
1

P A R T

I. Tc
l Ba

sic
s

 I

Tcl Basics

Part I introduces the basics of Tcl. Everyone should read Chapter 1, which
describes the fundamental properties of the language. Tcl is really quite simple,
so beginners can pick it up quickly. The experienced programmer should review
Chapter 1 to eliminate any misconceptions that come from using other lan-
guages.

Chapter 2 is a short introduction to running Tcl and Tk on UNIX, Windows,
and Macintosh systems. You may want to look at this chapter first so you can try
out the examples as you read Chapter 1.

Chapter 3 presents a sample application, a CGI script, that implements a
guestbook for a Web site. The example uses several facilities that are described
in detail in later chapters. The goal is to provide a working example that illus-
trates the power of Tcl.

The rest of Part I covers basic programming with Tcl. Simple string pro-
cessing is covered in Chapter 4. Tcl lists, which share the syntax rules of Tcl com-
mands, are explained in Chapter 5. Control structure like loops and if
statements are described in Chapter 6. Chapter 7 describes Tcl procedures,
which are new commands that you write in Tcl. Chapter 8 discusses Tcl arrays.
Arrays are the most flexible and useful data structure in Tcl. Chapter 9 describes
file I/O and running other programs. These facilities let you build Tcl scripts that
glue together other programs and process data in files.

After reading Part I you will know enough Tcl to read and understand other
Tcl programs, and to write simple programs yourself.

Blank page 2

3

C H A P T E R

I. Tc
l Ba

sic
s

 1

Tcl Fundamentals 1

This chapter describes the basic syntax rules for the Tcl scripting language. It
describes the basic mechanisms used by the Tcl interpreter: substitution
and grouping. It touches lightly on the following Tcl commands: puts,
format, set, expr, string, while, incr, and proc.

Tcl is a string-based command lan-
guage. The language has only a few fundamental constructs and relatively little
syntax, which makes it easy to learn. The Tcl syntax is meant to be simple. Tcl is
designed to be a glue that assembles software building blocks into applications.
A simpler glue makes the job easier. In addition, Tcl is interpreted when the
application runs. The interpreter makes it easy to build and refine your applica-
tion in an interactive manner. A great way to learn Tcl is to try out commands
interactively. If you are not sure how to run Tcl on your system, see Chapter 2 for
instructions for starting Tcl on UNIX, Windows, and Macintosh systems.

This chapter takes you through the basics of the Tcl language syntax. Even
if you are an expert programmer, it is worth taking the time to read these few
pages to make sure you understand the fundamentals of Tcl. The basic mecha-
nisms are all related to strings and string substitutions, so it is fairly easy to
visualize what is going on in the interpreter. The model is a little different from
some other programming languages with which you may already be familiar, so
it is worth making sure you understand the basic concepts.

Tcl Commands

Tcl stands for Tool Command Language. A command does something for you, like
output a string, compute a math expression, or display a widget on the screen.
Tcl casts everything into the mold of a command, even programming constructs

4 Tcl Fundamentals Chap. 1

like variable assignment and procedure definition. Tcl adds a tiny amount of
syntax needed to properly invoke commands, and then it leaves all the hard work
up to the command implementation.

The basic syntax for a Tcl command is:
command arg1 arg2 arg3 ...

The command is either the name of a built-in command or a Tcl procedure.
White space (i.e., spaces or tabs) is used to separate the command name and its
arguments, and a newline (i.e., the end of line character) or semicolon is used to
terminate a command. Tcl does not interpret the arguments to the commands
except to perform grouping, which allows multiple words in one argument, and
substitution, which is used with programming variables and nested command
calls. The behavior of the Tcl command processor can be summarized in three
basic steps:

• Argument grouping.
• Value substitution of nested commands, variables, and backslash escapes.
• Command invocation. It is up to the command to interpret its arguments.

This model is described in detail in this Chapter.

Hello, World!

Example 1–1 The “Hello, World!” example.

puts stdout {Hello, World!}
=> Hello, World!

In this example, the command is puts, which takes two arguments: an I/O
stream identifier and a string. puts writes the string to the I/O stream along
with a trailing newline character. There are two points to emphasize:

• Arguments are interpreted by the command. In the example, stdout is used
to identify the standard output stream. The use of stdout as a name is a
convention employed by puts and the other I/O commands. Also, stderr is
used to identify the standard error output, and stdin is used to identify the
standard input. Chapter 9 describes how to open other files for I/O.

• Curly braces are used to group words together into a single argument. The
puts command receives Hello, World! as its second argument.

The braces are not part of the value.
The braces are syntax for the interpreter, and they get stripped off before

the value is passed to the command. Braces group all characters, including new-
lines and nested braces, until a matching brace is found. Tcl also uses double
quotes for grouping. Grouping arguments will be described in more detail later.

Variables 5 I. Tc
l Ba

sic
s

Variables

The set command is used to assign a value to a variable. It takes two arguments:
The first is the name of the variable, and the second is the value. Variable names
can be any length, and case is significant. In fact, you can use any character in a
variable name.

It is not necessary to declare Tcl variables before you use them.
The interpreter will create the variable when it is first assigned a value.

The value of a variable is obtained later with the dollar-sign syntax, illustrated
in Example 1–2:

Example 1–2 Tcl variables.

set var 5
=> 5
set b $var
=> 5

The second set command assigns to variable b the value of variable var.
The use of the dollar sign is our first example of substitution. You can imagine
that the second set command gets rewritten by substituting the value of var for
$var to obtain a new command.

set b 5

The actual implementation of substitution is more efficient, which is important
when the value is large.

Command Substitution

The second form of substitution is command substitution. A nested command is
delimited by square brackets, []. The Tcl interpreter takes everything between
the brackets and evaluates it as a command. It rewrites the outer command by
replacing the square brackets and everything between them with the result of
the nested command. This is similar to the use of backquotes in other shells,
except that it has the additional advantage of supporting arbitrary nesting of
commands.

Example 1–3 Command substitution.

set len [string length foobar]
=> 6

In Example 1–3, the nested command is:
string length foobar

This command returns the length of the string foobar. The string com-
mand is described in detail starting on page 45. The nested command runs first.

6 Tcl Fundamentals Chap. 1

Then, command substitution causes the outer command to be rewritten as if it
were:

set len 6

If there are several cases of command substitution within a single com-
mand, the interpreter processes them from left to right. As each right bracket is
encountered, the command it delimits is evaluated. This results in a sensible
ordering in which nested commands are evaluated first so that their result can
be used in arguments to the outer command.

Math Expressions

The Tcl interpreter itself does not evaluate math expressions. Tcl just does
grouping, substitutions and command invocations. The expr command is used to
parse and evaluate math expressions.

Example 1–4 Simple arithmetic.

expr 7.2 / 4
=> 1.8

The math syntax supported by expr is the same as the C expression syntax.
The expr command deals with integer, floating point, and boolean values. Logical
operations return either 0 (false) or 1 (true). Integer values are promoted to float-
ing point values as needed. Octal values are indicated by a leading zero (e.g., 033
is 27 decimal). Hexadecimal values are indicated by a leading 0x. Scientific nota-
tion for floating point numbers is supported. A summary of the operator prece-
dence is given on page 20.

You can include variable references and nested commands in math expres-
sions. The following example uses expr to add the value of x to the length of the
string foobar. As a result of the innermost command substitution, the expr com-
mand sees 6 + 7, and len gets the value 13:

Example 1–5 Nested commands.

set x 7
set len [expr [string length foobar] + $x]
=> 13

The expression evaluator supports a number of built-in math functions.
(For a complete listing, see page 21.) Example 1–6 computes the value of pi:

Example 1–6 Built-in math functions.

set pi [expr 2*asin(1.0)]
=> 3.1415926535897931

Backslash Substitution 7 I. Tc
l Ba

sic
s

The implementation of expr is careful to preserve accurate numeric values
and avoid conversions between numbers and strings. However, you can make
expr operate more efficiently by grouping the entire expression in curly braces.
The explanation has to do with the byte code compiler that Tcl uses internally,
and its effects are explained in more detail on page 15. For now, you should be
aware that these expressions are all valid and run a bit faster than the examples
shown above:

Example 1–7 Grouping expressions with braces.

expr {7.2 / 4}
set len [expr {[string length foobar] + $x}]
set pi [expr {2*asin(1.0)}]

Backslash Substitution

The final type of substitution done by the Tcl interpreter is backslash substitu-
tion. This is used to quote characters that have special meaning to the inter-
preter. For example, you can specify a literal dollar sign, brace, or bracket by
quoting it with a backslash. As a rule, however, if you find yourself using lots of
backslashes, there is probably a simpler way to achieve the effect you are striv-
ing for. In particular, the list command described on page 61 will do quoting for
you automatically. In Example 1–8 backslash is used to get a literal $:

Example 1–8 Quoting special characters with backslash.

set dollar \$foo
=> $foo
set x $dollar
=> $foo

Only a single round of interpretation is done.
The second set command in the example illustrates an important property

of Tcl. The value of dollar does not affect the substitution performed in the
assignment to x. In other words, the Tcl parser does not care about the value of a
variable when it does the substitution. In the example, the value of x and dollar
is the string $foo. In general, you do not have to worry about the value of vari-
ables until you use eval, which is described in Chapter 10.

You can also use backslash sequences to specify characters with their Uni-
code, hexadecimal, or octal value:

set escape \u001b

set escape \0x1b

set escape \033

The value of variable escape is the ASCII ESC character, which has charac-
ter code 27. The table on page 20 summarizes backslash substitutions.

8 Tcl Fundamentals Chap. 1

A common use of backslashes is to continue long commands on multiple
lines. This is necessary because a newline terminates a command. The backslash
in the next example is required; otherwise the expr command gets terminated by
the newline after the plus sign.

Example 1–9 Continuing long lines with backslashes.

set totalLength [expr [string length $one] + \
[string length $two]]

There are two fine points to escaping newlines. First, if you are grouping an
argument as described in the next section, then you do not need to escape new-
lines; the newlines are automatically part of the group and do not terminate the
command. Second, a backslash as the last character in a line is converted into a
space, and all the white space at the beginning of the next line is replaced by this
substitution. In other words, the backslash-newline sequence also consumes all
the leading white space on the next line.

Grouping with Braces and Double Quotes

Double quotes and curly braces are used to group words together into one argu-
ment. The difference between double quotes and curly braces is that quotes allow
substitutions to occur in the group, while curly braces prevent substitutions.
This rule applies to command, variable, and backslash substitutions.

Example 1–10 Grouping with double quotes vs. braces.

set s Hello
=> Hello
puts stdout "The length of $s is [string length $s]."
=> The length of Hello is 5.
puts stdout {The length of $s is [string length $s].}
=> The length of $s is [string length $s].

In the second command of Example 1–10, the Tcl interpreter does variable
and command substitution on the second argument to puts. In the third com-
mand, substitutions are prevented, so the string is printed as is.

In practice, grouping with curly braces is used when substitutions on the
argument must be delayed until a later time (or never done at all). Examples
include loops, conditional statements, and procedure declarations. Double quotes
are useful in simple cases like the puts command previously shown.

Another common use of quotes is with the format command. This is similar
to the C printf function. The first argument to format is a format specifier that
often includes special characters like newlines, tabs, and spaces. The easiest way
to specify these characters is with backslash sequences (e.g., \n for newline and
\t for tab). The backslashes must be substituted before the format command is

Grouping with Braces and Double Quotes 9 I. Tc
l Ba

sic
s

called, so you need to use quotes to group the format specifier.
puts [format "Item: %s\t%5.3f" $name $value]

Here format is used to align a name and a value with a tab. The %s and
%5.3f indicate how the remaining arguments to format are to be formatted. Note
that the trailing \n usually found in a C printf call is not needed because puts
provides one for us. For more information about the format command, see page
52.

Square Brackets Do Not Group

The square bracket syntax used for command substitution does not provide
grouping. Instead, a nested command is considered part of the current group. In
the command below, the double quotes group the last argument, and the nested
command is just part of that group.

puts stdout "The length of $s is [string length $s]."

If an argument is made up of only a nested command, you do not need to
group it with double-quotes because the Tcl parser treats the whole nested com-
mand as part of the group.

puts stdout [string length $s]

The following is a redundant use of double quotes:
puts stdout "[expr $x + $y]"

Grouping before Substitution

The Tcl parser makes a single pass through a command as it makes group-
ing decisions and performs string substitutions. Grouping decisions are made
before substitutions are performed, which is an important property of Tcl. This
means that the values being substituted do not affect grouping because the
grouping decisions have already been made.

The following example demonstrates how nested command substitution
affects grouping. A nested command is treated as an unbroken sequence of char-
acters, regardless of its internal structure. It is included with the surrounding
group of characters when collecting arguments for the main command.

Example 1–11 Embedded command and variable substitution.

set x 7; set y 9
puts stdout $x+$y=[expr $x + $y]
=> 7+9=16

In Example 1–11, the second argument to puts is:
$x+$y=[expr $x + $y]

The white space inside the nested command is ignored for the purposes of
grouping the argument. By the time Tcl encounters the left bracket, it has
already done some variable substitutions to obtain:

10 Tcl Fundamentals Chap. 1

7+9=

When the left bracket is encountered, the interpreter calls itself recursively
to evaluate the nested command. Again, the $x and $y are substituted before
calling expr. Finally, the result of expr is substituted for everything from the left
bracket to the right bracket. The puts command gets the following as its second
argument:

7+9=16

Grouping before substitution.
The point of this example is that the grouping decision about puts’s second

argument is made before the command substitution is done. Even if the result of
the nested command contained spaces or other special characters, they would be
ignored for the purposes of grouping the arguments to the outer command.
Grouping and variable substitution interact the same as grouping and command
substitution. Spaces or special characters in variable values do not affect group-
ing decisions because these decisions are made before the variable values are
substituted.

If you want the output to look nicer in the example, with spaces around the
+ and =, then you must use double quotes to explicitly group the argument to
puts:

puts stdout "$x + $y = [expr $x + $y]"

The double quotes are used for grouping in this case to allow the variable and
command substitution on the argument to puts.

Grouping Math Expressions with Braces

It turns out that expr does its own substitutions inside curly braces. This is
explained in more detail on page 15. This means you can write commands like
the one below and the substitutions on the variables in the expression still occur:

puts stdout "$x + $y = [expr {$x + $y}]"

More Substitution Examples

If you have several substitutions with no white space between them, you
can avoid grouping with quotes. The following command sets concat to the value
of variables a, b, and c all concatenated together:

set concat ab$c

Again, if you want to add spaces, you’ll need to use quotes:
set concat "$a $b $c"

In general, you can place a bracketed command or variable reference any-
where. The following computes a command name:

[findCommand $x] arg arg

When you use Tk, you often use widget names as command names:
$text insert end "Hello, World!"

Procedures 11 I. Tc
l Ba

sic
s

Procedures

Tcl uses the proc command to define procedures. Once defined, a Tcl procedure
is used just like any of the other built-in Tcl commands. The basic syntax to
define a procedure is:

proc name arglist body

The first argument is the name of the procedure being defined. The second
argument is a list of parameters to the procedure. The third argument is a com-
mand body that is one or more Tcl commands.

The procedure name is case sensitive, and in fact it can contain any charac-
ters. Procedure names and variable names do not conflict with each other. As a
convention, this book begins procedure names with uppercase letters and it
begins variable names with lowercase letters. Good programming style is impor-
tant as your Tcl scripts get larger. Tcl coding style is discussed in Chapter 12.

Example 1–12 Defining a procedure.

proc Diag {a b} {
set c [expr sqrt($a * $a + $b * $b)]
return $c

}
puts "The diagonal of a 3, 4 right triangle is [Diag 3 4]"
=> The diagonal of a 3, 4 right triangle is 5.0

The Diag procedure defined in the example computes the length of the diag-
onal side of a right triangle given the lengths of the other two sides. The sqrt
function is one of many math functions supported by the expr command. The
variable c is local to the procedure; it is defined only during execution of Diag.
Variable scope is discussed further in Chapter 7. It is not really necessary to use
the variable c in this example. The procedure can also be written as:

proc Diag {a b} {

return [expr sqrt($a * $a + $b * $b)]

}

The return command is used to return the result of the procedure. The
return command is optional in this example because the Tcl interpreter returns
the value of the last command in the body as the value of the procedure. So, the
procedure could be reduced to:

proc Diag {a b} {

expr sqrt($a * $a + $b * $b)

}

Note the stylized use of curly braces in the example. The curly brace at the
end of the first line starts the third argument to proc, which is the command
body. In this case, the Tcl interpreter sees the opening left brace, causing it to
ignore newline characters and scan the text until a matching right brace is
found. Double quotes have the same property. They group characters, including
newlines, until another double quote is found. The result of the grouping is that

12 Tcl Fundamentals Chap. 1

the third argument to proc is a sequence of commands. When they are evaluated
later, the embedded newlines will terminate each command.

The other crucial effect of the curly braces around the procedure body is to
delay any substitutions in the body until the time the procedure is called. For
example, the variables a, b, and c are not defined until the procedure is called, so
we do not want to do variable substitution at the time Diag is defined.

The proc command supports additional features such as having variable
numbers of arguments and default values for arguments. These are described in
detail in Chapter 7.

A Factorial Example

To reinforce what we have learned so far, below is a longer example that uses a
while loop to compute the factorial function:

Example 1–13 A while loop to compute factorial.

proc Factorial {x} {
set i 1; set product 1
while {$i <= $x} {

set product [expr $product * $i]
incr i

}
return $product

}
Factorial 10
=> 3628800

The semicolon is used on the first line to remind you that it is a command
terminator just like the newline character. The while loop is used to multiply all
the numbers from one up to the value of x. The first argument to while is a bool-
ean expression, and its second argument is a command body to execute. The
while command and other control structures are described in Chapter 6.

The same math expression evaluator used by the expr command is used by
while to evaluate the boolean expression. There is no need to explicitly use the
expr command in the first argument to while, even if you have a much more
complex expression.

The loop body and the procedure body are grouped with curly braces in the
same way. The opening curly brace must be on the same line as proc and while.
If you like to put opening curly braces on the line after a while or if statement,
you must escape the newline with a backslash:

while {$i < $x} \
{

set product ...
}

Always group expressions and command bodies with curly braces.

More about Variables 13 I. Tc
l Ba

sic
s

Curly braces around the boolean expression are crucial because they delay
variable substitution until the while command implementation tests the expres-
sion. The following example is an infinite loop:

set i 1; while $i<=10 {incr i}

The loop will run indefinitely.* The reason is that the Tcl interpreter will
substitute for $i before while is called, so while gets a constant expression 1<=10
that will always be true. You can avoid these kinds of errors by adopting a consis-
tent coding style that groups expressions with curly braces:

set i 1; while {$i<=10} {incr i}

The incr command is used to increment the value of the loop variable i.
This is a handy command that saves us from the longer command:

set i [expr $i + 1]

The incr command can take an additional argument, a positive or negative
integer by which to change the value of the variable. Using this form, it is possi-
ble to eliminate the loop variable i and just modify the parameter x. The loop
body can be written like this:

while {$x > 1} {

set product [expr $product * $x]

incr x -1

}

Example 1–14 shows factorial again, this time using a recursive definition.
A recursive function is one that calls itself to complete its work. Each recursive
call decrements x by one, and when x is one, then the recursion stops.

Example 1–14 A recursive definition of factorial.

proc Factorial {x} {
if {$x <= 1} {

return 1
} else {

return [expr $x * [Factorial [expr $x - 1]]]
}

}

More about Variables

The set command will return the value of a variable if it is only passed a single
argument. It treats that argument as a variable name and returns the current
value of the variable. The dollar-sign syntax used to get the value of a variable is
really just an easy way to use the set command. Example 1–15 shows a trick you
can play by putting the name of one variable into another variable:

* Ironically, Tcl 8.0 introduced a byte-code compiler, and the first releases of Tcl 8.0 had a bug in the com-
piler that caused this loop to terminate! This bug is fixed in the 8.0.5 patch release.

14 Tcl Fundamentals Chap. 1

Example 1–15 Using set to return a variable value.

set var {the value of var}
=> the value of var
set name var
=> var
set name
=> var
set $name
=> the value of var

This is a somewhat tricky example. In the last command, $name gets substi-
tuted with var. Then, the set command returns the value of var, which is the
value of var. Nested set commands provide another way to achieve a level of
indirection. The last set command above can be written as follows:

set [set name]

=> the value of var

Using a variable to store the name of another variable may seem overly
complex. However, there are some times when it is very useful. There is even a
special command, upvar, that makes this sort of trick easier. The upvar command
is described in detail in Chapter 7.

Funny Variable Names

The Tcl interpreter makes some assumptions about variable names that
make it easy to embed variable references into other strings. By default, it
assumes that variable names contain only letters, digits, and the underscore.
The construct $foo.o represents a concatenation of the value of foo and the lit-
eral “.o”.

If the variable reference is not delimited by punctuation or white space,
then you can use curly braces to explicitly delimit the variable name (e.g., ${x}).
You can also use this to reference variables with funny characters in their name,
although you probably do not want variables named like that. If you find yourself
using funny variable names, or computing the names of variables, then you may
want to use the upvar command.

Example 1–16 Embedded variable references.

set foo filename
set object $foo.o
=> filename.o
set a AAA
set b abc${a}def
=> abcAAAdef
set .o yuk!
set x ${.o}y
=> yuk!y

More about Math Expressions 15 I. Tc
l Ba

sic
s

The unset Command

You can delete a variable with the unset command:
unset varName varName2 ...

Any number of variable names can be passed to the unset command. How-
ever, unset will raise an error if a variable is not already defined.

Using info to Find Out about Variables

The existence of a variable can be tested with the info exists command.
For example, because incr requires that a variable exist, you might have to test
for the existence of the variable first.

Example 1–17 Using info to determine if a variable exists.

if {![info exists foobar]} {
set foobar 0

} else {
incr foobar

}

Example 7–6 on page 86 implements a new version of incr which handles this
case.

