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Chapter 1

What is This Course About?

1.1 Introduction

Computer science. What exactly is computer science? Why — beyond the obvious reasons
— is it important? What do computer scientists do? What types of problems do they
work on? What approaches do they use to solve those problems? How, in general, do
computer scientists think?

Question 1. What do you think of when you hear “computer science?” Write a paragraph
or list, or draw an image or diagram of what comes to mind.

Question 2. What are the parts of computer science that are most interesting or impor-
tant to you currently? Why?

When you hear the term “computer science” perhaps you think of a specific computer.
Or someone you know who works with computers. Or a particular computer use, say
online games or social networks. There are many, many different aspects of computing
and computer science.

Furthermore, there are a number of reasons why it is useful and important to know
something about computer science. Computers are affecting our lives in many different
ways. For most of us, computers are playing or will play a significant role in the work we
do, in our recreational pursuits, in how we communicate with others, in our education,
in our health care, etc. Think about the ways you encounter computers and computing,
either directly or indirectly, in your daily life.

What, more specifically, will this course cover? The foremost purpose of this course
is to give you a greater understanding of the fundamentals of computer science: What
is computer science, anyway? Is the the same as computer programming? What is a
computer? For example, most people would agree that a “laptop computer” is a computer,
as is a “tablet computer;” but what about a smartphone? And how do computers work?
For example, we can store not only numbers and text in computers, but also images, video
files, and audio files; how do computers handle such disparate data? And what are some
interesting and important subareas of computer science? For example, what is important
to know about subareas such as computer graphics, networking, or databases? And why
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is any of this important? Isn’t it sufficient for most people just to use computers, rather
than have a deeper understanding of computers and computer science?

These are all fundamental questions about computing, and in this course we’ll look
at them and other questions. In summary, one purpose of this course is to provide an
overview of computer science that not only exposes you to computer science fundamentals
— such as how a computer works on a rudimentary level — but also explores why these
fundamentals are important.

There are two parts of this overview that deserve further explanation. This course
fulfills the University of Minnesota liberal education mathematical thinking core require-
ment and the technology and society theme requirement. So while the main theme of this
course is an overview of computer science, two essential subthemes are how mathematics
is used in computer science, and how computer science affects, and is affected by, society.

Both subthemes fit well in an overview of computer science course. Computer sci-
ence relies heavily on mathematics (in fact, some colleges have computer science and
mathematics programs in a joint department). Certain uses of mathematics in computer
science are obvious — for example, in computational tools such as spreadsheets — but
there are also many less obvious ways that mathematics is essential to computer science.
For example at the lowest level in a computer, data (whether that data is numeric, text,
audio, video, etc.) is all represented in binary, i.e., as strings of 0’s and 1’s. This means
that to understand something very basic about computers you need to understand binary
numbers and operations.

Computers are also affecting society in many ways, from the use of computer-generated
imagery in films, to large government or commercial databases, to the multiple societal
effects of the Internet. And society is affecting computers, for example through user
behavior and through different types of regulation.

While mathematics and technology and society might seem too different to be included
comfortably in the same course, there are actually many computer science topics that are
useful to explore from both perspectives — in a sense, these different viewpoints are
“two sides of the same coin.” For example, one topic in the course is computer security.
Mathematics plays a role in security, for example in encryption. And computer security
also has many societal aspects, for example national security, infrastructure security, and
individual security. Most of the topics in this course similarly have both mathematical
underpinnings and societal aspects, and exploring these topics from both perspectives will
result in a richer understanding.

1.2 What This Course Isn’t

There are a number of different types of introductory computer science courses. So, in
addition to explaining what this course is, it is also useful to state what it is not.

This is not a programming course. Programming is a central activity in computer
science, but it is not the whole of computer science. Because programming is important,
we’ll spend some time on it. However, because computer science is much more than
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programming, and because this is an overview course, that time will be only a small part
of the course — probably a few weeks.

If you wish to take a programming course, the University of Minnesota, like most other
colleges and universities, offers a number of different introductory programming courses.!

This is not a computer applications course. Many colleges and universities have courses
that cover basic computer applications. For example, a popular choice is teaching how to
use a word processor, a spreadsheet, a database management program, and presentation
software. These and other applications are important parts of computer science, and so
in this course you will get a chance to work with some applications that might be new to
you. However — like programming — using applications is only part of learning about
computer science, and so application use will be only a small part of this course.

This is not a “computer literacy” or “computer fluency” course. There are a vari-
ety of definitions of computer literacy or computer fluency. For example the Wikipedia
definition, derived from a report from the U.S. Congress of Technology Assessment, is
“the knowledge and ability to use computers and related technology efficiently, with a
range of skills covering levels from elementary use to programming and advanced problem
solving.”? Parts of this course will involve using computers to gain a variety of skills.
For example, in the labs and homeworks in this course you will do a variety of computer-
related tasks such as performing web searches, constructing web pages, doing elementary
computer programming, and working with databases. However, this is just one part,
rather than the totality, of the course. So this course shares some characteristics of a
computer literacy course, but overall it has a wider focus than that type of course.

This is not a “great ideas in computer science” course. One current trend in com-
puter science introductory courses is to study computer science through its important,
fundamental ideas.®> And this course does cover some key ideas. For example, an early
topic we’ll study is how all data in computers, whether that data be numeric, text, video,
etc. is represented within the computer as 0’s and 1’s. In general, the topics in the
course are fundamental to computer science. However, this course also differs from a
great ideas course. It is not focused solely on ideas, but explores broadly a number of
computer-related issues, subtopics, and computer skills. Moreover, to fulfill the Univer-
sity of Minnesota liberal education requirements this course focuses more on mathematical
thinking, and on technology and society, than a typical great ideas course would.

In addition to programming, applications, computer fluency, and great ideas, there
are a number of other types of introductory computer science courses. Some are courses

1Specifically, CSci 1103 is a Java programming course for non-majors, CSci 1113 is a C++ program-
ming course for science and engineering majors, and CSci 1133 is an introductory Python programming
and computer concepts course for computer science majors.

2See http://en.wikipedia.org/wiki/Computer_literacy. Accessed May 20, 2105.

3For example, see http://denninginstitute.com/pjd/GP/GP-site/welcome.html (accessed May
20, 2015), Peter Denning’s “Great Principles of Computer Science” website. This site organizes principles
into seven categories: computation, communication, coordination, recollection, automation, evaluation,
and design. There are a number of good ideas, insights, and frameworks in this and related approaches,
and in fact many of the key ideas in this course will relate in some way to Denning’s principles.
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that survey a variety of computer science topics. Others focus on professional software
development practices. Still others look at computing through a particular “lens” such
as networks or computational biology. And so on. This course has some common char-
acteristics with these other courses, but also has significant differences. In particular,
the biggest difference is this course blends an overview of computer science with a strong
emphasis on mathematics, and on society and technology; this is a balance of emphases
that has a number of advantages, but is not usually seen in introductory computer science
courses.

1.3 What Are These Note About?

There is no textbook for this course. The reason for this is that although there are a
number of excellent “introduction to computer science” textbooks, none is a good fit for
this course. Instead, these notes are the “textbook.”

Specifically, in order to fulfill the University of Minnesota liberal education require-
ments, both mathematical thinking and technology and society need to be significant
parts of this course. Many textbooks present an introduction to computer science though
programming, or through how computers work, or through some other aspect of comput-
ing. However, there is not a suitable text that combines an overview of computer science
with both sufficient mathematical and sufficient society and technology emphases.

But these notes are not a textbook in the traditional sense. For example, they are
neither as long nor as detailed as a textbook. There are a few reasons for this.

One is this course has a number of different parts, and these notes are kept short so
reading them doesn’t take so much time as to interfere with other course activities. An-
other is that there are a number of online resources such as tutorials, reference guides, and
instructional videos freely available on the Internet, and that you can use as supplemental
resources. (In an overview of computing course it is particularly appropriate to make use
of educational resources that others have been good enough to post. Being able to learn
from different resources that perhaps were created for slightly different audiences, and
that might use slightly different notation, etc. is a good skill to have.) A third, related
reason is that there will also be some additional required readings. These will usually be
short, online readings that we will use to explore topics in more depth.

Another key distinction between these notes and a traditional textbook is that these
notes often focus on fundamental or background material — material that you can often
learn most efficiently from reading. Using this background material to solve various
problems, or to explore technology and society issues is more difficult, and so many of the
course learning activities will be done during “lecture” time or during lab, and will build
on rather than repeat this fundamental material.
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1.4 CSci 1001 and Liberal Education

CSci 1001 fulfills two University of Minnesota liberal education requirements: the math-
ematical thinking core requirement, and the technology and society theme requirement.
This section explains how the course satisfies the criteria for these requirements.

1.4.1 Why Liberal Education?

At first glance, it might seem odd that a course entitled “Overview of Computer Science”
fulfills liberal education requirements. What does computer science have to do with liberal
education?

However, a course such as CSci 1001 is a good fit for certain liberal education require-
ments. Understanding computers well involves exploring them from a variety of different
viewpoints. This includes understanding not only how computers work — including, for
example, the mathematical underpinnings of computer science — but also how they are
affecting, and are affected by society. In summary, to have a good understanding of com-
puters and computer science it is important to explore them from a variety of perspectives,
including the perspectives embodied in some of the liberal education requirements.

1.4.2 Mathematical Thinking

Question 3. What do you think of when you hear the word “mathematics?” Write a
paragraph or list, or draw an image or diagram of what comes to mind.

Question 4. Based on your experience with computers, write a list of some places where
mathematics is used in computing.

What do computers and mathematics have in common? Why is it appropriate for an
overview of computer science course to satisfy the liberal education mathematical thinking
requirement?

To fulfill the mathematical thinking requirement, a course must fulfill the following
criteria’

e The course exhibits the dual nature of mathematics both as a body of knowledge
and as a powerful tool for applications.

e Students manipulate mathematical or logical symbols.

e The prerequisite math requirements and mathematics used must be at least at levels
that meet the standards for regular entry to the University.

The rest of this subsection explains how these criteria relate to the material and themes
in this course.

