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AIRCRAFT STRUCTURAL COMPONENTS  

Aircraft are generally built up from the basic components of  

 Wings 

 Fuselages 

 Tail units  

 Control surfaces 

There are variations in particular aircraft; for example, a delta wing aircraft would not 

necessarily possess a horizontal tail, although this is present in a canard configuration such as 

that of the Eurofighter(Typhoon).  

Each component has one or more specific functions and must be designed to ensure that it can 

carry out these functions safely. 

Loads on Structural Components 

The structure of an aircraft is required to support two distinct classes of load:  

the first, termed ground loads- includes all loads encountered by the aircraft during movement 

or transportation on the ground such as taxiing and landing loads, towing, and hoisting loads, and 

the second, air loads- comprises loads imposed on the structure during flight by maneuvers and 

gusts. 

The two classes of loads may be further divided intosurface forces- which act upon the surface 

of the structure, such as aerodynamic and hydrostatic pressure, andbody forces- which act over 

the volume of the structure and are produced by gravitational and inertial effects. 

Basically, all air loads are the results of the pressure distribution over the surfaces of the skin 

produced by steady flight, maneuver, or gust conditions. Generally, these results cause  

 direct loads 

 bending 

 shear and 

 torsion 

 in all parts of the structure in addition to local, normal pressure loads imposed on the skin. 

Conventional aircraft usually consist of fuselage, wings, and tailplane. The fuselage contains 

crew and payload, the latter being passengers, cargo, weapons, plus fuel, depending on the type 

of aircraft and its function; the wings provide the lift, and the tailplane is the main contributor to 

directional control. In addition, ailerons, elevators, and the rudder enable the pilot to maneuver 

the aircraft and maintain its stability in flight, while wing flaps provide the necessary increase of 
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lift for takeoff and landing. Figure 1.2 shows typical aerodynamic force resultants experienced 

by an aircraft in steady flight. 

 

Figure 1.1 Structural components of aircraft and various loads acting on them 

 

 

Figure 1.1 Principal aerodynamic forces on an aircraft during flight. (a) Pressure distribution 

around an aerofoil; (b) transference of lift and drag loads to the A/C. 

The force on an aerodynamic surface (wing, vertical or horizontal tail) results from a differential 

pressure distribution caused by incidence, camber, or a combination of both. Such a pressure 

distribution, shown in Fig. 1.2(a), has vertical (lift) and horizontal (drag) resultants acting at a 

center of pressure (CP). (In practice, lift and drag are measured perpendicular and parallel to the 

flight path, respectively.) Clearly, the position of the CP changes as the pressure distribution 

varies with speed or wing incidence. 

However, there is, conveniently, a point in the aerofoil section about which the moment due to 

the lift and drag forces remains constant. We therefore replace the lift and drag forces acting at 
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the CP by lift and drag forces acting at the aerodynamic center (AC) plus a constant moment M0, 

as shown in Fig. 1.2(b). (Actually, at high Mach numbers the position of the AC changes due to 

compressibility effects.) 

While the chordwise pressure distribution fixes the position of the resultant aerodynamic load in 

the wing cross section, the spanwise distribution locates its position in relation, say, to the wing 

root. A typical distribution for a wing/fuselage combination is shown in Fig. 1.3. Similar 

distributions occur on horizontal and vertical tail surfaces. 

 

Figure 1.3 Typical lift distribution for a wing/fuselage combination. 

 

Therefore, we see that wings, tailplane, and the fuselage are each subjected to direct, bending, 

shear, and torsional loads and must be designed to withstand critical combinations of these. Note 

that maneuvers and gusts do not introduce different loads but result only in changes of 

magnitude and position of the type of existing loads shown in Fig. 11.1.  

Over and above these basic in-flight loads, fuselages may be pressurized and thereby support 

hoop stresses, wings may carry weapons and/or extra fuel tanks with resulting additional 

aerodynamic and body forces contributing to the existing bending, shear, and torsion, while the 

thrust and weight of engines may affect either fuselage or wings depending on their relative 

positions. 

Ground loads encountered in landing and taxiing subject the aircraft to concentrated shock 

loads through the undercarriage system and the shock landing load produces a given shear, 

minimum bending plus torsion.  

Other loads include engine thrust on the wings or fuselage which acts in the plane of symmetry 

but may, in the case of engine failure, cause severe fuselage bending moments, as shown in Fig. 
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1.4; concentrated shock loads during a catapult launch; and hydrodynamic pressure on the 

fuselages or floats of seaplanes. 

 

Figure 1.4 Fuselage and wing bending caused by an unsymmetrical engine load. 

 

FUNCTION OF STRUCTURAL COMPONENTS 

The basic functions of an aircraft’s structure are to transmit and resist the applied loads, to 

provide an aerodynamic shape, and to protect passengers, payload, systems, and so forth from 

the environmental conditions encountered in flight. These requirements, in most aircraft, result in 

thin shell structures where the outer surface or skin of the shell is usually supported by 

longitudinal stiffening members and transverse frames to enable it to resist bending, 

compressive, and torsional loads without buckling. Such structures are known as semi-

monocoque, while thin shells which rely entirely on their skins for their capacity to resist loads 

are referred to as monocoque. 

First, we shall consider wing sections which, while performing the same function, can differ 

widely in their structural complexity, the wing of the small, light passenger aircraft, the De 

Havilland Canada Twin Otter, comprises a relatively simple arrangement of two spars, ribs, 

stringers, and skin, while the wing of the Harrier consists of numerous spars, ribs, and skin. 

However, no matter how complex the internal structural arrangement, the different components 

performs the same kind of function. The shape of the cross section is governed by aerodynamic 

considerations and clearly must be maintained for all combinations of load; this is one of the 

functions of the ribs. They also act with the skin in resisting the distributed aerodynamic 

pressure loads; they distribute concentrated loads (e.g., undercarriage and additional wing store 

loads) into the structure and redistribute stress around discontinuities, such as undercarriage 

wells, inspection panels, and fuel tanks, in the wing surface. Ribs increase the column buckling 
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stress of the longitudinal stiffeners by providing end restraint and establishing their column 

length; in a similar manner, they increase the plate buckling stress of the skin panels. 

Types of structural joints 

The fabrication of aircraft components, generally, involves the joining of one part of the 

component to another. For example, fuselage skins are connected to stringers and frames, 

whereas wing skins are connected to stringers and wing ribs unless, as in some military aircraft 

with high wing loadings, the stringers are machined integrally with the wing skin. With the 

advent of all metal— aluminum alloy—construction, riveted joints became the main form of 

connection with some welding, although aluminum alloys are difficult to weld, and, in the 

modern era, some glued joints which use epoxy resin.  

In this section, we shall concentrate on the still predominant method of connection: riveting. In 

general, riveted joints are stressed in complex ways, and an accurate analysis is very often 

difficult to achieve because of the discontinuities in the region of the joint. Fairly crude 

assumptions as to joint behavior are made, but, when combined with experience, safe designs are 

produced. 

Simple Lap Joint 

Figure 1.5 shows two plates of thickness t connected together by a single line of rivets; this type 

of joint is termed a lap joint and is one of the simplest used in construction. 

 

Figure 1.5 Simple riveted lap joint. 
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Suppose that the plates carry edge loads of P/unit width that the rivets are of diameter d and are 

spaced at a distance b apart and that the distance from the line of rivets to the edge of each plate 

is a. There are four possible modes of failure which must be considered as follows. 

Rivet Shear 

The rivets may fail by shear across their diameter at the interface of the plates. Then, if the 

maximum shear stress the rivets will withstand is η1, failure will occur when 

 

which gives 

 

Bearing Pressure 

Either the rivet or plate may fail due to bearing pressure. Suppose that Pb is this pressure then 

failure will occur when  

 

so that 

 

Plate Failure in Tension 

The area of plate in tension along the line of rivets is reduced due to the presence of rivet holes. 

Therefore, if the ultimate tensile stress in the plate is ζult , failure will occur when 

 

from which 
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Shear Failure in a Plate 

Shearing of the plates may occur on the planes cc resulting in the rivets being dragged out of the 

plate. If the maximum shear stress at failure of the material of the plates is η2, then a failure of 

this type will occur when 

 

which gives 

 

Joint Efficiency 

The efficiency of a joint or connection is measured by comparing the actual failure load with that 

which would apply if there were no rivet holes in the plate. Then, for the joint shown in Fig. 

11.5, the joint efficiency ε is given by 

 

Group-Riveted Joints 

Rivets may be grouped on each side of a joint such that the efficiency of the joint is a maximum. 

Suppose that two plates are connected as shown in Fig. 1.6 and that six rivets are required on 

each side. If it is assumed that each rivet is equally loaded, then the single rivet on the line a will 

take one-sixth of the total load. The two rivets on the line bb will then share two-sixths of the 

load, while the three rivets on the line cc will share three-sixths of the load. On the line bb, the 

area of cross section of the plate is reduced by two rivet holes and that on the line cc by three 

rivet holes so that, relatively, the joint is as strong at these sections as at a. Therefore, a more 

efficient joint is obtained than if the rivets were arranged in, say, two parallel rows of three. 
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Figure 1.6 A group-riveted joint. 

 

Eccentrically Loaded Riveted Joints 

The bracketed connection shown in Fig. 1.7 carries a load P offset from the centroid of the rivet 

group. The rivet group is then subjected to a shear load P through its centroid and a moment or 

torque Pe about its centroid. It is assumed that the shear load P is distributed equally among the 

rivets, causing a shear force in each rivet parallel to the line of action of P. The moment Pe is 

assumed to produce a shear force S in each rivet, where S acts in a direction perpendicular to the 

line joining a particular rivet to the centroid of the rivet group. Furthermore, the value of S is 

assumed to be proportional to the distance of the rivet from the centroid of the rivet group. Then 

 

If S=kr, where k is a constant for all rivets, then 

 

from which  

 

and 
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The resultant force on a rivet is then the vector sum of the forces due to P and Pe. 

 

Figure 1.7 Eccentrically loaded joint. 

Use of Adhesives 

In addition to riveted connections, adhesives have been used and are still being used in aircraft 

construction, although, generally, they are employed in areas of low stress since their application 

is still a matter of research. Of these adhesives, epoxy resins are the most frequently used since 

they have the advantages over, say, polyester resins, of good adhesive properties, low shrinkage 

during cure so that residual stresses are reduced, good mechanical properties, and thermal 

stability. The modulus and ultimate strength of epoxy resin are, typically, 5000 and 100N/mm
2
. 

Epoxy resins are now found extensively as the matrix component in fibrous composites. 
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AIRFRAME LOADS 

Aircraft Inertia Loads 

The maximum loads on the components of an aircraft’s structure generally occur when the 

aircraft is undergoing some form of acceleration or deceleration, such as in landings, take-offs, 

and maneuvers within the flight and gust envelopes. Thus, before a structural component can be 

designed, the inertia loads corresponding to these accelerations and decelerations must be 

calculated. For these purposes, we shall suppose that an aircraft is a rigid body and represent it 

by a rigid mass, m, as shown in Fig. 1.8. We shall also, at this stage, consider motion in the plane 

of the mass which would correspond to pitching of the aircraft without roll or yaw.We shall also 

suppose that the center of gravity (CG) of the mass has coordinates𝑥 , 𝑦  referred to x and y axes 

having an arbitrary origin O; the mass is rotating about an axis through O perpendicular to the xy 

plane with a constant angular velocity ω. 

The acceleration of any point, a distance r from O, is ω
2
r and is directed toward O. Thus, 

the inertia force acting on the element, δm, is ω
2
rδm in a direction opposite to the acceleration, as 

shown in Fig. 1.8. The components of this inertia force, parallel to the x and y axes, are 

ω
2
rδmcos θ and ω

2
rδmsinθ, respectively, or, in terms of x and y, ω

2
xδm and ω

2
yδm. The 

resultant inertia forces, Fx and Fy, are then given by 

 

in which we note that the angular velocity ω is constant and may therefore be taken outside the 

integral sign. In the above expressions, ʃ x dm and ʃ y dm are the moments of the mass, m, about 

the y and x axes, respectively, so that 

 

and 

 

If the CG lies on the x axis, 𝑦  = 0 and Fy= 0. Similarly, if the CG lies on the y axis, Fx = 0. 

Clearly, if O coincides with the CG, 𝑥  = 𝑦  = 0 and Fx= Fy = 0. 
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Figure 1.8 Inertia forces on a rigid mass having a constant angular velocity. 

 

Suppose now that the rigid body is subjected to an angular acceleration (or deceleration) α in 

addition to the constant angular velocity, ω, as shown in Fig. 1.9. An additional inertia force, 

αrδm, acts on the element δm in a direction perpendicular to r and in the opposite sense to the 

angular acceleration. 

 

Figure 1.9 Inertia forces on a rigid mass subjected to an angular acceleration. 

This inertia force has components αrδmcos θ and αrδmsin θ, i.e. αxδm and αyδm, in the y and x 

directions, respectively. Thus, the resultant inertia forces, Fx and Fy, are given by  

 

and  
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for α in the direction shown. Then, as before  

 

and 

 

Also, if the CG lies on the x axis, 𝑦  = 0 and Fx = 0. Similarly, if the CG lies on the y axis, 𝑥  = 0 

and Fy = 0. 

The torque about the axis of rotation produced by the inertia force corresponding to the angular 

acceleration on the element δm is given by  

 

Thus, for the complete mass 

 

The integral term in this expression is the moment of inertia, IO, of the mass about the axis of 

rotation. Thus, 

                                                           (1) 

Equation (1) may be rewritten in terms of ICG, the moment of inertia of the mass about an axis 

perpendicular to the plane of the mass through the CG. Hence, using the parallel axes theorem 

 

where 𝑟   is the distance between O and the CG. Then 

 

and 
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FACTORS OF SAFETY-FLIGHT ENVELOPE 

The control of weight in aircraft design is of extreme importance. Increases in weight require 

stronger structures to support them, which in turn lead to further increases in weight and so on. 

Excesses of structural weight mean lesser amounts of payload, thereby affecting the economic 

viability of the aircraft. The aircraft designer is therefore constantly seeking to pare his aircraft’s 

weight to the minimum compatible with safety. However, to ensure general minimum standards 

of strength and safety, airworthiness regulations lay down several factors which the primary 

structure of the aircraft must satisfy. These are the limit load, which is the maximum load that 

the aircraft is expected to experience in normal operation; the proof load, which is the product of 

the limit load and the proof factor (1.0–1.25); and the ultimate load, which is the product of the 

limit load and the ultimate factor (usually 1.5). The aircraft’s structure must withstand the proof 

load without detrimental distortion and should not fail until the ultimate load has been achieved. 

The proof and ultimate factors may be regarded as factors of safety and provide for various 

contingencies and uncertainties.  

The basic strength and flight performance limits for a particular aircraft are selected by the 

airworthiness authorities and are contained in the flight envelope or V- n diagram shown in Fig. 

1.10.  

 

Figure 1.10 Flight envelope. 
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The curves OA and OF correspond to the stalled condition of the aircraft and are obtained from 

the well-known aerodynamic relationship  

 

Therefore, for speeds below VA (positive wing incidence) and VF (negative incidence), the 

maximum loads which can be applied to the aircraft are governed by CL,max. As the speed 

increases, it is possible to apply the positive and negative limit loads, corresponding to n1 and n3, 

without stalling the aircraft so that AC and FE represent maximum operational load factors for 

the aircraft. Above the design cruising speed VC, the cut-off lines CD1 and D2E relieve the design 

cases to be covered since it is not expected that the limit loads will be applied at maximum 

speed. Values of n1, n2, and n3 are specified by the airworthiness authorities for particular 

aircraft; 

A particular flight envelope is applicable to one altitude only because CL,max is generally reduced 

with an increase of altitude, and the speed of sound decreases with altitude, thereby reducing the 

critical Mach number and hence the design diving speed VD. Flight envelopes are therefore 

drawn for a range of altitudes from sea level to the operational ceiling of the aircraft. 

