UML Process

Sharam Hekmat

PragSoft Corporation
WWW. pragsoft.com



Contents

L INTRODUGCTION ...ttt ettt st b e sbe e sase e s be e sseeesseesareesneesnneenseas 5
L1 PURPOSE ....cctieiiteetee sttt et s ettt s et e b e e s st e me e sae e e me e e mn e e R e e eane e Re e enn e e ene e naneeaneeenneenean 5
60 . TP R PP 5
1.3 SOFTWARE TOOL....ccuteeteeaireesieesreesseesseesseesseesseesseesseesaneeameessneeseesanesnneeanneeaneesmneenneesnneenneas 5
1.4 GLOSSARY OF TERMS.....uuiiiuteeieesteesteasseasteesuseasseasuseassessaseessesssseassessasesssessnsesssessnsesssessnsessses 5
2. REFERENCE MODELS ... 6
2.1 PROCESS REFERENCE IMODELS.....c..ueiitiesitieiteesieeesteasieeaieesieesseassesssessaessaseessesssesssessnseessessnns 6
2.1.1 Process Domains Reference Model ............cccuveeiiiiii i 6
2.1.2 Process Reference MOAEL............cooiiiiiiiiiiic e 7
2.1.3 Modelling Reference MOdel ...........coooiiiiiiiiiie e 8
2.2 LIFECYCLE REFERENCE MODELS ... .cciiuiiiteesieesieesiie st site st e sseesssessnteesbeesssesssessnsaensessnseensens 10
2.2.1 Gateways Reference MOAEL............cooiiiiiiiiiiiie e 11
2.2.2 Linear LifeCYCle MOUEL..........cooiiiiiiieeiiiie et 11
2.2.3 Proof-of-Concept Lifecycle MOl ...........cocoiiiiiiiiiiiiiieeeeee e 12
2.2.4 CBD LifeCyCle MOGEL ........ccueiiiiiiiiiese et e 13
2.2.5 DSDM LIfeCyCle MOEL .........ooueiieieeei it 14
2.2.6 Small Change Lifecycle MOdel ...........ccueviiiiiiiieiiee e 16
2.3 ARCHITECTURAL REFERENCE IMIODELS......cituiiiteesiteeieesieessseasseeessessssesssessssesssessnsesssessnsesssens 17
2.3.1 Architectural Domains Reference Model.............ccocveiiiiiiiiii i 17
2.3.2 Layered Architecture Reference Model ............oooviieeeiiiiiiiiiiee e 18
3. BUSINESS MODELLING ...ttt st neas 20
3.1 INTRODUCTION TO BUSINESS PROCESSES ......cceteerueeateesieeasieesseeesseesnesssessseesssesssesssesssessseas 20
3.1.1 What Constitutes @ BUSINESS PrOCESS?.......ccivviieeiiiiieeesiiereessseeeessnnneeeessnseeeesnnees 20
3.1.2 BUSINESS ProcCess IMProVEIMENT ..........coiiiieiiieeeiieesieeesiiee st sieee e ssee e 21
3.1.3 Business Process Re-engineering (BPR)........ccooviiiiiiiiiiecie e 22
3.2 BUSINESS MODELLING CONCEPTS....ccuutiiteesueeateesueeassessaeessesssseessessasesssessssesssesssesssessnsessses 22
3.2.1 AbStraction VErSUS INSEANCE...........eeiiiiiiiie et e e 22
3.2.2 BusSiNess Process DEfiNItION .........cocuiiiiiiiiiiiiic e 23
3.2.3 ACHIVITY DEIINITION. ......eeeiee et e e e e e e e e e e e nees 24
3.2.4 ACLION DEfiNITION ....cciiiiiee et e e e e e e e e e e ennes 26
4. Create New TaxX Payer RECOI ........cuiiiiiiiiiieeiiie et 26
3.3 USE-CASE MODELLING......ceettesueeeteesueeaaseesueeaseessseassessseeasesasseassessasesssessssssasesssesssesssessses 27
4. APPLICATION MODELLING... .ottt sttt 29
4.1 BUSINESS OBUIECTS. .. ceiutteteerueeaseeaueeaaseesseesseessesaasesssesaseassssansesssssssesssessnsesssessnsesssessnsessses 29
4.1.1 ClasS DIAgQralmIS . ....ccccuuiiiiieeiiiie ettt be e s be e sae e sane e 29
.02 EXAMPLE. ..o 31
4.2 SCENARIOS......eeeiueeeteeauetaaueeaseaseeaseeaaseesseeaaseeaseeaaseesseeaaseaaseeaaseesseeaaseeaseeaaneeaseesnreenneesnneenneas 32
4.2.1 Collaboration DIiagralmS..........cciueieiiiieiiie ettt sne e 32
4.2.2 SEQUENCE DIAGIAITIS. ....coiiiieiiiie ittt stee sttt st e e s e e snne e e saneeeanes 33
4.2.3 Completed BUSINESS MOMEL..........oueiiiiee e e 34

www. pragsoft.com 2 UML Process



4.3 USER INTERFACE MODELS .....ceeitieeiteeesteeesteeesstesesseeeasseeessesesnsessasesesssesssssesssssessnssessnsenesns 35

e Y 1= = o T TP OUPRROTRPPIN 35
R T Y, o Tox L U 01 SRR 35
5. SYSTEM MODELLING......coiiiiiiee ettt st nneas 37
5.1 MULTI-TIER ARCHITECTURES. .. .ttttttttesteeessteesssesssssesssssesssssesssssesssssesssssesssssessnssnssnsesssnsenssns 37
5.2 FRONT-END IMODELS.....cuuiiiiieiiieieeste ettt sttt sttt be e s e et e st e b e nneenneas 39
5.2.1 SCreen SPECITICALIONS......cociiiie et 40
I \\F= 1Y, o = L o] o U 40
N7 B = T 10 o F= T O o= o £ PR 41
5.3 MIDDLE-TIERIMIODELS........cttttiiiititeeeisiereeeasteeeeesssseesssasseeesasssseeesanssssessasssssesssssssessssssssessanns 42
TG I 01 VL o= o £ ST 42
EIRC A ©00 o 11 0] IO o= o £ SRR 43
5.3.3 BouUndary ODJECES .....cooiiiiiiie s 44
G I ) o B = 015" Tox 1] PR 45
5.4 BACK-END MODELS......cutiiitiieiitieeeitiieesiteessieesssseessseessssesssssesssssesssssesssssesssssessnssessnsssssnsenssns 46
5.4.1 Data MOOEIS.......ooeiiiiiiiie ettt e e e e e e e e e nnes 46
5.4.2 Data ACCESS ODJECES....uuiiiiiiiiie i it e ettt e et e e e e e e e e e e e e e eare e e e e ennes a7
G I Y I 1L SRR 48
6.1 INTRODUGCTION ....uuttteeeietereesessseeeeesssseeessasseeesasssseeesassseeesaasssessassssseessssssssessnssseesesssseesssnnsens 48
L R = (g o o 010U 48
O A e T a0 Y o] o 0= Vo =TSR 48
6.1.3 TeStiNg TECNNIQUES. ........eeiiiiieiiiie ettt 49
L s ] o S =T [ PR 50
6.1.5 REJIESSION TESLING .vveviieeiiiiiiiiieiee e e e e e e e e s et e e e e e e e s s e e e e e e e e e e e e nnrreaeeeeas 51
5.2 TEST PLANNING. .....ttiiutteiteeeteesteeeiteestesseeesteesaseesseesaaeesbeeasseesseesaseeabeasaseeabeesaseensessnseessensnnaans 52
B.2. 1 TOSE A A EgY ... i e e e e e e ——— 52
(3 == ] - o ST 52
6.2.3 TS ENVIFONMENL. ....cuieiiieeeiiiee et et e e e e st e e e e e e e snne e e e e snnneeeeennnes 53
6.2.4 AULOMALE TESHING ... eeeeeiee ettt e s e e sneeas 53
L I o =Y I I =1 I NSRS 53
200 T8 A e Vo ) =11 o PR 54
6.3.2 EXCEPLION TESHIMNG ....eveeeeieeeitie ettt ettt ettt e b s e e 54
SRR IS (=SS = 1] o TP PP 54
B.3.4 VOIUME TESHING ... uvvrieeeie e e ettt ettt e e e et e e e e e e s e s s b e e e e e e e e e eennereaeeeeas 55
6.3.5 Scal@ability TESHING .......ueeeeeiiiiee e e e e e s e e e enreeeeennnes 55
6.3.6 AVailaDi ity TESHING.....ciiiei it 56
6.3.7 USADI LY TESHING.....cciiurieee ettt e e e e e e e e e e e e enees 56
6.3.8 DoOCUMENLALiON TESHING......cccviieieeeee et e e e e e e e s e e e e e s e nnrreaeeeeas 56
6.3.9 INStallation TESLING.......eeiiiiiiiee e e e e e e e seree e e ennne e e e e snneeeeennnes 56
6.3.10 Migration TESLING......ccueieieeeiiiie ettt ettt e et e e s be e sbe e e sbeeeaneeas 56
6.3.11 COBXISLENCE TESLING....eeeeiiiiieee e et e ettt e e e e e e e e e e e e e e e aare e e e e ennes 57
O I 07N = I = [ N SRS 57
6.4.1 Presentation Oriented Test Case DESIgN .......ccocuvieiieiiiiieiiiee e 58
6.4.2 Workflow Oriented Test Case DESIQN......cccoiuiieeiiiiieee e e 59
6.4.3 Business Object Oriented Test Case DESIgN ........ccccvvveeeeiiee e 59
6.4.4 Data Oriented TeSt Case DESIQN ....cccovuriieeiiiiieeeeiiee e e eee e sree e sneee e e sneee e e enees 59

UML Process 3 Copyright © 2005 PragSoft



www. pragsoft.com 4 UML Process



1. Introduction

1.1 Purpose

UMLProcess is a defined process for devel oping software systems using object technology. The
purpose of this document is to define the UMLProcess a aleve that is suitable for practitioners who
have had no prior exposure to asmilar process.

1.2 Scope

This document is intended to be a concise guide to the processesit covers, rather than giving a
detailed description of each process. By focusing on the key concepts (and deferring the practical
details to workshops and mentoring sessions), we can maximise the usefulness of the handbook as a
learning tool.

1.3 Software Tool

If you plan to implement the UMLProcess in your organisation, we recommend that you usea UML
modelling tool to formalise your moddling activities. PragSoft provides two very popular tools for
this purpose:

UMLStudio alows you to creste UML modds, generate code from them, and reverse
engineering UML models from code.

UMLServer dlows you to deploy UMLStudio in a collaborative environmen.

Both tools can be downloaded from www.pragsoft.com.

1.4 Glossary of Terms

BPR Business Process Re-engineering

CBD Component Based Devel opment

DSDM Dynamic Software Development Method
GUI Graphica User Interface

POC Proof Of Concept

RAD Rapid Application Development

SC Smdl Change

UML Unified Moddling Language

UML Process 5 Copyright © 2005 PragSoft



2. Reference Models

The processes that underpin the development of modern information systems are varied and
complex. This section provides anumber of reference models to help manage this complexity,
covering three broad areas of:

Process
Lifecyde
Architecture

The reference models provide a common understanding, so that when we later talk, for example, of
production, business objects, or Gate 2, the intent is clear.

2.1 Process Reference Models

A processis awedl-defined collection of activities, each undertaken by possibly a different
participant, which takes one or more inputs and produces one or more outputs. Every manufacturing
or service industry uses a set of inter-related processes for its operation. The quality of the design of
these processes and the qudity of their implementation determines the overdl qudity of the
organisation. In other words, to improve an organisation, one needs to improve its underlying
Pprocesses.

2.1.1 Process Domains Reference Model

At the highest levd, the processes that underpin the development and operation of information
solutions can be divided into 5 domains, asillustrated below.

Development

Coordination Production Facilitation I

The development domain is concerned with processes that directly contribute to the devel opment
of the solution. These include:

Business modelling
Application moddling
Architecturd design

www. pragsoft.com 6 UML Process



Detaled design

Coding and testing

Sysem testing

Problem reporting and fixing
The production domain is concerned with processes that directly affect the evolution of the system
after itisfully developed. These include:

Detailed design

Coding and tegting

System testing

Acceptance testing

Problem reporting and fixing
The live domain is concerned with processes that directly affect the operation of the solutionina
live environment. Theseinclude:

R ease management

Performance monitoring

Help desk

Problem reporting and fixing
The coor dination domain is concerned with processes that regulate and manage the successve
progression of the solution through its various stages. These include:

Project management

Quality manegement

Change management
Thefacilitation domain is concerned with processes that indirectly contribute to development,
production, and live processes by way of providing guidance and/or adminigtrative assstance. These
include:

Configuration management

Training and mentoring

Qudity reviews

Metrics collection and reporting

2.1.2 Process Reference Model
Each process is described by a set of process elements, asillustrated below.

UML Process 7 Copyright © 2005 PragSoft



Guide Participants

XXX
/L

| nputs PROCESS Outputs
—
-1 —h
g —I = Ao
— — —

Checklists Templates  Examples

The guide describes the process, itsinputs, congtituent parts, outputs, and how each participant
contributes to it. The checklists provide a means of verifying that the process parts have been
completed to satisfaction and meet the necessary criteria. The templates provide a standard format
and structure for the deliverables (outputs) produced by the process. The examples serve asa
learning aid and illustrate to the process participants sample deliverables produced by the red-life
application of the process.

