
Computer architecture

Compendium for INF2270

Philipp Häfliger, Dag Langmyhr and Omid Mirmotahari

Spring 2014

Contents

1 Introduction 1

I Basics of computer architecture 3

2 Introduction to Digital Electronics 5

3 Binary Numbers 7

3.1 Unsigned Binary Numbers . 7

3.2 Signed Binary Numbers . 7

3.2.1 Sign and Magnitude . 7

3.2.2 Two’s Complement . 8

3.3 Addition and Subtraction . 8

3.4 Multiplication and Division . 10

3.5 Extending an n-bit binary to n+k bits 11

4 Boolean Algebra 13

4.1 Karnaugh maps . 16

4.1.1 Karnaugh maps with 5 and 6 bit variables 18

4.1.2 Karnaugh map simplification with ‘X’s 19

4.1.3 Karnaugh map simplification based on zeros 20

5 Combinational Logic Circuits 21

5.1 Standard Combinational Circuit Blocks 22

5.1.1 Encoder . 24

5.1.2 Decoder . 24

5.1.3 Multiplexer . 25

5.1.4 Demultiplexer . 25

5.1.5 Adders . 28

6 Sequential Logic Circuits 31

6.1 Flip-Flops . 31

6.1.1 Asynchronous Latches . 32

6.1.2 Synchronous Flip-Flops . 34

6.2 Finite State Machines . 37

6.2.1 State Transition Graphs . 37

6.3 Registers . 40

6.4 Standard Sequential Logic Circuits 40

6.4.1 Counters . 40

6.4.2 Shift Registers . 43

Page iii

7 Von Neumann Architecture 45

7.1 Data Path and Memory Bus . 47

7.2 Arithmetic and Logic Unit (ALU) 47

7.3 Memory . 50

7.3.1 Static Random Access Memory (SRAM) 51

7.3.2 Dynamic Random Access Memory (DRAM) 52

7.4 Control Unit (CU) . 54

7.4.1 Register Transfer Language 54

7.4.2 Execution of Instructions 55

7.4.3 Microarchitecture . 57

7.4.4 Complex and reduced instruction sets (CISC/RISC) . . . 58

7.5 Input/Output . 58

8 Optimizing Hardware Performance 61

8.1 Memory Hierarchy . 61

8.1.1 Cache . 61

8.1.2 Virtual Memory . 66

8.2 Pipelining . 68

8.2.1 Pipelining Hazards . 71

8.2.2 Conclusion . 74

8.3 Superscalar CPU . 74

8.3.1 Brief Historical Detour into Supercomputing 74

8.3.2 Superscalar Principle . 75

II Low-level programming 79

9 Introduction to low-level programming 81

10 Programming in C 83

10.1 Data . 83

10.1.1 Integer data . 83

10.1.2 Texts . 83

10.1.3 Floating-point data . 84

10.2 Statements . 84

10.3 Expressions . 84

11 Character encodings 87

11.1 ASCII . 87

11.2 Latin-1 . 87

11.3 Latin-9 . 87

11.4 Unicode . 87

11.4.1 UTF-8 . 87

12 Assembly programming 91

12.1 Assembler notation . 91

12.1.1 Instruction lines . 91

12.1.2 Specification lines . 91

12.1.3 Comments . 92

12.1.4 Alternative notation . 92

Page iv

12.2 The assembler . 92

12.2.1 Assembling under Linux . 92

12.2.2 Assembling under Windows 93

12.3 Registers . 93

12.4 Instruction set . 93

A Questions Catalogue 99

A.1 Introduction to Digital Electronics 99

A.2 Binary Numbers . 99

A.3 Boolean Algebra . 99

A.4 Combinational Logic Crcuits . 100

A.5 Sequential Logic Crcuits . 100

A.6 Von Neumann Architecture . 100

A.7 Optimizing Hardware Performance 101

Index 102

List of Figures

1.1 Abstraction levels in a computer 1

2.1 CMOSFET schematic symbols . 6

4.1 Boolean operators, truth tables and logic gates 15

4.2 3D Karnaugh map . 18

5.1 Example combinational logic circuit 22

5.2 Encoder Symbol . 23

5.3 Implementation 3-bit encoder . 23

5.4 Decoder symbol . 24

5.5 3-bit decoder implementation . 25

5.6 Multiplexer symbol . 26

5.8 Demultiplexer symbol . 27

5.9 3-bit demultiplexer implementation 27

5.10 Schematics/circuit diagram of a 1-bit half adder 28

5.11 Full adder schematics . 29

6.1 Gated D-latch/transparent latch 32

6.3 Clock signal . 34

6.5 T-flip-flop symbol . 36

6.6 D-flip-flop symbol . 36

6.7 State transition graph for traffic light 38

6.8 Moore/Mealy finite state machine 38

6.9 Traffic light controller schematics 40

6.10 Register Symbol . 40

Page v

6.11 State transition graph of a 3-bit counter 40

6.12 3-bit counter Karnaugh maps . 41

6.13 3-bit synchronous counter . 41

6.14 3-bit ripple counter . 42

6.15 Shift register . 43

7.1 Von Neumann architecture . 46

7.2 1-bit ALU schematics . 47

7.3 1 bit ALU symbol . 48

7.4 n-bit ALU schematics example . 49

7.5 n-bit ALU symbol . 49

7.6 Static random access memory principle 52

7.7 DRAM principle . 53

7.8 Hardwired and Microprogrammed CU 57

7.9 Simple I/O block diagram . 59

7.10 I/O controller principle . 59

8.1 Memory hierarchy . 62

8.2 Associative cache . 63

8.3 Directly mapped cache . 63

8.4 Set associative cache . 64

8.5 Look-through architecture . 65

8.6 Look-aside architecture . 66

8.7 The principle of virtual memory 67

8.8 Virtual memory paging . 67

8.10 Decoding of complex instructions 68

8.11 4-stage pipeline simplified block diagram 69

8.12 4-stage pipeline execution . 69

8.13 Data hazard illustration . 72

8.14 Control hazard illustration . 73

8.15 Cray-1 . 75

8.16 Principle of superscalar execution 76

12.1 The most important x86/x87 registers 93

List of Tables

4.1 Basic Boolean functions . 14

4.2 Boolean function table of rules . 14

4.3 Exercise to verify deMorgan . 14

5.1 Truth table of a 3-bit encoder . 23

5.2 Complete truth table of a 3-bit priority encoder 24

Page vi

5.3 3-bit decoder truth table . 25

5.5 3-bit demultiplexer truth table . 27

5.6 Truth table for a 1-bit half adder 28

5.7 Full Adder truth table . 29

6.1 SR-latch characteristic table, full 33

6.2 SR-latch characteristic table, abbreviated 33

6.3 JK-flip-flop characteristic table, full 35

6.4 JK-flip-flop characteristic table, abbreviated 35

6.5 T-flip-flop characteristic table, full 35

6.6 T-flip-flop characteristic table, abbreviated 36

6.7 D-flip-flop characteristic table, full 37

6.8 D-flip-flop characteristic table, abbreviated 37

6.9 Traffic light controller characteristic table 39

6.10 State transition table of a 3-bit counter 41

6.11 Shift register state transition table 43

7.1 1-bit ALU truth table . 48

7.2 RAM characteristic table . 50

7.3 Comparison of SRAM and DRAM 54

7.4 RTL grammar . 54

7.7 Pros and Cons of hardwired and microarchitecture CU 58

8.1 Memory hierarchy summary table 62

10.1 Integer data types in C . 84

10.2 Floating-point data types in C . 84

10.3 The statements in C . 85

10.4 The expression operators in C . 86

11.1 The ISO 8859-1 (Latin-1) encoding 88

11.2 The difference between Latin-1 and Latin-9 89

11.3 UTF-8 representation of Unicode characters 89

12.1 The major differences between AT&T and Intel assembler
notation . 92

12.2 A subset of the x86 instructions (part 1) 95

12.3 A subset of the x86 instructions (part 2) 96

12.4 A subset of the x87 floating-point instructions 97

Page vii

Page viii

Chapter 1

Introduction

This compendium is intended to supply required background information to
students taking the course INF2270. Together with the lectures and the
problems (both the weekly and the mandatory ones) it defines the course
curriculum.

One important aim of this course is to give an understanding of the various
abstraction levels in a computer:

High-level programming language Level 5

Assembly language Level 4

Operating system Level 3

Machine instructions Level 2

Micro architecture Level 1

Digital logic Level 0

Figure 1.1: Abstraction levels in a computer

One part (part no I) of the course goes upwards from the bottom level
to explain how computers are designed; the other (part no II) progresses
downwards from the top level to describe how to program the computer
at each level. At the end of the course, the two descriptions should meet
somewhere around levels 2–3.

The authors would like to thank the following students for valuable
contributions: Christer Mathiesen, André Kramer Orten, Christian Resell
and Marius Tennøe.

Oslo, 15th May 2014

Page 1

Page 2

Part I

Basics of computer
architecture

Page 3

Chapter 2

Introduction to Digital
Electronics

The word digital comes from the Latin word ‘digitus’ which means finger.
Its meaning today is basically ‘countable’ and since many people use their
fingers for counting, that explains the connection to its Latin origin. Its
opposite is ‘analog’. Digital electronics refers to electronic circuits that
are described by a discrete/countable number of states. The basic building
block of almost all digital electronics today is the switch. This has two
states, either ‘on’ or ‘off’, and almost all digital electronics today is thus
binary, i.e., the number of states of the basic building block and basic
signals is two.1

First predecessors of the modern computer have been build with mechan-
ical switches (The Analytical Engine by Charles Babbage in 1837), electro
mechanical switches/relays (G. Stibitz’ Model-K (1937) and K. Zuse’s Z3
(1941)), and vacuum tubes (ENIAC, 1946). But the veritable computer re-
volution took off with a sheer incredible miniaturization of a switch: The
transistor.

The first transistor based programmable computer has been reported at
the university of Manchester in 1953 with ca. 600 transistors. From then
on, Moore’s law has kicked in which describes the exponential progression
of the miniaturization and sophistication of computers by predicting a
doubling of the number of transistors of a central processing unit (CPU,
the core of every computer today) every two years. Thus, a state of the art
CPU today consists of, for example, 731 million transistors (Intel Core™ i7
Quad Extreme). Once you read this statement, it will most likely already be
outdated.

Most electronics today uses so called complementary metal oxide silicon
(CMOS) field effect transistors (FET), which are depicted with their
schematic symbol in figure 2.1. For digital purposes they do behave almost
ideally like a switch. If one were to look closer, however, one would realize
that this is quite a simplification, and if one is to tune a digital circuit
to its performance limits or even construct analog circuits, this closer

1 The next most popular number of states for the basic elements is three and there exist a
number of ternary electronic circuits as well.

Page 5

CHAPTER 2 INTRODUCTION TO DIGITAL ELECTRONICS

Figure 2.1: Schematic symbol and of CMOS FETs together
with a symbol showing them as switches. nMOS-
FET to the left, pMOSFET to the right.

look becomes necessary. Be that as it may, for most digital designs the
description as a switch has proved to be to a large degree sufficient.

CMOS transistors can today be realized on a two-dimensional layout
measuring 28nm in length, and maybe (educated guess) 50nm in width.
With minimal distance requirements between devices, the actual area
needed is somewhat larger, but still smaller than our imagination is able
to picture. If one wants to attempt to imagine even smaller numbers: the
thinnest layer used in building up the transistor in the third dimension is
now below 2nm thick, actually a crystal (SiO2) consisting only of a few
atomic layers (ca. 10-20).

With this extreme miniaturization comes also extreme speed. A CMOSFET
needs only in the order of hundreds of pico seconds or even less to switch.
This allows the high frequencies of several GHz at which CPUs are clocked.

So digital electronics consists of binary switches that control signals that in
turn control other switches. The resulting binary signals are refered to as
bits and are well suited to represent the binary numbers ‘1’ and ‘0’ or the
logic states ‘true’ and ‘false’.

Page 6

Chapter 3

Binary Numbers

3.1 Unsigned Binary Numbers
The numbers we use in everyday life are decimal numbers. The main reason
for us to use the decimal system is that we have 10 fingers. The decimal
system uses an alphabet of 10 digits: [0123456789]. When writing down a
decimal number, the rightmost digit has a unit value of 1 (or 100), the next
to the left has a unit value of 10 (101), the next 100 (102) and so on. The
number 18 thus means:

18 := 1 × 101 + 8 × 100 (3.1)

If humankind had but two fingers, things might have turned out quite
differently.1 A binary number system might have evolved, with an alphabet
of only 2 digits: [01]. The rightmost digit would again have a ‘unit’ value
of 1 (20), but the next would have a unit value of 2 (21) and then 4 (22), 8
(23), 16 (24)etc. 18 reads now:

10010 := 1 × 24 + 0 × 23 + 0 × 22 + 1 × 21 + 0 × 20 (3.2)

3.2 Signed Binary Numbers

3.2.1 Sign and Magnitude
If one wants to represent negative integers with binary numbers, a first
intuitive solution would be to use a ‘sign bit’, i.e., the first bit of a binary
number indicates a negative number if it is 1 or a positive number if it is 0
and the rest of the bits encode the magnitude of the number. This is known
as ‘sign and magnitude’ encoding.

For example, 8 bit numbers could encode the values from −127 to 127
(7-bit magnitude and 1 sign-bit):

1 We might never have become intelligent enough to compute, because of the inability to use
tools, for instance. Horses, with only two digits to their forelimbs, do (to our knowledge) not
have a number system at all.

Page 7

CHAPTER 3 BINARY NUMBERS

87 = 01010111

−87 = 11010111

A first problem with this scheme is that there is also a ‘signed zero’, i.e., +0
and −0, which is redundant and does not really make sense.

3.2.2 Two’s Complement
The two’s complement (used in most digital circuits today) is a signed binary
number representation that does not suffer from the problem of a signed
zero and it comes with a few extremely convenient properties. In 8-bit
two’s complement the unsigned numbers 0 to 127 represent themselves,
whereas the unsigned numbers 128 to 255 (all numbers with the first
bit=‘1’) represent the numbers -128 to -1 (in other words: read it as an
unsigned number and subtract 256 to get the signed value). Thus, also in
this representation all numbers with the first bit equal to ‘1’ are negative
numbers.

87 = 01010111
−41 = 11010111 (= 215 − 256)
−87 = 10101001 (= 169 − 256)

One of these convenient properties is the construction of the inverse of a
number in two’s complement. The same operation is performed for both,
positive to negative and negative to positive:

1) invert each bit

2) add 1

This is not quite so simple as in ‘sign and magnitude’ representation, but
still simple.

Example:

1. 87 = 01010111 → 10101000

2. 10101000+1 = 10101001 = –87

1. –87 = 10101001 → 01010110

2. 0 1010110+1 = 01010111 = 87

3.3 Addition and Subtraction
The most convenient property, however, is the simple addition of two’s
complement numbers, be they negative or positive. This is achieved by
simply adding the two numbers as if they were unsigned binary numbers.
If the result would be one digit longer, that digit is simply ignored.
Surprisingly at first, the result is correct also if the numbers are regarded

Page 8

3.3 ADDITION AND SUBTRACTION

as two’s complement numbers. An exception is the case in which the result
of the summation of two n-bit numbers would lie outside the range of an
n-bit two’s complement number, e.g., when using 8-bits and adding 120 +
118 = 238, which is above the maximal value 127 that can be represented
with an 8-bit two’s complement number.

Here are some examples:

signed op equivalent un-
signed op

mod 256 signed res

-41-87 215+169 =
384

128 -128

87-41 87+215 = 302 46 46

Why does that work? The key to understanding this is the modulo operation.

Let us consider two positive numbers  and b that can be represented as
binary numbers with n bits, i.e., in the range of [0,2n−1] and the numbers
′ and b′ in the range of [−2n−1,2n−1−1] which are the numbers that are
represented by the same bit-patterns but interpreted as two’s complement
binary numbers.

Remember that per definition:

′ =
§

 − 2n if  ∈ [2n−1,2n − 1]
 if  ∈ [0,2n−1 − 1]

(3.3)

A first key-concept is that ignoring an eventual overflow/carry bit of the
result of an addition  + b corresponds to computing a modulo with 2n on
the result. Thus, when adding two 8 bit numbers and the result would be
9 bits long, but the 9th bit is ignored, this is equivalent to performing a
modulo 256 operation on the result.

A second concept now is that ′ mod 2n =  mod 2n = , since adding
or subtracting 2n does not change the result of the mod 2n operation
(remember that ′ is either the same as  or  − 2n) and a number that is
within the range [0,2n − 1] is not changed by the mod 2n operation.

Yet a third concept is that it does not matter if one computes the mod 2n

operation of a sum only on the result or also on the summands, i.e., (
mod 2n + b mod 2n) mod 2n = ( + b) mod 2n

Thus, it follows:

(′ + b′) mod 2n = (′ mod 2n + b′ mod 2n) mod 2n

= ( + b) mod 2n

= ( + b)′ mod 2n
(3.4)

What this equation says is that for the operation of addition of two two’s
complement numbers one can also just add their unsigned interpretation,

Page 9

CHAPTER 3 BINARY NUMBERS

ignore an overflow/carry bit if it occures (modulo operation) and then
interpret the result as two’s complement. The result is correct, provided
it would not exceed the range of an n bit two’s complement number.

An example thereof if n = 8,  = 188 and b = 241: It follows that
′ = −68 and b′ = −15. Substituting these numbers in the equation (3.4)
above:

(−68 − 15) mod 256 = (188 + 241) mod 256
= 429 mod 256 = 173
= −83 mod 2n

(3.5)

That convenient property is really good news for the design for arithmetic
operations in digital hardware, as one does not need to implement both
addition and subtraction, since adding a negative number is the same as
subtracting. A subtraction can be performed by

1) inverting the number that is to be subtracted (by inverting every bit
individually and adding 1, see section 3.2.2) and

2) adding it to the number it is supposed to be subtracted from

3.4 Multiplication and Division
Multiplication with a factor of two of a binary number is simply achieved
by shifting the individual bits by one position to the left and inserting a ‘0’
into the rightmost position (referred to as the ‘least significant bit’ or just
LSB). This works for both unsigned and two’s complement representation,
again provided that the result does not lie beyond the range that can be
represented with n-bits.

