

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0

International License.

ISBN 978-1-7358317-1-8

How To Build a Website with CSS and
HTML

Erin Glass

DigitalOcean, New York City, New York, USA

2020-11

How To Build a Website with CSS and
HTML

1. About DigitalOcean
2. Introduction
3. A Brief Introduction To CSS
4. How To Set Up Your CSS and HTML Practice Project With a

Code Editor
5. How To Understand and Create CSS Rules
6. How To Declare Values For Multiple Properties In a CSS Rule
7. How To Style Images With CSS
8. How To Create Classes With CSS
9. How To Create IDs with CSS

10. How To Create Pseudo-classes With CSS
11. How To Style the HTML <div> element with CSS
12. How To Adjust the Content, Padding, Border, and Margins of an

HTML Element With CSS
13. How To Set Up Your CSS and HTML Website Project
14. An Overview of Our Demonstration HTML and CSS Website
15. How To Style the Body of a Website With CSS
16. How To Build the Header Section of Your Website With CSS

(Section 1)
17. How To Build the About Me Section of Your Website With CSS

(Section 2)
18. How To Build a Tiled Layout With CSS (Section 3)

19. How To Add a Resume or Employment History Section To Your
Website With CSS (Section 4)

20. How To Add Your Educational History and Skills To Your Website
Using CSS (Section 5)

21. How To Create a Featured Quote Box On Your Website Using
CSS (Section 6)

22. How To Create a Static Footer With HTML and CSS (Section 7)

About DigitalOcean

DigitalOcean is a cloud services platform delivering the simplicity
developers love and businesses trust to run production applications at scale.
It provides highly available, secure and scalable compute, storage and
networking solutions that help developers build great software faster.
Founded in 2012 with offices in New York and Cambridge, MA,
DigitalOcean offers transparent and affordable pricing, an elegant user
interface, and one of the largest libraries of open source resources available.
For more information, please visit https://www.digitalocean.com or follow
@digitalocean on Twitter.

https://www.digitalocean.com/
https://twitter.com/digitalocean

Introduction

About this Book

This project-based book will introduce you to Cascading Style Sheets
(CSS), a stylesheet language used to control the presentation of websites, by
building a personal website using our demonstration site as a model.
Though our demonstration site features Sammy the Shark, you can switch
out Sammy’s information with your own if you wish to personalize your
site.

Gif of CSS demonstration site

Alongside HTML and JavaScript, CSS is one of the core technologies of
the World Wide Web. If you have some understanding of HTML and are
looking to grow your front-end development skills, learning CSS is a great
next step.

http://css.sammy-codes.com/

The first half of this book will introduce CSS through hands-on exercises
and the second half of the book will provide steps for recreating the
demonstration website. If you want to start building the demonstration
website right away, you can start with the chapter How To Set Up Your CSS
and HTML Website Project and proceed from there.

By the end of this CSS book, you will have files ready for deploying a
website to the cloud, as well as an understanding of how to continue
modifying the site’s design with HTML and CSS. You will also have a
foundation for learning additional front-end web development skills (such
as JavaScript) and frameworks (like Tailwind).

Prerequisites

A code editor like Visual Studio Code or Atom. This series will use
Visual Studio Code as our default code editor but you may use any
code editor you like. Certain instructions may need to be slightly
modified if you use a different editor.
A web browser like Firefox or Chrome. This book will use Firefox as
our default browser but you may use any browser you like. Certain
instructions may need to be slightly modified if you use a different
web browser.
Two different profile photos, images, or avatars for personalizing your
site (optional).
Familiarity with HTML. If you aren’t familiar with HTML or would
like a refresher, you can follow the first ten tutorials of our series How
To Build a Website With HTML before starting this series.

https://www.digitalocean.com/community/tutorials/how-to-set-up-your-css-and-html-website-project
https://www.digitalocean.com/community/tags/javascript
https://www.digitalocean.com/community/tutorials/build-a-beautiful-landing-page-with-tailwind-css
https://code.visualstudio.com/download
https://atom.io/
https://www.mozilla.org/en-US/firefox/new/
https://www.google.com/chrome/
https://www.digitalocean.com/community/tutorial_series/how-to-build-a-website-with-html

Once you have your prerequisites ready, you will be ready to start your
CSS website project in the chapters ahead.

A Brief Introduction To CSS

Written by Erin Glass
This tutorial will briefly introduce the historical origins of CSS and give

a high-level overview of how CSS works with HTML. This tutorial will
prepare you to follow the hands-on exercises and website building project
in the tutorials ahead.

History of CSS

CSS was first introduced by Håkon Wium Lie in 1994 while working at the
European Organization for Nuclear Research (CERN) alongside Tim
Berners-Lee, the inventor of the World Wide Web. At the time, webpages
were typically created exclusively with HTML, the Hypertext Markup
Language that Berners-Lee had developed in the 1990s. However, HTML
had been developed to describe the semantics of a web document’s
components (such as its headings and paragraphs) rather than provide style
instructions. As the growing use of HTML to style webpages became
increasingly unwieldy, CSS was introduced to provide a more efficient
method for styling the display and layout of a website in conjunction with
HTML.

How CSS Works With HTML

Websites that are built with HTML and CSS will typically consist of an
HTML file that contains content such as text, image links, and HTML tags,
and a CSS file that contains style rules that are applied to the HTML

https://www.digitalocean.com/community/tutorials/a-brief-introduction-to-css

content. For example, an HTML file might have header text (marked up
with the HTML tag <h1>) and paragraph text (marked up with the HTML

tag <p>). Its corresponding CSS file might have rules instructing the

browser to make all header text 20 pixels in size and all paragraph text the
color blue. These CSS style rules would then apply to all header and
paragraph text wherever they appeared in the HTML document, without
you having to add style instructions in the HTML document each time.

CSS is also a powerful tool for arranging website content. By giving size,
color, and other properties to HTML elements, you can use CSS to create
content boxes that structure and style the layout of a webpage.

Conclusion

In the tutorials ahead, you will use CSS to style text, image, and other
HTML elements as well as style and control the layout of a webpage. To get
started, you’ll first need to create a few files and folders where you’ll
practice writing HTML and CSS code. In the next tutorial, you will be
guided through the steps of setting up your CSS and HTML project using
the freely-available code editor Visual Studio Code.

https://code.visualstudio.com/

How To Set Up Your CSS and HTML
Practice Project With a Code Editor

Written by Erin Glass
In this tutorial, you will set up the folders and files necessary for

exploring CSS and building a website. Using a code editor, you will create
a project directory for our website, a folder and file for our CSS code, a file
for our HTML code, and a folder for images. This tutorial series uses Visual
Studio Code, a code editor freely-available for Mac, Windows, or Linux,
but you may use whichever code editor you prefer. Note that certain
instructions may need to be slightly modified if you use a different editor.

How To Create HTML and CSS Files and Folders

After opening your preferred text editor, open up a new project folder and
name it css-practice . You’ll use this folder to store all of the files and

folders you create in the course of this tutorial series.
To create a new project folder in Visual Studio Code, navigate to the

“File” menu item in the top menu and select “Add Folder to Workspace.” In
the new window, click the “New Folder” button and create a new folder
called css-practice :

https://www.digitalocean.com/community/tutorials/how-to-set-up-your-css-and-html-practice-project-with-a-code-editor
https://code.visualstudio.com/

Gif of process of adding a project folder in

Visual Studio Code

Next, create a new folder inside css-practice and name it css .

Inside this folder, open up a new file in your project directory and save it as
styles.css—this is the file you’ll use to store our CSS style rules. If

you are using Visual Studio Code, you can create a new folder by using
Right Click (on Windows) or CTRL + Left Click (on Mac) on

the css-practice folder, selecting “New Folder” and creating the css

folder. Then, click Right Click (on Windows) or CTRL + Left

Click (on Mac) on the new css folder, select “New File”, and create the

file styles.css as illustrated in the gif below:

Gif of how to add CSS folder and file

Save the file and leave it open.
You also need to create a file to add our HTML content—the text,

images, and HTML elements that will be rendered in the browser. In the
project directory css-practice , open an additional new file and save it

as index.html in the same way you created the styles.css file

above. Make sure to save this index.html file in the css-practice

folder and not in the css folder.

Next, you need to add a line of code in the index.html document that

instructs the browser to use the styles.css file as our style sheet. To do

this, you’ll use the HTML <link> tag and link to the styles.css file.

Add the following code snippet to your HTML document:

index.html

<link rel="stylesheet" href="css/styles.css">

This code snippet tells the browser to interpret the HTML code according
to the stylesheet located at css/styles.css. Make sure you don’t

erase this line while adding or deleting content to your index.html file

throughout this tutorial series. Save your index.html file and keep it

open.
Finally, create an additional folder inside css-practice and name it

images in the same way that you created the css folder above. This

folder will be where you save any images you use in this tutorial series.
You should now have a project folder named css-practice that

contains the folders and files necessary for exploring CSS in this tutorial
series:

A folder named css that contains the file styles.css

An empty folder named images

A file named index.html

If you are using Visual Studio Code, your editor should now display the
following file tree and the open files:

Visual Studio Code Editor with file tree

displayed

Notice that the file names include extensions (.html and .css) that

refer to the type of content they contain. You will add content to these files
in our hands-on exercises in the tutorials that follow.

Debugging and Troubleshooting CSS and HTML

Precision is important when working with HTML and CSS. Even an extra
space or mistyped character can keep your code from working as expected.

If your HTML or CSS code is not rendering in the browser as intended,
make sure you have written the code exactly as written in the tutorial.
Though we encourage you to manually write out the code for the purpose of
learning, copy and pasting can be helpful at times to ensure that your code
matches the examples.

HTML and CSS errors can be caused by a number of things. Check your
markup and CSS rules for extra or missing spaces, missing or misspelled
tags, and missing or incorrect punctuation or characters. You should also
make sure that you don’t accidentally use “curly” or “smart” quotation
marks like “ and ” that are often used by word processors. Curly quotes

are designed for human-readable text and will cause an error in your code
as they are not recognized as quotation marks by browsers. By typing
quotation marks directly into your code editor, you can make sure you are
using the right kind.

Also, each time you change your code, make sure to save your file before
reloading it in the browser to check your results.

A Quick Note on Automatic HTML Support Features

Some code editors—such as the Visual Studio Code editor we’re using in
this series—provide automatic support for writing HTML code. For Visual
Studio Code, that support includes smart suggestions and auto completions.
While this support is often useful, be aware that you might generate extra
code that will create errors if you’re not used to working with these support
features. If you find these features distracting, you can turn them off in the
code editor’s preferences.

Conclusion

You are now ready to proceed with the tutorial series. In the next tutorial,
you’ll begin exploring how CSS rules are used to control the style and
layout of HTML content on a webpage.

https://code.visualstudio.com/docs/languages/html

How To Understand and Create CSS
Rules

Written by Erin Glass
In this tutorial, you will learn how to understand and create CSS rules

(also known as rulesets) for styling and controlling the layout of HTML
content. The tutorial will begin with an example CSS rule that makes
<h1> HTML elements blue to study how CSS rules work in action before

explaining each of the components of a CSS rule.

Prerequisites

To follow this tutorial, make sure you have set up the necessary files and
folders as instructed in the previous tutorial How To Set Up You CSS and
HTML Practice Project.

Exploring an Example CSS Rule

Below is an example of a CSS rule. Write the following rule into you
styles.css file:
[label styles.css]

h1 {

 color: blue;

}

Save your styles.css file. Note that you have indented color:

blue two spaces to the right. This indentation is a recommended best

https://www.digitalocean.com/community/tutorials/how-to-understand-and-create-css-rules
https://www.digitalocean.com/community/tutorials/how-to-set-up-your-css-and-html-practice-project

practice for writing CSS style rules as it makes the code more easily read by
developers.

The rule you have just added instructs the browser to give any HTML
text content tagged with the HTML element <h1> a blue color. (For a

refresher on how HTML elements work, please visit our tutorial How To
Use and Understand HTML elements).

Next, add a piece of HTML content that is tagged with the <h1>

element to the index.html file (right below the <link

rel="stylesheet" href="css/styles.css"> line at the top of

the document) :

index.html

<h1>A Sample Title</h1>

Save the file and load the HTML file in your browser to check your
results. (For instructions on viewing an HTML file in your browser, please
visit our tutorial step How To View An Offline HTML File In Your
Browser).

In your browser, you should receive the following results:
[Webpage results] (https://assets.digitalocean.com/articles/how-to-build-

a-website-with-css/a-simple-title.png)
If you don’t have the same results, make sure you have saved both your

index.html file and your styles.css file and that there are no

errors in your code.

How To Understand the Components of a CSS Rule

https://www.digitalocean.com/community/tutorials/how-to-use-and-understand-html-elements
https://www.digitalocean.com/community/tutorials/how-to-use-and-understand-html-elements#how-to-view-an-offline-html-file-in-your-browser

Let’s now examine the example CSS rule to understand each of its different
components. In general, a CSS rule is composed of a selector, a declaration
block, properties, and values. The diagram below illustrates how each of
these parts are represented in a rule:

Diagram of a CSS rule

Let’s now study each of these parts and how they relate to the example
CSS rule.

The selector indicates which type of content is to be styled by the CSS
rule. The selector is placed at the beginning of the CSS rule and
outside of the opening curly bracket. In the CSS example, the selector
is the <h1> HTML element, which is a tag selector. We’ll learn about

other types of selectors later on in the tutorial series.

The declaration block is the part of the CSS rule that declares a style
rule for the selector. The declaration block is placed inside of the curly
brackets. In the CSS example, the declaration block is
color:blue; .

The property refers to the property of the HTML content that the CSS
rule will modify, such as font-size or color . In the CSS

example, the property is color. Note that a colon is appended after

the property.
The value refers to the specific value assigned to the property, such as
16px or blue . In the example CSS rule, the value is blue. Note

that a semicolon is appended after the value.

Once you declare a rule for a selector, every piece of content in your
HTML document marked with that selector will be displayed according to
the rule. Exceptions will occur, however, if a conflicting CSS rule is given
precedence.

Conclusion

In this tutorial you examined all the components that are needed to write a
complete CSS rule, including the selector, declaration block, properties, and
values.

In the next tutorial, you will add multiple properties to a CSS rule and
create different CSS rules for a single HTML document.

How To Declare Values For Multiple
Properties In a CSS Rule

Written by Erin Glass
In this tutorial, you will learn how to declare values for multiple

properties in a CSS rule. Declaring multiple properties in a single rule
allows you to apply many style instructions—such as size, color, and
alignment—to an element all at once. We’ll also explore creating a variety
of CSS rules that allow us to apply different styles to different pieces of
content in a single HTML document.

