
Overview of

Computer Science

Phillip Barry

Overview of Computer Science
Phillip Barry
Department of Computer Science and Engineering
University of Minnesota-Twin Cities

Copyright c©2015 Phillip Barry

This textbook consists of notes for the CSci 1001 Overview of Computer Science class
at the University of Minnesota-Twin Cities. More information about that class and these
notes are in the opening chapter. The original version of these notes was used in the
Spring 2014 offering of that class. This current version, Version 1.2, is a small update,
containing some minor clarifications and corrections, as well as the addition of a chapter
of example programming problems.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 Interna-
tional License. Others are free to copy, reuse, etc. this work under the license terms at
http://creativecommons.org/licenses/by-sa/4.0/

Contents

1 What is This Course About? 1
1.1 Introduction . 1
1.2 What This Course Isn’t . 2
1.3 What Are These Note About? . 4
1.4 CSci 1001 and Liberal Education . 5

1.4.1 Why Liberal Education? . 5
1.4.2 Mathematical Thinking . 5
1.4.3 Technology and Society . 7
1.4.4 How These Requirements Will Appear in the Coursework 9

1.5 Course Structure . 10
1.6 Tips For Doing Well . 11
1.7 Additional Questions . 12

2 Algorithms 13
2.1 Introduction . 13

2.1.1 Introductory Problem . 13
2.1.2 Introductory Comments . 14
2.1.3 Motivation . 14
2.1.4 Skills . 15
2.1.5 Algorithms and the Liberal Education Requirements 15

2.2 Specifying Algorithms . 16
2.2.1 An Example . 16
2.2.2 Algorithm Characteristics . 17
2.2.3 Pseudocode Characteristics . 18

2.3 Pseudocode . 19
2.3.1 Sequence, Selection, Repetition . 19
2.3.2 Indentation . 19
2.3.3 Other Basic Pseudocode Commands 20

2.4 Additional Comments on Pseudocode . 21
2.4.1 Different Ways of Expressing an Operation 21
2.4.2 What is a Variable? . 21
2.4.3 Lists, etc. 22
2.4.4 Variable Names . 23

i

ii CONTENTS

2.4.5 Pseudocode Summary . 24
2.5 Some Practice . 24

2.5.1 Writing Pseudocode Fragments . 24
2.5.2 Reading an Algorithm . 25
2.5.3 Common Mistakes . 25

2.6 Two Examples For Class . 26
2.7 Writing Algorithms: How to Begin? . 27
2.8 Questions to Think About For Class . 29
2.9 Additional Practice . 29
2.10 Problem Solutions . 30

2.10.1 Introductory Problem . 30
2.10.2 Additional Problems . 30

3 Data Representation 35
3.1 Introductory Problem . 35
3.2 Overview . 35

3.2.1 Goals . 36
3.2.2 Data Representation and Mathematics 37
3.2.3 Data Representation and Society and Technology 37

3.3 Representation Basics . 38
3.3.1 Introduction . 38
3.3.2 Why Binary? . 38
3.3.3 Review of the Decimal Number System 39
3.3.4 Unsigned Binary . 39
3.3.5 Decimal to Binary Conversion . 40
3.3.6 Addition of Binary Numbers . 42
3.3.7 Subtraction of Binary Numbers . 43

3.4 Other Representations Related to Binary 43
3.4.1 Hexadecimal . 44
3.4.2 Sign/Magnitude Notation . 46

3.5 Two’s Complement Representation . 48
3.5.1 Two’s Complement Representation Basics 48
3.5.2 Addition and Subtraction . 49

3.6 Range . 51
3.7 Floating Point Numbers . 53
3.8 Text . 54
3.9 Bytes, Kilobytes, Megabytes, and More 56
3.10 Image Files, Audio Files, and Video Files 57

3.10.1 Images . 57
3.10.2 Video . 59
3.10.3 Audio . 59

3.11 Additional Problems . 60

CONTENTS iii

3.12 Problem Solutions . 61
3.13 Additional Resources . 63

4 Logic 65
4.1 Introduction . 65

4.1.1 Introductory Puzzles . 65
4.1.2 Overview . 67
4.1.3 Why is Logic Important? . 67
4.1.4 Relation to the Mathematics Liberal Education Requirement 68
4.1.5 Relation to the Society and Technology Requirement 68
4.1.6 Goals . 69

4.2 Logical Operators and Low-Level Logic 69
4.2.1 Introduction to Logical Operators 69
4.2.2 Logical AND . 70
4.2.3 Logical OR and XOR . 71
4.2.4 Logical NOT, Equivalence, and Implication 72

4.3 Compound Logical Statements . 74
4.4 More Bitwise Operations . 77
4.5 Information Reliability . 78
4.6 Things to Think About . 79
4.7 Additional Problems . 79
4.8 Problem Solutions . 81
4.9 Additional Resources . 86

5 Machine Organization 89
5.1 Introduction . 89

5.1.1 Introductory Problem . 89
5.1.2 Overview . 89
5.1.3 Motivation . 90
5.1.4 How This Topic Relates to the Mathematics Requirement 91
5.1.5 How This Topic Relates to the Society and Technology Theme . . . 91
5.1.6 Goals . 91

5.2 An Analogy . 92
5.3 Chapter Structure . 93
5.4 Machine Organization Terms . 95
5.5 Memory Addresses . 97
5.6 Machine Instructions . 101
5.7 Some Quantities . 104
5.8 System Software . 105
5.9 Some Additional Notes . 106
5.10 Further Questions . 106
5.11 Additional Problems . 107

iv CONTENTS

5.12 Problem Solutions . 109
5.13 Additional Resources . 113

6 Moore’s Law 115
6.1 Introduction . 115

6.1.1 Introductory Problems . 115
6.1.2 Introductory Explanation . 115
6.1.3 Why is Moore’s Law Important? 117
6.1.4 Topic Goals . 118
6.1.5 Moore’s Law and the Liberal Education Requirements 118

6.2 More About Exponential Growth . 119
6.3 How Long Will Moore’s Law Continue to Hold? 120
6.4 Questions . 121
6.5 Problem Solutions . 121
6.6 Additional Resources . 121

7 Computer Security 123
7.1 Introduction . 123

7.1.1 Introductory Problem . 123
7.1.2 Overview . 123
7.1.3 Topic Goals . 124
7.1.4 How These Topics Relate to Mathematics 124
7.1.5 How These Topics Relate to Society and Technology 124

7.2 Some Computer Security Principles . 124
7.3 Introduction to Cryptography . 126
7.4 Public Key Encryption . 128
7.5 Additional Problems . 131
7.6 Problem Solutions . 132
7.7 Questions . 134
7.8 Additional Resources . 134

8 Computer Science, Numbers, and Counting 137
8.1 Introduction . 137

8.1.1 Introductory Problem . 137
8.1.2 Overview . 138
8.1.3 What Are Counting Problems and Why Are They Important? . . . 139
8.1.4 The Liberal Education Requirements 139
8.1.5 Goals . 140

8.2 Solving Counting Problems . 141
8.2.1 Some General Tips . 141
8.2.2 Example of Solving a Problem . 142
8.2.3 Important Quantities . 144
8.2.4 A Useful Formula . 145

CONTENTS v

8.3 Example Problems . 146
8.4 Problem Solutions . 147
8.5 Additional Questions to Think About . 148

8.5.1 Some Further, Related Problems 148
8.6 Additional Resources . 150

9 Algorithmic Complexity 151
9.1 Introduction . 151

9.1.1 Introductory Problem . 151
9.1.2 Overview and Motivation . 152
9.1.3 Further Explanation of Algorithmic Complexity 152
9.1.4 Topic Goals . 154
9.1.5 Algorithmic Complexity and Mathematics 154
9.1.6 Algorithmic Complexity and Technology and Society 155

9.2 How To Measure Algorithmic Complexity? 155
9.2.1 Big-O and Big-Θ . 155
9.2.2 Simplifying Big-O and Big-Θ notation 157

9.3 Logarithms . 158
9.4 Calculating Complexities . 160
9.5 Additional Example Problems . 162
9.6 The Traveling Salesman Problem . 165
9.7 What If a Problem Takes Too Long To Solve? 166
9.8 Problem Solutions . 167

9.8.1 Introductory Problem Solutions . 167
9.8.2 Example Problem Solutions . 168

9.9 Some Further Questions . 169

10 What is Computer Science? 171
10.1 Introduction . 171

10.1.1 Introductory Problem . 171
10.1.2 Overview . 171
10.1.3 Motivation . 172
10.1.4 Goals . 172
10.1.5 Connection with Mathematics, and with Technology and Society . . 172

10.2 What is Computer Science? . 172
10.3 Closely Related Fields . 174

11 Software Development 179
11.1 Introduction . 179

11.1.1 Introductory Problem . 179
11.1.2 Overview . 179
11.1.3 Motivation . 179
11.1.4 Goals . 180

vi CONTENTS

11.1.5 Connection with Mathematics, and with Technology and Society . . 181
11.2 Programming “In the Large” Versus “In the Small” 181
11.3 Parts of the Software Development Process 182
11.4 Software Challenges and Risks . 185
11.5 Some Example Problems . 185
11.6 Problem Solutions . 186

12 Python Reference 189
12.1 Introduction . 189
12.2 Getting Started with The Python Interpreter 190
12.3 Basics: Data Types and Operations . 190

12.3.1 Numbers . 190
12.3.2 Text . 191
12.3.3 Booleans . 192

12.4 Variables . 192
12.4.1 Variable Names . 192
12.4.2 Assignment and Use . 192

12.5 Operators . 193
12.5.1 Arithmetic Operations . 193
12.5.2 Relational Operators . 195
12.5.3 Logical Operators . 195

12.6 Lists and Indexing . 196
12.7 Input/Output . 197
12.8 Control Structures . 198
12.9 Functions . 201
12.10 Libraries . 205
12.11 Comments and Line Continuation . 205
12.12 More About Lists . 206
12.13 Random Numbers . 207
12.14 Examples . 208
12.15 Problem Solutions . 209
12.16 More About Using the Python Interpreter 209
12.17 Additional Resources . 210

13 Example Python Problems 211
13.1 Introduction . 211
13.2 Problems . 211
13.3 Solutions . 223

Chapter 1

What is This Course About?

1.1 Introduction

Computer science. What exactly is computer science? Why — beyond the obvious reasons
— is it important? What do computer scientists do? What types of problems do they
work on? What approaches do they use to solve those problems? How, in general, do
computer scientists think?
Question 1. What do you think of when you hear “computer science?” Write a paragraph
or list, or draw an image or diagram of what comes to mind.

Question 2. What are the parts of computer science that are most interesting or impor-
tant to you currently? Why?

When you hear the term “computer science” perhaps you think of a specific computer.
Or someone you know who works with computers. Or a particular computer use, say
online games or social networks. There are many, many different aspects of computing
and computer science.

Furthermore, there are a number of reasons why it is useful and important to know
something about computer science. Computers are affecting our lives in many different
ways. For most of us, computers are playing or will play a significant role in the work we
do, in our recreational pursuits, in how we communicate with others, in our education,
in our health care, etc. Think about the ways you encounter computers and computing,
either directly or indirectly, in your daily life.

What, more specifically, will this course cover? The foremost purpose of this course
is to give you a greater understanding of the fundamentals of computer science: What
is computer science, anyway? Is the the same as computer programming? What is a
computer? For example, most people would agree that a “laptop computer” is a computer,
as is a “tablet computer;” but what about a smartphone? And how do computers work?
For example, we can store not only numbers and text in computers, but also images, video
files, and audio files; how do computers handle such disparate data? And what are some
interesting and important subareas of computer science? For example, what is important
to know about subareas such as computer graphics, networking, or databases? And why

1

2 CHAPTER 1. WHAT IS THIS COURSE ABOUT?

is any of this important? Isn’t it sufficient for most people just to use computers, rather
than have a deeper understanding of computers and computer science?

These are all fundamental questions about computing, and in this course we’ll look
at them and other questions. In summary, one purpose of this course is to provide an
overview of computer science that not only exposes you to computer science fundamentals
— such as how a computer works on a rudimentary level — but also explores why these
fundamentals are important.

There are two parts of this overview that deserve further explanation. This course
fulfills the University of Minnesota liberal education mathematical thinking core require-
ment and the technology and society theme requirement. So while the main theme of this
course is an overview of computer science, two essential subthemes are how mathematics
is used in computer science, and how computer science affects, and is affected by, society.

Both subthemes fit well in an overview of computer science course. Computer sci-
ence relies heavily on mathematics (in fact, some colleges have computer science and
mathematics programs in a joint department). Certain uses of mathematics in computer
science are obvious — for example, in computational tools such as spreadsheets — but
there are also many less obvious ways that mathematics is essential to computer science.
For example at the lowest level in a computer, data (whether that data is numeric, text,
audio, video, etc.) is all represented in binary, i.e., as strings of 0’s and 1’s. This means
that to understand something very basic about computers you need to understand binary
numbers and operations.

Computers are also affecting society in many ways, from the use of computer-generated
imagery in films, to large government or commercial databases, to the multiple societal
effects of the Internet. And society is affecting computers, for example through user
behavior and through different types of regulation.

While mathematics and technology and society might seem too different to be included
comfortably in the same course, there are actually many computer science topics that are
useful to explore from both perspectives — in a sense, these different viewpoints are
“two sides of the same coin.” For example, one topic in the course is computer security.
Mathematics plays a role in security, for example in encryption. And computer security
also has many societal aspects, for example national security, infrastructure security, and
individual security. Most of the topics in this course similarly have both mathematical
underpinnings and societal aspects, and exploring these topics from both perspectives will
result in a richer understanding.

1.2 What This Course Isn’t

There are a number of different types of introductory computer science courses. So, in
addition to explaining what this course is, it is also useful to state what it is not.

This is not a programming course. Programming is a central activity in computer
science, but it is not the whole of computer science. Because programming is important,
we’ll spend some time on it. However, because computer science is much more than

1.2. WHAT THIS COURSE ISN’T 3

programming, and because this is an overview course, that time will be only a small part
of the course — probably a few weeks.

If you wish to take a programming course, the University of Minnesota, like most other
colleges and universities, offers a number of different introductory programming courses.1

This is not a computer applications course. Many colleges and universities have courses
that cover basic computer applications. For example, a popular choice is teaching how to
use a word processor, a spreadsheet, a database management program, and presentation
software. These and other applications are important parts of computer science, and so
in this course you will get a chance to work with some applications that might be new to
you. However — like programming — using applications is only part of learning about
computer science, and so application use will be only a small part of this course.

This is not a “computer literacy” or “computer fluency” course. There are a vari-
ety of definitions of computer literacy or computer fluency. For example the Wikipedia
definition, derived from a report from the U.S. Congress of Technology Assessment, is
“the knowledge and ability to use computers and related technology efficiently, with a
range of skills covering levels from elementary use to programming and advanced problem
solving.”2 Parts of this course will involve using computers to gain a variety of skills.
For example, in the labs and homeworks in this course you will do a variety of computer-
related tasks such as performing web searches, constructing web pages, doing elementary
computer programming, and working with databases. However, this is just one part,
rather than the totality, of the course. So this course shares some characteristics of a
computer literacy course, but overall it has a wider focus than that type of course.

This is not a “great ideas in computer science” course. One current trend in com-
puter science introductory courses is to study computer science through its important,
fundamental ideas.3 And this course does cover some key ideas. For example, an early
topic we’ll study is how all data in computers, whether that data be numeric, text, video,
etc. is represented within the computer as 0’s and 1’s. In general, the topics in the
course are fundamental to computer science. However, this course also differs from a
great ideas course. It is not focused solely on ideas, but explores broadly a number of
computer-related issues, subtopics, and computer skills. Moreover, to fulfill the Univer-
sity of Minnesota liberal education requirements this course focuses more on mathematical
thinking, and on technology and society, than a typical great ideas course would.

In addition to programming, applications, computer fluency, and great ideas, there
are a number of other types of introductory computer science courses. Some are courses

1Specifically, CSci 1103 is a Java programming course for non-majors, CSci 1113 is a C++ program-
ming course for science and engineering majors, and CSci 1133 is an introductory Python programming
and computer concepts course for computer science majors.

2See http://en.wikipedia.org/wiki/Computer literacy. Accessed May 20, 2105.
3For example, see http://denninginstitute.com/pjd/GP/GP-site/welcome.html (accessed May

20, 2015), Peter Denning’s “Great Principles of Computer Science” website. This site organizes principles
into seven categories: computation, communication, coordination, recollection, automation, evaluation,
and design. There are a number of good ideas, insights, and frameworks in this and related approaches,
and in fact many of the key ideas in this course will relate in some way to Denning’s principles.

4 CHAPTER 1. WHAT IS THIS COURSE ABOUT?

that survey a variety of computer science topics. Others focus on professional software
development practices. Still others look at computing through a particular “lens” such
as networks or computational biology. And so on. This course has some common char-
acteristics with these other courses, but also has significant differences. In particular,
the biggest difference is this course blends an overview of computer science with a strong
emphasis on mathematics, and on society and technology; this is a balance of emphases
that has a number of advantages, but is not usually seen in introductory computer science
courses.

1.3 What Are These Note About?

There is no textbook for this course. The reason for this is that although there are a
number of excellent “introduction to computer science” textbooks, none is a good fit for
this course. Instead, these notes are the “textbook.”

Specifically, in order to fulfill the University of Minnesota liberal education require-
ments, both mathematical thinking and technology and society need to be significant
parts of this course. Many textbooks present an introduction to computer science though
programming, or through how computers work, or through some other aspect of comput-
ing. However, there is not a suitable text that combines an overview of computer science
with both sufficient mathematical and sufficient society and technology emphases.

But these notes are not a textbook in the traditional sense. For example, they are
neither as long nor as detailed as a textbook. There are a few reasons for this.

One is this course has a number of different parts, and these notes are kept short so
reading them doesn’t take so much time as to interfere with other course activities. An-
other is that there are a number of online resources such as tutorials, reference guides, and
instructional videos freely available on the Internet, and that you can use as supplemental
resources. (In an overview of computing course it is particularly appropriate to make use
of educational resources that others have been good enough to post. Being able to learn
from different resources that perhaps were created for slightly different audiences, and
that might use slightly different notation, etc. is a good skill to have.) A third, related
reason is that there will also be some additional required readings. These will usually be
short, online readings that we will use to explore topics in more depth.

Another key distinction between these notes and a traditional textbook is that these
notes often focus on fundamental or background material — material that you can often
learn most efficiently from reading. Using this background material to solve various
problems, or to explore technology and society issues is more difficult, and so many of the
course learning activities will be done during “lecture” time or during lab, and will build
on rather than repeat this fundamental material.

1.4. CSCI 1001 AND LIBERAL EDUCATION 5

1.4 CSci 1001 and Liberal Education

CSci 1001 fulfills two University of Minnesota liberal education requirements: the math-
ematical thinking core requirement, and the technology and society theme requirement.
This section explains how the course satisfies the criteria for these requirements.

1.4.1 Why Liberal Education?

At first glance, it might seem odd that a course entitled “Overview of Computer Science”
fulfills liberal education requirements. What does computer science have to do with liberal
education?

However, a course such as CSci 1001 is a good fit for certain liberal education require-
ments. Understanding computers well involves exploring them from a variety of different
viewpoints. This includes understanding not only how computers work — including, for
example, the mathematical underpinnings of computer science — but also how they are
affecting, and are affected by society. In summary, to have a good understanding of com-
puters and computer science it is important to explore them from a variety of perspectives,
including the perspectives embodied in some of the liberal education requirements.

1.4.2 Mathematical Thinking

Question 3. What do you think of when you hear the word “mathematics?” Write a
paragraph or list, or draw an image or diagram of what comes to mind.

Question 4. Based on your experience with computers, write a list of some places where
mathematics is used in computing.

What do computers and mathematics have in common? Why is it appropriate for an
overview of computer science course to satisfy the liberal education mathematical thinking
requirement?

To fulfill the mathematical thinking requirement, a course must fulfill the following
criteria4

• The course exhibits the dual nature of mathematics both as a body of knowledge
and as a powerful tool for applications.

• Students manipulate mathematical or logical symbols.

• The prerequisite math requirements and mathematics used must be at least at levels
that meet the standards for regular entry to the University.

The rest of this subsection explains how these criteria relate to the material and themes
in this course.

4From http://onestop.umn.edu/faculty/lib eds/guidelines/mathematical thinking.html,
accessed May 20, 2015.

6 CHAPTER 1. WHAT IS THIS COURSE ABOUT?

The course exhibits the dual nature of mathematics both as a body of knowledge and as a
powerful tool for applications.

Much of the use of mathematics in this course is applying mathematical ideas and opera-
tions to solve computer science problems. There are a number of important mathematical
underpinnings of computer science, and so understanding computer science involves being
able to solve mathematical problems involving these underpinnings. At the same time,
the different uses of mathematics in this course exemplify characteristics of mathematics
as a whole, and of the close tie between the fields of mathematics and computer science.
For instance the mathematics in the course illustrates the following:

1. The reliance of many key ideas in computer science, such as data representation, on
mathematics.

2. The use of special mathematics- or logic-related notation and terminology in many
parts of computer science.

3. The ability to represent and work with many different types of data in the com-
puter, and the related ability to represent and work with quantities in different
representations using a variety of operations.

4. The need for rigor in solving problems, analyzing situations, or specifying compu-
tational processes.

5. The use of numbers and arithmetic in solving computational problems. However,
rather than being simple arithmetic problems, these problems often have some spe-
cial characteristics such as involving repeated operations, or involving extremely
large or extremely small numbers.

6. The existence of a variety of different algorithms for solving such diverse problems
as pattern matching, counting specified values in a table of data, or finding the
shortest path between two nodes in a graph.

Students manipulate mathematical or logical symbols.

Solving many of the problems in this course will involve doing some mathematics, and
therefore manipulating mathematical or logical symbols. Here are a few examples:

1. In exploring low-level logical operations you’ll need to manipulate binary represen-
tation and logical operators.

2. In studying the growth rate of algorithms you’ll need to work with the “big-O” and
“big-Θ” notations commonly used by computer scientists.

3. In specifying computational processes you’ll need to use “pseudocode” or a program-
ming language. These share many notational characteristics with mathematical or
logical symbols, especially when the computational processing involves a large num-
ber of numeric computations.

1.4. CSCI 1001 AND LIBERAL EDUCATION 7

The prerequisite math requirements and mathematics used must be at least at levels that
meet the standards for regular entry to the University.

The level of mathematics in this course is introductory-level college mathematics. As
such, the mathematics is not advanced, and there is no mathematical prerequisite for this
course beyond the requirements needed for admission to the University. At the same time,
the mathematics in this course goes beyond high school mathematics even though many
of the types of mathematics used in this course appear in some high school mathematics
courses.

As an example, one appearance of mathematics in this course is binary (or base 2)
representation. This is a topic that often appears in high school mathematics courses,
and the basics of binary representation are not complicated. In this course we review such
basics as how to convert numbers between decimal (base 10) and binary representation,
and how to do simple operations such as adding two binary numbers. However, we also
use binary representation in additional ways that underpin the workings of computers.
Here are a few examples:

1. We’ll look at a few different ways to represent numbers in binary representation.
For example, computers usually do not use the straightforward binary representation
when representing integers, but rather use “two’s complement” form. So part of this
course is learning not only about the “usual” binary representation, but also about
these alternatives.

2. We’ll look at various issues with binary representation, such as the number of “bits”
used, that are important in determining the range and precision of numbers used
by computers.

3. In addition to representing numbers, we will also look at how computers use binary
representation to represent and operate on other types of data such as text, colors,
and images.

4. In addition to basic operations such as binary addition, we will also look at other
operations on binary representations. For example, logical operations are important
in masking colors in image processing, and in implementing arithmetic operations
in low-level computer hardware.

In summary, even though many mathematical topics in this course appear in high school
mathematics, they go beyond the usual high school treatment of those topics in breadth
or depth.

1.4.3 Technology and Society

Question 5. What do you think of when you hear “technology and society?” Write a
paragraph or list, or draw an image or diagram of what comes to mind.

8 CHAPTER 1. WHAT IS THIS COURSE ABOUT?

Question 6. Based on your experience with computing, write a list of examples of how
computing is affected, and being affected by, society.

To fulfill the technology and society requirement, a course must fulfill the following
criteria5

• The course examines one or more technologies that have had some measurable im-
pact on contemporary society.

• The course builds student understanding of the science and engineering behind the
technology addressed.

• Students discuss the role that society has played in fostering the development of
technology as well as the response to the adoption and use of technology.

• Students consider the impact of technology from multiple perspectives that include
developers, users/consumers, as well as others in society affected by the technology.

• Students develop skills in evaluating conflicting views on existing or emerging tech-
nology.

• Students engage in a process of critical evaluation that provides a framework with
which to evaluate new technology in the future.

The rest of this subsection explains how these criteria relate to the material and themes
in this course.

The course examines one or more technologies that have had some measurable impact on
contemporary society.

The topic of this course is computers and computing. Computers have affected society in
numerous and diverse ways, some of which we’ll explore in this course. And current and
future computer applications will affect society in even more ways.

The course builds student understanding of the science and engineering behind the tech-
nology addressed.
Through this course you should get an understanding of how computers work. This
includes understanding the basics of computer hardware and computer software.

More broadly, however, computer science relies on results from other areas of science,
engineering, and related fields. The most prominent example of this we will see in this
course is various ways that mathematics is essential in computer science.

Students discuss the role that society has played in fostering the development of technology
as well as the response to the adoption and use of technology.

Technology affects society. However, it is not a one-way street. Society also affects
technology. For example, society fosters technology by means such as government support

5From http://onestop.umn.edu/faculty/lib eds/guidelines/technology and society.html,
accessed May 20, 2015.

1.4. CSCI 1001 AND LIBERAL EDUCATION 9

for research. As another example, individuals, businesses, and other organizations adopt
and use technology in ways often not foreseen by the technology’s creators.

In this course we’ll look at a variety of instances of how society affects technology.
These include government funding for the early Internet, Internet regulation, how business
considerations affect computing products, and societal aspects of computer security.

Students consider the impact of technology from multiple perspectives that include devel-
opers, users/consumers, as well as others in society affected by the technology.

In many topics in computers and society there are multiple stakeholders. These can in-
clude individual users, developers, companies (producers, consumers, and intermediaries),
government bodies, professional organizations, and other types of organizations. These
different stakeholders often have different views and different goals.

In this course we will often look at technology and society issues from numerous
perspectives. Sometimes we will focus on a specific perspective or the role of a specific
stakeholder. However, other times we will explore issues more broadly: Who are the
stakeholders? What is their role in this issue? What are their goals? etc.

Students develop skills in evaluating conflicting views on existing or emerging technology.
One often hears conflicting views on computer and society issues. Computers are beneficial
for society. Computers are harmful to society. The Internet is making it easier for
people to communicate and is bringing people together. The Internet is making people
more isolated. Computers and automation are robbing people of jobs. Computers and
automation create jobs.

In this course we’ll often explore issues that are contentious and/or complicated. How
do we avoid a superficial, one-sided understanding of such issues? How do we resolve
conflicting claims about such issues?

Students engage in a process of critical evaluation that provides a framework with which
to evaluate new technology in the future.

Computing technology not only has had massive effects on society, but it is continuing to
affect society. Not a day goes by without some technological advance involving computing.
In many ways the “computer revolution” is just beginning.

One goal of this course is that you’ll learn enough about computing in general, about
trends in computing, and about computing and society that you’ll be able to evaluate
new technology. Note “evaluate” here might mean different things in different contexts.
For instance, it might mean give an informed projection about whether a new computer
product will be successful or not. Or it might mean predict future computer advances in
a certain area. Or it might mean analyze whether a new computer application is more
likely to be beneficial than harmful.

1.4.4 How These Requirements Will Appear in the Coursework

Both the mathematical thinking and technology and society requirements will appear
prominently in the coursework you do. In particular, many of the individual homework

10 CHAPTER 1. WHAT IS THIS COURSE ABOUT?

assignments will involve mathematics in some way, shape, or form. Similarly, many lab
problems will also often involve mathematics. And some in-class activities will be practice
for these labs and homework problems.

A few of the homework and lab problems will involve the technology and society
theme. Moreover, most weeks there will be short writing and/or an in-class discussion of
the technology and society aspect of the course topics.

Finally, both mathematical thinking and technology and society problems will be on
the exams, with questions often similar to those on the homework or from the in-class
activities or discussions.

1.5 Course Structure

The course has a number of components:

• Class lectures will explore important topics from computer science. This includes
both technical aspects and computers and society aspects.

• Technical in-class exercises provide practice on technical aspects of the current topic.
Problems will usually be mathematical to fulfill the math liberal education core
criteria; however, occasional society and technology questions will also be included.

• Discussions/exercises on society and technology provide a chance for interactive
discussion and debate of current computer science-related social issues.

• Weekly laboratory exercises allow hands-on exploration of course content. These lab
sessions occur in a classroom laboratory where exercises can be completed by pairs
of students working on computers.

• Reading assignments are designed to prepare you for homework, labs, exams, and
discussions.

• Written problem assignments help you explore computer science concepts in depth.
Unless otherwise stated, these assignments must be completed individually, and will
be due about every other week.

• Other occasional in-class or between-class assignments, for example short writing
assignments, serve a variety of functions and will be explained further in class.

• Exams give you a chance to demonstrate your knowledge of the course material.
There will be one or two midterms exams and a final exam. See the course syllabus
and/or web page for more information.

Note that the in-class exercises, labs, etc. are all important parts of the course, and will
contribute to your course grade. It is therefore important that you attend class (including

1.6. TIPS FOR DOING WELL 11

the lab). It is also important that you do any assigned preliminary work, including any
reading or writing, prior to lecture and lab.

Additional information on these components, as well as important administrative ma-
terial such as exam and assignment rules, will be posted on the course web page.

1.6 Tips For Doing Well

Here are some tips for doing well in CSci 1001. Although most of these are straightforward,
they are particularly relevant to a course such as this one.

• Show up. A large part of doing well in this course is showing up. Don’t miss class
unless you have a valid excuse (such as illness). And if you do miss class then check
with others to see what you have missed.

The labs, in-class exercises, and discussions are all important parts of the course.
Sometimes they are important learning activities in and of themselves; other times
their purpose is practice to help on the homework problems and exams. To empha-
size their importance, a portion of the class grade is devoted to the labs, and to
in-class activities such as in-class exercises or discussions.

• Start the homework early. Most homework will be posted a couple weeks before it is
due. Usually when it is posted you will have seen enough material to start at least
some of the problems. Starting early will give you enough time to think about the
more difficult questions, and to ask questions during office hours.

• Come to office hours if you have questions. If you have any questions on the home-
work, or are having trouble with it, please come to office hours.

• Do the reading. We will usually assume you’ve done the assigned reading, and done
it before class. Sometimes we’ll use class time to go over some particularly important
and/or challenging parts of the reading. Other times the class lecture will use the
reading as a starting point, but not re-explain it in detail.

• Get to know others in the class. Many people learn better if they discuss class ma-
terial with others. Get to know people in the class, form study groups, etc. Some
of the assignments in the class — notably the labs — are designed as group assign-
ments. Others such as the homework and exams are individual work; however, even
on these you are welcome to do preliminary studying in groups, but your answers
on the assignment and exams must be yours alone. (See the further explanation on
the class web page for more details.)

• Use the web resources. Throughout the semester we will post additional resources
to the course web page. Moreover, a number of other online resources are mentioned
in these notes. See which of these are most useful to you, and use them accordingly.

12 CHAPTER 1. WHAT IS THIS COURSE ABOUT?

• Realize that some material in this course might be easy, but some might be hard.
Students in this class come from a variety of backgrounds. Often, students will find
some parts of the course easy, but then find other parts require significantly more
time and effort.

• Persist: Many students will find at least part of this course to be challenging. If you
have not seen, for example, topics such as algorithms before, they will seem foreign
and will take time to master. Do the reading, ask questions as needed, and practice
doing problems.

• Try to apply this material to your major or to other interests: Much of the informa-
tion or skills in this course are applicable to a wide variety of areas. Think about
how what you are learning in this course might be applicable to other courses you
are taking, or to other areas of your interest.

1.7 Additional Questions

Here are additional introductory questions, some of which will likely be used for between-
class or in-class exercises or discussion.

Question 7. How do you use computers? List the most important ways.

Question 8. Write down a list of movies in which computing plays a major role. For
each movie, indicate whether computing is portrayed as beneficial, harmful, beneficial in
some ways but harmful in others, or neutral.

Question 9. Do you think computers, on the whole, have more positive effects than neg-
ative ones, more negative ones than positive, or about equal positive and negative effects?
Why?

Question 10. List some ways computers are beneficial to society. Then list some ways
they are harmful.

Question 11. Suppose you were to write a novel, play, screenplay, etc. about some aspect
of computers and society. Describe what the theme or themes of your work would be.

Question 12. What does technology mean? What are some important ways you use
technology in your daily life?

Question 13. Suppose you had to write a short essay or short story entitled “Computers
and Me.” What would be some key points or themes in that work?

Question 14. Suppose you had to write a short essay or short story entitled “Technology
and Me.” What would be some key points or themes in that work?

Chapter 2

Algorithms

Precisely, step by step.

2.1 Introduction

2.1.1 Introductory Problem

Consider the following problem:1

Mobile robots must navigate through their environment without bumping into obsta-
cles. Consider the following obstacle avoidance problem. Suppose you have a very simple
rectangular maze. There’s a designated start square, a designated finish square, a single
path from start to finish, and no dead ends. Suppose you also have a robot that can do
the following:

• moveForward: move forward one square.

• turnLeft: turn ninety degrees to its left.

• turnRight: turn ninety degrees to its right.

• startInMaze: this places the robot at the start square, and orients it so its first
valid move is straight ahead.

• checkForWall: check if there is a wall immediately ahead, and return true if there
is and false if there isn’t.

• checkForMazeEnd: this checks if the robot is at the end square, and returns true if
it is and false if it isn’t.

1These notes will often start a chapter with a problem from a previous offering of CSci 1001. These
problems will give you an introduction to the chapter topic, as well as an example of some types of
problems that might appear in the homework or exams. A solution to the introductory problem will
usually, but not always, appear at the end of the chapter.

13

14 CHAPTER 2. ALGORITHMS

Using a correct combinations of these, along with other basic operations such as get

(for input), set (to assign a name to a value used in the program), or print (for output),
devise an algorithm that gets a maze as input, places the robot on the start square, and
navigates the robot through the maze. Once the robot reaches the end, the algorithm
should print out a message stating it is at the end, and another stating how many moves
it made navigating the maze.

2.1.2 Introductory Comments

Some universities have a class on “Great Ideas in Computer Science.” As mentioned in
Chapter 1, our class differs from these great ideas classes in significant ways. However, it
also has similarities. In particular, the topics in this class focus on key ideas that make
computer technology and practice possible.

The first key idea we’ll explore is that of an algorithm. Roughly speaking, an algorithm
is a set of precise instructions for solving a problem. (We’ll look at a more specific
definition in class.) This concept is essential because accomplishing any task with a
computer requires clearly and unambiguously specifying the steps a computer should
perform to complete the task. Because this is so central to what computers do, we will
use algorithms again and again in this class.

Why, more specifically, are algorithms important? How do they appear in this class?
How do they relate to the course’s liberal education requirements? What should you be
able to do with algorithms? How do people represent algorithms? What is the connection
between algorithms and computer programs? This chapter addresses these and related
questions.

2.1.3 Motivation

Algorithms might seem like an odd starting topic for this class. Are algorithms really
that important?

They are. In fact, some computer scientists see algorithms as the central concept in
computer science. As mentioned above, before solving a problem with a computer there
must be a precise specification of the steps the computer must perform. This precise
specification is an algorithm. Computer programs are implementations of algorithms, so
algorithms underlie programming. To understand how efficient a computer solution to a
problem is, computer scientists analyze algorithms. To create a more efficient solution
computer scientists try to improve existing algorithms or discover alternative algorithms.
(Or they might prove that a more efficient algorithm cannot exist.) There are some
algorithms that are important generally, such as algorithms for searching for an item in
a list, or sorting all items in a list.2 And there are important algorithms for subareas of

2In fact, there are a number of different searching and sorting algorithms; for example, think about
how many different ways you can put a shuffled deck of cards in order.

2.1. INTRODUCTION 15

computer science, for instance algorithms for coloring and rendering shapes in computer
graphics, and algorithms for merging two different database tables.

Algorithms will occur throughout much of this class; for example, we will see algo-
rithms again in the chapters on algorithmic complexity and computer programming.

2.1.4 Skills

Once we complete this topic, you should be able to do the following:

1. Be able to explain what an algorithm is and isn’t, why algorithms are important to
computer science, and how algorithms are usually represented.

2. Given a purported algorithm, be able to determine whether it is indeed a valid
algorithm; if it is not, be able to say why it is deficient.

3. Given an incorrect algorithm or partially complete algorithm, be able to identify
any errors, and correct or complete the algorithm.

4. Given an algorithm, be able to trace through it and explain what it is doing.

5. Given an algorithm to solve one problem, and given a second, related problem, be
able to modify the algorithm to solve the related problem.

6. Given a problem whose solution can be expressed as an algorithm, write a correct
and valid algorithm to solve that problem.

2.1.5 Algorithms and the Liberal Education Requirements

How do algorithms embody the liberal education requirements? While algorithms are not
the usual type of mathematics like algebra or calculus, they nonetheless exhibit many
mathematical characteristics and require a variety of mathematical skills. For example:

• Algorithms require the specificity, clarity, and attention to detail that is a charac-
teristic of mathematics.

• Algorithms use special keywords, notation, or conventions (such as indentation to
indicate algorithm structure). This is similar to the use of special notation, etc. in
mathematics.

• Algorithms describe computational processes. Specifically, an algorithm describes
a procedure for doing a sequence of computations. Often individual computations
are simple (for example, simple additions or comparisons rather than sophisticated
mathematical functions), but the entire sequence constitutes a complicated compu-
tational process.

16 CHAPTER 2. ALGORITHMS

Algorithms are also related to the society and technology theme. The readings, dis-
cussions, and the occasional homework and/or lab questions ask you to think about such
questions as

• What types of tasks can computers do and what can’t they do? Or, put another
way, what types of tasks can be solved by algorithms, and what types cannot?

• Is increasing automation a benefit or a concern?

• What are some current societal problems that computer practitioners are trying to
solve by finding new algorithms or improving existing ones?

2.2 Specifying Algorithms

2.2.1 An Example

Suppose you write software for a construction firm. For a given construction project, the
software maintains a list of on the job injuries: how many injuries occurred the first day,
how many the second day, etc. You need to write a function that goes through all the
days and counts the number of days that no injuries occurred. (Note different projects
might have different total numbers of days. Since we need to be flexible, let n stand for
the total number of days for any given project.) Here is a description of an algorithm for
that task:

Algorithm 1

Input: A total number of days n, and a list A, with A[i] giving the number of on-the-job
injuries on day i.

Output: A message stating the number of days with 0 on-the-job injuries.

1 Get n

2 Get A[1], ..., A[n]

3 Set i to 1

4 Set countZeros to 0

5 While i <= n

6 If A[i] equals 0, then

7 Set countZeros to countZeros + 1

8 Set i to i + 1

9 Print ‘The number of zeros in the list is ’, countZeros

10 Stop

This is a description of an algorithm for solving the problem. The algorithm is given in
pseudocode. Pseudocode, as the name suggests, is somewhat like programming code, but
not quite. Computer scientists often use pseudocode rather than a natural language (such

2.2. SPECIFYING ALGORITHMS 17

as English) description because natural language is usually imprecise. And they usually
use pseudocode rather than an actual programming language for a number of reasons,
including that pseudocode avoids many language rules programmers need to remember
when writing program code. For example, some programming languages require a line
of code to end with specific punctuation such as a semicolon. Remembering this (and
remembering the exceptions where a semicolon is forbidden) is an extra burden we would
like to avoid when focusing only on the steps the computer must do to solve the problem.

Problem 1: Think about some other reasons why pseudocode is often preferable to
natural language and to programming code for algorithm specification.

2.2.2 Algorithm Characteristics

Before exploring pseudocode further, let’s return to the question “what is an algorithm?”
Recall that, generally speaking, an algorithm is a specific set of instructions for solving a
given problem. More specifically, though, algorithms have certain characteristics:

1. Input specified. The algorithm must specify any input. Note in the example above
the input is the number of days as well as the list containing the number of injuries
for each day. Two additional notes: First, since there are many different possible
types of input, it is often important to specify not only what the input is, but also
its type (examples: “a string S containing alphabetic characters and digits,” and
“a list A of nonnegative integers”). Second, occasionally we will omit the input
specification for an algorithm for the sake of brevity. However, in your course work
please include the input specification unless otherwise instructed.

2. Output specified. The algorithm must specify any output. Usually the output is a
number, string, message, list, or some combination of these. As with input, occa-
sionally we will omit the output specification; however, you should always include
it unless instructed otherwise.

3. Correctness. This characteristic is straightforward: an algorithm must solve the
problem correctly for all possible valid input.

4. Finite. The algorithm finishes in a finite amount of time. Put another way, the
algorithm will always solve the problem and stop.

5. Precise. Each step in the algorithm is precise, to the point it should need no further
explanation or expansion. Moreover, each step in the algorithm is doable by a
computer. Note that the algorithm above avoids instructions such as “Get the
input”, “Find all the 0’s in the list,”, “Output the message”, or other instructions
that are ambiguous or insufficiently precise.

Put another way, if the pseudocode for an algorithm is given to a programmer, he
or she should have no questions about how the algorithm works. For that reason,

18 CHAPTER 2. ALGORITHMS

turning pseudocode into program code is often straightforward (as computer tasks
go).

6. Generality. The algorithm isn’t so specific that it solves the problem only under
certain unnecessary restrictions. For example, the algorithm above solves the prob-
lem for a general number of days n. The number is not restricted to a single value
— an algorithm that solved the problem only for projects that lasted, say, exactly
14 days would not be very useful.3

Problem 2: Consider the following set of instructions. It is a valid algorithm or not? If
it is not, state which characteristic or characteristics it does not possess.

(Purported) Algorithm 2

Input: A total number of days n, and a list A, with A[i] giving the maximum temperature
in degrees Fahrenheit on day i.

1 Get n

2 Get A[1], ..., A[n]

3 Set maxTemp to A[1]

4 Set i to 2

5 While i <= n

6 If A[i] > maxTemp

7 Set maxTemp to A[i]

8 Print ‘The maximum temperature was ’, maxTemp

9 Stop

2.2.3 Pseudocode Characteristics

Note some characteristics of the pseudocode description in Algorithm 1:

• It is highly structured. It contains a sequence of operations along with the control
instructions if and while.

• It contains a mixture of English and operations. Specifically, it contains some En-
glish words such as get, if, and print, and some mathematical notation and op-
erations such as n, A[1], and addition.

• All the instruction in it are low-level. Put another way, each step is specific —
specific enough that a person should be able to perform the instructions without
further explanation.

3Actually the algorithm is more general than stated — it counts the number of zeros in an arbitrary
list of numbers regardless of whether the list holds number of on-the-job injuries on a construction project,
maximum temperatures, number of diabetes-related hospital admissions, numbers of times you played
Tetris, etc.

2.3. PSEUDOCODE 19

These characteristics describe pseudocode: it is sufficiently specific and low-level to be
used in algorithm specification, but contains a simple structure and enough English con-
structs that it is easier to read and understand than computer code. In the next section
we’ll look at the details of pseudocode.

2.3 Pseudocode

Learning the basics of pseudocode is not difficult. Instead the challenge is using the basics
to specify algorithms. This section presents pseudocode basics. In subsequent sections
we’ll look at using the basics.

Before beginning, we should note there are many different versions of pseudocode.
All versions allow you to specify any algorithm, so all versions have much in common.
However, they often differ in instruction names or other conventions. The version of
pseudocode in this class is a simple one. However, be aware that different textbooks
might use other versions.

2.3.1 Sequence, Selection, Repetition

To describe an algorithm, you need three basic control mechanisms:

• Sequence. Unless otherwise specified, steps are followed in sequence, one after an-
other. So the algorithm above executes Line 1, then Line 2, then Line 3, etc.

• Selection. There are times when we want steps to be performed only if a certain
condition or conditions hold. Line 7 in Algorithm 1 is done only if the condition in
Line 6 is true. The if statement in Line 6 is an example of a selection statement.

• Repetition. Often there are parts of algorithms that are repeated many times. An
example of this is the “while loop” in Lines 5–8 in Algorithm 1; this loop allows the
algorithm to check each number in the list.

Pseudocode must include these three control mechanisms. Sequence is easy — simply
list the steps in order. (Note line numbers are not absolutely necessary, so we will include
them only when useful.) Selection uses the if construct and its variants such as if-else.
Repetition uses while loops or for loops.

2.3.2 Indentation

Notice the indentation in Algorithm 1. This indicates the “scope” of the while and if

instructions there. Specifically, the indentation of Lines 6 through 8 indicates the “body”
of the while loop that starts in Line 5. The indentation lets a reader know that the
instructions in Lines 6 through 8 should be performed as long as the condition in Line

20 CHAPTER 2. ALGORITHMS

5 is true. Once Line 5 is executed when that condition is no longer true, the algorithm
skips to Line 9.4

Notice also the further indentation in Line 7. This is the body of the if statement.
The indentation indicates that this statement should be executed only if the condition in
Line 6 is true. If the condition is false, then the algorithm skips Line 7 and resumes with
Line 8.

Line 7 is a single-statement body of the if instruction. Multiple-statement bodies,
such as the one for the while loop, are also possible for if statements. For example,
suppose each time a 0 was found you wanted the algorithm not only to update the count,
but also to print a short message. Then you could include another line right after Line 7,
with the same level of indentation:

6 If A[i] equals 0, then

7 Set countZeros to countZeros + 1

7b Print ‘No injuries on day ’, i

8 Set i to i + 1

Lines 7 and 7b would be executed if the condition in Line 6 is true. Otherwise, neither
would be executed, and the algorithm would skip to Line 8.

As Algorithm 1 indicates, you can ‘nest’ control structures. In particular, it has an if

statement within a while loop. Pseudocode has only a few basic building blocks, but can
describe very complicated algorithms because of the ways you can combine these building
blocks. You can place loops within loops (this is useful, for example, if you are looping
through a table: one loop will step through the columns, the other through the rows),
if’s within if’s (useful when you have complicated selection conditions), loops within
if’s or if’s within loops, etc.

2.3.3 Other Basic Pseudocode Commands

In addition to if statements and their variants such as if-else, and while and for

statements,5 pseudocode has a few other basic building blocks. Each of these appears in
Algorithm 1 above.

• get allows the algorithm to obtain input.

• set allows the algorithm to assign a value to a variable.

• print allows the algorithm to output a message or the value of one or more variables.

4Note that the loop condition in Line 5 must become false at some point for the algorithm to continue
past the loop and eventually stop. A loop that never stops is called an “infinite loop.”

5The if-else and for statements haven’t been discussed yet. Problem 3 below contains an example
of if-else use. However, for loops won’t appear until later in the class.

2.4. ADDITIONAL COMMENTS ON PSEUDOCODE 21

• stop indicates the termination of the algorithm. Usually it is the last line of the
algorithm, but complicated algorithms may have more than one stop. For example,
it is possible to have a stop statement at the end of an if-body.6

In addition to these basic building blocks, pseudocode can use basic arithmetic and other
operations. Algorithm 1 contains arithmetic comparisons in Lines 5 and 6, and simple
additions in Lines 7 and 8. Pseudocode can also include other operations including sub-
traction, multiplication, division, exponentiation, and finding remainders; using functions
such as square roots, sines and cosines, and logarithms; comparing alphabetic characters,
or concatenating two alphabetic strings.

2.4 Additional Comments on Pseudocode

This section contains additional comments on a few potentially confusing aspects of pseu-
docode.

2.4.1 Different Ways of Expressing an Operation

There are a number of different ways to express the same concept using pseudocode. For
example, suppose we want to set the value of the variable s to 42. Ways to write this
include

s = 42

Set s = 42

Set s to 42

Set the value of s to 42

s <- 42

Whatever way you write operations like this should be precise, and should be used consis-
tently; but otherwise use whichever alternative you feel most comfortable with. Moreover,
when you are given an algorithm, recognize that it might use slightly different terms and
notation than you’ve seen in class.

2.4.2 What is a Variable?

The language surrounding “variables” can be a little complicated. Here are two issues.
The next subsection discusses an additional one.

First, variables can hold any values that can be represented within a computer. Often
this is a number, e.g., Set x to 42. However, it could also be a list or a character string,
for example Set A to the list 1,2,3,4,5 or Set A to the string "TTCCAGC", or

6Some versions of pseudocode omit the stop command with the understanding that an algorithm
stops when it runs out of lines to execute.

22 CHAPTER 2. ALGORITHMS

Set A to the string "string". Notice in all these cases there is a difference between
the variable name, and the variable value. For example, in Set x to 42 the variable
name is x, while the value is 42.

