Object-Oriented Programming
with [incr Tcl]

Building MegaWidgets
with [incr Tk]

Michael J. McLennan
Bell Labs Innovations for Lucent Technologies
1247 S. Cedar Crest Blvd.
Allentown, PA 18104
mmclennan@lucent.com

Copyright © 1996 Lucent Technologies

ABSTRAT

Applications with short development cycles have the best chance for success in
today’s marketplace. Tcl/Tk provides an interactive development environment
for building Graphical User Interface (GUI) applications with incredible speed.
Tcl/Tk applications look like they were constructed with the Motif toolkit, but
they can be written in a fraction of the time. This is due, in part, to the high-
level programming interface that the Tcl language provides. It is also due to the
interpretive nature of the Tcl language; changes made to a Tcl/Tk application
can be seen immediately, without waiting for the usual compile/link/run cycle.
Developers can prototype new ideas, review them with customers, and deliver a
finished product within a span of several weeks. The finished product will run
on all of the major platforms: Unix, PC Windows, and Macintosh.

But the Tcl language was not designed to support large programming projects.
When Tcl/Tk scripts grow larger than a thousand lines, the code complexity can
be difficult to manage.[INCR TcL] extends the Tcl language to support object-
oriented programming. This allows developers to write high-level building
blocks that are more easily assembled into a finished application. The resulting
code has more encapsulation, and is easier to maintain and ekierrl.TCL]

is patterned after C++, so for many developers, it is easy to learn.

This memo contains two chapters that will appear in a book published by
O'Reilly and Associates. It provides an overview[ofcR TcL], and shows

how it can be used to support Tcl/Tk applications. It also describes a special
library of base classes call@dicr Tk], which can be used to build high-level
user interface components called “mega-widgets”.

In this Chapter:
» Objects and Classes
* Inheritance

* Namespaces

* Interactive
Development

 Autoloading

+ Adding C code to Object-Oriented

[INcrRTcL] Classes

Programming with
[incr Tcl]

Tcl/Tk applications come together with astounding
speed. You can write a simple file browser in an
afternoon, or a card game like Solitaire within a
week. But as applications get larger, Tcl code
becomes more difficult to understand and maintain.
% You get lost in the mass of procedures and global

variables that make up your program. It is hard to
More Than Chrome create data structures, and even harder to make reus-
able libraries.

[INCR TcL] extends the Tcl language to support object-oriented programming.
It wasn't created as an academic exercise, nor to be buzzword-compatible with
the latest trend. It was created to solve real problems, so that Tcl could be used
to build large applications.

[INcr TcL] is fully backward-compatible with normal Tcl, so it will run all of
your existing Tcl/Tk programs. It simply adds some extra commands which let
you create and manipulate objects.

It extends the Tcl language in the same way that C++ extends the base language
C. It borrows some familiar concepts from Clsp many developers find it

easy to learn. But while it resembles C++, it is written to be consistent with the
Tcl language. This is reflected in its name, which you can pronounce as “incre-
ment tickle” or “inker tickle.” This is the Tcl way of saying “Tcl++".

t Stanley B. LippmarC++ Primer (2nd edition), Addison-Wesley, 1991; and Bjarne Strousfrhp,
Design and Evolution of C++Addison-Wesley, 1994,

Tcl/Tk Tools

This chapter shows ho[asNCR TcL] can be used to solve common programming
problems. As an example, it shows how a tree data structure can be created and
used to build a file browser. Along the way, it illustrates many important
concepts of object-oriented programming, including encapsulation, inheritance,
and composition.

Objects and Classes

| won't go on for pages about object-oriented programming. You have prob-
ably read about it in other contexts, and there are some really gooHttmtts
explain it well. But the basic idea is that you crestigectsas building blocks

for your application. If you are building a kitchen, for example, you might need
objects like toasters, blenders and can openers. If you are building a large
kitchen, you might have many different toasters, but they all have the same char-
acteristics. They all belong to the samlass in this case a class called
Toast er.

Each object has some data associated with it. A toaster might have a certain
heat setting and a crumb tray that collects the crumbs that fall off each time it
toasts bread. Each toaster haoits heat setting and itswn crumb count, so
eachToast er object has its own variables to represent these things. In object
speak, these variables are caliestance variable®r data members You can

use these instead of global variables to represent your data.

You tell an object to do something using special procedures cab#uodsor
member functions For example, doast er object might have a method called
toast that you use to toast bread, and another method chiéed that you use

to clean out the crumb tray. Methods let you define a few strictly limited ways
to access the data in a class, which helps you prevent many errors.

Everything that you need to know about an object is describeddla$ts defini-

tion. The class definition lists the instance variables that hold an object’'s data
and the methods that are used to manipulate the object. It acts like a blueprint
for creating objects. Objects themselves are often cadftdncesof the class

that they belong to.

Variables and Methods

Let's see how objects work in a real-life example. Suppose you want to use the
Tk canvas widget to build a file browser. It might look something like the one

t For example: Grady Boocfbject-Oriented DesigrBenjamin/Cummings, 1991; and Timothy
Budd,An Introduction to Object-Oriented Programmijrddison-Wesley, 1991.

4

Chapterl: Object-Oriented Programming with [incr Tcl]

shown in Figurel-1. Each entry would have an icon next to the file name to
indicate whether the file is an ordinary file, a directory, or an executable
program. Aligning each icon with its file name is ordinarily a lot of work, but
you can make your job much simpler if you create an object to represent each
icon and its associated file name. When you need to add an entry to the file
browser, you simply create a new object with an icon and a text string, and tell
it to draw itself on the canvas.

— E

Directory: || usr/localitc| I
[itel
({3 bin
—(3J include
—%1 fickh M sual Rep
) itkh objects
- telh — 00
LB tkh =
O _
R iteiz.o €
[y imititel
B tclApplnit.c
T L2 N
9 File: Yusrflocalfitclincludesitclh I

r} 7

Figure 1-1 Using VisualRep objects to build a file browser.

We will create a clasd sual Rep to characterize these objects. The class defini-
tion is contained in the fileitcl/tree/visrep.itcl on the CD-ROM that
accompanies this book, and it appears in Exatydle

Examplel-1 The class definition for VisualRep objects.
image create photo default -file default.gif

class M sual Rep {
vari abl e canvas
vari abl e i con
variable title

constructor {cwn ival tval} {
set canvas $cw n
set icon $ival
set title $tval

destructor {
erase

net hod draw {x y} {
erase
$canvas create i mage $x $y -inage $icon -anchor c -tags $this
set x1 [expr $x + [inage width $icon]/2 + 4]

Tcl/Tk Tools

Examplel-1 The class definition for VisualRep objects.
$canvas create text $x1 $y -text $title -anchor w-tags $this

nethod erase {} {
$canvas del ete $this

}

All of the [INCR TcL] keywords are shown above in bold type. You use the

cl ass command to define a new class of objects. Inside the class definition is a
series of statements that define the instance variables and the methods for
objects that belong to this class. In this example, &bshbal Rep object has

three variables:canvas, i con andtitle. Thecanvas variable contains the
name of the canvas widget that will display the object. iT¢mn variable
contains the name of a Tk image used as the icon. Andithe variable
contains a text string that is displayed next to the icon. Each object also has a
built-in variable named hi s, which you don’t have to declare. It is automati-
cally defined, and it contains the name of the object.

EachM sual Rep object responds to the two methods listed in the class defini-
tion. You can ask the object thawitself at an X,y) coordinate on the canvas,

and the icon will be centered on this coordinate. You can also ask the object to
erase itself. Notice that all of the canvas items created irdttasv method are
tagged with the name of the object, taken from the builtirs variable. This
makes it easy to erase the object later by deleting all canvas items tagged with
the object name.

Theconst ruct or anddestruct or are special methods that are called automati-
cally when an object is created and destroyed. We'll talk more about these later.

The methods and variables in one class are completely separate from those in
another. You could createBaok class with &i tl e variable, or ahal kboar d

class withdraw ander ase methods. Since these members belong to different
classes, they will not interfere with oMrsual Rep class. It is always obvious
which methods and variables you can use if you think about which object you
are manipulating. Because classes keep everything separate, you don’t have to
worry so much about name collisions, and you can use simpler nafesRn

TcL] code than you would in ordinary Tcl code.

Methods look a lot like an ordinary Tcl procedures. Each method has a name, a
Tcl-style argument list, and a body. But unlike procedures, methods automati-
cally have access to the variables defined in the class. bir tieemethod, we

talk to the canvas widget using the name stored ircéngas variable. We
access the icon usirgj con, and the title string usingtitle. There is no need

to declare these variables with anything like the Jidbal statement. They
have been declared once and for all in the class definition.

Chapterl: Object-Oriented Programming with [incr Tcl]

The same thing holds true for methods. Within one method, we can treat the
other methods as ordinary commands. In the destructor, for example, we call
theerase method simply by using the commaerthse. If effect, we are telling

this object (whichever one is being destroyed) to erase itself. In the code
outside of a class, we have to be more specific. We have to tell a particular
object to erase itself.

Having defined the cladg sual Rep, we can create an object like this:
M sual Rep vrl .canv default "Dsplay this text"

The first argumentvf 1) is the name of the new object. The remaining argu-
ments (canv default "Dsplay this text") are passed along to the
constructor to initialize the object. This might look familiar. It is precisely how
you would create a Tk widget:

button .b -background red -text "Aert"

Here, the first argument f) is the name of the new widget, and the remaining
arguments -(background red -text "Alert") are used to configure the
widget. This similarity is no acciden{iINCR TcL] was designed to follow the

Tk paradigm. Objects can even have configuration options just like the Tk
widgets. We'll see this later, but for now, we'll stick with simple examples.

Once an object has been created, you can manipulate it using its methods. You
start by saying which object you want to manipulate. You use the object name
as a command, with the method name as an operation and the method argu-
ments as additional parameters. For example, you could tell the wbjett

draw itself like this:

vrl draw 25 37
or to erase itself from the canvas like this:
vrl erase

Again, this might look familiar. It is precisely how you would use a Tk widget.
You might tell a button to configure itself like this:

.b configure -background bl ue -foreground white
or to flash itself like this:
.b flash

Putting all of this together, we can udesual Rep objects to create the drawing
shown in Figurel-2.

We need to create fivd sual Rep objects for this drawing. The first object has
a directory folder icon and the messagéricr Tcl] has:”. The remaining
objects have file icons and various message strings. We can create these objects

7

Tcl/Tk Tools

Ai visrep.itcl | =

[= [incr Tcl] has:
B Objects
B Mega-Widgets
[Hamespaces
B And more...

) 1

Figure 1-2 Simple drawing composed of VisualRep objects.

and tell each one to draw itself on the canvas using the handful of code in
Examplel-2.

Examplel-2 Code used to produce Figure?.

canvas .canv -w dth 150 -height 120 -background white
pack . canv

inmage create photo dirl -file dirl.gif
i nage create photo file -file file.gif

M sual Rep title .canv dirl "\[incr Tcl\] has:"
title draw 20 20

Visual Rep bulletl .canv file "(pjects"
bul I et 1 draw 40 40

Vi sual Rep bullet2 .canv file "Mga-Wdgets"
bul | et 2 draw 40 60

M sual Rep bullet3 .canv file "Nanespaces"
bul I et 3 draw 40 80

Vi sual Rep bullet4 .canv file "And nore..."
bul | et 4 draw 40 100

Constructos and Destructa

Let's take a moment to see what happens when an object is created. The
following command:

M sual Rep bulletl .canv file "(pjects"

creates an object namebuf | et 1" in classM sual Rep. It starts by allocating

the variables contained within the object. F&f aual Rep object, this includes

the variablecanvas, i con, andti tl e, as well as the built-ibhi s variable. If

the class has &onstructor method, it is automatically called with the
remaining arguments passed as parameters to it. The constructor can set
internal variables, open files, create other objects, or do anything else needed to
initialize an object. If an error is encountered within the constructor, it will
abort, and the object will not be created.

Chapterl: Object-Oriented Programming with [incr Tcl]

Like any other method, the constructor has a Tcl-style argument list. You can
have required arguments and optional arguments with default values. You can
even use the Tdrgs argument to handle variable-length argument lists. But
whatever arguments you specify for the constructor, you must supply those
arguments whenever you create an object. In dessal Rep, the constructor

takes three values: a canvas, an icon image, and a title string. These are all
required arguments, so you must supply all three values whenever you create a
M sual Rep object. The constructor shown in Examplé simply stores the

three values in the instance variables so they will be available later when the
object needs to draw itself.

The constructor is optional. If you don’t need one, you can leave it out of the
class definition. This is like having a constructor with a null argument list and a
null body. When you create an object, you won't supply any additional parame-
ters, and you won't do anything special to initialize the object.

The destruct or method is also optional. If it is defined, it is automatically
called when an object is destroyed, to free any resources that are no longer
needed. An object likdoul | et1l is destroyed using thedél ete object”
command like this:

del ete object bul letl

This command can take multiple arguments representing objects to be deleted.
It is not possible to pass arguments to the destructor, so as you can see in
Examplel-1, the destructor is defined without an argument list.

Instance variables are deleted automatically, but any other resources associated
with the object should be explicitly freed. If a file is opened in the constructor,

it should be closed in the destructor. If an image is created in the constructor, it
should be deleted in the destructor. As a result, the destructor usually looks like
the inverse of the constructor. If an error is encountered while executing the
destructor, the del ete obj ect” command is aborted, and the object remains
alive.

For theM sual Rep class, the destructor uses threase method to erase the
object from its canvas. WheneveYisgsual Rep object is deleted, it disappears.

Pointers

Each object must have a unique name. When we use the object name as a
command, there is no question about which object we are talking to. In effect,
the object name ifiNCR TcL] is like the memory address of an object in C++.

It uniquely identifies the object.

Tcl/Tk Tools

We can create a “pointer” to an object by saving its name in a variable. For
example, if we think of the objects created in Exandip® we could say:

set x "bul | et1"

$x erase
The variable x contains the namaul'l et 1", but it could just as easily have the
name bul l et2” or “title”. Whatever object it refers to, we use the nd@xe
as a command, telling that object to erase itself.

We could even tell all of the objects to erase themselves like this:

foreach obj {title bulletl bullet2 bullet3 bullet4} {
$obj erase

}
One object can point to another simply by having an instance variable that
stores the name of the other object. Suppose you want to create a tree data struc-
ture. In ordinary Tcl, this is extremely difficult, but wifiNnCcrR TcL], you
simply create an object to represent each node of the tree. Each node has a vari-
able parent that contains the name of the parent node, and a variable
chi | dren, that contains a list of names for the child nodes. The class definition
for a Tree node is contained in the filécl/tree/treel.itc] and it appears in
Examplel-3.

Examplel-3 The class definition for a simple Tree data structure.

class Tree {
variabl e parent ""
variabl e children ""

nethod add {obj} {
$obj parent $this
| append chi | dren $obj

nethod clear {} {
if {$children!=""} {
eval del ete object $children

}
set children ""

}

net hod parent {pobj} {
set parent $pobj

net hod contents {} {
return $children

}

Notice that when we declared tharent andchi | dren variables, we included

an extrd'" value. This value is used to initialize these variables when an object
is first created, before calling the constructor. It is optional. If a variable does
not have an initializer, it will still get created, but it will be undefined until the
constructor or some other method sets its value. In this example, we do not

10

Chapterl: Object-Oriented Programming with [incr Tcl]

have a constructor, so we are careful to include initializers for both of the
instance variables.

TheTr ee class has four methods: Thed method adds anoth@ree object as

a child node. Thearent method stores the name of a parBree object. The
contents method returns a list of immediate children, and is used to traverse
the tree. Thel ear method destroys all children under the current node.

Notice that in thecl ear method, we used the Telal command. This lets us
delete all of the children in one shot. Theal command flattens the list
$children into a series of separate object names, andde¢het e obj ect
command deletes them. If we had forgotten #al command, the
del ete obj ect command would have misinterpreted the vefahi | dren as
one long object name, and it would have generated an error.

= treel.itcl =
@henw\
@petm’/ & jane

AN
/
AN

& bridget & justin & vanessa & troy

Figure 1-3 Diagram of a family tree.

We can create a series Tfee objects to represent any tree information that
exists as a hierarchy. Consider the tree shown in Fig@reWe can create the
root object henry” like this:

Tree henry

This allocates memory for the object and initializespasent andchi | dren
variables to the null string. If effect, it has no parent and no children. Since
there is no constructor for this class, construction is over at this point, and the
object is ready to use.

We can add children to this node by creating them:

Tree peter
Tree j ane

and by adding them in:
henry add peter
henry add j ane

11

Tcl/Tk Tools

Each of these calls to tlald method triggers a series of other statements. We
could draw the flow of execution as shown in Figiv€. Each object is drawn
with a piece broken off so that you can seepdreent andchi | dren variables
hidden inside of it. When we calhénry add peter”, we jump into the
context of thehenry object (meaning that we have access to its variables), and
we execute the body of tleeld method. The first statement teflst er that its
parent is novhenry. We jump into the context of thpet er object, execute its
parent method, and store the narhenry into its parent variable. We then
return tohenry and continue on with itadd method. We appengkt er to the

list of henry’s children, and the add operation is complete. Newry knows
thatpet er is a child, angbet er knows thahenry is its parent.

henry add peter

v

met hod add {obj} {
$obj parent $this
| append children $obj

peter parent henry
~
pet er !

met hod parent {pobj} {
set parent $pobj

}

- J

Figure 1-4 Execution can flow from one object context to another.

This simple example shows the real strengtio€r TcL]: encapsulation

The variables inside each object are completely protected from the outside
world. You cannot set them directly. You can only call methods, which
provide a controlled interface to the underlying data. If you decide next week
to rewrite this class, you can change the names of these variables or you can
eliminate them entirely. You will have to fix the methods in the class, but you
won't have to fix any other code. As long as you don't change how the
methods are used, the programs that rely on this class will remain intact.

We can create the rest of the tree shown in Figit8es follows:

peter add [Tree bridget]
peter add [Tree justin]

12

Chapterl: Object-Oriented Programming with [incr Tcl]

jane add [Tree vanessa]

jane add [Tree troy]
We have shortened things a bit. Thee command returns the name of each
new Tr ee object. We capture the name with square brackets and pass it directly
to theadd method.

Genenting Object Names

If you are creating a lot of objects, you may not want to think of a name for
each one. Sometimes you don’t care what the name is, as long as it is unique.
Remember, each object must have a unique name to identifwg® TcL] will
generate a name for you#aut o is included as all or part of the object name.
For example, we could add 10 more children tg e node like this:

for {set i O} {$i < 10} {incr i} {

jane add [Tree #aut 0]

}
Each time an object is creat¢myCr TCL] replacestaut o with an automatically
generated name likereel?7. If you use a name likexffaut oy”, you will get a
name like %Xtreel7y”. The#auto part is composed of the class name (starting
with a lower-case letter) and a unique number.

If we use theTr ee class together with sual Rep, we can write a procedure to
draw any tree on a canvas widget. We simply traverse the tree, and at each
node, we create ¥ sual Rep object and tell it to draw itself on the canvas. Of
course, we also draw some lines on the canvas connecting each parent to its chil-
dren. We will be creating a lot &f sual Rep objects, so having automatically
generated names will come in handy. A complete code example is in the file
itcl/tree/treel.itc] but the drawing part appears in Exanpié.

Examplel-4 A recursive procedure draws the tree onto a canvas widget.

proc draw node {canvas obj x y wdth} {

set kids [$obj contents]

if {[Ilength $kids] = 1} {
set x0 $x
set delx O

} else{
set X0 [expr $x-0.5*$wi dt h]
set del x [expr 1.0*$width/([I1ength $kids]-1)]

}

set yO [expr $y+50]

foreach o $kids {
$canvas create line $x $y $x0 $y0 -wdth 2
draw node $canvas $o $x0 $y0 [expr 0. 5*$del x]
set X0 [expr $x0+%del X]

}
set visual [M sual Rep #auto $canvas defaul t $obj]
$vi sual draw $x $y

13

Tcl/Tk Tools

Examplel-4 A recursive procedure draws the tree onto a canvas widget.
}

canvas .canv -w dth 400 -height 200 -background white
pack .canv

draw node . canv henry 190 50 200

We create the canvas and pack it, and then welcall node to draw the tree
starting at nodéenry. Insidedraw node, we use theont ents method to get

a list of children for the current node. |If there is only one child, we draw it
directly below the current node. Otherwise, we divide up the available screen
width and place the children starting at the x-coordifsafs with $del x pixels
between them. We draw a line down to each child’s position, and we draw the
child by callingdr aw node recursively. This will draw not only the child, but

all of the children below it as well. We finish up by creating sual Rep for

the current node. Thdefault argument says to use the default (diamond)
icon, and thebobj argument sets the title string to the object name. We need to
tell this M sual Rep to draw itself on the canvas, so we capture its automatically
generated name in thd sual variable, and we use this as a pointer to the
object.

A Real Application

We can use oufree class to build a real application, like a file browser that
helps the user find wasted disk space. The duiutility reports the disk usage

for a series of directories, given a starting point in the file system. Its output is
a long list of sizes and directory names that looks like this:

$du-b/usr/local/itcl
29928 Jusr/local/itcl/lib/tcl7.4

36343 /usr/local/itcl/nman/ nanl
812848 [usr/local/itcl/nman/ nan3
1416632 /usr/local /itcl/nman/ mann
2274019 /usr/local/itcl/man
11648898 /usr/local/itcl

The-b option says that directory sizes should be reported in bytes.

It is much easier to understand this output if we present it hierarchically, as
shown in Figurd-5. If we are looking at théusr/locall/itcl directory, for
example, we can see that it has four subdirectories, and of tiirss, the
biggest. We could double-click on this directory to see a listing of its contents,
or double-click orBACK UPto move back to the parent directory.

We can use a tree to organize the output frondtheommand. Each node of
the tree would represent one directory. It would have a parent node for its

14

Chapterl: Object-Oriented Programming with [incr Tcl]

<- BACK UP
2274019 fusrylocal/itcl/man
100981 fusr/local/itcl/include
3382643 fusr/local/itcl/bin
2853306 fusr/local/itcl/lib

Figure1-5 A hierarchical browser for the “du” utility.

parent directory and a list of child nodes for its subdirectories. The simple
Tree class shown in Example3 will handle this, but each node must also
store the name and the size of the directory that it represents.

We can modify the Tree class to keep track of a name and a value for each node
as shown in Example-5.

Examplel-5 Tree class updated to store name/value pairs.

class Tree {
variabl e nane ""
variabl e value ""
variabl e parent ""
variable children ""

constructor {n v} {
set nane $n
set val ue $v

destructor {
cl ear

net hod add {obj} {
$obj parent $this
| append chi | dren $obj

nethod clear {} {
if {$children!=""} {
eval del ete object $children

}
set children ""

}
net hod parent {pobj} {
set parent $pobj

nethod get {{option -val ue}} {
swtch -- $option {
-nane { return $nane }
-value { return $val ue }
-parent { return $parent }

15

Tcl/Tk Tools

Examplel-5 Tree class updated to store name/value pairs.
error "bad option \"$option\""

net hod contents {} {
return $children

}

We simply addnane and val ue variables to the class. We also define a
constructor, so that the name and the value are set when each object is created.
These are required arguments, so when we credteeanode, the command

must look something like this:

Tree henry /usr/local /itcl 8619141

Actually, the name and value strings could be anything, but in this example, we
are usinghane to store the directory name, aval ue to store the directory size.

We have also added a destructor to Wmee so that when any node is
destroyed, it clears its list of children. This causes the children to be destroyed,
and their destructors cause their children to be destroyed, and so on. So
destroying any node causes an entire sub-tree to be recursively destroyed.