Prerequisites

To follow this tutorial, make sure you have set up the necessary files and
folders as instructed in a previous tutorial in this series How To Set Up You
CSS and HTML Practice Project.

Creating a CSS Rule With Multiple Declarations

To add more than one declaration to a CSS rule, try modifying your <h1>

rule in your styles.css file (or adding the entire code snippet if you

haven’t been following the tutorial series) so that it includes the additional
highlighted declarations:
h1 {

 color: blue;

 font-size: 100px;

 font-family: Courier;

https://www.digitalocean.com/community/tutorials/how-to-declare-values-for-multiple-properties-in-a-css-rule
https://www.digitalocean.com/community/tutorials/how-to-set-up-your-css-and-html-practice-project

 text-align: center;

}

Save the file and reload your HTML document in your browser. (For
instructions on loading an HTML file, please visit our tutorial step How To
View An Offline HTML File In Your Browser). Your text should now be
located in the center of the page, have a size of 100 pixels, and render with
the Courier font:

Styled header text

In the next section, we’ll add more CSS rules to extend the styling
possibilities for the webpage’s content.

Creating Multiple CSS Rules To Style HTML Content

In this section we’ll add some more text to the index.html file using an

HTML <p> element. We’ll experiment with modifying its properties using

a new CSS ruleset that only applies to <p> tags.

In the index.html file, add a line containing <p>Some

paragraph text</p> below the existing <h1>A sample

title<h1> line that you added in the How To Understand and Create

CSS Rules tutorial:

https://www.digitalocean.com/community/tutorials/how-to-use-and-understand-html-elements#how-to-view-an-offline-html-file-in-your-browser
https://www.digitalocean.com/community/tutorials/how-to-understand-and-create-css-rules

index.html

<h1>A sample title</h1>

<p>Some paragraph text</p>

Save the index.html file and reload it in the browser window to

check how the file is displayed. Your browser should render a blue heading
that says “A sample title” and an unstyled paragraph below it that says
“Some paragraph text” like the following example:

Webpage output with a blue <h1> heading and an

unstyled <p> element

Next, let’s add a CSS rule to style the <p> element. Return to your

styles.css file and add the following ruleset at the bottom of the file:

styles.css

. . .

p {

 color: green;

 font-size: 20px;

 font-family: Arial, Helvetica, sans-serif;

 text-align: center;

}

Save the file and reload it in the browser window to check how the file is
displayed. Your <p> text should now have the style you declared in the

CSS rule you just created:

Webpage output with styled <p> text

Now that you have CSS rules for the <h1> and <p> elements, any text

you mark up with these tags in your HTML document will take on the style
rules that you declared for these elements in your styles.css file.

Further Practice

If you want to continue experimenting with CSS rules, try creating CSS
rulesets for different HTML text elements—such as <h2> , <h3> , and

<h4>—and using them to modify text in your index.html file. If

you’re stuck, you can copy the CSS rules in the following example and add
them to your styles.css file:

styles.css

 . . .

h2 {

 color: red;

 font-size: 40px;

}

h3 {

 color: purple;

 font-size: 50px;

}

h4 {

 color: green;

 font-size: 60px;

}

Save your file and then add the following HTML content to your
index.html file:

index.html

<h2> This is red text with a size of 40 pixels.

</h2>

<h3> This is purple text with a size of 50

pixels. </h3>

<h4> This is green text with a size 60 pixels.

</h4>

Save the file and load index.html in your browser. You should

receive the following results:

Webpage content styled with multiple CSS rules

Conclusion

In this tutorial you experimented with specifying values for multiple
properties using CSS. You also created multiple CSS rules for styling text
content in an HTML document. You will expand upon both these skills
when you begin building the demonstration website later on in the tutorial
series. In the next tutorial, you will begin exploring how to style images
with CSS.

https://www.digitalocean.com/community/tutorials/how-to-set-up-your-css-and-html-website-project

How To Style Images With CSS

Written by Erin Glass
In this tutorial, you will learn how to style images with CSS to add a

border, and change the shape, and size of the image. Using CSS to style
images allows you to uniformly specify how images should appear across
your website with only a few rulesets.

Prerequisites

To follow this tutorial, make sure you have set up the necessary files and
folders as instructed in a previous tutorial in this series How To Set Up You
CSS and HTML Practice Project.

Adding Images To index.html

First, you need to add an image to the images folder. You can download

the image from the demonstration website or use any image in a JPEG/JPG
or PNG format. This exercise will also work better if the dimensions of
your image are around 150-200 pixels by 150-200 pixels.

Note: To download the image of Sammy the Shark, visit this link and
CTRL + Left Click (on Macs) or Right Click (on Windows) on

the image and select “Save Image As” and save it as small-

profile.jpeg to your images folder.

Once you have selected an image, save it to your images folder as

small-profile.jpeg . If you save it as a different file name, you’ll

need to modify the image file path in the step below.

https://www.digitalocean.com/community/tutorials/how-to-style-images-with-css
https://www.digitalocean.com/community/tutorials/how-to-set-up-your-css-and-html-practice-project
https://css.sammy-codes.com/images/small-profile.jpeg
https://css.sammy-codes.com/images/small-profile.jpeg

Next, erase all the content in your index.html file (except for the

first line of code: <link rel="stylesheet"

href="css/styles.css">) and add the following code snippet:

index.html

<img src="images/small-profile.jpeg" alt="Sammy

the Shark, DigitalOcean's mascot">

This code snippet uses the tag to insert an image and gives the

browser the location of the image file (images/small-

profile.jpeg). Make sure the highlighted file path is correct if you

have changed the file name of your image.
Note: To copy the file path of your image using Visual Studio Code,

hover over the icon of the image file in the left-hand panel, click CTRL +

Left Click (on Macs) or Right Click (on Windows), and select

“Copy Path.” For an illustration of the process, please see the gif below:

Gif of how to copy an image file path

Make sure to copy the relative or project file path of the image rather
than the absolute or full file path of the image. The relative path refers to
the file location relative to the current working directory (as opposed to the
absolute path, which refers to the file location relative to the root directory.)
While both paths will work in this instance, only the relative path would
work if you decided to publish the website online. Since the end goal is to
create a publishable website, you will start using relative paths now when
adding elements to the document.

You have also added the alternative text Sammy the Shark,

DigitalOcean's mascot using the alt attribute. When creating

websites, alternative text should be added to all images to support site
accessibility for individuals who use screen readers. To read more about

using alternative text with HTML, please visit the section on alternative text
in our guide How To Add Images To Your Webpage Using HTML .

Save your index.html file and reload it in your browser. (For

instructions on loading an HTML file, please visit our tutorial step How To
View An Offline HTML File In Your Browser). You should receive a blank
page with your image displayed:

Small profile image displayed in browser

If your image doesn’t display, check your code for errors and confirm
that you have the correct file path for the image.

Adding Styles To Images

https://www.digitalocean.com/community/tutorials/how-to-add-images-to-your-webpage-using-html#alternative-text-for-accessibility
https://www.digitalocean.com/community/tutorials/how-to-use-and-understand-html-elements#how-to-view-an-offline-html-file-in-your-browser

Now that index.html displays an image of Sammy the Shark (or the

image of your choice), you’ll add a CSS rule to style the image. In your
styles.css file, erase everything (if you’ve been following along the

tutorial series) and add the following ruleset at the bottom of the document:

styles.css

. . .

img {

 border: 2px solid red;

 border-radius: 8px;

 width: 200px;

}

Save your styles.css file and reload your index.html file in

your browser. You should now receive an image with new style properties:

Webpage with styled small profile image

In this CSS rule, you have specified values for three different properties
of the HTML element. Let’s pause to examine each of the different

properties and values:

The border property allows you to add a border to your image and

specify the size, style, and color of the border. Notice that you can add
multiple values for this CSS property. In this rule, you have specified a
solid , red border with a width of 2px .

The border-radius property defines the radius of an element’s

corners, allowing you to round the edges of an element. In this rule,

you have specified 8 pixels as the size of the radius. Try changing this
number to see how it affects the display of the image.
The width property defines the width of the image. In this rule, you

have specified the width to be 200 pixels wide. Note that if you leave
the height undefined, the height of the image will automatically adjust
to maintain the original proportions of the image. Try changing both
the height and width at the same time to check what happens.

Exploring How Style is Applied To All Images

Note that if you add any additional images to your HTML document, they
will also have the same styling. To study how this works, add a second
image to your index.html file using the HTML element. (You

can copy and paste the first element if you don't have a second

image handy):

index.html

<img src="images/small-profile.jpeg" alt="Sammy

the Shark, DigitalOcean's mascot">

<img src="images/small-profile.jpeg" alt="Sammy

the Shark, DigitalOcean's mascot">

Make sure to change the highlighted section with your image file path.
Save your index.html file and load it in the browser. Your webpage

should display two images styled with the same CSS ruleset for the

tag:

Webpage displaying two images with the same

style

To continue exploring style possibilities for images, try changing the
values in the CSS rule you just created in the styles.css file, saving

the file, and reloading the index.html to check the results.

Conclusion

In this tutorial you explored how to style an image’s border size, color,
appearance, height, width, and border radius. You will return to image
styling when you begin building the demonstration website in the second
half of this tutorial series.

https://www.digitalocean.com/community/tutorials/how-to-set-up-your-css-and-html-website-project

Now that you are familiar with how to apply a set of style rules to all
 elements, you may be curious how to apply different style rules to

individual or groups of elements. In the next tutorial, you will

create CSS classes, which allow developers to sort HTML elements into
different classes for different CSS styling.

How To Create Classes With CSS

Written by Erin Glass
In this tutorial, you will create a CSS class selector, which will allow you

to apply CSS rules only to HTML elements that are assigned the class. CSS
class selectors are useful when you want to apply different style rules for
different instances of the same HTML element.

Prerequisites

To follow this tutorial, make sure you have set up the necessary files and
folders as instructed in a previous tutorial in this series How To Set Up You
CSS and HTML Practice Project.

How CSS Class Selectors Work

A CSS class selector allows you to assign style rules to HTML elements
that you designate with that class rather than all instances of a certain
element. Unlike HTML elements (such as <p> , <h1> or), whose

names are predetermined, class names are chosen by the developer when
they create the class. Class names are always preceded by a . , which can

help you distinguish between tag selectors and class selectors in CSS files.
A CSS rule for a class selector is written in the same way as a rule for a

tag selector, with the exception of the . prepended to the class name:
.red-text {

 color: red;

}

https://www.digitalocean.com/community/tutorials/how-to-create-classes-with-css
https://www.digitalocean.com/community/tutorials/how-to-set-up-your-css-and-html-practice-project

To use a class when adding HTML content to your webpage, you must
specify it in the opening tag of an HTML element using the class attribute
in your HTML document like so:
<h1 class="red-text">Content.</element>

Creating a CSS Class Using a Class Selector

Let’s begin exploring CSS classes in practice. Erase everything in your
styles.css file and add the following code snippet to specify a rule for

the class red-text :

styles.css

.red-text {

 color: red;

}

After adding the code snippet to your styles.css file, save the file.

Return to your index.html and erase everything but the first line of

code <link rel="stylesheet" href="css/styles.css">

that links to your CSS stylesheet. Then add the following HTML code
snippet:

index.html

<p class="red-text">Here is the first sample of

paragraph text.</p>

https://www.digitalocean.com/community/tutorials/how-to-use-html-attributes

Note that the class name is not prepended here with a . as it is when

being used as a selector for a CSS rule. Your entire index.html file

should have the following contents:

index.html

. . .

<link rel="stylesheet" href="css/styles.css">

<p class="red-text" Here is the first sample of

paragraph text.</p>

In this code snippet you have added text using the HTML <p> tag. But

you have also specified the red-text class by adding the highlighted

class attribute class="red-text" inside the opening HTML tag.

Save your index.html file and load it in the browser. (For

instructions on loading an HTML file, please visit our tutorial step How To
View An Offline HTML File In Your Browser).

You should receive a webpage with red text:

https://www.digitalocean.com/community/tutorials/how-to-use-html-attributes
https://www.digitalocean.com/community/tutorials/how-to-use-and-understand-html-elements#how-to-view-an-offline-html-file-in-your-browser

Webpage output with red paragraph text

Let’s add an additional CSS class to explore styling different pieces of
<p> text content with different classes. Add the following code snippet to

your styles.css file (after your CSS rule for “red-text”):

styles.css

.yellow-background-text {

 background-color: yellow;

}

This CSS rule declares that the class yellow-background-text is

assigned the yellow value for the background-color property. Any

HTML text element assigned this class will have a yellow background.
Note that the use of the word text in the class yellow-background-

text is for human readability purposes only. You do not need to

include the word text in your class names for classes assigned to HTML

text.
To apply this new CSS class, return to your index.html file and add

the following line of code to the bottom:

index.html

<p class="yellow-background-text"> Here is the

second sample of paragraph text.<p>

In this code snippet, you have added some text content with the <p>

element and specified the yellow-background-text class. Save the

file and reload it in your browser. You should have a webpage with two
different sentences, the first one red and the second one with a yellow
background:

Webpage with text styled by two classes

Note that you can add more than one class to an HTML tag. Try adding
both classes to a single text element by adding the following line to your
index.html file:

index.html

<p class="red-text yellow-background-text">Here

is a third sample of text.</p>

Note that the class names are only separated by a space. Save the file and
reload it in the browser. You should receive something like this:

IWebpage with text styled by three classes

Your third line of text should now be styled according to the property
values set in the red-text class and the yellow-background-

text class and have a red font and yellow background.

Adding CSS Classes to Images

CSS classes can also be applied to other HTML elements, such as images.
To explore using CSS classes for images, erase the content in your
styles.css file and add the following code snippet:

.black-img {

 border: 5px dotted black;

 border-radius: 10%;

}

.yellow-img {

 border: 25px solid yellow;

 border-radius: 50%;

}

.red-img {

 border: 15px double red;

}
styles.css

Here you have created CSS rules for three different classes that can be
applied to the HTML tag. Before you move on, let’s briefly study

what we’ve declared in each ruleset:

The first CSS rule declares that the class black-img should have a

black , dotted border five pixels wide and a border-radius

sized at 10%, which gives the element rounded corners.
The second CSS rule declares that the class yellow-img should

have a yellow , solid border 25 pixels wide and a border-

radius sized at 50%, which gives the element a circular shape.

The third CSS rule declares that the class red-img should have a

red , double border 15 pixels wide. You have not set a border-

radius, so the border will conform to the element’s shape.