More about Math Expressions

This section describes a few fine points about math in Tcl scripts. In Tcl 7.6 and
earlier versions math is not that efficient because of conversions between strings
and numbers. The expr command must convert its arguments from strings to
numbers. It then does all its computations with double precision floating point
values. The result is formatted into a string that has, by default, 12 significant
digits. This number can be changed by setting the tcl_precision variable to the
number of significant digits desired. Seventeen digits of precision are enough to
ensure that no information is lost when converting back and forth between a
string and an IEEE double precision number:

Example 1–18 Controlling precision with tcl_precision.

expr 1 / 3
=> 0
expr 1 / 3.0
=> 0.333333333333
set tcl_precision 17
=> 17
expr 1 / 3.0
The trailing 1 is the IEEE rounding digit
=> 0.33333333333333331

16 Tcl Fundamentals Chap. 1

In Tcl 8.0 and later versions, the overhead of conversions is eliminated in
most cases by the built-in compiler. Even so, Tcl was not designed to support
math-intensive applications. You may want to implement math-intensive code in
a compiled language and register the function as a Tcl command as described in
Chapter 44.

There is support for string comparisons by expr, so you can test string val-
ues in if statements. You must use quotes so that expr knows to do string com-
parisons:

if {$answer == "yes"} { ... }

However, the string compare and string equal commands described in
Chapter 4 are more reliable because expr may do conversions on strings that
look like numbers. The issues with string operations and expr are discussed on
page 48.

Expressions can include variable and command substitutions and still be
grouped with curly braces. This is because an argument to expr is subject to two
rounds of substitution: one by the Tcl interpreter, and a second by expr itself.
Ordinarily this is not a problem because math values do not contain the charac-
ters that are special to the Tcl interpreter. The second round of substitutions is
needed to support commands like while and if that use the expression evaluator
internally.

Grouping expressions can make them run more efficiently.
You should always group expressions in curly braces and let expr do com-

mand and variable substitutions. Otherwise, your values may suffer extra con-
versions from numbers to strings and back to numbers. Not only is this process
slow, but the conversions can loose precision in certain circumstances. For exam-
ple, suppose x is computed from a math function:

set x [expr {sqrt(2.0)}]

At this point the value of x is a double-precision floating point value, just as
you would expect. If you do this:

set two [expr $x * $x]

then you may or may not get 2.0 as the result! This is because Tcl will substitute
$x and expr will concatenate all its arguments into one string, and then parse
the expression again. In contrast, if you do this:

set two [expr {$x * $x}]

then expr will do the substitutions, and it will be careful to preserve the floating
point value of x. The expression will be more accurate and run more efficiently
because no string conversions will be done. The story behind Tcl values is
described in more detail in Chapter 44 on C programming and Tcl.

Comments

Tcl uses the pound character, #, for comments. Unlike in many other languages,
the # must occur at the beginning of a command. A # that occurs elsewhere is not
treated specially. An easy trick to append a comment to the end of a command is

Substitution and Grouping Summary 17 I. Tc
l Ba

sic
s

to precede the # with a semicolon to terminate the previous command:
Here are some parameters

set rate 7.0 ;# The interest rate

set months 60 ;# The loan term

One subtle effect to watch for is that a backslash effectively continues a
comment line onto the next line of the script. In addition, a semicolon inside a
comment is not significant. Only a newline terminates comments:

Here is the start of a Tcl comment \

and some more of it; still in the comment

The behavior of a backslash in comments is pretty obscure, but it can be
exploited as shown in Example 2–3 on page 27.

A surprising property of Tcl comments is that curly braces inside comments
are still counted for the purposes of finding matching brackets. I think the moti-
vation for this mis-feature was to keep the original Tcl parser simpler. However,
it means that the following will not work as expected to comment out an alter-
nate version of an if expression:

if {boolean expression1} {

if {boolean expression2} {

some commands

}

The previous sequence results in an extra left curly brace, and probably a
complaint about a missing close brace at the end of your script! A technique I use
to comment out large chunks of code is to put the code inside an if block that
will never execute:

if {0} {

unused code here

}

Substitution and Grouping Summary

The following rules summarize the fundamental mechanisms of grouping and
substitution that are performed by the Tcl interpreter before it invokes a com-
mand:

• Command arguments are separated by white space, unless arguments are
grouped with curly braces or double quotes as described below.

• Grouping with curly braces, { }, prevents substitutions. Braces nest. The
interpreter includes all characters between the matching left and right
brace in the group, including newlines, semicolons, and nested braces. The
enclosing (i.e., outermost) braces are not included in the group’s value.

• Grouping with double quotes, " ", allows substitutions. The interpreter
groups everything until another double quote is found, including newlines
and semicolons. The enclosing quotes are not included in the group of char-

18 Tcl Fundamentals Chap. 1

acters. A double-quote character can be included in the group by quoting it
with a backslash, (e.g., \").

• Grouping decisions are made before substitutions are performed, which
means that the values of variables or command results do not affect group-
ing.

• A dollar sign, $, causes variable substitution. Variable names can be any
length, and case is significant. If variable references are embedded into
other strings, or if they include characters other than letters, digits, and the
underscore, they can be distinguished with the ${varname} syntax.

• Square brackets, [], cause command substitution. Everything between the
brackets is treated as a command, and everything including the brackets is
replaced with the result of the command. Nesting is allowed.

• The backslash character, \, is used to quote special characters. You can
think of this as another form of substitution in which the backslash and the
next character or group of characters are replaced with a new character.

• Substitutions can occur anywhere unless prevented by curly brace grouping.
Part of a group can be a constant string, and other parts of it can be the
result of substitutions. Even the command name can be affected by substi-
tutions.

• A single round of substitutions is performed before command invocation.
The result of a substitution is not interpreted a second time. This rule is
important if you have a variable value or a command result that contains
special characters such as spaces, dollar signs, square brackets, or braces.
Because only a single round of substitution is done, you do not have to
worry about special characters in values causing extra substitutions.

Fine Points

• A common error is to forget a space between arguments when grouping with
braces or quotes. This is because white space is used as the separator, while
the braces or quotes only provide grouping. If you forget the space, you will
get syntax errors about unexpected characters after the closing brace or
quote. The following is an error because of the missing space between } and
{:

if {$x > 1}{puts "x = $x"}

• A double quote is only used for grouping when it comes after white space.
This means you can include a double quote in the middle of a group without
quoting it with a backslash. This requires that curly braces or white space
delimit the group. I do not recommend using this obscure feature, but this
is what it looks like:

set silly a"b

• When double quotes are used for grouping, the special effect of curly braces
is turned off. Substitutions occur everywhere inside a group formed with

Fine Points 19 I. Tc
l Ba

sic
s

double quotes. In the next command, the variables are still substituted:
set x xvalue

set y "foo {$x} bar"

=> foo {xvalue} bar

• When double quotes are used for grouping and a nested command is encoun-
tered, the nested command can use double quotes for grouping, too.

puts "results [format "%f %f" $x $y]"

• Spaces are not required around the square brackets used for command sub-
stitution. For the purposes of grouping, the interpreter considers everything
between the square brackets as part of the current group. The following
sets x to the concatenation of two command results because there is no
space between] and [.

set x [cmd1][cmd2]

• Newlines and semicolons are ignored when grouping with braces or double
quotes. They get included in the group of characters just like all the others.
The following sets x to a string that contains newlines:

set x "This is line one.

This is line two.

This is line three."

• During command substitution, newlines and semicolons are significant as
command terminators. If you have a long command that is nested in square
brackets, put a backslash before the newline if you want to continue the
command on another line. This was illustrated in Example 1–9 on page 8.

• A dollar sign followed by something other than a letter, digit, underscore, or
left parenthesis is treated as a literal dollar sign. The following sets x to the
single character $.

set x $

20 Tcl Fundamentals Chap. 1

Reference

Backslash Sequences

Arithmetic Operators

Table 1–1 Backslash sequences.

\a Bell. (0x7)

\b Backspace. (0x8)

\f Form feed. (0xc)

\n Newline. (0xa)

\r Carriage return. (0xd)

\t Tab. (0x9)

\v Vertical tab. (0xb)

\<newline> Replace the newline and the leading white space on the next line with a space.

\\ Backslash. (‘\’)

\ooo Octal specification of character code. 1, 2, or 3 digits.

\xhh Hexadecimal specification of character code. 1 or 2 digits.

\uhhhh Hexadecimal specification of a 16-bit Unicode character value. 4 hex digits.

\c Replaced with literal c if c is not one of the cases listed above. In particular,
\$, \", \{, \}, \], and \[are used to obtain these characters.

Table 1–2 Arithmetic operators from highest to lowest precedence.

- ~ ! Unary minus, bitwise NOT, logical NOT.

* / % Multiply, divide, remainder.

+ - Add, subtract.

<< >> Left shift, right shift.

< > <= >= Comparison: less, greater, less or equal, greater or equal.

== != Equal, not equal.

& Bitwise AND.

^ Bitwise XOR.

| Bitwise OR.

&& Logical AND.

|| Logical OR.

x?y:z If x then y else z.

Reference 21 I. Tc
l Ba

sic
s

Built-in Math Functions

Core Tcl Commands

The pages listed in Table 1–4 give the primary references for the command.

Table 1–3 Built-in math functions.

acos(x) Arccosine of x.

asin(x) Arcsine of x.

atan(x) Arctangent of x.

atan2(y,x) Rectangular (x,y) to polar (r,th). atan2 gives th.

ceil(x) Least integral value greater than or equal to x.

cos(x) Cosine of x.

cosh(x) Hyperbolic cosine of x.

exp(x) Exponential, ex.

floor(x) Greatest integral value less than or equal to x.

fmod(x,y) Floating point remainder of x/y.

hypot(x,y) Returns sqrt(x*x + y*y). r part of polar coordinates.

log(x) Natural log of x.

log10(x) Log base 10 of x.

pow(x,y) x to the y power, xy.

sin(x) Sine of x.

sinh(x) Hyperbolic sine of x.

sqrt(x) Square root of x.

tan(x) Tangent of x.

tanh(x) Hyperbolic tangent of x.

abs(x) Absolute value of x.

double(x) Promote x to floating point.

int(x) Truncate x to an integer.

round(x) Round x to an integer.

rand() Return a random floating point value between 0.0 and 1.0.

srand(x) Set the seed for the random number generator to the integer x.

22 Tcl Fundamentals Chap. 1

Table 1–4 Built-in Tcl commands.

Command Pg. Description

after 218 Schedule a Tcl command for later execution.

append 51 Append arguments to a variable’s value. No spaces added.

array 91 Query array state and search through elements.

binary 54 Convert between strings and binary data.

break 77 Exit loop prematurely.

catch 77 Trap errors.

cd 115 Change working directory.

clock 173 Get the time and format date strings.

close 115 Close an open I/O stream.

concat 61 Concatenate arguments with spaces between. Splices lists.

console 28 Control the console used to enter commands interactively.

continue 77 Continue with next loop iteration.

error 79 Raise an error.

eof 109 Check for end of file.

eval 122 Concatenate arguments and evaluate them as a command.

exec 99 Fork and execute a UNIX program.

exit 116 Terminate the process.

expr 6 Evaluate a math expression.

fblocked 223 Poll an I/O channel to see if data is ready.

fconfigure 221 Set and query I/O channel properties.

fcopy 237 Copy from one I/O channel to another.

file 102 Query the file system.

fileevent 219 Register callback for event-driven I/O.

flush 109 Flush output from an I/O stream’s internal buffers.

for 76 Loop construct similar to C for statement.

foreach 73 Loop construct over a list, or lists, of values.

format 52 Format a string similar to C sprintf.

gets 112 Read a line of input from an I/O stream.

glob 115 Expand a pattern to matching file names.

global 84 Declare global variables.

Reference 23 I. Tc
l Ba

sic
s

history 185 Use command-line history.

if 70 Test a condition. Allows else and elseif clauses.

incr 12 Increment a variable by an integer amount.

info 176 Query the state of the Tcl interpreter.

interp 274 Create additional Tcl interpreters.

join 65 Concatenate list elements with a given separator string.

lappend 61 Add elements to the end of a list.

lindex 63 Fetch an element of a list.

linsert 64 Insert elements into a list.

list 61 Create a list out of the arguments.

llength 63 Return the number of elements in a list.

load 607 Load shared libraries that define Tcl commands.

lrange 63 Return a range of list elements.

lreplace 64 Replace elements of a list.

lsearch 64 Search for an element of a list that matches a pattern.

lsort 65 Sort a list.

namespace 203 Create and manipulate namespaces.

open 110 Open a file or process pipeline for I/O.

package 165 Provide or require code packages.

pid 116 Return the process ID.

proc 81 Define a Tcl procedure.

puts 112 Output a string to an I/O stream.

pwd 115 Return the current working directory.

read 113 Read blocks of characters from an I/O stream.

regexp 148 Match regular expressions.

regsub 152 Substitute based on regular expressions.

rename 82 Change the name of a Tcl command.

return 80 Return a value from a procedure.

scan 54 Parse a string according to a format specification.

seek 114 Set the seek offset of an I/O stream.

set 5 Assign a value to a variable.

Table 1–4 Built-in Tcl commands. (Continued)

24 Tcl Fundamentals Chap. 1

socket 226 Open a TCP/IP network connection.

source 26 Evaluate the Tcl commands in a file.

split 65 Chop a string up into list elements.

string 45 Operate on strings.

subst 132 Substitute embedded commands and variable references.

switch 71 Test several conditions.

tell 114 Return the current seek offset of an I/O stream.

time 191 Measure the execution time of a command.

trace 183 Monitor variable assignments.

unknown 167 Handle unknown commands.

unset 13 Delete variables.

uplevel 130 Execute a command in a different scope.

upvar 85 Reference a variable in a different scope.

variable 197 Declare namespace variables.

vwait 220 Wait for a variable to be modified.

while 73 Loop until a boolean expression is false.

Table 1–4 Built-in Tcl commands. (Continued)

25

C H A P T E R

I. Tc
l Ba

sic
s

 2

Getting Started 2

This chapter explains how to run Tcl and Tk on different operating system
platforms: UNIX, Windows, and Macintosh. Tcl commands discussed
are: source, console and info.

This chapter explains how to run Tcl
scripts on different computer systems. While you can write Tcl scripts that are
portable among UNIX, Windows, and Macintosh, the details about getting
started are different for each system. If you are looking for a current version of
Tcl/Tk, check the Internet sites listed in the Preface on page lii.

The main Tcl/Tk program is wish. Wish stands for windowing shell, and
with it you can create graphical applications that run on all these platforms. The
name of the program is a little different on each of the UNIX, Windows, and Mac-
intosh systems. On UNIX it is just wish. On Windows you will find wish.exe, and
on the Macintosh the application name is Wish. A version number may also be
part of the name, such as wish4.2, wish80.exe, or Wish 8.2. The differences
among versions are introduced on page xlviii, and described in more detail in
Part VII of the book. This book will use wish to refer to all of these possibilities.

Tk adds Tcl commands that are used to create graphical user interfaces,
and Tk is described in Part III. You can run Tcl without Tk if you do not need a
graphical interface, such as with the CGI script discussed in Chapter 3. In this
case the program is tclsh, tclsh.exe or Tclsh.

When you run wish, it displays an empty window and prompts for a Tcl
command with a % prompt. You can enter Tcl commands interactively and exper-
iment with the examples in this book. On Windows and Macintosh, a console
window is used to prompt for Tcl commands. On UNIX, your terminal window is
used. As described later, you can also set up standalone Tcl/Tk scripts that are
self-contained applications.

26 Getting Started Chap. 2

The source Command

You can enter Tcl commands interactively at the % prompt. It is a good idea to
try out the examples in this book as you read along. The highlighted examples
from the book are on the CD-ROM in the exsource folder. You can edit these
scripts in your favorite editor. Save your examples to a file and then execute
them with the Tcl source command:

source filename

The source command reads Tcl commands from a file and evaluates them just as
if you had typed them interactively.

Chapter 3 develops a sample application. To get started, just open an editor
on a file named cgi1.tcl. Each time you update this file you can save it, reload
it into Tcl with the source command, and test it again. Development goes
quickly because you do not wait for things to compile!

UNIX Tcl Scripts

On UNIX you can create a standalone Tcl or Tcl/Tk script much like an sh or csh
script. The trick is in the first line of the file that contains your script. If the first
line of a file begins with #!pathname, then UNIX uses pathname as the inter-
preter for the rest of the script. The "Hello, World!" program from Chapter 1 is
repeated in Example 2–1 with the special starting line:

Example 2–1 A standalone Tcl script on UNIX.

#!/usr/local/bin/tclsh
puts stdout {Hello, World!}

Similarly, the Tk hello world program from Chapter 21 is shown in Exam-
ple 2–2:

Example 2–2 A standalone Tk script on UNIX.

#!/usr/local/bin/wish
button .hello -text Hello -command {puts "Hello, World!"}
pack .hello -padx 10 -pady 10

The actual pathnames for tclsh and wish may be different on your system.
If you type the pathname for the interpreter wrong, you receive a confusing
“command not found” error. You can find out the complete pathname of the Tcl
interpreter with the info nameofexecutable command. This is what appears on
my system:

info nameofexecutable

=> /home/welch/install/solaris/bin/tclsh8.2

Watch out for long pathnames.

Windows 95 Start Menu 27 I. Tc
l Ba

sic
s

On most UNIX systems, this special first line is limited to 32 characters,
including the #!. If the pathname is too long, you may end up with /bin/sh try-
ing to interpret your script, giving you syntax errors. You might try using a sym-
bolic link from a short name to the true, long name of the interpreter. However,
watch out for systems like Solaris in which the script interpreter cannot be a
symbolic link. Fortunately, Solaris doesn’t impose a 32-character limit on the
pathname, so you can just use a long pathname.

The next example shows a trick that works around the pathname length
limitation in all cases. The trick comes from a posting to comp.lang.tcl by
Kevin Kenny. It takes advantage of a difference between comments in Tcl and
the Bourne shell. Tcl comments are described on page 16. In the example, the
Bourne shell command that runs the Tcl interpreter is hidden in a comment as
far as Tcl is concerned, but it is visible to /bin/sh:

Example 2–3 Using /bin/sh to run a Tcl script.

#!/bin/sh
The backslash makes the next line a comment in Tcl \
exec /some/very/long/path/to/wish "$0" ${1+"$@"}
... Tcl script goes here ...

You do not even have to know the complete pathname of tclsh or wish to use
this trick. You can just do the following:

#!/bin/sh
Run wish from the users PATH \
exec wish -f "$0" ${1+"$@"}

The drawback of an incomplete pathname is that many sites have different
versions of wish and tclsh that correspond to different versions of Tcl and Tk. In
addition, some users may not have these programs in their PATH.

If you have Tk version 3.6 or earlier, its version of wish requires a -f argu-
ment to make it read the contents of a file. The -f switch is ignored in Tk 4.0 and
higher versions. The -f, if required, is also counted in the 32-character limit on
#! lines.

#!/usr/local/bin/wish -f

Windows 95 Start Menu

You can add your Tcl/Tk programs to the Windows start menu. The command is
the complete name of the wish.exe program and the name of the script. The trick
is that the name of wish.exe has a space in it in the default configuration, so you
must use quotes. Your start command will look something like this:

"c:\Program Files\TCL82\wish.exe" "c:\My Files\script.tcl"

This starts c:\My Files\script.tcl as a standalone Tcl/Tk program.

28 Getting Started Chap. 2

The Macintosh and ResEdit

If you want to create a self-contained Tcl/Tk application on Macintosh, you must
copy the Wish program and add a Macintosh resource named tclshrc that has
the start-up Tcl code. The Tcl code can be a single source command that reads
your script file. Here are step-by-step instructions to create the resource using
ResEdit:

• First, make a copy of Wish and open the copy in ResEdit.
• Pull down the Resource menu and select Create New Resource operation to

make a new TEXT resource.
• ResEdit opens a window and you can type in text. Type in a source com-

mand that names your script:
source "Hard Disk:Tcl/Tk 8.1:Applications:MyScript.tcl"

• Set the name of the resource to be tclshrc. You do this through the Get
Resource Info dialog under the Resources menu in ResEdit.

This sequence of commands is captured in an application called Drag n
Drop Tclets, which comes with the Macintosh Tcl distribution. If you drag a Tcl
script onto this icon, it will create a copy of Wish and create the tclshrc text
resource that has a source command that will load that script.

If you have a Macintosh development environment, you can build a version
of Wish that has additional resources built right in. You add the resources to the
applicationInit.r file. If a resource contains Tcl code, you use it like this:

source -rcrc resource

If you don’t want to edit resources, you can just use the Wish Source menu to
select a script to run.

The console Command

The Windows and Macintosh platforms have a built-in console that is used to
enter Tcl commands interactively. You can control this console with the console
command. The console is visible by default. Hide the console like this:

console hide

Display the console like this:
console show

The console is implemented by a second Tcl interpreter. You can evaluate
Tcl commands in that interpreter with:

console eval command

There is an alternate version of this console called TkCon. It is included on
the CD-ROM, and you can find current versions on the Internet. TkCon was cre-
ated by Jeff Hobbs and has lots of nice features. You can use TkCon on Unix sys-
tems, too.

Command-Line Arguments 29 I. Tc
l Ba

sic
s

Command-Line Arguments

If you run a script from the command line, for example from a UNIX shell, you
can pass the script command-line arguments. You can also specify these argu-
ments in the shortcut command in Windows. For example, under UNIX you can
type this at a shell:

% myscript.tcl arg1 arg2 arg3

In Windows, you can have a shortcut that runs wish on your script and also
passes additional arguments:

"c:\Program Files\TCL82\wish.exe" c:\your\script.tcl arg1

The Tcl shells pass the command-line arguments to the script as the value
of the argv variable. The number of command-line arguments is given by the
argc variable. The name of the program, or script, is not part of argv nor is it
counted by argc. Instead, it is put into the argv0 variable. Table 2–2 lists all the
predefined variables in the Tcl shells. argv is a list, so you can use the lindex
command, which is described on page 59, to extract items from it:

set arg1 [lindex $argv 0]

The following script prints its arguments (foreach is described on page 73):

Example 2–4 The EchoArgs script.

