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Preface

These are the lecture notes from a graduate course on Computational Complexity taught at the
University of Washington. This topic fits in the middle of three of the fundamental areas of the The-
ory of Computation, which can be summarized with respect to their approaches to computational
problems as follows:

e Computability: Determine whether an algorithm exist that solves a given problem.

e Computational Complexity: For those problems that are computable, determine a coarse
analysis of their time and space requirements. Such analyses may well ignore the differences
between polynomials, and concentrate on the difference between polynomial and exponential
behavior.

e Analysis of Algorithms: For those problems that can be solved in polynomial time, determine
a more exact analysis of their time and space requirements.

This text adopts some approaches that will appear unconventional. For example, alternating
Turing machines are introduced very early, and deterministic and nondeterministic Turing machines
treated as special cases. This simplifies many proofs, such as that of Savitch’s Theorem (Theo-
rem 4.14), the P-completeness of the circuit value problem (Theorem 7.11), the N"P-completeness of
the satisfiability problem (Theorem 8.7), and the PSP.ACE-completeness of the quantified Boolean
formula problem (Theorem 10.3).

Another unconventional approach is to use log space reducibility rather than polynomial time
reducibility when reducibility is first introduced in Chapter 5, and to begin with N'L-completeness
rather than the more important A/P-completeness. The reason for this decision is twofold. First, the
generic reduction in proving the A/ L-completeness of the directed graph connectivity problem (The-
orem 6.5) is much simpler than the generic reduction normally used to prove the N"P-completeness
of the satisfiability problem, and thus gives the student a good “warmup” for the more important
completeness proofs to come. Second, the N'P-completeness proof of the satisfiability problem
given in Theorem 8.7 is greatly simplified by the machinery built up in Chapter 7 on P-complete
problems.

I am indebted to Larry Ruzzo for exposing me to many of the approaches in this text, and
for countless discussions about this material. I am thankful for the many students who attended
lectures faithfully, served as notetakers, asked embarassing questions, made perceptive comments,
and generally make teaching exciting and rewarding.

— Martin Tompa
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Models, Measures, and (General
Relationships



Chapter 1

Computational Models

1.1. Why Turing Machines?

There are two reasons for the use of Turing machines as a model of computation. The first is that
they provide a compromise between the mathematical simplicity of models such as the lambda
calculus or recursive functions, and the computational realism one would find in random access
machines or Pascal programs. (Note, for instance, that the entire semantics of Turing machines
will be given in the short Section 1.2.) The second reason is that the choice actually makes little
difference, since all reasonable models are equivalent in the domains of computability and coarse
analysis.

1.2. Definition of Alternating Turing Machines

Alternating Turing machines were introduced by Chandra, Kozen, and Stockmeyer [3]. For simplic-
ity, the particular variant defined here will have one tape and be used for set recognition. It should
be noted that the definitions can be extended easily to multiple tapes or function computation.

Definition 1.1: An alternating Turing machine is an 8-tuple M = (Q, E, A, F,T', %, qo, 6) sat-
isfying the following properties:

e (Q is a finite set (the “states”), partitioned into 3 subsets:

1. E (the “existential states”),
2. A (the “universal states”), and

3. F (the “final states”).
e ['is a finite set (the “worktape alphabet”).
e ¥ CT. (X is the “input alphabet”.)
e he'—X. (pis the “blank symbol”.)
e QNI =0.



e ¢y € Q. (qo is the “start state”.)

e 0:(Q—F)xT — 9Q@x(T—{PH={L.R} (6 is the “transition function”.)
The next two definitions specify what the computation steps of a Turing machine look like.

Definition 1.2: A configuration of an alternating Turing machine M is a string uqv, where
g € Q, and u,v € T*.

(The intuition is that M is in state ¢, uv € T'™* is the nonblank content of the tape, and M’s
head is reading the first symbol of v, or }p if v = ¢, the empty string. In general, the configurations
uqu, uqulp, and puqv are considered equivalent, so we can always assume that u # € and v # ¢.)

infinite tape

o Uy Uy, V1 vy vy,

finite control

Figure 1.1: Visualizing an Alternating Turing Machine in Configuration uqv

Definition 1.3: The one-step transition relation I—M for an alternating Turing machine M is

defined as follows. For any u,v € T*, ¢,¢' € Q, and a,b,c € T,

ugav I—Mucq'v if and only if (¢’,c,R) € §(¢,a), and

ubqav I—Muq'bcv if and only if (q¢',c,L) € 6(q,a).

Definition 1.4: If P and P’ are configurations of M and P I—MP' , P' is called an immediate

successor of P.
The remaining definitions specify how a Turing machine starts and finishes.

Definition 1.5: A configuration ugv is halting if and only if there is no configuration P such

that ugqv — P.
M

(This can happen if ¢ € F, of if §(¢,a) = 0, where a is the first symbol of v.)



Definition 1.6:

e If g€ F, or ¢ € A and uqv is halting, then uqv is a final configuration.
e If g € E, then uqv is an ezistential configuration.

e If ¢ € A, then uqu is a universal configuration.

Definition 1.7: A configuration P is said to be accepting if and only if one of the following
three conditions holds:

1. P is a final configuration, or

2. P is an existential configuration and (3Q)((P I—MQ) & (Q is accepting)), or
3. P is a universal configuration and (VQ)((P I—MQ) = (@ is accepting)).

Definition 1.8: M accepts the input string z € ¥* if and only if ggz is an accepting configu-
ration.

Definition 1.9: The language accepted by M is L(M) = {z € £* | M accepts z}.

1.3. Nondeterministic and Deterministic Turing Machines

Given the definition of alternating Turing machines, it is straightforward to define the more familiar
deterministic and nondeterministic Turing machines:

Definition 1.10: A nondeterministic Turing machine is an alternating Turing machine for
which A4 = 0.

Definition 1.11: A deterministic Turing machine is a nondeterministic Turing machine for
which |6(¢g,a)] <1forallge @ —F and a €.

Our alternating Turing machines are defined to have one tape, but the definition can be extended
to k tapes. In this case, configurations become k-tuples (u1qv1, u2quve, . . . , upqug ), and the transition
function, as an example of the generalization, becomes 6 : (Q — F) x I'* — QQX(F_{h})kx{L’N’R}k,
where N denotes no move of the tape head on the corresponding tape.

1.4. Examples of Turing Machines

Example 1.12: Given an undirected graph G = (V, E), a Hamiltonian cycle is a cycle that
passes through each vertex exactly once. Assume |V| = v. The nondeterministic Turing machine
M described below, given an encoding of such a graph, determines whether it has a Hamiltonian



cycle. M nondeterministically chooses and records on its tape an ordered list (ug,u1,...,Uy—1)
of v of the vertices. If any vertex appears twice on this list, M rejects (i.e., halts in a nonfinal
configuration). If there is an i such that {u;, %(i41) mod v} & E, M rejects. Otherwise, M accepts
(i.e., halts in a final configuration).

Example 1.13: As an example of an alternating Turing machine, consider the problem of
determining if white has a winning strategy in chess. An alternating Turing machine M maintains
an encoding of the current board position on its tape and, beginning from the initial position,
alternates between

e existentially choosing white’s next move from among the legal alternatives and

e universally choosing black’s next move from among the legal alternatives,

until the game reaches a terminal configuration. M then accepts if and only if white has won in
this configuration.

In words, what M is doing is checking that “there is a first move by white such that, for all
second moves by black, there is a third move by white such that ... white wins.”

1.5. Computation Trees and Accepting Subtrees

Definition 1.14: Let M be an alternating Turing machine, and P be a configuration of M.
The P-computation tree of M is a tree (possibly infinite) with nodes labeled by configurations of
M such that

1. the root is labeled P, and

2. each node labeled @ has a child labeled R for each R such that @ I—MR.

Definition 1.15: Let M be an alternating Turing machine, and = an input. The computation
tree of M on x is the (gox)-computation tree of M.

Example 1.16: The computation tree of a deterministic Turing machine on a given input is
a (possibly infinite) simple path. Since, in each configuration, there is at most one possible choice
of the next configuration, the computation tree never branches. Note that the computation tree is
finite in this case if and only if the Turing machine halts. Notice also that the same configuration
may label two different nodes of the computation tree, but in the case of a deterministic Turing
machine that would mean the machine never halts.

Definition 1.17: Let M be an alternating Turing machine, and P a configuration of M. An
accepting P-subtree A of M is a subtree of the P-computation tree C' of M, with the following
properties:

1. A includes the root of C,



N

. for every node v of A labeled by an existential configuration, v has one of its children from
C,

3. for every node v of A labeled by a universal configuration, v has all of its children from C,
4. A has no infinite paths, and
5. all of A’s leaves are labeled by final configurations.

Definition 1.18: Let M be an alternating Turing machine, and = an input. An accepting
subtree of M on z is an accepting (goz)-subtree of M.

Example 1.19: An accepting subtree of a nondeterministic Turing machine is a simple (finite)
path whose internal nodes are labeled by existential configurations and whose single leaf is labeled by
a final configuration. In Example 1.12, for instance, this path would correspond to the computation
that correctly guesses (and verifies) a Hamiltonian cycle in the input graph.

The following theorem relates the definition of acceptance to the notion of an accepting subtree.
Theorem 1.20: M accepts z if and only if there is an accepting subtree of M on z.

Proof: Left as an exercise. (Hint: Using induction, prove the generalization that P is an
accepting configuration if and only if there is an accepting P-subtree of M.) O

Definition 1.21: A set is recursively enumerable if and only if it is accepted by some deter-
ministic Turing machine.

Theorem 1.22: Nondeterministic Turing machines and alternating Turing machines accept
exactly the recursively enumerable sets.

Proof: That they accept at least the recursively enumerable sets follows from the fact that de-
terministic Turing machines are a special case of nondeterministic Turing machines and alternating
Turing machines. The other direction is a corollary of results that will be proved in Chapter 4.
These results (Theorems 4.7 and 4.11) show not only that alternating Turing machines can be
simulated by deterministic Turing machines, but how efficient that simulation is. O



1.6. Exercises

1. (a) Give definitions analogous to those in Section 1.2 for a k-tape alternating Turing machine.
(b) Prove that any k-tape alternating Turing machine can be simulated by a one-tape alter-

nating Turing machine.

2. (a) Describe a nondeterministic Turing machine that, given the encoding of a directed graph
G and two distinguished vertices s and ¢, accepts if and only if there is a path in G from
stot.

(b) Describe a deterministic Turing machine that accepts the same language.

3. Prove Theorem 1.20.



Chapter 2

Complexity Measures

Having established in Chapter 1 how and what a Turing machine computes, we now turn to the
definition of how efficiently it computes.

2.1. Definitions

The first two definitions establish the amount of time and space used by a particular Turing machine
on a particular input.

Definition 2.1: An alternating Turing machine M on input = runs in time at most t if and
only if there is an accepting subtree of M on z whose height is at most ¢.

Definition 2.2: An alternating Turing machine M on input z runs in space at most t if and
only if there is an accepting subtree of M on x each of whose nodes is labeled by a configuration
of length at most ¢.

The next definition specifies the amount of time or space used by a particular Turing machine
on its worst case inputs.

Definition 2.3: An alternating Turing machine M runs in time (space) T'(n) if and only if,
for every z € L(M), M on input z runs in time (respectively, space) at most T'(|z|).

Notice that this definition puts no bound on the time or space used by M on any z not accepted
by M.

Definition 2.4: DTIME(T(n)) = {L | there is a multitape deterministic Turing machine that
accepts L and runs in time 7'(n)}.

Definition 2.5: DSPACE(T'(n)) = {L | there is a multitape deterministic Turing machine that
accepts L and runs in space T'(n)}.

Definition 2.6: NTIME(T(n)) = {L | there is a multitape nondeterministic Turing machine
that accepts L and runs in time 7'(n)}.



Definition 2.7: NSPACE(T'(n)) = {L | there is a multitape nondeterministic Turing machine
that accepts L and runs in space T'(n)}.

Definition 2.8: ATIME(T(n)) = {L | there is a multitape alternating Turing machine that
accepts L and runs in time 7'(n)}.

Definition 2.9: ASPACE(T(n)) = {L | there is a multitape alternating Turing machine that
accepts L and runs in space T'(n)}.

Convention 2.10: Throughout this text, n will refer to the length of the input string.

2.2. Review of Order Notation

Let R be the set of real numbers, and f,g : R — R be two functions. The following definitions
provide a convenient notation for comparing the rates of growth of f and g. (See Knuth [25] for
more discussion.)

e f(n) = O(g(n)) if and only if (3c)(3no)(Vn = no) |f(n)| < cg(n).
e f(n)=Q(g(n)) if and only if (3c)(Ing)(Vn > ng) f(n) > cg(n).
e f(n) =0O(g(n)) if and only if (Fc)(3c')(Ing)(Vn > ng) cg(n) < f(n) < dg(n).
On:onianoniimM:
) = olg(m) it and only it iy 7 .
° n:wnianoniimM:oo
) = wlglo) if and only i Jim %)

2.3. Sublinear Space Bounds

The problem with the definition of space as given in Definition 2.2 is that there are no machines
with sublinear (i.e., o(n)) space bounds: the entire input, whose length is n, is included in the initial
configuration, and hence in the space bound. In order to extend these definitions to sublinear space
bounds, we will assume the following modifications from now on, unless specified otherwise:

Convention 2.11:

1. There will be a separate input tape of length n plus two endmarkers. This tape is read-only.

2. Configurations contain the position A of the input tape head in binary, but not the contents of
the input tape. Therefore, a configuration of a machine with an input tape and k additional
worktapes looks like (h, u1qui, u2qua, ..., upqug).

3. Since the input z is no longer part of the configuration, the notation P I—MQ will be replaced

by P, Q



4. The definition of space will not include the length of the input tape, nor the length of the
input head position h.

Example 2.12: L = {ww | w € {0,1}*} can be accepted by a deterministic Turing machine
in space O(logn). This can be accomplished as follows. First M uses a counter to calculate the
length n of the input. This takes O(logn) space on a worktape. If n is odd, M rejects the input.
If n is even, M starts at the first input symbol, storing it in the finite control, and uses a second
counter to move the input head n/2 cells to the right. M rejects if this is not the same symbol as
in the finite control. Otherwise M moves the input head left n/2 — 1 cells and repeats this check
for the second input symbol. M performs this check for each symbol until the input head moves
off the right end of the input, at which point M accepts. Each counter contains an index between
1 and n, so M uses space O(logn).

2.4. Sublinear Time Bounds

The extension to sublinear space bounds suggests doing the same for time bounds. One might argue
that any interesting Turing machine cannot have a sublinear time bound, as it takes at least n steps
just to read the input. However, this argument fails for nondeterministic or alternating Turing
machines, provided they are given random access to the input tape rather than sequential access.
Consider, for instance, the language that consists of all strings that contain a 1. A nondeterministic
machine could guess and record the position of the 1 in time O(logn), and use its supposed random
access to the input to verify that there is a 1 in that position. This idea of random access or indexing
is formalized in the following definition.

Definition 2.13: An indexing Turing machine has an input tape with no head, and a special
“index tape” in addition to its other worktapes. The next move depends on the ¢th input symbol
if the nonblank portion of the index tape to the left of the head is the binary encoding of i for
1 <% < n, and depends on the endmarker symbol otherwise. The length of the nonblank portion
of the index tape is included in the machine’s space bound.

Convention 2.14: Unless explicitly stated otherwise, we will assume from now on that all
deterministic and nondeterministic Turing machines are not indexing machines, but that all other
alternating Turing machines are.

Example 2.15: An indexing nondeterministic Turing machine can calculate the length n of
the input as follows. On the index tape guess n one bit at a time, verify that the nth input symbol
is in the input alphabet, and verify that the (n + 1)st symbol is an endmarker, rejecting if either
of these is not the case. It takes time O(logn) to do this.

Example 2.16: The complement of the language L = {ww | w € {0,1}*} from Example 2.12
can be accepted by an indexing nondeterministic Turing machine in time O(logn). Compute the
length n of the input as in Example 2.15. If n is odd, accept. Otherwise, guess ¢ satisfying
1 <i<n/2, and accept if and only if z; # ;;,,/9, where 1z ...z, is the input. The sum i +n/2
and the other computations necessary can be calculated in time O(logn).

