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I. INTRODUCTION 

Principles of Flight 

A helicopter is a heavier than air flying machine that has a lifting force created by a main 

rotor according to aerodynamic principles. 

The basic components of a helicopter are as follows 

• Main rotor. Put in motion by the power plant (engine).  

• Fuselage. Intended for accommodation of crew, passengers, equipment and cargo.  

• Landing gear, that is, arrangement intended for movement over the ground /6 or for 

parking.  

• Tail rotor. Provides directional equilibrium and directional control of the helicopter. 

• Propulsion system which sets in motion the lifting and tail rotors and auxiliary 

systems.  

• Transmission transfers the torque from the power plant to the main and tail rotors. 

 

Fig.1 
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• Flight is possible for a flying machine if there is a lifting force counterbalancing its 

weight.  

• The lifting force of the helicopter originates at the main rotor. By the rotation of the 

main rotor in the air a thrust force is developed perpendicular to the plane of rotor 

rotation.  

• If the main rotor rotates in the horizontal plane, then its thrust force T is directed 

vertically upwards (Figure 2), that is, vertical flight is possible. 

 

Figure 2: Vertical Flight 

• The characteristics of the flight depend on the correlation between the thrust force of 

the main rotor and the weight of the helicopter.  

• If the thrust force equals the weight of the helicopter, then it will remain motionless in 

the air.  

• If, though, the thrust force is greater than the weight, then the helicopter will pass 

from being motionless into a vertical climb.  

• If the thrust force is less than the weight, a vertical descent will result. 

• The plane of rotation of the main rotor with respect to the ground can be inclined in 

any direction (Figure 3).  

• In this case the rotor will fulfill a two-fold function; its vertical component Y will be 

the lift force and the horizontal component P -the propulsive force. 

• Under the influence of this force the helicopter moves forward in flight 
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Figure 3: Horizontal flight forwards 

• If the plane of the main rotor is inclined backwards, the helicopter will move 

backwards. (Figure 4).  

• The inclination of the plane of rotation to the right or to the left causes motion of the 

helicopter in the corresponding direction. 

 

 

 

Figure 4: Horizontal flight backwards 
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II. CLASSIFICATION OF HELICOPTER 

The basic classification of helicopter types is that of the number of main rotors and their 

disposition.  

According to the number of main rotors, it is possible to classify helicopters as  

• Single Rotor,  

• Dual Rotor and  

• Multirotor Types.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. 
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Single rotor helicopters 

• Single rotor helicopters appear in many varieties.  

• Helicopters of the single rotor scheme have a main rotor, mounted on the main 

fuselage and a tail rotor mounted on the tail structure (see Figure 6).  

• This arrangement, which was developed by B. N. Yur'yev in 1911, provides a name 

for one classification.  

 

Figure 6 

• The basic merit of single rotor helicopters is the simplicity of construction and the 

control system.  

• The class of single rotor helicopters includes the very light helicopters (flight weight 

about 500 kgf), and very heavy helicopters (flight weight greater than 40 tons).  

• Some of the deficiencies of the single rotor helicopter are:  

 Large fuselage length;  

 A significant loss of power due to the tail rotor drive train (7 - 10% of the full power 

of the engine);  

 A limited range of permissible centring;  

 A higher level of vibration (the long transmission shafts, extending into the tail 

structure, are additional sources of spring oscillations).  

 

 

Dual rotor helicopters 

• Dual rotor helicopters appear in several arrangements. Rotors arranged in tandem; this 

is the most prevalent arrangement (Figure 6a); 
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• Rotors in a transverse arrangement (Figure 5b); 

•  A cross connected rotor scheme (Figure 5c); 

•  A coaxial rotor arrangement (Figure 5d).  

 

Figure6: Dual Rotor helicopters 

The basic merits of helicopters with a tandem rotor arrangement are: 

•  Wider range of permissible centering; 

•  Large fuselage volume;  

• which allows it to contain large-sized loads;  

• Increased longitudinal stability; Large weight coefficient.  

• Helicopters with a tandem arrangement of rotors can have one or two engines, which 

are located in the forward or aft parts of the fuselage.  

• These helicopters have the following serious deficiencies:  

 A complicated system of transmission and control;  

 Adverse mutual interaction between the main rotors which causes, in addition, a loss 

of power;  

 Complicated landing techniques are required in the autorotation regime of main 

rotors.  
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The following advantages are attributed to helicopters with a transverse arrangement of rotors 

:  

 Convenient utilization of all parts of the fuselage for crew and passengers, since the 

engines are located outside the fuselage; 

  Absence of harmful interaction of one rotor with the other;  

 Higher lateral stability and controllability of the helicopter;  

 The presence of an auxiliary wing, where the engines and main rotors are located, 

allows the helicopter to develop a high speed. 

Deficiencies of these helicopters are as follows: 

•  A complicated system of control and transmission;  

• An increase in size and structure weight due to the presence of the auxiliary wing.  

• Dual rotor helicopters with cross connected rotors have a considerable advantage over 

helicopters with transverse rotors; 

•  they do not have an auxiliary wing, which reduces the size and structure weight.  

• But, at the same time, with these advantages there is a deficiency, -a complicated 

transmission and control system.  

Coaxial rotors Helicopter 

• The basic advantage of dual rotor helicopters with coaxial rotors is their small size.  

• Their disadvantages: Complicated structure; Deficient directional stability;  

• Danger of collision of the rotor blades;  

• Considerable vibration.  

In the Soviet Union, there are only light helicopters with this rotor arrangement.  Multi-rotor 

helicopters are not widely used in view of their complex construction.  

In all dual-rotor helicopters, the main rotors rotate in opposite directions. In this way the 

mutual reactive moments are balanced, and the necessity of having a tail rotor is eliminated. 

Thus the power loss from the engine is reduced.  

The Main Rotor 

The lifting force is produced by the rotors. As they spin they cut into the air and produce 

lift. Each blade produces an equal share of the lifting force.  

 

 
Thrust 

weight 
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Figure 7. 

 

 

 

 

The produced lift allows the helicopter to rise vertically or hover, 

 

 

 

  

 

 

Figure 8. 

 Tilting the spinning rotor will cause flight in the direction of the tilt 

 

 

 

 

 

 

 

 

 

III. CONFIGURATION BASED ON TORQUE REACTION 

If you spin a rotor using an engine, the rotor will rotate, but the engine and the helicopter 

will try to rotate in the opposite direction (TORQUE REACTION) 
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Figure 9. 

Several methods are developed to counter the reaction torque to hold the helicopter 

straight 

1. Tail-Rotor Configuration 

One of the classical solution is using a small rotor at the end of a long boom (Tail-Rotor 

Configuration) to push the fuselage in the opposite direction of the torque force. 

 

Figure10. Tail-Rotor Configuration  

Tandem 

Bbecause of the opposite rotation of the rotors, the torque of each single rotor will be 

neutralized. 

It is able to lift heavy loads whose position relative to the helicopter’s center of gravity is less 

critical than the single rotor configuration, Used with big helicopters. The construction of the 

control system is much more complicated, compared to a helicopter. 
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Figure 10. 

 

  Side by Side 

Allow a wide variation of CG position. This design was used for the biggest helicopter 

built but it was never very successful. Extra drag is created caused by the supporting 

pylons. 

 

 

 

 

 

 

 

 

 

Figure 11. 

Coaxial Rotor 

This configuration is compact which explains why it is often seen on board ships. The control 

along the vertical axe occurs as a result of different lifts of the two rotor discs. Depending on 

which rotor produces more lift, the helicopter will turn to the left or right. For these 

helicopters it is not possible to reach a high cruising speed, because the drag is too large. 

 

 

 

 

 

 

 

Figure 12. 
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No-Tail-Rotor (NOTAR) Helicopter 

Jet thrust is used rather than blades to Provide directional stability Reduce noise, providing the 

world’s quiets helicopter Counter the main rotor torque. 

  

 

 

 

 

 

 

 

 

 

 

Figure 13. 
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I. INTRODUCTION TO HOVERING 
 

 

Hovering is a maneuver in which the helicopter is maintained in 
nearly motionless flight over a reference point at a constant altitude 
and on a constant heading. 
To maintain a hover over a point, use sideview and peripheral vision 
to look for small changes in the helicopter’s attitude and altitude. 
When these changes are noted, make the necessary control inputs 
before the helicopter starts to move from the point.  
To detect small variations in altitude or position, the main area of 
visual attention needs to be some distance from the aircraft, using 
various points on the helicopter or the tip-path plane as a reference. 
The lifting rotor is assumed to be in hovering condition when both 
the rotor and the air outside the slip stream are stationary, that is, 
there is no relative velocity between the rotor and the air outside 
the slip stream. The airflow developed due to the rotor is confined 
inside a well-defined imaginary slip stream, as shown in Figure 2.1. 
There is an axial symmetry in the airflow inside the slip stream. 

The hovering theory (or momentum theory) was formulated for 
marine propellers by W. J. Rankine in 1865 and was later developed 
by R. E. Froude in 1885. Subsequently, Betz (1920) extended the 
theory to include rotational effect. 

 

II. MOMENTUM THEORY 

Momentum theory is based on the basic conservation laws of fluid 
mechan- ics (i.e., conservation of mass, momentum, and energy). The 
rotor is continu- ously pushing the air down. As a result, the air in 
the rotor wake (inside the slip stream) acquires a velocity increment 
or a momentum change. Hence, as per Newton’s third law, an equal 
and opposite reaction force, denoted as rotor thrust, is acting on the 
rotor due to air. It may be noted that the velocity increment of the air 
is directed opposite to the thrust direction. 

Assumptions of Momentum Theory 

The rotor is assumed to consist of an infinite number of blades 
and may therefore be considered as an “actuator disk.” The actuator 
disk is infinitely thin so that there is no discontinuity in the velocity 
of air as it flows through the disk. The rotor is uniformly 
accelerating the air through the disk with no loss at the tips. The 
axial kinetic energy imparted to the air in the slip stream is equal 
to the power required to produce the thrust. In addition, air 
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Figure 14. Rotor disk and slip stream . 

It is assumed to be incompressible and frictionless. There is no profile drag 

loss in the rotor disk, and the rotational energy (swirling motion of air) 

imparted to the fluid is ignored. 

NOT E: The actuator disk model is only an approximation to the 
actual rotor. The momentum theory is not concerned with the details 
of the rotor blades or the flow, and hence, this theory by itself is not 
sufficient for designing the rotor system. However, it provides an 
estimate of the induced power require- ments of the rotor and also of 
the ideal performance limit. The slip stream of the actuator disk in 
hovering condition is shown in Figure 15. 

The rotor disk is represented by a thin disk of area A (= πr2); the 
far field upstream is denoted as station 1, and the far field 
downstream is denoted as station 4. The pressure of air at stations 1 
and 4 is atmospheric pressure P . 

 

Station 1: far-field upstream 

P0     ν = 0 

 

 
Rotor disk area = πr2

 

 

 
Station 3 

 
 thrust 

 

 

 

 

ν 

 

w 

 

 
Station 2 

Station 4: far-field downstream 

 

Figure 15. Flow condition in the slip stream. 
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Stations 2 and 3 represent the locations just above and below the rotor 
disk, respectively. It is assumed that the loading is uniformly 
distributed over the disk area. The induced velocity or inflow 
velocity is ν at the rotor disk, and w is the far field wake–induced 
velocity. The fluid is assumed to be incom- pressible, having a 
density ρ. The conservation laws are as follows: 

Mass flow rate is given as 
 

m  A (2.1) 

 
Momentum conservation is obtained by relating the force to the 

rate of momentum change, which is given as 
 

T m  (w 0) Aw (2.2) 

 

Energy conservation relates the rate of work done on the air to its 
change in kinetic energy per second, which is given as 

 

T
1 

m  (w2 0) 
1 

m  w2
 (2.3) 

2 2 
 

Substituting for 
m  can be written 
as 

from Equation 2.1 and using Equation 2.2, Equation 2.3 
 
 

Aw
1 
Aw2

 

2 
 

Cancelling the terms results in 
 

1 
w 

2 

 

 
w 2





(2.4) 
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T 

2A 

 

This shows that the far field–induced velocity is twice the induced 
velocity at the rotor disk. 