If we are moving up and down the tree and we reach a certain node, we will
probably want to find out its name and its value. Remember, variables like
nane and val ue are kept hidden within an object. We can't access them
directly. We can tell the object to do something only by calling one of its
methods. In this case, we invent a method ca&dthat will give us access to
the necessary information. If we hava@rae node callechenry, we might use
its get method like this:

puts "directory: [henry get -nane]"

puts " size: [henry get -val ue]"
The get method itself is defined in Example5. Its argument list looks a little
strange, but it is the standard Tcl syntax for an optional argument. The outer set
of braces represents the argument list, and the inner set represents one argu-
ment: its name i®option, and its default value (if it is not specified) is
“-val ue”. So if we simply want the value, we can call the method without any
arguments, like this:

puts " size: [henry get]"

The get method merely looks at itgpti on flag and returns the appropriate
information. We use a TeW t ch command to handle the various cases. Since
the opti on flag will start with a =", we are careful to include the - argu-
ment in theswi t ch command. This tells the switch that the very next argument
is the string to match against, not an option forstlié ch command itself.

16

Chapterl: Object-Oriented Programming with [incr Tcl]

With a new and improvedir ee class in hand, we return to building a browser
for the Unixdu utility. If you are not used to working with tree data structures,
this code may seem complicated. But keep in mind that it is the example
itself—not[INCR TcL]—that adds the complexity. If you don't believe me, try
solving this same problem withoukicr TcL]!

We create a procedure callget _usage to load the disk usage information for
any directory. This is shown in Examples.

Examplel-6 Disk usage information is stored in a tree.

set root ""

proc get_usage {dir} {
gl obal root
if {$root '=""} {

del ete obj ect $root

}

set parentDr [file dirnane $dir]
set root [Tree #auto $parentDir ""]
set hiers($parentDr) $root

set info [split [exec du -b $dir] \n]
set last [expr [Ilength $info]-1]

for {set i $last} {$ >=0} {incr i -1} {
set line [lindex $info $i]

if {[scan $line {%l 9} size nane] = 2} {
set hiers($nane) [Tree #auto $nane $si ze]

set parentDr [file dirnane $nane]
set parent $hiers($parentDr)
$parent add $hi er s($nane)

}

return $root

}

We simply pass it the name of a directory, and it runsdthgprogram and
creates a tree to store its output. We use thexed command to execute the

du program, and we split its output into a list of lines. We traverse backward
through this list, starting at the root directory, and working our way downward
through the file hierarchy because tthe program puts the parent directories
after their children in its output. Wscan each line to pick out the directory
name and size, ignoring any lines have the wrong format. We create a new
Tr ee object to represent each directory. We don't really care about the name of
the Tr ee object itself, and we don’t want to make up names like “henry” and
“jane”, so we uséfaut o to get automatically generated names. Once &aath

node has been created, we add it into the node for its parent directory.

Finding the node for the parent directory is a little tricky. We can use the Tcl
“file di rnane” command to get the name of the parent directory, but we must
figure out whatTr ee object represents this directory. We could scan through

17

Tcl/Tk Tools

the entire tree looking for it, but that would be horribly slow. Instead, we create
a lookup table using an array callbders that maps a directory name to its
corresponding Tree object. As we create each object, we are careful to store it
in this array so it can be found later when its children are created. Eigure
shows the array and how the values relate to the directory structure we started

with.

variabler oot : treel

treel

tree2
arrayhi ers:
/usr/1ocal treel — tree3
/usr/local/litcl tree2 T

lusr/local/itcl/bin | tree3 -) |
/usr/local/itcl/lib | tree4 k]
Jusr/local/itcl/man treeb

Figure 1-6 Finding directories in a tree of disk usage information.

Since we traverse backward through the output, parenflree nodes will
always be created and entered into lthers array before their child nodes.
The only exception is the parent for the very first node. It will not appear in the
output fromdu, so we have to create it ourselves to get everything started. We
call this theroot node and we save its name in a global variable callemt .

The next time we calbet _usage, we can destroy the old tree simply by
destroying the root node, and then start a new tree by creating a new root node.

We can put all of this together in an application like the one shown in Hgure

5. A complete example appears in the ifidd/tree/tree2.itc] so | will not show

all of the code here. But it works something like this. When the user types a
directory name at the top of this application, we call the proceghiraisage

to executedu and build a tree containing the output. We then call another proce-
dure show usage to display the root object in a listbox. The code for
show usage appears in Example-7.

We start by clearing the listbox and clearing any elements that might have been
selected. If this node has a parent, we addBHEK UPelement at the top of

the listbox. Double-clicking on this element will invokbow usage for the
parent directory, so you can move back up in the hierarchy. We use the

18

Chapterl: Object-Oriented Programming with [incr Tcl]

Examplel-7 The contents of any Tree node can be displayed in a listbox.

proc show usage {obj} {
gl obal root |box

catch {unset | box}
.di splay. | box delete O end
.display.lbox selection clear 0 end

set counter O

if {[$obj get -parent] !'=""} {
.display. | box insert end " <~ BAXK W
set | box($counter) [$obj get -parent]
i ncr counter

foreach kid [$obj contents] {
set nane [$kid get -nane]
set size [$kid get -val ue]
.display.lbox insert end [fornmat "%d %50s" $size $nant]
set | box($counter) $kid
i ncr counter

}
}

cont ent s method to scan through the list of child nodes, and for each of these

nodes, we add an element showing the directory size and its name. Double-
clicking on any of these elements will invokbow usage for their node, so

you can move down in the hierarchy. We use a constant-width font for the

listbox, and we format each line with the Tdrnat command, to make sure

that size and name fields align properly as two columns.

Notice that as we create each element, we are careful to build an array called
I box which maps the element number tdr@e node. Later on when we get a
double-click, we can use this array to figure out whicee node to show. We
simply add a binding to the listbox like this:
bind . di spl ay. | box <Doubl e-ButtonPress-1> {
set index [.display.lbox nearest %]

show usage $| box($i ndex)
br eak

}
When the double-click occurs, th§ field is replaced with the y-coordinate of
the mouse pointer, and the listbsar est operation returns the number of the
element nearest this position. We convert this to the correspofdiagbject
using thel box array, and then usshow usage to display the information for
that node. Normally, the double-click would also be handled as another ordi-
nary button press event, but we are careful to avoid this by breaking out of any
further event processing.

Without the Tree class, this application would have been considerably more
difficult to write. [INCR TcL] solves the problem by providing a way to create
new data structures. Data structures are encapsulated with a well-defined set of

19

Tcl/Tk Tools

methods to manipulate them. This naturally supports the creation of libraries.
A generic component like the ee class can be written once, and reused again
and again in many different applications.

Interface vesus Implementation

As classes get more complicated, and as method bodies get longer, the class
definition becomes more difficult to read. Finding important information, like
the method names and argument lists, is like looking for a needle in a haystack
of [INCR TcL] code. But a method body does not have to be included with the
method declaration. Class definitions are much easier to read if the bodies are
defined elsewhere, using thedy command. For example, oliree class can

be rewritten as shown in ExampleB.

Examplel-8 Separating the Tree class interface from its implementation.

class Tree {
vari abl e nane ""
variabl e value ""
variabl e parent ""
variable children ""

constructor {n v} {
set nane $n
set val ue $v

destructor {
cl ear

net hod add {obj}

nethod clear {}

net hod parent {pobj}

nethod get {{option -val ue}}
nethod contents {}

}

body Tree::add {obj} {
$obj parent $this
| append chi | dren $obj

body Tree::clear {} {
if {$children!=""} {
eval del ete object $children

}
set children ""

}
body Tree::parent {pobj} {
set parent $pobj

body Tree::get {{option -val ue}} {
switch -- $option {
-nane { return $nane }
-value { return $value }
-parent { return $parent }

20

Chapterl: Object-Oriented Programming with [incr Tcl]

Examplel-8 Separating the Tree class interface from its implementation.

}
error "bad option \"$option\""

}
body Tree::contents {} {
return $children

Since thebody commands appear outside of the class definition, we cannot use
simple method names likedd. Remember, we could have other classes that
also have aradd method. Outside of the class, we must use a full name like
Tree: : add to identify the method. A class name followed by™characters is
called ascope qualifier You can add this to any method name or variable name
to clear up ambiguities.

The class definition establishes once and for all what methods are available, and
how they are used. Whatever arguments you give when you declare a method,
you must use the same arguments later when you define the method body. For
example, when we declared tfieee: : add method, we said that it takes one
argument namedbj . Later, when we defined the body, we used the same argu-
ment list. When we declared tfeee: : cont ent s method, we gave it a null
argument list. Again, when we defined the body, we repeated the null argument
list. If you make a mistake and the argument lists do not matchyothe
command will report the error.

It turns out that the argument lists don’t have to match letter for letter, but they
must match in meaning. The argument names can change, but the argument
lists must have the same number of required arguments, and all optional argu-
ments must have the same default values. For example, when we declared the
Tree:: get method, we said that it has one argument naoptdlon with a

default value *val ue”. When we define the body we must still have one argu-
ment with a default value Val ue”, but its name could be anything, like this:

body Tree::get {{new -val ue}} {
switch -- $new {

}
}
If you use the speciargs argument when you declare a method, you can
replace it with other arguments when you define the method body.arfise
argument represents variable argument lists, so it acts like a wildcard when the
argument lists are compared by toely command.

If you want to completely suspend this consistency check, you can simply leave
the argument list off when you declare the method in the class definition. The
body command will have no argument list to compare against, so it will use
whatever argument list you give it.

21

Tcl/Tk Tools

Since the constructor and destructor declarations have a slightly different
syntax, their bodiemustbe included in the class definition. However, you can
declare them with null bodies, and redefine the bodies later usingotlye
command. If you do this, the argument list for the constructor must match what-
ever appears in the class definition, and the argument list for the destructor must
always be null.

The cl ass command defines thimterface for a class, and subsequéditdy
commands define thenplementation Separating the interface from the imple-
mentation not only makes the code easier to read, but as we will see below, it
also supports interactive development.

Protection Leels: Public and Private

Usually, the class methods are the public part of an object, and the class vari-
ables are kept hidden inside. But what if you want to keep a method hidden for
internal use? In oufr ee class, for example, thgarent method is used inter-
nally to tell a child that it has a new parent. If it is exposed, someone using the
Tree class might be tempted to call it, and they could destroy the integrity of
the tree. Or consider the opposite problem: What if you want to allow access
to a variable? In oufr ee class, thenane andval ue variables are kept hidden
within an object. We addedget method so that someone using the class could
access these values, but there is a better way to handle this.

You can use theubl i c andpri vat e commands to set the protection level for
each member in the class definition. For example, we can use these commands
in ourTr ee class as shown in Examle9.

Examplel-9 Adding protection levels to the Tree class.

class Tree {

public variable nane ""
public variable val ue ""

private variabl e parent ""
private variable children ""

constructor {args} {
eval configure $args

destructor {
cl ear

public nethod add {obj}
public nethod clear {}
private nethod parent {pobj}

publ i c met hod back {}
public nethod contents {}

22

Chapterl: Object-Oriented Programming with [incr Tcl]

Any member can be accessed by methods within the same class, but only the
public members are available to someone using the class. Since we declared the
par ent method to be private, it will not be visible to anyone outside of the class.

Each class has built-itonf i gur e andcget methods that mimic the behavior of
Tk widgets. Theconfi gure method provides access to an object’s attributes,
and thecget method returns the current value for a particular attribute. Any
variable declared to be public is treated as an attribute that can be accessed with
these methods. Just by declaring thee andval ue variables to be public, for
example, we can say:

Tree henry

henry configure -nane "Henry Fonda" -val ue "great actor"

puts " nane: [henry cget -nane]"

puts "val ue: [henry cget -val ue]"
Just like Tk, the attribute names have a leadiigsign. So if the variable is
callednane, the attribute is nane.

You can also set the attributes when you create an object, as long as you define
the constructor as shown in Examfi®. For example, we can say:

Tree henry -nane "Henry Fonda" -val ue "great actor"

The extra arguments are captured byathgs argument and passed along to the
confi gure method in the constructor. Tlewal command is needed to make
sure that thear gs list is not treated as a single argument, but as a list of option/
value pairs. It is a good idea to write your constructor like this. It mimics the
normal Tk behavior, and it lets someone using the class set some of the
attributes, and leave others with a default value.

Now that we know about the built-tget method, ouget method is obsolete.
We have removed it from the class definition in Exanip® in favor of eback
method that can be used to query the parent for a particular node.

Since anyone can change a public variable by configuring it, we need a way to
guard against bad values that might cause errors. And sometimes when an
option changes, we need to do something to update the object. Public variables
can have some extra code associated with them to handle these things. When-
ever the value is configured, the code checks for errors and brings the object up
to date. As an example, suppose we addaat option to theTr ee class, to
indicate how the contents of each node should be sorted. Wheneveoithe

option is set, the code associated with it could reorder the child nodes. We
could update thér ee class to handle sorting as shown in Exaniple.

We add a-sort option simply by adding a public variable calledrt. Its
initial value is"", which means that by default, sorting is turned off. We can

23

Tcl/Tk Tools

Examplel-10 Tree class with a -sort option.

class Tree {
public variable name ""
public variable val ue ""

public variable sort ""
private variable lastSort ""

private variabl e parent ""
private variable children ""

constructor {args} {
eval configure $args

destructor {
cl ear

public nethod add {obj}
public nethod clear {}
private nethod parent {pobj}

publ i c nethod back {}
publ i c nethod contents {}
private nethod reorder {}

body Tree::add {obj} {
$obj parent $this
| append chi | dren $obj
set lastSort ""

}

body Tree::contents {} {
reor der
return $children

body Tree::reorder {} {
if {$sort !=$lastSort} {
set children [Isort -command $sort $chil dren]

}
set |lastSort $sort

confighody Tree::sort {
reor der

add some code to this variable in the class definition, right after its default
value. Or we can define it later with eonfi gbody command. The
confi gbody command is just like thbody command, but it takes two argu-
ments: the name of the variable, and the body of code. There is no argument
list for a variable, as you would have for a method. In this example, we use the
confi gbody command near the end to define the code forstiré variable.
Whenever the-sort option is configured, we call theeorder method to
reorder the nodes.

24

Chapterl: Object-Oriented Programming with [incr Tcl]

If there are a lot of nodes, reordering them can be expensive. So we try to avoid
sorting whenever possible. We have a variable cdlest Sort that keeps

track of the last value for thesort option, which is the name of some sorting
procedure, as we’ll see below. We can callrtber der method as often as we
want, but it will reorder the nodes only if theort option has really changed.

We also set things up so that the nodes will be reordered properly if a new node
is added. We could just reorder the list each time a node is added, but that
would be expensive. Instead, we reorder the list when someone tries to query it
via thecont ent s method. Most of the time, the list will already be sorted, and
the reorder method will do nothing. Whenever we add a node inattict
method, we reset the valuelaist Sort to"", so that the next call wont ent s

will actually reorder the nodes.

The conf i gure method automatically guards against errors that occur when an
option is set. For example, if we say:

Tree henry

henry configure -sort bogus_sort_proc -val ue 1
the confi gure method finds the public variabsort and sets it to the value
bogus_sort _proc. Then it looks for code associated with this variable and
executes it. In this case, it calls theor der method to reorder the nodes using
the procedurdogus_sort _proc. If this causes an error, the variable is auto-
matically reset to its previous value, and ttenfi gure command aborts,
returning an error message. Otherwise, it continues on with the next option, in
this case handling theval ue option.

Let's take a look at how thesort option is actually used. In threor der
method, thesort value is given to the Tdlsort command to do the actual
sorting. Thel sort command treats this as a comparison function. As it is
sorting the list, it calls this function again and again, two elements at a time, and
checks the result. The function should return “+1” if the first element is greater
than the second, 1* if the first is less than the second, and “0” if they are
equal. Thd sort command orders the two elements accordingly.

For example, if we want an alphabetical listingToée objects, we could write
a function like this to compare theane options:

proc cnp_tree nanes {obj 1 obj 2} {

set val 1 [$obj 1 cget -naneg]

set val 2 [$obj 2 cget -nane]

return [string conpare $val 1 $val 2]
}

and we could tell a particular Tree object Iiexry to use this:

henry configure -sort cnp_tree nanes

25

Tcl/Tk Tools

Its children would then be listed alphabetically. If we wanted a value-ordered
list, we could write a function likenp_tree val ues to compare theval ue
attributes, and use that function astkert option.

We can put all of this together in a new and improshedrowser, as shown in
Figurel-7. A complete code example appears in theitfiléree/tree5.itc] but

it works like this. When the user clicks on a radiobutton to change the sorting
option, we configure thesort option for the node being displayed, query its
children, and update the listbox.

= =]

Directory: %lfusn’localfitcl |

Sort: ¢ By Name .. By Size

<- BACK UP
3382643 jusr/local/itcl/bin
100981 fusr/local/itcl/include
2853306 fusr/local/itcl/lib
2274019 fusr/local/itcl/man

Figure 1-7 An improved “du” browser with radiobuttons to control sorting.

Common ¥riables and Pocedues

Sometimes it is necessary to have variables that do not belong to any particular
object, but are shared among all objects in the class. In C++, they are referred
to asstatic data membersin[INCR TcL], they are calledommon variables

We can see the need for this in the following example. Suppose we improve
our du application to have a graphical display like the one shown in Fig8re

Each file name has an icon next to it. We could use a canvas widget in place of
a listbox, and draw each entry on the canvas withsaal Rep object, as we did

in Examplel-2.

In this example, we will take things one step further. We set up the browser so
that when you click on a file, it becomes selected. It is highlighted with a gray
rectangle, and its usage information is displayed in a label at the bottom of the
application.

We can fix up ouiM sual Rep class to do most of the work for us. We will add
sel ect and desel ect methods, so that eacti sual Rep object will know
whether or not it is selected, and will highlight itself accordingly. A complete

26

Chapterl: Object-Oriented Programming with [incr Tcl]

y
= |

Directory: [fausocanite]

1]

Sort: ¢ By Name - By Size

4 Back up

(3 fusrflocalfitclbin

(3 fusrflocalfitclfinclude
(3 fusrflocalfitcifib

(3 fusrflocalfitcliman

1 usrlocalfitciin: 3382 kb

Figure 1-8 An improved “du” browser with a graphical display.

code example appears in the fitel/tree/tree6.itc) but theM sual Rep class
itself appears in Example11.
Examplel-11 An improved VisualRep class with select/deselect methods.

i mage create photo defaultlicon -file default.gif

class M sual Rep {
public variable icon "defaul tlcon"
public variable title ""

private variabl e canvas ""

constructor {cw n args} {
set canvas $cw n
if {I[info exists sel ectedjs($canvas)]} {
set sel ect ed(j s($canvas) ""

}
eval configure $args

}
destructor {
desel ect
$canvas del ete $this

public nethod draw {ul Var nidVar}
public nethod sel ect {}
publ i c nethod desel ect {}

publ i c nethod canvas {args}
private common sel ect ed(hj s

public proc clear {canv}
public proc sel ected {canv}

}

We have made a lot of improvements on thsual Rep class presented in
Examplel-1. We still need to keep track of the canvas containingfthe-

27

Tcl/Tk Tools

al Rep, so we still have a privateanvas variable. But we have added the
public variables con andti t| e so that we can treat the icon image and the title
string as configuration options. We also changed the constructor so that the
canvas widget must be specified, but everything else is optional. If we create a
M sual Rep object like this:

canvas . di spl ay. canv

M sual Rep vrl .display.canv -title "/usr/local/lib"
we get the default icon with the titlédsr/l ocal /i b”. The constructor saves
the canvas name in theanvas variable, does something with the
sel ect ed@j s array that we’ll talk more about below, and then does the usual
“eval configure $args” to handle the configuration options.

We also changed the way we use dhawmethod. We won't show the imple-
mentation here—you can check ftlee/tree6.itclfor details—but this is how it
works. Instead of a simpl&,{) coordinate, we pass in the names of two vari-
ables. These are used by tir@w method, and then modified to return some
drawing information. The first argument is an array representing the upper-left
corner for thevi sual Rep object. If we have & sual Rep object called/r 1 and

we want its upper-left corner at the coordiné®37), we might call thedr aw
method like this:

set ul (x) 25

set ul(y) 37

vrl draw ul mdpt
Before it returns, theraw method modifies thg coordinate in thel array so
that it points to the next position, immediately below thsual Rep object that
we have just drawn. This makes it easy to draw a list sfial Rep objects on
the canvas, even if their icons are different sizes. dflaermethod also stores
thex andy coordinates for the midpoint of the icon in thelpt variable. This
will come in handy for another example that we’ll see later in this chapter.

As we said before, we have also addesiect and desel ect methods to
support file selection. When you click on a file in the browser, we call the
sel ect method for itsM sual Rep. Thus, if you click on a file that has a
M sual Rep namedvr 1, we call itssel ect method like this:

vr1l sel ect

the object would be highlighted with a gray rectangle. If we caltiésel ect
method like this:

vr1 desel ect

28

Chapterl: Object-Oriented Programming with [incr Tcl]

it would go back to normal. In theory, we could select as many objects as we
want simply by calling theisel ect methods. This might be useful in a file
browser that allows many files to be moved, copied or deleted at once.

When multiple objects can be selected, we need to keep a list of all the
M sual Rep objects that are selected. But eathual Rep object keeps track of
itself, and knows nothing about other objects in the class. Somewhere we have
to keep a master list of selected objects. We want something like a global vari-
able, but we want to keep it protected within the class, where it is actually used.
In this case, we want@mmorvariable.

We create a common variable calksal ect ed(j s, as shown near the bottom

of Examplel-11. We declare it to be private so that it can be accessed only
within the class. Instead of keeping one master list with allMlseial Rep

objects that are selected, we keep a separate list for each canvas. That way, we
can find out later what objects are selected on a particular canvas. To do this,
we treat thesel ect ed(hj s variable as an array, with a different slot for each
canvas. Whenever we creatéiasual Rep object, we make sure that a slot
exists for its associated canvas, and if not, we create one. This is handled by
some code in the constructor.

We handle the selection ofMasual Rep object like this:

body M sual Rep::select {} {
$canvas itentonfigure $this-hilite -fill LightGay

if {[Isearch $sel ect ed(pj s($canvas) $this] < 0} {
| append sel ect ed(j s($canvas) $this
}
}

The first statement turns on the gray rectangle on the canvas. brae
method, we make an invisible rectangle tagged with the rémies-hilite,
so when we want it to appear, we simply change its fill color. Next, we check
to see if this object appears on the list of selected objects for its canvas. If not,
we add it to the list.

Notice that we can access thal ect ed(bj s variable without declaring it with
anything like the Tclgl obal command. It has already been declared in the
class definition, so it is known by all methods in the class.

We handle the de-selection like this:

body M sual Rep: : desel ect {} {
$canvas itenconfigure $this-hilite -fill ""

set i [lsearch $sel ect edj s($canvas) $this]

29

Tcl/Tk Tools

it {$ >=0 {
set sel ect ed@j s($canvas) [Irepl ace $sel ect edj s($canvas) $i $i]
}

}
We turn off the gray rectangle by making its fill color invisible. Then we find
the object on the list of selected objects, and we remove it from the list.

At this point, we know whichM sual Rep objects are selected, but we still
haven’t answered our question: What if someone using the class wants to get a
list of all the Visual Rep objects that are selected? Remember, the
sel ect ed@j s variable is private. It cannot be accessed outside of the class.
We did this on purpose to prevent anyone else from tampering with it.

One way to solve this problem is to add a method calldect ed which
returns a list of objects that are selected on a particular canvas. After all, a
method has access to things inside the class. This would work, but then each
time we wanted to use the method, we would need to find an object to talk to.
For example, we might ask an object nametllike this:

set objlist [vrl sel ected .display.canv]

This is awkward, and there is a better way to handle it. We need a function that
belongs to the class as a whole. In C++, this is calidte member function

In [INCR TcL], it is called aprocedureor proc. Class procedures are just like
ordinary Tcl procedures, but they reside within the class, so their names won'’t
conflict with other procedures in your application.

A procedure is declared with th@oc command, as shown at the bottom of
Examplel-11. In many respects, it looks like a method. But a procedure
belongs to the class as a whole. It doesn’t know about any specific object, so it
doesn’t have access to instance variablesildan, titl e andcanvas. It has
access only to common variables.