2.1.3 Modelling Reference Model

A different way of looking a development processesis to view them as an iteration of modelling
exercises. Each modelling exercise takes one or more earlier modedls and produces a new, more
enriched modd by making additiond design decisions. Thisresultsin a progression from abstract
(requirements) to detailed (working solution). This approach, combined with object-oriented
modelling, has the distinct advantage of producing representations that can be verified through logica
reasoning, testing, or even smulation. For example, a business process map can be tested by
mentally passing imaginary cases through it that exercise its different logica pathsto seeif it copes
with the posshilities and produces the required outpuit.

There are three broad types of modelling, asillustrated below.

www. pragsoft.com 8 UML Process



Business M odelling
(what the business does)

Application Modelling
(how systems support the business)

System Modelling
(how systems are realised using technol ogy)

Business modelling is concerned with what the business does. Thisis before usng information
systems to automate aspects of the business. This may appear as redundant if the business adready
has sysems in place. But thisis exactly the point. Technologists often forget thet information systems
are not an end to themsalves, but a means for serving the business (i.e., to support the business
processes they are aimed a). If it is not clear what the business does, then it will be equaly unclear
how systems may be able to support it.

The busness modd is described in purely businessterms. One of its key objectivesisto establish a
common, unambiguous understanding between the business users and the technol ogists who will
ultimately build gppropriate system solutions for it. The importance of this baseline cannot be
overgtated. Its qudity and completeness will, more than any other model, influence the success of
the find solution.

Business moddlling produces the following artefacts:
- End-to-end Business Processes

Business Process Maps

Activity Maps

Action Narratives

Use-cases

Application modelling is concerned with how systems support the business. Having established a
business modd that describes what the business does, we are then in a position to come up with an
gpplication solution that addresses the business needs. Thisis essentidly an external view of the
solution and shows how the users interact with the application, itslook and fed, and the business
abstractions (objects) that are represented by the application. Application modelling is where
functiona requirements are addressed.

The gpplication mode does not assume any specific implementation technology and is primarily
described in non-technologica terms. It should, therefore, be reasonably understandable by the
business users.

UML Process 9 Copyright © 2005 PragSoft



Application moddling produces the following artefacts:
Business Objects (class diagrams)
Scenarios (collaboration/sequence diagrams)
User Interface Moddls:
Metaphors
Mock-ups

System modelling is concerned with how systems are realised using technology. System
moddling islargely atechnological activity that attempts to trand ate the gpplication modd into a
concrete, executable system. System modelling has to dedl with artificia details that are not an
inherent part of the application modd, but a by-product of using specific technologies. For example,
it has to ded with specific programming congtructs, middleware services, data models, and so on. In
other words, it produces an internal view of the solution, showing how its different partsinteract in
order to support the externd, application view. System moddling is where the non-functiona
requirements (e.g., platform, performance, throughput, scal ability, maintainability) are addressed.

The system modd is expressed in technical terms and isfor the interndl use of the technologists who
work on it. It isinappropriate reading materia for business users.

System moddling produces the following artefacts:

User Interface Moddls:

Screen Specifications

- Data

Data Entry Vdidation Rules

Navigation
Front-end Components
Application Server Components
Business Object Server Components
Data Access Components
DataModels

It should be emphasised that design decisons are made in all three types of modeling. In business
modelling we do not smply record the way the business operates now (‘as-iS processes), we aso
consder how it could operate with the potentia benefit of introducing information systems that can
greamline the business activities (‘to-be’ processes). In application moddling, we invent metaphors,
screens, and abdtractions that enable end-users to use the application as an effective and intuitive
tool that blends with their work processes, rather than becoming an obstacle to their work. In
system moddling, we invent software artefacts that collectively not only redlise the functiond
requirements for the gpplication, but also stisfy its non-functiona requirements.

2.2 Lifecycle Reference Models

A software lifecycle is amap, depicting the stages that a software system undergoes, from its origina
inception, to itsfind termination (i.e,, from cradle to grave). Thereis, however, no universally agreed

www. pragsoft.com 10 UML Process



lifecycle that is suited to dl software development projects. Various lifecycles have been invented for
different purposes. Project characterigtics (such as size, timeframe, volatility of requirements,
architecture, technologies, expected system lifetime) influence the most appropriate choice of
lifecycle for aproject.

This section outlines different software lifecycles and their intended usage context. The relaionship
between the different lifecycles is managed through a gateway reference model. Thisis described
fird.

2.2.1 Gateways Reference Model

Every software project involves anumber of key milestones. Each milestone represents an important
event, and provides a review opportunity to decide whether the project should proceed to the next
gtep. These milestones are called gates. Five universal gates are defined:

Gate | Description

0 A business case exigts for the proposed solution.

Business requirements have been specified and agreed upon.

An integration-tested rel ease has been produced, ready for system testing.

The release has successfully passed system testing.

AIWIN|[F

The release has successfully passed acceptance testing.

Not dl gates are rdlevant to dl lifecycles. Also, in some lifecycles a gate may be passed iteratively
(i.e, onechunk at atime).

2.2.2 Linear Lifecycle Model

The linear lifecycle mode (also cdled the waterfdl lifecycle) views software development as a set of
phases that take place linearly (i.e., one after the other).

Requirements Architectural Operation and

Specification Design Maintenance

Thislifecydeislargey outdated because of the common problems it suffers from:

It assumesthat it isfeasible to produce an accurate specification of requirements before getting
involved in the design and implementation of the system. Experience has shown that, in most
casess, thisis not practicd. In practice, requirements often tend to be vague and incomplete.
Users are not certain of what they want and, once they see aworking system in operation, tend
to change thair mind.

It takes too long to produce a demonstrable system, during which time the business climate and
hence requirements may change subgtantidly. So by the time the system is ddlivered, it may be
already obsolete.

UML Process 11 Copyright © 2005 PragSoft



The impact of defectsin earlier phasesisfar too great on later phases. For example, a
requirements defect discovered during the coding phase may cost 100-1000 times a coding
defect to correct.

The rate of rework tends to increase substantially from phase to phase, because each phase
tends to uncover defects in the deliverables of earlier phases. Thisin turn derails the project plan
and often puts unredigtic pressure on the development team, which ultimately may result in their
demotivation and break up.

The track record of thislifecycle in the industry is very poor, with over 60% of projects never
deivering, and of those ddivered, over 50% not being used by the end-users.

Despite these shortcomings, the linear lifecycle does have a place in the software industry. Situations
where its application may be senshble include:

Where the requirements are stable, well understood, and well documented. An example of thisis
the re-engineering of an exiging system that is largely congstent with user requirements, but
perhaps technologically obsolete.

Where the system does not directly interact with end-users (e.g., firmware and communication
software).

Where there isawedth of existing experience about the problem domain and the project team
has had congiderable experience of developing smilar systems. For example, a company with a
good track record of successfully developing payroll gpplications, is unlikely to hit nasty surprises
when deve oping yet another payroll gpplication.

2.2.3 Proof-of-Concept Lifecycle Model

The Proof of Concept (POC) lifecycle is suited to Situations where a proposed concept (e.g., a
business process, an architecture) needs to be proven before making further development
investment. Thisislargdy arisk management tool: by verifying the suitability and effectiveness of an
ideaon asmal scae, we minimise the potentia loss resulting from itsfailure. In practice, most idess
are partidly successful, and the POC provides an opportunity to address their shortcomings before
implementing them on alarge scale.

Objectives
and Scope

Evaluate

The POC lifecycleis smple, but iterative. It begins by establishing the objectives and the scope for
the POC. The objectives must be clearly stated and, based on these, a modest scope should be
edablished. Hereis an example:

www. pragsoft.com 12 UML Process



Objectives: To prove the technica feasibility of the proposed 3-tier client-server

architecture for the proposed retail banking system.

To verify that the implementation of this architecture can ddiver the
required performance (< 5 seconds latency, for 1000 concurrent users).

Scope: Implement the one-to-one transfer transaction, end to end. Use ad-hoc

shortcuts to popul ate the database and to smulate 1000 concurrent users.

The scope must be managesble, a good representative of the problem domain, and sufficiently rich
to enable the verification of the objectives.

During design and coding in POC, emphasisistypicaly on speed of congtruction. Trade-off and
corner cutting are acceptable practices, provided they do not conflict with the objectives. For
example, in the above scenario, it would be perfectly acceptable to implement only rudimentary
error handling. However, if one of the objectives were to verify system robustness under erroneous
input data, then this would be unacceptable.

2.2.4 CBD Lifecycle Model

The Component Based Development (CBD) lifecycle is an emerging lifecycle for the development
of didtributed client-server systems using component technology.

Reuse
Component

Partial
Modelling

Define
Build Scope

Integrate
and Test

Build New
Component

Evaluate '

The Partid Modelling phase involves carrying out enough business/application/syssem modelling to
define a meaningful build scope. A build delivers awell-defined set of business functiondlities that
end-users can use to do red work. In a process-centric information system, for example, a build
may represent the redisation of one or more end-to-end business processes. The scope of abuild is
not arandom sdlection, but rather alogical selection that satisfies specific development objectives.

Once abuild scope is established, we need to decide which of the required components can be
reused (e.g., dready exist in the organisation or can be bought off-the-shelf) and which ones need to
be developed. Both these phases have their own mini lifecycles:

UML Process 13 Copyright © 2005 PragSoft



| dentify Adapt Code
Reuse Component: Component Component and Test
. _ | Design Comp. Design Code
Build New Component: Interface Component I—> and Test I

Reusing an existing component may require some adaptation. For example, the component interface
might not be exactly what is required or some of the method behaviours may need dteration. Thisis
achieved through adaptation, which involves wrapping the component with athin layer of code that
implements the required changes.

il

Building a new component should aways begin with defining the component interface. This
represents a permanent contract between the component and other components. Once the interface
is defined and the intent of each method is established, the component can be designed and
implemented.

With al the components for a build in place, the components are then integrated and tested.
Integration will require the writing of glue code that establishes the interaction between the
components. Most component technologies alow thisto be done productively using a scripting

language

An integrated build is then formally released (by going through system testing). Thisis then made
avallable to end-users for evauation. The evauation environment may be the same asthe
development environment (for earlier builds that are not mature), or a pseudo live environment (for
later builds that are sufficiently mature). The outcome of the evauation influences the direction of
subsequent builds.

2.2.5 DSDM Lifecycle Model

The Dynamic Software Development Method (DSDM) lifecycle is another emerging lifecydethat is
suited to the development of information systems (that have vague and/or unstable requirements) to

tight time-scdes. Unlike CBD, DSDM s independent of any particular technology, but like CDB, it
relies on an iterative gpproach to devel opment.

www. pragsoft.com 14 UML Process



Feasibility Stud
Business Study

Implementation

User Approval &
user Guidelines

Agree Plan

-----------

Identify Design :
Prototype
Agree ~ Design & Build FSZS‘;‘]’
Plan Iteration Prototype
CreateDesign
Prototype

DSDM isdso often referred to as RAD (Rapid Application Development). It conssts of five main
phases.

Feasbility study, which typicdly lasts a couple of weeks and assesses the suitability of the
RAD approach to the business problem.

Review Prototype

Business study which scopesthe overal activity and provides the basdline for subsequent
work, including business functiondity, system architecture, and development objectives.

Functional modd iteration which, through a series of prototyping iterations, establishes the
goplication functiondity. The prototypes are created for their functionality and not intended to be
maintainable.

Design and build iter ation, which generates well-engineered prototypes for use in the intended
environment.

I mplementation, which involves putting the latest increment into the operationd environment
and training the users.

The following diagram illustrates a key difference between DSDM and traditiona methods. Whereas
in the traditionad methods, the functiondity to be ddivered isfixed and time and resources may vary
to meet that functiondity, in DSDM this is turned upside down: functiondity is ddivered to afixed
time and resource plan. Thisis based on afundamenta assumption that 80% of business
functiondity can be delivered in 20% of the timeit takes to deliver the whole thing.

UML Process 15 Copyright © 2005 PragSoft



Functionaity =~ q¢—— fixed ———p  Time Resources

DSDM

Traditional

Time Resources q¢—— Vay —_p  Functionality

To achieve this, DSDM employs the timebox mechanism. For agiven project, thereis an overdl
timebox for the work to be done. Thisis hierarchically broken into shorter timeboxes of 2 to 6
weeks, which are the focus of monitoring and control activities. Each timebox has an immovable end
date and a prioritised set of requirements assigned to it. Some of these requirements are mandatory
and some of less priority. A timebox will produce something visble in order for progressto be
assesed (e.g., amode or a component). Each timebox isinclusve of dl its effort, and is divided
into 3 parts:.

I nvestigation, which isaquick pass to check that the team is taking the right direction.
Refinement, which builds on the comments resulting from the review at the end of the
investigation.

