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Chapter 1

Introduction

1.1

Definition

Any change in a system that allows it to perform better the second time on repetition of the
same task or on another task drawn from the same population (Simon, 1983).

1.2

Paradigms

Depending on the amount and type of knowledge available to the system before the learning
phase (system’s a priori knowledge) we can distinguish several situations:

The simplest form of learning is just assigning values to specified parameters. This is a
situation when the system contains all the knowledge required for a particular type of
tasks.

Another rudimentary type of learning is storing data as it is. This is called rote learning.
An example of this type of learning is filling a database.

The process of knowledge acquisition in an expert system is a kind of learning task where
some pre-defined structures (rules, frames etc.) are filled with data specified directly or
indirectly by an expert. In this case only the structure of the knowledge is known.

The system is given a set of examples ({raining data) and it is supposed to create a
description of this set in terms of a particular language. The a priori knowledge of
the system is the syntax of the allowed language (syntactical bias) and possibly some
characteristics of the domain from which the examples are drawn (domain knowledge
or semantic bias). This is a typical task for Inductive learning and is usually called
Concept learning or Learning from examples.

There are learning systems (e.g. Neural networks) which given no a priori knowledge can
learn to react properly to the data. Neural networks actually use a kind of a pre-defined
structure of the knowledge to be represented (a network of neuron-like elements), which
however is very general and thus suitable for various kinds of knowledge.

As in human learning the process of machine learning is affected by the presence (or
absence) of a teacher. In the supervised learning systems the teacher explicitly specifies the
desired output (e.g. the class or the concept) when an example is presented to the system
(i.e. the system uses pre-classified data). In the reinforcement learning systems the exact
output is unknown, rather an estimate of its quality (positive or negative) is used to guide the

)



6 CHAPTER 1. INTRODUCTION

learning process. Conceptual clustering (category formation) and Database discovery are two
instances of Unsupervised learning. The aim of such systems is to analyze data and classify
them in categories or find some interesting regularities in the data without using pre-classified
training examples.

Any change in the learning system can be seen as acquiring some kind of knowledge. So,
depending on what the system learns we can distinguish:

e Learning to predict values of unknown function. This is often called prediction and is a
task well known in statistics. If the function is binary, the task is called classification.
For continuous-valued functions it is called regression.

e (Concept learning. The systems acquires descriptions of concepts or classes of objects.

e Ezplanation-based learning. Using traces (explanations) of correct (or incorrect) perfor-
mances the system learns rules for more efficient performance of unseen tasks.

o Case-based (exemplar-based) learning. The system memorizes cases (exemplars) of cor-
rectly classified data or correct performances and learns how to use them (e.g. by
making analogies) to process unseen data.



Chapter 2

Concept learning

2.1 Learning semantic nets

The basic ideas of concept learning are introduced by P. Winston in his early system ARCH
[4]. This system solves a concept learning task defined as follows: the input to the system are
a priori knowledge (the knowledge that the system has before the learning stage takes place)
and examples of some concept. The examples are of two types — positive (objects belonging to
the concept) and negative (objects that do not belong to the concept). The task is to create a
concept description (definition) that accepts (includes) the positive examples and rejects the
negative ones.

The a priori knowledge consists of a language for describing the examples and other facts
from the domain. The language used by ARCH is based on semantic networks. It includes
objects (e.g. arch, block, pyramid) and relations (e.g. isa, partof, supports, touches, does-
nottouch). The domain knowledge is represented by an object taxonomy, specified by a
set of instances of the ”isa” (is a) relation, such as isa(pyramid, polygon), isa(block,
polygon).

Let us consider an example of building the concept of arch, given positive and negative
examples. These exampes are the following (also shown in Figures 2.1 and 2.2):

Examplel = {partof(blockl,arch), partof(block2,arch), partof(block3,arch),
supports(blockl,block3), supports(block2,block3)}

Example2 = {partof(blockl,arch), partof(block2,arch), partof(pyramidl,arch),
supports(blockl,pyramidl), supports(block2,pyramidl)}

Apriori_knowledge = {isa(blockl,block), isa(block2,block), isa(block3,block),
isa(block,polygon), isa(pyramidl,pyramid), isa(pyramid,polygon)}

Examplel and example2 have the same structure and differ only in the object that is sup-
ported by blockl and block2. This object is a block in examplel and pyramid in example2.
According to the a priori knowledge both the block and the pyramid are polygons. This allows
us to construct an object where these two parts are replaced by a polygon. Such an object
will include both examples.

A transformation that carries relations from objects to other objects including the former
ones as instances (successors in the object taxonomy) is called generalization. Thus the
generalization of examplel and example?2 is the object hypothesis1, shown below. Hereafter
we call such an object hypothesis, since it is a kind of approximation of the target object (the
object we are learning), and later on it will be a subject of verification (acception, rejection
or update).
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Examplel Example2 Near_arch

Figure 2.1: Examples of arch and "near arch”

polygon
isa isa
block pyramid
isa isg isa Ea/\%
blockl block2 block3 pyramidl pyramid2

Figure 2.2: Object taxonomy (isa-hierarchy)
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Hypothesisl = {partof(blockl,arch), partof(block2,arch), partof (polygon,arch),
supports(blockl,polygon), supports(block2,polygon)}

While the positive examples are instances of the target concept (arch), the negative ones
are not just non-arch objects. They must be "near misses”, i.e. objects with just one property
(or relation) that if removed would make them belong to the target concept. This specific
choice of negative examples is important for reducing the number of potential negative ex-
amples (imagine how many non-arhes exist) and possible hypotheses as well. Let us consider
the following negative example of an arch (see Figure 2.1):

Near_miss = {partof(blockl,arch), partof(block2,arch), partof(polygon,arch),
supports(blockl,polygon), supports(block2,polygon),
touches(blockl,block2)}

As the above object is a near miss, it is obvious that touches(blockl, block) must be
excluded from the hypothesis. This can be done by either imposing an explicit restriction to
discard any objects with this relation, or to include a new relation that semantically excludes
the "thouches” relation. For example, this might be the relation doesnottouch(blockl,
block2). Thus the final hypothesis now is:

Hypothesis2 = {partof(blockl,arch), partof(block2,arch), partof (polygon,arch)
supports(blockl,polygon), supports(block2,polygon),
doesnottouches(blockl,block2) }

-

This hypothesis satisfies the initial task by describing the concept of arch, including examplel
and example?2, and excluding the negative example near_miss. The process of generating
hypothesis2 from hypothesisl is called specialization. That is, hypothesis2 is more specific
than hypothesisl (or conversely, hypothesisl is more general than hypothesis?2), because
hypothesisl includes (or covers) more examples (instances) than hypothesis2.

The ARCH algorithm developed by Patrick Winston in the early ages of Al implements
the ideas described above. It is based on searching the space of possible hypotheses generated
by generalization and specialization operators. The examples are processed one at a time
and the for each one the best hypothesis is created. Then the system proceeds with the next
example and modifies the currents hypothesis to accommodate the example (still accepting
all previous examples). This kind of learning algorithm is called incremental learning.

The ARCH algorithm is applicable in other domains where the objects are described by
relations (graphs or semantic nets). Despite of its simplicity, this algorithm illustrates the
basic concepts and techniques of inductive learning: applying generalization/specialization
operators, searching the hypothesis space, using background (domain) knowledge. It also ex-
hibits some typical problems with inductive learning systems: the importance of the inductive
bias and sensitivity to the type and the order of the training examples.

2.2 Induction task

Consider a formal system with a language L, three subsets of L — Lg (language of background
knowledge), Lg (laguage of examples) and Ly (language of hypotheses), and a derivabilty
relation ”—” — a mapping between elements from L. An example of such a system is First-
Order Logic (Predicate calculus), where the derivability relation is logical implication.

The induction task is defined as follows: Given background knowledge B € L', positive
examples ET € Lg and negative examples E~ € Lg, find a hypothesis H € Ly, under the
following conditions:

IHereafter we denote that sentence X is from language L as X € L.
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1. B4 E™T (nessecity);

2. B 4 E~ (consistency of B);

3. BUH — ET (sufficiency);

4. BUH 4 E~ (consistency of H).

There is an obvious solution to the above stated problem. This is the hypothesis H = E™.
However this solution is inappropriate due to the following reasons:

e This hypothesis derives only the positive examples ET. However the solution to the
induction task supposes a kind of inductive reasoning, i.e. the hypothesis must be able
to accept new examples, that the learning system has not seen before. In other words,
the hypothesis must be a piece of knowledge or a general rule applicable to a whole
population of objects, where the examples are just a small sample from this population.

e The hypothesis does not explain the examples. Inductive reasoning assumes that the
derived hypothesis not only accepts or rejects new examples (i.e. play the role of a
classifier), but describes the examples in terms of the background knowledge as well.
This, in turn, would allow the system to extend the background knowledge by adding
hypotheses to it.

Despite of the above deficiencies the hypothesis H = E7T is useful because it plays an
essential role in searching the hypothesis space. It is called the most specific hypothesis and
is denoted by the symbol L.

Obviously we need hypotheses more general than 1. Here, the relation ”more general”
can be easily defined by using the intuitive notion of generality — the number of objects that
a concept includes, i.e. a concept is more general than another concept if the former includes
(derives, explains) more objects than the latter does.

Generality (subsumption, coverage) of hypotheses. Let H and H' be hypotheses,
where H — E and H' — E’. H is more general than (subsumes, covers) H', denoted H > H',
if EDE.

This ordering between hypotheses is often called semantic ordering, because it is based
on the meaning of the hypothesis defined by the examples it covers and can be defined
independently from the particular representation languages used.

Given the language of examples in most cases we can easily find the set of all possible
examples and thus, the most general hypothesis T, that covers all examples from L. Again,
this hypothesis is unsuitable as a solution to the induction task, because it cannot be used
to distinguish between positive and negative examples (it derives both Et* and E~). Even
when E~ = (), T is not suitable either, because it is not constructive (does not describe the
concept).

It is known that all subsets of a given set X form an algebraic structure called lattice. In
this particular case the lattice is induced by the subset relation C and usually denoted 2%
(because this is the number of elements in it). According to our definition of generality each
hypothesis is associated with a set of examples. This fact suggests that the set of hypotheses
might be a lattice. This in turn might be helpful when studying the hypothesis space because
lattices are well studied algebraic structures with a lot of nice properties.

Unfortunately this approach gives just a theoretical framework for solving the induction
task and cannot be used directly in practice. This is because the orderings between hypotheses
generally do not conform to some specific requirements needed to define correct lattices. Even
when all these requirements are met, further problems exists such as:
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e Every hypothesis can be associated with a set of examples. The inverse however is not
true. In many cases an explicit hypothesis for a given set of examples does not exits
(within the given language) or if it does exist, there is a large number of such hypotheses
(often infinite).

e In more complex languages (e.g. First-Order Logic) constructive operators for general-
ization/specialization cannot be found. In most cases such operators either do not exist
or they are non-computable.

Due to the listed above reasons the orderings between hypotheses used in practice are
mostly syntactical, i.e. they are determined by the representation language and have no
relation to the examples they derive. These syntactical orderings are usually stronger (i.e.
they hold for fewer objects) than the semantic ones. Consequently the syntactical orderings
are tncomplete — they do not guarantee exhaustive search in the hypothesis space. In other
words, when searching the hypothesis space it is possible to skip over the desired hypothesis
and generate a hypothesis that is either too specific or too general. These problems are known
as overspecialization and overgerenalization.

It is clear that the hypotheses that meet the requirements of the induction task (extended
with the requirements of inductive reasoning) can be found in a stepwise manner by general-
izations of the most specific hypothesis 1 or by specializations of the most general hypothesis
T. In other words the solution to the induction task comes to searching the hypothesis
space, which is a kind of a hierarchical structure with an uppermost (T) and a lowermost
(L) elements. Each generalization/specialization is accomplished by the so called generaliza-
tion/specialization operators. The choice of such operators and the way they are applied are
determined by the following:

e The languages of examples and hypotheses (the so called syntactic or language bias);
e The strategy for searching the hypothesis space (search bias);
e The criteria for hypothesis evaluation and selection.

The choices of languages and a search strategy are the most important characteristics of
the inductive learning system. These choices determine the type of examples and knowledge
the system can deal with, and its performance as well. These two important choices are
called inductive bias. Since in most cases there exist more than one hypotheses that satisfy
the induction task, we need criteria for evaluating and selecting hypotheses as well.