Substituting for w in Equation 2.2, the expression for rotor thrust in 
terms of induced velocity at the rotor disk is given by 

Rotor thrust: 
 

T = ρAν2ν (2.5) 
 

or the induced velocity is given as 
 
 

 (2.6) 
 

 

The induced power loss or the power required to develop the rotor 
thrust 

T is given as 
 

P TT 
T

 
2A 

(2.7) 

 

The induced power per unit thrust for a hovering rotor can be written 

as 
 

P 


T 
(2.8) 

 

The above expression indicates that, for a low inflow velocity, the 
efficiency is higher. This is possible if the rotor has a low disk 
loading (T/A). In gen- eral, the disk loading of helicopters is of the 
order of 100–500 N/m2, which is the lowest disk loading for any 
vertical take-off and landing (VTOL) vehi- cle. Therefore, the 
helicopters have the best hover performance. Note that the parameter 
determining the induced power is essentially T/(ρA). Therefore, the 
effective disk loading increases with an increase in altitude and 
temperature. 

The pressure variation along the slip stream can be determined 
from the steady-state Bernoulli equation. The pressure between 
stations 1 and 2 and between stations 3 and 4 are related, 
respectively, as 

 
1 2 

p0  p1  between stations 1 and 2 (2.9) 
2 

 

and 
 

T 

2A 
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0 

2 

p  1 2 
2 p  

1 
w2 

0 2 between stations 3 and 4
 (2.10) 

 

The pressure variation along the slip stream is shown in Figure 16. 
There is a pressure jump across the rotor disk even though the velocity 
is continuous. 

 

 

P Pressure of slip stream 

 

Atmospheric pressure 
P P 

0 
 

 

 
 

P 
1 

 
 

FIGURE 16 

Pressure variation along the slip stream. 

 

 

The jump in pressure is caused by the power given to the rotor to 
push the air downstream. 



 

7 

 

M is called the figure of merit (FM). The ideal value of M is 
equal to 1. However, for practical rotors, the value will be less than 
1. For good rotors, M is in the range of 0.75 to 0.8. For inefficient 
rotors, FM will have a value around 0.5. FM can be used for 
comparing the efficiency of different rotor systems. It should be 
noted that FM is defined only for the hovering condition of the rotor. 

III. BLADE ELEMENT THEORY 

Blade element theory (BET) is the foundation for all analyses of helicopter 
dynamics and aerodynamics because it deals with the details of the rotor 
system. This theory relates the rotor performance and the dynamic and aero- 
elastic characteristics of the rotor blade to the detailed design parameters. In 
contrast, although momentum theory is useful to predict the rotor-induced 
velocity for a given rotor thrust, it cannot be used to design the rotor system 
and the rotor blades. 

The basic assumption of BET is that the cross section of each rotor blade 
acts as a two-dimensional airfoil to produce aerodynamic loads, that is, sec- 
tional lift, drag, and pitching moment. The effect of the rotor wake is entirely 
represented by an induced angle of attack at each cross section of the rotor 
blade. Therefore, this theory requires an estimate of the wake-induced veloc- 
ity at the rotor disc. This quantity can be obtained either from the simple 
momentum theory (as given in the previous section) or from more complex 
theories, such as the prescribed wake or the free wake vortex theories, or 
nonuniform inflow calculations using acceleration potential. 

 
History of the Development of BET 

The origin of BET can be attributed to the work of Willium Froude 
(1878). However, the first major treatment was by Stefan Drzewiecki, 
during 1892 to 1920. Drzewiecki considered different blade sections 
to act independently but was not certain about the aerodynamic 
characteristics to be used for the air- foils. The two velocity 
components considered in the theory are (1) tangential velocity Ωr due 
to rotation and (2) axial velocity V of the propeller. Note that the 
inflow component at the rotor disk was not included. In 
Drzewiecki’s calculations, the estimated performance exhibited a 
significant error, which was attributed to the airfoil characteristics. 
Since the aspect ratio affects the aerodynamic characteristics (in 
fixed wings), Drzewiecki proposed that the three-dimensional wing 
characteristics (with appropriate aspect ratio) be used in the BET. 
The results of this theory had the correct general behavior but were 
found to be quantitatively inaccurate. 

Several attempts (Betz [1915] and Bothezat [1918]) were made to 
include the increased axial velocity from the momentum theory into 
the BET. However, Prandtl’s finite wing theory provided a proper 
framework for the correct treatment and inclusion of the influence 
of the propeller wake on the aero- dynamic environment at the 
blade section. In fixed wing, the lifting line theory is used for the 
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calculation of induced velocity from the properties of the vortex 
wake. Thus, following the same approach, the vortex wake was 
used to define the induced velocities at each cross section of the rotor 
blade. This theory is called the “vortex theory.” It was through this 
approach rather than through the momentum theory that induced 
velocity was finally incorporated correctly in the BET. Therefore, 
during the initial stages of development, the vortex theory 
dominated the momentum theory in evaluating the inflow at the 
rotor disk. The vortex theory is also regarded as a reliable approach 
in both fixed and rotary wing analyses. 

BET for Vertical Flight 

In this section, as a general case, BET is applied to a rotor that has a 
vertical velocity. If the vertical velocity term is set equal to zero, it 
represents the hovering condition of the rotor. While developing the 
BET, several assumptions are made. The important assumptions are 
as follows: 

1. In the preliminary highly simplified case, the rotor blade is 
assumed to be a rigid beam with no deformation. The 
blade can have a pretwist. (The effects of blade 
deformation will be considered in later chapters.) 

2. The rotor system is rotating with a constant angular velocity Ω. 
3. The plane of rotation of the rotor blades is perpendicular to the 

shaft. 

4. The rotor is operating at low disk loading, i.e., a small value of 
inflow velocity. 

5. Compressibility and stall effects are neglected. 

Figure 17 shows a rotor system along with the nonrotating hub 

fixed

axes system (XH–Y –Z1) and the rotating blade fixed axes system (X1 –
Y1 –Z1). Figure 18 shows a typical cross section of the rotor blade at a 

radial distance r from the center of rotation (or the hub center), various 

velocity components, and the resultant forces acting on the airfoil 

section. The blade is set at a pitch

angle θ measured from the plane of rotation. UT and UP are, 

respectively, tangential and the perpendicular relative air velocity 

components, as viewed by 

an observer on the blade section. 
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Z 

– 

U φ Z 

In vertical flight condition, UP consists of the climb velocity VC  of the 

helicopter (or rotor) and the induced velocity ν. Note that VC= 0 for 

hovering Condition. The tangential component of velocity UT is due to 

rotor rotation.Z , Z 
1     H Y 

1 

Y 
H 

Ω 

r A 

o X 
1 

 

ψ A 

 
  

X 
H 

 

FIGURE 17 

Nonrotating hub fixed and rotating blade fixed coordinate systems. 
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FIGURE 18 

Typical cross section of a rotor blade at radial location r and the velocity components. 

The relative air velocity components UT  and UP  for vertical flight can be 
writte
n as 
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l 

T 

 

 

 

 

 

where C is the blade chord, and C and Cd  are, respectively, the lift and 

drag aerodynamic coefficients, which are functions of the angle of 

attack and the Mach number. Resolving these two sectional forces 

along parallel and perpendicular directions to the rotor disk, the 

vertical and horizontal (or in- plane) force components can be obtained 

as 
 

FZ L cosD sin 

FY1 L sin D cos


(2.20) 

Combining the forces due to all the blades in the rotor system, the 
elemen- tal thrust, torque, and power due to all the blades in the 
rotor system can be obtained. The following expressions are obtained 
by noting that the sec- tional forces acting on the blade cross section 
at a radial distance r are the same on all the blades. 

Where N is the total number of blades in the rotor system. The 
negative sign in the torque expression indicates that aerodynamic 
drag force on the blade provides a clockwise torque when the rotor is 
rotating in a counterclockwise direction, as shown in Figure 2.1. The 
positive quantity of the torque essen- tially represents the torque 
applied to the rotor by the engine to keep the rotor rotating at the 
prescribed angular velocity. 

Assuming that UP << U , one can make a small angle assumption 
for the inflow angle. Note that this assumption is not valid near 
the blade root. However, since the dynamic pressure near the root is 
very small, the aerody- namic loads are also of small magnitude. 
Hence, the error due to the small angle assumption can be considered 
to be negligible. In addition, due to root cutout, the cross sections near 
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the root (~20% of the rotor radius) do not pro- duce any significant 
aerodynamic lift. 

Making a small angle assumption, one can write 
 

cos1 

sin 
UP

 

UT 

 
 

 
(2.22) 

U UT 

and Cl  aa() 
 

where a is the lift curve slope. 
Substituting the above approximations, the expressions for lift and 

drag per unit length, from Equation 2.19, can be written as 
 

 
 

Also, the force components can be approximated as 
 

 
 

Using this approximation, the elemental thrust, torque (applied 
torque), and power (Equation 2.21), can be expressed as
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The elemental thrust, torque, and power quantities can be 
nondimension- alized by using appropriate reference quantities, as 

 
 

  

Thrust Coefficient 

Using Equations 2.16, and 2.23 to 2.26, the elemental thrust coefficient 
can be written as 
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Figure 19. Variation of figure og merit with thrust coefficient. 
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IV. MOMENTUM THEORY FOR VERTICAL 
FLIGHT 

Vertical flight of the helicopter at a speed V includes climb (V > 0), 

hover (V = 0), descent (V < 0), and also the special case of autorotation 

(i.e., power- off descent). Between hover and autorotation descend 

speed, the helicopter is descending at a reduced power. At autorotation 

descend speed, the helicopter rotor does not require any power to keep 

the rotor rotating. Beyond autorotation descend speed, the rotor is 

actually generating power. An interpretation of induced power losses 

requires a discussion of the flow states of the rotor in axial flight. 

Consider two cases of the actuator disk theory, namely vertical climb 

and vertical descent. Assume that the flow is uniform in the slip stream. 

Figure 20 shows the velocity profile in both cases. The arrows represent 

the positive direction of flow velocity in the slip stream. It may be 

noted that, for climb, velocity V is positive, and for descent, it is 

negative. In the following, the derivation of the induced velocity 

expression for both climb and descent is provided side by side. 

 

 
Figure 20. Flow velocity in climb and decent. (a) climb (V>0). (b) 
Decent (V<0) 

Since the induced velocity in hover is given as 𝑣ℎ2 = 𝑇2𝜌𝐴 , and 

assuming that the actuator disk in steady vertical flight is 
supporting  the same weight as in hover (i.e., T = Th=pA2v2). 
Equating the thrust expressions in hover and  vertical  flight,  the 
equation  for  the  induced  flow  v can  be  obtained  for both 
climb and descent as 
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Solving these equations, the induced velocity 
𝑣𝑣ℎas a function of V 

can be obtained for climb and descent flight conditions,  
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Note that induced velocity 
𝑣𝑣ℎ is always positive.  Hence,  it  may  

be noted that  the  negative  root  of  the  radical  is not  valid  for  
climb,  but  for descent, both the positive and negative roots of 
the radical will provide a positive induced velocity. It will be 
shown later that the positive root of the radical is not a valid root 
due to the physical condition of the flow. 
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Using Equations 2.59a and 2.59b, the variation of induced 

velocity 
𝑣𝑣ℎ versus climb (or descent) velocity 

𝑉𝑣ℎ is plotted, and it 

is shown in Figure 21.The dashed portions of the curve are 
branches of the solution, which are extrapolated beyond the 
assumed conditions. 

