UNIX NETWORK PROGRAMMING

Anupama Potluri
Dept. of Computer and Information Sciences
University of Hyderabad

Overview

* Process Control

e Signals

* Pipes and FIFOs

* Mutexes and Condition Variables
* Posix Semaphores

« Shared Memory

« Socket Programming

PROCESS CONTROL

Process Control — Process Creation

« Other than the initd, swapper and pagedaemon
processes, every other process in Unix is created by a
call to the system call fork().

- Ex. 1: Explore whether swapper in a Linux system
| s created by kernel using ps command.
» fork() creates a copy of the program and both parent
and child execute simultaneously.

« Copy-on-write: Data, stack and heap of a parent are
not copied. The protection is set to read-only until the
parent or child attempts to write, at which time a copy
IS made.

Program 8.1 from APUE by W.Richard Stevens

Int gl ob =6;
char buf []= "a wite to stdout \n”;

I nt main(void) {
| nt var;
pid t pid,
var = 88;

1 f (wite(STDOUT_FI LENO buf, sizeof(buf)-1) !'=
si zeof (buf)-1) printf(“wite error”);
printf (“before fork \n”);
1f ((pid = fork()) >0){ sleep(2);}
elseif (pid=0){ [/* child */
gl ob++;
var ++;
} else { printf(“Error forking\n"); }

printf(“pid = %, gl ob =%, var =%l\n ", getpid(),
gl ob, var);

Parent and Child Processes — File Sharing

 When a process is created using fork(), it inherits all
the open file descriptors from the parent. It also
iInherits : current working directory, environment, file
mode creation mask, signal mask etc.

 What is different in parent and child? The return value
from fork, process ID, parent process ID elc.

* File Sharing: Parent and child share the same file
offset so that when one process writes to the file, the
new offset is visible to the other process. Otherwise,
they will overwrite each other.

e EX.2: (pen a file in a program fork and wite to

the file in both parent and child — use both
unbuffered and buffered wite and see the results.

Process Termination

Normal termination: exit() - called implicitly at the end
of every program

Abnormal termination: abort()
What happens when the parent dies ahead of child?

What happens when the child dies ahead of parent —
Zombie processes — what are the issues with
zombies?

Waiting for the child: wait() and waitpid()
pidt wait(int *statl oc);

pidt waitpid(pid t pid, int *statloc, Int
options); /* WNOHANG — non- bl ocki ng */

Replacing the Program of a Process

» exec()and its variants replace the program that is
executing in a process with a new one — i.e., the data,
stack, heap and text are replaced with that of the new

program
* Properties inherited from the calling process:

- pid, ppid, pwda, file mode creation mask, file locks,
process signal mask, pending signals etc.
| nt execl (const char *path, const char *arg,
)
| nt execv(const char *path, char *const
argv[]);

Program to demonstrate the use of exec() variants

Int main(int argc, char **argv)

{
Initialization
I1f ((child pid =fork()) == -1) {
printf("Error forking\n");
exit(3);

} else if (child pid==0) { /* Child */

sprintf(fd string, "%", fd),;
execl ("/ hone/ anupanma/ unp/test/chil d",
fd string, argv[2], NULL);
} else { [* Parent */

printf(“ln Parent...\n");

Process Control — Summary
Every process can be created only by another process

in Unix except for init using fork().

Child processes created with fork() execute in parallel
with their parents. copy-on-write saves the kernel
from copying all of parent's data to the child process
unless required.

New programs can be executed in the context of an
existing process using the family of exec() calls.

Zombie processes are created when a child dies and a
parent has not waited for its exit status.

A concurrent server needs to take care of Zombie
processes or risk running out of process space.

SIGNALS

Signals — an Introduction

Signals are software interrupts — a way of handling
asynchronous events in a program.

Signals you have come across: SIGINT, SIGTERM,
SIGSEGYV, SIGBUS, SIGCHLD, SIGKILL

Actions to take on Signals:

- Ignore, Catch and Default Action

signal() . The system call to handle signals
t ypedef void (*sighandler t)(int);

sighandl er _t signal (int signum sighandler t
handl er) ;

SIGIGN:. Handler to ignore a signal

Example Program for installation of a Signal Handler

static void ny_handler(int signo);
Int nmain(void) {
1 f (signal (SIGQJSRL, ny handler) == SI G ERR) {
printf(“Error installing handler for SIGJSR1”);
else if (signal (SIGQUSR2, ny handler) == SI G ERR) {
printf(“Error installing handler for Sl GUSR2”);
else if (signal (SIGU T, SIGIGA) == SIGERR {
printf(“Error installing handler for SIGQU T);
}

for (; ;) pause();
}

static void ny_handler(int signo) {
I f (signo == Sl GUSR1)
printf(“Received signal SIGJSRL");
else if (signo == Sl GUSR2)
printf(“Received signal SIGJSRL");
el se
printf(“Error: received signal %\ n”, signo),;

Deficiencies of signal() system call

* Problems with the signal() call:

- it helps to catch or ignore a signal but you cannot
block a signal.