Second, we indicate strings by enclosing them in single or double quotes. So, e.g., the
statement Set a to ‘b’ means set the value of the variable a to the single character
‘b’. However, the statement Set a to b means set the value of the variable a to the
value of the variable b. Note the reason for the possible confusion here — any character
or string can be a variable name, or it can be a character value assigned to a variable.
It’s important to keep these two different uses straight.

Problem 3: To explore the difference between variables names and values further, trace
through the following code and figure out what it prints:

1 Set a to ‘x’

2 Set b to ‘y’

3 If a equals b then

4 Set a to ‘b’

5 Else

6 Set a to b

7 Print a

8 Stop

The answer is at the end of this chapter.

2.4.3 Lists, etc.

Lists, strings, and tables have a variable name (e.g., A in Algorithm 1 above), but contain
a number of values. So when working with them we also need to keep track of a string
location, list position, etc. Consider Set myString to "CGATG". Then the second item
in the string is the character ‘G’. Notice that if we want to refer to that item we can’t just
say “the character ‘G’ in the string” since there can be more than one ‘G’. So in this case
there is the string name, A, the location in the string, 2, and the value at that location,
‘G’.

One additional caution: there are different terms for ‘location’. Some algorithms will
reference the second location in the string myString by saying ‘index 2’, ‘slot 2’, ‘subscript
2’, ‘location 2’, ‘entry 2’, ‘item 2’, ‘position 2’, ‘myString[2]’, myString2 and so on. The
lack of a standard term and notation for this can be confusing. However if you keep the
key point here in mind — that in a list or string there is a name, a location (or index,
etc.), and the value in the list or string at that location — you’ll find it easier to work
with lists and strings.

2.4. ADDITIONAL COMMENTS ON PSEUDOCODE 23

2.4.4 Variable Names

In pseudocode (as in most programming languages) you can name variables anything
reasonable. Here are some general guidelines.

• Descriptive names: Use descriptive variable names. For example, if you are counting
the number of times something occurs in a list or table, then the variable name
is usually something like count. Longer or more descriptive names are possible,
including multiword names such as countZeros or count zeros (note these use
capitalization and the underscore, respectively — you should not have a space in a
variable name). You don’t want to get carried away with too long of a name, but
using a descriptive name can help keep variables straight, and make an algorithm
easier to read.

As an example, suppose you are working with a table and need to keep track of the
current row and column. So you could call the related variables row and column, or
r and c. Both these choices are more descriptive to someone reading the algorithm
than, say, a and b, or x and y.7

• Loop control variables: i and j are commonly used as loop control variables, e.g.,
While i < 10.

• n: The variable n is often used to hold an input value, as in the following:

Get n

Print ‘n squared is ’, n * n

A second common use is to indicate the length of a list (or some other upper limit).
Suppose you have a list of the number of hours per day you worked over an n-day
period. The following algorithm computes the total number of hours you worked:

Algorithm 3: Sum the numbers in a list

Input: A total number of days n, and a list of numbers A.

Output: A message stating the sum of all the numbers in the list A.

Get n

Get A[1],..., A[n]

Set i to 1

Set sum to 0

While i <= n

7As another example, rewrite the pseudocode in Section 2.4.2 by replacing the variable names a and b
by firstChar and secondChar, respectively. But leave the value ‘b’ in Line 4 as it is. The pseudocode
should be easier to understand.

24 CHAPTER 2. ALGORITHMS

Set sum to sum + A[i]

Set i to i+1

Print ‘The list sum is ’, sum

Stop

2.4.5 Pseudocode Summary

In pseudocode you do not have a large number of basic building blocks. You have a way
of getting input, a get statement. You have a way of assigning values to variables, a set

statement. You have the usual low-level operations on numbers, characters, strings, and
lists. For example, you can add two numbers, compare two numbers, etc. You have an
if statement, and variants such as if-else. You have loop statements while and for.
You use indentation to indicate the scope of a selection or loop construct. You have an
output statement print. And you have a stop statement. Although later in the class
we’ll see a few more parts of pseudocode, these are the essential parts and are enough to
specify both simple and complicated algorithms.

2.5 Some Practice

This section contains some introductory practice problems. Answers are at the end of the
chapter.

2.5.1 Writing Pseudocode Fragments

Problem 4: One stepping stone to writing an entire algorithm is to make sure you can
write small fragments of pseudocode. Write pseudocode to do the following. In each case
assume you have already gotten any input. Moreover, do not worry about printing any
output.

a. Set count to 0 if a is less than 5.

b. Set count to 0 if a is less than 5 and b is less than 2; otherwise set count to 1.

c. Add 1 to a five-digit odometer reading. Note a five-digit odometer can show values
between 0 and 99999. Adding 1 to any odometer reading will simply increase that
reading by 1 — for example 67817 will go to 67818 — except if the reading is 99999,
in which case it will roll over to 0.

d. Calculate the sum of the integers between 1 and 42.

e. Count the number of T’s in a genomic sequence (i.e., a sequence consisting of char-
acters ‘A’, ‘C’, ‘G’, or ‘T’) A[1],...,A[n].

2.5. SOME PRACTICE 25

f. Count the number of times the two-character sequence ‘TG’ appears in a genomic
sequence A[1],...,A[n]. That is, count the number of times a ‘T’ occurs in a
location that is immediately followed by a ‘G’ in the next location.

2.5.2 Reading an Algorithm

Problem 5: Consider the following algorithm:

Algorithm 4:

Input: A nonempty string of characters S1S2 . . . Sn, and a positive integer n giving the
number of characters in the string.

Output: See the related problem below.

1 Get n
2 Get S1S2 . . . Sn

3 Set count to 1
4 Set ch to S1

5 Set i to 2
6 While i ≤ n
7 If Si equals ch
8 Set count to count+ 1
9 Set i to i+ 1
10 Print ch, ‘ appeared ’, count, ‘ times.’
11 Stop

a. What is printed if the input string is pepper?

b. What is printed if the input string is CACCTGGTCCAAC?

c. What is the output of this algorithm (in general)? Be precise.

d. Suppose line 3 was changed to Set count to 0. How would your answer to part
(c) change?

2.5.3 Common Mistakes

There are a numerous mistakes that can come up in writing pseudocode. Some are easier
to make than others, and even experienced computer practitioners make them from time
to time.

Problem 6: Suppose you are studying lake level data for a certain lake. This data
reports the lake levels over a number of days, compared to the lake’s average (mean)
level. Negative data correspond to times when the lake level was below average, positive
to when it was above. So, for example, a lake level of −.23 meters means that at the
time of that reading the lake was .23 meters lower than average. A reading of .12 meters

26 CHAPTER 2. ALGORITHMS

means the level was .12 meters above the average level at the time of that reading. You
would like to know how many readings were below the lake average.

More generally, the following pseudocode attempts to count the number of negative
entries in an input list A[1],..., A[n]:

1 Get n

2 Get A[1],..., A[n]

3 Set countNegativeEntries to 0

4 While i < n

5 If A[j] <= 0, then

6 Set countNegativeEntries to countNegativeEntries + 1

7 Print ‘The number of negative entries is ’, countNegativeEntries

8 Stop

Identify and correct any mistakes in this pseudocode.

2.6 Two Examples For Class

Here are two additional algorithm examples we will use in class. The first one performs
a common operation, counting the number of times a given character occurs in a string
(think of specific examples where this can be useful.) The second algorithm counts the
number of times a given pattern (which can consist of more than one character) occurs
in a string. This algorithm is more complicated, so expect to spend some time examining
it.

2.7. WRITING ALGORITHMS: HOW TO BEGIN? 27

Algorithm 5: Character Count

Input: A string length n and a text string S1S2 . . . Sn of alphabetic characters, as well as
a search character ch.

Output: A message indicating how many times ch appears in S.

1 Get n
2 Get S1S2 . . . Sn

3 Get ch
4 Set i to 1
5 Set count to 0
6 While i ≤ n do
7 If Si equals ch then
8 Set count to count+ 1
9 Set i to i+ 1
10 Print ch, ‘ appeared ’, count, ‘ times.’
11 Stop

Algorithm 6: Pattern Matching
Input: A string length n and a text string S1S2 . . . Sn of alphabetic characters, as well as
a pattern length m and a pattern P1P2 . . . Pm of alphabetic characters.

Output: A message indicating each time the pattern P matches a substring of S.

1 Get n
2 Get S1S2 . . . Sn

3 Get m
4 Get P1P2 . . . Pm

5 Set i to 1
6 While i ≤ n−m+ 1 do
7 Set j to 1
8 Set matchOK to true
9 While j ≤ m and matchOK equals true then
10 If Pj 6= Si+j−1 then
11 Set matchOK to false
12 Set j to j + 1
13 If matchOK equals true then
14 Print ’Match found between positions ’, i, ’ and ’, i+m− 1
15 Set i to i+ 1
16 Stop

2.7 Writing Algorithms: How to Begin?

When you are writing an algorithm from scratch, often the most difficult part is getting
started. In class we will discuss techniques — such as top-down design, working a concrete

28 CHAPTER 2. ALGORITHMS

example, or figuring out what you need to keep track of during an algorithm — that can
be helpful. Here we’ll give an example of one of these techniques, top-down design.

Suppose you are given a maze8 that consists of a 10 × 10 grid. That is, the maze
consists of 10 rows and 10 columns of squares. Suppose that you can specify a row and
column number, and do a check isOpenNorth, that returns true if there is an opening
on the “north” side of the current square, and false otherwise. Also, you can do checks
isOpenEast, isOpenWest, and isOpenSouth to check the east, west, and south sides,
respectively.

Suppose further that, instead of solving the maze, you need to write an algorithm
to go though and count the number of maze locations that are enclosed on exactly three
sides (that is, the locations where there are walls on any three of the sides, but an opening
on the fourth). To do this you are allowed to step through the maze as if it were a table,
i.e., row by row and column by column. Put another way, you don’t need to follows paths
through the maze to visit each square; instead you have a “birds-eye view.”

What are the major tasks such an algorithm would need to do? A very crude high
level outline is

Get input

Count locations enclosed on exactly 3 sides

Output result

Of these three items, the second will be the most complicated, so let’s focus on it and
break it down further. We need to step through all the locations and count the number
of walls. So a more detailed breakdown can be something like this:

Step through each location

If the current location has exactly 3 walls

Count it

Note that this isn’t pseudocode yet, though. For example, what does it mean to step
through each location? What does it mean to count it? So we can be more specific:

For each row r

For each column c

If the location at row r column c is enclosed on exactly 3 sides

Add one to the count

We’re closer. But there are still additional details we need to include. For example, For
each row r is still imprecise, as is For each column c. Another issue is we need to
initialize count, and update it when appropriate. Here’s another attempt:

8Important: If there is a maze problem on the homework, some parts of the notes will be helpful on
that problem, but other parts will not. Do not rely overmuch on this example in solving any homework
problem involving mazes.

2.8. QUESTIONS TO THINK ABOUT FOR CLASS 29

Set r to 1

Set c to 1

Set count to 0

While r <= 10

While c <= 10

If the location at row r column c is enclosed on exactly 3 sides

Set count to count + 1

Set c to c + 1

Set r to r + 1

To complete this part, notice that the condition If the location is enclosed on

exactly 3 sides still needs to be made more specific as well.

Problem 7: Make the following line more specific:

If the location at row r column c is enclosed on exactly 3 sides

2.8 Questions to Think About For Class

Here are questions to think about for class.

1. What types of problems can be solved by algorithms? What types can’t, or can’t
easily?

2. Think about an area you are interested in outside of computer science. Are there any
processes in that area that need to be carefully and precisely specified (regardless
of whether they are done by computer or not)?

3. Cooking recipes, and instructions for putting together furniture are two analogies
used for algorithms. For each one, explain how it is like an algorithm, and how it is
not. Also, think of other analogies.

4. Suppose you are explaining algorithms to another student. What is hard about
algorithms — what would you be sure to explain very carefully?

5. Come up with some specific examples where you might want the following: (a) a
triply nested loop, (b) a loop inside an if statement, (c) one if statement inside
another.

2.9 Additional Practice

Here are three additional practice problems. Solutions are in the next section.

Problem 8: Trace through Algorithm 6, the pattern matching algorithm, when the text
string S is CGCCCTACCGGCACC and the pattern string P is CC. Specifically, (a) state what

30 CHAPTER 2. ALGORITHMS

the output would be, and (b) each time line 15 is reached write the current values of i
(before 1 is added to i in that line), j, and matchOK.

Problem 9: This question again asks you to consider the pattern matching algorithm,
Algorithm 6. Suppose that instead of printing a message whenever there was a match,
you just want the algorithm to output the number of times matches occur. For example,
suppose the text string S is ATGCATAGATT, and the pattern P is AT. Then the algorithm
should output only the message

There were 3 matches.

Modify the pattern-matching algorithm to do this. For your answer you may either write
the entire algorithm, or you may just indicate exactly what needs to be added or modified
exactly where.

2.10 Problem Solutions

2.10.1 Introductory Problem

Here is a model solution to the problem at the beginning of this chapter. Note that for
some problems, including this one, there is more than one possible correct solution. So
this is one possible algorithm, but not the only possible correct one.

1 Get the input maze
2 startInMaze
3 moveForward
4 Set count to 1
5 While checkForMazeEnd returns false
6 If checkForWall returns true
7 turnRight
8 If checkForWall returns true
9 turnLeft // turn back to original heading
10 turnLeft // now turn left from that heading
11 moveForward
12 Set count to count+ 1
13 Print ‘Robot found end of maze.’
14 Print ‘Number of moves: ’, count
15 Stop

2.10.2 Additional Problems

Problem 1: This problem will likely be discussed in class or lab.

2.10. PROBLEM SOLUTIONS 31

Problem 2: It is not a valid algorithm. It is neither correct nor finite since the i value
is always 2 (the algorithm should contain a line Set i to i + 1 between Lines 7 and
8) indented at the same level as the if in Line 6). Also, it fails to specify the output
explicitly.

Here is a correct version:

(Corrected) Algorithm 2

Input: A total number of days n, and a list A, with A[i] giving the maximum temperature,
in degrees Fahrenheit, on day i.

Output: A message stating the maximum temperature.

1 Get n

2 Get A[1], ..., A[n]

3 Set maxTemp to A[1]

4 Set i to 2

5 While i <= n

6 If A[i] > maxTemp

7 Set maxTemp to A[i]

8 Set i to i + 1

9 Print ‘The maximum temperature was ’, maxTemp

10 Stop

Problem 3: The pseudocode would print out the character ‘y’. Note in line 3, a and b

do not have equal values, since a has value ‘x’ and b has value ‘y’. So the else statement
is executed, setting the value of a to the value of b, namely ‘y’.

Problem 4:

[a.]

If a < 5

Set count to 0

[b.]

If a < 5 and b < 2

Set count to 0

Else

Set count to 1

[c.]

If odometerReading equals 99999

Set odometerReading to 0

Else

Set odometerReading to odometerReading + 1

32 CHAPTER 2. ALGORITHMS

[d.]

Set i to 1

Set sum to 0

While i <= 42

Set sum to sum + i

Set i to i + 1

[e.]

Set i to 1

Set countT to 0

While i <= n

If A[i] equals ‘T’

Set countT to countT + 1

Set i to i + 1

[f.]

Set i to 1

Set countTG to 0

While i <= n - 1

If A[i] equals ‘T’ and A[i+1] equals ‘G’

Set countTG to countTG + 1

Set i to i + 1

Problem 5:

a. p appeared 3 times.

b. C appeared 6 times.

c. A message stating the number of times the first character of the word appears in
the word.

d. The number in the output message would be the number of times the first character
of the word appears in the word, excluding the first occurrence.

Problem 6: There are six errors.

1. i is never initialized — there should be a line Set i to 1 prior to the while loop.

2. The loop continuation condition is incorrect: i < n stops before the last item in
the list, A[n]. The loop condition should be i <= n.

3. In line 5 A[j] should be A[i].

2.10. PROBLEM SOLUTIONS 33

4. In line 5 <= should be <.

5. i is never updated in the loop: there should be a line Set i to i + 1 at the end
of the while loop.

6. The print line’s indentation is incorrect: In the pseudocode the incorrect indenta-
tion places the print line inside the while loop, meaning it is executed during each
iteration of that loop. It should be executed only once, after the while loop is done.
Therefore its indentation should be the same as the ‘While’ in Line 4.

Problem 7:

Set countOpenings to 0

If isOpenNorth at row r column c equals true

Set countOpenings to countOpenings + 1

If isOpenEast at row r column c equals true

Set countOpenings to countOpenings + 1

If isOpenSouth at row r column c equals true

Set countOpenings to countOpenings + 1

If isOpenWest at row r column c equals true

Set countOpenings to countOpenings + 1

If countOpenings equals 3

Set count to count + 1

Problem 8:

a. The output would be

Match found between positions 3 and 4

Match found between positions 4 and 5

Match found between positions 8 and 9

Match found between positions 14 and 15

b. Here are the values immediately prior to each execution of the line 15:

34 CHAPTER 2. ALGORITHMS

i j matchOK

--- --- -------

1 3 false

2 2 false

3 3 true

4 3 true

5 3 false

6 2 false

7 2 false

8 3 true

9 3 false

10 2 false

11 2 false

12 3 false

13 2 false

14 3 true

Problem 9: Here is one possibility.

Input: A string length n and a text string S1S2 . . . Sn of alphabetic characters, as well as
a string length m and a pattern P1P2 . . . Pm of alphabetic characters.

Output: A message indicating the number of times the pattern P matches a substring of
S. (changed)

1 Get n
2 Get S1S2 . . . Sn

3 Get m
4 Get P1P2 . . . Pm

5 Set i to 1
6 Set count to 0 // Added
7 While i ≤ n−m+ 1 do
8 Set j to 1
9 Set matchOK to true
10 While j ≤ m and matchOK equals true then
11 If Pj 6= Si+j−1 then
12 Set matchOK to false
13 Set j to j + 1
14 If matchOK equals true then
15 Set count to count+ 1 // Changed
16 Set i to i+ 1
17 Print ‘There were ’, count, ‘ matches.’ //Added
18 Stop

Chapter 3

Data Representation

It is all 0’s and 1’s.

3.1 Introductory Problem

Computers often represent colors as an RGB (red-green-blue) triple of numbers, where
each of the red, green, and blue components is an integer between 0 and 255. For example,
the color (255, 0, 10) has full red, no green, and a small amount of blue. Write an algorithm
that takes as input the RGB components for a color, and returns a message indicating
the largest component or components. For example, if the input color is (100, 255, 0),
the algorithm should output “Largest component(s): green”. And if the input color
is (255, 255, 255), then the algorithm should output “Largest component(s): red,

green, blue”.

3.2 Overview

One amazing aspect of computers is they can store so many different types of data. Of
course computers can store numbers. But unlike simple calculators they can also store
text; and they can store colors, and images, and audio, and video, and many other types
of data. And not only can they store many different types, but they can also analyze
them, and they can transmit them to other computers. This versatility is one reason why
computers are so useful, and affect so many areas of our lives.

To understand computers and computer science, it is important to know something
about how computers deal with different types of data. Let’s return to colors. How are
colors stored in a computer? The introductory problem states one way, namely as an
RGB triple. This is not the only possible way: RGB is just one of many color systems.
For example, sometimes colors are represented as an HSV triple: by hue, saturation, and
value. However, RGB is the most common color representation in computer programs.

This leads to a deeper issue: how are numbers stored in a computer? And why is it

35

36 CHAPTER 3. DATA REPRESENTATION

important anyway that we understand how numbers, and other different types of data, are
stored and processed in a computer? This chapter deals with these and related questions.
In particular, we will look at the following:

1. Why is this an important topic?

2. How do computers represent numbers?

3. How do computers represent text?

4. How do computers represent other types of data such as images?

5. What is the binary number system and why is it important in computer science?

6. How do computers do basic operations such as addition and subtraction?

3.2.1 Goals

Upon completing this chapter, you should be able to do the following:

1. Be able to explain how, on the lowest level, computers represent both numeric and
text data, as well as other types of data such as color data.

2. Be able to explain and use the basic terminology in this area: bit, byte, megabyte,
RGB triple, ASCII, etc.

3. Be able to convert numbers and text from one representation to another.

4. Be able to convert integers from one representation to another, for example from
decimal representation to two’s complement representation.

5. Be able to add and subtract numbers written in unsigned binary or in two’s com-
plement representation.

6. Be able to explain how the number of bits used to represent data affects the range
and precision of the representation.

7. Be able to explain in general how computers represent different types of data such
as images.

8. Be able to do calculations involving amounts of memory or download times for
certain datasets.

3.2. OVERVIEW 37

3.2.2 Data Representation and Mathematics

How is data representation related to the liberal education mathematics requirement?
As you might guess, there is a strong connection. Computers store all data in terms of
binary (i.e., base 2) numbers. So to understand computers it is necessary to understand
binary. Moreover, you need to understand not only binary basics, but also some of the
complications such as the “two’s complement” notation discussed below.

Binary representation is important not only because it is how computers represent
data, but also because so much of computers and computing is based on it. For example,
we will see it again in the chapter on machine organization.

3.2.3 Data Representation and Society and Technology

The computer revolution. That is a phrase you often hear used to describe the many ways
computers are affecting our lives. Another phrase you might hear is the digital revolution.
What does the digital revolution mean?

Nowadays, many of our devices are digital. We have digital watches, digital phones,
digital radio, digital TVs, etc. However, previously many devices were analog. According
to the Merriam-Webster online dictionary1 “analog” means “of or relating to a device
or process in which data is represented by physical quantities that change continuously.”
Think, for example, of an old watch with second, minute, and hour hands that moved
continuously (although very slowly for the minute and hour hands). Compare this with
many modern-day watches that shows a digital representation of the time such as 2:03:23.

This example highlights a key difference between analog and digital devices: analog
devices rely on a continuous phenomenon and digital on a discrete one. As a second
example of this difference, an analog radio receives audio radio broadcast signals which
are transmitted as radio waves, while a digital radio receives signals which are streams of
numbers.2

The digital revolution refers to the many digital devices, their uses, and their effects.
These devices include not only computers, but also other devices or systems that play a
major role in our lives, such as communication systems.

Because digital devices usually store numbers using the binary number system, a
major theme in this chapter is binary representation of data. Binary is fundamental to
computers and computer science: to understand how computers work, and how computer
scientists think, you need to understand binary. The first part of this chapter therefore
covers binary basics. The second part then builds on the first and explains how computers
store different types of data.

1http://www.merriam-webster.com/dictionary/. Accessed Oct. 1, 2013.
2Actually, it’s more complicated than that because some devices, including some digital radios, in-

termix digital and analog. For example, a digital radio broadcast might start in digital form, i.e., as a
stream of numbers, then be converted into and transmitted as radio waves, then received and converted
back into digital form. Technically speaking the signal was modulated and demodulated. If you have a
modem (modulator-demodulator) on your computer it fulfills a similar function.

38 CHAPTER 3. DATA REPRESENTATION

3.3 Representation Basics

3.3.1 Introduction

The algorithms chapter discussed ways to describe a sequence of operations. Computer
scientists use algorithms to specify behavior of computers. But for these algorithms to be
useful they need data, and so computers need ways to represent data.3

People have many ways to represent even a very simple number. For example, the
number four can be represented as 4 or IV or |||| or 2 + 2, etc. How do computers
represent numbers? (Or text? Or audio files?)

The way computers represent and work with numbers is different from how we do.
Since early computer history the standard has been the binary number system. Com-
puters “like” binary because it is extremely easy for them. However, binary is not easy
for humans. Most of the time people do not need to be concerned with the internal
representations that computers use; however, sometimes they do.

3.3.2 Why Binary?

Suppose you and some friends are spending the weekend at a cabin. The group will travel
in two separate cars, and you all agree that the first group to arrive will leave the front
light on to make it easier for the later group. When the car you are in arrives at the cabin
you will be able to tell by the light if your car arrived first. The light therefore encodes
two possibilities: on (the other group has already arrived) or off (the other group hasn’t
arrived yet).

To convey more information you could use two lights. For example, both off could
mean the first group hasn’t arrived yet, the first light off and second on indicate the first
group has arrived but left to get supplies, the first on and second off that the group arrived
but left to go fishing, and both on that the group has arrived and hasn’t left.

Note the key ideas here: a light can be on or off (we don’t allow different level of light,
multiple colors, etc.), just two possibilities. But the second is that if we want to represent
more than two choices we can use more lights.

This on or off idea is a powerful one. There are two and only two distinct choices
or states: on or off, 0 or 1, black or white, present or absent, large or small, rough or
smooth, etc. — all of these are different ways of representing possibilities. One reason
the two-choice idea is so powerful is it is easier to build objects — computers, cameras,
CDs, etc. — where the data at the lowest level is in two possible states, either a 0 or a
1.4

3Actually we need not only data, but a way to represent the algorithms within the computer as well.
How computers store algorithm instructions is discussed in a later chapter.

4Of course how a 0 or 1 is represented varies according to the device. For example, in a computer the
common way to differentiate a 0 from a 1 is by electrical properties, such as using different voltage levels.
In a fiber optic cable, the presence or absence of a light pulse can differentiate 0’s from 1’s. Optical
storage devices can differentiate 0’s and 1’s by the presence or absence of small “dents” that affect the

3.3. REPRESENTATION BASICS 39

In computer representation, a bit (i.e., a binary digit) can be a 0 or a 1. A collection of
bits is called a bitstring. A bitstring that is 8 bits long is called a byte. Bits and bytes are
important concepts in computer storage and data transmission, and later on we’ll explain
them further along with some related terminology and concepts. But first let’s look at
the basic question of how a computer represents numbers.

3.3.3 Review of the Decimal Number System

We all know decimal (i.e., base 10) representation and use it every day. So, for example,
the number one hundred and twenty-four is 1× 100 + 2× 10 + 4× 1. We can emphasize
this by writing the powers of 10 over the digits in 124:

102 101 100

1 2 4

So if we take what we know about base 10 and apply it to base 2 we can figure out
binary. But first recall that a bit is a binary digit and a byte is 8 bits. In this file most
of the binary numbers we talk about will be one byte long.

(Computers actually use more than one byte to represent most numbers. For example,
most numbers are actually represented using 32 bits (4 bytes) or 64 bits (8 bytes). The
more bits, the more different values you can represent: a single bit permits 2 values, 2 bits
give 4 values, 3 bits gives 8 values, . . ., 8 bits give 256 values, and in general n bits gives
2n values. When looking at binary examples we’ll usually use 8 bit numbers to make the
examples manageable.)

3.3.4 Unsigned Binary

When we talk about decimal, we deal with 10 digits — 0 through 9 (that’s where decimal
comes from). In binary we only have two digits, that’s why it’s binary. The digits in
binary are 0 and 1. You will never see any 2’s or 3’s, etc. If you do, something is wrong.
A bit will always be a 0 or 1.

Counting in binary proceeds as follows:

0 (decimal 0)

1 (decimal 1)

10 (decimal 2)

11 (decimal 3)

100 (decimal 4)

101 (decimal 5)

...

reflectivity of locations on the disk surface.

40 CHAPTER 3. DATA REPRESENTATION

(Old joke: “There are 10 types of people in the world. Those who understand binary and
those who don’t.”)

The next thing to think about is what values are possible in one byte. Let’s write out
the powers of two in a byte:

27 26 25 24 23 22 21 20

128 64 32 16 8 4 2 1

As an example, the binary number 10011001 is

1× 128 + 0× 64 + 0× 32 + 1× 16 + 1× 8 + 0× 4 + 0× 2 + 1× 1 = 153.

Note each of the 8 bits can either be a 0 or a 1. So there are two possibilities for the
leftmost bit, two for the next bit, two for the bit after that, and so on: two choices for
each of the 8 bits. Multiplying these possibilities together gives 28 or 256 possibilities. In
unsigned binary these possibilities represent the integers between 0 (all bits 0) to 255 (all
bits 1).

3.3.5 Decimal to Binary Conversion

One task you will need to do in this class, and which computer scientists often need to do,
is to convert a decimal number to or from a binary number. The last subsection showed
how to convert binary to decimal: take each power of 2 whose corresponding bit is a 1,
and add those powers together.

Suppose we want to do a decimal to binary conversion. As an example, let’s convert
the decimal value 75 to binary. Here’s one technique that relies on successive division by
2:

75/2 quotient=37 remainder=1
37/2 quotient=18 remainder=1
18/2 quotient=9 remainder=0
9/2 quotient=4 remainder=1
4/2 quotient=2 remainder=0
2/2 quotient=1 remainder=0
1/2 quotient=0 remainder=1

We then take the remainders bottom-to-top to get 1001011. Since we usually work with
group of 8 bits, if it doesn’t fill all eight bits, we add zeroes at the front until it does. So
we end up with 01001011.

Problem 1: Write an algorithm that specifies the process given in the example above to
convert a decimal integer to binary. Here is the input and output specification:

Input: a nonnegative positive integer n.

Output: a list of digits bk, bk−1, . . . , b1, b0 where b0 is the 1’s digit, b1 the 2’s digit, and bk
the largest (i.e., leftmost digit) in the binary representation of n (note we aren’t adding
any 0’s to the front to get a predetermined length.)

3.3. REPRESENTATION BASICS 41

The algorithm before Problem 1 is one common method for decimal to binary conver-
sion. Here is another. Let’s convert the decimal value 87 to binary. We start by finding
the largest power of two that is not greater than 87. It is 64. We then put a ‘1’ in the
64 (i.e., the 26) place in the binary representation of 87, and next subtract 64 from 87 to
get 23. Now the next power of 2 down from 64 is 32. Since 23 is less than 32 we put a ‘0’
in the 32 place. The next power down is 16. Since 23 is greater than 16, we put a ‘1’ in
the 16 place, subtract 16 from 23 to get 7, and continue with the process. Here is a short
write-up of the remaining steps.

The next power of 2 downward is 8.

Is 7 greater than or equal to 8?

No, so put a 0 in the 8 place.

The next power of 2 downward is 4.

Is 7 greater than or equal to 4?

Yes, so put a 1 in the 4 place, and subtract 4 from 7 to get 3.

The next power of 2 downward is 2.

Is 3 greater than or equal to 2?

Yes, so put a 1 in the 2 place, and subtract 2 from 3 to get 1.

The next power of 2 downward is 1.

Is 1 greater than or equal to 1?

Yes, so put a 1 in the 1 place, and subtract 1 from 1 to get 0.

Since the we have considered all powers of 2 down to 2 to the 0th power,

namely 1, we stop.

Here is the representation of 87, written as a byte with the powers of two written above
each bit:

27 26 25 24 23 22 21 20

128 64 32 16 8 4 2 1

0 1 0 1 0 1 1 1

Either of the two techniques above will work for converting decimal to binary.

Tip: Memorize the first 10 or so powers of 2. You’ll be using them extensively in this
class.

Problem 2: In one episode of the TV show The Simpsons the character Homer Simpson
wrote the following:

398712 + 436512 = 447212.

(Leave aside for now the question of whether this is a correct equation.) Represent each
of the three numbers 3987, 4365, and 4472 in binary. Use as many bits as needed for each
number (you will need more than eight).

42 CHAPTER 3. DATA REPRESENTATION

3.3.6 Addition of Binary Numbers

In addition to storing data, computers also need to do operations such as addition of data.
How do we add numbers in binary representation?

Addition of bits has four simple rules:

0 0 1 1
+0 + 1 + 0 + 1

0 1 1 10

Now if we have a binary number consisting of multiple bits we use these four rules, plus
“carrying”. Here’s an example:

00110101
+ 10101100

11100001

Here’s the same example, but with the carried bits listed explicitly, i.e., a 0 if there is no
carry, and a 1 if there is:

carry : 0111100
00110101

+ 10101100

11100001

We can check binary operations by converting each number to decimal: with both
binary and decimal we’re doing the same operations on the same numbers, but with
different representations. If the representations and operations are correct the results
should be consistent. Converting 00110101 to decimal produces 53 (do the conversion on
your own to verify its accuracy), and converting 10101100 gives 172. Adding these yields
225, which, when converted back to binary is indeed 11100001.

But . . . binary addition of two 8-bit numbers doesn’t always work quite right:

01110100
+ 10011111

100010011

Note there are 9 bits in the result, but there should only be 8 in a byte. Here is the sum
in decimal:

116
+ 159

275

3.4. OTHER REPRESENTATIONS RELATED TO BINARY 43

Note 275 is greater than 255, which is the maximum we can hold in an 8-bit number.
This results in a condition called overflow. Overflow is not an issue if the computer can
go to a 9-bit binary number; however, if the computer only has 8 bits set aside for the
result, overflow can result in the program not running, or not running correctly.

3.3.7 Subtraction of Binary Numbers

Once again, let’s start by looking at single bits:

0 0 1 1
−0 − 1 − 0 − 1

0 − 1 1 0

Notice that in the −1 case what we often want to do is get a bit value 1, and borrow. So
let’s apply this to an 8-bit problem:

10011101
− 00100010

01111011

which is the same as (in base 10)
157

− 34

123

Here’s the binary subtraction again with the borrowing shown:

borrow : 1100010
10011101

− 00100010

01111011

Most people find binary subtraction significantly harder than binary addition.

Problem 3: In the last subsection we saw that overflow was a possible problem when
two binary numbers were added. Can it (or a similar condition) occur when one binary
number is subtracted from another?

3.4 Other Representations Related to Binary

You might have had questions about the binary representation in the last section. For
example, what about negative numbers? What about numbers with a fractional part?

44 CHAPTER 3. DATA REPRESENTATION

Aren’t all those 0’s and 1’s difficult for humans to work with? Etc. These are good
questions. In this and the next two sections we’ll look at a few other representations that
are used in computer science and are related to binary.

3.4.1 Hexadecimal

Computers are good at binary. Humans aren’t. Binary is hard for humans to write, hard
to read, and hard to understand. But what if we want a number system that is easier to
read, etc. but still is closely tied to binary in some way?

One possibility is hexadecimal, i.e., base 16. But using a base greater than 10 imme-
diately presents a problem. Specifically, we run out of digits after 0 to 9 — we can’t use
10, 11, etc. because those have multiple digits within them. So instead we use letters: A
is 10, B 11, C 12, D 13, E 14, and F 15, as shown in Figure 3.1. So the digits we’re using
are 0 through F instead of the 0 through 9 in decimal, or the 0 and 1 in binary.

Figure 3.1: Hexadecimal digits and their decimal equivalents

Hexadecimal Decimal
Digit Equivalent

0 0
1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8
9 9
A 10
B 11
C 12
D 13
E 14
F 15

We also have to reexamine the value of each place. In hexadecimal, each place rep-
resents a power of 16. A two-digit hexadecimal number has a 16’s place and a 1’s place.

3.4. OTHER REPRESENTATIONS RELATED TO BINARY 45

For example, D8 has D in the 16’s place, and 8 in the 1’s place:

161 160

16 1
D 8

So the hexadecimal number D8 equals 13 × 16 + 8 × 1 = 216 in decimal. Note any two
digit hexadecimal number, however, can represent the same amount of information as one
byte of binary. So it’s easier for us to read or write.

When working with a number, there are times when which representation is being used
isn’t clear. For example, does 10 represent the number ten (so the representation is deci-
mal), the number two (the representation is binary), the number sixteen (hexadecimal),
or some other number? Often, the representation is clear from the context. However,
when it isn’t we use a subscript to clarify which representation is being used, for example
1010 for decimal, versus 102 for binary, versus 1016 for hexadecimal.

Hexadecimal numbers can have more hexadecimal digits than two. For example,
consider FF0581A4, which uses the following powers of 16:

167 166 165 164 163 162 161 160

F F 0 5 8 1 A 4

So in decimal this is

15× 167 + 15× 166 + 0× 165 + 5× 164 + 8× 163 + 1× 162 + 10× 161 + 4× 160

= 15× 268435456 + 15× 16777216 + 0× 1048576 + 5× 65536

+ 8× 4096 + 1× 256 + 10× 16 + 4× 1

= 4, 278, 550, 948

Problem 4: How many bits are required to store the hexadecimal number FF0581A4?

Hexadecimal doesn’t appear often, but it is used in some places, for example sometimes
to represent memory addresses (you’ll see this in a future chapter) or colors. Why is
it useful in such cases? Consider a 24-bit RGB color with 8 bits each for red, green,
and blue. Since 8 bits requires 2 hexadecimal digits, a 24-bit color needs 6 hexadecimal
digits, rather than 24 bits. For example, FF0088 indicates a 24-bit color with a full red
component, no green, and a mid-level blue.

Now there are additional types of conversion problems:

• Decimal to hexadecimal

• Hexadecimal to decimal

• Binary to hexadecimal

• Hexadecimal to binary

46 CHAPTER 3. DATA REPRESENTATION

Here are a couple examples involving the last two of these.
Let’s convert the binary number 00111100 to hexadecimal. To do this, break it into

two 4-bit parts: 0011 and 1100. Now convert each part to decimal and get 3 and 12.
The 3 is a hexadecimal digit, but 12 isn’t. Instead recall that C is the hexadecimal
representation for 12. So the hexadecimal representation for 00111100 is 3C.

Rather than going from binary to decimal (for each 4-bit segment) and then to hex-
adecimal digits, you could go from binary to hexadecimal directly using Figure 3.2.

Figure 3.2: Hexadecimal digits and their decimal and binary equivalents

Hexadecimal Decimal Binary
Digit Equivalent Equivalent

0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 0111
8 8 1000
9 9 1001
A 10 1010
B 11 1011
C 12 1100
D 13 1101
E 14 1110
F 15 1111

Now let’s convert the hexadecimal number D6 to binary. D is the hexadecimal rep-
resentation for 1310, which is 1101 in binary. 6 in binary is 0110. Put these two parts
together to get 11010110. Again we could skip the intermediate conversions by using the
hexadecimal and binary columns in the Figure 3.2.

3.4.2 Sign/Magnitude Notation

Thus far we’ve been working with positive numbers. What above negatives? For example,
suppose the temperature is −15◦ F. How would we represent this in binary?

One possibility is to use one bit to indicate the sign of the number. Let’s use the
leftmost bit: instead of it being the 128’s place we interpret it to indicate that the number
is negative if that bit is a 1, and the number is positive if that bit is a 0. So, for

3.4. OTHER REPRESENTATIONS RELATED TO BINARY 47

example, positive 39 is 00100111, but −39 would be 10100111. We call this representation
sign/magnitude binary, or just sign/magnitude for short.

This representation works, but only to some extent. Let’s take a minute and look at
the tradeoffs. First, with the unsigned binary representation in the last section, we can
represent the integers 0 to 255 with a single byte. With the sign/magnitude representation
we can still only represent at most 256 different possibilities. Note that the smallest
number will be when all the bits are 1:

sign 26 25 24 23 22 21 20

+/− 64 32 16 8 4 2 1

1 1 1 1 1 1 1 1

This number is −(64 + 32 + 16 + 8 + 4 + 2 + 1) = −127 in decimal.5

How about the largest number: This will be when all bits save the leftmost are 1:

sign 26 25 24 23 22 21 20

+/− 64 32 16 8 4 2 1

0 1 1 1 1 1 1 1

This is the same number as above, except +127 instead of −127.
So by using this sign/magnitude notation we trade off representing more positive

numbers for being able to represent some negative numbers.
Note that this representation allows 127 positive numbers, 127 negative numbers, and

0. This is 255 possibilities. You might remember that with unsigned binary a byte can
represent 256 possibilities: the numbers 1 to 255, as well as 0. Where did the other
possibility go with sign/magnitude representation?

Notice that 10000000 and 00000000 both represent 0 (−0 and +0, respectively, which
are both the same value, 0). This complicates matters. For example, suppose you are
writing an accounting program and wanted the program to check if revenue−expeditures
equals 0. Doing this would require two checks, one against 10000000, and one against
00000000. This might not seem like a big deal, but it is just one of a number of compli-
cations that having two 0 representations introduces.

Let’s look at another problem with sign/magnitude representation. Does addition
work? For example, what happens if we add 30 to −39? Will the usual way of doing
binary addition work? We should get −9. Here’s what we do get:

00011110
+ 10100111

11000101

5Note that in this calculation 64+32+. . .+2+1 = 27−1. In general 2m+2m−1+2m−2+. . .+21+20 =
2m+1 − 1. This is a useful formula to remember.

48 CHAPTER 3. DATA REPRESENTATION

We know this number is negative, but what is it? It’s the negative of 64+4+1, or −69.
So instead of adding 30, we subtracted 30.

This is not an insurmountable problem; there are ways to fix it. However, we would like
a representation to be as efficient as possible for frequently performed operations. Is there
a better option than sign/magnitude binary? Is there a representation that allows both
positive and negative numbers, but that is more efficient? We’ll see such a representation
in the next section.

3.5 Two’s Complement Representation

Two’s complement is another method for representing numbers in binary. It’s hard to
understand at first, but the key points are it allows representing both positive and negative
numbers, and does so in such a way that it avoids the problems that arise with the
sign/magnitude representation.

3.5.1 Two’s Complement Representation Basics

Here is one way to think about two’s complement representation. We can start at 0 and
count up:

00000000

00000001

00000010

00000011

...

And we can start at 0 but count down. What do we get if we start at 000000000 and
subtract one at a time? We get the sequence (ignore for now the carry that “falls off” the
left end):

11111111

11111110

11111101

11111100

...

This gives some hint as to how two’s complement works. Specifically, for normal unsigned
binary we have the following powers of 2 for each bit:

128 64 32 16 8 4 2 1

For sign/magnitude notation we have leftmost bit indicating the sign:

-/+ 64 32 16 8 4 2 1

3.5. TWO’S COMPLEMENT REPRESENTATION 49

Two’s complement representation uses a different leftmost bit. Specifically, rather than
being the 128’s place, or indicating the sign, the leftmost bit corresponds to negative 128:

-128 64 32 16 8 4 2 1

One effect of this is the numbers that a byte can represent in two’s complement don’t
range from 0 to 255 (as in unsigned binary). Instead the smallest number is −128 (in
two’s complement 100000000), and the largest is +127 (in two’s complement 01111111).

Let’s look at how we do conversions in this new representation. Here’s an outline of
an algorithm for converting from decimal to two’s complement:

Input: an integer (represented in decimal) between −128 and 127

Output: the two’s-complement representation of the number.

Convert the absolute value of the number to binary

If the number is negative

Complement the binary representation (change 0’s to 1’s, and 1’s to 0’s)

Add one to the binary representation

Notice that changing a positive integer (between 0 and 127) to two’s-complement is
the same as we’ve already learned — you get the same bits as with the unsigned binary
representation because the −128 bit will be 0. But let’s look at an example of converting
a negative number. Specifically, let’s convert −99 to two’s complement.

First we convert 99 to binary: 01100011
Then complement the bits: 10011100
Then add one: 10011101

We can do a two’s complement to decimal conversion to check our work:

10011101 = 1× (−128) + 1× 16 + 1× 8 + 1× 4 + 1× 1 = −128 + 16 + 8 + 4 + 1 = −99.

3.5.2 Addition and Subtraction

We can now do two’s complement addition using the usual binary process. For example,
consider (−99) + 42. Note the two’s complement representation of 42 is 00101010, and of
−99 is 10011101. Adding these gives

10011101
+ 00101010

11000111

Notice if you convert the result from two’s complement to decimal you get 1× (−128) +
1× 64 + 1× 4 + 1× 2 + 1× 1 = −57, which is correct.

50 CHAPTER 3. DATA REPRESENTATION

Here are a couple more examples. First 107 + (−67). The two’s complement repre-
sentation of 107 is 01101011, and of −67 is 1011101. Adding these gives

01101011
+ 10111101

00101000

(You can ignore for now the carry that falls off the left end.)
Next (−27) + (−67). The two’s complement representation of −27 is 11100101, and

of −67 is 1011101. Adding these gives

11100101
+ 10111101

10100010

(Again, you can ignore for now the carry that falls off the left end.)
Overflow can still be a problem with two’s complement; it’s a problem any time you

have a fixed number of bits. For example, if you add (−128)+(−128) you get the following:

10000000
+ 10000000

00000000

with a 1 bit carried off the left end. This is not the correct answer. Or if you add 64 +
64 you get another wrong result

01000000
+ 01000000

10000000

which is again incorrect.
So while two’s complement has many advantages, computers do need to do special

checks of the leftmost bit and any leftover carry bits to ensure there isn’t any overflow.
The rules on this are as follows:

1. If the leftmost bit of both numbers to be added are 0, and the result of adding the
two numbers gives a 1 as the leftmost bit of the result, then (as in the example
immediately above) overflow has occurred.

2. If the leftmost bit of both numbers to be added are 1, then the leftmost bit of the
result (excluding any carry bit off the left end) is a 0, then overflow has occurred.

3. In all other cases the result is correct, and we ignore any carry bit that “falls off”
the left end of the result.

3.6. RANGE 51

One final reminder on two’s complement: It presents an elegant and efficient way of
dealing with subtraction, namely by turning a subtraction problem into an addition one.
We actually already used this observation in one of the examples above, since 107+(−67)
is the same as 107− 67. But here is another example.

Suppose we want to do the subtraction 81− 27 using two’s complement. Note that in
two’s complement 81 is 01010001 and 27 is 00011011. But rather than subtracting these
directly, we can write 81 − 27 as an addition problem, namely 81 + (−27). So instead
of working with the representation of 27, we use the two’s complement representation of
−27, which we find by complementing 00011011 (change 0’s to 1’s and vice versa) and
then adding 1. That is, we do the following:

00011011 start with the binary representation of 27
11100100 flip all the bits
11100101 add 1 to get the two’s complement representation of −27

Now do the addition:
01010001

+ 11100101

00110110

Note that because the leftmost bits of both numbers being added are a 0 and a 1, overflow
does not occur. And we ignore the carry bit that falls off the left edge. Moreover, the
result checks: 0× (−128) + 0× 64 + 1× 32 + 1× 16 + 0× 8 + 1× 4 + 1× 2 + 0× 1 = 54,
which is correct.

3.6 Range

Before looking at how computers store other types of data, let’s explore range further.
The range of a representation is the set of numbers it can represent.

Up to this point we’ve been working primarily with bytes, or 8-bit bitstrings. Most
computers and computer programs use more bits to represent numbers. For example, it’s
common to use 16 bits (2 bytes), or 32 bits (4 bytes), or even 64 bits to represent integers.

Let’s examine how many more possibilities these additional bits provide. Consider the
following questions:

1. How many different possibilities are there with 16 bits?

2. How many different possibilities are there with 32 bits?

3. If you use an unsigned binary representation with 16 bits, what decimal values can
be represented?

4. If you use a two’s complement representation with 32 bits, what decimal values can
be represented?

52 CHAPTER 3. DATA REPRESENTATION

To answer the first and second question, remember that each bit has two possibilities:
0 or 1. So if you have one bit, you have two possibilities. If you have two bits, you
have four possibilities. If three, then eight. If four, then 16. And in general, if you
have n bits, you have 2n possibilities. So 16 bits provide 216 = 65, 536 possibilities.
32 bits provide 232 = 4, 294, 967, 296 (over 4 billion) possibilities. (And 64 bits provide
18, 446, 744, 073, 709, 551, 616.)

Now examine a 16-bit unsigned binary representation. As we just saw, you have 65,536
possibilities. However, we include 0 as one of these, so the maximum decimal number in
this representation is 65,535.

Next, consider a 32-bit two’s complement representation. The largest number in this
representation has all bits save the leftmost being 1. This has value 230+229+· · ·+21+20 =
231 − 1 = 2, 147, 483, 647. The smallest (i.e., most negative) number in this representa-
tion has leftmost bit 1 and all other bits 0. This has value −231 = −2, 147, 483, 648.
So for 32-bit two’s complement, the range is all integers between −2, 147, 483, 648 and
2, 147, 483, 647, inclusive.

Note that the more bits a representation has, the larger its range. Therefore, it might
seem like a good strategy to always use an extremely large number of bits. However, there
is a tradeoff: the more bits, the more space a computer needs to store a number, the less
efficient the program will be. If, for example, you are storing a large number of colors, and
the colors are in RGB color representation with 8 bits each for the red, green, and blue
color components, then there is no need to use a 32-bit two’s complement representation
for each component.

Often programmers don’t know in advance how large the range needs to be. For
example, companies grow, and a small company that has tens of thousands of dollars of
yearly revenue currently might have millions of dollars of yearly revenue in a decade. In
general, programs try to provide a large enough range that they can store all numbers
that will reasonably occur in the running of the program. If they provide too large of a
range, they are not as efficient as they could be. If they provide too small of a range, the
program will not be able to handle all numbers that arise — for example, overflow might
occur.

Suppose you are keeping track of a company’s yearly revenue in a computer program.
You don’t know in advance how large these numbers might be, but if you are familiar
with the company you could estimate the needed range. But suppose your estimate is
incorrect. Can’t a computer just automatically use extra bits to get a larger range?

The answer to this question is “yes, but . . .”. It is certainly possible for computers
to do this. However, it is more complicated, so programs or computer languages that
allow varying representation sizes are less efficient than those where items have a fixed
length. For this reason, many computer languages require items to have a fixed length
during program execution. However, some other languages allow the representation size
to change. Once again, it is a matter of tradeoffs.