Tcl script to echo command line arguments
puts "Program: $argv0"
puts "Number of arguments: $argc"
set i 0
foreach arg $argv {

puts "Arg $i: $arg"
incr i

}

Command-Line Options to Wish

Some command-line options are interpreted by wish, and they do not
appear in the argv variable. The general form of the wish command line is:

wish ?options? ?script? ?arg1 arg2?

If no script is specified, then wish just enters an interactive command loop.
Table 2–1 lists the options that wish supports:

Table 2–1 Wish command line options.

-colormap new Use a new private colormap. See page 538.

-display display Use the specified X display. UNIX only.

-geometry geometry The size and position of the window. See page 570.

-name name Specify the Tk application name. See page 560.

30 Getting Started Chap. 2

Predefined Variables

-sync Run X synchronously. UNIX only.

-use id Use the window specified by id for the main window. See page
578.

-visual visual Specify the visual for the main window. See page 538.

-- Terminate options to wish.

Table 2–2 Variables defined by tclsh and wish.

argc The number of command-line arguments.

argv A list of the command-line arguments.

argv0 The name of the script being executed. If being used interactively,
argv0 is the name of the shell program.

embed_args The list of arguments in the <EMBED> tag. Tcl applets only. See page
296.

env An array of the environment variables. See page 117.

tcl_interactive True (one) if the tclsh is prompting for commands.

tcl_library The script library directory.

tcl_patchLevel Modified version number, e.g., 8.0b1.

tcl_platform Array containing operating system information. See page 182.

tcl_prompt1 If defined, this is a command that outputs the prompt.

tcl_prompt2 If defined, this is a command that outputs the prompt if the current com-
mand is not yet complete.

tcl_version Version number.

auto_path The search path for script library directories. See page 162.

auto_index A map from command name to a Tcl command that defines it.

auto_noload If set, the library facility is disabled.

auto_noexec If set, the auto execute facility is disabled.

geometry (wish only). The value of the -geometry argument.

Table 2–1 Wish command line options. (Continued)

31

C H A P T E R

I. Tc
l Ba

sic
s

 3

The Guestbook CGI Application 3

This chapter presents a simple Tcl program that computes a Web page. The
chapter provides a brief background to HTML and the CGI interface to
Web servers.

This chapter presents a complete, but
simple guestbook program that computes an HTML document, or Web page,
based on the contents of a simple database. The basic idea is that a user with a
Web browser visits a page that is computed by the program. The details of how
the page gets from your program to the user with the Web browser vary from sys-
tem to system. The Tcl Web Server described in Chapter 18 comes with this
guestbook example already set up. You can also use these scripts on your own
Web server, but you will need help from your Webmaster to set things up.

The chapter provides a very brief introduction to HTML and CGI program-
ming. HTML is a way to specify text formatting, including hypertext links to
other pages on the World Wide Web. CGI is a standard for communication
between a Web server that delivers documents and a program that computes
documents for the server. There are many books on these subjects alone. CGI
Developers Resource, Web Programming with Tcl and Perl by John Ivler (Prentice
Hall, 1997) is a good reference for details that are left unexplained here.

A guestbook is a place for visitors to sign their name and perhaps provide
other information. We will build a guestbook that takes advantage of the World
Wide Web. Our guests can leave their address as a Universal Resource Location
(URL). The guestbook will be presented as a page that has hypertext links to all
these URLs so that other guests can visit them. The program works by keeping a
simple database of the guests, and it generates the guestbook page from the
database.

32 The Guestbook CGI Application Chap. 3

The Tcl scripts described in this chapter use commands and techniques that
are described in more detail in later chapters. The goal of the examples is to dem-
onstrate the power of Tcl without explaining every detail. If the examples in this
chapter raise questions, you can follow the references to examples in other chap-
ters that do go into more depth.

A Quick Introduction to HTML

Web pages are written in a text markup language called HTML (HyperText
Markup Language). The idea of HTML is that you annotate, or mark up, regular
text with special tags that indicate structure and formatting. For example, the
title of a Web page is defined like this:

<TITLE>My Home Page</TITLE>

The tags provide general formatting guidelines, but the browsers that dis-
play HTML pages have freedom in how they display things. This keeps the
markup simple. The general syntax for HTML tags is:

<tag parameters>normal text</tag>

As shown here, the tags usually come in pairs. The open tag may have some
parameters, and the close tag name begins with a slash. The case of a tag is not
considered, so <title>, <Title>, and <TITLE> are all valid and mean the same
thing. The corresponding close tag could be </title>, </Title>, </TITLE>, or
even </TiTlE>.

The <A> tag defines hypertext links that reference other pages on the Web.
The hypertext links connect pages into a Web so that you can move from page to
page to page and find related information. It is the flexibility of the links that
make the Web so interesting. The <A> tag takes an HREF parameter that defines
the destination of the link. If you wanted to link to my home page, you would put
this in your page:

Brent Welch

When this construct appears in a Web page, your browser typically displays
"Brent Welch" in blue underlined text. When you click on that text, your browser
switches to the page at the address "http://www.beedub.com/". There is a lot more
to HTML, of course, but this should give you a basic idea of what is going on in
the examples. The following list summarizes the HTML tags that will be used in
the examples:

Table 3–1 HTML tags used in the examples.

HTML Main tag that surrounds the whole document.

HEAD Delimits head section of the HTML document.

TITLE Defines the title of the page.

BODY Delimits the body section. Lets you specify page colors.

CGI for Dynamic Pages 33 I. Tc
l Ba

sic
s

CGI for Dynamic Pages

There are two classes of pages on the Web, static and dynamic. A static page is
written and stored on a Web server, and the same thing is returned each time a
user views the page. This is the easy way to think about Web pages. You have
some information to share, so you compose a page and tinker with the HTML
tags to get the information to look good. If you have a home page, it is probably in
this class.

In contrast, a dynamic page is computed each time it is viewed. This is how
pages that give up-to-the-minute stock prices work, for example. A dynamic page
does not mean it includes animations; it just means that a program computes the
page contents when a user visits the page. The advantage of this approach is
that a user might see something different each time he or she visits the page. As
we shall see, it is also easier to maintain information in a database of some sort
and generate the HTML formatting for the data with a program.

A CGI (Common Gateway Interface) program is used to compute Web
pages. The CGI standard defines how inputs are passed to the program as well

H1 - H6 HTML defines 6 heading levels: H1, H2, H3, H4, H5, H6.

P Start a new paragraph.

BR One blank line.

B Bold text.

I Italic text.

A Used for hypertext links.

IMG Specify an image.

DL Definition list.

DT Term clause in a definition list.

DD Definition clause in a definition list.

UL An unordered list.

LI A bulleted item within a list.

TABLE Create a table.

TR A table row.

TD A cell within a table row.

FORM Defines a data entry form.

INPUT A one-line entry field, checkbox, radio button, or submit button.

TEXTAREA A multiline text field.

Table 3–1 HTML tags used in the examples. (Continued)

34 The Guestbook CGI Application Chap. 3

as a way to identify different types of results, such as images, plain text, or
HTML markup. A CGI program simply writes the contents of the document to its
standard output, and the Web server takes care of delivering the document to the
user’s Web browser. The following is a very simple CGI script:

Example 3–1 A simple CGI script.

puts "Content-Type: text/html"
puts ""
puts "<TITLE>The Current Time</TITLE>"
puts "The time is [clock format [clock seconds]]"

The program computes a simple HTML page that has the current time.
Each time a user visits the page they will see the current time on the server. The
server that has the CGI program and the user viewing the page might be on dif-
ferent sides of the planet. The output of the program starts with a Content-Type
line that tells your Web browser what kind of data comes next. This is followed
by a blank line and then the contents of the page.

The clock command is used twice: once to get the current time in seconds,
and a second time to format the time into a nice looking string. The clock com-
mand is described in detail on page 173. Fortunately, there is no conflict between
the markup syntax used by HTML and the Tcl syntax for embedded commands,
so we can mix the two in the argument to the puts command. Double quotes are
used to group the argument to puts so that the clock commands will be exe-
cuted. When run, the output of the program will look like this:

Example 3–2 Output of Example 3–1.

Content-Type: text/html

<TITLE>The Current Time</TITLE>
The time is Wed Oct 16 11:23:43 1996

This example is a bit sloppy in its use of HTML, but it should display prop-
erly in most Web browsers. Example 3–3 includes all the required tags for a
proper HTML document.

The guestbook.cgi Script

The guestbook.cgi script computes a page that lists all the registered guests.
The example is shown first, and then each part of it is discussed in more detail
later. One thing to note right away is that the HTML tags are generated by pro-
cedures that hide the details of the HTML syntax. The first lines of the script use
the UNIX trick to have tclsh interpret the script. This trick is described on page
26:

The guestbook.cgi Script 35 I. Tc
l Ba

sic
s

Example 3–3 The guestbook.cgi script.

#!/bin/sh
guestbook.cgi
Implement a simple guestbook page.
The set of visitors is kept in a simple database.
The newguest.cgi script will update the database.
\
exec tclsh "$0" ${1+"$@"}

The cgilib.tcl file has helper procedures
The guestbook.data file has the database
Both file are in the same directory as the script

set dir [file dirname [info script]]
source [file join $dir cgilib.tcl]
set datafile [file join $dir guestbook.data]

Cgi_Header "Brent's Guestbook" {BGCOLOR=white TEXT=black}
P
if {![file exists $datafile]} {

puts "No registered guests, yet."
P
puts "Be the first [Link {registered guest!} newguest.html]"

} else {
puts "The following folks have registered in my GuestBook."
P
puts [Link Register newguest.html]
H2 Guests
catch {source $datafile}
foreach name [lsort [array names Guestbook]] {

set item $Guestbook($name)
set homepage [lindex $item 0]
set markup [lindex $item 1]
H3 [Link $name $homepage]
puts $markup

}
}
Cgi_End

Using a Script Library File

The script uses a number of Tcl procedures that make working with HTML
and the CGI interface easier. These procedures are kept in the cgilib.tcl file,
which is kept in the same directory as the main script. The script starts by sourc-
ing the cgilib.tcl file so that these procedures are available. The following
command determines the location of the cgilib.tcl file based on the location of
the main script. The info script command returns the file name of the script.
The file dirname and file join commands manipulate file names in a plat-
form-independent way. They are described on page 102. I use this trick to avoid
putting absolute file names into my scripts, which would have to be changed if

36 The Guestbook CGI Application Chap. 3

the program moves later:
set dir [file dirname [info script]]

source [file join $dir cgilib.tcl]

Beginning the HTML Page

The following command generates the standard information that comes at
the beginning of an HTML page:

Cgi_Header {Brent’s GuestBook} {bgcolor=white text=black}

The Cgi_Header is shown in Example 3–4:

Example 3–4 The Cgi_Header procedure.

proc Cgi_Header {title {bodyparams {}}} {
 puts stdout \
"Content-Type: text/html

<HTML>
<HEAD>
<TITLE>$title</TITLE>
</HEAD>
<BODY $bodyparams>
<H1>$title</H1>"
}

The Cgi_Header procedure takes as arguments the title for the page and
some optional parameters for the HTML <Body> tag. The guestbook.cgi script
specifies black text on a white background to avoid the standard gray back-
ground of most browsers. The procedure definition uses the syntax for an
optional parameter, so you do not have to pass bodyparams to Cgi_Header.
Default values for procedure parameters are described on page 81.

The Cgi_Header procedure just contains a single puts command that gener-
ates the standard boilerplate that appears at the beginning of the output. Note
that several lines are grouped together with double quotes. Double quotes are
used so that the variable references mixed into the HTML are substituted prop-
erly.

The output begins with the CGI content-type information, a blank line, and
then the HTML. The HTML is divided into a head and a body part. The <TITLE>
tag goes in the head section of an HTML document. Finally, browsers display the
title in a different place than the rest of the page, so I always want to repeat the
title as a level-one heading (i.e., H1) in the body of the page.

Simple Tags and Hypertext Links

The next thing the program does is to see whether there are any registered
guests or not. The file command, which is described in detail on page 102, is
used to see whether there is any data:

The guestbook.cgi Script 37 I. Tc
l Ba

sic
s

if {![file exists $datafile]} {

If the database file does not exist, a different page is displayed to encourage
a registration. The page includes a hypertext link to a registration page. The
newguest.html page will be described in more detail later:

puts "No registered guests, yet."
P
puts "Be the first [Link {registered guest!} newguest.html]"

The P command generates the HTML for a paragraph break. This trivial
procedure saves us a few keystrokes:

proc P {} {
puts <P>

}

The Link command formats and returns the HTML for a hypertext link.
Instead of printing the HTML directly, it is returned, so you can include it in-line
with other text you are printing:

Example 3–5 The Link command formats a hypertext link.

proc Link {text url} {
 return "$text"
}

The output of the program would be as below if there were no data:

Example 3–6 Initial output of guestbook.cgi.

Content-Type: text/html

<HTML>
<HEAD>
<TITLE>Brent’s Guestbook</TITLE>
</HEAD>
<BODY BGCOLOR=white TEXT=black>
<H1>Brent’s Guestbook</H1>
<P>
No registered guests.
<P>
Be the first registered guest!
</BODY>
</HTML>

If the database file exists, then the real work begins. We first generate a
link to the registration page, and a level-two header to separate that from the
guest list:

puts [Link Register newguest.html]

H2 Guests

38 The Guestbook CGI Application Chap. 3

The H2 procedure handles the detail of including the matching close tag:
proc H2 {string} {

puts "<H2>$string</H2>"

}

Using a Tcl Array for the Database

The datafile contains Tcl commands that define an array that holds the
guestbook data. If this file is kept in the same directory as the guestbook.cgi
script, then you can compute its name:

set dir [file dirname [info script]]

set datafile [file join $dir guestbook.data]

By using Tcl commands to represent the data, we can load the data with the
source command. The catch command is used to protect the script from a bad
data file, which will show up as an error from the source command. Catching
errors is described in detail on page 79:

catch {source $datafile}

The Guestbook variable is the array defined in guestbook.data. Array vari-
ables are the topic of Chapter 8. Each element of the array is defined with a Tcl
command that looks like this:

set Guestbook(key) {url markup}

The person’s name is the array index, or key. The value of the array element
is a Tcl list with two elements: their URL and some additional HTML markup
that they can include in the guestbook. Tcl lists are the topic of Chapter 5. The
following example shows what the command looks like with real data:

set {Guestbook(Brent Welch)} {

http://www.beedub.com/

{}

}

The spaces in the name result in additional braces to group the whole vari-
able name and each list element. This syntax is explained on page 90. Do not
worry about it now. We will see on page 42 that all the braces in the previous
statement are generated automatically. The main point is that the person’s name
is the key, and the value is a list with two elements.

The array names command returns all the indices, or keys, in the array, and
the lsort command sorts these alphabetically. The foreach command loops over
the sorted list, setting the loop variable x to each key in turn:

foreach name [lsort [array names Guestbook]] {

Given the key, we get the value like this:
set item $Guestbook($name)

The two list elements are extracted with lindex, which is described on page
63.

set homepage [lindex $item 0]

Defining Forms and Processing Form Data 39 I. Tc
l Ba

sic
s

set markup [lindex $item 1]

We generate the HTML for the guestbook entry as a level-three header that
contains a hypertext link to the guest’s home page. We follow the link with any
HTML markup text that the guest has supplied to embellish his or her entry.
The H3 procedure is similar to the H2 procedure already shown, except it gener-
ates <H3> tags:

H3 [Link $name $homepage]

puts $markup

Sample Output

The last thing the script does is call Cgi_End to output the proper closing
tags. Example 3–7 shows the output of the guestbook.cgi script:

Example 3–7 Output of guestbook.cgi.

Content-Type: text/html

<HTML>
<HEAD>
<TITLE>Brent’s Guestbook</TITLE>
</HEAD>
<BODY BGCOLOR=white TEXT=black>
<H1>Brent’s Guestbook</H1>
<P>
The following folks have registered in my guestbook.
<P>
Register
<H2>Guests</H2>
<H3>Brent Welch</H3>

</BODY>
</HTML>

Defining Forms and Processing Form Data

The guestbook.cgi script only generates output. The other half of CGI deals
with input from the user. Input is more complex for two reasons. First, we have
to define another HTML page that has a form for the user to fill out. Second, the
data from the form is organized and encoded in a standard form that must be
decoded by the script. Example 3–8 on page 40 defines a very simple form, and
the procedure that decodes the form data is shown in Example 11–6 on page 155.

The guestbook page contains a link to newguest.html. This page contains a
form that lets a user register his or her name, home page URL, and some addi-
tional HTML markup. The form has a submit button. When a user clicks that
button in their browser, the information from the form is passed to the
newguest.cgi script. This script updates the database and computes another
page for the user that acknowledges the user’s contribution.

40 The Guestbook CGI Application Chap. 3

The newguest.html Form

An HTML form contains tags that define data entry fields, buttons, check-
boxes, and other elements that let the user specify values. For example, a one-
line entry field that is used to enter the home page URL is defined like this:

<INPUT TYPE=text NAME=url>

The INPUT tag is used to define several kinds of input elements, and its type
parameter indicates what kind. In this case, TYPE=text creates a one-line text
entry field. The submit button is defined with an INPUT tag that has TYPE=sub-
mit, and the VALUE parameter becomes the text that appears on the button:

<INPUT TYPE=submit NAME=submit VALUE=Register>

A general type-in window is defined with the TEXTAREA tag. This creates a
multiline, scrolling text field that is useful for specifying lots of information, such
as a free-form comment. In our case we will let guests type in HTML that will
appear with their guestbook entry. The text between the open and close TEXT-
AREA tags is inserted into the type-in window when the page is first displayed.

<TEXTAREA NAME=markup ROWS=10 COLS=50>Hello.</TEXTAREA>

A common parameter to the form tags is NAME=something. This name iden-
tifies the data that will come back from the form. The tags also have parameters
that affect their display, such as the label on the submit button and the size of
the text area. Those details are not important for our example. The complete
form is shown in Example 3–8:

Example 3–8 The newguest.html form.

<!Doctype HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">
<HTML>
<HEAD>
<TITLE>Register in my Guestbook</TITLE>
<!-- Author: bwelch -->
<META HTTP-Equiv=Editor Content="SunLabs WebTk 1.0beta 10/
11/96">
</HEAD>
<BODY>

<FORM ACTION="newguest.cgi" METHOD="POST">

<H1>Register in my Guestbook</H1>

Name <INPUT TYPE="text" NAME="name" SIZE="40">
URL <INPUT TYPE="text" NAME="url" SIZE="40">
<P>
If you don't have a home page, you can use an email URL like
"mailto:welch@acm.org"
Additional HTML to include after your link:

<TEXTAREA NAME="html" COLS="60" ROWS="15">
</TEXTAREA>
<INPUT TYPE="submit" NAME="new" VALUE="Add me to your

Defining Forms and Processing Form Data 41 I. Tc
l Ba

sic
s

guestbook">
<INPUT TYPE="submit" NAME="update" VALUE="Update my
guestbook entry">

</FORM>

</BODY>
</HTML>

The newguest.cgi Script

When the user clicks the Submit button in their browser, the data from the
form is passed to the program identified by the Action parameter of the form
tag. That program takes the data, does something useful with it, and then
returns a new page for the browser to display. In our case the FORM tag names
newguest.cgi as the program to handle the data:

<FORM ACTION=newguest.cgi METHOD=POST>

The CGI specification defines how the data from the form is passed to the
program. The data is encoded and organized so that the program can figure out
the values the user specified for each form element. The encoding is handled
rather nicely with some regular expression tricks that are done in Cgi_Parse.
Cgi_Parse saves the form data, and Cgi_Value gets a form value in the script.
These procedures are described in Example 11–6 on page 155. Example 3–9
starts out by calling Cgi_Parse:

Example 3–9 The newguest.cgi script.

#!/bin/sh
\
exec tclsh "$0" ${1+"$@"}
source cgilib.tcl from the same directory as newguest.cgi

set dir [file dirname [info script]]
source [file join $dir cgilib.tcl]
set datafile [file join $dir guestbook.data]

Cgi_Parse

Open the datafile in append mode

if [catch {open $datafile a} out] {
Cgi_Header "Guestbook Registration Error" \

{BGCOLOR=black TEXT=red}
P
puts "Cannot open the data file"
P
puts $out;# the error message
exit 0

}

42 The Guestbook CGI Application Chap. 3

Append a Tcl set command that defines the guest's entry

puts $out ""
puts $out [list set Guestbook([Cgi_Value name]) \

[list [Cgi_Value url] [Cgi_Value html]]]
close $out

Return a page to the browser

Cgi_Header "Guestbook Registration Confirmed" \
{BGCOLOR=white TEXT=black}

puts "
<DL>
<DT>Name
<DD>[Cgi_Value name]
<DT>URL
<DD>[Link [Cgi_Value url] [Cgi_Value url]]
</DL>
[Cgi_Value html]
"

Cgi_End

The main idea of the newguest.cgi script is that it saves the data to a file
as a Tcl command that defines an element of the Guestbook array. This lets the
guestbook.cgi script simply load the data by using the Tcl source command.
This trick of storing data as a Tcl script saves us from the chore of defining a new
file format and writing code to parse it. Instead, we can rely on the well-tuned
Tcl implementation to do the hard work for us efficiently.

The script opens the datafile in append mode so that it can add a new
record to the end. Opening files is described in detail on page 110. The script
uses a catch command to guard against errors. If an error occurs, a page explain-
ing the error is returned to the user. Working with files is one of the most com-
mon sources of errors (permission denied, disk full, file-not-found, and so on), so I
always open the file inside a catch statement:

if [catch {open $datafile a} out] {

an error occurred

} else {

open was ok

}

In this command, the variable out gets the result of the open command,
which is either a file descriptor or an error message. This style of using catch is
described in detail in Example 6–14 on page 77.

The script writes the data as a Tcl set command. The list command is
used to format the data properly:

puts $out [list set Guestbook([Cgi_Value name]) \

[list [Cgi_Value url] [Cgi_Value html]]]

The cgi.tcl Package 43 I. Tc
l Ba

sic
s

There are two lists. First the url and html values are formatted into one
list. This list will be the value of the array element. Then, the whole Tcl com-
mand is formed as a list. In simplified form, the command is generated from this:

list set variable value

Using the list command ensures that the result will always be a valid Tcl
command that sets the variable to the given value. The list command is
described in more detail on page 61.

