
April 29th, 2003 Organizing and Searching Information with XML 1

XML for Beginners
Ralf Schenkel

1. XML – the Snake Oil of the Internet age?

2. Basic XML Concepts

3. Defining XML Data Formats

4. Querying XML Data

April 29th, 2003 Organizing and Searching Information with XML 2

Snake Oil?
• Snake Oil is the all-curing drug these strange guys in

wild-west movies sell, travelling from town to town, but
visiting each town only once.

• Google: „snake oil“ xml

⇒ some 2000 hits

• „XML revolutionizes software development“

• „XML is the all-healing, world-peace inducing tool for
computer processing“

• „XML enables application portability“

• „Forget the Web, XML is the new way to business“

• „XML is the cure for your data exchange, information
integration, data exchange, [x-2-y], [you name it] problems“

• „XML, the Mother of all Web Application Enablers“

• „XML has been the best invention since sliced bread“

April 29th, 2003 Organizing and Searching Information with XML 3

XML is not…

• A replacement for HTML

(but HTML can be generated from XML)

• A presentation format

(but XML can be converted into one)

• A programming language

(but it can be used with almost any language)

• A network transfer protocol

(but XML may be transferred over a network)

• A database

(but XML may be stored into a database)

April 29th, 2003 Organizing and Searching Information with XML 4

But then – what is it?

XML is a meta markup language

for text documents / textual data

XML allows to define languages

(„applications“) to represent text

documents / textual data

April 29th, 2003 Organizing and Searching Information with XML 5

XML by Example

<article>

<author>Gerhard Weikum</author>

<title>The Web in 10 Years</title>

</article>

• Easy to understand for human users

• Very expressive (semantics along with the data)

• Well structured, easy to read and write from programs

This looks nice, but…

April 29th, 2003 Organizing and Searching Information with XML 6

XML by Example

<t108>

<x87>Gerhard Weikum</x87>

<g10>The Web in 10 Years</g10>

</t108>

• Hard to understand for human users

• Not expressive (no semantics along with the data)

• Well structured, easy to read and write from programs

… this is XML, too:

April 29th, 2003 Organizing and Searching Information with XML 7

XML by Example

<data>

ch37fhgks73j5mv9d63h5mgfkds8d984lgnsmcns983

</data>

• Impossible to understand for human users

• Not expressive (no semantics along with the data)

• Unstructured, read and write only with special programs

… and what about this XML document:

The actual benefit of using XML highly depends

on the design of the application.

April 29th, 2003 Organizing and Searching Information with XML 8

Possible Advantages of Using XML

• Truly Portable Data

• Easily readable by human users

• Very expressive (semantics near data)

• Very flexible and customizable (no finite tag set)

• Easy to use from programs (libs available)

• Easy to convert into other representations

(XML transformation languages)

• Many additional standards and tools

• Widely used and supported

April 29th, 2003 Organizing and Searching Information with XML 9

App. Scenario 1: Content Mgt.

Database with

XML documents

Clients

ConvertersXML2HTML XML2WML XML2PDF

April 29th, 2003 Organizing and Searching Information with XML 10

App. Scenario 2: Data Exchange

Legacy

System

(e.g.,

SAP R/2)

Legacy

System

(e.g.,

Cobol)

XML

Adapter
XML

Adapter

XML

(BMECat, ebXML, RosettaNet, BizTalk, …)

SupBuyer

Order

April 29th, 2003 Organizing and Searching Information with XML 11

App. Scenario 3: XML for Metadata
<rdf:RDF

<rdf:Description rdf:about="http://www-dbs/Sch03.pdf">

<dc:title>A Framework for…</dc:title>

<dc:creator>Ralf Schenkel</dc:creator>

<dc:description>While there are...</dc:description>

<dc:publisher>Saarland University</dc:publisher>

<dc:subject>XML Indexing</dc:subject>

<dc:rights>Copyright ...</dc:rights>

<dc:type>Electronic Document</dc:type>

<dc:format>text/pdf</dc:format>

<dc:language>en</dc:language>

</rdf:Description>

</rdf:RDF>

April 29th, 2003 Organizing and Searching Information with XML 12

App. Scenario 4: Document Markup
<article>

<section id=„1“ title=„Intro“>

This article is about <index>XML</index>.

