

A Basic Introduction to
Programming in Fortran

Course notes for EP241 & EP208

Dr. Ahmet Bingül
University of Gaziantep

With contributions from:
Dr. Andrew Beddall
 Dr. Bahattin Kanber

Version 2.1

Feb 2010

Preface

Computer programming is an essential part of the work of many scientists and
engineers. Fortran is a powerful language for numerical programming and is easy to
learn at a basic level. This guide is intended as a first introduction to Fortran 90
(compatible with Fortran 95/2003). It is primarily written as a supplement to
programming courses taken by engineering faculty students, but is also suitable for
students of science and mathematics. The guide is not comprehensive; after the
student has familiarised her self with the topics presented in this guide she is advised
to find a more detailed and comprehensive text book.

This course is for the Engineering of Physics students in the University of
Gaziantep. You can find more details of this course, program sources, and other
related links on the course web page at:

http://www1.gantep.edu.tr/~bingul

A local web site dedicated to Fortran can also be found at:

http://www.fortran.gantep.edu.tr/

Türkçe: Temel Yönleriyle Fortran 90 / 95 / 2003

http://www1.gantep.edu.tr/~bingul/f95

The author can be contacted by email at:

bingul(at)gantep.edu.tr

Contents

Section Page

 1. Introduction . 1
 2. Algorithms, Flow Charts and Problem Solving 6
 3. Program Structure, Data Types, Arithmetic Operators 8
 4. Intrinsic Functions, I/O, Arrays . 13
 5. Control Statements . 17
 6. Repetitive Structures (Iteration) . 24
 7. Program Flow and Tracing . 30
 8. Formatted I/O and File Processing . 34
 9. Subprograms: Programmer-defined Functions 38
10. Subprograms: Programmer-defined Subroutines 45
11. Arrays and Array Processing . 54
12. Selected Topics . 67
Topics Not Covered . 72
Appendix. List of Fortran 90 Intrinsics . 74

 A Basic Introduction to Programming in Fortran 1

1. Introduction

1.1 This Guide

This guide is a very basic introduction to the Fortran computer programming language. The

scope of the guide includes the basics of: input/output, data types and arithmetic operations,

intrinsic functions, control statments and repetitive structures, program tracing, file

processing, functions and subroutines, and array processing, numerical KINDs and some

interesting topics. However, some more advanced topics that are not covered in this guide are

listed at the end. A list of Fortran 95 intrinsics is given in the appendix.

We have tried to make this guide concise, avoiding detailed descriptions of the language and

providing only a small number of example programs in each topic. By studying the example

programs carefully you should be able to realise some of the features of Fortran that are

otherwise unexplained in the text. We encourage the reader to persue further studies with a

more complete Fortran text book.

1.2 Computers and Programming and Fortran

A computer is an automatic device that performs calculations, making decisions, and has

capacity for storing and processing vast amounts of information. A computer has two main

parts:

Hardware (=DONANIM)
Hardware is the electronic and mechanical parts of the computer (see Figure 1.1).

Hardware includes:

Input Units Keyboard, Mouse, Scanner

Process Units CPU, Central Processing Unit. This coordinates the operation of

computer system and performs arithmetic logic operations.

RAM, Random Access Memory

HDD, Hard Disc Driver

FDD, Floppy Disc Driver

CD-ROM, Compact Disc – Read Only Memory

Output Units Monitor, Printer, Plotter, Scanner, Modem, Speaker

 A Basic Introduction to Programming in Fortran 2

Figure 1.1: Block diagram for the hardware parts of a digital computer

Software (=YAZILIM)
The software consists of all the programs running on the computer. It includes:

Operating System (OS) is a program written by manufacturer (e.g. Microsoft). It interface

between computer and user. All the programs run under the OS.

Examples are: MS-DOS, Windows, Unix, Linux, BEOS.

Compilers can also be called translator. Very computer language has its own

compiler. The compiler translates the statements of program written

in a high level language into a low level language, the machine code.

Examples are: Fortran, C, C++, Java, Pascal, Basic.

Application Programs are programs written by the users for their own needs.

For example: Word, Excel, Logo, AutoCAD, Flash.

Science and engineering has always been closely tied to the evolution of new tools and

technologies. Computer technology continues to provide powerful new tools in all areas of

science and engineering. The strength of the computer lies in its ability to manipulate and

store data. The speed at which computers can manipulate data, and the amount of data they

can store, has increased dramatically over the years doubling about every 18 months!

(Moore's law). Although the computer has already made an enormous impact on science and

engineering and of course elsewhere (such as mathematics and economics) its potential is

only just beginning to be tapped. A knowledge of using and programming computers is

essential for scientists and engineers.

1.3 Creating and Running a Program

Editing, Compiling, and Running
To create and execute a program you need to invoke three environments; the first is the editor

environment where you will create the program source, the second is the compilation

environment where your source program will be converted into a machine language program,

the third is the execution environment where your program will be run. In this guide it is

assumed that you will invoke these three environments on a local Linux server in the

University of Gaziantep. For this, three easy to use commands are available:

RAM

CPU Input

Units
Output

Units

Storage Units

 A Basic Introduction to Programming in Fortran 3

 $ edit myprogram.f90 to invoke the editor and compose the program source

 $ fortran myprogram.f90 to compile the source into an executable program

 $ run myprogram to run the executable program

The details of using these commands are left to programming laboratory sessions.

Steps of Program Development
A program consists of a set of instructions written by the programmer. Normally a high level

language (such as Basic, C, or Fortran) is used to create a source code written with English-

like expressions, for example:

 REAL :: A, B, C

 PRINT *, "Enter two numbers"

 READ *, A, B

 C = A + B

 PRINT *, "the sum is ", C

 END

A compiler is then used to translate the source code into machine code (a low level language),

the compiled code is called the object code. The object code may require an additional stage

where it is linked with other object code that readies the program for execution. The machine

code created by the linker is called the executable code or executable program. Instructions in

the program are finally executed when the executable program is executed (run). During the

stages of compilation, linking, and running, error messages may occur that require the

programmer to make corrections to the program source (debugging). The cycle of modifying

the source code, compiling, linking, and running continues until the program is complete and

free of errors. This cycle is illustrated in the Figure 1.2.

Figure 1.2: Steps of program development. Programming is often an iterative process of

 writing, compiling, running a program.

Examples of various types of errors are given below.

Write the source program

Compile to obtain the object

code

Link the object code to obtain

the executable program

Execute (run) the program

Compile-time

errors

Link-time errors

Run-time errors

DEBUGGING

Inputs Outputs

 A Basic Introduction to Programming in Fortran 4

Compile-time errors
These are errors that occur during compilation of the source code into object code. They are

usually due to incorrect usage of the programming language, for example:

 READ *, A, B

 C = A + B

 PRNT *, C

 END

Compilation of this program results in a compile-time error something like:

 PRNT *, C

 1

 Error: Unclassifiable statement at (1)

PRNT is a misspelling of the output statement PRINT. This error is corrected by replacing PRNT

with PRINT in the source code and then recompiling the program, this process is called

debugging. Object code is only created when there are no detected compile-time errors.

Compile-time warnings may also occur, these provide the programmer with advice about

parts of the program that may be using non-standard syntax or that may potentially cause

errors. Compile-time warnings do not prevent the creation of object code. Example:

 REAL :: C

 PRINT *, C

 END

Compilation of this program may result in the compile-time warning something like:

 REAL :: C

 1

 Warning (113): Variable 'c' at (1) is used but not set

An executable is created, but will give an undetermined result.

Link-time errors
These are errors that occur during the linking stage. They result when, for example, an

external object required by the program cannot be found. Example:

 PRINT *,SIN(4.3)

 PRINT *,ARCSIN(.78)

 END

Compilation of this program results in a link-time error something like:

 PRINT *,ARCSIN(.78)

 1

 Error: Function 'arcsin' at (1) has no implicit type

In this case the program is compiled into object code but then fails to link the external

function ARCSIN that does not exist in any library known to the compiler. When a link-time

error occurs the executable is not created. This program may be corrected by replacing in the

source code the statement ARCSIN with ASIN (the standard Fortran statement representing the

inverse sine of a number) or by providing the reference subprogram. Again link-time

warnings may also occur.

 A Basic Introduction to Programming in Fortran 5

Run-time errors
These are errors that occur during the execution of the program (when the program is

running). Such errors usually occur when the logic of the program is at fault or when an

unexpected input is given (unexpected inputs or faulty logic does not necessarily result in run-

time error messages, such programming errors should be detected by rigorously testing your

program). When a run-time error occurs the program terminates with an appropriate error

message. Example:

 REAL :: A(5)

 INTEGER :: I

 DO I=1,6

 A(I)=I**2

 END DO

 PRINT *, A

 END

This program compiles and links without errors, but when executed may result in the program

terminating with a run-time error something like:

 Fortran runtime error: Array element out of bounds: 6 in (1:5), dim=1

Run-time errors result from run-time checking that the compiler builds into the object code.

Compiler options can be used to switch on and off various run-time checks, compile-time

warnings, code optimisation, and various other compiler features.

1.4 Questions

[1]. What compiler options are you using when you compile your Fortran source?

[2]. How can you find out what other compiler options are available and switch them

 on and off?

Notes
Use this section to note down commands and procedures for editing, compiling, and running

your programs on your computer platform.

 A Basic Introduction to Programming in Fortran 6

2. Algorithms, Flow Charts
and Problem Solving

2.1 Introduction

In this section we introduce ideas about problem solving with computers; we make use of

flowcharts, algorithms, and consider the importance of defining a problem sufficiently and

what assumptions we may make during the solution.

Consider the calculation of the twist factor of a yarn. Twist Factor, Tf, of a yarn is given by:

1000

m
NT f

where N (turn/m) is the number of twist of a yarn per unit length and m is measured in tex (a

yarn count standard) that is mass in grams of a yarn whose length is 1 km. Write a Fortran

program to calculate twist factor of a yarn for given N and m.

A solution might look something like twist.f90, the key section is below:

PROGRAM Twist_Factor

 IMPLICIT NONE

 REAL :: Tf,m

 INTEGER :: N

 PRINT *,"Input the value of N and m"

 READ *,N,m

 Tf = N*SQRT(m/1000.0)

 PRINT *,"The twist factor is",TF

 END PROGRAM Twist_Factor

But maybe it is not as simple as this: was the problem defined clearly? what assumptions did

we make in the solution, are they valid? This is discussed in detail in the lecture; some notes

are given below.

2.2 Problem Solving

Problem solving with computers involves several steps:

 1. Clearly define the problem.

 2. Analyse the problem and formulate a method to solve it (see also “validation”).

 3. Describe the solution in the form of an algorithm.

 4. Draw a flowchart of the algorithm.

 5. Write the computer program.

 6. Compile and run the program (debugging).

 7. Test the program (debugging) (see also “verification”).

 8. Interpretation of results.

 A Basic Introduction to Programming in Fortran 7

Verification and Validation
If the program has an important application, for example to calculate student grades or guide a

rocket, then it is important to test the program to make sure it does what the programmer

intends it to do and that it is actually a valid solution to the problem. The tests are commonly

divided as follows:

Verification verify that program does what you intended it to do; steps 7(8)

above attempt to do this.

Validation does the program actual solve the original problem i.e. is it valid? This goes

back to steps 1 and 2 - if you get these steps wrong then your program is not a

valid solution.

2.3 Algorithms

The algorithm gives a step-by-step description of the solution. This may be written in a non-

formal language and structure. An example is given in the lecture.

2.4 Flow Charts

A flow chart gives the logical flow of the solution in a diagrammatic form, and provides a

plan from which the computer program can be written. The logical flow of an algorithm can

be seen by tracing through the flowchart. Some standard symbols used in the formation of

flow charts are given below.

An oval is used to indicate the beginning

or end of an algorithm.

A parallelogram indicates the input

or output of information.

A rectangle indicates a computation, with the

result of the computation assigned to a variable.

A diamond indicates a point where a decision

is made.

A hexagon indicates the beginning of the

repetition structure.

A double lined rectangle is used at a point

where a subprogram is used.

An arrow indicates the direction of flow of the algorithm.

Circles with arrows connect the flowchart between pages.

 A Basic Introduction to Programming in Fortran 8

3. Program Structure,
Data Types, Arithmetic Operators

3.1 Introduction

In this section, you will learn the basic structure of Fortran 90, how Fortran 90 handles

different data types, and study arithmetic operations in Fortran.

3.2 Fortran Program Structure

The basic program structure used in this guide is:

PROGRAM A_Program_Name

! Comment explaining the purpose of the program

 IMPLICIT NONE

 REAL :: Var1, Var2 a declaration part...

 INTEGER :: Var3, Var4

 Var1 = 0. an initialisation part ...

 Var2 = 0.

 Var3 = 0.

 Var4 = 0.

 ... some operations ...

 PRINT *, some output

END PROGRAM A_Program_Name

You are free to indent with spaces and add empty lines as you wish, the aim is to improve the

readability of the program source.

3.3 Data Types and Constants

A key component of a program is the use of objects that store data. There are five data types:

REAL, INTEGER, COMPLEX, CHARACTER, LOGICAL. Most commonly used in numerical work are

type REAL and type INTEGER. In the following example program we have objects named A, V,

and Momentum that are declared to store type real data (numbers with decimal points), and

objects named Count, Missed, and Decay, that are declared to store type integer data, and an

object named Month declared to store type character data. All these objects are called

variables as their values can be changed (varied) during program execution.

 A Basic Introduction to Programming in Fortran 9

PROGRAM Variables

!--------------------------------------

! Example declaration, initialisation,

! and output of variables

!--------------------------------------

 IMPLICIT NONE

 REAL :: A, V, Momentum

 INTEGER :: Count, Missed, Decays

 CHARACTER(LEN=9) :: Month

 A = 4.03

 V = 15.6E3

 Count = 13535

 Missed = 34

 Momentum = V/A

 Decays = Count + Missed

 Month = "January"

 PRINT *, Momentum, Decays, Month

END PROGRAM Variables

Note that in the assignment V = 15.6E3 the expression 15.6E3 in Fortran represents the

value 15.6 10
3
 = 15600. The output of this program (from the PRINT statement) is:

 3870.968 13569 January

Named constants are declared with the PARAMETER attribute. Such data is assigned a value at

declaration and cannot be changed during program execution; for example:

PROGRAM Convert_FtoM

!---

! Program to convert a length given in feet

! to the corresponding length in metres.

!---

 IMPLICIT NONE

 REAL, PARAMETER :: FtoM = 0.3048

 REAL Feet, Metres

 PRINT *, "Type the length in feet"

 READ *, Feet

 Metres = Feet * FtoM

 PRINT *, Feet, " feet = ", Metres, " metres."

END PROGRAM Convert_FtoM

Example execution:

 Type the length in feet

 12.0

 12.00000 feet = 3.657600 metres.

Here, identifier FtoM (an object that can store a real value) is declared as a constant (the

PARAMETER attribute). The value of FtoM is defined in its declaration and cannot be change

during the execution of the program. In this program it is not necessary to give identifier

FtoM the PARAMETER attribute; but, as we do not intend the value of FtoM to change during

program execution it is good programming practice to declare it as a constant.