4From  http://onestop.umn.edu/faculty/lib_eds/guidelines/mathematical_thinking.html,
accessed May 20, 2015.
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The course exhibits the dual nature of mathematics both as a body of knowledge and as a
powerful tool for applications.

Much of the use of mathematics in this course is applying mathematical ideas and opera-
tions to solve computer science problems. There are a number of important mathematical
underpinnings of computer science, and so understanding computer science involves being
able to solve mathematical problems involving these underpinnings. At the same time,
the different uses of mathematics in this course exemplify characteristics of mathematics
as a whole, and of the close tie between the fields of mathematics and computer science.
For instance the mathematics in the course illustrates the following:

1.

The reliance of many key ideas in computer science, such as data representation, on
mathematics.

The use of special mathematics- or logic-related notation and terminology in many
parts of computer science.

The ability to represent and work with many different types of data in the com-
puter, and the related ability to represent and work with quantities in different
representations using a variety of operations.

The need for rigor in solving problems, analyzing situations, or specifying compu-
tational processes.

The use of numbers and arithmetic in solving computational problems. However,
rather than being simple arithmetic problems, these problems often have some spe-
cial characteristics such as involving repeated operations, or involving extremely
large or extremely small numbers.

The existence of a variety of different algorithms for solving such diverse problems
as pattern matching, counting specified values in a table of data, or finding the
shortest path between two nodes in a graph.

Students manipulate mathematical or logical symbols.

Solving many of the problems in this course will involve doing some mathematics, and
therefore manipulating mathematical or logical symbols. Here are a few examples:

1.

In exploring low-level logical operations you’ll need to manipulate binary represen-
tation and logical operators.

In studying the growth rate of algorithms you’ll need to work with the “big-O” and
“big-©” notations commonly used by computer scientists.

In specifying computational processes you’ll need to use “pseudocode” or a program-
ming language. These share many notational characteristics with mathematical or
logical symbols, especially when the computational processing involves a large num-
ber of numeric computations.
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The prerequisite math requirements and mathematics used must be at least at levels that
meet the standards for reqular entry to the University.

The level of mathematics in this course is introductory-level college mathematics. As
such, the mathematics is not advanced, and there is no mathematical prerequisite for this
course beyond the requirements needed for admission to the University. At the same time,
the mathematics in this course goes beyond high school mathematics even though many
of the types of mathematics used in this course appear in some high school mathematics
courses.

As an example, one appearance of mathematics in this course is binary (or base 2)
representation. This is a topic that often appears in high school mathematics courses,
and the basics of binary representation are not complicated. In this course we review such
basics as how to convert numbers between decimal (base 10) and binary representation,
and how to do simple operations such as adding two binary numbers. However, we also
use binary representation in additional ways that underpin the workings of computers.
Here are a few examples:

1. We'll look at a few different ways to represent numbers in binary representation.
For example, computers usually do not use the straightforward binary representation
when representing integers, but rather use “two’s complement” form. So part of this
course is learning not only about the “usual” binary representation, but also about
these alternatives.

2. We'll look at various issues with binary representation, such as the number of “bits”
used, that are important in determining the range and precision of numbers used
by computers.

3. In addition to representing numbers, we will also look at how computers use binary
representation to represent and operate on other types of data such as text, colors,
and images.

4. In addition to basic operations such as binary addition, we will also look at other
operations on binary representations. For example, logical operations are important
in masking colors in image processing, and in implementing arithmetic operations
in low-level computer hardware.

In summary, even though many mathematical topics in this course appear in high school
mathematics, they go beyond the usual high school treatment of those topics in breadth
or depth.

1.4.3 Technology and Society

Question 5. What do you think of when you hear “technology and society?” Write a
paragraph or list, or draw an image or diagram of what comes to mind.
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Question 6. Based on your experience with computing, write a list of examples of how
computing is affected, and being affected by, society.

To fulfill the technology and society requirement, a course must fulfill the following
criteria®

e The course examines one or more technologies that have had some measurable im-
pact on contemporary society.

e The course builds student understanding of the science and engineering behind the
technology addressed.

e Students discuss the role that society has played in fostering the development of
technology as well as the response to the adoption and use of technology.

e Students consider the impact of technology from multiple perspectives that include
developers, users/consumers, as well as others in society affected by the technology.

e Students develop skills in evaluating conflicting views on existing or emerging tech-
nology.

e Students engage in a process of critical evaluation that provides a framework with
which to evaluate new technology in the future.

The rest of this subsection explains how these criteria relate to the material and themes
in this course.

The course examines one or more technologies that have had some measurable impact on
contemporary society.

The topic of this course is computers and computing. Computers have affected society in
numerous and diverse ways, some of which we’ll explore in this course. And current and
future computer applications will affect society in even more ways.

The course builds student understanding of the science and engineering behind the tech-
nology addressed.
Through this course you should get an understanding of how computers work. This
includes understanding the basics of computer hardware and computer software.

More broadly, however, computer science relies on results from other areas of science,
engineering, and related fields. The most prominent example of this we will see in this
course is various ways that mathematics is essential in computer science.

Students discuss the role that society has played in fostering the development of technology
as well as the response to the adoption and use of technology.

Technology affects society. However, it is not a one-way street. Society also affects
technology. For example, society fosters technology by means such as government support

°From http://onestop.umn.edu/faculty/lib_eds/guidelines/technology_and society.html,
accessed May 20, 2015.
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for research. As another example, individuals, businesses, and other organizations adopt
and use technology in ways often not foreseen by the technology’s creators.

In this course we’ll look at a variety of instances of how society affects technology.
These include government funding for the early Internet, Internet regulation, how business
considerations affect computing products, and societal aspects of computer security.

Students consider the impact of technology from multiple perspectives that include devel-
opers, users/consumers, as well as others in society affected by the technology.

In many topics in computers and society there are multiple stakeholders. These can in-
clude individual users, developers, companies (producers, consumers, and intermediaries),
government bodies, professional organizations, and other types of organizations. These
different stakeholders often have different views and different goals.

In this course we will often look at technology and society issues from numerous
perspectives. Sometimes we will focus on a specific perspective or the role of a specific
stakeholder. However, other times we will explore issues more broadly: Who are the
stakeholders? What is their role in this issue? What are their goals? etc.

Students develop skills in evaluating conflicting views on existing or emerging technology.
One often hears conflicting views on computer and society issues. Computers are beneficial
for society. Computers are harmful to society. The Internet is making it easier for
people to communicate and is bringing people together. The Internet is making people
more isolated. Computers and automation are robbing people of jobs. Computers and
automation create jobs.

In this course we’ll often explore issues that are contentious and/or complicated. How
do we avoid a superficial, one-sided understanding of such issues? How do we resolve
conflicting claims about such issues?

Students engage in a process of critical evaluation that provides a framework with which
to evaluate new technology in the future.

Computing technology not only has had massive effects on society, but it is continuing to
affect society. Not a day goes by without some technological advance involving computing.
In many ways the “computer revolution” is just beginning.

One goal of this course is that you’ll learn enough about computing in general, about
trends in computing, and about computing and society that you’ll be able to evaluate
new technology. Note “evaluate” here might mean different things in different contexts.
For instance, it might mean give an informed projection about whether a new computer
product will be successful or not. Or it might mean predict future computer advances in
a certain area. Or it might mean analyze whether a new computer application is more
likely to be beneficial than harmful.

1.4.4 How These Requirements Will Appear in the Coursework

Both the mathematical thinking and technology and society requirements will appear
prominently in the coursework you do. In particular, many of the individual homework
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assignments will involve mathematics in some way, shape, or form. Similarly, many lab
problems will also often involve mathematics. And some in-class activities will be practice
for these labs and homework problems.

A few of the homework and lab problems will involve the technology and society
theme. Moreover, most weeks there will be short writing and/or an in-class discussion of
the technology and society aspect of the course topics.

Finally, both mathematical thinking and technology and society problems will be on
the exams, with questions often similar to those on the homework or from the in-class
activities or discussions.

1.5 Course Structure

The course has a number of components:

e C(lass lectures will explore important topics from computer science. This includes
both technical aspects and computers and society aspects.

e Technical in-class exercises provide practice on technical aspects of the current topic.
Problems will usually be mathematical to fulfill the math liberal education core
criteria; however, occasional society and technology questions will also be included.

e Discussions/exercises on society and technology provide a chance for interactive
discussion and debate of current computer science-related social issues.

o Weekly laboratory exercises allow hands-on exploration of course content. These lab
sessions occur in a classroom laboratory where exercises can be completed by pairs
of students working on computers.

e Reading assignments are designed to prepare you for homework, labs, exams, and
discussions.

o Written problem assignments help you explore computer science concepts in depth.
Unless otherwise stated, these assignments must be completed individually, and will
be due about every other week.

e QOther occasional in-class or between-class assignments, for example short writing
assignments, serve a variety of functions and will be explained further in class.

e Fzams give you a chance to demonstrate your knowledge of the course material.
There will be one or two midterms exams and a final exam. See the course syllabus
and/or web page for more information.

Note that the in-class exercises, labs, etc. are all important parts of the course, and will
contribute to your course grade. It is therefore important that you attend class (including
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the lab). It is also important that you do any assigned preliminary work, including any
reading or writing, prior to lecture and lab.

Additional information on these components, as well as important administrative ma-
terial such as exam and assignment rules, will be posted on the course web page.

1.6 Tips For Doing Well

Here are some tips for doing well in CSci 1001. Although most of these are straightforward,
they are particularly relevant to a course such as this one.

e Show up. A large part of doing well in this course is showing up. Don’t miss class
unless you have a valid excuse (such as illness). And if you do miss class then check
with others to see what you have missed.

