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1 Introduction

1.1 Why Functional Programming?
Reasons for studying functional programming (P. Pepper):

e Conceptional level: understand what programming is about; learning
concepts not given in conventional languages.

e Practical level: hightened productivity of software development and
verification

¢ “Informatiker wird man nicht, indem man ein oder zwei spezielle Pro-
grammiersprachen beherrscht — das kann jeder Hacker. Informati-
ker zeichnet aus, dass sie das Prinzip des Programmierens und
das Prinzip des ‘Sich-in Programmiersprachen-Ausdriickens’ beherr-
schen.”

e Spectrum: Imperative/Objectoriented and logical/functional langua-
ges.

Functional Programming with ML (L. Paulsen)

e “Using ML, students can learn how to analyse problems mathemati-
cally, breaking the bad habits learned from low-level languages. Si-
gnificant computations can be expressed in a few lines.”
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1.2

121

‘Can Programming Be Liberated from the von-Neumann
Style?’

John Backus’ Turing Award Lecture 1977.
Developper of the (imperative!) Languages Fortran and Algol 60.

Conventional Programming Languages: Fat and Flabby

Each successive language incorporates, with a little cleaning up, all
the features of its predecessors plus a few more.

Each new language claims new and fashionable features, but the
plain fact is that few languages make programming sufficiently chea-
per or more reliable to justify the cost of producing and learning to
use them.

— Large increases in size bring only small increases in power!

( Programming ) is now the province of those who prefer to work with
thick compedia of details rather than wrestle with new ideas.
Discussions about programming languages often resemble medieval
debates about the number of angles that can dance on the head
of a pin instead of exciting contests between fundamentally differing
concepts.

— basic defects in the framework of conventional languages make
their expressive weakness and their cancerous growth inevitable.

— alternate avenues of exploration toward the design of new kinds
of languages
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1.2.2 Models of Computing Systems

Simple Operation Models: (Turing machines, automata)
Foundations: concise and useful
History sensitivity: have storage, history sensitive
Semantics: state transition with very simple states
Program clarity: unclear, conceptually not helpful

Applicative Models: (lambda-Calculus, combinators, pure lisp)
Foundations: concise and useful
History sensitivity: no storage, not history sensitive
Semantics: reduction semantics, no states
Program clarity: can be clear and conceptually helpful

Von Neumann Models: (conventional programming languages)
Foundations: complex, bulky, not useful
History sensitivity: have storage, history sensitive
Semantics: state transition with complex states
Program clarity: can be moderately clear, conceptually not helpful

Reduction semantics: stepwise transformation (reduction) until a “normal
form” is reached.
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1.2.3 Von Neumann Computers and Von Neumann Languages

CPU STORE

e von-Neumann bottleneck: pumping single words back and forth bet-
ween CPU and store
Task of a program: change store in some major way.
Word must be generated in the CPU or sent from the store (its ad-
dress must have been sent from the store or generated by the CPU,

)

e The tube is an intellectual bottleneck that has kept us tied to word-at-
a-time thinking instead of of encouraging us to think in terms of the
larger conceptual units of the task at hand.

Thus programming is basically planning and detailing the enormous
traffic of words through the von Neumann bottleneck, and much of
that traffic concerns not significant data itself but where to find it!

e Conventional programming languages are basically high level, com-
plex versions of the von Neumann computer.
Our belief that there is only one kind of computer is the basis of our
belief that there is only one kind of programming language!

Remark: Although Java is an object oriented language, methods are most-
ly/typically realized in an imperative/von Neumann style: assignments of values
to variables and fields.
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Characteristics of von Neumann Languages

e Variables imitate the computer’s storage cells; assignements imitate
fetching and storing.

e The assignement statement is the von Neumann bottleneck of pro-
gramming languages!

e The assignement statement splits programming into two worlds:

— Right side of assignement statements: orderly world of expres-
sions, useful algebraic properties (except when destroyed by
side-effects), useful computations

— Statements: assignement statement is primary, all other state-
ments must be based on this construct

Remark: side effect means that the value of a variable can be changed by a
statement given in a different part of the program (different method, even different
class).

Functional languages are free of side effcts: referential transparency, expressions
can be replaced by values without a change of the overall result!
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1.2.4 Comparison of von Neumann and Functional Programming

von Neumann program for inner product:

c :=0;
for 1 = 1 step 1 until n do
c :=c + a[1] x b[1]

e statements operate on an invisible state

e non hierachical, no construction of complex entities from simpler
ones

e dynamic and repetitive (to understand: mentally execute)

e word-at-a-time computition by repetition (of assignement) and modi-
fication (of 1)

e part of the data is in the program (n), thus it works only for vectors of
length n

e arguments are named; it can only be used for vectors a and b (to
become general: procedure declaration)

e “housekeeping” operations are scattered; not possible to consolidate
them into single operations; one must always start again from square
one when writing programs (writing for 1 == _..)
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functional program for inner product:

Def Innerproduct ==

(insert +) o (ApplyToAll x) o Transpose

DefIP = (/+) o (ax) o Trans

e Functional Forms: combination of existing functions to form new

ones:

f o g: function obtained by applying first ¢ and then f
af: function obtained by applying f to every member of the argument

e Application: f : x

Example evaluation: z = ((1, 2, 3), (6, 5,4))
IP:{(1,2,3),(6,5,4)) =

Definition of IP = (/4) o (ax) o Trans
Effect of composition =  (/+) : ((ax) : (T'rans
Applying Transpose = (/+) : ((ax) : (
Effect of a = (/+) : (x :(1,6), x
Applying x = (/+) : (6,10, 12)
Effect of / = +: (6,4 : (10,12))
Applying + = +: (6, 22)

Applying + = 28
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e operates only on its arguments; no hidden states or complex transiti-
on rules; only two kinds of rules: applying a function to its argument
and obtaining a function denoted by a functional form

e hierarchical: built from simpler functions (+, x, Trans) and functional

forms (f o g, af, /f)

e static and non-repetitive: can be understood without mental executi-
on

e operates on whole conceptual units, not words; three steps, non is
repeated

e incorporates no data; completely general; works for all pairs of con-
formable vectors

e does not name arguments; can be applied to any pair of vectors

e housekeeping forms and functions which are generally useful; only
+ and x are not concerned with housekeeping
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1.2.,5 Language Frameworks versus Changeable Parts

e Framework: overall rules of the system
e. g., for-statement
— fixed features, general environment for its changeable features

e Changable parts: library functions, user-defined procedures

e Language with a small framework: support many different features
and styles without being changed itself

e von Neumann languages have large frameworks, because:
— semantics closely coupled to states, every feature must be built
into the state and its transitition rules

— changable parts have little expressive power (“their gargantuan
size is eloquent proof of this”)

1.2.6 Changable Parts and Combining Forms

e Powerful changable parts: combining forms

e von Neumann languages: only primitive combining forms (for, while,
if-then-else)

— split between expressions and statements (in a functional lan-
guage there are only expressions!)
expressions can only be used to produce a one-word result!

— elaborate naming conventions, substitution rules required for
calling procedures
complex mechanism must be built into the framework
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1.2.7 Von Neumann Languages Lack Useful Mathematical Properties

It is hard to reason about von Neumann programs (correctness, termination).

e Denotational Semantics: understanding the domain and function
spaces implicit in programs
when applied to functional (recursive) programs: powerful tool for de-
scribing the language and proving properties of programs
when applied to von Neumann languages: precise semantic descrip-
tion, helpful for identifying troublespots of the language, but: comple-
xity of the language is reflected in complexity of description

e Axiomatic Semantics: (Hoare calculus), precisely restates the inele-
gant properties of the von Neumann programs
success: (1) restriction to small subsets of von Neumann languages;
(2) predicates and transformations are more orderly
“... It is absurd to make elaborate security checks on debugging runs,
when no trust is put in the results, and then remove them in producti-
on runs, when an erroneous result could be expensive or disastrous.
What would we think of a sailing enthusiast who wears his life-jacket
when training on dry land but takes it off as soon as he goes to sea?”
(Hoare, 1989)

e “... using denotational or axiomatic semantics to describe a von Neu-
mann language can not produce an elegant and more powerful lan-
guage any more then the use of elegant and modern machines to
build an Edsel can produce an elegant and modern car.”



Functional Programming e 01/02 11

e Proofs about programs use the language of logic, not the language
of programming; proofs talk about programs but do not involve them
directly.

e Ordinary proofs are derived by algebraic methods in a language that
has certain algebraic properties; proofs are performed in a mechani-
cal way by application of algebraic laws

e Programs in a functional language have an associated algebra,
proofs use the language of the programs themselves!

ar+br=a+b,a+b#0
(a+bx=a+b
(a+b)x = (a+0b)1

z=1
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1.2.8 What Are the Alternatives to von Neumann Languages
Functional Style of Programming: FP, based on use of combining forms

Algebra of Functional Programs: Algebra whose variables denote FP pro-
grams and whose operations are FP functional forms (combining
forms of the FP programs); some algebraic laws; relation to Church
(Lambda calculus) and Curry (combinators)

(For obtaining history sensitivity, an applicative state-transition system is
proposed.)

1.2.9 FP Systems

Fixed set of combining forms, called functional forms.

Functional forms and simple definitions are the only means of buil-
ding new functions from existing ones.

no variables, no substitution rules.

All functions map objects into objects and take a single argument.

Has not the freedom and power of lambda-calculus “with unrestricted
freedom comes chaos”
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1.3 Possible Topics for Student Projects
Implementationen in ML:

e Interpreter for FP

e Tautology-Checker for OBDDs (Bryant, 1992; Moore, 1994)

e Theorem Prover (Tableau Method; Lisp Theorem Prover, Boyer &
Moore)
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2 Backus’ FP Systems

Backus (1978, sect. 11)

2.1 Components of an FP System

An FP system comprises the following:
1. a set O of objects,
2. aset F of functions f, that map objects into objects,
3. an operation application,

4. a set F of functional forms, to combine functions ore ovbjects to new
functions in F,

5. aset D of definitions that define functions in ' and assign a name to
each.

2.1.1 Objects

Objects O:
e an atom,
e asequence (zi,...,z,) Whose elements z; are objects,
e | (bottom, the undefined object)

Atom ¢ denotes the empty sequence (object which is atom and sequence!,
cf., nil in Lisp).

Atoms 7" and F' denote “true” and “false”.

If x is a sequence containing L, then z = | (sequence constructor is
“bottom preserving/strict”)
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2.1.2 Application

Application: If f is a function and z is an object, then f : x is an application
which denotes the object which is the result of applying f to x.

f is the operator and x is the operand.

Application is the only operation in FP.

Examples:
+:(1,2)=31t:(A,B,C)=(B,C)

2.1.3 Functions

Functions F:
All functions f € F map objects into objects and are bottom preserving
(f : L =1,"“f isundefined at z”)

e primitive (supplied with the system), or
e defined, or

e functional form.
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Selector Functions:

liz=z=(x1,...,2,) = x1; L
S:x=r=(T1,...,Tp) AN >85> x5 L
(Variant of the McCarhty Conditions: p; — e1;...;Pn — € €n11)

Tail: tl:x=x={(x1) > ¢;0 ={(T1,..., Ty AN>2 = (To,...,Tpn); L
ldentity: id: z ==z

Atom: atom : x = x isanatom —T;x#* 1 — F; 1

Equalsieq: 2=z =(y,2) Ny=2—->T;2=(y,2) N\y#z— F; L
Null: null :z=zx=¢—->T;x# 1L > F; L

Reverse: reverse: e =x=¢ — ¢;x = (x1,...2,) = (Tp,...21); L
Distribute form left; from right:

distl:z =2 = (y,d) = ¢;2 = (y, {21, .., 2n)) = (Y, 21), .- (Y, zn)); L
distr :x =z ={(d,y) = ;2 = ((Y1,---Yn)» 2) = {{Y1,2), .- (Yn, 2)); L
Length: length: x =z = (x1,...2,) &> njze = ¢ — 0; L

Add, Subtract, Multiply, Divide:

+:x=x=(y,z) Ny, z are numbers — y+ z; L
—:x=2x=(y,z) Ny, z are numbers — y— z; L

x:x =1 = (y,z) Ny, z are numbers — yx*z; L
+ix=x=(y,2) Ny, z are numbers — y+ z; L(wherey+0= 1)
Transpose:

trans: x = ={¢,...,0) = ¢;0 ={x1,---Tn = (Y1,---Ym); L
where T; = (Ti, ... Tim and Y+ J = (T1j,... Tpj), 1 <i<n, 1 <j<m
And, Or, Not:

and 2=z =(T,T) > T2 = (T, F)vVae=(F\T)Ve=(F,F) > F; L

Append left/right:

appendl : x =z = (y,0) = (y);x = (Y, (21, -, 2n)) = (Y, 21, -, Zn); L
appendl : x =z = (¢,2) = (2);2 = Y1,y Un), 2) = Y1,y Yn, 2); L
Right selectors; right tail: 1r : z = x = (21, ..., 2,) — Tp; L
r:x=x=(x1,...,Tp) > Ty 1; L

wtlrrz=x={(r1) > d;x ={(T1,...,Tp) AN >2—=(T1,...,T5_1); L

16

Rotate left/right: rotl : t =z = ¢ — ¢;2 = (x1) — (x1);2 = (T1,...2p) A

712 2— (ng,...,xn,x1>;J_
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2.1.4 Functional Forms

Functional form F:
an expression denoting a function; that functions depends on the functions
or objects which are the parameters of the expression.

Composition: (fog):z=f:(g:x)

Construction: [fi,..., fo] iz = (fi:z,... fn: )

Condition:

p—=fi9):z=p:2)=T—>f:z;(p:x)=F —>g:x2; L

Constant: 7 : y = y = L — 1;z (Z denotes is a functional form, the
constant function of x)

Insert:

Jf 1z =12 = (x1) = x50 = (x1,...,¢,) An > 2 = [ {(z1,/f :
<$2,,.’L‘n>>,J_,

Extension for unique right unit (identity element): /f : ¢ = uy

Apply to all:

af:x=x=¢ > dx={(T1,--,xn) > {(fr21,..., [ xn); L

Binary to Unary: (bu fz):y=f:{(z,y) (bu + 1):z =142z

While:

(whilep f):x=p:x=T — (whilepf) : (f:2);p:x=F > x; L
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2.1.5 Definitions

Definitions: Def [ = r

where the left side is an unused function symbol and the right side is a
functional form (which may depend on [)

A set of D is well-formed, if no two left sides are the same.

Def lastl = 1o reverse
Def last = null o tl — 1;last o tl

last : (1,2) =
definition of last = (null o tl — 1;lastotl) : (1,2)
action (p — f;9) lastotl : (1,2)
since null otl : (1,2) = null : (2) = F
action fog = last : (tl : (1,2))
definition of ¢/ = last : (2)
definition of last = (null o tl — 1;last o tl) : (2)
action fog = 1:(2)

since nullotl: (2) =null : ¢ =T
definition of selector = 2

Remark: Substituting the name of a (recursive) function by its body is called un-
folding.
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2.2 Semantics of FP Programs

An FP-system is determined by the choice of the following sets:
e The set of atoms A (which determines the set of objects)
e The set of primitive functions P
e The set of functional forms F
e A well formed set of definitions D.

Reduction Semantics:
Computation of f : x for any function f (primitive, functional form, definiti-
on, none of these) and any object x

Remark: Discrimination between syntactic structures and semantics is realized
hear partially by using different names for the sets.

Example: Factorial

Def!=eq0 — 1; x o [id,! o subl]
where

Def eq0 = eq o [id, 0]

Def subl = — o [id, 1]

(Proving the semantics: see theorems and algebra of FP programs in sect.
12 of Backus ,1978)
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2.2.1 Proof of Correctnes by Evaluation

Example:
Def lengthl = eq o [id, ¢] — 0; / + oal
to show: lengthl : (zi,...,z,) is 0 for the empty sequence and n for a

sequence of length n (which does not contain a ).

en=2_0
lengthl : ¢ = eqo[id,¢] — 0; / +oal : ¢
= 0: ¢ (because eqo [id,¢] : ¢ = T)
=0

en>1
lengthl : (x1,...,1,) = eqo[id,§] — 0; / + oal : (x1,...,x,)
= / +oal: (zy,...,z,) (because eqo [id, ¢| : (x1,...,T,) = F)
= /+:(1,...,1
n times

=4+:(,/4+(L...,1)=...=+L1+{1,...)...)

n—1 times

=>n

(Remember constant functions: (1) : z = 1)
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2.2.2 Complete Induction

For recursive function definitions: complete induction
Def length = eq o [id, ] — 0;+ o [1,length o tl]

Induction Hypothesis: For sequences = = (z,,...,z;) holds length : z is
n.

Base case:n =0
length : ¢ = 0 (because eqo [id, @] : ¢ = T)

Induction step: n - n+1

to show: length : (xp11, Tp, ..., x1) =n+1

+ o [l,length o tl] : (Tpi1,Zn,...,21) (Decause eq o [id, ¢
(Tpy1, Tny- - 11) = F) = +o[1,length] : (Tn,..., 1)

= +o(l:(Tn,...,21),length: {zy,...,21))

= +: ((1:{xn,...,z1),length : {Tp,...,11)))

= 1+ n (by of assumption)

More details about semantics and proofs for FP Systems will follow later.
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3 Mathematical Functions and First Steps in ML

3.1 Characteristics of Functional and Imperative Programs

(Pepper, p. 3)

Functional Program:

(1) E/A Relation, that is
mapping of input-data to
output-data

(2) “time-less”: independent
of the current state of the
executing machine

(3) abstract, mathematical
formulation

(4) Lisp, ML, Haskell, Miran-
da, Opal, ...

Imperative Program:

(1) Sequence of commands
for transforming input-data in-
to output-data

(2) Effect of a command de-
pends on the current state of
the machine; to understand a
program, one has to follow its
steps in time

(3) concrete relation to what
the computer does

(4) Algol, Fortran, Pascal, C
(C++, Java, Smalltalk)

e Two classes of declarative languages (in contrast to procedural, im-
perative languages): logical and functional

e Specifying “what” to do rather than “how” to do it

e typical use: artificial intelligence

e Prolog was designed for natural language processing and automated

reasoning

e ML was designed for implementing theorem provers

e Relation of declarative languages and specification languages (auto-
matic programming, program transformation)
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3.2

Basic Mathematical Concepts: Sets, Functions, Terms, Ex-
pressions

3.2.1 Elementar Concepts of ‘Sets’

x € M: member test, is x contained in set M?

A C B: subset, are all elements of set A contained in set B

0, {}: empty set

{z1,...,z,}: enumeration

{z | p(x)}: set comprehension, set of all elements with attribute p
A U B: union (formal definition: AUB ={z |z € AV z € B})
AN B: intersection

A\ B: set difference, all elements of A which are not also in B

Hierarchical conception of sets (Russel paradox)

extensional definition by enumeration vs. intensional definition by
comprehension

set vs. bag vs. sequence/list
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3.2.2

3.2.3

Tupel

A x B: pair, special case of product, set of all ordered pairs (a, b) with
a€e Aandb e B
projections 7 {(a, b) = a, my{a,b) =b

A; x ... x A, product with projections 7, ..., m,, empty product: ()
A™: power, n-th productof A A x ... x A

A*: sequence, set of all sequences of elements from A, A° U A U
A? U. .. (the infinite set of all words over A)

remember: the set of all subsets of A is called power-set and:
P(A)| = €\ for |A| = n.

Relations and Functions
R C A x B:is a binary relation between sets A and B; R is a set of
pairs
A — B:is a function space, the set of all functions from A to B

[ = (Dy,W;, Ry): is a function with a domain (“Definitionsbereich”)
D¢, a codomain (“Wertbereich”) W, and a function graph R; C Dy x
W;. The function graph must be uniquely defined for every element
of D; (“rechtseindeutig”), that is: {a, b1), (a, bs) € Ry = by = bs.

fmaps ztoyif (z,y) € Ry.
D¢ and Wy can be tuples!

Some mathematicans call f as defined above a mapping and say
that f is a function only if the co-domain is R. More typically, function
and mapping are used as synonyms.
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e A function f is called partial if 7 (R) C D; and total if 7(R) = Dy.
With D = 7, (R) and W = m,(R) the elements of D and W which are
really mapped by f are denoted.e “totalized” introducing a special
element L. For a partial function f = (D, W, R) a total function f*+ =
(D+, W+ R1) is defined as:

- Dt =DuU{l}and W+ = Wu {L} where L represents the
“undefined” element.

— Rt is an extension of R such that for every element z € Dt
which is not mapped into an element of W a pair (z, L) is intro-
duced into R.

e f(x): function application, returns y for (x,y) in y where y might be
1.

. f composition, a new function i(z) = (g o f)(z) = g(f(z)

For f = (Dy, Wy, Rs) and g = (Dy, Wy, Ry) holds: if Wy

z) €

go )
D, then
h = (Df,Wg, Ry) with Ry, = {(z, 2) | 3(3: y) € Ry A (y, o)

C
€ER




Functional Programming e 01/02 26

3.2.4 Terms and Expressions

e Aconstant ¢ € D is aterm. A variable (“place-holder” for a term) is a
term. Ift; € D, and t, € D, are terms and f is a function with domain
D, x D, then f(t,t2) is a term.

e Terms which do not contain variables are called ground terms.
e A variable can be bound to a value.

e An expression is basically a term, but might contain additional con-
structs (\-expression, typed expression, ...).
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3.3 ML: Value Declarations

e ML (Meta-Language) was developed 1974 for the programming of
proof strategies.

e We will use the interpreter for Standard ML (sml).

¢ Interaction with the interpreter:
every expression must be ended with a semicolon (;)

2 + 2;

> 4 - iInt;

Math.sqrt 2.0;

> 1.414213562 : real

e ML returns the value and the type of an expression (type inference !)

e Load an ML-program in the interpreter:
use "myprog.ml'';

Value Declarations:

e A declaration gives something a name (values, types, signatures,
structors, functors).

e Most names stand for values (numbers, strings, functions).

e Functions are values in ML!
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3.3.1 Naming Constants

val seconds = 60;

> val seconds = 60 : iInt

val minutes = 60;

> val minutes = 60 : iInt

val hours = 24;

val hours = 24 : int

seconds * minutes * hours;

> 86400 : iInt

it div 24;

> 3600 : iInt

val secsinhour = i1t;

> val secsinhour = 3600 : int
val pi = 3.14159;

> val pi = 3.14159 : real

val r = 2.0;
>val r = 2.0
val area = pi
> val area =

: real
12.56636 : real

e it stores the value of the last expression typed at top level.

e it can be saved

28
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3.3.2 Function Declarations

fun area (r) = pi*r*r;
> val area = fn : real -> real
fun area2 r pi*r*r;
> val area? fn : real -> real

e Declaration with keyword fun.
area is the function name.
r is the formal parameter

e left side: function head, right side: function body

e The value of a function is printed as fn. Functions are abstract values,
their inner structure is hidden.

area(2.0);

> 12.56636 : real
area 1.0;

> 3.14159 : real
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3.3.3 Comments
e (* comment *)
e can extend over several lines
e can be nested
e can be inserted nearly everywhere

fun area r = (* area of circle with radius r *)
pi*r*r;

If the code and the comments disagree, then both are probably wrong. (N.
Schryer)

3.3.4 Redeclaring Names
e Value names are called variables.
e In contrast to imperative languages variables cannot be updated!
e A name can be reused for another purpose.

e A re-declaration does not affect existing uses of the name. (different
in Common Lisp!)

e The set of bindings visible at any point is called environment.

e Permanence of names: static binding
— redeclaring a function cannot damage the system, the library, or
a program!

e When a function is modified, one must recompile!

val pi = 0.0; (* redeclaration of pi *)

> val pi = 0.0 : real

area(1.0); (* refers to the original environment *)
> 3.14159 : real
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3.35

Identifiers in Standard ML

Alphabetic names: must beginn with a letter, can be followed by let-
ters, digits, underscores, primes (single quotes)
mathematicias like variables called x, x>, X~

avoid ML keywords:

abstype and andalso as case datatype do else

end eqtype exception fn fun functor handle if

in include infix Infixr let local nonfix of op
open orelse raise rec sharing sig signature struct
structure then type val where while with withtype

Symbolic names: consist of
' % &S # + — /- <=>20\7"|

Reserved symbols = | = >= — > # >

Names are known as identifiers. An identifier can simultaneously de-
note a value, a type, a structure, a signature, a functor, and a record
field.
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4 Basic Datatypes and Lists in ML

4.1 Numbers, Character Strings, and Truth Values

41.1 Arithmetic

e type iInt (in some ML systems with unlimited precision)
unary minus: ~5 integer operations: + - * div mod (all infix, paran-

theses where necessary)

((Mm*n)*k) - (m div j)) + ]
e type real (decimal point or E notation or both)

T1.2E12: -1.2-10%

real operations: + - * (overloaded built-in functions!) 7/ (all infix)

e Function applications binds more tightly than infix operators.