</section>

<section id=„2“ title=„Main Results“>

<name>Weikum</name> <cite idref=„Weik01“/> shows

the following theorem (see Section <ref idref=„1“/>)

<theorem id=„theo:1“ source=„Weik01“>

For any XML document x, ...

</theorem>

</section>

<literature>

<cite id=„Weik01“><author>Weikum</author></cite>

</literature>

</article>

April 29th, 2003 Organizing and Searching Information with XML 13

App. Scenario 4: Document Markup

• Document Markup adds structural and semantic

information to documents, e.g.

– Sections, Subsections, Theorems, …

– Cross References

– Literature Citations

– Index Entries

– Named Entities

• This allows queries like

– Which articles cite Weikum‘s XML paper from 2001?

– Which articles talk about (the named entity) „Weikum“?

April 29th, 2003 Organizing and Searching Information with XML 14

XML for Beginners

Part 2 – Basic XML Concepts

2.1 XML Standards by the W3C

2.2 XML Documents

2.3 Namespaces

April 29th, 2003 Organizing and Searching Information with XML 15

2.1 XML Standards – an Overview
• XML Core Working Group:

– XML 1.0 (Feb 1998), 1.1 (candidate for recommendation)

– XML Namespaces (Jan 1999)

– XML Inclusion (candidate for recommendation)

• XSLT Working Group:

– XSL Transformations 1.0 (Nov 1999), 2.0 planned

– XPath 1.0 (Nov 1999), 2.0 planned

– eXtensible Stylesheet Language XSL(-FO) 1.0 (Oct 2001)

• XML Linking Working Group:

– XLink 1.0 (Jun 2001)

– XPointer 1.0 (March 2003, 3 substandards)

• XQuery 1.0 (Nov 2002) plus many substandards

• XMLSchema 1.0 (May 2001)

• …

April 29th, 2003 Organizing and Searching Information with XML 16

2.2 XML Documents

What‘s in an XML document?

• Elements

• Attributes

• plus some other details

(see the Lecture if you want to know this)

April 29th, 2003 Organizing and Searching Information with XML 17

A Simple XML Document
<article>

<author>Gerhard Weikum</author>

<title>The Web in Ten Years</title>

<text>

<abstract>In order to evolve...</abstract>

<section number=“1” title=“Introduction”>

The <index>Web</index> provides the universal...

</section>

</text>

</article>

April 29th, 2003 Organizing and Searching Information with XML 18

A Simple XML Document
<article>

<author>Gerhard Weikum</author>

<title>The Web in Ten Years</title>

<text>

<abstract>In order to evolve...</abstract>

<section number=“1” title=“Introduction”>

The <index>Web</index> provides the universal...

</section>

</text>

</article>

Freely definable tags

April 29th, 2003 Organizing and Searching Information with XML 19

Element

Content of

the Element

(Subelements

and/or Text)

A Simple XML Document
<article>

<author>Gerhard Weikum</author>

<title>The Web in Ten Years</title>

<text>

<abstract>In order to evolve...</abstract>

<section number=“1” title=“Introduction”>

The <index>Web</index> provides the universal...

</section>

</text>

</article>

End Tag

Start Tag

April 29th, 2003 Organizing and Searching Information with XML 20

A Simple XML Document
<article>

<author>Gerhard Weikum</author>

<title>The Web in Ten Years</title>

<text>

<abstract>In order to evolve...</abstract>

<section number=“1” title=“Introduction”>

The <index>Web</index> provides the universal...

</section>

</text>

</article>

Attributes with

name and value

April 29th, 2003 Organizing and Searching Information with XML 21

Elements in XML Documents
• (Freely definable) tags: article, title, author

– with start tag: <article> etc.