The labs, in-class exercises, and discussions are all important parts of the course.
Sometimes they are important learning activities in and of themselves; other times
their purpose is practice to help on the homework problems and exams. To empha-
size their importance, a portion of the class grade is devoted to the labs, and to
in-class activities such as in-class exercises or discussions.

o Start the homework early. Most homework will be posted a couple weeks before it is
due. Usually when it is posted you will have seen enough material to start at least
some of the problems. Starting early will give you enough time to think about the
more difficult questions, and to ask questions during office hours.

e Come to office hours if you have questions. If you have any questions on the home-
work, or are having trouble with it, please come to office hours.

e Do the reading. We will usually assume you’'ve done the assigned reading, and done
it before class. Sometimes we’ll use class time to go over some particularly important
and/or challenging parts of the reading. Other times the class lecture will use the
reading as a starting point, but not re-explain it in detail.

e (et to know others in the class. Many people learn better if they discuss class ma-
terial with others. Get to know people in the class, form study groups, etc. Some
of the assignments in the class — notably the labs — are designed as group assign-
ments. Others such as the homework and exams are individual work; however, even
on these you are welcome to do preliminary studying in groups, but your answers
on the assignment and exams must be yours alone. (See the further explanation on
the class web page for more details.)

o Use the web resources. Throughout the semester we will post additional resources
to the course web page. Moreover, a number of other online resources are mentioned
in these notes. See which of these are most useful to you, and use them accordingly.
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e Realize that some material in this course might be easy, but some might be hard.
Students in this class come from a variety of backgrounds. Often, students will find
some parts of the course easy, but then find other parts require significantly more
time and effort.

e Persist: Many students will find at least part of this course to be challenging. If you
have not seen, for example, topics such as algorithms before, they will seem foreign
and will take time to master. Do the reading, ask questions as needed, and practice
doing problems.

e Try to apply this material to your magjor or to other interests: Much of the informa-
tion or skills in this course are applicable to a wide variety of areas. Think about
how what you are learning in this course might be applicable to other courses you
are taking, or to other areas of your interest.

1.7 Additional Questions

Here are additional introductory questions, some of which will likely be used for between-
class or in-class exercises or discussion.

Question 7. How do you use computers? List the most important ways.

Question 8. Write down a list of movies in which computing plays a major role. For
each movie, indicate whether computing is portrayed as beneficial, harmful, beneficial in
some ways but harmful in others, or neutral.

Question 9. Do you think computers, on the whole, have more positive effects than neg-
ative ones, more negative ones than positive, or about equal positive and negative effects?
Why?

Question 10. List some ways computers are beneficial to society. Then list some ways
they are harmful.

Question 11. Suppose you were to write a novel, play, screenplay, etc. about some aspect
of computers and society. Describe what the theme or themes of your work would be.

Question 12. What does technology mean? What are some important ways you use
technology in your daily life?

Question 13. Suppose you had to write a short essay or short story entitled “Computers
and Me.” What would be some key points or themes in that work?

Question 14. Suppose you had to write a short essay or short story entitled “Technology
and Me.” What would be some key points or themes in that work?



Chapter 2

Algorithms

Precisely, step by step.

2.1 Introduction

2.1.1 Introductory Problem

Consider the following problem:*

Mobile robots must navigate through their environment without bumping into obsta-
cles. Consider the following obstacle avoidance problem. Suppose you have a very simple
rectangular maze. There’s a designated start square, a designated finish square, a single
path from start to finish, and no dead ends. Suppose you also have a robot that can do
the following:

e moveForward: move forward one square.
e turnlLeft: turn ninety degrees to its left.
e turnRight: turn ninety degrees to its right.

e startInMaze: this places the robot at the start square, and orients it so its first
valid move is straight ahead.

e checkForWall: check if there is a wall immediately ahead, and return true if there
is and false if there isn’t.

e checkForMazeEnd: this checks if the robot is at the end square, and returns true if
it is and false if it isn’t.

!These notes will often start a chapter with a problem from a previous offering of CSci 1001. These
problems will give you an introduction to the chapter topic, as well as an example of some types of
problems that might appear in the homework or exams. A solution to the introductory problem will
usually, but not always, appear at the end of the chapter.

13
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Using a correct combinations of these, along with other basic operations such as get
(for input), set (to assign a name to a value used in the program), or print (for output),
devise an algorithm that gets a maze as input, places the robot on the start square, and
navigates the robot through the maze. Once the robot reaches the end, the algorithm
should print out a message stating it is at the end, and another stating how many moves
it made navigating the maze.

2.1.2 Introductory Comments

)

Some universities have a class on “Great Ideas in Computer Science.” As mentioned in
Chapter 1, our class differs from these great ideas classes in significant ways. However, it
also has similarities. In particular, the topics in this class focus on key ideas that make
computer technology and practice possible.

The first key idea we’ll explore is that of an algorithm. Roughly speaking, an algorithm
is a set of precise instructions for solving a problem. (We’'ll look at a more specific
definition in class.) This concept is essential because accomplishing any task with a
computer requires clearly and unambiguously specifying the steps a computer should
perform to complete the task. Because this is so central to what computers do, we will
use algorithms again and again in this class.

Why, more specifically, are algorithms important? How do they appear in this class?
How do they relate to the course’s liberal education requirements? What should you be
able to do with algorithms? How do people represent algorithms? What is the connection
between algorithms and computer programs? This chapter addresses these and related
questions.

2.1.3 Motivation

Algorithms might seem like an odd starting topic for this class. Are algorithms really
that important?

They are. In fact, some computer scientists see algorithms as the central concept in
computer science. As mentioned above, before solving a problem with a computer there
must be a precise specification of the steps the computer must perform. This precise
specification is an algorithm. Computer programs are implementations of algorithms, so
algorithms underlie programming. To understand how efficient a computer solution to a
problem is, computer scientists analyze algorithms. To create a more efficient solution
computer scientists try to improve existing algorithms or discover alternative algorithms.
(Or they might prove that a more efficient algorithm cannot exist.) There are some
algorithms that are important generally, such as algorithms for searching for an item in
a list, or sorting all items in a list.? And there are important algorithms for subareas of

2In fact, there are a number of different searching and sorting algorithms; for example, think about
how many different ways you can put a shuffled deck of cards in order.
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computer science, for instance algorithms for coloring and rendering shapes in computer
graphics, and algorithms for merging two different database tables.

Algorithms will occur throughout much of this class; for example, we will see algo-
rithms again in the chapters on algorithmic complexity and computer programming.

2.1.4 Skills

Once we complete this topic, you should be able to do the following;:

1. Be able to explain what an algorithm is and isn’t, why algorithms are important to
computer science, and how algorithms are usually represented.

2. Given a purported algorithm, be able to determine whether it is indeed a valid
algorithm; if it is not, be able to say why it is deficient.

3. Given an incorrect algorithm or partially complete algorithm, be able to identify
any errors, and correct or complete the algorithm.

4. Given an algorithm, be able to trace through it and explain what it is doing.

5. Given an algorithm to solve one problem, and given a second, related problem, be
able to modify the algorithm to solve the related problem.

6. Given a problem whose solution can be expressed as an algorithm, write a correct
and valid algorithm to solve that problem.

2.1.5 Algorithms and the Liberal Education Requirements

How do algorithms embody the liberal education requirements? While algorithms are not
the usual type of mathematics like algebra or calculus, they nonetheless exhibit many
mathematical characteristics and require a variety of mathematical skills. For example:

e Algorithms require the specificity, clarity, and attention to detail that is a charac-
teristic of mathematics.

e Algorithms use special keywords, notation, or conventions (such as indentation to
indicate algorithm structure). This is similar to the use of special notation, etc. in
mathematics.

e Algorithms describe computational processes. Specifically, an algorithm describes
a procedure for doing a sequence of computations. Often individual computations
are simple (for example, simple additions or comparisons rather than sophisticated
mathematical functions), but the entire sequence constitutes a complicated compu-
tational process.
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Algorithms are also related to the society and technology theme. The readings, dis-
cussions, and the occasional homework and/or lab questions ask you to think about such
questions as

e What types of tasks can computers do and what can’t they do? Or, put another
way, what types of tasks can be solved by algorithms, and what types cannot?

e [s increasing automation a benefit or a concern?

e What are some current societal problems that computer practitioners are trying to
solve by finding new algorithms or improving existing ones?

2.2 Specifying Algorithms

2.2.1 An Example

Suppose you write software for a construction firm. For a given construction project, the
software maintains a list of on the job injuries: how many injuries occurred the first day,
how many the second day, etc. You need to write a function that goes through all the
days and counts the number of days that no injuries occurred. (Note different projects
might have different total numbers of days. Since we need to be flexible, let n stand for
the total number of days for any given project.) Here is a description of an algorithm for
that task:

Algorithm 1

Input: A total number of days n, and a list A, with A[é] giving the number of on-the-job
injuries on day 1.

Output: A message stating the number of days with 0 on-the-job injuries.

Get n
Get A[11, ..., Alnl]
Set i to 1
Set countZeros to O
While i <= n

If A[i] equals O, then

Set countZeros to countZeros + 1

Set i to i + 1
Print ‘The number of zeros in the list is ’, countZeros
10 Stop

O 00 N O O W N -

This is a description of an algorithm for solving the problem. The algorithm is given in
pseudocode. Pseudocode, as the name suggests, is somewhat like programming code, but
not quite. Computer scientists often use pseudocode rather than a natural language (such
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as English) description because natural language is usually imprecise. And they usually
use pseudocode rather than an actual programming language for a number of reasons,
including that pseudocode avoids many language rules programmers need to remember
when writing program code. For example, some programming languages require a line
of code to end with specific punctuation such as a semicolon. Remembering this (and
remembering the exceptions where a semicolon is forbidden) is an extra burden we would
like to avoid when focusing only on the steps the computer must do to solve the problem.

Problem 1: Think about some other reasons why pseudocode is often preferable to
natural language and to programming code for algorithm specification.

2.2.2 Algorithm Characteristics

Before exploring pseudocode further, let’s return to the question “what is an algorithm?”
Recall that, generally speaking, an algorithm is a specific set of instructions for solving a
given problem. More specifically, though, algorithms have certain characteristics:

1. Input specified. The algorithm must specify any input. Note in the example above
the input is the number of days as well as the list containing the number of injuries
for each day. Two additional notes: First, since there are many different possible
types of input, it is often important to specify not only what the input is, but also
its type (examples: “a string S containing alphabetic characters and digits,” and
“a list A of nonnegative integers”). Second, occasionally we will omit the input
specification for an algorithm for the sake of brevity. However, in your course work
please include the input specification unless otherwise instructed.