3.7. FLOATING POINT NUMBERS 53

3.7 Floating Point Numbers

Of course not all numbers are integers. A gallon of milk might cost $3.75. The distance
in miles of a 10K race is (to the nearest tenth of a mile) 6.2. The number of days in a
year is about 365.24 (which is the reason for leap years). Computers call such numbers,
where there is a fractional part or digits to the right of the decimal point floating point
numbers. We’ve seen how computers store integers. How do they represent floating point
numbers?

Floating point representation is interesting, but also complicated. Rather that going
into all the details here, we will just make a few key, high-level observations:

1. Many of the issues with integer representation also occur with floating point numbers.
For example, there is again a trade-off between how many possible numbers you can
represent, and how many bits you use.

2. Floating point representations break a number into parts and include each part in
the representation. Specifically, recall scientific notation. For example, in scientific
notation the number 32,000,000 would be represented as 3.2×107. When computers
represent a floating point number, they represent it as the mantissa, which is 3.2 in
the example above, and the exponent, which is 7.

(Note that the mantissa above is still not an integer. However, just as we can
represent the price of an object as an integral number of cents rather than dollars,
for example 375 cents instead of $3.75, so we can also adjust a fixed width floating
point number and represent it as an integer, as long as we know where the decimal
point was originally.)

3. How many bits you use for the mantissa and exponent affects the representation’s
precision and range.

Because we need to store both the mantissa and exponent, there needs to be a
standard for how many bits to devote to each. The more bits for one, the larger
number of possible values it can take on, but the fewer bits for the other. A larger
number of bits for the mantissa will give more precision, that is more digits to the
right of the decimal point. But a larger number of bits for the exponent will give a
larger exponent range.

Computer engineers have devised a number of standards for this. For example, the
IEEE 7540 standard for a 32-bit floating point number results in about 7 decimal
digits of accuracy, and allows exponents for powers of 10 between about 10−38 and
1038. The standard for a 64-bit number gives both more precision (15 or 16 decimal
digits) and a larger exponent range (giving powers of 10 between about 10−308 and
10308).

4. There are a number of additional complications with floating point numbers. Ob-
viously, adding numbers that have both a mantissa and an exponent will be sig-

54 CHAPTER 3. DATA REPRESENTATION

nificantly more complicated that adding, say, two 8-bit two’s complement integers.
Moreover, there are other complications such as the desirability of including a rep-
resentation for infinity, as well as for “NaN” (not a number) to indicate the result
of an operation such as division by 0. We won’t go into the details for this.

However, there are two additional complications that deserve mentioning. The first
is that computers cannot represent all numbers. Just as you can’t write down all
the digits in the decimal representation of 1/3, since it is .3333 . . . with the three’s
going on forever, so a computer can’t exactly represent many numbers exactly. The
second complication is that, in a case like this, the computer does the same thing
we often do if we need to work with the decimal representation of 1/3: it uses an
approximation rather than the exact number. This means — since all fixed-length
representations have a finite, set number of bits — that representing numbers in a
computer can result in round-off error. Moreover, round-off error can accumulate
over a sequence of operations. This raises questions of how accurate the results of
numerical computations are. For example, if a company is using a computer to do a
wind tunnel simulation of a new airplane wing design, should they trust the results?
Numerical analysis and numerical computation are the branches of mathematics and
computer science that deal with these and other computational issues.

3.8 Text

So far this chapter has covered only numbers. Numbers are certainly important, but much
of our data and much of what we do on computers doesn’t involve numbers. Many people
who use computers primarily work with text: typing papers, reports, emails, etc. How do
computers store text, i.e., character data?

To work with text, a computer must turn it into numbers, i.e., into binary. This
requires each text character having a numerical equivalent. Then the computer works
with these numbers, and thereby works with text.

There are, of course, many possible ways to do this, and many associated questions.
For instance, how many bits will we need? The Latin alphabet has 26 characters, so if
we use a fixed bitstring length for all characters we need the smallest n so that 2n ≥ 26,
namely 5. But that’s not quite right — we need both upper and lower case, so 52
possibilities. But even that is not right, since we also need punctuation marks. Moreover,
it would also be nice to be able to encode items such as a tab or return or escape: non-
printing characters that can play a role in printed text or in computer operations.

ASCII is a commonly used encoding that uses 8 bits, i.e., one byte, per character. For
example, here are some ASCII equivalents: the capital ‘A’ is represented by the decimal
number 65 (equivalently, the binary 01000001), the capital ‘B’ by 66, lower case ‘a’ by 97,
the semicolon by 59, the space by 32, the escape key by 27, and the digit 4 by 52.6 The

6Note that ASCII needs to represent all these characters, including the digits 0 through 9. This can
be a little confusing because we’ve just gotten through discussing how computers represent numbers in

3.8. TEXT 55

entire ASCII table can be found online. For example, see http://www.asciitable.com

or http://www.ascii-table.com.

Note that even though we are mostly discussing decimal equivalents here, within the
computer those equivalents are stored in binary. This brings up an important principal:
a bitstring in and of itself has little meaning; it is only when you (or the computer)
know what type of representation is being used that you (or it) can say what the bitstring
represents. For example, consider the bitstring 01000001 (which equals 6510). We just
saw that if we interpret it as ASCII, it represents the character ‘A’. If we interpret it
as unsigned binary, it represents the (decimal) number 65. Or, as another example,
11000001 represents 193 in unsigned binary, −65 in sign/magnitude binary, and −63 in
two’s complement.7

However, with only one byte per character, ASCII is limited. Specifically, what if you
want additional characters beyond those given in ASCII? For example, what if you want
to use the Greek alphabet?

UNICODE is a set of standards for representing text in non-Latin alphabets, such
as Russian, Arabic, Balinese, and Chinese. It can represent over 65,000 symbols by
giving each one a 16-bit representation. For example, a Greek lower case letter pi has
unicode representation 003C in hexadecimal.8 And the Old Coptic small letter dja has
representation 2CD9. You can find the UNICODE character charts online, for example
at http://www.unicode.org.

Let’s go back to working with ASCII. Suppose we’re working with a program using
ASCII. How much space does it take to encode a page of text? Obviously that will depend
on a number of factors including the page height and width, font size, and interline spacing.
Consider this set of notes. There are roughly 40 lines per page, and roughly 80 characters
per line. This gives 3200 characters. In ASCII each character takes a single byte, so this
is a little over 3000 bytes. In terms of computer file sizes, this is not much, not at all.9

When we get to audio and image files below, we will see they take much more space. This
leads to another principle: text and numbers are easy (to store, transmit, etc.); images,
audio, etc. are hard.

binary. Why does ASCII need to represent character digits differently? Suppose you needed to decide
how to encode the page above. Note it contains not only alphabetic characters but also numbers. Which
is easier: encoding the numbers one way and the text characters another, or encoding all the characters
using the same system? ASCII makes the latter choice for reasons of efficiency. Computers have special
mechanisms — such as declarations in computer programs and programming languages — to specify
when numbers need to be represented directly in binary rather than in ASCII.

711000001 also has a meaning in ASCII; however, there are different versions of ASCII for the decimal
equivalents 128 to 255. For example, in the ISO Latin-1 extended ASCII encoding, 11000001 represents
a capital ‘A’ with an acute punctuation symbol.

8Here we are following the identification convention at http://www.unicode.org and using hexadec-
imal since it is easier to read and write than 16-bit binary.

9If you use a word processing program, the program might also store additional information (which
will take additional space) about page format, font size and type, etc. However, the overall file size will
still be relatively small.

56 CHAPTER 3. DATA REPRESENTATION

Figure 3.3: Some Important Memory Amounts

Memory Amount Power of Two Approximation
1 kilobyte (KB) 210 bytes thousand bytes
1 megabyte (MB) 220 bytes million bytes
1 gigabyte (GB) 230 bytes billion bytes
1 terabyte (TB) 240 bytes trillion bytes
1 petabyte (PB) 250 bytes quadrillion bytes
1 exabyte (EB) 260 bytes quintillion bytes

3.9 Bytes, Kilobytes, Megabytes, and More

In the last section we saw that a page of text could take a few thousand bytes to store.
Images files might take tens of thousands, hundreds of thousands, or even more bytes.
Music files can take millions of bytes. Movie files can take billions. There are databases
that consist of trillions or quadrillions of bytes of data.

Computer science has special terminology and notation for large numbers of bytes, as
shown in Figure 3.3. There are still higher numbers or smaller quantities of these types.
See, for example, http://en.wikipedia.org/wiki/Binary prefix.

Kilobytes, megabytes, etc. are important enough for discussing file sizes, computer
memory sizes, etc. that you should know both the terminology and the abbreviations.
One caution: file sizes are usually given in terms of bytes (or kilobytes, megabytes, etc.).
However, some quantities in computer science are usually given in terms involving bits.
For example, download speeds are often given in terms of bits per second. “Mbps” is an
abbreviation for megabits (not megabytes) per second. Notice the ‘b’ in Mbps is a lower
case, while the ‘b’ in MB (megabytes) is capital.

In the context of computer memory, the usual definition of kilobytes, megabytes, etc.
is a power of two. For example, a kilobyte is 210 = 1024 bytes, not a thousand. In some
other situations, however, a kilobyte is defined to be exactly a thousand bytes. This can
obviously be confusing. For the purposes of this class, the difference will usually not
matter. That is, in most problems we do, an approximation will be close enough. So, for
example, if we do a calculation and find a file takes 6,536 bytes, then you can say this is
approximately 6.5 KB, unless the problem statement says otherwise.10

10The difference between “round” numbers, such as a million, and powers of 2 is not as pronounced
for smaller numbers of bytes as it is for larger. A kilobyte is 210 = 1024 bytes, which is only 2.4% more
than a thousand. A megabyte is 220 = 1, 048, 576 bytes, about 4.9% more than one million. A gigabyte
is about 7.4% bytes more than a billion, and a terabyte is about 10.0% more bytes than a trillion. In
most of the file size problems we do, we’ll be interested in the approximate size, and being off by 2% or
5% or 10% won’t matter. But of course there are real-world applications where it does matter, so when
doing file size problems keep in mind we are doing approximations, not exact calculations.

3.10. IMAGE FILES, AUDIO FILES, AND VIDEO FILES 57

3.10 Image Files, Audio Files, and Video Files

Images, audio, and video are other types of data. How computers represent these types
of data is fascinating but complex. For example, there are perceptual issues (e.g., what
types of sounds can humans hear, and how does that affect how many numbers we need
to store to reliably represent music?), size issues (as we’ll see below, these types of data
can result in large file sizes), standards issues (e.g., you might have heard of JPEG or
GIF image formats), and other issues.

We won’t be able to cover image, audio, and video representation in depth: the details
are too complicated, and can get very sophisticated. For example, JPEG images can rely
on an advanced mathematical technique called the discrete cosine transform. However, it
is worth examining a few key high-level points about image, audio, and video files:

1. Computers can represent not only basic numeric and text data, but also data such
as music, images, and video.

2. They do this by digitizing the data. At the lowest level the data is still represented
in terms of bits, but there are higher-level representational constructs as well.

3. There are numerous ways to encode such data, and so standard encoding techniques
are useful.

4. Audio, image, and video files can be large, which presents challenges in terms of
storing, processing, and transmitting these files. For this reason most encoding
techniques use some sophisticated types of compression.

3.10.1 Images

“The largest and most detailed photograph of our galaxy ever taken has been
unveiled.

The gigantic nine-gigapixel image captures more than 84 million stars at the
core of the Milky Way.

It was created with data gathered by the Visible and Infrared Survey Telescope
for Astronomy (VISTA) at the European Southern Observatory’s Paranal Ob-
servatory in Chile.

If it was printed with the resolution of a newspaper it would stretch 30 feet
long and 23 feet tall, the team behind it said, and has a resolution of 108,200
by 81,500 pixels.11

While this galaxy image is obviously an extreme example, it illustrates that images
(even much smaller images) can take significant computer space. Here is a more mundane

11From http://www.huffingtonpost.co.uk/2012/10/25/largest-ever-photo-of-the-galaxy-

vista n 2014208.html. Accessed Nov. 5, 2013.

58 CHAPTER 3. DATA REPRESENTATION

example. Suppose you have an image that is 1500 pixels wide, and 1000 pixels high. Each
pixel is stored as a 24-bit color. How many bytes does it take to store this image?

This problem describes a straightforward but naive way to store the image: for each
row, for each column, store the 24-bit color at that location. The answer is (1500 × 1000)
pixels × 24 bits/pixel × 1 byte/8 bits = 4.5 million bytes, or about 4.5MB.

Note the file size. If you store a number of photographs or other images you know
that images, and especially collections of images, can take up considerable storage space.
You might also know that most images do not take 4.5MB. And you have probably heard
of some image storage formats such as JPEG or GIF.

Why are most image sizes tens or hundreds of kilobytes rather than megabytes? Most
images are stored not in a direct format, but using some compression technique. For
example, suppose you have a night image where the entire top half of the image is black
((0,0,0) in RGB). Rather than storing (0,0,0) as many times as there are pixels in the
upper half of the image, it is more efficient to use some “shorthand.” For example, rather
than having a file that has thousands of 0’s in it, you could have (0,0,0) plus a number
indicating how many pixels starting the image (if you read line by line from top to bottom)
have color (0,0,0).

This leads to a compressed image: an image that contains all, or most, of the infor-
mation in the original image, but in a more efficient representation. For example, if an
original image would have taken 4MB, but the more efficient version takes 400KB, then
the compression ratio is 4MB to 400KB, or about 10 to 1.

Complicated compression standards, such as JPEG, use a variety of techniques to
compress images. The techniques can be quite sophisticated.

How much can an image be compressed? It depends on a number of factors. For many
images, a compression ratio of, say, 10:1 is possible, but this depends on the image and
on its use. For example, one factor is how complicated an image is. An uncomplicated
image (say, as an extreme example, if every pixel is black12), can be compressed a very
large amount. Richer, more complicated images can be compressed less. However, even
complicated images can usually be compressed at least somewhat.

Another consideration is how faithful the compressed image is to the original. For
example, many users will trade some small discrepancies between the original image and
the compressed image for a smaller file size, as long as those discrepancies are not easily
noticeable. A compression scheme that doesn’t lose any image information is called a loss-
less scheme. One that does is called lossy. Lossy compression will give better compression
than lossless, but with some loss of fidelity.13

12You might have seen modern art paintings where the entire work is a single color.
13See, for example, http://computer.howstuffworks.com/question289.htm for examples of the in-

terplay between compression rate and image fidelity.

3.10. IMAGE FILES, AUDIO FILES, AND VIDEO FILES 59

3.10.2 Video

Suppose you have a 10 minute video, 256 x 256 pixels per frame, 24 bits per pixel, and 30
frames of the video per second. You use an encoding that stores all bits for each pixel for
each frame in the video. What is the total file size? And suppose you have a 500 kilobit
per second download connection; how long will it take to download the file?

This problem highlights some of the challenges of video files. Note the answer to the
file size question is (256 × 256) pixels × 24 bits/pixel × 10 minutes × 60 seconds/minute
× 30 frames per second = approximately 28 Gb, where Gb means gigabits. (This is
about 28/8 = 3.5 gigabytes.) With a 500 kilobit per second download rate, this will take
28Gb/500 Kbps, or about 56,000 seconds. This is over 15 hours, longer than many people
would like to wait. And the time will only increase if the number of pixels per frame is
larger (e.g., in a full screen display) or the video length is longer, or the download speed
is slower.

So video file size can be an issue. However, it does not take 15 hours to download a ten
minute video; as with image files, there are ways to decrease the file size and transmission
time. For example, standards such as MPEG make use not only of image compression tech-
niques to decrease the storage size of a single frame, but also take advantage of the fact that
a scene in one frame is usually quite similar to the scene in the next frame. There’s a wealth
of information online about various compression techniques and standards, storage media,
etc. For example, see http://electronics.howstuffworks.com/question596.htm and
the links there.

3.10.3 Audio

It might seem, at first, that audio files shouldn’t take anywhere as much space as video.
However, if you think about how complicated audio such as music can be, you probably
won’t be surprised that audio files can also be large.

Sound is essentially vibrations, or collections of sound waves travelling through the
air. Humans can hear sound waves that have frequencies of between 20 and 20,000 cycles
per second.14 To avoid certain undesirable artefacts, audio files need to use a sample rate
of twice the highest frequency. So, for example, for a CD music is usually sampled 44,100
Hz, or 44,100 times per second.15 And if you want a stereo effect, you need to sample on
two channels. For each sample you want to store the amplitude using enough bits to give
a faithful representation. CDs usually use 16 bits per sample. So a minute of music takes
44,100 samples × 16 bits/samples × 2 channels × 60 second/minute × 1 byte/8 bits =
about 10.5MB per minute. This means a 4 minute song will take about 40MB, and an

14This is just a rough estimate since there is much individual variation as well as other factors that
affect this range.

15Hz, or Hertz is a measurement of frequency. It appears in a variety of places in computer science,
computer engineering, and related fields such as electrical engineering. For example, a computer monitor
might have a refresh rate of 60Hz, meaning it is redrawn 60 times per second. It is also used in many
other fields. As an example, in most modern day concert music, A above middle C is taken to be 440 Hz.

60 CHAPTER 3. DATA REPRESENTATION

hour of music will take about 630 MB, which is (very) roughly the amount of memory a
typical CD will hold.16

Note, however, that if you want to download a 40 MB song over a 1Mbps connection,
it will take 40MB/1Mbps, which comes to about 320 seconds. This is not a long time, but
it would be desirable if it could be shorter. So — not surprisingly — there are compression
schemes that reduce this considerably. For example, there is an MPEG audio compression
standard that will compress 4 minutes songs to about 4MB, a considerable reduction.17

3.11 Additional Problems

Problem 5: (a) What is the result of the following 8-bit unsigned binary operations?
Give the result in unsigned binary. (i) 00101011 + 01100110. (ii) 11101000 − 00110101.

(b) What is the result of the following 8-bit two’s complement binary operations? Give the
result in two’s complement binary. (i) 00110011 + 10011001. (ii) 11110011 + 10010101.

(c) Convert the following problem into two’s complement binary and perform addition to
get the resulting two’s complement binary solution: 80− 117. Hint: Remember this can
be written as an addition problem: 80 + (−117).

Problem 6: Suppose you have a color represented as a red, green, blue triple, with
each component an integer between 0 and 255 represented as an 8-bit unsigned binary
number. The red component is 10010011, the green 11111000, and the blue 00001111.
What happens if, in an attempt to make the color lighter, you add 00100000 to teach
component?

Problem 7: Latin alphabetic characters can be represented using their ASCII equiva-
lents. Write the decimal representation of all the characters in “Pei, I.M.” (don’t forget
that the punctuation and blank space are considered characters here; but don’t include
the quotation marks).

16See, for example, http://www.howstuffworks.com/cd.htm for more information about how CDs
work. In general, there is a wealth of web sites about audio files, formats, storage media, etc.

17Remember there is also an MPEG video compression standard. MPEG actually has a collection of
standards: see, for example, http://en.wikipedia.org/wiki/Moving Picture Experts Group.

3.12. PROBLEM SOLUTIONS 61

3.12 Problem Solutions

Introductory Problem:

Input: Three integers between 0 and 255, inclusive, that represent respectively the red,
green, and blue components of a color.

Output: A message stating the largest component or components.

1 Get r, g, and b

2 Print ‘Largest component’

3 If r > b and r > g

4 Print ‘red’

5 Else if g > r and g > b

6 Print ‘green’

7 Else if b > r and b > g

8 Print ‘blue’

9 Else if r equals g and r > b

10 Print ‘red, green’

11 Else if r equals b and r > g

12 Print ‘red, blue’

13 Else if g equals b and g > r

14 Print ‘green, blue’

15 Else

16 Print ‘red, green, blue’

17 Stop

Problem 1:

Input: a nonnegative positive integer n.

Output: a list of digits bk, bk−1, . . . , b1, b0 where b0 is the 1’s digit, b1 the 2’s digit, etc.,
with bk the largest (i.e., leftmost digit) in the binary representation of n (note we aren’t
adding any 0’s to the front to get a predetermined length.)

1 Get n

2 Set k to 0

3 While n > 0

4 Set b[k] to the remainder of n/2

5 Set n to the quotient of n/2

6 Set k to k + 1

7 While k > 0

8 Set k to k-1

9 Print b[k]

62 CHAPTER 3. DATA REPRESENTATION

Problem 2: 398710 = 1111100100112, 436510 = 10001000011012, and
447210 = 10001011110002.

Problem 3: It is possible to get a negative number. For example, 3210 − 6410 = −3210,
which is not in the range 0 to 255.

Problem 4: FF0581A416 has 8 hexadecimal digits, and since each digit takes four bits
to store, the number requires 32 bits.

Problem 5 : (a)(i)
carry : 1101110

00101011
+ 01100110

10010001

(ii)
borrow : 0110111

11101000
− 00110101

10110011

(b)(i)

carry : 0110011
00110011

+ 10011001

11001100

(ii)

carry : 1110111
11110011

+ 10010101

10001000

As discussed above, the carry bit that “falls of the left end” can be ignored.

(c) The two’s complement representation for 80 is 01010000. The two’s complement for
−117 is 10001011. The resulting calculation is then

carry : 0000000
01010000

+ 10001011

11011011

3.13. ADDITIONAL RESOURCES 63

Problem 6 :You would get an overflow error on the green component.

Problem 7 :

Text: P e i , space I . M .

ASCII: 80 101 105 44 32 73 46 77 46

3.13 Additional Resources

• http://computer.howstuffworks.com/bytes.htm . An overview and selected de-
tails of data representation and related topics from howstuffworks.

64 CHAPTER 3. DATA REPRESENTATION

Chapter 4

Logic

How do we know if it is true?

4.1 Introduction

4.1.1 Introductory Puzzles

Sam Loyd was a famous 19th and early-20th century puzzle author. Here are his instruc-
tions for one of his most famous puzzles, “Back from the Klondike,” which (according to
Wikipedia) first appeared in the New York Journal and Advertiser in April 24, 1898:

Start from that heart [rather than a heart, the grid below uses underlining]
in the center and go three steps in a straight line in any one of the eight
directions, north, south, east or west, or on the bias, as the ladies say, north-
east, northwest, southeast or southwest. When you have gone three steps in a
straight line, you will reach a square with a number on it, which indicates the
second day’s journey, as many steps as it tells, in a straight line in any of the
eight directions. From this new point when reached, march on again according
to the number indicated, and continue on, following the requirements of the
numbers reached, until you come upon a square with a number which will
carry you just one step beyond the border, when you are supposed to be out
of the woods and can holler all you want, as you will have solved the puzzle.

65

66 CHAPTER 4. LOGIC

4 7 7
5 4 4 8 3 3 4 6 3

1 4 5 1 1 1 4 5 1 7 1 3 5
4 9 4 9 6 7 5 5 5 8 7 6 6 8 5

3 7 2 9 8 3 5 6 7 3 9 1 8 7 5 8 5
1 4 7 8 4 2 9 2 7 1 1 8 2 2 7 6 3

7 2 1 8 5 5 3 1 1 3 1 3 3 4 2 8 6 1 3
4 2 6 7 2 5 2 4 2 2 5 4 3 2 8 1 7 7 3
4 1 6 5 1 1 1 9 1 4 3 4 4 3 1 9 8 2 7

4 3 5 2 3 2 2 3 2 4 2 5 3 5 1 1 3 5 5 3 7
2 7 1 5 1 1 3 1 5 3 3 2 4 2 3 7 7 5 4 2 7
2 5 2 2 6 1 2 4 4 6 3 4 1 2 1 2 6 5 1 8 8

4 3 7 5 1 9 3 4 4 5 2 9 4 1 9 5 7 4 8
4 1 6 7 8 3 4 3 4 1 3 1 2 3 2 3 6 2 4
7 3 2 6 1 5 3 9 2 3 2 1 5 7 5 8 9 5 4

1 6 7 3 4 8 1 1 1 2 1 2 2 8 9 4 1
2 5 4 7 8 7 5 6 1 3 5 7 8 7 2 9 3

6 5 6 4 6 7 2 5 2 2 6 3 4 7 4
2 3 1 2 3 3 3 2 1 3 2 1 1

7 4 4 5 7 3 4 4 7
3 3 4

This set of notes usually contains solutions for the introductory puzzles; however, it
won’t include one for the Klondike puzzle (you can do an online search for a solution if
you wish; better yet, solve it yourself). Instead, we will use this puzzle in another way:

1. Try to solve the puzzle manually. What strategies do you find yourself using?

2. What would an algorithm for solving this puzzle by computer look like? You don’t
need to write the entire algorithm; just give a high-level description.

Consider the a second, similar puzzle, which does have a solution later in this chapter:
You are planning a vacation to Canada with some of your relatives, and you and they
vote on which city below to visit. One city got four votes, two got two votes, two got
one vote, and the remaining two cities got zero votes. Use logic and the clues below to
determine how many votes each city got.

Quebec City
Toronto
Ottawa

Montreal
St. John’s (Newfoundland)

Charlottetown
Halifax

Here are the clues. Make sure you explain how you obtained your answer.

4.1. INTRODUCTION 67

a. Ottawa and Quebec City got different numbers of votes.

b. Montreal either got the most votes, or it got zero votes.

c. Quebec City got more votes than Halifax did.

d. In the list of cities above, each of the two cities that got two votes has a city that
got no votes immediately above it in the list.

e. Either Halifax got one fewer vote than Toronto did, or it got one fewer vote than
Ottawa did.

Both of these problems are examples of logic puzzles. Such puzzles are useful because
(in addition to many people finding them fun) solving them requires the same types of
logical reasoning that is needed for many real-world problems in computer science and in
other fields.

4.1.2 Overview

Logic is a field in and of itself. For example, there are entire classes devoted to it. Logic is
an essential part of mathematics and philosophy — to name two fields it is closely related
to — but also is important elsewhere. And, not surprisingly, it is important in computer
science.

“Logic” can mean many different things to computer scientists. For example, computer
architects often deal with bit-level logic. A specific example of this is applying logical
operations like AND and OR on a bit-by-bit basis to two bytes of data. Computer
programmers must deal with program logic such as the different branches a program can
take depending on conditions in the program. Computer programmers, system designers,
and others use logic to analyze and/or solve problems, analogous to what you might have
done on the problems in the last subsection. And theoretical computer scientists must
prove results using logically rigorous arguments. The resulting proofs are often quite
similar to proofs you might have seen in a math class. Finally, computer scientists, and
all people, use logic when communicating with a natural language such as English.

This chapter will explore a variety of different uses of logic in computer science and
computer engineering.

4.1.3 Why is Logic Important?

Logic might seem like a dry, abstract subject. However, as the examples in the previous
subsection show, logic is an essential part of computing. It is important in how com-
puters work, for example, in how computers do low-level operations. It is important in
how computer programs work. And it is important in many other ways for computer
professionals.

But why is it important to people who want to know about computing, but not at the
same level as computer professionals? Here are three reasons:

68 CHAPTER 4. LOGIC

1. Because logic is so fundamental to how computers work, and how computer scientists
and computer professionals think about and solve problems, it is important to have
a basic understanding of logic to understand computers and computer science.

2. People use logic in everyday computer use. For example, suppose you want to do
an Internet search for information on greyhounds (the dog breed). If you just type
in “greyhound” you will also get a number of links related to Greyhound buses. So
you can refine your search terms to include “greyhound” but exclude “bus.” This is
a (simple) use of logic. As a second example, suppose you maintain a database for
a University club. The club asks you to generate a report (based on the database
information) of all members who have been in the club for more than two years,
who are in the College of Liberal Arts, and who are not currently officers of the
club. Specifying this database query involves the use of logic.

3. Logic is important in analyzing and discussing societal issues. Topics such as Inter-
net privacy, Internet forum rules and norms, and computer security often involve
intense discussion. How persuasive are arguments people make about such issues?
Logic is one (of many) factors people use to gauge the persuasiveness of arguments
and the reliability of information.

More generally, the skills you need to solve the various logic problems in this class are
skills that computer practitioners often use. Being able to do tasks such as performing
logical operations on bitstrings, evaluating a logical expression, and solving logic puzzles
are important not only in and of themselves, but also because they are part of, or are
related to, many other tasks computer practitioners do.

As this class progresses we’ll continue to use logic as part of certain future topics. For
example our next topic, computer organization, once again involves bit-level representa-
tion and operations. And later on we’ll use logical techniques as part of solving counting
problems, analyzing algorithms, and doing computer programming.

4.1.4 Relation to the Mathematics Liberal Education Require-
ment

Logic is very closely related to the mathematics liberal education requirement: logic uses
special symbols and notation, operations, rules, etc. Logicians often need to prove results,
analyze problems, or do logical calculations. And mathematics relies on logic for the rules
of how mathematics “works.”

4.1.5 Relation to the Society and Technology Requirement

Never before in human history has so much information been so readily available to so
many people. And never before has there been so much information that is incorrect,
biased, incomplete, or in some other way inaccurate.

4.2. LOGICAL OPERATORS AND LOW-LEVEL LOGIC 69

With the Internet playing a larger and larger role in how people communicate, for ex-
ample in discussion of societally important topics, information reliability is critical. When
you visit a website, how do you know what you read there is correct, or at least mostly
correct? What types of criteria or guidelines do you use? Part of assessing information
reliability is based on logic. This logic is not the low-level formal logic that, for example,
computer engineers use when designing computer circuits. Instead it is a more informal,
higher-level logic. For example, does the information “make sense?” Does the site support
any nonobvious claims it makes? Do any claims follow from previous statements or from
other information that is known to be true?

4.1.6 Goals

Upon completing this topic, you should be able to do the following:

1. Be able to do computations involving logical operators such as AND, OR, and NOT.

2. Be able to evaluate the truth value of given logical statements.

3. Be able to solve simple or moderate-difficulty logic puzzles.

4. Be able to explain and use guidelines for evaluating the reliability of information on
web sites.

4.2 Logical Operators and Low-Level Logic

4.2.1 Introduction to Logical Operators

The last chapter covered how to add binary numbers. But how do computers do basic
operations such as binary addition? It isn’t something that happens magically. Instead,
computers have circuitry, designed by computer engineers, for doing fundamental opera-
tions. We’ll explore this topic from a computer hardware perspective in the next chapter,
which is on machine organization. In this chapter we’ll look at one component of that
circuitry: logical operations (which are implemented as an important part of the circuitry,
namely as logic gates).

What is a logical operation or logical operator? You are familiar with arithmetic
operators such as addition, subtraction, exponentiation, etc. You are also familiar with
relational operators such as greater than, equal to, not equal to, etc. Logical operators
indicate logical operations such as AND and OR. In this section we’ll look in detail at
these operators and operations. In particular, we’ll look at a type of logic called Boolean
logic.

70 CHAPTER 4. LOGIC

4.2.2 Logical AND

Let’s look at AND first. Suppose you have two true statements, such as “Mars is a planet
in our solar system” and “The Martian atmosphere is roughly 100 times thinner than
Earth’s.” The combined statement “Mars is a planet in our solar system and the Martian
atmosphere is roughly 100 times thinner than Earth’s” is also true. However, suppose you
have the statement “The average temperature on Mars is approximately 70◦ Fahrenheit.”
This is false (Mars is significantly colder). The combined statement “Mars is a planet in
our solar system and the average temperature on Mars is approximately 70◦ Fahrenheit”
is false: because of the “and” both parts of the statement must be true for the entire
statement to be true.

The AND operation applied to two statements A and B is therefore given by the
following table, where each row gives a possible combination of truth values for A and B:

A B A AND B
True True True
True False False
False True False
False False False

Of course, computers don’t have a way of representing ‘true’ and ‘false’ directly. They
need to encode it in binary in some way. Computer scientists and logicians often use ‘T’
for true and ‘F’ for false. So we could, for example, use the ASCII equivalents for ‘T’
and ‘F’. That is one alternative, but it is overkill. We have only two possible values to
represent, ‘T’ and ‘F’, so we really need only one bit.1 Therefore we can use a bit value
of 1 to represent true, and 0 for false. Here is the table above in terms of 0’s and 1’s:

A B A AND B
1 1 1
1 0 0
0 1 0
0 0 0

Using bit-level logical operations in computers is a powerful idea. Not only are compo-
nents such as AND gates a building block of computer circuits, i.e., of the actual computer
hardware, but logical operations come up surprisingly often in computer programming.
For example bit-level logical operations have been used in areas such as computer graphics
and image processing. For that reason computer programming languages include logical
operations.

As an example of how logical operators are useful in doing other computer operations,
consider how computer languages might implement an absolute value function for integers
represented using the 8-bit sign/magnitude binary representation discussed in the last

1Remember one bit allows us to represent two possibilities, two bits allow four, three bits allow eight,
etc.

4.2. LOGICAL OPERATORS AND LOW-LEVEL LOGIC 71

chapter. Recall this representation has the leftmost bit indicating the sign of the number:
if the bit is 0, the number is positive; it the bit is 1, the number is negative. Suppose you
are working with climate data and are tracking when the first frost occurs at a particular
location. Suppose further that the first frost has historically occurred on Oct. 15, and
the data value for each year is represented by the number of days the first frost occurred
before or after Oct. 15. For example, a data value 2 means the first frost occurred two
days after Oct. 15, that is, on Oct. 17. A data value of −5 means the first frost occurred
five days before Oct. 15, on Oct. 10.

Suppose your analysis requires not the exact dates the first frosts occurred, but how
much those dates varied from the Oct. 15 average. So, for example, Oct. 10 and Oct. 20
are both five days from Oct. 15, so you would want both days represented by +5 rather
than having Oct. 10 represented by −5.

How can a computer change the data to remove any minus signs? One way is to do
a simple logical operation with each data item. Specifically, note what happens when we
have a value X and perform the operation X AND 01111111. Since the leftmost bit of
01111111 is 0, and a bitwise AND with 0 always yields 0, the sign bit of the result will
always be 0. And since a bitwise AND with 1 always yields the bit value you are ANDing
with 1, that is 0 AND 1 = 0 and 1 AND 1 = 1, the other seven bits of the result are
identical to the corresponding bits in X.

Here is an example where we have a data value in the top line, and are ANDing it with
the 01111111 in the second line to get the result in the bottom line. Remember this is a
bitwise operation, so it is done column by column and there is no carrying, borrowing, etc.
Note the effect is to strip away the leading 1, that is, make the sign bit 0 and therefore
make the data value positive.

1 1 0 0 0 1 1 0
AND 0 1 1 1 1 1 1 1

0 1 0 0 0 1 1 0

4.2.3 Logical OR and XOR

What are other basic logical operations? There are a number of them. As you might
guess another is OR. A statement A OR B is true if A or B or both are true, and false if
A and B are both false. Related to OR is XOR. Sometimes when we use “or” in natural
language we mean “one or the other or both”. Sometimes it means “one or the other but
not both.” For example, which of these two meanings apply to the “or” in the statement
“The silent auction will end Friday or Saturday?”2 With computers it is often important
to be very clear about which interpretation we want. So computers distinguish between
the regular or operation OR, and the “exclusive or” XOR. Here is a table listing both
operations. Note they differ only when A and B are both true.

2Ambiguities such as those in the statement “I’ll go skiiing Friday or Saturday” is one reason language
understanding is so difficult for computers (and sometimes for humans as well).

72 CHAPTER 4. LOGIC

A B A OR B A XOR B
1 1 1 0
1 0 1 1
0 1 1 1
0 0 0 0

Remember that we are giving the operation in terms of bit values 0 and 1. But if you
replace 1 with ‘T’ and 0 with ‘F’ you get the operations in terms of true and false.

4.2.4 Logical NOT, Equivalence, and Implication

Another logical operation is NOT. Unsurprisingly, if A is true (equivalently 1), NOT(A)
is false (0), and vice versa. NOT takes only a single argument:

A NOT(A)
1 0
0 1

Two other operators that are useful are the equivalence operator, indicated by a triple
horizontal bar ≡, and the implication operator, indicated by an arrow →. Equivalence is
straightforward: A and B are equivalent if and only if they have the same value:

A B A ≡ B
1 1 1
1 0 0
0 1 0
0 0 1

Implication is harder, but is very important since implications occur often. An impli-
cation is of the form “If A, then B”. Here is the table:

A B A → B
1 1 1
1 0 0
0 1 1
0 0 1

Let A be the statement “The Gopher women’s hockey team won their game last night,”
and B be the statement “The Gopher women’s hockey team won the league champi-
onship.” Then A implies B is “If the Gopher women’s hockey team won their game last
night, then they won the league championship.” It’s no surprise that if A is true and B
is true (they won the game, and they are the league champions) then the statement A
implies B is true. And it is no surprise that if A is true and B is false (the team won but
is not the league champion), then A implies B is false.

4.2. LOGICAL OPERATORS AND LOW-LEVEL LOGIC 73

However, the other two cases can be confusing. Suppose the team lost the game last
night, and is not the league champion. So A is false, and B is also false. Should the
statement “If the Gopher women’s hockey team won their game last night, then they won
the league championship” be true or false? Logicians say that statement is logically true.

To understand this, let’s look at another example. Let A be the statement “You get
98% or more average in this class,” and B be the statement “You get an A in the class.”
Think of the implication “If you get 98% or more average in this class, then you get an
A in the class” as a contract. Under which truth values of A and B are the terms of
the contract upheld (and so the implication statement should be true), and under which
truth values are the terms violated (and so the implication statement should be false)?

• If you got a 98% or more average, and you got an A, then the terms are upheld.
That is, T → T is T (true) makes sense.

• If you got a 98% or more average, and you did not get an A, then the terms are
violated: T → F is F (false) makes sense.

• If you got less than 98% average, you might or might not have gotten an A. For
example, maybe you got an A because you had a 97% average and that was enough
to be in the A range. Or maybe you had a lower grade and got a C+. In either
case the contract is not violated because the contract only stipulates what happens
if you got a 98% or higher. So F → T does not violate the terms of the contact,
and so it evaluates to T (true). Similarly, F → F does not violate the terms of the
contact, so it evaluates to T (true).3

In the next section we’ll consider compound logical statements: statements consisting
of logical substatements joined by logical operators. Before we leave this section, however,
here are two additional notes:

First, there are other logical operations. For example, there is a NOR operation.
However, the ones above are the most important for this class, and the other operators
can be expressed in terms of them. For example, NOR is a combination of NOT and
OR. Second, a caution on notation: unfortunately there are many different symbols and
names used for logical operations. Here, we will use the symbols above, writing out AND,

3Here is one more explanation of why logical implication is defined the way it is. Specifically, it shows
why if A → B is true, and A is false, you cannot assume B must be false. Consider the joke “The
philosopher Rene Descartes walks into a bar. The bartender asks him if he’d like a drink. ‘I think not,’
Descartes replies, and then vanishes as if he was never there.”

The joke of course relies on the listener recalling Descartes statement “Cogito, ergo sum” — “I think,
therefore I am.” Or we can reword this as “If I think, then I exist.” This is a true implication (leave aside
deeper discussions of what it means to think, and what it means to exist). It then relies on humorously
equating the the meaning of “I think not” with with the meaning of “I don’t think.” At this stage we
have A → B (“If I think, then I exist”) is true, and A (“I think”) is false. The joke than relies on the
logical fallacy that B (“I exist”) must also be false. The fallacy that if A→ B is true, and A is false, then
B must be false is common enough that logicians have a special fancy name for it: denying the antecedent.

74 CHAPTER 4. LOGIC

OR, XOR, and NOT, and using the symbol→ and ≡ for the implication and equivalence
operators, respectively. However, other works use other symbols and other names. As
an example AND is sometimes indicated by ‘∧’, a dot ‘.’, or an ampersand ‘&’, and is
sometimes called “logical conjunction” instead of “and.” Wikipedia has a good page on
logical symbols at http://en.wikipedia.org/wiki/List of logic symbols.

4.3 Compound Logical Statements

Logical statements can get complicated and can involve more than two (sub)statements
and more than one logical operator. For example, suppose you are searching for omelet
recipes, and want to include basil or chives (or possibly both), but do not want the recipe
to include shallots. If you do an advanced search in Google, you can specify words that
the page must contain, a list of words that the page must contain at least one of, or
words that should not be on the page. So for example, we could specify the recipe search
contains “omelet” and at least one of “basil” or “chive” but does not contain “shallot.”
Let us use the following “shorthand”:

A : The page being considered contains the word “omelet”.

B : The page being considered contains the word “basil”.

C : The page being considered contains the word “chive”.

D : The page being considered contains the word “shallot”.

Then the search we are specifying is A AND (B OR C) AND NOT(D).
Suppose a page contains the word “omelet” (A is true), does not contain “basil” (B is

false), does not contain “chive” (C is false), and does not contain “shallot” (D is false).
Does that page fulfill your search criteria? You can probably see it does not: the logical
expression becomes T AND (F OR F) AND NOT(F). Notice F OR F evaluates to F, and
NOT(F) evaluates to T. So the statements simplifies to T AND F AND T. Notice this is
a statement with three truth values and two AND operations. Absent any parentheses,
we evaluate this statement left to right: T AND F evaluates to F, so T AND F AND T
simplifies to F AND T, which evaluates to F.

There are rules for which operations to perform first in compound statements. For
example, when a compound statement contains operators of different types and no paren-
theses, then AND operations should be done before OR operations, just as multiplication
is done before addition in regular arithmetic. However, because these rules are mildly
complicated, we will use parentheses to indicate the order of operations. For example,
the rules of logic dictate that in A OR NOT B AND C, first NOT B would be evaluated,
then the result of that would be AND’ed with C, and then the OR would be performed.
But rather than write A OR NOT B AND C, we will write A OR (NOT(B) AND C).
Note this is logically equivalent, but explicitly shows the order of operations.

4.3. COMPOUND LOGICAL STATEMENTS 75

Suppose, however, we wanted a slightly different statement. The logical expression
A OR (NOT(B AND C)) is similar to the one in the last paragraph, but the parentheses
override the usual order of operations and dictate that we do the AND operation before
the NOT. So this is a different logical expression than the one in the previous paragraph.
Similarly, due to its parentheses (A OR (NOT(B))) AND C is different still, since it
performs the OR before the AND.

Problem 1: Does the order of operations matter if all the operations in a compound
statement are the same? For example in A AND B AND C, does it matter if we evaluate
A AND B first versus evaluating B AND C? How about for implication? Does (A → B)
→ C always evaluate to the same logical value as A → (B → C)?

Here is another example: suppose you have the following statements:

A : The database record being considered is for a person whose last name starts with
an ‘F’.

B : The database record being considered is for a person whose first name starts with
an ‘F’.

C : The database record being considered is for a person whose occupation is ‘writer’.

D : The database record being considered is for a person who was born before 1900.

Suppose we wanted to return true for each record where the first or last name started
with ‘F,’ the person is (or was) a writer, and the person was born in 1900 or later. So, for
example, the search criteria should return true for the fiction writer Jasper Fforde (born
in 1961), but false for (2013 Nobel Prize winner) Alice Munro.

What would the logical statement be when expressed in terms of A, B, C, D and logical
operators? And what would this statement evaluate to under all possible assignments of
truth values to A, B, C, and D?

The logical statement would be (((A OR B) AND C) AND (NOT(D))). To show its
value under all possible assignments of truth values, we can construct the truth table
shown on the next page. This truth table shows all possible combinations of truth values
for the A, B, C, and D, as well as the resulting truth value of the entire statement. In this
case there are four “logical variables” A, B, C, and D. Each can take on two values, T
or F, so there are 24 = 16 different possible assignments. The table also shows the truth
value of intermediate steps.

Truth tables are one way of working with compound logical statements. They have
advantages: they provide all possibilities in a structured way. However, they also have
disadvantages. For example, sometimes you don’t need to evaluate all possibilities. More-
over, as the table shows, if the logical statement has a large number of different logical
variables, then the table will have a large number of rows.

The next problem shows another use for truth tables:

76 CHAPTER 4. LOGIC

A B C D NOT(D) A OR B (A OR B) AND C (((A OR B) AND C)
AND (NOT(D)))

T T T T F T T F
T T T F T T T T
T T F T F T F F
T T F F T T F F
T T T T F T T F
T F T F T T T T
T F F T F T F F
T F F F T T F F
T F T T F T T F
F T T F T T T T
F T F T F T F F
F T F F T T F F
F F T T F F F F
F F T F T F F F
F F F T F F F F
F F F F T F F F

Problem 2: Use truth tables to prove or disprove that NOT(A AND B) always has the
same value as NOT(A) OR NOT(B). That is, for all possible assignments of truth values
to A and B will NOT(A AND B) always evaluate to the same value as NOT(A) OR
NOT(B)?

Often, we are not concerned with all possible truth values, but are given some logical
statements whose truth we know or can find out, and are also given a compound logical
statement based on the original statements. For example, suppose we have the following:

A : The Art Institute of Chicago has Picasso’s painting The Old Guitarist in its
permanent collection.

B : The Art Institute of Chicago has Grant Wood’s painting American Gothic in its
permanent collection.

C : The Art Gallery of Ontario has a sculpture court of Henry Moore works.

D : Joseph Mallard William Turner’s painting Rain, Steam, and Speed is in the per-
manent collection of the Art Gallery of Ontario.

Statements A, B, and C are true, but D is false (the painting is in the National Gallery
in London).

Suppose someone claims that “The Art Institute of Chicago has both Picasso’s The
Old Guitarist and Wood’s American Gothic; or the Art Gallery of Ontario either has

4.4. MORE BITWISE OPERATIONS 77

a Henry Moore sculpture court or contains Turner’s Rain, Steam, and Speed (but not
both).” Write this statement in terms of A, B, C, D and logical operators, and then
evaluate its truth value.

To write the statement, note the first part is A AND B, and the second part is C XOR
D. (It is a little unclear whether “but not both” applies to the first or second ‘or’; the
word ‘either’ is used to indicate it applies to the second.) By the sentence punctuation,
we do these operations, and then OR the results. So we get (A AND B) OR (C XOR D).
Now since A, B, and C are true (T), and D is false (F), we get

(A AND B) OR (C XOR D)
= (T AND T) OR (T XOR F)
= T OR T
= T

Problem 3: Consider the statement “The Art Institute of Chicago has Picasso’s The
Old Guitarist or Wood’s American Gothic (or both); and it is not the case that the Art
Gallery of Ontario has both a Henry Moore sculpture garden and Turner’s Rain, Steam,
and Speed.” Write this statement in terms of A, B, C, D and logical operators, and then
evaluate its truth value.

4.4 More Bitwise Operations

Let’s extend the material in the last section to bitwise operations. That is, this section
explores applying a sequence of bitwise operations to bytes of data.

It will do this by looking at an example from image processing. Suppose you have a
grayscale image, that is, an image where each pixel is represented a certain gray value
rather than an RGB triple. We’ll use a single byte for each pixel with the byte value
indicating the pixel’s intensity: for example, 00000000 is black, 10000000 is a mid-level
gray, and 11111111 is white. Suppose a pixel’s intensity is given by X = 10111101. What
is the result of the bitwise operation (NOT (X)) AND 11110000?

To answer this question, we first apply NOT to X, changing each 1 to 0 and each 0
to 1, to obtain 01000010. Here is this operation with the NOT of each original bit shown
directly below it.

1 0 1 1 1 1 0 1

NOT 0 1 0 0 0 0 1 0

Now we AND this result with 11110000:

0 1 0 0 0 0 1 0
AND 1 1 1 1 0 0 0 0

0 1 0 0 0 0 0 0

78 CHAPTER 4. LOGIC

Problem 4: Give an English explanation of what (NOT(X)) AND 11110000 does to the
pixel with original gray value X.

Problem 5: Suppose a pixel’s intensity is given by X = 10111101. What is the result of
the bitwise operation (NOT (X)) XOR 11100111?

4.5 Information Reliability

One of the many ways we judge if information is reliable is whether the information
presented is logically convincing. There are different ways that an argument can fail to be
convincing. One problem occurs if the facts used as a basis for the argument are incorrect.
For example, the claim “Since the Internet was invented in France, countries other than
the U.S. should have a larger role in Internet governance” is not very convincing. The
reason for this is that the premise “the Internet was invented in France” is not true
(French researchers contributed to the creation of the Internet, but the bulk of the work
was done in the United States). So even if you believe that countries other than the U.S.
should have a larger role in Internet governance you would not find the given argument
convincing because the premise is false. Logicians call this an unsound argument.

Another way arguments can fail to be convincing is when the conclusion does not
follow from the premises. Such as argument is said to be invalid. For example, if we are
trying to figure out a file error, and we know (i) today the file is not up-to-date; (ii) the
file was either updated correctly last night, or an error message was sent to a log file, or a
system administrator delayed the update. Then the conclusion “the system administrator
delayed the update” does not follow logically since it is possible that an error message
was sent to a log file instead.

Here’s a tricky point: just because this is an invalid argument does not mean you
can reason that the conclusion “the system administrator delayed the update” is false.
The administrator might or might not have delayed the update. Based on the argument,
however, you don’t know which of the two possibilities (the administrator delayed the
update or an error message was sent to a log file) occurred. An invalid argument just
means that the given argument does not logically support the conclusion being true.

Another problem with applying logic to natural language arguments is that most
writing, out of necessity, is not detailed enough that we can apply formal logic. Unless
you are writing a rigorous mathematical proof (and probably not even then), you skip
steps, assume certain background knowledge, etc.