12

CHAPTER 2. CONCEPT LEARNING



Chapter 3

Languages for learning

3.1 Attribute-value language

The most popular way to represent examples and hypotheses is to use the so called attribute-
value language. In this langauge the objects are represented as a set of pairs of an attribute
(feature or characteristic) and its specific value. Formally this language can be defined as

L={A; =Vi,.., Ay = Vo [Vi € Va,,... Vi € Vi },

where Vy, is a set of all possible values of attribute A4;. For example, the set {color = green,
shape = rectangle} describes a green rectangular object.

The attribute-value pair can be considered as a predicate (statement which can have a
truth value) and the set of these pairs — as a conjuction of the corresponding predicates. Thus,
denoting p; = (color = green) and po = (shape = rectangle), we get the formula p; Aps
in the language of propositional calculus (also called propositional logic). The propositional
logic is a subset of the first order logic (or predicate calculus) without variables.

The basic advantage of the attribute-value language is that it allows a straightforward
definition of derivability (covering, subsumption) relation. Generally such a relation (denoted
> and usually called subsumption) can be defined in three different ways depending of the
type of the attributes:

e Attributes whose values cannot be ordered are called nominal. Using nominal attributes
the subsumption relation is defined by dropping condition. For example, the class of
objects defined by (shape = rectangle) is more general (subsumes) the class of objects
(color = green) A (shape = rectangle). Formally, let X € L and Y € L, then
X>Y, it XCY.

e If we have a full order on the atribute values, then the attributes are called linear. Most
often these are numeric attributes with real or integer values. The subsumption relation
in this case is defined as follows: let X € L, i.e. X = {A; = X1,..., A4, = X,,} and
YelLieY={4=Y,.,4,=Y,}. Then X > Y, if X; > Y, (the latter is a
relation between numbers) (i = 1, ..., n).

e Attribute whose values can be partially ordered are called structural. The subsumption
relation here is defined similarly to the case of linear attributes, i.e. X > Y, if X; > Y;
(i =1,...,n), where the relation X; > Y; is usually defined by a taxonomic tree. Then,
if X; and Y; are nodes in this tree, X; > Y;, when X; =Y}, Y; is immediate successor
of X; or, if not, there is a path from X; to Y;. (An example of taxonomy is shown in
Figure 2.2.)

13
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Using the above described language L as a basis we can define languages for describing
examples, hypotheses and background knowledge. The examples are usually described directly
in L, i.e. Ly = L. The language of hypotheses Ly is extended with a disjunction:

Ly = {Cl \/CQ\/...\/Cn‘Ci €L,i> 1}

A notational variant of this language is the so called internal disjunction, where the dis-
junction is applied to the values of a particular attribute. For example, A, = V;, V V;, means
that attribute A; has the value either of V;; or of V;,.

The derivability relation in Ly is defined as follows: H — FE, if there exists a conjunct
C; € H, so that C; > E.

Similarly we define semantic subsumption: H >,o,, H',if H - E, H — E' and E D F’.

The subsumption relation in L induces a syntactic partial order on hypotheses: H > H’,
if VC; € H,3C; € H', such that C; > C;. Obviously, if H > H', then H >,.,, H'. The
reverse statement however is not true.

As the hypotheses are also supposed to explain the examples we need an easy-to-understand
notation for Ly. For this purpose we usually use rules. For example, assuming that H =
{C1V CyV ...V C,} describes the positive examples (class +), it can be written as

if C7 then +,
if Cy then +,

if C, then +

Often the induction task is solved for more than one concept. Then the set E is a union
of more than two subsets, each one representing a different concept (category, class), i.e.
E = UF_|E*. This multi-concept learning task can be represented as a series of two-class (+
and —) concept learning problems, where for i-th one the positive examples are E?, and the
negative ones are F'\ E*. In this case the hypothesis for Class; can be written as a set of rules
of the following type:

if C; then Class;

To search the space of hypotheses we need constructive generalization/specialization op-
erators. One such operator is the direct application of the subsumption relation. For nominal
attributes generalization/specialization is achieved by dropping/adding attribute-value pairs.
For structural attributes we need to move up and down the taxonomy of attribute values.

Another interesting generalization operator is the so called least general generalization
(lgg), which in the lattice terminology is also called supremum (least upper bound).

Least general generalization (lgg). Let H1, Hy € L. H is a least general generalization
of Hy and Hs, denoted H = lgg(H, H2), if H is a generalization of both Hy and Hy (H > H;
and H > Hs) and for any other H’, which is also a generalization of both H; and Hs, it
follows that H' > H.

Let H1 = {Al = Ul, 7An = Un} and H2 = {Al = Vl, ...,An = Vn} Then lgg(Hl,HQ) =
{41 =Wy, ..., A, = W, }, where W; are computed differently for different attribute types:

e If A; is nominal, W; = U; = Vi, when U; = V;. Otherwise A; is skipped (i.e. it may
take an arbitrary value). That is, lgg(H1, H2) = H1 N Ho.

e If A; is linear, then W; is the minimal interval, that includes both U; and V;. The latter
can be also intervals if we apply lgg to hypotheses.

o If A; is structural, W; is the closest common parent of U; and V; in the taxonomy for
A;.
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example(1,pos,[hs=octagon, bs=octagon, sm=no, ho=sword, je=red, ti=yes]).
example(2,pos,[hs=square, bs=round, sm=yes, ho=flag, jc=red, ti=no]).
example(3,pos,[hs=square, bs=square, sm=yes, ho=sword, je=yellow, ti=yes]).
example(4,pos,[hs=round, bs=round, sm=no, ho=sword, je=yellow, ti=yes]).
example(5,pos,[hs=octagon, bs=octagon, sm=yes, ho=balloon, jc=blue, ti=no]).
example(6,neg,[hs=square, bs=round, sm=yes, ho=flag, jc=blue, ti=no]).
example(7,neg,[hs=round, bs=octagon, sm=no, ho=balloon, je=blue, ti=yes]).

Figure 3.1: A sample from the MONK examples

In the attribute-value language we cannot represent background knowledge explicitly, so
we assume that B = (). However, we still can use background knowledge in the form of
taxonomies for structural attributes or sets (or intervals) of allowable values for the nominal
(or linear) attributes. Explicit representation of the background knowledge is needed because
this can allow the learning system to expand its knowledge by learning, that is, after every
learning step we can add the hypotheses to B. This is possible with relational languages.

3.2 Relational languages

Figure 3.1 shows a sample from a set of examples describing a concept often used in ML, the
so called MONKS concept [3]. The examples are shown as lists of attribute-value pairs with
the following six attributes: hs, bs, sm, ho, jc, ti. The positive examples are denoted by pos,
and the negative ones — by neg.

It is easy to find that the 4 concept includes objects that have the same value for attributes
hs and bs, or objects that have the value red for the jc attribute. So, we can describe this as
a set of rules:

if [hs=octagon, bs=octagon] then +
if [hs=square, bs=square] then +
if [hs=round, bs=round] then +

if [jc=red] then +

Similarly we can describe class —. For this purpose we need 18 rules — 6 (the number of
hs-bs pairs with different values) times 3 (the number of values for jc).

Now assume that our language allows variables as well as equality and inequality relations.
Then we can get a more concise representation for both classes + and —:

if [hs=bs] then +
if [jc=red] then +
if [hs#bs,jc#red] then -

Formally, we can use the language of First-Order Logic (FOL) or Predicate calculus as a
representation language. Then the above examples can be represented as a set of first order
atoms of the following type:

monk (round, round,no,sword,yellow,yes)

And the concept of + can be written as a set of two atoms (capital leters are variables,
constant values start with lower case letters):

monk (A,A,B,C,D,E)
monk(A,B,C,D,red,E)
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We can use even more expressive language — the language of Logic programming (or Prolog).
Then we may have:

class(+,X) :- hs(X,Y),bs(X,Y).
class(+,X) :- jc(X,red).
class(-,X) :- not class(+,X).

Hereafter we introduce briefly the syntax and semantics of logic programs (for complete
discussion of this topic see [1]). The use of logic programs as a representation language in
machine leanring is discussed in the area of Inductive logic programming.

3.3 Language of logic programming

3.3.1 Syntax

Fisrtly, we shall define briefly the language of First-Order Logic (FOL) (or Predicate cal-
culus). The alphabet of this language consists of the following types of symbols: wvariables,
constants, functions, predicates, logical connectives, quantifiers and punctuation symbols. Let
us denote variables with alphanumerical strings beginning with capitals, constants — with
alphanumerical strings beginning with lower case letter (or just numbers). The functions are
usually denotes as f, g and h (also indexed), and the predicates — as p, ¢, r or just simple
words as father, mother, likes etc. As these types of symbols may overlap, the type of a
paricular symbol depends on the context where it appears. The logical connectives are: A
(congunction), V (disjunction), = (negation), < or — (implication) and < (equivalence). The
quantifiers are: V (universal) and 3 +ezistential). The punctuation symbols are: ”(”,”)” and

” "N
5 .

A basic element of FOL is called term, and is defined as follows:
e a variable is a term;
e a constant is a term;

e if f is a n-argument function (n > 0) and ¢, s, ..., t,, are terms, then f(t1,ts,...,t,) is
a term.

The terms are used to construct formulas in the following way:

e if p is an n-argument predicate (n > 0) and ty, %o, ..., , are terms, then p(ty,to, ..., t,)
is a formula (called atomic formula or just atom;)

e if F and G are formulas, then -F, FAG, FV G, F — G, F < G are formulas too;
e if F'is a formula and X — a variable, then VX F' and X F are also formulas.

Given the alphabet, the language of FOL consists of all formulas obtained by applying the
above rules.

One of the purpose of FOL is to describe the meaning of natural language sentences. For
example, having the sentence ”"For every man there exists a woman that he loves”, we may
construct the following FOL formula:

VX3V man(X) — woman(Y) Aloves(X,Y)

Or, ”John loves Mary” can be written as a formula (in fact, an atom) without variables (here
we use lower case letters for John and Mary, because they are constants):

loves(john, mary)
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Terms/formulas without variables are called ground terms/formulas.
If a formula has only universaly quantified variables we may skip the quantifiers. For
example, ”Every student likes every professor” can be written as:

VXVYis(X, student) A is(Y, professor) — likes(X,Y)
and also as:

is(X, student) N is(Y, professor) — likes(X,Y)

Note that the formulas do not have to be always true (as the sentences they represent).
Hereafter we define a subset of FOL that is used in logic programming.

e An atom or its negation is called literal.
e If A is an atom, then the literals A and —A are called complementary.
e A disjunction of literals is called clause.

e A clause with no more than one positive literal (atom without negation) is called Horn
clause.

e A clause with no literals is called empty clause (d) and denotes the logical constant
" false”.

There is another notation for Horn clauses that is used in Prolog (a programming language
that uses the syntax and implement the semantics of logic programs). Consider a Horn clause
of the following type:

AV =By V =By V...V B,

where A, By, ..., B, (m > 0) are atoms. Then using the simple transformation p < ¢ = pV ¢
we can write down the above clause as an implication:

A — Bl,BQ7 7Bm

In Prolog, instead of « we use : —. So, the Prolog syntax for this clause is:

A —31,327 ,Bm

Such a clause is called program clause (or rule), where A is the clause head, and By, B, ..., B,
— the clause body. According to the definition of Horn clauses we may have a clause with no
positive literals, i.e.

. 7B1’BQ7 ...7Bm,

that may be written also as

7 — Blv B27 ) Bm7

Such a clause is called goal. Also, if m = 0, then we get just A, which is another specific
form of a Horn clause called fact.
A conjunction (or set) of program clauses (rules), facts, or goals is called logic program.
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3.3.2 Substitutions and unification

A set of the type 6 = {Vi /t1,Va/ts, ..., V,, /L, }, where V; are all different variables (V; # V;Vi #
j) and t; — terms (t; # Vi, i =1,...,n), is called substitution.

Let ¢ is a term or a clause. Substitution 6 is applied to ¢ by replacing each variable V;
that appears in ¢ with ¢;. The result of this application is denoted by tf. 6 is also called
an instance of t. The transformation that replaces terms with variables is called inverse
substitution, denoted by §~1. For example, let t; = f(a,b, g(a,b)), ta = f(A, B,g(C, D)) and
0= {A/CL, B/b, C/a,D/b} Then ¢10 = t9 and t2071 =11.