Save the styles.css file. Then erase everything from your

index.html file (except for the first line of code: <link

rel="stylesheet" href="css/styles.css">) and add the

following code snippet:

index.html

<img src="https://css.sammy-

codes.com/images/small-profile.jpeg"

class="black-img">

<img src="https://css.sammy-

codes.com/images/small-profile.jpeg"

class="yellow-img">

<img src="https://css.sammy-

codes.com/images/small-profile.jpeg"

class="red-img">

Each of these three lines of HTML code add an image to the HTML
document and assign it one of the three classes you just added to the
styles.css file. Note that you are sourcing the image from an online

location. You can also use your own image by specifying the file path as
instructed in our tutorial How To Add Images To Your Webpage With
HTML.

Save your index.html file and load it in the browser. You should

receive something like this:

https://www.digitalocean.com/community/tutorials/how-to-add-images-to-your-webpage-using-html

Webpage with images styled with three classes

Your webpage should now display three images, each styled with the
different specifications of their assigned class.

To continue exploring CSS classes, trying creating new classes with
different rulesets and applying them to different types of HTML content.
Note that properties and values specified in class declaration blocks will
only work on elements that they are intended for. For example, a font-

color declaration will not change the color of an image border. Likewise,

a height declaration will not change the size of the font.

Conclusion

You have now explored how to create classes, assign them specific property
values, and apply them to text and image content. You will return to using

classes when you begin building the website in the second half of this
tutorial series.

In the next tutorial, you will create CSS ID selectors, which work
similarly as class selectors with the exception of some unique features.

https://www.digitalocean.com/community/tutorials/how-to-set-up-your-css-and-html-website-project

How To Create IDs with CSS

Written by Erin Glass
In this tutorial, you will create CSS ID selectors and learn how and why

to use them when building a website with CSS and HTML.
CSS ID selectors function similarly to CSS class selectors. They allow

you to create CSS rules that you can apply to HTML elements that have a
unique ID attribute. Like classes, ID names are chosen by the developer
when they create a CSS rule using the ID selector. However, IDs are
different from classes in that you can only use an individual ID once in an
HTML document. Thus, you would only define IDs for items that appear on
a page once like a top logo, a site title, or a navigation bar. In general, CSS
IDs are used sparingly.

Prerequisites

To follow this tutorial, make sure you have set up the necessary files and
folders as instructed in a previous tutorial in this series How To Set Up You
CSS and HTML Practice Project.

Creating a CSS ID Selector

When creating a rule for an ID, a # is prepended to the ID’s name:
#my-first-id {

 color: blue;

}

https://www.digitalocean.com/community/tutorials/how-to-use-css-id-selectors
https://www.digitalocean.com/community/tutorials/how-to-create-classes-with-css
https://www.digitalocean.com/community/tutorials/how-to-set-up-your-css-and-html-practice-project

This CSS rule creates an ID named “my-first-id” and declares that any
HTML text element assigned this ID will be blue.

Let’s now explore how IDs work in practice. First, make sure you have
set up the necessary files and folders as instructed in a previous tutorial in
this series How To Set Up You CSS and HTML Practice Project.

Erase everything in your styles.css file (if you have been following

along with this series) and add the CSS rule above for “#my-first-id” to
your styles.css file and save the file.

Next, return to your index.html file and erase everything (except for

the first line of code: <link rel="stylesheet"

href="css/styles.css">). Then add the following code snippet:

index.html

<p id="my-first-id">This text is styled using a

CSS ID.</p>

Save the file and reload it in the browser. (For instructions on loading an
HTML file, please visit our tutorial section How To View An Offline
HTML File In Your Browser).

You should receive something like this:

https://www.digitalocean.com/community/tutorials/how-to-set-up-your-css-and-html-practice-project
https://www.digitalocean.com/community/tutorials/how-to-use-and-understand-html-elements#how-to-view-an-offline-html-file-in-your-browser

Webpage with text styled with a CSS ID

In this exercise, you have created the CSS ID “my-first-id” in your
styles.css file and then applied it to text content in your

index.html file using the highlighted ID attribute. Note that you can

create and apply IDs for any type of HTML content, such as images and
<div> elements.

Conclusion

You explored how to create and use IDs for styling elements that only
appear once on your webpage. In the next tutorial, you’ll learn about CSS
pseudo-classes, a special type of class activated by certain states that can be
triggered by user behavior.

https://www.digitalocean.com/community/tutorial_series/how-to-build-a-website-with-html#how-to-use-a-%3Cdiv%3E,-the-html-content-division-element

How To Create Pseudo-classes With
CSS

Written by Erin Glass
In this tutorial, you will create CSS pseudo-classes and learn how and

why to use them. You will also practice using the :hover pseudo-class

that allows us to change the style of an element when the user’s cursor is
hovering over it.

Pseudo-classes are CSS classes that are activated only during certain
states. For example, the pseudo-class :hover can be used to change the

appearance of an image or text element when the user’s cursor hovers over
the element. The pseudo-class :visited is often used to change the

color of a link after a user has clicked on it.
Pseudo-classes are declared in CSS by appending a : and the name of

the pseudo-class to a tag, class, or ID selector. This pseudo-class will then
be automatically applied to any HTML content assigned the tag, class, or ID
of the pseudo-class. You do not need to add any extra code to an HTML
element to make a pseudo-class work.

Prerequisites

To follow this tutorial, make sure you have set up the necessary files and
folders as instructed in a previous tutorial in this series How To Set Up You
CSS and HTML Practice Project.

Creating a Pseudo-class with CSS

https://www.digitalocean.com/community/tutorials/how-to-use-css-pseudo-classes
https://www.digitalocean.com/community/tutorials/how-to-set-up-your-css-and-html-practice-project

Let’s now try a practical exercise to explore how pseudo-classes work.
First, make sure you have set up the necessary files and folders as instructed
in a previous tutorial in this series How To Set Up You CSS and HTML
Practice Project.

Erase everything in your styles.css file (if you added content from

previous tutorials) and add the pseudo-class below to your document:

styles.css

img:hover {

 border: 10px solid red;

}

In this code snippet, you have added the highlighted pseudo-class
:hover to the tag selector. Save the file and return to the

index.html file and erase everything (except for the first line of code:

<link rel="stylesheet" href="css/styles.css">). Then

add the following snippet of HTML code to your index.html file:

index.html

<img src="https://css.sammy-

codes.com/images/small-profile.jpeg">

Note that you are sourcing the image from an online location for
convenience. You can also use your own image by specifying the file path

https://www.digitalocean.com/community/tutorials/how-to-set-up-your-css-and-html-practice-project

as instructed in our tutorial How To Add Images To Your Webpage With
HTML.

Save your index.html file and load it in the browser. (For

instructions on loading an HTML file, please visit our tutorial step How To
View An Offline HTML File In Your Browser).

You should receive something like this:

Gif of cursor hovering over image to make red

border appear

The webpage should now display an image of Sammy the Shark. Try
hovering your cursor over the image. A solid red border 10 pixels wide
should appear around the image when your cursor moves over the image.

https://www.digitalocean.com/community/tutorials/how-to-add-images-to-your-webpage-using-html
https://www.digitalocean.com/community/tutorials/how-to-use-and-understand-html-elements#how-to-view-an-offline-html-file-in-your-browser

Your browser automatically applies the pseudo-class :hover when your

cursor interacts with an img element based on the rule that you added to

styles.css .

You can use the :hover pseudo-class with text elements as well. If

you’d like to try applying :hover to a text element, erase everything in

your styles.css file and add the pseudo-class below to the document:

styles.css

p:hover {

 font-size:100px;

 color:red;

}

Save the styles.css file. Return to the index.html file, erase

everything (except for the first line of code: <link

rel="stylesheet" href="css/styles.css">), and add the

following code snippet:

index.html

<p>Some text</p>

Save your file and load it in the browser to check your results. You
should receive a page with the text “Some text” that changes color and size
when you hover your cursor over it:

Gif of cursor hovering over text to make it have

larger size and red color

Conclusion

In this tutorial you explored how and why to use pseudo-classes. You also
experimented with applying them to text and image based HTML elements.
You will use pseudo-classes to build the footer of the demonstration website
if you follow the second half of this tutorial series.

In the next tutorial, you’ll learn about creating and styling the HTML
<div> element, which can be used to structure the layout of a webpage.

https://www.digitalocean.com/community/tutorials/how-to-create-a-static-footer-with-html-and-css-section-7

How To Style the HTML <div> element
with CSS

Written by Erin Glass
This tutorial will introduce you to styling the HTML Content Division

element—or <div> element—using CSS. The <div> element can be

used to structure the layout of a page and break up a webpage into separate
components for individual styling. In this tutorial, you will create and style
<div> elements, as well as learn how to add and style other elements

inside a <div> container. These skills will prepare you to use <div>

elements as layout tools later on in the series when you begin recreating the
demonstration website.

The <div> element is used by adding opening and closing </div>

tags to an HTML document. On its own, the <div> element typically has

little visual effect on the presentation of a webpage. To specify the size,
color, and other properties of a <div> element, you can assign it style

rules using CSS.

Prerequisites

To follow this tutorial, make sure you have set up the necessary files and
folders as instructed in a previous tutorial in this series How To Set Up You
CSS and HTML Practice Project.

Exploring the <div> Element in Practice

https://www.digitalocean.com/community/tutorials/how-to-style-the-html-div-element-with-css
https://www.digitalocean.com/community/tutorials/how-to-set-up-your-css-and-html-website-project
https://www.digitalocean.com/community/tutorials/how-to-set-up-your-css-and-html-practice-project

Let’s try a hands-on exercise to study how the <div> element works.

Erase everything in your styles.css file (if you added content from

previous tutorials). Next, add the following CSS rule for the <div> tag

selector:

styles.css

div {

 background-color: green;

 height: 100px;

 width: 100px;

}

Save the styles.css file. Next, return to your index.html file,

erase everything that’s there (except for the first line of code: <link

rel="stylesheet" href="css/styles.css">) and add the

following code snippet:

index.html

<div></div>

Notice that the <div> element has opening and closing tags but does

not require any content. Save the index.html file and reload it in your

browser. (For instructions on loading an HTML file, please visit our tutorial
step How To View An Offline HTML File In Your Browser).

https://www.digitalocean.com/community/tutorials/how-to-use-and-understand-html-elements#how-to-view-an-offline-html-file-in-your-browser

Your webpage should display a green box 100 pixels wide and 100 pixels
tall as specified by the CSS rule:

Now that you have a styling rule for your <div> element, every

<div> element you add to your page will be styled in the precisely the

same manner. However, when creating a website, it is unlikely that you will
want all of your HTML <div> elements to be styled in the same way. For

this reason, developers often create classes that they can use to style
<div> elements in different ways.

To practice creating classes for <div> elements, erase the CSS rule you

just created and add the following new three CSS rulesets to the
styles.css file:
.div-1 {

 background-color: blue;

 height: 50px;

https://www.digitalocean.com/community/tutorials/how-to-create-classes-with-css

 width: 50px;

}

.div-2 {

 background-color: red;

 height: 100px;

 width: 100px;

}

.div-3 {

 background-color: yellow;

 height: 200px;

 width: 200px;

}

In this code snippet, you have created styling rules for three different
classes: div-1 , div-2 , and div-3 . Note that you have added a .

before the class selector as required when declaring CSS rules for classes.
Save the styles.css file and return to your index.html file.

Erase the <div> element you just created and, add the three <div>

elements to your index.html file, applying a class to each one that

corresponds to the CSS class selectors that you defined in styles.css :

index.html

<div class="div-1"></div>

<div class="div-2"></div>

<div class="div-3"></div>

Note that you have added the class as an attribute to the <div> tag by

adding the class attribute and class name to each opening <div> tag. Save

the file and reload it in your browser. You should receive something like
this:

Your webpage should display three <div> elements, each styled with a

different color and size according to their assigned CSS style rules. Note
that each <div> element starts on its own new line as <div> elements

are block-level elements and have this default behavior.

Adding and Styling Text in a <div> Container

You can put text inside a <div> container by inserting text in between the

opening and closing <div> tags. Try adding text inside each of the

https://www.digitalocean.com/community/tutorials/how-to-use-inline-and-block-elements-in-html#block-level-elements

<div> elements in your index.html file:

index.html

<div class="div-1">Blue</div>

<div class="div-2">Red</div>

<div class="div-3">Yellow</div>

Save the file and reload it in your browser. You should now have text
displayed in each of your <div> containers:

Webpage with <div> elements containing text

You can add additional HTML elements to your text inside the <div>

elements. For example, try adding the HTML heading tags (<h2> to

<h4>) to your text inside the <div> tags in your index.html file:
<div class="div-1"><h2>Blue</h2></div>

<div class="div-2"><h3>Red</h3></div>

<div class="div-3"><h4>Yellow</h4></div>

Save the file and reload it in your browser. The text inside the <div>

containers should now be styled according to the default properties of the
<h1> to <h4> tags:

Webpage with header text inside <div> containers

Note that the <div> elements have also adjusted their positions slightly.

This repositioning is caused by the default margin properties of the <h2>

through <h4> elements. You’ll learn more about margins in the next

tutorial on the CSS Box Model, but for now it is fine to ignore them
To style text inside the <div> containers, you can specify text property

values in the rulesets for your <div> classes. Try adding the properties

and values to your rulesets in your styles.css file as highlighted in the

in the following code snippet:

https://www.digitalocean.com/community/tutorials/how-to-understand-the-css-box-model

styles.css

.div-1 {

 background-color: blue;

 height: 50px;

 width: 50px;

 font-size: 10px;

 color: white;

}

.div-2 {

 background-color: red;

 height: 100px;

 width: 100px;

 font-size: 20px;

 color: yellow;

}

.div-3 {

 background-color: yellow;

 height: 200px;

 width: 200px;

 font-size:30px;

 color: blue;

}

Save your styles.css file and reload the index.html file in your

browser. The text inside the <div> containers should now be styled

according to the CSS rules in your styles.css file:

Conclusion

In this tutorial you explored how to style the color and size of a <div>

element and how to add and style text inside a <div> element. You will

use the <div> element to control the layout of a page when you begin

building the website. In the next tutorial, you will learn about the CSS Box
Model, and how to use it to adjust the size of an element’s content, padding,
borders, and margin.

https://www.digitalocean.com/community/tutorials/how-to-set-up-your-css-and-html-website-project

How To Adjust the Content, Padding,
Border, and Margins of an HTML
Element With CSS

Written by Erin Glass
In this tutorial, you will learn about the CSS Box Model, a model used to

refer to the content, padding, border, and margins of an HTML element.
Understanding the CSS Box Model is helpful for adjusting the size of any
of these parts of an HTML element and understanding how the size and
position of elements is determined. This tutorial will begin by explaining
each of the boxes of the CSS Box Model and then move on to a practical
exercise on adjusting their values using CSS style rules.

https://www.digitalocean.com/community/tutorials/how-to-adjust-the-content-padding-border-and-margins-of-an-html-element-with-css

Diagram of CSS Box Model

Prerequisites

To follow this tutorial, make sure you have set up the necessary files and
folders as instructed in a previous tutorial in this series How To Set Up You
CSS and HTML Practice Project.