 

SYMMETRIC MANEUVER LOADS 

We shall now consider the calculation of aircraft loads corresponding to the flight conditions 

specified by flight envelopes. There are, in fact, an infinite number of flight conditions within the 

boundary of the flight envelope although, structurally, those represented by the boundary are the 

most severe. Furthermore, it is usually found that the corners A, C, D1, D2, E, and F (see Fig. 

1.10) are more critical than points on the boundary between the corners so that, in practice, only 

the six conditions corresponding to these corner points need to be investigated for each flight 

envelope. 

In symmetric maneuvers, we consider the motion of the aircraft initiated by movement of 

the control surfaces in the plane of symmetry. Examples of such maneuvers are loops, straight 

pull-outs, and bunts, and the calculations involve the determination of lift, drag, and tailplane 

loads at given flight speeds and altitudes.  

Level Flight 

Although steady level flight is not a maneuver in the strict sense of the word, it is a useful 

condition to investigate initially since it establishes points of load application and gives some 

idea of the equilibrium of an aircraft in the longitudinal plane. The loads acting on an aircraft in 

steady flight are shown in Fig. 1.11, with the following notation: 
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L      is the lift acting at the aerodynamic center of the wing. 

D     is the aircraft drag. 

M0   is the aerodynamic pitching moment of the aircraft less its horizontal tail. 

P      is the horizontal tail load acting at the aerodynamic center of the tail, usually taken to be at 

        approximately one-third of the tailplane chord. 

W    is the aircraft weight acting at its CG. 

T     is the engine thrust, assumed here to act parallel to the direction of flight in order to simplify   

       calculation. 

 

Figure 1.11 Aircraft loads in level flight. 

 

The loads are in static equilibrium since the aircraft is in a steady, un-accelerated, level flight 

condition. 

Thus, for vertical equilibrium 

   (2) 

for horizontal equilibrium 

                                        (3) 

and taking moments about the aircraft’s CG in the plane of symmetry 

                           (4) 
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For a given aircraft weight, speed, and altitude, Eqs. (2, 3 and 4) may be solved for the unknown 

lift, drag, and tail loads. However, other parameters in these equations, such as M0, depend upon 

the wing incidence α, which in turn is a function of the required wing lift so that, in practice, a 

method of successive approximation is found to be the most convenient means of solution. 

As a first approximation, we assume that the tail load P is small compared with the wing lift L so 

that, from Eq. (2), L≈W. From aerodynamic theory with the usual notation, 

 

Hence,  

                                      (5) 

Equation (5) gives the approximate lift coefficient CL and thus (from CL- α curves established by 

wind tunnel tests) the wing incidence α. The drag load D follows (knowing V and α) and hence 

we obtain the required engine thrust T from Eq. (3). Also, M0, a, b, c, and l may be calculated 

(again, since V and α are known) and Eq. (4) solved for P. As a second approximation, this value 

of P is substituted in Eq. (2) to obtain a more accurate value for L, and the procedure is repeated. 

Usually three approximations are sufficient to produce reasonably accurate values. 

In most cases, P, D, and T are small compared with the lift and aircraft weight. Therefore, from 

Eq. (2) L ≈ W, and substitution in Eq. (4) gives, neglecting D and T 

                                   (6) 

We see from Eq. (6) that if a is large, then P will most likely be positive. In other words, the tail 

load acts upward when the CG of the aircraft is far aft. When a is small or negative—in other 

words, a forward CG—then P will probably be negative and act downward. 

 

General Case of a Symmetric Maneuver 

In a rapid pull-out from a dive a downward load is applied to the tailplane, causing the aircraft to 

pitch nose upward. The downward load is achieved by a backward movement of the control 

column, thereby applying negative incidence to the elevators, or horizontal tail if the latter is all-

moving. If the maneuver is carried out rapidly, the forward speed of the aircraft remains 

practically constant so that increases in lift and drag result from the increase in wing incidence 

only. Since the lift is now greater than that required to balance the aircraft weight, the aircraft 
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experiences an upward acceleration normal to its flight path. This normal acceleration combined 

with the aircraft’s speed in the dive results in the curved flight path shown in Fig. 1.12. As the 

drag load builds up with an increase of incidence, the forward speed of the aircraft falls since the 

thrust is assumed to remain constant during the maneuver. It is usual, as we observed in the 

discussion of the flight envelope, to describe the maneuvers of an aircraft in terms of a 

maneuvering load factor n. For steady level flight n =1, giving 1 g flight, although in fact the 

acceleration is zero. What is implied in this method of description is that the inertia force on the 

aircraft in the level flight condition is 1.0 times its weight. It follows that the vertical inertia force 

on an aircraft carrying out an ng maneuver is nW. We may, therefore, replace the dynamic 

conditions of the accelerated motion by an equivalent set of static conditions in which the 

applied loads are in equilibrium with the inertia forces. Thus, in Fig. 1.12, n is the maneuver load 

factor, while f is a similar factor giving the horizontal inertia force. Note that the actual normal 

acceleration in this particular case is (n−1)g. 

 

Figure 1.12 Aircraft loads in a pull-out from a dive. 

 

For vertical equilibrium of the aircraft, we have, referring to Fig. 13.7 where the aircraft is shown 

at the lowest point of the pull-out 

                         (7) 

For horizontal equilibrium, 

                               (8) 

and for pitching moment equilibrium about the aircraft’s CG, 
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                       (9) 

 

Equation (9) contains no terms representing the effect of pitching acceleration of the aircraft; this 

is assumed to be negligible at this stage. 

Again, the method of successive approximation is found to be most convenient for the solution 

of Eqs. (7, 8 and 9). There is, however, a difference to the procedure described for the steady 

level flight case. The engine thrust T is no longer directly related to the drag D, as the latter 

changes during the maneuver. Generally, the thrust is regarded as remaining constant and equal 

to the value appropriate to conditions before the maneuver began. 

 

Gust Loads 

The movements of the air in turbulence are generally known as gusts and produce changes in 

wing incidence, thereby subjecting the aircraft to sudden or gradual increases or decreases in lift 

from which normal accelerations result. These may be critical for large, high-speed aircraft and 

may possibly cause higher loads than control initiated maneuvers. 

At the present time, two approaches are employed in gust analysis. One method, which has been 

in use for a considerable number of years, determines the aircraft response and loads due to a 

single or ―discrete‖ gust of a given profile. This profile is defined as a distribution of vertical 

gust velocity over a given finite length or given period of time. 

Early airworthiness requirements specified an instantaneous application of gust velocity u, 

resulting in the ―sharp-edged‖ gust of Fig. 1.13 (a). Calculations of normal acceleration and 

aircraft response were based on the assumptions that the aircraft’s flight is undisturbed while the 

aircraft passes from still air into the moving air of the gust and during the time taken for the gust 

loads to build up; that the aerodynamic forces on the aircraft are determined by the instantaneous 

incidence of the particular lifting surface; and finally that the aircraft’s structure is rigid. The 

second assumption here relating the aerodynamic force on a lifting surface to its instantaneous 

incidence neglects the fact that in a disturbance such as a gust there is a gradual growth of 

circulation and hence of lift to a steady state value (Wagner effect). This, in general, leads to an 

overestimation of the upward acceleration of an aircraft and therefore of gust loads. 
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Figure 1.13 (a) Sharp-edged gust; (b) graded gust; (c) 1−cosine gust. 

 

The ―sharp-edged‖ gust was replaced when it was realized that the gust velocity built up to a 

maximum over a period of time. Airworthiness requirements were modified on the assumption 

that the gust velocity increased linearly to a maximum value over a specified gust gradient 

distance H. Hence, the ―graded‖ gust of Fig. 1.13 (b). In the United Kingdom H is taken as 30.5 

m. Since, as far as the aircraft is concerned, the gust velocity builds up to a maximum over a 

period of time, it is no longer allowable to ignore the change of flight path as the aircraft enters 

the gust. By the time the gust has attained its maximum value, the aircraft has developed a 

vertical component of velocity and, in addition, may be pitching, depending on its longitudinal 

stability characteristics. The effect of the former is to reduce the severity of the gust, whereas the 

latter may either increase or decrease the loads involved. To evaluate the corresponding gust 

loads, the designer may either calculate the complete motion of the aircraft during the 

disturbance and hence obtain the gust loads or replace the ―graded‖ gust by an equivalent ―sharp-

edged‖ gust, producing approximately the same effect. We shall discuss the latter procedure in 

greater detail later. 

The calculation of the complete response of the aircraft to a ―graded‖ gust may be obtained from 

its response to a ―sharp-edged‖ or ―step‖ gust, by treating the former as comprising a large 

number of small ―steps‖ and superimposing the responses to each of these. Such a process is 

known as convolution or Duhamel integration. This treatment is desirable for large or 

unorthodox aircraft where aeroelastic (structural flexibility) effects on gust loads may be 
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appreciable or unknown. In such cases, the assumption of a rigid aircraft may lead to an 

underestimation of gust loads. The equations of motion are therefore modified to allowfor 

aeroelastic in addition to aerodynamic effects. For small and medium-sized aircraft having 

orthodox aerodynamic features, the equivalent ―sharp-edged‖ gust procedure is satisfactory. 

Although the ―graded‖ or ―ramp‖ gust is used as a basis for gust load calculations, other shapes 

of gust profile are in current use. Typical of these is the ―l−cosine‖ gust of Fig. 13.11(c), where 

the gust velocity u is given by u(t) = (U/2)[l− cos(πt/T)]. Again, the aircraft response is 

determined by superimposing the responses to each of a large number of small steps. 

 

ENERGY METHODS 

Many structures which are statically indeterminate—in other words, they cannot be analyzed by 

the application of the equations of statically equilibrium alone—may be conveniently analyzed 

using an energy approach. 

Energy methods provide comparatively simple solutions for deflection problems which are not 

readily solved by more elementary means. 

Generally, as we shall see, modern analysis uses the methods of total complementary energy and 

total potential energy (TPE). Either method may be used to solve a particular problem, although 

as a general rule deflections are more easily found using complementary energy and forces by 

potential energy. 

Although energy methods are applicable to a wide range of structural problems and may even be 

used as indirect methods of forming equations of equilibrium or compatibility we shall be 

concerned in this chapter with the solution of deflection problems and the analysis of statically 

indeterminate structures. We shall also include some methods restricted to the solution of linear 

systems: the unit load method, the principle of superposition, and the reciprocal theorem. 

 

STRAIN ENERGY AND COMPLEMENTARY ENERGY 

Figure 1.14 (a) shows a structural member subjected to a steadily increasing load P. As the 

member extends, the load P does work, and from the law of conservation of energy, this work is 

stored in the member as strain energy. A typical load–deflection curve for a member possessing 

nonlinear elastic characteristics is shown in Fig. 1.14 (b). The strain energy U produced by a load 

P and corresponding extension y is then 
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                                       (10) 

 

 

Figure 1.14 (a) Strain energy of a member subjected to simple tension; (b) load–deflection curve 

for a nonlinearly elastic member. 

 

and is clearly represented by the area OBD under the load–deflection curve. Engesser (1889) 

called the area OBA above the curve the complementary energyC, and from Fig. 1.14 (b), 

                                       (11) 

Complementary energy, as opposed to strain energy, has no physical meaning, being purely a 

convenient mathematical quantity. However, it is possible to show that complementary energy 

obeys the law of conservation of energy in the type of situation usually arising in engineering 

structures so that its use as an energy method is valid. 

Differentiation of Eqs. (10) and (11) with respect to y and P, respectively, gives  
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Bearing these relationships in mind, we can now consider the interchangeability of strain and 

complementary energy. Suppose that the curve of Fig. 1.14 (b) is represented by the function 

 

where the coefficient b and exponent n are constants. Then, 

 

Hence, 

                                (12) 

                                      (13) 

When n = 1, 

                                             (14) 

 

and the strain and complementary energies are completely interchangeable. Such a condition is 

found in a linearly elastic member; its related load–deflection curve is shown in Fig. 1.15. 

Clearly, area OBD(U) is equal to area OBA(C). 
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Figure 1.15 Load–deflection curve for a linearly elastic member. 

 

It will be observed that the latter of Eqs. (14) is in the form of what is commonly known as 

Castigliano’s first theorem, in which the differential of the strain energy U of a structure with 

respect to a load is equated to the deflection of the load. To be mathematically correct, however, 

it is the differential of the complementary energy C which should be equated to deflection 

(compare Eqs. (12) and (13)). 

 

Application to Deflection Problems 

Generally, deflection problems are most readily solved by the complementary energy approach, 

although for linearly elastic systems there is no difference between the methods of 

complementary and potential energy, since, as we have seen, complementary and strain energy 

then becomes completely interchangeable. We shall illustrate the method by reference to the 

deflections of frames and beams which may or may not possess linear elasticity.  Let us suppose 

that we want to find the deflection ∆2 of the load P2 in the simple pin-jointed framework 

consisting, say, of k members and supporting loads P1, P2, . . . ,Pn, as shown in Fig. 1.16.  

The total complementary energy of the framework is given by 

 

(15)   (Refer Section 5.2, T.H.G. Megson) 
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where λi is the extension of the ith member, Fi is the force in the ith member, and 

r is the corresponding displacement of the rth load Pr. 

 

Figure 1.16 Determination of the deflection of a point on a framework by the method of 

complementary energy. 

 

From the principle of the stationary value of the total complementary energy, 

            (16) 

from which  

                       (17) 

Equation (16) is seen to be identical to the principle of virtual forces in which virtual forces δF 

and δP act through real displacements λ and. Clearly, the partial derivatives with respect to P2 of 

the constant loads P1, P2, . . . ,Pn vanish, leaving the required deflection 2 as the unknown. At this 

stage, before ∆2 can be evaluated, the load–displacement characteristics of the members must be 

known. For linear elasticity, 

 

where Li, Ai, and Ei are the length, the cross-sectional area, and the modulus of elasticity of the 

ith member, respectively. On the other hand, if the load–displacement relationship is of a 

nonlinear form, say,  
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in which b and c are known, then Eq. (17) becomes 

 

The computation of ∆2 is best accomplished in tabular form, but before the procedure is 

illustrated by an example, some aspects of the solution merit discussion.  

 

 

UNIT LOAD METHOD 

For a linearly elastic structure, the method may be streamlined as follows. Consider the 

framework of Fig. 5.3 in which we require, say, to find the vertical deflection of the point C. We 

would place a vertical dummy load Pf at C and write down the total complementary energy of the 

framework, that is, 

 

For a stationary value of C, 

 

from which 

     (18) 
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If instead of the arbitrary dummy load Pf we had placed a unit load at C, then the load in the ith 

linearly elastic member would be 

 

Therefore, the term ∂Fi/∂Pf in Eq. (5.19) is equal to the load in the ith member due to a unit load 

at C, and Eq. (5.19) may be written as 

 

where Fi,0 is the force in the ith member due to the actual loading and Fi,1 is the force in the ith 

member due to a unit load placed at the position and in the direction of the required deflection. 

Similar expressions for deflection due to bending and torsion of linear structures follow from the 

well-known relationships between bending and rotation and torsion and rotation. Hence, for a 

member of length L and flexural and torsional rigidities EI and GJ, respectively, 

 

where M0 is the bending moment at any section produced by the actual loading and M1 is the 

bending moment at any section due to a unit load applied at the position and in the direction of 

the required deflection. The same applies to torsion. 