The advantage of using a procedure is that it can be called like this:
set objlist [Msual Rep::sel ected .display.canv]

Since we are calling this from outside of the class, we have to use the full name
M sual Rep: : sel ected. But we do not have to talk to a specific object. In
effect, we are talking to the class as a whole, asking for the objects that are
selected on a particular canvas. The implementation of this procedure is fairly
trivial:

30

Chapterl: Object-Oriented Programming with [incr Tcl]

body M sual Rep: : sel ected {canv} {
if {[info exists sel ectedjs($canv)]} {
return $sel ect ed(j s($canv)
}

return ™"

}
We simply look for a value in theel ect edbj s array, and return that list.

Procedures are also useful when you want to operate on several objects at once,
or perhaps on the class as a whole. For example, we carchdar procedure

to deselect all of th¥&f sual Rep objects on a particular canvas. We might use

the procedure like this:

M sual Rep: : cl ear . displ ay. canv
and it is implemented like this:

body M sual Rep: : cl ear {canv} {
if {[info exists sel ectedjs($canv)]} {
foreach obj $sel ect ed(j s($canv) {
$obj desel ect
}

}

It simply finds the list of objects that are selected on the canvas, and tells each
one to deselect itself.

Inheritance

Object-oriented systems provide a way for one class to borrow functionality
from another. One class carherit the characteristics of another, and add its
own unique features. The more generic class is caltleda classand the more
specialized class is calledderived class This technique leads to a style of
programming-by-differences, and helps to organize code into cohesive units.
Without inheritance, object-oriented programming would be little more than a
data-centric view of the world.

Single Inheritance

We can use oufr ee class to build a regular file browser like the one shown in
Figurel-9. You enter a directory name at the top of the browser, and it lists the
files and directories at that location. Directories are displayed with a trafling “
character, and files are displayed along with their size in bytes. If you double-
click on a directory name, the browser displays that directory. If you double-
click onBACK UP, you go back to the parent directory.

31

Tcl/Tk Tools

[?-

Sort: ¢ By Name - By Size

<- BACK UP
fusr/local/fitcl/1lib/itcl2.0/
fusr/localfitcl/1ibsitk2.0/
#usr/local/itcly/libyividgets2.0/
81884 fusr/localfitcl/lib/libitcl2.0.a
36728 fusr/localfitcl/lib/libitk2.0.a
428186 fusr/local/itcl/lib/libtcl7.4.a
620118 fusr/localfitcl/lib/libtkd4.0.a
fusr/localfitcl/lib/tcl? .4/
E fusr/localfitcl/1libstkd .07

Figure1-9 A simple file browser built with the FileTree class.

We could build a tree to represent all of the files on the file system and display
it in this browser, just like we did for thdu application. But instead of
spending a lot of time to build a complete tree, we should start with a single
node. When the user asks for the contents of a directory, we will look for files
in that directory and add some nodes to the tree. With this scheme, we can
bring up the file browser quickly and populate the tree as we go along.

We could add a little extra functionality to oliree class to support the file
system queries, but having a genefiee class is useful for many different
applications. Instead, it is better to create a sep&r&&lr ee class to repre-

sent the file system, and have it inherit the basic tree behavior Trem
Inheritance relationships are often describeds-asrelationships. IH | eTree

inherits fromTree, then aF | eTree is-a Tree, but with a more specialized
behavior. The relationship between these classes can be diagramed using the
OMT notatiod as shown in Figurg-10.

Tree

* is-a

|
FleTree

Figure 1-10 Diagram of the relationship between the Tree base class and its FileTree
specialization.

t James Rumbaugh, Michael Blaha, William Premerlani, Frederick Eddy and William Lo®bsen,
ject-Oriented Modeling and DesigRrentice-Hall, 1991.

32

Chapterl: Object-Oriented Programming with [incr Tcl]

The file itcl/tree/tree?.itcl contains a complete code example for the file
browser, but théi | eTr ee class is shown in Examplel2. Thei nherit state-
ment brings in all of the characteristics from the base dless. Because of
this statement, thB | eTr ee automatically acts like a tree. It keeps track of its
parent and its children, and it has all of the uduak methods includingdd,
contents, back andclear. It also has the configuration optionsane,
-val ue and-sort.

Examplel-12 The FileTree class inherits from Tree.

class FleTree {
inherit Tree

public variable procreate ""

private variable file ""
private variable ntine O

constructor {fnane args} {
if {I[file exists $fnang]} {
error "file not found: $f nane"

}

set file $f nane

eval configure $args
}

publ i c nethod contents {}
private nethod popul ate {}
}

body FileTree::popul ate {} {
if {[filenine $file] = $mine} {
cl ear
foreach f [glob -noconplain $file/*] {
add [upl evel #0 $procreate $f]

}
set mine [file nine $file]

}

body FileTree::contents {} {
popul at e
return [Tree: : content s]

In theF | eTr ee class, we redefine thmnt ent s method. When you ask for the
contents of aH | eTree node, we invoke another method callpdpul at e
which automatically scans the file system and creates child nodes. After we
have populated the node, we use the u3ued: : cont ents method to return

the list of children.

Notice that we are careful to sdyee: : contents. Whenever the base class

and the derived class both have a method with the same name, you need to
include a scope qualifier like this to avoid ambiguity. If you use a simple,
unqualified name likeont ent s, you will get the most-specific implementation

for the object. For aF|eTree object, the namecontents means

33

Tcl/Tk Tools

FleTree::contents. If you want some other version of the method, you
must use a qualified name likeee: : content s.

When an object gives you the most-specific implementation of a method, the
method is said to beirtual. This is a fundamental feature of object-oriented
programming. It lets you treat all the objects in a class the same way, but it lets
specialized objects react in their own specialized manner. For example, all
Tr ee objects have aont ent s method that returns a list of child nodes. So you
can get the contents of either an ordindrge object or aF | €Tr ee object.
When you get the contents of an ordin@rge object, it simply returns a list of
object names. But when you get the contentstafl Tr ee object, it will look

for files and automatically create the child nodes before returning their names.
You don’'t have to remember what kind of tree object you're talking to. You
simply call thecont ent s method, and each object does the right thing.

This is true even when you call a method from a base class context. Suppose
for a moment that we had defined ttleear method in théelr ee base class like
this:
body Tree::clear {} {
set objs [contents]
if {$objs !=""} {
eval del ete object $objs
}

set children ""

}
Instead of using thehi | dren variable directly, we have used thentents
method to query the list of children. When you clear an ordifiaeg object, it
would useTree::contents to get the list of children. This simply returns
$chil dren, so it looks as though nothing has changed. But when you clear a
F | eTr ee object, it would uséi | €Tree: : cont ent s to get the list of children.
It would look for files and automatically create the child nodes, and then turn
right around and delete them. In this case, usingadhtent s method may be
a dumb idea. But it does illustrate an important point: The methods that you
call in a base class use the specialized behaviors that you provide later on for
derived classes. Again, each object does the right thing depending on its type.

We set up the constructor so that you cannot crebi¢ €lr ee object without
saying what file or directory it represents. You might credfe aTr ee object
like this:

FileTree barney /usr/local/lib -nane "l ocal Iibraries"

The first argument/(sr/1 ocal /1i b) is assigned to thenane parameter. The
constructor makes sure that the file exists, and then copies the naméitbethe

34

Chapterl: Object-Oriented Programming with [incr Tcl]

variable. If the file is not found, the constructor returns an error, and the object
creation is aborted.

The remaining argumentsrane "l ocal |ibraries") are treated as configu-
ration options. They are absorbed by #ings parameter, and they are applied
by calling theconfi gure method at the bottom of the constructor. Remember,
aFH |l eTreeis-aTree, so it has options likenane and- val ue.

When we query the contents ofd eTr ee node, it is automatically populated.
The popul at e method treats the file name as a directory and useg! thie
command to query its contents. We create a [fdwTr ee object for each file

in the directory and add it to the tree using &dd method. Once a node has
been populated, we save the modification time for its file imthee variable.

We can calpopul at e as often as we like, but the node will not be re-populated
unless the modification time changes.

EachH | eTr ee object populates itself by adding néw eTr ee objects as child
nodes. We’'ll call this procesgrocreation We could create the offspring
directly within thepopul at e method, but this would make it hard to use the
sameH | eTree in lots of different file browsers. For example, one file browser
might set the val ue option on eacltH | eTr ee object to store the size of the
file, so files could be sorted based on size. Another might setv#hee option

to store the modification time, so files could be sorted by date. We want to
allow for both of these possibilities (and many more) when we create each
H | eTr ee object.

One solution is to add a procreation method to FEheeTree class. The
popul at e method would call this whenever it needs to creaté l&Tree
object. We could have lots of different derived classes that overload the procre-
ation method and create their offspring in different ways. This approach works
fine, but we would probably find ourselves creating lots of new classes simply
to override this one method.

Instead, let's think for a moment about the Tk widgets. You may have lots of
buttons in your application, but they all do different things. Each button has a
- comnmand option that stores some code. When you push a buttertoitsand

code gets executed.

In the same manner, we can addpaocr eat e option to theH | eTree class.
Whenever aH | eTree object needs to procreate, it calls whatever procedure
you specify with the procreat e option, passing it the file name for the child
object. This is what we do in thgopul ate method, as you can see in
Examplel-12.

35

Tcl/Tk Tools

Whenever you have an option that contains code, you have to be careful how
you execute the code. We could usedbha@ command to execute the procre-
ation code, but it might be more than just a procedure name. For all we know, it
could be a whole script of code. If it sets any variables, we don’t want to affect
variables inside thepopul ate method by accident. Instead, we use
“upl evel #0" to evaluate the command at the global scope, outside of the
F | eTree class. If it accidentally sets a variable lildd e, it will be a global
variable calledi | e, and not the private variablé| e that we can access inside

the popul at e method. We will explore scoping issues like this in more detail
later in this chapter. But for now, just remember to ugkével #0” to eval-

uate any code passed in through a configuration option.

We can tell aH | eTree object likebar ney to procreate with a custom proce-
dure like this:

barney configure -procreate create_node

When barney needs to procreate, it calts eat e _node with the child’s file
name as an argument. This in turn creatéd aTr ee object for the file, config-

ures options like nane, -val ue and-sort, and returns the name of the new
object. For example, we could use a procedure like this to set the file modifica-
tion time as the value for each node:

proc create node {fnane} {
set obj [FleTree #auto $f nane -nane "$f nane"]
$obj configure -value [file niine $f nane]
return $obj
}
We can use all of this to build the file browser shown in Figuge Again, the
file itcl/tree/tree?.itclcontains a complete code example, but the important parts
are shown in Example-13.

When you enter a directory name at the top of the browser, we call the
| oad_dir procedure to build a new file tree. If there is an existing tree, we
destroy it by destroying its root node. Then, we create a new root object to
represent the tree. At some point, we use another procedure sladiedli r

(not shown here) to display the contents of this node in a listbox. When you
double-click on a directory, we cahow di r for that node. When you double-
click on BACK UP, we callshow dir for the parent node. Whenever we call
show di r, it asks for the contents of a node, and the node populates itself as
needed.

The root object uses thereat e node procedure to procreate. When its child
nodes are created, directory names are given a trailing “/”, and regular files are
given a value that represents their size. All child nodes are configured to

36

Chapterl: Object-Oriented Programming with [incr Tcl]

procreate using the sanoeeat e node procedure, so each node expands the
same way.
Examplel-13 A simple file browser built with the FileTree class.

set root
proc load dir {dir} {
gl obal root

if {$root '=""} {
del ete obj ect $root

}
set root [FileTree #auto $dir -procreate create _node]
return $root

}
proc create node {fnane} {
if {[fileisdirectory $f nange]} {
set obj [FleTree #auto $f nane - nane "$f nane/ "]
} else{
set obj [FleTree #auto $f nane - nane $f nane]
$obj configure -value [file size $f nane]
}
$obj configure -procreate create node

return $obj

Multiple Inheritance

Suppose we want to create a file browser with a graphical display like the one
shown in Figurel-11.

=

E-

Directory: il.fusn’locamtcl

[itel

—(3 bin

H(3J include

B itclh

[itkh

ER

LB tch

3 1ib

{3 itclz.0
t[j init.itcl

B tclapplnit.c

T L7 0

T p

|]

9 File: usrflocalitclincludesitclh

Figure 1-11 A file browser with a graphical display.

We have all of the pieces that we need. We can ude Lledr ee class to store
the file hierarchy, and thé sual Rep class to draw file elements on a canvas.

37

Tcl/Tk Tools

But how do we combine these elements together? One solution is to use inherit-
ance. We might create a cladssual FH | eTr ee to represent each file on the
display. We could say th&t sual FH | eTree is-a H | eTree, since it represents

a node in the file hierarchy, andisual F | eTr ee is-a M sual Rep, since it will

be drawn on a canvas. In this cadesual H | eTr ee needs to inherit from two
different base classes. This is calfedltiple inheritance A diagram of these
relationships is shown in Figutel2.

Tree

A

|
FileTree M sual Rep

A A

| |
M sual F | eTree

Figure 1-12 Diagram of class relationships with multiple inheritance.

The file itcl/tree/tree8.itcl contains a complete code example for the file
browser, but th&f sual FH | eTr ee class itself is shown in Examplel4.

Examplel-14 VisualFileTree class used for the file browser shown in Fitpdre.

class Msual FHleTree {
inherit HIleTree M sual Rep

public variable state "cl osed"
public variabl e sel ect coomand ""

constructor {file cwn args} {
Fi |l eTree::constructor $file
M sual Rep: : constructor $cw n

eval configure $args

public nethod sel ect {}
public nethod toggl e {}

public nethod draw {ul Var nidVar}
public nethod refresh {}
}

body M sual F | eTree: :select {} {
M sual Rep: : cl ear $canvas
M sual Rep: : sel ect
regsub -all {%)} $sel ectcommand $this cnu
upl evel #0 $cru
}

body M sual Fil eTree::toggl e {} {
if {$state = "open"} {
set state "cl osed"
} else {

38

Chapterl: Object-Oriented Programming with [incr Tcl]

Examplel-14 VisualFileTree class used for the file browser shown in Fitpire.
set state "open"

refresh

configbody Vsual FleTree::state {
if {$state != "open" & $state != "closed'} {
error "bad value \"$state\": shoul d be open or cl osed"

refresh

body M sual F | eTree: :draw {ul Var mdvar} {
upvar $ul Var ul
upvar $mdvar md

M sual Rep: :draw ul md
$canvas bind $this <ButtonPress-1> "$this sel ect"
$canvas bind $this <Doubl e-ButtonPress-1> "$this toggl e"

set Ir(x) [expr $ul (x) + 2*($md(x)-$ul (x))]
set Ir(y) $ul(y)

if {$state = "open"} {
foreach obj [contents] {
$obj draw |r nid2
set id [$canvas create |ine \
$md(x) Smd(y) $md(x) $md2(y) $nd2(x) $md2(y) \
-fill black]
$canvas | over $id

) éet ul (y) $lr(y)

body M sual FleTree::refresh {} {
set root $this
vhile {[$root back] !=""} {
set root [$root back]

set ol dcursor [$canvas cget -cursor]
$canvas configure -cursor watch
updat e

$canvas del ete all

set ul(x) 5

set ul(y) 5

$root draw ul nid

set bbox [$canvas bbox all]

$canvas configure -cursor $ol dcursor -scrol | regi on $bbox

}

Each class can have only angherit statement, but it can declare several base
classes, which should be listed in their order of importance. First and foremost,
M sual FileTree is aF | eTree, but it is also a sual Rep. This means that

any methods or variables that are not definedisual FH | eTree are found

first in H | eTree, and then invi sual Rep. When base classes have members
with the same name, their order in theherit statement can affect the
behavior of the derived class.

39

Tcl/Tk Tools

Notice that we added ast at e option toM sual FH | eTree, and we redefined

the draw method to handle it. When we draw a node that diase set to
“open’, we also draw the file hierarchy underneath it. First, we call
\i sual Rep: : drawto draw the file name and its icon on the canvas. Then, if
this object is in the “open” state, we scan through the list of child nodes and tell
each one to draw itself in the space below. If a child is also in the “open” state,
it will tell its children to draw themselves, and so on.

It is easy to arrange things on the canvas. dFlagvmethod does all of the hard
work. As you will recall from Exampl&-11, we use thal array to pass in the
(x,y) coordinate for the upper-left corner of the icon. When we call
M sual Rep: : draw it draws only a file name and an icon, and it shiftgy)
down below them. When we callsual FH | €Tree: : draw it draws a file name
and an icon, and perhaps an entire file tree below it. But again, it @Hh(ifts
down so we are ready to draw the next element.

The draw method also returns the midpoint of the icon via hévVar argu-

ment. This makes it easy to draw the connecting lines between a parent icon
and each of the child icons. In thésual F | eTree:: draw method, for
example, we capture the parent coordinate imitiearray. When we call the
drawmethod for the child, it returns the child coordinate inrih@2 array. We

then draw the lines connecting these two points.

As we draw each file entry, we add some bindings to it. If you click on a file,
we call thesel ect method to select it. If you double-click on a file, we call the
t oggl e method to toggle it between the “open” and “closed” states.

We redefined thesel ect method for aVvi sual FH | €Tr ee object to support a

- sel ect coomand option. This is a lot like thecommand option for a button
widget. It lets you do something special each tinvesaal F | €Tr ee object is
selected. When we call tlsel ect method, it first calldf sual Rep: : cl ear to
deselect any other files, and then calls the base class method
M sual Rep: : sel ect to highlight the file. Finally, it executes the code stored in
the - sel ect conmand option. We useupl evel #0” to execute this code at the
global scope, so it doesn’t change any variables withirs¢hect method by
accident.

If the - sel ect coomand code contains the string4”, we user egsub to replace

it with the name of tha/ sual H | €Tr ee object before the code is executed.
This is similar to the way the Tlki nd command handles fields liké&&” and
“o". This feature lets us use the samel ect coomand for all of our

M sual FH | eTr ee objects, but each time it is executed, we know which object
was selected.

40

Chapterl: Object-Oriented Programming with [incr Tcl]

The t oggl e method toggles thest at e option betweeropen andcl osed, and
refreshes the drawing on the canvas. In effect, this opens or closes a folder in
the file hierarchy.

The ref resh method should be called whenever anything changes that would
affect the drawing on the canvas. Whenever-tbteat e option changes, for
instance, we need to refresh the drawing to expand or collapse the file tree at
that point. The configbody for tet at e variable first checks to see if the new
state is valid, and then cali®fresh to update the drawing. Thefresh
method searches up through the hierarchy to find the root of the tree. It clears
the canvas and then tells the root object to draw itself at the coordir@telf

the root is “open,” then its children will be drawn, and if they are “open,” their
children will be drawn, and so forth. The entire drawing is regenerated with
just one call ta ef r esh.

Protection Leels: Potected

So far, we have discussed two protection levels. Private class members can be
accessed only in the class where they are defined. Public members can be
accessed from any context. When one class inherits another, therefore, the
inherited members that are public can be accessed from the derived class
context. The private members are completely private to the base class.

Some members sit in the gray area between public and private. They need to be
accessed in derived classes, but they should not be exposed to anyone using the
class. For example, in thé sual Rep base class shown in Examgld 1, we

defined acanvas variable to store the name of the canvas used for drawing.
Since this is a private variable, a derived class Vikeual F | eTr ee does not

have access to it The methods shown in Exaftyié like

M sual F | eTree: : drawandM sual F | eTr ee: : sel ect will fail, claiming that

canvas is an undefined variable.

Like C++, [INCR TcL] provides a third level of protection that falls between
public and private. When members need to be shared with derived classes but
shielded from anyone using the class, they should be degeotetted We

can fix theM sual Rep class to use a protected variable as shown in Exatnple

15.

Examplel-15 “Protected” members can be accessed in derived classes.

class M sual Rep {
public variable icon "defaul t"
public variable title ""

protected variabl e canvas ""

41

Tcl/Tk Tools

Examplel-15 “Protected” members can be accessed in derived classes.
}

class Msual FleTree {
inherit FHleTree M sual Rep

publ i ¢ nethod sel ect {}

}

body M sual F | eTree: :select {} {

M sual Rep: : cl ear $canvas

M sual Rep: : sel ect

regsub -all {%} $sel ectcormand $this cnd

upl evel #0 $cru
}
As a rule, it is better to use public and private declarations for most of your
class members. Public members define the class interface, and private members
keep the implementation details well hidden. Protected members are useful
when you are creating a base class that is meant to be extended by derived
classes. A few methods and variables may need to be shared with derived
classes, but this should be kept to a minimum. Protected members expose
implementation details in the base class. If derived classes rely on these details,

they will need to be modified if the base class ever changes.

Constructos and Destructa

Each class can define one constructor and one destructor. However, a class can
inherit many other constructors and destructors from base classes.

When an object is created, all of its constructors are invoked in the following
manner. First, the arguments from the object creation command are passed to
the most-specific constructor. For example, in the command:

M sual Fi | eTree #auto /usr/local /lib .canv -icon dirlcon

the arguments /usr/local/lib .canv -icon dirlcon” are passed to
Misual H | eTree:: constructor. If any arguments need to be passed to a base
class constructor, the derived constructor should invoke it using a special piece
of code called aninitialization statement This statement is sandwiched
between the constructor’'s argument list and its body. For example, the
Vi sual H | eTree class shown in Example14 has an initialization statement
that looks like this:

FileTree::constructor $file
M sual Rep: : constructor $cwi n

The fil e argument is passed to tikel eTree: : constructor, and thecw n
argument is passed to thlesual Rep: : const ruct or. The remaining arguments
are kept in thar gs variable, and are dealt with later.

42

Chapterl: Object-Oriented Programming with [incr Tcl]

After the initialization statement is executed, any base class constructors that
were not explicitly called are invoked without arguments. If there is no initial-
ization statement, all base class constructors are invoked without arguments.
This guarantees that all base classes are fully constructed before we enter the
body of the derived class constructor.

Each of the base class constructors invoke the constructors for their base classes
in a similar manner, so the entire construction process is recursive. By default,
an object is constructed from its least-specific to its most-specific class. |f
you're not sure which is the least-specific and which is the most-specific class,
ask an object to report its heritage. If we had sual F | eTr ee object named
fred, we could query its heritage like this:

%fred info heritage

M sual FHleTree FleTree Tree M sual Rep
This says thati sual F | €Tr ee is the most-specific class aktilsual Rep is the
least-specific. By default, the constructors will be called in the order that you
get by working backward through this list. Clasgkssual Rep would be
constructed first, followed byiree, FH | eTree, and i sual F | eTree. Our
initialization statement changes the default order by calling out
F | eTree: : construct or beforeM sual Rep: : construct or.

Objects are destroyed in the opposite manner. Since there are no arguments for
the destructor, the scheme is a little simpler. The most-specific destructor is
called first, followed by the next most-specific, and so on. This is the order that
you get by working forward through the heritage list.sual F | eTr ee would

be destructed first, followed Wy | eTr ee, Tr ee and\ sual Rep.

Inheritance vesus Composition

Inheritance is a way of sharing functionality. It merges one class into another,
so that when an object is created, it has characteristics from both classes. But in
addition to combining classes, we can also combine objects. One object can
contain another as a component part. This is referred tcasmpositionalor
has-arelationship.

For example, suppose we rewrite oMrsual HleTree class so that a
M sual F | eTree is-a F | eTree, but has-a\M sual Rep as a component part.
Figure1-13 shows a diagram of this design.

The code for thidf sual F | €Tr ee class is quite similar to Examplel4, but
we have highlighted several important differences in bold type. Whenever we
create aMi sual FH | eTree object, we create a separafiesual Rep object to
handle interactions with the canvas. We create this component in the

43

Tcl/Tk Tools

Tree

FleTree

* is-a

| has-a
Msual FileTree K>— M sual Rep

Figure 1-13 VisualFileTree class has-a VisualRep component.