- Sometimes a signal is lost as shown below:
Int ny _sigint_hndlr();

signal (SIG NT, nmy_sigint_hndlr);

Int nmy_sigint_hndlr(void) {
signal (SIG@NT, ny sigint_hndlr);

How to send and wait for signals

» Sending Signals : raise(), kill()
- 1nt raise(int sig);
-int kill(pitd t pid, int sig);
- unsigned 1 nt alarmunsigned I nt seconds);
- voi d abort(voi d);
» Waiting for Signals : pause(), sleep()
- I nt pause(void);
- unsi gned i nt sleep(unsigned int seconds);

« SIGCHLD : signal sent automatically to parent when
child dies.

POSIX Signals (Reliable)

« Signal Sets — sigset t: data structure that contains
onhe bit per sighal — each can be set or unset using
functions such as sigemptyset(), sigfillset(),
sigaddsetl(), sigdelset() and queried using
sigismember().

« Blocking and Unblocking Signals: sigprocmask()

| nt sigprocrmask(int how, const sigset t *set,
sigset t *ol dset);

- how. SI G BLOCK, SIG UNBLOCK, SIG SETMASK
« Catching Signals reliably: sigaction()

Int sigaction(int signum const struct
sigaction *act, struct sigaction *ol dact);

POSIX Signals (contd.)

struct sigaction {
void (*sa_handler)(int);
void (*sa_sigaction)(int, siginfo_t*, void*);
Si gset _t sa_nmask;
I nt sa fl ags;
void (*sa_restorer)(void);

}

* Get Pending Signals and Suspend Process:
- 1 nt sigpendi ng(sigset t *set);
- I nt sigsuspend(const sigset_t *nask);

Program 10.12 from APUE. W.Richard Stevens

Sigfunc *signal (int signo, Sigfunc *func) {
struct sigaction act, oact;

act.sa handl er = func;
si genpt yset (&act . sa_nask) ;
act.sa flags = O,

| f (sigaction(signo, &act, &oact) < 0)
return Sl G ERR;

return(oact.sa_handl er);

Program 10.15, APUE, W.Richard Stevens.

static void sig quit(int);

Int nmain(void) {
si gset _t newrask, ol dmask, zeromask, pendnask;

1 f (signal (SIGU T,sig quit)== SI G ERR
err_sys(“cant catch SIGQU T");

/[* Block SIGQUI T and save current signal mask */

si genpt yset (&newnask) ;

si gaddset (&newnask, SI GQUI T) ;

| f (sigprocnmask(SI G BLOCK, &newrask, &ol dmask) < 0)
err sys(“SI G BLOCK error”);
sl eep(5);

| f (sigpendi ng(&endnask) < 0)
err_sys(“sigpending error”);

contd...

| f (siglisnenber (&endmask, SIGUT))
printf(“\nSIGU T pendi ng”);

/[* allow all signals and pause */
| f (sigsuspend(&zeronask) = -1) {
printf(“sigsuspend error\n’);

}

/| * Reset signal nmask which unbl ocks SIGQU T */
| f (sigprocnmask (SI G SETVASK, &ol dmask, NULL) < 0)
printf(“SI G SETVASK error\n”);

exit(0);
}
static void sig int(int signo)
{
printf(“in _ FUNCTION_ \n");
return;

}

Reentrant Functions

« Reentrant Functions: Those functions whose
behavior is not affected by being interrupted in the
middle of the execution and called from another

context.

 Consider the code below: Is is reentrant or not?
Int ny func(void) {
static int i ndex = 0O;

| ndex++;
while (index !'= 1);

Signals — Summary

Signals are asynchronous events that can be caught,
ignored or the default action can be taken.

Most signals terminate the program unless caught. A
few such as SIGCHLD are ignored by default

Non-POSIX signals are unreliable in nature and do not
allow signals to be blocked.

