Lecture 2: Introduction to Unix
Network Programming

Reference: Stevens Unix
Network Programming

Spring 2018 Copyright ©: CS 438 Staff, University of lllinois

Internet Protocols

Application
Layers

FTP

Physical

Ethernet

Spring 2018

HTTP

Video

Copyright ©: CS 438 Staff, University of lllinois

Audio

Direction and Principles

Transport

A 4

Network

Data Link

A 4

Physical

Spring 2018

Programming

1 learn to use Internet for
communication (with focus
on implementation of
networking concepts)

learn to build network from
T ground up

Principles and
Concepts

Copyright ©: CS 438 Staff, University of lllinois

Network Programming

How should two hosts communicate with

each other over the Internet?

The “Internet Protocol” (IP)
Transport protocols: TCP, UDP

How should programmers interact with the

protocols?

Sockets API — application programming interface
De facto standard for network programming

Spring 2018 Copyright ©: CS 438 Staff, University of Illinois

Network Programming with
Sockets

Sockets API

o An interface to the transport layer
Introduced in 1981 by BSD 4.1
Implemented as library and/or system calls
Similar interfaces to TCP and UDP

Can also serve as interface to IP (for super-
user); known as “raw sockets”

Spring 2018 Copyright ©: CS 438 Staff, University of Illinois

How can many hosts
communicate?

e
/

S

L

= Multiplex traffic with routers
= Question: How to identify the destination?
= Question: How to share bandwidth across different flows?

Spring 2018 Copyright ©: CS 438 Staff, University of Illinois

« |

ldentifying hosts with
Addresses and Names

|IP addresses
o Easily handled by routers/computers

o Fixed length
o E.g.:128.121.146.100

But how do you know the IP address?
o Internet domain names

o Human readable, variable length
o E.g.: twitter.com

But how do you get the IP address from the domain
name?

o Domain Name System (DNS) maps between them

Spring 2018 Copyright ©: CS 438 Staff, University of lllinois 7]

How can many hosts share
network resources?

|

= Solution: divide traffic into “IP packets”

o At each router, the entire packet is received, stored, and
then forwarded to the next router

Spring 2018 Copyright ©: CS 438 Staff, University of lllinois

How can many hosts share
network resources?

|

header data

= Solution: divide traffic into “IP packets”
o Use packet “headers” to denote which connection the
packet belongs to

= Contains src/dst address/port, length, checksum, time-to-live,
protocol, flags, type-of-service, etc

Spring 2018 Copyright ©: CS 438 Staff, University of lllinois

Is IP enough?

What if host runs multiple applications?

o Use UDP: 16-bit “Port numbers” in header distinguishes
traffic from different applications

Or if content gets corrupted?

o Use UDP: “Checksum” covering data, UDP header, and
IP header detects flipped bits

User Datagram Protocol (UDP)

o Properties
Unreliable - no guaranteed delivery
Unordered - no guarantee of maintained order of delivery
Unlimited Transmission - no flow control

o Unit of Transfer is “datagram” (a variable length packet)

Spring 2018 Copyright ©: CS 438 Staff, University of lllinois 10]

s UDP enough?

What if network gets congested? Or packets get
lost/reordered/duplicated?

UseTransport Control Protocol (TCP)

O

O

O

O

O

Guarantees reliability, ordering, and integrity
Backs off when there is congestion

Connection-oriented (Set up connection before
communicating, Tear down connection when done)

Gives ‘byte-stream” abstraction to application
Also has ports, but different namespace from UDP

Which one is better, TCP or UDP?
Why not other hybrid design points?

Spring 2018

Copyright ©: CS 438 Staff, University of lllinois

How should we program
[networked apps?

How can we compose together
programs running on different
machines”?

o Client-server model

What sort of interfaces should we
reveal to the programmer?

o Sockets API

Spring 2018 Copyright ©: CS 438 Staff, University of Illinois

Client-Server Model

A client initiates a request to a well-known server
Example: the web

“GET index.html”
(request for web page)
e ———————————————————————

—
“HTTP/1.0 200 OK...”

Client (response, including web page) \Web server

Other examples: FTP, SSH/Telnet, SMTP (email),
Print servers, File servers

Spring 2018 Copyright ©: CS 438 Staff, University of lllinois 13]

Client-Server Model

Asymmetric
Communication
o Client sends requests

Client _
o Server sends replies
Server/Daemon
Client o Well-known name and
port

o Waits for contact

o Processes requests,
sends replies

e Client
Can you think of any network o Initiates contact
apps that are not client/server? o Waits for response

Spring 2018 Copyright ©: CS 438 Staff, University of lllinois 14]

Client

Server-side service models

Concurrent

o Server processes multiple clients’ requests
simultaneously

Sequential

o Server processes only one client’ s requests at a
time

Hybrid

o Server maintains multiple connections, but
processes responses sequentially

Which one is best?