For example, consider the claim “if a person were to keep walking in a line parallel
to the equator, he or she would eventually return to where they started. Note there are
some very large assumptions here: the reader knows earth is round(ish), knows what
the equator is, understands that ‘walk’ is meant figuratively rather than literally, realizes
that concerns such as the amount of time and resources needed are being excluded from
consideration, etc.

When people write, sometimes they err on the side of providing too much detail and

4.6. THINGS TO THINK ABOUT 79

trying too hard to provide conclusions. More common, however, is the opposite error:
providing too little detail, or arguments that are too weak. It is too easy for a writer to
assume the audience has the same background and mind-set as he or she does.4 Part of
this is the use of logic in writing, and part of it is other considerations.

In conclusion of this section, then, logic plays an important role in information reliabil-
ity, both in writers convincing their readers, and in readers assessing written information.
However, there are also other aspects of information reliability that we will discuss further
in other class activities.

4.6 Things to Think About

Here are some questions to think about. We will discuss some of these further in class.

1. Think of an area outside of computer science. This could be another field, a hobby,
work-related, etc. How is logic used in that area?

2. As one of the examples in this chapter illustrates, logic is often used in database
queries. If you have ever used a database program, list some queries you have
performed and indicate what logical operators they use.

3. When you write, what techniques do you use to convince the reader that the con-
clusions you are making are correct?

4. When you read information on the Internet, how do you assess whether that infor-
mation is reliable?

4.7 Additional Problems

Problem 6: Let A be the statement “The exercise regimen improved recovery times, on
average, by at least one week in knee replacement patients.” Let B be the statement “The
improved surgical technique improved recovery times, on average, by at least one week in
knee replacement patients.” Fill in the following logic tables:

A B NOT A NOT(A) AND B (NOT (A) AND B) XOR B
T T
T F
F T
F F

4Some writing advice from David Foster Wallace’s essay “Authority and American Usage”: “(1) Do
not presume the reader can read your mind — anything you want the reader to visualize or consider or
conclude, you must provide; (2) Do not presume the reader feels the same way that you do about a given
experience or issue — your argument cannot just assume as true the very thing you’re trying to argue
for.”

80 CHAPTER 4. LOGIC

A B A XOR B A AND B (A XOR B) OR (A AND B)
T T
T F
F T
F F

Problem 7: View the Fortune Magazine 2012 list of the 1000 largest US Corporations, on
the web at http://money.cnn.com/magazines/fortune/fortune500/2012/full list/.
Indicate whether each of the following statements is true or false:

(i) Hewlett-Packard has more revenue than Apple, and has more profit than International
Business Machines (IBM).

(ii) If Apple has more profit than Microsoft and Amazon.com has more profit than
Hewlett-Packard, then Google has more profit than Cisco Systems.

(iii) Microsoft has more profit than each of the following: Hewlett-Packard, IBM, Dell,
Intel, Amazon.com, and Google.

(iv) Either Cisco Systems has more revenue than Sysco, or Cisco Systems has more profit
than Sysco, but not both.

(v) If Honeywell International has less revenue than Oracle, then either Microsoft has
more profit than Oracle or Apple has more profit than Oracle, but not both.

(vi) Intel has more revenue than Amazon.com or AT&T has more profit than Microsoft,
and it is not the case that both Intel and Microsoft each have more profit than Cisco
Systems.

(vii) Intel and Medtronic both appear on the Top 100 list, or AT&T and Verizon Com-
munications each have more profit than Microsoft.

Problem 8: Sometime algorithms work at the bit level. (For example, serious encryption
techniques use a variety of bit-level operations so the encrypted message is difficult to
“crack.”) These algorithms are difficult to trace, but doing so is a good exercise in
understanding both algorithms and bit operations. Consider the following algorithm:

Input: two 4-bit binary strings a and b.
Output: one 4-bit binary string output

1 Set i = 1
2 While i < 4
3 output[i] = b[i+ 1]
4 Set i = i+ 1
5 Set output[4] = 1
6 Set i = 1
7 While i ≤ 4
8 output[i] = output[i] AND (NOT(a[i]))
9 Set i = i+ 1
10 Set tmp = output[4]

4.8. PROBLEM SOLUTIONS 81

11 Set output[4] = output[3]
12 Set output[3] = tmp
13 Print output
14 Stop

Note: In the pseudocode for this problem we use the notation output[i] to mean the value
of the ith bit of binary string output, read left to right. So output[1] is the most significant
(leftmost) bit and output[4] is the least significant (rightmost) bit, as shown in this figure:

most significant =⇒ least significant

| 1 | 2 | 3 | 4 |
smallest index =⇒ largest index

For example, if a = 0011, then a[1] = 0 and a[4] = 1. If b = 1010, then b[1] = 1 and b[4]
= 0.
(i) Trace through the algorithm for input a = 0011, b = 1010. Specifically, (a) show
the values of i and output immediately before each time Line 4 is executed, (b) show the
values of i and output immediately before each time Line 9 is executed, and (c) show what
is printed. In part (a), if a variable is not yet assigned a value when Line 4 is executed,
leave the value for that variable blank.

(ii) Trace through the algorithm for input a = 1001, b = 1111. Specifically, (a) show
the values of i and output immediately before each time Line 4 is executed, (b) show the
values of i and output immediately before each time Line 9 is executed, and (c) show what
is printed. In part (a), if a variable is not yet assigned a value when Line 4 is executed,
leave the value for that variable blank.

Problem 9: Suppose you can evaluate the logical expression A XOR NOT B AND A in any
order you want. How many different possible orders of evaluation are there?

4.8 Problem Solutions

Second Introductory Problem:

Here are the vote totals, followed by a line of reasoning to obtain the totals. Other
lines of reasoning were possible as well.

Quebec City 4

Toronto 0

Ottawa 2

Montreal 0

St. John’s 2

Charlottetown 1

Halifax 1

Observation 1: From Clue (b) Montreal either had 0 or 4 votes.

Observation 2: From Clue (c) Quebec City had more votes than Halifax, meaning Quebec
City did not get 0 votes and Halifax did not get 4 votes.

82 CHAPTER 4. LOGIC

Observation 3: From Clue (d) we get the following. Note that since there are two cities
with two votes, and two with no votes, every city with two votes must be immediately
below a city with no votes, and every city with no votes must be immediately above a
city with 2 votes. (i) Quebec City did not get 2 votes since it has no city above it in the
list to get 0 votes. (ii) Toronto did not get 2 votes, since it is below Quebec City, which
by Observation 2 did not get 0 votes. (iii) Ottawa did not get 0 votes since it is above
Montreal, which by Observation 1 did not get 2 votes. (iv) Halifax did not get 0 votes
since there is no city below it to get 2 votes.

Observation 4: Halifax got 1 vote. This is because it did not get 0 or 4 votes by obser-
vations 3(iv) and 2, respectively. Moreover, by Clue (e) there was a city with one more
vote than Halifax. Since no city got 3 votes, Halifax could not have gotten 2 votes. The
only option left is it got 1 vote.

Observation 5: Ottawa must have gotten 2 votes. This is because by Clue (e) either
Toronto or Ottawa got one more vote than Halifax. By Observation 4 Halifax got 1 vote,
so either Toronto or Ottawa got 2. However, Toronto did not get 2 votes by Observation
3(ii). So Ottawa got 2 votes.

Observation 6: By Observation 5 and Clue (d), Toronto got 0 votes.

Observation 7: Quebec City got 4 votes. This is because, by Clue (c), it must have more
than the number of votes Halifax did, which is 1 by Observation 4. Moreover, Quebec
City did not get 2 votes by Observation 3(i). So the only option left is 4 votes.

Observation 8: Montreal got 0 votes. This is because it had either 0 or 4 votes. But only
one city got 4 votes, and by Observation 7 that city was Quebec City. So the only option
left for Montreal is 0 votes.

Observation 9: St. John’s got 2 votes. This is because it is immediately below a city,
Montreal, which by Observation 8 got 0 votes. So by Clue (d) and the comment in
Observation 3, St. John’s must have gotten 2 votes.

Observation 10: Only one city, Charlottestown, remains. And all the vote numbers are
accounted for except for one city with 1 vote. So Charlottestown must have gotten 1 vote.

Problem 1:

The order is sometimes, but not always, important. AND is independent of the order
used: A AND B AND C will evaluate to true, regardless of which AND is evaluated first,
if and only if all of A, B, and C are true. Similarly, A OR B OR C will evaluate to true,
again regardless of the order, if and only if at least one of A, B, or C is true. However, this
order independence is not true of all operations: (A → B) → C does not always evaluate
to the same truth value as A → (B → C). For example, let A be false, B be false, and C
be false. Then (A → B) → C simplifies to (F → F) → F, and so to T → F, and so to F.
But A → (B → C) simplifies to F → (F → F), and so to F → T, and so to T.

4.8. PROBLEM SOLUTIONS 83

Problem 2:

Here is a truth table showing the equivalence. Note the two bold columns have identical
values:

A B A AND B NOT (A AND B) NOT(A) NOT(B) NOT(A) OR NOT(B)
T T T F F F F
T F F T F T T
F T F T T F T
F F F T T T T

Problem 3:

The statement is (A OR B) AND (NOT (C OR D)). Notice that statement uses OR rather
than XOR, and that the punctuation and phrasing indicates the order of operations.
Substituting the truth values gives

(A OR B) AND (NOT (C AND D))
= (T OR T) AND (NOT (T AND F))
= T AND (NOT (F))
= T AND T
= T

Problem 4 :

The NOT inverts the intensity, so intense gray values would go to dark ones, and vice
versa (for example white goes to black, and black to white). The AND then takes the
result and “rounds down” to the nearest multiple of 16 (for example, a value of 1810 is
rounded to 1610, a value of 8910 to 8010, etc.).

Problem 5:

Applying (NOT (X)) XOR 11100111 to X = 10111101 gives 01000010 for applying NOT
to X, and then the XOR gives

0 1 0 0 0 0 1 0
XOR 1 1 1 0 0 1 1 1

1 0 1 0 0 1 0 1

Problem 6:

A B NOT A NOT(A) AND B (NOT(A) AND B) XOR B
T T F F T
T F F F F
F T T T F
F F T F F

84 CHAPTER 4. LOGIC

A B A XOR B A AND B (A XOR B) OR (A AND B)
T T F T T
T F T F T
F T T F T
F F F F F

Problem 7:

First, here are the relevant rows from the Fortune 500 table.

Millions of dollars
Rank Company Revenue Profit

10 Hewlett-Packard 127,245.0 7,074.0
11 AT&T 126,723.0 3,944.0
15 Verizon Communications 110,875.0 2,404.0
17 Apple 108,249.0 25,922.0
19 International Business Machines 106,916.0 15,855.0
37 Microsoft 69,943.0 23,150.0
44 Dell 62,071.0 3,492.0
51 Intel 53,999.0 12,942.0
56 Amazon.com 48,077.0 631.0
64 Cisco Systems 43,218.0 6,490.0
69 Sysco 39,323.5 1,152.0
73 Google 37,905.0 9,737.0
77 Honeywell International 37,059.0 2,067.0
82 Oracle 35,622.0 8,547.0

164 Medtronic 15,933.0 3,096.0

For each part, to decide whether a statement is true we

1. split the statement into logically simple parts and give each part a symbolic name
such as a or b;

2. evaluate the truth of each simple part;

3. express the complete statement in terms of logical operations (AND, OR, NOT,
etc.) and simple parts;

4. evaluate the logical expression.

(i) a: Hewlett-Packard has more revenue than Apple: true
b: Hewlett-Packard has more profit than International Business Machines: false

a AND b:

true AND false

ANSWER: false

4.8. PROBLEM SOLUTIONS 85

(ii) a: Apple has more profit than Microsoft: true
b: Amazon.com has more profit than Hewlett-Packard: false
c: Google has more profit than Cisco Systems: true

IF (a AND b), THEN c:

IF (true AND false), THEN true

IF false, THEN true

ANSWER: true

(iii) a: Microsoft has more profit than Hewlett-Packard: true
b: Microsoft has more profit than IBM: true
c: Microsoft has more profit than Dell: true
d: Microsoft has more profit than Intel: true
e: Microsoft has more profit than Amazon.com: true
f: Microsoft has more profit than Google: true

a AND b AND c AND d AND e AND f

true and true and true and true and true and true

ANSWER: true

(iv) a: Cisco Systems has more revenue than Sysco: true
b: Cisco Systems has more profit than Sysco: true

a XOR b

true XOR true

ANSWER: false

(v) a: Honeywell International has less revenue than Oracle: false
b: Microsoft has more profit than Oracle: true
c: Apple has more profit than Oracle: true

IF a THEN (b XOR c)

IF false THEN (true XOR true)

IF false THEN false

ANSWER: true

(vi) a: Intel has more revenue than Amazon.com: true
b: AT&T has more profit than Microsoft: false
c: Intel has more profit than Cisco Systems: true
d: Microsoft has more profit than Cisco Systems: true

(a OR b) AND NOT(c AND d)

(true OR false) AND NOT(true AND true)

true AND NOT(true)

true AND false

ANSWER: false

86 CHAPTER 4. LOGIC

(vii) a: Intel appears on the Top 100 list: true
b: Medtronic appears on the top 100 list: false
c: AT&T has more profit than Microsoft: false
d: Verizon Communications has more profit than Microsoft: false

(a AND b) OR (c AND d)

(true AND false) OR (false AND false)

false OR false

ANSWER: false

Problem 8.

(i) Here is the trace at Line 4, at line 9, and the final output:

Line 4 i output[1] output[2] output[3] output[4]

1 0

2 0 1

3 0 1 0

Line 9 1 0 1 0 1

2 0 1 0 1

3 0 1 0 1

4 0 1 0 0

Printed 0 1 0 0

(ii) Here is the trace at Line 4, at line 9, and the final output:

Line 4 i output[1] output[2] output[3] output[4]

1 1

2 1 1

3 1 1 1

Line 9 1 0 1 1 1

2 0 1 1 1

3 0 1 1 1

4 0 1 1 0

Printed 0 1 0 1

Problem 9: There are three possibilities: (A XOR NOT(B)) AND A; A XOR (NOT(B) AND

A); (A XOR NOT(B AND A).

4.9 Additional Resources

Here are some additional resources:

4.9. ADDITIONAL RESOURCES 87

• http://computer.howstuffworks.com/boolean1.htm . This file from howstuff-
works explains in detail how the Boolean logic in this chapter is important in com-
puter hardware. This not only explains this connection further, but also explains
some items that will appear briefly in the next chapter.

• http://www.nlm.nih.gov/bsd/disted/pubmedtutorial/020 350.html . A fairly
simple tutorial from the National Institute of Health’s U.S. National Library of
Medicine explaining simple searches of medical databases. The examples show use
of AND, OR, and NOT.

• http://en.wikipedia.org/wiki/Reliability of Wikipedia . This is a Wikipedia
article about Wikipedia. It is fairly long, but not all sections are relevant for this
class. In addition to this page, Wikipedia also contains other pages about its relia-
bility, such as http://en.wikipedia.org/wiki/Wikipedia%3AAcademic use.

88 CHAPTER 4. LOGIC

Chapter 5

Machine Organization

It is still all 0’s and 1’s.

5.1 Introduction

5.1.1 Introductory Problem

Suppose you work at an arboretum. You have a list of 100 data records for trees. Each
record contains three data: the first is the type of tree, stored as a 6-character string
(assume you have abbreviated codes for the tree names so you do not have to store the
entire, potentially lengthy, name). The second is the year the tree was planted, stored as
a 16-bit integer. The third is the diameter of the tree the last time it was measured. This
is stored as a 32-bit floating point number.

(a) How much memory does the list take?

(b) Assume all the records are stored one right after the other, with the first record
at memory location (given in hexadecimal, since memory locations are often given in
hexadecimal) 3b2201aa. What memory location or locations are occupied by the last
record? Give your answer in hexadecimal.

5.1.2 Overview

How do computers work?

In the past few chapters you’ve seen parts of this puzzle. The chapter on data repre-
sentation used binary numbers for storing different types of data. The chapter on logic
briefly mentioned implementing computer operations in circuits containing logic gates.
And the chapter on algorithms used sequences of (higher-level) instructions to solve prob-
lems and perform tasks. But how do the algorithms’ instructions work on a lower level?
And how do all these parts — data, low-level operations, and high-level instructions —
come together?

89

90 CHAPTER 5. MACHINE ORGANIZATION

Algorithms are implemented in a computer language such as Java, C++, or Python.
So one answer to the first question in the last paragraph is that algorithms are entered into
the computer as text representing the computer program. And in the data representation
chapter we saw that computers can represent text in ASCII. But this raises still other
questions. For example, how does a computer distinguish between text representing com-
puter instructions, and text representing data? And even if an instruction is recognized
as an operation and not as data, how does a computer, on a low level, actually perform
that operation?

Computer instructions, on a low level, are still all 0’s and 1’s. While instructions in an
algorithm specification are implemented in a computer language such as Java, these in-
structions are eventually converted into machine instructions, which have a binary equiv-
alent. For example, for a particular computer a bitstring 0001101011 might mean “check
if the value of the variable I am about to give you (the location of) is equal to 0.”

Note this means, on one hand, that computer instructions are another type of data,
stored in computer memory along with the other data the computer holds. On the other
hand, computer instructions are a special type of data, and do not use ASCII equivalents;
instead they use other binary equivalents called operation codes, or opcodes for short. And
computers must work with these operation codes differently than they do “regular” data.

The purpose of this chapter is to delve further into the inner workings of comput-
ers. Although this will be a brief and simplified version of how computers work,1 it will
nonetheless cover key ideas about computers, computer science, and computer engineer-
ing. In summary, in this chapter we’ll look questions such as

• How, on a low level, do computers work?

• How do computers represent instructions?

• How are computer hardware and software related?

• What are the important parts of a computer, and what is important to know about
them?

5.1.3 Motivation

How do things work? We usually do not need to understand the “inner workings” of
technological devices in order to use them: how they work is hidden away behind a simple
interface. Think, for example, of driving a car. You need to know how to start the car,
how to steer it, how to stop it, etc. You do not need to know how the engine works, how
the electrical system works, or the exact composition of the tires. That all is hidden.

1How computers work is very complicated. For example, there are entire classes devoted to subparts
of this topic. Here are a few at the University of Minnesota: CSci 2021, Machine Organization; EE 2001,
Introduction to Circuits and Electronics; EE 2301, Introduction to Digital System Design; EE 2361,
Introduction to Microcontrollers; CSci 4203/EE 4363, Computer Architecture.

5.1. INTRODUCTION 91

Similarly, to be a computer user of office software such as spreadsheets, of a web
browser, or of a statistical analysis package, etc. you do not need to know how the
computer works “under the hood.”

On the other hand, there are times when it is useful to know about computer hardware
and the inner workings of a computer. Suppose you are buying a new computer and it
is advertised as having “cache memory.” What does that mean? Is it good or bad? Or
suppose it has a one terabyte hard disk. Is that a large amount of memory? Or suppose
a program tells you there is a “bus error.” What do busses have to do with computers?
Knowing at least a little about computer hardware can be helpful when buying computers,
or when working with some programs.

Moreover, this is a chapter where a number of key ideas in computer science come
together. Specifically, this chapter, more than any other chapter, explains how computers
pull together algorithms, data, and logic, and actually do things.

5.1.4 How This Topic Relates to the Mathematics Requirement

In this chapter you will again see the connections between computing and mathematics
that appeared in previous chapters. These include binary numbers, carefully stepping
through a computational process, and doing arithmetic problems related to memory space
or access time.

5.1.5 How This Topic Relates to the Society and Technology
Theme

The increasing effects of computers on society are based on computers’ increasing capa-
bilities. Twenty years ago laptops, streaming audio and video, social networks site, etc.
were uncommon, if they existed at all. However, continual and dramatic improvements in
computer capabilities, for example increases in computer speed and in computer memory,
have made possible what we take for granted nowadays.

To understand how computers have advanced — and what further advances are likely
in the future — we need to know the basics of how computers work. So, for example, we
need to know what the main parts of a computer are, we need to know something about
computer speed, we need to know about computer memory, etc. This chapter discusses
those basics. And in the next chapter, which is on Moore’s Law, we will focus specifically
on how computer hardware has advanced and is advancing.

5.1.6 Goals

Upon completing this topic, you should be able to do the following:

1. Be able to list different parts of a computer (this includes explaining any relevant
terms), why they are important, and how they are related.

92 CHAPTER 5. MACHINE ORGANIZATION

2. Be able to explain, on a low level, how computers work.

3. Be able to relate computer component characteristics to common tasks. (Example:
is 256K of memory enough to store the text from a normal sized book?).

4. Be able to solve arithmetic problems involving computer components. (Example:
Suppose you download a 3MB file over a 250Kbps connection. How long will it
take?).

5. Be able to read, translate, and trace through the execution of a given short sequence
of machine instructions.

5.2 An Analogy

Understanding the terminology, motivation for, and important characteristics of computer
parts can be difficult. So we will start with an analogy.

Suppose you do woodworking, and have a work area including a workbench, a set of
tools and supplies adjacent to your workbench, and lesser-used supplies and tools located
elsewhere in the room. Suppose further you are creating a holiday decoration (pick your
favorite holiday). To construct the decoration you are following a set of instructions. You
put a printed copy of the instructions on the workbench so you can easily follow it. And
you put the wood and other supplies you will be using on the side of the workbench.

(If woodworking doesn’t appeal to you, then think about any process using materi-
als, tools, and instructions; possibilities include creating a garden, constructing a floral
arrangement, or restringing a guitar.)

The instructions are step-by-step, so you follow them one at a time. Sometimes a step
involves taking material and performing an operation on it (e.g., “cut a 1/4 inch diameter
dowel to a length of 4 inches”). Note this involves finding the specific piece, getting the
tool (a saw, presumably) from the nearby set of tools, cutting the piece, returning the
saw to its place (or you might set it down directly on the workbench if you will be using it
again very soon), and setting the cut piece aside (unless it is being used again very soon).
Sometimes the step involves a number of substeps (consider, for example, all the substeps
involved in drilling a hole in a piece of wood: marking the location of the hole, finding
the right size drill bit, etc.). Usually a step requires getting supplies or tools that are at
hand; but sometimes it involves supplies or tools farther away. For example, suppose a
step asks you to use a clamp that you use so infrequently that you store it in a drawer on
the other side of the room. Then you need to move to the other side of the room, locate
the clamp, and carry it back to the workbench. Sometimes you might even need to go
farther away (e.g., to a hardware store) to get additional material or tools.

How is this like a computer running a program? Like all analogies, this one isn’t an
exact parallel, but it does serve to illustrate several key points:

• There is a center of activity (the workbench) where you do the work. In a computer
there is a CPU (central processing unit) where most of the operations are done.

5.3. CHAPTER STRUCTURE 93

• The overall operation is broken into a sequence of steps. Most steps involve reading
the current instruction, understanding what it means, retrieving any needed supplies
and tools, performing the operations, placing the result somewhere, returning any
tools used to their designated locations, and then going to the next instruction. This
process is repeated again and again until all the needed steps have been performed.

Similarly a computer loads a program into memory, and follows the program’s in-
structions one by one. Individual steps involve decoding the instruction, fetching
any needed values from wherever they are stored, performing the specified operation,
and then placing the results somewhere they can be accessed later.

• There are different locations where items are kept. Sometimes supplies or tools
are set near the center of the workbench when they are part of the current or an
upcoming step. Sometimes they are kept on the side of the workbench for easy
access. Some are in the adjacent storage area. Some are elsewhere. Note the closer
an item is, the less time it takes to find and fetch it. Ideally, all items you need are
located nearby and are easy to find. However, many projects will involve getting at
least some items from further away.

Similarly, computers contain different types of memory such as register memory,
cache memory, main memory, and secondary memory (these types will be explained
later in this chapter). Some memory can be accessed very quickly, but is smaller
and more expensive in cost. Other memory is cheaper and more plentiful, but has
a significantly slower access time.

• There are a variety of different types of supplies and tools. Similarly, a computer
program involves data (including different types of data), program instructions from
the program the computer is running, and instructions from other helper programs
that are needed for the program to run.

• You are “managing the process” by gathering all the needed items, putting them in
the appropriate locations, finding and fetching items as needed, stepping through
the instructions one-by-one and remembering where you are in the instruction list,
returning items to their locations when you are done with them, etc.

Similarly in a computer there is a “manager” — the operating system — that keeps
track of everything and performs those higher-level operations such as moving data
from memory to the CPU.

The remainder of this chapter will explore some of these computer parts and processes
in more detail.

5.3 Chapter Structure

This chapter will have a slightly different structure than most other chapters in this set
of notes. So this section provides a “roadmap” to the remainder of this chapter and

94 CHAPTER 5. MACHINE ORGANIZATION

instructions about some online resources.
Machine organization is an area where there are a number of useful introductory-level

online resources. So we will rely heavily on those resources, asking you to read them for
some basic information. This chapter will provide some additional basic material, and
provide some example problems.

The three web resources listed below provide much of the basic material you will need
to know. Each of these makes some important points about computers, and two of them
also contain some useful diagrams. However, the sites also contain more information
than we need: make sure you understand the key points, but don’t worry if you don’t
understand all the details. In particular, focus on the following three items from the sites:

• An understanding of the key parts of computers. The sites mention a number of
components, so you should understand both the names and purposes.

• An understanding of how the parts relate to each other. Two of the sites have very
useful diagrams illustrating key relations.

• Tradeoffs. Two sites mention tradeoffs such as memory cost versus access time or
processor speeds versus computer cost.

The “Terminology” section (5.4) below contains a brief explanation of important terms;
this might be useful as you read the sites. The sites also contain links to additional sites
with even further information. You don’t need to follow these links, although you are
certainly welcome to explore them if you like.

Here are the three sites you should read:

• http://en.wikibooks.org/wiki/Computers for Beginners/Buying A Computer.
This is a Wikibooks page on buying a computer. While some material here needs up-
dating (a common problem when discussing computer capabilities since they change
quickly) and sometimes the page uses too much terminology for our purposes, this
resource is nonetheless a good introduction to the different parts of a computer and
the range of differences that exist in those parts. Read the entire page.

• http://computer.howstuffworks.com/computer-memory1.htm. This is the How-
StuffWorks “How Computer Memory Works” article. Pay particular attention to
the different types of memory (e.g., main memory, register, cache, hard disk); how
they work in general; and the motivation for, and characteristics of each. Read this
entire article.

• http://computer.howstuffworks.com/microprocessor.htm. This is the How-
StuffWorks “How Microprocessors work” article. Read the first five pages, paying
particular attention to the diagram and description, on page 3, of the different parts
of the central processing unit. The page 5 description of microprocessor instructions
is also useful. A section below will provide a further explanation of such instructions
on an even lower level.

5.4. MACHINE ORGANIZATION TERMS 95

The remainder of this chapter then provides the following additional material:

• A list of machine organization terms. This will provide a quick reference for terms
that come up in the readings and elsewhere in the class.

• An explanation of memory addresses and storing data in computer memory.

• Information on machine instructions.

• Some quick comments and tables on memory sizes and processor speeds.

• Brief comments on system software.

• Brief comments on computational models.

• Some further questions to think about.

• Example problems and their solutions.

5.4 Machine Organization Terms

Because of all the terminology and concepts associated with machine organization, this
section lists a number of terms and give a brief explanation of each. While not all terms
are included here, the most important are.

• ALU (arithmetic/logic unit): part of a processor that handles low-level arithmetic
(e.g., addition) or logic (e.g., comparing two numbers).

• address field: bits used to designate the memory location associated with an in-
struction. For example, the command LOAD A means load the contents of memory
address A into the register; and in machine code the location of ‘A’ must be repre-
sented in binary in the address field for that command.

• address field width: the number of bits in the address field. This number must be
enough that each memory location in the computer’s main memory has its own
unique address. An n-bit memory field therefore allows the computer to have at
most 2n memory locations.

• assembly language: a low-level language that has a symbolic name such as LOAD
or COMPARE for each machine instruction.

• bus: a means for moving data around within a computer.

• cache memory: special (but limited size) memory that allows faster access than
main memory.

96 CHAPTER 5. MACHINE ORGANIZATION

• compiler: one type of program that translates program code written in a high-level
language into machine code.

• CPU (central processing unit): the main processor in the computer.

• FLOPS (floating point operations per second): one measure of a computer’s speed.
Powerful computers’ speeds are in the giga-FLOPS or even tera-FLOPS range.

• GPU: (graphical processing unit): a processor that handles the computationally-
intensive graphics operations such as drawing graphics objects to the screen.

• Hertz: a measure of frequency. MHz, or megahertz, is millions of cycles per second.
GHz, or gigahertz, is billions of cycles per second. Processor speeds are usually in
the MHz or GHz range.

• high-level language (or HLL): a language such as Java, Python or C++. One char-
acteristic of such languages is that they contain keywords such as for, print, etc.
that are more easily understood by humans than opcodes are.

• instruction set: the set of low-level commands for a processor. These command
include commands such as LOAD or JUMP.

• interpreter: one type of program that translates program code written in a high-
level language into machine code. For example, you will use a Python interpreter
in this class.

• machine code: program code which has been compiled or interpreted into its binary
representation. The machine code version of a program is also called the executable
version or the binary version.

• main memory (or primary memory): the “working memory” of a computer. For
most personal computers main memory measures in hundreds of megabytes or in
gigabytes, and holds programs as they run, data that is being used, etc.

• memory: in general, any part of the computer used to store values, including sec-
ondary memory, main memory, cache memory, or registers. However, often the term
“memory” is used to refer only to main memory.

• memory address: the numeric identifier (usually given in binary or hexadecimal, but
sometimes in decimal) of the location of a byte in memory.

• memory value: the value of the bits stored in a given memory location. Each byte
in memory has both an address and a value.

• MIPS: millions of instructions per second. One measure of a computer’s speed.

5.5. MEMORY ADDRESSES 97

• opcode: (or op code): a binary string that represents a command from a processor’s
instruction set.

• opcode width: the number of bits used for opcodes. This will vary from machine to
machine. The number of bits used must allow each command in the instruction set
to have its own unique opcode; so an n-bit opcode width allows an instruction set
of at most 2n commands.

• program counter: when the computer is executing a program, the program counter
holds the memory address of the instruction currently being executed. Once that
instruction is finished, then the program counter is updated to the address location
of the next instruction.

• register: special, very small-sized memory in the CPU. Registers are used to tem-
porarily hold values during low-level computer operations.

• storage: a term that usually refers to secondary memory (hard drives, CDs, floppy
disks (for older computers), magnetic tapes, thumb drives, etc.).

5.5 Memory Addresses

To understand how computers work, it is important to understand how computers store
data. Specifically, in this section we’ll look at how computers store variables. Much of
this applies to more general data as well.

Suppose we are writing a computer program that analyzes poetry. One function we
want the program to do is find the average number of lines of a group of poems. If we
were to do this, the program would might have the following outline:2

Set numberOfPoems to 0

Set lineSum to 0

While there are still poems to consider

Get the next poem

Set numberOfPoems to numberOfPoems + 1

Set n to be the number of lines in that poem

Set lineSum to lineSum + n

If numberOfPoems equals 0

Print ‘No poems to analyze.’

Else

Print ‘Average Number of Lines: ’, lineSum/numberOfPoems

2Note this is an outline, but to be a valid pseudocode specification some lines would need to be refined
further.

98 CHAPTER 5. MACHINE ORGANIZATION

Remember from Chapter 1 that numberOfPoems, lineSum, and n are called variables
since their value might vary as the algorithm progresses. This is in contrast to constants,
whose values remain the same throughout a program. For example, if you were writing
a program to compute the volume of a sphere, you would use a formula involving the
number π, which is approximately 3.14159. The number π is a constant: its value does
not change.3

To understand how computers work with variables, let’s assume further that some
of the poems you are analyzing have disputed lines, i.e., lines which might be in some
publications of the poems, but which experts are unsure actually belong to the poem.
Suppose you have a count numDisputedLines and do the following:

print ‘Do you wish to add the disputed lines (y/n)?’

get ch

if ch equals ‘y’

lineSumAug = lineSum + numDisputedLines

else

lineSumAug = lineSum

Suppose at the start of this code lineSum had value 1066, and numDisputedLines had
value 42. Suppose the user didn’t want to add the disputed lines, so the else part is
executed. So now we have both lineSum and lineSumAug equal to 1066. Suppose further
that, for whatever reason, the value of lineSum is then changed by the line

lineSum = lineSum + 10

This changes the value of lineSum to 1076. Now what is the value of lineSumAug?
Should it be 1066, because that is what it is set to in the else part above? Or should
it be 1076: does equating the two variables in the else part link them so lineSumAug

changes whenever lineSum does?
The answer here is that lineSumAug still equals 1066. While this might seem like

a silly example, it hinges on an important point, namely how the computer interprets
the line lineSumAug = lineSum. It is setting the value of lineSumAug to the value of
lineSum; but it is not linking the names of the two variables.

Variables in computer programs, therefore, are not just values, but involve both names
and values. Moreover, they are even more than names and values. For example, in many
languages it is possible to have two different variables, in different parts of the program,
that share the same name. Therefore, variables are a collection of information, including
the variable’s value, name, location in memory when the program is running, and type.

Let’s look at these further. You can think of computer memory4 as a long list of
locations. Each location is a byte (equivalently, 8 bits), and computers will put values

3As an aside, we usually approximate π to just a few digits, but π is an irrational number — it
goes on and on forever without any consecutively repeating pattern. People have used computers to
calculate trillions of digits of π. For more information, see the many informative web sites such as
http://en.wikipedia.org/wiki/Pi or http://www.joyofpi.com/pilinks.html.

4In this section “memory” refers to main memory.

5.5. MEMORY ADDRESSES 99

into, modify values within, or take values out of those locations. When a computer
program runs, it needs memory for doing what it needs to do, and this includes needing
space for its variables. Let’s suppose we’re working with the number of lines example
above. The computer system would therefore assign memory space for lineSum and
lineSumAug, along with the other variables involved. How do we refer to or identify this
space?

Each location in memory has an address. In some ways this is similar to house ad-
dresses, since each house on a street often has an identifying number. But this analogy
only goes so far. For example, you will probably not be surprised that computer scien-
tists and computer engineers will often write memory addresses in binary or (because the
number of bits is usually large) hexadecimal.

Let’s suppose we have a small device that has 65,536 memory locations. Note this
is a power of 2, namely 216; this is not a coincidence since maximum memory sizes for
computing devices are almost always powers of 2. The device therefore needs an address
field width of 16; that is, each address consists of 16 bits as shown in the left-hand
column below. (If we wished, we could use hexadecimal or even decimal to represent the
addresses.) All the values in the right column are set to 00000000. In an actual computer,
these values would usually be different.

Address Value
0000000000000000 00000000
0000000000000001 00000000
0000000000000010 00000000
0000000000000011 00000000

· · · · · ·
1111111111111100 00000000
1111111111111101 00000000
1111111111111110 00000000
1111111111111111 00000000

The computer does not actually store the addresses in the left hand side; it stores only
the values and can figure out the addresses as needed. This is emphasized in the table
above by the missing left-side boundary line.5 However, we’ll usually include addresses
in memory diagrams since we’ll need to use the addresses to refer to specific memory
locations.

Problem 1: Write the table above with the addresses represented in hexadecimal. (Leave
the values in binary.)

5Actually, sometimes computers store addresses as values, that is, as the content in a memory location.
For example, languages such as C and C++ allow pointer variables. A pointer variable “points to” another
variable by storing that other variable’s address as the pointer variable’s value. Pointers are one of the
most confusing and error-prone part of programming. Because of this some programming languages do
not include them, or severely limit their use.

100 CHAPTER 5. MACHINE ORGANIZATION

We’ll use hexadecimal representation of the addresses from now on. So a computer
might assign location 88f0 to hold the value of lineSum. Does this mean it assigns location
88f1 to hold the value of lineSumAug? Recall from the last chapter that different types of
data take different amounts of space. Let’s suppose that both line counts are represented
in the program as 16-bit integers. Location 88f0 (and all other locations) only hold 8
bits. So lineSum needs not only location 88f0, but also 88f1. And the computer needs
to “remember” that lineSum uses 16-bits. That is why a variable specification needs to
include its type.

Now let’s look again at what happens, on this low level, for the following three lines
of code:

lineSum = 1066

lineSumAug = lineSum

lineSum = lineSum + 10.

Assume when the computer system starts to run the program it sets aside memory lo-
cations 88f0 and 88f1 for lineSum and 88f2 and 88f3 for lineSumAug. Note 106610 =
00000100001010102 and 107610 = 00000100001101002. Assume all these locations for
these variables contain the value 0000000000000000 originally. Then assigning 1066 to
lineSum changes the corresponding values:

Address Value
88f0 00000100
88f1 00101010
88f2 00000000
88f3 00000000

Then the line lineSumAug = lineSum puts the value of the latter into the former:

Address Value
88f0 00000100
88f1 00101010
88f2 00000100
88f3 00101010

Finally, adding 10 to lineSum changes that variable’s value:

Address Value
88f0 00000100
88f1 00110100
88f2 00000100
88f3 00101010

5.6. MACHINE INSTRUCTIONS 101

5.6 Machine Instructions

For an algorithm to run on a computer, someone needs to implement it as a computer
program. However, computers need to process programs further before they can run them.

A program written in a high-level language such as Java or Python must first be
converted to machine instructions. This is done by a special program called a compiler
or interpreter, and produces a machine code or executable version of the program.6

Different types of computers have different instruction sets. An executable file for
one type of computer will often not run on other types of computers. This is one reason
why there are different versions of programs such as Microsoft Office for different types
of machines.

Instruction sets consist of very low-level instructions. Some instructions are ones you
would recognize, such as addition. Others are related to the inner workings of computers.
For example, here is a simple set of about a dozen machine instructions for a single-register
processor. Actual instruction sets are longer and more complicated, but this set will serve
to illustrate the basics of machine code.

Op Code Operation Meaning
00000000 IN A Have the user input a number; store it in address A
00000001 OUT A Output the contents from address A in decimal
00000010 CLEAR A Set the contents of address A to 0
00000011 STORE A Copy the register contents to the contents of address A
00000100 LOAD A Load the contents of address A into the register
00000101 INCREMENT A Add 1 to the contents of address A
00000110 DECREMENT A Subtract 1 from the contents of address A
00000111 ADD A Add the contents of address A to the contents of the

register and store the result in the register
00001000 COMPARE A If the contents of address A are greater than the contents

of the register, set the GT flag to 1, else to 0
00001001 JUMP L Take the next instruction from address L
00001010 JUMPGT L Take the next instruction from address L

if the GT flag is 1
00001011 STOP Stop program execution

When a program is turned into machine code, all the instructions in a high-level
programming language are turned into the opcodes for machine instructions. For example,
suppose we have a simple loop:

6This explanation is somewhat simplified as there are multiple details we are omitting. For example,
the program code often needs to be linked with pre-existing library code.

102 CHAPTER 5. MACHINE ORGANIZATION

Get i

Set sum to 0

While i is greater than 0

Set sum to sum + i

Set i to i - 1

Print sum

How would we turn this into machine instructions in terms of opcodes? Note for some
lines there is an equivalent machine instruction:

Get i IN I
Set sum to 0 CLEAR SUM
Set i to i - 1 DECREMENT I
Print sum OUT SUM

However, other lines require more than one machine instruction. For example, Set sum

to sum + i requires a sequence of three steps:

LOAD SUM

ADD I

STORE SUM

Moreover, both the beginning and end of the loop require care. For the beginning, we first
want to check if i is greater than 0. This itself requires multiple steps: Clear a location
so it holds the value 0. Then load that 0 value into the register. Next, compare the value
of i to that 0 register value. If the value of i is greater than 0, then the GT flag (a special
bit in the processor memory) is set to 1. We then check that bit and, if it is 1, jump to
the first instruction in the loop; if it is 0, we jump to the first instruction past the loop.
So the single if line yields the following, where Z corresponds to 0, and L1 and L2 are the
memory addresses of the instructions Set sum to sum + i and Print i, respectively:7

CLEAR Z

LOAD Z

COMPARE I

JUMPGT L1

JUMP L2

After executing the line at the end of the loop, namely, Set i to i-1, we want to jump
up to the start of the loop. This requires a JUMP to the address of the CLEAR instruction
above. Finally, we also want a STOP at the end of the program.

Putting all these parts together produces the following, where we have given line
numbers to jump destinations:

7Note this sequence is not unique (see if you can think of other ways to perform the same task but with
a different sequence of instructions from the given machine instruction set). Moreover, actual machine
instruction sets are larger, and would usually require fewer instructions for the loop’s beginning line. The
key point remains, however: one line of an algorithm, or one line of high-level programming code often
corresponds to several lines of machine instructions.

5.6. MACHINE INSTRUCTIONS 103

IN A

CLEAR SUM

50 CLEAR Z

LOAD Z

COMPARE I

JUMPGT 70

JUMP 100

70 LOAD SUM

ADD I

STORE SUM

DECREMENT I

JUMP 50

100 OUT SUM

STOP

This is an example of assembly code. However, it is still not binary. To change assembly
code to machine code we need to perform two additional steps. First we replace opera-
tion names with binary opcodes. For example, IN becomes 00000000, CLEAR becomes
00000010, etc. Second, we replace all variables and line numbers with binary numbers
representing memory locations. We can’t choose arbitrary locations, but the operating
system can assign line numbers based on where it places the machine code when that
code is to be executed; and it can assign memory locations for the variables based on
where there is convenient available memory. So, for example, if the system placed the
first instruction at memory location 11001100, we could get the following table:

Memory Location Op Code Address Assembly Code
11001100 00000000 11100100 IN I
11001110 00000010 11100110 CLEAR SUM
11001100 00000010 11101000 CLEAR Z
11001110 00000100 11101000 LOAD Z
11010000 00001000 11100100 COMPARE I
11010010 00001010 11010110 JUMPGT 70
11010100 00001001 11100000 JUMP 100
11010110 00000100 11100110 LOAD SUM
11011000 00000111 11100100 ADD I
11011010 00000011 11100110 STORE SUM
11011100 00000110 11100100 DECREMENT I
11011110 00001001 11001100 JUMP 50
11100000 00000001 11100110 OUT SUM
11100010 0001011 STOP
11100100 I
11100110 SUM
11101000 Z

104 CHAPTER 5. MACHINE ORGANIZATION

Empty table locations are unused or will be filled during the program’s execution. Note
that most instruction lines involve an opcode and an associated address. The opcodes in
this example take one byte; assume that line numbers and variables will also consist of
a single byte value. So each line involves two bytes. Therefore the diagram shows two
memory locations side by side in each row with only the address of the leftmost location
of the pair being given.

To review, this table shows the machine code, the 0’s and 1’s, corresponding to the
small piece of pseudocode at the start of this section. The leftmost column gives the
memory addresses; these are not explicitly stored in the computer but are given here for
reference. The second column from the left holds opcode values (except in the bottom
three rows). These are the instructions that the computer will perform: to execute the
program, the computer steps through each memory location containing the instructions,
and performs the instruction associated with the opcode. As part of this, the computer
usually needs an associated memory address; these are given in the next column over. Put
another way, the contents of the third column are binary numbers that are stored in the
computer; each of these numbers (except for the bottom four rows) provides a memory
location for the operation given by the opcode immediately to its left. The bottom three
rows are for variables in the program. The contents of the memory locations will be filled
in, changed, and perhaps output as the program execution progresses.8

This example is admittedly complicated. Manually tracing through machine code or
converting higher-level instructions into machine code is tedious and error-prone. That is
why most programming is done in higher-level languages, with compilers or interpreters
translating the high-level code to machine code.

5.7 Some Quantities

This section contains two tables. The first contains memory terms such as megabyte
and gigabyte. These are important to remember since they come up frequently. It also
contains some useful equivalents of memory amounts.9 The second table contains prefixes
for fractions of a second.

8To further stress the point that machine instructions and program variables are similar within a
computer, i.e., all 0’s and 1’s, here is one type of computer security attack: The attacker feeds a program
a much larger input string that the program expected. The program puts this string into memory, but
because of its large size the input overflows its assigned memory locations and fills some memory after
those locations. The overlong input contains some some malicious code placed there by the attacker.
The attacker’s intent is for this code to overwrite part of a usual program and allow the attacker to gain
control of the machine. Note this attack relies on being able to mix computer instructions and data.

9These equivalents are based on a similar table in G. Michael Schneider and Judith L. Gersting’s
Invitation to Computer Science.

5.8. SYSTEM SOFTWARE 105

Figure 5.1: Some Memory Equivalents: Approximation in Terms of Printed Material

Prefix Approx. Amount Equivalent
1 byte 8 bits a single ASCII character
1 kilobyte (KB) a thousand bytes a single small page of text
1 megabyte (MB) a million bytes a long novel, or two or three shorter ones
1 gigabyte (GB) a billion bytes a large wallful of books
1 terabyte (TB) a trillion bytes a large library
1 petabyte (PB) a quadrillion bytes all libraries in the U.S.

Figure 5.2: Some Important Fractional Time Durations

Name Duration Duration (in words)
1 millisecond (ms) 10−3 seconds one-thousandth of a second
1 microsecond (µs) 10−6 seconds one-millionth of a second
1 nanosecond (ns) 10−9 seconds one-billionth of a second
1 picosecond (ps) 10−12 seconds one-trillionth of a second
1 femtosecond (fs) 10−15 seconds one-quadrillionth second

5.8 System Software

The sections above occasionally mentioned the operating system, compilers, and inter-
preters. These are examples of system software, that is, “helper” software whose purpose
is to assist the computer in accomplishing other tasks. For example, compilers and in-
terpreters turn programs in high-level languages to machine code. The operating system
manages not only the running of programs, but also many other tasks the computer needs
to perform to run smoothly. For example, you might be using a spreadsheet at the same
time you are streaming music and downloading a data set from a web site. The computer
needs to juggle all these tasks so that none interferes with the others.

We won’t have time to investigate system software in detail. Here are the key points
you should know:

1. Not all programs have a user’s goal as their primary purpose. System programs’
purpose is to “make the computer work.”

2. Specific examples of system software include operating systems such as Linux, Win-
dows, and MacOS. Other examples include compilers and interpreters such as the
Python interpreter used in this class.

106 CHAPTER 5. MACHINE ORGANIZATION

3. System software often performs invisible work: usually users don’t even know a
system program is running.

4. Some system software is large and complicated. For example, operating systems
consist of millions of lines of code.

5. System programs are programs. So at the lowest level they are 0’s and 1’s as well.

5.9 Some Additional Notes

The computer model in this chapter is just one possible type of computer. There are
other possible models. For example, parallel computers have a number of processors that
work simultaneously. If a problem can be broken into independent or nearly independent
subproblems, then different subproblems can be assigned to different processors, allowing
the problem to be solved in less time.

Suppose a problem would normally take 500 minutes to solve. Suppose moreover that
you have a 32-processor machine, the problem can be broken into 32 subproblems that
can run simultaneously, and each subproblem can be solved in 1/32nd of the time of the
original problem. Then each subproblem requires 500/32 minutes, or roughly 16 minutes.
There would be some time breaking the original problem into subproblems, combining the
subproblem answers for an overall answer, etc. But the key point of parallel computation
is that some problems can be broken into subproblems that can be solved in parallel.10

Nowadays, many PCs are actually small multiprocessor machines. For example, a
“quadcore” machine has four main processors. Remember, however, that this does not
guarantee that all programs will run four times as fast: many programs cannot be easily
broken into independent subparts.

There are still other computation models as well. For example, quantum computing is
a current research topic. Quantum computers rely on an entirely different model of com-
putation, and if they become a reality they will usher in significant changes in computer
capabilities.

5.10 Further Questions

Here are some further questions to think about.

1. See if you can explain the basics of how computers work (or some part of how
computers work, such as how different types of computer memory are organized) to
someone who is unfamiliar with it.

10An alternative to parallel computation is distributed computation. Instead of having the subprob-
lems solved on different processors on the same machine, distribute the subproblems to different single-
processor machines. For example, you could distribute the example problem to a network of 32 PCs. The
cost of many single-processor machines is usually less than that of a corresponding parallel computer.
However, the data transmission times (over a network rather than within a machine) will be larger.

5.11. ADDITIONAL PROBLEMS 107

2. Think of another field you are interested in. Do low-level computer basics relate to
this field in any way? For example, are there any special computational devices used
in that field and, if so, how much memory do they have? Or does the field require
regular computers with special capabilities such as enhanced graphics capabilities
or extremely large amounts of memory?

3. Try to find out the computing characteristics of any computers or computational
devices you have. For example, if you have a laptop, what is its processor speed? If
you have an MP-3 player, how much memory does it have?

4. Think about how you use computers and what computer capabilities are most im-
portant. For example, if you work with large video files, large amounts of memory
are important.

5.11 Additional Problems

Problem 2: Answer the following arithmetic problems on computer organization.

(a) Suppose a computer has a maximum memory size of 4MB. What is the needed address
field width?

(b) Suppose a computer has an opcode field of 9 bits. What is the maximum number of
instructions in its instruction set?