 A Basic Introduction to Programming in Fortran 10

3.4 Arithmetic Operations

Operators
The symbols () * / + - ** are used in arithmetic operations. They represent parenthesis,

multiplication, division, addition, subtraction and exponentiation, respectively.

Priority Rules
Arithmetic operations follow the normal priority; proceeding left to right, with

exponentiation performed first, followed by multiplication and division, and finally addition

and subtraction. Parenthesis can be used to control priority.

Mixed-mode, and integer operations
If integers and reals are mixed in arithmetic operations the result is a real. Operations

involving only reals yield a type real result. Operations involving only integers yield a type

integer result. Be especially careful when dividing two integers - the result is truncated to an

integer; for example, 3/2 = 1, and 1/2 = 0. This is illustrated in the program below.

PROGRAM Operations

!--

! Program to test integer and mixed mode operations

!--

 IMPLICIT NONE

 REAL :: A, B, C

 INTEGER :: I, J, K

 A = 3.

 B = 4.

 I = 5

 J = 3

 C = A + I / J

 K = A / I + 2 * B / J

 PRINT *, C, K

END PROGRAM Operations

The output of this program is

 4.000000 3

and is explained as follows:

Type real object C is assigned the result of A+I/J = 3.0+5/3 = 3.0+1 = 4.0. Here, the result of

the integer operation 5/3 is an integer and so 1.66666 is truncated to 1; the value of C is

output.

Type integer object K is assigned the result of A/I+2*B/J = 3.0/5+2*4.0/3 which, using the

priority rules evaluates as (3.0/5)+2*4.0/3. Remember that mixed-mode arithmetic results in a

type real value and so the result is 0.6+2.66666 = 3.266666. The assignment however is to a

type integer object and so the value is truncated to 3; the value of K is output.

 A Basic Introduction to Programming in Fortran 11

It is advisable to avoid integer division, get into the habit of using the following forms in

operations:

 Real constants should always be written with a decimal point

e.g., instead of X=A/5 write X=A/5.

 Integer identifiers should be converted to real type in operations

e.g., instead of X=A/N write X=A/REAL(N) if that is what yoıu mean.

If A is type real then both these case are not necessary - but it is good programming practice

to make a habit of using these forms (write explicitly what you mean).

Long arithmetic expressions
When writing long arithmetic expressions it can be useful to break them down into

constituent parts. For example the expression:

 Z = ((X**2 + 2.*X + 3.)/(5.+Y)**0.5 - ((15. - 77.*X**3)/Y**1.5)**0.5)

 / (X**2 - 4.*X*Y - 5.*X**(-0.8))

can be written more clearly (and carefully) as

 A = (X**2 + 2.*X + 3.) / (5.+ Y)**0.5

 B = (15.- 77.*X**3) / Y**1.5

 C = X**2 - 4.*X*Y - 5.*X**(-0.8)

 Z = (A - B**0.5) / C

This is implemented in the program below:

PROGRAM Equation

 IMPLICIT NONE

 REAL :: X = 0.2, Y = 1.9

 REAL :: A, B, C, Z

 A = (X**2+2.*X+3.) / (5.+Y)**0.5

 B = (15.-77.*X**3) / Y**1.5

 C = X**2 - 4.*X*Y - 5.*X**(-0.8)

 Z = (A - B**0.5) / C

 PRINT *, Z

END PROGRAM Equation

If you dont want to seperate an expression into parts you can use & operator as follows:

 Z = ((X**2 + 2.*X + 3.)/(5.+Y)**0.5 - &

 ((15. - 77.*X**3)/Y**1.5)**0.5) / &

 (X**2 - 4.*X*Y - 5.*X**(-0.8))

 A Basic Introduction to Programming in Fortran 12

3.5 Declaring and Initialising Variables

Again, it is good programming practice to get into the habit of:

 Always use IMPLICIT NONE. This forces you to declare all variable you use and so

avoids the potential of using a misspelled identifier.

 Always initialise variables; an uninitialised variable will take, depending on the

particular compiler or compiler options you are using, a value which is either zero or

an unpredictable value. You can remove such uncertainties by initialising all variables

you declare.

For example:

INTEGER :: K

REAL :: S

K = 0

S = 0.

.

.

or

INTEGER :: K = 0

REAL :: S = 0.

.

.

Note that the second form in subprograms gives the variables the SAVE attribute (see other

texts for an explanation).

 A Basic Introduction to Programming in Fortran 13

4. Intrinsic Functions,
I/O, Arrays

4.1 Introduction

In this section, you will learn some Fortran intrinsic mathematical functions such as SIN, EXP,

ABS, the basics of the input/output (I/O) and an introduction to arrays (arrays are covered in

more detail in a later section).

4.2 Intrinsic Functions

These are functions that are built in to the compiler. Some are shown in the table below (the

the appendix at the end of this guide for a full list of Fortran 90 intrinsics):

Function Meaning Example
LOG(x) Natural logarithm; ln(x) Y = LOG(2./X)

LOG10(x) Logarithm for base 10; log10 (x) Y = LOG10(X/3.5)

COS(x) Cosine of a number in radians Y = COS(X)

ATAN(x) Angle in radian whose tangent is x R = ATAN(Y/X)

EXP(x) Natural exponent e
x
 G=EXP(-((X-M)/S)**2/2.)

SQRT(x) Square-root of a real value Root = SQRT(Y)

INT(x) Truncate to an integer K = INT(X)

NINT(x) Nearest integer of a real value K = NINT(X)

MOD(x,y) x (mod y) Remainder = MOD(X,5)

ABS(x) Absolute value of x Y = ABS(X)

The Gaussian probability function is defined as:

22 2/)(

2

1
)(mxexG

This can be written using intrinsic functions as follows:

 G = EXP(-0.5*((X-M)/S)**2) / (S*SQRT(2*3.141593))

The test for the number, X, even or odd can be made by:

 R = MOD(X,2)

MOD(X,2) returns an integer value which is 0 or 1.

if R=0 then the number, X, is even

otherwise R=1 the number is odd.

 A Basic Introduction to Programming in Fortran 14

Example 4.1

In the following program the values for the position x, mean m, and standard deviation are

input, and value of the gaussian probability function is output.

PROGRAM Gaussian

!--

! The Gaussian probability density function is symmetric about

! and maximum at X = M and has a standard deviation of S. The

! integrated function is normalised to unity.

!--

 IMPLICIT NONE

 REAL, PARAMETER :: TwoPi = 6.283185

 REAL :: X, M, S ! inputs

 REAL :: G ! output

 PRINT *, "Input the position X, mean M, and sigma S"

 READ *, X, M, S

 G = EXP(-0.5*((X-M)/S)**2) / (S*SQRT(TwoPi))

 PRINT *, G

END PROGRAM Gaussian

Note that the symbol (sigma) is not permitted in a Fortran program (only characters from

the standard ASCII character set are permitted) and so this is replaced with the letter S which

in this case is short for sigma.

Example execution:

Input the position X, mean M, and sigma S

-0.65

1.21

2.6

 0.1187972

4.3 Input/Output (I/O)

The idea of input and output devices is introduced very briefly. Inputs for a Fortran program

are usually from a keyboard or a file. Outputs are normally to a screen or a file:

Two pairs of I/O statements are used, the first is for I/O involving the "standard"

keyboard/screen, and the second for I/O involving files.

Program

 READ ...

 PRINT ...

 WRITE ...

Keyboard

File File

Screen

INPUTS OUTPUTS

 A Basic Introduction to Programming in Fortran 15

Keyboard/Screen I/O statements:

READ format specifier, input list

PRINT format specifier, output list

where format specifier specifies the format of the output.

Examples:

READ *, A

PRINT *, A

Here A is input and output in a "free format", i.e. the compiler decides what the format is

depending on the type of data.

PRINT '(F6.3)', A

Here the format of the output is given as:

F means a real value

6 means 6 digits (including the decimal place)

3 means 3 decimal places.

For example 63.78953 will be output as 63.790 (the value is rounded to the nearest decimal

place).

File I/O statements:

READ (unit number, format specifier) input list

WRITE (unit number, format specifier) output list

where unit number specifies a number given to the file.

4.4 Introduction to Arrays

A basic introduction to arrays is given here, more details are covered in Section 10. An array

is a group of variables or constants, all of the same type, which is referred to by a single

name. If the following can represent a single value:

REAL :: Mass

A set of 5 values can be represented by the array

REAL :: Mass(5)

The 5 elements of the array can be assigned as follows:

Mass(1) = 8.471

Mass(2) = 3.683

Mass(3) = 9.107

Mass(4) = 4.739

Mass(5) = 3.918

or more concisely using an array constant:

 A Basic Introduction to Programming in Fortran 16

Mass = (/ 8.471, 3.683, 9.107, 4.739, 3.918 /)

Consider the following program section;

REAL :: Mass(5)

Mass = (/ 8.471, 3.683, 9.107, 4.739, 3.918 /)

PRINT *, Mass

The output is:

 8.471000 3.683000 9.107000 4.739000 3.918000

We can operate on individual elements, for example

Weight = Mass(5) * 9.81

here, Weight is a scalar. Or we can operate on a whole array in a single statement:

Weight = Mass * 9.81

Here both Weight and Mass are arrays with 5 elements (the two arrays must conform).

Consider the following program section;

REAL :: Mass(5), Weight(5)

Mass = (/ 8.471, 3.683, 9.107, 4.739, 3.918 /)

Weight = Mass * 9.81

PRINT *, Mass

PRINT *, Weight

The above program section is implemented in the example program below; operations

involving a whole array are indicated in bold.

Example 4.2

PROGRAM Weights

!--

! Given an array of masses, this program computes

! a second array of weights using a "whole array

! assignment". The arrays must have the same

! number of elements.

!--

 IMPLICIT NONE

 REAL, PARAMETER :: g = 9.81

 REAL :: Mass(5), Weight(5)

 Mass = (/ 8.471,3.683,9.107,4.739,3.918 /) ! Assign the mass values

 Weight = Mass*g ! Compute the weights

 PRINT *, Mass

 PRINT *, Weight

END PROGRAM Weights

The output is:
 8.471000 3.683000 9.107000 4.739000 3.918000
 83.10051 36.13023 89.33968 46.48959 38.43558

 A Basic Introduction to Programming in Fortran 17

5. Control Statements

5.1 Introduction

Control statements allow us to make decisions - the program takes one course of action or

another depending on the value of a variable. Here we introduce four constructs and

understand how to use them: the simple IF construct, the block IF construct, the IF-ELSE

construct, IF-ELSE IF-ELSE construct and CASE construct.

5.2 Relational Operators and their Compound Forms
Control statements use relation operators; there are six relational operators as follows:

 < less than

 <= less than or equal to

 > greater than

 >= greater than or equal to

 == equal to. Note that this is not the same as the assignment operator =

 /= not equal to

Relational expressions can therefore be formed, for example

 A < B
 A == 5

 B >= 1.

Compound relation expressions can be formed using the .AND. and .OR., (and other)

operators; for example:

A < B .AND. C==5.

this statement is true if both A is less than B, and, C is equal to 5.

A >= 0 .OR. B > 1.

this statement is true if either A is greater or equal to zero, or, B is greater than one.

5.3 The Simple IF Construct

 IF (a simple or compound logical expression) a single statement

For example:

 IF (X > 0) Y = SQRT(X)

5.4 The Block IF Construct

IF (a simple or compound logical expression) THEN

 statement 1

 statement 2

 .

 .

END IF

 A Basic Introduction to Programming in Fortran 18

For example:

IF (Poem == "Yes") THEN

 PRINT *, "A computer, to print out a fact,"

 PRINT *, "Will divide, multiply, and subtract."

 PRINT *, "But this output can be"

 PRINT *, "No more than debris,"

 PRINT *, "If the input was short of exact."

 PRINT *, " -- Gigo"

END IF

5.5 The IF-ELSE Construct

IF (a simple or compound logical expression) THEN

 statement sequence 1

 .

ELSE

 statement sequence 2

 .

END IF

For example:

IF (A < B) THEN

 Result = A/B

 PRINT *, "x = ", Result

ELSE

 Result = B/A

 PRINT *, "1/x = ", Result

END IF

Nesting
You can nest IF ELSE contruct such that:

IF (a simple or compound logical expression) THEN

 statement sequence 1

 IF (a simple or compound logical expression) THEN

 statement sequence 2

 ELSE

 statement sequence 3

 END IF

ELSE

 statement sequence 4

 IF (a simple or compound logical expression) THEN

 statement sequence 5

 ELSE

 statement sequence 6

 END IF

END IF

5.6 IF-ELSE IF Construct

The selection structures considered thus so far have invloved selecting one of two

alternatives. It is also possible to use the IF construct to design selection structures that

contain more than two alternatives:

 A Basic Introduction to Programming in Fortran 19

IF (a simple or compound logical expression) THEN

 statement sequence 1

ELSE IF (a simple or compound logical expression) THEN

 statement sequence 2

ELSE IF (a simple or compound logical expression) THEN

 statement sequence 3

.

.

.

ELSE IF (a simple or compound logical expression) THEN

 statement sequence n-1

ELSE

 statement sequence n

END IF

Example 5.1 consider the following piecewise function:

1 if1

10 if

0 if

)(2

x

xx

xx

xf

To evaluate the function, following program can be implemented:

PROGRAM Composite_Function

IMPLICIT NONE

REAL :: x,F

 PRINT *, "Input the value of x"

 READ *, x

 IF (x <= 0) THEN

 F = -x

 ELSE IF (x>0 .AND. x<1) THEN

 F = x**2

 ELSE

 F = 1.0

 END IF

 PRINT *,x,F

PROGRAM Composite_Function

Example executions:

 Input the value of x

-4.0

 -4.000000 4.000000

 Input the value of x

5

 5.000000 1.000000

 A Basic Introduction to Programming in Fortran 20

5.7 CASE Construct

In this section the CASE construct which is an alternative of IF-ELSE IF construct and

useful for implementing some selection structures. A CASE contruct has the following

form:

SELECT CASE (selector) THEN

 CASE (label list 1)

 statement sequence 1

 CASE (label list 2)

 statement sequence 2

 .

 .

 .

 CASE (label list n)

 statement sequence n

END SELECT

where

selector is an integer, character or logical expression

label list i is a list of one or more possible values of the selector and

 the values in this list may have any of the forms:

 Value denotes a single value
 value1 : value2 denotes from value1 to value2
 value1 : denotes the set of all values greater than or equal to value1
 : value2 denotes the set of all values less than or equal to value2

For example, following CASE construct can be used to display the class name that

corresponds to a numeric class code:

SELECT CASE(ClassCode)

 CASE(1)

 PRINT *,"Freshman"

 CASE(2)

 PRINT *,"Sophmore"

 CASE(3)

 PRINT *,"Junior"

 CASE(4)

 PRINT *,"Graduate"

 CASE DEFAULT

 PRINT *,"Illegal class code", ClassCode

END SELECT

Note that the use CASE DEFAULT statement to display an error message in case the value of

the selector ClassCode is none of 1,2,3,4 or 5. Although the CASE DEFAULT statement can

be placed anywhere in the list of CASE statement.

