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Preface

This book is intended as a textbook for an introductory course in scien-
tific computation at an advanced undergraduate level. The mathematical
prerequisites should be covered by a first-year calculus and algebra course.
The book is a translation and revision of a corresponding book by the
first two authors, published in Swedish, Numeriska beräkningar – analys
och illustrationer med MATLABr.

The aim of the book is to give an introduction to some of the ba-
sic ideas in numerical analysis. We cover a comparatively wide range
of material, including classical algorithms for the solution of nonlinear
equations and linear systems, and methods for interpolation, integration
and approximation. We also give an introduction to some areas, which
we think are important in the applications that a science or engineering
student will meet. These areas include floating point computer arithmetic
and standard functions, splines, finite elements and discrete cosine trans-
form. In a few areas (approximation and linear systems of equations) we
have chosen to give a somewhat more comprehensive treatment.

The presentation is heavily influenced by the development of com-
puters and mathematical software. In an environment like Matlab1) it
is possible by simple commands to perform advanced calculations on a
personal computer. This has reduced the general need for students to
learn about algorithmic details, but it maybe has increased the need to
learn about properties of the algorithms. With the ready availability of
advanced software one can easily solve large problems, and in order to be
able to choose the right algorithm, one must know about the complex-
ity of the algorithms (the execution time and storage demand) and the
possibility of exploiting structure, eg a band matrix.

1) Matlabr is a registered trade mark of The MathWorks, Inc. We use Matlab

6.5 in the examples.



vi Preface

In our opinion an introductory course should emphasize the under-
standing of methods and algorithms. In order to really grasp what is
involved in numerical computations, the student must first perform com-
putations using a simple calculator. We supply a number of exercises
intended for this. As the title indicates, we illustrate the algorithms in
Matlab. In the implementations we focus on simplicity and readability
rather than robustness and efficiency. Therefore, these Matlab functions
should not be considered as genuine mathematical software. To see how
much more complicated real mathematical software is, one could compare
our adaptrk45 with Matlabs ode45 (49 and 616 lines of Matlab code,
respectively).

Some of our Matlab functions are collected in a toolbox incbox, which
is available from the authors’ homepages together with other supplemen-
tary material like, eg, a table of formulas.

We wish to thank our colleagues at the Department of Mathematics,
Linköping University and the department of Informatics and Mathemat-
ical Modelling, Technical University of Denmark, for their help and sup-
port during the preparation of the manuscript.

Linköping, June 2004

Lars Eldén Linde Wittmeyer-Koch
www.math.liu.se/∼laeld/ www.math.liu.se/∼liwit/

Lyngby, June 2004

Hans Bruun Nielsen
www.imm.dtu.dk/∼hbn/



Chapter 1

Introduction

1.1. Mathematical Models and
Numerical Approximations

Mathematical models are basic tools in scientific problem solving. Typ-
ically, some fundamental laws of nature are used to derive one or more
equations that model the phenomenon under study. Questions that are
posed in connection with the problem area may be answered through
mathematical treatment of the equations. This is illustrated schemati-
cally in Figure 1.1.

“reality”

restricted

problem

area

questions

answers

mathematical

model

Figure 1.1. Mathematical model.

It is important to remember that the problem area described by the
mathematical model may be very narrow. Further, there are often sim-
plifying assumptions. Therefore, the mathematical model is not an exact
description of reality, and the answers that the model produces must be
checked and compared with experimental results.
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Example. Assume that we throw a ball vertically up with velocity v0. How
high does the ball get?

We choose a simple mathematical model, where gravity is the only force
acting on the ball. Let y denote the height of the ball above the ground,
and let v denote its velocity. Both are functions of time t since the ball was
thrown.

According to Newton’s second law of motion we have
dv

dt
= −g , where g is

the acceleration of gravity. This gives

v(t) = v0 − gt .

The ball reaches its summit at time t1 given by v(t1) = 0,

t1 =
v0

g
,

and the height y1 is found by integrating v(t) =
dy

dt
:

y1 =

∫ t1

0

v(t) dt =

∫ t1

0

(v0 − gt)dt = v0t1 − 1
2gt21 .

If the initial velocity is v0 = 25 m/s (and g = 9.81 m/s2), then t1 = 2.55 s
and s1 = 31.9 m.

In this example it is realistic to ignore air resistance and also that the
acceleration of gravity is a decreasing function of the height. If we want
to study the launching of a rocket, the model gets more complicated.

Example. Consider a small rocket (eg for atmospheric research), which is

launched vertically1) . The rocket weighs 300 kg, including 180 kg fuel.
After start the engine consumes 10 kg fuel every second, and gives a vertical
thrust of 5000 N. The rocket is further affected by gravitation (with accel-
eration of gravity g = 9.81 m/s2) and by air resistance 0.1v2, where v is the
velocity, measured in m/s.

Thus, the mass M , height h and velocity v are functions of time. They
satisfy

M(t) = 300 − 10t ,

v =
dh

dt
,

and Newton’s equation of force, F = (Mv)′ = Mv′ + M ′v, or

Mv′ = 5000 − Mg − 0.1v2 − M ′v .

1) This example is taken from T.J. Akai, Applied Numerical Methods for Engineers,
Wiley, 1994.
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We insert the expression for M and see that we have to solve a system of
differential equations

dh

dt
= v ,

dv

dt
=

5000 − 0.1v2 + 10v

300 − 10t
− g ,

(1.1.1)

with the initial condition h(0) = v(0) = 0.

Note that the model is valid only for t≤ 18. At that time all the fuel has
been used, so there is no upward driving force and the mass is constant.

The mathematical model in this example is an initial value prob-
lem for a system of differential equations: Given the knowledge that
h(0) = v(0) = 0 we want to determine h(t) and v(t) for t > 0. The dif-
ferential equation is nonlinear in v, and there is no simple way to solve it
analytically, ie to find an explicit expression for the solution.

The mathematical model is a good description of the phenomenon
under study, but it does not directly help us to answer questions about
the behaviour of the rocket.

Essentially we have the choice between two alternatives. Either we
can simplify the model so that an analytic solution can be found. For the
problem in the example, this is the case if we ignore the air resistance,
so that both the unknowns h and v occur linearly in the differential
equations. The alternative is to introduce numerical approximations.

Example. By means of the Matlab function ode45 it is easy to compute
approximations to the solution at discrete values of t. First, we define a
function that implements the right hand side in the system of differential
equations:

function dy = rocket(t,y)

dy = [y(2)

(5000 - 0.1*y(2)^2 + 10*y(2))/(300 - 10*t) - 9.81];

The two components of the vector y represent h and v, respectively. Now
we call ode45

>> [t,Y] = ode45(@rocket,[0 18],[0 0]);

The second input variable tells that the problem should be solved for 0≤ t≤ 18,
and the third variable tells that both components of y are zero for t =0.

The output is a vector t with times and an array Y with corresponding values
of the two components of y. The commands
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>> plot(t,Y(:,1),’x’)

>> xlabel(’time’), ylabel(’height’)

display height as function of time and put text on the axes, see Figure 1.2.

2 4 6 8 10 12 14 16 18
0

500

1000

1500

2000

2500

3000

time

he
ig

ht

With air resistance
Without air resistance

Figure 1.2. Approximations of the solution to the

differential equation (1.1.1).

For comparison we also show the solution without the air resistance term,2)

h(t) = (500 − 15g)

(
30 log

30

30 − t
− t

)
− 1

4 gt2 .

The example illustrates that if we simplify the model, so that we can
solve the mathematical problem explicitly, then the results may change so
much that they cannot be used to give a reliable answer to the questions
that we want to ask. Errors are also introduced in the numerical solution,
but here the answers are more reliable because it is possible to estimate
how the approximations affect the accuracy of the solution. The two
alternatives are illustrated schematically in Figure 1.3.

In the rocket example the mathematical problem is to determine a
function that satisfies the initial value problem. We replaced this by
the numerical problem of computing approximations of this function at

2) Throughout the book we use log x to denote the natural logarithm of x.
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Mathematical
model  1    

mathematical
problem     

analytic    
solution    

questions

answers

Mathematical
model  2

mathematical
problem     

numerical   
problem     

numerical   
solution    

approximations

questions

answers

Figure 1.3. Mathematical model and numerical problem.

a number of discrete points. We will now make the notion of a numerical
problem somewhat more precise.

A numerical problem is a clear and unambiguous description of the
functional relation between input data, ie the “independent vari-
ables” of the problem, and output data, ie the desired results. Both
input data and output data consist of a finite number of quantities.

In the rocket example the input data are the initial values (h(0) =
v(0) = 0), and the output data are the approximate values of the solution
at discrete points. In Chapter 10 we describe how the output data are
computed. The description is in the form of an algorithm.

An algorithm for a numerical problem is a complete description of a
finite number of well-defined operations, through which each permis-
sible input data vector is transformed into an output data vector.

In this connection an operation is an arithmetic or logical operation, or
it may be a previously defined algorithm. An algorithm may be described
loosely or in greater detail. A comprehensive description is obtained when
an algorithm is formulated in a programming language.

The objective of numerical analysis is to construct and analyze nu-
merical methods and algorithms for the solution of practical computa-
tional problems. In connection with the above discussion we can give the
following examples of interesting questions in numerical analysis:
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• How large is the discretization error when a derivative is replaced
by a difference quotient?

• How long does it take to solve a certain numerical problem using a
certain algorithm on a certain computer?

• How do the rounding errors of the computer arithmetic influence
the accuracy of the solution?

The answer to the first question will sometimes be given in terms of
a “big O” expression. The notation

g(h)= O(hp) as h→ 0

means that there are numbers p, K and d such that |g(h)| ≤ K·hp for all
|h| ≤ d. Often, we just write g(h) = O(hp), and presuppose “as h→ 0”.

The “big O” concept may also be used in answers to the second ques-
tion: Let n denote the “size” of a numerical problem. We say that the
computational work involved in solving the problem is w(n) = O(nq) if
the number of operations used can be expressed as

w(n) = c1n
q + c2n

q−1 + · · · + cq+1 ,

where q is a positive integer and c1 > 0. As n→∞ the first term dominates
and w(n) ≃ c1n

q.

1.2. Numerical Computation

Numerical analysis is a branch of applied mathematics and dates back
thousands of years, when man first felt the need to construct a calendar,
compute areas and volumes, etc. Short biographies of some of the people
contributing to the development can be found in a special chapter at the
end of the book.

As a separate discipline, numerical analysis can be considered to start
in the 1600s. At that time computation was done by hand, using paper,
pen and logarithmic tables. During the 1900s manual and later electrical
calculators were developed, but as late as the early 1960s the slide rule
was the dominating calculation tool for technical computations. It is
interesting to note the large change that has happened during the last 55
years, since the advent of computers. As an example we will mention that
in the late 1940s the computer solution of a linear system of equations
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with 15 unknowns might take two days. Now, any personal computer
performs this task in a fraction of a second. Today a large system of
linear equations may have more than 105 unknowns, and if the system
is structured (eg if most of the elements in the matrix of the system
are zero), then a powerful computer can handle problems of dimension
107 – 108.

Both with simple and advanced computations the programming envi-
ronment is at least as important as the speed and the memory size of the
computer. The first computers were programmed in machine language,
ie the computer’s own instructions, which were at a hardware level. The
1950s saw the advent of algorithmic programming languages, that allow a
more “mathematical” formulation of the algorithms. Such languages are
under constant development, taking into account changes in computer
architecture3) , and are still the basis of numerical computations.

Starting in the early 1980s new algorithmic programming languages
have been developed, with data types at a higher level and with powerful
standard computations built into the language. In this book we shall use
Matlab to illustrate algorithms and show how relatively complicated
computations can be made by simple instructions. The presentation is
not dependent on the use of Matlab to illustrate the principles; similar
instructions can be found eg in Maple or Matematica. We use Matlab

because it has very high quality and because it is widely used in natural
and technical sciences. We want to emphasize that this book is not meant
as a textbook in Matlab. Also the reader who knows another program-
ming language like eg Fortran 90 or C++ should be able to understand
the Matlab programs without great difficulty.

The basic data type in Matlab (MATrix LABoratory) is a matrix
(scalar quantities are matrices of dimension one), and matrix operations
like addition and multiplication are part of the language. There are also
algorithms for more advanced manipulation of matrices; eg a linear sys-
tem of equations Ax = b is solved (by means of Gaussian elimination)
by the command x = A\b. There are many further numerical algorithms
available, and it is easy to supply with your own algorithms. In the pre-
vious section we used a program for the solution of differential equations

3) The first version of Fortran came in the late 1950s. Fortran 90, which was pre-
sented around 1990, was developed for object oriented programming. A new and
further modernized Fortran standard is planned for release in 2005.
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and implemented the code that described our equations.
Matlab also contains an abundance of algorithms for graphical out-

put4) , for symbolic calculation, a debugger, a report generating system,
and a windows system for file handling. As mentioned, it is easy to ex-
tend the set of available operations, and there a number of “toolboxes”
for different applications. As an example, most of the Matlab functions
discussed in this book are collected in a toolbox named incbox, which can
be downloaded from the authors’ homepages. In short, it can be said
that Matlab is a programming environment rather than a programming
language.

References

The definitions of a numerical problem and an algorithm were taken from

G. Dahlquist, Å. Björck, Numerical Methods, Prentice-Hall,
Englewood Cliffs, N.J., 1974.

There are many textbooks in Matlab, eg

D.J. Higham, N.J. Higham, Matlab Guide, SIAM, Philadelphia,
PA, 2000.

R. Pratap, Getting Started with MATLAB, Version 6, Oxford
University Press, Oxford, 2002.

4) Except for Figures 2.3, 3.5, 5.7, 5.15 and 10.16 all the figures in this book were
made in Matlab.



Chapter 2

Error Analysis and
Computer Arithmetic

In Chapter 1 we illustrated how approximations are introduced in the
solution of mathematical problems that cannot be solved exactly. One of
the tasks in numerical analysis is to estimate the accuracy of the result
of a numerical computation. In this chapter we discuss different sources
of error that affect the computed result and we derive methods for error
estimation. In particular we discuss some properties of computer arith-
metic. Finally, we describe the main features of the standard for floating
point arithmetic, which was adopted by IEEE1) in 1985.

2.1. Sources of Error

Basically there are three types of error that affect the result of a numerical
computation

1. Errors in the input data are often unavoidable. The input data
may be results of measurements with limited accuracy, or real numbers
which must be represented with a fixed number of digits.

2. Rounding errors arise when computations are performed using a
fixed number of digits.

3. Truncation errors arise when “an infinite process is replaced by a
finite one”, eg when an infinite series is approximated by a partial
sum, or when a function is approximated by a straight line.

1) Institute for Electrical and Electronics Engineers. Pronounced “I triple E”.
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Truncation errors will be discussed in connection with different nu-
merical methods. In this chapter we shall examine the other two sources
of error.

The different types of error are illustrated in Figure 2.1, which refers
to the discussion in Chapter 1.

Figure 2.1. Sources
of error.

experiment

construction

mathematical model

mathematical problem

numerical problem

numerical algorithm

2

output data

input data

1

3

We shall use the following notation

RX error in the result, coming from errors in the input data,

RXF error in the result, coming from errors in the function values used,

RC rounding error,

RT truncation error.

The error type RXF is a special case of RX.

2.2. Basic Concepts

Let a denote an exact value, and a an approximation of a, eg

a =
√

2, a = 1.414 .
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We introduce the definitions

Absolute error in a : ∆a = a − a .

Relative error in a :
∆a

a
, (a 6= 0) .

Example. In the above example we have

∆a = 1.414 −
√

2 = −0.0002135 . . . ,

∆a

a
=

−0.0002135 . . .√
2

= −0.0001510 . . . .

In many cases we only know a bound on the magnitude of the absolute
error of an approximation. Also, it is often practical to give an estimate of
the magnitude of the absolute and relative error, even if more information
is available.

Example. Continuing with our example we can write

|∆a| ≤ 0.00022 ,

∣∣∣∣
∆a

a

∣∣∣∣ ≤ 0.00016 ,

or

|∆a| ≤ 0.0003 ,

∣∣∣∣
∆a

a

∣∣∣∣ ≤ 0.0002 .

Note that we must always round upwards in order that the inequalities
shall hold. Relative errors are often given in percentages; in the last
example the error is at most 0.02%.

The following three statements are equivalent

1◦ a = 1.414, |∆a| ≤ 0.22 · 10−3 ,

2◦ a = 1.414 ± 0.22 · 10−3 ,

3◦ 1.41378 ≤ a ≤ 1.41422 .

There are two ways to reduce the number of digits in a numerical
value: rounding and chopping. We first consider rounding of decimal
numbers to t digits: Let η denote the part of the number that corresponds
to positions to the right of the tth decimal. If η < 0.5 · 10−t, then the tth
decimal is left unchanged and it is raised by 1 if η > 0.5 · 10−t. In the
limit case where η = 0.5 · 10−t, the tth decimal is raised by one if it is odd
and left unchanged if it is even. This is called rounding to even. With
chopping all the decimals after the tth are ignored.
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Example. Rounding to 3 decimals:

1.23767 is rounded to 1.238 ,

0.774501 is rounded to 0.775 ,

6.3225 is rounded to 6.322 ,

6.3235 is rounded to 6.324 .

Chopping to 3 decimals:

0.69999 is chopped to 0.699 .

It is important to remember that errors are introduced when numbers
are rounded or chopped. From the above rules we see that when a number
is rounded to t decimals, then the error is at most 0.5 · 10−t, while the
chopping error can be 10−t. Note that chopping errors are systematic: the
chopped result is always closer to zero than the original number. When
an approximate value is rounded or chopped, then the associated error
must be added to the error bound.

Example. Let b = 11.2376 ± 0.1. Since the absolute error can be one unit in
the first decimal, it is not meaningful to give four decimals, and we round
to one decimal, brd = 11.2. The rounding error is

|RC| = |brd − b| = |11.2 − 11.2376| = 0.0376 < 0.04 .

We must add the rounding error to the original error bound,

b = 11.2 ± 0.14 .

This is easily seen if we write

|brd − b| = |brd − b + b − b|
≤ |brd − b| + |b − b| < 0.04 + 0.1 = 0.14 .

The corresponding intervals are illustrated below

11.1376 11.2376 11.3376

11.06 11.20 11.34

Notice that the the rounded interval [11.1, 11.3] does not necessarily contain
the exact value.

The following definitions relate to the concepts of absolute and relative
error.
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If |∆a| = |a− a| ≤ 0.5 · 10−t, then the approximate value a is said to
have t correct decimals.

In an approximate value with t > 0 correct decimals, the digits in
positions with unit ≥ 10−t are called significant digits. Leading
zeros are not counted; they only indicate the position of the decimal
point.

The definitions are easily modified to cover the case when the magni-
tude of the absolute error is larger than 0.5.

Example. From the definitions we have

Approximation with Correct Significant
error bound decimals digits

0.001234 ± 0.5 · 10−5 5 3

56.789 ± 0.5 · 10−3 3 5

210000 ± 5000 2

Note that the approximation

a = 1.789 ± 0.005

has two correct decimals even though the exact value may be 1.794.
The principles for rounding and chopping and the concept of signi-

ficant digits are completely analogous in other number systems than the
decimal system; see Sections 2.4 – 2.5.

2.3. Error Propagation

When approximate values are used in computations, their errors will, of
course, give rise to errors in the results. We shall derive some simple
methods for estimating how errors in the data are propagated in compu-
tations.

In practical applications error analysis is often closely related to the
technology for construction of devices and measurement of physical quan-
tities.

Example. The efficiency of a certain type of solar energy collectors can be
computed by the formula



14 2. Error Analysis and Computer Arithmetic

η = K
QTd

I
,

where K is a constant, known to high accuracy; Q denotes volume flow; Td

denotes temperature difference between ingoing and outgoing fluid; and I
denotes irradiance. The accuracies with which we can measure Q, Td and I
depend on the construction of the solar collector.

Assume that we have computed the efficiencies 0.76 and 0.70 for two solar
collectors S1 and S2, and that the errors in the data can be estimated as
follows,

Collector S1 S2

Q 1.5% 0.5%

Td 1% 1%

I 3.6% 2%

Based on these data, can we be sure that S1 has a larger efficiency than S2?

We return to this example when we have derived mathematical tools that
can help us answer the question.

First, assume that we shall compute f(x), where f is a differentiable
function. Further, assume that we know an approximation of x with an
error bound: x = x± ǫ. If f is monotone (increasing or decreasing), then
we can estimate the propagated error simply by computing f(x− ǫ) and
f(x + ǫ):

|RX| = |∆f | = |f(x) − f(x)|
≤ max{|f(x− ǫ) − f(x)|, |f(x + ǫ) − f(x)|} .

(2.3.1)

A more generally applicable method is provided by the following the-
orem, which will be used repeatedly in the book.

Theorem 2.3.1. Mean value theorem of differential calculus.
If the function f is differentiable, then there is a point ξ between x
and x such that

∆f = f(x) − f(x) = f ′(ξ)(x − x) .

The theorem is illustrated in Figure 2.2.
When the mean value theorem is used for practical error estimation,

the derivative is computed at x, and the error bound is adjusted by adding
an appropriate “safety correction”.
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Figure 2.2. Mean
value theorem.

∆f

x xξ

Example. We shall compute f(a) =
√

a for a = 2.05 ± 0.01. The mean value
theorem gives

∆f = f ′(ξ)∆a =
1

2
√

ξ
∆a .

We can estimate2)

|∆f |<∼
1

2
√

2.05
|∆a| ≤ 0.01

2
√

2.05
= 0.00349 . . . ≤ 0.0036 .

The function f(x) =
√

x is monotone, and by means of (2.3.1) we get

|∆f | ≤ max{|
√

2.04 −
√

2.05|, |
√

2.06 −
√

2.05|}
≤ max{0.00350, 0.00349} = 0.0035 .

In general there are more than one datum in a computation, and all
of them may be approximations. We first examine error propagation for
the four simple arithmetic operations.

Let y = x1 + x2 and assume that we know approximations x1 and x2.
From the definition of absolute error we get

∆y = y − y = x1 + x2 − (x1 + x2) = ∆x1 + ∆x2 .

If we only know bounds for the absolute errors in x1 and x2, we must
take absolute values and use the triangle inequality,

|∆y| = |∆x1 + ∆x2| ≤ |∆x1| + |∆x2| .

A similar analysis of the subtraction y = x1 −x2 shows that

∆y = ∆x1 − ∆x2, |∆y| ≤ |∆x1| + |∆x2| .

We summarize the results for addition and subtraction.

2) The symbol “ <
∼

” means “less than or approximately equal to”.
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y = x1 + x2 , y = x1 − x2 ,

Absolute error : ∆y = ∆x1 + ∆x2 , ∆y = ∆x1 − ∆x2 ,

Error bound : |∆y| ≤ |∆x1| + |∆x2| , |∆y| ≤ |∆x1| + |∆x2| .

This can easily be generalized to an arbitrary number of data. Eg for
y =

∑n
i=1 xi we get |∆y| ≤ ∑n

i=1 |∆xi| .
Next, consider the multiplication y = x1x2. We get

∆y = x1x2 − x1x2 = (x1 + ∆x1)(x2 + ∆x2) − x1x2

= x1∆x2 + x2∆x1 + ∆x1∆x2 .

It is convenient to consider the relative errors,

∆y

y
=

∆x2

x2
+

∆x1

x1
+

∆x1

x1

∆x2

x2
.

If the relative errors in x1 and x2 are small, we can ignore the last term,
so that

∆y

y
≃ ∆x1

x1
+

∆x2

x2
,

and if we take absolute values and use the triangle inequality, we get the
bound ∣∣∣∣

∆y

y

∣∣∣∣ <∼

∣∣∣∣
∆x1

x1

∣∣∣∣ +

∣∣∣∣
∆x2

x2

∣∣∣∣ .

By a similar argument for the division y = x1/x2 we get

∆y

y
≃ ∆x1

x1
− ∆x2

x2
,

∣∣∣∣
∆y

y

∣∣∣∣ <∼

∣∣∣∣
∆x1

x1

∣∣∣∣ +

∣∣∣∣
∆x2

x2

∣∣∣∣ .

We summarize,

y = x1·x2 , y = x1/x2 ,

Relative error :
∆y

y
≃ ∆x1

x1
+

∆x2

x2
,

∆y

y
≃ ∆x1

x1
− ∆x2

x2
,

Error bound :

∣∣∣∣
∆y

y

∣∣∣∣ <∼

∣∣∣∣
∆x1

x1

∣∣∣∣ +

∣∣∣∣
∆x2

x2

∣∣∣∣ ,

∣∣∣∣
∆y

y

∣∣∣∣ <∼

∣∣∣∣
∆x1

x1

∣∣∣∣ +

∣∣∣∣
∆x2

x2

∣∣∣∣ .
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Example. Now we can solve the solar collector problem. The error propagation
formulas for multiplication and division give

∣∣∣∣
∆η

η

∣∣∣∣ ≤
∣∣∣∣
∆Q

Q

∣∣∣∣ +

∣∣∣∣
∆Td

Td

∣∣∣∣ +

∣∣∣∣
∆I

I

∣∣∣∣ .

For collector S1 we get
∣∣∣∣
∆η

η

∣∣∣∣ ≤ (1.5 + 1 + 3.6) · 10−2 = 0.061 ,

so that
|∆η|<∼ 0.76 · 0.061 < 0.046 .

Thus, the efficiency for S1 is in the interval 0.714 ≤ η1 ≤ 0.806 .

The similar computation for S2 gives 0.675 ≤ η2 ≤ 0.725 .

The two intervals overlap, and therefore we cannot be sure that the solar
collector S1 is better than S2.

The following generalization of the mean value theorem is useful for
examination of error propagation in the evaluation of a function f of n
variables, x1, x2, . . . , xn.

Theorem 2.3.2. If the real valued function f is differentiable in a
neighbourhood of x = (x1, x2, . . . , xn) and x = x + ∆x, is a point in
that neighbourhood, then there is a number θ, 0< θ < 1, such that

∆f = f(x) − f(x) =
n∑

k=1

∂f

∂xk
(x + θ∆x)∆xk .

Proof. Define the function F (t)= f(x+ t∆x) . The mean value theorem
for a function of one variable and the chain rule for differentiation give

∆f = F (1)−F (0) = F ′(θ) =
n∑

k=1

∂f

∂xk
(x+ θ∆xk) ∆xk .

When this theorem is used for practical error estimation, the partial
derivatives are evaluated at x= x (the given approximation). When there
are only bound for the errors in the argument x, one can get a bound for
∆f by using the triangle inequality.
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General error propagation formula:

∆f ≃
n∑

k=1

∂f

∂xk
(x) ∆xk .

Maximal error bound:

|∆f |<∼
n∑

k=1

∣∣∣∣
∂f

∂xk
(x) ∆xk

∣∣∣∣ .

Example. Let y = sin(x2
1x2), where x1 = 0.75±10−2 and x2 = 0.413±3 · 10−3.

The maximal error bound gives

|∆y|<∼ | cos(x2
1x2) · 2x1x2∆x1| + | cos(x2

1x2) · x2
1∆x2|

<∼ 0.974 · 2 · 0.75 · 0.413 · 10−2 + 0.974 · 0.752 · 3 · 10−3 ≤ 0.0077 .

The approximate value is

y = sin(0.752 · 0.413) = 0.230229 ± 0.5 · 10−6 .

If we round this to 0.23, we get a rounding error less than 0.03 · 10−2, so that

y = 0.23 ± (0.77 · 10−2 + 0.03 · 10−2) = 0.23 ± 0.8 · 10−2 .

The maximal error bound is very pessimistic if the number of variables
is large. In such cases it is sometimes better to use statistical methods and
to compute an average value for the error of the result, a so-called mean
error. A common practice is to use experimental perturbation analysis,
ie the input data are varied more or less systematically, and it is checked
how sensitive the output data are to such perturbations.

In the above presentation the problem was to compute a real valued
function of several variables. If we have a vector valued function f , ie

f =




f1

f2
...

fm


 ,

then the methods can be used for error estimation of each component
separately, cf Exercise E4.

The relative error of an approximate value is a measure of the infor-
mation content of the approximation. If we want to measure a physical
quantity, eg the distance between two points, it generally calls for more
advanced equipment if we want six significant digits instead of two. When
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the approximation is used in numerical computation, it is important that
there is no unnecessary loss of information.

Example. The approximations

x1 = 10.123456 ± 0.5 · 10−6, x2 = 10.123788 ± 0.5 · 10−6

both have 8 significant digits and relative error less than 0.5 · 10−7. When
we subtract,

y = x1 − x2 = −0.000332 ± 10−6 ,

the approximation of y also has a small absolute error, but the relative error
can be estimated as ∣∣∣∣

∆y

y

∣∣∣∣ ≤
10−6

0.000331
< 0.4 · 10−2 .

Thus, the approximation has only two significant digits.

This is an example of cancellation: When we subtract two almost
equal numbers with errors, the result has fewer significant digits, and the
relative error is larger. Such loss of accuracy can often be avoided by a
mathematically equivalent reformulation of the expression that has to be
computed.

Example. The second degree equation

x2 − 18x + 1 = 0

has the solutions x1 = 9 +
√

80, x2 = 9 −
√

80. If
√

80 is given with four
correct decimals, we get

x1 = 9 + 8.9443 ± 0.5 · 10−4 = 17.9443 ± 0.5 · 10−4 ,

x2 = 9 − 8.9443 ± 0.5 · 10−4 = 0.0557 ± 0.5 · 10−4 .

Thus, the approximation of x1 has six significant digits, and x2 has only
three. Cancellation is avoided by rewriting

x2 =
(9 −

√
80)(9 +

√
80)

9 +
√

80
=

1

9 +
√

80
=

1

17.9443 ± 0.5 · 10−4
.

Then we get

x2 =
1

17.9443
= 0.055728002 . . . .

The error propagation rule for division says that the relative error in x2

(coming from the error in the approximation of
√

80) is at most

0.5 · 10−4

17.9443
< 0.3 · 10−5 ,

so the absolute error is bounded by 0.3 · 10−5 · 0.05573 < 0.17 · 10−6 .

If we round x2 to seven decimals, we get x2 = 0.0557280 ± 0.2 · 10−6 .
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Like the approximation of
√

80 this approximation of x2 has five significant
digits.

Two more examples of reformulations for avoiding cancellation are

√
1 + x −

√
1 − x =

2x√
1 + x +

√
1 − x

,

log a − log b = log
a

b
.

If it is difficult to find a suitable reformulation of an expression of the
form

f(a+ x) − f(a) ,

then cancellation can be avoided by using an appropriate number of terms
in the Taylor expansion around a,

f(a+ x) − f(a) ≃ f ′(a)x +
1

2!
f ′′(a)x2 + · · · + 1

r!
f (r)(a)xr .

Example. For small values of x we have

1 − cos x ≃ x2

2!
+

x4

4!
.

2.4. Representation of Numbers in Computers

The decimal number system is a position system with base (or radix ) 10.
Most computers use a position system with another base (eg 2 or 16), and
therefore we start this section by recalling how numbers are represented
in a position system with arbitrary base β. Let β be a natural number,
β ≥ 2; any positive real number can be written

(dn . . . d2d1d0.d−1d−2 . . .)β ,

where all the dj are integers between 0 and β − 1. The value of such a
number is

dnβn + · · · + d2β
2 + d1β

1 + d0β
0 + d−1β

−1 + d−2β
−2 + · · · .
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Example. (760)8 = 7 · 82 + 6 · 81 + 0 · 80 = (496)10 ,

(101.101)2 = 22 + 20 + 2−1 + 2−3 = (5.625)10 ,

(0.333 . . .)10 = 3 · 10−1 + 3 · 10−2 + 3 · 10−3 + · · · =
1

3
.

The architecture of most computers is based on the principle that
data are stored in main memory with a fixed amount of information as
a unit. This unit is called a word, and the word length is the number of
bits per word. Most computers have word length 32 bits, but some use
64 bits.

Integers can, of course, be represented exactly in a computer, provided
that the word length is large enough for storing all the digits.

In contrast, a real number cannot in general be represented exactly
in a computer. There are two reasons for this: Errors may arise when a
number is converted from one number system to another, eg

(0.1)10 = (0.0001100110011 . . .)2 .

Thus, the number (0.1)10 cannot be represented exactly in a computer
with a binary number system. The other reason is that errors may arise
because of the finite word length of the computer.

How should real numbers be represented in a computer? The first
computers (in the 1940s and early 1950s) used fixed point representation:
For each computation the user decided how many digits in a computer
word were to be used for representing respectively the integer and the
fractional parts of a real number. Obviously, with this method it is diffi-
cult to represent simultaneously both large and small numbers. Assume
eg that we have a decimal representation with word length six digits, and
that we use three digits for decimal parts. The largest and smallest posi-
tive numbers that can be represented are 999.999 and 0.001, respectively.
Note that small numbers are represented with larger relative errors than
large numbers.

This difficulty is overcome if real numbers are represented in the expo-
nential form that we generally use for very small and very large numbers.
Eg we would not write

0.00000000789 , 6540000000000 ,
but rather

7.89 · 10−9 , 6.54 · 1012 .
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This way of representing real numbers is called floating point representa-
tion (as opposed to fixed point).

In the number system with base β any real number X 6=0 can be
written in the form

X = M ·βE ,

where E is an integer, and

M = ±D0.D1D2D3 . . . ,
1 ≤ D0 ≤ β−1 ,
0 ≤ Di ≤ β−1, i = 1, 2, . . . .

M may be a number with infinitely many digits. When a number written
in this form is to be stored in a computer, it must be reduced — by
rounding or chopping. Assume that t +1 digits are used for representing
M . Then we store the number

x = m ·βe ,

where m is equal to M , reduced to t+1 digits,

m = ±d0.d1d2d3 . . . dt ,
1 ≤ d0 ≤ β−1 ,
0 ≤ di ≤ β−1, i = 1, 2, . . . , t ,

and3) e= E. The number m is called the significand or mantissa, and e
is called the exponent . The digits to the right of the point in m are called
the fraction. From the expression for m it follows that

1 ≤ |m| < β .

We say that x is a normalized floating point number .
The range of the numbers that can be represented in the computer

depends on the amount of storage that is reserved for the exponent. The
limits of e can be written

L ≤ e ≤ U ,

where L and U are negative and positive integers, respectively. If the
result of a computation is a floating point number with e> U , then the
computer issues an error signal.This type of error is called overflow . The

3) In the extreme case where we use rounding; all Di = β − 1, i = 0, 1, . . . , t; and
we have to augment the last digit by 1, we get m = ±1.00 . . . 0 and e = E + 1.
We shall ignore this case in the following presentation, but the results regarding
relative error are also valid for this extreme case.
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corresponding error with e< L is called underflow . It is often handled by
assigning the value 0 to the result.

A set of normalized floating point numbers is uniquely characterized
by β (the base), t (the precision), and [L, U ] (the range of the exponent).
We shall refer to the floating point system (β, t, L, U).

The floating point system (β, t, L, U) is the set of normalized floating
point numbers in the number system with base β and t digits for the
fraction (equivalent to t + 1 digits in the significand), ie all numbers
of the form

x = m ·βe ,
where

m = ±d0.d1d2d3 . . . dt ,
0 ≤ di ≤ β−1, i = 1, 2, . . . , t ,
1 ≤ |m| < β ,

and where the exponent satisfies

L ≤ e ≤ U .

It is important to realize that the floating point numbers are not
evenly distributed over the real axis. As an example, the positive float-
ing point numbers in the system (β, t, L, U) = (2, 2,−2, 1) are shown in
Figure 2.3.

0 0.5 1 2 31
Figure 2.3. The positive numbers in the

floating point system (2, 2,−2, 1).

Some typical values of (β, t, L, U) are

β t L U

IEEE standard, single precision 2 23 −126 127

double precision 2 52 −1022 1023

TI-85 pocket calculator 10 13 −999 999

Double precision floating point numbers are available in several pro-
gramming languages, eg Fortran and C, and it is the standard format in
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Matlab. Usually such numbers are implemented so that two computer
words are used for storing one number; this gives higher precision and a
larger range. We return to this in Section 2.8.

Again, we want to emphasize that our notation “The floating point
system (β, t, L, U)” means that the fraction occupies t digits. This nota-
tion is consistent with the IEEE standard for floating point arithmetic,
see Section 2.8. In older literature floating point numbers are often nor-
malized so that β−1 ≤ |m| < 1, and there (β, t, L, U) means that the
significand (equal to the fraction) occupies t digits.

2.5. Rounding Errors in Floating Point
Representation

When numbers are represented in the floating point system (β, t, L, U),
we get rounding errors because of the limited precision. We shall derive
a bound for the relative error.

Assume that a real number X 6= 0 can be written (exactly)

X = M ·βe, 1 ≤ |M | < β ,

and let x = m ·βe, where m is equal to M , rounded to t+1 digits. Then

|m − M | ≤ 1
2β−t ,

and we get a bound for the absolute error,

|x − X| ≤ 1
2β−t ·βe .

This leads to the following bound for the relative error:

|x − X|
|X| ≤

1
2β−t ·βe

|M | ·βe
=

1
2β−t

|M | ≤ 1
2β−t .

The last inequality follows from the condition |M | ≥ 1. Thus, we have
shown

Theorem 2.5.1. The relative rounding error in floating point repre-
sentation can be estimated as

|x − X|
|X| ≤ µ, µ = 1

2β−t .

µ is called the unit roundoff .
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Note that the bound for the relative error is independent of the magni-
tude of X. This means that both large and small numbers are represented
with the same relative accuracy.

Sometimes it is convenient to use an equivalent formulation:

There is an ǫ such that

x = X(1 + ǫ), |ǫ| ≤ µ .

In Section 2.7 we shall see that this formulation is useful in the analysis
of accumulated rounding errors in connection with sequences of arithmetic
operations.

If we have a computer with binary arithmetic, using t+1 digits in the
significand, how accurate is this computer, expressed in terms of decimal
numbers? We must answer this question in order to know how many
decimal digits it is relevant to print.

Example. The floating point system (2, 23,−126, 127) has unit roundoff

µ = 1
2 · 2−23 = 2−24 ≃ 5.96 · 10−8 ≃ 0.5 · 10−7 .

Thus, this system is roughly equivalent to a floating point system with
(β, t) = (10, 7).

Alternative formulations of the above question are: “How many deci-
mal digits correspond to t+1 binary?” and “If the unit roundoff in a
binary floating point system is µ = 0.5·2−t, how many digits must we
have in a decimal system with approximately the same unit roundoff?”
This was the formulation used in the example. In general we have to
solve the equation

0.5 · 10−s = 0.5 · 2−t ,

with respect to s. Taking logarithms, we get s = t log10 2 ≃ 0.3t.

Rule of thumb:

t binary digits correspond to 0.3t decimal digits.

s decimal digits correspond to 3.3s binary digits.

Example. The IEEE standard for single precision arithmetic prescribes t = 23
binary digits in the fraction. This corresponds approximately to a decimal
floating point system with s= 7, since 23 log10 2 ≃ 6.9.
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The standard for Matlab has (β, t) = (2, 52). This corresponds to a decimal
system with s= 16 digits in the fraction.

>> format long e

>> y = sin(pi/4)

y = 7.071067811865475e-01

The result is displayed with 15 digits in the fraction.

The reasoning in this section can easily be modified to floating point
systems with chopping . The only difference is that then the unit roundoff
is µc = 2µ= β−t. Floating point arithmetic with chopping is easier to im-
plement than arithmetic with rounding, but is rarely used today because
the IEEE standard for floating point arithmetic prescribes that rounding
should always be used, see Section 2.8.

2.6. Arithmetic Operations with
Floating Point Numbers

The aim of this section is not to describe in full detail how floating point
arithmetic can be implemented. Rather, we want to show that under
certain assumptions it is possible to perform floating point operations
with good accuracy. This accuracy should then be requested from all
implementations.

Since rounding errors arise already when real numbers are stored in
the computer, one can hardly expect that arithmetic operations can be
performed without errors. As an example, let a, b and c be variables with
t+1 digits, and consider the statement

a := b ∗ c .

In general the product of two t+1 digit numbers has 2t + 1 or 2t +2 digits,
so the significand must be reduced (by rounding or chopping) before the
result can be stored in a.

Before 1985 there did not exist a standard for the implementation
of floating point arithmetic, and different computer manufacturers chose
different solutions, depending on economic and other reasons. In this
section we shall describe a somewhat simplified arithmetic in order to be
able to explain the principles of floating point arithmetic without giving



2.6. Arithmetic Operations in Floating Point 27

too many details. A survey of the IEEE floating point standard is given
in Section 2.8.

We shall describe an arithmetic for the floating point system (β, t, L, U)
and assume rounding. In the numerical examples we use the system
(10, 3,−9, 9).

Computers have special registers for performing arithmetic opera-
tions. The length of these registers (the number of digits they hold)
determine how accurately floating point operations can be performed.
We shall assume that the arithmetic registers hold 2t +4 digits in the sig-
nificand. It is possible to perform the arithmetic operations with the same
accuracy (and faster) using shorter registers, but then more complicated
algorithms are needed.

Apart from arithmetic and logical operations one must be able to per-
form shift operations, which are used in connection with normalization
and to make two floating point numbers have the same exponent. As an
example, a left shift implies that the exponent is decreased:

0.031 · 101 = 3.100 · 10−1 .

We first discuss floating point addition (and at the same time sub-
traction, since x − y = x + (−y)). Let

x = mxβex , y = myβ
ey ,

and let z = fl[x + y] denote the result of the floating point addition. We
assume that ex ≥ ey. If ex >ey, then y is shifted ex−ey positions to the
right before the addition:

1.234 · 100 + 4.567 · 10−2 = (1.234 + 0.04567) · 100

= 1.27967 · 100 .
= 1.280 · 100 .

(The symbol “
.
=” means “is rounded to”). If ex − ey ≥ t +3, then

fl[x + y] = x. Eg

1.234 · 100 + 4.567 · 10−6 = 1.234004567 · 100 .
= 1.234 · 100 .

We get the following addition algorithm4) :

4) This and the following algorithms are at a low level and depend on the computer’s
hardware. We cannot give them in Matlab, but present them in pseudo code.
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Floating point addition z := x + y;

ez := ex; (ex ≥ ey is assumed)
if ex − ey ≥ t +3 then

mz := mx;
else

my := my/βex−ey ; (right shift ex − ey positions)
mz := mx + my;
Normalize; (see below)

endif

If ex − ey < t +3, then my can be stored exactly after the shift, since
the arithmetic register is assumed to hold 2t +4 digits. Also the addition
mx + my is performed without error. In general, the result of these
operations may be an unnormalized floating point number z = mz ·βmz ,
with |mz| ≥ β or |mz| < 1, eg 5.678 · 100 + 4.567 · 100 = 10.245 · 100 or
5.678 · 100 + (−5.612 · 100) = 0.066 · 100. In such cases the floating point
number is normalized by appropriate shifts. Further, the significand must
be rounded to t+1 digits. These two tasks are performed by the following
algorithm that takes an unnormalized, nonzero floating point number
m ·βe as input and gives a normalized floating point number x as output.

Normalize

if |m| ≥ β then
m := m/β; e := e + 1; (right shift one position)

else
while |m| < 1 do

m := m ∗ β; e := e − 1; (left shift one position)
endif
Round m to t+1 digits;
if |m| = β then

m := m/β; e := e + 1; (right shift one position)
endif
if e > U then

x := Inf; (exponent overflow)
elseif e < L then

x := 0; (exponent underflow)
else

x = m ·βe; (the normal case)
endif
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The if–statement after the rounding is needed because the rounding to
t+1 digits can give an unnormalized result:

9.9995 · 103 .
= 10.000 · 103 = 1.000 · 104 .

The multiplication and division algorithms are simple:

Floating point multiplication z := x ∗ y;

ez := ex + ey;
mz = mx ∗ my

Normalize;

Floating point division z := x/y;

if y = 0 then
division by zero; (error signal5) )

else
ez := ex − ey;
mz = mx/my

Normalize;
endif

We have assumed that the arithmetic registers hold 2t + 4 digits. This
implies that the results of addition and multiplication are exact before
normalization and rounding. Therefore, the only error in these operations
is the rounding error. A careful analysis of the division algorithm shows
that the division of the significands can be performed so that the 2t + 4
digits are correct. Therefore, the fundamental error estimate for floating
point representation (Theorem 2.5.1) is valid for floating point arithmetic:

Theorem 2.6.1. Let ⊙ denote any of the arithmetic operators
+,−, ∗ and /, and assume that x ⊙ y 6= 0 and that the arithmetic
registers are as described above. Then∣∣∣∣

fl[x ⊙ y] − x ⊙ y

x ⊙ y

∣∣∣∣ ≤ µ ,

or, equivalently,

fl[x ⊙ y] = (x ⊙ y)(1 + ǫ) ,

for some ǫ that satisfies |ǫ| ≤ µ. µ = 1
2β−t is the unit roundoff.

5) In the IEEE standard the error signal is z := Inf if x 6= 0 and z := NaN (Not–a–
Number) if x = 0, see Section 2.8.
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It can be shown that the theorem is valid even if the arithmetic regi-
sters hold t + 4 digits, only, provided that the algorithms are modified
accordingly.

A consequence of the errors in floating point arithmetic is that some
of the usual mathematical laws are no longer valid. Eg the associative
law for addition does not necessarily hold. It may happen that

fl[fl[a + b] + c] 6= fl[a + fl[b + c]] .

Example. Let a = 9.876 · 104, b = −9.880 · 104, c = 3.456 · 101, and use the
floating point system (10, 3,−9, 9) with rounding. Then

fl[fl[a + b] + c] = fl[−4.000 · 101 + 3.456 · 101] = −5.440 · 101 ,
and

fl[a + fl[b + c]] = fl[9.876 · 104 − 9.877 · 104] = −1.000 · 101 .

Another consequence of the errors is that it is seldom meaningful to
test for equality between floating point numbers. Let x and y be floating
point numbers that are results of earlier computation. Then there is
very small probability that the boolean expression x == y will be true.
Therefore, instead of

if x == y

one should write

if abs(x-y) < delta*max(abs(x), abs(y))

where delta is some small number, slightly larger than the unit round-
off µ.

2.7. Accumulated Errors

As an example of error accumulation in repeated floating point operations
we shall consider the computation of a sum,

Sn =
n∑

k=1

xk .

We assume that the sum is computed in the natural order and let Ŝi

denote the computed partial sum,
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Ŝ1 := x1

Ŝi := fl[Ŝi−1 + xi], i = 2, 3, . . . , n .

If we use the error estimate for addition in the form

fl[a + b] = (a + b)(1 + ǫ), |ǫ| ≤ µ ,
we see that

Ŝi = (Ŝi−1 + xi)(1 + ǫi), |ǫi| ≤ µ; i = 2, 3, . . . , n .

A simple induction argument shows that the final result can be written
in the form

Ŝn = x̂1 + x̂2 + · · · + x̂n , (2.7.1a)

where

x̂1 = x1(1 + ǫ2)(1 + ǫ3) · · · (1 + ǫn) ,

x̂i = xi(1 + ǫi)(1 + ǫi+1) · · · (1 + ǫn), i = 2, 3, . . . , n .
(2.7.1b)

To be able to obtain practical error estimates, we need the following
lemma, the proof of which is left as an exercise.

Lemma 2.7.1. Let the numbers ǫ1, ǫ2, . . . , ǫr satisfy |ǫi| ≤ µ,
i =1, 2, . . . , r, and assume that rµ ≤ 0.1. Then there is a number δr

such that
(1 + ǫ1)(1 + ǫ2) · · · (1 + ǫr) = 1 + δr ,

and

|δr| ≤ 1.06 r µ .

Now we can derive two types of results, which give error estimates for
summation in floating point arithmetic.

Theorem 2.7.2. Forward analysis. If nµ ≤ 0.1, then the error in
the computed sum can be estimated as

|Ŝn − Sn| ≤ |x1| |δn−1| + |x2| |δn−1| + |x3| |δn−2| + · · · + |xn| |δ1| ,

where

|δi| ≤ i · 1.06µ, i = 1, 2, . . . , n− 1 .

Proof. According to (2.7.1) and Lemma 2.7.1 we can write

Ŝ = x1(1 + δn−1) + x2(1 + δn−1) + x3(1 + δn−2) + · · · + xn(1 + δ1) ,
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where the δi satisfy the inequality in the theorem. Subtract Sn and
use the triangle inequality.

Forward analysis is the type of error analysis that we used at the
beginning of this chapter. However, it is difficult to use this method to
analyze such a fundamental algorithm as Gaussian elimination for the
solution of a linear system of equations. The first correct error analysis
of this algorithm was made in the mid 1950s by means of backward error
analysis.

In backward analysis one shows that the approximate solution Ŝ which
has been computed for the problem P is the exact solution of a perturbed
problem P̂, and estimate the “distance” between P̂ and P. By means of
perturbation analysis of the problem it is then possible to estimate the
difference between Ŝ and the true solution S. Examples of this are given
in Chapters 4 and 8.

We cite the following description of the aim of backward error ana-
lysis from J.R. Rice, Matrix computations and mathematical software,
McGraw-Hill, New York, 1981.

“The objective of backward error analysis is to stop worrying about
whether one has the “exact” answer, because this is not a well-
defined thing in most real-world situations. What one wants is to
find an answer which is the true mathematical solution to a problem
which is within the domain of uncertainty of the original problem.
Any result that does this must be acceptable as an answer to the
problem, at least with the philosophy of backward error analysis.”

In the summation case we can formulate

Theorem 2.7.3. Backward analysis. The computed sum can be
expressed as

Ŝn = x̂1 + x̂2 + · · · + x̂n ,
where

x̂1 = x1(1 + δn−1) ,

x̂i = xi(1 + δn+1−i), i = 2, 3, . . . , n .

If nµ ≤ 0.1, then

|δk| ≤ k · 1.06µ, k = 1, 2, . . . , n− 1 .
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The error estimates in these two theorems lead to an important con-
clusion: We can rewrite the estimates in the form

|Ŝn − Sn| ≤
(
(n− 1)|x1| + (n− 1)|x2| + (n− 2)|x3| + · · · + |xn|

)
1.06µ ,

This shows that in order to minimize the error bound, we should add
the terms in increasing order of magnitude, since the first terms have the
largest factors.

Example. Let x1 = 1.234 · 101 ,
x2 = 3.453 · 100 ,
x3 = 3.442 · 10−2 ,
x4 = 4.667 · 10−3 ,
x5 = 9.876 · 10−4 ,

and use the floating point system (10, 3,−90.9) with rounding. Summation
in decreasing and increasing order gives

decreasing order: Ŝ5 = 1.592 · 101 ,

increasing order: Ŝ5 = 1.583 · 101 .

The exact result rounded to 6 decimals is S5 = 1.583306 · 101.

Similarly, a relatively large error may arise when a slowly converging
series is summed in decreasing order.

Example. We have computed the sum

30000∑

n=1

1

n2

in the floating point system (2, 23,−126, 127) with rounding. If we take
the terms in increasing order of n, we get the result 1.644725, while we get
1.644901 if we sum in decreasing order. The last result is equal to the true
value of the sum rounded to 24 binary digits.

It should be pointed out that the major part of the difference between the
two results is due to the fact that when we sum in decreasing order, the last
25904 terms do not contribute to the sum because

fl[S + 1
n2 ] = S for n > 4096 ,

where S is the summation variable. We leave it as an exercise to show this.
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2.8. IEEE Standard for
Floating Point Arithmetic

Above all, it is the development of microcomputers that has made it
necessary to standardize floating point arithmetic. The aim is to facili-
tate portability , ie a program should run on different computers without
changes, and if two computers conform to the standard, then the pro-
gram should give identical results (or almost identical; see the end of this
section).

A proposal for a standard for binary floating point arithmetic was pre-
sented in 1979. Some changes were made, and the standard was adopted
in 1985. It has been implemented in most computers6) . We shall present
the most important parts of the standard for binary floating point arith-
metic without going into too much detail.

The standard defines four floating point formats divided into two
groups, basic and extended, each in a single precision and a double preci-
sion version. The single precision basic format requires a word of length
32 bits, organized as shown in Figure 2.4.

0 8 31

s E f

Figure 2.4. Basic format, single precision.

The components of a floating point number x are the sign s (one bit),
the biased exponent E (8 bits) and the fraction f (23 bits). The value v
of x is

a. v = (−1)s(1.f)2E−127 if 0 < E < 255.

b. v = (−1)s(0.f)2−126 if E = 0 and f 6= 0.

c. v = (−1)s0 if E = 0 and f = 0.

d. v = NaN (Not-a-Number, see below) if E = 255 and f 6= 0.

e. v = (−1)sInf (Infinity) if E = 255 and f = 0.

6) In 1987 a base-independent standard was adopted. This was motivated by the
pocket calculators, which normally use the base β = 10. There have also been
computers using base 8 (octal system, using 3 bits per digit) and base 16 (hex-
adecimal system, using 4 bits per digit). A major argument for these systems is
that they need fewer shifts in connection with the arithmetic operations.
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The normal case is a. Due to the normalization the significand satisfies
1 ≤ |m| < 2. Thus, the integer part is always one, and by not storing this
digit we save an extra bit for the fraction. Also note that the exponent
is stored in biased (or shifted) form. The range of values that can be
obtained with 8 bits is

[(00000000)2, (11111111)2] = [(0)10, (255)10] .

The two extreme values are reserved (cf the above table), so the range of
values for the true exponent e = E − 127 is

[L, U ] = [1− 127, 254 − 127] = [−126, 127] .

This is in accordance with the table on page 23.

Example. The numbers 1, 4.125 = (1 +
1

32
)22 and −0.09375 = −1.5 · 2−4 are

stored as

0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 1 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

One reason for introducing NaN (Not-a-Number) and Inf (Infinity),
items d. and e. above, is to make debugging easier. Both of these are
returned as the result in an exceptional case. Eg the result of 1/0 and
0/0 is Inf and NaN, respectively. Also, NaN is the result of a computation
involving an uninitialized variable, and Inf is returned in case of overflow.
Rather than stopping the execution of the program it may be preferable
to continue, and analyze the output for this debugging information.

In the floating point arithmetic of most computers the result is put
to zero in case of an underflow. The IEEE standard allows the option
“gradual underflow”, item b.

Example. If e < −126, then the floating point number is unnormalized. Eg
the number stored as

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

is 2−4 · 2−126 = 2−130. Note that the leading zeros in f are not significant,
and the bound of the relative representation error grows with increasing
number of leading zeros.
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The smallest nonzero, positive number that can be represented in this way is

2−23 · 2−126 = 2−149 ≃ 1.40 · 10−45 .

The smallest normalized, positive number is

2−126 ≃ 1.18 · 10−38 ,

and the largest number is

(2 − 2−23) · 2127 ≃ 3.40 · 1038 .

The basic double precision format is analogous to the single precision
format. Here, 64 bits are used as illustrated in Figure 2.5. The fraction

0 11 63

s E f

Figure 2.5. Basic format, double precision.

f is given with t = 52 binary digits, the biased exponent is E = e + 1023
and the range of positive, normalized floating point numbers is

[2−1022, (2 − 2−52)21023] ≃ [2.22 · 10−308, 1.80 · 10308] .

Details of the extended single and double formats are left to the imple-
menter, but there must be at least one sign bit and

Extended single: t ≥ 31, L ≤ −1022, U ≥ 1023 .

Extended double: t ≥ 63, L ≤ −16382, U ≥ 16383 .

Example. Intel microprocessors live up to these requirements. They use 80 bits
both for extended single and extended double. One bit is used for the sign,
15 bits for the biased exponent, and 64 bits for the significand, corresponding
to 63 bits for the fraction.

Implementations of the standard must provide the four simple arith-
metic operations, the square root function and binary–decimal conversion.
When every operand is normalized, then an operation (also the square
root function) must be performed such that the result is equal to the
rounded result of the same operation performed with infinite precision.
This implies that Theorem 2.6.1 is valid.
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The standard specifies that rounding is done according to the rules
in Section 2.2. In particular, rounding to even must be used in the limit
case.

The extended formats can be used (by the compiler in some high level
languages) both for avoiding overflow and underflow and to give better
accuracy.

Example. The computation of s :=
√

x2
1 + x2

2 may give overflow or underflow,

even if the result can be represented as a normalized floating point number,
see Exercise E9. If the compiler uses extended precision for the computed
squares and their sum, then overflow or underflow cannot occur.

Example. The “length” of a vector with n elements,

l =

(
n∑

i=1

x2
i

)1/2

,

can be computed by the following program.

Extended real s;
s := 0;
for i := 1 to n do s := s + xi ∗ xi;
l :=

√
s;

If l can be represented (eg in single precision), overflow or underflow cannot
occur. Further, since the significand of the extended format has more digits,
l will be computed more accurately than in the case where s is a basic format
variable. If n is not too large, then l can even be equal to the exact result
rounded to the basic format.

In the beginning of this section we mentioned that even if two com-
puters both apply to the IEEE standard for floating point arithmetic, the
same program does not necessarily give identical results when run on the
two computers. A difference is caused by different implementations of
extended formats. An example is given in Computer Exercise C4.

Exercises
E1. How accurately do we need to know π in order to be able to compute

√
π

with four correct decimals?
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E2. Derive the error propagation formula for division.

E3. (a) Derive the error propagation formula for the function y = log x.

(b) Use the result from (a) to derive the error propagation formula for
the function y = f(x1, x2, x3) = xα1

1 xα2

2 xα3

3 . (This technique is called
logarithmic differentiation).

E4. Let f be a function from R
n to R

m, and assume that we want to compute
f(a), where a is an approximation of a. Show that the general error
propagation formula applied to each component of f leads to

∆f ≃ J ∆a ,

where J is the m×n matrix (the Jacobi matrix) with elements

(J)ij =
∂fi

∂xj
.

E5. (a) Use Taylor expansion to avoid cancellation in ex − e−x, x close to 0.

Use reformulation to avoid cancellation in the following expressions

(b) sinx − cos x, x close to π/4,

(c) 1 − cos x, x close to 0,

(d)
(√

1 + x2 −
√

1 − x2
)−1

, x close to 0.

E6. Let x be a normalized floating point number in the system (β, t, L, U).
Show that r ≤ |x| ≤ R, where

r = βL, R = (β − β−t)βU .

E7. Assume that x and y are binary floating point numbers that satisfy xy > 0
and |y| ≤ |x| ≤ 2|y|. Show that fl[x − y] = x − y.

E8. (a) Show that fl[1 + x] = 1 for all x ∈ [0, µ], where µ is the unit roundoff.

(b) Show that fl[1 + x] > 1 for all x > µ.

(c) Let 1+ǫ be the smallest floating point number greater than 1. Deter-
mine ǫ in the floating point system (2, t, L, U) and compare it to µ.
(This number is sometimes called the “machine epsilon”; it is given
by eps in Matlab).

E9. Show that the computation of s =
√

x2
1 + x2

2 can give overflow or under-
flow even if s is in the range of the floating point system. (As examples
take x1 = x2 = 8 · 105 and x1 = x2 = 2 · 10−5 in the system (10, 4,−9, 9)).
Rewrite the computation so that over- and underflow is avoided for all
data x1, x2 such that the result s can be represented.
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E10. Assume that rµ ≤ 0.1 and that |ǫi| ≤ µ, i= 1, 2, . . . , r. Show that

δr = (1 + ǫ1)(1 + ǫ2) · · · (1 + ǫr) − 1

satisfies |δr| ≤ 1.06 r µ.

Hint: First show that |δr| ≤ (1 + µ)r − 1. Next use that (1 + x)n ≤ enx

for x ≥ 0 and and make a series expansion.

E11. Let Sn =
∑n

i=1 xiyi and let Ŝn denote the computed result. Show that

|Ŝn − Sn| ≤ 1.06µ ·
n∑

i=1

(n+ 2− i)|xiyi| ,

cf Theorem 2.7.2.

E12. Consider the problem in the second example on page 33. Show that when
the summation is performed in decreasing order, then

fl[S + 1
n2 ] = S for n > 4096 ,

where S is the summation variable.

E13. Assume that n = 2k for some positive integer k, and that the sum Sn =∑n
i=1 xi is computed in the order illustrated by the figure:

x
1

x
2

x
3

x
4

x
5

x
6

x
7

x
8

Do a backward error analysis of this summation algorithm and compare
it with Theorem 2.7.3.

E14. (a) Show that the rounding error in floating point representation can be
estimated as

|x − X|
|x| ≤ µ ,

cf Theorem 2.5.1.

(b) Similarly, it can be shown that if x and y are floating point numbers
and ⊙ is any of the four simple arithmetic operators, then

fl[x ⊙ y] − x ⊙ y = θ fl[x ⊙ y], |θ| ≤ µ .
Use this to derive the following estimate of the accumulated error in
floating point summation:

|Ŝn − Sn| ≤ µ

n∑

i=1

|Ŝi| .
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This estimate shows that in order to get a small error, the summation
should be made such that the partial sums are small.

(The exercise is taken from the paper of Espelid given below.)

E15. If extended precision is not available, it may be simulated in connection
with arithmetic operations.

(a) Let |a| and |b| be two floating point numbers and c = fl[a + b]. The
error e = c − (a+ b) can be computed by the algorithm

if |a| < |b| then e := (b − c) + a;
else e := (a − c) + b;

(a1) Use the algorithm in the floating point system (10, 4,−9, 9) with
a = 1.2345, b = 0.045678.

The idea of computing both c and e in c + e = a + b can be used to
improve the accuracy of a computed sum of n elements, see Computer
Exercise C5. It is sometimes called “Møller’s device” and is discussed
pp 83–88 in Higham’s book given in the references below.

(b) Also in connection with multiplication we are able to get a good
estimate of the error: Let x be a t+1 digit number, and write it as

x = x1 + x2 ,

where the first r+1 digits in the significand of x1 are obtained by
rounding x, and there are t−r trailing zero digits.
Let y1 + y2 denote a similar splitting of the floating point number y.
Then

x y = x1y1 + x1y2 + x2y1 + x2y2 .

Now, assume that r + 1 ≤ 1
2 (t+1). Then the first three products are

computed without error, and if r is not too small, then the error in
fl[x2 ∗ y2] will be small compared to xy. By means of Møller’s device
we can write the above expression in the form

x y = p1 + p2 + ǫ ,

where |p2| ≤ µ|xy| and ǫ is even smaller.

(b1) Use this idea in the floating point system (10, 4,−9, 9) with
r = 1, a = 4.3216, b = 7.6543.

(b2) Analyze the method in IEEE double precision when r = 23
(corresponding to single precision).

In Computer Exercise C5 we shall use these two ideas to compute a prod-
uct sum, cf Exercise E11, and in the first exercise of the next chapter we
treat another example of the splitting idea.
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Computer Exercises
C1. The standard format in Matlab is IEEE basic double, so the unit roundoff

is µ = 2−53 ≃ 1.11 · 10−16.

(a) Matlab has a number of predeclared variables that reflect the float-
ing point system. Print realmin, realmax and eps, and compare
them to the results of Exercises E6 and E8.

(b) Find the smallest, strictly positive floating point number in Matlab.

C2. Assume that we want to implement sinh x in IEEE single precision.

(a) Test the accuracy of the expressions

S1(x) =
ex − e−x

2
, S2(x) = x +

x3

3!
+

x5

5!

for x = 10−1, 10−2, . . . , 10−8.

Hint: The Matlab command y = sinh(x) returns the value sinh x
with a relative error bounded by 2−53, and double(single(a))

rounds the Matlab variable a to single precision (with 29 trailing
zeros in the fraction).

(b) Prove that S2 gives full accuracy (ie a relative error bounded by
µ = 2−24) for all x such that 0 < |x| ≤ 0.1.

C3. Write a program for computing the exponential function ex by means of
the Maclaurin series

ex = 1 +
x

1!
+

x2

2!
+

x3

3!
+ · · · .

Compute and add new terms as long as they affect the sum. Investigate
the accuracy for large positive and negative arguments. Explain why the
accuracy is so poor for large negative x.

C4. The theoretical determination of the smallest floating point number x
such that fl[1 + x] > 1 on a certain computer is quite difficult. It de-
mands profound knowledge of details in the implementation of floating
point arithmetic on the computer. The following Matlab program was
executed on a computer that conforms with the floating point standard.

y = 1; i = 100;

while y == 1

i = i - 1;

x = 2^(-53) * (1 + 2^(-i));

y = 1 + x;

end

disp(i)
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The computer uses extended double precision format in the arithmetic
operations and uses double roundings: First 1+x is rounded to 63 bits in
the fraction (extended precision) and next to 52 bits (double precision).
What is the result of the program?

What result do you get on your computer?

On a computer that does not use double rounding one gets the result “51”.
Explain why.

(The example was constructed by Nick Higham.)

C5. Make a Matlab function that takes two n–vectors a and b as input and
returns the product sum S =

∑n
i=1 aibi. The function should use the

ideas given in Exercise E15. Products should be computed with a splitting
corresponding to single precision, r = 23, and Møller’s device should be
used in the summation.

Compare the result with the output from dot(a,b) on the problem given
by a1 = b1 = 1, a2 = 2−30 +1, b2 = 2−30 − 1.

Hint: The splitting of a number x can be obtained by the commands

x1 = double(single(x)); x2 = x - x1;

and the summation can be done by pesum from incbox.
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Chapter 3

Function Evaluation

3.1. Introduction

Numerical computation frequently involves the elementary functions of
mathematics (in connection with mathematical software they are often
called standard functions). This is the case both when the calculation is
done by hand and when a computer is used. It is important to be able to
compute these functions easily and efficiently. In hand calculations it is
sometimes practical to use Taylor expansions of the elementary functions.
Series expansions of non-elementary functions are sometimes used, eg, for
the solution of differential equations.

When series expansions are used for numerical computations, the sum
of the series is approximated by a partial sum. Then one must estimate
the truncation error, the remainder term. In this chapter we describe the
simplest remainder term estimates.

Computer implementations of standard functions are often based on
the approximation of the function by a rational function. Here it is im-
portant both that the approximation satisfies the accuracy requirements,
and that it can be evaluated fast. We briefly describe how a standard
function can be implemented. Then we discuss some numerical aspects
of range reduction, ie how mathematical identities can be used to reduce
the argument for the function to an interval close to zero. Finally, we
give a simplified description of a technique for implementation of trigono-
metric functions.
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3.2. Remainder Term Estimates

Let S =
∑∞

n=1 an be a convergent series (we shall also use S to denote
the sum of the series). We assume that we cannot compute the sum
analytically, but have to approximate it numerically.

The partial sum SN is defined as

SN =
N∑

n=1

an .

We shall use the partial sum as an approximation of S. The corresponding
truncation error, the remainder term, is

RN = S − SN =
∞∑

n=N+1

an .

We shall estimate the truncation error, ie find an upper bound on |RN |.
First, consider the case when the series is alternating and the absolute

value of the terms tends monotonically to zero:

anan+1 < 0, |an| > |an+1|, n =N, N+1, . . . , lim
x→∞

an = 0 .

Figure 3.1 illustrates the partial sums as a function of N . We have chosen

S

N N+1 N+2

Figure 3.1. Partial sums of an alternating series.

N so that SN ≥S. Then it is seen that SN+1 ≤S, SN+2 ≥S, etc. The
partial sums SN , SN+2, SN+4, . . . form a monotone, bounded sequence.
Thus, the series is convergent. We also see that the remainder term can
be approximated by the first neglected term.

The remainder term of a convergent, alternating series can be esti-
mated by the first neglected term,

|RN | ≤ |aN+1| .
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Example. Let S =

∞∑

n=1

(−1)n+1

n2
. We shall compute S with three correct

decimals. How many terms are needed in the partial sum?

The condition is |RN | ≤ 1

(N + 1)2
≤ 0.5 · 10−3 , which is equivalent to

N ≥
√

2000 − 1 ≃ 43.7 . Hence, we must use 44 terms in the partial sum.

We can easily get a good approximation of S with somewhat less work: From
Figure 3.1 we see that if we approximate S by SN + 1

2aN+1, then the error
estimate is only half as large,

S =
(
SN + 1

2aN+1

)
± 1

2 |aN+1| .

With this improvement we get the inequality
1

2(N + 1)2
≤ 0.5 · 10−3 , which

leads to N ≥
√

1000− 1 ≃ 30.6 . Thus, we only need to include 31 terms.

Now, consider the remainder term of a positive series, ie a series with
positive terms, S =

∑∞
n=1 an, an ≥ 0. In some cases such a series can be

written

S =
∞∑

n=1

f(n) ,

where f(x) is a simple function, which is positive and monotonically de-
creasing for x sufficiently large. If a primitive function1) F of f is known,
then we can use the following relation between a sum and an integral,

RN =
∞∑

n=N+1

f(n) ≤
∫ ∞

N
f(x) dx = −F (N) .

(We have of course assumed that F (x) → 0 as x → ∞). Figure 3.2 shows
that the inequality holds.

N N+1 N+2

Figure 3.2. Estimation of a remainder term by an integral.

1) F is a primitive function for the function f , if F ′(x) = f(x).
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Estimation by an integral. Let S =
∑∞

n=N+1 f(n) with f(x)
positive and monotonically decreasing for x > N . The remainder
term can be estimated by

RN =
∞∑

n=N+1

f(n) ≤
∫ ∞

N
f(x) dx .

Example. Let S =

∞∑

n=1

1

n4
. We shall compute S with three correct decimals.

The integral estimate gives

RN ≤
∫ ∞

N

x−4 dx =
1

3N3
≤ 0.5 · 10−3 ,

so that N ≥ (2000/3)1/3 ≃ 8.7. To get three correct decimals we must
therefore include 9 terms in the partial sum. We compute

S ≃ 1.081937 .

Here, we have summed backwards, ie started with the smallest terms, cf
Section 2.7. Our computer is assumed to have unit roundoff µ< 10−7, and
therefore rounding errors in the summation are negligible compared to the
other errors. The remainder term estimate becomes

R9 ≤ 1

3 · 93
≤ 0.458 · 10−3 ,

and we get S = 1.081937 ± 0.458 · 10−3 = 1.0819 ± 0.0005 .

Another method for estimating the remainder term of a positive series
is sometimes useful: If each term in a positive series is less than the
corresponding term in another series, whose sum is known (there is an
analytic expression for it), then one can estimate the remainder term,
using the known series.

Comparison with a known series. Assume that

0 ≤ an ≤ bn , n ≥ N+1 ,

and that TN =

∞∑

n=N+1

bn is known (and convergent). Then

RN =
∞∑

n=N+1

an ≤
∞∑

n=N+1

bn = TN .
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In many cases the known series is a geometric series

TN =

∞∑

n=N+1

c · rn−(N+1)

= c
(
1 + r + r2 + · · ·

)
=

c

1 − r
, |r| < 1 .

Example. The first two terms in the Maclaurin series2) for the exponential
function are

ex ≃ 1 + x .

In how large an interval does this approximation give us four correct deci-
mals?

The remainder term is

R1 =

∞∑

n=2

xn

n!
.

There is no simple way of estimating this by an integral. Therefore we
rewrite the series so that we can estimate by a geometric series:

R1 =
x2

2

(
1 +

x

3
+

x2

3 · 4 +
x3

3 · 4 · 5 + · · ·
)

≤ x2

2

(
1 +

x

3
+

x2

3 · 3 +
x3

3 · 3 · 3 + · · ·
)

=
x2/2

1 − x/3
.

By solving the inequality
x2/2

1 − x/3
≤ 0.5 · 10−4 ,

(do that!) we find that ex ≃ 1 + x gives four correct decimals for

0 ≤ x ≤ 0.009983 .