Let ¢1 and t2 be terms. t; is more general than to, denoted t1 > to (t2 is more specific than
t1), if there is a substitution 6 (inverse substitution =1), such that t10 =ty (t2071 = ;).

The term generalization relation induces a lattice for every term, where the lowemost
element is the term itself and the uppermost element is a variable.

A substitution, such that, when applied to two different terms make them identical, is
called unifier. The process of finding such a substitution is called unification. For example,
let ty = f(X,b,U) and t2 = f(a,Y,Z). Then 6y = {X/a,Y/b,Z/c} and 0, = {X/a,Y /b, Z/U}
and both unifiers of ¢; and t9, because t10; = t26, = f(a,b,c) and t105 = t20 = f(a,b,U).
Two thers may have more than one unifier as well as no unifiers at all. If they have at least
one unifier, they also must have a most general unifier (mgu). In the above example ¢; and
to have many unifiers, but 5 is the most general one, because f(a,b,U) is more general than
f(a,b,c) and all terms obtained by applying other unifiers to ¢; and ts.

An inverse substitution, such that, when applied to two different terms makes them iden-
tical, is called anti-unifier. In contrast to the unifiers, two terms have always an anti-unifier.
In fact, any two terms ¢; and t5 can be made identical by applying the inverse substitution
{t1/X,t2/ X }. Consequently, for any two terms, there exists a least general anti-unifier, which
in the ML terminology we usually call least general generalization (lgg).

For example, f(X,g(a,X),Y,Z) =1lgg(f(a, g(a,a),b,c), f(b,g(a,b),a,a) and all the other
anti-unifiers of these terms are more general than f(X,¢g(a,X),Y,Z), including the most
general one — a variable.

Graphically, all term operations defined above can be shown in a lattice (note that the
lower part of this lattice does not always exist).

v
anti-unifiers of t1 and t2

lgg&t.:i,tQ)
/\

\/
mgu(tl,t2)

unifiers of t1 and t2
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3.3.3 Semanics of logic programs and Prolog

Let P be a logic program. The set of all ground atoms that can be built by using predicates
from P with arguments — functions and constants also from P, is called Herbrand base of P,
denoted Bp.

Let M is a subset of Bp, and C = A :- By,...,B, (n > 0) — a clause from P. M is a
model of C, if for all ground instances C'0 of C, either A0 € M or 3B;, B;j0 € M. Obviously
the empty clause O has no model. That is way we usually use the symbol O to represent the
logic constant ”false”.

M is a model of a logic program P, if M is a model of any clause from P. The intersection
of all models of P is called least Herbrand model, denoted Mp. The intuition behind the
notion of model is to show when a clause or a logic program is true. This, of course depends
on the context where the clause appears, and this context is represented by its model (a set
of ground atoms, i.e. facts).

Let P, and P, are logic programs (sets of clauses). P, is a logical consequence of Py,
denoted P |= Py, if every model of P is also a model of P;.

A logic program P is called satisfiable (intuitively, consistent or true), if P has a model.
Otherwise P is unsatisfiable (intuitively, inconsistent or false). Obviously, P is unsatisfiable,
when P |= O. Further, the deduction theorem says that P; |= P is equivalent to Py A— Py |= 0.

An important result in logic programming is that the least Herbrand model of a program
P is unique and consists of all ground atoms that are logical consequences of P, i.e.

Mp = {A|A is a ground atom, P = A}

In particular, this applies to clauses too. We say that a clause C' covers a ground atom A,
if C = A, ie. A belongs to all models of C.

It is interesting to find out the logical consequences of a logic program P, i.e. what follows
from a logic program. However, according to the above definition this requires an exhaustive
search through all possible models of P, which is computationally very expensive. Fortunately,
there is another approach, called inference rules, that may be used for this purpose.

An inference rule is a procedure I for transforming one formula (program, clause) P into
another one @, denoted P F; Q. A rule I is correct and complete, if P ; P only when
P, E P,

Hereafter we briefly discuss a correct and complete inference rule, called resolution. Let
(1 and C5 be clauses, such that there exist a pair of literals L; € Cy and Ly € C5 that can be
made complementary by applying a most general unifier p, i.e. L1y = —Lou. Then the clause
C = (C1\{L1}UC\{L2})p is called resolvent of Cy and Cy. Most importantly, C; ACs = C.

For example, consider the following two clauses:

Cy = grandfather(X,Y) : —parent(X, Z), father(Z,Y).
Cy = parent(A, B) : —father(A, B).

The resolvent of C; and Cj is:
Cy = grandfather(X,Y) : —father(X, Z), father(Z,Y),

where the literals —parent(X, Z) in Cy and parent(A, B) in Cy have been made complemen-
tary by the substitution p = {A/X, B/Z}.

By using the resolution rule we can check, if an atom A or a conjunction of atoms
Aq, As, ..., A, logically follows from a logic program P. This can be done by applying a specific
type of the resolution rule, that is implemented in Prolog. After loading the logic program P
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in the Prolog database, we can execute queries in the form of 7 — A. or ? — 43, As, ..., A,. (in
fact, goals in the language of logic programming). The Prolog system answers these queries
by printing ”yes” or "no” along with the substitutions for the variables in the atoms (in case
of yes). For example, assume that the following program has been loaded in the database:

grandfather (X,Y) :- parent(X,Z), father(Z,Y).
parent (A,B) :- father(A,B).
father(john,bill).

father(bill,ann).

father(bill,mary) .

Then we may ask Prolog, if grandfather(john,ann) is true:

?7- grandfather(jihn,ann).

yes
?_

Another query may be ”Who are the grandchildren of John?” | specified by the following goal
(by typing ; after the Prolog answer we ask for alternative solutions):

?7- grandfather(john,X).
X=ann;

X=mary;

no

‘?_



Chapter 4

Version space learning

Let us consider an example. We shall use an attribute-value language for both the examples
and the hypotheses L = {[A4, B], A € T, B € T>}. T} and T5 are taxonomic trees of attribute
values. Let’s consider the taxonomies of colors (77) and planar geometric shapes (T%), defined
by the relation cat (short for category).

21
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Taxonomy of Colors: Taxonomy of Shapes:

cat (primary_color,any_color) . cat (polygon,any_shape) .
cat (composite_color,any_color). cat (oval,any_shape) .
cat(red,primary_color). cat(triangle,polygon) .

cat (blue,primary_color) . cat (quadrangle,polygon) .
cat(green,primary_color). cat(rectangle,quadrangle).
cat (orange, composite_color). cat (square,quadrangle) .
cat (pink, composite_color). cat (trapezoid,quadrangle) .
cat(yellow,composite_color). cat(circle,oval).
cat(grey, composite_color) . cat(ellipse,oval).

Using the hierarchically ordered attribute values in taxonomies we can define the derivabil-
ity relation (—) by the cover relation (>), as follows: [A1, B1] > [A2, Bs], if As is a successor
of Ay in Ty, and By is a successor of By in Ty. For example, [red, polygon] > [red, triangle],
and [any_color, any_shape] covers all possible examples expressed in the language L.

Let Pe L,Q € L,and P > Q. Then P is a generalization of @, and @ is a specialization
of P.

Let E* = {E]", ES}, Ef = [red, square], ES = [blue, rectangle],

E~ = [orange, triangle], and B = @.

Then the problem is to find such a hypothesis H, that H > Efr, H > E;, i.e. His a
generalization of ET.

Clearly there are a number of such generalizations, i.e. we have a hypothesis space

Sy = {[primary_color, quadrangle], [primary_color, polygon], ...,

[any_color, any_ shape] }.

However not all hypotheses from Sy satisfy the consistency requirement, (H 2 E7), i.e.
some of them are overgeneralized. So, the elements H € S, such that H > E~, have to be
excluded, i.e they have to be specialized, so that not to cover any more the negative example.
Thus we obtain a set of correct (consistent with the examples) hypotheses, which is called
version space, V'S = {[primary_color, quadrangle], [any_color, quadranglel}.

Now we can add the obtained hypotheses to the background knowledge and further process
other positive and negative examples. Learning systems which process a sequence of examples
one at a time and at each step maintain a consistent hypotheses are called incremental learning
systems. Clearly the basic task of these systems is to search through the version space. As
we have shown above this search can be directed in two ways — specific to general and general
to specific.

4.1 Search strategies in version space

To solve the induction problem the version space have to be searched through in order to find
the best hypothesis. The simplest algorithm for this search could be the generate-and-test
algorithm, where the generator produces all generalizations of the positive examples and the
tester filters out those of them which cover the negative examples. Since the version space
could be very large such an algorithm is obviously unsuitable. Hence the version space has
to be structured and some directed search strategies have to be applied.

4.1.1 Specific to general search

This search strategy maintains a set S (a part of the version space) of mazimally specific
generalizations. The aim here is to avoid overgeneralization. A hypothesis H is maximally
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specific if it covers all positive examples, none of the negative examples, and for any other
hypothesis H’ that covers the positive examples, H' > H. The algorithm is the following:
Begin

Initialize S to the first positive example
Initialize N to all negative examples seen so far
For each positive example ET do begin

Replace every H € S, such that H # ET, with all its generalizations that cover E
Delete from S all hypotheses that cover other hypotheses in S
Delete from S all hypotheses that cover any element from N

End
For every negative example £~ do begin

Delete all members of S that cover £~
Add E~ to N
End

End

4.1.2 General to specific search

This strategy maintains a set G (a part of the version space) of mazimally general hypotheses.
A hypothesis H is maximally general if it covers none of the negative examples, and for
any other hypothesis H’ that covers no negative examples, H > H’. The algorithm is the
following:

Begin

Initialize G to the most general concept in the version space
Initialize P to all positive examples seen so far
For each negative example £~ do begin

Replace every H € G, such that H > E~, with all its specializations that do not cover
B
Delete from G all hypotheses more specific (covered by) other hypotheses in G

Delete from G all hypotheses that fail to cover some example from P

End
For every positive example E* do begin

Delete all members of G that fail to cover E+
Add ET to P
End

End
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4.2 Candidate Elimination Algorithm

The algorithms shown above generate a number of plausible hypotheses. Actually the sets
S and G can be seen as boundary sets defining all hypotheses in the version space. This is
expressed by the boundary set theorem (Genesereth and Nilsson, 1987), which says that for
every element H from the version space there exist H' € S and H” € G, such that H > H'
and H” > H. In other words the boundary sets S and G allows us to generate every possible
hypothesis by generalization and specialization of their elements, i.e. every element in the
version space can be found along the generalization/specialization links between elements of
G and S. This suggests an algorithm combining the two search strategies of the version space,
called candidate elimination algorithm (Mitchel, 82).

The candidate elimination algorithm uses bi-directional search of the version space. It can
be easily obtained by putting together the algorithms from section 2.1 and 2.2 and replacing
the following items from them:

1. Replace "Delete from S all hypotheses that cover any element from N” with ”Delete
from S any hypothesis not more specific than some hypothesis in G”

2. Replace "Delete from G all hypotheses that fail to cover some example from P” with
"Delete from G any hypothesis more specific than some hypothesis in S”

These alterations are possible since each one of them implies what it alters. Thus collecting
all positive and negative examples in the sets P and N becomes unnecessary. Clearly this
makes the bi-directional algorithm more efficient. Furthermore using the boundary sets two
stopping conditions can be imposed:

1. If G = S and both are singletons, then stop. The algorithm has found a single
hypothesis consistent with the examples.

2. If G or S becomes empty then stop. Indicate that there is no hypothesis that covers
all positive and none of the negative examples.

4.3 Experiment Generation, Interactive Learning

The standard definition of the inductive learning problem assumes that the training examples
age given by an independent agent and the learner has no control over them. In many
cases, however, it is possible to select an example and then to acquire information about its
classification. Learning systems exploring this strategy are called interactive learning systems.
Such a system use an agent (called oracle) which provides the classification of any example
the systems asks for. Clearly the basic problem here is to ask in such a way that the number
of further questions is minimal.

A common strategy in such situations is to select an example which halves the number of
hypotheses, i.e. one that satisfies one halve of the hypotheses and does not satisfy the other
halve.

Within the framework of the version space algorithm the halving strategy would be to find
an example that does not belong to the current version space (otherwise its classification is
known - it has to be positive) and to check it against all other hypotheses outside the version
space. Clearly this could be very costly. Therefore a simple strategy is the following (this is
actually and interactive version of the candidate elimination algorithm):

1. Ask for the first positive example
2. Calculate S and G using the candidate elimination algorithm
3. Find FE, such that G > E,Vs € S, E # s (F is not in the version space).