 

FLEXIBILITY METHOD 

An alternative approach to the solution of statically indeterminate beams and frames is to release 

the structure—that is, remove redundant members or supports—until the structure becomes 

statically determinate. The displacement of some point in the released structure is then 

determined by, say, the unit load method. The actual loads on the structure are removed and 

unknown forces applied to the points where the structure has been released; the displacement at 

the point produced by these unknown forces must, from compatibility, be the same as that in the 

released structure. The unknown forces are then obtained; this approach is known as the 

flexibility method. 
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TOTAL POTENTIAL ENERGY 

In the spring–mass system shown in its unstrained position in Fig. 5.23(a), we normally define 

the potential energy of the mass as the product of its weight,Mg, and its height, h, above some 

arbitrarily fixed datum. In other words, it possesses energy by virtue of its position. After 

deflection to an equilibrium state (Fig. 5.23(b)), the mass has lost an amount of potential energy 

equal to Mgy. Thus, we may associate deflection with a loss of potential energy. Alternatively, 

we may argue that the gravitational force acting on the mass does work during its displacement, 

resulting in a loss of energy. Applying this reasoning to the elastic system of Fig. 1.14 (a) and 

assuming that the potential energy of the system is zero in the unloaded state, then the loss of 

potential energy of the load P as it produces a deflection y is Py.  

 

Figure 1.17 (a) Potential energy of a spring–mass system and (b) loss in potential energy due to 

change in position. 

Thus, the potential energy V of P in the deflected equilibrium state is given by  

 

We now define the TPE of a system in its deflected equilibrium state as the sum of its internal or 

strain energy and the potential energy of the applied external forces. Hence, for the single 

member–force configuration of Fig. 1.14 (a), 
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For a general system consisting of loads P1,P2, . . . ,Pn producing corresponding displacements 

(i.e., displacements in the directions of the loads; see Section 5.10, T.H.G. Megson)  ∆1, ∆2, . . . , 

∆n, the potential energy of all the loads is 

 

and the TPE of the system is given by 

 

The Principle of the Stationary Value of the Total Potential Energy 

Let us now consider an elastic body in equilibrium under a series of external loads, P1, P2, . . . 

,Pn, and suppose that we impose small virtual displacements δ∆1,δ∆2, . . . ,δ∆n in the directions 

of the loads.The virtual work done by the loads is then 

 

This work will be accompanied by an increment of strain energy δU in the elastic body, since by 

specifying virtual displacements of the loads we automatically impose virtual displacements on 

the particles of the body itself, as the body is continuous and is assumed to remain so. This 

increment in strain energy may be regarded as negative virtual work done by the particles so that 

the total work done during the virtual displacement is 

 

The body is in equilibrium under the applied loads so that by the principle of virtual work the 

preceding expression must be equal to zero. Hence 

 

The loads Pr remain constant during the virtual displacement; therefore, the above equation may 

be written  
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or,  

 

Thus, the total potential energy of an elastic system has a stationary value for all small 

displacements if the system is in equilibrium. 

 

Figure 1.18 States of equilibrium of a particle. 

 

Principle of Superposition 

An extremely useful principle used in the analysis of linearly elastic structures is that of 

superposition. The principle states that if the displacements at all points in an elastic body are 

proportional to the forces producing them—that is, the body is linearly elastic—the effect on 

such a body of a number of forces is the sum of the effects of the forces applied separately. We 

shall make immediate use of the principle in the derivation of the reciprocal theorem in the 

following section. 

It may also be shown that if the stationary value is a minimum, the equilibrium is stable. A 

qualitative demonstration of this fact is sufficient for our purposes, although mathematical proofs 

exist. In Fig.1.18, the positions A, B, and C of a particle correspond to different equilibrium 

states. The TPE of the particle in each of its three positions is proportional to its height h above 
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some arbitrary datum, since we are considering a single particle for which the strain energy is 

zero. Clearly at each position, the first-order variation, ∂(U+V)/∂u, is zero (indicating 

equilibrium), but only at B where the TPE is a minimum is the equilibrium stable. At A and C, 

we have unstable and neutral equilibrium, respectively. 

To summarize, the principle of the stationary value of the TPE may be stated as follows: 

The total potential energy of an elastic system has a stationary value for all small displacements 

when the system is in equilibrium; further, the equilibrium is stable if the stationary value is a 

minimum. 

This principle may often be used in the approximate analysis of structures where an exact 

analysis does not exist. When suppose that the displaced form of the beam is unknown and must 

be assumed; this approach is called the Rayleigh–Ritz method. 

 

THE RECIPROCAL THEOREM 

The reciprocal theorem is an exceptionally powerful method of analysis of linearly elastic 

structures and is accredited in turn to Maxwell, Betti, and Rayleigh. However, before we 

establish the theorem, we first consider a useful property of linearly elastic systems resulting 

from the principle of superposition. The principle enables us to express the deflection of any 

point in a structure in terms of a constant coefficient and the applied loads. For example, a load 

P1 applied at a point 1 in a linearly elastic body produces a deflection ∆1 at the point given by 

 

in which the influence or flexibility coefficient a11 is defined as the deflection at the point 1 in 

the direction of P1, produced by a unit load at the point 1 applied in the direction of P1. Clearly, if 

the body supports a system of loads such as those shown in Fig. 1.18, each of the loads P1,P2, . . . 

,Pn contributes to the deflection at the point 1.  
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Figure 1.18 Linearly elastic body subjected to loads P1, P2, P3, …, Pn. 

Thus, the corresponding deflection ∆1 at the point 1 (i.e., the total deflection in the direction of 

P1 produced by all the loads) is then  

 

where a12 is the deflection at the point 1 in the direction of P1, produced by a unit load at the 

point 2 in the direction of the load P2, and so on.  

The corresponding deflections at the points of application of the complete system of loads are 

then 

 

or, in matrix form 
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which may be written in shorthand matrix notation as 

 

Suppose now that an elastic body is subjected to a gradually applied force P1 at a point 1, and 

then, while P1 remains in position, a force P2 is gradually applied at another point 2. The total 

strain energy U of the body is given by  

 

The third term on the right-hand side of the above equation results from the additional work done 

by P1 as it is displaced through a further distance a12P2 by the action of P2. If we now remove the 

loads and apply P2 followed by P1, we have 

 

By the principle of superposition, the strain energy stored is independent of the order in which 

the loads are applied. Hence  

 

and it follows that 

 

Thus, in its simplest form the reciprocal theorem states that 

The deflection at a point 1 in a given direction due to a unit load at a point 2 in a second 

direction is equal to the deflection at the point 2 in the second direction due to a unit load at the 

point 1 in the first direction. 

In a similar manner, we derive the relationship between moments and rotations, thus 

The rotation at a point 1 due to a unit moment at a point 2 is equal to the rotation at the point 2 

produced by a unit moment at the point 1. 

Finally, we have 

The rotation at a point 1 due to a unit load at a point 2 is numerically equal to the deflection at 

the point 2 in the direction of the unit load due to a unit moment at the point 1. 
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UNIT-II 

THIN PLATE THEORY, STRUCTURAL INSTABILITY 

BENDING OF THIN PLATES 

Generally, we define a thin plate as a sheet of material whose thickness is small compared with its other 

dimensions but which is capable of resisting bending in addition to membrane forces. Such a plate forms 

a basic part of an aircraft structure, being, for example, the area of stressed skin bounded by adjacent 

stringers and ribs in a wing structure or by adjacent stringers and frames in a fuselage. 

In this chapter, we shall investigate the effect of a variety of loading and support conditions on the small 

deflection of rectangular plates. Two approaches are presented: an ―exact‖ theory based on the solution of 

a differential equation and an energy method relying on the principle of the stationary value of the total 

potential energy of the plate and its applied loading. 

 

PURE BENDING OF THIN PLATES 

The thin rectangular plate of Fig. 2.1 is subjected to pure bending moments of intensity Mx and Myper unit 

length uniformly distributed along its edges. The former bending moment is applied along theedges 

parallel to the y axis, and the latter along the edges parallel to the x axis. We shall assume thatthese 

bending moments are positive when they produce compression at the upper surface of the plateand 

tension at the lower. 

If we further assume that the displacement of the plate in a direction parallel to the z axis is small 

compared with its thickness t and that sections which are plane before bending remain plane after 

bending, then, as in the case of simple beam theory, the middle plane of the plate does not deform during 

the bending and is therefore a neutral plane. We take the neutral plane as the reference plane for our 

system of axes. 
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Figure 2.1 Plate subjected to pure bending. 

Let us consider an element of the plate of side δxδy and having a depth equal to the thickness t of the plate 

as shown in Fig. 2.2(a). Suppose that the radii of curvature of the neutral plane n are ρx and ρy in the xz 

and yz planes, respectively (Fig. 2.2(b)). Positive curvature of the plate corresponds to the positive 

bending moments, which produce displacements in the positive direction of the z or downward axis. 

Again, as in simple beam theory, the direct strains εx and εy corresponding to direct stresses 

 

Figure 2.2 (a) Direct stress on lamina of plate element; (b) radii of curvature of neutral plane. 

 

ζx and ζy of an elemental lamina of thicknessδz a distance z below the neutral plane are given by 



Page | 37  
 

                                                  (2.1) 

We know  

                    (2.2) 

Substituting for εxandεy from Eqs. (2.1) into (2.2) and rearranging gives 

 

                   (2.3) 

Aswould be expected from our assumption of plane sections remaining plane, the direct stresses vary 

linearly across the thickness of the plate, their magnitudes depending on the curvatures (i.e., bending 

moments) of the plate. The internal direct stress distribution on each vertical surface of the element must 

be in equilibrium with the applied bending moments. Thus, 

 

and 

 

Substituting for ζx and ζy from Eqs. (2.3) gives 
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Let      

 

Then,  

 

(2.5) 

(2.6) 

 

in which D is known as the flexural rigidity of the plate. 

If w is the deflection of any point on the plate in the z direction, then we may relate w to the curvature of 

the plate in the same manner as the well-known expression for beam curvature. Hence   

 

the negative signs resulting from the fact that the centers of curvature occur above the plate in which 

region z is negative. Equations (2.5) and (2.6) then become 

 

(2.7) 

 

(2.8) 
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Equations (2.7) and (2.8) define the deflected shape of the plate provided that Mx and My are known. If 

either MxorMy is zero, then 

 

and the plate has curvatures of opposite signs. The case of My = 0 is illustrated in Fig. 2.3. A surface 

possessing two curvatures of opposite sign is known as an anticlastic surface, as opposed to a synclastic 

surface, which has curvatures of the same sign. Further, if Mx = My= M, then from Eqs. (2.5) and (2.6) 

 

Therefore, the deformed shape of the plate is spherical and of curvature 

 

(2.9) 

 

 

Figure 2.3 Anticlastic bending. 

 

PLATES SUBJECTED TO BENDING AND TWISTING 

In general, the bending moments applied to the plate will not be in planes perpendicular to its edges. Such 

bending moments, however, may be resolved in the normal manner into tangential and perpendicular 
components, as shown in Fig. 2.4. The perpendicular components are seen to be MxandMy as before, 

while the tangential components MxyandMyx(again these are moments per unit length) produce twisting 

of the plate about axes parallel to the x and y axes. The system of suffixes and the sign convention for 
these twisting moments must be clearly understood to avoid confusion. Mxyis a twisting moment intensity 

in a vertical x plane parallel to the y axis, whereas Myxis a twisting moment intensity in a vertical y plane 
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parallel to the x axis. Note that the first suffix gives the direction of the axis of the twisting moment. We 

also define positive twisting moments as being clockwise when viewed along their axes in directions 
parallel to the positive directions of the corresponding x or y axis. In Fig. 2.4, therefore, all moment 

intensities are positive. 

 

Since the twisting moments are tangential moments or torques, they are resisted by a system of horizontal 
shear stresses ηxy, as shown in Fig. 2.6. From a consideration of complementary shear stresses (see Fig. 

2.6), Mxy=−Myx, so that we may represent a general moment application to the plate in terms of Mx, My, 

and Mxyas shown in Fig. 2.5(a). 
 

 

 

 
Figure 2.4 Plate subjected to bending and twisting. 

 

 
Figure 2.5 (a) Plate subjected to bending and twisting; (b) tangential and normal moments on an 

arbitrary plane. 

These moments produce tangential and normal moments, Mt and Mn, on an arbitrarily chosen diagonal 

plane FD. We may express these moment intensities (in an analogous fashion to the complex stress 

systems of Section 1.6) in terms of Mx, My, and Mxy. Thus, for equilibrium of the triangular element 

ABC of Fig. 2.5(b) in a plane perpendicular to AC  
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giving 

                                 (2.10) 
 

Similarly, for equilibrium in a plane parallel to CA 

 

 

Figure 2.6 Complementary shear stresses due to twisting moments Mxy. 

 

or 

                                  (2.11) 
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We observe from Eq. (2.11) that there are two values of α, differing by 90
◦
and given by 

 

for which Mt=0, leaving normal moments of intensity Mn on two mutually perpendicular planes.These 

moments are termed principal moments, and their corresponding curvatures are called 

principalcurvatures. For a plate subjected to pure bending and twisting in which Mx, My, and Mxyare 

invariablethroughout the plate, the principal moments are the algebraically greatest and least moments in 
the plate.It follows that there are no shear stresses on these planes and that the corresponding direct 

stresses, fora given value of z and moment intensity, are the algebraically greatest and least values of 

direct stressin the plate. 
 

Let us now return to the loaded plate of Fig. 2.5(a). We have established, in Eqs. (2.7) and (2.8),the 

relationships between the bending moment intensities MxandMy and the deflection w of the plate.The 

next step is to relate the twisting moment Mxytow. From the principle of superposition, we 
mayconsiderMxyacting separately from MxandMy. As stated previously, Mxyis resisted by a system 

ofhorizontal complementary shear stresses on the vertical faces of sections taken throughout the 

thicknessof the plate parallel to the x and y axes. Consider an element of the plate formed by such 
sections, asshown in Fig. 2.6. The complementary shear stresses on a lamina of the element a distance z 

belowthe neutral plane are, in accordance with the sign convention of Section 1.2, ηxy (Refer T.H.G. 

megson). Therefore, on the faceABCD 

 (2.12) 
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the shear strain γxyis given by 

 
 

 
We require, of course, to express γxyin terms of the deflectionwof the plate; this may be accomplishedas 

follows. An element taken through the thickness of the plate will suffer rotations equal to ∂w/∂x and 

 
Figure 2.7 Determination of shear strain γxy. 

 

∂w/∂y in the xzandyzplanes, respectively. Considering the rotation of such an element in the xzplane, as 
shown in Fig. 2.7, we see that the displacement u in the x direction of a point a distance z below the 

neutral plane is 

 (2.13) 
 

from which  Eq.2.12 
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Replacing G by the expression E/2(1+ν) 

 
Multiplying the numerator and denominator of this equation by the factor (1−ν) yields 

         (2.14) 
 

Equations (2.7), (2.8), and (2.14) relate the bending and twisting moments to the plate deflection 

and are analogous to the bending moment–curvature relationship for a simple beam. 

 
 

PLATES SUBJECTED TO A DISTRIBUTED TRANSVERSE LOAD 

 
The relationships between bending and twisting moments and plate deflection are now employed 

inestablishing the general differential equation for the solution of a thin rectangular plate, supportinga 

distributed transverse load of intensity q per unit area (see Fig. 2.8). The distributed load may, ingeneral, 
vary over the surface of the plate and is, therefore, a function of x and y. We assume, as inthe preceding 

analysis, that the middle plane of the plate is the neutral plane and that the plate deformssuch that plane 

sections remain plane after bending. This latter assumption introduces an apparentinconsistency in the 

theory. For plane sections to remain plane, the shear strains γxzandγyzmustbezero. However, the 
transverse load produces transverse shear forces (and therefore stresses) as shown in Fig. 2.9.We 

therefore assume that although γxz =ηxz/Gandγyz=ηyz/Gare negligible, the corresponding shear forces are 

of the same order of magnitude as the applied load q and the moments Mx, My, and Mxy. This assumption 
is analogous to that made in a slender beam theory in which shear strains are ignored. 

 

The element of plate shown in Fig. 2.9 supports bending and twisting moments as previouslydescribed 
and, in addition, vertical shear forces QxandQyper unit length on faces perpendicular to thex and y axes, 

respectively. The variation of shear stresses ηxz andηyzalong the small edges δx, δyofthe element is 

neglected, and the resultant shear forces QxδyandQyδxare assumed to act through the 

 



Page | 45  
 

 
Figure 2.8 Plate supporting a distributed transverse load. 