Examplel-16 VisualFileTree class which brings in VisualRep using composition instead
of inheritance.

class M sual FleTree {
inherit HleTree

public variable state "cl osed"
public variabl e sel ect coomand ""

public variable icon "" {
$vis configure -icon $icon

}
public variable title "" {
$vis configure -title $title

private variable vis ""

constructor {file cwn args} {
FleTree::constructor $file

set vis [Msual Rep #auto $cwin -icon $icon -title $title]
eval configure $args

destructor {
del ete object $vis
}

public nethod sel ect {}
public nethod toggl e {}

public nethod draw {ul Var nidVar}
public nethod refresh {}

}

body M sual F | eTree: :select {} {
M sual Rep: : clear [$vis canvas]
$vi s sel ect
regsub -all {%} $sel ectcormand $this cnud
upl evel #0 $cru

constructor, and save its name in the varigbke We delete this component in
the destructor, so that wheMasual H | €Tr ee object is deleted, itsi sual Rep

44

Chapterl: Object-Oriented Programming with [incr Tcl]

component is deleted as well. If we didn’t do this, Ytheual Rep components
would hang around indefinitely, and we would have a memory leak.

With inheritance, all of the public members from the base class are automati-
cally integrated into the derived class, becoming part of its interface. With
composition, nothing is automatic. If you need to access a method or a configu-
ration option on the component, you must write a “wrapper” in the containing
class. For example, thé sual Rep component hasi con and-titl e options

that control its appearance. If we want to be able teign and-titl e for

the M sual F | eTr ee object, we must explicitly add these variables, and include
configbody code to propagate any changes down td &l Rep component.

With inheritance, we have access to protected data members defined in the base
class. With composition, we have access only to the public interface for the
component part. Since thé sual Rep is now a separate object, we cannot
access itzanvas variable fromM sual F | eTree. But we can call itganvas

method to query the name of its canvas. (We were smart enough to add this
back in Exampld-11, although we hardly mentioned it at the time.) We use
this in thesel ect method to clear othéd sual Rep objects on the same canvas
before selecting a new one.

Inheritance and composition are like two sides of the same coin. Sometimes
inheritance leads to a better solution, sometimes composition. Many problems
are solved equally well using either approach. Knowing whether to use inherit-
ance or composition is a matter of experience and judgement, but | can give you
a few simple guidelines here.

e Use inheritance to create layers of abstraction.

For example, the code fonasual F | eTr ee is neatly abstracted into three
classes:M sual FH | eTree is-a F | eTree, whichis-a Tree. Now suppose

that we have a problem with thé sual H | eTree. We won't have to
search through all of the code to find the bug. If the problem has to do with
the tree, we look in thé&ree class. If it has to do with the file system, we
look in theF | eTree class. And so on.

¢ Use inheritance to build a framework for future enhancements.

We can extend our tree library at any point by adding new classes into the
hierarchy. For example, we might create a cMAdget Tree that is-a

Tree, but adds code to query the Tk widget hierarchy. We might create a
class SourceF | eTree thatis-a F | €Tree, but adds methods to support
source code control.

45

Tcl/Tk Tools

« Use composition when you catch yourself making exceptions tisthe
rule.

With inheritance, all of the public variables and all of the methods in the
base class apply to the derived class. For exarAfle]Tree is-aTree, so

we can treat it exactly like any oth@&ree object. We can add nodes to it,
reorder the nodes, clear the nodes, and setrie, - val ue and-sort
options. If you catch yourself making exceptions to this, then you are no
longer talking about inheritande.

Suppose you're thinking th&t | eTr ee is like aTr ee, except that you can’t
clear it, and it doesn’t have thgal ue option. In that case, you should add
the tree behavior using composition instead of inheritance. You could say
that FH | eTr ee has-aTr ee within it to maintain the actual data. Theee
would be completely hidden, but you could wrap the methods and the
options that you want to expose.

* Use composition when the relationships between classes are dynamic.

Again, with inheritanceH | eTr ee is-a Tree, once and for all time. Sup-
pose you wanted to ha¥el eTr ee switch dynamically between a tree rep-
resentation and a flat list of files. In that case, you would be better off
using composition to support interchangeable parts. You could say that
F | eTr ee has-aTr ee, or thatH | eTr ee has-ali st, depending on its mode

of operation.

e Use composition when a single object must have more than one part of the
same type.

When we first presented claglssual F | eTr ee, for example, we said that

M sual FH | eTree is-aM sual Rep, which appears on a canvas. But suppose
that you wanted a singh sual F | €Tr ee object to appear on many differ-
ent canvases. You could support this using composition. You could say
that M sual H | eTr ee has-aM sual Rep component for each canvas that it
appears on.

« Use composition to avoid deep inheritance hierarchies.

With inheritance, each class builds on the one before it. At first, this seems
like an exciting way to reuse code. But it can easily get out of hand. At

some point, it becomes impossible to remember all the details that build up
in a series of base classes. Most programmers reach their limit after some-

t C++ lets you suppress certain things coming from a base class through private inheritance. This evil
feature is not supported PyCR TcL].

46

Chapterl: Object-Oriented Programming with [incr Tcl]

thing like 5 levels of inheritance. If you trade off some of your inheritance
relationships for composition, you can keep your hierarchies smaller and
more manageable.

e If you cant decide between inheritance and composition, favor
composition.

Inheritance lets you reuse code, but it is white-box reuse. Each base class
is exposed—at least in part—to all of its derived classes. You can see this
in Examplel-15. TheM sual F | eTr ee class relies on theanvas variable
coming from thev sual Rep base class. This introduces coupling between
the two classes and breaks encapsulation. If we ever change the implemen-
tation ofM sual Rep, we may have to revisit sual FH | eTr ee.

On the other hand, composition supports black-box reuse. The internal
workings of each object are completely hidden behind a well-defined inter-
face. In Exampld-16, we modified the/ sual F | eTree class to use a

\i sual Rep component. Instead of relying on its internahvas variable,

we used a well-defined method to interact with its canvas. Therefore,
M sual F | eTree is completely shielded from any changes we might make
insideM sual Rep.

Neither inheritance nor composition should be used exclusively. Using only
one or the other is like using only half of the tools in a tool box. The choice of
tool should be based on the problem at hand. Realistic designs have many
different classes with a mixture of both relationships.

Namespaces

A namespaces a collection of commands, variables and classes that is kept
apart from the usual global scope. It provides the extra packaging needed to
create reusable libraries that plug-and-play with one another.

For example, suppose we want to reuse our file browser code in other applica-
tions. We need to include our classes, along with procedurdsoliledi r and
create_node shown in Examplé-13. But if an application happens to have
procedures namddad di r or creat e _node, adding the file browser code will
break it. If an application already uses a global variable nameatd calling

thel oad_di r procedure will corrupt its value.

Name collisions like this make it difficult to construct large Tcl/Tk applica-
tions. They cause strange errors that are difficult to debug, and they are a
barrier to code reuse. But when commands, variables and classes are packaged
in their own namespace, they are shielded from the rest of an application.
Libraries can be used freely, without fear of unwanted interactions.

47

Tcl/Tk Tools

Creating Namespaces

We can turn our file browser code into a file browser library by packaging it in

a namespace. A complete code example appears in tlitelfitee/treel0.itc)

but the important parts are shown in Exaniple7. Variables and procedures

are added to a namespace in much the same way that they are added to a class.
Procedures are defined using the ugwalc command. Variables are defined
using thevari abl e command, which may include an initialization value. These
are not instance variables like you would have in a class. These variables act
like ordinary “global” variables, but they reside within the namespace, and not
at the usual global scope. Defining a variable causes it to be created, but unlike
a class, the variable is not automatically available in the procedures in the
namespace. You must declare each variable with thglbtlal command to

gain access to it.

Examplel-17 Namespace for the file browser library.

nanespace fil ebrowser {
variabl e roots

proc load dir {cwn dir {selcnd ""}} {
gl obal roots

if {[info exists roots($cwin)]} {
del ete obj ect $root s($cw n)

}

set roots($cwin) [create node $cw n $sel cnd $dir]
$root s($cwi n) configure -state open

$root s($cwi n) refresh

return $roots($cw n)

}

proc create_node {cw n sel cnd fnane} {

}
proc cnp_tree {option obj1 obj 2} {

}
}

Within the context of the namespace, commands and variables can be accessed
using simple names likeoad di r androots. All of the procedures defined in

a namespace execute in that context, so within the botigadf di r, we can

access things liker eat e_node andr oot s without any extra syntax. In another
context, names must have an explicit namespace qualifier. For example, an
application could use tHeoad_di r procedure like this:

filebrowser::load dir .display.canv /usr/local/lib

This is just how we would call a class procedure, and the similarity is no acci-
dent. A class is a hamespace, but with a little extra functionality to create and
manage objects. Classes are also more rigid. Once the class interface is

48

Chapterl: Object-Oriented Programming with [incr Tcl]

defined, it cannot be modified unless the class is deleted. But a namespace can
be updated on-the-fly to create, redefine or delete commands and variables.

We can add another procedure to fli¢ebr onser namespace with another
nanespace command, like this:
nanespace fil ebrowser {
proc all {} {

ol obal roots
return [array nanes roots]

}
This activates théi | ebr onser context, and then executes fveoc command
within it, defining the new procedure. Another way of creating the procedure is
to define it with an ordinarpr oc command, but include the namespace context
in its name:
proc filebrowser::all {} {
gl obal roots
return [array nanges roots]

}
The procedure can be deleted like this:

nanespace fil ebrowser {
renane al| ""

}
or like this:

renane filebrowser::all ""
An entire namespace can be deleted usingahet e command, like this:
del et e nanespace fil ebr onser

This deletes all commands and variables in the namespace, and removes all
trace of the namespace itself.

The namespace containing a command or variable is part of the identity for that
command or variable. Elements with the same name in another namespace are
totally separate. Suppose we wrap dubrowser in a namespace, as shown in
Examplel-18.

Examplel-18 Namespace for the “du” browser library.

nanespace di skusage {
variabl e roots

proc load dir {twndir} {
gl obal roots

set parentDr [file dirnane $dir]

set roots($twin) [Tree ::#auto -nane $parentDir]
set hiers($parentDr) $roots($tw n)

49

Tcl/Tk Tools

Examplel-18 Namespace for the “du” browser library.

set info [split [exec du -b $dir] \n]
set last [expr [Ilength $info]-1]

for {set i $last} {$ >=0} {incr i -1} {

}show_di r $twn $roots($tw n)
o
proc showdir {twn obj} {
, o
proc add entry {twn line obj} {
, o
proc cnp_tree {obj 1 obj 2} {

}
}

The di skusage namespace also containd @ad_dir command and aoots
variable, but they are completely separate from those infithebr owser
namespace. This is obvious when we try to use them. An application could
load a directory into the file browser like this:

filebrowser::load_dir .display.canv /usr/local/lib
and display the usage information for a directory like this:
di skusage: :1oad dir .textwin /usr/local/lib

The explicit namespace qualifiers remove the ambiguity between these two
commands.

One namespace can contain another namespace inside it, so one library can
have its own private copy of another library. For example, we could include the
di skusage library within thefi | ebr owser library like this:

nanespace fil ebrowser {
nanespace di skusage {
variabl e roots
proc load dir {twn dir} {

_—
}

Within the fil ebrowser namespace, the usage information for a directory
could be displayed as shown earlier:

50

Chapterl: Object-Oriented Programming with [incr Tcl]

nanespace fil ebrowser {
di skusage: :1oad dir .textwn /usr/local/lib

}
Outside off i | ebr over, the complete namespace path must be specified:

fil ebrowser::diskusage::load dir .textwn /usr/local/lib

Every interpreter has a global namespace callet] Which contains all of the

other namespaces. It also contains the usual Tcl/Tk commands and global vari-
ables. Each Tcl/Tk application starts off in this namespace, which | call the
global context When you define other namespaces and call their procedures,
the context changes.

Name Resolution

Qualified names are like file names in the Unix file system, except that’a *
separator is used instead 6f.“ Any name that starts with *” is treated as an
absolute reference from the global namespace. For example, the command

::filebrowser::diskusage::load dir .textwin /usr/local/lib

refers to theload dir command in thedi skusage namespace, in the
fil ebr onser namespace, in the global namespace.

If a name does not have a leading ™ it is treated relative to the current
namespace context. Lookup starts in the current namespace, then continues
along a search path. Each namespace hamnport list that defines its search

path. When a namespace is added to the import list, all of the commands and
variables in that namespace can be accessed with simple names.

For example, we could import theé | ebrowser namespace into the global
namespace like this:

inport add fil ebrowser
We could then use tHeoad di r command in the global namespace without an
explicit qualifier, like this:

load_dir .display.canv /usr/local/lib

Thel oad _di r command is not found directly in the global namespace, but reso-
lution continues along the import path to thd ebr onser namespace, where
thefil ebrowser: : 1 oad dir command is found.

It is okay to import other namespaces that have the same command or variable
names. We could import thde skusage namespace, even though it also has a

| oad dir procedure. The first command or variable found along the import
path is the one that gets used.

51

Tcl/Tk Tools

If you have any questions regarding name resolution, they can be answered by
using the nfo whi ch” command. This command returns the fully qualified
name for any command, variable or namespace in the current context. In this
example, the command:

info which -conmand | oad dir

would return the fully qualified name fil ebrowser::load dir.

By default, each namespace imports its parent, so commands and variables in
the global namespace are automatically accessible. Other import relationships
should be used sparingly. After all, if the global namespace imported all of the
others, we would be back to one big pot of commands and variables, and there
wouldn’t be much point to having namespaces.

Using Objects Outside of Their Namespace

If you create an object within a namespace, you'll have trouble referring to it
outside of the namespace. Suppose you credtsual H | eTr ee object within
thefi | ebr onser namespace like this:

nanespace fil ebrowser {
Misual FleTree fred /usr/local /lib .display. canv

}
and then you try to add a node to it in another namespace like this:

nanespace di skusage {
Misual FileTree wilna /usr/local /bin .display. canv
fred add wi | na

}
This will fail. Since thefred object was created in théil ebrowser
namespace, thiered command is local to that namespace. We will not be able
to find afred command indi skusage unless the i | ebr owser namespace is
somewhere on its import path.

Usually, this is a good thing. Namespaces are doing their job of keeping the

two packages separate, and protecting the elements inside them. But from time
to time, you will want to share objects between packages. This problem all has

to do with naming, and it can be solved through proper naming too.

One solution is to use the full name of an object when you are referring to it in
another namespace. For example, we could say:

nanespace di skusage {
Visual FileTree wilnma /usr/local /bin .display. canv
c:filebrowser::fred add wlnma

52

Chapterl: Object-Oriented Programming with [incr Tcl]

You may have noticed that an objectlsi s variable reports the full name of
the object, including its namespace path. This is the reason. If ydithise

is a command, you will be able to find the object from any context. When you
use the full name, you leave nothing to chance in command resolution.

Another solution is to create the object in some namespace that all of your pack-

ages naturally import. For example, all namespaces import the global “

namespace. You can create an object in the global namespace like this:
nanespace fil ebrowser {

upl evel #0 M sual F |l eTree fred /usr/local/lib .display.canv
}

or like this:

nanespace filebrowser {
nanmespace :: { Msual FleTree fred /usr/local/l1ib .display.canv }

}
or like this:

nanespace filebrowser {
Msual FleTree ::fred /usr/local /lib .display.canv

}
In the first case, we use thegl evel #0" command to transition to thdhceall
frame, which is the global context, and we create the object there. In the second
case, we use thmanmespace command to get the same effect. In the third case,
we execute th®i sual F | eTree command in théi | ebr onser namespace, but
we give the object a name that belongs to the global namespace. The effect is
the same. We create an object narfestl that we can access from the global
namespace, and therefore, we can access it from any namespace in the
application.

Instead of putting an object all the way out in the global nhamespace, you may
want to put it in a more restricted namespace that only certain packages have
access to. Remember, namespaces can be nested, and each hamespace automati-
cally imports things from its parent. We could wrap theebr owser and the

di skusage namespace in another namespace cdliéest uf f, for example,

and put all of the shared objects il est uf f :

nanespace filestuff {
nanespace fil ebrowser {

Visual FleTree ::filestuff::fred /usr/local/lib .display.canv

53

Tcl/Tk Tools

nanmespace di skusage {

Misual FleTree ::filestuff::wlma /usr/local/bin .display.canv
fred add wilna

}

That way, these objects can still be shared adridssbr onser anddi skusage,
but they won't interfere with any other packages.

Sometimes it is easy to forget that other classes need access to an object. When
the Tree class adds an object to a tree, for example, it needs to talk to that
object to set its parent. If all of olir ee objects are sitting in thii | est uf f
namespace, but th&ree class itself is sitting one level up in the global
namespace, we will again have problems. As much as possible, keep all of the
code related to a package together in the same namespace.Trié¢heass is
needed only for thefil ebrowser package, put it in theil ebrowser
namespace. If it needs to be shared across botli thebr onser and the

di skusage packages, put it above them in fhi¢ est uf f namespace.

Classes can be defined within a namespace like this:

nanmespace filestuff {
class Tree {

class FleTree {

}

}
or like this:

class filestuff::Tree {

class filestuff::FleTree {

}

In either case, the classes are completely contained withirf ithest uf f
namespace, so if an application has ancthee class, it will not interfere with
the one in thdil estuff namespace. More importantly, since fee class
now resides withirfil estuff, it automatically has access to the objects in
filestuff.

54

Chapterl: Object-Oriented Programming with [incr Tcl]

Protection Leels

Just as you can have public, private and protected elements in a class, you can
have public, private and protected elements in a namespace. This helps to docu-
ment your interface, so that someone using your library knows which variables
and procedures they can access, and which ones they should leave alone. For
example, look at the filebrowser library shown in Exanipl. It is obvious

thatl oad_di r procedure is the only thing that you need to use to access a file
browser. Everything else is private to fli¢ ebr onser namespace.

Examplel-19 File browser library with public/private declarations.

nanespace fil ebrowser {
private variable roots

public proc load dir {cwin dir {selcnd ""}} {
gl obal roots

if {[info exists roots($cwin)]} {
del ete obj ect $root s($cw n)

}

set roots($cwin) [create node $cwi n $sel cnd $dir]
$root s($cwi n) configure -state open

$root s($cwi n) refresh

return $roots($cw n)

}

private proc create_node {cwin sel cnd fnane} {

}
private proc cnp_tree {option obj1 obj2} {

}
}

If you don't specify a protection level, everything is public by default, including
your variables. This makes namespaces backward-compatible with the rest of
Tcl/Tk, but it also makes them different from classes. In classes, methods are
public by default, but variables are protected.

Namespaces are also a little different when it comes to protected elements. In a
class, protected elements can be accessed in any derived class. But there is no
“derived” namespace. The closest equivalent is a nested namespace. If you
create a protected element in one namespace, you can access the element in any
of the other namespaces nested within it. You might create a protected variable
in a namespace likéilestuff and share it among the namespaces like

fil ebrowser anddi skusage nested within it.

On the other hand, a private element is completely private to the namespace that
contains it. If you create a private variabld ihest uf f, it will not show up in

any other context, including nested namespaces fikkebrowser and

di skusage.

55

Tcl/Tk Tools

Using Classes and Namespaces

There are some strong similarities between classes and namespaces, but they
play different roles in your application. Classes are data structures. They let
you create objects to represent the data in your application. For example, we
usedM sual F | €Tr ee objects to represent each of the files in our file browser.

On the other hand, namespaces are a way of organizing things. We used the
fil ebrowser namespace to wrap up the variables and procedures for our file
browser library. There is one variabsleot s and one procedureoad dir for

the file browser, but instead of floating around at the global scope, they are
grouped together in tHe | ebr onser namespace.

You can use namespaces to organize classes. For example, we giaged

FH | eTree andV sual H | eTr ee into thefi | est uf f namespace. Again, instead

of floating around at the global scope, these classes reside with the rest of the
file browser library, where they are needed.

You can also use namespaces to organize other namespaces. For example, we
grouped thefi | ebronser namespace and thik skusage namespace into the
samefil estuff namespace. We can add théest uff library to any of our
applications, and access the sepafateebr onser and di skusage utilities

within it.

Scoped Commands andrMbles

Classes and namespaces are really good at protecting the elements within them.
But suppose you want something to be private or protected, but there is one
other class—or perhaps one other object—that needs to have access to it. This
may be a completely separate class with no inheritance relationship, so we can't
rely on “protected” access to solve the problem. And we don't want to open
things up for “public” access. In C++, you can declare certain classes and func-
tions asfriends thereby granting them special access privilegegINGR TCL],

we handle this in a different manner, but the effect is the same.

You can see the problem more clearly in the following example. Suppose we
have af ol der:: creat e procedure that creates a checkbutton with an associ-
ated file folder icon. We might use this procedure like this:

set counter O

foreach dir {/usr/nman /usr/local / man /usr/X11/ nman} {
set nane ".dir[incr counter]"
folder::create $nane $dir
pack $nane -fill x

56

Chapterl: Object-Oriented Programming with [incr Tcl]

to create the checkbuttons shown in Figlkl4. When you toggle one of these
checkbuttons, it changes the indicator box, and it also opens or closes the folder
icon.

Ai namesp.itcl i E|

[F= ™ fusriman
= ® fusrflocaliman
103 s fuserkiiiman |

==

Figure 1-14 Some checkbuttons created by folder::create.

Thefol der:: create procedure is shown in Examdle20. Each time we call

it, we create a frame with a label and a checkbutton. Each checkbutton needs a
variable to keep track of its state. If we use an ordinary global variable, it might
conflict with other variables in the application. Instead, we createles vari-

able inside thd ol der namespace, and we make it private so that no one else
can tamper with it. We treat this variable as an array, and we give each folder
assembly a different slot within it. Whenever the checkbutton is invoked, it
toggles this variable and calls thedi spl ay procedure to update the icon.

Examplel-20 Using the code and scope commands to share command and variable
references.

nanespace fol der {
private variabl e i nages
set images(open) [inage create photo -file dirl. gif]
set i mages(cl osed) [inage create photo -file dir2.gif]

private variabl e nodes

public proc create {w n nane} {
frame $wn
| abel $win.icon
pack $w n.icon -side |eft

checkbutton $win.toggl e -text $nane \
-onval ue "open" -of fval ue "cl osed" \
-variabl e [scope nodes($win)] \
-command [code redi spl ay $w n]

pack $win.toggl e -side left -fill x
$wi n. toggl e i nvoke
}

public proc get {wn} {
gl obal nodes
return $nodes($w n)

private proc redisplay {wn} {
gl obal nodes i nages
set state $rmodes($w n)
$win.icon configure -inage $i nages($st at e)
}
}

57

Tcl/Tk Tools

The checkbutton is clearly a key player in freéder library. We want it to

have access to thedes variable and to theedi spl ay procedure, but we also
want to keep these things private. No one else should really be using them.
Unless we do something special, the checkbutton will be treated as an outsider
and it will be denied access to these elements.

The problem is that options likecommand and-vari abl e are being set inside

the fol der namespace, but they are not evaluated until much later in the
program. It is not until you click on a checkbutton that it toggles the variable
and invokes the command. This happens in another context, long after we have
left thef ol der: : creat e procedure.

There are two commands that let you export part of a namespace to a friend.
The scope command lets you export a variable reference, andctue
command lets you export a code fragment. Both of these commands are used
on a case-by-case basis. When we create the checkbutton and-setrthe

abl e option, for example, we enclosed tihnedes variable in thescope
command. This gives the checkbutton access to just this vatiatleve set

the -vari abl e option to a different variable name, it will lose access to the
nodes variable. Similarly, when we set theonmand option, we enclosed the
code fragment in theode command. This lets the checkbutton execute the
redi spl ay command. But if we set thecormand option to something else,
again, it will lose access tedi spl ay.