If you accept that this works for unsigned binaries, one can show this
to be true for a negative two’s complement binary ′ number with the
corresponding unsigned interpretation  because:

2′ mod 2n = 2(−2n) mod 2n = 2−2∗2n mod 2n = 2−2n mod 2n

(3.6)

A division with a factor of 2 is a shift of all the bits by one position to
the right. Note that if the leftmost (the ‘most significant bit’ or just MSB)
bit is filled in with a copy of its state before the shift. (This is known as
arithmetic right shift.) Again, this works for both unsigned and signed
(two’s complement) binary numbers, but note that the result is rounded
towards −∞ and not towards zero, e.g., right-shifting −3 results in −2.

Examples:

decimal binary shifted decimal

-3 1101 1110 -2

-88 10101000 11010100 -44

Page 10

3.5 EXTENDING AN N-BIT BINARY TO N+K BITS

A multiplication with 2k can accordingly be achieved by a left shift by k
positions and a division by 2k with an arithmetic right shift by k positions.

A general multiplication or division can be achieved by splitting it up into
a sum of products with 2k k ∈ [0, n − 1]. For example if  and b are
represented as a binary number (n−1, . . . , 0) and (bn−1, . . . , b0) where
 stands for a one bit variable. Then

∗ b =
n−1
∑

k=0

k ∗2k ∗ b (3.7)

So as an algorithm:

1) Initialize the result binary number r to zero.

2) Add b to r if the MSB of a is ‘1’.

3) Shift r and a to the left.

4) Repeat steps 2) and 3) n times.

3.5 Extending an n-bit binary to n+k bits
A last remark on manipulating binary numbers will explain how to extend
the number of bits by which a number is represented in two’s complement.
Analogous to an arithmetic right shift one needs to fill in the extra bits with
a copy of the former MSB, thus negative numbers are extended with extra
1’s on the left and positive numbers with extra 0’s. A simple explanation
based on what we learnt previously, is that this operation is equivalent to
extending the number first by adding k zeros to the right, i.e., multiply it
with 2k and then dividing it by 2k by shifting it by k positions to the right
using an arithmetic shift.

Examples:

decimal 4 bit 8 bit

-2 1110 → 11111110

-5 1011 → 11111011

5 0101 → 00000101

Page 11

Page 12

Chapter 4

Boolean Algebra

Digital electronics can conveniently be used to compute so called Boolean
functions, formulated using Boolean algebraic expressions, which are also
used in propositional logic. These are functions that project a vector of
binary variables onto one (or a vector of) binary variable(s):

ƒBoolen : Bk → B where B = 0,1 (4.1)

In this context one interprets the result often as either ‘true’ or ‘false’
rather than ‘1’ or ‘0’, but that does not change anything for the definition of
Boolean functions: it’s just a renaming of the variables’ alphabet.

There are three basic operators in Boolean algebra: NOT, AND, OR.
Different notations are sometimes used:

NOT a ¬ a ̄ a’

a AND b a ∧ b a × b a·b (Do not confuse with multiplication!)

a OR b a ∨ b a + b (Do not confuse with addition!)

Boolean functions can be defined by truth tables, where all possible input
combinations are listed together with the corresponding output. For the
basic functions the truth tables are given in table 4.1.

More complicated functions with more input variables can also be defined
as truth tables, but of course the tables become bigger with more inputs
and more and more impractical. An alternative form to define Boolean
functions are Boolean expressions, i.e., to write down a function by
combining Boolean variables and operators (just as we are used to with
other mathematical functions). An example:

ƒ (, b, c) =  + b · ( + c) (4.2)

There are several popular quite basic Boolean functions that have their own
operator symbol but are derived from the basic operators:

a XOR b = (a · b̄) + (ā · b)

Page 13

CHAPTER 4 BOOLEAN ALGEBRA

a ā

0 1

1 0

a b a·b
0 0 0

0 1 0

1 0 0

1 1 1

a b a+b

0 0 0

0 1 1

1 0 1

1 1 1

Table 4.1: Truth tables for the basic Boolean functions

a·b+c = (a·b)+c a+b·c = a+(b·c) (priority)

a·b = b·a a+b = b+a (commutativity)

(a·b)·c=a·(b·c) (a+b)+c=a+(b+c) (associativity)

¯̄a=a (involution)

a·ā=0 a+ā=1 (completness)

a·a=a a+a=a (idempotency)

a·1=a a+0=a (boundedness)

a·0=0 a+1=1 (boundedness)

a·(a+b)=a a+(a·b)=a (absorbtion)

a·(b+c)=(a·b)+(a·c) a+(b·c)=(a+b)·(a+c) (distributivity)

a+ b = ā · b̄ a · b = ā+ b̄ (deMorgan)

Table 4.2: Table of rules that govern Boolean functions

for NOR:
a b a+ b ā · b̄
0 0

0 1

1 0

1 1

for NAND:
a b a · b ā+ b̄

0 0

0 1

1 0

1 1

Table 4.3: Exercise to verify deMorgan

a XNOR b = (a · b) + (ā · b̄)

a NAND b = a · b

a NOR b = a+ b

Table 4.2 lists basic rules that govern Boolean functions and that allow to
rearrange and simplify them. Note that the equal sign ‘=’ connects two
functions that are equivalent, i.e., for every input the output is exactly the
same. Equivalent functions can be written in any number of ways and with
any degree of complexity. Finding the simplest, or at least a reasonably
simple expression for a given function is a very useful goal. It makes the
function easier to read and ‘understand’ and, as we will see later on, reduces
the complexity (number of electronic devices, power consumption, delay) of
digital electronics that implements the function.

Page 14

Figure 4.1: Equivalent Boolean operators, truth tables and
logic gates

To verify the deMorgan theorem one can fill in the truth tables in table 4.3,
and here are two examples on how to apply the rules of table 4.2 to simplify
functions:

Example 1:

a·b + a·b̄
= a·(b+b̄)
= a·1
= a

Example 2:

a·b·c + ā·b·c + ā·b·c̄ · (a+ c)
= (a+ ā)·b·c + ā·b·c̄ · a + ā · b · c̄ · c
= 1 · b · c + 0 + 0
= b · c

Applying the rules one can also show that either the NAND or the NOR
function is actually complete, i.e., they are sufficient to derive all possible
Boolean functions. This can be shown by showing that all three basic
functions can be derived from a NAND or NOR gate, again employing the
rules from table 4.2:

ā = a · a = a+ a (4.3)

a · b = a · b = a+ b (4.4)

a+ b = a · b = a+ b (4.5)

Page 15

CHAPTER 4 BOOLEAN ALGEBRA

Beyond truth tables and Boolean expressions, Boolean functions can also
be expressed graphically with logic gates, i.e., the building blocks of digital
electronics. Figure 4.1 summarizes the basic and derived functions and
the corresponding operators, logic gates and truth tables. The logic gates
will be our main tools as we move on to designing digital electronics. Note
that they are somewhat more powerful than Boolean expression and can do
things beyond implementing Boolean functions, since one can also connect
them in circuits containing loops. These loops can be employed to realize
elements that autonomously maintain a stable state, i.e., memory elements.
But for a while still, we will stick with pure feed-forward circuits, and thus,
Boolean functions.

4.1 Karnaugh maps
Karnaugh maps (or just K-maps) offer a way to use the human ability to find
graphical patterns to aid systematically in simplifying Boolean functions.
Consider the following example of a Boolean function and its truth table.

F = a · b · c+ ā · b · c+ ā · b · c̄ · (a+ c)→

a b c F

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 0

1 1 0 0

1 1 1 1

The truth table can now be shown in a so-called Karnaugh map (or K-map),
where the outputs are arranged in an array and the axes of the array are
labeled with the inputs arranged in a Gray-code, i.e., such that only one
input bit shifts between columns/rows:

a b c F

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 0

1 1 0 0

1 1 1 1

→

Now one needs to find the so-called minterms graphically: rectangles that
contain 2n ‘1’s (i.e., 1, 2, 4, 8, . . . elements). The goal is to find a minimal
number of rectangles that are maximal in size that cover all ‘1’s in the array.
They may overlap, and this is even desirable to increase their size. They

Page 16

4.1 KARNAUGH MAPS

may also wrap around the edge of the array (See next example!). In this
first example this is quite trivial as there are only two ‘1’s that conveniantly
are neighbours and thus form a 1 × 2 rectangle (marked in red).

Now for this entire rectangle, all inputs are either constant or undergo all
possible binary combinations with each other. Here, variables b and c are
constant, and a goes through both its states ‘0’ and ‘1’.

Now, the rectangles are used to form subexpressions of the constant
variables combined with AND. In our case: b · c. This is somewhat intuitive,
since the condition to ‘create’ the rectangle of output ‘1’s is that both b
and c be true. If b or c would be constant ‘0’ they would appear inverted,
i.e., b̄ or c̄. If there would be several rectangles/minterms they would be
connected with an OR.

The result for our first example is thus:

b · c

Let us look at a somewhat more complete example. We’ll start directly with
the Karnaugh map:

→

Note the overlap between the 1× 2 green and red 4× 2 rectangles and the
blue 2 × 2 rectangle is formed by wrapping around the edges of the array.
The resulting simple Boolean function is as follows. The brackets are colour
coded to correspond to the marked rectangles. Note that the bigger the
rectangle, the shorter the minterm expression.

(a) + (b̄ · d̄) + (b · c̄ · d)

Page 17

CHAPTER 4 BOOLEAN ALGEBRA

Figure 4.2: 6-bit Karnaugh map

4.1.1 Karnaugh maps with 5 and 6 bit variables

The method shown so far works well up to four input variables, i.e., up to
two bits along one axis. Things become more complicated for more input
bits. For 5 to 6 input bits, the Karnaugh map becomes 3-dimensional. The
property of the 2-bit Gray-code, that any of the two bits of any group of 1, 2
or 4 subsequent codes are either constant or go through both their possible
states in all possible combinations with an eventual 2nd non-constant bit,
is not maintained in a Gray code with three bits. (Do not worry if you have
not understood the last sentence ;-) as long as you understand the resulting
method.) Consequently, instead of having a 3-bit Gray code along one axis,
a third axis is added to the Karnaugh map and one has now to look for 3D-
cuboids with 2n elements instead of 2D rectangles. Since the 3D map is
hard to display on a 2D sheet of paper, the different levels are shown side
by side. Classically, the levels are unfolded along one side, so that one has
to look for matching rectangles of 1’s that are mirrored, as shown in figure
4.2. In this way, it is still a Gray code along the sides. More modern would
be to simply change the most significant bit and to copy the Gray code for
the two lesser bits. Then one would not need to look for mirrored patterns
but patterns of the same shape in the same position in the two (or four)
neighbouring squares. The solution for this example is:

Page 18

4.1 KARNAUGH MAPS

cd
ab00 01 11 10

00
01
11
10 X X X X

1 0 1 0
0 0 1 0
0 0 0 0

Figure 4.3: K-map with ‘X’s

(x4 · x3 · x1)
+
(x4 · x3 · x2 · x0)
+
(x5 · x2 · x1 · x0)
+
(x5 · x2 · x1 · x0)
+
(x5 · x4 · x2x1)
+
(x5 · x3 · x2 · x1 · x0)
+
(x5 · x4 · x3 · x1 · x0)

(4.6)

From 7 to 8 bit variables the problem becomes 4-Dimensional and the
human ability to see patterns starts to be in trouble and other methods
for simplification are used.

4.1.2 Karnaugh map simplification with ‘X’s

Some function definitions might contain ‘X’s as outputs for specific inputs
that are of no concern for the particular application. Thus, the output for
these cases can be both ‘1’ or ‘0’ with no consequence whatsoever for the
intended application. Those ‘X’s become a kind of Joker in the K-map: you
can use them just like ‘1’s to make bigger groups of the ‘1’s that are there.
Check the example in figure 4.3. The resulting minterms are:

F = (ā · b̄ · c) + (a · b · d) + (a · b · c) (4.7)

Page 19

CHAPTER 4 BOOLEAN ALGEBRA

4.1.3 Karnaugh map simplification based on zeros
If a Karnaugh map contains more zeros than ones, it might be worthwhile
to use the zeros instead of the ones to find a simplified expression. For this,
one can find rectangles of ‘0’s the same way as ‘1’s. Now by imagining that
all ‘0’s are ‘1’ and vice versa one can find an expression for the inverse F
of the function F that is described by the Karnaugh map. By inverting the
whole ‘sum’ of ‘products’ and employing deMorgan one can then deduce F
as a product of sums. Consider the following example:

One can now deduce F as:

F = (b · d) + (a · d) + (a · b) + (c · d) (4.8)

Employing deMorgan’s theorem:

F = F = (b+ d) · (a+ d) · (a+ b) · (c+ d) (4.9)

In short, if one wants to obtain the end result directly, one takes the inverse
of the input variables that are constant for each rectangle to form the min-
terms as ‘OR-sums’ and combines these with ANDs.

Page 20

Chapter 5

Combinational Logic
Circuits

Combinational logic circuits are logic/digital circuits composed of feed-
forward networks of logic gates (see figure 4.1) with no memory that can be
described by Boolean functions.1

Logic gates (figure 4.1) are digital circuits that implement Boolean
functions with two inputs and one output and are most often implemented to
operate on binary voltages as input and output signals:2 a certain range of
input voltage is defined as ‘high’ or logic ‘1’ and another range is defined as
‘low’ or ‘0’. E.g., in a digital circuit with a 1.8V supply one can, for instance,
guarantee an input voltage of 0V to 0.5V to be recognised as ‘0’ and 1.2V to
1.8V as ‘1’ by a logic gate.

On the output side the gate can guarantee to deliver a voltage of either
>1.75V or <0.05V.

That means that a small mistake at the input of a logic gate is actually
‘corrected’ at its output which is again closer to the theoretically optimal
values of exactly 0V and 1.8V. These safety margins between input and
output make (correctly designed) digital circuits very robust, which is
necessary with millions of logic gates in a CPU, where a single error might
impair the global function!

Some term definitions that we are going to use:

Design of a digital circuit is the process of assembling circuit blocks to
form a bigger digital circuit.

Analysis of a digital circuit is the process of finding out what it is doing,
e.g., (in the case of combinational logic!) by finding an equivalent
Boolean function or a complete truth table.

1 Note what is implied here: logic gates can also be connected in ways that include feed-back
connections that implement/include memory that cannot be described as Boolean functions!
This is then not ‘combinational logic’, but ‘sequential logic’, which will be the topic of chapter 6.

2 Another possibility is to use socalled ‘current mode’ logic circuits where the logic states are
represented with currents.

Page 21

CHAPTER 5 COMBINATIONAL LOGIC CIRCUITS

Figure 5.1: An example combinational logic circuit

A complete analysis is quite trivial for small digital circuits but neigh
impossible for circuits of the complexity of a modern CPU. Hierarchical
approaches in design and analysis provide some help.

The first Pentium on the market actually had a mistake in its floating point
unit. Thus, it has been exposed to some ridicule. Here is a common joke of
that time:

After the Intel 286 there was the 386 and then the 486, but the
585.764529 was then dubbed ‘Pentium’ for simplicity sake.

Consider the example of a combinational logic circuit in figure 5.1. It can be
analysed by finding an equivalent Boolean expression, i.e., find equivalent
partial expressions for all the electrical nodes ‘’ and finally for the output
node F. The result is:

a · b̄
︸︷︷︸

x4

+ b · c
︸︷︷︸

x5

+ ā · b̄ · c
︸ ︷︷ ︸

x6

(5.1)

5.1 Standard Combinational Circuit Blocks
Some combinational circuits blocks are repeatedly used in logic circuit
design and are often just given as ‘black boxes’ that provide a known
function. Inside these boxes there are a number of equivalent ways to
implement them on the logic gate level, even though equivalent on a
functional level might still result in different performance regarding delay
and power consumption or how easy they are scalable (i.e., extendable to
handle wider multi-bit input and output signals)

Examples of such standard combinational higher level building blocks are:

encoder/decoder

Page 22

5.1 STANDARD COMBINATIONAL CIRCUIT BLOCKS

7 6 5 4 3 2 1 0 O2 O1 O0

0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0 0 1

0 0 0 0 0 1 0 0 0 1 0

0 0 0 0 1 0 0 0 0 1 1

0 0 0 1 0 0 0 0 1 0 0

0 0 1 0 0 0 0 0 1 0 1

0 1 0 0 0 0 0 0 1 1 0

1 0 0 0 0 0 0 0 1 1 1

Table 5.1: Truth table of a 3-bit encoder

Figure 5.2: Encoder Symbol

Figure 5.3: A possible implementation of a 3-bit encoder

multiplexer/demultiplexer

adder/multiplier

...

Note that the symbols for those blocks are not as much standardized as the
symbols for the basic logic gates and will vary throughout the literature.
The symbols given here are, thus, not the only ones you will encounter in
other books but will be used throughout this text.

Page 23

CHAPTER 5 COMBINATIONAL LOGIC CIRCUITS

7 6 5 4 3 2 1 0 O2 O1 O0

0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 X 0 0 1

0 0 0 0 0 1 X X 0 1 0

0 0 0 0 1 X X X 0 1 1

0 0 0 1 X X X X 1 0 0

0 0 1 X X X X X 1 0 1

0 1 X X X X X X 1 1 0

1 X X X X X X X 1 1 1

Table 5.2: Complete truth table of a 3-bit priority encoder that
encodes the highest active bit

Figure 5.4: Decoder symbol

5.1.1 Encoder
An encoder in digital electronics refers to a circuit that converts 2n inputs
into n outputs, as specified (for a 3-bit encoder, i.e., n = 3) by the truth
table 5.1. The input should be a ‘one-hot’ binary input, i.e., a bit-vector
where only one bit is ‘1’ and all others are ‘0’. The output then encodes the
position of this one bit as a binary number. Note, that the truth table, thus,
is not complete. It does not define the output if the input is not a one-hot
code. Be aware that there are totally valid implementations of encoders that
behave as defined if the input is a legal one-hot code, but they may react
differently to ‘illegal’ inputs.

