establish a connection between initial and final
state in some previously fixed state space.

The set of atomic programs, Π0, is the only item of the program part of the
vocabulary, that we will assume to be always present at this stage of our
presentation.

9.3.2 Example

By Lr we denote the instance of Dynamic Logic needed to talk about the
example program in Figure 9.1 . The vocabulary of Lr, as defined above,
is given as follows. It is to be implicitely understood that all parts ot the
vocabulary considered in this subsection belong to Lr. This saves us putting
an extra index r on every symbol.

The set Type of types for Lr is

Type = {int, bool}

There are only rigid function and relation symbols, i.e.

Σ = Σr = Σf
r ∪ Σr

r.

Σf
r : != : int× int → bool

/ : int× int → int
∗ : int× int → int
+ : int× int → int

== : int× int → bool
0 : → int
2 : → int

Σr
r contains only the two equality relations

.
=

int
and

.
=

bool
.

9.3.3 Comments

The vocabulary of an instance L of Dynamic Logic is also called the signature
of a L.

For a vocabulary Σ = Σf
nr ∪Σf

r ∪Σr
nr ∪Σr

r we will also use the abbreviations
Σr = Σf

r ∪ Σr
r and Σnr = Σf

nr ∪ Σr
r. A systematic treatment of non-rigid
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functions in Dynamic Logic, despite the fact that it offers little extra diffi-
culties, has not been accomplished yet. On the other hand, special cases of
non-rigid functions, in the form of e.g. arrays, have been covered extensively.

In this section we are only concerned with what is called the abstract syntax,
i.e. we only talk about what categories of syntactical objects exist. Concrete
syntax, on the other hand, determines details such as: function names should
start with a lowercase or uppercase letter, a function may or may not have
the same name as a relation, a unary function may or may not have the same
name as a binary function etc.

9.4 Formulas and Terms of Dynamic Logic

9.4.1 Definitions

We will define terms and formulas for the instance Lr of Dynamic Logic with
logical vocabulary Σ and Type as set of types and while-programs as the
set of allowed programs. This is fairly general. The only restriction is in the
choice of the program part.

Definition 25 For every type s ∈ Type the set Terms
Lr

of all terms of type
s is inductively defined by:

1. Every variable xs is in Terms
Lr

.

2. If f : s1 × . . . × sn → s is a function symbol in Σ and ti are terms in
Termsi

Lr
then f(t1, . . . , tn) is a term in Terms

Lr
.

The set Terms
Lr

does not depend on the allowed programs.

A term t is called flexible or non-rigid if it starts with a non-rigid function
symbol, i.e. t = f(t1, . . . , tn) with f ∈ Σnr. The set of formulas FmlLr

and
programs ΠLr

are defined by simultaneous induction:

Definition 26

1. If r : s1× . . .× sn is a relation symbol in Σ and ti are terms in Termsi

Lr

then r(t1, . . . , tn) is a formula in FmlLr
.

146



2. If t1, t2 are terms of type s then t1 =s t2 is in FmlLr
.

3. If F1, F2 are in FmlLr
then also F1 ∨ F2 F1 ∧ F2, F1 → F2, ¬F1, ∀x

sF1

and ∃xsF1 are in FmlLr
.

4. If F is a formula in FmlLr
and π is a program in ΠLr

then [π]F and
〈π〉F are formulas in FmlLr

.

5. Every atomic program α in Π0 is a program in ΠLr
.

6. If t is a term of type s and x is a variable of type s then x = t is in Πr.

7. If t is a term of type s and f is a flexible term of type s then f = t is
in Πr.

8. If π1,π2 are in Πr then also π1; π2 is in Πr.

9. If con is in Termbool
Lr

and π a program in Πr then

while (con) {π}

is a program in Πr.

10. If con is in Termbool
Lr

and π1, π2 are programs in Πr then

if (con) {π1} else {π2}

is in Πr.

9.4.2 Examples

The following are well-formed formulas of Lr:

∀aint∀bint∀zint 〈αRM 〉 true

∀xint∀yint∀aint∀bint∀zint( x
.
=int a ∧ y

.
=int b→ [αRM ] z

.
=int x ∗ y)

∀xint∀yint∀aint∀bint∀zint( x
.
=int a ∧ y

.
=int b→ 〈αRM〉 z

.
=int x ∗ y)

9.4.3 Comments

Item 7 in Definition 26 is not part of the usual definition of Dynamic Logic.
The program in Figure 9.1 contains no example of a non-rigid (i.e. flexible)
symbols. The first example of these will occur in Section 9.10.
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9.5 Kripke Structures for Dynamic Logic

9.5.1 Definitions

A Kripke structure in general consists of states, sometimes also called worlds,
and an accessibility relation between states. In the case of multi-modal logics
there is one accessibility relation for every modality. In the case of Kripke
structures for Dynamic Logic, DL-Kripke structures for short, there will be
an accessibility relation, usually denoted by ρ(π), for every program π. The
state space of the Kripke structures for an instance of Dynamic Logic depends
first of all on the allowed programs and on the vocabulary. For proposional
Dynamic Logic a state is nothing more than a truth value assignment to the
propositional variables. If only imperative programs are considered and all
functions and relations are rigid states may be identified with assignments
to the program variables. Below we give the definition of Kripke structures
for Lr. In this case states are identified with structures of typed first-order
predicate logic.

Definition 27 A DL-Kripke structure K = (S, ρ) consists of a set S of
states (or worlds) and a function ρ that maps every atomic program π to a
binary relation ρ(π) on S. The ρ(π) are called the accessibility relations.

For the Dynamic Logic Lr with vocabulary Σ = Σr ∪ Σnr the set S of K is
subject to the following requirements

• There is a Σr-structure Ar called the rigid part of K,

• S consists of pairs (A, β), where A is a Σ-structure and β a variable
assignement, i.e. a function from the set of alle variables V ar into the
universe of Ar,

• For every pair (A, β) in S the restriction of A to the signature Σr equals
Ar, in symbols A|Σr

= Ar.

9.5.2 Examples

For any Kripke structure A for Lr the rigid part Ar coincides with the whole
structure, i.e. A = Ar, because Σ = Σr. The universe Ar of Ar is the
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disjoint union of Z and B, i.e. Ar = Z ∪ B and Z ∩ B = ∅, with Z the set
of integers and B = {true, false}. The interpretation of the functions and
relation symbols from Σ is standard. Only integer division needs, maybe, an
explanation:

a/b = the greatest integer x with x ∗ b ≤ a.

Thus 8/2 = 4 and 7/2 = 3.

For any Kripke structure K = (S, ρ) of Lr the set of states S consists of all
pairs (A, β), where A is the fixed structure described above and β is, as usual,
a variable assignment. If we ignore atomic programs for the moment there
is only one possible function ρ interpreting the program constructs used to
build Πr in the usual way. Here are some examples. Since the first component
of all states is fixed we identify S with the set of all variable assignments.

ρ(zint = aint) = {(β, β ′) | β ′(z) = β(a)}

9.5.3 Comments

Notational variations of the definition of Kripke structures occur in the liter-
ature. Most notably, Kripke structures are occasionally presented as tripels
K = (S0, I, ρ), where I is an interpretation function that associates struc-
tures I(s) with states s ∈ S0. In this case S0 is just an abstract set. In
Definition 27 we have set, loosely speaking, S = {I(s) | s ∈ S0}. This is
always possible if ρ does depend on I(s) only, i.e. if (I(s1), I(s2) ∈ ρ(π) and
I(si) = I(ti) implies (I(t1), I(t2) ∈ ρ(π).

Definition 27 contains a principle decision on the basic definition of a Kripke
structure. It endorses the concept of a constant domain Kripke structure, i.e.
all structures occuring as the first component of a pair in S share a common
universe, the universe A of Ar. The theory of Kripke structures with variable
domains is decisively more complicated than the constant domain case and
not much is know about it. (For the best account to date, see the book
[Fitting & Mendelsohn, 1999]). What is the price to be paid for working
with constant domains? Do we not sometimes want to add new objects
to a class? and does this not contradict the constant domain principle?
The solution, that has also been adopted in other similar situations is as
follows: The constant domain universe of the structures as part of states is
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seen as an infinite reservoir of possible elements. Adding new elements is
achieved via a 0− 1-function ex. ex(obj) = 1 means that object obj exists,
ex(obj) = 0 means that obj sits in the reservoir waiting to be born. A new
object is created by picking an element c from the reservoir with ex(c) = 0
and changing the value of ex to ex(c) = 1. Usually the situation will be
more specific. Let customer be a 0 − 1-function. Adding a new customer
now amounts to picking c from the reservoir with customer(c) = 0 and apply
the function update customer(c) = 1.

Our definition of allowed programs Πr in Lr, see clauses 5 to 10 in Definition
26, is rather unusual in that it mixes atomic programs, that play a crucial
role in Propositional Dynamic Logic, with programs based on assignment
statements, that make essential use of the presence of program and logical
variables. This will prove convenient for our purposes in translating UML
into Lr. We will come back to this topic in greater detail, but we can give here
a preview. In UML class diagrams operations may be introduced. At this
modeling level an operation op is just a reference to an otherwise unspecified
program. Later op may be implemented by a , e.g. Java method. The
semantics of this situation is best captured by translating op into an atomic
program in Dynamic Logic.

9.6 Truth Definition in Kripke Structures

9.6.1 Definitions

For the next definition it helps to remember that a structure A for first-
order predicate logic is of the form A = (A, I), where A is the universe of A
and the function I associates with every item in the vocabulary its semantic
interpretation in A. In particular, for a term t with variables x1, . . . , xk its
interpretation I(t) is an n-ary function from A into A. For every type symbol
s ∈ Type I(s) is a subset of A. For two types s1, s2 either I(s1) ⊆ I(s2)
holds, when s1 is declared a subtype of s2, or I(s2) ⊆ I(s1) holds, when s2

is declared a subtype of s1, or I(s1) ∩ I(s1) = ∅ otherwise. If necessary we
write IA instead of I.

Definition 28 Let K = (S, ρ) be a given DL-Kripke structure, (A, β) a state
in S, F a formula in FmlLr

and π a program in Πr. The evaluation t(A,β)
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of terms t is defined as usual. We will define by simultaneous induction the
semantics of π, ρ(π), and (A, β) |= F , F is true in state (A, β) of K:

1. (A, β) |= r(t1, . . . , tk) iff (t
(A,β)
1 , . . . , t

(A,β)
k ) ∈ I(r).

(Remember, A = (A, I).)

2. (A, β) |= t1 = t2 iff t
(A,β)
1 = t

(A,β)
2

3. (A, β) |= F is defined as usual if the principal logical operator of F is
one of the classical operators ∧, ∨,→, ¬, or one of the quantifiers ∀, ∃.

4. (A, β) |= 〈p〉F iff there is a pair ((A, β), (B, γ)) ∈ ρ(p) with (B, γ) |= F .

5. (A, β) |= [p]F iff (B, γ) |= F for all pairs ((A, β), (B, γ)) of states
in ρ(p).

6. If x is a variable, ρ(x := s) = {((A, β), (A, β[x/s(A,β)])) | (A, β) ∈ S}.

7. If t = f(t1, . . . , tn) is a non-rigid term, then ρ(t := s) consists of
all pairs ((A, β), (B, β)) such that B coincides with A except for the
interpretation of f , which is given by

fB(b1, . . . , bn) =

{

s(A,β) if (b1, . . . , bn) = (t
(A,β)
1 , . . . , t

(A,β)
n )

fA(b1, . . . , bn) otherwise

8. ρ(π1; π2) consists of all pairs ((A, β), (C, γ)) such that ((A, β), (B, δ)) ∈
ρ(π1) and ((B, δ), (C, γ)) ∈ ρ(π2).

9. ((A, β), (B, γ)) ∈ ρ(while(F0){π}) iff there is an n ∈ N and there are
states (Ai, βi) for 0 ≤ i ≤ n such that

(a) (A0, β0) = (A, β),

(b) (An, βn) = (B, γ),

(c) (Ai, βi) |= F0 for 0 ≤ i < n

(d) (An, βn) |= ¬F0

(e) ((Ai, βi), (Ai+1,β i + 1)) ∈ ρ(π) for 0 ≤ i < n

10. ((A, β), (B, γ)) ∈ ρ(if(F0){π1} else{π2}) iff (A, β) |= F0 and
((A, β), (B, γ)) ∈ ρ(π1) or (A, β) |= ¬F0 and ((A, β), (B, γ)) ∈ ρ(π2)
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9.6.2 Examples

9.6.3 Comments

Definition 28 is as usual, see e.g. [Kozen & Tiuryn, 1990], with the exception
of clause 7.

9.7 Some DL Tautologies

Definition 29 (DL Tautology) A Dynamic Logic formula F is called a
tautology if it is true in every state of every DL-Kripke structure.

Definition 30 (Deterministic Programs)
A program π is called deterministic iff for its interpretation ρ(π) holds that

(s, s1) ∈ ρ(π) and (s, s2) ∈ ρ(π) implies s1 = s2 for all states s, s1, s2.

9.7.1 Listing

Theorem 9 For arbitrary programs π, DL-formulas F and G the following
formulas are tautologies. In any case it is assumed that the variable x does
not occur in π, i.e. x 6∈ V π.

1. (∃x 〈π〉F )↔ (〈π〉∃x F )

2. (∀x [π]F )↔ ([π]∀x F )

3. (∃x [π]F )→ ([π]∃x F )

4. ([π]∃x F )→ (∃x [π]F ) under the precondition that π is deterministic

5. (〈π〉∀x F )→ (∀x 〈π〉F )

6. (∀x 〈π〉F )→ (〈π〉∀x F ) under the precondition that π is deterministic

7. (〈π〉(F ∧G))→ ((〈π〉F ) ∧ 〈π〉G)

8. (〈π〉(F ∧G))↔ ((〈π〉F )∧〈π〉G) under the precondition that no variable
or non-rigid symbol occurring in F occurs in π
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9.7.2 Proofs

We start with the following elementary observations on the semantics of Lr-
programs.

Lemma 10 For any program π ∈ Πr let FV (π) be the set of variables oc-
curing on the left hand side of an assignment statement in π and V π all
variables occuring in π.

1. The program π only changes variables in FV (π); that is, if
((M, β), (M1, β1)) ∈ ρ(π) then β(x) = β1(x) for all variables x 6∈
FV (π).

2. Variables outside V π do not influence the program π; that is, if if x 6∈
V π and ((A, β), (B, γ)) ∈ ρ(π). then also ((A, βa

x), (B, γ
a
x)) ∈ ρ(π). for

arbitrary a.

3. more general: If ((M, β), (M1, β1)) ∈ ρ(π) and β ′ is a variable as-
signment such that β ′(y) = β(y) for all y ∈ V π then there is β ′

1 such
that

(a) ((M, β ′), (M1, β
′
1) ∈ ρ(π) and

(b) β ′
1(x) = β ′(x) for all x 6∈ V π

(c) β ′
1(y) = β1(y) for all y ∈ V π.

We now turn to the proof of Theorem 9.

(1). Since this is the first proof in a series of similar spirit we present it in
full detail.

The assumption x 6∈ V π will make the applications of the basic observation
in the following proof possible.

⇒:

1 (A, β) � ∃x〈π〉F assumption
2 (A, βb

x) � 〈π〉F for some b
3 (B, γ) � F with ((A, βb

x), (B, γ)) ∈ ρ(π)
4 (B, γ) � ∃xF classical predicate logic

5 (B, γ
β(x)
x ) � ∃xF classical predicate logic

6 (A, β) � 〈π〉∃xF from ((A, βb
x), (B, γ)) ∈ ρ(π) we get by

our basic observation

((A, β), (B, γ
β(x)
x )) ∈ ρ(π)
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⇐:

1 (A, β) � 〈π〉∃xF assumption
2 (B, γ) � ∃xF with ((A, β), (B, γ)) ∈ ρ(π)
3 (B, γb

x) � F for some b
4 (A, βb

x) � 〈π〉F from ((A, β), (B, γ)) ∈ ρ(π) we get by
the basic observation
((A, βb

x), (B, γ
b
x)) ∈ ρ(π)

5 (A, β) � ∃x〈π〉F predicate logic

Proof of (2). Follows from (1) and Exercise 9.18.3(1)

Proof of (3). Consider an arbitrary state (A, β) in a Kripke structure K.

1 (A, β) � ∃x [π]F assumption
2 (A, βa

x) � [π]F for some a
3 (B, γ) � F for all (B, γ)with

((A, βa
x), (B, γ)) ∈ ρ(π)

3 (B, γ) � ∃xF for all (B, γ) with
((A, βa

x), (B, γ)) ∈ ρ(π)
4 (A, β) � [π]∃xF

Proof of (4). Consider again an arbitrary state (A, β) in a Kripke structure
K.