 

 
Figure 2.9 Plate element subjected to bending, twisting, and transverse loads. 
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                                                                                                                                                  (2.15) 

For equilibrium of the element parallel to Oz and assuming that the weight of the plate is includedin q 

 

                                                                                                                                                 (2.16) 

 

 

 

(2.17) 

Similarly, taking moments about the y axis, we have 
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                                       (2.18) 

Substituting in Eq. (2.16) for QxandQyfromEqs. (2.18) and (2.17), we obtain 

                                                                                                                                             (2.19) 

Replacing Mx, Mxy, and My in Eq. (2.19) from Eqs. (2.7), (2.14), and (2.8) gives 

 

 

                                                            (2.20) 

 

 
Generally, the transverse distributed load q is a function of x and y so that the determination of 
the deflected form of the plate reduces to obtaining a solution of Eq. (2.20), which satisfies the 

knownboundary conditions of the problem. The bending and twisting moments follow from Eqs. (2.7), 

(2.8), and (2.14), and the shear forces per unit length QxandQyare found from Eqs. (2.17) and (2.18) 
bysubstitution for Mx, My, and Mxyin terms of the deflection w of the plate; thus, 

 

 

                              (2.21) 
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                     (2.22) 

 

Direct and shear stresses are then calculated from the relevant expressions relating them to Mx, My,Mxy, 

Qx, and Qy. Before discussing the solution of Eq. (2.20) for particular cases, we shall establishboundary 
conditions for various types of edge support. 

 

 

COMBINED BENDING AND IN-PLANE LOADINGOF A THIN 

RECTANGULAR PLATE 
 

So far our discussion has been limited to small deflections of thin plates produced by differentforms of 
transverse loading. In these cases, we assumed that the middle or neutral plane of the plateremained 

unstressed. Additional in-plane tensile, compressive, or shear loads will produce stresses inthe middle 

plane, and these, if of sufficient magnitude, will affect the bending of the plate. Wherethe in-plane 
stresses are small compared with the critical buckling stresses, it is sufficient to considerthe two systems 

separately; the total stresses are then obtained by superposition. On the otherhand, if the in-plane stresses 

are not small, then their effect on the bending of the plate must beconsidered. 

 
The elevation and plan of a small element δxδy of the middle plane of a thin deflected plate are 

shown in Fig. 2.12. Direct and shear forces per unit length produced by the in-plane loads are given 

thenotationNx, Ny, and Nxyand are assumed to be acting in positive senses in the directions shown. 
Sincethere are no resultant forces in the x or y directions from the transverse loads (see Fig. 2.9), we 

needonly to include the in-plane loads shown in Fig. 2.12 when considering the equilibrium of the 

elementin these directions. For equilibrium parallel to Ox, 
 

 
 
 

                                                                                   (2.23) 

Similarly, for equilibrium in the y direction, we have 

(2.24) 
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Figure 2.12 In-plane forces on plate element. 

 

Note that the components of the in-plane shear loads per unit length are, to a first order of 

approximation,the value of the shear load multiplied by the projection of the element on the relevant axis. 

 

 
Figure 2.13 Component of shear loads in the z direction. 
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The components arising from the direct forces per unit length are readily obtained from Fig. 2.12, namely, 

 

 

 
in which Nyxis equal to and is replaced by Nxy. Using Eqs. (2.23) and (2.24), we reduce this expression to 

 
Therefore, the governing differential equation for a thin plate supporting transverse and in-plane loads is, 
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BENDING OF THIN PLATES HAVING A SMALL INITIAL CURVATURE 
 
Suppose that a thin plate has an initial curvature so that the deflection of any point in its middle plane 

isw0.We assume that w0 is small compared with the thickness of the plate. The application of 

transverseand in-plane loads will cause the plate to deflect a further amount w1 so that the total deflection 
is thenw=w0+w1. However, in the derivation of Eq. (2.25), we note that the left-hand side was obtained 

fromexpressions for bending moments which themselves depend on the change of curvature. We 

thereforeuse the deflection w1 on the left-hand side, not w. The effect on bending of the in-plane forces 
dependson the total deflection w so that we write Eq. (2.25) 

 

 

 

 

 

 

 

(2.26) 

 
The effect of an initial curvature on deflection is therefore equivalent to the application of a 

transverseload of intensity 

 

 

 

 

 

 

 

(2.27) 

 

 

 

 
(2.28) 
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ENERGY METHOD FOR THE BENDING OF THIN PLATES 
 

Two types of solution are obtainable for thin plate bending problems by the application of the principleof 

the stationary value of the total potential energy of the plate and its external loading. The first, inwhich 
the form of the deflected shape of the plate is known, produces an exact solution; the second, 

theRayleigh–Ritz method, assumes an approximate deflected shape in the form of a series having a 

finitenumber of terms chosen to satisfy the boundary conditions of the problem and also to give the kind 

ofdeflection pattern expected. 

 

Strain Energy Produced by Bending and Twisting 
 

In thin plate analysis, we are concerned with deflections normal to the loaded surface of the plate. 

These,as in the case of slender beams, are assumed to be primarily due to bending action so that the 

effectsof shear strain and shortening or stretching of the middle plane of the plate are ignored. Therefore, 
itis sufficient for us to calculate the strain energy produced by bending and twisting only as this will 

beapplicable, for the reason of the preceding assumption, to all loading cases. It must be remembered 

thatwe are only neglecting the contributions of shear and direct strains on the deflection of the plate; 
thestresses producing them must not be ignored. 

 

 
Figure 2.14 (a) Strain energy of element due to bending; (b) strain energy due to twisting. 

 

Consider the element δx×δyof a thin plate a×b shown in elevation in the xzplane in Fig. 2.14(a).Bending 

moments Mxper unit length applied to its δy edge produce a change in slope between its endsequal to 
(∂2w/∂x2)δx. However, since we regard the moments Mxas positive in the sense shown, thenthis change 

in slope, or relative rotation, of the ends of the element is negative as the slope decreaseswith increasing 

x. The bending strain energy due to Mxis then 
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                                                                                                                                      (2.29) 

Note that if the plate is subject to pure bending only, then Mxy=0, and ∂2w/∂x∂y=0,so that Eq. (2.29) 

simplifies to 
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 (2.30) 

 
 

 

BUCKLING OF THIN PLATES 

A thin plate may buckle in a variety of modes depending on its dimensions, the loading, and the 

method of support. Usually, however, buckling loads are much lower than those likely to cause failure in 

the material of the plate. The simplest form of buckling arises when compressive loads are applied to 

simply supported opposite edges and the unloaded edges are free, as shown in Fig. 9.1. A thin plate in this 
configuration behaves in exactly the same way as a pin-ended column so that the critical load is that 

predicted by the Euler theory. Once this critical load is reached, the plate is incapable of supporting any 

further load. This is not the case, however, when the unloaded edges are supported against displacement 
out of the xyplane. Buckling, for such plates, takes the form of a bulging displacement of the central 

region of the plate, while the parts adjacent to the supported edges remain straight. These parts enable the 

plate to resist higher loads, which is an important factor in aircraft design. 

 

 
Figure 2.15 Buckling of a thin flat plate. 

 

At this stage, we are not concerned with this postbuckling behavior but rather with the prediction 
of the critical load which causes the initial bulging of the central area of the plate. For the analysis, we 

may conveniently use the method of total potential energy, since we have already, derived expressions for 

strain and potential energy corresponding to various load and support configurations. In these 
expressions, we assumed that the displacement of the plate comprises bending deflections only and that 

these are small compared with the thickness of the plate. These restrictions therefore apply in the 

subsequent theory. 

First, we consider the relatively simple case of the thin plate of Fig. 2.15, loaded as shown, but 
simply supported along all four edges. We have seen that its true deflected shape may be represented by 

the infinite double trigonometrical series  
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Also, the total potential energy of the plate is 

(2.31) 
The integration of Eq. (9.1) on substituting for w is similar 

 

Thus, 

(2.32) 

The total potential energy of the plate has a stationary value in the neutral equilibrium of its buckled state 
(i.e., Nx= Nx,CR). Therefore, differentiating Eq. (2.32) with respect to each unknown coefficient Amn, we 

have 

 

(2.33) 
We observe from Eq. (2.33) that each term in the infinite series for displacement corresponds, as in the 
case of a column, to a different value of critical load (note the problem is an eigenvalue problem). The 

lowest value of critical load evolves from some critical combination of integer’sm and n—that is, the 

number of half-waves in the x and y directions, and the plate dimensions. Clearly n = 1 gives a minimum 

value so that no matter what the values of m,a, and b, the plate buckles into a half sine wave 

in the y direction. Thus, we may write Eq. (2.33) as minimum value so that no matter what the values of 
m,a, and b, the plate buckles into a half sine wave in the y direction. Thus, we may write Eq. (2.33) as 
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(2.24) 

                                                                                                                                      (2.25) 

for a given value of a/b. To determine the minimum value of k for a given value of a/b, we plot k as a 

function of a/b for different values of m as shown by the dotted curves in Fig. 2.16. The minimum value 
of k is obtained from the lower envelope of the curves shown solid in the figure.  

 

 
 

For a given value of a/b, the critical stress, ζCR= Nx,CR/t, 

(2.26) 
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Figure 2.16 Buckling coefficient k for simply supported plates. 

 

In general, the critical stress for a uniform rectangular plate, with various edge supports and loaded by 

constant or linearly varying in-plane direct forces (Nx,Ny) or constant shear forces (Nxy) along its edges, 

is given by Eq. (2.26). The value of k remains a function of a/b but also depends on the type of loading 

and edge support. 
 

 

INELASTIC BUCKLING OF PLATES 
 

For plates having small values of b/t, the critical stress may exceed the elastic limit of the material of the 
plate. In such a situation, Eq. (2.26) is no longer applicable, since, as we saw in the case of columns, E 

becomes dependent on stress, as does Poisson’s ratio ν. These effects are usually included in a plasticity 

correction factor ε so that Eq. (2.26) becomes 

 (2.27) 

WhereE and ν are elastic values of Young’s modulus and Poisson’s ratio. In the linearly elastic region, ε 
= 1. The derivation of a general expression for ε is  
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EXPERIMENTAL DETERMINATION OF CRITICAL LOAD FOR A FLAT PLATE 

 

The displacement of an initially curved plate from the zero load position was found to be 

 

 
 

LOCAL INSTABILITY 
 

Thin-walled columns are encountered in aircraft structures in the shape of longitudinal stiffeners,which 
are normally fabricated by extrusion processes or by forming from a flat sheet. A variety of cross sections 

are used, although each is usually composed of flat plate elements arranged to form angle, channel, Z-, or 

―top hat‖ sections, as shown in Fig. 2.17. We see that the plate elements fall into two distinct categories: 

flanges which have a free unloaded edge and webs which are supported by the adjacent plate elements on 
both unloaded edges. 

 

In local instability, the flanges and webs buckle like plates, with a resulting change in the crosssection of 
the column. The wavelength of the buckle is of the order of the widths of the plate elements, and the 

corresponding critical stress is generally independent of the length of the column when the length is equal 

to or greater than three times the width of the largest plate element in the column cross section. 
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Figure 2.17 (a) Extruded angle; (b) formed channel; (c) extruded Z; (d) formed ―top hat.‖ 

 

Buckling occurs when the weakest plate element, usually a flange, reaches its critical stress, although in 

some cases all the elements reach their critical stresses simultaneously.Whenthis occurs, the rotational 

restraint provided by adjacent elements to one another disappears, and the elements behave as though they 
are simply supported along their common edges. These cases are the simplest to analyze and are found 

where the cross section of the column is an equal-legged angle, T-, cruciform, or a square tube of constant 

thickness. Values of local critical stress for columns possessing these types of section may be found using 
Eq. (9.7) and an appropriate value of k. For example, k for a cruciform section column is obtained from 

Fig. 9.3(a) for a plate which is simply supported on three sides with one edge free and has a/b>3. Hence, 

k = 0.43, and if the section buckles elastically, then ε = 1 and 

 
 

INSTABILITY OF STIFFENED PANELS 
 
Stiffeners in earlier types of stiffened panel possessed a relatively high degree of strength compared with 

the thin skin resulting in the skin buckling at a much lower stress level than the stiffeners. Such panels 

may be analyzed by assuming that the stiffeners provide simply supported edge conditions to a series of 
flat plates. 

 

A more efficient structure is obtained by adjusting the stiffener sections so that buckling occurs in 

both stiffeners and skin at about the same stress. This is achieved by a construction involving closely 
spaced stiffeners of comparable thickness to the skin. Since their critical stresses are nearly the same, 

there is an appreciable interaction at buckling between skin and stiffeners so that the complete panel must 

be considered a unit. However, caution must be exercised, since it is possible for the two simultaneous 
critical loads to interact and reduce the actual critical load of the structure. Various modes of buckling are 

possible, including primary buckling, where the wavelength is of the order of the panel length, and local 

buckling, with wavelengths of the order of the width of the plate elements of the skin or stiffeners. A 

discussion of the various bucklingmodes of panels having Z-section stiffeners has been given by 
Argyrisand Dunne. Elements of the skin or stiffeners. A discussion of the various bucklingmodes of 

panels having Z-sectionstiffeners has been given by Argyris and Dunne. 

 
For detailed work on stiffened panels, reference should be made to as much as possible of the 
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Precedingworks. The literature is, however, extensive so that herewepresent a relatively simple approach 

suggested by Gerard. Figure 2.18 represents a panel of width w stiffened by longitudinal members which 
may be flats (as shown), Z-, I-, channel, or ―top hat‖ sections. It is possible for the panel to behave as an 

Euler column, its cross section being that shown in Fig. 2.18. If the equivalent length of the panel 

 

 
Figure 2.18 Stiffened panel. 

 

 

 
 

 

 

 
 

FAILURE STRESS IN PLATES AND STIFFENED PANELS 
 
Gerard proposes a semiempirical solution for flat plates supported on all four edges. After elastic buckling 

occurs, theory and experiment indicate that the average compressive stress, .ζa, in the plate and the 

unloaded edge stress, ζe, are related by the following expression: 
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whereβ = αkm/2. 

 
Experiments on simply supported flat plates and square tubes of various aluminum and magnesium alloys 

and steel show that β = 1.42 and m = 0.85 fit the results within ±10 percent up to the yield strength. 

Corresponding values for long, clamped, flat plates are β = 1.80, m = 0.85. 

Gerard extended the preceding method to the prediction of local failure stresses for the plate elements of 
thin-walled columns. Equation becomes 
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Figure 2.19 Determination of empirical constant g. 

 

Figure 2.20 Determination of g for two types of stiffener/skin combinations. 

 

TENSION FIELD BEAMS 

The spars of aircraft wings usually comprise an upper and a lower flange connected by thin, stiffened 

webs. These webs are often of such a thickness that they buckle under shear stresses at a fraction of their 
ultimate load. The form of the buckle is shown in Fig. 2.21 (a), where the web of the beam buckles under 

the action of internal diagonal compressive stresses produced by shear, leaving a wrinkled web capable of 

supporting diagonal tension only in a direction perpendicular to that of the buckle; the beam is then said 

to be a complete tension field beam. 
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Figure 2.21 Diagonal tension field beam. 

 

Complete Diagonal Tension 

The theory presented here is due to Wagner. The beam shown in Fig. 2.21 (a) has concentrated flange 

areas having a depth d between their centroids and vertical stiffeners which are spaced uniformly along 
the length of the beam. It is assumed that the flanges resist the internal bending moment at any section of 

the beam, while the web, of thickness t, resists the vertical shear force. Theeffect of this assumption is to 

produce a uniform shear stress distribution through the depth of the web (see Section 19.3,  T.H.G. 
Megson) at any section. Therefore, at a section of the beam where the shear force is S, the shear stress η is 

given by 

 
Consider now an element ABCD of the web in a panel of the beam, as shown in Fig. 2.21(a). The element 
is subjected to tensile stresses, ζt , produced by the diagonal tension on the planes AB and CD; the angle 

of the diagonal tension is α. On a vertical plane FD in the element, the shear stress is η and the direct 

stress is ζz. Now, considering the equilibrium of the element FCD (Fig. 2.21(b)) and resolving forces 

vertically, we have (see Section 1.6, T.H.G. Megson)  

 
or, substituting for η from Eq. (9.14) and noting that in this case S = W at all sections of the beam, 
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Since η and ζt are constant through the depth of the beam, it follows that ζzis constant through the depth 

of the beam.  