A symbol that is used for an encoder is given in figure 5.2 and a variant
on how to implement a 3-bit encoder is depicted in figure 5.3. This
particular (rather straight forward) implementation will produce quite
arbitrary outputs when given ‘illegal’ inputs.

There are other implementations that adhere to a more strict definition of an
encoder’s behaviour. The complete truth table 5.2 defines such a behaviour.
It is referred to as a priority encoder: always the highest order bit that is
‘1’ is encoded. Note that the ‘X’s stand for ‘don’t care’ and may be set to
either ‘0’ or ‘1’ without influencing the output. We will not discuss a circuit
implementation of this function, however.

5.1.2 Decoder
A decoder is the inverse function of an encoder, in digital circuits usually
decoding n inputs into 2n outputs. The truth table for a 3 bit variant is given
in table 5.3. Note that the truth table is complete, not subjected to the same

Page 24

5.1 STANDARD COMBINATIONAL CIRCUIT BLOCKS

2 1 0 O7 O6 O5 O4 O3 O2 O1 O0

0 0 0 0 0 0 0 0 0 0 1

0 0 1 0 0 0 0 0 0 1 0

0 1 0 0 0 0 0 0 1 0 0

0 1 1 0 0 0 0 1 0 0 0

1 0 0 0 0 0 1 0 0 0 0

1 0 1 0 0 1 0 0 0 0 0

1 1 0 0 1 0 0 0 0 0 0

1 1 1 1 0 0 0 0 0 0 0

Table 5.3: 3-bit decoder truth table

Figure 5.5: Possible 3-bit decoder implementation

ambiguity as the decoder. A decoder symbol is shown in figure 5.4 and a
possible 3-bit implementation in figure 5.5.

5.1.3 Multiplexer
A multiplexer routes one of 2n input signals as defined by the binary control
number S to the output. A schematics symbol that is used for a multiplexer
is shown in figure 5.6. The truth table of a 3 bit multiplexer in figure 5.4
does not only contain zeroes and ones any longer but also the input variables
k indicating that the output will depend on the input and the control bits S
choose which input bit the output depends on. Figure 5.7 shows a possible
implementation. Note the way that multiple input logic gates are shown in
a simplified, compact way as explained in the small sub-figures.

Multiplexers are used in many a context, for example when buses (parallel
or serial data lines, see later in this text) are merged.

5.1.4 Demultiplexer
A demultiplexer performs the inverse function of a multiplexer, routing one
input signal to one of 2n outputs as defined by the binary control number
S. Table 5.5 is the corresponding truth table, figure 5.8 is a possible symbol
and figure 5.9 shows a possible implementation.

Page 25

CHAPTER 5 COMBINATIONAL LOGIC CIRCUITS

S2 S1 S0 O

0 0 0 0

0 0 1 1

0 1 0 2

0 1 1 3

1 0 0 4

1 0 1 5

1 1 0 6

1 1 1 7

Table 5.4: Multiplexer truth table

Figure 5.6: A multiplexer symbol

Figure 5.7

Page 26

5.1 STANDARD COMBINATIONAL CIRCUIT BLOCKS

S2 S1 S0 O7 O6 O5 O4 O3 O2 O1 O0

0 0 0 0 0 0 0 0 0 0 

0 0 1 0 0 0 0 0 0  0

0 1 0 0 0 0 0 0  0 0

0 1 1 0 0 0 0  0 0 0

1 0 0 0 0 0  0 0 0 0

1 0 1 0 0  0 0 0 0 0

1 1 0 0  0 0 0 0 0 0

1 1 1  0 0 0 0 0 0 0

Table 5.5: 3-bit demultiplexer truth table

Figure 5.8: Demultiplexer symbol

Figure 5.9: Possible 3-bit demultiplexer implementation

Page 27

CHAPTER 5 COMBINATIONAL LOGIC CIRCUITS

a b S C

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1

Table 5.6: Truth table for a 1-bit half adder

Figure 5.10: Schematics/circuit diagram of a 1-bit half adder

Demultiplexer find their use where a shared data line is used to convey data
to several destinations at different times.

5.1.5 Adders
Addition of binary numbers is a basic arithmetic operation that computers
execute innumerable times which makes the combinational adder circuit
very important.

5.1.5.1 Half Adder
A half adder can add two 1-bit binary numbers. One bit binary numbers can
code the values ‘0’ and ‘1’. If two are added, the result may be either ‘0’,
‘1’, or ‘2’. The later coded as a binary number is ‘10’. Thus the result may
require a digit more to be represented as a binary number, so the output
of the half adder consists of two bits. the MSB is denoted as carry bit.
The truth table of this addition is given in table 5.6 and the circuit that
implements it in figure 5.10.

5.1.5.2 Full Adder
A half adder cannot be cascaded to a binary addition of an arbitrary bit-
length since there is no carry input. An extension of the circuit is needed, a
socalled full adder. Its truth table is given in table 5.7. The carry input bit is
in essence just another input to add, on par with the two other inputs. Thus,
the result can now be either ‘0’, ‘1’, ‘2’/‘10’, or ‘3’/‘11’, still up to two bits in
binary representation. The circuit implementation basically consists of two
half adders, where the second receives the result of the first as one input
and the carry in as the other. The circuit implementation is shown in figure
5.11. The full adder can be cascaded to add any length of binary number,

Page 28

5.1 STANDARD COMBINATIONAL CIRCUIT BLOCKS

Cin a b S Cout

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

Table 5.7: Full Adder truth table

Figure 5.11: Full adder schematics

connecting the carry out of a stage to the next higher order stage/more
significant bit. The first stage’s carry in should be set to zero, or the first
stage might simply consist of a half adder. This implementation of an adder
is known as ripple carry adder, since the carry bits may ‘ripple’ from the
LSB to the MSB and there might be a significant delay until the MSB of the
result and its carry out become stable.

Page 29

Page 30

Chapter 6

Sequential Logic
Circuits

Sequential logic circuits go beyond the concept of a Boolean function: they
contain internal memory elements and their output will also depend on
those internal states, i.e., on the input history and not just the momentary
input.

6.1 Flip-Flops

Flip-flops are digital circuits with two stable, self-maintaining states that
are used as storage/memory elements for 1 bit. The term ‘flip-flop’ refers
in the more recent use of the language more specifically to synchronous
binary memory cells (e.g., D-flip-flop, JK-flip-flop, T-flip-flop). These circuits
change their state only at the rising edge (or falling edge) of a dedicated
input signal, the clock signal. The term ‘latch’ (e.g., D-latch, SR-latch) is
used for the simpler more basic asynchronous storage elements that do not
have a dedicated clock input signal and may change their state at once if
an input changes, but this naming convention is not consequently applied
throughout the literature.

Often, sequential logic circuits are described using flip-flops as a further
basic building block besides the logic gates that have been introduced so
far, and that is what will be done in this compendium too, for the most part.
However, be aware that flip-flops are themselves composed of logic gates
that are connected in feedback loops and we will just briefly touch on the
basic principle here, with one specific flip-flop: the D-latch.

The behaviour of a flip-flop can be expressed with a characteristic table:
a truth table expressing the relation between the input and the present
state, and the next state. An alternative is the characteristic equation which
defines the dependency of the next state on the input and present state as
a Boolean expression. See the following definitions of the flip-flop types for
examples.

Page 31

CHAPTER 6 SEQUENTIAL LOGIC CIRCUITS

Figure 6.1: Gated D-latch/transparent latch

6.1.1 Asynchronous Latches
Asynchronous digital circuits in general, are circuits whose state changes
are not governed by a dedicated clock signal, i.e., they can change state any
time as an immediate consequence of a change of an input. See also below
for an explanation of synchronous circuits, since a more concise definition
of ‘asynchronous’ is ‘not synchronous’.

The design of more complex asynchronous circuits can be very challenging.
One has to be very careful about signal timing, avoiding race conditions
(the badly controlled order of changes of input signals causing unintentional
effects), self maintaining loops of sequential state changes (that’s uninten-
tional oscillators), deadlocks (states that cannot be changed anymore by any
combination of inputs (That’s also a problem of synchronous circuits!)), . . .
On the other hand, asynchronous circuits can be very fast, since a new state
is computed as quickly as the hardware allows1.

We’ll limit our discussion of asynchronous sequential circuits to nothing
more advanced than asynchronous latches, mostly, in this compendium.

6.1.1.1 Gated D-Latch/Transparent Latch
The D-latch is the simplest flip-flop type. Gated (in contrast to clocked , see
section 6.1.2) means that the output state may change with an input signal
while a gating signal (‘E’ in figure 6.1) is high and does no more change
when the gating signal is low (or vice versa).

The D-latch’s behaviour is defined by the characteristic equation (6.1):

Qnext = D · E+ Ē ·Qpresent (6.1)

Note that often the subscripts ‘present’ and ‘next’ are not explicitly written
but it is assumed that the left hand side of the equation refers to the next
state and the right hand to the present. This will also be applied in this
compendium.

Figure 6.1 shows a possible implementation of the D-latch and its symbol.
The double inverter feedback loop is the classic implementation of a binary
memory cell. It has two possible states: Q is either equal to 1 and Q is equal

1 Think of this as a digital circuit that is automatically ‘overclocked’ to its possible limit, for those
of the readers that have been into this ;-)

Page 32

6.1 FLIP-FLOPS

Figure 6.2: SR-latch symbol

S R Q Qnet

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 0

1 0 0 1

1 0 1 1

1 1 0 ?

1 1 1 ?

Table 6.1: Full SR-latch characteristic table

S R Q

0 0 Q

0 1 0

1 0 1

1 1 ?

Table 6.2: Abbreviated SR-latch characteristic table

to 0 or vice versa. Once the feedback loop is connected, that state has no
way to change, but if the feedback loop is open, then Q and Q will simply
be dependent on the input D. Thus the name ‘transparent latch’, that is also
sometimes used, since the latch will simply convey the input to the output
up until E is drawn low, whereupon the last state of D just before that event
is stored.

6.1.1.2 SR-latch

Another asynchronous latch is the SR-latch . The symbol is shown in figure
6.2. We will not look at its internal workings but define its behaviour
with the characteristic table 6.1. These tables can often be written more
compactly by again using variables of inputs and/or (implicitly ‘present’)
states in the table (table 6.2).

Page 33

CHAPTER 6 SEQUENTIAL LOGIC CIRCUITS

Figure 6.3: Clock signal

Figure 6.4: JK-flip-flop symbol

In words, the SR-latch can be asynchronously set (Q→1 and Q→0) by signal
‘S’ and reset (Q→0 and Q→1) by signal ‘R’. While both ‘S’ and ‘R’ are low,
the state is maintained. Note the unique feature of the question mark in
the characteristic table! They are caused by an ‘illegal’ input configuration,
i.e., when both ‘S’ and ‘R’ are high. The basic definition of a general SR-
latch does not define what the output should be in this case and different
implementations are possible that will behave differently in that situation.
If a circuit designer uses an SR-latch as a black box, he cannot rely on the
output, if he permits this situation to occur.

The SR-latches behaviour expressed with a characteristic equation but
without correctly covering the uncertainty of the output in case of the illegal
input situation(!):

Q = S + R̄ ·Q (6.2)

6.1.2 Synchronous Flip-Flops
Synchronous digital circuits have a dedicated input signal called clock
(CLK). State changes of synchronous circuits will only occur in synchrony
with a change of this clock signal, i.e., either at the rising or falling edge of
the clock (figure 6.3). A clock signal toggles back and forth between 0 and
1 with a regular frequency, the inverse of which is the clock period or clock
cycle. In circuit symbols the clock signal is often marked with a triangle just
inside of the clock pin. If the pin is connected to the symbol with a circle
in addition the falling edge of the clock will be used for synchronization,
otherwise it’s the rising edge.

6.1.2.1 JK-Flip-Flop
The JK-flip-flop is the synchronous equivalent to the SR-latch. ‘J’
corresponds to ‘S’, but since it’s synchronous, a change of ‘J’ from low (0)

Page 34

6.1 FLIP-FLOPS

J K Qt Qt+1

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 0

1 0 0 1

1 0 1 1

1 1 0 1

1 1 1 0

Table 6.3: Full JK-flip-flop characteristic table

J K Qt+1

0 0 Qt

0 1 0

1 0 1

1 1 Qt

Table 6.4: Abbreviated JK-flip-flop characteristic table

T Qt Qt+1

0 0 0

0 1 1

1 0 1

1 1 0

Table 6.5: Full T-flip-flop characteristic table

to high (1) will not immediately set the flip-flop, i.e., rise the output ‘Q’.
This will only happen later, at the very moment that the clock signal ‘C’
rises (provided that ‘J’ is still high!). Correspondingly, if ‘K’ is 1 when the
clock signal changes to 1, the flip-flop is reset and ‘Q’ goes low, and if both
‘J’ and ‘K’ are low, the state does not change. The ‘illegal’ input state of
the SR-latch, however, is assigned a new functionality in the JK-flip-flop: if
both ‘J’ and ‘K’ are high, the flip-flop’s output will toggle, i.e., Q will change
state and become 1 if it was 0 and vice versa. This behaviour is defined
in the characteristic tables tables 6.3 and 6.4 and/or by the characteristic
equation:

Q = J ·Q+ K ·Q (6.3)

Note that the characteristic equation of synchronous flip-flops and other
sequential circuits implicitly assumes that state changes only occur in
synchrony with the clock!

Page 35

CHAPTER 6 SEQUENTIAL LOGIC CIRCUITS

Figure 6.5: T-flip-flop symbol

T Qt+1

0 Qt

1 Qt

Table 6.6: Abbreviated T-flip-flop characteristic table

Figure 6.6: D-flip-flop symbol

6.1.2.2 T-Flip-Flop
The T-flip-flop (toggle flip-flop) is a reduced version of the JK-flip-flop, i.e.,
the signals J and K are shorted and named ‘T’. So this flip-flop either
maintains it state when T is 0 or it toggles, i.e., changes its state at the
start of each clock cycle, when T is 1.

Its symbol is depicted in figure 6.5 and its characteristic table in tables 6.5
and 6.6. The characteristic equation is:

Q = T⊕ Q (6.4)

A typical use for the T-flip-flop is in the design of counters.

6.1.2.3 D-Flip-Flop
The D-flip-flop (symbol in figure 6.6) can also be seen as a reduced version
of the JK-flip-flop, this time if J is connected to K through an inverter and
J is named ‘D’: the output of the D-flip-flop follows the input D at the start
of every clock cycle as defined in the characteristic tables 6.7 and 6.8. Its
characteristic equation is:

Q = D (6.5)

Page 36

6.2 FINITE STATE MACHINES

D Qt Qt+1

0 0 0

0 1 0

1 0 1

1 1 1

Table 6.7: Full D-flip-flop characteristic table

D Qt+1

0 0

1 1

Table 6.8: Abbreviated D-flip-flop characteristic table

It can in general be used to synchronize an input signal to an internal clock
cycle for further synchronous processing circuits. Thus, it’s also often used
to build synchronous finite state machines (see section 6.2) that use their
internal state stored in several D-flip-flops as input to combinational logic
that in turn are connected again to the inputs of the D-flip-flops. This way
one does not have to worry about the signal timing within the combinational
logic as it’s ensured that the states of the D-flip-flops are only allowed to
change once the combinational logic is finished with its computation. If you
do not understand this statement just yet, do not worry but try again after
having read the next section on finite state machines.

6.2 Finite State Machines
Finite State Machines (FSM) are a formal model suited to describe
sequential logic, i.e., logic circuits whose output does not only depend
on the present input but on internal memory and thus, on the history or
sequence of the inputs. They describe circuits composed of combinational
logic and flip-flops.

6.2.1 State Transition Graphs
A common way to describe/define a FSM is by a state transition graph : a
graph consisting of the possible states of the FSM represented as bobbles
and state transitions represented as arrows that connect the bobbles. The
state transitions are usually labeled with a state transition condition, i.e., a
Boolean function of the FSM inputs.

Consider the simple example in figure 6.7. It defines a controller for a traffic
light, where pressure senors in the ground are able to detect cars waiting
coming from either of the four roads. There are two states of this system,
either north-south or east-west traffic is permitted. This FSM is governed
by a slow clock cycle, let’s say of 20 seconds. Equipped with sensors, the
controller’s behaviour is somewhat more clever than simply switching back
and forth between permitting east-west and north-south traffic every cycle:
it only switches, if there are cars waiting in the direction it switches to and

Page 37

CHAPTER 6 SEQUENTIAL LOGIC CIRCUITS

Figure 6.7: State transition graph for a simple traffic light
controller equipped with sensors that detect cars
waiting coming from the north, the south, the
west, or the east

Figure 6.8: The principle block diagram model of a Moore
FSM. If the dashed connection is included, it
becomes a Mealy FSM.

will not stop the cars travelling in the direction that is green at present
otherwise.

This FSM is an example of a so called Moore finite state machine. FSMs
are often categorized as either Moore- or Mealy machines. These two
models differ in the way the output is generated. Figure 6.8 illustrates
the distinction.

Moore FSM: In a Moore machine the output depends solely on the internal
states. In the traffic light example here, the traffic lights are directly
controlled by the states and the inputs only influence the state
transitions, so that is a typical Moore machine.

Mealy FSM: In a Mealy machine the outputs may also depend on the input
signals directly. A Mealy machine can often reduce the number of
states (naturally, since the ‘state’ of the input signals is exploited
too), but one needs to be more careful when designing them. For
one thing: even if all memory elements are synchronous the outputs
too may change asynchronously, since the inputs are bound to change
asynchronously.

That brings us to a further differentiation of FSMs: they can be implemented
both asynchronously or synchronously.

Page 38

6.3 REGISTERS

car car go gonext

EW NS NS NS

0 0 0 0

1 0 0 0

0 1 0 1

1 1 0 1

0 0 1 1

1 0 1 0

0 1 1 1

1 1 1 0

Table 6.9: Traffic light controller characteristic table

Synchronous FSM: In general, it is simpler to design fully synchronous
FSMs, i.e., with only synchronous flip-flops that all receive the same
global clock signal. The design methods and especially the verification
methods of the design are much more formalized and, thus, easier to
perform.

