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ABSTRACT

Several steps are taken to produce a partial differential equation solving environ-

ment (PDESE) for solving time-dependent nonlinear biomechanical problems using

adaptive finite element methods (FEMs) in one-, two-, and three-dimensions. We

develop several methods to increase the efficiency of FEMs used to solve systems

of partial differential equations arising in biomechanical models. The table look-up

method is used to increase the speed of quadrature procedures specific to FEMs by

interpolating the non-polynomial part of the integrand then using a pre-computed

table of values. An enhanced prototype of a PDESE using h-adaptivity was used to

solve a reaction-diffusion system of equations simulating the spread of Lyme disease

taking into account vector dynamics. Procedures to correct sliver elements gener-

ated by mesh motion required for domain reshaping were developed and used in

a h-adaptive two-dimensional micro-scale fluid pump simulation. The anisotropic

biphasic theory (ABT) equations of Barocas and Tranquillo describing the forma-

tion of artificial arteries were solved using h-adaptivity and mesh motion in two

dimensions. The efficacy of the adaptive procedures that were developed is shown.

A modern object-oriented code closer to the ideal of a PDESE, Trellis, was enhanced

and used to solve the ABT equations in three dimensions using h-adaptivity and

mesh motion for the hexahedral interstitial cell traction assay (ICTA) and wound

healing problems, hitherto unsolved. Warm restarts in DASPK were implemented

within Trellis and shown to speed up adaptive computations by a factor of four for

the ICTA problem.

xii



CHAPTER 1

INTRODUCTION

1.1 Motivation

One goal of scientific computation is the creation of a partial differential equa-

tions solving environment (PDESE) which solves a broad class of partial differential

equations (PDEs) by an automatic selection of [novel] algorithms without the user

requiring the knowledge of the underlying software or hardware. A PDESE must

provide a complete environment in which the systems of PDEs are solved, including

discretizating the domain, solving the PDEs, and outputting the solution. Option-

ally, a PDESE may be able to handle optimization of problems modeled by PDEs

and have a graphical user interface. The major component of a PDESE is a solver

of systems of time-dependent nonlinear PDEs, which is the focus of this thesis. The

efficient solution of PDEs is critical for a successful PDESE since, for example, the

PDESE may include optimization routines that require accurately evaluating many

large-scale PDEs with sharp gradients.

Systems of PDEs are used to model many biological and physical phenom-

ena, such as plane wave non-dispersive sonar propagation and reflection (Helmholtz

equation) [35], the motion of a viscous fluid (Navier-Stokes equations) [46, 131], or

the formation of an artificial artery [23, 21, 22] (Barocas-Tranquillo biphasic equa-

tions). Finite element methods (FEMs) [80, 130, 146] are one such class of methods

for solving PDEs that are particularly well-suited for geometrically complex do-

mains. Techniques to improve the efficiency of FEMs are constantly needed, since

ever larger and more complex systems are addressed. The advance in speed of high-

performance processors is often negated by the ever-increasing size and complexity

of the problems posed. Furthermore, optimization problems, such as finding the

optimal forcing of water through a pump, requires solving a system of PDEs many

times with different parameters. Since parameter changes may cause a significant

change in the structure of the solution, any solution method must not be depen-

dent on hard-coded methods and parameters defined within. Furthermore, since

1
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the system of PDEs must be solved many times, the solution method must be ef-

ficient. Thus, we investigate analytic and automated software methods to increase

the efficiency of FEMs.

1.2 Overview and Outline

In this thesis, we investigate several methods to improve the efficiency of FEMs

and apply them to various problems of topical interest. We begin with a brief intro-

duction to the FE notation used in this thesis. Standard mathematical notations

and notions are briefly covered in §A. Historical reviews are presented at appropriate

points within the text, rather than collected in one section.

FEMs require frequent evaluation of integrals of the form

∫
T

P1(x) P2(x) f(x) d|x| (1.1)

where P1 and P2 are polynomials, f is an arbitrary (non-polynomial) function, and

T is either a triangle or tetrahedron. In §2, we discuss the theory and application

of a new method we have developed, table look-up, of computing (1.1). The idea is

to approximate f by a polynomial, then look up the exact integral of the resultant

integrand in a precomputed table. This new method has the potential of being

extremely fast, depending on how easily f can be approximated. Furthermore, we

have improved the efficiency of the table look-up method by splitting the interpo-

lation problem and reduced the size of the table by exploiting symmetries in the

hierarchical basis functions.

In §3, we investigate the adaptive solution of three nonlinear time-dependent

problems in two dimensions using a prototype for a PDESE written by Aiffa [9] and

extended herein. The first problem, in §3.2, is the axially symmetric anisotropic

biphasic theory (ABT) equations of Barocas and Tranquillo, which models the for-

mation of artificial arteries. Physically, one starts with a collagen gel that compacts.

The final product is the artery and the goal is an initial configuration so that the

artery is strong enough to withstand pulastile forces from blood flow as well as the

stresses of surgical suture at the ends.
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Thus, a motivation for creating a PDESE is to find the optimal initial config-

uration such that the least amount of material is used while retaining the necessary

strength requirements. The ABT equations are nonlinear and have a domain that

changes in time, and the solutions (e.g., the concentration of the gel) have steep gra-

dients, making the equations extremely difficult to solve accurately. The nonlinear

behavior of the ABT equations does not easily fall within traditional classifications

of PDEs, i.e., parabolic or hyperbolic; thus, methods “tuned” to a particular type

of PDE are not applicable. Our simulations are the first to use mesh refinement

(h-adaptivity) and mesh-motion techniques to solve the ABT equations. We show

the efficiency of using h-adaptive methods. A temporally-adaptive method-of-lines

scheme is used to handle time-dependency, using DASPK [37], which uses an adap-

tive backward difference formula (BDF). DASPK is needed in order to handle the

differential-algebraic equations (DAEs) [13] resulting from spatial discretization of

the equations. We also simulate the formation of a reinforced artifical artery shunt

using a complex domain. This is the first time the ABT equations were solved in a

non-cylinderical domain. The second problem that we solved, in §3.3, is the viscous

flow in a moving micro-fluidic pump. The domain moves to force fluid through the

pump. The pump is typically used in drug-delivery systems or in toxic gas samplers.

This novel problem is solved using mesh-motion to follow the moving domain, and h-

adaptivity to capture sharp gradients in the y-velocity caused by re-entrant corners.

The non-uniform scaling of the domain causes difficulties in solving this problem,

which are addressed by rescaling the problem. Mesh-motion may create some badly

shaped elements, which are corrected, using methods in §3.3.3.2. Since the pump

is very small (order of micro-meters), efficiency is paramount. Finding parameters

to maximize the efficiency required many runs; thus, necessitating efficient solution

methods. These are the first simulations of this type of micro-fluidic pump. We

also describe our h-adaptive solution of a new reaction-diffusion problem modeling

a Lyme disease epidemic in §3.4 that was previously unsolved. The problem has a

very sharp gradient in the initial condition, so h-adaptivity was required to solve this

problem with accuracy in a reasonable amount of time. We demonstrated travelling

wave solutions that substantiate the theory and verified the model for asymptotic
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values.