4. Ask about the classification of F
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Hypothesis space
G
S
- - - ? + + + ? - - -
Example space

Figure 4.1: Graphical representation of version space. Question marsk denote the areas from
where new examples are chosen

5. Go to 2

The exit from this loop is through the stopping conditions of the candidate elimination
algorithm (item 2). A graphical illustration of the experiment generation algorithm is shown
in Figure 4.1

4.4 Learning multiple concepts — Aq, AQ11

4.4.1 Agq

4.4.2 AQl1l
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Figure 4.2: Multi-concept example space
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Chapter 5

Induction of Decision Trees

5.1 Representing disjunctive concepts

Consider the problem domain described by the attribute-value language L (discussed in Chap-
ter 2) and the following set of classified examples:

E* = {[red, circle], [blue, triangle], [blue, square]}

E~ = {[red, square], [red, triangle]}

The candidate elimination algorithm applied to these data cannot produce a correct hy-
pothesis. This is because there exist positive examples, whose least generalization covers
some negative examples. For example, there is no hypothesis covering both [red, circle], and
[blue, square] and at the same time not covering the negative example [red, square].

This problem is due to the very restricted language for the hypotheses we use in the can-
didate elimination algorithm. Clearly the above data require a concept description involving
a disjunction between two subdomains in the hypothesis space.

A description which can cope with such data is the decision tree. A decision tree can be
represented in various forms. Here is a decision tree for classification of the above training
set shown in two ways:

1. Tree. Each node represents an attribute (e.g. color), and the branches from the node are
the different choices of the attribute values. Clearly the branches represent disjunctive
relations between attribute values (the color can be blue OR red, and both branches
belong to the concept). The leaves of the tree actually represent the classification. Each
one is marked YES or NO, depending on whether the particular choice of values along
the path to this leaf specifies a positive or a negative example, correspondingly.

triangle square circle
[ [ |
NO NO YES

29
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2. Set of rules. These rules actually represent the paths in the decision tree.

IF color = blue THEN YES

IF color = red AND shape = circle THEN YES
IF color = red AND shape = square THEN NO
IF color = red AND shape = triangle THEN NO

A natural question is "how can the decision tree generalize”. The above tree is a typical
example of generalization. The first left branch of the tree leads to a leaf, which is determined
by fixing only one of the attributes (color). Thus we allow the other one (shape) to have any
value and hence to cover a number of positive examples. Actually in the taxonomic language
L thiswould be the concept [blue, any_shape].

5.2 Building a decision tree

There are many algorithms for building decision trees. Many of them refer to ID3 [Quinlan,
1986]. Actually it is a family of concept learning algorithms, called TDIDT (Top-Down
Induction of Decision Trees), which originated from the Concept Learning System (CLS) of
[Hunt, Marin and Stone, 1966].

The basic algorithm is the following [Dietterich et al, 1982]. Its input is a set of training
instances F, and its output is a decision tree.

1. If all instances in E are positive, then create a YES node and halt. If all instances in F
are negative, then create a NO node and halt. Otherwise, select (using some heuristic
criterion) an attribute, A, with values V;...V, and create the decision node

2. Partition the training instances in F into subsets F1, Fo, ..., E,, according to the values
of A({V1,Va, ..., Vi })

3. Apply the algorithm recursively to each of the sets E1, Es etc.

Here is an example how this algorithm works. Consider the following set E of 6 instances
(the positive are marker with 74", and the negative — with ”-”):

[red,circle] +
[red,square] -
[red,triangle] -
[blue,triangle] -
[blue,square] -
[blue,circle] -

DO WN -

Initially the set of instances F is just the complete sequence of instances. These are nei-
ther uniformly positive or uniformly negative so the algorithm selects an attribute A and
creates a decision node. Assume that the shape attribute is chosen. It has possible values
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{triangle, square, circle}. Therefore a decision node is created which has a branch corre-
sponding to each value.

The set E is now partitioned into subsets Fp, Ey etc. according to the possible values of
”shape”. Instances with shape = triangle all end up in one subset, instances with shape =
circle all end up in another and so on.

The algorithm is now applied recursively to the subsets E7, Fs etc. Two of these now
contain single instances. The set of instances with shape = triangle is just {3}, while the set
of instances with shape = square is just {2}. Thus two NO nodes are created at the end of
the corresponding branches.

The set of instances with shape = circle is {1,6}. It does not contain uniformly positive
or negative instances so a new feature is selected on which to further split the instances.
The only feature left now is color. Splitting the instances on this feature produces the final
two leaves (a YES node and a NO node) and the algorithm terminates, having produced the
following decision-tree:

shape
I
I | I
triangle square circle
I I I
NO NO color

5.3 Informaton-based heuristic for attribute selection

Clearly, we will want the algorithm to construct small, bushy trees, i.e. simple decision rules.
However, the degree to which it will do so depends to an extent on how clever it is at selecting
”good” attributes on which to split instances.

Selecting ”good” attributes means giving priority to attributes which will best sort the
instances out into uniform groups. So the question is, how can the algorithm be provided
with a criterion, which will enable it distinguish (and select) this sort of attribute.

Several approaches have been explored. The most well-known is Quinlan’s which involves
calculating the entropy of the distribution of the positive/negative instances resulting from
splitting on each of the remaining attributes and then using the attribute which achieves the
lowest entropy distribution.

The entropy measure is based on the information theory of Shannon. According to this
theory we can calculate the information content of the training set, and consequently, of any
decision tree that covers this set of examples.

If we assume that all the instances in the training set E (the example above) occur with
equal probability, then p(Y ES) = 1/6, p(NO) = 5/6. The information in F is:

1 1 ) )
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We want to find a measure of ”goodness” (information gain) for each attribute chosen
as a root of the current tree. This could be the total information in the tree minus the
amount of information needed to complete the tree after choosing that attribute as a root.
The amount of information needed to complete the tree is defined as the weighted average
of the information in all its subtrees. The weighted average is computed by multiplying the
information content of each subtree by the percentage of the examples present in that subtree
and summing these products.

Assume that making attribute A, with n values, the root of the current tree, will partition
the set of training examples E into subsets Ei, ..., F,. Then, the information needed to
complete that tree after making A the root is:

~ | Ei
RA) =2 5 1B
i=1
Then, the information gain of choosing attribute A is:

gain(A) = I(E) — R(A)

For the above example we can calculate the gain of choosing attributes color and shape.
For color we have two subsets C, = {1,2,3} and Cy = {4,5,6}.

1. 1.2 2
1(Ch) = —3loga(3) — 3loga(3) = 0.5383 + 0.3840 = 0.9723

0 0 3 3
I(Cz) = *glOQQ(g) - glOQQ(g) =0

gain(color) = I(E) — R(color) = 0.65 — (%0.9723 + %0) =0.1638

For shape we have three subsets S1 = {1,6}, So = {2,5} and S5 = {3,4}.

1 1 1 1

Clearly I(S2) =0, and I(S3) = 0, since they contain only one-class instances. Then

2
gain(shape) = I(E) — R(shape) = 0.65 — (61 +0+0)=0.3166

Because shape provides grater information gain the algorithm will select it first to partition
the tree (as it was shown in the examples above).

5.4 Learning multiple concepts

The algorithm described in Section 2 actually builds decision trees for classification of the
training instances into two classes (YES — belonging to the concept, and NO — not belonging
to the concept). This algorithm can be easily generalized to handle more than two classes
(concepts) as follows:

1. If all instances in E belong to a single class, then create a node marked with the class
name and halt. Otherwise, select an attribute A (e.g. using the information gain
heuristic), with values V;...V,, and create the decision node
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2. Partition the training instances in E into subsets Fy, Fo, ..., E,, according to the values
of A{V1,Va, ..., Vi })

3. Apply the algorithm recursively to each of the sets Fy, FEs etc.

5.5 Learning from noisy data

In many situations the training data are imperfect. For example, the attribute or class values
for some instances could be incorrect, because of errors. We call such data noisy data. In case
of noise we usually abandon the requirement the hypothesis to cover all positive and none of
the negative examples. So, we allow the learning system to misclassify some instances and we
hope that the misclassified instances are those that contain errors.

Inducing decision trees from nosy data will cause basically two problems: first, the trees
misclassify new data, and second, the trees tend to become very large and thus hard to
understand and difficult to use.

Assume the following situation. At some step of the algorithm we have chosen an attribute
A partitioning the current set S of 100 training instances into two classes — C7 and Cy, where
C contains 99 instances and C5 - one instance. Knowing that there is a noise in the training
data, we can assume that all instances from S belong to class C;. In this way we force the
algorithm to stop further exploring the decision tree, i.e. we prune the subtree rooted at
A. This technique is called forward pruning. There is another kind of pruning, called post-
pruning, where first the whole tree is explored completely, and then the subtrees are estimated
on their reliability with respect to possible errors. Then those of them with low estimates are
pruned. Both techniques for pruning are based on probability estimates of the classification
error in each node of the tree.
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Chapter 6

Covering strategies

6.1 Basic idea

The covering strategy is used for searching the hypothesis space for disjunctive hypotehses
— hypotheses consisting of more than one component (e.g. a set of attribute-value pairs, a
propositional or relational rule). Each of this components covers a subset of the set of examples
and all the components jointly (the whole hypothesis) cover the whole set of examples. The
basic covering algorithm consists of three steps:

1. Applying some induction technique (e.g. a generalization opertor) to infer a correct
component of the hypothsis (e.g. a rule or a clause), that covers a subset (possibly
maximal) of the positive examples.

2. Excluding the covered examples from the set of positive examples.
3. Repeating the above two steps until the set of positive examples becomes empty.

The final hypothesis is a dijunction of all components found by the above procedure. Step 1
of this algorithm is usualy based on searching the hypothesis space where hypotheses that are
correct (not covering negative examples) and covering more positive examples are prefered.

6.2 Lgg-based propositional induction

In the attribute-value language as well as in the language of first order atomic formulas the
examples and the hypotheses have the same representation. This allows the generalization
operators (e.g. the lgg) to be applied on examples and hypotheses at the same time, which
in turn simplifies the learning algorithms.

Consider a learning problem where a set of examples E, belonging to k different classes is
given, i.e. E = UF_| E;. The following algortihm finds a set of hypotheses jointly covering E.

1. Select (randomly or using some criterion) two examples/hypotheses from the same class,
say k, i.e. €;,€e5 € Ey.

2. Find hf; = lgg(es, e5).

3. If hfj does not cover examples/hypotheses from classes other than k, then add hf]

Ej and remove from Ej the elements covered by hfj (these are at least e; and e;).
Otherwise go to step 1.

to
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4. The algorithm terminates when step 1 or 3 is impossible to acomplish. Then the set E
contains the target hypotesis.

To illustrate the above algorithm let us consider the following set of examples (instances
of animals):

1, mammal, [has_covering=hair,milk=t ,homeothermic=t,habitat=1land,eggs=f,gills=f]

2, mammal, [has_covering=none,milk=t,homeothermic=t,habitat=sea,eggs=f,gills=f]

3, mammal, [has_covering=hair,milk=t,homeothermic=t,habitat=sea,eggs=t,gills=f]

4, mammal, [has_covering=hair,milk=t ,homeothermic=t,habitat=air,eggs=f,gills=f]

5, fish, [has_covering=scales,milk=f ,homeothermic=f ,habitat=sea,eggs=t,gills=t]

6, reptile, [has_covering=scales,milk=f,homeothermic=f,habitat=land,eggs=t,gills=f]
7, reptile, [has_covering=scales,milk=f,homeothermic=f,habitat=sea,eggs=t,gills=f]

8, bird, [has_covering=feathers,milk=f ,homeothermic=t,habitat=air,eggs=t,gills=f]
9, bird, [has_covering=feathers,milk=f ,homeothermic=t,habitat=land,eggs=t,gills=f]
10,amphibian, [has_covering=none,milk=f ,homeothermic=f ,habitat=land,eggs=t,gills=f]

After termination of the algorithm the above set is transformed into the following one (the
hypothesis ID’s show the way they are generated, where ”+” means lgg):

8+9, bird, [has_covering=feathers,milk=f,homeothermic=t,eggs=t,gills=f]

6+7, reptile, [has_covering=scales,milk=f,homeothermic=f,eggs=t,gills=f]
4+(3+(1+2)), mammal, [milk=t,homeothermic=t,gills=f]

5, fish, [has_covering=scales,milk=f,homeothermic=f,habitat=sea,eggs=t,gills=t]

10, amphibian, [has_covering=none,milk=f,homeothermic=f,habitat=land,eggs=t,gills=f]

A drawback of the lgg-based covering algorithm is that the hypotheses depend on the
order of the examples. The generality of the hypotheses depend on the similarity of the
examples (how many attribute-value pairs they have in common) that are selected to produce
an lgg. To avoid this some criteria for selection of the 1gg candidate pairs can be applied. For
example, such a criterion may be the maximum similarity between the examples in the pair.