Asynchronous FSM: On the other hand, asynchronous FSM implement-
ations are potentially a good deal faster, since a state transition can
occur as quickly as the state transition condition can be computed by
the combinational logic, whereas a clocked FSM has to chose the clock
period long enough such that the slowest of all possible state trans-
ition condition computation can be completed within a clock cycle.
The design and verification, however, is tremendously more difficult
and full of pitfalls.

For the most part, this compendium will stick with the design of
synchronous sequential circuits.

If we go back to the traffic light example, it can be implemented as
a synchronous Moore machine with D-flip-flops by first deriving the
characteristic-/state transition table from the state transition graph. It is
given in table 6.9, where the conditions ‘car from E or car from W’ have
been combined to ‘car EW’. It has been chosen to represent the two states
by a single D-flip-flop. Note, that also the implicit conditions for a state to
be maintained have to be included in the table, even if they are not explicitly
stated in the graph.

From the characteristic table one can derive the combinational circuit. In
more complicated cases on might employ a Karnaugh map to find a simple
functional expression first. Here, it is rather straight forward to find the
circuit in figure 6.9.

A further systematic derivation will be conducted for counters in section
6.4.1

Page 39

CHAPTER 6 SEQUENTIAL LOGIC CIRCUITS

Figure 6.9: Traffic light controller schematics

Figure 6.10: Symbol of a simple register

Figure 6.11: State transition graph of a 3-bit counter

6.3 Registers
Registers are a concept that will simplify following discussions of more
complex logic. They are nothing more fancy than an array of flip-flops that
are accessed in parallel (e.g., as memory blocks in a CPU), controlled by
shared control signals. The array is usually of a size that is convenient
for parallel access in the context of a CPU/PC, e.g., one Byte or a Word.
Possibly most common is the use of an array of D-flip-flops. A typical control
signal is a ‘write enable’ (WE) or synchronous load (LD). In a D-flip-flop
based register, this signal is ‘and-ed’ with the global clock and connected to
the D-flip-flop clock input, such that a new input is loaded into the register
only if WE is active. Other control signals might be used to control extra
functionality (e.g., in shift-registers, see section 6.4).

A simple register symbol is depicted in figure 6.10.

6.4 Standard Sequential Logic Circuits
6.4.1 Counters

Counters are a frequently used building block in digital electronics. A
counter increases a binary number with each clock edge. The state

Page 40

6.4 STANDARD SEQUENTIAL LOGIC CIRCUITS

present in next

S2 S1 S0 NA S2 S1 S0

0 0 0 0 0 1

0 0 1 0 1 0

0 1 0 0 1 1

0 1 1 1 0 0

1 0 0 1 0 1

1 0 1 1 1 0

1 1 0 1 1 1

1 1 1 0 0 0

Table 6.10: State transition table of a 3-bit counter

Figure 6.12: Karnaugh maps for the state transition table of a
synchronous 3-bit counter

Figure 6.13: 3-bit synchronous counter

transition graph of a 3-bit counter is given in figure 6.11

As indicated, let us represent the 8 states in D-flip-flops with the
corresponding binary numbers. Thus, the state is the output and there is in
a first instance no output combinational logic necessary. (Note that output
combinational logic will be necessary if the numbers should, for example,
appear on an LED-display.) We can thus further define the FSM by its
state transition table (table 6.10), a table that shows the relation between
present state and present input, and the next state. Actualy it is also just
a characteristic table for a more complex circuit, and sometimes this text
will also refer to it as such. Note that our simple counter does actually not
have any inputs and that the state transitions are all unconditional, i.e., they
occur with each clock cycle and do not depend on any inputs.

Since the state transition table defines an input/output relationship, where

Page 41

CHAPTER 6 SEQUENTIAL LOGIC CIRCUITS

Figure 6.14: 3-bit ripple counter

the input is the present state plus the inputs (not available in this example)
and the output the next state, we can deduce the simplified combinational
logic that will connect the output of the D-flip-flops (present state) to
the input of the D-flip-flops (next state) with the help of Karnaugh maps
(figure 6.12), as was introduced in section 4.1.

Equation (6.7) is the resulting sum of minterms for bit S2 and can be further
simplified to equation 6.9.

S2net = (S2 · S1) + (S2 · S0) + (S2 · S1 · S0) (6.6)

= S2 · (S1 + S0) + (S2 · (S1 · S0)) (6.7)

= S2 · (S1 · S0) + S2 · (S1 · S0) (6.8)

= S2 ⊕ (S1 · S0) (6.9)

Contemplating this equation somewhat we can deduce a general expression
for the nth bit of a counter (∧=AND):

Snnext = Sn ⊕
�

n−1
∧

k=0
Sk

�

(6.10)

And if we consult the characteristic equation of a T-flip-flop (6.4) we note
that it is an XOR of its present state and its T-input, so we may conveniently
use it to implement the counter, by connecting the product term in (6.10)
to the input T and the resulting circuit implementing a synchronous 3-bit
counter is shown in figure 6.13. One more control signal has been added,
the ‘counter enable’ (CE) which can be used to stop the counting entirely.

Counters may also be equipped with even more control signals to control
extra functionality such as:

Possibility for loading an initial number (control signal LD and an input
bus)

Reset to zero (control signal RES)

Switching between up and down counting (control signal UpDown)

A simple and popular asynchronous variant (only the first T-flip-flop is
clocked with the global clock) of a counter is the ripple counter shown in
figure 6.14. A possible disadvantage is that the output signal ‘ripples’ from

Page 42

6.4 STANDARD SEQUENTIAL LOGIC CIRCUITS

control next

LD SE LS O2 O1 O0

1 X X 2 1 0

0 0 X O2 O1 O0

0 1 0 RSin O2 O1

0 1 1 O1 O0 LSin

Table 6.11: Shift register state transition table

Figure 6.15: Shift register

the lowest to the highest bit, i.e., the highest bits are updated with a delay.
This must be taken into account, if this kind of counter is used.

6.4.2 Shift Registers

Shift registers are registers that can shift the bits by one position per clock
cycle. The last bit ‘falls out’ of the register when shifting. The first bit that
is ‘shifted in’ can for example:

be set to zero

be connected to the last bit (cycling/ring counter)

be connected to a serial input for serial loading

Typical control signals are:

load (LD, for parallel loading)

shift enable (SE, to enable or stop the shifting)

left shift (LS, for controlling the direction of the shift

Page 43

CHAPTER 6 SEQUENTIAL LOGIC CIRCUITS

Note that a left shift of a binary number corresponds to a multiplication
with 2, an arithmetic right shift (shift in the former MSB from the left) to a
division with 2 (rounded towards −∞!, see also section 3.4)

Shift registers find their use, for example in:

Parallel to serial and serial to parallel conversion

Binary multiplication

Ring ‘one-hot’ code counters/scanners

Pseudo random number generators

Page 44

Chapter 7

Von Neumann
Architecture

In 1945 John von Neumann published his reference model of a computer
architecture that is still the basis of most computer architectures today.
The main novelty was that a single memory was used for both, program and
data.

Figure 7.1 shows an outline of the architecture, composed of 5 main units:

control unit

execution unit

memory unit

input unit

output unit

The control unit (CU) is the central finite state machine that is controlled
by input from the memory, i.e., the program. Its internal states are its
registers. Typical registers of the CU are:

PC: (program counter, also called instruction pointer (IP)) the register
holding the memory address of the next machine code instruction.

IR: (instruction register) the register holding the machine code of the
instruction that is executed.

MAR: (memory address register) half of the registers dedicated as
interface of the memory with the CPU, holding the memory address
to be read or written to.

MBR: (memory buffer register) the other half of the CPU-memory inter-
face, a buffer holding the data just read from the memory or to be
written to the memory. Typically the MBR can be connected as one of
the inputs to the ALU.

The MAR and the MBR may also be assigned to a subunit of the CU, the
memory controller, which even has been implemented on a separate IC and
been placed outside the CPU to allow for more system flexibility, i.e., to

Page 45

CHAPTER 7 VON NEUMANN ARCHITECTURE

Figure 7.1: Von Neumann architecture

allow to reuse the same CPU with different generations and/or sizes of
memory. For the sake of speed, however, many modern CPUs do again
physically contain a memory controller.

The execution unit is the work horse of the CPU that manipulates data.
In its simplest form it would merely be combinational logic with input and
output registers, performing all of its tasks within a single clock cycle. A
core component is the arithmetic and logic unit (ALU) which is instructed
by the CU to execute arithmetic operations such as addition, subtraction,
multiplication, arithmetic shifts and logical operations such as bit-wise and,
or, xor and logic shifts etc. A simple ALU is a combinational circuit and is
further discussed in section 7.2. More advanced execution unit will usually
contain several ALUs, e.g., at least one ALU for pointer manipulations and
one for data manipulation. Registers of the CPU that usually are assigned
to the execution unit are:

accumulator: a dedicated register that stores one operand and the result
of the ALU. Several accumulators (or general purpose registers in
the CPU) allow for storing of intermediate results, avoiding (costly)
memory accesses.

flag/status register: a register where each single bit stands for a specific
property of the result from (or the input to) the ALU, like carry in/out,
equal to zero, even/uneven, . . .

The memory, if looked upon as a FSM has a really huge number of internal
states, so to describe it with a complete state transition graph would be
quite a hassle, which we will not attempt. Its workings will be further
explained in section 7.3

Page 46

7.1 DATA PATH AND MEMORY BUS

Figure 7.2: Example schematics of a 1-bit arithmetic logic
unit (ALU)

7.1 Data Path and Memory Bus
The data path refers to the internal bus structure of the CPU. Buses are
connections between registers, the functional units (such as the ALU), the
memory, and I/O units. They are often shared by more than two of those
units and usually only one unit sends data on the bus to one other at a time.
Internally in the CPU there are usually several buses for data exchange
among the registers and functional units, allowing parallel access to several
registers at the same time, i.e., within one clock cycle. However, there is
only one bus between the memory and the CPU for both instruction and data
transfer in a von Neumann architecture (actually two: one for the address
and one for the data), this bus can be a main speed limiting factor which is
known as the von Neumann bottleneck .

7.2 Arithmetic and Logic Unit (ALU)
Figure 7.2 shows a possible implementation of a basic ALU as a combin-
ational logic circuit. The instruction code or operation code (inst/opcode)
determines which function the ALU applies to its input as detailed in table
7.1. Note that the subtraction will not just require that the b is inverted,
but also that the carry in signal be set to 1 (in an n-bit ALU only for the

Page 47

CHAPTER 7 VON NEUMANN ARCHITECTURE

Figure 7.3: A possible symbol used for an 1-bit ALU

inst computation

000 a · b
001 a · b
010 a+ b

011 a+ b

100 a⊕ b

101 a⊕ b

110 a+ b

111 a− b(!)

Table 7.1: 1-bit ALU truth table

LSB). Remember that in two’s complement, a binary number is inverted by
inverting each bit and adding 1. The addition of 1 is achieved by using the
carry in signal. This is explicitly shown in figure 7.4 that combines n 1-bit
ALUs. The symbol for a 1-bit ALU that is used is shown separately in figure
7.3, and a possible symbol for an n-bit ALU in figure 7.5.

More complicated ALUs will have more functions as well as flags, e.g.,
overflow, divide by zero, etc.

Modern CPUs contain several ALUs, e.g., one dedicated to memory pointer
operations and one for data operations. ALUs can be much more complex
and perform many more functions in a single step than the example shown
here, but note that even a simple ALU can compute complex operations in
several steps, controlled by the software. Thus, there is always a trade-off
of where to put the complexity: either in the hardware or in the software.
Complex hardware can be expensive in power consumption, chip area and
cost. Furthermore, the most complex operation may determine the maximal
clock speed. The design of the ALU is a major factor in determining the CPU
performance!

Page 48

7.3 MEMORY

Figure 7.4: Example of an n-bit ALU schematics

Figure 7.5: n-bit ALU symbol

Page 49

CHAPTER 7 VON NEUMANN ARCHITECTURE

inputs state out

I A CS WE OE M(A) O

X X 1 X X M(A) Z

X X 0 1 1 M(A) Z

I A 0 0 1 I Z

I A 0 1 0 M(A) M(A)

I A 0 0 0 I M(A)

Table 7.2: Characteristic table of a synchronous RAM with
separate input and output port. Note that there
are many variants of RAM with different character-
istics. This table is but an example of one variant.
Also note that the effect of CS and OE is usually
asynchronous, i.e., immediate, while the effect of
WE is synchronous, i.e., triggered by the next clock
edge.

7.3 Memory
The memory stores program and data in a computer. In the basic von
Neumann model the memory is a monolithic structure, although in real
computer designs, there is a memory hierarchy of memories of different
types and sizes, but we will come back to this later (section 8.1). The
basic type of memory that is usually employed within a basic von Neumann
architecture is random access memory (RAM). A RAM has an address port,
and a data input and an output port, where the later two might be combined
in a single port. If the address port is kept constant, the circuit behaves like
a single register that can store one word of data, i.e., as many bits as the
input and output ports are wide. Changing the address, one addresses a
different word/register. ‘Random access’ refers to this addressed access
that allows to read and write any of the words at any time, as opposed to
the way that, for instance, pixels on a computer screen are accessible only
in sequence.

Some terminology:

address space: The number of words in a RAM. In figure 7.6 it is
equivalent to the number of rows.

word length: The number of bits or bytes that can be accessed in a single
read/write operation, i.e., the number of bits addressed with a single
address. In figure 7.6 the number of columns.

memory size: The word length multiplied with address space.

Note that the x86 architecture (and other modern CPUs) allows instructions
to address individual bytes in the main memory, despite the fact that
the word length of the underlying RAM is actually 32 bits/4 bytes or
64 bits/8 bytes. Thus, the address space that a programmer sees is in fact
bigger than the address space of the RAM.

Typical signals of a RAM:

Page 50

7.3 MEMORY

A((n-1):0): The address port indicating which word should be accessed.
2n is the address space.

I/D((m-1):0) and O((m-1):0) or D((m-1):0): I (sometimes also referred
to as D) and O are the input and output port respectively. Sometimes
a single port D is used for both, in which case a control signal OE is
needed to distinguish between the use of port D as input or output. m
is the memory word length in bits.

WE, write enable (often active low): This signal causes a write access
writing I/D at address A, either immediately (asynchronous write),
with a following strobe signal (see RAS/CAS) or with the next clock
edge (synchronous write).

RAS/CAS, row/column access strobe: appear usually in DRAM (see sec-
tion 7.3.2) that actually has a 3-D structure: one decoder for the row
address, one for the column address and the word (conceptually) ex-
tends into the third dimension. The address bus is reused for both row
and column address. First the row address is asserted on the address
bus A and RAS is pulsed low, then the column address is asserted on
the address bus and CAS is pulsed low. CAS is the final signal that
triggers either the read (latching of the word into a read buffer)) or
write operation. The other control signals are asserted before. Sev-
eral column accesses can be made for a single row access for faster
access times.

OE, output enable: A signal that lets the RAM drive the data line while
asserted, but lets an external source drive the data lines while
deasserted. This can be used to regulate the access if there are
several devices connected to a single bus: Only one of them should
be allowed to drive the bus at anyone time. Deasserted, it can also
allow a common data line to be used as input port.

CS, chip select: A control line that allows to use several RAMs instead
of just one on the same address and data bus and sharing all other
control signals. If CS is not asserted all other signals are ignored and
the output is not enabled. Extra address bits are used to address one
specific RAM and a decoder issues the appropriate CS to just one RAM
at a time. This extends the address space.

RAM comes in either of two main categories: static- and dynamic random
access memory (SRAM and DRAM).

7.3.1 Static Random Access Memory (SRAM)
Figure 7.6 shows an example block diagram of a static RAM with
asynchronous WE. Its basic 1-bit storage element are flip-flops as depicted
in the upper right corner of the figure, quite similar to the basic D-latch
introduced in section 6.1.1. An active high signal on the word line (WL)
will connect that latches content to the bit lines (BL and BL). The bit-lines
connect the same bit in all words, but only ever one word line is active at
anyone time. This is ensured by the decoder (lefthand side of the figure)
that decodes the address A. Thus, a single word at a time can either be read
or written to.

Page 51

CHAPTER 7 VON NEUMANN ARCHITECTURE

Figure 7.6: Static random access memory principle

The figure introduces yet another digital building block within the lower
right corner circuit, the tri-state buffer. Tri-state buffers allow the outputs
of different logic circuits to be connected to the same electrical node, e.g.,
a bus-line. usually, only one of these outputs at a time will be allowed to
drive that line and determine its states, while all others are in principle
disconnected from that line. So, the tri-state output can actually have three
different states, as controlled by its control input and the input: while its
control input is active, it conveys the usual ‘high’/1 and ‘low’/0 from input to
output. If the control input is inactive, the output is set to a ‘high impedance’
output denoted with ‘Z’. To say it more plainly, in this third state, the buffer
acts like a switch that disconnects its input from the output.

The write access is somewhat less elegant than in a D-latch (section 6.1.1):
in the D-latch, the feedback loop that maintains the state is disconnected
during a write access. Here, however, the feedback loop is maintained, also
during a write access. An active low WE activates a tri-state buffer that
drives the bit-lines. This buffer needs to be stronger than the feedback loop
in order to overrule it. This way, one saves an extra switch in the storage cell
making it more compact, and compactness is the main criterion for memory
cells, since the main goal is to get as much memory in as little a space as
possible. The price one pays is a considerable power consumption while the
feedback loop ‘struggles’ against the write input and a degradation of the
writing speed. Note that in this figure only the non-inverted bit-line BL is
driven during a write access, which is a possible design. Usually, also the
inverted bit-line BLis actively driven during a write operation to increase
the writing speed.

7.3.2 Dynamic Random Access Memory (DRAM)
While a SRAM needs 6 transistors per storage cell (2 per inverter and 1 per
switch), a DRAM merely needs two capacitors and two transistors. Instead
of an active feedback loop to maintain a state, the DRAM relies on charge
stored on a capacitor. Capacitive storage, however, is not self maintaining.