Spring 2018 Copyright ©: CS 438 Staff, University of Illinois

Wanna See Real Clients and
Servers?

Apache Web server
o Open source server first released in 1995

o Name derives from “a patchy server” ;-)
o Software available online at http://www.apache.org

Mozilla Web browser
o http://www.mozilla.org/developer/

Sendmail
o http://www.sendmail.org/

BIND Domain Name System

o Client resolver and DNS server
o http://www.isc.org/index.pl?/sw/bind/

Spring 2018 Copyright ©: CS 438 Staff, University of lllinois 16]

What interfaces to expose to
[programmer’?

Stream vs. Datagram sockets

Stream sockets

o Abstraction: send a long stream of
characters

o Typically implemented on top of TCP

Datagram sockets
o Abstraction: send a single packet
o Typically implemented on top of UDP

Spring 2018 Copyright ©: CS 438 Staff, University of Illinois

Stream sockets

“This is a long sequence of
text | would like to send to
the other host”=recv(socket)

send(“This is a long
sequence of text | would like
to send to the other host”)

1 1

Sockets API Sockets API

|J_“=- s s L L1 I
£E - 499 I
£ L]

“to the other host”

Spring 2018 Copyright ©: CS 438 Staff, University of Illinois

Datagram sockets

sendto(“This is a long”)
sendto(“sequence of text”)
sendto(“l would like to
send”) sendto(“to the other

host”) 1

“This is a long”=recvfrom(socket)
“sequence of text”=recvfrom(socket)

“I would like to send”=recvfrom(socket)
“to the other host”=refvfrom(socket)

Sockets API Sockets API

|J_“=- . . L “I
£E - .QQI
£ LS

“to the other host”

Spring 2018 Copyright ©: CS 438 Staff, University of Illinois

What specific functions to
[expose?

Data structures to store information about
connections and hosts

Spring 2018 Copyright ©: CS 438 Staff, University of Illinois

Socket Address Structure

|P address:
struct in addr {
in addr t s _addr; /* 32-bit IP address */

};

TCP or UDP address:

struct sockaddr in ({
short sin family; /* e.g., AF _INET */
ushort sin port; /* TCP/UDP port */
struct in addr; /* IP address */

};

Spring 2018 Copyright ©: CS 438 Staff, University of Illinois

Structure: addrinfo

The addrinfo data structure (from

/usr/include/netdb.h)

o Canonical domain name and aliases
o List of addresses associated with machine
o Also address type and length information

int ai_flags

int ai_family

int ai_socktype

int ai_protocol
socklen t ai_addrlen
struct sockaddr *ai_ addr
char *ai canonname

struct addrinfo *ai_pext

Spring 2018 Copyright ©: CS 438 Staff, University of lllinois 22]

Input flags

Address family of socket

Socket type

Protocol of socket

Length of socket address

Socket address of socket

Canonical name of service location

Pointer to next in list

Address Access/Conversion
Functions

#include <sys/types.h>
#include <sys/socket.h>
#include <netdb.h>

int getaddrinfo (const char *restrict node,
const char *restrict service,
const struct addrinfo *restrict hints,
struct addrinfo **restrict res);

Parameters
o node: host name or IP address to connect to

o service: a port number (“80“) or the name of a service
(found /etc/services: “http”)

o hints: a filled out struct addrinfo

Spring 2018 Copyright ©: CS 438 Staff, University of Illinois

Example: Server

int status;

struct addrinfo hints;

struct addrinfo *servinfo; // point to the results

memset (&hints, 0, sizeof hints); // empty struct

hints.ai family = AF UNSPEC; // IPv4 or IPvé6

hints.ai socktype = SOCK_STREAM; // TCP stream sockets

hints.ai flags = AI PASSIVE; // £ill in my IP for me

if ((status = getaddrinfo (NULL, "3490", &hints, &servinfo)) != 0) {
fprintf (stderr, "getaddrinfo error: %$s\n", gai strerror(status));
exit(1l);

}

// servinfo now points to a linked list of 1 or more struct addrinfos

// ... do everything until you don't need servinfo anymore

freeaddrinfo (servinfo) ; // free the linked-list

Spring 2018 Copyright ©: CS 438 Staff, University of lllinois 24]

Example: getaddrinfo

int status;

struct addrinfo hints;

struct addrinfo *servinfo; // pointer to results
memset (&hints, 0, sizeof hints); // empty struct
hints.ai family = AF UNSPEC; // don't care IPv4/IPv6
hints.ai socktype = SOCK STREAM; // TCP stream sockets

// get ready to connect

status = getaddrinfo ("www.example.net", "3490", &hints,
&servinfo) ;

// servinfo now points to a linked list of 1 or more struct
addrinfos

Spring 2018 Copyright ©: CS 438 Staff, University of lllinois 25 ﬂ

What specific functions to
[expose?