The most complex problem solved in this thesis is described in §4 where the

ABT equations are solved using h-adaptivity with mesh motion in three dimensions

in §4.2. No geometrical symmetries to reduce the dimension are assumed. This is

very significant in that a much larger class of simulations may be explored, such

as the wound problem in §4.2.2, which cannot be reduced to a two-dimensional

problem. Indeed, it is the first time that the ABT equations have been solved in

three-dimensions, let alone adaptively. To solve these equations, a new framework,

Trellis, was developed at SCOREC [29], with contributions provided by this thesis.

The data structure is described in §4.1.6. Our implementation of warm restart in-

terfaces to DASPK, described in §4.1.8, greatly speeds up h-adaptive computation.

Our addition of mesh motion and some nonlinear functionality enhance Trellis’ ca-

pabilities. Trellis has most of the desirable features of a PDESE, namely the ability

to solve a large class of problems efficiently and automatically. (It is not yet to the

point of being able to shield the user from some of the underlying code or to have

incorporated optimization routines.)

Finally, a summary of this thesis and future work are covered in §5. The full

potential of the table look-up method may be realized in a future project that is

detailed in §5.2. A number of avenues of future research are described.

1.3 Finite Element Methods Background

1.3.1 Introduction

The finite element method is briefly discussed for a general three-dimensional

time-dependent problem. A detailed introduction of adaptivity and mesh motion

is postponed until §3.2.3.5. For more in-depth coverage along with historical notes,

the reader is referred to the references [80, 130, 146]. Some of the notation and

notions used in this thesis appear in §A.
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1.3.2 Finite Element Methods

We solve systems of PDEs of the form

g

(
x, t,u,

∂u

∂t

)
+ f(x, t,u,∇u) +

d∑
i=1

∂

∂xi
ai(x, t,u,∇u) = 0, x ∈ Ω, t > 0,

(1.2)

where n is the dimension of the vector functions u, g, f , and ai, i = 1, 2, . . . , d. For

time-dependent problems, g will be restricted to the vector function

gi = αi
∂ui

∂t
, (1.3)

where αi is either 0 or 1, and we will assume that appropriate initial conditions (for

components of u where αi = 1),

ui(x, 0) = ui0(x), (1.4)

where ui0(x) ∈ H1(Ω), have been imposed.

Multiplying (1.2) by a test function, v ∈ H1
0 (Ω), and integrating on Ω gives

the weak form

(
g

(
x, t,u,

∂u

∂t

)
,v

)
Ω

+ (f(x, t,u,∇u),v)Ω +
d∑

i=1

(
∂

∂xi

ai(x, t,u,∇u),v

)
= 0.

(1.5)

Applying the divergence theorem (a specialization of Stokes Theorem, cf. §A, (A.17))

to (1.5), gives

(
g

(
x, t,u,

∂u

∂t

)
,v

)
Ω

+ (f(x, t,u,∇u),v)Ω −
d∑

i=1

(
ai(x, t,u,∇u),

∂v

∂xi

)
Ω

+
d∑

i=1

〈ãi,v〉 = 0, (1.6)

where ãi = ai on Γ\ΓN and a Neumann boundary condition on ΓN .

Assume the domain Ω is tessellated into simplices, Ωe, e = 1, . . . , N∆, such

that ∪N∆
e=1Ωe = Ω, and Ωi ∩ Ωj for i 	= j is either ∅ or a simplex of dimension d − 1.
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(We do not consider the case where the intersection’s dimension is lower than d−1.)

The collection of Ωe is referred to as the mesh. The tessellation induces a (d − 1)-

dimensional tessellation on Γ, denoted as Γe, e = 1, . . . , Nδ, such that ∪Nδ
e=1Γe = Γ

and Γi ∩ Γj for i 	= j is either ∅ or a simplex of dimension d− 2. When Γ is curved,

the tessellation may only be an approximation of Ω. This will be addressed in §2.

Applying (1.6) on the mesh gives

N∆∑
e=1

(
g

(
x, t,u,

∂u

∂t

)
,v

)
Ωe

+

N∆∑
e=1

(f(x, t,u,∇u),v)Ωe
−

N∆∑
e=1

d∑
i=1

(
ai(x, t,u,∇u),

∂v

∂xi

)
Ωe

+

d∑
i=1

Nδ∑
e=1

〈ãi(x, t,u,∇u),v〉Γe
= 0. (1.7)

A necessary approximation is the discretization of the solution space. As-

suming that the exact solution of (1.6) is u ∈ H1(Ω), then the space H1(Ω) is

approximated by the subspace SN , which is the space of functions spanned by a

complete set of polynomial basis functions of order p over the mesh. The basis func-

tions are denoted as Ni(x), i = 1, 2, . . . , N . (Obviously, N depends on p.) Similarly,

the space H1
0 (Ω) is approximated by the subspace SN

0 , where the basis functions

are zero on ΓD. Thus, one approximates a component of the solution uk as a linear

combination of basis functions

uk ≈ Uk =

Nk∑
i=1

aikNi(x), (1.8)

where the coefficients aik are scalars. The function space approximations are denoted

as the upper-case analog of the lower-case variable. The order of approximation of

u need not be the same for all components of u (Nj may not be equal to Nk for

j 	= k), leading to mixed methods [38]. A similar approximation is applied for the

test function v with the provision that the order of approximation of vk is the same

as the order of approximation of uk. Then, one may replace u and v by U and V
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respectively in (1.7), giving

N∆∑
e=1

(
g

(
x, t,U,

∂U

∂t

)
,V

)
Ωe

+

N∆∑
e=1

(f(x, t,U,∇U),V)Ωe
−

N∆∑
e=1

d∑
i=1

(
ai(x, t,U,∇U),

∂V

∂xi

)
Ωe

+

d∑
i=1

Nδ∑
e=1

〈ãi(x, t,U,∇U),V〉Γe
= 0, (1.9)

and taking care to set the coefficients so that U fulfills the boundary conditions,

resulting in a nonlinear system of equations for the coefficients of the basis functions

in U when (1.2) is time independent, or a system of nonlinear differential algebraic

equations (DAEs) otherwise. The exact form of the equations that arises is not

discussed here as this is well known [130, 146]. The above is intended to only cover

the nomenclature used.

There is a choice of polynomial basis functions available on a tessellation by

simplices. One choice is to use a class of basis functions which are hierarchic (e.g.

[43]). That is, if a complete set of hierarchic basis functions were available for order

p, denoted as Ni, i = 1, 2, . . .Np, with the basis function arranged from smallest

order polynomial to largest, then there exists a number Np−1 < Np such that the

set of basis functions Ni, i = 1, 2, . . .Np−1 is a complete basis function set of order

p − 1. This implies that higher order basis functions serve as corrections to lower

order approximations.

Finally, it should be noted that the size of the elements in the mesh need not

be uniform. Indeed, as the computation progresses, it is shown in §3.2 and §3.3 to

be very efficient to alter — or adapt — the size of the elements to efficiently solve

the problem. This process is known as h-adaptivity. Furthermore, although not

used in this thesis, it is also possible to change the order of approximation locally

over a patch of elements, and is known as p-adaptivity. On occasions when both

types of adaptivity are used, the method is denoted as hp-adaptivity.