1 (A, β) � [π]∃xF assumption
2 (B, γ) � ∃xF for all (B, γ) with

((A, β), (B, γ)) ∈ ρ(π)
by determinacy this is equivalent to:

3 (B, γ) � ∃xF for the unique (B, γ) with
((A, β), (B, γ)) ∈ ρ(π)

4 (B, γb
x) � F for the unique (B, γ) with

((A, β), (B, γ)) ∈ ρ(π)
and some b ∈ B

5 (A, βb
x) � [π]F since by the basic observation

(B, γb
x) is the unique state with

((A, βb
x), (B, γ

b
x)) ∈ ρ(π)

for some b ∈ B = A
5 (A, βb

x) � ∃x[π]F predicate logic
6 (A, β) � ∃x[π]F
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Notice, that the constant domain assumption is crucial for this argument.

Proof of (5). Follows from (3) and Exercise 9.18.3(1).

Proof of (6). Follows from (4) and Exercise 9.18.3(2).

Proof of (7).

1 (A, uβ) � 〈π〉(F ∧G assumption
2 (B, γ) � F ∧G with ((A, β), (B, γ)) ∈ ρ(π)
3 (B, γ) � F and (B, γ) � G
4 (A, β) � 〈π〉F and (A, β) � 〈π〉G
5 (A, β) � 〈π〉G ∧ 〈π〉F

Proof of (8). Because of (7) only the implication ← needs to be proved.

1 (A, β) � 〈π〉F ∧ 〈π〉G assumption
2 (B1, γ1) � F and (B2, γ2) � G with ((A, β), (Bi, γi)) ∈ ρ(π)

Since γ1 and γ2 coincide on x 6∈ V π and no x ∈ V π occurs in F we get
3 (B1, γ2) � F

Now, fB1 = fB2 for all f ∈ Σr ∪Σnr \Σπ
nr ∪Σnr and no f ∈ Σπ

nr occurs in F .
Thus

4 (B2, γ2) � F
(2) and (4) yield (B2, γ2) � F ∧G and thus finally

5 (A, β) � 〈π〉(F ∧G)

Notice again, that the argument would not work as presented without the
constant domain assumption. We would have no guarantee that B1 and B2

share the same universe. What could fB1 = fB2 mean is this context?

9.7.3 Comments

9.8 Conditional Terms

In this section we introduce a new syntactical concept into Dynamic Logic,
that will later turn out to be helpful.
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Definition 31 If t1, t2 are terms then

if u = w then t1 else t2

is a conditional term.

In a state (A, β) conditional terms are interpreted as follows:

(if u = w then t1 else t2)
(A,β) =

{

t
(A,β)
1 if β(u) = β(w)

t
(A,β)
2 otherwise

As the next lemma shows, conditional terms in first-order formulas are a
mere convenience.

Lemma 11 Let φ be a first-order formula and occ an occurence of the con-
ditional term if u = w then t1 else t2 in φ. Let φ1 be obtained from φ by
replacing occ by t1 and φ2 by replacing occ by t2. Then

φ↔ (u = v ∧ φ1) ∨ (u 6= v ∧ φ2)

Proof: Before we can start the proof of the lemma we state and prove a
corresponding claim for term. Let s be an arbitrary term in the extended
syntax, occ and occurence of if u = w then t1 else t2 in t. Let s1, s2 be the
term arising from s by replacing occ by t1, t2. then we get for any state
(A, β)

s(A,β) =

{

s
(A,β)
1 if β(u) = β(w)

s
(A,β)
2 if β(u) 6= β(w)

The proof is by induction on the complexity of the term s. If s is just a
variable, then s1 = s2 = s, and the claim is obvious. If s = f(s1, . . . , sk)
then si = f(s1

i , . . . , s
k
i ) for i = 1 or i = 2. Evaluating s we get first s(A,β)

= fA((s1)(A,β), . . . , (sk)(A,β)) Using the induction hypothesis we conclude in
case β(u) = β(w) that s(A,β) = fA((s1

1)
(A,β), . . . , (sk

1)
(A,β)). Where, as you

may have guessed, sj
1 arises from sj by replacing occ by t1. The last equation

now immediately yields s(A,β) = s
(A,β)
1 . If we use, likewise, sj

2 to denote
the term obtained from sj by replacing occ by t2, we obtain in the case
β(u) 6= β(w): s(A,β) = fA((s1

2)
(A,β), . . . , (sk

2)
(A,β)). Which again leads to the

desired conclusion s(A,β) = s
(A,β)
2 .
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It remains to consider the case s = if x = y then s1 else s2 The subcase,
that s is in fact the occurence occ to be replaced, and consequently x ≡ u,
y ≡ v,and si ≡ ti is immediately obvious. It remains to consider the subcase
that occ occurs in s1 or s2. Let us first take up the case β(u) = β(v). This

splits, naturally, again in two subcases. If β(x) = β(y) then s(A,β) = s
(A,β)
1

and induction hypothesis yields s
(A,β)
1 = s

(A,β)
1,1 . If β(x) 6= β(y) then s(A,β) =

s
(A,β)
2 and the induction hypothesis helps us to get s

(A,β)
2 = s

(A,β)
2,1 . In total

we have seen s(A,β) = s
(A,β)
1 .

In case β(u) 6= β(v) we obtain s(A,β) = s
(A,β)
2 , completely analogous.

We are now ready to attack the proof of the lemma itself using structural
induction on φ. Furthermore, the best approach to prove for each step with
this inductive proof that the given equivalence is true in any state (A, β), is
to procced by case distinction wether β(u) = β(v).

For the simplest case φ = r(s1, . . . , sk) for a relation symbol r we arrive at
the proof obligations:

(A, β) |= r(s1, . . . , sk)↔ r(s1,1, . . . , sk,1) in case β(u) = β(v)
(A, β) |= r(s1, . . . , sk)↔ r(s1,2, . . . , sk,2) in case β(u) 6= β(v)

By the first half of the proof we know

s
(A,β)
i = s

(A,β)
i,1 in case β(u) = β(v)

s
(A,β)
i = s

(A,β)
i,2 in case β(u) 6= β(v)

which settles the case immediatedly.

If the induction hypothesis supplies us with (A, β) |= φi ↔ φi,1 in case β(u) =
β(v) then we also get (A, β) |= φ1 ∧ φ2 ↔ φ1,1 ∧ φ2,1 and (A, β) |= ¬φ1 ↔
¬φ1,1 in case β(u) = β(v). Likewise, for other propositional connectives
and the other case β(u) 6= β(v). As the last hurdle let us set out to prove
(A, β) |= ∀xφi ↔ (∀xφi)1 for the case β(u) = β(v). This is equivalently
transformed in to (A, β) |= ∀xφi ↔ (∀xφi,1). Now, it turns out that the
even stronger claim (A, β) |= ∀x(φi ↔ φi,1) can be shown to be true, simply
because A, β) |= (φi ↔ φi,1 is, by induction hyppothesis, true for all states
(A, β).
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9.9 Substitutions

9.9.1 Retrospective

Before we approach the particularities of substitutions in formulas of Dy-
namic Logic we look at the crucial difficulties of substitutions in first-order
logic.

Let N be the well acquainted structure of the natural numbers and A the
formula z ≥ 2 ∧ ∀x(div(x, z) → (x = 0 ∨ x = 1 ∨ x = z). Then (N, β) |=
A if β(z) is a prime number. Let A′ be the formula obtained from A by
substituting the term t = 2z − 1 for z, in symbols A′ = A(t/z). Then
(N, β) |= A′ if and only if t(N,β)=2β(z)− 1 is a prime number. If we substitute
the term s = 2 ∗ x for z we get A′′ = 2 ∗ x ≥ 2 ∧ ∀x(div(x, 2 ∗ x) → (x =
0 ∨ x = 1 ∨ x = 2 ∗ x). Obviously (N, β) |= A′′ is always false.

The first substitution somehow preserves the meaning of the formula A while
the second does not. The informal notion of a substitution σ preserving the
meaning of the formula A is made precise by requiring that the substitution
principle holds true.

Definition 32 For a substitution σ and a formula A the substitution prin-
ciple requires that for all states (M, β)

(M, β) |= σ(A) iff (M, β ′) |= A

with β ′(x) = σ(x)(M,β) for all variables x.

Definition 33 A substitution σ is allowed for a formula A if for all free
variable occurrences x in A and all variables z in σ(x) the occurrence x is
not within the scope of a quantifier binding z.

The following lemma is a well-known result of first-order logic. Its proof is
tedious but straight forward.

Lemma 12 (Substitution Lemma for First-Order Logic)
If A is a formula of first-order logic and σ an allowed substitution for A,

then the substitution principle holds true.
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9.9.2 Substitutions in Dynamic Logic

There are limits to possible extensions of Lemma 12 to Dynamic Logic. If
a program π, when called in state (M, β), does not only change the values
of the program variables given by β, but also changes M, then there can
obviously be no straightforward analgon of Lemma 12 for formulas of the
form 〈π〉A or [π]A. On the other hand, the substitution lemma is needed
to prove correctness of the axiom handling the assignment rule (see Section
9.13). We will come up with a new approach, introducing the concept of
updates, later to solve this problem. Since updates will provide the general
solution the rest of this section may seem outdated. We chose, nevertheless,
to include it here since it may be useful to avoid updates when they are not
needed.

Let us look at a few examples in the logic Lr.

Example 1
(N, β) |= 〈x = x+ y〉even(x)

This statement is true if β(x) and β(y) are both even or both uneven. If σ
substitutes z + u for y then

(N, β) |= 〈x = x + σ(y)〉even(x)

is true if and only if β(x) and β(z) + β(u) are both even or both uneven.
That sounds reasonable.

If on the other hand we have σ(y) = x then

(N, β) |= 〈x = x + σ(y)〉even(x)

is always true, which does not sound right.

We may draw from this example the conclusion that whenever we substitute
a term t for a variable on the left hand side of an assignment x = s, then x
should not occur in t. In this way program variables x on the left hand side
of an assignment statement play a similar role as quantifiers expressions ∀z
or ∃z.
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Example 2 For a substitution σ with σ(y) = x the claim (N, β) |= σ(〈x =
5〉x = y) amounts to

(N, β) |= 〈x = 5〉x = x

which is of course always true, regardless of β. On the other hand

(N, β ′) |= 〈x = 5〉x = y

is only true if β ′(y) = 5. This shows that the binding force of the variable
x in the assignment statement extends also to the formula following this
statement.

Definition 34 A substitution σ is allowed for a Lr-formula A, (a program
π), if

1. for all x occuring in π as left hand side of an assignment statement
σ(x) = x,

2. for all free variable occurrences y in A (in π) and all variables x in
σ(y) the occurrence y

(a) is not within the scope of a quantifier ∀x or ∃x, and

(b) x does not occur as a left-hand side of an assignment

Lemma 13 (Substitution Lemma for Rigid Dynamic Logic)

1. If π is in Πr and σ a substitution allowed for π, then the program
substitution principle holds true, i.e.

(a)
((M, β), (M, β1)) ∈ ρ(σ(π))

implies
((M, β ′), (M, β ′

1)) ∈ ρ(π)

and

(b)
((M, β ′), (M, β2)) ∈ ρ(π)

implies the existence of β1 with

((M, β), (M, β1)) ∈ ρ(σ(π)) and β ′
1 = β2

with β ′(x) = σ(x)(M,β) and β ′
1(x) = σ(x)(M,β1)
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2. If A is a Lr-formula and σ a substitution allowed for A, then the sub-
stitution principle holds true, i.e.

(M, β) |= σ(A)⇔ (M, β ′) |= A

with β ′(x) as above.

9.9.3 Proofs

The proof of Lemma 13 proceeds by simultaneous structural induction on π
and A.

Proof of Part 1 Since we are dealing with a rigid Dynamic Logic we will
fix an arbitrary structure M and write throughout this proof (β, γ) ∈ ρ(π)
instead of ((M, β), (M, γ)) ∈ ρ(π).

Assignment So let σ be an allowed substitution for π ≡ x = t and consider
(β, β1) ∈ ρ(σ(x = t)) = ρ(x = σ(t)). Thus

β1(y) =

{

β(y) if y 6= x
σ(t)(M,β) if y = x

Let β ′
2 be the variable assignment satisfying (β ′, β ′

2) ∈ ρ(x = t). Thus

β ′
2(y) =

{

β ′(y) if y 6= x
t(M,β′) if y = x

It remains to show
β ′

1 = β ′
2

For y 6= x we get
β ′

1(y) = σ(y)(M,β1) = σ(y)(M,β)

since β1 and β differ only on the variable x, and x does not occur in any σ(y)
with σ(y) 6= y. For y 6= x we also have

β ′
2(y) = β ′(y) = σ(y)(M,β)

and thus β ′
1(y) = β ′

2(y), as desired. Now let us look at the case y = x.

β ′
1(x) = σ(x)(M,β1) = x(M,β1) = β1(x) = σ(t)(M,β)
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On the other hand
β ′

2(x) = t(M,β′)

By the subsitution principle for terms we find the last missing link t(M,β′) =
σ(t)(M,β)

We have so far proved

(β, β1) ∈ ρ(σ(x = t))⇒ (β ′, β ′
1) ∈ ρ(x = t)

The remaining part is trivial since x = t is a deterministic and terminating
program.

Composition If (β, β1) ∈ ρ(σ(π1; π2)) = ρ(σ(π1); σ(π2)) then there is γ
with (β, γ) ∈ ρ(σ(π1)) and (γ, β1) ∈ ρ(σ(π2)). By induction hypothesis we
obtain (β ′, γ′) ∈ ρ(π1) and (γ′, β ′

1) ∈ ρ(π2). From this (β ′, β ′
1) ∈ ρ(π1; π2), as

desired.

Now for the second part. Consider (β ′, β2) ∈ ρ(π1; π2). Thus for some δ we
have (β ′, δ) ∈ ρ(π1) and (δ, β2) ∈ ρ(π2). By induction hypothesis there exists
γ such that (β, γ) ∈ ρ(σ(π1)) and γ′ = δ. Thus we have (γ ′, β2) ∈ ρ(π2)
and a second application of the induction hypothesis yields β1 with (γ, β1) ∈
ρ(σ(π2)) and β ′

1 = β2. This finishes the argument since we already have
(β, β1) ∈ ρ(σ(π1; π2)).

Branching part (a) The assumption

(β, γ) ∈ ρ(σ(if (con) {π1} else {π2}))
= ρ(if σ(con) {σ(π1)} else {σ(π2)}))

implies by definition that either

(M, β) |= σ(con) and (β, γ) ∈ ρ(σ(π1))

or (M, β) |= ¬σ(con) and (β, γ) ∈ ρ(σ(π2))

By induction hypothesis, from part 2, (M, β) |= σ(con) is equivalent to
(M, β ′) |= con. By induction hypothesis used on πi we have (β ′, γ′) ∈ ρ(π1)
for the first alternative and (β ′, γ′) ∈ ρ(π2) for the second. Taken together
we obtain (β ′, γ′) ∈ ρ(if (con) {π1} else {π2}).

Part (b). Assume ((M, β ′), (M, β2)) ∈ ρ(if (con) {π1} else {π2}). There
are, obviously, two cases
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1. (M, β ′) |= con and ((M, β ′), (M, β2)) ∈ ρ(π1)
or

2. (M, β ′) |= ¬con and ((M, β ′), (M, β2)) ∈ ρ(π2)

Assume case 1 applies. Then we get by using the induction hypothesis for
the program π1 a subsitution β1 such that

(β, β1) ∈ ρ(σ(π1))

and β ′
1 = β2. Using the induction hypothesis of part 2 of the lemma on the

formula con, we obtain

(M, β ′) |= con⇔ (M, β) |= σ(con)

Taken together these two statements yield

(β, β1) ∈ ρ(if (con) {π1} else {π2})

The case 2 is, of course, handled in the very same way.

While Loop There are no surprises in this part of the proof. The only
thing to point out is that we need the induction hypothesis of both parts, pro-
gram part and formula part, simultaneously. But, let us quickly run through
the details. We consider the program π = while (con) {π0}).
part (a)
We need to prove that (β, β1) ∈ ρ(σ(π)) implies (β ′, β ′

1) ∈ ρ(π). The as-
sumption provides us with a finite sequence γ1, . . . , γn of states such that
γ1 = β, γn = β1 and (γi, γi+1) ∈ ρ(σ(π0)) and γi |= σ(con) for 1 ≤ i < n
and γn |= ¬σ(con). By induction hypothesis we get for all 1 ≤ i < n
(γ′i, γ

′
i+1) ∈ ρ(π0), γ

′
i |= con and also γ′n |= ¬con. By definition this is

(γ′1, γ
′
n) ∈ ρ(while (con) {π0}) = ρ(π).

part (b)) Let β be as in part (a) and assume (β ′, β2) ∈ ρ(π) for some β2.
We want to show the existence of a state β1 with (β, β1) ∈ ρ(σ(π)) and
β ′

1 = β2. Unwinding the semantics of the while loop we obtain from our
assumption states δ0, . . . , δk with δ0 = β ′, δk = β2, δk = β2, for all 1 ≤ i < k
(δi, δi+1) ∈ ρ(π0), δi |= con and also δk |= ¬con. By induction hypthesis we
obtain successively states δi such that δ0 = β, and (δi, δi+1) ∈ ρ(σ(π0)) for
0 ≤ i < k and (δi)′ = δi for all 1 ≤ i ≤ k. Note, that this means in particular
(δk)′ = β2. We also obtain from δi = (δi)′ |= con by induction hypothesis
δi |= σ(con) for all 1 ≤ i < k and also δk |= ¬σ(con). Taken alltogether this
is (β, δk) ∈ ρ(σ(π)) and (δk)′ = β2.
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Proof of Part 2 To simplify notation we will for any variable assignment
γ denote by γ′ the usual function γ′(x) = σ(x)(M,γ), where σ and M are
determined by the context.