Consolidation, which ties up any loose ends.

2.2.6 Small Change Lifecycle Model

The Smdl Change (SC) lifecycle is a streamlined lifecycle suitable for making small changesto an
exiging system.

Analyse
Change Impact

Reject
(not a small change)

SCisespecidly suitable for implementing the type of changes undertaken in aminor release. For
example

Addition of anew piece of functiondity that isfarly smilar, in its desgn, to existing functiondity.
Enhancing or enriching an exigting piece of functiondity without changing its underlying design.
Making cosmetic changes to the front-end.
Making changes to the format (but not the logical structure) of input or output data (e.g.,
changing areport formet).

SC is not suitable for the following types of change:
Architecturd changes (eg., changing the tiering mode!).

www. pragsoft.com 16 UML Process



Changing a key piece of technology in the system (e.g., porting the system from one
programming language or platform to another).

Maor addition or revison of functiondity (i.e., changes undertaken in amgjor release).
2.3 Architectural Reference Models

2.3.1 Architectural Domains Reference Model

The following reference modd illustrates the key architecturd domains of an information system and
ther relaionships.

, , , Technology ,
| ' ' Architecture |

T

! Business : Software 5 System 5
1 . > . 1 > . 1
i | Architecture ; Architecture ; Architecture ;
i 5 Network

Architecture

| non-technical | technical but | technical and |
; itechnology independent ;  technology dependent

The primary aim of thismodd isto achieve a clear separation between the technica and non-
technical, and between the technology dependent and technology independent. This ensures that
technical changes do not invalidate the business architecture, and that technologica changes do not
impact the business and software architectures.

A business ar chitecture models the key eements of a business, their relationships, and
interactions. Its main focusisanalysis. Given that business processes provide the most reliable and
relevant foundation for articulating the desired behaviour of an information system, a process-centric
gpproach to business moddling would be idedl.

A softwar e ar chitecture (including data architecture and security architecture) models a software
system in terms of its key layers, components, and interfaces between them. Its main focuses are
design and ease of maintenance. A component-based approach is now the industry-wide
standard for this purpose.

A technology ar chitecture models the technologica framework for building information sysems
(including: tools, languages, middleware, operating systems, standards, protocols, third-party
components, etc.). Its main focusis construction. The technology architecture needs to
continuoudy evolve to kegp up with the rlevant and mature offerings that gain acceptance in the
indudtry.

UML Process 17 Copyright © 2005 PragSoft



A network ar chitecture modes the computing infrastructure that is used to deploy information
gystems. Its main focus is deployment.

A system ar chitecture maps a software architecture to a network architecture using agiven
technology architecture. Its main focusis oper ation. One of the key objectives of a system
architecture isto provide atiering model that bet fits the operationd requirements of the system
(e.g., scaahility, physicd digribution, and fault tolerance).

2.3.2 Layered Architecture Reference Model

The following reference modd illusirates the key software architecture layers of a process-centric
information system. This modd is suitable for information systems used in the finance industry
because the great mgority of such systems support specific business processes.

Presentation

\

Process
|

BUSiNess Activity Workflow

Logic \

Action
\

Business Object

|
Data Services

>

The presentation layer is concerned with the displaying of datato and accepting input from the
user. Thislayer contains no business functiondity.

The process layer defines the end-to-end business processes of the organisation (e.g., ‘ open bank
account’). A process typicaly involves a number of persons and is pecified in terms of activities
and queues (aqueue is a place where an activity may deposit data for other activities to withdraw
from later).

Theactivity layer defines the activities that comprise the processes. Each activity is a process
segment that is performed by one person. For example, the ‘ open bank account’ process may have
an activity called * setup account information’.

www. pragsoft.com 18 UML Process



The action layer defines the pecific actions that each activity is broken into. An action represents
an aomic gep: it is either performed fully or not performed at al. For example, the * setup account
information’ activity may involve an ‘enter customer details action.

The business obj ect layer specifies the business objects that ultimately redlise the business
functiondities behind the business processes. Each business object represents akey entity in the
business domain. When an action is performed, it affects one or more business objects. For
example, the ‘enter customer details action will affect the * Customer’ business object.

The data services layer handles the querying and updating of externa data sources. The data
sources provide persistent storage for the business objects (e.g., for ‘ Customer’).

The process, activity, and action layers are collectively cdled the wor kflowlayer. These layers can
be supported using aworkflow engine.

The process, activity, action, and business object layers are collectively caled the business logic
layer. All of the businesslogic of the gpplication (e.g., validation, sequencing, and updating rules) are
contained by these layers. Consequently, the implementation of a transaction may encompassal
these layers.

UML Process 19 Copyright © 2005 PragSoft



3. Business Modelling

As dtated earlier, busness modelling is concerned with what the business does, and the business
model is described in purdly business terms.

3.1 Introduction to Business Processes

3.1.1 What Constitutes a Business Process?

A business process is Smply a st of well-defined and inter-related activities that collectively
transform a set of inputsinto a set of outputs (goods or services) using people and tools. Business
processes can be observed a many levelsin an organisation: within a business unit, across business
units, or across the whole organisation.

Of particular importance are end-to-end business processes. These go right across the business
units and are typicaly triggered by externa sources (e.g., a customer requesting a service).

Business Unit A Business Unit B Business Unit C

End-to-End Business Process

To appreciate the importance of end-to-end processes, consider the way information solutions are
often used in the finance indudtry.

Business units generdly have an internd focus that narrows their view to the loca processes that
exis within the unit. As a consequence, these loca processes drive their reguirements for
information solutions, and this results in applications that are built to specificaly support them. This
gives them what they want: solutions thet are tailored to their needs, and solutions that they can
exercise control over.

www. pragsoft.com 20 UML Process



Business Unit A Business Unit B Business Unit C

(End-to—End Business Procees)

Application P Application Q

@cal Process

CLocal Proves s
@cal Process

e

f Local Proc@

The problem with this gpproach is that it resultsin a sllo-style organisation thet istoo rigid in its
boundaries. A business never stays stationary. Business opportunities change, markets change,
customers change, technologies change, and so on. Given that change is aways present, an
organisation’s success will largely depend on its ability to accommodate change and to useit to its
advantage. The way an organisation designs its business processes and the information systems that
support them will, to alarge degree, determine its ability to dedl with change. Under the silo
gpproach, there is very little scope for moving the boundaries between the business units. Moving a
boundary too much will bresk the local processes and even split applications (asillustrated by the
above diagram).

|

Over time, however, boundaries must move so that the business can adapt itsdlf to change. The
accumulated effect of these changes is that processes become patchy and applications deteriorate
under pressure to conform to conflicting requirements. In other words, the more change takes place,
the less the organisation is able to cope with it.

3.1.2 Business Process Improvement

Rising customer demand for better and chegper products and services has forced most businesses
to serioudy consder process improvement in order to stay competitive. Most companies that have
embarked on process improvement have adopted the continuous improvement model, as
illustrated below.

Document Establish Follow Measure Identify and
Asls B Process [P the % Process [—®| Implement
Process Metrics Process Performance Improvements

I

This method is effective in generating gradua, incrementa process improvements. Over the last
decade, however, severa factors have accel erated the need to improve processes faster; most
notably:

UML Process 21 Copyright © 2005 PragSoft



New technologies (e.g., Internet) are rapidly bringing new capabilities to businesses, and hence
ralsing the competitive bar.

The opening of world markets and increased free trade are bringing more companiesinto the
marketplace, which isin turn increasing competition.

Asaresult, most companies that are hard-squeezed are no longer content with gradual
improvement, but are looking for breskthrough performance legps. This demand has led to the
emergence of amore radical approach caled Business Process Re-engineering (BPR).

3.1.3 Business Process Re-engineering (BPR)

BPR takes a different approach to process improvement which, & the extreme, assumes that the
current processis irrdlevant and should be redesigned from scratch. BPR proponents argue that we
should disassociate oursalves from the present, project oursalves into the future, and ask some
fundamenta questions:

What should the process look like?

Wheat do our customers want it to look like?

What do other employees want it to look like?
How do the best-in-class companies do it?

What benefit can we get by using new technology?

Thefollowing diagram illustrates the BPR gpproach. It begins with defining the scope and objectives
of the BPR project. A learning process next follows that involves customers, employess,
competitors, non-competitors, and the use of new technology. Based on this improved
understanding, anew set of ‘to-be processes are designed. A trangtion plan is then formulated
which aimsto close the gap between the *to-be’ processes and present. This plan isthen
implemented.

Scope Learn Create Plan Implement
BPR —®| From —® To-Be [—® Trandtion [—% Plan
Project Others Processes to Fill Gaps

Because of its clean date approach, BPR offers afar greater potentia for realising breakthrough
improvements.

3.2 Business Modelling Concepts

3.2.1 Abstraction versus Instance

Those with an understanding of object-orientation concepts would be familiar with the digtinction
between an abstraction (e.g., class) and itsinstances (i.e., objects). An abstraction depicts a
genera concept that has no physica existence, whereas an instance is a specific manifestation of
the abstraction that has physical existence. For example, ‘book’ is an abstraction that may be

www. pragsoft.com 22 UML Process



defined as *a collection of pages with text printed on them’, whereas “my copy of ‘A Brief History
of Time by Stephen Hawkins’ is an instance of the book concept.

This digtinction is equaly important when dealing with business processes, and dlows usto
differentiate between:

aprocess definition, which is provided as a recipe that describes the process in terms of its
congtituent parts, and

aprocess instance, which represents a specific case of performing the process.

The didtinction is Smilar to that between a cuisine recipe and someone' s specific attempt of following
the recipe to produce a dish. It isimportant to note that any given unique abstraction may have many
(potentidly infinite) ingtances. Abgtractions used in an information system (e.g., classes, business
processes) are defined only once, during the development of the system. Subsequently, these
abgractions are ingantiated numerous times during the operationd lifetime of the system.

3.2.2 Business Process Definition
A business processis defined in terms of these absiractions:

Triggers. These are events outside the process that cause the processto be instantiated (i.e.,
kick-off the process).

Activities. These are the building blocks of the process. The key difference between an activity
and a processis that, whereas multiple individuds typically perform a process, only one person
performs an activity. Therefore, it requires no further collaboreation.

Queues. As aprocess progresses from one activity to the next, there is aneed to hold the work
somewhere, until the person doing the next activity isfreeto pick it up. Thisisvery smilar to the
coneept of in-trays in an office. Y ou receive new work in your in-tray, where it piles up until you
can pick it up, do your bit to it, and put it in someone elsg' sin-tray. Queues enable a process to
be performed in an asynchronous fashion.

We will use the following symbols to depict these abdtractions:

| Process I Trigger > Activity Queue

The ubiquitous arrow depicts the flow between these abstractions. Process and Activity symbols
may have one of the following stereotypes.

Manual, implying that the process/activity is totaly manud (i.e,, is done by the user and involves
no interaction with a system).

Automatic, implying thet it is totally automatic (i.e, is done by the sysem and involves no
further interaction).

Semi-auto, implying thet it is partialy done by the user (e.g., checking paper forms) and partialy
by the system (e.g., the system checking certain calculations).

UML Process 23 Copyright © 2005 PragSoft



Generated, implying thet it is autometically generated by the sysem.

If no Stereotype is specified then this means that the process/activity is performed through the
interaction of the user with the system.

For example, consider an Individuad Tax Return process a the Taxation Office;

Mail Handler
. Ent Pendi
Individual Tax n (_er ending
. Details Returns
Return Received
Tax Clerk
R ted . Assess Processed «automatic»
equeste Return Returns Mailout
Info Received .~ Assessment
Auditable «generated»
Returns Audit Tax

Return

This process map States that the processis kicked-off by the Individual Tax Return Received
trigger. The Enter Details activity is performed by aMail Handler. Once this activity is performed,
the work is deposited into the Pending Returns queue. In the Assess Return activity, a Tax Clerk
takes the work from this queue and assesses the tax return. If the return has missing information,
then this information is requested from the return filer, and the activity is suspended until the filer
provides the requested information (i.e., Requested Info Received trigger). The outcome of the
assessment is either afully processed return, or theinitiation of atax audit. Processed returns go into
the Processed Returns queue and are then handled by the automatic Mailout Assessment activity.
Auditable returns go into the Auditable Returns queue and result in the automatic generation of an
Audit Tax Return process (defined elsewhere).

3.2.3 Activity Definition

As dated earlier, an activity is a process segment that is performed by one person. It is defined in
terms of these abstractions:

Actions. These are the building blocks of the activity. Unlike an activity, an actionis an atomic
step. Consequently, a user can perform an activity partidly (i.e., do some of its actions) and
complete the rest a some later stage. Thisis not possible with an action, which offers no further
breakdown to the user.

Branches. These can be used to constrain the flow of control between actions. Thereare 3
types of branches, dl of which have one-to-many or many-to-one cardindity:

An and branch impliesthat dl the ‘many’ actions to which it connects must be completed.
www. pragsoft.com 24 UML Process




Anor branchissmilar to an ‘and’ branch, except that at least one of the ‘many’ actionsto
which it connects must be completed.