3.3. Standard Functions

We already noted the importance of being able to evaluate standard func-
tions efficiently and accurately on a computer. Most programming lan-
guages include standard functions that can be used without having to
worry about how they are implemented. In some applications, however,

2) A Maclaurin series is a Taylor series expansion of a function about 0.
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where one works with a very simple processor, it may be necessary for
the programmer to implement the standard functions that are needed.

In this and the next sections we give a brief introduction to some
methods for implementing standard functions. First, we give examples
of approximations of elementary functions, that can be used for the im-
plementations. It is outside the scope of this book to show how these
approximations can be derived. Some basic principles are given in Chap-
ter 9, and we refer to the literature given at the end of this chapter and
Chapter 9. Also see Section 4.7, where we discuss an implementation of
the square root function.

As a rule, the functions are only approximated for small arguments.
In the next section we describe how they can be computed for arbitrary
argument by means of so-called range reduction.

The basic requirements when implementing standard functions are

1) the relative error of the approximation must be smaller than a
given tolerance — in general the unit roundoff of the floating point
system;

2) the algorithm for computing the approximate function values must
be fast.

Since we only approximate the function for small arguments, it is
natural to use a series expansion around x=0. As an example, consider
the approximation by the first four terms in the Maclaurin expansion

sinx ≃ p(x) = x − x3

3!
+

x5

5!
− x7

7!
.

Using the above estimate of the remainder term for an alternating series,
we see that for 0≤x≤π/2 this approximation has an absolute error less
than

(π/2)9

9!
< 1.61 · 10−4 .

Maclaurin expansions are accurate for small arguments, but they be-
come increasingly bad as we move away from the origin. One can de-
termine the coefficients of a polynomial so that it becomes a good ap-
proximation of the function (in our case the sine function) in the whole
interval, cf Chapter 9. Figure 3.3 shows the relative error when sinx is
approximated by p(x) and another degree 7 polynomial

sinx ≃ q(x) = b0x + b1x
3 + b2x

5 + b3x
7 ,

where
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b0 = 0.9999990604, b1 = −0.1666555396 ,

b2 = 0.0083118989, b3 = −0.0001848812 .
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Figure 3.3. Relative error in the approximation of sinx
by the polynomials p(x) (dashed line) and q(x) (full line).

It is seen that the error |(p(x)−sinx)/ sin x| is very small for x<∼ 0.75,
but it grows fast when x is larger. The relative error with the approxi-
mation q(x) is bounded by 10−6 for 0< x≤π/2. Both p(x) and q(x) can
be evaluated at the cost of five multiplications and three additions: First
compute x2 (one multiplication) and then the polynomial according to
the formula3)

q(x) = (((b3 · x2 + b2) · x2 + b1) · x2 + b0) · x .

Some functions can be computed even more efficiently if they are ap-
proximated by a rational function,

f(x) ≃ p(x)

q(x)
,

where p and q are polynomials. As an example we consider the function
f(x) = 2x. In the next section we shall see that if we can get a good
approximation of 2x for small values of x, then it is convenient to approx-
imate the exponential function by using this and the relation

ex = 2x log2 e .

If we approximate 2x on the interval [−1
2 , 1

2 ] by a polynomial,

2x ≃ p(x) ,

and require that the relative error be less than 10−10, then we must use a

3) This method is called Horner’s rule. It is discussed further in Section 4.6.
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polynomial of degree 7. To evaluate this polynomial (with Horner’s rule)
we need 7 multiplications and 7 additions. If, instead we use the rational
approximation

2x ≃ r(x) =
q(x2) + xs(x2)

q(x2) − xs(x2)
,

where

q(y) = 20.8189237703844 + y ,

s(y) = 7.2152891433094 + 0.0576900726822y ,

then we also get the required accuracy, but the computation is consid-
erably faster (provided that division is not much slower than multiplica-
tion). The cost is 3 multiplications, 4 additions and 1 division.

Example. The following Matlab function implements this rational approxi-
mation of 2x. If x is a vector, then r is a vector of the same type, with r(i)

holding the approximation to 2x(i).

function r = exp2(x);

% Rational approximation of 2^x

x2 = x.*x;

q = 20.8189237703844 + x2;

xs = x.*(7.2152891433094 + 0.0576900726822*x2);

r = (q + xs) ./ (q - xs);

The relative error in the approximation is shown in Figure 3.4.
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Figure 3.4. Relative error in the approximation of 2x

by the rational function r(x).

Note that the function satisfies

2−x =
1

2x
,

and our choice of the form of the rational approximation satisfies the same
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relation,

r(−x) =
q(x2) − xs(x2)

q(x2) + xs(x2)
=

1

r(x)
.

This similarity is one of the reasons why this simple r(x) is such a good
approximation of 2x.

In conclusion we state that as a rule there are better approximations
of the standard functions than the Maclaurin expansions. For some func-
tions it is more efficient to approximate by rational functions. In both
cases the coefficients are stored, possibly in hardware. There are books
with tables of approximations of the standard functions; see the references
at the end of this chapter.

3.4. Range Reduction

In the previous section we gave examples of approximations of standard
functions for small arguments. In this section we shall discuss how to
do range reduction, ie use mathematical identities to reduce the func-
tion evaluation for an arbitrary argument to the evaluation for a small
argument.

For trigonometric functions one uses the periodicity, of course. We
take sinx as an example. Assume that we have a function A(x), eg a
polynomial, that approximates sinx well for 0 ≤ x ≤ π/2. Using the
identity

sinx = sin(x + k · 2π) ,

for any integer k, we see that a given argument x can be reduced to the
interval [−π, π] :

v = x − p · 2π ,

for some integer p. The ensuing computation can be described as follows

if v > π/2 then sinx ≃ A(π − v)

elseif v ≥ 0 then sinx ≃ A(v)

elseif v ≥ −π/2 then sinx ≃ −A(−v)

else sinx ≃ −A(v + π)

In all cases the argument of A is a number u∈ [0, π/2], which satisfies

u = |x − nπ| ,
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for some integer n. If the given x is large, there will be cancellation, cf
Section 2.3. We shall analyze rounding errors in a floating point system
with unit roundoff µ. We assume that x−nπ≥ 0, that x and n are exact,
and that π is represented to full accuracy in the floating point system, ie

π = π(1 + ǫ1), |ǫ1| ≤ µ .

(In the sequel any ǫk satisfies |ǫk| ≤ µ). The computed approximation of
u, u = fl[x − nπ] can then be written

u = (x − nπ(1 + ǫ2))(1 + ǫ3)

= x(1 + ǫ3) − nπ(1 + ǫ1)(1 + ǫ2)(1 + ǫ3) = u + ∆u .

If we neglect terms that are O(µ2), we find that the error ∆u can be
estimated as

|∆u| ≃ |(x − nπ)ǫ3 − nπ(ǫ1 + ǫ2)| ≤ (|u| + 2|n|π)µ .

Example. Assume that x=1000 and that we shall compute sinx in IEEE single
precision, ie in the floating point system (2, 23,−126, 127). We get

n = 318, u = 1000 − 318π = 0.973536 . . . .

The unit roundoff is µ = 2−24, and we get a bound for the absolute error,

|∆u| ≤ 1999.1µ < 1.2 · 10−4 .

Now, we use the maximal error bound estimate (see page 18):

|∆(sin x)| ≤ |(cos u)∆u| ≤ (cos 0.973) · 1.2 · 10−4 < 0.68 · 10−4 ,

so that ∣∣∣∣
∆(sin x)

sinx

∣∣∣∣ ≤
0.68 · 10−4

sin 0.973
< 0.83 · 10−4 .

This is, of course, an unacceptably large error in a floating point system with
unit roundoff µ ≃ 6 · 10−8.

The cancellation is reduced if the range reduction is performed in
double precision (or simulated extended precision; see the exercises at
the end of this chapter).

Example. The IEEE double precision format has unit roundoff µ = 2−53 ≃
1.1 · 10−16. If the range reduction of the previous example is performed in
double precision, we get the estimate

∣∣∣∣
∆(sin x)

sinx

∣∣∣∣ ≤ 1.6 · 10−13 .

Go through the estimations!
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In the previous section we indicated that it may be suitable to imple-
ment the exponential function using the formula

ex = 2x log2 e .

The computation involves four steps

u := x log2 e , (log2 e is assumed to be stored accurately)

v := u − [u] , ([u] denotes the closest integer)

w := 2v , (rational approximation)

y := w · 2[u] .

The algorithm is based on using the identity

2v+[u] = 2v · 2[u]

for the range reduction, and it is seen that −0.5≤ v≤ 0.5. If we work
in a floating point system with base 2, then the multiplication by 2[u] is
performed simply by adding the integer [u] to the exponent of w.

Example. Assume that we shall implement the exponential function in IEEE
single precision, ie in the floating point system (2, 23,−126, 127). Then ex is
to be computed for −87.33 ≤ x ≤ 88.72 (smaller values of x give underflow
and larger values give overflow), and the result shall have a relative error less
than the unit roundoff µ = 2−24 ≃ 6 · 10−8. We shall examine how the error
in the first step of the above algorithm is propagated in the computation.

To meet the accuracy requirement, the statement

u := x · log2 e

must be executed in an extended precision format with unit roundoff µ1,
say. Then we get the computed value

u = u(1 + ǫ1)(1 + ǫ2), |ǫ1|, |ǫ2| ≤ µ1 ,

where the two error factors come from roundoff errors in the representation
of log2 e and the multiplication, respectively. We shall assume that [u] = [u],
and get

v = u − [u] = u− [u] + u(ǫ1 + ǫ2) = v + u(ǫ1 + ǫ2) .

Thus, the error in v is bounded by

|∆v|<∼ 2|u|µ1 .

The error in v is propagated in the value w = 2v. Using the maximal error
estimate we get

∆w ≃ dw

dv
∆w = w log 2 · ∆v ,

and the relative bound
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∣∣∣∣
∆w

w

∣∣∣∣ <∼ log 2 · 2|u|µ1 = 2|x|µ1 .

In the reformulation we used that u = x log2 e = x/ log 2.

How many extra bits are needed to ensure that the relative error in w is less
than µ for all x such that |x| ≤ 88.72? Let the significand in the extended
format have 24+ s bits, then the condition is 2 · 88.72 · 2−24−s ≤ 2−24 ,
which gives

s ≥ log(2 · 88.72)

log 2
≃ 7.47 .

Thus, the significand of the extended format must have at least 8 extra bits.
This is in accordance with the IEEE standard, see Section 2.8.

IEEE double precision is the floating point system (2, 52,−1023, 1024). In
this system the largest x such that ex does not overflow is x ≃ 709.98, and
a similar error estimate leads to

s ≥ log(2 · 709.98)

log 2
≃ 10.47 .

This is satisfied when the double precision extended format conforms with
the IEEE standard, which requires at least 11 extra bits in the significand.

3.5. An Algorithm for Evaluation of
Trigonometric Functions

Earlier in this chapter we discussed how elementary functions can be eval-
uated using polynomial or rational approximations. These are the classi-
cal techniques, that are relatively easy to implement, eg in assembler code.
When a processor is designed using VLSI technology, however, it may be
advantageous to implement the elementary functions at a lower level, ie
with simpler operations than multiplications. This is possible because,
with VLSI one can construct more complicated and larger (meaning with
more simple components) systems than with earlier technology. What is
gained is speed; function values can be computed in approximately the
same time as it takes to compute one or a couple of divisions.

In this section we shall describe a method for computing the trigono-
metric functions, which is called Cordic (Coordinate rotation digital com-
puter). It was first presented in 1959, and it has, eg, been used for
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INTEL’s 8087 processor. It can be generalized to compute square roots,
exponential and logarithmic functions, and also multiplication and di-
vision. Our presentation is simplified; we aim at discussing the basic
principles rather than describing an actual implementation.

Let β be an angle, given in radians, and assume that 0 < β < π/2
and that we shall compute sinβ. For reasons of speed the computations
in the Cordic algorithm are performed in fixed point, which means that
it cannot be used if β is very small. We start by identifying a range [0, a]
with the “very small” numbers, and show what to do there. Next, for
β ∈ [a, π/2] the basic idea is to write β in the form

β = v0 ± γ0 ± γ1 ± γ2 ± · · · ,

where the {γi} is a given decreasing sequence of angles, chosen so that the
sequence is finite for a finite precision number β, and so that sinβ is com-
puted by a recursive formula that only involves shifts of the significand
and additions.

The computer is assumed to have a binary floating point system
(2, t, L, U), and the Cordic algorithm is executed in fixed point format
with 2t bits. In the floating point system β ∈ [0, π/2] is given by

β = m2−e ,

where m is the normalized significand and e is a nonnegative integer.
To transform β to the fixed point format, we put the significand m =
1.d1d2 . . . dt in a register with t extra bits, and shift it e steps to the
right, see Figure 3.5. If e> t, then m will be shifted partly or completely
outside the register, and loss of accuracy occurs.

1.d1d2 . . . dt00 . . . 0︸ ︷︷ ︸
t zeros

−→ 0.0 . . . 0︸ ︷︷ ︸
e zeros

1d1d2 . . . dt0 . . . 0

Figure 3.5. Conversion to fixed point format.

For very small β the approximation

sin β ≃ β

is good. According to Section 3.2 the relative truncation error is approx-
imately

1
6β3

β
= 1

6 β2 .
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How large can β = m2−e be without this estimate exceeding the unit
roundoff? The answer is the solution to the inequality

1
6

(
m2−e

)2 ≤ µ = 1
22−t .

This must hold for all m∈ [1, 2[, and we get

4
62−2e ≤ 1

22−t ,
which is equivalent to

e ≥ 1
2(− log2 0.75 + t) .

In other words: If e ≥ 1
2(t + 1), then the relative error in the approxi-

mation sinβ ≃ β is less than µ. This means that we need only use the
Cordic algorithm for angles

β = m2−e, 0 ≤ e ≤ ⌈(t + 1)/2⌉ ,

where ⌈p⌉ denotes the integer part of p. This implies, cf Figure 3.5, that
all the shifted digits stay inside the register, ie no errors are introduced
in the conversion from floating point to fixed point format.

Next, we describe the basic idea
in the Cordic algorithm without any
assumptions about the representa-
tion of β. This is an angle, given in
radians, and we shall compute sinβ,
which is the y-coordinate of the vec-
tor v in the figure.

The computation can be done as
follows: Start with the vector

v0 =

(
1
0

)
.

1 x

1

y

v

v
0β

Figure 3.6. Compute sinβ.

Rotate this vector by a given angle γ0 in the positive direction, and let
v1 denote the corresponding vector, see Figure 3.7.

Define β0 = β, and put

β1 = β0 − γ0 .

If β1 > 0, then rotate v1 a given angle γ1 in the positive direction, denote
the corresponding vector v2 (see Figure 3.8) and put

β2 = β1 − γ1 .

(If β1 < 0, ie if v1 has passed v, then rotate v1 the angle −γ1, and put
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1 x

1

y

v

v
1

β
1

γ
0

Figure 3.7. Rotate v0

to the position v1.

1 x

1

y

v
v

2

β
2

Figure 3.8. The angle β2

is negative.

β2 = β1 + γ1 instead). In Figure 3.8 the vector v2 has passed v and β2 is
negative.

We continue in this way, successively rotating the vector vi to vi+1 by
an angle −γi or γi depending on, whether vi has passed v or not. The
process stops when vi approximates v to the required accuracy. Before we
discuss the choice of the γi we need a precise formulation of the rotations.

Let (xi, yi) be the coordinates of the vector vi. This vector has length
one, and we let θi denote its angle with the x-axis. Then

xi = cos θi, yi = sin θi ,

and the relation θi+1 = θi + γi and use of well-known trigonometric for-
mulas give

xi+1 = cos(θi + γi) = cos θi cos γi − sin θi sin γi = xi cos γi − yi sin γi ,

yi+1 = sin(θi + γi) = sin γi cos θi + cos γi sin θi = xi sin γi + yi cos γi .

This shows that the rotation from vi to vi+1 can be expressed by

vi+1 = Pivi, Pi =

(
cos γi − sin γi

sin γi cos γi

)
.

For obvious reasons the matrix Pi is called a rotation matrix . We shall
discuss such matrices in more detail in Section 8.15.

Let us summarize:
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Cordic algorithm; preliminary version. Let γ0, γ1, . . . be a
given sequence of rotation angles, and define initial values

v0 =

(
1
0

)
, β0 = β .

The vectors vi and angles βi are computed recursively from

vi+1 = Pivi, βi+1 = βi − σiγi, i = 0, 1, 2, . . . ,
where

σi = sign(βi), Pi =

(
cos γi −σi sin γi

σi sin γi cos γi

)
.

This is an iterative method for computing the coordinates of the vector
v, ie cos β and sinβ. It can be shown to converge for suitable choices of
the angles {γ0, γ1, . . .}. (If, eg, we choose γi = 2−iπ/4, then the algorithm
has similarities with the bisection method).

This preliminary version of the algorithm is neither fast nor simple.
Each step of the recursion involves four multiplications and three addi-
tions. Now we shall see that the algorithm is a finite recursion when it is
applied to an angle β given in fixed point format, and that it can be imple-
mented efficiently in a computer, if the angles γi are chosen appropriately.
We remind the reader that our presentation is greatly simplified.

The matrix-vector multiplications are the most costly part of the al-
gorithm. Introduce

ci = cos γi, si = sin γi, ti =
si

ci
= tan γi .

Then we can write the ith rotation in the form

Pivi =

(
ci −σisi

σisi ci

)
vi = ciQivi, Qi =

(
1 −σiti

σiti 1

)
.

If we choose the angles γi so that

ti = 2−i ,

then the multiplication by the matrix Qi becomes very simple: two shift
operations and two additions,

Qivi =

(
1 −σi2

−i

σi2
−i 1

)(
xi

yi

)
=

(
xi − σi2

−iyi

σi2
−ixi + yi

)
.

Assume that also xi and yi are stored in fixed point format. Then it is
obvious that the algorithm is finite: after 2t steps the shift is so large
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that everything is shifted outside the register. The matrix Qi becomes
an identity matrix in the fixed point arithmetic. The recursion for βi is

βi+1 = βi − σiγi, γi = arctan 2−i, i = 0, 1, 2, . . . .

Since arctanx≤x, this also shows that the recursion stops after 2t steps:
γ2t cannot be represented in the fixed point format.

The approximation of the vector v is

v2t = c2t−1 · · · c1c0Q2t−1 · · ·Q1Q0v0

= τQ2t−1 · · ·Q1Q0

(
1
0

)

= Q2t−1 · · ·Q1Q0

(
τ
0

)
.

Note that τ = c2t−1 · · · c1c0 depends on the choice of {γi}, not on the
value of β. Therefore, τ can be computed once and for all.

We summarize:

The Cordic algorithm.

v :=

(
τ
0

)
;

for i := 0, 1, 2, . . . , 2t− 1 do

begin

σ := sign(β);

v :=

(
1 −σ2−i

σ2−i 1

)
v;

β := β − σγi;

end

The result is v =

(
cos β
sinβ

)
in the fixed point format.

We wish to emphasize the following:

1. The algorithm uses fixed point arithmetic only. This is faster than
floating point arithmetic. The operations are simple: shifts and addi-
tions. The only logical operation is a test of the sign of β.
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2. The angles γi = arctan 2−i, i = 0, 1, . . . , 2t− 1, must be stored. For
small angles, however, we have arctan 2−i = 2−i in the finite precision,
and we do not need to store these angles. This way we can reduce the
size of the table.

Example. As a simple example, let t = 4 and β = 1.1875 = (1.0011)2. We
find τ ≃ 0.6073, which is stored in the fixed point format as (0.10011011)2.
In the table below we give the performance of the algorithm (in the same
format).

i γi σi |βi| xi+1 yi+1

0 (0.11001001)2 1 (1.00110000)2 (0.10011011)2 (0.10011011)2
1 (0.01110111)2 1 (0.01100111)2 (0.01001110)2 (0.11101000)2
2 (0.00111111)2 −1 (0.00010000)2 (0.10001000)2 (0.11010101)2
3 (0.00100000)2 1 (0.00101111)2 (0.01101110)2 (0.11100110)2
4 (0.00010000)2 1 (0.00001111)2 (0.01100000)2 (0.11101100)2
5 (0.00001000)2 −1 (0.00000001)2 (0.01100111)2 (0.11101001)2
6 (0.00000100)2 1 (0.00000111)2 (0.01100100)2 (0.11101010)2
7 (0.00000010)2 1 (0.00000011)2 (0.01100011)2 (0.11101010)2

The resulting approximation to sinβ is (1.1101)2 · 2−1 = 0.90625. The true
value is sin β = 0.92743 . . ., and the relative error is

|0.90625 − sinβ|
sin β

≃ 0.02284 < µ = 1
22−4 = 0.03125 .

Exercises
E1. Assume that sin x shall be computed in IEEE single precision and that

we do not have access to extended precision. In the range reduction
u = x − nπ

we can reduce cancellation by using the idea from Exercise E15(b) in the
previous chapter: Write π in the form

π = π0 + R ,

where π0 is exactly representable in the floating point system, with a
number of trailing zeros, eg

π0 = (3.140625)10 = 21 · (1.1001001)2 .

In the floating point system (2, 23,−126, 127) this number has 16 trailing
zeros. The error is

R = π − π0 = 0.00096765 . . . ,
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ie a small number. Let r denote the representation of R in the floating
point system.

Now, the reduced argument is computed as

u = (x − nπ0) − nr .

x is a floating point number, and the difference in the parenthesis can be
computed without error if n is not too large.

Let x = 1000 and n = 318 (cf the examples on page 54).

(a) Show that (x − nπ0) is computed without error.

(b) Estimate the error in the computed u.

E2. Cancellation in connection with range reduction for a trigonometric func-
tion can be disastrous when the argument x is close to an integer multiple
of π. Let u = x − nπ and assume that u is small. Show that∣∣∣∣

∆(sin x)

sin x

∣∣∣∣ <∼

∣∣∣∣
∆u

u

∣∣∣∣ .

Assume that the range reduction is done in IEEE double precision. In how
large an interval around nπ can we not compute sin x to full accuracy in
single precision, ie with an error smaller than the unit roundoff? Only the
errors from the range reduction are to be taken into account.

E3. Show that the recursions in the Cordic algorithm for the two components
of the vector v are independent for i> t and that

(
xi+1

yi+1

)
=

(
xi − σi2

−iyt

yi + σi2
−ixt

)
, i = t + 1, t+ 2, . . . , 2t− 1 .

E4. Compute τ in the Cordic algorithm for t = 23.

E5. For which values of i do we have arctan 2−i .
= 2−i in a fixed point arith-

metic with 46 binary digits and one integer digit?

References

Much of the theory for remainder term estimates is given in textbooks in
analysis. More about transformation of series can be found in
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Chapter 4

Nonlinear Equations

4.1. Introduction

Example. A real root of the equation

f(x) = x − cos x = 0

is an intersection between the graph
of f and the x-axis. From the figure
we see that the equation has a root
x∗ close to 0.75.

How can we determine a good ap-
proximation to the root, and how
can we estimate the accuracy of the
approximation?

0.25 0.50 0.75 1

−1

−0.5

0

0.5

Figure 4.1. The function
f(x) = x − cos x .

In this chapter we study methods for solving an equation

f(x) = 0 ,

where f is a continuous, real-valued function of a real variable. When
needed, we require further regularity properties, eg that f is differentiable.
In Section 4.8 we shall briefly discuss the solution of systems of nonlinear
equations.

Normally, a nonlinear equation f(x) = 0 cannot be solved analytically,
ie the solution cannot be expressed in a form involving only elementary
arithmetic operations and square roots. Algebraic equations (equations
where f(x) is a polynomial) can be solved analytically if the degree is
at most four, but it can be shown that this is in general not possible
for higher degrees. Also, it is generally not possible to give an explicit
expression for the solution to a transcendent equation (that includes tran-
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scendental function like the exponential function and trigonometric func-
tions). Sometimes we do not even know an analytic expression for f(x);
it may eg be defined as the solution to a differential equation, see Chap-
ter 10. In all these cases one has to use a numerical method to solve the
equation f(x) = 0.

Let x∗ denote a root of the nonlinear function f . Then we can write

f(x) = (x − x∗)qg(x) ,

with g(x∗) 6= 0. The exponent q is the multiplicity of the root. It follows
that

f ′(x) = q(x − x∗)q−1g(x) + (x − x∗)qg′(x) ,

and if q > 1 then also f ′(x∗) = 0. Unless otherwise indicated, we shall
assume that x∗ is a simple root , ie q = 1, in which case f ′(x∗) 6= 0.

The basic idea behind most numerical methods for solving nonlinear
equations is, first to find a crude approximation x0 to the root. Next,
from x0 construct a sequence {xk}∞k=1 that converges to the root,

lim
k→∞

xk = x∗ .

A method that produces such a sequence is called an iteration method .
We start by describing some ways of constructing iteration methods.

Next, we discuss conditions for convergence. In most applications it is
desirable that the sequence converges fast. We define order of convergence
and investigate it for some methods. In practice calculations are made
with finite precision, and we examine the accuracy that can be obtained.
In case of convergence this accuracy is achieved after a finite number
of steps, so that the infinite sequence {xk}∞k=1 is stopped after a finite
number of steps. We also describe a method for implementing the square
root function on a computer.

4.2. Crude Localization

When solving a nonlinear equation f(x) = 0 you first have to find a crude
approximation x0 to the desired root. There are three ways to do this,

1. from a graphical presentation of the function,
2. by tabulating the function,
3. by use of the bisection method.
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From a graph one can often get more information than just the ap-
proximate location of the root.

Example. Figure 4.1 shows that the function f(x) = x − cos x has only one
root in the interval [0, 1] and it is close to x0 = 0.75. If we draw the function
in a larger interval we see that the function has precisely one root.

We can make a small table of f(x) = x − cos x:

x cos x f(x)

0.7 0.7648 −0.0648
0.8 0.6967 0.1033

Since f is continuous and there is a sign change in the function values, there
must be a root in the interval [0.7, 0.8]. For x0 we can eg take one of the
endpoints or the midpoint of this interval.

When we know an interval that contains a root – a so-called bracket –
we can successively refine it by the bisection method : Let [a, b] denote the
interval with f(a) · f(b) < 0, and let m be the midpoint, m = (a+b)/2.
If f(m) · f(b) > 0, then the root is in [a, m] (b := m), otherwise it is in
[m, b] (a := m), and this subdivision can be repeated.

Example. For the function f(x) = x − cos x we saw in the previous example
that [a, b] = [0.7, 0.8] is a bracket, and f(b) > 0. Since f(0.75) = 0.0183 > 0,
we get the new bracket [0.7, 0.75]. Next, f(0.725) < 0, so that the next
bracket is [0.725, 0.75], etc.

The following Matlab function implements the bisection method.

function [a, b] = bisection(f, a0,b0, tol)

% Bisection to find root of f. Start interval [a0,b0]

% with f(a0)*f(b0) < 0 (is not checked)

% Repeat until the interval is smaller than tol

a = a0; b = b0; sfb = sign(feval(f, b)) % initialize

while b-a > tol

x = (a + b)/2; sfx = sign(feval(f, x));

disp([a b sfx])

if sfx == 0 % f(x) = 0

a = x; b = x; break % return with a = b = x

elseif sfx == sfb, b = x;

else, a = x; end

end

We further define

function y = fx(x)

y = x - cos(x);
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Then the command

>> [a b] = bisection(@fx, 0.7, 0.8, 1e-3);

gives

sfb = 1

a b sfx

0.70000000 0.80000000 1

0.70000000 0.75000000 -1

0.72500000 0.75000000 -1

0.73750000 0.75000000 1

0.73750000 0.74375000 1

0.73750000 0.74062500 -1

0.73906250 0.74062500 1

The resulting interval is [a, b] = [0.73906250, 0.73984375].

It is clear that this method always converges, but the speed of con-
vergence is low. After k steps with the method the length of the interval
is 2−k times the length of the initial interval (except in the unlikely case
where an interval midpoint is a root of f).

Example. In the previous example we started with an interval of length 0.1.
In order to get b−a ≤ tol = 10−3 we have to reduce the interval length by
a factor 100, so we need 7 steps (27 = 128 > 100, while 26 = 64 < 100). To
get b−a ≤ 10−6 we need 17 steps; the midpoint of the resulting interval is
the root with 6 correct decimals.

4.3. Iteration Methods

Because of the slow convergence the bisection method should only be used
for crude localization of the root. In this section we describe methods with
faster convergence. The idea is to use information about the function f
and the approximate location of the root to compute a new and more
accurate approximation. As a rule of thumb we can say that the more
information about f one uses, the faster convergence one gets.

A natural idea is to approximate the curve y = f(x) by its tangent
at the current point, see Figure 4.2. Suppose that we have an approx-
imation x0 to the root. We take the tangent to the curve at the point
(x0, f(x0)) and let the intersection between the tangent and the x-axis be
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Figure 4.2. Approximate
the curve by its tangent. x0x1x2

the next approximation x1. The tangent has the equation

y − f(x0) = f ′(x0)(x − x0) ,

and by setting y = 0 we get the intersection with the x-axis,

x1 = x0 −
f(x0)

f ′(x0)
.

We can proceed the same way from this approximation to the root, and
the general formula is

Definition 4.3.1. Newton-Raphson’s method

xk+1 = xk − f(xk)

f ′(xk)
.

Instead of the geometric derivation we could have used an analytic
approach: For a given approximation xk to the root we seek h such that
f(xk+h) = 0. We expect h to be small, so that a good approximation is
provided by the first two terms of a Taylor expansion around xk,

f(xk+h) ≃ f(xk) + f ′(xk)h .

If f ′(xk) 6= 0, we can equate the right-hand side with zero and solve for h.
This, of course, is only an approximation to the true value h = x∗ − xk,
so we index the solution with k,

hk = − f(xk)

f ′(xk)
,
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and take xk+1 = xk + hk as the next approximation to the root. The
result agrees with Definition 4.3.1.

In Newton-Raphson’s method we use values of both the function and
its derivative, and according to the rule of thumb in the first paragraph
of this section we can expect fast convergence.

Example. The problem of the previous examples has

f(x) = x − cos x, f ′(x) = 1 + sinx .

This can be implemented in Matlab by

function [f, df] = fdf(x)

f = x - cos(x);

df = 1 + sin(x);

The following Matlab script performs two iterations with Newton-Raphson’s
method from the starting point x0 = 0.7.

x = 0.7;

for k = 0:1

[f, df] = fdf(x); dx = f/df;

x = x - dx;

end

We printed out the results:

k x_k f(x_k) f’(x_k) dx

0 0.700000000000 -6.48e-02 1.64422 -0.039436497848

1 0.739436497848 5.88e-04 1.67387 0.000351337383

2 0.739085160465 4.56e-08 1.67361 0.000000027250

There seems to be fast convergence, but since we do not get the function
value zero, we must ask the question: How accurate is the approximation
x = x2 = 0.739085160465 ? The answer is given in Section 4.5.

In the next section we shall study convergence criteria and rate of
convergence in some detail. For that discussion it is practical to write
Newton-Raphson’s method in the form

xk+1 = ϕ(xk) ,

where the iteration function ϕ(x) is

ϕ(x) = x − f(x)

f ′(x)
.

Note that the equation x = ϕ(x) is an equivalent way of writing f(x) = 0:
the equation f(x) = 0 can be put into the form x = ϕ(x) by elementary
mathematical operations, and vice versa. Since x∗ is a solution to the
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equation f(x) = 0, we have
x∗ = ϕ(x∗) .

x∗ is said to be a fixed point of the map x 7→ ϕ(x), and an iteration
method xk+1 = ϕ(xk) is called a fixed point iteration.

Fixed point iterations can be obtained in other ways than the one
leading to Newton-Raphson’s method.

Example. The equation x − cos x = 0 can be reformulated to x = cos x, and
the corresponding iteration method is

xk+1 = cos xk .

Starting with x0 = 0.7 we get the results shown in the following table. It
seems that the sequence x1, x2, . . . converges and that the error is reduced
by a factor about 0.7 in each iteration.

k xk ǫk = xk−x∗ ǫk/ǫk−1

0 0.70000000000000 -3.9085e-02

1 0.76484218728449 2.5757e-02 0.6590

2 0.72149163959753 -1.7593e-02 0.6831

3 0.75082132883945 1.1736e-02 0.6671

4 0.73112877257336 -7.9564e-03 0.6779

...
48 0.73908513299150 -2.2366e-10 0.6736

49 0.73908513336582 1.5066e-10 0.6736

50 0.73908513311367 -1.0149e-10 0.6736

The iteration process is illustrated in Figure 4.3.

Figure 4.3. Convergent
fixed point iteration.
x0 = 0.4 . 0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1
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Another equivalent reformulation of f(x) = x − cos x = 0 is x = arccos x.
The iteration method xk+1 = arccos xk is divergent, however:

k xk ǫk = xk−x∗ ǫk/ǫk−1

0 0.70000000000000 -3.9085e-02

1 0.79539883018414 5.6314e-02 1.4408

2 0.65113098931890 -8.7954e-02 1.5619

3 0.86172266836514 1.2264e-01 1.3943

4 0.53214115489645 -2.0694e-01 1.6874

5 1.00966880945946 2.7058e-01 1.3075

Obviously, we need to analyze under which conditions the function ϕ
gives a convergent fixed point iteration xk+1 = ϕ(xk). This is the subject
of the next section. Before that, however, we present an iteration method,
which is not of the form xk+1 = ϕ(xk).

Consider the equation f(x) = 0, where f is differentiable, but the
derivative is not readily available (an example is given in Section 10.11).
Suppose that we have two approximations to the root, x0 and x1, then
we can approximate the curve by the secant trough the points (x0, f(x0))
and (x1, f(x1)) and take intersection between the secant and the x-axis
as the next approximation x2, see Figure 4.4.

Figure 4.4. Approximate
the curve by a secant. x0x1x2x3

The secant has the equation

y − f(x1) =
f(x1) − f(x0)

x1 − x0
(x − x0) ,
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and by setting y = 0 we get the intersection with the x-axis,

x2 = x1 − f(x1)
x1 − x0

f(x1) − f(x0)
.

This generalizes:

Definition 4.3.2. The secant method

xk+1 = xk − f(xk)
xk − xk−1

f(xk) − f(xk−1)
, k = 1, 2, . . .

The secant method can also be derived from Newton-Raphson’s method
by using the approximation1)

f ′(xk) ≃
f(xk) − f(xk−1)

xk − xk−1
.

Example. In the first example on page 67 we found that the equation x− cos x
= 0 has a root in the interval [0.7, 0.8], and we use x0 = 0.7, x1 = 0.8. The
following Matlab script performs three steps with the secant method; the
function fx was defined on page 67.

xx = [0.7 0.8]; ff = fx(xx);

for k = 2 : 4

nx = xx(2) - ff(2)*diff(xx)/diff(ff);

xx = [xx(2) nx]; ff = [ff(2) fx(nx)];

end

We printed out the results:

k x_k f(x_k) x_k - x*

0 0.70000000000000 -6.48422e-02 -3.90851e-02

1 0.80000000000000 1.03293e-01 6.09149e-02

2 0.73856544025090 -8.69665e-04 -5.19693e-04

3 0.73907836214467 -1.13321e-05 -6.77107e-06

4 0.73908513399236 1.30073e-09 7.77202e-10

By looking at the function values and comparing with the table on page 70 we
see that in this case the secant method converges almost as fast as Newton-
Raphson’s method. We return to this at the end of the next section.

1) The right-hand side is a difference approximation to the derivative f ′(xk); see
Section 6.2
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4.4. Convergence Criteria and Rate of
Convergence

Consider the fixed point iteration

xk+1 = ϕ(xk) .

Convergence of the sequence {xk}∞k=0 to x∗ is equivalent with convergence
of the sequence {xk − x∗}∞k=0 to 0. Since x∗ = ϕ(x∗), we can write

xk − x∗ = ϕ(xk−1) − ϕ(x∗) ,

and by means of the mean value theorem we get

xk − x∗ = ϕ′(ξk)(xk−1 − x∗) ,

where ξk is between xk−1 and x∗. If

|ϕ′(ξk)| ≤ m < 1

for some constant m, then

|xk − x∗| ≤ m|xk−1 − x∗| < |xk−1 − x∗| .

The condition |ϕ′(x)| ≤ m < 1 close to x∗ is a sufficient condition for
convergence, since then

|xk − x∗| ≤ m|xk−1 − x∗| ≤ m2|xk−2 − x∗|
≤ · · · ≤ mk|x0 − x∗| ,

(4.4.1)

and mk → 0 for k → ∞. We formulate this more strictly as a theorem.

Theorem 4.4.1. Assume that the iteration function ϕ has a real
fixed point x∗, and that

|ϕ′(x)| ≤ m < 1

for all x∈I, where I is an interval around x∗,

I = {x
∣∣ |x − x∗| ≤ δ} ,

for some δ. If x0 ∈I, then

a) xk ∈I, k = 1, 2, . . . ,

b) lim
k→∞

xk = x∗ ,

c) x∗ is the only root in I of the equation x = ϕ(x).
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Proof. a) is proved by induction. Assume that xk−1 ∈I. The mean
value theorem gives

xk − x∗ = ϕ(xk−1) − ϕ(x∗) = ϕ′(ξk)(xk−1 − x∗) ,

and since xk lies between xk−1 and x∗, ξk must lie in I. Therefore,

|xk − x∗| ≤ m|xk−1 − x∗| ≤ mδ < δ ,

which means that xk ∈I, and a) is proved.

From the above argument it follows that |xk − x∗| ≤ m|xk−1 − x∗| is
true for k = 1, 2, . . .. Therefore (4.4.1) holds, and m < 1 implies that

lim
k→∞

|xk − x∗| = 0 ,

and we have proved b).

Uniqueness is proved by contradiction: Assume that there is another
point x̂∗ ∈I, x̂∗ = ϕ(x̂∗), x̂∗ 6=x∗. The mean value theorem and the
assumptions give

|x∗ − x̂∗| = |ϕ′(ξ)|·|x∗ − x̂∗| ≤ m|x∗ − x̂∗| < |x∗ − x̂∗| ,

which is a contradiction.

Example. Consider the two fixed point iterations from the example starting on
page 71,

ϕ(x) = cos x , ϕ(x) = arccos x .

Both of these have the fixed point x∗ ≃ 0.739085.

In the first case we have ϕ′(x) = − sin x and |ϕ′(x)| ≃ 0.6736 < 0.7 close to
x∗. According to the theory the iteration is convergent, and this agrees with
the experimental result.

In the second case we have ϕ′(x) = −1/
√

1 − x2 and |ϕ′(x)| ≃ 1.485 > 1
close to the root. Hence, the iteration is divergent.

From the proof of Theorem 4.4.1 its is seen that the smaller m is, the
faster is the convergence of the iteration. For Newton-Raphson’s method
we get

ϕ(x) = x − f(x)

f ′(x)
, ϕ′(x) =

f(x)f ′′(x)

(f ′(x))2
.

We see that ϕ′(x∗) = 0, and if ϕ′ is continuous, then ϕ′(x) is small for
x close to x∗. Therefore, Newton-Raphson’s method should converge
rapidly once one is close to the root. To see how fast the convergence is,
we make a Taylor expansion around x∗:
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ϕ(xk) = ϕ(x∗) + ϕ′(x∗)(xk − x∗) + 1
2ϕ′′(ξk)(xk − x∗)2 ,

where ξk is between xk and x∗. Since ϕ(x∗) = x∗; ϕ′(x∗) = 0 and
ϕ(xk) = xk+1, we get

xk+1 − x∗ = 1
2ϕ′′(ξk)(xk − x∗)2 .

This shows that Newton-Raphson’s method converges faster than fixed
point methods in general.

In order to compare different iteration methods we make the following
definition.

Definition 4.4.2. Let x0, x1, x2, . . . be a sequence that converges
to x∗. The order of convergence of the sequence is p, defined as the
largest positive number such that

lim
k→∞

|xk+1 − x∗|
|xk − x∗|p = C < ∞ .

C is called the asymptotic error constant .

For p = 1 and p = 2 the convergence is said to be linear and quadratic,
respectively.

Often we say that an iteration method has order of convergence p if it
generates sequences with this order of convergence. In general, convergent
fixed point iterations have linear convergence with asymptotic error con-
stant C = ϕ′(x∗). Newton-Raphson’s method has quadratic convergence
with

C = 1
2ϕ′′(x∗) =

f ′′(x∗)

2f ′(x∗)
.

Example. For a> 0 we can compute
√

a by solving the equation f(x) =
x2 − a = 0. Newton-Raphson’s method applied to this equation gives

xk+1 = 1
2

(
xk +

a

xk

)
.

(Show this!) For a= 3, x0 = 2 we get

k xk x2
k − 3 ǫk = xk−

√
3 |ǫk|/ǫ2k−1

0 2 1 2.6795e-01

1 1.75000000000000 6.2500e-02 1.7949e-02 0.2500

2 1.73214285714286 3.1888e-04 9.2050e-05 0.2857

3 1.73205081001473 8.4727e-09 2.4459e-09 0.2887

4 1.73205080756888 -4.4409e-16 0
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Both the column of function values and the column of errors are typical for
an iteration with quadratic convergence: the exponents of the numbers are
roughly doubled in each step. The values in the last column converge to the
asymptotic error constant

C =
2

2 · 2x∗ =
1

2
√

3
≃ 0.2887 .

The computation was made in Matlab with unit roundoff µ ≃ 1.01e-16,
and x4 is identical with the floating point representation of

√
3.

We return to the computation of square roots in Section 4.7.

As a rule of thumb (not to be confused with a general mathematical
truth) we say that when Newton-Raphson’s method is used, the number
of correct decimals is doubled in every iteration step.

The following can be shown:

Newton-Raphson’s method always converges to a simple root if the
initial approximation x0 is chosen close enough to the root x∗.

If an interval I containing the root x∗ is known, it may be quite easy
to verify that the condition for convergence of Newton-Raphson’s method
is satisfied,

|ϕ′(x)| =

∣∣∣∣∣
f(x)f ′′(x)
(
f ′(x)

)2

∣∣∣∣∣ ≤ m < 1 for x ∈ I .

Normally, however, one does not bother to check convergence beforehand,
since a divergent iteration will show up very quickly. There are impor-
tant special cases, where it is quite easy to prove that Newton-Raphson’s
method converges, see Section 4.7.

Neither the bisection method nor the secant method is a fixed point
iteration, and we cannot use the above results directly. For the bisection
method, however, we know that the upper bound on the error is halved
in each step, so the bisection method is equivalent to an iteration method
with linear convergence and asymptotic error constant C = 0.5.

A closer analysis shows that the sequence of approximations generated
by the secant method can be expressed as in Definition 4.4.2 with

p =
1 +

√
5

2
≃ 1.618, C =

( f ′′(x∗)

2f ′(x∗)

)1/p
.
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Thus, the convergence is better than linear, but not as fast as quadratic.
The general theory for iteration methods can be found in the refer-

ences given at the end of the chapter.

4.5. Error Estimation and Stopping Criteria

When approximations of a root x∗ are computed by an iteration method,
there will be rounding errors, but Theorem 4.4.1 shows that as long as
these errors do not bring us outside the interval I, they do not affect the
final accuracy. In this respect iteration methods are self-correcting.

The order of convergence of an iteration method tells about the asymp-
totic behaviour, ie the behaviour when xk is close to the root, and this
may take a large number of steps. In practice one has to stop after a finite
number of steps, and a relevant question is: Given an approximation x to
the simple root x∗, how far is x from x∗? Again, we use the mean value
theorem:

f(x) = f(x) − f(x∗) = f ′(ξ)(x − x∗) ,

where ξ lies between x and x∗. Since x∗ is a simple root, we have
f ′(x∗) 6= 0, and if x is close to x∗ (and f ′ is continuous), then also f ′(ξ) 6= 0,
and

|x − x∗| =
|f(x)|
|f ′(ξ)| .

Assuming that |f ′(x)| ≥M > 0 in a neighbourhood around x∗ that in-
cludes x, we can make the following estimate

|x − x∗| ≤ |f(x)|
M

.

In practice we compute an approximation f̃(x) to f(x). If the absolute
error in the approximation is bounded by δ, ie |f̃(x) − f(x)| ≤ δ, then

|f(x)| ≤ |f̃(x)| + δ ,

and we can use that in the error estimate. The estimate is independent of
the method used to get x, and is therefore called the method-independent
error estimate. We summarize:
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Theorem 4.5.1. Method-independent error estimate.
Let x be an approximation to a simple root x∗ and f̃(x) be an ap-
proximation to f(x). Then

|x − x∗| ≤ |f̃(x)| + δ

M
,

where |f̃(x) − f(x)| ≤ δ and |f ′(x)| ≥ M > 0 for all x in a neigh-
bourhood of x∗ that includes x.

Example. We have solved the equation f(x) = x− cos x = 0 with a number of
methods in the previous sections, and x = 0.73908513 appears to be correct
to 8 decimals. We want to verify this.

Computed in Matlab with unit roundoff µ = 1.11·10−16, we get f̃(x) =

−5.3809·10−9, and δ ≃ 10−16, which is negligible compared to |f̃(x)|. Fur-
ther, f ′(x) = 1 + sinx, f ′(x) ≃ 1.6736, and M = 1.6 should be a safe lower
bound in a reasonable region around x. With these values the above error
estimate gives

|x − x∗| ≤ 5.39·10−9

1.6
≤ 3.4·10−9 < 0.5·10−8 .

Thus, the value x∗ = 0.73908513 is correct to 8 decimals.

The accuracy that can be obtained depends on the accuracy with
which we can compute the function values. We assume that the computed
approximation f̃(x) of the value f(x) can be written

f̃(x) = f(x) + η(x) , (4.5.1)

where |η(x)| ≤ δ for x close to the root. Since η(x) has contributions from
rounding errors, it is not even continuous in general. Figure 4.5 shows
a function evaluated in IEEE double precision close to a root. The
evaluation was done by means of Horner’s rule (see Section 4.6), and it
is seen that with this precision and this algorithm we cannot be sure to
find the root with an error smaller than about 0.008.

From the method-independent error estimate we see that the smallest
error bound is achieved if x is determined such that f̃(x) = 0. Then we
have

|x − x∗| ≤ δ

M
. (4.5.2)

The ratio ǫ =
δ

M
is called the attainable accuracy .
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Figure 4.5. The polynomial p(x) = x7 − 7x6 + 21x5 − 35x4

+35x3 − 21x2 + 7x − 1 evaluated in IEEE double precision.

The attainable accuracy depends both on δ and on the value of the
derivative f ′(x) in the neighbourhood of the root. This is illustrated in
Figure 4.6. If the function values are computed with the same accuracy
at both roots, the root α2 can be computed with higher accuracy than
α1 because the derivative and therefore M has a larger value at α2 than
at α1. If M is big, the root is said to be well-conditioned, and if M is
small, the root is ill-conditioned.

α1 α2

Figure 4.6. The root α1 is ill-conditioned, α2 is well-conditioned.

The above argument shows that multiple roots are ill-conditioned,
since the derivative is zero at a multiple root. A Taylor expansion around
a double root gives

f(x) = f(x∗) + f ′(x∗)(x − x∗) + 1
2f ′′(η)(x − x∗)2 = 1

2f ′′(η)(x − x∗)2 .

If the maximal absolute error of the function value is δ, we get the at-
tainable error for a double root,

|x − x∗| ≤
√

2δ

M2
, (4.5.3)

where |f ′′(x)| ≥M2 > 0 for all x in a neighbourhood of x∗ that includes x.
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Example. The function η(x) in (4.5.1) may include a perturbation of the func-
tion f . As an example consider the polynomial

p(x) = (x − 1)(x − 2) · · · (x − 12)

= x12 − 78x11 + · · · − 1486442880x + 12! .

If the coefficient of x11 is changed to −78 + 2−16 ≃ −77.99998474121094,
then some of the roots change drastically. Rounded to 5 decimals the roots
of the perturbed polynomial are

1.00000 3.99974 7.32564 ± 0.38569i
2.00000 5.00627 9.47493 ± 0.90536i
3.00000 5.94262 11.72511 ± 0.37134i

The roots 6, 7, . . . , 12 are ill-conditioned.

Based on the above discussion we can formulate criteria for stopping
an iteration method. Ideally, we want to stop a converging process when
we are sufficiently close to the root, ie when |xk − x∗| ≤ ǫ, where ǫ is the
desired accuracy (which must not be chosen smaller than the attainable
accuracy). However, we do not know x∗ but have to use computable
quantities. Good choices of stopping criteria are

|xk+1 − xk| ≤ τ1 , (4.5.4)

|f(xk)| ≤ τ2 , (4.5.5)

k = kmax , (4.5.6)

where τ1 and τ2 are small and kmax is large.
In connection with Newton-Raphson’s method we see that if we can

neglect rounding errors and use |f ′(x)| as an approximation to M , then
the absolute value of the step

xk+1 − xk = hk = −f(xk)/f ′(xk)

is equivalent to the right-hand side in the method-independent error es-
timate. Therefore, if |hk| ≤ τ1, then |xk − x∗|<∼ τ1.

For a fixed point method with linear convergence a very small value
for |xk+1 − xk| does not guarantee that xk is very close to x∗:

xk+1 − xk = ϕ(xk) − ϕ(x∗) + ϕ(x∗) − xk

= ϕ′(ξk)(xk − x∗) − (xk − x∗) ,
so that

xk − x∗ =
xk − xk+1

1 − ϕ′(ξk)
.
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For a convergent iteration we know that |ϕ′(ξk)| ≃ |ϕ′(x∗)| < 1, but if
ϕ′(x∗) is close to 1, then |xk − x∗| is much bigger than |xk+1 − xk|.

For an ill-conditioned root like α1 in Figure 4.6 the criterion (4.5.5) is
likely to stop the iteration. If high accuracy is required, one should use
τ2 = 2δ.

Finally, the criterion (4.5.6) should be used together with (4.5.4)
and/or (4.5.5) in every implementation of a fixed point iteration method.
It is a “safe guard” to prevent an infinite loop, that might be caused by
the iteration method being divergent; by errors in the implementation of
f or f ′ or by the choice of τ1 and τ2 so small that rounding errors prevent
(4.5.4) and (4.5.5) from ever being satisfied.

Example. Below we give a Matlab implementation of Newton-Raphson’s
method with the stopping criteria (4.5.4) and (4.5.6).

function [x,k] = newton(fdf,x0,tol,kmax)

% Solve f(x)=0 by Newton-Raphson’s method.

% f(x) and f’(x) given by [f,df] = fdf(x)

% Starting point x0.

% Iterate until correction is smaller than tol

% or the number of steps exceeds kmax

k = 0; x = x0; % initialize

[f, df] = feval(fdf, x); h = f/df;

while (abs(h) > tol) & (k < kmax)

k = k+1; x = x - h;

[f, df] = feval(fdf, x); h = f/df;

end

With fdf defined on page 70 we get

>> [x, k] = newton(@fdf, 0.7, 1e-10, 100)

x = 0.73908513321516

k = 3

The result has an error less than 0.3 · 10−15.

Example. The function f(x) =
1

x
−1 has a root x∗ = 1 in the interval [0.5, 10].

Below we give results from the
first three steps with Newton-
Raphson’s method (with x0 = 10)
and the secant method (with x0 =
0.5, x1 = 10):

0.5
10

Figure 4.7. f(x) = 1/x − 1 .
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N-R method secant method
k xk xk

0 10 0.500
1 −80 10.000
2 −6560 5.500
3 −43046720 −39.500
4 183.250

Both iterations seem to diverge; also see Exercise E2 at the end of this
chapter.

Matlab has a function fzero that uses a hybrid method to find a root. The
algorithm combines the robustness of the bisection method with the speed
of more accurate methods, among which the secant method is found. The
algorithm is described in the book by Brent, and we shall give a slightly
simplified description of it.

The algorithm works with three sequences of approximations to the root,
{ak}, {bk} and {ck}, such that bk and ck form a bracket,

f(bk) · f(ck) < 0 .

The iteration stops when |bk − ck| ≤ τ or if a zero function value is encoun-
tered.

The interval end points are ordered such that

|f(bk)| ≤ |f(ck)| .

Either bk or ck is the latest approximation, and ak is the previous approxi-
mation. There are two candidates for the next approximation, dk.

midpoint step : mk = bk + 1
2 (ck − bk) ,

secant step : sk = bk − f(bk)
bk − ak

f(bk) − f(ak)
.

dk must be in the bracket and should be closest to the end point with the
smaller function value. If this is not satisfied by sk, then dk = mk, otherwise

if |sk − bk| < τ then dk = bk + sign(ck−bk)·τ
else dk = sk

The special step taken when the secant method predicts a very small step
is introduced because when we have one-sided convergence — as eg in Fig-
ure 4.4 on page 72 — then |ck − x∗| may be large even if |bk − x∗| is very
small, and we hope that the special step brings us to the other side of the
root, in which case |bk+1 − ck+1| = τ , and the iteration stops.

Now, the function is evaluated at dk. If f̃(dk) = 0, we have found a root
and iteration stops. Otherwise, the bracket is updated.

function y = recip(x)

y = 1/x - 1;
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>> opts = optimset(’Display’,’iter’, ’TolX’,1e-10);

>> x = fzero(@recip, [0.5,10], opts)

The tolerance is set to τ = 10−10 and we get the following trace of the
iteration and the computed root

Func-count x f(x) Procedure

1 0.5 1 initial

2 10 -0.9 initial

3 5.5 -0.818182 interpolation

4 3 -0.666667 bisection

5 1.75 -0.428571 bisection

6 1.125 -0.111111 bisection

7 0.953125 0.0491803 interpolation

8 1.00586 -0.00582524 interpolation

9 1.00027 -0.000274583 interpolation

10 1 7.54371e-008 interpolation

11 1 -2.07194e-011 interpolation

12 1 1.79281e-010 interpolation

Zero found in the interval: [0.5, 10].

x = 1.00000000002072

4.6. Algebraic Equations

An algebraic equation is an equation p(x) = 0, where p(x) is a polynomial

p(x) = a1x
n + a2x

n−1 + · · · + anx + an+1 .

The fundamental theorem of algebra states that an nth degree polynomial
has exactly n roots (multiple roots are counted with their multiplicity),
and if the coefficients a1, . . . , an+1 are real, then the complex roots are
pairwise conjugate.

Newton-Raphson’s method can of course be used also for the solution
of algebraic equations. In every iteration step we have to compute the
value of the polynomial and its derivative. It is inefficient to compute
each term separately and then add them up. If the value of xi is used
to compute xi+1, then this method requires 2n−1 multiplications and n
additions. Instead we can write the polynomial in the form (illustrated
by n = 5)



4.6. Algebraic Equations 85

p(x) = ((((a1x + a2)x + a3)x + a4)x + a5)x + a6 ,

and p(x) can be computed recursively. In the general case we compute
p(x0) = bn+1 by the recurrence

b1 = a1

bi = bi−1x0 + ai , i = 2, 3, . . . , n+1 .
(4.6.1)

This method is called Horner’s rule. It involves n multiplications and
n additions, so the work is reduced from the 3n flops mentioned above
to 2n flops. Also, the effect of rounding errors is normally smaller with
Horner’s rule.

Example. The following Matlab function implements Horner’s rule for eval-
uating a polynomial.

function p = horner(a, x)

% Horner’s rule to compute

% p = a_1*x^n + ... + a_n*x + a_(n+1)

p = a(1);

for i = 2 : length(a)

p = p*x + a(i);

end

For the polynomial p(x) = 3x4 − 2x2 + x + 1 you should verify the following
value of p(2):

>> p = horner([3 0 -2 1 1],2)

p = 43

The standard Matlab function polyval has the same inputs and also uses
Horner’s rule.

We derived Horner’s rule by putting parentheses in the expression.
There is an alternative derivation, which is useful when we want to com-
pute both p(x0) and the derivative p′(x0). We can write

p(x) = (x − x0)q(x) + r

= (x − x0)(b1x
n−1 + b2x

n−2 + · · · + bn) + r .

By differentiation we get

p′(x) = q(x) + (x − x0)q
′(x) ,

so that
p(x0) = r, p′(x0) = q(x0) .

To get the values of the coefficients in q(x) we perform the multiplication
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(x−x0)q(x) and identify coefficients in p(x) and (x−x0)q(x) + r. This
gives

a1 = b1

a2 = b2 − b1x0
...

ai = bi − bi−1x0
...

an+1 = r − bnx0

If we reorder and introduce bn+1 = r, we get (4.6.1). The value of the
derivative p′(x0) can be found by applying Horner’s rule to the polynomial
q(x) of degree n−1.

Example. The function horner1 evaluates both p(x) and p′(x) without storing
the coefficients {bi}.

function [p, dp] = horner1(a, x)

% Horner’s rule used to compute p and p’

p = a(1); dp = 0;

for i = 2 : length(a)

dp = dp*x + p;

p = p*x + a(i);

end

As in horner the variable p is successively overwritten by bi. Similarly, dp
is successively overwritten by ci = ci−1x + bi, cf (4.6.1) applied to q(x).

Consider the polynomial p(x) = x3 − 1.1x2 + 2x − 2. The command

>> [p, dp] = horner1([1 -1.1 2 -2],1)

returns p = -0.1, dp = 2.8. (Use explicit differentiation and verify that
p′(1) = 2.8). With the Matlab function

function [p, dp] = pdp(x)

a = [1 -1.1 2 -2];

[p dp] = horner1(a,x);

we can use newton from page 82 to find a root of p. With the starting point
x0 = 1 we get

>> [x,k] = newton(@pdp,1,1e-8,100)

x = 1.03487386861150

k = 3

Horner’s rule is sometimes referred to as synthetic division. From the
relation
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p(x) = (x − x0)q(x) + p(x0) ,

we see that if x0 is a root of the polynomial, p(x0) = 0, then q(x) is
the quotient polynomial, q(x) = p(x)/(x − x0). Thus, when a root x0 of
the polynomial has been found, eg by Newton-Raphson’s method, we can
divide by x−x0 using Horner’s rule, and then continue by determining the
roots of the quotient polynomial q(x) (see Computer Exercise C2). This
process is called deflation. A careful rounding error analysis shows that
in order to obtain good accuracy for all roots, they should be removed in
order of increasing magnitude.

Example. The Matlab command r = roots(a) returns all zeros of the poly-
nomial given by the coefficient vector a. Assuming that a1 6= 0, this polyno-
mial has the same zeros as

p̃(x) = xn + c2x
n−1 + · · · + cnx + cn+1, ci = ai/a1 ,

(with n = length(a) − 1). This is the characteristic polynomial of a so-
called companion matrix . In the case n = 5 this matrix is given by

C =




−c2 −c3 −c4 −c5 −c6

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0




.

The roots of p̃(x) (and therefore the roots of p(x)) are computed as the eigen-
values of C, using a very efficient and accurate program from LAPACK.

4.7. Computer Implementation of Square Root

In this section we shall describe one possible way of implementing the
square root function

√
a in a computer with binary arithmetic. The

purpose is to show how theory can be used to derive a practical algorithm
for an important application.

The standard for floating point arithmetic, described in Chapter 2,
prescribes that the square root function is implemented together with the
arithmetic operations. It may happen, however, when a microprocessor
is embedded in a larger system (eg for process control), that the whole
standard is not provided. In such a case a systems programmer may have
to supply the standard functions needed.
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We assume that the computer has binary arithmetic and that we want
to compute the square root of normalized binary numbers with t+1 digits
in the significand,

A = 1.b1b2 . . . bt · 2e .

If the exponent e is odd, we shift the significand one step to the left, so
that the number is of the form

A = a · 22k, a = c1c0.d1d2 . . . dt .
Then √

A =
√

a · 2k .

The exponent of the result is obtained by shifting one step to the right,
and we see that we need a method to compute the square root of a binary
number a that satisfies

1 ≤ a < 4 , 1 ≤
√

a < 2 .

A commonly used approach is to apply Newton-Raphson’s method to the
equation f(x) = x2 − a = 0. This gives the iteration

xk+1 =
1

2

(
xk +

a

xk

)
. (4.7.1)

We first show a theorem on monotone convergence.

Theorem 4.7.1. For any x0, 0 < x0 < ∞, the iteration (4.7.1)
generates a decreasing sequence

x1 ≥ x2 ≥ · · · ≥
√

a ,

that converges to
√

a.

Proof. Let ǫk = xk −√
a. Then

xk+1 =
1

2

(√
a + ǫk +

a√
a + ǫk

)
=

2a + 2
√

aǫk + ǫ2k
2(
√

a + ǫk)
=

√
a + ǫk+1 ,

with

ǫk+1 =
ǫ2k

2(
√

a + ǫk)
=

ǫ2k
2xk

.

For k = 0 we see that ǫ1 = ǫ20/(2x0) ≥ 0, and by induction: all ǫk ≥ 0,
which is equivalent to xk ≥ √

a, k = 1, 2, . . . . Next,

xk − xk+1 =
1

2

(
xk − a

xk

)
=

1

2xk
(x2

k − a) ≥ 0 ,
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so the sequence is decreasing. The iteration function ϕ(x) = 1
2(x + a/x)

satisfies

0 ≤ ϕ′(x) =
1

2

(
1 − a

x2

)
≤ 1

2

for x ≥ √
a, and Theorem 4.4.1 tells us that the iteration converges

to a unique root x∗, that can be found by the fixed point condition

x∗ =
1

2

(
x∗ +

a

x∗

)
.

This equation is equivalent to (x∗)2 = a, so that x∗ =
√

a.

The rate of convergence can be estimated by the relation found in the
proof,

xk+1 −
√

a =
(xk −√

a)2

2xk
.

Since a ≥ 1 we naturally choose x0 ≥ 1, so we have xk ≥ 1, k =0, 1, . . .,
and

xk+1 −
√

a ≤ 1
2(xk −

√
a)2 .

This confirms that the application of Newton-Raphson’s method gives
quadratic convergence, and implies that

x1 −
√

a ≤ 1

2
(x0 −

√
a)2 ,

x2 −
√

a ≤ 1

2
(x1 −

√
a)2 =

1

23
(x0 −

√
a)4 ,

x3 −
√

a ≤ 1

27
(x0 −

√
a)8 ,

...

Thus, we get very fast convergence if we choose a good approximation
x0. Now, for a given a in [1, 4], how can one choose a good initial approx-
imation x0(a) that is quickly obtainable?

Since computer memory is quite cheap, we can make a table of initial
approximation as follows: The first four bits in a is one of the following
12 combinations

01.00 01.01 01.10 01.11
10.00 10.01 10.10 10.11
11.00 11.01 11.10 11.11

In a table with 12 entries we store the square roots of c1c0.d1d21, where
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c1c0.d1d2 is one of the above combinations. For a given a we use the
first four bits to get the address and use the table value for x0. Eg if
a = (10.010 . . .)2 or a = (10.011 . . .)2, we get x0 =

√
(10.011)2. The

largest initial error |x0 − √
a| can be estimated by means of the mean

value theorem

|
√

a+h −
√

a| =
|h|

2
√

ξ
≤ |h|

2
,

since a ≥ 1. The maximal value of h is (0.001)2 = 2−3, so that

|x0 −
√

a| ≤ 2−4 ≃ 6.3 · 10−2 ,

|x1 −
√

a| ≤ 2−9 ≃ 2.0 · 10−3 ,

|x2 −
√

a| ≤ 2−19 ≃ 1.9 · 10−6 ,

|x3 −
√

a| ≤ 2−39 ≃ 1.8 · 10−12 .

We have t+1 bits in the significand, and therefore we want to compute
the square root with an error less than 2−t−1. With t = 23 (as in the
floating point standard) and with the table size discussed, three iteration
step suffice to give the desired accuracy, 2−24. If we use 6 bits as address
in the table, we need a table with 48 entries, and the maximal error is

|x0 −
√

a| ≤ 2−6 ≃ 1.6 · 10−2 ,

|x1 −
√

a| ≤ 2−13 ≃ 1.2 · 10−4 ,

|x2 −
√

a| ≤ 2−27 ≃ 7.5 · 10−9 .

In this case the required accuracy is obtained after two iteration steps.

4.8. Systems of Nonlinear Equations

In this section we give a short introduction to the problem of solving a
system of n nonlinear equations in n unknowns,

f1(x1, x2, . . . , xn) = 0 ,
f2(x1, x2, . . . , xn) = 0 ,

...
fn(x1, x2, . . . , xn) = 0 .
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Example. Throughout this section we use the example (with n = 2)

f1(x1, x2) = 4x2
1 + 9x2

2 − 36 = 0 ,

f2(x1, x2) = 16x2
1 − 9x2

2 − 36 = 0 .

Figure 4.8 shows the curves along which f1(x1, x2) = 0 (an ellipse) and
f2(x1, x2) = 0 (a hyperbola). A solution to the system is an intersection

x1

x2

1

1

Figure 4.8. Nonlinear system of equations.

between the two curves. It is easy to solve this system analytically, and the
solution in the first quadrant (marked by a circle in the figure) is

x1 =
√

3.6 ≃ 1.897367, x2 =
√

2.4 ≃ 1.549193 .

In the presentation we shall use concepts from linear algebra that are
defined in Chapter 8. We recommend to read that chapter before this
section.

With the notation

x = (x1, x2, . . . , xn)T , f(x) =
(
f1(x), f2(x), . . . , fn(x)

)T
,

we can write the system in the usual form,

f(x) = 0 ,

where now f is a vector valued function and 0 is the zero vector in R
n.

Several of the methods described earlier in this chapter for a scalar equa-
tion can be generalized to systems of nonlinear equations.

First, consider Newton-Raphson’s method, with an approximation

x[k] = (x
[k]
1 , . . . , x

[k]
n )T to the root x∗. In Section 4.3 we derived the

method by approximating the scalar f by the first two terms in the Tay-
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lor expansion. Similarly, we can expand each component of f ,

fi(x
[k] + h) ≃ fi(x

[k]) +

n∑

j=1

∂fi

∂xj
(x[k])hj , i = 1, . . . , n .

We let J(x) denote the n×n matrix of partial derivatives, (J(x))ij =
∂fi

∂xj
(x), and get

f(x[k] + h) ≃ f(x[k]) + J(x[k])h .

J is called the Jacobian of f . We want f(x[k] + h) = 0, and in the same
way as before we get an approximation to h = x∗ − x[k] by solving the
linear system of equations

J(x[k])h[k] = −f(x[k]) , (4.8.1)

and the next approximation is

x[k+1] = x[k] + h[k] .

We can write the vector version of Newton-Raphson’s method in the form

x[k+1] = x[k] −
(
J(x[k]

)−1
f(x[k]), k = 0, 1, 2, . . . .

This shows a clear analogy with the one-dimensional version, Definition
4.3.1. It should be emphasized that the inverse of J is not computed
explicitly, but the system in (4.8.1) is solved via an LU factorization of J ,
see Chapter 8.

The analysis of Newton-Raphson’s method for systems of nonlinear
equations is more complicated than for the one-dimensional version, but
it can be shown that if f is twice continuously differentiable in a neigh-
bourhood of x∗; if J(x∗) is nonsingular; and if x[0] is sufficiently close
to x∗, then Newton-Raphson’s method converges, and the convergence is
quadratic. This means that there exists a constant C such that

‖x[k+1] − x∗‖2 ≃ C‖x[k] − x∗‖2
2

for ‖x[k] − x∗‖2 sufficiently small. Here, ‖ · ‖2 is the so-called Euclidean
norm, defined by

‖d‖2 =
√

d2
1 + d2

2 + · · · + d2
n .
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Example. For the function of of the previous example,

f1(x1, x2) = 4x2
1 + 9x2

2 − 36 ,

f2(x1, x2) = 16x2
1 − 9x2

2 − 36 ,

the Jacobian is

J(x) =

(
8x1 18x2

32x1 −18x2

)
.

The following Matlab function computes both f(x) and J(x),

function [f, J] = f_J(x)

f = [4*x(1)^2 + 9*x(2)^2 - 36

16*x(1)^2 - 9*x(2)^2 - 36];

J = [8*x(1) 18*x(2)

32*x(1) -18*x(2)];

It is straightforward to modify the one-dimensional newton from Example
4.5.1 to n-dimensional problems. The linear system Jh = f is solved by the
command2) h = J\f, and norm(h) returns ‖h‖2, defined above.

function [x,k] = newtonsys(fdf,x0,tol,kmax)

% Solve system f(x)=0 by Newton-Raphson’s method.

% f(x) and J(x) given by [f,J] = fdf(x)

% Starting point x0.

% Iterate until norm of correction is smaller than tol

% or the number of steps exceeds kmax

k = 0; x = x0; % initialize

[f, J] = feval(fdf, x); h = J\f;

while (norm(h) > tol) & (k < kmax)

k = k+1; x = x - h;

[f, J] = feval(fdf, x); h = J\f;

end

We use the starting point x[0] = (1, 1)T :

>> [x k] = newtonsys(@f_J,[1; 1],1e-10,100)

x = 1.89736659610103

1.54919333848297

k = 5

We have printed results during the iteration (see the next page). There
is quadratic convergence. This is clearly seen in the column with function
values.

2) \ is pronounced backslash.
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k x
[k]
1 x

[k]
2 ‖f(x[k])‖2 ‖h[k]‖2

0 1.00000000000000 1.00000000000000 3.70e+01 1.48e+00

1 2.30000000000000 1.70000000000000 2.52e+01 3.95e-01

2 1.93260869565217 1.55588235294118 2.10e+00 3.56e-02

3 1.89768792487896 1.54920771711331 1.98e-02 3.22e-04

4 1.89736662330576 1.54919333854969 1.70e-06 2.72e-08

5 1.89736659610103 1.54919333848297 7.11e-15 1.07e-16

As in the one-dimensional case other fixed point iterations can be
constructed by reformulating f(x) = 0 to

x = ϕ(x) ,

with ϕ(x) = (ϕ1(x), . . . , ϕn(x))T . Starting from an initial approximation
x[0] a sequence of approximations x[1], x[2], . . . is computed by

x[k+1] = ϕ(x[k]) , k = 0, 1, 2, . . . .

Theorem 4.4.1 about convergence criteria can be generalized: Assume
that x∗ = ϕ(x∗), and that the partial derivatives

dij(x) =
∂ϕi

∂xj
(x) , i, j = 1, . . . , n

exist for x∈I = {x
∣∣ ‖x − x∗‖ ≤ δ}. Let D(x) be the n×n matrix with

elements dij(x). A sufficient condition for the fixed point iteration to
converge for any x[0] ∈I is that

‖D(x)‖ ≤ m < 1 , x ∈ I ,

where ‖ · ‖ is an induced matrix norm, defined in Section 8.10. If this
condition is satisfied, we have linear convergence,

‖x[k+1] − x∗‖ ≤ m‖x[k] − x∗‖ .

There is no simple generalization to n > 1 dimensions of the bisection
method or the secant method.

Example. For the nonlinear system from the two previous examples,

4x2
1 + 9x2

2 − 36 = 0 ,

16x2
1 − 9x2

2 − 36 = 0 ,

we seek the root x∗ = (x∗
1, x

∗
2) = (

√
3.6,

√
2.4) ≃ (1.8974, 1.5492). We shall

consider two fixed point iterations obtained by solving each equation for one
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of the unknowns. First,

x1 = ϕ1(x) = 1
2

√
36 − 9x2

2 ,

x2 = ϕ2(x) = 1
3

√
16x2

1 − 36 .

With the starting point x[0] = (1, 1)T we get

k x
[k]
1 x

[k]
2

1 2.5981 2.4037
2 2.0000i 4.0000
3 5.1962i 1.7638i
4 4.0000 6.6332i

There is no sign of convergence. The matrix of partial derivatives is

D(x) =




0 −18x2

4
√

36−9x2

2

32x1

6
√

16x2

1
−36

0


 , D(x∗) ≃

(
0 −1.84

2.18 0

)
.

‖D(x∗)‖ ≃ 2.18 > 1, so the sufficient condition for convergence is not satis-
fied.