Data structures to store information about
connections and hosts

Functions to create a socket

Spring 2018 Copyright ©: CS 438 Staff, University of Illinois

Function: socket

int socket (int family, int type, int
protocol) ;

= Create a socket.
o Returns file descriptor or -1. Also sets errno on failure.
o family: address family (namespace)
= AF _INET for IPv4

= other possibilities: AF_INET6 (IPv6), AF_UNIX or AF_LOCAL
(Unix socket), AF_ROUTE (routing)

o type: style of communication
= SOCK_STREAM for TCP (with AF_INET)
= SOCK_DGRAM for UDP (with AF_INET)
o protocol: protocol within family
= typically O

Spring 2018 Copyright ©: CS 438 Staff, University of Illinois

Example: socket

int sockfd, new fd; /* listen on sock fd, new
connection on new fd */

struct sockaddr in my addr; /* my address */
struct sockaddr in their addr; /* connector addr */
int sin_size;

if ((sockfd = socket (AF INET, SOCK STREAM, 0))==-1){

perror ("socket") ;
exit(1l);

Spring 2018 Copyright ©: CS 438 Staff, University of Illinois

What specific functions to
[expose?

Data structures to store information about
connections and hosts

Functions to create a socket
Functions to establish connections

Spring 2018 Copyright ©: CS 438 Staff, University of Illinois

TCP Connection Setup

client

g
=
e

socket
socket bind

connect %\ o
°’7ize (S lsten
YN)y

sYN® 3+t] connection moved

cnowtede® W 'to complete queue
a

connection added to

incomplete queue
accept

connect completes

Spring 2018 Copyright ©: CS 438 Staff, University of lllinois 30]

Function: bind

int bind (int sockfd, struct sockaddr*
myaddr, int addrlen);

= Bind a socket to a local IP address and port number
o Returns 0 on success, -1 and sets errno on failure
o sockfd: socket file descriptor (returned from socket)

o myaddr: includes IP address and port number

= |P address: set by kernel if value passed is INADDR ANY,
else set by caller

m port number: set by kernel if value passed is 0, else set by
caller

o addrlen: length of address structure
m = sizeof (struct sockaddr in)

Spring 2018 Copyright ©: CS 438 Staff, University of lllinois

TCP and UDP Ports

Allocated and assigned by the Internet Assigned

Numbers Authority
o see RFC 1700 (for historical purposes only)

1-512 standard services (see /etc/services)
super-user only
513-1023 registered and controlled, also used for identity
verification
super-user only
1024-49151 registered services/ephemeral ports
49152-65535 private/ephemeral ports

Spring 2018

Copyright ©: CS 438 Staff, University of lllinois

Reserved Ports

tcpmux
tcpmux
echo
echo
systat
systat
daytime
daytime
gotd
gotd
chargen
chargen
ftp-data
ftp-data
ftp

ftp

ssh

ssh
telnet
telnet
smtp
smtp

Spring 2018

Decimal

Description
Reserved

Reserved

TCP Port Service
TCP Port Service
Echo

Echo

Active Users

Active Users
Daytime (RFC 867)
Daytime (RFC 867)
Quote of the Day
Quote of the Day
Character Generator
Character Generator
File Transfer Data
File Transfer Data
File Transfer Ctl
File Transfer Ctl
SSH Remote Login
SSH Remote Login
Telnet

Telnet

Simple Mail Transfer
Simple Mail Transfer

Copyright ©: CS 438 Staff, University of lllinois

Keyword
time
time
name
name
nameserver
nameserver
nicname
nicname
domain
domain
whois++
whois++
gopher
gopher
finger
finger
http
http
WWW
WWW
www-http
www-http
kerberos
kerberos

Decimal

Description

Time

Time

Host Name Server
Host Name Server
Host Name Server
Host Name Server
Who Is

Who Is

Domain Name Server
Domain Name Server
whois++

whois++

Gopher

Gopher

Finger

Finger

World Wide Web HTTP
World Wide Web HTTP
World Wide Web HTTP
World Wide Web HTTP
World Wide Web HTTP
World Wide Web HTTP
Kerberos

Kerberos

Function: 1isten

int listen (int sockfd, int backlogqg) ;

= Put socket into passive state (wait for connections
rather than initiate a connection)

O

O

O

Spring 2018

Returns O on success, -1 and sets errno on failure
sock£d: socket file descriptor (returned from socket)

backlog: bound on length of unaccepted connection

queue (connection backlog); kernel will cap, thus better to
set high

Example:

if (listen(sockfd, BACKLOG) == -1) {
perror ("listen") ;
exit (1) ;

Copyright ©: CS 438 Staff, University of lllinois

Functions: accept

int accept (int sockfd, struct sockaddr* cliaddr,
int* addrlen) ;

= Block waiting for a new connection

O
©)
O

Returns file descriptor or -1 and sets errno on failure
sockfd: socket file descriptor (returned from socket)
cliaddr: IP address and port number of client (returned from
call)

addrlen: length of address structure = pointer to int set to
sizeof (struct sockaddr in)