10



Any nondeterministic Turing machine requires time at least n to accept the language L from
Example 2.16, but it only takes an alternating Turing machine time O(logn) to do the same. These
are both left as simple exercises. Here is an example of a slightly more interesting language that
can be accepted by an alternating Turing machine in O(logn) time:

Example 2.17: Let L be the set of strings A# B that are encodings of two equal sets (which
we will also refer to as A and B). More specifically, A = 4o$4:$...$4, and B = By$B1$... 8By,
where for simplicity A;, Bj € {0,1}" for some m = 27 — 1.

The alternating Turing machine first determines n, m, a, b, and h where h is the index of the
marker #, in a manner similar to that of Example 2.15. The goal is to accept if and only if A C B
and B C A, that is,

(Vi)(34)A; = Bj and (V)(3i)B; = A

The machine will universally check each of these two conjuncts. Here is how it checks the first, the
second being done in an analogous manner:

1. Universally choose and record i, with 0 <7 < a.
2. Existentially choose and record j, with 0 < 5 <b.
3. Universally choose and record k, with 1 < k < m.

4. Accept if and only if A;; = Bj, where these are the kth bits of A; and Bj, respectively.

The machine requires time O(log a) to universally choose i, time O(logb) to existentially choose j,
and time O(logm) to universally choose k; furthermore, a, b, and m are each at most n. To find
B\ in step 4, the alternating Turing machine needs to calculate h + j2P + k on its index tape,
which can be done in O(logn) time.

Alternating Turing machines, and particularly indexing alternating Turing machines, may seem
unmotivated at first, but there is a direct correspondence to Boolean circuits (Ruzzo [39]) that
makes them an excellent model of parallel computations; this will be explored further in Section 7.5.
Furthermore, they will turn out to be extremely helpful in understanding the complexity of natural Add other

problems, much as nondeterministic Turing machines have proven to be. forward
pointers.

11



2.5.

Exercises

. Let I be the set of invertible v/n X y/n matrices over Z, (the integers modulo 2). Show that

I € NTIME(O(n?/2)) N NSPACE(O(/n)).

Prove that an indexing deterministic Turing machine can compute the length n of its input
in time O(logn).

. Show that the language L from Example 2.16 cannot be recognized by an indexing nondeter-

ministic Turing machine in time less than n.

. Prove that Set Equality (from Example 2.17) can be solved by an alternating Turing machine

in time O(logn) for arbitrary subsets of {0,1}*.

. Show that every regular language is in DTIME(O(n)) N DSPACE(O(1)).

. Show that every regular language is in ATIME(O(logn)).

12



Chapter 3

The Power of Increasing Resources

Now that the models and complexity measures have been defined and understood, we are in a
position to pose some typical motivating questions in complexity theory.

1. More vs. Less: Given more time or space, can machines in a fixed model necessarily solve
more difficult problems? This is the topic of this chapter.

2. Resource and Model comparison: What is the relationship between time and space? What are
the relationships among deterministic, nondeterministic, and alternating Turing machines?
This is the topic of Chapter 4.

3. Feature comparison: Are k£ + 1 tape machines more powerful than k tape machines? Are
indexing machines more powerful than non-indexing machines? Some of these questions will
be addressed in each of these chapters.

3.1. Constant Factor Speedup Theorems

This section answers the simplest questions of the first type: doubling the space or time adds no
computational power.

Theorem 3.1: For every € > 0 and every space bound S(n),

DSPACE(S(n)) C DSPACE([eS(n)]),

and similarly for NSPACE and ASPACE.

Proof: Let ¢ = [1/€¢]. Let M be a deterministic Turing machine with worktape alphabet T
that runs in space S(n). Construct a deterministic Turing machine N with worktape alphabet
I', and compress every ¢ symbols on each worktape of M into one symbol on the corresponding

worktape of N. (See Figure 3.1 for an example with e = 1/3.) The remaining details are left as an
exercise. 0

Theorem 3.2: For every € > 0 and every time bound T'(n) > n,
DTIME(T(n)) C DTIME(n + [¢T(n)]),
and similarly for NTIME.

13



(@3]

---‘1‘2‘3‘4‘5‘6‘--- is compressed to --- | 2

Figure 3.1: Compressing a Worktape for Constant Space Reduction

Proof: One might be inclined to use the same proof as in Theorem 3.1, but this falls a bit
short. If the symbols are grouped as in that proof, the Turing machine might oscillate between
adjacent cells on the uncompressed tape that were in different cells on the compressed tape (for
instance, cells 3 and 4 in Figure 3.1), so the construction fails to yield any speedup. The solution
is to overlap the contents of adjacent compressed cells.

Let ¢ =2 [1/e€]. Let M be a deterministic Turing machine with worktape alphabet I" that runs
in time 7'(n) > n. We construct a deterministic Turing machine N with worktape alphabet T'3¢=2
whose compressed tapes are illustrated in Figure 3.2 for the case e = 1/2.

21216
1|13 |7
0 4|8
1 159
2 | 6|10
“"3‘4‘5‘6‘7‘8‘9"“ is compressed to 3 7|11
4 | 8 |12
5 | 9 (13
6 |10 | 14
7 |11 |15
()

Figure 3.2: Compressing a Worktape for Constant Time Reduction

If M begins the next ¢ steps by reading tape cell ¢, then N’s head is reading the tape cell that
has ¢ in its middle ¢ tracks. In one step of N we can simulate the next ¢ moves of M before having
to move N’s heads. After these ¢ steps of M, N repositions its head if necessary, carrying in its
finite control the updated values of the 2¢ — 2 overlapping cells of M. Any inconsistent values in
the opposite direction on this tape will be corrected when N’s head passes through the cell in that
direction.

N starts the simulation by compressing the input tape of M onto an extra worktape and
“rewinding” that tape (i.e., moving its head to the left end). It takes n steps to compress the input
tape, n/c to rewind, and T'(n)/c to simulate the T'(n) steps of M. Hence, the time used by N is at

most T o
n+ﬁ+ﬂ<n+ﬂ§n+eT(n).
c c c
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Theorem 3.2 shows how to speed up deterministic and nondeterministic time by a constant
factor. The same simulation does not work for alternating time, since the machine being simulated
may alternate several times during the next c steps, whereas the simulating machine has only 1
corresponding step, which must be either existential or universal. Nonetheless, a different technique
does work for alternating time:

Theorem 3.3: For every € > 0 and every time bound T'(n) > logy n,

ATIME(T(n)) C ATIME ([log, n] + [¢T(n)]).

Proof: The proof is left as an exercise. (Hint: simulate c steps by 2 steps rather than 1.) O

3.2. Hierarchy Theorems

The original motivation behind Theorems 3.1, 3.2, and 3.3 remains: is it possible to enhance the
power of a Turing machine by allowing it more time or more space? In some sense the constant
factor speedups are cheats, since there is a corresponding blowup in the alphabet size and transition
function. They are interesting, however, because they tell us not to look for added power within a
constant factor increase in time or space. In this section we will consider what happens when we
increase the time or space by more than a constant factor.

3.2.1. The Deterministic Space Hierarchy Theorem
Definition 3.4: S(n)is (deterministic) space constructible if and only if there is a deterministic

Turing machine M with one worktape such that, on all inputs z, M halts after visiting (and
marking) exactly S(|z|) cells on its worktape.

Example 3.5: Any common function S(n) that you will encounter is space constructible. For
example, the functions [log, n], n, n2, 2", and n! are all space constructible. If S(n) and T'(n) are
space constructible, then so are S(n) + T'(n), S(n)T'(n), and (S(n))T(™. The proofs of these facts
are left as exercises.

Example 3.6: The function [log, log, log, n] is not space constructible.

Example 3.7: The function S(n) given below is not space constructible, since it is not even
computable.

S(n) = n  if n is the binary encoding of a deterministic Turing machine that always halts
"= 2n otherwise

Theorem 3.8 is the deterministic space hierarchy theorem.
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Theorem 3.8 (Hartmanis, Lewis, and Stearns [14]): For any space constructible func-
tion S(n) = Q(logn), and any s(n) = o(S(n)), *

DSPACE(S(n)) — DSPACE(s(n)) # 0.

Proof: By Theorem 3.1, we can assume without loss of generality that S(n) > 2logsn + 2 for
all sufficiently large n. We will construct a deterministic Turing machine M that runs in space
O(S(n)) and disagrees on at least one input with every possible deterministic Turing machine that
runs in space s(n) = o(S(n)).

Construct M as follows. On input z = 0°15, where i > 0 and j € {0,1}*, with |z| = n,

1. M marks off S(n) cells on each of two worktapes. This can be done in space S(n), by
Definition 3.4.

2. M treats j as the binary encoding of some deterministic Turing machine 7} and, except
as modified below, simulates T; on input z, recording successive binary encodings of T}’s
configurations within the marked cells of one of its worktapes. (If j does not encode a
deterministic Turing machine, then M rejects z.)

(a) If T} halts in a final configuration, then M halts in a nonfinal configuration.

(b) If T; halts in a nonfinal configuration, then M halts in a final configuration.

(c) If the encoding of one of T)’s configuration runs over the S(n) marked cells, then M
accepts.

(d) If T; runs for more than 25(™) steps, as timed on the second marked-off tape, then M
accepts.

By construction, M uses space O(S(n)).

All that remains to show is that, for any deterministic Turing machine 7" running in space
s(n) = o(5(n)), L(T) # L(M).

Let T' = T;. There is a constant c; such that any configuration of 7} on any accepted input
can be encoded in binary using ¢js(n) + [logy n] bits, where ¢; depends only on the size of T}’s
worktape alphabet, the number of tapes in 7}, and the number of states in T}, and the [log, n] bits
encode the input head position. Note that 7; has at most 2¢is(n)+Mlog> ] digtinct configurations.

Since S(n) > 2logyn + 2 and s(n) = o(S(n)),

. s(n) . _s(n) 1
1 < =0< —.
n=%0 S(n) — [logyn] — no S(n)/2 ¢;
Thus, for sufficiently large n,
s(n) 1

<
S(n) — Mogan] ~ ¢’
! Actually, s(n) = o(S(n)) can be replaced by the weaker condition

lim inf ﬂ =0,

but in practice the condition given always suffices.
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which implies that, for sufficiently large n,
cjs(n) + [logan] < S(n). (3.1)

Choose any n > |j| satisfying Inequality (3.1), and let z = 0" /=11, Then M accepts = if and
only if T; does not accept x: If T; accepts or rejects  while M uses space at most S(n) and T; uses
time at most 25(™) (cases 2a and 2b), then M halts with the opposite answer. If M uses more space
than S(n) on z then, by Inequality (3.1), T; uses more space than s(n) and hence cannot accept z,
whereas by case 2c, M accepts z. Finally, if T; runs for time greater than 25(n) > 9¢js(n)+[log; n]
then T, must have repeated some configuration and hence cannot accept =, whereas by case 2d, M
accepts . O

As a consequence of Theorem 3.8, there are arbitrarily complex languages among the recursively
enumerable languages.

3.2.2. The Deterministic Time Hierarchy Theorem

Because of the need to diagonalize over all multitape machines with some fixed number of tapes,
the deterministic time hierarchy theorem is not quite as tight as the deterministic space hierarchy
theorem. In Lemma 4.8 we will show how to simulate a multitape deterministic Turing machine
running in time 7'(n) by a one-tape deterministic Turing machine running in time O((T'(n))?). To
get the tightest known deterministic time hierarchy theorem, we will need a better time bound,
which is achieved at the expense of extra worktapes:

Lemma 3.9 (Hennie and Stearns [17]): For any k, if L is a language accepted by a k-
worktape deterministic Turing machine in time T'(n), then L is accepted by a 2-worktape deter-
ministic Turing machine in time O(T'(n) log T'(n)).

Open Problem 3.10: Simulate k& tapes by any constant number of tapes with a blowup in
time that is o(log T'(n)).

Definition 3.11: T'(n) is (deterministic) time constructible if and only if there is a determin-
istic Turing machine that, on all inputs z, runs for exactly T'(|z|) steps and then halts.

Theorem 3.12 is the deterministic time hierarchy theorem.

Theorem 3.12 (Hartmanis and Stearns [15]): For any function ¢(n) > n, and any time
constructible function T'(n) = w(t(n)logt(n)), 2

DTIME(T(n)) — DTIME(4(n)) # 0.

2As in Theorem 3.8, T'(n) = w(t(n)logt(n)) can be replaced by the weaker condition

lim inf ti(n) log (n)
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Proof: The proof is similar to that of Theorem 3.8, but uses Lemma 3.9 in order to simulate

T; (which may have arbitrarily many worktapes) by M (which has a fixed number of worktapes).
a

A typical consequence of the deterministic time hierarchy theorem is that DTIME(n) C
DTIME(n?). This is because n? = w(nlogn). However, that theorem is not tight enough to
have as an immediate consequence that DTIME(n) C DTIME(nlogn).

Exercise 3.13: Consider what might further complicate the hierarchy theorems for nondeter-
ministic Turing machines. Hint: It is not a problem for alternating Turing machines.

18



3.3. Exercises

1. Complete the details of Theorem 3.1.

2. Prove Theorem 3.3.

(Hint: Convert the alternating Turing machine into one in which at most one input symbol
is read on any path of the computation tree.)

3. Prove that, if S(n) and T'(n) are space constructible, then so are S(n)+7T(n), S(n)T(n), and
(S(n))Tt).

4. Prove Theorem 3.12. You may assume the result in Lemma 3.9.

5. Do Exercise 3.13.
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Chapter 4

Basic Relationships Among the
Models and Measures

This section begins a study of the most fundamental relationships among time and space, and
determinism, nondeterminism, and alternation.

Theorem 4.1: For any T'(n) > logyn,

DTIME(T'(n)) € NTIME(T(r)) C ATIME(T(n)) C

DSPACE(T(n)) C NSPACE(T(n)) C ASPACE(T(n)) = | DTIME ('™).
c>1

Proof: The four containments DTIME(T'(n)) C NTIME(T(n)) C ATIME(T(n)) and
DSPACE(T'(n)) € NSPACE(T(n)) C ASPACE(T(n)) are immediate from the facts that a de-
terministic Turing machine is a special case of a nondeterministic Turing machine, which in turn is
a special case of an alternating Turing machine. The remaining three containments will be proved
in Theorems 4.7, 4.9, and 4.11. O

Theorem 4.2: For any time constructible function 7'(n), at least one of the containments in
Theorem 4.1 is proper.

Proof: For T(n) < n, Example 2.16 and the remarks following it show that DTIME(T'(n)) C
NTIME(T (). For T(n) > n, Theorem 3.12 shows that DTIME(T'(n)) C DTIME (27(®). O

Open Problem 4.3: Prove that any one of the containments in Theorem 4.1 is proper. Exam-
ple 2.16 and the remarks following it show that DTIME(T'(n)) # NTIME(T'(n)) # ATIME(T(n))
for all T(n) < n. Paul, Pippenger, Szemerédi, and Trotter [34] have shown that DTIME(T'(n)) #
NTIME(T(n)) for any T'(n) = O(n) (and also very slightly faster growing functions 7'(n)). Other
than these few values, the problem is open.
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4.1. Time vs. Space on a Fixed Model

We provide some “warmups” for the simulations remaining from Theorem 4.1 by proving the same
relationships between time and space, but keeping the model fixed.

Proposition 4.4: DTIME(T'(n)) € DSPACE(T'(n)), and similarly for nondeterministic and
alternating Turing machines. In fact, any Turing machine that runs in time 7'(n) runs in space
O(T(n)) itself.

Proof: Any Turing machine running in time 7'(n) can visit at most 7'(n) different cells on each
worktape, and so itself runs in space O(T(n)). The result then follows from Theorem 3.1. O

Proposition 4.5: For any S(n) > logy, n, DSPACE(S(n)) C U DTIME (cs(")). In fact, any
c>1
deterministic Turing machine that runs in space S(n) runs in time 2°0(5(") itself.