Next, consider the fixed point method given by

x1 = ϕ1(x) = 1
4

√
36 + 9x2

2 ,

x2 = ϕ2(x) = 1
3

√
36 − 4x2

1 ,

D(x) =




0 18x2

8
√

36+9x2

2

−8x1

6
√

36−4x2

1

0


 , ‖D(x∗)‖ ≃ 0.544 .

The sufficient condition for convergence is satisfied in some region around
x∗, and with x[0] = (1, 1)T we get

k x
[k]
1 x

[k]
2 ‖x[k] − x∗‖2

1 1.6771 1.8856 0.4021
2 2.0616 1.6583 0.1971
3 1.9486 1.4530 0.1090
4 1.8540 1.5207 0.0519
...

The error is roughly halved in every iteration step.
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Exercises
E1. Illustrate a divergent fixed point iteration, cf. Figure 4.3.

E2. On some computers division is performed via solution of the equation
f(x) = 1/x − a by means of Newton-Raphson’s method. Analyze this
algorithm on the lines of the square root algorithm of Section 4.7, with
special focus on the relation between the size of the table and the number
of iterations needed.

E3. Find the positive root of the equation

f(x) =

∫ x

0

cos t dt − 0.5 = 0

with 5 correct decimals. Hint: Solve the equation p(x) = 0, where p(x) is a
polynomial obtained by integrating a partial sum of the Maclaurin expan-
sion of cos t. Use the method-independent error estimate for the original
equation to find the necessary degree of the approximating polynomial.

E4. Show that the polynomial p(x) = x3 − 3x − 2 has the roots −1,−1 and
2, and estimate the roots of the perturbed polynomial
p(x) = x3 − 3x − 2+ δ , where |δ| is small.

Computer Exercises
C1. The fixed point iteration xk+1 = ϕ(xk) does not converge if |ϕ′(x)| > 1 in

an interval around the desired root x∗. This does not necessarily imply
that the iteration diverges towards infinity. Try the iteration xk+1 =
1 − λx2

k for λ = 0.7, 0.9, 2 and illustrate graphically how xk depends on
k. For λ = 2 the iteration exhibits a chaotic behaviour.

C2. Modify the Matlab function horner from incbox, cf page 85, so that the
first line is

function b = qhorner(a, x)

b should hold the bi defined by (4.6.1). Use qhorner to find the quotient
polynomial p(x)/(x − 1), where p(x) = x3 − 4x2 + 7x − 4, and compute
all the roots of p(x).

C3. Write a program that implements Newton-Raphson’s method for comput-
ing 1/a as described in Exercise E2 above. How large should the table
be in order to ensure full accuracy after three iteration steps? First write
a program that generates the table, and then an efficient code (without
loops or function calls) for the Newton iterations.
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C4. Use roots to find the zeros of

p(x) = x3 − 3x − 2+ δ ,

for δ = ±10−3 and δ = ±10−1, and compare with the results of Exercise
E4.

C5. We shall determine the smallest positive root x∗ of

f(x) = cot 3x − x2 − 1

2x
.

(a) Plot the function for 0 < x ≤ 4 and use the graph to determine a
bracket for x∗. The bracket should have length 0.2.

(b) Starting with this bracket, how many bisection steps are needed to
determine an approximation x to x∗, such that |x − x∗| ≤ 0.5 · 10−6

?

(c) Use Newton-Raphson’s method with x0 = 0.5 to compute x1, x2, x3

and x4.

(d) The differences dk = xk −xk−1 can be considered as estimates of the
errors x∗ − xk−1. Use these estimates to make it probable that the
sequence of iterates has quadratic convergence.

C6. Use Newton-Raphson’s method to find two of the solutions of the
nonlinear system of equations

f1(x) = x2
1 + x1x

3
2 − 9 = 0 ,

f2(x) = 3x2
1x2 − x3

2 − 4 = 0 ,

and discuss the convergence.

(The exercise is inspired by an example in Shampine et al, Fundamentals
of numerical computing, John Wiley and Sons, New York, 1999. Also see

http://www.imm.dtu.dk/∼hbn/demos/NonlinSystem.pdf )
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Chapter 5

Interpolation

5.1. Introduction

For some function f , assume that we know its value fi = f(xi) in n+1
different points x0, x1, . . . , xn. We want to determine a function P such
that

P (xi) = fi, i=0, 1, . . . , n .

The function P is said to interpolate f in the points x0, x1, . . . , xn. As an
example, Figure 5.1 shows a polynomial P that interpolates f(x) = sinx
in the points 1.1, 1.2, 1.3. In the interval 1.1≤x≤ 1.3 we cannot see the
difference between the function and the interpolating polynomial.
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Figure 5.1. Three points are interpolated by a polynomial.

An interpolating function P can be used to estimate the value of f at
a point x. If x is in the interval formed by x0, x1, . . . , xn, we speak about
interpolation, otherwise about extrapolation.

It is possible to use other interpolating functions, eg rational func-
tions or trigonometric functions. However, since polynomials are easy to
evaluate, differentiate and integrate, we shall only discuss polynomials
and functions consisting of different polynomials in different subintervals,
so-called spline functions.
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Often, one can get a good approximation of f by a low degree interpo-
lating polynomial. However, many numerical methods (eg for integration
and for the solution of differential equations) are based on interpolat-
ing polynomials, and therefore we shall derive formulas for interpolating
polynomials of arbitrary degree.

If only approximations of the function values fi are known (eg from
measurements), then it is not advisable to construct an approximation
function by means of interpolation. It is better to use an approximation
method that can reduce the influence of the measurement errors; see
Chapter 9.

5.2. Interpolation by Polynomials

Example. Assume that we know the values of a function f in three points (we
use the function f(x) = sinx)

i xi fi = f(xi)
0 1.1 0.8912
1 1.2 0.9320
2 1.3 0.9636

We shall construct a polynomial that interpolates f in these points. What
is the degree of the polynomial?

In general, a straight line cannot pass through three given points, but there
is a second degree polynomial and an infinity of different third degree poly-
nomials with this property.

In order to determine a polynomial P of degree≤ 2, that interpolates the
three points in the table, we can write it in the form

P (x) = a0 + a1x + a2x
2 .

The computation of the coefficients is easier, however, if we use the alterna-
tive formulation

P (x) = c0 + c1(x − x0) + c2(x − x0)(x − x1) .

The requirement that P (xi) = fi, i= 0, 1, 2, leads to the following system of
equations for determining the coefficients c0, c1, c2,

P (x0) = c0 = f0 ,

P (x1) = c0 + c1(x1 − x0) = f1 ,

P (x2) = c0 + c1(x2 − x0) + c2(x2 − x0)(x2 − x1) = f2 .
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The coefficient c0 is given by the first equation. This value is inserted in the
second equation, and we get

c1 = (f1 − c0)/(x1 − x0) .

Next, c0 and c1 are inserted in the third equation, and we get1)

c2 =
(
f2 − c0 − c1(x2 − x0)

)
/
(
(x2 − x0)(x2 − x1)

)
.

With the points from the above table we get

c0 = 0.8912, c1 = 0.4083, c2 = −0.4656 ,
and

P (x) = 0.8912 + 0.4083(x − 1.1) − 0.4656(x − 1.1)(x − 1.2) .

This polynomial is plotted in Figure 5.1 on page 99.

Note that the first term in P (x) is the zero order polynomial that interpolates
f in x0 =1.1. The first two terms interpolate f in x0 and x1 = 1.2. The
third term vanishes at these two points, so the second degree polynomial
also interpolates f in the first two points, and the coefficient c2 is computed
so that P (1.3) attains the required value.

The same technique for construction of interpolating polynomials of
successively higher degree is used in the proof of the following theorem,
which is the basis of polynomial interpolation.

Theorem 5.2.1. Let x0, x1, . . . , xn be arbitrary, distinct points.
For arbitrary values f0, f1, . . . , fn there is a unique polynomial P of
degree at most n, such that

P (xi) = fi, i=0, 1, . . . , n .

Proof. We first use induction to prove existence. For n =0 we can take
the polynomial P0(x) = f0. This has degree zero, and P0(x0) = f0.
Now, assume that Pk is a polynomial of degree at most k, such that

Pk(xi) = fi, i = 0, 1, ..., k .

We shall show that we can construct Pk+1 of degree at most k+1,
which interpolates f in the points xi, i = 0, 1, ..., k, k+1. Put

Pk+1(x) = Pk(x) + c(x − x0)(x − x1) · · · (x − xk) .

For c 6= 0 this is a polynomial of degree k+1, and for any c it satisfies

1) This algorithm for solving the linear system of equations is called forward substi-

tution; see Section 8.2.
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Pk+1(xi) = Pk(xi) = fi, i = 0, 1, ..., k .

Since the points x0, x1, . . . , xk+1 are distinct, we can determine c so
that also the condition Pk+1(xk+1) = fk+1 is satisfied:

c =
fk+1 − Pk(xk+1)

(xk+1 − x0)(xk+1 − x1) · · · (xk+1 − xk)
.

Thus, Pk+1 is a polynomial of degree ≤ k+1, which interpolates f in
the points x0, x1, . . . , xk+1.

The proof of uniqueness is made by contradiction: Assume that P and
Q are two polynomials of degree at most n, both of which interpolate
the given points,

P (xi) = Q(xi) = fi, i= 0, 1, . . . , n .

This means that P−Q is a polynomial of degree ≤ n with n+1 distinct
zeros, x0, x1, . . . , xn. According to the fundamental theorem of algebra
such a polynomial is identically zero, ie P = Q.

How large is the error, when the function f is approximated by an
interpolating polynomial P ? To be able to answer this question, we must
of course know more about f than its values at some discrete points.

Theorem 5.2.2. Let f be a function with n+1 continuous deriva-
tives in the interval formed by the points x, x0, x1, . . . , xn. If P is the
unique polynomial of degree ≤ n, that satisfies

P (xi) = f(xi), i=0, 1, . . . , n ,
then

f(x) − P (x) =
f (n+1)(ξ(x))

(n + 1)!
(x − x0)(x − x1) · · · (x − xn) ,

for some ξ(x) in the interval formed by the points x, x0, x1, . . . , xn.

Proof. We use Rolle’s theorem: if a function g is continuous in the
interval [a, b], differentiable in the open interval ]a, b[, and g(a) = g(b),
then there is at least one point η in ]a, b[ such that g′(η) = 0.
We choose an arbitrary point x̂ 6= xi, i = 0, 1, . . . , n, and write the
error f(x̂) − P (x̂) in the form

f(x̂) − P (x̂) = A(x̂ − x0)(x̂ − x1) · · · (x̂ − xn) .

To determine the constant A we introduce the auxiliary function
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ψ(x) = f(x̂) − P (x̂) − A(x − x0)(x − x1) · · · (x − xn) .

We see that ψ(x̂) = 0 and

ψ(xi) = f(xi) − P (xi) − A · 0 = 0, i=0, 1, . . . , n .

Thus, ψ has (at least) n+2 distinct roots, x̂, x0, x1, . . . , xn.

According to the assumptions, ψ is n+1 times continuously differen-
tiable, and Rolle’s theorem shows that ψ′ has a zero in each subin-
terval between two roots of ψ. Therefore, ψ′ has n+1 distinct roots.
Similarly, in each subinterval between two neighbouring roots of ψ′,
there is a root of ψ′′, so that ψ′′ has n distinct roots. Repeating this
argument, we finally see that ψ(n+1) has a zero in the interval formed
by x̂, x0, x1, . . . , xn:

ψ(n+1)(ξ) = 0 .

Differentiating the expression for ψ, we get

ψ(n+1)(x) = f (n+1)(x) − A · (n + 1)! ,

so A = f (n+1)(ξ)/(n+1)! , where ξ depends on x̂. Since x̂ is arbitrary,
the theorem is proved.

The error expression in the theorem is easy to remember: The factor
(x−x0) · · · (x−xn) ensures that the error is zero at all interpolation points,
and if all xi tend to x0, then the error term tends to the remainder term
in the degree n Taylor expansion of f around x0.

Example. Figure 5.2 shows the error sinx−P (x), where P is the second degree
polynomial computed in the previous example. The error in the three
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Figure 5.2. Error in interpolation of sinx

by a second degree polynomial.

interpolation points 1.1, 1.2, 1.3 is zero, and | sin x − P (x)|<∼ 0.25 · 10−4 for
1.1 ≤ x ≤ 1.3, but the error becomes larger when we extrapolate.



104 5. Interpolation

5.3. Linear Interpolation

In this section we shall study the influence of different types of errors
in connection with linear interpolation, ie when the function f is ap-
proximated in the interval [x0, x1] by the straight line through the points
(x0, f0) and (x1, f1),

P (x) = f0 +
x − x0

x1 − x0
(f1 − f0) . (5.3.1)

Example. Find an approximation of f(1.14), when the following function values
are known

xi fi

1.1 0.8912
1.2 0.9320

We get

P (1.14) = 0.8912 +
1.14 − 1.1

1.2 − 1.1
(0.9320 − 0.8912)

= 0.8912 +
0.04

0.1
· 0.0408

.
= 0.9075 .

(We use
.
= to denote correct rounding).

The approximation 0.9075 of the value f(1.14) has four error contri-
butions, cf Chapter 2,

RX from error in the interpolation argument x,

RXF from errors in the given function values f0 and f1,

RT from the approximation of f by a straight line,

RC from rounding errors during computation.

The contributions RX and RC are examined as described in Chapter 2.
Here, we shall examine the other two error contributions.

First, we study the truncation error RT = f(x)−P (x) for x0 ≤ x ≤ x1,
see Figure 5.3.
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Figure 5.3. Truncation error
in linear interpolation. x0 x1

f0

f1

RT

Theorem 5.3.1. Let the function f be twice continuously differ-
entiable in the interval x0 ≤ x ≤ x1 = x0 +h and let P (x) be the
polynomial that interpolates the points (x0, f(x0)) and (x1, f(x1)).
For x0 ≤ x ≤ x1 the truncation error can be estimated as

|RT| = |f(x) − P (x)| ≤ h2

8
max

x0≤ξ≤x1

|f ′′(ξ)| .

Proof. From Theorem 5.2.2 we see that

RT =
f ′′(ξ(x))

2!
(x − x0)(x − x1) ,

where x0 < ξ(x) < x1. Put x = x0 + uh with 0 ≤ u ≤ 1, and use the
fact that x1 = x0 + h. Then

RT =
f ′′(ξ(x))

2!
h2u(u − 1) .

Since max
0≤u≤1

|u(u − 1)| = 1
4 , the theorem follows.

Note that the truncation error grows with |f ′′|, ie the curvature of f .
This can also be seen in Figure 5.3.

How can we estimate f ′′ if we only know the value of f in certain
points? A possible way is to approximate f by an interpolating polyno-
mial of degree 2, and approximate f ′′ by the second derivative of that
polynomial.

Example. Assume that the function in the previous example is also known at
a third point,

f(1.3) = 0.9936 .

In the example on page 100 we computed the second degree polynomial that
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interpolates f in the points 1.1, 1.2, 1.3:

P (x) = 0.8912 + 0.4083(x − 1.1) − 0.4656(x − 1.1)(x − 1.2) .

This leads to P ′′(x) = −0.4656 ·2 = −0.9312 , and since h = 1.2−1.1 = 0.1,
we get the estimate

|RT|<∼
0.12

8
· 0.9312 ≤ 0.0012 .

The example has been constructed with f(x) = sin x, so f ′′(x) = − sin x,
and −0.9320 ≤ f ′′(x) ≤ −0.8912 for x∈ [1.1, 1.2]. Thus, our method gives a
satisfactory estimate of f ′′ in this case.

The true truncation error is

|RT| = | sin 1.14 − 0.9075| ≃ 0.0011 .

This shows that the estimate of the error is quite accurate.

Next, consider the effect of errors in the given function values, RXF.
The following theorem shows that those errors are not enhanced in linear
interpolation.

Theorem 5.3.2. Let f0 and f1 be given approximations of f(x0)
and f(x1), respectively. The induced error in linear interpolation
satisfies

|RXF| ≤ ǫ = max
{
|f0 − f(x0)|, |f1 − f(x1)|

}
.

Proof. Let fi = f(xi), i = 0, 1, and u = (x−x0)/(x1−x0). From (5.3.1)
we see that the true and the perturbed values of the interpolant are

P (x) = f0 + u(f1 − f0) = (1 − u)f0 + uf1 ,

P (x) = f0 + u(f1 − f0) = (1 − u)f0 + uf1 .

Thus, the error is

RXF = P (x) − P (x) = (1 − u)(f0 − f0) + u(f1 − f1) .

Now, we introduce ǫ and use the fact that both u and 1−u are non-
negative. Therefore

|RXF| ≤ (1 − u)ǫ + uǫ = ǫ ,

and the proof is finished.

Example. In the previous example, assume that the given values are correct to
the four decimals given. Then |RXF| ≤ ǫ ≤ 0.5 · 10−4.
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5.4. Newton’s Interpolation Formula

Theorem 5.2.1 tells us that the interpolating polynomial of a function is
uniquely determined, as soon as we have chosen the points x0, x1, . . . , xn.
There are, however, several ways to write this polynomial. In this section
we shall derive a formulation that dates back to Newton, and which gives
simple computations in many practical interpolation problems.

In the derivation we use the same technique as in the proof of Theorem
5.2.1, where we generated a sequence of polynomials P0, P1, . . . , Pn by the
recursion

P0(x) = c0 ,

Pk(x) = Pk−1(x) + ck(x − x0) · · · (x − xk−1), k = 1, . . . , n .
(5.4.1)

The polynomial Pn interpolates f in x0, x1, . . . , xn, when the coefficients
are computed by

c0 = f0 ,

ck =
fk − Pk−1(xk)

(xk − x0) · · · (xk − xk−1)
, k = 1, . . . , n ,

where fi = f(xi). We can give explicit expressions for the coefficients:

c0 = f0 ,

c1 =
f1 − f0

x1 − x0
,

c2 =
f2 − f0 − x2−x0

x1−x0(f1 − f0)

(x2 − x0)(x2 − x1)
,

etc

(5.4.2)

The expressions for the following coefficients become increasingly compli-
cated. In order to get simpler formulas for the coefficients, let us redefine
the recursion (5.4.1). Remember that

Pk−1 interpolates f in x0, x1, . . . , xk−1 ,

and introduce the polynomial
→
P k−1 of degree at most k−1, such that

→
P k−1 interpolates f in x1, . . . , xk−1, xk .

Then the polynomial Pk defined by (5.4.1) can be written in the form

Pk(x) = Pk−1(x) +
x − x0

xk − x0
(
→
P k−1(x) − Pk−1(x)) . (5.4.3)
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We must prove this statement: Both Pk−1 and
→
P k−1 are polynomials of

degree ≤ k−1. Therefore, Pk is a polynomial of degree ≤ k. Further,

Pk(x0) = Pk−1(x0) + 0 = f0 ,

Pk(xi) = Pk−1(xi) +
xi − x0

xk − x0
(fi − fi) = fi, i=1, . . . , k−1 ,

Pk(xk) = Pk−1(xk) +
→
P k−1(xk) − Pk−1(xk) = fk .

Thus, Pk is the unique polynomial of degree ≤ k, which interpolates f in
x0, x1, . . . , xk, and we have proved that (5.4.3) is correct.

The coefficient ck in (5.4.1) depends on x0, x1, . . . , xk and the corre-
sponding values of f . We introduce the notation

ck = f [x0, x1, . . . , xk] .

This is the coefficient of xk in Pk(x). Accordingly, the coefficients of
xk−1 in Pk−1(x) and

→
P k−1(x) are f [x0, x1, . . . , xk−1] and f [x1, x2 . . . , xk],

respectively, and from (5.4.3) we get

ck = f [x0, x1, . . . , xk] =
f [x1, x2 . . . , xk] − f [x0, x1, . . . , xk−1]

xk − x0
.

This quotient between two differences is called a divided difference.

Definition 5.4.1. The kth divided difference of f with respect to
the points x0, x1, . . . , xk is given by

f [xi] = f(xi) ,

f [x0, x1, . . . , xk] =
f [x1, x2 . . . , xk] − f [x0, x1, . . . , xk−1]

xk − x0
.

Divided differences are conveniently arranged in a table like the fol-
lowing,

x0 f0

f [x0, x1]
x1 f1 f [x0, x1, x2]

f [x1, x2] f [x0, x1, x2, x3]
x2 f2 f [x1, x2, x3]

f [x2, x3]
x3 f3
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Eg, we have

f [x0, x1] =
f1 − f0

x1 − x0
,

f [x0, x1, x2] =
f [x1, x2] − f [x0, x1]

x2 − x0
,

f [x0, x1, x2, x3] =
f [x1, x2, x3] − f [x0, x1, x2]

x3 − x0
.

It follows from above that the coefficients in the interpolating polynomial

P3(x) = c0 + c1(x − x0) + c2(x − x0)(x − x1)

+ c3(x − x0)(x − x1)(x − x2) (5.4.4)

are given by

c0 = f0, c1 = f [x0, x1], c2 = f [x0, x1, x2], c3 = f [x0, x1, x2, x3] .

It is easy to see that these expressions for c0 and c1 agree with (5.4.2),
while the agreement for c2 is less obvious. However, from (5.4.2) we get

c2 =
1

x2 − x1

(
f2 − f0

x2 − x0
− f1 − f0

x1 − x0

)

=
f [x0, x2] − f [x1, x0]

x2 − x1
= f [x1, x0, x2] ,

since f [x0, x1] = f [x1, x0]. We shall show that f [x1, x0, x2] = f [x0, x1, x2]:
These two divided differences are the coefficients of x2 in the second order
polynomials that interpolate the three points (x1, f1), (x0, f0), (x2, f2)
and (x0, f0), (x1, f1), (x2, f2), respectively. The order, in which the
three points are taken, is of no consequence, so the two polynomials are
identical, ie f [x1, x0, x2] = f [x0, x1, x2]. By the same argument we can
show that the value of f [x0, x1, . . . , xk] does not change if the arguments
x0, x1, . . . , xk are given in a different order.

Example. Determine a polynomial that interpolates the points (−1, 6), (0, 1),
(2, 3), (5, 66).

We get the table shown on the next page. The resulting 3rd degree polyno-
mial is

P (x) = 6 − 5(x + 1) + 2(x + 1)x + 1
3 (x + 1)x(x − 2) .

Check that this polynomial does indeed interpolate the given data.
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x f(x) f [·, ·] f [·, ·, ·] f [·, ·, ·, ·]
−1 6

1 − 6

0 − (−1)
= −5

0 1
1 − (−5)

2 − (−1)
= 2

3 − 1

2 − 0
= 1

4 − 2

5 − (−1)
=

1

3
2 3

21 − 1

5 − 0
= 4

66 − 3

5 − 2
= 21

5 66

The results are summarized in the following theorem.

Theorem 5.4.2. Newton’s interpolation polynomial.

Pn(x) = f0 + f [x0, x1](x − x0) + f [x0, x1, x2](x − x0)(x − x1)

+ · · · + f [x0, x1, . . . , xn](x − x0)(x − x1) · · · (x − xn−1)

of degree ≤ n satisfies Pn(xi) = fi, i =0, 1, . . . , n.

The coefficients are easily computed, and once they are known, values
of the polynomial Pn can be computed by a generalization of Horner’s
rule (Section 4.6). The idea is illustrated by the following reformulation
of (5.4.4)

P3(x) = c0 + (x − x0)
(
c1 + (x − x1)

(
c2 + (x − x2)c3

))
.

This can be computed as P3(x) = b0, given by the recursion

b3 = c3 ,

bj = bj+1(x − xj) + cj , j = 2, 1, 0 .

The algorithm easily generalizes to arbitrary n.

Example. The following Matlab function intpolc uses divided differences
to compute the coefficients in an interpolating polynomial. Remember that
Matlab indexes from 1, so that xi is stored in x(i+1), and if the vectors x
and f have length m, then the interpolating polynomial has degree at most
n = m−1. The function intpval implements a generalization of the above
algorithm for evaluation of the interpolating polynomial. If the argument t
is a vector, then the output p is a vector of the same type with pi = P (ti),
i = 1, 2, . . . , length(t).
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function c = intpolc(x,f)

% Coefficients c in Newton’s form of the polynomial

% interpolating (x1,f1), ..., (xm,fm)

% f(k:m) is successively overwritten by divided

% differences of order k-1

m = length(x); % number of interpolation points

for k = 2 : m

f(k:m) = (f(k:m) - f(k-1:m-1)) ./ (x(k:m) - x(1:m+1-k));

end

c = f; % return coefficients

function p = intpval(x,c,t)

% Value p = P(t) of interpolating polynomial

m = length(x); % number of interpolation points and coeffs

p = c(m) * ones(size(t));

for k = m-1 : -1 : 1

p = p .* (t - x(k)) + c(k);

end

With the data from the previous example we get

>> x = [-1 0 2 5];

>> c = intpolc(x,[6 1 3 66])

c = 6 -5 2 0.3333

>> p = intpval(x,c,[-1 5 1])

p = 6 66 -0.6667

Thus, we get the same coefficients as in the previous example, and the results
from intpval show that P (xi) = fi for two of the interpolation points, and
the interpolated value in x = 1 is −2/3.

In applications one is interested not only in getting an approximation
of the function value, but also in getting an estimate of the truncation
error of the approximation. We did that for linear interpolation in the
example on page 105, and that approach generalizes.

According to (5.4.1) and Theorem 5.4.2 we have

Pk(x) = Pk−1(x) + f [x0, x1, . . . , xk](x − x0)(x − x1) · · · (x − xk−1) ,

and Pk(xk) = f(xk). Therefore,

f(xk) − Pk−1(xk) = f [x0, x1, . . . , xk](xk − x0)(xk − x1) · · · (xk − xk−1) .

The right hand side is the truncation error for x=xk when f is approx-
imated by the interpolating polynomial Pk−1, with interpolation points
x0, x1, . . . , xk−1. Theorem 5.2.2 gives another expression for this error: if
f is k times continuously differentiable, then
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f(xk) − Pk−1(xk) =
f (k)(ξ)

k!
(xk − x0)(xk − x1) · · · (xk − xk−1) .

Comparing the two expressions for the truncation error, we get the fol-
lowing theorem.

Theorem 5.4.3. If the function f is k times continuously differen-
tiable in the interval formed by the points x0, x1, . . . , xk, then there
is a point ξ in this interval, such that

f [x0, x1, . . . , xk] =
f (k)(ξ)

k!
.

Therefore, if f (k) does not vary too much in the interval, then it is
reasonable to estimate f (k)(ξ(x))/k! by the divided difference. Note that
f [x0, x1, . . . , xk] = ck is the coefficient of the highest power of x in Pk(x).
In other words, the estimate is based on approximating f (k) by the kth
derivative of Pk, just as we did for k = 2 in the example on page 105.

The result of this discussion can be formulated in another way: Pk−1

is obtained from Pk by neglecting the term of highest degree, and this
term can be used to estimate the error in the approximation Pk−1.

When a function is approximated by Newton’s interpolation polyno-
mial, then the truncation error can be estimated by the first neglected
term.

Example. The Matlab function polyfit can be used to find the interpolating
polynomial in the form

Pn(x) = d1x
n + d2x

n−1 + · · · + dnx + dn+1 .

The coefficients are computed by setting up and solving a linear system of
equations, which express that

xn
i d1 + xn−1

i d2 + · · ·xidn + dn+1 = fi, i= 0, 1, . . . , n .

With the data from the example on page 109 we get

>> x = [-1 0 2 5]; f = [6 1 3 66];

>> d = polyfit(x,f, 3)

d = 0.3333 1.6667 -3.6667 1.0000

The last input parameter tells that we want a degree 3 polynomial. See
page 273 about the choice of a degree that is smaller than length(x)-1.

Earlier we found the following expression for the interpolating polynomial
P (x) = 6 − 5(x + 1) + 2(x + 1)x + 1

3 (x + 1)x(x − 2) .
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The result for d corresponds to the polynomial

Q(x) = 1
3x3 + 5

3x2 − 11
3 x + 1 .

The reader should verify that P (x) = Q(x).

When the coefficients are known, the Matlab function polyval can be used
to evaluate Pn(x) (by means of Horner’s rule).

>> p = polyval(d,[-1 5 1])

p = 6 66 -0.6667

We recognize the results we got earlier.

It should be mentioned that the computation by means of Newton’s interpo-
lation polynomial is less sensitive to rounding errors. This aspect is discussed
in an example on page 249.

5.5. Neville’s Method

In this section we shall show that the evaluation of an interpolating poly-
nomial of degree ≤ n can be performed as a series of linear interpolations.
This approach is widely used in computer graphics.

According to (5.4.3) the value Pk(x) can be expressed as

Pk(x) = Pk−1(x) +
x − x0

xk − x0
(
→
P k−1(x) − Pk−1(x)) ,

and by comparison with (5.3.1) we wee that this can be interpreted as a
linear interpolation between the “points” (x0, Pk−1(x)) and (xk,

→
P k−1(x)).

This is the background for Neville’s method . We shall give a description
of it, where the notation emphasizes the interpolation points.

Let P01(x) denote the polynomial of degree ≤ 1, which interpolates
the function f in x0 and x1:

P01(x) = f0 +
x − x0

x1 − x0

(
f1 − f0

)
=

(x − x0)f1 − (x − x1)f0

x1 − x0
.

Next, let P012(x) denote the polynomial of degree ≤ 2, which interpo-
lates the function f in x0, x1 and x2. The polynomial can be computed
by linear interpolation between (x0, P01(x)) and (x2, P12(x)),

P012(x) =
(x − x0)P12(x) − (x − x2)P01(x)

x2 − x0
.

Let us verify this: Since P01 and P12 are polynomials of degree ≤ 1, the
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right hand side is a polynomial of degree ≤ 2, and we just need to show
that P012(xj) = fj , j = 0, 1, 2 :

P012(x0) =
−(x0 − x2)P01(x0)

x2 − x0
= P01(x0) = f0 ,

P012(x1) =
(x1−x0)P12(x1) − (x1−x2)P01(x1)

x2 − x0

=
(x1−x0 − x1+x2)f1

x2 − x0
= f1 ,

P012(x2) = P12(x2) = f2 .

One can continue like this and construct interpolating polynomials of
higher degree by successive linear interpolation:

Theorem 5.5.1. Let Pi0i1...ik be the polynomial of degree ≤ k that
satisfies

Pi0i1...ik(xij ) = fij , j = 0, 1, . . . , k .

The polynomial can be computed by the recursion

Pi(x) = fi ,

Pi0i1...ik(x) =
(x − xi0)Pi1...ik(x) − (x − xik)Pi0...ik−1

(x)

xik − xi0

.

The theorem is easily proved by induction.
Neville’s method is conveniently arranged in a table like the following.

x − x0 x0 f0 = P0(x)
P01(x)

x − x1 x1 f1 = P1(x) P012(x)
P12(x) P0123(x)

x − x2 x2 f2 = P2(x) P123(x)
P23(x)

x − x3 x3 f3 = P3(x)

Eg, we have

P123(x) =
(x − x1)P23(x) − (x − x3)P12(x)

x3 − x1
.

Example. Compute the value for x= 1 of the polynomial that interpolates the
points (−1, 6), (0, 1), (2, 3), (5, 66).
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1−xi xi fi

2 −1 6
2·1−1·6

0+1 = −4

1 0 1 2·2+1·(−4)
2+1 = 0

1·3+1·1
2−0 = 2 2·(−2)+4·0

5+1 = − 2
3

−1 2 3 1·(−18)+4·2
5−0 = −2

−1·66+4·3
5−2 = −18

−4 5 66

We naturally get the same result as in the example on page 110.

Neville’s method is useful for computing the value of an interpolating
polynomial at a particular point. If an explicit expression for the polyno-
mial is needed or if values of the polynomial are desired at several points,
then it is better to use Newton’s interpolating polynomial.

5.6. Lagrange’s Interpolating Polynomial

Lagrange’s interpolating polynomial is another way of representing the
interpolating polynomial of a given function. This form is often used in
textbooks for the proof of Existence, Theorem 5.2.1. In Chapter 7 we
shall see that the Lagrange formulation can be used in the derivation
of formulas for numerical integration. We shall only give a traditional
formulation, which is neither efficient nor accurate for practical compu-
tation. It is possible, however, to reformulate the method2) so that it is
competitive with the computation via Newton’s interpolation polynomial.

Lagrange’s interpolating polynomial of degree ≤ n, which interpolates
the function f in x0, x1, . . . , xn, is given by

Pn(x) =
n∑

i=0

f(xi)Li(x) ,

where Li is the degree n polynomial

Li(x) =
(x − x0) · · · (x − xi−1)(x − xi+1) · · · (x − xn)

(xi − x0) · · · (xi − xi−1)(xi − xi+1) · · · (xi − xn)
.

2) See J.-P. Berrut and L.N. Trefethen, Barycentric Lagrange interpolation, to appear
in SIAM Review 2004.
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Example. For n= 2 the three polynomials are L0(x) =
(x − x1)(x − x2)

(x0 − x1)(x0 − x2)
,

L1(x) =
(x − x0)(x − x2)

(x1 − x0)(x1 − x2)
and L2(x) =

(x − x0)(x − x1)

(x2 − x0)(x2 − x1)
.

As an exercise, show that Pn(xi) = f(xi) and that the degree of the
polynomial is at most n.

5.7. Hermite Interpolation

It sometimes happens that we know both the function values f(xi) and
the derivatives f ′(xi) at the points x0, x1, . . . , xn. Then we can determine
a polynomial P2n+1 of degree at most 2n+1, such that

P2n+1(xi) = f(xi) and P ′
2n+1(xi) = f ′(xi), i=0, 1, . . . , n .

The polynomial is called the Hermite interpolant. We shall only discuss
the case with two points, n = 1. To prepare for the use in Section 5.11 we
denote them xi−1 and xi = xi−1 +hi, and we let qi denote the polynomial
of degree ≤ 3. We write the polynomial in the form

qi(x) = ai + biu + ciu
2 + diu

3, u =
x − xi−1

hi
. (5.7.1)

The coefficients must satisfy the following linear system of equations3)

qi(xi−1) = ai = fi−1 ,

qi(xi) = ai + bi + ci + di = fi ,

hiq
′
i(xi−1) = bi = hif

′
i−1 ,

hiq
′
i(xi) = bi + 2ci + 3di = hif

′
i ,

where fj and f ′
j are the given values of f and f ′. This system has the

unique solution (verify that!)

ai = fi−1 ,

bi = hif
′
i−1 ,

ci = 3(fi − fi−1) − hi(2f ′
i−1 + f ′

i) ,

di = 2(fi−1 − fi) + hi(f
′
i−1 + f ′

i) .

(5.7.2)

3) Remember that ′ denotes differentiation with respect to x, and
d

dx
=

1

hi

d

du
.
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It can be shown that the following estimate of the approximation error
holds.

Theorem 5.7.1. Let the function f be four times continuously
differentiable in the interval [xi−1, xi], and let qi be the cubic Hermite
interpolant. Then

max
xi−1≤x≤xi

|f(x) − qi(x)| ≤ 1
384Mih

4
i + 1

4E′
ihi + Ei ,

where

hi = xi − xi−1 , Mi = max
xi−1≤x≤xi

|f (4)(x)| ,

Ei = max
j=i−1,i

|f(xj) − fj | , E′
i = max

j=i−1,i
|f ′(xj) − f ′

j | .

If the given fj agree with f(xj), then Ei =0, and if f ′
j = f ′(xj), then

E′
i = 0.

Example. We shall use cubic Hermite interpolation to approximate f(x) = sinx
for x∈ [1.1, 1.3].

xj fj = sinxj f ′
j = cos xj

1.1 0.8912 0.4536
1.3 0.9636 0.2675

When we insert these values (with hi = 0.2) in (5.7.1) and (5.7.2), we get

qi(x) = 0.8912 + 0.09072u − 0.01789u2 − 0.0004827u3, u =
x − 1.1

0.2
.

The error is shown in Figure 5.4. Note that both the error function and its

1.1 1.15 1.2 1.25 1.3
0

1

2

3

4
x 10

−6

Figure 5.4. Error in cubic Hermite interpolation of sinx.

derivative is zero at the interpolation points. It is seen that

max
1.1≤x≤1.3

| sin x − qi(x)|<∼ 4 · 10−6 .

This is in good agreement with Theorem 5.7.1: We have Ei = E′
i = 0, and

with f (4)(x) = sin x we get the upper bound 4.01 · 10−6 on the truncation
error.
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5.8. Runge’s Phenomenon

When a function f is approximated by interpolation in an interval, then
the error in the interpolation points is zero, and it is tempting to believe
that if we increase the number of interpolation points in such a way that
they get closer and closer, then the truncation error becomes smaller.
This, however, is not always the case. The classical counter-example was
constructed by Runge.

Example. Interpolate the function

f(x) =
1

1 + 25x2
, −1 ≤ x ≤ 1 ,

by a polynomial Pn of degree ≤ n, using equidistant points,

xi = −1 +
2i

n
, i= 0, 1, . . . , n .

Figure 5.5 shows the function and the interpolating polynomial Pn for n= 4,
6, 10. As n increases, the error gets smaller close to x = 0, but close to
x = ±1 the error increases with n.

−1 −0.75 −0.5 −0.25 0 0.25 0.5 0.75 1
−0.5

0

0.5

1

1.5

2
f(x)
n = 4
n = 6
n = 10

Figure 5.5. Runge’s phenomenon.

For this function and this distribution of interpolation points it can be shown
that

max
−1≤x≤1

|f(x) − Pn(x)| → ∞ for n → ∞ .
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In Chapter 9 we shall see that in many cases the error can be reduced
by other choices of interpolation points. In general, however, there is
no guarantee that we can get a good approximation with a high degree
polynomial and suitable interpolation points. It can be shown that, for
any choice of interpolation points there is a continuous function such
that the maximal error in polynomial interpolation tends to infinity, as
the number of interpolation points tends to infinity.

Rule of thumb: only interpolate with polynomials of low degree.

5.9. Spline Interpolation

Runge’s phenomenon shows that we cannot be sure to get a better approx-
imation by increasing the degree of an interpolating polynomial. Also,
polynomials are not suited for approximation of functions that change
their character in different parts of the interval. This is the case for many
functions that describe a physical phenomenon or the shape of an object.

An example is shown in Figure 5.6. If we approximate this function

0 1 2 3 4 5 6 7 8
−1

0

1

2

3

4

n = 5
n = 10

Figure 5.6. Approximation with interpolating polynomials
of degree 5 and 10.
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by an interpolating polynomial, we get a poor approximation by a low
degree polynomial, and with a high degree polynomial we get large oscil-
lations in part of the interval. It is better to approximate by different,
low degree polynomials in different parts of the interval.

Let [a, b] be the interval under consideration. We subdivide it by
introducing points a = x0 < x1 < · · · < xn = b.

a= x0 x1 xi−1 xi xi+1 xn−1 xn = b

In each of the n subintervals [xi−1, xi] we use a different polynomial.
The simplest choice is to use a straight line in each subinterval. Then
the approximation is a polygonal curve, ie a nonsmooth curve with dis-
continuities in the first derivative at the points x1, . . . , xn−1. In many
applications one gets good approximations by using third degree polyno-
mials in each subinterval, determined so that the approximating function
and its first two derivatives are continuous.

A function s is called a spline4) of degree 2m+1 if s is composed
of polynomials of degree 2m+1 in such a way that s and its first 2m
derivatives are continuous. For m= 0 and m= 1 one has respectively a
linear spline and a cubic spline. If s(xi) = f(xi), i = 0, 1, . . . , n, we have
an interpolating spline.

Example. The name “spline” comes from ship building. A physical spline is a
thin, elastic ruler, that is fixed in certain points.

Such a ruler was used by ship
builders to mark the shape of
a hull. The ruler will assume a
shape that minimizes its strain
energy.

In the mid 1940s some re-
searchers became interested in
finding a mathematical model
of the physical spline.

Figure 5.7. Physical spline.

Assume that the shape of the physical spline is unimodal in a certain coordi-
nate system, and that it can be described by y = f(x) for a ≤ x ≤ b. Then
the strain energy of the ruler is

4) Strictly speaking: a spline function.
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Ep = A

∫ b

a

(f ′′(x))2

(1 + (f ′(x))2)5/2
dx ,

where A is a constant that depends on the material and the cross section of
the ruler. If (f ′(x))2 ≪ 1 or f ′ is almost constant, then

Ep ≃ B

∫ b

a

(f ′′(x))2 dx ,

where B may be another constant. It turns out that this integral is mini-
mal if f(x) = s(x), the “natural” cubic spline, which interpolates the fixed
points; see Theorem 5.11.3.

Cubic splines have many applications in computer graphics and com-
puter aided design of curves and surfaces in eg car and aeroplane industry.
We start by describing linear splines to give a simple introduction to the
concept of piecewise polynomials.

5.10. Linear Spline Functions

Definition 5.10.1. Let a = x0 < x1 < · · · < xn = b be given
points, so-called knots. A function s is said to be a linear spline on
the interval [a, b], if

s is continuous in [a, b], and

s is a straight line in each knot interval [xi−1, xi], i = 1, . . . , n.

Thus, a linear spline s is composed of n straight lines,

si(x) = ai + bi(x − xi−1), xi−1 ≤ x ≤ xi .

This is illustrated in Figure 5.8.
There are 2n coefficients to be determined, but the continuity require-

ment gives n−1 conditions: In each interior knot xi the value si(xi) must
be equal to si+1(xi). This gives the conditions

ai + bi(xi − xi−1) = ai+1, i = 1, 2, . . . , n−1 .

There remain 2n−(n−1) = n+1 degrees of freedom. They can be used to
make the spline take given values in the knots, s(xi) = fi, i =0, 1, . . . , n.
This gives



122 5. Interpolation

replacemen

x0 x1 xi−1 xi xi+1 xn−1 xn

s1

si

si+1

sn

Figure 5.8. Linear spline.

ai = fi−1, bi =
fi − fi−1

xi − xi−1
, i = 1, 2, . . . , n .

An alternative way of representing an interpolating linear spline is

s(x) =
n∑

i=0

fili(x) , x0 ≤ x ≤ xn ,

where li(x) is a linear spline function with the property (cf Figure 5.9)

li(xj) = δij =

{
0, i 6= j ,
1, i = j .

x0 x1 xi−1 xi xi+1 xi+2 xn−1 xn

l0 li li+1 ln

1

Figure 5.9. Basis functions for linear splines.

It is easily seen that the linear spline li(x) is unique. We have

l0(x) =

{
(x1 − x)/(x1 − x0), x0 ≤ x ≤ x1 ,

0, x1 ≤ x ≤ xn .

For i = 1, 2, . . . , n−1 :
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li(x) =





0, x0 ≤ x ≤ xi−1 ,

(x − xi−1)/(xi − xi−1), xi−1 ≤ x ≤ xi ,

(xi+1 − x)/(xi+1 − xi), xi ≤ x ≤ xi+1 ,

0, xi+1 ≤ x ≤ xn ,
and

ln(x) =

{
0, x0 ≤ x ≤ xn−1 ,

(x − xn−1)/(xn − xn−1), xn−1 ≤ x ≤ xn .

The functions {li}n
i=0 are basis functions for the space of all linear splines

with the given knots. They are so-called linear B-splines. Note that each
of them is nonzero only in two consecutive knot intervals.

Now, assume that fi = f(xi), i = 0, 1, . . . , n, where f is a given, twice
continuously differentiable function. In the ith interval we can use the
analysis of linear interpolation, Section 5.3: Let

hi = xi − xi−1

be the length of the interval, then Theorem 5.3.1 gives the following
estimate of the local error ,

max
xi−1≤x≤xi

|f(x) − s(x)| ≤ h2
i

8
max

xi−1≤x≤xi

|f ′′(x)| . (5.10.1)

It follows that the global error can be estimated by

max
x0≤x≤xn

|f(x) − s(x)| ≤ h2

8
max

x0≤x≤xn

|f ′′(x)| , h = max{hi} .

The placement of the knots affects the error. From the estimate
(5.10.1) of the local error we see that the knots should be close in re-
gions where |f ′′| is large (ie where f varies rapidly), while the knots may
be further apart in regions where |f ′′| is small (ie where f is almost a
straight line).
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Example. Figure 5.10 shows the function from Figure 5.6 and the interpolation
by two linear splines with n= 5. The spline with equidistant knots has

0 1 2 3 4 5 6 7 8
−1

0

1

2

3

4

equidistant knots
knots closer at x = 0

Figure 5.10. Approximation with interpolating linear spline.

maximum truncation error 1.106. The function varies little for x>∼ 2.5, and
if we take the knots as [0 0.60 0.85 1.15 1.80 8], then the maximum
truncation error is reduced to 0.237.

5.11. Cubic Splines

Definition 5.11.1. Let a = x0 < x1 < · · · < xn = b be given knots.
A function s is said to be a cubic spline on the interval [a, b], if

s, s′ and s′′ are continuous in [a, b], and

s is a polynomial of degree ≤ 3 in each knot interval [xi−1, xi],
i =1, . . . , n.

The spline s is composed of n cubic polynomials,

s(x) = si(x), xi−1 ≤ x ≤ xi .
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This is illustrated in Figure 5.11.

x0 x1 xi−1 xi xi+1 xn−1 xn

s1

si

si+1

sn

Figure 5.11. Cubic spline.

Each si has four coefficients, so there are 4n coefficients to be deter-
mined, but the continuity requirements give 3(n−1) conditions,

si(xi) = si+1(xi)

s′i(xi) = s′i+1(xi)

s′′i (xi) = s′′i+1(xi)





i = 1, . . . , n−1 .

There remain 4n − 3(n−1) = n+3 degrees of freedom. If we choose to
make the spline interpolate in the knots, s(xi) = f(xi), i =0, 1, . . . , n,
then we have n+1 conditions. Common choices for the two remaining
conditions are given in the following theorem.

Theorem 5.11.2. Let {xi}n
i=0 be given points with a = x0 < x1 <

· · · < xn = b. A cubic spline s with knots x0, x1, . . . , xn is uniquely
determined by the interpolation conditions

s(xi) = f(xi), i= 0, 1, . . . , n ,

supplied with any of the following choices of two extra conditions:

“Natural spline” s′′1(x0) = 0, s′′n(xn) = 0 .

Correct boundary conditions: s′1(x0) = f ′(x0), s′n(xn) = f ′(xn) .

“Not-a-knot”: s
(3)
1 (x1) = s

(3)
2 (x1), s

(3)
n−1(xn−1) = s

(3)
n (xn−1) .

Periodic boundary conditions: s
(r)
1 (x0) = s

(r)
n (xn), r = 1, 2 .

Before we prove the theorem, we discuss the extra conditions.
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The term “Natural spline” refers to properties of a physical spline:
The ruler is straight outside the interval of fixed points, ie the second
derivative is zero for x ≤ a and x ≥ b.

Normally, correct boundary conditions give significantly better ap-
proximation of f close to the endpoints (except if f ′′(x) is close to zero
for x close to a and b). Therefore, if f ′(a) and f ′(b) (or good approxima-
tions of them) are available, then we recommend to use them.

The third derivative of si is constant in each knot interval, and nor-
mally s(3)(x) jumps when we pass a knot. The “not-a-knot” condition is
that the first and last knot intervals are [x0, x2] and [xn−2, xn], respec-
tively, but x1 and xn−1 are still used as interpolation points. Thus, the
degrees of freedom reduces to (n−2) + 3 = n+1, which is equal to the
number of conditions of the form s(xi) = f(xi).

The periodic boundary conditions are used for interpolation of periodic
functions. We already have periodicity of the knot values of s itself from
the conditions s(x0) = f(a) = f(b) = s(xn), and the extra conditions
ensure that the first and second derivative also are periodic.

Now, we shall prove Theorem 5.11.2. The proof is constructive: it
gives an algorithm for computing the spline.

The interpolation property and the continuity of s are satisfied if we
prescribe that

si(xi−1) = fi−1, si(xi) = fi, i = 1, 2, . . . , n . (5.11.1)

Further, let {s′j} denote the values of the derivative of s at the knots.
The continuity of s′ is satisfied if we prescribe that

s′i(xi−1) = s′i−1, s′i(xi) = s′i, i = 1, 2, . . . , n .

We do not know {s′j}, but assuming that we did, this is the problem
discussed in Section 5.7 about Hermite interpolation. The polynomial

si(x) = ai + biu + ciu
2 + diu

3 ,

u =
x − xi−1

hi
, hi = xi − xi−1

(5.11.2)

is determined by the values at xi−1 and xi of s and s′. From (5.7.2) and
(5.11.1) we get
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ai = fi−1 ,

bi = his
′
i−1 ,

ci = 3(fi − fi−1) − hi(2s′i−1 + s′i) ,

di = 2(fi−1 − fi) + hi(s
′
i−1 + s′i) .

(5.11.3)

The values of the {s′j} are determined by the continuity of s′′(x) and
the two extra conditions: From (5.11.2) we get

s′′i (x) =
2ci + 6diu

h2
i

,

and the condition s′′i (xi) = s′′i+1(xi) at the interior knots is equivalent to

2ci + 6di

h2
i

=
2ci+1

h2
i+1

, i = 1, 2, . . . , n−1 .

We insert the values from (5.11.3),

−6(fi − fi−1) + hi(2s′i−1 + 4s′i)

h2
i

=
6(fi+1 − fi) − hi+1(4s′i + 2s′i+1)

h2
i+1

,

and after multiplication by 1
2hihi+1 and reordering we get

hi+1s
′
i−1 + 2(hi + hi+1)s

′
i + his

′
i+1 = ri, i = 1, 2, . . . , n−1 , (5.11.4a)

where

ri = 3

(
hi+1

fi − fi−1

hi
+ hi

fi+1 − fi

hi+1

)
. (5.11.4b)

This is a system of n−1 linear equations in the n+1 unknowns {s′j}n
j=0.

A natural spline must further satisfy the two equations

s′′(x0) =
2c1

h2
1

=
2

h1

(
3
f1 − f0

h1
− 2s′0 − s′1

)
= 0 ,

s′′(xn) =
2(cn + 3dn)

h2
n

=
2

hn

(
−3

fn − fn−1

hn
+ s′n−1 + 2s′n

)
= 0 ,

or
2s′0 + s′1 = r0, r0 = 3(f1 − f0)/h1 ,

s′n−1 + 2s′n = rn, rn = 3(fn − fn−1)/hn .
(5.11.5)

When we combine these two equations with (5.11.4), we have n+1 linear
equations in the n+1 unknowns {s′j}n

j=0. We can write the system in
matrix form,
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


2 1
h2 2(h1+h2) h1

. . .
. . .

. . .

hn 2(hn−1+hn) hn−1

1 2







s′0
s′1
...

s′n−1

s′n




=




r0

r1
...

rn−1

rn




.

(5.11.6)

If we know the slopes at the endpoints, then (5.11.5) is replaced by

s′0 = r0 = f ′(a) ,

s′n = rn = f ′(b) .

The modifications of the first and last rows of the matrix in (5.11.6) are
straightforward.

In both cases the matrix is tridiagonal and diagonally dominant, cf
Chapter 8. It can be shown that such a matrix is nonsingular, which
means that the system has a unique solution.

Thus, we have proved Theorem 5.11.2 in the cases where the extra
conditions are chosen as the natural spline or correct boundary conditions.
It can be shown that also the “not–a–knot” and the periodic boundary
conditions lead to a well-defined set {s′j}n

j=0, and thereby a unique inter-
polating cubic spline.

Example. The solution to the system (5.11.6) can be found by Gaussian elimi-
nation without pivoting, and the amount of work involved in the solution is
approximately 8n flops, cf Section 8.8.

This property is, however, not exploited in the following Matlab function
splint1, which can be used to compute an interpolating cubic spline. It
returns the coefficients in the piecewise polynomial (5.11.2). There is a
choice between “natural” and correct boundary conditions.

function p = splint1(x,f,df)

% Compute coefficients for interpolating cubic spline

% Call p = splint1(x,f) % Natural spline

% or p = splint1(x,f,df) % Correct boundary conds.

% Input

% x: Vector with knots. Length n+1.

% f: Vector with nodal function values. Length n+1.

% df: If present, then a vector with endpoint derivatives,

% df(1) = f’(x(1)), df(2) = f’(x(n+1))

% Output

% p : n*4 array with p(i,:) = [ai bi ci di].



5.11. Cubic Splines 129

n = length(x) - 1; % number of knot intervals

h = diff(x); % n-vector with knot spacings

v = diff(f)./h; % n-vector with divided differences

% Set up matrix A and right hand side r

A = zeros(n+1,n+1); r = zeros(n+1,1);

for i = 1 : n-1

A(i+1,i:i+2) = [h(i+1) 2*(h(i)+h(i+1)) h(i)];

r(i+1) = 3*(h(i+1)*v(i) + h(i)*v(i+1));

end

if nargin == 3 % Correct boundary conds.

A(1,1) = 1; r(1) = df(1);

A(n+1,n+1) = 1; r(n+1) = df(2);

else % Natural spline.

A(1,1:2) = [2 1]; r(1) = 3*v(1);

A(n+1,n:n+1) = [1 2]; r(n+1) = 3*v(n);

end

ds = A\r; % Solve A*ds = r

% Compute coefficients

p = zeros(n,4);

for i = 1:n

p(i,1) = f(i);

p(i,2) = h(i)*ds(i);

p(i,3) = 3*(f(i+1) - f(i)) - h(i)*(2*ds(i) + ds(i+1));

p(i,4) = 2*(f(i) - f(i+1)) + h(i)*(ds(i) + ds(i+1));

end

The function splint2 can be used to compute values of the spline for mul-
tiple arguments, given in a vector t. The evaluation is made by Horner’s
rule.

function s = splint2(x,p,t)

% Compute values of cubic spline with knots x and coefficients

% p, see SPLINT1.

if any((t < x(1)) | (t > x(end)))

error(’arguments must be in knot range’)

end

s = zeros(size(t)); % vector of same type as t

for i = 1 : length(x)-1 % run through knot intervals

k = find((x(i) <= t) & (t <= x(i+1)));

if ~isempty(k) % arguments in interval

u = (t(k) - x(i))/(x(i+1) - x(i)); % Normalized arguments

s(k) = p(i,1) + u.*(p(i,2) + u.*(p(i,3) + u*p(i,4)));

end

end

We shall use these two functions to compute two cubic splines that interpo-
late the Runge function from page 118, f(x) = 1/(1+25x2), in 11 equidistant
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points on [−1, 1]. The two cubic splines are respectively a natural spline and
a spline with correct boundary conditions, f ′(x) = −50x/(1 + 25x2)2.

x = linspace(-1,1,11); fx = 1./(1 + 25*x.^2);

pn = splint1(x,fx); % natural spline

dfe = [50 -50]/26^2; % endpoint slopes

pc = splint1(x,fx,dfe); % correct bound. conds.

% Error curves

t = linspace(-1,1,201); ft = 1./(1 + 25*t.^2);

plot(t,splint2(x,pn,t)-ft,’--’, ...

t,splint2(x,pc,t)-ft,’-’, x,0*x,’o’)

The resulting error plot is shown in Figure 5.12.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−0.01

0

0.01

0.02 Natural spline
Correct b. c.
Not−a−knot

Figure 5.12. Error function s(x) − 1/(1 + 25x2).

In the plot we have added the error curve corresponding to the cubic spline
given by the standard Matlab function spline

>> s = spline(x,fx,t);

The vector s contains values of the interpolating cubic spline, computed with
the “not-a-knot” condition. It should be mentioned that if we had used the
command

>> s = spline(x,[dfe(1) fx dfe(2)],t);

then s would contain values of the interpolating cubic spline, computed with
the correct boundary conditions.

The figure shows that the correct boundary conditions give the best approx-
imation, but except for the two extreme knot intervals at both ends, it is
not possible to see the difference between the three cubic splines.

Finally, we give some general results about properties of interpolating
cubic spline functions. First, we look at the similarity with physical
splines:
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Theorem 5.11.3. Among all functions g that are twice continuously
differentiable on [a, b], and that interpolate f in the points a = x0 <
x1 < · · · < xn = b, the interpolating natural cubic spline minimizes
the integral

∫ b

a

(
g′′(x)

)2
dx .

Proof. Let s denote the interpolating natural cubic spline, and consider
∫ b

a

(
g′′(x) − s′′(x)

)2
dx =

∫ b

a

(
g′′(x)

)2
dx −

∫ b

a

(
s′′(x)

)2
dx

−2

∫ b

a

(
g′′(x) − s′′(x)

)
s′′(x) dx .

(5.11.7)

We will show that the last integral is zero. To do that, we look at the
contribution from the ith interval and use partial integration.

Ii =

∫ xi

xi−1

(
g′′(x) − s′′(x)

)
s′′(x) dx

=
[
(g′(x) − s′(x))s′′(x)

]xi

xi−1
−

∫ xi

xi−1

(
g′(x) − s′(x)

)
s(3)(x) dx

=
[
(g′(x) − s′(x))s′′(x) − 6di(g(x) − s(x))

]xi

xi−1

=
(
g′(xi) − s′(xi)

)
s′′(xi) −

(
g′(xi−1) − s′(xi−1)

)
s′′(xi−1) .

During the reformulation we used that s(3)(x) is equal to the constant
6di for xi−1 < x < xi, and that

g(xj) − s(xj) = f(xj) − f(xj) = 0, j = i−1, i ,

because of the interpolation property. Thus, we have
∫ b

a

(
g′′(x) − s′′(x)

)
s′′(x) dx = I1 + I2 + · · · + In

=
(
g′(x1) − s′(x1)

)
s′′(x1) −

(
g′(x0) − s′(x0)

)
s′′(x0)

+
(
g′(x2) − s′(x2)

)
s′′(x2) −

(
g′(x1) − s′(x1)

)
s′′(x1)

+ · · ·
+

(
g′(xn) − s′(xn)

)
s′′(xn) −

(
g′(xn−1) − s′(xn−1)

)
s′′(xn−1)

=
(
g′(xn) − s′(xn)

)
s′′(xn) −

(
g′(x0) − s′(x0)

)
s′′(x0) = 0 ,
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since s′′(x0) = s′′(xn) = 0. Now, we insert this result in (5.11.7) and
reorder the terms:

∫ b

a

(
g′′(x)

)2
dx =

∫ b

a

(
s′′(x)

)2
dx +

∫ b

a

(
g′′(x) − s′′(x)

)2
dx

≥
∫ b

a

(
s′′(x)

)2
dx .

The minimum is obtained when g′′(x) = s′′(x) for a ≤ x ≤ b, ie for
g(x) = s(x) + A + Bx. However, the interpolation conditions imply
that A = B = 0, so that g(x) = s(x).

From the proof it follows that if g is required not only to interpolate
the given points, but also to satisfy the boundary conditions g′(a) = f ′(a)
and g′(b) = f ′(b), then the same integral is minimized, when g(x) = s(x),
the interpolating cubic spline with correct boundary conditions.

Theorem 5.11.3 implies that an interpolating cubic splines cannot have
large oscillations. If it had, then s′ would take large positive and negative
values, and according to the mean value theorem also |s′′| would be large,
and the integral of (s′′(x))2 would not be small.

The local truncation error can be estimated by Theorem 5.7.1 with
Ei = 0,

max
xi−1≤x≤xi

|f(x) − si(x)| ≤ 1
384Mih

4
i + 1

4E′
ihi ,

where
Mi = max

xi−1≤x≤xi

|f (4)(x)| , E′
i = max

j=i−1,i
|f ′(xj) − s′(xj)| .

Ignoring the term with E′
i we get the following recommendation,

Rule of thumb no. 1. The knots should be closely spaced in regions
where |f (4)(x)| is large, while the knot spacing may be larger in
regions, where |f (4)(x)| is small, ie where f can be well approximated
by a cubic polynomial.

This is analogous to the recommendation about linear splines given
in connection with (5.10.1). It can be shown that undesirable oscillations
may be induced if the knot spacing varies wildly, and therefore we also
give another recommendation:

Rule of thumb no. 2. The knots should preferably be distributed
so that 1

2 ≤ hi+1/hi ≤ 2.
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Example. As in the previous example we interpolate f(x) = 1/(1 + 25x2) in
[−1, 1] by a cubic spline with 11 knots. Figure 5.13 shows the error when we
use correct boundary conditions and the interior knots distributed according
to the first rule of thumb.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−2

0

2

4
x 10

−3

Figure 5.13. Error function s(x) − 1/(1 + 25x2). Non-equidistant knots.

As compared with equidistant knots, the maximum error is reduced from
approximately 0.022 to approximately 0.0018.

The final theorem in this section gives information about the global
approximation properties of cubic splines. The proof can be found in the
paper by Beatson given in the references.

Theorem 5.11.4. Let the function f be four times continuously
differentiable in [a, b], and let s be the cubic spline that interpolates
f at the points

a = x0 < x1 < · · · < xn = b ,

with correct boundary conditions. Then

max
a≤x≤b

|s(r)(x) − f (r)(x)| < Kr(β)Mh4−r, r = 0, 1, 2, 3 ,

where

h = max
i

hi, β =
h

mini hi
, M = max

a≤x≤b
|f (4)(x)| ,

and
K0(β) = 5

384 , K1(β) = 1
216(9 +

√
3) ,

K2(β) = 1
12(1 + 3β) , K3(β) = 1

2(1 + β2) .



134 5. Interpolation

The theorem shows that, as the largest knot spacing tends to zero,
the interpolating spline and its first three derivatives converge uniformly
to f and its derivatives. In particular, we have |f(x) − s(x)| = O(h4)
when we use correct boundary conditions. If we use a natural spline or
the not–a–knot condition, we will get |f(x)− s(x)| = O(h2) for x close to
the endpoints x0 and xn.

5.12. Cubic B-Splines

In many programs that use cubic splines, the spline s is expressed as a
linear combination of basis splines Bi3, so-called cubic B-splines,

s(x) =
∑

i

ciBi3(x) .

In this section we shall give an introduction to this formulation.
In Section 5.10 we saw that a linear spline can be expressed as a linear

combination of linear basis splines li(x). Each of these is a linear spline,
which is nonzero only in two consecutive knot intervals. We say that li
has its support in the interval [xi−1, xi+1].

Similarly, each Bi3 is a cubic spline, which is nonzero only in a small
number of consecutive knot intervals. How many intervals do we need? To
answer that question, let Bi3(x) be nonzero in the open interval ]xi, xi+q[.
There are 4q parameters in the piecewise cubic polynomials. They must
be determined such that Bi3, B′

i3 and B′′
i3 are continuous across the inte-

rior knots xi+1, . . . , xi+q−1, and such that Bi3 and its first two derivatives
also are continuous across the knots xi and xi+q :

Bi3(xk) = B′
i3(xk) = B′′

i3(xk) = 0, k = i, i+q .

Thus, we have 3(q+1) conditions on the 4q parameters, and in order to
get a nontrivial solution we must have

4q > 3(q+1) .

The smallest integer value of q that satisfies this demand is q = 4. This
leaves one degree of freedom, which is used to normalize the basis splines.
The normalization is made so that for every x∈ [x0, xn] the sum of all
Bi3(x) is equal to one.
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In conclusion, Bi3(x) is nonzero only in the open interval ]xi, xi+4[
(ie Bi3 has its support in [xi, xi+4]). In other words: For a given x
in [xi, xi+1] there are at most5) four nonzero basis splines, Bi−3,3(x),
Bi−2,3(x), Bi−1,3(x) and Bi,3(x). Thus, we can write

s(x) =
n−1∑

i=−3

ciBi3(x), x0 ≤ x ≤ xn .

The number of terms, n+3, is recognized as the number of degrees of
freedom of a cubic spline with knots x0, x1, . . . , xn. The B-splines are
illustrated in Figure 5.14.
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Figure 5.14. Cubic B-splines. Knots indicated by circles. n = 4.

The B-splines can be computed recursively:

Bi,0 =

{
1, xi ≤ x < xi+1 ,
0, otherwise,

(5.12.1a)

and for r = 1, 2, 3 :

Bi,r(x) =
x − xi

xi+r − xi
Bi,r−1(x) +

xi+r+1 − x

xi+r+1 − xi+1
Bi+1,r−1(x) . (5.12.1b)

Especially, for r = 1 we get

Bi,1(x) =





0, x < xi ,
(x − xi)/(xi+1 − xi), xi ≤ x < xi+1 ,

(xi+2 − x)/(xi+2 − xi+1), xi+1 ≤ x < xi+2 ,
0, x ≥ xi+2 .

We recognize this as the linear basis spline li+1(x) from Section 5.10.

5) At a knot there are only three nonzero B-splines.
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For a given x∈ [xi, xi+1[ the only nonzero basis spline of degree zero
is Bi,0(x). According to (5.12.1b) this leads to nonzero Bi−1,1(x) and
Bi,1(x), etc. The computation of the four nonzero Bj,3(x) is illustrated
in Figure 5.15.

Bi,0(x)
P

PPq

✏
✏✏✶

Bi−1,1(x)

Bi,1(x)

P
PPq

✏
✏✏✶

P
PPq

✏
✏✏✶

Bi−2,2(x)

Bi−1,2(x)

Bi,2(x)

P
PPq

✏
✏✏✶

P
PPq

✏
✏✏✶

P
PPq

✏
✏✏✶

Bi−3,3(x)

Bi−2,3(x)

Bi−1,3(x)

Bi,3(x)

Figure 5.15. Nonzero values in the recurrence
for cubic B-splines when x∈ [xi, xi+1[.

In the recurrence (5.12.1b) we only need to include the terms with
Bj,r−1(x) 6= 0, eg

Bi−3,3(x) =
xi+1 − x

xi+1 − xi−2
Bi−2,2(x) .

When we take that into account, we can see that the computation for
x∈ [xi, xi+1[ involves knots xi−2, . . . , xi+3. Since 0 ≤ i ≤ n−1, this shows
we need two extra knots at both ends. They must satisfy

x−2 ≤ x−1 ≤ x0, xn+2 ≥ xn+1 ≥ xn .

Often, the extra knots are chosen so that they coincide with x0 and xn,
respectively.

Suppose that we want to interpolate m points {(ti, fi)}m
i=1 by a cubic

spline. When we express this in terms of B-splines, we no longer have to
use the knots given by the values of the first coordinate. Let n = m−3,
choose knots x0, x1, . . . , xn such that all ti ∈ [x0, xn], and determine the
spline by the conditions

m−4∑

j=−3

Bj3(ti)cj = fi, i = 1, 2, . . . , m .

This is a system of m linear equations in the m unknown coefficients
{cj}m−4

j=−3. Each equation involves only four unknowns, so the matrix of
the system is banded, cf Section 8.8. It can be shown that the matrix is
nonsingular if the so-called Schoenberg-Whitney conditions
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ti < xi < ti+4, i = 1, 2, . . . , m−4

are satisfied. Especially, there must be at least one data point in each of
the two extreme knot intervals [x0, x1[ and ]xn−1, xn].

Example. Figure 5.16 illustrates the same problem as the two previous exam-
ples: interpolate f(x) = 1/(1 + 25x2) in [−1, 1] by a cubic spline with 11
knots.

We take the same knots as in Figure 5.13, but now the spline is determined
by interpolating 13 equidistant points, ti = −1 + (i−1)/6, i = 1, 2, . . . , 13.

The approximation is almost as good as in Figure 5.13, where we used nodal
values of the function, supplied with correct boundary conditions.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
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Figure 5.16. Error function s(x) − 1/(1 + 25x2).

Knots and data points marked by o and + , respectively.

Exercises
E1. We want to compute f(a) =

√
a, and we have very high requirements

concerning speed.

(a) One possible method is to interpolate linearly in an equidistant table.
Which table size is needed if we require that |RXF + RT| shall be
smaller than 2µ? The computer is using the floating point system
(2, 23,−126, 127).

(b) Another method is to perform one iteration with Newton-Raphson’s
method applied to the equation f(x) = x2 − a = 0.
The initial approximation x0 is taken from a table (see Section 4.7).
Which table size is needed if we require that the error after one
iteration is smaller than 2µ?
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(c) The computational work is approximately the same in (a) and (b).
Which method requires the smallest table?

E2. We know that P is a polynomial of degree ≤ 5, and know the following
values

x −2 −1 0 1 2 3
P (x) −5 1 1 1 7 25

.

What is the degree of P ?

E3. The polynomial

p(x) = 2 − (x + 1) + x(x + 1) − 2x(x + 1)(x − 1)

interpolates the first four points in the table

x −1 0 1 2 3
f(x) 2 1 2 −7 10

Use Newton’s interpolation polynomial to determine the term that should
be added to p(x), so that the resulting polynomial interpolates all the
points in the table.

E4. Let f(x) = xm, where m is a natural number. Show that

f [x0, x1, . . . , xn] =

{
1, n = m ,
0, n > m .

E5. The two expressions

f(x0) + (x − x0)f [x0, x1] + (x − x0)(x − x1)f [x0, x1, x2]

+(x − x0)(x − x1)(x − x2)f [x0, x1, x2, x3]

and

f(x1) + (x − x1)f [x1, x3] + (x − x1)(x − x3)f [x1, x3, x2]

+(x − x1)(x − x3)(x − x2)f [x1, x3, x2, x0]

represent the same polynomial. Explain why.

E6. The following table with correctly rounded values is given

x sin x cos x cot x
0.001 0.001000 1.000000 1000.0
0.002 0.002000 0.999998 499.999
0.003 0.003000 0.999996 333.332
0.004 0.004000 0.999992 249.999
0.005 0.005000 0.999988 199.998

Compute cot(0.0015) as accurately as possible

(a) by interpolation in the table for cotx,
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(b) by interpolation in the tables for cosx and sinx.

(c) Estimate the error in (b).

(d) Explain the difference between the results in (a) and (b).

The argument 0.0015 is assumed to be exact.

E7. Derive a method for estimating
∫ b

a
f(x) dx by interpolating f by a linear

spline with the knots xi = a + i
n (b − a), i= 0, 1, . . . , n .

E8. Show that the interpolating linear spline with knots x0, x1, . . . , xn is the
function that minimizes ∫ xn

x0

(
g′(x)

)2
dx

among all functions g such that g(xi) = fi, i= 0, 1, . . . , n, and such that
the integral is bounded.

E9. For r =1, 2, 3 show that the B-spline Bir(x) has support [xi, xi+r+1] and
that Bir(x) > 0 for xi < x <xi+r+1.

Computer Exercises
C1. On page 111 we gave a Matlab function intpolc for computing the

coefficients in Newton’s interpolation polynomial. Compare intpolc with
the function

function c = intpolc1(x,f)

m = length(x); % number of interpolation points

for k = 2 : m

f(k:m) = (f(k:m) - f(k-1)) ./ (x(k:m) - x(k-1));

end

c = f; % return coefficients

Explain why the two functions give the same result.

C2. Consider the Matlab functions splint1 and splint2 from pages 128
– 129. How should the output p from splint1 be modified, so that
splint2(x,p,t) returns s′(t) ?

C3. Consider the function

f(x) =
x

0.25 + x2

in the interval −2 ≤ x ≤ 2.
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(a) Approximate f by different interpolation polynomials in different
parts of the interval. (In Matlab you can use polyfit, cf the
example on page 112). Determine the polynomials P , Q and R such
that

P (−2 + 0.5i) = f(−2 + 0.5i), i = 0, 1, 2, 3 ,

Q(−0.5 + i/3) = f(−0.5 + i/3), i = 0, 1, 2, 3 ,

R(0.5 + 0.5i) = f(0.5 + 0.5i), i = 0, 1, 2, 3 ,

and let

p(x) =





P (x), −2 ≤ x ≤ −0.5
Q(x), −0.5 ≤ x ≤ 0.5
R(x), 0.5 ≤ x ≤ 2

Plot f and p in the same figure. Plot another figure with the error
function p − f . Is this a good approximation?