The cgi.tcl Package

The cgilib.tcl file included with this book just barely scratches the surface of
things you might like to do in a CGI script. Don Libes has created a comprehen-
sive package for CGI scripts known as cgi.tcl. You can find it on the Web at

http://expect.nist.gov/cgi.tcl/

One of Don’s goals in cgi.tcl was to eliminate the need to directly write
any HTML markup at all. Instead, he has defined a whole suite of Tcl commands
similar to the P and H2 procedures shown in this chapter that automatically emit
the matching close tags. He also has support procedures to deal with browser
cookies, page redirects, and other CGI features.

Next Steps

There are a number of details that can be added to this example. A user may
want to update their entry, for example. They could do that now, but they would
have to retype everything. They might also like a chance to check the results of
their registration and make changes before committing them. This requires
another page that displays their guest entry as it would appear on a page, and
also has the fields that let them update the data.

The details of how a CGI script is hooked up with a Web server vary from
server to server. You should ask your local Webmaster for help if you want to try
this out on your local Web site. The Tcl Web Server comes with this guestbook
example already set up, plus it has a number of other very interesting ways to
generate pages. My own taste in Web page generation has shifted from CGI to a
template-based approach supported by the Tcl Web Server. This is the topic of
Chapter 18.

The next few chapters describe basic Tcl commands and data structures.
We return to the CGI example in Chapter 11 on regular expressions.

Blank page 44

45

C H A P T E R

I. Tc
l Ba

sic
s

 4

String Processing in Tcl 4

This chapter describes string manipulation and simple pattern matching. Tcl
commands described are: string, append, format, scan, and
binary. The string command is a collection of several useful string
manipulation operations.

Strings are the basic data item in Tcl, so it
should not be surprising that there are a large number of commands to manipu-
late strings. A closely related topic is pattern matching, in which string compari-
sons are made more powerful by matching a string against a pattern. This
chapter describes a simple pattern matching mechanism that is similar to that
used in many other shell languages. Chapter 11 describes a more complex and
powerful regular expression pattern matching mechanism.

The string Command

The string command is really a collection of operations you can perform on
strings. The following example calculates the length of the value of a variable.

set name "Brent Welch"

string length $name

=> 11

The first argument to string determines the operation. You can ask string
for valid operations by giving it a bad one:

string junk

=> bad option "junk": should be bytelength, compare,
equal, first, index, is, last, length, map, match, range,
repeat, replace, tolower, totitle, toupper, trim, trim-
left, trimright, wordend, or wordstart

46 String Processing in Tcl Chap. 4

This trick of feeding a Tcl command bad arguments to find out its usage is
common across many commands. Table 4–1 summarizes the string command.

Table 4–1 The string command.

string bytelength str Returns the number of bytes used to store a string, which
may be different from the character length returned by
string length because of UTF-8 encoding. See page
210 of Chapter 15 about Unicode and UTF-8.

string compare ?-nocase?
?-length len? str1 str2

Compares strings lexicographically. Use -nocase for
case insensitve comparison. Use -length to limit the
comparison to the first len characters. Returns 0 if equal,
-1 if str1 sorts before str2, else 1.

string equal ?-nocase?
str1 str2

Compares strings and returns 1 if they are the same. Use
-nocase for case insensitve comparison.

string first str1 str2 Returns the index in str2 of the first occurrence of
str1, or -1 if str1 is not found.

string index string index Returns the character at the specified index. An index
counts from zero. Use end for the last character.

string is class ?-strict?
?-failindex varname?
string

Returns 1 if string belongs to class. If -strict,
then empty strings never match, otherwise they always
match. If -failindex is specified, then varname is
assigned the index of the character in string that pre-
vented it from being a member of class. See Table 4–3
on page 50 for character class names.

string last str1 str2 Returns the index in str2 of the last occurrence of
str1, or -1 if str1 is not found.

string length string Returns the number of characters in string.

string map ?-nocase?
charMap string

Returns a new string created by mapping characters in
string according to the input, output list in charMap.
See page 51.

string match pattern str Returns 1 if str matches the pattern, else 0. Glob-
style matching is used. See page 48.

string range str i j Returns the range of characters in str from i to j.

string repeat str count Returns str repeated count times.

string replace str first
last ?newstr?

Returns a new string created by replacing characters
first through last with newstr, or nothing.

string tolower string
?first? ?last?

Returns string in lower case. first and last deter-
mine the range of string on which to operate.

string totitle string
?first? ?last?

Capitalizes string by replacing its first character with
the Unicode title case, or upper case, and the rest with
lower case. first and last determine the range of
string on which to operate.

The string Command 47 I. Tc
l Ba

sic
s

These are the string operations I use most:

• The equal operation, which is shown in Example 4–2 on page 48.
• String match. This pattern matching operation is described on page 48.
• The tolower, totitle, and toupper operations convert case.
• The trim, trimright, and trimleft operations are handy for cleaning up

strings.

These new operations were added in Tcl 8.1 (actually, they first appeared in
the 8.1.1 patch release):

• The equal operation, which is simpler than using string compare.
• The is operation that test for kinds of strings. String classes are listed in

Table 4–3 on page 50.
• The map operation that translates characters (e.g., like the Unix tr com-

mand.)
• The repeat and replace operations.
• The totitle operation, which is handy for capitalizing words.

String Indices

Several of the string operations involve string indices that are positions
within a string. Tcl counts characters in strings starting with zero. The special
index end is used to specify the last character in a string:

string range abcd 2 end

=> cd

Tcl 8.1 added syntax for specifying an index relative to the end. Specify
end-N to get the Nth caracter before the end. For example, the following command
returns a new string that drops the first and last characters from the original:

string range $string 1 end-1

string toupper string
?first? ?last?

Returns string in upper case. first and last deter-
mine the range of string on which to operate.

string trim string
?chars?

Trims the characters in chars from both ends of
string. chars defaults to whitespace.

string trimleft string
?chars?

Trims the characters in chars from the beginning of
string. chars defaults to whitespace.

string trimright string
?chars?

Trims the characters in chars from the end of string.
chars defaults to whitespace.

string wordend str ix Returns the index in str of the character after the word
containing the character at index ix.

string wordstart str ix Returns the index in str of the first character in the word
containing the character at index ix.

Table 4–1 The string command. (Continued)

48 String Processing in Tcl Chap. 4

There are several operations that pick apart strings: first, last,
wordstart, wordend, index, and range. If you find yourself using combinations of
these operations to pick apart data, it will be faster if you can do it with the reg-
ular expression pattern matcher described in Chapter 11.

Strings and Expressions

Strings can be compared with expr, if, and while using the comparison
operators ==, !=, < and >. However, there are a number of subtle issues that can
cause problems. First, you must quote the string value so that the expression
parser can identify it as a string type. Then, you must group the expression with
curly braces to prevent the double quotes from being stripped off by the main
interpreter:

if {$x == "foo"} command

expr is unreliable for string comparison.
Ironically, despite the quotes, the expression evaluator first converts items

to numbers if possible, and then converts them back if it detects a case of string
comparison. The conversion back is always done as a decimal number. This can
lead to unexpected conversions between strings that look like hexadecimal or
octal numbers. The following boolean expression is true!

if {"0xa" == "10"} { puts stdout ack! }

=> ack!

A safe way to compare strings is to use the string compare and equal
operations. These operations work faster because the unnecessary conversions
are eliminated. Like the C library strcmp function, string compare returns 0 if
the strings are equal, minus 1 if the first string is lexicographically less than the
second, or 1 if the first string is greater than the second:

Example 4–1 Comparing strings with string compare.

if {[string compare $s1 $s2] == 0} {
strings are equal

}

The string equal command added in Tcl 8.1 makes this simpler:

Example 4–2 Comparing strings with string equal.

if {[string equal $s1 $s2]} {
strings are equal

}

String Matching

The string match command implements glob-style pattern matching that
is modeled after the file name pattern matching done by various UNIX shells.

The string Command 49 I. Tc
l Ba

sic
s

The heritage of the word "glob" is rooted in UNIX, and Tcl preserves this histori-
cal oddity in the glob command that does pattern matching on file names. The
glob command is described on page 115. Table 4–2 shows the three constructs
used in string match patterns:

Any other characters in a pattern are taken as literals that must match the
input exactly. The following example matches all strings that begin with a:

string match a* alpha

=> 1

To match all two-letter strings:
string match ?? XY

=> 1

To match all strings that begin with either a or b:
string match {[ab]*} cello

=> 0

Be careful! Square brackets are also special to the Tcl interpreter, so you
will need to wrap the pattern up in curly braces to prevent it from being inter-
preted as a nested command. Another approach is to put the pattern into a vari-
able:

set pat {[ab]*x}

string match $pat box

=> 1

You can specify a range of characters with the syntax [x-y]. For example,
[a-z] represents the set of all lower-case letters, and [0-9] represents all the
digits. You can include more than one range in a set. Any letter, digit, or the
underscore is matched with:

string match {[a-zA-Z0-9_]} $char

The set matches only a single character. To match more complicated pat-
terns, like one or more characters from a set, then you need to use regular
expression matching, which is described on page 148.

If you need to include a literal *, ?, or bracket in your pattern, preface it
with a backslash:

string match {*\?} what?

=> 1

In this case the pattern is quoted with curly braces because the Tcl inter-
preter is also doing backslash substitutions. Without the braces, you would have

Table 4–2 Matching characters used with string match.

* Match any number of any characters.

? Match exactly one character.

[chars] Match any character in chars.

50 String Processing in Tcl Chap. 4

to use two backslashes. They are replaced with a single backslash by Tcl before
string match is called.

string match *\\? what?

Character Classes

The string is command tests a string to see whether it belongs to a partic-
ular class. This is useful for input validation. For example, to make sure some-
thing is a number, you do:

if {![string is integer $input]} {

error "Invalid input. Please enter a number."

}

Classes are defined in terms of the Unicode character set, which means
they are more general than specifying character sets with ranges over the ASCII
encoding. For example, alpha includes many characters outside the range of [A-
Za-z] because of different characters in other alphabets. The classes are listed in
Table 4–3.

Table 4–3 Character class names.

alnum Any alphabet or digit character.

alpha Any alphabet character.

ascii Any character with a 7-bit character code (i.e., less than 128.)

boolean 0, 1, true, false (in any case).

control Character code less than 32, and not NULL.

digit Any digit character.

double A valid floating point number.

false 0 or false (in any case).

graph Any printing characters, not including space characters.

integer A valid integer.

lower A string in all lower case.

print A synonym for alnum.

punct Any punctuation character.

space Space, tab, newline, carriage return, vertical tab, backspace.

true 1 or true (in any case).

upper A string all in upper case.

wordchar Alphabet, digit, and the underscore.

xdigit Valid hexadecimal digits.

The append Command 51 I. Tc
l Ba

sic
s

Mapping Strings

The string map command translates a string based on a character map.
The map is in the form of a input, output list. Whereever a string contains an
input sequence, that is replaced with the corresponding output. For example:

string map "food" {f p d l}

=> pool

The inputs and outputs can be more than one character and do not have to
be the same length:

string map "food" {f p d ll oo u}

=> pull

Example 4–3 is more practical. It uses string map to replace fancy quotes
and hyphens produced by Microsoft Word into ASCII equivalents. It uses the
open, read, and close file operations that are described in Chapter 9, and the
fconfigure command described on page 223 to ensure that the file format is
UNIX friendly.

Example 4–3 Mapping Microsoft World special characters to ASCII.

proc Dos2Unix {filename} {
set input [open $filename]
set output [open $filename.new]
fconfigure $output -translation lf
puts $output [string map {

\223 "
\224 "
\222 ’
\226 -

} [read $input]]
close $input
close $output

}

The append Command

The append command takes a variable name as its first argument and concate-
nates its remaining arguments onto the current value of the named variable. The
variable is created if it does not already exist:

set foo z

append foo a b c

set foo

=> zabc

The append command is efficient with large strings.
The append command provides an efficient way to add items to the end of a

string. It modifies a variable directly, so it can exploit the memory allocation
scheme used internally by Tcl. Using the append command like this:

52 String Processing in Tcl Chap. 4

append x " some new stuff"

is always faster than this:
set x "$x some new stuff"

The lappend command described on page 61 has similar performance bene-
fits when working with Tcl lists.

The format Command

The format command is similar to the C printf function. It formats a string
according to a format specification:

format spec value1 value2 ...

The spec argument includes literals and keywords. The literals are placed
in the result as is, while each keyword indicates how to format the corresponding
argument. The keywords are introduced with a percent sign, %, followed by zero
or more modifiers, and terminate with a conversion specifier. Example keywords
include %f for floating point, %d for integer, and %s for string format. Use %% to
obtain a single percent character. The most general keyword specification for
each argument contains up to six parts:

• position specifier
• flags
• field width
• precision
• word length
• conversion character

These components are explained by a series of examples. The examples use
double quotes around the format specification. This is because often the format
contains white space, so grouping is required, as well as backslash substitutions
like \t or \n, and the quotes allow substitution of these special characters. Table
4–4 lists the conversion characters:

Table 4–4 Format conversions.

d Signed integer.

u Unsigned integer.

i Signed integer. The argument may be in hex (0x) or octal (0) format.

o Unsigned octal.

x or X Unsigned hexadecimal. ‘x’ gives lowercase results.

c Map from an integer to the ASCII character it represents.

s A string.

f Floating point number in the format a.b.

The format Command 53 I. Tc
l Ba

sic
s

A position specifier is i$, which means take the value from argument i as
opposed to the normally corresponding argument. The position counts from 1. If
a position is specified for one format keyword, the position must be used for all of
them. If you group the format specification with double quotes, you need to quote
the $ with a backslash:

set lang 2

format "%${lang}\$s" one un uno

=> un

The position specifier is useful for picking a string from a set, such as this
simple language-specific example. The message catalog facility described in
Chapter 15 is a much more sophisticated way to solve this problem. The position
is also useful if the same value is repeated in the formatted string.

The flags in a format are used to specify padding and justification. In the
following examples, the # causes a leading 0x to be printed in the hexadecimal
value. The zero in 08 causes the field to be padded with zeros. Table 4–5 summa-
rizes the format flag characters.

format "%#x" 20

=> 0x14

format "%#08x" 10

=> 0x0000000a

After the flags you can specify a minimum field width value. The value is
padded to this width with spaces, or with zeros if the 0 flag is used:

format "%-20s %3d" Label 2

=> Label 2

You can compute a field width and pass it to format as one of the arguments
by using * as the field width specifier. In this case the next argument is used as
the field width instead of the value, and the argument after that is the value that

e or E Floating point number in scientific notation, a.bE+-c.

g or G Floating point number in either %f or %e format, whichever is shorter.

Table 4–5 Format flags.

- Left justify the field.

+ Always include a sign, either + or -.

space Precede a number with a space, unless the number has a leading sign. Useful
for packing numbers close together.

0 Pad with zeros.

Leading 0 for octal. Leading 0x for hex. Always include a decimal point in
floating point. Do not remove trailing zeros (%g).

Table 4–4 Format conversions. (Continued)

54 String Processing in Tcl Chap. 4

gets formatted.
set maxl 8

format "%-*s = %s" $maxl Key Value

=> Key = Value

The precision comes next, and it is specified with a period and a number.
For %f and %e it indicates how many digits come after the decimal point. For %g it
indicates the total number of significant digits used. For %d and %x it indicates
how many digits will be printed, padding with zeros if necessary.

format "%6.2f %6.2d" 1 1

=> 1.00 01

The storage length part comes last but it is rarely useful because Tcl maintains
all floating point values in double-precision, and all integers as long words.

The scan Command

The scan command parses a string according to a format specification and
assigns values to variables. It returns the number of successful conversions it
made. The general form of the command is:

scan string format var ?var? ?var? ...

The format for scan is nearly the same as in the format command. There is
no %u scan format. The %c scan format converts one character to its decimal
value.

The scan format includes a set notation. Use square brackets to delimit a
set of characters. The set matches one or more characters that are copied into the
variable. A dash is used to specify a range. The following scans a field of all low-
ercase letters.

scan abcABC {%[a-z]} result

=> 1

set result

=> abc

If the first character in the set is a right square bracket, then it is consid-
ered part of the set. If the first character in the set is ^, then characters not in
the set match. Again, put a right square bracket immediately after the ^ to
include it in the set. Nothing special is required to include a left square bracket
in the set. As in the previous example, you will want to protect the format with
braces, or use backslashes, because square brackets are special to the Tcl parser.

The binary Command

Tcl 8.0 added support for binary strings. Previous versions of Tcl used null-ter-
minated strings internally, which foils the manipulation of some types of data.
Tcl now uses counted strings, so it can tolerate a null byte in a string value with-
out truncating it.

The binary Command 55 I. Tc
l Ba

sic
s

This section describes the binary command that provides conversions
between strings and packed binary data representations. The binary format
command takes values and packs them according to a template. For example,
this can be used to format a floating point vector in memory suitable for passing
to Fortran. The resulting binary value is returned:

binary format template value ?value ...?

The binary scan command extracts values from a binary string according
to a similar template. For example, this is useful for extracting data stored in
binary format. It assigns values to a set of Tcl variables:

binary scan value template variable ?variable ...?

Format Templates

The template consists of type keys and counts. The types are summarized
in Table 4–6. In the table, count is the optional count following the type letter.

The count is interpreted differently depending on the type. For types like
integer (i) and double (d), the count is a repetition count (e.g., i3 means three

Table 4–6 Binary conversion types.

a A character string of length count. Padded with nulls in binary format.

A A character string of length count. Padded with spaces in binary format. Trailing
nulls and blanks are discarded in binary scan.

b A binary string of length count. Low-to-high order.

B A binary string of length count. High-to-low order.

h A hexadecimal string of length count. Low-to-high order.

H A hexadecimal string of length count. High-to-low order. (More commonly used than h.)

c An 8-bit character code. The count is for repetition.

s A 16-bit integer in little-endian byte order. The count is for repetition.

S A 16-bit integer in big-endian byte order. The count is for repetition.

i A 32-bit integer in little-endian byte order. The count is for repetition.

I A 32-bit integer in big-endian byte order. The count is for repetition.

f Single-precision floating point value in native format. count is for repetition.

d Double-precision floating point value in native format. count is for repetition.

x Pack count null bytes with binary format.
Skip count bytes with binary scan.

X Backup count bytes.

@ Skip to absolute position specified by count. If count is *, skip to the end.

56 String Processing in Tcl Chap. 4

integers). For strings, the count is a length (e.g., a3 means a three-character
string). If no count is specified, it defaults to 1. If count is *, then binary scan
uses all the remaining bytes in the value.

Several type keys can be specified in a template. Each key-count combina-
tion moves an imaginary cursor through the binary data. There are special type
keys to move the cursor. The x key generates null bytes in binary format, and it
skips over bytes in binary scan. The @ key uses its count as an absolute byte off-
set to which to set the cursor. As a special case, @* skips to the end of the data.
The X key backs up count bytes.

Numeric types have a particular byte order that determines how their
value is laid out in memory. The type keys are lowercase for little-endian byte
order (e.g., Intel) and uppercase for big-endian byte order (e.g., SPARC and
Motorola). Different integer sizes are 16-bit (s or S), 32-bit (i or I), and possibly
64-bit (l or L) on those machines that support 64-bit integers. Note that the offi-
cial byte order for data transmitted over a network is big-endian. Floating point
values are always machine-specific, so it only makes sense to format and scan
these values on the same machine.

There are three string types: character (a or A), binary (b or B), and hexadec-
imal (h or H). With these types the count is the length of the string. The a type
pads its value to the specified length with null bytes in binary format and the A
type pads its value with spaces. If the value is too long, it is truncated. In binary
scan, the A type strips trailing blanks and nulls.

A binary string consists of zeros and ones. The b type specifies bits from
low-to-high order, and the B type specifies bits from high-to-low order. A hexadec-
imal string specifies 4 bits (i.e., nybbles) with each character. The h type specifies
nybbles from low-to-high order, and the H type specifies nybbles from high-to-low
order. The B and H formats match the way you normally write out numbers.

Examples

When you experiment with binary format and binary scan, remember that
Tcl treats things as strings by default. A "6", for example, is the character 6 with
character code 54 or 0x36. The c type returns these character codes:

set input 6

binary scan $input "c" 6val

set 6val

=> 54

You can scan several character codes at a time:
binary scan abc "c3" list

=> 1

set list

=> 97 98 99

The previous example uses a single type key, so binary scan sets one corre-
sponding Tcl variable. If you want each character code in a separate variable, use
separate type keys:

The binary Command 57 I. Tc
l Ba

sic
s

binary scan abc "ccc" x y z

=> 3

set z

=> 99

Use the H format to get hexadecimal values:
binary scan 6 "H2" 6val

set 6val

=> 36

Use the a and A formats to extract fixed width fields. Here the * count is
used to get all the rest of the string. Note that A trims trailing spaces:

binary scan "hello world " a3x2A* first second

puts "\"$first\" \"$second\""

=> "hel" " world"

Use the @ key to seek to a particular offset in a value. The following com-
mand gets the second double-precision number from a vector. Assume the vector
is read from a binary data file:

binary scan $vector "@8d" double

With binary format, the a and A types create fixed width fields. A pads its
field with spaces, if necessary. The value is truncated if the string is too long:

binary format "A9A3" hello world

=> hello wor

An array of floating point values can be created with this command:
binary format "f*" 1.2 3.45 7.43 -45.67 1.03e4

Remember that floating point values are always in native format, so you
have to read them on the same type of machine that they were created. With
integer data you specify either big-endian or little-endian formats. The
tcl_platform variable described on page 182 can tell you the byte order of the
current platform.

Binary Data and File I/O

When working with binary data in files, you need to turn off the newline
translations and character set encoding that Tcl performs automatically. These
are described in more detail on pages 114 and 209. For example, if you are gener-
ating binary data, the following command puts your standard output in binary
mode:

fconfigure stdout -translation binary -encoding binary

puts [binary format "B8" 11001010]

58 String Processing in Tcl Chap. 4

Related Chapters

• To learn more about manipulating data in Tcl, read about lists in Chapter 5
and arrays in Chapter 8.