 A Basic Introduction to Programming in Fortran 21

Example 5.2 Finding a Leap Year

A leap year is a year in which one extra day (February 29) is added to the regular calendar.

Most of us know that the leap years are the years that are divisible by 4. For example 1992

and 1996 are leap years. Most people, however, do not know that there is an exception to

this rule: centennial years are not leap years. For example, 1800 and 1900 were not leap

years. Furthermore, there is an exception to the exception: centennial years which are

divisible by 400 are leap years. Thus 2000 is a leap year. The following program checks if

the given year is leap or not.

PROGRAM Leap_Year

!---

! Finding a leap year

!---

IMPLICIT NONE

INTEGER :: Y

PRINT *,"Enter a year"

READ *,Y

 IF(MOD(Y,4) == 0 .AND. MOD(Y,100) /= 0 .OR. &

 MOD(Y,400) == 0) THEN

 PRINT *,Year," is a leap year."

 ELSE

 PRINT *,Year," is not a leap year."

 END IF

END PROGRAM Leap_Year

I

Example 5.3: Ratio of two numbers

PROGRAM Fractional_Ratio

!-------------------------------------

! The ratio of two numbers such

! that it is positive and a fraction.

!-------------------------------------

 IMPLICIT NONE

 REAL A, B, Ratio

 PRINT *, "Input two numbers."

 READ *, A, B

 A=ABS(A); B=ABS(B)

 IF (A < B) THEN

 Ratio = A/B

 ELSE

 Ratio = B/A

 END IF

 PRINT *, "The ratio is ", Ratio

END PROGRAM Fractional_Ratio

 A Basic Introduction to Programming in Fortran 22

Example 5.4 Grade calculation

PROGRAM Grade_Calculation

!--

! Grade calculation from the weighted 0-39 FF

! average of three exams. The first, 40-49 FD

! second and final exam scores are 50-59 DD

! weighted by 0.3, 0.3, and 0.4 60-69 DC

! respectively. The average score is 70-74 CC

! converted to a grade from the grade 75-79 CB

! table (right). 80-84 BB

! 85-89 BA

! 90-100 AA

!--

 IMPLICIT NONE

 REAL :: MT1, MT2, Final, Average

 CHARACTER :: Grade*2

 PRINT *, "Enter the three exam scores (%)"

 READ *, MT1, MT2, Final

 Average = 0.3*MT1 + 0.3*MT2 + 0.4*Final

 PRINT '(A22,F5.1,A1)', "The weighted score is ", Average, "%"

 IF (Average < 40.) Grade="FF"

 IF (Average >= 40.) Grade="FD"

 IF (Average >= 50.) Grade="DD"

 IF (Average >= 60.) Grade="DC"

 IF (Average >= 70.) Grade="CC"

 IF (Average >= 75.) Grade="CB"

 IF (Average >= 80.) Grade="BB"

 IF (Average >= 85.) Grade="BA"

 IF (Average >= 90.) Grade="AA"

 PRINT *, "The grade is ", Grade

END PROGRAM Grade_Calculation

In this example the variable Grade maybe assigned and reassign a number of times.

Example execution:

 Enter the three exam scores (%)

56

78

81

The weighted score is 72.6%

 The grade is CC

Example 5.4 can also be written by using IF-ELSE IF or CASE contruct. In Example 5.5 the

grade calculation is done by CASE construct.

 A Basic Introduction to Programming in Fortran 23

Example 5.5 Grade calculation

PROGRAM Grade_Calculation

!--

! Grade calculation from the weighted 0-39 FF

! average of three exams. The first, 40-49 FD

! second and final exam scores are 50-59 DD

! weighted by 0.3, 0.3, and 0.4 60-69 DC

! respectively. The average score is 70-74 CC

! converted to a grade from the grade 75-79 CB

! table (right). 80-84 BB

! 85-89 BA

! 90-100 AA

!--

 IMPLICIT NONE

 REAL :: MT1, MT2, Final, Average

 CHARACTER :: Grade*2

 PRINT *, "Enter the three exam scores (%)"

 READ *, MT1, MT2, Final

 Average = 0.3*MT1 + 0.3*MT2 + 0.4*Final

 PRINT '(A22,F5.1,A1)', "The weighted score is ", Average, "%"

 SELECT CASE(NINT(Average)) ! convert Avrage to nearest integer

 CASE(:39); Grade="FF"

 CASE(40:49); Grade="FD"

 CASE(50:59); Grade="DD"

 CASE(60:69); Grade="DC"

 CASE(70:74); Grade="CC"

 CASE(75:79); Grade="CB"

 CASE(80:84); Grade="BB"

 CASE(85:89); Grade="BA"

 CASE(90:); Grade="AA"

 END SELECT

 PRINT *, "The grade is ", Grade

END PROGRAM Grade_Calculation

 A Basic Introduction to Programming in Fortran 24

6. Repetitive Structures
(Iteration)

6.1 Introduction

We can cause a program to repeat sections of statements (iterate) by using the DO loop

construct. There are two forms; the DO loop with a counter, and the endless DO loop.

6.2 The DO loop with a counter

In this type of looping, the repetition is controlled by a counter. This has the general form:

DO counter = initial value, limit, step size

 .

 statement sequence

 .

END DO

For example

DO I = 4, 12, 2

 PRINT *, I, I**2, I**3

END DO

gives:

 4 16 64

 6 36 216

 8 64 512

10 100 1000

12 144 1728

The counter variable I takes values starting from 4 and ending at 12 with increments of 2 (the

step size) in between. The number of iterations in this loop is therefore 5. The DO loop

parameters counter, initial value, limit, and step size must all be type integer. To create a loop

with a type real counter we can use, for example, something like the following scheme.

DO I = 0, 10, 2

 R = 0.1*REAL(I)

 PRINT *, R, R**2, R**3

END DO

Here, the real variable R is derived from the integer counter I; the result is:

0.000000E+00 0.000000E+00 0.000000E+00

0.2000000 4.000000E-02 8.000000E-03

0.4000000 0.1600000 6.400000E-02

0.6000000 0.3600000 0.2160000

0.8000000 0.6400000 0.5120000

1.000000 1.000000 1.000000

 A Basic Introduction to Programming in Fortran 25

6.2 General DO loops

In this type of looping, the repetition is controlled by a logical expression.

DO-EXIT Construct

This has the general form:

DO

 statement sequence 1

 IF (a simple or compound logical expression) EXIT

 statement sequence 2

END DO

The loop is reated until the condition (a logical epression) in IF statement becomes false. If

the condition is true, the loop is terminated by EXIT statement. This is useful for when we

do not know how many iterations will be required.

Example of the use of an DO-EXIT construct:

DO

 PRINT *, "Input a positive number."

 READ *, A

 IF (A >= 0.) EXIT

 PRINT *, "That is not positive! try again."

END DO

This program section loops until a positive number in input.

Example execution:

 Input a positive number.

-34.2

 That is not positive! try again.

 Input a positive number.

-1

 That is not positive! try again.

 Input a positive number.

3.4

the loop terminates

The following program section outputs the even numbers 10, 8, ..., 2 and their squares:

N=10

DO

 PRINT *,N,N**2

 IF(N<4) EXIT

 N=N-2

END DO

Output:
 10 100

 8 64

 6 36

 4 16

 2 4

 A Basic Introduction to Programming in Fortran 26

DO-CYCLE Construct

This has the general form:

DO

 statement sequence 1

 IF (a simple or compound logical expression) CYCLE

 statement sequence 2

 IF (a simple or compound logical expression) EXIT

 statement sequence 3

END DO

When the CYCLE statement is executed control goes back to the top of the loop. When the

EXIT statement is executed control goes to the end of the loop and the loop terminates.

Example of the use of an DO-CYCLE construct:

DO

 READ *,X

 IF (X == 0) CYCLE

 F = 1.0/X

 PRINT *,X,F

 IF(X<0) EXIT

END DO

This prgram section read a value x from the keyboard and outputs a value of x and 1/x if x is

not equal to zero, while x>0.

DO-WHILE Construct

This has the general form:

DO WHILE(a simple or compound logical expression)

 ...

 statement sequence

 ...

END DO

The logical expression is executed during the condition is true, otherwise the loop is skipped.

Example of the use of an DO-WHILE construct:

N=10

DO WHILE(N>=2)

 PRINT *,N,N**2

 N=N-2

END DO

The program section given above will output the even numbers 10, 8, ..., 2 and their squares

while N>=2. The results is same as the program section given in page 25.

 A Basic Introduction to Programming in Fortran 27

6.4 Endless or Infinite DO loops

The logical expressions given in DO-EXIT, DO-CYCLE and DO-WHILE can result in an infinite

(endless) loop under proper contions. It is normal to provide the user with some way out of a

loop; if you program loops infinitely then you can break out with the key sequence: Crtl-C.

What can you say about the output of the following program sections?

DO WHILE(2>1)

 PRINT *,"Engineering"

END DO

I=1

DO

 IF(I==0) EXIT

 PRINT *,"Engineering"

END DO

I=1

DO

 PRINT *,"Engineering"

 IF(I/=0) CYCLE

END DO

Y = 2.0

DO

 PRINT *,"Engineering"

 IF(Y<Y**2) EXIT

 Y=Y+0.0002

END DO

Each program sections will output the lines:

Engineering

Engineering

Engineering

Engineering

Engineering

.

.

.

 A Basic Introduction to Programming in Fortran 28

Example 6.1 Calculating n! (n factorial)

PROGRAM N_Factorial

!---

! Program to compute the factorial of a positive integer.

! It is assumed that N is positive (N >= 0)

!---

 IMPLICIT NONE

 INTEGER :: I, N, Factorial

 PRINT *, "Input N"

 READ *, N

 Factorial = 1

 DO I = 2, N

 Factorial = Factorial*I

 END DO

 PRINT *, N, " factorial = ", Factorial

END PROGRAM N_Factorial

Example execution:

 Input N

5

 5 factorial = 120

Example 6.2 The mean (excluding zeros) of a list of real values.

PROGRAM Mean

!---

! A list of values is input terminated by a

! negative number. The mean of all non-zero

! entries is calculated.

!---

 IMPLICIT NONE

 INTEGER :: Count

 REAL :: V, Summation

 Summation = 0.

 Count = 0

 PRINT *, "Input the values, terminating by a negative value."

 DO

 READ *, V

 IF (V==0.) CYCLE

 IF (V < 0.) EXIT

 Summation = Summation + V

 Count = Count + 1

 END DO

 PRINT *, "The sum is ", Summation

 PRINT *, "The mean is ",Summation / REAL(Count)

END PROGRAM Mean

 A Basic Introduction to Programming in Fortran 29

Example execution:

18.3

43.6

23.6

89.3

78.8

0.0

45.7

0.0

34.6

-1

 The sum is 333.9000

 The mean is 47.70000

Example 3 20-by-20 table of products

PROGRAM Table_of_Products

!---

! This program outputs a table of products

! using an implied DO loop inside a DO loop.

!---

 IMPLICIT NONE

 INTEGER :: I, J

 DO I = 1, 20

 PRINT '(20(1x,I3))', (I*J, J=1,20)

 END DO

END PROGRAM Table_of_Products

Output:

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60

 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80

 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

 6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96 102 108 114 120

 7 14 21 28 35 42 49 56 63 70 77 84 91 98 105 112 119 126 133 140

 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128 136 144 152 160

 9 18 27 36 45 54 63 72 81 90 99 108 117 126 135 144 153 162 171 180

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

11 22 33 44 55 66 77 88 99 110 121 132 143 154 165 176 187 198 209 220

12 24 36 48 60 72 84 96 108 120 132 144 156 168 180 192 204 216 228 240

13 26 39 52 65 78 91 104 117 130 143 156 169 182 195 208 221 234 247 260

14 28 42 56 70 84 98 112 126 140 154 168 182 196 210 224 238 252 266 280

15 30 45 60 75 90 105 120 135 150 165 180 195 210 225 240 255 270 285 300

16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256 272 288 304 320

17 34 51 68 85 102 119 136 153 170 187 204 221 238 255 272 289 306 323 340

18 36 54 72 90 108 126 144 162 180 198 216 234 252 270 288 306 324 342 360

19 38 57 76 95 114 133 152 171 190 209 228 247 266 285 304 323 342 361 380

20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400

 A Basic Introduction to Programming in Fortran 30

7. Program Flow
and Tracing

7.1 Introduction

In this section more examples of programs using loops are given with emphasis placed on

using program tracing.

7.2 The Program Trace

Flow charts help us to visualise the flow of a program, especially when the program includes

control statements and loops. As well as being an aid to program design, a flowchart can also

help in the debugging of a program. Another aid to debugging is the program trace. Here,

the values that variables take are output during the program execution. This is achieved by

placing output statements at appropriate points in the program.

Example 7.1

The output statements shown in bold in the following program create a program trace:

PROGRAM Max_Int

!---

! Program to find the maximum of N integer values

! A program trace is acheived by using the output

! statements indicated by "! TRACE".

!---

 IMPLICIT NONE

 INTEGER, PARAMETER :: N = 6

 INTEGER :: V(N), I, Max

 PRINT *,"Input ", N, " integers"

 READ *, V

 Max = V(1)

 PRINT *, " I N V(I) Max" ! TRACE

 PRINT '(4(1X,I4))', 1, N, V(1), Max ! TRACE

 DO I = 2, N

 IF (V(I) > Max) Max = V(I)

 PRINT '(4(1X,I4))', I, N, V(I), Max ! TRACE

 END DO

 PRINT *, "The maximum value is ", Max

END PROGRAM Max_Int

The output of the program (the trace is shown in bold) is:

 K V(K) Max

 1 12 12

 2 -56 12

 3 34 34

 4 89 89

 5 0 89

 6 31 89

 The maximum value is 89

The evolution of the values can be seen for each iteration of the loop.

 A Basic Introduction to Programming in Fortran 31

Example 7.2

PROGRAM Newtons_Square_Root

!--

! This program uses Newton's method to compute the

! square root of a positive number P. The formula:

!

! Xnew = (Xold + P / Xold) / 2

!

! is iterated until the difference |Xnew - Xold| is

! zero* i.e X has converged to the square root of P.

!--

! * here "zero" means there is no difference within

! the limited storage precision.

!--

! A program trace is acheived by using the output

! statement indicated by "! TRACE".

!--

 IMPLICIT NONE

 REAL :: P, Xold, Xnew

 PRINT *, "Input a positive number"

 READ *, P

 Xold = P

 DO

 Xnew = (Xold + P/Xold) / 2.