Anxor branchissmilar to an ‘or’ branch, except that exactly one of the ‘many’ actionsto
which it connects must be completed.

Conditions. These dlow the flow of control to be redirected based on the outcome of certain
logicd conditions.

Documents. Most processes in the service sector deal with avariety of documents (e.g., letters,
bills, invoices). Documents are not only generated by processes/activities, they may aso serve as
input to other processes/activities.

We will use the following symbols to depict these abdtractions:

Toom | G2 () () oo [

Asbefore, an arrow depicts the flow between these abstractions. The manual, automatic, and
semi-auto stereotypes can be used with Action and Condition symbols. Additionaly, an action
may have the optional stereotype, implying thet, at the user’ s discretion, it may or may not be
performed.

Referring back to our earlier tax return process example, each activity in that process map is refined
into an activity map. For example, the Enter Details activity isrefined into the following activity

map:

Scan Return
———> ) Documents

«manual»
TFN
Specified?

Pending

| AND Returns

Lookup Tax Create New Link
—yes> ) Payer Record |—> Return —> )Return Record |—>|

Record and Docs

no

Create New
Tax Payer
Record

This activity map gates that the return documents must be scanned (Scan Return Documents
action) and the user must manualy check whether the TFN is specified on the return. If so, then the
tax payer’ s record islooked up on the system (Lookup Tax Payer Record action). Otherwise, a
new tax record needs to be created on the system (Create New Tax Payer Record action). Then a
new tax return record is created (Create New Return Record action), and the scanned documents
are linked with thistax record (Link Return Record and Docs action). Work is then passed onto

UML Process 25 Copyright © 2005 PragSoft




the Pending Returns queue. Note that this matches asmilar flow from the activity to the queuein
the parent process map shown earlier. The use of the and branch here sgnifies that the scanning and
the checking of TFN must both be done, but can be done in either order.

Smilarly, the Assess Return activity isrefined into the following activity map:

«semi-auto»
Is Return Info

Request Missing Info
——no—> )Missing Infol——p Request ——p

Complete?
i | Letter > Tax Payer
yes
«automatic» —
Calculate Any Significant Finalise Processed
Tax > Variations from /—no—>) Return Returns
Last Year?

yes

Specify
Audit
Reason

Auditable
Returns

Findly, the Mailout Assessment activity is refined into this activity map:

«automatic» Tax «automatic»
Generate | plAssessment ——p ) Envelop and
Assessment Notice Notice Stamp

L ——

Tax
Assessment ——p
Letter > Tax Payer

Both actions in this activity map are automatic, implying thet they are performed by the system
without humean intervention.

3.2.4 Action Definition

For the purpose of business process modelling, each action is defined informaly usng a narrative. It
isnot practicd at this stage to formalise the definition of an action, because thiswill reguire the

busi ness objects on which the action operates to have been defined. These business objects are
defined in the next phase (i.e,, requirements anayss).

Asan example of an action narrétive, here is how the Create New Tax Payer Record action in our
tax example may be defined:

Action: 4. Create New Tax Payer Record

Description: | Allowsthe user to key-in the details of ataxpayer, and creates arecord for the

www. pragsoft.com 26 UML Process



taxpayer.

Input: Details of atax payer (TFN is optional)

Output: Unique reference number for the record.

3.3 Use-Case Modelling

An dternative gpproach to producing a busness modd is to focus on the business functions rather
than the business processes. Thisis essentially what has been popularised as the use-case

approach.

Each use-case captures away of using the system, that is, a business function. Because use-cases
focus on the functiondity that the system will provide rather than the business processes that it

should support, the resulting system will be function centric. Consequently, this gpproach is suitable
for developing vertica gpplications, whereas business process moddling is better suited to enterprise

goplications.

To illugrate the difference between the two gpproaches, if we tried to modd the Individua Tax
Return process described earlier using use-cases, we might come up with the following use-case

modd.

Tax Return

o Scan Return
1 ——\__bocuments
. Record
Mail Handler\\ N~
\ Enter Details
\ T / Create New
Record

Link Record
and Docs

Specify Audit
Tax Clerk | Reason

\

Calculate Tax
Assess
Return

Finalise Return

X

Request Missing
Info

Tax Payer

The key differences with the process model are:

The activities (Enter Details and Assess Return) become use-cases that refer to lower-level

use-cases (which were actions in the process mode!).

UML Process 27

Copyright © 2005 PragSoft




Some of the actions (e.g., Scan Return Documents) become use-casesin their own right.
Thereisno longer aclear notion of flow of control or conditions.

If developed further, the use-case gpproach resultsin an application that does not convey or
enforce abusiness process. The user is expected to know the process and to use the application
to perform the steps that reflect his understanding of the process steps and their correct
sequence.

www. pragsoft.com 28 UML Process



4. Application Modelling

As dtated earlier, gpplication moddling is concerned with how systems support the business. It
produces an externa view of the solution, and does not assume any specific implementation
technology.

In gpplication modeling, we produce 3 types of modds.

Class diagrams, which depict the business objects underlying the business processes (or use-
Cases).

Scenarios, which illustrate how business objects exchange messages in order to support the
actions (or uses-cases).

User interface models, which illugtrate how the business functiondity is presented to the user.

4.1 Business Objects?

Business processes (and business functions) involve business objects. Each business object
represents amagjor abstraction in the business domain thet is characterised by data and behaviour.
The data represents the persistent state of the object, and the behaviours represent what can be
done to the object, which in turn determines how the data is manipul ated.

Given abusiness modd (expressed as process maps or use-cases), we must analyse it to identify the
business abjects. Thisisnot amechanica task and requires a good understanding of the business
domain and a bit of creetivity. For each object, we must identify:

Its attributes (these represent the persistent data that record the object state).

Its methods (these represent the behaviour of the object, i.e., the things that you can do to the
object).

Its relationships to other objects (e.g., does this object make use of other objects?)
Thisresultsin astatic mode (caled class diagram) that provides alot of information about the

objects, without saying anything about how they work together in supporting the business processes
Or Use-Cases.

4.1.1 Class Diagrams
The UML notation is used for defining a class diagram, and includes the following symbols:

Customer A rectangle represents a class, where the name of the class
(Customer here) appearsinsde the box.

! Theterm object is somewhat misleading here; what we really mean is* business class', because we are referring
to an abstraction rather than an instance. Unfortunately, the I T literature tends to use the term ‘ object’ to mean
‘object’ and ‘class'; the exact intention being implied by the context.

UML Process 29 Copyright © 2005 PragSoft



Customer

-name: String
-dob: Date
-address: String

+Update(): Boolean
+GetAccounts(): AccountList

Jack:Customer

1
Billing

Account

7

SavingAccount

Account ® Statement

Account [@—> Statement

| Account O Transaction |

Attributes and methods of aclass may optiondly be displayed insgde
it. Attributes appear immediately below the class name, separated by a
horizontal line from it. Methods gppear beneath the attributes, again
separated by a horizonta line. The amount of information displayed
can vary. For example, we can display just an attribute name, or the
name and its type. An attribute/method may have one of the following
ggns beforeit:

A minus (-) Sgn meansthat it isprivate.

A hash (#) Sgn meansthat it is protected.

A plus (+) Sgn meansthat it is public.

A classinstance usesthe same symbol as a class, except that a colon
precedes the class name (and the colon may be optionaly preceded
by the ingtance name). The resulting sring is underlined to highlight the
fact that it is an instance.

This symbol represents a package. Packages are used to organise
diagramsinto logica hierarchies. For example, we may have aclass
diagram that captures billing-related classes, another diagram that
captures accounts payable-related classes, and so on. Each of these
diagrams can be denoted by an appropriate package.

A link with a hollow arrow-head denotes inheritance. Here, for
example, SavingAccount inheritsfrom Account, which means that
SavingAccount inherits the aitributes and methods of Account and
may additionaly have its own attributes and methods. Account isa
generalisation and is referred to as a super class. SavingAccount is
aspecialisation and isreferred to as a subclass.

A link with a solid diamond denotes composition. Here, for example,
an Account is composed of (i.e., has) a Statement. This means that
Satement isan integra part of Account and cannot exist
independently of it. Composition implies bi-directional navigation: you
can navigate from Account to Statement, and vice-versa.

Thisisavariaion of compostion, cadled uni-composition. It implies
that you can only navigate from Account to Statement, and not the
other way round.

A link with a hollow diamond denotes aggr egation. Here, for
example, an Account is an aggregation of (i.e, refersto) a
Transaction. This meanstha Transaction can exist independently of
Account. Aggregation implies bi-directiona navigation: you can
navigate from Account to Transaction, and vice-versa.

www. pragsoft.com

30 UML Process



| Account |<>9{ Transaction|  Thisisavariaion of aggregation, caled uni-aggregation. It implies
that you can only navigate from Account to Transaction, and not the
other way round.

Account Customer | A plainlink denotes an association. Here, for example, Account is
associated with Customer .

Teller Products| A dotted link with an arrow-head denotes dependency. Here, for
Services example, the Teller Services package is dependent on the Products
package.

n Compogtion, aggregation, and association relationships may have
cardinalities. These appear as labels near the end-points of the link.
1.2 Here, for example, the cardindities state that an Account is associated
Customer with one or two Customers, and a Customer may be associated with
any number of Accounts.

Account

A relationship may aso have specified roles for the objectsto which it
is connected. Here, for example, Customer (s) have the role of

Account

signatories signatoriesin their rdationship with Account.
Customer
usinessy A word enclosed in «» is caled a ster eotype. It provides away of

extending the UML notation. Stereotypes may appear on classes,
packages, and relationships. Here, for example, a «business»
dereotype is used to distinguish Customer as abusiness class.

4.1.2 Example
An object andysis of our tax return process example might produce the following class diagram.

UML Process 31 Copyright © 2005 PragSoft



TaxPayer TaxReturn
TaxSys |~ . Document

-TFN -grossEarning n
-name < -deductions < -dociD

-address -taxPaid +Print()

-tel -taxBalance
-dob -taxYear ﬁl
+CalculateTax() -filingDate

+DoAudit() +CalculateBalance()

n +NewReturn() +GenerateAssessment() ScannedDoc | | GeneratedDoc
TaxAudit A
-auditDate

-reason "
-initiatedBy T ceount

-status -balance

S n
+Update() interest <> TaxStatement
+GenerateStatement()
+CreditDebit() TaxTransaction
-amount
n
? n -date
Document -txnType
-description

This diagram dates that the tax system (TaxSys class) is an aggregation of TaxPayers. Each
TaxPayer has zero or more TaxReturns, and each TaxReturn has an associated set of
Documents. A Document may be a ScannedDocument or a Gener atedDocument; furthermore, a
TaxSatement is an example of a GeneratedDoc. For each TaxPayer a TaxAccount ishdd
which records the tax owed by/to the TaxPayer. This TaxAccount has TaxTransactions recorded
agang it. Also, TaxStatements may be generated againg this account. Findly, a TaxPayer may be
subjected to TaxAudits. Each such audit may have various associated Documents.

It isworth noting that not al the information captured by this class diagram comes directly from the
process modd. For example, additiona questions need to be asked in order to identify the class
attributes and their relationships. Also, TaxAccount, TaxTransaction, and TaxStatement are not
even referred to by the process modd, but emerge out of further andysis of the problem domain. In
summary, to identify business objects, one should not be limited by the information provided by the
business processes; other useful sources of information should also be considered.

4.2 Scenarios

Having identified the business objects, we can now attempt to describe how each action (or use-
case) is supported by these objects. These descriptions are called scenarios and can be expressed
in two forms: as collaboration diagrams or as sequence diagrams.

4.2.1 Collaboration Diagrams

A collaboration diagram describes a scenario as the exchange of messages between objects. For
example, the CalculateTax action in our process example can be described by the following
collaboration diagram.

www. pragsoft.com 32 UML Process



1. CalculateTax () 2. CalculateBalance ()
. —> —
TaxSys

‘TaxPayer :TaxReturn

3. CreditDebit ()

4. Create()
:TaxAccount - :TaxTransaction

Each message is depicted by a smdl arrow, emanating from the object that issuesiit, and directed to
the object that receivesit. The receiving object must support the message (i.e., the message must be
one that is exposed by the receiving object). The messages are numbered to depict their logical
seguence.

The above diagram, therefore, Sates that TaxSys issues a Cal culateTax message to TaxPayer,
which in turn issues a Cal culateBal ance message to TaxReturn. When the latter returns, TaxPayer
uses the calculated tax balance to issue a CreditDebit message to TaxAccount, which inturn
Creates a TaxTransaction object to record the credit/debit. Upon completion of these messages,
control returnsto TaxSys.

4.2.2 Sequence Diagrams

A sequence diagram describes a scenario as the interaction among objects in time sequence. For
example, the above collaboration diagram can be represented as the following sequence diagram.

TaxSys :TaxPayer :TaxReturn :TaxAccount| | :TaxTransaction
—CalculateTax ()>

—CalculateBalance ()>]

CreditDebit ) ——>
—Create()——>

The time sequence is denoted by the verticd line below each object. Time flow is downwards.

