Composite Materials for Aircraft Structures: A Brief Review of Practical Application

Jared W Nelson, PhD Candidate

Department of Mechanical and Industrial Engineering Montana State University

ME 480 Introduction to Aerospace, Spring 2010

Introduction

• Composite materials are used more and more for primary structures in commercial, industrial, aerospace, marine, and recreational structures

From Last Time

- Composite parts used for aircraft applications are defined by
 - Material, process, and manufacturing specifications.
 - Material allowable (engineering definition).
- All of these have a basis in regulatory requirements.
- Most efficient use of advanced composites in aircraft structure is in applications with
 - Highly loaded parts with thick gages.
 - High fatigue loads (fuselage and wing structure, etc).
 - Areas susceptible to corrosion (fuselage, etc).
 - Critical weight reduction (empennage, wings, fuselage, etc).
- Use must be justified by weighing benefits against costs.

Composition of Composites

Fiber/Filament Reinforcement

- High strength
- High stiffness
- Low density
- Carbon, Glass, Aramid, etc

Matrix

- Good shear properties
- Low density
- Thermoset & Thermoplastic
- Epoxy, Polyester, PP, Nylon, Ceramics, etc.

Composite

- High strength
- High stiffness
- Good shear properties
- Low density
- Anisotropic!

Overview

Micromechanics

 Study of mechanical behavior of a composite material in terms of its constituent materials

Ply Mechanics

 Study of mechanical behavior of individual material plies based on variations from global coordinate system

Macromechanics

 Study of mechanical behavior utilizing ply mechanics of a homogenized composite material

Failure Theories

CADEC: Introduction

Micromechanics: Assumptions

• Lamina:

- Macroscopically homogeneous
- Linearly elastic
- Macroscopically Orthotropic
- Initially stress free

• Fibers:

- Homogeneous
- Linearly elastic
- Isotropic/Orthotropic
- Regularly spaced
- Perfectly aligned

• Matrix:

- Homogeneous
- Linearly elastic
- Isotropic
- Assumptions in Micromechanics of Composites

Carbon/epoxy (AS4/3501-6) composite (Vf=.70)

Micromechanics: Rule of Mixtures

Micromechanics: Determining Properties

Micromechanics: Rule of Mixtures (E₁)

Micromechanics: Determining Properties

Micromechanics: Rule of Mixtures (E₂)

Micromechanics: Determining Properties

Micromechanics: Rule of Mixtures (v₁₂)

Micromechanics: Determining Properties

Micromechanics: Rule of Mixtures (G₁₂)

Micromechanics: Other Methods & Strengths

Micromechanics: Halpin-Tsai (E₂)

Micromechanics: Determining Properties

Micromechanics: Longitudinal Tensile Strength

Micromechanics: Determining Properties

Back V₁₂, V₂₃ - Periodic Microstructure G12, G23 - Periodic Microstructure Continuous Strand Mat - E,G,V **Continuous Strand Mat - Strengths** Continuous Strand Mat - α Continuous Strand Mat - β Longitudinal Tensile Strength Longitudinal Compressive Strength **Transverse Tensile Strength** Transverse Compressive Strength

Inplane Shear Strength

Micromechanics: Thermal & Electrical Cond

Ply Mechanics

- So what happens if we vary the fiber direction angle away from the 1-direction?
- CADEC uses Micromechanics results and fiber angle

Figure 10.1 Idealized representation of a unidirectional fiber-reinforced material.

Ply Mechanics: CADEC

Ply Mechanics: Compliance Plane Stress

Ply Mechanics: CADEC

Ply Mechanics: Transformations

Ply Mechanics: CADEC

Ply Mechanics: Off-Axis Stiffness Matrices

Ply Mechanics: CADEC

Ply Mechanics: Stress-Strain Relationships

- Stress-Strain Relationship: $\sigma_{ij} = C_{ij} \mathcal{E}_{ij}$
- With 3 planes $\rightarrow C_{ij}$ has 81 terms, but since: $\sigma_{ij} = \sigma_{ji}$ and: $\varepsilon_{ij} = \varepsilon_{ji}$ only 36 terms
- Orthotropic material (2 planes of symmetry) reduces to 9 terms:

$$\begin{bmatrix} \mathcal{O}_{xx} \\ \mathcal{O}_{yy} \\ \mathcal{O}_{zz} \\ \mathcal{O}_{yz} \\ \mathcal{O}_{zz} \\ \mathcal{O}_{yy} \end{bmatrix} = \begin{bmatrix} C_{11} & C_{12} & C_{13} & 0 & 0 & 0 \\ & C_{22} & C_{23} & 0 & 0 & 0 \\ & & C_{33} & 0 & 0 & 0 \\ & & & C_{44} & 0 & 0 \\ & & & & C_{55} & 0 \\ & & & & & C_{66} \end{bmatrix} \begin{bmatrix} \mathcal{E}_{xx} \\ \mathcal{E}_{yy} \\ \mathcal{E}_{zz} \\ \mathcal{E}_{yz} \\ \mathcal{E}_{zy} \end{bmatrix}$$

Ply Mechanics: Orthotropic Material

Macromechanics

• What if there are multiple lamina at differing angles?

• CADEC uses Micromechanics and Ply mechanics to determine:

- Stiffness and Compliance Equations
- Laminate Moduli
- Global and Material Stresses and Strains
- Strains and Curvatures
- Thermal and Hygroscopic loads
- For both Intact and Degraded materials

• Assumes:

- Plane sections remain plane
- Symmetry about a neutral surface
- No shear coupling
- Perfect bonding

Shorthand Laminate Orientation Code

Tapes or Undirectional Tapes

Tapes or undirectional tapes

- Each lamina is labeled by its ply orientation.
- Laminae are listed in sequence with the first number representing the lamina to which the arrow is pointing.
- Individual adjacent laminae are separated by a slash if their angles differ.
- Adjacent laminae of the same angle are depicted by a numerical subscript indicating the total number of laminae which are laid up in sequence at that angle.
- Each complete laminate is enclosed by brackets.
- When the laminate is symmetrical and has an even number on each side of the plane of symmetry (known as the midplane) the code may be shortened by listing only the angles from the arrow side to the midplane. A subscript "S" is used to indicate that the code for only one half of the laminate is shown.

Shorthand Laminate Orientation Code

Fabrics and Tapes and Fabrics

- When plies of fabric are used in a laminate. The angle of the fabric warp is used as the ply direction angle. The fabric angle is enclosed in parentheses to identify the ply as a fabric ply.
- When the laminate is composed of both fabric and tape plies (a hybrid laminate). The parentheses around the fabric plies will distinguish the fabric plies from the tape plies.
- When the laminate is symmetrical and has an odd number of plies, the center ply is overlined to indicate that it is the midplane.

Macromechanics: CADEC

Macromechanics: CADEC

Macromechanics: Defining Laminate

Main Ch	apter	ad Laminate S	ave Laminate Back 🔶 🔶			
Filename: C:\CADEC\TROUBLE.DEF (1/2)						
Laminate Definition for: Problem 5.3						
Number of Layers:	1 Number	r of Materials: 🔽	Plot 1 Total Thickness 1.000E-3			
Laver Thicknesses:	001					
Layup Angles:	90					
Layer Materials:	1					
Loading: Nx	-1e-9	Mx 0	Qx 0			
Ny	0	My 0	Qy 0			
Nxy	0	Mxy 0				
Temperature Change: 0						
Moisture Concentration: 0						
Safety Factor: 1 Set Up Laminate Mat. Properties						

Macromechanics: Defining Laminate

EXIT Main Ch	Loa	ad Laminate Sa	ave Laminate Back 🧼 🔶			
Filename: C:\CADEC\TROUBLE.DEF (1/2)						
Laminate Definition for: Problem 5.3						
Number of Layers:	8 Number	of Materials: 🔽	Plot 1 Total Thickness 1.000E-3			
Layer Thicknesses: 001.001.001.001.001.001.001.001						
Layup Angles: 90 45 -45 0 0 -45 45 90						
Layer Materials:	11111111					
Loading: Nx	-1e-9	Mx 0	Qx 0			
Ny	0	My 0	Qy 0			
Nxy	0	Mxy 0				
Temperature Change: 0						
Moisture Concentration: 0						
Safety Factor: 1						