32

e Arithmetic and the Standard Library: Structure Int contains functi-
ons such as abs, min, max, sign; Structure Real contains analo-
gous and additional functions, especially conversion functions; Struc-
ture Math contains higher mathematical functions on real numbers.

Int.min(7, Int.sign 12);
>val 1t =1 : Int

- 7(CL);

val it =1 : iInt

Type int and real

Nubmers

~ I num -> num
+ — %
abs : num -> num

/ - real * real -> real
div mod :
< > <= >=

real : int -> real
round : real -> iInt
floor : real -> iInt
ceil : real -> iInt
trunc : real -> iInt

num * num -> num

int * int -> Int

numtext * numtext -> bool

unary minus

addition, subtr., multipl.
abolute value

real division

integer quotient and remainder
relations for

int, real, char, string

coercion to nearest real
coercion to nearest int
coercion to least int

coercion to greatest int
coercion to absolute greatest int
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- open Math;
opening Math
type real = ?_real
val pi : real
val e : real
val sgrt : real -> real
val sin : real -> real
val cos : real -> real
val tan : real -> real
val asin : real -> real
val acos : real -> real
val atan : real -> real
val atan2 : real * real -> real
val exp : real -> real
val pow : real * real -> real
val In : real -> real

val 1og10 : real -> real

val sinh : real -> real
val cosh : real -> real
val tanh : real -> real
e Structures will be introduced in a later section.
Remarks: e ?_real represents the built-in type real.
e Types can be redefined!
- type real = int;
type real = int
-1+ 1;
val it =2 : int
- 1.0 +1.0;

val it = 2.0 : ?.real
- (1:real) + 1;

val it = 2

: real

open Real; (* ... *)

-1+ 1;

33

stdIn:28.1-28.6 Error: operator and operand don’t agree [literal]
operator domain: real * real

operand:

int * int

in expression:

1+1

va

- 1.0 +1.0;
I it = 2.0 : real
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4.1.2 Type Constraints

e ML can deduce the types in most expressions from the types of the
functions and constants in it.

e But: some built-in functions are overloaded (having more than one
meaning)!
Example: +, —, x are defined for integers and reals.

e If possible: infer type of an overloaded function from the context; oc-
casionally types must be stated explicitely.

e Type constraints can appear almost everywhere (argument, result,
body, within the body)

fun square x = x*X;

> Error - Unable to resolve overloading for *

fun square(x : real) = x*x; (* specify arg type *)
> val square = fn : real -> real

fun square x real = x*x; (* specify res type *)
> val square = fn : real -> real

fun square x = x*x : real; (specify body type *)

> val square = fn : real -> real
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4.1.3 Strings and Characters

String constants in double quotes: ""How now! a rat?"

Characters: hashmark followed by a string of length 1: #a*

Special characters: Escape sequences.

e In the Standard Library are structures String, Substring, and
Char with operations for these types.

\n newline
\t tab
\" double quote
\\ backslash
\ followed by white-space continue a string across a line-break
type char and string and substring Characters/Strings
" I string * string -> string concatenation
concat : string list -> string conc. of a list of strings
explode : string -> char list coercion to list of chars
implode : char list -> string coercion to string
str :© char -> string coercion to 1-char string
size : string -> iInt number of chars
substring : string * int * int -> string substring, pos, size
chr : Int -> char char with given ASCII-code
ord: char -> int AClI-code of char

fun digit i = chr(i + ord #"0");

i
> val digit = fn : Int -> char
fun digit 1 = String.sub(''0123456789", 1);
> val digit = fn : Int -> char
str(digit 5);
> val "5" I string
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4.1.4 Truth Values and Conditional Expressions
Boolean Operations

e logical or orelse

e logical and andalso

e logical negation not
not true not(true)

e Functions that return boolean values are called predicates.

e Operators orelse and andalso behave differently from ordinary
functions: the second operand is evaluated only if necessary (se-
guential behavior)

fun isLower c = #"a" <= c andalso c <= #"z';

datatype bool = true | false Truth Values

not : bool -> bool logical negation

= <> : 7’a* ””a -> bool equality test
Remark: With ”a we denote any type and with *”a we denote a type with
equality.

Remark: In ML bool is a datatype, namely an enumeration type.

Conditional Expression:
iT E then E1 else E2

¢ the else part is mandatory!

e We will here more about conditional expressions (and the McCarthy
conditional cond) in a later section.

fun sign (n) =
ifn>0 then 1
else if n=0 then O
else (* n<0 *) 71;
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4.2 Tuples
e The ordered collection of n values is called n-tuple. A 2-tuple is called
pair.
e Components of a tuple can be aribtrary values (expressions, other
tuples, ...).
e In classical ML (zy,...,2, 1,2,) Was an abbreviation for

(1, o, (Tno1, %) - - )
With functions, tuples give the effect of multiple arguments and re-
sults.

(2.5, 71.2);

> (2.5, 71.2) : real * real

val zerovec = (0.0, 0.0);

> val zerovec = (0.0, 0.0) : real * real

val a = (1.5, 6.8);

> val a = (1.5, 6.8) : real * real

val b = (3.6, 0.9);

>val b = (3.6, 0.9) : real * real

fun lengthvec (X, y) = Math.sqrt(xX*x + y*y);
val lengthvec = fn: real * real -> real
lengthvec a;

> 6.963476143 : real

lengthvec(1.0, 1.0);

> 1.414213562 : real

fun negvec (X, y) : real*real = ("x, 7vYy);

> val negvec = fn : real * real -> real * real
type vec = real*real;

e sqrtis a function from the Math library.
It constraints the overloaded operator to type real.
e For negvec atype constraint must be given because ~ is overloaded.

e Vectors have all the rights of built-in values (like integer): can be ar-
guments and results of functions, can be given names.

e Type declaration is possible, also.
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4.2.1 Functions with multiple arguments and results

fun average(x,y) = (x+y)/2.0;
> val average = fn : (real * real) -> real

e Strictly speaking, every ML function has one argument and one re-
sult. With tuples, functions can have any number of arguments and
results.

e Currying gives the effect of multiple arguments (introduced lin a later
lesson).

e \ectors can be paired (combined).

¢ In addvec (below) vec constrains + to real numbers.
The ML system may abbreviate (real * real) writing the name
of the declared type vec. (see above).
addvec takes: one argument (a pair of pairs of reals), two argumens
(each a pair of reals), four arguments (real numbers, oddly grouped)

((2.0, 3.5), zerovec);

> val 1t = ((2.0,3.5),(0.0,0.0)) : (real * real) * (real * real)
fun addvec ((x1,yl),(x2,y2)) - vec = (X1 + x2, yl1 + y2);

> val addvec = fn : (real * real) * (real * real) -> vec

fun subvec(vl, v2) = addvec(vl, negvec Vv2);

> val subvec = fn : (real * real) * (real * real) -> vec

fun distance (vl1l, v2) = lengthvec(subvec(vl, v2));

> val distance = fn : (real * real) * (real * real) -> vec

fun distance pairv = lengthvec(subvec pairv);
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4.2.2 Selecting Components of a Tuple

e A function is defined on a pattern, such as (x, Yy) and refers to the
components of its arguments though the pattern variables x and y.

e A val declaration may also match a value against a pattern: each
variable in the pattern refers to a corresponding component.

fun scalevec (r, (X, y)) : vec = (r*x, r*y);

> val scalevec = fn : real * (real * real) -> vec
scalevec(2.0, a);

> val it = (3.0, 13.6) :vec

val (xc, yc) = scalevec(4.0, a);

> val xc = 6.0 : real;

> val yc = 27.2 : real;

4.2.3 O0O-tuple and type ‘unit’

e The O-tuple (' ) has no components and is called unity. It is the sole
value of type unit and serves as placeholder in situations where no
data needs to be conveyed.

e Procedural programming in ML: functions which return unit.
use: string -> unit
Functions with argument uni t: only evaluation of body (delayed eva-
luation for infinite lists, see later section)
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4.3 Records
e The last and most complex basic type offered by ML are Records.

e Arecord is a tuple whose components (fields) have labels.
label = { components }

e Because of the labels, in records the sequence of entries is arbitrary.
val mr_jones = {name="Jones", age=25, salary=15300};

e As for tuples, we can give patterns for records.

¢ If we need not all fields, we can write three dots.

e Field selectors are noted as #1abel.

{salary=salaryJones, ...} = mr_jones;
> val salaryJones = 15300 : int
#age mr_jones;

> 25 - int
e Atupel (z1,xo,...,z,) corresponds to a record of the form:
{1=x1, 2=x2, ..., n=xn}.

e Selectors are defined for tuples also:
#2 (a'™, "b", 3, false)

e We can declare record types

e and functions on these types.
The type constraint is mandatory!

type employee = {name : string,
age : int,
salary : int};
> type employee
fun monthlySalary(e : employee) = #salary / 12;
fun monthlySalary({salary, ...} : employee) = salary / 12;
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e Record-types are represented by their components. Therefore types
with identical components are equivalent!

e Because (the functional core of) ML does not allow updates, it is
not possible to change components of record-values. Nondestructive
changes can be performed by generating a new value copying some
components and replacing others.

- type employee = {name : string, age : int, salary : int};
type employee = {age:int, name:string, salary:int}
- val mrjones = {name="jones", age=25, salary=15300};
val mrjones = {age=25,name="jones",salary=15300}
: {age:int, name:string, salary:int}
- fun name(e : employee) = "mr. ™ = #name e;
val name = fn : employee -> string
- type employee2 = {name : string, age : int, salary : iInt};
type employee2 = {age:int, name:string, salary:int}
- val mrdoe : employee2 = {name="'doe",age=35,salary=30000};
val mrdoe = {age=35,name="doe",salary=30000} : employee2
- name(mrjones);
val 1t = "mr. jones"™ : string
- name(mrdoe) ;
val 1t = "mr. doe"™ : string
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4.4 Infix Operators
e In Lisp, operators are prefix: (+ (- 17 2) 5).

e Most functional languages let programmers declare their own infix
operators.

e One can give a precedence directive (between 0 and 9) for infix.
infix 6 +; infix 7 *; infix 8 pow

e Default for a newly defined infix operator is O.

e Operators defined as infix can be used as prefix with op or nonfix.
Changing the infix status of established operators leads to madness!

op+(1,2);

>val 1t = 3 : Int
nonfix +;

> nonfix +

+(1,2);

>val 1t = 3 : Int

infix xor;

fun (p xor q) = (p orelse ) andalso not (p andalso q);
> val xor = fn : (bool * bool) -> bool

true xor false;

> true : bool;

Precedence of infixes (all but : - and @ associate to the left

7 / * div mod

6 + -

5 e ()

4 = <> <> <= >=
3 = o0

0 before
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4.5 A First Look at ML Datatype List and Pattern Matching

Processing collections of items: Lists vs. Arrays

Lists are dynamic datatypes: arbitrary number of elements

Typically direct access is to the first (or last) element only.

“Lists are easy to understand mathematically, and turn out to be more
efficient than commonly thought.” (Pauson, chap. 3)

e A list is a finite sequence of elements. The order of elements is si-
gnificant and elements may appear more than once.

e In ML every element of a list must have the same type 7. This type
can be of arbitrary complexity.

e The empty list [ ] or nil has the polymorphic type « list.

[1, 2, 3] : int list
[(1, "One™), (2, "Two™), (2, "Two™)] : (int*string) list
[[3-11.[1.[5-7, 70.6]1] : (real list) list

e The type operator list has a postfix syntax.

e It binds more thightly then * and ->.

e Iint * string lististhesameas int * (string list)!

datatype a list = nil | :: of "a * ”"a list Lists

@ - ”a list * "a list -> ”"a list concatenation
length : “a list -> iInt length

rev : a’list -> “a list reversal

hd : ”a list -> ’a head

tl - "a list -> a” list tail

null - “a list -> bool empty test

The more complex, higher order functions on lists are introduced later!
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4.5.1 Building a List

\List Constructor: "a -: “a list

[1, 2, 3] =1 :: (2 :: (3 :: niD))

fun upto(m, n) =
it m>n then [] else m :: upto(m+l, n)

Write the stepwise evaluation of this linear recursive function!

e In Lisp, lists are constructed with (cons ”a list) and alist is a
nested cons-expression (cons 1 (cons 2 (cons 3 nil))).

e InProlog [5 | [6]] represents [5, 6] whilein ML [5 :-: [6]]
represents [[5,6]]"

¢ In many functional languages there is no special type string, but a
string is represented as list of characters!
ML provides implode and explode for conversion. (see above)
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45.2 Fundamental List Functions: null, hd, tail

fun null [] = true
| null (_:: ) = false;
> val null = fn : ”a list -> bool

fun hd (x::_) = Xx;
> ***Warning: Patterns not exhaustive
>val hd = fn : ”a list -> ’a

fun tl (::xs8) = xs;
> ***Warning: Patterns not exhaustive
> val hd = fn - ”a list -> “a list

e Pattern Matching:
Remember patterns for tuples: fun ¥ (X, y), type vec =
real * real

e The underscore represents a wildcard!

e The functions are polymorphic, allowing lists over arbitrary elements
of type «a.

e A function can consist of clauses, separated by a vertical bar. Each
clause represents one argument pattern.
Alternatively, a function with a conditional expression can be defined,
which is often more complex to read.

fun prod []

=1
| prod (n:ns) =

n * (prod ns);

fun prod I = if null(tl(1)) then 1 else hd(l) * prod(ti(l));
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5 Evaluation of Expressions and Recursive Functi-
ons

e An imperative program specifies commands to update the machi-
ne state. During execution, the state changes millions of times per
second. Its structure changes, too: local variables are created and
destroyed.

¢ In functional programming, there are no state changes. Execution is
reduction of an expression to its value, replacing equals by equals.

e When a function is applied, as in f(F), the argument E must be
supplied to the body of f. If the expression contains several function
calls, one must be choosen according to some evaluation rule.

e Two kinds of evaluation rules:

— call-by-value or strict evaluation (used by ML)

— call-by-need or lazy evaluation (typical for purely functional lan-
guages)

e When a function is called, the argument is substituted for the func-
tion’s formal parameter in the body. The evaluation rules differ over
when, and how many times the argument is evaluated.

e The formal parameter indicates where in the body to substitute the
argument. The name of the formal paramter has no other significan-
ce and no significance outside the function definition.

Two critical cases for the different evaluation strategies:

fun sgr(x) : int
fun zero(x :int)

x*x; (* uses its argument twice *)
0; (* iIgnores its argument *)
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5.1 Call-by-Value, or Strict Evaluation

e To compute the value of f(E) first compute the value of E.

Evaluation of sqr(sqr(sqr(2))):

sgr(sqr(sgr(2))) = sqar(sqr(2 x 2))
= sqr(sqr(4))
= sqr(4 x 4)
= sqr(16)
= 16 x 16
= 256

Evaluation of zero(sqr(sqr(sqgr(2)))):

zero(sqr(sqr(sar(2)))) = zero(sqr(sqr(2 x 2)))
= zero(sqr(sqr(4)))

= zero(256)
=0
Such waste!
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5.2 Recursive Functions under Call-by-Value

fun fact n = if n=0 then 1 else n * fact(n-1);
fun facti(n, p) = if n=0 then p else facti(n-1, n*p);

e The first definition is called linear recursive. It corresponds to the
natural, mathematical definition:

x,_{o ifr=0

z X (x—1)! else

The call-by-value evaluation of a linear recursive function must de-
pend on a stack because to evaluate a function call, the value(s) of
its argument(s) must be calculated first!

e The second definition is a special case of linear recursion, called tail
recursion (or iteration).
Often, tail recursive forms of a linear recursion can be obtained by
introducing an addition parameter which takes over the collection of
values calculated so far (it replaces the stack).

e Good compilers can detect iterative forms of recursion! (See Optimi-
zation, Programm Transformation Techniques in Field and Harrison).

e Construction of the tail recursive function: detecting that by making
use of the associative law of multiplication each multiplication can be
done at once:

4 x (3% fact(2)) = (4 x 3) x fact(2) =12 x fact(2)

¢ In a later section we will prove that facti(n,p) = n! x p. If “collector” p
is initially given the value 1 (identity element for multiplication), then
facti(n,p) = nl.
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fact(4)

facti(4,1)

=4 x fact(4-1)

= 4 x fact(3)

=4 x (3% fact(3 —1))

= 4 X (3 X fact(2))

=4 x (3 x(2x fact(2-1)))

(
(
=4 x (3 x
=4 x(3x
=4 x (3 x
=4 x (3 x
=4 x (3 x
(

=4 x (3 x

=4x6
=24

(2 x fact(1)))
(2 x (1 x fact(1 —1))))
(2 x (1 x fact(0))))

(2> (1 x1)))
(2 x 1))

2)

= facti(4 — 1,4 x 1)

= facti(3

7 )

= facti(3 — 1,3 x 4)
= facti(2,12)

= facti

2-1,2 x 12)

= facti(1,24)
= facti(1 — 1,1 x 24)
= facti(0,24)

=24

49
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5.3 Conditional Expressions
e The conditional expression permits definition of cases.

e Recursive functions must be defined with cases to obtain a non-
recursive base-case (termination).

e The conditional expression does not correspond to the cond-
expression (McCarthy conditional) such that cond(E, E1, E5)!

fun cond(p, X, y) - int = if p then x else y;
> val cond fn - bool * Int * int -> int
fun badf n = cond(n=0, 1, n*badf(n-1));

> val badf = fn : int -> int

badf(0) = cond(true,1,0 x badf (—1))
= cond(true,1,0 x cond(false,1,—1 x badf (—2)))

e MLs boolean infix operators andalso and orelse are not functions
but stand for conditional expressions:
E1l andalso E2 == i1f E1 then E2 else false
E1l orelse E2 == 1f E1 then true else E2

e These operators evaluate E, only if necessary!

e When defining recursive functions, andalso or orelse can be used
because they are abbreviations of conditional expressions!

fun even n = (n mod 2 = 0);
fun powoftwo n = (n=1) orelse (even(n) andalso powoftwo(n div 2));
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5.4

Call-by-Name

Problems with call-by-value: superfluous evaluations, conditional ex-
pressions cannot be functions, users cannot define operators as
andalso.

The call-by-name rule: To compute the value of f(F), substitute F
immediately in the body of f. Then compute the value of the resulting
expression.

zero(sqgr(sqgr(sqgr(2)))) = 0in one step!

but: in sgqr(sqr(sqr(2))) it duplicates the argument:
sar(sqr(2)) x sqr(sqr(2)).

Arithmetic operations need special treatment. They must be applied
to values, not to expressions.

strict functions: to evaluate E; x F,, the expressions E; and E; must
be evaluated first.

If one looks at the evaluation of sqr(sqr(sqr(2))) call-by-name
cannot be the evaluation rule we want! (it will reach a result finally,
but with a lot of unnecessary steps)

sar(sqr(sar(2))) = sqr(sqr(2)) x sqr(sqr(2))

= (sqr(2) x sqr(2)) x sqr(sqr(2))
= ((2 x 2) x sqr(2)) x sqr(sqr(2))
= (4 x sqr(2)) x sqr(sqr(2))
( (2 % 2)) x sqr(sqr(2))
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9.5

Call-by-Need or Lazy Evaluation

Call-by-need is like call-by-name but ensures that each argument is
evaluated at most once!

Rather than substituting an expression into the function’s body, the
occurences of the argument are linked by pointers. If the argument
is ever evaluated, the value will be shared with its other occurences.

The pointer structure forms a directed graph of functions and argu-
ments. As a part of the graph is evaluated, it is updated by the resul-
ting value: graph reduction. (see Field and Harrison)

Lazy evaluation of cond(E, E1, E2) behaves like a conditional
expression, provided that the tuple (E, E1, EZ2) is itself evaluated
lazily. (Tuple formation must be viewed as a function.)

The idea that data structures like (E, E1, E2) can be partially eva-
luated (either E1 or E2 but not both) leads to infinite lists (introduced
in a later section).

Lazy evaluation seems to give as the best of both worlds, but graph
manipulations are expensive.
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With lazy evaluation, reduction of facti(n, p) resultsin a space leak! (n
is evaluated immediately for n — 0 but not p)
facti(4,1) = facti(4—1,4x1)
= facti(3 — 1,3 x (4 x 1))
= facti(2 — 1,2 x (3 x (4 x 1)))
= facti(l1 —1,1 x (2 x (3 x (4 x1))))
=1x((2x(3x(4x1))))

=24
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5.6 Comparison of Strict and Lazy Evaluation
Paulson is in favour of strict evaluation:

e Strict evaluation is more natural, corresponds to the mathematical
intuition of caluclating the result of an expression.

e Curch, the inventor of A-calculus, provided a variant which banned
constant functions like zero.

e Lazy evaluation needs much bookkeeping. It needs sophisticated
concepts for efficient implementation. (Application of graph reduction
to combinators, see Field and Harrison)

e Lazy programming languages are mostly purely functional, combi-
nation with imperative concepts (for input/output) is difficult. In lazy
evaluation it cannot easily be predicted when a subexpression is eva-
luated (problem of writing reliable programs).
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6 Local Declarations and Modules

6.1 Let-Expressions

Calculation the greatest common divisor: Euclid’s algorithm:
fun gcd(m,n) =

if m=0 then n

else gcd(n mod m, m)

Example: gcd(247,1313) = gcd(78, 247) = gcd(13,78) = gcd(0,13) = 13

Calculation least terms for fraction n/d: for example: (5, 10) = (1, 2)
fun fraction (n,d) = (n div gcd(n,d), d div gcd(n,d));

Transparent but inefficient: gcd(n, d) is calculated twice.

Improvement:

fun divideboth (n, d, com) = (n div com, d div com);
fun fraction(n, d) = divideboth(n, d, gcd(n, d));

Better: use let-expressions!

e Declarations of names within an expression: \ let D in E end;

e D can be a compound declaration Dy; Ds;...; D, (semicolons are
optional).

e Evaluation: First D is evaluated and the result is named and only
visible inside the let-expression; then E is evaluated and the value
returned.