(b) Use the Matlab function spline to interpolate f in the points xi =
−2 + 0.5i, i = 0, 1, . . . , 8, with not–a–knot conditions, cf page 130.
Plot f and the spline s in the same figure, and the error function
s − f in another figure.

(c) Repeat (b) with the knot spacing changed to 1/3.

It is obvious that the error is largest close to x = 0, where the function
varies fast. One way of getting a better distribution of the knots is to
use the fact that on the interval [−2, 2] the function f has the parametric
representation

x = 1
2 cot θ, y = sin 2θ, α ≤ θ ≤ π−α ,

where 1
2 cot α = 2.

(d) Repeat (b) with the knots given by

xi = 1
2 cot θi, θi = α + i

π − 2α

12
, i = 0, 1, . . . , 12 .

Do we now get a good approximation for x close to 0? Why is the
error large for x close to the endpoints of the interval?

(e) Repeat (d) with the not–a–knot conditions changed to the correct
boundary conditions, cf page 130. Do we now get a good approxi-
mation in the entire interval?

C4. We consider an algorithm for cubic spline interpolation of a function f in
the interval [a, b]. The spline should be computed with correct boundary
conditions, and the knots xj should be inserted adaptively, until a specified
accuracy τ is obtained.
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Ideally, we want

max
a≤t≤b

|f(t) − s(t)| ≤ τ ,

and approximate this by

max
0≤i≤m

|fi − s(ti)| ≤ τ ,

where the “test points” ti are equidistant in [a, b] and fi = f(ti).

The algorithm is specified as follows.

Initialize:
ti = a + i

m (b − a), fi = f(ti), i = 0, 1, . . . ,m

n = 2, xj = a + j
2 (b − a), j = 0, 1, 2

Iterate:
repeat

Compute s
Find En and k : En = |fk − s(tk)| = maxi |fi − s(ti)|
if En ≤ τ then stop

else n := n+1; insert tk as a new knot
end

(a) Implement the algorithm in Matlab with appropriate illustrations
of its performance, eg plot the error s−f in each step of the iteration.
The Matlab function spline can be used to compute s, cf page 130.

(b) Test your implementation with m = 200 and

f(x) =
x

0.25 + x2
, [a, b] = [0, 2] .
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Chapter 6

Differentiation and
Richardson Extrapolation

6.1. Introduction

Suppose that a function is known only at some discrete points, as in
Figure 6.1, and that we want to estimate the derivative of the function.

1 1.2 1.4 1.6 1.8 2
0

0.5

1

1.5

2

Figure 6.1. Only the function values marked by x are known.

If we want to compute the derivative for many values of the argument,
or if the arguments of the known function values are not equidistant, then
we recommend to compute an interpolating cubic spline and differentiate
that. In this chapter, however, we assume that the function values are
known at equidistant points, and that approximations to the derivative
are only required at a small number of points. Then it is simpler to
interpolate the function by a polynomial of low degree, and differentiate
that polynomial. We shall see that this is equivalent to approximating
the derivative by a difference quotient. Actually, we already used this
technique in Chapter 5 when we estimated the truncation error by the first



144 6. Differentiation

neglected term; in Theorem 5.4.3 the kth derivative f (k) was estimated
by means of a divided difference.

Numerical differentiation can also be useful in cases where we know a
formula for the function. If the derivative involves a large computational
work, it may be preferable instead to compute an approximation with the
desired accuracy.

In Chapter 10 we shall use formulas for numerical differentiation to
derive methods for numerical solution of differential equations.

When we have discussed different difference approximations, we shall
use one of them to illustrate Richardson extrapolation. This is a powerful
technique, that can be used for estimating the truncation error and for
reducing it. In the next chapter we shall use this technique in connection
with numerical methods for integration.

6.2. Difference Approximations of Derivatives

Assume that the function f is known at the points x−h, x and x+h. We
want to compute an approximation of f ′(x), ie the slope of the tangent of
the curve y = f(x) at the point x. Figure 6.2 shows three secants, whose
slopes can be used as approximations of f ′(x).

Figure 6.2. Different
approximations of f ′(x).

backward difference
forward difference
central difference

x−h x+hx

In the figure h is large in order to enhance the difference between the
three approximations. In practice we use a much smaller h-value in order
to get a good approximation.
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If f is approximated by the straight line through the points (x, f(x))
and (x+h, f(x+h)), we get the so-called forward difference approxima-
tion D+(h),

f ′(x) ≃ D+(h) =
f(x+h) − f(x)

h
.

Similarly, the backward difference approximation D−(h) is the slope of
the straight line through the points (x, f(x)) and (x−h, f(x−h)),

f ′(x) ≃ D−(h) =
f(x) − f(x−h)

h
.

Intuitively, we get a better approximation of f ′(x) if we use function
values at points that are symmetric around x. The central difference ap-
proximation D0(h) is the slope of the straight line through the points
(x−h, f(x−h)) and (x+h, f(x+h)),

f ′(x) ≃ D0(h) =
f(x+h) − f(x−h)

2h
.

The same idea can be used to get approximations of higher derivatives.
For instance, if f is approximated by a second degree polynomial through
the three points (x−h, f(x−h)), (x, f(x)) and (x+h, f(x+h)), and this
polynomial is differentiated twice, one gets

f ′′(x) ≃ f(x−h) − 2f(x) + f(x+h)

h2
. (6.2.1)

6.3. The Error in Difference Approximations

When the derivative of a function is approximated by a difference quo-
tient, there is a truncation error , RT. This error can be estimated using
a Taylor expansion of the function.

Let f be a twice continuously differentiable function, whose derivative
is approximated by a forward difference. Then

RT = D+(h) − f ′(x) =
1

h

(
f(x+h) − f(x)

)
− f ′(x)

=
1

h

(
f(x) + hf ′(x) + 1

2h2f ′′(ξ) − f(x)
)
− f ′(x)

= 1
2hf ′′(ξ) ,
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where ξ is a point in the open interval ]x, x+h[. We know neither ξ nor
f ′′, but we see that the truncation error is1) O(h) as h→ 0. If f ′′ is almost
constant for arguments close to x, then RT will be approximately halved
if h is halved.

If we keep more terms in the Taylor expansion of the function, then
we find2)

RT = D+(h) − f ′(x)

= 1
2 f ′′(x)h + 1

3! f (3)(x)h2 + 1
4! f (4)(x)h3 + · · ·

= a1h + a2h
2 + a3h

3 + · · · .

(6.3.1)

In the next section we shall see that we can exploit the knowledge that
RT has this form, even though we do not know the coefficients ak =
f (k+1)(x)/(k+1)! . Also, if a1 6= 0 and none of the |ak/a1| is very large,
then the first term dominates (ie RT ≃ a1h) when h is sufficiently small.

Similarly, it can be shown that

D0(h) − f ′(x) = b1h
2 + b2h

4 + b3h
6 + · · · . (6.3.2)

If b1 6=0 and none of the |bk/b1| is very large, then RT ≃ b1h
2 when h is

sufficiently small. Also note that except if |a1| ≪ |b1|, we can expect to
get a more accurate approximation by using D0(h) instead of D+(h).

The central difference approximation to the second derivative given
in (6.2.1) also has a O(h2) truncation error,

f(x−h) − 2f(x) + f(x+h)

h2
− f ′′(x) = c1h

2 + c2h
4 + c3h

6 + · · · .

Example. We will study the truncation error in the case f(x) = ex (with
f ′(x) = ex). Below we give a Matlab script that computes the forward and
central difference approximations for x= 1 and h = 0.4, 0.2, ..., 0.025.

e = exp(1); h = 0.4;

for i = 1 : 5

fd(i) = (exp(1+h) - e)/h;

cd(i) = (exp(1+h) - exp(1-h))/(2*h);

h = h/2;

end

1) The “big O” concept is discussed at the end of Section 1.1.
2) We assume that f is sufficiently many times differentiable in a neighbourhood

of x.
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The table gives the computed results and the errors

h D+(h) D+(h) − e D0(h) D0(h) − e

0.400 3.3422953 0.6240 2.7913515 0.07307
0.200 3.0091755 0.2909 2.7364400 0.01816
0.100 2.8588420 0.1406 2.7228146 0.00453
0.050 2.7873858 0.0691 2.7194146 0.00113
0.025 2.7525453 0.0343 2.7185650 0.00028

We see that when h is halved, the errors D+(h)−e are approximately halved;
h is so large, that the contribution from a2h

2 +a3h
3 + · · · cannot be ignored,

but as h decreases, we get closer to the asymptotic relation D+( 1
2h) − e =

1
2 (D+(h) − e).

The truncation error for the central difference approximation is much smaller,
and also for the largest h-values we have almost equality in the relation

D0(
1
2h) − e ≃ ( 1

2 )2(D+(h) − e) = 1
4 (D+(h) − e) .

The linear, respectively quadratic, behaviour of the error is illustrated in
Figure 6.3.

0 0.1 0.2 0.3 0.4
0

0.2

0.4

0.6
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+
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−

 e

h
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D
0(h

) 
−

 e
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Figure 6.3. Errors in approximation of f ′ by

forward and central differences.

Since limh→0 RT = 0 for all our difference approximations, it is tempt-
ing to believe that it is possible to get an arbitrarily good approximation
of a derivative, by taking h sufficiently small. The next example shows
that this is not the case.

Example. Again we study the error in numerical differentiation of f(x) = ex at
x= 1. Below we give a Matlab script that computes the errors in forward
and central difference approximations with h = 0.5, 0.25, . . . , 2−32.

e = exp(1); h = .5;

R = zeros(32,3); % to store h and errors

for i = 1 : 32
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fd = (exp(1+h) - e)/h; % forward diff.

cd = (exp(1+h) - exp(1-h))/(2*h); % central diff.

R(i,:) = [h abs(fd-e) abs(cd-e)];

h = h/2;

end

loglog(R(:,1),R(:,2),’+’, R(:,1),R(:,3),’o’)

The results are shown in Figure 6.4. The reason why we use log-log scale is

10
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10
−2

10
0

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

O(h)

O(h2)

h

forward difference
central difference

Figure 6.4. Errors in approximation of f ′ by D+(h) and D0(h).

that we expect the error ψ(h) = |D(h)−f ′(x)| to have the form ψ(h) ≃ A·hp,
for some constants A and p. Then

log ψ(h) ≃ log A + p · log h . (6.3.3)

Thus, in a log-log scale the points (h, ψ(h)) lie close to a straight line with
slope p.

For the large h-values the results confirm our expectations. The forward dif-
ference approximation has errors corresponding to p= 1 (as indicated by the
line labeled “O(h)”), and the errors in the central difference approximations
correspond to p= 2.

When h gets small, we see that the errors grow when h is reduced further.
Let hopt denote the h-value that gives the smallest error. The value de-
pends on the method (and also on the function f and the argument x).
In Figure 6.4 we see that hopt ≃ 10−5 with ψ(hopt)≃ 10−11 for the central
difference approximation, and hopt ≃ 10−8, ψ(hopt)≃ 10−8 for the forward
approximation.
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We shall explain the behaviour observed in the example. There are
two dominating error sources when we use a difference quotient to approx-
imate a derivative: the truncation error RT and the effect RXF of errors
in the function values. We already discussed the former, and now we will
look at the latter in connection with the central difference approximation

D0(h) =
f(x+h) − f(x−h)

2h
.

In general, the function values f(x±h) cannot be represented exactly in
the computer, and instead we get the floating point numbers f(x±h). We
shall assume that

f(x±h) = f(x±h)(1 + δ±), |δ±| ≤ Kµ ,

where µ is the unit roundoff of the computer and K ≥ 1 is small3) . This
means that instead of D0(h) we get the approximation

D0(h) =
f(x+h) − f(x−h)

2h

=
f(x+h) − f(x−h)

2h
+

δ+·f(x+h) − δ−·f(x−h)

2h

= D0(h) + RXF = f ′(x) + RT + RXF .

In the worst case the two contributions to the numerator of RXF have
opposite sign, so we get the following estimate

|RXF| ≤
Kµ

(
|f(x+h)| + |f(x−h)|

)

2h
≃ K|f(x)| µ

h
.

When we combine the result of this analysis with the expression (6.3.2)
for the truncation error, we see that for small h we can expect that the
total error has a form like

|D0(h) − f ′(x)| ≃ Ah2 + B
µ

h
= ψ(h) .

This is illustrated in Figure 6.5. The two contributions are respectively
decreasing and increasing, as h→ 0, and the sum has a minimum at

hopt =
3

√
µB

2A
. ψ(hopt) = 1.5 3

√
2Aµ2B2 .

We know neither A nor B, but assuming that both are of the order of
magnitude 1, we get hopt ∼ µ1/3 and the minimum error ∼ µ2/3.

3) In Matlab this relation is satisfied with K = 1 for standard functions like sin,
exp, log, etc.
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hopt

RT + RXF
RT

RXF

Figure 6.5. Errors in difference approximation of f ′ as functions of h.

Example. For the problem treated in the previous example, the assumptions
A ∼ 1 and B ∼ 1 are satisfied. The computation was made with µ = 2−53 ≃
10−16, so µ1/3 ≃ 10−5 and µ2/3 ≃ 10−11. These numbers agree with the
observed values for hopt and the minimum error.

A similar analysis of the forward difference approximation shows that

|D+(h) − f ′(x)| ≃ A+h + B+
µ

h
.

If both A+ and B+ are of the order of magnitude 1, we get hopt ∼ µ1/2 and
this is also the order of magnitude of the minimum error. Again we see a
good agreement with Figure 6.4.

Note that the computed errors exhibit a rugged behaviour when h <∼hopt.
This is because there is partial cancellation between the error contributions
in RXF and in RT + RXF. Except for this we see that the results in Figure 6.4
for h<hopt correspond to the slope p=−1 in (6.3.3).

6.4. Richardson Extrapolation

Assume that a function F (h) can be computed for different values of
h 6= 0, and that we want to find the limit of the function as h→ 0.

This is the type of problem we have when we use a central difference
approximation to estimate the derivative of a function f . We can com-
pute

F (h) =
f(x+h) − f(x−h)

2h
for different values of h, and we want to compute

f ′(x) = lim
h→0

F (h) .
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L.F. Richardson has shown how a good estimate of F (0) can be com-
puted if we know the behaviour of F as h→ 0 and have computed the
value of F for two different h-values. We shall use the central difference
approximation to illustrate the method. From the expression (6.3.2) for
the truncation error we know that

F (h) =
f(x+h) − f(x−h)

2h
= f ′(x) + b1h

2 + O(h4) .

We do not know the value of b1 (b1 = 1
6 f (3)(x)), but we know that it is

independent of h. If F is also computed for 2h, then

F (2h) = f ′(x) + 4b1h
2 + O(h4) ,

and by subtraction we get

F (2h) − F (h) = 3b1h
2 + O(h4) .

This shows that the dominating error term in F (h) is

b1h
2 =

F (2h) − F (h)

3
+ O(h4) ,

and we see that

f ′(x) = F (h) − b1h
2 + O(h4) = F (h) +

F (h) − F (2h)

3
+ O(h4) .

Thus, without extra evaluations of f we have an approximation with
truncation error proportional to h4 instead of h2.

Example. In the example on page 146 we found the following approximations
of f ′(1) when f(x) = ex,

h F (h) = D0(h)
0.4 2.7913515
0.2 2.7364400

The truncation error RT = F (0.2) − f ′(1) is estimated as

τ =
(
F (0.4) − F (0.2))/3 = 0.0183038 ,

and we get
f ′(1) ≃ F (0.2) − τ = 2.7181362 .

The error in this approximation is −1.46 · 10−4, while the true error in the
approximation F (0.2) is F (0.2)− f ′(1) = 1.82 · 10−2.
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We want to generalize this procedure, and introduce the notation

F1(h) = F (h) ,

F2(h) = F1(h) + 1
3 (F1(h) − F1(2h)) .

According to the derivation, we have eliminated the h2-term in the trun-
cation error (6.3.2), so that

F2(h) = f ′(x) + b̃2h
4 + O(h6) .

If we have computed F2(h), for different values of h, we can estimate the
term b̃2h

4 in a similar way:

b̃2h
4 =

F2(2h) − F2(h)

15
+ O(h6) ,

f ′(x) = F3(h) + O(h6) , F3(h) = F2(h) +
F2(h) − F2(2h)

15
.

Example. Again, we consider f(x) = ex and look at approximations of f ′(1).

By means of the above procedure we get the following results4) , where ∆k

denotes the difference Dk(h) = Fk(h) − Fk(2h).

h F1(h) = D0(h) ∆1(h)/3 F2(h) ∆2(h)/15 F3(h)
0.40 2.7913515
0.20 2.7364400 −1.83 · 10−2 2.7181362
0.10 2.7228146 −4.54 · 10−3 2.7182728 9.11 · 10−6 2.7182819
0.05 2.7194146 −1.13 · 10−3 2.7182813 5.67 · 10−7 2.7182818

Notice that ∆1(2h)/∆1(h)≃ 4 and ∆2(2h)/∆2(h)≃ 16, ie the errors in the
approximations are reflected in the differences.

The error in F3(0.05) can be estimated by

F3(0.05) − f ′(x) ≃ F3(0.10) − F3(0.05)

26 − 1
= 5.409 · 10−10 .

The true error is F3(0.05) − e = 5.397 · 10−10.

The above principle for estimating F (0) can be used more generally,
when F has been computed for two arguments, h and qh, and it is known
that the truncation error in F is proportional to hp.

4) The values were computed in Matlab with approximately 16 decimal digits, but
we only display 8 digits
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Richardson extrapolation. If

F (h) = F (0) + chp + O(hr) , r > p ,

with a known p and an unknown c, which are independent of h, then

F (h) +
1

qp − 1

(
F (h) − F (qh)

)
= F (0) + O(hr) .

If we know a complete expansion of the truncation error, we can per-
form repeated Richardson extrapolation. Assume that

F (h) = F (0) + a1h
p1 + a2h

p2 + · · · (6.4.1)

with known exponents p1, p2, . . ., but unknown a1, a2, . . .. Further, as-
sume that F has been computed for arguments . . . , q3h, q2h, qh, h.

Put F1(h) = F (h) and compute

Fk+1(h) = Fk(h) +
1

qpk − 1

(
Fk(h) − Fk(qh)

)
k = 1, 2, . . . (6.4.2)

In this extrapolation the hpk -term is eliminated from the expansion, so
that

Fk+1(h) = F (0) + ãk+1h
pk+1 + ãk+2h

pk+2 + · · · .

The values are conveniently arranged in a scheme like

F1(q
3h)

F1(q
2h) F2(q

2h)

F1(qh) F2(qh) F3(qh)

F1(h) F2(h) F3(h) F4(h)
...

...
...

...
. . .

The entries are computed row by row, and extrapolations are performed
until two consecutive values in the same column agree to the required
accuracy. The following can be shown.

If h is sufficiently small, then the difference between two adjacent
values in the same column gives an upper bound for the truncation
error.

Example. Repeated Richardson extrapolation can be implemented in Matlab

as follows.
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function [y, info, R] = richextr(F,h0,q,p,tol)

% Richardson extrapolation of values given by

% F(h), h = h0, h0/q, h0/q^2, ...

% Assume that F(h) = F(0) + a1*h^p(1) + ... + am*h^p(m) ,

% where m = length(p) .

% Stop when two adjacent values in the same column differ

% less than tol .

% info = [estimated error, row number, column number]

% Initialize the scheme

m = length(p); R = zeros(m+2,m+1);

info = [inf 0 0]; % best so far

h = h0; R(1,1) = feval(F,h); for i = 1 : m+1

h = h/q; R(i+1,1) = feval(F,h);

for k = 1 : min(i,m)

d = R(i+1,k) - R(i,k);

if abs(d) <= tol % desired accuracy obtained

y = R(i+1,k);

info = [abs(d) i+1 k];

if nargout > 2 % return active part of R

R = R(1:i+1,1:i);

end

return

end

if abs(d) < info(1) % update best so far

info = [abs(d) i+1 k];

end

R(i+1,k+1) = R(i+1,k) + d/(q^p(k) - 1); % extrapolate

end

end

% Required accuracy not obtained. Return best estimate

y = R(info(2),info(3));

We shall use richextr to estimate f ′(1) when f(x) = ex, but now we start
with the forward difference approximation. In Matlab this can be imple-
mented by

function Df = Dforw(h)

Df = (exp(1+h) - exp(1))/h;

The exponents in (6.4.1) are pi = i, and we get

>> [y,info] = richextr(@Dforw,0.5,4,[1:8],1e-8)

y = 2.718281828

info = 1.38e-09 6 4

The first element in info is the estimate |y − e| ≤ 1.38 · 10−09. The true
error is |y − e| = 6.69 · 10−12. By comparison with Figure 6.4 on page 148
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we see that the use of successive Richardson extrapolation has given us
approximately 3 more correct digits than it was possible to get by means of
the forward difference approximation.

The last two elements in info show that the process stops in the 6th row
(h = 0.5/45 ≃ 4.88 · 10−4) because |F4(h) − F4(4h)| ≤ 10−8.

In practice we cannot avoid errors in the entry values of the extra-
polation scheme. Instead of the values F1(h) = F (h) we get F 1(h) =
F (h) + ǫh. Suppose that all |ǫh| ≤ ǫ. Then

F 2(h) = F1(h)+ǫh +
F1(h)+ǫh − F1(qh)−ǫqh

qp1 − 1
= F2(h) + ǫ

[2]
h ,

where

|ǫ[2]h | ≤
∣∣∣∣ǫh +

ǫh − ǫqh

qp1 − 1

∣∣∣∣ ≤
(

1 +
2

qp1 − 1

)
ǫ =

qp1 + 1

qp1 − 1
ǫ .

Similarly,

F 3(h) = F3(h) + ǫ
[3]
h , |ǫ[3]h | ≤ qp2 + 1

qp2 − 1

qp1 + 1

qp1 − 1
ǫ ,

etc. This shows that the effect of the errors may grow as we proceed with
the extrapolations. The growth is modest, however. It can be shown that

all |ǫ[j]h | ≤ 2ǫ in the case q = 2 and pi = 2i.

Richardson extrapolation has another interpretation. We know F (h)
for certain nonzero h-values and seek F (0). It is natural to approximate
F by an interpolating polynomial, and use this polynomial to estimate
F (0). Assume, eg, that we know that

F (h) = b0 + b1h
2 + b2h

4 + · · · ,

and that we have computed F (4h0), F (2h0) and F (h0). We can find
the polynomial of the form c0 + c1h

2 + c2h
4, which interpolates the three

points
(
(4h0)

2, F (4h0)
)
,
(
(2h0)

2, F (2h0)
)

and
(
h2

0, F (h0)
)
. The value cor-

responding to h = 0 can be computed by Neville’s method, Section 5.5.
Let x = h2, then the table on page 114 takes the form

0 − x x

−(4h0)
2 (4h0)

2 F (4h0)
P01(0)

−(2h0)
2 (2h0)

2 F (2h0) P012(0)
P12(0)

−h2
0 h2

0 F (h0)
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The values of the elements in the last two columns are computed as pre-
scribed in Theorem 5.5.1:

P01(0) =
−(4h0)

2F (2h0) + (2h0)
2F (4h0)

(2h0)2 − (4h0)2
=

4F (2h0) − F (4h0)

3
= F2(2h0) ,

P12(0) =
−(2h0)

2F (h0) + h2
0F (2h0)

h2
0 − (2h0)2

=
4F (h0) − F (2h0)

3
= F2(2h0) ,

P012(0) =
−(4h0)

2P12(0) + h2
0P01(0)

h2
0 − (4h0)2

=
16F2(h0) − F2(2h0)

15
= F3(2h0) .

We recognize the results from Richardson extrapolation.

There are other extrapolation methods, which are based on inter-
polation by rational functions. In some applications they give better
approximations than methods based on polynomial interpolation.

Finally, we give two examples with applications of the methods dis-
cussed in this chapter.

Example. In Chapter 4 we demonstrated that Newton-Raphson’s method is
efficient for computing a zero of a function f . Especially the quadratic con-
vergence is useful if we want high accuracy. The success, however, depends
on correct implementation of the derivative. We shall describe a method for
checking the implementation of f ′.

For a given x and step length h we compute a forward difference approxi-
mation, a backward difference approximation with half the step length and
an extrapolated approximation,

D+ =
(
f(x+h) − f(x)

)
/h ,

D− =
(
f(x) − f(x− 1

2h)
)
/( 1

2h) ,

DE = (D+ + 2D−)/3 .

According to the analysis in Section 6.3 we have

D+ = f ′(x) + 1
2 hf ′′(x) + 1

6 h2f (3)(x) + O(h3) ,

D− = f ′(x) − 1
4 hf ′′(x) + 1

24 h2f (3)(x) + O(h3) ,

DE = f ′(x) + 1
12 h2f (3)(x) + O(h3) .

Now, let d(x) denote the computed derivative, and assume that it has an
error ψ(x),

d(x) = f ′(x) − ψ(x) .
Then
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δ+ = D+ − d(x) = ψ(x) + 1
2 hf ′′(x) + O(h2) ,

δ− = D− − d(x) = ψ(x) − 1
4 hf ′′(x) + O(h2) ,

δE = DE − d(x) = ψ(x) + 1
12 h2f (3)(x) + O(h3) .

Thus, if ψ(x)= 0 and h is sufficiently small, then we can expect to get
δ− ≃ − 1

2 δ+ and |δE | ≪ |δ−|. If ψ(x) 6= 0, then all three δ-values will be
almost equal to this error.

The following Matlab function implements this algorithm

function [df,delta] = checkder(fdf,x,h)

% Check implementation of derivative, as provided by

% [f,df] = fdf(x)

% delta = [F-df B-df E-df], where F, B, E are

% forward, backward and extrapolated approximations of df

[f,df] = feval(fdf,x);

xp = x + h;

F = (feval(fdf,xp) - f)/(xp -x);

xm = x - h/2;

B = (f - feval(fdf,xm))/(x - xm);

E = (F + 2*B)/3;

delta = [F B E] - df;

Generally, fl[x+h] 6= x+h, so in the forward difference approximation we
divide by h, which is the difference between the floating point numbers xp

and x. Similarly in the backward difference approximation.

We shall try the algorithm on the problem from the example on page 70.

function [f, df] = fdf(x)

f = x - cos(x);

df = 1 + sin(x);

We choose x=1 and h =10−5. (Based on the discussion at the end of Section
6.3 we recommend to use h ≃ 3

√
µ · |x|).

>> [df, delta] = checkder(@fdf,1,1e-5)

df = 1.8415

delta = 2.7015e-006 -1.3508e-006 -1.4526e-011

We see that δ− = −1.3508 · 10−6 ≃ − 1
2 δ+ = − 1

2 (2.7015 · 10−6), and that
|δE | = 1.4526 · 10−11 is orders of magnitude smaller, so we conclude that the
derivative seems to be correctly implemented.

If we had made a sign error,

function [f, df] = fdf2(x)

f = x - cos(x);

df = 1 - sin(x);

then we would get
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>> [df, delta] = checkder(@fdf2,1,1e-5)

df = 0.1585

delta = 1.6829 1.6829 1.6829

The three elements in delta are equal (within the 5 displayed digits) and
nonzero. This shows that there is an error.

We return to this application in a computer exercise. The exercise demon-
strates that in general it may be necessary to try several values of x before
one can draw a sound conclusion about the correctness of the implementation
of f ′.

It should be mentioned that the algorithm can easily be generalized to check-
ing the elements of a Jacobian, cf Section 4.8.

Example. In image analysis a common problem is to identify objects. This
involves a search for sharp edges. As a simple example consider the image
shown in Figure 6.6. This is a 128×128 matrix A. Each element in A

Figure 6.6. Simple image. 20 40 60 80 100 120

20

40

60

80

100

120

represents a pixel (a picture element), and the value A(i,j) is the light
intensity of the pixel. The image is available in incbox as exc6 4.mat, and
the plot is obtained by the commands

>> load exc6_4

>> imagesc(A), axis image, colormap gray

In Figure 6.7 we show the variation along the dotted line, which is row 40
in A. Note that smaller values in A correspond to darker pixels in Figure 6.6.

>> f = A(40,:); plot(f, ’.’)
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Figure 6.7. Left: Variation along the dashed line in Figure 6.6.

Right: Forward differences.

An edge is an abrupt change in pixel value. Think of the pixel values along
the dotted line as points from a differentiable function f(x). Then a large
value of |f ′(x)| signifies an edge. We can estimate f ′ by a forward difference,

f ′(xj) ≃ Dj =
fj+1 − fj

h
, j = 1, 2, . . . , 127 .

We have h =1, and all the Dj can be computed and plotted by the commands

>> D = f(2:128) - f(1:127); plot(D, ’.’)

The result is shown in the right part of Figure 6.7. Note how the large values
of |Dj | stand clearly out from the rest. These values can, eg, be identified as
the elements in D, which are larger than three times the standard deviation
of all the elements,

>> thr = 3*std(D)

thr = 18.1107

>> e = find(abs(D) > thr)

e = 9 45 86 106

Thus, there is an edge between the 9th and the 10th pixel, another between
the 45th and the 46th pixel, etc.

We return to this problem in a computer exercise.
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Exercises
E1. The third derivative f (3)(x) can be approximated by

1

2h3

(
f(x+2h) − 2f(x+h) + 2f(x−h) − f(x−2h)

)
.

Show that the truncation error is

RT = a1h
2 + a2h

4 + a3h
6 + · · · .

E2. Assume that F (h) = F0 + c3h
3 +O(h4) with c3 6= 0. Which combination

of F (h) and F (h/3) gives the best approximation of F0 ?

E3. Consider the following approximation of f ′(x),

D(h) =
1

12h

(
f(x−2h) − 8f(x−h) + 8f(x+h) − f(x+2h)

)
.

(a) Show that the truncation error is

RT = D(h) − f ′(x) = a1h
4 + a2h

6 + a3h
8 + · · · .

(b) Assume that we know the following, correctly rounded function val-
ues, and want to approximate f ′(0.5) as accurately as possible.

x f(x)
0.1 0.000167
0.3 0.004480
0.4 0.010582

0.425 0.012679
0.450 0.015034
0.475 0.017662
0.5 0.020574

0.525 0.023787
0.550 0.027313
0.575 0.031165
0.6 0.035358
0.7 0.055782
0.9 0.116673

Use the above D(h) and Richardson extrapolation to approximate
f ′(0.5), and estimate the error in the approximation. Does the
Richardson extrapolation pay off in this case?
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Computer Exercises
C1. We shall study the error when the derivative of the function

f(x) =
1

1 + (x − 2)3

is approximated by forward and central differences, respectively.

(a) Make tables of the errors D+(h) − f ′(x) and D0(h) − f ′(x) for all
combinations of

h = 0.1, 0.01, 0.001, 0.0001, x = 0.4, 0.8, 1.2, . . . , 2.8

Compare the errors D+(h) − f ′(x) and D0(h) − f ′(x) for fixed x
and h.

How are the errors affected when h is divided by 10 ?

(b) The second derivative of f is

f ′′(x) = 6(x − 2)(2(x − 2)3 − 1)/
(
1 + (x − 2)3

)3
,

so f ′′(2) = f ′′(2 + 2−1/3) = 0. Use this fact to explain the relatively
good accuracy in the approximation by D+(h) at x=2 and x= 2.8.

Why is the approximation so poor at x=0.8 and x= 1.2 ?

C2. Let f(x) = ex. Use richextr (cf page 153; available from incbox) to find
an approximation of f ′(1), starting with the central difference approxima-
tion.

Use h0 = 1/16, tol = 1e-12 and q = 2, 4, 8, . . . , 256, and discuss the
results.

C3. Let f(x) = x−cos x. Use the Matlab functions checkder, fdf and fdf2

(cf the example starting on page 156; checkder is available from incbox)
to answer the following questions

(a) Use fdf with x=1, and make a plot like Figure 6.4 for the three
error estimates δ+, δ− and δE .

(b) Comment on the results from

>> [df, delta] = checkder(@fdf,pi/2,1e-5)

(c) Comment on the results from

>> [df, delta] = checkder(@fdf2,pi,1e-5)

This example demonstrates that in general the check should be performed
for several values of x before one can draw a sound conclusion about the
correctness of the implementation of f ′.
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C4. Load the matrix A in exc6 4.mat (provided in incbox), and use the tech-
nique indicated in the example on page 158 to find the triangle in Fig-
ure 6.6.
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Chapter 7

Integration

7.1. Introduction

Numerical integration (or quadrature) is the computation of an approxi-

mation of
∫ b
a f(x) dx. We shall derive methods for this.

Such methods are needed, of course, if the integrand f is known only
in discrete points. Also when an explicit formula for f is known, it is
sometimes not possible to compute the integral exactly because a prim-
itive function cannot be found or is not directly computable. This is

the case, eg, for
∫ 1
0 e−x2

dx and
∫ π/2
a

√
1 + cos2 x dx. Finally — even if

a primitive function is known, the computation of it may be so costly
that approximate, numerical methods for computing the integral are to
be preferred.

We construct methods for numerical integration by approximating f
by a function that is easily integrated: a polynomial. There are two
possible ways to obtain good accuracy:

1. approximate f by a single interpolating polynomial of high degree,

2. approximate f by different low degree polynomials in small subinter-
vals of the interval of integration.

We shall see that the second approach is to be preferred.

7.2. The Trapezoidal Rule

The trapezoidal rule is based on approximating the integrand f by the
straight line through the points (x0, f(x0)) and (x1, f(x1)) (where x0 = a
and x1 = b), see Figure 7.1. This means that the integral is approximated
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Figure 7.1. The
trapezoidal rule. x0 x1

f(x0)

f(x1)

by the area of a trapezoid,
∫ x1

x0

f(x) dx =
h

2
(f(x0) + f(x1)) + RT .

By use of Theorem 5.2.2 we see that the truncation error is

RT =

∫ x1

x0

f ′′(ξ(x))

2!
(x − x0)(x − x1) dx ,

where ξ(x) is a point in the open interval ]x0, x1[. To simplify the expres-
sion we make a change of variable, x = x0 + th. Since x1 =x0 + h, we
get

RT = h

∫ 1

0

f ′′(ξ(x0 + th))

2!
th (t− 1)h dt

= 1
2h3

∫ 1

0
f ′′(ξ(x0 + th)) t(t− 1) dt . (7.2.1)

This can be simplified further when we use the following theorem.

Theorem 7.2.1. Mean value theorem of integral calculus. If
the function ϕ is continuous and the function ψ is continuous and
does not change sign in the closed interval [a, b], then there is a point
x̂ inside the interval, such that

∫ b

a
ϕ(x)ψ(x) dx = ϕ(x̂)

∫ b

a
ψ(x) dx .

Returning to (7.2.1), we see that t(t− 1) has constant sign for 0≤ t≤ 1.
Therefore, if f ′′ is continuous in [x0, x1], then the mean value theorem
gives

RT = 1
2h3f ′′(ξ(x0+t̂h))

∫ 1

0
t(t− 1) dt ,
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where 0 < t̂< 1. We put η = x0 + t̂h, compute the integral, and get

RT = − 1
12h3f ′′(η), x0 < η < x1 . (7.2.2)

This expression shows that the truncation error is small if h is small.
To achieve that, we can divide the interval of integration [a, b] into subin-
tervals {[xi−1, xi]}m

i=1, each of length h = (b − a)/m, cf Figure 7.2.

a = x0 x1 xi−1 xi xm−1 xm = b

Figure 7.2. The trapezoidal rule. xi = a + ih, h =
b − a

m
.

The integral is the sum of the contributions from the subintervals,
∫ b

a
f(x) dx =

m∑

i=1

∫ xi

xi−1

f(x) dx ,

and each contribution is approximated by the trapezoidal rule,
∫ xi

xi−1

f(x) dx = 1
2h(fi−1 + fi) − 1

12h3f ′′(ηi) ,

where fj = f(xj) and ηi ∈ ]xi−1, xi[. The term − 1
12h3f ′′(ηi) is called the

local truncation error .
When we sum the contributions, we note that 1

2hfi, i =1, . . . , m−1
appears both in the ith and the (i+1)st contribution, and we get

∫ b

a
f(x) dx = h

(
1
2f0 + f1 + · · · + fm−1 + 1

2fm

)
+ RT ,

where the total truncation error is the sum of the local errors,

RT = − 1
12h3

m∑

i=1

f ′′(ηi) .
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If f ′′ is continuous in ]a, b[, there is a number η in this interval, such that
m∑

i=1

f ′′(ηi) = m · f ′′(η) .

We insert this in the above expression for RT, use the fact that mh = b−a,
and get

RT = −b − a

12
h2f ′′(η) .

Thus, the local truncation error is O(h3) and the total truncation error
is O(h2).

We summarize:

The trapezoidal rule
∫ b

a
f(x) dx = T (h) + RT ,

T (h) = h
(

1
2f0 + f1 + · · · + fm−1 + 1

2fm

)
,

where h = (b−a)/m and fj = f(a + jh). If f ′′ is continuous, then

RT = −b − a

12
h2f ′′(η), a < η < b .

Example. The following Matlab function implements the trapezoidal rule.

function T = trapezrule(f,a,b,m)

% Approximate integral by trapezoidal rule

x = linspace(a,b,m+1); % grid points

T = (feval(f,a) + feval(f,b))/2; % endpoint contrib.

for i = 1 : m-1

T = T + feval(f,x(i+1)); % interior point contrib.

end

T = (b-a)/m * T; % multiply by h

We use this to approximate I =
∫ 1

0
1/(1 + x) dx for h = 1, 1/2, 1/4 and 1/8.

function f = intfun(x)

f = 1/(1+x);

>> for k = 0 : 3

disp(trapezrule(@intfun,0,1,2^k))

end

The exact value is I = log 2 ≃ 0.693147. The results (rounded to 6 digits)
and the associated errors are given below.
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h T (h) T (h) − log 2
1 0.750000 5.69 · 10−2

0.5 0.708333 1.52 · 10−2

0.25 0.697024 3.88 · 10−3

0.125 0.694122 9.75 · 10−4

Since RT = O(h2), the error should roughly be divided by 4 when h is
halved. This is indeed seen to be the case.

7.3. Newton-Cotes’ Quadrature Formulas

The Newton-Cotes quadrature formulas are derived by replacing the inte-
grand f by an interpolating polynomial and integrating that. The poly-
nomial interpolates f on the grid

xi = a + ih, i=0, 1, . . . , n; h =
b − a

n
.

This means that Pn(x) of degree ≤ n is determined so that Pn(xi) = f(xi),
i =0, 1, . . . , n. We get

∫ b

a
f(x) dx =

∫ b

a
Pn(x) dx + RT .

In the case n =1 we get the trapezoidal rule. For arbitrary n it follows
from Theorem 5.2.2 that

RT =

∫ b

a

f (n+1)(ξ(x))

(n+1)!
(x − x0)(x − x1) · · · (x − xn) dx .

This shows that if the integrand is a polynomial of degree at most n, then
RT = 0, ie in this case the quadrature formula gives the exact result. It is
also easy to show that the quadrature formula expresses the approximate
integral as a linear combination of the function values on the grid,

∫ b

a
Pn(x) dx =

n∑

i=0

Aif(xi) . (7.3.1)

To see this, we represent Pn(x) for a moment by Lagrange’s interpolating
polynomial,

Pn(x) =
n∑

i=0

f(xi)Li(x) ,
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where Li(x) is a certain degree n polynomial (given on page 115). It

follows that Ai =
∫ b
a Li(x) dx.

Thus, the coefficients Ai in (7.3.1) can be derived by integration of
the polynomials Li(x). There are other ways of computing the Ai, and
we shall discuss the “method of unknown coefficients”. Put

∫ b

a
f(x) dx =

n∑

i=0

Aif(xi) + RT ,

and require that

RT = 0 for f(x) = pk(x), k = 0, 1, . . . , n ,

where pk is a polynomial of degree k. This leads to a linear system of
equations for the coefficients.

We illustrate the technique by using it to derive Simpson’s rule: Put
n =2 and∫ x2

x0

f(x) dx = A0f(x0) + A1f(x1) + A2f(x2) + RT ,

with x0 = a, x1 = a+h, x2 = b = a+ 2h. In order to get a simple system
of equations we use the polynomials pk(x) = (x − x1)

k, and get
∫ x2

x0
1 dx = 2h = A0 + A1 + A2 ,

∫ x2

x0
(x − x1) dx = 0 = −hA0 + hA2 ,

∫ x2

x0
(x − x1)

2 dx = 2
3h3 = h2A0 + h2A2 .

This system has the solution

A0 = A2 =
h

3
, A1 =

4h

3
.

It is easy to show that also any third degree polynomial is integrated
exactly, but not a fourth degree polynomial. It can be shown that the
truncation error is RT = − 1

90h5f (4)(η), where x0 < η < x2.
Thus, we have derived Simpson’s rule:

∫ x2

x0

f(x) dx =
h

3
(f(x0) + 4f(x1) + f(x2)) + RT ,

RT = − 1
90 h5f (4)(η), x0 < η < x2 .

(7.3.2)

It is tempting to believe that one gets successively better approxima-
tions to the integral if m is increased. The following example illustrates
that this is not always true.
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Example. Consider the two integrals

I =

∫ 1

0

1

1 + 25x2
dx , J =

∫ 1

−1

1

1 + 25x2
dx .

The exact values are I = 1
10 (arctan 5 − arctan(−5))≃ 0.274680 and J =2I.

We have used Newton-Cotes’ quadrature formulas for n = 1, 2, 3, . . . , 9 to
compute approximations In and Jn (we used tabulated values for the coef-
ficients Ai for n> 2) and got the errors shown in the table below.

n In − I Jn − J
1 0.24455 −0.472
2 −0.00965 0.810
3 −0.01464 −0.133
4 −0.01316 −0.075
5 −0.00856 −0.088
6 −0.00241 0.225
7 −0.00124 0.030
8 0.00055 −0.249
9 0.00052 −0.070

The poor accuracy for small values of n is not surprising: with so few points
it is not possible to get a good approximation to the integrand (1+25x2)−1.
The accuracy of the approximations In improves steadily as n increases from
3 to 9, but this is not the case with the approximations Jn. The reason for
this disappointing behaviour can be seen from the figure on page 118, il-
lustrating Runge’s phenomenon: the interpolating polynomial oscillates be-
tween the interpolation points, and the amplitude of the oscillations increases
with n. The effect of the oscillations is damped by integration, but still we
see that we, eg, get a poorer approximation by using a degree 8 polynomial
than we do by using a polynomial of degree 7 or 6.

It can be shown that there are continuous functions such that approx-
imations In of I =

∫ b
a f(x) dx computed by Newton-Cotes’ quadrature

formulas do not converge to I as n→∞. Therefore, instead of using one
high degree interpolating polynomial on the interval [a, b] we subdivide
the integration interval and use a low degree interpolating polynomial in
each subinterval. If we use first degree polynomials, we get the trapezoidal
rule. If the number of subintervals is even, m = 2q, we can use Simpson’s
rule (7.3.2) in each of the subintervals [x0, x2], [x2, x4], . . . , [xm−2, xm]
and get
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∫ b

a
f(x) dx =

m/2∑

i=1

∫ x2i

x2i−2

f(x) dx

=
h

3
(f0 + 4f1 + 2f2 + 4f3 + · · · + 2fm−2 + 4fm−1 + fm) + RT ,

where

RT = −h5

90

m/2∑

i=1

f (4)(ηi) , x2i−2 < ηi < x2i .

If f (4) is continuous, we can proceed as we did with the trapezoidal rule,
and we get

Simpson’s rule
∫ b

a
f(x) dx = S(h) + RT ,

S(h) =
h

3
(f0 + 4f1 + 2f2 + 4f3 + · · · + 2fm−2 + 4fm−1 + fm) ,

where m is even, h = (b−a)/m and fj = f(a+ jh).
If f (4) is continuous, then

RT = −b − a

180
h4f (4)(η), a < η < b .

Example. As in the example on page 166 we consider the integral
∫ 1

0

1

1 + x
dx = log 2 .

We use Simpson’s rule with h = 0.5, 0.25, 0.125, and get

h S(h) S(h) − log 2
0.5 0.694444 1.30 · 10−3

0.25 0.693254 1.07 · 10−4

0.125 0.693155 7.35 · 10−6

Since RT = O(h4), the error should roughly be divided by 16 when h is
halved. This is indeed seen to be the case.
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7.4. Romberg’s Method: Trapezoidal Rule with
Richardson Extrapolation

As in Section 7.2 we approximate

I =

∫ b

a
f(x) dx

by
T (h) = h

(
1
2f0 + f1 + · · · + fm−1 + 1

2fm

)
,

where
h = (b − a)/m ,

fj = f(xj) = f(a+ jh), j = 0, 1, . . . , m .

We have shown that the truncation error is O(h2) if f ′′ is continuous.
One can show even more:

If f is (2k+2) times continuously differentiable, then

T (h) =

∫ b

a
f(x) dx + a1h

2 + a2h
4 + · · · + akh

2k + O(h2k+2) ,

where the coefficients a1, . . . , ak are independent of h.

When this condition is satisfied, we can use Richardson extrapolation
as described in Section 6.4. Put T1(h) = T (h) and assume that we also
have computed T1(2h), T1(4h), . . . . Then the values computed by

Tr+1(h) = Tr(h) +
Tr(h) − Tr(2h)

22r − 1
, r = 1, 2, . . . , k (7.4.1)

satisfy

Tr(h) = I + RT, RT =

{
O(h2r), r ≤ k+1 ,

O(h2k+2), r > k+1 .

This procedure is called Romberg’s method.

Example. As in the example on page 166 we consider the integral
∫ 1

0

1

1 + x
dx = log 2 ≃ 0.693147 ,

and get the following results from Romberg’s method. The values were com-
puted with approximately 16 digits accuracy, but we show only 6. We use
the notation ∆r(h) = 106(Tr(h) − Tr(2h)).
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h T1(h)
∆1(h)

3
T2(h)

∆2(h)

15
T3(h)

∆3(h)

63
T4(h)

1 0.750000
1/2 0.708333 −13889 0.694444
1/4 0.697024 −3770 0.693254 −79 0.693175
1/8 0.694122 −967 0.693155 −7 0.693148 0 0.693147

The truncation error in the value T3(1/8) ≃ 0.693148 is estimated as
−10−6 · ∆3(1/8)/63 ≃ 4.24 · 10−7. The true error is T3(1/8) − log 2 ≃
7.21 · 10−7.

If we compare the above results for T2(h) with the results in the ex-
ample on page 170, we see that T2(h) = S(h). This is no coincidence: If
x0, x1, x2, . . . , xm−2, xm−1, xm is the grid corresponding to the step length
h, then x0, x2, . . . , xm−2, xm is the grid corresponding to the step length
2h, and

T (h) = h
(

1
2f0 + f1 + f2 + · · · + fm−2 + fm−1 + 1

2fm

)
,

T (2h) = 2h
(

1
2f0 + f2 + · · · + fm−2 + 1

2fm

)
.

Then

T2(h) = T (h) +
T (h) − T (2h)

3
=

4T (h) − T (2h)

3

=
h

3

(
f0 + 4f1 + 2f2 + · · · + 2fm−2 + 4fm−1 + fm

)
= S(h) .

Thus, for h = (b− a)/2, T2(h) is equivalent to the Newton-Cotes
formula for n =2. For r > 2 there is no Newton-Cotes formula, which is
equivalent to Tr(h).

It can be shown that the entries in each column of the Romberg
scheme converge to the integral I as h→ 0. As in the general Richardson
extrapolation procedure the truncation error of each element Tr(h) in
the Romberg scheme is bounded by |Tr(h)− Tr(2h)|, ie by the difference
between the element and the nearest value above it in the same column.

Example. In the general Richardson extrapolation procedure (6.4.2) we as-
sume that the step lengths are h0, h0/q, h0/q2, . . . , for some constant q.
Romberg’s method is always used with q = 2, as discussed above. One rea-
son for this is, that then we can reuse the function values for the grid with
step length 2h when we compute T (h): from the above proof of T2(h) = S(h)
it follows that

T (h) = 1
2T (2h) + h (f1 + f3 + · · · + fm−1) .



7.4. Romberg’s Method 173

This is exploited in the following Matlab implementation of Romberg’s
method (the command R(i,1) = R(i-1,1)/2 + h*s;). The default use
of the Matlab function corresponds to the assumptions in the frame on
page 171. In the example on page ?? we illustrate the use when this as-
sumption is not satisfied.

function [I, info, R] = romberg(f,a,b,tol,p)

% Romberg’s method for the integral of f over [a,b].

% Assume that T(h) = T(0) + a1*h^p(1) + ... + aq*h^p(q) ,

% where q = length(p) .

% Default: p = [2 4 ... 14]

% Stop when two adjacent values in the same column differ

% less than tol .

% info = [estimated error, m, r], where m+1 and r-1 are the

% number of function evaluations and extrapolations.

% Initialize the scheme

if nargin < 5

p = 2 : 2 : 14;

end

q = length(p); R = zeros(q+2,q+1);

h = b - a; m = 1;

R(1,1) = h*(feval(f,a) + feval(f,b))/2;

mdif = inf; % initialize min difference

for i = 2 : q+2

% First element in next row

h = h/2; m = 2*m;

s = 0;

for j = 1 : 2 : m

s = s + feval(f, a+j*h);

end

R(i,1) = R(i-1,1)/2 + h*s;

% Extrapolate

jmax = min(i-1,q);

for j = 1 : jmax

R(i,j+1) = R(i,j) + (R(i,j) - R(i-1,j))/(2^p(j) - 1);

end

% Check accuracy

[md, jb] = min(abs(R(i,1:jmax) - R(i-1,1:jmax)));

if md < mdif % better result

info = [md m jb]; I = R(i,jb);

if md <= tol

R = R(1:i,1:jmax+1); % return active part of R

return

end

end

end
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Applied to the problem I =
∫ 1

0
1/(1 + x) dx = log 2 ≃ 0.693147, we get

(intfun is defined on page 166)

>> [I, info] = romberg(@intfun,0,1,1e-8)

I = 0.69314718056362

info = 1.35e-09 32 5

The true error is y − log 2 ≃ 1.35 · 10−11, so the estimate given by info(1)

is very pessimistic. info(2:3) tell us that the result was obtained after the
use of h = 1, 1/2, . . . , 1/16, 1/32 (involving a total of 33 evaluations of the
integrand) because |T5(h) − T5(2h)| ≤ 10−8.

So far, we have discussed the truncation error RT. In practice we have
to accept that instead of the values fj = f(xj) we get approximate values
f j , and

T (h) = h(1
2f0 + f1 + · · · + fm−1 + 1

2fm) .

Assume that |f j − fj | ≤ ǫ, j = 0, 1, . . . , m. Then

|T (h) − T (h)| ≤ h
(

1
2 |f0 − f0| +

m−1∑

j=1

|f j − fj | + 1
2 |fm − fm|

)

≤ hǫ(1
2 + m− 1 + 1

2) = hmǫ = (b− a)ǫ .

In contrast to the analysis on page 156 of general Richardson extra-
polation, it can be shown that the effect of errors in the function values
is not increased during the extrapolations in the Romberg scheme.

If the function values have absolute errors no larger than ǫ, then
these lead to errors RXF in the entries of the Romberg scheme, that
can be estimated as

|RXF| ≤ (b− a)ǫ .

Finally, consider the effect of rounding errors. We only have to con-
sider the summation error in the computation of T (h),

RC = fl[T (h)] − T (h) .

It follows from Theorem 2.7.2 that we can use the above result when we
put

ǫ = m · 1.06µ · max |fj | ,

where µ is the unit round off. Thus,

|RC| ≤ mCµ, C = 1.06(b− a) · max |fj | .
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Example. In the example on page 171 the integrand is f(x) = 1/(1+ x) and
the interval is [0, 1]. Therefore 0.5 ≤ fj ≤ 1.

Assume that the function values are rounded to 6 decimals, ie ǫ = 0.5 · 10−6.
Then |RXF| ≤ (1− 0) · 0.5 · 10−6 = 0.5 · 10−6 .

The Matlab precision is µ = 2−53 ≃ 10−16, so we get

C = 1.06 · 1 · 1 = 1.06, |RC|<∼ 1.06 · 10−16 · 8 ≃ 10−15 .

This is negligible. Finally, the truncation error of the element 0.693148 can
be bounded by |RT| ≤ |0.693148 − 0.693175| = 2.7 · 10−5 .

Thus, the total error in the approximation 0.693148 of the integral I can be
estimated as

|0.693148 − I| ≤ |RT| + |RXF| + |RC| < 3 · 10−5 .

Example. Figure 7.3 shows the errors for different values of h when we use
Romberg’s method to approximate

I =

∫ 4.5π

0

sinx dx = 1 .

The unit round off is µ = 2−53 ≃ 10−16. As motivated in connection with
Figure 6.4 on page 148 we use a log-log scale.
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Figure 7.3. Errors in approximation of I =
∫ 4.5π

0
sin x dx = 1

by Romberg’s method.
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First, let us examine the errors |T1(h)− I|: For large values of h the approx-
imation is so crude that we cannot ignore the contribution a2h

4 + · · · in the
frame on page 171. As h decreases, the term a1h

2 dominates more and more,
and in the log-log scale the points get close to a straight line corresponding
to the O(h2) behaviour of the error. The smallest h-value is 4.5π/m with
m= 212 = 4096. The corresponding error is approximately 10−6.

The values T2(h) are computed under the assumption that T1(h) ≃ I +a1h
2

is satisfied with “almost equality”. We get the expected O(h4) behaviour
for h <∼ 1. The error for m= 4096 is approximately 10−12, ie we get approx-
imately 6 more correct digits than we did with T1(h) for the same h-value.

As the number r of extrapolations increases, we get smaller ranges of h-
values where we can observe the expected O(h2r) behaviour. To explain
that, consider T5(h): the O(h2) assumption about the trapezoidal rule must
be satisfied to “almost equality” for the step lengths h, 2h, . . . , 16h; the
O(h4) assumption about T2(h) must be satisfied to “almost equality” for
the step lengths h, 2h, . . . , 8h; etc. This leaves a small range of h-values
before rounding errors dominate, and we do not really get the improvement
that we hoped for. This aspect is even more pronounced for the results for
T6. However, it should be mentioned that the smallest of all the errors is
|T6(4.5π/256) − I| ≃ 5.6 · 10−16.

7.5. Difficulties with Numerical Integration

The use of the trapezoidal rule or Simpson’s method assumes that the
integrand f has a finite value for all x in the closed interval [a, b], since the
methods involve the endpoint values f(a) and f(b). Further, if some of the
low order derivatives of f have singularities at one of the endpoints, then
we get poorer accuracy and do not get the O(h2) and O(h4) convergence
that was illustrated in the examples on page 166 and 170.

In many cases the integral can be rewritten into a form that is better
suited for numerical computation. It is a good rule to use numerical
integration only when the integral has been simplified as far as possible by
mathematical reductions.

We shall use the integral

I =

∫ 0.64

0

arctan x√
x

dx (7.5.1)
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to demonstrate different ways of handling an endpoint singularity in the
derivative. For |x| ≤ 1 we have

arctanx = x − 1
3 x3 + 1

5 x5 − · · · = x + O(x3) . (7.5.2)

Hence, the integrand has the form

f(x) =
arctanx√

x
=

√
x + O(x5/2) ,

and f ′ has a singularity at x=0.
Sometimes a change of variables will get rid of a troublesome singu-

larity. With the substitution t =
√

x we get1)

I =

∫ 0.8

0
2 arctan t2 dt ,

so this transformation got rid of the singularity.

Example. The original and the transformed versions of the integrand can be
implemented in Matlab as follows.

function y = intf1(x)

if x == 0, y = 0;

else, y = atan(x)/sqrt(x); end

function y = intf2(x)

y = 2*atan(x^2);

We use trapezrule from page 166,

T1 = trapezrule(@intf1,0,0.64,m)

T2 = trapezrule(@intf2,0,0.80,m)

for m = 20, 40, 80, and get

m T1 |T1− I| T2 |T2− I|
20 0.322785 1.16 · 10−3 0.324249 3.03 · 10−4

40 0.323533 4.14 · 10−4 0.324022 7.57 · 10−5

80 0.323799 1.47 · 10−4 0.323965 1.89 · 10−5

The results for the transformed integral behave as we saw on page 166: a
doubling of m (ie a halving of the step length h) leads to an error which
is approximately 4 times smaller. With the original formulation the “gain
factor” is only approximately 21.5 ≃ 2.828. Also note that for the same
m-value the results with the transformed integral are considerably more
accurate than with the original formulation.

1) Remember that also the integration bounds must be changed.
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With Simpson’s rule we similarly get

m S1 |S1− I| S2 |S2− I|
20 0.323482 4.65 · 10−4 0.323946 1.57 · 10−7

40 0.323782 1.64 · 10−4 0.323946 9.81 · 10−9

80 0.323888 5.81 · 10−5 0.323946 6.13 · 10−10

The results with the transformed integral behave as we saw on page 170,
corresponding to RT = O(h4). With the original formulation we get the
same poor gain ratio as with the trapezoidal rule, RT =O(h1.5).

Partial integration can sometimes simplify the integral.

I =

∫ 0.64

0

arctan x√
x

dx =
[
2
√

x arctan x
]0.64

0
−

∫ 0.64

0

2
√

x

1 + x2
dx

= 1.6 arctan 0.64 −
∫ 0.8

0

4t2

1 + t4
dt .

In the rewriting of the remaining integral we again used the change of
variables t =

√
x, to get rid of the singularity of the derivative at x= 0.

The last integral can easily be computed numerically (and it is even pos-
sible to give an explicit expression for the primitive function).

“Subtraction of the singularity” means that a function with the same
type of singularity and with a known primitive function is subtracted
from the integrand. In our example we get

I =

∫ 0.64

0

arctanx − x√
x

dx +

∫ 0.64

0

x√
x

dx

=

∫ 0.64

0

arctanx − x√
x

dx +
1.024

3
.

The new integrand is of the form −1
3x5/2 +O(x9/2). This implies that its

third and higher derivatives are singular at x=0, and Simpson’s rule can
be expected to give poor accuracy (but better than the original formula-
tion). Also, for small values of x there is cancellation in the numerator
of the integrand. We return to this formulation in the example starting
on page 182.

Series expansion and termwise integration sometimes works well. In
our case we get

I =

∫ 0.64

0

∞∑

r=0

(−1)r x(2r+1)−1/2

2r + 1
dx =

∞∑

r=0

(−1)r 0.642r+1.5

(2r + 1)(2r + 1.5)
.
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Using the remainder term estimate from Section 3.2 we see that if we eg
stop the summation after r = 9, then the error is at most 1.51 · 10−7.

If the integrand itself has a singularity, we cannot use a numerical
method based on the trapezoidal rule, but there are methods for numerical
integration that do not use endpoint values of the integrand. Sometimes
one of the above reformulations may be used to get rid of the singularity.

Example. In the integral

I =

∫ 1

0

arctan x

x3/2
dx

the integrand has a singularity at x=0. The change of variables t =
√

x
removes it:

I =

∫ 1

0

2 arctan t2

t2
dt .

We leave it as an exercise to show that also subtraction of the singularity
will make the integral amenable to the use of the trapezoidal rule.

Another type of difficulty arises if the interval of integration is infinite.
Sometimes a change of variables can be used to change the infinite interval
into a finite interval; eg the interval [0,∞] is changed into [0, 1] by the
substitutions x = (1− t)/t or x = − log t.

In some cases one gets a good approximation by “cutting off the tail”.
If, eg, I =

∫ ∞
0 e−x2

dx is approximated by I =
∫ a
0 e−x2

dx, we make a
truncation error

RT =

∫ ∞

a
e−x2

dx <
1

a

∫ ∞

a
xe−x2

dx =
1

2a
e−a2

.

For a = 6 we have RT < 2 · 10−17. The exact value is I = 1
2

√
π ≃ 0.886, so

RT < µI, where µ = 2−53 is the unit roundoff in IEEE double precision.
Finally, we shall discuss the use of Romberg’s method when applied

to a problem like (7.5.1). Romberg’s method assumes that the truncation
error for the trapezoidal method has an expansion in even powers of h, cf
page 171. This condition is not satisfied, eg, if some of the derivatives of f
have singularities at one of the endpoints. As examples of this, consider
f(x) = (x− a)αg(x) or f(x) = (b−x)αg(x) with 0< α < 1. It can be
shown that if g is (k + 1) times continuously differentiable in [a, b], then
the truncation error of T (h) is

RT =
k∑

i=1

aih
2i +

2k∑

j=1

bjh
j+α + O(h2k+1) .
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The integrand in (7.5.1) has the form

f(x) = x1/2g(x), g(x) =
arctan x

x
,

and according to (7.5.2) there is no problems about singularity in any
derivative of g. Thus, we have a problem of the type discussed above,
with α = 0.5, and the truncation error for the trapezoidal rule is

RT = b1h
1.5 + a1h

2 + b2h
2.5 + b3h

3.5 + a2h
4 + b4h

4.5 + · · · .

This shows that RT = O(h1.5) as we saw in the example on page 177.

Example. We use romberg from page 172 on the two versions of the integral,

I =

∫ 0.64

0

arctan x√
x

dx =

∫ 0.8

0

2 arctan t2 dt ,

as implemented in intf1 and intf2 on page 177.

>> [I1, info1] = romberg(@intf1,0,0.64,1e-6)

I1 = 0.32392208774273

info1 = 1.57e-05 256 8

>> [I2, info2] = romberg(@intf2,0,0.8,1e-6)

I2 = 0.32394633528981

info2 = 7.43e-07 16 3

So, with the original formulation we use 257 function evaluations, and do not
achieve the desired accuracy. After the transformation we get the desired
results after 17 function evaluations.

romberg is prepared to handle the form of RT given above:

>> p = [1.5 2 2.5 3.5 4 4.5 5.5 6];

>> [I3, info3] = romberg(@intf1,0,1,1e-6,p)

I3 = 0.32394627972287

info3 = 5.57e-07 32 3

Thus, the desired accuracy is obtained after 33 function evaluations.

7.6. Adaptive Quadrature

Our goal is to compute a sufficiently accurate approximation of the inte-
gral, using as few function evaluations as possible. If the integrand has a
large fourth derivative in part of the interval of integration, then a small
step length h is needed in this part, in order to get a satisfactory accuracy



7.6. Adaptive Quadrature 181

with Simpson’s rule. In other parts of the interval it may be possible to
get the same accuracy with a much larger h-value. In order not to make
unnecessarily many function evaluations one should adjust the step length
h to the behaviour of the integrand. This is done in adaptive quadrature.

We shall describe a method based on the “divide-and-conquer” prin-
ciple: If the length of an interval is too large, then split it in the middle
and apply the method separately in the two half intervals. More specific,
let [a, b], h = b− a and m = (a+ b)/2 denote an interval, its length and
its midpoint. Use Simpson’s rule with step length h/2 to find an approxi-

mation I1 ≃
∫ b
a f(x) dx and with step length h/4 to find IL ≃

∫ m
a f(x) dx

and IR ≃
∫ b
m f(x) dx. Next, compute

I2 = IL + IR, I3 = I2 +
I2 − I1

15
.

Simpson’s rule has error O(h4), and the value I3 is obtained by Richard-
son extrapolation. The difference I2 − I3 is used as an estimate of the
truncation error in I2, and I3 is accepted as an even better approxima-
tion if

|I2 − I3| ≤ τ ,

where τ is the desired absolute accuracy. If this condition is not satisfied,
then the process is repeated on the two subintervals [a, m] and [m, b] with
τ := 1

2τ .

Example. The following Matlab function implements this algorithm for adap-
tive quadrature. The divide-and-conquer idea is conveniently handled by a
recursive function, adpi, and adaptint itself merely acts as an initializer
and caller of adpi. When this function is called with the interval [a, b], we
already have computed the function values f(a), f(b) and f(m), and the
value I1, and these values are part of the input so that we avoid unnecessary
recomputation of them.

function [I, fcnt] = adaptint(f,a,b,tol)

% Integral of function f over interval [a,b]

% tol : desired absolute accuracy.

% fcnt: number of function evaluations

% Initialize. End- and midpoint values of integrand

ff = feval(f,[a (a+b)/2 b]); fcnt = 3;

% Initial Simpson approximation

I1 = (b-a) * (ff(1) + 4*ff(2) + ff(3)) / 6;

% Recursive computation

[I,fcnt] = adpi(f,a,b,tol,ff,I1,fcnt);
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% Auxiliary function

function [I,fcnt] = adpi(f,a,b,tol,ff,I1,fcnt)

% Check contribution from (sub)interval [a,b]

h = (b-a)/2; m = (a+b)/2;

% Mid point values in half intervals

fm = feval(f, [(a+m)/2 (m+b)/2]); fcnt = fcnt + 2;

IL = h*(ff(1) + 4*fm(1) + ff(2))/6; % Left half interval

IR = h*(ff(2) + 4*fm(2) + ff(3))/6; % Right half interval

% Refined approximation with extrapolation

I2 = IL + IR;

I = I2 + (I2 - I1)/15;

% Check accuracy

if abs(I-I2) > tol

% Refine both subintervals

[IL,fcnt] = adpi(f,a,m,tol/2,[ff(1) fm(1) ff(2)],IL,fcnt);

[IR,fcnt] = adpi(f,m,b,tol/2,[ff(2) fm(2) ff(3)],IR,fcnt);

I = IL + IR;

end

Example. The standard Matlab function quad is basically the same algorithm
as adaptint. We shall use it to approximate the integral (7.5.1),

I =

∫ 0.64

0

arctan x√
x

dx .

Both adaptint and quad call a function f that implements the integrand.
They use multiple arguments, so we cannot use the implementation intf1

given on page 177, but we can, eg, use the following implementation, which
also plots the computed points (x, f(x)).

function y = intf3(x)

y = zeros(size(x));

i = find(x > 0); % indices of nonzero x-values

y(i) = atan(x(i)) ./ sqrt(x(i));

plot(x,y,’.’)

>> [Iq, fcq] = quad(@intf3,0,0.64,1e-6)

Iq = 0.59579899706727

fcq = 37

The distribution of the 37 points needed is shown in Figure 7.4 below. It is
clearly seen that very small steps are needed close to the left hand endpoint,
where the derivative of the integrand has a singularity.

In Section 7.5 we showed that by subtraction of the singularity the integral
can be rewritten to
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Figure 7.4. Adaptive quadrature. f(x) = arctan x/
√

x.

I =

∫ 0.64

0

arctan x − x√
x

dx +
1.024

3
.

If we use this formulation with quad, we get

function y = intf4(x)

y = zeros(size(x));

i = find(x > 0);

y(i) = (atan(x(i)) - x(i)) ./ sqrt(x(i));

>> [Iss, fcs] = quad(@intf4,0,0.64,1e-6);

>> Iss = Iss + 1.024/3

Iss = 0.32394636665948

fcs = 13

The errors are |Iq− I| = 3.63 · 10−6 and |Iss− I| = 3.85 · 10−8. This illus-
trates again that it pays to simplify the problem before one uses a numerical
method; with less than half the number of function evaluations we get a
result whose error is reduced by a factor about 100.

Exercises
E1. Use Romberg’s method with h =1 and h = 1

2 to approximate
∫ 1

0
x3 dx.

Explain why the result agrees with the exact value.

E2. Use “subtraction of the singularity” to remove the singularity at x= 0 in
the integral ∫ 1

0

arctan x

x3/2
dx .
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E3. Show that the substitution x = sin t makes the integral

∫ 1

0

√
1 − 1

4x2

1 − x2
dx

suitable for numerical integration.

E4. Suggest different methods for the numerical computation of
∫ 1

0

sinx√
1 − x2

dx .

E5. Suggest a suitable method for approximating
∫ ∞

0

e−x cos x2 dx

with four correct decimals.

E6. Suggest a suitable method for the numerical computation of

I =

∫ ∞

0

e−x

1 + xe−x
dx .

Computer Exercises
C1. Use the Matlab function romberg (available from incbox) with tol =

5e-5 to compute the following integrals. In some of the cases you must
rewrite the integral before you can use romberg.

(a)

∫ 1

0

e−x2

dx ,

(b)

∫ π/2

0

√
1 + cos2 x dx ,

(c)

∫ 1

0

cos x√
x

dx ,

(d)

∫ 10

0

x3

ex − 1
dx ,

(e)

∫ 1

0

32

1 + 1024x2
dx . (The exact value is arctan 32). Do the extrapo-

lated values have better accuracy than the results from the trapez-
oidal rule? What is the result from quad ?
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(f) I =

∫ a+1

a

(cos(8πx) + 1) dx , a = 0.125, 0.25 .

The exact value is I =1 for any a. Explain your results!
What are the results from quad ?

C2. We shall compute the integral

I =

∫ 4

0

1

1 + 5xex2
dx .

Sketch the integrand and use romberg with tol = 5e-6 on suitable subin-
tervals. Compare with the results from quad .

C3. Use adaptint and quad to approximate the integral

I =

∫ 10

0

(√
x + 10−8 +

4

1 + 2(x − 9)2

)
dx

for tol = 10−1, 10−2, . . . , 10−10.

Discuss the results. The true value of the integral is

I =
2

3

(
(10 + 10−8)3/2 − 10−12

)
+ 2

√
2
(
arctan(

√
2) + arctan(9

√
2)

)
.
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Chapter 8

Linear Systems of Equations

8.1. Introduction

Linear systems of equations arise very often in technical and natural sci-
ences computation. The system may eg come from discretization of a
boundary value problem for an ordinary or a partial differential equation,
see Chapters 1 and 10. Such problems occur eg in structural mechan-
ics and fluid dynamics, and the number of unknowns may be very large,
occasionally hundreds of thousands.

In this chapter we study the numerical solution of linear systems of
equations with n unknowns,

a11x1 + a12x2 + · · · + a1nxn = b1 ,
a21x1 + a22x2 + · · · + a2nxn = b2 ,

...
an1x1 + an2x2 + · · · + annxn = bn .

All the coefficients aij and right hand side elements bi are assumed to be
real. We often use matrix notation for the problem,

Ax = b ,

where A is the n×n coefficient matrix and b is the n×1 right hand side
vector

A =




a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
...

an1 an2 · · · ann


 , b =




b1

b2
...

bn


 .
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It may be convenient to interpret the matrix A as being built by n
column vectors:

A = [a:1 a:2 · · · a:n] , a:j =




a1j

a2j
...

anj


 .

Then we can write the system Ax = b in the form

x1a:1 + x2a:2 + · · ·xna:n = b ,

and the problem of solving the system of equations is seen to be equivalent
to finding a linear combination of the vectors a:1, . . . , a:n, which is equal
to the vector b. This shows that the system is solvable for any b if and
only if the column vectors form a basis of the vector space R

n. Put
another way, the column vectors should be linearly independent . When
this condition is satisfied, the matrix A is said to be nonsingular, and the
system Ax = b has a unique solution. Unless otherwise stated, we assume
in this chapter that A is nonsingular.

There are two classes of methods for solving linear systems of equa-
tions, direct and iterative methods. With a direct method the solution is
found via a finite number of simple arithmetic operations, and in the
absence of rounding errors the computed x would be the exact solu-
tion to the system. An iterative method generates a sequence of vectors
x[0], x[1], x[2], . . ., that converge to the solution. It is outside the scope of
this chapter to discuss this class of methods.

The frequent occurrence of linear systems of equations makes it im-
portant to be able to solve them fast and accurately, and high quality
computer software for this task has been developed in the recent decades.
In a programming language like Fortran or C one calls subroutines from
a subroutine library. The best known and by far the best library for
linear algebra is LAPACK, which is available for free via the Internet1) .
Today there exist interactive environments for numerical calculations, eg
Matlab, Maple and Matematica, where extensive matrix computations
are performed by simple commands. The matrix algorithms in Matlab

are taken from LAPACK.