2. QOutput specified. The algorithm must specify any output. Usually the output is a
number, string, message, list, or some combination of these. As with input, occa-
sionally we will omit the output specification; however, you should always include
it unless instructed otherwise.

3. Correctness. This characteristic is straightforward: an algorithm must solve the
problem correctly for all possible valid input.

4. Finite. The algorithm finishes in a finite amount of time. Put another way, the
algorithm will always solve the problem and stop.

5. Precise. Each step in the algorithm is precise, to the point it should need no further
explanation or expansion. Moreover, each step in the algorithm is doable by a
computer. Note that the algorithm above avoids instructions such as “Get the
input”, “Find all the 0’s in the list,”, “Output the message”, or other instructions
that are ambiguous or insufficiently precise.

Put another way, if the pseudocode for an algorithm is given to a programmer, he
or she should have no questions about how the algorithm works. For that reason,



18 CHAPTER 2. ALGORITHMS

turning pseudocode into program code is often straightforward (as computer tasks
g0).

6. Generality. The algorithm isn’t so specific that it solves the problem only under
certain unnecessary restrictions. For example, the algorithm above solves the prob-
lem for a general number of days n. The number is not restricted to a single value
— an algorithm that solved the problem only for projects that lasted, say, exactly
14 days would not be very useful .

Problem 2: Consider the following set of instructions. It is a valid algorithm or not? If
it is not, state which characteristic or characteristics it does not possess.

(Purported) Algorithm 2

Input: A total number of days n, and a list A, with A[i] giving the maximum temperature
in degrees Fahrenheit on day .

Get n

Get A[1], ..., A[n]
Set maxTemp to A[1]
Set 1 to 2

While i <= n
If A[i] > maxTemp
Set maxTemp to A[i]
Print ‘The maximum temperature was ’, maxTemp
Stop

© 0 N O O W N =

2.2.3 Pseudocode Characteristics

Note some characteristics of the pseudocode description in Algorithm 1:

e [t is highly structured. 1t contains a sequence of operations along with the control
instructions if and while.

e [t contains a mixture of English and operations. Specifically, it contains some En-
glish words such as get, if, and print, and some mathematical notation and op-
erations such as n, A[l], and addition.

o All the instruction in it are low-level. Put another way, each step is specific —
specific enough that a person should be able to perform the instructions without
further explanation.

3 Actually the algorithm is more general than stated — it counts the number of zeros in an arbitrary
list of numbers regardless of whether the list holds number of on-the-job injuries on a construction project,
maximum temperatures, number of diabetes-related hospital admissions, numbers of times you played
Tetris, etc.
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These characteristics describe pseudocode: it is sufficiently specific and low-level to be
used in algorithm specification, but contains a simple structure and enough English con-
structs that it is easier to read and understand than computer code. In the next section
we’ll look at the details of pseudocode.

2.3 Pseudocode

Learning the basics of pseudocode is not difficult. Instead the challenge is using the basics
to specify algorithms. This section presents pseudocode basics. In subsequent sections
we’ll look at using the basics.

Before beginning, we should note there are many different versions of pseudocode.
All versions allow you to specify any algorithm, so all versions have much in common.
However, they often differ in instruction names or other conventions. The version of
pseudocode in this class is a simple one. However, be aware that different textbooks
might use other versions.

2.3.1 Sequence, Selection, Repetition

To describe an algorithm, you need three basic control mechanisms:

e Sequence. Unless otherwise specified, steps are followed in sequence, one after an-
other. So the algorithm above executes Line 1, then Line 2, then Line 3, etc.

e Selection. There are times when we want steps to be performed only if a certain
condition or conditions hold. Line 7 in Algorithm 1 is done only if the condition in
Line 6 is true. The if statement in Line 6 is an example of a selection statement.

e Repetition. Often there are parts of algorithms that are repeated many times. An
example of this is the “while loop” in Lines 5-8 in Algorithm 1; this loop allows the
algorithm to check each number in the list.

Pseudocode must include these three control mechanisms. Sequence is easy — simply
list the steps in order. (Note line numbers are not absolutely necessary, so we will include
them only when useful.) Selection uses the if construct and its variants such as if-else.
Repetition uses while loops or for loops.

2.3.2 Indentation

Notice the indentation in Algorithm 1. This indicates the “scope” of the while and if
instructions there. Specifically, the indentation of Lines 6 through 8 indicates the “body”
of the while loop that starts in Line 5. The indentation lets a reader know that the
instructions in Lines 6 through 8 should be performed as long as the condition in Line
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5 is true. Once Line 5 is executed when that condition is no longer true, the algorithm
skips to Line 9.

Notice also the further indentation in Line 7. This is the body of the if statement.
The indentation indicates that this statement should be executed only if the condition in
Line 6 is true. If the condition is false, then the algorithm skips Line 7 and resumes with
Line 8.

Line 7 is a single-statement body of the if instruction. Multiple-statement bodies,
such as the one for the while loop, are also possible for if statements. For example,
suppose each time a 0 was found you wanted the algorithm not only to update the count,
but also to print a short message. Then you could include another line right after Line 7,
with the same level of indentation:

6 If A[i] equals 0, then

7 Set countZeros to countZeros + 1
7o Print ‘No injuries on day ’, i
8 Set 1 to i+ 1

Lines 7 and 7b would be executed if the condition in Line 6 is true. Otherwise, neither
would be executed, and the algorithm would skip to Line 8.

As Algorithm 1 indicates, you can ‘nest’ control structures. In particular, it has an if
statement within a while loop. Pseudocode has only a few basic building blocks, but can
describe very complicated algorithms because of the ways you can combine these building
blocks. You can place loops within loops (this is useful, for example, if you are looping
through a table: one loop will step through the columns, the other through the rows),
if’s within if’s (useful when you have complicated selection conditions), loops within
if’s or if’s within loops, etc.

2.3.3 Other Basic Pseudocode Commands

In addition to if statements and their variants such as if-else, and while and for
statements,” pseudocode has a few other basic building blocks. Each of these appears in
Algorithm 1 above.

e get allows the algorithm to obtain input.

e set allows the algorithm to assign a value to a variable.

e print allows the algorithm to output a message or the value of one or more variables.

4Note that the loop condition in Line 5 must become false at some point for the algorithm to continue
past the loop and eventually stop. A loop that never stops is called an “infinite loop.”

5The if-else and for statements haven’t been discussed yet. Problem 3 below contains an example
of if-else use. However, for loops won’t appear until later in the class.
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e stop indicates the termination of the algorithm. Usually it is the last line of the
algorithm, but complicated algorithms may have more than one stop. For example,
it is possible to have a stop statement at the end of an if-body.%

In addition to these basic building blocks, pseudocode can use basic arithmetic and other
operations. Algorithm 1 contains arithmetic comparisons in Lines 5 and 6, and simple
additions in Lines 7 and 8. Pseudocode can also include other operations including sub-
traction, multiplication, division, exponentiation, and finding remainders; using functions
such as square roots, sines and cosines, and logarithms; comparing alphabetic characters,
or concatenating two alphabetic strings.

2.4 Additional Comments on Pseudocode

This section contains additional comments on a few potentially confusing aspects of pseu-
docode.

2.4.1 Different Ways of Expressing an Operation

There are a number of different ways to express the same concept using pseudocode. For
example, suppose we want to set the value of the variable s to 42. Ways to write this
include

s = 42

Set s = 42

Set s to 42

Set the value of s to 42
s <- 42

Whatever way you write operations like this should be precise, and should be used consis-
tently; but otherwise use whichever alternative you feel most comfortable with. Moreover,
when you are given an algorithm, recognize that it might use slightly different terms and
notation than you’ve seen in class.

2.4.2 What is a Variable?

The language surrounding “variables” can be a little complicated. Here are two issues.
The next subsection discusses an additional one.

First, variables can hold any values that can be represented within a computer. Often
this is a number, e.g., Set x to 42. However, it could also be a list or a character string,
for example Set A to the list 1,2,3,4,5 or Set A to the string "TTCCAGC", or

6Some versions of pseudocode omit the stop command with the understanding that an algorithm
stops when it runs out of lines to execute.
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Set A to the string "string". Notice in all these cases there is a difference between
the variable name, and the variable value. For example, in Set x to 42 the variable
name is x, while the value is 42.

Second, we indicate strings by enclosing them in single or double quotes. So, e.g., the
statement Set a to ‘b’ means set the value of the variable a to the single character
‘b’. However, the statement Set a to b means set the value of the variable a to the
value of the variable b. Note the reason for the possible confusion here — any character
or string can be a variable name, or it can be a character value assigned to a variable.
It’s important to keep these two different uses straight.

Problem 3: To explore the difference between variables names and values further, trace
through the following code and figure out what it prints:

Set a to ‘x’
Set b to ‘y’
If a equals b then
Set a to ‘b’
Else
Set a to b
Print a
Stop
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The answer is at the end of this chapter.

2.4.3 Lists, etc.

Lists, strings, and tables have a variable name (e.g., A in Algorithm 1 above), but contain
a number of values. So when working with them we also need to keep track of a string
location, list position, etc. Consider Set myString to "CGATG". Then the second item
in the string is the character ‘G’. Notice that if we want to refer to that item we can’t just
say “the character ‘G’ in the string” since there can be more than one ‘G’. So in this case
there is the string name, A, the location in the string, 2, and the value at that location,
‘G’.