• For more about pattern matching, read about regular expressions in Chap-
ter 11.

• For more about file I/O, see Chapter 9.
• For information on Unicode and other Internationalization issues, see Chap-

ter 15.

59

C H A P T E R

I. Tc
l Ba

sic
s

 5

Tcl Lists 5

This chapter describes Tcl lists. Tcl commands described are: list, lindex,
llength, lrange, lappend, linsert, lreplace, lsearch, lsort,
concat, join, and split.

Lists in Tcl have the same structure as
Tcl commands. All the rules you learned about grouping arguments in Chapter 1
apply to creating valid Tcl lists. However, when you work with Tcl lists, it is best
to think of lists in terms of operations instead of syntax. Tcl commands provide
operations to put values into a list, get elements from lists, count the elements of
lists, replace elements of lists, and so on. The syntax can sometimes be confusing,
especially when you have to group arguments to the list commands themselves.

Lists are used with commands such as foreach that take lists as argu-
ments. In addition, lists are important when you are building up a command to
be evaluated later. Delayed command evaluation with eval is described in Chap-
ter 10, and similar issues with Tk callback commands are described in Chapter
27.

However, Tcl lists are not often the right way to build complicated data
structures in scripts. You may find Tcl arrays more useful, and they are the topic
of Chapter 8. List operations are also not right for handling unstructured data
such as user input. Use regular expressions instead, which are described in
Chapter 11.

Tcl Lists

A Tcl list is a sequence of values. When you write out a list, it has the same syn-
tax as a Tcl command. A list has its elements separated by white space. Braces
or quotes can be used to group words with white space into a single list element.

60 Tcl Lists Chap. 5

Because of the relationship between lists and commands, the list-related com-
mands described in this chapter are used often when constructing Tcl com-
mands.

Big lists were often slow before Tcl 8.0.
Unlike list data structures in other languages, Tcl lists are just strings with

a special interpretation. The string representation must be parsed on each list
access, so be careful when you use large lists. A list with a few elements will not
slow down your code much. A list with hundreds or thousands of elements can be
very slow. If you find yourself maintaining large lists that must be frequently
accessed, consider changing your code to use arrays instead.

The performance of lists was improved by the Tcl compiler added in Tcl 8.0.
The compiler stores lists in an internal format that requires constant time to
access. Accessing the first element costs the same as accessing any other element
in the list. Before Tcl 8.0, the cost of accessing an element was proportional to
the number of elements before it in the list. The internal format also records the
number of list elements, so getting the length of a list is cheap. Before Tcl 8.0,
computing the length required reading the whole list.

Table 5–1 briefly describes the Tcl commands related to lists.

Table 5–1 List-related commands.

list arg1 arg2 ... Creates a list out of all its arguments.

lindex list i Returns the ith element from list.

llength list Returns the number of elements in list.

lrange list i j Returns the ith through jth elements from list.

lappend listVar arg
arg ...

Appends elements to the value of listVar.

linsert list index
arg arg ...

Inserts elements into list before the element at position
index. Returns a new list.

lreplace list i j arg
arg ...

Replaces elements i through j of list with the args. Returns
a new list.

lsearch ?mode? list
value

Returns the index of the element in list that matches the
value according to the mode, which is -exact, -glob, or -
regexp. -glob is the default. Returns -1 if not found.

lsort ?switches?
list

Sorts elements of the list according to the switches: -ascii, -
integer, -real, -dictionary, -increasing,
-decreasing, -index ix, -command command.
Returns a new list.

concat list list ... Joins multiple lists together into one list.

join list joinString Merges the elements of a list together by separating them with
joinString.

split string split-
Chars

Splits a string up into list elements, using the characters in
splitChars as boundaries between list elements.

Constructing Lists 61 I. Tc
l Ba

sic
s

Constructing Lists

Constructing a list can be tricky because you must maintain proper list syntax.
In simple cases, you can do this by hand. In more complex cases, however, you
should use Tcl commands that take care of quoting so that the syntax comes out
right.

The list command

The list command constructs a list out of its arguments so that there is
one list element for each argument. If any of the arguments contain special char-
acters, the list command adds quoting to ensure that they are parsed as a sin-
gle element of the resulting list. The automatic quoting is very useful, and the
examples in this book use the list command frequently. The next example uses
list to create a list with three values, two of which contain special characters.

Example 5–1 Constructing a list with the list command.

set x {1 2}
=> 1 2
set y foo
=> foo
set l1 [list $x "a b" $y]
=> {1 2} {a b} foo
set l2 "\{$x\} {a b} $y"
=> {1 2} {a b} foo

The list command does automatic quoting.
Compare the use of list with doing the quoting by hand in Example 5–1.

The assignment of l2 requires carefully constructing the first list element by
using quoted braces. The braces must be turned off so that $x can be substituted,
but we need to group the result so that it remains a single list element. We also
have to know in advance that $x contains a space, so quoting is required. We are
taking a risk by not quoting $y because we know it doesn’t contain spaces. If its
value changes in the future, the structure of the list can change and even become
invalid. In contrast, the list command takes care of all these details automati-
cally.

When I first experimented with Tcl lists, I became confused by the treat-
ment of curly braces. In the assignment to x, for example, the curly braces disap-
pear. However, they come back again when $x is put into a bigger list. Also, the
double quotes around a b get changed into curly braces. What’s going on?
Remember that there are two steps. In the first step, the Tcl parser groups argu-
ments. In the grouping process, the braces and quotes are syntax that define
groups. These syntax characters get stripped off. The braces and quotes are not
part of the value. In the second step, the list command creates a valid Tcl list.
This may require quoting to get the list elements into the right groups. The list
command uses curly braces to group values back into list elements.

62 Tcl Lists Chap. 5

The lappend Command

The lappend command is used to append elements to the end of a list. The
first argument to lappend is the name of a Tcl variable, and the rest of the argu-
ments are added to the variable’s value as new list elements. Like list, lappend
preserves the structure of its arguments. It may add braces to group the values
of its arguments so that they retain their identity as list elements when they are
appended onto the string representation of the list.

Example 5–2 Using lappend to add elements to a list.

lappend new 1 2
=> 1 2
lappend new 3 "4 5"
=> 1 2 3 {4 5}
set new
=> 1 2 3 {4 5}

The lappend command is unique among the list-related commands because
its first argument is the name of a list-valued variable, while all the other com-
mands take list values as arguments. You can call lappend with the name of an
undefined variable and the variable will be created.

The lappend command is implemented efficiently to take advantage of the
way that Tcl stores lists internally. It is always more efficient to use lappend
than to try and append elements by hand.

The concat Command

The concat command is useful for splicing lists together. It works by con-
catenating its arguments, separating them with spaces. This joins multiple lists
into one list where the top-level list elements in each input list become top-level
list elements in the resulting list:

Example 5–3 Using concat to splice lists together.

set x {4 5 6}
set y {2 3}
set z 1
concat $z $y $x
=> 1 2 3 4 5 6

Double quotes behave much like the concat command. In simple cases, dou-
ble quotes behave exactly like concat. However, the concat command trims
extra white space from the end of its arguments before joining them together
with a single separating space character. Example 5–4 compares the use of list,
concat, and double quotes:

Getting List Elements: llength, lindex, and lrange 63 I. Tc
l Ba

sic
s

Example 5–4 Double quotes compared to the concat and list commands.

set x {1 2}
=> 1 2
set y "$x 3"
=> 1 2 3
set y [concat $x 3]
=> 1 2 3
set s { 2 }
=> 2
set y "1 $s 3"
=> 1 2 3
set y [concat 1 $s 3]
=> 1 2 3
set z [list $x $s 3]
=> {1 2} { 2 } 3

The distinction between list and concat becomes important when Tcl com-
mands are built dynamically. The basic rule is that list and lappend preserve
list structure, while concat (or double quotes) eliminates one level of list struc-
ture. The distinction can be subtle because there are examples where list and
concat return the same results. Unfortunately, this can lead to data-dependent
bugs. Throughout the examples of this book, you will see the list command used
to safely construct lists. This issue is discussed more in Chapter 10.

Getting List Elements: llength, lindex, and lrange

The llength command returns the number of elements in a list.
llength {a b {c d} "e f g" h}

=> 5

llength {}

=> 0

The lindex command returns a particular element of a list. It takes an
index; list indices count from zero.

set x {1 2 3}

lindex $x 1

=> 2

You can use the keyword end to specify the last element of a list, or the syn-
tax end-N to count back from the end of the list. The following commands are
equivalent ways to get the element just before the last element in a list.

lindex $list [expr {[llength $list] - 2}]

lindex $list end-1

The lrange command returns a range of list elements. It takes a list and
two indices as arguments. Again, end or end-N can be used as an index:

lrange {1 2 3 {4 5}} 2 end

=> 3 {4 5}

64 Tcl Lists Chap. 5

Modifying Lists: linsert and lreplace
The linsert command inserts elements into a list value at a specified index. If
the index is zero or less, then the elements are added to the front. If the index is
equal to or greater than the length of the list, then the elements are appended to
the end. Otherwise, the elements are inserted before the element that is cur-
rently at the specified index.

lreplace replaces a range of list elements with new elements. If you don’t
specify any new elements, you effectively delete elements from a list.

Note: linsert and lreplace do not modify an existing list. Instead, they
return a new list value. In the following example, the lreplace command does
not change the value of x:

Example 5–5 Modifying lists with linsert and lreplace.

linsert {1 2} 0 new stuff
=> new stuff 1 2
set x [list a {b c} e d]
=> a {b c} e d
lreplace $x 1 2 B C
=> a B C d
lreplace $x 0 0
=> {b c} e d

Searching Lists: lsearch
lsearch returns the index of a value in the list, or -1 if it is not present. lsearch
supports pattern matching in its search. Glob-style pattern matching is the
default, and this can be disabled with the -exact flag. The semantics of glob pat-
tern matching is described in Chapter 4. The -regexp option lets you specify the
list value with a regular expression. Regular expressions are described in Chap-
ter 11. In the following example, the glob pattern l* matches the value list.

lsearch {here is a list} l*

=> 3

Example 5–6 uses lreplace and lsearch to delete a list element by value.
The value is found with lsearch. The value is removed with an lreplace that
does not specify any replacement list elements:

Example 5–6 Deleting a list element by value.

proc ldelete { list value } {
set ix [lsearch -exact $list $value]
if {$ix >= 0} {

return [lreplace $list $ix $ix]
} else {

return $list
}

}

Sorting Lists: lsort 65 I. Tc
l Ba

sic
s

Sorting Lists: lsort

You can sort a list in a variety of ways with lsort. The list is not sorted in place.
Instead, a new list value is returned. The basic types of sorts are specified with
the -ascii, -dictionary, -integer, or -real options. The -increasing or
-decreasing option indicate the sorting order. The default option set is -ascii
-increasing. An ASCII sort uses character codes, and a dictionary sort folds
together case and treats digits like numbers. For example:

lsort -ascii {a Z n2 n100}

=> Z a n100 n2

lsort -dictionary {a Z n2 n100}

=> a n2 n100 Z

You can provide your own sorting function for special-purpose sorting. For
example, suppose you have a list of names, where each element is itself a list con-
taining the person’s first name, middle name (if any), and last name. The default
sorts by everyone’s first name. If you want to sort by their last name, you need to
supply a sorting command.

Example 5–7 Sorting a list using a comparison function.

proc NameCompare {a b} {
set alast [lindex $a end]
set blast [lindex $b end]
set res [string compare $alast $blast]
if {$res != 0} {

return $res
} else {

return [string compare $a $b]
}

}
set list {{Brent B. Welch} {John Ousterhout} {Miles Davis}}
=> {Brent B. Welch} {John Ousterhout} {Miles Davis}
lsort -command NameCompare $list
=> {Miles Davis} {John Ousterhout} {Brent B. Welch}

The NameCompare procedure extracts the last element from each of its argu-
ments and compares those. If they are equal, then it just compares the whole of
each argument.

Tcl 8.0 added a -index option to lsort that can be used to sort lists on an
index. Instead of using NameCompare, you could do this:

lsort -index end $list

The split Command

The split command takes a string and turns it into a list by breaking it at spec-
ified characters and ensuring that the result has the proper list syntax. The
split command provides a robust way to turn input lines into proper Tcl lists:

66 Tcl Lists Chap. 5

set line {welch:*:28405:100:Brent Welch:/usr/welch:/bin/csh}
split $line :
=> welch * 28405 100 {Brent Welch} /usr/welch /bin/csh
lindex [split $line :] 4
=> Brent Welch
Do not use list operations on arbitrary data.
Even if your data has space-separated words, you should be careful when

using list operators on arbitrary input data. Otherwise, stray double quotes or
curly braces in the input can result in invalid list structure and errors in your
script. Your code will work with simple test cases, but when invalid list syntax
appears in the input, your script will raise an error. The next example shows
what happens when input is not a valid list. The syntax error, an unmatched
quote, occurs in the middle of the list. However, you cannot access any of the list
because the lindex command tries to convert the value to a list before returning
any part of it.

Example 5–8 Use split to turn input data into Tcl lists.

set line {this is "not a tcl list}
lindex $line 1
=> unmatched open quote in list
lindex [split $line] 2
=> "not

The default separator character for split is white space, which contains
spaces, tabs, and newlines. If there are multiple separator characters in a row,
these result in empty list elements; the separators are not collapsed. The follow-
ing command splits on commas, periods, spaces, and tabs. The backslash–space
sequence is used to include a space in the set of characters. You could also group
the argument to split with double quotes:

set line "\tHello, world."

split $line \ ,.\t

=> {} Hello {} world {}

A trick that splits each character into a list element is to specify an empty
string as the split character. This lets you get at individual characters with list
operations:

split abc {}

=> a b c

However, if you write scripts that process data one character at a time, they
may run slowly. Read Chapter 11 about regular expressions for hints on really
efficient string processing.

The join Command 67 I. Tc
l Ba

sic
s

The join Command

The join command is the inverse of split. It takes a list value and reformats it
with specified characters separating the list elements. In doing so, it removes
any curly braces from the string representation of the list that are used to group
the top-level elements. For example:

join {1 {2 3} {4 5 6}} :

=> 1:2 3:4 5 6

If the treatment of braces is puzzling, remember that the first value is
parsed into a list. The braces around element values disappear in the process.
Example 5–9 shows a way to implement join in a Tcl procedure, which may help
to understand the process:

Example 5–9 Implementing join in Tcl.

proc join {list sep} {
set s {} ;# s is the current separator
set result {}
foreach x $list {

append result $s $x
set s $sep

}
return $result

}

Related Chapters

• Arrays are the other main data structure in Tcl. They are described in
Chapter 8.

• List operations are used when generating Tcl code dynamically. Chapter 10
describes these techniques when using the eval command.

• The foreach command loops over the values in a list. It is described on page
73 in Chapter 6.

Blank page 68

69

C H A P T E R

I. Tc
l Ba

sic
s

 6

Control Structure Commands 6

This chapter describes the Tcl commands that implement control structures:
if, switch, foreach, while, for, break, continue, catch, error,
and return.

Control structure in Tcl is achieved with
commands, just like everything else. There are looping commands: while,
foreach, and for. There are conditional commands: if and switch. There is an
error handling command: catch. Finally, there are some commands to fine-tune
control structures: break, continue, return, and error.

A control structure command often has a command body that is executed
later, either conditionally or in a loop. In this case, it is important to group the
command body with curly braces to avoid substitutions at the time the control
structure command is invoked. Group with braces, and let the control structure
command trigger evaluation at the proper time. A control structure command
returns the value of the last command it chose to execute.

Another pleasant property of curly braces is that they group things
together while including newlines. The examples use braces in a way that is both
readable and convenient for extending the control structure commands across
multiple lines.

Commands like if, for, and while involve boolean expressions. They use
the expr command internally, so there is no need for you to invoke expr explicitly
to evaluate their boolean test expressions.

70 Control Structure Commands Chap. 6

If Then Else

The if command is the basic conditional command. If an expression is true, then
execute one command body; otherwise, execute another command body. The sec-
ond command body (the else clause) is optional. The syntax of the command is:

if expression ?then? body1 ?else? ?body2?

The then and else keywords are optional. In practice, I omit then but use
else as illustrated in the next example. I always use braces around the com-
mand bodies, even in the simplest cases:

Example 6–1 A conditional if then else command.

if {$x == 0} {
puts stderr "Divide by zero!"

} else {
set slope [expr $y/$x]

}

Curly brace positioning is important.
The style of this example takes advantage of the way the Tcl interpreter

parses commands. Recall that newlines are command terminators, except when
the interpreter is in the middle of a group defined by braces or double quotes.
The stylized placement of the opening curly brace at the end of the first and third
lines exploits this property to extend the if command over multiple lines.

The first argument to if is a boolean expression. As a matter of style this
expression is grouped with curly braces. The expression evaluator performs vari-
able and command substitution on the expression. Using curly braces ensures
that these substitutions are performed at the proper time. It is possible to be lax
in this regard, with constructs such as:

if $x break continue

This is a sloppy, albeit legitimate, if command that will either break out of
a loop or continue with the next iteration depending on the value of variable x.
This style is fragile and error prone. Instead, always use braces around the com-
mand bodies to avoid trouble later when you modify the command. The following
is much better (use then if it suits your taste):

if {$x} {
break

} else {
continue

}

When you are testing the result of a command, you can get away without
using curly braces around the command, like this:

if [command] body1

However, it turns out that you can execute the if statement more effi-
ciently if you always group the expression with braces, like this:

if {[command]} body1

Switch 71 I. Tc
l Ba

sic
s

You can create chained conditionals by using the elseif keyword. Again,
note the careful placement of curly braces that create a single if command:

Example 6–2 Chained conditional with elseif.

if {$key < 0} {
incr range 1

} elseif {$key == 0} {
return $range

} else {
incr range -1

}

Any number of conditionals can be chained in this manner. However, the
switch command provides a more powerful way to test multiple conditions.

Switch

The switch command is used to branch to one of many command bodies depend-
ing on the value of an expression. The choice can be made on the basis of pattern
matching as well as simple comparisons. Pattern matching is discussed in more
detail in Chapter 4 and Chapter 11. The general form of the command is:

switch flags value pat1 body1 pat2 body2 ...

Any number of pattern-body pairs can be specified. If multiple patterns
match, only the body of the first matching pattern is evaluated. You can also
group all the pattern-body pairs into one argument:

switch flags value { pat1 body1 pat2 body2 ... }

The first form allows substitutions on the patterns but will require back-
slashes to continue the command onto multiple lines. This is shown in Example
6–4 on page 72. The second form groups all the patterns and bodies into one
argument. This makes it easy to group the whole command without worrying
about newlines, but it suppresses any substitutions on the patterns. This is
shown in Example 6–3. In either case, you should always group the command
bodies with curly braces so that substitution occurs only on the body with the
pattern that matches the value.

There are four possible flags that determine how value is matched.

-exact Matches the value exactly to one of the patterns. This is the default.

-glob Uses glob-style pattern matching. See page 48.

-regexp Uses regular expression pattern matching. See page 134.

-- No flag (or end of flags). Necessary when value can begin with -.

The switch command raises an error if any other flag is specified or if the
value begins with -. In practice I always use the -- flag before value so that I
don’t have to worry about that problem.

If the pattern associated with the last body is default, then this command

72 Control Structure Commands Chap. 6

body is executed if no other patterns match. The default keyword works only on
the last pattern-body pair. If you use the default pattern on an earlier body, it
will be treated as a pattern to match the literal string default:

Example 6–3 Using switch for an exact match.

switch -exact -- $value {
foo { doFoo; incr count(foo) }
bar { doBar; return $count(foo)}
default { incr count(other) }

}

If you have variable references or backslash sequences in the patterns, then
you cannot use braces around all the pattern-body pairs. You must use back-
slashes to escape the newlines in the command:

Example 6–4 Using switch with substitutions in the patterns.

switch -regexp -- $value \
^$key { body1 }\
\t### { body2 }\
{[0-9]*} { body3 }

In this example, the first and second patterns have substitutions performed
to replace $key with its value and \t with a tab character. The third pattern is
quoted with curly braces to prevent command substitution; square brackets are
part of the regular expression syntax, too. (See page Chapter 11.)

If the body associated with a pattern is just a dash, -, then the switch com-
mand “falls through” to the body associated with the next pattern. You can tie
together any number of patterns in this manner.

Example 6–5 A switch with "fall through" cases.

switch -glob -- $value {
X* -
Y* { takeXorYaction $value }

}

Comments in switch Commands

A comment can occur only where the Tcl parser expects a command to
begin. This restricts the location of comments in a switch command. You must
put them inside the command body associated with a pattern, as shown in Exam-
ple 6–6. If you put a comment at the same level as the patterns, the switch com-
mand will try to interpret the comment as one or more pattern-body pairs.