The direct loads in the flanges are found by considering a length z of the beam, as shown in Fig. 2.22. On 
the plane mm, there are direct and shear stresses ζzand η acting in the web, together with direct loads FT 

and FB in the top and bottom flanges, respectively. FT and FB are produced by a combination of the 

bending moment Wzat the section plus the compressive action (ζz) of the diagonal tension. Taking 
moments about the bottom flange, 
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Figure 2.22 Determination of flange forces. 

 

 

The tensile stresses ζyon horizontal planes in the web of the beam cause compression in the vertical 

stiffeners. Each stiffener may be assumed to support half of each adjacent panel in the beam so that the 
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Figure 2.23 Stress system on a horizontal plane in the beam web. 

 

 

If the load P is sufficiently high, the stiffeners will buckle. Tests indicate that they buckle as columns of 
equivalent length 

 
In addition to causing compression in the stiffeners, the direct stress ζyproduces bending of the beam 

flanges between the stiffeners, as shown in Fig. 2.24. Each flange acts as a continuous beam carrying a 
uniformly distributed load of intensity ζyt. The maximum bending moment in a continuous beam with 

ends fixed against rotation occurs at a support and is wL2/12, in which w is the load intensity and L is the 

beam span. In this case, therefore, the maximum bending moment Mmax occurs at a stiffener and is given 

by 
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Midway between the stiffeners this bending moment reduces to Wb2 tan α/24d. 

The angle α adjusts itself such that the total strain energy of the beam is a minimum. If it is assumed that 
the flanges and stiffeners are rigid, then the strain energy comprises the shear strain energy of the web 

only and α = 45◦. In practice, both flanges and stiffeners deform so that α is somewhat less than 45◦, 

usually of the order of 40◦ and, in the type of beam common to aircraft structures, rarely below 38◦. For 

beams having all components made of the same material, the condition of minimum strain energy leads to 
various equivalent expressions for α, one of which is 

 
 Figure 2.24 Bending of flanges due to web stress.  

 

 

in which ζF and ζS are the uniform direct compressive stresses induced by the diagonal tension in the 

flanges and stiffeners, respectively. Thus, 
 

 
in which AF is the cross-sectional area of each flange. Also, 

 

An alternative expression for α, again derived from a consideration of the total strain energy of the beam, 

is 

 
Incomplete Diagonal Tension 
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In modern aircraft structures, beams having extremely thin webs are rare. They retain, after buckling, 

some of their ability to support loads so that even near failure they are in a state of stress somewhere 
between that of pure diagonal tension and the prebuckling stress. Such a beam is described as an 

incomplete diagonal tension field beam and may be analyzed by semiempirical theory as follows. It is 

assumed that the nominal web shear η (= S/td) may be divided into a ―true shear‖ component ηS and a 

diagonal tension component ηDT by writing 

 
Wherek, the diagonal tension factor, is a measure of the degree to which the diagonal tension 

isdeveloped. A completely unbuckled web has k = 0, whereas k = 1 for a web in complete 

diagonaltension. The value of k corresponding to a web having a critical shear stress ηCR is given by 
theempirical expression 

 
The ratio η/ηCR is known as the loading ratio or buckling stress ratio. The buckling stress ηCR may be 

calculated from the formula 

 
Wherekss is the coefficient for a plate with simply supported edges, and Rd and Rb are empirical restraint 

coefficients for the vertical and horizontal edges of the web panel, respectively. Graphs giving kss,Rd, and 

Rb are reproduced in the study of Kuhn . 

 
The stress equations are modified in the light of these assumptions and may be rewritten in terms of the 

applied shear stress η as 

 
Further, the web stress ζt given, becomes two direct stresses: ζ1 along the direction of α given by 

 

 
 

while the effective lengths for the calculation of stiffener buckling loads become 
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In some cases, beams taper along their lengths, in which case the flange loads are no longer horizontal but 

have vertical components which reduce the shear load carried by the web, where 
dis the depth of the beam at the section considered, we have, resolving forces vertically, 

 

 

 
Figure 2.25 Calculation of stiffener buckling load. 

 

 

Figure 2.26 Effect of taper on diagonal tension field beam calculations. 

Taking moments about B, 
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Also, the shear force S at any section of the beam is 

 

 

 

Post buckling Behavior 

It is possible, if the beam flanges are relatively light, for failure due to yielding to occur in the beam 

flanges after the web has buckled so that plastic hinges form and a failure mechanism. This postbuckling 
behavior was investigated by Evans et al. [Ref. 14], who developeda design method for beams subjected 

to bending and shear. It is their method of analysis which ispresented here. 

 
Suppose that the panel AXBZ in Fig. 2.27 has collapsed due to a shear load S and a bending moment M; 

plastic hinges have formed at W, X, Y, and Z. In the initial stages of loading, the web remains perfectly 

flat until it reaches its critical stresses: ηcr in shear and ζcrb in bending. The values of these 
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                 Figure 2.27 Collapse mechanism of a panel of a tension field beam. 

stresses may be found approximately from 

 

Whereζcrb is the critical value of bending stress with S = 0, M= 0, and ηcr is the critical value ofshear 

stress when S =0 and M = 0. Once the critical stress is reached, the web starts to buckle andcannot carry 

any increase in compressive stress so that, any additional load is carried by tension field action. It is 

assumed that the shear and bending stresses remain at their critical values ηm and ζmb and that there are 
additional stresses ζt which are inclined at an angle ζ to the horizontal and which carry any increases in 

the applied load. At collapse—that is, at ultimate load conditions—the additional stress ζt reaches its 

maximum value ζt(max), and the panel is in the collapsed state shown in Fig. 2.27. 
 

Consider now the small rectangular element on the edge AW of the panel before collapse. Thestresses 

acting on the element are shown in Fig. 2.28 (a). The stresses on planes parallel to and perpendicular to 
the direction of the buckle may be found by considering the equilibrium of triangular elements within this 

rectangular element. Initially, we shall consider the triangular element CDE which is subjected to the 

stress system shown in Fig. 2.28 (b) and is in equilibrium under the action of the forces corresponding to 

these stresses. Note that the edge CE of the element is parallel to the direction of the buckle in the web. 
 

For equilibrium of the element in a direction perpendicular to CE 
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Figure 2.28 Determination of stresses on planes parallel and perpendicular to the plane of the 

buckle. 

Further, the direct stress ζεon the plane FD (Fig. 2.28 (c)) which is perpendicular to the plane of the 
buckle is found from the equilibrium of the element FED. Then, 

 
 

Note that the shear stress on this plane forms a complementary shear stress system with ηεξ. 

The failure condition is reached by adding ζt(max)to ζξand using the von Mises theory of elastic failure , 
that is, 

 
 

Whereζy is the yield stress of the material, ζ1 and ζ2 are the direct stresses acting on two mutually 
perpendicular planes, and η is the shear stress acting on the same two planes. Hence, when the yield stress 

in the web is ζyw, failure occurs when 
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These equations have been derived for a point on the edge of the panel but are applicable to any point 

within its boundary. Therefore, the resultant force Fw corresponding to the tension field in the web may be 

calculated and its line of action determined. 
 

If the average stresses in the compression and tension flanges are ζcf and ζtf and the yield stress of the 

flanges is ζyf, the reduced plastic moments in the flanges are  

 

The position of each plastic hinge may be found by considering the equilibrium of a length of flange and 

using the principle of virtual work. In Fig. 2.29, the length WX of the upper flange of the beam is given a 

virtual displacement θ. The work done by the shear force at X is equal to the energy absorbed by the 
plastic hinges at X and W and the work done against the tension field stress ζt(max). Suppose that the 

average value of the tension field stress is ζtc—that is, the stress at the midpoint of WX. 

 
Figure 2.29 Determination of plastic hinge position. 
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Clearly, for the plastic hinges to occur within a flange, both cc and ct must be less than b. Therefore, 

 

The average axial stress in the compression flange betweenWand X is obtained by considering the 

equilibrium of half of the length of WX, then 

 

 

 
Figure 2.30 Determination of flange stress. 
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WhereFc is the force in the compression flange at W and Acf is the cross-sectional area of the compression 
flange. 

 

Similarly, for the tension flange, 

 

The forces Fc and Ft are found by considering the equilibrium of the beam to the right of WY(Fig. 2.31). 
Then, resolving vertically and noting that Scr= ηmtwd, 

 

 
where W1 to Wn are external loads applied to the beam to the right of WY and Mw is the bending moment 
in the web when it has buckled and become a tension field, that is, 
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Figure 2.31 Determination of flange forces. 

 

Evans et al. adopted an iterative procedure for solving in which an initial value of ζ was assumed and 

ζcfand ζtf were taken to be zero. Then, cc and ct were calculated, and approximate values of Fc and Ft are 

found, giving better estimates for ζcf and ζtf. The procedure was then repeated until the required accuracy 

was obtained. 
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UNIT-III 

BENDING, SHEAR AND TORSION OF THIN WALLED BEAMS 
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UNSYMMETRICAL BENDING 

 

The value of direct stress at a point in the cross section of a beam subjected to bending depends on the 

position of the point, the applied loading, and the geometric properties of the cross section. It follows that 

it is of no consequence whether the cross section is open or closed. We, therefore, derive the theory for a 

beam of arbitrary cross section and then discuss its application to thin-walled open and closed section 

beams subjected to bending moments.  

 

The assumptions are identical to those made for symmetrical bending. However, before we derive an 

expression for the direct stress distribution in a beam subjected to bending, we shall establish sign 

conventions for moments, forces, and displacements; investigate the effect of choice of section on the 

positive directions of these parameters, and discuss the determination of the components of a bending 

moment applied in any longitudinal plane. 

 

Sign Conventions and Notation 

 

Forces, moments, and displacements are referred to an arbitrary system of axes Oxyz, of which Oz 

isparallel to the longitudinal axis of the beam and Oxy are axes in the plane of the cross section. Weassign 

the symbols M, S, P, T, and w to bending moment, shear force, axial or direct load, torque, anddistributed 

load intensity, respectively, with suffixes where appropriate to indicate sense or direction.Thus, Mxis a 

bending moment about the x axis, Sxis a shear force in the x direction, and so on.Figure 3.1 shows 

positive directions and senses for the above loads and moments applied externally toa beam and also the 

positive directions of the components of displacement u, v, and w of any point in thebeam cross section 

parallel to the x, y, and z axes, respectively. A further condition defining the signsof the bending moments 

Mxand Myis that they are positive when they induce tension in the positive xyquadrant of the beam cross 

section. 

 

If we refer internal forces and moments to that face of a section which is seen when viewed in 

thedirection zO, and then, as shown in Fig. 3.2, positive internal forces and moments are in the 

samedirection and sense as the externally applied loads, whereas on the opposite face they form an 

opposingsystem. The former system, which we shall use, has the advantage that direct and shear loads are 

always positive in the positive directions of the appropriate axes whether they are internal loads or not. It 

must be realized, though, that internal stress resultants then become equivalent to externally applied 

forces and moments and are not in equilibrium with them. 
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Figure 3.1 Notation and sign convention for forces, moments, and displacements. 

 

 

 

Figure 3.2 Internal force system. 

  

 

 



Page | 80  
 

 

Resolution of Bending Moments 

A bending moment M applied in any longitudinal plane parallel to the z axis may be resolved 

intocomponents Mxand Myby the normal rules of vectors. However, a visual appreciation of the 

situationis often helpful. Referring toFig. 3.3, we see that a bending moment M in a plane at an angle ζ 

toOx may have components of differing sign depending on the size of ζ. In both cases, for the sense of 

M shown 

 

which give, for ζ <π/2, Mxand My positive  and for ζ >π/2, Mxpositive and My negative . 

 

 

Direct Stress Distribution due to Bending 

Consider a beam having the arbitrary cross section shown in Fig. 3.4( a). The beam supports 

bendingmoments Mxand Myand bends about some axis in its cross section which is therefore an axis of 

zerostress or a neutral axis (NA). Let us suppose that the origin of axes coincides with the centroid C of 

thecross section and that the neutral axis is a distance p from C. The direct stress ζzon an element of 

areaδAat a point (x, y) and a distance ξ from the neutral axis is, 

 

 

If the beam is bent to a radius of curvature ρ about the neutral axis at this particular section then, since 

plane sections are assumed to remain plane after bending, and by a comparison with symmetrical 

bending theory  
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Figure 3.3 Resolution of bending moments: (a) ζ <90◦ and (b) ζ >90◦. 

 

Figure 3.4 Determination of neutral axis position and direct stress due to bending.  

 

we have 

 



Page | 82  
 

The beam supports pure bending moments so that the resultant normal load on any section must bezero. 

Hence, 

 

 

Suppose that the inclination of the neutral axis to Cxis α (measured clockwise from Cx), then 

 

 

The moment resultants of the internal direct stress distribution have the same sense as the applied 

momentsMxand My. Therefore, 
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so that, 

(3.1) 

 

Alternatively, Eq. (3.1) may be rearranged in the form 

(3.2) 

From Eq. (3.2) it can be seen that if, say, my=0, the moment Mxproduces a stress which varies with 

Bothx and y; similarly for My if Mx=0. 

 

In the case where the beam cross section has either (or both) Cxor Cyas an axis of symmetry, the 

product second moment of area Ixyis zero and Cxyare principal axes. Equation (3.2) then reduces to 
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(3.3) 

(3.4) 

 

Position of the Neutral Axis 

The neutral axis always passes through the centroid of area of a beam’s cross section, but its inclination 

α  to the x axis depends on the form of the applied loading and the geometricalproperties of the beam’s 

cross section. 

At all points on the neutral axis the direct stress is zero. Therefore, from Eq. (3.1), 

 

(3.5) 

 

DEFLECTIONS DUE TO BENDING 

 

Suppose that at some section of an unsymmetrical beam the deflection normal to the neutral axis (and 

therefore an absolute deflection) is δ , as shown in Fig. 3.5. In other words, the centroid C is displaced 

from its initial position CI through an amount δ to its final position CF. Suppose also that the center of 

curvature R of the beam at this particular section is on the opposite side of the neutral axis to the direction 
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of the displacement δ and that the radius of curvature is ρ. For this position of the center of curvature and 

from the usual approximate expression for curvature, 

we have 

 

 

Figure 3.5 Determination of beam deflection due to bending. 

 

The components u and v of δ are in the negative directions of the x and y axes, respectively, so that 

 

Differentiating above equ. twice with respect to z and then substituting for δ, we 

Obtain 

 

we see that 

 

upon solving we have 
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on rearranging, we get 

 

that is  

 

For a beam having either Cxor Cy(or both) as an axis of symmetry, Ixy=0 and Eqs. reduce to 

 

 

 

 

Approximations for Thin-Walled Sections 

 

We may exploit the thin-walled nature of aircraft structures to make simplifying assumptions in 

thedetermination of stresses and deflections produced by bending. Thus, the thickness t of thin-

walledsections is assumed to be small compared with their cross-sectional dimensions so that stresses 

maybe regarded as being constant across the thickness. Furthermore, we neglect squares and higher 

powersof t in the computation of sectional properties and take the section to be represented by the 

midlineof its wall. As an illustration of the procedure, we shall consider the channel section of Fig. 3.6(a). 

The section is singly symmetric about the x axis so that Ixy=0. The second moment of area Ixxis 

thengiven by 
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Figure 3.6 (a) Actual thin-walled channel section; (b) approximate representation of section. 