1) URL: http://www.netlib.org/lapack/
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Example. The following Matlab script builds a matrix and right hand side

A =




2 3 4
1 3 1
1 1 8


 , b =




1
2
3


 ,

and solves the system Ax = b.

A = [2 3 4; 1 3 1; 1 1 8];

b = [1; 2; 3];

format long % display 15 digits

x = A\b

x = -2.58823529411765

1.35294117647059

0.52941176470588

As demonstrated, it is easy to solve a linear system of equations –
at least in an environment like Matlab. Therefore, it is relevant to ask
whether it is necessary to know what happens when the Matlab com-
mand x = A\b is executed. In technical and natural sciences applications
the systems are often very large, and the linear system may be just a step
in the solution of a nonlinear problem (by means of Newton-Raphson’s
method, see Section 4.8). Further, it sometimes happens that the ma-
trix is singular or close to being singular, in which case rounding errors
may have dominating effect. In order to be able to make good use of the
powerful software (as available from the program library or in the inter-
active environment) in such a complex setting, it is necessary to know
the properties of the algorithms.

Gaussian elimination is the basic direct method for solving linear
systems of equations, and this is the method implemented2) in x = A\b.
The method consists of a series of simple transformations that result in
a triangular matrix. The same transformations are applied to the right
hand side: (

A b
)

→
(
U c

)
,

where U is upper (or right) triangular. The transformations do not change
the solution, so Ax = b has the same solution as Ux = c, and x is easily
computed by back substitution, see Section 8.2. In Section 8.3 we study
the transformation

(
A b

)
→

(
U c

)
.

2) In the case of a square linear system. This is discussed in examples on pages 219
and 257.
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8.2. Triangular Systems

An n×n matrix U = (uij) is said to be upper (or right) triangular if

uij = 0 , i > j ,

and an n×n matrix L = (lij) is said to be lower (or left) triangular if

lij = 0 , i < j .

The matrix U is nonsingular if and only if all the diagonal elements
uii are non-zero. In that case the system

u11x1 + u12x2 + · · · + u1nxn = c1

u22x2 + · · · + u2nxn = c2
...

unnxn = cn

can be solved by back substitution:

xn = cn/unn

xi =
(
ci −

n∑

j=i+1

uijxj

)
/uii , i = n−1, n−2, . . . , 1 . (8.2.1)

Example. In Matlab this can be expressed as

x(n) = c(n)/U(n,n);

for i = n-1 : -1 : 1

x(i) = c(i);

for j = i+1 : n

x(i) = x(i) - U(i,j)*x(j);

end

x(i) = x(i)/U(i,i);

end

Similarly, the matrix L is nonsingular if all the lii 6=0. Then the
system

l11y1 = d1

l11y1 + l12y2 = d2
...

ln1y1 + ln2y2 + · · · + lnnyn = dn

can be solved by forward substitution
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y1 = d1/l11

yi =
(
di −

i−1∑

j=1

lijyj

)
/lii , i = 2, 3, . . . , n .

(8.2.2)

It is important to know how much work is needed to solve a system of
equations. A measure of the work is the number of flops (floating point
arithmetic operations) needed. From (8.2.1) it follows that the computa-
tion of xi involves n − i multiplications and additions and one division.
Thus, the total number of flops3) needed is

n + 2
n−1∑

i=1

(n − i) = n + 2
n−1∑

k=1

k = n + 2
n(n − 1)

2
= n2 .

It is easy to see that forward substitution involves the same amount
of work. As we shall see in Section 8.6, Gaussian elimination involves
matrices L, where all the lii = 1. Such matrices are said to be unit lower
triangular. Then there is no division involved in (8.2.2), and the work
reduces to n2−n flops. For large values of n this difference is insignificant,
and we conclude:

The solution of a triangular system of equations with n unknowns
needs approximately n2 flops.

For comparison, this is also the work involved in the matrix-vector mul-
tiplication v = Cu, if C is triangular.

Example. The Matlab code in the previous example can be shortened con-
siderably by noting that the expression for xi in (8.2.1) has the form

xi = (ci − di)/uii ,

where di is the inner product of the vectors [ui,i+1, . . . , uin] and [xi+1, . . . , xn].
Assuming that x is a column vector, this inner product is obtained by the
simple command U(i,i+1:n)*x(i+1:n), and the five lines

x(i) = c(i);

for j = i+1 : n

x(i) = x(i) - U(i,j)*x(j);

end

x(i) = x(i)/U(i,i);

3) Up to the mid 1990s a “flop” was defined as (one multiplication and one addition)
or (one division). On modern computers the execution times for these three
operations are (almost) identical, and it seems to be internationally agreed to
give up the distinction. So nowadays each floating point operation is counted,
and “new” flop counts are about twice the “old” counts.
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can be replaced by the single line

x(i) = (c(i) - U(i,i+1 : n) * x(i+1 : n)) / U(i,i);

This is an example of Matlab vectorization. It does not change the number
of flops, but it gives shorter Matlab programs that are easier to understand
(once you get used to it).

The vectorization is incorporated in the following implementation of the back
substitution algorithm as a Matlab function

function x = backsub(U, c)

% Back substitution to solve Ux = c

n = length(c);

x(n,1) = c(n) / U(n,n); % col. vector of length n

for i = n-1 : -1 : 1

x(i) = ( c(i) - U(i,i+1:n)*x(i+1:n) ) / U(i,i);

end

8.3. Gaussian Elimination

We start this section by looking at a small problem:

Example. Consider the system Ax = b, where A is a 3×3 matrix,



5 −5 10
2 0 8
1 1 5







x1

x2

x3


 =




−25
6
9




(1)
(2)
(3)

The aim of Gaussian elimination is to transform the coefficient matrix to an
upper triangular matrix, and this is achieved as follows: First x1 is eliminated
from Equations (2) and (3) by subtracting appropriate multiples of Equation
(1). Omitting the xj we get




5 −5 10 −25
0 2 4 16
0 2 3 14




(1)
(2′) = (2) − 2

5 · (1)
(3′) = (3) − 1

5 · (1)

Another way of describing these operations is: The elements in positions
(2, 1) (ie 2nd row, 1st column) and (3, 1) are zeroed by subtracting multiples
of the first row. We shall use this terminology henceforward.

Next, we zero the element in position (3, 2) by subtracting a multiple of the
current 2nd row:


5 −5 10 −25
0 2 4 16
0 0 −1 −2




(1)
(2′)

(3′′) = (3′) − 2
2 · (2′)
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Now, we have achieved an upper triangular coefficient matrix, and back
substitution gives the solution




x1

x2

x3


 =




−5
4
2


 .

In the general case with n unknowns we start with

(
A | b

)
=




a11 a12 · · · a1n b1

a21 a22 · · · a2n b2
...

...
...

...
an1 an2 · · · ann bn


 .

First, we assume that a11 6=0 and zero elements in rows 2 through n of
the first column by subtracting multiples of the first row:




a11 a12 · · · a1n b1

0 a′22 · · · a′2n b′2
...

...
...

...
0 a′n2 · · · a′nn b′n


 .

The elements with a prime were changed in this step, but we do not give
details until later.

Next, we assume that a′22 6= 0 and zero elements under the main dia-
gonal in the second column by subtracting multiples of the second row,
etc. After k−1 steps the matrix has the form




a11 a12 · · · a1n b1

a22 · · · a2n b2

. . .
...

...
akk ak,k+1 · · · akn bk
...

...
...

...
aik ai,k+1 · · · ain bi
...

...
...

...
ank an,k+1 · · · ann bn




.

For the sake of readability the notation does not show that the elements
have been changed as compared to the original aij and bi.

Now, assume that akk 6= 0. The elements in column k under the main
diagonal are zeroed by subtracting multiples of row k. The result is
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


a11 a12 · · · a1n b1

a22 · · · a2n b2

. . .
...

...
akk ak,k+1 · · · akn bk
...

...
...

...
0 a′i,k+1 · · · a′in b′i
...

...
...

...
0 a′n,k+1 · · · a′nn b′n




,

where the multipliers and transformed elements are

mik = aik/akk

a′ij = aij − mikakj , j = k+1, . . . , n

b′i = bi − mikbk





i = k+1, . . . , n . (8.3.1)

The computation

a′ik = aik − mikakk = aik − aik

akk
akk = 0

shows that this transformation does indeed put the desired zeros in the
kth column.

The row used to get zeros in the kth column is called the kth pivot
row, and akk is the kth pivot element (or just pivot).

The algorithm consists in repeating (8.3.1) for k = 1, 2, . . . , n−1. Then
the system Ax = b has been changed to Ux = c, where the elements of
the upper triangular U are the final values of aij , j ≥ i, and the elements
in c are the final values of the elements in b.

Example. The following Matlab program implements the elimination.

for k = 1 : n-1

for i = k+1 : n

m(i,k) = A(i,k)/A(k,k);

for j = k+1 : n

A(i,j) = A(i,j) - m(i,k)*A(k,j);

end

b(i) = b(i) - m(i,k)*b(k);

end

end

After executing the program the elements of U are found in the upper triangle
of A and b contains c.
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We now consider the work involved in the transformation from Ax = b
to Ux = c when there are n unknowns: The kth step of the transformation
involves n−k rows, and for each row we need one division (to get mik)
and (n − k + 1) multiplications and additions. We are interested only in
the order of magnitude of the work, and this amounts to about 2(n−k)2

flops in the kth step, and a total of

2
n−1∑

k=1

(n − k)2 = 2
n−1∑

ν=1

ν2 .

We need the following lemma

Lemma 8.3.1.
Sn ≡

n−1∑

ν=1

ν2 =
n(n − 1)(2n − 1)

6
.

Proof. By induction: The formula is obviously true for n = 1. Assume
that it is true for n = N . Then

SN+1 = SN + N2 =
N

6

(
2N2−3N+1 + 6N

)

=
N

6
(2N + 1)(N + 1) =

(N+1)N(2(N+1) − 1)

6
,

and the lemma is proved.

The term with n3 dominates for large values of n, so we have shown
the following rule of thumb.

The transformation to triangular form of a linear n×n system of
equations by Gaussian elimination requires approximately 2

3 n3 flops.

Example. Suppose that one flop takes 2 ns (ie 2 · 10−9 seconds) on a certain
computer. The following table gives the execution time for Gaussian elim-
ination and back substitution for varying n. The values are based on the
estimates given in our rules of thumb.

n Elimination Back substitution

100 0.002 10−5

1000 2 0.001
10 000 2000(≈ 33min) 0.1

Time in seconds when one flop takes 2 ns.
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These timings are not to be taken too seriously, since they do not take
into account that the operating system “steals” some time and that the
computer architecture (the cache and memory) plays an important role
when the matrix is large. Very big matrices cannot be held in cache (a
matrix of order 10 000 needs about 800 Mbytes of memory). Neverthe-
less the estimates give quite reliable information about the ratio between
execution times for Gaussian elimination and the solution of triangular
systems, and also about how the execution time grows with the size of
the problem. If, eg, a system of order n is solved in 2 seconds on a certain
computer, then it takes about 33 · 2 = 54 seconds ≈ 1 minute to solve a
system of order 3n.

The estimates on pages 191 and 195 assume that (most of) the ele-
ments in the matrix are nonzero. In many applications the matrix may
be very large, but most of the elements are zero. Such a matrix is said
to be sparse, and in Section 8.8 we show how the work can be drastically
reduced in the case of band matrices.

The presentation of Gaussian elimination assumed that all the pivots
were nonzero. This condition is unrealistic, and in the next section we
show how the algorithm can easily be modified to handle zero pivots.
Also, the modified algorithm gives results that are less affected by round-
ing errors.

We round off this section by presenting some enhancements of the
Matlab implementation given in the example on page 194.

Example. The transformation in (8.3.1) of the matrix elements can be ex-
pressed as v′

i: = vi: − mikvk: , where vi: is the row vector with elements
[ai,k+1, . . . , ain]. v′

i: overwrites vi:, and in Matlab we can use the command

>> A(i,k+1:n) = A(i,k+1:n) - M(i,k)*A(k,k+1:n)

Also note that the multiplier mik can overwrite aik, the element that is
zeroed. Therefore we do not need the array M. The partly vectorized Matlab

program is

for k = 1 : n-1

for i = k+1 : n

A(i,k) = A(i,k)/A(k,k); % multiplier

jj = k+1 : n;

A(i,jj) = A(i,jj) - A(i,k)*A(k,jj);

b(i) = b(i) - A(i,k)*b(k);

end

end
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The vectorization can be carried a step further when we realize that the
change of matrix elements in (8.3.1) can be expressed as4)




a′
k+1,k+1 · · · a′

k+1,n
...

...
a′

n,k+1 · · · a′
n,n




=




ak+1,k+1 · · · ak+1,n

...
...

an,k+1 · · · an,n


 −




mk+1,k

...
mnk




(
ak,k+1 · · · akn

)
.

With this formulation we get a very compact program, which we present as
a Matlab function:

function [U, c] = gauss1(A, b)

% Gaussian elimination applied to Ax = b

n = size(A,1);

b = b(:); % ensure that b is a column vector

for k = 1 : n-1

ii = k+1 : n;

A(ii,k) = A(ii,k)/A(k,k); % multipliers

A(ii,ii) = A(ii,ii) - A(ii,k)*A(k,ii); % modify A

b(ii) = b(ii) - b(k)*A(ii,k); % modify b

end

U = triu(A); c = b; % return transformed problem

If A and b hold the matrix and right hand side of the system Ax = b, then
the commands

>> [U,c] = gauss1(A,b); x = backsub(U,c);

will return the solution in x.

4) A product of the form (column vector)·(row vector) is a so-called rank-one matrix .
We shall make further use of such matrices in Section 8.15. This product is also
called an outer product in contrast to the inner product (introduced in the example
on page 191) which is a scalar, computed as (row vector) · (column vector).
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8.4. Pivoting

In the previous section we assumed that all the pivot elements in Gaussian
elimination were nonzero. The system

(
0 1 1
1 1 2

)

demonstrates that this assumption is not realistic. The algorithm from
the previous section must be modified so that we start by interchanging
rows 1 and 2: (

1 1 2
0 1 1

)
,

and we are ready for back substitution.
The interchange of rows should also be done for a system of the form

(
ǫ 1 1
1 1 2

)
, (8.4.1)

where |ǫ| is nonzero, but small. The reason is that otherwise rounding
errors may lead to severe loss of accuracy.

Example. Let ǫ = 10−5. The multiplier is m21 = 105, and the upper triangular
system is (

10−5 1 1
0 1 − 105 2 − 105

)
.

Suppose we use the floating point number system (10, 3,−9, 9) (radix 10 and
3 digits in the fraction, see Section 2.4). Then

1 − 105 = (0.00001 − 1.000)105

= −0.99999 · 105 = −9.9999 · 104

.
= −10.000 · 104 = −1.000 · 105 .

(“
.
=” reads “is rounded to”. We have assumed that the registers hold 6 dig-

its). Also 2 − 105 .
= −105, so the computed result of the elimination is

(
10−5 1 1

0 −105 −105

)
,

with the solution (
x1

x2

)
=

(
0
1

)
.

If we start by interchanging the two rows, we get m21 = 10−5 and the re-
duced matrix(

1 1 2
0 1 − 10−5 1 − 2 · 10−5

)
.
=

(
1 1 2
0 1 1

)
,
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with the solution (
x1

x2

)
=

(
1
1

)
.

Next, consider the same problem in more realistic settings: The table below
shows the solution for different values of ǫ, as computed in Matlab in IEEE
double precision, ie with the floating point number system (2, 52,−1022, 1023),
and displayed with format long.

As an exercise, find the exact solution to the system and verify that in all
cases the solution computed with row interchanges agrees with the computer
representation of the exact solution. The quality of the solution computed
without row interchange decreases as the parameter ǫ in (8.4.1) becomes
smaller.

ǫ without row interchange with row interchange

10−8

(
1.0000 00005 02476
0.9999 99990 00000

) (
1.0000 00010 00000
0.9999 99990 00000

)

10−11

(
1.0000 00082 74037
0.9999 99999 99000

) (
1.0000 00000 001000
0.9999 99999 99000

)

10−14

(
0.9992 00722 16264
0.9999 99999 99999

) (
1.0000 00000 00001
0.9999 99999 99999

)

10−17

(
0
1

) (
1
1

)

In the first part of this simple example it is easy to see what caused the
loss of accuracy: In the floating point computation of 1− 105 and 2− 105

we lost the information in the equation x1 + x2 = 2; the subtraction
a−105 gives the result −105 for all a in the range −5 < a < 5. Generally,
if very large elements are generated during the elimination, then we loose
part of the information given by the original coefficients. In the example
the reduced matrix obtained after row interchange had elements of the
same order of magnitude as the original matrix, and there was no loss of
accuracy.

Row interchanges during Gaussian elimination is called pivoting . In
order to reduce the loss of accuracy the row interchanges are made so
that the pivot element is as large as possible (and thereby the maximum
multiplier is as small as possible). Consider step k of the elimination:
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


a11 a12 · · · a1n

a22 · · · a2n

. . .
...

akk ak,k+1 · · · akn
...

...
...

aik ai,k+1 · · · ain
...

...
...

ank an,k+1 · · · ann




.

Column k, from akk and down, is searched to find the element of largest
magnitude. More precisely, find the row index ν such that

|aνk| = max
k≤i≤n

|aik| .

If ν > k, then rows k and ν are interchanged, and the elimination proceeds.
This process is called partial pivoting . It follows from (8.3.1), that with
partial pivoting the multipliers satisfy

|mik| =

∣∣∣∣
aik

akk

∣∣∣∣ ≤ 1 . (8.4.2)

In case of complete pivoting the kth pivot is found as the largest
element in the submatrix 


akk · · · akn
...

...
ank · · · ann


 ,

and both row and column interchanges are used to bring this element to
position (k, k). This method is rarely used today.

Example. It is easy to change the function gauss1 from page 197 so that it
uses partial pivoting:

function [U, c] = pgauss(A, b)

% Gaussian elimination with partial pivoting, applied to Ax = b

n = size(A,1);

b = b(:); % ensure that b is a column vector

for k = 1 : n-1

[A, b] = pivot(A, b, k);

ii = k+1 : n;

A(ii,k) = A(ii,k)/A(k,k); % multipliers

A(ii,ii) = A(ii,ii) - A(ii,k)*A(k,ii); % modify A
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b(ii) = b(ii) - b(k)*A(ii,k); % modify b

end

U = triu(A); c = b; % return transformed problem

The function pivot finds the pivot row and performs the interchanges in the
matrix and right hand side.

function [A, b] = pivot(A, b, k)

% Find k’th pivot row and interchange

n = size(A,1);

[piv, q] = max(abs(A(k:n,k)));

if q > 1 % interchange

pk = k-1 + q; % row index

A([k pk],:) = A([pk k],:); % swap rows pk and k

b([k pk]) = b([pk k]); % swap elements pk and k

end

The purpose of pivoting is to avoid that matrix elements become too
large during the elimination, with associated loss of accuracy. Therefore,
in general, one should use partial pivoting in connection with Gaussian
elimination for solving a system Ax = b. There are, however, exceptions
to this rule, viz if the matrix is
a) symmetric and positive definite, or
b) diagonally dominant.
The symmetric matrix A is said to be positive definite if

xT A x > 0

for all vectors x 6= 0. The matrix is diagonally dominant if

|aii| ≥
n∑

j=1,j 6=i

|aij | , i = 1, 2, . . . , n ,

with strict inequality for at least one i.
Both of these classes of matrices occur in important applications, eg in

structural mechanics and in the discretization of boundary value problems
for differential equations, and in connection with cubic splines we derived
(5.11.6), which has a diagonally dominant matrix. It can be shown that
Gaussian elimination without pivoting is stable for such matrices: The
maximum element in the original A is larger than all elements generated
during the elimination. It may happen that some of the multipliers are
larger than 1, but there is no “unnecessary” loss of accuracy. We return
to symmetric, positive definite matrices in Section 8.7.
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Gaussian elimination with partial pivoting is illustrated by the follow-
ing example, which we shall also use later.

Example. Suppose that we want to solve a system of equations Ax = b with

A =




0.6 1.52 3.5
2 4 1
1 2.8 1


 .

In the first step we have to interchange rows 1 and 2:



2 4 1
0.6 1.52 3.5
1 2.8 1


 .

The multipliers are m21 = 0.3, m31 = 0.5, and the result of the first step is



2 4 1
0 0.32 3.2
0 0.8 0.5


 .

Now we have to interchange rows 2 and 3, since |a32| > |a22|,


2 4 1
0 0.8 0.5
0 0.32 3.2


 ,

and with m32 = 0.4 we get the upper triangular matrix

U =




2 4 1
0 0.8 0.5
0 0 3


 .

The observant reader will have noticed that we did not include the
right hand side in the example. However, we can save the information
about the elimination process – which rows were interchanged and the
multipliers, so it is possible to apply the same transformations to the
right hand side. We formalize this approach in Section 8.6.

In the introduction to this chapter we saw that the system Ax = b has
a unique solution if the column vectors of A are linearly independent. We
now ask: Does Gaussian elimination with partial pivoting always work,
if this assumption is satisfied? (On page 198 we saw that this is not the
case when we do not use pivoting).

From the description of the method it follows that the process breaks
down in step k if all aik = 0 for i ≥ k. This, however, can occur only if
column a:k is a linear combination of a:1, . . . , a:,k−1, as we will now show:
Consider the system
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


a11 a12 · · · a1,k−1 a1k

a21 a22 · · · a2,k−1 a2k
...

...
...

...
an1 an2 · · · an,k−1 ank


 .

By means of Gaussian elimination with partial pivoting we know that
this matrix is transformed to



a11 a12 · · · a1,k−1 a1k

a22 · · · a2,k−1 a2k

. . .
...

...
ak−1,k−1 ak−1,k

0 0
...

...
0 0




,

where all aii 6= 0, i=1, . . . , k−1. This implies that we can find {αi}k−1
i=1

so that α1a:1 + · · · + αk−1a:,k−1 − a:k = 0, ie the first k columns are not
linearly independent.

Thus, under the assumption of linearly independent columns in A,
Gaussian elimination with partial pivoting has all the pivots nonzero. It
should be mentioned that this result neglects effects of rounding errors.

8.5. Permutations, Partitioned Matrices
and Gauss Transformations

In the next section we show that Gaussian elimination is equivalent to
a factorization of the matrix. First, however, we must introduce some
elementary transformation matrices.

A row interchange is equivalent to a multiplication from the left by
a permutation matrix. The simplest such matrix Prs is obtained by in-
terchanging rows r and s in the unit matrix I. It differs from I in four
positions; it has zeros in positions (r, r) and (s, s) and ones in positions
(r, s) and (s, r). For n =5 the permutation matrix P24 is
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


1 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 1 0 0 0
0 0 0 0 1




.

We say that Prs is an simple permutation matrix. If we multiply a vector
x by Prs, then the elements xr and xs are interchanged. Similarly,

PrsA = Prs[a:1 a:2 · · · a:n] = [Prsa:1 Prsa:2 · · · Prsa:n]

shows that rows r and s are interchanged. With r < s we

PrsA =




...
...

...
ar−1,1 ar−1,2 · · · ar−1,n

as,1 as,2 · · · as,n

ar+1,1 ar+1,2 · · · ar+1,n
...

...
...

as−1,1 as−1,2 · · · as−1,n

ar,1 ar,2 · · · ar,n

as+1,1 as+1,2 · · · as+1,n
...

...
...




.

Finally, we note that a simple permutation matrix is symmetric and
is its own inverse5) :

Prs = P T
rs = P−1

rs . (8.5.1)

The general definition of a permutation matrix is a matrix P such that
Px is just a reordering of the components in x. Therefore, a product of
elementary permutation matrices is a permutation matrix, and actually
all permutation matrices can be constructed this way:

Proposition 8.5.1. Any permutation matrix can be written as a
product of elementary permutation matrices.

Proof. Px defines an ordering of the elements in x. Let (Px)1 = xk1
,

then P1k1
x brings xk1

to the desired position. Next, let (Px)2 =
(P1k1

x)k2
, then P2k2

P1k1
x has the correct elements in first two posi-

tions, etc.

5) The last statement is verified by showing that PrsPrs = I; do that!
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Proposition 8.5.2. Permutation matrices are orthogonal:

P T P = PP T = I .

Proof. Let P = PaPb, the product of two elementary permutation
matrices. By use of (8.5.1) we get

P T P = P T
b P T

a Pa Pb = P T
b I Pb = I .

The proof is similar for PP T and for more than two factors.

The multiplication PA gives a permutation of the rows in A. The cor-
responding permutation of the columns in A is obtained by multiplication
by P T from the right, A P T .

It is often convenient to partition a matrix, ie split it into blocks
(submatrices). To illustrate this, consider the 3 × 3 matrix

A =




7 5 0
3 6 1

3 1 6


 =

(
A11 A12

A21 A22

)
,

with

A11 =

(
7 5
3 6

)
, A12 =

(
0
1

)
, A21 =

(
3 1

)
, A22 =

(
6

)
.

Similarly, let

B =




9 5 4
0 2 1

6 5 0


 =

(
B11 B12

B21 B22

)
.

The matrix product AB can be interpreted as if the blocks were scalars:
(

A11 A12

A21 A22

) (
B11 B12

B21 B22

)
=

(
A11B11 + A12B21 A11B12 + A12B22

A21B11 + A22B21 A21B12 + A22B22

)
.

With the given matrices A and B you should check that this expression
gives the same result as you get with the ordinary scheme for multiplying
two 3 × 3 matrices.

In general, if two quadratic matrices A and B are partitioned the same
way,
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A =




A11 A12 · · · A1N

A21 A22 · · · A2N
...

...
...

AN1 AN2 · · · ANN


 , B =




B11 B12 · · · B1N

B21 B22 · · · B2N
...

...
...

BN1 BN2 · · · BNN


 ,

then also the product C = AB can be partitioned in this way, and

Cij =
N∑

k=1

AikBkj ,

provided that all these products are defined – ie the number of columns
in Aik must equal the number of rows in Bkj .

In the next section we shall see that Gaussian elimination with partial
pivoting can be expressed by permutation matrices and Gauss transfor-
mations. The Gauss transformation Lk is a lower triangular matrix that
differs from the unit matrix I only in the kth column:

Lk =




1
1

. . .

1
mk+1 1

...
. . .

mn 1




.

(The element mi corresponds to the multiplier mik in Gaussian elimina-
tion). If we multiply a vector x by Lk, we get

y = Lkx =




x1
...

xk

xk+1 + mk+1xk
...

xn + mnxk




,

or, in other words,

yi =

{
xi , i = 1, . . . , k ,

xi + mixk , i = k+1, . . . , n .

Therefore, x = L−1
k y must satisfy
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xi =

{
yi , i = 1, . . . , k ,

yi − miyk , i = k+1, . . . , n ,

showing that it is simple to invert the Gauss transformation:

L−1
k =




1
1

. . .

1
−mk+1 1

...
. . .

−mn 1




.

A Gauss transformation can be used to zero elements in a vector: Let
x be a vector with xk 6=0 and let Lk be given by

mi =
xi

xk
i = k+1, . . . , n .

Then

L−1
k x =




x1
...

xk

xk+1 − mk+1xk
...

xn − mnxk




=




x1
...

xk

0
...
0




.

Finally, we give an example that illustrates the concepts introduced in
this section, and generates two results, which are used in the next section.

Example. The Gauss transformation L1 can be partitioned,

L1 =

(
1 0
m I

)
,

where the column vector m holds the {mi}n
i=2. Let

P =

(
1 0

0 P̃

)
,

where P̃ is a permutation matrix of order n−1. Then

PL1P
T =

(
1 0

0 P̃

)(
1 0
m I

) (
1 0

0 P̃T

)
=

(
1 0

P̃m P̃ P̃T

)
=

(
1 0

P̃m I

)
.

Thus, the only difference between L1 and PL1P
T is that the elements in

positions (2, 1), . . . , (n, 1) are permuted as defined by P̃ .
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Next, consider the product L1Lk of two Gauss transformations with k > 1:

L1Lk =

(
1 0
m I

)(
1 0

0 L̃k

)
=

(
1 0

m L̃k

)
.

Here, L̃k is the lower right (n−1)×(n−1) submatrix of Lk. The calculation
shows that the difference between Lk and L1Lk is that m appears under the
main diagonal in the first column.

8.6. LU Factorization

We shall show that Gaussian elimination with partial pivoting applied to
a nonsingular matrix A is equivalent to the factorization

P A = L U , (8.6.1)

where P is a permutation matrix, L is a unit lower triangular matrix, and
U is an upper triangular matrix. We start by a small example.

Example. In the example on page 202 we applied Gaussian elimination with
partial pivoting to the matrix

A =




0.6 1.52 3.5
2 4 1
1 2.8 1


 .

We shall go through the the elimination, using the concepts from the previous
section.

First, we swap rows 1 and 2 by multiplying with a permutation matrix P1

(equal to the elementary permutation matrix P12) and zero the elements in
positions (2, 1) and (3, 1) by multiplying with an inverse Gauss transforma-
tion L−1

1 :

A1 = L−1
1 P1A, P1 =




0 1 0
1 0 0
0 0 1


 , L1 =




1 0 0
0.3 1 0
0.5 0 1


 .

In Matlab (with A1 representing A1 etc)

>> A1 = inv(L1)*P1*A

A1 = 2.0000 4.0000 1.0000

0 0.3200 3.2000

0 0.8000 0.5000

Next, P2 corresponds to swapping rows 2 and 3, and L2 is constructed to
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zero the element in position (3, 2):

A2 = L−1
2 P2A1, P2 =




1 0 0
0 0 1
0 1 0


 , L2 =




1 0 0
0 1 0
0 0.4 1


 .

>> A2 = inv(L2)*P2*A1

A2 = 2.0000 4.0000 1.0000

0 0.8000 0.5000

0 0 3.0000

Let U denote the upper triangular matrix A2, then

U = L−1
2 P2A1 = L−1

2 P2L
−1
1 P1A .

This is equivalent to A = PT
1 L1 PT

2 L2U , and by multiplying by P2P1 and
using that P−1

k = PT
k since Pk is orthogonal, we get

P2P1A = P2L1 PT
2 L2U .

With regard to (8.6.1) we have found U , and

P = P2P1 =




0 1 0
0 0 1
1 0 0




is the permutation matrix; it gives the final ordering of the rows. It remains
to show that L = P2L1P

T
2 L2 is a unit lower triangular matrix. This, how-

ever, was done in the example on page 207: First we showed that the matrix
P2L1P

T
2 is identical with L1, except that the subdiagonal elements 0.3 and

0.5 are swapped,

>> P2*L1*P2’

ans = 1.0000 0 0

0.5000 1.0000 0

0.3000 0 1.0000

Next, we showed that multiplying this matrix with L2 gives a matrix, which
is identical to L2, except for the first column, which is identical to the first
column in P2L1P

T
2 .

>> L = (P2*L1*P2’)*L2

L = 1.0000 0 0

0.5000 1.0000 0

0.3000 0.4000 1.0000

Thus, we have shown that (8.6.1) is true in this case.

The example demonstrates for a special case that Gaussian elimina-
tion with partial pivoting is equivalent to LU factorization of the original
matrix with the rows permuted. Now we consider the general case:
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Theorem 8.6.1. LU factorization. Every nonsingular n×n ma-
trix A can be factored

P A = L U ,

where P is a permutation matrix, L is a unit lower triangular matrix,
and U is an upper triangular matrix.

Proof. By induction. The theorem is trivially true for n = 1. Assume
that it is true for n = N−1, and consider an N×N matrix A. The
first step of Gaussian elimination with partial pivoting can be formu-
lated as

A1 = L−1
1 P1A ,

where P1 is a permutation matrix and L1 is a Gauss transformation,

L1 =

(
1 0
m I

)
, m =




m21
...

mn1


 .

The result is

A1 =

(
u11 uT

1

0 Ã2

)
,

where uT
1 =

(
u12 · · · u1n

)
and Ã2 has order N−1. The induction

assumption tells us that

P̃2Ã2 = L̃2Ũ2 ,

where all the matrices have order N−1. Now define the N×N matrices

P2 =

(
1 0

0 P̃2

)
, L2 =

(
1 0

0 L̃2

)
, U =

(
u11 uT

1

0 Ũ2

)
.

Then

P2A1 =

(
1 0

0 P̃2

) (
u11 uT

1

0 Ã2

)
=

(
u11 uT

1

0 P̃2Ã2

)

=

(
u11 uT

1

0 L̃2Ũ2

)
=

(
1 0

0 L̃2

)(
u11 uT

1

0 Ũ2

)
= L2U .

Combining this with A1 = L−1
1 P1A and P T

2 P2 = I we get

P2P1A = P2L1A1 = P2L1P
T
2 P2A1 = P2L1P

T
2 L2U .

Now we set P = P2P1, and as in the example it is seen that L =
P2L1P

T
2 L2 is a unit lower triangular matrix with
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l:1 =

(
1

P̃2m

)
,

and columns l:2, . . . , l:n equal to the same columns in L2.
Thus, we have shown that also the N×N matrix A satisfies PA = LU ,
and the theorem is proved.

The LU factorization is unique in the following sense:

Theorem 8.6.2. If the pivoting sequence is given (ie the permuta-
tion matrix P is given), then the factors L and U are unique.

Proof. The result is a direct consequence of the fact that LU fac-
torization is equivalent to simple Gaussian elimination applied to the
matrix PA.

Once the LU factorization has been found, it is an easy task to solve
the system Ax = b: It is equivalent to

PAx = LUx = Pb ,

and letting y = Ux, the system is solved in two steps:

1. solve Ly = Pb ,

2. solve Ux = y .
(8.6.2)

Both L and U are triangular, so the work is about 2n2 flops. For compar-
ison, this is the same as the work needed to compute the matrix-vector
product Az.

Example. We want to solve the system



0.6 1.52 3.5
2 4 1
1 2.8 1







x1

x2

x3


 =




8.3
−3.8
−2.3


 .

The LU factorization for the coefficient matrix was found in the previous
example, and combining this with (8.6.2) we get




1 0 0
0.5 1 0
0.3 0.4 1







y1

y2

y3


 =




0 1 0
0 0 1
1 0 0







8.3
−3.8
−2.3


 =




−3.8
−2.3

8.3


 ,

which is solved by forward substitution,

y =




−3.8
−0.4

9.6


 .
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Next, we use back substitution to solve the system



2 4 1
0 0.8 0.5
0 0 3







x1

x2

x3


 =




−3.8
−0.4

9.6


 , x =




1.5
−2.5

3.2


 .

Example. The Matlab function pgauss from page 200 can easily be modified
so that it returns the LU factorization of a matrix A. The permutations are

represented by the vector p. This is initialized to
(
1 2 . . . n

)T
, and the

elements are interchanged together with the rows in A.

function [L,U, p] = lufac(A)

% LU factorization of the matrix A, corresponding to Gaussian

% elimination with partial pivoting.

% p holds the final row ordering

n = size(A,1);

p = 1 : n; % initial row ordering

for k = 1 : n-1

[A, p] = pivot(A, p, k);

ii = k+1 : n;

A(ii,k) = A(ii,k)/A(k,k); % multipliers

A(ii,ii) = A(ii,ii) - A(ii,k)*A(k,ii); % modify A

end

U = triu(A); % Resulting upper triangle

L = eye(n) + tril(A,-1); % Multipliers in strictly lower triangle

The solution of the two triangular systems in (8.6.2) is implemented in the
functions luforw (given below) and backsub from page 192.

function b = luforw(L,p, b)

% Use information from LUFAC to transform right-hand side

n = size(L,1);

b = b(:); % ensure that b is a column vector

b = b(p); % final row ordering

for k = 1 : n-1

ii = k+1 : n;

b(ii) = b(ii) - b(k)*L(ii,k); % transform b

end

For the matrix of the examples on pages 202, 208 and 211 we get the following
results, that agree with the cited examples.

>> [L, U, p] = lufac([.6 1.52 3.5; 2 4 1; 1 2.8 1])

L = 1.0000 0 0

0.5000 1.0000 0

0.3000 0.4000 1.0000

U = 2.0000 4.0000 1.0000

0 0.8000 0.5000

0 0 3.0000
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p = 2 3 1

>> y = luforw(L,p, [8.3 -3.8 -2.3])

y = -3.8000

-0.4000

9.6000

>> x = backsub(U, y)

x = 1.5000

-2.5000

3.2000

Example. Matlab has a built-in function lu that computes the LU factoriza-
tion of a matrix.

>> [L,U,P] = lu([.6 1.52 3.5; 2 4 1; 1 2.8 1])

returns the same L and U as in the previous example, while the row inter-
changes are represented by the permutation matrix

P = 0 1 0

0 0 1

1 0 0

Next, the solution via the two triangular systems in (8.6.2) can be imple-
mented as follows,

>> b = [8.3; -3.8; -2.3];

>> y = L\(P*b); x = U\y

x = 1.5000

-2.5000

3.2000

In the command B\z Matlab recognizes if B is triangular, in which case
the solution is found via forward or back substitution, as appropriate. In ex-
amples on pages 219 and 257 we discuss what happens if B is not triangular.

In some applications one has to solve a series of systems with the same
coefficient matrix but different right hand sides,

Ax[k] = b[k], k = 1, 2, . . . , K . (8.6.3)

Instead of starting from scratch with each of the systems (which would
cost about K · 2

3 n3 flops) one only has to factorize the matrix once, and
then use (8.6.2) for each of the right hand sides. This reduces the work
to about 2

3 n3 + 2Kn2 flops.
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8.7. Symmetric, Positive Definite Matrices

We already claimed that in the case of a symmetric, positive definite
matrix (an spd matrix) one does not get “unnecessary” loss of accuracy by
using Gaussian elimination without pivoting. In this section we first show
that a symmetric factorization of the matrix can be computed (without
pivoting), ie all the “natural” pivots akk are nonzero. Next, we show that
(in a certain sense) the matrix elements do not grow during the process.
Because symmetry is preserved, the work involved in the factorization is
halved as compared to a general matrix.

We start with a lemma about spd matrices:

Lemma 8.7.1. If A is an spd matrix, then all its diagonal elements
are positive and the largest element is on the diagonal:

akk > 0, k = 1, . . . , n and max
i,j

|aij | = max
k

{akk} .

Proof. An spd matrix satisfies

xT A x > 0 for all x 6= 0 . (8.7.1)

Let ek denote the vector given as the kth column vector in the unit
matrix I,

(ek)i =

{
0 , i 6= k .
1 , i = k .

If we use this vector for x in the condition (8.7.1), we get

0 < eT
k A ek = eT

k a:k = akk ,

and we have proved the first part of the lemma. Next,

0 < (ei+ej)
T A (ei+ej) = aii + aij + aji + ajj = aii + ajj + 2aij .

Here we used the symmetry: aij = aji. Similarly we get

0 < (ei−ej)
T A (ei−ej) = aii + ajj − 2aij .

Combining the last two inequalities we see that

|aij | < 1
2(aii + ajj) ≤ max{aii, ajj} .

Next, we prove the main result of this section:
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Theorem 8.7.2. LDLT factorization. Every spd matrix A can
be factored symmetrically without pivoting: A = LDLT , where L
is a unit lower triangular matrix and D is a diagonal matrix with
positive diagonal elements.

Proof. By induction. The theorem is trivially true for n = 1. Assume
that it is true for n = N−1, and partition the N×N matrix A,

A =

(
a11 aT

1

a1 A2

)
, a1 =




a21
...

an1


 .

Since A is spd , Lemma 8.7.1 guarantees that a11 > 0, so it can be used
as the first pivot. The corresponding Gauss transformation is

L1 =

(
1 0

m1 I

)
, m1 =

1

a11
a1 ,

and the transformed matrix is

A1 = L−1
1 A =

(
a11 aT

1

0 Ã2

)
, (8.7.2)

with

Ã2 = A2 − m1a
T
1 = A2 −

1

a11
a1a

T
1 . (8.7.3)

We can rewrite A1,

A1 =

(
a11 aT

1

0 Ã2

)
=

(
a11 0

0 Ã2

)(
1 mT

1

0 I

)
,

and combining this with (8.7.2) we get

A = L1

(
a11 0

0 Ã2

)
LT

1 . (8.7.4)

Obviously, the (n−1)×(n−1) matrix Ã2 is symmetric. Further, let x
be a vector such that

LT
1 x =

(
0
y

)

for some nonzero vector y ∈ R
n−1. Such an x exists and is nonzero

because the unit upper triangular matrix LT
1 is nonsingular. Using

this x in the condition (8.7.1), we see that
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0 < xT A x = yT Ã2 y .

This shows that Ã2 is spd, and according to the assumption it has a
factorization Ã2 = L̃2D̃2L̃

T
2 , where L̃2 is unit lower triangular and D̃2

is diagonal with positive diagonal elements. When we insert this in
(8.7.4), and combine with the expression for the Gauss transformation
L1 we get

A = L1

(
1 0

0 L̃2

) (
a11 0

0 D̃2

)(
1 0

0 L̃T
2

)
LT

1

=

(
1 0

m1 L̃2

)(
a11 0

0 D̃2

) (
1 mT

1

0 L̃T
2

)
.

This is the LDLT factorization.

In Section 8.4 we saw that loss of accuracy may occur in Gaussian
elimination because some of the matrix elements can become very large
during the elimination process. The next theorem shows that such growth
cannot happen in Gaussian elimination without pivoting of an spd matrix.

Theorem 8.7.3. Let A be an spd matrix. All the matrix elements
generated during the LDLT factorization are bounded in magnitude
by the largest element in A.

Proof. We only need to show that the largest element in the trans-
formed submatrix Ã2, given by (8.7.3), is bounded by the largest
element in A. To do so, we use Lemma 8.7.1 and the proof of Theo-
rem 8.7.2: We showed that Ã2 is spd. Therefore6)

max
ij

|ãij | = max
i

{ãii} ,

and from (8.7.3) and the definition of a1 we get

ãii = aii −
1

a11
a2

i,1 ≤ aii ,

since a11 > 0. Further,

aii ≤ max
1≤k≤n

{ãkk} = max
ij

|aij | ,

and the proof is finished.

6) In this proof the indices in Ã2 refer to the indexing in A, ie 2 ≤ i, j ≤ n for an
element in Ã2.
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Example. The spd matrix

A =




4 6 2
6 18 −1.5
2 −1.5 4.25


 .

has the LU factorization

A = LU =




1 0 0
1.5 1 0
0.5 −0.5 1







4 6 2
0 9 −4.5
0 0 1


 ,

and the LDLT factorization

A = LDLT , D =




4 0 0
0 9 0
0 0 1


 .

The symmetry of A and of the LDLT factorization implies that we
only need to store and modify elements on the main diagonal and in either
the strictly lower or the strictly upper triangle of A. Therefore we have
the following rule of thumb:

The work involved in computing the LDLT factorization of an n×n
spd matrix is approximately 1

3 n3 flops and we only need to store
approximately 1

2 n2 elements.

The diagonal elements in D are positive. Therefore the matrix

D1/2 =




√
d11

. . . √
dnn




also has real elements. It obviously satisfies D1/2D1/2 = D, and we get

A = L D LT = (L D1/2)(D1/2LT ) = CT C .

The matrix C = D1/2LT is an upper triangular matrix. This version of
the LDLT factorization is the called the Cholesky factorization of A (and
it is normally computed without the detour via the LDLT factorization).
If we know the Cholesky factorization, then the system Ax = CT C x = b
is solved in two steps,

1. solve CT y = b ,

2. solve Cx = y .
(8.7.5)
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Also the computation of the Cholesky factorization needs roughly 1
3 n3

flops, and the work involved in the solution of each of the triangular
systems in (8.7.5) is n2 flops.

Example. For the matrix in the previous example the Cholesky factor is

C =




2
3

1







1 1.5 0.5
0 1 −0.5
0 0 1


 =




2 3 1
0 3 −1.5
0 0 1


 .

Example. Matlab has a built-in function chol that computes the Cholesky
factorization.

>> A = [4 6 2; 6 18 -1.5; 2 -1.5 4.25];

>> C = chol(A)

C = 2.0000 3.0000 1.0000

0 3.0000 -1.5000

0 0 1.0000

The matrix

A =




4 6 2
6 18 −1.5
2 −1.5 2


 .

is not positive definite, and

>> A(3,3) = 2; C = chol(A)

returns an error message

??? Error using ==> chol

Matrix must be positive definite.

The call [C,p] = chol(A) returns p= 0 if A is spd , otherwise p> 0. In a
Matlab program this can eg be used as follows,

[C, p] = chol(A);

if p == 0

x = C \ (C’ \ b); % solve Ax = b

else

... % commands for A not positive definite

end

In many applications involving symmetric matrices the origin of the
problem guarantees that the matrix is positive definite (and if the matrix
turns out not to be positive definite, it might indicate an error in the
implementation). Eg the differential operator L in the boundary value
problem

Ly = −y′′ + q(x)y = f(x), y(a) = α, y(b) = β ,
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with q(x)≥ 0 can be shown to be positive definite, and a suitable dis-
cretization of the problem leads to a linear system of equations with an
spd matrix, see Chapter 10. The normal equations in the least squares
method, Section 8.14, have an spd coefficient matrix, and, finally, a com-
mon problem in Structural Mechanics is to solve Ax = b, where A is a
stiffness matrix , guaranteed by basic physical principles to be spd .

Example. The command A\b in Matlab first invokes a check of whether the
matrix A is symmetric, in which case a Cholesky factorization A = CT C
is attempted. If this succeeds – showing that A is positive definite – then
(8.7.5) is used to find the solution.

If A is not symmetric, but square, or if the Cholesky factorization breaks
down, then the LU factorization is computed, and (8.6.2) is used to find
the solution. In an example on page 257 we discuss what happens if A is
rectangular, ie the number of rows in A is different from the number of
columns.

8.8. Band Matrices

In many applications, eg the solution of boundary value problems for dif-
ferential equations, you get a matrix, where most of the elements are zero.
The matrix is said to be banded if the nonzero elements are concentrated
close to the main diagonal. More precisely, A is said to a band matrix if
there exist natural numbers p and q so that

aij = 0 if j < i−q or j > i+p .

Example. A 6×6 band matrix A with p = 1, q = 2 has the form

A =




a11 a12 0 0 0 0
a21 a22 a23 0 0 0
a31 a32 a33 a34 0 0
0 a42 a43 a44 a45 0
0 0 a53 a54 a55 a56

0 0 0 a64 a65 a66




.

The bandwidth is defined as w = p+q+1. From the example we see
that this is the maximum number of nonzeros in any row of A.

With a band matrix you only have to save the elements within the
band, and when you solve a linear system of equations with such a matrix,
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the structure can be exploited so that you can get a large reduction from
the O(n3) flops needed with a full matrix.

First consider a tridiagonal matrix , p = q = 1. The matrix can suitably
be stored in three vectors, a, b and c,

A =




a1 b1

c2 a2 b2

c3 a3 b3

. . .
. . .

. . .

cn−1 an−1 bn−1

cn an




.

In the solution of a tridiagonal system Ax = f it is straightforward to
exploit the structure. Assume first that we do not need to pivot (eg
because A is diagonally dominant). Then we only have to zero one element
in each column during the elimination, and (8.3.1) simplifies to

mk+1,k = ck+1/a′k
a′k+1 = ak+1 − mk+1,kbk

f ′
k+1 = fk+1 − mk+1,kfk ,

with a′1 = a1. This is repeated for k = 1, 2, . . . , n−1.

Example. As in the full matrix case the modified elements in the upper triangle
of the matrix can overwrite the original elements, and the multipliers can
be stored in the positions that they are used to zero. Thus, in Matlab the
LU factorization without pivoting of the tridiagonal matrix A above can be
expressed as

for k = 2 : n

c(k) = c(k)/a(k-1);

a(k) = a(k) - c(k)*b(k-1);

end

The solution of Ax = f can be done in two steps: find y by forward substi-
tution, next use back substitution to get x:

y(1) = f(1);

for k = 2 : n

y(k) = f(k) - c(k)*y(k-1);

end

x(n) = y(n)/a(n);

for i = n-1 : -1 : 1

x(i) = ( y(i) - b(i)*x(i+1) )/a(i);

end
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The work involved is 3n flops for the factorization and 5n flops for
the forward and back substitution, so the total is 8n flops.

Partial pivoting will to a certain extent destroy the band structure.
As an example, consider a tridiagonal matrix of order 5,




× ×

× × ×

× × ×

× × ×

× ×




,

with × indicating a nonzero element. Assume that we have to interchange
rows 1 and 2: 



× × ×

× ×

× × ×

× × ×

× ×




.

As before, there is only one subdiagonal element to zero, and we get



× × ×

0 × ∗
× × ×

× × ×

× ×




.

The ∗ marks a fill-in, a new nonzero element, generated when a multiple
of the first row was subtracted from the second row. In the worst case
rows k and k+1 have to be swapped in every step, in which case the upper
triangular matrix U has the structure




× × ×

× × ×

× × ×

× ×

×




.

There will be no fill-ins in the lower triangular factor L. In each column
there is only one subdiagonal nonzero, but the band structure may be
lost. We shall return to this later.

Also in the general case of a band matrix there will be no fill-ins
if Gaussian elimination without pivoting is used. This is illustrated in
Figure 8.1.

If A has q nonzeros below the main diagonal and p nonzeros above it,
then the matrices L and U have bandwidths wL = q+1 and wU = p+1,
respectively.
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=

Figure 8.1. LU factorization of a band matrix. No pivoting.

If partial pivoting is used in connection with the Gaussian elimination,
then the bandwidth of U can increase to p+q+1. There is no fill-in in L,
but the band structure may be lost.

If the band matrix is spd (symmetric, positive definite), then we can
use Cholesky factorization, and the Cholesky factor C will be a band
matrix.

As we have seen, in the LU factorization of a band matrix both L
and U are banded (but the columns in L may be permuted). In contrast,
the inverse matrix A−1 is normally a full matrix. Therefore, the explicit
inversion of a band matrix should be avoided; also see the next section.

Example. The matrix

A =




4 2
2 5 2

2 5 2
2 5 2

2 5




is spd and has the Cholesky factor

C =




2 1
2 1

2 1
2 1

2




.

The inverse of A is

A−1 = 2−10




341 −170 84 −40 16
−170 340 −168 80 −32

84 −168 336 −160 64
−40 80 −160 320 −128

16 −32 64 −128 256




.
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A band matrix is a special example of a sparse matrix, ie a matrix
where most of the elements are zero, but maybe not concentrated close to
the diagonal. Matlab is designed for efficient handling of such matrices.

Example. Consider the matrix A and vector b,

A =




1 0.5 0
0 1 0
0 0 1


 , b =




1
2
3


 .

The following Matlab commands set up the matrix and solve the system
Ax= b.

>> A = speye(3); % sparse representation of unit matrix

>> A(1,2) = 0.5

A = (1,1) 1.0000

(1,2) 0.5000

(2,2) 1.0000

(3,3) 1.0000

>> x = A\[1; 2; 3] % Solve Ax = b

x = 0

2

3

Only the nonzeros are stored, and each of these is represented by a triplet:
row number, column number and value of the element.

If A is sparse, then [L, U] = lu(A) returns sparse matrices L and U. The
factorization is performed without wasting time on zeroing elements that are
already zero.

8.9. Computing the Inverse of a Matrix

For a nonsingular matrix A the solution to the system Ax = b can be
expressed as x = A−1b, where A−1 is the inverse matrix. In practice
the inverse matrix is normally not needed, and if you meet an expression
like A−1B (with an n×p matrix B), you should realize that this is just
shorthand notation for: find the solution to the matrix equation

A X = B .

This is equivalent to solving the systems

Ax:j = b:j , j = 1, . . . , p ,
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where x:j and b:j are column vectors in X and B, respectively. On page
213 we saw that if the LU factorization of A is known, then it can be used
to compute the solution at the cost of 2pn2 flops. This is the same as is
needed for the matrix multiplication A−1B, so the difference in work is
the difference between the 2

3n3 flops needed to find the LU factorization
and – as we shall see – 2n3 flops needed to compute A−1. Thus, the
initial work is tripled. It can also be shown that the effect of rounding
errors is considerably larger with the explicit use of the inverse matrix.
Summarizing:

Do not compute the inverse matrix unless it is expressively needed.

There are special applications, eg in statistics, where the elements of
the inverse matrix give important information, and in such cases it is
necessary to compute A−1 explicitly. This can be done by solving the
matrix equation

A X = I ,

where I is the unit matrix with column vectors e1, . . . , en defined by

(ek)i =

{
0 , i 6= k .
1 , i = k .

Assume that the LU factorization of A has been computed, and that there
is no pivoting. Then x:k, the kth column vector in A−1 is found in the
two steps

1. solve Ly:k = e:k ,

2. solve Ux:k = y:k .

Generally, the solution of each of these two triangular systems needs 2n2

flops. However, we can save operations because of the special form of the
right hand side:




l11
...

. . .

lk1 · · · lkk
...

...
. . .

ln1 · · · lnk · · · lnn







y1k
...

ykk
...

ynk




=




0
...
1
...
0




.

The first k−1 elements in ek are zero, and therefore also the corresponding
elements in y:k are zero. Essentially, the nonzero elements in y:k are found
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by solving the last n−k+1 equations in the n−k+1 last unknowns, and
this needs (n−k+1)2 flops. So the work involved in computing all the
columns y:k is

n∑

k=1

(n−k+1)2 =
n∑

ν=1

ν2 ≈ 1

3
n3 ,

cf Lemma 8.3.1. There is no similar saving in the work needed to solve
the systems Ux:k = y:k. Each of these needs n2 flops, and including the
2
3 n3 flops for computing the LU factorization we get the following rule of
thumb.

The computation of the inverse of an n × n matrix needs about 2n3

flops.

8.10. Vector and Matrix Norms

In the next section we investigate how the solution to a linear system of
equations is affected by perturbations of the elements in the matrix and
the right hand side. First, however we need to be able to measure the
“size” of a vector and a matrix.

Definition 8.10.1. Vector norm. Let x, y ∈ R
n and α∈R. A

vector norm ‖ · ‖ is a mapping R
n 7→ R that satisfies the conditions

‖x‖ ≥ 0 for all x ,

‖x‖ = 0 ⇔ x = 0 ,

‖αx‖ = |α| ‖x‖ ,

‖x + y‖ ≤ ‖x‖ + ‖y‖ . (triangle inequality)

These conditions are satisfied by the ℓp-norms, defined as

‖x‖p =
(
|x1|p + · · · + |xn|p

)1/p
, p ≥ 1 , (8.10.1)

and among these the following three norms are most widely used,
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‖x‖1 = |x1| + · · · + |xn| ,

‖x‖2 =
(

x2
1 + · · · + x2

n

)1/2
=

√
xT x ,

‖x‖∞ = max
1≤i≤n

|xi| .

The 2-norm ‖ · ‖2 is called the Euclidean norm; it is a generalization to
R

n of the usual vector length in R
3. ‖ · ‖∞ is called the maximum norm.

Example. Let

x =




2
−2
1


 , y =




0
−3
0


 , z =




0
−2.5

2


 .

Which of these three vectors in R
3 is the “largest”? The answer depends

on the choice of norm:
p ‖x‖p ‖y‖p ‖z‖p

1 5 3 4.5
2 3 3 3.2016
∞ 2 3 2.5

The three norms, however, “follow each other” in the sense, that if a vec-
tor is “small” (respectively “large”) in one norm, then it is also “small”
(respectively “large”) in the other norms, see Exercise E1.

Example. If x contains the vector x, then the Matlab command norm(x,p)

returns ‖x‖p as defined in (8.10.1). The command norm(x) (with only one
input argument) returns ‖x‖2.

By means of norms we introduce notions like distance and continuity
in R

n. Let x be an approximation to the vector x. With a given norm
‖ · ‖ we define the

absolute error : ‖δx‖ = ‖x − x‖ ,

relative error :
‖δx‖
‖x‖ =

‖x − x‖
‖x‖ .

Note that δ is not a scalar, but δx denotes a vector.

Example. Given a vector b and the approximation b,

b =

(
7
12

0.45

)
, b =

(
0.583
0.45

)
.

Then
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δb =

(
−0.000333 . . .

0

)
=

(
− 1

3 ·10−3

0

)
,

and

‖δb‖∞ =
1

3
· 10−3 ,

‖δb‖∞
‖b‖∞

=
1
3 · 10−3

7
12

=
4

7
· 10−3 .

With any vector norm we associate a matrix norm:

Definition 8.10.2. Induced matrix norm. Let ‖ · ‖ be a vector
norm. The induced matrix norm is

‖A‖ = sup
x 6=0

‖Ax‖
‖x‖ .

In some applications it is convenient to use another expression for the
matrix norm:

Lemma 8.10.3. The induced matrix norm can be found as

‖A‖ = max
‖x‖=1

‖Ax‖ .

Proof. Follows from A(αx) = αAx, the vector norm conditions, and
Definition 8.10.2.

Example. We shall illustrate the induced matrix norm of the matrix

A =

(
7 −16
3 11

)
.

For x∈R
2 we can identify x =

(
x1 x2

)T
with the point (x1, x2) in a

Cartesian coordinate system. To the left in Figure 8.2 we show the unit
circle with respect to the 2-norm, ie the set of points for which ‖x‖2 = 1.
This is just the circle with radius 1, centered at (0, 0). To the right we show
the image of the unit circle,

y = {Ax | ‖x‖2 = 1} .

This is an ellipse. The arrows indicate a unit vector v1 and its image u1 =
Av1, such that

‖u1‖2 = max{‖Ax‖2 | ‖x‖2 = 1} .

(Evidently, the image of −v1 is −u1 and has the same norm). The 2-norm
of A is the Euclidean length of u1.

Figure 8.3 gives the similar picture for the 1-norm, where the unit circle is
defined by |x1| + |x2| = 1.
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−1 0 1
−1

0

1

v
1

||x||
2
 = 1

−20 0 20
−20

0

20

u
1

Ax

Figure 8.2. Induced matrix 2-norm.

−1 0 1
−1

0

1

||x||
1
 = 1

−20 0 20
−20

0

20
Ax

Figure 8.3. Induced matrix 1-norm.

With A containing the above matrix, we can find the 1-, 2- and maximum
norm of A as follows:

>> nrms = [norm(A,1) norm(A,2) norm(A,inf)]

nrms = 27.0000 19.8870 23.0000

Thus, the length of u1 in Figure 8.2 is 19.8870 .

From the definition of the induced matrix norm it follows immediately
that the unit matrix has norm one,

‖I‖ = 1 . (8.10.2)

It is also easy to show that the induced matrix norm satisfies the following
relations, similar to the vector norm conditions

‖A‖ ≥ 0 for all A ,

‖A‖ = 0 ⇔ A = 0 ,

‖αA‖ = |α| ‖A‖ , α ∈ R ,

‖A + B‖ ≤ ‖A‖ + ‖B‖ .

(8.10.3)
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Two more inequalities are provided by the following lemma.

Lemma 8.10.4. Let ‖ · ‖ denote a vector norm and its induced
matrix norm. Then

‖Ax‖ ≤ ‖A‖ ‖x‖ ,

‖AB‖ ≤ ‖A‖ ‖B‖ .

Proof. From Definition 8.10.2 we see that

‖Ax‖
‖x‖ ≤ ‖A‖

for all x 6=0, and since x 6= 0 implies that ‖x‖> 0, we immediately
get the first inequality. The second is obtained by applying the first
inequality twice on ‖ABx‖.

It can be shown that

‖A‖2 =

(
max

1≤j≤n
λj(A

T A)

)1/2

,

ie the square root of the largest eigenvalue of the matrix7) AT A. Thus,
the computation of ‖A‖2 for a given matrix A involves a considerable
amount of work. It is much easier to compute ‖A‖∞ :

Lemma 8.10.5.
‖A‖∞ = max

1≤i≤n

{ n∑

j=1

|aij |
}

.

Proof. We use the formulation from Lemma 8.10.3, ie we consider the
product Ax for

‖x‖∞ = max
1≤i≤n

|xi| = 1 .

Then the ith component of the vector Ax can be estimated as follows,

|(Ax)i| =
∣∣

n∑

j=1

aijxj

∣∣ ≤
n∑

j=1

|aijxj | =
n∑

j=1

|aij |·|xj | ≤
n∑

j=1

|aij | .

This shows that the right hand side in the lemma, r = max
1≤i≤n

{ n∑

j=1

|aij |
}

,

7) The matrix AT A is symmetric and positive semidefinite. Such a matrix has real,
nonnegative eigenvalues.
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is an upper bound for ‖Ax‖∞. We have to show that there exists a
vector x̂ with ‖x̂‖∞ = 1 so that ‖Ax̂‖∞ = r. Let ν be a row number
such that

n∑

j=1

|aνj | = max
1≤i≤n

{ n∑

j=1

|aij |
}

,

and let x̂j = sign(aνj), j = 1, . . . , n . This vector is a unit vector in
the maximum norm, and

|(Ax̂)ν | =
∣∣

n∑

j=1

aνj x̂j

∣∣ =
n∑

j=1

|aνj | .

It can also be shown that

‖A‖1 = max
1≤j≤n

{ n∑

i=1

|aij |
}

.

Example. The matrix A =

(
7 −16
3 11

)
from the previous example has

‖A‖∞ = max{7+16, 3+11} = 23 ,

‖A‖1 = max{7+3, 16+11} = 27 .

Example. The so-called Frobenius norm of a matrix is defined as

‖A‖F =
( n∑

i,j=1

a2
ij

)1/2
.

This is equivalent to the Euclidean norm of the vector obtained by stacking
the column vectors of A on top of each other8) . It is a norm – it satisfies
(8.10.3) – but it is not an induced matrix norm, and ‖ · ‖F satisfies neither
(8.10.2) nor the inequalities of Lemma 8.10.4.

Finally, we shall need the following lemma in the next section.

Lemma 8.10.6. If ‖F‖< 1, then the matrix I+F is nonsingular.

Proof. Suppose that I+F is singular. Then (I+F )x = 0 for some

8) A matrix in R
m×n can also be considered as an element in R

mn, since the two
linear spaces are isomorphic. In contexts, where one wants to emphasize this
isomorphism, the Frobenius norm is often referred to as the Euclidean matrix
norm.
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nonzero x. But this implies that ‖x‖ = ‖−Fx‖ ≤ ‖F‖ ‖x‖, showing
that ‖F‖ ≥ 1, which is a contradiction.

8.11. Sensitivity Analysis

In this section we investigate how the solution to a linear system of equa-
tions is affected by perturbations of the elements in the matrix and the
right hand side. Such perturbations can, eg, be measurement errors or
rounding errors when the matrix and right hand side are stored in the
computer.

We consider a linear system of equations

Ax = b ,

with a nonsingular matrix A. We say that this is the exact system with
the exact solution x. If the right hand side is perturbed, so is the solution,

A(x + δx) = b + δb .

We want to estimate the relative error ‖δx‖/‖x‖. To do so we subtract
Ax = b from both sides of the perturbed equation and get Aδx = δb, or

δx = A−1δb .

We take the norm and use Lemma 8.10.4:

‖δx‖ = ‖A−1δb‖ ≤ ‖A−1‖ · ‖δb‖ .

This is an estimate of the absolute error. Similarly

‖b‖ = ‖Ax‖ ≤ ‖A‖ · ‖x‖ ,

which can be rewritten to
1

‖x‖ ≤ ‖A‖ 1

‖b‖ ,

and we see that

‖δx‖
‖x‖ ≤ ‖A−1‖ · ‖δb‖

‖x‖ ≤ ‖A‖ · ‖A−1‖ · ‖δb‖‖b‖ . (8.11.1)

This shows that the relative perturbation of the right hand side is multi-
plied by a factor ‖A‖ · ‖A−1‖.
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Definition 8.11.1. Condition number. For a nonsingular matrix
A the condition number is

κ(A) = ‖A‖ · ‖A−1‖ .

The condition number depends on the underlying norm and subscripts
are used accordingly, eg κ∞(A) = ‖A‖∞ · ‖A−1‖∞.

Example. Let b =

(
7/12
0.45

)
, b + δb = b =

(
0.583
0.45

)
.

We showed in the second example on page 226 that ‖δb‖∞/‖b‖∞ = 4
7 · 10−3.

The matrix and its inverse are

A =

(
1/3 1/4
1/4 1/5

)
, A−1 =

(
48 −60
−60 80

)
.

The maximum-norm condition number for A is

κ∞(A) = ‖A‖∞ · ‖A−1‖∞ = 7
12 · 140 ≃ 81.7 ,

so (8.11.1) gives the estimate

‖δx‖
‖x‖ ≤ 81.7 · 4

7 · 10−3 ≃ 0.047 .

The exact solution to the system Ax = b is x =
(
1 1

)T
, and Ax = b has

the solution x =
(
0.984 1.020

)T
. Thus, the true relative error is

‖x − x‖
‖x‖ = 0.02 .

The estimate is on the safe side by a factor about 2.

From the derivation and the example we see that the condition number
is a measure of how sensitive the solution is to perturbations in the right
hand side. The following theorem shows that the condition number also
reflects the sensitivity to changes in the matrix.

Theorem 8.11.2. Let Ax = b and (A+δA)x = b+δb . If A is
nonsingular and

‖A−1‖ · ‖δA‖ = κ(A)
‖δA‖
‖A‖ = τ < 1 ,

then the matrix A+δA is also nonsingular, and

‖x − x‖
‖x‖ ≤ κ(A)

1 − τ

(‖δb‖
‖b‖ +

‖δA‖
‖A‖

)
.
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Proof. We rewrite the perturbed matrix:

A + δA = A(I + F ) , F = A−1δA ,

and by means of Lemma 8.10.4 and the assumption about τ we get

‖F‖ = ‖A−1δA‖ ≤ ‖A−1‖ · ‖δA‖ = τ < 1 .

Therefore, according to Lemma 8.10.6 the matrix I+F is nonsingular,
and (A+δA)−1 = (I+F )−1A−1 exists; showing that A + δA is non-
singular. Next, let x = x+ δx. From the definition of the perturbed
problem we find

A(x + δx) = b+δb − δA(x + δx) ,

and after subtracting Ax = b and multiplying by A−1 on both sides
we get

δx = A−1δb − A−1δA(x + δx) .

Now we take norms and use the norm inequalities and the first ex-
pression for τ :

‖δx‖ ≤ ‖A−1‖ ‖δb‖ + ‖A−1‖ ‖δA‖ ‖x + δx‖
≤ ‖A−1‖ ‖δb‖ + τ(‖x‖ + ‖δx‖) ,

so that (1−τ)‖δx‖ ≤ ‖A−1‖ ‖δb‖ + τ‖x‖ , or

‖δx‖
‖x‖ ≤ 1

1 − τ

(‖A−1‖ ‖δb‖
‖x‖ + τ

)
.

The first term in the parenthesis is estimated as in (8.11.1), and the
theorem follows when we insert the second expression for τ .

From the definition of the induced matrix norm, the identity I = A A−1,
and the norm inequalities it follows that

1 = ‖I‖ = ‖A A−1‖ ≤ ‖A‖ · ‖A−1‖ ,

showing that κ(A) ≥ 1. A matrix with a small condition number is said
to be well-conditioned. An orthogonal matrix Q (ie Q satisfies QT Q = I;
see Section 8.15) has κ2(Q) = 1, so it is as well-conditioned as is possible.

A matrix with a large condition number is said to be ill-conditioned.
The condition number is used to get an estimate of what accuracy can be
expected when you solve a linear system of equations Ax = b. If, eg there
are errors in the matrix and right hand side of the order of magnitude
10−8 and κ(A) = 103, then you can expect the solution to have five
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significant decimal digits, but if κ(A) = 106, then you can only expect to
get two significant digits.

Example. The matrix A =

(
1 2
2 4.001

)
has the condition number κ∞(A) ≃

3.6 · 104, so the matrix is rather ill-conditioned. This is equivalent with the
column vectors being almost linearly dependent. In this example it is easy
to see that the two column vectors are almost parallel.

Example. In the proof of Theorem 8.11.2 we used the norm inequality ‖Aw‖ ≤
‖A‖ ‖w‖ several times. From Figure 8.2 on page 228, we see that if w ≃ αv1

(ie the direction of w is close to the direction of v1), then this is a good
estimate, but it may be a gross overestimate if w is (almost) orthogonal to
v1. ‖A−1‖ ‖z‖ can be much larger than ‖A−1z‖.
The conclusion is, that with special combinations of the matrix A, the right
hand side b and perturbations δA and δb the error can be as large as predicted
by the theorem, but the estimate may be very pessimistic, especially for ill-
conditioned problems.

It sometimes happens that we are given a vector x̃ and ask: how close
is x̃ to the solution of Ax = b ? The following corollary answers this
question.

Corollary 8.11.3. Let the system Ax = b and a vector x̃ be given.
Then

‖x̃ − x‖
‖x‖ ≤ κ(A)

‖r‖
‖b‖ , r = b − Ax̃ .

r is called the residual .

Proof. Obviously, x̃ is the solution to the perturbed system Ax̃= b−r,
and the corollary follows from Theorem 8.11.2 with δA = 0, δb = −r.

Example. Consider the system Ax = b,
(

57.5 43.75
77 47

)(
x1

x2

)
=

(
13.75
30

)
,

and the two vectors

x(1) =

(
1.02

−1.03

)
, x(2) =

(
1.0006

−1.0004

)
.
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Which of them is closest to x ? The residuals are

r(1) = b − Ax(1) =

(
0.1625

−0.1300

)
, r(2) = b − Ax(2) =

(
−0.0170
−0.0274

)
.

Both residuals are small compared to the right hand side b, and since the
elements in r(2) are much smaller than the elements in r(1), we expect that
x(2) is closer than x(1) to x, but how close? The condition number of A is
κ∞(A) ≃ 25.0, and Corollary 8.11.3 gives the error estimates

‖x(1) − x‖∞
‖x‖∞

≤ 0.14 ,
‖x(2) − x‖∞

‖x‖∞
≤ 0.023 .

The exact solution is x =
(
1 −1

)T
and the true relative errors are

‖x(1) − x‖∞
‖x‖∞

= 0.03 ,
‖x(2) − x‖∞

‖x‖∞
= 0.0006 .

Thus, the conclusion about x(2) being the better approximation to x is right,
but the error estimate is very pessimistic.

Next, consider the problem Bx = c with

B =

(
95.75 64.375
120.2 79.7

)
, c =

(
31.375
40.5

)
.

This system has the same solution as Ax = b, but a larger condition number,
κ∞(B) ≃ 405. With the same approximate solutions we get the residuals

r(1) = c − Bx(1) =

(
0.0162

−0.0130

)
, r(2) = c − Bx(2) =

(
−0.0317
−0.0402

)
,

and the error estimates

‖x(1) − x‖∞
‖x‖∞

≤ 0.17 ,
‖x(2) − x‖∞

‖x‖∞
≤ 0.41 .

The residuals are still small, compared to the right hand side, but now we
cannot see that x(2) is the better of the two approximations.

The matrix A is singular if and only if its determinant det(A) is zero.
Therefore, it is tempting to believe that the value of the determinant
can be used to measure whether the matrix is well-conditioned or ill-
conditioned. A large (or small) value of det(A) could be expected to
reveal that A is well-conditioned (or ill-conditioned). As the following
example demonstrates, however, the determinant is totally unsuited for
investigation of the conditioning of a matrix.
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Example. Let An and Dn be the n×n matrices

An =




1 −1 −1 · · · −1
1 −1 · · · −1

1 · · · −1
. . .

...
1




, Dn =




10−2

10−2

10−2

. . .

10−2




.