One additional caution: there are different terms for ‘location’. Some algorithms will
reference the second location in the string myString by saying ‘index 27, ‘slot 2’, ‘subscript
2’ ‘location 2’ ‘entry 2, ‘item 2, ‘position 2’, ‘myString[2]’, myStrings and so on. The
lack of a standard term and notation for this can be confusing. However if you keep the
key point here in mind — that in a list or string there is a name, a location (or index,
etc.), and the value in the list or string at that location — you’ll find it easier to work
with lists and strings.
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2.4.4 Variable Names

In pseudocode (as in most programming languages) you can name variables anything
reasonable. Here are some general guidelines.

o Descriptive names: Use descriptive variable names. For example, if you are counting
the number of times something occurs in a list or table, then the variable name
is usually something like count. Longer or more descriptive names are possible,
including multiword names such as countZeros or count_zeros (note these use
capitalization and the underscore, respectively — you should not have a space in a
variable name). You don’t want to get carried away with too long of a name, but
using a descriptive name can help keep variables straight, and make an algorithm
easier to read.

As an example, suppose you are working with a table and need to keep track of the
current row and column. So you could call the related variables row and column, or
r and c. Both these choices are more descriptive to someone reading the algorithm
than, say, a and b, or x and y.”

e Loop control variables: i and j are commonly used as loop control variables, e.g.,
While i < 10.

e n: The variable n is often used to hold an input value, as in the following:

Get n
Print ‘n squared is ’, n * n

A second common use is to indicate the length of a list (or some other upper limit).
Suppose you have a list of the number of hours per day you worked over an n-day
period. The following algorithm computes the total number of hours you worked:

Algorithm 3: Sum the numbers in a list
Input: A total number of days n, and a list of numbers A.

Output: A message stating the sum of all the numbers in the list A.

Get n

Get A[1],..., Aln]
Set 1 to 1

Set sum to O
While i <= n

"As another example, rewrite the pseudocode in Section 2.4.2 by replacing the variable names a and b
by firstChar and secondChar, respectively. But leave the value ‘b’ in Line 4 as it is. The pseudocode
should be easier to understand.
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Set sum to sum + A[i]
Set i to i+l
Print ‘The list sum is ’, sum
Stop

2.4.5 Pseudocode Summary

In pseudocode you do not have a large number of basic building blocks. You have a way
of getting input, a get statement. You have a way of assigning values to variables, a set
statement. You have the usual low-level operations on numbers, characters, strings, and
lists. For example, you can add two numbers, compare two numbers, etc. You have an
if statement, and variants such as if-else. You have loop statements while and for.
You use indentation to indicate the scope of a selection or loop construct. You have an
output statement print. And you have a stop statement. Although later in the class
we’'ll see a few more parts of pseudocode, these are the essential parts and are enough to
specify both simple and complicated algorithms.

2.5 Some Practice

This section contains some introductory practice problems. Answers are at the end of the
chapter.

2.5.1 Writing Pseudocode Fragments

Problem 4: One stepping stone to writing an entire algorithm is to make sure you can
write small fragments of pseudocode. Write pseudocode to do the following. In each case
assume you have already gotten any input. Moreover, do not worry about printing any
output.

a. Set count to 0 if a is less than 5.
b. Set count to 0 if a is less than 5 and b is less than 2; otherwise set count to 1.

c. Add 1 to a five-digit odometer reading. Note a five-digit odometer can show values
between 0 and 99999. Adding 1 to any odometer reading will simply increase that
reading by 1 — for example 67817 will go to 67818 — except if the reading is 99999,
in which case it will roll over to 0.

d. Calculate the sum of the integers between 1 and 42.

e. Count the number of T’s in a genomic sequence (i.e., a sequence consisting of char-
acters ‘A’ ‘C’, ‘G’ or “T") A[1],...,A[n].
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f. Count the number of times the two-character sequence ‘TG’ appears in a genomic
sequence A[1],...,A[n]. That is, count the number of times a ‘I’ occurs in a
location that is immediately followed by a ‘G’ in the next location.

2.5.2 Reading an Algorithm

Problem 5: Consider the following algorithm:
Algorithm 4:

Input: A nonempty string of characters S1.59;...95,, and a positive integer n giving the
number of characters in the string.

Output: See the related problem below.

1 Getn
2 Get $15y...85,

3 Set count to 1

4 Set ch to S

5 Setito?2

6 Whilei<n

7 If S; equals ch

8 Set count to count + 1
9

Set i to1+4 1
10 Print ch, © appeared ’, count, ‘ times.’
11 Stop

a. What is printed if the input string is pepper?
b. What is printed if the input string is CACCTGGTCCAAC?
c. What is the output of this algorithm (in general)? Be precise.

d. Suppose line 3 was changed to Set count to 0. How would your answer to part
(c) change?

2.5.3 Common Mistakes

There are a numerous mistakes that can come up in writing pseudocode. Some are easier
to make than others, and even experienced computer practitioners make them from time
to time.

Problem 6: Suppose you are studying lake level data for a certain lake. This data
reports the lake levels over a number of days, compared to the lake’s average (mean)
level. Negative data correspond to times when the lake level was below average, positive
to when it was above. So, for example, a lake level of —.23 meters means that at the
time of that reading the lake was .23 meters lower than average. A reading of .12 meters



26 CHAPTER 2. ALGORITHMS

means the level was .12 meters above the average level at the time of that reading. You
would like to know how many readings were below the lake average.

More generally, the following pseudocode attempts to count the number of negative
entries in an input list A[1],..., A[n]:

1 Get n

2 Get A[1],..., Aln]

3 Set countNegativeEntries to O

4 While i < n

5 If A[j] <= 0, then

6 Set countNegativeEntries to countNegativeEntries + 1

7 Print ‘The number of negative entries is ’, countNegativeEntries
8 Stop

Identify and correct any mistakes in this pseudocode.

2.6 Two Examples For Class

Here are two additional algorithm examples we will use in class. The first one performs
a common operation, counting the number of times a given character occurs in a string
(think of specific examples where this can be useful.) The second algorithm counts the
number of times a given pattern (which can consist of more than one character) occurs
in a string. This algorithm is more complicated, so expect to spend some time examining
it.
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Algorithm 5: Character Count

Input: A string length n and a text string S1.5;....S, of alphabetic characters, as well as
a search character ch.

Output: A message indicating how many times ch appears in S.

1 Getn

2 Get S515;...5,

3 Get ch

4 Setitol

5 Set count to 0

6 While 7 <n do

7 If S; equals ch then

8 Set count to count + 1
9 Setitoi+1

10 Print ch, © appeared ', count, ‘ times.’
11 Stop

Algorithm 6: Pattern Matching
Input: A string length n and a text string 515 ....S, of alphabetic characters, as well as
a pattern length m and a pattern P, P; ... P, of alphabetic characters.

Output: A message indicating each time the pattern P matches a substring of S.

1 Getn
Get 5152 c. Sn
Get m
Get P1P2Pm
Set i to 1
While s <n—m+1 do
Set j to 1
Set matchOK to true
9 While 5 < m and matchOK equals true then
10 If P; # Siyj—1 then
11 Set matchOK to false
12 Set j to j + 1
13 If matchOK equals true then
14 Print "Match found between positions ’, 7, " and ', i +m — 1
15 Set1tor+ 1
16 Stop
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2.7 Writing Algorithms: How to Begin?

When you are writing an algorithm from scratch, often the most difficult part is getting
started. In class we will discuss techniques — such as top-down design, working a concrete
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example, or figuring out what you need to keep track of during an algorithm — that can
be helpful. Here we’ll give an example of one of these techniques, top-down design.

Suppose you are given a maze® that consists of a 10 x 10 grid. That is, the maze
consists of 10 rows and 10 columns of squares. Suppose that you can specify a row and
column number, and do a check isOpenNorth, that returns true if there is an opening
on the “north” side of the current square, and false otherwise. Also, you can do checks
isOpenEast, isOpenWest, and isOpenSouth to check the east, west, and south sides,
respectively.

Suppose further that, instead of solving the maze, you need to write an algorithm
to go though and count the number of maze locations that are enclosed on exactly three
sides (that is, the locations where there are walls on any three of the sides, but an opening
on the fourth). To do this you are allowed to step through the maze as if it were a table,
i.e., row by row and column by column. Put another way, you don’t need to follows paths
through the maze to visit each square; instead you have a “birds-eye view.”

What are the major tasks such an algorithm would need to do? A very crude high
level outline is

Get input
Count locations enclosed on exactly 3 sides
Output result

Of these three items, the second will be the most complicated, so let’s focus on it and
break it down further. We need to step through all the locations and count the number
of walls. So a more detailed breakdown can be something like this:

Step through each location
If the current location has exactly 3 walls
Count it

Note that this isn’t pseudocode yet, though. For example, what does it mean to step
through each location? What does it mean to count it? So we can be more specific:

For each row r
For each column c
If the location at row r column c is enclosed on exactly 3 sides
Add one to the count

We're closer. But there are still additional details we need to include. For example, For
each row r is still imprecise, as is For each column c. Another issue is we need to
initialize count, and update it when appropriate. Here’s another attempt:

8Important: If there is a maze problem on the homework, some parts of the notes will be helpful on
that problem, but other parts will not. Do not rely overmuch on this example in solving any homework
problem involving mazes.
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Set r to 1
Set ¢ to 1
Set count to O
While r <= 10
While ¢ <= 10
If the location at row r column c¢ is enclosed on exactly 3 sides
Set count to count + 1
Set ¢ toc + 1
Set r tor +1

To complete this part, notice that the condition If the location is enclosed on
exactly 3 sides still needs to be made more specific as well.

Problem 7: Make the following line more specific:

If the location at row r column c is enclosed on exactly 3 sides

2.8 Questions to Think About For Class

Here are questions to think about for class.

1.

What types of problems can be solved by algorithms? What types can’t, or can’t
easily?

. Think about an area you are interested in outside of computer science. Are there any

processes in that area that need to be carefully and precisely specified (regardless
of whether they are done by computer or not)?

Cooking recipes, and instructions for putting together furniture are two analogies
used for algorithms. For each one, explain how it is like an algorithm, and how it is
not. Also, think of other analogies.

Suppose you are explaining algorithms to another student. What is hard about
algorithms — what would you be sure to explain very carefully?

Come up with some specific examples where you might want the following: (a) a
triply nested loop, (b) a loop inside an if statement, (c) one if statement inside
another.

2.9 Additional Practice

Here are three additional practice problems. Solutions are in the next section.