Diamond Assume we already know that the substitution principle holds
true for the program π and the formula A and we want to prove it for 〈π〉A.

From (M, β) |= σ(〈π〉A) we infer the existence of a variable assignment β1

with
((M, β), (M, β1)) ∈ ρ(σ(π))
(M, β1) |= σ(A)

By induction hypothesis

((M, β ′), (M, β ′
1) ∈ ρ(π)

(M, β ′
1) |= A

Which immediately yields (M, β ′) |= 〈π〉A.

If we start from (M, β ′) |= 〈π〉A we obtain first the existence of β2 such that

((M, β ′), (M, β2) ∈ ρ(π)
(M, β2) |= A

Since π by induction hypothesis satisfies the substitution principle there is
β1 with

((M, β), (M, β1) ∈ ρ(σ(π))
β1′ = β2

The last equation now yields (M, β1′) |= A which in turn gives, using the
induction hypothesis for A, (M, β1) |= σ(A), Altogether, (M, β) |= σ(〈π〉A),
as needed.

Box We first assume (M, β) |= σ([π]A) with the aim to prove (M, β ′) |=
[π]A.

For any β2 with ((M, β ′), (M, β2) ∈ ρ(π) we want to show (M, β2) |= A. An
appeal to the induction hypothesis supplies us with β1 satisfying

((M, β), (M, β1)) ∈ ρ(σ(π))
and β ′

1 = β2
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By our case assumption we obtain (M, β1) |= σ(A), which by induction
hypothesis, this time applied to the formula A, yields (M, β ′

1) |= A. This is
the same as (M, β2) |= A and we have, in fact, proved (M, β ′) |= [π]A.

Now, let us inversely assume (M, β ′) |= [π]A and try to infer (M, β) |=
σ([π]A). To this purpose, consider β1 with ((M, β), (M, β1)) ∈ ρ(σ(π)). By
induction hypothesis on π this implies ((M, β ′), (M, β ′

1)) ∈ ρ(π). By case
assumption we obtain (M, β ′

1) |= A. Applying the induction hypothesis
on A we obtain (M, β1) |= σ(A). Altogether, this finishes the proof of
(M, β) |= σ([π]A).

The remaining cases of Part 2 are as in first-order logic.

9.9.4 Comments

The program substitution principle formulated as part of Lemma 13 is more
general than would have been necessary for Πr, since it also covers non-
deterministic programs. For deterministic program the substitution principle
is equivalent to the first part of item 1 in 13, i.e.

((M, β), (M, β1)) ∈ ρ(σ(π))⇒ ((M, β ′), (M, β ′
1)) ∈ ρ(π)

plus
ρ(π) 6= ∅ ⇒ ρ(σ(π)) 6= ∅

It is apparent from Definition 34 that variables occuring at least once at the
left side of an assignment behave differently from the remaining variables.
This suggest separating the set V of variables in program variables, in the
set Vprog and logical variables in Vlog

• program variables cannot be quantified, for any substitution σ and
program variable x we have σ(x) = x, i.e. program variabes cannot be
substituted, and x does not occur in σ(y) for logical variables y. Of
course, program variables may be changed by program execution.

• logical variables never occur as the lefthand side of an assignment,
are implicitely universally quantified. Logical variables are rigid they
cannot be changed by program execution.
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By indroducing new program variables, if necessary, every program π can
be equivalently transformed into 〈x1 = v1; . . . ; xn = vk; π0〉, with xi program
variables and vi logical variables such that no logical variable occurs in π0.

9.10 Arrays

9.10.1 Example

for (int a = p; a < l − 1; a = a+ 1)
{seq[a] = seq[a+ 1]; }

Figure 9.3: The Program Snippet Using Arrays

A number of papers have been published on how to treat arrays in Hoare
Logic or Dynamic Logic, see e.g. [Apt, 1981]. The usual approach tried to
stay as close as possible to the initial set-up of these logics. We took (in
Section 9.3) a more radical step by indroducing non-rigid functions.

Consider the code snippet in Figure 9.3. To model its semantics we would
have, among other, (program) variables p, a and a non-rigid function symbol
seq. If π consists of the single statement seq[a] = seq[a+ 1];,then

((M, β), (M1, β)) ∈ ρ(π)

ifM1 coincides withM except for the interpretation of the function symbol
seq which is given by

seqM1(x) =

{

seqM(x) if x 6= β(a)
seqM(x + 1) if x = β(a)

9.11 Generalized Substitutions

9.11.1 Motivation

So far we have only considered substitutions for variables. Is it possible to
define a more general notion that substitutes one term for another term? Let
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us assume we want to define a generalized substitution σ that replaces f(2)
by 5. What should be

1. σ(g(f(2))?

2. σ(g(f(x))?

3. σ(f(f(x))?

The first example is easy: σ(g(f(2)) = g(5). The second example takes
a moment’s reflection. Then the conditional terms from Section 9.8 come
in handy: σ(g(f(x)) = if x = 2 then g(5) else g(f(x)). Here we need to
make a decision. Do we want to replace one possible occurence of f(2) in
f(f(x)) or all? The unanimously adopted solution (see e.g. [Apt & Olderog,
1991][Section 2.6]) is to replace all possible occurences.

to be reconsidered

In our example we would thus obtain

σ(f(f(x))) = if (if x = 2 then 5 else f(x)) = 2 then 5 else f(f(x))

This we could simplify to

σ(f(f(x))) = if (x 6= 2 ∧ f(x) = 2) then 5 else f(f(x))

This is quite different from simple texual replacements. The main reason
why this is the right generalization is that it makes the following generalized
substitution lemma, Lemma 14, true.

9.11.2 Definition

Definition 35 (Generalized Substitution)

to be reconsidered

Let σ be the generalized substitution that substitutes t for f(t1, . . . , tn) where
t, t1, . . . , tn are arbitrary terms. We define for an arbitrary term s the result
σ(s) of applying σ to s.

σ(s) =















x if s = x a variable
s if s = g(s1, . . . , sk) with g 6= f
if (

∧n
i=1 σ(si) = ti) then t else f(σ(s1), . . . , σ(sn))

if s = f(s1, . . . , sn)
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Lemma 14 (Generalizied Substitution Lemma) Let σ be the general-
ized substitution that replaces f(t1, . . . , tn) by t. Let S = (M, β), S1 =
(M1, β) be states such that M1 coincides with M with the exception of the
interpretation of f :

fM1(d1, . . . , dn) =

{

tS if di = tSi for all 1 ≤ i ≤ n
fM(d1, . . . , dn) otherwise

Then for all terms s
sS1 = (σ(s))S

Note that S1 = (M1, β) is the state reached by executing the assignment
f(t1, . . . , tn) = t in state S = (M, β). Also note that β is not changed.

Proof: The proof proceeds, as you would have expected, by induction on
the complexity of the term s.
The only interesting case is s = f(s1, . . . , sn). In this case we get

sS1 = fM1(d1, . . . , dn) with di = sS1

i for all 1 ≤ i ≤ n

σ(s)S = (if (
∧n

i=1 σ(si) = ti) then t else f(σ(s1), . . . , σ(sn)))
S

Case 1 sS1

i = tSi for all 1 ≤ i ≤ n
By definition of fS1 we get immediately sS1 = tS. Furthermore the induction
hypothesis yields sS1

i = σ(si)
S = tSi for all 1 ≤ i ≤ n and thus the conditional

term also evaluates to σ(s)S = tS and we are finished.

Case 2 otherwise
By definition of fS1 we get sS1 = fM(sS1

1 , . . . , s
Sn

n ) which by induction hy-
pothesis also yields

sS1 = fM((σ(s1)
S, . . . , (σ(sn)S))

= f(σ(s1), . . . , σ(sn))
S

But, also the conditional term leads to the same end result: σ(s)S =
f(σ(s1), . . . , σ(sn))

S
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9.12 Sequent Calculus

We assume that the reader has some familarity with the sequent calculus.
Extensive accounts may be found e.g. in [Gallier, 1986, Sperschneider &
Antoniou, 1991] or in the lecture notes [Menzel & Schmitt, 2001]. We quickly
review here what will be needed for the following sections.

9.12.1 Sequent Rules

Definition 36

1. A sequent is of the form
Γ ∆

where Γ and ∆ are sets of formulas. Traditionally, the part to the left
of the sequent arrow, i.e. Γ in our example, is called the antecedent
and the right part, i.e. ∆ in our example, is called the succedent of the
sequent.

2. Let K = (S, ρ) be a DL-Kripke structure, (A, β) a state in S. A sequent
Γ ∆ is true in K for state (A, β), in symbols (A, β) |= Γ ∆ iff

(A, β) |=
∧

Γ→
∨

∆

3. A sequent Γ ∆ is true in K, in symbols K |= Γ ∆ iff (A, β) |=
∧

Γ→
∨

∆ for all (A, β) ∈ S.

4. A sequent Γ ∆ is called universally valid if K |= Γ ∆ holds for
all Kripke structures K in the signature of the sequent.

Definition 37

1. A sequent rule is of the form

Γ1 ∆1

Γ2 ∆2
or

Γ1 ∆1 Γ′
1 ∆′

1

Γ2 ∆2

Γ1 ∆1 and Γ′
1 ∆′

1 are called the premise(s) of the rule and
Γ2 ∆2 is called the conclusion.
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2. A sequent rule
Γ1 ∆1 Γ′

1 ∆′
1

Γ2 ∆2

is sound if Γ2 ∆2 is universally valid whenever Γ1 ∆1 and
Γ′

1 ∆′
1 are universally valid.

Here are some examples of sound sequent rules.

1.
Γ1, A,Γ1 ∆1, A,∆2

2.
Γ,Γ′ ∆, A,∆′

Γ,¬A,Γ′ ∆,∆′

3.
Γ ∆, A(y/x),∆′

Γ ∆, ∀xA,∆′

where y has no free occurrence in a formula in Γ,∆,∆′

4.
Γ, A,Γ′ ∆ Γ,Γ′ ∆, A,∆′

Γ,Γ′ ∆,∆′

In Chapter 15, the Appendix on Axiom Systems of the Sequent Calculus,
lists two complete axiom systems for (one-sorted) predicate calculus, S0 and
Sfv

0 .

9.12.2 Proof Trees

The rules of a sequent calculus, like S0 e.g., are used to built proof trees. A
proof tree is a tree whose nodes are labeled by sequents. Suppose, we want
to prove that a formula F is a tautology. Then we start the proof with the
root node F . Using the rules from bottom to top we built proof trees
as e.g. shown in Figures 9.4 and 9.5. The rules with two premises yield the
branching of the proof tree. In the rule system S0, see Chapter 15, a proof
tree is called closed if every leaf node is labeled by an axiom. We will also
speak of branches of a proof tree in the usual sense. A branch is called closed
if its leaf node is labelled by an axiom, otherwise it is called open. Thus in
S0 a proof tree is closed iff all its branches are closed.
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A,B,A B,C axioms

A,B A→B,C A,B,C C

A,B, (A → B)→C C

A∧B, (A → B) → C C

(A → B) → C (A ∧ B)→C

((A → B) → C)→((A ∧ B) → C)

impl-right

impl-right

and-left

impl-left

impl-right

Figure 9.4: Example of a closed proof tree
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open

goals

B,A,C A,C B B,C B A,C

axioms

A∧B,A,C C A,C B B,C B A∧B,C

(A ∧ B)→C A,C (B,A ∧ B)→C C

A→B, (A ∧ B) → C C

(A ∧ B) → C (A → B)→C

((A ∧ B) → C)→((A → B) → C)

impl-right

impl-right

impl-left

impl-left impl-left

and-right and-right

Figure 9.5: Example of an open proof tree
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A proof tree T in the system Sfv
0 is closed if there is a substitution τ of the

free variables in T by ground terms such that every branch of the proof tree
τ(T ) is closed.

Theorem 15 Let S = Γ ∆ be a sequent containing only formulas of first-
order predicate logic without free variables.

Then S is a tautology iff there is a closed proof tree with root label S.

axiom
6 p(d), p(c) p(c),∀yp(y)

5 p(d) p(c), p(c)→∀yp(y)

4 p(d) p(c), ∃x(p(x) → ∀yp(y))

3 p(d) ∀yp(y),∃x(p(x) → ∀yp(y))

2 p(d)→∀yp(y),∃x(p(x) → ∀yp(y))

1 ∃x(p(x) → ∀yp(y))

ex-right

impl-right

all-right

ex-right

impl-right

(a) in S0

closed by τ(X) = c

4 p(X) p(c),∃x(p(x) → ∀yp(y))

3 p(X) ∀yp(y),∃x(p(x) → ∀yp(y))

2 p(X)→∀yp(y),∃x(p(x) → ∀yp(y))

1 ∃x(p(x) → ∀yp(y))

ex-right

impl-right

all-right

(b) in S
fv
0

Figure 9.6: Proof of ∃x(p(x)→ ∀yp(y)))

9.12.3 Comments

Note, that in our approach antecedents and succedents are sets of formulas.
This is in contrast with many other versions of sequent calculi, where se-
quences or multi-sets are used instead. Treating antecedents and succedents
as sets simplifies the rules; we do not need rules re-ordering formulas in a
sequent or omitting duplicate occurrences. On the other hand the implemen-
tation of sets is less straight forward.

173



In a sequent Γ ∆ the sets Γ and ∆ may be empty, even both at the same
time. Truth and validity is in this case determined by the (usual) stipulation
that an empty disjunction is false and an empty conjunction is true. The
sequent ∅ ∅ is thus logically equivalent to true false and thus evaluates
to false in any state of any Kripke structure. Empty sets are usually omitted.
Thus we write instead of ∅ ∅.

The rules themselves do not suggest any preference on how to built proof
trees. One could, following a mathematically oriented method, start from
axioms and apply proof rules from top to bottom until the desired root
sequent is reached. Alternatively, one could start from the sequent to be
proved and apply proof rules from bottom to top until every branch ends in
an axiom. We prefer the second, goal oriented view. This is the reason, why
we call sequents in a proof goals.

9.13 The Assignment Rule

9.13.1 The Rule

Γ(z/x), x
.
=s t(z/x) F,∆(z/x)

Γ 〈x = t〉F,∆

where x and t are of type s and F a first-order formua.

9.13.2 Examples

Here is a correct instance of the assignment rule:

z/2
.
=

int
y, x

.
=

s
z + 2 x/2

.
=

int
y + 1

x/2
.
=int y 〈x = x+ 2〉 x/2

.
=int y + 1

We may continue the above proof search by

z/2
.
=int y (z + 2)/2

.
=int y + 1

z/2
.
=

int
y, x

.
=

s
z + 2 x/2

.
=

int
y + 1

x/2
.
=int y 〈x = x+ 2〉 x/2

.
=int y + 1
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9.13.3 Soundness Proof

To prove soundness (see Definition 37 ) of the assignment rule we assume
that the premise Γ(z/x), x

.
= t(z/x) F,∆(z/x) is universally valid and

aim to show that the conclusion Γ 〈x = t〉F,∆ is also.

We fix a DL-Kripke structure K = (S, ρ) and an arbitrary state (A, β) in S,
assuming (A, β) |= Γ. Let

β ′(u) =

{

β(u) if u 6= z
β(x) if u = z

Since the variable z is new, it does not occur in Γ. Therefor we still have
(A, β ′) |= Γ. But we also have (A, β ′) |= Γ(z/x) by the substitution lemma
for first-order formulas. Let β ′′ be defined by

β ′′(u) =

{

β ′(u) if u 6= x
t(A,β′) if u = x

We want to show (A, β ′′) |= F ,

First, we note that we still have (A, β ′′) |= Γ(z/x) since β ′′ amd β ′ differ
only at the variable x which does not occur in Γ(z/x). Furthermore we
observe t(A,β′) = t(z/x)(A,β′) = t(z/x)(A,β′′). Thus (A, β ′′) |= x

.
= t(z/x). By

assumption we have (A, β ′′) |= F,∆(z/x). If (A, β ′′) |= ∆(z/x) is the case, we
also have (A, β ′) |= ∆(z/x) (since x does not occur in ∆(z/x)) and therefor
also (A, β) |= ∆ and we are finished. This leaves us with the case (A, β ′′) |= F
which again finishes the proof, because this shows (A, β ′) |= 〈x = t〉F .