As n grows, the matrices An become increasingly ill-conditioned: κ∞(An) =
n · 2n−1, but det(An) = 1.

The matrices Dn are well-conditioned: κ∞(Dn) = 1, but det(Dn) = 10−2n.

In practice the condition number is not computed in connection with
the solution of a linear system of equations Ax = b, since this would need
the computation of the inverse matrix A−1 at a cost of 2n3 flops. In
Section 8.13 we shall see that the LU factorization of A can be used to
get a good estimate of κ(A) at a cost of O(n2) flops.

8.12. Rounding Errors in Gaussian Elimination

We know from the discussion in Chapter 2 that any real number (which is
inside the range of a given floating point number system) is represented in
the computer with a relative error that is bounded by the unit roundoff µ.
This can be expressed as

fl[x] = x(1 + ǫ) |ǫ| ≤ µ .

Therefore, when we represent a matrix A and a vector b, errors arise,

fl[aij ] = aij(1 + ǫ) = aij + ǫaij |ǫ| ≤ µ ,

and similar for b. It follows that

fl[A] = A + δA , ‖δA‖∞ ≤ ǫ ‖A‖∞ ,

f l[b] = b + δb , ‖δb‖∞ ≤ ǫ ‖b‖∞ .

Thus, the exact system Ax = b is represented by the perturbed system

(A + δA)x̂ = b + δb .

Assume for the moment that there are no rounding errors during the
solution of the perturbed system. Then x̂ is the computed solution, and
from Theorem 8.11.2 we see that
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‖x̂ − x‖∞
‖x‖∞

≤ κ∞(A)

1 − τ
· 2µ , τ = µκ∞(A) , (8.12.1)

provided that τ < 1.
This is an example of backward error analysis, cf Chapter 2.

Backward error analysis. The computed solution x̂ is the exact
solution to a perturbed system

(A + δA)x̂ = b + δb .

The error in x̂ can be estimated by means of sensitivity analysis.

Gaussian elimination involves about 2
3n3 floating point operations,

each of which may be affected by a rounding error, and the result takes
part in later operations. Therefore, (8.12.1) cannot be expected to hold,
but we have the following theorem. The proof of the theorem is omitted
here, it is rather technical, except for the final estimate, which follows
from Theorem 8.11.2 when we insert the estimate for ‖δA‖∞.

Theorem 8.12.1. Assume that computation is made in a floating
point number system with unit roundoff µ and let L̂ and Û be the
triangular factors obtained by applying Gaussian elimination on the
permuted matrix PA. Further, let x̂ be the solution obtained by
forward and back substitution in the systems

L̂ ŷ = P b , Û x̂ = ŷ .

Then x̂ is the exact solution to a system (A + δA)x̂ = b , where

‖δA‖∞ ≤ µ(n3 + 3n2)gn‖A‖∞ , gn =

max
i,j,k

|â(k)
ij |

max
i,j

|aij |
.

(â
(k+1)
ij are the elements formed in the kth step of the Gaussian

elimination). If τ = µκ∞(A)(n3 + 3n2)gn < 1 , then

‖x̂ − x‖∞
‖x‖∞

≤ τ

1 − τ
.

The elements â
(k)
ij are given by (8.3.1):

â
(k+1)
ij = fl[â

(k)
ij − m̂ikâ

(k)
kj ]
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with â
(1)
ij = aij . The growth factor gn depends on the actual growth of

the matrix elements rather than on the size of the multipliers m̂ik. With
partial pivoting we have |m̂ik| ≤ 1, and thereby an upper bound on the
growth in each step is minimized.

It is simple to modify the code for LU factorization so that it also
computes gn. This way you can get an a posteriori (afterward) estimate
of the effects of rounding errors.

A priori (beforehand) you can show that if partial pivoting is used,
then gn ≤ 2n−1. It is possible to construct matrices, where this growth
does take place (if n =31, then gn = 230 ≃ 109). Therefore, it may be
necessary to use complete pivoting, in which case it can be shown that
gn ≤ 1.8 n0.25 ln n, and g31 ≤ 34.4.

In practice, when one uses partial pivoting, gn is rarely larger
than 10.

In Section 8.7 we showed that if A is spd and we use Gaussian elim-

ination without pivoting, then maxi,j |â(k)
ij | does not grow with k, so in

this case gn = 1.

Example. In Section 8.4 we considered the matrix A =

(
ǫ 1
1 1

)
, which has

the inverse A−1 =
1

ǫ − 1

(
1 −1
−1 ǫ

)
.

For small ǫ the condition number is κ∞(A) ≃ 4 . This shows that the
problem of solving Ax = b is well-conditioned.

Gaussian elimination without pivoting corresponds to

A = LU, L =

(
1 0

1/ǫ 1

)
, U =

(
ǫ 1
0 1 − 1/ǫ

)
,

and the growth factor gn = |1 − 1/ǫ|, which is very big if |ǫ| is very small,
in which case Theorem 8.12.1 tells us that we can expect large errors in the
computed solution. Note also, that the LU factors are very ill-conditioned,

κ∞(L) ≃ κ∞(U) ≃ 1

ǫ2
.

The algorithm is unstable.

With partial pivoting we get L =

(
1 0
ǫ 1

)
, U =

(
1 1
0 1 − ǫ

)
.

There is no growth of matrix elements, gn = 1, and κ∞(L) ≃ 1, κ∞(U) ≃ 4.
This algorithm is stable.
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Example. The matrix A =

(
2 1
1 2

)
is symmetric and positive definite (spd).

It is well-conditioned, κ∞(A) = 3, and the LDLT factorization is

A =

(
1 0
1
2 1

)(
2 0
0 3

2

)(
1 1

2
0 1

)
.

There is no growth of matrix elements; g2 = 1.

Next, the matrix

B =

(
ǫ 1
1 1/ǫ + 1

)

is also spd, but for small values of ǫ it is ill-conditioned: κ∞(B) ≈ 1/ǫ3. The
LDLT factorization is

B =

(
1 0

1/ǫ 1

)(
ǫ 0
0 1

) (
1 1/ǫ
0 1

)
,

and again g2 = 1. The problem Bx = c is certainly ill-conditioned, but the
algorithm (Gaussian elimination without pivoting) does not lead to unnec-
essary loss of accuracy.

In practice the error estimate in Theorem 8.12.1 is often very pes-
simistic. It assumes that in every floating point operation the rounding
error is maximal, ie

fl[a⊙ b] = (a⊙ b)(1 + ǫ) with |ǫ| = µ ,

and that these errors accumulate in the worst possible way. If we use a
stable algorithm for the elimination (Gaussian elimination with pivoting
(without pivoting if the matrix is spd)), then a more realistic – although
not safe – estimate is that the computed solution x̂ satisfies

(A + δA)x̂ = b, ‖δA‖∞ <∼µ‖A‖∞ .

Under this assumption the corresponding residual is small:

r = b − Ax̂ = δAx̂, ‖r‖∞ <∼µ‖A‖∞‖x̂‖∞ .

Further, from b − Ax̂ = A(x − x̂) = r we get ‖x̂ − x‖∞ ≤ ‖A−1‖∞ ‖r‖∞,
and by inserting the above expression for ‖r‖∞ and ignoring the difference
between ‖x̂‖∞ and ‖x‖∞ we get

‖x̂ − x‖∞
‖x‖∞

<∼ µ · κ∞(A) . (8.12.2)

These observations are summarized in the following rule of thumb:
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If the unit roundoff and the condition number satisfy µ ≃ 10−d and
κ∞(A) ≃ 10q, then a stable version of Gaussian elimination can be
expected to produce a solution x̂ that has about d−q correct decimal
digits.

Example. In order to check the validity of (8.12.2) we have used Matlab (with
µ = 2−53 ≃ 1.11·10−16) to generate a number of problems of varying size
and condition. Each problem was generated by the script

x = [1:n]’; x(2:2:end) = -x(2:2:end);

A = gallery(’randsvd’,n,kappa);

E = norm(A,inf)*1e3*ones(n);

B = A + E; A = B - E;

b = A*x; xh = A\b;

gallery(’randsvd’,n,kappa) returns an n×n random matrix with condi-
tion number κ2(A) = kappa, and A is modified so that there are no rounding
errors in b.

In Figure 8.4 we show the observed relative error and the estimate (the left
and right hand sides in (8.12.2)) for n = 50 and varying condition number.

10
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10
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10
8

10
12

10
−15

10
−10

10
−5

κ∞(A)

Relative error
Estimate

Figure 8.4. Observed and estimated relative error; n = 50.

In all the 99 cases shown the inequality in (8.12.2) is satisfied. The relative
error grows with the condition number, and the rule of thumb is qualitatively
correct. For this class of problems, however, we seem to get roughly two more
correct digits than predicted.

Next, to see the influence of the size of the problem we have generated 92
more problems with varying n. In all of these we used κ2(A) = kappa = 108.
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In order not to confuse the picture by the change from ‖ · ‖2 to ‖ · ‖∞, we
show the ratio between the left- and right hand side of (8.12.2) in Figure 8.5.

10 20 50 100 200 500
0

0.02

0.04

n

Figure 8.5. Ratio between observed and estimated

relative error; κ2(A) = 108.

All these ratios are smaller than one, so (8.12.2) is also satisfied with these
problems, and there is no indication that the error grows with n.

It must be emphasized that the statement in the frame on page 240 should
only be used as a rule of thumb. If a guaranteed bound on the error is
needed, one should use Theorem 8.12.1.

8.13. Estimation of Condition Number

When we solve a linear system of equations, and want to know the ac-
curacy of the solution, we need an estimate of the condition number
κ(A) = ‖A‖ · ‖A−1‖. The computation of the inverse matrix involves
about three times as much work as the solution of the system (approx-
imately 2n3 and 2

3 n3 flops, respectively), and this can be avoided as
follows: For an arbitrary right hand side d we have

Ay = d ⇒ y = A−1d ⇒ ‖y‖∞ ≤ ‖A−1‖∞ ‖d‖∞ .

(We used Lemma 8.10.4 in the last implication). Therefore,

‖A−1‖∞ ≥ ‖y‖∞
‖d‖∞

for any d 6=0 and y = A−1d. The idea is to choose d with di = ±1
(implying that ‖d‖∞ = 1) so that ‖y‖∞ is as large as possible.

First, consider the special case, where A = L, a lower triangular ma-
trix. The solution of Ly = d is found by forward substitution, which we



242 8. Linear Systems of Equations

can formulate as

yi = (di − si)/lii, si =
i−1∑

j=1

lijyj ; i = 1, 2, . . . , n .

The idea is simple: successively choose di ∈ {−1, 1} so that |yi| is maxi-
mized; this is obtained by di = −sign(si).

Example. In Matlab we can use the following function. Note that we cannot
make use of the built-in Matlab function sign because it returns sign(0)
= 0, while we want sign(0) = 1.

function y = lcond(L)

% y = L\d, where norm(d,inf) = 1 and norm(y,inf) is maximal

n = size(L,1);

y = -ones(n,1); % initialize y

for i = 2 : n

si = L(i,1:i-1)*y(1:i-1);

if si == 0, y(i) = -1/L(i,i);

else, y(i) = -(sign(si) + si)/L(i,i); end

end

For the matrix

L =




1 0 0 0
−1 1 0 0
−1 −1 1 0
−1 −1 −1 1


 ,

the algorithm gives

y = −




1
2
4
8


 , ‖y‖∞ = 8 .

The inverse matrix is

L−1 = −




1 0 0 0
1 1 0 0
2 1 1 0
4 2 1 1


 , ‖L−1‖∞ = 8 .

So in this case the algorithm works perfectly.

Normally, the algorithm does not work quite so well, but it is possible
to improve it and still needing only O(n2) flops.

Now, assume that we know the LU factorization of a matrix A, PA =
LU . The following algorithm can be used to estimate the condition num-
ber κ∞(A):
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1. Use lcond to find a solution to the lower triangular system UT y = d
with ‖d‖∞ = 1 and ‖y‖∞ large.

2. Solve LT c = y and normalize the solution: c := (1/‖c‖∞) c.

3. Solve Lw = c and Uz = w.

4. κ̃∞ = ‖A‖∞ · ‖z‖∞ .

The algorithm solves the system

AT (Az) = AT c = d ,

where d is chosen so that the solution becomes large. The reason for
using both A and AT is that this will further enhance the growth of the
solution. The normalization in step 2 is made so that step 3 starts with
a unit right hand side, ‖c‖∞ = 1.

With PA = LU , which is equivalent to A = P T LU , we see that

AT Az = UT LT P P T LUz = UT LT LUz = d ,

so that we do not need the permutation matrix in the computation. The
algorithm involves the solution of four triangular systems and computa-
tion of ‖A‖∞. Each of these five subtasks needs about n2 flops, so the
total work is approximately 5n2 flops.

Example. The algorithm can be implemented in Matlab as follows:

function cnest = lucond(A,L,U)

% Estimate condition number of A whose LU factorization is

% given in L and U

y = lcond(U’); % initialize with lower triangular U’

c = L’\y; c = c/norm(c,inf); % solve and normalize

z = U \ (L \ c); % solve LUz = c

cnest = norm(A,inf) * norm(z,inf);

Matlab has a number of built-in functions for computing or estimat-
ing the condition number. cond(A) (equivalent with cond(A,2)) com-
putes the Euclidean norm condition number κ2(A) by means of an algo-
rithm that uses O(n3) flops. cond(A,1) and cond(A,inf) return respec-
tively κ1(A) and κ∞(A); in both cases the inverse matrix is computed,
so these algorithms also need O(n3) flops. For estimating the condition
number you can choose between rcond(A) and condest(A) that return
respectively an approximation to 1/κ1(A) and κ1(A). Both of these are
based on algorithms similar to the one described above, although more
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sophisticated. However, they cannot take the factorization as input, but
compute it as part of the process; therefore also these estimator use O(n3)
flops.

Example. We have generated a number of random matrices of order n= 50
and varying condition. In the table below we give results for the condition
number in the three norms and the accuracy of the estimators discussed:

ηlucond =
(
Estimate from lucond

)
/cond(A,inf)

ηrcond =
(
1/(Estimate from rcond)

)
/cond(A,1)

ηcondest =
(
Estimate from condest

)
/cond(A,1)

κ2(A) κ1(A) κ∞(A) ηlucond ηrcond ηcondest

1.00·101 1.25·102 1.21·102 0.134 0.957 1.000
1.00·103 7.39·103 6.40·103 0.256 1.000 0.796
1.00·105 4.82·105 5.73·105 0.309 0.706 1.000
1.00·107 5.78·107 5.73·107 0.441 0.827 0.827
1.00·109 4.23·109 4.43·109 0.188 0.883 0.932
1.00·1011 4.27·1011 4.64·1011 0.511 0.516 1.000
1.00·1013 5.03·1013 5.57·1013 0.437 1.000 1.000
9.95·1014 5.33·1015 4.71·1015 0.369 1.000 1.000

Note how the three condition numbers follow each other. Our simple esti-
mator is not quite as good as the other two, but in all cases it gets the right
order of magnitude of the condition number, ie it tells correctly how many
digits we can expect to loose because of rounding errors.

8.14. Overdetermined Systems

In this section we present the least squares method in matrix-vector no-
tation. In the next chapter we shall present it in a function theoretical
formulation. This implies that there are overlaps between this section
and Chapter 9, but they can be read independently. We start with an
example.

Example. Suppose that we have made a physics experiment, where we put a
series of loads F1, F2, . . . , F5 on an elastic spring and measured its length,
ℓ1, ℓ2, . . . , ℓ5.
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i Fi ℓi

1 0.8 7.97
2 1.6 10.2
3 2.4 14.2
4 3.2 16.0
5 4.0 21.2

1 2 3 4
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20
ℓ

F

Figure 8.6. Measured length (ℓ)
as function of force (F ).

According to Hooke’s law of elasticity there is a linear relation between load
and length:

ℓ = λ + κF .

(k = 1/κ is the so-called spring constant). Thus, the points in the figure
should be on a straight line, but they are not. The reason is that there are
measurement errors. If we ignore these, Hooke’s law with the given data
result in λ + κFi = ℓi, i= 1, . . . , 5 :

λ + 0.8κ = 7.97
λ + 1.6κ = 10.2
λ + 2.4κ = 14.2
λ + 3.2κ = 16.0
λ + 4.0κ = 21.2

or, in matrix-vector notation



1 0.8
1 1.6
1 2.4
1 3.2
1 4.0




(
λ
κ

)
=




7.97
10.2
14.2
16.0
21.2




.

In the example we derived an overdetermined system of linear equa-
tions, ie a linear system with more equations than unknowns. In principle
we might use two points to determine the straight line, but the result
from taking eg points 3 and 4 would be very different from taking points
4 and 5. The purpose of using more equations than unknowns is to reduce
the effect of measurement errors.

In general, consider an overdetermined system

Ax ≃ b ,

where A is an m×n matrix, m> n; x is an n-vector and b is an m-vector.
We write “≃” instead of “=” to indicate that maybe it is not possible
to satisfy all equations simultaneously, but we want to find x so that the
vector Ax∈R

m is as close as possible to b∈R
m. As in Section 8.1 we can
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partition the matrix A into column vectors,

A = [a:1 · · · a:n] , a:j =




a1j
...

amj


 ,

and we see that the problem is equivalent to finding a linear combination
x1a:1 + · · ·+xna:n, which is as close as possible to the right hand vector b.

Example. Let m= 3 and n= 2; Figure 8.7 shows the vectors a:1, a:2 and b.

a:1

a:2

b

Figure 8.7. Geometric illustration of an overdetermined system.

Assuming that a:1 and a:2 are linearly independent, the vectors generated
by x1a:1 + x2a:2 for x1, x2 ∈ R form a plane in R

3, the plane spanned by
x1a:1 + x2a:2. We cannot assume that b is in this plane.

The difference between b and Ax is the residual ,

r = b − Ax .

This vector depends on the choice of x, and we want to make it as “small”
as possible. To quantify this we can use a vector norm, cf Section 8.10.
We choose to use the 2-norm, or equivalently

‖r‖2
2 = r2

1 + · · · + r2
m = rT r .

A vector x̂ that minimizes ‖r‖2
2 also minimizes ‖r‖2, and this is the desired

solution.
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Definition 8.14.1. Least squares method. Given an overdeter-
mined system of equations Ax ≃ b, where A∈R

m×n with m> n.
A least squares solution is a vector x̂ that minimizes the Euclidean
norm of the residual, ie x̂ is a solution to the minimization problem
min

x
‖b − Ax‖2 .

Example. For the problem in the previous example the residual has minimal
length if it is orthogonal to the plane spanned by a:1 and a:2, cf Figure 8.8.

a:1

a:2

b

r

Figure 8.8. Geometric illustration of least squares solution.

The condition is that r is orthogonal to all vectors in the plane, and this is
satisfied when r is orthogonal to the two vectors spanning it: aT

:1r = aT
:2r = 0.

This simple example generalizes: The column vectors of A span a
subspace of R

m (the so-called range of A), and to get the least squares
solution, the residual r = b − Ax should be orthogonal to this subspace.
This condition is satisfied if r is orthogonal to each column vector in A:

aT
:jr = 0 , j = 1, . . . , n ,

or, in matrix-vector notation

AT r = AT (b − Ax) = 0 .
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Now we can formulate the following theorem about the solution of
least squares problems.

Theorem 8.14.2. Least squares solution. Consider the overde-
termined system Ax ≃ b, A∈R

m×n, b∈R
m, x∈R

n with m> n. A
solution x̂ of the least squares problem

min
x

‖b − Ax‖2

satisfies the normal equations

AT A x̂ = AT b .

If the column vectors in A are linearly independent, then the matrix
AT A is positive definite, and the solution x̂ is unique.

Proof. We already saw that the geometric generalization lead to

AT (b − Ax̂) = AT b − AT A x̂ = 0 ,

and the normal equations follow immediately.
Next, the matrix AT A is symmetric: (AT A)ij = aT

:ia:j = (AT A)ji,
and if the column vectors in A are linearly independent, then x 6= 0
is equivalent to y = Ax 6= 0, so that

xT AT Ax = yT y = y2
1 + · · · + y2

m > 0 for x 6= 0 .

This shows that AT A is positive definite. Therefore this matrix is
nonsingular, so the solution to the normal equations is unique.
Finally, we have to show that x̂ minimizes ‖b−Ax‖2: Let x = x̂ + u,
for some arbitrary vector u. Then r = b − A(x̂ + u) = r̂ − Au with
AT r̂ = 0, and

‖r‖2
2 = (r̂ − Au)T (r̂ − Au) = r̂T r̂ − r̂T Au − uT AT r̂ + uT AT Au

= r̂T r̂ + uT AT Au > r̂T r̂ if u 6= 0 .

Example. The overdetermined system in the example on page 244 is given by

A =




1 0.8
1 1.6
1 2.4
1 3.2
1 4.0




, b =




7.97
10.2
14.2
16.0
21.2




.
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The associated normal equations are
(

5 12
12 35.2

)
x̂ =

(
69.57

192.776

)
,

with the solution

x̂ =

(
4.2360
4.0325

)
.

Thus, the least squares solution corresponds to λ = 4.2360, κ = 4.0325 (and
the spring constant k = κ−1 = 0.2480). The corresponding straight line is
shown in Figure 8.9 together with the data points.
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20
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F

Figure 8.9. Least squares fit to spring data.

The normal equations can be very ill conditioned, with associated risk
of getting a poor determination of the least squares solution. In some
cases it is possible to reformulate the problem so that we get a better
determination of x̂. This is illustrated in the next example.

Example. Assume that we are asked to fit a straight line to the data

ti 998 999 1000 1001 1002

f(ti) 3.765 4.198 5.123 5.888 6.184

We can express the straight line in the form f∗(t) = x1 + x2t, and get the
overdetermined system Ax ≃ b with

A =




1 998
1 999
1 1000
1 1001
1 1002




, b =




3.765
4.198
5.123
5.888
6.184




.

The associated normal equations have the coefficient matrix

AT A =

(
5 5000

5000 5000010

)
, κ∞(AT A) ≃ 5·1011 .

Another way of expressing the straight line is f∗(t) = x1 +x2(t−1000). The
corresponding system Ax ≃ b has the same b, while
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A =




1 −2
1 −1
1 0
1 1
1 2




, AT A =

(
5 0
0 10

)
, κ∞(AT A) = 2 .

8.15. QR Factorization

An orthogonal matrix is a matrix Q that satisfies

QT Q = QQT = I . (8.15.1)

Since (QT Q)ij = qT
:i q:j , this condition shows that the column vectors in Q

are orthonormal, ie they are mutually orthogonal and have the Euclidean
length ‖q:j‖2 = 1. Similarly, the condition QQT = I implies that also the
row vectors in Q are orthonormal.

A vector y = Qx is said to be an orthogonal transformation of x if Q
an orthogonal matrix. By means of (8.15.1) and the relation ‖z‖2

2 = zT z
we see that ‖y‖2

2 = ‖Qx‖2
2 = xT QT Qx = xT x = ‖x‖2

2 . In words:
the Euclidean length is invariant under orthogonal transformations. This
property makes orthogonal transformations very useful in matrix compu-
tations, eg in the solution of least squares problems. Before we demon-
strate that, however, we formulate the basic result of this section as a
theorem.

Theorem 8.15.1. QR factorization. Any m×n matrix A with
m≥n can be factored

A = Q

(
R
0

)
,

where Q∈R
m×m is orthogonal and R∈R

n×n is right (upper) trian-

gular. The matrix Q can be partitioned into Q =
(

Q̂ Q
)

with Q̂

consisting of the first n column vectors in Q, and the “economy size”
(or “thin” ) version of the factorization is

A = Q̂R .

If the column vectors in A are linearly independent, then R is non-
singular.
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We give a constructive proof, in the form of an algorithm that com-
putes the factorization. First, however, we look at the last statement. If
we replace A by Q̂T R in the normal equations matrix, we get9)

ATA = RT Q̂T Q̂R = RT R .

We saw in the previous section that the matrix ATA is nonsingular if the
column vectors in A are linearly independent. In that case

0 6= det(A) = det(RT ) · det(R) =
(
det(R)

)2
,

so R is nonsingular, and we have proved the last statement in the theorem.
In the remainder of this section we shall assume that R is nonsingular.

Next, we show how the factorization can be used to solve a least
squares problem:

‖r‖2
2 =

∥∥QT r
∥∥2

2
=

∥∥∥∥QT

(
b − Q

(
R
0

)
x

)∥∥∥∥
2

2

=

∥∥∥∥∥

(
Q̂T b

Q
T
b

)
−

(
Rx
0

)∥∥∥∥∥

2

2

=
∥∥∥Q̂T b − Rx

∥∥∥
2

2
+

∥∥∥Q
T
b
∥∥∥

2

2
.

(We used the invariance of ‖·‖2; that QT Q = I; the partitioning of Q; and
the last reformulation follows from the definition of the vector 2-norm).
We see that ‖r‖2 is minimized by x̂ defined as the solution of the linear
system

Rx̂ = Q̂T b . (8.15.2)

Thus, the least squares solution can be computed without forming the
normal equations.

The QR factorization is equivalent to

QT A =

(
R
0

)
, (8.15.3)

and we now show how this can be constructed through a series of ortho-
gonal transformations, each of which zeros elements in specified positions
in the matrix. This is similar to Gaussian elimination for a square ma-
trix, where the upper triangular U is obtained through a series of Gauss
transformations. We shall show that we can find orthogonal matrices
Q1, Q2, . . . , Qp so that

9) The column vectors in Q̂ ore orthonormal, so Q̂T Q̂ = I, the unit matrix of
order n. When m > n, the matrix Q̂Q̂T ∈R

m×m is different from the mth order
unit matrix, so Q̂ is not an orthogonal matrix.
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Qp · · ·Q2Q1A =

(
R
0

)
. (8.15.4)

This is equivalent to (8.15.3) if Q = QT
1 QT

2 · · ·QT
p .

Lemma 8.15.2. If Q1, Q2, . . . , Qp are orthogonal, then the product

Q = QT
1 QT

2 · · ·QT
p

is orthogonal.

Proof. We obviously only need to show that the product of two ortho-
gonal matrices is orthogonal:

(QT
1 QT

2 )T (QT
1 QT

2 ) = Q2Q1Q
T
1 QT

2 = Q2Q
T
2 = I ,

and similarly (QT
1 QT

2 )(QT
1 QT

2 )T = QT
1 QT

2 Q2Q1 = I.

All that remains now is to show that we can construct a sequence of
orthogonal transformations (ie {Qk}p

k=1) so that the resulting matrix is
upper triangular, cf (8.15.4).

Example. A rotation matrix

Q =

(
cos θ sin θ
− sin θ cos θ

)

is orthogonal (show this!) and Qx turns the vector x the angle θ clockwise.
Suppose that we want to zero the second element in a vector x:

Q

(
x1

x2

)
=

(
u
0

)
.

By choosing θ so that cos θ = x1/
√

x2
1 + x2

2, sin θ = x2/
√

x2
1 + x2

2, we get
1√

x2
1 + x2

2

(
x1 x2

−x2 x1

)(
x1

x2

)
=

(√
x2

1 + x2
2

0

)
.

Note that we do not have to choose the angle θ explicitly.

In numerical linear algebra rotation matrices are often called Givens
transformations. They can be embedded in unit matrices of larger di-
mension and be used to zero elements in vectors and matrices of order
larger than two. The complete transformation (8.15.4) can be achieved
with p = 1

2n(2m−n−1) Givens transformations. Instead of giving details
about this, we shall introduce another type of orthogonal transformations
in R

m that simultaneously zero a sequence of elements in a vector or a
matrix.
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Let v 6= 0 be an arbitrary m-vector and define the matrix10)

Q = I − 2

vT v
v vT . (8.15.5)

Q is symmetric and a simple calculation shows that it is also orthogonal.
A matrix defined by (8.15.5) is called a reflection matrix or a Householder
matrix . A transformation with such a matrix is called a Householder
transformation, and it is done without explicitly forming the matrix Q:

(
I − 2

vT v
v vT

)
z = z − βv, β =

2vT z

vT v
. (8.15.6)

If vT v is known, then the cost of performing the transformation Qz this
way is approximately 4n flops, whereas the matrix vector multiplication
would cost 2n2 flops.

Now, let x and y be two vectors with ‖x‖2 = ‖y‖2, ie xT x = yT y, and
choose v = x−y. Then

vT v = xT x + yT y − 2xT y = 2(xT x − xT y) ,

vT x = xT x − xT y .

Therefore, the transformation Qx defined by this v gives β = 1 in (8.15.6)
and Qx = x − (x − y) = y. This relation can be used to zero elements
2, . . . , m in a vector x, ie, we want yi = 0, i =2, . . . , m. The invariance of
the norm requires that y2

1 = ‖x‖2
2, so we get

v =




x1

x2
...

xm


 −




y1

0
...
0


 =




x1 − y1

x2
...

xm


 , y1 = ±‖x‖2 .

To avoid cancellation we choose y1 = −sign(x1)·‖x‖2. Further, to simplify
the transformations we normalize the vector:

Q = I − 2

vT v
v vT = I − 2 u uT , u =

1

‖v‖2
v .

The Householder vector u has length ‖u‖2 = 1.

Example. From the above expressions for vT v and y it follows that

‖v‖2
2 = vT v = 2(‖x‖2

2 + |x1| · ‖x‖2) .

10) Remember that the inner product vT v is a scalar and the outer product v vT is a
matrix.
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Thus, ‖v‖2 can be obtained by a simple updating of ‖x‖2 instead of the 2m
flops involved in using the definition ‖v‖2

2 = v2
1 + · · ·+ v2

m. This is exploited
in the following Matlab function for computing the Householder vector for
a given x. As mentioned on page 242 we cannot use the Matlab function
sign because it returns sign(0) = 0.

function u = househ(x)

% Compute Householder vector u so that (I - 2u*u’)*x = N*e1,

% where |N| = ||x||2 and e1 is the first unit vector.

v = x; nx = norm(x);

if x(1) < 0, v(1) = x(1) - nx;

else, v(1) = x(1) + nx; end

u = (1/sqrt(2*nx*(nx + abs(x(1))))) * v;

For a given Householder vector u the transformation (8.15.6) simplifies
to Qz = z − (2uT z)u, and for a matrix we get

QZ = Z − 2u(uT Z) .

(Note that the jth component in uT Z is uT z:j , so that (QZ):j = z:j −
(2uT z:j)u, as it should be).

Example. A Matlab function that applies a Householder transformation is
simple to construct:

function Y = apphouse(u, X)

% Householder transformation, Y = (I - 2u*u’)*X

Y = X - 2*u*(u’*X);

To zero the last three elements in x =
(
1 2 3 4

)T
:

>> x = [1:4]’;

>> u = househ(x); y = apphouse(u,x)

y = -5.4772

0

0

0

Now we have all the tools necessary to generate the QR factoriza-
tion of a matrix A∈R

m×n with m≥n. First use x = a:1 to determine a
Householder transformation Q1 that zeros elements 2, . . . , m in the first
column:

A2 = Q1A =

(
r11 rT

1

0 Ã2

)
.

Next, determine Q̃2 ∈ R
(m−1)×(m−1) that puts zeros below the main dia-

gonal in the first column of Ã2 (ie the second column of A2), and augment
Q̃2 to the orthogonal m×m matrix Q2
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Q2 =

(
1 0

0 Q̃2

)
.

Then

A3 = Q2A2 =

(
1 0

0 Q̃2

)(
r11 rT

1

0 Ã2

)

=

(
r11 rT

1

0 Q̃2Ã2

)
=




r11 r12 · · ·
0 r22 rT

2

0 0 Ã3


 .

Note that the transformation with Q2 changes neither the elements in the
first row of A2 nor the zeros in the first column. The process continues,
and after p =n steps we have

An+1 = Qn · · ·Q2Q1A =

(
R
0

)
.

We recognize this as (8.15.4), and the proof of Theorem 8.15.1 is finished.

Example. The following Matlab function implements the QR factorization
by use of the functions from the two previous examples. The output is the
Householder vectors and the upper triangular matrix R.

function [H, R] = qrfac(A)

% QR factorization of A by Householder transformations.

% Householder vectors are stored in H

[m,n] = size(A); H = zeros(m,n); % make room for vectors

for k = 1 : n

ii = k:m; jj = k:n; % active rows and columns

H(ii,k) = househ(A(ii,k)); % Householder vector

A(ii,jj) = apphouse(H(ii,k),A(ii,jj)); % transform

end

R = triu(A(1:n,:)); % upper triangular n*n factor

For an overdetermined system of equations, Ax ≃ b, we have to apply the
same transformations to the right-hand side,

Qn · · ·Q2Q1b =

(
b̂

b

)
,

and then solve the system Rx̂ = b̂. This is implemented in

function x = qrsolv(H,R, b)

% Solve an overdetermined system Ax = b by means of Housholder

% transformation. H,R is the output from qrfac(A)

[m,n] = size(H);

for k = 1 : n

ii = k:m; b(ii) = apphouse(H(ii,k),b(ii));

end

x = R \ b(1:n);
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The following commands set up and solve the system for the elastic spring
problem discussed in previous examples.

>> A = [ones(1,5); 0.8*(1:5)]’; b = [7.97 10.2 14.2 16 21.2]’;

>> [H, R] = qrfac(A); x = qrsolv(H,R, b)

x = 4.2360

4.0325

Example. Matlab has a built-in function qr that computes the QR factoriza-
tion by means of Householder transformations. The call

>> [Qh, R] = qr(A,0)

returns the economy size factorization, and this command can be followed
by x = R\(Qh’*b) to get the least squares solution.

Orthogonal transformations are considerably more stable than Gauss
transformations: Because the length of a vector is preserved, there cannot
be the growth of matrix elements which caused the loss of accuracy in
connection with Gaussian elimination.

The work involved in the factorization, qrfac, is about 2n2(m−n/3)
flops, and for m= n this is twice the work needed by Gaussian elimina-
tion. For an overdetermined system we have the choice between using the
normal equations or orthogonal transformation. If m ≃ n, the cost of the
two methods is almost the same, whereas the cost of orthogonal transfor-
mation is about twice the cost of the normal equations if m ≫ n. You
can say that this extra cost is more than paid off by the better stability
properties of orthogonal transformation.

Example. There is a risk of loosing information when forming the normal
equations. For the matrix

A =




1 1
ǫ 0
0 ǫ




the normal equations matrix is ATA =

(
1+ǫ2 1

1 1+ǫ2

)
, and if |ǫ| ≤ √

µ,

then fl[ATA] =

(
1 1
1 1

)
, which is singular. Under the same assumption we

get

fl[Q̂] =




−1 ǫ
√

0.5

−ǫ −
√

0.5

0
√

0.5


 , f l[R] =

(
−1 −1

0 ǫ
√

2

)
,

so information is preserved when we use orthogonal transformation.
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Example. In an example on page 219 we discussed what happens in Matlab,
when the command x = A\b is issued with a square matrix A. If A has
more rows than columns (the system Ax = b is overdetermined), then x is
the least squares solution, computed via orthogonal transformation. (We
assume that A and b have the same number of rows; if not, we get an error
message instead).

If A ∈ R
m×n and b ∈ R

m with m < n we have an underdetermined system
of equations. Assuming that the rows in A are linearly independent, it is
possible to permute the columns so that the first m columns are linearly
independent. Using the concepts from Section 8.5 we can express this as

APT x =
(
A1 A2

) (
y
z

)
= b ,

where P is a permutation matrix, A1 ∈R
m×m is nonsingular, and we have

introduced

PT x =

(
y
z

)
.

It follows that

x = P

(
y
z

)
, y = A−1

1 (b − A2z) ,

for any choice of z ∈R
n−m. Matlab returns a so-called basic solution,

defined by z = 0.

Exercises
E1. Let x∈R

n. Show that

(a) ‖x‖2 ≤ ‖x‖1 ≤ √
n ‖x‖2 ,

(b) ‖x‖∞ ≤ ‖x‖1 ≤ n‖x‖∞ ,

(c) ‖x‖∞ ≤ ‖x‖2 ≤ √
n ‖x‖∞ .

E2. Figures 8.2 and 8.3 illustrate the matrix 2- and 1-norms. Sketch a similar
illustration of ‖A‖∞ for the same matrix A.

E3. Let Q be an orthogonal matrix. Compute the norm ‖Q‖2 and condition
number κ2(Q).
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Computer Exercises
C1. In connection with the solution of the system Ax = b of order n we

have computed the LU factorization, PA = LU . A common problem in
applications is that we also have to solve a modified problem

(A + uvT )z = d ,

where u and v are n-vectors.

(a) Show that if A+uvT is nonsingular, then its inverse can be expressed
by the Sherman-Morrison formula

(A + uvT )−1 = A−1 − 1

1 + vT A−1u
A−1uvT A−1 .

(b) Write a Matlab function that uses O(n2) flops to solve the modified
problem.

C2. This exercise is an experimental study of the time required to factorize a
banded matrix of order n.

(a) Make a Matlab program with the following layout

for n = 50 : 50 : 500

Generate the tridiagonal matrix of order n defined
by generalizing A in the example on page 222.
Use tic–toc to determine the execution time t for lu(A)

end

Plot t as a function of n

(b) As (a), except that lu operates on full(A) .

C3. (a) Suppose that we have to solve the system Ax = b with

A =




6.86 5.26 7.01 0.474
5.88 0.919 9.10 7.36
8.30 6.53 7.62 3.28
8.46 4.16 2.62 6.32


 , b =




7.56
9.91
3.65
2.47


 ,

and let Â and b̂ denote the matrix and vector obtained by
rounding the elements to floating point numbers in the system
(2, 23,−126, 127). Estimate the difference between the solutions to

Ax = b and Âx = b̂.

(b) Same problem, except that the matrix is changed to (the so-called
Hilbert matrix of order 4)

A =




1 1/2 1/3 1/4
1/2 1/3 1/4 1/5
1/3 1/4 1/5 1/6
1/4 1/5 1/6 1/7


 .
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Chapter 9

Approximation

9.1. Introduction

Assume that some function f is known by an analytic expression. The
function may be an elementary function like eg sinx, ex, lnx, or a more
complicated function like

∫ x
0 e−t2dt. For x in some interval [a, b], we want

to approximate f by a simpler function f∗, that can be evaluated fast.
An obvious choice is to let f∗ be a polynomial. The value of a poly-

nomial can be efficiently computed by Horner’s rule, and it is also easy to
differentiate and integrate a polynomial. By choosing a sufficiently high
degree of the polynomial, we should be able to get a good approximation.

A “good” approximation is one that makes the error function f − f∗

small in some sense. We might eg require that the error is zero at certain
points, and use interpolation as in Chapter 5. Now, however, it is natural
to require that the error is small in the entire interval. We may, eg,
determine f∗ such that

max
a≤x≤b

|f(x) − f∗(x)|

is minimized. This f∗ is said to be the best approximation to f in the
maximum norm or Chebyshev norm, and f∗ is said to be the minimax
approximation of f .

We shall see that it is easier to determine f∗ that minimizes
∫ b

a

(
f(x) − f∗(x)

)2
dx ,

or – more generally
∫ b

a
w(x)

(
f(x) − f∗(x)

)2
dx ,
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where w(x) is some weight function. This f∗ is said to be the best ap-
proximation in the least squares sense, and is also called the least squares
fit to f .

Example. We want to approximate f(x) = sin(π
2 x) on the interval [0, 1] by a

straight line, f∗(x) = c0 + c1x. If we determine the parameters c0 and c1

such that
∫ b

a

(
f(x) − f∗(x)

)2
dx =

∫ 1

0

(
sin(

π

2
x) − (c0 + c1x)

)2
dx

is minimized, we get f∗(x) = 0.1148+1.0437x. This approximation is shown
by a dotted line in Figure 9.1.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
−0.2

−0.1

0

0.1

Figure 9.1. Left: f(x) = sin(π
2 x) and two linear approximations

Right: corresponding error curves f − f∗.

If we minimize
∫ b

a

w(x)
(
f(x) − f∗(x)

)2
dx =

∫ b

a

(
sin(π

2 x) − (c0 + c1x)
)2

√
x(1 − x)

dx ,

we get f∗(x) = 0.08857+1.0273x, indicated by the dashed line in the figure.
It is clearly seen that close to the endpoints, the second approximation has
a smaller error. This is reasonable, since the weight function is large for x
close to 0 and 1.

For this problem it is easy to find the minimax approximation, see the ex-
ample on page 300. This approximation has a maximum error d ≃ 0.1053,
and the error function oscillates between ±d in 0, 0.5607 and 1. There is not
a big difference between that approximation and the one determined by the
weight function w(x) = 1/

√
x(1 − x).

The situation is different in a so-called data fitting problem. Here, we
are only given approximate values of f in certain points. The function
may eg describe the relation between two physical entities, x and f(x),
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and by measurements one has determined fi = f(xi)+ ǫi, i = 1, 2, . . . , m,
where the errors ǫi are (unknown) measurement errors. If there were
no measurement errors, we might interpolate the points (xi, fi), but we
can reduce the effect of measurement errors if we use the method of
least squares, as discussed in connection with overdetermined systems of
equations, Section 8.14.

In this chapter we shall formulate the approximation problem in a
general way, so that the same terminology can be used in the case where
f is only known in discrete points, and in the continuous case where we
have a formula defining f .

The approximating function f∗ should have a similar behaviour as
f , and sometimes it is better to use other functions than polynomials,
eg trigonometric, exponential or rational functions. We cannot, eg, ex-
pect to get a good polynomial approximation to a function close to a
discontinuity.

Example. If we demand that | tan(π
4 x)−f∗(x)| ≤ 2·10−6 for all x ∈ [0, 1], then

we have to use a polynomial of degree at least nine. The same accuracy can
be obtained by proper choice of the three parameters in the rational function

f∗(x) = x
(
a0 +

a1

a2 + x2

)
.

Sometimes, a simple trick can be used to reduce a general approxima-
tion problem to a problem that is suited for polynomial approximation.
Assume, eg, that f(x) = cotx shall be approximated. Since

cot x =
1

x

(
1 − x2

3
− x4

45
− · · ·

)
for |x| < π ,

it is natural to determine a polynomial of the type
∑n

k=0 akx
2k, which

approximates x cot x.
Another way of getting a good accuracy by polynomial approxima-

tion, is to used different polynomials in different parts of the interval, cf
Section 5.9.
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9.2. Some Important Concepts

We shall formulate the approximation problem in terms that are suffi-
ciently general to describe both the continuous case, when f is a con-
tinuous function defined on an interval [a, b], and the discrete case, when
f is known only on a grid G = {x1, x2, . . . , xm}. In both cases f is an
element of a linear space, and the approximating function f∗ is chosen
from a subspace. We therefore start by reminding the reader of these two
concepts.

Definition 9.2.1. A space L is said to be linear if, for arbitrary
elements f and g and an arbitrary real number α, it holds that αf
and f+g also belong to L.

Definition 9.2.2. A nonempty subset U of a linear space L is said
to be a subspace if, for arbitrary elements f1 and f2 in U and an
arbitrary real number α, also αf1 and f1+f2 belong to U.

The linear spaces that we are going to use are

1. the space of all functions that are continuous on the interval [a, b], ie
the space C[a, b],

2. the space of all real valued vectors with m elements, ie the space R
m.

In the continuous case f ∈C[a, b] shall be approximated by

f∗(x) = c0ϕ0(x) + c1ϕ1(x) + · · · cnϕn(x) .

In the discrete case we consider a column vector of function values

f
G

=
(
f(x1), f(x2), . . . , f(xm)

)T
.

The notation refers to the grid G = {xi}m
i=1 of arguments. The vector f

G

shall be approximated by

f∗
G

= c0ϕ0G
+ c1ϕ1G

+ · · · cnϕnG
.

The ϕ0, ϕ1, . . . , ϕn are given, continuous, linearly independent functions
(see Definition 9.2.7). In case of polynomial approximation we may use
ϕk(x) = xk, k = 0, 1, . . . , n, but we shall see that it is better to express
f∗ as a linear combination of orthogonal polynomials.

To measure the magnitude of the error, we need the concept of a
norm:



9.2. Important Concepts 265

Definition 9.2.3. Let f and g be elements in a linear space L. A
norm ‖ · ‖ is a mapping L 7→ R with the properties

‖f‖ ≥ 0 for all f ,

‖f‖ = 0 ⇔ f = 0 ,

‖αf‖ = |α| · ‖f‖ for arbitrary α∈R ,

‖f + g‖ ≤ ‖f‖ + ‖g‖ (triangle inequality) .

We use ‖f − g‖ to measure the distance between two elements f and
g in L, and we can now give a precise formulation of the problem.

The approximation problem. Let U be a subspace of the normed
linear space L. Given f ∈L, determine f∗ ∈U such that

‖f − f∗‖ = min
g∈U

‖f − g‖ .

Common definitions of the norm of a function f ∈C[a, b] are

Euclidean norm ‖f‖2 =

√∫ b

a
f(x)2 dx ,

maximum norm or
Chebyshev norm

‖f‖∞ = max
a≤x≤b

|f(x)| .

Both of these are special cases of the Lp-norm

‖f‖p =
(∫ b

a
|f(x)| dx

)1/p
.

It can be shown that, for p≥ 1 this expression does define a norm, ie it
has the properties in Definition 9.2.3.

For functions defined on a grid G = {xi}m
i=1 the corresponding norm

is defined as

‖f‖p,G =
( m∑

i=1

|f(xi)|p
)1/p

.

By comparison with Section 8.10 we see that

‖f‖p,G = ‖f
G
‖p ,

where the right hand side is the vector p-norm. In the present context
we say that ‖f‖p,G is a seminorm, because it does not satisfy all the
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requirements of Definition 9.2.3: ‖f‖p,G = 0 does not imply that f = 0,
only that all the f(xi) = 0, i=1, . . . , m.

The definition of the norm can be generalized by introducing a weight
function. This is a function w such that w(x)> 0 for all a <x < b. (w is
not necessarily defined at the endpoints x= a and x= b).

‖f‖p,w =
(∫ b

a
w(x)|f(x)|p dx

)1/p
.

In the discrete case we introduce weights wi > 0, i= 1, . . . , m,

‖f‖p,G,w =
( m∑

i=1

wi|f(xi)|p
)1/p

.

What effect does weighting have on the approximation f∗ ?
In the discrete case f∗ is determined so that we minimize

( m∑

i=1

wi|fi − f∗(xi)|p
)1/p

,

where the fi are the known approximations to f(xi). A large value of wi

means that the error at xi is given special importance. It may, eg, be
suitable to let

√
wi be inversely proportional to the estimated error in the

measured value fi. Then f∗ is determined so that there is particularly
good agreement with f at the points that have been measured with best
accuracy. In the continuous case a suitable choice of the weight function
w can similarly enforce better agreement between f and f∗ in some parts
of the interval [a, b] than in other parts. Later, we shall see how this is
useful in connection with Chebyshev approximation.

In the remainder of this chapter the notation ‖ · ‖p is used as abbrevia-
tion for ‖ · ‖p,w and – when it is clear from the context – also for ‖ · ‖p,G,w.
Especially, given w(x), the concept Euclidean norm is redefined to mean
the weighted norm.

Euclidean norm :

‖f‖2 =





(∫ b

a
w(x)f(x)2 dx

)1/2
(continuous case) ,

( m∑

i=1

wif(xi)
2
)1/2

(discrete case) .

(9.2.1)

This norm can be expressed as a scalar product.
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Definition 9.2.4. The scalar product (f, g) of f, g ∈L is defined by

(f, g) = (g, f) =





∫ b

a
w(x)f(x)g(x) dx (continuous case) ,

m∑

i=1

wif(xi)g(xi) (discrete case) .

In both the continuous and the discrete case it is seen that

‖f‖2 =
√

(f, f) .

In the discrete case with all wi = 1 the scalar product is recognized as
the scalar product (the inner product) of the vectors of function values,

(f, g) =

m∑

i=1

f(xi)g(xi) = fT
G

g
G

. (9.2.2)

The scalar product is also used to define orthogonality:

Definition 9.2.5. f and g in L are said to be orthogonal if
(f, g) = 0.

Definition 9.2.6. A finite or infinite sequence of functions ϕ0, ϕ1, . . .
is called an orthogonal system if (ϕi, ϕj) = 0 for i 6= j and (ϕi, ϕi) 6= 0
for all i.

If, in addition, (ϕi, ϕi) = 1 for all i, the sequence is called an
orthonormal system.

Example. The functions ϕ0(x)= 1, ϕ1(x)= x and ϕ2(x)= x2 − 1
3 are ortho-

gonal on the interval [−1, 1] with respect to the weight function w(x)= 1:

(ϕ0, ϕ1) =
∫ 1

−1
x dx = 0, (ϕ0, ϕ2) =

∫ 1

−1
(x2 − 1

3 ) dx = 0,

(ϕ1, ϕ2) =
∫ 1

−1
x(x2 − 1

3 ) dx = 0 .

You should verify that the functions

ϕ̃0(x) = 1√
2
, ϕ̃1(x) =

√
3
2x, ϕ̃2(x) =

√
45
8

(
x2 − 1

3

)

are orthonormal.

The functions ψ0(x) = 1, ψ1(x) = x and ψ2(x) = x2 − 5
9 are orthogonal on

the grid x1 = −1, x2 = − 1
3 , x3 = 1

3 , x4 = 1 with respect to the weights
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wi = 1, i = 1, . . . , 4:

ψ0G
=




1
1
1
1


 , ψ1G

=




−1
− 1

3
1
3
1


 , ψ2G

=




4
9

− 4
9

− 4
9
4
9


 ,

and by means of (9.2.2) we find

(ψ0, ψ1) = ψT
0G

ψ1G
= 0 ,

and similarly we see that (ψ0, ψ2) = (ψ1, ψ2) = 0.

It is reasonable to require that f∗ is expressed in terms of linearly in-
dependent functions. Later, we shall show that functions in an orthogonal
system are linearly independent.

Definition 9.2.7. The functions ϕ0, ϕ1, . . . , ϕn are said to be lin-
early independent if

∥∥
n∑

j=0

cjϕj

∥∥ = 0 if and only if all cj = 0 .

In the continuous case we can omit the norm symbol, since ‖g‖ = 0
if and only if g = 0.

In the discrete case we have

∥∥
n∑

j=0

cjϕj

∥∥
p,G,w

= 0

if and only if
n∑

j=0

cjwiϕj(xi) = 0 for every xi ∈ G .

Dividing by the factor wi we see that this condition is equivalent to

c0




ϕ0(x1)
...

ϕ0(xm)


 + c1




ϕ1(x1)
...

ϕ1(xm)


 + · · · + cn




ϕn(x1)
...

ϕn(xm)


 = 0 ,

or
n∑

j=0

cjϕjG
= 0 .

Thus, we have shown
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Theorem 9.2.8. The functions ϕ0, ϕ1, . . . , ϕn are linearly inde-
pendent on the grid G = {x1, x2, . . . , xm} if and only if the vectors
{ϕjG

}n
j=1 are linearly independent.

The theorem implies that there are at most m linearly independent
functions on a grid with m points.

Example. The functions ϕj(x) = xj , j = 0, 1, . . . , n are linearly independent on
any grid with n+1 points. If they were not, then there would exist constants
c0, c1, . . . , cn, not all equal to zero, such that

∑n
j=0 cjϕjG

= 0. However, this
means that

n∑

j=0

cjx
j
i = 0 for i = 1, 2, . . . , n+1 ,

and we would have a polynomial of degree at most n with n+1 roots. The
fundamental theorem of algebra tells us that this is not possible.

9.3. Least Squares Method

We want to find an approximating function f∗ so that the Euclidean norm
of the error function f − f∗ is minimized.

In the continuous case f∗ shall be determined so that

‖f − f∗‖2,w =
(∫ b

a
w(x)

(
f(x) − f∗(x)

)2
dx

)1/2

is minimized. In the discrete case f∗ shall be determined so that

‖f − f∗‖2,G,w =
( m∑

i=1

wi

(
f(xi) − f∗(xi)

)2 )1/2

is minimized.

The function f∗ is called the least squares fit to f . Both the discrete
and the continuous case are covered by the following important theorem.
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Theorem 9.3.1. Assume that ϕ0, ϕ1, . . . , ϕn are linearly indepen-
dent. Then there is a uniquely determined element f∗ ∈U,

f∗ =
n∑

j=0

c∗jϕj ,

such that

‖f − f∗‖2 ≤ ‖f − g‖2 for all g =
n∑

j=0

cjϕj .

f∗ is characterized by the normal equations

(f − f∗, ϕk) = 0, k = 0, 1, . . . , n .

Before we give the proof, we note that the normal equations express
that the difference f − f∗ is orthogonal to each ϕk. The normal equations
can be formulated as

(f∗, ϕk) = (f, ϕk), k = 0, 1, . . . , n . (9.3.1)

Thus, we want f∗ = f , but have to make do with (f∗, ϕk) = (f, ϕk) for
every ϕk. We insert the expression for f∗ in (9.3.1), and get

n∑

j=0

(ϕj , ϕk)c
∗
j = (f, ϕk), k = 0, 1, . . . , n . (9.3.2)

Thus, the coefficients {c∗j}n
j=0 can be determined by solving a linear sys-

tem of equations.
Next, we illustrate the theorem in Figure 9.2 (in the case n = 1, w0 =

w1 = 1).
The linear subspace U of L is spanned by ϕ0 and ϕ1. According to

Theorem 9.3.1 the vector f−f∗ is orthogonal to ϕ0 and ϕ1, and thereby
to all vectors in U. This means that f∗ is the orthogonal projection of f
onto U. The theorem simply says that this is the vector in U, that has
the smallest Euclidean distance to f . The dashed lines in the figure form
a right-angled triangle, in which f − f∗ is one of the sides, and f − g is
the hypotenuse.

The proof of the theorem is guided by the geometric interpretation.
We first need a generalization of the Pythagorean law.
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L

U

f

g

f∗

Figure 9.2. Geometric interpretation of the least squares problem.

Theorem 9.3.2. Generalized Pythagorean law. If f and h are
orthogonal, then

‖f + h‖2
2 = ‖f‖2

2 + ‖h‖2
2 .

Proof. ‖f + h‖2
2 = (f + h, f + h)

= (f, f) + (f, h) + (h, f) + (h, h) = ‖f‖2
2 + ‖h‖2

2 ,

since (f, h) = (h, f) = 0 because of the orthogonality.

Now, we are ready to prove the theorem on page 270.

Proof. (Theorem 9.3.1). We first prove that the linear system of
equations (9.3.2) has a unique solution, by showing that the matrix of
the system is nonsingular. The proof is by contradiction: If the matrix
is singular, then the homogeneous system has a nontrivial solution, ie
there are c0, c1, . . . , cn, not all equal to zero, such that

n∑

j=0

cj(ϕj , ϕk) = 0, k = 0, 1, . . . , n .

But this means that ϕ0, ϕ1, . . . , ϕn are linearly dependent, since
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∥∥
n∑

j=0

cjϕj

∥∥2

2
=

( n∑

k=0

ckϕk,
n∑

j=0

cjϕj

)

=
n∑

k=0

ck

( n∑

j=0

cj(ϕj , ϕk)
)

=
n∑

k=0

ck · 0 = 0 .

This contradicts the assumptions of the theorem.
Next, consider f∗ and g in U,

f∗ =
n∑

j=0

c∗jϕj , g =
n∑

j=0

cjϕj .

We shall show that, if any cj 6= c∗j , then ‖f − g‖2 is larger than ‖f − f∗‖2,
cf Figure 9.2. Since

f − g = f − f∗ + f∗− g = f − f∗ +
n∑

j=0

(c∗j−cj)ϕj ,

and (ϕj , f − f∗)= 0, j = 0, . . . , n, we see that f − f∗ and f∗− g are
orthogonal, and the Pythagorean law gives

‖f − g‖2
2 = ‖f−f∗‖2

2 +
∥∥

n∑

j=0

(c∗j − cj)ϕj

∥∥2

2
≥ ‖f − f∗‖2

2 .

Since ϕ0, ϕ1, . . . , ϕn are linearly independent, equality is obtained only
when c∗j−cj = 0, j =0, . . . , n.

Example. Determine the straight line f∗(x) = c0 + c1x, which is the best
approximation, in the least squares sense, to f(x) = sin(π

2 x) on the inter-
val [0, 1]. We have ϕ0(x) = 1, ϕ1(x) = x, and

(ϕ0, ϕ0) =
∫ 1

0
1 dx = 1 , (ϕ1, ϕ1) =

∫ 1

0
x2 dx = 1/3 ,

(ϕ0, ϕ1) = (ϕ1, ϕ0) =
∫ 1

0
x dx = 1/2

(f, ϕ0) =
∫ 1

0
sin(π

2 x) dx = 2/π , (f, ϕ1) =
∫ 1

0
x sin(π

2 x) dx = 4/π2 .

The normal equations are
(

1 1/2
1/2 1/3

)(
c0

c1

)
=

(
2/π
4/π2

)
,

and this linear system of equations has the solution

c0 =
8π − 24

π2
≃ 0.1148 , c1 =

48 − 12π

π2
≃ 1.0437 .

The approximation f∗(x) = 0.1148 + 1.0437x is shown with a dotted line in
Figure 9.1 on page 262.
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Now, let us study the discrete case in more detail, in order to see the
relation to the results in Section 8.14: For the sake of simplicity we let
wi = 1. The problem of minimizing

m∑

i=1

(
f(xi) − f∗(xi)

)2

is equivalent to determining the vector f∗
G
, which is closest (in the least

squares sense) to the vector f
G
. We can write f∗

G
in the form

f∗
G

= c0ϕ0G
+ c1ϕ1G

+ · · · + cnϕnG
= Ac ,

where

A =




ϕ0(x1) ϕ1(x1) · · · ϕn(x1)
ϕ0(x2) ϕ1(x2) · · · ϕn(x2)

...
...

...
ϕ0(xm) ϕ1(xm) · · · ϕn(xm)


 , c =




c0

c1
...

cn


 .

Thus, in the notation of Section 8.14, the coefficients should be deter-
mined as the least squares solution of the overdetermined system1)

Ac ≃ f
G

.

The associated normal equations, as defined in Theorem 8.14.2, are

AT A c∗ = AT f
G

.

We shall show that this linear system of equations is identical to (9.3.2):
In the kth equation (k = 0, 1, . . . , n) the coefficient of cj is

(AT A)k+1,j+1 = ϕT
kG

ϕjG
= (ϕk, ϕj) ,

and the right hand side is

(AT f
G
)k+1 = ϕT

kG
f

G
= (ϕk, f) .

Example. The Matlab function polyfit can be used to determine a least
squares polynomial fit in the discrete case. Let {(xi, yi)}m

i=1 be the given
data points, represented by the Matlab vectors x and y. Then

c = polyfit(x,y,n)

returns an (n+1)-vector c with the coefficients of the least squares polyno-
mial fit of degree n. The polynomial is represented in the form

c1x
n + c2x

n−1 + · · · + cnx + cn+1 .

1) A is an m×(n+1) matrix and we assume that m > n+1.
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The coefficients are computed by solving the overdetermined system Ac ≃ y
via QR factorization of A, see Section 8.15.

Finally, we shall give an alternative derivation of the normal equations.
Given f and {ϕj}n

j=0. We want to find the coefficients c∗0, c
∗
1, . . . , c

∗
n such

that the function

ψ(c0, c1, . . . , cn) =
m∑

i=1

wi (f(xi) − f∗(xi))
2

is minimized. ψ is a continuously differentiable function of c0, c1, . . . , cn

and at a minimal point of ψ we must have

∂ψ

∂ck
= 0, k =0, 1, . . . , n .

We shall show that this is equivalent to the normal equations.
For every k we have

∂ψ

∂ck
= −2

m∑

i=1

wi (f(xi) − f∗(xi))
∂f∗(xi)

∂ck
= 0 ,

or
m∑

i=1

wi (f(xi) − f∗(xi)) ϕk(xi) = 0 ,

or c0

m∑

i=1

wiϕk(xi)ϕ0(xi) + · · · + cn

m∑

i=1

wiϕk(xi)ϕn(xi)

=

m∑

i=1

wiϕk(xi)f(xi) .

We rewrite this in terms of scalar products,

c0(ϕk, ϕ0) + · · · + cn(ϕk, ϕn) = (ϕk, f), k = 0, 1, . . . , n .

This is recognized as the normal equations (9.3.2) on page 270.

9.4. Orthogonal Functions

According to Theorem 9.3.1 the least squares approximation of a given
function (or a given vector of function values) can be determined by
solving the normal equations. In practice this system of equations may
be ill-conditioned and numerical difficulties occur.



9.4. Orthogonal Functions 275

Example. Assume that a function f shall be approximated on the interval [0, 1]
by a polynomial f∗. If we represent the polynomial as a linear combination
of ϕj(x) = xj , j =0, 1, . . . , n, then we get

(ϕi, ϕj) =

∫ 1

0

xi+j dx =
1

i + j + 1
,

and the coefficient matrix in the normal equations is a so-called Hilbert ma-
trix . For n= 4 it has the form

H4 =




1 1/2 1/3 1/4
1/2 1/3 1/4 1/5
1/3 1/4 1/5 1/6
1/4 1/5 1/6 1/7


 .

Hilbert matrices are known to be ill-conditioned; the Hilbert matrix of or-
der n has condition number κ2(Hn) ≃ 101.5(n−1). Therefore, the simple
polynomials ϕj(x) = xj are not recommended as basis functions.

Instead, we can choose an orthogonal basis of the subspace U. We
shall show, that then this kind of numerical difficulties is avoided. If
(ϕj , ϕk)= 0 for j 6= k, then the normal equations (9.3.2) simplify to

(ϕk, ϕk)c
∗
k = (f, ϕk), k = 0, 1, . . . , n ,

and the coefficients for the best approximation are determined simply as

c∗k =
(f, ϕk)

(ϕk, ϕk)
, k =0, 1, . . . , n .

These coefficients are called orthogonal coefficients or Fourier coefficients.
Thus, the use of orthogonal basis functions gives a diagonal matrix in

the normal equations. There is a further advantage of orthogonal basis
functions: Assume that we have determined f∗

n, the best approximation
of f in the subspace spanned by ϕ0, . . . , ϕn. In order to determine f∗

n+1,
the best approximation of f in the subspace spanned by ϕ0, . . . , ϕn, ϕn+1,
we only need to know ϕn+1 and compute

c∗n+1 =
(f, ϕn+1)

(ϕn+1, ϕn+1)
.

Then f∗
n+1 = f∗

n + c∗n+1ϕn+1 .
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9.5. Orthogonal Polynomials

We now show how one can construct polynomials that are orthogonal
with respect to a given scalar product, and we start with an example.

Example. Construct polynomials P0, P1, P2 with degree Pk = k and orthogonal
with respect to the scalar product

(f, g) =

∫ 1

−1

f(x)g(x) dx .

We let

P0(x) = 1, P1(x) = x + a11, P2(x) = x2 + a21x + a22 ,

and determine the constants so that the orthogonality conditions are satis-
fied. The condition (P1, P0) = 0 gives

0 =
∫ 1

−1
(x + a11) dx = 2a11 .

Hence, a11 =0. Next, (P2, P0)= 0 and (P2, P1)= 0 lead to

0 =
∫ 1

−1
(x2 + a21x + a22) dx = 2

3 + 2a22 ,

0 =
∫ 1

−1
(x2 + a21x + a22)x dx = 2

3a21 .

The solution is a21 =0, a22 = − 1
3 , and the desired polynomials are the ones

discussed in the example on page 267,

P0(x) = 1, P1(x) = x, P2(x) = x2 − 1
3 .

Note that P1 has one zero, x∗ = 0, and P2 has two distinct zeros, x∗ =

±
√

1
3 ≃ ±0.5774. All of these zeros lie in the open interval ] − 1, 1[.

In general, let P0, P1, P2, . . . with degreePk = k be orthogonal on [a, b]
with respect to some weight function w(x). It can be shown that Pk has
k distinct zeros in ]a, b[.

The construction of orthogonal polynomials can often be simplified
by the following observation

Lemma 9.5.1. Let {Pi}n
i=0 be polynomials with degree Pi = i. The

polynomials form an orthogonal system if and only if

(Pk, x
j) = 0, j = 0, 1, . . . , k−1

for k = 1, . . . , n.

Proof. Assume that the polynomials P0, P1, . . . , Pn are an orthogonal
system. Then they are linearly independent (Exercise E3). Therefore,
xj can be expressed as a linear combination of them:
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xj =

j∑

r=0

αrjPr(x) .

Hence, (Pk, x
j) =

j∑

r=0

αrj(Pk, Pr) = 0 for j < k .

The converse follows similarly, since an arbitrary polynomial Pi can
be written as a linear combination of 1, x, . . . , xi.

An alternative way of constructing orthogonal polynomials is to use
the following theorem.

Theorem 9.5.2. For any scalar product there exists an essen-
tially unique sequence of orthogonal polynomials P0, P1, P2, . . . with
degree Pi = i. The coefficients of the highest power can be chosen
as arbitrary nonzero numbers. When these coefficients are fixed, the
orthogonal system is uniquely determined. The polynomials satisfy
the three-term recurrence

P0(x) = A0

P1(x) = (α0x − β0)P0(x)

Pk+1(x) = (αkx − βk)Pk(x) − γkPk−1(x), k = 1, 2, . . . ,

where

βk =
αk(xPk, Pk)

(Pk, Pk)
, k = 0, 1, 2, . . . ,

γk =
αk(Pk, Pk)

αk−1(Pk−1, Pk−1)
, k = 1, 2, . . . .

In the discrete case, with the grid x1, x2, . . . , xm, the last polynomial
in the sequence is Pm−1.

Proof. In the proof the polynomials are constructed by the same prin-
ciple as in the previous example. Put

P0(x) = A0

P1(x) = A1x + b = (α0x − β0)A0 ,

with α0 = A1/A0. The condition (P1, P0) = 0 gives
(
(α0x − β0)A0, A0

)
= α0(xP0, P0) − β0(P0, P0) = 0 ,

which is satisfied by the β0 given in the theorem.
Now, assume that we have constructed orthogonal polynomials P0, P1,
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. . . , Pk, with Pj(x) = Ajx
j + · · · . Then Pk+1(x) = Ak+1x

k+1 + · · ·
shall be determined so that

(Pk+1, Pj) = 0, j = 0, 1, . . . , k . (9.5.1)

With Ak+1 = αkAk the difference Pk+1(x)−αkxPk(x) is a polynomial
of degree at most k, so that we can write

Pk+1(x) = αkxPk(x) −
k∑

i=0

akiPi(x) . (9.5.2)

Because of the orthogonality of the polynomials {Pi}k
i=0 we get

(Pk+1, Pj) = αk(xPk, Pj) − akj(Pj , Pj), j = 0, 1, . . . , k . (9.5.3)

Since (xPk, Pj) = (Pk, xPj) and xPj is a polynomial of degree j+1, it
follows by repeated use of Lemma 9.5.1 that (xPk, Pj)= 0 for j ≤ k− 2
and hence,

akj = 0, j =0, 1, . . . , k−2 .

Therefore, if we put akk = βk as given in the theorem, then the con-
dition (9.5.1) is also satisfied for j = k. For j = k− 1 condition (9.5.1)
is satisfied for

ak,k−1 =
αk(xPk, Pk−1)

(Pk−1, Pk−1)
.

This can be simplified. To do that, we note that (xPk, Pk−1) =
(Pk, xPk−1), and according to the assumption Pk is given by the re-
currence. Therefore

αk−1xPk−1(x) = Pk(x) + βk−1Pk−1(x) + γk−1Pk−2(x) ,
and

(xPk, Pk−1) =
(Pk, Pk) + βk−1(Pk, Pk−1) + γk−1(Pk, Pk−2)

αk−1
=

(Pk, Pk)

αk−1
,

so that

(Pk+1, Pk−1) =
αk

αk−1
(Pk, Pk) − ak,k−1(Pk−1, Pk−1) .

This is zero when we choose ak,k−1 = γk as given in the theorem.

It only remains to show that the sequence ends with Pm−1 in the dis-
crete case: The degree m polynomial

Qm(x) = (x − x1)(x − x2) · · · (x − xm)
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is orthogonal to P0, . . . , Pm−1, since for arbitrary j ≤m−1 we have

(Qm, Pj) =
m∑

i=1

wiQm(xi)Pj(xi) = 0 .

The polynomial Pm is essentially unique, and therefore it must be a
multiple of Qm, say Pm = cQm, and

‖Pm‖2 = |c| · ‖Qm‖2 = 0 .

This means that Pm cannot be a member of the orthogonal system.

Example. Construct polynomials P0, P1, P2 with leading coefficient 1 and
orthogonal with respect to the scalar product

(f, g) =

3∑

i=1

f(xi)g(xi), x1 = −
√

3
2 , x2 = 0, x3 =

√
3

2 .

(The reason for choosing these points will be apparent in Section 9.7).

We use the formulas in Theorem 9.5.2 with A0 = 1 and αk =1. This gives
P0(x)= 1 and (P0, P0) = 3, (xP0, P0) = x1 + x2 + x3 = 0 .

Therefore, β0 = 0, and P1(x) = xP0(x) = x .

For the next step we compute

(P1, P1) = x2
1 + x2

2 + x2
3 = 3

2 , (xP1, P1) = x3
1 + x3

2 + x3
3 = 0 ,

β1 = 0, γ1 = 3/2
3 = 1

2 , and P2(x) = x2 − 1
2 .

When the coefficients {cj} and the parameters {βj} and {γj} are
known, then we can use the recurrence in Theorem 9.5.2 to evaluate the
approximating polynomial

f∗(x) = c0P0(x) + c1P1(x) + · · · + cnPn(x)

for any x. This is illustrated in the following example.

Example. Given the points (x1, y1), . . . , (xm, ym) and associated weights w1,
. . . , wm. The following Matlab function computes the least squares poly-
nomial fit of degree n to these data points. The fit has the form

f∗(x) = c0P0(x) + c1P1(x) + · · · + cnPn(x)

where the {Pj} have leading coefficient 1 and are orthogonal with respect to
the scalar product

(f, g) =

m∑

i=1

wif(xi)g(xi) .

The function returns the coefficients c0, c1, . . . , cn in the (n+1)-array c, and
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the recurrence parameters {βk} and {γk} are returned in arrays b and g,
respectively.

function [b,g,c] = orthpolfit(x,y,w,n)

% Weighted least squares fit with degree n polynomial

x = x(:); y = y(:); w = w(:); % column vectors

m = length(x);

b = zeros(1,max(1,n)); g = b; % for beta_k and gamma_k

P = [zeros(m,1) ones(m,1)]; % values of two most recent pol.s

s = [0 sum(w)]; % two most recent (P_j,P_j)

c = [sum(w.*y)/s(2) zeros(1,n)]; % for c_j, j = 0,...,n

for k = 1 : n

b(k) = sum(w .* x .* P(:,2).^2)/s(2); % beta_(k-1)

if k == 1

g(k) = 0;

else

g(k) = s(2)/s(1); % gamma_(k-1)

end

P = [P(:,2) (x - b(k)).*P(:,2) - g(k)*P(:,1)]; % P_k in P(:,2)

s = [s(2) sum(w .* P(:,2).^2)]; % (P_k,P_k) in s(2)

c(k+1) = sum(w .* P(:,2) .* y)/s(2);

end

With the elastic spring data from the example on page 244 and weights
wi = 1 we get

>> x = 0.8*(1:5); y = [7.97 10.2 14.2 16 21.2];

>> [b,g,c] = orthpolfit(x,y,ones(1,5),1)

b = 2.4000

g = 0

c = 13.9140 4.0325

This shows that the least squares fit with a first degree polynomial is

f∗(x) = 13.9140 + 4.0325(x − 2.40) = 4.2360 + 4.0325x .

The result naturally agrees with the result found in the example on page 248.