POSIX signals are reliable, allow signals to be caught
reliably, blocked or can unblock and suspend a
program without loss of signals.

It is important to have reentrant functions when
handling signals since the program execution
sequence is hard to predict.

Some Exercises in Signals

1.1 n program 10.1, APUE, WRichard Stevens,
renove the for (; ;) statenent and run the
programnultiple tines and observe the output.
Expl ain the out put.

2.Create a process in which afile is opened for
RW Then, fork a new process. Alternately,
wite fromparent and child to the file - e.qg.,
“From Parent (pid)” and “From Child(pid)” -
usi ng signals.

3. Repeat Ex. 2 above as follows: After fork(),
exec a new programin child. Renenber that a
child inherits the open descriptors after exec
al so. Wthout re-opening the file, wite
alternately fromparent and child processes.

PIPES and FIFOs

Pipes and FIFOs - Introduction

Pipes are a form of IPC only between related
processes.

FIFOs, a.k.a, Named Pipes, can be used between
unrelated processes by virtue of having a name.

Pipes and FIFOs are unidirectional in nature. Two
pipes or FIFOs are needed if both the processes need
to read and write to them.

- Q@ Do you need | PCs between threads or
processes or both?

Pipes and FIFOs return file descriptors and can be
treated exactly as files. In fact, for Unix, the world is a
file.

IPC Persistence

» Three types of persistence are possible based on the
life of the IPC object:

- Process-persistent : exists until last process with
this object open closes the object or exits — e.g.,
Pipes, FIFOs, mutex, condition variable

- Kernel-persistent : exists until the kernel reboots
or IPC object is explicitly deleted — e.g., named
semaphores, shared memory

- File-persistent : exists until IPC object is explicitly
deleted — e.g., some implementations of named
semaphores and shared memory

PIPES

A pipe Is created with the following function:
- 1nt pipe(int filedes[?2]);

This function returns two file descriptors — one for
read, fd[0] and the other for write, fd[1] : this
establishes one unidirectional pipe between the
processes.

For a duplex pipe, two calls to pipe() are done. Then,
the parent closes fd[0] of pipe1 and fdf1] of pipe2
whereas the child closes fd[71] of pipe1 and fad[0] of
pipe2.

The shell command | is nothing but the creation of a
pipe between the two processes that are executed.

| nt

Example Program to illustrate use of Pipes
mai n(int argc, char **argv) {

| nt pi pel[2], pipe2[2]; pidt cpid;
char st r[MAXLEN] ;

pi pe(pi pel); pipe(pipe2);
if (fork() == 0) {

}

cl ose(pi pel[l]); close(pipe2[0]);
strcpy(str, “Sending data to parent”);
wite(pipe2[l], str, strlen(str));
read(pi pel[0], str, MAXLEN);
printf("%\n", str);

else if (cpid > 0) {

cl ose(pi pel[0]); close(pipe2[l]);
strcpy(str, "Sending data to child");
wite(pipel[l], str, strlen(str));
read(pi pe2[0], str, MAXLEN);
printf("%\n", str);

el se printf(“Error forking\n”);

exit(0);

FIFOs

* FIFOs need two function calls to be opened:

-1 nt nkfifo(const char *pathnane, node_t
node) ;

- 1 nt open(const char *pathnane, int flags,
node t node);
e |If duplex communication is required, two FIFOs have
to be opened. The parent opens pipe for write and
pipeZ2 for read and the child does the opposite.

« The sequence of calls for opening the FIFOs is
Important as it can, otherwise, lead to a deadlock. (see
e.g. in next slide)

Program 4.16. UNP vol.2, W.Richard Stevens

#define FIFOL “/tnp/fifo.1”
#define FIFQ2 “/tnp/fifo.?2”

void client(int, int), server (int,int);

Int nain (int argc , char **argv)
{

Int readfd, witefd:

pid t childpid;

/|* create two FIFGs; OK if they already exist */
i1 f ((nkfifo (FIFOL, FILE MODE) < 0) &&

(errno !'= EEXI ST))

printf(“can't create %\n”, Fl FOL) ;

1 f ((nmkfifo (FIFQ2, FILE MODE) < 0) &&
(errno !'= EEXIST)) {
unl i nk (FI FOL);
printf(“Can't create % \n“, FI FQ2);

}

contd....