Proof: A deterministic Turing machine with space S(n) has only 29(5(") distinct configu-
rations, provided S(n) > log,n. Thus, if it has not halted within 20(5(n)) gteps, it must be in
an infinite loop. Therefore any deterministic Turing machine that accepts will do so itself within
20(5(n)) gteps. O

Proposition 4.6: For any S(n) > log, n, NSPACE(S(n)) C | J NTIME (cs(")), and similarly
c>1
for alternating Turing machines. In fact, any Turing machine that runs in space S(n) runs in time

20(5(n)) itself.

Proof: The argument is similar to the previous one although, due to the nondeterminism, there
is no guarantee that a machine that repeats a configuration will never accept. However, it is easy
to see that if an alternating Turing machine accepts, there exists an accepting subtree in which no
configuration is repeated along any path. O

4.2. ASPACE(S(n)) C | DTIME (¢°™)

c>1

In this section we prove the first of the containments left unproved in Theorem 4.1.

Theorem 4.7 (Chandra, Kozen, and Stockmeyer [3]): For any S(n) > log, n,

ASPACE(S(n)) C | DTIME (c5™).
c>1

Proof: Let A be an alternating Turing machine that runs in space S(n). We will construct a
deterministic Turing machine D that simulates A. The most naive approach is for D to traverse
some accepting subtree of A. This tree, however, may have height 20(5(")) and size ZQO(S(n)), which
make its traversal impossible within 20(5() gteps.
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Notice that, although the accepting subtree may be double exponential in size, it has only a
single exponential number of distinct configurations. This suggests that the idea of traversing an
accepting subtree may still be sound, but it needs a more sophisticated implementation. The idea
is to identify all the identical subtrees, yielding a directed graph of size 20(5(n)

CoNSTRUCTION: Assume for the moment that S(n) can be computed by a deterministic Turing
machine in time 29(5(") On input z, D constructs a directed graph G = (V, E) such that V is the

set of space S(n) configurations of A on input z, and (P, Q) € Eif and only if P =, Q. D records
,Z
the graph on a worktape by simply listing the pairs in E. Now D runs the following algorithm:

comment: label all accepting configurations, backwards from the final to the initial configuration;
label all final configurations 0;
for t=1,2,... repeat
for all unlabeled vertices P do
begin
if P is existential and there is an immediate successor of P that is labeled ¢t — 1
then label P with ¢;
if P is universal and all immediate successors of P are labeled ¢t — 1 or less
then label P with ¢
end
until no vertices are labeled ¢;
if initial configuration is labeled
then accept
else reject.

Since S(n) may not be constructible by a deterministic Turing machine in time 20(5(") D
instead runs the simulation above for S = 1,2,3,..., accepting if and only if the procedure above
accepts for one of these values.

CORRECTNESS: By an induction on ¢ given below, P is labeled ¢ if and only if the minimum
height of any accepting P-subtree is £. The correctness then follows from Theorem 1.20, since the
initial configuration is given some (finite) label if and only if there is an accepting subtree of A on
z (of finite height).

Basis (t = 0): P is labeled 0 if and only if P is final, which occurs if and only if the minimum
height of any accepting P-subtree is 0.

INDUCTION (t > 0):

Case 1: P is existential. Then P is labeled ¢ if and only if some immediate successor @ of P is
labeled t—1, and no immediate successor R of P has a lesser label. By the induction hypothesis, this
occurs if and only if the minimum height of any accepting QQ-subtree is £ — 1, and for no immediate
successor R of P is there a shallower accepting R-subtree. By the definition of accepting subtree,
this occurs if and only if the minimum height of any accepting P-subtree is t.

Case 2: P is universal. Then P is labeled ¢ if and only if all immediate successors @@ of P
are labeled t — 1 or less. By the induction hypothesis, this occurs if and only if, for all immediate
successors () of P, the minimum height of any accepting (J-subtree is at most t—1. By the definition
of accepting subtree, this occurs if and only if the minimum height of any accepting P-subtree is t.
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ANALysIs: Assume for the moment that S(n) is computable in time 29(5("), G has 20(5(n)
vertices and edges (since S(n) > logn), and can be constructed in time 20(5()_ (To do so, notice
that D must find the input symbol indexed by A, in order to determine if (P,Q) € E.) Finding
immediate successors of P in the edge list takes time 20(5(")) There are 20(5(") jterations of the
inner loop. There are also 20(5(") jterations of the outer loop, since at least one vertex is labeled
in each iteration. The total running time is thus 20(5(%) 4 (20(5(n)))3 — 90(S(n))_

Running this procedure for S = 1,2,3,...,5(n) multiplies the running time by at most a
constant. (Note that this may cause D to run forever if z ¢ L(A), but that is no problem, since
the definitions only require D to accept and run in time 2005(") for z € L(A).)

a

4.3. DTIME(T(n)) C ASPACE(log T(n))

4.3.1. Simulating Multiple Tapes by a Single Tape

In order to simulate time-bounded deterministic Turing machines by space-bounded alternating
Turing machines, it will be convenient to make the simplifying assumption that the deterministic
Turing machine is a 1-tape machine, rather than a k-tape machine. Thus, we must show that a
k-tape machine can be simulated by a 1-tape machine without excessive time penalty.

Lemma 4.8: If L is accepted by a k-tape deterministic Turing machine M in time 7'(n), then
L is accepted by a 1-tape deterministic Turing machine N in time O((T(n))?). (N’s single tape is,
of course, a read/write tape.) Moreover, the position of N’s single tape head is a function of time
alone, and is independent of N’s particular input.

Proof:

ConsTRUCTION: N has 2k + 1 tracks on its tape, with the contents of M’s ith tape on track
27 — 1, and a mark on track 2¢ indicating the position of M’s sth head. On track 0 N keeps a
left and right endmarker, which initially coincide at the position of the tape head. (As usual, the
“tracks” are just a conceptual device for talking about an expanded worktape alphabet.)

N stores M’s state in its finite control. As an invariant of the simulation, N begins simulating
each step of M with its single tape head at the left endmarker on track 0, and with all £ head
marks between the two endmarkers. In one pass to the right endmarker, N collects in its finite
control the k£ symbols under M’s tape heads. N now has in its finite control everything it needs to
compute M’s next move. It updates M’s state in its finite control, and updates its tape as follows.
In a return pass to the left endmarker, it rewrites the k tape cells under M’s heads. In a pass to
the right endmarker, it moves all the marks whose corresponding heads move right, and moves the
right endmarker one cell right. In a final pass to the left endmarker, it moves all the marks whose
corresponding heads move left, and moves the left endmarker one cell left. Notice that all £ marks
remain between the two endmarkers.

ANArysts:  After simulating ¢ steps of M, the nonblank portion of N’s tape has length 2¢ + 1.
Since N makes 4 passes over this to simulate a step of M, the total time is at most

T(n)

Z 8t = O((T(n))?).
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Although it depends on Lemma, 4.8, the simulation of deterministic time by alternating space
in the next section does not use the fact that the 1-tape machine’s head movement is independent
of the particular input. This fact, called “obliviousness”, will be useful later in Section 7.5 when
we discuss the simulation of deterministic Turing machines by circuits.

There are languages (for instance, the language L of Example 2.12) that can be accepted by 2-
tape deterministic Turing machines in O(n) time, but require (n?) time on any 1-tape deterministic
Turing machine (Hennie [16]), so Lemma 4.8 is optimal to within a constant factor.

4.3.2. Simulating Deterministic Time by Alternating Space

The main result of this section is the converse of Theorem 4.7.

Theorem 4.9 (Chandra, Kozen, and Stockmeyer [3]): For any T(n) > n,

DTIME(T(n)) C ASPACE(log T(N)).

Proof:

CoNsTRUCTION:  Let M be a deterministic Turing machine that runs in time 7'(n). Using
Lemma 4.8, there is a 1-tape deterministic Turing machine N = (Q,Q — F,0,F,T', %, qo,6) that
runs in time O((7T(n))?) and accepts the same language. Assume without loss of generality that N
moves its head at every step.

Let Cy, C1, ..., C; be an “accepting computation” of N on input z; that is, Cy is the initial
configuration of NV on z, C; is a final configuration, and C; I—N Ciy1 for all 0 < 7 < t. Note that
T

t = O((T'(n))?), where as usual n = |z|. Let C;; be the jth symbol of Cj, or Jp if j is too large or too
small, where indexing is relative to the position j = 1 of the first input symbol in Cy. C;11 ; depends
only on C; j_1, Cy 5, C; j+1, and C; j1o9. Specifically, Ciy1,; = local(C; j—1, Ci j, Cij+1, Ci j+2), where

( bOa if b_ 17b07bl gQ

q, ifb_1 € @and 6(b_1,b0) = {(¢,a,R)}
a, ifb_1 € Q and 6(b_1,by) = {(q, a,L)}
a, ifby € Q and 6(bg,b1) = q )}
b_q1, if by € @ and (S(b(), 1)

bo, if by € @ and (5([)1, 2)
q, if by € Q and 6(b1,b9) =
1,  otherwise

local(b_1,bg, b1, by) = {

\
where | € QUT is a special “undefined” symbol.
Given £ = z1z9 - - - Tp, the alternating Turing machine A does the following:
existentially choose i;
comment: running time;
existentially choose j with —1 < j <;
comment: final head position;
existentially choose ¢ € F’;
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where check is defined as follows:

procedure check(i,j,b)
comment: accepts if and only if C; ; = b;
ifi=0
then if (j =0 and b=¢p) or (1<j<n and b=xz;) or ((( <0) or (j >n)) and
b=1})
then accept
else reject
else begin
existentially choose b_1,bg,b1,00 € QUT;
if b # local(b_1, by, b1,b9) then reject;
universally choose A € {—1,0,1,2};
check(i — 1,7 + A, ba);
end
end .

CORRECTNESS: By induction on ¢, the configuration A is in when it calls check(i,j,b) is
accepting if and only if C; ; = b, where Cy, C1,. .. is the computation of N on input z. Details are
left as an exercise.

AnAryYsis: A needs space to store 4, j, and n, plus constant space for b, b_1, by, b1, ba, and A.
Note that the recursive call to check doesn’t need storage for a stack, since the call is tail-recursive:
we can reuse the space from 4, j, and b to store ¢ — 1, j + A, and ba. Since 0 < 7 < ¢t and
—2t < 5 < 3t, the total space is

O(logt +logn) = O(log((T(n))?) + logn) = O(log T(n) + logn) = O(log T(n))

since, by assumption, T'(n) > n.

Example 4.10: One particularly important example of Theorems 4.7 and 4.9 is that
P = ASPACE(logn),

where P is defined to be |, DTIME(n¢), that is, the class of languages accepted in deterministic
polynomial time. It is noteworthy that this important time-bounded complexity class can be
characterized by a space-bounded complexity class, particularly with such a small space bound.
This fact will be exploited frequently in Chapter 7.

4.4. ATIME(T(n)) C DSPACE(T(n))

Theorem 4.11 is the last containment remaining to complete the proof of Theorem 4.1.

Theorem 4.11 (Chandra, Kozen, and Stockmeyer [3]): For any T'(n),
ATIME(T (n)) C DSPACE(T'(n)).
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Proof:
CONSTRUCTION:

Let A be an alternating Turing machine that runs in time 7'(n). By Proposition 4.4, A also
runs in space T'(n), including the space A uses on its index tape. Construct a deterministic Turing
machine D that, given input z, traverses the computation tree of A on z as follows. Assume for the
moment that 7'(n) is computable by a deterministic Turing machine in space T'(n). D will accept
z if and only if accepting(Py,T(n)) returns true, where Py is the initial configuration of A on z,
and accepting is the function given in Figure 4.1.

function accepting(P,t) returns boolean
comment: returns true if and only if A on input = has an accepting P-subtree of height at most
t;

begin

if P is a final configuration then return true ;

if ¢t = 0 then return false ;

if P is existential

then begin
b — false ;

for all ) such that P I—A Q@ do
,Z

b« (b or accepting(Q,t — 1)) ;
return b ;
end
else begin comment: P is universal ;
b « true ;

for all ) such that P I—A Q@ do
,Z

b« (b and accepting(Q,t — 1)) ;
return b ;
end
end .

Figure 4.1: The Function accepting

Since T'(n) may not be computable by D in space T'(n), D instead runs accepting(Py,T) for
T =1,2,3,..., halting and accepting if and only if one of these invocations returns true. (Note
once again that this may cause D to run forever and/or use too much space if z ¢ L(A), but that
is no problem, since the definitions only require D to accept and run in space T(n) for z € L(A).)

CoRRECTNESS: By induction on ¢, accepting(P,t) returns true if and only if A on input z has
an accepting P-subtree of height at most . The details are left as an exercise.

ANaLysis:  Assume for the moment that 7'(n) is computable by D in space T'(n). D can record
any configuration P of A in space T'(n) since A runs in space T'(n), including the space used on A’s
index tape. If not for the recursive calls, D would certainly run in space T'(n), because D never
needs more than two configurations P and @ at any time. (Note that D needs space T'(n) for a
counter to run up to the contents of A’s index tape. It must do so in order to check whether the

indexed input symbol supports the transition P |—A Q.)
L
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Unfortunately, D needs a stack of height T'(n) to keep track of the recursive calls in progress.
To avoid having T'(n) bits per stack entry (which would be needed to store the entire configuration
at each recursive call), it suffices to store on the stack which of the constant number of transitions
in A’s transition function was used to generate () from P. When an element is popped from the
stack, this information is sufficient to reconstruct P from (), and to find the next value of Q).

The space used for trying T'=1,2,3,...,T(n) is at most T'(n). O

4.5. Savitch’s Theorem

With the constant factor speedup theorems (Theorems 3.1, 3.2, and 3.3) and the hierarchy theorems
(Theorems 3.8 and 3.12), we have completed our investigation of more versus less of a single resource
on a single model. We now return to the question of relationships among the different models and
measures.

Recall Theorem 4.1: For any T'(n) > logy n,
DTIME(T(n)) € NTIME(T(n)) C ATIME(T(n)) C
DSPACE(T (n)) C NSPACE(T(n)) € ASPACE(T(n)) = | DTIME (¢"™).

c>1

If we were to try to simulate, say, nondeterministic space by deterministic space, we could go
through the appropriate six containments to arrive at the exponential blowup

NSPACE(S(n)) C | J DSPACE (¢5™). (4.1)

Perhaps, though, this exponential blowup is an artifact of going through alternating space and
deterministic time: the speculations that nondeterministic space is presumably so much weaker
than alternating space, and deterministic space presumably so much stronger than deterministic
time might lead one to conjecture that Containment (4.1) can be improved.

On the other hand, from a naive point of view Containment (4.1) appears to be optimal, be-
cause the deterministic Turing machine “needs” to traverse the nondeterministic Turing machine’s
entire computation tree, which may have size 229(5(7;))’ so just recording the name of the node the
deterministic Turing machine is working on requires space 25(n))

Such was the prevailing view from the mid-1960’s until 1970, when Savitch proved that Con-
tainment (4.1) could be improved dramatically.

Definition 4.12: If M is an alternating Turing machine with input z and configurations

. . d . . . .
P and @, and d is an integer, we say P I—M @ if and only if there exist configurations
T

P=Py,P,P,...,P; =@, such that le_IM P;iq forall 0 <: <d.
T

Definition 4.13: We say P '_;[d Q@ if and only if P I—A; Q for some ¢ < d.
T »L
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Theorem 4.14 (Savitch [40], Chandra, Kozen, and Stockmeyer [3]): For any S(n) >
log, n,
NSPACE(S(n)) € ATIME((S(n))?).

Proof:

ConsTRUCTION: Let N be a nondeterministic Turing machine that runs in space S(n). Con-
struct an alternating Turing machine A that, on input z, simulates N on z. A’s strategy is
divide-and-conquer on an accepting computation of N on xz. More specifically, A executes the
following:

existentially choose S(n);

let P be the initial configuration of N on z;
existentially choose Py, a final configuration of N;
existentially choose k;

reach(Py, Py, k);

where reach is the following procedure:

procedure reach(P,Q,k)
comment: accepts if and only if P l_zsvz,:;Q’
ifk=0
then if (P=Q or P I—NwQ) then accept else reject

else begin
existentially choose R;
universally choose b € {0,1};
case b of
0: reach(P,R,k — 1);
1: reach(R,Q,k — 1)
end
end .