For compound declarations Dy; Ds; . ..; D,, the name D; is visible for
all D;, 1 < j <n.

e Let-expressions can be nested.
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Example: real square roots
The Newton-Raphson method

fun findroot(a, x, acc) = (* for x >=0 *)
let val nextx = (a/x + x) / 2.0
in If abs (X-nextx) < acc*x
then nextx else findroot(a, nextx, acc)
end;

fun sgroot a = findroot(a, 1.0, 1.0E710);

sqroot 2.0;

> val 1t = 1.41421356237 : real
it * it;

> val 1t = 2.0 : real

e The nextx approximation is used several times and therefore defi-
ned as a let-expression.

e Arguments a and acc are passed unchanged in every recursive call
of findroot.
— Make them global to findroot for efficiency and clarity, using a
nested let-expression.
Now Findroot is not visible outside of sqroot!

fun sqroot a =
let val acc = 1.0E710;
fun findroot x =
let val nextx = (a/x + x) / 2.0;
in If abs (X-nextx) < acc*x
then nextx else findroot nextx
end;
in findroot 1.0
end;
> sqroot = fn : real -> real
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When not to use let-expressions:
let val a = F X
val b = g x
in if a<b then a else b
end;
much more transparent:
fun min(a, b) : real = if a<b then a else b;

min(F x, g X);

6.2 Local declarations

[local D1 in D2 end]

While let is frequently used, local is not.

Sole purpose: hide a declaration, make D1 private to D2.

e Declaration D1 is only visible within D2.

Since a list of declarations is regarded as one declaration, both D1
and D2 can declare any number of names.

local
fun 1tfFib(n, prev, curr) : int =
if n=1 then curr
else itfib(n-1, curr, prev+curr)
in
fun Fib(n) = itfib(n, 0, 1)
end;
> val fib = fn : Int -> iInt
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6.3 Simultaneous Declarations and Mutual Recursive Functi-
ons

e A simultaneous declaration defines several names at once.

° \val Id1 =E1 and...and Idn = En\

e Evaluation of expressions E1 to En and then declaration that identi-
fies 1d1 to 1dn have the corresponding values.
— order is immaterial because all expressions are evaluated before
declarations take effect.

val pi = 4.0 * Math.atan 1.0
and e = Math.exp 1.0

and log2 = Math.In 2.0;

> pi = 3.141592654 : real

> e = 2.718281828 : real

> log2 = 0.693147806 : real

(* The chimes of Big Ben *)

val one = "BONG";

val three = one one one;

val five = three one one; (* must be separate in this order *)

val one = three and three = one;
> val one = "BONG BONG BONG'" : string
> val three = "BONG"™ : string

Declarations can be done at the same time!ll Consecutive declatations
would give identical bindings for one and three!
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Note the equivalence between declaring value tuples and simultanous
declarations of values (not functions!):

- val sm = "bong";

val sm = "bong"™ : string
- val bg = "bang";

val bg = "bang"™ : string
- val(ld, sm) = (sm, bg);
val Id = "bong" : string
val sm = "bang"™ : string

(* ___________________________ *)
- val sm = "bong";
val sm = "bong" : string

val bg = "bang" : string
- val Id = sm and sm = bg;
val Id = "bong" : string
val sm = "bang"™ : string
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e Functions are mutually recursive if they are declared recursively in
terms of each other:

{fi = Eili =1..n and E; refers to some f;,j € {1,...,n} A j #i}.

e Example: recursive descend parser
has a function for each element of the grammar and most grammars
are mutually recursive (e.g., an ML declaration can contain expressi-
ons and expressions can contain declarations)

Example: Summing the series for /4

1,1 1
7T 4k+1 4k+377

fun pos d = neg(d-2.0) + 1.0/d

and neg d = if d>0.0 then pos(d-2.0) - 1.0/d else 0.0;
> val pos = fn : real -> real

> val neg = fn : real -> real

4.0 * pos(201.0);

> val it = 3.15149340107 : real

4.0 * neg(8003.0);

> val it = 3.14134277853 : real

(fork=0...)

e Mutually recursive functions can often be combined into one function
with help of an additional argument.

fun sum(d, one) =
if d >0.0 then sum(d-2.0,70one) + one/d else 0.0;
(* sum(d, 1.0) returns pos(d), sum(d,”1.0) returns neg(d) *)

e A combination of goto- and assignement-statements (the worst of
procedural code!) can be translated into a set of mutually recursive
functions.

e Functional programs are referential transparent, yet can be totally
opaque. It is often better to omit mutual recursion.
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Transformation of a Mutual Recursion:

e Let fi,..., f, be a system of mutually recursive functions and functi-
on f; has m; arguments with fi(z; 1, ... Zim,) = ri.

e fi,...f, can be combined in a direct recursive function g with m; +
e my, +largument: g(@1 1, -, iy - - Tnds - - s Trmns Y) =
if y1 = 1thenr]

if y=nthenrl.

r; is constructed from r; such that each occurence of f;(t,. .., ;)
is replaced by g(z11,..., Zimy, -t s bmgs oo Tl - o s Tngmgs J)-
That is, the last argument of g marks which function f; is simulated
in the next call of g.



Functional Programming e 01/02 62

6.4

Modules: Structures and Signatures
(Functional) programs are sets of data and functions.

A module clusters related components, it defines its own datastruc-
tures and methods operating on it.

Typically, a module is separated into an interface and an implemen-
tation.

Advantages: independet parts of a complex program which can be
implemented by different programmers (compiler can check, whether
a module meets its interface specification).

A module can be reused in different contexts, that is, combined with
different other modules.

Theory: H. Ehrig & B. Mahr (1990). Fundamentals of Algebraic Spe-
cification 2 — Module Specifications and Constraints. Springer.

Modules in ML

An ML structure combines related types, values, and other structu-
res with an uniform naming discipline.
|struct D end; |binding to a name: [structure name = |

An ML signature specifies a class of structures by listing the name
and type of each component.
sig body end; |binding to a name: |signature name =

Preview: ML provides functors, that is structures which take other
structures as parameters. In this context we will introduce also the
declaration of abstract types.



Functional Programming e 01/02 63

signature ARITH =
sig
type t
val zero: t
val sum: t * t -> t
val diff: t *t > t
val prod: t * t -> t
val quo: t * t > t
end;

structure Rational : ARITH =
struct
type t = int * int;
val zero = (0, 1);
fun sum ((n1, di1), (n2, d2)) = ((n1*d2 + n2*d1), (d1*d2)) : t;
fun diff ((n1, d1), (n2, d2)) ((n1*d2 - n2*dl), (d1*d2)) : t;
fun prod ((n1, dl1), (n2, d2)) (n1*n2, di1*d2) : t;
fun quo ((n1, d1), (n2, d2)) = (n1*d2, n2*dl) : t;
end;

Rational .sum((1,2),(2,4));
val it = (8,8) : Rational.t
- Rational .prod((1,2),(2,4));
val it = (2,8) : Rational.t

The functions could be realized more elegantly, using gcd.
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e If the purpose of a structure is to define a type, this type is commonly
called t. Alternative: equality-types (eqtype) or abstract datatypes!

e If a structure is visible, its components are known by compound
names (Rational .sum). Inside the structure body, the names are
known unqualified.

e Structures look a bit like records, but their components can be not
only values, but types, functions, and other structures (compare to
classes in 00!).

e Structures are encapsulating environments.

e If a structure is declared without explicitely implementing a signature,
a signature is inferred. (If Rational would have been declared without
the use of ARITH, this signature would have been inferred without a
name).

e A signature corresponds to the interface of a module and contains
type checking information.

e Note that declaring that a structure implements a signature is reali-
zed using a : (like giving a type constraint)

e A signature can be implemented by different structures. For example,
ARITH can be also implemented by Nat (or, more exotically, by List
or Bool).

e If avalue is implemented in a structure but not specified in the signa-
ture, it is hidden and cannot be used outside of the structure itself
(good for helper functions).

e Of theoretical and practical interest is the question when structures
can be combined savely! (see Ehrig & Mahr)
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The interface/signature of the structure Rational

open Rational;
opening Rational
type t = int * iInt

val
val
val
val
val

zero - t

sum - t * t >t
diff : t*t >t
prod : t *t -> t
quo - t*t >t

65
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7 Polymorphic Type Checking

e Two rigid positions:

— Weakly typed languages like Lisp and Prolog give programmers
the freedom they need.

— Strongly typed languages like Pascal give programmers the se-
curity they need by restricting their freedom to make mistakes.

e Remark: See literature to type theory and the Curry-Howard-
Isomorphism (proof as program).

¢ Middle way: Polymorphic type checking offers security and flexibility:
Programs are not cluttered with type specifications since most type
information is deduced automatically.

7.1 Types and Type Schemes

e A type denotes a collection of values.

¢ A function’s argument type specifies which values are acceptable as
arguments. A function’s result type specifies which values could be
returned.

e Strict functions: div expects two integers and returns an integer. If
the divisor is 0, no result is returned (exception), that is, div is faithful
to its type. (We will discuss exception handling in a later section.)

e Polymorphic functions: can have many types. ML polymorphism is
based on type schemes, that is, patterns for types.

fun 1d X = Xx;

> val 1d = n a -> ’a
id 2;

>val 1t =2 : Int

fun F x = 1d x + 1;
>val f=fn : Int -> Int
T 3;

> val 1t =4 : int
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7.2 Type Inference

e ML can infer all types involved in a function declaration with little or
no explicit type information.

e Type inference follows a natural but rigorous procedure:

— Note the type of any constant.
— Apply type checking rules for each form of expression.

— Each variable must have the same type everywhere in the de-
claration.

— The type of each overloaded operator (like +) must be determi-
ned from the context.

Example: Type checking rule for conditional expression:

AFe:bool AFe:7 AFe€" : 7
At (if e then ¢’ else e") : T

otherwise, the expression is ill-typed.

Example: type checking for facti:
fun facti(n, p) = if n=0 then p else facti(n-1, n*p);

O:int --> n=0: ? * int -> bool --> n = int
l1:int --> n-1: int * Int -> int

n*p: int * ? -> ? --> p = int

argument type: int * int

satisfied by recursive call

return type: int (because of then p)

> val facti = fn - Int * Int -> Int
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7.3 Polymorphic Function Declarations

68

e If type inference leaves some types completely unconstrained then

the declaration is polymorphic (“having many forms”).

e Most polymorphic functions involve pairs, lists and other data struc-

tures.

e Type variables are traditionally small Greek letters («, 3,7, ...). In ML

written as ’a, b, ’c,

e A polymorphic type is a type scheme. Substituting types for type va-

riables forms an instance of the scheme.
X, X);

fn - a -> ’a * ’a

fun pairself x
> val pairself
pairself 4.0;
> (4.0, 4.0) : real * real

pairself 7;

> (7, 7) - Int * int

val pp = pairself (“Help!", 999);

> val pp = ((Help!*, 999), (“Help!™, 999))
> : (string * int) * (string * iInt)

fun fst (X, y) = Xx; (* projection *)

>val fst = fn : a * b -> ’a

fun snd (X, y) = vy;

>val snd = fn : a * b -> ’b

fst pp;

> (""Help!'", 999) : string * int

snd(fst pp);
> 999 : int
fun fstfst z
> val fstfst
fstfst pp;

> "Help!™ : string

fst(fst 2);
fn - (Ca* "b) * ’c -> ’a

outer fst: a x 8 — «
therefore, inner fst must have o x 3 as result
inner fst: (a x B) x v — (a x B)

Infer the type of fun silly x = fstfst(pairself(pairself x));
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e R. Milner (1978). A theory of type polymorphism in programming.
Journal of Computer and System Sciences, 17, 348-375.
gives an algorithm for polymorphic type checking and proves that a
type-correct program cannot suffer a run-time type error.

e The types inferred with the ML-algorithm are principal: as polymor-
phic as possible.

e Equality testing is polymorphic in a limited sense: it is defined for
most, not all, types. ML provides a class of equality type variables
to range over this restricted collection of types. (discussed in a later
section)

e Overloading sits uneasily with polymorphism. It complicates the type
checking algorithm and frequently forces the programmer to write ty-
pe constraints.

Remember: ML has a small set of overloaded built-in functions. Pro-
grammers cannot introduce further overloading.
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7.4 The Type Checking Algorithm ‘W’

(see Field & Harrison, chap. 7)

e Wis a slight variant of Milner’s algorithm.

e Syntactic and semantic issues:
(1) well-typed expressions: there must be defined a syntactic typing
scheme which assigns a unique, most general type to each valid ex-
pression.
(2) semantically sound typing scheme: each expression which is syn-
tactically well-typed is also semantically free from type violations
(3) syntactical soundness of the algorithm: if it succeeds in finding a
type for an expression then that expression is well-typed.
(4) completeness of the algorithm: if an expression has a well-typing
then the algorithm will succeed in finding a typing for it which is at
least as general.

e W is based upon Robinson’s unification algorithm.

7.4.1 Most general unifiers

e There is an unification algorithm ¥ which takes any pair of expressi-
ons o, 7 over some alphabet of variables such that:
Either V(o, 7) succeeds yielding a substitution U with the properties
that
— Uo = U7 (U unifies o and 1)

— If R unifies ¢ and 7, then for some substitution S, R = SU (U is
a most general unifier)

— U involves only variables occuring in o or 7.

or else V(o, 1) fails.

(For first order logic and for type expressions, there exists a unique most
general unifier.)
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Substitution: [0/, . .., 0, /ay] Of variables a by terms
(here type expressions) o.

Examples:

V(«, a) succeeds with U = I (identity substitution S = [])
V(o — f,int — int) succeeds with U = [int/«, int/[]
V(o — bool, int — int) fails.

7.4.2 Disagreement Pairs

Implementation of ¥V using disagreement pairs:

e For simplification: write every type expression prefix, with x and —
as type operations

a— (B x7) == (a, x(8,7))
e For identical expressions e = ¢’ the disagreement pair is empty, D =
.

D(Ti(o1, ..., 0n@), Tj(T1, - .., Tu(y)) =
it T3 # T
then (Ti(o1, ..., 0n0)), Ti(T1, - - -, Ta()))
elseif n(i) =0
then 7
else D'(1)
where D'(k) = if k = n(i)
then D(oy, %)
elseif D(og, 1) =7
then D'(k + 1)

else D(og, k)
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Examples:

D(— (int,int), — (int,int)) =7

D(— (int,int), — (a,int)) = (int, a)

D(a,~ (@, 8)) = (@, = (a, 5))

D(— (v,— (int, B8)),— (= («,int),int)) = (v, = (a,int))
(cannot be unified, because of (— (int, 8), int))

72
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7.4.3 Algorithm VvV’

We extend V : term x term — substitution t0 unify : substitution X term x
term — substitution and start with the identity substitution 1.

Ve, e') =unify(l,e,¢€)
unify(S,e,e') = if Se = Se’
then S
else let (u,v) = D(Se, Se¢') in
if v is a variable not occuring in v
then unify([v/u)S,e,€)
else if v is a variable not occuring in «
then unify([u/v]S, e, €’)
else fail.

e Composition of substitutions S and 7T": ST.
Example: [v/u]S replacing variable v by term v in S

e Application of a substituion S to an expression 7: ST.
For each variable « in 7 which occurs as v/u in S: replace u by v.

e If neither u nor v are variables, the unification algorithm fails.

e If u is a variable occuring in v (or the other way round), then there is
danger of cyclic substitutions (¥ might not terminate!).
Check for possible cycles: occurs check. (problem: this algorithm is
incomplete!, additional intelligence is needed)
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Example:

Via— B,6—7)

=unify(l,a— 3,8 — )

=unify([B/al,a— 8,8 —7)

since D(a — 3,8 = v) = (o, B)

=unify([v/BlB/al,a = 8,8 — )

since D([3/al(a— B),[8/a](B — 7)) = D(B— B,8—7) = (B,7)
= [v/Bl1B/]

since [v/B][8/cl(a — B) = [v/BlB/al(B = v) =7y — v

= [v/B,8/q]

Realization in ML:

e Representing type expressions:

datatype typeterm = INT | REAL | BOOL | STRING |

-—> of typeterm * typeterm |
** of typeterm * typeterm |
V of iInt;

infix -->;
infix **;

e Five rules for algorithm ¥V (most general unifier, mgu), realized with
pattern-matching:

mgu (sub, 11 --> r1, 12 --> r2):

calculate mgu for (11, 12) and (rl1, r2); use unifier obtai-
ned for (11, 12) when calculating mgu for (r1, r2).
mgu (sub, 11 ** r1, 12 ** r2):

analogous

mgu (sub, V(x), t):

occurs-check and if ok extension of sub

mgu (sub, t, V(X)):

analogous

mgu (sub, tl1, t2):

termination case, return sub if t1=t2 and fail otherwise
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7.4.4 Algorithm ‘W’

e Type an expression e using assumptions A (types of constants and
built-in functions occuring in e, can contain type variables).

e W returns a type expression 7 and a substitution 7" for which T A
defines the type assignements to the type variables in A.

e Remark: A type expression is implicitely universally quantified: o —
is VaVpa — . If type variables are all quantified at toplevel (as in
ML), we speak of shallow types. Each shallow type is 7: Vay, ..., a,.T
with no quantification in 7.

W(A,e) = (T, 7) where

1. e = z (Identifier)
T=1
Ifz:Vai,...,ay.0c € Athen

7= [B1/a1]...[Bn/anlo

where {3; | 1 < i < n} are new type variables.

2. e = fg (Application)
let
(R,p) =W(A, f)
(S,0) =W(RA,g)
U=V(Sp,0c — p)
where 3 is new.
Then
T=USRandt =U§p.

3. if pthen f else f’ (Condition)

let
(R, p) = W(4,p)
U = V(p, bool)

(S,0) =W(URA, f)

(8',0") = W(SURA, f')

U =Vv(So,0").

Then

T=USSURand T =U'o".
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4. ... (Abstraction)
5. ... (Fixed point)

6. ... (Let Expression)

see Field and Harrison for details

76



Functional Programming e 01/02 77

8 Datatypes

8.1 Listsagain
Rememter:

e A List over arbitrary elements is a datatype involving constructors ni l

and ::.
e datatype “a list = nil | z: of a * "a list
eval mlis =1 -z nil - int list

8.1.1 Length, Append, Reverse

fun nlength [] = 0

| nlength (x::xs) = 1 + nlength xs;
> val nlength = fn : ”a list -> int
nlength [[1,2,3],[4.5,6]]1;
> 2 - int

More efficient:

local
fun addlen (n, [1) =
| addlen (n, x::1)

I >

addlen (n+1, D)
in
fun length(l) = addlen (0,1)
end;
length (explode "Throw physics to the dogs!');

> 25 :© iInt
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infix 5 @; (* append *)
fun ([1 @ ys) = ys
| ((x::xs) @ ys) = X 12 (Xs @ ys);
>val @ = fn - 7a list * "a list -> “a list
e This version of append dates from the early days of Lisp.

e Costs are proportional to the length of the first list and independent
to the length of the second.

e Why is it not more efficient to provide a tail recursive implementation?

Remark: Lists and Pointers

e Joining lists using pointers: point the last pointer of first list to the
start of second list. Destructive updating is faster than copying!

e ML has explicit pointers, but: copying is saver.

e built-in operators are realized with safely implemented internal poin-
ters.

fun nrev []1 = [1
| nrev (x::xs) = nrev(xs) @ [X];

very inefficient: total number of conses is @ that is O(n?)
fun revAppend ([], ys) = ys
| revAppend (x:xs, ys) = RevAppend(Xs, X::ys);

fun rev xs = revAppend(xs,[]);

here effort is linear in the length of the list
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8.1.2 Lists of Lists and Lists of Pairs

e Pattern-matching and polymorphism cope nicely with combination of
data structures:
concat = fn - ”a list list -> “a list
zip = fn - 7a list * ’b list -> (Ca * b) list
unzip = fn - (Ca * b) list -> ”a list * b list

fun concat [] = [1
| concat (1::1s) = 1 @ concat Is;

reasonably fast, because 1 is usually much shorter than concat Is.

fun zip(X::xs, y::ys)
| zip _

(x,y) :: zip(xs,ys)
[1;  wild card *)

fun conspair ((X,y), (Xs, ys)) = (X::Xs, Y::1yS);
fun unzip [1 = (1.[D

| unzip (pair::pairs) = conspair(pair, unzip pairs);

(* alternative *)
fun unzip [1 = (.0[D
| unzip ((X,y)::pairs) =
let val (Xs, ys) = unzip pailrs
in (X::xs, y::ys) end;

e Structure List provides functions take (return the first ; elements
of a list), drop (return the list without the first : elements), concat,

e Structure ListPair provides zip, unzip.
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8.2

Equality Test in Polymorphic Functions

Polymorphic functions like length or rev accept lists having ele-
ments of any type because they do not perform operations on those
elements.

A function mem, which tests whether a value e is a member of list 1
involves equality testing with element e. Equality testing is polymor-
phic in a restricted sense.

Equality Types: types whose values admit equality testing.

Equality test on functions is not computable: f and g are equal just
when f(z) = g(x) for every possible argument z.

Equality test on abstract types (will be introduced later) is not com-
putable.

Equality is defined for basic types: int, real, char, string, bool.

Equality test for structured values: comparison of components: tup-
les, records, lists, and other datatypes such as trees built over basic

types.
Equality type variables: o=,5=,v=,.... In ML: *?a, *’b, ”’c,

Examples:
int, bool * string, (int blist) * ””b are equality types
int -> bool, bool * ~b are no equality types.

op= ;
>fn ("’a * ”>’a) -> bool
infix mem;
fun (X mem []) = False
| (x mem (y::1)) = (x=y) orelse (x mem I);
> val mem fn - *”a * ””a list -> bool
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8.2.1 Polymorphic Set Operations

e A function’s type contains equality type variables if it performs poly-
morphic equality testing, even indirectly, e. g., via mem.

e Examples are functions for using lists as sets.

e Sets ought to be declared as abstract types (see later section) to
hide equality test on lists.

Set-Constructor:
fun newmem(x, xs) = iIf x mem xs then xs else X::Xs;
Conversion to Set

fun setof [] = []
| setof(x::xs) = newmem(x, setof xs);

Union and Intersection

fun union([], ys) = ys
| union(x::xs, ys) = newmem(X, union(xs, ys));

fun inter([1., ys) = [
| inter(x::xs, ys) = if x mem ys then x::inter(xs,ys)
else inter(xs,ys);

Subset and Equality

infix subs;
fun ([] subs ys) = true
| ((X:xs) subs ys) = (x mem ys) andalso (Xs subs ys);

infix seq;
fun (xs seq ys) = (xs subs ys) andalso (ys subs xs);
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Powerset

fun powset ([], base) = [base]
| powset (x:xs, base) =
powset(xs, base) @ powset(xs, x::base);

Carthesian Product

fun cartprod ([1, vys) = [1
| cartprod (x::xs, ys) =
let val xsprod = cartprod(xs,ys)
fun pairx [] = xsprod
| pairx (y::ytail) = (x,y) :: (pairx ytail)
in pairx ys end;

e powset does not perform equality tests. base should be empty in

the initial call.
powset(S,B) ={TUB|T C S}.

e catprod does not perform equality tests either.
SxT={(z,y) |z € S,yeT}.
Carthesian product can be calculated much more elegantly using
higher-order functions (later section).