Page 52

7.3 MEMORY

Figure 7.7: Dynamic random access memory (DRAM) prin-
ciple

Charge on a capacitor is leaking and lost over time. Thus, a sense amplifier
has to be connected to every memory cell within a given time period, while
the memory is idle. In modern DRAM internal state machines take care of
this refresh cycle.

The sense amplifier reconstructs the digital state from the analog state that
the memory cell has decayed to. In principle, it is nothing but a flip-flop
itself, and if a flip flop should ever find itself in a state where its content
is neither ‘1’ nor ‘0’, it will quickly recover to the closer of those two
states, due to the amplification in the feedback loop. In the lower right
corner of figure 7.7, such a sense amplifier is depicted: it’s a pair of tri-
stated inverters connected in a feedback loop. To refresh a cell, first the
differential bit-lines BL and BL are precharged to a state between ‘0’ and
‘1’, i.e., ‘0.5’, then the memory cell that is to be refreshed is connected to
those lines, passively pulling them in the direction of either (1,0) or (0,1)
dependent on the charge that remains on the two memory cell capacitors.
Then the sense-amplifier is turned on, pulling them further apart actively in
the same direction, until the digital state is reached again.

The rest of the circuit in figure 7.7 is quite similar to the SRAM in figure 7.6.
One difference is that here you need to drive both BL and BL during a
write operation. Another difference is the introduction of a write strobe
signal pulse RAS, so it is not WE that directly triggers the writing of the
memory cell but this strobe signal, this pulse is also used to generate a
shorter precharge pulse during which the bit-lines are precharged, and
after which, the decoder output is enabled, connecting the memory cell
to the precharged bit-lines. In the case of a read access the sense amplifier
is also turned on and the memory cell content is, thus, simultaneously read
and refreshed. The sense amplifier will retain the memory cell state after
the cell itself is disconnected until the next RAS strobe.

DRAMs can be more compact than SRAMs to the lesser number of
transistors per memory cell, and thus one can produce bigger memory sizes

Page 53

CHAPTER 7 VON NEUMANN ARCHITECTURE

SRAM DRAM

access speed + -

memory density - +

no refresh needed + -

simple internal control + -

price per bit - +

Table 7.3: Comparison of SRAM and DRAM

expression meaning

X register X or unit X

[X] the content of X

← replace/insert or execute code

M() memory M

[M([X])] memory content at address [X]

Table 7.4: RTL grammar

more cheaply. One problem that arises with this is that the number of
address lines that are needed to address the entire address space becomes
bigger and bigger. To avoid enormously wide address buses, the address
is split into two parts, denoted as row and column address. We will not
delve deeply int this here and now. To tell a somewhat simplified story
that still conveys the principle operation: the row address is loaded into a
internal register within the DRAM first. The RAS strobe will trigger that
latching. Then the column address is placed on the address bus and a
separate column address strobe CAS triggers the actual decoder output
and the latching of the memory content into sense amplifier. Repeated fast
memory access with the same row address and only changing the column
address is another consequence of this address splitting.

In general, however the major drawback of DRAM is access speed and
the need for active refreshing which requires some administrative circuitry
overhead. A summary of the advantages and drawbacks of the two variants
is given in table 7.3.

7.4 Control Unit (CU)

7.4.1 Register Transfer Language

To describe the FSM that is the control unit one may employ the socalled
‘register transfer language’ (RTL), since moving data among registers is
a central par of what the CU does, besides telling the execution unit to
manipulate some of these date. The syntax of RTL is illuminated in table 7.4.

An example: [IR] ← [MBR] transfer the content of the MBR to the IR

Page 54

7.4 CONTROL UNIT (CU)

mem adr content

0 move 4

1 add 5

2 store 6

3 stop

4 1

5 2

6 0
...

...

Table 7.5

7.4.2 Execution of Instructions
Let us look at a simple example CPU that is executing machine code. At
start-up of the CPU the program counter is initialized to a specific memory
address. Here to address 0. The memory content is as shown in table 7.5.

At the beginning of a instruction cycle a new instruction is fetched from
the memory. A finite state machine in the control unit generates the right
sequence of control signals. Actually the CU is nothing but a finite state
machine controlled by the instructions. The following RTL code describes
what is happening:

[MAR] ← [PC]
[PC] ← [PC] + 1
[MBR] ← [M([MAR])]
[IR] ← [MBR]

As a last stage of the fetch phase the operation code (‘move’) of the
instruction is decoded by the control unit (CU):

CU← [IR(opcode)]

and triggers a cycle of the finite state machine with the appropriate signals
to execute a sequence of operations specific to the instruction. The order,
type and number of the individual operations may vary among different
instructions and the set of instructions is specific to a particular CPU.

The other part of the first machine code of the first instruction in our (16-bit)
processor is the ‘operand’ 4. What we have written as ‘move 4’ is actually a
bit pattern:

10110010
︸ ︷︷ ︸

00000100
︸ ︷︷ ︸

opcode: move operand: 4

As mentioned before, the set of instructions and the machine codes are
specific to a CPU. Machine code is not portable between different CPUs.

Page 55

CHAPTER 7 VON NEUMANN ARCHITECTURE

After the opcode has been decoded into appropriate control signals it is
executed. In this first instruction the data from memory location 4 (1) is
moved to the accumulator A (often the accumulator is the implicit target of
instructions without being explicitly defined):

[MAR] ← [IR(opernd)]
[MBR] ← [M([MAR])]
[A] ← [MBR]

Thus, the first instruction is completed and a new instruction fetch is
initiated, now from the next memory location but otherwise exactly like
before:

[MAR] ← [PC] (now [PC]=1)
[PC] ← [PC] + 1
[MBR] ←M([MAR])
[IR] ← [MBR]

The instruction in the IR is now ‘add 5’.

CU← [IR(opcode)]

5 denotes the memory location of the variable that is to be added to the
content of the accumulator A:

[MAR] ← [IR(opernd)]
[MBR] ← [M([MAR])]

The ALU receives the appropriate instruction from the state machine
triggered by the opcode (sometimes parts of the opcode simply are the
instruction for the ALU, avoiding a complicated decoding).

ALU← [A]; ALU← [MBR]
[A] ← ALU

The number from memory location 5 (2) has been added and the result (3)
is stored in the accumulator. the second instruction is complete.

It follows another instruction fetch and decode like before (not shown).

...

and then the execution of the third instruction which causes a write access
to the memory:

[MBR] ← [A]
[MAR] ← [IR(opernd)]
[M([MAR])] ← [MBR]

Then, the forth instruction is a stop instruction which halts the execution of
the program. The memory content is now changed as shown in figure 7.6.

Page 56

7.4 CONTROL UNIT (CU)

mem adr content

0 move 4

1 add 5

2 store 6

3 stop

4 1

5 2

6 3
...

...

Table 7.6

Figure 7.8: Hardwired and Microprogrammed CU

7.4.3 Microarchitecture

If the CU were implemented like the example FSMs in section 6.2 the result
would be a socalled hardwired CU architecture, where a hardwired FSM
issues the right sequence of control signals in response to a machine code
in the IR.

A more flexible alternative is to use microcode and a simple ‘processor
within the processor’ that simply issues a sequence of control signals stored
as micro-instructions. (Note that the term has later been used (and will be
used in this compendium, section 8.2) differently in modern pipelined CPUs)
in the microprogram memory, typically a fast read only memory (ROM) but
sometimes also a flash memory (i.e., electrically erasable programmable
read only memory (EEPROM)). The two concepts are illustrated in figure
7.8. In the microarchitecture, a normal instruction is decoded to a start
address of the microinstruction memory and the micro program at that
location is executed. Normally these micro programs are really limited to
issuing a sequence of control signals. Sometimes, unconditional jumps are
also implemented (thus, the ‘ctrl’ connection to the micro ALU) that allows
the execution of micro-subprograms to save space in the microcode memory
if certain sequences of microcode occur in several instructions.

Page 57

CHAPTER 7 VON NEUMANN ARCHITECTURE

Microarchitecture Hardwired

Occurrence CISC RISC

Flexibility + -

Design Cycle + -

Speed - +

Compactness - +

Power - +

Table 7.7: Pros and Cons of hardwired and microarchitecture
CU

Table 7.7 summarizes the advantages and disadvantages of the two
approaches. Obviously, microcode is a very convenient way to implement
the generation of sequences of control signals, especially in CPUs with a
rather complex instruction set of instructions of variable length (complex
instruction set computers, CISC, as opposed to reduced instruction set
computers, RISC. see section 7.4.4). The micro memory might be a
‘program once’ read only memory (ROM) or even a flash ROM that can
be programmed repeatedly. Thus, a flexible redesign of the CU can be
achieved by programming instead of a full hardware redesign, considerably
reducing the time needed for a design cycle. The drawbacks are the general
drawbacks often found when comparing a more flexible design to a highly
specialized one: a highly specialized hardwired implementation will be more
efficient in power and speed.

7.4.4 Complex and reduced instruction sets (CISC/RISC)
The distinction in this section’s title is somewhat historical only. An initial
CPU design tendency had been to increase the number and complexity of
instructions, to allow shorter and more efficient programs, i.e., to move
the complexity from software to hardware. This led to socalled complex
instruction set computers (CISC). At some point, CPU designers realized
that the implementation of a smaller and simpler instruction set could
be much more optimized. In particular the idea of instruction pipelines
(see section 8.2) that enormously accelerated execution of instructions,
was first achieved in reduced instruction set computers. However, this
proved only a temporary setback for complex instructions as the tendency
to ever bigger instruction sets, set in again at once. The pipelined
architectures these days easily rival the old CISC architectures in number
and complexity of instructions. They use a trick internally of decoding
complex instructions into several simple micro-instructions (section 8.2).
(Note that the meaning of this word is different than in the context of micro-
architectures introduced earlier!)

7.5 Input/Output
A computer is connected to various devices transferring data to and from
the main memory. This is referred to as Input/output (I/O). Examples:
Keyboard, Graphics, Mouse, Network (Ethernet, Bluetooth, . . .), USB,
Firewire, PCI, PCI-express, SATA, . . .

Page 58

7.5 INPUT/OUTPUT

Figure 7.9: Simple I/O block diagram

Figure 7.10: I/O controller principle

Early computer architectures had a monolithic system interface, a combined
I/O and memory bus, like depicted in figure 7.9. Today the system interface
is more sectioned (e.g., by the north- and south-bridge in the Intel chip-sets)
to grant faster CPU access to privileged system components, i.e., the main
memory and the graphics card, but for this discussion, we will keep to the
simpler monolithic view. Thus, the CPU interfaces to I/O devices in a similar
way than to its main memory.

I/O controllers (depicted in figure 7.10) translate and synchronize peri-
pheral device protocols (communication languages) to the protocol of the
system bus. They normally have at least one data buffer referred to as I/O
port , a control register that allows some SW configuration and a status re-
gister with information for the CPU.

I/O addressing from the CPUs point of view usually follows one of two
principles:

Memory mapped I/O is to access I/O ports and I/O control- and status

Page 59

CHAPTER 7 VON NEUMANN ARCHITECTURE

registers (each with its own address) with the same functions as the
memory. Thus, in older systems, the system interface might simply
have been a single shared I/O and memory bus. A disadvantage is that
the use of memory addresses may interfere with the expansion of the
main memory.

Isolated I/O (as in the 80x86 family) means that separate instructions
accessing an I/O specific address space are used for I/O. An advantage
can be that these functions can be made privileged, i.e., only available
in certain modes of operation, e.g., only to the operating system.

Modes of Transfer:

Programmed/Polled: The processor is in full control of all aspects of
the transfer. It polls the I/O status register in a loop to check if the
controller has data to be collected from the port or is ready to receive
data to the port. Polling uses up some CPU time and prevents the CPU
from being used for other purposes while waiting for I/O.

Interrupt Driven: The I/O controller signals with a dedicated 1bit data
line (interrupt request (IRQ)) to the CPU that it needs servicing. The
CPU is free to run other processes while waiting for I/O. If the interrupt
is not masked in the corresponding CPU status register, the current
instruction cycle is completed, the processor status is saved (PC and
flags pushed onto stack) and the PC is loaded with the starting address
of an interrupt handler. The start address is found, either at a fixed
memory location specific to the interrupt priority (autovectored) or
stored in the controller and received by the CPU after having sent an
interrupt acknowledge control signal to the device (vectored)

Direct Memory Access (DMA): The processor is not involved, but the
transfer is negotiated directly with the memory, avoiding copying to
CPU registers first and the subroutine call to the interrupt handler.
DMA is used for maximum speed usually by devices that write whole
blocks of data to memory (e.g., disk controllers). The CPU often
requests the transfer but then relinquishes control of the system bus
to the I/O controller, which only at the completion of the block transfer
notifies the CPU with an interrupt.

(DMA poses another challenge to the cache as data can now become
stale, i.e., invalid in the cache)

Page 60

Chapter 8

Optimizing Hardware
Performance

8.1 Memory Hierarchy
We have discussed two major types of memory, SRAM and DRAM, and stated
that the former was faster but less dense and more expensive, whereas
the latter was slower but denser and cheaper. Which was one to choose
to design a computer? Computer designs try to optimize speed, which
would speak for SRAM, but also require as much storage space as possible,
which favours DRAM. Therefore, computers actually use both : a small fast
memory cache composed of SRAM for data that is accessed often and a
large DRAM for the main memory that is used for longer term storage of
data that is not accessed quite so often. Cache, in fact, is subdivided in
several levels, where L1 cache is smallest and fastest. Note that there is
a trade off between size and speed, since larger memories require more
extensive cabling/routing of signals which limits access time due to parasitic
capacitance.

The challenge now is, how to know which data to keep in the fastest memory.
In fact, the fastest type of memory are the CPU internal registers, and even
slower but more massive than the DRAM main memory is a computers hard-
drive. Thus, one speaks of a memory hierarchy as depicted in figure 8.1
and the following text describes the mechanisms and architecture that are
employed to assign different data to these different storage media.

Table 8.1 gives an indication on access time and size of the different types of
memory. Note that SSD/flash memory is competing to replace hard-drives,
but is at present still more expensive, not quite so big and has a shorter
lifetime, but these shortcomings are slowly being overcome as this text is
written.

8.1.1 Cache
Cache is used to ameliorate the von Neumann memory access bottleneck.
Cache refers to a small high speed RAM integrated into the CPU or close
to the CPU. Access time to cache memory is considerably faster than to
the main memory. Cache is small to reduce cost, but also because there is

Page 61

CHAPTER 8 OPTIMIZING HARDWARE PERFORMANCE

Figure 8.1: Memory hierarchy

registers ∼ 1ns ∼ 100B

L1 (on CPU) cache ∼≥ 1ns ∼ 10kB

L2,L3 (off CPU) cache ∼ 2ns-10ns ∼ 1MB

main memory (DRAM) ∼ 20ns-100ns ∼ 1GB

SSD/flash ∼ 100ns-1μs ∼ 10-100GB

hard disc ∼ 1ms ∼ 0.1-1TB

Table 8.1: Memory hierarchy summary table

always a trade off between access speed and memory size. Thus, modern
architectures include also several hierarchical levels of cache (L1, L2,
L3, . . .).

Cache uses the principle of locality of code and data of a program, i.e., that
code/data that is used close in time is often also close in space (memory
address). Thus, instead of only fetching a single word from the main
memory, a whole block around that single word is fetched and stored in
the cache. Any subsequent load or write instructions that fall within that
block (a cache hit) will not access the main memory but only the cache. If
an access is attempted to a word that is not yet in the cache (a cache miss) a
new block is fetched into the cache (paying a penalty of longer access time).

8.1.1.1 Cache mapping strategies
Checking for hits or misses quickly is a prerequisite for the usefulness of
cache memory. Thus, memory addresses are mapped onto cache addresses
in particular ways to simplify this check:

associative cache: Memory blocks can be stored in any position in the
cache. A tag at the beginning of a block in the cache identifies the
block in the memory. Fast parallel search on these tags is implemented
using extremely specialized HW. Figure 8.2 shows the concept. The
drawn out pointers indicate which memory blocks that are at present
stored where in the cache.

Page 62

8.1 MEMORY HIERARCHY

Figure 8.2: Associative cache

Figure 8.3: Directly mapped cache

direct mapped cache: A hash-function assigns each memory block to
only one cache slot (e.g., by using only the LSBs of the memory
address, but other functions can be employed too). Checking for a hit
is extremely simple: only one tag needs to be checked. However, if a
program uses data blocks that are hashed to the same cache address,
the efficacy of the caching is significantly reduced. It is illustrated in
figure 8.3. The colours indicate which memory block can be stored at
which location in the cache.

set-associative cache: A combination of the previous two: each memory
block is hashed to one block-set in the cache consisting of several ways
(slot to store one block). Quick search for the tag needs only to be
conducted within the set. The concept is shown in figure 8.4. The
colours again indicate which memory block can be stored at which
location in the cache, i.e., block-sets of several ways in the cache have

Page 63

CHAPTER 8 OPTIMIZING HARDWARE PERFORMANCE

Figure 8.4: Set associative cache

the same colour. Note that they do not necessarily need to be co-
localized like in this illustration.

8.1.1.2 Cache coherency
A write operation will lead to a temporary inconsistency between the
content of the cache and the main memory, socalled dirty cache. Several
strategies are used in different designs to correct this inconsistency with
varying delay. Major strategies are:

write through: a simple policy where each write to the cache is followed
by a write to the main memory. Thus, the write operations do not really
profit from the cache.

write back: delayed write back where a block that has been written to in
the cache is marked as dirty. Only when dirty blocks are reused for
another memory block will they be written back into the main memory.

Another problem occurs if devices other than the CPU or multiple cores in
the CPU with their own L1 cache have access to the main memory. In that
case the main memory might be changed and the content in the cache will
be out of date, socalled stale cache, but we will not delve into the methods
to handle these situations within this issue of the compendium.

8.1.1.3 Cache block replacement strategies
Another strategic choice that has an influence on the caching performance
arises in associative and set associative cache, if a new block needs to
replace a block previously stored in the cache. (In directly mapped cache
there is no choice as to which block to replace.) Again, different stratagems
are possible:

Least recently used (LRU): this seems intuitively quite reasonable but
requires a good deal of administrative processing (causing delay):
Usually a ‘used’ flag is set per block in the cache when it is accessed.