A polynomial found by means of orthpolfit can be evaluated for arbitrary
x by means of the following Matlab function. The function takes x as a
vector, so that we simultaneously compute f∗ at several sites. This is useful,
eg, if we want to plot f∗.

function f = orthpolval(b,g,c,x)

% Value of orthogonal polynomial expansion

n = length(c)-1;

m = length(x); % number of simultaneous arguments

P = ones(m,2); % for values of two consecutive polynomials

f = c(1) * P(:,2); % initialize

for j = 1 : n
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P = [P(:,2) (x(:) - b(j)).*P(:,2) - g(j)*P(:,1)];

f = f + c(j+1)*P(:,2);

end

As an example consider the third degree polynomial least squares approx-
imation to f(x) = sin(π

2 x) on the grid xi = cos iπ
10 , i= 0, 1, . . . , 10. The

following Matlab code plots the error sin(π
2 x) − f∗(x).

>> x = cos((0:10)*pi/10); y = sin(0.5*pi*x);

>> [b g c] = orthpolfit(x,y,ones(11,1),3);

>> t = linspace(0,1,201)’;

>> plot(t, sin(0.5*pi*t)-orthpolval(b,g,c,t))

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−2
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x 10

−3

Figure 9.3. Error sin(π
2 x) − f∗(x), where f∗ is a

degree 3 polynomial, found by least squares.

In the next two sections we look at special types of orthogonal polyno-
mials that are frequently used in applications. Both of them are defined
on [−1, 1]. An arbitrary, finite interval a ≤ x ≤ b can be transformed to
−1 ≤ t ≤ 1 by the simple transformation

t =
2x − (b + a)

b − a
. (9.5.4)

9.6. Legendre Polynomials

The Legendre polynomials Pn are defined for n ≥ 0 and −1 ≤ x ≤ 1 by

Pn(x) =





1 , n = 0 ,

1

2n · n!

dn

dxn
(x2 − 1)n , n ≥ 1 .

Since (x2 − 1)n is a polynomial of degree 2n, it is seen that Pn is a
polynomial of degree n. The first five Legendre polynomials are
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P0(x) = 1, P1(x) = x, P2(x) =
1

2
(3x2 − 1) ,

P3(x) =
1

2
(5x2 − 3x), P4(x) =

1

8
(35x4 − 30x2 + 3) .

They are shown in Figure 9.4.
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Figure 9.4. Legendre polynomials Pj.

In general it holds that |Pn(x)| ≤ 1 for x∈ [−1, 1] . Further, Pn has n
distinct zeros in ] − 1, 1[ , and between these zeros, Pn has maxima and
minima, whose magnitude decrease towards the midpoint of the interval.
It can be shown that the Legendre polynomials are orthogonal on the
interval [−1, 1] with respect to the weight function w(x) = 1, ie

∫ 1

−1
Pi(x)Pj(x) dx = 0 for i 6= j .

Further, ∫ 1

−1
P 2

n(x) dx =
2

2n + 1
.

If we compare the Legendre polynomials with the orthogonal polynomials
constructed in the example on page 276, we see that they are identical
except for a factor. The Legendre polynomials are normalized so that
Pn(1) = 1 for all n. They can be generated by the three-term recurrence
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P0(x) = 1 , P1(x) = x ,

Pn+1(x) =
2n + 1

n + 1
xPn(x) − n

n + 1
Pn−1(x), n = 1, 2, . . . .

It follows that
Pn(−x) = (−1)nPn(x) .

Example. We illustrate the use of orthogonal polynomials by determining the
second degree polynomial f∗ that minimizes

∫ 1

−1

(
x3 − f∗(x)

)2
dx .

In other words, we shall approximate x3 by a lower degree polynomial, using
the least squares method. We put

f∗(x) = c0P0(x) + c1P1(x) + c2P2(x) ,

where {Pj} are Legendre polynomials. We shall determine the Fourier coef-
ficients

cj =
(x3, Pj)

(Pj , Pj)
, j = 0, 1, 2 ,

and get

(x3, P0) =
∫ 1

−1
x3 dx = 0, c0 = 0 ,

(x3, P1) = 2
5 , (P1, P1) = 2

3 , c1 = 3
5 ,

(x3, P2) = 0, c2 = 0 .

Thus, f∗(x) = 3
5x. Note that x3 − f∗(x) = 2

5P3(x).

The result could have been obtained directly by use of the following
theorem.

Theorem 9.6.1. Given the scalar product

(f, g) =

∫ b

a
w(x)f(x)g(x) dx

and the corresponding orthogonal polynomials p0, p1, . . . , pn, all with
leading coefficient equal to 1. Let qn be an arbitrary degree n poly-
nomial with leading coefficient equal to 1. Then

∫ b

a
w(x)q2

n(x) dx

is minimized when qn = pn.
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Proof. Express qn as a linear combination of the orthogonal polynomials
p0, p1, . . . , pn:

qn = pn +

n−1∑

k=0

akpk .

Then ∫ b

a
w(x)q2

n(x) dx = (qn, qn) = (pn, pn) +
n−1∑

k=0

a2
k(pk, pk) .

This is minimized when a0 = a1 = · · · = an−1 = 0.

9.7. Chebyshev Polynomials

The Chebyshev polynomials Tn are defined for n≥ 0 and −1≤x≤ 1 by

Tn(x) = cos(n arccos x) . (9.7.1)

In order to derive a three-term recursion for Chebyshev polynomials, we
introduce u = arccos x and make use of a well-known formula for the sum
of two cosines:

Tn+1(x) + Tn−1(x) = cos
(
(n + 1)u

)
+ cos

(
(n− 1)u

)

= 2 cos u · cos nu = 2x · Tn(x) .

This can be used for n≥ 1, and we see that the Chebyshev polynomials
can be generated by the recurrence

T0(x) = 1 , T1(x) = x ,

Tn+1(x) = 2x Tn(x) − Tn−1(x), n = 1, 2, . . . .

This formula also shows that the functions defined by (9.7.1) are indeed
polynomials. The first five of them are

T0(x) = 1, T1(x) = x, T2(x) = 2x2 − 1 ,

T3(x) = 4x3 − 3x, T4(x) = 8x4 − 8x2 + 1 .

They are shown in Figure 9.5.
From the recurrence formula it follows that Tn(x) = 2n−1xn + . . . for

n≥ 1, and that
Tn(−x) = (−1)nTn(x) .
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Figure 9.5. Chebyshev polynomials Tj.

In Section 9.9 we shall make use of some properties of Chebyshev
polynomials. The zeros x1, . . . , xn of Tn (sometimes called Chebyshev
nodes) can be found from (9.7.1):

Tn(xi) = cos(n arccos xi) = 0 .

This is satisfied by n arccos xi = (2i− 1)π
2 , or

xi = cos
(2i − 1

2n
π
)
, i = 1, 2, . . . , n . (9.7.2)

As n grows, the zeros concentrate more and more close to the endpoints
−1 and +1.

The Chebyshev polynomial Tn assumes the extreme values −1 and
+1 at the n+1 points x̃0, x̃1, . . . , x̃n given by

Tn(x̃k) = cos(n arccos x̃k) = (−1)k .

This leads to

x̃k = cos
(k

n
π
)
, k = 0, 1, . . . , n . (9.7.3)

Note that the two endpoints x̃0 =1 and x̃n = − 1 are included in this
point set.
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We shall now show that Chebyshev polynomials are orthogonal on
[−1, 1] with respect to the weight function w(x) = 1/

√
1 − x2:

(Tj , Tk) =

∫ 1

−1

Tj(x)Tk(x)√
1 − x2

dx =

∫ π

0
Tj(cos u)Tk(cos u) du

=

∫ π

0
cos ju cos ku du

= 1
2

∫ π

0

(
cos(j+k)u + cos(j−k)u

)
du =





0 , j 6= k ,
1
2π , j = k 6= 0 ,
π , j = k = 0 .

It can also be shown that T0, T1, . . . , Tm are orthogonal with respect to
the scalar product

(f, g) =
m+1∑

i=1

f(xi)g(xi) ,

where the xi are the zeros of Tm+1. Note that wi = 1 in the discrete case.

Example. The zeros of T3 are

x1 = cos( 1
6π) =

√
3

2 , x2 = cos( 3
6π) = 0 , x3 = cos( 5

6π) = −
√

3
2 .

These were the points used to define the scalar product in the first example
on page 279. The polynomials found there have leading coefficient 1, and
they are P0(x) = T0(x), P1(x) = T1(x) and P2(x) = 1

2T2(x).

The following theorem expresses the important “minimax property”
of Chebyshev polynomials.

Theorem 9.7.1. Among all degree n polynomials with 1 as the lead-
ing coefficient, the polynomial 2−(n−1)Tn has the smallest maximum
norm on the interval [−1, 1].

Proof. By contradiction. Assume that there exists a polynomial pn 6=
2−(n−1)Tn, such that

pn(x) = xn +
n−1∑

r=0

arx
r

and |pn(x)| < 2−(n−1) for all x ∈ [−1, 1] .

Tn has extrema in the points x̃i given by (9.7.3). The values of pn in
these points satisfy
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pn(x̃0) < 2−(n−1)Tn(x̃0) = 2−(n−1) ,

pn(x̃1) > 2−(n−1)Tn(x̃1) = −2−(n−1) ,

pn(x̃2) < 2−(n−1)Tn(x̃2) = 2−(n−1) ,

etc

This can be reformulated to

pn(x̃0) − 2−(n−1)Tn(x̃0) < 0 ,

pn(x̃1) − 2−(n−1)Tn(x̃1) > 0 ,

pn(x̃2) − 2−(n−1)Tn(x̃2) < 0 ,

etc

The polynomial pn−2−(n−1)Tn has degree ≤ n−1 and a zero in each of
the intervals ]x̃i, x̃i−1[, i = 1, 2, . . . , n. Hence, the polynomial has (at
least) n zeros. This is not possible, unless the polynomial is identically
equal to zero.

The theorem is illustrated in Figure 9.6 in the case n =4. The solid
line shows 1

8T4, and the dashed line shows another degree 4 polynomial
with leading coefficient 1. The scaled Chebyshev polynomial stays within
the band ±0.125, while the other polynomial has values outside this band.

−1 −0.5 0 0.5 1
−0.2

0

0.2

0.4

Figure 9.6. Minimax property of Chebyshev polynomial.

The following example shows how the minimax property of Chebyshev
polynomials can be used when we want to minimize the maximum norm
of the error function.

Example. Determine the polynomial f∗ of degree ≤ 3, which minimizes

max
−1≤x≤1

|x4 − f∗(x)| .

We use the fact that 1
8T4(x) = x4 −x2 + 1

8 is the degree 4 polynomial with 1
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as leading coefficient, that has the smallest maximum norm on [−1, 1], and
choose f∗ so that x4 − f∗(x) = 1

8T4(x), ie

f∗(x) = x2 − 1
8 .

Note that the error function oscillates between its extrema ± 1
8 in five points.

In Theorem 9.9.2 we shall see that this behaviour is characteristic of the
error function corresponding to the best – in the maximum norm sense –
polynomial approximation to a continuous function.

9.8. Discrete Cosine Transform (DCT)

In this section we shall give a short introduction to the discrete cosine
transform (DCT ), which is widely used in signal processing and image
analysis.

We first consider the one-dimensional version of DCT. A discrete sig-
nal of length m is a vector in R

m. We can think of the signal as a vector
f

G
of values of some function f , corresponding to equidistant arguments,

and we choose to let these arguments be the grid G = {xl}m
l=1 defined by

xl =
(2l − 1)π

2m
, l = 1, 2 . . . , m . (9.8.1)

The grid corresponds to values of the independent variable x in the in-
terval [0, π]. In order to find an approximation of f in this interval we
choose the basis functions

ϕk(x) = αk cos kx, αk =

{√
1/m , k = 0

√
2/m , k > 0 .

(9.8.2)

Theorem 9.8.1. The functions ϕ0, ϕ1, . . . , ϕm−1, defined by (9.8.2)
form an orthonormal system with respect to the scalar product

(u, v) =
m∑

l=1

u(xl) · v(xl) ,

where the arguments xl are given by (9.8.1).
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Proof. Let i denote the imaginary unit and use Euler’s formula

eix = cos x + i sinx .
This is equivalent to

cos x = 1
2

(
eix + e−ix

)
,

and we see that

cos kxl = 1
2(eik(2l−1) π

2m + e−ik(2l−1) π
2m ) = 1

2(ζ2l−1
k + ζ

2l−1
k ) ,

where ζk = eik π
2m and ζk is the complex conjugate, ζk = ζ−1

k = e−ik π
2m .

We insert this expression in the scalar product:

(ϕj , ϕk) = 1
4αjαk

m∑

l=1

(ζ2l−1
j + ζ

2l−1
j )(ζ2l−1

k + ζ
2l−1
k )

= 1
4αjαk

m∑

l=1

(β2l−1
jk + β

2l−1
jk + γ2l−1

jk + γ2l−1
jk ) , (9.8.3)

where βjk = ζjζk = ei(j+k) π
2m , γjk = ζjζk = ei(j−k) π

2m .

We first show orthogonality, ie (ϕj , ϕk)= 0 for j 6= k:
Since 0< j+k < 2m, we see that βjk 6= 1, and

m∑

l=1

β2l−1
jk = βjk

(
1 + β2

jk + · · ·β2(m−1)
jk

)
= βjk

1 − β2m
jk

1 − β2
jk

.

In the reformulation we used the formula for the sum of a geometric
series. Similar expressions are found for the other contributions to
the sum in (9.8.3), and using the fact that βjk = 1/βjk we get

m∑

l=1

(β2l−1
jk + β

2l−1
jk ) = βjk

1 − β2m
jk

1 − β2
jk

+ βjk

1 − β
2m
jk

1 − β
2
jk

=
1 − β2m

jk − (1 − β
2m
jk )

βjk − βjk

=
β

2m
jk (1 − β4m

jk )

βjk − βjk

=
β

2m
jk (1 − ei(j+k)·2π)

βjk − βjk

= 0 .

Similarly, we see that
m∑

l=1

(γ2l−1
jk + γ2l−1

jk ) = 0 ,

and we have proved the orthogonality.
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To show that (ϕk, ϕk)= 1, we first note that β00 = γ00 = 1, and (9.8.3)
takes the form

(ϕ0, ϕ0) = 1
4α2

0

m∑

l=1

4 =
1

4m
· 4m = 1 .

Next, for k = 1, 2, . . . , m−1 we see that βkk 6= 1, and proceeding as
above we see that the terms in (9.8.3) with βkk and βkk sum to zero,
while γkk = 1, and

(ϕk, ϕk) = 1
4α2

k

m∑

l=1

2 =
2

4m
· 2m = 1, k = 1, 2, . . . , m−1 .

This finishes the proof.

The functions ϕj , j = 1, 2, 3, 4 are shown in Figure 9.7. Their ampli-
tude is

√
2/m, but their shapes are independent of m.
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Figure 9.7. Basis functions for the cosine transform. m= 100.

Now we introduce the vectors ϕjG
∈R

m, j = 0, 1, . . . , m−1 with (ϕjG
)l

=ϕj(xl), l =1, 2, . . . , m. According to the proof of Theorem 9.8.1 these
vectors are orthogonal and have norm 1. This means that we can use
them as an orthonormal basis in the space R

m. In other words, we can
write

f
G

=
m−1∑

j=0

cjϕjG
, cj = ϕT

jG
f

G
. (9.8.4)

The expression for the coefficient cj follows from the discussion in Sec-
tion 9.4.
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The discrete cosine transform (DCT ) of the signal f
G
∈R

m is the
coefficient vector

c = (c0, c1, . . . , cm−1)
T ,

and the relation (9.8.4) is known as the inverse discrete cosine transform
(IDCT ); it can be used to compute the signal from its DCT.

Example. The following Matlab functions compute the DCT and the IDCT.2)

function c = dct(f)

% Discrete cosine transform of f.

% Columnwise if f is a matrix

[m n] = size(f); alpha = sqrt(2/m);

x = ([1:m] - 0.5)*(pi/m); % grid as row vector

c = [sum(f)/sqrt(m) % constant term

zeros(m-1,n)]; % placeholder for c_1,...,c_(m-1)

for k = 1 : m-1

c(k+1,:) = alpha * (cos(k*x) * f);

end

function y = idct(c)

% Inverse DCT. Columnwise if c is a matrix

[m n] = size(c); alpha = sqrt(2/m);

x = ([1:m]’ - 0.5)*(pi/m); % grid as column vector

y = repmat(c(1,:)/sqrt(m),m,1); % initialize with constant term

for k = 2 : m

if any(c(k,:) ~= 0)

y = y + cos((k-1)*x) * (alpha*c(k,:));

end

end

Returning to (9.8.4), we see that the vector ϕkG
corresponds to an

oscillation with frequency 1
2k, and the contribution cjϕjG

has amplitude
|cj |αj . Typically, a signal contains “noise”, ie each component in f

G
has

an error. The information that we are interested in is often contained in
the small frequencies, while the noise has components with all frequencies.
The vector

f∗
G

=
n∑

j=0

cjϕjG
, cj = ϕT

jG
f

G
,

with n <m−1 is the least squares fit to f
G

by a linear combination of

2) It should be mentioned that these functions use O(m2) flops to compute a signal.
A more efficient implementation, that only needs O(n log n) flops, makes use of
the so-called Fast Fourier Transform, FFT, which, however, is outside the scope
of this book.
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{ϕjG
}n

j=0. (Show that!) The vector is obtained by cutting off the high
frequency components of the noise (we talk of a “low pass filter”).

Example. The upper part of Figure 9.8 shows a signal with m= 100 points,
and the signal contaminated with noise.
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Figure 9.8. Noise reduction by DCT.

The signal with noise is given in a vector fG, and the lower left part of the
figure shows the DCT of the signal, computed by the command.

>> c = dct(fG);

For j > 8 the coefficients cj are dominated by noise, and the commands3)

>> c(10:end) = 0; y = idct(c);

gives the smoothed signal, shown in the lower right subplot. We see a good
agreement between this plot and the original noise-free signal.

Example. The DCT is closely connected with Fourier analysis: It can be shown
that if f is periodic with period 2π, and has a continuous first derivative,
then the Fourier series

f(x) = 1
2a0 +

∞∑

k=1

(ak cos kx + bk sin kx)

3) Remember that the coefficient cj is found in c(j+1).
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converges uniformly. Therefore, it is reasonable to approximate f by a
“trigonometric polynomial”

f∗(x) = 1
2a0 +

n∑

k=1

(ak cos kx + bk sin kx) .

We use Euler’s formula and define a−k = ak, b−k = bk, b0 =0 and ck =
1
2 (ak − ibk). Then, we can express f∗ in the form

f∗(x) = 1
2

n∑

k=−n

(ak − ibk)eikx =
n∑

k=−n

ckeikx . (9.8.5)

Similar to the proof of Theorem 9.8.1 we can show that the functions

ψj(x) = eijx, −m/2 < j < m/2

are orthogonal on the grid

G = {x1, x2, . . . , xm}, xr = (r−1)
2π

m
,

with respect to the scalar product

(u, v) =
m∑

l=1

u(xl)v(xl) .

The discrete Fourier transform (DFT ) of the signal f
G

is the complex valued
vector c defined by

c = (c0, c1, . . . , cm−1)
T , ck =

m∑

r=1

fre
−ikxr ,

while the inverse DFT is the vector4)

y = (y1, y2, . . . , ym)T , yr =
1

m

m−1∑

j=0

cje
ijxr .

The computation is performed by means of FFT in the Matlab functions
fft and ifft. As with the DCT we can smooth a noisy signal by putting
large frequency components to zero.

It is outside the scope of this book to discuss the relative merits of DCT and
Fourier transformation when applied to signal and image processing.

Now, we generalize DCT to two dimensions: An image is an m1×m2

matrix F of pixel values. We can think of the image as values of a function
f(x, y), where we associate x with rows in F and y with columns. The
DCT of F is the set of coefficients ckj in the relation

4) Without giving details, this can be shown to be equivalent to the formulation
in (9.8.5). The last half of the vector c corresponds to coefficients with negative
index.
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f(xr, ys) =

m1−1∑

k=0

m2−1∑

j=0

ckjα
x
kαy

j cos kxr cos jys ,

where the grids {xr} and {ys} are defined as in (9.8.1), with m replaced by
m1 and m2, respectively. Similarly the normalization factors α are given
by (9.8.2). The coefficients are conveniently stored in m1×m2 matrix C
(with ckj found in position (k+1, j+1)).

The transformation is computed in two steps. First, each column in
F is a signal with m1 elements, and the command

>> B = dct(F);

gives an m1×m2 matrix B, where bk+1,s is the factor in the contribution
bk(ys)α

x
k cos(kx) to the approximation of f(x, ys). Thus, the (k+1)st row

in B is a signal consisting of m2 discrete values of this function of y. The
DCT of this signal is given by the vector

>> d = dct(B(k+1.:)’);

The transposed of this vector is the (k+1)st row in C. The command

>> CT = dct(B’);

returns the transposed of the matrix C. Similarly, the IDCT splits in
two steps, that have to be made in reverse order. The two steps can be
combined into one Matlab command:

>> Y = idct( (idct(CT)’ );

As in the one-dimensional case we can smooth the image by putting
ckj =0 for large frequencies. We shall demonstrate another use of DCT,
viz data compression. In practice m1 and m2 may be large, and the
storage of the m1∗m2 pixel values needs a large chunk of memory. Also,
electronic transfer of a large image may be very time consuming. There-
fore, there has been intensive research in different ways of reducing the
amount of data without loosing too much of the information.

Example. The simplest idea is simply to remove all components whose absolute
value is smaller than a certain threshold thr, and compute the IDCT.

>> i = find(abs(CT) < thr); CT(i) = 0;

>> Y = idct( (idct(CT))’ );

This simple way of compressing an image is not very good (we return
to it in a computer exercise). A reason for this is that if a certain basis
function corresponding to cos kx· cos jy gives a significant contribution in
one part of the image, then it is used in the entire image. As discussed in
the chapters on interpolation and integration, we often get better results
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by applying a “divide-and-conquer” strategy. One of the more successful
algorithms is JPEG5) . Assume that both m1 and m2 are multiples of 8,
mr = 8qr, r = 1, 2. Divide the image into q1×q2 blocks, each block con-
sisting of 8×8 neighbouring pixels. Compute the two-dimensional DCT
for each block, and keep only components with absolute values above a
certain threshold. Thus, the contribution of cos kx· cos jy is kept only in
those parts of the picture, where it is needed.

Example. Figure 6.6 on page 158 shows an image with m1 =m2 =128. In
Figure 9.9 we show a JPEG version of it, computed with the threshold
value 2. For comparison, the largest of all the 16 ∗ 16 ∗ 82 DCT components
is 495.
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Figure 9.9. Left: JPEG version of the image on page 158.

Right: Number of DCT component kept in each block.

The right part of Figure 9.9 shows the number of DCT components kept
in each of the 16×16 blocks. The rectangle in the lower right part of the
image has constant pixel values, and we only need the DCT component c00.
The other extreme is a sharp edge, which is not parallel to the x-axis or the
y-axis. There we may have to keep almost all the 64 DCT components of
the block. The total picture needs 3082 components, so in this case we save
about 81% of the 1282 = 16384 pixel values, and there is no discernible loss
of detail. For larger pictures without too many sharp edges the saving may
be even larger.

It is outside the scope of this book to discuss how to avoid storing the zeros
in the DCT, and how to exploit the zeros during the inverse transform.

5) Acronym for Joint Photographic Experts Group.



296 9. Approximation

9.9. Minimax Approximation –
Chebyshev Approximation

In this section we shall consider polynomial approximation of a function
f ∈C[a, b] (the continuous case) when the norm is defined as

‖g‖∞ = max
a≤x≤b

|g(x)| .

It can be shown that also with respect to this norm, there exists a uniquely
defined polynomial p∗n of degree ≤ n, such that

En(f) = ‖f − p∗n‖∞ ≤ ‖f − pn‖∞
for all polynomials pn of degree ≤ n.

According to a theorem of Weierstrass, any function f ∈C[a, b] can be
approximated arbitrarily well by a polynomial, ie En(f) → 0 as n → ∞.
There is also a known relation between the regularity properties of f and
the behaviour of En(f) for large n. If, eg, f is k times continuously
differentiable, then En(f) = O(1/nk) as n → ∞.

It is considerably more difficult to determine p∗n than to determine
the least squares approximation. Therefore, we start by describing some
simple methods for approximate determination of p∗n. For simplicity, we
assume that the interval has been transformed to [−1, 1], cf (9.5.4).

First, p∗n can be approximated by an interpolating polynomial. The
simplest choice is to take equidistant interpolation points, but Runge’s
phenomenon (Figure 5.5 on page 118) illustrates that this is a bad choice
when we want the error to be small in all parts of the interval. The figure
shows that there are large errors close to the endpoints of the interval.
This suggests that we should put more interpolation points close to x=−1
and x=1, in order to force the interpolating polynomial better to follow
the given curve there. Such a distribution of points is obtained if we use
the Chebyshev nodes (9.7.2) defined as the roots of Tn+1. More specific,
use the n+1 interpolation points

xi = cos
( 2i +1

2(n+1)
π), i=0, 1, . . . , n .

This so-called Chebyshev interpolation can be expected to give a good
approximation to p∗n. Another motivation for this choice of interpolation
points is provided by Theorem 5.2.2: If f is n+1 times continuously
differentiable, then the error is
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f(x) − pn(x) =
f (n+1)(ξ(x))

(n + 1)!
(x − x0)(x − x1) · · · (x − xn) .

In order to minimize ‖f−pn‖∞, the interpolation points should be chosen
so that

max
−1≤x≤1

|(x − x0)(x − x1) · · · (x − xn)|

is minimized, and according to Theorem 9.7.1 this is the case when

(x − x0)(x − x1) · · · (x − xn) = 2−nTn+1(x) ,

ie, when x0, x1, . . . , xn are the roots of Tn+1.
For f ∈C[−1, 1] it can be shown that the magnitude of the error in

Chebyshev interpolation is at most 4En(f) if n≤ 20, and at most 5En(f)
if n≤ 100. This means that the method gives a good approximation to
the minimax approximation p∗n.

Example. Compute an approximation to the polynomial c∗0+c∗1x that minimizes

ψ(c0, c1) = max
0≤x≤1

∣∣sin
(π

2
x
)
− (c0 + c1x)

∣∣ .

First, we make a transformation of variables

x = 1
2 (t + 1)

to get the standard interval [−1, 1]. This gives

ψ(c0, c1) = max
−1≤t≤1

∣∣sin
(π

4
(t + 1)

)
− (c0 + 1

2c1(t + 1))
∣∣ .

Put a0 = c0 + 1
2c1, a1 = 1

2c1 and f(t) = sin(π
4 (t + 1)). Then the problem is

to compute a0, a1 so as to minimize
max

−1≤t≤1
|f(t) − (a0 + a1t)| .

Chebyshev interpolation means that a0 and a1 are determined so that

a0 + a1ti = f(ti) , i = 1, 2 ,

where t1 and t2 are the roots of T2(t) = 2t2 − 1, ie t1 = −1/
√

2, t2 = 1/
√

2.
We therefore get the linear system of equations

(
1 −1/

√
2

1 1/
√

2

) (
a0

a1

)
=

(
sin(π

4 (1 − 1/
√

2))

sin(π
4 (1 + 1/

√
2))

)
,

which has the solution a0 ≃ 0.60084, a1 ≃ 0.52725, so that we get

c+
0 ≃ 0.07359, c+

1 ≃ 1.0545 .

The corresponding error function has largest absolute value for x=1,
f(1) − f+(1) ≃ −0.1281.

In the example on page 300 we shall see that
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c∗0 ≃ 0.1053, c∗1 = 1, ‖f − f∗‖∞ ≃ 0.1053 .

Thus, in this case the approximate minimax approximation gives a maximum
error that is about 0.1281/0.1053 ≃ 1.22 times larger than the maximum
error in the true minimax approximation.

In this example, with a low degree polynomial, it was easy to compute
the coefficients a0 and a1 as the solution to the linear system of equations.
For higher degrees of the approximating polynomial it is advantageous to
interpret the interpolation problem as a least squares problem, and use
orthogonal polynomials to solve that. We illustrate this technique by the
same problem.

Example. We seek a0, a1 so that

2∑

i=1

(f(ti) − (a0 + a1ti))
2

is minimized. The Chebyshev polynomials T0 and T1 are orthogonal with
respect to the scalar product

(g, h) =
2∑

i=1

g(ti)h(ti) .

Therefore, we express the approximating polynomial in terms of Chebyshev
polynomials,

a0 + a1t = a0T0(t) + a1T1(t) .

The coefficients are now obtained directly as orthogonal coefficients

ak =
(f, Tk)

(Tk, Tk)
=

∑2
i=1 f(ti)Tk(ti)∑2

i=1 T 2
k (ti)

, k = 0, 1 .

With f(t) = sin(π
4 (t + 1)), t1 = −1/

√
2, t2 = 1/

√
2 we get

a0 =
(
sin(π

4 (1 + 1/
√

2)) + sin(π
4 (1 − 1/

√
2))

)
/2 ≃ 0.60084 ,

a1 =
(
sin(π

4 (1 + 1/
√

2)) − sin(π
4 (1 − 1/

√
2))

)
/
√

2 ≃ 0.52725 .

We get the same values as before, of course.

An alternative way to compute an approximation to the true minimax
polynomial approximation of f on [−1, 1] is to find the best approxima-
tion of f in the Euclidean norm with weight function w(x)= 1/

√
1−x2.

Intuitively we see that the weighted Euclidean norm of the error function
can be small only if the error function itself is specially small close to the
endpoints −1 and 1. To study this technique more closely we first define
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the notion of an orthogonal expansion.

Definition 9.9.1. Let ϕ0, ϕ1, ϕ2, . . . be an orthogonal system of
polynomials with respect to the scalar product

(g, h) =

∫ b

a
w(x)g(x)h(x) dx .

The expansion
∞∑

j=0

cjϕj(x) with cj = (f, ϕj)/(ϕj , ϕj)

is called an orthogonal expansion of the function f .

From the discussion earlier in this chapter we know that, among all
polynomials of degree ≤ n, the partial sum pn =

∑n
j=0 cjϕj is the best

approximation to f , with respect to the weighted Euclidean norm ‖ ·‖2,w.
As before, let p∗n be the best (with respect to the Chebyshev norm)

approximation to f among all polynomials of degree ≤ n. Then

‖f − pn‖2
2,w ≤ ‖f − p∗n‖2

2,w =

∫ b

a
w(x)

(
f(x) − p∗n(x)

)2
dx

≤ max
a≤x≤b

|f(x) − p∗n(x)|2
∫ b

a
w(x) dx

= E2
n(f)

∫ b

a
w(x) dx .

Since En(f) → 0 as n → ∞ (see page 296), we also get

‖f − pn‖2,w → 0 as n → ∞ .

Only in certain special cases, however, does pn converge uniformly to f .
This is the case, eg, if f is twice continuously differentiable in [−1, 1], and
the ϕj are chosen as Chebyshev polynomials. A truncated orthogonal
expansion

∑n
j=0 cjTj should therefore give a good approximation. For

f ∈C[−1, 1] it can be shown that

∥∥f −
n∑

j=0

cjTj‖∞ < (4 + log n)En(f) .

If n≤ 400, then the factor of En(f) is at most 10. This shows that there
is an acceptable loss of accuracy associated with using

∑n
j=0 cjTj instead

of p∗n.
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Example. Use the least squares method with weight function 1/
√

1 − t2 to
approximate f(t) = sin(π

4 (t+1)) on the interval −1≤ t≤ 1 by a straight line
a0 + a1t.

a0 =
(f, T0)

(T0, T0)
=

1

π

∫ 1

−1

sin π
4 (t + 1)√
1 − t2

dt ≃ 0.60219 ,

a1 =
(f, T1)

(T1, T1)
=

2

π

∫ 1

−1

t sin π
4 (t + 1)√
1 − t2

dt ≃ 0.51363 .

The integrals were evaluated via substitution of variables, t = cos u and a
standard program for numerical integration (we used the Matlab function
quad). The corresponding approximation to sin(π

2 x) on [0, 1] is c0 +c1x with

c0 = a0 − a1 ≃ 0.08857, c1 = 2a1 ≃ 1.0273 .

The maximum error is |f(1) − (c0 + c1)| ≃ 0.1158 ≃ 1.1 · ‖f − p∗1‖∞, where
p∗1 is the degree 1 polynomial that is the true minimax approximation; see
the next example.

Now, we turn our attention to the computation of the true minimax
polynomial approximation, p∗n. This is actually quite easy if we want to
approximate a monotone function by a straight line. The line shall be
chosen so that the error function assumes extreme values with alternating
signs at three points: the two endpoints of the interval and an interior
point, cf Figure 9.10.

Figure 9.10. Minimax
approximation with a
straight line 0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

It is obvious that the maximum error cannot be made smaller by moving
this line.

Example. Compute c0, c1, that minimize

max
0≤x≤1

| sin(
π

2
x) − (c0 + c1x)|
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The error function r(x) = sin(π
2 x) − (c0 + c1x) shall assume the extreme

value d with alternating signs at the points 0, ξ, 1, where r′(ξ) = 0. This
gives four equations in the four unknowns c0, c1, ξ and d:

−c0 = d ,

sin(π
2 ξ) − c0 − c1ξ = −d ,

1 − c0 − c1 = d ,
π
2 cos(π

2 ξ) − c1 = 0 .

The solution (shown in Figure 9.10) is

c1 = 1 ,

ξ = 2
π arccos( 2

π ) ≃ 0.5607 ,

c0 = 1
2 (sin(π

2 ξ) − ξ) ≃ 0.1053 ,

d = −c0 ≃ −0.1053 .

The error function for the Chebyshev approximation by a straight line
(a polynomial of degree 1) oscillates between the extreme values in three
points, and in the example on page 287 we saw that the error function
for the Chebyshev approximation of x4 by a degree n = 3 polynomial
oscillates between the extreme values in n+2 = 5 points. I can be shown
that this generalizes:

Theorem 9.9.2. Assume that f ∈C[a, b]. Among all polynomials of
degree ≤ n, the polynomial p∗n is the best maximum norm approxima-
tion of f if and only if there are points a ≤ ξ1 < ξ2 < · · · < ξn+2 ≤ b
such that

|f(ξk) − p∗n(ξk)| = ‖f − p∗n‖∞, k = 1, 2, . . . , n+2
and

f(ξk+1) − p∗n(ξk+1) = − (f(ξk) − p∗n(ξk)) , k = 1, 2, . . . , n+1 .

Thus, the error function f − p∗n alternates between ±‖f − p∗n‖∞ in at
least n+2 points. This so-called alternation property is used in algorithms
for constructing p∗n. We did so for n = 1 in the previous example, but it
is harder for n > 1.

Example. Assume that f(x) = sin(π
2 x) shall be approximated by a second

degree polynomial p2(x) = c0 +c1x+c2x
2 on the interval 0 ≤ x ≤ 1. Let the

error function r(x) = f(x) − p∗2(x) have the extrema ξ1, ξ2, ξ3, ξ4. It is easy
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to see that ξ1 = 0 and ξ4 = 1. The alternation property gives the conditions

−c0 = d ,

sin(π
2 ξ2) − (c0 + c1ξ2 + c2ξ

2
2) = −d ,

sin(π
2 ξ3) − (c0 + c1ξ3 + c2ξ

2
3) = d ,

1 − (c0 + c1 + c2) = −d .

(9.9.1a)

The conditions r′(ξ2) = 0 and r′(ξ3) = 0 give
π
2 cos(π

2 ξ2) − (c1 + 2c2ξ2) = 0 ,
π
2 cos(π

2 ξ3) − (c1 + 2c2ξ3) = 0 .
(9.9.1b)

Thus, we have a system of 6 nonlinear equations in the 6 unknowns ξ2,
ξ3, c0, c1, c2 and d, and we can use one of the solution methods discussed
in Section 4.8. A popular, special purpose iteration method is the Remez
algorithm (also called the exchange algorithm):

0. Initialize: Chose ξ
[0]
2 and ξ

[0]
3 . k := 0

1. Use ξ
[k]
2 and ξ

[k]
3 for ξ2 and ξ3 in (9.9.1a) and solve this linear system of

equations in c0, c1, c2 and d.

2. Insert these values in (9.9.1b), and use Newton-Raphson’s method to

find corrected values for the interior extremum points, ξ
[k+1]
2 and ξ

[k+1]
3 .

3. If the error function alternates according to Theorem 9.9.2, then stop.
Otherwise, k := k+1 and repeat from 1.

The starting values ξ
[0]
2 and ξ

[0]
3 may be obtained via one of the approximate

methods described earlier in this chapter, eg Chebyshev interpolation.

The resulting error curve is shown in Figure 9.11. It corresponds to the

0 0.2 0.4 0.6 0.8 1
−0.02

−0.01

0

0.01

0.02

Figure 9.11. Error curve for minimax approximation

of sin(π
2 x) by a degree 2 polynomial

solution

ξ2 = 0.2299
ξ3 = 0.7215

c0 = −0.0139
c2 = 1.8455
c3 = −0.8178

d = 0.0139 .
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Exercises
E1. Let p1 and p2 be polynomials of degree n, determined as least squares

approximations to f1 and f2, respectively. Show that α1p1 + α2p2 is the
least squares approximation to α1f1 + α2f2.

E2. Let the following measurements be given

x −2 −1 1 3 4
f(x) 1.4 1.7 1.8 1.6 1.2

.

We wish to find a second degree polynomial

p(x) = c0ϕ0(x) + c1ϕ1(x) + x2ϕ2(x)

as a least squares fit (with wi = 1) to these data.

Discuss the merits of each of the following three choices of {ϕj}:
ϕ0(x) ϕ1(x) ϕ2(x)

1 x x2

1 x − 1 (x − 1)2

x − 1 x2 − 2x − 3 x2 − 2x − 14

.

E3. Let ϕ0, ϕ1, . . . , ϕn be an orthogonal system.

(a) Prove the following generalization of the Pythagorean law:

∥∥
n∑

j=0

cjϕj

∥∥2

2
=

n∑

j=0

c2
j‖ϕj‖2

2 .

(b) Use this result to show that the functions in an orthogonal system
are linearly independent.

E4. Let f∗ =
∑n

j=0 c∗jϕj be the least squares approximation to a given
function f . Use the Pythagorean law to show that

‖f − f∗‖2
2 = ‖f‖2

2 − ‖f∗‖2
2 .

E5. Let P (x) =
∑n

k=0 akTk(x), where the Tk are Chebyshev polynomials. For
given x, the polynomial can be evaluated by the recurrence

bn+2 = bn+1 = 0 ,

bk = ak + 2xbk+1 − bk+2 , k = n, n−1, . . . , 0 .

Show that P (x) = b0 − xb1.

E6. Let x = cos v and define

Un(x) =
sin(n+1)v

sin v
, n = 0, 1, . . . .
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(a) The functions Un(x) satisfy a recursion formula of the type

Uk+1(x) = (αkx − βk)Uk(x) − γkUk−1(x) .

Show this, and determine the coefficients.

(b) Show that Un(x) is a polynomial in x of degree n. (The Un(x) are
called Chebyshev polynomials of the second kind).

(c) Show that the functions U0, U1, . . . build an orthogonal system on the
interval [−1, 1], with respect to the weight function w(x) =

√
1 − x2.

E7. For the function f it holds that |f (n+1)(x)| ≤M for all x∈ [−1, 1]. Show
that there is a polynomial Pn of degree n such that

|f(x) − Pn(x)| ≤ M

2n · (n+1)!
for all x ∈ [−1, 1] .

E8. Use the minimax property of Chebyshev polynomials to show that for each
polynomial pn(x) =

∑n
k=0 ckxk, cn 6= 0, there exists a point ξ ∈ [−1, 1] such

that |pn(ξ)| ≥ |cn| · 21−n .

E9. Approximate f(x) = 3
√

x by a straight line in the interval [0, 1]

(a) in the least squares sense with the weight function w(x) = 1,

(b) in the maximum norm.

In both cases give the norm of the error function for the best approxima-
tion.

E10. (a) Determine polynomials ϕk, k =0, 1, 2, with leading coefficient 1,
which are orthogonal on [−1, 1] with respect to the weight function
w(x) = x2.

(b) Compute the second degree polynomial p∗2(x), which minimizes
∫ 1

−1

x2
(
sin(

π

2
x) − p2(x)

)2
dx .

(c) Use the results from Exercises E3 and E4 to compute

‖ sin(
π

2
x) − p∗2(x)‖2

2 =

∫ 1

−1

x2
(
sin(

π

2
x) − p∗2(x)

)2
dx .

E11. Given the data
xi −2 −1 0 1 2

f(xi) 29 7 5 5 13
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(a) Use the recurrence

ϕ0(x) = 1 , ϕ1(x) = x − β0 ,

ϕk+1(x) = (x − βk)ϕk(x) − γkϕk−1(x) , k = 1, 2

to determine polynomials ϕk, k = 0, 1, 2, 3, 4, that form an orthogonal
system on {xi} with respect to wi = 1.

(b) Is it possible to augment the orthogonal system with
ϕ5(x) = x5 + . . . ?

(c) Use the polynomials from (a) to determine the polynomial p∗n of
degree n= 3, which minimizes

5∑

i=1

(
f(xi) − pn(xi)

)2
.

(d) As (c), except that now n= 4.

E12. Let f
G

be a signal with m elements and let Φ be the m×m matrix, whose
(j+1)st column is ϕjG

, j =0, 1, . . . ,m−1, where ϕj is defined by (9.8.2).

(a) Show that Φ is an orthogonal matrix and that the DCT of f
G

and
the IDCT can be formulated as

c = ΦT f
G

, f
G

= Φ c .

(b) Let F be an m×m image. Show that the two-dimensional DCT and
IDCT can be formulated as

C = ΦT F Φ , F = Φ C ΦT .

Computer Exercises
C1. In this exercise we shall simulate the data fitting problem outlined on

page 262. Let g(x) = 0.75x − 2x2 + x3, and compute the data

x = linspace(0,1,11)

y = g(x) + u*randn(size(x))

Choose u = 10−6 and u = 10−2. In both cases use polyfit to compute
the least squares polynomial fit of degree 3, and plot the data and the fit.
Show the error functions in a separate plot.
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C2. Consider the function

f(x) =
x

0.25 + x2

in the points xi = −2 + 0.5i, i= 0, 1, . . . , 8. Approximate the points(
xi, f(xi)

)
by polynomials of degree 3, 5, 7, determined by the least squares

method (use polyfit). Compare these results with the results of using
piecewise polynomials and cubic splines, see Exercise C3 in Chapter 5.

C3. We know that f(x) =
1

ax2 + b
, and are given the measurement data

xi 1 2 3 4
f(xi) 1.2 0.55 0.29 0.17

Use the least squares method to compute a and b. Choose weights wi =
1/x2

i in order to get good agreement for x-values close to 1.

C4. Compute the radius r and centre (a, b) of the circle, that best possible
(in the least squares sense) approximates the points

xi 4 3.5 2.5 1.5 1 1.5 2.5 3.5
f(xi) 2 3 3.5 3 2 1 0.5 1

The equation of the circle is (x − a)2 + (y − b)2 = r2 , or

2ax + 2by + (r2 − a2 − b2) = x2 + y2 .

Put c = r2 − a2 − b2, and determine a, b, c such as to minimize
8∑

i=1

(
x2

i + y2
i − 2xia − 2yib − c

)2
.

Hint: Start by formulating an overdetermined system of equations Ad ≃ z,
where d is the vector of unknown parameters, d = (a b c)T .
(The exercise is based on an idea of Walter Gander).

C5. The file exc9 5.mat in incbox contains the two vectors fo and fG, which
are shown in the upper left and right part of Figure 9.8, respectively.

(a) Plot the DCT of the two signals in the same figure.

(b) The noise is N = fG - fo . Plot N and its DCT in separate figures.

(c) Let c be the DCT of fG, and let f∗
nG

denote the approximate signal
obtained by putting cj = 0 for j >n. Plot the error in f∗

nG
for

n = 4, 5, 8, 10, 20.

(d) Experiment with compression of the signal given in fo.



References 307

C6. The file exc6 4.mat in incbox contains a matrix A that represents the image
shown in Figures 6.6 and 9.9. Use the compression algorithm outlined in
the first example on page 294 with the threshold given by thr = ρ ·
maxk,j |ckj |, where 0< ρ< 1.

Investigate how the choice of ρ influences the compression and the quality
of the compressed image.

C7. Consider the function f(x) =
√

x on the interval [1, 4], cf Section 4.7. We
want to approximate f in the minimax sense, by polynomials p∗n of degrees
n = 1, 2, 3.

(a) Use Chebyshev interpolation to find pn that approximate p∗n.

(b) Use the Remez algorithm to find p∗n.

In each case, what is the maximum error of the approximation ?
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Chapter 10

Ordinary Differential
Equations

10.1. Introduction

Example. Consider a box resting on a firm foundation, and connected to a wall
by a spring, see the figure.

Introduce a coordinate axis with
the origin at the point where the
box is when the spring exerts no
force. If we move the box from the
origin and then release it, then the
spring will pull the box back to-
wards the origin, and the friction
between the box and the founda-
tion will slow down the movement.

0 y

Figure 10.1. Box on a foundation
with friction.

Let y(t) denote the position of the box at time t. Hooke’s law states that
the spring force is proportional to y. The friction force is proportional to
the velocity y′. Newton’s law of motion gives

m y′′ = −Ky − Qy′ ,

where m is the mass of the box and K and Q are proportionality constants.

In order to be able to find a unique solution of this differential equation we
need to know the initial position and velocity. Thus, the initial conditions
are

y(0) = α, y′(0) = β ,

where α and β are given constants.
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A differential equation is an equation involving an unknown function
and one or more of its derivatives. In this chapter we consider ordinary
differential equations of first order, which can be written

y′ = f(x, y) .

Here, f(x, y) is a given real valued function of two variables, and y = y(x)
is the solution. It should be noted, that y′ = f(x, y) is shorthand notation
for

y′(x) = f
(
x, y(x)

)
.

Example. Let the given function be f(x, y) = y. The differential equation

y′ = y

is satisfied by y(x) = Cex for any choice of C, see Figure 10.2.

Figure 10.2.
Solutions of y′ = y . 0 0.5 1 1.5

0

2

4

6

8

10

12

C = 0.5

C = 1

C = 1.5

C = 2

This example illustrates that in general an equation y′ = f(x, y) has
an infinity of solutions. In order to fix the desired solution you have
to supply a condition of the form y(a) = α. This is called an initial
condition, and the problem of solving

y′ = f(x, y), y(a) = α ,

is called an initial value problem.

Example. The initial value problem

y′ = y, y(0) = 1 ,

has the unique solution y(x) = ex.
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In applied sciences the modelling of a dynamic process leads to an
initial value problem1) . This was illustrated in the first example, where
we derived an ordinary differential equations of second order (the equation
involves the second derivative). In order to solve such an equation, two
initial conditions are needed.

By introducing new unknown functions, any higher order differential
equation can be written as a system of first order differential equations.

Example. In the first example put y1 = y and y2 equal to the velocity, y2 = y′.
Then we get the differential equation

my′
2 = −Ky1 − Qy2 ,

and this must be supplied with y′
1 = y2. Thus, the initial value problem is

y′
1 = y2 ,

y′
2 = −(K/m)y1 − (Q/m)y2 ,

y1(0) = α ,

y2(0) = β .

The problem is of the form

y′ = f(t, y), y(0) = c ,

where y, c and f(t, y) are vectors with two components,

y =

(
y1

y2

)
, c =

(
α
β

)
, f(t, y) =

(
y2

−(K/m)y1 − (Q/m)y2

)
.

In most of this chapter the equation y′ = f(x, y) is assumed to be
scalar, ie y is a function from R to R. However, most of the material
presented only needs small modifications to be applicable to systems of
differential equations.

For completeness we state Theorem 10.1.1 below. It shows when an
initial value problem has a unique solution.

An alternative formulation of the statement in the theorem is: Through
every point (x, y) with x in the interval [a, b], there passes exactly one
curve that is a solution of the equation y′ = f(x, y).

Example. Consider the initial value problem

y′ = f(x, y) = xy, y(0) = 1 ,

and assume that we want to solve the equation in the interval [0, 1]. We
immediately get

|xy − xỹ| ≤ |y − ỹ| ,

1) The independent variable is often denoted t (for time) instead of x. In most of
this chapter, however, we shall use x.
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Theorem 10.1.1. Let the function f(x, y) be defined and continu-
ous for all points (x, y) in the strip a ≤ x ≤ b, −∞ < y < ∞, where
a and b are finite. If f satisfies a Lipschitz condition, ie if there exists
a constant L such that

|f(x, y) − f(x, ỹ)| ≤ L|y − ỹ| for all x∈ [a, b] and all y, ỹ

then for any initial value α there exists a unique solution of the initial
value problem

y′ = f(x, y), y(a) = α .

L is called the Lipschitz constant .

so the Lipschitz constant is L = 1. More generally, it is easy to show that if
∣∣∣∣
∂f

∂y

∣∣∣∣ ≤ L for a ≤ x ≤ b ,

then L can be used as the Lipschitz constant.

Not all problems involving differential equations are initial value prob-
lems. In Sections 10.8 through 10.11 we study numerical methods for a
two-point boundary value problem for an ordinary differential equation.
More specific, we look at the problem

y′′ = f(x, y, y′), y(a) = α, y(b) = β ,

where [a, b] is an interval.

10.2. Solution of Initial Value Problems

Most differential equations that arise in applications cannot be solved by
analytical methods. Therefore, it is necessary to make numerical approx-
imations. We will discuss methods that are based on the following idea:
Since we cannot determine the function y(x) for all x in an interval [a, b],
we will have to be satisfied with computing approximations yn of y(xn)
for some points {xn}N

n=0 in the interval. We assume that the points are
equidistant:

xn = a + nh, n = 0, 1, . . . , N ,
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where the step length h is defined as

h =
b − a

N
,

for some integer N ; see Figure 10.3.

h

a = x0 x1 xn xn+1 xN−1 xN = b

Figure 10.3. The interval [a, b] divided into N subintervals.

The initial value gives us y0 = y(x0) = α for x = x0. Now, we will first
compute y1 as an approximation of y(x1). We do that by discretization
of the differential equation. To make the derivation general, assume that
we know yn (the approximation of y(xn)) and want to compute yn+1. At
x = xn the differential equation is

y′(xn) = f
(
xn, y(xn)

)
.

We first replace the derivative by a difference quotient,

y′(xn) ≃ y(xn+1) − y(xn)

h
,

and the differential equation becomes

y(xn+1) − y(xn)

h
≃ f

(
xn, y(xn)

)
.

Next, we replace y(xn) by yn; y(xn+1) by yn+1; and “≃” by “=”, and
after reordering we get

yn+1 = yn + hf(xn, yn) .

This is a classical method for the numerical solution of initial value prob-
lems:

Definition 10.2.1. Euler’s method:

y0 = α ,

yn+1 = yn + hf(xn, yn), n = 0, 1, . . . , N−1 .

Euler’s method is hardly ever used in practice, because there are more
accurate and more efficient (but more complicated) methods. However,
Euler’s method is simple, and that is why we use it for introducing basic
concepts in the numerical solution of initial value problems.
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Example. In this chapter we shall illustrate different methods by numerically
solving the initial value problem

y′ = f(x, y) = xy, y(0) = 1 .

The problem has the analytical solution y(x) = e0.5x2

, and we will use this
to check the accuracy of the numerical solution.

Assume that we want to compute an approximation of y(0.4). Euler’s
method applied to this problem is

y0 = 1,

yn+1 = yn + hxnyn, n = 0, 1, . . . , N−1 ,

where Nh = 0.4. We first let h = 0.2, corresponding to N = 2. Then
x1 = 0.2, x2 = 0.4, and y2 is the approximation of y(0.4). We get

y1 = y0 + hx0y0 = 1 + 0.2 · 0 · 1 = 1 ,

y2 = y1 + hx1y1 = 1 + 0.2 · 0.2 · 1 = 1.04 .

We summarize the computation in a table, where we also give the analytical
solution and the error |y(xn) − yn|.

n xn yn y(xn) |y(xn) − yn|
0 0 1 1 0
1 0.2 1 1.0202 0.0202
2 0.4 1.04 1.0833 0.0433

Next, we halve the step length to h = 0.1 and compute a new approximation
of y(0.4). Note that this approximation is y4.

n xn yn y(xn) |y(xn) − yn|
0 0 1 1 0
1 0.1 1 1.0050 0.0050
2 0.2 1.0100 1.0202 0.0102
3 0.3 1.0302 1.0460 0.0158
4 0.4 1.0611 1.0833 0.0222

By comparing the two tables we see that the error was halved when the step
length was halved. This indicates that the global truncation error (see the
next section) is proportional to h.

Example. The following Matlab function implements Euler’s method for a
scalar differential equation. Matlab does not allow index 0. Therefore xn

and yn are stored in x(n+1) and y(n+1), respectively.

function [x, y] = eulers(f, ab, y0, N)

% Compute approximation of the solution of the initial value
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% problem y’ = f(x,y), y(a) = y0 on the interval ab = [a,b].

% Euler’s method with step length h = (b-a)/N .

a = ab(1); b = ab(2); h = (b - a)/N;

x = linspace(a,b,N+1); % grid

y = zeros(size(x)); y(1) = y0; % initialize y

for n = 1 : N

y(n+1) = y(n) + h*feval(f, x(n),y(n));

end

The function f(x, y) = xy is defined by

function f = odef1(x,y)

f = x*y;

To compute the approximate solutions for 0 ≤ x ≤ 1 with step lengths
h1 = 1/5 and h2 = 1/10 we use the commands

>> [x1,y1] = eulers(@odef1, [0 1], 1, 5);

>> [x2,y2] = eulers(@odef1, [0 1], 1, 10);

The results are shown in Figure 10.4 together with the analytical solution.

0 0.2 0.4 0.6 0.8 1
0.75

1

1.25

1.5

1.75

Figure 10.4. Euler’s method with step length h = 0.2 (dashed line),

h = 0.1 (dash-dotted line), and analytical solution (solid line).

Euler’s method has a geometric interpretation: We start at the point
(x0, y0) and approximate the solution curve by the tangent at this point.
The slope of the tangent is computed from the differential equation,
y′(x0) = f(x0, y0). We follow the tangent until we reach x = x1 = x0 +h;
the corresponding y-value is y1. Through the point (x1, y1) there passes
a solution curve (which, however, does not correspond to the given initial
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value). Similarly, we approximate this curve by its tangent at (x1, y1), and
follow the tangent until we reach x = x2 = x1 + h, etc. See Figure 10.5.

(x0, y0)

(x1, y1)

(x2, y2)

x

y

Figure 10.5. Euler’s method corresponds to a polygonal curve.

10.3. Local and Global Error

The error sources in the numerical solution of differential equations are
truncation error and rounding error. First, we ignore the rounding errors,
and introduce the concepts of local and global truncation error.

Definition 10.3.1. The local truncation error at xn+1 is the differ-
ence between the computed value yn+1 and the value at xn+1 on the
solution curve that passes through the point (xn, yn).

Figure 10.5 shows that the local truncation error in Euler’s method
is the deviation after each step between a solution curve and its tangent.
We will show that if the solution to the differential equation is twice
continuously differentiable, then the local truncation error is2) O(h2).

Let ŷ(x) denote the solution curve that passes through the point
(xn, yn). It is the solution of the initial value problem

ŷ′ = f(x, ŷ), ŷ(xn) = yn .

2) The “big O” concept is discussed at the end of Section 1.1.
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The Taylor expansion around x = xn is

ŷ(xn + h) = ŷ(xn) + hŷ′(xn) + 1
2h2ŷ′′(ξ)

= yn + hf(xn, yn) + 1
2h2ŷ′′(ξ) ,

where xn < ξ < xn+h. Thus, the local truncation error is

ŷ(xn + h) − yn+1 = 1
2h2ŷ′′(ξ) = O(h2) .

Definition 10.3.2. The global truncation error at xn+1 is the dif-
ference

y(xn+1) − yn+1 ,

where y(x) is the solution of the given initial value problem.

In Figure 10.5 the global truncation error is the distance between a
corner on the polygonal curve and the corresponding point on the solid
curve.

Proposition 10.3.3. The global truncation error in Euler’s method
is O(h).

Proof. The example on page 314 indicated this behaviour. We shall
prove that it is generally true. We let ǫn = y(xn)− yn denote the global
truncation error at xn. A Taylor expansion around x = xn gives

y(xn+1) = y(xn + h) = y(xn) + hy′(xn) + 1
2h2y′′(ξ)

= y(xn) + hf
(
xn, y(xn)

)
+ 1

2h2y′′(ξ) .

From this equation we subtract yn+1 = yn + hf(xn, yn) and get

ǫn+1 = ǫn + h
(
f(xn, y(xn)) − f(xn, yn)

)
+ 1

2h2y′′(ξ) .

We assume that f satisfies a Lipschitz condition with Lipschitz con-
stant L, and that there exists a constant M <∞ such that |y′′(x)| ≤M
for all x in the interval, where we want to determine the solution. Then
we can make the estimate

|ǫn+1| ≤ (1 + hL)|ǫn| + 1
2h2M . (10.3.1)

A simple induction shows that
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|ǫn| ≤ (1 + hL)n|ǫ0| + 1
2h2M

n−1∑

k=0

(1 + hL)k .

Now, ǫ0 = y(x0)− y0 = 0, and by applying the formula for the sum
of a geometrical progression, and the relation 1+x ≤ ex, we get

|ǫn| ≤ 1
2h2M

(1 + hL)n − 1

hL

≤ hM

2L

(
enhL − 1

)
=

hM

2L

(
eL(xn−x0) − 1

)
. (10.3.2)

This shows that the global truncation error is O(h).

In general, if the local truncation error of a numerical method is
O(hp+1), then the global error is O(hp).

The estimate (10.3.2) of the global truncation error cannot be used for
practical error estimation, since in most cases it is much too pessimistic.
Also, in practice, one does not know L and M . The estimate has a
certain theoretical interest, however. For instance, it shows that if one
keeps xn = x0 + nh fixed and lets h tend to zero, then

lim
h→0

ǫn = 0 .

This means that Euler’s method is convergent in the sense that the error
in the approximate solution for a fixed x-value tends to zero as the step
length tends to zero.

The discussion so far has neglected rounding errors. The computed
solution will be affected by these, however, and instead of the approxi-
mations {yn}N

n=0 we get {yn}N
n=0, defined by

y0 = fl[α] ,

yn+1 = fl[yn + hf(xn, yn)], n = 0, 1, . . . , N−1 .

We can write

fl[yn + hf(xn, yn)] = yn + hf(xn, yn) + µρn ,

where µ is the unit roundoff, and the local rounding error µρn has con-
tributions from the evaluation of f(xn, yn), from the multiplication by h,
and from the addition with yn.

Let δn = yn − y(xn) denote the global error at xn. Similar to (10.3.1)
we can derive the estimate
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|δn+1| ≤ (1 + hL)|δn| + 1
2h2M + µR ,

where R is an upper bound on |ρn|. If the initial value α can be repre-
sented without rounding errors, then δ0 = 0, and similar to (10.3.2) we
get the following estimate of the total global error,

|y(xn) − yn| ≤
(

hM

2L
+

µR

hL

) (
eL(xn−x0) − 1

)
. (10.3.3)

In practice, the number µR is small, and for large values of the step
length h we can neglect the error contribution from rounding errors. As
h tends to zero, however, this term gets increasing influence. We shall
return to this aspect in the last example of the next section.

10.4. Runge-Kutta Methods

Since the global truncation error in Euler’s method is O(h), it is often
necessary to use a very small step length (and therefore a very large
number of steps) to get the desired accuracy in the approximate solution.
There are several ways to derive more accurate methods. One can eg use
a central difference to approximate the derivative,

y′(x) ≃ y(x+h) − y(x−h)

2h
.

If we use this approximation in the equation y′ = f(x, y) we get the
midpoint method

yn+1 = yn−1 + 2hf(xn, yn) , (10.4.1)

which can be shown to have global error O(h2). We return to this method
in Section 10.6.

In this section we shall use the geometrical interpretation of Euler’s
method to derive a more accurate method. In Figure 10.5 we see that
the error in Euler’s method is large because we go along the direction
of the tangent at the point (xn, yn) for a whole step, while the solution
curve deviates from this direction by a considerable amount during the
step. Let (xn+1, ỹn+1) denote the point reached by Euler’s method. If
we use the average of the tangent directions at the points (xn, yn) and
(xn+1, ỹn+1), we should be able to make a correction for the bending of
the curve, see Figure 10.6.
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(xn, yn)
(xn+1, ỹn+1)

y

x

Figure 10.6. Two tangent directions.

The value ỹn+1 is given by ỹn+1 = yn + hf(xn, yn), and the slopes of
the two tangents are f(xn, yn) and f(xn+1, ỹn+1). Therefore, the method
can be expressed in the form

k1 = f(xn, yn) ,

k2 = f(xn + h, yn + hk1) ,

yn+1 = yn +
h

2
(k1 + k2) .

(10.4.2)

This method is called Heun’s method . It belongs to a large class of
methods called Runge-Kutta methods.

Example. We shall use Heun’s method with step length h = 0.2 to find an ap-
proximation of y(0.4), where y(x) is the solution of the initial value problem
y′ = xy, y(0) = 1. We first get

k1 = x0y0 = 0 · 1 = 0 ,

k2 = (x0 + h)(y0 + hk1) = 0.2 · 1 = 0.2 ,

y1 = y0 + 1
2h(k1 + k2) = 1 + 0.1 · (0 + 0.2) = 1.02 .

The second step is

k1 = x1y1 = 0.2 · 1.02 = 0.204 ,

k2 = (x1 + h)(y1 + hk1) = 0.4 · 1.0608 = 0.42432 ,

y2 = y1 + 1
2h(k1 + k2) = 1.02 + 0.1 · (0.204 + 0.42432) = 1.082832 .

y2 is an approximation of y(0.4), and the truncation error is about 4.55·10−4.
In the example on page 314 we had the truncation error 2.2·10−2 when we
used Euler’s method with step length h = 0.1, ie when we used the same
number of evaluations of the function f(x, y) = xy.
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The global truncation error in Heun’s method can be shown to be
O(h2), and the price we pay for this higher accuracy is that f(x, y) has
to be evaluated twice per step. If we allow four evaluations of f(x, y) per
step, we can use the above geometric approach to derive a method with
global truncation error O(h4).

The classical Runge-Kutta method:

k1 = f(xn, yn) ,

k2 = f(xn + 1
2h, yn + 1

2hk1) ,

k3 = f(xn + 1
2h, yn + 1

2hk2) ,

k4 = f(xn + h, yn + hk3) ,

yn+1 = yn +
h

6
(k1 + 2k2 + 2k3 + k4) .

(10.4.3)

The method has global truncation error O(h4).

Example. The following Matlab implementation of the classical Runge-Kutta
method can be used both for scalar differential equations and for systems of
differential equations.

The command y = repmat(y0(:),1,N+1) gives a matrix y with N+1
columns, each containing the initial vector y0. During computation the
approximation of y(xn) overwrites the (n+1)st column. The function returns
the transpose of the array y in order to conform with the standard Matlab

functions for solving initial value problems.

function [x, y] = rk4(f, ab, y0, N)

% Compute approximation of the solution of the initial value

% problem y’ = f(x,y), y(a) = y0 on the interval ab = [a,b].

% Classical Runge-Kutta method with step length h = (b-a)/N .

a = ab(1); b = ab(2);

h = (b - a)/N; hh = h/2; % full and half step length

x = linspace(a,b,N+1); % grid

y = repmat(y0(:),1,N+1); % initialize y

for n = 1 : N

k1 = feval(f, x(n), y(:,n));

k2 = feval(f, x(n)+hh, y(:,n)+hh*k1);

k3 = feval(f, x(n)+hh, y(:,n)+hh*k2);

k4 = feval(f, x(n+1), y(:,n)+h*k3);

y(:,n+1) = y(:,n) + h/6*(k1 + 2*k2 + 2*k3 + k4);

end

x = x’; y = y’; % return in standard format
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With the function odef1 defined in the example on page 314 the call

>> [x,y] = rk4(@odef1, [0 0.4], 1, 1)

gives y(0.4) ≃ 1.0832853. This result has an error approximately equal to
1.7 · 10−6. It was obtained with one step, involving four evaluations of the
function f(x, y) = xy.

Example. We have solved the initial value problem y′ = xy, y(0) = 1 by
means of Euler’s method, Heun’s method and the classical Runge-Kutta
method with step lengths h = 0.4, 0.2, . . . , 0.4/220. The computation was
made with unit roundoff µ = 2−53 ≃ 1.11 · 10−16. Figure 10.7 shows the
errors δN = |y(0.4)−yN |, where N = 0.4/h. As in Figure 6.4 we use double
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Figure 10.7. Global error in the methods of

Euler, Heun and Runge-Kutta.

logarithmic scale, because we expect that

δN ≃ A1 · hp = A · N−p ,

where the positive constant A and the exponent p depend on the method.
Then

log δN ≃ log A − p log N . (10.4.4)

In other words: the points (log N, log δN ) can be expected to lie close to a
straight line with slope −p.

This is satisfied by the results in Figure 10.7. For the classical Runge-Kutta
method the truncation error dominates for small values of N (large values
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of h), and (10.4.4) is satisfied with p = 4. For large N -values the accumulated
effect of rounding errors dominate, and the error increases corresponding to
p = −1. This is in agreement with the analysis of rounding errors at the end
of Section 10.3, (10.3.3). The smallest error with the Runge-Kutta method
is obtained for N = 128, |y(0.4) − y128| ≃ 8.88 · 10−16 = 8µ.

For Heun’s method the estimate (10.4.4) is satisfied for “small” N -values
with p = 2. The smallest error is obtained for N ≃ 105. Note that for larger
values of N the errors in Heun’s method and and the Runge-Kutta method
are almost equal. This indicates that the accumulated effect of rounding
errors is almost independent of the method.

The global truncation error in Euler’s method decreases slower, correspond-
ing to p = 1, and the total global error will reach a minimum for N ≃ 108,
where the error is approximately 10−8.

10.5. An Implicit Method

Example. The system

y′ =

(
0 1

−M −(M + 1)

)
y

has the general solution

y1(x) = a1e
−x + a2e

−Mx ,

where a1 and a2 are arbitrary constants. Both e−x and e−Mx tend to zero
for x → ∞, and if M ≫ 1, then e−Mx tends to zero much faster than e−x.
Such a system is said to be stiff.

More generally, a problem is said to be stiff , if the solution contains
both slow processes and very fast processes. The latter decay very fast as
x−x0 increases, but you need to use a very short step length to keep them
from “blowing up” in the numerical solution. This is discussed further in
the next section.

The methods discussed so far are very inefficient for a stiff problem.
We will now derive a method that can be used for differential equations
in general, and is particularly well suited for stiff problems.

If we integrate the left hand side of the differential equation

y′ = f(x, y)
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over the interval [xn, xn+1], we get
∫ xn+1

xn

y′ dx = y(xn+1) − y(xn) .

The integral of the right hand side cannot be computed directly, since
y(x) is unknown. Using the trapezoidal rule from Section 7.2, we get

∫ xn+1

xn

f(x, y) dx ≃ 1
2h

(
f(xn, y(xn)) + f(xn+1, y(xn+1))

)
.

Now, we replace y(xn) and y(xn+1) by the approximations yn and yn+1

in both the left hand and the right hand side, and obtain the so-called
trapezoidal method:

Definition 10.5.1. The trapezoidal method:

yn+1 = yn + 1
2h

(
f(xn, yn) + f(xn+1, yn+1)

)
.

The global truncation error is O(h2).

The methods discussed earlier are explicit : the right hand side in the
expression for yn+1 depends only on known quantities. The trapezoidal
method is implicit : the unknown quantity yn+1 appears also on the right
hand side. If f is a nonlinear function of y, then we must solve a nonlinear
equation to get yn+1.

Example. The equation y′ = xy is linear in y. The trapezoidal method takes
the form

yn+1 = yn + 1
2h(xnyn + xn+1yn+1) ,

and (provided that 1 − 1
2hxn+1 is nonzero) we can rewrite this relation to

yn+1 =
1 + 1

2hxn

1 − 1
2hxn+1

yn .

The equation y′ = xy2 is nonlinear in y, and the trapezoidal method gives

yn+1 − 1
2hxn+1 y2

n+1 = yn + 1
2hxn y2

n .

This is a quadratic equation in the unknown yn+1.

The value yn+1 can be computed by means of the fixed point iteration

y
[0]
n+1 = yn + hf(xn, yn) ,

y
[k+1]
n+1 = yn +

h

2

(
f(xn, yn) + f(xn+1, y

[k]
n+1)

)
, k =0, 1, . . .

(10.5.1)
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This way of using an implicit method is called a predictor-corrector proce-
dure. Here, Euler’s method is used as predictor: it gives the starting value
for the iteration. Then one iterates a couple of times with the trapezoidal
method, the corrector. The condition for the iteration to converge is that∣∣∣∣

h

2

∂f

∂y

∣∣∣∣ < 1

in a neighbourhood of the point (xn+1, yn+1), cf Section 4.4.

Example. Assume that we use (10.5.1) to solve the initial value problem
y′ = e−y, y(0) = 1. Does the corrector iteration converge if h = 0.1 ?

We see that the solution of the initial value problem always has positive
derivative, ie it is increasing. Therefore, we cannot get negative y-values,
and ∣∣∣∣

h

2

∂f

∂y

∣∣∣∣ = 0.05e−y < 1 .

Thus, with the chosen h-value the corrector iteration is guaranteed to con-
verge for this problem.

If |∂f/∂y| is large, then one must use a very small step length for the
corrector iteration to converge. In such cases it is much more efficient to
use Newton-Raphson’s method to solve the equation

yn+1 − 1
2hf(xn+1, yn+1) − An = 0 ,

where An = yn + 1
2hf(xn, yn) is a known quantity. The derivative that

has to be computed in every step of the iteration, is (in the scalar case)

1 − 1
2 h

∂f

∂y
.

10.6. Stability

When a numerical method is used to find a sequence of approximations
to the the solution of an initial value problem for an ordinary differential
equation, it is necessary to analyze

a) how well the difference equation approximates the differential equation
(truncation error),
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b) what happens when the step length h tends to zero (convergence),

c) how sensitive the difference equation is to perturbations in the data
(stability).

We already discussed the first two items, and in this section we study
the stability of some numerical methods. This is done by investigating
their performance when applied to the test problem

y′ = λy, y(0) = 1 ,

where λ is complex with negative real part. To simplify the discussion
we first assume that λ is real (and negative). At the end of this section
we shall discuss the general, complex case.

The exact solution to the test problem is y(x) = eλx, and since λ < 0,
this is a decreasing function of x. It is reasonable to require that the
numerical method gives a decreasing sequence. In that case we say that
the method is stable.

Example. In (10.4.1) we presented the midpoint method

yn+1 = yn−1 + 2hf(xn, yn) .

We need both y0 and y1 before we can use this formula. If we apply this
method to the initial value problem y′ = −2y, y(0) = 1, using Euler’s method
to compute y1, we get

y0 = 1 ,

y1 = 1 − 2h ,

yn+1 = yn−1 − 4hyn, n= 1, 2, . . . .

Figure 10.8 shows the results obtained with h = 0.1. We see that the numer-
ical solution oscillates with increasing amplitude. For x > 0.7 it is no longer
monotonically decreasing. This is an example of instability . Obviously, the
midpoint method cannot be used to solve this problem.