– and end tag: </article> etc.

• Elements: <article> ... </article>

• Elements have a name (article) and a content (...)

• Elements may be nested.

• Elements may be empty: <this_is_empty/>

• Element content is typically parsed character data (PCDATA),

i.e., strings with special characters, and/or nested elements (mixed

content if both).

• Each XML document has exactly one root element and forms a

tree.

• Elements with a common parent are ordered.

April 29th, 2003 Organizing and Searching Information with XML 22

Elements vs. Attributes
Elements may have attributes (in the start tag) that have a name and

a value, e.g. <section number=“1“>.

What is the difference between elements and attributes?

• Only one attribute with a given name per element (but an arbitrary

number of subelements)

• Attributes have no structure, simply strings (while elements can

have subelements)

As a rule of thumb:

• Content into elements

• Metadata into attributes

Example:

<person born=“1912-06-23“ died=“1954-06-07“>

Alan Turing</person> proved that…

April 29th, 2003 Organizing and Searching Information with XML 23

XML Documents as Ordered Trees

article

author title text

sectionabstract

The index

Web

provides …

title=“…“

number=“1“

In order …

Gerhard

Weikum

The Web

in 10 years

April 29th, 2003 Organizing and Searching Information with XML 24

More on XML Syntax

• Some special characters must be escaped using entities:

< → <

& → &

(will be converted back when reading the XML doc)

• Some other characters may be escaped, too:

> → >

“ → "

‘ → '

April 29th, 2003 Organizing and Searching Information with XML 25

Well-Formed XML Documents
A well-formed document must adher to, among others, the

following rules:

• Every start tag has a matching end tag.

• Elements may nest, but must not overlap.

• There must be exactly one root element.

• Attribute values must be quoted.

• An element may not have two attributes with the same
name.

• Comments and processing instructions may not appear
inside tags.

• No unescaped < or & signs may occur inside character
data.

April 29th, 2003 Organizing and Searching Information with XML 26

Well-Formed XML Documents
A well-formed document must adher to, among others, the

following rules:

• Every start tag has a matching end tag.

• Elements may nest, but must not overlap.

• There must be exactly one root element.

• Attribute values must be quoted.

• An element may not have to attributes with the same
name.

• Comments and processing instructions may not appear
inside tags.

• No unescaped < or & signs may occur inside character
data.

Only well-formed documents

can be processed by XML

parsers.

April 29th, 2003 Organizing and Searching Information with XML 27

2.3 Namespaces
<library>

<description>Library of the CS Department</description>

<book bid=“HandMS2000“>

<title>Principles of Data Mining</title>

<description>

Short introduction to data mining, useful

for the IRDM course

</description>

</book>

</library>

Semantics of the description element is ambigous

Content may be defined differently

Renaming may be impossible (standards!)

⇒ Disambiguation of separate XML applications using

unique prefixes

April 29th, 2003 Organizing and Searching Information with XML 28

Namespace Syntax
<dbs:book xmlns:dbs=“http://www-dbs/dbs“>

Unique URI to identify

the namespace

Signal that namespace

definition happens

Prefix as abbrevation

of URI

April 29th, 2003 Organizing and Searching Information with XML 29

Namespace Example
<dbs:book xmlns:dbs=“http://www-dbs/dbs“>

<dbs:description> ... </dbs:description>

<dbs:text>

<dbs:formula>

<mathml:math

xmlns:mathml=“http://www.w3.org/1998/Math/MathML“>

...