Remark: In Paulson, chap. 3 there are ML implementation of many standard al-
gorithms on lists, such as greedy search, backtracking, sorting algorithms, matrix
operations, graph algorithms, computational algebra.
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8.2.2 Association Lists

Lists of key/value pairs. The keys must be an equality type.

fun assoc ([]1, a) = [1
| assoc ((x,y)::pairs, a) = if a=x then [Y]
else assoc(pairs, a);
> val assoc = fn - ("’a * ’b) list * ?’a -> ”b list

e Equality polymorphism has its origin in Lisp, where mem and assoc
are among the most basic primitives.

e Equality polymorphism complicates the language definition and its
implementation. Overloading of the equality test operation in ML is,
as overloading in general, not elegantly realized. Alternative: type
classes in Haskell, but they have other problems — more research
is needed!
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8.3 Datatype Declarations

e Lists are an example for a datatype, also called “concrete data” in
ML.

e An ML datatype declaration defines a new type along with its con-
structors.

e In an expression: constructors create values of a data type (hd
1::(2::niD))
In patterns: constructors describe how to take values apart (X: - XS)

e A datatype can represent a class consisting of distinct subclasses
(compare to variant records in Pascal).

e Recursive datatypes can be defined, such as list and tree.

e Functions on a datatype are declared by pattern-matching.

8.3.1 Enumeration Types

datatype degree = Duke | Marquis | Earl | Viscount | Baron;

datatype bool = false | true;
fun not true = false
| not false = true;

datatype order = LESS | EQUAL | GREATER;
String.compare ('York™, "Lancaster™);
> GREATER : order

datatype person = King
| Peer of degree * string * int
| Knight of string
| Peasant of string;

The type degree consists of 5 constructors (con name : type). degree
and bool are enumeration types, because they consist of a finite number
of constants. Type person is not a simple enumeration type.
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8.3.2 Polymorphic Datatypes

e A datatype declaration can introduce type operators (type con-
structors). List is a type operator taking one argument ”a. The-
refore, list is not a type, while (int)list or ((string *
real)list)listare.

datatype “a option = NONE | SOME of ’a;

e A datatype disjoint sum (type union) can express all non-recursive
datatypes (in a clumsy way).

datatype ("a, ’b) sum = Inl of "a | In2 of ’b;

e Constructors:
Inl:a— («a,B)sum
In2: B — (a, B)sum

e (o0, 7)sum is the disjoint sum of types o and 7.
Its values have the form In1(z) for x of type o and In2(y) for y of type
7. (Inl and In2 are “labels” that distinguish ¢ from 7.

[In2(King), Inl1('Scottland™)] : ((string, person)sum)list
[In1(C'tyrant™), In2(1040)] : ((string, int)sum)list

(* concatenate all string In Inl in a list *)
fun concatl [] =" "
| concatl ((In1, s)::1) s ~ concatl I
| concatl ((In2, _)::1) = concatl I;
> val concatl = fn : (sing, “a)sum list -> string

Datatype Person als disjoint sum: ((unit,string X string X
int)sum, (string, string)sum)sum with constructors

King = In1(In1()) (* unit represents the one king *)
Peer(d,t,n) = Inl(in2(d,t,n))

Knight(s) = In2(In1(s))

Peasant(s) = In2(In2(s))
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Storage Requirements

e With current compilers, datatypes require a surprising amout of
space.

e Typical: 4 bytes for the tag (identifying the constructor), 4 bytes for
each component of the associated tuple; header for garbage collec-
tor needs another 4 bytes.

e E. g: 12 bytes for a Knight or Peasant, 20 bytes for a Peer (strings a
seperate objects).

¢ Internal values of an enumeration type require no more space than
integers.

e List cells typically occupy 8 to 12 bytes

¢ Not having types at run-time (run-time type information) saves stora-
ge (Lisp).

See Paulson, p. 130 for more details
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8.3.3 Pattern-Matching with “val’, ‘as’, ’case’

A pattern is an expression consisting solely of variables, construc-
tors, and wildcards.

The constructors comprise:

— numeric, character, and string constants
— pairing, tupling, and record formation
— list and datatype constructors.

In a pattern all names except constructors are variables.

Variables in a pattern must be distinct.

These conditions ensure that values can be matched efficiently
against the pattern and analysed uniquely to bind variables.

Constructors absolutely must be distinguished from variables (in
Haskell: constructors must begin with a capital letter, variables with
a small letter).

In ML standard constructors nil, true, false are also in small let-
ters. In the standard library constructors are typically in all captial
letters.
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Patterns in value declarations: val P = E

val a = (1.5, 6.8); (* selecting components from a tuple *)
val (xc,yc) = scalevec(4.0, a);

> val xc = 6.0 : real

> val yc = 27.2 : real

val [X,y,z] = uptop(1,3);
>val x =1 : int
>valy = 2 : int
> val z 3 int

e If the value of an expression does not match the pattern, the decla-
ration fails (raises an exception).

e The following declarations do not declare variables:

val King

= King;
val [1,2,3] = u

pto(1,3);

e Constructor names cannot be declared for another purpose.
In the scope of Person, the names King, Peer, etc. are reserved
as constructors. The following declarations are regarded as attempts
to pattern macthing and will be rejected:

val King
val Peer

"Henry V'';
925;
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Layered Patterns: Id as P

fun nextrun(run, [1) .-
| nextrun(run as r::_, X::XSs) =
if x < r then (rev run, Xx::xs)
else nextrun(x::run, Xs);

e runand r::_ arethe same list! Instead of hd run we can use r

Pattern Matching with ‘Case’ Expressions
Form of the case expression:

case E of P1 =>E1 ] ... | Pn => En

e The value of E' is successively matched against patterns P; to P,. If
P, is the first pattern to match E then the result is the value of E;.

e Case s equivalent to an expression that declares a function by cases
and appliesitto E.

e No symbol terminates the case-expression: use parentheses!

case p-q of
0 => "zero"
1 => "one"
2 => "two"
n = if n < 10 then "lots" else "lots and lots"
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9 Datatype Exception and Recursive Datatypes

9.1 Exceptions

e The ML exception mechanism is similar to Ada:

can declare and raise exceptions

no hierarchical organization (such as Java)

no explicit throws declaration (such as Java)

handling by pattern matching (cases)

propagation to invoking functions if not handled
e In difference to Ada: exceptions can be parametrized
e Handling must return the correct result type of the function!

Example:

exception BadMath of string * int * int; (* declaration *)

fun avg(sum, count) =
if count = 0 then raise BadMath(''div", sum, count)
else sum div count;

fun saveAverage(sum, count) =
avg(sum, count)
handle BadMath(s, a, b) => (
print("'Math error: attempted ");
print(s);
print("" of'");
print(Int.toString(a));
print(’* and *);
print(Int.toString(b));
print("'Result of zero used.");
print("’'\n"");
0 ( return value! *)

);
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9.1.1 Declaring Exceptions

exception <name> [of < parameter types >]\

e An exception in ML is a constructor of the built-in type exn. This is a
datatype of unique property: its set of constructors can be extended
by new, user-declared exceptions.

e Exceptions can be declared locally, using let. This can result in diffe-
rent exceptions having the same name.

e The type of a top-level exception must be monomorphic!

e Values of type exn can be used as any other values (sorted in lists,
returned by functions, ...). Additionally, they have a special role in the
operations raise and handle.

exception Failure;
exception Failedbecause of string;
exception Badvalue of int;

e Remark: Dynamic Typing: Type exn can be extended with new con-
structors and therefore potentially includes the values of any type.

e Example: provide a uniform interface for expressing arbitrary data as
strings. Conversion functions: exn -> string. Extension to a new
type, such as Complex. t:

exception ComplexToString of Complex.t;
fun convert_complex (ComplexToString z) = ...

This function only works if it is applied to the constructor
ComplexToString. A collection of similar functions might be sto-
red in a dictionary, identified by uniform keys (such as strings). — we
obtain a basic form of object-oriented programming.



Functional Programming e 01/02 92

9.12

Raising Exceptions

raise <exception>

Raising an exception creates an exception packet containing a value
of type exn.

IfExX - exnisan exception and evaluates to e then raise EXx eva-
luates to a packet containing e.

Packets are not ML values! The only operations recognizing them
are raise and handle. Type exn mediates between packets and
ML values.

During evaluation, packets propagate under the call-by-value rule.

If expression E' returns an exception packet then that packet is the
result of the application f(E). Thus f(raise(Ez)) is equivalent to
raise Bx.

raise itself propagates exceptions, thus: raise (Badvalue
(raise Failure)) raises exception Failure!

Expressions in ML are evaluated left to right. If F; returns a packet,
then that is the result of pair (E;, E,) and E; is not evaluated at all.
The evaluation order matters when E; and E, raise different excepti-
ons. (cf. evaluation order in the conditional expression)

In let val P = E1 in E2 end, if E; evaluates to an exception
packet then so does the entire let-expression.

Exception packets are not propagated by testing. The ML system ef-
ficiently jumps to the correct exception handler if there is one, other-
wise terminating execution.
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Standard Exceptions

Match: failure of pattern-matching.

Bind: val P = E if E does not match P

Overflow

Div

Domain: in structure Math, e.g., square root of a negative number
Chr: invalid character code & in chr (k)

Subscript: index out of range (array, string, list operations)

Size: creation of array, string, list with negative or excessive size
Fai l: miscellaneous erros

exception Empty; (* in List *)
fun hd (x::_) = x
| hd [] = raise Empty;

exception Subscript;
fun nth (x::_, 0) = x;
| nth (x::xs, n) = if n > 0 then nth(xs,n-1)

else raise Subscript

| nth _ = raise Subscript;
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9.1.3 Handling Exceptions

E handle P, - E; | ... | P, — E,

e An exception handler tests whether the result of an expression F is
an exception packet.
If so, the packets content (a value of type exn) may be examined by
cases.

e If E returns a normal value, then the handler passes this value on.
If £’ returns a packet, then its contents are matched against P; ... P,.
If P; is the first pattern to match, then the value of F; is returned.
If no pattern matches, the handler propagates the packet (different to
the case-expression, where this would result in a match-exception).

e An exception handler must be written with care:
If an exception name is misspelled it will be taken as a variable and
matches all exceptions.
Be carefull to give the handler the right scope: in if E then E1
else E2 handle ... the handler will only detect an exception rai-
sed by E2 (use parentheses)
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9.1.4 Exceptions versus Pattern-Matching

fun length (nil) =0
| length (x::xs) = 1 + length(xs);

fun len 1 = 1 + len(tl 1) handle _ => 0;
Evaluatuation (writing (I for the exception packet):

len[l] =1+ len(tl[1]) handle -=> 0
= 1l +len[] handle _.=> 0
= 1+ (1 + len(tl]) handle _=> 0) handle _=> 0
= 1+ (1 +lendhandle _=> 0) handle _=> 0
= 1+ (1 +0Ohandle _=> 0) handle _=>0
= 1+ (O handle _ => 0) handle _=> 0
= 1+ 0handle _=>0
1

e Evaluation of the length function with pattern matching is less com-
plicated.
Test for different cases in advance, if possible!

e Lazy evaluation is typically not combined with exception handling
(call-by-need evaluation makes error-propagation problematic).
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9.2 Recursive Datatypes
9.2.1 Binary Trees

datatype ’a tree = LT | Br of "a * “a tree * “a tree;

val tree2 = Br(2, Br(1, Lf, LF), Br(3, Lf, LF));
val tree5 = Br(5, Br(6, Lf, LF), Br(7, LF, LF));
“ val tree4 Br(4, tree2, treeb);

OO OULn

Polymorphic Functions size and depth:

fun size LF = 0
| size (Br(v, t1, t2)) = 1 + size tl + size t2;

fun depth LF = 0
| depth (Br(v, t1, t2)) = 1 + Int.max(depth tl, depth t2);

e Remember: size(t) < 24P — 1; complete binary tree: size(t) =
2depth(t) _ 1: concepts of balanced trees

Creating a complete binary tree of integers:

fun comptree (k, n) = (* n is the depth, k is the least value *)
if n =20 then LFf
else Br(k, comptree(2*k, n-1), comptree(2*k+1, n-1)),

Mirror a tree:

fun reflect LT = LT
| reflect (Br(v, tl, t2)) = Br(v, reflect t2, reflect tl);



Functional Programming e 01/02 97

Enumerating the Contents of a Tree

fun preorder Lf = []
| preorder (Br(v, tl1, t2)) = [v] @ preorder tl @ preorder t2;

fun inorder LT = []
| inorder (Br(v, tl1, t2)) = inorder tl1 @ [v] @ inorder t2;

fun postorder LT = []
| postorder (Br(v, tl, t2)) = postorder tl @ postorder t2 @ [V];

e Quadratic effort on badly unbalanced trees (because of @).

e Use additional argument.

fun preord (LFf, vs) = vs
| preord (Br(v, tl1, t2), vs) = v :: preord(tl, preord(t2, vs));

fun inord (LF, vs) = vs
| inord (Br(v, t1, t2), vs) = inord(tl, v :=: inord(t2, vs));

fun postord (Lf, vs) = vs
| postord (Br(v, tl, t2), vs) = postord(tl, postord(t2, v::vs));

Making a balanced tree from a preorder list of labels (inverse function to
enumeration):

fun balpre [] = LF
| balpre(x::xs) =
let val k = length xs div 2
in Br(x, balpre(List.take(xs, k)), balpre(List.drop(xs, k)))
end;
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A Structure for Binary Trees
datatype ’a tree = Lf | Br of "a * ”a tree * “a tree;

structure Tree =
struct

fun size ...

fun depth ...
fun preord ...
fun balpre ...

end;
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9.2.2 Tree-based Datastructures

(*** Dictionaries as Binary search trees ***)
signature DICTIONARY =

sig

type key (*type of keys¥*)

type "a t (*type of tables*)

exception E of key (*errors in lookup, insert¥*)
val empty: "a t (*the empty dictionary¥*)

val lookup: “a t * key -> ’a
val insert: a t * key * a ->
val update: a t * key * ’a ->
end;

a t
a t

(*Structure Order can vary; Tree avoids referring to a free structure. *)
structure Dict : DICTIONARY =

struct

type key = string;

type a t = (key * ”a) tree;

exception E of key;

val empty = LF;

fun lookup (Lf, b) = raise E b
| Tookup (Br ((a,x),tl1,t2), b) =
(case String.compare(a,b) of
GREATER => lookup(tl, b)
| EQUAL => x
| LESS => lookup(t2, b));
fun insert (Lf, b, y) = Br((b,y), Lf, LF)
| insert (Br((a,x),tl,t2), b, y) =
(case String.compare(a,b) of
GREATER => Br ((a,x), iInsert(tl,b,y), t2)
| EQUAL => raise E b
| LESS => Br ((a,x), tl1, insert(t2,b,y)));
fun update (Lf, b, y) = Br((b,y), LFf, LF)
| update (Br((a,x),tl,t2), b, y) =
(case String.compare(a,b) of
GREATER => Br ((a,x), update(tl,b,y), t2)
| EQUAL => Br ((a,y), t1, t2)
| LESS => Br ((a,x), tl1l, update(t2,b,y)));

end;
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(*** Functional and flexible arrays ***)

(*Braun trees*)
structure Braun =
struct
fun sub (L, ) = raise Subscript
| sub (Br(v,tl1,t2), k) =
if Kk =1 then v
else if kmod 2 =0
then sub (tl1, k div 2)
else sub (12, k div 2);

fun update (Lf, k, w) =
if Kk =1 then Br (w, LF, LF)
else raise Subscript
| update (Br(v,tl,t2), k, w) =

if kK =1 then Br (w, t1, t2)

else if kmod 2 =0
then Br (v, update(tl, k div 2, w), t2)
else Br (v, tl1, update(t2, k div 2, w));

fun delete (Lf, n) = raise Subscript
| delete (Br(v,tl,t2), n) =
if n=1 then LT
else ifnmod 2 =0
then Br (v, delete(tl, n div 2), t2)
else Br (v, tl1, delete(t2, n div 2));

fun loext (Lf, w) = Br(w, LFf, LF)
| loext (Br(v,tl1,t2), w) = Br(w, loext(t2,v), tl);

fun lorem LT = raise Size
| lorem (Br(_,Lf,LF)) = LF (*No evens, therefore no odds either¥*)
| lorem (Br(_, t1 as Br(v,_,_ ), t2)) = Br(v, t2, lorem tl);

end;
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(** Flexible arrays as
signature FLEXARRAY =

sig

type *a array

val
val
val
val
val
val
val
val
end;

empty:
length:
sub:
update:
loext:
lorem:
hiext:

’a
’a
’a
’a
’a
’a
’a
hirem: ’a

array
array
array
array
array
array
array
array

abstract type **)

-> int

* int -> ’a

* int * a -> ”a array
* ’a -> ’a array

-> 7a array

* 7a -> a array

-> 7a array

(*These arrays are based from ZERO for compatibility with arrays in
the Basis Library.
structure Flex :
struct
datatype “a array = Array of “a tree * int;
empty = Array(Lf,0);

val
fun
fun

fun

fun
fun

fun
fun

end;

length (Array(_,n))
sub (Array(t,n), k)

FLEXA

They check bounds and raise standard exceptions.*)
RRAY =

n;

if O<=k andalso k<n then Braun.sub(t,k+1)

else raise Subscript;

update (Array(t,n), k, w) =

if O<=k andalso k<n then Array(Braun.update(t,k+1,w), n)
else raise Subscript;

loext (Array(t,n), w) = Array(Braun.loext(t,w), n+l1);
lorem (Array(t,n)) =

if n>0 then Array(Braun.lorem t, n-1)

else raise

Size;

hiext (Array(t,n), w) = Array(Braun.update(t,n+1,w), n+1);
hirem (Array(t,n)) =
if n>0 then Array(Braun.delete(t,n) , n-1)

else raise

Size;
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(*** Priority queues ***)
signature PRIORITY_QUEUE =

sig

type item

type t

val empty t

val null t -> bool

val insert item *t > t
val min :t -> item

val delmin t->t

val fromList : item list > t
val tolList t -> 1tem list
val sort item list -> item list
end;

structure Heap : PRIORITY_QUEUE =
struct
type item = real;
type t = item tree;

val

fun

fun
fun

fun

fun

empty = LF;

null Lf = true
null (Br ) = false;
min (Br(v,_,_)) = v;
insert(w: real, LF) = Br(w, LFf, LF)
insert(w, Br(v, tl, t2)) =
if w <= v then Br(w, insert(v, t2), tl)
else Br(v, insert(w, t2), tl);
leftrem (Br(v,Lf,LF)) = (v, LF)
leftrem (Br(v,tl1,t2)) =
let val (w, t) = leftrem tl
in (w, Br(v,t2,t)) end;
siftdown (w:real, Lf, LF) = Br(w,LFf,LF)
siftdown (w, t as Br(v,Lf,Lf), LF) =
if w <= v then Br(w, t, LT)
else Br(v, Br(w,Lf,LF), LF)
siftdown (w, tl1 as Br(vi,pl,ql), t2 as Br(v2,p2,q2)) =
if w <= vl andalso w <= v2 then Br(w,tl,t2)
else if vl <= v2 then Br(vl, siftdown(w,pl,ql), t2)
(* v2 < vl *) else Br(v2, t1, siftdown(w,p2,q92));
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fun

fun

fun

fun

fun

end;

delmin LT = raise Size
delmin (Br(v,Lf, )) = LF
delmin (Br(v,tl,t2)) =
let val (w,t) = leftrem tl
in siftdown (w,t2,t) end;
heapify (0, vs) = (Lf, vs)
heapify (n, v:i:vs) =
let val (tl1, vsl) = heapify (n div 2, vs)
val (t2, vs2) = heapify ((n-1) div 2, vsl)
in (siftdown (v,tl,t2), vs2) end;

fromList vs = #1 (heapify (length vs, vs));

toList (t as Br(v,_, )) = v :: toList(delmin t)
toList LF = [];

sort vs = toList (fromList vs);



Functional Programming e 01/02 104

9.3 Elementary Theorem Proving
e Terms and logical formulas can be represented as trees.

e Now: Application of datatypes, example Tautology Checker for pro-
positional logic.

Propositional Logic (Aussagenlogik)
e An atom a is a proposition.

e If p and ¢ are propositions, then the following expressions are propo-
sitions:
—p,pNg,pVgq.

Remarks:

e Constants 7" and F are special atoms: T evaluates to true and F
evaluates to false.

e Atoms « are interpreted as truth values (can be true or false).

e All propositional expressions can be represented with negation, logi-
cal ‘and’ and logical ‘or’. For example: p — ¢ = —p V ¢ (de Morgan).

e A proposition is a tautology if it evaluates to true for all possible assi-
gnments of truth values to atoms.
Example: (pA(p —q) > q) =pV —-pV qV q = true.

e Tautology checking can be used to prove theorems: If for a set of
assumptions p; and a conclusion ¢, the expression A ,p; — ¢ eva-
luates to true, then the conclusion follows from the assumptions and
is a propositional theorem or a tautology.
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A Simple Tautology Checker

e Define a datatype prop as introduced above:

datatype prop = Atom of string
| Neg of prop
| Conj of prop * prop
| Disj of prop * prop;

e Implication can be rewritten: fun implies(p,q) = Disj(Neg p,
a:
e The most simple tautology check is, to have a conjunctive normal

form, that is, p; A ... A p,, where each p; is a disjunction of literals
(positive and negated atoms). Then it can be checked whether:

— each of the p; is a tautology,
— for every p;, = ¢1 V...V gn: check whether some ¢; appears
positive and negative. If yes, p; is true.

The check of each disjunction (clause) can be done by putting all
positive literals in a list and all negative literals in another list and
check whether the intersection is not empty.
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Example:
Assl:p —q
Ass2: —(r A q)
Conc:p— —r

Does hold: [(p = ¢) A=(r Ag)] = p — —r ?

1. Eliminate implication: (use rewrite rule given above)
(V) A=(rAg)V (-pV )

2. Calculate Negative Normal Form (negation is only applied to atoms):
The following equivalences can be used for rewriting: =(p A q) =
—pV-gand —(pVq) =-pA-g
(PA-q)V(rAq)V (-pV )

3. Calculate Conjunctive Normal Form (CNF):

The following Distributive Laws can be used:
pVigar)=@vgAlpVr)and (gAr)Vp=(qVp) A(rVp)

4. Check each member of the CNF whether it is a tautology.

For each clause: Build lists of the positive and negative literals and
check for non-empty intersection.