Page 64

8.1 MEMORY HIERARCHY

Figure 8.5: Look-through architecture

This flag is reset in fixed intervals and a time tag is updated for
all blocks that have been used. These time tags have either to be
searched before replacing a block or a queue can be maintained and
updated whenever the time tags are updated.

First in –– first out (FIFO): is simpler. The cache blocks are simply
organized in a queue (ring buffer).

Random: Both LRU and FIFO are in trouble if a program works several
times sequentially through a portion of memory that is bigger than the
cache: the block that is cast out will very soon be needed again. A
random choice will do better here.

Hybrid solutions, e.g., using FIFO within a set of blocks that is randomly
chosen are also used in an attempt to combine the positive properties
of the approaches

8.1.1.4 Cache Architecture

There are two distinct cache architectures with respect to where to place
the cache in relation to the bus between the CPU and the main memory
referred to as look-through and look-aside.

Look-through architecture: The cache is physically placed between
CPU and memory (system interface), see figure 8.5.

Memory access is initiated after a cache miss is determined (i.e.,
with a delay).

Page 65

CHAPTER 8 OPTIMIZING HARDWARE PERFORMANCE

Figure 8.6: Look-aside architecture

Only if a cache miss is determined, is a memory access initiated.

CPU can use cache while memory is in use by other units.

Look-aside architecture: The cache shares the bus between CPU and
memory (system interface), see figure 8.6.

Memory access is initiated before a cache miss is determined
(i.e., with no delay).

With a miss, the cache just listens in and ‘snarfs’ the data.

Only if a cache hit is determined, does the cache takes over.

CPU cannot use cache while other units access memory.

8.1.2 Virtual Memory
Virtual memory extends the amount of main memory as seen by programs/
processes beyond the capacity of the physical memory. Additional space on
the hard drive (swap space) is used to store a part of the virtual memory
that is, at present, not in use. The task of the virtual memory controller is
quite similar to a cache controller: it distributes data between a slow and
fast storage medium.

A virtual memory controller may simply be part of the operating system
rather than a hardware component, but most in most designs today there
is a HW memory management unit (MMU) using a translation look-aside
buffer (TLB) that supports virtual memory on the hardware level.

The principle of virtual memory is that each logic address is translated
into a physical address, either in the main memory or on the hard drive

Page 66

8.1 MEMORY HIERARCHY

Figure 8.7: The principle of virtual memory

Figure 8.8: Virtual memory paging

as depicted in figure 8.7. Processes running on the CPU only see the logic
addresses and a coherent virtual memory.

A pointer for each individual logic address would require as much space as
the entire virtual memory. Thus, a translation table is mapping memory
blocks (called pages (fixed size) or segments (variable size)). A logic
address can, thus, be divided into a page number and a page offset. A
location in memory that holds a page is called page frame (figure 8.8).

A translation look-aside buffer (TLB) is a cache for the page table,
accelerating the translation of logic to physical address by the MMU. The
interaction of these elements is shown in the block diagram and flow chart
of figure 8.9.

Note that the penalty for page-failures is much more severe than that for

Page 67

CHAPTER 8 OPTIMIZING HARDWARE PERFORMANCE

Figure 8.9

instruction buffer
(IR is now a queue)

decoded Op
buffer

 Complex
Decoder

 Simple
Decoder

“complex”
instruction set

“reduced”/micro-
instruction set

pipelined CU

Figure 8.10: Decoding of complex instructions into simple
micro-instructions in modern pipelined CPUs.

cache misses, since a hard drive has an access time that is up to 50000
times longer than that of the main memory and about 1 million times longer
than a register or L1 cache access (compare table 8.1), whereas the penalty
of a cache miss is roughly less than a 100 times increased access time.

8.2 Pipelining
To accelerate the execution of instructions computer architectures today
divide the execution into several stages. The CPU is designed in a way
that allows it to execute these stages by independent subunits and such
that each stage needs one clock cycle.1 Thus, the first stage’s sub-unit can

1 It would also work if all steps used more than one but the same number of clock cycles.

Page 68

8.2 PIPELINING

Figure 8.11: 4-stage pipeline simplified block diagram

Figure 8.12: 4-stage pipeline execution

Page 69

CHAPTER 8 OPTIMIZING HARDWARE PERFORMANCE

already fetch a new instruction, while the second stage’s sub-unit is still
busy with the first instruction.

To achieve the necessary uniformity of the instructions (all going through
the same sub-steps) the set of instructions had initially been reduced from
what was normal at the time. This used to be known as reduced instruction
set computer (RISC) architecture as opposed to complex instruction set
computer (CISC). Today, however, the instruction sets tend to become more
complex again, still allowing pipelining, and have in that regard surpassed
the CISC architectures of old. To still achive pipelining a trick is used
internally, a kind of “hardware compiler” for complex instructions: they
are decoded into several simple micro-instructions before execution as
illustrated in figure 8.10. Be aware that the term micro-instruction has been
used historically and previously in this compendium with different meaning
in the context of micro-architectures. Do not confuse them!

The Pentium III has a pipeline consisting of 16 and the Pentium 4 even 31
stages, but the first pipelines used these following 4, that we will employ to
explain the concept:

1) IF: instruction fetch (get the instruction)

2) DE: decode and load (from a register)

3) EX: execute (e.g., use the ALU or access the memory)

4) WB: write back (write the result to a register)

Figure 8.11 shows a rough block diagram on how a 4-stage pipeline might
be implemented. Intermediate registers pass on intermediate results and
the remaining instruction/operation codes for the remaining stages.

The pipelined execution of 5 instructions is depicted in the top graph in
figure 8.12 on the preceding page. At the bottom the execution of just two
equivalent instructions on a CPU that simply executes them in sequence is
shown for comparison. Note that the pipelined architecture with four stages
has a 4 times higher throughput of instructions. Still, the speed-up (the
ratio of the execution time of a non-pipelined and a pipelined execution) is
not quite 4, since the initial delay of the first instruction cannot be avoided.
Thus, in our little illustration, the pipeline executes 5 instructions (and not
8) in the time the sequential version needs to execute 2. To express this
in terms of speed-up of 5 instructions: the pipelined version needs 4 clock
cycles to fill the pipeline and then issues the result of one instruction per
clock, i.e., the execution time is 8 clock cycles. The sequential execution of
5 instructions will need 20 clock cycles. Thus, the speedup is 20/8=2.5.

In general for a k stage pipeline and the execution of n instructions, the
speedup is:

nk

k + n − 1
(8.1)

Page 70

8.2 PIPELINING

This equation approaches the ideal speedup of k for large programs.
However, there are other hindrances as well: pipelining hazards (see
section 8.2.1).

Another popular measure of the performance of the pipeline is the average
clock cycles per instructions (CPI). Ideally, it would be 1, but due to the
initial delay of ‘filling’ the pipeline, it is:

CPI =
k + n − 1

n
(8.2)

More pipeline stages split up instructions in ever simpler parts and thus
allow faster clock speeds but pose a bigger design challenge.

8.2.1 Pipelining Hazards
Other causes that limit the pipelining speed-up are called pipelining
hazards. There are three major classes of these hazards:

resource hazards

data hazards

control hazards

Hazards can be reduced by clever program compilation. In the following
however, we will look at hardware solutions. In practice both are used in
combination.

8.2.1.1 Resource Hazards
An example of instructions typically exposed to resource hazards are
memory accesses. We have earlier referred to the von Neumann bottle
neck as the limitation to only one memory access at a time. For pipelined
operation, this means that only one instruction in the pipeline can have
memory access at a time. Since always one of the instructions will be in the
instruction fetch phase, a load or write operation of data to the memory is
not possible without stalling the pipeline.

Several techniques are employed to ameliorate the problem:

Register File Instructions in pipelined architectures make extensive use
of local general purpose registers, in some architectures organized
in a register file for data input and output, and avoid access to the
main memory. The register file is in effect a small RAM (e.g., with
only a 3-bit address space) with (commonly) two parallel read ports
(addresses and data) and (commonly) one parallel write port. It does,
thus, allow three parallel accesses at the same time. In addition it is a
specialized very fast memory within the CPU allowing extremely short
access times. Still, also registers in the register file can be cause for
resource hazards if two instructions want to access the same port in
different pipeline stages.

Page 71

CHAPTER 8 OPTIMIZING HARDWARE PERFORMANCE

Figure 8.13: Data hazard illustration

Separate Data and Instruction Cache Another improvement is the socalled
Harvard architecture, different from the von Neumann model insofar
as there are two separate memories again for data and instructions,
on the level of the cache memory. Thus, the instruction fetch will not
collide with data access unless there is a cache miss of both.

Memory access still constitutes a hazard in pipelining. E.g., in the first 4-
stage SPARC processors memory access uses 5 clock cycles for reading and
6 for writing, and thus always impede pipe-line speed up.

Dependent on the CPU architecture a number of other resources may be
used by different stages of the pipeline and may thus be cause for resource
hazards, for example:

memory, caches,

registers (register file)

buses

ALU

. . .

8.2.1.2 Data Hazards
Data hazards can occur when instructions that are in the pipeline
simultaneously access the same data (i.e., register). Thus, it can happen
that an instruction reads a register, before a previous instruction has written
to it. This is illustrated in figure 8.13.

There are a number of measures one can take:

Stalling: A simple solution that ensures correctness but degrades perform-
ance, is to detect a dependency in the IF stage and stall the execution
of subsequent instructions until the crucial instruction has finished its
WB.

Shortcuts/Forwarding: In this solution there is a direct data path from the
EX/WB intermediate result register to the execution stage input (e.g.,

Page 72

8.2 PIPELINING

Figure 8.14: Control hazard illustration

the ALU). If a data hazard is detected this direct data path supersedes
the input from the DE/EX intermediate result register.

8.2.1.3 Control Hazards
Simple pipelining assumes in a first approximation that there are no
program jumps and ‘pre-fetches’ always the next instruction from memory
into the pipeline. The target of jump instructions, however, is usually only
computed in the EX stage of a jump instruction. A this time, two more
instructions have already entered the pipeline and are in the IF and DE
stage. If the jump is taken these instructions should not be executed and
need to be prevented from writing their results in the WB stage or accessing
the memory in the EX stage. The pipeline needs to be flushed .

Possible measures:

Always Stall: Simply do not fetch any more instructions until it is clear if
the branch is taken or not. This ensures correctness but is of course a
burden upon the performance.

Jump Prediction: Make a prediction and fetch the predicted instructions.
Only if the prediction is proven wrong, flush the pipeline. Variants:

assume branch not taken (also a static prediction)

static predictions (assumes that a branch is always taken or not
according to the type of instruction)

dynamic predictions (uses some local memory to keep a short
history of previous branching behaviour upon which to base the
predictions on)

Hardware Doubling: By doubling the hardware of some of the pipeline
stages one can continue two pipelines in parallel for both possible
instruction addresses. After it is clear, if the branch was taken or
not, one can discard/flush the irrelevant pipeline and continue with
the right one.

Of course, if there are two jumps or more just after each other, this
method fails on the second jump and the pipeline needs to stall.

Page 73

CHAPTER 8 OPTIMIZING HARDWARE PERFORMANCE

The occurrence of branching instructions is quite frequent in normal
program code and thus, the handling of control hazards is possibly the
most important of all the hazards. Good jump prediction can significantly
increase performance.

An example: a pipelined CPU is executing a program and a fraction of Pb
(very program dependent but often quite high, e.g., in the vicinity of 20%)
of the executed instructions are branching instructions. The CPU pursues
a ‘assume branch not taken’ strategy, but the probability of a branch being
taken is Pt (often quite high, i.e., more than 50%) and the penalty in that
case is s additional clock cycles to flush the pipeline. Then the CPI becomes
(assuming the number of instructions is large enough to rend the ‘filling’ of
the pipeline negligible):

CPI = (1 − Pb) + Pb(1 − Pt) + PbPt(1 + s) = n + PbPts (8.3)

Using some realistic example of Pb = 0.2, Pt = 0.7 and s = 2, the CPI is
1.28, so 28% less performance due to control hazards.

8.2.2 Conclusion
Pipelining speeds up the instruction throughput (although the execution
of a single instruction is not accelerated). The ideal speed-up cannot be
reached, because of this, and because of instruction inter-dependencies that
sometimes require that an instruction is finished before another can begin.
There are techniques to reduce the occurrence of such hazards, but they
can never be avoided entirely.

8.3 Superscalar CPU
The concept of a CPU that we have discussed so far was that of a scalar
processors, in as far as it does not execute operations in parallel and
produce only a single result data item at a time.

8.3.1 Brief Historical Detour into Supercomputing
Vector processors (as opposed to scalar processors) were fashionable in
high performance computing for a period, most prominently the Cray-1
(figure 8.15, to the left) in 1976 that had 8 vector registers of 64 words
of 64-bit length. Vector processors perform ‘single instruction multiple
data-stream’ (SIMD) computations, i.e., they execute the same operation
on a vector instead of a scalar. Some machines used parallel ALU’s but
the Cray-1 used a dedicated pipelining architecture that would fetch a
single instruction and then execute it efficiently, e.g., 64 times, saving 63
instruction fetches.

Vector computers lost popularity with the introduction of multi-processor
computers such as Intel’s Paragon series (figure 8.15, to the right) of
massively parallel supercomputers: It was cheaper to combine multiple
(standard) CPU’s rather than designing powerful vector processors, even

Page 74

8.3 SUPERSCALAR CPU

Figure 8.15: The Cray-1 with transparent panels (left) and the
Paragon XP-E (right)

considering a bigger communication overhead , e.g., in some architectures
with a single shared memory/system bus the instructions and the data
need to be fetched and written in sequence for each processor, making the
von Neumann bottleneck more severe. Other designs, however, had local
memory and/or parallel memory access and many clever solutions were
introduced.

But even cheaper and obtainable for the common user are Ethernet clusters
of individual computers, or even computer grids connected over the Inter-
net. Both of these, obviously, suffer from massive communication overhead
and especially the latter are best used for socalled ‘embarrassingly parallel
problems’, i.e., computation problems that do require no or minimal com-
munication of the computation nodes.

Designing more complicated integrated circuits has become cheaper with
progressing miniaturization, such that several processing units can now
be accommodated on a single chip which has now become standard
with AMD and Intel processors. These multi-core processors have
many of the advantages of multi processor machines, but with much
faster communication between the cores, thus, reducing communication
overhead. (Although, it has to be said that they are most commonly used to
run individual independent processes, and for the common user they do not
compute parallel problems.)

8.3.2 Superscalar Principle
Superscalar processors were introduced even before multi-core and all
modern designs belong to this class. The name is supposed to indicate
that they are something more parallel than scalar processors but not quite
vector processors. Like vector processors with parallel ALUs, they are
actually capable of executing instructions in parallel, but in contrast to
vector computers, they are different instructions. Instead of replication of
the basic functional units n-times in hardware (e.g., the ALU), superscalar
processors exploit the fact that there already are multiple functional units.

Page 75

CHAPTER 8 OPTIMIZING HARDWARE PERFORMANCE

Figure 8.16: Principle of superscalar execution

For example, many processors do sport both an ALU and a FPU. Thus,
they should be able to execute an integer- and a floating-point operation
simultaneously. Data access operations do not require the ALU nor the
FPU (or have a dedicated ALU for address operations) and can thus also be
executed at the same time.

For this to work, several instructions have to be fetched in parallel, and
then dispatched, either in parallel if possible, or in sequence if necessary,
into parallel pipelines dedicated to one particular type of instruction. Some
additional stages that deal with instruction reordering are added to the
pipelining structure. In the following it is assumed they are integrated in
the IF and WB stages, to stick with the 4-stage model.

The principle of superscalar execution is illustrated in figure 8.16. In
this example the CPU is equiped with three 4-stage pipelines, one for
arithmetic instructions, one for floating point instructions and one for
memory access instructions. The IF stage can get up to 3 instructions in
parallel and deposits them in an instruction reorder buffer (ROB) which
holds all instructions awaiting execution. In our example the ROB has
only 3 entries (usually it should have a good deal more than there are
parallel pipelines). From the ROB, the instructions are dispatched to the

Page 76

8.3 SUPERSCALAR CPU

appropriate pipelines. Among the first three instructions, there are two
arithmetic instructions, so only one of them can immediately be dispatched.
The other has to wait and is dispatched in the next clock cycle together with
the two next instructions, a memory access and a floating point operation.

Obviously, the reordering of instructions and their parallel execution can
again lead to a number of hazards, the resolution of which will not be
discussed in this issue of the compendium.

Superscalar processors can ideally achieve an average clock cycle per
instruction (CPI) smaller than 1, and a speedup higher than the number of
pipelining stages k (which is saying the same thing in two different ways).

Compiler level support can group instructions to optimize the potential for
parallel execution.

As an example: the Intel Core 2 microarchitecture has 14 pipeline stages
and can execute up to 4-6 instructions in parallel.

Some Elements in Superscalar Architectures:

(Micro-)instruction reorder buffer (ROB): Stores all instructions that
await execution and dispatches them for out-of-order execution when
appropriate. Note that, thus, the order of execution may be quite
different from the order of your assembler code. Extra steps have to
be taken to avoid and/or handle hazards caused by this reordering.

Retirement stage: The pipelining stage that takes care of finished instruc-
tions and makes the result appear consistent with the execution se-
quence that was intended by the programmer.

Reservation station registers: A single instruction reserves a set of these
registers for all the data needed for its execution on its functional
unit. Each functional unit has several slots in the reservation station.
Once all the data becomes available and the functional unit is free, the
instruction is executed.

Page 77

Page 78

Part II

Low-level programming

Page 79

Chapter 9

Introduction to
low-level
programming

This part of the INF2270 compendium describes low-level programming,
i.e., programming very close to the computer hardware.

Chapter 10 on page 83 is a reference guide to the programming language C
which is generally regarded as a rather low-level language among the high-
level ones. The chapter is no introduction to programming in general but
rather a compilation of information you might need when programming.