</mathml:math>

</dbs:formula>

</dbs:text>

</dbs:book>

April 29th, 2003 Organizing and Searching Information with XML 30

Default Namespace

• Default namespace may be set for an element and its

content (but not its attributes):
<book xmlns=“http://www-dbs/dbs“>

<description>...</description>

<book>

• Can be overridden in the elements by specifying the

namespace there (using prefix or default namespace)

April 29th, 2003 Organizing and Searching Information with XML 31

XML for Beginners

Part 3 – Defining XML Data Formats

3.1 Document Type Definitions

3.2 XML Schema (very short)

April 29th, 2003 Organizing and Searching Information with XML 32

3.1 Document Type Definitions

Sometimes XML is too flexible:

• Most Programs can only process a subset of all possible

XML applications

• For exchanging data, the format (i.e., elements,

attributes and their semantics) must be fixed

⇒Document Type Definitions (DTD) for establishing the

vocabulary for one XML application (in some sense

comparable to schemas in databases)

A document is valid with respect to a DTD if it conforms

to the rules specified in that DTD.

Most XML parsers can be configured to validate.

April 29th, 2003 Organizing and Searching Information with XML 33

DTD Example: Elements
<!ELEMENT article (title,author+,text)>

<!ELEMENT title (#PCDATA)>

<!ELEMENT author (#PCDATA)>

<!ELEMENT text (abstract,section*,literature?)>

<!ELEMENT abstract (#PCDATA)>

<!ELEMENT section (#PCDATA|index)+>

<!ELEMENT literature (#PCDATA)>

<!ELEMENT index (#PCDATA)>

Content of the title element

is parsed character data

Content of the article element is a title element,

followed by one or more author elements,

followed by a text element

Content of the text element may

contain zero or more section

elements in this position

April 29th, 2003 Organizing and Searching Information with XML 34

Element Declarations in DTDs
One element declaration for each element type:
<!ELEMENT element_name content_specification>

where content_specification can be

• (#PCDATA) parsed character data

• (child) one child element

• (c1,…,cn) a sequence of child elements c1…cn

• (c1|…|cn) one of the elements c1…cn

For each component c, possible counts can be specified:

– c exactly one such element

– c+ one or more

– c* zero or more

– c? zero or one

Plus arbitrary combinations using parenthesis:

<!ELEMENT f ((a|b)*,c+,(d|e))*>

April 29th, 2003 Organizing and Searching Information with XML 35

More on Element Declarations

• Elements with mixed content:
<!ELEMENT text (#PCDATA|index|cite|glossary)*>

• Elements with empty content:
<!ELEMENT image EMPTY>

• Elements with arbitrary content (this is nothing for

production-level DTDs):
<!ELEMENT thesis ANY>

April 29th, 2003 Organizing and Searching Information with XML 36

Attribute Declarations in DTDs

Attributes are declared per element:
<!ATTLIST section number CDATA #REQUIRED

title CDATA #REQUIRED>

declares two required attributes for element section.

element name

attribute name

attribute type

attribute default

April 29th, 2003 Organizing and Searching Information with XML 37

Attribute Declarations in DTDs

Attributes are declared per element:
<!ATTLIST section number CDATA #REQUIRED

title CDATA #REQUIRED>

declares two required attributes for element section.

Possible attribute defaults:

• #REQUIRED is required in each element instance

• #IMPLIED is optional

• #FIXED default always has this default value

• default has this default value if the attribute is

omitted from the element instance

April 29th, 2003 Organizing and Searching Information with XML 38

Attribute Types in DTDs

• CDATA string data

• (A1|…|An) enumeration of all possible values of the

attribute (each is XML name)

• ID unique XML name to identify the element

• IDREF refers to ID attribute of some other element

(„intra-document link“)