1 f ((childpid = Fork())==0){ /* child */
readfd = Qpen(Fl FOL, O RDONLY, 0) ;
witefd = OQpen(FI FO2, O WRO\LY, 0) ;
server(readfd,witefd);
exit (0);

}

[* PARENT */

witefd = Open(Fl FOL, O WRONLY, 0) ;
readfd = Qpen(Fl FO2, O RDONLY, 0) ;
client(readfd, witefd);

wai tpid (childpid, NULL,O0);

cl ose(readfd);

cl ose(witefd);

unl i nk(FI FOL) ;
unl i nk(FI FQR2) ;
exit(0);

Properties of Pipes and FIFOs

» A descriptor can be set to non-blocking using the
O_NONBLOCK flag in open().

» Two constants define the operations of Pipes and FIFOs

- OPEN_MAX : max. no. of descriptors open by a process

- PIPE_BUF : max. amount of data that can be atomically
transferred using Pipes and FIFOs

« Write to a pipe or FIFO not open for reading (i.e.,
closed) results in the signal SIGPIPE and the process
terminates.

- Q No signal is generated when a read i s
| ssued from a pipe that has been cl osed. WHY?

Properties of Pipes and FIFOs (contd.)

 When a descriptor is set to non-blocking, its return
value for write() depends on the number of bytes to
write and the amount of space currently available.

- If (write-bytes < PIPE_BUF) and (avail-space(pipe) < write-
bytes) return EAGAIN

- If (write-bytes > PIPE_BUF) and (no-avail-space) return
EAGAIN

- |If (write-bytes > PIPE_BUF) and (avail-space(pipe) < write-
bytes) return actual _bytes written

Pipes and FIFOS — Summary

Pipes and FIFOs are unidirectional IPC mechanisms
with process persistence. For duplex communication,
two Pipes or FIFOs must be created.

Pipes can be used only between related processes.

FIFOs can be used between any two arbitrary
processes that know the name of the FIFO.

FIFOs must be opened in the right order to avoid
deadlock between the client and server processes.

No. of Pipes or FIFOs open by a process is limited by
the parameter OPEN_MAX and the amount of data
that can be written to them is limited by PIPE_BUF.

Mutexes and Condition Variables

Mutexes and Condition Variables -
Introduction

Mutexes and Condition variables are from the Posix
thread library (pthread) and are for synchronization
between threads in a process.

Can be used for processes if they are stored in
memory that is shared between processes (as in
shared memory)

Mutex is for mutual exclusion.

Condition Variable allows a process to wait until a
condition.

Mutexes

* Primary functions are to lock and unlock such that
only one thread is allowed to acquire the lock.

« Typical code for a critical section looks like this:

pthread mutex t fastnmutex =
PTHREAD MUTEX | NI Tl ALI ZER;

retval = pthread nmutex | ock(&f ast nut ex);
Critical Section ...
retval = pthread nut ex_unl ock(&f ast nut ex) ;

#defi ne NMAXI TENMS 100
#def1 ne MAXTHREADS 10

| Nt nitens:

struct share s {
pt hread nut ex t mut ex;

| nt buf f [MAXI TEMS] ;
| Nt nput ;
| Nt nval ;

} shared = {PTHREAD MUTEX | NI TI ALl ZER};

Int main(int argc, char **argv)

{
| nt |, nthr;
pt hread t pr od[MAXTHREADS] , cons;
nt hr = atoi (argv[1]);
nitens = nthr;
shared. nput = shared. nval = O;
for (i =0; i < nthr; i++) {
pthread create(&prod[i], NULL, produce, &);
}
for (1 =0, I <nthr; 1++) {
pthread join(prod[i], NULL);
}

pt hread_creat e(&ons, NULL, consune, NULL);
pt hread_j oi n(cons, NULL);

exit(0);

static void *produce(void *arQ)
{
pt hr ead _nut ex | ock(&har ed. nmut ex) ;
| f (shared. nput >= nitens) {
pt hr ead _nut ex_unl ock(&har ed. nmut ex) ;
return NULL;

}

shar ed. buf f[shared. nput] = shared. nval;
shar ed. nput ++;

shared. nval += 10;

pt hread mut ex_unl ock(&shar ed. nut ex) ;

return NULL;

static void *consunme(void *arQ)

{

I nt | ;

for (i =0; i < nitens; i++) {
printf("buff[%d] = %\n", i,
shared. buff[i]);
}

return NULL;
}

Condition Variables

« Condition Variables allow a process to wait for a
condition.

* A condition variable always has a mutex associated
with it since we need to have mutual exclusion to It.