If we apply Euler’s method to the test equation, we get

yn+1 = yn + hλyn = (1 + hλ)yn .

The solution is decreasing if the condition

|1 + hλ| < 1

is satisfied. This is equivalent to the condition

−2 < hλ < 0 ,
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Figure 10.8. Midpoint method applied to y′ = −2y, y(0) = 1.

and since λ < 0, we must choose the step length h so small, that

h <
2

|λ| .

Thus, if |λ| is very large, we must choose a very small step length h in
Euler’s method to get a decreasing solution.

Heun’s method applied to the test equation gives

k1 = λyn ,

k2 = λ(yn + hk1) = λ(1 + hλ)yn ,

yn+1 = yn + 1
2h(k1 + k2) = (1 + hλ + 1

2h2λ2)yn .

The solution is decreasing if

|1 + hλ + 1
2h2λ2| < 1 ,

and we get the same condition as in Euler’s method: h < 2/|λ|. A
similar analysis shows that the classical Runge-Kutta method is stable if
h < 2.785/|λ|.

The trapezoidal method applied to the test equation gives

yn+1 = yn + 1
2hλ(yn + yn+1) ,

or, equivalently,
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yn+1 =
1 + 1

2hλ

1 − 1
2hλ

yn .

It is easy to see that ∣∣∣∣∣
1 + 1

2hλ

1 − 1
2hλ

∣∣∣∣∣ < 1

for λ < 0 and any h > 0. Thus, the numerical solution is decreasing for
any step length. In other words, the trapezoidal method is uncondition-
ally stable.

It is this stability property that make the trapezoidal method so useful
for stiff differential equations (or stiff systems of differential equations).
Such equations are characterized by the existence of some solution com-
ponents that decrease very fast, and other components that decrease quite
slowly. The former correspond to negative λ-values of large magnitude,
and the latter correspond to negative λ-values of relatively small magni-
tude.

Consider the initial value problem

u′′ + 101u′ + 100u = 0, u(0) = 1.1, u′(0) = −11 .

This can be written as a system

(
y′1
y′2

)
=

(
0 1

−100 −101

)(
y1

y2

)
,

(
y1(0)
y2(0)

)
=

(
1.1
−11

)
. (10.6.1)

The matrix of this system has the eigenvalues −100 and −1, which cor-
respond to to λ = −100 and λ = −1 in the test equation. The solution is

u(x) = y1(x) = 0.1e−100x + e−x .

The first term in the solution decays very fast: at x = 0.1 it is about
5 · 10−6, while the second term is about 0.9. When you solve such a sys-
tem numerically over a large interval, you would like to take large steps
as soon as the rapidly decaying components have disappeared. Because
of their stability properties this cannot be done with Euler’s method or
other explicit methods like Heun’s method or the Runge-Kutta method,
but with the trapezoidal method it is possible to do so.

Example. In (10.6.1) we have a system of differential equations y′ = Ay, where
A is a square matrix. The equation is linear in y, and the trapezoidal method
takes the form

(I − 1
2hA)yn+1 = (I + 1

2hA)yn .
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In each step we have to solve a linear system of equations with the matrix
I − 1

2hA. If the step length h is constant, then the matrix is the same in
every step, and the most efficient algorithm is the use the LU factorization
of the matrix, cf Section 8.6. This is implemented in the following code.

function [x, y] = trapmeth(A, ab, y0, N)

% Compute approximation of the solution of the initial value

% problem y’ = Ay, y(a) = y0 on the interval ab = [a,b].

% A is a square matrix.

% Trapezoidal method with step length h = (b-a)/N .

a = ab(1); b = ab(2); h = (b - a)/N;

x = linspace(a,b,N+1); % grid

y = repmat(y0(:), 1,N+1); % initialize y

I = eye(size(A)); % Unit matrix

[L,U] = lu(I - h/2*A); % LU factorization

B = I + h/2*A; % Constant matrix on right hand side

for n = 1 : N

y(:,n+1) = U \ (L \ (B*y(:,n)));

end

x = x’; y = y’; % return in standard format

Example. We solve the stiff system (10.6.1) by Euler’s method and the trapez-
oidal method. In the interval [0, 0.1] we use the step length h = 0.005. At
this point the fast component has almost vanished, and we take h = 0.1 in
the trapezoidal method on the interval [0.1, 1].

>> A = [0 1;-100 -101];

>> [x1,y1] = trapmeth(A, [0 0.1], [1.1; -11], 20);

>> [x2,y2] = trapmeth(A, [0.1 1], y1(end,:), 9);

In Euler’s method we still have to use a step length that satisfies h < 2/|λ| =
0.02 in order to get a decreasing solution. To demonstrate that Euler’s
method is not stable for longer steps, we use h = 0.025 on the interval
[0.1, 1]. The results for u(x) = y1(x) are shown in Figure 10.9.

The midpoint method (10.4.1)

yn+1 = yn−1 + 2hf(xn, yn) .

is an example from a large class of methods called multistep methods
because they involve values at more than two consecutive points. Applied
to the test problem the midpoint method takes the form

yn+1 = yn−1 + 2hλyn, n = 1, 2, . . . . (10.6.2)

The simple analysis that we used with the one-step methods above is not
applicable to a multistep method, but it can be shown that the values
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Figure 10.9. Trapezoidal method (top) and Euler’s method applied to the

stiff system (10.6.1). Computed approximations are marked by ×.

computed by (10.6.2) can be expressed as

yn = Arn
1 + Brn

2 , (10.6.3)

where r1 and r2 are the roots of the quadratic equation

r2 − 2hλr − 1 = 0 ,

and A and B are determined by the values of y0 and y1. The roots are

r1 = hλ +
√

h2λ2 + 1, r2 = −1/r2 .

If hλ < 0, then 0<r1 < 1 and r2 < − 1. This means that |Arn
1 | → 0 for

n → ∞, and (provided that B 6= 0) the contribution Brn
2 oscillates and

|Brn
2 | → ∞ for n → ∞. This explains the behaviour shown in Figure 10.8

on page 327. For λ < 0 this instability occurs for all positive values of h.
We say that the midpoint method is unconditionally unstable.

There are other multistep methods with better stability properties.
Often they are used in pairs, so that an explicit method is used as pre-
dictor and an implicit method as corrector in a scheme like (10.5.1). For
a good introduction to multistep methods see the book by Lambert or
Shampine given in the references at the end of the chapter.
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We finally consider the test problem

y′ = λy, y(0) = 1 ,

in the general case, where λ is complex with negative real part. The exact
solution is y(x) = eλx, and if λ = −κ + iν (i denotes the imaginary unit,
and κ > 0), then

eλx = e−κx
(
cos(νx) + i sin(νx)

)
.

Both the real and the imaginary part of the solution are damped oscilla-
tions, and

|eλx| = e−κx

is a decaying exponential. The requirement that the numerical method
gives a decreasing sequence leads to the following conditions,

Euler’s method: |1 + hλ| < 1 ,

Heun’s method: |1 + hλ + 1
2h2λ2| < 1 ,

Classical R-K: |1 + hλ + 1
2h2λ2 + 1

6h3λ3 + 1
24h4λ4| < 1 ,

Trapezoidal method:

∣∣∣∣∣
1 + 1

2hλ

1 − 1
2hλ

∣∣∣∣∣ < 1 .

For Euler’s method the stability condition is satisfied when the number
hλ is inside the circle in the complex plane with centre (−1, 0) and ra-
dius 1. This is shown in Figure 10.10 together with the stability regions
for the other three methods.

Example. Consider the initial value problem

u′′ + u′ + 4.25u = 0, u(0) = 1, u′(0) = −0.3 .

This can be written as a system(
y′
1

y′
2

)
=

(
0 1

−4.25 −1

)(
y1

y2

)
,

(
y1(0)
y2(0)

)
=

(
1

−0.5

)
. (10.6.4)

The matrix of this system has the eigenvalues −0.5 ± 2i which correspond
to to λ in the test equation. The solution is

u(x) = y1(x) = e−0.5x cos(2x) .

We have used Euler’s method with step length h =1/3 and h = 0.025 to
approximate the solution for 0 ≤ x ≤ 5. The result is shown in Figure 10.11.
The exact solution is a damped oscillation, and so is the numerical solution
found with h =0.025. For h = 1/3 we get an oscillating numerical solution
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Figure 10.10. Stability regions. The method is stable if
hλ is in the shaded part of the complex plane.

with increasing amplitude. This is because the stability condition is not
satisfied:

|1 + hλ| = |1 + 1
3 (−0.5 + 2i)| = 1.0672 > 1 .

For h = 0.025 we get |1 + hλ| = 0.9888 < 1.

Example. The Matlab function ode45 is an implementation of an explicit
Runge-Kutta method, and ode15s is an implicit method. Both functions
use adaptive step length control (see the next section) ie they attempt to
use as large steps as is possible with respect to stability and accuracy. We
use the two functions (with the same, default accuracy parameters) to solve
the stiff system

u′′ + 10 001u′ + 10 000u = 0, u(0) = 1.001, u′(0) = −11 . (10.6.5)

(What are the eigenvalues of the corresponding system, and what is the
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Figure 10.11. Euler’s method applied to (10.6.4).

analytic solution?). The explicit method ode45 requires 19 129 function
evaluations, while the implicit method ode15s only needs 99. The results
are shown in Figure 10.12.
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Figure 10.12. Solution of the stiff system (10.6.5) by
ode15s (top) and ode45 (bottom; the markings are

so close that they cannot be distinguished).
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10.7. Adaptive Step Length Control

When one solves an initial value problem for an ordinary differential equa-
tion, it is desirable to be able to vary the step length depending on how
fast the solution changes. Since the solution is not known beforehand, the
change of step length must be based on an estimate of the local truncation
error. We shall describe one way of doing this.

Suppose that we use a Runge-Kutta method with local truncation
error O(h5). Then an approximation yn+1 satisfies

yn+1 = ŷ(xn+1) + ψ(xn+1)h
5 + O(h6) ,

where ŷ(x) is the solution curve through the point (xn, yn), and the dom-
inating term ψ(xn+1) is unknown. Suppose that we also compute another
approximation ỹn+1 with local truncation error O(h6),

ỹn+1 = ŷ(xn+1) + O(h6) .

Then the local truncation error can be estimated by the difference

dn+1 = yn+1 − ỹn+1 = ψ(xn+1)h
5 + O(h6) .

Assume that we are willing to accept a local truncation error τ . If
the estimated error is larger than this tolerance, we have to recompute
the step with a smaller step length. Otherwise, we accept the step, and
if |dn+1| is considerably smaller than τ , then it indicates that we can
increase the step length.

More precisely, let h denote the current value of the step length. Com-
pute yn+1, ỹn+1 and dn+1. We have

|dn+1| ≃ |ψ(xn+1)|h5 ,

and the new step length hnew should satisfy

|ψ(xn+1)|h5
new ≃ τ .

This leads to hnew = γh, where

γ = min

{
0.8

(
τ

|dn+1|

)1/5

, 5

}
.

The factor 0.8 and the upper bound 5 are used for reasons of caution.
If |dn+1| ≤ τ , then yn+1 is sufficiently accurate, and since ỹn+1 is even

better, we accept (xn+h, ỹn+1) as the next approximate solution point
and h is changed to γh. Otherwise, the computation from (xn, yn) is
repeated with the reduced step length γh.
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In order to be efficient, the two methods must be constructed so that
one uses the same evaluations of the function f(x, y) to compute both
yn+1 and ỹn+1. This is satisfied by the following Runge-Kutta-Fehlberg
method.

k1 = f(xn, yn) ,

kr = f
(
xn+αrh, yn + h

r−1∑

j=1

βrjkj

)
, r = 2, 3, 4, 5, 6 ,

yn+1 = yn + h

6∑

j=1

wrkr ,

ỹn+1 = yn + h
6∑

j=1

w̃rkr ,

dn+1 = h
6∑

j=1

(wr − w̃r)kr .

The values of the {αr}, {βrj}, {wr} and {w̃r} can be found in the next
example.

Example. The Runge-Kutta-Fehlberg method can be implemented as follows.

function [x,y,neval] = adaptrk45(f, ab, y0, h0, tol)

% Runge-Kutta with adaptive step length control

% Input

% f handle to function that defines the rhs in y’ = f(x,y)

% ab range of integration is [a, b], a=ab(1), b=ab(2)

% y0 vector of initial values

% h0 initial step length

% tol tolerance for step length control

% Output

% x vector of x-values, where the solution is computed

% y matrix with approximations of the solution

% neval number of function evaluations

% Runge-Kutta-Fehlberg45 constants. Alpha in A, beta in B

A = [0 1/4 3/8 12/13 1 1/2];

B = [0 0 0 0 0 0

1/4 0 0 0 0 0

3/32 9/32 0 0 0 0

1932/2197 -7200/2197 7296/2197 0 0 0

439/216 -8 3680/513 -845/4104 0 0

-8/27 2 -3544/2565 1859/4104 -11/40 0]’;
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% Weights

w4 = [25/216 0 1408/2565 2197/4104 -1/5 0]’;

w5 = [16/135 0 6656/12825 28561/56430 -9/50 2/55]’;

dw = w4 - w5;

% Initialize

a = ab(1); b = ab(2); m = length(y0);

x = a; y = y0(:); neval = 0; % initialize output

n = 0; xn = a; yn = y0; h = min(h0, b-a);

K = zeros(m,6); % for storing k1,...,k6

while xn < b

xn1 = min(xn + h, b); % possible adjustment at end

h = xn1 - xn;

for j = 1 : 6

K(:,j) = feval(f, xn+A(j)*h, yn+h*K*B(:,j));

end

neval = neval + 6;

y5 = yn + h*K*w5; % RKF5 approximation

d = h*norm(K*dw); % estimated error

if d <= tol % accept the step

n = n+1; xn = xn1; yn = y5;

x(n+1) = xn; y(:,n+1) = yn; % save in output

end

h = h * min(0.8*(tol/d)^0.2, 5); % Update step length

end

x = x’; y = y’; % return in standard format

Adaptive step length control is especially useful when the solution
varies fast in parts of the interval [a, b], and more slowly in other parts.
This is the case with the so-called Brusselator equation, which models a
certain chemical reaction.

y′1 = 1 + y2
1y2 − 4y1 ,

y′2 = 3y1 − y2
1y2 ,

with initial values y1(0) = 1.5, y2(0) = 3.

Example. The Brusselator equation is implemented in

function f = odef2(x,y)

f = [1 + y(1)*(y(1)*y(2) - 4)

y(1)*(3 - y(1)*y(2))];

Figure 10.13 shows the results obtained by the call

>> [x,y,neval] = ark45(@odef2, [0 20], [1.5;3], 0.1, 1e-4);
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Figure 10.13. Runge-Kutta with adaptive step length control.

Computed points are marked by × for y1 and + for y2.

The number of evaluations of f(x, y) is neval = 516. The step length varies
between 0.0466 and 0.8055.

The Matlab function ode45 is a more advanced implementation, based on
a similar set of Runge-Kutta methods. The commands

>> opts = odeset(’NormControl’,’on’,...

’AbsTol’,1e-4, ’RelTol’,1e-8, ’Stats’,’on’);

>> [xx,yy] = ode45(@odef2, [0 20], [1.5;3], opts);

give a result similar to Figure 10.13, and uses 505 function evaluations.

10.8. Boundary Value Problems

Example. Consider a thin rod of length 1 with variable heat conduction proper-
ties. Assume that the rod is insulated along its length, and that the endpoint
temperatures are kept at different, constant temperatures, α and β. Let y(x)
denote the temperature at x. It satisfies the differential equation

d

dx

(
κ(x)

dy

dx

)
= 0 ,

where κ(x) is the heat conduction coefficient of the rod. The given temper-
atures at the ends lead to the boundary conditions

y(0) = α, y(1) = β .

If, eg, the rod is made of two different materials,

κ(x) =

{
1 for 0 ≤ x < 0.4 ,
2 for 0.4 < x ≤ 1 ,
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and the endpoint temperatures are α = 10, β = 20, then the solution is the
broken line shown in the figure.

0 0.2 0.4 0.6 0.8 1
0

1

2

Heat conduction coefficient

0 0.2 0.4 0.6 0.8 1
10

15

20
Temperature

Figure 10.14. Temperature in insulated rod.

Many physical processes can be modelled by a second order differential
equation with extra conditions given in two points, a and b. The solution
is required in the interval [a, b]. Often, such a problem can be written in
the form

y′′ = g(x, y, y′), y(a) = α, y(b) = β ,

where g is a given function and α and β are given numbers. This is called a
boundary value problem. Remember that two extra conditions are needed
to define a solution of a second order differential equation. If they are
given at the same point, then we have an initial value problem, and if
they are given at two points, then we have a boundary value problem.
The extra conditions are called boundary values.

Example. If the rod from the previous example contains a heat source, eg an
electrical resistance or a radioactive isotope, then one gets an inhomogeneous
equation

d

dx

(
κ(x)

dy

dx

)
= f(x) ,

where f(x) describes the heat production as a function of x. If κ and f are
constant, then the boundary value problem can be solved analytically (eg if
κ is constant and f(x) = 0, then the solution is a straight line). For problems
with non-constant coefficients it is usually necessary to find an approximate
solution via a discretization of the problem.

In the following sections we discuss three different methods for approx-
imate solution of boundary value problems: a (finite) difference method,
a finite element method, and the shooting method. For simplicity we shall
present the theory using a special case, eg the linear equation y′′−q(x)y =
f(x), where q and f are given functions of x.
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10.9. A Difference Method

Difference methods are based on a division of the interval [a, b] into subin-
tervals, which we assume have equal length

h =
b − a

N
.

The points
xn = a + nh, n = 0, 1, 2, . . . , N

are said to form a grid . We seek the values {yn} as approximations of
{y(xn)}.

y0

x0

y1

x1

yn−1

xn−1

yn

xn

yn+1

xn+1

yN

xN

Note that we already know y0 and yN , since they are given by the bound-
ary values.

Consider the special case when the equation is

y′′ − q(x)y = f(x), q(x) ≥ 0 .

According to chapter 6 we can approximate the second derivative at the
point x = xn as follows,

y′′(xn) ≃ y(xn−1) − 2y(xn) + y(xn+1)

h2
.

This can be done at the interior points, n = 1, 2, . . . , N−1. We insert this
approximation in the differential equation,

y(xn−1) − 2y(xn) + y(xn+1)

h2
−q(xn)y(xn) ≃ f(xn), n = 1, 2, . . . , N−1 .

The discretized equation is obtained when we replace y(xk) by yk and
“≃” by equality:

yn−1 − 2yn + yn+1

h2
− q(xn)yn = f(xn), n = 1, 2, . . . , N−1 ,

or, equivalently

yn−1 − (2 + h2qn)yn + yn+1 = h2fn, n = 1, 2, . . . , N−1 .

Here we have introduced the notation qn = q(xn), fn = f(xn).
The known boundary value y0 is included in the first equation,

y0 − (2 + h2q1)y1 + y2 = h2f1 .
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We move the known value y0 = α to the right hand side and get

−(2 + h2q1)y1 + y2 = h2f1 − α .

Similarly, in the last equation we introduce the known boundary value
yN = β and get

yN−2 − (2 + h2qN−1)yN−1 = h2fN−1 − β .

Thus, we have derived a linear system of equations in the unknowns
y1, . . . , yn−1. We can write the system in the form

Ay = b ,
where

y =




y1

y2
...

yN−2

yN−1




, b =




h2f1 − α
h2f2

...
h2fN−2

h2fN−1 − β




,

and A is the tridiagonal matrix

A =




−(2+h2q1) 1
1 −(2+h2q2) 1

. . .
. . .

. . .

1 −(2+h2qN−2) 1
1 −(2+h2qN−1)




.

This method of discretizing the boundary value problem is called a dif-
ference method , because derivatives are replaced by differences.

We have made the assumption that q(x) ≥ 0. This ensures that the
matrix A is diagonally dominant, cf Section 8.4. This implies that the
matrix is nonsingular, and the linear system of equations has a unique
solution for any right hand side b. The system can be solved by Gaussian
elimination without pivoting, and the operation count is O(N), cf the
algorithm on page 220.

Example. The boundary value problem

y′′ − y = 0, y(0) = 0, y(1) = sinh(1)

has the analytic solution y(x) = sinh(x). We discretize the problem using
the difference method with n = 4, h = 0.25.
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0

0

y1

x1

y2

x2

y3

x3

sinh(1)

1

The boundary values give y0 = 0, y4 = sinh(1), and the unknowns y1, y2, y3

satisfy
yn−1 − (2 + h2)yn + yn+1 = 0, n = 1, 2, 3 ,

or, in matrix form



−(2+h2) 1 0
1 −(2+h2) 1
0 1 −(2+h2)







y1

y2

y3


 =




0
0

− sinh(1)


 .

The solution of this linear system is given in the table.

xn yn error
0.250 0.252803 1.9 · 10−4

0.500 0.521406 3.1 · 10−4

0.750 0.822598 2.8 · 10−4

If we halve the step length, we get

xn yn error
0.125 0.125351 2.5 · 10−5

0.250 0.252660 4.8 · 10−5

0.375 0.383918 6.6 · 10−5

0.500 0.521174 7.8 · 10−5

0.625 0.666573 8.1 · 10−5

0.750 0.822387 7.1 · 10−5

0.875 0.991052 4.5 · 10−5

Note that at the points that are common in the two tables, xn = 0.25, 0.50,
0.75, the error is reduced by a factor of approximately four when the step
length is halved. This indicates that the truncation error is O(h2).

The following theorem, which we give without proof, shows that the
truncation error of the method is indeed O(h2).
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Theorem 10.9.1. Consider the boundary value problem

y′′ − q(x)y = f(x), y(a) = α, y(b) = β ,

with q(x)≥ 0. Let y(x) denote the solution, and let yn be the ap-
proximation of y(xn) obtained by the difference method.

If |y(4)| ≤ M for all x∈ [a, b], then

|yn − y(xn)| ≤ M h2

24
(xn − a)(b − xn), n = 1, 2, . . . N−1 .

Example. The following Matlab function uses the difference method to com-
pute an approximate solution of the boundary value problem defined in
Theorem 10.9.1.

function [x,y] = bvp1(q,f,bv,ab,N)

% Solve the boundary value problem y’’ - q(x)y = f(x) ,

% y(a) = bv(1), y(b) = bv(2); a=ab(1), b=ab(2).

% Grid with step length h = (b-a)/N.

% q(x) is assumed to be nonnegative.

a = ab(1); b = ab(2); h = (b - a)/N;

x = linspace(a,b,N+1)’; % grid. Column vector

% Function values at interior points

qv = feval(q,x(2:N)); fv = feval(f,x(2:N));

% Tridiagonal matrix in sparse format

A = spdiags([ones(N-1,1) -(2+h^2*qv) ones(N-1,1)], ...

-1:1, N-1,N-1);

% Right hand side

b = h^2*fv; b(1) = b(1)-bv(1); b(end) = b(end)-bv(2);

% Solve the system and append the boundary values

y = [bv(1); A\b; bv(2)];

We use this function to solve the boundary value problem

y′′ − y = x2 − 2, y(0) = 1, y(1) = cosh(1) − 1 ,

with step lengths h = 0.02 and h = 0.01. The analytic solution is
y(x) = cosh(x) − x2.

>> q = inline(’ones(size(x))’);

>> f = inline(’x.^2 - 2’);

>> [x1,y1] = bvp1(q,f,[1 cosh(1)-1],[0 1],50);

>> [x2,y2] = bvp1(q,f,[1 cosh(1)-1],[0 1],100);

The solution and the errors are shown in Figure 10.15.

The errors behave as stated in the theorem: halving the step length reduces
the error by a factor approximately four, and for fixed h the error is largest
close to the middle of the interval.
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Figure 10.15. Top: solution to the boundary value problem.

Bottom: error with h = 0.02 and h = 0.01.

We have discussed the difference method applied to the special case
of a linear differential equation without a term with the first derivative.
It is easy to generalize to problems involving y′, but in this case the
matrix is not diagonally dominant if the step length is chosen too large,
see Exercise E5.

If the difference method is applied to a problem

y′′ = f(x, y), y(a) = α, y(b) = β ,

where f(x, y) is nonlinear in y, then one gets a nonlinear system of equa-
tions

Ay = F (y) ,

where y = (y1, . . . , yN−1)
T , and

A =




−2 1
1 −2 1

. . .
. . .

. . .

1 −2 1
1 −2




, F (y) =




h2f(x1, y1) − α
h2f(x2, y2)

...
h2f(xN−2, yN−2)

h2f(xN−1, yN−1) − β




.

The nonlinear system can eg be solved by means of a fixed point iteration,
cf Section 4.8,
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Ay[k+1] = F (y[k]) .

In each iteration you have to solve a tridiagonal system with the matrix A.
Under quite mild restrictions on the function f it can be shown that

also in the nonlinear case, the truncation error is O(h2).

10.10. A Finite Element Method

Finite element methods are often used for solving eg problems in struc-
tural mechanics. They are based on the principle of subdividing the
construction under study into small parts, “finite elements”. One can
formulate equations for the influence on each element when a load is put
on the construction. Each element is also influenced by its neighbours,
and there results a system of equations, that describes the total effect on
the construction.

Structural mechanics computations usually involve partial differential
equations, and often the Rayleigh-Ritz method is used to solve them. This
method is closely related to the physical background: it is based on the
principle of minimizing the potential energy of the system. We shall
study a similar method, Galerkin’s method , applied to a boundary value
problem for an ordinary differential equation. When this method is used
as described below, it gives the same results as the Rayleigh-Ritz method.

We aim at introducing some basic mathematical and numerical ideas,
not at giving a full account of finite element methods. We deliberately
avoid certain details, and therefore the presentation is not completely
stringent.

To formulate Galerkin’s method, we define the scalar product of two
functions g and h defined on the interval [a, b], cf Chapter 9,

(g, h) =

∫ b

a
g(x)h(x) dx .

The functions g and h are said to be orthogonal if (g, h) = 0.
Consider the boundary value problem

Ly = −y′′ + qy = f, y(a) = y(b) = 0 ,

where we assume that q ≥ 0 is a constant, and that f(x) is not identically
zero. We have introduced the notation L for the differential operator that
maps a twice differentiable function y onto −y′′ + qy.
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Let V be a class of test functions, that satisfy the boundary conditions

V =
{
v | v′ is piecewise continuous and bounded on [a, b],

and v(a) = v(b) = 0
}

.

If y satisfies the differential equation Ly = f , then, trivially,

(v, Ly − f) = 0 for all v ∈ V .

Conversely, it can be shown that if y is such that

(v, Ly) = (v, f) for all v ∈ V ,

then y also satisfies Ly = f . The above condition is called the weak form
of the differential equation.

Definition 10.10.1. The weak form:

(v, Ly) = (v, f) for all v ∈ V .

The weak form is similar to the normal equations for an overdeter-
mined linear system of equations (cf Section 8.14): There, we define a
residual vector and require it to be orthogonal to all vectors in a cer-
tain linear space. In the weak form, the residual function r = Ly − f is
required to be orthogonal to all functions in V.

We will now reformulate the left hand side in the weak form. The
definitions of the operator L and the scalar product give

(v, Ly) = (v,−y′′ + qy) =

∫ b

a
−v(x)y′′(x) dx + q

∫ b

a
v(x)y(x) dx .

By partial integration of the first integral we get
∫ b

a
−v(x)y′′(x) dx =

[
−v(x)y′(x)

]b

a
+

∫ b

a
v′(x)y′(x) dx .

The boundary term vanishes because v(a) = v(b) = 0, and we have shown
that the weak form can be written

The weak form partially integrated:

(v, Ly) = (v′, y′) + q(v, y) = (v, f) for all v ∈ V .

By a partial integration we have moved one derivative from y to v.
Let yh denote an approximate solution of the boundary value prob-

lem. We write yh in the form
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yh =

N−1∑

j=1

cjϕj ,

where {ϕj}N−1
j=1 are given functions. The notation yh suggests that the

ϕj are related to a discretization with step length h, but for a while we
refrain from specifying them. We merely assume that they are linearly
independent (cf Chapter 9), which means that they constitute a basis in
an (N−1)-dimensional function space, that we call V

h. Further, we as-
sume that all the basis functions ϕj satisfy the boundary conditions on y:

ϕj(a) = ϕj(b) = 0, j = 1, 2, . . . , N−1 .

We now require that the approximation yh satisfies the weak form,

(v, Lyh) = (v, f) .

Further, we “discretize” the test functions v by requiring them to belong
to V

h. We get

(vh, Lyh) = (vh, f) for all vh ∈ V
h .

This is a special case of Galerkin’s method.

Let V
h be a finite-dimensional class of functions with basis {ϕj}N−1

j=1 .
Galerkin’s method applied to the equation Ly = f amounts to deter-
mining the function yh ∈V

h that satisfies

(vh, Lyh) = (vh, f) for all vh ∈ V
h .

Since all the basis functions ϕj are assumed to satisfy the boundary
conditions, it follows that yh will do so.

The requirement that (vh, Lyh) = (vh, f) for all vh ∈V
h is equivalent

to the same requirement with vh replaced by any of the basis functions:

(ϕi, Lyh) = (ϕi, f), i = 1, 2, . . . , N−1 .

We will now show that this constitutes a linear system of equations for
the coefficients in the expression yh =

∑N−1
j=1 cjϕj . Inserting this in the

partially integrated form, we get

(ϕi, Lyh) =
N−1∑

j=1

cj(ϕ
′
i, ϕ

′
j) + q

N−1∑

j=1

cj(ϕi, ϕj) = (ϕi, f), i= 1, . . . , N−1 .

This is a linear system of equations for the coefficients cj :



10.10. A Finite Element Method 347

Kc = F .

The matrix K is the sum of two matrices,

K = K1 + K0 .

The so-called stiffness matrix K1 is given by

K1 =




(ϕ′
1, ϕ

′
1) (ϕ′

1, ϕ
′
2) · · · (ϕ′

1, ϕ
′
N−1)

(ϕ′
2, ϕ

′
1) (ϕ′

2, ϕ
′
2) · · · (ϕ′

2, ϕ
′
N−1)

...
...

...
(ϕ′

N−1, ϕ
′
1) (ϕ′

N−1, ϕ
′
2) · · · (ϕ′

N−1, ϕ
′
N−1)


 ,

the so-called mass matrix K0 is

K0 = q




(ϕ1, ϕ1) (ϕ1, ϕ2) · · · (ϕ1, ϕN−1)
(ϕ2, ϕ1) (ϕ2, ϕ2) · · · (ϕ2, ϕN−1)

...
...

...
(ϕN−1, ϕ1) (ϕN−1, ϕ2) · · · (ϕN−1, ϕN−1)


 ,

and the right hand side is given by

Fi = (ϕi, f), i = 1, 2, . . . , N−1 .

Note that both K1 and K0, and therefore K are symmetric. Further,
under the given assumptions on the operator L, one can show that K is
positive definite.

So far, the presentation has been independent of the choice of basis
functions ϕj . Now, we will choose linear elements. First, we divide the
interval [a, b] into N subintervals, [xj−1, xj ], j = 1, . . . , n.3) For the sake
of simplicity we use equidistant {xj},

xj = a + jh, h =
b − a

N
, j = 0, 1, . . . , N .

The linear element ϕj is a piecewise linear function, defined by

ϕj(x) =





0 , x0 ≤ x ≤ xj−1 ,

(x − xj−1)/h , xj−1 ≤ x ≤ xj ,

(xj+1 − x)/h , xj ≤ x ≤ xj+1 ,

0 , xj+1 ≤ x ≤ xN .

Note that ϕj(xj) = 1. Two of the functions are shown in Figure 10.16.

3) More precisely: the subintervals are elements, and in each element the function
yh varies linearly between its endpoint values.
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Figure 10.16. Linear elements ϕn−1 (dotted) and ϕn (solid).

The functions ϕj were introduced in Section 5.10 under the name
“linear B-splines”. The space V

h that is spanned by these basis functions,
is therefore a space of linear splines, ie piecewise straight lines.

The scalar products (ϕ′
i, ϕ

′
j) and (ϕi, ϕj) in the stiffness and mass

matrices are zero unless ϕi and ϕj share an interval, where both of them
are nonzero. It is readily seen that

(ϕ′
i, ϕ

′
j) = (ϕi, ϕj) = 0 if |j − i| ≥ 2 .

In other words: both K1 and K0 (and therefore K) are tridiagonal ma-
trices. The nonzero elements are

(ϕ′
j , ϕ

′
j) =

∫ xj

xj−1

(
1

h

)2

dx +

∫ xj+1

xj

(−1

h

)2

dx =
2

h
,

(ϕ′
j , ϕ

′
j+1) =

∫ xj+1

xj

(−1

h

)(
1

h

)
dx =

−1

h
,

(ϕj , ϕj) =

∫ xj

xj−1

(
x − xj−1

h

)2

dx +

∫ xj+1

xj

(
xj+1 − x

h

)2

dx =
2h

3
,

(ϕj , ϕj+1) =

∫ xj+1

xj

xj+1 − x

h

x − xj

h
dx =

h

6
.

(Check the details!). Thus, the two matrices are

K1 =
1

h




2 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 2




, K0 =
qh

6




4 1
1 4 1

. . .
. . .

. . .

1 4 1
1 4




.

(10.10.1)
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Example. We discretize the boundary value problem

−y′′ + y = 1, y(0) = y(1) = 0 ,

using linear elements with step length h = 0.25.

0 x1 x2 x3 1

The stiffness and mass matrices are

K1 =
1

0.25




2 −1 0
−1 2 −1
0 −1 2


 , K0 =

0.25

6




4 1 0
1 4 1
0 1 4


 ,

and the components of the right hand side are

Fi = (ϕi, f) =
∫ 1

0
ϕi(x) dx = h = 0.25, n = 1, 2, 3 .

After multiplying by h we get the finite element equation



2 + 1/24 −1 + 1/96 0
−1 + 1/96 2 + 1/24 −1 + 1/96

0 −1 + 1/96 2 + 1/24







c1

c2

c3


 =




1/16
1/16
1/16


 .

The solution is c1 ≃ 0.0857, c2 ≃ 0.1137, c3 ≃ 0.0857, and the corresponding
yh = c1ϕ1 + c2ϕ2 + c3ϕ3 is shown in Figure 10.17 together with the error
y(x) − yh(x). The exact solution is

y(x) = 1 − cosh(x) +
cosh(1) − 1

sinh(1)
sinh(x) .

0 0.2 0.4 0.6 0.8 1
0

0.04

0.08

0.12
Solution

0 0.2 0.4 0.6 0.8 1
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8
x 10

−3 Error

Figure 10.17. Finite element solution yh and error y − yh

for h = 1/4 (dashed) and h = 1/8 (solid).
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We summarize:

The finite element equation for the boundary value problem

−y′′ + qy = f, y(a) = y(b) = 0 ,

discretized using linear elements on an equidistant grid, is given by

Kc = F, K = K1 + K0 ,

where the stiffness and mass matrices K1 and K0 are given by
(10.10.1), and the right hand side is given by

Fi = (ϕi, f), i = 1, 2, . . . , N−1 .

The approximate solution yh is a piecewise linear function

yh =
N−1∑

j=1

cjϕj .

The following can be shown.

Theorem 10.10.2. The piecewise linear finite element approxima-
tion yh, derived in this section, satisfies

‖yh − y‖ ≤ C h2 ‖f‖ ,

for some constant C. (The norm is defined as ‖u‖ =
√

(u, u)).

In the same way as we introduced cubic splines in Section 5.11, we
can define finite element methods for cubic elements. This leads to finite
element equations with bandwidth 5, and the truncation error is (usually)
O(h4). This is as expected, when you compare with the error estimates
in Chapter 5.

Example. The Matlab function bvp4c is based on cubic elements and collo-
cation. This is a Galerkin method, where the solution is approximated by
a cubic spline, and the test function vn evaluates in discrete points: for a
given function g one gets (vi, g) = g(xi).

The boundary value problem

u′′ = 1 + uu′, u(0) = 1, u(0.6) = 2 ,

is reformulated to a system of first order equations
(

y′
1

y′
2

)
=

(
y2

1 + y1y2

)
, y1(0) = 1, y1(0.6) = 2 .
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The differential equation and the boundary conditions are implemented in
the functions

function f = odef3(x,y)

f = [y(2); 1+y(1)*y(2)];

function r = bvres(ya,yb)

r = [ya(1)-1; yb(1)-2];

Note that bvres returns a vector of zeros if the boundary conditions are
satisfied.

bvp4c can solve nonlinear problems (our equation is nonlinear!), and there-
fore it needs an initial guess of the solution. We use the straight line between
the two endpoints.

xi = linspace(0,0.6,5);

yi = [1 + (1/0.6)*xi; (1/0.6)*ones(size(xi))];

solinit.x = xi; solinit.y = yi;

sol = bvp4c(@odef3, @bvres, solinit);

plot(sol.x,sol.y(1,:),’o’, sol.x,sol.y(2,:),’v’)

x = linspace(0,0.6); y = bvpval(sol,x);

hold on, plot(x,y(1,:),’-’, x,y(2,:),’--’)

The resulting plot is shown in Figure 10.18.
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Figure 10.18. Solution from bvp4c and interpolation by bvpval.

The output from bvp4c is a struct with fields sol.x, sol.y and sol.yp,
containing respectively values xi of the independent variable, and the corre-
sponding values of the approximations y(xi) and y′(xi). Intermediate values
of the approximate solution can be obtained by the function bvpval, which
is based on Hermite interpolation, cf Section 5.7.
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In Section 10.7 we saw that it may be advantageous to use varying
step length in the solution of initial value problems. This is also the case
with boundary value problems, and it is easier to do that with a finite
element method than with a difference method. The advantage of finite
element methods is even more pronounced in the solution of partial differ-
ential equations, especially because of the ease with which it is possible to
treat complicated geometries and different boundary conditions. Further,
there is a well-developed mathematical theory, that allows one to prove
convergence and derive error estimates, even for complicated problems.

10.11. The Shooting Method

Finally, we study a third method for solving a boundary value problem

y′′ = f(x, y, y′), y(a) = α, y(b) = β .

We assume that the problem has a unique solution. Further, we have to
assume that also the initial value problem for the same equation has a
unique solution.

Suppose that we knew the derivative at the left hand endpoint of the
interval, ie y′(a)= γ, for some γ. Then, we would have an initial value
problem,

y′′ = f(x, y, y′), y(a) = α, y′(a) = γ .

Putting v = y′, we can write this as a system of first order differential
equations,

(
y′

v′

)
=

(
v

f(x, y, v)

)
,

(
y(a)
v(a)

)
=

(
α
γ

)
. (10.11.1)

This problem can be solved by one of the methods discussed earlier in
this chapter, eg we could use a Runge-Kutta method.

Let y(x, γ) denote the solution to the initial value problem (10.11.1).
The idea behind the shooting method is to determine γ such that y(b, γ) =
β, the given boundary value at the right hand end. In other words, we
seek γ = γ∗ as a root of the equation

g(γ) = y(b, γ) − β = 0 .
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A number of methods for solving this problem were discussed in Chap-
ter 4. We cannot give an explicit expression for the function g, but we can
get an approximation of g(γ) by solving (10.11.1) numerically. Further, it
would be rather complicated to compute the derivative g′(γ). This leaves
out Newton-Raphson’s method, but we can use the secant method defined
on page 73,

γk+1 = γk − g(γk)
γk − γk−1

g(γk) − g(γk−1)
, k = 1, 2, . . .

The values γ0 and γ1 must be chosen in another way.

Example. Given the boundary value problem

y′′ = −y, y(0) = 0, y(π/2) = 1 ,

(which has the analytic solution y(x) = sin x). From the formulation we
know that the solution passes through the two points (0, 0) and (π/2, 1), so
a first guess on γ is the slope of the straight line between these two points,

γ0 =
1 − 0

π/2 − 0
≃ 0.6366 .

We use the classical Runge-Kutta method with step length h = π/100 (ie
we take n = 50 steps). The result is shown in the left part of Figure 10.19.
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Figure 10.19. Left: Boundary values and solution with γ0 = 0.6366.

Right: Solution with γ1 = 1.2 (dotted) and γ2 = 1 (solid).

The resulting y(b, γ0) is too small, so we try a larger initial slope, γ1 = 1.2.
The result is shown with dotted line in the right part of Figure 10.19. The
two results for the function g are

k γk g(γk)
0 0.6366 −0.3634
1 1.2000 0.2000

Now, we can use the secant method, and get
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γ2 = 1.2 − 0.2
1.2 − 0.6366

0.2 + 0.3634
= 1 .

The solution with this initial slope is shown with solid line in the right part
of Figure 10.19; y(b, 1) = 1, so we are finished.

The procedure is reminiscent of the way that soldiers used to adjust
the artillery in the old days; thus, the name “shooting method”.

It was no coincidence in the example that already in the third try
we had the correct y′(0). One can show that if the function f(x, y, y′)
in the differential equation is linear in y and y′, then the function g is a
first degree polynomial in γ, and the secant method is exact. In the more
general case, when f is nonlinear in y and/or y′, then also g is nonlinear,
and one must perform several iterations.

Example. The boundary value problem from the example on page 350,

y′′ = 1 + yy′, y(0) = 1, y(0.6) = 2 ,

is nonlinear in y and y′, so g(γ) = y(0.6, γ)−2 is nonlinear in γ. Figure 10.18
on page 351 indicates that the solution is smooth, so if we use the classi-
cal Runge-Kutta method with n = 10 steps (h = 0.06), we should get a
reasonably small truncation error.

With γ0 chosen as the slope of the line between the two endpoints, (0, 1) and
(0.6, 2), and γ1 = 1

2 γ0 we get the following results

n γk yn(γk) g(γk)

10 1.6666667 2.8754957 8.75e-01

10 0.8333333 1.9872039 -1.28e-02

10 0.8453378 1.9990253 -9.75e-04

10 0.8463275 2.0000012 1.16e-06

10 0.8463263 2.0000000 -1.06e-10

We see fast convergence to γ∗ ≃ 0.8463. In order to reduce the truncation
error, we halve the step length to h = 0.03, and repeat the secant iteration,
starting with the last two γk-values:

n γk yn(γk) g(γk)

20 0.8463275 2.0000046 4.58e-06

20 0.8463263 2.0000034 3.42e-06

20 0.8463229 2.0000000 1.46e-12

When we compare the results obtained with the two step lengths, we see that
the function values g(γk) are changed by approximately 3.42 · 10−6. This
change is dominated by the global truncation error associated with the larger



Exercises 355

of the two step lengths, h = 0.06. The computed value of γ∗ is changed by
3.47 · 10−6, so in the terms of the discussion in Section 4.5 we have M ≃ 1,
so the root γ∗ is well conditioned.

Since the global truncation error with the Runge-Kutta method is O(h4), a
further halving of h should reduce the error by a factor of approximately 16.
This is borne out by computation: with h = 0.015 we get γ∗ = 0.8463227,
and with 6 digits accuracy the solution is γ∗ = 0.846323.

Exercises
E1. Write the differential equation

3y′′′ + 4xy′′ + sin y = f(x)

as a system of first order differential equations.

E2. An autonomous system of differential equations is a system of the form
y′ = f(y), where the independent variable (x or t, usually) does not enter
explicitly into the right hand side. Introduce a new variable in a system
y′ = f(x, y), and rewrite it in autonomous form.

E3. Given the initial value problem

y′ = y, y(0) = 1 .

(a) Use Euler’s method to compute an approximation of y(x), ie take a
step with Euler’s method, using the step length h = x.

(b) Do the same with Heun’s and Runge-Kutta’s methods. Compare to
the Maclaurin expansion of the solution.

E4. Consider the midpoint method applied to the test problem y′ = λy, y(0) =
1, with y0 = 1.

(a) Show that the factors A and B in (10.6.3) can be computed by

B =
y1 − r1

r2 − r1
, A = 1 − B .

(b) Compute A and B when λ = −100, h = 5 · 10−3, and Euler’s method
is used to compute y1.

(c) Show that r1 is an O(h3) approximation to y(h), and discuss the
effect of taking y1 = r1.

Also see Computer Exercise C1.
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E5. Given the boundary value problem

y′′ + p(x)y′ − q(x)y = 0, y(a) = α, y(b) = β ,

where q(x) ≥ 0 and |p(x)| ≤ P for x∈ [a, b]. Discretize the derivatives
using central differences, and write down the corresponding system of
equations. Show that the matrix is diagonally dominant if h ≤ 2/P .

Computer Exercises
C1. Write a Matlab script that solves the initial value problem y′ = −100y,

y(0) = 1 by means of the midpoint method and plots the numerical solu-
tion for 0 ≤ x ≤ 0.5. Use the step length h = 5 · 10−3 and the value of y1

computed by

(a) Euler’s formula,

(b) y1 = r1, cf Exercise E4.

Discuss the results.

C2. Modify the model for the rocket in Chapter 1, so that it is valid also after
all the fuel has been used. Use ode45 to solve the initial value problem,
and estimate the maximum height of the rocket in the two cases when air
resistance is included in the model, or ignored, respectively.

C3. Given a long, straight conductor that carries a current I = 1 in positive
direction along the y-axis. Let (x(t), y(t)) denote the position at time t of
an electron, that was shot in vacuum at t = 0 from the point (x(0), y(0))
with velocity (x′(0), y′(0)). One can show that (ignoring effects of gravity
and the magnetic field of Earth) the motion of the electron satisfies the
equation

(
x′′

y′′

)
=

(
−Cy′/x
Cx′/x

)
,

where C = −3.5176·104. Use ode45 to solve this initial value problem
numerically in the interval 0 ≤ t ≤ tmax, and plot the orbit in the
xy-plane. Try the values

x(0) x′(0) y(0) y′(0) tmax

1 −10−5 0 0 6·10−4

1 0 0 −5·102 9·10−4
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Use ode45 both with default accuracy parameters and with options

given by odeset(’Abstol’,1e-12, ’Reltol’,1e-4) (cf the example on
page 336).
(The assignment was proposed by Michael Hörnquist).

C4. Consider the initial value problem



u′

v′

w′


 =




−0.04u + 104vw
0.04u − 104vw − 3·107v2

3·107v2


 ,




u(0)
v(0)
w(0)


 =




1
0
0


 .

The system is stiff. Use ode45 and ode15s to solve the problem, and
illustrate the results. See the example on page 336 or try help ode45 to
get information about how to set options for the ode solvers.

C5. Solve the boundary value problem

y′′ = 1 + yy′, y(0) = 1, y′(0.8) = 4 .

(a) Using the Matlab function bvp4c.

(b) Using the shooting method.
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Answers to Exercises

Chapter 2

E1. |π − π| ≤ 1.7 · 10−4.

E3. (a) ∆y ≃ ∆x

x
. (b)

∆f

f
≃ α1

∆x1

x1
+ α2

∆x2

x2
+ α3

∆x3

x3
.

E5. (a) 2(x+x3/3!+x5/5!+ · · · ). (b) − cos 2x/(sin x+cos x). (c) 2 sin2 x
2 .

(d) (
√

1 + x2 +
√

1 − x2)/(2x2).

E8. (a) fl[1 + µ] = 1 because of rounding to even. (c) ǫ = 2µ.

E9. if |x1| > |x2| then u := x2/x1; s := |x1|
√

1 + u2;

else u := x1/x2; s := |x2|
√

1 + u2;

E10. δr ≤ (1 + µ)r − 1 and δr ≥ (1 − µ)r − 1 ≥ −((1 + µ)r − 1) imply that
|δr| ≤ (1 + µ)r − 1.

Let τ = rµ, then (1 + µ)r − 1 ≤ eτ − 1 = τ + τ2

2! + τ3

3! + · · · ≤ τ(1 + τ/2 +
(τ/2)2 + · · · ) = τ/(1 − τ/2) ≤ τ/(1 − 0.1/2) < 1.06τ .

E12. S ≃ 1.6 has the exponent e = 0, and if 1/n2 < 1
22−23, then fl[S + 1/n2] =

S. This is equivalent to n2 > 224, or n > 212 = 4096.

E13. Ŝn =
∑n

i=1 xi(1 + ηi), |ηi| ≤ 1.06kµ.

C2. (b)
|S2(x) − sinhx|

| sinh x| ≤ |x7/7! + x9/9! + · · · |
|x| ≤ x6

7!

(
1 +

x2

72
+

x4

722
+ · · ·

)
≤

x6

7!(1 − x2/72)
≤ 2 · 10−10 < 2−24.

Chapter 3

E1. (a) Both π0 and n have 8 bits and their product nπ0 = 998.71875 has
16 bits and is computed without error. Further, x and nπ0 have the
same exponent (e= 9), so fl[x − nπ0] = x − nπ0.

(b) u = ((x − nπ0) − nR(1+ ǫ0)(1+ ǫ1))(1+ ǫ2), |ǫk| ≤ µ.
|∆u/u| ≤ 2.28µ < 1.4 · 10−7.

E2. For |x − nπ| ≤ 1.76 · 10−8 (∆u| ≤ 3nπ · 2−53).

E4. τ = 0.60725293500888.
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E5. For 2−3i/3 < 2−46, ie i ≥ 15.

Chapter 4

E2. xk+1 = xk(2 − axk). Can assume a ∈ [1, 2[.

ǫk = xk − 1/a, |ǫk| ≤ 1
2 (2ǫ0)

2k

.
Table with n bits: size N = 2n−1, |ǫ0| ≤ 2−n. 2k(n − 1) ≥ − log2(2µ) .

E3. x∗ = 0.523596 ± 0.3 · 10−5 .

E4. −1 ±
√

δ/3, 2 − δ/9 .

C3. N = 128 .

C4. Each estimate in E4 is based on the dominating term in Taylor expansions
around the unperturbed root. The effect of this truncation error grows
with the size of |δ|.

C5. (b) 18 (if we take x as the midpoint of the resulting bracket).
(c) x1 = 0.64884894512009, x2 = 0.65887458885001,

x3 = 0.65882715616353, x4 = 0.65882715493945 .

(d) dk+1 ≃ −0.5·d2
k, k = 2, 3 .

C6. Solutions:

(
2.9984
0.1484

)
,

(
1.3364
1.7542

)
,

(
−3.0016

0.1481

)
,

(
−0.9013
−2.0866

)
.

Chapter 5

E1. (a) h = 2−10 ≤
√

2·2−10, Table size N = 3075. (b) N ≥ 1536.

E2. 3.

E3. 2x(x + 1)(x − 1)(x − 2).

E4. Use Theorem 5.4.3.

E5. Alternative expressions for the unique polynomial of degree ≤ 2, that
interpolates (xi, f(xi)), i= 0, 1, 2, 3.

E6. (a) 684.895. (b) 666.666. (c) sin and cos have errors ≤ 0.5 · 10−6 and
cot has error ≤ 0.23. (d) Interpolation near a singularity for cot.

E7.

∫ b

a

f(x) dx ≃ b − a

n

(
1
2f0 + f1 + · · · + fn−1 + 1

2fn

)
.

E8. Similar to the proof of Theorem 5.11.3. Simpler, since s′ is piecewise
constant.
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E9. Use (5.12.1).

C1. At the kth stage of the loop the ith element (k ≤ i ≤ m) in f contains
f [xi−k, . . . , xi−1] in intpolc and f [x0, . . . , xk−2, xi−1] in intpolc1. Only
the “diagonal” elements (i = k) are used, and they are identical.

C2. p(i,:) = [p(i,2) 2*p(i,3) 3*p(i,4) 0]/(x(i+1) - x(i))

Chapter 6

E1.
1

2h3

(
f(x+2h) − 2f(x+h) + 2f(x−h) − f(x−2h)

)

= f (3)(x) +
25 − 2

5!
h2f (5)(x) +

27 − 2

7!
h4f (7)(x) + · · · .

E2. F (h/3) +
F (h/3) − F (h)

33 − 1
.

E3. (a) D(h) = f ′(x) − 24
5! h4f (5)(x) − 120

7! h6f (7)(x) − · · · .

(b) For the approximation D(h) we use the estimate
|RT| ≤ |D(h) − D(2h)| and

|RXF| ≤
0.5·10−6(1 + 8 + 8 + 1)

12h
=

0.75·10−6

h
.

D(0.2) = 0.1224625,
D(0.1) = 0.1224217, |RT| ≤ 4.1·10−5, |RXF| ≤ 7.5·10−7 ,

D(0.05) = 0.1224267, |RT| ≤ 5.0·10−6, |RXF| ≤ 1.5·10−5 .

A smaller value for h or the use of Richardson extrapolation will
increase the effect of RXF. f ′(x) = 0.12243 ± 0.00002.

C2. The most accurate results are obtained with q = 2, where there are most
points in the region with a clear dominating term in the error expansion.

Chapter 7

C1. (a) I ≃ 0.7468. (b) I ≃ 1.9101. (c) x = t2 gives I =
∫ 1

0
2 cos t2 dt ≃

1.8090. (d) f(0) = 0. I ≃ 6.4319.

(e) I ≃ 1.5396. romberg obtains this with n = 128, ie 129 function
evaluations, and the trapezoidal rule gets the best result. quad gets the
result after 41 function evaluations.
(f) romberg stops after one halving, because T (1) = 1

2 (cos(8πa) + 1 +
cos(8π(a+1))+1) = cos(8πa)+1. T ( 1

2 ) = 1
2T (1)+ 1

2 (cos(8π(a+0.5))+1) =
T (1). This result is therefore believed to be the correct result. In both
cases quad gets the correct result after 49 function evaluations.
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C2. I ≃ 0.33199. If the interval is divided into [0, 0.375], [0.375, 1.5] and
[1.5, 4], then romberg uses n = 16 function evaluations in each subinterval,
ie a total of 51. quad uses 33 function evaluations.

Chapter 8

E1. 2◦ ‖x‖∞ = maxi |xi| ≤ |x1| + · · · + |xn| = ‖x‖1

≤ n · maxi |xi| = n · ‖x‖∞
3◦ ‖x‖2

∞ =
(
maxi |xi|

)2 ≤ x2
1 + · · · + x2

n = ‖x‖2
2

≤ n
(
maxi |xi|

)2
= n‖x‖2

∞

1◦ ‖x‖2
2 = x2

1 + · · · + x2
n ≤ (|x1| + · · · + |xn|)2 = ‖x‖2

1

combined with 3◦ and 2◦ : ‖x‖2
2 ≤ n‖x‖2

∞ ≤ n‖x‖2
1

E3. Since ‖Qx‖2 = ‖x‖2, Definition 8.10.2 shows that ‖Q‖2 = 1. Similarly,
‖Q−1‖2 = ‖QT ‖2 = 1, and Definition 8.11.1 gives κ2(Q) = 1.

Chapter 9

E1. Use the normal equations.

E2. Choice 1: Conceptually simplest.
2: The matrix of the normal equations has zeros in positions

(1, 2), (2, 1), (2, 3) and (3, 2).
3: The matrix of the normal equations is diagonal.

E3. (a)
∥∥

n∑

j=0

cjϕj

∥∥2

2
=

( n∑

j=0

cjϕj ,
n∑

k=0

ckϕk

)
=

n∑

j=0

n∑

k=0

cjck(ϕj , ϕk)

=

n∑

j=0

c2
j (ϕj , ϕj) =

n∑

j=0

c2
j‖ϕj‖2

2 .

(b) Use (a) and Definition 9.2.7.

E4. f∗ and f − f∗ are orthogonal, and the relation is just a reordering of the
terms in Theorem 9.3.2.

E5. P (x) =

n∑

k=0

akTk(x) =

n∑

k=0

(bk − 2xbk+1 + bk+2)Tk(x)

= b0 + b2 − 2xb1x +

n∑

k=1

((bk + bk+2)Tk(x) − bk+1(Tk+1(x) + Tk−1(x)))

= · · · = b0 − xb1 .

E6. (a) U0(x) = 1, U1(x) = 2x, Uk+1(x) = 2xUk(x)−Uk−1(x), k = 1, 2, . . . .

(b) Follows from the recurrence in (a)



368 Answers to Exercises

(c) Use the variable transformation x = cos v
∫ 1

−1

w(x)Uk(x)Uj(x) dx

= 1
2

∫ π

0

(cos
k−j

2
v − cos

k+j

2
v) dv =

{
π/2 , k = j ,
0 , k 6= j .

E7. Choose Pn as the polynomial that interpolates f at the zeros of Tn+1(x).

E8. pn(x) = cn

(
21−nTn(x)+bk−1x

k−1+· · ·+b0

)
combined with Theorem 9.7.1

shows that ‖pn‖∞ ≥ |cn| · ‖21−nTn‖∞ = |cn| · 21−n.

E9. (a) f∗(x) =
3

14
(2 + 3x), ‖f∗ − f‖2 =

√
3

980
≃ 0.055 .

(b) f∗(x) =
1

3
√

3
+ x, ‖f∗ − f‖∞ =

1

3
√

3
≃ 0.192.

E10. (a) ϕ0(x) = 1, ϕ1(x) = x, ϕ2(x) = x2 − 3
5 .

(b) p∗2 = c0ϕ0 + c1ϕ1 + c2ϕ2, c0 = c2 = 0, c1 =
60(π2 − 8)

π4
≃ 1.1516 .

(c) ‖f − p∗2‖2
2 = ‖f‖2

2 − c2
1‖ϕ1‖2

2 =
π2 + 6

3π2
− c2

1 ·
2

5
≃ 0.0753 .

E11. (a) ϕ0(x) = 1, ϕ1(x) = x, ϕ2(x) = x2 − 2, ϕ3(x) = x3 − 3.4x,
ϕ4(x) = x4 − 31

7 x2 + 72
35 .

(b) No. ϕ5(x) = x5−5x3+4x is orthogonal to ϕ0, . . . , ϕ4, but ‖ϕ5‖ = 0 .

(c) p∗3 = 59
5 ϕ0 − 17

5 ϕ1 + 31
7 ϕ2 − ϕ3 = −x3 + 31

7 x2 + 103
35 .

(d) p∗4 = p∗3 + ϕ4 = x4 − x3 + 5 .

C3.
√

wi(ax2
i + b − 1/yi) ≃ 0, i= 1, 2, 3, 4 gives a = 0.3334, b = 0.4954.

C4. a = 2.5, b = 2, r = 1.4577 .

C5. n ‖f − pn‖∞ ‖f − p∗n‖∞
1 5.74 · 10−2 4.17 · 10−2

2 1.03 · 10−2 7.01 · 10−3

3 2.25 · 10−3 1.47 · 10−3

Chapter 10

E1.




y′
1

y′
2

y′
3


 =




y2

y3

(f(x) − 4xy3 − sin y1)/3


 .
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E2.

(
y′
1

y′
2

)
=

(
1

f(y1, y2)

)
.

E3. Euler: y1 = 1 + x, Heun: y1 = 1 + x + 1
2 x2,

Runge-Kutta: y1 = 1 + x + 1
2 x2 + 1

6 x3 + 1
24 x4.

Maclaurin: y(x) = 1 + x + 1
2! x2 + 1

3! x3 + 1
4! x4 + · · · .

E4. (a) Solve the system Ar0
1 + Br0

2 = y0, Ar1
1 + Br1

2 = y1.
(b) A = 0.947214, B = 0.0527864.
(c) Use Maclaurin series for r1 = hλ+

√
h2λ2 + 1 and y(h) = eλh. B = 0,

so the “spurious term” Brn
2 disappears.

E5. (1 − 1
2 hpn)yn−1 − (2 + h2qn)yn + (1 + 1

2 hpn)yn+1 = 0.

C1. With y1 = 1 − 100h the “spurious term” Brn
2 dominates almost from the

start. With y1 = r1 we have B = 0, cf Exercise E4, but rounding errors
will result in nonzero contributions. For x>∼ 0.35 this term explodes.

C2. With air resistance: hmax = 2.80 · 103 (2.86 · 103). Without air resistance:
hmax = 1.25 · 104 (1.34 · 104). The results in parenthesis are obtained with
default setting of the tolerance parameters.
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a posteriori estimate, 238
a priori estimate, 238
absolute error, 11, 16, 226
accumulated error, 31
adaptint, 181
adaptive quadrature, 180

– step length, 334
adaptrk45, 335
addition algorithm, 27
algorithm, 5
alternating series, 46
alternation property, 301
apphouse, 254
approximation problem, 265
arithmetic operations, 26

– register, 27
asymptotic error constant, 76
attainable accuracy, 79

B-spline, 123, 134, 348
back substitution, 190
backslash \ , 93, 189, 219, 257
backsub, 192
backward difference, 145, 156

– error analysis, 32, 237
band matrix, 219
base, 20, 34
basic format, 34

– solution, 257
basis, 188, 346
biased exponent, 35
big O, 6, 146, 147, 291, 316
bisection, 67
bisection method, 67
boundary conditions

for differential equation, 337
for spline, 125

bracket, 67, 83
bvp1, 342

bvp4c, 350
bvpval, 351

cancellation, 19
central difference, 145, 319
change of variables, 177, 281
Chebyshev approximation, 296

– interpolation, 296
– nodes, 285, 296
– norm, 265
– polynomials, 284
– – of the second kind, 304

checkder, 157
check of derivatives, 156
chol, 218
Cholesky factorization, 217
chopping, 11, 26
coefficient matrix, 187
collocation, 350
companion matrix, 87
comparison with known series, 48
complete pivoting, 200
compression, 294
computational work, 191, 195, 213,

217, 221, 225, 243, 253, 256
cond, 243
condest, 243
condition number, 232, 241
conditioning of a matrix, 235

– of a root, 80
convergence, 326

linear, 76
quadratic, 76, 92

Cordic, 56
correct boundary conditions, 125

– decimals, 13, 79
– digits, 240

cosine transform, discrete, 291
crude localization, 66
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cubic spline, 124, 350
cutting off the tail, 179

data compression, 294
data fitting, 262
DCT, 291, 291
de Casteljau algorithm, 142
deflation, 87
degrees of freedom, 121, 125
determinant, 235
DFT, 293
diagonally dominant, 201
difference approximation, 73, 145

– method, 340
– quotient, 313

direct methods for Ax = b, 188
discrete cosine transform, 291

– Fourier transform, 293
discretization, 313
discretized equation, 339
divergent iteration, 72
divide-and-conquer, 181, 295
divided difference, 108
double, 41
double precision, 23, 36
double root, 80

economy size QR, 250
edge detection, 159
elastic spring, 244, 249, 280
elimination, 192
eps, 38, 41
error

absolute, 11, 16, 226
accumulated, 31
global, 133, 165, 314, 317, 319, 322
local, 123, 123, 165, 316, 318, 334
measurement, 245, 263, 266
relative, 11, 16, 24, 226
rounding, 318
total, 149
truncation, 104, 132, 164, 325
– estimate, 79, 112, 234, 240

– in computed solution, 237
– in floating point arithmetic, 30
– propagation, 13, 18

Euclidean norm, 92,
226, 230, 247, 265, 266

Euler’s formula, 289
– method, 313, 317, 326

eulers, 314
exchange algorithm, 302
explicit method, 324
exponent, 22, 34
exponential function, 55
extended precision, 36

simulated, 40
extra knots, 136
extrapolation, 99

Richardson, 150, 153, 171

factorization
Cholesky, 217
LDLT, 215
LU, 208, 210

Fast Fourier Transform, 291
FFT, 291, 293
fill-in, 221
filter, low pass, 292
first neglected term, 46
fixed point arithmetic, 61

– – iteration, 71, 75, 94, 343
– – representation, 21

floating point representation, 22, 34
– – system, 23

flops, 191
forward difference, 145, 156

– error analysis, 31
– substitution, 101, 190

Fourier analysis, 292
– coefficients, 275, 283
– transform, discrete, 293

fraction, 22, 34
Frobenius norm, 230
fundamental

theorem of algebra, 84, 269
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fzero, 83

Galerkin’s method, 344, 346
Gauss transformations, 206
gauss1, 197
Gaussian elimination, 189, 192
geometric series, 49, 289, 318
Givens transformation, 252
global error, 123,

133, 314, 317, 319, 322
gradual underflow, 35
grid, 167, 264, 277, 288, 339
growth factor, 238

Hermite interpolation, 116, 126, 351
Heun’s method, 320, 327
hexadecimal system, 34
Hilbert matrix, 258, 275
Hooke’s law, 245, 309
horner, 85
Horner’s rule, 51, 79, 85, 110
horner1, 86
househ, 254
Householder transformation, 253

IDCT, 291, 291
IEEE, 9

– standard, 23, 34
ifft, 293
ill-conditioned root, 80

– matrix, 233, 249, 274
image analysis, 158, 293
implicit method, 324
incbox, 8
induced matrix norm, 227
Inf, 29, 35
infinite integration interval, 179

– loop, 82
initial value problem, 3, 310
inner product, 191, 197, 253, 267
input data, 5
instability, 326
intpolc, intpval, 111

invariant length, 250
inverse matrix, 224
iteration function, 70

– method, 66, 188, 302

Jacobian, 92
JPEG, 295

knots, 121, 136

Lagrange’s interpolating
polynomial, 115, 167

LAPACK, 188
lcond, 242
LDLT factorization, 215
least squares fit, 262, 269

– – method, 247, 269
– – solution, 248, 251

left triangular matrix, 190
Legendre polynomials, 281
linear B-splines, 123, 348

– convergence, 76
– elements, 347
– independence, 188,

203, 248, 250, 268, 303
– interpolation, 104
– space, 264
– spline, 121
– system of equations, 92, 187ff

Lipschitz condition, 312, 317
local error, 123,

132, 165, 316, 318, 334
log, 4
log-log scale, 148, 175
loss of accuracy, 199,

216, 239, 244, 256
– of information, 294

low pass filter, 292
lower triangular matrix, 190
ℓp norm, 225
lu, 213
LU factorization, 208, 210, 329
lufac, 212
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µ, unit roundoff, 24, 41, 236
machine epsilon, 38
Maclaurin series, 49
mantissa, 22
mass matrix, 347
Mathematical model, 1

– reductions, 176
Matlab, vi, 7, 24, 41,

149, 192, 219, 223, 243, 257
matrix

band, 219
diagonally dominant, 201
Householder, 253
ill-conditioned, 233
inverse, 224
nonsingular, 188, 230, 250
orthogonal, 205
partitioned, 205, 250
permutation, 210
positive definite, 201
reflection, 253
right triangular, 250
rotation, 59, 252
sparse, 196, 223
spd, 214, 238, 248
stiffness, 219
triangular, 190
tridiagonal, 128, 220
upper triangular, 250
well-conditioned, 233
– equation, 223
– norm, 94, 227
– notation, 187

maximal error bound, 18, 54
maximum norm, 226, 265
mean value theorem

of differential calculus, 14
of integral calculus, 164

measurement error, 245, 263, 266
method of unknown coefficients, 168
method-independent

error estimate, 79
midpoint method, 319, 326, 329

minimax approximation, 261, 296
– property, 286

multiple root, 80
multiplicity, 66
multistep methods, 329
Møller’s device, 40

NaN, 29, 35
natural spline, 125, 131
Neville’s method, 113, 155
newton, 82
Newton’s

interpolation polynomial, 110
law, 2, 309

Newton-Cotes’ formulas, 167
Newton-Raphson’s method, 69,

77, 88, 91, 156, 302, 325
newtonsys, 93
noise, 291
nonlinear system of equations, 90
nonsingular matrix, 188, 230, 250
norm(h), 93
norm(x,p), 226
norm, 265

Chebyshev, 265
Euclidean, 265, 266
Frobenius, 230
matrix, 94, 227
maximum, 265
vector, 225

normal equations, 248, 256, 270, 273
normalization, 28, 243, 282
normalized floating point number, 22
not-a-knot, 125, 130
not-a-number, 29, 35
numerical analysis, 6

– approximations, 3
– integration, 300
– problem, 5

ode15s, 332
ode45, 3, 332, 337
odeset, 337
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optimal step length, 148
optimset, 83
order of convergence, 76
orthogonal coefficients, 275

– expansion, 299
– functions, 274
– matrix, 205, 250
– polynomials, 276
– system, 267, 276
– transformation, 250

orthogonality, 267, 286, 344
orthonormal system, 267, 288

– vectors, 250
orthpolfit, 280
orthpolval, 280
oscillations, 132
outer product, 197, 253
output data, 5
overdetermined system, 245, 257, 273
overflow, 22, 28, 37

partial integration, 178
– pivoting, 200, 238
– sum, 30, 46

partitioned matrix, 205, 250
periodic boundary conditions, 125
permutation matrix, 204, 210
perturbation analysis, 18
pgauss, 200
physical spline, 120, 130
piecewise linear function, 347
pivot, 194, 201
pivoting, 198ff
pixel, 158
pocket calculator, 23, 34
polyfit, 112, 273
polyval, 85, 113
portability, 34
position system, 20
positive definite, 201, 248
predictor-corrector, 325
primitive function, 47
Pythagorean law, 271, 303

qr, 256
QR factorization, 250, 274
qrfac, 255
qrsolv, 255
quad, 182, 300
quadratic convergence, 76, 92
quadrature, 163
quotient polynomial, 87

radix, 20
range of matrix, 247

– reduction, 53
rank-one matrix, 197
Rayleigh-Ritz method, 344
RC, RT, RX, RXF, 10
rcond, 243
realmax, realmin, 41
recurrence, three-term, 277, 282, 284
reflection matrix, 253
relative error, 11, 16, 24, 226
remainder term, 46
Remez algorithm, 302
residual, 234, 246
Richardson

extrapolation, 150, 153, 171
richextr, 153
right triangular matrix, 190, 250
rk4, 321
rocket example, 2, 356
Rolle’s theorem, 102
romberg, 173, 180
Romberg’s method, 171, 179
roots, 87
rotation matrix, 59, 252
rounding to even, 11, 37
Rule of thumb, 25, 77, 119, 132, 239
Runge’s function, 118, 133, 137

– phenomenon, 169
Runge-Kutta method, 321

safe guard, 82
scalar product, 267, 286, 344
Schoenberg-Whitney, 136
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secant method, 73, 77, 353
second degree equation, 19
self-correction, 78
seminorm, 265
sensitivity analysis, 231
series expansion, 178
Sherman-Morrison formula, 258
shift operation, 27, 60
sign, 242
signal, 288
significand, 22
significant digits, 13
simple polynomials, 275

– root, 66
Simpson’s rule, 168, 170, 178, 181
simulated extended precision, 40
sine function, 53, 57
single, 41
single precision, 34
singular integrand, 179
solar energy collector, 13, 17
span, 246
sparse matrix, 196, 223
spd matrix, 214, 238, 248
spline, 120, 130

cubic, 124, 350
linear, 121
natural, 131
physical, 120, 130

splint1, 128
splint2, 129
square root function, 87
stability, 238, 326

– region, 332
standard functions, 45
stiff system, 323, 328
stiffness matrix, 219, 347
stopping criteria, 81
submatrix, 205
subspace, 264

substitution, 190
subtraction of singularity, 178, 182
support, 134
synthetic division, 86

test functions, 345
test problem, 326
thin QR, 250
three-term recurrence, 277, 282, 284
trapezoidal method, 324, 327

– rule, 163, 166, 171, 177
trapezrule, 166, 177
trapmeth, 329
tridiagonal algorithm, 220

– matrix, 128, 220, 348
trigonometric functions, 56

– polynomial, 293
truncation error, 104, 145, 164, 325

underdetermined system, 257
underflow, 23, 28, 37
unit circle, 227

– lower triangular matrix, 191, 210
– roundoff, 24, 41, 236

unnecessary loss of accuracy, 239
upper triangular matrix, 190, 210, 250

variable, change of, 177, 281
vector norm, 225, 246
vectorization in Matlab, 192, 196

weak form, 345
Weierstrass’ theorem, 296
weight function, 266, 298
well-conditioned, 80
well-conditioned matrix, 80, 233

– root, 80
Whitney, 136
word length, 21