UML Process 33 Copyright © 2005 PragSoft



4.2.3 Completed Business Model

With the addition of business objects and scenarios, we now have a complete business model that
conggts of four layers, asillugtrated below. Each lower layer contains arefinement for each of the
‘abdractions in the layer aboveit.

Activity
C

Business Focused

> <

Application Focused

v

The process layer defines the end-to-end business processes covered by the mode. The activity
layer specifies each of the activities that comprise the business processes in the process layer. The
action layer specifies each of the actions that comprise the activitiesin the activity layer. When an
action is performed, it affects one or more business objects (denoted by boxes in the third layer).

www. pragsoft.com 34 UML Process



The object layer specifies the business objects that ultimately redlise the business functiondities
behind the business processes.

4.3 User Interface Models

Two things make the user interface a crucid part of any business gpplication:
The user interface is the means by which the user is given access to the gpplication’ s busness
functiondity. Regardless of how sophigticated and comprehensive the underlying business

functiondlity might be, if the user interface is poor then al thiswill go to waste — the user will
never have the opportunity to benefit from it.

Ultimatdly it isthe user interface that shapes the way the user works. If the conceptud model
portrayed by the user interface is a close reflection of the user’ swork practices, then it will be
quickly understood and accepted by the user. On the other hand, if the conceptual model is so
complex, confused, or dien that the user finds it very difficult to relate to, it will put unnecessary
burden upon the user and reduce higher productivity. In other words, the user interface should
be designed to match the user, not the other way round.

Common sense dictates that user interfaces should be designed based on the principle of recognition
rather than recollection. A successful user interface is one that draws upon the background and
business experience of its usersto provide an intuitively obvious way of using it. A poor user
interface is one that requires extengve formd training and/or memorisation of an extengve lig of
commands and procedures.

4.3.1 Metaphors

Sengble use of metaphors can make a user interface much more accessible to its target audience. A
metaphor is “afigure of speech in which an expression is used to refer to something that it does not
literally denote, in order to suggest asmilarity”.

A user interface metaphor relies on a user’s familiarity with a common concept in order to suggest
how to do something unfamiliar. Grgphica User Interfaces (GUIs) are full of such examples.
Use of a‘trash can’ asameansfor deeting files.
Use of ‘drag and drop’ as a means for moving objects around.
Use of ‘desktop’ asaway of visudisng and organising your work.
Use of ‘directories asaway of organising files.
Etc.

Before we go about designing anew user interface, we should spend some time exploring potentialy
useful metaphors that can enhance the design. These should then influence the design.

4.3.2 Mock-ups
There are two ways to present a user interface design:

UML Process 35 Copyright © 2005 PragSoft



As dtatic images (hand-drawn or created using a desktop tool), with associated prose that
describes the dynamic behaviour of the interface.

Asalive mock-up created using avisua development environment (e.g., VB or Java).

The latter is dways preferred, for two reasons. Firstly, people find it easier to relate to a mock-up.
They can play with it and quickly come up with feedback about its good and bad aspects. Secondly,
experience suggests that a good user interface is amost never created in one go. It often involves
many iterations, during each of which the interface will undergo (sometimes mgjor) changes. It is
invariably more productive and more effective to do these changesin avisud development
environmen.

The creation of amock-up should be guided by the following principles:

The scope of the mock-up should be the business processes (or use-cases) that the application
will support. If someone suggests a screen or GUI ement that cannot be directly or indirectly
judtified in terms of this scope, it should be excluded.

The obj ective of the mock-up should be to show how a business process (or use-case) is
performed both in terms of the static information presented (i.e., screens) and the dynamic flow
between the screens.

Under no circumstances, a mock-up should be alowed to become anything more than a mock-
up. Thereisdwaysthe risk of some users or business decision makers concluding that smply
enhancing or ‘finishing’ the mock-up will result in the fina application. That iswhy thet the

pur pose of the mock-up should be clearly established and communicated up-front: to agree on
auser interface design, and nothing more. The mock-up must be understood as athr ow-away
artefact.

Involving potentia end-usersin the design process can save alot of time and energy. They not
only can come up with vauable ingghts and ideas that would have been inaccessible to the
technologists, they can aso become potentiad champions in introducing the user community to
the new application.

www. pragsoft.com 36 UML Process



5. System Modelling

As dated earlier, system modelling is concerned with how systems are realised using technology.
It produces an internal view of the solution, showing how its different partsinteract in order to
support the externd, gpplication view.

5.1 Multi-tier Architectures

Modern information systems tend to be distributed: they use a multi-tier, client-server architecture
that can support the non-functional requirements of the system. These requirements often involve:

Geographic distribution. Mogt large businesses are geographically distributed and require their
information systems to be accessible irrespective of geographic boundaries.

Scalability. Once implemented, an information system may be required to serve the needs of a
growing user base. It should be possible to scae the system by increasing the computing
resources, and without resorting to design changes.

Heter ogeneous computing environment. Most organisations have a multi-vendor computing
environment, congting of incompetible hardware and system software. An information system
may be required to operate across the boundaries of such incompatible domains.

Didribution of an information system involves tiering, which divides the system into separate
partitions that can run on separate (but networked) physical resources.

Tiering should not be confused with layering or, put differently, a software tier isnot the same asa
software layer. A software layer isaconceptuad abstraction, which packages a defined set of
functiondities and makesiit accessible through alogicd interface. A softwaretier, on the other hand,
isthe physical packaging of the implementation of one or more software layers.

Layering and tiering are the means through which an architect logicaly and physicaly partitionsa
system, respectively. The software layers are defined during gpplication modelling, whereas the
software tiers are established during system moddlling. Layering affectstiering. By defining layers, an
architect is providing opportunities for creating tiers.

Early client-server sysems were mainly two-tier ed, conssting of afront-end and a back-end tier.
Under this modd, the front-end (also known as afat client) contains the presentation as well asthe
business logic, and the back-end conssts of a database system. A two-tiered systemisinflexiblein a
number of ways:

Thereisno logica separation between presentation and business logic, which makes
maintenance difficult.

The system is not scalable.

In most cases, the system lacks openness, because it is based on a vendor’ s proprietary
technology (e.g., database vendor’ s technology).

UML Process 37 Copyright © 2005 PragSoft



Modern client-server sysems are mainly three-tier ed, where the busnesslogic is separated from
presentation and occupiesits own middle tier. This gpproach provides abasis for overcoming the
shortcomings of two-tiered systems.

Two-tiered System

Presentation &
Business Logic

Y
2
o
5

i e

The main chdlenge of building an effective three-tiered sysem isin designing and building the middle
tier. Thistier needs to be designed in away that ddivers al the promised advantages of three-tiered
sysems.

Back-end Tier:

e s e T

i

It needs to remove the business logic from the front-end, so that the front-end only deals with
presentation concerns. Thisis known asthe thin client approach.

It needs to componentize the business logic in away that can be distributed across hardware
resources so that it becomes scalable.

It needs to provide open interfaces o that other systems can be integrated with it with minimal
effort.

The middletier is often designed such that it can be subdivided into further tiers— hence theterm n-
tier ed —to achieve greater scaability and to provide additiona open interfaces. For example, it may
be broken into these three sub-tiers:

A dynamic content tier that generates the content to be presented by the front-end.
An application tier that realises the business processes offered by the system.
A business object tier that reslises the business objects underlying the system.

Productive development of the middie tier requires the use of middlewar e technology, which
provides the necessary tools for packaging the tiers, defining the interfaces between them,
communication across the tiers, and transaction management. These are complex, system level
activitiesthat are well beyond the scope of atypicd project. Middleware diminates the need to
work & thislevel, and provides ardliable basis for the project to focus on developing business
functiondity.

www. pragsoft.com 38 UML Process



Component technology goes a step further from middleware technology. It also provides ameans
for packaging functiondity so that it is highly independent and reusable. Whereas middleware dlows
one to develop business functiondity without dealing with low-level system issues, component
technology aimsto provide abasis for productively developing new functiondity by reusing an
existing set of components (as well as creating new ones for future reuse).

System moddling must dedl with al theseissues Specificaly, it must:
Deliver aproper tiering modd into which the software layers map.

Define the abstractions (e.g., components) that comprise each tier, and show how they support
the gpplication modd.

Sdlect the technologies that are to be used to build the system (e.g., middieware/ component
technology, persistence technology, presentation technology, scripting technology).

5.2 Front-End Models

Under the thin client architecture, the front-end dedls with presentation only. Based on the
requirements, the front-end may be designed according to one or more of the following models:

Conventional client. Thisisatraditiond style GUI dient that involves intensive interaction
between the user and the system (e.g., asin a spreadsheet, aword processor, or aCAD
system). These interfaces go beyond the smple input/output of datain most business
applications, and require the lower-level controlling of the windowing system to deliver the
expected performance and ease of use. Although the client is not fat, it does not have a zero
footprint, asit needs to contain components that can support the interaction and communicate
with the middle tier.

Page-based client. Thisis abrowser-based client (i.e,, runswithinaHTML browser) with zero
footprint. The interface congsts of a set of web pages, through which the user enters and/or
views data. A web server in the middle tier receives the data entered by the user, and generates
the dynamic HTML to be displayed by the browser.

Content-based client. Thisisaso a browser-based client, but isimplemented as a downloaded
applet that runsin the browser and communicates with aser vlet in the middle tier’ sweb server.
Thisis useful when we need to provide functiondity directly at the front-end that helps a user
organise and interact with the system. In this case, the server exchanges raw content (typicaly
expressed in XML) with the client instead of HTML pages.

Because of their amplicity, flexibility, and web-readiness, more and more business applications are
adopting the page-based and content-based styles. The key difference between these two is the
point of control for presentation. With a page-based interface, the client receives preformatted
presentation (i.e., HTML) from the middlie-tier, which it cannot dter. In this case therefore, the
middle-tier determines presentation. In a content-based client, however, the middle-tier ddlivers raw
data (i.e., content) to the client, and it is up to the client to determine how to display it. Thisis closer
to the conventionda client modd.

UML Process 39 Copyright © 2005 PragSoft



The following table provides a useful comparison of the three styles of dlients. Y our choice should
be guided by the extent to which a given style best matches your requirements. It is not uncommon
for asystem to provide two or al of these stylesfor the same system, but targeted at different users.

Client Type Presentation | Can Dedliver | IsWeb Requires Interaction
Determined Dynamic Enabled Client Overheads
By Content Installation

Conventional Client Client No No Yes Low

Page-based Client Middle-tier Yes Yes No High

Content-based Client Client Yes Yes Dynamic Medium

5.2.1 Screen Specifications

By the end of gpplication moddling, the user interface concept (including mock ups) should have
been egtablished, so that once system modelling commences, the expected ook and fed of the user
interface (and the underlying metaphors) iswell understood.

Although the user interface concepts developed during application modelling include the actud
screens, they do not get into the details of each screen. The layout of each screen is rough and not
finalised, the widget types and the type of data to be displayed in each widget is not fully specified,
and the data entry vdidation rules are excluded. These details are specified during sysem modelling.

Each screen in the user interface (e.g., awindow, a diadog box, or aweb page) needsto be
spedified, induding:
A picture of the actud physicd layout of the screen. If possble, thisis best produced using the
tools that come with the development environment. Most such environments are visud and
provide resource editors for painting the GUI screensin an interactive fashion. This has the
advantage that the screens can be used ‘asis later in the development cycle.

For each element (i.e., widget) in the screen, the data associated with that €lement needs to be
identified and its type specified. In most cases, this data is expected to map directly to an
atribute in a business object.

The vdidation rules for the screen dements need to be defined. These gpply at two leves: (i)
fidd-leve vdidation rules gpplicable to agiven dement (e.g., vaid date), and (ii) screen-leve
validation rules that operate across dements (e.g., ‘ Start date’ should predate ‘ end date’).

5.2.2 Navigation

The navigation paths across user interface screens need to aso be defined. In a conventiond
interface, for example, this may involve specifying how an action performed in one screen (eg.,
pressing a button) leads to the display of another screen. In aweb-based interface, thiswill dso
involve the specification of the hyper links.

www. pragsoft.com 40 UML Process



5.2.3 Boundary Objects

Under object technology, the user interface is developed as a collection of boundary objects. A
boundary object isavisud object that handles the interaction between the system and the end-user.

For example, consider the ‘ Create New Tax Payer Record’ action in our tax office modd. In this
action, the user (aMailHandler) entersthe details of the taxpayer into aform, which in turn crestes
anew TaxPayer object and addsit to the sysem. The following sequence diagram illugtrates this
scenario.

:TaxPayerForm payer:TaxPayer :TaxSys

Mail Handler

——enter details —>

Create()—>|
AddTaxPayer(payer)———>

TaxPayer Form is an example of aboundary object. It collects the required information from the
user and communicates it to the rest of the system.

In this case, it should be obvious that the contents of the form will closely resemble the attributes of
the business object it corresponds to. The following design considerations are worth noting.

Given that a change to a business object attribute will result in asimilar change to the boundary
object, agood design will atempt to minimise this overhead. Under the conventiond client
modél, thereis not much that can be done. A browser-based client, however, can dleviate this
problem by using an intermediate generator object that can take a meta-data specification of the
object and generate a matching boundary object for it.