CORRECTNESS: By induction on k, we will prove that the configuration A is in when it invokes

k
reach(P,Q, k) is accepting if and only if P I—JSVQ Q.
T

Basis (k =0): When k& =0, A accepts if and only if P = Q or P — Q, which in turn is true
T

. . <2k
if and only if P+—=" Q.
N,z
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INpucTION (kK > 0):

“if” clause: Assume P I—JSV Q. Let R be a “midpoint” configuration in this computation, that
X

k—1 k=1

is, P 'ijv R and R 'ifv (. By the induction hypothesis, the configurations corresponding to
T T

reach(P, R,k —1) and reach(R, @, k — 1) are both accepting configurations. Then in reach(P, Q, k),

there exists an R such that both recursive calls will accept. That is, the configuration corresponding

to reach(P,Q, k) is accepting.

“only if” clause: Assume the configuration that A is in when it invokes reach(P, Q, k) is accept-
ing. Then there exists an R such that reach(P, R,k — 1) and reach(R, @,k — 1) each correspond to

k-1 k—1 k
accepting configurations. By the induction hypothesis, P 'ijv;c R and R '%2\7 . Q. Thus, P I—JSVQwQ.

Anavysis:  If N accepts z, then each configuration P of N on z has |P| = O(S(n)), since
S(n) > logyn. The time N takes on z is 20(5(") by Proposition 4.6.

Constructing Py and guessing Py take time O(S(n)). The guessed time k need only satisfy
2k = 29(5(n) 50 the bits of k can be guessed in time O(log S(n)).

For the case k = 0, checking whether P = () or P I—N @ can be done deterministically in
,Z

O(S(n)) time. (Note that S(n) > log, n is needed here to copy N’s input head position from P to
the index tape.)

For the case k # 0, each level of recursion uses O(S(n)) time to guess R. Since the depth of
recursion is k = O(S(n)), the total time is O((S(n))?). (Note that the two recursive calls are done
in parallel, rather than sequentially.) O

Corollary 4.15 (Savitch [40]): For any S(n) > log, n,

NSPACE(S(n)) € DSPACE((S(n))?).
Savitch’s theorem was subsequently generalized to include sublogarithmic space bounds:

Theorem 4.16 (Monien and Sudborough [31], Tompa [46]): For any S(n),

NSPACE(S(n)) C ATIME(S(n)(S(n) + logn)).

4.6. Other Containments Among the Complexity Classes

Theorem 4.17 (Dymond and Tompa [9]): For any T(n) > n,

DTIME(T(n)) C ATIME(T(n)/log T'(n)).

Corollary 4.18 (Hopcroft, Paul, and Valiant [18]): For any T'(n) > n,

DTIME(T(n)) C DSPACE(T(n)/log T'(n)).
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Open Problem 4.19: Find other relationships among the six complexity classes of Theo-
rem 4.1. As possible examples,

e NTIME(T(n)) C NSPACE(T'(n)/log T'(n))?

o ATIME(T(n)) = DSPACE(T(n))?

We know ATIME(T(n)) C DSPACE(T(n)) C ATIME((T(n))?), from Theorems 4.11 and
4.14.

e DSPACE(T(n)) = NSPACE(T'(n))?
We know DSPACE(T'(n)) C NSPACE(T(n)) C DSPACE((T(n))?), from Corollary 4.15.

4.7. Closure Under Complementation

We start with the definition of closure under complementation.

Definition 4.20: Let C be a set of languages over some alphabet ¥ (i.e., C C 2”7). Then C
is closed under complementation if and only if for every language L € C, it is also the case that
L € C, where L = ©* — L is the complement of L.

Proposition 4.21: If S(n) > log, n is space constructible, then DSPACE(S(n)) is closed under
complementation.

Proof: This is very similar to part of the proof of Theorem 3.8. Final and nonfinal states are
interchanged, and a counter is used so that the complementing machine can accept if the original
one runs forever. O

Exercise 4.22: Prove that Proposition 4.21 is false for arbitrary nonconstructible bounds S(n).

Similar propositions hold for DTIME, ATIME, and ASPACE. In the case of the alternating
machines, existential and universal states are interchanged and deMorgan’s laws applied.

The nondeterministic complexity classes are conspicuously missing from this list. The problem
is that we cannot just change existential to universal states, as is done for alternating machines.
More generally, the difficulty is that the complementing machine is to accept if and only if all paths
in the original machine’s computation tree are rejecting, which seems like a problem that cannot
be solved with only existential choice.

In 1964, Kuroda [26] posed the “LBA (linear bounded automaton) question”: is NSPACE(n)
closed under complementation? He was interested in this because the class of context-sensitive
languages is exactly NSPACE(n) and, with the exception of the context-sensitive languages, the
question of closure under complementation had been settled for all the classes of the “Chomsky hi-
erarchy” (i.e., for the regular languages, the context-free languages, and the recursively enumerable
languages). The knowledgeable experts agreed that the answer to the LBA question was surely
“no”, for the reasons described above. The question remained open until 1987, when Immerman [19]
and Szelepcsényi [45] independently and simultaneously announced the following surprising result:
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Theorem 4.23 (Immerman [19], Szelepcsényi [45]): If S(n) > logyn is space con-
structible, then NSPACE(S(n)) is closed under complementation.

Proof:

ConsTRrUCTION: Let S(n) be space constructible, and M be a nondeterministic Turing machine
running in space S(n) with input z and initial configuration Py. M, S(n), z, and Py will all be
global variables to the subroutines defined below.

We start by defining two simple nondeterministic subroutines guess and continue_iff reachable.
function guess returns boolean
begin

existentially choose b € {true, false} ;

return b
end .

The nondeterministic subroutine continue_iff _reachable(k, P) simulates M on input z starting
at Py for k steps, aborting (i.e., halting in a nonfinal configuration) if and only if it has not
reached configuration P within those k steps. Thus, continue_iff_reachable is a filter that allows the

algorithm to continue if and only if Py '_;[k P. Here are the details:
s

procedure continue_iff -reachable(k, P)

. . k
comment: does not abort if and only if Fy I—JZ P
,Z

begin
Q—Fh;
do k + 1 times
ifQ=Pr

then return

else existentially choose @ from {R | Q = R} ;
X

reject
end .

The central subroutine is count, which is used to count the number of configurations of M
that are reachable from the initial configuration Py. Let Ry = {Q | Po I—;[k Q@}. The subroutine
s

count, given arguments k and |Ry_1|, outputs |Rg|. It does so in the following manner. For each
configuration @, increment a counter d if and only if @ € Ry. To determine if ) € Ry, guess |Ry_1|

configurations P, and verify that each is in Ry_;. For each such P, test if P = Q or P I—M Q. If
&

s0, increment d and go to the next value of Q). If not, but there were |Ry_1| configurations P found
in R;_1, then go to the next ) without incrementing d. Otherwise abort, as there was a wrong
guess for some P.

Notice that we cannot test whether @) € Ry by simply calling continue_iff _reachable(k, @), since
this would cause count to abort the first time an unreachable () was encountered. Notice also that
we cannot afford the space to generate all |[Rx_1| configurations P simultaneously.
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The details for the function count are given in Figure 4.2.

function count(k, hyp) returns integer
comment: count(k,|Rx_1|) = |Rx| ;

begin
d—0; comment: d counts elements of Ry ;
for all ) do
comment: test if QQ € Ry, ;
begin
c+—0; comment: ¢ counts elements of Ry_1 ;
for all P do
comment: test if P € Ry_1 ;
if guess
then begin
continue_iff_-reachable(k — 1, P) ; comment: i.e., P € Ry 1 ;
c—c+1;
if (P=Q)or (P |—MIQ) comment: i.e., Q € Ry, ;
then begin
d—d+1;
go to nextQ
end
end
if ¢ # hyp then reject; comment: wrong guess somewhere ;
nextQ:
end ;
return d
end .

Figure 4.2: The Nondeterministic Subroutine count

Exercise 4.24: Explain why the “if guess” test is necessary.

Given the subroutine count, it is relatively straightforward to write a nondeterministic algorithm
that accepts the complement of M. The method it uses is to iteratively compute |Ry| until % is the
running time of M on z. Having done this, it guesses |Ry| nonfinal, reachable configurations and
verifies that the correct guesses were made. The details are given in Figure 4.3.

CORRECTNESS OF count: To prove the correctness of count we want to prove that
count(k,|Rx—1|) = |Rg| for all k. Assume that hyp = |Rg_1|. Then, for each @), we will prove
that

(a) there is some sequence of nondeterministic choices that always reaches the label nextQ rather
than aborting, and

(b) when the label nextQ is reached, d has been incremented if and only if @ € Ry.
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procedure Mrejects(x)
comment: accepts z if and only if M does not accept z ;

begin
compute S(|z|) ;
hyp «— 1 ; comment: Ry =1;
for k from 1 until hyp does not change do
hyp < count(k, hyp) ; comment: after this, hyp = |Ry|;
comment: k£ is now the maximum running time of M, and hyp is the number of reachable
configurations ;
c+—0; comment: ¢ counts elements of Ry, ;
for all nonfinal P do
if guess
then begin
continue_iff_reachable(k, P) ;
c—c+1
end ;
if ¢ = hyp then accept else reject
end .

Figure 4.3: The Main Procedure Mrejects

Once we prove both (a) and (b) the final value of d is certainly |Ry| on every computation path
that has not aborted.

Proof of (a): In the “if guess” test, guess true for P if and only if P € Ry_;. For those

. k—1_ . . . . .
P € Ry_1 guess a correct computation P liM P in continue_iff reachable. This ensures that ¢ will
L

attain the value hyp = |Rj_1| and will fail the test “if ¢ # hyp”, unless of course the branch “go
to nextQ” is taken earlier. In either case, the label nextQ is reached.

Proof of (b):

. . . . k—1
“Only if” clause: Since d was incremented there must be a computation Fy I—SM P, where
T

either P=Q or P |—M Q. Hence, Q € Ry.
T

“If” clause: Assume d has not been incremented but the label nextQ is reached. That means
that ¢ has attained the value hyp = |Ry_1|, we have found all |R;_1| configurations P € Ry_1, and

for none of them was it true that P = Q or P I—M Q. Thus Q € Ry.
3L

CORRECTNESS OF Mrejects: By induction on k and the correctness of count, after the first for
loop in Mrejects, hyp is the number of distinct configurations reachable (in any number of steps)
from Py. (Each time an iteration of the for loop is completed, hyp = |Ry|. The loop is exited when
hyp does not change, which means we have accounted for all reachable configurations.)

To prove the correctness of Mrejects we want to prove that Mrejects accepts z if and only if M
does not accept z.

“Only if” clause: Suppose Mrejects accepts . Then it has found hyp reachable but nonfinal
configurations, and these are all the reachable configurations. Thus M does not accept x.
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“If” clause: Suppose Mrejects rejects x. Then for all nondeterministic choices in the “if guess”
test (and in particular, the choice of true if and only if P is reachable), it failed to find hyp
reachable nonfinal configurations. Hence, at least one of the reachable configurations of M is final,
so M accepts z.

Anavysis: It remains to show that each of these procedures runs in space O(S(n)).

1.

2.

Function guess runs in O(1) space.

Procedure continue_iff_reachable needs to keep only two configurations of M and this takes

space O(S(n)), since S(n) > log, n. It also needs to count up to k, but we will see below that
k = 20(5(n),

. Function count keeps two configurations P and ), and two counters ¢ and d, where ¢ < d <

|Ry| = 20(5(") Therefore the space needed for counters and configurations is O(S(n)).

. Procedure Mrejects maintains counters k, ¢, and hyp, and configuration P. Since ¢ and hyp are

each at most the number of distinct configurations, each is 20(5(n)) _ Since hyp increases by at
least 1 every time k is incremented by 1, k¥ < hyp. Hence the counters and configuration take
space O(S(n)). Finally, S(n) is space constructible, so can be computed in space O(S(n)). O

Open Problem 4.25: Determine whether NTIME(T'(n)) is closed under complementation for
T(n) > n.

Open Problem 4.26: Find other applications of the “inductive counting” technique of The-
orem 4.23. For example, can it be used to simulate limited forms of alternation?

Exercise 4.27: Show that an alternating Turing machine that runs in space S(n) and alter-
nates between existential and universal configurations only a constant number of times can be
simulated by a nondeterministic Turing machine that runs in space S(n). What goes wrong with
your simulation if the alternating Turing machine alternates more than a constant number of times?
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4.8.

Exercises

. Describe in detail how the graph G in the proof of Theorem 4.7 can be constructed in time

20(5(n) | Point out the places where the assumption S (n) > logy n is used.

. Carefully prove the correctness part of Theorem 4.9.

. Explain carefully what would go wrong in Theorem 4.9 if N were nondeterministic instead of

deterministic. Assume that local is changed to a relation local(b,b_1,bg, b1, b2) that is true if
and only if Cj 41 ; = b is consistent with C; j;1a = ba, for all A € {-1,0,1,2}. Why would it
be surprising if Theorem 4.9 did hold for nondeterministic time?

. Carefully prove the correctness part of Theorem 4.11.

. What changes do you need to make to the proof of Theorem 3.8 to make it work with NSPACE

substituted for DSPACE? Justify your answer.

(a) Demonstrate that Proposition 4.21 is false for some nonconstructible space bound.

(b) Prove that if S(n) > n is the space bound of some deterministic Turing machine, but S(n)
is not space constructible, then DSPACE(S(n)) is not closed under complementation.

. Determine why the method of Theorem 4.23 does not resolve the question of whether

NTIME(T (n)) is closed under complementation for T(n) > n.

. Do Exercise 4.27.
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Part 11

Case Studies, Reducibility, and
Completeness
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In Part I we examined results for arbitrary space and time bounds. In Part IT, we will specialize
in particular time and space bounds, specifically polynomials and logarithms. This shift of attention
from arbitrary bounds to specific bounds is motivated by the complexity of computational problems
encountered in practice.

37



Chapter 5

Reducibility, Completeness, and
Closure Under Reductions

5.1. Log Space Reducibility

In order to introduce the notion of reducibility, we need to generalize deterministic Turing machines
from machines that accept languages to machines that compute functions. To allow our machines to
compute functions, we add a one-way, write-only output tape, initially blank, to the deterministic
Turing machine model. The contents of this tape are not included in the space bound of the
machine.

Definition 5.1: A deterministic Turing machine M computes a partial function f if and only
if for every input z, if  is in the domain of f, then M halts with f(z) written on the output tape,
else M does not halt.

The next definition introduces the notion of “reducibility”, which is the means for comparing
the complexities of two problems.

Definition 5.2: Let A and B be languages. We say A is log space, many-one reducible to B
(denoted AS,%B) if and only if there is a (total) function f computable by a deterministic Turing
machine M in space O(logn) such that z € A if and only if f(z) € B, for all z. In such a case we
say M reduces A to B.

This says that recognizing A is no harder than computing f (which, by the definition, is “easy”)
plus recognizing B. This definition is stricter than other common definitions of reducibility in two
ways. Firstly, it is common to allow the reducing machine polynomial time rather than only
O(log n) space. Secondly, one often encounters “Turing reducibility” of A to B, which means that
you can solve problem A if given arbitrary access to a subroutine that solves problem B. Many-one
reducibility is stricter in the sense that, to solve A, the reduction can only call the subroutine for
B once at the very end, and must return the value that invocation returns.

Next we show that reducibility is transitive, which is its most important property.

Lemma 5.3: If AS%B and BgéC, then ASTE,LC.
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Proof: Let M reduce A to B and N reduce B to C. On input z we want to output g(f(z)),
where M computes f and N computes g. Note that g(f(x)) is the correct output, since z € A if
and only if f(z) € B if and only if g(f(z)) € C. The problem is that the length of the intermediate
value f(z) could be polynomial in n = |z| (for example, if M outputs a symbol at each step), and
the reduction does not have that much space.