Another problem may occur when the examples from a single class are all very similar
(or very few, as in the animals example above). Then the generated hypothesis may be too
specific, although more general hypotheses that correctly separate the classes may exists. In
fact, this is a general problem with the covering strategies, which is avoided in the separate
and conquer aproaches (as desicion trees).

Lgg-based relational induction

f-subsumption. Given two clauses C and D, we say that C subsumes D (or C is a general-
ization of D), if there is a substitution 6, such that C6 C D. For example,

parent (X,Y) :-son(Y,X)
f-subsumes (6 = {X/john,Y/bob})
parent (john,bob) : - son(bob, john) ,male(john)

because
{parent(X,Y), —son(Y, X)}8 C {parent(john,bob), son(bob, john), ~male(john)}.

The #-subsumption relation can be used to define an lgg of two clauses.
lgg under 6-subsumption (lggf). The clause C is an lggf of the clauses Cy and Cy if C
f-subsumes Cy and C5, and for any other clause D, which #-subsumes Cy and C3, D also
f-subsumes C'. Here is an example:

Cy = parent(john, peter) : —son(peter, john), male(john)

Cy = parent(mary, john) : —son(john, mary)
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lgg(Cy,Ca) = parent(A, B) : —son(B, A)

The lgg under f-subsumption can be calculated by using the lgg on terms. lgg(Cy, Cs) can
be found by collecting all lgg’s of one literal from C; and one literal from Cs. Thus we have

lgg(C1,Ca) = {L|L = lgg(L1, L2), L1 € Cy, Ly € Ca}

Note that we have to include in the result all literals L, because any clause even with one
literal L will -subsume C; and C5, however it will not be the least general one, i.e. an lgg.

When background knowledge BK is used a special form of relative lgg (or rlgg) can be
defined on atoms. Assume BK is a set of facts, and A and B are facts too (i.e. clauses
without negative literals). Then

rlgg(A, B, BK) =lgg(A: —BK, B : —BK)

The relative lgg (rlgg) can be used to implement an inductive learning algorithm that
induces Horn clauses given examples and background knowledge as first order atoms (facts).
Below we illustrate this algorithm with an example.

Consider the following set of facts (desribing a directed acyclic graph): BK = {link(1,2),
link(2,3),link(3,4),link(3,5)}, positive examples E* = {path(1,2), path(3,4), path(2,4),
path(1,3)} and negative examples E~ — the set of all instances of path(X,Y), such that
there is not path between X and Y in BK. Let us now apply an rlgg-based version of the
covering algorithm desribed in the previous section:

1. Select the first two positive examples path(1,2), path(3,4) and find their rigg, i.e. the
lgg of the following two clauses (note that the bodies of these clauses include also all
positive examples, because they are part of BK):

path(1,2) : —link(1,2),link(2,3),link(3,4),link(3,5),
path(1,2), path(3,4), path(2,4), path(1, 3)
path(3,4) : —link(1,2),link(2, 3),link(3,4), link(3,5),
path(1,2), path(3,4), path(2,4), path(1,3)
According to the above-mentioned algorithm this is the clause:
path(A, B) : —path(1,3), path(C, D), path(A, D), path(C, 3),
path(E, F),path(2,4), path(G, 4), path(2, F), path(H, F), path(I,4),

path(3,4), path(I, F), path(E, 3), path(2, D), path(G, D), path(2, 3),

link(3,5),link(3,_ ), link(I,_ ), link(H,_ ), link(3,- ), link(3,4),

link(I, F),link(H,_),link(G,- ),link(G, D), link(2,3), link(E, I),

link(A,_), lmk(A B),link(C, G),link(1,2).

2. Here we perform an additional step, called reduction, to simplify the above clause. For
this purpose we remove from the clause body:
e all ground literals;

e all literals that are not connected with the clause head (none of the head variables
A and B appears in them);

e all literals that make the clause tautology (a clause that is always true), i.e. body
literals same as the clause head;

e all literals that when removed do not reduce the clause coverage of positive exam-
ples and do not make the clause incorrect (covering negative examples).

After the reduction step the clause is path(A, B) : —link(A, B).
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3. Now we remove from E™T the examples that the above clause covers and then ET =
{path(2,4), path(1,3)}.

4. Since E™T is not empty, we further select two examples (path(2,4), path(1,3)) and find
their rlgg, i.e. the lgg of the following two clauses:
path(2,4) : —link(1,2),link(2,3),link(3,4),link(3,5)
path(1,2), path(3,4), path(2,4), path(1,3)
path(1,3) : —link(1,2),link(2, 3), link(3, 4) link(3,5),
path(1,2), path(3 4), path(2,4), path(1,3)
which is:
path(A, B) : —path(1,3), path(C, D), path(E, D), path(C, 3),
);

)

path(A, B path( 4), path(F,4), path(2, B), path(G, B), path(H,4),
path(3,4),path(H, B), path(A, 3), path(2 D), path(F, D), path(2,3),
link(3,5),link(3,- ), link(H,_ ), link(G,- ), link(3,_ ), link(3,4),

link(H, B), lmk:(G,, ), link(F,_),link(F, D),link(2,3),link(A, H),

link(E,-),link(C, F),link(1,2).
After reduction we get path(A, B) : —link(A, H),link(H, B).

The last two clauses form the sandard definition of a procedure to find a path in a graph.



Chapter 7

Searching the
generalization /specialization
graph

7.1 Basic idea

Given a constructive operator for generalization/specialization, for each example e € ET we
can build a directed graph (hierarchy) of hypotheses with two terminal nodes — the most
specific element e, and the most general hypothesis T. This graph will also include all
correct hypotheses (not covering negative examples) that cover at least one positive example
(e). And, as usual we will be looking for hypotheses covering more positive examples, i.e.
maximally general ones. As this graph is a strict hierarchical structure, for each hypothesis
h, the length of the path between h and e or h and T can play the role of a measure for
the generality/specificity of h. Thus some standard graph search strategies as depth-first,
breadth-first or hill-climbing can be applied. Depending on the starting point of the search
we may have two basic search approaches:

e Specific to general search: starting from e and climbing up the hierarchy (applying
generalization operators), i.e. searching among the correct generalizations of e for the
one with maximal coverage.

e General to specific search: starting from T and climbing down the hierarchy (applying
specialization operators), i.e. searching among the incorrect hypothesis which at the
next specialization step can produce a correct hypothesis with maximal coverage.

The above discussed search procedures are usually embeded as step one in a covering learning
algortihm. To illustrate this in the following two section we discuss two examples — searching
the space of propositional hypothesis and heuristic general to specific search for relational
hypotheses.

7.2 Searching the space of propositional hypotheses
Consder the MONKS concept discussed in chapter 3. Let us select a positive example, say e =
[octagon, octagon, no, sword, red, yes] (example 1 from Figure 3.1, where the attribute names

are omitted for brevity). The most general hypothesis in this languageis T = [, ,_ ,_ ,_,_]
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(underscores denote ”don’t care” or any value). The first level of the specialization hierarchy
starting from T is:

[octagon, _,_,_,_,_]
[_,octagon,_,_,_,_]
[_,_,no,_,_,_]

[_,_,_,sword,_,_]

[_,_,_,_,red,_]

Note that the values that fill the don’t care slots are taken from e, i.e. the choice of e
determines completely the whole generaliztion/specialization hierarchy. Thus the bottom
level of the hierarchy is:

[_,octagon,no,sword,red,yes]
[octagon,_,no,sword,red,yes]
[octagon,octagon, _,sword,red,yes]
[octagon,octagon,no,_,red,yes]
[octagon,octagon,no,sword, _,yes]
[octagon,octagon,no,sword,red, _]

A part of the generalization/specialization hierarchy for the above example is shown in Figure
7.1. This figure also illustrates two search algorithms, both version of depth-first search
with evaluation function (hill climbing). The top-down (general to specific) search uses the
hypothesis accuracy A(hy) for evaluation. It is defined as

_ [{ele € E*, hF > e}|
~ |{ele€ E,hk > e}|’

i.e. the number of examples from class k& that the hypothesis covers over the total number
of examples covered. The bottom-up search uses just the total number of examples covered,
because all hypotheses are 100% correct, i.e. A(hy) = 1 for all k. The bottom-up search
stops when all possible specializations of a particular hypothesis lead to incorrect hypotheses.
The top-down search stops when a correct hypothesis is found, i.e. the maximum value of
the evaluation function is reached. The figure shows that both search algorithms stop at the

A(hF)

same hypothesis — [octagon, octagon,_ ,_ ,_,_ ], which is, if fact, a part of the target concept
(as shown in Section 3.1)
The above described process to find the hypothesis h = [octagon, octagon,_ ,— ,_ ,_] is

just one step in the overall covering algorithm, where the examples covered by h are then
removed from E and the same process is repeated until E becomes empty.

7.3 Searching the space of relational hypotheses

In this section we shall discuss a basic algorithm for learning Horn clauses from examples
(ground facts), based on general to specific search embeded in a covering strategy. At each
pass of the outermost loop of the algorithm a new clause is generated by 6-subsumption
specialization of the most general hypothesis T. Then the examples covered by this clause
are removed and the process continues until no uncovered exampes are left. The negative
examples are used in the inner loop that finds individual clauses to determine when the
current clause needs further specialization. Two types of specialization operators are applied:

1. Replacing a variable with a term.

2. Adding a literal to the clause body.
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Figure 7.1: Generalization specialization graph for MONKS data

These operators are minimal with respect to #-subsumption and thus they ensure an exhaus-
tive search in the f-subsumption hierarchy.
There are two stopping conditions for the inner loop (terminal nodes in the hierarchy):

e Correct clauses, i.e. clauses covering at least one positive example and no negative
examples. These are used as components of the final hypothesis.

e Clauses not covering any positive examples. These are just omitted.

Let us consider an illustration of the above algorithm. The target predicate is member(X, L)
(returning true when X is a member of the list L). The examples are

E* = {member(a, [a, b)), member (b, [b]), member(b, [a,b])},

E~ = {member(z,[a,b])}.

The most general hypothesis is T = member(X, L). A part of the generalization/specialization
graph is shown in Figure 7.2. The terminal nodes of this graph:

member (X, [X|Z])

member (X, [Y|Z]) : —member(X, Z)
are correct clauses and jointly cover all positive examples. So, the goal of the algorithm is to
reach these leaves.

A key issue in the above algorithm is the search stategy. A possible approach to this is the
so called iterative deepening, where the graph is searched iteratively at depths 1, 2, 3,..., etc.
until no more specializations are needed. Another appraoch is a depth-first search with an
evaluation function (hill climbing). This is the approach taken in the popular system FOIL
that is briefly described in the next section.
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member (X, L)

member (X, X)

member(L, L)

member (X, [Y'|Z]) member (X, L):-member(L, X)

member (X, [X|Z]) member(X,[Y|Z]):-member(X, Z)

Figure 7.2: A generalization/specialization graph for member (X, L)

7.4 Heuristic search — FOIL

7.4.1 Setting of the problem

Consider the simple relational domain also discussed in Section 6.3 — the link and path rela-
tions in a directed acyclic graph. The background knowledge and the positive examples are:
BK = {link(1,2),link(2, 3), link(3,4), link(3,5) }
Et = {path(1,2),path(1,3), path(1,4), path(1,5),
path(2,3), path(2,4), path(2,5), path(3,4), path(3,5)}

The negative examples can be specified explicitly. If we assume however, that our domain
is closed (as the particular link and path domain) the negative examples can be generated
automatically using the Closed World Assumption (CWA). In our case these are all ground
instances of the path predicate with arguments — constants from E+. Thus

E~ = {path(1,1),path(2,1), path(2,2), path(3, 1), path(3,2), path(3,3),

path(4,1),path(4,2), path(4,3), path(4,4), path(4,5), path(5, 1), path(5,2),
path(5,3), path(5,4), path(5,5)}

The problem is to find a hypothesis H, i.e. a Prolog definition of path, which satisfies the
necessity and strong consistency requirements of the induction task (see Chapter 2). In other
words we require that BK A H = E' and BK A H I/ E~. To check these condition we use
logical consequence (called also cover).