(c) If a computer has an average memory access time of 10 nsec, and an average cache
memory access time of 2 nsec, and the cache hit rate is 50%, then what is the overall
average access time? A 50% cache hit rate means half the time the computer accesses the
cache and finds the data; but the other half it accesses the cache, does not find the data,
and therefore must get it from main memory.

(d) Assume you have a list of 50 numbers, each of which takes 32 bits to store. The first
number in the list is stored at memory address 80376210, and the numbers are stored
consecutively in memory. What is the memory address of the first memory location after
the last number in the list?

Problem 3: Answer the following questions related to memory size. Show your work.

(a) The Apollo 11 spacecraft had 2KB of RAM.

(i) What is the minimum address field width needed for 2KB of memory?

(ii) Would the novel Pride and Prejudice fit into 2KB of memory?

(iii) Would a typical MP-3 file for a three (or so) minute song fit into 2KB of memory?
(If you don’t know the approximate length of an MP-3 file for a 3 minute song, look it
up somewhere).

(b) Suppose you have a computer with 1.2TB of free hard disk space.

(i) About how many images could you store in 1.2TB if the average image size is 400KB?

108 CHAPTER 5. MACHINE ORGANIZATION

(ii) About how many short videos could you store in this space if the average video file
size is 25MB?

(iii) About how many movies could you store in this space if the average movie file size
is 2GB?

Problem 4: (This problem is tedious. One point of doing it is to get a good understanding
of why most programmers do not program in machine code or assembly code). Suppose
you have the following 4-bit instruction set. Note this is a different instruction set than
in the example above. Below, ‘R’ indicates the register.

Op Code Operation Meaning
0000 CLEAR A Set the contents of address A to 0
0001 STORE A Copy the contents of R to the contents of address A
0010 LOAD A Load the contents of address A into R
0011 INCREMENT A Add 1 to the contents of address A
0100 DECREMENT A Subtract 1 from the contents of address A
0101 ADD A Add the contents of address A to the contents of R

and store the result in R
0110 COMPARE A If the contents of address A are greater than the

contents of R, set the GT flag to 1, else to 0. If
the contents are equal, set the EQ flag to 1, else to 0.

0111 JUMP L Take the next instruction from address L
1000 JUMPGT L Take the next instruction from address L

if the GT flag is 1
1001 JUMPEQ L Take the next instruction from address L

if the EQ flag is 1
1010 IN A Have the user input a number; store it in address A
1011 OUT A Output the contents from address A in decimal
1100 STOP Stop program execution
1101 unused
1110 unused
1111 unused

Suppose further that the machine you are using has a 4-bit address field width. Note
that in this problem a machine instruction and its associated memory location require 8
bits total: 4 for the instruction, and 4 for the location. So an instruction-address pair
requires a single byte, in contrast to the 2 bytes in the example above.

Now suppose the program counter contains the value 0000 — i.e., it is pointing to the
very first memory location — and the memory contents are as shown in the table below.
This problem asks you to trace through the machine code in the contents of that table.
Note the content at location 0000 is 10101110. This value contains opcode 1010 (the
leftmost 4 bits) which means ‘IN,’ and its address field value is 1110. So this instruction
gets an input value and places it in memory location 1110. Assume all the variables in this
program are 8-bit integers, so each variable takes one memory location. After completing

5.12. PROBLEM SOLUTIONS 109

this operation, the program counter changes to 0001; the content there is 10101111. This
instruction gets an 8-bit input value and places it in memory location 1111. Similarly,
the subsequent memory content consists of opcodes for additional instructions and their
related memory locations.

Memory
Address Content

0000 10101110
0001 10101111
0010 00101110
0011 01101111
0100 10001001
0101 10011100
0110 10111110
0111 10111111
1000 01111101
1001 10111111
1010 10111110
1011 01111101
1100 10111111
1101 11000000
1110 00000000
1111 00000000

(a) What does the code in the table immediately above do if the input for the instruction
at location 0000 is the value 5 (i.e, 000001012) and the input for the instruction at 0001 is
the value 8 (i.e, 000010002)? Trace through the machine code above starting at location
0000. For each executed instruction, state what it does. Then state what value or values,
if anything, the program outputs.

(b) Do the same if the input for the instruction at location 0000 is 14010 (100011002) and
the input for the instruction at 0001 is also 14010.

5.12 Problem Solutions

Introductory Problem:

(a) Each record has a 6-character code, a 16-bit (or 2-byte) integer, and a 32-bit (or
4-byte) floating point number. Recall from the last chapter that in ASCII each character
takes one byte, so the code takes 6 bytes. Therefore each record takes 6 + 2 + 4 = 12
bytes. Multiply this by the number of records, i.e., 100, to get 1200 bytes, or a little more
than a kilobyte.

110 CHAPTER 5. MACHINE ORGANIZATION

(b) The first record is at location 3b2201aa16. Note to get the start of the second record
we add 1210, to get the start of the third record we add (2 × 12)10, etc. And so to get
the start of the last, i.e., 100th, record we add (99 × 12)10 = 118810 to the first record’s
location.

This is somewhat tricky since the first location is in hexadecimal. Let’s change part
of it to decimal, add in decimal, then convert back to hexadecimal. It turns out we don’t
need to convert the entire hexadecimal location; we can just convert the last part since
the number we are adding is relatively small, and there won’t be any carrying that would
affect the first part. So let’s convert the last four digits, 01aa16. In decimal this equals
0 × 163 + 1 × 162 + 10 × 161 + 10 × 160 = 256 + 160 + 10 = 426. Add 1188 to get 1614
in decimal. Now convert back to hexadecimal: note 1614 is less than 163 = 4096, but
162 = 256 divides into it six times with a remainder of 78. Then 161 divides into 78 four
times with a remainder of 14. So the last four digits of the hexadecimal location are 064e,
and the entire hexadecimal number for the last location is 3b22064e.

Now we need to find the final memory location occupied by the 100th record. All
records are 12 bytes long, and we just found that the first byte of the 100th record has
location 3b22064e. To find the address of the second byte of the record we add one to
this starting address. To find the address of the third byte of the record we add two to
the starting address. Etc. So to find the address of the final (12th) byte of the record, we
add 1110.

You might be able to do this directly in hexadecimal. If not, you can convert the final
two digits of the hexademical address 3b22064e to decimal: 4e16 = 4× 161 + 14× 160 =
7810. Then add 1110 bytes to get 8910. Then convert back to hexadecimal: 16 divides into
89 five time with a remainder of nine. So the address of the last byte of the last record
is, in hexadecimal, 3b220659.

Problem 1:

Address Value
0000 00000000
0001 00000000
0002 00000000
0003 00000000
· · · · · ·
fffc 00000000
fffd 00000000
fffe 00000000
ffff 00000000

Problem 2:

(a) 22 bits since 222 bytes = 4MB.

(b) If the opcode field has n bits, then there are at most 2n possible instructions. So the
maximum is 29 = 512 instructions.

5.12. PROBLEM SOLUTIONS 111

(c) .5× 2 nsec + .5× (10 + 2) nsec = 7 nsec.

(d) 32 bits is 4 bytes, and so the list takes 4× 50 = 200 bytes to store. So the list takes
locations 803762 to 803961, and the next address is 803962.

Problem 3:

(a)(i) 11, since 211 bytes = 2KB.

(ii) No. 2KB is roughly enough space to store 2 small pages of text, not enough for an
entire novel.

(iii) No. A typical MP-3 file for a 3 minute song is a few MB in size.

(b)(i) 1.2TB/400KB is approximately equal to 1,200,000,000,000 divided by 400,000,
which equals 3 million.

(ii) 1.2TB/25MB is approximately equal to 1,200,000,000,000 divided by 25,000,000, which
equals 48,000.

(ii) 1.2TB/2GB is approximately equal to 1,200,000,000,000 divided by 2,000,000,000,
which equals 600.

Problem 4:

The opcode sequence is equivalent (but not line by line) to the following pseudocode.
To make the code clearer, we’ll call the content of memory location 1110 ‘X’, and of 1111
‘Y’.

1 Get X
2 Get Y
3 If Y < X then
4 Print X
5 Print Y
6 Else if Y > X
7 Print Y
8 Print X
9 Else
10 Print Y
11 Stop

(a) For input X = 5 and Y = 8, the code outputs 8 followed by 5. A detailed explanation
is in the first table below. As above, the table calls the content of memory location 1110
‘X’, and of 1111 ‘Y’.

(b) For input X = 140 and Y = 140 the code outputs 140, printed only once. A detailed
explanation is in the second table below. As above, the table calls the content of memory
location 1110 ‘X’, and of 1111 ‘Y’.

112 CHAPTER 5. MACHINE ORGANIZATION

Memory
Address Content

0000 10101110 Gets value of 5 and stores it in X
0001 10101111 Gets value of 8 and stores it in Y
0010 00101110 Load the value of X (5) into R
0011 01101111 Compares value of Y (8) with value in R (5);

Sets GT flag to 1
0100 10001001 Jumps to instruction at location 1001
0101 10011100 Not executed
0110 10111110 Not executed
0111 10111111 Not executed
1000 01111101 Not executed
1001 10111111 Outputs value of Y (8)
1010 10111110 Outputs value of X (5)
1011 01111101 Jump to instruction at location 1101
1100 10111111 Not executed
1101 11000000 Stop
1110 00000000
1111 00000000

Memory
Address Content

0000 10101110 Gets value of 140 and stores it in X
0001 10101111 Gets value of 140 and stores it in Y
0010 00101110 Load the value of X (140) into R
0011 01101111 Compares value of Y (140) with value in R (140);

Sets EQ flag to 1
0100 10001001 Checks GT flag but does not jump
0101 10011100 Checks EQ flag and jumps to address 1100
0110 10111110 Not executed
0111 10111111 Not executed
1000 01111101 Not executed
1001 10111111 Not executed
1010 10111110 Not executed
1011 01111101 Not executed
1100 10111111 Prints value of Y (140)
1101 11000000 Stop
1110 00000000
1111 00000000

5.13. ADDITIONAL RESOURCES 113

5.13 Additional Resources

Here are additional resources. The first three items appeared above in the “Chapter
Structure” section and are required reading. See that section for more information.

• http://en.wikibooks.org/wiki/Computers for Beginners/Buying A Computer.
Wikibooks page on buying a computer. This provides background on different parts
of computers, as well as the basic decisions you need to make when buying a com-
puter.

• http://computer.howstuffworks.com/computer-memory1.htm. This is the How-
StuffWorks “How Computer Memory Works” page. This page gives details about
computer memory. Specifically, it covers many of the basics mentioned in class, as
well as providing additional detail for people who’d like more information.

• http://computer.howstuffworks.com/microprocessor.htm. This is the How-
StuffWorks “How Microprocessors work” page. Like the item above, this page cover
many of the basics mentioned in class, as well as providing additional details for
those who are interested.

• http://en.wikipedia.org/wiki/Megabyte. Wikipedia megabyte page. This page
also contains a chart with different byte multiples.

• http://www.simetric.co.uk/si time.htm. Table with fractional seconds. This
page also contains useful conversions such as the number of seconds in a year.

114 CHAPTER 5. MACHINE ORGANIZATION

Chapter 6

Moore’s Law

Faster, smaller, cheaper.

6.1 Introduction

6.1.1 Introductory Problems

Problem 1: Suppose you have the choice of the following means of compensation: Alter-
native 1 gives you $100 daily for 12 days. Alternative 2 gives you $1 on the first day, $2
on the second, $4 on the third, $8 on the fourth, etc. for 12 days, with each day after the
first doubling the previous day’s amount. Which alternative would give you more pay?

Problem 2: Suppose a certain type of computer has 40MB of memory currently, and
the amount of memory is likely to double every two years for the next decade. How much
memory is the computer likely to have 10 years from now?

6.1.2 Introductory Explanation

“When the group moved to California to become part of Lucasfilm, we got
close to making a computer-animated movie . . . But when it came time to
harden the deal and run the numbers for the contracts, I discovered to my
dismay that computers were still too slow: The projected production cost was
too high and the computation time way too long. We had to back out of the
deal. This time, we did know enough detail to correctly apply Moore’s Law
and it told us that we had to wait another five years to start making the first
movie. And sure enough, five years later Disney approached us to make Toy
Story.

“Moore’s Law told us that the new company we were starting, Pixar, had to
bide its time ... ”1

1From “How Pixar Used Moore’s Law to Predict the Future”, Alvy Ray Smith, in Wired magazine,

115

116 CHAPTER 6. MOORE’S LAW

In the early days of computing — the 1950’s and 1960’s — computers were large objects
that often filled a good part of a room. Today cell phones or calculators contain more
computing capability than these large early machines. In fact the computing capability of
a cell phone, for example, dwarfs that of a personal computer from just a couple decades
ago.

This fast change is exhilirating, but also challenging. How can individuals, businesses,
and other organizations keep up with this rapid pace of computing change? On one hand,
the answer is they cannot — it is impossible to stay current with all computer advances,
to always use the latest hardware and software, and to always predict what the next round
of advances will be.

On the other hand, there are some tools that are useful both for understanding past
advances in computing, and for trying to predict future advances. One of the most
important of these tools is Moore’s Law: that the density of transistors on a computer
chip will double every two years. This is important because higher transistor density
leads to computational devices that are smaller (in size), less costly, and more powerful
in terms of computational ability.

Moore’s Law is not a law in the same sense as a physical law — say Newton’s Laws
of Motion — or in the legal sense. Instead, it is an observation or model.2 In particular,
although there is nothing that required Moore’s Law to hold in the past, it has been
remarkably accurate in describing past advances in transistor density. And although there
is nothing that guarantees Moore’s Law will hold in the future, it is nonetheless a useful
tool for predicting possible future advances. In short, Moore’s Law is both descriptive of
past computer advances and predictive of likely future advances.

One often hears variants of Moore’s Law. For example, sometimes the time period is
said to be every 18 months. Sometimes the law is stated that computing power or memory
will double every two years. These variants aren’t quite accurate; at the same time they
aren’t all wrong either. For example, while computer speed is not directly proportional
to transistor density, it is related.

Doubling every two years leads to a type of increase called exponential growth, a term
that is sometimes misused to mean rapid growth of any kind. We’ll look at an exact
definition of exponential growth in a section below. Roughly speaking, though, it means
what you are measuring follows a formula like

count at time t = 100× 2t.

Notice how the count progresses as t increases: when t = 0 the count is 100, when t = 1
the count is 200, when t is 2, the count is 400, and so on, with the count doubling each
time t increases by 1.

April 17, 2013; available online at
http://www.wired.com/opinion/2013/04/how-pixar-used-moores-law-to-predict-the-future/

2One reason for the importance of mathematics in general is its effectiveness in modeling many phe-
nomena. Mathematical modeling is the subarea of mathematics that deals with questions “What different
types of mathematical models are there?”, “How do we measure ‘how good’ a model is?”, “How do we
predict how well a given time-dependent model will hold in the future?”, etc.

6.1. INTRODUCTION 117

Figure 6.1: A function that doubles every two time periods

t t/2 2t/2

0 0 1
2 1 2
4 2 4
6 3 8
8 4 16

10 5 32
12 6 64

To better understand Moore’s Law, let’s look at a function that doubles every two
years, namely f(t) = 2t/2. Some values for the function are shown in Table 6.1. The
pattern in that table is, of course, a pattern you have seen before since similar patterns
arose when we explored machine organization and data representation. In particular,
note the rapid growth of the function values, a growth whose importance we will explore
further in the next section.

6.1.3 Why is Moore’s Law Important?

Moore’s Law is important to people who work with computers for the reasons mentioned
in the last section. First, since it has modeled the increase in transistor density so well,
it is an explanatory tool for the rapid increases in computers. Second, it is also a tool for
predicting advances in computing in the future.

But why is Moore’s Law important in this class? Why should it be important to you?
Here are a few reasons.

First, one goal in this class is to understand both computers and how computer scien-
tists “see the world.” Moore’s Law is a powerful tool for computer scientists and engineers
as they understand, discuss, and analyze computers and computing.

Second, Moore’s Law helps us appreciate the rapid advances that have occurred in
computer technology. For example, in the early days of computing, computers were large
machines that filled the better part of a room, and were so expensive that they were not
owned by individuals but only by government organizations, large businesses, or research
universities. Nowadays the computational abilities of a cell phone dwarf the computational
abilities of those early computers.

Third, Moore’s Law helps us understand the effect these rapid advances in computers
have had on society. The fact that computers are becoming more powerful, smaller, and
cheaper has many societal ramifications, some of which we’ll explore elsewhere in this
class.

Fourth, Moore’s Law furnishes a tool for predicting future changes in computing, and

118 CHAPTER 6. MOORE’S LAW

its possible effects on society. Like Pixar in the opening quote of this chapter, we might
be interested in predicting when the time will be right for a certain application.

Finally, Moore’s Law is an example of exponential growth. This is a very important
idea, not only in computer science, but also in other areas such as biology, physics, and
finance. It is not uncommon to hear that something is “growing exponentially.” Under-
standing what this means is important in understanding many issues affecting individuals
and society.

In summary, Moore’s Law helps us understand, explain, and analyze

• computers and their underpinnings;

• the rapid advances in computer technology;

• the many societal effects of these rapid advances;

• possible future changes in computing technology, and the effects of those changes
on society; and

• exponential growth.

Problem 3: Why specifically might Moore’s Law be interesting to you? Give specifics
about why any of the reasons mentioned are particularly important to you, or give other
reasons why Moore’s Law might be interesting.

6.1.4 Topic Goals

Upon completing this topic, you should be able to do the following.

• Explain what Moore’s Law is and why it is important.

• Be able to use Moore’s Law to explain some past advances in computing, and analyze
some predictions about computing’s future.

• Be able to explain what exponential growth is, and why it is important.

• Be able to find characteristics of, and do computations with, functions that exhibit
exponential growth.

6.1.5 Moore’s Law and the Liberal Education Requirements

Moore’s Law is related to both liberal education requirements in this class: it is a math-
ematical model of a very important aspect of computer hardware, namely transistor den-
sity. And this model involves exponential growth, which is an important concept in many
areas, not just computer hardware or computer science.

Both the descriptive and predictive features of Moore’s Law also are useful in thinking
about technology and society. As mentioned in the previous sections, Moore’s Law is
useful in understanding, discussing, and analyzing past effects of computers on society,
and in predicting future effects.

6.2. MORE ABOUT EXPONENTIAL GROWTH 119

6.2 More About Exponential Growth

What exactly does “exponential growth” mean? As mentioned above, it commonly is
used to denote rapid growth. But technically speaking it means the growth of functions
of the form

f(t) = a× bt

where b > 1.0. This might seem very abstract, but it has some easy to understand and
important characteristics.

First, notice that at time t = 0 the function has value a × b0 = a × 1 = a. So
the constant a gives an initial value of whatever we are counting. Second, notice that
whenever we add 1 to t — regardless of what the actual value of t is — the function value
increases by a factor of b since f(t+ 1)/f(t) = (a× bt+1)/(a× bt) = bt+1/bt = b.

To make this more concrete, consider a drawing design problem. Suppose you have a
square. You replace the middle third of each edge of the square with three line segments
to get the more complicated edge shape shown in Figure 6.2. This turns each edge into

Figure 6.2: One side’s segment(s) after replacing the middle third

a sequence of five line segments. Since you do this for each of the four original edges of
the square, the total number of segments becomes 20. You repeat this process a second
time. Now the 20 become 100. Doing this a third time yields 500.

Problem 4: What is the function giving the line segment count after t applications of
this process?

It is sometimes useful to write an exponential growth function in the slightly different
form a × brt. For example, the function f(t) = 2t/2 is in this form. We could write this
function as f(t) = (

√
2)t — this is the exact same function — but the form f(t) = 2t/2 is

often more informative. Notice that in this case r = 1/2; this corresponds to a doubling
period of two times steps. If r = 1/5 the function is 2t/5, which doubles every five time
steps. If r = 3 the doubling period would be every 1/3 time steps. In general the doubling
period is 1/r time steps.3

3Notice how r affects the yearly rate of increase. The ratio of the count from time t + 1 to time t is
f(t+ 1)/f(t) = (a× br(t+1))/(a× brt) = br. So, for example, the yearly rate of increase for the function
f(t) = 2t/2 is 21/2 =

√
2 ≈ 1.4.

120 CHAPTER 6. MOORE’S LAW

If we replace the 2 with a 3, i.e., consider f = 3rt, then similar observations hold for
the tripling period. For example if r = 1/2 then the function will triple every two time
steps.4

Problem 5: Consider the function f(t) = 200×4t. What is its initial value, i.e., its value
when t = 0? By what factor does it increase every time period?

As mentioned above, people sometimes mistakenly call any type of rapid growth ex-
ponential growth. To explore this further, suppose you find that the number of dwellings
in a city has roughly followed the function g(t) = 200 + 100t2. Note that g(0) = 200,
g(1) = 300, g(2) = 600, g(3) = 1100, g(4) = 1800 and so on. This function does grow
quickly. Moreover it is greater than the function f(t) = 2t/2 for small values of t. But
the growth of g is not exponential: g does not have the exponential growth form. This in
turn means that

• unlike an exponential function, the ratio g(t+ 1)/g(t) is not constant, but actually
decreases as t gets larger;

• when t gets sufficiently large, any exponential growth function will be larger and
grow faster than g.

As a final note, while most functions that grow exponentially also grow rapidly, that
is not always the case. For example, if you have an initial investment of $1,000 that is
growing at 4% compounded annually, then your amount after t years is 1000 × 1.04t.
Note that each year this function increases by a factor of 1.04. If you are familiar with
compound interest you know that the compounding — the exponential growth ratio of
1.04 — has a powerful cumulative effect. However, is this rapid growth? The answer to
that is context dependent. A growth rate of 1.04 is significantly more than, say, a growth
rate of 1.01. However, it is significantly less than the rapid rate of a function such as 2t.

Problem 6: Compare the following functions: 2t/2, 1000× t3, 2t, 100× 1.05t, 3t. Which
is largest when t = 0? Which grows more quickly and is largest once t is large?

6.3 How Long Will Moore’s Law Continue to Hold?

Moore’s Law cannot hold forever. Yet Moore’s Law has continued to model transistor
density accurately, even in the face of frequent predictions of its imminent demise. Part of
the story of Moore’s Law has been how chemists, material scientists, electrical engineers,
computer engineers, etc. have overcome seemingly insurmountable technical difficulty
after technical difficulty to continually improve computer chip design and manufacture.

However, at some point the technical difficulties will be too much.5 Similar to a
business whose profits are doubling every year, or an app whose number of users is growing

4If the constant r is negative, then the count is actually decreasing. Exponential decay is an important
concept in mathematics and is used to model phenomena such as radioactive decay, or certain drug effects
in pharmacology.

5Some observers have already claimed that the doubling period has slowed recently.

6.4. QUESTIONS 121

by a factor of 10 every quarter (of a year), there will be a time at which that growth rate
will no longer hold. Perhaps that time will come soon; perhaps it will not come for many
years. Perhaps it will come abruptly; perhaps it will arrive gradually. Or perhaps there
will be a revolution, such as quantum computing, that will cause a discontinuous leap in
computer capabilities, and will require a different model of computation. It is difficult
to predict what the future will hold. However, it is likely that computer capabilities will
continue to increase significantly and rapidly in the future.

6.4 Questions

Here are some additional questions to think about. We will discuss some of these in class.

1. Explain in your own words what Moore’s Law is and why it is important.

2. Explain in your own words what exponential growth is, and why is is important.

3. Choose an area (other than computer science) you are interested in. Can you think
of any examples of exponential growth in that area?

6.5 Problem Solutions

Problem 1: Alternative 1 gives you 12× $100 = $1200. Alternative 2 gives you 1 + 2 +
4 + . . .+ 211 = $4095. So Alternative 2 gives more total compensation.

Problem 2: The amount of memory will double five times in 10 years, so the amount
will be 40× 25 = 40× 32 = 1280 MB or about 1.28GB.

Problem 3: Answers will vary.

Problem 4: 4× 5t.

Problem 5: The initial value is f(0) = 200. Each time period the function increases by
a factor of 4.

Problem 6: When t = 0 we have 1000× t3 equals 1000, 100× 1.05t equals 100, and all
the other functions are 1. Here are the functions in terms of increasing order of growth
as t gets large: 1000× t3, 100× 1.05t, 2t/2, 2t, 3t.

6.6 Additional Resources

Here are some online resources on Moore’s Law and exponential growth:

• http://news.cnet.com/FAQ-Forty-years-of-Moores-Law/2100-1006 3-5647824.html.
“FAQ: Forty Years of Moore’s Law”. This CNET article, from 2005, explains the
basics of Moore’s Law.

122 CHAPTER 6. MOORE’S LAW

• http://www.wired.com/opinion/2013/04/how-pixar-used-moores-law-to

-predict-the-future/ “How Pixar Used Moore’s Law to Predict the Future”.
This Wired magazine article provides an example of how researchers and businesses
use Moore’s Law to predict future computing capabilities.

• http://en.wikipedia.org/wiki/Moore’s law. This Wikipedia page on Moore’s
Law contains both some introductory material, as well as a number of interesting
details, related information, and some advanced material.

• http://en.wikipedia.org/wiki/Exponential growth. This Wikipedia page on
exponential growth provides a number of examples, as well as some additional
(mostly advanced) material.

• http://computer.howstuffworks.com/moores-law.htm. This HowStuffWorks ar-
ticle provides background information about Moore’s Law. It is recommended for
students who want to know more background than we will cover in class.

Chapter 7

Computer Security

Is security computing’s “Achilles’ heel?”1

7.1 Introduction

7.1.1 Introductory Problem

The alphabetic string UGG’N QBGG OEUO BJAN QBGG was obtained by encrypting a well-
known saying using an alphabetic substitution cipher. That is, each letter in the original
saying was replaced by another letter. If a letter appeared more than once in the original
saying, it was always replaced by the same letter. What is the original saying?

7.1.2 Overview

Computer security is an important and complicated topic. It affects individuals, groups,
companies, and governments. Because of the breadth and depth of this topic, we will not
even come close to covering it in full. Instead we’ll look at at questions such as

• What is “computer security” and why is it important?

• What are some of the issues in computer security?

• How do encryption and decryption work?

• What are the most important things to know about computer security?

Some of these issues are addressed in this chapter. Others we’ll explore further during
class time.

1“Achilles’ heel: a fault or weakness that causes or could cause someone or something to fail.” From
the Merriam-Webster online dictionary http://www.merriam-webster.com/. Accessed Nov. 21, 2013.

123

124 CHAPTER 7. COMPUTER SECURITY

7.1.3 Topic Goals

Upon completing this section, you should be able to do the following:

1. Be able to explain what computer security is and why it is important.

2. Be able to explain some of the important issues in computer security.

3. Be able to explain the basics of cryptography, and solve (not extremely complicated)
encryption and decryption problems.

4. Be able to explain the basics of public key encryption: how it works (on a high level),
what its advantages and disadvantages are, and what types of attacks it protects
against.

7.1.4 How These Topics Relate to Mathematics

Mathematics provides many underpinnings of encoding and decoding messages securely.
This is particularly true for strong encryption and decryption techniques, the types used
in e-commerce or by the military. (As an example, see the section on public key encryp-
tion.) However, it is also true on a simpler level for less secure encryption or decryption
techniques, such as those used in recreational puzzles.

7.1.5 How These Topics Relate to Society and Technology

Computer security is obviously an important topic for society. A need for security under-
lies individual computer use: we do not want unauthorized people accessing our personal
computing devices, for example. It underlies business use of computers: businesses need
to protect their transactions, data, etc. Without sufficient security, e-commerce would not
exist. It underlies many “critical industries,” for example computers play a role in areas
such as telecommunications, manufacturing, and energy. These industries obviously have
strong reasons to keep their systems and facilities secure. And it underlies government
functions, not only in areas like national security and the military, but also in areas such
as government-run medical programs, tax records and collection, and law enforcement.

7.2 Some Computer Security Principles

We’ll start by making some “big picture” observations about computer security.

1. Cryptography is a part, but not the entirety, of computer security. Sometimes com-
puter security is simplified to “encrypt your data and your communications.” While
encryption is part of computer security, it is not the whole of it; there are many,
many important aspects of computer security other than encryption.

7.2. SOME COMPUTER SECURITY PRINCIPLES 125

2. There are a variety of computer security attacks. For example, some attacks target
data, some transmission of data, some computer systems. Some attacks target in-
dividuals’ personal computers. Some target business or government systems. Some
attacks attempt to “steal data” but not to otherwise compromise a system. Some
attempt to damage the system or render it ineffective for a period of time.

3. Computer security has both technical and social aspects. Computer security guide-
lines often focus on technical aspects: make sure your anti-malware software is up
to date, use encryption on sensitive data, use sufficiently long passwords, etc. How-
ever, there are non-technical attacks as well. For example, one social engineering
attack against a business involves a malicious hacker calling an employee and imper-
sonating someone of importance within the business; for instance the hacker might
pretend to be a technically inept boss with urgent need for a certain file.

4. Computer security is not restricted to preventing unauthorized access by “outsiders.”
While this is one type of threat, a large number of security incidents involve insiders.
That is why a good organizational security plan involves items such as background
checks for prospective employees, training about security practices and rules, re-
stricting access to systems and data to only certain employees, logs of all activity
on critical systems, etc.

5. If you work for an organization that deals with sensitive data, there are probably
developed practices and procedures you will need to follow. For example, there are
federal laws such as FERPA (that deals with educational data) and HIPAA (that
deals with medical data) that employees must know and follow. Moreover, many
organizations have their own internal security practices and rules.

6. “Security is a process, not a product.” This principle, attributed to computer secu-
rity expert Bruce Schneier, highlights that security isn’t something you can get or
buy and then be done with. For example, as important as anti-malware software
is, it is only part of a good security plan. Additionally, new security threats are
emerging on a weekly basis. What works today might not work tomorrow.

7. It is useful to know some of the common types of attacks, and to know the basics
of what individuals should do to protect themselves. This includes being able to
recognize some of the most common types of attacks (e.g., emails or phone calls
that ask you to provide your password), and being familiar with some of the most
common countermeasures (such as anti-malware software).

8. There are a number of topics such as privacy that are related to security, but are not
identical. For example, sometimes security and privacy go hand-in-hand: an illegal
access to a medical database is both a security and a privacy breach. Sometimes,
though, more security means less privacy. For example, companies or agencies that
work with critical systems often do extensive background checks on their prospective

126 CHAPTER 7. COMPUTER SECURITY

employees; the result is more security for the company or agency, but less privacy
for the prospective employee.

9. Computer security is an issue of strong current concern. In general, our computer
systems are not as secure as they should be. However, making systems more secure
is difficult for a number of reasons. These include that there are a number of
different types of attacks; that many systems were developed before security became
a concern, and it is difficult to add security to existing systems; that security has
both technical and non-technical aspects; and that good security is costly.

7.3 Introduction to Cryptography

When you log into a computer system remotely, you don’t want your password to be
transmitted over a computer network in its usual form: it is too easy for someone to snoop
on Internet traffic and discover your password. Instead, you want it to be encrypted, and
any reasonable computer system encrypts passwords. Similarly, you don’t want to send
your credit card information unencrypted over the Internet, you don’t want your bank
doing financial transactions insecurely, and you don’t want sensitive medical information
stored where anyone can access it. For example, suppose a medical worker has a laptop
containing medical records. Laptops are often stolen or lost, so extremely sensitive data
should not be stored on them. But if it is, then it should be encrypted to make it more
difficult for a thief to use it maliciously.

In this course we’ll look in particular at encryption/decryption. This is not because
this is the only important subarea of computer security; as the last section mentioned, it
is only one of many. But it is an important subarea, and has a nice connection to the
mathematical requirements of our course.

Cryptography, the science and practice of encrypting information,2 is a complicated
area. Large financial transactions, military communications, etc. use extremely sophisti-
cated encryption techniques, which are beyond the scope of this chapter. So here we will
focus on some of the basics.

Suppose Bob wants to send a message to Alice. However, Bob and Alice’s archnemesis,
Charlie, wants to intercept this message. How can Bob send Alice a message securely?
This involves a number of steps if Bob and Alice use encryption:

1. Bob must take the original message, called the plaintext, then encrypt it using an
encryption key or cipher. The result is called ciphertext.

2. Bob then sends the ciphertext to Alice.

2There is a large amount of special terminology in the area of computer security. Since this is an
introductory class we will, for the most part, avoid much of the terminology. However, if you are interested,
there are a number of online glossaries.

7.3. INTRODUCTION TO CRYPTOGRAPHY 127

3. Alice receives the message, then applies a decryption key to the ciphertext to recover
the original plaintext.

For this to work, Alice must have a decryption key that reverses what Bob’s encryption
key does. For example, if Bob’s key advances each letter three places forward in the
alphabet, then Alice’s key would move each letter back three places.3 Or if Bob’s key is
an alphabetic substitution cipher and it takes ‘A’ to ‘K’, then the decryption key would
take ‘K’ to ‘A’.

This presents a problem, however: how does Bob let Alice know what the key is
without letting Charlie also know? If Bob and Alice are in different locations, having
Bob send the key introduces the same problem as sending the original plaintext without
encrypting it: Charlie might intercept the message. This is a problem with traditional
cryptography: how to get the key securely to the receiver?

Note Charlie’s aim is likely to discover what message Bob is sending to Alice. But this
is not the only possibility. He might prevent the message from getting to Alice by stopping
the transmission somehow. He might change the message to say something different, for
example, instead of “Bid up to $2,000,000 for the rare manuscript” he might change it to
“Bid up to $20,000,000 for the rare manuscript.”

You have probably played games similar to the introductory problem in this chapter.
These games might involve simple encryption techniques such as transposing pairs of
adjacent letters, or advancing letters forward in the alphabet a set number of places. For
example, suppose you have the message ARRIVE IN DUBLIN and move each letter forward
13 places in the alphabet (wrapping around if you go beyond the end). Just encrypt the
letters; leave the spaces as they are.4 What do you get? The answer is at the end of the
next paragraph.

This method takes ‘A’ to ‘N’, ‘R’ to ‘E’, etc. This is an example of an alphabetic
rotation cipher. This particular one, advancing every character 13 places, is called ROT-
13. It is often used in non-secure settings, for example, to encrypt a “spoiler” comment
in an online discussion of books or movies. Note that to decrypt ROT-13 ciphertext we
merely shift all characters back 13 characters. However, also note we can advance them
13 characters; that is, since our alphabet has 26 characters, the ROT-13 encryption key
is identical to the ROT-13 decryption key. (The answer to the problem above is NEEVIR

VA QHOYVA.)

Problem 1: Suppose you know the ciphertext SWPAN WJZ NQOP was obtained through an
alphabetic rotation technique, but don’t know how many places each letter was advanced.
What is the maximum number of possible rotations you’d need to try, and what is the
plaintext?

The problem at the start of this chapter uses alphabetic substitution. Although sig-
nificantly more complicated than alphabetic rotation, substitution is still not secure. Is

3This extremely simple technique is called the Caesar cipher.
4In serious encryption all characters including spaces and punctuation are encrypted so they do not

provide clues to word length, sentence structure, etc.

128 CHAPTER 7. COMPUTER SECURITY

this because alphabetic substitution does not provide enough possibilities? There are
26 × 25 × 24 × · · · × 3 × 2 × 1 different alphabetic substitution options. This is a very
large number. The problem is not that there are so few possibilities that the computer
can check all of them. Instead, the problem is that the computer can use other informa-
tion. For example, certain letters appear more frequently than others. If you are familiar
with the board game Scrabble, think about the low scoring letters such as ‘E’,‘N’, and
‘S’. These letters appear much more frequently than the high-scoring letters such as ‘Z’,
‘Q’, and ‘J’. This frequency information suggests some likely correspondences, which an
analyst can use to decrypt ciphertext obtained through alphabetical substitution.

In summary, alphabetic substitution and other simple techniques are not secure.

7.4 Public Key Encryption

One problem mentioned above is the “key distribution” problem: how does Bob securely
send Alice a key so that she can decrypt messages that he sends? There is an ingenious
technique called public key encryption that avoids the key distribution problem.

Public key encryption relies on the idea of irreversible (or, more accurately, difficult
to reverse) processes. Some things are much easier to do than undo. In particular, it
is easier to do mathematical operations such as multiplying two large numbers than the
reverse operation: given a large number, factor it.

Public key encryption relies on this in producing public key/private key pairs. If Bob
and Alice plan to use public key encryption, then Alice would first need to use a program
to generate a public and a private key. She can “publish” the public key, so Bob can get
it. However, only she should know the private key. Bob and Alice then do the following
steps:

1. Bob encrypts the message using Alice’s public key.

2. Bob send the ciphertext to Alice.

3. Alice decrypts the message using her private key.

Note that anyone (including Bob) can send Alice a message using her public key. However,
only she should be able to decrypt those messages.

As an alternative, sometimes public key encryption is used to send another key. This
still avoids the key distribution problem, but allows using a less computationally intensive
key for encrypting and decrypting long messages. So in this case there are two sets of
encryption and decryption keys — the public key encryption and decryption keys, and
the “regular” encryption and decryption keys. The steps are then as follows:

1. Bob encrypts the regular decryption key using Alice’s public key.

2. Bob sends the ciphertext version of the regular decryption key to Alice.

7.4. PUBLIC KEY ENCRYPTION 129

3. Alice decrypts the regular decryption key using her private key.

4. Bob encrypts a message using the regular encryption key.

5. Bob send the ciphertext version of the message to Alice.

6. Alice decrypts the message using the regular decryption key.

Problem 2: Is public key encryption foolproof? Does it defend against all types of
attacks?

Here is a further explanation of how public key encryption works, using a type called
RSA encryption. It relies on a number of mathematical concepts:

• Prime numbers: Prime numbers are positive integers that are greater than 1, and
that are evenly divisible only by 1 and themselves. So, for example, 7 is prime since
it has no divisors other than 1 and itself. However, 6 is composite (i.e., not prime)
since it is also divisible by 2 and 3.

• Greatest common divisors: The greatest common divisor of two positive integers
is the largest integer that evenly divides both. For example, the greatest common
divisor of 30 and 36 is 6, since 6 divides both, and no larger integer does. The
greatest common divisor is often abbreviated as gcd. For example, gcd(10, 15) = 5.

• Relative primeness: Two positive integers are said to be relatively prime if their
greatest common divisor is 1, i.e., if no positive integer greater than 1 divides both
evenly. For example, 9 and 14 are relatively prime, but 10 and 28 are not since 2
divides both.

• Modular arithmetic: The process below uses modular arithmetic, that is, the remain-
der operator. Specifically, a mod b is the remainder when you divide the integer a

by the integer b. For example 22 mod 10 is 2.

• Exponentiation: The RSA process uses exponentiation extensively.

Here is an example. It is not important to follow all the details and arithmetic in
the example. But you should get a feeling for the amount of computation involved, and
how the mathematical items mentioned above play a role. This example illustrates the
underlying mathematics; but in practice these steps are actually done by computer. So
this is an illustrative example rather than what people actually do when using public key
cryptography.

1. To generate a public/private key pair I take any two relatively large primes p and q
(we’ll use 1063 and 8501 for this example, although primes actually used are much
larger) and multiply them together to get n = pq: 9036563.

130 CHAPTER 7. COMPUTER SECURITY

2. I next take any number e with the property that gcd(e, (p − 1)(q − 1)) = 1 (e.g.,
e = 43 works since gcd(43, (1063− 1)× (8501− 1)) = 1).

3. I send you e and n.

4. To send me an encrypted message you take your message, and first assign numerical
equivalents to each character. There are many possible ways to do this; let’s use
the simple technique of assigning each letter its place in the alphabet: ‘A’ is 01, ‘B’
is 02, etc. Then group the digits into blocks of a certain size, say of length 4. Let
M indicate a block of 4 digits. You then encrypt M by computing C = M e mod n.
You do this for each block, and send me the results. For example, if your original
message is STOP, you’d have the following:

original message: S T O P

numerical equivalents: 18 19 14 15

you compute and send:

1819 raised to the 43rd power mod 9036563 = 7757145

1415 raised to the 43rd power mod 9036563 = 8393137

5. I know p and q (but n is, in practice, large enough that p and q cannot be found by
other people). From these I find a number d such that de = 1 mod (p−1)(q−1), or
de = 1 mod 9027000. (d = 6297907 works, we’ll skip the mathematics involved in
how to find d.) Apply this to C : Cd mod n = (M e)d mod n = M (de) mod n. Now
by a little mathematical “magic” this equals M mod n, and so I recover the original
M by taking each block of what you sent me, and raising it to the d power mod n.

Comments:

• Note I can give you (and everyone else) the encryption key (e and n) as long as n
is difficult to factor.

• Note how prime numbers and the other mathematics mentioned above are involved
in the encryption and decryption.

• The important thing with this example is not that you understand all the details,
but that you understand the important points:

– The motivation for public key encryption, as well as what problems it solves
and what problems it doesn’t.

– How it works on a high level.

– The reliance of public key encryption on mathematics.

– The need for computers in doing the many computations involved in public
key encryption.

7.5. ADDITIONAL PROBLEMS 131

7.5 Additional Problems

Here are some additional problems on this topic.

Problem 3: Do the following encryption/decryption problems manually (i.e., without
relying on a computer). You need only encrypt the alphabetic characters — leave any
punctuation as is.

(a) Encrypt the following Alice in Wonderland quote using ROT-13:

WHY IS A RAVEN LIKE A WRITING DESK?

(b) Decrypt the following message, which was encrypted using rotation-based encryption:

IJ RDNZ ADNC RJPGY BJ VITRCZMZ RDOCJPO V KJMKJDNZ

(c) Decrypt the following message, which was generated with substitution-based encryp-
tion:

MU BERZ, NEZE GE MVYW ZVP RY KRYW RY GE ARP IVYW WC YWRU XP THRAE.

RPB XK UCV GXYN WC LC RPUGNEZE UCV MVYW ZVP WGXAE RY KRYW RY WNRW.

Problem 4: Algorithms such as public key encryption rely on being able to do “expmod”
operations quickly for large numbers. That is, for given positive integers b, n,m they need
to compute bn mod m. Remember the mod m operations gives the remainder for division
by m.

Computing bn mod m by first computing bn and then finding the remainder has two
shortcomings. First, since b, n, and m are very large numbers, bn is very, very large. And
while computers can deal with very large numbers, it takes special efforts for them to do
so. Second, this approach is rather time consuming.

Here is a much more efficient algorithm:

Input: Three positive integers b, n,m.

Output: bn mod m.

1 Find the binary representation of n; call the bits in it akak−1 . . . a2a1
2 Set x = 1
3 Set power = b mod m
4 For i = 1 to k
5 If ai equals 1
6 Set x = (x · power) mod m
7 Set power = (power · power) mod m
8 Print x
9 Stop

(a) Trace through this algorithm for b = 7, n = 17, m = 13. Specifically, state (i) the
binary representation of n, (ii) the values of x and power right after Line 3 is executed,

132 CHAPTER 7. COMPUTER SECURITY

(iii) the values of i, x, and power right after each time Line 7 is executed, and (iv) what
value is printed.

(b) Trace through this algorithm for b = 5, n = 23, m = 11. Specifically, state (i) the
binary representation of n, (ii) the values of x and power right after Line 3 is executed,
(iii) the values of i, x and power right after each time Line 7 is executed, and (iv) what
value is printed.

Problem 5: Let’s use another technique to encrypt (a shortened version of) the Alice in
Wonderland quote from the problem above:

WHY A RAVEN?

(a) First, change each character, including the spaces and the question mark, into its
decimal ASCII equivalent. Write all the decimal numbers together from left to right to
form a single number.

(b) Take your answer from part (a) and transpose each pair of digits. So, for example, if
your answer in part (a) was 12345678, you’d transpose the 1 and the 2, then the 3 and
the 4, then the 5 and the 6, then the 7 and the 8, to get 21436587. (Your actual answer
from part (a) should be longer than the 8-digit example used here.)

(c) Now move the last digit to the front of the number. Then taking two digits at a time,
from left to right, turn each two-digit pair into the corresponding ASCII equivalent. So,
for example, if you have 21436587 from part (b), moving the last digit to the front would
give 72143658. Then 72 is an H, 14 is the non-printing SO (shift out) character, 36 is a
dollar sign $, and 58 is a colon : . In writing your final answer, enclose any non-printing
characters in parentheses. So the encrypted message would be H(shift out)$:

(d) Does this encryption result in a substitution key? That is, each time a specific
character occurs in the plaintext is it encrypted as the same character in the ciphertext?

Problem 6: Are substitution-based ciphers secure? Briefly explain why or why not.

7.6 Problem Solutions

Introductory Problem: The saying is “ALL’S WELL THAT ENDS WELL.”

Problem 1: There are 25 possible rotations to try (we don’t count the 26th possibility, of
advancing each letter 26 places, since it just replaces each letter with itself). The original
message is WATER AND RUST.

Problem 2: It is not foolproof. For example, someone could pretend to be Bob and send
a fake message to Alice.

Problem 3 (a) JUL VF N ENIRA YVXR N JEVGVAT QRFX?

(b) NO WISE FISH WOULD GO ANYWHERE WITHOUT A PORPOISE

7.6. PROBLEM SOLUTIONS 133

(c) MY DEAR, HERE WE MUST RUN AS FAST AS WE CAN JUST TO STAY IN
PLACE. AND IF YOU WISH TO GO ANYWHERE YOU MUST RUN TWICE AS
FAST AS THAT.

Problem 4

(a)

(i) 10001

(ii) x: 1 power: 7

(iii) i x power

--- --- -----

1 7 10

2 7 9

3 7 3

4 7 9

5 11 3

(iv) 11

(b)

(i) 10111

(ii) x: 1 power: 5

(iii) i x power

--- --- -----

1 5 3

2 4 9

3 3 4

4 3 5

5 4 3

(iv) 4

Problem 5

(a) 877289326532826586697863

(b) 782798235623285668968736

134 CHAPTER 7. COMPUTER SECURITY

(c) Moving the last digit to the front gives 678279823562328566896873, which translates
to CROR#>(space)UBYDI

(d) It isn’t. For example, the fifth and eighth characters in the plaintext are the same —
both A’s — but the fifth and eighth characters in the ciphertext are not.

Problem 6: Substitution ciphers are not secure. This is because — even though there
are an extremely large number of them — they can still be cracked by using techniques
such as analyzing letter frequency and letter combination frequency.

7.7 Questions

Here are some questions to think about:

1. Suppose someone asked you for advice on personal computer security. List three
tips you would give them.

2. There were security threats prior to computers. How have computers changed indi-
vidual, organizational, and national security?

3. List some types of data that require strong security, and some types that require
minimal, if any, security.

4. The issue of privacy is related to, but not identical to, security. How are computers
changing the privacy landscape? List some ways or give some examples.

7.8 Additional Resources

Here are some additional, online resources:

• http://computer.howstuffworks.com/encryption.htm: the howstuffworks “How
Encryption Works” page. This page covers many of the basics mentioned in class,
as well as providing additional details for those who are interested.

• http://en.wikipedia.org/wiki/ROT13: the Wikipedia ROT-13 page. This page
explains ROT-13 and related schemes in some detail, and provides some examples.

• http://www.thegeekstuff.com/2012/07/cryptography-basics/: Introduction to
Cryptography Basic Principles. This page from The Geek Stuff website gives an
overview of some of the techniques and uses of cryptography.

• http://www.oit.umn.edu/safe-computing: the U of M Safe Computing website.

• http://www.youtube.com/watch?v=Wc1dOw4j3J8: Explaining Computer Security.
A YouTube video containing practical, general advice about personal computer
security.

7.8. ADDITIONAL RESOURCES 135

• http://www.dhs.gov/topic/cybersecurity: The U.S. Department of Homeland
Security cybersecurity page. This page contains a wealth of information on cyber-
security and related topics.

• http://www.dhs.gov/critical-infrastructure-sectors: The U.S. Department
of Homeland Security critical infrastructure page. This page lists a number of sectors
including not only information technology, but also others such as communications,
energy, and financial services.

• http://www.schneier.com/: Bruce Schneier Website. Schneier is an expert on
security and related topics such as privacy. He writes both advanced works for
experts as well as more accessible articles for popular audiences. The material here
isn’t necessarily closely related to what we covered in class, and you might not
agree with everything Schneier writes, but this site provides interesting additional
material for anyone interested in learning more about this area.

136 CHAPTER 7. COMPUTER SECURITY

Chapter 8

Computer Science, Numbers, and
Counting

In computer science numbers matter, including very small and very large ones.

8.1 Introduction

8.1.1 Introductory Problem

A large part of computer graphics is modeling, for instance modeling a character in a
computer-generated film, modeling a scene in an architectural simulation, or modeling a
mechanical part of an automobile. One conmonly-used technique models the surface of
a solid object as a triangular mesh. That is, the object surface is represented as a large
number of connected triangles.1

Graphics scenes can be complicated. They might contain many objects. Moreover,
the triangular mesh for each object might contain many triangles in order to represent
the surface reasonably accurately. Therefore, the size of the files containing scenes can be
a concern. Consider the following problem.2

Suppose you are composing a computer graphics scene consisting of 100 objects. Each
object is modeled as a triangular mesh consisting of an average of 100 triangles. Each
triangle has three vertices, each of which has an x, y, and z coordinate. And each
coordinate is stored as a 32-bit number. Roughly how much space would it take to store
this scene if you stored every coordinate of every triangle?