Instead, imagine running N on (nonexistent) input f(z). For any i, whenever N needs the
ith symbol of f(z), simulate M on z until it produces the ith output symbol (throwing away the
previous i—1 symbols rather than writing them). The space required for this is O(log |z|) = O(logn)
for M and O(log |f(z)]) = O(log(n®M)) = O(logn) for N and i. O

5.2. Hardness, Completeness, and Closure Under Reductions

Definition 5.4: Let C be a set of languages. A language B is S%—hard for C if and only if for
every A € C, AST%B. B is Sf,;’—complete for C if and only if B € C and B is Sﬁ—hard for C. 1

Definition 5.5: Let C be a set of languages. We say C is closed under §£ if and only if AgﬁB
and B € C implies A € C.

The following proposition explains why complete problems are so important: if you understand
the complexity of any one complete problem for a class, you understand the complexity of the entire
class.

Proposition 5.6: Let C and D be sets of languages. Suppose C is closed under S;’;;’ and B is
Srﬁnfcomplete for D. Then B € C if and only if D C C.

Proof:
“If” clause: Suppose D C C. B € D since B is Sﬁ—complete for D, so B € C.

“Only if” clause: Suppose B € C. Let A be an arbitrary language in D. Since B is géfhard
for D, AS%B. Then A € C since C is closed under Srﬁn. 0

The next proposition shows how to use one hard problem to get more.

Proposition 5.7: Let C be a set of languages. Suppose that A is S,,Ln:—hard for C, and AS%B.
Then B is §£fhard for C.

Proof: Let E be an arbitrary language in C. EST%A, since A is gﬁ—hard for C. Then EgﬁB
by Lemma 5.3. O

'In the literature, these terms have been called “log space hard” and “log space complete”. We will use the stated
terminology in order to avoid confusion with other possible O(logn) space reducibilities.
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Chapter 6

Deterministic and Nondeterministic
Logarithmic Space

Let

L = DSPACE(logn),
NL = NSPACE(logn),

P = |JDTIME(n®) = ASPACE(logn), and
c>0

NP = |J NTIME(n").

c>0

From Theorem 4.1, L C NL C P C NP. It is an open question (part of Open Problem 4.3
on page 20) whether any of these containments is proper; it is even possible that £ = N'P. We
concentrate now on the first of these containments:

Open Problem 6.1: Does £ = N L?

As motivation, we know from Savitch’s Theorem (Corollary 4.15), that £ C NL C
DSPACE(log? n), so the classes £ and N'L are “very close”.

Proposition 6.2: L is closed under Sﬁ.

Proof: Suppose AS%B and B € L. It is an easy exercise to prove that B € £ if and only if
BST‘%{l}. By Lemma 5.3, AST‘%{l}, so AeL. O

The next proposition shows that concentrating on O(logn) space may have ramifications to
higher space bounds.

Proposition 6.3: If £ = NL, then DSPACE(S(n)) = NSPACE(S(n)) for all space con-
structible S(n) > logs n.
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Proof: Let L be accepted by a nondeterministic Turing machine N in space S(n). Consider
L' = {:151025(")*”*1 | z € L and |z| = n}.

L' € NL, as follows: Check that the input is of the form y = z10*, where |y| = 2502, and
then simulate N on z. The space needed to compute S(|z|), measure |y|, and simulate N is all

S(|z]) = log, |yl
Since £L = N L, L is accepted by a deterministic Turing machine D in space log, n.
Then L € DSPACE(S(n)), as follows: On input z, simulate D on y = £102°™ -1 1f D

input head tries to leave the right end of x, use a worktape to keep track of its position within .
The space needed is S(n) to compute S(|z|) and keep track of D’s input head position, along with

another log, (25(")) = S(n) space to simulate D. O

The method of proof in Proposition 6.3 is called “padding”, since the strings in L are padded
with useless symbols to obtain L'.

6.1. Directed Graph Connectivity

Proposition 5.7 shows how to get more hard problems once you have one. To get the first hard
language B for a class, you have to do a generic reduction, that is, reduce a generic language in
the class to B. We now present a problem that is Srﬁnfcomplete for NL.

Let STCON = {(G,s,t) | G = (V,E) is (the encoding of) a directed graph that has a path
from vertex s to vertex t}.

Convention 6.4: We will assume that all graphs are encoded as follows: the elements of V'
are encoded as the binary representations of (not necessarily consecutive) integers, each of length
O(log|V]), and E is encoded as a list of ordered pairs of these binary representations.

Theorem 6.5 (Savitch [41]): STCON is Srﬁn—complete for NL.

Proof: The proof has two parts: we must show that STCON € NL, and that STCON is
an:fhard for NL.

1. STCON € NL: Start at s. In general, if the current vertex is u, nondeterministically choose
some v such that (u,v) € E, and replace u by v. Accept if and only if the vertex t is reached. The
space to record u and v is O(logn).

2. STCON is S,r%fhard for NL: Let A € NL be an arbitrary language accepted by some
nondeterministic Turing machine N in space O(logn). Construct a deterministic Turing machine
D that reduces A to STCON, as follows.

ConsTrucTION: Given z, D outputs (G, s,t), where

t is mnot a configuration of N on z,
G = (V,E),
V. = {P| P is a configuration of N on z} U {t},
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E = {(PQ)|P — Q}U{(P,t) | P is a final configuration}, and
T

s is the initial configuration of N on z.

* . oy
CORRECTNESS: Let I—N be the reflexive, transitive closure of I—N . Then
T 3L

x €A ifand only if N accepts x

if and only if s I—I: P, for some final configuration P
T

if and only if there is a path from s to ¢ in G
if and only if (G, s,t) € STCON.

Anavysis: D can cycle through the configurations P of N in O(logn) space, since N runs in
space O(logn). For each such P, D can output the edges {(P,Q) | P — Q} in O(logn) space.
T

Note that D produces output with size polynomial in n, but this output is not counted toward the
space bound. O

Corollary 6.6: STCON € L if and only if £L = NL.

Proof: This follows from Propositions 5.6 and 6.2, and Theorem 6.5. O

Thus, Open Problem 6.1 is equivalent to resolving whether the particular language STCON is
in L.

Corollary 6.7: If STCON € L, then DSPACE(S(n)) = NSPACE(S(n)) for all space con-
structible S(n) > log, n.

Proof: This follows from Proposition 6.3 and Corollary 6.6. O

6.2. Undirected Graph Problems

6.2.1. Directed vs. Undirected Connectivity

Exercise 6.8: Let STCON = {(G,s,t) | G has no path from s to t}. Show that STCON is
<£_complete for N'L.

Now consider the undirected version of STCON, namely
USTCON = {(G,s,t) | G is an undirected graph with a path from s to ¢ }.

Then USTCON € N'L.
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Open Problem 6.9: Is USTCON € L ? Alternatively, is USTCON g,ﬁnfcomplete for NL ?

The remainder of this section suggests evidence that USTCON is not as hard as STCON, and
hence is not Srﬁnfcomplete for N L.

Definition 6.10: For any £ > 1, SC¥ = {L | L is accepted by some deterministic Turing
machine in O(log® n) space and polynomial time, simultaneously}.

Note that SC' = £, and SC* C P N DSPACE(log* n), with equality unlikely in the latter.

Definition 6.11: SC = | J SC*.
E>1

Theorem 6.12 (Nisan [32]): USTCON € SC2.

Open Problem 6.13: Is STCON € SC? The conjecture is “no”, and some (relatively weak)
evidence is provided by Tompa [47]. If the answer is indeed “no”, then STCON /37% USTCON,
since SC* is closed under <% for k > 1.

6.2.2. Shortest Paths in Undirected Graphs

Although USTCON seems unlikely to be S,%fcomplete for NL, the problem of finding shortest
paths in undirected graphs is. More specifically, let

USP = {(G, s,t,k) | G is an undirected graph with a path of length at most k¥ from s to ¢ }.
Convention 6.14: We assume all integers to be encoded in binary, unless otherwise specified.
Theorem 6.15: USP is Sﬁfcomplete for N L.

Proof:

1. USP € NL: This is as in the proof of Theorem 6.5, but also count the length of the path
traversed from s, and reject if this exceeds min(n, k). The reason for this “min” is that, if the
encoding of k£ has w(logn) bits, there will not be enough space for the counter. However, a shortest
path never passes through any vertex more than once. Hence, |V| < m is an upper limit on the
length of the path.

2. USP is Srﬁnfhard for NL: We need not do another generic reduction, since we already have
a problem STCON that is Srﬁnfhard for NL. Hence, by Proposition 5.7, it suffices to show that
STCON<LUSP.

CoNsTRUCTION: On input (G, s,t), where G = (V, E), we will make |V| copies of V', with edges
corresponding to F between consecutive copies. More precisely, output (G', s', ¢, k), where

G = (V,E),
Vi = {vy|ieV,1 <5< |V},
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E' = {{vij,vpjp} | (6,k) € E,1 <5 <|V|-1}U{{vrj, 041} |1 <j < |V| -1},

S = Us,l;
t = vy|v|, and
E = |V|-1.

CoRRECTNEsSS: We need to show that (G, s,t) € STCON if and only if (G',s',t', k) € USP.

“Only if” clause: Assume that (G, s,t) € STCON. Then there is an [ < |V| such that G has a
path of length exactly [ — 1 from s to t. Then G’ has a path of length [ — 1 from v, to vy, and
hence a path of length |V/| — 1 from v, ;1 to vy Thus, (G',s',t', k) € USP.

“If” clause: Assume that (G',s',t',k) € USP. Then there is an [ < |V| such that G’ has a path
of length exactly [ — 1 from vz to v;; that does not pass through v ; for any j < I. Because the
length [ — 1 of this path equals the difference of the second subscripts, and because it does not use
any of the edges {v; j, vt 41}, it corresponds to a path in G from s to ¢. Thus, (G, s,t) € STCON.

AnarLysis:  To construct G’, we need enough space to store the index j so that, for each input
i € V, we can output |V| copies v; j, and for each input (i,k) € E, we can output [V| — 1 copies
{i,j, Uk j4+1}- Since n is an upper limit on |V|, at most logn bits are needed to store j. O

For additional problems Sé—complete for N'L, see Jones, Lien, and Laaser [21].
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6.3.

Exercises

. For any language B, prove that B € Lif and only if B gﬁ{l}.

. Let the “formula value problem” be defined as FV = {(F, A) | F is a propositional formula

with some number %k of variables, and A is a satisfying truth assignment for F', that is, A
makes F true}. Show that F'V € L.

. Let CYCLE be the set of directed graphs that contain a cycle. Prove that CYCLE is Sﬁ—

complete for N L.

. A directed graph G is said to be k-connected if and only if, for every set U of k — 1 vertices

and for every pair (v, w) of vertices not in U, there is a path from v to w that does not
contain any vertex in U. Let CONNECTIVITY = {(G,k) | G is k-connected}. Prove that

CONNECTIVITY is <£-complete for N'L.
(Hint: Use Exercise 4.27.)

. Let 2UNSAT be the set of unsatisfiable propositional formulas in conjunctive normal form

with at most two literals per clause. Prove that 2UNSAT is Sﬁfcomplete for VL. What is
the complexity of 2SAT, the set of satisfiable formulas in conjunctive normal form with at
most two literals per clause? (Le., is it in NL? Is it S,,%fhard for NL7?)

. Do Exercise 6.8.

. Prove that SC is closed under Sé.
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Chapter 7

Deterministic Polynomial Time

7.1. Motivating Completeness for P

Having dealt with the first containment in £ C NL C P C NP, we move on to P and a study
of Séfcompleteness for P. One motivation, of course, is that any problem Sﬁfcomplete for P
will be in £, or NL, or SC, if and only if all problems in P are. The following complexity class
encompasses all three of these classes:

Definition 7.1: POLYLOG = | ] DSPACE(log® n).
c>0

Note that POLYLOG = .o NSPACE(log®n) due to Corollary 4.15, and that POLYLOG =
Ueso ATIME(log®n) due to Theorems 4.11 and 4.14. It is also clear that SC C POLYLOG, since
SC is a time-bounded version of POLYLOG.

As an example of a problem in POLYLOG, group isomorphism (i.e., given the multiplication
tables of two finite groups G and H, is G = H?) is in DSPACE(log? n) [29], but not known to be
in ML or in SC, or even in P.

Open Problem 7.2: Is P C POLYLOG ? The conjecture is “no”, and some evidence is given
by Cook and Sethi [6].

Since POLYLOG is closed under S,ﬁn (left as an exercise to the reader), any problem that is
Srﬁnfcomplete for P is in POLYLOG if and only if P C POLYLOG, by Proposition 5.6.

Another motivation is that problems that are Séfcomplete for P are “inherently sequential”,
assuming P ¢ POLYLOG, meaning that they cannot be very efficiently parallelized. We will
return to this topic in Section 7.5.

7.2. Boolean Circuits
The immediate reason to introduce Boolean circuits is that they are the subject of the first problem

that will be shown S,,L,;’fcomplete for P. In addition, we will have occasion to study circuits as
computational devices in Section 7.5.
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Definition 7.3: A (Boolean or combinational) circuit is an acyclic, oriented, directed graph
with two distinguished subsets of vertices, called inputs and outputs. (“Oriented” means that the
edges directed into any particular vertex are ordered.) The vertices have indegrees and labels as
follows:

e Inputs have indegree 0 and are labeled consecutively from the set of indeterminates

{r1,29,.. . 20}

e All noninput vertices are called gates. A gate with indegree d is labeled by any function

f:{0,1}¢ — {0,1}.

In what follows, unless specified otherwise it is assumed that the maximum indegree d is a
constant with respect to the number n of input labels. Such circuits are said to have bounded
fanin.

Definition 7.4: The value val(u) € {0,1} of vertex w in a circuit on input (b1,bs,...,b,) €
{0,1}™ is defined as follows:

e If u is an input with label z; then val(u) = b;.

e If u is a gate with label f : {0,1}¢ — {0,1}, and the d vertices with edges directed to u are
U1, U, .., Uq, then val(u) = f(val(ui), val(uz), ..., val(ug)).

A circuit with 1 output vertex w is said to output b on input (by,bs, ..., by,) if the value of u on
input (b1, ba,...,by) is equal to b.

We usually restrict the labels f to be from {AND, OR, NOT}.
Definition 7.5: If the labels f must be in {AND, OR}, then the circuit is called monotone.

Note that arbitrary functions cannot be computed by monotone circuits. For example, the
function NOT cannot be so computed. Only “monotone functions” can be computed by monotone
circuits, where a monotone function has the property that, if any input is changed from 0 to 1, the
output cannot change from 1 to 0.

The next definitions introduce natural complexity measures for circuits.
Definition 7.6: The size of a circuit C is the number of gates in C.

Definition 7.7: If u is a vertex of a circuit C, then depth(u) is the length of any longest path
from any input to u. The depth of C is the maximum, over all vertices u in C, of depth(u).

If a circuit is viewed as a sequential computing device, then size is a measure of sequential
time, because each gate represents one operation. On the other hand, if a circuit is viewed as a
parallel computing device, then depth is the appropriate measure of time, since all gates at a given
depth can be evaluated in parallel. In the latter case, size is a measure of the number of parallel
processors required.
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7.3. One-Read Alternating Turing Machines

Definition 7.8: A one-read alternating Turing machine is an alternating Turing machine that,
on each path of its computation tree, writes only one string of the form %a on its index tape, where
i € {0,1}" and a € X. It then enters a special “read” state greaq and halts in the next step,
accepting if and only if x; = a, where z; is the ith input symbol. Its computation on that path,
and in particular whether it accepts, depends on no other input symbol.

Lemma 7.9: An alternating Turing machine M that runs in 7(n) > logy n time and S(n) >
logy n space can be simulated by a one-read alternating Turing machine N that runs in O(T'(n))
time and O(S(n)) space.

Proof:

CONSTRUCTION: On input z, NV simulates M, but records M’s index tape on a separate worktape.
If M has ¢ written on its index tape, N does the following to simulate one more step of M:

existentially choose g € ¥ ;
universally choose b € {0,1} ;
case b of
0: if z; = a then accept else reject;
1: continue simulating M as though M received the response z; = a
end .

N does the test “x; = a?” by writing ¢a on its index tape and entering ¢reaq-

Example 7.10: Suppose ¥ = {a, b}, and on some computation path in M we have two steps
that read input characters x; and z;, respectively. Then the corresponding portion of the compu-
tation tree for NV is shown in Figure 7.1.