 PRINT *, P, Xnew, Xnew-Xold ! TRACE

 IF (Xnew - Xold == 0.) EXIT

 Xold = Xnew

 END DO

 PRINT *, "The square root is ", Xnew

END PROGRAM Newtons_Square_Root

Example executions:

$ run program20trace

 Input a positive number

3.0 [Enter]

 3.000000 2.000000 -1.000000

 3.000000 1.750000 -0.2500000

 3.000000 1.732143 -0.01785719

 3.000000 1.732051 -0.00009202957

 3.000000 1.732051 0.0000000

 The square root is 1.732051

$ run program20trace

 Input a positive number

8673.4756 [Enter]

 8673.476 4337.238 -4336.238

 8673.476 2169.619 -2167.619

 8673.476 1086.808 -1082.811

 8673.476 547.3945 -539.4138

 8673.476 281.6198 -265.7747

 8673.476 156.2092 -125.4106

 8673.476 105.8670 -50.34219

 8673.476 93.89751 -11.96944

 8673.476 93.13462 -0.7628937

 8673.476 93.13149 -0.003128052

 8673.476 93.13149 0.0000000

 The square root is 93.13149

 A Basic Introduction to Programming in Fortran 32

Example 7.3

e
x
 is computed using the series expansion:

e
x
 = 1 + x + x

2
/2! + x

3
/3! + x

4
/4! + ... + x

i
/i! + ...

It requires some thought to correctly initialise the variables and compute correctly following

terms. This is a good example where a program trace can help in debugging.

PROGRAM ExpX

!---

! Program to compute e^x by the series expansion:

! e^x = 1 + x + x^2/2! + x^3/3! + x^4/4! + ... + x^i/i! + ...

! As we soon run out of range when computing i! (i=13 gives

! integer overflow) an alternative method is used to allow us

! to include more terms; we see that:

! the (i+1)th term = the (i)th term * x/i

! New terms are computed and added to the series until a term

! is less than 0.000001.

!---

 IMPLICIT NONE

 INTEGER :: I

 REAL :: X, E, Term

 PRINT *, "Input a number."

 READ *, X

 Term = 1. ! the zeroth term

 E = Term

 I = 0

 PRINT *, I, Term, E ! TRACE

 DO

 I = I + 1 ! the next term

 Term = Term * X/REAL(I)

 E = E + Term

 PRINT *, I, Term, E ! TRACE

 IF (Term < 0.000001) EXIT

 END DO

 PRINT *, "exp(", X, ") = ", E

END PROGRAM ExpX

Example execution:

 Input a number.

 3

 0 1.000000 1.000000

 1 3.000000 4.000000

 2 4.500000 8.500000

 3 4.500000 13.00000

 4 3.375000 16.37500

 5 2.025000 18.40000

 6 1.012500 19.41250

 7 0.4339286 19.84643

 8 0.1627232 20.00915

 9 0.05424107 20.06339

 10 0.01627232 20.07967

 11 0.004437906 20.08410

 12 0.001109476 20.08521

 13 0.0002560330 20.08547

 14 0.00005486422 20.08553

 15 0.00001097284 20.08554

 16 0.000002057408 20.08554

 17 3.630721E-7 20.08554

 exp(3.000000) = 20.08554

 A Basic Introduction to Programming in Fortran 33

Example 7.4

The greatest common divisor of two integers is computed using Euclid's method. A program

trace shows Euclid's algorithm in action. Again, if the program does no work correctly the

program trace is a useful tool for debugging.

PROGRAM GCD

!--

! Program to compute the greatest common divisor

! of two integers using the Euclid method:

!

! Given a >= b

!

! 1. Compute the remainder c of the division a/b

! 2. If c is zero then b is the gcd

! 3. If c is not zero then

! - replace a with b

! - replace b with c

! - go back to step 1.

!--

 IMPLICIT NONE

 INTEGER :: A, B, C

 PRINT *, "Input two integers."

 READ *, A, B

 DO

 C = MOD(A,B) ! the remainder of A/B

 PRINT *, A, B, C ! TRACE

 IF (C==0) EXIT ! gcd is B

 A = B

 B = C

 END DO

 PRINT *, "The gcd is ", B

END PROGRAM GCD

Example program executions:

 Input two integers.

21 12

 21 12 9

 12 9 3

 9 3 0

 The gcd is 3

 Input two integers.

364 723

 364 723 364

 723 364 359

 364 359 5

 359 5 4

 5 4 1

 4 1 0

 The gcd is 1

If a program does not work as you intend it to, it is often useful to use a trace to help you find

the error.

 A Basic Introduction to Programming in Fortran 34

8. Formatted I/O
and File Processing

8.1 Introduction

In this section you will learn how to use the formatted PRINT, WRITE and READ statements and

study input from and output to files.

8.2 Formatted Output

We have already seen formatted output statements, for example

DO Deg = 0, 90, 5

 Rad = REAL(Deg)*Pi/180. ! convert to radians

 PRINT '(1X,I2,2(1X,F8.6))', Deg, SIN(Rad), COS(Rad)

END DO

Here, 1X gives a blank space, I2 indicates that the value is a 2-digit type integer, and F8.6

indicates that the value is an 8-digit type real with 6 decimal places (the decimal point is

counted as one digit). The output (first 3 lines only) of this program is:

 0 0.000000 1.000000

 5 0.087156 0.996195

 10 0.173648 0.984808

 .

The free-format version is less tidy and less easy to read (and compiler dependent):

 PRINT *, Deg, SIN(Rad), COS(Rad)

 0 0.000000E+00 1.000000

 5 8.715575E-02 0.9961947

 10 0.1736482 0.9848077

 .

The list of format descriptors in Fortran is:

 Iw Bw Ow Zw Fw.d Ew.d ESw.d ENw.d Gw.a A

 "x.. x" Lw Tc nX /

Specifications of the width and number of decimal places can be omitted, for example:

F:decimal notation, ES:scientific notation, EN:engineering notation (powers of 10
3
) .

 REAL :: A = 12345.67

 PRINT ('(F)'), A => 12345.6699219

 PRINT ('(ES)'), A => 1.2345670E+04

 PRINT ('(EN)'), A => 12.3456699E+03

8.3 Input/Output with Files

It is often useful to input data from a file and output data to a file. This is a achieved in

Fortran by using the OPEN statement to open a file for read/write, the READ() statement to

read data from a file, and the WRITE() statement to write data to a file.

 A Basic Introduction to Programming in Fortran 35

The OPEN statement

The OPEN statement has many specifiers giving, for example, the file name, its unit number,

the intended action (read or write), and so on. We look at only a basic form of the statement:

OPEN(UNIT=unit-number, FILE="filename", ACTION="READ or WRITE")

.

. I/O statements

.

CLOSE(unit-number)

The READ and WRITE statements

The READ statement is used to read data from a file, the WRITE statement is used to write data

to a file, they have the following basic forms:

.

READ(UNIT=unit-number, FMT="formatted-specifier") variable-list

.

WRITE(UNIT=unit-number, FMT="formatted-specifier") data-list

.

Example 8.1

The following program reads a list of values from a file values.dat; the I/O program

statements are shown in bold.

PROGRAM Mean_Value

 IMPLICIT NONE

 INTEGER, PARAMETER :: N=8

 INTEGER :: I

 REAL :: Value, Total=0.

 OPEN(UNIT=1, FILE="values.dat", ACTION="READ")

 DO I = 1, N

 READ(UNIT=1, FMT=*) Value

 Total = Total + Value

 END DO

 CLOSE(1)

 PRINT *, "The mean is ", Total/REAL(N)

END PROGRAM Mean_Value

values.dat

12.3

45.2

19.4

74.3

56.3

61.9

65.2

94.4

The program output is:

The mean is 53.62500

Here, the data file values.dat is opened and given the unit number 1, this unit number is

referenced instead of the name of the file in the READ and WRITE statements. Values are read

from unit 1 in free format (FMT=*) and stored, one line at a time, in variable Value. Finally the

file is closed. Note the optional ACTION="READ" specifier; this permits only reading from (and

not writing to) the file.

 A Basic Introduction to Programming in Fortran 36

Example 8.2

A data file scores.dat contains student names and three exam scores. The data is stored in

the file in four columns with the format:

 abcdefghiIIIJJJKKK

where abcdefgh represents a 9 character name, III, JJJ, and KKK are three 3-digit integers

representing percentage scores. The content of this file is:

Semra 94 95 89

Mustafa 66 71 75

Ceyhun 42 37 52

Aslı 14 28 35

Leyla 78 69 81

In Fortran this format is represented by '(A9,3I3)'. The following program reads the

student scores with the above format. Assuming that the number of records in the file is

unknown, the optional END=label clause is used to exit the read loop when then end of the

file is reached.

PROGRAM Student_Scores

 IMPLICIT NONE

 CHARACTER(LEN=9) :: Name

 INTEGER :: MT1, MT2, MT3

 REAL :: Total

 OPEN(UNIT=2, FILE="scores.dat", ACTION="READ")

 DO

 READ(UNIT=2, FMT='(A9,3I3)', END=10)&

 Name, MT1, MT2, MT3

 Total = 0.3*MT1 + 0.3*MT2 + 0.4*MT3

 PRINT '(A9,3(1X,I3)," =>",F5.1,"%")',&

 Name, MT1, MT2, MT3, Total

 END DO

 10 CONTINUE

 CLOSE(2)

END PROGRAM Student_Scores

The program output is:

Semra 94 95 89 => 92.3%

Mustafa 66 71 75 => 71.1%

Ceyhun 42 37 52 => 44.5%

Aslı 14 28 35 => 26.6%

Leyla 78 69 81 => 76.5%

The free format specification FMT=* maybe used for input from files if each data is separated

by one or more spaces. However, a record such as

 A. Yilmaz 87 98100

will appear to a free formatted input as two character fields and two integer fields, whereas

the format '(A9,3I3)' will correctly read the data as

 A Basic Introduction to Programming in Fortran 37

Name="A. Yilmaz", MT1=87, MT2=98, MT3=100.

The output of this program can be sent to a file instead of the screen by opening a second file

and using the WRITE statement. The modifications to the above program are indicated in bold

in the prorgam below:

PROGRAM Student_Scores

 IMPLICIT NONE

 CHARACTER(LEN=9) :: Name

 INTEGER :: MT1, MT2, MT3

 REAL :: Total

 OPEN(UNIT=2, FILE="scores.dat", ACTION="READ")

 OPEN(UNIT=3, FILE="scores.out", ACTION="WRITE")

 DO

 READ(UNIT=2, FMT='(A9,3I3)', END=10)&

 Name, MT1, MT2, MT3

 Total = 0.3*MT1 + 0.3*MT2 + 0.4*MT3

 WRITE(UNIT=3, FMT='(A9,3(1X,I3)," =>",F5.1,"%")') &

 Name, MT1, MT2, MT3, Total

 END DO

 10 CONTINUE

 CLOSE(2)

 CLOSE(3)

END PROGRAM Student_Scores

Notes:

 The first file has the ACTION="READ" attribute and the second has the

ACTION="WRITE" attribute; it is therefore not possible to accidentally read from or

write to the wrong file.

 The second file is given a different unit number, 3. Unit numbers 5 and 6 are reserved

for the keyboard and screen respectively so be careful using these numbers.

8.4 Non-advancing Output

A useful specifier in the WRITE statement is the ADVANCE='NO' specifier:

WRITE (*, FMT='(A)', ADVANCE='NO') "Input a number: "

READ *, A

the read prompt is positioned at the end of the text instead of on the next line, for example:

 Input a number: 23

 A Basic Introduction to Programming in Fortran 38

9. Subprograms:
Programmer-Defined Functions

9.1 Introduction

We have seen intrinsic functions such as the SIN, ABS and SQRT functions (there are also

some intrinsic subroutines). Additional functions and subroutines can be defined by the

programmer, these are called programmer defined subprograms. In this section we will look

at how to write programmer defined functions, and in the following section we will look at

how to write programmer defined subroutines. For simplicity we will only consider internal

subprograms. You can read about external subprograms and modules elsewhere; if you are

writing a large program then I advise that you make use of modules.

9.2 The Concept of a Function

A function accepts some inputs and outputs a result depending on the inputs. Every function

has a name and independent values of inputs. The inputs are called parameters or arguments.

Figure 9.1 show a box notation of a function.

Figure 9.1: Box notation of a function

A function may have one or more inputs but has to have only one output called return value.

Figure 9.2 shows the examples of one- and two-input functions:

Figure 9.2: The box notations of a one-input x function and a two-input yxyxf),(

 function

 A Basic Introduction to Programming in Fortran 39

9.3 Programmer-defined Functions

Fortran allows user to write this type of functions. The general form of a function must be:

data type FUNCTION name(list of arguments)

 ...

 name = an expression

 ...

END FUNCTION name

where

 data type is the type of the function (or type of the return value) such as REAL

 Function name is given by name

 list of arguments (or local variables) are inputs to the function

For example a function that returns sum of two integers can be defined as follows:

Function declaration_________________ Identity card of the function_____________
INTEGER FUNCTION Add(A,B)

INTEGER, INTENT(IN) :: A,B

Add = A+B

END FUNCTION Add

Type INTEGER

Name Add

Input parameters A,B

Return value A+B

9.4 Internal and External Functions

Fortran 90/95 provides two basic type of function:

Internal Functions

They are placed after the main program section between a CONTAINS statement and the END

PROGRAM statement.

 +----------------------------+

 | PROGRAM Main |

 | |

 | IMPLICIT NONE |

 | REAL :: X |

 | INTEGER :: Y |

 | . |

 | X = Fun1(Z) |

 | Y = Fun2(Z) |

 | . |

 | |

 | CONTAINS |

 | |

 | REAL FUNCTION Fun1(A) |

 | . |

 | END FUNCTION Fun1 |

 | |

 | INTEGER FUNCTION Fun2(B) |

 | . |

 | END FUNCTION Fun2 |

 | |

 | END PROGRAM Main |

 +----------------------------+

Notes:

Fun1 and Fun2 are internal functions.

They are used in the same way as for intrinsic

functions.

The IMPLICIT NONE statement applies to both the

main section and the internal functions.

Data declared in the main program section is also

visible in the functions (it is global).

Data declared in a function is only visible in that

function, it is local to the function and so is not seen

by the rest of the program unit.

Arguments can be given the INTENT(IN) attribute to

protect the variable from being changed accidentally

by the function.

 A Basic Introduction to Programming in Fortran 40

External Functions

They are placed after the main program section (i.e. after the END PROGRAM statement)

 +----------------------------+

 | PROGRAM Main |

 | |

 | IMPLICIT NONE |

 | REAL :: X, Fun1 |

 | INTEGER :: Y, Fun2 |

 | . |

 | X = Fun1(Z) |

 | Y = Fun2(Z) |

 | . |

 | |

 | END PROGRAM Main |

 | |

 | |

 | REAL FUNCTION Fun1(A) |

 | . |

 | END FUNCTION Fun1 |

 | |

 | INTEGER FUNCTION Fun2(B) |

 | . |

 | END FUNCTION Fun2 |

 +----------------------------+

Notes:

Fun1 and Fun2 are external functions.

They are used in the same way as for intrinsic

functions. You have to declare functions in main

program.

The IMPLICIT NONE statement does not apply to

both the main section and the external functions.

Data declared in the main program section is not

visible in the functions.