Remarks:

e More efficient representations for practical tautology checkers (inven-
ted in hardware design and verification): OBDDs

e Davis-Putnam procedure (working on CNFs) is the heart of SAT-
solvers.
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(*** Propositional logic -- tautology checker ***)

(*REQUIRES: set intersection¥®)

infix mem;
fun x mem [ = false
| x mem (y::z1) = (x=y) orelse (x mem 1);

fun inter([].ys) = [l
| inter(x::xs, ys) =
if x mem ys then x::inter(xs, ys)
else inter(xs, ys);

datatype prop =
Atom of string
| Neg of prop
| Conj of prop * prop
| Disj of prop * prop;

fun show (Atom a) = a

| show (Neg p) = "(CC "™ ~ show p = ™))"
| show (Conj(p,q)) = "C" "showp = " & "™ 7~ show q = ")"
| show (Disy(p,q)) = (" =~ show p = ™ | ™ = show q = ")";
(*naive version*)
fun nnf (Atom a) = Atom a

| nnf (Neg (Atom a)) = Neg (Atom a)

| nnF (Neg (Neg p)) = nnf p

| nnf (Neg (Conj(p,q))) = nnf (Disj(Neg p, Neg q))
| nnf (Neg (Disj(p.q))) = nnf (Conj(Neg p, Neg q))
| nnf (Conj(p,q)) Cony(nnf p, nnf q)
| nnf (Disj(p,q)) = Disj(nnf p, nnf q);

fun nnfpos (Atom a) = Atom a
| nnfpos (Neg p) = nnfneg p
| nnfpos (Conj(p,q)) = Conj(nnfpos p, nnfpos Q)
| nnfpos (Disj(p,q)) = Disj(nnfpos p, nnfpos q)
and nnfneg (Atom a) = Neg (Atom a)
| nnfneg (Neg p) = nnfpos p
| nnfneg (Conj(p,q)) = Disj(nnfneg p, nnfneg q)
| nnfneg (Disj(p,q)) = Conj(nnfneg p, nnfneg q);
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fun distrib (p, Conj(q,r)) Conj(distrib(p,q), distrib(p,r))
| distrib (Conj(q,r), p) Conj(distrib(q,p), distrib(r,p))
| distrib (p, q) = Disj(p,q) (*no conjunctions*) ;

Conj (cnf p, cnf Q)
distrib (cnf p, cnf q)
iteral™) ;

fun cnf (Conj(p,q)) =
| cnf (Disj(p.q)) =
| cnfp=p a l

exception NonCNF;

[a]
L1

positives p @ positives (

fun positives (Atom a)
| positives (Neg(Atom ))

| positives (Disj(p,q))

| positives raise NonCNF;
fun negatives (Atom ) 1
| negatives (Neg(Atom a)) [a]

negatives p @ negatives (
raise NonCNF;

| negatives (Disj(p,q))
| negatives

fun taut (Conj(p,q)) = taut p andalso taut g
| taut p = not (null (inter (positives p, negatives p)));
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10 Functionals

e Most powerful techniques of functional programming: treat functions
as data.

e Like other values, functions can be arguments and results of other
functions and may belong to pairs, lists, trees.

e In procedural languages the use of functions as values is restricted:
functions can be arguments of other functions (e. g., giving the com-
parison operator as argument to a sorting-function).

e A function is higher-order or a functional if it operates on other func-
tions. Example: general purpose functional map applies a function to
every element of a list, creating a new list.

e With a suitable set of functionals, all functions can be expressed wi-
thout variables!

e Applications (later sections): Parser construction, theorem proving
strategies.

e Important concepts origin in Church’s A-calculus which we introduce
in a later section.
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10.1 Anonymous Functions

e If z is a variable of type o and E is an expression of type 7, then
\fn X => Ej; | denotes a function of type ¢ — 7 with argument z
and body FE.

e The expression |fn P1 => E1 | ... | Pn => En;
denotes the function defined by the patterns
P,..., P, It 5 equivalent  to the let-expression:

let fun f(P1) = E1 | ... | f(Pn) = En In T end
provided that f does not appear in the expressions E;.

e The fn-syntax cannot express recursion!

e An anonymous function can be applied to an argument:
(fn n => n*2)(9);

e An anonymous function can be given a name by a val-declaration:
val double = fn n => n*2;

e Many ML constructs are defined in terms of the fn-notation:
iT E then E1 else E2 == (fn true => E1 | false => E2) (E)
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10.2 Curried Functions

e A function can only have one argument. Two possibilities to represent
functions over multiple arguments: (1) use a tuple, (2) Currying.

e Curry and Schonfinkel: Use a function that returns another function
as result.

e Function over pairs with type (o; x o3) — 7.
Curried function with type o; — (09 — 7).

fun prefix (pre, post) = pre post;

fun prefix pre =
let fun cat post = pre post
in cat end;
> val prefix = fn : string -> (string -> string)

fn pre => (fn post => pre~post);

10.2.1 Lexical Closures and Partial Application

- val prefix = fn pre => (fn post => pre post);
val prefix = fn : string -> string -> string

- prefix "Sir "';

val it = fn :© string -> string

- It "James";

val it = "Sir James" : string
- (prefix "Sir ') "James";
val it = "Sir James" : string

e prefix behaves like a function with two arguments.

e It allows partial application: Applied to its first argument, it returns a
function with the second argument as argument.

e The instantiation of the first argument defines the lexical context, also
called a lexical closure.
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val knightify = prefix "Sir ";
knightify "William";

knightify "Richard";

val dukify = prefix "The Duke of ";
dukify "Clarence';

Excursus: Lexical Closures in Lisp and Adapter-Classes in Java

e Lexical Closure: A function remembering its context, binding free va-
riables with respect to this context.

e Example for Common Lisp:
For the inner, nameless, function (A-expression), paramter n is free
and parameter m is bound.
Result of adder 3 is a function which adds 3 to its argument m.

[1]> (defun adder (n) (function (lambda (m) (+ m n))))
ADDER

[2]> (setg add3 (adder 3))

#<CLOSURE :LAMBDA (M) (+ M N)>

[3]1> (Ffuncall add3 4)

7

e In Java, adapter classes (nearly) imitate the concept of lexical clos-
ures.
In makeAdder the Adder-Interface is adapted for a special demand.
The anonymous inner class realizes the lexical closure.

e But: parameter n must be declared final. That is, it is not possible,
that different functions share the same context (except if the context
would be given in an object of the surrounding class).

interface Adder{ int add(int m); }

public Adder makeAdder(final int n) {
return new Adder(Q) {
public int add (int m) {return m + n;}

3 5
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10.2.2 Syntax for Curried Functions

e A curried function can be  defined using  fun
where arguments are given without parentheses:
fun prefix pre post = pre post; is interpreted as fn

: string -> (string -> string).

e A function call has the form EFE; where E is an expression that de-
notes a function.

e EE\FE, ... E, abbreviates (... ((EE,)Ey)...)E,.
Expressions are evaluated left to right.
Symbol — associates to the right: string — (string — string) can
be written without parentheses.

e Thatis: prefix "Sir ' "James'; can be written without par-
entheses.

e Remark: Compare to two-dimensional and nested arrays A[i, ]
(“tuple”) vs. AL1]1L3] (“currying”).
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10.2.3 Recursion

e Curried functions may be recursive.

fun replist n x = if n=0 then [] else x :: replist (n-1) x;
> val replist = fn : int -> ”"a -> “a list

replist 3;

> val fn x => if 3 = 0 then [] else x :: replist(3-1) Xx;

it true;

> [true true true] : bool list;

Remark: This doesn’t work with SML!

- fun replist n x = if n=0 then [] else x :: replist (n-1) x;
val replist = fn : int -> ”a -> ”a list
- replist 3;
stdIn:28.1-28.10 Warning: type vars not generalized because of
value restriction are instantiated to dummy types (X1,X2,...)
val it = fn - ?_.X1 -> ?_.X1 list
- It true;
stdIn:29.1-29.8 Error: operator and operand don’t agree [tycon mismatch]
operator domain: ?.X1
operand: bool
in expression:
it true

But with Moscow ML!

- fun replist n x = 1If n=0 then [] else x::replist (n-1) Xx;

> val ”a replist = fn : int -> ”a -> “a list

- replist 3;

I Warning: Value polymorphism:

I Free type variable(s) at top level in value identifier it
>val it = fn : "a -> ”a list

- 1t true;
I Warning: the free type variable “a has been instantiated to bool
val it = [true, true, true] : bool list

\%
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10.2.4 Functions in Data Structures
e Pairs and lists may contain functions as components.
e Functions stored in a data structure can be extracted and applied.

e Functions stored in a data structure (or data type, such as tree) must
have the same type. Type exn can be regarded as including all types
(but redefining functions with different types based on exceptions is
a hack!).

val titlefns = [dukify, lordify, knightify];
> val titlefns = [fn, fn, fn] : (string -> string) list
hd titlefns "Gloucester';

e Curried function call: hd titlefuns returns function dukify.

e The polymorphic function hd has here the type (string ->
string) list -> (string -> string).



Functional Programming e 01/02 116

10.3 Functions as Arguments and Results

fun insort lessequal =
let fun ins X, [D = [x]
| ins (X, y::ys) =
if lessequal(x,y) then x::y::ys
else y :: ins (X,ys)
fun sort [] = [1
| sort (x::xs) = ins (X, sort xs)
in sort end;
> val insort = fn : (Ca * a -> bool) -> ”a list -> ”a list
insort (op<=) [5, 3, 7, 5, 9, 8];

e For an argument 7 x 7 — bool Insort returns the function sort with
type tlist — tlist.

fun summation f m =
let fun sum (i,z) : real =
if i=m then 2z else sum (i+l, z + (F 1))
in sum(0, 0.0) end;

calculates 7' £(4).
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11 General-purpose Functionals

11.1 Sections
e Section: an operator which leaves an operand unspecified.

e Examples: "Sir " (function knightify), /2.0 (function 'divi-
de real by 2")

e Section can be added to ML (in a rather crude way) as higher-order
functions.

e secl ist a function getting a value z : «, a function a x § — v and a
second (unspecified) value y : 5 and returns a value f(z,y) : 7.

e secl is a higher-order function because it takes a function as argu-
ment.

- fun secl x Ty =f(X,y);

val secl = fn - a -> (Ca * b -> ’c) -> b -> ’c
- val recip = (secl 1.0 op/);

val recip = fn - real -> real

- recip 5.0;

val it = 0.2 : real

- fun secr Fy x = f(y,X);

val secr = fn : (Ca * ’b -> ’¢c) -> ’a -> ’b -> ’c
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11.2 Combinators

118

e The theory of A\-calculus is in part concerned with expressions known

as combinators.

e Many combinators can be coded in ML as higher-order functions.

e Composition O is a combinator. (Remember FP and introduction to

functions.)

e Identity I Constant Function K, and General Composition S are com-

binators.

e Every function in A-calculus can be expressed using just S and K

with no variables.

This can be exploited for lazy evaluation: since no variables are in-
volved, no mechanism is needed for binding their values.

infix o;
fun (Fog) x=F (g x);

>val o=fn : (Ca->7b) * (Cc -> ’a) -> ’c ->’b

Now functions can be expressed without mentioning their arguments:

- 0 Math.sqgrt;
i

val it = fn : real -> real

- 1t 2.0;

val it = 71.41421356237 : real

- (secl 2.0 op/) o (secr op- 1.0);
val it = fn : real -> real

fun I X = X;

>val | = fn - "a -> ’a

fun K X y = X;

>val K=Ffn ©: "a -> b -> ’a

fun Sxy z=x2z (y 2);

>val S=*fn : (Ca -> b -> ’c) -> (Ca

-> ’p) -> "a -> “c
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Examples:

- fun sum X y = X + y;

val sum = fn :

- Ssum I 1;
val 1t = 2 :
- S sum T 1;
val 1t = 0 :
- S KK 17;

val 17 : iInt

int -> Int -> Int

C1+1%)
int

C1+-1%)
int

(1 =SKK?%

11.3 List Functionals ‘Map’ and “Filter’

mapf[xla"'axn]:[fxla"'afxn]
filter plzy, ... @n] = [ | p(xi) = true]
fun map F [1 = []
| map f (x::xs) = (F x) -z map T xs;
val map = fn - (Ca -> ’b) -> ”"a list -> ’b list
- fun filter pred [] = [1

| filter

val filter =
- map size [
val it = [4,
- Ffilter (fn
val 1t = [t

pred (x::xs) = if pred x then x :: filter pred xs
else filter pred xs;

fn - (Ca -> bool) -> ”a list -> “a list

"York', ""Clarence™™, "Gloucester'];

8,10] : int list

a => size a = 4) ["hie","thee","to","hell","thou", " cacodemon"

hee',"hell","thou'] : string list

e Map and filter are curried:
map takes a function of type ¢ — 7 to one of type olist — Tlist.
Ti1lter takes a function of type 7 — bool to one of type tlist — Tlist.
Pattern-Matching works exactly as if the arguments were tuples.

e map and Fi lter can work for lists of lists: map(mapf)[l1, ..., 1] ap-

plies map

f to each list [;.
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- fun double x = x*2;

val double = fn : int -> int

- map(map double) [[1].[2,3], [4.5.6]11:

val 1t = [[2].[4.6].[8,10,12]] : int list list

- map (Filter (secr op< "m'"))

[[my", "hair"™, "doth'", "stand"™, "‘on', "end"],

= ["to”, "hear'™, "her™, "curses"]];

val it = [["my","stand","on"],["to'"]] : string list list

Many functions can be now coded trivially:

fun transp (I1 :: D) =11
| transp rows = map hd rows :: transp (map tl rows);

fun inter (xs, ys) = Filter (secr (op mem) ys) Xs;

11.4 List Functionals “foldl’ and “foldr’

e Also known as reduce.

foldl felxi,...,xn] = f(@n, f(Xn_1,---, f(x2, f(x1,€))...))
fOld?" f € [‘rlr"vxn] = f(xlaf(x%"'af(xn—laf(xnae)) ))

fun foldl Fe [] =¢e (* e is the identity element *)
| foldl F e (x::xs) = foldl ¥ (f(x, e)) xs;

fun foldr F e [] = e
| foldr F e (x::xs) = f(x, foldr T e xs);

Examples:

val sum = foldl op+ 0; (* summation of ints with e=0 *)
sum [1,2,3,4];
> 10 :© int

foldl (fn (, n) => n+l) 0 (explode "Margaret');
> 8 : iInt

foldr op@ [1 [I[11. [2.3]1., [4.5.6]];
> [1,2,3,4,5,6] - int list
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Expressing map with foldr:

fun map F
> val map

foldr (fn(x,1) => f x :: D [1;
fn - (Ca -> ’b) -> 7a list -> ’b list

Cartesian Product of Lists:

fun cartprod (Xs, ys) =
foldr (fn (X, pairs) =>
foldr (fn (y,1) => (X,y)::1) pairs ys)
[1 xs;

Remark: Cartesian Products can be calculated more clearly using map
and List.concat:

- fun pair x y = (X,Y);
- map (fn a => map (pair a) ["Hastings"™, "Stanley'"]) ["Lord", "Lady'];
val it =
[[(Lord",""Hastings'"), ("'Lord","Stanley')],
[('Lady",""Hastings'), (‘'Lady","Stanley')]]
: (string * string) list list
- List.concat it;
val it =
[(Lord","Hastings'), ("'Lord","Stanley'), (‘'Lady",""Hastings"'),
("'Lady","Stanley'™)] : (string * string) list



Functional Programming e 01/02 122

11.5 The List Functionals ‘Exists’ and ‘All’

fun exists pred [] = false

| exists pred (x::xs) = (pred x) orelse exists pred xs;
fun all pred [] = true

| all pred (x::xs) = (pred x) andalso all pred xs;

Elegant member-test:

infix mem;
fun X mem xs = exists (secr op= X) XS;

Disjoint Test:
fun disjoint (xs, ys) = all (fn x => all (fny => X <> y) ys) Xs;

11.6 Functionals in the Standard Library
e 0 and list functionals map, foldl, foldr are available top-level.

e Components of structure List: map, foldl, foldr, filter,
exists, all.

e Components of structure ListPair: variants of map, exists, all.

11.7 Further Useful Functionals

fun takewhile pred [] = [1
| takewhile pred (X::xs)

if pred x then x :: takewhile pred xs
else [];

fun dropwhile pred [] = []
| dropwhille pred (X::xs)

if pred x then dropwhile pred xs
else x::xs;

(* map(takewhile pred) returns a list of iInitial segments *)
(* takewhile (all pred) works on lists of lists *)
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Powers of a Function

fun repeat f n x =
if n>0 then repeat T (n-1) (f x)
else x;
repeat (fn t =>Br(*'No", t, t)) 3 Lf;
(* complete binary tree with constant label *)

Handling Trees

fun treefold F e LT = ¢
| treefold f e (Br(u,tl,t2)) = f(u, treefold f e tl, treefold F e t2);
val size = treefold (fn(_, cl,c2) => 1l+cl+c2) O;
val depth = treefold (fn( _,d1,d2) => 1 + Int.max(d1,d2) O;
val preordlist = treefold(fn(u,11,12) => [u] @ 11 @ 12) [1;

Operations on Terms

datatype term = Var of string | Fun of string * term list;

¢ xtu) - (Y*X) )
val tm = Fun(C'-", [Fun(''+", [Var "'x", Var "u"]),
Fun(''*", [var "'y, Var "x"]),

(* Substitution *)
fun subst f (Var a) = f a
| subst ¥ (Fun (a, args)) = Fun(a, map (subst f) args);
(* List of Variables *)
fun vars (Var a) = [a]
| vars (Fun(_,args)) = List.concat (map vars args);
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List functionals are patterns (schemes) for many standard functions:

e Examples for map: all functions which change every element of an
input list (such as square each number in a list).

e Examples for filter: return all odd-numbers of a list, delete an element
inalist, ...

e Examples for reduce (fold): calculate the sum of a list of numbers, ...
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12 Infinite (Lazy) Lists — Sequences

e Lazy lists are one of the most celebrated features of functional pro-
gramming.

e The elements of a lazy list are not evaluated until their values are
required by the rest of the program, thus a lazy list may be infinite.

¢ In the purely functional language Haskell, which is based on lazy
evaluation, infinite lists are commonplace and can be used to ex-
press list comprehensions, such as [square x | x <- [0 ..],
square x < 10], where Haskell returns a partial listO - 1 - 4
: 9 - L (the system does not terminate, it expands the list “fore-
ver”, searching for further elements whose square is less than 10).

e For lazy lists, recursions can go on forever. Instead of termination of
a program, we can only ask whether the program generates each
finite part of its result in finite time.

¢ In ML infinite lists are called sequences (sequences in Lisp are not in-
finite lists). Traditionally, infinite lists are called streams (which today
typically denote input/output channels).

e Typically (Haskell, Lisp, ML) for all list functionals there are corre-
sponding functionals for sequences.

e In ML lazy lists can be expressed, but treatment of lazy lists is a bit
problematic, because ML uses strict evaluation. Lazy lists are reali-
zed by representing the tail of a list by a function in order to delay
evaluation.

NIl

datatype ’a seq =
| Cons of a * (unit -> ’a seq);

e Like a list, a sequence either is empty or contains a head and a tail.
The empty sequence is Ni I and a non-empty sequence has the form
Cons(x,x¥T), where x is the head and xF is a function to compute
the tail!
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12.1 The Type ‘seq’ and Its Primitive Functions

datatype ’a seq = Nil
| Cons of "a * (unit -> ”a seq);
exception Empty;

fun hd (Cons(x,xf)) = x
| hd Nil = raise Empty;

fun tl (Cons(x,xF)) = xFQO
| t1 Nil = raise Empty;

fun cons(x,xq) = Cons(x, fn()=>xq);

fun fromList 1 foldr cons Nil I;

e cons(x, E) is not evaluated lazily: ML evaluates F, yielding a re-
sult z¢, and returns Cons(x, fn() => xq). The fn inside cons
does not delay evaluation of the tail. Only use cons where lazy eva-
luation is not required, for example in fromlist which converts a
list into a sequence.

e Delay of evaluation is realized with Cons(x, ftn() => E).

Cons(k, fn(Q=> from(k+1));

fun from k =
= fn : int -> iInt seq

V o1

val from
- from 1;
> val 1t = Cons(1, fn) : iInt seq
- tl i1t;
> val 1t = Cons(2, fn) : iInt seq
- tl i1t;
> val 1t = Cons(3, fn) : iInt seq
- tl it;
> val it = Cons(4, fn) : iInt seq
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Function take returns the first n elements of a sequence zq as a list:

fun take (xq, 0) = [1
| take (Nil, n) = raise Subscript
| take (Cons(x,xF), n) = x :: take (xXF(Q), n-1);

Evaluation of take(from 30, 2):

take(from 30,2)

=> take(Cons(BO fn(Q=>from(30+1)), 2)

=> 30 :: take(from(30+1), 1)

=> 30 :: take(Cons(31, fn()=>from(31+1)), 1)

=> 30 :: 31 :: take(from(31+1),0)

=> 30 :: 31 :: take(Cons(32,fn()=>from(32+1)),0)
=> 30 :: 31 :: []

= [30 31]

e Datatype o seq is not really lazy in ML:

127

the head of a non-empty sequence is always computed (such as 32

in the example above, which is not used);
inspecting the tail repeatedly evaluates it repeatedly
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12.2 Elementary Sequence Processing

e For a function on sequences to be computable, each finite part of the
output must depend on a finite part of the input.

e Example: Squaring a sequence of integers one by one: the tail of
the output, when evaluated, applies function squares to the tail of the
input.

e Other examples: add pairs of elements of two sequences, append,
interleaving two sequences, ...

- fun squares Nil : iInt seq = Nil
| squares (Cons(x, xF)) = Cons(x*x, fn()=> squares(xf());
val squares = fn - int seq -> int seq
squares (from 1);
Cons(1, fn) : int seq
take(it, 10);
[1, 4, 9, 16, 25, 36, 49, 64, 81, 100] : int list

| I VAR AV

\Y
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12.3 Functionals on Sequences

List functional can be generalized to sequences.

sqguares is an instance of functional map.

from is an instance of the functional iterates which generates se-
quences of the form [z, f (), f(f()),- .., f*(z),-.].

filter successively calls the tail function until an element is found
which satisfies the given predicate. If no such element exists the
function will not terminate!

fun map £ Nil = Nil
| map f (Cons(x,xF)) = Cons(f x, fn(Q=> map f (xFQ));

fun Filter pred Nil = Nil
| filter pred (Cons(x,xf)) =
if pred x then Cons(x, fn(Q=> filter pred (xf()))
else fFilter pred (xXf());

fun iterates f x = Cons(x, fn()=> iterates T (f x));

filter (fn n => n mod 10 = 7) (from 50);

> Cons(57, fn) : iInt seq

take (it, 8);

> [57, 67, 77, 87, 97, 107, 117, 127] : int list

iterates(secr op/ 2.0) 1.0;

> Cons(1.0, fn) : real seq

take(it, 5);

> [1.0, 0.5, 0.25, 0.125, 0.0625] : real list
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12.4 A Structure for Sequences

datatype ’a seq = Nil
| Cons of a * (unit -> ”a seq);
(*Type seq is free in this signature!*)
sighature SEQUENCE =
sig
exception Empty
val cons : ’a * ”a seq -> “a seq
val null : “a seq -> bool
val hd : ’a seq -> ’a
val tl : “a seq -> “a seq
val fromList : ’a list -> ”a seq
val toList : ’a seq -> ’a list
val take : “a seq * int -> “a list
val drop : ’a seq * Int -> ”a seq
val @ : a seq * ’a seq -> ’a seq
val interleave : ’a seq * “a seq -> ’a seq
val map : (Ca -> ’b) -> "a seq -> b seq
val filter : (Ca -> bool) -> ”a seq -> ”a seq
val iterates : (Ca -> ’a) -> “a -> ’a se(q
val from : iInt -> iInt seq
end;

structure Seq : SEQUENCE =
struct
exception Empty;
fun hd (Cons(x,xf)) = x
| hd Nil = raise Empty;
fun tl (Cons(x,xF)) = xFQO
| t1 Nil = raise Empty;
fun cons(x,xq) = Cons(x, fn()=>xq);
fun null (Cons ) = false
| null Nil = true;
fun fromList 1 = foldr cons Nil I;
fun toList Nil = []
| toList (Cons(x,xf)) = x :: toList (XFQ);
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fun

fun

fun

fun

I
(**

fun

fun

fun
fun
end;

take (xq, 0) =[]
take (Nil, n) = raise Subscript
take (Cons(x,xF), n) = x :: take (xFQ, n-1);
drop (xq, 0) = xq
drop (Nil, n) = raise Subscript
drop (Cons(x,xf), n) = drop (xF(), n-1);
Nil @ yq = yq
(Cons(x,xF)) @ yg = Cons(x, fnQQ=> (xFQ) @ yq);
interleave (Nil, vaq) = vyq
interleave (Cons(x,xF), yq) =
Cons(x, fn()=> interleave(yq, xfQ));
functionals for sequences **)
map £ Nil = Nil
map f (Cons(x,xF)) = Cons(f x, fn(Q=> map f (xXFQ)):;
filter pred Nil = Nil
filter pred (Cons(x,xf)) =
if pred x then Cons(x, fn()=> filter pred (xf()))
else Filter pred (xXf());
iterates ¥ x = Cons(x, fn()=> iterates f (f x));
from k = Cons(k, fn(Q=> from(k+1));
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12.5 Elementary Applications of Sequences

Example: Calculating Primes using the Sieve of Eratosthenes

e Start with the sequence [2, 3, 4, 5, 6, ...]

e Take 2 as a prime. Delete all multiples of 2, since they cannot be
prime. This leaves sequence [3, 5, 7, 9, 11, ...]

e Take 3 as a prime and delete its multiples. This leaves the sequence
[5,7,11, 13, 17, ..]

e Take 5 as a prime ...

e At each stage, the sequence contains those numbers not divisible by
any of the primes generated so far. Therefore, its head is a prime,
and the process can continue indefinitely.

e sifTt deletes multiples from a sequence and sieve repeatedly sifts
a sequence.

fun sift p = Seq.-filter (fn n => n mod p <> 0);

fun sieve (Cons(p,nf)) = Cons(p, fn()=> sieve (sift p (nTQ)));
val primes = sieve (Seq.-from 2);

Seq.take (primes, 25);
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12.6 Search Strategies on Infinite Lists

Each search strategy is a curried function, getting a function next:
a -> 7 a list which returns the next list of subtrees for a node
xZ.