• IDREFS list of IDREF, separated by white space

• plus some more

April 29th, 2003 Organizing and Searching Information with XML 39

Attribute Examples
<ATTLIST publication type (journal|inproceedings) #REQUIRED

pubid ID #REQUIRED>

<ATTLIST cite cid IDREF #REQUIRED>

<ATTLIST citation ref IDREF #IMPLIED

cid ID #REQUIRED>

<publications>

<publication type=“journal“ pubid=“Weikum01“>

<author>Gerhard Weikum</author>

<text>In the Web of 2010, XML <cite cid=„12“/>...</text>

<citation cid=„12“ ref=„XML98“/>

<citation cid=„15“>...</citation>

</publication>

<publication type=“inproceedings“ pubid=“XML98“>

<text>XML, the extended Markup Language, ...</text>

</publication>

</publications>

April 29th, 2003 Organizing and Searching Information with XML 40

Attribute Examples
<ATTLIST publication type (journal|inproceedings) #REQUIRED

pubid ID #REQUIRED>

<ATTLIST cite cid IDREF #REQUIRED>

<ATTLIST citation ref IDREF #IMPLIED

cid ID #REQUIRED>

<publications>

<publication type=“journal“ pubid=“Weikum01“>

<author>Gerhard Weikum</author>

<text>In the Web of 2010, XML <cite cid=„12“/>...</text>

<citation cid=„12“ ref=„XML98“/>

<citation cid=„15“>...</citation>

</publication>

<publication type=“inproceedings“ pubid=“XML98“>

<text>XML, the extended Markup Language, ...</text>

</publication>

</publications>

April 29th, 2003 Organizing and Searching Information with XML 41

Linking DTD and XML Docs

• Document Type Declaration in the XML document:
<!DOCTYPE article SYSTEM “http://www-dbs/article.dtd“>

keywords Root element URI for the DTD

April 29th, 2003 Organizing and Searching Information with XML 42

Linking DTD and XML Docs

• Internal DTD:
<?xml version=“1.0“?>

<!DOCTYPE article [

<!ELEMENT article (title,author+,text)>

...

<!ELEMENT index (#PCDATA)>

]>

<article>

...

</article>

• Both ways can be mixed, internal DTD overwrites

external entity information:
<!DOCTYPE article SYSTEM „article.dtd“ [

<!ENTITY % pub_content (title+,author*,text)

]>

April 29th, 2003 Organizing and Searching Information with XML 43

Flaws of DTDs

• No support for basic data types like integers, doubles,

dates, times, …

• No structured, self-definable data types

• No type derivation

• id/idref links are quite loose (target is not specified)

⇒ XML Schema

April 29th, 2003 Organizing and Searching Information with XML 44

3.2 XML Schema Basics

• XML Schema is an XML application

• Provides simple types (string, integer, dateTime,

duration, language, …)

• Allows defining possible values for elements

• Allows defining types derived from existing types

• Allows defining complex types

• Allows posing constraints on the occurrence of elements

• Allows forcing uniqueness and foreign keys

• Way too complex to cover in an introductory talk

April 29th, 2003 Organizing and Searching Information with XML 45

Simplified XML Schema Example
<xs:schema>

<xs:element name=“article“>

<xs:complexType>

<xs:sequence>

<xs:element name=“author“ type=“xs:string“/>

<xs:element name=“title“ type=“xs:string“/>

<xs:element name=“text“>

<xs:complexType>

<xs:sequence>

<xs:element name=“abstract“ type=“xs:string“/>

<xs:element name=“section“ type=“xs:string“

minOccurs=“0“ maxOccurs=“unbounded“/>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:schema>

April 29th, 2003 Organizing and Searching Information with XML 46

XML for Beginners

Part 4 – Querying XML Data

4.1 XPath

4.2 XQuery

April 29th, 2003 Organizing and Searching Information with XML 47

Querying XML with XPath and XQuery

XPath and XQuery are query languages for XML data, both

standardized by the W3C and supported by various database products.

Their search capabilities include

• logical conditions over element and attribute content

(first-order predicate logic a la SQL; simple conditions only in XPath)

• regular expressions for pattern matching of element names

along paths or subtrees within XML data

+ joins, grouping, aggregation, transformation, etc. (XQuery only)

In contrast to database query languages like SQL an XML query
does not necessarily (need to) know a fixed structural schema
for the underlying data.
A query result is a set of qualifying nodes, paths, subtrees,
or subgraphs from the underyling data graph,
or a set of XML documents constructed from this raw result.