 Either a single process or multiple processes can be
woken up by a single condition variable.
I nt pthread cond signal (pthread cond t *cond);

I nt pthread cond wait(pthread cond t *cond,
pthread nutex t *nutex);

| nt pthread _cond broadcast (pthread cond t *cond);

Condition Variables (contd.)

A typical code segment with condition variables looks
like this:

SI GNAL- PROCESS:

pt hr ead_nut ex_| ock(&var . nmut ex) ;

set condition true

pt hr ead_cond_si gnal (&var. cond) ;

pt hr ead_nut ex_unl ock(&var . mut ex) ;
WAI T- PROCESS:

pt hr ead_nut ex_I| ock(&var . nut ex) ;

while (condition is FALSE)
pt hr ead_cond_wai t (&var. cond, &var. nutex);
nmodi fy condition

pt hr ead_nut ex_unl ock(&var . nut ex) ;

Some Exercises for Mutexes and Condition
Variables

1l.Create threads in a process and put themto sleep
and after waking up, print their thread |ID and die.
Let the main thread wait for the child tid status.
What is the order in which they print? Try multiple
tinmes.

2. Repeat the above after renoving the pthread wait ()
fromthe main thread. What is the output?

3. Repeat the above such that a global variable iIs
updated by the threads. The global variable starts
wth value O and when it 1s O, the nain thread
prints its thread ID and increnents it. Then, thread
1 must wake up, print its thread ID, 1 ncrenent the
gl obal variable and die and so on. The nain thread
waits for the status of all threads before it dies.

Mutexes and Condition Variables —
Summary

« Mutexes are for mutual exclusion —i.e., acquire lock
and update some global variables and then unlock.
Only one program can be executing the critical
section.

« Condition Variables are needed for waiting for a
condition. A condition variable is always associated
with a mutex since the condition variable is accessed
by multiple threads which should access it in a
mutually exclusive manner.

POSIX Semaphores

POSIX Semaphores - Introduction

Semaphores are kernel-persistent IPC that can be
used to synchronize between threads or processes.

Two types : memory-based and named semaphores

A mutex is a binary semaphore but is typically
implemented as a different IPC so that it has much
less overhead than a semaphore.

Typically, semaphores are counting semaphores,
onhe per resource available. When all available
resources are already in use, a process needing them
has to wait until they are released.

Semaphores vs Mutexes and Conditon
Variables

« Mutex needs to be unlocked by the same thread as
that which locked it; whereas, a semaphore is usually
posted to by one process and waited for by another.

* A mutex is either locked or unlocked — only two states
and cannot handle waiting for a condition.

« A semaphore allows both mutual exclusion and wait. It
also does not lose a post unlike condition variables
whose signal can be lost.

Semaphores — Function Calls

« The following are the various function calls used to
create, open and use semaphores:

semt *sem open(const char *nane, int oflag, ...);
Il nt semcl ose(semt *sem;

int semtrywait(semt *sem;

Int semwait(semt *sen);

int sem post(semt * sen);

I nt sem.unl i nk(const char *nane);

#i ncl ude <stdi o. h>

#i ncl ude <stdlib. h>

#i ncl ude <pt hread. h>
#i ncl ude <semaphore. h>
#1 ncl ude <uni std. h>

#def 1 ne NMAXI TEMS 10
| nt nitens;
struct share s {
semt mut ex, nenpty, nstored,;

| nt buf f [MAXI TEMS] ;
} shar ed;

Int main(int argc, char **argv)
{
pt hread t prod, cons;
nitens = atoi (argv[1]);

seminit(&hared. nutex, 0, 1);
sem.init(&hared. nenpty, 0, MAXI TEMS);
seminit(&hared. nstored, 0, 0);

pt hread create(&prod, NULL, produce, NULL);
pt hread create(&cons, NULL, consune, NULL);
pt hread j oi n(prod, NULL);
pt hread j oi n(cons, NULL);

sem destroy(&shar ed. mut ex) ;

sem destroy(&shared. nenpty);
sem destroy(&shared. nstored);

exit(0);

static void *produce(void *arq)

{

i nt | ;

for (i =0; i <nitems; i++) {
sem wai t (&shar ed. nenpty);
sem wali t (&shar ed. nut ex) ;
shared. buff[i % MAXI TEMS] = i ;
sem post (&shar ed. nut ex) ;
sem post (&shar ed. nst or ed) ;

}

return NULL;
}

static void *consune(void *arQ)

{

i nt | ;

for (i =0; i < nitens; i++) {

sem wai t (&shar ed. nst ored) ;

sem wali t (&shar ed. nut ex) ;

| f (shared. buff[i % MAXITEMS] != 1)

printf("buff[%l] = %\n", i,

shared. buff[i1 % MAXI TENMS]) ;

sem post (&shar ed. nut ex) ;

sem post (&shar ed. nenpty) ;

}

return NULL;
}

Semaphores — Summary

« Semaphores are typically kernel-persistent IPC but
can also be file-persistent as in the case of memory-
based semaphores that are implemented in shared
memory.