While 73 I. Tc
l Ba

sic
s

Example 6–6 Comments in switch commands.

switch -- $value {
this comment confuses switch
pattern { # this comment is ok }

}

While

The while command takes two arguments, a test and a command body:
while booleanExpr body

The while command repeatedly tests the boolean expression and then exe-
cutes the body if the expression is true (nonzero). Because the test expression is
evaluated again before each iteration of the loop, it is crucial to protect the
expression from any substitutions before the while command is invoked. The fol-
lowing is an infinite loop (see also Example 1–13 on page 12):

set i 0 ; while $i<10 {incr i}

The following behaves as expected:
set i 0 ; while {$i<10} {incr i}

It is also possible to put nested commands in the boolean expression. The
following example uses gets to read standard input. The gets command returns
the number of characters read, returning -1 upon end of file. Each time through
the loop, the variable line contains the next line in the file:

Example 6–7 A while loop to read standard input.

set numLines 0 ; set numChars 0
while {[gets stdin line] >= 0} {

incr numLines
incr numChars [string length $line]

}

Foreach

The foreach command loops over a command body assigning one or more loop
variables to each of the values in one or more lists. Multiple loop variables were
introduced in Tcl 7.5. The syntax for the simple case of a single variable and a
single list is:

foreach loopVar valueList commandBody

The first argument is the name of a variable, and the command body is exe-
cuted once for each element in the list with the loop variable taking on successive
values in the list. The list can be entered explicitly, as in the next example:

74 Control Structure Commands Chap. 6

Example 6–8 Looping with foreach.

set i 1
foreach value {1 3 5 7 11 13 17 19 23} {

set i [expr $i*$value]
}
set i
=> 111546435

It is also common to use a list-valued variable or command result instead of
a static list value. The next example loops through command-line arguments.
The variable argv is set by the Tcl interpreter to be a list of the command-line
arguments given when the interpreter was started:

Example 6–9 Parsing command-line arguments.

argv is set by the Tcl shells
possible flags are:
-max integer
-force
-verbose
set state flag
set force 0
set verbose 0
set max 10
foreach arg $argv {

switch -- $state {
flag {

switch -glob -- $arg {
-f* {set force 1}
-v* {set verbose 1}
-max {set state max}
default {error "unknown flag $arg"}

}
}
max {

set max $arg
set state flag

}
}

}

The loop uses the state variable to keep track of what is expected next,
which in this example is either a flag or the integer value for -max. The -- flag to
switch is required in this example because the switch command complains
about a bad flag if the pattern begins with a - character. The -glob option lets
the user abbreviate the -force and -verbose options.

If the list of values is to contain variable values or command results, then
the list command should be used to form the list. Avoid double quotes because if
any values or command results contain spaces or braces, the list structure will be
reparsed, which can lead to errors or unexpected results.

Foreach 75 I. Tc
l Ba

sic
s

Example 6–10 Using list with foreach.

foreach x [list $a $b [foo]] {
puts stdout "x = $x"

}

The loop variable x will take on the value of a, the value of b, and the result
of the foo command, regardless of any special characters or whitespace in those
values.

Multiple Loop Variables

You can have more than one loop variable with foreach. Suppose you have
two loop variables x and y. In the first iteration of the loop, x gets the first value
from the value list and y gets the second value. In the second iteration, x gets the
third value and y gets the fourth value. This continues until there are no more
values. If there are not enough values to assign to all the loop variables, the
extra variables get the empty string as their value.

Example 6–11 Multiple loop variables with foreach.

foreach {key value} {orange 55 blue 72 red 24 green} {
puts "$key: $value"

}
orange: 55
blue: 72
red: 24
green:

If you have a command that returns a short list of values, then you can
abuse the foreach command to assign the results of the commands to several
variables all at once. For example, suppose the command MinMax returns two val-
ues as a list: the minimum and maximum values. Here is one way to get the val-
ues:

set result [MinMax $list]

set min [lindex $result 0]

set max [lindex $result 1]

The foreach command lets us do this much more compactly:
foreach {min max} [MinMax $list] {break}

The break in the body of the foreach loop guards against the case where
the command returns more values than we expected. This trick is encapsulated
into the lassign procedure in Example 10–4 on page 131.

76 Control Structure Commands Chap. 6

Multiple Value Lists

The foreach command has the ability to loop over multiple value lists in
parallel. In this case, each value list can also have one or more variables. The
foreach command keeps iterating until all values are used from all value lists. If
a value list runs out of values before the last iteration of the loop, its correspond-
ing loop variables just get the empty string for their value.

Example 6–12 Multiple value lists with foreach.

foreach {k1 k2} {orange blue red green black} value {55 72 24} {
puts "$k1 $k2: $value"

}
orange blue: 55
red green: 72
black : 24

For

The for command is similar to the C for statement. It takes four arguments:
for initial test final body

The first argument is a command to initialize the loop. The second argu-
ment is a boolean expression that determines whether the loop body will execute.
The third argument is a command to execute after the loop body:

Example 6–13 A for loop.

for {set i 0} {$i < 10} {incr i 3} {
lappend aList $i

}
set aList
=> 0 3 6 9

You could use for to iterate over a list, but you should really use foreach
instead. Code like the following is slow and cluttered:

for {set i 0} {$i < [llength $list]} {incr i} {

set value [lindex $list $i]

}

This is the same as:
foreach value $list {

}

Break and Continue 77 I. Tc
l Ba

sic
s

Break and Continue

You can control loop execution with the break and continue commands. The
break command causes immediate exit from a loop, while the continue com-
mand causes the loop to continue with the next iteration. There is no goto com-
mand in Tcl.

Catch

Until now we have ignored the possibility of errors. In practice, however, a com-
mand will raise an error if it is called with the wrong number of arguments, or if
it detects some error condition particular to its implementation. An uncaught
error aborts execution of a script.* The catch command is used to trap such
errors. It takes two arguments:

catch command ?resultVar?

The first argument to catch is a command body. The second argument is
the name of a variable that will contain the result of the command, or an error
message if the command raises an error. catch returns zero if there was no error
caught, or a nonzero error code if it did catch an error.

You should use curly braces to group the command instead of double quotes
because catch invokes the full Tcl interpreter on the command. If double quotes
are used, an extra round of substitutions occurs before catch is even called. The
simplest use of catch looks like the following:

catch { command }

A more careful catch phrase saves the result and prints an error message:

Example 6–14 A standard catch phrase.

if {[catch { command arg1 arg2 ... } result]} {
puts stderr $result

} else {
command was ok, result contains the return value

}

A more general catch phrase is shown in the next example. Multiple com-
mands are grouped into a command body. The errorInfo variable is set by the
Tcl interpreter after an error to reflect the stack trace from the point of the error:

* More precisely, the Tcl script unwinds and the current Tcl_Eval procedure in the C runtime library
returns TCL_ERROR. There are three cases. In interactive use, the Tcl shell prints the error message. In Tk, errors
that arise during event handling trigger a call to bgerror, a Tcl procedure you can implement in your application.
In your own C code, you should check the result of Tcl_Eval and take appropriate action in the case of an error.

78 Control Structure Commands Chap. 6

Example 6–15 A longer catch phrase.

if {[catch {
command1
command2
command3

} result]} {
global errorInfo
puts stderr $result
puts stderr "*** Tcl TRACE ***"
puts stderr $errorInfo

} else {
command body ok, result of last command is in result

}

These examples have not grouped the call to catch with curly braces. This
is acceptable because catch always returns an integer, so the if command will
parse correctly. However, if we had used while instead of if, then curly braces
would be necessary to ensure that the catch phrase was evaluated repeatedly.

Catching More Than Errors

The catch command catches more than just errors. If the command body
contains return, break, or continue commands, these terminate the command
body and are reflected by catch as nonzero return codes. You need to be aware of
this if you try to isolate troublesome code with a catch phrase. An innocent look-
ing return command will cause the catch to signal an apparent error. The next
example uses switch to find out exactly what catch returns. Nonerror cases are
passed up to the surrounding code by invoking return, break, or continue:

Example 6–16 There are several possible return values from catch.

switch [catch {
command1
command2
...

} result] {
0 { # Normal completion }
1 { # Error case }
2 { return $result ;# return from procedure}
3 { break ;# break out of the loop}
4 { continue ;# continue loop}
default { # User-defined error codes }

}

Error 79 I. Tc
l Ba

sic
s

Error

The error command raises an error condition that terminates a script unless it
is trapped with the catch command. The command takes up to three arguments:

error message ?info? ?code?

The message becomes the error message stored in the result variable of the
catch command.

If the info argument is provided, then the Tcl interpreter uses this to ini-
tialize the errorInfo global variable. That variable is used to collect a stack
trace from the point of the error. If the info argument is not provided, then the
error command itself is used to initialize the errorInfo trace.

Example 6–17 Raising an error.

proc foo {} {
error bogus

}
foo
=> bogus
set errorInfo
=> bogus

while executing
"error bogus"

(procedure "foo" line 2)
invoked from within

"foo"

In the previous example, the error command itself appears in the trace.
One common use of the info argument is to preserve the errorInfo that is avail-
able after a catch. In the next example, the information from the original error is
preserved:

Example 6–18 Preserving errorInfo when calling error.

if {[catch {foo} result]} {
global errorInfo
set savedInfo $errorInfo
Attempt to handle the error here, but cannot...
error $result $savedInfo

}

The code argument specifies a concise, machine-readable description of the
error. It is stored into the global errorCode variable. It defaults to NONE. Many of
the file system commands return an errorCode that has three elements: POSIX,
the error name (e.g., ENOENT), and the associated error message:

POSIX ENOENT {No such file or directory}

In addition, your application can define error codes of its own. Catch
phrases can examine the code in the global errorCode variable and decide how to
respond to the error.

80 Control Structure Commands Chap. 6

Return

The return command is used to return from a procedure. It is needed if return is
to occur before the end of the procedure body, or if a constant value needs to be
returned. As a matter of style, I also use return at the end of a procedure, even
though a procedure returns the value of the last command executed in the body.

Exceptional return conditions can be specified with some optional argu-
ments to return. The complete syntax is:

return ?-code c? ?-errorinfo i? ?-errorcode ec? string

The -code option value is one of ok, error, return, break, continue, or an
integer. ok is the default if -code is not specified.

The -code error option makes return behave much like the error com-
mand. The -errorcode option sets the global errorCode variable, and the
-errorinfo option initializes the errorInfo global variable. When you use
return -code error, there is no error command in the stack trace. Compare
Example 6–17 with Example 6–19:

Example 6–19 Raising an error with return.

proc bar {} {
return -code error bogus

}
catch {bar} result
=> 1
set result
=> bogus
set errorInfo
=> bogus

while executing
"bar"

The return, break, and continue code options take effect in the caller of the
procedure doing the exceptional return. If -code return is specified, then the
calling procedure returns. If -code break is specified, then the calling procedure
breaks out of a loop, and if -code continue is specified, then the calling proce-
dure continues to the next iteration of the loop. These -code options to return
enable the construction of new control structures entirely in Tcl. The following
example implements the break command with a Tcl procedure:

proc break {} {

return -code break

}

81

C H A P T E R

I. Tc
l Ba

sic
s

 7

Procedures and Scope 7

Procedures encapsulate a set of commands, and they introduce a local scope
for variables. Commands described are: proc, global, and upvar.

Procedures parameterize a commonly
used sequence of commands. In addition, each procedure has a new local scope
for variables. The scope of a variable is the range of commands over which it is
defined. Originally, Tcl had one global scope for shared variables, local scopes
within procedures, and one global scope for procedures. Tcl 8.0 added
namespaces that provide new scopes for procedures and global variables. For
simple applications you can ignore namespaces and just use the global scope.
Namespaces are described in Chapter 14.

The proc Command
A Tcl procedure is defined with the proc command. It takes three arguments:

proc name params body

The first argument is the procedure name, which is added to the set of com-
mands understood by the Tcl interpreter. The name is case sensitive and can con-
tain any characters. Procedure names do not conflict with variable names. The
second argument is a list of parameter names. The last argument is the body of
the procedure.

Once defined, a Tcl procedure is used just like any other Tcl command.
When it is called, each argument is assigned to the corresponding parameter and
the body is evaluated. The result of the procedure is the result returned by the
last command in the body. The return command can be used to return a specific
value.

82 Procedures and Scope Chap. 7

Procedures can have default parameters so that the caller can leave out
some of the command arguments. A default parameter is specified with its name
and default value, as shown in the next example:

Example 7–1 Default parameter values.

proc P2 {a {b 7} {c -2} } {
expr $a / $b + $c

}
P2 6 3
=> 0

Here the procedure P2 can be called with one, two, or three arguments. If it
is called with only one argument, then the parameters b and c take on the values
specified in the proc command. If two arguments are provided, then only c gets
the default value, and the arguments are assigned to a and b. At least one argu-
ment and no more than three arguments can be passed to P2.

A procedure can take a variable number of arguments by specifying the
args keyword as the last parameter. When the procedure is called, the args
parameter is a list that contains all the remaining values:

Example 7–2 Variable number of arguments.

proc ArgTest {a {b foo} args} {
foreach param {a b args} {

puts stdout "\t$param = [set $param]"
}

}
set x one
set y {two things}
set z \[special\$
ArgTest $x
=> a = one

b = foo
args =

ArgTest $y $z
=> a = two things

b = [special$
args =

ArgTest $x $y $z
=> a = one

b = two things
args = {[special$}

ArgTest $z $y $z $x
=> a = [special$

b = two things
args = {[special$} one

The effect of the list structure in args is illustrated by the treatment of
variable z in Example 7–2. The value of z has special characters in it. When $z is

Changing Command Names with rename 83 I. Tc
l Ba

sic
s

passed as the value of parameter b, its value comes through to the procedure
unchanged. When $z is part of the optional parameters, quoting is automatically
added to create a valid Tcl list as the value of args. Example 10–3 on page 127
illustrates a technique that uses eval to undo the effect of the added list struc-
ture.

Changing Command Names with rename

The rename command changes the name of a command. There are two main uses
for rename. The first is to augment an existing procedure. Before you redefine it
with proc, rename the existing command:

rename foo foo.orig

 From within the new implementation of foo you can invoke the original
command as foo.orig. Existing users of foo will transparently use the new ver-
sion.

The other thing you can do with rename is completely hide a command by
renaming it to the empty string. For example, you might not want users to exe-
cute UNIX programs, so you could disable exec with the following command:

rename exec {}

Scope

By default there is a single, global scope for procedure names. This means that
you can use a procedure anywhere in your script. Variables defined outside any
procedure are global variables. However, as described below, global variables are
not automatically visible inside procedures. There is a different namespace for
variables and procedures, so you could have a procedure and a global variable
with the same name without conflict. You can use the namespace facility
described in Chapter 7 to manage procedures and global variables.

Each procedure has a local scope for variables. That is, variables introduced
in the procedure live only for the duration of the procedure call. After the proce-
dure returns, those variables are undefined. Variables defined outside the proce-
dure are not visible to a procedure unless the upvar or global scope commands
are used. You can also use qualified names to name variables in a namespace
scope. The global and upvar commands are described later in this chapter. Qual-
ified names are described on page 198. If the same variable name exists in an
outer scope, it is unaffected by the use of that variable name inside a procedure.

In Example 7–3, the variable a in the global scope is different from the
parameter a to P1. Similarly, the global variable b is different from the variable b
inside P1:

84 Procedures and Scope Chap. 7

Example 7–3 Variable scope and Tcl procedures.

set a 5
set b -8
proc P1 {a} {

set b 42
if {$a < 0} {

return $b
} else {

return $a
}

}
P1 $b
=> 42
P1 [expr $a*2]
=> 10

The global Command

Global scope is the toplevel scope. This scope is outside of any procedure. Vari-
ables defined at the global scope must be made accessible to the commands
inside a procedure by using the global command. The syntax for global is:

global varName1 varName2 ...

The global command goes inside a procedure.
The global command adds a global variable to the current scope. A com-

mon mistake is to have a single global command and expect that to apply to all
procedures. However, a global command in the global scope has no effect.
Instead, you must put a global command in all procedures that access the global
variable. The variable can be undefined at the time the global command is used.
When the variable is defined, it becomes visible in the global scope.

Example 7–4 shows a random number generator. Before we look at the
example, let me point out that the best way to get random numbers in Tcl is to
use the rand() math function:

expr rand()

=> .137287362934

The point of the example is to show a state variable, the seed, that has to
persist between calls to random, so it is kept in a global variable. The choice of
randomSeed as the name of the global variable associates it with the random
number generator. It is important to pick names of global variables carefully to
avoid conflict with other parts of your program. For comparison, Example 14–1
on page 196 uses namespaces to hide the state variable:

Call by Name Using upvar 85 I. Tc
l Ba

sic
s

Example 7–4 A random number generator.*

proc RandomInit { seed } {
global randomSeed
set randomSeed $seed

}
proc Random {} {

global randomSeed
set randomSeed [expr ($randomSeed*9301 + 49297) % 233280]
return [expr $randomSeed/double(233280)]

}
proc RandomRange { range } {

expr int([Random]*$range)
}
RandomInit [pid]
=> 5049
Random
=> 0.517686899863
Random
=> 0.217176783265
RandomRange 100
=> 17

Call by Name Using upvar

Use the upvar command when you need to pass the name of a variable, as
opposed to its value, into a procedure. The upvar command associates a local
variable with a variable in a scope up the Tcl call stack. The syntax of the upvar
command is:

upvar ?level? varName localvar

The level argument is optional, and it defaults to 1, which means one level
up the Tcl call stack. You can specify some other number of frames to go up, or
you can specify an absolute frame number with a #number syntax. Level #0 is the
global scope, so the global foo command is equivalent to:

upvar #0 foo foo

The variable in the uplevel stack frame can be either a scalar variable, an
array element, or an array name. In the first two cases, the local variable is
treated like a scalar variable. In the case of an array name, then the local vari-
able is treated like an array. The use of upvar and arrays is discussed further in
Chapter 8 on page 92. The following procedure uses upvar to print the value of a
variable given its name.

* Adapted from Exploring Expect by Don Libes, O’Reilly & Associates, Inc., 1995, and from Numerical Rec-
ipes in C by Press et al., Cambridge University Press, 1988.

86 Procedures and Scope Chap. 7

Example 7–5 Print variable by name.

proc PrintByName { varName } {
upvar 1 $varName var
puts stdout "$varName = $var"

}

You can use upvar to fix the incr command. One drawback of the built-in
incr is that it raises an error if the variable does not exist. We can define a new
version of incr that initializes the variable if it does not already exist:

Example 7–6 Improved incr procedure.

proc incr { varName {amount 1}} {
upvar 1 $varName var
if {[info exists var]} {

set var [expr $var + $amount]
} else {

set var $amount
}
return $var

}

Variable Aliases with upvar

The upvar command is useful in any situation where you have the name of a
variable stored in another variable. In Example 7–2 on page 82, the loop variable
param holds the names of other variables. Their value is obtained with this con-
struct:

puts stdout "\t$param = [set $param]"

Another way to do this is to use upvar. It eliminates the need to use awk-
ward constructs like [set $param]. If the variable is in the same scope, use zero
as the scope number with upvar. The following is equivalent:

upvar 0 $param x

puts stdout "\t$param = $x"

Associating State with Data

Suppose you have a program that maintains state about a set of objects like
files, URLs, or people. You can use the name of these objects as the name of a
variable that keeps state about the object. The upvar command makes this more
convenient:

upvar #0 $name state

Using the name directly like this is somewhat risky. If there were an object
named x, then this trick might conflict with an unrelated variable named x else-
where in your program. You can modify the name to make this trick more robust:

Variable Aliases with upvar 87 I. Tc
l Ba

sic
s

upvar #0 state$name state

Your code can pass name around as a handle on an object, then use upvar to
get access to the data associated with the object. Your code is just written to use
the state variable, which is an alias to the state variable for the current object.
This technique is illustrated in Example 17–7 on page 232.

Namespaces and upvar

You can use upvar to create aliases for namespace variables, too.
Namespaces are described in Chapter 14. For example, as an alternative to
reserving all global variables beginning with state, you can use a namespace to
hide these variables:

upvar #0 state::$name state

Now state is an alias to the namespace variable. This upvar trick works
from inside any namespace.

Commands That Take Variable Names

Several Tcl commands involve variable names. For example, the Tk widgets
can be associated with a global Tcl variable. The vwait and tkwait commands
also take variable names as arguments.

Upvar aliases do not work with text variables.
The aliases created with upvar do not work with these commands, nor do

they work if you use trace, which is described on page 183. Instead, you must
use the actual name of the global variable. To continue the above example where
state is an alias, you cannot:

vwait state(foo)

button .b -textvariable state(foo)

Instead, you must
vwait state$name\(foo)

button .b -textvariable state$name\(foo)

The backslash turns off the array reference so Tcl does not try to access
name as an array. You do not need to worry about special characters in $name,
except parentheses. Once the name has been passed into the Tk widget it will be
used directly as a variable name.

Blank page 88

89

C H A P T E R

I. Tc
l Ba

sic
s

 8

Tcl Arrays 8

This chapter describes Tcl arrays, which provide a flexible mechanism to build
many other data structures in Tcl. Tcl command described is: array.

An array is a Tcl variable with a string-
valued index. You can think of the index as a key, and the array as a collection of
related data items identified by different keys. The index, or key, can be any
string value. Internally, an array is implemented with a hash table, so the cost of
accessing each array element is about the same. Before Tcl 8.0, arrays had a per-
formance advantage over lists that took time to access proportional to the size of
the list.

The flexibility of arrays makes them an important tool for the Tcl program-
mer. A common use of arrays is to manage a collection of variables, much as you
use a C struct or Pascal record. This chapter shows how to create several simple
data structures using Tcl arrays.

Array Syntax

The index of an array is delimited by parentheses. The index can have any string
value, and it can be the result of variable or command substitution. Array ele-
ments are defined with set:

set arr(index) value

The value of an array element is obtained with $ substitution:
set foo $arr(index)

Example 8–1 uses the loop variable value $i as an array index. It sets
arr(x) to the product of 1 * 2 * ... * x:

90 Tcl Arrays Chap. 8

Example 8–1 Using arrays.

set arr(0) 1
for {set i 1} {$i <= 10} {incr i} {

set arr($i) [expr {$i * $arr([expr $i-1])}]
}

Complex Indices

An array index can be any string, like orange, 5, 3.1415, or foo,bar. The
examples in this chapter, and in this book, often use indices that are pretty com-
plex strings to create flexible data structures. As a rule of thumb, you can use
any string for an index, but avoid using a string that contains spaces.

Parentheses are not a grouping mechanism.
The main Tcl parser does not know about array syntax. All the rules about

grouping and substitution described in Chapter 1 are still the same in spite of
the array syntax described here. Parentheses do not group like curly braces or
quotes, which is why a space causes problems. If you have complex indices, use a
comma to separate different parts of the index. If you use a space in an index
instead, then you have a quoting problem. The space in the index needs to be
quoted with a backslash, or the whole variable reference needs to be grouped:

set {arr(I’m asking for trouble)} {I told you so.}

set arr(I’m\ asking\ for\ trouble) {I told you so.}

If the array index is stored in a variable, then there is no problem with
spaces in the variable’s value. The following works well:

set index {I’m asking for trouble}

set arr($index) {I told you so.}

Array Variables

You can use an array element as you would a simple variable. For example,
you can test for its existence with info exists, increment its value with incr,
and append elements to it with lappend:

if {[info exists stats($event)]} {incr stats($event)}

You can delete an entire array, or just a single array element with unset.
Using unset on an array is a convenient way to clear out a big data structure.