Data declared in a function is only visible in that

function, it is local to the function and so is not seen

by the rest of the program unit.

Arguments can be given the INTENT(IN) attribute to

protect the variable from being changed accidentally

by the function.

As an example the function Add defined at the begining of this section can be used as follows:

Usage of an internal function____________ Usage of an external function_____________

PROGRAM Summation

IMPLICIT NONE

INTEGER :: I,J,K

 PRINT *,"Input two integers:"

 READ *,I,J

 K = Add(I,J)

 PRINT *,"The sum is ",K

CONTAINS

 INTEGER FUNCTION Add(A,B)

 INTEGER, INTENT(IN) :: A,B

 Add = A+B

 END FUNCTION Add

END PROGRAM Summation

PROGRAM Summation

IMPLICIT NONE

INTEGER :: I,J,K,Add

 PRINT *,"Input two integers:"

 READ *,I,J

 K = Add(I,J)

 PRINT *,"The sum is ",K

END PROGRAM Summation

INTEGER FUNCTION Add(A,B)

INTEGER, INTENT(IN) :: A,B

 Add = A+B

END FUNCTION Add

The output of both program section is:

 Input two integers:

14

22

 The sum is 36

Note that, we will consider only internal functions in the course.

 A Basic Introduction to Programming in Fortran 41

9.5 Examples of Internal Functions:

Function references and definitions are indicated in bold face.

Example 9.1 Function to convert degrees to radians.

In this exmple we will consider the conversion of angles among degrees and radians.

The formula for conversion is defined by:

RD

180

where D is the angle measured in degrees and R is in radians and the number 141592.3

PROGRAM Degrees2Radians

 IMPLICIT NONE

 REAL :: Degrees ! input

 REAL :: Radians ! output

 PRINT *, "Input the angle in degrees"

 READ *, Degrees

 Radians = Rad(Degrees)

 PRINT *, Degrees, " degrees = ", Radians, "Radians."

CONTAINS

 REAL FUNCTION Rad(A)

 REAL, INTENT(IN) :: A

 REAL, PARAMETER :: Pi = 3.141593

 Rad = A * Pi/180.

 END FUNCTION Rad

END PROGRAM Degrees2Radians

Example execution:

 Input the angle in degrees

90

 90.00000 degrees = 1.570796 Radians.

Notes:

 The function is declared as type real i.e. it returns a type real value.

 As for intrinsic functions, an internal function can take for its arguments: variables,

constants, or expressions.

 The IMPLICIT NONE statement applies to the whole program unit (the main section

and to the function sections); therefore, the argument variable A must be declared

somewhere in the program unit. It this case it is declared inside the function (and so is

local to the function) and is given the INTENT(IN) attribute, this is a safer policy.

 A Basic Introduction to Programming in Fortran 42

Example 9.2 Functions to convert Celsius to Fahrenheit, and Fahrenheit to Celsius.

The formula for converting temperature measured in Fahrenheit to Celcius is:

)32(
9

5
FC

where F is the Fahrenheit temperature and C is the Celcius temperature. Suppose we wish

to define and use a function that performs this conversion.

PROGRAM Temp_Conv

 IMPLICIT NONE

 PRINT *, Fahrenheit(50.)

 PRINT *, Celsius(400.)

CONTAINS

 REAL FUNCTION Fahrenheit(X)

 REAL, INTENT(IN) :: X

 Fahrenheit = X*1.8 + 32.

 END FUNCTION Fahrenheit

 REAL FUNCTION Celsius(X)

 REAL, INTENT(IN) :: X

 Celsius = (X-32.)/1.8

 END FUNCTION Celsius

END PROGRAM Temp_Conv

Note that we may include more than one programmer-defined function. The output is:

 122.0000

 204.4445

Example 9.3 A Gaussian function.

PROGRAM Gaussian

IMPLICIT NONE

REAL :: X, M, S

 PRINT *, "Input the position X, mean M, and sigma S"

 READ *, X, M, S

 PRINT *, Gauss(X, M, S)

CONTAINS

 REAL FUNCTION Gauss(Position, Mean, Sigma)

 REAL, INTENT(IN) :: Position, Mean, Sigma

 REAL, PARAMETER :: TwoPi = 6.283185

 Gauss = EXP(-0.5*((Position-Mean)/Sigma)**2) / &

 (Sigma*SQRT(TwoPi))

 END FUNCTION Gauss

END PROGRAM Gaussian

 A Basic Introduction to Programming in Fortran 43

Example execution:

 Input the position X, mean M, and sigma S

1.8 1.0 0.6

 0.2733502

Notes:

 The number and order of the actual arguments must be the same as that of the formal

arguments, in this case there are three arguments representing the position, mean, and

standard deviation (in that order).

 Be careful not misspell variable names inside a function, if the variable exists in the

main program section then it will be valid and used without a run-time error!

Similarly, all variables you use in the function should be declared in the function, in

this way you will not modify a global variable by mistake.

Example 9.4 A factorial function

PROGRAM N_Factorial

 IMPLICIT NONE

 INTEGER :: I

 DO I =-2,14

 PRINT *, I, Factorial(I)

 END DO

CONTAINS

 INTEGER FUNCTION Factorial(N)

 INTEGER, INTENT(IN) :: N

 INTEGER :: I

 IF (N < 0 .OR. N > 12) THEN

 Factorial = 0

 ELSE

 Factorial = 1

 DO I = 2, N

 Factorial = Factorial*I

 END DO

 END IF

 END FUNCTION Factorial

END PROGRAM N_Factorial

The output is: -2 0

 -1 0

 0 1

 1 1

 2 2

 3 6

 4 24

 5 120

 6 720

 7 5040

 8 40320

 9 362880

 10 3628800

 11 39916800

 12 479001600

 13 0

 14 0

 A Basic Introduction to Programming in Fortran 44

Notes:

 Factorial is an integer function, i.e. it returns an integer value.

 The argument of the function is also integer.

 Identifier I is used both in the main program section and in the function. It therefore

must be declared also in the function (thus making it local to the function) otherwise

the two data will conflict.

 If the argument N is negative or too large then the function does not return an

incorrect result, instead it indicates that there is a problem by returning a zero value.

This condition can be checked for by the programmer.

9.6 Good Programming Practice:

 Declare all function variables; this makes them local so that they do not affect

variables of the same name in the main program section.

 Give all function arguments the INTENT(IN) attribute. If, by mistake, you try to

modify the argument value inside the function then an error will occur at compilation

time.

 Be careful not to misspell variable names inside a function, if the variable exists in

the main program section then it will be valid and used without a run-time error!

(modules are safer in this respect).

 A Basic Introduction to Programming in Fortran 45

10. Subprograms:
Programmer-defined Subroutines

10.1 Introduction

As well as programmer defined functions, a Fortran program can also contain programmer

defined subroutines. Unlike functions, subroutines do not return a value. Instead, a subroutine

contains a separate program section that can be called at any point in a program via the CALL

statement. This is useful if the program section that the subroutine contains is to be executed

more than once. It also helps the programmer to organise the program in a modular form.

In this guide we will only consider internal subroutines. You can read about external

subroutines and modules elsewhere; if you are writing a large program then I advise that you

make use of modules.

10.2 The Concept of a Subroutine

A subroutine accepts no input or one or more inputs and may output no or one or more many

outputs. This is assumed to be many purpose function. Figure 10.1 show a box notation of a

subroutine:

Figure 10.1: Box notation of a subroutine

The advantage of using a subroutine is, it may have more than one return value. This is not

the case in a function. Figure 10.2 shows the examples of subroutines:

Figure 10.2: The box notations of one-input and two-output subroutine S, and

 two-input and two-output subroutine Rect.

9.3 Programmer-defined Subroutine

 A Basic Introduction to Programming in Fortran 46

The general form of a subrotine type subprogram is:

SUBROUTINE name(list of arguments)

 .

 .

 .

END SUBROUTINE name

where

 Subroutine name is given by name

 list of arguments (or local variables) are inputs to the subroutine

For example, a subroutine that returns area and circumference of a rectangle with sides a and

b can defined as follows:

Subroutine declaration_________________ Identity card of the function_____________
SUBROUTINE Rect(A,B,Area,Circ)

REAL, INTENT(IN) :: A,B

REAL, INTENT(OUT) :: Area,Circ

 Area = A*B

 Circ = A+B

END SUBROUTINE Rect

Type -

Name Rect

Input parameters A,B

Output parameters Area, Circ

10.4 Internal and External Subroutines

Internal Subroutine
As for internal functions, internal subroutines are placed after the main program section

between a CONTAINS statement and the END PROGRAM statement.

 +----------------------------+

 | PROGRAM Main |

 | |

 | IMPLICIT NONE |

 | . |

 | CALL Sub1(X,Y) |

 | CALL Sub2(X,Z) |

 | . |

 | |

 | CONTAINS |

 | |

 | SUBROUTINE Sub1(A,B) |

 | . |

 | END SUBROUTINE Sub1 |

 | |

 | SUBROUTINE Sub2(A,B) |

 | . |

 | END SUBROUTINE Sub2 |

 | |

 | END PROGRAM Main |

 +----------------------------+

Notes:

Sub1 and Sub2 are external functions.

They are used in the same way as for intrinsic

functions.

The IMPLICIT NONE statement applies to both the

main section and the internal subroutines.

Data declared in the main program section is visible

in the subroutines.

Arguments can be given INTENT(IN/OUT/INOUT)

attributes attributes to make the programmers intent

clear.

 A Basic Introduction to Programming in Fortran 47

External Subroutine

They are placed after the main program section (i.e. after the END PROGRAM statement)

 +----------------------------+

 | PROGRAM Main |

 | |

 | IMPLICIT NONE |

 | . |

 | CALL Sub1(X,Y) |

 | CALL Sub2(X,Z) |

 | . |

 | |

 | END PROGRAM Main |

 | |

 | |

 | SUBROUTINE Sub1(A,B) |

 | . |

 | END SUBROUTINE Sub1 |

 | |

 | SUBROUTINE Sub2(A,B) |

 | . |

 | END SUBROUTINE Sub2 |

 +----------------------------+

Notes:

Sub1 and Sub2 are external functions.

They are used in the same way as for intrinsic

functions.

The IMPLICIT NONE statement does not apply to

both the main section and the external subroutines.

Data declared in the main program section is not

visible in the functions.

Arguments can be given INTENT(IN/OUT/INOUT)

attributes attributes to make the programmers intent

clear.

As an example the subroutine Rect can be implemented as follows:

Usage of an internal subroutine__________ Usage of an external subroutine____________

PROGRAM Rectangle

IMPLICIT NONE

REAL :: X,Y,Alan,Cevre

 PRINT *,"Input the sides:"

 READ *,X,Y

 CALL Rect(X,Y,Alan,Cevre)

 PRINT *,"Area is ",Alan

 PRINT *,"Circum. is ",Cevre

CONTAINS

 SUBROUTINE Rect(A,B,Area,Circ)

 REAL, INTENT(IN) :: A,B

 REAL, INTENT(OUT) :: Area,Circ

 Area = A*B

 Circ = A+B

 END SUBROUTINE Rect

END PROGRAM Rectangle

PROGRAM Rectangle

IMPLICIT NONE

REAL :: X,Y,Alan,Cevre

 PRINT *,"Input the sides:"

 READ *,X,Y

 CALL Rect(X,Y,Alan,Cevre)

 PRINT *,"Area is ",Alan

 PRINT *,"Circum. is ",Cevre

END PROGRAM Rectangle

SUBROUTINE Rect(A,B,Area,Circ)

REAL, INTENT(IN) :: A,B

REAL, INTENT(OUT) :: Area,Circ

 Area = A*B

 Circ = A+B

END SUBROUTINE Rect

The output of both program is:

 Input the sides:

4.0 2.0

 Area is 8.000000

 Circum. is 6.000000

Note that, we will consider only internal functions in the course.

 A Basic Introduction to Programming in Fortran 48

Data can be passed to, and return from, the subroutine via arguments. As for function

arguments, arguments in subroutines can be given INTENT attributes; they include the

INTENT(IN), INTENT(OUT), and INTENT(INOUT) attributes, examples are given below:

10.3 Examples of Subroutines:
Subroutine references and definitions are indicated in bold face.

Example 10.1
The following program inputs the radius of a sphere and then employs an internal subroutine

to compute the sphere's surface area and volume, and output the results.

PROGRAM Sphere

!---

! Program to compute the volume and surface area of a

! sphere radius R. An internal subroutine is emloyed.

!---

 IMPLICIT NONE

 REAL :: Radius

 PRINT *, "Input the radius of the sphere."

 READ *, Radius

 CALL Results(Radius)

CONTAINS

 SUBROUTINE Results(R)

 REAL, INTENT(IN) :: R

 REAL, PARAMETER :: Pi=3.141593

 REAL :: Area, Volume

 Area = 4.*Pi*R**2

 Volume = 4./3.*Pi*R**3

 PRINT *, "Surface area is ", Area

 A Basic Introduction to Programming in Fortran 49

 PRINT *, "Volume is ", Volume

 END SUBROUTINE Results

END PROGRAM Sphere

Example execution:

 Input the radius of the sphere.

12.6

 Surface area is 1995.037

 Volume is 8379.157

Notes:

 It is not necessary to place an IMPLICIT NONE statement in an internal subroutine as

the statement in the main program section applies to the whole program unit.

 In this subroutine the argument has the INTENT(IN) attribute as it is only intended to

pass into the subroutine; this is illustrated below.

Example 10.2
In the following example, we will consider the calculation of the twist factor of a yarn. Twist

Factor, Tf, of a yarn is given by:

1000

m
NT f

where N (turn/m) is the number of twist of a yarn per unit length and m is measured in tex (a

yarn count standard) that is mass in grams of a yarn whose length is 1 km. The program first

needs a value of m. Then, the value of of Tf is calculated for different value of N which takes

values from 100 to 1000 with step 100.

PROGRAM Main

IMPLICIT NONE

REAL :: Tf,m

INTEGER :: N

 PRINT *,"Input the value of m (tex)"

 READ *,m

 DO N=100,1000,100

 CALL TwistFactor(N,m,Tf)

 PRINT *,N,Tf

 END DO

 A Basic Introduction to Programming in Fortran 50

END PROGRAM Main

SUBROUTINE TwistFactor(N,M,Tf)

INTEGER, INTENT(IN) :: N

REAL,INTENT(IN) :: M

REAL, INTENT(OUT) :: Tf

 Tf = N*SQRT(m/1000.0)

END SUBROUTINE TwistFactor

Example execution:
Input the value of m (tex)

50.0

 100 22.36068

 200 44.72136

 300 67.08204

 400 89.44272

 500 111.8034

 600 134.1641

 700 156.5247

 800 178.8854

 900 201.2461

 1000 223.6068

Notes:

 The subroutine is declarated as an external subroutine

 The name of parameters can be same as in a subroutine

Example 10.3
In the following program the length of a side of a cube is passed to a subroutine which

passes back the cube's volume and surface area.

PROGRAM Cube_Calc

 IMPLICIT NONE

 REAL :: Length, Volume, Area

 PRINT *, "Input the length of the side of the cube."