« Semaphores can handle mutual exclusion as well as
waiting for a condition.

» They are more reliable than condition variables.

Shared Memory

Shared Memory - Introduction

e Shared Memory is an IPC with least latency.
» Users need to handle synchronization explicitly.
e Two types of POSIX shared memory:

- Memory-mapped files
- Shared memory objects

mmap — A utility for Shared Memory

 mmap() maps a file or a shared memory object into
the address space of a process.

« Used with regular files to provide memory-mapped 1/O.

» Used with shm_open() to provide shared memory
between unrelated processes.

void * mmap(void *start, size t length, int prot,
Int flags, int fd, off t offset);

I nt nunmap(void *start, size t |ength);

prot: PROT READ, PROT WRI TE, etc.
fl ags: MAP SHARED, MAP PRI VATE et c.

Example of memory-mapped file

File referenced by descriptor fd

MEMORY MAPPED
PORTION OF FILE

- -« >
offset length

Address space of the process

MEMORY MAPPED

low memory PORTION OF FILE

high memory

return value of mmap

Shared Memory Example
(UNP vol.2, W.Richard Stevens)

Int main(int argc, char **argv) {

unsi gned char *ptr;

fd = shmopen(argv[1l], O RDWR FlILE MXDE);

ptr = mmap(NULL, MY _SHARED Sl ZE,
PROT _READ | PROT WRI TE, MAP_SHARED, fd, O0);

cl ose(fd);

for (i = 0; i < MY_SHARED SI ZE; i ++)
*ptr++ =1 % 256,

shm unl i nk(ptr);

Shared Memory - Summary

Shared Memory is an IPC with least latency.

It requires more work from the users in terms of
explicit synchronization.

We use the function mmap() to map a shared memory
object into the address space of a process.

Unless explicitly removed through shm_unlink() call,
the shared memory object is kernel-persistent.

SOCKET PROGRAMMING

Socket Programming — Introduction

Sockets are another IPC mechanism in Unix.

Can be used to exchange data between processes on
same machine or different machines

Always use network byte order for all structures.

Macros provided for conversion to network byte order:
htons(), htonl(), ntohs() and ntohl().

Network data is not ASCII characters only and is
treated as a stream of bytes. As such byte
manipulation functions such as bzero(), bcopy() or the
ANSI C variants memset(), memcpy(), memcmp()
must be used.

Socket Programming — Data Structures

Socket Address structure to hold the IP address of the
machine — look In /usr/include/netinet/in.h in Linux.

struct in_addr {

| n_addr t S_addr;

b

struct sockaddr _in {
ui nt 8 t sin_|en;
sa famly t sin famly;
Il n_port t Sin_port;

struct I n_addr sin_addr;
char sin_zerof 8];

Socket Programming — Utility Functions

Functions to convert from the human-readable dotted-
decimal notation of an IP address to unsigned long
and vice versa are :

I nt I net_aton(const char *cp, struct In_addr *inp);

- G ven dotted-decimal notation, returns I[P in inp
| n_addr _t inet_addr(const char *cp);
- Returns I P given dotted-decinal notation

char *inet ntoa(struct in_addr in);

- Gven I[P in unsigned long, returns dotted-deci nal
notation string

Sample TCP Server Program

Int nmain(int argc, char ** argv){

| nt | 1 stenfd, connfd;
struct sockaddr _in servaddr, cli addr;
sockl en_t |l en = sizeof (cliaddr);

| 1 stenfd = socket (AF_I NET, SOCK STREAM O0);
bzero(&servaddr, sizeof(servaddr));
servaddr.sin famly = AF | NET;
servaddr.sin_addr.s _addr = | NADDR ANY;
servaddr.sin port = htons(SERV_PORT);
bi nd(listenfd, &servaddr, sizeof(servaddr));
li1sten(listenfd, 5);
for (; ;) {

connfd = accept(listenfd, &cliaddr, & en);

printf(“Connection fromclient %\n",

| net_ntoa(cliaddr.sin_addr));

read and wite until condition is FALSE. ..
cl ose(connfd);