CHAPTER 2

TABLE LOOK-UP METHOD

2.1 Introduction

Efficient implementation of p- and hp-adaptive finite element methods on serial

and parallel computers has been the focus of recent research [52, 53, 65, 103, 109].

Issues related to element-level computation on curved domains involve

1. the choice of variable-order shape functions,

2. the construction of geometric approximations on large elements, and

3. the efficient evaluation of integrals appearing in element matrices and vectors.

Dey et al. [54, 55, 120] address the first two issues and present a framework for spec-

ifying and evaluating variable-order shape functions on conforming, unstructured

meshes containing mixed topology elements. In part, they also discuss numerical

integration [55].

Traditional Gaussian integration techniques [2] on tetrahedral elements are un-

available for integration orders beyond eight [48]. Although higher order integration

methods exploiting tensor products are available [59, 76, 121], they are not effi-

cient when used with curvilinear elements or elements not admitting tensor-product

shape functions. If the integrand is a polynomial then the necessary integrals can be

precomputed and stored. This idea has been used with hierarchical finite elements

for bilinear functionals on two-dimensional domains [116]. Precomputed matrices

for triangular elements for second-order elliptic partial differential equations on pla-

nar domains are also available [122]. Atkins and Shu [15] used this approach with

the discontinuous Galerkin method for hyperbolic equations. Symbolic computation

employs a similar idea [101, 102, 141].

In curvilinear domains, the integrands are not polynomials even when co-

efficients and bases are; hence, the precomputed integral tables cannot be ap-

plied directly to the entire integrand. Here, we develop integral tables for three-

8
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dimensional curvilinear finite elements associated with p-refinement by interpolat-

ing non-polynomial parts of the integrand by polynomials to an order sufficient to

ensure the optimal convergence rate of the finite element solution and evaluating

the resulting element level polynomial integrals exactly using precomputed tables.

Symmetries in the polynomial integral entries are identified using the concept of

parametric coordinate permutations to reduce the number of unique nonzero entries

that require precomputation and storage.

The discretization error of this procedure may be reduced by a proper choice

of the interpolating polynomial. Chen and Babuška [41, 42] construct an interpolant

on tetrahedra where the error constant has a linear growth with polynomial degree.

The points are symmetrically disposed on tetrahedra and are the minimum number

necessary to interpolate a complete polynomial of a given degree.

Several methods of integration are reviewed in §2.2. They all exhibit some

deficiencies that are addressed by the table look-up method described in §2.3. Next,

techniques for optimizing the implementation of the table look-up method are pre-

sented in §2.4 followed by theoretical bounds on the integration error in §2.5. Finally,

a numerical example comparing common methods and the table look-up method is

given in §2.6.

2.2 Elemental Integrals and Their Approximation

In solving (1.9), one must compute integrals over a mesh element, Ωe. For

example, we consider a special case of (1.2) in three-dimensions,

c(x)∇2u(x) + κ2u(x) = 0, x ∈ Ω, (2.1)

where u is a scalar variable and c(x) is a given function, known as the generalized

Helmholtz equation. (2.1) gives rise to the special case of (1.9)

N∆∑
i=1

(
κ2U, V

)
Ωe

−
N∆∑
i=1

(c(x)∇U,∇V ) +

Nδ∑
i=1

〈U, V 〉 = 0. (2.2)
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We will focus on first two terms of (2.2) noting that the treatment of the last term is

handled in a similar manner but in a lower dimension. In the numerical Helmholtz

equation examples of §2.6, c(x) = 1, and we use polynomial basis functions. How-

ever, the ideas presented in this chapter may be readily generalized to (1.2). This

will be discussed in §5.2.

A typical contribution to an element stiffness, mass, etc. matrix Ke of a second-

order linear partial differential equation, such as (1.2), has the form [80]

Ke
ij =

∫
Ωe

∂αNi

∂xα
k

c(x)
∂βNj

∂xβ
�

d|x|, α, β = 0, 1, k, l = 1, 2, 3, (2.3)

where Ni is a shape function, x = [x1, x2, x3]
T is a position vector, d|x| is a volume

infinitesimal, c(x) is a coefficient of the differential system or a linearization of the

nonlinear problem, and Ωe is the domain of element e. With α = β = 1, the entries

(2.3) correspond to those of a typical element stiffness matrix Ke; α = β = 0 yields

entries of an element mass matrix Me; α = 0, β = 1 yields entries of a convection

matrix Ce; and α = 0 and omission of the second shape function yields terms of a

load vector fe. Indeed, integrals arising from natural boundary conditions also have

this form on domains Γe which is the boundary of Ωe [80].

Since quadrature rules are not available for an arbitrarily shaped tetrahedral

elements, Ωe, the integral is mapped from Ωe onto a canonical element, T , for which

quadrature rules are known, as shown in Figure 2.1.

The original element, Ωe, may have one or more curved faces, in which case

the transformation is nonlinear. Otherwise, the transformation is linear. The con-

struction of the transformation may be found in [127] and [55].

Transforming (2.3) to an integral on a canonical element T yields an integral

of the form

I =

∫
T

Θ(ξ)Υ(ξ)d|ξ| (2.4a)

with ξ = [ξ1, ξ2, ξ3]
T where

Θ(ξ) =
∂αNi

∂ξα
m

∂βNj

∂ξβ
n

, Υ(ξ) = c(x(ξ))
∂αξm

∂xα
k

∂βξn

∂xβ
�

J(ξ), (2.4b)
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Figure 2.1: Mapping of an arbitrary element Ωe to a canonical element T .

for α, β = 0, 1 and m, n, k, l = 1, 2, 3, and x(ξ) is a mapping of Ωe in physical x

space to T in computational ξ space having the Jacobian

J(ξ) = det




∂x1

∂ξ1

∂x1

∂ξ2

∂x1

∂ξ3

∂x2

∂ξ1
∂x2

∂ξ2
∂x2

∂ξ3

∂x3

∂ξ1

∂x3

∂ξ2

∂x3

∂ξ3


 . (2.5)

The function Θ(ξ) is a polynomial with polynomial shape functions and, hence,

is easily integrated. The metrics ∂ξm/∂xk are functions of 1/J(ξ) and are generally

not polynomials even when x(ξ) is polynomial. The exception occurs with linear

transformations where J is constant. Even in this case, c(x(ξ)) need not be a

polynomial; therefore, Υ(ξ) is generally not a polynomial and, typically, will not be

integrable by symbolic means.

Without exact integration, (2.4a) is approximated in a manner consistent with

the accuracy of the finite element interpolation of the exact solution of the partial
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differential system. If the basis contains complete polynomials of at most degree p,

then Θ(ξ) is a complete polynomial of at most degree 2p.

The complexity of quadrature procedures is appraised in terms of the number

of times the integrand is evaluated. For the purposes of computing and comparing

the complexity of various methods, we assume the integral must be calculated to

order � accuracy, i.e., the quadrature procedure must be exact for all polynomial

integrands of degree � or less.