= addrlen is a value-result argument

©)

Spring 2018

the caller passes the size of the address structure, the kernel
returns the size of the client’ s address (the number of bytes
written)

Copyright ©: CS 438 Staff, University of lllinois

Functions: accept

sin size = sizeof(struct sockaddr in);
if ((new_fd = accept(sockfd, (struct sockaddr¥*)
&their addr, &sin size)) == -1) {
perror ("accept") ;
continue;

How does the server know which client it is?
o their addr.sin_addr contains the client’ s IP address
o their addr.port contains the client’s port number

printf ("server: got connection from %$s\n",
inet ntoa(their addr.sin addr));

Spring 2018 Copyright ©: CS 438 Staff, University of Illinois

Functions: accept

Notes

o After accept () returns a new socket

descriptor, 1/0O can be done using read () and
write ()

o Why does accept () need to return a new
descriptor?

Spring 2018 Copyright ©: CS 438 Staff, University of Illinois

Example: Server

my addr.sin family = AF INET; /* host byte order */
‘ my addr.sin port = htons (MYPORT); /* short, network
byte order */
my addr.sin addr.s _addr = htonl (INADDR ANY) ;
/* automatically fill with my IP */
bzero (& (my addr.sin zero), 8); /* zero struct */

if (bind(sockfd, (struct sockaddr *)é&my addr,
sizeof (struct sockaddr)) == -1) {
perror ("bind") ;
exit(1l);

Spring 2018 Copyright ©: CS 438 Staff, University of Illinois

Example: Server

if (listen(sockfd, BACKLOG) == -1) {

perror ("listen") ;
exit(1l);
}

while(1l) { /* main accept() loop */

sin size = sizeof(struct sockaddr in);
if ((new_fd = accept(sockfd, (struct sockaddr¥*)
&their addr, &sin size)) == -1) {

perror("accept"f?
continue;
}

printf ("server: got connection from %$s\n",
inet ntoa(their addr.sin addr));

Spring 2018 Copyright ©: CS 438 Staff, University of Illinois

Function: connect

int connect (int sockfd, struct
sockaddr* servaddr, int addrlen) ;

» Connect to another socket.

O

O
O
O

Returns O on success, -1 and sets errno on failure
sock£d: socket file descriptor (returned from socket)
servaddr: IP address and port number of server

addrlen: length of address structure
m = sizeof (struct sockaddr in)

s Can use with UDP to restrict incoming datagrams
and to obtain asynchronous errors

Spring 2018

Copyright ©: CS 438 Staff, University of lllinois

Example: Client

their addr.sin family = AF INET; /* interp d by host */
their addr.sin port = htons (PORT) ;
their addr.sin addr = *((struct in_addr*)he->h addr);
bzero (&(their addr.sin zero), 8);
/* zero rest of struct */
if (connect (sockfd, (struct sockaddr*) &their addr,
sizeof (struct sockaddr)) == -1) {
perror (“connect”);
exit (1);

Spring 2018 Copyright ©: CS 438 Staff, University of Illinois

What specific functions to
[expose?

Data structures to store information about
connections and hosts

Functions to create a socket
Functions to establish connections
Functions to send and receive data

Spring 2018 Copyright ©: CS 438 Staff, University of Illinois

TCP Connection Example

client
-
socket
socket bind
= connect listen
—p]
e
write » accept
read
write
read [

Spring 2018 Copyright ©: CS 438 Staff, University of Illinois

Functions: write

int write (int sockfd, char* buf, size t nbytes);

Write data to a stream (TCP) or “connected”
datagram (UDP) socket

o Returns number of bytes written or -1 and sets errno on
failure

sockfd: socket file descriptor (returned from socket)
buf: data buffer

nbytes: number of bytes to try to write

Example:

O O O O

if((w = write(fd, buf, sizeof(buf))) < 0) {
perror (“write”) ;
exit(1l);

Spring 2018 Copyright ©: CS 438 Staff, University of Illinois

Functions: write

int write (int sockfd, char* buf, size t nbytes);
= Notes

o write blocks waiting for data from the client

o write may not write all bytes asked for
= Does not guarantee that sizeof (buf) is written
= This is not an error
= Simply continue writing to the device

o Some reasons for failure or partial writes

= Process received interrupt or signal
= Kernel resources unavailable (e.qg., buffers)

Spring 2018 Copyright ©: CS 438 Staff, University of Illinois

Example: writen

/* Write "n" bytes to a descriptor */
ssize_t writen(int fd, const void *ptr, size_t n) {
size_t nleft;
ssize t nwritten;
nleft = n;
while (nleft > 0) {
write returned if ((nwritten = write(fd, ptr, nleft)) < 0) {
] if (nleft == n)
a pOtentlaI error return(-1l); /* error, return -1 */
else

break; /* error, return amount written so far */

}

0 bytes were —else
written if (nwritten == 0)
break;