Problem 8: Trace through Algorithm 6, the pattern matching algorithm, when the text
string S is CGCCCTACCGGCACC and the pattern string P is CC. Specifically, (a) state what
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the output would be, and (b) each time line 15 is reached write the current values of i
(before 1 is added to ¢ in that line), j, and matchOK.

Problem 9: This question again asks you to consider the pattern matching algorithm,
Algorithm 6. Suppose that instead of printing a message whenever there was a match,
you just want the algorithm to output the number of times matches occur. For example,
suppose the text string S is ATGCATAGATT, and the pattern P is AT. Then the algorithm
should output only the message

There were 3 matches.

Modify the pattern-matching algorithm to do this. For your answer you may either write
the entire algorithm, or you may just indicate ezactly what needs to be added or modified
exactly where.

2.10 Problem Solutions

2.10.1 Introductory Problem

Here is a model solution to the problem at the beginning of this chapter. Note that for
some problems, including this one, there is more than one possible correct solution. So
this is one possible algorithm, but not the only possible correct one.

Get the input maze
startInMaze
moveForward
Set count to 1
While checkForMazeEnd returns false
If checkForWall returns true
turnRight
If checkForWall returns true
turnLeft // turn back to original heading
turnLeft // now turn left from that heading
moveForward
Set count to count + 1
Print ‘Robot found end of maze.’
Print ‘Number of moves: ’, count
Stop
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2.10.2 Additional Problems
Problem 1: This problem will likely be discussed in class or lab.
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Problem 2: It is not a valid algorithm. It is neither correct nor finite since the ¢ value
is always 2 (the algorithm should contain a line Set i to i + 1 between Lines 7 and
8) indented at the same level as the if in Line 6). Also, it fails to specify the output
explicitly.

Here is a correct version:
(Corrected) Algorithm 2

Input: A total number of days n, and a list A, with A[i] giving the maximum temperature,
in degrees Fahrenheit, on day 1.

Output: A message stating the maximum temperature.

Get n
Get A[1], ..., A[n]
Set maxTemp to A[1]
Set 1 to 2
While i <= n

If A[i] > maxTemp

Set maxTemp to A[i]

Set 1 to i1 + 1
Print ‘The maximum temperature was ’, maxTemp
10 Stop
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Problem 3: The pseudocode would print out the character ‘y’. Note in line 3, a and b
do not have equal values, since a has value ‘x’ and b has value ‘y’. So the else statement
is executed, setting the value of a to the value of b, namely ‘y’.

Problem 4:

[a.]
If a <5
Set count to O

[b.]
If a <5 and b < 2
Set count to O
Else
Set count to 1

[c.]
If odometerReading equals 99999
Set odometerReading to O
Else
Set odometerReading to odometerReading + 1
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[4.]
Set 1 to 1
Set sum to O
While i <= 42
Set sum to sum + i
Set i to i + 1

[e.]
Set i to 1
Set countT to O
While i <= n
If A[i] equals ‘T’
Set countT to countT + 1
Set i to i +1

[f.]
Set i to 1
Set countTG to O
While i <= n - 1
If A[i] equals ‘T’ and A[i+1] equals ‘G’
Set countTG to countTG + 1
Set i to i + 1

Problem 5:
a. p appeared 3 times.
b. C appeared 6 times.

c. A message stating the number of times the first character of the word appears in
the word.

d. The number in the output message would be the number of times the first character
of the word appears in the word, excluding the first occurrence.

Problem 6: There are six errors.

1. i is never initialized — there should be a line Set i to 1 prior to the while loop.

2. The loop continuation condition is incorrect: i < n stops before the last item in
the list, A[n]. The loop condition should be i <= n.

3. In line 5 A[j] should be A[i].
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4. In line 5 <= should be <.

5. i is never updated in the loop: there should be a line Set i to i + 1 at the end
of the while loop.

6. The print line’s indentation is incorrect: In the pseudocode the incorrect indenta-
tion places the print line inside the while loop, meaning it is executed during each
iteration of that loop. It should be executed only once, after the while loop is done.
Therefore its indentation should be the same as the ‘While’ in Line 4.

Problem 7:

Set countOpenings to 0

If isOpenNorth at row r column c equals true
Set countOpenings to countOpenings + 1

If isOpenEast at row r column c equals true
Set countOpenings to countOpenings + 1

If isOpenSouth at row r column c equals true
Set countOpenings to countOpenings + 1

If isOpenWest at row r column c equals true
Set countOpenings to countOpenings + 1

If countOpenings equals 3
Set count to count + 1

Problem 8:
a. The output would be
Match found between positions 3 and 4
Match found between positions 4 and 5
Match found between positions 8 and 9

Match found between positions 14 and 15

b. Here are the values immediately prior to each execution of the line 15:
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Problem 9: Here is one possibility.

Input:

A string length n and a text string 519, ... S, of alphabetic characters, as well as

a string length m and a pattern PP, ... P, of alphabetic characters.

Output: A message indicating the number of times the pattern P matches a substring of
S. (changed)

1
2
3
4
5
6
7
8

9

10
11
12
13
14
15
16
17
18

Get n
Get 515;... 5,
Get m
Get P1P2Pm
Set 7 to 1
Set count to 0 // Added
While s <n—m+1 do
Set j to 1
Set matchOK to true
While 7 < m and matchOK equals true then
If P; # Si+j—1 then
Set matchOK to false
Set 7 toj+1
If matchOK equals true then
Set count to count + 1 // Changed
Set 7 toi+1
Print ‘There were ’, count, ‘* matches.” //Added
Stop
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Data Representation

It is all 0’s and 1’s.

3.1 Introductory Problem

Computers often represent colors as an RGB (red-green-blue) triple of numbers, where
each of the red, green, and blue components is an integer between 0 and 255. For example,
the color (255, 0, 10) has full red, no green, and a small amount of blue. Write an algorithm
that takes as input the RGB components for a color, and returns a message indicating
the largest component or components. For example, if the input color is (100, 255, 0),
the algorithm should output “Largest component(s): green”. And if the input color
is (255, 255, 255), then the algorithm should output “Largest component(s): red,
green, blue”.

3.2 Overview

One amazing aspect of computers is they can store so many different types of data. Of
course computers can store numbers. But unlike simple calculators they can also store
text; and they can store colors, and images, and audio, and video, and many other types
of data. And not only can they store many different types, but they can also analyze
them, and they can transmit them to other computers. This versatility is one reason why
computers are so useful, and affect so many areas of our lives.

To understand computers and computer science, it is important to know something
about how computers deal with different types of data. Let’s return to colors. How are
colors stored in a computer? The introductory problem states one way, namely as an
RGB triple. This is not the only possible way: RGB is just one of many color systems.
For example, sometimes colors are represented as an HSV triple: by hue, saturation, and
value. However, RGB is the most common color representation in computer programs.

This leads to a deeper issue: how are numbers stored in a computer? And why is it

35
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important anyway that we understand how numbers, and other different types of data, are
stored and processed in a computer? This chapter deals with these and related questions.
In particular, we will look at the following:

. Why is this an important topic?

How do computers represent numbers?
How do computers represent text?

How do computers represent other types of data such as images?

. What is the binary number system and why is it important in computer science?

How do computers do basic operations such as addition and subtraction?

3.2.1 Goals

Upon completing this chapter, you should be able to do the following:

1.

Be able to explain how, on the lowest level, computers represent both numeric and
text data, as well as other types of data such as color data.

. Be able to explain and use the basic terminology in this area: bit, byte, megabyte,

RGB triple, ASCII, etc.

Be able to convert numbers and text from one representation to another.

. Be able to convert integers from one representation to another, for example from

decimal representation to two’s complement representation.

Be able to add and subtract numbers written in unsigned binary or in two’s com-
plement representation.

Be able to explain how the number of bits used to represent data affects the range
and precision of the representation.

Be able to explain in general how computers represent different types of data such
as images.

Be able to do calculations involving amounts of memory or download times for
certain datasets.
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3.2.2 Data Representation and Mathematics

How is data representation related to the liberal education mathematics requirement?
As you might guess, there is a strong connection. Computers store all data in terms of
binary (i.e., base 2) numbers. So to understand computers it is necessary to understand
binary. Moreover, you need to understand not only binary basics, but also some of the
complications such as the “two’s complement” notation discussed below.

Binary representation is important not only because it is how computers represent
data, but also because so much of computers and computing is based on it. For example,
we will see it again in the chapter on machine organization.

3.2.3 Data Representation and Society and Technology

The computer revolution. That is a phrase you often hear used to describe the many ways
computers are affecting our lives. Another phrase you might hear is the digital revolution.
What does the digital revolution mean?

Nowadays, many of our devices are digital. We have digital watches, digital phones,
digital radio, digital TVs, etc. However, previously many devices were analog. According
to the Merriam-Webster online dictionary' “analog” means “of or relating to a device
or process in which data is represented by physical quantities that change continuously.”
Think, for example, of an old watch with second, minute, and hour hands that moved
continuously (although very slowly for the minute and hour hands). Compare this with
many modern-day watches that shows a digital representation of the time such as 2:03:23.

This example highlights a key difference between analog and digital devices: analog
devices rely on a continuous phenomenon and digital on a discrete one. As a second
example of this difference, an analog radio receives audio radio broadcast signals which
are transmitted as radio waves, while a digital radio receives signals which are streams of
numbers.>

The digital revolution refers to the many digital devices, their uses, and their effects.
These devices include not only computers, but also other devices or systems that play a
major role in our lives, such as communication systems.

Because digital devices usually store numbers using the binary number system, a
major theme in this chapter is binary representation of data. Binary is fundamental to
computers and computer science: to understand how computers work, and how computer
scientists think, you need to understand binary. The first part of this chapter therefore
covers binary basics. The second part then builds on the first and explains how computers
store different types of data.

http://www.merriam-webster.com/dictionary/. Accessed Oct. 1, 2013.