Note, that we have used the substitution Lemma 12 with the substitution

σ(u) =

{

u if u 6= x
z if u = x

It is obvious that σ is not an allowed formula for Γ or ∆ if Γ or ∆ contains
none-first-order formulas. In general x will occur again on the left-hand side
of an assigment within Γ or ∆. Thus there is no chance to generalize the
above rule for arbitrary dynamic logic formulas.

9.13.4 Comments

This rule lies at the very heart of Hoare logic and therefore also of Dynamic
logic. It effects the transition from program variables to logic variables. In
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the program statement, x = x + 2, of the above example the same symbol
x appears on both sides of the assignment operator, but different values are
associated with these occurrences. No logic variable could do this. The
solution is to introduce a new variable, z in this case, which intuitively holds
the value of x before execution of the assignment operation. The variable x
then holds the value of x after execution of the assignment. In the general
rule every occurrence of x intended to refer to the old value of x is replaced by
z. The occurrences of x refering to the new value remain unchanged. Notice
that these occurrences are the left-hand side of the assignment statement
itself and all occurrence of x in the formula F . All other occurrences of x
refer to the previous value.

An alternative assigment rule We again turn the occurences of the
variable x in the assignment x = t into different logical variables, but this
time we let x denote the value of x before execution and z the value after
execution. This yields the rule:

Definition 38
Γ, z

.
=

s
t F (z/x),∆

Γ 〈x = t〉F,∆

where x and t are of type s and F a first-order formua.

9.14 A Branching Rule

9.14.1 The Rule

Γ, F0 〈π1〉F,∆ Γ,¬F0 〈π2〉F,∆
Γ 〈if(F0){π1} else{π2}〉F,∆

9.14.2 Examples

( b
2
∗ 2 = b) 〈a = 2; 〉z = y (b/2) ∗ 2 6= b) 〈z = a〉z = y

〈 if((b/2) ∗ 2 == b){a = 2; } else{z = a; 〉z = y
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9.14.3 Soundness Proof

This is an easy rule. But let us nevertheless spell out the proof. Assuming
universal validity of the sequents Γ, F0 〈π1〉F,∆ and Γ,¬F0 〈π2〉F,∆ we
set out to prove universal validity of Γ 〈if(F0){π1} else{π2}〉F,∆. Again
we fix an arbitrary state (A, β) of an arbitrary Kripke structure K satisfying
(A, β) |= Γ. There are two cases to be distinguished

1. (A, β) |= F0

2. (A, β) |= ¬F0

Let us follow case (1) here. The other case is absolutely analogous. Our
assumption yields (A, β) |= 〈π1〉F,∆. If we have in fact (A, β) |= ∆, then we
are through. From now on may assume (A, β) |= 〈π1〉F

Let (B, γ) be the unique state with ((A, β), (B, γ)) ∈ ρ(π) with π ≡
if(F0){π1} else{π2}. If we can show (B, γ) |= F we are finished.

Following Definition 28 clause 10 we obtain ((A, β), (B, γ)) ∈ ρ(π1) and using
(A, β) |= 〈π1〉F we conclude (B, γ) |= F .

9.14.4 Comments

Since this was so easy let us pause a moment to point out another issue. The
rules we have seen so far work both ways. More precisely their conclusion is
universally valid if and only if all premisses are universally valid, see Exercises
9.18.7 and 9.18.6. What is the significance of this? Let us look at the
following first-branch-only rule

Γ F0,∆ Γ 〈π1〉F,∆
Γ 〈if(F0){π1} else{π2}〉F,∆

It can be easily seen that this is a valid rule and there might even be proof
situations where it could be usefully employed. But, in general it is a dan-
gerous rule to use: We usually contruct proofs from bottom to top. Our
goal is to show that Γ 〈if(F0){π1} else{π2}〉F,∆ is universally valid. If we
replace this goal by the two goals Γ F0,∆ and Γ 〈π1〉F,∆ we attempt
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to prove something that is stronger than necessary. If we succeed, we are
lucky, otherwise we have to backtrack and restart our proof in the situation
just before applying the first-branch-only rule. There are more complex sit-
uations where we cannot avoid going down blind alleys, but we should try as
best we can to avoid this.

9.15 A While Rule

9.15.1 The Rule

Γ I I, F0 [π]I I,¬F0 F,∆
Γ [while(F0){π}]F,∆

9.15.2 Example

x
.
= a ∧ y

.
= b ∧ z

.
= 0 a ∗ b + z

.
= x ∗ y

a ∗ b+ z
.
= x ∗ y,¬(b

.
= 0) [αRMbody]a ∗ b+ z

.
= x ∗ y

a ∗ b+ z
.
= x ∗ y, b

.
= 0 z

.
= x ∗ y

x
.
= a ∧ y

.
= b ∧ z

.
= 0 [while(b! = 0){αRMbody}] z

.
= x ∗ y

whith αRMbody the example program from Section 9.1. It is only for typo-
graphical reasons that we have printed the three premises vertically rather
than horizontally.

9.15.3 Soundness Proof

We assume the following three sequents to be universally valid

1 Γ I
2 I, F0 [π]I
3 I,¬F0 F,∆

and try to prove (A, β) |= [while(F0){π}]F,∆ for all states (A, β) satisfying
(A, β) |= Γ in all Kripke structure K. Unravelling this proof obligation we
need to show for every n ≥ 0 and every sequence (Ai, βi), 0 ≤ i ≤ n of states
satisfying
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a (A0, β0) = (A, β)
b ((Ai, βi), (Ai+1, βi+1)) ∈ ρ(π) for all 0 ≤ i < n
c (Ai, βi) |= F0 for all 0 ≤ i < n
d (An, βn) |= ¬F0

that
(An, βn) |= F

is true. From assumption (1),(a) and (c) we obtain (A0, β0) |= I ∧ F0. Now
(2),(b) and (c) imply (Ai, βi) |= I ∧ F0 for all 0 ≤ i < n. While (2) and (d)
imply (An, βn) |= I ∧ ¬F0. Now assumption (3) gives (An, βn) |= F,∆ as
desired.

9.15.4 Comments

It should be noted that ∆ occurs on the left-hand side only in the conclusion
and in the third premise of the while-rule. Likewise Γ occurs only on the
right-hand side in the conclusion and in the first premise. This is crucial for
the soundness of the rule, see Exercise 9.18.8.

Since there is a new syntactic entity, I, occuring in the premises of the rule,
but not in its conclusion, it does not make sense to require the converse
direction of the soundness claim.

The given while rule may have its merrits, but it is certainly a disadvantage
that termination of the while-loop has to be proved in addition. A possibility
to handlethe diamond modality for while-loops will be given int he next
Section 9.16

9.16 Integer Induction Rule

9.16.1 The Rule

Γ F (0/z),∆
Γ ∀v : int(v ≥ 0 ∧ F (v/z)→ F ((v + 1)/z)),∆

Γ, ∀v.int(v ≥ 0→ F (v/z)) ∆
Γ ∆
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Since there are no requirements placed on Γ or ∆ this rule can be always
applied. It is a kind of cut rule. Apparently the rule sets up a proof by
induction on integers. The notation v : int signals that the variable v is
of type integer. We refer to the three sequents in the premise respectively
as base case, step case and use case. What this has to do with proving
while-loops will be explained in due course.

9.16.2 Soundness Proof

Assume universal validity of

Γ F (0/z),∆
Γ ∀v : int(v ≥ 0 ∧ F (v/z)→ F ((v + 1)/z)),∆

Γ, ∀v : int(v ≥ 0→ F (v/z)) ∆

and (A, β) |= Γ for an arbitrary state d (A, β) with the aim to prove (A, β) |=
∆. From the base case we get (A, β) |= F (0/z), Delta. If (A, β) |= Delta
is true we are finished, so we assume (A, β) |= F (0/z). In the same way we
obtain from the step case (A, β) |= v : int(v ≥ 0 ∧ F (v/z) → F ((v + 1)/z))
By the principle of integer induction we get from this (A, β) |= ∀v : int(v ≥
0 → F (v/z)). For this it is, of course, essential the the interpretation of
the sort int in the structure A are the integers. Now the use case yields
(A, β) |= ∆ as desired.

9.16.3 Examples

The first is a typical example of induction on natural numbers. In the
premises we use the appreviations

Γ for {a(0, y)
.
= y, a(s(x), y) = f(a(x, y)), a(f(x), y) = f(a(x, y))}

∆ for ∀x(a(x, a(x, x))
.
= a(a(x, x), x))

Γ ∀y, z((a(0, a(y, z))
.
= a(a(0, y), z))),∆

Γ ∀x(∀y, z(a(x, a(y, z))
.
= a(a(x, y), z))

→ ∀y, z(a(s(x), a(y, z))
.
= a(a(s(x), y), z))),∆

Γ, ∀x∀y∀z(a(x, a(y, z))
.
= a(a(x, y), z) ∆

a(0, y)
.
= y, a(s(x), y) = f(a(x, y)) ∀x(a(x, a(x, x))

.
= a(a(x, x), x))
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The second example is less obvious and shows a way to approach total cor-
rectness claims for while-loops.

Let π be the program while(j > 0){r = r + 1; j = j − 1; } and F be the
formula ∀v〈j = z; r = v; π〉(j

.
= 0).

j ≥ 0, r
.
= 0 F (0/z), 〈π〉(j

.
= 0)

j ≥ 0, r
.
= 0 ∀v : int(v ≥ 0 ∧ F (v/z)→ F ((v + 1)/z)), 〈π〉(j

.
= 0)

j ≥ 0, r
.
= 0, ∀v.int(v ≥ 0→ F (v/z)) 〈π〉(j

.
= 0)

j ≥ 0, r
.
= 0 〈π〉(j

.
= 0)

It is an easy exercise to show that all thre premises can be shown to be
universally valid.

9.16.4 Comments

This is by the way an interesting example. An attempt to prove
∀x(a(x, a(x, x))

.
= a(a(x, x), x)) directly by induction on x fails. The gen-

eralzation to ∀x(∀y, z(a(x, a(y, z))
.
= a(a(x, y), z)) is necessary. In the ap-

pendix 16.2.1 you will find an input file for this problem for the KeY inter-
active prover.

9.17 Assignments with Side Effects

9.17.1 The Rules

Γ 〈y = y + 1; x = y;α〉F,∆
Γ 〈x = ++y;α〉F,∆

Γ 〈x = y; y = y + 1;α〉F,∆
Γ 〈x = y++;α〉F,∆

9.17.2 Soundness

We simply observe that for all pairs of states ((A, β), (B, γ)) we have

((A, β), (B, γ)) ∈ ρ(x = y++; ) iff ((A, β), (B, γ)) ∈ ρ(x = y; y = y + 1; )

Similarly for the post-decrement rule.
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9.17.3 Comments

As can be seen from the soundness argument the following rules is also sound:

Γ, 〈y = y + 1; x = y;α〉F ∆
Γ, 〈x = ++y;α〉F ∆

Γ [y = y + 1; x = y;α]F,∆
Γ [x = ++y;α]F,∆

This shows that for practical purposes it will be useful to write rules in a
more general schematic fashion. The above group of rules could e.g. be
summarized by the following general rule

whenever you see on the left- or right-hand side of the sequent
arrow within an arbitrary modality, 〈p〉 or [p] a program p
of the form x = ++y; prem, then you are allowed to replace p by
y = y + 1; x = y; prem.

We will not go into this level of detail. The interested reader may consult
[Beckert et al., 2004] for an example of a rule specification language.

9.18 Exercises

Exercise 9.18.1 Prove claim 9.9.

Exercise 9.18.2 Which of the following character stings are well-formed
Dynamic Logic formulas

1. P → 〈x := t〉 Q

2. P → 〈t(i++) = u; 〉 Q

3. 〈α∗〉 F ↔ F ∨ 〈α〉〈α∗〉 F

4. 〈x = 1〉x
.
= 1

5. [RM(true)] false

6. (〈α〉 x
.
= y)↔ (〈β〉 x

.
= y)

7. ∃x〈α〉true

8. (F ?;α)∗;¬F ?
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Exercise 9.18.3 Show that the following DL formulas are tautologies for
any program p.

1. ¬〈p〉F ↔ [p]¬F )

2. ¬[p]F ↔ 〈p〉¬F )

3. [p](F → G)→ (([p]F )→ [p]G)

These are very elementary tautologies, valid in almost any modal logic. The
proofs require little more then remembering the definitions.

Exercise 9.18.4 Find a formula φ in Dynamic Logic (as opposed to first-
order logic) such that the claim of Lemma 11 is not true.

Exercise 9.18.5 Provef the soundness of the alternative assignment rule in
Definition 38.

Exercise 9.18.6 Prove the inverse of the soundness of the assignment rule
from Subsection 9.13.1, i.e. universal validity of the conlcusion of this rule
also implies universal validity of its premise.

Exercise 9.18.7 Prove the inverse of the soundness of the branching rule,
i.e. universal validity of the conlcusion of this rule also implies universal
validity of both of its premises.

Exercise 9.18.8 Consider the following extended version of the while rule

Γ I,∆ I, F0 [π]I,∆ I,¬F0 F,∆
Γ [while(F0){π}]F,∆

1. Give an example to show that this is not a sound rule.

2. Could you think of a restriction on ∆ (besides ∆ = ∅ of course) that
would restore the soundness of the extended while rule?
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Chapter 10

Set Theory

184



Many formal specification languages, among them as prime examples Z and
B, use set theoretical concepts and notations, as we have done for the seman-
tics description of UML. This is an appealing choice, because these concepts
are easy to understand and accessible without mathematical training. An-
other advantage is the fact, that there is a well developed mathematical
theory of sets. In fact, before set theory was perceived as a foundation for
specification languages it was considered as a foundation for all of mathe-
matics. A very intriguing idea: once you accept a few axioms of set theory
all mathematical results can be derived from them. In this chapter we will
convey a first idea of how this works.

10.1 Basics

We will use the Zermelo-Fraenkel (ZF for short) axiom system for set theory.
In our presentation we follow the textbook [Takeuti & Zaring, 1971].

The full set of ZF axioms is given in the Appendix 14. The language of ZF set
theory is the language for first-order predicate logic with the binary relation
symbol ∈ as its only non-logical symbol. In the formulation of the axioms
the equality symbol = is also used. But note, this is introduced in axiom A1
as an abbreviation for a formula containing only ∈. More precisely, axiom
A1 states only one implication. The reverse implication, i.e.

x = y → ∀z(z ∈ x↔ z ∈ y)

has nothing to do with set theory, it is a simple consequence of the congruence
axioms

x = y → (p(z, x)↔ p(z, y))

for any binary relation symbol p.

Any free variables in the axioms are implicitely universally quantified.

Before we go on, we need some notational conventions, otherwise our formulas
would soon be unintelligible.

We will use for any formula φ(x) the syntactical construct {x | φ(x)}, called
a class term. We intuitively think of {x | φ(x)} as the collection of all sets
a satisfying the formula φ(a). This is only for notational convenience. The
new terms can be eliminated as follows:
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y ∈ {x | φ(x)} is replaced by φ(y)
{x | φ(x)} ∈ y is replaced by ∃u(u ∈ y∧

∀z(z ∈ u↔ φ(z)))
{x | φ(x)} ∈ {y | ψ(y)} is replaced by ∃u(ψ(u)∧

∀z(z ∈ u↔ φ(z)))

Note, that using a class term {x | φ(x)}, does by far not imply that {x | φ(x)}
is a set. For φ(x) := x 6∈ x this would immediately result in a contradiction.
Only after we can prove that ∃y(y = {x | φ(x)}) can be derived from the
axioms, can we use {x | φ(x)} as a set.

Having class terms is already very handy, but still further abbreviations are
necessary. Here is the first bunch:

Definition 39 (Abbreviations for sets)
∅ = {x | x 6= x}
{a, b} = {x | x = a ∨ x = b}
{a} = {a, a}
〈a, b〉 = {{a}, {a, b}} This is called the ordered pair of a and b

Note, that some of these abbreviations have already been used in the axioms
in Appendix 14.

Let us look at some easy logical derivations from the ZF axioms.

Lemma 16 The following formulas follow from the ZF axioms

1. ∃x(x = ∅)

2. ∀x, y∃z(z = {x, y})

3. ∀x∃z(z = {x})

4. ∀x, y∃z(z = 〈x, y〉)
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Proof: The first step in all four proofs will be to unfold the abbreviating
notation of class terms.

1. In a first step we eliminate the = symbol in ∃x(x = ∅) using the
extensionality axiom, which yields: ∃x∀u(u ∈ x ↔ u ∈ ∅). Now the
class term ∅ is replaced as explained above: ∃x∀u(u ∈ x ↔ u 6= u).
Since u 6= u is contradictory, this is equivalent to ∃x∀u(u ∈ x→ u 6= u).
Which is logically equivalent to ∃x∀u(u 6∈ x), and this is Axiom A4.