Sample TCP Client Program

Int main(int argc, char ** argv){

| nt connf d;
struct sockaddr in ser vaddr;
char *serv_addr = “172.16.88. 12",

connfd = socket (AF_|I NET, SOCK STREAM O0);
bzero(&servaddr, sizeof(servaddr));
servaddr.sin famly = AF | NET;

| net _aton(serv_addr, &servaddr.sin_addr);
servaddr.sin port = htons(SERV_PORT);

connect (connfd, &servaddr, sizeof(servaddr));

while (!condition) {
...wite() and read() data from server...

}

cl ose(connfd);

Socket Function Calls — Data Structures and
Exceptions

* Incomplete and Complete Queues

» Connection abort before accept() returns -
ECONNABORTED

« Server terminates and Client is waiting for input on
another fd — SIGPIPE error

e Server crashes — ETIMEDOUT vs EDESTUNREACH
 Server reboots — ECONNRESET

/O Multiplexing: select()

« Need for I/0O Multiplexing — especially with blocking file
descriptors

Int select(int n, fd _set *readfds,
fd set *witefds, fd set *exceptfds,
struct tinmeval *tineout);

» select() returns when
- any of the descriptors in read-set are ready

- any of the descriptors in write-set are ready
- any of the descriptors in exception-set are ready
- timeout has occurred

Exanpl e Program Show ng use of sel ect ()

Int nmain(int argc, char **argv) {

| nt connf d;
fd set rset;
... Open socket and accept connection as earlier...

FD ZERQ(&r set) ;
for (5 ;) {
FD SET(stdin, & set);
FD SET(connfd, &rset);
maxfd = max(stdin, connfd) + 1;
sel ect (maxfd, &rset, NULL, NULL, NULL);
| f (FD | SSET(stdin, &rset))
printf(“lnput fromstdin\n’);

else if (FD ISSET(connfd, &rset))
printf(“lnput fromsocket\n”);
el se
printf(“Error\n”);

Socket Options

« Getting and Setting some options for sockets helps in
controlling the features of sockets.

« Examples:

- SO_KEEPALIVE along with TCP_KEEPALIVE
- SO_REUSEADDR

- SO _LINGER (controls what TCP does with
outstanding data on the socket)

- IP_TTL
- TCP_NODELAY (disable Nagle Algorithm)

Socket Options Function Calls
Two functions are defined to get and set socket options:

| nt getsockopt(int s, int level, 1 nt optnane,
voi d *optval, socklen t *optlen),;

| nt setsockopt(int s, int level, 1 nt optnane,
const void *optval, socklen t optlen);

Example UDP Server

Int nmain(int argc, char **argv) {
| nt sockfd, addrlen;
struct sockaddr in servaddr, cliaddr;

addrl en = si zeof (servaddr);

sockfd = socket (AF_| NET, SOCK DGRAM 0);
servaddr.sin famly = AF | NET;
servaddr.sin_port = htons(SERV_PORT);
servaddr.sin_addr.s _addr = htonl (1 NADDR_ANY) ;
bi nd(sockfd, &servaddr, addrlen);

for (v) {
n = recviron(sockfd, nesg, MAXBYTES, O,
&cl i addr, &addrlen),;

printf(“Recvd % fromclient\n”, nesg);
sendt o(sockfd, nmesg, n, 0, &cliaddr, addrlen);

Elementary Name and Address Conversions

« To connect to a machine, typically, we need to contact
the DNS server to get a name-to-address translation.

 Functions that allow this are:

struct hostent *gethostbynane(const char *nane);

struct hostent *gethostbyaddr(const void *addr,
Int len, Int type);

struct servent *getservbynane(const char *nane,
const char *proto);

struct servent *getservbyport(int port, const
char *proto),;

Advanced |/O

e recv and send functions

ssize t recv(int sockfd, void *buff, size t
nbytes, int flags);

ssize_t send(int sockfd, const void *buff, size_t
nbytes, int flags);

flags is one of the following:
MSG_DONTROUTE, MSG_DONTWAIT,
MSG_00B, MSG_PEEK, MSG_WAITALL

Advanced |/O (contd.)