7.4.2 Illustrative example

We start from the most general hypothesis

Hy = path(X,Y)
Obviously this hypothesis covers all positive examples ET, however many negative ones
too. Therefore we have to specialize it by adding body literals. Thus the next hypothesis is
Hy = path(X,Y) : —L.

The problem now is to find a proper literal L. Possible candidates are literals containing
only variables with predicate symbols and number of arguments taken from the set E¥, i.e.
L € {link(V1, Vo), path(V1, Va)}.
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Clearly if the variables Vi, V5 are both different from the head variables X and Y, the new
clause Hy will not be more specific, i.e. it will cover the same set of negatives as Hy. Therefore
we impose a restriction on the choice of variables, based on the notion of old variables. Old
variables are those appearing in the previous clause. In our case X and Y are old variables.
So, we require at least one of of V; and V5 to be an old variable.

Further, we need a criterion to choose the best literal L. The system described here, FOIL
uses an information gain measure based on the ratio between the number of positive and
negative examples covered. Actually, each newly added literal has to decrease the number of
covered negatives mazximizing at the same time the number of uncovered positives. Using this
criterion it may be shown that the best candidate is L = link(X,Y"). That is

Hy = path(X,Y) : —link(X,Y)

This hypothesis does not cover any negative examples, hence we can stop further special-
ization of the clause. However there are still uncovered positive examples. So, we save Hs as
a part of the final hypothesis and continue the search for a new clause.

To find the next clause belonging to the hypothesis we exclude the positive examples
covered by Hs and apply the same algorithm for building a clause using the rest of positive
examples. This leads to the clause path(X,Y) : —link(X, Z), path(Y, Z), which covers these
examples and is also correct. Thus the final hypothesis H3 is the usual definition of path:

path(X,Y):-1link(X,Y).
path(X,Y):-1link(X,Z) ,path(Z,Y).

7.4.3 Algorithm FOIL

An algorithm based on the above ideas is implemented in the system called FOIL (First Order
Inductive Learning) [2]. Generally the algorithm consists of two nested loops. The inner loop
constructs a clause and the outer one adds the clause to the predicate definition and calls the
inner loop with the positive examples still uncovered by the current predicate.

The algorithm has several critical points, which are important for its efficiency and also
can be explored for further improvements: +

e The algorithm performs a search strategy by choosing the locally best branch in the
search tree and further exploring it without backtracking. This actually is a hill climbing
strategy which may drive the search in a local maximum and prevent it from finding
the best global solution. Particularly, this means that in the inner loop there might
be a situation when there are still uncovered negative examples and there is no proper
literal literal to be added. In such a situation we can allow the algorithm to add a
new literal without requiring an increase of the information gain and then to proceed
in the usual way. This means to force a further step in the search tree hopping to
escape from the local maximum. This further step however should not lead to decrease
of the information gain and also should not complicate the search space (increase the
branching). Both requirements are met if we choose determinate literals (see Chapter
8) for this purpose.

Using determinate literals however does not guarantee that the best solution can be
found. Furthermore, this can complicate the clauses without actually improving the
hypothesis with respect to the sufficiency and strong consistency.

e When dealing with noise the strong consistency condition can be weakened by allowing
the inner loop to terminate even when the current clause covers some of the negative
examples. In other words these examples are considered as noise.
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o If the set of positive examples is incomplete, then CWA will add the missing positive
examples to the set of negative ones. Then if we require strong consistency, the con-
structed hypothesis will be specialized to exclude the examples, which actually we want
to generalize. A proper stopping condition for the inner loop would cope with this too.



Chapter 8

Inductive Logic Programming

8.1 1ILP task

Generally Inductive Logic Programming (ILP) is an area integrating Machine Learning and
Logic Programming. In particular this is a version of the induction problem (see Chapter 2),
where all languages are subsets of Horn clause logic or Prolog.

The setting for ILP is as follows. B and H are logic programs, and E* and E~ — usually
sets of ground facts. The conditions for construction of H are:

e Necessity: Bl ET

o Sufficiency: BAH + ET

o Weak consistency: B A H /]

e Strong consistency: BAH AN E™ ]

The strong consistency is not always required, especially for systems which deal with
noise. The necessity and consistency condition can be checked by a theorem prover (e.g. a
Prolog interpreter). Further, applying Deduction theorem to the sufficiency condition we can
transform it into

BA-ETF-H (8.1)

This condition actually allows to infer deductively the hypothesis from the background knowl-
edge and the examples. In most of the cases however, the number of hypotheses satisfying (1)
is too large. In order to limit this number and to find only useful hypotheses some additional
criteria should be used, such as:

o FExtralogical restrictions on the background knowledge and the hypothesis language.

e Generality of the hypothesis. The simplest hypothesis is just £7. However, it is too
specific and hardly can be seen as a generalization of the examples.

e Decidability and tractability of the hypothesis. Extending the background knowledge
with the hypothesis should not make the resulting program indecidable or intractable,
though logically correct. The point here is that such hypotheses cannot be tested for
validity (applying the sufficiency and consistency conditions). Furthermore the aim of
ILP is to construct real working logic programs, rather than just elegant logical formulae.
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In other words condition (1) can be used to generate a number of initial approximations
of the searched hypothesis, or to evaluate the correctness of a currently generated hypothesis.
Thus the problem of ILP comes to construction of correct hypotheses and moving in the space
of possible hypotheses (e.g. by generalization or specialization). For this purpose a number of
techniques and algorithms are developed.

8.2 Ordering Horn clauses

A logic program can be viewed in two ways: as a set of clauses (implicitly conjoined), where
each clause is a set of literals (implicitly disjoined), and as a logical formula in conjunctive
normal form (conjunction of disjunction of literals). The first interpretation allows us to
define a clause ordering based on the subset operation, called 6 - subsumption.

8.2.1 6f-subsumption

f-subsumption. Given two clauses C' and D, we say that C subsumes D (or C is a general-
ization of D), iff there is a substitution 6, such that C6 C D.
For example,

parent (X,Y) :-son(Y,X)
f-subsumes (6 = {X/john,Y /bob})
parent (john,bob) :- son(bob, john) ,male(john)

since

{parent(X,Y), —son(Y, X)}8 C {parent(john,bob), =son(bob, john), ~male(john)}.

f-subsumption can be used to define an Ilgg of two clauses.

lgg under f-subsumption (lggf). The clause C is an lggf of the clauses Cy and Cj iff
C' f-subsumes C; and C5, and for any other clause D, which #-subsumes C; and Cs, D also
#-subsumes C'.

Consider for example the clauses C1 = p(a) «— ¢(a),q(f(a)) and Cy = p(b) — q(f(b)).
The clause C' = p(X) < a(f(X)) is an lggf of C; and Cs.

The lgg under #-subsumption can be calculated by using the lgg on terms. Consider clauses
Cy and Cs. lgg(Cq,C3) can be found by collecting all lgg’s of one literal from C; and one
literal from C5. Thus we have

lgg(C1,C2) = {L|L =lgg(L1, L2), L1 € Cy, Ly € Ca}

Note that we have to include in the result all such literals L, because any clause even with
one literal L will 8-subsume C; and Cs, however it will not be the least general one, i.e. an

lgg.

8.2.2 Subsumption under implication

When viewing clauses as logical formulae we can define another type of ordering using logical
consequence (implication).

Subsumption under implication. The clause C; is more general than clause Cs, (C}
subsumes under implication Cs), iff Cy F Cy. For example, (P : —@Q) is more general than
(P:—Q,R),since (P: —-Q)F (P:—-Q,R).

The above definition can be further extended by involving a theory (a logic program).

Subsumption relative to a theory. We say that C; subsumes Cs w.r.t. theory T, iff
PACTECs.

For example, consider the clause:



8.3. INVERSE RESOLUTION 47

cuddly_pet(X) :- small(X), fluffy(X), pet(X) ©
and the theory:

pet(X) :- cat(X) (T
pet(X) :- dog(X)
small(X) :- cat(X)

Then C' is more general than the following two clauses w.r.t. 7"

cuddly_pet(X) :- small(X), fluffy(X), dog(X) (c)
cuddly_pet (X) :- fluffy(X), cat(X) (c2)

Similarly to the terms, the ordering among clauses defines a lattice and clearly the most
interesting question is to find the least general generalization of two clauses. It is defined as
follows. C = lgg(Cy,Cy), iff C > Cy, C > Cs, and any other clause, which subsumes both
C1 and Cs, subsumes also C. If we use a relative subsumption we can define a relative least
general generalization (rlgg).

The subsumption under implication can be tested using Herbrand’s theorem. It says
that Fy F F, iff for every substitution o, (Fy A ~Fy)o is false ([]). Practically this can be
done in the following way. Let F' be a clause or a conjunction of clauses (a theory), and
C=A:-By,..,B, - aclause. We want to test whether F' A =C' is always false for any
substitution. We can check that by skolemizing C', adding its body literals as facts to F' and
testing whether A follows from the obtained formula. That is, FF A =C F [] is equivalent to
FA-AANBiA...AB, F[], which in turn is equivalent to F'A By A...A B, i A. The latter can
be checked easily by Prolog resolution, since A is a ground literal (goal) and F'A By A... A B,
is a logic program.

8.2.3 Relation between #-subsumption and subsumption under im-
plication

Let C and D be clauses. Clearly, if C8-subsumes D, then C + D (this can be shown by the
fact that all models of C' are also models of D, because D has just more disjuncts than C').
However, the opposite is not true, i.e. from C'+ D does not follow that C' #-subsumes D.
The latter can be shown by the following example.

Let C = p(X) « q(f(X)) and D = p(X) « ¢q(f(f(X))). Then C I D, however C does
not f-subsume D.

8.3 Inverse Resolution

A more constructive way of dealing with clause ordering is by using the resolution principle.
The idea is that the resolvent of two clauses is subsumed by their conjunction. For example,
(PV-QV-R)AQ) is more general than PV =R, since (PV-QV-R)AQ)F (PV-R). The
clauses C7 and Cs from the above example are resolvents of C' and clauses from 7.

The resolution principle is an effective way of deriving logical consequences, i.e. spe-
cializations. However when building hypothesis we often need an algorithm for inferring
generalizations of clauses. So, this could be done by an inverted resolution procedure. This
idea is discussed in the next section.

Consider two clauses C; and Cy and its resolvent C. Assume that the resolved literal
appears positive in C7 and negative in C5. The three clauses can be drawn at the edges of a
?V?” — (7 and Cy at the arms and C — at the base of the "V”.



48 CHAPTER 8. INDUCTIVE LOGIC PROGRAMMING

A resolution step derives the clause at the base of the "V”, given the two clauses of the
arms. In the ILP framework we are interested to infer the clauses at the arms, given the
clause at the base. Such an operation is called ”V” operator. There are two possibilities.

A ”V” operator which given C; and C constructs Cs is called absorption. The construction
of Cy from Cy and C' is called identification.

The ”V” operator can be derived from the equation of resolution:

C= (Cl — {Ll})91 U (CQ — {LQ})az

where Lq is a positive literal in C7, Lo is a negative literal in Cy and 6,05 is the mgu of
_‘Ll and LQ.

Let C = C{UCY, where C] = (C1—{L1})0; and C) = (Co—{L2})0>. Alsolet D = C;—C4.
Thus C4 = C — D, or (Cy — {L3})82 = C — D. Hence:

Cy = (C = D)f;" U{Ls}

Since #1605 is the mgu of =L; and Ly, we get Lo = ﬁL19192_1. By 92_1 we denote an inverse
substitution. It replaces terms with variables and uses places to select the term arguments to
be replaced by variables. The places are defined as n-tuples of natural numbers as follows.
The term at place <i> within f(tg,..,tm) is t; and the term at place <ig, 1, ..,4,> within
f(to,..,tm) is the term at place <iy,..,4,> within ¢;,. For example, let E = f(a,b, g(a,b)),
Q = f(A,B,g(C,D)). Then Qo = E, where 0 = {A/a,B/b,C/a,D/b}. The inverse sub-
stitution of ¢ is 07! = {<a,<0>>/A,<b,<1>>/B,<a,<2,0>>/C,<b,<2,1> /D}. Thus
Eo~! = Q. Clearly oo = {}.