The most primitive algorithms just enumerate all nodes in some or-
der. Solutions can be identified using functional Seq. filter with a
suitable predicate on nodes. (generate and test)

filter all legal solutions; optional: find all/an optimal solution(s).

More efficient versions of search can include a predicate to recognize
solutions and terminate after a solution is found.

A strategie which combines depth-first and breadth-first is iterative
deepening: It searches depth first to a depth d, returning all solutions,
then to depth 2d, then to depth 3d, and so on.

Heuristic search strategies as best-first search or A* incorporate esti-
mations about the distance of a node from the desired goal state.

fun depthFirst next X

let fun dfs [] = Nil

| dfs(y::ys)
in dfs [x] end;

Cons(y, fn()=> dfs(next y @ ys))

fun breadthFirst next x =

let fun bfs [] = Nil
| bfs(y::ys) = Cons(y, fn()=> bfs(ys @ next y))
in bfs [Xx] end;
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13 Reasoning about Functional Programs

e Software crisis in the 70’s (and after): hard to cope with increasingly
complex software projects; delayment (cancellation) of systems, cost
explosion. Several methodologies were proposed to deal with the
software crisis:

— Structured Programming: Organization of programs in simple
parts with simple interfaces. Using abstract datatypes/modules.
(see later section)

— Declarative Programming: (functional or logic) Expressing com-
putations directly in mathematics, making the machine state in-
visible, understanding/testing one expression at a time. (that’s
what we do in this lecture)

— Program Correctness Proofs: Verification oder Derivation (syn-
thesis) of programs with respect to a specification. (our topic)
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13.1 Functional Programs and Mathematics

Remember FP: Proofs on simple programs can be performed by re-
writing, applying the definitions of the built-in functions and simple
mathematical laws (as associativity, commutativity). Theorems about
recursive programs can be proved using induction.

With different kinds of induction we can verify programs over sim-
ple types (mathematical or complete induction), over lists and trees
(structural induction), for well-founded recursion (well-founded induc-
tion).

Equality of syntactically different forms of functions can be shown
either by rewriting, applying mathematical laws (extensional equality)
or by calculating normal forms (intensional equality). Equality cannot
generally be shown.

Properties of whole classes of functions (recursive program sche-
mes) can be proven with well-founded induction.

The (denotational) semantics of recursive functions can be proved
using domain theory and fixed point theorems.

For the most part, we will restrict the proofs to functions which are assu-
med to terminate (no proofs about infinite lists, no lazy evaluation). Re-
asoning about programs which do not always terminate involve domain
theory.
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13.2 Limitations and Advantages of Verification

Verification assumes that the hardware is infallible. Typically, questions
about arithmetic overflow, rounding errors, running out of store are igno-
red (but can be included).

A specification may be incomplete or wrong because design requirements
are hard to formalize. Satisfying a faulty specification will not satisfy the
customer. Verification: Did we build the product right? versus Validation:
Did we build the right product?

Proofs may contain errors: Automated theorem proving can reduce but not
eliminate the likelihood of errors. All human efforts may have flaws, many
errors have been discovered in theorem provers, in proof rules, in published
proofs.

Formal Proof is tedious: one must take great pains, even to prove very
elementary things. Imagine verifying a compiler!

But: Writing formal specifications reveal ambiguities and inconsistencies
in the design requirements. The painstaking work of verification yields re-
wards: an attempted proof often can pinpoint the error in a program.

Specification and verification yield a fuller knowledge of the program and its
task.

Additionally, testing (validation) is always necessary. It is the only way to
investigate whether the computational model and the formal specification
reflect the real world. However, while testing can detect errors, it cannot
guarantee success (testing is necessarily incomplete).

Alternative effort: Synthesis a program automatically from a specification
(KIDS, D. Smith).

Correspondence between proofs and programs: (Curry-Howard Isomor-
phism) If we can extract programs from proofs, then by constructive theo-
rem proving we obtain verified programs. Yi3o[p(i) = (3, 0)] written con-
structively Vi[p(i) = #(i, f(2))] where ¢ stands for input values, o for output
values, p for preconditions on ¢, ¢ for the desired input/output relation and
f (introduced by Skolemization) is the searched for program. See for ex-
ample: S. Thompson (1991). Type Theory and Functional Programming.
Addison-Wesley.
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13.3 Mathematical Induction and Complete Induction

e Mathematical Induction: Reduction of a problem ¢(k) to ¢(k — 1).
Complete Induction: Reduction of a problem ¢(k) to the k subpro-
blems ¢(0), ¢(1), ..., #(k — 1). (includes math. ind. as special case)

13.3.1 Mathematical Induction

Induction Scheme:

[o(k)] (induction hypothesis)
#(0) ¢(k+1) (base case and induction step)

¢(n)
e Above the line: premises, below: conclusion.

e The induction hypothesis can be assumed true while proving the in-
duction step.

e For more complex proofs: £ must not appear in any other induction
hypothesis, it is a new variable, which stands for an arbitrary value.
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Example:

Theorem: Every natural number has the form 2m or 2m+1 for some natural
number m.
Formally: Vn dm n =2mVn =2m + 1.

Proof:
e Induction Hypothesis: 3m k =2mV k =2m + 1

e BaseCase (k=0):dm0=2mVvV0=2m+1
holds with m = 0

e Induction Step: (k > k+1):Imk+1=2m'Vk+1=2m'+1
Ifk=2mthenk+1=2m+1,som=m'.
Ifk=2m+1thenk+1=2m+2=2(m+1),som' =m+1.0

datatype evenodd = Even | 0dd;
fun half 0 = (Even, 0)
| half n (case half (n-1) of (Even, m) => (0dd, m)
| (0dd, m) => (Even, m+l));
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13.3.2 Complete Induction
Induction Scheme:

Vi <k ¢(i)] (induction hypothesis)
o (k) (induction step)

¢(n)

Theorem: Every natural number n > 2 can be written as a product of prime
numbers, n = p; - - - p;.

Proof:
e Case 1: nis prime. Then k =1 (n = n).

e Case 2: n is not prime.
n is divisible by some natural number m such that 1 < m < n.
Since m < n and n/m < n, the induction hypothesis can be used
twice:
m=p ---prandn/m=gq ---q.
Nown =m X (n/m) =p1---prqr---q. O
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13.3.3 Program Verification with Mathematical Induction

Theorem: For every natural number n, facti(n,1) = nl.
Relation between a ML function and mathematics.

fun facti(n, p) = if n=0 then p else facti(n-1, n*p);

Proving the more general formula VnVp facti(n,p) = n! x p and setting
p=1.

e Base Case: Vp facti(0,p) = 0! x p.
holds because: facti(0,p) =p=1xp=0! X p.

e Induction Step: Show Vp facti(n +1,p) = (n+1)! xp
facti(n + 1,p) = facti(n,(n+ 1) x p) (unfolding facti)
=n! x ((n+ 1) x p) (induction hyp.)
= (n! x (n + 1)) x p (associativity)
= (n+1)! x p (factorial). O

Comments:

e This proof helps us to understand the role of p (accumulator) in
facti(n,p).

e The induction formula is analogous to a loop invariant in procedural
program verification (Hoare calculus).

e Since the proof depends on associativity for multiplication, it sug-
gests that facti(n,1) computes n! by multiplying the number in the
order (1 x (2% (3...(nx1)...))).

e Later we shall generalize this to a general theorem about transfor-
ming recursive functions into iterative functions!
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13.4 Structural Induction
Induction Scheme for Lists: Induction Scheme for Trees:

[P(ys)] (induction hypothesis) [p(t1), d(t2)] (induction hypothesis)
d([]) ¢y :ys) (base case & ind. step) d(Lf) ¢(Br(z,ti,t2)) (base case & ind. step)

p(zs) b(t)

e Structural induction is a generalization of mathematical induction to
lists and trees.

e Mathematical Induction is based on the datatype of natural numbers:
datatype num = O | succ of num;.
Base: 0 is a number; Step: If k£ is a number, so is succ(k).

e Analogy for lists and trees.

Example:

fun nlength [] = 0
| nlength (x::xs) = 1 + nlength xs;
fun [] @ ys = ys
| (X::x8) @ ys = x -2 (Xs @ ys);
Theorem: For all lists zs and ys, nlength(xs @ ys) = nlength(xs) +
nlength(ys).

e Base Case: nlength([] @ ys) = nlength[] + nlength ys.
nlength(] @ ys) = nlength ys (append)
= 0 + nlength ys (arithmetic)
= nlength[] + nlength ys (nlength). OJ

¢ Induction Step: Show for all x and xs that
nlength((x::xs) @ ys) = nlength(x::xs)+nlength(ys).

nlength((x::xs) @ ys)

= nlength(x::(xs @ Yys)) (append)

=1 + nlength(xs @ ys) (nlength)

=1+ (nlength xs + nlength ys) (ind. hyp.)

= (1 + nlength xs) + nlength ys (associativity)
= nlength(x::xs) + nlength ys (nlength). O
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e The proof brings out the correspondence between inserting list ele-
ments and counting them.

¢ Induction on zs works because base case and induction step can be
simplified using function definition. Induction on ys leads nowhere!!

e Application of the definition of a function: replacing head (function
call) by body with app. substitution of parameters is called unfolding,
replacing the body by the app. function call is called folding (Burstall
and Darlington).

Example:

fun reflect LT = Lf
| reflect (Br(v, t1, t2)) = Br(v, reflect t2, reflect tl);

Theorem: For every binary tree ¢, reflect(reflect t) = t.
Proof:

e Base Case: reflect(reflect Lf) = Lf
holds by definition reflect(reflect Lf) = reflect Lf = Lf.

e Induction Step:
Two induction hypotheses: reflect(reflect t;) = t; and
reflect(reflect ty) = t.

To prove: reflect(reflect(Br(z,t1,1ts))) = Br(x,t1,t)
reflect(reflect(Br(z,t1,1ts)))

= reflect(Br(z,reflect ty, reflect t1)) (reflect)

= Br(z,reflect(reflect t1), reflect(reflect t2)) (reflect)
= Br(z,t1,reflect(reflect t)) (ind. hyp.)

= Br(z,t,t,) (ind. hyp.) O

Remark: For proving theorems about data types involving functions, this
set-theoretical way of proofs is not sufficient. We need domain theory,
where we can prove theorems about the domain D — D of continuous
functions!
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13.5 Equality of Functions and Theorems about Functionals

e \We use the notion of functions as values and the set theoretical view
of functions.

e Law of extensionality: Two functions f and g are equal if f(z) = g(x)
for all z (of suitable type) and f and g must have identical domains.

— There is no general computable method of testing whether two
functions are extensionally equal. In ML there does not exist an
equality predicate for functions (in Lisp intensional equality is
used).

— Extensional equality can be shown if replacing f and g does not
affect the value of any application of f.

— This law requires that functions terminate. Generally, 1 denotes
an undefined function value and \z.L denotes a function which
never terminates. In effect, in both cases the result is L.

— Example: fun doublel(n) = 2xn;, fun double2(n) =
n«2;, fun double3(n) = n + n;

e Intensional Equality: Two functions are equal iff their definitions are
identical. (If all functions can be rewritten in a normal form, often
— not always — semantically identical functions have normal forms
which are equal up to variable renaming.)
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13.5.1 Theorems about Functionals

Theorem: For all functions f, g, h (of appropriate type), (fog)oh = fo(goh).
Proof: By the law of extensionality it is enough to show:
((fog)oh)x=(fo(goh))x forall x.

((fog)oh)x

= (f o g)(hz)

= f(g(hz))

= f((90 h)z)

= (fo(goh)).

Each step holds by the definition of composition: (f o g)z = f(gx).

Theorem: For all functions f and g, (map f) o (map g) = map(f o g). (This
theorem can be used to avoid computing intermediate lists.)

Proof: By the law of extensionality, this equality holds if (map f) o
(map g)xs = map(f o g)xs for all lists zs. Simplification (def. of o):
map f(map g xs) = map(f o g)xs.

Proof by structural induction:

e Base Case: map f(map g []) = map f [] = [| = map(f o g)[].

e Induction Step: map f(map g (z :: zs)) = map(f o g)(z :: zs).
map f(map g (x :: xs))
=map f((g x) :: (map g xs)) (Map)
= f(g ) :: (map f(map g xs)) (Map)
= f(g z) :: (map(f o g)xs) (ind. hyp.)
= (fog)(x) == (map(f o g)zs) (comp.)
= map(f o g)(x :: zs) (map). O
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13.6 Well-Founded Induction and Recursion

e For all recursive functions on lists/trees which make recursive calls
on the tail/sub-trees of their argument, the type of recursion is called
structural recursion and proofs can be based on structural induction.

e But, recursive functions can shorten lists in other ways: maxl, quick
sort, merge sort, transpose, ...

fun maxl [m] - Int =m
| maxl (m::n::ns) it m>n then maxl(m::ns) else maxl(n::ns);

Here, not the plain list structure but the content (attribute of the ele-
ments) must be taken into account! (Remark: These are the proble-
matic cases for program synthesis!)

The same is true for functions on trees: nnf (conversion of a proposi-
tion in negation normal form) is not structurally recursive.

e Well-founded induction is a powerful generalization of complete in-
duction and includes most other induction rules. A special case of
well-founded induction is induction on size.

Scheme for Well-founded Induction:

Vy' < y.0(y)] (induction hypothesis)
o(y) (ind. step)

¢(z)

e Here < is a well-founded order relation over some type 7:
The relation < is well-founded if there exist no infinite decreasing
chains.

e Examples: less-than (<) on natural numbers is well-founded, less-
than on integers is not well-founded.
Lexicographic ordering of pairs of natural numbers: (i’, |') <.z (i, J) iff
F<iv(@i’=iA] <)).
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e Recursive functions over arguments with a well-founded order relati-
on are called well-founded recursive functions.

e The Boyer-Moore (1975, 1988) theorem prover is based on well-
founded recursion.

13.7 Recursive Program Schemes

Well-founded relations permit reasoning about program schemes.

A program scheme is an ‘abstract’ program structure defined over
classes of functions and operators.

Example: Schemes for linear recursion and tail recursion (with @ as
associative operator and identity e):

fi(z) = if p(x) then e else fi(gz) D x

fa(z,y) = if p(z) then y else fo(g z,x S y)

Well-founded relation g(x) < z for all z with p(z) = false.
— f1 and f, terminate.

Theorem: Suppose & is an infix operator that is associative and has iden-
tity e, that is, for all z, y, z:

T®(Ydz2)=(z0y)®2

edbr=z=zDe.

Then, for all z and e holds fy(z,e) = fi(z).

Proof: Vy.fo(z,y) = fi(z) @ y. Then sety =e.

This holds by well-founded induction over <. There are two cases:

1. If p(x) = true then:

fo(z,y) = y (def. of f5)
= e @ y (identity)
= fi(z) @y (def. of fi).
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2. If p(x) = false then:
fo(z,y) = folg z,x @ y) (def. of fy)
= f1(g z) ® z & y (ind.hyp.)
= fi(z) @ y (def. of f;). O

e The induction hypothesis applies because g(x) < z. We have impli-
citly used associativity of &.

e Thus, we can transform a linear recursive function into a tail recursive
function with an accumulator!

e The theorem applies to the computation of factorials:
6:1,@: X,g(x):m—l’p(x):(xzo)’<:<

¢ In general, such proofs involve domain theory.
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14 Domain Theory and Fixpoint Semantics

14.1 Concept for Semantics of Programming Languages

e Like every (natural) language, a programming language has a syntax
(a grammar, specified in BNF, to construct well-formed expressions),
a semantic (the meaning of the primitives of a language and of the
user-defined programs built over them; often only given informally),
and pragmatics (how the various features of a language are intended
to be used, the implementation of the language, etc.).

e Formal, mathematical semantics allows machine independent speci-
fication of behavior, reasoning about programs and can help to bring
to light abiguities and unforseen subtleties in programming language
constructs.

e Axiomatic Semantics: Meanings for program phrases defined indi-
rectly via the axioms and rules of some logic of program properties
(e.g., Hoare calculus).

e Operational Semantics: Meanings for program phrases defined in
terms of the steps of computation they can take during program exe-
cution. (e.g., Backus Algebra of FP; evaluation rule for ML, ...)

e Denotational Semantics: Meanings for program phrases defined ab-
stractly as elements of some suitbale mathematical structure.

e Analogy to natural language semantics:
“A chair is to sit on”, the meaning of “x is left of y” is the knowledge needed
to reach z starting from y (operational, cf. “procedural semantics for mental
models”, Johnson-Laird).
The meaning of chairs is the set of all chairs, the meaning of “the chair
is red” is the intersection of the set of red objects and the set of chairs
(denotational, cf. model-theoretic semantics, Tarski).

Sets and Domains: (Field & Harrison (1986), Appendix B)

e Set-Theory: e. g. the set of integers N, the set of booelan values Bool.
Domain-Theory: introduce an additional, unique element L which repres-
ents the undefined value or non-termination. N'; and Bool | are domains.
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14.2 Semantics of Backus FFP
14.2.1 Syntax

e Predefined set of atoms A with T (true), F' (false), ¢ (empty set),
numbers, ... as elements of A. (A also contains primitive functions.)

e Objects O:

— 1 is an object.
— Every atom is an object.

e Expressions &:

— An object is an expression which has no application as a sub-
expression.

- If z4,...,z, are expressions then sequence (zi,...,z,) iS an
expression. (¢ is atom and sequence; if some z; in a sequence
is L, then the sequence is 1).

— If x and y are expressions, then application z : y iS an expressi-
on.

¢ All objects and expressions are formed by finite use of the above
rules.

Depending on the set of A, different functional programming languages
can be created. The abstract language is called FFP with FP as a special
case.

14.2.2 Differences between FP and FFP
e FFP allows user-defined functionals (as well as functions).

e In FFP operators are objects, therefore, a function as ‘apply’ can be
defined as:
apply:(x,y) = (X:y) where z is an object as well as an expres-
sion (for example the primitive function NULL).
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14.2.3 Meaning of Expressions

e Every FFP expression e has a meaning pe which is always an object.

e e is found by repeatedly replacing each innermost application in e
by its meaning.
e If this process is non-terminating, the meaning of e is L.

e The association between objects and the functions they represent is
given by an representation function p.

e 1 and p belong not to FFP but to the description of FFP.

® L € [expressions — objects].

e If z is an object, ux = .

e If e is an expression and e = {ey, ..., e,), then ue = (uey, ..., pey).
e p € [expressions|expressions — expressions]|.

e For any expression e pe = p(ue).

e If z is an object and e an expression, then px : e = px : (ue).

e If z and y are objects, then u(x : y) — u(pz : y).
The meaning u(z : y) of an FFP application (z : y) is found by ap-
plying pz, the function represented by z, to y and then finding the
meaning of the resulting expression (which is usally an object). The
meaning of an object is the object itself.

Meta-Composition Rule: (p{(z1,...,z,)) 1y = (pz1) : (z1,...,Zn),Y).
(z; is a functional form and zo, .. ., z,, are its parameters.)

Example: Def pCONST ==2o01

(p(CONST,z)) : y = (pCONST) : ((CONST,z),y) = 201
((CONST, z),y)

=X.

Meta-composition is introduced to avoid recursive function definitions.
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Example: pM LAST = nullotlo2 — 102;applyo[1,tl o 2]

uw({(MLAST) : (A, B))

= /L(pMLAST : ((MLAST), (A, B)))
= u(apply o [1,t1 0 2] : ((MLAST), (A, B)))

/L(apply : ((MLAST), (B)))

p({(MLAST) : (B))

u(pMLAST : ((MLAST),(B)))

%(1 02: ((MLAST),(B)))

denotational semantics

J: I I (| I|
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14.3 Semantics of Recursive Functions

What is the meaning of f = E(f)? (a rose is a rose is a rose)

Basic idea of fixpoint semantics:

¢ Use (linear) expansion and define a sequence of partial unfoldings; in
the limit, the interpretation of these unfoldings represent the meaning
of the function.

Example: factorial

ff=1

f'=if (x=0)then lelsex x L

f?=if (x=0)thenlelsex x if (x —1=0)thenlelse (x —1) x L
fP=1if (x=0)thenlelsex x if (xt—1=0)thenlelse (x—1) % if (v —
1—1=0)thenlelse(x—1—1)x L

fr=1if (z=0) thenlelse...(x—l—.t.'.—l)...

e The expansion f* is defined for the first k inputs, that is, i =
{0,1,...,k — 1}. In the limit £ — oo the non-recursive function de-
finition is given for all possible inputs.

¢ In domain theory we consider the Kleene-sequence of such partial
mappings. We must show that for the strict function f there exists a
complete partial order and that a mapping ® from strict functions to
strict functions is order-preserving and strict.
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14.4  Fixpoint Semantics

Fixpoint theory in general concerns the following question: Given an or-
dered set P and an order-preserving map ® : P — P, does there exist a
fixpoint for ®? A point z € P is called fixpoint if &(z) = z.

The following introduction of fixpoint semantics closely follows Davey and
Priestly (1990). We first introduce some basic concepts and notations.
Then, we present the fixpoint theorem for complete partial orders. Finally,
we give an illustration for the factorial function.