It is an error to use a variable as both an array and a normal variable. The
following is an error:

set arr(0) 1

set arr 3

=> can’t set "arr": variable is array

The name of the array can be the result of a substitution. This is a tricky
situation, as shown in Example 8–2:

The array Command 91 I. Tc
l Ba

sic
s

Example 8–2 Referencing an array indirectly.

set name TheArray
=> TheArray
set ${name}(xyz) {some value}
=> some value
set x $TheArray(xyz)
=> some value
set x ${name}(xyz)
=> TheArray(xyz)
set x [set ${name}(xyz)]
=> some value

A better way to deal with this situation is to use the upvar command, which
is introduced on page 79. The previous example is much cleaner when upvar is
used:

Example 8–3 Referencing an array indirectly using upvar.

set name TheArray
=> TheArray
upvar 0 $name a
set a(xyz) {some value}
=> some value
set x $TheArray(xyz)
=> some value

The array Command
The array command returns information about array variables. The array
names command returns the index names that are defined in the array. If the
array variable is not defined, then array names just returns an empty list. It
allows easy iteration through an array with a foreach loop:

foreach index [array names arr pattern] {

use arr($index)

}

The order of the names returned by array names is arbitrary. It is essen-
tially determined by the hash table implementation of the array. You can limit
what names are returned by specifying a pattern that matches indices. The pat-
tern is the kind supported by the string match command, which is described on
page 48.

It is also possible to iterate through the elements of an array one at a time
using the search-related commands listed in Table 8–1. The ordering is also ran-
dom, and I find the foreach over the results of array names much more conve-
nient. If your array has an extremely large number of elements, or if you need to
manage an iteration over a long period of time, then the array search operations
might be more appropriate. Frankly, I never use them. Table 8–1 summarizes
the array command:

92 Tcl Arrays Chap. 8

Converting Between Arrays and Lists

The array get and array set operations are used to convert between an
array and a list. The list returned by array get has an even number of elements.
The first element is an index, and the next is the corresponding array value. The
list elements continue to alternate between index and value. The list argument
to array set must have the same structure.

array set fruit {
best kiwi
worst peach
ok banana

}
array get fruit
=> ok banana best kiwi worst peach

Another way to loop through the contents of an array is to use array get
and the two-variable form of the foreach command.

foreach {key value} [array get fruit] {
key is ok, best, or worst
value is some fruit

}

Passing Arrays by Name

The upvar command works on arrays. You can pass an array name to a pro-
cedure and use the upvar command to get an indirect reference to the array vari-
able in the caller’s scope. This is illustrated in Example 8–4, which inverts an

Table 8–1 The array command.

array exists arr Returns 1 if arr is an array variable.

array get arr ?pattern? Returns a list that alternates between an index and the cor-
responding array value. pattern selects matching indi-
ces. If not specified, all indices and values are returned.

array names arr ?pattern? Returns the list of all indices defined for arr, or those
that match the string match pattern.

array set arr list Initializes the array arr from list, which has the same
form as the list returned by array get.

array size arr Returns the number of indices defined for arr.

array startsearch arr Returns a search token for a search through arr.

array nextelement arr id Returns the value of the next element in array in the
search identified by the token id. Returns an empty string
if no more elements remain in the search.

array anymore arr id Returns 1 if more elements remain in the search.

array donesearch arr id Ends the search identified by id.

Building Data Structures with Arrays 93 I. Tc
l Ba

sic
s

array. As with array names, you can specify a pattern to array get to limit what
part of the array is returned. This example uses upvar because the array names
are passed into the ArrayInvert procedure. The inverse array does not need to
exist before you call ArrayInvert.

Example 8–4 ArrayInvert inverts an array.

proc ArrayInvert {arrName inverseName {pattern *}} {
upvar $arrName array $inverseName inverse
foreach {index value} [array get array $pattern] {

set inverse($value) $index
}

}

Building Data Structures with Arrays

This section describes several data structures you can build with Tcl arrays.
These examples are presented as procedures that implement access functions to
the data structure. Wrapping up your data structures in procedures is good prac-
tice. It shields the user of your data structure from the details of its implementa-
tion.

Use arrays to collect related variables.
A good use for arrays is to collect together a set of related variables for a

module, much as one would use a record in other languages. By collecting these
together in an array that has the same name as the module, name conflicts
between different modules are avoided. Also, in each of the module’s procedures,
a single global statement will suffice to make all the state variables visible. You
can also use upvar to manage a collection of arrays, as shown in Example 8–8 on
page 95.

Simple Records

Suppose we have a database of information about people. One approach
uses a different array for each class of information. The name of the person is the
index into each array:

Example 8–5 Using arrays for records, version 1.

proc Emp_AddRecord {id name manager phone} {
global employeeID employeeManager \

employeePhone employeeName
set employeeID($name) $id
set employeeManager($name) $manager
set employeePhone($name) $phone
set employeeName($id) $name

}
proc Emp_Manager {name} {

94 Tcl Arrays Chap. 8

global employeeManager
return $employeeManager($name)

}

Simple procedures are defined to return fields of the record, which hides the
implementation so that you can change it more easily. The employeeName array
provides a secondary key. It maps from the employee ID to the name so that the
other information can be obtained if you have an ID instead of a name. Another
way to implement the same little database is to use a single array with more
complex indices:

Example 8–6 Using arrays for records, version 2.

proc Emp_AddRecord {id name manager phone} {
global employee
set employee(id,$name) $id
set employee(manager,$name) $manager
set employee(phone,$name) $phone
set employee(name,$id) $name

}
proc Emp_Manager {name} {

global employee
return $employee(manager,$name)

}

The difference between these two approaches is partly a matter of taste.
Using a single array can be more convenient because there are fewer variables to
manage. In any case, you should hide the implementation in a small set of proce-
dures.

A Stack

A stack can be implemented with either a list or an array. If you use a list,
then the push and pop operations have a runtime cost that is proportional to the
size of the stack. If the stack has a few elements this is fine. If there are a lot of
items in a stack, you may wish to use arrays instead.

Example 8–7 Using a list to implement a stack.

proc Push { stack value } {
upvar $stack list
lappend list $value

}
proc Pop { stack } {

upvar $stack list
set value [lindex $list end]
set list [lrange $list 0 [expr [llength $list]-2]]
return $value

}

Building Data Structures with Arrays 95 I. Tc
l Ba

sic
s

In these examples, the name of the stack is a parameter, and upvar is used
to convert that into the data used for the stack. The variable is a list in Example
8–7 and an array in Example 8–8. The user of the stack module does not have to
know.

The array implementation of a stack uses one array element to record the
number of items in the stack. The other elements of the array have the stack val-
ues. The Push and Pop procedures both guard against a nonexistent array with
the info exists command. When the first assignment to S(top) is done by Push,
the array variable is created in the caller’s scope. The example uses array indices
in two ways. The top index records the depth of the stack. The other indices are
numbers, so the construct $S($S(top)) is used to reference the top of the stack.

Example 8–8 Using an array to implement a stack.

proc Push { stack value } {
upvar $stack S
if {![info exists S(top)]} {

set S(top) 0
}
set S($S(top)) $value
incr S(top)

}
proc Pop { stack } {

upvar $stack S
if {![info exists S(top)]} {

return {}
}
if {$S(top) == 0} {

return {}
} else {

incr S(top) -1
set x $S($S(top))
unset S($S(top))
return $x

}
}

A List of Arrays

Suppose you have many arrays, each of which stores some data, and you
want to maintain an overall ordering among the data sets. One approach is to
keep a Tcl list with the name of each array in order. Example 8–9 defines Recor-
dInsert to add an array to the list, and an iterator function, RecordIterate, that
applies a script to each array in order. The iterator uses upvar to make data an
alias for the current array. The script is executed with eval, which is described in
detail in Chapter 10. The Tcl commands in script can reference the arrays with
the name data:

96 Tcl Arrays Chap. 8

Example 8–9 A list of arrays.

proc RecordAppend {listName arrayName} {
upvar $listName list
lappend list $arrayName

}
proc RecordIterate {listName script} {

upvar $listName list
foreach arrayName $list {

upvar #0 $arrayName data
eval $script

}
}

Another way to implement this list-of-records structure is to keep refer-
ences to the arrays that come before and after each record. Example 8–10 shows
the insert function and the iterator function when using this approach. Once
again, upvar is used to set up data as an alias for the current array in the itera-
tor. In this case, the loop is terminated by testing for the existence of the next
array. It is perfectly all right to make an alias with upvar to a nonexistent vari-
able. It is also all right to change the target of the upvar alias. One detail that is
missing from the example is the initialization of the very first record so that its
next element is the empty string:

Example 8–10 A list of arrays.

proc RecordInsert {recName afterThis} {
upvar $recName record $afterThis after
set record(next) $after(next)
set after(next) $recName

}
proc RecordIterate {firstRecord body} {

upvar #0 $firstRecord data
while {[info exists data]} {

eval $body
upvar #0 $data(next) data

}
}

A Simple In-Memory Database

Suppose you have to manage a lot of records, each of which contain a large
chunk of data and one or more key values you use to look up those values. The
procedure to add a record is called like this:

Db_Insert keylist datablob

The datablob might be a name, value list suitable for passing to array set,
or simply a large chunk of text or binary data. One implementation of Db_Insert
might just be:

Building Data Structures with Arrays 97 I. Tc
l Ba

sic
s

foreach key $keylist {

lappend Db($key) $datablob

}

The problem with this approach is that it duplicates the data chunks under
each key. A better approach is to use two arrays. One stores all the data chunks
under a simple ID that is generated automatically. The other array stores the
association between the keys and the data chunks. Example 8–11, which uses
the namespace syntax described in Chapter 14, illustrates this approach. The
example also shows how you can easily dump data structures by writing array
set commands to a file, and then load them later with a source command:

Example 8–11 A simple in-memory database.

namespace eval db {
variable data ;# Array of data blobs
variable uid 0 ;# Index into data
variable index ;# Cross references into data

}
proc db::insert {keylist datablob} {

variable data
variable uid
variable index
set data([incr uid]) $datablob
foreach key $keylist {

lappend index($key) $uid
}

}
proc db::get {key} {

variable data
variable index
set result {}
if {![info exist index($key)]} {

return {}
}
foreach uid $index($key) {

lappend result $data($uid)
}
return $result

}
proc db::save {filename} {

variable uid
set out [open $filename w]
puts $out [list namespace eval db \

[list variable uid $uid]]
puts $out [list array set db::data [array get db::data]]
puts $out [list array set db::index [array get db::index]]
close $out

}
proc db::load {filename} {

source $filename
}

Blank page 98

99

C H A P T E R

I. Tc
l Ba

sic
s

 9

Working with Files and Programs9

This chapter describes how to run programs, examine the file system, and access
environment variables through the env array. Tcl commands described are:
exec, file, open, close, read, write, puts, gets, flush, seek,
tell, glob, pwd, cd, exit, pid, and registry.

This chapter describes how to run pro-
grams and access the file system from Tcl. These commands were designed for
UNIX. In Tcl 7.5 they were implemented in the Tcl ports to Windows and Macin-
tosh. There are facilities for naming files and manipulating file names in a plat-
form-independent way, so you can write scripts that are portable across systems.
These capabilities enable your Tcl script to be a general-purpose glue that
assembles other programs into a tool that is customized for your needs.

Running Programs with exec

The exec command runs programs from your Tcl script.* For example:
set d [exec date]

The standard output of the program is returned as the value of the exec
command. However, if the program writes to its standard error channel or exits
with a nonzero status code, then exec raises an error. If you do not care about the
exit status, or you use a program that insists on writing to standard error, then
you can use catch to mask the errors:

catch {exec program arg arg} result

* Unlike other UNIX shell exec commands, the Tcl exec does not replace the current process with the new
one. Instead, the Tcl library forks first and executes the program as a child process.

100 Working with Files and Programs Chap. 9

The exec command supports a full set of I/O redirection and pipeline syn-
tax. Each process normally has three I/O channels associated with it: standard
input, standard output, and standard error. With I/O redirection, you can divert
these I/O channels to files or to I/O channels you have opened with the Tcl open
command. A pipeline is a chain of processes that have the standard output of one
command hooked up to the standard input of the next command in the pipeline.
Any number of programs can be linked together into a pipeline.

Example 9–1 Using exec on a process pipeline.

set n [exec sort < /etc/passwd | uniq | wc -l 2> /dev/null]

Example 9–1 uses exec to run three programs in a pipeline. The first pro-
gram is sort, which takes its input from the file /etc/passwd. The output of
sort is piped into uniq, which suppresses duplicate lines. The output of uniq is
piped into wc, which counts the lines. The error output of the command is
diverted to the null device to suppress any error messages. Table 9–1 provides a
summary of the syntax understood by the exec command.

Table 9–1 Summary of the exec syntax for I/O redirection.

-keepnewline (First argument.) Do not discard trailing newline from the result.

| Pipes standard output from one process into another.

|& Pipes both standard output and standard error output.

< fileName Takes input from the named file.

<@ fileId Takes input from the I/O channel identified by fileId.

<< value Takes input from the given value.

> fileName Overwrites fileName with standard output.

2> fileName Overwrites fileName with standard error output.

>& fileName Overwrites fileName with both standard error and standard out.

>> fileName Appends standard output to the named file.

2>> fileName Appends standard error to the named file.

>>& fileName Appends both standard error and standard output to the named file.

>@ fileId Directs standard output to the I/O channel identified by fileId.

2>@ fileId Directs standard error to the I/O channel identified by fileId.

>&@ fileId Directs both standard error and standard output to the I/O channel.

& As the last argument, indicates pipeline should run in background.

Running Programs with exec 101 I. Tc
l Ba

sic
s

A trailing & causes the program to run in the background. In this case, the
process identifier is returned by the exec command. Otherwise, the exec com-
mand blocks during execution of the program, and the standard output of the
program is the return value of exec. The trailing newline in the output is
trimmed off, unless you specify -keepnewline as the first argument to exec.

 If you look closely at the I/O redirection syntax, you’ll see that it is built up
from a few basic building blocks. The basic idea is that | stands for pipeline, > for
output, and < for input. The standard error is joined to the standard output by &.
Standard error is diverted separately by using 2>. You can use your own I/O
channels by using @.

The auto_noexec Variable

The Tcl shell programs are set up during interactive use to attempt to exe-
cute unknown Tcl commands as programs. For example, you can get a directory
listing by typing:

ls

instead of:
exec ls

This is handy if you are using the Tcl interpreter as a general shell. It can
also cause unexpected behavior when you are just playing around. To turn this
off, define the auto_noexec variable:

set auto_noexec anything

Limitations of exec on Windows

Windows 3.1 has an unfortunate combination of special cases that stem
from console-mode programs, 16-bit programs, and 32-bit programs. In addition,
pipes are really just simulated by writing output from one process to a temporary
file and then having the next process read from that file. If exec or a process
pipeline fails, it is because of a fundamental limitation of Windows. The good
news is that Windows 95 and Windows NT cleaned up most of the problems with
exec. Windows NT 4.0 is the most robust.

Tcl 8.0p2 was the last release to officially support Windows 3.1. That
release includes Tcl1680.dll, which is necessary to work with the win32s sub-
system. If you copy that file into the same directory as the other Tcl DLLs, you
may be able to use later releases of Tcl on Windows 3.1. However, there is no
guarantee this trick will continue to work.

AppleScript on Macintosh

The exec command is not provided on the Macintosh. Tcl ships with an
AppleScript extension that lets you control other Macintosh applications. You
can find documentation in the AppleScript.html that goes with the distribution.
You must use package require to load the AppleScript command:

102 Working with Files and Programs Chap. 9

package require Tclapplescript

AppleScript junk

=> bad option "junk": must be compile, decompile, delete,
execute, info, load, run, or store.

The file Command

The file command provides several ways to check the status of files in the file
system. For example, you can find out if a file exists, what type of file it is, and
other file attributes. There are facilities for manipulating files in a platform-
independent manner. Table 9–2 provides a summary of the various forms of the
file command. They are described in more detail later. Note that the split,
join, and pathtype operations were added in Tcl 7.5. The copy, delete, mkdir,
and rename operations were added in Tcl 7.6. The attributes operation was
added in Tcl 8.0.

Table 9–2 The file command options.

file atime name Returns access time as a decimal string.

file attributes name
?option? ?value?
...

Queries or sets file attributes. (Tcl 8.0)

file copy ?-force?
source destination

Copies file source to file destination. The source and
destination can be directories. (Tcl 7.6)

file delete ?-force?
name

Deletes the named file. (Tcl 7.6)

file dirname name Returns parent directory of file name.

file executable name Returns 1 if name has execute permission, else 0.

file exists name Returns 1 if name exists, else 0.

file extension name Returns the part of name from the last dot (i.e., .) to the end.
The dot is included in the return value.

file isdirectory
name

Returns 1 if name is a directory, else 0.

file isfile name Returns 1 if name is not a directory, symbolic link, or device,
else 0.

file join path
path...

Joins pathname components into a new pathname. (Tcl 7.5)

file lstat name var Places attributes of the link name into var.

file mkdir name Creates directory name. (Tcl 7.6)

file mtime name Returns modify time of name as a decimal string.

Cross-Platform File Naming 103 I. Tc
l Ba

sic
s

Cross-Platform File Naming

Files are named differently on UNIX, Windows, and Macintosh. UNIX separates
file name components with a forward slash (/), Macintosh separates components
with a colon (:), and Windows separates components with a backslash (\). In
addition, the way that absolute and relative names are distinguished is different.
For example, these are absolute pathnames for the Tcl script library (i.e.,
$tcl_library) on Macintosh, Windows, and UNIX, respectively:

Disk:System Folder:Extensions:Tool Command Language:tcl7.6
c:\Program Files\Tcl\lib\Tcl7.6
/usr/local/tcl/lib/tcl7.6

The good news is that Tcl provides operations that let you deal with file
pathnames in a platform-independent manner. The file operations described in
this chapter allow either native format or the UNIX naming convention. The
backslash used in Windows pathnames is especially awkward because the back-
slash is special to Tcl. Happily, you can use forward slashes instead:

c:/Program Files/Tcl/lib/Tcl7.6

There are some ambiguous cases that can be specified only with native
pathnames. On my Macintosh, Tcl and Tk are installed in a directory that has a

file nativename name Returns the platform-native version of name. (Tk 8.0).

file owned name Returns 1 if current user owns the file name, else 0.

file pathtype name relative, absolute, or driverelative. (Tcl 7.5)

file readable name Returns 1 if name has read permission, else 0.

file readlink name Returns the contents of the symbolic link name.

file rename ?-force?
old new

Changes the name of old to new. (Tcl 7.6)

file rootname name Returns all but the extension of name (i.e., up to but not includ-
ing the last . in name).

file size name Returns the number of bytes in name.

file split name Splits name into its pathname components. (Tcl 7.5)

file stat name var Places attributes of name into array var. The elements defined
for var are listed in Table 9–3.

file tail name Returns the last pathname component of name.

file type name Returns type identifier, which is one of: file, directory,
characterSpecial, blockSpecial, fifo, link, or
socket.

file writable name Returns 1 if name has write permission, else 0.

Table 9–2 The file command options. (Continued)

104 Working with Files and Programs Chap. 9

slash in it. You can name it only with the native Macintosh name:
Disk:Applications:Tcl/Tk 4.2

Another construct to watch out for is a leading // in a file name. This is the
Windows syntax for network names that reference files on other computers. You
can avoid accidentally constructing a network name by using the file join com-
mand described next. Of course, you can use network names to access remote
files.

If you must communicate with external programs, you may need to con-
struct a file name in the native syntax for the current platform. You can con-
struct these names with file join described later. You can also convert a UNIX-
like name to a native name with file nativename.

Several of the file operations operate on pathnames as opposed to return-
ing information about the file itself. You can use the dirname, extension, join,
pathtype, rootname, split, and tail operations on any string; there is no
requirement that the pathnames refer to an existing file.

Building up Pathnames: file join

You can get into trouble if you try to construct file names by simply joining
components with a slash. If part of the name is in native format, joining things
with slashes will result in incorrect pathnames on Macintosh and Windows. The
same problem arises when you accept user input. The user is likely to provide
file names in native format. For example, this construct will not create a valid
pathname on the Macintosh because $tcl_library is in native format:

set file $tcl_library/init.tcl

Use file join to construct file names.
The platform-independent way to construct file names is with file join.

The following command returns the name of the init.tcl file in native format:
set file [file join $tcl_library init.tcl]

The file join operation can join any number of pathname components. In
addition, it has the feature that an absolute pathname overrides any previous
components. For example (on UNIX), /b/c is an absolute pathname, so it over-
rides any paths that come before it in the arguments to file join:

file join a b/c d

=> a/b/c/d

file join a /b/c d

=> /b/c/d

On Macintosh, a relative pathname starts with a colon, and an absolute
pathname does not. To specify an absolute path, you put a trailing colon on the
first component so that it is interpreted as a volume specifier. These relative
components are joined into a relative pathname:

file join a :b:c d

=> :a:b:c:d

In the next case, b:c is an absolute pathname with b: as the volume speci-

Manipulating Files and Directories 105 I. Tc
l Ba

sic
s

fier. The absolute name overrides the previous relative name:
file join a b:c d

=> b:c:d

The file join operation converts UNIX-style pathnames to native format.
For example, on Macintosh you get this:

file join /usr/local/lib

=> usr:local:lib

Chopping Pathnames: split, dirname, tail

The file split command divides a pathname into components. It is the
inverse of file join. The split operation detects automatically if the input is in
native or UNIX format. The results of file split may contain some syntax to
help resolve ambiguous cases when the results are passed back to file join. For
example, on Macintosh a UNIX-style pathname is split on slash separators. The
Macintosh syntax for a volume specifier (Disk:) is returned on the leading com-
ponent:

file split "/Disk/System Folder/Extensions"

=> Disk: {System Folder} Extensions

A common reason to split up pathnames is to divide a pathname into the
directory part and the file part. This task is handled directly by the dirname and
tail operations. The dirname operation returns the parent directory of a path-
name, while tail returns the trailing component of the pathname:

file dirname /a/b/c

=> /a/b

file tail /a/b/c

=> c

 For a pathname with a single component, the dirname option returns ".",
on UNIX and Windows, or ":" on Macintosh. This is the name of the current
directory.