Field-leve vdidation rules should be the responsibility of the boundary object. Smple field-level
vaidation rules (e.g., numeric value) can be directly encoded into the boundary object. More
complex field vaidation rules should be handled by invoking methods on objects that can
perform the validation on behaf of the boundary object. Any form of vaidation that requires
database access (e.g., valid postcode) is best handled by an object in the middle tier. Other
complex filed vaidation rules (eg., vaid date) can be implemented by utility objects availablein
the front-end and shared across the user interface.

Screen-level vaidation rules should be the responsbility of the underlying business object. For
example, when requested to create or modify a business object, the business object should
perform the necessary validations to ensure that the resulting object will be vdid.

In favour of better usability, more and more modern user interfaces incorporate dynamic behaviour.
A typicd example of thisis when the value entered into a given form field affects the remaining fidds,
which may be enabled/disabled or displayed/hidden as aresult. For example, in an account form,

UML Process 41 Copyright © 2005 PragSoft



choosing a certain *account type’ may result in the rest of the form being atered so that only
information relevant to that account type is displayed.

Als0, there are cases where the relationship between a screen and the underlying business objectsis
oneto many. For example, a‘fund transfer’ screen typicaly involves two account objects, and an
‘account summary’ screen may involve an account object and alist of transaction objects.

Dynamic screens and screens with one-to-many business object relationship are best supported
through proxy objectsin the middie tier. Coding these complexities in the proxy object rather than
the boundary object results in greater decoupling of the two tiers.

Finaly, most modern interfaces are required to support pick lists. A pick listisaligt of posshble
vauesfor afield, which the user can smply choose from, rather than entering the vaue directly. Pick
lists may be gtatic or dynamic. A gatic pick list provides alist of vaues that remain forever fixed
(eg., aligt of 12 monthsin the year). A dynamic pick list provides alist of valuesthat change over
time (e.g., alist of available products). Static pick lists are smple enough to be coded directly into
the boundary object. Dynamic pick lists should be implemented in the middle tier and made available
to the front-end through appropriate interfaces.

5.3 Middle-Tier Models

The middletier isby far the most complex part of any 3-tier client-server system. Thisis where the
bulk of the development effort should go to ensure aresilient design that can best cope with future
changes. The scalability of the system, in particular, is directly impacted by the design of the middle
tier.

The middle tier must achieve the following:
Redlise the business processes defined during business moddling.
Release the business objects defined during gpplication moddling.
Implement transaction control (using the chosen middleware).

Provide the services required by the front-end through a well-defined interface.

Manage efficient communication with the back-end to ensure perastence for the relevant
objects.

Partition the middle tier into components that can be distributed across physica resources with
minimal overheads

The middle tier is constructed using three types of objects. entity objects, control objects, and
boundary objects. These are discussed below.

5.3.1 Entity Objects
An entity object is a persgstent object that participates in transactions. The main entity objectsin a
system are the business objects themselves. Idedlly, the persistence of an entity object is managed

www. pragsoft.com 42 UML Process



by the middleware. Where thisis not the case, the entity object itsalf is responsible for issuing back-
end requests to maintain its own persistence.

Each business object pecified during gpplication moddling isimplemented as an entity object. For
example, in our tax office mode, TaxPayer, TaxReturn, and TaxAccount are dl entity objects. If
these objects are specified fully during application moddling then their implementation as entity
objectsisfarly straightforward. In practice, however, thisisrarely the case. Often additiona
anadysisis required to pin down the business rules for each such object, and to devise appropriate
agorithmsfor the non-trivid methods.

The implementation of an entity object should satisfy two things: (i) it should conform to the object
specification, and (ii) it should preserve the relationships between the objects. For example, in our
tax office modd, there is a one-to-many aggregation relationship between TaxPayer and
TaxReturn. The methods of these objects must ensure that this relationship is not violated.

Another important implementation congderation is that, ideally, an entity object should make no
assumptions about the underlying data representation for object persstence. This ensures that
changes to the data modd will not directly impact the entity objects.

It isworth noting that not al entity objects are business objects. For example, consider a
‘workspace’ object that remembers the position of the windows for a given user and their
preferences. This object needs to be persistent so that the next time the user logsin, hisher
workspace can be restored. Another example is an object that records transaction related Statistics
for audit or tuning purposes.

An important property of an entity object isthat it is shared by al users, i.e, different users can
engage in different transactions that potentially impact the same entity object. Of course, such
changes cannot occur concurrently. It isthe respongbility of the transaction management mechanism
of the middleware to manage this.

From a design point of view, because entity objects are persistent (i.e., require database 10), they
consume precious resources. The middle tier design, therefore, should try to exercise control over
the number of entity objects that need to be kept in memory at any point in time.

Most middle tier designs employ techniques such as smart pointers, object caching, and database
connection pooling to reduce the load on the resources.

5.3.2 Control Objects

A control object Sits between boundary and entity objects, and performs atask on behdf of the
boundary object. In other words, a control object is an extension of a boundary object. Rather than
implementing the task directly indgde the boundary object (tight coupling), the task isimplemented
independently (loose coupling). This provides enormous flexibility. Specificaly:

Changes to the boundary object will not necessarily impact the control object, and vice versa.

UML Process 43 Copyright © 2005 PragSoft



The control object can be remoted, so that it runs on a server, independently of the boundary
object. This has the added advantage that the control object can be shared between a number
of dients

Unlike entity objects, control objects are non-persistent, i.e., they do not need to maintain state
beyond the scope of the task they perform. However, some control objects may need to maintain
date for the length of the task (i.e., duration of conversation with aclient). Based on this, control
objects are divided into two categories.

A stateful control object needs to maintain the state of some (or dl of) its attributes for the
duration of the conversation with its client. When the client finishes with the control object, the
state disappears. For example, a PolicyValue control object would need to remember the
policy number attribute of the control object for the duration of the conversation.

A stateless control object does not maintain a conversationd state for a particular client. When
aclient invokes the method of a stateless object, the object’ s instance variables may contain a
date, but only for the duration of the invocation. When the method is finished, the state is no
longer retained. For example, a CommissionPayment control object would require no state due
to its atomic nature.

Except during method invocation, al instances of a stateless control object are equivaent, and hence
can be assigned to any client. Because statel ess control objects can support multiple clients and
require no persistence, they can offer better performance and scalability for gpplications that require
large numbers of dlients. Asarule of thumb, therefore, you should avoid using stateful control
objects unless you redly need to.

In generd, each transaction isimplemented in the middle-tier by a control object. The control
object isitsdf respongble for transaction contral (i.e., commit and rollback). In some cases, this
responsibility may be abstracted by the middleware through deployment descriptors.

However, not dl control objects implement transactions. A control object may aso implement a
guery. For example, aquery to retrieve the last 20 transactions for a given account may be handled
by a control object. This control object retrieves the account and the transactions (all entity objects)
and makes them available to the client as required. This gpproach is particularly useful for queries
that may return very large lists (e.g., retrieve dl the transactions for a given account). Given that
entity objects are expensive, the control object can be implemented to do this smartly. For example,
it may retrieve only alimited number of transactions a atime, and retrieve additiond transactions
only when the client needs them.

Proxy objects that support boundary objectsin the front-end tier (as described in Section 5.2.3) are
aso examples of control objects.

5.3.3 Boundary Objects

The interface between the middle-tier and the other tiers may involve boundary objects. For
example, where the middle-tier isimplemented as a CORBA server, the CORBA interface exposed

www. pragsoft.com 44 UML Process




by the middle tier consgsts of boundary objects. Such boundary objects, however, are essentialy
wrappers and provide no further functiondity. They smply adapt atier’ sinterface to aformat that is
agreed with another tier.

5.3.4 Long Transactions

The implementation of transactions as control objects was discussed earlier. These transactions are
known as short transactions, i.e., they correspond to atask performed by a client at a specific time
(e.g., trandfer funds from one account to another).

There is another class of transactions, known as long transactions, which span beyond one task. A
long transaction congsts of a number of tasks, performed by potentialy different users, and a
different pointsin time. For example, in a process-centric system, an end-to-end process (e.g.,
home loan gpplication) may be regarded as along transaction.

Long transactions are generdly very complex and pose a number of challenges:

Two or more long transactions can overlap by operating on the same entity objects, with no
guarantee that al will commit.

Because along transaction is performed in a piecemed fashion, it has to cope with possibly
modified entity objects between its successve steps. Also, when the transaction is about to

commit, it needs to verify that interim modifications to the entity objects have not invaidated
earlier steps.

Rolling back along transaction may be anon-trivia task, because other transactions may now
be relying on the modifications made by the transaction to entity objects.

Unlike a short transaction, along transaction needs to be implemented as a pergstent object.
The transaction may take hours, days, or even months to complete, during which time the users
participating in the transaction may login and out a number of times, and the system may be
restarted.

These complexities go beyond virtudly al middleware products transaction management
capabilities. Also, effective management of along transaction often requires access to relevant
business rules, which reside well beyond the middleware domain. As aresult, when long transactions
are used, the middle-tier needs to implement its own long transaction management fecility. This
fadility needs to implement the following:

Transaction persistence (i.e., redlisation as an entity object).

Versioning of entity objects The entity objects modified by along transaction need to be
versioned to avoid the problem of overlapping transactions modifying the same entity object in
inconsgtent ways. Versioning can ensure that changes made by overlapped transactions are
mutudly excluded.

Version reconciliation. If atransaction is performed on the basis of an old version of an entity
object, when committing, the transaction needs to reconcile itself againg the latest verson of the
entity object.

UML Process 45 Copyright © 2005 PragSoft



Transaction rollback. With proper versoning of entity objects, thiswill be sraightforward (i.e,
smply throw away the changes made by the transaction).

An unusud aspect of long transactionsis that occasiondly there may not be enough information to
reconcile entity object versons at commit time. Thiswill necesstate asking the user to make the
decison.

5.4 Back-End Models

The back-end tier of athree-tier client-server system is conceptudly quite smple: it provides the
persstent storage for the entity objects of the middletier. Thistier provides two things:

A datamodd for the storage of the objects.
Adapter objects for accessing and updating the data

5.4.1 Data Models

For a bespoke system, a new data model needs to be synthesized. The input to this processis the
object modd cresated during application modelling and later enriched by system modelling. In most
cases, thisis achieved by:

Mapping each entity object to atable.

Identifying appropriate keys for each table, based on the access paths required by object
methods.

Moddling the relationships between objects either using keys or additiona tables. There are
three possible cases:

A one-to-one relationship can be modelled using akey in ether or both tables. For
example, there is a one-to-one relationship between TaxPayer and TaxAccount, and this
can be represented by having a TaxPayer key in the TaxAccount table, and/or vice versa

A one-to-many relationship can be moddled usng akey in the ‘many’ table. For example,
aone-to-many relationship between TaxPayer and TaxReturn can be represented by
having a TaxPayer key in the TaxReturn table.

A many-to-many relationship can be moddled using an additiond table, which combines
the keys for both tables. For example, a many-to-many relationship between Customer and
Account can be represented by a CustAccRel table that has attributes for recording the
keys of both tables.

Any non-trivial system, however, poses further data modelling challenges that need to be addressed.
One of these involves the issue of inheritance and how to modd it a adatalevel. There are no strict
rules for handling inheritance, but the following two guidelines cover dmost dl cases

Where an inheriting object adds very few attributes to the inherited object, use the same table to
represent both. Obvioudly the table needs to include the attributes of both objects, and where an
object does not use a certain attribute, that attribute is Ssmply ignored. For example,
specidisations of an Account object (e.g., LoanAccount, SavingAccount, ChequeAccount)

www. pragsoft.com 46 UML Process




are likely to add very few additiona attributes. In this case, it makes sense to have one Account
table to represent al account types. An additiond attribute in the table can be used to denote the
account type.

Where the inheriting object adds many more attributes to the inherited object, use a separate
table for ether, and include akey in the ‘inheriting’ table to refer to the ‘inherited’ object’ stable.
For example, a ContactPoint object may have speciaisations such as Physical Address,
TelecomAddress, and WebAddress. These arefairly digoint, so it makes sense to have atable
for each.

The degree to which the data model needs to be normalised is a database design issue and should
be determined by the DBA.. One of the advantages of OO modelling isthat it tends to result in data
models that are highly normalised.

The ER datamode synthesized from the object model needs to be kept in sync with it. Processes
need to be put in place to ensure that developers work off a consistent set of object and data
models. Experience has shown that this is an area where most projects encounter avoidable
problems.

Where legacy systems are involved (asis the case in most client-server projects), additional
congraints are imposed. If al the data for the system isto be sourced from legacy systems, then this
rules out the possibility of developing a brand new and clean data model. Instead one has to adapt
the data provided to serve the needs of the middle-tier (and vice versa).

These congtraints should be absorbed undernesath the business object layer and should never be
exposed beyond it. Any higher-level component that uses the business objects should not have to
(or be dlowed to) assume any knowledge about the underlying data model. This decoupling
minimises the impact of adata mode change on the rest of the system.