The CSS Box Model

An HTML element can be understood as a series of four overlapping boxes:

The content box is the innermost box where the text or image content
is placed. By default, its size is frequently set by the size of the content
it contains. It is also the only box in the box model whose value is
typically not zero by default (if it contains content); in contrast, the

https://www.digitalocean.com/community/tutorials/how-to-set-up-your-css-and-html-practice-project

padding, border, and margin of an element default to zero for many
HTML elements (such as <p> , <h1> , and elements) unless

you specify otherwise. When you set values for the width and height of
an element, you are typically changing the width and height of the
content box.
The padding box is the second overlapping box, which consists of a
transparent space that surrounds the content box. By default, the
padding of many HTML elements is set to zero. Increasing the size of
an element’s padding increases the distance between the content box
and the border box.
The border box is the third overlapping box that surrounds the padding
box. By default, the border value of most HTML elements is set to
zero. Increasing the size of an element’s border increases the distance
between the padding box and the margin box. Note that the color,
thickness, and style of the border can be adjusted.
The margin box is the fourth and final overlapping box that consists of
transparent space outside of the border of an element. By default, the
margin value of some HTML elements is set to zero, though some
elements have specified margin values as their default, such as the
<h1> through <h6> heading tags. Margins of two different elements

are also allowed to overlap sometimes in a behavior called margin
collapse. When this happens, the margin size defaults to the size of
whichever element’s margin is the largest.

Now that you are familiar with the components of the CSS Box Model,
you can practice styling these different boxes to explore how they work
together to lay out and style an HTML element. You’ll start by creating a

<div> element that contains text content and then adjust the values of

each of these boxes to help demonstrate their location in an element.

Adjusting The Content Size of an HTML Element With
CSS

First, make sure you have set up the necessary files and folders as instructed
in a previous tutorial in this series How To Set Up You CSS and HTML
Practice Project.

Erase everything in your styles.css file (if the file contains content

from previous tutorials) and add the following CSS rule to your
styles.css file:

styles.css

.yellow-div {

 background-color:yellow;

}

Save the styles.css file. You have just created a class using the

class selector yellow-div . Any <div> element you assign this class

will have a yellow background color.
Next, erase all the content in your index.html file (except for the

first line of code: <link rel="stylesheet"

href="css/styles.css">) and add the following code snippet:

https://www.digitalocean.com/community/tutorials/how-to-set-up-your-css-and-html-practice-project

index.html

<div class="yellow-div">

Lorem ipsum dolor sit amet, consectetur

adipiscing elit, sed do eiusmod tempor

incididunt ut labore et dolore magna aliqua. Ut

enim ad minim veniam, quis nostrud exercitation

ullamco laboris nisi ut aliquip ex ea commodo

consequat. Duis aute irure dolor in

reprehenderit in voluptate velit esse cillum

dolore eu fugiat nulla pariatur.

</div>

Save the file and load it in the browser. You should receive the following
results:

Webpage with text in yellow <div> containers

Your webpage should display a yellow box that contains the text content
you added to the HTML file. Currently, only the innermost box—the
content box—has a size and value; the padding, border, and margin are all
set to zero. Notice also that the width and height of the yellow box is
automatically determined by the size of the text content inside the <div>

container. Try adding or subtracting text content to experiment with how the
size of the <div> container changes accordingly.

Note: You can use Firefox’s Web Developer tools to view the box model
of an HTML element and the values set for each box. Navigate to the Tools
menu item in the top menu bar and select “Web Developer/Toggle Tools”
from the dropdown menu. The Developer Tools should appear in the bottom
of your window. Click the the arrow icon on the far left of the tool kit menu
and then click on the element that you wish to inspect. The box model of
the selected element will show up in the bottom right of the Developer
Tools window pane. You may need to expand the window to view it.

Gif of using Firefox Web Developer tools to view

the box model of an element

Next, let’s specify the width of the <div> container to study how that

changes the presentation of the element in the browser. Add the following
highlighted line to your CSS rule in your styles.css file to set the

width to 500 pixels:

styles.css

.yellow-div {

 background-color:yellow;

 width: 500px;

}

Save the file and load it in your browser. Your <div> container should

now be 500 pixels wide, with its height automatically adjusting to allow the
text content to fit inside:

Webpage with text div container that is 500

pixels wide

Note that you can also specify the height of a <div> element instead

and allow for the width to adjust automatically. Or you can specify both the
height and width, but be aware that the content will spill over the <div>

container if the <div> element is too small.

How To Adjust the Padding Size of an HTML Element
With CSS

Next, let’s increase the padding size to study how it changes the display of
the <div> element. Add the following highlighted line to your CSS rule in

your styles.css file to set the padding to 25 pixels:

styles.css

.yellow-div {

 background-color:yellow;

 width: 500px;

 padding:25px;

}

Save the styles.css file and reload the index.html file in your

browser. The size of the yellow box should have expanded to allow for 25
pixels of space between the text content and the perimeter of the box:

You can change the size of the padding by adjusting the padding value size.
You can also change the padding size of specific sides of the element by
using the following properties: `padding-left`, `padding-right`, `padding-
top`, `padding-bottom`. For example, try replacing the declaration
`padding:25px;` in your `styles.css` file with the highlighted snippet below:

styles.css

.yellow-div {

 background-color:yellow;

 width: 500px;

 padding-left:25px;

 padding-right: 50px;

 padding-top: 100px;

 padding-bottom: 25px;

}

Save the styles.css file and load the index.html file in your

browser. You should receive something like this:

Knowing how to specify padding sizes for individual sides of an element
can be useful when arranging content on a webpage.

Adjusting the Border Size, Color, and Style of an HTML
Element With CSS

Let’s now practice setting values for the border of an HTML element. The
border property lets you set the size, the color, and the style (such as
solid , dashed , dotted , inset , and outset) of an HTML

element. These three values are set by assigning them to the border property
like so:
selector {

 border: size style color;

}

Try adding the following highlighted declaration to add a solid black
border that is five pixels wide:

styles.css

.yellow-div {

 background-color:yellow;

 width: 500px;

 padding: 25px;

 border: 5px solid black;

}

(You may want to erase your different padding declarations from the
previous tutorial section and replace them with the single
padding:25px; declaration to keep the ruleset manageable). Save the

styles.css file and reload index.html in your browser to inspect

the changes. Your yellow box should now have a border with the values you
set in the CSS rule:

Webpage with yellow <div>, padding, and border

You can try changing the values to study how they change the display of
the element in the browser. Like with padding, you can also specify the
border side you’d like to adjust with the properties border-right ,

border-left , border-top , border-bottom .

Adjusting the Margin Size of an HTML Element With CSS

Next, let’s try adjusting the size of the margins of an element with CSS. In
this exercise, we’ll give the margins a very large value so that it is easy to
see how margin size is displayed in the browser. Add the following
highlighted declaration to your ruleset in your styles.css file to set the

margin to 100 pixels:

styles.css

 .yellow-div {

 background-color:yellow;

 width: 500px;

 padding: 25px;

 border: 5px solid black;

 margin:100px;

}

Save the styles.css file and reload index.html in your browser

to inspect the changes. The yellow box should have moved 100 pixels down
and 100 pixels to the right to allow for the 100 pixels of margin space
between its border and the edges of the viewport:

Webpage with <div> with padding, border, margins

specified

Note: You may have noticed that the yellow box originally had a small
margin of white space between its top and left side and the edges of the
viewport. This margin is automatically created by some browsers to allow
for space between the edges of the viewport and the website content. You
can remove this margin by setting the top and left margin to zero.

Like the padding and border, the sizes of specific sides of the margin can
be set using margin-left , margin-right , margin-top , and

margin-bottom .

Before moving on, add another <div> container to the page to study

how the margin affects the position of nearby content. Without erasing
anything, add the additional CSS ruleset to your styles.css file:

styles.css

. . .

.blue-div {

 height:100px;

 width:100px;

 background-color: blue;

}

Save the file and return to your index.html file. Without erasing

anything, add the following <div> element to your file and assign it the

blue-div class:

index.html

. . .

<div class="blue-div"></div>

Save your index.html file and load it in the browser. You should

receive something like this:

Two <divs> containers with margin space between

them

The browser should now display a blue box that is 100 pixels wide and
1000 pixels high. This blue box should be 100 pixels below the yellow box
on account of the yellow box’s margin. In general, surrounding elements
will by default be pushed away from an element on account of its margin.
Be aware, however, that the margins of adjacent elements will often overlap
due to margin collapse. The size of the overlapping margin is determined by
the size of the largest margin between the two elements.

Conclusion

In this tutorial you learned about the CSS box model and how to adjust the
size of each of its content, padding, border, and margin properties.
Understanding the behavior of these properties and how to set values for
them is useful when organizing and styling content on a webpage. This
knowledge will be useful when building the demonstration website in the
remaining tutorials. In the next tutorial, you will set up an index.html

file to serve as the website’s homepage.

How To Set Up Your CSS and HTML
Website Project

Written by Erin Glass

Introduction

In this tutorial, you will set up the folders and files necessary for building a
website with HTML and CSS. You will also prepare an index.html file

so that it is ready to receive HTML content in the tutorials ahead.

Prerequisites

If you have been following along with this tutorial series, you can continue
using the css-practice project directory, index.html file,

images folder, css folder, and styles.css file that you created

earlier in the series. If you have not been following along this tutorial series
and need instructions for setting up these folders and files, please see our
earlier tutorial in this series How To Set Up Your CSS and HTML Practice
Project.

Note: If you decide to create your own names for the folders or files,
make sure to avoid character spaces, special characters (such as !, #, %, or
others), and capital letters, as these can cause problems later on. Be aware
also that you will need to modify your file paths in some of the steps
throughout the remainder of this tutorial series to ensure that they
correspond with the names of your files.

https://www.digitalocean.com/community/tutorials/how-to-set-up-your-css-and-html-website-project
https://www.digitalocean.com/community/tutorials/how-to-set-up-your-css-and-html-practice-project

You should have a project folder named css-practice that contains

the following folders and files that are necessary to explore CSS in this
tutorial series:

A folder named css that contains the file styles.css

An empty folder named images

A file named index.html

In the first step of this tutorial, you will prepare the index.html file

so that it is ready to receive content in the tutorials ahead.

How To Prepare Your index.html File For HTML
Content

To prepare your index.html file to serve as your website’s homepage,

we’ll need to add a few important lines of HTML. These lines of HTML
will serve as instructions for the browser and will not be displayed on the
webpage itself. Make sure that your index.html file is empty (if you

have content from previous tutorials) and add the following code snippet to
the document:

index.html

<!DOCTYPE html>

<html lang="en">

 <head>

 <meta charset="utf-8">

 <title>Sammy the Shark</title>

 <link rel="stylesheet"

href="css/styles.css">

 </head>

 <body>

 </body>

</html>

Make sure to change the highlighted site title with a title of your own
choosing. Then save the index.html file. Before continuing, let’s

briefly review the code that you just added to understand its purpose:

The <!DOCTYPE html> declaration tells the browser which type of

HTML is being used in this document. It is important to declare this
value as there are multiple versions of the HTML standard, and
browsers need to know which to use. In this declaration, html

specifies the current web standard of HTML, which is HTML5.
The opening and closing <html> tags tell the browser that all content

inserted between these two tags should be interpreted as HTML. Inside
this tag, you also added the lang attribute, which specifies the

language of the webpage. In this example, the language is set to

English using the en language tag. For a full list of language tags,

visit the IANA Language Subtag Registry.
The opening and closing <head> tags creates a section in the HTML

document that typically contains information about the page, rather
than page content itself. Browsers do not display the information in a
<head> section.

The <meta charset="utf-8"> tag specifies the document’s

character set should be UTF-8, a unicode format that supports a
majority of characters from a wide variety of written languages.
The <title> tag tells the browser the name of the webpage. This

title appears on the browser tab and when the site is listed in search
results but it does not show up on the web page itself. Make sure to
replace “Sammy the Shark” with your name or a title of your
choosing if you want to personalize the site.
The <link rel="stylesheet"

href="css/styles.css"> tells the browser where to find the

stylesheet that contains the style rules. If you followed the instructions
earlier in this series How To Set Up Your CSS and HTML Practice
Project, your stylesheet should be located at this file path.
The opening and closing <body> tags will contain the main content

of the webpage. You’ll add the HTML content between these tags in
the tutorials ahead.

Conclusion

You have now created all of the folders and files necessary for creating a
website with HTML and CSS. You should also have an index.html file

https://www.iana.org/assignments/language-subtag-registry/language-subtag-registry
https://www.digitalocean.com/community/tutorials/how-to-set-up-your-css-and-html-practice-project

prepared with the necessary HTML content for serving as your website’s
homepage. In the next tutorial, you’ll explore how the demonstration site is
constructed and the steps you will take to recreate it.

https://css.sammy-codes.com/

An Overview of Our Demonstration
HTML and CSS Website

Written by Erin Glass
In this tutorial, you will explore the structure of the demonstration

website and a plan for recreating it in the tutorials ahead.