The extension and root options are also complementary. The extension
option returns everything from the last period in the name to the end (i.e., the
file suffix including the period.) The root option returns everything up to, but
not including, the last period in the pathname:

file root /a/b.c

=> /a/b

file extension /a/b.c

=> .c

Manipulating Files and Directories

Tcl 7.6 added file operations to copy files, delete files, rename files, and create
directories. In earlier versions it was necessary to exec other programs to do

106 Working with Files and Programs Chap. 9

these things, except on Macintosh, where cp, rm, mv, mkdir, and rmdir were built
in. These commands are no longer supported on the Macintosh. Your scripts
should use the file command operations described below to manipulate files in
a platform-independent way.

File name patterns are not directly supported by the file operations.
Instead, you can use the glob command described on page 115 to get a list of file
names that match a pattern.

Copying Files

The file copy operation copies files and directories. The following example
copies file1 to file2. If file2 already exists, the operation raises an error
unless the -force option is specified:

file copy ?-force? file1 file2

Several files can be copied into a destination directory. The names of the
source files are preserved. The -force option indicates that files under direc-
tory can be replaced:

file copy ?-force? file1 file2 ... directory

Directories can be recursively copied. The -force option indicates that files
under dir2 can be replaced:

file copy ?-force? dir1 dir2

Creating Directories

The file mkdir operation creates one or more directories:
file mkdir dir dir ...

It is not an error if the directory already exists. Furthermore, intermediate
directories are created if needed. This means that you can always make sure a
directory exists with a single mkdir operation. Suppose /tmp has no subdirecto-
ries at all. The following command creates /tmp/sub1 and /tmp/sub1/sub2:

file mkdir /tmp/sub1/sub2

The -force option is not understood by file mkdir, so the following com-
mand accidentally creates a folder named -force, as well as one named oops.

file mkdir -force oops

Deleting Files

The file delete operation deletes files and directories. It is not an error if
the files do not exist. A non-empty directory is not deleted unless the -force
option is specified, in which case it is recursively deleted:

file delete ?-force? name name ...

To delete a file or directory named -force, you must specify a nonexistent
file before the -force to prevent it from being interpreted as a flag (-force
-force won’t work):

File Attributes 107 I. Tc
l Ba

sic
s

file delete xyzzy -force

Renaming Files and Directories

The file rename operation changes a file’s name from old to new. The
-force option causes new to be replaced if it already exists.

file rename ?-force? old new

Using file rename is the best way to update an existing file. First, generate
the new version of the file in a temporary file. Then, use file rename to replace
the old version with the new version. This ensures that any other programs that
access the file will not see the new version until it is complete.

File Attributes

There are several file operations that return specific file attributes: atime, exe-
cutable, exists, isdirectory, isfile, mtime, owned, readable, readlink, size
and type. Refer to Table 9–2 on page 102 for their function. The following com-
mand uses file mtime to compare the modify times of two files. If you have ever
resorted to piping the results of ls -l into awk in order to derive this information
in other shell scripts, you will appreciate this example:

Example 9–2 Comparing file modify times.

proc newer { file1 file2 } {
if ![file exists $file2] {

return 1
} else {

Assume file1 exists
expr [file mtime $file1] > [file mtime $file2]

}
}

The stat and lstat operations return a collection of file attributes. They
take a third argument that is the name of an array variable, and they initialize
that array with elements that contain the file attributes. If the file is a symbolic
link, then the lstat operation returns information about the link itself and the
stat operation returns information about the target of the link. The array ele-
ments are listed in Table 9–3. All the element values are decimal strings, except
for type, which can have the values returned by the type option. The element
names are based on the UNIX stat system call. Use the file attributes com-
mand described later to get other platform-specific attributes:

108 Working with Files and Programs Chap. 9

Example 9–3 uses the device (dev) and inode (ino) attributes of a file to
determine whether two pathnames reference the same file. The attributes are
UNIX specific; they are not well defined on Windows and Macintosh.

Example 9–3 Determining whether pathnames reference the same file.

proc fileeq { path1 path2 } {
file stat $path1 stat1
file stat $path2 stat2
expr $stat1(ino) == $stat2(ino) && \

$stat1(dev) == $stat2(dev)
}

The file attributes operation was added in Tcl 8.0 to provide access to
platform-specific attributes. The attributes operation lets you set and query
attributes. The interface uses option-value pairs. With no options, all the current
values are returned.

file attributes book.doc

=> -creator FRAM -hidden 0 -readonly 0 -type MAKR

These Macintosh attributes are explained in Table 9–4. The four-character
type codes used on Macintosh are illustrated on page 514. With a single option,
only that value is returned:

file attributes book.doc -readonly

=> 0

The attributes are modified by specifying one or more option–value pairs.
Setting attributes can raise an error if you do not have the right permissions:

file attributes book.doc -readonly 1 -hidden 0

Table 9–3 Array elements defined by file stat.

atime The last access time, in seconds.

ctime The last change time (not the create time), in seconds.

dev The device identifier, an integer.

gid The group owner, an integer.

ino The file number (i.e., inode number), an integer.

mode The permission bits.

mtime The last modify time, in seconds.

nlink The number of links, or directory references, to the file.

size The number of bytes in the file.

type file, directory, characterSpecial, blockSpecial, fifo, link, or
socket.

uid The owner’s user ID, an integer.

Input/Output Command Summary 109 I. Tc
l Ba

sic
s

Input/Output Command Summary

The following sections describe how to open, read, and write files. The basic
model is that you open a file, read or write it, then close the file. Network sockets
also use the commands described here. Socket programming is discussed in
Chapter 17, and more advanced event-driven I/O is described in Chapter 16.
Table 9–5 lists the basic commands associated with file I/O:

Table 9–4 Platform-specific file attributes.

-permissions
mode

File permission bits. mode is a number with bits defined by the chmod
system call. (UNIX)

-group ID The group owner of the file. (UNIX)

-owner ID The owner of the file. (UNIX)

-archive bool The archive bit, which is set by backup programs. (Windows)

-hidden bool If set, then the file does not appear in listings. (Windows, Macintosh)

-readonly bool If set, then you cannot write the file. (Windows, Macintosh)

-system bool If set, then you cannot remove the file. (Windows)

-creator type type is 4-character code of creating application. (Macintosh)

-type type type is 4-character type code. (Macintosh)

Table 9–5 Tcl commands used for file access.

open what ?access? ?permissions? Returns channel ID for a file or pipeline.

puts ?-nonewline? ?channel? string Writes a string.

gets channel ?varname? Reads a line.

read channel ?numBytes? Reads numBytes bytes, or all data.

read -nonewline channel Reads all bytes and discard the last \n.

tell channel Returns the seek offset.

seek channel offset ?origin? Sets the seek offset. origin is one of
start, current, or end.

eof channel Queries end-of-file status.

flush channel Writes buffers of a channel.

close channel Closes an I/O channel.

110 Working with Files and Programs Chap. 9

Opening Files for I/O

The open command sets up an I/O channel to either a file or a pipeline of pro-
cesses. The return value of open is an identifier for the I/O channel. Store the
result of open in a variable and use the variable as you used the stdout, stdin,
and stderr identifiers in the examples so far. The basic syntax is:

open what ?access? ?permissions?

The what argument is either a file name or a pipeline specification similar
to that used by the exec command. The access argument can take two forms,
either a short character sequence that is compatible with the fopen library rou-
tine, or a list of POSIX access flags. Table 9–6 summarizes the first form, while
Table 9–7 summarizes the POSIX flags. If access is not specified, it defaults to
read.

Example 9–4 Opening a file for writing.

set fileId [open /tmp/foo w 0600]
puts $fileId "Hello, foo!"
close $fileId

Table 9–6 Summary of the open access arguments.

r Opens for reading. The file must exist.

r+ Opens for reading and writing. The file must exist.

w Opens for writing. Truncate if it exists. Create if it does not exist.

w+ Opens for reading and writing. Truncate or create.

a Opens for writing. Data is appended to the file.

a+ Opens for reading and writing. Data is appended.

Table 9–7 Summary of POSIX flags for the access argument.

RDONLY Opens for reading.

WRONLY Opens for writing.

RDWR Opens for reading and writing.

APPEND Opens for append.

CREAT Creates the file if it does not exist.

EXCL If CREAT is also specified, then the file cannot already exist.

NOCTTY Prevents terminal devices from becoming the controlling terminal.

NONBLOCK Does not block during the open.

TRUNC Truncates the file if it exists.

Opening Files for I/O 111 I. Tc
l Ba

sic
s

The permissions argument is a value used for the permission bits on a
newly created file. UNIX uses three bits each for the owner, group, and everyone
else. The bits specify read, write, and execute permission. These bits are usually
specified with an octal number, which has a leading zero, so that there is one
octal digit for each set of bits. The default permission bits are 0666, which grant
read/write access to everybody. Example 9–4 specifies 0600 so that the file is
readable and writable only by the owner. 0775 would grant read, write, and exe-
cute permissions to the owner and group, and read and execute permissions to
everyone else. You can set other special properties with additional high-order
bits. Consult the UNIX manual page on chmod command for more details.

The following example illustrates how to use a list of POSIX access flags to
open a file for reading and writing, creating it if needed, and not truncating it.
This is something you cannot do with the simpler form of the access argument:

set fileId [open /tmp/bar {RDWR CREAT}]

Catch errors from open.
In general, you should check for errors when opening files. The following

example illustrates a catch phrase used to open files. Recall that catch returns 1
if it catches an error; otherwise, it returns zero. It treats its second argument as
the name of a variable. In the error case, it puts the error message into the vari-
able. In the normal case, it puts the result of the command into the variable:

Example 9–5 A more careful use of open.

if [catch {open /tmp/data r} fileId] {
puts stderr "Cannot open /tmp/data: $fileId"

} else {
Read and process the file, then...
close $fileId

}

Opening a Process Pipeline

You can open a process pipeline by specifying the pipe character, |, as the
first character of the first argument. The remainder of the pipeline specification
is interpreted just as with the exec command, including input and output redi-
rection. The second argument determines which end of the pipeline open returns.
The following example runs the UNIX sort program on the password file, and it
uses the split command to separate the output lines into list elements:

Example 9–6 Opening a process pipeline.

set input [open "|sort /etc/passwd" r]
set contents [split [read $input] \n]
close $input

You can open a pipeline for both read and write by specifying the r+ access
mode. In this case, you need to worry about buffering. After a puts, the data may

112 Working with Files and Programs Chap. 9

still be in a buffer in the Tcl library. Use the flush command to force the data out
to the spawned processes before you try to read any output from the pipeline.
You can also use the fconfigure command described on page 223 to force line
buffering. Remember that read-write pipes will not work at all with Windows 3.1
because pipes are simulated with files. Event-driven I/O is also very useful with
pipes. It means you can do other processing while the pipeline executes, and sim-
ply respond when the pipe generates data. This is described in Chapter 16.

Expect

If you are trying to do sophisticated things with an external application,
you will find that the Expect extension provides a much more powerful interface
than a process pipeline. Expect adds Tcl commands that are used to control inter-
active applications. It is extremely useful for automating FTP, Telnet, and pro-
grams under test. It comes as a Tcl shell named expect, and it is also an
extension that you can dynamically load into other Tcl shells. It was created by
Don Libes at the National Institute of Standards and Technology (NIST). Expect
is described in Exploring Expect (Libes, O’Reilly & Associates, Inc., 1995). You
can find the software on the CD and on the web at:

http://expect.nist.gov/

Reading and Writing

The standard I/O channels are already open for you. There is a standard input
channel, a standard output channel, and a standard error output channel. These
channels are identified by stdin, stdout, and stderr, respectively. Other I/O
channels are returned by the open command, and by the socket command
described on page 226.

There may be cases when the standard I/O channels are not available. Win-
dows has no standard error channel. Some UNIX window managers close the
standard I/O channels when you start programs from window manager menus.
You can also close the standard I/O channels with close.

The puts and gets Commands

The puts command writes a string and a newline to the output channel.
There are a couple of details about the puts command that we have not yet used.
It takes a -nonewline argument that prevents the newline character that is nor-
mally appended to the output channel. This is used in the prompt example below.
The second feature is that the channel identifier is optional, defaulting to stdout
if not specified. Note that you must use flush to force output of a partial line.
This is illustrated in Example 9–7.

Reading and Writing 113 I. Tc
l Ba

sic
s

Example 9–7 Prompting for input.

puts -nonewline "Enter value: "
flush stdout ;# Necessary to get partial line output
set answer [gets stdin]

The gets command reads a line of input, and it has two forms. In the previ-
ous example, with just a single argument, gets returns the line read from the
specified I/O channel. It discards the trailing newline from the return value. If
end of file is reached, an empty string is returned. You must use the eof com-
mand to tell the difference between a blank line and end-of-file. eof returns 1 if
there is end of file. Given a second varName argument, gets stores the line into a
named variable and returns the number of bytes read. It discards the trailing
newline, which is not counted. A -1 is returned if the channel has reached the
end of file.

Example 9–8 A read loop using gets.

while {[gets $channel line] >= 0} {
Process line

}
close $channel

The read Command

The read command reads blocks of data, and this capability is often more
efficient. There are two forms for read: You can specify the -nonewline argument
or the numBytes argument, but not both. Without numBytes, the whole file (or
what is left in the I/O channel) is read and returned. The -nonewline argument
causes the trailing newline to be discarded. Given a byte count argument, read
returns that amount, or less if there is not enough data in the channel. The trail-
ing newline is not discarded in this case.

Example 9–9 A read loop using read and split.

foreach line [split [read $channel] \n] {
Process line

}
close $channel

For moderate-sized files, it is about 10 percent faster to loop over the lines
in a file using the read loop in the second example. In this case, read returns the
whole file, and split chops the file into list elements, one for each line. For small
files (less than 1K) it doesn’t really matter. For large files (megabytes) you might
induce paging with this approach.

114 Working with Files and Programs Chap. 9

Platform-Specific End of Line Characters

Tcl automatically detects different end of line conventions. On UNIX, text
lines are ended with a newline character (\n). On Macintosh, they are termi-
nated with a carriage return (\r). On Windows, they are terminated with a car-
riage return, newline sequence (\r\n). Tcl accepts any of these, and the line
terminator can even change within a file. All these different conventions are con-
verted to the UNIX style so that once read, text lines are always terminated with
a newline character (\n). Both the read and gets commands do this conversion.

During output, text lines are generated in the platform-native format. The
automatic handling of line formats means that it is easy to convert a file to
native format. You just need to read it in and write it out:

puts -nonewline $out [read $in]

To suppress conversions, use the fconfigure command, which is described
in more detail on page 223.

Example 9–10 demonstrates a File_Copy procedure that translates files to
native format. It is complicated because it handles directories:

Example 9–10 Copy a file and translate to native format.

proc File_Copy {src dest} {
if [file isdirectory $src] {

file mkdir $dest
foreach f [glob -nocomplain [file join $src *]] {

File_Copy $f [file join $dest [file tail $f]]
}
return

}
if [file isdirectory $dest] {

set dest [file join $dest [file tail $src]]
 }

set in [open $src]
set out [open $dest w]
puts -nonewline $out [read $in]
close $out ; close $in

}

Random Access I/O

The seek and tell commands provide random access to I/O channels. Each
channel has a current position called the seek offset. Each read or write operation
updates the seek offset by the number of bytes transferred. The current value of
the offset is returned by the tell command. The seek command sets the seek off-
set by an amount, which can be positive or negative, from an origin which is
either start, current, or end.

The Current Directory — cd and pwd 115 I. Tc
l Ba

sic
s

Closing I/O Channels

The close command is just as important as the others because it frees oper-
ating system resources associated with the I/O channel. If you forget to close a
channel, it will be closed when your process exits. However, if you have a long-
running program, like a Tk script, you might exhaust some operating system
resources if you forget to close your I/O channels.

The close command can raise an error.
If the channel was a process pipeline and any of the processes wrote to their

standard error channel, then Tcl believes this is an error. The error is raised
when the channel to the pipeline is finally closed. Similarly, if any of the pro-
cesses in the pipeline exit with a nonzero status, close raises an error.

The Current Directory — cd and pwd

Every process has a current directory that is used as the starting point when
resolving a relative pathname. The pwd command returns the current directory,
and the cd command changes the current directory. Example 9–11 uses these
commands.

Matching File Names with glob

The glob command expands a pattern into the set of matching file names. The
general form of the glob command is:

glob ?flags? pattern ?pattern? ...

The pattern syntax is similar to the string match patterns:

• * matches zero or more characters.
• ? matches a single character.
• [abc] matches a set of characters.
• {a,b,c} matches any of a, b, or c.
• All other characters must match themselves.

The -nocomplain flag causes glob to return an empty list if no files match
the pattern. Otherwise, glob raises an error if no files match.

The -- flag must be used if the pattern begins with a -.
Unlike the glob matching in csh, the Tcl glob command matches only the

names of existing files. In csh, the {a,b} construct can match nonexistent
names. In addition, the results of glob are not sorted. Use the lsort command to
sort its result if you find it important.

Example 9–11 shows the FindFile procedure, which traverses the file sys-
tem hierarchy using recursion. At each iteration it saves its current directory
and then attempts to change to the next subdirectory. A catch guards against
bogus names. The glob command matches file names:

116 Working with Files and Programs Chap. 9

Example 9–11 Finding a file by name.

proc FindFile { startDir namePat } {
set pwd [pwd]
if [catch {cd $startDir} err] {

puts stderr $err
return

}
foreach match [glob -nocomplain -- $namePat] {

puts stdout [file join $startDir $match]
}
foreach file [glob -nocomplain *] {

if [file isdirectory $file] {
FindFile [file join $startDir $file] $namePat

}
}
cd $pwd

}

Expanding Tilde in File Names

The glob command also expands a leading tilde (~) in filenames. There are
two cases:

• ~/ expands to the current user’s home directory.
• ~user expands to the home directory of user.

If you have a file that starts with a literal tilde, you can avoid the tilde
expansion by adding a leading ./ (e.g., ./~foobar).

The exit and pid Commands

The exit command terminates your script. Note that exit causes termination of
the whole process that was running the script. If you supply an integer-valued
argument to exit, then that becomes the exit status of the process.

The pid command returns the process ID of the current process. This can be
useful as the seed for a random number generator because it changes each time
you run your script. It is also common to embed the process ID in the name of
temporary files.

You can also find out the process IDs associated with a process pipeline
with pid:

set pipe [open "|command"]

set pids [pid $pipe]

There is no built-in mechanism to control processes in Tcl. On UNIX sys-
tems you can exec the kill program to terminate a process:

exec kill $pid

Environment Variables 117 I. Tc
l Ba

sic
s

Environment Variables

Environment variables are a collection of string-valued variables associated with
each process. The process’s environment variables are available through the glo-
bal array env. The name of the environment variable is the index, (e.g.,
env(PATH)), and the array element contains the current value of the environ-
ment variable. If assignments are made to env, they result in changes to the cor-
responding environment variable. Environment variables are inherited by child
processes, so programs run with the exec command inherit the environment of
the Tcl script. The following example prints the values of environment variables.

Example 9–12 Printing environment variable values.

proc printenv { args } {
global env
set maxl 0
if {[llength $args] == 0} {

set args [lsort [array names env]]
}
foreach x $args {

if {[string length $x] > $maxl} {
set maxl [string length $x]

}
}
incr maxl 2
foreach x $args {

puts stdout [format "%*s = %s" $maxl $x $env($x)]
}

}
printenv USER SHELL TERM
=>
USER = welch
SHELL = /bin/csh
TERM = tx

Note: Environment variables can be initialized for Macintosh applications
by editing a resource of type STR# whose name is Tcl Environment Variables.
This resource is part of the tclsh and wish applications. Follow the directions on
page 28 for using ResEdit. The format of the resource values is NAME=VALUE.

The registry Command

Windows uses the registry to store various system configuration information.
The Windows tool to browse and edit the registry is called regedit. Tcl provides a
registry command. It is a loadable package that you must load by using:

package require registry

The registry structure has keys, value names, and typed data. The value
names are stored under a key, and each value name has data associated with it.

118 Working with Files and Programs Chap. 9

The keys are organized into a hierarchical naming system, so another way to
think of the value names is as an extra level in the hierarchy. The main point is
that you need to specify both a key name and a value name in order to get some-
thing out of the registry. The key names have one of the following formats:

\\hostname\rootname\keypath
rootname\keypath
rootname

The rootname is one of HKEY_LOCAL_MACHINE, HKEY_PERFORMANCE_DATA,
HKEY_USERS, HKEY_CLASSES_ROOT, HKEY_CURRENT_USER, HKEY_CURRENT_CONFIG, or
HKEY_DYN_DATA. Tables 9–8 and 9–9 summarize the registry command and
data types:

Table 9–8 The registry command.

registry delete key
?valueName?

Deletes the key and the named value, or it deletes all val-
ues under the key if valueName is not specified.

registry get key
valueName

Returns the value associated with valueName under
key.

registry keys key ?pat? Returns the list of keys or value names under key that
match pat, which is a string match pattern.

registry set key Creates key.

registry set key
valueName data ?type?

Creates valueName under key with value data of the
given type. Types are listed in Table 9–9.

registry type key
valueName

Returns the type of valueName under key.

registry values key ?pat? Returns the names of the values stored under key that
match pat, which is a string match pattern.

Table 9–9 The registry data types.

binary Arbitrary binary data.

none Arbitrary binary data.

expand_sz A string that contains references to environment variables
with the %VARNAME% syntax.

dword A 32-bit integer.

dword_big_endian A 32-bit integer in the other byte order. It is represented in
Tcl as a decimal string.

link A symbolic link.

multi_sz An array of strings, which are represented as a Tcl list.

resource_list A device driver resource list.