Update number nleft -= nwritten;

tr += itten;
of bytes left to } prr T =
write and return(n - nleft); /* return >= 0 */
pointer into }
buffer

Spring 2018 Copyright ©: CS 438 Staff, University of Illinois

Functions: send

int send(int sockfd, const void * buf, size t
nbytes, int flags);

= Send data un a stream (TCP) or “connected”
datagram (UDP) socket

o Returns number of bytes written or -1 and sets errno on
failure

sockfd: socket file descriptor (returned from socket)
buf: data buffer
nbytes: number of bytes to try to write

flags: control flags

= MSG_PEEK: get data from the beginning of the receive queue
without removing that data from the queue

O O O O

= Example
len = strlen(msg) ;
bytes sent = send(sockfd, msg, len, 0);

Spring 2018 Copyright ©: CS 438 Staff, University of lllinois 47]

Functions: read

int read (int sockfd, char* buf, size t nbytes);

Read data from a stream (TCP) or “connected”
datagram (UDP) socket

Returns number of bytes read or -1, sets errno on failure
Returns 0 if socket closed

sock£d: socket file descriptor (returned from socket)
buf: data buffer

nbytes: number of bytes to try to read

Example
if((r = read(newfd, buf, sizeof(buf))) < 0) {

perror (“read”) ; exit(1);

O O O O O O

}

Spring 2018 Copyright ©: CS 438 Staff, University of Illinois

Functions: read

int read (int sockfd, char* buf, size t nbytes);

Notes
o read blocks waiting for data from the client

o read may return less than asked for
Does not guarantee that sizeof (buf) is read
This is not an error
Simply continue reading from the device

Spring 2018 Copyright ©: CS 438 Staff, University of Illinois

Example: readn

/* Read "n" bytes from a descriptor */

ssize_t readn(int fd, void *ptr, size t n) {
size_t nleft;
ssize t nread;
nleft = n;
while (nleft > 0) {

if ((nread = read(fd, ptr, nleft)) < 0) {
if (nleft == n)

return(-1l); /* error, return -1 */

read returned
a potential error

else

break; /* error, return amt read */

0 bytes were }
read else
if (nread == 0)
Update number break; /* EOF */
of bytes left to nleft -= nread;
read and ptr += nread;
pointer into }
buffer return(n - nleft); /* return >= 0 */

Spring 2018} Copyright ©: CS 438 Staff, University of lllinois

Functions: recv

int recv(int sockfd, wvoid *buf, size t nbytes,
int flags);

= Read data from a stream (TCP) or “connected”
datagram (UDP) socket

Returns number of bytes read or -1, sets errno on failure

Returns 0 if socket closed

sock£d: socket file descriptor (returned from socket)

buf: data buffer

nbytes: number of bytes to try to read

flags: see man page for details; typically use 0O

O O O O O O

Spring 2018 Copyright ©: CS 438 Staff, University of lllinois

Functions: recv

int read (int sockfd, char* buf, size t nbytes);

Notes

o read blocks waiting for data from the client but does not
guarantee that sizeof (buf) is read
o Example
if((r = read(newfd, buf, sizeof(buf))) < 0) {
perror (“read”) ; exit(1l);

}

Spring 2018 Copyright ©: CS 438 Staff, University of Illinois

Sending and Receiving Data

Datagram sockets aren't connected to a
remote host

o What piece of information do we need to give
before we send a packet?

o The destination/source address!

Spring 2018 Copyright ©: CS 438 Staff, University of Illinois

UDP Connection Example

client

socket
sendto

recvfrom

socket
bind

recvfrom

sendto

Spring 2018

Copyright ©: CS 438 Staff, University of lllinois

Functions: sendto

int sendto (int sockfd, char* buf, size t nbytes,
int flags, struct sockaddr* destaddr, int
addrlen) ;

= Send a datagram to another UDP socket

Returns number of bytes written or -1 and sets errno on failure
sock£d: socket file descriptor (returned from socket)

buf: data buffer

nbytes: number of bytes to try to read

flags: see man page for details; typically use O

destaddr: IP address and port number of destination socket

addrlen: length of address structure
m = sizeof (struct sockaddr in)

O O O O O O O

Spring 2018 Copyright ©: CS 438 Staff, University of lllinois

Functions: sendto

int sendto (int sockfd, char* buf, size t nbytes,
int flags, struct sockaddr* destaddr, int
addrlen) ;

Example

n = sendto(sock, buf, sizeof(buf), 0, (struct
sockaddr *) &from,fromlen) ;

if (n < 0)
perror ("sendto") ;
exit(l);

Spring 2018 Copyright ©: CS 438 Staff, University of Illinois

Functions: recvfrom

int recvfrom (int sockfd, char* buf, size t
nbytes, int flags, struct sockaddr* srcaddr,
int* addrlen);

= Read a datagram from a UDP socket.