Further, substituting Lo into the above equation we get

Oy = ((C = D) U{~L1}6:)6;"

The choice of L is unique, because as a positive literal, L is the head of C';. However the
above equation is still not well defined. Depending on the choice of D it give a whole range
of solutions, i.e. @ N DN CY. Since we need the most specific Ca, D should be @. Then we
have

Cy = (CU{~L1}61)05"

Further we have to determine 6; and 6, 1 Again, the choice of most specific solution gives
that 951 has to be empty. Thus finally we get the most specific solution of the absorption
operation as follows:

Cy=CU{~Li}6;

The substitution 6; can be partly determined from C and C;. From the resolution equation
we can see that Cy — {L1}) #-subsumes C with 6;. Thus a part of 67 can be constructed by
matching literals from C; and C, correspondingly. However for the rest of 6 there is a free
choice, since 6, is a part of the mgu —~L; and Lo and Ly is unknown. This problem can be
avoided by assuming that every variable within L also appear in C7. In this case 6 can be
fully determined by matching all literals within (Cy — {L1}) with literals in C. Actually this
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is a constraint that all variables in a head (L;) of a clause (C}) have to be found in its body
(C1—{L1}). Such clauses are called generative clauses and are often used in the ILP systems.
For example, given the following two clauses

mother (A,B) :- sex(A,female),daughter(B,A) (Cc1)
grandfather(a,c) :- father(a,m),sex(m,female),daughter(c,m) (c)

the absorption ”V” operator as derived above will construct

grandfather(a,c) :- mother(m,c),father(a,m),
sex(m,female) ,daughter(c,m) (C2)

Note how the substitution #; was found. This was done by unifying a literal from C —
daughter (c,m) with a literal from C1 — daughter (B,A). Thus 6; = {A/m, B/c} and L16; =
mother (m,c). (The clause C1 is generative.)

The clause C2 can be reduced by removing the literals sex(m,female) and daughter (c,m).
This can be done since these two literals are redundant (C2 without them resolved with C1
will give the same result, C). Thus the result of the absorption ”V” operator is finally

grandfather(a,c) :- mother(m,c),father(a,m) (€c2)

8.4 Predicate Invention

By combining two resolution V’s back-to-back we get a ”W” operator.

N/ N/
VARV
B1 B2

Assume that C7 and Cy resolve on a common literal L in A and produce By and Bs
respectively. The "W” operator constructs A, C7 and Cs, given By and By. It is important
to note that the literal L does not appear in By and By. So, the ”W?” operator has to introduce
a new predicate symbol. In this sense this predicate is invented by the ”W?” operator.

The literal L can appear as negative or as positive in A. Consequently there are to types
of "W” operators - intra-construction and inter-construction correspondingly.

Consider the two resolution equations involved in the ”W” operator.

Bi = (A= {L})8a, U (Ci — {Li})bc,
where 7 € {1,2}, L is negative in A, and positive in C;, and 64,0, is the mgu of =L and
L;. Thus (A — {L}) 6-subsumes each clause B;, which in turn gives one possible solution
(A—A{L}) =lgg(B1, By), i.e.
A=1gg(B1,B2) U{L}

Then 04, can be constructed by matching (A — {L}) with literals of B;.
Then substituting A in the resolution equation and assuming that 0¢, is empty (similarly
to the ”V” operator) we get

Ci = (Bi —lgg(B1,B2)04,) U{L;}

Since L; = =L6,0;!, we obtain finally
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Ci = (Bi —lgg(B1, B2)0a,) U{~L}04,
For example the intra-construction ”W?” operator given the clauses

grandfather(X,Y) :- father(X,Z), mother(Z,Y) (B1)
grandfather(A,B) :- father(A,C), father(C,B) (B2)

constructs the following three clauses (the arms of the ”W”).

pl(_1,_2) :- mother(_1,_2) (c1)
pl(_3,_4) :- father(_3,_4) (€2)
grandfather(_5,_6) :- p1(_7,_6), father(_5,_7) (A)

The ”invented” predicate here is p1, which obviously has the meaning of ”parent”.

8.5 Extralogical restrictions

The background knowledge is often restricted to ground facts. This simplifies substantially all
the operations discussed so far. Furthermore, this allows all ground hypotheses to be derived
directly, i.e. in that case B A ~E is a set of positive and negative literals.

The hypotheses satisfying all logical conditions can be still too many and thus difficult
to construct and generate. Therefore extralogical constraints are often imposed. Basically
all such constraint restrict the language of the hypothesis to a smaller subset of Horn clause
logic. The most often used subsets of Horn clauses are:

e [Function-free clauses (Datalog). These simplifies all operations discussed above. Ac-
tually each clause can be transformed into a function-free form by introducing new
predicate symbols.

o Generative clauses. These clauses require all variables in the clause head to appear in
the clause body. This is not a very strong requirement, however it reduces substantially
the space of possible clauses.

e Determinate literals. This restriction concerns the body literals in the clauses. Let P
be a logic program, M (P) — its model, ET — positive examples and A : —By, ..., By,
Bp+1, ..., By —aclause from P. The literal B,, 11 is determinate, iff for any substitution
6, such that A0 € E*, and {By,..., By, }0 C M(P), there is a unique substitution &,
such that B,, 4106 € M(P).

For example, consider the program

p(A,D):-a(A,B),b(B,C),c(C,D).
a(1,2).
b(2,3).
c(3,4).
c(3,5).

Literals a(A, B) and b(B, C) are determinate, but ¢(C, D) is not determinate.
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8.6 Illustrative examples

In this section we shall discuss three simple examples of solving ILP problems.
Example 1. Single example, single hypothesis.
Consider the background knowledge B

haswings (X) : -bird (X)
bird(X) :-vulture(X)

and the example ET = {haswings(tweety)}. The ground unit clauses, which are logical
consequences of B A ~E™T are the following:

C = —bird(tweety) N ~wvulture(tweety) A —haswings(tweety)

This gives three most specific clauses for the hypothesis. So, the hypothesis could be any
one of the following facts:

bird(tweety)
vulture (tweety)
haswings (tweety)

Example 2.
Suppose that ET = E; AEy A ... A E, is a set of ground atoms, and C is the set of ground
unit positive consequences of B A ~ET. It is clear that

BA-ETF-ETAC
Substituting for ET we obtain
BA-ETF (=E;ANC)V (=E3ANC)V ...V (=E, AC)

Therefore H = (Ey V =C) A (Ey V =C) A ... A (E, V —C), which is a set of clauses (logic
program).

Consider an example.

B = {father(harry, john), father(john, fred),uncle(harry, jill)}

Et = {parent(harry, john), parent(john, fred)}

The ground unit positive consequences of B A ~E+ are

C = father(harry, john) A father(john, fred) A uncle(harry, jill)

Then the most specific clauses for the hypothesis are F4 V =C' and Es V =C"

parent (harry, john) : -father (harry, john),
father (john,fred),
uncle(harry, jill)

parent (john,fred) : -father (harry, john),
father(john,fred),
uncle (harry, jill)

Then lgg(E; V —C, Ey V =C) is
parent (A,B) :-father(A,B) ,father(C,D) ,uncle(E,F)

This clause however contains redundant literals, which can be easily removed if we restrict
the language to determinate literals. Then the final hypothesis is:

parent (A,B) :-father(A,B)
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Example 3. Predicate Invention.

= {min(X,[X]),3 > 2}

Et ={min(2,[3,2]),min(2,[2,2])}

The ground unit-positive consequences of B A —~E* are the following:
C =min(2,[2]) Amin(3,[3]) A3 > 2

As before we get the two most specific hypotheses:

min(2, [3,2]) :-min(2, [2]) ,min(3, [3]),3>2
min(2,[2,2]) :-min(2, [2]),min(3, [3]),3>2

We can now generalize and simplify these clauses, applying the restriction of determinate
literals.

min(X, [YIZ]) :-min(X,Z) ,¥>X
min(X, [X|Y]) :-min(X,Y)

Then we can apply the ”W?”-operator in the following way (the corresponding substitutions
are shown at the arms of the ?”W?”):

p(B,A) :-B>A min(A, [BIC]) :-min(A,C) ,p(B,A) p(B,B)
\ /\ /
\ /\ /
\ / \ /

\ / \ /
{B/Y,A/Y} / {A/X,B/X,C/Y} {B/X}

\ / \ /
\ {A/X,B/Y,C/Z} \ /

\ / \ /

\ / \ /

\ / \ /
N/ N/
\/ \/

min(X, [Y|Z]) :-min(X,Z) ,¥Y>X min(X, [X]Y]) :-min(X,Y)

Obviously the semantics of the ”invented” predicate p is ”>" (greater than or equal to).

8.7 Basic strategies for solving the ILP problem

Generally two strategies can be explored:

e Specific to general search. This is the approach suggested by condition (1) (Section 1)

allowing deductive inference of the hypothesis. First, a number of most specific clauses
are constructed and then using ”V”, "W?”_ lgg or other generalization operators this
set is converged in one of several generalized clauses. If the problem involves negative
examples, then the currently generated clauses are tested for correctness using the strong
consistency condition. This approach was illustrated by the examples.

General to specific search. This approach is mostly used when some heuristic techniques
are applied. The search starts with the most general clause covering ET. Then this
clause is further specialized (e.g. by adding body literals) in order to avoid covering
of E~. For example, the predicate parent(X,Y) covers ET from example 2, however
it is too general and thus coves many other irrelevant examples too. So, it should be
specialized by adding body literals. Such literals can be constructed using predicate
symbols from B and E*. This approach is explored in the system FOIL [Quinlan,
1990].



Chapter 9

Bayesian approach and MDL

9.1 Bayesian induction

 pH)PEI)
PULIE) = S~ b () P(BI )

9.2 Occams razor

E+ = {0, 000,00000, 000000000},
E~ = {&,00,0000,000000}.

G\ : S — 0/00000000]000000000,
G : S — 00510,

9.3 Minimum Description Length (MDL) principle

—logy, P(H;|E) = —log, P(H;) —log, P(E|H;) + C,
L(H|E)=L(H)+ L(E|H),
L(E) > L(H) + L(E|H).

9.4 Evaluating propositional hypotheses

1 ts
L(R;) = —log, ™ = log, (k)

9.4.1 Encoding exceptions

L(E|H) = log, (tp }Lpf P ) + log, <m ;[nf ”)
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M(H)
—— 0=Q(T)
C
E=Q(1)
Figure 9.1:
9.4.2 Encoding entropy
_ D Pi Ny —p; ng — Pi
e; = —— *logy — — * log, ,

9.5 Evaluating relational hyporheses

9.5.1 Complexity of logic programs

Lpc(E|H) = Z Lpc(AlH).
AeE

Lpc(E|T) = Z log, ¢ = |E| * n xlog, c,
A€E

Lpc(E|L) = > Lpc(A|L) = |E| xlog, |E|.
A€E

9.5.2 Learning from positive only examples
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Unsupervised Learning

10.1 Introduction

Two basic approaches can be distinguished in this area: finding reqularities in data (discovery)
and conceptual clustering. The former approach is basically connected with the famous AM
program [Davis and Lenat,1982], designed originally to discover concepts in mathematics.
AM uses some notions of set theory, operations for creating new concepts by modifying
and combining existing ones, and a set of heuristics for detecting ”interesting” concepts.
For example, AM discovered the natural numbers by modifying its notion of multiset (set
with multiple occurrences of the same element). By using multiset of a single element AM
discovered a representation of natural numbers as multisets and the operation on numbers as
set operations (e.g. {1,1,1} U{1,1} ={1,1,1,1, 1} corresponds to 3+ 2 = 5). The heuristics
which AM used to evaluate the interesting concepts were very domain dependent. Therefore
it was difficult to apply the system in other fields beyond the elementary number theory.

Clustering is known from mathematics, where the basic idea is to group some object in a
cluster using the euclidean distance between them as a criterion for their ”similarity”. When
using structural description of the objects, however, the traditional clustering algorithms fail
to capture any domain knowledge related to the object descriptions. Another disadvantage is
that these algorithms represent clusters extensionally, i.e. by enumerating all their members.
However, an intensional description of the clusters (i.e. such that can be used for classifying
objects by using their descriptions in terms of relations, properties, features etc.) can produce
a semantic explanation of the resulting categories, which is more human-like.