 

Figure 3.7 Second moments of area of an inclined thin section. 
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We see, therefore, that for the purpose of calculating section properties, we may regard the section 

as being represented by a single line, as shown in Fig. 3.7 (b). 

 

Thin-walled sections frequently have inclined or curved walls which complicate the calculation of section 

properties. Consider the inclined thin section of Fig. 3.7 Its second moment of area abouta horizontal axis 

through its centroid is given by 

 

from which 

 

Similarly, 

 

The product second moment of area is 

 

which gives 

 

We note here that these expressions are approximate in that their derivation neglects powers of t2 

and upward by ignoring the second moments of area of the element δsabout axes through its owncentroid.  

Properties of thin-walled curved sections are found in a similar manner. Thus, Ixxfor the 

semicircularsection of Fig. 3.8 is 
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Expressing y and s in terms of a single variable ζ simplifies the integration, so 

 

 

Figure 3.8 Second moment of area of a semicircular section. 

from which 

 

 

TEMPERATURE EFFECTS 

A beam sections in aircraft structures are generally thin walled and do not necessarily have axes of 

symmetry. We shall now investigate how the effects of temperature on such sections may be determined. 

We have seen that the strain produced by a temperature change ∆T is given by  

 

It follows  that the direct stress on an element of cross-sectional area δAis 

 

Consider now the beam section shown in Fig. 15.36 and suppose that a temperature variation ∆T is 
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applied to the complete cross section; that is, ∆T is a function of both x and y. 

 

The total normal force due to the temperature change on the beam cross section is then given by 

 

Further, the moments about the x and y axes are 

 

 

We have noted that beam sections in aircraft structures are generally thin walled so that Eqs. may be more 

easily integrated for such sections by dividing them into thin rectangular components as we did when 

calculating section properties. We then use the Riemann integration technique in which we calculate the 

contribution of each component to the normal force and moments and sum them to determine each 

resultant. Equations then become 

 

 

in which Ai is the cross-sectional area of a component and xi and yiare the coordinates of its centroid. 
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SHEAR OF THIN WALLED BEAMS 

GENERAL STRESS, STRAIN, AND DISPLACEMENT RELATIONSHIPS  

In this section, we shall establish the equations of equilibrium and expressions for strain which 

arenecessary for the analysis of open section beams supporting shear loads and closed section 

beamscarrying shear and torsional loads. Generally, in the analysis we assume that axial constraint effects 

are negligible that the shear stresses normal to the beam surface may be neglected, since they are zero at 

each surface and the wall is thin, that direct and shear stresses on planes normal to the beam surface are 

constant across the thickness, and finally that the beam is of uniform section so that the thickness may 

vary with distance around each section but is constant along the beam. In addition, we ignore squares and 

higher powers of the thickness t in the calculation of section properties. 

The parameter s in the analysis is distance measured around the cross section from some convenient rigin. 

An element δs×δz×tof the beam wall is maintained in equilibrium by a system of direct and shear stresses 

as shown in Fig. 16.1(a). The direct stress ζzis produced by bending moments or by thebending action of 

shear loads, whereas the shear stresses are due to shear and/or torsion of a closedsection beam or shear of 

an open section beam. The hoop stress ζsis usually zero but may be caused, 

 

 

 Figure 3.9 (a) General stress system on element of a closed or open section beam; (b) direct stress and shear flow system on the element. 

 

in closed section beams, by internal pressure. Although we have specified that t may vary with s, 

thisvariation is small for most thin-walled structures so that we may reasonably make the 

approximationthat t is constant over the length δs. Also, ηzs=ηsz=η, say. However, we shall find it 

convenient to work in terms of shear flow q—that is, shear force per unit length rather than in terms of 

shear stress. Hence, in Fig. 3.9 (b), 
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and is regarded as being positive in the direction of increasing s. 

 

For equilibrium of the element in the z direction and neglecting body forces 

 

 

which reduces to 

 

 

 

The direct stresses ζzand ζsproduce direct strains εzand εs, while the shear stress η induces a shear strain 

γ (=γzs=γsz).We shall now proceed to express these strains in terms of the three components of the 

displacement of a point in the section wall (see Fig. 3.10). Of these components, vt is a tangential 

displacement in the xyplane and is taken to be positive in the direction of increasing s; vn is a normal 

displacement in the xyplane and is positive outward; and w is an axial displacement.We have 
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Figure 3.10 Axial, tangential, and normal components of displacement of a point in the beam wall. 

 

It is possible to derive a simple expression for the direct strain εsin terms of vt ,vn, s, and the curvature1/r 

in the xyplane of the beam wall. However, as we do not require εsin the subsequent analysis, we shall, for 

brevity, merely quote the expression 

 

 

Figure 3.11 Determination of shear strain γ in terms of tangential and axial components of 

displacement. 

The shear strain γ is found in terms of the displacements w and vt by considering the shear distortionof an 

element δs×δzof the beam wall. From Fig. 3.11, we see that the shear strain is given by 
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or, in the limit as both δsand δztend to zero 

 

 

In addition to the assumptions specified in the earlier part of this section, we further assume that 

duringany displacement, the shape of the beam cross section is maintained by a system of closely 

spaceddiaphragms which are rigid in their own plane but are perfectly flexible normal to their own plane 

(CSRD assumption). There is, therefore, no resistance to axial displacement w, and the cross 

sectionmoves as a rigid body in its own plane, the displacement of any point being completely specified 

bytranslations u and v and a rotation ζ (see Fig.3.12). 

 

At first sight this appears to be a rather sweeping assumption, but for aircraft structures of the thinshell 

type, whose cross sections are stiffened by ribs or frames positioned at frequent intervals along their 

lengths, it is a reasonable approximation for the actual behavior of such sections. The tangential 

displacement vt of any point N in the wall of either an open or closed section beam is seen from Fig. 3.12 

to be 

 

where clearly u, v, and ζ are functions of z only (w may be a function of z and s). 

The origin O of the axes in Fig. 3.12 has been chosen arbitrarily, and the axes suffer displacementsu, v, 

and ζ. These displacements, in a loading case such as pure torsion, are equivalent to a pure rotation about 

some point R(xR, yR) in the cross section where R is the center of twist. Therefore, in Fig. 3.12, 
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Figure 3.12 Establishment of displacement relationships and position of center of twist of beam 

(open or closed). 

 

 

 

 

 

SHEAR OF OPEN SECTION BEAMS 

The open section beam of arbitrary section shown in Fig. 3.13 supports shear loads Sxand Sysuch 

thatthere is no twisting of the beam cross section. For this condition to be valid, the shear loads must 

bothpass through a particular point in the cross section known as the shear center. 

 

Since there are no hoop stresses in the beam, the shear flows and direct stresses acting on an elementof 

the beam wall are related by  
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Figure 3.13 Shear loading of open section beam. 

∂My/∂z=Sx, and so on—this expression becomes 

 

 

Substituting for ∂ζz/∂z 

 

 

(3.6) 
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Shear Center 

We have defined the position of the shear center as that point in the cross section through which 

shearloads produce no twisting. It may be shown by use of the reciprocal theorem that this point is also 

thecenter of twist of sections subjected to torsion. There are, however, some important exceptions to 

thisgeneral rule. Clearly, in the majority of practical cases, it is impossible to guarantee that a shear 

loadwill act through the shear center of a section. Equally apparent is the fact that any shear load may 

berepresented by the combination of the shear load applied through the shear center and a torque. 

Thestresses produced by the separate actions of torsion and shear may then be added by superposition. 

Itis, therefore, necessary to know the location of the shear center in all types of section or to calculate 

itsposition. Where a cross section has an axis of symmetry, the shear center must, of course, lie on 

thisaxis. For cruciform or angle sections of the type shown in Fig. 3.14, the shear center is located at the 

intersection of the sides, since the resultant internal shear loads all pass through these points. 

 

 

 

Figure 3.14 Shear center position for type of open section beam shown. 

 

Twist and Warping of Shear-Loaded Closed Section Beams 

Shear loads which are not applied through the shear center of a closed section beam cause cross sections 

to twist and warp; in other words, in addition to rotation, they suffer out of plane axial displacements. 

Expressions for these quantities may be derived in terms of the shear flow distribution qsas follows. Since 

q=η t and η =Gγ(see Chapter 1), then we can express qsin terms of the warping and tangential 

displacements w and vt of a point in the beam wall by using Eq. (16.6). Thus, 
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or 
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In problems involving singly or doubly symmetrical sections, the origin for s may be taken to 

coincidewith a point of zero warping which will occur where an axis of symmetry and the wall of the 

sectionintersect. For unsymmetrical sections, the origin for s may be chosen arbitrarily. The resulting 

warpingdistribution will have exactly the same form as the actual distribution but will be displaced axially 

bythe unknown warping displacement at the origin for s. This value may be found by referring to 

thetorsion of closed section beams subject to axial constraint. In the analysis of such beams, it is 

assumedthat the direct stress distribution set up by the constraint is directly proportional to the free 

warping ofthe section—that is, 

 

 

 

 

TORSION OF BEAMS 

TORSION OF CLOSED SECTION BEAMS 

A closed section beam subjected to a pure torque T as shown in Fig. 13.15 does not, in the absence of 

anaxial constraint, develop a direct stress system. It follows that the equilibrium conditions reduce to 

∂q/∂s=0 and ∂q/∂z=0, respectively. These relationships may only be satisfiedsimultaneously by a constant 

value of q.We deduce, therefore, that the application of a pure torque to aclosed section beam results in 

the development of a constant shear flow in the beam wall. However, theshear stress η may vary around 

the cross section, since we allow the wall thickness t to be a functionof s. The relationship between the 

applied torque and this constant shear flow is simply derived byconsidering the torsional equilibrium of 

the section shown in Fig. 13.16. The torque produced by the 
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Figure 3.15 Torsion of a closed section beam. 

 

Figure 3.16  Determination of the shear flow distribution in a closed section beam subjected to torsion. 

 

(3.7) 

Note that the origin O of the axes in Fig. 3.16 may be positioned in or outside the cross section of 

the beam, since the moment of the internal shear flows (whose resultant is a pure torque) is the sameabout 

any point in their plane. For an origin outside the cross section, the term 7 pdswill involve thesummation 

of positive and negative areas. The sign of an area is determined by the sign of p, which itselfis associated 

with the sign convention for torque as follows. If the movement of the foot of p along thetangent at any 

point in the positive direction of s leads to an anticlockwise rotation of p about the originof axes, p is 
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positive. The positive direction of s is in the positive direction of q, which is anticlockwise 

(corresponding to a positive torque). Thus, in Fig. 3.17 a generator OA, rotating about O, will 

initiallysweep out a negative area, since pA is negative. At B, however, pB is positive so that the area 

swept outby the generator has changed sign (at the point where the tangent passes through O and p=0). 

Positiveand negative areas cancel each other out as they overlap, so as the generator moves completely 

aroundthe section, starting and returning to A, say, the resultant area is that enclosed by the profile of the 

beam. 

The theory of the torsion of closed section beams is known as the Bredt–Batho theory, and Eq. (3.7)is 

often referred to as the Bredt–Batho formula. 

 

Displacements Associated with the Bredt–Batho Shear Flow 

The relationship between q and shear strain γ established, namely, 

 

 

 

 

Figure 3.17 Sign convention for swept areas. 

 

is valid for the pure torsion case, where q is constant. Differentiating this expression with respect to z, 

we have 



Page | 102  
 

 

 

Hence, 

 

 

It follows that ζ= Az+B, u = Cz+D, v = Ez+F, where A, B, C, D, E, and F are unknown constants.Thus, ζ, u, and v 

are all linear functions of z. 

 

Equation, relating the rate of twist to the variable shear flow qsdeveloped in a shear loaded closed section beam, is 

also valid for the case qs= q = constant. Hence, 
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TORSION OF OPEN SECTION BEAMS 

 

An approximate solution for the torsion of a thin-walled open section beam may be found by applyingthe 

results obtained, for the torsion of a thin rectangular strip. If such a strip is bent to form an open section 

beam, as shown in Fig. 3.18 (a), and if the distance s measured around the crosssection is large compared 

with its thickness t, then the contours of the membrane—that is, the linesof shear stress—are still 

approximately parallel to the inner and outer boundaries. It follows that theshear lines in an element δsof 

the open section must be nearly the same as those in an element δyof a rectangular strip as demonstrated 

in Fig. 3.18 (b). Equations) may therefore be applied to the open beam but with reduced accuracy. 

Referring to Fig. 3.18 (b), we observe that becomes 
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Figure 3.18  (a) Shear lines in a thin-walled open section beam subjected to torsion; (b) approximation of elemental shear 

lines to those in a thin rectangular strip. 

 

 

The shear stress distribution and the maximum shear stress are sometimes more conveniently expressedin 

terms of the applied torque. Therefore, substituting for dζ/dzin Eqs. 

 

 

We assume in open beam torsion analysis that the cross section is maintained by the system of closely 

spaced diaphragms described in Section 16.1 and that the beam is of uniform section. Clearly, in this 

problem, the shear stresses vary across the thickness of the beam wall, whereas other stresses, such as 

axial constraint stresses are assumed constant across the thickness. 

 

Warping of the Cross Section 

A thin-walled open section beam suffers warping across its thickness when subjected to torsion. This 

warping, wt , may be deduced by comparing Fig. 3.18 (b). 
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In addition to warping across the thickness, the cross section of the beam will warp in a similar manner 

to that of a closed section beam. 

 

 

Referring the tangential displacement vt to the center of twist R of the cross section, we have 

 

Substituting for ∂vt/∂ z 

 

 

On the midline of the section wall η zs= 0 

 

 

Integrating this expression with respect to s and taking the lower limit of integration to coincide with 

the point of zero warping, we obtain 
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From Eqs. it can be seen that two types of warping exist in an open section beam. Equation gives the 

warping of the midline of the beam; this is known as primary warping and is assumed to be constant 

across the wall thickness. Equation gives the warping of the beam across its wall thickness. This is called 

secondary warping, is very much less than primary warping, and is usually ignored in the thin-walled 

sections common to aircraft structures. Equation may be rewritten in the form 

 

 

in which is the area swept out by a generator, rotating about the center of  

 

twist, from the point of zero warping, as shown in figure 3.19.  The sign of ws, for a given direction of 

torque, depends on the sign of AR, which in turn depends on the sign of pR, the perpendicular distance 

from the center of twist to the tangent at any point. Again, as for closed section beams, the sign of pR 

depends on the assumed direction of a positive torque, in this case anticlockwise. Therefore, pR (and 

therefore AR)is positive if movement of the foot of pR along the tangent in the assumed direction of s 

leads to ananti-clockwise rotation of pR about the center of twist. Note that for open section beams the 

positivedirection of s may be chosen arbitrarily, since, for a given torque, the sign of the warping 

displacement depends only on the sign of the swept area AR. 

 

 

Figure 3.18 Warping of an open section beam. 
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UNIT-IV 

STRUCTURAL IDEALIZATION 
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STRUCTURAL IDEALIZATION 

So far we have been concerned with relatively uncomplicated structural sections which in practice would 

be formed from thin plate or by the extrusion process. While these sections exist as structural members in 
their own right, they are frequently used, to stiffen more complex structural shapes such as fuselages, 

wings, and tail surfaces. Thus, a two-spar wing section could take the form shown in Fig. 4.1, in which Z-

section stringers are used to stiffen the thin skin while angle sections form the spar flanges. Clearly, the 

analysis of a section of this type would be complicated and tedious unless some simplifying assumptions 
are made. Generally, the number and nature of these simplifying assumptions determine the accuracy and 

the degree of complexity of the analysis; the more complex the analysis, the greater the accuracy 

obtained. The degree of simplification introduced is governed by the particular situation surrounding the 
problem. For a preliminary investigation, speed and simplicity are often of greater importance than 

extreme accuracy; on the other hand, a final solution must be as exact as circumstances allow. 