5.4.2 Data Access Objects

Depending on the data model, there may or may not be aneed to have an additiona layer to
manage access to data. For example, in abespoke system with a clean, new relationa data modd,
the business objects may access this data through an open interface such as ODBC or JDBC. No
additiona processing is required.

However, where legacy systems are involved, there may be a need to perform additiona processing
to adapt the legacy data to the format required by the business objects. For example, a business
object layer that talks XML isincompatible with a data layer conssting of CICS/COBOL legacy
systems. This can be overcome by developing adapter objects that map the data between the format
used by the business objects and the format required by the legacy systems. These objects may dso
perform additiona house keeping as relevant to the legacy systemsinvolved.

UML Process 47 Copyright © 2005 PragSoft



6. Testing
There are two philosophica views on the purpose of software testing:

The purpose of software testing is to demondirate that there are no defects.
The purpose of software testing isto detect defects.

The problem with the first view isthat it promotes the wrong psychology — it encourages the testers
to come up with test cases that are likely to run successfully, rather than ones that break the
software.

The second view is based on the premise that any non-trivid application will aways contain defects.
Thetrue value of tegting is to detect as many defects as is economicaly feasible (and then to fix
them) in order to increase confidence in the rdiability of the gpplication.

6.1 Introduction

Testing should take place throughout the development lifecycle, so that defects are detected and
fixed at the earliest opportunity. Most artefacts produced during the development lifecycle can be
tested if they are expressed in appropriate notations. For example, we can test a business process
by passng hypothetical casesthrough it to check if there are any gapsin the flow or logic.

Extengve testing, however, cannot be undertaken until executable code has been produced.
Because code is the ultimate artefact of software development, it should be subject to more testing
than other artefacts.

6.1.1 Testing Process

The underlying process for dl forms of software testing is the same, and should adhere to the
following principles.

Before testing can begin, atest plan must be produced. The test plan defines a set of test cases, the
completion criteriafor the tests, and the environment required for performing the tests.

Eachtest case in atest plan condgts of two things. test data and expected result. When atest
case is performed, the software is exercised using the test data and the actual result is compared
againg the expected result. A match or discrepancy is then recorded in thetest log. Thetest logisa
record of the test cases performed and their outcome.

A test plan must conform to a defined test strategy, which provides an overdl framework for al
the different forms of testing for an application.

6.1.2 Testing Approaches
There are two generd gpproaches to testing: white box testing and black box testing.

www. pragsoft.com 48 UML Process



Inwhite box testing, test cases are formulated based on the internal design of the artefact being
tested. For example, if the artefact is the code for a class, then we can use the internd logic of the
classto cregate test cases that exercise dl control flow paths through the code, so that every
Statement is executed at least once.

In black box testing, the artefact being tested is treated as a black box that, given a set of inputs,
produces some output. This means that no knowledge of the internal design of the artefact is
assumed. Test cases are created based on the range of the input vaues that the artefact should
accept (or rgect) and thelr relationships to the expected output values.

White box testing is more applicable to lower-leve artefact, such as functions, classes, and
components. Black box testing is better suited to higher-levd artefacts, such as application modules,
applications, and integrated systems. Given that white box and black box testing tend to expose
different types of defects, it is generadly recommended that a combination of the two be used in the
development lifecycle in order to maximise the effectiveness of testing.

6.1.3 Testing Techniques

A number of different testing techniques have been devised for use at various stages of development.
Onits own, no one technique is sufficient to produce adequate test cases. The techniques, rather,
serve as atoolbox that test designers can utilise to design effective test cases. The most widdly
recognised techniques are:

Coverage testing. Thisisawhite box technique that attempts to achieve a certain level of code
coverage. Typica types of coverage considered are:

Statement coverage requires that enough test cases be created to exercise every statement
in code at least once.

Branch coverage requiresthat dl the dternatives of every decision branch in the code be
exercised at least once.

Condition coverage requires the true/false outcome of every condition in the code is
exercised &t least once. Thisis not the same as branch coverage, snce the logica expression
for abranch may, for example, be a conjunction of multiple conditions.

Boundary valuetesting. Thisis ablack box testing technique, where test cases are written
such that they involve input or output values that are around the boundary of their permissible
range. For example, if afunction takesa‘day of month’ argument then values such as-1, 0, 1,
30, 31, 32 are around the boundary of permissible values and would be good input test data.

Cause effect graphing. Thisisawhite box technigue that involves mapping out the logical

rel ationships between causes (input values representing a meaningful condition) and effects
(output values representing a corresponding meaningful outcome). An example of a cause might
be a‘ positive amount in atransaction’ and its corresponding effect may be ‘an account being
credited’. Once all the possible causes and effects have been listed, then test cases are designed
such that each cause and dl its potentia effects (and each effect and its potentia causes) are
exercised at least once.

UML Process 49 Copyright © 2005 PragSoft



Domain analysis. Thisisablack box technique that involves anadysing the domain of each
input value, and subdividing it into sub-domains, where each sub-domain involves ‘similar
vaues inthe sensethat if you use one of these values in atest-case, it will be as good as any
other value in that sub-domain. For example, the domain of an ‘amount’ input vaue might be
subdivided into the ranges 0-1000, 1001-100,000, and >100,000; these three sub-domains
being different from an authorisation point of view. Based on the outcome of domain andysis, a
minimum number of test cases can be designed that will have ahigh yield, by avoiding the use of
‘amilar’ valuesin separate test cases.

Error guessng. Error guessing involves usng your imagination to come up with test cases thet
are likely to break the artefact being tested. There are no particular rulesin thistechnique,
except that the more unusuad and nonsensica the test-cases, the more likely is their effectiveness.

One point that is often overlooked by test case designersisthe use of erroneous input data. It is
important that testing should involve a least as many invalid or unexpected input values as vdid or
expected ones. Once an gpplication goes live, it will be usad in ways that go beyond the origind
expectations of its designers. It isimportant that the gpplication behaves gracefully in face of invdid

or unexpected input data.

6.1.4 Testing Stages

During its development lifecycle, software is subjected to testing at a number of stages, as
summarised by the following table.

Stage Type of Testing By Who Purpose
After a‘unit’ has been Unit Testing Developers | To detect any variances between
coded. the “unit’ behaviour and its
specification.
When a number of units Integration Testing | Developers | To detect any discrepanciesin the
are combined to create an interfaces between the units (e.qg.,
executable module (e.g., a mismatching message format
tier in adistributed between two components).
application).
When the modules are Integration Testing | Developers | To detect any discrepanciesin the
combined to create an modules that makes up the
integrated application (e.g., application (e.g., aclient expecting
al thetiersin aclient- aserver to send asingle record in
server application). response to a request, whereas it
actualy sends alist of records).
When an integrated System Testing Test Team | To detect any variances between
application is robust enough the way the application behaves and
to undergo extensive testing its officia reguirements mode (e.g.,
(e.g., after al cross-tier arequest should take < 5 seconds,
mismatches have been whereas in practice it takes 30
fixed). seconds to complete).
When an gpplication is Integration Testing | Test Team | To detect any discrepanciesin the
required to inter-operate interfaces between applications
www. pragsoft.com 50 UML Process




with other applicationsin an (e.g., achange of employee address

enterprise solution. is reflected in the company Intranet,
but not in the payroll application).
When asolution is Acceptance Testing | Customer | Thisisthe only type of testing
delivered to its intended performed by the customer. It gives
customer. the customer the opportunity to

verify the fit of the application with
respect to their requirements,
before officialy accepting the
goplication.

Asindicated by thistable, integration testing comes in various forms and happens a a number of
sages. Unfortunately, most publications on testing refer to integration testing asiif it only happens
once in the development lifecycle, and this has led to much confusion. The confusion can be avoided
by bearing in mind that integration testing should happen whenever a number of artefacts of smilar
characteritics are combined, be they classes, components, modules, application tiers, or entire
aoplications.

System testing is by far the most labour intensive testing stage, because there are so many different
types of tests that need to be performed. Because of the specidised nature of system testing, it must
be performed by a dedicated test team that specidisesin thisarea. In particular, it should never be
done by the deve opers themsalves, since they neither have the required expertise, nor the
appropriate psychologica profileto do it effectively.

In most projects, the customer relies on the developers to help them with creating an acceptance test
plan. Because of the extensive nature of system testing, virtualy everything that needs to be verified
in acceptance testing is likely to have been tested for in system testing. As aresult, acceptance
testing often involves a subset of the test cases used for system testing.

6.1.5 Regression Testing

With any type or stage of testing, one hasto ded with the problem of tested artefacts being
modified. The dilemmaisthat, on the one hand, we are avare that the modifications may well have
introduced new defects and, on the other hand, we do not want to incur the overhead of completely
retesting the artefact every time we make changesto it.

The am of regression testing isto check if the modifications have caused the artefact to regress (i.e,
have introduced new defectsinto it). It should be obvious that unless regression testing can be done
quickly, the whole development cycle grindsto a hdt. There are two ways of regression testing
productively:

By sdlecting ahigh yield subset of the origind tests and only running these,

By using appropriate testing tools to automate the testing process, so that they can be performed
with minima humen intervention.

UML Process 51 Copyright © 2005 PragSoft




The latter is much more effective, but does involve a greater upfront investiment in creeting the test
scripts required by the automated testing tools.

6.2 Test Planning

Successful testing requires gppropriate planning. Given that test planning requires substantial amount
of effort and a consderable length of time, the actud planning must begin well before the artefacts to
be tested are ready for testing.

Tegt planning covers four key activities:
The cregtion of atest strategy thet will guide dl testing activities
The cregtion of test plans for the different stages of testing.
The setting up of the test environment so that the test plan can be carried out.
The cregtion of test scripts for automated testing.

These are separately discussed below.

6.2.1 Test Strategy
The test drategy provides an overdl framework for al testing activities in a project (or group of

related projects). This may sound motherhood and unnecessary but, in practice, it can have a
sgnificant impact on the way testing is carried out.
The primary objectives of atest Srategy are to:

Ensure a consistent gpproach to testing at al stages.

Spell out the things that are crucia to the project asfar astesting is concerned (e.g., iteration
speed, robustness, compl eteness).

Provide guiddines on the relevant testing techniques and tools to be used.

Provide guiddines on test completion criteria (i.e., define what is ‘ good enough testing’), and the
expected amount of effort that should go into testing.

Provide abadsfor reusing test cases and identifying areas that can benefit from autometion.
Egtablish standards, templates, and the deliverables that need to be used/produced during
tegting.

6.2.2 Test Plan

A test plan is a documentation of the test cases to be performed and associated instructions for
performing the tests. Two levels of test plans are often used:

A master test plan isused to identify the high-level objectives and test focus aress.

A detailed test plan is used to document the test cases produced as aresult of andysing the
test focus areas identified in the magter test plan.

www. pragsoft.com 52 UML Process



6.2.3 Test Environment

The computing environment to be used for conducting the tests needs to be planned, so that it is
ready for use when testing commences. Issues to be considered include:

Construction of test harnesses. A test harnessis a software tool that can be used to invoke the
software being tested and feed test datato it. A test harnessis necessary when the software
being tested cannot be executed on its own (e.g., a component). Test harnesses are particularly
vauable during the earlier sages of testing (e.g., unit testing).

Setting up of test boxes. Later stages of testing (e.g., System testing) require the use of *clean’
test machinesthat are set up specificdly for the purpose of testing. Unlessthe test machineis
‘clean’, when an error occurs, it is difficult to determine whether it is due to the effect of existing
software and historical sate of the machine or it is genuingly caused by the application being
tested. Thisleve of isolation is essentia in order to have any faith in the test outcome.

Creation of test databases. Most gpplications use a database of some form. The database
schemas need to have been set up and the database popul ated with appropriate test data so that
the tests can be carried out.

Setting up of security access and accounts Access to most applications is subject to security
rights and having appropriate user accounts. Additional accounts may also be needed to access
backend systems, databases, proxy servers, etc. These accounts and access rights need to be
properly set up to enable the tests to be carried out without unnecessary obstacles.

6.2.4 Automated Testing

Given the extensive effort that usudly goes into testing (especialy regression testing), it often makes
economic sense to use automated testing tools to cut down the effort. Mogt such tools have a built-
in scripting language, which can be used by test designers to creste test scripts. The test tool uses
the test script to invoke the application being tested and to supply it with specific test data, and then
to compare the outcome of the test against expected test results. Once set up with appropriate
scripts, the test tool can rapidly perform the test cases (often with no human involvement) and to
record their success/failure outcome.

With automated testing, the bulk of the effort goes into the creation and debugging of the test scripts.
This can require substantial development effort and must be planned in advance.

6.3 System Testing

As dated earlier, system testing is the most labour intensive testing stage and of direct relevance to
acceptance testing. It largely involves black box testing, and is ways performed with respect to the
requirements basdine (i.e, it tests the gpplication’ s implementation of the requirements). There are
many different types of tests that need to be planned and performed to test every aspect of the
gpplication, as summarised by the following table.

Type of System Test | Baseline Purpose

Function Testing Business/Application Model | Identify defectsin the redisation of the
business functions/processes.