CORRECTNESS: The only new universal configurations that can possibly be accepting are those
for which the correct value z; was guessed, and those are accepting if and only if M’s continuation
is accepting.

Anavysis:  Along any path in the original computation tree for M, each step is replaced by
3 steps of N; in addition, at the end of the path there is an added O(logn) time to copy i to
the index tape. Thus, the total time is 37(n) 4 logy n = O(T'(n)), since T(n) > logsn. The only
additional space that N uses is the log, n space needed to record the contents of M’s index tape
on a separate worktape. Since S(n) > log, n, this is O(S(n)). Note, though, that this method may
greatly increase the number of alternations between existential and universal configurations. ]

7.4. The Circuit Value Problem

Let
MCV = {(C,b1,by,...,b) | C is a monotone circuit with £ inputs that
outputs 1 on input (b1, bo,...,bx) } .
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/\

/V\ /V\
z; =a’ ; z; = b? continues as
3 ifz; =5
/\
/V\ /V\
zj =a? continues as z; =b? continues as
ifz;=a ifz;=a
and z; = a and z; = b

Figure 7.1: Computation Tree for One-Read Alternating Turing Machines

Theorem 7.11 (Ladner [27], Goldschlager [11]): MCYV is §£700mplete for P.

Proof:

1. MCV € P: By Theorem 4.7 it suffices to show that MCV is accepted by an alternating
Turing machine A that runs in space O(logn).

CoNSTRUCTION: Starting at C’s output gate, A does the following. Let u be the vertex currently
being evaluated by A.

e Case 1: If u is an input of C labeled z;, then A accepts if and only if b; = 1.

e Case 2: If u is an OR (AND) gate with input vertices vy and vy, then A existentially (re-
spectively, universally) chooses b € {0,1}, replaces u with v, and continues by evaluating
Vp-

CORRECTNESS: By induction on depth(u), A is in an accepting configuration when evaluating
u if and only if val(u) = 1.

Basis (depth(u) = 0): Then u is an input. By Case 1 above, A accepts if and only if val(u) =
b; = 1.

Induction (depth(u) > 0): Assume the induction hypothesis holds for all vertices v such that
depth(v) < k. Let u be a vertex in C such that depth(u) = £+ 1, and v = v9g OR v; (u =
vo AND wv;). By the induction hypothesis, A is in an accepting configuration when evaluating vg
if and only if val(vg) = 1, and A is in an accepting configuration when evaluating v; if and only if
val(v1) = 1. By the construction, A is in an accepting configuration when evaluating u if and only
if A is in an accepting configuration when evaluating vy or (respectively, and) when evaluating vy,
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which occurs if and only if val(vg) = 1 or (respectively, and) val(v;) = 1, which in turn occurs if
and only if val(u) = 1.

Anavysis:  Since (C, b1, bg,...,b) is already in A’s input, A need only store u, vy, and i, all
three of which use O(logn) space.

2. MCV is Séfhard for P: Let L be an arbitrary language in P. By Theorem 4.9, we can
assume that L is accepted by an alternating Turing machine A in space logy n. It suffices to produce
a deterministic Turing machine D running in O(log n) space that reduces L to MCV. Without loss
of generality, we will make three simplifying assumptions about A:

1. By Lemma 7.9, we can assume that A is a one-read alternating Turing machine.
2. Assume that every configuration of A has either zero or two immediate successors.

3. Assume that A uses a separate worktape to count how many steps it has taken. The purpose
of this is to prevent A from repeating any configuration along any path of its computation
tree. If this counter exceeds the maximum running time of A (which is easily computable
since its space bound is log, n), then A halts and rejects.

ConsTrRUCTION:  On input z, D outputs (C, b1, ba,...,bx), where C contains a vertex up for
every configuration P of A, and has labels and edges as follows:

e If P is an existential (universal) configuration with P =, Q and P =, R, then up is an OR
T T

(respectively, AND) gate with inputs ug and ug.

e If P is a configuration in state greaqg With ¢a on its index tape, then up is an input vertex with

value

1 if ;= a

0 ifz; #a
D can determine whether z; = a, since 4 is written on its worktape as part of P, and x is on
its input tape.

e If P is a final (nonfinal) halting configuration, then up is an input vertex with value 1
(respectively, 0).

e If P is the initial configuration, then up is the output gate.

Note that C is acyclic, since A is constructed so that it never repeats any configuration along a
single computation path. Note also why we need A to be one-read.

CORRECTNESS: By induction on depth(up), P is an accepting configuration if and only if
val(up) = 1.

Basis (depth(up) = 0): Then up is an input vertex. By construction, val(up) =1 if and only
if P is either a final configuration, or a configuration containing g,eaq that is about to accept.

Induction (depth(up) > 0): Suppose that P is an existential (universal) configuration with

P |—A Q@ and P |—A R. Then P is accepting if and only if either @ or R is accepting (respectively,
T T
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both @ and R are accepting) which, by the induction hypothesis, is true if and only if val(ug) =1
or (respectively, and) val(ug) = 1, which is true if and only if val(up) = 1.

ANavysis: D uses O(logn) space to enumerate each of A’s configurations P, to find the

configurations () such that P I—A @ in order to output the edge (ug,up), and to count to ¢ in
\T

order to find z; on the input tape. This is all possible since A’s configurations only have length

O(logn), and ¢ < n. O

Let CV = {(C,b1,bs,...,b;) | C is a circuit with k¥ inputs and with gates labeled from {AND,
OR, NOT} that outputs 1 on input (b1, b,...,bx)}.

Corollary 7.12 (Ladner [27]): CV is Séfcomplete for P.

Notice that the fact that monotone circuits are provably weaker than general circuits does not
contradict the fact that C VS,[’,LM CV: the latter says that it is as hard to predict the output of a
monotone circuit as it is to predict the output of a general circuit.

7.5. Relating Circuits to P

In this section we present a slightly different view of the relationship between circuits and P. Rather
than viewing circuits as the subject of a problem to be solved by a polynomial time deterministic
Turing machine, circuits will be viewed as computing devices themselves, and we will be interested
in how their power relates to the power of Turing machines. We begin by discussing circuits as
computing devices with associated complexity measures.

Definition 7.13: Let C be a circuit with n inputs and 1 output. The language accepted by C
is L(C) = {z € {0,1}" | C outputs 1 on input z}.

Note that L(C) C {0,1}" is always finite. Therefore, in defining circuit complexity classes
below, we must consider an infinite family of circuits, one for each input size n.

Definition 7.14: SIZE(S(n)) = {L | for all n, LN {0,1}" is accepted by some circuit C,, with
n inputs, bounded fanin, and size S(n)}.

Definition 7.15: DEPTH(D(n)) = {L | for all n, L N {0,1}" is accepted by some circuit C,,
with n inputs, bounded fanin, and depth D(n)}.

Definition 7.16: PSIZE = | | SIZE(n"). Fn=1,
c>0 size=1
suffices.

Theorem 7.17: P C PSTZE.

Proof: It suffices to simulate an alternating Turing machine that runs in O(logn) space by a
family of polynomial size circuits C,,, by Theorem 4.9. This is what was done in proving MCYV is
Srﬁnfhard for P, in Theorem 7.11, except:
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e if P is a configuration in state greaq With Za on its index tape, then up is

— an input vertex labeled z;, if a = 1,
— the negation —z; of an input vertex, if a = 0, and
— the constant 0, if a ¢ {0,1}.

The state of the art in refining Theorem 7.17 is given in the following theorem:
Theorem 7.18 (Pippenger and Fischer [35]): DTIME(T(n)) C SIZE(O(T'(n)log T(n))).
Open Problem 7.19: Improve Theorem 7.18.

Ruzzo [39] showed a tighter relationship between alternating Turing machines and circuits than
Theorem 7.17. He first observed that the same simulation demonstrates that an alternating Turing
machine running in time 7'(n) and space S(n) (simultaneously) can be simulated by a family of
circuits C,, of depth O(T'(n)) and size 29(5(")) simultaneously. Because of the nonuniformity in the
definition of SIZE and DEPTH (i.e., C), has, in general, no resemblance to Cj,11), it is impossible
for the converse to hold, that is, for a single alternating Turing machine to simulate an infinite
family of circuits efficiently. The following exercise makes this point as conclusively as one would
like:

Exercise 7.20: Prove that SIZE(1) contains nonrecursive sets. (Hint: define a nonrecursive
language that, for all nonnegative integers n, either contains every string or no string in {0,1}".)

To overcome this obstacle, Ruzzo defined “uniform” families of circuits, and showed that alter-
nating time O(T'(n)) and space O(S(n)) is equivalent to uniform circuit depth O(T(n)) and size
20(5(n)) gimultaneously. In this sense, alternating Turing machines are a good model of parallel
algorithms, with time measuring parallel time and space measuring the logarithm of the number
of processors.

Definition 7.21: For any k& > 1, NC* = {L | L is accepted by some alternating Turing machine
in time O(log® n) and space O(logn) simultaneously}.

Definition 7.22: NC = U NCE.
E>1

By Ruzzo’s Theorem, NC is the class of languages that can be accepted by extremely fast
parallel algorithms using a polynomial amount of hardware.

Here is how NC fits in with previously studied complexity classes:
NC'CLCNLCNC>CNC CPNPOLYLOG.

The first containment follows from Theorem 4.11, the third from the proof of Theorem 4.14 (where
only O(logn) space is needed to retain three configurations), NC C P from Theorem 4.7, and
NC C POLYLOG again from Theorem 4.11.

If any language that is an:fhard for P is in NC, then P = NC. Thus, assuming P # NC, these
hard problems are “inherently sequential”. This provides another strong motivation for the study
of completeness for P.
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7.6. Other Problems Complete for P

To indicate the variety of natural problems that are known to be Sﬁfcomplete for P, seven of
them are described below. The source for these and other problems is a compendium by Greenlaw,
Hoover, and Ruzzo [13], which describes approximately 100 such problems. The proof of the first
of these seven will be given in Section 7.7, but the remaining proofs are omitted.

1. Linear Programming (7, 24]
InpuTS: n X d integer matrix A, vector b of n integers.
ProsBLEM: Is there a vector x of d rational numbers such that Az < b?

The ordinary linear programming problem, which asks to maximize the inner product c -z
subject to Az < b, is transformed most naturally into a language recognition problem by
adding one more constraint ¢ -z > k, where ¢ and k are also part of the input. This extra
constraint can then be incorporated as a new row of A and b.

2. Maximum Flow [12]

InpuTs: Directed graph G with a nonnegative integer capacity c. for each edge e, and two
designated vertices s and t.

ProsrLEM: Is the maximum “fHow” from s to ¢ odd?

The flow f. on any edge e is a nonnegative number that satisfies the following conditions:

o fo < c. for each edge e, and
e the total flow into vertex v equals the total flow out of vertex v, for all v & {s, t}.
The flow from s to t is the total net flow into ¢. The question of whether the maximum flow
from s to ¢ is at least a designated integer k is also </;—complete for P [28].
3. First Fit Decreasing Bin-Packing [1]
InpuTs: Rational numbers vy, vs, ..., v, € [0,1], integers i and b.
PrROBLEM: Is v; put into bin b by the First Fit Decreasing heuristic?
First Fit Decreasing is the following heuristic: consider each v; in decreasing order, inserting
it into the least numbered bin in which it still fits.
4. Depth First Search [37]
InpuTs: Adjacency lists for a graph G, and three distinguished vertices s, u, and v.
ProBLEM: Is u visited before v by the Depth First Search algorithm, assuming it starts at
vertex s and handles adjacencies in the order dictated by the adjacency lists?
5. Unit Resolution [20]
InpUTS: A Boolean formula F' in conjunctive normal form.
ProBLEM: Can the empty clause O be deduced from F' by unit resolution?

As an example of unit resolution, if two of the clauses in F" are A = -y and B=xV gy V -z,
then unit resolution adds the clause x V —z to F'.
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Deducing the empty clause is a way of proving unsatisfiability of F' in resolution. If instead
one wanted to prove that F' implies some clause F, then —F could be added to F' and proved
unsatisfiable.

6. Unification [8]
INnpUTs: Two terms s and ¢, each composed of variables and function symbols.

ProBLEM: Are there substitutions of terms for the variables in s and ¢ that cause them to
become equal?

As an example, the terms s = f(z,g(z,y)) and t = f(g9(w,w), z) can be unified by setting
z = g(w,w) and z = g(g(w, w),y).

7. Context-Free Grammar Emptiness Citation
purposely

InpuTs: Context-free grammar G. omitted: to

be used as

PrOBLEM: Is L(G) = (7 homework

7.7. Linear Programming

Theorem 7.23 (Dobkin, Lipton, and Reiss [7], Khachian [24]): Linear Programming is
Srﬁnfcomplete for P.

Proof:

1. Linear Programming € P: This is difficult and was open for many years. It was finally
proved by Khachian [24].

2. MCVS% Linear Programming: This proof is due to Cook [13].

CONSTRUCTION:  Given a monotone circuit C and its k input values b1, bs,...,b;, we must
output A and b such that Az < b has a solution z if and only if C outputs 1 on inputs by, ba, . . ., bg.

For each vertex u of C, there is a corresponding variable x, and some constraints as follows:

e For each input vertex u with value b, output the inequalities representing
> x, = b (actually represented by two inequalities z,, < b and —z,, < —b).
e For each OR gate uw with inputs v and w, output the inequalities

> 0<zy <1,

> zy <y (ie., if val(v) = 1, then val(u) = 1),

> Ty <y (ie., if val(w) = 1, then val(u) = 1), and

> Ty — Ty — Ty < 0 (i.e., if val(v) = 0 and val(w) = 0, then val(u) = 0).

e For each AND gate u with inputs v and w, output the inequalities

>0<z, <1,

> Ty < Zy (ie., if val(v) = 0, then val(u) = 0),
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> Ty < Ty (i.e., if val(w) = 0, then val(u) = 0), and
> Ty + Ty — Ty < 1 (e, if val(v) = 1 and val(w) = 1, then val(u) = 1).

e If 4 is the output of C, output the inequalities representing

D> X, = 1.

CoRrRRECTNESS: By induction on depth(u), the only possible solution for z, is val(u). Hence,
Az < b has a solution if and only if C' outputs 1.

Anavysis: Space O(logn) suffices to hold u, v, w, and the label of a single input vertex. a

7.8.

Problems in P Not Known to be Complete

Open Problem 7.24: Each of the following problems is known to be in P, but not known to
be either complete for P or to be in POLYLOG. (Of course, they need not necessarily be either.)

1.

Greatest Common Divisor
INPUTS: n-bit integers x and y.
ProBLEM: Compute ged(z,y).

This problem is known to be in P by Euclid’s algorithm. The problem is still open even if
we just want to determine if z and y are relatively prime, i.e., ged(z,y) = 1.

. Modular Exponentiation

INPUTS: n-bit integers a, e, and m.
ProBLEM: Compute a® mod m.

This may not seem entirely natural, but there are other important problems that are reducible
to this. These include probabilistic primality checking, RSA encryption and decryption [38],
computing inverses modulo primes, and computing square roots modulo certain primes.

. Edge Weighted Matching

InpuTs: Graph G with positive integer edge weights.

ProBLEM: Find a matching of maximum weight.

. Stable Marriage

INPUTS: n men and n women each with a complete ordered list of marital preferences.

ProBLEM: Find n marriages such that there do not exist a man and a woman who each prefer
the other over his or her own spouse.

. Comparator Circuit Value

InpuTs: Circuit C of comparators (each of which takes two inputs = and y and outputs exactly
one copy each of max(z,y) and min(z,y)), vector (by,bs,...,b) € {0,1}*, and integer 1.

ProBLEM: Is the ith output of C on input (b1, bs,...,bx) a one?