Definition 1 (Map) Let X be a set and consider amap f : X — X. f assigns
a member f(z) € X to each member x € X and is determined by its graph,
graphf = {(z, f(x)) | z € X} with graphf C X x X,

A partial mapisamapo : S — X where S C X. With dom o = S we denote the
domain of o. The set of partial maps on X is denoted (X = X) and is ordered in
the following way: given o, 7 € (X = X), define o < 7 iff dom ¢ C dom 7 and
o(z) = 7(x) for all z € dom o. A subset G of X x X is the graph of a partial
mapiffVs € X : (s,z) €e Gand (s,2') e G =z =1’

Definition 2 (Order-Preserving Map) Let P and  be ordered sets. A map ¢ :
P — @ is order-preserving (or monotone) if z < y in P implies ¢(x) < ¢(y) in

0.

Definition 3 (Bottom Element) Let P be an ordered set. The least element of P,
if such exists, is called the bottom element and denoted L.

Given an ordered set P (with or without _L), we form P, (called “P lifted”) as
follows: Take an element 0 ¢ P, construct P, = P U {0} and define < on P, by
x<yiffr=00rx <yinP.

Definition 4 (Order-Isomorphism between Partial and Strict Maps) With
each T € (S = S) we associate a map o (w) : S — Sy, given by ¥(r) = 7,
where @)
_ | m(xz) if x €domm

mi(z) = { 0 otherwise.
Thus + is a map from (S = S) to (S — S, ). We have used the extra element 0
to convert a partial map on S into a total map. ¢ sets up an order-isomorphism
between (S = S) and (S — S.).
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Definition 5 (Supremum) Let P be an ordered set and let S C P. An element
x € Pisanupperboundof Sifs < zforall s € S. z is called least upper bound
of S if

1. x is an upper bound of S, and
2. x < y for all upper bounds y of S.

Since least elements are unique, the least upper bound is unique if it exists. The
least upper bound is also called the supremum of S and is denoted supS, or \/ S
(“join of S”), or | | S if S is directed.

Definition 6 (CPO) An ordered set P is a CPO (complete partial order) if

1. P has a bottom element L,
2. supD exists for each directed sub-set D of P.

The simplest example of a directed set is a chain, such as 0 < succ(0) <
succ(suce(0)) < suce(suce(suce(0))) < .. .. Fixpoint theorems are based on
ascending chains.

Definition 7 (Continuous and Strict Maps) A map ¢ : P — (@ is continuous,
if for every directed set D in P: ¢(| | D) = | |(#(D)). Every continuous map is
order preserving.

Amap ¢ : P — @ suchthat ¢(L) = L is called strict.

Definition 8 (Fixpoint) Let P be an ordered setand let ® : P — P be a map. We
say x € P isafixpoint of ® if ®(z) = x. The set of all fixpoints of ® is denoted by
fix(®); it carries the induced order. The least element of fix(®), when it exists, is
denoted by p(®).

The n-fold composite, ®", of amap ® : P — P is defined as follows: ®" is the
identity map if n = 0 and ®" = ® o ®"~! for n > 1. If ® is order preserving, so
is d".

Theorem 1 (CPO Fixpoint)
Let P be a complete partial order (CPO), let ® : P — P be an order-preserving
map and define c = | |5, ®"(L).

1. Ifa € fix(®), thena = p(P).
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2. If ® is continuous then the least fixpoint 11(®) exists and equals .

Proof 1 (CPO Fixpoint)

1. Certainly L < ®(L). Applying the order preserving map ®", we have
o™(L) < ®"FL(L) for all n. Hence we have a chain 1. < ®(L) < ... <
¢"(L) < d"*(L) <...inP.Since P isa CPO, o = | | -, ®™(L) exists.
Let B be any fixpoint of ®. By induction, ®"(3) = S for all n. We ha-
ve L < f3, hence we obtain @™ (L) < ®"(8) = [ by applying ®". The
definition of « forces o < (3. Hence if a: 0s a fixpoint then it is the least
fixpoint.

2. It will be enough to show that o € fix(®). We have

(o @ (L) = Lpso @(@"(L)) (since @ is continuous)

=50 @™ (L) (since L < ®™(L) for all n).

Consider the factorial function facu(z) = z! with its recursive definition:

(1 ifz=0
facu(z) _{ r-facu(zr —1) if r > 1.

To each map f : My — N, we may associate a new map f given by:

= |1 ifx=0
f(x)_{x-f(x—l) if x> 1.

The equation satisfied by facu can be reformulated as ®(f) = f, whe-
re ®(f) = f. The entire factorial function cannot be unwound from its
recursive specification in a finite number of steps. However we can, for
each n = 0,1,..., determine in a finite number of steps the partial
map f, which is a restriction of facu to {0,1,...,n}. The graph of f, is
{(0,1),(1,1),...,(n,n!)}. Therefore, to accommodate approximations of
facu we can consider all partial maps on A, and regard f as having the
domain {0}U{k | k—1 € domf}. Similarly, we can work with all maps from
N to (Mp), and take f = L precisely when f(k — 1) = L. The factorial
function can be regarded as a solution of a recursive equation ®(f) = f,
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where f € (Mo — Np) or equivalently can be regarded as a solution of a
recursive equation ®(f) = f, where f € (Nyg — (Np)L):

1 ife=0
‘P(f)(fﬂ)—{ 2 - flz—1) if z>1.

The domain P of ® as given in the fixpoint theorem above, is (VM = Np).
That is, ® maps partial maps on partial maps. The bottom element of
(Mo = M) is 0. This corresponds to that map in (M — (Ng)L) which
sends every element to 1. We denote this map by L.

It is obvious that @ is order preserving: We have graph ®(L) = {(0,1)},
graph ®2(1) = {(0,1),(1,1)} and so on. An easy induction confirms that
fo = ®"(L) for all n where {f,} is the sequence of partial maps (“Kleene
sequence”) which approximate facu. Taking the union of all graphs, we see
that | |,.,®"(L) is the map facu : z — z! on Ny. This is the least fixpoint

of ®in (N() —O)N()).
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15

Abstract Types and Functors

Remember:

Modules in ML are structures (implementation modules) and signa-
tures (definition modules).

A structure can be used to pack definitions of related types, values
and functions.

A signature gives a specification for a class of structures by listing
names and types of each component.

If a structure is declared (without signature constraint), its signature
is inferred, consisting of all components of a structure. That is, ever-
ything is visible and usable outside the structure.

If a structure is constrained to a signature, then only the components
given in the signature are visible outside, implementation details are
hidden.

signature ARITH =
sig
type t;
val zero : t;
val sum : t * t -> t;

end;

structure Rational : ARITH =
struct
type t = Int * Int;

val zero

(0,1);

end;
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15.1 Transparent and Opaque Signature Constraints

e Declaring structures constrained to a signature using a colon (:) is
called a transparent signature constraint: components may be hid-
den, but they are still present.

e Alternatively, opaque signature constraints can be defined using (:>).
Now all information about the new structure is hidden, except its si-
gnature.

¢ In the example below, for TAs, the implementation of "a t as “a
1 1stis still transparent, but not in OAs;
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signature A =
sig
type ’a t;
val bottom: ’a t;
val next: a t -> ’a t;
end;

structure As =
struct
type ’a t = int list;
val bottom = [];
fun next (xX) = 1:
end;

X3

- structure TAs - A = As;
> structure TAs :
{type ’a t = int list,
val ”a bottom : Int list,

val “a next : int list -> int list}

- TAs.next(1::[2D:
>val 1t = [1, 1, 2] : int list
- structure OAs > A = As;
> New type names: t/1
structure OAs :

{type a t = a /1, val “a bottom :

val “a next : “a t/1 -> ’a t/1}
OAs.next(1::[2D);
Toplevel input:
OAs.next(1::[2D);
Type clash: expression of type
a list
cannot have type
b t/1
- OAs.bottom;
>val b it = <t> - ’b t/1

’a t/1,

159
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15.2 Abstract Datatypes

e While transparent constraints might hide too few implementation de-
tails, opaque constraints generate completely abstract types.

e A “middleway” is to declare an abstract datatype:

abstype <Datatype Binding> with <Declatation> end;

e Datatype binding: type name followed by constructor descriptions (as
in datatype declarations)

e The constructors are visible in the declaration and must be used in
the declaration to implement all operations associated with the ab-

stract type.
e The contructors are invisible outside, all identifiers declared are visi-
ble.
abstype “a ast = Bottom | Cons of “a * ”“a ast

with

val bottom = Bottom;
val cons = Cons;

val el = 1;

fun next(Cons(Xx,Y))
fun fst(Cons(x,y)) =
end;

> New type names: ast/3

type “a ast = ’a ast/3

val ”“a bottom = <ast> : “a ast/3

val a cons = fn - ’a * ’a ast/3 -> ’a ast/3
val el =1 : iInt

val ’a next = fn - ”a ast/3 -> “a ast/3

val ’a fst = fn - ”a ast/3 -> ’a
val it = () : unit

= Cons(x,Cons(x,Y));
X5

>

- cons(1,bottom);

> val It = <ast> : int ast/3
- next it;

> val It = <ast> : int ast/3
- fst it;

>val it =1 : iInt
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15.3 Functors

161

e An ML functor is a structure that takes other structures as parame-

ters.

e Applying it substitutes argument structures for the parameters.

e The bindings that arise from the resulting structure are returned.

e A functor can only be applied to aguments that match the correct

signature.

e Functors let us write program units that can be combined in different

ways.
e Functors can be used to express generic algorithms.

e Analogy:
structure — value, signature — type, functor — function

functor TestA (At : A) =
struct

fun tst a = At.next a;
end;

structure TestAs = TestA (As);

> functor TestA :
It.
{type a t = a t, val ’a bottom : ’a t,
val a next : a t -> ’a t}->
{val ’a tst : ’a t -> “a t}

> structure TestAs : {val ’a tst : int list -> int list}
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15.4 Example: Matrix Operations

(*** Matrix operations **%*)
signature ZSP =

sig

type t

val zero : t

val sum - t*t ->t
val prod : t * t -> t
end;

functor MatrixZSP (Z: ZSP) : ZSP =
struct
type t = Z.t list list;
val zero = [];

fun sum (rowsA,[]) rowsA
| sum ([],rowsB) rowsB
| sum (rowsA,rowsB) = ListPair.map (ListPair.map Z.sum) (rowsA,rowsB);

fun dotprod pairs = foldl Z.sum Z.zero (ListPair.map Z.prod pairs);

fun transp ([1::)) =1
| transp rows = map hd rows :: transp (map tl rows);

fun prod (rowsA,[1) = [
| prod (rowsA,rowsB) =
let val colsB = transp rowsB
in map (fn row => map (fn col => dotprod(row,col)) colsB) rowsA
end;
end;

structure IntZSP =

struct

type t = int;

val zero = O;

fun sum (X,y) = x+y: t;
fun prod (X,y) = x*y: t;

end;
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structure BoolZSP =
struct
type t = bool;
val zero = false;
fun sum (xX,y) = x orelse y;
fun prod (X,y) = x andalso y;
end;

(** All-Pairs Shortest Paths -- Chapter 26 of Cormen et al. **)

(*Requires a maximum integer for INFINITY*)
structure PathZSP =

struct

type t = int;

val SOME zero = Int.maxint;

val sum = Int.min

fun prod(m,n) = if m=zero orelse n=zero then zero
else m+n;

end;

structure PathMatrix = MatrixZSP (PathZSP);

fun fast _paths mat =
let val n = length mat
fun £ (m, mat) = if n-1 <= m then mat
else f(2*m, PathMatrix.prod(mat,mat))
in f (1, mat) end;

val zz = PathZSP.zero;

val mat = [[0, 3, 8, zz, 74],
[zz, 0, zz, 1, 71,
[zz, 4, O, zz, zz],
[2, zz, 75, 0O, zz],
[zz, zz, zz, 6, o11:
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15.5 Example: Queues

(*** Three representations of queues **¥*)

(** Queues as lists **)

structure Queuel =
struct
type ’a t
exception

a list;

m

val empty = [];
fun enq(q,.x) = q @ [X];
fun null(x::q) = false
| null _ = true;
fun hd(x::q) = x
| hd [] = raise E;
fun deq(x::q) = g
| deq [] = raise E;
end;

(** Queues as a new datatype **)
structure Queue2 =
struct
datatype ’a t = empty
| enq of a t * ’a;
exception E;

fun null (enqg ) = false
| null empty = true;
fun hd (eng(empty,x)) = X
| hd (enq(g,x)) = hd q
| hd empty = raise E;
fun deq (enq(empty,Xx)) = empty
| deq (enq(q.x)) = enq(deq g, X)
| deq empty = raise E;
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(*Applicative queues represented by (heads, reversed tails).*)
structure Queue3d =

struct

datatype ’a t = Queue of (Ca list * ”a list);

exception E;

val empty = Queue([]1,.[D):;
(*Normalized queue, if nonempty, has nonempty heads list¥*)

fun norm (Queue(][].tails)) = Queue(rev tails, [])
| norm q = q;
(*norm has an effect if input queue is empty*)
fun engq(Queue(heads, tails), x) = norm(Queue(heads, x::tails));
fun null(Queue([1.[1)) = true
| null _ = false;
fun hd(Queue(x::_, )) = X
| hd(Queue(][],_)) = raise E;
(*normalize in case heads become empty*)
fun deq(Queue(x::heads,tails)) = norm(Queue(heads,tails))

| deq(Queue([1, )) = raise E;
end;

sighature QUEUE =

sig

type ’a t (*type of queues¥™)

exception E (*for errors in hd, deqg*)

val empty: ’a t (*the empty queue¥®)

val eng: ’at * "a ->"at (*add to end*)

val null: “a t -> bool (*test for empty queue¥™)

val hd: ’a t -> ’a (*return front element¥*)

val deq: at -> ’a t (*remove element from front*)
end;

structure Queue : QUEUE =
struct
abstype “a t = Queue of ("a list * “a list)
with
exception E;
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val empty = Queue([1.I[D):;
(*Normalized queue, if nonempty, has nonempty heads list*)
fun norm (Queue([],tails)) = Queue(rev tails, [])
| norm q = q;
(*norm has an effect if input queue is empty*)
fun eng(Queue(heads,tails), x) = norm(Queue(heads, x::tails));
fun null(Queue([]1.,.[1)) = true
| null _ = fTalse;
fun hd(Queue(x::_, )) = X
| hd(Queue([1,_)) = raise E;
(*normalize in case heads become empty*)
fun deq(Queue(x: :heads,tails)) = norm(Queue(heads,tails))
| deq(Queue([],_)) = raise E;
end
end;

(*** Abstype declarations ***)

(** Queues as lists **)

abstype “a queuel = Q1 of ”a list
with
val empty = Q1 [];
fun enq(Ql g, x) = Q1 (q @ [xD):
fun gnull(Q1(x::q)) = false

| gnull _ = true;

fun ghd(Q1(x::9))
fun deq(Q1(x::q))
end;

X;
Q1 q;

(** Queues as a new datatype **)
abstype “a queue2 = Empty
| Eng of “a queue2 * “a

with
val empty = Empty
and enq = Enq

fun gqnull (Engq _) = false
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| gnull Empty = true;
fun ghd (Enq(Empty,x)) = X

| ghd (Enq(a.x)) = ghd q;
fun deq (Enq(Empty,x)) = Empty

é deq (Enq(q,x)) = Enq(deq q, Xx);
end;

(**** Functors ****)
(** Testing/benchmarking of queues **)

functor TestQueue (Q: QUEUE) =
struct
fun fromList I
fun tolList q =

= foldl (fn (x,q) => Q.enq(g,x)) Q.empty I;
if Q.null q then []

else Q.hd q :: toList (Q.deq q);

end;

(** Queues and Breadth-First Search *%*)

functor BreadthFirst (Q: QUEUE) =
struct

fun englist q xs = foldl (fn (X,q) => Q.enq(g,X)) g Xs;

fun search next x =
let fun bfs q =
if Q.null g then Nil
else let val y = Q.hd g
in Cons(y, fFn(Q=> bfs (englist (Q.deq q) (nhext y)))
end
in bfs (Q-enq(Q-empty, x)) end;
end;

structure Breadth = BreadthFirst (Queue);
fun brQueen n = Seq.filter (isFull n) (Breadth.search (nextQueen n) [D);

structure Breadthl = BreadthFirst (Queuel);
fun brQueenl n = Seq.filter (isFull n) (Breadthl.search (nextQueen n) [1);
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16

Modules

A large system should be organized in small structures.

The organization should be hierarchical: major subsystems should
be implemented as structures whose components are structures of
the layer below.

A well organized system will have many small signatures.
Component specifications will obey strict naming conventions. In a
group project, team members will have to agree upon each signature.
Subsequent changes to signatures must be controlled rigorously.

The system will include some functors. If the major subsystems are
implemented independently, they will all have to be functors!

16.1 Functors with Multiple Arguments

Multiple arguments of functions: packaged in a tuple or a record.
Multiple arguments of functionals (higher-order functions): currying

Multiple arguments of functors: packaged in a structure! (analogy to
records as arguments of functions)

Remarks:

Like with val declarations the keyword and can be used: structure O1:
ORDER and 02: ORDER.

For single argument functors both of the following kinds of syntax can be
used:

functor F (S: MYS) ...

functor F (structure S: MYS) ...

If datatype ‘order’ is declared by the user this results in an error because
‘order’ in ORDER is the user-declared datatype and ‘String.compare’ ex-
pects the ‘order’ type from the Standard Library.

Obviously types, structurs and functors are equal by content but datatypes
are equal by name!!! (see example next page)
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(* from the standard lib:
datatype order = LESS | EQUAL | GREATER;

introducing type order = order works ok *)

sighature ORDER = (* linearly ordered types *)
sig

type t
val compare: t*t -> order
end;

functor LexOrder (structure 01: ORDER
structure 02: ORDER) : ORDER =

struct
type t = 01.t * 02.t;
fun compare ((x1,yl), (x2,y2)) =

(case Ol.compare (x1,x2) of

EQUAL => 02.compare (y1,y2)
| ord => ord)
end;

structure StringOrder: ORDER =
struct
type t = string;
val compare = String.compare
end;

structure IntegerOrder: ORDER =

struct

type t = int;

val compare = Int.compare
end;

structure StringIntOrd = LexOrder(structure 01=StringOrder
structure 02=IntegerOrder);
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16.2 Further Concepts for Modules
16.2.1 Functors with No Arguments

e Functors without arguments have the empty signature or structure
as an argument.
Such functors are structures.

e functor F Q) = ...

16.2.2 Sharing Constraints

e When modules are combined to form a large one, special care is
needed to ensure that the components fit together.

e Checking for type compatibility is facilitated by sharing constraints
which compel types to agree!

functor Join2 (structure PQueue: PRIORITY_QUEUE
structure Dict: DICTIONARY
sharing type PQueue.ltem.t = Dict.key) =
struct
fun lookmin(dict, pq) = Dict.lookup(dict, PQueue.min pq);
end;
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Example: Sharing Constraints on Structures

sighature IN =
sig
structure PQueue: PRIORITY_QUEUE
type problem
val goals: problem -> PQueue.t
end;

sighature OUT =
sig
structure PQueue: PRIORITY_QUEUE
type solution
val solve: PQueue.t -> solution
end;

functor MainFunctor (structure In: IN and Out: OUT
sharing In.PQueue = Out.PQueue) =
struct
fun tackle(p) = Out.solve(ln.goals p)
end;
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16.2.3 Fully Functional Programming

Typical pragmatic rule for program design: never declare a procedure
that is called only once

But: declaring procedures is regarded as good style.
In ML: good reasons for declaring more functors than are strictly ne-
cessary.

If all program units are coded as functors then they can be written
and compiled seperately (good for program development), several
programmers can code their functors independently, functors may
be coded in any order (each functor refers to signatures but not to
structures and other functors).

Functors are linked together at the end: declaration of structures by
applying a functor to previously declared structures.

Self-contained signatures: predefined names (such as int are called
pervasive (visible everywhere); a name occuring in a signature which
has not yet been specified is said to be free in that signature.

16.2.4 The ‘open’ Declaration

To omit using compound names when structures are nested, struc-
tures can be opend locally.

e Alternatively, structures can be introduced locally using let.