 
Figure 21. Variation of induced flow as a function of climb and 
descent speed 

 

These dashed lines do not correspond to the assumed flow state. 
The line V + ν = 0 is where the direction of flow through the 
rotor disk and the total induced power P = T(V + ν) change sign. 
At the line, V + 2ν = 0, the flow in the far wake changes sign. The 
three lines V = 0, V + ν = 0, and V + 2ν = 0 divide the graph into 
four regions. These regions are denoted as the normal working 
state (hover and climb), the vortex ring state, the turbulent wake 
state, and the windmill brake state. The flow characteristics in 
each of the states are described below. 

 

Normal Working State  

The normal working state includes climb and hover. During 
climb, the velocity in the slip stream throughout the flow field is 
downward, with both V and ν positive. For mass conservation, 
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the wake contracts downstream of the rotor. The momentum 
theory gives a good estimate of the performance. Hover (V = 0) is 
the limit of the normal working state. Even in hover, the 
momentum theory gives a good estimate of the performance. 
The flow pattern in the normal working state is shown in Figure 
22. 

 

 
Figure 22. Flow pattern in the normal working state. (a) Climb 
(V>0). (b) Hover (V=0) 

Vortex Ring State  

When the rotor starts to descend, definite slip stream ceases to 
exist because the flow inside the slip stream changes its direction 
as we move from far upstream to far wake downstream. 
Therefore, there will be a large recirculation and turbulence. In 
the vortex ring state, the induced power (P = T(V + ν) > 0) is 
positive in the sense that the engine has to supply power to the 
rotor to keep it rotating.The flow pattern and the directions of 
the flow are shown in Figure 23.  

The flow pattern in the vortex ring state is like that of a vortex 
ring in the plane of the rotor disk. The upward velocity in the 
free stream keeps the tip vortices piled up as a ring. As the 
strength builds up, it breaks away from the disk plane, leading to 
a sudden breakdown of the flow. The flow is highly unsteady 
and produces a highly disturbing low-frequency vibration.  

The momentum theory is not valid since the flows inside the slip 
stream are in opposite directions. The limiting case of the vortex 
ring state is when the flow through the disk is zero, that is, V + ν 
= 0. It may be noted that, during descent, V < 0 and induced 
velocity ν > 0. Hence, the power required for the induced flow ν 
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is exactly equal to the gain in power due to descent. This state 
corresponds to ideal autorotation (in the absence of profile 
power loss). 

 

 
Figure 23. Flow pattern and velocity in the vortex ring state. 

(a) Low descent rates. (b) High descent rates. 

 

Turbulent Wake State  

The turbulent wake state corresponds to the region in Figure 21, 
where V + ν = 0 to V + 2ν = 0. Under the condition V + ν = 0, 
there is no flow though the rotor disk. In reality, there is a 
considerable recirculation and turbulence. The flow pattern in 
the turbulent wake state is shown in Figure 2.14. The flow state is 
somewhat similar to the flow past a circular plate of the same 
area of the rotor disk, with no flow through the disk and a 
turbulent wake behind it. 

When the descent speed increases, V + ν < 0, that is, the flow at 
the rotor disk is upward with less recirculation through the rotor. 
The flow above the rotor is highly turbulent. The rotor in this 
state experiences some roughness due to turbulence, but not like 
the high vibration in the vortex ring state. 
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Figure 24. Flow pattern in the turbulent wake state. (a) Ideal 

autorotation (V+v=0). (b) Turbulent wake state 

 

 

Windmill Brake State  

At the high rate of descent (V < −2ν), the flow once again 
becomes smooth, with a definite slip stream. The flow is upward 
throughout the slip stream, and the momentum theory is valid in 
this condition. In this state, the power P = T(V + ν) is less than 0, 
implying that the rotor is producing power (or power is 
extracted from the flow).  

 
Figure 25. Flow pattern in the windmill brake state. (a) Boundary 
(V+2v = 0). (b) Windmill brake state. 

 

The flow pattern in the windmill brake state is shown in Figure 
25. It is important to note that induced velocity is almost 
impossible to measure in flight. Therefore, the induced velocity 
curve is drawn by calculating the induced velocity from the 
power measurements. The power supplied to the rotor can be 
expressed as a sum of three components, given as  
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Shaft power = climb power + induced power + profile power 

 P = TV = T  ν + 𝜎𝐶𝑑08 ρπ𝑅2(Ω𝑅)32.61) 

 
For given values of shaft power, gross weight (T = W), rotor angular 
velocity, rate of descent, and blade drag coefficient, the mean effective 
induced velocity can be determined from the above equation.  

Another way of presenting the induced velocity variation was 
developed by Lock (1947). In this representation (Figure 26), the 

variation of total induced velocity (𝑉+𝑣𝑣ℎ )is plotted as a function of 
𝑉𝑣ℎ . 

This curve is also known as the “universal inflow curve.” 

 

 
Figure 26. Total inflow as a function of climb and decent speed 

In the vortex ring and the turbulent wake regions, the inflow 
curve is represented by a band, corresponding to practical 
situations. The universal inflow curve crosses the ideal 

autorotation line at about ( 𝑉𝑣ℎ)= −1.71 (i.e., in the range of −1.6 to 

−1.8). In practical situations, because of fuselage drag effects, 
autorotation occurs at a higher rate of descent, which is in the 
turbulent wake state. In the turbulent wake region, the inflow 
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curve can be approximated by a straight line PQ. The coordinates 

of P and Q are, respectively, ( 𝑋̅,0 ) and Q is (−2,−1). The equation 
of line PQ can be written as 

 

 
 

Where  𝑋̅ is the intercept at the 
𝑉𝑣ℎ axis. When  𝑋̅ = −1 71. , the 

inflow equation in the turbulent wake state becomes 

 
 

Autorotation in Vertical Descent  

Autorotation is the state of rotor operation where there is no net 
power requirement from the power plant. The source of power is 
due to the decrease in gravitational potential energy. The descent 
velocity supplies the power to the rotor, and the helicopter is 
capable of power-off autorotation in vertical flight. It may be 
noted that the lowest descent rate is achieved in forward flight, 
which will become obvious when we deal with forward flight 
power requirements in the following chapter.  

 

The net power to the rotor during autorotation is zero. Hence, 
from Equation 2.61, 

  

 
In Equation 2.64, the first term represents the power required to 
generate the thrust to support the weight of the helicopter 
through total inflow at the rotor disk, and the second term 
represents the profile power required to drag the rotor blades 
through air. Using nondimensional parameters, Equation 2.64 
can be written as 
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This expression indicates that a low value of 
𝐶𝑑0𝐶132̅̅ ̅̅ provides a low 

descent velocity in autorotation in vertical descent. Knowing the 
thrust and profile drag coefficients, the descent rate can be 
obtained from the universal inflow curve (Figure 2.16). The value 

of 
𝑉+𝑣𝑣ℎ  is typically about −0.3, which is in the turbulent wake 

state. Since the slope of the curve (the slope is 3.5 from Equation 
2.63) is very large in this region, the increase in the descent rate 
required to overcome profile drag is very small. Tail rotor and 
other aerodynamic interference losses must also be included in 
evaluating the autorotation descent rate. Such losses are usually 
about 15% to 20% of the profile power. The limits of the descent 
rate in vertical autorotation are essentially the limits of the 

turbulent wake state (i.e., 
𝑉𝑣ℎ  in the range of −1.71 to −2). For 

practical purposes, one can assume that autorotation occurs for 𝑉𝑣ℎ = −1.81. For typical values of inflow νh, the autorotation 

descent velocity is in the range V = 15 to 25 m/s. (For the values 
of helicopter disk loading T/A = 100–500 N/m2, νh is in the 
range of 6.4–14 m/s, with density ρ = 1.225 kg/m3.) The 
autorotation performance may also be evaluated in terms of 
rotor drag coefficient. During steady autorotation descent, the 
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drag coefficient of the rotor can be defined as 

 

For typical values of 
𝑉𝑣ℎ  = −1.71  to −1. 81, the drag coefficient has 

a value in the range of 1.22 to 1.38. For real helicopters, CD is in 
the range of 1.1 to 1.3. For comparison, a circular plate of area A 
has a drag coefficient of about CD = 1.28 and a parachute of 
frontal area A has CD = 1.40. This shows that a helicopter rotor in 
power-off descent is quite efficient in producing the thrust to 
support the helicopter. The rotor is almost as good as a 
parachute of the same diameter. 

 

 

 

 

V. BLADE ELEMENT THEORY IN VERTICAL FLIGHT 

 

Consider an element of blade of chord c with width dr at a 
radius r from the axis of rotation. The geometric pitch angle of 
the blade element relative to the plane of rotation is θ, the 
climbing speed is Vc, and the local induced velocity is vi. The 
direction of the flow relative to the blade makes an angle φ 
(usually called the inflow angle) with the plane of rotation, Fig. 
27, and φ is given by 

 
Figure 27 Force components on blade 

 

tan φ = (Vc + vi )/Ωr 
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or, for small φ,  
φ = (Vc + vi )/Ωr 

The lift on the blade elements is  𝑑𝐿 = 12 𝜌𝑊2𝐶𝐿𝑐𝑑𝑟 𝑑𝐿 = 12 𝜌Ω2𝑟2𝐶𝐿𝑐𝑑𝑟 

 

Since, for small φ, W2 ≈ Ω2r2 

Let us suppose that the lift slope a of the section is constant so 
that, if the section incidence α is measured from the no-lift line, 
we can write  

CL = aα = a(θ – φ) 
Empirical data suggests a lift slope of about 5.7. The elementary 
lift is now 𝑑𝐿 = 12 𝜌Ω2𝑟2a(θ – φ)𝑐𝑑𝑟 

Since φ is usually a small angle, we can write dL ≈ dT, where dT 
is the elementary thrust, the force perpendicular to the plane of 
rotation. The total thrust is therefore 𝑑𝑇 = 12 𝜌Ω2𝑟2a(θ – φ)𝑐𝑑𝑟 𝑇 = 12 𝜌𝑎𝑏Ω2 ∫ 𝑐(θ – φ)𝑟2𝑑𝑟 − − − −(2.25)𝑅

0  

Where b is number of blade 

Defining 𝜆𝑐 = 𝑉𝑐𝛺𝑅 ,  𝜆𝑖 = 𝑣𝑖𝛺𝑅  x = rR 

 eqn 2.25 can be written 𝑇 = 12 𝜌𝑎𝑏Ω2R3 ∫ 𝑐(θx2– (𝜆𝑐+ 𝜆𝑖)x)𝑑𝑥 − − − −(2.26)1
0  

If the chord, induced velocity, and ‘collective’ pitch angle θ are 
constant along the blade, eqn 2.26 can be integrated easily to give 𝑇 = 12 𝜌𝑎𝑐𝑏Ω2R3 ( 13 θ0– 

12 (𝜆𝑐+ 𝜆𝑖)) − − − − (2.27) 

 where θ0 is the constant (collective) pitch angle.  

Defining a thrust coefficient by 𝑡𝑐 = 𝑇𝜌𝑠𝐴Ω2R2 
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where s = bc/πR is the rotor solidity, eqn 2.27 gives 

                   tc = (a/4)[2θ0/3 – (λc + λi)] -----(2.28) 

In American work, the thrust coefficient is usually defined by 

                             CT = T/ρAΩ2 R2 

So that the two thrust coefficients are related by tc = CT /s. 