An Overview of the Demonstration Website

Visually, the site can be broken up into seven horizontal sections:

https://www.digitalocean.com/community/tutorials/an-overview-of-our-demonstration-html-and-css-website
https://css.sammy-codes.com/

Illustration of the demonstration website’s

sections

In the previous overview image, each of the seven sections is labeled
accordingly:

The “Header” section (at the top). Instructions for this section are
detailed in our tutorial How To Build the Header Section of Your
Website With CSS (Section 1)
The “About me” section (second from the top). Instructions for this
section are detailed in our tutorial [How To Build the About Me
Section of Your Website With CSS (Section 2)]
(https://www.digitalocean.com/community/tutorials/how-to-build-the-
about-me-section-of-your-website-with-css-section-2)
The “Projects” section (third from the top). Instructions for this section
are detailed in our tutorial How To Build a Tiled Layout With CSS
(Section 3)
The “Experience” section (fourth from the top). Instructions for this
section are detailed in our tutorial [How To Add a Resume or Work
History Section To Your Website With CSS (Section 4)].
(https://www.digitalocean.com/community/tutorials/how-to-add-a-
resume-or-work-history-section-to-your-website-with-css-section-4)
The “Education” and “Skills” section (fifth from the top). Instructions
for this section are detailed in our tutorial How To Add Your
Educational History and Skills To Your Website With CSS (Section 5)
The featured quote section (sixth from the top). Instructions for this
section are detailed in our tutorial How To Create a Featured Quote

https://www.digitalocean.com/community/tutorials/how-to-build-the-header-section-of-your-website-with-css-section-1
https://www.digitalocean.com/community/tutorials/how-to-build-a-tiled-layout-with-css-section-3
https://www.digitalocean.com/community/tutorials/how-to-add-your-educational-history-and-skills-to-your-website-using-css-section-5
https://www.digitalocean.com/community/tutorials/how-to-create-a-featured-quote-box-on-your-website-using-css-section-6

Box on Your Website With CSS (Section 6)
The static footer, which “sticks” to the bottom of the page. Instructions
for this section are detailed in our tutorial How To Create a Static
Footer With CSS (Section 7)

Each of these sections are created with the CSS properties for HTML
elements that you explored in the first half of the tutorial series. In the
remainder of this tutorial series, you will reconstruct each of these sections
in their own separate tutorial. If you are just beginning to learn CSS, we
recommend that you replicate the style choices in the tutorials including
size, color, and background images to keep things consistent with the
examples as you work through each tutorial.

At the end of this tutorial series there are suggestions for experimenting
with the style and layout of your website. These suggestions will
demonstrate how to personalize the content and remix these tutorials to
create new style and arrangement possibilities for your site.

Conclusion

In this tutorial, you explored the structure of the demonstration website and
an overview of the plan for recreating it. In the next tutorial, you’ll create a
CSS rule to style the entire body of the webpage and learn why this rule is
an important first step.

https://www.digitalocean.com/community/tutorials/how-to-create-a-featured-quote-box-on-your-website-using-css-section-6
https://www.digitalocean.com/community/tutorials/how-to-create-a-static-footer-with-html-and-css-section-7

How To Style the Body of a Website With
CSS

Written by Erin Glass
In this tutorial, you will style the body of a webpage with a CSS rule.

You will use this rule to apply and style a background image and set the
font family for the webpage. You will also create a style rule that changes
the color of all hyperlinked text to a color that better matches the
demonstration website’s color palette.

This exercise will be used to recreate the style of the demonstration site
but you can apply and modify the same rules used here for other
HTML/CSS website projects.

Prerequisites

To follow this tutorial, make sure you have set up the necessary files and
folders as instructed in a previous tutorial in this series How To Set Up You
CSS and HTML Practice Project.

For this tutorial, we suggest you use the background image from the
demonstration site which you can download from this link. You may use
another image as your background, but make that sure that the image is
large enough to fill the screen.

Note: To download the background image of the demonstration site, visit
this link and click CTRL + Left Click (on Macs) or Right Click

(on Windows) on the image and select “Save Image As” and save it as
background-image.jpeg to your "image’ folder.

https://www.digitalocean.com/community/tutorials/how-to-style-the-body-of-a-website-with-css
https://css.sammy-codes.com/
https://www.digitalocean.com/community/tutorials/how-to-set-up-your-css-and-html-practice-project
https://css.sammy-codes.com/images/background-image.jpeg
https://css.sammy-codes.com/images/small-profile.jpeg

Once you have selected an image, make sure it’s saved as “background-
image.jpeg” in your images folder. You are now ready to proceed to the

next step.

Adding a Background Image To Your Website With CSS

To declare style rules for the body of a webpage, you will need to create a
CSS rule for the body tag selector. These rules will then be applied to all

elements that are placed inside the opening and closing <html> tags that

you added to the index.html file in the earlier tutorial How To Set Up

Your CSS and HTML Website Project.
To add a background image to your site, create a CSS rule using the

<body> tag selector. Erase everything in your styles.css file (if you

have been following along with this series) and add the following ruleset:

styles.css

/* General Website Style rules */

body {

 font-family: "Helvetica", Sans-Serif;

 background-image: url("../images/background-

image.jpeg");

}

Take note of the highlighted file path, which tells the browser where to
locate the background image. If you have changed the name or location of
the image then you will need to adjust the file path here accordingly.

Let’s pause briefly to understand each of the declarations in this ruleset:

https://www.digitalocean.com/community/tutorials/how-to-set-up-your-css-and-html-website-project

/* General Website Style rules */ is a CSS comment,

which is not displayed by the browser. Like HTML comments, CSS
comments are useful for explaining and organizing your code for
future reference. Notice that CSS comments open and close with /*

and */ tags instead of <!-- and --> tags used for HTML

comments.
The font-family: "Helvetica", Sans-Serif;

declaration sets the font family (Helvetica) and generic font family
(Sans-Serif) for all the text on the webpage. (Note that you can specify
different font families for text content on the same webpage by adding
CSS rules later on). The generic font family is given as a backup in
case the first font family isn’t available and the browser needs to pick a
back up font. You can explore other fonts by replacing “Helvetica”
with other font names, such as Times , Courier , or Palatino .

The background-image: url("../images/background-

image.jpeg;") declaration tells the browser to add a background

image to the webpage using the file found with the specified file path.
Note that you have prepended ../ to the file path name to tell the

browser to locate the images folder in the directory above the

directory that contains the file you are working in (styles.css).

Save your styles.css file and load the index.html page in your

browser. For instructions on loading an HTML file, please visit our tutorial
step How To View An Offline HTML File In Your Browser .

You should receive a page with no content except for the background
image:

https://www.digitalocean.com/community/tutorials/how-to-use-and-understand-html-elements#how-to-view-an-offline-html-file-in-your-browser

Webpage with background image only

If you don’t receive an image, check to make sure your file path is
correct and that there are no errors in your index.html file and

styles.css file.

Changing the Color of Hyperlinked Text

Next, we’ll add a CSS rule that changes the color of all hyperlinked text to
a color that better matches the website color palette.

At the bottom of your styles.css file, add the following ruleset:

styles.css

a {

 color: #112d4e;

}

This ruleset will style any text marked up with an <a> tag with the

HTML color code #112d4e . The style will not be apparent until you add

<a> elements to your index.html page (which you will do in the last

tutorial How To Create a Static Footer With HTML and CSS. You can
change the style color by changing the HTML color code in this CSS rule.

Conclusion

You should now have a webpage with a large background image. In
addition, you declared a font family that will be applied when you begin to
add text content. Using rulesets like these allow you to change the font and
background image of a webpage by creating a ruleset for the body tag

selector. Finally, you created a style rule that specifies the color of any
hyperlinked text you add to the page.

In the next tutorial, you’ll recreate the header section of the
demonstration website.

https://www.digitalocean.com/community/tutorials/how-to-create-a-static-footer-with-html-and-css-section-7
https://css.sammy-codes.com/

How To Build the Header Section of Your
Website With CSS (Section 1)

Written by Erin Glass
In this tutorial, you will recreate the top header section of the

demonstration website using HTML and CSS. You can switch out Sammy’s
information with your own if you wish to experiment or personalize the
size. The methods that you use here can be applied to other CSS/HTML
website projects.

Screenshot of header section of demonstration

website

Prerequisites

To follow this tutorial, make sure you have set up the necessary files and
folders as instructed in a previous tutorial in this series How To Set Up You
CSS and HTML Practice Project.

Adding the Title and Subtitle To Your Webpage Header

https://www.digitalocean.com/community/tutorials/how-to-build-the-header-section-of-your-website-with-css-section-1
https://css.sammy-codes.com/
https://www.digitalocean.com/community/tutorials/how-to-set-up-your-css-and-html-practice-project

Our website header includes the title (“Sammy the Shark”), a subtitle
(“SENIOR SELACHIMORPHA AT DIGITALOCEAN”), and a small
profile image. These elements are wrapped inside a <div> container that

is styled with a class defined in the CSS stylesheet. You will recreate this
section by adding the text and image content, creating a class for the
<div> container, and then wrapping the text and image content in a

<div> container that is assigned the newly-created class.

To add a title and subtitle to your site, add the following highlighted code
snippet in between the opening and closing <body> tags in the

index.html file. Switch out Sammy’s information with your own if you

would like to personalize your site:

index.html

. . .

<body>

<!--Header content-->

 <h1>Sammy the Shark<h1>

 <h5>SENIOR SELACHIMORPHA AT

DIGITALOCEAN<h5>

</body>

In this code snippet, you have added the title Sammy the Shark and

assigned it the <h1> heading tag as it is the most important heading of this

webpage. You have also added the subtitle SENIOR SELACHIMORPHA

AT DIGITALOCEAN and assigned it the <h5> heading tag, as it is a less

important heading.
Note that you have also added the comment <!--Header content-

-> just before the title. A comment is used to save explanatory notes on

your code for future reference and is not displayed by the browser to site
visitors (unless they view the source code of the webpage). In HTML,
comments are written between <!-- and --> as demonstrated in the

code snippet above. Make sure to close your comment with the ending
comment tag (-->) or all of your content will be commented out.

Adding and Styling a Small Profile Image To Your
Webpage Header

Next, you’ll add a small profile image to the header section. Pick a profile
photo that you want to include on your site. If you don’t have a profile
photo, you can use any alternative image (such as the profile image of
Sammy) or create an avatar through a site like Getavataaars.com.

Once you have selected an image, save it to your images folder as

small-profile.jpeg .

Now add the profile image to the webpage by using an tag and

the src attribute assigned the file path of your profile image. Add the

following highlighted code snippet to your index.html file just after the

<!--Header content--> line and before the <h1>Sammy the

Shark<h1> line:

https://css.sammy-codes.com/images/small-profile.jpeg
https://getavataaars.com/

index.html

. . .

 <body>

 <!--Header content-->

 <img src="images/small-profile.jpeg"

alt="Sammy the Shark, DigitalOcean's mascot">

 <h1>Sammy the Shark<h1>

 <h5>SENIOR SELACHIMORPHA AT

DIGITALOCEAN<h5>

 </body>

</html>

Save the file and load it in the browser. Your webpage should now have a
title, subtitle, profile image, and background image:

Webpage with profile image, title, and subtitle

Notice that the image does not have the same styling as the profile image
in the demonstration site. To recreate the shape, size, and border of the
profile image in the demonstration site, add the following ruleset to your
styles.css file:

https://css.sammy-codes.com/

styles.css

. . .

/*Top header profile image*/

.profile-small {

 height:150px;

 border-radius: 50%;

 border: 10px solid #FEDE00;

}

Before moving on, let’s review each line of code you just added:

/*Top header profile image*/ is a CSS comment for

labeling the code.
The text .profile-small refers to the name of the class we’re

defining with the ruleset. This class will be applied to the profile image
in the next step.
The declaration height:150px; sets the height of the image to

150 pixels and automatically adjusts the width to maintain the image
size proportions.
The declaration border-radius: 50%; rounds the edges of the

image into a circular shape.
The declaration border: 10px solid #FEDE00; gives the

image a solid border that is 10 pixels wide and has the HTML color
code #FEDE00 .

Save the file and return to your index.html file to add the

profile-small class to your tag like so:

index.html

. . .

 <img src="images/small-profile.jpeg"

class="profile-small" alt="Sammy the Shark,

DigitalOcean's mascot">

. . .

Save the file and reload it in your browser. Your profile image should
now have a height of 150 pixels, a circular shape, and a yellow border:

Header with styled profile image

In the next step, you’ll apply additional styling to the title, subtitle, and
profile image as a whole.

Styling and Positioning the Header Content With CSS

You will now define a class with CSS to style and position the header
content. Return to the styles.css file and create the header class by

adding the following CSS ruleset:

styles.css

. . .

/* Header Title */

.header {

 padding: 40px;

 text-align: center;

 background: #f9f7f7;

 margin:30px;

 font-size:20px;

}

Let’s pause briefly to understand each line of the code that you just
added:

The /* Header Title */ is a comment, which is not displayed

by the browser.
The text .header is the name of the class selector we’re creating

and defining with this ruleset.

https://www.digitalocean.com/community/tutorials/how-to-create-classes-with-css

The padding: 40px; declaration creates 40 pixels of padding

between the content and the border of the element.
The text-align: center; declaration moves the content to the

center of the element. You can also adjust the value to left or

right to align the text accordingly.

The background: #f9f7f7; declaration sets the color to the

specific HTML color code used in the demonstration website. This
tutorial will not cover HTML color codes in this tutorial series, but you
can also use HTML color names (black , white , gray , silver ,

purple , red , fuchsia , lime , olive , green , yellow ,

teal , navy , blue , maroon , and aqua) to change the color

value of this property.
The margin:30px; declaration creates a margin of 30 pixels

between the perimeter of the element and the perimeter of the viewport
or any surrounding elements.
The font-size:20px; declaration increases the size of both the

title and subtitle.

Save your styles.css file. Next, you will apply this header class

to your header content. Return to the index.html page and wrap the

header content (that you already added to your file) in a <div> tag that is

assigned the header class:
. . .

<!--Section 1: Header content-->

 <div class="header">

 <img src="images/small-profile.jpeg"

class="small-profile.jpeg" alt="Sammy the Shark,

DigitalOcean's mascot">

 <h1>Sammy the Shark<h1>

 <h5>SENIOR SELACHIMORPHA AT DIGITALOCEAN<h5>

 </div>

 </body>

</html>

Save the index.html file and reload it in your browser. Your title,

subtitle, and profile image should now be styled inside a <div> container

according to the rules you declared with the header class:

Header content now centered and styled

Conclusion

You have now recreated the header section of the demonstration website on
your webpage using HTML and CSS. You added and styled a title, subtitle,
and profile image using <div> containers and CSS classes. If you are

interested, you can continue to explore design possibilities by modifying
your CSS rules for your header content.

When you are ready, you can continue to the next tutorial where you will
recreate the second section of the demonstration site.

How To Build the About Me Section of
Your Website With CSS (Section 2)

Written by Erin Glass
In this tutorial, you will recreate the second section of the demonstration

website using CSS. Feel free to switch out Sammy’s information with your
own if you wish to personalize the size. The methods you learn here can be
applied to other CSS/HTML website projects.