Exception Tegting Business/Application Model | Identify incorrectly handled exception

UML Process 53 Copyright © 2005 PragSoft




situations.

Stress Testing Non-functiona Requirements | Identify stress levels beyond which the
application cannot operate.

Volume Testing Non-functional Requirements | Identify data volume levels beyond which
the application cannot operate.

Scalability Testing Non-functional Requirements | Identify the limit beyond which the

gpplication will not scale.

Availability Testing

Non-functional Requirements

Mesasure the availability of the application
over aprolonged period of time.

Usability Testing Business/Application Model | Identify problems that reduce the
Non-functional Requirements | application’s ease of use.
Documentation Testing | Business/Application Model | Identify problems in the user

Non-functional Requirements

documentation for the gpplication.

Ingtalation Testing

System Model

Identify problemsin the installation process
for the application.

Migration Testing System Model Identify problemsin the migration of data
from the legacy system to the application.
Coexistence Testing System Model Identify problems caused by the

coexistence of the application with other
gpplications in the same live environment.

Each of system tests is separately described below.

6.3.1 Function Testing
The purpose of function testing isto identify defectsin the ‘business functions' that the application
provides, as specified by the business/application modd. If this modd is specified as busness
processes (as recommended earlier in this handbook), then the test cases are built around these

business processes. If it is specified as use-cases, then the test cases are built around the use-cases.

6.3.2 Exception Testing

An exception refers to a Stuation outside the normal operation of an application (as represented, for
example, by invaid input data or incorrect sequence of operations). For example, amortgage
gpplication may require that before a mortgage account can be created, the mortgagee record must
have been created. Therefore, an attempt to creste a mortgage account when the mortgagee is
unknown to the system is an example of an exception.

Exception testing is, in away, the opposite of function testing — it tests for dysfunctiond behaviour. If
an gpplication successfully passes function testing, then it is not necessarily fit for business. It may be
the case that it does dlow dysfunctional operations to be performed, which, from abusiness point of
view, can lead to liability or financia loss. The purpose of exception testing is to identify exception
Stuationsthat are not satisfactorily handled by the application.

6.3.3 Stress Testing

Stress testing involves observing the behaviour of the gpplication under ‘ stress conditions . Exactly
what these conditions are depends on the nature of the application. For example, in aweb-based

www. pragsoft.com 54 UML Process



financia application, avery large number of transactions and a very large number of end-users
would represent stress conditions. ‘Large’ in this context should be interpreted as ‘ equd to, greater
than, and much greater than’ what has been specified in the non-functiona requirements. If the
requirements cal for the support of up to 500 concurrent users, then we should, for example, test
for 500, 600, 1000, etc.

The purpose of stresstesting is to identify the stress conditions that cause the gpplication to breek. If
these conditions are within the expected operationa range of the gpplication, then we conclude that
the application has falled the Stresstedts.

Stress conditions can and do arise when the gpplication goes live. It is therefore important to know
what the gtress limits of the gpplication are, so that contingency plans can be made.

6.3.4 Volume Testing

Volume testing involves observing the behaviour of the application when it is subjected to very large
volumes of data. For example, if the gpplication is a banking system having an underlying database
for storing account records, volume testing will attempt to popul ate this database with maximum
capacity records and beyond. For example, if the requirement is for the system to Soreup to a
million accounts, then we may try to populate the database with 1 million, 2 million, and 5 million
records.

The purpose of volume testing isto identify the volume levels beyond which the gpplication will be
unable to operate properly (eg., physica storage limit or acceptable performance levd).

As with stress testing, unanticipated volume levels can occur when the gpplication goeslive, and it is
therefore important to know the volume limits for contingency reasons.

6.3.5 Scalability Testing

Most modern business applications are multi-user, distributed, client-server systemsthat serve a
large user base. The ‘growth’ (i.e., increased use) of an gpplication in abusiness is often difficult to
predict. Some applications that are origindly designed for a handful of users, later end up being used
by hundreds or thousands of users. The ability of an gpplication to serve agrowing user base (and
growing transaction volume) should therefore be an important consderation.

The degree to which the use of an application can grow without making any design changesiscaled
scaability. A scdable architecture can ensure that the gpplication can grow by smply adding more
hardware resources to distribute the application across more and more boxes.

The purpose of scaahility testing is to identify the boundaries beyond which the application will not
be able to grow. Scdahility testing is environmentally complex because it involves making changesto
the digtribution modd of the gpplication for itstest cases.

Thereisan obviousinterplay between scalability and stress'volume testing, and this needs to be
taken into account when test planning.

UML Process 55 Copyright © 2005 PragSoft



6.3.6 Availability Testing

Each gpplication has certain availability requirements, as determined by the business environment
within which it runs. Thisis often expressed as a percentage for a given duration (e.g., 98%
availability for the month of July).

The purpose of avalability testing isto determine if the gpplication availability fals below the
minimum acceptable level. Thisis measured by running the gpplication over along durdion (eg., a
week, amonth, or until it falls over) whileit is subjected to aredistic load.

6.3.7 Usability Testing

The purpose of usability testing isto identify any features or obstaclesin the design of the application
(mainly its user interface) that makes the application difficult to use. Although usability is a subjective
notion, there are meaningful measures that can be employed to establish the relative usability of an
application. For example, given acertain leve of initid training, users can be observed with the
purpose of recording measures such as.

The average length of time needed to complete a business process/activity/action.
The number of errors made during a business process/activity/action.
The amount of time spent on rework due to errors.

Given acertain task, the length of time it takes a user to find out how to use the application to do
it.

6.3.8 Documentation Testing

The purpose of documentation testing is to establish the rlevance, usefulness, readability, and
accuracy of end-user documentation for the gpplication. Thisis performed using just the supplied
documentation in order to operate the application. So for each given test case, the tester will refer to
the documentation to find out the instructions for performing it. In other words, the testing process
will amulate the actions of an untrained user who has to use the gpplication on bags of the
information provided.

Documentation testing will detect defects in the user documentation, such as: gaps (no explanation of
how to do a certain task), factua errors, ambiguity, technica jargon, and out of date information.

6.3.9 Installation Testing

The purpose of ingtdlation testing is to detect defects in the ingtallation process for the application.
Modern applications are supplied with ingtallation tools/scripts that automate the installation process.
Ingalation test casesinvolve attempting to ingdl the gpplication (in a dean environment) using the
ingtdlation package provided (i.e., indallation scripts, documentation, and rel ease notes).

6.3.10 Migration Testing

Most modern gpplications are replacements for legacy systems. For business continuity, often the
legacy data needs to be preserved and migrated to the new application. Thisisusudly avery

www. pragsoft.com 56 UML Process



complex problem that is addressed through devel opment: the creation of the necessary tools/scripts
to migrate the datais part of the same project.

The purpose of migration testing isto identify defectsin the data migration process. Migration test
cases involve attempts to migrate the legacy data to a clean ingtdlation of the application.

6.3.11 Coexistence Testing

In alive environment, most gpplications run in conjunction with other gpplications. The system test
environment, however, is usudly isolated and not as complex as the live environment. Potentiad
interplay between applications (that compete for resources and interact with each other) cannot be
ruled out in alive environment. The purpose of coexistence testing is to establish whether the
gpplication can successfully coexigt with other gpplications.

Coexigence testing is usudly carried out firgt in a pseudo live environment, and then in the live
environment itself, but with restricted access.

6.4 Test Case Design

The design of test casesis, by far, the most important part of testing, Snceit is the qudity of the test
cases that determines the overall effectiveness of testing.

The layered architecture reference modd (see Section 2.3.2) provides a sound basis for organising
the design of test cases. Using this model, each layer is consdered separately, in order to design test
cases that cover that layer. Thisresultsin the test case design effort being divided into 4 categories,
as summarised by the following table:

Architecture Layer | Test Case Design Effort Category
Presentation Presentation oriented test case design
Workflow Workflow oriented test case design
Business Object Business object oriented test case design
Data Services Data oriented test case design

Thislogica separation ensures that every important architectural consderation is fully tested. It does
not, however, provide complete coverage for al system test types. Additional test cases need to be
created for these, especialy those that involve non-functiond requirements.

All 4 categories use the same source materid for designing the test cases, which conssts of the
following:

Business model. Thisis probably the most important source, asit describes the business
activities that the gpplication supports.

Application model. Thisisaso important in that it provides a picture of what the gpplication is
supposed to do, and can compensate for gaps in the user documentation.

System model. Thisisimportant as aforma and detailed technica source, and is especidly
useful in relation to non-functiona requirements.

UML Process 57 Copyright © 2005 PragSoft



Non-functional requirements. This covers the important congraints that the application should

satisfy (e.g., performance requirements).

User documentation concept. It isunlikely that by the time system testing commences, the
user documentation would be ready. However, it is reasonable to expect that by then concept
documents be at least produced, providing aterse verson of the intended documentation.

We will look at each category in turn, and provide atable for showing how the source materia
relates to each mgjor test focus area, and to which system test type the resulting test cases belong.

6.4.1 Presentation Oriented Test Case Design

These tests are concerned with al those aspects of the application that are manifested through the
user interface. Mgjor test focus areas are:;

Presentation layout, which uses the actud design of the user interface to design test cases that
asess the ease of comprehension of the presentation.

Input data validation, which uses the specification of the vaidation rules for input datato
design test cases that assess the correctness of the implementation of these rules.

Interaction dynamics, which uses the rules for dynamic feedback to the user (eg.,
enabling/disabling of GUI dements) to design test cases that assess the correctness of the
implementation of these rules.

Navigation, which uses the specification of navigation paths from one window to another to
design test cases that assess the correctness of the implementation of these paths.

Productivity, which considers things that can affect user productivity (e.g., response time, ease

of use, rework frequency) to design test cases that can identify barriers to user productivity.

Documentation, which uses the user documentation concept to design test cases that can
identify potentid problemsin the user interface documentation.

MAJOR SOURCE MATERIAL FOR TEST CASE DESIGN INCLUDE IN
TEST FOCUS SYSTEM
AREA TEST TYPE

Business | Application| System Non-fun’l User Doco

Model Model M odel Requirem’ts Concept

Presentation Layout ’ ’ Usability Testing
Input Data Validation ’ Exception Testing
Interaction Dynamics / Usahility Testing
Navigation - - Usability Testing
Productivity - - - Usability Testing
Documentation - Doco. Testing

The above table summarises the mgor test focus areas for presentation oriented test case design.
For each focus area, the source materids to be used for test case design and the system test types
under which the test cases are to be documented are identified.

www. pragsoft.com 58 UML Process



6.4.2 Workflow Oriented Test Case Design

These tests are concerned with the instantiation and execution of business processes. Mgor test

focus areas are:

Wor kflow Logic, which uses process/activity maps to design test cases that exercise the various

paths through the process.

Wor kflow Data, which involves test cases that will handle the specific dataitems (e.g.,
documents) created/manipulated by the process.

Security, which involves test cases that ensure that those aspects of a business process that
have regtricted access are only available to users with the relevant security rights.

Wor kflow Validation, which involves test cases that attempt to invoke exception Stuations for

the process to see how they get handled.

Documentation, which involves test cases that attempt to perform a process, based on its

documentation.
MAJOR SOURCE MATERIAL FOR TEST CASE DESIGN INCLUDEIN
TEST FOCUS SYSTEM
AREA TEST TYPE
Business | Application| System Non-fun’l User Doco
Model M odel Model Requirem’ts Concept

Workflow Logic

Function Testing

Workflow Data

Function Testing

Security

Function Testing

Workflow Validation

Exception Testing

Documentation

Doco. Testing

6.4.3 Business Object Oriented Test Case Design
These tests are concerned with the instantiation and manipulation of business objects. Mgor test

focus areas are:

Object Behaviour, which uses the business object modelsto design test cases that exercise the
methods of each business object.

Object Validation, which involves test cases that attempt to create invalid business objects.

MAJOR SOURCE MATERIAL FOR TEST CASE DESIGN INCLUDEIN
TEST FOCUS SYSTEM
AREA TEST TYPE
Business | Application| System Non-fun’l User Doco
Model M odel Model Requirem’ts Concept

Object Behaviour

Function Testing

Object Validation

Exception Testing

6.4.4 Data Oriented Test Case Design
These tests are concerned with the storage and retrieval of persistent objects. Mgjor test focus areas

are

UML Process

59

Copyright © 2005 PragSoft




Object Persistence, which involves test cases that verify the correct persstence of entity

objects.

Persistence Efficiency, which involves test cases that measure the time required to
storefretrieve persistent objects.

Storage Capacity, which involves test cases that attempt to exercise the storage limits of the

goplication.

Backup & Recovery, which involves test cases for backing up the application database and
then regtoring it from the backup image.

MAJOR SOURCE MATERIAL FOR TEST CASE DESIGN INCLUDEIN
TEST FOCUS SYSTEM
AREA TEST TYPE

Business [ Application| System Non-fun’l User Doco

M odel M odel Model Requirem’ts Concept

Object Persistence - Function Testing
Persistence Efficiency Usability Testing
Storage Capacity Volume Testing
Backup & Recovery Availability Testing
www. pragsoft.com 60 UML Process