The code and scope commands work by capturing the namespace context.
They preserve it in such a way that it can be revived again later. So when the
checkbutton needs to access its variable, it actually jumps back irftol ter
namespace and looks for thedes variable. When the checkbutton needs to
invoke its command, again, it jumps back into tbkeder namespace and looks

for theredi spl ay command. Since it accesses things from withinf teler
namespace, it by-passes the usual protection levels. In effect, we have given the
checkbutton a “back door” into the namespace.

You can see how this works if you query back the actoatmand or - vari -
abl e string that the checkbutton is using. For example, we created the
checkbutton with a command like this:

checkbutton $win.toggle ... -command [code redisplay $w n]
But if we query back thecomrmand string, it will look like this:

@cope ::folder {redisplay .dirl}

T Actually, to just one slot in the array.

58

Chapterl: Object-Oriented Programming with [incr Tcl]

This string is the result of theode command, and is calledsaoped value It is

really just a list with three elements: ti@cope keyword, a namespace
context, and a value string. If this string is executed as a command, it automati-
cally revives the: :fol der namespace, and then executes the code fragment
“redi spl ay .dir1"in that context.

Note that theode command does not execute the code itself. It merely formats
the command so that it can be executed later. We can thjrdodé ...] as a
new way of quoting Tcl command strings.

When thecode command has multiple arguments, they are formatted as a Tcl
list and the resulting string becomes the “value” part of the scoped value. For
example, if you execute the following command inftbkeder namespace:

set cnul [code $win.toggl e configure -text "enpty fol der"]
it produces a scoped value like this:

@cope ::folder {.dirl.toggle configure -text {enpty fol der}}
Notice how the string “empty folder” is preserved as a single list element. If it
were not, the command would fail when it is later executed.
The code command can also be used to wrap up an entire command script like
this:

bi nd $wi n.icon <ButtonPress-1> [code "
$wi n.toggl e flash
$w n. toggl e i nvoke
"]
In this case, we combined two commands into one argument. There are no
extra arguments, so the code paragraph simply becomes the “value” part of the
scoped value that is produced.

The scope command works the same way as tbde command, except that it
takes only one argument, the variable name. For example, we created the check-
button like this:

checkbutton $win.toggle ... -variable [scope nodes($w n)]
But if we query back theval ue string, it will look like this:
@cope ::fol der nodes(.dirl)

This entire string represents a single variable name. If we try to get or set this
variable, the@cope directive shifts us into th&éol der namespace, and looks
for a variable namenodes in that context.

59

Tcl/Tk Tools

If you forget to use theode andscope commands, you'll get the normal Tk
behavior—your commands and variables will be handled in the global context.
For example, if we created the checkbutton like this:
checkbutton $w n.toggl e -text $nane \

-onval ue "open" -of fval ue "cl osed" \

-variabl e nodes($w n) \

-command "redi spl ay $w n"
then it would look for a variable nameddes in the global namespace, and it
would try to execute a command calleeddi spl ay in the global context. In
some cases this is okay, but more often than not you will need to usedéhe
andscope commands to get things working properly.

You should use theode andscope commands whenever you are handing off a
reference to something inside of a namespace. Useotleecommand with
configuration options like- conmand, -xscrol | command, -yscrol | conmand,
etc, and with Tk commands liklei nd, after andfil eevent. Use thescope
command with options like variabl e and -textvariabl e, and with Tk
commands liket'kwai t vari abl e”.

But although you should use these commands, you should not abuse them.
They undermine a key feature of object-oriented programming: encapsulation.
If you use these commands to break into a class or a namespace where you
don’t belong, you will pay for it later. At some point, details inside the class or
the namespace may change, and your code will break miserably.

Interactive De&elopment

[INcR TcL] has many features that support debugging and interactive develop-
ment. Each class has a builtiinf o method that returns information about an
object. So you can query things like an object’s class or its list of methods on
the fly. This is not possible in C++, but it is quite natural in a dynamic
language like Tcl.

Suppose we have defined classes likee and FH | eTree, and we create a
F | eTr ee object by typing the following command at tHé prompt:

%F | eTree henry /usr/local -procreate "F | eTree #aut 0"
henry

We get the resutienr y which tells us that an object was created successfully.

If someone hands us this object and we want to determine its class, we can use
the ‘i nfo cl ass” query:

%henry info class
FileTree

60

Chapterl: Object-Oriented Programming with [incr Tcl]

This says thahenry was created as & | €Tree object, so its most-specific
class isH | eTree. You can get a list of all the classes thatry belongs to
using the I'nfo heritage” query:

%henry info heritage

FileTree Tree
This says that first and foremos$enry is aF | eTree, but it is also alree.
The classes are visited in this order whenever a method or a variable reference
needs to be resolved.

When you want to know if an object belongs to a certain class, you can check
its heritage. You can also use the builtisa method to check for base
classes. You givesa a class name, and it returns non-zero if the class can be
found in the object’s heritage. For example:

%henry isa Tree

1

%henry isa M sual Rep
0

This says thatienry belongs to clas#r ee, but not to clas$ sual Rep.

The ‘i nfo function” query returns the list of class methods and procs. This
includes the built-in methods likanf i gur e, cget andi sa as well:

%henry info function

FileTree::popul ate FileTree::contents FleTree::constructor Tree::configure

Tree::reorder Tree::cget Tree::isa Tree::constructor Tree::destructor

Tree::add Tree::back Tree::parent Tree::contents Tree::cl ear
Each function is reported with its full name, liKeee: : add. This helps clarify
things if you inherit methods from a base class. You can retrieve more detailed
information if you ask for a particular function:

%henry info function contents

public nethod H1eTree::contents {} {

popul at e
return [Tree:: contents]

}
The ‘i nfo vari abl € query returns the list of variables, which includes all
instance variables and common variables defined in the class, as well as the
built-in t hi s variable:

%henry info variabl e

FileTree::mine FleTree::file FleTree::this FleTree::procreate

Tree::lastSort Tree::sort Tree::children Tree::val ue Tree:: nane Tree: : parent
Again, you can retrieve more detailed information if you ask for a particular
variable:

61

Tcl/Tk Tools

%henry info variable ntine

private variable FleTree::ntine 0 O
The last two elements represent the initial value and the current value of the
variable. In this case, they are b6thBut suppose we query the contents of the
file tree like this:

%henry contents

fileTreeO fileTreel fileTree2 fileTree3 fileTreed fil eTree5 fil eTreeb

fileTree7 fileTree8 fileTree9 fileTreell fil eTreell fil eTreel2 fil eTreel3

fileTreeld fil eTreel5
The populate method creates a series of child nodes, and saves the modification
time for this directory in thati ne variable, as a reminder that the file system
has been checked. If we queity ne again, we can see that it has changed:

%henry info variable ntine

private variable FHleTree::niine 0 845584013
You can obtain other high-level information via the usualifflo command.
You can ask for the list of classes in the current namespace like this:

%info cl asses
M sual FileTree FileTree Tree M sual Rep

and for the list of objects in the current namespace like this:

%info objects

fileTreell fileTree2 fileTree7 fileTree9 fil eTreel2 fil eTreel fil eTree6

fileTreel5 henry fileTreel3 fileTree3 fil eTreeld fil eTreel fil eTreeb

fileTree8 fil eTreelO fil eTreed
This introspection facility is extremely useful for debugging, and it could
support the construction of a class browser or an interactive development
environment.

As you are testing your code and finding bugs, you may want to fix things in a
class. You can use thmdy command to redefine the body of any method or
proc. You can also use tlgenfi gbody command to change the configuration
code for a public variable.

This is particularly easy to do in theécl - mode” of the Emacs editor. You
simply load ar{INCR TcL] script into Emacs, and tell Emacs to run it. As you
are testing it and finding bugs, you can make changes to your script and test
them out immediately. You don’t have to shut down and start over. Bodies can
be changed on the fly. You simply highlight a nawdy or conf i gbody defini-

tion and tell Emacs to send it off to the test program.

If you don't use Emacs, you can keep your body definitions in a separate file,
and you can use the Tsburce command to load them into a test program
again and again, as bugs are found and corrected.

62

Chapterl: Object-Oriented Programming with [incr Tcl]

Although the bodies may change, the class interface cannot be defined more
than once. This prevents collisions that would otherwise occur if two devel-
opers chose the same class name by accident. But you can delete a class like
this:

del ete class Tree

This deletes all objects that belong to the class, all derived classes which depend
on this class, and then deletes the class itself. At that point, you can source in
your script to redefine the class, and continue debugging.

Autoloading

Tcl provides a way to create libraries of procedures that can be loaded as
needed in an application. This facility is calkaoloading and it is supported
by [INCR TcL] as well.

To use a class library that has been set up for autoloading, you simply add the
name of the directory containing the library to #ueo_pat h variable:

| append auto_path /usr/local /oreilly/itcl/lib
The first time that a class is referenced in a command like this:
Tree henry -nane "Henry Fonda"

the class definition is loaded automatically. The autoloading mechanism
searches each directory in thet o_pat h list for a specialclindexfile. This

file contains a list of commands defined in the directory, along with the script
file that should be loaded to define each command. When a command like
Tree is found in one of théclindexfiles, it is automatically loaded, and the
command is executed. The next time that this command is needed, it is ready to
use.

To create an autoloadable class library, you simply create a directory containing
all of the code for the library. Put each class definition in a separate file. These
files typically have the extensionittl” or “.itk", but any naming convention

can be used. Finally, generatetdindex file for the directory using the

aut o_nki ndex command like this:

auto_nkindex /usr/local/oreilly/itcl/lib *.itcl

This scans all of the files matching the pattetitci” in the directory/usr/local/
oreilly/itcl/lib and creates &lindexfile in that directory. Once the index file is

in place, the library is ready to use. Of course, the index file should be regener-
ated whenever the source code for the library changes.

63

Tcl/Tk Tools

Adding C code tpINCRTCL] Classes

With a little extra C code, we can extend the Tcl/Tk system to have new
commands and capabilitiés?l’his is easy to do, and it is one area where Tcl/Tk
outshines other packages. C code can also be integratedinato TcL]
classes, to implement the bodies of class methods and procs.

For example, suppose we write a C implementation foatddemethod in our
Tree class, shown in Example21. Instead of specifying the body as a Tcl
script, we use the nan@r ee- add. The leading @ sign indicates that this is
the symbolic name for a C procedure.

Examplel-21 Tree class with a C implementation for the “add” method.

class Tree {
variabl e parent ""
variabl e children ""

nethod add {obj} @ree-add

net hod cl ear {}
if {Schildren !=""} {
eval del ete object $children

set children ""

}
net hod parent {pobj} {
set parent $pobj

net hod contents {} {
return $children

}

Somewhere down in the C code for amuish executable, we have a Tcl-style
command handler for thadd method. We must give the command handler a
symbolic name by registering it with thécl _Regi ster C procedure. We do
this in theTcl _Appl ni t procedure, which is called automatically each time the
W sh executable starts up. You can find Tioé_Appl ni t procedure in the stan-
dard Tcl/Tk distribution, in a file calletclApplnit.c (for building tcl sh) or
tkApplnit.c (for building w sh). Near the bottom of this procedure, we add a
few lines of code like this:

if (Itcl_RegisterQinterp, "tree-add", Tree AddOw) != TAL K {

return TAL_ERRR

}
This gives the symbolic namé ree- add” to the C procedurdr ee_AddQl.
This procedure will be called to handle any class method or class proc that has
the body ‘@r ee- add"”.

t For details, see John K. Ousterhdud,and the Tk ToolkitAddison-Wesley, 1994.

64

Chapterl: Object-Oriented Programming with [incr Tcl]

Examplel-22 shows the implementation for tiieee AddCh procedure. |t
takes the usual arguments for a Tcl-style command handler: The first argument
is required but not usednterp is the interpreter handling a Tcl command,;
argc is the number of arguments on the Tcl command line;aagd is the list

of Tcl argument strings.

Examplel-22 Implementation for the Tree_AddCmd handler.

nclude <tcl. h>

1I'pfee_ﬁddcmi(durmy, interp, argc, argv)

dientData dummy; /* unused */
Tcl _Interp *interp; /* current interpreter */
int argc; /* nunier of argunents */
char **argv; /* argunent strings */
{
char *val;
Tcl _D&ring buffer;
if (argc '=2) {
Tcl _AppendResul t (interp, "wong # args: should be \"",
argv[Q], " treeCpj\"", (char*)N.LL);
return TOL_BRRR
/*
* Build a coormand string like "tree(hj parent $this" and
* execute it.
*/
Tl I:Strmgl nit(&uffer);
val = Tcl (EtVar(l nterp, "this", TQ_LEAE BRR MG ;
if (val = NLL) {
Tl _Datri ngFree(&uffer);
return TAL_BRRCR
}
Tcl _D&ringAppendH enent (&uffer, argv[1]);
Tcl _C&tri ngAppendH enent (&buffer, "parent™);
Tcl D& ri ngAppendH enent (&uffer, val);
val = Tcl _D&ringVal ue(&buffer);
if (Tcl_Bval (interp,val) !'= T &K {
Tcl _D&ringFree(&buffer);
return TL_ERRR
}
Tcl _Reset Resul t (i nterp);
/*
* Add the specified object to the "children" list.
*/
val = Tcl _SetVar(interp, "children", argv[1],
TAL_LEAVE BRR MG | TA__LIST. ELEMENI'| Ta. . APPEND VALLE);
if (va = NULL) {
Tcl _D&ringFree(&buffer);
return TAL_BRRCR
Tcl _CaringFree(&uffer);
return TAL &K
}

This procedure has to mimic catld method. It takes the name of anotfiege
object, and adds it to the list of children for the current node. Whenever

65

Tcl/Tk Tools

Tree_AddQmwl is called, therefore, we should have two argument strings: the
command name “add” (stored argv[Q]), and the name of the child object
(stored inargv[1]). We first check to make sure that this is true, and if not, we
immediately return an error.

Next, we build the command strin§obj parent $this” in a dynamic string
buffer. This command natifies the child that it has a new parent. We query the
value of thet hi s variable usinglcl _Get Var. We build the command string in
aTcl _D&ring buffer, and then uskcl _Eval to execute the command.

The name of the child object is then appended toctiié dren list using
Tl _Set Var.

This implementation is identical to the Tcl version shown in Exaityde
although it requires many more C language statements to perform the same
task. In this case, the result is no better. The C version is not much faster, and
the Tcl version was considerably easier to write.

But the interesting part of this example is the interface between the C code and
the [INCR TcL] class. When the command handler is executed, class variables
can be accessed as ordinary variables. Class methods can be invoked as ordi-
nary commands[INCR TcL] handles this automatically by setting up the object
context before the handler is invoked. Because of this, we were able to access
thechi | dren variable and the built-ibhi s variable with ordinarylcl _Get Var

andTcl _Set Var calls.

Therefore, a single class can have some parts written in C code, and others
written in Tcl. The Tcl parts can be migrated to C for better performance as the
need arises.

Tcl is an excellent “glue” language. It stitches C code blocks together with Tcl
statements to form application§INCR TcL] takes the glue to a higher-level.

Bits of Tcl and C code can be mixed together to create classes. These high-
level building blocks provide better support for building larger applications.

66

Chapterl: Object-Oriented Programming with [incr Tcl]

Summary
Extension: [incr Tcl] - Object-Oriented Programming for Tcl
Author: Michael J. McLennan
Bell Labs Innovations for Lucent Technologies
mmclennan@lucent.com
Other Jim Ingham

Contributors:

Platforms
Supported:

Web Site:

Mailing List:
(bug reports)

Lee Bernhard
...and many others listed on the web site

All major Unix platforms

Linux

Windows 95 (release itcl2.2 and beyond)
Macintosh (release itcl2.2 and beyond)

http://ww tcltk. conditcl

mai | -s "subscribe" itcl-request @cltk.com
to subscribe to the mailing list

mai | itcl @cltk.com
to send mail

67

Tcl/Tk Tools

Quick Refeence

Classes

cl ass cl asshane {
inherit based ass ?bhased ass...?

constructor args ?init? body
destructor body

net hod nane ?args? ?body?
proc nane ?args? ?body?

vari abl e varNane ?i nit? ?confi gBody?
common var Nane ?init?

set varNane ?val ue?
array option ?arg arg ...?

public conmand ?arg arg ...?
protected conmand ?arg arg ...?
private coomand ?arg arg ...?

body

conf i gbody

del ete

info

Objects
cl asshane

68

Defines a new class of objects.

cl asshane: : function args body
Redefines the body for a class method or proc.

cl asshane: : var Nane body

Redefines the body of configuration code for a public variable
or a mega-widget option.

cl ass nane ?nane...°?
Deletes a class definition and all objects in the class

cl asses ?pattern?

Returns a list of all classes, or a list of classes whose names
matchpattern

obj Nane ?arg arg ...?
Creates an object that belongs to cldassName

Chapterl: Object-Oriented Programming with [incr Tcl]

obj Nane

del ete

info

nethod ?arg arg ...?
Invokes a method to manipulate an object.

obj ect obj Nane ?obj Nane. .. ?
Deletes one or more objects.

objects ?-class cl assNane? ?-isa cl asshane?

?pat t ern?

Returns a list of all objects, or a list of objects in a certain class
classNamgwhose names matglattern

Namespaces

nanespace nanespaceNane {
vari abl e var Nane ?val ue?
proc cnuNane args body

private coomand ?arg arg ...?
protected conmand ?arg arg ...7?
public conmand ?arg arg ...?

command ?arg arg ...?

nanespaceNane: :
nanespaceNane: :

code

del ete

Finds an existing namespace or creates a new namespace and
executes a body of commands in that context. Commands like
proc andvari abl e create Tcl commands and variables that are
local to that namespace context.

cmdNane ?arg arg ... 7

Invokes a procedure that belongs to another namespace.
command ?arg arg ...?

Formats a code fragment so it can be used as a callback in an-

other namespace context.

nanespace nanespaceNane ?nanespaceNane. . . ?
Deletes a namespace and everything in it.

69

Tcl/Tk Tools

i nport

info

info

info

info

info

scope

70

add nane ?nane...? ?-where pos...?
all ?nane?

list ?inportList?

renove nane ?nane...?7

Changes the import list for a namespace.

cont ext
Returns the current namespace context.

nanespace al | ?pattern?
nanespace chil dren ?nane?
nanespace parent ?nane?

Returns information about the namespace hierarchy.

nanespace qualifiers string
nanespace tail string

Parses strings with: namespace qualifiers.

protecti on ?-command? ?-vari abl e? nane

Returns the protection level (public/protected/private) for a
command or variable.

whi ch ?-command? ?-vari abl e? ?-nanespace? nane
Searches for a command, variable or namespace and returns its
fully-qualified name.

string

Formats a variable name so it can be accessed in another
namespace context.

In this Chapter:

» Overview

» Simple Example

* Inheritance and
Composition

 Building
Applications with

Mega-Widgets BU||d|ng
MegaWidgets
with [incr TK]

Tk lets you create objects like buttons, labels,
entries, and so forth, but it is not truly object-
oriented. You can't create a new widget class like
Hot Button and have it inherit its basic behavior
from classButton. So you really can't extend the

% Tk widget set unless you tear apart its C code and
add some of your own.

More Than Chrome | [|\cRr Tk] lets you create brand new widgets, using
the normal Tk widgets as component parts. These
mega-widgetdook and act like ordinary Tk widgets, but you can create them
without writing any C code. Instead, you write [®CR TcL] class to handle
each new type of mega-widget.

If you read Chapter XXX on th@INCR WIDGETY] library, you can see what
great results you'll get usifeNCR TK]. [INCR WIDGETS] has more than 30 new
widget classes includingi | esel ecti onbox, Panedw ndow, Canvaspri nt box,
ot i onnenu and Gonbobox, and they were all built with théINCR TK]
framework.

You can understand the essence of a mega-widget simply by looking at one of
these widgets. For example, t§& ni nt widget shown in Figur-1 is created
like this:

spinint .s -labeltext "Repeat:" -width 5 -range {1 10}
pack .s

It has an entry component that holds a numeric value, and a pair of buttons for
adjusting that value. Whenever you createspani nt widget, all of these

71

Tcl/Tk Tools

internal components are created and packed automatically. When you set the
-1 abel t ext option, a label appears. You can set-thange option to control

the range of integer values. If you use the arrow buttons and bump the number
beyond this range, it will wrap around to the other end of the scale.

/ /entry
. .=I<7 upar r ow
HEFEHI" I3 P | «— downarrow

Figure 2-1 A Spinint mega-widget has many component parts.

| abel

A Sinint can be configured like a normal Tk widget. It has many internal
components, but they all work together as one widget. All of their configura-
tion options are merged together into a single list callednster option list
When you set master configuration options like this:

.s configure -background tan -textbackground white

the effects propagate down to all of the internal components. Setting the
- backgr ound option changes the background of thul , | abel , uparrowand
downar row components. Setting thet ext background option changes the
background of the entry component.

A Spinint also has options to control the layout of its components. You can
rearrange the buttons like this:

.s configure -arroworient horizontal

and reposition the label like this:
.s configure -1abel pos nw

You can even query the current option settings like this:
set bg [.s cget -background]

Of course, you can add all of these settings to the options database, so that
Soi ni nt widgets will have these values by default:
option add *Spinint. background tan
option add *Spinint.textBackground white
option add *Spinint.arrowdient horizontal
option add *Spi nint. | abel Pos nw
A i nint widget has a well-defined set of operationsm@thodsto manipu-
late it. You can load a new integer into the text area like this:

72

Chapter2: Building MegaWidgets with [incr TK]

.s clear
.s insert 0 "10"

and you can programmatically bump up the value like this:
.S up

When you destroy the widget:
destroy .s

all of its internal components are destroyed automatically.

Mega-widgets have all of the characteristics that we would expect from a Tk
widget. But since they do not require any C code or X library programming,
they are considerably easier to implement.

Overviav

To understandiNCrR TK], you have to understand how a mega-widget handles
its component parts and their configuration options. In this section, we’ll
explore[INCR TK] from a conceptual standpoint. Later on, we’ll look at real

code examples.

Class Hiearchy

To create a new type of mega-widget, you simply derive a[m&® TcCL] class
from one of the existingNCR Tk] base classes. THeiCr TK] class hierarchy
is shown in Figur@-2. All of these classes reside in th&k namespace, so
they will not interfere with the rest of your application.

There are basically two different kinds of mega-widgets, so there arfeNwro

TK] base classes that you use to build them. If you want a mega-widget to pop
up in its own toplevel window, then have it inherit frotk: : Topl evel . This

lets you build dialog widgets like tHe | esel ecti ondi al og, Messagedi al og,

and Canvasprintdi al og in the [INCR WIDGETS library. Otherwise, if you

want a mega-widget to sit inside of some other toplevel window, then have it
inherit from theitk::Wdget class. This lets you build things like the

ot i onnenu, Gonbobox andPanedw ndowin the[INCR WIDGETS] library.

Suppose we were starting from scratch to createSthei nt class. Spi ni nt
widgets are the kind that sit inside of other toplevel windows, so we should use
thei tk: : Wdget class as a starting point.

Bothitk:: Wdget anditk:: Topl evel inherit the basic mega-widget behavior
fromitk:: Archetype. This class keeps track of the mega-widget components
and their configuration options.

73

Tcl/Tk Tools

[incr TK] i tk:: Archetype
I |
i tk::Wdget i tk:: Topl evel

Gonfobox

|
Messagedi al og

Figure 2-2 Mega-widgets are created by extending one of the base classes in [incr Tk].

Class Definition

If we wanted to implement th®pi ni nt widget, we would write a class defini-
tion that looks something like the one shown in FigtsGs"

Notice that we use a class name I ni nt that starts with a capital letter.
This is a rule in Tk. For the time being, you can assume that we also have to
create mega-widgets with a capitalized command like this:

Sinint .s -labeltext "Repeat:" -wdth 5 -range {1 10}
Later on, | will show you how to get around this.
Inside the class definition, we start off with iamherit statement that brings in
theitk:: Wdget base class. As we will see below, this automatically gives us
a container for the mega-widget called tmal. We write a constructor to
create all of the component widgets and pack them into the hull. Instead of

including the actual code, we simply illustrated this process in the constructor
shown in Figure2-3.