Computer practitioners often find themselves doing problems like this. Here are addi-
tional examples:

1Sometimes quadrilaterals (four-sided shapes) or more generally polygons (many-sided shapes) are
used instead of, or in addition to, triangles. The mesh is then called a quadrilateral or polygonal mesh.

2A solution is in Section 8.4 below.

137

138 CHAPTER 8. COMPUTER SCIENCE, NUMBERS, AND COUNTING

1. Suppose you have a 4GB file. How long will it take to download if your average
download rate is 1Mbps?

2. Suppose a computer system allows passwords that are (exactly) eight characters
long, with each character being an upper-case or lower-case alphabetic character or
a digit 0 – 9. How many possible passwords are there? And if a malicious hacker
writes a program that can check one thousand passwords per second, what is the
chance that he or she will be able to access your account within five minutes?

3. Suppose you are managing a programming project. You must choose a three-person
team from a group of five people. How many possible teams are there?

8.1.2 Overview

Question 1: What comes to mind when you think about “numbers and computer sci-
ence?” Write a paragraph, make a list, sketch a diagram, etc.

What comes to mind? One common image is the computer as a “big calculator.”
Viewing computers as massive calculators is one historical perspective on computing, as
the following examples show:

• The term “computer” used to refer to humans who did calculations.

• One group of “ancestors” of computers were business machines made by companies
such as Burroughs and IBM, that often did numerical business computations.3

• Some early pre-computers and early computers were built to do extensive numerical
computations, such as ballistics computations during WWII.

• In general, both historically and currently, there are many important scientific,
engineering and other applications that rely on computers’ abilities to do many,
many arithmetic operations very rapidly.

However, there are also many other connections between computer science and numbers.
One area that we’ll examine in some detail in this chapter is counting problems: what
they are, why they are important, what some examples are, what background information
is useful to know about them, and what tips or techniques are useful in solving them.
The main theme of this chapter is that in computer science numbers matter, including
very large and very small ones.

3Photographs of such computing machines are available on the web, for example see the photograph
archive at the Charles Babbage Institute http://www.cbi.umn.edu

8.1. INTRODUCTION 139

8.1.3 What Are Counting Problems and Why Are They Impor-
tant?

Counting problems consist of arithmetic computations to answer fundamental problems
such as “how many?” or “how long?” How large is a certain file likely to be? How many
servers does a company need to meet peak customer demand? How long will it take for a
person to download a file? How many different files names are there of a certain type?

Question 2: Give an example of a computer science counting problem that you can think
of, and that is different from those mentioned above.

Question 3: Give an example of a counting problem that you can think of from an area
other than computer science.

Counting problems arise frequently in many areas of computer science. They are
important not only to individuals who might want to figure out items such as how many
song files can fit on their computer’s hard disk, or how long it might take to download a
large file over a slow connection, but also to computer practitioners and researchers, to
businesses, and to government organizations.

Counting problems are a sufficiently important topic that they are usually part of a
computer science curriculum. For example, at the University of Minnesota-Twin Cities,
counting problems are a prominent topic in CSci 2011, Discrete Structures of Computer
Science, which is a required class for computer science and computer engineering majors.

Counting problems are usually not deep problems: to solve them often involves just the
usual arithmetic operations of multiplication, division, addition, subtraction, and expo-
nentiation. However, there are a few challenges associated with the problems. Sometimes
— as in the graphics problem beginning this chapter — there are many quantities involved;
sometimes it is not always obvious how to combine the different quantities; sometimes
there are extra conversions (for example, memory sizes are usually given in bytes but
download rates in bits per second); sometimes the problems involve very large or very
small numbers; and sometimes problems use unfamiliar terminology such as “petabytes”
or “nanoseconds.” Moreover, there are a variety of different types of counting problems.
So there is not a “one size fits all” formula or technique to apply in all situations.

8.1.4 The Liberal Education Requirements

How do counting problems relate to the liberal education themes of CSci 1001? The link
to the mathematical thinking core theme is obvious — counting and arithmetic is one
branch of mathematics.4

How, if at all, is counting related to the technology and society theme?
Consider the general problem of downloading files. Customers who wish to download

content online are willing to wait a certain amount of time, but not too long. Nowadays
we take services such as iTunes and Netflix for granted, but it was not always the case

4In fact, when people think of mathematics they often think of arithmetic. However, just as computer
science is much broader than computer programming, mathematics is much broader than arithmetic.

140 CHAPTER 8. COMPUTER SCIENCE, NUMBERS, AND COUNTING

that downloading a song file or downloading a movie was feasible. Companies such as
Apple and Netflix needed to do a number of calculations involving download times to
guarantee that their services would have a large enough set of potential customers.

Consider buying an audio file of a song over the Internet from iTunes or from a similar
service. A typical song file is about 4MB in size (the size will of course vary depending, for
example, on the song duration). Back when the most common connection was a 56Kbps
(kilobits per second) download connection, the download time would be

(4 megabytes)((about) 1000000 bytes/megabyte)(8 bits/byte)

(56 kilobits/sec)((about) 1000 bits/kilobit)
≈ 570 sec

or about nine and a half minutes.5 While this is not an outrageous amount of time, not
many people are willing to wait that long for one song file.

However, Internet connection speeds have been continually increasing. If a person has
a 1 Mbps (megabit per second) average download rate, then the download time decreases
to approximately 32 seconds, a much more acceptable download time.

When Apple was setting up iTunes, the company needed to do a number of download
computations on how long it would take potential customers with various download rates
to download a typical song or a typical album. Apple calculated that the durations would
provide enough potential customers that iTunes would be feasible in terms of acceptable
download times.

This business planning problem is just one example of how counting problems relate to
the technology and society theme. More generally, counting problems can be important
to individuals, businesses, and governments because they answer questions of feasibility,
planning, likelihood of occurrence, need for resources, etc.

8.1.5 Goals

Here is what you should be able to do once we finish this topic:

1. Given a counting problem, be able to solve it, and explain how you obtained your
answer.

2. Be able to use counting problems to answer questions related to what computer
capabilities are feasible now or in the future.

3. Know and be able to use terminology such as “gigabytes”, “nanoseconds”, etc. that
often arise in computer-related counting problems.

5Notice that getting an exact answer for a problem of this type is neither important nor even possible:
the 4MB file size is just a rough size since typical song files are rarely exactly 4MB in size. And there
are a number of factors that affect actual download rates as well. More generally, while there are some
types of counting problems where an exact answer is important, in many we will just look for a reasonable
rough approximation.

8.2. SOLVING COUNTING PROBLEMS 141

8.2 Solving Counting Problems

There are a variety of techniques for solving counting problems. In this section we’ll look
at further examples of counting problems, as well as tips and techniques for solving them.

8.2.1 Some General Tips

Consider the following counting problems, some of which are similar to examples you’ve
seen before, and some of which are not:

1. How long does it take to download a 3.6GB file over a 500Kbps network connection?

2. How much storage (in KB or MB) does it take to store a 1000 x 1000 pixel image,
where each pixel uses 24 bit color, and the image is compressed 30:1?

3. How many possible passwords are there where the password must be 8 or 9 characters
long, start with a lower case alphabetic character, and have as remaining characters
any of 94 characters that consist of lower case alphabetic characters, upper case
alphabetic characters, digits 0 – 9, or any of 32 punctuation characters?

Counting problems usually do not involve very complicated mathematics, but can
nonetheless be challenging. For example, they often involve many quantities and compu-
tations, might involve very large or very small numbers, and might require you to know
computer terminology. This section contains some hints on doing these types of problems:

• Read the problem carefully. Make sure you understand what the problem is asking,
and understand all the items in the problem statement.

• Combine quantities correctly. For example, in the first problem above, you are given
a file size and a download speed. To get the desired outcome, a duration, you need
to divide the file size by the download speed.

• Keep track of units. This is not only good general strategy, but also helps ensure
that you don’t miss any conversions not explicitly stated in the problem (such as bits
to bytes, or bytes to megabytes). It also furnishes a partial check on your answer
(e.g., if you get an answer of 2KB for a download time, something is wrong since
the answer should be an amount of time, not a memory size).

Be particularly careful of bits and bytes. File sizes are usually given in term of
bytes, while transmission speeds are usually given in terms of bits per second. For
example, in the first problem above, the file size is in gigabytes, and the download
speed is in kilobits per second. So the answer will require converting bits to bytes,
or bytes to bits.

142 CHAPTER 8. COMPUTER SCIENCE, NUMBERS, AND COUNTING

• Be familiar with the prefixes such as mega-, giga-, etc.. Many computer counting
problems involve gigabytes, kilobits, nanoseconds, etc. Remember, for instance
that a gigabyte is approximately a billion bytes. And a kilobit is approximately a
thousand bits.

• Be familiar with exponentiation. Computer science counting problems usually use
extensive addition, multiplication, subtraction, and/or division, which you should
be comfortable with. However, often the problems will also use exponentiation. If
you haven’t used exponentiation recently, find an online tutorial (such as the one at
listed at the end of this chapter) and review the rules on how it works.

• Be familiar with scientific notation. Computer science problems often involve very
large numbers or very small numbers. These are often represented in scientific
representation format. For example the number 1.06 × 106, which has a mantissa
1.06, and an exponent 6, is an efficient way of representing 1,060,000. Or −1.2×10−6

is a way of representing −.0000012. If you are not familiar with scientific notation,
learn about it using an online resource such as the one listed at the end of this
chapter.

• Know when to do which types of operations (e.g., add vs. multiply). Note in the third
problem above you need to add together the number of passwords of each different
possible length. However, the first two problems just require multiplication and/or
division.

• Be familiar with different types of counting problems and the principles involved to
solve them. Some counting problems involve powers of two. Some involve ordered
elements. Some involve unordered collections. Some allow items to be repeated.
Some do not. Be familiar enough with the different types of problems that you
know which counting technique or techniques to apply to solve a problem.

8.2.2 Example of Solving a Problem

Let’s solve the third problem above keeping these tips in mind. Here is the problem
statement again:

How many possible passwords are there where the password must be 8 or 9 characters
long, start with a lower case alphabetic character, and have as remaining characters any
of 94 characters that consist of lower case alphabetic characters, upper case alphabetic
characters, digits 0 – 9, or any of 32 punctuation characters?

Make sure you understand what the problem is asking. Think about what type of
problem this is, and what type of operations you will need to use to solve it. Note
that you can break the problem up into two subproblems — the number of 8 character
passwords and the number of 9 character passwords. Does this help? Take a moment and
describe what steps you would do to solve this problem before reading further.

8.2. SOLVING COUNTING PROBLEMS 143

Breaking the count into an 8-character count and a 9-character count is useful. Specif-
ically, if you can calculate these two quantities, then we add them to get a solution. So
first let’s consider the number of passwords that are 8 characters long. One way to think
of this problem is as a “fill in the slots” type of problem: there are 8 slots; the first must
be filled with any of the 26 lower case characters, and each remaining slot can be filled
with any of 94 characters. So the answer is 26× 94× 94× · · · × 94 = 26× 947.

Similarly, the number of passwords that are 9 characters long is 26 × 948. So the
overall answer is 26× (947 + 948). This is a large number, about 1.6× 1017.

Before going on, let’s consider the size of that number. Recall a billion is 109, a trillion
is 1012, and a quadrillion is 1015. So the number of passwords in this problem is about
160 quadrillion. This is good in this context — you want there to be a large number of
passwords so that a malicious hacker trying random passwords or a “brute force”’ attack
cannot discover your (or anyone else’s) password.

There are other examples where the large numbers that result from counting problems
are also useful. For example, how many different possible images are there are a certain
size? We don’t want to “run out” of distinct icons to represent items, for instance. Or
how many different ways are there to combine musical notes to get a melody? Again, we
don’t want to “run out.”

But there are also examples where the large number of possibilities is problematic. If
we need to do a task that processes every possibility, then we might need to perform a
very, very large number of calculations — perhaps so many that the task is not feasible,
at least not using a brute force approach. For instance, suppose we are trying to decrypt
messages as part of a criminal investigation. Using a brute force approach on any mini-
mally sophisticated type of encryption will not work in any reasonable amount of time.

Next, let’s return to the problem and look at two important variants:

a. Suppose (i) there is no restriction on the first character, and (ii) that characters
cannot be repeated in the password.

b. Suppose you want to count the number of ways to choose any 8 characters out of the
possible 94. That is, (i) there is no restriction on the first character; (ii) characters
cannot be repeated; (iii) order does not matter, for example ‘ABCDEFGH’ is the
same as ‘HGFEDCBA’.

These two variants illustrate common types of counting problems. Specifically, sometimes
items can be repeated and sometimes they cannot. And sometimes order matters and
sometimes it does not. So two questions to ask yourself when solving counting problems
are “is repetition allowed?” and “does order matter?”

To solve part (a), note it is still a “fill in the slots” problem. There are 8 slots, and 94
possible choices for the first position. Once this position is filled, there are 93 remaining
choices for the second position, then 92 for the third, and so on. So the solution is
94× 93× 92× · · · 87, or around 4.5× 1015.

144 CHAPTER 8. COMPUTER SCIENCE, NUMBERS, AND COUNTING

Part (b) is a combination problem. The number of ways of choosing k distinct items
from a group of n distinct items, when order does not matter, is n!/(k!(n− k)!). (Recall
n! = n× (n− 1)× (n− 2)× · · · × 2× 1.) Some books use the shortened notation C(n, k)
or (nk) for this number. For this particular problem we are choosing 8 of 94 items, so the
answer is 94!/((8!)(86!)), which is about 1.1× 1011.

8.2.3 Important Quantities

In previous chapters, such as in the data representation and the machine organization
chapters, you saw some important terminology related to amounts of memory and to
fractions of a second. For example, a GFLOP or gigaflop is 230, or roughly one billion,
floating point operations per second. Here are two tables you have seen previously. Figure
8.1 lists important amounts of memory, and Figure 8.2 lists important fractions of a
second.

Figure 8.1: Some Important Memory Amounts

Amount Power of Two Approximation
1 kilobyte (KB) 210 bytes thousand bytes
1 megabyte (MB) 220 bytes million bytes
1 gigabyte (GB) 230 bytes billion bytes
1 terabyte (TB) 240 bytes trillion bytes
1 petabyte (PB) 250 bytes quadrillion bytes
1 exabyte (EB) 260 bytes quintillion bytes

Figure 8.2: Some Important Fractional Time Durations

Name Duration Duration (in words)
1 millisecond (ms) 10−3 seconds one-thousandth of a second
1 microsecond (µs) 10−6 seconds one-millionth of a second
1 nanosecond (ns) 10−9 seconds one-billionth of a second
1 picosecond (ps) 10−12 seconds one-trillionth of a second
1 femtosecond (fs) 10−15 seconds one-quadrillionth second

There are still larger or smaller quantities of these types. For example, you can search
online for names of even larger memory sizes.

8.2. SOLVING COUNTING PROBLEMS 145

8.2.4 A Useful Formula

Suppose you are organizing a sports league that will have “round robin” play, that is,
every team will play every other team once. How many total games will there be if there
are 10 teams in the league?

One way to solve this problem is to note the first team must play each of the other
nine teams. The second team similarly also has to play each of the other nine teams, but
you’ve already counted the game between the first team and second team. So there are
eight additional games involving the second team. Similarly there are seven additional
games involving the third team, and so on. The answer is therefore

9 + 8 + 7 + · · ·+ 2 + 1 = 45.

Next suppose that the following season the league expands to 12 teams. Now the
number of games becomes

11 + 10 + 9 + · · ·+ 2 + 1 = 66.

Then suppose it expands to 16 teams, then to 18, etc. It would be useful to have a
general formula rather than having to add many numbers each time. In fact, there is such
a formula. Suppose you have n items, and want to count the number of different sets of
two items. The formula is

n−1∑
i=1

i = (n− 1)n/2.

The notation on the left means we are taking the sum of all i-values as i ranges between
1 and n − 1. So the formula states that the sum of the numbers between 1 and n − 1,
inclusive, equals (n−1)n/2. In the original example above n = 10, and the formula yields
(9× 10)/2 = 45, which is the same number as obtained above. When n = 12 the formula
yields (11 × 12)/2 = 66, which again agrees with what we obtained above. And when
n = 16 and then 18, we get (15× 16)/2 = 120 and (17× 18)/2 = 153, respectively.

This is a useful formula to remember since it comes up often in computer science
and elsewhere: suppose you have n computers, each of which is connected to each other
computer. How many connections are there? Suppose you have to check each item in a
list with each other item in a list to see if there are any duplicates. How many item-item
checks will you need to do? Suppose you want each person at a party to talk for at least
a minute with each other person. How many such conversations are there?6

6One caution: note the sum is between 1 and n − 1. If you are summing the first n integers — for
example, if you are counting connections between computers, but a computer can also be connected to
itself — then you need to use the related formula

n∑
i=1

i = n(n+ 1)/2.

146 CHAPTER 8. COMPUTER SCIENCE, NUMBERS, AND COUNTING

8.3 Example Problems

This section contains example problems.

Problem 1: How many filenames are there that are six characters long, where the first
character can be any of the 52 upper or lower case letters, and the remaining five characters
can be any upper case letter, lower case letter, or digit 0 – 9?

Problem 2: Suppose you have a 1000× 1000 image, with each pixel in the image repre-
sented as a 24-bit color. The image is compressed 30:1.

(a) Approximately how much memory does it take to store this image?

(b) How long would it take to transmit this image over a 1Mpbs channel?

(c) Suppose you had an algorithm that analyzed the image, using 9 floating point opera-
tions for each pixel (in the uncompressed image). Suppose further that you are working
on a 2 GFLOPS computer. Approximately how long will it take the computer to do these
operations?

Problem 3: For each part below, set up the calculations, and then find the answer as a
specific number. You may give large numbers as approximations rather than as their exact
value. Additionally, classify the size of each numeric answer according to the following:

• “some”: numbers less than one hundred.

• “large”: numbers greater than or equal to one hundred, but less than a million.

• “colossal”: numbers greater than or equal to a million, but less than a billion.

• “mammoth”: numbers greater than or equal to a billion, but less than a trillion.

• “gargantuan”: numbers greater than or equal to a trillion.

Suppose you are investigating a computer crime. You have partial information, but
are working on establishing a communication timeline for the suspect. You know the
suspect sent out 12 email messages during the time period you are investigating. Each
email message went to a single person (so no cc’ing, etc.). However, because the suspect
and his associates used anonymity tools you do not know which email messages were sent
to whom when. Answer the following questions. Remember to classify your answers as
mentioned above.

(a) Suppose the suspect had 20 known associates, and each email message went to one of
these associates. How many ways are there to select 12 associates out of this group of 20
if order matters and no associate received more than one email message?

(b) How many ways are there in problem (a) if order does not matter and no associate
received more than one email message?

8.4. PROBLEM SOLUTIONS 147

(c) How many ways are there in problem (a) if order matters, but associates might have
received more than one of the 12 email messages? (For example, it’s possible all 12 went
to a single associate.)

(d) Suppose that due to new evidence you limit the suspect’s list of associates to 15
people. Now how many possibilities are there if order matters and each email message
went to a different person?

(e) Suppose you get still further new evidence: the first email went to associate X or
associate Y. The next 4 emails went to people from a group of 5 associates, but some
people in this group might have received more than one email message. The last 7 emails
went to 7 distinct people from a group of 10 associates. Assume order matters. How many
different possibilities are there?

8.4 Problem Solutions

Solution to Introductory Problem: Since there are 100 objects, each containing an
average of 100 triangles, each of which has 3 vertices, each of which has 3 coordinates,
each of which takes 32 bits (which equals 4 bytes) to store, we get a total of

100 objects × 100
triangles

object
× 3

vertices

triangle
× 3

coordinates

vertex
× 4

bytes

coordinate
.

This is 360,000 bytes, or approximately 360KB.

Solution to Problem 1: Think of this as filling in six slots. There are 52 possibilities
for the first slot. Then there are 26 + 26 + 10 = 62 possibilities for the second, another
62 possibilities for the third, another 62 for the fourth, etc. So there are 52× 62× 62×
62× 62× 62 possibilities total. This equals 47,638,907,264, or about 47 billion.

Solution to Problem 2:

(a) The image size is

(1000× 1000) pixels× 24 bits/pixel× (1/30)/(8 bits/byte) = 100, 000 bytes

or about 100KB.

(b) The answer is 100, 000 bytes×(8 bits/byte)/1, 000, 000 bps ≈ .8 seconds. (Don’t forget
the bytes to bits conversion.)

(c) The image contains 1000× 1000 = 1 million pixels. So the answer is (1 million pixels
× 9 floating point operations/pixel)/2 billion floating point operations per second. This
simplifies to 9/2000 = .0045 seconds, or 4.5 milliseconds.

148 CHAPTER 8. COMPUTER SCIENCE, NUMBERS, AND COUNTING

Solution to Problem 3:

(a) 20× 19× 18× . . . 9 or about 6 trillion (6× 1012). This is a gargantuan number.

(b) This is a combination problem. The answer is C(20, 12) = 20!/(12!8!) = 125, 970.
This is a large number.

(c) This is 2012, which is about 4 quadrillion (4× 1015). This is a gargantuan number.

(d) 15× 14× 13× . . .× 4, or about 220 billion (2.2× 1011). This is a mammoth number.

(e) There are 2 possibilities for the first email, 54 for the next four, and 10×9×8× . . .×4
for the last seven. Multiply all these together to get an answer of 756 million (7.56×108).
This is a colossal number.

8.5 Additional Questions to Think About

Here are questions to think about. We will explore some of these further in class.

1. What does this topic tell us about the nature of computer science, and about what
computer scientists and computer practitioners do?

2. What does this topic tell us about mathematics: what does it show about how math-
ematics is used in computer science, and what does it illustrate about mathematics
itself?

3. What does this topic tell us about society and technology: what does it tell us about
both computers and society, as well as about technology and society in general?

4. Subsection 8.1.4 gave one example of how counting problems relate to the technology
and society theme in this class: that they are often used by businesses to figure out
what is (or soon will be) feasible with computers. What other ways can you think
of that counting problems relate to the technology and society theme?

8.5.1 Some Further, Related Problems

Let’s use the introductory storage size problem to explore other related problems. You
are invited to solve these problems on your own. No solutions are given here, so work
carefully and think about how to check if your answer is likely to be correct.

1. Consider the following alternative storage scheme: suppose each object possessed
about 150 distinct triangle vertices. (Note multiple triangles can share a vertex,
so the number of vertices is often significantly less than three times the number of
triangles.) The scheme consists of two tables. The first table has a row for each
vertex, with the row having three columns: one for each coordinate. The second
table has a row for each triangle, with each row having three columns which hold
the indices of the triangle’s vertices in the first table. An example mesh is shown in
Figure 8.3, with the first table shown in Figure 8.4 and the second in Figure 8.5.

8.5. ADDITIONAL QUESTIONS TO THINK ABOUT 149

Figure 8.3: A simple triangular mesh

Vertex 1
(0,0,0)

Vertex 2
(100,0,0)

Vertex 3
(200,0,0)

Vertex 4
(0,100,0)

Vertex 5
(200,100,0)

Triangle 1

Triangle 2

Triangle 3

@
@
@

@
@
@

@
@

@
@

�
�
�
�
�
�
�
�
�
�

Figure 8.4: The Vertex Coordinate Table

Vertex Number x y z
1 0.0 0.0 0.0
2 100.0 0.0 0.0
3 200.0 0.0 0.0
4 0.0 100.0 0.0
5 200.0 100.0 0.0

Figure 8.5: The Triangle and Vertex Number Table

Triangle Number First Vertex Index Second Vertex Index Third Vertex Index
1 1 2 4
2 2 5 4
3 2 3 5

150 CHAPTER 8. COMPUTER SCIENCE, NUMBERS, AND COUNTING

(a) How much less space does this file take than the original storage scheme?

(b) How much space this alternative scheme saves is dependent on the quantities
in the problem, for example, the number of triangles and number of distinct
vertices. When is this alternative scheme likely to result in significant savings?
When is it likely to result in only small savings?

2. What other reasons — beyond storage space — might make one storage scheme
preferable to the other?7

8.6 Additional Resources

Here are a few additional resources that might be useful:

• http://www.mathsisfun.com/index-notation-powers.html — Math is Fun page
on scientific notation.

• http://www.mathsisfun.com/algebra/exponent-laws.html — Math is Fun page
on laws of exponentiation.

7For a complicated problem there will be often be different ways to structure and store the data, and
each will have advantages and disadvantages. So computer practitioners will need to weigh the trade-offs
of each approach when deciding which to use.

Chapter 9

Algorithmic Complexity

Does it scale?

9.1 Introduction

9.1.1 Introductory Problem

Suppose you have a computer animation involving 100 different objects. As the animation
progresses the objects move, and for each frame in the animation the computer needs to
detect if any objects have collided. Assume further you have a check that computes if
two given objects are colliding at the present time.1

Questions:2

1. How many times will the computer need to perform this check for a frame in the
animation if you want to check each pair of objects?

2. Suppose that you want a more complicated animation, so you create additional
objects and have 200 objects in your animation. Now how many times does the
computer need to run the check?

3. What is the ratio of the number of times in Question 1 to that in Question 2? For
example, does the number of times double?

4. In general, suppose you have n objects in the scene. (a) What is the number of
times you’ll need to run the collision detection check? (b) How does this increase
as n increases? For example, if n doubles, does the number of times double?

1Whether any two given objects are colliding is itself a very interesting and complicated problem.
For example, if the objects are modeled as collections of triangles, then a straightforward approach is to
intersect each triangle from the first object with each from the second. This can get complicated very
quickly, and so computer animations often use a variety of clever techniques to make collision detection
algorithms more efficient.

2Solutions are in Section 9.8.1 below.

151

152 CHAPTER 9. ALGORITHMIC COMPLEXITY

9.1.2 Overview and Motivation

There is more data being acquired, stored, and analyzed than ever before in human
history. Astronomy data collected by telescopes, space probes, etc. tells us about the
nature of the universe we inhabit. Government census data tells the government about
its populace’s characteristics: how many people live in the various states, counties, and
cities? What are their occupations? What do age demographics look like? Business data
tells companies who buys their products, whether there are seasonal fluctuation in certain
product purchases, etc.

One key question in analyzing large data sets is “how long will the operations take
if the data set size increases?” For example, suppose a company has a boom year, and
its sales and number of customers both increase significantly, meaning their databases
all become twice as large. Will the company be able to handle these larger databases
with their current resources — their database programs, number of computers, network
connections, etc.? And will the various database operations that the company does still
be doable in a reasonable amount of time?

The question “Does it scale?” is therefore an important one. It is important in other
areas of science and engineering (for example, chemical engineers take chemical reactions
that can be done in a laboratory, and try to turn them into feasible and efficient industrial-
scale processes). And it is important to computer scientists when they analyze algorithms.
A computational process that can be done for a small problem might or might not be
feasible for a large problem.

This chapter therefore explores algorithmic or computational complexity: how does
the number of operations an algorithm must perform grow as the problem size increases?
Specifically, this chapter explains how computer scientists measure algorithmic complex-
ity, looks further at why this is important, and provides examples of some of the types of
problems you should be able to do related to this topic.

9.1.3 Further Explanation of Algorithmic Complexity

Algorithmic complexity is one way, indeed the primary way, that computer scientists
measure algorithmic efficiency.3 Algorithmic complexity is not an exact measure of how
long an algorithm will take to run. In fact, there are many factors that make an exact
running time difficult or impossible to measure. For example, the duration an algorithm
takes to solve a problem is affected by factors such as

• how fast the computer running the program is;

• how efficient the computer language used to implement the algorithm is;

3By algorithmic or computational complexity we mean time complexity. There is an associated concept
of space complexity, or how the amount of computer memory an algorithm uses grows as the problem size
increases. Space complexity can be important, especially for algorithms working with very large amounts
of data. However, computer scientists are usually more concerned with time complexity, and so we will
restrict our attention to time complexity in this class.

9.1. INTRODUCTION 153

• whether the computer is doing any other tasks at the same time it is running the
algorithm (e.g., is it also streaming music?);

• the size of the input to the algorithm.

Occasionally computer scientists or engineers will do “benchmark tests” that check the
raw time an implementation of an algorithm takes on specific test input under controlled
conditions. However, more often they measure algorithm efficiency theoretically by study-
ing how the running time of the algorithm increases as the problem size increases. For
example, if the size of an input data set doubles, will the approximate time an algorithm
takes also double? Or will it increase by a factor of four? Or maybe eight? Or maybe
more?

There is a mathematical definition of algorithmic complexity. You are welcome to look
it up if you are curious. Basically what it says is that for a sufficiently large problem size
we can get an upper bound (or “big-O” complexity (pronounced “big-Oh”)) or an upper
and a lower bound (or “big-Θ” (pronounced “big Theta”)) on the growth of the number
of operations the algorithm takes. However, for the purposes of this class an intuitive
understanding of what algorithmic complexity is and is not is sufficient.

Before looking at an intuitive description of complexity, let’s consider three other fun-
damental questions: Why are computer scientists interested in growth for large problem
sizes? What do we mean by a problem’s “size?” And what does “sufficiently large” mean
anyway — is it 100? 1,000? 1,000,000?

Computer scientists are interested in growth for large problem sizes for a few reasons,
including:

• Computers and algorithms are sufficiently fast that most small problems can be
solved very quickly, and so the running time for small problems often doesn’t matter.

• For some problems, the amount of work done required increases dramatically as the
problem size increases. So even if these problems can be solved quickly for small
problem sizes, they might not be solvable in a reasonable amount of time for larger
problem sizes.

• There are some truly large problems, and the amount of data scientists and others
are gathering for these problems is increasing. Whether algorithms can handle
these large and growing data sets in a reasonable amount of time depends on the
algorithm’s complexity.

• Many cutting-edge applications nowadays work with large problem sizes.

“Problem size” usually means the number of items in an algorithm’s input. If you
are measuring a sorting algorithm, the problem size is usually the number of items to be
sorted.4 If you are calculating pay amounts and printing paychecks for all your employees,

4The word “usually” is used here because sometimes the problem size depends on other characteristics
of the data. For example, some sorting algorithms also depend on the maximum number of digits or
characters in the items to sort.

154 CHAPTER 9. ALGORITHMIC COMPLEXITY

it is usually the number of employees. If you are checking collisions between each pair of
objects in a graphics scene, it is usually the number of objects.

What constitutes “sufficiently large” varies from problem to problem. However, this
turns out not to be a major concern for some of the same reasons as were just mentioned.
For example, as more and more data is gathered problem sizes grow, and so if a data set
is not “sufficiently large” now, it might be soon.

Intuitively, computational or algorithmic complexity measures how the number of
operations an algorithm performs grows as the problem size grows. And since the time
an algorithm takes is closely related to the number of operations the algorithm performs,
it is also a measure of how the time increases as the problem size does. For example, if
an algorithm has “linear” complexity (see below) then if the problem size doubles, the
amount of time approximately doubles; if the problem size triples, the amount of time
approximately triples; if the problem size increases by a factor of 10, then the amount of
time increases by about a factor of 10.

In addition to knowing what algorithmic complexity is, it is important to remember
what it is not. It is not

• an exact count of the running time or number of operations of an algorithm;

• a measure of how the algorithm performs for small problem sizes;

• a means of comparing two algorithms’ running times on small data sets.

We’ll explore examples of computing the algorithmic complexity of specific algorithms
after a few more preliminaries.

9.1.4 Topic Goals

After completing this section you should be able to do the following:

1. Be able to explain what algorithmic complexity is, and why it is an important topic
in computer science.

2. Be able to explain how computer scientists measure algorithmic complexity. And
be able to explain what these techniques do and do not measure.

3. Given a description of an algorithm, be able to calculate its complexity.

9.1.5 Algorithmic Complexity and Mathematics

Algorithmic complexity is related to counting problems. Calculating the complexity often
requires counting operations. However, unlike many counting problems where the answer
is a specific number, in complexity the answer is a function. In particular, the answer is a
function of the problem size. Once you have found this function, algorithmic complexity

9.2. HOW TO MEASURE ALGORITHMIC COMPLEXITY? 155

asks how quickly the functions grows. So algorithmic complexity, at least in its funda-
mental form, involves two subareas of mathematics: counting problems and analyzing
function behavior.

9.1.6 Algorithmic Complexity and Technology and Society

As mentioned above, humans are gathering more data than ever before in human history.
What we can do with these increasing amounts of data is dependent on how algorithms
scale. If you increase a dataset size by a factor of 10 and a computational task goes from
taking one hour to ten hours, then it is probably still doable — you just need to wait
longer for the result (or get a faster computer, etc.). If the task goes from taking one hour
to one thousand hours, then you might or might not have the time and other resources
needed. If a task goes from one hour to one trillion hours, then you probably will not get
an answer in your lifetime.

Many of the most interesting problems in computer science, in science and engineer-
ing, in biology and medicine, and elsewhere involve large amounts of data. Organizations
that are dealing with these issues are not only bodies such as NASA working with space
exploration data, but also many companies, government bodies, and other organizations
working with business, social, or other data. For example, two computer-related com-
panies for whom issues of scale are a constant concern are Google and Facebook, both
of which store, process, and transmit massive amount of data for truly large numbers of
users.

9.2 How To Measure Algorithmic Complexity?

9.2.1 Big-O and Big-Θ

Computer scientists often use big-O or big-Θ notation to indicate an algorithm’s com-
plexity. Big-O provides an upper bound on growth. If an algorithm is O(n2) (pronounced
“big Oh of n squared”), the algorithm’s time will, when a sufficiently large problem size
is doubled, take at most about four times as long. Note this provides an upper bound —
that is, an at most bound. It’s possible, for example, that the algorithm might only take
twice as long.

Big-Θ is more precise, and provides both an upper and a lower bound. If a sufficiently
large problem size is doubled, a Θ(n2) algorithm will take about four times as long. This is
pronounced as “big Theta of n squared” and is also called “order n squared” or quadratic
complexity.

To complicate matters further, computer scientists sometimes distinguish between best
case, average case, and worst case complexity. Suppose you are searching for a specific
employee address in a list of n addresses. It might be the first address, in which case you’re
done once you checked the first item. So in this case you checked a constant number of
items, and the best case complexity is Θ(1). It might be the last item, in which case

156 CHAPTER 9. ALGORITHMIC COMPLEXITY

you’ve checked all n items. So the worst case complexity is Θ(n). The average complexity
is more difficult. Let’s assume the desired address is equally likely to be at any position
in the list. So the chance of it being in any particular place is 1/n. The number of items
checked will be 1 if the item is in the first location, or 2 if it is in the second location, and
so on. So the average number of comparisons is (1× 1/n) + (2× 1/n) + . . .+ (n× 1/n).
This sum turns out to be (n + 1)/2. Note that although the number of checks is about
half as many as in the worst case, the number of operations still grows proportional to n,
and so is still Θ(n). (See the subsection below for why computer scientists write this as
Θ(n) rather than as Θ((n+ 1)/2).)

For many problems we look at in this class the best case, worst case, and average case
complexity will all be the same. For those problems where they are not, assume — unless
otherwise specified — that we are interested in worst case complexity.

The list below explains common orders of growth. Many of the functions involved also
appear in Table 9.1. The columns in that table represent different functions, the rows
different problem sizes. Note the problem sizes double, from 10 to 20, then to 40, then to
80.

Figure 9.1: The growth of some functions

1 lg(n) n n lg(n) n2 n3 2n n!
n = 10 1 3.3 10 33 100 1000 1024 3.6× 106

n = 20 1 4.3 20 86 400 8000 1.0× 106 2.4× 1018

n = 40 1 5.3 40 213 1600 64000 1.1× 1012 18.2× 1047

n = 80 1 6.3 80 506 6400 512000 1.2× 1024 7.2× 10118

• Θ(1) or constant complexity: the algorithm time is roughly the same regardless of
problem size. This is very nice, but also very rare.

• Θ(lg n) or logarithmic complexity: the algorithm time grows a constant amount
if the problem size doubles. This is a very slow rate of growth. An example of a
logarithmic complexity algorithm is binary search, which is an efficient searching
algorithm. (See the section below on logarithms for more information on the lg
function.)

• Θ(n) or linear complexity: the algorithm time grows proportional to the growth
in the problem size. For example, if the problem size doubles the algorithm takes
roughly two times as long, if it triples the algorithm takes roughly three times as
long. If it increases by a factor of ten the algorithm takes roughly ten times as long.

• Θ(n lg n) complexity: the algorithm time grows slightly more than linearly. So if
the problem size doubles, the algorithm takes slightly more than twice as long. An
example of an order n lg n algorithm is an efficient sort such as mergesort.

9.2. HOW TO MEASURE ALGORITHMIC COMPLEXITY? 157

• Θ(n2) or quadratic complexity: the algorithm time grows proportional to the square
of the growth in the problem size; if the problem size doubles the algorithm takes
roughly 22 = 4 times as long. If the problem size increases by a factor of 10 then
the algorithm takes roughly 102 = 100 times as long. A less efficient sort such as
bubble sort has quadratic complexity.

• Θ(n3) or cubic complexity: the algorithm time grows proportional to the cube of
the growth in the problem size; if the problem size doubles the algorithm takes
roughly 23 = 8 times as long. If the problem size increases tenfold the algorithm
takes roughly 103 = 1000 times as long.

• Θ(2n) or exponential complexity: the algorithm time grows by a factor of roughly 2 if
problem size increases by one. It is impossible to solve large exponential complexity
problems exactly in a reasonable amount of time.

• Θ(n!) or factorial complexity: the algorithm time grows by a factor of n as the
problem size increases from n− 1 to n. An example of a factorial time complexity
problem is the traveling salesman problem described below. Factorial complexity
problems grow even more quickly than exponential complexity problems, and so
they are also impossible to solve exactly in a reasonable amount of time.

9.2.2 Simplifying Big-O and Big-Θ notation

Suppose you are working for a company that is having you cross-check customer accounts.
You compute the complexity of the cross-checking algorithm and find that for an input
list of n accounts the algorithm performs n3 + 5n+ 2 operations. Should you say that the
algorithm has Θ(n3 + 5n+ 2) time complexity?

If you said that to a computer scientist, he or she would say you were correct, but
were using the terminology oddly. To see why this is so, let’s examine what happens
as the function f(n) = n3 + 5n + 2 grows. For example, let’s compare the value of
f(100) with the value of f(200). When n = 100, the value of f is 1003 + 5(100) + 2 =
1, 000, 502. Notice this is not far from 1003 = 1, 000, 000. When n = 200, the value
of f is 2003 + 5(200) + 2 = 8, 001, 002. Notice this is not far from 2003 = 8, 000, 000.
Moreover, notice the ratio f(200)/f(100) = 7.9969 . . . is approximately 8. That is, when
the problem size doubles from 100 to 200, the number of operations increases by a factor
of almost 8, which is characteristic of Θ(n3) complexity.

This analysis is a strong indication (although not a rigorous proof) that n3 + 5n + 2
is Θ(n3). And in fact, when working with polynomials, we can drop the “lower order
terms” — that is, all terms other than the one with the highest exponent. So n3 + 5n+ 2
is indeed Θ(n3). As another example, n5 + 6n4 − 12n2 + 23 is Θ(n5). The reason for this
simplification is that as n increases the highest order term — the term with the highest
exponent — affects the function the most.

158 CHAPTER 9. ALGORITHMIC COMPLEXITY

In summary, rather than saying that an algorithm that takes n3 + 5n + 2 operations
has Θ(n3 + 5n + 2) complexity, a computer scientist would say it has Θ(n3) complexity.
This focuses on what part of the function is dominating the growth as n gets large.

There is one more simplification when working with big-O and big-Θ notation. Con-
sider the function 7n3 + 5n+ 2. We’ve already seen that we wouldn’t include the 5n+ 2
when reporting the complexity. So would we say this function is Θ(7n3)? Again, com-
puter scientists would simplify this: the lead constant 7 does not affect the growth, so
the complexity is Θ(n3). Again, Θ(7n3) is not, strictly speaking, incorrect, but it doesn’t
focus on the fact that n3 is driving the function growth, and that the constant 7 is a
“bystander.”

To explore this further, evaluate 7n3 at n = 100 to get 7,000,000. Next, evaluate 7n3

at n = 200. This gives 56, 000, 000, or 8 times as much. This is exactly the same ratio
that we get when we take the ratio 2003/1003. Or let’s derive the ratio in another way:

7(2003)

7(1003)
=

2003

1003
=

8000000

1000000
= 8.

In particular, notice that the 7’s cancel, and so they do not affect the growth.
As a summary example, suppose we found an algorithm took 5n4 + 16n3 − 2n2 + 42

operations. We’d simplify this by dropping the lower order terms. This would leave the
highest order term, 5n4. We would then drop the constant 5, and would say the algorithm
has Θ(n4) complexity.

9.3 Logarithms

Logarithms are mathematical functions that are very important in a number of fields,
including computer science. One way to understand logarithms is as inverses of expo-
nentiation. Recall that Moore’s Law involves transistor density doubling every two years.
This leads to exponential growth. To “undo” exponential growth you use logarithms.

Here’s a quick example. Suppose you had a database whose size doubled every year.
Suppose it started at 3MB in size, and you wanted to know how large it was after four
years. Then you would double 3MB, then double the result, then double that result, and
double that result. Equivalently, you could compute 3× 24 = 3× 16 = 48MB.

Now consider a related problem. Suppose you start with a 3MB database, and know
it doubles in size every year. How many years does it take until it is 48MB in size?
Forget for the moment that you know, from the previous paragraph, that the answer is
four years. To solve this problem you could count the number of doublings needed to get
48MB: the first doubling gives 6MB, the second 12MB, the third 24MB, and the fourth
48MB.

Equivalently, you could write the equation 3 × 2t = 48 where t is the number of
doublings needed. Note this is not the type of equation we are used to solving since the
unknown t is an exponent. To transform this into an easier-to-work-with form, you can

9.3. LOGARITHMS 159

take the logarithm of both sides. You might recall there are different type of logarithms,
such as common logarithms (base 10) and natural logarithms (base e, which is 2.71828 . . .).
Computer scientists most often use logarithms base 2, which is written as lg. Specifically,
the function lg x is the number that 2 needs to be raised to in order to get x. This can
be a somewhat confusing definition, but it is useful to consider logarithms of powers of
2: since 20 = 1, we have lg 1 = 0. Since 21 = 2, we have lg 2 = 1. Since 22 = 4, we have
lg 4 = 2. And in general lg 2n = n.

Before we proceed further, let us examine the lg function’s characteristics. The lg
function grows very slowly: see Table 9.2 for some representative values. There are also

Figure 9.2: The lg function

n lg n (approx.)
10 3.32

100 6.64
1,000 9.97

10,000 13.28
100,000 16.61

1,000,000 19.93

some properties that are useful when manipulating logarithms:

lg 2x = x

lg ax = x lg a

lg(ab) = (lg a) + (lg b)

lg(a/b) = (lg a)− (lg b)

So let’s return to the problem. We now take the equation 3× 2t = 48. We then take
the lg of each side, and use the properties of logarithms:

lg(3× 2t) = lg 48

lg 3 + lg 2t = lg 48

lg 2t = lg 48− log 3

t lg 2 = lg(48/3)

t = lg 16

t = lg 24

t = 4.

Of course not all problems will turn out so neatly. Sometimes you’ll need to work with a
quantity such as, say, lg 73. To compute this you can use a calculator. If you can’t find a

160 CHAPTER 9. ALGORITHMIC COMPLEXITY

calculator with a lg function, you can use the following identity where log is the common
log, i.e., log base 10:

lg x = log x/ log 2 ≈ log x/.301.

(The ≈ sign here means “approximately equal to.”) However, another very useful skill is
being able to estimate lg values without using a calculator. This is where knowing powers
of 2 is useful. What power(s) of 2 is 73 close to? It is between 26 = 64 and 27 = 128, and
closer to the former than the latter. So lg 73 is slightly more than 6.

Logarithms are useful not only in some computations, but also in the rate of growth
of algorithms. For example, one famous search algorithm is binary search, whose rate
of growth is Θ(lg n). And some sorting algorithms are Θ(n lg n). As n gets at all large,
these algorithms grow significantly more slowly than alternative Θ(n) search and Θ(n2)
sort algorithms. See Table 9.3, and note that the contrasts apparent there become more
pronounced as n gets even larger.

Figure 9.3: Comparison of some rates of growth

lg n n n lg n n2

1 2 2 4
2 4 8 16
3 8 24 64
4 16 64 256
5 32 160 1024
6 64 384 4096
7 128 896 16384

9.4 Calculating Complexities

One useful skill for computer scientists and software developers is to be able to analyze
a given algorithm’s complexity. Computing the complexity of complicated algorithms
can be difficult. However, calculating the complexity of simpler algorithms is a task you
should be able to do. This section contains a few simple algorithms along with derivations
of their complexity.

Example 1

1 Set sum = 0

2 For i = 1 to n

3 For j = 1 to n

4 Set sum = sum + a[i,j]

5 Print sum

6 Stop

9.4. CALCULATING COMPLEXITIES 161

Notice that this algorithm contains a double loop. How often is the Set sum operation
done? Note that the i loop is executed n times, once for each of the values between 1 and
n, and each time the i loop is executed the j loop is executed n times. So the total number
of times is n × n = n2. Notice this is the most performed operation in the algorithm.
Setting sum to 0 is done only once, as is printing the sum. (In the subsequent examples
below we won’t mention operations like these that are performed so few times they do
not affect the final complexity.) So the dominant term in the operation count is n2, and
this is a Θ(n2) algorithm.

Example 2

1 Set sum = 0

2 For i = 1 to n

3 For j = 1 to n

4 For k = 1 to n

5 Set sum = sum + a[i,j,k]

6 For i = 1 to n

7 For j = 1 to 10

8 Set sum = sum + b[i,j]

9 Print sum

10 Stop

Here the outer loop starting at line 2 is executed n times, the middle loop starting at
line 3 is executed n times, and the inner loop starting at line 4 is executed n times. So
this triple loop updates sum in line 5 a total of n×n×n, or n3 times. Then the outer loop
starting at line 6 is executed n times and the inner loop starting at line 7 is executed 10
times, and so sum is updated n× 10, or 10n times in line 8. The total number of updates
is therefore n3 + 10n. Since as n gets large n3 dominates 10n, this is written as Θ(n3).

Example 3

1 Set sum = 0

2 Set i = 1

3 While i <= n

4 Set sum = sum + i

5 Set i = i * 2

6 Print sum

7 Stop

This one is more difficult. Let’s look at a particular value of n. Suppose n is 77. Then
what values does i assume? It starts at 1, then goes to 2, then to 4, then to 8, 16, 32,
64, and finally 128. For a general n, the loop will be executed until the doubling process
produces an i-value greater than n. Let k be the number of times i is doubled until it
is greater than n. So k is the least integer such that 2k > n. This number is essentially
lg n: recall lg is the logarithm base two, and lg x is the exponent you need to raise 2 to
in order to get x. So the algorithm’s complexity is Θ(lg n).

162 CHAPTER 9. ALGORITHMIC COMPLEXITY

9.5 Additional Example Problems

Here are a number of additional example problems involving complexity. Solutions are in
the problem answer section below.

Example Problem 1

Suppose you are searching through an n-row, n-column, n-depth set of geological data.
Give a big-Θ time complexity for each of the following algorithms. Assume op1, op2, and
op3 all take constant time.

Remember to show your work or explain your answers. Also, write your big-Θ answer as
simply as possible. For example, instead of writing Θ(2n2 + 4n) write Θ(n2) since big-Θ
estimates are irregardless of lower order terms (so the 4n is not needed), and multiplying
factors (so the 2 in 2n2 is not needed).

(a)

1 for row = 1 to n

2 for col = 1 to n

3 for depth = 1 to n

4 do op1

5 for row = 1 to n

6 for col = 1 to n

7 do op2

8 stop

(b)

1 for row = 1 to n

2 for col = 1 to 3

3 for depth = 1 to 3

4 do op1

5 for row = 1 to n

6 for col = 1 to n

7 do op2

8 stop

9.5. ADDITIONAL EXAMPLE PROBLEMS 163

(c)

1 for row = 1 to n

2 for col = 1 to 3

3 for depth = 1 to n

4 do op1

5 for row = 1 to n

6 for col = 1 to n

7 do op2

8 for row = 1 to n

9 for col = 1 to n

10 do op3

11 stop

(d)

1 for row = 1 to n

2 for col = 1 to n

3 depth = 1

4 while depth <= n

5 do op1

6 depth = depth * 2

7 for row = 1 to n

8 for col = 1 to n

9 do op2

10 stop

Example Problem 2

(a) Suppose you are doing public health research studying diabetes. You have a database
consisting of 10,000 records, and have a Θ(n2) program (where n is the number of records)
looking for correlations in the data. Suppose that when you run the program on your
computer it takes about 7 minutes to finish.

(a) Suppose that you get additional records so that the database size becomes 20,000
records. Now about how long will it take to run the program?

(b) Suppose a colleague asks you to run your program for a database she has that has
100,000 records. Now about how long will it take to run the program?