2. Eliminating = and the class term in ∀x, y∃z(z = {x, y}) yields
∀x, y∃z∀u(u ∈ z ↔ u = x∨u = y). This is, after renaming of variables,
axiom A5.

3. Special case of 2.

4. Unfolding the definition of an ordered pair, we get ∀x, y∃z(z =
{{x}, {x, y}}).
In first-order logic it is possible to replace universal quantification in a
theorem ∀wψ of a theory T by ∀~wψ[t/w], i.e. replace all occurences of
w by the term t and change the universal quantifier ∀w to ∀~w, where
~w are all variables in t. Can this also be done with class terms? In
general the answer is, no. But, if we can prove for a class term ct
∀~w∃u(u = ct), then the same replacement principle is true in ZF. Now,
claim 4 follows from 2 and 3.

Lemma 17

1. If a and b are sets, then there is a set c satisfying

∀z(z ∈ c↔ z ∈ a ∧ z ∈ b)

c is called the intersection of a and b, in symbols c = a ∩ b.

2. If a and b are sets, then there is a set c satisfying

∀z(z ∈ c↔ z ∈ a ∨ z ∈ b)

c is called the union of a and b, in symbols c = a ∪ b.
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3. If A is a non-empty class term, then there is a set c satisfying

∀z(z ∈ c↔ ∀u(u ∈ A→ z ∈ u))

c is called the intersection of A, in symbols c =
⋂

A.

4. If a is a set, then there is a set c satisfying

∀z(z ∈ c↔ ∃u(u ∈ a ∧ z ∈ u))

c is called the union of a, in symbols c =
⋃

a.

Proof: Let us for the moment be pedantic.

1. This requires the subset axiom A3

∃y∀z(z ∈ y ↔ z ∈ x ∧ φ(z)).

We replace the free variable x by a, the formula φ(z) by z ∈ b and
name the element whose existence is guaranteed by the axiom c. This
leads to

∀z(z ∈ c↔ z ∈ a ∧ z ∈ b)

as required.

2. Despite the fact that set theoretical union is such a simple concept, it
does need two axioms to guarantee its existence. From the pair axioms,
A5, we get the existence of a the set d = {a, b} and the sum axiom, A7
yields the existence of a set c satisfying

∀z(z ∈ c↔ ∃u(u ∈ d ∧ z ∈ u))

Substituting d = {a, b} yields the claim.

3. Let A = {u | ψ(u)}. Since A is assumed to be non-empty, we may pick
an arbitrary element b ∈ A, i.e. an arbitrary b such that ψ(b) is true.
Let φ(z) be the formula ∀u(ψ(u)→ z ∈ u). We will, again, use Axiom
A3

∃y∀z(z ∈ y ↔ z ∈ b ∧ φ(z)).

The element, whose existence is guaranteed is named c. This yields the
claim, when we observe the trivial equivalence

∀z∀u(ψ(u)→ z ∈ u)↔ z ∈ b ∧ ∀u(ψ(u)→ z ∈ u)
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4. Use axiom A7.

Likewise it is easy to prove

Lemma 18
∀x1, x2, y1, y2( 〈x1, x2〉 = 〈y1, y2〉 ↔ x1 = y1 ∧ x2 = y2 )

Definition 40

1. A relation r is a set of ordered pairs, i.e.
rel(r) ≡ ∀x(x ∈ r → ∃x1, x2(x = 〈x1, x2〉))

2. The relation r is said to be a relation on the set s if
rel(r, s) ≡ rel(r) ∧ ∀x1, x2(〈x1, x2〉 ∈ r → x1 ∈ s ∧ x2 ∈ s)

3. A function is a one-valued relation, i.e.
func(r) ≡ rel(r) ∧ ∀x, y1, y2(〈x, y1〉 ∈ r ∧ 〈x, y2〉 ∈ r → y1 = y2)

4. A function f is said to be a function from a set a to a set b if
func(f, a, b) ≡ func(f) ∧ ∀x1, x2(〈x1, x2〉 ∈ f → x1 ∈ a ∧ x2 ∈ b)

Lemma 19
From the ZF axioms we can prove for any sets a, b the existence of the set
of all relations on a and of all functions from a to b, i.e.

1. ∀x∃y∀z(z ∈ y ↔ rel(z, x))

2. ∀u, w∃y∀z(z ∈ y ↔ func(z, u, w))

Proof: For this proof we need (for the first time in this text) the power
set axiom ∃y∀z(z ∈ y ↔ ∀u(u ∈ z → u ∈ x)). We denote the set whose
existence is stipulated by this axiom by P(x).

1. For any set a the set P(P(x)) exists. The set c of all relations on a
is a subset of this set. Since we can describe by a first-order formula
exactly which elements of P(P(x)) belong to c we get the existence of
c by the subset axiom.

2. Similar.
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10.2 The Natural Numbers

Definition 41 (Successor) For any set a the set

a+ = a ∪ {a}

is called the successor set of a.

From our previous results it is obvious that a+ is a set, when a is. In the
following we will no longer mention facts of this simple kind explicitely.

We will use the empty set ∅ to represent the natural number 0, ∅+ = {∅} =
{0} to represent 1, 1+ = ∅++ = {∅, {∅}} = {0, 1} to represent 2. In general,
for any natural number n we let n+ represent its successor. We want the
set of natural numbers to be N = {0, 0+, 0++, 0+++, . . .}. It remains to be
explain how this can be turned into a legal definition and prove the existence
of N from the ZF axioms.

Definition 42 A set a is called a Dedekind set if 0 ∈ a and for all b ∈ a
also b+ ∈ a. In symbols Ded(a) ≡ 0 ∈ a ∧ ∀x(x ∈ a→ x+ ∈ a).

Lemma 20

∃y(y =
⋂

{a | Ded(a)}

can be derived from the ZF axioms.
⋂

{a | Ded(a)} will be called the set of natural numbers and denoted by N.
In set theory it is also customary to use the symbol ω instead of N.

Proof: The claim follows from Lemma 17(3) if we can show that there is at
least on set a with Ded(a). But this is guaranteed by Axiom A8, the infinity
axiom.

The Peano axiom system is usually taken as an axiomatic characterisation
of the natural numbers. In the context of set theory we should be able to
derive them from the set theoretical axioms.
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Lemma 21
The following theorems can be derived from the ZF axioms

1. 0 ∈ N.

2. If n ∈ N then n+ ∈ N.

3. ∀n(n ∈ N→ n+ 6= 0).

4. ∀n,m(n ∈ N ∧m ∈ N ∧ n+ = m+ → n = m).

5. ∀x(0 ∈ x ∧ ∀y(y ∈ x→ y+ ∈ x)→ N ⊆ x).

Proof: 1 and 2 are obvious by definition of N.

To prove 3 we note that n ∈ n+ is true for any n, thus n+ cannot be the
empty set.

Assume for a proof of 4 that n+ = m+, i.e. n ∪ {n} = m ∪ {m}. Thus we
must have

1. m ∈ n ∪ {n}, i.e. n = m or m ∈ n.

2. n ∈ m ∪ {m}, i.e. n = m or n ∈ m.

The foundation axiom, A2,

∃y(y ∈ x)→ ∃y(y ∈ x ∧ ∀z¬(z ∈ x ∧ z ∈ y)),

instantiated for x = {n,m} yields after some simplifications n 6∈ m or m 6∈ n.
Thus the above case distinction forces n = m.

Part 5 is again simple. Any x satisfying the premise of the implication is a
Dedekind set. Since N is by definition the intersection of all Dedekind set,we
obviously get N ⊆ x.
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10.3 Comments

1. ZF is by far the most common axiom system for set theory. Others
are the Neumann-Bernays-Gödel system (this is e.g. used in [Rubin,
1967]) and the Taski-Grothendiek system.

2. Notice, that ZF set theory is a theory of first-order logic, despite the
fact that sets are involved, which are usually thought of as second-order
objects. The point here is, that the classification into second-order,
third-order and so on is relative to a fixed level of first-order elements.
In set theory sets are first-order elements.

3. There are versions of set theory that start out with an initial set of
elements of arbitrary kind, usually called urelements. On top of these
set theory is built, i.e. there will be set of urelements, sets of sets of
urelements and so on. In our exposition we are interested in reduction
to first principles, so it makes sense to go all the way and consider
nothing but sets.

4. We hae chosen the textbook [Takeuti & Zaring, 1971]as a reference
mainly for the reason that it is explicitely mention in the ANSI standard
draft for Z. A very gentle, but rigorous introduction may be found in
[Halmos, 1994, Halmos, 1974].

10.4 Exercises

Exercise 10.4.1 The element-of-relation ∈ is not transitive, i.e. for most
sets a, b, c the premises a ∈ b and b ∈ c do not imply a ∈ c. There are,
however, special circumstance under which this implication is true.

Definition 43 A set a is called transitive if for all b ∈ a also b ⊂ a is true.

Prove the following

1. If a ∈ b and b ∈ c and c is a transitive set, then a ∈ c.

2. If a is a transitive set, then a+ is also.
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Exercise 10.4.2

1. Let < be the usual order on N. Show for all a, b ∈ N:

a < b⇔ a ∈ b

2. For any a ∈ N a = {b | b < a}

Exercise 10.4.3

Definition 44 A set a is called an ordinal if it is transitive and satisfies
∀x∀y(x ∈ a ∧ y ∈ a→ (x ∈ y ∨ y ∈ x ∨ x = y)

Show: If a is an ordinal then a+ is also.
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Chapter 11

Solutions to Exercises
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11.1 Solutions to Chapter 2

11.2 Solutions to Chapter 3

11.3 Solutions to Chapter 4

Exercise 4.13.1
By Definition we have the direct subtype relations Integer < Real,
Set(Integer) < Set(Real) and Set(Real) < Collection(Real). Thus
Set(Integer)� Collection(Real).

Exercise 4.13.2

1. context s:Supplier
inv s.delivery days.good = s.order

2. context s:Supplier
inv s.delivery days -> forAll(d:Date | d.good = s.order)

11.4 Solutions to Chapter 9

Exercise 9.18.1
It suffices to show that for all integers a, b, z

a ∗ b + z = (2 ∗ a) ∗ (b/2) + z + a

By assumption b is an odd number, i.e. b = 2 ∗ b0 + 1. Then (b/2) = b0 and
the equation we want to prove can be rewritten as

a ∗ b + z = (2 ∗ a) ∗ b0 + z + a

or
a ∗ b + z = a ∗ (2 ∗ b0 + 1) + z

Which is immediatedly seen to be correct.
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Exercise 9.18.3
Let K = (S, ρ) be an arbitrary Kripke structure and s ∈ S an arbitrary state.

1. (K, s) |= 〈p〉F is true if there is a state s′ ∈ S such that (s, s′) ∈ ρ(p)
and (K, s′) |= F . Negating this statement we see that (K, s) |= ¬〈p〉F is
true if for all states s′ ∈ S satisfying (s, s′) ∈ ρ(p) we get (K, s′) |= ¬F .
But this is exactly the definition of (K, s) |= [p]¬F

2. Completely analogous to 1.

3. This is the well-known axiom K for normal modal logics.

Assume that (K, s) |= [p](F → G) and (K, s) |= [p]F with the aim to
show (K, s) |= [p]G. By the assumptions we get for any s′ ∈ S with
(s, s′) ∈ ρ(p) both (K, s′) |= F → G and (K, s′) |= F . Thus we conclude
(K, s′) |= G for any such s′, i.e. (K, s) |= [p]G, indeed.

Exercise 9.18.4
Consider φ ≡ 〈x = 5〉(1 = (if x = y then 0 else 1)). By definition φ1 ≡ 〈x =
5〉(1 = 0) and φ2 ≡ 〈x = 5〉(1 = 1).

Let (A, β) be a state with β(x) = β(y) = 0. Then (A, β) |= φ and by Lemma
11 we should have (A, β) |= φ↔ φ1. But certainly (A, β) |= ¬〈x = 5〉(1 = 0).

Exercise 9.18.5
We start with the assumption that Γ 〈x = t〉F,∆ is universally valid. To
show that the conclusion of the rule is also valid we fix an arbitrary state
(A, β) with (A, β) |= Γ ∧ z

.
=s t. For later use we note that this entails in

particular
β(z) = t(A,β)

Since we assued the premisse of the rule to be universally valid we must also
have (A, β) |= 〈x = t〉F ∨ ∆. If we had in fact (A, β) |= ∆ then we are
through. We thus assume from here on (A, β) |= 〈x = t〉F. By the semantics
of the assignment statement this yields (A, β ′) |= F with

β ′(u) =

{

β(u) if u 6= x
t(A,β) if u = x
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Remember, we aim to show (A, β) |= F (z/x), which by Lemma 12 is equiv-
alent to (A, β ′′) |= F with

β ′′(u) =

{

β(u) if u 6= x
β(z) if u = x

If we can thus show β ′ = β ′′ we are done. Here we go!

for u 6= x β ′(u) = β(u) = β ′′(u)
for u = x β ′(u) = t(A,β) = β(z) = β ′′(x)

We note again that this proof cannot be extended to general formulas F . The
substitution σ that was used in the application of the substitution lemma in
the above proof:

σ(u) =

{

u if u 6= x
z if u = x

will in general not be allowed for arbitrary F .

Exercise 9.18.6
We assume that the conclusion Γ 〈x = t〉F,∆ is universally valid and aim
to prove that the premise Γ(z/x), x

.
=s t(z/x) F,∆(z/x) is also. We fix a

DL-Kripke structure K = (S, ρ) and an arbitrary state (A, β) in S, assuming
(A, β) |= Γ(z/x), x

.
=

s
t(z/x). We have to show (A, β) |= F,∆(z/x). Let

β′(u) =

{

β(u) if u 6= x
β(z) if u = x

Then (A, β) |= Γ(z/x) implies (A, β ′) |= Γ. Since by assumption Γ 〈x =
t〉F,∆ is universally valid, we get (A, β ′) |= 〈x = t〉F,∆. In case, (A, β ′) |=
∆ is true, we immediately get (A, β) |= ∆(z/x) and thus also (A, β) |=
F,∆(z/x). The remaining case, (A, β ′) |= 〈x = t〉F is of course the crucial
one. By Definition 28 this implies (A, β ′′) |= F with

β ′′(u) =

{

β(u) if u 6= x
t(A,β′) if u = x

We observe that β ′′(u) = β ′(u) = β(u) for u 6= x and β ′′(x) = t(A,β′) =
t(z/x)(A,β). Since by assumption (A, β) |= x

.
=s t(z/x), we get β ′′(x) =

t(z/x)(A,β) = β(x). Thus (A, β ′′) |= F implies (A, β) |= F and we are done.
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Exercise 9.18.7
We assume that Γ 〈if(F0){π1} else{π2}〉F,∆ is universally valid and fix
a state (A, β) in an arbitrary Kripke structure K with the aim to show
(A, β) |= Γ, F0 〈π1〉F,∆ and (A, β) |= Γ,¬F0 〈π2〉F,∆. We are done
if (A, β) |= ¬

∧

Γ. So we assume from now on (A, β) |=
∧

Γ. There are
naturally two cases to be distinguished:

1. (A, β) |= F0

2. (A, β) |= ¬F0

We only treat the first case. The second is completely analogous. From
the assumption there is a state (B, γ) satisfying ((A, β), (B, γ)) ∈ ρ(π) and
(B, γ) |= F . Here π stands for the program if(F0){π1} else{π2}. Definition
28 implies under the given circumstances ((A, β), (B, γ)) ∈ ρ(π0) and thus
we have indeed proved (A, β) |= Γ, F0 〈π1〉F,∆.

Exercise 9.18.8

1. Let us instantiate the extended while rule with Γ = empty, I = true,
F ≡ F0 ≡ x 6= 1, ∆ = {x = 1}

∅ true x 6= 1 [x = 1] true x = 1 x 6= 1, x = 1
∅ [while (x 6= 1){x = 1}]x 6= 1, x = 1

The bottom sequent is not universally valid, but all sequents in the
conclusion of the rule (assuming that we apply rules from bottom to
top) are. This exampe has been supplied by Philipp Rümmer.

2. I helps to assume that for any pair os states ((A, β), (B, γ)) ∈ ρ(π)
with (A, β) |= ∆ we also have (B, γ) |= ∆. In other words, we assume
that the program π only changes parts of the vocabulary that is not
relevant for ∆.
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11.5 Solutions to Chapter 10

Exercise 10.4.1

1. Since c is transitive, b ∈ c implies b ⊂ c. Now, we get from a ∈ b
immediately a ∈ c.

2. Assuming a to be transitive we want to prove that a∪{a} is transitive.
Consider thus b ∈ a ∪ {a}. In case a = b, we get immediately b = a ⊂
a ∪ {a}. The only other possibility is b ∈ a. By assumption this yields
b ⊂ a and thus also b ⊂ a ∪ {a}.