Open can be used selectively.
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functor FlexArray (Braun: BRAUN): FLEXARRAY =
struct
local open Braun Braun.Tree
in
end
end;

functor QuadOrder (O: ORDER) : ORDER =

let structure 00 = LexOrder (structure 01 = 0 and 02 =

in LexOrder(structure 01 = 00 structure 02 = 00)
end;

structure Tree =
struct
structure Export =
struct
end;
open Export;

end;

173
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16.2.5 Sharing Constraints in a Signature

sighature BRAUNPAIR2 =
sig
structure Braun: BRAUN
type ’a tree
sharing type tree = Braun.Tree.tree
val zip: ’a tree * ’b tree -> ("a * ’b) tree

end;

16.2.6 ‘“Include’ Specification

signature BRAUNPAIR4 =
sig
include BRAUN
val zip: ’a Tree.tree * ’b Tree.tree -> ("a * ’b) Tree.tree
end;

Writing the contents of the signature without the surrounding sig ..
end;
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16.3 A Complex Example: Dictionaries

(*** Dictionaries -- as a functor **¥*)
(** Linearly ordered types **)

sighature ORDER =

sig

type t

val compare: t*t -> order
end;

structure StringOrder: ORDER =
struct
type t = string;
val compare = String.compare
end;

functor Dictionary (Key: ORDER) : DICTIONARY =
struct

type key = Key.t;

abstype “a t = Leaf
| Bran of key * "a * "a t * a t
with

exception E of key;
val empty = Leaf;

fun lookup (Bran(a,x,tl,t2), b) =
(case Key.compare(a,b) of
GREATER => lookup(tl, b)
| EQUAL => x
| LESS => lookup(t2, b))

175
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| lookup (Leaf, b) = raise E b;

fun insert (Leaf, b, y) = Bran(b, y, Leaf, Leaf)
| insert (Bran(a,x,tl,t2), b, y) =
(case Key.compare(a,b) of
GREATER => Bran(a, x, insert(tl,b,y), t2)
| EQUAL => raise E b
| LESS => Bran(a, X, tl, insert(t2,b,y)));

fun update (Leaf, b, y) = Bran(b, y, Leaf, Leaf)
| update (Bran(a,x,tl,t2), b, y) =
(case Key.compare(a,b) of
GREATER => Bran(a, X, update(tl,b,y), t2)

| EQUAL => Bran(a, y, tl, t2)

| LESS => Bran(a, X, tl, update(t2,b,y)));
end

end;

(*This instance is required by sample9.sml and samplelO.sml*)
structure StringDict = Dictionary (StringOrder);

(*Differs from the other PRIORITY_QUEUE by having a substructure*)
signature PRIORITY_QUEUE =

sig

structure Item - ORDER

type t

val empty i

val null : t -> bool

val insert D ltem.t * t > t
val min It > ltem.t

val delmin it >t

val fromList : Item.t list -> t
val toList :t -> Item.t list
val sort > Item.t list -> ltem.t list

end;
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(*** Building large systems using modules ****)

(** Association list implementation of Dictionaries
I1lustrates eqtype and functor syntax **)

functor AssocList (eqtype key) : DICTIONARY =

struct

type key = key;
(key * "a) list;

type ’a t
exception

val empty

E

of key;

:

fun lookup ((a,x)::pairs, b) =

if a=b then

x else

| Tookup ([], b) = raise E b;

lookup(pairs, b)

fun insert ((a,x)::pairs, b, y) =

if a=b then

raise E b else (a,x)::insert(pairs, b, y)

| insert ([1, b, y) = [(b,y)];

fun update (pairs, b, y) = (b,y)::pairs;

end;

signature TREE =

sig

datatype ’a tree = LT

val size:
val depth:

end;

’a tree -> int

Br of

’a tree -> iInt
val reflect: “a tree ->

a tree

’a * ’a tree * a tree
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signature BRAUN =

sig
structure Tree: TREE
val sub: a Tree.tree * Int -> ’a

val update: ”a Tree.tree * int * “a -> “a Tree.tree
val delete: ”a Tree.tree * int -> ”a Tree.tree

val loext: ’a Tree.tree * ’a -> ”a Tree.tree

val lorem: ’a Tree.tree -> ’a Tree.tree

end;

functor PriorityQueue(structure Item: ORDER

and Tree: TREE) : PRIORITY_QUEUE =
let open Tree
in
struct
structure Item = ltem;

fun x <=y = (ltem.compare(X,y) <> GREATER);

abstype t = PQ of Item.t tree
with

val empty = PQ LT;

fun null (PQ LF)
| null

true
false;

fun min (PQBr(v,_, ))) = v;

fun insert’(w, LF) = Br(w, Lf, LF)
| insert”’(w, Br(v, tl1, t2)) =
if w <= v then Br(w, insert’(v, t2), tl)
else Br(v, insert’(w, t2), tl);

fun Insert (w, PQ t) = PQ (insert” (w, t));

fun leftrem (Br(v,Lf, )) = (v, LP)
| leftrem (Br(v,tl,t2)) =



Functional Programming e 01/02 179

fun

fun

fun

fun

fun

fun

end
end
end;

let val (w, t) = leftrem tl1
in (w, Br(v,t2,t)) end;

siftdown (w, LFf, ) = Br(w,LF,LF)
siftdown (w, t as Br(v,_, ), LF) =
if w <= v then Br(w, t, LF)
else Br(v, Br(w,LFf,LF), LF)
siftdown (w, tl1 as Br(vi,pl,ql), t2 as Br(v2,p2,q2)) =
if w <= vl andalso w <= v2 then Br(w,tl,t2)
else if vl <= v2 then Br(vl, siftdown(w,pl,ql), t2)
(* v2 < vl *) else Br(v2, t1, siftdown(w,p2,q92));

delmin (PQ LF) = raise Size
delmin (PQ (Br(v,Lf,_))) = PQ Lf
delmin (PQ (Br(v,tl,t2))) =

let val (w, t) = leftrem tl1

in PQ (siftdown (w,t2,t)) end;

heapify (0, vs) = (LFf, vs)
heapify (n, v::vs) =
let val (tl1, vsl) = heapify (n div 2, vs)
val (t2, vs2) = heapify ((n-1) div 2, vsl)
in (siftdown (v,tl,t2), vs2) end;

fromList vs = PQ (#1 (heapify (length vs, vs)));

toList (d as PQ (Br(v,_, ))) = v :: toList(delmin d)
toList _ = [];

sort vs = toList (fromList vs);

functor FlexArray (Braun: BRAUN) : FLEXARRAY =
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struct
datatype ’a array = Array of ”a Braun.Tree.tree * int;

val empty = Array(Braun.Tree.Lf,0);

fun length (Array(_,n))

n;

fun sub (Array(t,n), k) =
if O<=k andalso k<n then Braun.sub(t,k+1)
else raise Subscript;

fun update (Array(t,n), k, w) =
iT O<=k andalso k<n then Array(Braun.update(t,k+1,w), n)
else raise Subscript;

fun loext (Array(t,n), w) = Array(Braun.loext(t,w), n+l);

fun lorem (Array(t,n)) =
if n>0 then Array(Braun.lorem t, n-1)
else raise Size;

fun hiext (Array(t,n), w) = Array(Braun.update(t,n+1,w), n+1);

fun hirem (Array(t,n)) =
if n>0 then Array(Braun.delete(t,n) , n-1)
else raise Size;

end;

functor BraunFunctor (Tree: TREE) : BRAUN =
let open Tree in
struct
structure Tree = Tree;

fun sub (LF, ) = raise Subscript
| sub (Br(v,tl1,t2), k) =
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if k
else

fun update
if k

else

| update
if k

else

fun delete
| delete
ifn

else

fun loext
| loext

fun lorem
| lorem
| Torem

end

end;

functor TreeFu
struct

= 1 then v

if kmod 2 =0

then sub (tl, k div 2)
else sub (t2, k div 2);

(LF, k, w) =

= 1 then Br (w, LFf, LF)
raise Subscript
(Br(v,tl,t2), k, w) =

= 1 then Br (w, tl1, t2)
ifFkmod 2 =0
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then Br (v, update(tl, k div 2, w), t2)
else Br (v, tl1, update(t2, k div 2, w));

(LFf, n) = raise Subscript

(Br(v,tl,t2), n) =
= 1 then LFf
ifnmod2 =0

then Br (v, delete(tl, n div 2), t2)
else Br (v, tl1l, delete(t2, n div 2));

(LF, w) = Br(w, LF, LF)
(Br(v,tl,t2), w) = Br(w,

Lf = raise Size

Br(,Lf,)) = Lf

loext(t2,v), tl);

(*No evens, therefore no odds eith

GBr(_, t1 as Br(v,_,_), t2)) = Br(v, t2, lorem tl);

nctor () : TREE =

datatype ’a tree = Lf | Br of a * “a tree * ”a tree;

fun size LF =0
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| size (Br(v,tl,t2)) = 1 + size tl + size t2;

fun depth LF = 0
| depth (Br(v,tl,t2)) = 1 + Int.max (depth tl1, depth t2);

fun reflect LF = LF
| reflect (Br(v,tl,t2)) =
Br(v, reflect t2, reflect tl);

fun preord (Lf, vs) = vs
| preord (Br(v,tl,t2), vs) =
v I: preord (tl, preord (t2, vs));

fun inord (LF, vs) = vs
| inord (Br(v,tl,t2), vs) =
inord (tl1, v::inord (t2, vs));

fun postord (LFf, vs) = vs
| postord (Br(v,tl,t2), vs) =
postord (tl, postord (t2, v::vs));

fun balpre [] Lf
| balpre(x::xs)

let val k = length xs div 2

in Br(x, balpre(List.take(xs,k)), balpre(List.drop(xs,k)))

end;

fun balin [] LF
| balin xs
let val k = length xs div 2
val y::ys = List.drop(xs,k)
in Br(y, balin (List.take(xs,k)), balin ys)
end;

fun balpost xs = reflect (balpre (rev xs));
end;
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(** Application of the functors **)

structure Tree = TreeFunctor();
structure Braun = BraunFunctor (Tree);
structure Flex = FlexArray (Braun);
structure StringPQueue =
PriorityQueue(structure Item
and Tree

StringOrder
Tree);
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17

17.1

Imperative Programming

Remember: imperative programming is based on commands which
change states of the machine store.

For some aspects of programming, an imperative style is the most
natural way (input/output) and/or the most efficient way (some data
structures, such as hash tables and ring buffers).

Imperative features: (variables, functions), references (pointers), ar-
rays, loop constructs, commands for input/output.

ML includes imperative features and supports imperative program-
ming in full generality.

Programs which are mostly concerned with managing states are best
coded imperative.

Control Structures

ML does not distinguish commands from expressions.

A command is an expression that updates a state when evaluated.
Remember: Assignment is a command/statement, the right-hand si-
de of an assignment is an expression.

Most commands have type unit and return unit.

Expressions can be viewed as commands. E. g., the conditional ex-
pression and the case-expression can serve as control structure.

if E then E1 else E2

case E of PL =>E1 ] ... | Pn => En

First ' is evaluated, perhaps changing the state. One of F; is selec-
ted and evaluated. The resulting value (which can be unit) is retur-
ned.

A series of commands can be executed by the expression

(E1; E2; ...; En)

The result is the value of E,,, the other results are discarded.
(Because of the use of semicolon, this construct must always be en-
closed in parentheses, unless it forms the body of a Iet-expression.)
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17.1.1 Assignment

e The assignment E1 := E2 evaluates E;, which must return a refe-
rence p, and evaluates F,. The value of E, is stored at address p.

e Syntactically, = is a function and E1 := E2 is an expression, even
though it updates the store.

e Like most functions that change the machine’s state, it returns () of
type unit.

17.1.2 While-Command

e For iteration ML has a whi le-command:
while E1 do E2
If £, evaluates to false, then the while is finished; if £, evaluates to
true then Ej is evaluated and the while is executed again.
The while command satisfies the following recursion:

while E1 do E2 ==
if E1 then (E2; while E1 do E2) else ()

The return-value is (), E; is evaluated just for its effect on the state.

Examples for the use of assignment and while-commands is given during
the introduction of reference types.
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17.2 Reference Types

e All values computed during the execution of an ML program reside
for some time in the machine store.

e To functional programmers, the store is nothing but a device inside
the computer. They never have to think about the store until they run
out of it.

e With imperative programming, the store is visible.

e An ML reference denotes the address of a location in the store.
Each location contains a value, which can be replaced using an as-
signement.

e A reference is itself a value: if z has type 7, then a reference to z is
written and has type 7 ref.

e The constructor ref creates references.
When applied to a value v, it allocates a new address with v for its
initial content and returns a reference to this address.

e Although ref is an ML function, it is not a function in the mathema-
tical sense: It returns a new address every time it is called!

e The function I, when applied to a reference, returns its contents. This
operation is called dereferencing.
Clearly, ! is not a mathemematical function, its result depends on the
store.

val p = ref 5 and q = ref 2;
>val p = ref 5 : int ref

> val ¢ ref 2 - int ref
(Ip, 'Q);

> (5, 2) - Int * int

p = 1Ip + Iq;

> () : unit

(Ip, 'a);

> (7, 2) - int * int

The assignment does not change the value of reference p (an address) but
its contents!



Functional Programming e 01/02

17.2.1 References in Data Structures
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e Because references are ML values, they may belong to tuples, lists,

etc.

e ML compilers print the value of a reference as ref c, where c is its

contents, rather than printing the address as a number.

e References to references are allowed.

a, pl:

val refs = [p,
= [ref 7, ref 2, ref 7] : int ref list

> val refs

q -= 1346;
> () : unit
refs;

> [ref 7, ref 1346, ref 7] : int ref list
hd refs := 1415;

> () : unit

refs;

> [ ref 1415, ref 1346, ref 1415] : int ref list
(Ip, 'o);

> (1415, 1346) : int * int

val refp = ref p and refqg = ref q;

> val refp = ref (ref 1415) : int ref ref

> val refq = ref (ref 1346) : int ref ref

Irefg = 1'(! refp);

> () : unit

(Ip, 'o):;

> (1415, 1415) : int * int



Functional Programming e 01/02 188

17.2.2 Equality of References
e The ML equality test is valid for all reference types.

e Two references of the same type are equal precisely if they denote
the same address.

p=4q;

> false : bool
hd refs = p;

> true : bool
hd refs = q;

> false : bool

e In Pascal (and C), two pointer variables are equal if they contain the
same address. An assignement makes two pointers equal.

e In imperative languages, where all variables can be updated, a poin-
ter variable really involves two levels of references. The usual notion
of pointer equality is like comparing references to references (as refp
and refq above).

Trefp = 'refq;
> false : bool
refq := p;

> (O : unit
Irefp = 'refq;
> true : bool

e Aliasing: When two references are equal, assigning to one affects
the contents of the other. This can cause confusion!

e In procedural languages, aliasing can lead to problems: in a proce-
dure call, a global variable and a formal parameter (using call by
reference) may denote the same address.
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17.2.3 Cyclic Data Structures

e Circular chains of references arise in many situations.
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e Updating references to create a cycle is sometimes called ‘tying the

knot'.

e Many function language interpreters implement recursive functions

by creating a cycle in the execution environment.

e Example: cFact refers to itself via cp

val cp = ref (fn k => k+1);

> val cp = ref fn : (int -> Int) ref
fun cFact n = if n=0 then 1 else n * Icp(h-1);

> val cFact = fn - int -> int
cFact 8;

> 64 - int

cp = cFact;

> (O : unit

cFact 8;

> 40320 : int
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17.2.4 Imperative Calculation of Factorial

fun ImpFact n =
let val resultp = ref 1
and ip = ref O
in while 'ip < n do (ip := lip + 1;
resultp = Iresultp * lip);
Tresultp
end;

fun pFact (n, resultp) =
let val ip = ref O
in resultp := 1;
whille 'ip < n do (ip := lip + 1;
resultp = lresultp * lip)
end;

e The second version is a ‘procedure’ with two formal parameters, the
second parameter is a reference parameter!
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17.2.5 Library Functions

e ignore: Ignores its argument and returns ().

if Iskip then ignore (TextlO.inputLine file)
else skip := true

Return type is unit. As side-effect, one line of the input file is skipped.

e before: returns its first argument; e. g. switching values
y = (Ix before x := ly);

as alternativeto y = #1 (Ix, x = ly).

e app: list functional which applies a command to every element of a
list.

fun initialize rs x = app (fn r => r = X) rs;

> val initialize = fn : ’a ref list -> “a -> unit
initialize refs 1815;

> () : unit

refs;

> [ref 1815, ref 1815, ref 1815] : int ref list

app T lissimilarto ignore (map f 1) but avoids building a list
of results.
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17.2.6 Polymorphic References

¢ In some (old) programming languages, no type information was kept
about the contents of a reference. Thus, e. g., a character code could
be interpreted as a real number.

e With types in ML (as with pointer in Pascal and other languages)
type-safety it is ensured.

e But: What does the type 7 ref mean if 7 is polymorphic?
An illegal session:

fun 1 X X;
> val | fn - ’a -> ’a

val fp = ref 1;

>val fp = ref fn - (Ca -> ”a) ref
('fp true, !fp 5);

> (true, 5) : bool * int

fp = not;

Ifp 5; <<<< run time error 111}

e With not a function of type bool -> bool is assigned to fp.

e ML is supposed to dected all type errors at compile time. But — in this
imaginary session — it cannot detect that ! fp applied to 5 results in
a type error.

e Don’t worry, type checking in ML is safe! Expressions in polymorphic
val declarations must be 'syntactic values’ (explained below).

An example with real polymorphism:

fun irev I =
let val resultp = ref []
and Ip = ref 1
in while not (null (1Ip)) do
(resultp = hd('Ip) :: !resultp;
Ip == ti(*Ip));
Tresultp
end;
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e To understand the problem of polymorphic references, let’s first look
at polymorphism and subsitution.

e val 1d = E makes Id a synonym for £

let val 1 = fn x => x in (I, true, 1 5) end;

> (true, 5) : bool * iInt

(( fn x => x) true, (fn X => Xx) 5);

> (true, 5) : bool * iInt

let val nill = [[1] in (["Exeter”]::nill, [1415]::nill) end;
> ([["Exeter™], [11. [[14151, [1D

> : string list list * int list list

([["Exeter”], [11. [[1415]::[1D

> ([["Exeter™], [11. [[1415], [1D

> - string list list * int list list

e Substituting declarations by expressions does not affect the value
nor the typing.

e Let us consider the erroneous assignment of a polymorphic refe-
rence above in this context.

let val fp = ref 1
in ((fp true, !fp 5), fp := not, !fp 5) end;
> Error: Type conflict: expected int, found bool

¢ If we substitute the declarations we now (because of the use of refe-
rences) have a different expression:

(("(ref 1) true, (ref 1) 5), (ref 1) := not, (ref I) 5);
> ((true, 5, O, 5 : (bool * int) * unit * int

e The problem is sharing (the same store address) which is not respec-
ted by substitution. Therefore, the creation of polymorphic references
(not assignements to them) must be regulated!
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Polymorphic value declarations

e If F is a syntactic value then the polymorphic declaration val 1d =
E is equivalent to a substitution.

¢ In ML, polymorphic declarations are only allowed for syntactic values.

e Syntactic values: constants; identifiers; tupels, records, and con-
structors (except ref) of syntactic values, functions in fn notation
(even if the body contains ref).

lllegal expressions:

let val fp = ref I in fp = not; !'fp 5 end;
let val fp = ref 1 in (1 fp true, !fp 5) end;
val fp = ref I;

Legal expressions: with monomorphic type constraints

let val fp = ref I in fp = not; !'fp true end;
> false : bool

val fp = ref (I: bool -> bool);

> val fp = ref fn : (bool -> bool) ref

Remark: Polymorphic references are an interesting topic of current rese-
arch.
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17.3 References in Data Structures

e Recursive datat structures are typically realized using explicit links
(references).

¢ In ML we presented recursive data types such as lists and trees wi-
thout using explicit links.

e Now we will give an example of implementing a linked data structure
in ML: a doubly-linked circular list (ring-buffer).

signature RINGBUF =
sig
eqtype ’a t
exception Empty
val empty: unit -> "a t
val null: ”a t -> bool
val label: a t -> ’a
val moveLeft: “a t -> unit
val moveRight: “a t -> unit
val insert: ’a t * ’a -> unit
val delete: "a t -> ’a
end;

(*Note use of :> for abstraction*)
structure RingBuf :> RINGBUF =
struct
datatype “a buf = Nil
| Node of “a buf ref * a * ”a buf ref;
datatype ’a t = Ptr of “a buf ref;

exception Empty;

fun left (Node(lp, , )) = 1Ip
| left Nil = raise Empty;

fun right (Node( _, ,rp)) = rp
| right Nil = raise Empty;
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(*Must be a function, as each ring buffer needs a separate reference.
Also the type checker would reject the polymorphic reference.*)
fun empty() = Ptr(ref Nil);
fun null (Ptr p) = case !p of Nil => true
| Node( ,x, ) => false;

fun label (Ptr p) = case !p of Nil => raise Empty
| Node( ,%x, ) => X;

fun moveLeft (Ptr p) = (p := '(left('p)));
fun moveRight (Ptr p) = (p := !(right(!p)));

(*Insert to left of the window, which is unchanged unless empty. *)
fun insert (Ptr p, xX) =
case !Ip of
Nil =>
let val Ip = ref Nil
and rp = ref Nil
val new = Node(lp,X,rp)
in Ip :=new; rp :=new; p := new end
| Node(lp,_, ) =>
let val new = Node(ref(!lp), x, ref(1p))
in right(!lp) := new; 1Ip = new end;

(*Delete the current node, raising Empty if there is none.
Observe the comparison of left refs to see whether they
are identical. *)

fun delete (Ptr p) =

case Ip of
Nil => raise Empty
| Node(lp,x,rp) =>
(if lefe('lp) = Ip then p = Nil
else (right('lp) := 'rp; left (Irp) := lp;
p = 1rp);
X)

end;
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17.4 Input and Output

e ML provides functions for processing strings and substrings: Con-
versions to/from strings; splitting strings; scanning from character
sources.

(*** String conversions **¥)

val months = ["JAN", "FEB'", "MAR', "APR", "MAY", "JUN",
"JuL™, "AUG', "SEP', "OCT'", 'NOV'', "DEC"];

(*An example of using exception Bind -- forward reference from Chapter 47%)
fun dateFromString s =
let val sday::smon::syear::_ = String.tokens (fn ¢ => ¢c = #"-"") s

val SOME day = Int.fromString sday
val mon String.substring (smon, 0, 3)
val SOME year = Int.fromString syear
in if List.exists (fn m => m=mon) months
then SOME (day, mon, year)
else NONE

end
handle Subscript => NONE
| Bind => NONE;
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e Text input/output is handled over streams.

(** Stream Input/Output ***)

(** Initial letters of words in each line **)

fun FirstChar s = String.sub(s,0);

val initials = implode o (map firstChar) o (String.tokens Char.isSpace);
initials "My ransom is this frail and worthless trunk';

fun batchlnitials (is, 0s) =
while not (TextlO.endOfStream is)
do TextlO.output(os, initials (TextlO.inputLine is) ~ "\n"");

fun promptlnitials (is, 0s) =
while (TextlO.output(os, "Input line? '); TextlO.flushOut os;
not (TextlO.endOfStream is))
do TextlO.output(os, "Initials: " 7 initials(TextlO.inputLine is) = "\n");

(*** Conversion to HTML ***)

fun firstLine s =
let val (name,rest) =
Substring.splitl (fn ¢ => ¢ <> #".") (Substring.all s)
in "\n<P><EM>" T Substring.string name ~
V'</EM>" ~ Substring.string rest
end;

fun htmICvt fileName =
let val is = TextlO.openln fileName
and os = TextlO.openOut (FileName = ""_html')
fun cvt _ " = O
| cvt _ "\n" = cvt true (TextlO.inputLine is)
| cvt First s =
(TextlO.output (os,
if first then FfirstlLine s
else "<BR>" 7 s);
cvt false (TextlO.inputLine is));
in cvt true "\n"; TextlO.closeln is; TextlO.closeOut os end;
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(**** Pretty printing ***¥*)

signature PRETTY =

sig

type t

val blo : int * t list -> t

val str : string -> t

val brk - int -> t

val pr : TextlO.outstream * t * int -> unit
end;

structure Pretty : PRETTY =

struct
(*Printing items: compound phrases, strings, and breaks¥*)
datatype t =
Block of t list * int * int (*indentation, length*)
| String of string
| Break of int; (*length¥*)

(*Add the lengths of the expressions until the next Break; if no Break then
include "after', to account for text following this block. *)

fun breakdist (Block(_, ,len)::es, after) = len + breakdist(es, after)
| breakdist (String s :: es, after) = size s + breakdist (es, after)
| breakdist (Break _ :: es, after) =0

| breakdist ([], after) = after;

fun pr (os, e, margin) =
let val space = ref margin

fun blanks n = (TextlO.output(os, StringCvt.padLeft #"' "™ n "");
space := lIspace - n)

fun newline () = (TextlO.output(os,'\n'"); space := margin)

fun printing (I1, _, ) =0
| printing (e::es, blockspace, after) =
(case e of
Block(bes, indent, len) =>
printing(bes, !space-indent, breakdist(es,after))
| String s => (TextlO.output(os,s); space := lIspace - size Ss)
| Break len =>
if len + breakdist(es,after) <= Ispace
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then blanks len
else (newline(); blanks(margin-blockspace));
printing (es, blockspace, after))
in printing([e], margin, 0); newline() end;

fun length (Block(_,_,len)) = len
| length (String s) = size s
| length (Break len) = len;

val str = String and brk = Break;

fun blo (indent,es) =
let fun sum([], k) = k
| sum(e::es, k) = sum(es, length e + k)
in Block(es,indent, sum(es,0)) end;
end;

local open Pretty
in

fun prettyshow (Atom a) = str a
| prettyshow (Neg p) =
blo(1, [str"(", prettyshow p, str')"])
| prettyshow (Conj(p,q)) =
blo(1, [str"(", prettyshow p, str' &",
brk 1, prettyshow q, str')"])
| prettyshow (Disj(p,q)) =
blo(1, [str"(", prettyshow p, str' |",
brk 1, prettyshow g, str')"]);

end;
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18

Advanced Topics and Special Aspects

Lambda Calculus.

Automatic Theorem Proving (Isabelle).

Verification of functional programs.

Writing parser-generators/interpreters with ML.
Comparing object-oriented and functional programming.
Lisp vs. ML, Haskell vs. ML.

Erlang: Functional programming for network management.

Cognitive and educational aspects of functional vs. imperative pro-
gramming.