(c) Suppose you have 20 databases, each of 10,000 records. You run the program on the
first of these, then immediately after it is done you run it on the second, and so forth
until the program has been run on all 20 databases. About how long will this take?

(d) Which takes less time: running the program on 20 databases each with 10,000 records,
or running it on a single database with 100,000 records?

(e) Suppose a coworker with programming and algorithm experience claims he can improve
your algorithm. You run the program on your 10,000 record database and it now takes 9

164 CHAPTER 9. ALGORITHMIC COMPLEXITY

minutes. Moreover, due to a mistake the coworker made, the program now is Θ(n3). Now
about how long will it take if you run the algorithm on the 100,000 record database?

(f) Going back to the Θ(n2) algorithm that takes 7 minutes on a database of 10,000
records: suppose you increase the database size by a factor of 5, so you have a database
of 50,000 records. But you also get a computer that is 5 times as fast. How long will it
take your program to run using the new computer on the 50,000 record database?

Example Problem 3:

Abrupt changes in adjacent data values often indicate something significant in the data.
For example, in MRI data a large difference might indicate a transition between different
tissue types, say bone and muscle. Or in a geologic data set a large difference might
indicate the transition from one rock formation to another.

The following algorithm goes through an n-row, n-column, n-depth data set, and checks
if there is a large difference between a data value and the next data value in the same
column and at the same depth (so it is checking for differences in one direction, but not
all directions). In the pseudocode below abs refers to the absolute value function. So, for
example abs(-5) returns 5.

Input: an n-row, n-column, n-depth data set of numbers, along with a positive number
threshold.
Output: a message “Large difference found” if any value differs from the next value in the
same column and same depth by more than threshold, and a message “No large difference
found” otherwise.

1 Get threshold, the size n, and the data set

2 Set i = 1

3 Set sigDiffFound = false

4 While i < n and sigDiffFound equals false

5 Set j = 1

6 While j <= n and sigDiffFound equals false

7 Set k = 1

8 While k <= n and sigDiffFound equals false

9 If abs(a[i,j,k] - a[i+1,j,k]) > threshold

10 Set sigDiffFound = true

11 Set k = k + 1

12 Set j = j + 1

13 Set i = i + 1

14 If sigDiffFound equals true

15 Print ‘Large difference found’

16 Else

17 Print ‘No large difference found’

18 Stop

9.6. THE TRAVELING SALESMAN PROBLEM 165

Now answer the following questions. In each part do not make any assumptions on
the value of n, so your answer might be a function of n. However, write your answer as
a number or as a function of n and not, for example, as a big-Θ estimate.

(a) What is the fewest number of times Line 9 is executed?

(b) What is the largest number of times Line 9 is executed?

(c) Suppose the number of rows, column, and depths all increased from n to 2n. What is
the ratio of the fewest number of times Line 9 is executed in this case to the number of
times in your answer for part (a)?

(d) Suppose the number of rows, column, and depths all increased from n to 2n. What
is the ratio of the largest number of times Line 9 is executed in this case to the number
of times in your answer for part (b)?

9.6 The Traveling Salesman Problem

Are there really problems that grow extremely rapidly, so rapidly that they can’t be solved
in a reasonable amount of time? The answer is emphatically yes.

In some cases a problem takes a large amount of time because the underlying data set
is so large. For example a wind tunnel simulation in aerospace research might involve a
large number of variables at a large number of points over a large number of time steps.
Or a genomic research problem might involve searching millions of DNA sequences. On
the other hand, some problems are difficult because the number of computations needed
grows very quickly, even if the data set involved is small. The traveling salesman problem
is a canonical example of a problem whose complexity grows so quickly it cannot be solved
for large n.

In the traveling salesman problem, a salesman needs to visit n cities, visiting each city
exactly once. The salesman can choose which city to start with, then which of the other
cities to visit next, then which of the remaining cities to visit after that, and so on until
he or she visits all the cities. In addition to the set of cities, the problem also specifies
the distance5 between each pair of cities. The traveling salesman problem is to find which
order of visiting the cities will result in a path of least total distance.

Because there are n choices for the starting city, then n− 1 for the next city to visit,
and so on, the number of possibilities is n× (n−1)× (n−2)× . . .×3×2×1 = n!. Recall
n! grows very quickly — for example 10! is over 3 million. And so checking all possible
paths to compute an exact solution to the traveling salesman problem is impractical when
n is at all large.

The traveling salesman problem is not an isolated problem. There are many other
problems that share the traveling salesman problem’s rapid growth.

5Variants of the problem replace distance with travel time, or cost, or some other quantity. The key
point is that there is some positive number associated with each pair of cities.

166 CHAPTER 9. ALGORITHMIC COMPLEXITY

9.7 What If a Problem Takes Too Long To Solve?

Suppose you have a computational problem that takes too long for a single computer to
solve. However, it is an important enough problem that you really, really would like an
answer. How can you solve it? There are a variety of different techniques that might help.

One possibility is to run the problem on a faster computer, assuming you have access
to one. This approach will only work to some extent. For example, if a problem scales
linearly then — if all other things are equal — a computer that is twice as fast will allow
you to solve a problem in half the time. However, if a problem scales exponentially then
a computer that is twice as fast will not be much help.

Another possibility is to use a computer that can do many operations simultaneously.
Some computers have many processors that can work in parallel. For instance, supercom-
puters used to perform large science and engineering simulations might have thousands
of processors. Lately even personal computers have gone to multiple processors, such as
“quadcore” or four-processor computers.

However, not all problems can be distributed efficiently among multiple processors.
Moreover, even if a problem is amenable to a parallel approach the speed-up still might
not be enough to solve the problem.

Still another approach is distributed computing. Instead of distributing a problem
over different processors on a single computer, the problem is distributed over different
computers. For example, a company such as Pixar that makes computer-animated films
uses hundreds of computers to do the computations needed to produce a film such as Toy
Story or Brave. As another example, the computations for programs such as SETI @home6

(search for extraterrestrial intelligence) is distributed to many computers, including many
volunteers’ personal computers. Like the previous approaches, distributed computing
works for some problems, but not all.

Still another possibility is to use another algorithm. One task some computer scientists
do is to devise efficient algorithms to solve new problems, or to try to devise better
algorithms (or improve known algorithms) to solve existing problems. However, it might
be the case there isn’t a more efficient algorithm.

In summary, there are a number of techniques that can be used to try to solve time-
consuming problems. Often additional computational power, additional computers, or a
better algorithm (if one exists) can solve the problem. But not always. There are some
problems, such as the traveling salesman problem, that by their very nature cannot be
solved exactly for large values of n in a reasonable amount of time.7

6See http://setiathome.berkeley.edu/
7Still another approach is to obtain an approximate, rather than exact, solution. There are some

problems that are impossible to solve exactly in a reasonable amount of time, but which have efficient
algorithms that will provide an approximate answer (or an answer that is likely, but not guaranteed, to
be correct or close to correct).

9.8. PROBLEM SOLUTIONS 167

9.8 Problem Solutions

9.8.1 Introductory Problem Solutions

Here are model solutions to the questions at the start of this chapter.

1. Each item must be checked against each other item. So the first object would be
checked against 99 others (note each object does not need to be checked against
itself), the second against 98 others (since it’s already been checked against the
first), the third against 97 others, and so on until we have the sum

99 + 98 + 97 + 96 + . . .+ 3 + 2 + 1 =
99∑
i=1

i.

Note this is a type of sum discussed in the last chapter on counting. In particular,
using the formula

∑n−1
i=1 i = (n− 1)n/2 gives 99(100)/2 = 4950.

2. This is similar to the previous question except the sum is now
∑199

i=1 i = 199(200)/2 =
19, 900.

3. The ratio is 19900/4950, or roughly 4.

4. (a) Analogous to the explanation in Problem 1, the answer is

(n− 1) + (n− 2) + (n− 3) + . . .+ 3 + 2 + 1 =
n−1∑
i=1

i = (n− 1)n/2.

(b) If you double n, the number of times is (2n− 1)(2n)/2 (just substitute 2n for n
in the part (a) answer). So the ratio is

(2n− 1)(2n)/2

(n− 1)n/2
=

(2n− 1)(2)

n− 1
.

Notice that this is roughly 4.

Here are two additional problems to think about:

• Suppose that in Problem 4b that n triples instead of doubles. What would the
answer be then? How about if it increases by a factor of 10?

• Explain in Problems 3 and 4 why computer scientists would be more interested in
the approximate answer (“roughly 4”) rather than the exact answer.

168 CHAPTER 9. ALGORITHMIC COMPLEXITY

9.8.2 Example Problem Solutions

Here are solutions to the example problems from Section 9.5.

1. (a) In lines 1 – 4 the outer loop is executed n times, as is the middle loop and the
inner loop. Since these loops are nested, the number of operations is n3. In lines
5 – 7 both the outer loop and inner loop are executed n times, for a total of n2

operations. Since the loops in lines 5 – 7 are executed after the loops in lines 1 –
4 are completed, the total number of operations is n3 + n2. Since n3 grows more
quickly than n2, this is written as Θ(n3).

(b) In lines 1 – 4 the outer loop is executed n times, and the middle loop and the
inner loop are each executed 3 times. Since these loops are nested, the number of
operations is 9n. In lines 5 – 7 both the outer loop and inner loop are executed n
times, for a total of n2 operations. Since the loops in lines 5 – 7 are executed after
the loops in lines 1 – 4 are completed, the total number of operations is 9n + n2.
Since n2 grows more quickly than 9n, this is written as Θ(n2).

(c) In lines 1 – 4 the outer and inner loops are executed n times, and the middle
loop is executed 3 times. Since these loops are nested, the number of operations
is 3n2. In lines 5 – 7 both the outer loop and inner loop are executed n times, for
a total of n2 operations. In lines 8 – 10 the outer and inner loops are also both
executed n times each, for a total of n2 operations. Since the loops in lines 1 – 4
are executed first, then the loops in lines 5 – 7 are executed, then the loops in lines
8 – 10 are executed, the total number of operations is 3n2 + n2 + n2 = 5n2. This is
written as Θ(n2).

(d) In lines 1 – 6 the outer loop and middle loop are each executed n times. As
discussed in Section 9.4, the inner loop is executed lg n times. Since these loops are
nested, the number of operations is n2 lg n. In lines 7 – 9 both the outer loop and
inner loop are executed n times, for a total of n2 operations. Since the loops in lines
7 – 9 are executed after the loops in lines 1 – 6 are completed, the total number of
operations is n2 lg n + n2. Since n2 lg n grows more quickly than n2, this is written
as Θ(n2 lg n).

2. (a) Since the algorithm is Θ(n2), when the problem size doubles the time needed will
increase by a factor of roughly 22 = 4. So the program would take about 4× 7 = 28
minutes to run.

(b) When the problem size increases tenfold, the time needed increases by a factor
of roughly 102 = 100. So the program would take about 100 × 7 = 700 minutes to
run.

(c) Note here the problem size for each database is not increasing. Instead you are
running the program on 20 same size databases. So the total time is 20 × 7 = 140

9.9. SOME FURTHER QUESTIONS 169

minutes. (Make sure you can explain why the answer is 20×7 = 140 minutes rather
than 202 × 7 = 2800 minutes.)

(d) Running the program on 20 databases each of 10,000 records takes considerably
less time.

(e) The original time is 9 minutes and the problem size has increased tenfold. Since
the algorithm is now Θ(n3), a tenfold increase in problem size means roughly a
103 = 1000 increase in time. So the total time is roughly 9000 minutes, which is six
and a quarter days.

(f) The problem size increases by a factor of 5, so the time would increase by 52 = 25
due to this. However, the computer speed increase would decrease the time by a
factor of 5. So the total time would be roughly (52 × 7)/5 = 35 minutes. (Make
sure you can explain why the time is 35 minutes rather than 7 minutes.)

3. (a) In the case where a large difference is found between a[1,1,1] and a[2,1,1], Line
9 is executed only once.

(b) It is possible for the algorithm to run all the way through the triple loops. This
will happen if no large difference is found, or if a large difference is found on the
final comparison. In either case, the outer loop is executed n − 1 times (note that
loop goes from 1 to n− 1 because of the i + 1 in Line 9), the middle loop n times,
and the inner loop n times. So the total is (n− 1)(n)(n) = n3 − n2.

(c) The fewest number of times is still 1, so the ratio is 1/1 = 1.

(d) Now the outer loop is executed 2n − 1 times, the middle loop 2n times, and
the inner loop also 2n times. So the total number of times is (2n − 1)(2n)(2n) =
8n3 − 4n2. The ratio is therefore (8n3 − 4n2)/(n3 − n2), or roughly 8.

9.9 Some Further Questions

Here are some further questions to think about:

1. What does the topic of algorithmic complexity tell us about computer science as a
field? About how computer scientists think, and about how they solve problems?

2. The function f(n) = n! grows very quickly. Suppose someone says g(n) = n! + 1
grows even more quickly. Are they correct? How about g(n) = 2× n! ?

3. Do you think there is a function that grows more quickly than all other functions?
Why or why not?

4. Suppose someone says that as computers get faster and faster all computational
problems will be solvable in a very short amount of time. Do you agree or disagree?

170 CHAPTER 9. ALGORITHMIC COMPLEXITY

5. Give examples, other than those given in this chapter, where the issue of how pro-
cesses scale is important. If possible, give examples from areas that you are inter-
ested in outside of computer science.

6. Give examples, other than those given in this chapter, where there are massive
amounts of data being gathered or generated. If possible, give examples from areas
that you are interested in outside of computer science.

Chapter 10

What is Computer Science?

Computer science 6= computer programming.

10.1 Introduction

10.1.1 Introductory Problem

Suppose someone claims “software engineering” is the same as “computer science.” Do
you agree or disagree, and why?

10.1.2 Overview

What is computer science? If you ask this to a number of people, you will get a variety of
answers. When some people think of computer science, they often think of computer pro-
gramming. And while computer programming is an important part of computer science,
it is not the same as computer science. For instance, there are many computer scientists
who do not do program. They might be theoreticians, analysts, or administrators. In this
chapter we’ll examine three related questions:

• What is computer science?

• What is the difference between computer science and computer programming?

• How is computer science similar to, and different from, related fields such as com-
puter engineering?

The purpose of this chapter is therefore to clarify what computer science is and what
its relation to similar fields is. The discussion in this chapter leads into the material in the
next two chapters, where we’ll look at the software development side of computer science
in more detail, and we’ll see the basics of a specific programming language, Python.

171

172 CHAPTER 10. WHAT IS COMPUTER SCIENCE?

10.1.3 Motivation

To understand computer programming and computer science it is important to know what
they are, to clarify some common misperceptions, and to understand their similarities to
and differences from related areas.

10.1.4 Goals

Upon completing this material, you should be able to do the following:

1. Be able to explain, in your own words, what computer science is.

2. Be able to explain what fields such as computer engineering are, and how they are
related to, but different from, computer science.

3. Be able to explain how computer science differs from computer programming.

10.1.5 Connection with Mathematics, and with Technology and
Society

This chapter does not have a direct tie to mathematics or to technology and society.
However, it will be useful background information for when we look at topics such as
software development and computer programming, where there is a stronger connection
to the liberal education requirements.

10.2 What is Computer Science?

Throughout this class we have been exploring different aspects of computer science such
as the role of algorithms, and how computers represent and operate on different types of
data. From this material you should have gotten a good amount of exposure to computer
science. And so it might seem odd to raise the question “What is Computer Science?”
at this point. However, now that we are looking at the areas of computer programming
and software development in this class, it is a good time to explore more precisely what
computer science is, especially with respect to related fields.

If you look up definitions of “computer science,” you will find a number of different
possibilities:

• Merriam-Webster Online Dictionary: “a branch of science that deals with the theory
of computation or the design of computers.”1

1From http://www.merriam-webster.com/dictionary/computer%20science; accessed Dec. 31,
2013.

10.2. WHAT IS COMPUTER SCIENCE? 173

• Cambridge Dictionaries Online: “ the study of computers, how they work, and how
to make use of them . . .”.2

• Webopedia: “The study of computers, including both hardware and software design
. . .”.3

• Wikipedia: “Computer science (abbreviated CS or CompSci) is the scientific and
practical approach to computation and its applications. It is the systematic study of
the feasibility, structure, expression, and mechanization of the methodical processes
(or algorithms) that underlie the acquisition, representation, processing, storage,
communication of, and access to information . . .”.4

As the differences among these examples indicate, there are difficulties in defining
precisely what computer science is. The remainder of this section will discuss in more
detail some of these difficulties.

One challenge is that computer science consists of a number of subfields or subparts.
The definitions above mention the theory of computation, computer design, how comput-
ers work, how to use computers, hardware and software design, applications, and other
subparts. Each of these is important. However, one mistake people often make is to
equate computer science with just one subpart. For example, computer programming is
an important part of computer science, but it is not all of computer science. Similarly,
computer use, such as using databases, spreadsheets, webpage design tools, etc. is often
something computer scientists do, but is only a small part of computer science.

There are various ways to subdivide computer science. One possible distinction is
between hardware and software. Another is between theoretical computer science and ap-
plied computer science. Still other subpart classifications are more detailed and/or divide
the subparts even further. For example, software design can be broken into system soft-
ware such as operating systems and compilers, and application software such as graphics
or database software. Still other classifications provide additional subareas; for example
here is a subarea list that contains some areas already mentioned and some additional
ones:5

• systems

• theory

• artificial intelligence/robotics

• software engineering/programming languages

2From http://dictionary.cambridge.org/us/dictionary/business-english/computer-science?

q=computer+science; accessed Dec. 31, 2013.
3From http://www.webopedia.com/TERM/C/computer science.html; accessed Dec. 31, 2013.
4From http://en.wikipedia.org/wiki/Computer science; accessed Dec. 31, 2013.
5These are the upper division elective “tracks” that University of Minnesota-Twin Cities Computer

Science B.S. students can choose from to fulfill their degree requirements.

174 CHAPTER 10. WHAT IS COMPUTER SCIENCE?

• computational science

• graphics and visualization

• architecture and hardware systems

• bioinformatics and computational biology

• databases

• graphical information systems

• human computer interaction

• security

• networks

• software and data systems development

• big data

A second challenge is that many subfields of computer science are interdisciplinary.
For example, robotics draws not only on computer science, but also on other fields such as
electrical engineering and mechanical engineering. Artificial intelligence overlaps with the
fields such as psychology and linguistics. Computer hardware research overlaps heavily
with electrical engineering and material science. Computer graphics overlaps with a va-
riety of areas including optics, image processing, perception, and medical imaging; these
in turn are subareas of other fields such as physics, psychology, and medical research. In
short, many subfields of computer science overlap with, draw upon, and contribute to
other fields.

A third challenge is that computer science is closely related to other fields such as
software engineering or computer engineering. Sometimes these other fields are seen
as subfields of computer science, sometimes as distinct, but closely related fields. The
similarities and differences are important enough that we will discuss this point further
in the next section.

A final challenge is that computer science is a rapidly evolving area, and so what
constitutes computer science continues to change. In the early days of computing topics
such as numerical computation and language specification were prominent; topics such as
networking or “big data” were non-existent or not as important.

10.3 Closely Related Fields

As the last section mentioned, computer science is closely related to fields such as software
engineering and computer engineering. And sometime these fields are seen as subfields

10.3. CLOSELY RELATED FIELDS 175

of computer science, and sometime they are seen as closely related fields. For example,
some universities have separate programs in computer science, computer engineering, and
software engineering; others might have just a single degree (usually computer science)
but might have computer engineering and/or software engineering as emphases within
that computer science degree.

Here is a commonly used diagram, which is explained further below, showing the
relation between computer science and five related fields.

EE ---- CompE ---- CS ---- SE ---- IT --- IS

‘CS’ stands for computer science. Here is a brief explanation of the five other fields:

• EE, or electrical engineering is the study and practice of working with electricity,
electronics, electromagnetism, and electrical systems. It consists of a number of
subfields, some of which, such as power systems, are less directly related to computer
science, and others, such as circuit design, that are more closely related. Most large
universities (and many smaller ones) have an electrical engineering department.

• CompE, or computer engineering is the study and practice of designing, creating,
and manufacturing computer hardware and components, especially microprocessors.
Computer engineering is therefore closely related to both electrical engineering and
computer science. Not all universities have a computer engineering degree. Some
that do have it as a standalone program; however, often it is housed in the electrical
engineering or computer science department.6

Computer engineering students take many of the same introductory classes as com-
puter science students and electrical engineering students — beginning program-
ming, introductory computer science theory, circuits, microcontrollers, etc. — and
then take advanced courses in areas such as computer architecture and systems
programming.

• SE, or software engineering is the study and practice of developing software. Soft-
ware engineering is different from computer science because of its narrowed but
deeper focus. For example, a student getting a software engineering degree would
take many of the same classes as a computer science student, including program-
ming, theory, and applications classes, but would take numerous advanced classes
in software development. (The software development process is described in more
detail in the next chapter.)

Some universities have separate software engineering programs. For most universi-
ties however, students wishing to get a software engineering background would get

6Or both. For example at the University of Minnesota-Twin Cities, Computer Engineering is a joint
program of both the Electrical and Computer Engineering Department and the Computer Science and
Engineering Department.

176 CHAPTER 10. WHAT IS COMPUTER SCIENCE?

a computer science degree with a software engineering emphasis.7

• IT or information technology: The ACM 2008 Curricular Guidelines for Information
Technology 8 defines IT as the “the computer technology needs of business, govern-
ment, healthcare, schools, and other kinds of organizations.” It further describes
the field as follows:

“its emphasis is on the technology itself more than on the information it
conveys. IT is a new and rapidly growing field that started as a grassroots
response to the practical, everyday needs of business and other organiza-
tions. Today, organizations of every kind are dependent on information
technology. They need to have appropriate systems in place. These sys-
tems must work properly, be secure, and be upgraded, maintained, and
replaced as appropriate. Employees throughout an organization require
support from IT staff who understand computer systems and their soft-
ware and are committed to solving whatever computer-related problems
they might have. Graduates of Information Technology programs address
these needs.”

The University of Minnesota College of Continuing Education has a degree in Infor-
mation Technology Infrastructure (ITI). Students in this program take many com-
puter science classes, some business classes, and electives that focus on technology
infrastructure; these include advanced network, computer systems, and database
classes among others.9

• IS or information systems, is more concerned with the business side of information
technology. For example, questions such as “how could a new computer system
make a business’s practices more efficient?” and “what type of computer system
does a business need to manage its data?”, while they have computer science aspects,
belong more to the field of information systems.10 A student getting a degree in

7At the University of Minnesota-Twin Cities there is not a separate bachelor’s degree in software
engineering. However, there is a Masters of Science in Software Engineering (MSSE). This is a professional
degree for people who work in the local software industry.

8Available online at http://www.acm.org//education/curricula/IT2008%20Curriculum.pdf; ac-
cessed Jan. 9, 2014.

9More information on the ITI degree is online at http://cce.umn.edu/BAS%2DIT%2DInfrastructure/.
10The ACM 2010 Curricular Recommendations for Information Systems, available online at

http://www.acm.org/education/curricula/IS%202010%20ACM%20final.pdf, provides a more formal
and detailed description of this field:

“Information Systems as a field of academic study encompasses the concepts, principles, and
processes for two broad areas of activity within organizations: 1) acquisition, deployment,
management, and strategy for information technology resources and services (the informa-
tion systems function; IS strategy, management, and acquisition; IT infrastructure; enterprise
architecture; data and information) and 2) packaged system acquisition or system develop-
ment, operation, and evolution of infrastructure and systems for use in organizational pro-

10.3. CLOSELY RELATED FIELDS 177

information systems would take many business classes such as project management
and information system acquisition. They would also take classes in areas such
as beginning programming, databases, and other applications that are critical to
business systems and operations. In addition, they would take classes in areas such
as information security, information system architecture and infrastructure, and e-
commerce that involve both computer science and business. Information systems
programs are usually housed within the business school.11

The Association for Computing Machinery, one of the major computer professional
groups, has curricular recommendation reports for five of the six fields mentioned above
(all except electrical engineering). These detailed reports, whose intended audience in-
cludes educators, accreditors, and professionals from related industries, are available on-
line at http://www.acm.org/education/curricula-recommendations.

The list above is not comprehensive. There are other fields such as mathematics that
have contributed to, overlap with, and are influenced by computer science.12 There are
also other specialized fields that are closely related to computer science. For example
some colleges or universities have degrees in computer forensics.

In general, computer science is very broad in terms of what types of jobs a student
with a computer science degree might go into. Many computer science students do go
into programming or software development positions. Others work in application areas
such as databases or artificial intelligence. Others might work in areas such as systems
administration or networking. Still others will work in other subareas of computer science.

Computer science and the related degrees are also very fluid. Many computer profes-
sionals come from backgrounds in electrical engineering, mathematics, or other related
areas, or even unrelated ones. In part this is because of the dynamic nature of computer
science, and in part because computer science both relies on and contributes to so many
other fields.

cesses (project management, system acquisition, system development, system operation, and
system maintenance). The systems that deliver information and communications services in
an organization combine both technical components and human operators and users. They
capture, store, process, and communicate data, information, and knowledge.”

11At the University of Minnesota-Twin Cities, the the Carlson School of Management has a bachelors
degree in Management of Information Systems (MIS). The University catalog describes the program:

“The management information systems (MIS) major prepares students to be leaders in con-
ceptualizing, prescribing, developing, and delivering leading-edge information system applica-
tions that support business processes and management decision making. It provides students
with an understanding of the functions of information systems in organizations and detailed
knowledge of information system analysis, design, and operation.

12In fact many smaller schools house mathematics and computer science programs in the same depart-
ment.

178 CHAPTER 10. WHAT IS COMPUTER SCIENCE?

Chapter 11

Software Development

Programming “in the small” 6= programming “in the large.”

11.1 Introduction

11.1.1 Introductory Problem

Mark each of the following as “true” or “false” and briefly justify your answer.

1. The largest software systems consist of hundreds of thousands of lines of code.

2. Although computer errors have led to significant negative effects, such as billions of
dollars of business losses and mission failure for interplanetary space probes, they
have never been a major contributing factor in a human fatality.

3. Although it has not always been the case, most large software projects are completed
on time and under or at budget.

11.1.2 Overview

Computer systems play an important part in our everyday life. But what do we know
about those systems? How big are they? How reliable are they? How are they con-
structed? Are most attempted software projects successful? The aim of this chapter is
to examine these and other aspects of computer software and computer programming. In
particular, this chapter provides a “big picture” discussion of software development and
computer programming.

11.1.3 Motivation

In 1990 the Mars Climate Orbiter entered the Martian atmosphere at the wrong angle,
resulting in a catastrophic failure. The cause was traced to a software miscommunication:

179

180 CHAPTER 11. SOFTWARE DEVELOPMENT

one group working on the software was using metric units of thrust, another was using
English units.

Large software systems are important in many aspects of society. Here are a few
examples:

• As the introductory example shows, software systems are an important (and some-
times faulty) part of space exploration.

• Telecommunications software is an important part of the mobile phone infrastruc-
ture.

• Office productivity software such as word processors, spreadsheets, and database
software are large programs used by many individuals and businesses.

• Businesses also rely on a number of software systems such as payroll and inventory
systems.

• As was briefly discussed in a previous chapter, system software such as operating
systems and compilers are programs that allow computers to do system-related tasks
such as translating high level programming code to machine instructions.

• Computer games are rarely simple programs, but are often complicated systems
involving graphics; user interaction; a rich database of plots, characters, and game
objects; ability to play over a network with multiple players; etc.

In summary, software systems play an important role in many, many important ar-
eas of society whether the areas are scientific, business-related, industrial, governmen-
tal, communications-related, recreational, or personal. These systems allow individuals,
businesses, government agencies, and other organizations to perform tasks that would
otherwise be impossible or difficult. But the systems can also create problems if they
malfunction. To better understand the role of software it is important to know some
fundamentals about software and its development.

11.1.4 Goals

Upon completing this chapter, you should be able to do the following:

1. Be able to explain some of the key differences between writing a small computer
program and a large one.

2. Be able to state some fundamental facts about software, software projects, and the
software development process.

3. Be able to explain the main steps in the software development process.

11.2. PROGRAMMING “IN THE LARGE” VERSUS “IN THE SMALL” 181

11.1.5 Connection with Mathematics, and with Technology and
Society

Software development has a number of important connections with mathematics. On
one hand, programming has a strong connection with mathematics as much of it involves
computations in some way, shape, or form. On the other hand there are deep and im-
portant connections between software development and mathematics. However, many of
these connections are advanced.1 So — other than looking below at a problem involving
counting and software testing — we will not explore the connection between software
development and mathematics further.

The connection between software systems and technology and society is more evident.
As discussed in the motivation subsection above, software systems play a role in many
important areas of society.

11.2 Programming “In the Large” Versus “In the

Small”

One common view of computer programming is similar to a common view of how writers
work: they work solo at their keyboard for many hours and finally create a significant
work. The writer might create a book, and the programmer an important computer
program.

While this view is sometimes correct, it does not reflect the reality of most program-
mers. Why not? There are a number of reasons, including the following:

• Most programmers work on multiperson projects rather than working alone.

• While programming sometimes consists of writing new code, it also involves correct-
ing, updating, etc. old code, probably code that other programmers have written.

• There is more to creating computer software than coding. For example, it is often
not clear exactly what the program needs to do, so part of the software development
process is clarifying what the requirements for the software are.

• A program is often not “standalone;” it might itself be part of an even large computer
program, which in turn might need to interact with still other computer programs.

The view of a single programmer working on a well-defined project and producing an
entire program is an example of what is called “programming in the small.” However,
large important systems are the work of many people working in many places over a
long time span. Much of the software we rely on, whether it be office productivity soft-
ware such as spreadsheets and word processors; web browser software; operating systems;

1For example, one use of formal methods is to try to prove mathematically that a code section is
correct.

182 CHAPTER 11. SOFTWARE DEVELOPMENT

business software systems that track and analyze inventory, orders, and cost; software
for telecommunication systems; etc. are large pieces of software. For example operating
systems such as Linux/Unix, Windows, and MacOS consist of millions of lines of code.

Working on a large multiperson system is significantly different from writing a program
that might be used only by a handful of people, perhaps only the programmer himself or
herself. Large systems will have many users, might go through many versions, and might
involve special safety, security, accuracy, or other features.

11.3 Parts of the Software Development Process

Software development requires more than only programming or coding. As the last section
mentioned, software development often involves additional, related steps:

• Requirements Engineering: It might seem odd that in most large systems the first
challenge is defining, and defining precisely, what the system is to do. Why does
this challenge even exist? Isn’t there is usually a well-defined problem or set of
tasks, and what we are looking for is a computer program to solve that problem or
do those tasks?

However, for large systems it is rarely if ever the case that the problem or task
is completely and precisely defined. Let’s look at a very simple example: suppose
someone asks you to write a computer program to sort a list. What does this mean?
Sort in ascending or descending order, or allow the user to choose either? Sort
a list of numbers? Names? Addresses? Any type of list involving alphabetical
or numeric data? If the list involves both alphabetical and numeric data should
numbers appear before characters or vice versa? How about sorting upper case vs.
lower case? And are there any restrictions or special requirements? For example, is
there any restriction on the list size or the number of characters in each list item?
Should there be a check for obviously bad data? If so, how should it be handled?
What type of a device should the program run on? Should the program be able to
be called by other programs? If so, what form should the list be in to ensure both
programs can work with it? Would the sorted list overwrite the original list (so the
original list would no longer be around), or would that be a problem?

So even for this very simple task there are numerous clarifying questions we need
to ask before writing the program. Defining the “requirements,” or precisely what
a system is to do, is difficult for a number of other reasons as well. These include
the following:

– Large systems are complicated and it is difficult to specify all the requirements
accurately and clearly.

– Clients often don’t know exactly what they want. They might have a high-level
idea, but are unsure about the details. They might not know what is possible.

11.3. PARTS OF THE SOFTWARE DEVELOPMENT PROCESS 183

Or they might have multiple divisions within their organization, and not know
what all the different users want out of the system.

– There are often tradeoffs involved in software systems. For example, a more
complicated system might have more features and capabilities, but take longer
to develop. A more secure system might be harder for people to use. A
nonessential feature might be desirable but also costly. A new user interface
might be more efficient than the interface of an old system, but it will take
additional time for users to learn.

– Changing landscapes. The requirements might (in fact, for a large project,
will) change over time. An organization’s needs, processes, or infrastructure
might change. For example, suppose a company wanted some software that
needed to communicate with the company’s existing databases, and that the
company had multiple locations, each with its own database. However, due
to company restructuring as well as falling telecommunications costs and in-
creasing telecommunications abilities the company decides to consolidate all
its databases into a single location. Then the software would only need to
communicate with this single database rather than with multiple ones.

• Design: Suppose you are building a house. You don’t begin by actually starting
the construction. Instead there is a planning and design phase first. Similarly,
large software systems need careful design: What is the system’s “architecture,” for
example what are its main parts and how are they related? What are the subparts
of the main parts? How does the system interact with any related systems it must
communicate with? Etc.

• Coding: This is the part of the development process that most people think of when
they think of software development: it is the part consisting of actually writing the
code. If the requirements are well-specified and stable, and if there is a good, infor-
mative design, then coding should actually be the easiest part of the development
process.

• Testing: No people, not even the best programmers, write substantial amounts of
code error-free the first time. A part of a programmer’s job is to test the code he or
she writes. However, testing is complicated enough and important enough that it
constitutes a separate part of the development process. In fact, many development
companies have different people test the software than write it (think about why
this is useful). Some large development companies have an entire group whose job
is testing.

Why is testing nontrivial? Here are a few of many reasons:

– It is usually impossible to check all possible cases. For example, suppose a
program asks a user to input a text string of 20 characters or fewer. There

184 CHAPTER 11. SOFTWARE DEVELOPMENT

are so many possible names that it is impossible to check all of them in any
reasonable amount of time. (See the next section for a related problem.)

– Programs must guard against erroneous and unexpected events. Suppose a
program asks a user to input a temperature. What happens if they mistype
98.6 as 98,6 or as @iu.t@? Tasks such as checking input add complexity to
programs, and are often difficult to do rigorously.

– Many program errors are not within a piece of code itself, but in how the piece
of code interacts with other pieces of code in a larger system.

• Maintenance: The word “maintenance” lacks glamor. Would you really want main-
tenance to be a significant part of a successful software project? Actually you would.
Part of maintenance is adding additional features to a successful piece of software.
Part of it is fixing obscure defects or security issues that wouldn’t have been found
without a large user base. Part of it is updating successful software from an older
version to a newer version. Part of it is modifying the software so it is useful on a
variety of devices (e.g., perhaps on tablet computers or smartphones).

In short, think of software maintenance like you think about automobile mainte-
nance or house maintenance. You do not want to spend too much time or money
on maintenance. However, if you have a car or house you really like you do preven-
tive maintenance to keep it in good shape, and fix occasional problems that occur.
And occasionally you do major “maintenance” such as adding a room to a house.
Similarly, a reasonable and long-term commitment to maintenance is a sign of a
successful software product, not an unsuccessful one.

A more comprehensive discussion of software development would discuss the above
items in more detail, as well as identifying other parts of software development. However,
the items explained above illustrate the key point that software development is more
than just coding, and that developing large software systems is different than developing
smaller systems or writing a single short program.

The steps above (sometimes with additional steps included) are sometimes put in a
sequence and presented as the “waterfall” model of software development: first you specify
the requirements, then you design the system, then you do the coding, then you test the
system, and afterwards you do system maintenance. This is a useful model in that it
identifies these key parts of the development process. However, it should not be taken as a
representation of how development actually occurs in practice. For example, as mentioned
above, requirements sometimes change in the middle of the development process, and so
one cannot specify the requirements and assume that stage is entirely finished. As another
example, often during the design or coding it becomes clear that certain requirements
were omitted, or incorrectly or ambiguously specified; or during the coding phase a better
design of some subparts of the system might be discovered. Additionally, development
often proceeds iteratively. For example, certain core requirements might be specified, and
the related part of the system designed, coded, and tested; then a second iteration would

11.4. SOFTWARE CHALLENGES AND RISKS 185

specify requirements for an additional portion of the system, and it in turn would be
designed, etc.; and in general the system would be built though a number of iterations.

11.4 Software Challenges and Risks

The inherent complexity of large software systems presents a number of challenges. Large
systems consist of many, many parts and many, many subparts. The largest systems
consist of millions of lines of code. It is impossible for any single person to understand
the entire system in depth, or even a substantial part of it.

Because of this, large systems are difficult to design, implement, and maintain. In
fact, large systems do not have a large success rate. Although software development has
improved and is continuing to improve, large systems are more often than not delivered
late and/or over budget.2

Moreover, even delivered software is not error-free. Rates of 1 or 2 errors per thousands
of delivered lines of code are common. And while this might not seem like a large error
rate, in a system of hundreds of thousands if not millions of lines of code it results in
a large number of errors. Many of these errors are minor, but occasionally a “small”
error can have serious or catastrophic results. Software errors have contributed to mission
failures such as in the Mars Climate Orbiter example, financial losses that yearly total in
the billions of dollars, or even human injury or loss of life, as in the Therac-25 incident
we’ll (probably) explore in class.

Because certain systems such as space exploration software, medical software, military
software, or financial software have special requirements, they need extra care, know-how,
and oversight in their development. Careful software processes can significantly decrease
the number of errors in software systems; however, this requires additional costs and
know-how.

11.5 Some Example Problems

Problem 1: Suppose a software system is 200,000 lines long and is estimated to contain
2.8 errors per thousand lines of code. How many errors does this mean the code is likely
to contain?

Problem 2: Suppose a program requires a user to enter an 8-character string, where
each character in the string can be a lower-case alphabetic character, and upper-case
alphabetic character, or a digit 0–9. Characters can be repeated. Suppose further that
you wish to test the code by checking all possible bitstrings, and that your test code can
check 10,000 bitstrings per second. How long will it take for your code to test all of the
possible 8-character strings?

2The Oct. 2013 ACA site failure is just one of many examples.

186 CHAPTER 11. SOFTWARE DEVELOPMENT

Problem 3: In testing it is desirable (but not always easy or even possible) to test every
“path” through the code. Consider the following algorithm fragment. In the fragment
the “...” represent lines that are omitted but which might provide output or modify the
variable values, but do not include any if or else statements. How many different paths
are there through the algorithm? For example if violinCount is 5, violaCount is 20,
and celloCount is 10, then the algorithm will execute different statements than when
violinCount is 8, violaCount is 12, and celloCount is 4. So these two cases represent
two different paths.

if violinCount > 10

if celloCount < 10

...

else if celloCount < 20

...

else

...

else

...

if violaCount equals celloCount

...

else

...

if bassCount < 10

if doubleBassoonCount < 10

...

else

...

Problem 4: Explain why software development is more than only doing computer pro-
gramming.

11.6 Problem Solutions

Introductory Problem

(1) False; they are larger, consisting of millions or tens of millions of lines of code.

(2) False; for example, both software and hardware malfunctions were contributing factors
in the Therac-25 incidents (which will likely be discussed in class).

(3) False; although the situation is improving, recent studies have shown only about one
third of large software projects are completed on time and don’t exceed their budget.

11.6. PROBLEM SOLUTIONS 187

Problem 1

If a program is 200,000 lines long and contains an average of 2.8 errors/thousand lines of
code, then it contains 2.8× 200 = 560 errors.

Problem 2

The 8-character string has 62 possibilities for each character. Characters can be repeated
and order matters, so there are 628 = 218, 340, 105, 584, 896, or about 218 trillion possible
strings. If 10,000 of these can be processed per second, then it will take the program
218, 340, 105, 584, 896/10, 000, or approximately 21, 834, 010, 558, seconds. This is about
22 billion seconds, which is almost 7 centuries.

Problem 3

Notice that the program will first take one of the four paths through the first part of the
code:

if violinCount > 10

if celloCount < 10

...

else if celloCount < 20

...

else

...

else

...

Then it will take one of two paths through the next part:

if violaCount equals celloCount

...

else

...

Finally, it will take one of three paths through the final part (note that in addition to the
two paths indicated by the dots, there is a third path when bassCount < 10 is False):

if bassCount < 10

if doubleBassoonCount < 10

...

else

...

So there are a total of 4× 2× 3 = 24 different paths.

Problem 4

Answers can vary. One possibility is mentioning that, in addition to computer program-
ming, software development involves requirements engineering, software design, testing,
and maintenance.

188 CHAPTER 11. SOFTWARE DEVELOPMENT

Chapter 12

Python Reference

“All programmers are playwrights and all computers are lousy actors.”1

12.1 Introduction

This chapter is a quick introduction to Python. It will have a different structure than other
chapters, presenting some Python along with examples. This chapter is not comprehen-
sive: Python, like most computer languages, is extensive, and the Python programming
language has been the topic of many entire books. So the material in this chapter is only
an introduction that will focus on the basics of Python you need for the class.

This material is meant to complement online references and the in-class presentation
of Python. Why have a chapter on Python if there are other resources? It is often useful
to have additional or alternative explanation of programming language concepts, as well
as additional examples. The Python site http://www.python.org contains additional
reference material, as well as an online tutorial. Plan on using that site extensively. The
class lectures will present additional examples, some of which will involve more compli-
cated use of Python than in this introductory chapter. So in your study of Python you
should also attend those classes and study the additional examples.

You should be able to run any of the examples in this section on the Python inter-
preter.2 Recall that on the lab machines used for this class you can run the interpreter
simple by logging in and typing python in a terminal window. More detailed instructions
about using the Python interpreter are below.

As a final note, the best way to learn about computer programming is to program. So
rather than just reading this chapter on its own, you are encouraged to try the examples
in this chapter in the Python interpreter, vary them and see what happens, make up your
own examples, etc.3

1From http://www.cs.cmu.edu/∼pattis/quotations.html; accessed Dec. 18, 2013.
2The Python in this chapter uses version 2.7.
3This chapter contains only a few problems; additional problems are in the next chapter.

189

190 CHAPTER 12. PYTHON REFERENCE

12.2 Getting Started with The Python Interpreter

To use Python on the CSE lab machines, you can type python after opening a terminal
window. This should put you in the interpreter, and you should see a >>> prompt. (If
this doesn’t work, see a TA.) At the Python prompt you can type in Python statements.
Here is an example, including what happens if you make a syntax error:

>>> snowDepth = 5

>>> print snowDepth

5

>>> set beehiveCount = 2

File "<stdin>", line 1

set beehiveCount = 2

^

SyntaxError: invalid syntax

>>> beehiveCount = 2

>>> print beehiveCount

2

To exit the interpreter, type CNTL-d, that is, press the control and (lower case) d at the
same time.

Section 12.16 below will explain some additional use of the interpreter.

12.3 Basics: Data Types and Operations

An earlier chapter discussed data and data representation. How does Python deal with
data? As you might expect from the earlier discussion, Python has many data types. In
this section we’ll cover a few of them that you’ll use in this class.

12.3.1 Numbers

Recall from the chapter on data representation that computers distinguish between inte-
gers and floating point numbers. This is reflected in many languages, including Python:
when working with numbers we often need to specify if they are integers or floating point
numbers.

Decimal integers are represented by strings of digits with negative numbers preceded
by a minus sign: 42, 0, and -65536 are all integers. However, a few cautions: First, don’t
include commas in Python numbers. For example, the last number above was not written
as -65,536. Here is the result from the Python interpreter if you do mistakenly use a
comma:

>>> 2 * -65,536

(-130, 536)

12.3. BASICS: DATA TYPES AND OPERATIONS 191

Whatever is happening here, it is very likely not what we want. The second caution is
don’t include leading zeros in decimal numbers. For example, even though 042 base 10 is,
strictly speaking, equivalent to 42 base 10, we likely wouldn’t write the former. Python
doesn’t like the 042 either.4 Third, don’t include a trailing decimal point, such as writing
42 as 42. When Python sees a number with a decimal point, it interprets it as a floating
point number:

>>> 2 * 4.

8.0

If you wish, you can represent integers in binary or hexadecimal. To represent a
number in binary, prefix it with an 0b. For example, 0b10 is binary for the decimal value 2.
Prefix hexadecimal numbers with an 0x. As an example, 0x1af is the hexadecimal for 431
(since 431 = 1×256+10×16+15×1). Note that the leading zero in these representations
is telling the Python interpreter to be prepared for a non-decimal representation.

Floating point numbers differ from integers in two ways. First, floating point numbers
have a decimal point followed by zero or more digits, for example 0.0 or 3.14159. Second,
floating point numbers can be larger or smaller than integers. To accommodate this,
Python allows floating point numbers to be written in scientific notation. This is done by
putting an e between the mantissa and the exponent. For example, the Python floating-
point number 5.7e4 is the Python representation for the number 5.7× 104, which in turn
is the same as the Python floating-point number 57000.0. Much larger numbers, such as
6.02e23, (in conventional scientific notation 6.02× 1023), very negative numbers, such as
-2.0542e45, (−2.0542×1045), and very small numbers, such as 6.626e-34 (6.626×10−34)
are also possible.

12.3.2 Text

Working with text in Python is simpler than working with numbers. To indicate a string
of text, simply enclose it in either single or double quotes. For example, ‘King Canute’

and "King Canute" are both the same string. Notice you can include spaces within the
string.

One complication with text is that we sometimes want to include special characters in
a text string. For example, what if we want to have quotation marks within a string? A
string attempt such as "He said, "You did well."" does not work: it causes a syntax
error in Python.

With quotation marks, you can include a single quote within a double-quote delimited
string, or vice versa. For example, ‘He said, "You did well."’ does work. But what
if you want both single and double quotes in the string? Or what if we want other special
characters such as a tab or line break? A way to indicate special characters in Python
is by prefixing them with a specially designated character, the backslash character \, as
shown:

4Actually it doesn’t object to it, but it interprets it as an octal or base 8 number.

192 CHAPTER 12. PYTHON REFERENCE

>>> print "A line with a \t tab and a \n line break"

A line with a tab and a

line break

>>> print "A line with a single quote \’, double quote \", and backslash \\."

A line with a single quote ’, double quote ", and backslash \.

12.3.3 Booleans

Boolean variables are variables whose value can be True or False. They are often used
to indicate the status of a condition, for example leftValveOpen = True. Remember to
capitalize the first letter in True and False.

12.4 Variables

We have met variables before: they are items in algorithms or programs whose values
can change. Variables in Python can be of many types, including integer, floating point,
boolean, and text.

12.4.1 Variable Names

There are rules for what constitutes a valid variable name in Python. Variable names
must start with an uppercase alphabetic character, a lowercase alphabetic character, or
an underscore. This first character can then be followed by zero or more uppercase
alphabetic characters, lowercase characters, underscores, or digits. So, for example, dog,
Cat, zebra87, _mandrillCount, and platypus_count are all valid variable names, while
5dog, Cat!, and octop@us are not.

As mentioned in an earlier chapter, it is better to have descriptive variable names,
for example baboonCount rather than just b. This makes programs easier to read and
understand. Python allows multiword variable names; it is good practice to separate the
words by underscores (e.g., baboon_count) or use “camelCase,” that is, capitalizing the
first letter of each word (other than perhaps the first). However, including blank spaces
within variable names is not allowed.

12.4.2 Assignment and Use

A Python statement such as threadCount = 500 assigns 500 to the variable threadCount.
The left side of the assignment statement is a variable name, which is followed by the as-
signment operator =. The right hand side can involve values, operators, and/or variables.
For example, each of the following are valid Python assignment statements:

molluskCount = 12 + 8 + 4

animalCount = zebraCount

12.5. OPERATORS 193

animalCount = zebraCount + gnuCount + 2

lobsterCount = lobsterCount + 1

12.5 Operators

Python, like every computer language, includes a variety of operators. This section pro-
vides an overview of commonly used arithmetic, relational, and logical operators.

12.5.1 Arithmetic Operations

Suppose you are constructing a triangular garden plot. The triangular area measures 6
feet in one direction and 8 feet in the other. What is the square footage of the area? You
remember the area of a triangle is one-half the length of the base times the height. You
plug this into the Python interpreter and get the following:

>>> b = 6

>>> h = 8

>>> (1/2)*b*h

0

What went wrong?

Python contains the usual arithmetic operations of addition, subtraction, division, and
multiplication. It also contains a variant of division (floor division) that always rounds
down, a remainder operation, and an exponent operation, as shown in the following table:

Operation Symbol Example Value
Add + 3 + 5 8

Subtract - 72 - 21 51

Multiply * 7.2 * 4.5 32.4

Divide / 7 / 3.5. 2.0

Rounded Down Divide // 7 / 3.2. 2

Remainder % 7 % 3 1

Exponent ** 7 ** 3 343

Most use of these operations is straightforward. However, as the example above illustrates,
some further explanation and cautions are needed:

• There is an order of operations for doing arithmetic. For example, is the addition
done before the multiplication in 4 + 3 * 2, or is the multiplication done first?
The rule is — absent any parentheses — multiplication before addition. However,
you can avoid memorizing the order of operation rules by using parentheses. Use
parentheses. It will save you from making some hard-to-find errors, and will make
the code easier for you and others to read and understand.