2.2.1 Symmetric Gaussian Quadrature

Symmetric Gaussian quadrature [49] provides an approximation of (2.4a) hav-

ing the form

I ≈
ns(�)∑
ν=1

wνΘ(ξ(ν))Υ(ξ(ν)) (2.6)

where wν and ξ(ν), ν = 1, 2, . . . , ns(�), are the Christoffel weights and evaluation

points, respectively, and ns(�) is the number of evaluation points needed for order

�. The evaluation points are symmetrically placed within T .

Symmetric Gaussian quadrature has been the preferred integration rule for use

with finite element methods since rules with a (nearly) minimal number of function

evaluations for a given order are known for low orders [48]. The complexity of an

evaluation is O(�3) [49, 84] for a method of order �. Unfortunately, the points and

weights are only known to order eight for integration on tetrahedra [48].

2.2.2 Generalized Product Rule (GPR) Quadrature

By mapping T to a [−1, 1]× [−1, 1]× [−1, 1] cube, (2.4a) can be expressed as

a product of three one-dimensional integrals [54]. The mapping from T to the cube,

shown in Figure 2.2.2, is given by [54]

ξ1 =
1

8
(1 + ξ′1) (1 − ξ′2) (1 − ξ′3) (2.7)

ξ2 =
1

4
(1 + ξ′2) (1 − ξ′3) (2.8)

ξ3 =
1

2
(1 + ξ′3) (2.9)

(2.10)
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so that the Jacobian is

∣∣∣∣∂ξi

∂ξ′j

∣∣∣∣ =
1

64
(1 − ξ′2) (1 − ξ′3)

2
. (2.11)

ξ
3

ξ
1

ξ
2

ξ
3

ξ
1

ξ
2

’

’

’

1 (0,0,0) 3 (1,0,0)

4 (0,1,0)

2 (0,0,1)

Figure 2.2: GPR coordinate transformation

Using one-dimensional Gaussian quadrature, the complexity in each coordinate

direction is O(�); thus, the total complexity is O(�3). This method of integration is

known as a Generalized Product Rule (GPR) [49] and is preferred to the symmetric

product rules of Grundmann and Möller [71] since the GPR weights are positive

[90]; thus, accuracy is not lost due to round-off error. Since neither the shape nor

the symmetry of the tetrahedral element is used, GPR integration will use more

points than symmetric Gaussian quadrature for a given order; however, the rules

for one-dimensional Gaussian quadrature are available for all �.
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2.2.3 Sum Factorization and Vector Quadrature

If Θ(ξ)Υ(ξ) can be factored as F1(ξ1)F2(ξ2)F3(ξ3) then (2.4a) is evaluated in

O(�) operations as [59]

∫ 1

−1

∫ 1

−1

∫ 1

−1

F1(ξ1)F2(ξ2)F3(ξ3)dξ1dξ2dξ3 =

∫ 1

−1

F1dξ1

∫ 1

−1

F2dξ2

∫ 1

−1

F3dξ3. (2.12)

This method of quadrature is known as sum factorization.

However, for curved domains, Θ(ξ)Υ(ξ) cannot be factored exactly. Therefore,

Θ(ξ)Υ(ξ) must be interpolated to a tensor-product form, requiring O(�3) operations.

A serious difficulty in interpolating the integrand in this manner is that the basis

is not complete for order �. Thus, if Fν , ν = 1, 2, 3, are polynomials whose degrees

sum to � or less, then the functional factorization cannot represent all polynomials

of three variables of order � or less. For example, the function 1 + ξ2 + 2ξ3 + 3ξ2ξ3

cannot be exactly represented as a product F1(ξ1)F2(ξ2)F (ξ3) of polynomials. Thus,

a higher-order interpolation would be needed to achieve the same order of accuracy

as Gaussian quadrature, making sum factorization inefficient.

Suppose that Θ(ξ) and Υ(ξ) are approximated as

Θ(ξ) ≈
nv(�)∑
ν=1

aνϕν(ξ), Υ(ξ) ≈
nv(�)∑
ν=1

bνϕν(ξ) (2.13)

with a basis {ϕν(ξ)}nv(�)
ν=1 that is orthogonal in L2(T ). Then (2.4a) is approximated

as

I ≈
nv(�)∑
ν=1

aνbν . (2.14)

This method is called vector factorization. Evaluation of the sum and interpolation

has O(�3) complexity. In comparison, the table look-up method (§2.3) will require

only the interpolation of Υ, and thus be less expensive than vector quadrature.

Thus, sum factorization and vector quadrature both require the solution of

an interpolation problem on curved domains. Due to the cited inefficiencies, these

quadrature methods are not considered further.
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2.3 Integration by Table Look-Up

As an alternative to the quadrature techniques of §2.2, we describe a table

look-up procedure where the non-polynomial portion Υ of (2.4a) is approximated

by the polynomial of degree q

Υ(ξ) ≈ Υ∗(ξ) =

nt(q)∑
ν=1

aνφν(ξ), (2.15a)

where

nt(q) =
(q + 1)(q + 2)(q + 3)

6
(2.15b)

for a complete polynomial of degree q, and the result is integrated exactly to yield

I ≈
∫

T

Θ(ξ)Υ∗(ξ) d|ξ| =

nt(q)∑
ν=1

aν

∫
T

Θ(ξ)φν(ξ) d|ξ|. (2.16)

While any basis may be used in (2.15a), it seems expedient to use the same

basis function as the finite element solution’s, i.e. φν = Nν , ν = 1, 2, . . . , nt(q). If

the coefficients aν , ν = 1, 2, . . . , nt(q), are to be determined by interpolation, then

Chen and Babuška [41, 42] provide a “nearly optimal” set of points which limit

the growth of the constant of the interpolation error on tetrahedra to O(q). The

points are symmetrically disposed on T and are the minimal number to interpolate a

polynomial of degree q. Since Υ depends only on the partial differential system and

the mesh geometry (cf. (2.4b)), it requires only one interpolation for all combinations

of i and j in (2.4b).

The determination of aν , ν = 1, 2, . . . , nt(q), in (2.15a) by interpolation re-

quires the solution of the linear algebraic system

Φa = d (2.17a)

where

Φmn = Nn(ξ(m)), dm = Υ(ξ(m)), m, n = 1, 2, . . . , nt(q), (2.17b)
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with ξ(m), m = 1, 2, . . . nt(q), being the Chen and Babuška [41, 42] interpolation

points. The algebraic complexity of solving (2.17) depends on the finite element ba-

sis. Use of a Lagrangian basis [80] renders it diagonal. The situation is more complex

with the hierarchical bases commonly used for p-refinement [43, 130]. Elements of

the hierarchical basis are associated with a specific mesh entity (region, face, edge,

or vertex) and they vanish, to maintain continuity, on the boundary of all regions

(finite elements) not containing that entity. The Chen and Babuška interpolation

points are also on vertices, edges, faces, and element interiors. Thus, an interpola-

tion at a vertex will only involve the (linear) shape function that is identified with

that vertex. All other shape functions vanish there, and the coefficient in (2.17) that

is associated with the vertex will be explicitly determined. Likewise, when inter-

polation occurs at a point on an edge, the only nontrivial coefficients of (2.17) are

those identified with the edge and the two vertices bounding the edge. With the ver-

tex coefficients determined, the edge coefficients may determined by block forward

substitution. Determination of coefficients associated with faces and finite elements

follow in similar fashion. Thus, (2.17) may be put in a block lower triangular form

with coefficients and interpolation points ordered and determined by vertices, edges,

faces, and regions. Unfortunately, there are O(q3) points and unknowns within ele-

ment interiors, so this ordering leaves a large block to be determined when q is large.