The second section of the site contains two content boxes, one that
contains text and one that contains a large profile photo:

Screenshot of the second section of the website

Prerequisites

To follow this tutorial, make sure that you have set up the necessary files
and folders as instructed in a previous tutorial in this series How To Set Up
You CSS and HTML Practice Project.

https://www.digitalocean.com/community/tutorials/how-to-build-the-about-me-section-of-your-website-with-css-section-2
https://css.sammy-codes.com/
https://www.digitalocean.com/community/tutorials/how-to-set-up-your-css-and-html-practice-project

You will need a profile image to place in the content box on the right. If
you don’t have a profile image, you can use this image for demonstration
purposes.

Note: To download the large profile image, visit this link and click CTRL

+ Left Click (on Macs) or Right Click (on Windows) on the

image and select “Save Image As” and save it as large-

profile.jpeg to your images folder.

Before proceeding, make sure your selected image is saved in your
images folder as large-profile.jpeg .

Creating Style Rules For Text and Image Content Boxes

To create these two content boxes, you will first define a column class in
the styles.css file that styles the boxes for this purpose. Then you will

add the text and image content to the HTML document.
Return to the styles.css file and copy and paste the following

rulesets at the bottom of the file:

https://css.sammy-codes.com/images/large-profile.jpeg
https://css.sammy-codes.com/images/large-profile.jpeg

styles.css

. . .

/* Include padding and border in total box size

*/

* {

 box-sizing: border-box;

}

/* Create two equal columns that float next to

each other */

.column-2 {

 float: left;

 width: 45%;

 padding: 40px;

 padding-left:70px;

 padding-right: 70px;

 height: 475px;

 margin:30px;

 margin-right:30px;

 margin-bottom: 70px;

 background-color: #FEDE00;

 line-height:2;

}

Before moving on, let’s pause to understand each of the rulesets we’ve
just added.

The first ruleset uses the “* ” selector to indicate that the ruleset should

be applied to all HTML elements and classes. This ruleset declares the
box-sizing property’s value as border-box , which adjusts the total

calculated width and height of a CSS element to include its padding and
border size. By default, width and height sizes of an element refer only to
the content of an element. Setting the box-sizing property to

border-box makes it easier to adjust the total width and height of an

element and can be helpful when laying out content on a page. To read
more about the CSS box model, please visit our tutorial How To Adjust the
Content, Padding, Border, and Margins of an HTML Element With CSS.

The second ruleset defines a class named “column-2” with sizing
specifications that allow for two columns to be displayed side by side on the
page. This class is named column-2 to differentiate it from columns with

other sizes that you will create classes for later on in the tutorial.
Some of the values and properties in this ruleset have not yet been

covered in this tutorial series:

The float:left; declaration instructs the element to float to the

left side of the container it’s inside (in this case the viewport itself)
while allowing surrounding content to flow around its right side. You
can also set the float property value to right or none , though

this tutorial uses the left value to recreate the demonstration

website.
The width: 45%; declaration sets the element’s width to 45% of

the width of its container, which in this case is the viewport itself.
Setting sizes (such as width) in percentages instead of pixels can be

https://www.digitalocean.com/community/tutorials/how-to-understand-the-css-box-model
https://www.digitalocean.com/community/tutorials/how-to-create-classes-with-css

useful when you want the element to resize according to the size of the
container in which it’s situated. Note, however, that dynamic sizing
can be a tricky process—there are multiple methods for creating
responsive elements which can be implemented after establishing a
foundation in CSS.
The background-color: #FEDE00; sets the element’s

background color to the HTML color code “#FEDE00”.
The line-height:2; increases the spacing between lines.

If you want to learn more about the other declarations, please review
the previous sections in this tutorial series on setting the sizes of
content, padding, and margins.

Adding the “About me” Content Box

Next, you will add the “About me” content box to the webpage using the
column-2 class that you just created. Save your styles.css file and

return to the index.html file. Add the following code after the closing

</div> tag in your header section, before the closing </body> tag :

https://www.digitalocean.com/community/tutorials/how-to-understand-the-css-box-model#how-to-adjust-the-content-size-of-an-html-element-with-css
https://www.digitalocean.com/community/tutorials/how-to-understand-the-css-box-model#how-to-adjust-the-padding-size-of-an-html-element-with-css
https://www.digitalocean.com/community/tutorials/how-to-understand-the-css-box-model#how-to-adjust-the-margin-size-of-an-html-element-with-css

index.html

. . .

<!--Section 2: About me-->

 <div class="column-2">

 <h1>About me</h1>

 <p>Hi! I'm Sammy the Shark, Senior

Selachimorpha at DigitalOcean by day, dabbler

in all things dev by night. This site is a

demonstration website for the tutorial series "

<a

href="https://www.digitalocean.com/community/tu

torial_series/how-to-build-a-website-with-

css">How To Build a Website With CSS,"

which walks you through building and

customizing this website from start to finish.

</p>

 <p>If you're following this

tutorial series, you can replace this text with

your own "About Me" content.</p>

 </div>

. . .

Save the file and load it in the browser. For instructions on loading an
HTML file, please visit our tutorial step How To View An Offline HTML
File In Your Browser.

You should now have a yellow box on the left side of the webpage that
contains text:

Webpage with yellow div box with un-styled text

Note that your webpage should still contain the header content you added
in the previous tutorial of this series How To Build the Header Section of
Your Website With CSS.

Let’s briefly review how this HTML code is functioning:

The first line in this code snippet (<!--Section 2: About me-

->) is a comment that helps organize the HTML content. It will not

display in the browser and is included here for reference later.
The next line of code (<div class="column-2"

style="background-color:#FEDE00;">) creates a <div>

https://www.digitalocean.com/community/tutorials/how-to-use-and-understand-html-elements#how-to-view-an-offline-html-file-in-your-browser
https://www.digitalocean.com/community/tutorials/how-to-build-the-header-section-of-your-website-with-css-section-1

container, assigns it the style of the column-2 class you defined in

the styles.css file, and uses the HTML inline style attribute to

assign it the background color #FEDE00 .

The <h1> and <p> tags that follow contain the text you are inserting

into the “About me” text box. Notice that you have closed the <div>

container at the end of this text. You can switch out Sammy’s text with
your own text if you plan on personalizing your website.

Adding the Profile Image Content Box

Next, you will add the second content box that contains the large profile
image. There are a number of ways you can add an image box, but in this
tutorial you’ll add the large profile image by making it the background
image of another <div> container that is assigned the column-2 class.

Return to the styles.css file and add the following code snippet to

the bottom of the document:

styles.css

. . .

/* Large profile image */

.large-profile {

 background: url('../images/large-

profile.jpeg');

 background-size: cover;

 background-position: center;

}

In this code snippet you have added a comment to organize the CSS rules
and created and defined the new class large-profile that you’ll use to

style the box that holds the large profile image. In this ruleset, the
background: url('images/large-profile.jpeg');

declaration tells the browser to use the image found at the specified file path
as the background image of the element. The background-size:

cover declaration fits the image to cover the space of the container in

which it is situated, the background-position:center declaration

centers the image inside the container.
Next you will add a <div> container that is assigned both the

column-2 class and the large-profile class to recreate the box

with the large profile image.
Save your styles.css file and return to the index.html file. Add

the following code snippet below the closing </div> tag of your first

column and above the closing </body> tag:
. . .

 <div class="column-2 large-profile">

 </div>

This code snippet creates a <div> container styled according to the

rules declared in the column-2 class and the profile-picture

class.
Save both files and reload index.html in your browser. Your

webpage should now have the text box and image box as styled in the
demonstration website (and pictured in the first image of this tutorial). Note
that your webpage should also still include the header content you created
in the previous tutorial. You can continue experimenting with the declared

values in the column-2 and profile-large classes to explore

different design possibilities.

Conclusion

You have now created and styled content boxes for text and images using
CSS. In the next tutorial, you will recreate the third section of the website.
In the process, you will arrange content into two rows of four boxes and
apply a pseudo-class that will cause the boxes to change color when the
user hovers over them with their cursor.

How To Build a Tiled Layout With CSS
(Section 3)

Written by Erin Glass
In this tutorial, you will recreate the tiled layout of the “Projects” section

of the demonstration website by styling eight HTML <div> containers

with CSS classes. You will also add the hover pseudo-class to these

elements so that they change color when a user hovers over them. Feel free
to switch out Sammy’s information with your own if you wish to
personalize the size. The methods you use here can be applied to other
CSS/HTML website projects.

Gif of “projects” section of the demonstration

website

https://www.digitalocean.com/community/tutorials/how-to-build-a-tiled-layout-with-css-section-3
https://css.sammy-codes.com/
https://www.digitalocean.com/community/tutorials/how-to-create-classes-with-css

Prerequisites

To follow this tutorial, make sure you have set up the necessary files and
folders as instructed in a previous tutorial in this series How To Set Up You
CSS and HTML Practice Project.

Adding and Styling a Header Title

To get started, add the heading title “Projects” to a new section on the
webpage, making sure not to delete any content you’ve added from the
previous tutorials. Add the following code snippet after the last closing
</div> tag in the index.html file:

index.html

. . .

<!--Section 3: Projects-->

 <h2 >Projects</h2>

. . .

The first line of this code snippet is a comment to label the code you will
add to create the third section of the website. A comment is used to save
explanatory notes on your code for future reference and is not displayed by
the browser to site visitors (unless they view the source code of the
webpage). The second line adds the title text “Projects” and assigns it the
heading element <h2> .

https://www.digitalocean.com/community/tutorials/how-to-set-up-your-css-and-html-practice-project

Next, you will style the heading title by creating a section-

heading class. Return to the styles.css file and copy and paste the

following code snippet at the bottom of the file:

styles.css

. . .

/* Section 3 */

.section-heading {

 text-align:center;

 color:#102C4E;

 margin-top: 150px;

 margin-bottom:70px;

 font-size: 35px;

}

This code snippet defines the style for the section-heading class.

Please review the previous sections in this tutorial series on setting the sizes
of content, padding, and margins.

Next you will add the “section-heading” class to the header title
“Projects” in the HTML file. Return to the index.html file and add the

class to the HTML element like so:

https://www.digitalocean.com/community/tutorials/how-to-understand-the-css-box-model#how-to-adjust-the-content-size-of-an-html-element-with-css
https://www.digitalocean.com/community/tutorials/how-to-understand-the-css-box-model#how-to-adjust-the-padding-size-of-an-html-element-with-css
https://www.digitalocean.com/community/tutorials/how-to-understand-the-css-box-model#how-to-adjust-the-margin-size-of-an-html-element-with-css

index.html

<!--Section 3: Projects—>

 <h2 class="section-heading">Projects</h2>

Save both files and load your web page in the browser. For instructions
on loading an HTML file, please visit our tutorial step How To View An
Offline HTML File In Your Browser. The header should now be centered on
the page and its size, positioning, and color should be adjusted like in the
following image:

Styled project heading on webpage

Adding and Styling Tiled Project Boxes

Now you will add the eight project boxes below the section header. To get
started, you’ll create a CSS class that allows us to style <div> containers

in a way that will allow four of them to fit side by side on the webpage.
Return to the styles.css file and add the following code snippet at

the bottom of the document:

https://www.digitalocean.com/community/tutorials/how-to-use-and-understand-html-elements#how-to-view-an-offline-html-file-in-your-browser

styles.css

. . .

/* Sizing for Project Containers */

.column-4 {

 float: left;

 width: 21%;

 padding: 10px;

 margin:20px;

 height: 250px;

}

In this code snippet you have defined the class column-4 and specified

values that allow for four columns to be displayed side by side on the page:

The float: left; declaration instructs the element to float to the

left side of the container it’s inside (in this case the webpage) while
allowing surrounding content (in this case the other project boxes) to
rest on its right side.
The width: 21%; declaration sets the element’s width to 21% of

the width of its container, which in this case is the webpage. Setting
sizes (such as width) in percentages instead of pixels can be useful
when you want the element to resize according to the size of the
container it’s inside. Note, however, that dynamic sizing can be a
tricky process—there are multiple methods for creating responsive
elements which can be implemented after establishing a foundation in
CSS.

If you want to learn more about the other declarations, please review
the previous sections in this tutorial series on setting the sizes of
content, padding, and margins.

Next, you will create a class for each of the eight boxes so that you can
style them differently, as well as add a featured image to the first and last
box to match the demonstration site. To get started, save one or two images
to use as a featured image in your images folder. If you don’t have an
image, you can download the images of a robot that you used in the
demonstration site. We'll use this robot image on the right side of the page
and this robot image on the left side.

Note: To download the robot images, visit links and click CTRL +

Left Click (on Macs) or Right Click (on Windows) on the image

and select “Save Image As” and save it as project-left.jpeg and

‘project-right.jpeg’ to your images folder.
To create a class for each project box, add the following code snippet to

the bottom of your styles.css file:

https://www.digitalocean.com/community/tutorials/how-to-understand-the-css-box-model#how-to-adjust-the-content-size-of-an-html-element-with-css
https://www.digitalocean.com/community/tutorials/how-to-understand-the-css-box-model#how-to-adjust-the-padding-size-of-an-html-element-with-css
https://www.digitalocean.com/community/tutorials/how-to-understand-the-css-box-model#how-to-adjust-the-margin-size-of-an-html-element-with-css
https://css.sammy-codes.com/images/project-right.jpeg
https://css.sammy-codes.com/images/project-left.jpeg

styles.css

. . .

/* Color and Images for Project Containers */

.project-1 {

 background: url('../images/project-

left.jpeg');

 background-size: cover;

}

.project-2 {

 background-color:white;

}

.project-3 {

 background-color:#209BFF;

}

.project-4 {

 background-color:#112d4e;

}

.project-5 {

 background-color:#F9F7F7;

}

.project-6 {

 background-color:#209BFF;

}

.project-7 {

 background-color:#ffffff00;

}

.project-8 {

 background: url('../images/project-

right.jpeg');

 background-size: cover;

}

If you are using your own images, make sure you have saved them to
your images folder and that you have specified the correct file path in the
highlighted area in the ruleset for class project-1 and class

project-8 .

Let’s pause briefly to review the code we’ve just written. In the rulesets
for class project-1 and project-8 , you have added a background

image, specified its file path location and declared that the background
image should be fitted to “cover” the entire element.

In the rulesets for project-2 through project-7 , you have

specified different background colors using HTML color codes. Note that
you have made the background color transparent for project-7 as a

design choice, but you can change this as you wish. You can also explore

different background images and colors for each of these classes by
experimenting with their values.

Next you will add a ruleset that changes the font size and positioning of
the text that will be added to these project boxes. Add the following ruleset
to the bottom of the styles.css file:

styles.css

. . .

.project-text {

 text-align:center;

 font-size:50px;

}

Save your styles.css file. Now you will add <div> containers to

the HTML document and style them with the CSS classes you just defined.
Return to the index.html file and add the following code snippet below

this line: <h2 class="section-heading">Projects</h2> :

index.html

. . .