2 Actually, it’s more complicated than that because some devices, including some digital radios, in-
termix digital and analog. For example, a digital radio broadcast might start in digital form, i.e., as a
stream of numbers, then be converted into and transmitted as radio waves, then received and converted
back into digital form. Technically speaking the signal was modulated and demodulated. If you have a
modem (modulator-demodulator) on your computer it fulfills a similar function.
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3.3 Representation Basics

3.3.1 Introduction

The algorithms chapter discussed ways to describe a sequence of operations. Computer
scientists use algorithms to specify behavior of computers. But for these algorithms to be
useful they need data, and so computers need ways to represent data.?

People have many ways to represent even a very simple number. For example, the
number four can be represented as 4 or IV or |||| or 2 4+ 2, etc. How do computers
represent numbers? (Or text? Or audio files?)

The way computers represent and work with numbers is different from how we do.
Since early computer history the standard has been the binary number system. Com-
puters “like” binary because it is extremely easy for them. However, binary is not easy
for humans. Most of the time people do not need to be concerned with the internal
representations that computers use; however, sometimes they do.

3.3.2 Why Binary?

Suppose you and some friends are spending the weekend at a cabin. The group will travel
in two separate cars, and you all agree that the first group to arrive will leave the front
light on to make it easier for the later group. When the car you are in arrives at the cabin
you will be able to tell by the light if your car arrived first. The light therefore encodes
two possibilities: on (the other group has already arrived) or off (the other group hasn’t
arrived yet).

To convey more information you could use two lights. For example, both off could
mean the first group hasn’t arrived yet, the first light off and second on indicate the first
group has arrived but left to get supplies, the first on and second off that the group arrived
but left to go fishing, and both on that the group has arrived and hasn’t left.

Note the key ideas here: a light can be on or off (we don’t allow different level of light,
multiple colors, etc.), just two possibilities. But the second is that if we want to represent
more than two choices we can use more lights.

This on or off idea is a powerful one. There are two and only two distinct choices
or states: on or off, 0 or 1, black or white, present or absent, large or small, rough or
smooth, etc. — all of these are different ways of representing possibilities. One reason
the two-choice idea is so powerful is it is easier to build objects — computers, cameras,
CDs, etc. — where the data at the lowest level is in two possible states, either a 0 or a
1.4

3 Actually we need not only data, but a way to represent the algorithms within the computer as well.
How computers store algorithm instructions is discussed in a later chapter.

40f course how a 0 or 1 is represented varies according to the device. For example, in a computer the
common way to differentiate a 0 from a 1 is by electrical properties, such as using different voltage levels.
In a fiber optic cable, the presence or absence of a light pulse can differentiate 0’s from 1’s. Optical
storage devices can differentiate 0’s and 1’s by the presence or absence of small “dents” that affect the
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In computer representation, a bit (i.e., a binary digit) can be a 0 or a 1. A collection of
bits is called a bitstring. A bitstring that is 8 bits long is called a byte. Bits and bytes are
important concepts in computer storage and data transmission, and later on we’ll explain
them further along with some related terminology and concepts. But first let’s look at
the basic question of how a computer represents numbers.

3.3.3 Review of the Decimal Number System

We all know decimal (i.e., base 10) representation and use it every day. So, for example,
the number one hundred and twenty-four is 1 x 100 4+ 2 x 10 + 4 x 1. We can emphasize
this by writing the powers of 10 over the digits in 124:

10% 10t 10°
1 2 4

So if we take what we know about base 10 and apply it to base 2 we can figure out
binary. But first recall that a bit is a binary digit and a byte is 8 bits. In this file most
of the binary numbers we talk about will be one byte long.

(Computers actually use more than one byte to represent most numbers. For example,
most numbers are actually represented using 32 bits (4 bytes) or 64 bits (8 bytes). The
more bits, the more different values you can represent: a single bit permits 2 values, 2 bits
give 4 values, 3 bits gives 8 values, ..., 8 bits give 256 values, and in general n bits gives
2™ values. When looking at binary examples we’ll usually use 8 bit numbers to make the
examples manageable.)

3.3.4 Unsigned Binary

When we talk about decimal, we deal with 10 digits — 0 through 9 (that’s where decimal
comes from). In binary we only have two digits, that’s why it’s binary. The digits in
binary are 0 and 1. You will never see any 2’s or 3’s, etc. If you do, something is wrong.
A bit will always be a 0 or 1.

Counting in binary proceeds as follows:

0 (decimal 0)
1 (decimal 1)
10 (decimal 2)
11 (decimal 3)
100 (decimal 4)
101 (decimal 5)

reflectivity of locations on the disk surface.
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(Old joke: “There are 10 types of people in the world. Those who understand binary and
those who don’t.”)

The next thing to think about is what values are possible in one byte. Let’s write out
the powers of two in a byte:

27 26 25 2% 923 22 21 20
128 64 32 16 8 4 2 1

As an example, the binary number 10011001 is
Ix1284+0x64+0x32+1x16+1x8+0x4+0x2+1x1=153.

Note each of the 8 bits can either be a 0 or a 1. So there are two possibilities for the
leftmost bit, two for the next bit, two for the bit after that, and so on: two choices for
each of the 8 bits. Multiplying these possibilities together gives 2% or 256 possibilities. In
unsigned binary these possibilities represent the integers between 0 (all bits 0) to 255 (all
bits 1).

3.3.5 Decimal to Binary Conversion

One task you will need to do in this class, and which computer scientists often need to do,
is to convert a decimal number to or from a binary number. The last subsection showed
how to convert binary to decimal: take each power of 2 whose corresponding bit is a 1,
and add those powers together.

Suppose we want to do a decimal to binary conversion. As an example, let’s convert

the decimal value 75 to binary. Here’s one technique that relies on successive division by
2:

75/2 quotient=37 remainder=1
37/2 quotient=18 remainder=1
18/2 quotient=9  remainder=0
9/2 quotient=4  remainder=1
4/2  quotient=2  remainder=0
2/2  quotient=1  remainder=0
1/2  quotient=0 remainder=1

We then take the remainders bottom-to-top to get 1001011. Since we usually work with
group of 8 bits, if it doesn’t fill all eight bits, we add zeroes at the front until it does. So
we end up with 01001011.

Problem 1: Write an algorithm that specifies the process given in the example above to
convert a decimal integer to binary. Here is the input and output specification:

Input: a nonnegative positive integer n.

Output: a list of digits by, bx_1, ..., b1, by where by is the 1’s digit, b; the 2’s digit, and by
the largest (i.e., leftmost digit) in the binary representation of n (note we aren’t adding
any 0’s to the front to get a predetermined length.)



3.3. REPRESENTATION BASICS 41

The algorithm before Problem 1 is one common method for decimal to binary conver-
sion. Here is another. Let’s convert the decimal value 87 to binary. We start by finding
the largest power of two that is not greater than 87. It is 64. We then put a ‘1’ in the
64 (i.e., the 2°) place in the binary representation of 87, and next subtract 64 from 87 to
get 23. Now the next power of 2 down from 64 is 32. Since 23 is less than 32 we put a ‘0’
in the 32 place. The next power down is 16. Since 23 is greater than 16, we put a ‘1" in
the 16 place, subtract 16 from 23 to get 7, and continue with the process. Here is a short
write-up of the remaining steps.

The next power of 2 downward is 8.
Is 7 greater than or equal to 87
No, so put a O in the 8 place.

The next power of 2 downward is 4.
Is 7 greater than or equal to 47
Yes, so put a 1 in the 4 place, and subtract 4 from 7 to get 3.

The next power of 2 downward is 2.
Is 3 greater than or equal to 27
Yes, so put a 1 in the 2 place, and subtract 2 from 3 to get 1.

The next power of 2 downward is 1.
Is 1 greater than or equal to 17
Yes, so put a 1 in the 1 place, and subtract 1 from 1 to get O.

Since the we have considered all powers of 2 down to 2 to the Oth power,
namely 1, we stop.

Here is the representation of 87, written as a byte with the powers of two written above
each bit:

27 26 25 94 93 92 9l 20

128 64 32 16 8 4 2 1

o 1 0 1 0 1 1 1
Either of the two techniques above will work for converting decimal to binary.
Tip: Memorize the first 10 or so powers of 2. You'll be using them extensively in this
class.

Problem 2: In one episode of the TV show The Simpsons the character Homer Simpson
wrote the following:
3987"% + 4365' = 4472"2.

(Leave aside for now the question of whether this is a correct equation.) Represent each
of the three numbers 3987, 4365, and 4472 in binary. Use as many bits as needed for each
number (you will need more than eight).
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3.3.6 Addition of Binary Numbers

In addition to storing data, computers also need to do operations such as addition of data.
How do we add numbers in binary representation?
Addition of bits has four simple rules:

0 0 1 1
+0 +1 +0 +1

0 1 1 10

Now if we have a binary number consisting of multiple bits we use these four rules, plus
“carrying”. Here’s an example:
00110101
+ 10101100

11100001

Here’s the same example, but with the carried bits listed explicitly, i.e., a 0 if there is no
carry, and a 1 if there is:
carry : 0111100
00110101
+ 10101100

11100001

We can check binary operations by converting each number to decimal: with both
binary and decimal we’re doing the same operations on the same numbers, but with
different representations. If the representations and operations are correct the results
should be consistent. Converting 00110101 to decimal produces 53 (do the conversion on
your own to verify its accuracy), and converting 10101100 gives 172. Adding these yields
225, which, when converted back to binary is indeed 11100001.

But ... binary addition of two 8-bit numbers doesn’t always work quite right:

01110100
+ 10011111

100010011

Note there are 9 bits in the result, but there should only be 8 in a byte. Here is the sum

in decimal:
116

+ 159

275
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Note 275 is greater than 255, which is the maximum we can hold in an 8-bit number.
This results in a condition called overflow. Overflow is not an issue if the computer can
go to a 9-bit binary number; however, if the computer only has 8 bits set aside for the
result, overflow can result in the program not running, or not running correctly.

3.3.7 Subtraction of Binary Numbers
Once again, let’s start by looking at single bits:

0 0 1 1
—0 -1 -0 —1
0 -1 1 0

Notice that in the —1 case what we often want to do is get a bit value 1, and borrow. So
let’s apply this to an 8-bit problem:

10011101
— 00100010

01111011

which is the same as (in base 10)
157
- 34

123
Here’s the binary subtraction again with the borrowing shown:
borrow : 1100010

10011101
— 00100010

01111011

Most people find binary subtraction significantly harder than binary addition.