 READ *, Length

 CALL Cube(Length, Volume, Area)

 PRINT *, "The volume of the cube is ", Volume

 PRINT *, "The surface area of the cube is ", Area

CONTAINS

 SUBROUTINE Cube(L, V, A)

 REAL, INTENT(IN) :: L

 REAL, INTENT(OUT) :: V, A

 V = L**3

 A = 6 * L**2

 END SUBROUTINE Cube

END PROGRAM Cube_Calc

 A Basic Introduction to Programming in Fortran 51

Example execution:

 Input the length of the side of the cube.

12.

 The volume of the cube is 1728.000

 The surface area of the cube is 864.0000

Note:

There are three arguments in the subroutine. The first argument L has the INTENT(IN)

attribute as it passes data into the subroutine. The second and third arguments V and A have

the INTENT(OUT) attributes as they are only intended to pass data out of the subroutine. This

is illustrated below:

Note that the number of and order of the

arguments should be the same in the call (the

actual arguments) and in the subroutine (the

formal arguments).

Example 10.4

The following program illustrates the use of an argument with an INTENT(INOUT) attribute.

PROGRAM Money_Owed

 IMPLICIT NONE

 REAL :: Owed = 1000., Payment

 DO

 PRINT *, "Input the payment"

 READ *, Payment

 CALL Payback(Owed, Payment) ! Subtract from the money owed.

 IF (Owed == 0.) EXIT ! Repeat until no more money is owed.

 END DO

CONTAINS

 SUBROUTINE Payback(Owed ,Payment)

 REAL, INTENT(INOUT) :: Owed

 REAL, INTENT(IN) :: Payment

 REAL :: Overpaid = 0.

 Owed = Owed - Payment

 IF (Owed < 0.) THEN

 Overpaid = - Owed

 Owed = 0.

 END IF

 PRINT *, "Payment made ", Payment, ", amount owed is now ", Owed

 IF (Overpaid /= 0.) PRINT *, "You over paid by ", Overpaid

 END SUBROUTINE Payback

END PROGRAM Money_Owed

 A Basic Introduction to Programming in Fortran 52

Example execution:

 Input the payment

350

 Payment made 350.0000 , amount owed is now 650.0000

 Input the payment

350

 Payment made 350.0000 , amount owed is now 300.0000

 Input the payment

350

 Payment made 350.0000 , amount owed is now 0.000000

 You over paid by 50.00000

Notes:

Argument Owed has the INTENT(INOUT)

attribute; it passes a value into the subroutine

which then passes it back via the same

argument after modifying it. Argument

Payment only passes data into the subroutine

and so has the INTENT(IN) attribute. This is

illustrated rigth.

10.4 Good Programming Practice:

 Declare all arguments used in the subroutine; this makes them local so that they do

not affect variables of the same name in the main program section.

 Give all arguments the appropriate INTENT(IN), INTENT(OUT) or INTENT(INOUT),

attribute.

 Be careful not misspell variable names inside a subroutine, if the variable exists in the

main program section then it will be valid and used without a run-time error!

(modules are safer in this respect).

 A Basic Introduction to Programming in Fortran 53

11. Arrays and
Array Processing

11.1 Introduction

In this section we will look more at arrays with emphasis placed on array processing, array

functions, and using arrays in programmer-defined functions and subroutines.

11.2 Arrays

An array is a group of variables or constants, all of the same type, which is referred to by a

single name. For example, if the following scalar variable can represent the mass of an

object:

 REAL :: Mass

then the masses of a set of 5 objects can be represented by the array variable

 REAL :: Mass(5)

The 5 elements of the array can be assigned as follows:

 Mass(1) = 8.471

 Mass(2) = 3.683

 Mass(3) = 9.107

 Mass(4) = 4.739

 Mass(5) = 3.918

or more concisely using an array constant:

 Mass = (/ 8.471, 3.683, 9.107, 4.739, 3.918 /)

We can operate on individual elements, for example

 Weight(3) = Mass(3) * 9.81

or we can operate on a whole array in a single statement:

 Weight = Mass * 9.81

Here both Weight and Mass are arrays with 5 elements; the two arrays must conform (have

the same size).

The above whole array assignment is equivalent to:

 DO I = 1, 5

 Weight(I) = Mass(I) * 9.81

 END DO

Whole array assignment can used for initialising all elements of an array with the same

values:
 A = 0.

 B = 100

A and B are arrays.

 A Basic Introduction to Programming in Fortran 54

11.3 The WHERE Statement and Construct

We can make the whole array assignment conditional with the WHERE statement. For example

we have an array V of values that we want to take the square-root of, but only for positive

values:

 WHERE (V >= 0.) V = SQRT(V)

This is equivalent to

 DO I = 1, N

 IF (V(I) >= 0.) V(I) = SQRT(V(I))

 END DO

where N is the size of the array. Or, we have an array V of values that we want to take the

reciprocal of, but only for non-zero values:

 WHERE (V /= 0.) V = 1./V

This is equivalent to

 DO I = 1, N

 IF (V(I) /= 0.) V(I) = 1./V(I)

 END DO

where N is the size of the array.

The WHERE construct allows for a block of statements and the inclusion of an ELSEWHERE

statement:

 WHERE (V >= 0.)

 V = SQRT(V)

 ELSEWHERE

 V = -1.

 ENDWHERE

11.4 Array Sections

We can write the whole array assignment

 Weight = Mass * 9.81

in the form of an array section:

 Weight(1:N) = Mass(1:N) * 9.81

where N is the size of the array.

Here the section 1:N represents the elements 1 to N. A part of an array (an array section) can

be written, for example, as:

 Weight(2:5) = Mass(2:5) * 9.81

 A Basic Introduction to Programming in Fortran 55

which is equivalent to

 DO I = 2, 5

 Weight(I) = Mass(I) * 9.81

 END DO

Array sections are also useful for initialising arrays, for example:

 A(1:4) = 0.

 A(5:10) = 1.

is equivalent to the array constant assignment:

 A = (/ 0., 0., 0., 0., 1., 1., 1., 1., 1., 1. /)

A third index indicates increments:

 A(2:10:2) = 5.

is equivalent to

 DO I = 2, 10, 2

 A(I) = 5.

 END DO

More examples of array sections are shown below. The 10 elements of array A are represented

by a series of boxes. The elements referenced by the array section are shaded.

11.5 Array Indices

In the following array declaration

 REAL :: A(9)

the index for the elements of the array go from 1 to 9. The index does not have to begin at 1, it

can be zero or even negative; this is achieved with the ":" symbol:

 REAL :: A(0:8), B(-4:4), C(-8:0)

All the above arrays have 9 elements. The index of A runs from 0 to 8, the index of B runs

from -4 to 4 (including zero), and the index of C runs from -8 to 0.

 A Basic Introduction to Programming in Fortran 56

11.6 Assignment using Implied Loops

An array can be assigned using an implied loop, For example

 A = (/ (I*0.1, I=1,9) /)

assigns to array A the values:

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

The implied loop (in bold) appears in an array constant.

11.7 Multi-dimensional Arrays

In the array declaration

 REAL :: A(9)

array A has one dimension (one index); such an array is called a vector. An array can have

more than one dimension, for example the declaration of a two-dimensional array B may be as

follows:

 REAL :: B(9,4)

A two-dimensional array has two indices and is called a matrix. The above vector and matrix

are visualised below, vector A has 9 elements, matrix B has 36 elements arranged in 9 rows

and 4 columns:

An array can have many dimensions, though it is not common to go above three-dimensions.

11.8 Array Input/Output

We will now look at input and output of arrays. Only one-dimensional arrays will be

considered; for two-dimensional arrays the principle is the same except that you need to think

about whether the I/O should be row-wise or column-wise.

Consider an array A declared as:

 REAL :: A(9)

The array can be input and output as a whole array:

 A Basic Introduction to Programming in Fortran 57

 READ *, A

 PRINT *, A

which is equivalent to the implied loops:

 READ *, (A(I), I = 1, 9)

 PRINT *, (A(I), I = 1, 9)

or individual elements can be referenced:

 READ *, A(4)

 PRINT *, A(4)

There are various methods for output of arrays; consider the array:

 REAL :: A(9) = (/ (I*0.1, I = 1, 9) /)

Array A takes the values 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9 . The free format

output of the whole array

 PRINT *, A

which is equivalent to the implied loop:

 PRINT *, (A(I), I = 1, 9)

will appear something like:

 0.1000000 0.2000000 0.3000000 0.4000000 0.5000000

 0.6000000 0.7000000 0.8000000 0.9000000

A formatted output, for example,

 PRINT '(9(F3.1,1X))', A

gives:

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

If the multiplier is omitted then the output will be given line by line; i.e.

 PRINT '(F3.1,1X)', A

gives:
 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 A Basic Introduction to Programming in Fortran 58

This is equivalent to the DO loop:

 DO I = 1, 9

 PRINT '(F3.1,1X)', A(I)

 END DO

Array sections can also be referenced, for example:

 PRINT '(9(F3.1,1X))', A(3:8)

gives:
 0.3 0.4 0.5 0.6 0.7 0.8

Note that the multiplier in the format specifier can be 6 or greater.

11.9 Intrinsic Functions for Arrays

Most intrinsic functions that we use for scalars, for example SIN, INT, and ABS, are

elemental; i.e. they can also apply to arrays. For example:

 REAL :: A= (/ 0.2, 0.3, 0.4, 0.5, 0.6 /)

 PRINT *, SIN(A)

gives
 0.1986693 0.2955202 0.3894183 0.4794255 0.5646425

There are, in addition to the elemental functions, intrinsic functions whose arguments are

specifically arrays. Some them are listed below (see elsewhere for a more complete list).

Function Description
MAXVAL(A) Gives the maximum value of array A
MINVAL(A) Gives the minimum value of array A
MAXLOC(A) Index location of maximum value of A
MINLOC(A) Index location of minimum value of A
PRODUCT(A) Gives product of the values in array A
SIZE(A) Gives the number of values of array A
SUM(A) Gives the sum of the values in array A
MATMUL(A,B) Gives the cross product of arrays A and B
TRANSPOSE(A) Gives the transpose of array A

11.10 Arrays as Arguments in Subprograms

When an array is passed as an argument to a subprogram the subprogram creates the array

locally and then destroys it when the execution of the subprogram is complete. Such arrays

are called semi-dynamic arrays. The declaration of semi-dynamic arrays can be of three types:

explicit-shaped, assumed-shaped, and automatic arrays. We will only consider subprograms

with assumed-shaped arrays; you can read about the other forms of semi-dynamic arrays

elsewhere. Also read about Dynamic (allocatable) arrays; these are given in Section 11.11.

 A Basic Introduction to Programming in Fortran 59

Example 11.1
The following program employs a function to return the range (difference between the

minimum and maximum values) of an array.

PROGRAM Range_of_Data

!---

! This program employs a function to return

! the range (difference between the minimum

! and maximum values) of an array.

!---

 IMPLICIT NONE

 REAL :: V(8) = (/ 16.8, 12.3, -6.2, 8.4, &

 31.6, 14.1, 17.3, 26.9 /)

 PRINT *, "The range is ", Range(V)

CONTAINS

 REAL FUNCTION Range(Values)

 REAL, INTENT(IN) :: Values(:)

 Range = MAXVAL(Values) - MINVAL(Values)

 END FUNCTION Range

END PROGRAM Range_of_Data

Output:

 The range is 37.80000

Notes:

 The function creates an array Values (the formal argument) with the declaration
REAL, INTENT(IN) :: Values(:)

 The colon ":" indicates that the size of the array should be the same as that of the

actual argument V (the shape of the array is assumed in this declaration).

 The range of values is computed using intrinsic functions MAXVAL and MINVAL.

 A Basic Introduction to Programming in Fortran 60

Example 11.2
The program below employs a subroutine to take the square root of each element of an array,

if an element value is negative then -1 is assigned.

PROGRAM Array_Square_Root

!--------------------------------------

! This program employs a subroutine to

! take the square root of each element

! of an array, if an element value is

! negative then -1 is assigned.

!--------------------------------------

 IMPLICIT NONE

 REAL :: V(8) = (/ 16.8, 12.3, -6.2, 8.4, &

 31.6, 14.1, 17.3, 26.9 /)

 PRINT *, "The values are ", V

 CALL SqrtN(V)

 PRINT *, "Their sqrt are ", V

CONTAINS

 SUBROUTINE SqrtN(Values)

 REAL, INTENT(INOUT) :: Values(:)

 WHERE (Values >= 0)

 Values = SQRT(Values)

 ELSEWHERE

 Values = -1.

 ENDWHERE

 END SUBROUTINE

END PROGRAM Array_Square_Root

Output (values are rounded to 3dp):

 The values are 16.800 12.300 -6.2000 8.4000 31.600 14.100 17.300 26.900

 Their sqrt are 4.099 3.507 -1.0000 2.8983 5.6214 3.755 4.159 5.187

Notes:

 Again, the formal argument Values is created as an assumed-shaped array.

 The array is given the INTENT(INOUT) attribute as it is passed into the subroutine and

then back out after it is modified.

 The subroutine employs the WHERE construct, see "The WHERE statement and

construct".

 A Basic Introduction to Programming in Fortran 61

Example 11.3

A list of exam scores is stored in a file called exam-scores.dat. The following program

reads the scores into an array and employs a function to calculate the mean score. It is

common for a few scores to be zero representing students that were absent from the exam,

these zero scores are not included in the calculation of the mean.

exam-scores.dat

 54

 67

 89

 34

 66

 73

 81

 0

 76

 24

 77

 94

 83

 0

 69

 81

PROGRAM Mean_No_Zeros

 IMPLICIT NONE

 INTEGER, PARAMETER :: Number_of_Values=16

 REAL :: Scores(Number_of_Values)

 OPEN(UNIT=3, FILE="exam-scores.dat",&

 ACTION="READ")

 READ (3, *) Scores

 CLOSE(3)

 PRINT *, "The mean is ", MeanNZ(Scores)

CONTAINS

 REAL FUNCTION MeanNZ(V)

 REAL, INTENT(IN) :: V(:)

 REAL :: Total

 INTEGER :: I, Count

 Total = 0.

 Count = 0

 DO I = 1, SIZE(V)

 IF (V(I) /= 0.) THEN

 Total = Total + V(I)

 Count = Count + 1

 END IF

 END DO

 MeanNZ = Total/REAL(Count)

 END FUNCTION MeanNZ

END PROGRAM Mean_No_Zeros

Output:
 The mean is 69.14286

Notes:

 The size of the array is declared with the named constant Number_of_Values = 16 , this

is not very convenient as we have to recompile the program every time the the number of

values in the data file changes. There are various solutions to this problem (including the

use of dynamic arrays) but for simplicity we will leave the program as it is.

 After opening the file, all 16 lines of data are input in the single statement

READ (3,*) Scores . For this whole array assignment the number of elements in the

array must equal the number of values in the file. If there are less than 16 entries in the

file then the program will exit with an error something like "I/O error: input file

ended", if there are more than 16 entries in the file then only the first 16 will be read.