Notice that the constructor uses #rgygs argument to handle any configuration
options that might be specified when a widget is created, like this for example:

Spinint .s -labeltext "Nunber of (opies:" -background red

t TheSpi ni nt class in thgINCR WIDGETS library is a little more complicated, but this example
will give you the basic idea.

74

Chapter2: Building MegaWidgets with [incr TK]

class Spinint {
inherit itk::Wdget

constructor {args} {

o |
:Hepe§&Jd3 :

T s

eval itk initialize $args
}

public nethod clear {}
public nethod insert {index val ue}

public nethod up {}
publ i c nethod down {}
}

Figure 2-3 Conceptual view of Spinint mega-widget class.

But instead of handling these arguments with:
eval configure $args

as we would for an ordinafyNCR TcL] class, we use:
eval itk initialize $args

You must calli tk_initializeinstead ofconfi gure for all of your[INCR TK]
mega-widgets. This is a protected method that belongs id kheAr chet ype

base class. It not only applies the configuration changes, but it also makes sure
that all mega-widget options are properly initialized. If you forget to call it for

a particular class, some of the configuration options may be missing whenever
you create a mega-widget of that class.

Near the bottom of the class definition, we include some methods to handle the
operations for this mega-widget. As | said before, you can load a new value
into aSpi ni nt widget like this:

.S clear

.s insert 0 "10"
So we have a methad ear to clear the entry, and a methoeksert to insert
some new text. We also have a method calfetb increment the value, and a
method calleddown to decrement it. We can add more operations to the
Soi ni nt class simply by defining more methods.

75

Tcl/Tk Tools

Notice that we didn't define a destructor. Thik: : Archet ype base class
keeps track of the component widgets and destroys them for you when the
mega-widget is destroyed. You won’t need a destructor unless you have to
close a file or delete some other object when the mega-widget is destroyed.

Mega-Wdget Construction

Let's take a moment to see what happens when a mega-widget is constructed.
For example, suppose we creatgpani nt widget like this:
Spinint .s -labeltext "Sarting Page:" -range {1 67}

When [INCR TcL] sees this command, it creates an object narseith class

Soi ni nt, and calls its constructor with the remaining arguments. But before it
can actually run thé&pinint:: constructor, all of the base classes must be
fully constructed. This process is illustrated in Fig2ug

Sinint .s -labeltext "Sarting Page:" -range {1 67}

itk::Archetype::constructor

create component list
create master option list g

v

itk::Wdget::constructor T T T T T T T T T T f ~backgr ound
create hull component [: cursor
initializei t k_i nteri or b e e

‘ .S
Spi ni nt: : const ruct or Y oo === i - ar r owor i ent

P Repeat: :IS !
create label component [Dpal sy, Sasasal __ {background
create entry component v--f----i----‘-(s) (-borderwidth
create uparrow component : f _cursor
create downarrow component [¥ 55
.S

Figure 2-4 Construction of a Spinint mega-widget.

The constructor for the least-specific class: : Archetype is called first. It
initializes some internal variables that keep track of the component widgets and
their configuration options. Next, the k: : Wdget constructor is called. It
creates the hull frame that acts as a container for the component widgets. The
name of this frame widget is stored in a protected variable called
itk_interior. We will use this name later on as the root for component
widget names. Finally, th&oi ni nt constructor is called. It creates thabel ,

ent ry andupar r owanddownar r owcomponents, and packs them into the hull.

76

Chapter2: Building MegaWidgets with [incr TK]

As each component is created, its configuration options are merged into a
master list of options for the mega-widget. We will see precisely how this is
done in the next section. But we end up with a mega-widget that has an overall
list of configuration options. Near the end of B ni nt constructor, we call
itk _initializeto finalize the list and apply any configuration changes.

Creating Component Mbets

Let’s look inside the constructor now and see how we create each of the mega-
widget components. Normally, when we create a Tk widget, we use a simple
command like this:

label .s.lab

This says that we have a frame callsdand we want to put a label nameab

inside it. For a mega-widget, we can't hard-code the name of the containing
frame. It will be different for each widget that gets created. If we create a
Soi ni nt named. s, it will have a hull nameds, and the label should be called

.S. | ab. But if we create &i ni nt named f oo. bar, it will have a hull named
.foo. bar, and the label should be calledoo. bar.lab. Instead of hard-
coding the name of a frame, we use the name iri tthei nteri or variable,

like this:

| abel $itk_interior.lab

We also have to do something special to let the mega-widget know that this is a
component. We wrap the widget creation command inside larconponent
command like the one shown in Fig@x&.

symbolic name
for component

i tk_conponent add | abel {
label $itk interior.lab <4— code usedtocreate

}{ the component Possibilities:
keep - background how to integrate/ keep
keep -foreground <4— its configuration renane
keep - cur sor options usual

} ——_ ignore

Figure 2-5 Syntax of the itk_component command.

This command executes the code that you give it to create the component, and
saves the name of the resulting widget. It stores this name in a protected array
calledi t k_conponent, using the symbolic name as an index. When you want
to refer to the component later on, you can look it up in this array using its

77

Tcl/Tk Tools

symbolic name. For example, in Fig@é® we created a label with the
symbolic namd abel . We can pack this component using its symbolic name,
like this:

pack $itk_conponent (I abel) -side |eft

The expressio$i t k_conponent (| abel) expands to a real widget path nhame
like .s.lab or.foo.bar.lab. We can use this in any of the methods in the
Soi ni nt class to refer to the label component.

You can also use symbolic component names outside of the mega-widget class,
but you do it a little differently. Thetk: : A chet ype class provides a method
called conponent that you can use to access components. If you call this
method without any arguments:

%Spinint .s

.S

%. s conponent

hull |abel entry uparrow downarrow
it returns a list of symbolic component names. You can also use this method to
reach inside the mega-widget and talk directly to a particular component. For
example, we might configure the label to have a sunken border like this:

.s conponent | abel configure -borderwidth 2 -relief sunken

Using symbolic names insulates you from the details inside of a mega-widget
class. Suppose we decide next week to rearrange the components, and we
change the name of the actual label widget frfimk interior.lab to

$itk interior.box.l1. Code inside the class like:

pack $itk_conponent (| abel) -side |eft
and code outside the class like:

.s conponent |abel configure -borderwidth 2 -relief sunken
will not have to change, since we used the symbolic name in both places.
The i tk_conponent command does one other important thing. As you add
each component, its configuration options are merged into the master list of
options for the mega-widget. When you set a master option on the mega-
widget, it affects all of the internal components. When you set the mbatd¢

ground option, for example, the change is propagated to-theekgr ound
option of the internal components, so the entire background changes all at once.

You can control precisely how the options are merged into the master list by
using a series of commands at the end ofi the conponent command. We
will explain all of the possibilities in greater detail below, but in Figifewe

78

Chapter2: Building MegaWidgets with [incr TK]

used thekeep command to merge thebackground, -foreground and
-cursor options for the label into the master list.

All of the master configuration options are kept in a protected array called
itk _option. You can use this in any of the methods to get the current value
for a configuration option. It will save you a call to the usiggk method. For
example, if we were in some method I8 nint: :insert, we could find out
the current background color using either of these commands:

set bg [cget -background] ;#alittle slow

set bg $itk_option(-background) ;# better
But if you want to change an option, you can't just set the value in this array.
You must always call theonf i gur e method, as shown below:

set itk_option(-background) red ;# error! color does not change

configure -background red ;# ok
As you can see, there is a close relationship between ttheconponent
command, and thiet k_conponent andi tk_opti on arrays. Whenever you add
a new component, its symbolic name is added to tkeconponent array, and
its configuration options are merged into thé_opti on array. This relation-
ship is summarized in Figug6.

i t k_conponent adjablel {

| abel $itk_interior.lab
P A
keep - backgr ound
—|:| keep - f oreground
keep - cursor
}
Variable Description Example
itk_interior container for all .S
components in this
mega-widget
9 itk _option array mapping i tk_option(-background) <> gray
option names i tk_option(-cursor) o
to option values itk _option(-foreground) <« black
—» i tk_conponent array mapping i t k_conponent (I abel) «—.s.lab

symbolic names
to real widget names

Figure 2-6 How the itk_component command ties in with class variables.

79

Tcl/Tk Tools

Keeping Configuation Options

Each mega-widget has a master list of configuration options. When you set a
master option, it affects all of the internal components that are tied to that
option. For example, if we have i ni nt mega-widget nameds and we
configure its masterbackgr ound option:

.s configure -background green

the change is automatically propagated down tchthé, | abel , upar r ow, and
downar r owcomponents. In effect, the overall background turns green with one
simple command. This is what you would naively expect, since a mega-widget
is supposed to work like any other Tk widget. Bmcr Tk] has special
machinery under the hood that allows this to take place.

When you create a component widget, you can specify how its configuration
options should be merged into the master list. One possibility is to add compo-
nent options to the master list using #teep command. When you keep an
option, it appears on the master list with the same name. For example, in
Figure2-7 we show two differen§i ni nt components being created. The

| abel component keeps itsbackgr ound, - f or egr ound and- cur sor options,

so these options are added directly to the master list. efitrey component
keeps these same options, and keepshibieder w dt h option as well.

-arroworient

- background A
- borderw dth

itk_conponent add | abel { -—— -
label $itk interior.lab
A
keep - background
keep -foreground
keep -cursor

- backgr ound

-cursor
- cursor

-foreground =

—P< - f or egr ound

-arroworient

itk_conponent aedtry {
entry $itk_interior.en
J
keep - backgr ound
keep - f or egr ound
keep - cur sor
keep - borderwi dt h T y

- backgr ound
-borderw dth

- cursor

- foreground

Figure 2-7 Keeping component options on the master option list.

80

Chapter2: Building MegaWidgets with [incr TK]

When we configure a master option for the mega-widget, the change is propa-
gated down to all of the components that kept the option. This process is shown
in Figure2-8.

.s configure -background tan -borderw dth 2

-arroworient

- backgr ound
- borderwi dth

- cursor

- backgr ound
- borderw dth

- cursor

- f oreground

<- f oreground

- backgr ound
- borderw dth
- cursor

- foreground

Figure 2-8 Configuration changes are propagated down to component widgets.

When we configure thebackground option, both the label and the entry are
updated, but when we configurdorderw dth, only the entry is updated.
Since we did not keegbor derw dt h for the label, it is not affected by a change
in border width.

You must include &eep statement for each of the component options that you
want to access on the master list. The rest of the component options will be
ignored by default. It is usually a good idea to keep options bkekgr ound,
-foreground, -font and -cursor, which should be synchronized across all
components in the mega-widget. Options lkext or - conmand, which are
different for different components, should be ignored.

Renaming Configation Options

Suppose you want to keep an option on the master list, but you want to give it a
different name. For example, suppose you want to have an option nbewed

backgr ound for the Spi ni nt mega-widget that changes the background color of
the entry component. Having a separate option like this would let you highlight
the entry field with a contrasting color, so that it stands out from the rest of the
mega-widget. We want to keep thackground option for the entry compo-
nent, but we want to tie it to a master option with the nanest backgr ound.

We can handle this withraenane command like the one shown in Fig@®.

81

Tcl/Tk Tools

i tk_conponent add entry {
entry $itk interior.ent
Ho
renane -background -text background text Background Background
keep -foreground
keep - cursor
keep -borderw dth

-arroworient

- t ext backgr ound

- backgr ound
- borderwi dth
-cursor

- foreground

Figure 2-9 Renaming component options on the master option list.

We could create another component and renamebaskgr ound option to

-t ext background as well. If we did, then both of these components would be
controlled by the mastert ext background option. We could even create a
component and rename it$or egr ound option to-t ext background. Again,

any change to a master option likdeext backgr ound is propagated down to all

of the component options that are tied to it, regardless of their original names.

When you rename an option, you need to specify three different names for the
option: an option name for theonfi gure command, along with a resource
name and a resource class for the options database. In Figuree renamed

the entry’s-background option, giving it the namet ext background, the
resource nameext Backgr ound, and the resource claBackground. Each of
these names can be used as follows.

We can use the option name to configure the entry partSpi s nt mega-
widget like this:

.s configure -textbackground white

We can use the resource name in the options database to give all of our
i ni nt mega-widgets this value by default:

option add *Spini nt.text Background white

Instead of setting a specific resource likext Backgr ound, we could set a more
general resource class liBackgr ound:

82

Chapter2: Building MegaWidgets with [incr TK]

option add *Spi ni nt. Background bl ue

This affects all of the options in claBackgr ound, including both the regular
- backgr ound option and thet ext background option. In this case, we set
both background colors to blue.

“Usual” Configuration Options

If you have to writekeep andr enane statements for each component that you
create, it becomes a chore. You will find yourself typing the same statements
again and again. For a label component, you always keepbéakgr ound,
-foreground, -font and-cursor options. For a button component, you keep
these same options, along withct i vebackgr ound, - act i vef or egr ound and

- di sabl edf or egr ound.

Fortunately, thé&keep andr enane statements are optional. If you don't include
them, each widget class has a default séeep andr enane statements to fall
back on. These defaults are included in [tihher Tk] library directory, and
they are called thesual option-handling code You can change the “usual”
code or even add “usual” code for new widget classes, as we’ll see later on.

You can ask for the “usual” options one of two ways, as shown in F2glige
You can either include thesual command in the option-handling commands
passed tdt k_conponent, or you can leave off the option-handling commands
entirely. As you can see, the second way makes your code look much simpler.

i tk_conponent add | abel {

r ~ .
label $itk interior.lab i Repeat: |- background 7 arrovori ent
jRt O e - bor der wi dt h - backgr ound
usual _cursor - bor der wi dt h
} -f or egr ound -—\‘r‘ -cursor
— - f or egr ound
or
i tk_conponent add | abel { req----------+

label $itk_interior.lab f /
.

Figure 2-10 Adding a component with the “usual” option-handling code.

Having theusual command is useful if you want to have most of the “usual’
options, but with a few changes. For example, suppose we are adding the entry
component to &pi ni nt. We can get all of the “usual” options, but then over-
ride how the backgr ound option is handled. We can rename tbackgr ound

option to-t ext backgr ound like this:

83

Tcl/Tk Tools

itk_conponent add entry {
entry $itk_interior.ent

o

usual
renane - background -t ext background t ext Background Backgr ound
}
This is much better than the code shown in Fi@i8e There are many entry
widget options like-i nsert backgr ound and- sel ect backgr ound that we had
ignored earlier. The “usual” code for an entry handles these properly, without
any extra work.

Ignoring Configuation Options

In addition to thekeep, renane and usual commands, you can also ask for
certain options to be ignored using tlg;mor e command. In most cases, this is
not really needed. If you include any option-handling code at all, it will start by
assuming that all options are ignored unless you explikitsp or r enane
them. But the gnore command is useful when you want to override something
in the “usual” code.

Suppose the “usual” option-handling code keeps an optionfikeegr ound,
and you really want that option to be ignored for a particular component. You
can use theisual command to bring in the “usual” code, and then ignore a
particular option like this:
itk_conponent add entry {
entry $itk_interior.ent

o

usual
i gnore -foreground

Setting Wdget Defaults

As we saw earlier, you can establish a default value for any mega-widget option
using the options database. For example, suppose we are creating an applica-
tion, and we set the following resources:

option add *Spi ni nt . background bl ue

option add *Spi ni nt. t ext Background whi te
The “*Spi ni nt” part says that these values apply toSallni nt widgets in the
application, regardless of their name or where they appear in the window hier-
archy. The *background” and “.textBackground’ parts access specific
resources on eadpi ni nt widget.

84

Chapter2: Building MegaWidgets with [incr TK]

Remember, a master option likbackgr ound may be tied to many component
widgets that kept or renamed that option. In this case,b#ekgr ound option

of a Spinint is tied to the- background option of thehul |, | abel , up and
down components. The default value for tB@ ni nt background is automati-
cally propagated down to each of these components.

As a mega-widget designer, it is your responsibility to make sure that all of the
options in your mega-widget have good default values. It's a good idea to
include settings like these just above each mega-widget class:

option add *Spini nt.text Background white w dget Def aul t

option add *Spinint.range "0 100" w dget Def aul t

option add *Spinint.arrowQient horizontal w dget Defaul t

option add *Spini nt. | abel Pos nw w dget Def aul t
All of these settings are given the lowest prioxtydget Def aul t, so that you
can override them later on. You might add otlopti on statements to
customize a particular application. On Unix platforms, the user might add
similar resource settings taXdefaultsor .Xresourcedile.

If you don’t provide a default value for an option, then its initial value is taken
from the component that first created the option. For example, we did not
include a default value for tHmckgr ound resource in the statements above. If
there is no other setting fdrackground in the application, then the default
value will be taken from thaul | component, which was the first to keep the

- backgr ound option. Thehul | is a frame, and its default background is prob-
ably gray, so the default background for pgéni nt will also be gray. Many
times, the default values that come from components work quite well. But
when they do not, you should set the default explicitly with ophi on
statement.

Simple Example

Now that we understand how the components fit into a mega-widget, we can
see how everything works in a real example. In the previous chapter, we saw
how [INCR TcL] classes could be used to build a file browser. We wrote classes
to handle the file tree and its visual representation. We even wrote a few proce-
dures so that we could install a file tree on any canvas widget.

Now we can take this idea one step further. Instead of grafting our file tree onto
an external canvas, we can wrap the canvas and the file tree code into a
F | evi ener mega-widget. When we are done, we will be able to create a
Fil evi ener like this:

85

Tcl/Tk Tools

F | evi ewer .viewer -background LightS ateB ue -troughcol or NavyBl ue
pack .viewer -expand yes -fill both -pady 4 -pady 4

and have it display a file tree like this:
.viewer display /usr/local/lib

This will create a widget that looks like the one shown in Figuté. It has a
canvas to display the file tree, and a built-in scrollbar to handle scrolling. If you
click on a file or a folder, it becomes selected with a gray rectangle. If you
double-click on a folder, it expands or collapses the file hierarchy beneath it.

3 itel

(3 bin

(7 include

B itclh

[itkh

- tclh

LB tkh

(3 lib

-3 itciz.o
(3 itk2.0
—(J iwidgets2.0
—[j libitcl2.0.a

Figure2-11 Fileviewer mega-widget.

Now, we’ll write theR | evi ewer class.

Fileviewer Construction

A complete code example appears in the ffitd/itk/fileviewerl.itk but the
F | evi ewer class itself is shown below in Exam@el.

Example2-1 Class definition for the Fileviewer mega-widget.

option add *H | eviewer.wdth 2i w dget Def aul t
option add *FH | evi ewner. hei ght 3i w dget Def aul t

class FHleviewer {
inherit itk::Wdget

constructor {args} {
i tk_conponent add scrol | bar {
scrol lbar $itk_interior.sbar -orient vertical \
-command [code $itk_interior.canv yview

}
pack $itk_conponent (scrollbar) -side right -fill y

i tk_conponent add display {
canvas $itk_interior.canv -borderwidth 2\
-relief sunken -background white \
-yscrol | command [code $itk_interior.sbar set]

keep -cursor -height -width

keep -hi ghlightcolor -highlightthickness
renane - hi ghl i ght background - backgr ound background Backgr ound

86

Chapter2: Building MegaWidgets with [incr TK]

Example2-1 Class definition for the Fileviewer mega-widget.

}
pack $itk_conponent (di spl ay) -side | eft -expand yes -fill both
eval itk initialize $args

private variable root ""
public nethod display {dir}

private nethod creat eNode {dir}
) private proc cnpTree {option obj 1 obj 2}
We start off by inheriting the basic mega-widget behavior froki : Wdget .
This means that thEi | evi ener will be the kind of widget that sits inside of
another toplevel window, so we can usdidevi ener component in many
different styles of file selection dialogs.

In the constructor, we create the components within Bdodvi ewer, and pack
them into the hull. We create a scrollbar component nacraal | bar like this:

itk_conponent add scrol | bar {

scrol | bar $itk_interior.sbar -orient vertica \
-command [code $itk_interior.canv yview

}
As we saw in Figur@-6, we usebitk_interior as the root of the component
widget name. If we create B | eviewer mega-widget namedfv, then
$itk_interior will also be. fv, and the scrollbar will be name#iv. shar .

Since we didn’t include ankeep or r enane statements, we will get the “usual”
option-handling code for scrollbars. This automatically adds optionshiaek-
ground and -troughcol or to the master options for Bl eviewer. The
“usual” code ignores options likeori ent and -command that are probably
unigue to each scrollbar component. We really don't want anyone using a
H | evi ever to change these options. We just set them once and for all when
the scrollbar is first created.

Notice that we used theode command to wrap up the code for theormand
option. This isn’t absolutely necessary, but it is a good idea for the reasons that
we discussed in the previous chapter. If you do something like this:

i tk_conponent add scrol | bar {

scrol | bar $itk interior.sbar -orient vertical \
-command "$itk_interior.canv yvi ew

}
it will still work, but the scrollbar command will take longer to execute. Each
time it tries to talk to the canvas widget, it will start looking for it in the global
namespace. Since the canvas is created irFthevi ener constructor, its

87

Tcl/Tk Tools

access command is buried inside of Ehkeevi ener namespace, and it will take

a little longer to find. Thecode command wraps up the scrollbar command so
that when it is needed later on, it will be executed right inFAHevi ener
namespace, so the canvas will be found immediately. Whenever you are config-
uring a component widget, you should always usede command to wrap up
code fragments for options likeormand or - yscr ol | coomand. Likewise, you
should also use scope command to wrap up variable names for options like
-vari abl e.

Once the scrollbar has been created, we can use its symbolic name in the
i tk_conponent array to refer to it later on. For example, we pack the scrollbar
like this:

pack $itk_conponent (scrol lbar) -side right -fill y

We create a canvas component catlesbl ay in a similar manner. But instead
of getting the “usual” configuration options, we include explicdep and
r enane statements to merge its options into the master list:

i tk_conponent add di spl ay {
canvas $itk interior.canv -borderw dth 2 \
-relief sunken -background white \
-yscrol | coomand [code $itk_interior.sbar set]

H keep -cursor -height -wdth
keep -highlightcol or -highlightthickness
renane - hi ghl i ght background -background background Background
}
You can list all of the options in a sindéeep statement, or you can include lots
of different keep statements. In this case, we used two diffekeep state-
ments to make the code more readable. We did not keepbda&gr ound,
-borderwidth or -relief options. We simply fix their values when the
canvas is created. If you configure tHeackgr ound option of aF | evi ewer,
the rest of the widget will change, but the canvas background is not tied in, so it
will always remain white.

Notice that we renamed théii ghl i ght backgr ound option to - backgr ound.
Whenever we configure the mastdyackgr ound option, the- hi ghl i ght back-
ground option on the canvas component will be updated as well. If you don'’t
do this, you will see a problem as soon as you change the mbat&gr ound
option. Most of the background will change, but the focus highlight rings
inside the mega-widget will remain a different color. This rename trick fixes

t If this were an ordinary object, it wouldn’t be found at all. But there is some special code in the Tcl
unknown proc that finds widgets no matter where they are in the namespace hierarchy.

88

Chapter2: Building MegaWidgets with [incr TK]

the problem. It is such a good trick that it is part of the “usual” option-handling
code that you normally get by default.

Fileviewer Methods

The F | eviewer class in Exampl@-1 has one public method. If we have
created &4 | evi ener named. vi ewer, we can tell it to display a certain direc-
tory by calling thedi spl ay method:

.viewer display /hone/ mt

The creat eNode method and thenpTree proc are there only to help the
di spl ay method, so we make them private. We’ll see how they are used in a
moment.

A Fi | evi ener mega-widget works just like the file browser that we created in
Examplel-14. If you have forgotten all aboM sual F | eTr ee objects and
how we built the file browser, you should take a moment to remind yourself.

The implementation for theH | eviewer::display method is shown in
Example2-2.