Macromechanics: Material Properties

Macromechanics: CADEC Quirkiness

Macromechanics: Review Outputs

Macromechanics: Global Stresses

EXII	Main	Chapter				Back	\Leftrightarrow
Ply	Face		Global Stress	ses - Intact Ma	aterial		
Hygroth Stress	nermal	σx	σγ	σχγ	σ_{yz}	σxz	Print
8	TOP	.000	.000	.000	.000	.000	<u> </u>
8	BOT	.000	.000	.000	.000	.000	_
7	TOP	.000	.000	.000	.000	.000	
7	BOT	.000	.000	.000	.000	.000	
6	TOP	.000	.000	.000	.000	.000	-
Mechai	nical						
Stress		σx	σγ	σху	σyz	σxz	Print
8	TOP	684E-07	.635E-07	.383E-23	.000	.000	
8	BOT	684E-07	.635E-07	.387E-23	.000	.000	_
7	TOP	918E-07	332E-07	297E-07	.000	.000	
7	BOT	918E-07	332E-07	297E-07	.000	.000	
6	TOP	918E-07	332E-07	.297E-07	.000	.000	<u> </u>
Total S	tress	σx	σγ	σху	σyz	σxz	Print
8	TOP	684E-07	.635E-07	.383E-23	.000	.000	▲
8	BOT	684E-07	.635E-07	.387E-23	.000	.000	
7	TOP	918E-07	332E-07	297E-07	.000	.000	
7	BOT	918E-07	332E-07	297E-07	.000	.000	
6	TOP	918E-07	332E-07	.297E-07	.000	.000	•

Macromechanics: ABD Matrices

Stiffness of composite where:

- [A] = in-plane stiffness.
- [D] = bending stiffness.
- [B] relates in-plane strains to bending moments and curvatures to in-plane forces—bending-extension coupling.
- [*H*] relates transverse shear strains to transverse forces.