Chapter 11 on page 87 explains the most common encodings used today to
store characters. Anyone programming at a low level ought to know about
these encodings.

Chapter 12 on page 91 describes programming in assembly language.
Like chapter 10 it is no “teach yourself” guide but (hopefully) a useful
place to consult when you are programming. In particular, the instruction
tables 12.2 and 12.3 on pages 95–96 should provide a lot of information in
a very compact form.

Page 81

Page 82

Chapter 10

Programming in C

C is one of the most popular languages today and has been so for more than
30 years. One of the reasons for its success has been that it combines quite
readable code with very high execution speed.

There have been several versions of C; in this course we will use ANSI C
from 1988.

10.1 Data
C has quite a substantial set of data types.

10.1.1 Integer data
C can store 1-, 2- and 4-byte integer data, as shown i table 10.1 on the
following page.1

10.1.1.1 Logical values
C har no specialised data type for logical (often called “Boolean”) values;
instead any integer or pointer type is used with the following meaning:

0 : false

6= 0 : true

10.1.1.2 Characters
C has no special type for characters either; they should be stored in
unsigned char variables using the encoding described in 11.1 on page 88.2

10.1.2 Texts
Since C has no native data type for texts, an array of unsigned chars should
be used; the end of the text is marked by a byte containing 0.

1 Most C implementations can also store 8-byte integer data which have the type long long, but
this is not in the ANSI C standard.

2 More recent versions of C have support for more extensive character sets, like Unicode, but
this is not covered in this course.

Page 83

CHAPTER 10 PROGRAMMING IN C

Name Alternativ name # bytes

signed char char† 1

unsigned char char† 1

short signed short 2

unsigned short 2

int signed int 2–4

unsigned int unsigned 2–4

long signed long 4

unsigned long 4

Table 10.1: Integer data types in C († the exact meaning of
char is undefined.)

10.1.3 Floating-point data
In C, you can choose between using float or double for your floating-point
data, as shown in table 10.2.

Name # bytes Max value Precision

float 4 ≈ 3,4 · 1038 7 digits

double 8 ≈ 1,8 · 10308 16 digits

Table 10.2: Floating-point data types in C

10.2 Statements
The statements in C are listed in table 10.3 on the next page.

10.3 Expressions
C has quite an extensive set of expression operators with a confusing
number of precedence levels; use parenthesis if you are in any doubt. The
whole set of operators is shown in table 10.4 on page 86.

Page 84

10.3 EXPRESSIONS

Block { 〈S〉 〈S〉 ... }

Break break; /* exit loop/switch */
continue; /* go to top of loop */

Expression 〈expr〉;

Loop while (〈expr〉) 〈S〉
do 〈S〉 while (〈expr〉)
for (〈expr〉; 〈expr〉; 〈expr〉) 〈S〉

Null statement ;

Return return 〈expr〉;

Selection if (〈expr〉) 〈S〉
if (〈expr〉) 〈S〉 else 〈S〉

switch (〈expr〉) {
case 〈const〉: 〈S〉 〈S〉 ...
case 〈const〉: 〈S〉 〈S〉 ...
default: 〈S〉

}

Table 10.3: The statements in C

Page 85

CHAPTER 10 PROGRAMMING IN C

Level Op Meaning

15 () Function call

[] Array element

. Member (of struct or union)

–> Member (accessed via pointer)

14 ! Logical negation

~ Masking negation

– Numeric negation

++ Increment

– – Decrement

& Address

* Indirection

(type) Type cast

sizeof Size in bytes

13 * Multiplication

/ Division

% Remainder

12 + Addition

– Subtraction

11 << Left shift

>> Right shift

10 < Less than test

<= Less than or equal test

> Greater than test

>= Greater than or equal test

9 == Equality test

!= Inequality test

8 & Masking and

7 ^ Masking exclusive or

6 | Masking or

5 && Logical and

4 || Logical or

3 ? : Conditional evaluation

2 = Assignment

*= /= %= += –= Updating

<<= >>= &= ^= !=

1 , Sequential evaluation

Table 10.4: The expression operators in C

Page 86

Chapter 11

Character encodings

A character encoding is a table of which numbers represent which
character. There are dozens of encoding; the four most common today are
ASCII, Latin-1, Latin-9 and Unicode.

11.1 ASCII
This very old 7-bit encoding survives today only as a subset of other
encodings; for instance, the left half of Latin-1 (see Table 11.1 on the next
page) is the original ASCII encoding.

11.2 Latin-1
The official name of this 8-bit encoding is ISO 8859-1; it is shown in
Table 11.1 on the following page.

11.3 Latin-9
This encoding is a newer version of Latin-1; its official name is ISO 8859-
15. Only eight characters were changed; they are shown in Table 11.2 on
page 89.

11.4 Unicode
Unicode is a gigantic 21-bit encoding intended to encompass all the world’s
characters; for more information, see http://www.unicode.org/.

11.4.1 UTF-8
UTF-8 is one of several ways to store Unicode’s 21-bit representation
numbers. One advantage of UTF-8 is that it is quite compact; the most
commonly used characters are stored in just one byte, others may need two
or three or up to four bytes, as shown in Table 11.3 on page 89.

Page 87

http://www.unicode.org/

CHAPTER 11 CHARACTER ENCODINGS

ISO 8859−1

© April 1995, DFL, Ifi/UiO

!
"
#
$
%
&
’
(
)
*
+
,
−
.
/
0
1
2
3
4
5
6
7
8
9
:
;
<
=
>
?

@
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
[
\
]
^
_

‘
a
b
c
d
e
f
g
h
i
j
k
l

m
n
o
p
q
r
s
t
u
v
w
x
y
z
{
|
}
~

¡
¢
£
¤
¥
¦
§
¨
©
ª
«
¬
­
®
¯
°
±
²
³
´
µ
¶
·
¸
¹
º
»
¼
½
¾
¿

À
Á
Â
Ã
Ä
Å
Æ
Ç
È
É
Ê
Ë
Ì
Í
Î
Ï
Ð
Ñ
Ò
Ó
Ô
Õ
Ö
×
Ø
Ù
Ú
Û
Ü
Ý
Þ
ß

à
á
â
ã
ä
å
æ
ç
è
é
ê
ë
ì
í
î
ï
ð
ñ
ò
ó
ô
õ
ö
÷
ø
ù
ú
û
ü
ý
þ
ÿ

0 000

00

1 100

10

2 200

20

3 300

30

4 400

40

5 500

50

6 600

60

7 700

70

8 010

80

9 110

90

10 210

A0

11 310

B0

12 410

C0

13 510

D0

14 610

E0

15 710

F0

16 020

01

17 120

11

18 220

21

19 320

31

20 420

41

21 520

51

22 620

61

23 720

71

24 030

81

25 130

91

26 230

A1

27 330

B1

28 430

C1

29 530

D1

30 630

E1

31 730

F1

32 040

02

33 140

12

34 240

22

35 340

32

36 440

42

37 540

52

38 640

62

39 740

72

40 050

82

41 150

92

42 250

A2

43 350

B2

44 450

C2

45 550

D2

46 650

E2

47 750

F2

48 060

03

49 160

13

50 260

23

51 360

33

52 460

43

53 560

53

54 660

63

55 760

73

56 070

83

57 170

93

58 270

A3

59 370

B3

60 470

C3

61 570

D3

62 670

E3

63 770

F3

64 001

04

65 101

14

66 201

24

67 301

34

68 401

44

69 501

54

70 601

64

71 701

74

72 011

84

73 111

94

74 211

A4

75 311

B4

76 411

C4

77 511

D4

78 611

E4

79 711

F4

80 021

05

81 121

15

82 221

25

83 321

35

84 421

45

85 521

55

86 621

65

87 721

75

88 031

85

89 131

95

90 231

A5

91 331

B5

92 431

C5

93 531

D5

94 631

E5

95 731

F5

96 041

06

97 141

16

98 241

26

99 341

36

100 441

46

101 541

56

102 641

66

103 741

76

104 051

86

105 151

96

106 251

A6

107 351

B6

108 451

C6

109 551

D6

110 651

E6

111 751

F6

112 061

07

113 161

17

114 261

27

115 361

37

116 461

47

117 561

57

118 661

67

119 761

77

120 071

87

121 171

97

122 271

A7

123 371

B7

124 471

C7

125 571

D7

126 671

E7

127 771

F7

128 002

08

129 102

18

130 202

28

131 302

38

132 402

48

133 502

58

134 602

68

135 702

78

136 012

88

137 112

98

138 212

A8

139 312

B8

140 412

C8

141 512

D8

142 612

E8

143 712

F8

144 022

09

145 122

19

146 222

29

147 322

39

148 422

49

149 522

59

150 622

69

151 722

79

152 032

89

153 132

99

154 232

A9

155 332

B9

156 432

C9

157 532

D9

158 632

E9

159 732

F9

160 042

0A

161 142

1A

162 242

2A

163 342

3A

164 442

4A

165 542

5A

166 642

6A

167 742

7A

168 052

8A

169 152

9A

170 252

AA

171 352

BA

172 452

CA

173 552

DA

174 652

EA

175 752

FA

176 062

0B

177 162

1B

178 262

2B

179 362

3B

180 462

4B

181 562

5B

182 662

6B

183 762

7B

184 072

8B

185 172

9B

186 272

AB

187 372

BB

188 472

CB

189 572

DB

190 672

EB

191 772

FB

192 003

0C

193 103

1C

194 203

2C

195 303

3C

196 403

4C

197 503

5C

198 603

6C

199 703

7C

200 013

8C

201 113

9C

202 213

AC

203 313

BC

204 413

CC

205 513

DC

206 613

EC

207 713

FC

208 023

0D

209 123

1D

210 223

2D

211 323

3D

212 423

4D

213 523

5D

214 623

6D

215 723

7D

216 033

8D

217 133

9D

218 233

AD

219 333

BD

220 433

CD

221 533

DD

222 633

ED

223 733

FD

224 043

0E

225 143

1E

226 243

2E

227 343

3E

228 443

4E

229 543

5E

230 643

6E

231 743

7E

232 053

8E

233 153

9E

234 253

AE

235 353

BE

236 453

CE

237 553

DE

238 653

EE

239 753

FE

240 063

0F

241 163

1F

242 263

2F

243 363

3F

244 463

4F

245 563

5F

246 663

6F

247 763

7F

248 073

8F

249 173

9F

250 273

AF

251 373

BF

252 473

CF

253 573

DF

254 673

EF

255 773

FF

Table 11.1: The ISO 8859-1 (Latin-1) encoding. (The numbers
in each cell are the character’s encoding number
in decimal, octal and hex.)

Page 88

11.4 UNICODE

A4hex A6hex A8hex B4hex B8hex BChex BDhex BEhex

Latin-1 ¤ ¦ ¨ ´ ¸ ¼ ½ ¾

Latin-9 € Š š Ž ž Œ œ Ÿ

Table 11.2: The difference between Latin-1 and Latin-9

0hex–7Fhex 0xxxxxxx

80hex–7FFhex 110xxxxx 10xxxxxx

800hex–FFFFhex 1110xxxx 10xxxxxx 10xxxxxx

10000hex–10FFFFhex 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx

Table 11.3: UTF-8 representation of Unicode characters

Page 89

Page 90

Chapter 12

Assembly
programming

A computer executes machine code programs in which instructions are
encoded as bit patterns; for instance, on an x86 processor, the five bytes

B8hex 13hex 00hex 00hex 00hex

tell the processor to move the value 19 (=13hex) to the %EAX register.

Since machine code is difficult to write, programmers use assembly code
with mnemonic names instead. The instruction above is written as

movl $19, %eax

12.1 Assembler notation
An assembly language is quite simple.

12.1.1 Instruction lines
All instruction lines have the following parts:

〈label:〉 〈instr〉 〈param1〉, 〈param2〉, . . . # 〈comment〉

Any part may be omitted.

12.1.2 Specification lines
Specification lines provide additional information for the assembler. We will
use the following specifications:

.align n adds extra bytes until the address has all 0s in the n least
significant bits.

.bss switches to the BSS segment for uninitialized data.

.byte reserves one byte of data with a given initial value.

Page 91

CHAPTER 12 ASSEMBLY PROGRAMMING

Intel AT&T

Constants (decimal) 4 $4

Constants (hex) 123h $0x123

Registers eax %eax

Sequence res, op, op, . . . op, op, . . . , res

Size mov movl

Type specification mov ax, WORD PTR v

Indexing [eax+1] 1(%eax)

Table 12.1: The major differences between AT&T and Intel
assembler notation

.data switches to the data segment.

.fill reserves the specified number of bytes as uninitialized data.

.globl specifies that a name is to be known globally (and not just within the
file).

.long reserves four byte of data with a given initial value.

.text switches to the program code segment.

.word reserves two byte of data with a given initial value.

12.1.3 Comments
The character “#” will make the rest of the line a comment. Blank lines are
ignored.

12.1.4 Alternative notation
In this course, we will use the as/gcc assembler/compiler which adhere to
the socalled AT&T-notation. Other assemblers, in particular those from
Intel and Microsoft, follow the Intel-notation. Table 12.1 shows the major
differences.

12.2 The assembler
The assembler translates assembly code into machine code. We will use
the Gnu assembler as but accessed through the Gnu C compiler gcc:

$ gcc -m32 -o myprog myprog.c myfunc.s

(The -m32 option specifies that we are treating the processor as a 32-bit
one.)

12.2.1 Assembling under Linux
gcc is available as part of every Linux distribution.

Page 92

12.3 REGISTERS

%EDX %DH %DL

%DX︷ ︸︸ ︷
%ECX %CH %CL

%CX︷ ︸︸ ︷
%EBX %BH %BL

%BX︷ ︸︸ ︷
%EAX %AH %AL

%AX︷ ︸︸ ︷

%EIP

%EDI

%ESI

%ESP

%EBP

%ST(0)

%ST(1)

%ST(2)

%ST(3)

%ST(4)

%ST(5)

%ST(6)

%ST(7)

Figure 12.1: The most important x86/x87 registers

12.2.2 Assembling under Windows
gcc for Windows is available as part of the CygWin program package; it may
be retrieved from the Ifi-DVD at http://www.cygwin.com/.

Note that CygWin uses a slightly different convention for global names: the
name “xxx” in C is known as “_xxx” in the assembly language. Fortunately,
it is possible to comply with both the Linux and CygWin conventions by
defining every global name twice, as in

1 .globl funcname
2 .globl _funcname
3 funcname:
4 _funcname:
5 :

12.3 Registers
The most commonly used registers are shown in Figure 12.1.

12.4 Instruction set
Tables 12.2 and 12.3 list the subset of x86 instructions used in this course,
and table 12.4 gives a similar list for the x87 floating-point instructions. The
following notation is used in these tables:

Page 93

http://www.cygwin.com/

CHAPTER 12 ASSEMBLY PROGRAMMING

{} is an address, usually in the form of a label name.

{bwl} is an instruction suffix indicating the size of the operation:

–b byte

–w word (= 2 bytes)

–l long (= 4 bytes)

{c} is a constant, given as

a decimal number (as in “$123”)

a hex number (as in “$0x1af”)

{cmr} is any of {c}, {m} or {r}

{cr} is either {c} or {r}

{m} is a memory reference, given as

a label (i.e., a name declared somewhere)

a number in decimal or hex notation (but no $ sign!)

an indirect reference (as in “(%ESI)” or “4(%ESP)”)

an indexed reference (as in “8(%ESI,%ECX,4)” in which the
memory address is 8 + %ESI+ 4%ECX)

{mr} is either a {m} or a {r}

{r} is a register (as in “%EAX”)

{s} is one of

–l a double

–s a float

Page 94

12.4 INSTRUCTION SET

Instruction Explanation Effect C S Z

Data movement
lea{bwl} {cmr},{mr} Copy address {mr} ← Adr({cmr})

mov{bwl} {cmr},{mr} Copy data {mr} ← {cmr}

pop{wl} {r} Pop value {r} ← pop

push{wl} {cr} Push value push {cr}

Block operations
cld Clear D-flag D← 0

cmpsb Compare byte (%EDI) − (%ESI); %ESI←%ESI± 1; %EDI←%EDI± 1 4 4 4

movsb Move byte (%EDI)← (%ESI); %ESI←%ESI± 1; %EDI←%EDI± 1
rep 〈instr〉 Repeat Repeat 〈instr〉 %ECX times

repnz 〈instr〉 Repeat until zero Repeat 〈instr〉 %ECX times while Z̄
repz 〈instr〉 Repeat while zero Repeat 〈instr〉 %ECX times while Z
scasb Scan byte %AL− (%EDI); %EDI←%EDI± 1 4 4 4

std Set D-flag D← 1

stosb Store byte (%EDI)←%AL; %EDI←%EDI± 1

Arithmetic
adc{bwl} {cmr},{mr} Add with carry {mr} ← {mr} + {cmr} + C 4 4 4

add{bwl} {cmr},{mr} Add {mr} ← {mr} + {cmr} 4 4 4

dec{bwl} {mr} Decrement {mr} ← {mr} − 1 4 4

divb {mr} Unsigned divide %AL←%AX/{mr};%AH←%AX mod {mr} ? ? ?

divw {mr} Unsigned divide %AX←%DX:%AX/{mr};%DH←%DX:%AX mod {mr} ? ? ?

divl {mr} Unsigned divide %EAX ← %EDX:%EAX/{mr};%EDX ← %EDX:%EAX
mod {mr}

? ? ?

idivb {mr} Signed divide %AL←%AX/{mr};%AH←%AX mod {mr} ? ? ?

idivw {mr} Signed divide %AX←%DX:%AX/{mr};%DH←%DX:%AX mod {mr} ? ? ?

idivl {mr} Signed divide %EAX ← %EDX:%EAX/{mr};%EDX ← %EDX:%EAX
mod {mr}

? ? ?

imulb {mr} Signed multiply %AX←%AL× {mr} 4 ? ?

imulw {mr} Signed multiply %DX:%AX←%AX× {mr} 4 ? ?

imull {mr} Signed multiply %EDX:%EAX←%EAX× {mr} 4 ? ?

imul{wl} {cmr},{mr} Signed multiply {mr} ← {mr} × {cmr} 4 ? ?