It is interesting to note that problems 3, 4, and 5 are all equivalent (i.e., reducible to each other)
and that there are no known reductions between problems 1 and 2.
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7.9. Exercises

1. Show that CV € P.
2. Do Exercise 7.20.

3. Prove that NC is closed under 5%.

4. Let CFGempty be the set of context-free grammars G such that L(G) = (. Prove that
CFGempty is S,%fcomplete for P.
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Chapter 8

Nondeterministic Polynomial Time

8.1. Satisfiability of Propositional Formulas

In this section we present a new proof that SAT is N'P-complete. Given the machinery that we
have developed, this is much simpler than the one originally given by Cook [4].

Definition 8.1: A circuit is in normal form if and only if the NOT gates have as inputs only
circuit inputs.

Exercise 8.2: Show that any circuit can be put into normal form with an increase of 1 in
depth and doubling in size.

Definition 8.3: CSAT = {C | C is a circuit in normal form with L(C) # 0}.

Theorem 8.4: CSAT is §£fcomplete for N'P.

Proof:
1. CSAT € N'P: Given a circuit C' with k inputs, guess input values (b1, bs,...,b;) € {0,1}%
and accept if and only if C' outputs 1 on input (b, bg,...,b). The circuit evaluation is done in

polynomial time as in Theorem 7.11.

2. CSAT is Sg—hard for NP: Let N be a nondeterministic Turing machine that accepts a
language L in polynomial time p(n). Assume without loss of generality that each configuration of N
has at most two immediate successors. N can be simulated by a nondeterministic Turing machine
N' that behaves as follows. On input z, N’ computes p(n) (which can be done deterministically),
existentially chooses y € {0, 1}7’(”), and writes #y after z on the input tape. N’ then returns its
head to the left end of £ and simulates some deterministic Turing machine D on input x#y, where
D simulates N, but consumes another bit of y whenever it needs to simulate a nondeterministic
choice. By Theorem 4.9, there is an alternating Turing machine A that uses space O(logn) and
accepts the same language as D.

CoNSTRUCTION:  We must construct a deterministic Turing machine M that, on input z,
outputs some circuit C' that is in CSAT if and only if there exists a y such that A accepts z#y. M
first computes p(n), and then proceeds exactly as in Theorems 7.11 and 7.17, combining the input
conventions of those two proofs as follows:
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e If P is a configuration in state ¢r,q With ia on its index tape, then:

— if i <|z| + 1, then up is a constant gate with value
x 1, if a = (z#);, and
* 0, otherwise;
— if 4 > |z| + 1, then up is
* an input vertex labeled y;_ |, _1, if a =1,
* the negation —y;_|;_; of an input vertex, if ¢ = 0, and
* the constant 0, if a ¢ {0,1}.

CORRECTNESS:

N accepts if and only if there exists a y of length p(n) such that A accepts z#y
if and only if there exists a y of length p(n) such that C outputs 1 on input y
if and only if C € CSAT.

The second equivalence is proved in the correctness proof of Theorem 7.11.

ANAvysis: M can compute the binary representation of p(n) in space O(logn). Once this is
done, the remainder of the analysis is the same as in Theorem 7.11. O

Given Theorem 8.4, it is reasonably straightforward to prove that SAT is complete for N'P. In
fact, Cook [4] considered the following much more restrictive version of SAT:

Definition 8.5: A propositional formula is in conjunctive normal form if and only if it is the
conjunction of “clauses”, each of which is the disjunction of “literals”, each of which is either a
propositional variable or its negation.

Definition 8.6: 3SAT is the set of satisfiable propositional formulas in conjunctive normal
form with at most three literals per clause.

Theorem 8.7 (Cook [4]): 35AT is Srﬁnfcomplete for N'P.

Proof:

1. 8SAT € NP: Given a formula F with k variables, nondeterministically choose a truth
assignment A € {0,1}* and accept if and only if A satisfies F. This formula evaluation can be
done deterministically in polynomial time (in fact, in ATIME(log n) [2]).

2. CSAT<E 35AT:

CONSTRUCTION: Given a circuit C, the reduction outputs a formula F' with one variable z,, for
each vertex w of C. F' is the conjunction of the following:

e For each OR gate w with inputs v and v, output the clauses

(mZy V Tw) A (0Zy V Zop) A (0T V Ty V Zy).

58



e For each AND gate w with inputs u and v, output the clauses

(mZy V Ly V Tyy) A (mZgy V Ty) A (5T V Ty)-

e For each NOT gate w with input u, output the clauses

(T V Tw) A (02 V 1Ty).
e If w is the output gate, output the singleton clause (z).

CoRRECTNESS: We must prove that C' € CSAT if and only if F' € 3SAT.

“only if” clause: Suppose C outputs 1 on input (b1,bs,...b). Then F' has a satisfying assign-
ment A : {z,} — {0,1}, where A(z,,) = val(w).

“if” clause: Suppose the truth assignment A : {z,,} — {0,1} satisfies F'. Then val(w) = A(z)
is consistent and has val(w) = 1 for the output gate w.

Anavysis:  Space O(logn) suffices to hold u, v, and w. O

For a detailed discussion of completeness for NP and a comprehensive list of the diverse prob-
lems that are complete for NP, see the book by Garey and Johnson [10].
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8.2. Exercises

1. Do Exercise 8.2.

(Hint: Because a single gate may be the input to more than one other gate, it is insufficient
to apply deMorgan’s laws in any naive way.)

60



Chapter 9

The Polynomial Hierarchy

9.1. Complementary Classes

Definition 9.1: NP = | ] NTIME(n®).
c>0

Definition 9.2: PSPACE = | J DSPACE(n¢) = |  NSPACE(n‘) = | ATIME(n®).
c>0 c>0 c>0

The last two equalities follow from Theorems 4.11 and 4.14.

We then have the following chain of containments:
LCNLCPCNPCPSPACE.

We know that N'L # PSPACE from the nondeterministic space hierarchy theorem, but we don’t
know if any of the other containments is proper. This section is devoted to the world between NP
and PSPACE.

Open Problem 9.3: Does P = PSPACE?

Definition 9.4: If C is a set of languages over some alphabet ¥ , (i.e., C C 2*7), then

coC={¥*—-L|LeC}.

C is closed under complementation if and only if C = coC. We already have some results
concerning complementary classes, for instance, P = coP, NL = coNL (Theorem 4.23), and
PSPACE = coPSPACE. However, the question for NP is unresolved:

Open Problem 9.5: Is NP = coN'P?

Notice that this is related, but not equivalent, to Open Problem 4.25 on Page 34.

Proposition 9.6: If NP # coN'P then P # NP.

61



Proof: P = coP. O

Aside from the implications of the previous proposition, there are some natural languages in
coNP that justify the study of this class. One such language is the set of propositional tautologies.
The set of well formed formulas can be partitioned into those that are tautologies and those that
are falsifiable; the latter can be checked in NP by guessing a truth assignment and checking that
it makes the formula false. (The complement of the set of tautologies also includes all strings that
are not well formed formulas, but these are easily recognized in polynomial time.) The question
of whether NP = coN'P is the same as asking whether there is a proof system in which every
tautology has a polynomial length proof. (See Cook and Reckhow [5] for more information.)

A useful equivalent characterization of coNP follows from DeMorgan’s laws:

Proposition 9.7: coNP is the set of languages accepted by polynomial time bounded alter-
nating Turing machines that have no existential states.

For instance, to show that the set of tautologies is in coNP, an alternating Turing machine can
universally choose all possible truth assignments and verify that each satisfies the input formula.

Another example of a natural problem in coNP is the set of prime numbers. In fact, this
set is in NP N coN'P. The fact that it is in coNP is easy: to determine that z is not prime,
nondeterministically guess a proper factor and divide. The proof that the set of primes is in NP
is due to Pratt [36] and is more difficult.

One might wonder if it is possible that NP C coNP without the two classes being equal. The
following general proposition shows that this cannot be the case.

Proposition 9.8: If C C coC then C = coC.

Proof: For any L € coC, ¥>* — L € C C coC. Hence, L € C. O

9.2. Turing Reducibility

Informally, a language A might be considered to be reducible to a language B whenever there is
an efficient algorithm that accepts A, given an efficient subroutine that accepts B. The definition
of many-one reducibility given in Definition 5.2 is a very restricted version of this general notion.
The more general notion of reducibility is formalized in the definition below of an “oracle Turing
machine”, where the “oracle” plays the role of the subroutine.

Definition 9.9: An oracle Turing machine M is defined as follows: M is a Turing machine
with a distinguished query tape, and three distinguished states, ¢7, ¢y, and ¢x. The computation
of M depends on some “oracle” language B. Whenever M enters state g7, in the next step M will
be in state gy (qn) if the nonblank portion of the query tape contains a string that is (respectively,
is not) in B. Let M® denote the machine M with oracle B, and L(MP?) denote the language
accepted by this machine.

Definition 9.10: ASIPB (“A is polynomial time Turing reducible to B”) if and only if there is
a deterministic oracle Turing machine M such that M® runs in polynomial time and A = L(MB).
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This is the type of reduction Cook [4] used in his original work on complete problems for N'P.
In his subsequent work, Karp [22] popularized the more restrictive many-one reducibility, which was
found to suffice for all the natural reductions among NP-complete problems. For these reasons,
polynomial time Turing reducibility is often called “Cook reducibility”, and golynomial time many-
one reducibility is often called “Karp reducibility”. (The latter, denoted </, is defined exactly as
STL,” except that the reduction is allowed polynomial time.)

A natural question is whether polynomial time Turing reducibility is more powerful than poly-
nomial time many-one reducibility. To shed some light on this question, consider the following
example:

Example 9.11: Let SAT (UNSAT) be the set of satisfiable (respectively, unsatisfiable) propo-
sitional formulas. Then UNSAT STPSAT by copying the input formula to the query tape, entering
g7, and making gy the only final state. In contrast, if UNSATSESAT, then NP = coNP, be-

cause UNSAT is Sﬁfcomplete for coN'P, SE is transitive, and NP is closed under SE (all left
as exercises).

Open Problem 9.12: Is NP closed under gf? If NP # coNP, then Example 9.11 shows
that the answer is “no”.

Definition 9.13: For any language B, let P® = {L(M?) | M is a deterministic oracle Turing
machine such that M? runs in polynomial time} = {A | A<F B}.

For any language B, let N'P? = {L(MP?) | M is a nondeterministic oracle Turing machine such
that M® runs in polynomial time}.

Definition 9.14: For any set C of languages, let

¢ = U P8, and
BeC
NP = | NPE.
BeC

The following examples will help make these ideas more concrete.

Example 9.15: Does PNP — NP2 NP C PNP because B € PB for any language B:
simply copy the input onto the query tape and call the oracle. By negating the oracle’s answer,

it is also true that coNP C P P From this, the answer to the question must be “no”, unless
NP=coNP. In fact, this question is just a restatement of Open Problem 9.12.

Example 9.16: Does N/ PP = NP? Yes, since we can nondeterministically simulate a specific
nondeterministic Turing machine N with an oracle for a language B € P, pausing in the simulation
to answer oracle queries by simulating the oracle and possibly complementing its answer. Since
N8 can only make polynomially many queries to B, each on inputs of only polynomial length, and
since B € P, they can all be answered in polynomial time.
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9.3. The Polynomial Hierarchy

The polynomial hierarchy was defined by Meyer and Stockmeyer [30], with further properties
explored by Stockmeyer [43] and Wrathall [48]. The individual classes of the polynomial hierarchy
are the A, X, and II sets recursively defined as follows:

Definition 9.17:
Ab=sf=10f{=7P
and, for all nonnegative integers k,
AlcP+1 = PZ’“P:

M{; = co¥fy, and
PH = |J=F.
k>0

Example 9.18: As concrete examples of these definitions, consider the first few levels of the
polynomial hierarchy:
P = NP¥ = NPP = NP.
P = coxf = coN'P.
AP =P = pP = p.
AP =Pl = NP — (4 LTy

Open Problem 9.19: Does PH = PSPACE? We will see shortly that PH C PSPACE.

Open Problem 9.20: Does E,f = HkP or Ekpfl = Ef, for any ¥ > 17 We will see shortly
that a positive answer to either of these questions would have farther-reaching consequences for
the polynomial hierarchy. A negative answer to either question would show that P # PSPACE,
resolving a major open question.

Proposition 9.21: For all £ > 0,
Sk UTIE € Agyy © S NI
(See Figure 9.1.)
Proof:
1. EkP - AkP+1 = ’PEf, because B € PP for any language B.
2. Allc)+1 = PEX C NPE = E,’;_l, because PB C N'PP for any language B.

P P P P _ P
3. I €Ay, €I, because Ay, = coAy .

Open Problem 9.22: Are any of the containments in Proposition 9.21 proper?
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PH

Y = coN'P 2P =NP
\
AT =P

Figure 9.1: The Internal Structure of the Polynomial Hierarchy

9.4. A Sample Problem in PH

In this section the polynomial hierarchy is illustrated further by discussing a sample problem in
PH that does not appear to be in NP U coNP.

Example 9.23 (Papadimitriou [33]): Let UNIQUE-SAT be the set of propositional for-
mulas with exactly one satisfying assignment. Although SAT is in NP, it does not seem that
UNIQUE-SAT is in N'P. While a nondeterministic Turing machine can find a satisfying assign-
ment for F', it is not clear how it can check that the assignment it found is the only satisfying
assignment for F, since this seems to be a universal statement (i.e., all other assignments do not
satisfy F').

Although not a nondeterministic algorithm, this does give rise to an alternating Turing ma-
chine that accepts UNIQUE-SAT in polynomial time with a single alternation from existential to
universal states. Letting A and B be truth assignments to the variables of F',

UNIQUE-SAT = {F | (3A)(VB)((A satisfies F') A ((B # A) = B does not satisfy F))}.

The alternating Turing machine existentially chooses a satisfying truth assignment A and univer-
sally verifies that no other truth assignment B satisfies ¥. By Theorem 9.26 below, this implies
that UNIQUE-SAT is in %4

In fact, UNIQUE-SAT is in Al = PN P. there is a polynomial time deterministic Tur-
ing machine M with an oracle for SAT that accepts UNIQUE-SAT. On input F' with variables
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1,%9,-..,ZTk, M executes the algorithm in Figure 9.2. Note the many invocations of the oracle for
SAT.

if F ¢ SAT then reject;
comment: Construct a satisfying assignment A; A Ay A--- A A by “self-reducibility”;
for ¢ from 1 to k do
if (F/\Al/\Az/\---/\Ai_l /\:L‘Z') € SAT
then Az — Iy
else A; «— —x; ;
if (F/\—|(A1/\A2/\---/\Ak)) € SAT
then reject comment: there is at least one other satisfying assignment;
else accept.

Figure 9.2: Algorithm Demonstrating That UNIQUE-SAT € A¥

9.5. Characterizing ¥ and II} by Fixed Alternations

We next consider alternating Turing machines with a fixed number of alternations between existen-
tial and universal states. These machines provide an alternative characterization of the complexity
classes that comprise the polynomial hierarchy.

Definition 9.24: A E,}; 1 machine is a polynomial time alternating Turing machine that starts
in an existential state and, on any path of the computation tree, alternates between existential and
universal states at most k£ times.

Definition 9.25: A H,I: 1 machine is a polynomial time alternating Turing machine that starts
in a universal state and, on any path of the computation tree, alternates between universal and
existential states at most k£ times.

Theorem 9.26 (Stockmeyer and Meyer [44, 43]): For any positive integer k,

¥F = {L| L is accepted by some X} machine}, and
II¥ = {L | L is accepted by some I}’ machine}.

Proof: The proof is by induction on k.
Basis (k= 1):
P = NP = {L | L is accepted by some % machine}, and
Y = coNP = {L | L is accepted by some II¥’ machine}.
INDUCTION (k > 1):
1. B, € {L | L is accepted by some X}, machine}:

By definition, ZkP 11 = NPE. Let L € ZkP 1 be accepted by a nondeterministic oracle Turing
machine M that runs in some polynomial p;(n) time with an oracle for B € ©F. We want to
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simulate M by a EkP 41 machine A. The problem is that M may query its oracle a polynomial
number of times, and simulating each of these queries requires some alternations.

We will show how to simulate M so that all oracle calls along any computation path are
postponed until the end of that computation path. A simulates M, except that when M calls the
oracle with query y;, A guesses b; € {Y, N} and records the pair (y;,b;) on a separate worktape.
A then enters state gy, and continues the simulation of M. If M rejects, A rejects. If M accepts,
then A must verify all guesses b; before accepting.