Example2-2 Implementation for the Fileviewer::display method.

body Fleviewer::display {dir} {

if {$root !=""}
del ete obj ect $root

set root [createNode $dir]
$root configure -state open
$root refresh

}

EachF | evi ener maintains a tree off sual F | €Tr ee objects that represent
the files on its display. We use the privat®t variable to store the name of
the root object for the tree. Whenever we calldhgpl ay method, we destroy

the existing file tree by destroying the root node, and then we start a new file
tree by creating a new root node. We configure the root node to the “open”
state, so that when it draws itself, it will display other files and folders below it.
Finally, we tell the root node to refresh itself, and it draws the entire file tree
onto the canvas.

Whenever we need to creatdfesual FH | eTr ee node for theF | evi ever, we
call thecr eat eNode method, giving it the name of the file that we want to repre-
sent. The implementation of this method is shown in Exathgle

We start by creating & sual FH | eTree object. Remember, its constructor
demands two arguments: the file that it represents, and the canvas that will
display it. We use thdi spl ay component that we created for thid evi ewer

89

Tcl/Tk Tools

Example2-3 Implementation for the Fileviewer::createNode method.

body Fileviewer::createNode {f nane} {
set obj [Msual FleTree ::#auto $f nane $itk_conponent (di spl ay)]

$obj configure -nane $f nane \
-sort [code cnpTree -nange] \
-procreate [code $this creat eNode]

if {[fileisdirectory $f nange]} {
$obj configure -icon dirlcon
} elseif {[file executabl e $fnane]} {
$obj configure -icon prograntcon
} else{
$obj configure -icon filelcon

}
$obj configure -title [file tail $fnang]

return $obj
}
as the display canvas. We get the real window path name for this component
from the itk conponent array, and we pass it into thé sual FH | eTree
constructor. We create thésual FH | eTree object with the name: * #aut 0"
so we will get an automatically generated name likevi‘sual FH | eTr ee12".
As | discussed earlier in the section “Using Objects Outside of Their
Namespace” in Chaptér this puts the object in the global namespace, so we
can share it with other classes likeee that will need to access it.

We configure the nane and- sort options so that all files will be sorted alpha-
betically by name. We use thé | evi ewer::cnpTree procedure as the
comparison function forsort. If we were calling this procedure right now in
the context offH | evi ener, we could use a simple command likepTree.
But we are giving this command to a completely sepavhseial H | eTree
object, and it will be used later in tfieee: : reor der method. In that context,
there is no command callechpTree. Therefore, we cannot use a simple
command like EnpTree -nane”. We must wrap it up with theode command
like “[code cnpTree -nane]”. Roughly translated, this means that the
F leviewer is telling the M sual Fil eTree object: “When you need to
compare twoM sual FH | eTree objects later on, come back to the current
(Fi I evi ever) context and call thenpTree procedure. Since we're friends,
I'm giving you access to my namespace and letting you use my private
procedure.”

We also configure theprocreate option so that all child sual FH | eTree

nodes are created by tiel evi ewer: : creat eNode method. Remember, we
start with a single root node and build the file tree gradually, as needed. When
you double-click on a folder in the display, you open it and ask it to display its
contents. If it hasn't already done so, Yheual H | eTr ee object will scan the

file system at that point, and automatically create child nodes for the files within

90

Chapter2: Building MegaWidgets with [incr TK]

it. Whatever command we give for thpr ocr eat e option will be executed by
the M sual H | eTree object in a completely different context. Again, we must
be careful to use theode command. But in this caser,eat eNode is not just a
procedure, it is a method, so we must do something extra. We use the
command [code $this createNode]”. Roughly translated, thei | evi ener

is telling theM sual F | €Tree object: “When you need to create a node later
on, talk to me. My name Bt hi s, and you can use nureat eNode method.

This is usually a private method, but since we're friends, I'm letting you back in
to the currentKi | evi ewer) namespace, and you can acagssat eNode from
there.”

Near the end of thereat eNode method, we configure thel sual FH | eTree
object to display the file name and an icon that indicates whether the file is a
directory, a program or an ordinary file. When we are done configuring the
object, we return its name as the result ofctheat eNode method.

Each node uses tha | evi ewer:: cnpTree procedure when sorting its child
nodes. This is a standaldort-style procedure. It takes the names of two
M sual F | eTr ee objects, compares them, and returfi’if the first goes after
the second,-“1" if the first goes before the second, afd if the order does not
matter. The implementation of thepTr ee procedure is shown in Exames.

Example2-4 Implementation for the Fileviewer::cmpTree procedure.

body Fileviewer::cnpTree {option obj 1 obj 2} {
set val 1 [$obj 1 cget $option]
set val 2 [$obj 2 cget $option]
if {$vall < $val 2} {
return -1
} elseif {$vall > $val 2} {
return 1

return O

}

We have made this procedure general enough that we can use it to sort based on
any option of thev sual FH | eTr ee object. If we want an alphabetical listing,

we use- nane for theopti on argumeni’. If we want to sort based on file size,

we use-val ue for theopti on argument, and we set thgal ue option to the

file size when eacki sual F | €Tr ee object is created.

Fileviewer Cration Command

You create & | evi ewer widget like any othefINCR TcL] object—by using
the class name as a command:

T This is what we did in ther eat eNode procedure shown above.

91

Tcl/Tk Tools

F | evi ewer .viewer -background tan

Unfortunately, all of the other Tk widget commands have lower case letters. If
we want to follow the Tk convention, we should really have a command called
filevi ewer to create &i | evi ener widget.

You might wonder: Why not just change the class nanfé Itevi ener ? We

could do this, but Tk has a convention that all widget class names start with a
capital letter. You should follow this same conventiorfiNCR TK]. If you

don’t, you'll have trouble accessing defaults in the options database, and you'll
have trouble with class bindings.

We simply need to addfa | evi ewer procedure that acts as an alias to the real
F | evi ener command, like this:

proc fileviewer {pathNane args} {
upl evel Fleviewer $pathNane $args

}
This procedure takes a window path name and any option settings, and passes
them along to thé&i | evi ener command. Notice thgiat hNane is a required
argument, so if you forget to specify a window path name, you'll get an error.
We use theipl evel command so that the widget is created in the context of the
caller. After all, the caller wants ownership of whatever widget we create. If
we didn’t do this, the widget would be created in the namespace that contains
thefil evi ener proc, and in some casbthis can cause problems.

Defining Nev Configuation Options

So far, all of the configuration options for a mega-widget kkieevi ener have

been added by keeping or renaming options from its component widgets. But
what if you want to add a brand-new option that doesn’'t belong to any of the
components?

For example, suppose we want to add sel ect coomand option to the
F | eviewer. This is something like theconmand option for a Tk button. It
lets you configure eachil eviewer to do something special whenever you
select a node in its file tree.

As a trivial example, we could createH=d evi ewer that prints out a message
when each file is selected, like this:

t Suppose we put thei | evi ewer proc in a namespace calledilities. Without the

upl evel command, théi | evi ewer widgets that it creates would have their access commands
added to theiti | i ti es namespace. This would make it harder to access these widgets, and there-
fore slow down the application.

92

Chapter2: Building MegaWidgets with [incr TK]

fileviener .fv -sel ectcommand {puts "sel ected file: %"}

pack .fv
We will set things up so that arh fields in the command string will be
replaced with the name of the selected file. This mimics thia m# command,
and it makes it easy to know which file was selected whenever the command is
executed.

Having this feature opens the door for more interesting applications. We might
use it to create an image browser for a drawing program. Whenever you click
on a file in a recognized image format like GIF, TIFF or JPEG, the selection
command could load a thumbnail image that you could preview before clicking
OK.

The - sel ect conmand option is not kept or renamed from a component widget.

It is a brand-new option that we are adding to Rhleevi ever class itself. |If

this were an ordinarfiNCrR TcL] class, we would add a configuration option by
defining a public variable. You can do this for a mega-widget too, but if you
do, the option won’t be tied into the options database properly. Remember,
public variables have one name, but each widget option has three names: an
option name, a resource name, and a resource class.

Instead, when you define an option in a mega-widget class, you should use the
“itk_option define” command with the syntax shown in Fig@d?2.

option name

resource name

resource class

default value
l_ config body

itk_option define -sel ectconmand sel ect Cormand Cormand "" {...}

Figure 2-12 Syntax of the “itk_option define” command.

Believe it or not, this looks a lot like a public variable declaration. It includes
the three names for the option, an initial value, and some code that should be
executed whenever the option is configured. Like a public variable, the configu-
ration code is optional, and you can specify it outside of the class definition
using aconf i gbody command.

We can add thesel ect cormand option to theH | evi ewer class as shown in
Example2-5. You can find the complete code example in the ifdeitk/
fileviewer2.itk We have also addedsal ect method to thdH | evi ewer class.

93

Tcl/Tk Tools

We'll see in a moment how thesel ect coomand option and thesel ect
method work together.
Example2-5 Adding the “-selectcommand” option to the Fileviewer mega-widget.
class Hleviewer {

inherit itk::Wdget

constructor {args} {

}
itk _option define -sel ectcoomand sel ect Gormand Gormand ""
private variable root ""

public nethod display {dir}
public nethod sel ect {node}

private nethod createNode {dir}
private proc cnpTree {option obj 1 obj 2}

body Fileviewer::select {node} {
set nane [$node cget - nane]
regsub -al | {%} $itk_option(-selectcommand) $nane cnu
upl evel #0 $cru

Notice that the itk _option define” statement appears outside of the
constructor, at the level of the class definition. Again, think of it as a public
variable declaration. It defines something about the class.

The -sel ect conmand option has the resource narsel ect Conmand and the
resource classmmand in the options database. WheneverHd evi ewer

widget is created, the options database is used to determine the initial value for
this option. If a value cannot be found for either of these names, the default
value (in this case, the null string) is used as a last resort.

Whenever a file is selected on the canvas, we’ll cals#hect method shown

in Example2-5, giving it the name of th&i sual F | €Tree object that was
selected. This method replaces @™ fields in the - sel ect conmand code

with the name of the selected file, and executes the resulting command. We are
careful to use Upl evel #0” instead ofeval to evaluate the code. That way,

the code is executed in the global context, and if it uses any variables, they will
be global variables.

You might wonder how we know when a file has been selected. As you will
recall from Exampld.-14, eachM sual FH | eTr ee object has its owRsel ect -
command option that is executed whenever a file is selected. We simply tell
eachM sual F | eTree node to call theH | evi ewer: : sel ect method when a

94

Chapter2: Building MegaWidgets with [incr TK]

node is selected. We do this when e8fcbual F | €Tr ee node is created, as
shown in Exampl&-6.

Example2-6 VisualFileTree nodes notify the Fileviewer of any selections.

body Fileviewer::createNode {fnane} {
set obj [Msual FleTree ::#auto $f nane $i tk_conponent (di spl ay)]

$obj configure -nane $f nane \
-sort [code cnpTree -nang] \
-procreate [code $this createNode] \
-sel ect coomand [code $this sel ect %)

}

When you click on a file, the entire chain of events unfolds like this. Your click
triggers a binding associated with the file, which causesithaal F | eTree
object to execute itssel ect coormand option. This, in turn, calls theel ect
method of the Fileviewer, which executes its ovgel ect cormand option. In
effect, we have used the primitivael ect coomand on eachM sual F | €Tr ee
object to support a high-levesel ect conmand for the entireH | evi ewer.

As another example of a brand-new option, suppose we addtral | bar
option to theH | evi ewer, to control the scrollbar. This option might have
three values. If it ion, the scrollbar is visible. If it i®ff, the scrollbar is
hidden. If it isaut o, the scrollbar appears automatically whenever the file tree
is too long to fit on the canvas.

Example2-7 shows thdH | evi ewer class with a scrol | bar option. You can
find a complete code example in the fild/itk/fileviewer3.itk

Example2-7 Adding the “-scrollbar” option to the Fileviewer mega-widget.

class FHleviewer {
inherit itk::Wdget

constructor {args} {

}

itk _option define -sel ectcoomand sel ect Gormand Cormand ""
itk_option define -scrollbar scrollbar Scrollbar "on" {
swtch -- $itk_option(-scrollbar) {
on - off - auto {
fixSerol | bar

}
default {
error "bad val ue \"$i tk_option(-scol |l bar)\""

}
}

private variable root ""

publ i c et hod di splay {dir}
public nethod sel ect {node}

95

Tcl/Tk Tools

Example2-7 Adding the “-scrollbar” option to the Fileviewer mega-widget.
private nethod createNode {dir}
private proc cnpTree {option obj 1 obj 2}

private nethod fixScrol | bar {args}
private variabl e sbvisible 1

In this case, we have added some configuration code after the default “
value. Whenever theonfi gure method modifies this option, it will execute
this bit of code to check the new value and bring the widget up to date. In this
case, we check the value of theerol | bar option to make sure that it @ or

of f orauto. You can always find the current value for a configuration option
in theitk_option array. If the value looks good, we use fheScrol | bar
method to update the scrollbar accordingly. If it does not have one of the
allowed values, we signal an error, and toaf i gur e method sets the option
back to its previous value, and then aborts with an error.

We must also calfi xScrol | bar whenever any conditions change that might
affect the scrollbar. Suppose the scrollbar islho mode. If we shorten the
widget, we might need to put up the scrollbar. If we lengthen the widget, we
might need to take it down. If we double-click on a file and expand or collapse
the file tree, again, we might need to fix the scrollbar. All of these conditions
trigger a change in the view associated with the canvas. To handle them, we
must make sure thdti xScrol | bar gets called whenever the view changes.
We do this by hijacking the normal communication between the canvas and the
scrollbar, as shown in Exampe8.

Example2-8 Using fixScrollbar to handle changes in the canvas view.
class Hleviewer {
inherit itk::Wdget
constructor {args} {
iik_conponent add di spl ay {
canvas $itk_interior.canv -borderwidth 2\
-relief sunken -background white \
-yscrol | coomand [code $this fixScrollbar]

H

}
pack $itk_conponent (di spl ay) -side | eft -expand yes -fill both
eval itk initialize $args

}

Each time the view changes, the canvas callsyésr ol | coomand to notify the
scrollbar. In this case, it calls ofirxScrol | bar method instead, which checks

to see if the scrollbar should be visible, and updates it accordingly. The
fixrol | bar method then passes any arguments through to the scrollbar, so
the normal canvas/scrollbar communication is not interrupted.

96

Chapter2: Building MegaWidgets with [incr TK]

ThefixScrol | bar method is implemented as shown in Exangsi
Example2-9 Implementation for the Fileviewer::fixScrollbar method.

body Fileviewer::fixScrollbar {args} {
switch $itk option(-scrollbar) {
on { set shstate 1}
off { set sbstate O}

auto {
if {[$itk_conponent(display) yview = "0 1"} {
set sbstate O
} else {
set shstate 1

}

}
if {$sbstate != $sbvisible} {
if {$sbstate} {
pack $itk_conponent (scrol I bar) -side right -fill y
} else {
pack forget $itk_conponent (scroll bar)

set sbhvisible $sbstate

if {$args !'=""} {
eval $itk_conponent (scrol | bar) set $args

}

First, we check the scrol |l bar option and determine whether or not the
scrollbar should be visible, saving the result in the variabit ate. If the
scrollbar ison or of f, the answer is obvious. But if it &t o, we must check
the current view on thdi spl ay canvas. If the entire canvas is visible, then the
view is “0 17, and the scrollbar is not needed.

We then consult thebvi si bl e variable defined in Exampa7 to see if the
scrollbar is currently visible. If the scrollbar needs to be put up, it is packed
into the hull. If it needs to be taken down, then thexk forget” command is
used to unpack it.

Finally, we pass any extra arguments on to g8 method of the scrollbar
component. Normally, there are no arguments, and this does nothing. But
having this feature lets theé xScrol | bar method be used as thgscrol | com

nmand for the canvas, without disrupting the normal communication between the
canvas and the scrollbar.

Defining “Usual” Options

When you add a component to a mega-widget, you must keep, rename or ignore
its configuration options. As we saw earlier, each of the Tk widget classes has
a default set okeep andrenane statements to handle its configuration options

97

Tcl/Tk Tools

in the “usual” manner. There is eveusual statement to request the “usual”
option-handling code.

But what happens if you use a mega-widget as a component of a larger mega-
widget? What if you use & leviewer as a component within a larger

F | econfirm mega-widget? Again, you must keep, rename or ignore the
configuration options for thé&i | evi ewer component. And what if someone
asks for the “usual” option-handling code foFd evi ener component? It is

your job as the mega-widget designer to provide this.

The option-handling commands for a new widget class are defined wstleb
declaration, like the one shown in Exampi&O.

Example2-10 Defining the “usual” options for a Fileviewer component.

option add *FH | eviewner.wdth 2i w dget Def aul t
option add *H | evi ewer. hei ght 3i w dget Def aul t
option add *H | eviewer. scrol | bar auto w dget Def aul t

class Hleviewer {

}

usual Hleviewer {
keep -acti vebackground -acti verel i ef
keep -background - cursor
keep -highlightcol or -highlightthickness
keep -t roughcol or

proc fileviewer {pathNane args} {
upl evel F leviever $pathNane $args

Here, thekeep commands refer to the overall options fdfi &evi ener mega-
widget. Suppose you useFal evi ener as a component in B | econfirm
mega-widget, and you ask for the “usual” options. Each of the options shown
above would be kept in thé | econfi r moption list. For example, if you set
the master- background option on aF | econfirm it would propagate the
change to thebackgr ound option of itsH | evi ener component, which in turn
would propagate the change to thmackgr ound option on its scrollbar and the

- hi ghl i ght backgr ound option on its canvas.

It is best to write the “usual” declaration at the last moment, after you have put
the finishing touches on a mega-widget class. You simply examine the master
configuration options one-by-one and decide if they should be kept, renamed or
ignored.

Only the most generic options should be kept or renamed in the “usual” declara-
tion for a widget class. If we had twa | evi ewer components within a

F | econfirmmega-widget, both of them might be tied to fhéeconfirm
option list in the “usual” way. Which options should they have in common?

98

Chapter2: Building MegaWidgets with [incr TK]

Options like - background, -foreground, -cursor and -font are all good
candidates for thé&keep command. On the other hand, options likext,

- bi t map and-command are usually unique to each component, so options like
these should be ignored.

Inheritance and Composition

Mega-widgets can be used to build even larger mega-widgets. Like the Tk
widgets, mega-widgets support composition. One mega-widget can be used as
a component within another. But mega-widgets also support inheritance. One
mega-widget class can inherit all of the characteristics of another, and add its
own specializations. You are no longer limited to what a clasilikevi ener
provides. You can derive another class from it and add your own enhance-
ments. So a mega-widget toolkit can be extended in a way that transcends the
standard Tk widgets.

In this section, we explore how inheritance and composition can be used to
build mega-widgets. These relationships become even more powerful when
combined.

Designing a Base Class

Suppose we plan to build many different kinds of confirmation windows. We
may build aMessageconfirm mega-widget, which prompts the user with a
question and requests ¥e$No or OK/Cancel response. We may build a
H | econfi rmmega-widget, which gives the user a file browser to select a file,
and requests laoadCancelor SavéCancelresponse.

Both of these mega-widgets have a common abstraction. They pop up in their
own toplevel window, they hav®K/Cancel buttons at the bottom, and they
prevent the application from continuing until the user has responded. When
mega-widgets share a common abstraction like this, we can design a mega-
widget base class to handle it. In this case, we will create a base class called
Gonfi rmwhich provides the basic functionality for a confirmation dialog.

A @nfi rmmega-widget looks like the one shown in Figes&3. It has an
empty area called the “contents” frame at the top, which can be filled in with
messages, file browsers, or whatever information is being confirmed. A sepa-
rator line sits between this frame and @k andCancelbuttons at the bottom

of the dialog. This dialog always pops up on the center of the desktop, and it
locks out the rest of the application until the user has pressed Gikher
Cancel

99

Tcl/Tk Tools

"contents"” frame

| oK ; cancel | ||

Figure 2-13 Generic Confirm mega-widget.

The class definition for &nfirmmega-widget is shown in Examell. A
complete code example appears in theititéitk/confirm.itk
Example2-11 The class definition for a Confirm mega-widget.

class @nfirm{
inherit itk::Topl evel

constructor {args} {

i tk_conponent add contents {

frame $itk_interior.contents
}
pack $itk_conponent (contents) -expand yes -fill both -padx 4 -pady 4
i tk_conponent add separator {

frane $itk interior.sep -height 2\

-borderwidth 1 -relief sunken

}
pack $itk_conponent (separator) -fill x -padx 8

private itk_conponent add controls {
frane $itk interior.cntl

}
pack $itk_conponent (controls) -fill x -padx 4 -pady 8
i tk_conponent add ok {
button $i tk_conponent (control s).ok -text "K' \
-command [code $this dismss 1]
}
pack $itk_conponent (ok) -side left -expand yes
i tk_conponent add cancel {
button $i t k_conponent (control s).cancel -text "Cancel " \
-command [code $this dismss 0]
pack $itk_conponent (cancel) -side | eft -expand yes
wmw t hdraw $i t k_conponent (hul I')
wngroup $itk_conponent (hul l) .
wm prot ocol $i t k_conponent (hul I') \
W DELETE WNDOW|[code $thi s di sniss]

after idle [code $this centernScreen)
set itk _interior $itk _conponent(contents)

eval itk initialize $args
}

pr i vate common r esponses

100

Chapter2: Building MegaWidgets with [incr TK]

Example2-11 The class definition for a Confirm mega-widget.

publ i ¢ met hod confirm{}
public nethod di smss {{choi ce 0}}

protected nethod center hScreen {}

The Qonfirm class inherits from thetk:: Topl evel base class, so each
Gonfirmwidget pops up with its own toplevel window. We create a frame
component calledontents to represent the “contents” area at the top of the
window. We use another frame component cadleghr at or to act as a sepa-
rator line, and we add two button components cafledand cancel at the
bottom of the window. Note that tlo&k andcancel components sit inside of a
frame component callecbntrol s. This frame was added simply to help with
packing.

When you have a component likent r ol s that is not an important part of the
mega-widget, you can keep it hidden. You simply includer @t ected or
privat e declaration in front of thet k_conponent command. This is the same
protected or private command that you would normally use in a nhamespace
to restrict access to a variable or procedure. It simply executes whatever
command you give it, and it sets the protection level of any commands or vari-
ables created along the way. When a mega-widget component is marked as
protected or private, it can be used freely within the mega-widget class, but it
cannot be accessed through the builcanponent method by anyone outside

of the class.

Once we have created all of the components, we do a few other things to
initialize the Gonfi rmwidget. Since this is a toplevel widget, we use whe
command to tell the window manager how it should handle this window. We
ask the window manager to withdraw the window, so that it will be invisible
until it is needed. We group it with the main window of the application. Some
window managers use the group to iconify related windows when the main
application window is iconified. We also set the “delete” protocol, so that if the
window manager tries to delete the window, it will simply invokedhen ss
method, as if the user had pressed@hacelbutton.

In all of these commands, we are talking to the window manager about a
specific toplevel window—the one that contains @nfirm mega-widget.
Remember, the container for any mega-widget is a component calladl the
which in this case is created automatically by ithk: : Topl evel base class.

The window manager won't understand a symbolic component namiaulike

so we give it the real window path name storeidt k_conponent (hul |).

101

Tcl/Tk Tools

When theQnfirm mega-widget appears, we want it to be centered on the
desktop. We have a method caltamht er OhScr een that determines the overall
size of the dialog, and uses theri'geonet ry” command to position it on the
desktop. You can find the implementation of this method in theitfilétk/
confirm.itk The details are not particularly important. We should call this
method once, when the widget is first created. But we can't call it directly in
the constructor. At this point, we haven't finished building@bef i r mdialog.

As we'll see shortly, more widgets need to be created and packed into the
“contents” frame. If we caltent er hScreen too early, the dialog will be
centered based on its current size, and when more widgets are added, it will
appear to be off-center.