Exercise 10.4.2

1. The usual order relation < on N is uniquely determined by the require-
ments n < n+ for all n ∈ N and < is a transitive relation on N. We
only need to convince ourselves that ∈ has these two properties. The
first is obvious by the definition of n+. The second property follows
from the previous Exercise 10.4.1.

2. Trivial implication of 1.

Exercise 10.4.3
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Chapter 12

Appendix: Predefined OCL
Types
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This section contains all standard types defined within OCL, including all
the properties defined on those types as listed in UML V1.3 June 1999. Its
signature and a description of its semantics define each property. Within the
description, the reserved word result is used to refer to the value that results
from evaluating the property. In several places, post conditions are used to
describe properties of the result. When there is more than one postcondition,
all postconditions must be true.

12.1 Basic Types

The basic types used are Integer, Real, String, and Boolean.

12.1.1 Integer

The OCL type Integer represents the mathematical concept of integer.

Properties of Integer, where the instance of Integer is called i.

i = (i2 : Integer) : Boolean True if i is equal to i2.

i + (i2 : Integer) : Integer The value of the addition of i and i2.

i - (i2 : Integer) : Integer The value of the subtraction of i2 from i.

i * (i2 : Integer) : Integer The value of the multiplication of i and i2.

i / (i2 : Integer) : Real The value of i divided by i2.

i.abs : Integer The absolute value of i.
post: if i < 0 then result = - i else result = i endif

i.div( i2 : Integer) : Integer The number of times that i2 fits completely
within i.
pre : i2 <> 0
post: if i / i2 >= 0 then result = (i / i2).floor else result = -((-
i/i2).floor) endif

i.mod( i2 : Integer) : Integer The result is i modulo i2.
post: result = i - (i.div(i2) * i2)
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i.max(i2 : Integer) : Integer The maximum of i an i2.
post: if i >= i2 then result = i else result = i2 endif

i.min(i2 : Integer) : Integer The minimum of i an i2.
post: if i <= i2 then result = i else result = i2 endif

12.1.2 Real

The OCL type Real represents the mathematical concept of real. Note that
Integer is a subclass of Real, so for each parameter of type Real, you can use
an integer as the actual parameter.

Properties of Real, where the instance of Real is called r.

r = (r2 : Real) : Boolean True if r is equal to r2.

r <> (r2 : Real) : Boolean True if r is not equal to r2.
post: result = not (r = r2)

r + (r2 : Real) : Real The value of the addition of r and r2.

r - (r2 : Real) : Real The value of the subtraction of r2 from r.

r * (r2 : Real) : Real The value of the multiplication of r and r2.

r / (r2 : Real) : Real The value of r divided by r2.

r.abs : Real The absolute value of r.
post: if r < 0 then result = - r else result = r endif

r.floor : Integer The largest integer which is less than or equal to r.
post: (result <= r) and (result + 1 > r)

r.round : Integer The integer which is closest to r. When there are two
such integers, the largest one.
post: ((r - result) < r).abs < 0.5) or ((r - result).abs = 0.5 and (result
> r))
hier stimmt doch was nicht

r.max(r2 : Real) : Real The maximum of r and r2.
post: if r >= r2 then result = r else result = r2 endif
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r.min(r2 : Real) : Real The minimum of r and r2.
post: if r <= r2 then result = r else result = r2 endif

r < (r2 : Real) : Boolean True if r1 is less than r2.

r > (r2 : Real) : Boolean True if r1 is greater than r2.
post: result = not (r <= r2)

r <= (r2 : Real) : Boolean True if r1 is less than or equal to r2.
post: result = (r = r2) or (r < r2)

r >= (r2 : Real) : Boolean True if r1 is greater than or equal to r2.
post: result = (r = r2) or (r > r2)

12.1.3 String

The OCL type String represents ASCII strings.

Properties of String, where the instance of String is called string.

string = (string2 : String) : Boolean True if string and string2 contain
the same characters, in the same order.

string.size : Integer The number of characters in string.

string.concat(string2 : String) : String
The concatenation of string and string2.
post: result.size = string.size + string2.size
post: result.substring(1, string.size) = string
post: result.substring(string.size + 1, result.size) = string2

string.toUpper : String The value of string with all lowercase characters
converted to uppercase characters.
post: result.size = string.size

string.toLower : String The value of string with all uppercase characters
converted to lowercase characters.
post: result.size = string.size

string.substring(lower : Integer, upper : Integer) : String The
sub-string of string starting at character number lower, up to and
including character number upper.

203



12.1.4 Boolean

The OCL type Boolean represents the common true/false values.

Features of Boolean, the instance of Boolean is called b.

b = (b2 : Boolean) : Boolean Equal if b is the same as b2.

b or (b2 : Boolean) : Boolean True if either b or b2 is true.

b xor (b2 : Boolean) : Boolean True if either b or b2 is true, but not
both.
post: (b or b2) and not (b = b2)

b and (b2 : Boolean) : Boolean True if both b1 and b2 are true.

not b : Boolean True if b is false.
post: if b then result = false else result = true endif

b implies (b2 : Boolean) : Boolean True if b is false, or if b is true and
b2 is true.
post: (not b) or (b and b2)

if b then (expression1 : OclExpression) else (expression2:
OclExpression) endif : expression1.evaluationType If b is true, the

result is the value of evaluating expression1; otherwise, result is the
value of evaluating expression2.

12.2 Enumeration

The OCL type Enumeration represents the enumerations defined in an UML
model.

Features of Enumeration, the instance of Enumeration is called enumeration.

enumeration = (enumeration2 : Boolean) : Boolean
Equal if enumeration is the same as enumeration2.

enumeration <> (enumeration2 : Boolean) : Boolean Equal if enu-
meration is not the same as enumeration2.
post: result = not ( enumeration = enumeration2)
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12.3 Collection-Related Types

The following sections define the properties on collections (i.e., these prop-
erties are available on Set, Bag, and Sequence). As defined in this section,
each collection type is actually a template with one parameter. T denotes
the parameter. A real collection type is created by substituting a type for
the T. So Set (Integer) and Bag (Person) are collection types.

12.3.1 Collection

Collection is the abstract supertype of all collection types in OCL. Each oc-
currence of an object in a collection is called an element. If an object occurs
twice in a collection, there are two elements. This section defines the prop-
erties on Collections that have identical semantics for all collection subtypes.
Some properties may be defined with the subtype as well, which means that
there is an additional postcondition or a more specialized return value. The
definition of several common properties is different for each subtype. These
properties are not mentioned in this section.

Properties of Collection, where the instance of Collection is called collection.

collection->size : Integer The number of elements in the collection col-
lection.
post: result = collection->iterate(elem; acc : Integer = 0 | acc + 1)

collection->includes(object : OclAny) : Boolean True if object is an
element of collection, false otherwise.
post: result = (collection->count(object) > 0)

collection->excludes(object : OclAny) : Boolean True if object is not
an element of collection, false otherwise.
post: result = (collection->count(object) = 0)

collection->count(object : OclAny) : Integer
The number of times that object occurs in the collection collection.
post: result = collection->iterate( elem; acc : Integer = 0 | if elem =
object then acc + 1 else acc endif)
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collection->includesAll(c2 : Collection(T)) : Boolean
Does collection contain all the elements of c2 ?
post: result = c2->forAll(elem | collection->includes(elem))

collection->excludesAll(c2 : Collection(T)) : Boolean
Does collection contain none of the elements of c2 ?
post: result = c2->forAll(elem | collection->excludes(elem))

collection->isEmpty : Boolean Is collection the empty collection?
post: result = ( collection->size = 0 )

collection->notEmpty : Boolean Is collection not the empty collection?
post: result = ( collection->size <> 0 )

collection->sum : T The addition of all elements in collection. Elements
must be of a type supporting the + operation. The + operation must
take one parameter of type T and be both associative: (a+b)+c =
a+(b+c), and commutative: a+b = b+a. Integer and Real fulfill this
condition.
post: result = collection->iterate( elem; acc : T = 0 | acc + elem )

collection->exists(expr : OclExpression) : Boolean Results in true if
expr evaluates to true for at least one element in collection.
post: result = collection->iterate(elem; acc : Boolean = false | acc or
expr)

collection->forAll(expr : OclExpression) : Boolean Results in true if
expr evaluates to true for each element in collection; otherwise, result
is false.
post: result = collection->iterate(elem; acc : Boolean = true | acc and
expr)

collection->isUnique(expr : OclExpression) : Boolean
Results in true if expr evaluates to a different value for each element in
collection; otherwise, result is false.
post: result = collection->collect(expr)->forAll(e1, e2 | e1 <> e2)

collection->sortedBy(expr : OclExpression) : Boolean
Results in the Sequence containing all elements of collection. The ele-
ment for which expr has the lowest value comes first, and so on. The
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type of the expr expression must have the < operation defined. The
operation < must be transitive i.e. if a < b and b < c then a < c.
post: collection->iterate(expr : OclExpression):expr.evaluationType
Iterates over the collection. This is the basic collection operation with
which the other collection operations can be described.

12.3.2 Set

The Set is the mathematical set. It contains elements without duplicates.

Features of Set, the instance of Set is called set.

set->union(set2 : Set(T)) : Set(T) The union of set and set2.
post: result->forAll(elem | set->includes(elem) or
set2->includes(elem))
post: set->forAll(elem | result->includes(elem))
post: set2->forAll(elem | result->includes(elem))

set->union(bag : Bag(T)) : Bag(T) The union of set and bag.
post: result->forAll(elem | result->count(elem) = set->count(elem) +
bag->count(elem))
post: set->forAll(elem | result->includes(elem))
post: bag->forAll(elem | result->includes(elem))

set = (set2 : Set(T)) : Boolean Evaluates to true if set and set2 contain
the same elements.
post: result = (set->forAll(elem | set2->includes(elem))

and set2->forAll(elem | set->includes(elem)) )

set->intersection(set2 : Set(T)) : Set(T) The intersection of set and
set2 (i.e, the set of all elements that are in both set and set2).
post: result->forAll(elem | set->includes(elem)

and set2->includes(elem))
post: set->forAll(elem | set2->includes(elem) =

result->includes(elem))
post: set2->forAll(elem | set->includes(elem) =

result->includes(elem))
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set->intersection(bag : Bag(T)) : Set(T) The intersection of set and
bag.
post: result = set->intersection( bag->asSet )

set->(set2 : Set(T)) : Set(T) The elements of set, which are not in set2.
post: result->forAll(elem | set->includes(elem)
and set2->excludes(elem))
post: set->forAll(elem | result->includes(elem) =

set2->excludes(elem))

set->including(object : T) : Set(T) The set containing all elements of
set plus object.
post: result->forAll(elem | set->includes(elem) or (elem = object))
post: set->forAll(elem | result->includes(elem))
post: result->includes(object)

set->excluding(object : T) : Set(T) The set containing all elements of
set without object.
post: result->forAll(elem | set->includes(elem) and (elem <> object))
post: set->forAll(elem | result->includes(elem) = (object <> elem))
post: result->excludes(object)

set->symmetricDifference(set2 : Set(T)) : Set(T) The set containing
all the elements that are in set or set2, but not in both.
post: result->forAll(elem | set->includes(elem) xor

set2->includes(elem))
post: set->forAll(elem | result->includes(elem) =

set2->excludes(elem))
post: set2->forAll(elem | result->includes(elem) =

set->excludes(elem))

set->select(expr : OclExpression): Set(T) The subset of set for which
expr is true.
post: result = set->iterate(elem; acc : Set(T) = Set | if expr then
acc->including(elem) else acc endif)

set->reject(expr : OclExpression): Set(T) The subset of set for which
expr is false.
post: result = set->select(not expr)
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set->collect(expr : OclExpression) : Bag(expr.evaluationType)
The Bag of elements which results from applying expr to every member
of set.
post: result = set->iterate(elem; acc : Bag(expr.evaluationType) =
Bag | acc->including(expr) )

set->count(object : T) : Integer The number of occurrences of object
in set.
post: result ¡= 1

set->asSequence : Sequence(T) A Sequence that contains all the ele-
ments from set, in undefined order.
post: result->forAll(elem | set->includes(elem))
post: set->forAll(elem | result->count(elem) = 1)

set->asBag : Bag(T) The Bag that contains all the elements from set.
post: result->forAll(elem | set->includes(elem))
post: set->forAll(elem | result->count(elem) = 1)

12.3.3 Bag

A bag is a collection with duplicates allowed. That is, one object can be an
element of a bag many times. There is no ordering defined on the elements
in a bag.

Properties of Bag, where the instance of Bag is called bag.

bag = (bag2: Bag(T)) : Boolean True if bag and bag2 contain the same
elements, the same number of times.
post: result = (bag->forAll(elem | bag->count(elem) =

bag2->count(elem)) and
bag2->forAll(elem | bag2->count(elem) = bag->count(elem)) )

bag->union(bag2 : Bag(T)) : Bag(T) The union of bag and bag2.
post: result->forAll( elem | result->count(elem) = bag->count(elem)
+ bag2->count(elem))
post: bag->forAll( elem | result->count(elem) = bag->count(elem) +
bag2->count(elem))
post: bag2->forAll( elem | result->count(elem) = bag->count(elem)
+ bag2->count(elem))
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bag->union(set : Set(T)) : Bag(T) The union of bag and set.
post: result->forAll(elem | result->count(elem) = bag->count(elem)
+ set->count(elem))
post: bag->forAll(elem | result->count(elem) = bag->count(elem) +
set->count(elem))
post: set->forAll(elem | result->count(elem) = bag->count(elem) +
set->count(elem))

bag->intersection(bag2: Bag(T)): Bag(T) The intersection of bag and
bag2.
post: result->forAll(elem | result->count(elem) =

bag->count(elem).min(bag2->count(elem)) )
post: bag->forAll(elem | result->count(elem) =

bag->count(elem).min(bag2->count(elem)) )
post: bag2->forAll(elem | result->count(elem) =

bag->count(elem).min(bag2->count(elem)) )

bag->intersection(set : Set(T)) : Set(T) The intersection of bag and
set.
post: result->forAll(elem | result->count(elem) =

bag->count(elem).min(set->count(elem)) )
post: bag->forAll(elem | result->count(elem) =

bag->count(elem).min(set->count(elem)) )
post: set->forAll(elem | result->count(elem) =

bag->count(elem).min(set->count(elem)) )

bag->including(object : T) : Bag(T) The bag containing all elements
of bag plus object.
post: result->forAll(elem | if elem = object then result->count(elem)
= bag->count(elem) + 1 else result->count(elem) = bag->count(elem)
endif)
post: bag->forAll(elem | if elem = object then result->count(elem) =
bag->count(elem) + 1 else result->count(elem) = bag->count(elem)
endif)

bag->excluding(object : T) : Bag(T) The bag containing all elements
of bag apart from all occurrences of object.
post: result->forAll(elem | if elem = object then result->count(elem)
= 0 else result->count(elem) = bag->count(elem) endif)

210



post: bag->forAll(elem | if elem = object then result->count(elem) =
0 else result->count(elem) = bag->count(elem) endif)

bag->select(expr : OclExpression) : Bag(T) The sub-bag of bag for
which expr is true.
post: result = bag->iterate(elem; acc : Bag(T) = Bag | if expr then
acc->including(elem) else acc endif)

bag->reject(expr : OclExpression) : Bag(T) The sub-bag of bag for
which expr is false.
post: result = bag->select(not expr)

bag->collect(expr:OclExpression): Bag(expr.evaluationType) The
Bag of elements which results from applying expr to every member of
bag.
post: result = bag->iterate(elem; acc : Bag(expr.evaluationType) =
Bag | acc->including(expr) )

bag->count(object : T) : Integer The number of occurrences of object
in bag.

bag->asSequence : Sequence(T) A Sequence that contains all the ele-
ments from bag, in undefined order.
post: result->forAll(elem | bag->count(elem) = result->count(elem))
post: bag->forAll(elem | bag->count(elem) = result->count(elem))

bag->asSet : Set(T) The Set containing all the elements from bag, with
duplicates removed.
post: result->forAll(elem | bag->includes(elem) )
post: bag->forAll(elem | result->includes(elem))

12.3.4 Sequence

A sequence is a collection where the elements are ordered. An element may
be part of a sequence more than once.