Problem 3: In the last subsection we saw that overflow was a possible problem when
two binary numbers were added. Can it (or a similar condition) occur when one binary
number is subtracted from another?

3.4 Other Representations Related to Binary

You might have had questions about the binary representation in the last section. For
example, what about negative numbers? What about numbers with a fractional part?
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Aren’t all those 0’s and 1’s difficult for humans to work with? Etc. These are good
questions. In this and the next two sections we’ll look at a few other representations that
are used in computer science and are related to binary.

3.4.1 Hexadecimal

Computers are good at binary. Humans aren’t. Binary is hard for humans to write, hard
to read, and hard to understand. But what if we want a number system that is easier to
read, etc. but still is closely tied to binary in some way?

One possibility is hezadecimal, i.e., base 16. But using a base greater than 10 imme-
diately presents a problem. Specifically, we run out of digits after 0 to 9 — we can’t use
10, 11, etc. because those have multiple digits within them. So instead we use letters: A
is 10, B 11, C 12, D 13, E 14, and F 15, as shown in Figure 3.1. So the digits we're using
are 0 through F instead of the 0 through 9 in decimal, or the 0 and 1 in binary.

Figure 3.1: Hexadecimal digits and their decimal equivalents

Hexadecimal  Decimal
Digit Equivalent
0

© 00 1 O O W N

HEHOOQW@WD> © 0 10 Utk WK~ O

We also have to reexamine the value of each place. In hexadecimal, each place rep-
resents a power of 16. A two-digit hexadecimal number has a 16’s place and a 1’s place.
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For example, D8 has D in the 16’s place, and 8 in the 1’s place:

16" 16°
16 1
D 38

So the hexadecimal number D8 equals 13 x 16 + 8 x 1 = 216 in decimal. Note any two
digit hexadecimal number, however, can represent the same amount of information as one
byte of binary. So it’s easier for us to read or write.

When working with a number, there are times when which representation is being used
isn’t clear. For example, does 10 represent the number ten (so the representation is deci-
mal), the number two (the representation is binary), the number sixteen (hexadecimal),
or some other number? Often, the representation is clear from the context. However,
when it isn’t we use a subscript to clarify which representation is being used, for example
104 for decimal, versus 10, for binary, versus 10,4 for hexadecimal.

Hexadecimal numbers can have more hexadecimal digits than two. For example,
consider F'F0581 A4, which uses the following powers of 16:

167 16° 165 16* 16 16> 16! 16°
FF 0 5 8 1 A 4

So in decimal this is

15 % 16" + 15 x 16° +0 x 16° + 5 x 16* + 8 x 16% + 1 x 16% 4+ 10 x 16" + 4 x 16"
= 15 x 268435456 4 15 x 16777216 + 0 x 1048576 + 5 x 65536
+8 %4096 +1 x 256410 x 16 +4 x 1
= 4,278,550,948

Problem 4: How many bits are required to store the hexadecimal number F'F0581A47

Hexadecimal doesn’t appear often, but it is used in some places, for example sometimes
to represent memory addresses (you’ll see this in a future chapter) or colors. Why is
it useful in such cases?” Consider a 24-bit RGB color with 8 bits each for red, green,
and blue. Since 8 bits requires 2 hexadecimal digits, a 24-bit color needs 6 hexadecimal
digits, rather than 24 bits. For example, F'F'0088 indicates a 24-bit color with a full red
component, no green, and a mid-level blue.

Now there are additional types of conversion problems:
e Decimal to hexadecimal

e Hexadecimal to decimal

e Binary to hexadecimal

e Hexadecimal to binary
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Here are a couple examples involving the last two of these.

Let’s convert the binary number 00111100 to hexadecimal. To do this, break it into
two 4-bit parts: 0011 and 1100. Now convert each part to decimal and get 3 and 12.
The 3 is a hexadecimal digit, but 12 isn’t. Instead recall that C is the hexadecimal
representation for 12. So the hexadecimal representation for 00111100 is 3C.

Rather than going from binary to decimal (for each 4-bit segment) and then to hex-
adecimal digits, you could go from binary to hexadecimal directly using Figure 3.2.

Figure 3.2: Hexadecimal digits and their decimal and binary equivalents

Hexadecimal =~ Decimal Binary
Digit Equivalent Equivalent
0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
) 5 0101
6 6 0110
7 7 0111
8 8 1000
9 9 1001
A 10 1010
B 11 1011
C 12 1100
D 13 1101
E 14 1110
F 15 1111

Now let’s convert the hexadecimal number D6 to binary. D is the hexadecimal rep-
resentation for 1319, which is 1101 in binary. 6 in binary is 0110. Put these two parts
together to get 11010110. Again we could skip the intermediate conversions by using the
hexadecimal and binary columns in the Figure 3.2.

3.4.2 Sign/Magnitude Notation

Thus far we’ve been working with positive numbers. What above negatives? For example,
suppose the temperature is —15° F. How would we represent this in binary?

One possibility is to use one bit to indicate the sign of the number. Let’s use the
leftmost bit: instead of it being the 128’s place we interpret it to indicate that the number
is negative if that bit is a 1, and the number is positive if that bit is a 0. So, for
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example, positive 39 is 00100111, but —39 would be 10100111. We call this representation
sign/magnitude binary, or just sign/magnitude for short.

This representation works, but only to some extent. Let’s take a minute and look at
the tradeoffs. First, with the unsigned binary representation in the last section, we can
represent the integers 0 to 255 with a single byte. With the sign/magnitude representation
we can still only represent at most 256 different possibilities. Note that the smallest
number will be when all the bits are 1:

sign 26 25 21 23 92 9l 20
+/— 64 32 16 8 4 2 1

1 1 1 1 1 1 1 1

This number is —(64 + 32+ 16 + 8 + 4 + 2 + 1) = —127 in decimal.”
How about the largest number: This will be when all bits save the leftmost are 1:

sign 26 25 24 23 22 2l 20
+/— 64 32 16 8 4 2 1

o 1 1 1 1 1 1 1

This is the same number as above, except +127 instead of —127.

So by using this sign/magnitude notation we trade off representing more positive
numbers for being able to represent some negative numbers.

Note that this representation allows 127 positive numbers, 127 negative numbers, and
0. This is 255 possibilities. You might remember that with unsigned binary a byte can
represent 256 possibilities: the numbers 1 to 255, as well as 0. Where did the other
possibility go with sign/magnitude representation?

Notice that 10000000 and 00000000 both represent 0 (—0 and +0, respectively, which
are both the same value, 0). This complicates matters. For example, suppose you are
writing an accounting program and wanted the program to check if revenue —expeditures
equals 0. Doing this would require two checks, one against 10000000, and one against
00000000. This might not seem like a big deal, but it is just one of a number of compli-
cations that having two 0 representations introduces.

Let’s look at another problem with sign/magnitude representation. Does addition
work? For example, what happens if we add 30 to —397 Will the usual way of doing
binary addition work? We should get —9. Here’s what we do get:

00011110
+ 10100111

11000101

5Note that in this calculation 64+324...4+24+1 =27 —1. In general 2 4+2m~142m=2 4 1921420 —
2m+l _ 1. This is a useful formula to remember.
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We know this number is negative, but what is it? It’s the negative of 64+441, or —69.
So instead of adding 30, we subtracted 30.

This is not an insurmountable problem; there are ways to fix it. However, we would like
a representation to be as efficient as possible for frequently performed operations. Is there
a better option than sign/magnitude binary? Is there a representation that allows both
positive and negative numbers, but that is more efficient? We’ll see such a representation
in the next section.

3.5 Two’s Complement Representation

Two’s complement is another method for representing numbers in binary. It’s hard to
understand at first, but the key points are it allows representing both positive and negative
numbers, and does so in such a way that it avoids the problems that arise with the
sign/magnitude representation.

3.5.1 Two’s Complement Representation Basics

Here is one way to think about two’s complement representation. We can start at 0 and
count up:

00000000
00000001
00000010
00000011

And we can start at 0 but count down. What do we get if we start at 000000000 and
subtract one at a time? We get the sequence (ignore for now the carry that “falls off” the

left end):

11111111
11111110
11111101
11111100

This gives some hint as to how two’s complement works. Specifically, for normal unsigned
binary we have the following powers of 2 for each bit:

128 64 32 16 8 4 2 1
For sign/magnitude notation we have leftmost bit indicating the sign:

-/+ 64 32 16 8 4 2 1
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Two’s complement representation uses a different leftmost bit. Specifically, rather than
being the 128’s place, or indicating the sign, the leftmost bit corresponds to negative 128:

-128 64 32 16 8 4 2 1

One effect of this is the numbers that a byte can represent in two’s complement don’t
range from 0 to 255 (as in unsigned binary). Instead the smallest number is —128 (in
two’s complement 100000000), and the largest is +127 (in two’s complement 01111111).

Let’s look at how we do conversions in this new representation. Here’s an outline of
an algorithm for converting from decimal to two’s complement:

Input: an integer (represented in decimal) between —128 and 127

Output: the two’s-complement representation of the number.

Convert the absolute value of the number to binary

If the number is negative
Complement the binary representation (change 0’s to 1’s, and 1’s to 0’s)
Add one to the binary representation

Notice that changing a positive integer (between 0 and 127) to two’s-complement is
the same as we've already learned — you get the same bits as with the unsigned binary
representation because the —128 bit will be 0. But let’s look at an example of converting
a negative number. Specifically, let’s convert —99 to two’s complement.

First we convert 99 to binary: 01100011
Then complement the bits: 10011100
Then add one: 10011101

We can do a two’s complement to decimal conversion to check our work:

10011101 =1 x (—128) +1 x 16+ 1 x84+ 1x4+1x1=—-128416+8+4+1=—-99.

3.5.2 Addition and Subtraction

We can now do two’s complement addition using the usual binary process. For example,
consider (