<div class="column-4 project-1">

</div>

<div class="column-4 project-2">

 <h2 class="project-text">WEB
DESIGN</h2>

</div>

<div class="column-4 project-3">

 <h2 class="project-text">CHAT
BOTS</h2>

</div>

<div class="column-4 project-4">

 <h2 class="project-text">GAME

DESIGN</h2>

</div>

<div class="column-4 project-5">

 <h2 class="project-text">TEXT

ANALYSIS</h2>

</div>

<div class="column-4 project-6">

 <h2 class="project-text">JAVA

SCRIPT</h2>

</div>

<div class="column-4 project-7">

 <h2 class="project-text">DATA

PRIVACY</h2>

</div>

<div class="column-4 project-8">

</div>

Save your index.html file and reload it in the browser. You should

receive output like the following image:

Styled project containers on webpage

You should have two rows of four boxes, each styled according to the
column-4 and project-x classes they’ve been assigned with the

class attribute. In the HTML code, you have also added text content (such
as “CHAT BOTS”) and assigned all text content the class project-

text.

You have also added the HTML line break element (
) to create a

line break between the two words in each box. Feel free to change this text
now or later on if you wish to personalize your website. You can also use
the HTML hyperlink element <a> to link this text to new pages you create

for your website. You’ll explore this option in more detail at the end of the
tutorial series.

Next, you will add a pseudo-class to make the boxes change color when
the user hovers their cursor over them.

Changing Content Color With User Interaction

If you return to the demonstration website and hover your cursor over the
boxes in the “Projects” section, you’ll notice that they change color. This
color change is achieved by adding the hover pseudo-class to each of

project classes.
As you may recall if you followed the tutorial on pseudo-classes earlier

in this series, pseudo-classes are created by appending a colon and the
pseudo-class name to the name of the class you are trying to modify. To add
the :hover pseudo-class to the project classes, add the following rulesets

at the bottom of your styles.css file:

https://www.digitalocean.com/community/tutorials/how-to-create-and-link-to-additional-website-pages-with-html
https://css.sammy-codes.com/
https://www.digitalocean.com/community/tutorials/how-to-use-css-pseudo-classes

styles.css

. . .

/* Hover classes for individual project boxes

*/

.project-2:hover {

 background-color:#FEDE00;

}

.project-3:hover {

 background-color: #FEDE00;

}

.project-4:hover {

 background-color: #FEDE00;

}

.project-5:hover {

 background-color: #FEDE00;

}

.project-6:hover {

 background-color: #FEDE00;

}

.project-7:hover {

 background-color: #FEDE00;

}

In this code snippet you created hover classes for six of the eight

project classes. This hover class instructs the element to change its color

to the HTML color code #FEDE00 when the user hovers the cursor over

the box. Note that you have only added the hover class to the project boxes
that contain text (and not to the project boxes that contain background
images).

Save the styles.css file and reload index.html in the browser.

Check to make sure that the hover pseudo-class is working by hovering

your cursor over the project boxes. They should change color when your
cursor passes over them:

Gif demonstrating hover style on project boxes

Conclusion

You have now laid out HTML content in boxes using CSS classes and
added a hover pseudo-class to change their appearance when a user’s

cursor hovers over them. You can continue to experiment with these
methods by changing the style declarations in these classes or changing the
size and quantity of boxes you use to organize the layout of your page.

In the next tutorial, you will add an “Employment” section to a website
using HTML tables.

How To Add a Resume or Employment
History Section To Your Website With
CSS (Section 4)

Written by Erin Glass
In this tutorial, you will recreate the “Employment” section of the

demonstration website (or fourth section) using HTML tables and CSS
classes. Feel free to switch out Sammy’s information with your own if you
wish to personalize the size. The methods you use here can be applied to
other CSS/HTML website projects.

Employment section of demonstration website

To build this section, you will add and style a section heading, add and
style a wide column, and add and style an HTML table inside of the

https://www.digitalocean.com/community/tutorials/how-to-add-a-resume-or-work-history-section-to-your-website-with-css-section-4
https://css.sammy-codes.com/

column.

Prerequisites

To follow this tutorial, make sure you have set up the necessary files and
folders as instructed in a previous tutorial in this series How To Set Up You
CSS and HTML Practice Project.

https://www.digitalocean.com/community/tutorials/how-to-set-up-your-css-and-html-practice-project

Creating a Section Break and Section Title

To get started, create a class that will add space between the content in the
prior “Projects” section and this “Employment” section. Add the following
CSS comments and CSS ruleset to the bottom of your styles.css file:

styles.css

. . .

/* Section 4 */

/* Add space between sections */

.section-break {

 margin:50px;

 height:500px;

}

In this code snippet you have added a CSS comment labeling the CSS
rulesets for “Section 4” and a CSS comment explaining the purpose of the
section-break class. You will assign this class to an empty <div> in

the index.html file, which will give it a height of 500 pixels and a

margin of 50 pixels. Though the <div> will be invisible, it’s height will

act as a section break by pushing subsequent content 500 pixels down the
page.

Return to your index.html file and add the following code snippet:

index.html

. . .

<!--Section 4: Employment—>

<div class="section-break"> </div>

<h2 class="section-heading">Experience</h2>

This code snippet adds an HTML comment to label the HTML code used
for the fourth section of the website, and adds a <div> container assigned

the section-break class that you just created. The code snippet also

adds the “Experience” section heading and styles it using the class
section-heading that you created in the previous tutorial How To

Build a Tiled Layout With CSS.
Note: If you have not been following along with this tutorial series, you

can add the section-heading class to your styles.css file by

adding the following code snippet to the bottom of the file:

styles.css

. . .

.section-heading {

 text-align:center;

 color:#102C4E;

 margin-top: 150px;

 margin-bottom:70px;

 font-size: 35px;

}

https://www.digitalocean.com/community/tutorials/how-to-build-a-tiled-layout-with-css-section-3
https://www.digitalocean.com/community/tutorial_series/how-to-build-a-website-with-css

Save your index.html file and load it in the browser. You should now

have a section heading named “Experience” following a section break:

Screenshot of “Experience” heading on

demonstration website

Styling a Wide Column and Table

Next, you will create classes that will allow you to style the wide white
column and the table you will place inside it. Add the following code
snippet at the bottom of the styles.css file:

styles.css

. . .

/* Wide column */

.column-1 {

 width: 90%;

 height: auto;

 padding-top:70px;

 padding-left:70px;

 padding-bottom:70px;

 margin:auto;

 margin-bottom:50px;

 margin-top: 75px;

 background-color:white;

}

/* Table formatting */

.table-style {

 width:100%;

 border-spacing: 24px;

}

In the first ruleset, you have declared a number of style rules for the class
column-1 . Note that you have specified the width in a percentage so

that the column will change size according to the width of the viewport.
You have specified the height to auto , which will allow the table to

adjust its height according to the height needs of the HTML content you

place inside. You have also created a rule to make the background color of a
<div> assigned this class white .

If you want to learn more about the other declarations in this ruleset,
please review the previous sections in this tutorial series on setting the sizes
of content, padding, and margins.

In the second ruleset, you have defined the class table-style and

declared a number of rules. The width:100% declaration makes the

table’s width take up the entire width of the container in which it’s situated,
which will be the wide column you’re creating. The border-

spacing:24px; declaration puts 24 pixels of space between the cells of

the table, allowing the content of the table to take up the width of the
column. If you didn’t include this rule, each of the table cells would be
much closer together.

Adding the Column and Table

Now you will add the column and table to the HTML file. Save your
styles.css file, return to the index.html file and add the following

code snippet just below the HTML line of code <h2

class="section-heading">Experience</h2> :

https://www.digitalocean.com/community/tutorials/how-to-understand-the-css-box-model#how-to-adjust-the-content-size-of-an-html-element-with-css
https://www.digitalocean.com/community/tutorials/how-to-understand-the-css-box-model#how-to-adjust-the-padding-size-of-an-html-element-with-css
https://www.digitalocean.com/community/tutorials/how-to-understand-the-css-box-model#how-to-adjust-the-margin-size-of-an-html-element-with-css

index.html

. . .

<div class="column-1">

 <h2>Employment</h2>

 <table class="table-style">

 <tr>

 <td>Freelance designer</td>

 <td>Seven Seas</td>

 <td>2015-present</td>

 </tr>

 <tr>

 <td>Associate Sea Creature</td>

 <td>Small Pond Productions</td>

 <td>2019-2020</td>

 </tr>

 <tr>

 <td>Associate Surfer</td>

 <td>Open Watery Web</td>

 <td>2018-2019</td>

 </tr>

 <tr>

 <td>Open Web Advocate</td>

 <td>Kiddie Pool Kubernetes</td>

 <td>2017-2018</td>

 </tr>

 <tr>

 <td>Assistant Shark</td>

 <td>Small Pond Pictures</td>

 <td>2016-2017</td>

 </tr>

 </table>

 </div>

</div>

In this code snippet, you have added a <div> container styled

according to the column-1 class and placed an HTML table inside styled

with the table-style class. Inside the table, you have placed the

Employment history content. The <tr> tag opens up a table row where

the following three sets of table data (marked up with the <td> tag) are

inserted. To read more about how HTML tables work, please visit our
tutorial How To Create Tables With HTML

Save both files and reload your web page in the browser. Your webpage
should now have a single wide column that contains a table with four rows
and three columns as pictured at the beginning of this tutorial.

Note that the first three <td> elements are inserted between the first

opening and closing set of <tr> tags. You can continue to add rows by

using the same table row and data format and the column’s height will
adjust accordingly because you have set the height to auto for the

column-1 class. Or, you can add additional columns by adding <td>

elements inside the <tr> rows.

https://www.digitalocean.com/community/tutorials/how-to-create-tables-in-html

Conclusion

You have now created and styled a table with CSS to display employment
history content in a structured layout. Experiment with sizing and adding
rows and columns to customize tables for different purposes. In the next
tutorial, you will continue exploring table layout possibilities by creating a
table for “Education” and “Skills”.

How To Add Your Educational History
and Skills To Your Website Using CSS
(Section 5)

Written by Erin Glass
In this tutorial, you will recreate the “Education” section and “Skills”

section (or fifth section) of the demonstration website using HTML tables
and CSS classes. Feel free to switch out Sammy’s information with your
own if you wish to personalize your website. The methods you use here can
be applied to other CSS/HTML website projects.

Education and Skills section of demonstration

website

To build these sections, you’ll create a CSS class that styles two equal-
sized content boxes that can fit side by side on the webpage. You’ll then add
a table inside each box where you will add text content.

https://www.digitalocean.com/community/tutorials/how-to-add-your-educational-history-and-skills-to-your-website-using-css-section-5
https://css.sammy-codes.com/

Prerequisites

To follow this tutorial, make sure you have set up the necessary files and
folders as instructed in a previous tutorial in this series How To Set Up You
CSS and HTML Practice Project.

Creating and Styling Two Equal-Sized Tables

First, copy and paste the following code snippet at the bottom of your
styles.css file:

https://www.digitalocean.com/community/tutorials/how-to-set-up-your-css-and-html-practice-project

styles.css

. . .

/* Fifth section */

.column-2a {

 float: left;

 width: 45%;

 padding: 40px;

 padding-left:70px;

 padding-right: 70px;

 padding-bottom:60px;

 height:450px;

 margin:30px;

 margin-right:30px;

 margin-bottom: 40px;

 background-color:white;

}

This code snippet creates the class column-2a , which is like the

column-2 class you created to style the “About” section in a previous

tutorial in this series, except that its height property is set to 450px. If

you change the amount of content in this box, you may need to adjust the
height accordingly, otherwise it may overflow or be cut off. If you want to
learn more about the other declarations, please review the previous sections
in this tutorial series on setting the sizes of content, padding, and margins.

https://www.digitalocean.com/community/tutorials/how-to-build-the-about-me-section-of-your-website-with-css-section-2
https://www.digitalocean.com/community/tutorials/how-to-understand-the-css-box-model#how-to-adjust-the-content-size-of-an-html-element-with-css
https://www.digitalocean.com/community/tutorials/how-to-understand-the-css-box-model#how-to-adjust-the-padding-size-of-an-html-element-with-css
https://www.digitalocean.com/community/tutorials/how-to-understand-the-css-box-model#how-to-adjust-the-margin-size-of-an-html-element-with-css

Save the styles.css file before you proceed.

Next, return to the index.html file and paste the following code

snippet after the last closing </div> tag:

index.html

. . .

<!--Section 5: Education and Skills-->

<div class="column-2a">

 <h2>Education</h2>

 <table class="table-style">

 <tr>

 <td>Barnacle Bootcamp</td>

 <td>2020</td>

 </tr>

 <tr>

 <td>Seaweed University</td>

 <td>2019-2020</td>

 </tr>

 <tr>

 <td>Highwater High School</td>

 <td>2018-2019</td>

 </tr>

 <tr>

 <td>Middle-Sized Pond Middle

School</td>

 <td>2017-2018</td>

 </tr>

 <tr>

 <td>Minnow Elementary School</td>

 <td>2016-2017</td>

 </tr>

 <tr>

 <td>Phytoplankton Preschool</td>

 <td>2015-2016</td>

 </tr>

 </table>

</div>

This code snippet creates a column using the “column-2a” class and
inserts a table styled with the table-style class created in the previous

tutorial. Inside the table, you have placed your Educational history content.
The <tr> tag opens up a table row where the following three sets of table

data (marked up with the <td> tag) are inserted. To read more about how

HTML tables work, please visit our tutorial How To Create Tables With
HTML

Save the file and reload your browser to check that the table is showing
up correctly. You should have table like the following screenshot:

https://www.digitalocean.com/community/tutorials/how-to-add-a-resume-or-work-history-section-to-your-website-with-css-section-4
https://www.digitalocean.com/community/tutorials/how-to-create-tables-in-html

Table with educational content

Next, you will add the second table that lists Sammy’s skills. Return to
the index.html file and paste the following code snippet after the last

closing </div> tag:

index.html

. . .