Assuming a direct solution procedure saving the factorization of Φ, the algebraic

complexity of the block forward substitution would still be O(q6), as it would be

for an arbitrary ordering. In determining the computational cost, we assume that

integrand evaluations incur a much larger expense than algebraic operations; thus,

we neglect the O(q6) cost involved with forward substitution. Moreover, since the

interpolation is split over mesh entities, the coefficient bounding the cost is small

(< 1/6); thus, for moderate q’s used in practical problems, neglecting the forward

substitution cost is justified.

In addition to this algebraic cost, there is also the complexity associated with

evaluating Υ in (2.17) at O(q3) points (cf. (2.15b)). Other costs associated with

accessing memory to retrieve the value of an integral (2.4a) for a particular choice

of α, β, etc. are assumed to be negligible. We show in §2.5 that q ≥ p is required to
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maintain the optimal O(hp) convergence rate of the finite element method with exact

integration; thus, the complexity of table look-up has the same O(p3) complexity

associated with other quadrature methods (§2.2). If the integrand were polynomial,

table look-up would be exact with an O(1) complexity.

The table look-up method has several advantages:

1. The topology-dependent basis and interpolation points use fewer evaluations

than, e.g., product formulations.

2. A hierarchical basis with the Chen and Babuška [41, 42] interpolation points

renders the interpolation problem (2.17) block lower triangular, and provides

computational savings for moderate values of q.

3. The method presents a general approach to high-order integration on geomet-

rically complex regions. The basis need not satisfy any special properties.

4. When Υ(ξ) is constant, table look-up provides exact integration in O(1) time.

5. Table look-up may be used with a non-polynomial but integrable basis [16].

Relative to other quadrature methods, table look-up requires the solution of an

interpolation problem on each finite element; however, this problem must only be

solved once for each differential equation and mesh.

2.4 Implementation and Optimization of Table Look-Up

The integration table contains values of

∫
T

∂αNi(ξ)

∂ξα
m

∂βNj(ξ)

∂ξβ
n

Nk(ξ) d|ξ|. (2.18)

With shape functions of degree p and interpolation of degree q, the tables for Ke

or Me would contain O(p6q3) entries for second-order, three-dimensional problems.

Various symmetry and orthogonality considerations can reduce the size of these

tables, and we describe an approach based on the shape functions of Carnevali et

al. [43].
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Repetitive zero and nonzero entries in the tables need not be stored. Instead,

memory may be reduced by using integers to point to the unique (double-precision)

floating point entries. This is done by using two arrays: one array holds unique

floating point results of the integrals in a result table, and a second index table

stores integers pointing to the result. A function converts the index i, j, k, m, n, α, β

of an integral (2.18) to a unique entry in the index table which gives the appropriate

answer in the result table. The tables are represented as one-dimensional arrays to

reduce the number of pointers. Entries in the result table were generated using the

symbolic integration system PARI [26], which manipulates polynomials in factors of

5 to 100 times faster than interpreted symbolic packages, such as Maple [97].

A reduction of the dimension of the index table is obtained from the sym-

metry of integration under cyclic permutation of the parametric coordinates, since

integration is invariant under coordinate rotations. For example,

∫
T

∂αNi (ξl, ξm, ξn)

∂ξα
l

∂βNj (ξl, ξm, ξn)

∂ξβ
n

Nk (ξl, ξm, ξn) d|ξ| =∫
T

∂αNi (ξm, ξn, ξl)

∂ξα
m

∂βNj (ξm, ξn, ξl)

∂ξβ
l

Nk (ξm, ξn, ξl) d|ξ| (2.19)

A further reduction in size is obtained by exploiting the symmetry or anti-

symmetry of the shape functions under a permutation of variables. For example,

the edge shape functions of Carnevali [43] have the identity

Ni(ξ, η) = s(Ni) × Ni(η, ξ), (2.20)

where s(Ni) is 1 if the degree of Ni is even and −1 otherwise. Thus, for example,

one needs only to store integrals of

∫
T

Ni (ξ1, ξ2, ξ3) Nj (ξ1, ξ2)Nk (ξ1, ξ2, ξ3) d|ξ| (2.21)

but not of ∫
T

Ni (ξ1, ξ2, ξ3) Nj (ξ2, ξ1)Nk (ξ1, ξ2, ξ3) d|ξ| (2.22)

since the value of (2.22) is the same or the negative of (2.21) depending on the order
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Ke Me fe

Asymp. Compact Asymp. Compact Asymp. Compact
Entries (Millions) 0.5 0.05 0.5 0.04 0.007 0.0005

Size (MB) 4 0.4 4 0.32 0.06 0.004

Table 2.1: Unique nonzero precomputed entries for p = 6 compared to
asymptotic estimates for full dense matrices and vectors.

of Nj .

Table 2.1 shows the reduction in size of the index table by exploiting sym-

metries present in the shape functions of Carnevali et al. [43] with p = 6. The

asymptotic entries in Table 2.1 assume that the elemental matrices and vectors are

dense and asymmetric. The shape functions of Carnevali et al. [43] also satisfy an

orthogonality condition when the difference in degrees of the product of two shape

function derivatives in Ke exceeds four. This sparsity, however, has not been ex-

ploited. Furthermore, if the element matrices are symmetric, this allows a further

reduction of the number of index entries.

2.5 Integration Error Estimates

We examine the errors due to approximate integration for a Galerkin problem

of the form: find u ∈ H1
0 such that

A(v, u) = (v, f), ∀v ∈ H1
0 , (2.23)

where A(v, u) is a bilinear form satisfying the conditions of continuity and coercivity

on H1

|A(v, w)| ≤ C1‖v‖1,Ω‖w‖1,Ω, A(v, v) ≥ C2‖v‖2
1,Ω, ∀v, w ∈ H1

0 (Ω). (2.24)

The linear form (v, f) denotes the L2 inner product over Ω. We also let | · |k,Ω, k ≥ 1,

denote a seminorm involving derivatives of only order k on Hk(Ω), as opposed to

the norm on Hk(Ω) where the derivatives were taken for all derivatives of order k

and less.
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With an exact integration and exact representation of Ω, a finite element

solution U ∈ SN
0 ⊂ H1

0 converges as O(hp) in H1, where h is the maximum length

of an element edge. The software used in §2.6 employs an exact mapping of Ωe

to the canonical element T [55]; thus, perturbations of this rate are only due to

approximate integration. Towards quantifying this effect, let the strain energy and

load potential in (2.23) be approximated as A∗(v, u) and (v, f)∗. If A∗(U, U) is

coercive, then the finite element solution U∗ ∈ SN
∗,0 with inexact integration satisfies

[136]

‖u − U∗‖1,Ω ≤C inf
V ∈SN

0

{
‖u − V ‖1,Ω + sup

W∈SN
0

|A(V, W ) − A∗(V, W )|
‖W‖1,Ω

+ sup
W∈SN

0

|(W, f) − (W, f)∗|
‖W‖1,Ω

}
.