inc{bwl} {mr} Increment {mr} ← {mr} + 1 4 4

mulb {mr} Unsigned multiply %AX←%AL× {mr} 4 ? ?

mulw {mr} Unsigned multiply %DX:%AX←%AX× {mr} 4 ? ?

mull {mr} Unsigned multiply %EDX:%EAX←%EAX× {mr} 4 ? ?

neg{bwl} {mr} Negate {mr} ← −{mr} 4 4 4

sub{bwl} {cmr},{mr} Subtract {mr} ← {mr} − {cmr} 4 4 4

Masking
and{bwl} {cmr},{mr} Bit-wise AND {mr} ← {mr} ∧ {cmr} 0 4 4

not{bwl} {mr} Bit-wise invert {mr} ← {mr}

or{bwl} {cmr},{mr} Bit-wise OR {mr} ← {mr} ∨ {cmr} 0 4 4

xor{bwl} {cmr},{mr} Bit-wise XOR {mr} ← {mr} ⊕ {cmr} 0 4 4

Table 12.2: A subset of the x86 instructions (part 1)

Page 95

CHAPTER 12 ASSEMBLY PROGRAMMING

Instruction Explanation Effect C S Z

Extensions
cbw Extend byte→word 8-bit %AL is extended to 16-bit %AX

cwd Extend wordrghtrrodouble 16-bit %AX is extended to 32-bit %DX:%AX

cwde Extend double→ext Extends 16-bit %AX to 32-bit %EAX

cdq Extend ext→quad Extends 32-bit %EAX to 64-bit %EDX:%EAX

Shifting
rcl{bwl} {c},{mr} Left C-rotate {mr} ← 〈{mr},C〉 �{c} 4

rcr{bwl} {c},{mr} Right C-rotate {mr} ← 〈{mr},C〉 �{c} 4

rol{bwl} {c},{mr} Left rotate {mr} ← {mr} �{c} 4

ror{bwl} {c},{mr} Right rotate {mr} ← {mr} �{c} 4

sal{bwl} {c},{mr} Left shift {mr} ← {mr}
{c}
⇐ 0 4 4 4

sar{bwl} {c},{mr} Right arithmetic shift {mr} ← S
{c}
⇒ {mr} 4 4 4

shr{bwl} {c},{mr} Right logical shift {mr} ← 0
{c}
⇒ {mr} 4 4 4

Testing
bt{wl} {c},{mr} Bit-test bit {c} of {mr} 4

btc{wl} {c},{mr} Bit-change bit {c} of {mr} ←(bit {c} of {mr}) 4

btr{wl} {c},{mr} Bit-clear bit {c} of {mr} ←0 4

bts{wl} {c},{mr} Bit-set bit {c} of {mr} ←1 4

cmp{bwl} {cmr}1,{mr}2 Compare values {mr}2 − {cmr}1 4 4 4

test{bwl} {cmr}1,{cmr}2 Test bits {cmr}2 ∧{cmr}1 4 4 4

Jumps
call {} Call push %EIP; %EIP← {}

ja {} Jump on unsigned > if Z̄ ∧ C̄: %EIP← {}

jae {} Jump on unsigned ≥ if C̄: %EIP← {}

jb {} Jump on unsigned < if C: %EIP← {}

jbe {} Jump on unsigned ≤ if Z ∨ C: %EIP← {}

jc {} Jump on carry if C: %EIP← {}

je {} Jump on = if Z: %EIP← {}

jmp {} Jump %EIP← {}

jg {} Jump on > if Z̄ ∧ S = O: %EIP← {}

jge {} Jump on ≥ if S = O: %EIP← {}

jl {} Jump on < if S 6= O: %EIP← {}

jle {} Jump on ≤ if Z ∨ S 6= O: %EIP← {}

jnc {} Jump on non-carry if C̄: %EIP← {}

jne {} Jump on 6= if Z̄: %EIP← {}

jns {} Jump on non-negative if S̄: %EIP← {}

jnz {} Jump on non-zero if Z̄: %EIP← {}

js {} Jump on negative if S: %EIP← {}

jz {} Jump on zero if Z: %EIP← {}

loop {} Loop %ECX←%ECX-1; if %ECX 6= 0: %EIP← {}

ret Return %EIP← pop

Miscellaneous
rdtsc Fetch cycles %EDX:%EAX← 〈number of cycles〉

Table 12.3: A subset of the x86 instructions (part 2)

Page 96

12.4 INSTRUCTION SET

Instruction Explanation Effect C S Z

Load
fld1 Float load 1 Push 1.0

fildl {m} Float int load long Push long {m}

fildq {m} Float int load quad Push long long {m}

filds {m} Float int load short Push short {m}

fldl {m} Float load long Push double {m}

flds {m} Float load short Push float {m}

fldz Float load zero Push 0.0

Store
fistl {m} Float int store long Store %ST(0) in long {m}

fistpl {m} Float int store and pop long Pop %ST(0) into long {m}

fistpq {m} Float int store and pop quad Pop %ST(0) into long long {m}

fistq {m} Float int store quad Store %ST(0) in long long {m}

fistps {m} Float int store and pop short Pop %ST(0) into short {m}

fists {m} Float int store short Store %ST(0) in short {m}

fstl {m} Float store long Store %ST(0) in double {m}

fstpl {m} Float store and pop long Pop %ST(0) into double {m}

fstps {m} Float store and pop short Pop %ST(0) into float {m}

fsts {m} Float store short Store %ST(0) in float {m}

Arithmetic
fabs Float absolute %ST(0)←|%ST(0)|
fadd %ST(X) Float add %ST(0)←%ST(0)+ %ST(X)

fadd{s} {m} Float add %ST(0)←%ST(0)+float/double {m}

faddp {m} Float add and pop %ST(1)←%ST(0)+ %ST(1); pop

fchs Float change sign %ST(0)←−%ST(0)

fdiv %ST(X) Float div %ST(0)←%ST(0)÷ %ST(X)

fdiv{s} {m} Float div %ST(0)←%ST(0)÷float/double {m}

fdivp {m} Float reverse div and pop %ST(1)←%ST(0)÷ %ST(1); pop

fdivrp {m} Float div and pop %ST(1)←%ST(1)÷ %ST(0); pop

fiadd{s} {m} Float int add %ST(0)←%ST(0)+short/long {m}

fidiv{s} {m} Float int div %ST(0)←%ST(0)÷short/long {m}

fimul{s} {m} Float int mul %ST(0)←%ST(0)×short/long {m}

fisub{s} {m} Float int sub %ST(0)←%ST(0)−short/long {m}

fmul %ST(X) Float mul %ST(0)←%ST(0)× %ST(X)

fmul{s} {m} Float mul %ST(0)←%ST(0)×float/double {m}

fmulp {m} Float mul and pop %ST(1)←%ST(0)× %ST(1); pop

fsqrt Float square root %ST(0)←
p

%ST(0)

fsub %ST(X) Float sub %ST(0)←%ST(0)− %ST(X)

fsub{s} {m} Float sub %ST(0)←%ST(0)−float/double {m}

fsubp {m} Float reverse sub and pop %ST(1)←%ST(0)− %ST(1); pop

fsubrp {m} Float sub and pop %ST(1)←%ST(1)− %ST(0); pop

fyl2xpl Float ??? %ST(1)←%ST(1)× log2(%ST(0)+ 1); pop

Stack operations
fld %STX Float load Push copy of %ST(X)

fst %STX Float store Store copy of %ST(0) in %ST(X)

fstp %STX Float store and pop Pop %ST(0) into %ST(X)

Table 12.4: A subset of the x87 floating-point instructions

Page 97

Page 98

Appendix A
Questions Catalogue

A.1 Introduction to Digital Electronics
1) What is ‘digital’ electronics?

2) What does ‘binary’ mean?

3) What is Moore’s law?

4) What is the basic building block of digital electronics today?

A.2 Binary Numbers
1) What are binary, decimal and hexadecimal numbers?

2) How are signed numbers encoded as binary numbers? Variants?

3) Explain the two’s complement encoding!

4) name some properties of two’s complement representation!

5) how do you invert a two’s complement encoded number?

6) how do you subtract in two’s complement? Pitfalls?

7) how do you multiply/divide by 2n in two’s complement?

8) What is an arithmetic right shift?

9) How do you execute a general multiplication of two two’s complement
numbers  and b?

A.3 Boolean Algebra
1) What is a Boolean function?

2) How can you describe a Boolean function?

3) Describbe the deMorgan’s theorem!

4) Can you list logic gates and their corresponding Boolean function?

5) Can you show what it means thet the AND and OR opperators are
commutative, associative and distributive?

6) Can you simplify an easy Boolean function, e.g., ∧ (b ⊕ c)∨ b∧ c

7) How do you set up a Karnaugh map and how do you use it to simplyfy
a Boolean expression?

Page 99

APPENDIX A QUESTIONS CATALOGUE

8) How doeas a Karnaugh map look like that will still result in a very long
and complicated expression.

9) How do you use a NAND/NOR gate to implement the basic Boolean
operators?

10)

A.4 Combinational Logic Crcuits
1) Can you define combinational logic circuits?

2) Can you draw a digital circuit with inverters, AND and OR gates that
implement the XNOR function?

3) What’s the function of an encoder/decoder, multiplexer/demultiplexer?

4) Can you draw and explain the function of a full-adder?

A.5 Sequential Logic Crcuits
1) What is a flip-flop?

2) What distinguishes a synchronous from an asynchronous flip-
flop/latch?

3) What is the characteristic table/function of a D-latch, SR-latch, JK-flip-
flop D-flip-flop, T-flip-flop, . . . ?

4) What is the clock frequency of a clock with a period of 1ns?

5) How do you make a T-flip-flop/D-flip-flop from a JK-flip-flop and a
minimal number of logic gates?

6) How do you make a JK-flip-flop from a D-flip-flop and a minimal number
of logic gates?

7) What’s a state transition graph, what’s a finite state machine?

8) Can you draw a state transition graph for a hysteretic controller
of an automatic blind that closes if the sun has been out for three
consequtive clock cycles and that opens if the sun has been away for
three consequtive clock cycles?

9) What’s the difference of a Mealy and a Moore type FSM?

10) What are registers?

11) Can you draw and explain a synchronous counter/ripple counter/shift
register?

A.6 Von Neumann Architecture
1) What are the main units of a computer according to the Von Neumann

reference model?

2) What are possible subcomponents of the execution unit/control unit
(memory unit/I/O unit)?

3) What is the Von Neumann bottleneck?

Page 100

A.7 OPTIMIZING HARDWARE PERFORMANCE

4) What does the abbreviation ALU stand for and what’s its task?

5) can you describe the simple 1-bit ALU as depicted in the script?

6) What does DRAM and SRAM stand for, what is their task and what are
their differences?

7) can you draw and explain an SRAM/DRAM cell?

8) What is a tri-state buffer?

9) What is a sense-amplifier?

10) What is the task of the control unit (CU)?

11) What is machine code?

12) What is a microarchitecture/microcode?

13) What is a CISC/RISC?

14) What is the task of an I/O controller?

15) What is memory mapped/isolated I/O?

16) What is programmed/polled I/O, interrupt driven I/O and direct
memory access?

A.7 Optimizing Hardware Performance
1) What is a memory hierarchy and why is there a hierarchy?

2) What is cache and what is its task?

3) Why does cache work in many cases?

4) What is associateive-, direct mapped- and set-associative cache?

5) How is cache coherency a potential problem, how is it solved?

6) How and when are blocks in the (associative/direct mapped) cache
replaced? What’s the respective advantages and disadvantages of
different strategies?

7) What are look-through and look-aside cache architectures?

8) Explain virtual memory!

9) Depict a memory management unit (managing virtual memory)

10) Explain the principle of pipelining!

11) . . .

Page 101

Index
.align, 91
.bss, 91
.byte, 91
.data, 92
.fill, 92
.globl, 92
.long, 92
.text, 92
.word, 92

adder, 28
ALU, 46, 47
ANSI C, 83
arithmetic and logic unit, 46, 47
arithmetic right shift, 10
as, 92
ASCII, 87
assembly code, 91
associative, 14
asynchronous, 31
asynchronous FSM, 39
asynchronous latches, 32
AT&T-notation, 92
average clock cycles per instruction,

71

binary addition, 8
binary division, 10
binary electronics, 5
binary multiplication, 10
binary numbers, 7
binary subtraction, 8
bit, 6
Boolean algebraic rules, 14
Boolean algebra, 13
Boolean algebraic rules, 14
Boolean expressions, 13
Boolean functions, 13
Boolean in C, 83
Boolean operator, 13
Boolean operators, 13

C, 83
carry bit, 28
char in C, 84
character, 87
circuit analysis, 21
circuit design, 21
CISC, 58, 70

CLK, 34
clock, 31, 34
clock cycle, 34
clock period, 34
clocked, 32
combinational logic circuits, 21
combinational logic circuits, 21
comments in assembly, 92
communication overhead, 75
communication protocol, 59
commutative, 14
complex instruction set computers,

58, 70
control unit, 45
counter, 40, 42
CPI, 71
CygWin, 93

D-flip-flop, 36
D-latch, 32
data hazards, 72
data path, 47
DE, 70
de Morgan, 14
decode stage, 70
decoder, 24
demultiplexer, 25
digital electronics, 5
dirty cache, 64
distributive, 14
double in C, 84
DRAM, 51
DRAM), 52
dynamic random access memory, 51,

52

encoder, 24
encoding, 87
EX, 70
execute stage, 70
expressions in C, 84, 86

finite state machine, FSM, 37
flip-flop, 31
float in C, 84
floating-point, 97
floating-point values in C, 84
full adder, 28

Page 102

A.7 OPTIMIZING HARDWARE PERFORMANCE

gas, 92
gated, 32
gcc, 92

half adder, 28
hardware doubling, 73
Harvard architecture, 72

I/O port, 59
IF, 70
indexed reference, 94
indirect reference, 94
instruction fetch stage, 70
instruction set, 93, 97
int in C, 84
Intel-notation, 92

JK-flip-flop, 34
jump prediction, 73

K-maps, 16
Karnaugh maps, 16

latch, 31
Latin-1, 87, 88
Latin-9, 87
logic gates, 15, 21
logical values in C, 83
long in C, 84
long long in C, 83
look-aside cache, 65
look-through cache, 65

machine code, 55, 91
Mealy machine, 38
micro-instruction, 57, 58, 70
microarchitecture, 57
microprogram memory, 57
minterms, 16
mnemonixs, 91
Moore machine, 38
multiplexer, 25

one-hot encoding, 24
operators in C, 86

pipeline flushing, 73
pipeline shortcuts, 72
pipeline stalling, 71
pipelining hazards, 71
polling, 60
precharge, 53
priority encoder, 24

RAM, 50, 51
random access memory, 50
reduced instruction set computers,

58
reduced instruction set computers,

70
register, 40, 93
register file, 71
register forwarding, 72
resource hazards, 71
ripple carry adder, 29
ripple counter, 42
RISC, 58, 70

scalar processor, 74
sense amplifier, 53
sequential logic circuits, 31
shift register, 43
short in C, 84
sign and magnitude representation,

7
signed binary numbers, 7
speed-up, 70
SR-latch, 33
stale cache, 64
stalling, 72
state, 37
state transition, 37
state transition graph, 37
state transition table, 41
statements in C, 84
static random access memory, 51
strings in C, 83
superscalar processors, 74, 75
synchronous, 31
synchronous flip-flops, 34
synchronous FSM, 39

T-flip-flop, 36
ternary electronics, 5
texts in C, 83
toggle, 35
toggle flip-flop, 36
transparent latch, 33
truth table, 13
two’s complement representation, 8

Unicode, 87
unsigned binary numbers, 7
UTF-8, 87, 89

von Neumann bottleneck, 47

Page 103

APPENDIX A QUESTIONS CATALOGUE

WB, 70
write back stage, 70

x86, 93, 95, 96
x87, 97

Page 104

	Introduction
	I Basics of computer architecture
	Introduction to Digital Electronics
	Binary Numbers
	Unsigned Binary Numbers
	Signed Binary Numbers
	Sign and Magnitude
	Two's Complement

	Addition and Subtraction
	Multiplication and Division
	Extending an n-bit binary to n+k bits

	Boolean Algebra
	Karnaugh maps
	Karnaugh maps with 5 and 6 bit variables
	Karnaugh map simplification with `X's
	Karnaugh map simplification based on zeros

	Combinational Logic Circuits
	Standard Combinational Circuit Blocks
	Encoder
	Decoder
	Multiplexer
	Demultiplexer
	Adders

	Sequential Logic Circuits
	Flip-Flops
	Asynchronous Latches
	Synchronous Flip-Flops

	Finite State Machines
	State Transition Graphs

	Registers
	Standard Sequential Logic Circuits
	Counters
	Shift Registers

	Von Neumann Architecture
	Data Path and Memory Bus
	Arithmetic and Logic Unit (ALU)
	Memory
	Static Random Access Memory (SRAM)
	Dynamic Random Access Memory (DRAM)

	Control Unit (CU)
	Register Transfer Language
	Execution of Instructions
	Microarchitecture
	Complex and reduced instruction sets (CISC/RISC)

	Input/Output

	Optimizing Hardware Performance
	Memory Hierarchy
	Cache
	Virtual Memory

	Pipelining
	Pipelining Hazards
	Conclusion

	Superscalar CPU
	Brief Historical Detour into Supercomputing
	Superscalar Principle

	II Low-level programming
	Introduction to low-level programming
	Programming in C
	Data
	Integer data
	Texts
	Floating-point data

	Statements
	Expressions

	Character encodings
	ASCII
	Latin-1
	Latin-9
	Unicode
	UTF-8

	Assembly programming
	Assembler notation
	Instruction lines
	Specification lines
	Comments
	Alternative notation

	The assembler
	Assembling under Linux
	Assembling under Windows

	Registers
	Instruction set

	Questions Catalogue
	Introduction to Digital Electronics
	Binary Numbers
	Boolean Algebra
	Combinational Logic Crcuits
	Sequential Logic Crcuits
	Von Neumann Architecture
	Optimizing Hardware Performance

	Index