From the momentum theory, the induced velocity and the thrust 
are related by  

                    T = 2ρA (Vc + vi)vi    ----(2.11) 

which can be written in non-dimensional form as  

where s = bc/πR is the rotor solidity, eqn 2.27 gives 

                   tc = (a/4)[2θ0/3 – (λc + λi)] -----(2.28) 

In American work, the thrust coefficient is usually defined by 

                             CT = T/ρAΩ2 R2 

So that the two thrust coefficients are related by tc = CT /s. 

From the momentum theory, the induced velocity and the thrust 
are related by  

                    T = 2ρA (Vc + vi)vi    ---- (2.11) 

which can be written in non-dimensional form as   𝜆𝑖2 +  𝜆𝑐 𝜆𝑖 − 12 𝑠 𝑡𝑐 = 0 − − − (2.29) 

The positive root being the correct one to take. With λc being 
given, eqns 2.28 and 2.29 can be solved for tc if θ0 is known, or 
the required pitch angle θ0 can be calculated if tc is given. In 
hovering flight we have simply 

                                     tc = (a/4)(2θ0/3 – λi) -- -- -- (2.30) 

And                                                           

                                       𝑠 𝑡𝑐 = 2 𝜆𝑖2 − − − − − (2.31)  
Equations 2.28 and 2.29 have been obtained on the 

assumption that the blade pitch and chord were constant along 
the blade and that the downwash velocity had the constant 
‘momentum’ value given by eqn 2.11. 

Modern helicopter blades usually have constant chord and 
approximately linear twist, and, if we assume that a linear 
variation of induced velocity is quite a good approximation to 
that obtaining in practice, eqn 2.26 can again be integrated quite 
easily. 

Let us write the local blade pitch as θ0 – θ1x and the local 
induced velocity as vi = viTx, where θ1 is the blade ‘washout’ 
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angle and viT is the downwash velocity at the blade tip. Then eqn 
2.26 integrates to give 𝑡𝑐 = 𝑎4 [23 (𝜃0 − 34 𝜃1)  − 𝜆𝑐 − 23 𝜆𝑖𝑇] − − − −(2.32) 

where λiT = viT/ΩR. 

Now it is generally accepted that eqn 2.11 can be expressed in 
differential form as 

                               dT = 4πrρvi(Vc + vi ) dr -- -- -- (2.33) 

where 2πr dr is the area of the annulus of width dr over which 
the thrust dT is distributed.  

It can be shown that eqn 2.33 is not strictly valid but it has 
given successful results in airscrew work and may be regarded 
as sufficiently accurate for most purposes. 

 It appears to be true for the linearised problem in which we take 
Vc+vi≈Vc and dT = 4πrρvi Vc dr. 

 

Now it is generally accepted that eqn 2.11 can be 
expressed in differential form as 

                               dT = 4πrρvi(Vc + vi ) dr -- -- -- (2.33) 

where 2πr dr is the area of the annulus of width dr over which 
the thrust dT is distributed.  

It can be shown that eqn 2.33 is not strictly valid but it has given 
successful results in airscrew work and may be regarded as 
sufficiently accurate for most purposes. 

 It appears to be true for the linearised problem in which we take 
Vc+vi≈Vc and dT = 4πrρvi Vc dr. 

Then putting v1 = viTx in eqn 2.33 and integrating gives  

                           

                                          T = ρπR2 (viT2 + 4viTVc/3) 

or, in coefficient form,   

                                           λiT2+ 4λiTλc/3 – stc = 0 -- -- -- (2.34) 

Numerical solutions of eqn 2.34 show that the values of λiT 
are very nearly equal to √2λi (λi being the constant momentum 
value of eqn 2.29) for a wide range of λc and is exactly equal to 
√2λi for the hovering condition (λc=0). 

Thus, when we assume the induced velocity is linear, which, as 
we have said, is good approximation to real conditions, viT can 
be replaced with good accuracy by √2λi. Substituting for λiT in 
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eqn 2.32 gives 𝑡𝑐 = 𝑎4 [23 (𝜃0 − 34 𝜃1)  − 𝜆𝑐 − 2√23 𝜆𝑖] − − − −(2.35) 

But θ0–(3/4)θ1 is the blade pitch angle at (¾)R and 2√2/3 = 
0.943; hence, if we take θ0 as the value of θ at the 3/4 radial 
position and approximate 2√2/3 by unity, we can use the simple 
equations 2.28 and 2.29 or 2.30 and 2.31 for all cases. 

Thus, when we assume the induced velocity is linear, 
which, as we have said, is good approximation to real conditions, 
viT can be replaced with good accuracy by √2λi. Substituting for 
λiT in eqn 2.32 gives 𝑡𝑐 = 𝑎4 [23 (𝜃0 − 34 𝜃1)  − 𝜆𝑐 − 2√23 𝜆𝑖] − − − −(2.35) 

But θ0–(3/4)θ1 is the blade pitch angle at (¾)R and 2√2/3 = 
0.943; hence, if we take θ0 as the value of θ at the 3/4 radial 
position and approximate 2√2/3 by unity, we can use the simple 
equations 2.28 and 2.29 or 2.30 and 2.31 for all cases. 

 

These approximations mean that the thrust will be 
underestimated by about 2 or 3 per cent relative to eqns 2.32 and 
2.34, but, since the blade lift slope and the actual induced 
velocity will not be known precisely, further refinement is hardly 
justified.  

It can easily be verified that if the blade planform also has 
linear taper, eqn 2.28 still holds, with the exception of some very 
small terms, if the chord is taken as that at 3/4 R as well as the 
blade pitch angle. 

 

A useful relationship between the thrust coefficient and 
the blade lift coefficient can be obtained since, for constant blade 
chord, 𝑇 = 12 𝜌𝑏𝑐Ω2R3 ∫ x2𝐶𝐿𝑑𝑥1

0  𝑡𝑐 = 12 ∫ x2𝐶𝐿𝑑𝑥1
0  = 𝐶𝐿̅̅3̅ − − − −(2.36) 
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                                                         𝐶𝐿̅̅ ̅=3∫ x2𝐶𝐿𝑑𝑥10  

If the lift coefficient is constant along the blade, then 

                                           tc = CT /s = CL/6 

Usually the rotor operates at a mean CL of between 0.35 
and 0.6, giving typical values of tc within the range of 0.06 to 0.1. 
The rotor torque can be calculated in a similar way to the rotor 
thrust. From Fig. 2.11, the torque dQ of a blade element about the 
axis of rotation is 

                                                   dQ = r(dD + φ dL)  
                                                          =(1/2)ρ Ω2r3(δ+φCL)dr 

where δ is the local blade section drag coefficient. If δ is assumed 
to be constant, eqn 2.37 can be integrated to give 𝑄 = 𝛿𝜌𝑏𝑐𝛺2𝑅48 + 12 𝜌𝑏𝑐𝛺2𝑅4 ∫ 𝑥3𝜙𝐶𝐿1

0 𝑑𝑥 − − − − − (2.38) 

Defining a torque coefficient qc by 𝑞𝑐 = 𝛿8 + 12 ∫ x3𝜙𝐶𝐿𝑑𝑥1
0  − − − −(2.39) 

Assuming constant induced velocity, φ = (λc+ λi)/x, so that eqn 
2.39 becomes, on using eqn 2.36, 

                        qc = δ/8 + (λc + λi)t -- -- -- (2.40) 

For the special case of hovering flight, λc = 0, 

                       qc = δ/8 + λitc 

                            = 𝛿8 + √(𝑠/2)𝑡𝑐32 -- --- -- -- (2.41) 

Defining a torque coefficient qc by 𝑞𝑐 = 𝛿8 + 12 ∫ x3𝜙𝐶𝐿𝑑𝑥1
0  − − − −(2.39) 

Assuming constant induced velocity, φ = (λc+ λi)/x, so that eqn 
2.39 becomes, on using eqn 2.36, 

                        qc = δ/8 + (λc + λi)t -- -- -- (2.40) 

For the special case of hovering flight, λc = 0, 

                       qc = δ/8 + λitc 

                            = 𝛿8 + √(𝑠/2)𝑡𝑐32 -- --- -- -- (2.41) 

The first term of eqn 2.41 represents the torque required to 
overcome the profile drag; the second represents the torque to 
overcome the induced drag of the blades.  
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It can be seen that the second term is the non-dimensional form 
of the hovering power calculated from energy and momentum 
considerations.  

Using momentum principles we can find the effect of a non-
uniform induced velocity distribution on the induced power. Let 
us assume that eqn of power in  holds in differential form; then 
in hovering flight we can write 

                                     dP = dTvi = 4 πrρvi3dr 

where vi is the local induced velocity. If we take the linear 
induced velocity distribution vi = viTx, we have 𝑃 = 4𝜋𝑅2𝜌𝑣𝑖𝑇35 − − − −(2.42)𝑑𝑃 = 4𝜋𝑅2𝜌𝑣𝑖𝑇3 𝑥4𝑑𝑥 

The thrust from momentum considerations is 𝑇 = 4𝜋𝜌𝑅2 ∫ 𝑣𝑖𝑇2 𝑥3𝑑𝑥 
1

0  𝑇 = 𝜌𝜋𝑅2𝑣𝑖𝑇2 − − − − − (2.43) 

 

If the induced velocity vi is constant, we have, for the 
corresponding thrust T0, 𝑇0 = 𝜌𝜋𝑅2𝑣𝑖2 − − − (2.44) 
Comparing eqns 2.43 and 2.44 we see that for the thrusts to be 
the same we must have 𝑣𝑖𝑇2 = 2𝑣𝑖2 

Then 

                                               P = 8√2ρπR2vi3/5 

and, if P0 is the induced power when the induced velocity is 
constant, 

                                              P0 = 2ρπR2vi3 

Hence 
                                                       P/P0 = 4√2/5 = 1.131 

 

that is, when the induced velocity is linear, the induced power is 
about 13 per cent higher than if the induced velocity were 
constant; the latter condition corresponding to the least induced 
power for a given thrust. For the linear induced velocity, the 
torque coefficient would be 

                                 qc = δ/8 + 1.13√(s/2)tc3/2 -- -- -- -- (2.45) 

A typical value assumed for δ is 0.012. With typical values of 
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0.05 and 0.08 for the solidity and thrust coefficient respectively, 
the two terms of qc are 0.0015 and 0.00403, showing that the 
induced power is more than two and a half times the profile drag 
power. 

 

Tests on aerofoils with rotor blade type of construction show 
that δ depends considerably on incidence and can be represented 
in the form and has used them in the calculation of thrust, H-
force, and torque coefficients in hovering and vertical flight 

                                 δ = δ0 + δ1α + δ2α2 -- -- --  -- (2.46) 

Bailey has suggested the values  

              δ = 0.0087 – 0.0216α + 0.4α2 (α in radians) 

The expressions which had to be calculated were very lengthy 
and the results were given in tabular form. They are to be found 
in the book by Gessow and Myers. 

Since, however, Bailey used constant induced velocity in his 
calculations, it is rather doubtful whether the results he obtained 
would have been much better than if δ had been assumed 
constant because, in forward flight especially, the induced 
velocity differs considerably from the constant mean value, with 
correspondingly large variations in local blade incidence.  

Another parameter of great importance is Mach number, 
especially for current helicopters which operate at higher tip 
speeds than formerly. With Mach number and induced velocity 
properly taken into account, the calculations of thrust and torque 
become more complicated; However, equations 2.28 and 2.45 
give acceptable accuracy for many performance problems. 