April 29th, 2003 Organizing and Searching Information with XML 48

4.1 XPath

• XPath is a simple language to identify parts of the XML

document (for further processing)

• XPath operates on the tree representation of the

document

• Result of an XPath expression is a set of elements or

attributes

• Discuss abbreviated version of XPath

April 29th, 2003 Organizing and Searching Information with XML 49

Elements of XPath

• An XPath expression usually is a location path that

consists of location steps, separated by /:

/article/text/abstract: selects all abstract elements

• A leading / always means the root element

• Each location step is evaluated in the context of a node

in the tree, the so-called context node

• Possible location steps:

– child element x: select all child elements with name x

– Attribute @x: select all attributes with name x

– Wildcards * (any child), @* (any attribute)

– Multiple matches, separated by |: x|y|z

April 29th, 2003 Organizing and Searching Information with XML 50

Combining Location Steps

• Standard: / (context node is the result of the preceding

location step)

article/text/abstract (all the abstract nodes of articles)

• Select any descendant, not only children: //

article//index (any index element in articles)

• Select the parent element: ..

• Select the content node: .

The latter two are important when using predicates.

April 29th, 2003 Organizing and Searching Information with XML 51

Predicates in Location Steps

• Added with [] to the location step

• Used to restricts elements that qualify as result of a

location step to those that fulfil the predicate:

– a[b] elements a that have a subelement b

– a[@d] elements a that have an attribute d

– Plus conditions on content/value:

• a[b=„c“]

• A[@d>7]

• <, <=, >=, !=, …

April 29th, 2003 Organizing and Searching Information with XML 52

XPath by Example

/literature/book/author retrieves all book authors:
starting with the root, traverses the tree, matches element
names literature, book, author, and returns elements
<author>Suciu, Dan</author>,
<author>Abiteboul, Serge</author>, ...,
<author><firstname>Jeff</firstname>

<lastname>Ullman</lastname></author>

/literature/*/author authors of books, articles, essays, etc.

/literature//author authors that are descendants of literature

/literature//@year value of the year attribute of descendants of literature

/literature//author[firstname] authors that have a subelement firstname

/literature/(book|article)/author authors of books or articles

/literature/book[price < „50“]

/literature/book[author//country = „Germany“]

low priced books

books with German author

April 29th, 2003 Organizing and Searching Information with XML 53

4.2 Core Concepts of XQuery
XQuery is an extremely powerful query language for XML data.
A query has the form of a so-called FLWR expression:

FOR $var1 IN expr1, $var2 IN expr2, ...
LET $var3 := expr3, $var4 := expr4, ...
WHERE condition
RETURN result-doc-construction

The FOR clause evaluates expressions (which may be XPath-style
path expressions) and binds the resulting elements to variables.
For a given binding each variable denotes exactly one element.

The LET clause binds entire sequences of elements to variables.

The WHERE clause evaluates a logical condition with each of
the possible variable bindings and selects those bindings that
satisfy the condition.

The RETURN clause constructs, from each of the variable bindings,
an XML result tree. This may involve grouping and aggregation
and even complete subqueries.

April 29th, 2003 Organizing and Searching Information with XML 54

XQuery Examples
// find Web-related articles by Dan Suciu from the year 1998

<results> {

FOR $a IN document(“literature.xml“)//article

FOR $n IN $a//author, $t IN $a/title

WHERE $a/@year = “1998“

AND contains($n, “Suciu“) AND contains($t, “Web“)

RETURN <result> $n $t </result> } </results>

// find articles co-authored by authors who have jointly written a book after 1995

<results> {

FOR $a IN document(“literature.xml“)//article

FOR $a1 IN $a//author, $a2 IN $a//author

WHERE SOME $b IN document(“literature.xml“)//book SATISFIES

$b//author = $a1 AND $b//author = $a2 AND $b/@year>“1995“

RETURN <result> $a1 $a2 <wrote> $a </wrote> </result> }

</results>

April 29th, 2003 Organizing and Searching Information with XML 55

Summary and Outlook

You should give one, I won‘t.