$\begin{cases} N_{x} \\ N_{y} \\ N_{xy} \\ M_{x} \\ M_{y} \\ M_{xy} \\ M_{xy} \\ \end{pmatrix} = \begin{cases} A_{11} & A_{12} & A_{16} & B_{11} & B_{12} & B_{16} \\ A_{12} & A_{22} & A_{26} & B_{12} & B_{22} & B_{36} \\ A_{16} & A_{26} & A_{66} & B_{16} & B_{26} & B_{66} \\ B_{11} & B_{12} & B_{16} & D_{10} & D_{12} & D_{16} \\ B_{12} & B_{22} & B_{26} & D_{12} & D_{22} & D_{26} \\ B_{16} & B_{26} & B_{66} & D_{16} & D_{26} & D_{66} \\ \end{bmatrix} \begin{pmatrix} V_{y} \\ V_{x} \\ V_{x} \\ \end{pmatrix} = \begin{bmatrix} H_{44} & H_{45} \\ H_{45} & H_{55} \end{bmatrix} \begin{pmatrix} \gamma_{yz} \\ \gamma_{xz} \\ \end{pmatrix}$ (6.13)	
$\begin{cases} N_{y} \\ N_{zy} \\ M_{x} \\ M_{y} \\ M_{xy} \\ M_{xy} \\ \end{pmatrix} = \begin{cases} A_{12} & A_{22} & A_{26} & B_{12} & B_{22} & B_{36} \\ A_{16} & A_{26} & A_{66} & B_{16} & B_{26} & B_{66} \\ B_{11} & B_{12} & B_{16} & D_{10} & D_{12} & D_{16} \\ B_{12} & B_{22} & B_{26} & D_{12} & D_{22} & D_{26} \\ B_{16} & B_{26} & B_{65} & D_{16} & D_{26} & D_{66} \\ \end{bmatrix} \begin{pmatrix} e_{y}^{0} \\ \gamma_{xy}^{0} \\ \kappa_{x} \\ \kappa_{y} \\ \kappa_{xy} \\ \end{pmatrix} $ (6.13) $\begin{cases} V_{y} \\ V_{x} \\ V_{x} \\ V_{x} \\ \end{pmatrix} = \begin{bmatrix} H_{44} & H_{45} \\ H_{45} & H_{55} \end{bmatrix} \begin{cases} \gamma_{yz} \\ \gamma_{xz} \\ \end{pmatrix}$	
$\begin{cases} N_{xy} \\ M_x \\ M_y \\ M_{xy} \\ M_{xy} \\ \end{pmatrix} = \begin{bmatrix} A_{16} & A_{26} & A_{66} & B_{16} & B_{26} & B_{66} \\ B_{11} & B_{12} & B_{16} & D_{10} & D_{12} & D_{16} \\ B_{12} & B_{22} & B_{26} & D_{12} & D_{22} & D_{26} \\ B_{16} & B_{26} & B_{65} & D_{16} & D_{26} & D_{66} \end{bmatrix} \begin{bmatrix} \gamma_y^0 \\ \kappa_x \\ \kappa_y \\ \kappa_z \\ \kappa_y \\ \kappa_x \\ \kappa_y \\ \kappa_z \\ \kappa_y \\ \kappa_y \\ \kappa_z \\ \kappa_y \\ \kappa_y \\ \kappa_z \\ \kappa_y \\ \kappa$	
$ \begin{cases} M_x \\ M_y \\ M_{xy} \end{cases} = \begin{bmatrix} B_{11} & B_{12} & B_{16} & D_{10} & D_{12} & D_{16} \\ B_{12} & B_{22} & B_{26} & D_{12} & D_{22} & D_{26} \\ B_{16} & B_{26} & B_{65} & D_{16} & D_{26} & D_{66} \end{bmatrix} \begin{cases} \gamma_{xy} \\ \kappa_x \\ \kappa_y \\ \kappa_{xy} \end{cases} $ $ \begin{cases} V_y \\ V_x \\ V_x \\ \end{bmatrix} = \begin{bmatrix} H_{44} & H_{45} \\ H_{45} & H_{55} \end{bmatrix} \begin{cases} \gamma_{yz} \\ \gamma_{xz} \end{cases} $ $ (6.13)$	