 <div class="column-2a">

 <h2>Skills</h2>

 <table class="table-style">

 <tr>

 <td>Social Media</td>

 <td>⭐⭐⭐⭐⭐</td>
 </tr>

 <tr>

 <td>Public Speaking</td>

 <td>⭐⭐⭐⭐⭐</td>
 </tr>

 <tr>

 <td>Internet Ethics Ambassador</td>

 <td>⭐⭐⭐⭐</td>
 </tr>

 <tr>

 <td>Content production</td>

 <td>⭐⭐⭐⭐⭐</td>
 </tr>

 <tr>

 <td> HTML</td>

 <td>⭐⭐⭐</td>
 </tr>

 <tr>

 <td> CSS</td>

 <td>⭐⭐⭐</td>
 </tr>

 </table>

 </div>

This code snippet works exactly like the previous code snippet: it creates
a column using the column-2a class and inserts a table styled with the

table-style class. Note that you are using emojis to create the star

image. You can use any emoji as HTML text content.
Save the file and reload your browser to check that the table is showing

up correctly. You should now have two tables displayed side by side as
shown in the image at the beginning of this tutorial.

Conclusion

You have now added text content using styled tables. You can experiment
with sizing and adding rows and columns to customize tables for different
purposes. In the next tutorial, you will create a content box with a large
featured quote on your website.

How To Create a Featured Quote Box
On Your Website Using CSS (Section 6)

Written by Erin Glass
In this tutorial, you will add a featured quote to your website using CSS

as displayed in the sixth section of the demonstration website. You might
use this section to feature a favorite quote, a testimony about your work, or
a message to your site visitors. You can also hyperlink this quote to another
webpage if you wish. The methods you use here can be applied to other
CSS/HTML website projects.

Featured quote section on demonstration website

Prerequisites

To follow this tutorial, make sure you have set up the necessary files and
folders as instructed in a previous tutorial in this series How To Set Up You

https://www.digitalocean.com/community/tutorials/how-to-create-a-featured-quote-box-on-your-website-using-css-section-6
https://css.sammy-codes.com/
https://www.digitalocean.com/community/tutorials/how-to-set-up-your-css-and-html-practice-project

CSS and HTML Practice Project.

Creating Style Rules For the Featured Quote Section

To create the featured quote section, you will create a class to style the
container and a class to style the featured text. In your styles.css file,

add the following code snippets:

https://www.digitalocean.com/community/tutorials/how-to-set-up-your-css-and-html-practice-project

styles.css

. . .

/* Section 6: Featured Quote */

.column-quote {

 width: 90%;

 height: 475px;

 padding: 40px;

 padding-left:70px;

 padding-right: 70px;

 padding-bottom:100px;

 margin:auto;

 margin-bottom:150px;

 border: 20px solid #FEDE00;

}

.quote {

 font-size:80px;

 font-weight:bold;

 line-height: 1;

 text-align: center;

}

In this code snippet, you have added the CSS comment /* Section

6: Featured Quote */ to label this section of the CSS code. Then,

you have defined the class column-quote , which you will use to style

the quote box, and specified the size, padding, margins, and border of the
container.

Note that the margin is set to auto , which horizontally centers the

container in the middle of the page. In addition, the bottom margin is set to
200 pixels to give some space to the bottom of the page. If you want to
learn more about the other declarations, please review the previous sections
in this tutorial series on setting the sizes of content, padding, borders, and
margins.

You have also created the quote class, which you will use to style the

text of the featured quote. Note that you have set the line-height

property to 1 , which shrinks the space between text lines from the default

setting of 1.6. Experiment with changing this value to determine what line
spacing you prefer.

Save the styles.css file.

Adding the Featured Quote Section

Return to the index.html file. After the last closing </div> tag, add

the following code snippet:

https://www.digitalocean.com/community/tutorials/how-to-understand-the-css-box-model#how-to-adjust-the-content-size-of-an-html-element-with-css
https://www.digitalocean.com/community/tutorials/how-to-understand-the-css-box-model#how-to-adjust-the-padding-size-of-an-html-element-with-css
https://www.digitalocean.com/community/tutorials/how-to-understand-the-css-box-model#how-to-adjust-the-border-size,-color,-and-style-of-an-html-element-with-css
https://www.digitalocean.com/community/tutorials/how-to-understand-the-css-box-model#how-to-adjust-the-margin-size-of-an-html-element-with-css

index.html

. . .

<!--Section 6: Featured Quote-->

<div class="section-break"> </div>

<div class="column-quote">

 <p class="quote">There are many fish in the

sea, but only one Sammy!</p>

</div>

Before moving on, let’s pause to examine each line of code:

The HTML comment <!--Section 6: Featured Quote-->

labels this section of code in the index.html file and will not be

displayed by the browser.
The <div class="section-break"> </div> element

creates a section break using a class you may have defined in a
previous tutorial. If you did not follow that tutorial, you can add that
class by adding the CSS rule .section-break

{margin:50px; height:500px;} to your styles.css file.

This element creates space between the content in the previous section
and the featured quote section.
The <div class="column-quote"> tag and its closing

</div> tag create a container for the featured quote with the style

https://www.digitalocean.com/community/tutorials/how-to-add-a-resume-or-work-history-section-to-your-website-with-css-section-4

rules you declared for the column-quote class in your

styles.css file.

The <p class="quote">There are many fish in the

sea, but only one Sammy! </p> inserts the text content

into the <div> container you opened in the line above and styles it

according to the rules you declared for the quote class selector in

your styles.css file. If you change the length of your text

content, you may want to modify one of the classes in this section to
change the size of the font or the size of the container to make sure the
text still fits.

Save the index.html file and reload it in your browser. Your

webpage should now display a large featured quote in a transparent
container with a solid background:

Featured quote section on demonstration website

Conclusion

In this tutorial, you created a featured text box on your website and
modified its style for different website layouts. If you wish to hyperlink
your quote to a new website page, please visit our tutorial How To Create
and Link To Additional Website Pages With HTML.

In the next and final tutorial of the tutorial series, you will create a static
footer, which “sticks” in a fixed position at the bottom of the viewport as
the visitor scrolls down the page.

https://www.digitalocean.com/community/tutorials/how-to-create-and-link-to-additional-website-pages-with-html

How To Create a Static Footer With
HTML and CSS (Section 7)

Written by Erin Glass
In the final tutorial of the CSS series, you will create a static footer that

stays in a fixed position at the bottom of the viewport as the visitor scrolls
down the page. This tutorial will recreate the footer in the demonstration
website but you can use these methods for other website projects as well.

Gif of static footer on demonstration website

Prerequisites

To follow this tutorial, make sure you have set up the necessary files and
folders as instructed in a previous tutorial in this series How To Set Up You

https://www.digitalocean.com/community/tutorials/how-to-create-a-static-footer-with-html-and-css-section-7
https://css.sammy-codes.com/
https://www.digitalocean.com/community/tutorials/how-to-set-up-your-css-and-html-practice-project

CSS and HTML Practice Project.
This tutorial uses several social media icons as content in the footer. If

you’d like to use these icons, download them now from our demonstration
site and save them to your images folder as:

“twitter.jpeg”
“github.jpeg”
“email.jpeg.”

To download these images, click on the linked filename above and then
click CTRL + Left Click (on Macs) or Right Click (on

Windows) while hovering on the image and select “Save Image As”. Save
the images with the instructed file names to your images folder.

Once you have your icons saved, you can proceed to the next section.

Adding a Class To Style Your Footer

First you will define a “footer” class by adding the following code snippet
to the bottom of the styles.css file:

https://www.digitalocean.com/community/tutorials/how-to-set-up-your-css-and-html-practice-project
https://css.sammy-codes.com/images/twitter.jpeg
https://css.sammy-codes.com/images/github.jpeg
https://css.sammy-codes.com/images/email.jpeg

styles.css

. . .

/* Footer */

.footer {

 position:fixed;

 bottom:0;

 left:0;

 width:100%;

 height: 90px;

 background-color: #D0DAEE;

}

Save the styles.css file. In this code snippet you have added a

comment to label the CSS code for the Footer section. You then defined a
class named footer and declared several style rules. The first rule

declares its position as fixed, which means the element will not

move from the location you specify as the user scrolls down the page. This
location is specified by the next two declarations: bottom:0 and

left:0 , which specifies a location zero pixels from the left and zero

pixels from the bottom of the browser’s viewport.
By changing these values, you can change the location of the element on

the page. Note, however, that any value aside from zero needs to include the
px suffix after the number. The ruleset also specified the width, height, and

background color of the footer class.

You are now ready to add the footer content in the next section of this
tutorial.

Adding a Footer Styled With Your Footer Class

To add the footer content, you will add a <div> container to the webpage

and assign the footer class that you just created. Return to your
index.html file and paste the following code snippet after the end of

the last closing </div> tag:

index.html

. . .

<!--Section 7: Footer-->

<div class="footer">

</div>

Save your index.html file and reload it in the browser. (For

instructions on loading an HTML file, please visit our tutorial step How To
View An Offline HTML File In Your Browser). You should now have an
empty footer section at the bottom of your webpage that stays in place as
you scroll up and down the page:

https://www.digitalocean.com/community/tutorials/how-to-use-and-understand-html-elements#how-to-view-an-offline-html-file-in-your-browser

Gif of blank fixed footer

Next you will add content to the newly created footer.

How To Add and Style Menu Items To Your Footer

In this step, you will add and style the menu items to the left side of the
footer. These menu items can be used to link to other pages on your site.
Currently, there is only one webpage on your site, so you can use the links
we provide for demonstration purposes. Later on, if you add additional
pages to your website you can create menu items here and add the correct
links. You can learn how to create and link to new webpages with this
tutorial on How to Build a Website with HTML.

Return to your styles.css file and add the following code snippet to

the bottom of the file:

https://www.digitalocean.com/community/tutorial_series/how-to-build-a-website-with-html#how-to-create-and-link-to-additional-website-pages-with-html

styles.css

. . .

.footer-text-left {

 font-size:25px;

 padding-left:40px;

 float:left;

 word-spacing:20px;

}

a.menu:hover {

 background-color:yellow;

 font-size:20px;

}

Let’s pause briefly to review each of the rulesets we’ve created:

The first ruleset defines a class named footer-text-left that

will be used to style the menu item text. Note that you are setting the
float property to left so that the text assigned to this class will

float to the left of the page. You are also using the word-spacing

property to grant extra space between the menu items. If any of your
menu items are more than one word, you’ll need to create a class for
styling the menu items (instead of just changing the word spacing
value).

The second ruleset uses the hover pseudo-class to add a yellow

background color to the text when the user hovers their cursor over the
text.

Now you will add the menu items to the webpage. Return to your
index.html file and add the following highlighted code snippet inside

the footer container that you’ve already created:

index.html

. . .

<div class="footer">

 <p class="footer-text-left">

 home

 <a href="https://css.sammy-

codes.com/about.html" class="menu">about

 <a href="https://css.sammy-

codes.com/credits.html"

class="menu">credits

 </p>

</div>

This code snippet adds two menu items (“about” and “credits”), links
these menu items, and styles the text with the footer-text-left and

a.menu classes you just created.

Save both files and reload your webpage in the browser. You should
receive something like this:

Gif of footer with menu items

Adding Social Media Icons

Next you will add the social icons to the footer, which you can use to link to
your social media accounts. If you want to use icons for different social
media platforms, you can search for free icons on the web and download
them to your images folder. Return to your styles.css file and add

the following three rulesets to the bottom of your file:

styles.css

. . .

.footer-content-right {

 padding-right:40px;

 margin-top:20px;

 float:right;

}

.icon-style {

 height:40px;

 margin-left:20px;

 margin-top:5px;

}

.icon-style:hover {

 background-color:yellow;

 padding:5px;

}

Let’s pause to review each ruleset:

The first ruleset defines the class footer-content-right and

assigns it specific padding, margin, and float values. You will use this
ruleset to style a <div> element that will hold the social media icons.

The second ruleset creates the class icon-style that will provide

height and margin values to the size and position of the social media

icons.
The third ruleset uses the hover pseudo-class to add a yellow

background to the icon when the user hovers their cursor over the text.

Save your styles.css file. You will now add the social media icons

to the footer. Return to your index.html file and add the following code

snippet after the last closing tag of the menu items:

index.html

. . .

<div class="footer-content-right">

<img src="images/github.jpeg" class="icon-

style" alt="Github icon">

<img src="images/twitter.jpeg" class="icon-

style" alt="Twitter icon">

 <img

src="images/email.jpeg" class="icon-style"

alt="Emailicon">

</div>

Make sure that you change the file paths and links with your own social
media information.

This code snippet creates a <div> container, which is assigned the style

of footer-content-right the class. Inside this div container, you

have added three social media icons using the HTML tag, and

linked each image using the HTML <a> tag.

You have also added the alternative text that describes each icon using
the alt attribute. When creating websites, alternative text should be added

to all images to support site accessibility for individuals who use screen
readers. To read more about using alternative text with HTML, please visit
the section on alternative text in our guide How To Add Images To Your
Webpage Using HTML.

Save your index.html file and reload it in the browser. You should

now have a fixed footer with three social media icons on the right that link
to your accounts. The links should change color when the user hovers their
cursor over them. To confirm your results, you can compare them to the gif
at the beginning of this tutorial.

Conclusion

You have now created a static footer that stays in a fixed position at the
bottom of the viewport as the visitor scrolls down the page. You can
continue exploring footer design and content possibilities by changing
values in the CSS classes that you created, or add different types of content
to your index.html file. For more ideas on exploring design and layout

possibilities for your website, the conclusion of this tutorial series has more
suggestions for things to try like rearranging content sections, adding links
to other pages, and changing layout styles using the box model.

https://www.digitalocean.com/community/tutorials/how-to-add-images-to-your-webpage-using-html#alternative-text-for-accessibility
https://www.digitalocean.com/community/tutorial_series/how-to-build-a-website-with-css#conclusion

	About DigitalOcean
	Introduction
	A Brief Introduction To CSS
	How To Set Up Your CSS and HTML Practice Project With a Code Editor
	How To Understand and Create CSS Rules
	How To Declare Values For Multiple Properties In a CSS Rule
	How To Style Images With CSS
	How To Create Classes With CSS
	How To Create IDs with CSS
	How To Create Pseudo-classes With CSS
	How To Style the HTML <div> element with CSS
	How To Adjust the Content, Padding, Border, and Margins of an HTML Element With CSS
	How To Set Up Your CSS and HTML Website Project
	An Overview of Our Demonstration HTML and CSS Website
	How To Style the Body of a Website With CSS
	How To Build the Header Section of Your Website With CSS (Section 1)
	How To Build the About Me Section of Your Website With CSS (Section 2)
	How To Build a Tiled Layout With CSS (Section 3)
	How To Add a Resume or Employment History Section To Your Website With CSS (Section 4)
	How To Add Your Educational History and Skills To Your Website Using CSS (Section 5)
	How To Create a Featured Quote Box On Your Website Using CSS (Section 6)
	How To Create a Static Footer With HTML and CSS (Section 7)