 

Complex structural sections may be idealized into simpler ―mechanical model‖ forms which 

behave, under given loading conditions, in the same, or very nearly the same, way as the actual structure. 
We shall see, however, that different models of the same structure are required to simulate actual behavior 

under different systems of loading. 

 

PRINCIPLE 

 

In the wing section of Fig. 4.1, the stringers and spar flanges have small cross-sectional dimensions 
compared with the complete section. Therefore, the variation in stress over the cross section of a stringer 

 

Figure 4.1  Typical wing section. 

 

 

Figure 4.2 Idealization of a wing section. 

 

due to, say, bending of the wing would be small. Furthermore, the difference between the distances of the 
stringer centroids and the adjacent skin from the wing section axis is small. It would be reasonable to 
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assume, therefore, that the direct stress is constant over the stringer cross sections. We could therefore 

replace the stringers and spar flanges by concentrations of area, known as booms, over which the direct 
stress is constant and which are located along the midline of the skin, as shown in Fig. 4.2. In wing and 

fuselage sections of the type shown in Fig. 4.1, the stringers and spar flanges carry most of the direct 

stresses, while the skin is mainly effective in resisting shear stresses, although it also carries some of the 

direct stresses. The idealization shown in Fig. 4.2 may therefore be taken a stage further by assuming that 
all direct stresses are carried by the booms, while the skin is effective only in shear. The direct stress-

carrying capacity of the skin may be allowed for by increasing each boom area by an area equivalent to 

the direct stress-carrying capacity of the adjacent skin panels. The calculation of these equivalent areas 
will generally depend on an initial assumption as to the form of the distribution of direct stress in a 

boom/skin panel. 

 

 

IDEALIZATION OF A PANEL 

 

Suppose that we wish to idealize the panel of Fig. 4.3(a) into a combination of direct stress-carrying 

booms and shear-stress-only-carrying skin, as shown in Fig. 4.3 (b). In Fig. 4.3(a), the direct 
stresscarrying thickness tD of the skin is equal to its actual thickness t, while in Fig. 4.3(b), tD=0. Suppose 

also that the direct stress distribution in the actual panel varies linearly from an unknown value ζ1 to an 

unknown value ζ2. Clearly the analysis should predict the extremes of stress ζ1 and ζ2, although the 
distribution of direct stress is obviously lost. Since the loading producing the direct stresses in the actual 

and idealized panels must be the same, we can equate moments to obtain expressions for the boom areas 

B1 and B2. Thus, taking moments about the right-hand edge of each panel, 

 

 (4.1) 

        (4.2) 

 

Figure 4.2 Idealization of a panel. 
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EFFECT OF IDEALIZATION ON THE ANALYSIS OF OPEN AND CLOSED 

SECTION BEAMS 

 

Suppose that an open or closed section beam is subjected to given bending or shear loads and that the 
required idealization has been completed. The analysis of such sections usually involves the 

determination of the neutral axis position and the calculation of sectional properties. The position of the 

neutral axis is derived from the condition that the resultant load on the beam cross section is zero, that is, 

 

The area A in this expression is clearly the direct stress-carrying area. It follows that the centroid of the 

cross section is the centroid of the direct stress-carrying area of the section, depending on the degree and 
method of idealization. The sectional properties, Ixx, and so on, must also refer to the direct stress-

carrying area. 

 

Bending of Open and Closed Section Beams 

 

In direct stress distribution, the coordinates (x, y) of points in the cross section are referred to axes having 

their origin at the centroid of the direct stress-carrying area. Furthermore, the section properties Ixx, Iyy, 

and Ixy are calculated for the direct stress-carrying area only. In the case where the beam cross section has 
been completely idealized into direct stress-carrying booms and shear-stress-only-carrying panels, the 

direct stress distribution consists of a series of direct stresses concentrated at the centroids of the booms. 

 

Shear of Open Section Beams 

 

The derivation of Eq. (3.6) for the shear flow distribution in the cross section of an open section beam is 

based on the equilibrium equation. The thickness t in this equation refers to the direct stress-carrying 

thickness tD of the skin. Equation (3.6) may therefore be rewritten as 

(4.3) 

 

in which tD = t if the skin is fully effective in carrying direct stress or tD = 0 if the skin is assumed to carry 

only shear stresses. Again the section properties in Eq. (4.3) refer to the direct stress-carrying area of the 
section, 

 

Equation (4.3) makes no provision for the effects of booms, which cause discontinuities in the skin and 

therefore interrupt the shear flow. Consider the equilibrium of the rth boom in the elemental length of 
beam shown in Fig. 4.3(a) which carries shear loads Sx and Sy acting through its shear center S. 
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Figure 4.3 (a) Elemental length of shear loaded open section beam with booms; (b) equilibrium of boom 

element. 
 

These shear loads produce direct stresses due to bending in the booms and skin and shear stresses in the 

skin. Suppose that the shear flows in the skin adjacent to the rth boom of cross-sectional area Br are q1 

and q2. Then, from Fig. 4.3 (b), 

 
which simplifies to 

 
                                                                                                (4.4) 

 
 

(4.5) 
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Equation (4.5) gives the change in shear flow induced by a boom which itself is subjected to a direct load 

(ζzBr). Each time a boom is encountered, the shear flow is incremented by this amount so that if, at any 
distance s around the profile of the section, n booms have been passed, the shear flow at the point is given 

by 

 

           (4.6) 
 

 

Shear Loading of Closed Section Beams 
 

Arguments identical to those in the shear of open section beams apply in this case. Thus, the shear flow at 
any point around the cross section of a closed section beam comprising booms and skin of direct stress-

carrying thickness tD is 

 

(4.7) 

Note that the zero value of the ―basic‖ or ―open section‖ shear flow at the ―cut‖ in a skin for which tD = 0 

extends from the ―cut‖ to the adjacent booms. 

 

DEFLECTION OF OPEN AND CLOSED SECTION BEAMS 
 

 

Bending, shear, and torsional deflections of thin-walled beams are readily obtained by application of the 

unit load method. The displacement in a given direction due to torsion is given directly by,  

                             (4.8) 
where J, the torsion constant, depends on the type of beam under consideration. 

 

Expressions for the bending and shear displacements of unsymmetrical thin-walled beams may also be 
determined by the unit load method. They are complex for the general case and are most easily derived 

from first principles by considering the complementary energy of the elastic body in terms of stresses and 

strains rather than loads and displacements. We observed that the theorem of the principle of the 
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stationary value of the total complementary energy of an elastic system is equivalent to the application of 

the principle of virtual work where virtual forces act through real displacements. We may therefore 
specify that in our expression for total complementary energy, the displacements are the actual 

displacements produced by the applied loads, while the virtual force system is the unit load. Considering 

deflections due to bending, the increment in total complementary energy due to the application of a 

virtual unit load is 
 

 
where ζz,1 is the direct bending stress at any point in the beam cross section corresponding to the unit load 

and εz,0 is the strain at the point produced by the actual loading system. Further, ∆M is the actual 
displacement due to bending at the point of application and in the direction of the unit load. Since the 

system is in equilibrium under the action of the unit load, the above expression must equal zero. Hence, 

                        (4.9) 

 
where the suffixes 1 and 0 refer to the unit and actual loading systems, and x, y are the coordinates of any 

point in the cross section referred to a centroidal system of axes. Substituting for ζz,1 and εz,0 in Eq. (4.9)  

(4.10) 
 

 

 

 

For a section having either x or y axis as an axis of symmetry, Ixy= 0, and Eq. (4.10) reduces to 
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                                (4.11) 
The derivation of an expression for the shear deflection of thin-walled sections by the unit load method is 

achieved in a similar manner. By comparing Eq. (4.9), we deduce that the deflection ∆S, due to shear of a 
thin-walled open or closed section beam of thickness t, is given by 

                                   (4.12) 

where η1 is the shear stress at an arbitrary point s around the section produced by a unit load applied at the 

point and in the direction ∆S, and γ0 is the shear strain at the arbitrary point corresponding to the actual 
loading system. The integral in parentheses is taken over all the walls of the beam. In fact, both the 

applied and unit shear loads must act through the shear center of the cross section; otherwise additional 

torsional displacements occur. Where shear loads act at other points, these must be replaced by shear 
loads at the shear center plus a torque. The thickness t is the actual skin thickness and may vary around 

the cross section but is assumed to be constant along the length of the beam. Rewriting Eq. (4.12) in terms 

of shear flows q1 and q0, we obtain 

                                       (4.13) 
 

where again the suffixes refer to the actual and unit loading systems. In the cases of both open and closed 

section beams, the general expressions for shear flow are long and are best evaluated before substituting 
in Eq. (4.13). For an open section beam comprising booms and walls of direct stress-carrying thickness tD, 

we have, from Eq. (4.6), 

 

          (4.14) 
 
and 
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           (4.15) 
 

 
Similar expressions are obtained for a closed section beam from Eq. (4.7). 

 

 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Page | 116  
 

 

 

 

 

 

 

UNIT-V 

ANALYSIS OF FUSELAGE, WING AND LANDING GEAR 
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Wing Spars and Box Beams 

In Unit 3, we established the basic theory for the analysis of open and closed sectionin-walled beams 

subjected to bending, shear, and torsional loads. In addition, in Unit 4, we sawhow complex stringer 

stiffened sections could be idealized into sections more amenable to analysisis.Weshall now extend this 

analysis to actual aircraft components, including, in this chapter, wing spars andbox beams. 

Aircraft structural components are, complex, consisting usually of thinsheets of metal stiffened by 

arrangements of stringers. These structures are highly redundant and requiresome degree of simplification 

or idealization before they can be analyzed. The analysis presented hereis therefore approximate, and the 

degree of accuracy obtained depends on the number of simplifyingassumptions made. A further 

complication arises in that factors such as warping restraint, structuraland loading discontinuities, and 

shear lag significantly affect the analysis. Generally, a high degree ofaccuracy can only be obtained by 

using computer-based techniques such as the finite element method. However, the simpler, quicker, and 

cheaper approximate methods can be used toadvantage in the preliminary stages of design when several 

possible structural alternatives are beinginvestigated; they also provide an insight into the physical 

behavior of structures which computer-basedtechniques do not. 

Major aircraft structural components such as wings and fuselages are usually tapered along theirlengths 

for greater structural efficiency. Thus, wing sections are reduced both chordwise and in depthalong the 

wing span toward the tip and fuselage sections aft of the passenger cabin taper to provide a more efficient 

aerodynamic and structural shape. 

The analysis of open and closed section beams presented in Unit 3 assumes that thebeam sections are 

uniform. The effect of taper on the prediction of direct stresses produced by bendingis minimal if the 

taper is small and the section properties are calculated at the particular section beingconsidered; Equations 

may therefore be used with reasonable accuracy. On the otherhand, the calculation of shear stresses in 

beam webs can be significantly affected by taper. 

 

TAPERED WING SPAR 

Consider first the simple case of a beam—for example, a wing spar—positioned in the yzplane 

andcomprising two flanges and a web; an elemental length δzof the beam is shown in Fig. 5.1. Atthe 

section z, the beam is subjected to a positive bending moment Mxand a positive shear force Sy. 

The bending moment resultants Pz,1 and Pz,2 are parallel to the z axis of the beam. For a beam inwhich the 

flanges are assumed to resist all the direct stresses, Pz,1=Mx/h and Pz,2= -Mx/h. In the casewhere the web is 

assumed to be fully effective in resisting direct stress, Pz,1 and Pz,2 are determined bymultiplying the direct 

stresses ζz,1 and ζz,2 found by the flange areas B1and B2. Pz,1 and Pz,2 are the components in the z direction 

of the axial loads P1 and P2 in the flanges.These have components Py,1 and Py,2 parallel to the y axis given 

by 

             (5.1) 
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Figure 5.1 Effect of taper on beam analysis. 

 

in which, for the direction of taper shown, δy2 is negative. The axial load in flange ① is given by 

 

Substituting for Py,1from Eq. (5.1), we have 

              (5.2) 

Similarly,  

                           (5.3) 

The internal shear force Sycomprises the resultant Sy,wof the web shear flows together with the 

verticalcomponents of P1 and P2. Thus, 

 

or 
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               (5.4) 

so that, 

 (5.5) 

Again we note that δy2 in Eqs. (5.4) and (5.5) is negative. Equation (5.5) may be used to determinethe 

shear flow distribution in the web. For a completely idealized beam, the web shear flow is 

constantthrough the depth and is given by Sy,w/h. For a beam in which the web is fully effective in 

resistingdirect stresses, the web shear flow distribution is found, in which Syis replaced by Sy,wand which, 

for the beam of Fig. 5.1, would simplify to 

                   (5.6) 

or 

                                (5.7) 

 

OPEN AND CLOSED SECTION BEAMS 

We shall now consider the more general case of a beam tapered in two directions along its length and 

comprising an arrangement of booms and skin. Practical examples of such a beam are complete wings 

and fuselages. The beam may be of open or closed section; the effects of taper are determined in an 

identical manner in either case. 

Figure 5.2(a) shows a short length δzof a beam carrying shear loads Sx and Syat the section z;Sxand Syare 

positive when acting in the directions shown. Note that if the beam were of open cross section, the shear 

loads would be applied through its shear center so that no twisting of the beam occurred. 
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Figure 5.2Effect of taper on the analysis of open and closed section beams. 

 

In addition to shear loads, the beam is subjected to bending moments Mxand My, which produce direct 

stresses ζzin the booms and skin. Suppose that in the rth boom the direct stress in a direction parallel to 

the z axis is ζz,r. The component Pz,r of the axial load Prin the rth boom is then given by 

                    (5.8) 

WhereBris the cross-sectional area of the rth boom. 

From Fig. 5.2 (b), 

                    (5.9) 

Further, from Fig. 5.2(c), 
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or, substituting for Py,r from Eq. (5.9), 

(5.10) 

The axial load Pris then given by 

 (5.11) 

or 

                           (5.12) 

 

The applied shear loads Sxand Syare reacted by the resultants of the shear flows in the skinpanels and 

webs, together with the components Px,rand Py,rof the axial loads in the booms. Therefore, if Sx,wandSy,ware 

the resultants of the skin and web shear flows and there is a total of m booms in the section, 

              (5.13) 

Substituting in Eq. (5.13) for Px,rand Py,rfrom Eqs. (5.10) and (5.9), we have 

          (5.14) 

Hence,  

           (5.15) 

The shear flow distribution in an open section beam is now obtained, Sx is replaced by Sx,w and Sy by 

Sy,wfrom Eq. (5.15). Similarly for a closed section beam, Sx and Sy are replaced by Sx,wand Sy,w. In the 
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latter case, the moment equation requires modification due to the presence of the boom load components 

Px,rand Py,r. Thus, from Fig. 5.3, we 

 

Figure 5.3 Modification of moment equation in shear of closed section beams due to boom load. 

 

                 (5.16) 

Equation (5.16) is directly applicable to a tapered beam subjected to forces positioned in relation to the 

moment center as shown. Care must be taken in a particular problem to ensure that the moments of the 

forces are given the correct sign. 

 

VARIABLE STRINGER AREAS 

In many aircraft, structural beams, such as wings, have stringers whose cross-sectional areas vary in the 

spanwise direction. The effects of this variation on the determination of shear flow distribution canno 

ttherefore be found by the methods discussed previously which assume constant boom areas. Infact, if the 

stringer stress is made constant by varying the area of cross section, there is no change in shear flow as 

the stringer/boom is crossed. 

The calculation of shear flow distributions in beams having variable stringer areas is based on 

thealternative method for the calculation of shear flow distributions. The stringer loads Pz,1 and Pz,2 are 

calculated at two sectionsz1 and z2 of the beam a convenient distance apart. We assume that the stringer 

load varies linearly along its length so that the change in stringer load per unit length of beam is given by 

 



Page | 123  
 

The shear flow distribution follows as previously described. 

Wings 

Wing sections consist of thin skins stiffened by combinations of stringers, spar webs, and caps and ribs. 