(2.25)

In order to maintain the optimal rate of convergence, the two perturbations in

(2.25) must also converge as O(hp). A regularity assumption is necessary for our

perturbation analysis.

Definition 1. Let v ∈ Hs(T ), s ≥ 0, then the transformation from T to Ωe is

regular if the Jacobian J is bounded and there exists a constant C > 0 such that

|v|s,T ≤ C

{
inf
ξ∈T

J(ξ)

}− 1
2

hs
e‖v‖s,Ωe (2.26)

where he is the length of the longest edge of Ωe.

As noted, the Jacobian J of the transformation is not necessarily a polynomial;

however, if it is then optimal convergence results are available as indicated in the

following theorem.

Theorem 1. Assume J(ξ), ξ ∈ T , is a polynomial of degree q satisfying (2.26),

then the perturbation errors in (2.25) are O(hp) when integrals (2.4a) are evaluated

by Gaussian quadrature of order 2p − 1 + q.

Proof. Wait and Mitchell [136] establish the result when A(v, u) corresponds to a

Laplacian-like operator. The results may easily be generalized to situations where
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terms of the form Cvu, C > 0, are present in A(v, u).

For integration by table look up, we concentrate on a single element Ωe and

establish that

|Ae(V, W ) − A∗,e(V, W )| ≤ Chp
e‖V ‖p+1,Ωe‖W‖1,Ωe, (2.27)

where Ae is the portion of A on Ωe. Having done this, it is clear that the bounds in

(2.25) on Ω will be satisfied. Bounds for the perturbation involving (W, f) proceed

along similar lines and will not be presented.

Definition 2. Let Lk(x) be a Lagrange basis function over the domain T , with

Li(tj) = δij, where the set of interpolation points is tj. Assume the interpolation

points are chosen such that the set Lk, k = 1, . . . , Nq, is complete to order q. Then

the Lebesgue constant is [42]

λq(T ) = sup
ξ∈T

Nq∑
k=1

|Lk(ξ)| . (2.28)

By definition, the Lebesgue constant is dependent on the location of the in-

terpolation points as well as the order. The optimality of the interpolation points

of Chen and Babuška [42] satisfy λq(T ) = O(q), unlike other interpolation points

where λq(T ) may grow exponentially in q [41, 42]. This property is used in Theorem

2.

Proposition 1. Assume Υ ∈ C∞(T ). Then

‖Υ − Υ∗‖∞,T ≤ C1(C2 + λq(T ))
|T |q−2

(q/3)!
|Υ|q,T , q > 2, (2.29)

where λq(T ) is the Lebesgue constant and |T | is the volume of the canonical tetra-

hedron (= 1/6 for a right unit tetrahedron).

Proof. Let Pq(T ) be the space of polynomials of degree q or less on T , then [41]

‖Υ − Υ∗‖∞,T ≤ (C2 + λq(T )) inf
ρ∈Pq(T )

{
sup
ξ∈T

|ρ(ξ) − Υ(ξ)|
}

(2.30)
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Bounding the least deviation by an interpolation error yields (2.29) [33].

Let us apply this result to a single term in the strain energy.

Theorem 2. Assume (2.26) holds, interpolation is performed at the points of Chen

and Babuška [41], and Υ ∈ C∞(T ), then there exists a constant C1 > 0 such that

∣∣∣∣
∫

T

Θ(Υ − Υ∗) d|ξ|
∣∣∣∣ ≤ C1(C2 + q)

|T |q−2

(q/3)!
‖V ‖p+1,Ωe‖W‖1,Ωe‖Υ‖q,Ωeh

q
e, q > 2.

(2.31)

Proof. Adding the squares of (2.26) with s = 0, 1 yields

‖v‖1,T ≤ C

{
inf
ξ∈T

J(ξ)

}− 1
2

‖v‖1,Ωe. (2.32)

Let Ni and Nj in (2.4b) be designated as V and W for consistency with (2.27)

and use the generalized Hölder inequality and (2.29) to obtain

∣∣∣∣
∫

T

Θ(Υ − Υ∗) d|ξ|
∣∣∣∣ ≤ C1(C2 + λq(T ))

|T |q−2

(q/3)!
‖V ‖1,T‖W‖1,T |Υ|q,T . (2.33)

Using the regularity conditions (2.26) and (2.32) yields

∣∣∣∣
∫

T

Θ(Υ − Υ∗) d|ξ|
∣∣∣∣ ≤ C1(C2 + λq(T ))

|T |q−2

(q/3)!
‖V ‖1,Ωe‖W‖1,Ωe‖Υ‖q,Ωeh

q
e. (2.34)

The Chen and Babuška [41] interpolation points satisfy λq(T ) = O(q). This with

replacement of ‖V ‖1,Ωe by ‖V ‖p+1,Ωe gives (2.31).

Corollary 1. Under the conditions of Theorem 2 then (2.27) is satisfied with q = p,

p > 2.

Proof. The energy difference |Ae(V, W )−A∗,e(V, W )| is a linear combination of terms

proportional to the left side of (2.31). Since the term

(C2 + q)
|T |q−2

(q/3)!
‖Υ‖q,Ωe ≤ C (2.35)

for fixed q, then (2.31) is bounded by O(hq
e) terms. Thus, perturbations due to

quadrature are O(hp) if q = p.
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Thus, we have proved that the table look-up method will converge optimally

at the same rate as the finite element method if the order of interpolation of the

non-polynomial term in the integrand is the same as the order of interpolation of

the finite element solution.

2.6 Numerical Examples

Our numerical examples involve solutions of the Helmholtz equation (2.1) sub-

ject to the Neumann data

∂u

∂r
=

∂

∂r

(
eiκr

r

)
, x ∈ ∂Ω, (2.36)

where r is a spherical distance. Problems are solved on various three-dimensional

domains Ω centered at the origin having planar and curvilinear boundaries. With

the specified boundary conditions, the solution of the boundary value problem (2.1,

2.36) is

u =
eiκr

r
(2.37)

regardless of the shape of Ω.

Results are obtained with wave number κ = 3 by uniform p-refinement of

an initial mesh using integration by table look-up, symmetric Gaussian quadrature,

and GPR. Results with symmetric Gaussian quadrature are only presented for p ≤ 4

since higher-order methods are unavailable. The integrals leading to the stiffness and

mass matrices for this problem are of the form (2.3) with α = β and c(x) constant.

The integrals are computed to the minimum order of Gauss quadrature or table

look-up interpolation to maintain optimal convergence as discussed in §2.5. The

times to compute Ke and Me are compared for the various quadrature rules. Since

the cost of doing the polynomial interpolation of Υ(ξ) terms is O(1) for domains

with planar boundaries, it demonstrates the savings that can be realized using the

table look-up method in elemental computations for elements that do not have any

curvilinear boundary entities.