Conceptual clustering is an approach, which addresses the above mentioned problems. We
shall discuss briefly two instances of this approach - CLUSTER /2 [Michalski and Stepp, 1983]
and COBWEB [Gennari et al, 1989].

10.2 CLUSTER/2

This algorithm forms k categories by constructing individual objects grouped around k seed
objects. It is as follows:

1. Select k objects (seeds) from the set of observed objects (randomly or using some selec-
tion function).

2. For each seed, using it as a positive example the all the other seeds as negative examples,
find a maximally general description that covers all positive and none of the negative
examples.

95
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3. Classify all objects form the sample in categories according to these descriptions. Then
replace each maximally general descriptions with a maximally specific one, that cover
all objects in the category. (This possibly avoids category overlapping.)

4. Tf there are still overlapping categories, then using some metric (e.g. euclidean distance)
find central objects in each category and repeat steps 1-3 using these objects as seeds.

5. Stop when some quality criterion for the category descriptions is satisfied. Such a
criterion might be the complexity of the descriptions (e.g. the number of conjuncts)

6. If there is no improvement of the categories after several steps, then choose new seeds
using another criterion (e.g. the objects near the edge of the category).

The underlying idea of the above algorithm is to find necessary and sufficient conditions
for category membership. There is however some psychological evidence that human catego-
rization is based on the notion of prototypicality. For example, the family resemblance theory
[Wittgenstein, 1953] argues that categories are defined by a system of similarities between the
individual members of a category.

Another feature of human categorization is the use of base-level categories. In contrast to
the formal hierarchies used often in AI (e.g. the taxonomic trees, Chapter 1), the humans
mostly use categories which are neither most general, nor most specific. For example, the
concept of ”chair” is most basic than both its generalization ”furniture” and its specialization
”office chair”, and ”car” is more basic than both ”porshe” and ”vehicle”.

The COBWEB algorithm, though not designed as a cognitive model, accounts for the
above mentioned features of human categorization.

10.3 COBWEB

COBWEB is an incremental learning algorithm, which builds a taxonomy of categories with-
out having a predefined number of categories. The categories are represented probabilistically
by the conditional probability p(f; = v;;|cx) with which feature f; has value v;;, given that
an object is in category cg.

Given an instance COBWEB evaluates the quality of either placing the instance in an
existing category or modifying the hierarchy to accommodate the instance. The criterion
used for this evaluation is based on category wutility, a measure that Gluck and Corter have
shown predicts the basic level ound in psychological experiments. Category utility attempts to
maximize both the probability that two objects in the same category have values in common
and the probability that objects from different categories have different feature values. It is
defined as follows:

SN plfi = vig)plfi = vijlex)plerl fi = vij)
k 7 7

The sum is calculates for all categories, all features and all values. p(f; = v;j|ck) is called
predictability, i.e. this is the probability that an object has value v;; for its feature f;, given
that it belongs to category ci. The higher this probability, the more likely two objects in
a category share the same feature values. p(ck|fi = v;;) is called predictiveness, i.e. the
probability that an object belongs to category cy, given that it has value v;; for its feature f;.
The greater this probability, the less likely objects from different categories will have feature
values in common. p(f; = v;;) is a weight, assuring that frequently occurring feature values
will have stronger influence on the evaluation.

Using the Bayes’ rule we have p(a; = v;;)p(crla; = vij) = p(cx)p(a; = vijlci). Thus we
can transform the above expression into an equivalent form:
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> o) Y plfi = vijle)?
k 7 7

Gluck and Corter have shown that the subexpression ;> p(fi = vijck)? is the ezpected
number of attribute values that one can correctly guess for an arbitrary member of class cg.
This expectation assumes a probability matching strategy, in which one guesses an attribute
value with a probability equal to its probability of occurring. They define the category utility
as the increase in the expected number of attribute values that can be correctly guessed, given
a set of n categories, over the expected number of correct guesses without such knowledge.
The latter term is >, >, p(f; = v;;)?, which is to be subtracted from the above expression.
Thus the complete expression for the category utility is the following:

e pler) 225 20,p(fi = vijler)? — p(fi = vig)?]
k

The difference between the two expected numbers is divided by k, which allows us to
compare different size clusterings.
When a new instance is processed the COBWEB algorithm uses the discuss above measure
to evaluate the possible clusterings obtained by the following actions:
— classifying the instance into an existing class;
— creating a new class and placing the instance into it;
— combining two classes into a single class (merging);
— dividing a class into two classes (splitting).
Thus the algorithm is a hill climbing search in the space of possible clusterings using the
above four operators chosen by using the category utility as an evaluation function.
cobweb(Node,Instance)
begin

e If Node is a leaf then begin
Create two children of Node - L and Lo;
Set the probabilities of L to those of Node;
Set the probabilities of Ly to those of Insnatce;
Add Instance to Node, updating Node’s probabilities.
end

e clse begin
Add Instance to Node, updating Node’s probabilities; For each child C of Node, com-
pute the category utility of clustering achieved by placing Instance in C;
Calculate:
S7 = the score for the best categorization (Instance is placed in C);
Sy = the score for the second best categorization (Instance is placed in Cy);
S3 = the score for placing Instance in a new category;
S4 = the score for merging C; and Cs into one category;
S5 = the score for splitting C; (replacing it with its child categories.
end

If S; is the best score then call cobweb(Cy, Instance).

If S5 is the best score then set the new category’s probabilities to those of Instance.

If Sy is the best score then call cobweb(C,,, Instance), where C,, is the result of merging
Cq and Cs.

If S5 is the best score then split C; and call cobweb(Node, Instance).
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end

Consider the following set of instances. Each one defines a one-celled organism using the
values of three features: number of tails, color and number of nucleis (the first element of the
list is the name of the instance):

instance([celll,one,light,one]).
instance([cell2,two,dark,two]) .

instance([cell3,two,light,two]).
instance([cell4,one,dark,three]).

The following is a trace of a program written in Prolog implementing the COBWEB
algorithm:

Processing instance celll ...
Root initialized with instance: node(root,1,1)

Processing instance cell2 ...

Root node:node(root,1,1) used as new terminal node:node(node_1,1,1)
Case cell2 becomes new terminal node(node_2,1,1)

Root changed to: node(root,2,0.5)

Processing instance cell3d ...

Root changed to: node(root,3,0.555553)

Incorporating instance cell3 into node: node(node_4,2,0.833333)
Using old node: node(node_2,1,1) as terminal node.

New terminal node: node(node_7,1,1)

Processing instance celld ...

Root changed to: node(root,4,0.458333)
New terminal node: node(node_10,1,1)
yes

?- print_kb.
d_sub(root,node_10).
d_sub(node_4,node_7).
d_sub(node_4,node_2).
d_sub(root,node_4).
d_sub(root,node_1).

node_10(nuclei, [three-1]).
node_10(color, [dark-1]) .
node_10(tails, [one-1]).

root (nuclei, [one-1,three-1,two-2]).
root(color, [dark-2,1light-2]).
root(tails, [one-2,two-2]).
node_7 (nuclei, [two-1]).

node_7 (color, [1ight-1]).
node_7(tails, [two-1]).

node_4 (nuclei, [two-2]).
node_4(color, [dark-1,1light-1]1).
node_4(tails, [two-2]).
node_2(nuclei, [two-1]).
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node_2(color, [dark-1]).
node_2(tails, [two-1]).
node_1(tails, [one-1]).
node_1(color, [1ight-1]).
node_1(nuclei, [one-1]).

The print_kb predicate prints the category hierarchy (d_sub structures) and the descrip-
tion of each category (node_i structures). The first argument of the node_i structures is the
corresponding feature, and the second one is a list of pairs Val — Count, where Count is a
number indicating the number of occurrences of Val as a value of the feature.
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Chapter 11

Explanation-based Learning

11.1 Introduction

The inductive learning algorithms discussed in Chapters 1-4 generalize on the basis of reg-
ularities in training data. These algorithms are often referred to as similarity based, i.e.
generalization is primarily determined by the syntactical structure of the training examples.
The use of domain knowledge is limited to specifying the syntax of the hypothesis language
and exploring the hierarchy of the attribute values.

Typically a learning system which uses domain knowledge is expected to have some ability
to solve problems. Then the point of learning is to improve the system’s knowledge or system’s
performance using that knowledge. This task could be seen as knowledge reformulation or
theory revision.

Ezxplanation-based learning (EBL) uses a domain theory to construct an explanation of the
training example, usually a proof that the example logically follows from the theory. Using
this proof the system filters the noise, selects only the relevant to the proof aspects of the
domain theory, and organizes the training data into a systematic structure. This makes the
system more efficient in later attempts to deal with the same or similar examples.

11.2 Basic concepts of EBL

1. Target concept. The task of the learning system is to find an effective definition of
this concept. Depending on the specific application the target concept could be a
classification, theorem to be proven, a plan for achieving goal, or heuristic to make a
problem solver more efficient.

2. Training example. This is an instance of the target concept.

3. Domain theory. Usually this is a set of rules and facts representing domain knowledge.
They are used to explain how the training example is an instance of the target concept.

4. Operationality criteria. Some means to specify the form of the concept definition.

11.3 Example

Consider the following domain theory in the form of Prolog facts and rules.
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on(objectl,object2).

isa(objectl,box).
isa(object2,table).
isa(object3,box) .

color(objectl,red).
color(object2,blue).

volume (objectl,1).
volume (object3,6) .

density(objectl,2).
density(object3,2).

safe_to_stack(X,Y) :- lighter(X,Y).
lighter(01,02) :- weight(01,W1), weight(02,W2), Wl < W2.

weight(0,W) :- volume(0,V), density(0,D), W is V * D.
weight(0,5) :- isa(0,table).

The operational criterion defines the predicates which can be used to construct the concept
definition. Those include the facts and arithmetic predicates such as ”>”, 7<” and "is”
(actually this set can be extended to all Prolog built-in predicates).

Depending on the training example - an instance of a safe_to_stack predicate, the fol-
lowing definitions of the target concept can be obtained:

e For training example safe_to_stack(objectl, object3) the concept definition is as fol-
lows:

safe_to_stack(A,B) :-

volume(A,C),
density(A,D),
E is C * D,
volume (B,F),
density(B,G),
His D * G,
E < H.

e For training example safe_to_stack(objectl, object2) the concept definition is as fol-
lows:

safe_to_stack(A,B) :-
volume (A,C),
density(A,D),
E is C * D,
isa(B,table),
E <5

e For training example safe_to_stack(object2,object3) the concept definition is as fol-
lows:
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safe_to_stack(A,B) :-
isa(A,table),
volume (B,C),
density(B,D),
E is C * D,
5 < E

The process of building the target concept definition is accomplished by generalization of
the proof tree for the training example. This process is called goal regression. In the particular
case described above, the goal regression is simply variabalization (replacing same constants
with same variables) of the leaves of the Prolog proof tree and then using that leaves as goals
in the body of the target concept.

11.4 Discussion

In the form discussed here EBL can be seen as partial evaluation. In terms of Prolog this
technique is called some times unfolding, i.e. replacing some body literals with the bodies of
the clauses they match, following the order in which Prolog reduces the goals. Hence in its
pure form EBL doesn’t learn anything new, i.e. all the rules inferred belong to the deductive
closure of the domain theory. This means that these rules can be inferred from the theory
without using the training example at all. The role of the training example is only to focus
the theorem prover on relevant aspects of the problem domain. Therefore EBL is often viewed
as a form of speed up learning or knowledge reformulation.

Consequently EBL can be viewed not as a form of generalization, but rather as special-
ization, because the rule produced is more specific than a theory itself (it is applicable only
to one example).

All these objections however do not undermine the EBL approach as a Machine Learning
one. There are three responses to them:

1. There are small and well defined theories, however practically inapplicable. For example,
consider the game of chess. The rules of chess combined with an ability to perform
unlimited look-ahead on the board states will allow a system to play well. Unfortunately
this approach is not practically useful. An EBL system given well chosen training
examples will not add anything new to the rules of chess playing, but will learn actually
some heuristics to apply these rules, which might be practically useful.

2. An interesting application of the EBL techniques is to incomplete or incorrect theories.
In such cases an incomplete (with some failed branches) or incorrect proof can indicate
the deficiency of the theory and give information how to refine or complete it.

3. An integration of EBL and other similarity based approaches could be fruitful. This can
be used to refine the domain theory by building explanations of successful and failed
examples and passing them as positive and negative examples correspondingly to an
inductive learning system.
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