This situation arises from time to time—you want something to hapfien
construction is complete. You can handle this quite easily with thaf fTér
command. Normally, you givafter a command and a certain time interval,
and the command is executed after that much time has elapsed. In this case, we
don’t care exactly whercenternScreen is called, so instead of using a
specific time interval, we use the key wardl e. This tellsafter to execute

the command at the first opportunity when the application is idle and has
nothing better to do. Again, since tbent er OhScr een method will be called

in another context, long after we have returned from the constructor, we are
careful to include the object narfehi s, and to wrap the code fragment with
thecode command.

As always, we finish the construction by callingk_initial i ze to initialize
the master option list and apply any option settings.

A onfi rmwidget can be created and packed with a label like this:

confirm.ask

set wn [.ask conponent contents]

| abel $w n. nessage -text "Do you really want to do this?"

pack $w n. nessage
Although we did not explicitly create options for the labels onQ@kéCancel
buttons, we can still change them like this:

.ask conponent ok configure -text "Yes"

.ask conponent cancel configure -text "No"
Sometimes it is better to access individual components like this, instead of
adding more options to the master option list. If a mega-widget has too many
options, it is difficult to learn and its performance suffers.

Whenever a confirmation is needed, tloef i r mmethod can be used like this:

102

Chapter2: Building MegaWidgets with [incr TK]

if {[.ask confirm} {
puts "go ahead"
} else{
puts "abort!"

}
The confirm method pops up thé€bnfirm window, waits for the user’s
response, and returdsfor OK andO for Cancel Theif statement checks the
result and prints an appropriate message.

Theconfi rmmethod is implemented as shown in Exanipl2.
Example2-12 Implementation for the Confirm::confirm method.

body Gonfirm:confirm{} {
wm dei coni fy $i t k_conponent (hul I')
grab set $itk_conponent (hul ')
focus $it k_conponent (ok)

tkwait variabl e [scope responses($this)]

grab rel ease $itk_conponent (hul I')
wnwi t hdraw $i t k_conponent (hul |)

return $responses($this)

}

First, we ask the window manager to pop up the window using the
“wmn dei coni fy” command, and we set a grab on the window. At this point, all
other windows in the application will be unresponsive, and the user is forced to
respond by pressing eith@&K or Cancel The default focus is assigned to the
OK button, so the user can simply press the space bar toG&lect

The tkwait command stops the normal flow of execution until the user has
responded. In this case, we watch a particular variable that will change as soon
as the user presses eitl@ or Cancel EachConfirmwidget should have its

own variable fort kwai t. Normally, we would use an object variable for some-
thing like this, but there is no way to pass an object variable to a command like
tkwai t. Thescope operator will capture the namespace context for a variable,
but not the object context. So tkeope command works fine for common
class variables, but not for object variables. We can use the following trick to
get around this problem: We define a common array caélepgonses, and we
assign each widget a slot with its nafitdii s. As long as we wrap each slot
responses($t hi s) in thescope command, we have no trouble passing it along
totkwait.

Thanks to the command option of theok andcancel components, pressingK
invokes thedi sni ss method with the valué&, and pressing@€ancelinvokes the
di smi ss method with the valu®. Thedi snmiss method itself is quite trivial.
Its body is shown in Exampk13.

103

Tcl/Tk Tools

Example2-13 Implementation for the Confirm::dismiss method.

body Gonfirm:dismss {{choice 0}} {
set responses($this) $choi ce

It simply stores whatever value you give it in tlesponses array. But if we're
sitting at thet kwai t instruction in theconfi rmmethod, this is just what we're
looking for. Setting this variable cauddsnai t to return control, and execution
resumes within theonfi rmmethod. We release the grab, hide the dialog, and
return the user’s response.

The Gonfi rmmega-widget is useful in its own right, but it can be even more
useful as the basis of other mega-widget classes. Derived classes like
MessageconfirmandH | econfirmcan inherit most of the basic functionality,
and simply add a few components into toat ent s frame.

But how do derived classes know that they are supposed to usentlest s
frame? We use the varialilek_i nteri or to track this. In thétk: : WWdget or

i tk:: Topl evel base clasg,tk_interior is set to the window path name of
thehul | component. In th€onfirmbase class, we create components in this
interior, and then changetk interior to the window path name of the
contents frame. Derived classes create components in this interior, and
perhaps changetk interior to their own innermost window. If all classes
useitk_interior like this, making classes work together becomes a simple
matter of changing theimherit statements.

Using Inheritance

We can continue with the example described above, using inheritance to create
a Messageconfi rm mega-widget like the one shown in Fig@ré4. A
Messageconfirmis-a Gonfirm but it has an icon and a text message in the
content s frame.

Figure 2-14 A Messageconfirm mega-widget.

The class definition for Messageconfirm is shown in Exargdld. A
complete code example appears in theititléitk/messageconfirm.itk

104

Chapter2: Building MegaWidgets with [incr TK]

Example2-14 Class definition for a Messageconfirm mega-widget.

cl ass Messageconfirm{
inherit Gnfirm

constructor {args} {
i tk_conponent add icon {
label $itk_interior.icon -bitmap questhead
P

usual
renane -bitmap -icon icon B tnap

}
pack $itk_conponent (i con) -side |eft

i tk_conponent add nessage {
| abel $itk_interior.mesg -waplength 3i
e

usual
renane -text -nessage nessage Text

}
pack $itk_conponent (nessage) -side left -fill x

eval itk initialize $args
}
}

By inheriting from theQnfi r mclass,Messageconf i rmautomatically has its
own toplevel window with aontents frame, a separator line, af@K and
Cancel buttons. It hasonfi rmand di smiss methods, and it automatically
comes up centered on the desktop.

It has the same basic configuration options too, but it does not inherit any
default settings from the base class. If you have defined some resource settings
for theGonf i rmclass, like this:

option add *Confirmbackground bl ue w dget Def aul t
option add *@nfirmforeground white w dget Def aul t

you will have to repeat those settings for the derived class:

option add *Messageconfirm background bl ue w dget Def aul t

option add *Messageconfirmforeground white w dget Def aul t
In its constructor, thééssageconfi rmadds ari con component, which repre-
sents the bitmap icon to the left of the message. We ussube command in
the option-handling commands for this component to integrate most of its
options in the “usual” manner, but we rename tbet nap option, calling it
-icon in the master list. This is a better name for the option, since it indicates
which bitmap we are controlling.

The Messageconfirmalso adds aessage component, which represents the
message label. Again, we use tal command to integrate most of its
options, but we rename theext option, calling it nessage in the master list.

As always, we create these two component widgets with the root name
$itk interior. But in this case$itk interior contains the name of the

105

Tcl/Tk Tools

content s frame that we created in the constructor for base €lags rm So
these new components automatically sit inside of dbt ents frame, as |
explained earlier.

We might create &kssageconf i r mwidget like this:

nessageconfi rm. check -background tonato -icon warning \
-nmessage "Do you really want to do this?"

and use it like this:

if {[.check confirm} {
puts "go ahead"

} else{
puts "abort!"

}
With a simplei nherit statement and just a few lines of code, we have created
a very useful widget.

Mixing Inheritance and Composition

Inheritance is a powerful technique, but so is composition. Many good designs
use both relationships. For example, suppose we crdateeeonf i rmmega-
widget like the one shown in Figuel5. AR | econfirmis-a Gonfirm and
has-aH | evi ener component packed into tlednt ents frame. It alschas-a

entry component packed into thent ent s frame. When the user selects a file,

its name is automatically loaded into the entry component. Of course, the user
can also edit this name, or type an entirely different name into the entry
component.

(3 include
[itclLh
HB itk.h
& tclh
LB tkh
-3 lib

(3 itc12.0

-7 itk2.0

(3 iwidgets2.0
) libitci2.0.a

Figure 2-15 A Fileconfirm mega-widget.

106

Chapter2: Building MegaWidgets with [incr TK]

The class definition for Fileconfirm is shown in Exampié5. A complete
code example appears in the fild/itk/fileconfirm.itk

Example2-15 Class definition for a Fileconfirm mega-widget.

class Fleconfirm{
inherit Gonfirm

constructor {args} {
i tk_conponent add fil eTree {
fileviewer $itk_interior.files \
-sel ect conmand [code $this sel ect %]

}
pack $itk_conponent (fileTree) -expand yes -fill both

i tk_conponent add fileLabel {
label $itk_interior.flabel -text "Fle:"

}
pack $itk_conponent (fileLabel) -side |eft -padx 4

i tk_conponent add fileEntry {
entry $itk interior.fentry

}
pack $itk conponent (fileEntry) -side left -expand yes -fill x

eval itk initialize $args
}

itk_option define -directory directory Orectory "" {
$i tk_conponent (fil eTree) display $itk_option(-directory)

public nethod get {} {
return [$itk_conponent (fileEntry) get]

protected nethod sel ect {nane} {
$i tk_conponent (fil eEntry) delete O end
$i tk_conponent (fil eEntry) insert 0 $nane

}

Again, by inheriting from th&onf i r mclass,H | econfi r mautomatically has its
own toplevel window with aontents frame, a separator line, af®K and
Cancel buttons. It hagonfi rmand di smiss methods, and it automatically
comes up centered on the desktop.

In its constructorH | econfi rmadds aF | evi ener component. It also adds a
File: label and an entry component at the bottom ottmtent s frame. These

are three separate components, but they interact withif tieeonf i r min the
following manner. When the user selects a file, Fhleevi ewer executes its

- sel ect coomand code, which calls thEi | econfirm: sel ect method with the
selected file name substituted in placé&mf Thesel ect method then loads the

file name into the entry component. Whatever name is sitting in the entry
component is treated as the official file selection. At any point, you can use the
F | econfirm:get method to get the file name sitting in the entry component.

107

Tcl/Tk Tools

The -directory option controls the top-level directory in titel econfirm
Whenever it is configured, it automatically invokes tlhepl ay method of the
H | evi ewer to update the display.

We might create & | econfi rmwidget like this:
fileconfirm.files -directory $env(HME)
and use it like this:

if {[.files confirm} {
puts "selected file: [.files get]"
} else{
puts "abort!"
}
We use theonfi rmmethod to pop up the dialog and wait for the user to select
a file and pres®K or Cancel If he presse®K, we use thget method to get
the name of the selected file, and we print it out.

We leveraged th&onfirmclass with inheritance, and th&l evi ewer class
with composition. Together, these two techniques produce a complex widget
with just a little extra code.

Reviving Options

Sometimes a derived class needs to override the way a base class handles its
configuration options. For example, suppose we want to defineatlieh and

-hei ght options of aF | evi ener widget so that they represent the overall
width and height, including the scrollbar. Previously, we kept thelt h and

-hei ght options from the canvas component, so the overall width was a little
bigger when the scrollbar was visible. Instead, we need to keemittieh and

-hei ght options from thénul | component. But thibul | component is created

in thei tk: : WWdget base class, and we can’t modify that code.

Options that belong to a base class component can be revived in a derived class
using the 'tk option add” command. You simply tell the mega-widget to

add an option that was previously ignored back into the master list. A complete
code example appears in the fitel/itk/fileviewer4.itk but the important parts

are shown in Exampl2-16.

Example2-16 Options can be revived using “itk_option add”.
option add *FH | eviewner.wdth 2i w dget Def aul t

option add *H | evi ewer. hei ght 3i w dget Def aul t

option add *H | eviewer. scrol | bar auto w dget Def aul t

class Hleviewer {
inherit itk::Wdget

constructor {args} {

108

Chapter2: Building MegaWidgets with [incr TK]

Example2-16 Options can be revived using “itk_option add”.
itk_option add hul | .width hull.hei ght
iii(_conponent add display {
canvas $itk_ interior.canv -borderwdth 2 \

-relief sunken -background white \
-yscrol | coomand [code $this fixScrollbar] \
-wdth 1 -height 1

o

keep -cursor
keep -hi ghlightcol or -highlightthickness
renane - hi ghli ght background - background background Background

}
pack $itk_conponent (di splay) -side | eft -expand yes -fill both
eval itk initialize $args

pack propagate $itk_conponent (hull) O
bi nd $i t k_conponent (di spl ay) <Configure> [code $this fixScrollbar]

}

The “‘itk option add” command is different from the tk opti on define”
command that we saw earlier. You useK option define” as part of a
class definition to define a new configuration option. On the other hand, you
use 1tk _option add” in the constructor (or in any other method) to reinstate a
configuration option that already exists but was ignored by a base class. The
“itk_option add” command can appear anywhere in the constructor, but it is
normally included near the top. It should be called befoieinitialize,

since options likew dt h and- hei ght might appear on thar gs list.

Each option is referenced with a name lilkerhponentoption’ if it comes
from a component, or with a name likeldss : option’ if it comes from an
“itk_option define” command. In either caseption is the option name
without the leading - sign. In this example, we are reviving the dt h and
-hei ght options of thehul | component, so we use the narhakl . w dt h and

hul I . hei ght. F | evi ener widgets will behave as if these options had been

kept when the component was first created.

Now that we have reinstated thei dt h and- hei ght options, we must make
sure that they work. Frames normally shrink-wrap themselves around their
contents, but we can use thgatk propagate” command to disable this, so
the hull will retain whatever size is assigned to it. We also set the width and
height of the canvas to be artificially small, but we pack it to expand into any
available space.

Suppessing Options

Options coming from a base class can be suppressed using the
“itk_option remove” command. But this command should be used carefully.

109

Tcl/Tk Tools

A derived class likeH | evi ener should have all of the options defined in its
base classtk::Wdget. After all, aF | eviewer is-a \Wdget. An option
should be suppressed in the base class only if it is being redefined in the derived
class.

For example, suppose we want to change the meaning efthsor option in

the F leviewer widget. We set things up previously so that when you
configure the mastercur sor option, it propagates the change down to all of
the components in th& | evi ener. Suppose instead that we want tleer sor
option to affect only theli spl ay component. That way, we could assign a
special pointer for selecting files, but leave the scrollbar and the hull with their
appropriate default cursors.

To do this, we must keep theur sor option on thedi spl ay component, but
avoid keeping it on thecrol | bar andhul | components. A complete code
example appears in the filecl/itk/fileviewer5.itk but the important parts are
shown below in Exampl2-17.

Example2-17 Options can be suppressed using “itk_option remove”.

option add *FH | eviewer.wdth 2i w dget Def aul t

option add *F | evi ener. hei ght 3i w dget Def aul t

option add *F | evi ewer. scrol | bar auto w dget Def aul t
option add *H | evi ewer. cursor center_ptr w dget Def aul t

class Hleviewer {
inherit itk::Wdget

constructor {args} {
itk_option add hul | .width hul | . hei ght
itk _option renove hul|. cursor

i tk_conponent add scrol | bar {
scrol I bar $itk interior.sbar -orient vertical \
-conmand [code $itk_interior.canv yview
o

usual
i gnore -cursor

eval itk initialize $args
conponent hull configure -cursor ""

pack propagate $itk_conponent (hull) O
bi nd $i tk_conponent (di spl ay) <Qonfigure> [code $this fixScrollbar]

}

Since we create theerol | bar component in clasi | evi ewer, we can simply

fix its option-handling code to suppress #®irsor option. We integrate its
options in the “usual” manner, but we specifically ignore- itar sor option.

The hull component, on the other hand, is created ini the: \Wdget base
class, and we can't modify that code. Instead, we use the

110

Chapter2: Building MegaWidgets with [incr TK]

“itk_option renove” command to disconnect itscursor option from the
master list. We create thik spl ay component just as we did before, keeping
its - cur sor option. Having done all this, we can configure the mastersor
option, and it will affect only thdi spl ay component.

We might even add a default cursor like this:
option add *F | evi ener. cursor center_ptr w dget Def aul t

Whenever we create a nel| evi ewer widget, its-cursor option will be
center_ptr by default, so the file area will have a cursor that is more suitable
for selecting files.

At this point, the example should be finished. But there is one glitch that keeps
this example from working properly. Unfortunately, when you set a resource
on a class likéH | evi ewer, it affects not only the mastér | evi ewer options,

but also the options on thaul | component that happen to have the same
name. We were careful to disconnect the hull from the mastesor option,

but unless we do something, the hull will think its default cursor should be
center_ptr. Even though it is not connected to the master option, it will acci-
dentally get the wrong default value.

We can counteract this problem by explicitly configuring okl component
in theH | evi ewer constructor like this:

conponent hul | configure -cursor ""

So the hull will indeed get the wrong default value, but we have explicitly set it
back to its default value, which is the null striTngThis problem is rare. It
occurs only when you try to suppress one of the hull options- likesor,
-borderwidth or-relief, and yet you set a class resource in the options data-
base. It is easily fixed with an explicit configuration like the one shown above.

Building Applications with Mga-Wdgets

Using mega-widgets as building blocks, applications come together with aston-
ishing speed. Consider thaedget r ee application shown in Figur2-16, which

is modeled after thhi er query program? It provides a menu of Tcl/Tk appli-
cations that are currently running on the desktop. When you select a target
application, its widget hierarchy is loaded into the main viewer. You can
double-click on any widget in the tree to expand or collapse the tree at that
point. If you select a widget and press tenfigure button, you will get a

T In Tk, widgets with a null cursor inherit the cursor from their parent widget.
¥ David Richardson, “Interactively Configuring Tk-based ApplicatioRsgceedings of the Tcl/Tk
Workshop New Orleans, LA, June 23-25, 1994,

111

Tcl/Tk Tools

panel showing its configuration options. You can change the settings in this
panel and immediately apply them to the target application. This tool is a great
debugging aid. It lets you explore an unfamiliar Tk application and quickly
make changes to its appearance.

= witlgetree =
Application: tree7.tcl |
& tree?.itcl
[control I
tmdir = Configure: .display.lbox
£ get -
[display -background |white
'“"“ -borderwidth [2
=¥ shar r
i sort -cursor
byname -exportselection |1
bysize ~font |-*~courier-bold-r-normal--
3 1abel r
-foreground |Black
-height [1o
- ~highlightbackground |#d3d3d3
i S Eisplayihox ~highlightcolor [Black
-highlightthickness |2
Dismiss
i i

Figure2-16 The “widgetree” application lets you explore any Tk application.

Thew dget r ee application was built with a handful of mega-widgets and about
100 lines of Tcl/Tk code. Most of the mega-widgets came off-the-shelf from
the [INCR WIDGETY] library, described in Chapt&XX. The application menu

is an(pt i onnenu widget. The panel of configuration options i al og with

an internal<rol | edf rane containingEntryfi el d widgets, which represent
the various configuration options.

We developed one customized mega-widget for this application: a
Wdget vi ener class to manage the widget tree. You can find the code for the
Wdget vi ewer class in the filatcl/widgetree/widgetviewer.itk The details are

not all that important. As you might have noticed, Wieget vi ewer looks
suspiciously like & | evi ener. It has adi spl ay component and scrol | bar
component, and it stores its data usihgual Wdget Tr ee objects. Like the

Vi sual H | eTree class, theM sual Wdget Tree class inherits from thdree

andM sual Rep classes developed in the previous chapter. But instead of popu-
lating itself with nodes that represent files, eatlsual \WWdget Tree object
populates itself with nodes that represent child widgets. When you expand a

112

Chapter2: Building MegaWidgets with [incr TK]

M sual Wdget Tree node on the display, you trigger a call to @antents
method and the node populates itself. It sends thenf® chil dren”
command to the target application, gets a list of child widgets, and creates other
\i sual Wdget Tr ee objects to represent the children.

The w dget r ee application has many different classes that all contribute to its
operation. You can find the code for this application in theitilavidgetree/
widgetree Rather than present the code here, we will simply comment on the
way that these classes were used to structure the code.

The relationships between these classes are a mixture of inheritance and compo-
sition. They can be diagrammed using the OMT nothtsnshown in Figure-

17. AWdgetvi ewer is-aitk:: Wdget, and ithas-aM sual VWdget Tr ee root

object. AM sual Wdget Tr ee is both aWdget Tree and aM sual Rep, and a

Wdget Tree is-aTr ee.

[incr Tk] i tk:: Archetype Tree
|
i tk::Wdget Wdget Tree \i sual Rep

L N —

Wdget vi ener [<>————————{ \f sual Wdget Tree

Figure 2-17 The “widgetree” application has many different classes working together.

The same application can be built without objects and mega-widgets, but it
requires more code, and the final result might not have as many finishing
touches. For example, the configuration options forvddget r ee application

are presented on a scrollable form, in case the list is long. Nodes in the widget
tree can be expanded or collapsed, and a scrollbar comes and goes as needed.
Many developers avoid writing extra code for features like these. With mega-
widgets, the code can be written once and reused again and again on future
projects. This makes Tcl/Tk even more effective for building large applications.

t James Rumbaugh, Michael Blaha, William Premerlani, Frederick Eddy and William Lo®bsen,
ject-Oriented Modeling and DesigRrentice-Hall, 1991.

113

Tcl/Tk Tools

Summary
Extension: [incr Tk] - Mega-Widget Framework
Author: Michael J. McLennan
Bell Labs Innovations for Lucent Technologies
mmclennan@lucent.com
Other Mark L. Ulferts

Contributors:

Platforms
Supported:

Web Site:

Mailing List:
(bug reports)

Jim Ingham
...and many others listed on the web site

All major Unix platforms

Linux

Windows 95 (release itcl2.2 and beyond)
Macintosh (release itcl2.2 and beyond)

http://ww tcltk. conditk

mai | -s "subscribe" itcl-request @cltk.com
to subscribe to the mailing list

mai | itcl @cltk.com
to send mail

114

Chapter2: Building MegaWidgets with [incr TK]

Quick Refeence
Public Methods

The following methods are built into all mega-widgets. If you have created a
mega-widget with the Tk namgathName you can access these methods as
follows:

pat hNane cget -option

Returns the current value for any mega-widget option. Works
just like the usuatget method in Tk.

pat hNane conponent ?syniol i cNane? ?cormand arg arg ...?
Provides access to well-known components within a mega-
widget.

pat hNane configure ?-opti on? ?val ue -option value ...?

Used to query or set mega-widget options. Works just like the
usualconfi gure method in Tk.

Protected Methods

The following methods are used within a mega-widget class as part of its
implementation:

i tk_conponent add syniol i cNane {
w dget pathNane ?arg arg...?
}

or

i tk_conponent add syniol i cNane {
W dget pat hNane ?arg arg...?
A
ignore -option ?-option -option ...?
keep -option ?-option -option ...?
renane -option -newNane resour ceNane resour ced ass
usual ?tag?

Creates a widget and registers it as a mega-widget compo-
nent. The extragnor e, keep, r enane andusual commands
control how the configuration options for this component are
merged into the master option list for the mega-widget.

115

Tcl/Tk Tools

itk_option

itk_option

itk_option

itk initialize

add opt Nane ?opt Nane opt Nane. . . ?

whereoptNameas componentoptionorclassName: option
Adds an option that was previously ignored back into the
master option list.

renove opt Nane ?opt Nane opt Nane. . . ?

whereoptNameas componentoptionorclassName: option
Removes an option that was previously merged into the mas-
ter option list.

define -option resourceNane resourced ass init
?conf i gBody?

Defines a new configuration option for a mega-widget class.

?-option val ue -option val ue...?

Called when a mega-widget is constructed to initialize the
master option list.

Protected ¥riables

The following variables can be accessed within a mega-widget class:

i t k_conponent (syniol i cNaneg)

itk interior

Contains the Tk window path name for each component
namedsymbolicName

Contains the name of the toplevel or frame within a mega-

widget which acts as a container for new components.

itk _option(-option)

116

Contains the current value for any configuration option.

Chapter2: Building MegaWidgets with [incr TK]

Auxiliary Commands

The following commands are available outside of a mega-widget class. They
provide useful information about all Tk widgets:
usual tag ?commands?

Used to query or set “usual” option-handling commands for a
widget in clasdag.

w nf o comand w ndow

Returns the access command for any widget, including its
namespace qualifiers.

w nfo negaw dget w ndow

Returns the name of the mega-widget containing the widget
namedwindow

117

Tcl/Tk Tools

118