©)

O O O O O

O

Spring 2018

Returns number of bytes read (0 is valid) or -1 and sets errno
on failure

sock£d: socket file descriptor (returned from socket)
buf: data buffer

nbytes: number of bytes to try to read

flags: see man page for details; typically use O

srcaddr: |IP address and port number of sending socket
(returned from call)

addrlen: length of address structure = pointer to int set to
sizeof (struct sockaddr in)

Copyright ©: CS 438 Staff, University of lllinois

Functions: recvfrom

int recvfrom (int sockfd, char* buf, size t

nbytes, int flags, struct sockaddr* srcaddr,
int* addrlen);

Example

n = recvfrom(sock, buf, 1024, 0, (struct sockaddr
*)&from, &fromlen) ;

if (n < 0) {
perror ("recvfrom") ;
exit(l);

Spring 2018 Copyright ©: CS 438 Staff, University of Illinois

What specific functions to
[expose?

Data structures to store information about
connections and hosts

Functions to create a socket

Functions to establish connections
Functions to send and receive data
Functions to teardown connections

Spring 2018 Copyright ©: CS 438 Staff, University of Illinois

Functions: close

int close (int sockfd) ;

Close a socket
o Returns 0 on success, -1 and sets errno on failure

o sock£fd: socket file descriptor (returned from socket)

Closes communication on socket in both directions

o All data sent before close are delivered to other side
(although this aspect can be overridden)

After close, sock£d is not valid for reading or
writing

Spring 2018 Copyright ©: CS 438 Staff, University of lllinois

Functions: shutdown

int shutdown (int sockfd, int howto) ;

Force termination of communication across a socket in one or
both directions

o Returns 0 on success, -1 and sets errno on failure

o sock£fd: socket file descriptor (returned from socket)

0 howto:
SHUT_RD to stop reading
SHUT_WR to stop writing
SHUT RDWR to stop both

shutdown overrides the usual rules regarding duplicated
sockets, in which TCP teardown does not occur until all copies
have closed the socket

Spring 2018 Copyright ©: CS 438 Staff, University of lllinois 61]

Note on close VvS. shutdown

close (): closes the socket but the connection is
still open for processes that shares this socket
o The connection stays opened both for read and write

shutdown () : breaks the connection for all

processes sharing the socket
o A read will detect EOF, and a write will receive SIGPIPE

o shutdown () has a second argument how to close the
connection:

0 means to disable further reading
1 to disable writing
2 disables both

Spring 2018 Copyright ©: CS 438 Staff, University of Illinois

[One tricky issue...

Different processor architectures store
data in different “byte orderings”

o Whatis 200 in binary?

o 1100 10017

or
o 1001 11007

Spring 2018 Copyright ©: CS 438 Staff, University of Illinois

One tricky issue...

. , _ | Where did the term
Big Endian vs. Little Endig «cndian” come from?

o Little Endian (Intel, DEC):

Least significant byte of word is stored in the lowest
memory address

o Big Endian (Sun, SGI, HP, PowerPC):

Most significant byte of word is stored in the lowest
memory address

o Example: 128.2.194.95
Big Endian 128 | 2 |194 | 95

Little Endian | 95 | 194 2 128

Spring 2018 Copyright ©: CS 438 Staff, University of Illinois

One tricky issue...

Big Endian vs. Little Endian: which should
we use for networked communication?
o Network Byte Order = Big Endian

Allows both sides to communicate
Must be used for some data (i.e. IP Addresses)

o What about ordering within bytes?

Most modern processors agree on ordering within
bytes

Spring 2018 Copyright ©: CS 438 Staff, University of Illinois

Converting byte orderings

Solution: use byte ordering functions to convert.

int m, n;
short int s, t;

ntohl (n) net-to-host long (32-bit) translation
ntohs (t) net-to-host short (1l6-bit) translation
htonl (m) host-to-net long (32-bit) translation
= htons (s) host-to-net short (16-bit) translation

B85 n B
|

Spring 2018 Copyright ©: CS 438 Staff, University of Illinois

Why Can’t Sockets Hide
These Details?

Dealing with endian differences is tedious
o Couldn’t the socket implementation deal with this
o ... by swapping the bytes as needed?

No, swapping depends on the data type
o Two-byte short int: (byte 1, byte 0) vs. (byte O, byte 1)

o Four-byte long int: (byte 3, byte 2, byte 1, byte 0) vs. (byte
0, byte 1, byte 2, byte 3)

o String of one-byte charters: (char 0, char 1, char 2, ...) in
both cases

Socket layer doesn’t know the data types

o Sees the data as simply a buffer pointer and a length

o Doesn’t have enough information to do the swapping
Spring 2018 Copyright ©: CS 438 Staff, University of lllinois 67]

Advanced Sockets: signal

Problem: Socket at other end is closed

O

O

Write to your end generates SIGPIPE
This signal kills the program by default!

signal (SIGPIPE, SIG IGN) ;

O

O
O
O

Spring 2018

Call at start of main in server

Allows you to ignore broken pipe signals
Can ignore or install a proper signal handler
Default handler exits (terminates process)

Copyright ©: CS 438 Staff, University of lllinois

Advanced Sockets

Problem: How come | get "address already
In use" from bind () ?