The series of guesses left on the worktape are pairs of the form (y;, b;) and correspond to verifying
that y; € Bifb; =Y, and y; € ¥* — B if b = N. By the induction hypothesis, B is accepted
by some EkP machine Mp and ¥* — B is accepted by some HkP machine My~ _p, each running in
some polynomial ps(n) time. It would be simple if A could now universally verify these guesses,
but those with b; = Y would introduce one too many alternations. Instead, A first makes one pass
over the worktape containing the pairs (y;, b;) and does the following:

e If b = N, A replaces the pair (y;, b;) by the initial configuration of My~_p on input y;.

o If b; =Y, A simulates Mp on input y; until Mp reaches its first universal configuration @),
and replaces the pair (y;, b;) by Q.

Until this point, A has used no universal configurations. A now universally verifies that each
configuration remaining on the tape is accepting by simulating Mp or Mx«_p, as appropriate. This
takes at most another £ — 1 alternations, since these are configurations accepted by H,f machines.

The running time of this simulation is O((p1(n))? + p2(p1(n))), which is also polynomial, as
follows. M may query its oracle at most p;(n) times on queries y; each of length at most pi(n).
For each, it may take time O(p1(n)) to record y;, and time O(p2(p1(n))) to simulate Mp or My+_p
on input ;.

2. f,, D {L | L is accepted by some %, machine}:

Let L be accepted by some E,f 41 machine A. Let B = {Q | Q is a universal configuration of
A that leads to acceptance in at most k — 1 alternations}. B is accepted by a IIY' machine that
simulates A starting at () so, by the induction hypothesis, B € H,f .

We construct a nondeterministic oracle Turing machine M such that L = L(M?). M simulates
A until A enters its first universal configuration (), and then queries its oracle to determine if
Q@ € B, accepting if and only if this is so. The running time of M is less than the running time of
A, so it is certainly polynomial.

3. IIf ; = {L | L is accepted by some IIf ; machine}:
i = coXfy
= {¥* — L | L is accepted by some ¥, machine}
= {L| L is accepted by some II}, ; machine}.

The last equality follows by interchanging existential and universal states, and applying deMorgan’s
laws. O

One corollary of Theorem 9.26 provides a useful normal form for nondeterministic oracle Turing
machines:
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Corollary 9.27: L € Ek+1 if and only if L = L(M?), where B € I’ and M is a nondeter-
ministic oracle Turing machine that runs in polynomial time, queries B once, and accepts if and
only if the answer is yes.

L € IIf,, if and only if L = L(MP?), where B € £ and M is a “co-nondeterministic”
oracle Turing machine (i.e., no existential states) that runs in polynomial time, queries B once,
and accepts if and only if the answer is yes.

Proof: This restricted form of oracle Turing machine is exactly what arises in part 2 of the
proof of Theorem 9.26. O

Note the similarity between this normal form for nondeterministic oracle Turing machines and
many-one reductions. The only difference is that in Corollary 9.27 the reduction is nondeterministic.

Corollary 9.28: PH C PSPACE.

Proof: PH is the subset of PSPACE obtained by fixing the number of alternations of a
polynomial time alternating Turing machine. O

9.6. How to Collapse the Polynomial Hierarchy

Theorem 9.29 (Stockmeyer [43]): If 7 =TI} for any k > 1, then £ =TI} = 5 for all
j 2k

Proof: The proof is by induction on j.
Basis (j = k): Vacuous.
INDUCTION (j > k): Assume by the induction hypothesis that Ef = HP =xP.

1. ¥F, € 3f: Let L € ©F,,. By Corollary 9.27, L = L(M?) where B € HP, and M is
a polynomial time nondeterministic oracle Turing machine that makes one query “y € B?”, and
accepts if and only if the answer is yes. By the induction hypothesis, B € E,I; , S0 B is accepted by
some ¥ machine A by Theorem 9.26. Then L is also accepted by some $f machine, as follows.
Simulate M until it enters state ¢; with ¢ on its query tape, and then simulate A on y. Since M
is nondeterministic and 4 is a X' machine, there are only k¥ — 1 alternations. Since M and A each
run in polynomial time and y has polynomial length, the total time is polynomial. Therefore, by

Theorem 9.26 again, L € X
2. Yy, CF: If,, = coxf,) C coXf =TI = 5. O

The following corollary shows that separating PH from P would be sufficient to prove P # NP.
Corollary 9.30: P # PH if and only if P # NP.

Proof:
“if” clause: P C NP C PH, so P # NP implies P # PH.

“only if” clause: If P = NP then ¥ = NP = P = coP = coN'P = II¥. By Theorem 9.29,
then, PH = S = NP = P. O
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9.7. Relating Circuits to NP

Having shown in Theorem 7.17 that P C PSTZE, and in Exercise 7.20 that P # PSTZE, a natural
question to ask is whether NP C PSZZE. In this section we will see that if the answer is positive,
then the polynomial hierarchy collapses to ££ NIIY. Therefore, such a containment seems unlikely.

Definition 9.31: SAT-CIRCUIT = {C | C has m inputs and accepts the set of length m
encodings of satisfiable formulas}.

Definition 9.32: If F is a propositional formula and A;, As,...,A; are literals of distinct
variables of F', then F' | (41, As, ..., A;) denotes F' with the substitutions A} = Ay =---=4; =1
a,nd —|A1 :—|A2 ... :_'Ai :0

Any standard binary encoding of formulas will suffice for Definition 9.31, provided that the
encoding of F' | (41, As, ..., A4;) is no longer than the encoding of F. For example, it suffices if the
constants 0 and 1 have shorter encodings than any literal. The method must also be capable of
padding out such shorter encodings to m bits.

Lemma 9.33: SAT-CIRCUIT € coNP.

Proof: To avoid later confusion, note that three different levels of computing devices are
involved in the proof: first there is the co NP machine whose input is the encoding of a circuit; this
circuit itself has as input the encoding of a formula, which in turn has as input a truth assignment
to its variables.

CONSTRUCTION:  On input C, a circuit with m inputs, construct a co NP machine M that
executes the algorithm in Figure 9.3.

CoRrRRECTNESS: The only part of the correctness that is not immediate from the construc-
tion is the self-reducibility segment. If A; = Ay = --- = Ay = 1 satisfies F, then C has
correctly accepted F' as satisfiable, and M should accept. Assume, then, that A; = Ay =
--- = A = 1 does not satisfy F, yet C € SAT-CIRCUIT. Let ¢ be any value such that
F | (A1, Ay,...,Aj_1) is satisfiable, but F' | (A1, Ag,...,Ai_1,4;) is not; there must be such an
i, since C' (correctly) output 1 on input F, but F | (A;,As,..., Ay) is false. If A; = z;,
then C erroneously stated that F' | (A1, Ag,...,Ai_1,A4;) is satisfiable. If A; = —z;, then both
F|(A1,Ay,...,Ai—1,2;) and F | (A1, As,..., Aj_1,x;) are unsatisfiable, so that C erroneously
stated that F' | (A1, Ag,...,A;_1) is satisfiable. In either case, C ¢ SAT-CIRCUIT, so M should
reject.

ANavrysis: There are five lines in Figure 9.3 marked with asterisks, in which M must solve a
circuit value or formula value problem. By Theorem 7.11, each can be done deterministically in
polynomial time. O

Theorem 9.34 (Karp and Lipton [23]): If NP C PSTZE then PH = S NTIL.

Proof: Suppose some family of circuits C;, of polynomial size pi(n) accepts SAT. We will show
that I1{ C £’ and the theorem then follows from Proposition 9.8 and Theorem 9.29.
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universally choose F € {0,1}" ;

comment: verify that C behaves correctly on every input F ;

if F' does not encode a propositional formula with some number k& of variables
then

if C outputs 0 on input F *
then accept
else reject
else
if C outputs 0 on input F *

then begin
universally choose truth assignment A € {0,1}* ;
if A falsifies F *
then accept
else reject
end
else begin
comment: use self-reducibility to verify that F is satisfiable ;
for ¢ from 1 to k£ do
if C outputs 1 on input F' | (41, Ag, ..., Ai—1,2;) *
then A; <« z;
else A; «— —z; ;
if Ay = Ay =--- = A = 1 satisfies F *
then accept
else reject
end .

Figure 9.3: A coNP Algorithm That Accepts SAT-CIRCUIT

ConsTrUCTION:  Let L € IIY. By Corollary 9.27, L = L(M%T), where M is a “co-
nondeterministic” oracle Turing machine (i.e., no existential states) that runs in polynomial time
pa(n) and makes one call on an oracle for SAT. Construct a £ machine A that accepts L as
described below, and then apply Theorem 9.26.

On input z, A does the following:

existentially choose the encoding of a circuit C ;
universally choose b € {0,1};
case b of
0: if C € SAT-CIRCUIT then accept else reject;
1: simulate M on input x using C' to answer the oracle query ;
if C does not have enough inputs to accommodate the query then reject;
if M accepts z then accept else reject
end .
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CORRECTNESS: If MSAT accepts z, then some choice of C' will be in SAT-CIRCUIT, and will
have enough inputs to accommodate M’s query. For this choice of C, A will accept z. Conversely,
if A accepts z, then C € SAT-CIRCUIT and hence answers the oracle query correctly. Hence,
MAT accepts .

Anarysis: By Lemma 9.33, SAT-CIRCUIT € coNP, so there is only one alternation. Let
p3(n) be the running time of the coAN’P machine of Lemma 9.33, and p4(n) be the time to solve the
circuit value problem on inputs of length n. M can only create a query of length ps(n), so it suffices
if C has py(n) inputs and, by hypothesis, pi(p2(n)) size. Such a circuit has an encoding of length

p(n) = O(p1(p2(n)) log p1(pa(n))). Therefore, A runs in time O(p(n) +p3(p(n)) +p2(n) +pa(p(n))),
a polynomial. O
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9.8.

Exercises

. If C is a set of languages over some alphabet ¥ and L is S%—complete for C, prove that X* — L

is Sﬁfcomplete for coC.

. Prove that Sﬁ is transitive.
. Prove that §7TD is transitive.

. Prove that NP is closed under 55.

. Prove that the following statements are equivalent:

(a) NP = coNP.
(b) Some language that is ngcomplete for NP is in coNP.
(c) Some language that is SJP—complete for NP is in coNP.

. What is wrong with the following proof that P # N'P?

For any two languages A and B in P, A is reducible to B by a polynomial time reduction,
since the reduction can solve membership in A without even using B. But SAT ﬁﬁ@, where
() is the empty set, since, for any satisfiable formula F' and any reduction f, it is not true that
F € SAT if and only if f(F') € (). Since () is obviously in P, SAT ¢ P.
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Chapter 10

Polynomial Space

10.1. Problems Complete for PSPACE

In this section we consider a problem analogous to SAT that is Srﬁnfcomplete for PSPACE. The
proofs are almost identical to those in Section 8.1.

Definition 10.1: A quantified Boolean formula has the form

(3y1)(Yy2) Fys) - - - (Yyar) F(y1,92,-- - Y2k),

where F(y1,¥2,---,Y2r) is a propositional formula with variables y1,y2, ..., y2;. The quantification
is over y; € {0,1}, for all 1 < ¢ < 2k.

Definition 10.2: ()BF is the set of true quantified Boolean formulas, where the propositional
part F' is in conjunctive normal form with at most three literals per clause.

Notice that 3SAT is the same as QBF, except that all quantifiers are existential in 3SAT. This
analogy suggests that BF should be complete for alternating polynomial time, i.e., PSPACE.

Theorem 10.3 (Stockmeyer and Meyer [44, 43]): QBF is Sﬁfcomplete for PSPACE.

Proof:

1. QBF € PSPACE: It suffices to show that QBF € ATIME (no(l)). Given a quantified
Boolean formula @@ with 2k variables, use the alternation to mimic the quantifiers of () while
choosing and recording a truth assignment A € {0,1}2*. Deterministically evaluate @ at this
assignment A, and accept if and only if @) evaluates to true.

2. @BF is g,ﬁn—hard for PSPACE: Let A be an alternating Turing machine that runs in
polynomial time. The reduction of L(A) to @QBF is exactly as in Theorems 8.4 and 8.7, with the
following changes:

1. In the proof of Theorem 8.4, assume without loss of generality that A alternates between
existential and universal states each step, adding dummy states if necessary. A is then put
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in the normal form of alternating when writing y, and then simulating some deterministic
Turing machine D on input z#y. The language to which L(A) is reduced is the “quantified
circuit” problem:

{C | (3b1)(Vb2)(Tb3) - - - (Vbar,)(C outputs 1 on input (b, ba,..., b))}

2. In the reduction of Theorem 8.7, add a quantifier (3z,) to the end of the quantifier list
presented in the quantified circuit input, for each gate w. In order to preserve the alternation
of quantifiers, add dummy universally quantified variables.

a

Using similar techniques, Meyer and Stockmeyer [30, 43] presented analogous problems complete
for each E,I: and HkP .

The richest source of natural problems complete for PSP.ACE has come from two-person games,
and was exposed by Schaefer [42]. For a large variety of games, he showed that the problem of
deciding if Player 1 has a winning strategy, starting from some given configuration of the game,
is Sﬁ—complete for PSPACE. To see why this might be expected, notice that the alternation
inherent in these questions may be expressed informally as follows: Is there a move for Player 1
such that, for all next moves by Player 2, there exists a next move by Player 1 such that ...the
result is a configuration in which Player 1 has won the game?

An example of one of Schaefer’s games is “generalized geography”, which is played on a directed
graph G with a distinguished start vertex s, as follows. Player 1 begins with s as the current vertex.
The players take turns removing any edge (u,v) emanating from the current vertex u, after which
v becomes the current vertex. The first player with no move remaining loses.

This game generalizes the children’s game of “geography”, in which there is a vertex for each
of the 26 letters of the alphabet, and an edge (u,v) for every country of the world that begins with
the letter u and ends with the letter v.

Definition 10.4: GEO is the set of pairs (G, s) such that Player 1 has a winning generalized
geography strategy on G starting at s.

Theorem 10.5 (Schaefer [42]): GEO is Sé—complete for PSPACE.

Finally, the existence of problems that are complete for PSPACE makes it very unlikely that
PSPACE = PH:

Theorem 10.6: If PSPACE = PH, then PH = X for some constant k.

Proof: If PSPACE = PH, then QBF € S for some k. Since QBF is Séfhard for PSPACE
and EkP is closed under Sé, PH =PSPACE C E};. O
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10.2. A Lower Bound for Problems Complete for PSPACE

One feature of problems complete for PSPACE is that we can prove an interesting unconditional
lower bound on their space complexity. “Unconditional” here means that the theorem does not
rely on any unproven hypothesis such as P # NP.

Theorem 10.7: If L is Sﬁfcomplete for PSPACE then, for some § > 0, L ¢ DSPACE(n?).

Proof: By Theorem 3.8, there is some language A € PSPACE — DSPACE(n). Since L is
Srﬁnfcomplete for PSPACE, there is some deterministic Turing machine F' that reduces A to L and
runs in O(logn) space. Let f be the function computed by F. Because F' runs in O(logn) space,
there is a constant k > 0 such that |f(x)| < |z|¥ for all sufficiently long z.

Now suppose that 6 > 0 is any constant such that L is accepted by some deterministic Turing
machine D that runs in space O(n®). By using the method in the proof of Lemma 5.3, the
deterministic Turing machines ¥’ and D can be composed to produce a deterministic Turing machine
that accepts A in space O(log|z| + log|f(z)| + |f(z)|?) = O(logn + log(n*) + (n*)?) = O(n*?).
Since, by the definition of A, A ¢ DSPACE(n), it must be the case that § > 1/k; for any 6 < 1/k,
then, I ¢ DSPACE(n?). |

A similar lower bound holds, in fact, for nondeterministic Turing machines:
Corollary 10.8: If L is gﬁ—complete for PSP.ACE then, for some § > 0, L ¢ NSPACE(n?).

Proof: By Corollary 4.15, if L ¢ DSPACE(n?), then L ¢ NSPACE(n?/?). O
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