Calculation of the inflow angle 

When making rotor calculations, it is often useful to know the 
inflow angle when the rotor geometry and operating conditions 
are given. We saw in the last section that the elementary thrust 
dT on an annulus of the rotor disc, when there are b blades, is 

 𝑑𝑇 = 12 𝜌𝑎𝑏𝑐𝛺2𝑟2(𝜃 − 𝜙)𝑑𝑟  − − − − − (2.47) 

 

where it has been supposed that the local lift coefficient is given 
by CL=aα 
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Now                    φ = (Vc + vi)/Ωr 

so that eqn 2.47 can be written 𝑑𝑇 = 12 𝜌𝑎𝑏𝑐𝛺2𝑟2(𝜃 − (Vc + vi)/Ωr )𝑑𝑟  − − − − − (2.47) 

Momentum theory applied to the annulus gives 

                                             dT = 4πρ(Vc+vi)vir dr 

and on eliminating dT from eqn 2.48 we have 𝑣𝑖2 + (𝑉𝑐 + 𝑎𝑏𝑐𝛺8𝜋 ) 𝑣𝑖 − 𝑎𝑏𝑐𝛺2𝑟8𝜋 (𝜃 − 𝑉𝑐𝛺𝑟) = 0 − − − (2.49) 

Writing λi = vi/ΩR and λc = Vc/ΩR, as before, and putting σ = 
bc/πr, where σ is the solidity based on the local radius, eqn 2.49 
becomes 

                 𝜆𝑖2 + (𝜆𝑐 + 𝑎𝜎𝑥8 ) 𝜆𝑖 − 𝑎𝜎𝑥8 (𝜃 − 𝜆𝑐𝑥 ) = 0 − − − (2.50) 

In eqn 2.50 σ and θ are variables, so that variable twist and taper 
can be taken into account. In hovering flight λc = 0 and eqn 2.50 
reduces to 𝜆𝑖2 + (𝑎𝜎𝑥8 ) 𝜆𝑖 − 𝑎𝜎𝑥8 (𝜃) = 0 − − − (2.51) 

Since φ = vi/Ωr = λi/x, eqn 2.51 can be written as 𝜙2 + (𝑎𝜎8 ) 𝜙 − 𝑎𝜎8 (𝜃) = 0 𝜙2 = (𝑎𝜎8 ) (𝜃 − 𝜙) = 0 − − − (2.52) 

Hence, given the local blade pitch angle and solidity, the local 
value of φ can be calculated and then used in eqns 2.25 and 2.38 
to obtain the thrust and torque.  

Further, θ – φ is the local blade incidence and a(θ – φ) the local 
blade lift coefficient. 

As an example of the use of eqn 2.52, let us consider a three-
bladed rotor whose pitch angle at the blade root is 12° and whose 
blades have a washout* of 5°. The blade has a radius of 25 ft (7.6 
m) and a constant chord of 1.5 ft (0.46 m). The lift slope of the 
blade section is assumed to be 5.7. Table 2.1 shows how the 
required quantities vary along the span, φ being obtained as the 
solution of eqn 2.52. 
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From eqn 2.36 it can be seen that we can calculate the thrust 

coefficient by the integration of x2CL, which is proportional to the 
blade aerodynamic loading. The variation of x2CL along the blade 
span is shown in Fig. 2.12. On integration we find that tc = 0.0639. 
Let us compare this value with the thrust coefficient calculated 
from eqns 2.30 and 2.31. Eliminating λi gives the following 
quadratic in tc 1/2 : 

   tc = (a/4)[2θ0 /3 – √(stc/2)] -- -- -- -- (2.53) 

and the pitch angle to be used is the value of θ at ¾R, i.e. 7.5°as 
discussed. Solving eqn 2.53, with s = 0.0573, gives tc = 0.0638, 
which agrees extremely well with the previous result and shows 
that the simple analysis gives an accuracy well within that of the 
assumed value for the lift slope. 

 
Figure 28. Non-dimensional blade loading as a function of span 

 

VI. THE OPTIMUM ROTOR 

It was stated in the blade element theorem section that the 
lowest induced power occurs when the induced velocity is 
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uniform over the disc.  

The optimum rotor would be one designed so that this 
state was achieved and, in addition, the angle of attack would be 
chosen so that the section would be operating at the most 
efficient lift coefficient, which is not necessarily at the highest 
CL/CD ratio. 

In hovering flight, the pitch angle of a blade element is 

θ = α + vi/Ωr 

= α + λi/x -- -- -- -- (2.54) 

where vi is constant. The angle of attack α is also the constant 
value chosen as the most efficient. Thus the pitch angle can be 
considered as consisting of a constant part and a part which 
varies inversely with blade radius.  

Now the thrust on an annulus of the rotor from the blade 
element theory is 𝑑𝑇 = 12 𝜌𝛺2𝑟2𝑎𝛼𝑐𝑑𝑟 

and from momentum theory 

dT = 4 πρrvi2dr 

Equating these differential thrusts shows that to ensure 
constant induced velocity the chord must vary inversely with the 
radius. Thus, the optimum rotor must be twisted in accordance 
with eqn 2.54 and tapered inversely as the radius. The latter 
requirement would result in an unusual blade shape and one 
that would be difficult to construct.  

Departures from the optimum blade, which usually means 
only that the chord is kept constant, do not result in a serious 
loss of efficiency; usually the amount is about 2 to 3 per cent 
more power for a given thrust. The subject is dealt with in some 
detail by Gessow and Myers. The reader is recommended to 
compare an optimum rotor with one of the same solidity having, 
say, constant chord and twist differing from the optimum.  

The equivalent chord ce of a rotor on a thrust basis is defined 
as 

                               𝑐𝑒 = ∫ 𝑐𝑥210 𝑑𝑥∫ 𝑥210 𝑑𝑥  
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𝑐𝑒 = 3 ∫ 𝑐𝑥21
0 𝑑𝑥 − − − −(2.55) 

and on a torque basis 𝑐𝑒 = 4 ∫ 𝑐𝑥31
0 𝑑𝑥 − − − −(2.56) 

These are the values of the chord for which constant-
chord blades would yield the same thrust and torque as a 

tapered blade, for the same radius and incidence distribution. 

 

The efficiency of a rotor 

 

The efficiency of any device should indicate the measure of 
the success with which that device performs its duty.  

It is reasonable to want a hovering rotor to produce the most 
thrust for the least power; that is, to make the ratio T/P as large 
as possible.  

This simple criterion has been objected to on the grounds that 
T/P is not a dimensionless quantity. The standard measure of 
efficiency adopted in helicopter work is the figure of merit M 
defined by 

                                               𝑀̅ = 𝑇𝑉𝑖𝑃   

where vi is the mean momentum induced velocity in hover. 
Since Tvi is the ideal induced power, the figure of merit is the 
ratio of the induced power to the total power. Since P = Tvi + Pp, 
where Pp is the profile drag power, the figure of merit can also 
be written as 

 𝑀̅ = 𝑇𝑉𝑖(𝑇𝑣𝑖+𝑃𝑃)   

and, in non-dimensional form, as 𝑀̅ = √(𝑠2) 𝑡𝑐3 2⁄ /𝑞𝑐 

It could well be argued that the figure of merit so defined is 
even less satisfactory than the ratio T/P, because for constant 
thrust a high value can be achieved by increasing the induced 
velocity (by reducing the radius, say), thereby increasing the 
total power, which is the opposite of the desired effect. 

A 
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𝑇𝑃 = 𝑇𝑇3 2⁄√(2𝜌𝐴) + 𝛿𝜌𝑠𝐴𝛺3𝑅38 − − − −(2.57) 

The first term in the denominator of eqn 2.57 is the induced 
power, and the second term is the profile drag power. 

 

Suppose the rotor radius is kept constant and the thrust is 
kept constant in such a way as to keep the incidence at a 
favourable value. This means that the mean lift coefficient and, 
hence, tc is kept constant.  

But since T = tcρsAΩ2R2 , we must have sΩ2 constant, so 
the only variable term in T/P is the profile drag power, which 
must therefore be proportional to Ω.  

Thus T/P can be increased by reducing Ω, which also 
requires s to increase; or, in other words, we need a low rotor 
speed and high solidity if the radius is to be kept constant.  

Suppose now we fix the thrust, solidity, and tip speed ΩR and 
vary the rotor radius. Differentiating eqn 2.57 with respect to A 
gives 𝜕 (𝑇𝑃)𝜕𝐴 = 𝑇 𝛿𝜌𝑠𝛺3𝑅38  − 𝑇2√2𝜌𝐴3 2⁄[𝛿𝜌𝑠𝛺3𝑅38  − 𝑇3 2⁄√2𝜌𝐴]2 = 0  
For Maximum T/P 

i.e.  𝛿𝜌𝑠𝛺3𝑅38 = 𝑇2√2𝜌𝐴 

that is, the profile power is half the induced power for 
maximum T/P. The figure of merit for this condition is 2/3 . 
Finally, for a given tip speed, solidity, disc area, and drag 
coefficient, we can write 𝑇𝑃 = 1𝛺𝑅  𝑡𝑐𝛿 8⁄ + √𝑠 2⁄ 𝑡𝑐3 2⁄  
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𝜕 (𝑇𝑃)𝜕𝐴 = 𝑇 𝛿𝜌𝑠𝛺3𝑅38  − 𝑇2√2𝜌𝐴3 2⁄[𝛿𝜌𝑠𝛺3𝑅38  − 𝑇3 2⁄√2𝜌𝐴]2 = 0  
For Maximum T/P 

i.e.  𝛿𝜌𝑠𝛺3𝑅38 = 𝑇2√2𝜌𝐴 

that is, the profile power is half the induced power for maximum 
T/P. The figure of merit for this condition is 2/3 . Finally, for a 
given tip speed, solidity, disc area, and drag coefficient, we can 
write 𝑇𝑃 = 1𝛺𝑅  𝑡𝑐𝛿 8⁄ + √𝑠 2⁄ 𝑡𝑐3 2⁄  𝜕 (𝑇𝑃)𝜕𝑡𝑐 = 1𝛺𝑅  𝛿 8⁄ + √𝑠 2⁄ 𝑡𝑐3 2⁄ − 32 𝑡𝑐3 2⁄ √𝑠 2⁄𝛿 8⁄ + √𝑠 2⁄ 𝑡𝑐3 2⁄ 2 = 0 

Or  

                 
12 √𝑠 2⁄ 𝑡𝑐3 2⁄

= 𝛿 8⁄  

and, as above, the profile power is half the induced power and 
the figure of merit is again 2/3 . If we take as typical values s = 
0.05 and δ = 0.012, we find the optimum value of tc to be 0.072. 
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I. HELICOPTER PERFORMANCE IN FORWARD FLIGHT 

It is now possible to estimate the performance of the helicopter in forward 

flight, this being the performance at a specific flight condition, or point 

on the flight envelope. This should not be confused with the mission 

performance, which is aimed at assessing the overall ability of the 

helicopter to complete a particular operational mission that consists of a 

series of inter-related tasks. 

The trim calculations of the previous sections give all the information 

needed for calculating the power required for a given flight condition; 

in fact, using eqn 3.66, the torque and power were calculated from the 

values of 0 and was obtained from the trim equations. For the 

performance alone, however, calculation of the trim parameters is not 

necessary. A form of the torque equation for performance calculations more 

convenient than eqn 3.66 can be obtained by considering the balance of 

forces along the flight path in conjunction with eqn 3.66. 

Referring to Fig. 30, we see that 

 

 

TD sin D + HD cos D + W sin c   + D = 0 
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Fig. 30  Tailrotor pitch angle to trim 
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This expression for the torque coefficient can be regarded as the non-

dimensional form of an energy equation; the first term represents the 

power required to overcome the profile drag of the blades, the second 

represents the induced power, the third is the power required for 

climbing, and the last term is the power required to overcome the 

fuselage drag. Of course, eqn 4.19 could have been derived from 

energy considerations directly, but it is instructive to derive it from the 

balance of forces. 

Equation 4.19 has been derived from eqn 3.66 on the assumption that 

the induced velocity was constant. Since the induced power in eqn 4.19 

appears as a separate term, it is a simple matter to include the effect of 

non-uniform induced velocity, as mentioned in the previous chapter. 