 Again an assumed-shaped array is used in the function. However, in the DO loop we need

to know the size of the array, this is obtained with the SIZE function.

 The function MeanNZ could simply be replaced with the array processing funcitons SUM

and COUNT with the following expression:

 PRINT*,"The mean is ", SUM(Scores,MASK=Scores/=0.) / COUNT(Scores/=0.)

 A Basic Introduction to Programming in Fortran 62

Example 11.4
The above program can be rewritten using a subroutine instead of a function; the changes are

indicated in bold face.

PROGRAM Mean_No_Zeros

 IMPLICIT NONE

 INTEGER, PARAMETER :: Number_of_Values=16

 REAL :: Scores(Number_of_Values), Mean

 OPEN(UNIT=3, FILE="exam-scores.dat", ACTION="READ")

 READ (3, *) Scores

 CLOSE(3)

 CALL MeanNZ(Scores, Mean)

 PRINT *, "The mean is ", Mean

CONTAINS

 SUBROUTINE MeanNZ(V, M)

 REAL, INTENT(IN) :: V(:)

 REAL, INTENT(OUT) :: M

 REAL :: Total

 INTEGER :: I, Count

 Total = 0.

 Count = 0

 DO I = 1, SIZE(V)

 IF (V(I) /= 0.) THEN

 Total = Total + V(I)

 Count = Count + 1

 END IF

 END DO

 M = Total/REAL(Count)

 END SUBROUTINE MeanNZ

END PROGRAM Mean_No_Zeros

Notes:

 As for the function of Example 1, an assumed-shaped array is used to copy the array

from the main program section. The SIZE function is used for the DO loop.

 The mean value is returned via the argument M instead of via a function. M is given the

INTENT(OUT) attribute.

 A Basic Introduction to Programming in Fortran 63

11.11 Dynamic Arrays (Allocatable Arrays)

A declatation of a compile-time array of the form:

 INTEGER, PARAMETER :: N = 10

 REAL :: A(N)

Causes the compiler to allocate a block of memory large enough to hold 10 real values. But

Fortran does not allow us to write:

 INTEGER :: N ! declare a variable

 PRINT *,"How many element?" ! At run time, let the user

 READ *,N ! input the size of the array

 REAL :: A(N) ! and then try to allocate

 ! *** NOT ALLOWED ***

Fortran 90 does, however, provide allocatable or run-time or dynamic arrays for which

memory is allocated during executation (i.e. run-time allocation). If the required size of an

array is unknown at compile time then a dynamic array should be used.

A dynamic array is declerated using ALLOCATABLE attribute as follows:

 type, ALLOCATABLE :: array_name

for example:

 INTEGER, ALLOCATABLE :: A(:) ! for a vector

 REAL, ALLOCATABLE :: B(:,:) ! for a matrix

After declaring the dynamic array, the bounds can be assigned using ALLOCATE statement as

follows:

 ALLOCATE(array_name(lower_bound:upper_bound))

An example is:

 ALLOCATE(A(10)) ! 10 element vector

 ALLOCATE(B(4,4)) ! 4x4 matrix

If you wish to check the allocation status too:

 ALLOCATE(array_name(lower_bound:upper_bound),STAT=status_variable)

In this form, the integer variable status_variable will be set to zero if allocation is

successful, but will be assigned some value if there is insufficient memory.

 READ *,N ! read an integer N

 ALLOCATE(A(N),STAT=AllocStat) ! try to allocate N element vector

 IF(AllocStat /=0) THEN !--- check the memory ---

 PRINT *,"Not enough memory to allocate A"

 STOP

 END IF

 A Basic Introduction to Programming in Fortran 64

If the allocated array is no longer neded in the program, the associated memory can be freed

using DEALLOCATE statament as follows:

 DEALLOCATE(array_name)

for example:

 DEALLOCATE(A)

The following example will summarise usage of the dynamic arrays:

Example 11.5

Write program to input n integer numbers and outputs the median of the numbers. The median

is the number in the middle. In order to find the median, you have to put the values in order

from lowest to highest, then find the number that is exactly in the middle.

PROGRAM Dynamic_Array

!---

! This program calculates median of N numbers.

! The median is the number in the middde for the

! given set of data. For example:

!

! Median(3,4,4,5,6,8,8,8,10) = 6.0

! Median(5,5,7,9,11,12,15,18) = (9+11)/2.0 = 10.0

!---

IMPLICIT NONE

INTEGER, ALLOCATABLE :: A(:)

INTEGER :: N,As

REAL :: Median

 PRINT *,"Input N"

 READ *,N

 ALLOCATE(A(N),STAT=As)

 IF(As /=0) THEN

 PRINT *,"Not enough memory"

 STOP

 END IF

 PRINT *,"Input ", N , " integers in increasing order:"

 READ *,A

 IF(MOD(N,2)==1) THEN ! odd number of data

 Median = A((N+1)/2)

 ELSE ! even number of data

 Median = (A(N/2)+A(N/2+1))/2.0

 END IF

 PRINT *,"Median of the set is ",Median

 DEALLOCATE(A)

END PROGRAM Dynamic_Array

 A Basic Introduction to Programming in Fortran 65

Example Executations:

Input N

9

Input 9 integers in increasing order:

 Input N integers in increasing order:

3 4 4 5 6 8 8 8 10

 Median of the set is 6.000000

 Input N

8

Input 8 integers in increasing order:

5 5 7 9 11 12 15 18

 Median of the set is 10.00000

 Input N

6

Input 6 integers in increasing order:

 80 85 90 90 90 100

 Median of the set is 90.00000

Problem:

Write a Fortran program to find mean, mode and median of n integer numbers. Note that,

mode is the most frequent number in a set of data. For example:

Mode of the set: 2 2 5 9 9 9 10 10 11 12 18 is 9. (unimodal set of data)

Mode of the set: 2 3 4 4 4 5 7 7 7 9 is 4 and 7 (bimodal set of data)

Mode of the set: 1 2 3 8 9 10 12 14 18 is ? (data has no mode)

 A Basic Introduction to Programming in Fortran 66

12. Selected Topics
12.1 Numerical KINDs

The KIND type enables the user to request which intrinsic type is used based on precision

and/or range. This facilitates an improved numerical environment. Programmers porting their

programs to different machines must deal with differing digits of precision. Using KIND, the

programmer can specify the numeric precision required.

Variables are declared with the desired precision by using the KIND attribute:

 type(KIND = kind type value) :: variable list

For Example:

 INTEGER :: I ! default KIND=4

 INTEGER(KIND=4) :: J ! default

 INTEGER(KIND=1) :: K ! limited precision -127 <= K <= 127

 INTEGER(KIND=2) :: L ! limited precision 32767 <= L <= 32767

 INTEGER(KIND=4) :: M ! limited precision –1E-38 <= M <= 1E+38

 INTEGER(KIND=8) :: N ! limited precision –1E-308 <= N <= 1E+308

 INTEGER(2) :: I ! KIND= is optional

 INTEGER :: P=1_8 ! P=1 and is of kind type 8

 REAL :: A ! default KIND=4

 REAL(KIND=4) :: B ! limited precision –1.0E-38 <= B <= 1.0E+38

 REAL(KIND=8) :: C ! limited precision –1.0E-308 <= C <= 1.0E+308

Following program will print the largest numbers that can be strotred by each kind.

PROGRAM Numerical_Kinds

 INTEGER (KIND=1) :: K1

 INTEGER (KIND=2) :: K2

 INTEGER (KIND=4) :: K4

 INTEGER (KIND=8) :: K8

 REAL (KIND=4) :: R4

 REAL (KIND=8) :: R8

 PRINT *,"Largest number for K1:",HUGE(K1)

 PRINT *,"Largest number for K2:",HUGE(K2)

 PRINT *,"Largest number for K4:",HUGE(K4)

 PRINT *,"Largest number for K8:",HUGE(K8)

 PRINT *,"Largest number for R4:",HUGE(R4)

 PRINT *,"Largest number for R8:",HUGE(R8)

END PROGRAM Numerical_Kinds

The output of the program after compiling with Intel Fortran Compiler (IFC) that we use:

Largest number for K1: 127

Largest number for K2: 32767

Largest number for K4: 2147483647

Largest number for K8: 9223372036854775807

Largest number for R4: 3.4028235E+38

Largest number for R8: 1.797693134862316E+308

 A Basic Introduction to Programming in Fortran 67

12.2 Numerical Derivative of a Function

Let f(x) be defined (analitic) ant any point x0. The derivative of f(x) at x = x0 is defined as:

h

xfhxf

dx

dy
xf

h

)()(
lim)(' 00

0

In a computer program the limit of h can not be zero because of underflow limit. But it can be

selected close to zero such as h = 0.01. Thus, a computer implementation can be done as

follows:

PROGRAM Derivative

!--

! Evaluates the numerical derivative of a function

! F(x) at a given point. The function dF(x) returns

! the derivative of f(x) at point x0.

!--

REAL :: x0

 PRINT *,"Input x0"

 READ *,x0

 PRINT *,"F(x0) = ",F(x0)

 PRINT *,"F'(x0) = ",dF(x0)

CONTAINS

 REAL FUNCTION F(x) ! function definition

 REAL, INTENT(IN) :: x

 F = x**3 – 2*x + 5

 END FUNCTION F

 REAL FUNCTION dF(X) ! the derivative of the function

 REAL, INTENT(IN) :: x

 REAL :: h

 h = 0.01

 dF = (F(x+h)-F(x))/h

 END FUNCTION dF

END PROGRAM Derivative

Example executaion:
Input x0

2

 F(x0) = 9.000000

 F'(x0) = 10.06012

If we check the result:

 52)(3 xxxf  9)2(f

 23)(' 2xxf  102)2(3)2(' 2f

 A Basic Introduction to Programming in Fortran 68

12.3 Numerical Integraration of a Function

For the figure total area of the rectangles:
n

h

kn xxfxxfxxfxxfxxf
0

210)()()()()(

for 0x this sum will be:
b

a

n

h

k
x

dxxfxxf)()(lim
0

0

Thus, the geometic meaning of the definite integral is area under the curve y=f(x). In a

computer program, x cannot be zero, but can be selected colose zero such as 01.0x .

For this case following program can be used to evaluate definite integral of f(x) between [a,b].

PROGRAM Integral

!--

! Evaluates the numerical integration of a function

! f(x) between limits a and b by rectangles method.

! Integration is performed by the function Ingerate.

!--

IMPLICIT NONE

REAL :: A,B,Result

 PRINT *,"Input A and B"

 READ *, A,B

 Result = Integrate(A,B)

 PRINT *,"The integral is:",Result

CONTAINS

 REAL FUNCTION F(x)

 REAL, INTENT(IN) :: x

 F = x**2 ! put your function here

 END FUNCTION F

 A Basic Introduction to Programming in Fortran 69

 REAL FUNCTION Integrate(A,B)

 !---

 ! retruns the intgral of f(x) between limits

 ! [a,b] by rectangles method.

 !---

 REAL, INTENT(IN) :: A,B

 INTEGER,PARAMETER :: N = 1000

 INTEGER :: k

 REAL :: x,dx,Sum

 dx = (B-A)/N

 Sum = 0.0

 x = A

 DO k=1,N-1

 x = x + dx

 Sum = Sum + F(x)

 END DO

 Integrate = Sum*dx

 END FUNCTION Integrate

END PROGRAM Integral

Example executaion:

Input A and B

1

2

 The integral is: 2.334912

The analitical result is:

2

1

2 333333.2dxx

 A Basic Introduction to Programming in Fortran 70

12.4 Mean and Standard Deviation

This topic is included because it is commonly used in statistical analysis, and demonstrates

the power of whole array processing in Fortran. The mean value V and standard deviation

of n values Vi (i = 1, n) are defined below, the Fortran definitions are also shown as concise

one-line expressions (here V is a type real Fortran array of any size and shape).

ni

iV
n

V

,1

1

1

)(2

,1

n

VV
ni

i

Note that the value of n does not need to be known, we can use SIZE() instead. If you wish to

omit from the calculation all zero values, then this can be done simply with the MASK option

and the COUNT function:

 mean = SUM(V,MASK=V/=0)/COUNT(V/=0)

 sigma = SQRT(SUM((V-mean)**2,MASK=V/=0)/REAL(COUNT(V/=0)-1))

Following program is evalueates the mean and standard deviation of n real values which are

strored in a dynamic array.

PROGRAM Mean_Sd

!--

! Calculates mean and standard deviation

! n numbers. The values are stored in a dynamic array.

!--

IMPLICIT NONE

REAL,ALLOCATABLE :: X(:)

INTEGER :: N

REAL :: Mean,Sigma

 PRINT *,"Input N"

 READ *,N

 ALLOCATE(X(N))

 PRINT *,"Input N real values:"

 READ *,X

 Mean = SUM(X)/N

 Sigma = SQRT(SUM((V-mean)**2)/(SIZE(V)-1))

 PRINT *,"Mean = ",Mean

 PRINT *,"Sigma= ",Sigma

 DEALLOCATE(X)

END PROGRAM Mean_Sd

For the set: 1.1, 1.2, 1.1, 1.0, 1.5 the program will output:

 Mean = 1.180000

 Sigma= 0.1923538

mean = SUM(V)/SIZE(V)

sigma = SQRT(SUM((V-mean)**2)/(SIZE(V)-1))

 A Basic Introduction to Programming in Fortran 71

12.5 Numerical Data Types  String Conversion

Sometimes it is necessary to convert a numerical data type to a string or vice versa. Fortran

provides a mechanism similar to formatted I/O statements for files, that allows you to convert

numeric data from internal binary representation to 'formatted' representation.

The following examples are for INTEGER variable but of course you can use other types of

variables (with proper formats):

 Converting a string to an integer

INTEGER :: IntVar

CHARACTER(80) :: StrVar

...

READ(UNIT=StrVar,FMT='(I5)') IntVar

 Converting an integer to a string

 INTEGER :: IntVar

 CHARACTER(80) :: StrVar

 ...

 WRITE(UNIT=StrVar,FMT='(I5)') IntVar

The following example is the demonstration of integer to string and real to string conversion:

PROGRAM Conversions

INTEGER :: I = 123456

REAL :: R = 123.456

CHARACTER(10) :: A,B

 WRITE(UNIT=A, FMT='(I10)') I ! convert integer to a string

 WRITE(UNIT=B, FMT='(F10.2)') R ! convert real to a string

 PRINT *,"Integer I=",I

 PRINT *,"String A=",A

 PRINT *,"Real R=",R

 PRINT *,"String B=",B

END PROGRAM Conversions

Output of the program is:

 Integer I= 123456

 String A= 123456

 Real R= 123.4560

 String B= 123.46

The following functions can be used to convert a string to an integer and real respectively:

INTEGER FUNCTION StrToInt(String) ! Converts a string to an integer

CHARACTER (*), INTENT(IN) :: String

 READ(UNIT=String,FMT='(I10)') StrToInt

END FUNCTION StrToInt

REAL FUNCTION StrToReal(String) ! Converts a string to a real

CHARACTER (*), INTENT(IN) :: String

 READ(UNIT=String,FMT='(F10.5)') StrToReal

END FUNCTION StrToReal

 A Basic Introduction to Programming in Fortran 72

Topics Not Covered

This guide covers Fortran 90 at only a basic level and with limited depth. Intermediate and

advanced topics, and extentions in Fortran 95/2003, are not covered. The following is a list of

some important topics that are omitted in the guide; if you are interested in furthering your

Fortran knowledge then look these up other Fortran resources.