Properties of Sequence(T), where the instance of Sequence is called sequence.

sequence->count(object : T) : Integer The number of occurrences of
object in sequence.
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sequence = (sequence2 : Sequence(T)) : Boolean True if sequence
contains the same elements as sequence2 in the same order.
post: result = Sequence1..sequence->size->forAll(index : Integer |
sequence->at(index) = sequence2->at(index)) and sequence->size =
sequence2->size

sequence->union (sequence2 : Sequence(T)) : Sequence(T)
The sequence consisting of all elements in sequence, followed by all
elements in sequence2.
post: result->size = sequence->size + sequence2->size
post: Sequence1..sequence->size->forAll(index : Integer | sequence

->at(index) = result->at(index))
post: Sequence1..sequence2->size->forAll(index : Integer | sequence2

->at(index) = result->at(index + sequence->size)))

sequence->append (object:T):Sequence(T) The sequence of elements,
consisting of all elements of sequence, followed by object.
post: result->size = sequence->size + 1
post: result->at(result->size) = object
post: Sequence1..sequence->size->forAll(index : Integer |

result->at(index) = sequence ->at(index))

sequence->prepend(object : T) : Sequence(T) The sequence consist-
ing of object, followed by all elements in sequence.
post: result->size = sequence->size + 1
post: result->at(1) = object
post: Sequence1..sequence->size->forAll(index : Integer | sequence-
>at(index) = result->at(index + 1))

sequence->subSequence(lower:Integer,upper:Integer):Sequence(T)
The sub-sequence of sequence starting at number lower, up to and
including element number upper.
pre : 1 <= lower pre : lower <= upper
pre : upper <= sequence->size
post: result->size = upper -lower + 1
post: Sequencelower..upper->forAll( index | result-> at(index - lower
+ 1) = sequence->at(index))

sequence->at(i : Integer) : T The i-th element of sequence.
pre : i >= 1 and i <= sequence->size sequence->first : T The first
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element in sequence.
post: result = sequence->at(1)

sequence->last : T The last element in sequence.
post: result = sequence->at(sequence->size)

sequence->including(object:T) : Sequence(T) The sequence contain-
ing all elements of sequence plus object added as the last element.
post: result = sequence.append(object)

sequence->excluding(object: T): Sequence(T) The sequence contain-
ing all elements of sequence apart from all occurrences of object. The
order of the remaining elements is not changed.
post:result->includes(object) = false
post: result->size = sequence->size - sequence->count(object)
post: result = sequence->iterate(elem; acc : Sequence(T) = Sequence|
if elem = object then acc else acc->append(elem) endif )

sequence->select(expression:OclExpression): Sequence(T) The
subsequence of sequence for which expression is true.
post: result = sequence->iterate(elem; acc : Sequence(T) = Sequence
| if expr then acc->including(elem) else acc endif)

sequence->reject(expression:OclExpression):Sequence(T) The sub-
sequence of sequence for which expression is false.
post: result = sequence->select(not expr)

sequence->collect(expression : OclExpression)
: Sequence(expression.evaluationType)
The Sequence of elements which results from applying expression to
every member of sequence.

sequence->iterate(expr : OclExpression) : expr.evaluationType
Iterates over the sequence. Iteration will be done from element at
position 1 up until the element at the last position following the order
of the sequence.

sequence->asBag() : Bag(T) The Bag containing all the elements from
sequence, including duplicates.
post: result->forAll(elem | sequence->count(elem) =
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result->count(elem) )
post: sequence->forAll(elem | sequence->count(elem) =

result->count(elem) )

sequence->asSet() : Set(T) The Set containing all the elements from se-
quence, with duplicated removed.
post: result->forAll(elem | sequence->includes(elem))
post: sequence->forAll(elem | result->includes(elem))

12.4 Special Types

12.4.1 OclType

All types defined in a UML model, or pre-defined within OCL, have a type.
This type is an instance of the OCL type called OclType. Access to this type
allows the modeler limited access to the meta-level of the model. This can
be useful for advanced modelers.

Properties of OclType, where the instance of OclType is called type.

type.name : String The name of type.

type.attributes : Set(String) The set of names of the attributes of type,
as they are defined in the model.

type.associationEnds : Set(String) The set of names of the navigable
associationEnds of type, as they are defined in the model.

type.operations : Set(String) The set of names of the operations of type,
as they are defined in the model.

type.supertypes : Set(OclType) The set of all direct supertypes of type.
post: type.allSupertypes->includesAll(result)

type.allSupertypes : Set(OclType) The transitive closure of the set of
all supertypes of type.

type.allInstances : Set(type) The set of all instances of type and all its
subtypes in existence at the snapshot at the time that the expression
is evaluated.

214



12.4.2 OclAny

Within the OCL context, the type OclAny is the supertype of all types in the
model and the basic predefined OCL type. The predefined OCL Collection
types are not subtypes of OclAny. Properties of OclAny are available on
each object in all OCL expressions. All classes in a UML model inherit all
properties defined on OclAny. To avoid name conflicts between properties
in the model and the properties inherited from OclAny, all names on the
properties of OclAny start with ocl. Although theoretically there may still
be name conflicts, they can be avoided. One can also use the oclAsType()
operation to explicitly refer to the OclAny properties.

Properties of OclAny, where the instance of OclAny is called object.

object = (object2 : OclAny) : Boolean True if object is the same ob-
ject as object2.

object <> (object2 : OclAny) : Boolean True if object is a different
object from object2.
post: result = not (object = object2)

object.oclIsKindOf(type : OclType) : Boolean True if type is one of
the types of object, or one of the supertypes (transitive) of the types
of object.

object.oclIsTypeOf(type : OclType) : Boolean True if type is equal
to one of the types of object.

object.oclAsType(type : OclType) : type Results in object, but now
of known type type. Results in Undefined if the actual type of object
is not type or one of its subtypes.
pre : object.oclIsKindOf(type)
post: result = object post: result.oclIsKindOf(type)

object.oclInState(state : OclState) : Boolean Results in true if object
is in the state state, otherwise results in false. The argument is a name
of a state in the state machine corresponding with the class of object.

object.oclIsNew : Boolean Can only be used in a postcondition. Evalu-
ates to true if the object is created during performing the operation.
I.e. it didn t exist at precondition time.
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12.4.3 OclState

The type OclState is used as a parameter for the operation oclInState. There
are no properties defined on OclState. One can only specify an OclState by
using the name of the state, as it appears in a statemachine. These names
can be fully qualified by the nested states and statemachine that contain
them.

12.4.4 OclExpression

(Not supported in Draft Standard

Each OCL expression itself is an object in the context of OCL. The type of the
expression is OclExpression. This type and its properties are used to define
the semantics of properties that take an expression as one of their parameters:
select, collect, forAll, etc. An OclExpression includes the optional iterator
variable and type and the optional accumulator variable and type.

Properties of OclExpression, where the instance of OclExpression is called
expression.

expression.evaluationType : OclType The type of the object that re-
sults from evaluating expression.
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Revised submission, Version 1.5, June 3, 2002.

ExpressionInOclCS

The ExpressionInOcl symbol has been added to setup the initial environment
of an expression.

ExpressionInOclCS ::= OclExpressionCS

Abstract syntax mapping
ExpressionInOclCS.ast : OclExpression

Synthesized attributes
ExpressionInOclCS.ast = OclExpressionCS.ast

Inherited attributes
The environment of the OCL expression must be defined, but what exactly
needs to be in the environment depends on the context of the OCL ex-
pression. The following rule is therefore not complete. It defines the env
attribute by adding the self variable to an empty environment, as well as a
Namespace containing all elements visible from self. (In section 7.2 ( The
ExpressionInOcl Type ) the contextualClassifier will be defined for the var-
ious places where an ocl expression may occur.) In the context of a pre-
or postcondition, the result variable as well as variable definitions for any
named operation para-meters can be added in a similar way.

OclExpressionCS.env = ExpressionInOclCS.contextualClassifier.namespace.getEnvironmentWithParents()
.addElement (’self’,ExpressionInOclCS.contextualClassifier,true)

OclExpressionCS

An OclExpression has several production rules, one for each subclass of
OclExpression. Note that Unspecified-ValueExp is handled explicitly in
OclMessageArgCS, because that is the only place where it is allowed.

A OclExpressionCS :::= PropertyCallExpCS
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B OclExpressionCS :::= VariableExpCS

C OclExpressionCS :::= LiteralExpCS

D OclExpressionCS :::= LetExpCS

E OclExpressionCS :::= OclMessageExpCS

F OclExpressionCS :::= IfExpCS

Abstract syntax mapping
OclExpressionCS.ast :OclExpression

Synthesized attributes

A OclExpressionCS..ast = PropertyCallExpCS.ast

B OclExpressionCS..ast = VariableExpCS.ast

C OclExpressionCS..ast = LiteralExpCS.ast

D OclExpressionCS..ast = LetExpCS.ast

E OclExpressionCS..ast = OclMessageExpCS.ast

F OclExpressionCS..ast = IfExpCS.ast

Inherited attributes

A PropertyCallExpCS..env = OclExpressionCS.env

B VariableExpCS..env = OclExpressionCS.env

C LiteralExpCS..env = OclExpressionCS.env

D LetExpCS..env = OclExpressionCS.env

E OclMessageExpCS..env = OclExpressionCS.env

F IfExpCS..env = OclExpressionCS.env
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Disambiguating rules
The disambiguating rules are defined in the children.

VariableExpCS

A variable expression is just a name that refers to a variable.

VariableExpCS ::= simpleNameCS

Abstract syntax mapping
VariableExpCS.ast : VariableExpression

Synthesized attributes
VariableExpCS.ast.referredVariable = env.lookup(simpleNameCS.ast).referredElement.oclAsType(VariableDeclaration)

Inherited attributes
–none

Disambiguating rules

1. simpleName must be a name of a visible VariableDeclaration in the
current environment.

env.lookup (simpleNameCS.ast).referredElement.oclIsKindOf (Vari-
ableDeclaration)

simpleNameCS

This production rule represents a single name. No special rules are applicable.
The exact syntax of a String is undefined in UML 1.4, and remains undefined
in OCL 2.0. The reason for this is internationalization.

simpleNameCS ::= <String>

Abstract syntax mapping simpleNameGr.ast : String
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Synthesized attributes simpleNameGr.ast = <String>

Inherited attributes –none

Disambiguating rules –none

pathNameCS

This rule represents a path name, which is held in its ast as a sequence of
Strings. pathNameCS :: =simpleNameCS ( :: pathNameCS ))?

Abstract syntax mapping pathNameCS.ast :Sequence(String)

Synthesized attributes
pathNameCS.ast = SequencesimpleNameCS.ast− >union(pathNameCS.ast)

Inherited attributes –none

Disambiguating rules –none

LiteralExpCS

This rule represents literal expressions.

A LiteralExpCS :::= EnumLiteralExpCS

B LiteralExpCS :::= CollectionLiteralExpCS

C LiteralExpCS :::= TupleLiteralExpCS

D LiteralExpCS :::= PrimitiveLiteralExpCS

Abstract syntax mapping
LiteralExpCS.ast :LiteralExp
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Synthesized attributes

A LiteralExpCS.ast = EnumLiteralExpCS.ast

B LiteralExpCS.ast = CollectionLiteralExpCS.ast

C LiteralExpCS.ast = TupleLiteralExpCS.ast

D LiteralExpCS.ast = PrimitiveLiteralExpCS.ast

Inherited attributes

A EnumLiteralExpCS.env = LiteralExpCS.env

B CollectionLiteralExpCS.env = LiteralExpCS.env

C TupleLiteralExpCS.env = LiteralExpCS.env

D PrimitiveLiteralExpCS.env = LiteralExpCS.env

Disambiguating rules –none

EnumLiteralExpCS

The rule represents Enumeration Literal expressions.

EnumLiteralExpCS ::=pathNameCS :: simpleNameCS

Abstract syntax mapping
EnumLiteralExpCS.ast :EnumLiteralExp

Synthesized attributes
EnumLiteralExpCS.ast.type = env.lookupPathName (path-
NameCS.ast).referredElement.oclAsType (Classifier)

EnumLiteralExpCS.ast.referredEnumLiteral = EnumLiteralEx-
pCS.ast.type.oclAsType (Enumeration).literal− >select(l | l.name =simple-
NameCS.ast )− >any(true)
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Inherited attributes –none

Disambiguating rules

1. The specified name must indeed reference an enumeration:

not EnumLiteralExpCS.ast.type.oclIsUndefined()and EnumLiteralEx-
pCS.ast.type.oclIsKindOf (Enumeration)

CollectionLiteralExpCS

This rule represents a collection literal expression.

CollectionLiteralExpCS ::=CollectionTypeIdentifierCS ’{’ CollectionLiteral-
PartsCS? ’}’

Abstract syntax mapping
CollectionLiteralExpCS.ast : CollectionLiteralExp

Synthesized attributes
CollectionLiteralExpCS.ast.parts = CollectionLiteralPartsCS.ast

CollectionLiteralExpCS.ast.kind = CollectionTypeIdentifierCS.ast

Inherited attributes
CollectionTypeIdentifierCS.env = CollectionLiteralExpCS.env

CollectionLiteralPartsCS.env = CollectionLiteralExpCS.env

Disambiguating rules

1. In a literal the collectiuon type may not be Collection CollectionType-
IdentifierCS.ast <> ’Collection’
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CollectionTypeIdentifierCS

This rule represent the type indentifier in a collection literal expression. The
Collection type is an abstract type on M1 level, so it has no corresponding
literals.

A CollectionTypeIdentifierCS :::= ’Set’

B CollectionTypeIdentifierCS :::= ’Bag’

C CollectionTypeIdentifierCS :::= ’Sequence’

D CollectionTypeIdentifierCS :::= ’Collection’

Abstract syntax mappings
CollectionTypeIdentifierCS.ast :CollectionKind

Synthesized attributess

A CollectionTypeIdentifierCS..ast =CollectionKind::Set

B CollectionTypeIdentifierCS..ast =CollectionKind::Bag

C CollectionTypeIdentifierCS..ast =CollectionKind::Sequence

D CollectionTypeIdentifierCS..ast =CollectionKind::Collection

Inherited attributess –none

Disambiguating ruless –none

CollectionLiteralPartsCS

This production rule describes a sequence of items that are the contents of
a collection literal.

CollectionLiteralPartsCS [1] == CollectionLiteralPartCS ( ’,’ CollectionLit-
eralPartsCS [2] ))?
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Abstract syntax mapping
CollectionLiteralPartsCS [1].ast : Sequence(CollectionLiteralPart)

Synthesized attributes
CollectionLiteralPartsCS [1].ast = SequenceCollectionLiteralPartCS.ast− >union(CollectionLiteralPartsCS
[2].ast)

Inherited attributes
CollectionLiteralPartCS.env = CollectionLiteralPartsCS [1].env

CollectionLiteralPartSCS [2].env = CollectionLiteralPartsCS [1].env

Disambiguating rules –none

CollectionLiteralPartCS

A CollectionLiteralPartCS :::= CollectionRangeCS

B CollectionLiteralPartCS :::= OclExpressionCS

Abstract syntax mapping
CollectionLiteralPartCS.ast : CollectionLiteralPart

Synthesized attributes

A CollectionLiteralPartCS.ast = CollectionRange.ast

B CollectionLiteralPartCS.ast.oclIsKindOf(CollectionItem) and Collection-
LiteralPartCS.ast.oclAsType(CollectionItem).OclExpression = OclEx-
pressionCS.ast

Inherited attributes

A CollectionRangeCS..env = CollectionLiteralPartCS.env

B OclExpressionCS..env = CollectionLiteralPartCS.env
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Disambiguating rules –none

CollectionRangeCS

CollectionRangeCS ::=OclExpressionCS[1] ’..’ OclExpressionCS[2]

Abstract syntax mapping
CollectionRangeCS.ast : CollectionRange

Synthesized attributes
CollectionRangeCS.ast.first = OclExpressionCS[1].ast

CollectionRangeCS.ast.last =OclExpressionCS[2].ast

Inherited attributes
OclExpressionCS[1].env =CollectionRangeCS.env

OclExpressionCS[2].env =CollectionRangeCS.env

Disambiguating rules –none

PrimitiveLiteralExpCS

This includes Real, Boolean, Integer and String literals. Exprecially String
literals must take internationalisation into account and might need to remain
undefined in this specification.

A PrimitiveLiteralExpCS :::= IntegerLiteralExpCS

B PrimitiveLiteralExpCS :::= RealLiteralExpCS

C PrimitiveLiteralExpCS :::= StringLiteralExpCS

D PrimitiveLiteralExpCS :::= BooleanLiteralExpCS

Abstract syntax mapping
PrimitiveLiteralExpCS.ast :PrimitiveLiteralExp
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Synthesized attributes

A PrimitiveLiteralExpCS.ast = IntegerLiteralExpCS.ast

B PrimitiveLiteralExpCS.ast = RealLiteralExpCS.ast

C PrimitiveLiteralExpCS.ast = StringLiteralExpCS.ast

D PrimitiveLiteralExpCS.ast = BooleanLiteralExpCS.ast

Inherited attributes –none

Disambiguating rules –none

TupleLiteralExpCS

This rule represents tuple literal expressions.

TupleLiteralExpCS ::= ’Tuple’ ’{’ variableDeclarationListCS ’}’

Abstract syntax mapping
TupleLiteralExpCS.ast :TupleLiteralExp

Synthesized attributes
TupleLiteralExpCS.tuplePart = variableDeclarationListCS.ast

Inherited attributes
variableDeclarationListCS[1].env = TupleLiteralExpCS.env

Disambiguating rules

1. The initExpression and type of all VariableDeclarations
must exist. TupleLiteralExpCS.tuplePart− >forAll(varDecl
mid varDecl.initExpression− >notEmpty()and not
varDecl.type.oclIsUndefined())
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IntegerLiteralExpCS

This rule represents integer literal expressions.