Now, as we saw in Chapter 3, the induced power can be expressed as (1 

+ k)Pi0, where Pi0 is the ‘ideal’ induced power for a constant 

induced velocity distribution defined by vi0T and which, in non-
dimensional form, is 
represented by the second term of eqn 4.19. Values of k for the Mangler 

and Squire induced velocity distribution were given in Fig. 3.16.  
 

Thus, the contribution of the induced power to the torque coefficient 

can be expressed more accurately by (1 + k)i tc D 
. Further, we have yet 

to include the torque which must be provided to the tailrotor. The 

tailrotor is driven by a shaft geared to the main rotor, but the torque 

supplied to the shaft depends on the inclination of the tailrotor axis to the 

fuselage. Thus, for example, it is possible to incline the axis so that the 

tailrotor autorotates and for no power to be necessary at the tailrotor, 

causing a drag force which, in turn, would require a forward tilt of the 

main rotor to trim it, with a corresponding increase of power to be 

developed at the main rotor shaft. 

 It can easily be verified that the amount of power required at the 

tailrotor shaft, plus the work which must be done to overcome the 

tailrotor force, is independent of the tailrotor shaft angle. As we have 

found with the main rotor, the power absorbed can be expressed simply as 

that which would be needed to overcome the profile drag of the blades 

and the induced power. Hence, the power Pt required for the tailrotor is 

 



 

5 

 

t   

Now it is reasonable to assume that, as the tip speeds of the tailrotor and 
the main rotor are usually equal, the terms in the square bracket have 
roughly the same values as those of the main rotor, although, as we saw 
earlier, it may be rather higher than in hovering flight. Hence, the 
power to be attributed to the tailrotor is, to a good approximation, 
stAt/sA times that of the main rotor. Thus, a simple way to calculate the 
tailrotor power is merely to increase the mainrotor power by the fraction 
stAt/sA whose value is typically about 0.06. As a percentage of the total 
power, the tailrotor power varies from about 6 per cent in hovering to 
about 3 per cent at high speed. 

The torque coefficient can finally be written as 

 
 

The required power P is calculated from Q = qcsA3R3 and is 

shown for the example helicopter in level flight in Fig. 30. The four 

contributions to the power are shown by the broken lines, the value of 

the induced power factor k being taken as 0.17. Suppose the maximum 

installed power of our example helicopter is 900 kW. It can be seen from 

Fig. 4.14 that the maximum excess power occurs at = 0.154 (32 m/s) 

and is 496 kW. This gives a maximum rate of climb of 11 m/s. The 

maximum forward speed occurs when the installed power and the 

required power are equal; the intersection of the two curves in Fig. 31.  

occurs at = 0.358, 

i.e. at 74.8 m/s. 
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Fig. 31  Variation of power with forward speed 
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II. FUSELAGE PARASITE DRAG 
 

 

The figure for the parasite drag of our example helicopter is a 

value, typical for its weight, of production helicopters. The flat 

plate parasite drag of a number of helicopters as a plot of 

equivalent flat plate area is shown against gross weight in Fig. 

32. The points define fairly well a typical curve of drag 

against weight. A second curve is shown which is based on 

aerodynamically clean experimental helicopters. This latter 

curve represents the lowest drag which can reasonably be 

achieved in helicopter design, although it falls far short of 

best fixed wing practice. It is clear that the particular basic 

shape which must be adopted by helicopter fuselages, and the 

fact that the helicopter is normally expected to fulfil a variety 

of roles, means that it is unable to reach the degree of 

aerodynamic refinement which is possible in fixed wing 

practice. In fact, both helicopter drag curves are roughly 

proportional to W1/2, instead of W2/3 as might have been 

expected, which is an indication of a large amount of 

separation drag. The drag curve of the much cleaner fixed 

wing aircraft is more nearly proportional to W2/3. 

A breakdown of the fuselage parasite drag is shown in the 

table below. 
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Fig. 32  Parasite drag of helicopters 
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Component Percentage drag 

  

Basic fuselage with protuberances 20 to 40 

Landing gear or fairing 6 to 25 

Rotor pylon and hub 35 to 50 

Tailrotor and tail surfaces 5 to 15 

  
 

The drag of the rotor pylon and hub represents a high proportion of 

the overall drag, and this is therefore an area where drag reduction leads 

to considerable benefit; hence the appearance of hub and pylon fairings 

on the larger and faster helicopters. 

 

Interference drag plays a significant role, because on a helicopter there are 

a number of separate aerodynamic ‘shapes’ in close proximity whose 

pressure distributions and boundary layers can interact with each other. 

Hub and pylon fairings are designed to minimise interference drag in 

addition to reducing the basic parasitic drag contribution of these 

components, the upper cambered shape of the former being a result3. 

Also, larger and faster helicopters tend to utilise retractable landing 

gear, which leads to the lower figure in the above table. 
 

III. ANALYTICAL ESTIMATION OF PERFORMANCE 
 

 

Except at very low speeds (when the disc incidence may not always be 
small) we can put  ˆ =  and i = stc/2; also, writing c for sin c, eqn 
4.20 can be expressed 
as 

 

where qc is the torque coefficient corresponding to the given power. 
The expression for qc can be used to calculate either the torque and 

power for a given flight condition or, as described below, the maximum 

speed and rate of climb for a given torque. 
To find the maximum level speed (c = 0) for a given power, i.e. given 

qc, we have to solve the quartic in expressed by eqn 4.21. Now at high 
speed we note that the induced power is small; therefore, neglecting this 
term and the term 32 of the profile drag, we find as a first 
approximation to , 1 say 
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2 2 

1 

1 

2 

3  = 
2[ q c  – (1 + s t At /s A )/8] 

1 
0 

The value of qc corresponding to the maximum power (900 kW) is 
0.00834. Then, with the previously given values of and d0, we find 

3  = 0.0561 or   1 = 0.383 

With this value of , we calculate the terms previously neglected to 
give the second approximation 2 as 

3  = 0.0468  or   = 0.36 

which is extremely close to the correct value. Thus, the iteration provides the 

required maximum value in two steps. 

To find the maximum rate of climb we must satisfy the condition 

c/= 0 

This condition leads to 



To solve this equation for we note from Fig. 4.14 that the blade 

profile drag contributes little to the slope of the power curve (which led 

to eqn 4.22), so that for a first aproximation 1 we can neglect the 

second term of eqn 4.22 and obtain 

 

4  = 0.000642 

or 

1 = 0.159 

For the second approximation, a value for the second term is calculated 
using 1, giving 

4  = 0.000642 – 0.000117 = 0.000525 

or 

2 = 0.152 

This agrees with the value obtained graphically and, again, the iteration 
leads to a satisfactory answer in two steps. This value of is substituted 
into eqn 4.21 and the equation is solved for c, giving the required rate 



d 




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of climb. 
 

IV. AUTOROTATIVE FORWARD FLIGHT 
 

 

Autorotation is defined as self-sustained rotation of the rotor in the absence 
of applied torque, i.e. when Q = qc = 0. The work to be done to overcome 
the rotor and fuselage drag must be obtained at the expense of the 
potential energy of the helicopter. Level flight autorotation is impossible, 
and steady flight can be achieved only by descending. To find the rate of 
descent at a given forward speed we simply put qc = 0 in eqn 4.21 and 
solve for c at the appropriate value of . Thus 

 

st d 
c  = – 


(1 + 32 ) + 1 (1 + k ) c   + 1 3     0 (4.23) 

8tc
 2 

and the rate of descent Vdes is given by 

 2 tc 

Vdes = – cR 

The angle of descent des is clearly 

des = tan–1 (Vdes/V) (4.24) 

The rate and angle of descent of our example helicopter is shown in Figs 

33 and 34. 

It can be seen from eqns 4.21 and 4.23 that the rate of descent is 

proportional to the torque coefficient in level flight; in fact, the rate of 

descent curve, Fig. 34, is 
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merely the power curve, Fig. 34, drawn to a different scale. Thus, the 

minimum rate of descent occurs at the same speed as the minimum 

power in level flight. 

From eqn 4.24 the condition for least angle of descent is given by 

ddes cos2 des   dVdes 

dV 
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i.e. dVdes/dV = Vdes/V 

Except at low speeds, when the disc angle may be quite large, 

this condition can be written as 

dc/d= c /


and the solution can be found by the point at which the line drawn from 
the origin makes a tangent to the curve of c against  or of Vdes 
against , as shown in Fig. 4.16. 

In autorotation there must be a flow up through the rotor disc so that 

the total moment, or torque, of the blade forces is zero. Figure 4.18 

shows the forces on a blade section with the resultant force dR 

perpendicular, or nearly perpendicular, to the plane of rotation. It can 

be seen that the resultant velocity vector W must be inclined upwards 

relative to the plane of rotation in order that there should be a 

component of lift to balance the blade drag. 

It is clear that in autorotation the collective pitch will be lower than 

in forward flight. To find the collective pitch angle to trim it is best to 

use eqn 3.66, putting qc = 0 and neglecting the small term in  hc D, 

giving 

D  = (1 + 32 )/8tc (4.25) 
 

Since tc D = wc, D can easily be calculated from eqn 4.25 and then 

substituted in eqn 3.63 to obtain 0. The collective pitch variation with 

is shown in Fig. 4.19. The fact that it is practically constant follows 
from the need for an almost constant flow 

through the rotor to maintain zero torque, as can be seen from an 

inspection of eqn 4.25. 
 

i. GENERAL REMARKS ON PERFORMANCE ESTIMATION 
 

 

The performance estimations discussed in this chapter have been based 

on very simple assumptions, particularly with regard to the aerodynamic 

properties of the 
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blades. One of the most important, and which has allowed a 

particularly simple analysis, is the assumption of constant blade section 

drag coefficient even though, as we shall discuss in detail in Chapter 6, 

the local incidence may vary over a wide range and enter the stall 

region. 

An early attempt to consider the dependence of the drag coefficient 

 on the incidence was that of Bailey (1941)4, who assumed that 

= 0.0087 – 0.0216+ 0.42
 

This expression was inserted into the same sort of analysis as presented 

in Chapter 3, using a tip loss factor B = 0.97,  = 15, and an arbitrary 

amount of linear twist. The induced velocity was assumed to be constant. 

As might be expected, the expressions for the force, torque, and flapping 

coefficients were quite complicated, partly on account of the presence of 

the tip-loss factor B. 
For performance estimation, Bailey and Gustafson5 calculated the 

induced, fuselage, 

and tailrotor power contributions in a manner similar to that described in 

this chapter, but for the profile power Bailey’s results were used by 

expressing them in chart form for zero blade twist. However, in order to 

use the charts it was still necessary to find the trim values of 0 and 

and also to interpolate between charts. Although Bailey’s analysis 

would appear to contain a more accurate representation of the blade drag, 

it is doubtful if it justifies the extra complexity or even gives a more 

reliable value of the profile power; for example, the inclusion of the tip 

loss factor leads to many terms in B4 and B5 so that a bad choice of the 

value of B can clearly make a considerable difference to the final result. 

In any case, the value of B normally assumed is based on hovering flight 

theory and is not applicable to forward flight. 
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This illustrates the case against too great an expenditure of effort in 

estimating the performance of the rotor, as can be seen also by 

referring to Fig. 4.20. The figure shows the effective L /D ratio of the 

complete helicopter plotted against the L /D ratio 
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Fig. 37  Effect of L /D of rotor on L /D of complete helicopter 
 
 

of the rotor alone. The effective drag has been calculated from the power 

expended, 

P, by 
 

 
giving 

D = P/V 
 

 
L /D = VW/P = VW/(Pp + Pi + Pt + Pf) 

where Pp, Pi, Pt, and Pf  are, respectively, the blade profile drag and 
the induced, tailrotor, and fuselage power contributions. 