$ \begin{cases} M_y \\ M_{xy} \end{cases} \begin{bmatrix} B_{12} & B_{22} & B_{26} & D_{12} & D_{22} & D_{26} \\ B_{16} & B_{26} & B_{65} & D_{16} & D_{26} & D_{66} \end{bmatrix} \begin{bmatrix} \kappa_x \\ \kappa_y \\ \kappa_y \\ \kappa_{xy} \end{bmatrix} \\ \begin{cases} V_y \\ V_x \end{bmatrix} = \begin{bmatrix} H_{44} & H_{45} \\ H_{45} & H_{55} \end{bmatrix} \begin{cases} \gamma_{yz} \\ \gamma_{xz} \end{cases} $	i)
$ \begin{bmatrix} M_{xy}^{\gamma} \\ M_{xy}^{\gamma} \end{bmatrix} = \begin{bmatrix} H_{16} & H_{26} \\ B_{16} & B_{26} & B_{65} \end{bmatrix} \begin{bmatrix} H_{12} & H_{22} & D_{26} \\ D_{16} & D_{26} & D_{66} \end{bmatrix} \begin{bmatrix} \kappa_{\gamma} \\ \kappa_{xy} \end{bmatrix} $ $ \begin{bmatrix} V_{\gamma} \\ V_{z} \end{bmatrix} = \begin{bmatrix} H_{44} & H_{45} \\ H_{45} & H_{55} \end{bmatrix} \begin{bmatrix} \gamma_{yz} \\ \gamma_{xz} \end{bmatrix} $	
$ \begin{cases} V_{Y} \\ V_{x} \end{cases} = \begin{bmatrix} H_{44} & H_{45} \\ H_{45} & H_{55} \end{bmatrix} \begin{cases} \gamma_{yz} \\ \gamma_{xz} \end{cases} $	
$ \begin{cases} V_y \\ V_x \end{cases} = \begin{bmatrix} H_{44} & H_{45} \\ H_{45} & H_{55} \end{bmatrix} \begin{cases} \gamma_{yz} \\ \gamma_{xz} \end{cases} $	
$ \begin{cases} Y_{y} \\ V_{x} \end{cases} = \begin{bmatrix} H_{44} & H_{45} \\ H_{45} & H_{55} \end{bmatrix} \begin{cases} Y_{yz} \\ \gamma_{xz} \end{cases} $	
$\begin{bmatrix} Y_x \end{bmatrix} \begin{bmatrix} H_{45} & H_{55} \end{bmatrix} \begin{bmatrix} \gamma_{xz} \end{bmatrix}$	
with	
$\psi = \nabla \overline{\psi} + \psi$	
$M_{ij} = \sum_{k} (Q_{ij})_k (z_k - z_{k-1}) = \sum_{k} (Q_{ij})_k l_k i, j = 1, 2, 6$	
k = 1	
1 N	
$B_{i} = \frac{1}{2} \sum_{i} \left(\overline{O}_{ii} \right)_{i} \left(z_{i}^{2} - z_{i}^{2} \right)_{i} = \sum_{i} \left(\overline{O}_{ii} \right)_{i} z_{i}^{2} = z_{i}^{2} z_{i}^{2} $	
$2\sum_{k=1}^{2} (2k) j_k (k + k-1) = \sum_{k=1}^{2} (2j)_k t_k z_k = 1, j = 1, 2, 6$	
<=1 k=1	
$1 \frac{N}{2}$ N (25)	
$D_{ij} \approx \frac{1}{2} \sum (Q_{ij})_{ij} \left(z_{ij}^{3} - z_{ij}^{3} \right) = \sum (\overline{D}_{ij}) \left(u_{ij} z_{ij} + \frac{F_{ij}}{2} \right)$	
$\int_{k=1}^{\infty} \frac{(-1)^{k} (-k-1)^{k}}{1} = \int_{-\infty}^{\infty} \frac{(2i)^{k} (-k-1)^{k}}{12} = \int_{-$	
x=1 ()	
$5\frac{1}{5}$ (-1) [4/ 3]	
$H_{ij} = \frac{1}{4} \sum_{i} \{Q_{ij}\}, \{t_k - \frac{1}{2}\{t_k \overline{z}_k^2 + \frac{t_k}{2}\}\} i, j = 4.5 $ (6.16)	
$\left[\frac{1}{12} \right] = \frac{1}{12} \left[\frac{1}{12} \left[\frac{1}{12} \left[\frac{1}{12} \right] = \frac{1}{12} \left[\frac{1}{12$	