194 CHAPTER 12. PYTHON REFERENCE

• Division can be confusing. Specifically, what should 7/3 be? Should it be 2.333333?
2 1/3? Should we round down to 2? Round up to 3? Note part of the problem
here is that 7 and 3 are integers; should the result be an integer or a floating point
number? And what is the // division for? Here are a few examples along with
explanations:

>>> 7/3

2

>>> -7/3

-3

>>> 7.0/3

2.3333333333333335

>>> -7.0/3.0

-2.3333333333333335

>>> 7//3

2

>>> -7//3

-3

>>> 7.0//3

2.0

>>> -7.0//3

-3.0

In the first test here we are doing integer division, and the result is an integer. The
result is rounded down to the next lowest integer. The rounding is always down,
regardless of whether any fractional part is greater than 1/2 or not. For example,
8/3 is 2, not 3. Also “rounded down” means what you expect when the result is
positive: just drop any fractional part. However, as the second test shows, when
the result is negative, “rounded down” means going more negative; so in the case
of -7/3 the result is -3, not -2.

The third and fourth tests show what happens when one or both numbers is a
floating point number: the result is a floating point number. The rule with usual
division, i.e., with the / operator, is that the result is an integer only if both numbers
are integers, otherwise the result is a floating point number. This is true even if
the result of dividing two floating point numbers comes out evenly. For example,
6.0/3.0 yields 2.0; note this is represented as a floating point number rather than
as the integer 2.

The last four tests show the difference between division using // and division using
/. When both numbers are integers, there is no difference: compare the fifth and
sixth tests with the first two tests. However, when one or both of the two numbers
is a floating point number, then // rounds down. Note the result is still represented
as a floating point number, with a 0 to the right of the decimal point.

12.5. OPERATORS 195

12.5.2 Relational Operators

Relational operators compare two items. Most of the operators in the table below will
be familiar to you: greater than, greater than or equal to, etc. Note the result is a value
True or False.

Operation Symbol Example Value
Less than < 4 < 4 False
Greater than > 8 > 4 True
Less-or-equal <= 4 <= 8 True
Greater-or-equal >= 4 >= 8 False
Equality == 4 == 5 False
Inequality != 4 != 5 True

Three notes:

• As with arithmetic operators, use parentheses to indicate the order of operations.

• The symbol for equality is two equal signs. This is to distinguish it from the assign-
ment operator. A common mistake is to have a line such as the following, which
results in the shown error message:

>>> if b = 6:

if b = 6:

^

SyntaxError: invalid syntax

This error vanishes if you use ==.

• You can also apply these operators to characters and strings. The ordering used is
alphabetic order, but capitals are always less than lower case characters. Here are
a few examples:

>>> print "a" < "c"

True

>>> print "Z" < "w"

True

>>> print "aardvark" == "crustacean"

False

12.5.3 Logical Operators

Python includes the logical operators (which we saw in a previous chapter) and, or, and
not. These are usually combined with relational operations, for example

196 CHAPTER 12. PYTHON REFERENCE

(4 < 5) or (8 <= 2)

is True. Here is a more elaborate example:

(areaA * 5 >= areaB ** 3) and (not(areaA <=areaB))

Note this expression can be rewritten as an equivalent expression without a not:

(areaA * 5 >= areaB ** 3) and (areaA > areaB)

12.6 Lists and Indexing

In our everyday life, we often deal with groups of items. So, not surprisingly, computer
languages include ways to work with such collections. One of these is Python’s list struc-
ture.

A list in Python is a sequence of values or elements that share a common name and can
be processed as a unit, but where each element can also be accessed and processed individ-
ually. To indicate a list in Python, use square brackets, [and], around comma separated
elements; for example, here is a list of numbers: [1066, 1492, 1776], and a list of colors:
["red", "green", "blue", "white", "black", "cyan", "magenta", "yellow"].
The items in the list can be any Python type, and you are allowed to mix types. For
example, [3.2, "red", False], which contains different types of data (a floating point
number, a string, and a boolean value) is a valid Python list. Moreover, you can have
lists of lists: [[11, 12, 13], [21, 22, 23]] can be thought of as a table with two rows
and three columns.

To access an individual element in a list, use the list name along with the element
position. Let’s suppose we set up the following list:

>>> pieFlavors = ["apple", "pumpkin", "blueberry", "cherry", "pear"]

And suppose further you want to access the first and third elements in the list. You can
do so as follows:

>>> print pieFlavors[0], pieFlavors[2]

apple blueberry

Note the syntax: the list name followed by a position number enclosed in square brackets.
However, there is an obvious discrepancy here: we want to print out the first and third
elements in the list, but we are supplying position numbers 0 and 2. Why?

Python, like many computer languages, starts list indexing at 0, not 1. There are
historical and practical reasons for this, but it is admittedly very confusing. So the first
element in the list has index or position 0, the second has index 1, and in general the
ith element has index i− 1. The last (i.e., rightmost) element has index equal to the list
length minus one. For example, the pieFlavors list has 5 elements, so the index of the
last one, "pear", is 4.

12.7. INPUT/OUTPUT 197

What happens if you use an index that is not in the list? For instance, what will
pieFlavors[10] return, since there are not enough elements in the list? In this case,
Python returns an error message:

>>> print pieFlavors[10]

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

IndexError: list index out of range

There are a number of other useful things we can do with lists, some of which are
explained below, and some of which will appear in class examples.

As a final note in this section, indexing also works with strings and allows you to
access individual characters within the string. Here is an example:

>>> currentColor = "slateGrey34"

>>> print currentColor[0], currentColor[4], currentColor[9]

s e 3

Again, remember the indices start at 0.

12.7 Input/Output

The pseudocode in other chapters had a get command, a way for algorithms to get input
from the user (or from a file) as the algorithm was running. Similarly, the pseudocode
had a way to output information. It is reasonable to expect Python to have similar
capabilities. And indeed it does.

We’ve already seen the simplest way Python outputs information: by using print. So
print "This is a test" prints that text string. Or print theaterLightCount prints
the value of the variable theaterLightCount.

Input, however, is a little more complicated. If you think about input, you want to
get the input and store it somewhere. So you will need to use an assignment statement.
Here is an example of a user input line:

applicantName = raw_input("Please input your surname: ")

The Python term raw_input tells Python that it should get input from the user. The text
string within the raw_input parentheses is a prompt the computer will print to indicate
to the user that input is needed. Once the user inputs their surname, the computer stores
it in the variable applicantName.

But there’s one further complication: what type will the input be? In the example
above the input is obviously a string. But what if a program is working with apartment
numbers? You can probably think of some cases where the program would want to treat
an apartment number as a text string, and some where it’d want to treat it as an integer
(and perhaps even some where it would want to treat it as a floating point number). More

198 CHAPTER 12. PYTHON REFERENCE

generally suppose, for example, the user inputs 42. Is this supposed to be a text string?
An integer? A floating point number?

By default, Python considers the input as a text string. But what if you wanted 42 to
be treated as an integer? How do we tell this to Python? Like most languages Python has
conversion functions. To change a string to an integer you use the conversion function int.
To change a string to a floating point number you use the conversion function float.5

Here are some examples that include some input:

>>> llamaCount = int(raw_input("Enter the number of llamas: "))

Enter the number of llamas: 5

>>> llamaCount = llamaCount * 2

>>> print llamaCount

10

>>> payRate = float(raw_input("Enter the current pay rate: "))

Enter the current pay rate: 12.25

>>> payRate = payRate + 0.27

>>> print payRate

12.52

One common mistake is to forget that input lines like those above need two closing
parentheses at their end: one to close raw_input and the second to close int or float.

12.8 Control Structures

The chapter on pseudocode mentioned “sequence, selection, and repetition.” Recall that
sequence means executing statements in order, one after another. Selection means exe-
cuting a statement or block of statements only if a given condition is true. And repetition
means executing a statement or block of statements multiple times. Python has a number
of control structures implementing sequence, selection, and repetition.

The most basic control structure, sequence, is to do one thing after another. This
is represented in Python by the order of statements in the program text. Selection and
repetition have special keywords, however.

Not surprisingly, selection in Python uses if and its variants. Here are examples:

if elephantFoodSupply < elephantFoodNeeds:

print "Order more elephant food"

if applePieNumber > cherryPieNumber and applePieNumber > pecanPieNumber:

print "There are more apple pies"

applePieNumber = applePieNumber - 1

5There is also a conversion function str that converts a number to a string. For example, sup-
pose apartmentNumber holds an integer value. Then the Python statement apartmentString =

str(apartmentNumber) takes that value, turns it into a text string, and places the result in the variable
apartmentString.

12.8. CONTROL STRUCTURES 199

The if statement takes a condition that evaluates to True or False. (Note, as in the
second if statement, this can be a compound expression.) The condition is followed by a
colon. This is followed by the body of the if: an indented statement or set of statements
that will be executed if the condition is True.

Problem 1: List some common errors a programmer might make in writing the code
above.

As with pseudocode, there are if variants. These include if-else, if-elif, and
if-elif-else. Here are examples, starting with if-else:

if applePieNumber > quincePieNumber:

print "There are more apple pies."

applePieNumber = applePieNumber - 1

else:

print "There are at least as many quince pies."

quincePieNumber = quincePieNumber - 1

Depending on the relative values of applePieNumber and quincePieNumber this code will
execute one or the other block of indented statements. Note the form of the else: its
indentation is the same as the if, there is a colon after the else keyword, and the lines
to be executed for the else are indented.

Here is another if variant, if-elif:

if applePieNumber > quincePieNumber:

applePieNumber = applePieNumber - 1

elif quincePieNumber > 10:

quincePieNumber = quincePieNumber - 1

Note elif is short for else if. The elif is indented the same amount as the if, has a
condition followed by a colon, and has a line or block of lines that will be executed when the
if condition is False and the elif statement is True. With an if-elif it is possible for
the if block of indented statements to be executed, the elif block of indented statements
to be executed, or neither block of indented statements to be executed (if neither the if

nor elif conditions are True).
It is possible to have multiple elifs, and/or to combine an if-elif with a else:

200 CHAPTER 12. PYTHON REFERENCE

if cardValue == 1:

print "Ace"

elif cardValue == 2:

print "Deuce"

elif cardValue == 13:

print "King"

elif cardValue == 12:

print "Queen"

elif cardValue == 11:

print "Jack"

elif cardValue == 10:

print "Ten"

else:

print "Other card"

Next we consider repetition structures. Python includes both while and for loops.
We begin with while loops, which are very similar to our pseudocode form. Here is an
example:

i = 1

count = 0

while i <= 100:

if i % 2 == 0 or i % 3 = 0:

count = count + 1

i = i + 1

print count

This code fragment will repeatedly execute the body of the while statement as long as the
condition in the while line is true. Specifically, it executes it for i = 1, 2, ..., 100

and counts the number of such i that are divisible by 2 or 3 (or by both). Note the
form of the while loop: the while keyword, followed by a condition, followed by a colon
(don’t forget the colon). Then the body of the loop consists of one or more indented
statements. Note in the example the while loop body includes an if statement, and so
count = count + 1 is therefore indented even further. The first statement after the end
of the while loop body is indented at the same level as the while line.

The for statement provides a way to step through a number of items. One elegant
example is stepping through each item in a list, as in the following example:

for a in [1, 3, 6, 10]:

print a, a*a

The indented body of the statement is executed repeatedly, with the variable a taking on
successive values in the list. The output of this loop is

12.9. FUNCTIONS 201

1 1

3 9

6 36

10 100

You could actually write the while example above using the built-in range function:

count = 0

for i in range(1, 101):

if i % 2 == 0 or i % 3 = 0:

count = count + 1

i = i + 1

print count

Note that range(a, b) produces a list of consecutive integers starting with a and ending
with b-1, not b.

Another useful built-in function, both in general and for use with loops, is len, which
returns the length of a list or string. Here is an example:

x = "Vertical"

for i in range(0, len(x)):

print x[i]

will print

V

e

r

t

i

c

a

l

This example shows one reason why it is useful for range(a, b) to go up to but not
include b: since the list elements are indexed from 0 to the length minus 1, you can just
write range(0, len(x)) rather than needing to include a -1 somewhere in the range

expression.

12.9 Functions

Computer languages allow you not only to use built-in functions, such as range and
len, but also to define and use your own functions. This is a very useful capability.
For example, one function of a payroll program might be to print checks. The steps

202 CHAPTER 12. PYTHON REFERENCE

for printing different checks will be the same other than, for example, printing different
amounts and recipients. Rather than writing different code for each different check it
makes sense to have a single check printing function along with some way to indicate the
values, such as the check amount, that can vary.

Since you have seen some built-in functions in examples above, you already know
something about function use. Specifically, to call a function you use the function name,
followed by an opening parenthese, followed by one or more arguments, followed by a
closing parenthese. The rules for function names are the same as those for variables.
For example, the name can contain alphabetic characters, digits, and the underscore, but
must start with an alphabetic character or an underscore.

When using a function, you need to know how many arguments it takes. For example,
len takes a single argument that is a string or list. However, there are some functions
that can have different numbers of arguments. For example, range can take one, two, or
three arguments as the following example shows:

>>> print range(4)

[0, 1, 2, 3]

>>> print range(2,4)

[2, 3]

>>> print range(2, 12, 3)

[2, 5, 8, 11]

Function calls may be used as part of expressions, can appear more than once in an
expression, and can take the results of other functions as arguments, as shown in the
following example:

>>> a = len(range(1,101,2)) + len(range(1,101,3))

>>> print a

84

Defining your own function is not difficult, but there are a few rules to remember. Let’s
define a simple function that takes two numbers a and b, squares each (i.e., multiples each
by itself) and then adds the two results. This operation occurs often in mathematics; for
example it is part of the distance formula, appears in statistics formulas, etc. Here is the
example:

def sumsq (a, b):

a2 = a * a

b2 = b * b

return a2 + b2

Here are the parts of the definition:

• The define line. This starts with the keyword def, then has the function name (in
this case we have chosen sumsq), followed by the function parameters a and b that

12.9. FUNCTIONS 203

are separated by commas and enclosed in parentheses, and the end-of-the-line colon
(don’t forget the colon).

(A quick terminology clarification: the terms argument and parameters are some-
times used interchangeably. We will use the convention that arguments are the
values passed to the function through the function call, while parameters are the
variables in the function definition. So if we execute the line print sumsq(2,4)

then 2 and 4 are arguments that get assigned to the parameters a and b, respec-
tively.)

• The function body, which is indented and occurs after the define line. This is just
a sequence of Python statements that will be executed when the function is called.

• A return statement that tells what value or values to return to the calling statement.
The function above returns the numerical value that is the sum of the values of a2
and b2. It is possible for a function to have more than one return statement as
long as only one is reached; for example, a function with an if-else statement may
have a return at the end of the if body and another at the end of the else body.
It is also possible for a function not to have any return statement. For instance, the
function might just print a message and then end, at which point execution of the
program resumes after the calling statement:

def printHurray(n):

for i in range(0, n):

print "Hurray!"

When our sumsq function is called, we must supply it with two arguments that are
matched with the parameters a and b. For instance, in the statement print sumsq(3, 5)

the argument 3 is matched with the parameter a, and the argument 5 is matched with b.
The function then executes the lines in its function body, and returns the value 34 to the
statement print sumsq(3,5), which then prints that value.

Problem 2: It is possible to write sumsq more efficiently. See if you can write it as a two
line function.

There is a special kind of function called a method that has its own syntax since it
is closely associated with a Python structure. In our study of Python we will see a few
useful methods. For example, there is an append method for lists, whose use is illustrated
by the following example:

>>> treeList = ["elm", "oak", "maple"]

>>> print treeList

[‘elm’, ‘oak’, ‘maple’]

>>> treeList.append("ash")

>>> print treeList

[‘elm’, ‘oak’, ‘maple’, ‘ash’]

204 CHAPTER 12. PYTHON REFERENCE

Note the syntax: the variable name is followed by a dot, followed by the method name,
followed by the argument in parentheses. Here is another example that inserts gingko at
index 2 (so as the third item) in the list. This uses the insert method for lists.

>>> treeList = ["elm", "oak", "maple"]

>>> treeList.insert(2, "gingko")

>>> print treeList

[‘elm’, ‘oak’, ‘gingko’, ‘maple’]

The notion of scope is important in computer programs. Function parameters and
variables defined in an indented function body are not accessible outside of the function.
In computer parlance, their scope is local to the function definition. Here is an example:

>>> def treeAdd(newTree):

... standardTreeList = ["oak", "maple", "elm"]

... standardTreeList.append(newTree)

... return standardTreeList

...

>>> print treeAdd("gingko")

[‘oak’, ‘maple’, ‘elm’, ‘gingko’]

>>> print standardTreeList

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

NameError: name ‘standardTreeList’ is not defined

Let’s take a moment to examine this example. The first few lines are the definition of
the treeAdd function. Once that is complete, the print line outputs the result when the
function is called with the argument "gingko". This works fine, it is just regular function
usage. However, the next line causes an error. The problem is standardTreeList is
defined within the function treeAdd and so it cannot be accessed outside that function.
Another way of putting this is that the value of standardTreeList is being passed back
from the function in the next-to-last line, but the variable itself (its name in particular)
is not accessible outside the function.

It is actually possible to have different variables with the same name in different parts
of a program as long as their scopes do not overlap. For example, a commonly used
variable name such as n might represent a maximum possible value in many different
functions in a program, in each case being local in scope to the function. This is very
desirable for large projects: otherwise there would be both a profusion of awkward names,
and there would need to be scrupulous care that the same names were not used for different
variables.

12.10. LIBRARIES 205

12.10 Libraries

Most computer languages also include libraries or modules of items that, while sometimes
used, are not used frequently. For example, Python contains a math module of useful data
and functions. Here is a quick example:

import math

radius = 10.0

circumference = math.pi * radius

edge1 = 14.0

edge2 = 15.0

print math.sqrt(edge1 * edge1 + edge2 * edge2)

Note two important points:

• Before using data or a function in a module, you must let Python know you plan to
use it. You do this by having a line starting with the import keyword followed by
the module name.

• To use a value or function defined in a module, Python needs to know the module
that defines the value, and the name of the value, separated by a period. In this
case, the math module provides a value named pi, as well as a function named sqrt.
(Remember the discussion above about method syntax.)

Problem 3: Rewrite the code fragment above using the sumsq function from earlier in
this chapter.

12.11 Comments and Line Continuation

Comments, indicated by a pound character #, are used in programming to add notes
for humans to read.6 They are not part of the program execution, and do not alter the
behavior of the program; Python ignores them. The comment can span just part of a
line (the last part, after the pound sign), or an entire line. If you have a long, multiline
comment start each line with a pound sign.

Another useful character in making programs more readable and understandable is
the line continuation character, which in Python is the backslash \. The following two
examples are equivalent:

a = 10

b = 20

print "The first value is ", a * a, " and the second is ", b * b

6Comments are often presented as being for “others” to read, but they are also useful for the code’s
author, as reflected in Eagleson’s Law: “Any code of your own that you haven’t looked at for six or more
months might as well have been written by someone else.”

206 CHAPTER 12. PYTHON REFERENCE

and

a = 10

b = 20

print "The first value is ", a * a, \

" and the second is ", b * b

Python ignores the backslash-newlines and combines the lines before printing them. So
both the above print:

The first value is 100 and the second is 400

When a line has a long string in it, it is useful to split the string into two strings,
each on different lines, rather than putting the continuation character in the middle of
a string. This allows indenting the continuation of the line, which is useful to make the
program readable. Compare the three print statements:

>>> print "It was the best of times; it was the worst \

... of times"

It was the best of times; it was the worst of times

>>> print "It was the best of times; it was the worst",\

... "of times."

It was the best of times; it was the worst of times.

>>> print "It was the best of times; it was the worst", \

... "of times."

It was the best of times; it was the worst of times.

12.12 More About Lists

Being able to work with collections of data as a single entity, rather than as a number of
disparate elements, is a powerful feature of programming languages. This section contains
a few examples of helpful shortcuts for tasks such as initializing lists, scaling each item in
a list, etc.

The example below first initializes a list to contain 31 entries with value 0, asks the
user to input numbers, counts how many times certain numbers occur and updates the
list accordingly, and prints out the count in two different ways. Notice the use of the
following constructs:

• Initializing a long list using range.

• Accessing a list element using [and].

• Using a sublist: hist[a:b] is the sublist of items hist[a], hist[a+1], . . ., hist[b-1].
Note it includes hist[b-1], but not hist[b].

12.13. RANDOM NUMBERS 207

• Getting a list length using len.

• Stepping through a list using range and len.

Set up a list of 31 zeros.

hist = [0 for i in range(0, 31)]

Count number of times each valid input value occurs.

p = int(raw_input("Enter a number", \

" between 0 and 30 (-1 to exit): "))

while (p != -1):

if (p >= 0 and p <= 30):

Add 1 to the count for p

hist[p] = hist[p] + 1;

p = int(raw_input("Enter a number", \

" between 0 and 30 (-1 to exit): "))

Printout 1: counts, maximum of 10 per row.

print hist[0:10]

print hist[10:20]

print hist[20:30]

print hist[30:31]

Printout 2: 1 count per row along with index i

for i in range(0, len(hist)):

print i, hist[i]

12.13 Random Numbers

The random module is another useful Python module. It can be used in simulating card
games, lines in a grocery store, traffic in a transportation simulation, the spread of a
disease in an epidemiological simulation, etc. Here is a short code fragment illustrating
three important items for using random numbers: importing the random module, using the
random.randrange function to get a random number in a discrete range of possibilities,
and using the random.random function for generating a random floating point number.

import random

fourCount = 0

for i in range(0,100):

if random.randrange(1,7) == 4:

fourCount = fourCount + 1

print "There were ", fourCount, "4’s in 100 dice rolls."

r = random.random() * 180 + 32

208 CHAPTER 12. PYTHON REFERENCE

The random.randrange(a, b) functions generates an integer between a and b-1 inclu-
sive, with each choice being equally likely. The random.random function generates a
floating point number between 0.0 and 1.0. Note the program above first scales this range
to between 0.0 and 180.0, and then adds 32 so the final range is between 32.0 and 212.0.

Problem 4: Write a Python expression to generate a random floating-point number in
the range [−5, 5] and to store that number in the variable d.

12.14 Examples

Here are two complete examples, illustrating many of the constructs described above.

Example 1

def gcd(a, b):

The GCD of anything and 0 is 0

if a == 0:

return b

Compute the GCD of a and b

while b != 0:

if a > b:

a = a - b

else:

b = b - a

return a

Example 2

import random

numberOfHands = int(raw_input("How many hands to deal? "))

for i in range(numberOfHands):

fourCardHand = []

for j in range(4):

fourCardHand.append(random.randrange(1, 14))

aceCount = 0

for j in fourCardHand:

if j == 1:

aceCount = aceCount + 1

print "There were ", aceCount, " aces in the hand."

print "All hands counted."

12.15. PROBLEM SOLUTIONS 209

12.15 Problem Solutions

Problem 1: There are a number of possibilities including forgetting the colons, mistyping
the variable names, and using incorrect indentation.

Problem 2: Here is a two line version:

def sumsq (a, b):

return (a * a) + (b * b)

Problem 3: Replace the last line with

print math.sqrt(sumsq(edge1, edge2))

Problem 4: Here is one possibility:

d = (random.random() * 10.0) - 5.0

12.16 More About Using the Python Interpreter

As explained at the start of this chapter, to use Python on the CSE lab machines, you can
type python after opening a terminal window. This should put you in the interpreter, and
you should see a >>> prompt. (If this doesn’t work, see a TA.) At the Python prompt
you can type in Python commands.

If you have a file consisting of one or more user-defined functions, you can use them
in the interpreter by using the import command. Suppose you have a function called
coinFlip(n) which you wrote, which takes a positive integer as input, and which is in a
file ex01.py; then typing

>>> import ex01

>>> ex01.coinFlip(100)

runs the function with n = 100.
If you have a complete program — not just a function or group of functions — and

wish to run it from inside the interpreter, then you can use the import or execfile

command. Here is an example of running a program helloWorld.py that prints “Hello,
world”:

>>> import helloWorld

Hello, World

Here is an example that uses the execfile command:

>>> execfile("helloWorld.py")

Hello, World

210 CHAPTER 12. PYTHON REFERENCE

Remember, to exit the interpreter type Control-d, i.e., hit the ‘d’ key while pressing
down the control key at the same time.

If you have a program that you know is correct, then you can also execute it directly
from the operating system command line: you can type python programName at the
terminal window prompt to run it. Here’s an example with a program ex02.py that
prompts a user for a room length:

% python ex02.py

Please enter room length in inches:

...

You can actually do this as you develop a program: edit the program in one window, save
it when you have a round of edits done, then run it in another terminal window.

12.17 Additional Resources

There are a vast number of online resources for Python. The beginner materials at the
official Python website, http://www.python.org, are particularly recommended.

Chapter 13

Example Python Problems

13.1 Introduction

This chapter is a companion to the last chapter, and has two purposes: first, to provide
examples of nontrivial programming-related and Python-related problems; and second, to
give examples of problems that use the programming skills we would like you to be able
to do for this class:

• Given Python code, be able to trace through it and tell what it returns or outputs.

• Given possibly incorrect Python code, be able to identify and correct any errors.

• Given incomplete Python code, be able to complete it.

• Given Python code that solves a problem, be able to modify it to solve a given
related problem.

• Given a pseudocode description of an algorithm, be able to translate it into Python.

• Given a problem, be able to write Python code to solve the problem.

13.2 Problems

Problem 1: Tracing through a given Python program

What is printed out by each of the following code fragments?

(1a)

number_of_rabbits = 2

for i in range(0, 5):

number_of_rabbits = number_of_rabbits * 2

print i, number_of_rabbits

211

212 CHAPTER 13. EXAMPLE PYTHON PROBLEMS

(1b)

i = 1

number_of_rabbits = 6

while i <= 16:

if number_of_rabbits < 20:

number_of_rabbits = number_of_rabbits * 2

else:

number_of_rabbits = number_of_rabbits - 10

print i, number_of_rabbits

i = i * 2

(1c)

count = 0

for object in range(0, 1000):

for triangle in range(0, 100):

for vertex in range(0, 3):

count = count + 1

print count

Problem 2: Correcting a given Python program

The following Python program has numerous errors. Identify and correct the errors. Some
errors are syntax errors, others are logical errors. So some will prevent the program from
running; others will allow it to run, but will give incorrect output at times.

Here is what the program should do: it should ask the user to input 10 colors. It first
gets color number 1 by asking for the red, green, and blue components of the color. Then
it should check to see if all components are equal to each other. If they are, it should
print a message that the color is a gray. If they are not, it should first print a message
that the color is not a gray, and then compute the average (r + g + b) / 3 and print
it. The program should then repeat this process for a second color, then for a third one,
and so on up to and including color number 10.

In doing this, examine the code below visually, and also use the Python interpreter.
Your answer should be a list of errors, with each error saying exactly what is wrong

exactly where in the program.

13.2. PROBLEMS 213

for i in range(1,10):

print "Please input the components for color number ", i

r = int(raw_input("Please input the red component: ")

g = int(raw_input("Please input the red component: ")

b = int(raw_input("Please input the red component: ")

if (r = b = g)

print "That color is a gray"

else

print "That color is not gray."

average = r + g + b / 3

print "The average of its components is ", avg

Problem 3: Correcting a given Python program

Suppose you have a stair stepper and can program various workouts. One option allows
you to input successive numbers of minutes and step rates. The machine will then print
out the total number of minutes, total number of steps, and average steps per minute
(rounded down to the nearest integer). Here is an example with a workout that consists
of 5 minutes at 100 steps/minute, followed by 5 minutes at 110 steps/minute, followed by
10 minutes at 130 steps/minute, followed by 5 minutes at 110 steps/minute, and concluded
by 5 minutes at 100 steps/minute:

Input the number of minutes (0 to exit): 5

Input the step rate: 100

Input the next number of minutes (0 to exit): 5

Input the step rate: 110

Input the next number of minutes (0 to exit): 10

Input the step rate: 130

Input the next number of minutes (0 to exit): 5

Input the step rate: 110

Input the next number of minutes (0 to exit): 5

Input the step rate: 100

Input the next number of minutes (0 to exit): 0

Total number of minutes: 30

Total number of steps: 3400

Average step rate per minute: 113

Here is a listing of a version of a program for this that contains errors. Your job is to
locate and correct all the errors it contains.

214 CHAPTER 13. EXAMPLE PYTHON PROBLEMS

minTot = 0

stepTot = 0

min = int(raw_input("Input the number of minutes (0 to exit): "))

if min = 0:

print "No minutes input."

else

while min != 0:

minTot = minTot + min

stepRate = int(raw_input("Input the step rate: "))

stepTot = stepTot + stepRate * min

min = raw_input("Input the next number of minutes (0 to exit): ")

print "\nTotal number of minutes:", min

print "Total number of steps:", stepTot

Average is rounded down.

print "Average step rate per minute: ", minTot/stepTot

The corrections all involve small changes; i.e., you should not have to add, delete, or
modify large amounts of code. Remember, some errors might prevent the code from
running; others might allow it to run, but produce an incorrect answer.

Problem 4: Completing a Python program

Run-length encoding is a technique used in file compression. Suppose you have a list of
the following sound volumes:

[4, 4, 4, 4, 4, 4, 2, 9, 9, 9, 9, 9, 5, 5, 4, 4].

Run length encoding replaces each run of repeated values by two numbers: the repeated
value, and the number of times it occurs consecutively. For example, for the list above
it would replace the first six 4’s with the values 4, 6. It would replace the one 2 with 2,
1. It would replace the five 9’s with 9, 5. It would replace the two 5’s with 5, 2. And it
would replace the two 4’s with 4, 2. This results in the shorter list

[4, 6, 2, 1, 9, 5, 5, 2, 4, 2].

Your job in this part is to complete the function below that implements this process.
Specifically, replace each comment with the correct Python code.

13.2. PROBLEMS 215

def RLE(myList):

set newList equal to the empty list

i = 0

while i is less than the length of myList

Set currentVal equal to the element in myList with index i

currentCount = 1

while (i+currentCount < len(myList) and \

myList[i+currentCount] == currentVal):

set currentCount equal to currentCount + 1

append currentVal to newList

append currentCount to newList

i = i + currentCount

return the list newList

Problem 5: Modifying a given Python program

There is a book called 10 Print that contains a number of essays, cultural reflections, and
technical explanations that all have as their starting point a one-line program run on the
old Commodore 64 computer.1

Here is a more readable (and obviously longer) Python version of the 10 Print program:

import random

while True:

x = random.randrange(2)

if x == 0:

print "\\",

else:

print "/",

The import random command tells the computer we’ll be using a built-in random number
generating routine. while True sets up an infinite loop (something we usually do not
want to do). Each time through the loop random.randrange(2) generates a random
number that is a 0 or a 1. The fifth line prints a single backslash character each time it
is executed (since the backslash has a special role in print statements, to print one we
need to precede it with a second backslash). The program generates random patterns of
slashes, depending on the random numbers generated.

Here is a version of the program with the infinite loop changed to a finite for loop:

1See http://10print.org (accessed May 28, 2015). The full 10 Print program is in the BASIC
programming language and consists of the single line 10 PRINT CHR$(205.5+RND(1));:GOTO 10.

216 CHAPTER 13. EXAMPLE PYTHON PROBLEMS

Finite for loop Python version of 10 Print

import random

for i in range(1000):

x = random.randrange(2)

if x == 0:

print "\\",

else:

print "/",

(Problem 5a) Modify the finite for loop version so it counts the number of frontslashes
it prints out, as well as (separately) the number of backslashes it prints out. Then, after
completing the for loop, the program should report the number of frontslashes and the
number of backslashes it has printed. Here is an example of what your program should
print after printing all the slashes:

Number of frontslashes: 523

Number of backslashes: 477

(Problem 5b) Modify the finite for loop version so that the random number can be a
0, 1, 2, or 3. If the number is a 0 the program should print a backslash; otherwise if it
is a 1 the program should print a frontslash; otherwise if it is a 2 the program should
print a star (*); and otherwise the program should print a vertical bar (|). Each print

line should end with a comma so the program prints characters across the entire window
rather than one per row.

(Problem 5c) Modify the finite for loop version so each time through the loop the
program generates two random integers between 0 and 9, inclusive. If the two numbers
are equal the program should print a star (*). Otherwise if the first is greater, the program
should print a backslash. Otherwise the program should print a frontslash.

Problem 6: Modifying a Python program

Sometimes medical tests will result in a false positive — a positive test result even though
the patient does not have the condition the test is checking — or a false negative — a
negative test result even though the patient does have the condition. How common are
false positives and false negatives when the test checks for a rare condition?

In this part you will modify an existing Python program. The program currently runs
a simulation to check the frequency of false positives and false negatives. Specifically, it
does the following. First it gets the following input from the user:

• p: the probability the patient has the disease the test is for;

• q1: the probability that a patient with the disease tests negative;

• q2: the probability that a patient who does not have the disease tests positive.

13.2. PROBLEMS 217

Then, for each of 800 patients, the program generates two random floating point numbers,
both between 0 and 1. If the first number is < p, then the patient has the disease. In
that case, if the second number is < q1, then a false negative occurs. On the other hand,
if the patient does not have the disease and the second random number is < q2, then
a false positive occurs. Any time a false positive or negative occurs the program prints
out a message. The program also counts the number of false negatives and false positives
(separately), and prints out the total counts right before it is done. Here is the code:

import random

s = int(raw_input("Please input a random seed, or 0 for no seed: "))

if s != 0:

random.seed(s)

p = float(raw_input("Please input the probability the patient is infected: "))

q1 = float(raw_input("Please input the probability of a false negative: "))

q2 = float(raw_input("Please input the probability of a false positive: "))

falseNegCount = 0

falsePosCount = 0

for i in range(0, 800):

x = random.random()

y = random.random()

if x < p:

if y < q1:

falseNegCount = falseNegCount + 1

print "Test incorrectly indicated patient ", i, "is not infected"

else:

if y < q2:

falsePosCount = falsePosCount + 1

print "Test incorrectly indicated patient ", i, "is infected."

print "Number of false negatives: ", falseNegCount

print "Number of false positives: ", falsePosCount

218 CHAPTER 13. EXAMPLE PYTHON PROBLEMS

Here is an example run:

Please input a random seed, or 0 for no seed: 42

Please input the probability the patient is infected: .05

Please input the probability of a false negative: .02

Please input the probability of a false positive: .01

Test incorrectly indicated patient 9 is infected.

Test incorrectly indicated patient 134 is infected.

Test incorrectly indicated patient 148 is infected.

Test incorrectly indicated patient 213 is infected.

Test incorrectly indicated patient 240 is infected.

Test incorrectly indicated patient 566 is infected.

Test incorrectly indicated patient 592 is not infected

Test incorrectly indicated patient 695 is infected.

Number of false negatives: 1

Number of false positives: 7

Your task is to make three changes in this program:

1. Modify the program so it no longer prints out the lines for individual patients. That
is, it should no longer print out the lines

Test incorrectly indicated patient ...

However, the program should still print the total number of false negatives and false
positives.

2. Have the user also input a number of patients. Call this n. The program should
check n, rather than 800, patients. See the sample output below for what the output
should look like.

3. After running the simulation the program should print the predicted number of
false positives and false negatives. The formula for these are that the predicted
number of false negatives is n× p× q1. And the predicted number of false positives
is n× (1− p)× q2. See the sample below for what the input should look like.

Here is an example of output of the modified program:

Please input a random seed, or 0 for no seed: 1066

Please input the number of patients tested: 3000

Please input the probability the patient is infected: .02

Please input the probability of a false negative: .05

Please input the probability of a false positive: .04

Number of false negatives: 5

Number of false positives: 111

Predicted number of false negatives: 3.0

Predicted number of false positives: 117.6

13.2. PROBLEMS 219

Problem 7: Turning pseudocode into Python

Consider the following (partially complete) Python program for a simple game.

import random

def move(location):

This function needs to be completed

Start of main program

s = int(raw_input("Please input a random seed, or 0 for no seed: "))

if s != 0:

random.seed(s)

squareA = 0

squareB = 0

while squareA < 100 and squareB < 100:

print "\nPlayer A move: "

squareA = move(squareA)

print "\nPlayer B move: "

squareB = move(squareB)

if squareA >= 100 and squareB < 100:

print "\nPlayer A won."

elif squareA < 100 and squareB >= 100:

print "\nPlayer B won."

else:

print "\nTie."

The game board consists of a path of squares numbered from 0 to 100, inclusive. Two
players, Player A and Player B, both start on square 0. They alternate turns, starting
with Player A. In each turn a player rolls two dice, and moves that number of squares
ahead. If that would take the player past square 100, then they go to square 100. If
the square they are on is evenly divisible by 11, then they go back 6 squares, else if they
land on a square evenly divisible by 13, then they advance 4 squares. Regardless of what
square they land on, if they roll doubles they get to roll again, and repeat this process
until they do not roll doubles.

The players continue playing until a player reaches square 100. If Player B reaches
square 100 first, then Player B wins. If Player A reaches square 100 first, Player B gets
a turn to reach it also. In this case, if Player B does not reach it, then Player A wins; if
Player B does, the game is a tie.

Your job is to complete the move function. Notice that function is called by the main
program to move Player A, and then called again to move Player B. Each player’s location
is passed to the function, which then rolls the dice and follows the game rules to update
the player’s location.

To complete the move function, translate the pseudocode below into Python. Remem-
ber than in many cases pseudocode is very similar to Python, but in others there are

220 CHAPTER 13. EXAMPLE PYTHON PROBLEMS

subtle or significant differences.

Input: a player’s location.

Output: The function prints messages about the move, and returns the new location.

Function move(location)
1 set d1 = 0
2 set d2 = 0
3 while location < 100 and d1 equals d2
4 set d1 = random number between 1 and 6, inclusive
5 set d2 = random number between 1 and 6, inclusive
6 print“Roll: ”, d1, “+”, d2, “=”, d1 + d2
7 if d1 equals d2
8 print “doubles”
9 set location = location+ d1 + d2
10 if location > 100
11 set location = 100
12 print “On square”, location
13 if location is divisible (with 0 remainder) by 11
14 set location = location− 6
15 print “back 6 to square”, location
16 else if location is divisible (with 0 remainder) by 13
17 set location = location+ 4
18 print “forward 4 to square”, location
19 return location

Problem 8: Writing Python code

Sometimes lists are almost, but not quite, in order. For example, due to clerical errors a
mostly sorted list of employee ID numbers might have a few items out of order. Your job
in this part is to write a Python program from scratch that will identify how many items
in a list are out of order.

Specifically, your program should ask a user to input positive numbers, one at a time,
until he or she inputs a 0. The program should store these numbers (but not the end 0)
in a list in the order they are entered. When the list entry is done, the program should
count each item in the list that is strictly less than the list item immediately before it.
Then it should print the total number of items out of order. Here is an example:

13.2. PROBLEMS 221

Input the next list item (or enter 0 to end list): 2343

Input the next list item (or enter 0 to end list): 6382

Input the next list item (or enter 0 to end list): 6381

Input the next list item (or enter 0 to end list): 7899

Input the next list item (or enter 0 to end list): 7899

Input the next list item (or enter 0 to end list): 7905

Input the next list item (or enter 0 to end list): 7902

Input the next list item (or enter 0 to end list): 9814

Input the next list item (or enter 0 to end list): 0

There were 2 items out of order.

Problem 9: Writing a Python program

Suppose that in a video game a character is positioned within a maze of rooms. The
rooms are arranged in a grid. The number of rows and columns in the grid might vary
if the program is run different times with different mazes, so let n be the number of
rows, and m the number of columns. Each room has a one-way door leading out of it, so
the program works with an n-row, m-column table, where each table entry is one of the
following characters:

• ‘N’: the door leads to a room in the same column, but in the previous row (i.e., the
row with index one less than the current room).

• ‘S’: the door leads to a room in the same column, but in the next row (i.e., the row
with index one more than the current room).

• ‘E’: the door leads to a room in the same row but in the next column (i.e., the
column with index one more than the current room).

• ‘W’: the door leads to a room in the same row, but in the previous column (i.e., the
column with index one less than the current room).

If a character is positioned in a certain room (i.e., in a room in a given row and column),
and they follow the one-way doors, will their path ever leave the maze? Your task is to
write a function followPath(myTable, n, m, r, c) that has the following parameters:

• myTable: an n-row, m-column table, as described above.

• n: the number of rows in the table.

• m: the number of columns in the table.

• r: the character’s original row position. (Assume the rows of the table are labelled
between 0 and n-1, inclusive.)

222 CHAPTER 13. EXAMPLE PYTHON PROBLEMS

• c: the character’s original column position. (Assume the columns of the table are
labelled between 0 and m-1, inclusive.)

This function should move the character through the maze of rooms by following the
one-way doors from room to room. If the character goes outside of the maze boundaries
— they reach a row or column number outside the maze — then the function should print
a message that the character has escaped the maze, print how many moves it took, and
stop. But if the character’s path leads them to a room they have visited before, then the
program should recognize that, print a message that the character is trapped in the maze,
print the number of moves taken, and then stop. The function does not need to return
any value.

Here is an example of output using the following table for the maze

myMaze = [["S", "N", "W’, "E", "W"], \

["S", "N", "W", "E", "W"], \

["S", "N", "W", "E", "W"], \

["S", "N", "W", "E", "W"], \

["S", "N", "W", "E", "W"], \

["S", "N", "W", "E", "W"]]

(Note this is the test maze from the program, not the ouput (the output is below). How-
ever, your program should work not only with that maze, but with other more complicated
mazes (that you make up) as well.) Here is the output:

Input a row: 3

Input a column: 4

Move to location row 3 and column 3

Move to location row 3 and column 4

The character is stuck in the maze.

Number of moves: 2

Here’s another example with the same maze but a different starting position:

Input a row: 4

Input a column: 1

Move to location row 3 and column 1

Move to location row 2 and column 1

Move to location row 1 and column 1

Move to location row 0 and column 1

Move to location row -1 and column 1

The character has escaped the maze.

Number of moves: 5

13.3. SOLUTIONS 223

13.3 Solutions

Problem 1 Solution

(a)

0 4

1 8

2 16

3 32

4 64

(b)

1 12

2 24

4 14

8 28

16 18

(c)

300,000

224 CHAPTER 13. EXAMPLE PYTHON PROBLEMS

Problem 2 Solution

Here is a list of errors, following a listing of the program with the lines numbered.

1 for i in range(1,10):

2 print "Please input the components for color number ", i

3 r = int(raw_input("Please input the red component: ")

4 g = int(raw_input("Please input the red component: ")

5 b = int(raw_input("Please input the red component: ")

6 if (r = b = g)

7 print "That color is a gray"

8 else

9 print "That color is not gray."

10 average = r + g + b / 3

11 print "The average of its components is ", avg

Errors:

1. In line 1 the range should be range(1,11) (alternatively you could use range(10)

and then replace i with i+1 in line 2).

2. In lines 3 – 5 there is a missing parenthese at the end of each line.

3. In line 6 each equal sign should be replaced by a two equal signs: r == g == b.

4. There is a missing colon at the end of line 6.

5. There is a missing colon at the end of line 8.

6. In line 10 the average should be (r + g + b) / 3.

7. In line 11 avg should be replaced by average (or vice versa).

13.3. SOLUTIONS 225

Problem 3 Solution

Changes are indicated by comments

minTot = 0

stepTot = 0

min = int(raw_input("Input the number of minutes (0 to exit): "))

Correction 1: min = 0 changed to min == 0

if min == 0:

print "No minutes input."

Correction 2: else missing end colon

else:

while min != 0:

minTot = minTot + min

stepRate = int(raw_input("Input the step rate: "))

stepTot = stepTot + stepRate * min

Correction 3: min needs to be an int, so int (and

accompanying parentheses) added

min = int(raw_input("Input the next number of minutes (0 to exit): "))

Correction 4: min changed to minTot

print "\nTotal number of minutes:", minTot

print "Total number of steps:", stepTot

Average is rounded down. (comment from original program)

Correction 5: minTot/stepTot changed to stepTot/minTot

print "Average step rate per minute: ", stepTot/minTot

Problem 4 Solution

def RLE(myList):

newList = []

i = 0

while i < len(myList):

currentVal = myList[i]

currentCount = 1

while (i+currentCount < len(myList) and \

myList[i+currentCount] == currentVal):

currentCount = currentCount + 1

newList.append(currentVal)

newList.append(currentCount)

i = i + currentCount

return newList

Note there is more than one possible solution. For example, there are multiple ways in
Python to append a value to a list.

226 CHAPTER 13. EXAMPLE PYTHON PROBLEMS

Problem 5 Solution

Here are model solutions. In all parts there are alternative, but still correct, ways to
modify the code.

(5a)

import random

frontSlashCount = 0

backSlashCount = 0

for i in range(1000):

x = random.randrange(2)

if x == 0:

print "\\",

backSlashCount = backSlashCount + 1

else:

print "/",

frontSlashCount = frontSlashCount + 1

print "Number of frontslashes: ", frontSlashCount

print "Number of backslashes: ", backSlashCount

(5b)

import random

for i in range(1000):

x = random.randrange(4)

if x == 0:

print "\\",

elif x == 1:

print "/",

elif x == 2:

print "*",

else:

print "|",

(5c)

import random

for i in range(1000):

x = random.randrange(10)

y = random.randrange(10)

if x == y:

print "*",

elif x > y:

print "\\",

else:

print "/",

13.3. SOLUTIONS 227

Problem 6 Solution

Here is a model solution. In some lines there are alternative, but still correct, ways to
modify the code.

import random

s = int(raw_input("Please input a random seed, or 0 for no seed: "))

if s != 0:

random.seed(s)

Next line added

n = int(raw_input("Please input the number of patients tested: "))

p = float(raw_input("Please input the probability the patient is infected: "))

q1 = float(raw_input("Please input the probability of a false negative: "))

q2 = float(raw_input("Please input the probability of a false positive: "))

falseNegCount = 0

falsePosCount = 0

Next line modified, with 800 replaced by n

for i in range(0, n):

x = random.random()

y = random.random()

if x < p:

if y < q1:

falseNegCount = falseNegCount + 1

Print line originally at this location deleted

else:

if y < q2:

falsePosCount = falsePosCount + 1

Print line originally at this location deleted

print "Number of false negatives: ", falseNegCount

print "Number of false positives: ", falsePosCount

Next line added

print "Predicted number of false negatives: ", n * p * q1

Next line added

print "Predicted number of false positives: ", n * (1-p) * q2

228 CHAPTER 13. EXAMPLE PYTHON PROBLEMS

Problem 7 Solution

Here is one possible solution:

import random

def move(location):

d1 = 0

d2 = 0

while location < 100 and d1 == d2:

d1 = random.randrange(1,7)

d2 = random.randrange(1,7)

print "Roll: ", d1, "+", d2, "=", d1+d2

if d1 == d2:

print "doubles"

location = location + d1 + d2

if location > 100:

location = 100

print "On square ", location

if location % 11 == 0:

location = location - 6

print "back 6 to square", location

elif location % 13 == 0:

location = location + 4

print "forward 4 to square", location

return location

Problem 8 Solution

Here is one possible solution:

myList = []

newItem = int(raw_input("Input the next list item (or enter 0 to end list): "))

while newItem != 0:

myList.append(newItem)

newItem = int(raw_input("Input the next list item (or enter 0 to end list): "))

count = 0

for i in range(1, len(myList)):

if myList[i] < myList[i-1]:

count = count + 1

print "There were ", count, "items out of order."

13.3. SOLUTIONS 229

Problem 9 Solution

Here is one possible solution:

def followPath(myMaze, n, m, r, c):

Set up table that keeps track of which locations have been visited

visitedMaze = [[False for j in range(0,m)] for i in range(0,n)]

visitedMaze[r][c] = True

numMoves = 0

pathDone will change to True if the character revisits a previously

visited square or goes off any edge of the maze

pathDone = False

while pathDone == False:

if myMaze[r][c] == "N":

r = r - 1

elif myMaze[r][c] == "S":

r = r + 1

elif myMaze[r][c] == "E":

c = c + 1

elif myMaze[r][c] == "W":

c = c - 1

print "Move to location row ", r, "and column ", c

numMoves = numMoves + 1

Has character gone off an edge?

if r < 0 or r >= n or c < 0 or c >= m:

print "The character has escaped the maze."

pathDone = True

Has character returned to a previously visited location?

elif visitedMaze[r][c] == True:

print "The character is stuck in the maze."

pathDone = True

Otherwise, character has visited a new location

else:

visitedMaze[r][c] = True

print "Number of moves: ", numMoves

Main program (for testing the function)

myMaze = [["S", "N", "W", "E", "W"], \

["S", "N", "W", "E", "W"], \

["S", "N", "W", "E", "W"], \

["S", "N", "W", "E", "W"], \

["S", "N", "W", "E", "W"], \

["S", "N", "W", "E", "W"]]

230 CHAPTER 13. EXAMPLE PYTHON PROBLEMS

get number of rows

n = len(myMaze)

Get number of columns (assume all rows have the same number of columns)

m = len(myMaze[0])

r = int(raw_input("Input a row: "))

c = int(raw_input("Input a column: "))

followPath(myMaze, n, m, r, c)