At cruising speeds, i.e. for tip speed ratios of between, say, 0.25 and 

0.35, it can be calculated from the data of Fig. 4.14 that the L /D ratio 
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for the rotor alone of our example helicopter varies from about 7 to 10. 

Figure 4.20 shows that, at these values, a comparatively large increase 

of the L /D ratio of the rotor would be needed to produce a significant 

increase in the L /D ratio of the complete helicopter, especially at low 

values of the gross weight. 

Thus, there is a limit to the expenditure of effort that ought reasonably 

to be spent in either making calculations of the rotor power or effecting 

real improvements in rotor performance through aerodynamic 

refinement. 

What has been said above applies strictly to the calculation of the 

performance of the helicopter, by which we mean the estimation of 

the power for a given flight condition or the flight range possible for 

a given installed power. The high speed performance of modern 

helicopters, however, is far more likely to be restricted by the vibration 

and increase of control loads due to blade stall and compressibility than 

through lack of power. It is in this area that the aerodynamics of the 

rotor must be considered in sufficient detail to be able to design a rotor 

in which these undesirable effects are reduced to a minimum 
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I. INTRODUCTION 

The abbreviation V/STOL is a combination of two other abbreviations, VTOL and STOL, 

which stand for “vertical take-off and landing”and “short take-off and landing.” Thus 

V/STOL aerodynamics refers to an area of the subject of aerodynamics that is of special 

interest to the design of aircraft with vertical take-off and landing or short take-off and 

landing capabilities. 

V/STOL aerodynamics is concerned primarily with the production of lift at low forward 

velocities. There is a qualification to the production of this lift, however. It is not to be 

accomplished at a sacrifice in the cruising performance of the aircraft. Hence an aircraft with 

low take-off and landing speeds because of low wing loading would not, in general, be 

termed a “short take-off and landing” aircraft. A vertical or short take-off and landing aircraft 

employs some special kind of device to produce lift at low speeds. Here, the term “lift” is 

used in a general sense to denote the vertical force that sustains the aircraft in flight. It might 

be composed of the usual lift from a lifting surface and a force produced by some form of 

propulsor. 

It has been axiomatic in the gradual development of aircraft that their landing speeds and 

distances have increased in proportion to their cruising speeds. The requirement for longer 

and longer runways is in direct conflict with the growth of metropolitan areas. The need for a 

type of aircraft with exceptional take-off and landing performance is apparent. The logistics 

of modern warfare also require aircraft that can operate from small prepared or unprepared 

fields. 

The development of such aircraft has proceeded rapidly with the introduction of suitable 

power plants. In particular, the gas turbine, with its low specific weight, that is, pounds of 

engine weight per pound of static thrust, has made possible the development of aircraft with 

static thrust to gross Weight ratios greater than one. As the speeds of aircraft continue to 

increase, the power plant requirements for V/STOL operation and forward flight performance 

become compatible. Above Mach 1 the thrust required is nearly equal to or exceeds the gross 

weight of the aircraft. However, for sub- sonic aircraft the installed thrust needed for V/STOL 

performance normally exceeds that required for efficient cruise. For these applications, 

therefore, the aerodynamicist must consider means of improving the cruise performance. 

The many convincing arguments that can be put forward in favor of the VTOL aircraft are 

based mainly on the removal of equipment and facilities that are required to accomplish the 

conventional landing. These include the conventional landing gear, with its array of 

mechanical, hydraulic, electrical, and pneumatic devices, and high-lift devices such as flaps, 

slats, and boundary layer control. The modern high-performance, conventional jet aircraft 

landing at speeds of the order of 150 to 200 knots requires runways in the 10,000-ft class. 

The problems of acquiring and maintaining such facilities and of braking the aircraft landing 

at these high speeds can be circumvented by the application of STOL and VTOL principles. 
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Figure 38. STOL Landing Performance 

Investigators in the field differ in their opinions of an exact definition of a STOL aircraft. 

Most of them agree qualitatively on the characteristics a STOL aircraft must possess. It must 

be capable of takeoff and landing in a prescribed distance over a standard obstacle height, and 

the ratio of cruise speed to landing speed must be above a prescribed minimum. To fill these 

requirements simultaneously a STOL aircraft must possess some special design I feature that 

will allow the development of lift at low speeds in excess of that developed by an ordinary 

wing. 

A height frequently specified in takeoff and landing calculations is 50 ft. The horizontal 

distance to clear this obstacle height for STOL aircraft has been specified for some 

applications as 500 ft. However, this distance, as well as the ratio of cruising speed to landing 

speed, is not as well defined as the obstacle height. The reason is apparent, a turbojet fighter 

aircraft that might have a speed ratio of 20 and land in 1500 ft could be considered just as 

much of a STOL aircraft as a short-haul transport that can land in 500 ft but might have a 

speed ratio of only 6 or 7. 

Consider the landing capabilities of STOL aircraft as shown in Fig. 1-1.  This figure is 

derived from consideration of human response times obtained from actual flight tests with 

helicopters which showed that rates of descent of 500 to 700 fpm were the maximum that 

could be used with consistency. These limitations were derived from instrument approaches 

at altitude but are comparable to the highest rates of descent that can be used in the last 50 ft 

of altitude in an approach. 

From this figure it can be seen that to land in 500 ft as a matter of routine requires an 

approach speed of approximately 30 knots. This assumes a rate of descent of 500 fpm, a 

circular arc transition with a normal acceleration of 0.1 g, and a stopping deceleration of 0.3 
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g. By the use of maximum techniques this approach speed can be increased to approximately 

60 knots, which assumes a 1000-fpm rate of descent with no transition and a deceleration of 

0.8 g. These assumptions are certainly on the optimistic side, and it would appear that the 30-

knot approach speed is more realistic. In actual practice, however, the performance will 

probably be somewhere be- tween these two extremes. The landing gear might be designed to 

withstand a  rate of descent  of approximately  700 to 800 fpm, and  by  reversing  the 

propellers  or  thrust  the deceleration  could  be increased  to  0.5  0r 0.6 g. Therefore an 

approach speed of 45 knots is re presentative of a STOL aircraft that would satisfy the 

landing requirement of 500 ft over a 50-ft obstacle. For example, one STOL reconnaissance 

aircraft, operational at the time of this writing, has a guaranteed landing distance over 50 ft of 

775 ft for a stalling speed of 55 knots. 

Additional  insight  into  the  factors  influencing  the  takeoff  or landing performance  of  an  

aircraft  can  be gained  by a simplified  analysis of the ground-roll distance of a landing 

aircraft. If TR is the reverse thrust, µ, the coefficient of braking friction, W, the weight of the 

aircraft, and V, the velocity at time t, then the equation of motion of the aircraft is 

 

 

 

This equation assumes that TR is a constant and neglects any lift produced during the ground 

roll. It shows that the work performed by the retarding forces must equal the initial kinetic 

energy of the aircraft. It also clearly illustrates the importance of keeping Vo as small as 

possible, for the ground- roll distance So varies as the square of Vo. 

If Vo is taken to be 20% higher than the stalling speed, the distance S can be written as 
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TR is normally a function of the installed forward thrust. Because cruising requirements 

usually determine the thrust and the wing loading, it follows that the principal parameter in 

determining the landing distance, and the one over which the most control can be exercised, 

is the maximum lift coefficient. From this simplified analysis it can be seen that the landing 

distance might be expected to vary inversely with CLmax. 

Types of V/STOL Aircraft 

There have been many schemes proposed for the design of STOL and VTOL aircraft. In 

VTOL aircraft, as in STOL aircraft, it is necessary to impose a minimum speed restriction. 

Thus a VTOL aircraft is defined as an aircraft with vertical takeoff and landing capabilities 

and cruising speeds equal to those of ordinary fixed-wing aircraft that perform comparable 

missions but from longer fields. This comparison with ordinary fixed-wing aircraft could 

apply as well to STOL aircraft in which the VTOL capability has been replaced by the 

takeoff and landing distance of 500 ft over a 50-ft obstacle. 

In view of the speed requirement, helicopters and autogyros technically cannot be considered 

VTOL or STOL aircraft. The forward speed of the usual rotary-wing aircraft is limited by the 

conflicting requirements of compressibility effects and retreating blade stall. At the higher 

forward speeds it is desirable to run at a high rotor rpm because of retreating blade stall, but, 

conversely, it is desirable to run at a lower rpm to avoid compressibility effects on the rotor. 

Listed below are different types of V/STOL aircraft or methods of accomplishing V/STOL 

performance. Most of these topics are covered in detail in later chapters. 

COMPOUND AIRCRAFT 

A compound aircraft is a combination of helicopter and fixed-wing aircraft. In forward flight 

the lift is transferred to the Wing, thereby unloading the rotor. Forward thrust is provided by a 

propeller or a jet. In forward flight the rotor is allowed to autorotate or can be stopped and 

retracted into the fuselage. This type of aircraft is shown in Fig. 39. 
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Figure 39. A compound aircraft. 

 

TAIL SITTERS 

A tail sitter is an aircraft, either jet or propeller-driven, of rather conventional outward 

appearance but with enough thrust and appropriate controls to allow it to hover with the 

airplane axis in a vertical attitude. The coleopter, which is a ring-wing ducting a fan, also 

falls in this category. 

TILT-RING 

A tilt-wing aircraft derives its high lift by rotating the entire wing and propellers, mounted 

on the wing, through approximately 90' while keeping the fuselage horizontal. The major 

portion of the wing, submerged in the propeller slipstream, does not stall throughout a major 

part of the flight regime. The Vertol 76, shown in Fig.40, a flying test bed, was the first 

successful aircraft of this type to undergo transition. 
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Figure 40. The first successful tilt- wing aircraft, the Vertol 76. (Vertol Div., The Boeing Co) 

TILTING JETS.  DUCTED PROPELLERS, OR ROTORS 

These three types are given together because the principle of rotating the thrust producer, is 

the same for each of them. They vary only in the degree of their disk loadings, hence in their 

jet velocities. For this type of aircraft only the thrust producer rotates; the aircraft fuselage 

and wing remains horizontal. The rotating thrust producers can be attached to the fuselage or 

mounted at the wing tips as shown in Fig. 41. 
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Figure 41. The Bell XV-3, a tilting-rotor VTOL aircraft. (Textron’s Bell Helicopter Co.) 

DEFLECTED UPSTREAM (VECTOREO SLIPSTREAM) 

In a deflected slipstream system lift is produced at low speed by deflecting the propeller 

slipstream downward in a wing-flap system. The earliest of what might be termed STOL 

aircraft, the Crouch-Bolas Dragonfly I, flown in 1934, operated on this principle. Two 

opposite-rotating 9-ft-diameter propellers powered with 90 hp engines gave this 2100-1b, 26-

ft span biplane exceptional short-field performance. It had a ground run of 30 ft, an angle of 

climb of 70°, and an angle of descent of 70°. Descent was made nose high with power [2]. 

DEFLECTED JET 

The deflected jet principle is similar to the deflected slipstream, except that the turning is 

done internally. In hovering flight the exhaust from the turbojet engine, normally expelled in 

the aft direction, is diverted by a system of vanes to produce a vertical component of thrust. 

EXTERNAL FLOW, JET-AUGMENTED FLAPS 

The question might be asked, “When does a deflected slipstream or jet become an external 

flow, jet-augmented flap?” This is a little difficult to answer. However, in a deflected 

slipstream most of the lift is derived from redirecting the jet momentum, whereas in the 

externally augmented flaps increased lift is produced by the wing by means of circulation and 

boundary layer controls afforded by blowing over the flap. 
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BOU NDARY LAYER CONTROL (BLC) 

There are several methods of boundary layer control, each of which has the same purpose of 

preventing boundary layer separation. One method controls the boundary layer by sucking off 

the slower-moving air either by a relatively uniform distribution of holes [3] or in a series of 

slots running spanwise along the airfoil [4]. 