O

Spring 2018

You have stopped your server, and then re-
started it right away

The sockets that were used by the first
iIncarnation of the server are still active

Copyright ©: CS 438 Staff, University of lllinois

Advanced Sockets:
setsockopt

int yes = 1;

setsockopt (fd, SOL SOCKET,
SO _REUSEADDR, (cﬁ;r *) &yes, sizeof
(ves)) ;
o Call just before bind ()

o Allows bind to succeed despite the existence of
existing connections in the requested TCP port

o Connections in limbo (e.g. lost final ACK) will
cause bind to fail

Spring 2018 Copyright ©: CS 438 Staff, University of Illinois

How to handle concurrency?

Process requests serially

Slow — what if you're processing another request? What if
you're blocked on read () ?

Spring 2018 Copyright ©: CS 438 Staff, University of Illinois

A UDP Server

How can a UDP
UDP Servg" server service
rt 2000 multiple ports
simultaneously?

Port

Ethernet Adapter

Spring 2018 Copyright ©: CS 438 Staff, University of Illinois

UDP Server: Servicing Two
Ports

int sl; /* socket descriptor 1 */

int s2; /* socket descriptor 2 */

/* 1) create socket sl */

/* 2) create socket s2 */ What problems does

/* 3) bind sl to port 2000 */ _ o
/* 4) bind s2 to port 3000 */ this code have*

while (1) {
recvfrom(sl, buf, sizeof(buf), ...);
/* process buf */
recvfrom(s2, buf, sizeof(buf), ...);

/* process buf */

Spring 2018 Copyright ©: CS 438 Staff, University of Illinois

How to handle concurrency?

Process requests serially

o Slow — what if you're processing another request? What if
you're blocked on accept () ?

Multiple threads/processes (e.g. Apache, Chrome)

o Each thread/process handles one request
o fork(), pthreads

Synchronous I/O (e.g. Squid web proxy cache)

o Maintain a “set” of file descriptors, whenever one has an
“event”, process it and put it back onto the set

0 select(), poll()

Spring 2018 Copyright ©: CS 438 Staff, University of Illinois

Select

int select (int num fds, fd set* read set, fd set*
write set, fd set* except set, struct timeval¥*
timeout) ;

Wait for readable/writable file descriptors.
Return:
o Number of descriptors ready
o -1 on error, sets errno
Parameters:
O num fds:
number of file descriptors to check, numbered from 0
0 read set, write set, except set!
Sets (bit vectors) of file descriptors to check for the specific condition

o) timeout:
Time to wait for a descriptor to become ready

Spring 2018 Copyright ©: CS 438 Staff, University of Illinois

File Descriptor Sets

int select (int num fds, fd set* read set,
fd set* write set, fd set* except set, struct
timeval* timeout) ;

Bit vectors
o Only first num £ds checked
o Macros to create and check sets

fds set myset;

void FD ZERO (&myset); /* clear all bits */
void FD_SET (n, &myset); /* set bits n to 1 */
void FD CLEAR (n, &myset); /* clear bit n */
int FD _ISSET (n, &myset); /* is bit n set? */

Spring 2018 Copyright ©: CS 438 Staff, University of Illinois

File Descriptor Sets

Three conditions to check for

o Readable:
Data available for reading

o Writable:

Buffer space available for writing

o Exception:
Out-of-band data available (TCP)

Spring 2018 Copyright ©: CS 438 Staff, University of Illinois

Building Timeouts with Select
and Poll

Ime structure

Number of seconds since
midnight, January 1, 1970

GMT
struct timeval {
long tv_sec; /* seconds */

long tv _usec; /* microseconds */

}s
unix will have its own "Y2K" problem one
second after 10:14:07pm, Monday
January 18, 2038 (will appear to be
3:45:52pm, Friday December 13, 1901)

Spring 2018 Copyright ©: CS 438 Staff, University of Illinois

Select

Which file
descriptors are set
and what should the
timeout value be?

High-resolution sleep function

o All descriptor sets NULL

o Positive timeout

Wait until descriptor(s) become ready
o At least one descriptor in set

O timeout NULL

Wait until descriptor(s) become ready or timeout occurs
o At least one descriptor in set

o Positive timeout

Check descriptors immediately (poll)

o At least one descriptor in set

o 0 timeout

Spring 2018 Copyright ©: CS 438 Staff, University of Illinois

Select: Example

fd set my read;
FD ZERO (&my read) ;
FD SET (0, &my read);

if (select(l, &my read, NULL, NULL) == 1) {

assert (FD _ISSET (0, &my read);

/* data ready on stdin */

What went wrong:
after select indicates
data available on a
connection, read
returns no data?