Macromechanics: ABD Matrices

Macromechanics: ABD Matrices

Macromechanics: Stiffness Equations

Macromechanics: Stiffness Equations

Macromechanics: Laminate Moduli

Macromechanics: Laminate Moduli

EXII Main C	Chapter	Back 🔶 🔶	
LaminateModuli:	Inplane	Bending	
	E _x = 2.278E+1	E ^b _x = 3.243E+1	
	E _y = 1.779E+1	$E_y^b = 1.567E+1$	
	G _{xy} = 6.329E+0	G ^b _{xy} = 3.774E+0	
	v _{xy} = 0.335	$v_{xy}^{b} = 0.244$	

Macromechanics: Degraded Material

Macromechanics: Degraded Material

• What is a degraded material?

Figure 7.7 Determination of FF load by an incremental and two-step approach.

Macromechanics: ABD Comparison

EXIT	Main Chapter Save Matrices Analysis for	s Intact M	Back 🔶 🔶
[A] =	.171763 .580162E-01884037E-19 .580162E-01 .171763 .349677E-17 884037E-19 .349677E-17 .568736E-01	[B] =	.677626E-20 .169407E-20309413E-21 169407E-20 .000000609111E-21 309413E-21609111E-21 .169407E-20
[D] = [618290E-06 .279199E-06 .546670E-07 279199E-06 .127429E-05 .546670E-07 546670E-07 .546670E-07 .273105E-06	 [H] =	929063E-04 929063E-04 .214981E-01
EXII	Main Chapter Save Matrice	s egraded	Back 🔶 🔶 Material
[A] =	.123342 .382818E-01481758E-19 .382818E-01 .123342 .396429E-17 481758E-19 .396429E-17	[B] =	.847033E-20370577E-21 - .168615E-21 370577E-21 .000000 .102720E-20
[D] =	.267511E-06 .166970E-06 .712518E-07 .166970E-06 .112253E-05 .712518E-07	[H] =	.418814E-02185812E-04 185812E-04 .429962E-02

Macromechanics: CADEC Alt Methods

EXIT Main Cł	hapter Lo	oad Laminate Sa	ave Laminate Back			
Filename: C:\CADEC07\PTYPE1.DEF (1/2)						
Laminate Definition for: panel type 1 (Composite Layers.)						
Number of Layers:	4 Numbe	r of Materials: 🔽	Plot 1 Total Thickness 4.000E-1			
Layer Thicknesses:	Layer Thicknesses: .1 .1 .1 .1					
Layup Angles:	10 -10 10 -10					
Layer Materials:	1111					
Loading: Nx	0	Mx 0	Qx 0			
Ny	0	My 0	Qy 0			
Nxy	0	Mxy 0				
Temperature Change: 0						
Moisture Concentra	tion: 0					
Safety Factor: 1			Set Up Laminate Mat. Properties 🔿			

Failure Theories

• Many failure criteria, most popular:

- Maximum stress criterion
- Maximum strain criterion
- Tsai-Hill failure criterion
- Tsai-Wu failure criterion

Figure 7.3 Failure envelopes using the maximum strain and maximum stress criteria in strain space $\epsilon_1 - \epsilon_2$ for carbon-opoxy.

Figure 7.5 Various failure envelopes in $\sigma_6 - \sigma_2$ space compared with experimental data.

Not Just An Academic Exercise

DELAMINATIONS ASSOCIATED WITH WAVES

Consequence of Misalignment in Large, Composite Structure Design and Analysis of Aircraft Structures

13-56

Failure Theories: CADEC

Failure Theories: CADEC

Failure Theories: Max Stress Criterion

EXII	Main	Chapter		Ba	ack 🔶 🔶	
		Maxim	num Stress Failure	e Criterion		
		Intact La	aminate	Degraded L	aminate	
Ply	Angle	Rint-Top	Rint-Bot	Rdeg-Top	Rdeg-Bot	
4 3 2 1	-10. 10. -10. 10.	1000.(1) 1000.(1) 1000.(1) 1000.(1)	1000.(1) 1000.(1) 1000.(1) 1000.(1)	1000.(1) 1000.(1) 1000.(1) 1000.(1)	1000.(1) 1000.(1) 1000.(1) 1000.(1)	
Print	FF	PF 1000.	FF 1000.			

Failure Theories: Tsai-Wu Criterion

EXIT	Main	Chapter		Ba	ack 🔶 🔶
		Ts	ai-Wu Failure Crit	terion	
		Intact La	minate	Degraded L	<u>aminate</u>
Ply	Angle	Rint-Top	Rint-Bot	Rdeg-Top	Rdeg-Bot
4	-10.	.000	.000	.000	.000
3	10.	.000	.000	.000	.000
2	-10.	.000	.000	.000	.000
1	10.	.000	.000	.000	.000
					•
Print	FF	PF .000	FF .000		

Concluding Remarks

Composite design fairly simple

- Assumptions lead to simplified analysis
- Idealized
- Real-world?

• CADEC

- Begin with component properties
- Micromechanic, Ply and Macromechanic analysis
- Apply loads and match against failure criteria
- Simple structures (Not covered)
- Software options: COMPRO, MSExcel, Matlab, MathCAD, etc.

Composites still require significant analysis and physical testing

Parts/Structures are only as good as the manufacturing

 "You can never make good parts with bad materials, but you can easily make bad parts with good materials!"