Another method [5] feeds higher-energy air into the boundary layer by blowing air 

tangentially to the upper surface of a deflected flap. This scheme is sometimes referred to as a 

blown flap. It is also possible to accomplish BLC by means of a jet flap, which is simply a 

sheet of air blown downward from the trailing edge of an airfoil. Its effect on the airfoil is 

similar to that of the usual flap. In addition to blowing on trailing edge flaps, it is also 

possible to blow on leading edge flaps to prevent leading edge separation. These schemes are 

shown in Fig. 42. 

 

Figure 42. (a) Blown physical flap; (b) jet flap; (c) leading-and trailing-edge blowing. 

CIRCULATION CONTROL 

If the amount of air of a blown or jet flap is increased beyond the value required to prevent 

boundary layer separation, additional circulation is produced around the airfoil. This 

increased circulation will produce a lift in excess of that predicted from potential flow or jet 

reaction. 

SUBMERGED FANS. LAN-IN-WING 

In this configuration a large fan is submerged horizontally  in the wing. In hovering the wing 

acts as a duct around the fan to improve its static thrust performance. In forward flight at low 

speeds the action of the fan is beneficial to the wing. An example of an aircraft incorporating 

this method of obtaining VTOL performances is illustrated in Fig. 43. 
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Figure 43. A fan-in-wing aircraft 

DIRECT THRUST 

In this scheme separate jet engines are nested in the wing or fuselage to provide vertical 

thrust. Although the flow over the wing is affected to some extent by the engines, the effect is 

limited so that the characteristics of this type of VTOL or STOL aircraft can be approximated 

by determining the behavior of the wing and engines separately. 

AERODYNES, DUCTED FANS, AND HIGHLY LOAED ROTORS WITHOUT 

FIXED LIFTING SURFACES 

These types of STOL or VTOL aircraft employ highly loaded rotors to provide the lift and 

thrust for forward flight. Control is accomplished either by tilting the axis of the rotor or by 

deflecting its slipstream with a system of vanes submerged in the rotor slipstream. Vehicles 

of this type include the “flying jeep” and the “aerodyne”.  

THRUST A UG MENTATION 

Somewhat similar to the jet pump, this configuration uses the primary flow from jets to 

induce a secondary flow. The static thrust available from a jet engine is therefore increased 

significantly by the entrained flow. 

To summarize, many schemes have been proposed and are being .studied for accomplishing 

STOL and VTOL aircraft. 

1. Compound aircraft 

2. Tail-sitters 

3. Tilt-wing 

4. Tilting-jets, ducted propellers or rotors 

5. Deflected slipstream 

6. Deflected jet 

7. External flow, jet-augmented flaps 

8. Boundary layer control 

9. Circulation control 
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10. Submerged fans 

11. Direct thrust 

12. Aerodynes, ducted fans, and  highly  loaded  rotors  without  fixed lifting 

surfaces 

13.  Thrust augmentation 

These categories tend to overlap somewhat in their definitions. It is also possible that a 

V/STOL aircraft might incorporate several of these schemes to develop lift at low forward 

speed. 
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I. INTRODUCTION TO GROUND-EFFECT 

MACHINES 
Although ground-effect machines (GEM) might be described as VTOL aircraft that never 

quite made it, they are believed to have sufficient potential to warrant at least a chapter. As 

the name implies, a GEM is limited to operating in proximity to a surface either a solid 

surface or over water. By so doing, however, it is able to sustain much greater loads for a 

given power than an aircraft that operates out of ground effect. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

Figure. 44. Types of GEM’s (a) Air bearing (b) Plenum Chamber (c) Peripheral jet 
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Figure 45. Flow in a peripheral-jet ground-effect-machine. 

and below the machine and neglecting the incoming momentum of the air, the weight that the 

jet system in ground effect can support is obviously 

 
Out of ground effect, W = W∞ = Fj. The ratio of W to W∞ is referred to as the thrust 

augmentation factor A and from (12-2) and (12-3) becomes 

 

 
The same procedure can be followed for other cases than that in which the jet issues 

vertically downward. It can be advantageous to incline the jets inward through some angle θ, 
as shown in Fig.  45.  However, there is little to be gained in going through the algebraic 

exercise of deriving A for the general case, Instead, the augmentation factor is taken from 

Ref. 2. 
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Figure 46. Thrust augmentation ratio versus height – diameter ratio: ----- theory [Eq. (12-5)]; 

฀ = unpublished data, θ = 0o
. 

 

from the illustration, the optimum θ for maximum A increases as h/D decreases. As h/D 

approaches zero, the optimum θ approaches 90°. The nearly constant experimental values of 

A between h/D-values of 0.25 to 0.5 are typical of other experimental results. 

Next consider the power required  by a  peripheral  jet GEM  to hover. If t is the thickness of 

the jet and vj, the jet velocity, the power delivered to the jet is 
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The actual power required will depend on the losses in  the internal  ducting and the 

efficiency of the fan. If they are combined into a single efficiency, q, then the required 

horsepower can be expressed as 

 
  

where W/S is the weight loading with S equal to πD2
/4, Hence all other factors being equal 

the power loading increases inversely with the square root of the weight loading. The 

identical result was obtained for a propeller operating at zero forward speed. From Eq. (4-16) 

for a propeller 

 
 

These power and thrust relationships can be expected to hold only where the thickness of the 

jet is small in comparison with the height and diameter. Generally speaking, the predictions 

are optimistic in comparison with experimental data, at least as far as the power is concerned. 

Figure 47 compares model data taken from Ref. 3 with calculations based on  Eqs. (12-4) and 

(12-8) from which the experimental values of pounds per horse- power for hJD values of 0.12 

and 0.06 are seen to be significantly lower than the theory would predict. The experimen tal 

values, however, are still well above the value of pounds per horsepower for the ideal 

statically thrusting propeller with a disk loading of 20 psf. 

Figure 48 presents the results of calculations based on Eqs. (12-5) and (12-8) for a  range of  

h/D-,θ-, and  W/S-values  for  a constant  value  of  t/D  of 0.08. The selection of the 

combination of these design parameters depends on other factors in addition to the 

aerodynarnics. For example, the minimum value of h that can be tolerated will depend on the 

maximum obstacle height one wishes to pass over. From a power standpoint, of course, the 

lower the h and W/S the better. Generalized design studies tend to indicate that the place of 

the GEM in future transportation will probably be as large, high-speed ocean-going craft. 
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Figure 47. Lifting capability of GEM’s: - - - - experimental (Ref.3), _____theory[Eq. 12-8)]; 

W/S = 20 psf; hp = jet horsepower. 

 

Presently, machines are operating commercially with gross weights of approximately 30 tons 

up to speeds of 80 mph with an installed horsepower of 4000. Larger machines up to 100 tons 

with speeds of 120 knots and power of 10,000 hp are currently in the design stage. The 

weight loadings of these machines are fairly low at about 10 psf of base area. The power 

loadings are approximately 16 to 20 lb/h nearly double that of helicopters. 

The GEM in Forward Flight 

In forward flight power must be supplied to overcome the drag of the GEM in addition to 

sustaining g the weight of the machine. Although the 
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Figure 48: Effect of height, disk loading, and jet angle on power loading 

 

 

available data are somewhat conflicting, there is evidence that the thrust augmentation factor 

does not vary radically with forward speed. Thus the power required in forward flight is 

approximately equal to the sum of the power calculated to hover and the product of the drag 

and the forward speed. The drag is equal to the sum of the parasite drag and the momentum 

drag. Hence it is important for an economically feasible, high-speed GEM to be 

aerodynamically clean. 

The momentum drag is not so high as one might think. If Mj, is the mass flux through the 

machine, the momentum drag might be calculated as the product of the forward speed and 

Mj. However, experimental data suggest a thrust recovery of this momentum somewhat 

similar to the jet flap. What little data are available in this regard show the momentum drag to 

be approximately half of the product of V and Mj. 

The effect of forward speed on the lift augmentation factor is presented in Fig. 49 , taken 

from the work of Higgins and Martin reported in Ref. 4. We cannot really generalize on these 

curves because the results must depend 
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Figure 49. Effect of forward speed on augmentation ratio: D = 16 in., h/D = 0.1, all slots 0.06 

in.; elliptic planform has same base area as circular planforms.  

on the height of the machine above the ground, the ratio of jet velocity to forward speed, and 

the external shape of the machine. However, these data, as well as those obtained by others, 

show no serious deterioration of A with forward speed and even suggest the possibility of 

some increase of A with V. 

 

Operation of a GEM over Water 

The operation of a GEM over water is similar to that over a solid surface with some small 

exceptions. At low forward speeds the higher base pressure displaces the water downward 

relative to the undisturbed surface. However, Eq. (12-5) still holds if h is measured in relation 

to the displaced surface. The magnitude of this displacement is, of course, equal to the base 

pressure expressed in inches or feet of water. 

At low forward speeds, therefore, the GEM over water behaves like a displacement vessel. 

This means that in addition to the other sources of drag we must add a wave drag. As the 

velocity increases, a point is reached at which the displacement of the water surface is 

negligible. This results since the impulse applied to each fluid particle by the base pressure 

becomes less and less as the speed increases. This behavior is illustrated in Fig. 50. Here a 

drag breakdown is shown for the S.R.N. 1, an 85%-lb machine with 535 ft
2
 of base area. For 

this particular craft the wave drag reaches a maximum at about 12 knots. 
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Figure 50. Drag breakdown of a GEM; W = 8500 lb, S = 535 ft

2
. 

 

Static Stability and Control of a GEM 

One of the problems of a GEM is its marginal inherent handling quality. A pure peripheral jet 

exhibits a slight stability in pitch at very low heights. However, this stability deteriorates 

rapidly as the height is increased above 

 

 
Figure 51. Subdivision of GEM base to improve stability. 

 

approximately 10% of the diameter. The GEM is inherently stable in heave; that is, as the 

height tends to increase, the decreasing lift drops the machine back to its trimmed height. 

Obviously, if we attached several small machines together at the end of a boom, the result 

would be stable both in heave and pitch. This is essentially the scheme by which the pitch 

stability of GEM’s is improved. Additional slots are cut in the base to divide the machine 

effectively into a number of smaller machines capable of sustaining different pressures under 

different portions of the base. Such a method is shown schematically in Fig. 51. The effect of 

subdivision of the base on the slope of the pitching moment curve with α is shown in Fig. 52. 

Here a stability slot has been installed along the x-axis only. Hence the stability is affected 

only about the x-axis. The result is a greater height for neutral stability about the x-axis than 

the y-axis.  
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Figure 52. Effect of stability slot on static pitching moments; M = moment; L = lift; De= 

equivalent dimeter; De
2
/4= base area. 

 

  This improvement in stability is not obtained free, however. Figure 52 shows the decrease in 

A as the result of adding inside slots. 

   Another somewhat similar scheme for improving the stability of a GEM is presented in 

Ref. S. An inside jet is incorporated to parallel the outer jet, as shown in Fig. 53. According 

to the reference, the normal distance between the two slots should be twice the height of the 

base above the ground in order to provide satisfactory stability. The control of GEM’s can be 

accomplished either by diverting some of the air applied to the base or by providing sources 

of separate thrusts such as external propellers. The second scheme seems to be gaining favor, 

as the control forces available with the base air are somewhat limited. Variations include a 

steerable propeller, ducted or open, and a fixed-propeller with movable control surfaces in its 

slipstream. 
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Figure 52: Effect of stability slots on thrust augmentation ration. 

 

 
Figure 53. Stability augmentation system for GEM 
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