Example 1. We solve (2.1, 2.36) with Ω an octant of the region between two

concentric cubes centered at the origin and having edge lengths one and two. The
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mesh describing Ω has 1261 elements, all having planar faces.

1e-05

0.0001

0.001

0.01

0.1

1

100 1000 10000 100000

G
lo

ba
l E

rr
or

DOF

Helmholtz Radiation Problem with k=3 Between Two Concentric Cubes with 1261 Elements

"H1 Error from Table Look-Up"
"H1 Error from GPR"

"H1 Error from Symmetric Gauss"
"L2 Error from Table Look-Up"

"L2 Error from GPR"
"L2 Error from Symmetric Gauss"

Figure 2.3: Global errors in L2 and H1 as a function of DOF for Example
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In Figures 2.3 and 2.4 we present the global error and the computational time

as a function of the degrees of freedom (DOF) for computations performed with

p ranging from 1 to 5. All integration methods are exact, so the finite element

solution errors are decreasing at an exponential rate with p (Figure 2.3). Results

with table look-up (with q = 0 for this example) are between five and ten times

faster than symmetric Gaussian quadrature and between ten and thirty seven times

faster than GPR. Even though the table look-up method has a running time of O(1),

the time per element increases with order in Figure 2.4 since the number of integrals

calculated per element increases.

Example 2. We solve (2.1, 2.36) with Ω being the upper half of a π/6 radian

sector between two concentric spheres of radius one and three centered at the origin.

From Figure 2.5, the table look-up method is competitive with the other meth-

ods. The lack of an exponential convergence rate at higher orders is explained in

the next section.

Results in Figure 2.6, likewise, indicate the superiority of the table look-up

method at higher orders. Symmetric Gaussian quadrature was faster at p = 4 but

higher-order formulas are unavailable. For methods which are available at higher

order, clearly, the table look-up method is faster. While the time the table look-up

method takes seems to be approaching the GPR, it should be noted that some soft-

ware speedups, such as efficient cache utilization and more efficient solutions of the

linear algebraic systems, have not been implemented in the table look-up method;

thus, resulting in somewhat slow timings for larger orders. The GPR procedures

have, however, been optimized. Nevertheless, the potential of this method should

be clear for higher orders. The results show the theory presented in §2.5 holds even

for problems where A∗(U, U) is not coercive. However, we mention in passing that

we have obtained similar results for the Poisson equation for which the theory holds.

There is a lack of optimal convergence at higher orders in Figure 2.5. This can

be explained for Gauss quadrature by the following theorem.

Theorem 3. Let In(f) be the n-th order quadrature interpolant of f in a d-dimensional
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domain Ωe. Then

∣∣∣∣
∫

Ω

f(x)dΩe − In(f)

∣∣∣∣ ≤ C

(n + 1)!
‖f‖∞,Ωe, (2.38)

where C contains a factor of max
{|Ωe| , |Ωe|n+1}.

Proof. cf. [83]

The lack of optimal convergence at higher orders for the table look-up method

can be explained by (2.35). In both cases, (2.38) and (2.35), the error is bounded

by the n-th derivative of the integrand or Υ. If the maximum of the n-th derivative

increases faster than 1/(n + 1)!, then the error does not decrease with increasing

integration or interpolation order. Plotting the absolute value of the maximum of

∂nJ

∂rn
/(n + 1)! (2.39)

versus n in Figure 2.7, we show that the ratio is increasing thus explaining the lack

of optimal convergence.
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Figure 2.7: Ratio of the nth derivative of the Jacobian to (n + 1)!.
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2.6.1 Analysis of the Numerical Examples

In our two numerical examples, we have shown two cases where the table

look-up method compared favorably with traditional methods. The examples with

planar elements are the most favorable for table look-up, which produces the exact

result in O(1) time.

The worse-case problems for table look-up occur when interpolating a term

that has an exponentially increasing derivative. Even in this case, table look-up

is competitive with other methods. Since Gauss quadrature rules interpolate the

entire integrand, the polynomial that multiplies the non-polynomial term reduces

the rate at which the derivative of the interpolant grows.

Thus, table look-up is ideal for planar elements or Υ(ξ)’s derivatives grow

slowly. In meshes with a majority of elements in the interior, most of the elements

are planar. Thus, especially for such problems, the table look-up method is the clear

choice of integration method.

2.7 Discussion

A new technique for effective numerical computation of the element level in-

tegrals was presented. It is based on approximating the non-polynomial part of the

integrand by polynomials followed by use of precomputed values of the resulting

integrals. The table look-up method is well suited for computation on curved do-

mains compared to other methods since it is more efficient, more flexible, and has

fewer limitations on the maximum order of the method available. The Helmholtz

equation showed the validity of these assertions.

While using optimal interpolation points [42] limits one to q = 8, table look-up

may be used with other non-optimal interpolation points (such as equidistributed)

which do not have an upper limit on their order, although the error may be greater,

due to a larger Lebesgue constant. Thus, using non-optimal interpolation points,

one may consider any order of integration using the table look-up method.

The number of precomputed integral entries required to be stored for vari-

ous element level integrals can be reduced by investigating additional symmetries

in the shape functions and their derivatives, if they exist. The efficiency of using
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polynomial integrand approximation followed by use of precomputed values for ele-

ment level integrals needs to be evaluated for three-dimensional element topologies

besides tetrahedron, such as in spheres for meshless methods [32].



CHAPTER 3

APPLICATIONS IN TWO DIMENSIONS

3.1 Introduction

In this chapter, three different problems are solved using a prototype PDESE

code written by Aiffa and the author. The code is discussed in §3.2.3. The code

falls short in several categories of being a PDESE:

• Problems are very hard to code correctly,

• No warm restarts of DASPK, so it is not the most efficient solver,

• New methods are difficult to incorporate, and

• It handles problems only in two dimensions.

Nevertheless, with some modifications, the prototype PDESE was successful in solv-

ing adaptively many problems of interest, such as those in §3.2 through §3.4. Due to

the adaptive procedures, it is shown that the prototype PDESE is efficient relative

to more traditional methods. In §4, a more modern code, Trellis, will be shown to

have addressed the above shortcomings.

3.2 Adaptive Finite Element Analysis of the Anisotropic

Biphasic Theory of Tissue-Equivalent Mechanics

3.2.1 Introduction

The mechanical interaction of motile cells with collagen fibers, present in

bones, tendons, and other connective tissue (used generally for both small fibers

(fibrils) and fibers) in the surrounding extracellular matrix (ECM), is fundamental

to cell behavior in soft tissues and tissue equivalent (TE) systems (highly entangled

networks of collagen fibers and, thus, to many biomedical problems and tissue engi-

neering applications [125, 95, 79, 93, 77, 68, 138]). TE systems may be configured in

30
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a laboratory. The anisotropic biphasic theory (ABT) describes the mechanical inter-

actions between cells and the ECM [21]. It accounts for the biomechanical feedback

loop in which cells deform the surrounding network of ECM fibers, which induces

network alignment with inhomogeneous deformation and cell alignment (contact

guidance). Cell alignments may be enhanced by the application of a magnetic field

as shown in Figures 3.1 and 3.2 [133].