Spring 2018 Copyright ©: CS 438 Staff, University of Illinois

Select: Timeout Example

I nt main(void) {

struct timeval tv; Walt 25 SeCondS for
fd set readfds; something to appear

tv.tv_sec = 2; on standard input
tv.tv_usec = 500000;

FD ZERO (&readfds) ;
FD SET (STDIN, &readfds);

// don't care about writefds and exceptfds:
select(l, &readfds, NULL, NULL, &tv);

if (FD_ISSET (STDIN, é&readfds))
printf ("A key was pressed!\n");
else
printf ("Timed out.\n");

return 0;

gpring 2018 Copyright ©: CS 438 Staff, University of Illinois

[select () vS. poll ()]

Which to use??

m BSD-family (e.g., FreeBSD, MacOS)
o poll () justcalls select () internally

s System V family (e.g., AT&T Unix)

o select () just calls poll () internally

Spring 2018 Copyright ©: CS 438 Staff, University of Illinois

Concurrent programming with
[Posix Threads (pthreads)

Thread management

o Creating, detaching, joining, etc.
Set/query thread attributes

Mutexes
o Synchronization
Condition variables

o Communications between threads that
share a mutex

Spring 2018 Copyright ©: CS 438 Staff, University of Illinois

Creating a Thread

int pthread create (pthread t* tid,
pthread attr t* attr, void*(child main), void¥*

arg) ;
pthread create () takes a pointer to a function as
one of its arguments
o child main is called with the argument specified by arg
o child main can only have one parameter of type void *

o Complex parameters can be passed by creating a structure
and passing the address of the structure

o The structure can't be a local variable

Spring 2018 Copyright ©: CS 438 Staff, University of Illinois

Example: pthreads

#include <pthread.h> void *PrintHello (void *threadid) {
#define NUM THREADS 5

printf ("\n%d: Hello World'\n", threadid);
pthread exit (NULL) ;
}

int main (int argc, char *argv[]) {

pthread t threads[NUM THREADS];
int rc, t;

for(t=0;t < NUM_THREADS;t++) {
printf ("Creating thread %d\n", t);

rc = pthread create(&threads[t], NULL, PrintHello, (void *)t);
if (re) {

printf ("ERROR; pthread create() return code is %$d\n", rc);
exit(-1);

}
pthread exit (NULL) ;

Spring 2018 Copyright ©: CS 438 Staff, University of Illinois

Example: pthread join ()

#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>
#define NUM THREADS 4

int main (int argc, char *argv[]) {
pthread t thread[NUM THREADS] ;
pthread attr_t attr;
int rc;
long t;
void *status;

Spring 2018 Copyright ©: CS 438 Staff, University of Illinois

/* Initialize and set thread detached
attribute */

pthread attr_init(&attr);
pthread attr_ setdetachstate (&attr,
PTHREAD_CREATE_JOINABLE);

for (t=0; t<NUM THREADS; t++) {
printf ("Main: creating thread %1d\n", t);

rc = pthread create(&thread[t], &attr,
BusyWork, (void *)t);

if (ze) {
printf ("ERROR; return code is %d\n",
rc) ;
exit(-1);
}
}

/* Free attributes */

pthread attr destroy(&attr);

Example: pthread join ()

void *BusyWork (void *t) ({

int i;

long tid;

double result = 0.0;

tid = (long)t;

printf ("Thread %1d starting...\n",
tid) ;

for (i=0; i<1000000; i++) {
result = result + sin(i) * tan(i);

}

int main (int argc, char *argv[]) {

/* Wait for the other threads */
for (t=0: t<NUM THREADS: t++) {

rc = pthread join(thread[t], &status);

if (rc) {
printf ("ERROR; return code is %d\n", rc);
exit(-1);

}

printf ("Thread %1d result = %e\n",
tid, result);
pthread exit((void*) t);

printf ("Main: status for thread %1d: %1d\n",
t, (long)status);

Spring 2018 Copyright ©: CS 438 Staff, University of lllinois 87]

printf ("Main: program completed. Exiting.\n");
pthread exit (NULL) ;

[Using pthreads

When coding

o Include <pthread.h> first in all source
files

When compiling

o Use compiler flag =D REENTRANT

When linking
o Link library -1pthread

Spring 2018 Copyright ©: CS 438 Staff, University of Illinois

pthread Error Handling

pthreads functions do not follow the usual
Unix conventions
o Similarity
Returns O on success
o Differences

Returns error code on failure
Does not set errno

o What about errno?

Each thread has its own

Define REENTRANT (-D_REENTRANT switch to
compiler) when using pthreads

Spring 2018 Copyright ©: CS 438 Staff, University of Illinois

Summary

Unix Network Programming

o Transport protocols
TCP, UDP

o Network programming
Sockets API, pthreads

Next

o Probability refresher
o Direct link networks

Spring 2018 Copyright ©: CS 438 Staff, University of Illinois