The resulting structure frequently comprises one, two, or more cells and is highly redundant. However, as 

in the case of fuselage sections, the large number of closely spaced stringers allows the assumption of a 

constant shear flow in the skin between adjacent stringers so that a wing section may be analyzed as 

though it were completely idealized as long as the direct stress-carrying capacity of the skin is allowed for 

by additions to the existing stringer/boom areas. We shall investigate the analysis of multicellular wing 

sections subjected to bending, torsional, and shear loads, although, initially, it will be instructive to 

examine the special case of an idealized three-boom shell. 

 

THREE-BOOM SHELL 

The wing section shown in Fig. 5.4 has been idealized into an arrangement of direct stress-carrying 

booms and shear-stress-only carrying skin panels. The part of the wing section aft of the vertical spar 31 

performs an aerodynamic role only and is therefore unstressed.  

 

 

Figure 5.4 Three-boom wing section. 

Lift and drag loads, Sy and Sx, induce shear flows in the skin panels, which are constant between adjacent 

booms, since the section has been completely idealized. Therefore, resolving horizontally and noting that 

the resultant of the internal shear flows is equivalent to the applied load, we have 

                      (5.17) 

Now resolving vertically, 
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              (5.18) 

Finally, taking moments about, say, boom 3, 

                      (5.19) 

In the above, there are three unknown values of shear flow, q12, q23, q31, and three equations of statically 

equilibrium. We conclude therefore that a three-boom idealized shell is statically determinate. 

We shall return to the simple case of a three-boom wing section when we examine the distributions of 

direct load and shear flows in wing ribs. Meanwhile, we shall consider the bending, torsion, and shear of 

multicellular wing sections. 

 

BENDING 

Bending moments at any section of a wing are usually produced by shear loads at other sections of the 

wing. The direct stress system for such a wing section (Fig. 5.5) is given by either Eq. (3.1) or Eq. (3.2), 

in which the coordinates (x, y) of any point in the cross section and the sectional properties are referred to 

axes Cxy in which the origin C coincides with the centroid of the direct stress-carrying area. 

 

Figure 5.5Idealized section of a multicell wing. 

TORSION 

The chord wise pressure distribution on an aerodynamic surface may be represented by shear loads (lift 

and drag loads) acting through the aerodynamic center together with a pitching moment M0 . This system 

of shear loads may be transferred to the shear center of the section in the form of shear loads Sxand 

Sytogether with a torque T. It is the pure torsion case that is considered here. In the analysis, we assume 

that no axial constraint effects are present and that the shape of thewing section remains unchanged by the 

load application. In the absence of axial constraint, there is no development of direct stress in the wing 

section so that only shear stresses are present. It follows that the presence of booms does not affect the 

analysis in the pure torsion case. 
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The wing section shown in Fig. 5.6 comprises N cells and carries a torque T which generates individual 

but unknown torques in each of the N cells. Each cell therefore develops a constantshearflow qI,qII, . . . 

,qR, . . . ,qN. 

The total is therefore 

              (5.20) 

 

Figure 5.6Multicell wing section subjected to torsion. 

Although Eq. (5.20) is sufficient for the solution of the special case of a single-cell section, which is 

therefore statically determinate, additional equations are required for an N-cell section. These are 

obtained by considering the rate of twist in each cell and the compatibility of displacement condition that 

all N cells possess the same rate of twist dζ/dz; this arises directly from the assumption of an undistorted 

cross section. 

 

Figure 5.7Shear flow distribution in the Rth cell of an N-cell wing section. 
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Consider the Rth cell of the wing section shown in Fig. 5.7. The rate of twist in the cell is,  

                   (5.21) 

The shear flow in Eq. (5.21) is constant along each wall of the cell and has the values shown in Fig. 

5.7.Writingʃds/t for each wall as δ, Eq. (5.21) becomes 

 

or, rearranging the terms in square brackets, 

 

In general terms, this equation may be rewritten in the form 

            (5.22) 

in which δR−1,R isʃds/t for the wall common to the Rth and (R−1)th cells, δRisʃds/t for all the walls 

enclosing the Rth cell, and δR+1,R isʃds/t for the wall common to the Rth and (R+1)th cells. 

The general form of Eq. (5.22) is applicable to multicell sections in which the cells are connected 

consecutively—that is, cell I is connected to cell II, cell II to cells I and III, and so on. In some cases, cell 

I may be connected to cells II and III, and so on  so that Eq. (5.22) cannot be used in its general form. For 

this type of section, the term ᶋq(ds/t) should be computed by considering(ds/t) for each wall of a 

particular cell in turn. 

There are N equations of the type (5.22) which, with Eq. (5.20), comprise the N +1 equations required to 

solve for the N unknown values of shear flow and the one unknown value of dζ/dz. 

Frequently, in practice, the skin panels and spar webs are fabricated from materials possessing different 

properties such that the shear modulus G is not constant. The analysis of such sections is simplified if the 

actual thickness t of a wall is converted to a modulus-weighted thickness t∗ as follows. 

For the Rth cell of an N-cell wing section in which G varies from wall to wall, Eq. (5.21) takes the form 
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This equation may be rewritten as 

                       (5.23) 

in which GREF is a convenient reference value of the shear modulus. Equation (5.23) is now rewritten as 

                                 (5.24) 

in which the modulus-weighted thickness t∗ is given by 

                              (5.25) 

SHEAR 

Initially, we shall consider the general case of an N-cell wing section comprising booms and skin panels, 

the latter being capable of resisting both direct and shear stresses. The wing section is subjected to shear 

loads Sx and Sy, whose lines of action do not necessarily pass through the shear center S (see Fig. 

22.8);the resulting shear flow distribution is therefore due to the combined effects of shear and torsion. 

 

Figure 5.8N-cell wing section subjected to shear loads. 
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The method for determining the shear flow distribution and the rate of twist is based on a simple 

extension of the analysis of a single-cell beam subjected to shear loads. Such beam is statically 

indeterminate, the single redundancy being selected as the value of shear flowat an arbitrarily positioned 

―cut.‖ Thus, the N-cell wing section of Fig. 5.8 may be made statically determinate by ―cutting‖ a skin 

panel in each cell as shown. While the actual position of these ―cuts‖ is theoretically immaterial, there are 

advantages to be gained from a numerical point of view if the ―cuts‖are made near the centre of the top or 

bottom skin panel in each cell. Generally, at these points, the redundant shear flows (qs,0) are small so that 

the final shear flows differ only slightly from those of the determinate structure. The system of 

simultaneous equations from which the final shear flows are found will then be ―well-conditioned‖ and 

will produce reliable results. The solution of an ―ill-conditioned ―system of equations would probably 

involve the subtraction of large numbers of a similar size which would therefore need to be expressed to a 

large number of significant figures for reasonable accuracy. Although this reasoning does not apply to a 

completely idealized wing section, since the calculated values of shear flow are constant between the 

booms, it is again advantageous to ―cut‖ either top or bottom skin panels for, in the special case of a wing 

section having a horizontal axis of symmetry, a―cut‖ in, say, the top skin panels will result in the ―open 

section‖ shear flows (qb) being zero in the bottom skin panels. 

 

The ―open section‖ shear flow qb in the wing section of Fig. 5.8 is given by 

 

We are left with an unknown value of shear flow at each of the ―cuts,‖ that is, qs,0,I, qs,0,II, . . . ,qs,0,N,plus 

the unknown rate of twist dζ/dz, which, from the assumption of an undistorted cross section, is the same 

for each cell. Therefore, as in the torsion case, there are N +1 unknowns requiring N +1 equations for a 

solution. 

Consider the Rth cell shown in Fig. 5.9. The complete distribution of shear flow around the cell is given 

by the summation of the ―open section‖ shear flow qb and the value of shear flow at the ―cut,‖qs,0,R. We 

may therefore regard qs,0,Ras a constant shear flow acting around the cell. The rate of twists again given 

by, 
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Figure 5.9Redundant shear flow in the Rth cell of an N-cell wing section subjected to shear. 

 

 

 

 

 

Figure 5.10 Moment equilibrium of Rth cell. 

By comparing with the pure torsion case, we deduce that 

(5.26) 

in which qb has previously been determined. There are N equations of the type (5.26) so that a further 

equation is required to solve for the N +1 unknowns. This is obtained by considering the moment 

equilibrium of the Rth cell in Fig. 5.10. 

The momentMq,R produced by the total shear flow about any convenient moment centerOis given by 
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Substituting for qR in terms of the ―open section‖ shear flow qb and the redundant shear flow qs,0,R,we 

have 

 

or 

 

The sum of the moments from the individual cells is equivalent to the moment of the externally 

applied loads about the same point. Thus, for the wing section of Fig. 5.8, 

 (5.27) 

If the moment center is chosen to coincide with the point of intersection of the lines of action of Sx andSy, 

Eq. (5.27) becomes 

           (5.28) 

 

CUTOUTS IN WINGS 

Wings, as well as fuselages, have openings in their surfaces to accommodate undercarriages, engine 

nacelles and weapons installations, and so forth. In addition, inspection panels are required at specific 

positions so that, as for fuselages, the loads in adjacent portions of the wing structure are modified. 

Initially we shall consider the case of a wing subjected to a pure torque in which one bay ofthe wing has 

the skin on its undersurface removed. 

 

Fuselage Frames and Wing Ribs 

Aircraft are constructed primarily from thin metal skins which are capable of resisting in-plane tension 

and shear loads but buckle under comparatively low values of in-plane compressive loads. The skins are 

therefore stiffened by longitudinal stringers which resist the in-plane compressive loads and, at the same 
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time, resist small distributed loads normal to the plane of the skin. The effective length in compression of 

the stringers is reduced, in the case of fuselages, by transverse frames or bulkheads or, in the case of 

wings, by ribs. In addition, the frames and ribs resist concentrated loads in transverse planes and transmit 

them to the stringers and the plane of the skin. Thus, cantilever wings may be bolted to fuselage frames at 

the spar caps, while undercarriage loads are transmitted to the wing through spar and rib attachment 

points. 

 

 

 

 

 

 

PRINCIPLES OF STIFFENER/WEB CONSTRUCTION 

Generally, frames and ribs are themselves fabricated from thin sheets of metal and therefore require 

stiffening members to distribute the concentrated loads to the thin webs. If the load is applied in the plane 

of a web, the stiffeners must be aligned with the direction of the load. Alternatively, if this is not possible, 

the load should be applied at the intersection of two stiffeners so that each stiffener resists the component 

of load in its direction. 

 

FUSELAGE FRAMES 

We have noted that fuselage frames transfer loads to the fuselage shell and provide column support for 

the longitudinal stringers. The frames generally take the form of open rings so that the interior of the 

fuselage is not obstructed. They are connected continuously around their peripheries to the fuselage shell 

and are not necessarily circular in form but will usually be symmetrical about a vertical axis. 

A fuselage frame is in equilibrium under the action of any external loads and the reaction shear flows 

from the fuselage shell. Suppose that a fuselage frame has a vertical axis of symmetry and carriesa 

vertical external load W, as shown in Fig. 5.11 (a) and (b). The fuselage shell/stringer section has been 

idealized such that the fuselage skin is effective only in shear. Suppose also that the shear force in the 

fuselage immediately to the left of the frame is Sy,1 and that the shear force in the fuselage immediately to 

the right of the frame is Sy,2; clearly, Sy,2=Sy,1−W. Sy,1, and Sy,2 generate shear flow distributions q1and q2, 

respectively, in the fuselage skin, each given by Eq. (21.1), in which Sx,1=Sx,2=0, and Ixy=0(Cy is an axis 

of symmetry). The shear flow qf transmitted to the periphery of the frame is equal to the algebraic sum of 

q1 and q2, that is, 
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Thus, substituting for q1 and q2obtained and noting that Sy,2=Sy,1−W, we have 

 

in which qs,0 is calculated , where the shear load is W and 

 

 

Figure 5.11Loads on a fuselage frame. 

 

WING RIBS 

Wing ribs perform similar functions to those performed by fuselage frames. They maintain the shape of 

the wing section, assist in transmitting external loads to the wing skin, and reduce the column length of 

the stringers. Their geometry, however, is usually different in that they are frequently of unsymmetrical 

shape and possess webs which are continuous except for lightness holes and openings for control runs. 

Wing ribs are subjected to loading systems which are similar to those applied to fuselage frames. External 

loads applied in the plane of the rib produce a change in shear force in the wing across therib; this induces 

reaction shear flows around its periphery. 
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Landing Gear and Types 

Landing gear is designed to support the load of the aircraft for surface operations 

 The landing gear typically consists of three wheels: 

o Two main wheels (one located on each side of the fuselage) 

o A third wheel positioned either at the front or rear of the airplane 

 When the third wheel is located on the tail, it is called a tail-wheel, and the design is referred to as 

conventional gear 

 When the third wheel is located on the nose, it is called a nose-wheel, and the design is referred to 

as a tricycle gear 

 Aircraft can also be equipped with floats for water operations or skis for landing on snow 

Types of Landing Gear: 

There are several types of landing gear which fall into four main categories: 

 Conventional (tail-wheel) Gear 

 Tricycle Gear 

 Pontoons 

 Fixed Gear 

 Retractable Gear 

 

Conventional Gear: 

Landing gear employing a rear-mounted wheel is called conventional landing gear Tail-wheel 

(Conventional)] 

Tail-wheel landing gear aircraft have two main wheels attached to the airframe ahead of its Center of 

Gravity (CG) that support most of the weight of the structure 

Advantages: 

 Allows adequate ground clearance for a larger propeller 

 More desirable for operations on unimproved fields 

Disadvantages: 

 With the CG located behind the main gear, directional control of this type aircraft becomes more 

difficult while on the ground 

 If the pilot allows the aircraft to swerve while rolling on the ground at a low speed, he or she may 

not have sufficient rudder control and the CG will attempt to get ahead of the main gear which 

may cause the airplane to ground loop 

 Lack of good forward visibility when the tail-wheel is on or near the ground 

 These inherent problems mean specific training (FAR 61.31) is required in tail-wheel aircraft 
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Tricycle Gear: 

Landing gear employing a front-mounted wheel is called tricycle landing gear 

Tricycle landing gear aircraft have two main wheels attached to the airframe behind its CG that support 

most of the weight of the structure 

Additionally, a nose wheel will typically provide some sort of nose wheel steering control 

Advantages: 

 It allows more forceful application of the brakes during landings at high speeds without causing 

the aircraft to nose over 

 It permits better forward visibility for the pilot during takeoff, landing, and taxiing 

 It tends to prevent ground looping (swerving) by providing more directional stability during 

ground operation since the aircraft's CG is forward of the main wheels 

 The forward CG keeps the airplane moving forward in a straight line rather than ground looping 

Pontoons: 

One or more pontoons, or floats, are mounted under the fuselage to provide buoyancy 

By contrast, a flying boat such as the Consolidated PBY Catalina, uses its fuselage for buoyancy 

Either type of seaplane may also have landing gear suitable for land, making the vehicle an amphibious 

aircraft 

Landing Gear Design: 

Depending on an aircraft's intended operation landing gear may be designed as either: 

 Fixed, or 

 Retractable 

Fixed Gear: 

Fixed gear is designed to simplify design and operation 

Advantages: 

 Always deployed 

 Low cost 

Disadvantages: 

 Creates constant drag, mitigated by the use of a cover called a fairing 
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Retractable Landing Gear: 

A retractable gear is designed to streamline the airplane by allowing the landing gear to be stowed inside 

the structure during cruising flight 

The primary benefits of being able to retract the landing gear are increased climb performance and higher 

cruise airspeeds due to the resulting decrease in drag 

Retractable landing gear systems may be operated either hydraulically or electrically, or may employ a 

combination of the two systems 

Warning indicators are provided in the cockpit to show the pilot when the wheels are down and locked 

and when they are up and locked or if they are in intermediate positions 

Systems for emergency operation are also provided 

Disadvantages: 

 Increased weight 

 Increased cost 

 Limited to high performance aircraft 

 

___________________________________________________________________________ 
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