IntegerLiteralExpCS ::= <String>

Abstract syntax mapping
IntegerLiteralExpCS.ast : IntegerLiteralExp

Synthesized attributes
IntegerLiteralExpCS.ast.integerSymbol = <String>.toInteger()

Inherited attributes –none

Disambiguating rules –none

RealLiteralExpCS

This rule represents real literal expressions.

RealLiteralExpCS ::= <String>

Abstract syntax mapping
RealLiteralExpCS.ast : RealLiteralExp

Synthesized attributes
RealLiteralExpCS.ast.realSymbol = <String>.toReal()

Inherited attributes –none

Disambiguating rules –none

228



StringLiteralExpCS

This rule represents string literal expressions.

StringLiteralExpCS ::= ”’<String>”’

Abstract syntax mappings
StringLiteralExpCS.ast : StringLiteralExp

Synthesized attributess
StringLiteralExpCS.ast.symbol = <String>

Inherited attributess –none

Disambiguating ruless –none

BooleanLiteralExpCS

This rule represents boolean literal expressions.

A BooleanLiteralExpCS :::= ’true’

B BooleanLiteralExpCS :::= ’false’

Abstract syntax mapping
BooleanLiteralExpCS.ast : BooleanLiteralExp

Synthesized attributes

A BooleanLiteralExpCS.ast.booleanSymbol = true

B BooleanLiteralExpCS.ast.booleanSymbol = false

Inherited attributess –none

229



Disambiguating ruless –none

PropertyCallExpCS

This rule represents property call expressions.

A PropertyCallExpCS ::: =ModelPropertyCallExpCS

B PropertyCallExpCS :::= LoopExpCS

Abstract syntax mapping
PropertyCallExpCS.ast : PropertyCallExp

Synthesized attributes

A PropertyCallExpCS.ast = ModelPropertyCallCS.ast

B PropertyCallExpCS.ast = LoopExpCS.ast

Inherited attributes

A ModelPropertyCallCS.env = PropertyCallExpCS.env

B LoopExpCS.env = PropertyCallExpCS.env

Disambiguating rules
The disambiguating rules are defined in the children.

LoopExpCS

This rule represents loop expressions.

A LoopExpCS :::=IteratorExpCS

B LoopExpCS :::=IterateExpCS
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Abstract syntax mapping
LoopExpCS.ast : LoopExp

Synthesized attributes

A LoopExpCS.ast = IteratorExpCS.ast

B LoopExpCS.ast = IterateExpCS.ast

Inherited attributes

A IteratorExpCS.env = LoopExpCS.env

B IterateExpCS.env = LoopExpCS.env

Disambiguating rules –none

IteratorExpCS

The first alternative is a straightforward Iterator expression, with optional
iterator variable. The second and third alternatives are so-called implicit
collect iterators. B is for operations and C for attributes, D for navigations
and E for associationclasses.

A IteratorExpCS :::=OclExpressionCS [1 ] ’− >’ simpleNameCS ’(’ ((Vari-
ableDeclarationCS[1], ( ’,’ VariableDeclarationCS[2])? ’|’ ))? OclEx-
pressionCS[2] ’)’

B IteratorExpCS ::: =OclExpressionCS ’.’ simpleNameCS ( argumentsCS?
)

C IteratorExpCS ::: =OclExpressionCS ’.’ simpleNameCS

D IteratorExpCS ::: =OclExpressionCS ’.’ simpleNameCS ( ’[’ argumentsCS
’]’ )?

E IteratorExpCS ::: =OclExpressionCS ’.’ simpleNameCS ( ’[’ argumentsCS
’]’ )?
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Abstract syntax mapping
IteratorExpCS.ast : IteratorExp

Synthesized attributes
–the ast needs to be determined bit by bit,first the source association of
IteratorExp

A IteratorExpCS.ast.source = OclExpressionCS [1].ast
–next the iterator association of IteratorExp
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A1 Extensionality
∀z(z ∈ x↔ z ∈ y)→ x = y.

A2 Foundation

∃y(y ∈ x)→ ∃y(y ∈ x ∧ ∀z¬(z ∈ x ∧ z ∈ y)).

A3 Subset
∃y∀z(z ∈ y ↔ z ∈ x ∧ φ(z)).

for any formula φ not containing y.

A4 Empty set
∃y∀x(x 6∈ y).

A5 Pair set
∃y∀x(x ∈ y ↔ x = z1 ∨ x = z2).

A6 Power set
∃y∀z(z ∈ y ↔ ∀u(u ∈ z → u ∈ x)).

A7 Sum
∃y∀z(z ∈ y ↔ ∃u(z ∈ u ∧ u ∈ x))

A8 Infinity
∃w(∅ ∈ w∧ ∀x(x ∈ w →

∃z(z ∈ w∧
∀u(u ∈ z ↔ u ∈ x ∨ u = x))))

A9 Replacement

∀x, y, z(ψ(x, y) ∧ ψ(x, z)→ y = z)→
∃u∀w1(w1 ∈ u↔ ∃w2(w2 ∈ a ∧ ψ(w2, w1)))

A10 Axiom of Choice

∀x(x ∈ z → x 6= ∅∧
∀y(y ∈ z → x ∩ y = ∅ ∨ x = y))
→
∃u∀x∃v(x ∈ z → u ∩ x = {v})
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Chapter 15

Appendix: Axiom Systems for
Sequent Calculi

235



15.1 The Axiom System S0

axiom

Γ, F F,∆

not-left
Γ, F,∆
Γ,¬F ∆

not-right

Γ, F ∆
Γ ¬F,∆

impl-left

Γ F,∆ Γ, G ∆
Γ, F → G ∆

impl-right

Γ, F G,∆
Γ F → G,∆

and-left

Γ, F, G ∆
Γ, F ∧G ∆

and-right

Γ F,∆ Γ G,∆
Γ F ∧G,∆

or-left

Γ, F ∆ Γ, G ∆
Γ, F ∨G ∆

or-right

Γ F,G,∆
Γ F ∨G,∆

all-left

Γ, ∀xF, F (t/x) ∆
Γ, ∀xF ∆

where t is a ground term.

all-right

Γ F (c/x),∆
Γ ∀xF,∆

where c is a new constant sym-
bol.

ex-right

Γ ∃xF, F (t/x),∆
Γ, ∃xF,∆

where t is ground term.

ex-left

Γ F (c/x),∆
Γ, ∃xF ∆

where c is a new constant sym-
bol.
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15.2 The Axiom System Sfv0

axiom

Γ, F F,∆

not-left
Γ, F,∆
Γ,¬F ∆

not-right

Γ, F ∆
Γ ¬F,∆

impl-left

Γ F,∆ Γ, G ∆
Γ, F → G ∆

impl-right

Γ, F G,∆
Γ F → G,∆

and-left

Γ, F, G ∆
Γ, F ∧G ∆

and-right

Γ F,∆ Γ G,∆
Γ F ∧G,∆

or-left

Γ, F ∆ Γ, G ∆
Γ, F ∨G ∆

or-right

Γ F,G,∆
Γ F ∨G,∆

all-left

Γ, ∀xF, F (X/x) ∆
Γ, ∀xF ∆

where X is a new variable.

all-right

Γ F (f(x1, . . . , xn)/x),∆
Γ ∀xF,∆

where f is a new functions sym-
bol and x1, . . . , xn are all free
variables in ∀xF .

ex-right

Γ ∃xF, F (X/x),∆
Γ, ∃xF,∆

where X is a new variable.

ex-left

Γ F (f(x1, . . . , xn)/x),∆
Γ, ∃xF ∆

where f is a new functions sym-
bol and x1, . . . , xn are all free
variables in ∀xF .
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15.3 Rules for Equality

identity-right

Γ, s = s,∆

identity-left

Γ, s = s ∆

symmetry-right

Γ s = t,∆
Γ t = s,∆

symmetry-left

Γ, s = t ∆
Γ, t = s ∆

eq-subst-right

Γ, s = t F (t),∆
Γ, s = t F (s),∆

eq-subst-left

Γ, F (t), s = t ∆
Γ, F (s), s = t ∆
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Chapter 16

Appendix: Source Code
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16.1 Java Programs

import java.io.*;

public class RussM{

static int a;

static int b;

static int z = 0;

public static void main(String[] args){

System.out.println("Erste Zahl?"); a = LiesInt();

System.out.println("Zweite Zahl?"); b = LiesInt();

while (b!=0){

if ((b / 2) * 2 == b)

{a = 2*a;

b = b / 2;}

else

{z = z + a;

a = 2*a;

b = b / 2;

}}

System.out.print("Ergebnis: ");

System.out.println(z);

}

static int LiesInt() {

DataInput StdEingabe = new DataInputStream(System.in);

int ergebnis = 0;

try{ ergebnis = Integer.parseInt(StdEingabe.readLine()); }

catch (IOException io) {}

return ergebnis;

}}
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import java.io.*;

public class Text { public int len;

public int [] seq;

public static void main(String[] args){ int ll; int pos;

System.out.print("sequence lenght? "); ll = LiesInt();

Text x = new Text();

x.len = ll;

x.seq = new int[ll];

readAll(ll,x); PrintAll(x);

System.out.print("delete position? "); pos = LiesInt();

x.delete(pos,ll);

PrintAll(x);}

public void delete(int p, int l){

for (int a = p; a < l-1 ; a = a +1)

{this.seq[a] = this.seq[a+1]; }

this.len = this.len - 1; }

static void readAll(int yy, Text obj) { int in;

for (int a = 0; a < yy ; a = a +1)

{System.out.print((a+1)+"-th entry? "); in = LiesInt();

obj.seq[a] = in; }}

static void PrintAll(Text obj) { int y; y = obj.len;

System.out.println();

for (int a = 0; a < y ; a = a +1){

System.out.print(obj.seq[a]+" ");}

System.out.println();}

static int LiesInt() {

DataInput StdEingabe = new DataInputStream(System.in);

int ergebnis = 0;

try{ ergebnis = Integer.parseInt(StdEingabe.readLine()); }

catch (IOException io) {}

return ergebnis;}}
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16.2 KeYProver Input

16.2.1 Induction Proof Task

sorts { int;}

schema variables {int variables x,y,z;}

functions {int 0;

int a(int,int);

int f(int);}

problem{

all y:int.(a(0,y)=y) &

all x:int. all y:int. (a(f(x),y) = f(a(x,y))) &

all x:int. all y:int.(a(succ(x),y) = f(a(x,y)))

-> all x:int.( geq(x,0) -> a(x,a(x,x)) = a(a(x,x),x))

}
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αRM , 138
∈, 16
� (recursive subtype), 56
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countB, 18

∅, 17
FmlLr

, 146
R, 17
ω, 189

abstract syntax, 110
accessability relation, 148
aggregation, 39
algorithm, 121

run of, 121
vocabulary of, 122

allInstances, 63, 213
antecedent, 168
ASM rule, 132
assertion, 139
assignment rule, 173, 180
association, 25

binary, 26
class, 35

navigation into, 74
constraints, 57
end, 26, 39
n-ary, 26

atomic
program, 145

attribute, 23
class ∼, 33
class scope ∼, 33
compartment, 23
constraints, 52
multiplicity, 24
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qualifier, 43
set-valued, 24
static, 33

bag, 18, 62
Boolean, 39
bounded exploration witness, 123
branch, 169
branching rule, 175

class, 23
abstract, 32
association, 35
enumeration, 38
term, 184

classifier
context, 51

closed branch, 169
collect, 70, 208, 210, 212
compartment, 23
complete, 31
composite, 39
conclusion, 168
conditional term, 156
configuration, 22
conform, 103, 106
conforms, 47, 56
constant, 98, 144
constant symbols, 142
constraints, 52
constructor, 102
Content, 122
context

classifier, 51
diagram, 50

correctness
partial, 54

count, 18

critical term, 123

data type, 36
Dedekind set, 189
deterministic program, 152
diagram

object, 46
disjoint, 18, 31
domain, 17, 18
Dynamic Logic

formula, 146
Kripke structure, 148
tautology, 152
terms, 146
vocabulary, 143

enumeration, 38
environment, 106
event, 117
existential quantification, 75
expression

OCL, 103
external variable, 139

first-order structure, 142
flatten, 62
flexible term, 146
formula
Lr, 146
first-order, 142
range, 67

free(e), 103
function, 16, 188

application, 16
argument, 16
non-rigid, 144
partial, 17, 23
rigid, 144
symbol, 142, 144
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total, 17
value, 16

generalized substitution, 167
goal, 173

header, 52
hierarchy relation, 103

if then else rule, 175
iff, 88
incomplete, 31
induction rule, 178
inheritance

multiple, 31
Integer, 36
intersection, 18, 186, 187
invariant, 53, 140
isKindOf, 104
isTypeOf, 104
iterate, 67

Kripke structure, 148
DL∼, 148

location, 122
logic

predicate, 142
logical part, 143

meta-type, 63
method, 29
mkBag, 102
mkSequence, 102
mkSet, 102
modal operator, 143
multiplicity, 25, 26
multiset, 18

navigation, 61

into association class, 74
non-rigid, 144
non-rigid term, 146

object diagram, 46
OCL expression, 103
OCLAny, 102
OclAny, 55
oclIsNew(), 81
OCLState, 102
OclType, 63, 213
OCLVoid, 102
one-step transformation, 121
open branch, 169
operation, 29, 98

association, 100
attribute, 99
meaning of, 77
predefined, 101
query, 100

operator
modal, 143

ordered, 28
ordered pair, 185
ordinal, 192
overlapping, 31

pair
ordered, 185

partial correctness, 54
postcondition, 51, 53
power set, 18, 24, 188, 233
precondition, 51, 53
predicate symbols, 142
premise, 168
program

atomic, 145
deterministic, 152
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part, 143
substitution principle, 160

proof tree, 169
branch, 169
closed, 169

pseudo state, 117

qualifier, 43
qualifier attribute, 43
quantifier, 73

existential, 75
universal, 75

query, 29, 36, 39, 54

range, 17, 18
range formula, 67
relation, 16, 25, 188

accessability, 148
binary, 16, 26
domain, 18
hierarchy, 103
n-ary, 26
non-rigid, 144
range, 18
rigid, 144
symbol, 144
unary, 16

restriction, 148
result, 70
rigid, 144
rigid part, 148
role name, 25, 27
rule, 132

sequent, 168
run, 121

select, 71
senior+, 87
senior*, 87

sequence, 59
sequent, 168

antecedent, 168
succedent, 168

sequent calculus
proof tree, 169

sequent rule, 168
assignment, 173, 180
branching, 175
conclusion, 168
induction, 178
premise, 168
sound, 168
while, 176

set, 15
Dedekind, 189
disjoint, 18
empty, 17
intersection, 18
power, 18
transitive, 191
union, 18

signature, 77, 98, 142, 145
similar, 135
snapshot, 22, 46
sound

sequent rule, 168
state, 117, 121, 148

completion, 117
final, 117
in Kripke structure, 148
initial, 117, 121
pseudo, 117

step term, 67
stereotype, 38
String, 36
structure

first-order, 142
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Kripke, 148
subclass, 30

complete, 31
direct, 31
disjoint, 31
hereditary, 31
incomplete, 31
one-step, 31
overlapping, 31

subset, 17
substitution, 142

allowed for DL, 160
allowed for formula, 158
generalized, 167
principle, 158, 161
principle, for programs, 160

subtype, 55
direct, 55

succedent, 168
successor set, 189
superset, 17
symbol

constant, 98, 142
function, 142
predicate, 142

syntax
abstract, 110, 146
concrete, 146

system state, 22, 105
conform, 106

tautology
DL, 152

term, 142, 146
conditional, 156
critical, 123
dynamic logic, 146
flexible, 146

initial, 67
non-rigid, 146
step, 67

termination, 54
transformation

of ASM rule, 133
one-step, 121

transitions, 117
transitive closure, 103
transitive set, 191
type, 23, 24, 55, 98, 144

argument, 98
attribute type, 23
basic, 55, 98
Boolean, 39
collection, 55, 98
enumeration, 55, 98
hierarchy, 98
meta-, 63
model, 55, 98
object, 98
result, 98
special, 98
sub-, 55
tupel, 98

union, 18, 186
universal quantification, 75
universally valid, 168
unordered, 28
update, 122

clash, 122
consistent, 123
of ASM rule, 133
trivial, 122

valid
universally, 168
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Var, 103
variable, 103

accumulator, 67
assignment, 143, 148
bound, 143
external, 139
free, 103, 143
iterator, 67
propositional, 142, 144
ssignment, 106
typed, 144

vocabulary, 97, 143
logical part, 143
of algorithm, 122
program part, 143

while rule, 176
world, 148

Zermelo-Fraenkel
axioms, 184, 233
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