Pointers and linked structures - related to memory management.

Derived types - combine intrinsic types into a new compound type.

Modules (MODULE, USE) - modular programming.

PUBLIC, PRIVATE, SAVE, and PURE attributes - relating to the scope of data.

There are also many more features relating to input and output, processing of

multidimensional arrays, character manipulation functions and other intrinsic functions that

are not covered in the guide. The programmer should also be familiar with issues such as

scope, round-off errors, and numerical range.

 A Basic Introduction to Programming in Fortran 73

Appendix: List of Fortran Intrinsics

The following tables list all of the standard Fortran 95 intrinsic functions and subroutines

according to their catagory.

Notes: values in brackets () are arguments; square brackets [] indicate optional arguments.

 Single precision is assumed to be KIND=4, double precision KIND=8.

Math Functions

See below for :

“Trigonometric and Hyperbolic

Functions”, “Complex Functions”,

and “Vector and Matrix Functions”.

Notes:

1. Most math functions are elemental,

i.e. the arguments may be scaler or

arrays.

2. Some math functions are defined

only for a sprecific numerical range;

exceeding a permitted range will

result in a NaN or Infinite value, or a

program crash.

ABS (X) absolute value

DIM (X, Y) positive difference

EXP (X) e
x

LOG (X) logex

LOG10 (X) log10x

MAX (A, B [, C,...]) maximum value

MIN (A, B [, C,...]) minimum value

MOD (A, B) remainder of A/B

MODULO (A, B) A modulo B

SIGN (A, B) A with the sign of B

SQRT (X) square-root of X

See also MAXVAL and MINVAL in “Array Query

Functions” and PRODUCT and SUM in “Array Processing

Functions”.

Math –

Trigonometric and Hyperbolic

Functions

ACOS (X) arc-cosine of X

ASIN (X) arc-sine of X

ATAN (X) arc-tan of X

ATAN2 (Y, X) alt. arc-tangent of X

COS (X) cosine of X

COSH (X) hyperbolic cosine of X

SIN (X) sine of X

SINH (X) hyperbolic sine of X

TAN (X) tangent of X

TANH (X) hyperbolic tangent of X

Math –

Complex Functions

AIMAG (Z) imaginary part of Z
CMPLX (X[,Y][,KIND]) (X + Yi)

CONJG (Z) complex conjugate of Z

See also REAL in “Numerical Model Functions”.

Math –

Vector and Matrix Functions

DOT_PRODUCT (V1, V2) vector dot product

MATMUL (M1, M2) matrix multiplication

TRANSPOSE (MATRIX) matrix transpose

 A Basic Introduction to Programming in Fortran 74

Array Query Functions

See a text book for definitions

ALL (MASK [,DIM])

ALLOCATED (ARRAY)

ANY (MASK [,DIM])

LBOUND (ARRAY [,DIM])

MAXLOC (ARRAY [,DIM] [,MASK])

MAXVAL (ARRAY, DIM [,MASK])

MINLOC (ARRAY [,DIM] [,MASK])

MINVAL (ARRAY [,DIM] [,MASK])

SHAPE (SOURCE)

SIZE (ARRAY [,DIM])

UBOUND (ARRAY [,DIM])

Array Processing Functions

See a text book for definitions

CSHIFT (ARRAY, SHIFT [,DIM])

COUNT (MASK [,DIM])

EOSHIFT (ARRAY, SHIFT [,BOUNDARY] [,DIM])

MERGE (A, B, MASK)

PACK (ARRAY, MASK [,VECTOR])

PRODUCT (ARRAY [,DIM] [,MASK])

RESHAPE (SOURCE, SHAPE [,PAD] [,ORDER])

SPREAD (SOURCE, DIM, N)

SUM (ARRAY [,DIM] [,MASK])

UNPACK (VECTOR, MASK, FIELD)

Character and String Functions

Notes:

1. Character concatenation can be

acheived with the // operator, e.g.

"forty" // "two" results in the

string "fortytwo".

2. The logical operators >=, >, <=,

and <, can be used to compare

character strings; the processor

collating sequence is used.

3. If string A="abcdefg", then

A(3:5) is the substring "cde".

ACHAR (I) ASCII character I

ADJUSTL (STRING) justify string left
ADJUSTR (STRING) justify string right

CHAR (I [,KIND]) processor character I

IACHAR (C) ASCII position of C

ICHAR (C) processor position of C

INDEX (STR1,STR2[,BACK]) string search

LEN (STRING) length of STRING

LEN_TRIM (STRING) without trailing blanks

LGE (STRING_A, STRING_B) ASCII logical A B

LGT (STRING_A, STRING_B) ASCII logical A > B

LLE (STRING_A, STRING_B) ASCII logical A B

LLT (STRING_A, STRING_B) ASCII logical A < B

REPEAT (STRING, N) repeat string N times

SCAN (STR1,STR2[,BACK]) string search

TRIM (STRING) trim trailing blanks

VERIFY (STR1,STR2[,BACK])string search

INDEX, SCAN and VERIFY are compared below.

If CHARACTER(25) :: Units = "centimetres and metres" then

INDEX(Units,"metres") = 6 first occurrence of "metres" begins at position 6 in Units

INDEX(Units,"cents") = 0 there is no occurrence of "cents" in the string in Units

SCAN("kilo",Units) = 2 the first match from the left is the "i" of "kilo" at position 2

in the string

SCAN("flag",Units) = 3 the first match from the left is the "a" of "flag" at position 3

in the string

VERIFY("kilo",Units) = 1 character "k" at position 1 is the leftmost character that is not

in Units

VERIFY("tennis",Units) = 0 all characters in the string "tennis" are found in Units

 A Basic Introduction to Programming in Fortran 75

Binary Bit Functions

Argument I is type integer. Binary

bit functions operate on the binary

representaion of the argument. If the

default kind for an integer is KIND=4,

i.e. 4 bytes, then a default integer is

represented by 32 binary bits.

BTEST (I, POS) test bit position

IAND (I, J) bit-by-bit logical AND

IBCLR (I, POS) set bit to zero

IBITS (I, POS, LEN) bit substring

IBSET (I, POS) set bit to one

IEOR (I, J) bit-by-bit exclusive-OR

IOR (I, J) bit-by-bit inclusive-OR

ISHFT (I, SHIFT) end-off bit shift

ISHFTC (I,SHIFT[,SIZE]) circular bit shift

NOT (I) bit-by-bit complement

See also MVBITS subroutine

Rounding, Truncating, and Type

Conversion Functions

See the table below for a comparison

of the rounding and truncating

functions.

AINT (X [,KIND]) truncate to a whole real

ANINT (X [, KIND]) round to nearest whole real

CEILING (X [,KIND]) round up to an integer

FLOOR (X [,KIND]) round down to an integer

INT (X [,KIND]) truncate to an integer

NINT (X [,KIND]) round to nearest integer

DPROD (X, Y) convert product to double p.

DBLE (X) convert to double precision

REAL (X [,KIND]) convert to type real

Comparison of the rounding and truncating functions.

 R AINT(R) ANINT(R) INT(R) NINT(R) CEILING(R) FLOOR(R)

 -1.6 -1.0 -2.0 -1 -2 -1 -2

 -1.5 -1.0 -2.0 -1 -2 -1 -2

 -1.4 -1.0 -1.0 -1 -1 -1 -2

 -1.2 -1.0 -1.0 -1 -1 -1 -2

 -1.1 -1.0 -1.0 -1 -1 -1 -2

 -1.0 -1.0 -1.0 -1 -1 -1 -1

 -0.9 0.0 -1.0 0 -1 0 -1

 -0.8 0.0 -1.0 0 -1 0 -1

 -0.6 0.0 -1.0 0 -1 0 -1

 -0.5 0.0 -1.0 0 -1 0 -1

 -0.4 0.0 0.0 0 0 0 -1

 -0.2 0.0 0.0 0 0 0 -1

 -0.1 0.0 0.0 0 0 0 -1

 0.0 0.0 0.0 0 0 0 0

 0.1 0.0 0.0 0 0 1 0

 0.2 0.0 0.0 0 0 1 0

 0.4 0.0 0.0 0 0 1 0

 0.5 0.0 1.0 0 1 1 0

 0.6 0.0 1.0 0 1 1 0

 0.8 0.0 1.0 0 1 1 0

 0.9 0.0 1.0 0 1 1 0

 1.0 1.0 1.0 1 1 1 1

 1.1 1.0 1.0 1 1 2 1

 1.2 1.0 1.0 1 1 2 1

 1.4 1.0 1.0 1 1 2 1

 1.5 1.0 2.0 1 2 2 1

 1.6 1.0 2.0 1 2 2 1

 A Basic Introduction to Programming in Fortran 76

Numerical Model Functions

The term numerical model relates to

the way the compiler represents

numerical data in computer memory.

The number of binary bits used to

store a number is limited; this leads

to the following model dependent

limitations:

1. The numerical range of type real

and type integer data is limited.

2. The precision of type real data is

limited.

Numerical model functions allow the

programmer to quantify these

limitations and to write portable

programs (giving the same results on

different platforms).

BIT_SIZE (I) number of bits in the bit model

DIGITS (X) number of signifcant digits

EPSILON (X) almost negligible when compared to one

EXPONENT (X) exponent part

FRACTION (X) fractional part

HUGE (X) largest number in the model

KIND (X) the KIND of the value

MAXEXPONENT (X) the model maximum exponent

MINEXPONENT (X) the model minimum exponent

NEAREST (X, S) the nearest representable value

PRECISION (X) the decimal precision

RADIX (X) the base of the model

RANGE (X) the decimal exponent range

RRSPACING (X) reciprocal of the relative spacing

SCALE (X, I) exponent part change by...

SELECTED_INT_KIND (R) see text book

SELECTED_REAL_KIND([P][,R]) see text book

SET_EXPONENT (X, I) see text book

SPACING (X) spacing near the value of X

TINY (X) smallest positive number

TRANSFER (SOURCE, K [,SIZE]) see text book

Other Functions

See text book.

ASSOCIATED (POINTER [,TARGET])

LOGICAL (L [,KIND])

NULL ([P])

PRESENT (A)

Subroutines

See elsewhere

for details

CPU_TIME(TIME) The processor time in seconds.
DATE_AND_TIME ([DATE] [,TIME] [,ZONE] [,VALUES])

Date and time information from the real-time clock.
MVBITS (FROM, FROMPOS, LEN, TO, TOPOS)

A sequence of bits (bit field) is copied from one location to another

RANDOM_NUMBER (RAN) Assign the argument with numbers taken from a

sequence of uniformly distributed pseudorandom numbers.
RANDOM_SEED ([SIZE] [,PUT] [,GET])

The initialisation or retrieval of pseudorandom number generator seed values.
SYSTEM_CLOCK ([COUNT] [,COUNT_RATE] [,COUNT_MAX])

Data from the processor’s real-time clock

 A Basic Introduction to Programming in Fortran 77

Fortran 2003;

Access to command arguments and

environment variables

command arguments allow a program to take data from

the execution command line. Similarly access to

environment variables allows a program to take data

from the operating system environment variables.

COMMAND_ARGUMENT_COUNT ()

is an inquiry function that returns the number of command arguments as a default integer scalar.

CALL GET_COMMAND ([COMMAND,LENGTH,STATUS])

returns the entire command by which the program was invoked in the following INTENT(OUT) arguments:

COMMAND (optional) is a default character scalar that is assigned the entire command.

LENGTH (optional) is a default integer scalar that is assigned the significant length (number of characters) of

the command.

STATUS (optional) is a default integer scalar that indicates success or failure.

CALL GET_COMMAND_ARGUMENT (NUMBER[,VALUE,LENGTH,STATUS])

returns a command argument.

NUMBER is a default integer INTENT(IN) scalar that identifies the required command argument.

Useful values are those between 0 and COMMAND_ARGUMENT_COUNT().

VALUE (optional) is a default character INTENT(OUT) scalar that is assigned the value of the command

argument.

LENGTH (optional) is a default integer INTENT(OUT) scalar that is assigned the significant length (number

of characters) of the command argument.

STATUS (optional) is a default integer INTENT(OUT) scalar that indicates success or failure.

CALL GET_ENVIRONMENT_VARIABLE (NAME[,VALUE,LENGTH,STATUS,TRIM_NAME])

obtains the value of an environment variable.
NAME is a default character INTENT(IN) scalar that identifies the required environment variable. The

interpretation of case is processor dependent.

VALUE (optional) is a default character INTENT(OUT) scalar that is assigned the value of the environment

variable.

LENGTH (optional) is a default integer INTENT(OUT) scalar. If the specified environment variable exists and

has a value, LENGTH is set to the length (number of characters) of that value. Otherwise, LENGTH is set to 0.

STATUS (optional) is a default integer INTENT(OUT) scalar that indicates success or failure.

TRIM_NAME (optional) is a logical INTENT(IN) scalar that indicates whether trailing blanks in NAME are

considered significant.

An example usage, that add two numbers input from command line, is given below:

 A Basic Introduction to Programming in Fortran 78

PROGRAM Command_Line

!---

! Adds two integer numbers that are input from keyboard.

! You can compile and run the program via g95 compiler such that

! (Assuming the name of the program file add.f90)

! $ g95 add.f90 –o add (compile)

! $ add number1 number2 (run)

!---

IMPLICIT NONE

CHARACTER(LEN=20) :: Command,Arg1,Arg2

INTEGER :: N,A,B

 CALL GET_COMMAND(Command) ! get complete command

 N = COMMAND_ARGUMENT_COUNT() ! number of arguments

 IF(N /= 2) THEN

 PRINT *,"Missing or too few parameters."

 STOP

 END IF

 CALL GET_COMMAND_ARGUMENT(1,Arg1) ! get first parameter

 CALL GET_COMMAND_ARGUMENT(2,Arg2) ! get first parameter

 A = StrToInt(Arg1)

 B = StrToInt(Arg2)

 PRINT *,"Sum is ",A+B

CONTAINS

 ! This function converts a String to an integer

 INTEGER FUNCTION StrToInt(String)

 CHARACTER (*), INTENT(IN) :: String

 READ(UNIT=String,FMT='(I10)') StrToInt

 END FUNCTION StrToInt

END PROGRAM Command_Line

Example executions:

Compile via g95 compiler:

 $ g95 add.f90 –o add

Test run 1 (n=3):

 $ add 7 8 9

 Missing or too few parameters.

Test run 2 (n=1):

 $ add 7

 Missing or too few parameters.

Test run 3 (n=3):

 $ add 7 8

 Sum is 15