o Scatter and Gather I/O functions — writev and
readv

ssize t readv(int fd, const struct 1ovec *iov,
I nt 1ovent);

ssize t witev(int fd, const struct iovec *iov,
I nt 1ovecnt);

struct 1ovec {
voi d *i ov_Dbase;

Int 1ov_|len);

Data Structures Needed for Scatter/Gather Example

t ypedef struct data s{

| Nt opcode;
| Nt | en;
} data t;

typedef struct std s {
| Nt rol |l no;
char nane[64];
| Nt cgpa,;

} ostd t;

#def1 ne ADD STUDENT 1

Example Client using writev

Int main(int argc, char **argv)

{

Iint fd, rc;

std t s;

data t d;

struct Iovec | ov[2] ;
s.rollno = 10; S.cgpa = 9;

strcpy(s. name, "APCS");

/* Open socket and connect to server */

d:bbcode = ADD_STUDENT; d.l en = si zeof (s);
lov[O].1ov_base = &; 1ov[0O].1ov_len = sizeof(d);
lov[1l].1ov_base = &s;iov[1l].iov_|len = sizeof(s);

rc = witev(fd, 1ov, 2);

cl ose(fd);
exit(0),;

Example Server using readv

Int main(int argc, char **argv)

{

int fd, rc;

std t s;

data t d;

struct 1ovec | ov[2] ;

/* Qpen socket, bind, listen and accept conn. */

lov[O].iov_base = &d; 1ov[O].iov_len = sizeof(d);
lov[1l].1ov_base = &s;iov[1l].1ov_len = sizeof(s);
rc = readv(fd, iov, 2);

|
printf("Qpcode = %\ n", d.opcode);
printf("Roll no = %, Nane = %, CGPA = %\ n",
s.rol l no, s.nane, s.cgpa);

cl ose(connfd); close(listenfd);
exit(0);

Socket Programming - Summary

TCP server opens a passive socket whereas a client
opens an active socket.

TCP sockets have incomplete and complete queues
associated with them.

UDP clients need to timeout as packets can get lost.
Always use SO_REUSEADDR socket option.

Use of select() allows a process to wait on multiple file
descriptors for read, write and exception conditions.

DNS resolution is done by gethostbyname() function.

Daemon Processes

» Properties of a daemon:

- It is a process that starts at bootup time and runs
in the background until the system is shut down

- Has no controlling terminal

- Error messages are logged using the syslog
daemon

- Examples are all the standard network servers

Daemon Initialization Function (UNP Vol.1, Fig. 12.4)

I nt daenon_init(void) {
pidt pi d;

1If ((pid = fork()) !'= 0)
exit(0);

[* Make the child process session | eader */
setsid();

[* lgnore SI GHUP signal */
signal (SIGHUP, SIGIGN);
1f ((pid =fork()) !'= 0)

exit(0);

chdir(“/7);
unmask(0) ;

[* dose all unused file descriptors */
return O;

syslog Function

syslog is a function that allows daemons to log
different types of messages that help with
debugging/troubleshooting a system/service.

The prototype for syslog is

void syslog(int priority, char *format, ...);

priority is a combination of /evel and facility of the
message, formatis as in a printf.

LOG ERR, LOG CRIT, LOG_WARNING,
LOG INFO, LOG DEBUG are some levels.

inetd Superserver

 inetd allows efficiency in writing network servers by:

- simplification of writing daemon processes

- allows a single process to wait for clients of multiple
services instead of multiple processes most of
which are idle

- Examples are Telnet, Rlogin, FTP etc.

— The services inetd handles are stated in the
configuration file /etc/inetd.conf in Unix (in Linux, it
IS In /etc/xinetd.conf and in /etc/xinetd.d/” files.

Flowchart for inetd Superserver

socket()

i

Child

close() all
descriptors other
than socket

:

bind()
listen()
S select()
close() L
connected
socket accepty()
Parent \ i
fork()

dup() socket to
descriptors 0,1,2
close() socket

'

exec() server

Telnet inetd configuration file

servi ce tel net

{

socket type = stream

pr ot ocol = tcp

wali t = no

user = root

server = /fusr/sbin/in.tel netd
di sabl e = yes

REFERENCES

* Advanced Programming in the Unix Environment,
W.Richard Stevens (for Process Control, Signals)

» Unix Network Programming, vol. 2, W.Richard
Stevens (for Pipes, FIFOs, Mutexes, Condition
Variables, Semaphores and Shared Memory)

» Unix Network Programming, vol. 1, W.Richard
Stevens (for Socket programming)