Figure 3.1: Initially cells are aligned by a magnetic field.

Understanding TE mechanics is central to the design and fabrication of bioar-

tificial tissues, including skin [94] and artificial arteries [93, 133]. Previously, the

ABT equations were solved using non-adaptive methods [133]. In this investigation,

we solve the system of nonlinear partial differential equations governing the ABT

theory in §3.2.2 by an adaptive finite element software system described in §3.2.3

[9]. To be more specific, solutions are obtained within a method-of-lines framework

using finite element techniques in space and backward difference formula (BDF)
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Figure 3.2: At t = 36 hours, there is enhanced alignment.

software in time. The spatial mesh is adaptively refined, coarsened, and relocated

(hr-refinement) in response to an error indicator covered in §3.2.3.4 and material

deformation. With this technology, we show that solutions of the ABT system and,

hopefully, other bio-chemical systems can be obtained with greater efficiency and

reliability.

The adaptive finite element software has been applied to three axisymmetric

ABT problems in order to demonstrate its advantages relative to more traditional

solution techniques in §3.2.4. Problems involve a cylindrical isometric cell trac-

tion assay (ICTA), covered in §3.2.4.1 [22], a model bioartificial artery in §3.2.4.2

[133, 93], and a model bioartificial artery with reinforced ends in §3.2.4.3. Each

problem undergoes extensive material distortion which is accurately tracked by mesh

relocation. Two of the problems also have singularities due to discontinuities in the

boundary data and the geometry (corners). Sharp solution gradients near these

singularities are accurately resolved by automatically placing a graded mesh within
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these regions. In the cylindrical ICTA example, the adaptive method produced a so-

lution using only 16% of the degrees of freedom required by a uniform-mesh solution

having comparable accuracy.

3.2.2 Anisotropic Biphasic Theory of Tissue-Equivalent Mechanics

The entrapment of cells in a collagen gel to create an in vitro model TE was

pioneered in the 1970s [31] and quickly emerged as an efficient and easily controllable

method for studying cell behavior. TEs have been used extensively to study the

contractile behavior of fibroblasts (cells in which fibrous tissue is formed) [64, 72, 98]

because the volume change of the TE (a cell-induced contraction accompanied by

the separating out of the fluid) provides a quantifiable measure of cell contractility.

Figure 3.2.2 shows an example of the contractile behavior in the ICTA case which

is discussed in §3.2.4.1.

Figure 3.3: Illustration of contractile behavior in ICTA.

In order to facilitate the rational interpretation of in vitro contraction experi-

ments and the design of artificial tissues, Barocas and Tranquillo [21] developed an

ABT to describe the dynamic behavior of TEs that accounts for interaction between

• cell growth and migration;

• the biphasic nature of the TE, containing a collagen phase and an interstitial

water phase;

• contractile stress exerted by the entrapped cells, driving the compaction of the

TE [98];
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• viscoelastic fluid behavior of the collagen matrix [19, 87];

• deformation-induced anisotropy in the collagen matrix; and

• contact guidance (the preferential alignment of cells in the characteristic di-

rection of matrix alignment, which in turn leads to anisotropic cell migration

and contractile stress [57]).

The mathematical statement of the model [21] is:

1

2G
σ̇ +

1

2µ
σ =

1

2

[∇v + (∇v)T
]
+

ν

1 − 2ν
(∇ · v)I, (3.1)

∇ · [θ(σ + τcΩc) − P I] = 0, (3.2)

Dc

Dt
+ c(∇ · v) = ∇ · (D0Ωc · ∇c) + k0c, (3.3)

Dθ

Dt
+ θ(∇ · v) = 0, (3.4)

and

−∇ ·
[
(1 − θ)

θ
∇P

]
+ ϕ0∇ · v = 0, (3.5)

where

σ̇ ≡ Dσ

Dt
−∇v · σ − σ · (∇v)T . (3.6)

Here, D/Dt denotes a material derivative, I denotes the identity tensor, θ denotes

the collagen network volume fraction, v denotes the network velocity, c denotes

cell concentration, σ denotes the stress tensor, and P denotes pressure. Material

properties associated with the collagen network are the modulus G, the viscosity

µ, Poisson’s ratio ν, and the interstitial flow resistance ϕ0. Cell parameters are the

migration (diffusivity) D0, the growth rate constant k0, the cell orientation tensor

Ωc [21], and the traction parameter τ

τ ≡ τ0 · tXA

tXA + XB
XA

· 1

1 + λc2
, (3.7)
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where τ0, XA, XB, and λ are constants. The cell orientation tensor is a complicated

function of the deformation tensor [20]. To define the deformation tensor, first note

that Ω changes in time. For a point x which starts at x0 at t = 0, let U be defined

as x = x0 + U. Then define

D =
∂x

∂x0

= I +
∂U

∂x0

, (3.8)

where the derivative with respect to x0 similar to the definition of gradient of a

vector (A.2) except the derivative is respect to x0 instead of x, and I is the identity

matrix. The deformation tensor, B, is then defined as B = D−1.

Equation (3.1) with (3.6) is the linear viscoelastic constitutive equation of

the collagen matrix, driving the compaction. Equation (3.2) preserves momentum

balance. Equation (3.3) regulates cell concentration which changes by convection,

diffusion, and growth. Equation (3.4) models the network volume which changes

only by convection. Finally, equation (3.5) gives the pressure diffusion relation which

balances the pressure and drag within the tissue on the network.

The first fraction in (3.7) accounts for the lag in cell traction stress due to

the time needed to adjust to the change from suspension to tissue-equivalent. The

cell traction force during this period has been correlated with cell spreading [19].

The second fraction accounts for so-called contact inhibition, the reduction in cell

traction observed at high cell densities [98, 107].

The viscoelastic fluid momentum equation (3.5) cannot be eliminated by sub-

stitution into the stress balance equation (3.2); thus, unlike previous work involving

elastic solid [99] or Newtonian fluid [51] models, the stress remains as a dependent

variable.

A variational form of (3.1)-(3.5) was developed and solved by a mixed finite

element method with piecewise biquadratic velocities and concentrations, piecewise-

bilinear pressures, and discontinuous piecewise-biquadratic stresses [22].

The problems studied in this section involve axisymmetric three-dimensional

motion, as shown in Figure 3.4 [20].

Thus, standard cylindrical coordinates [34] are used. The unit vectors are

denoted as r̂, θ̂, and ẑ. The variational problem is constructed by multiplying (3.1)-
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Figure 3.4: Axial symmetry of ICTA problems.

(3.5) by a test function, using integration by parts, and then integrating over Ω, to

obtain (
Dθ

Dt
, φθ

)
+ (θ(∇ · v), φθ) = 0, (3.9)

(
Dc

Dt
, φc

)
+(c(∇ · v), φc)−〈D0Ωc · ∇c, φc〉+(D0Ωc · ∇c,∇φc)−(k0c, φc) = 0 (3.10)

〈θ(σ + τ0cΩc), φv〉 − (θ(σ + τ0cΩc),∇φv) − (∇P, φv) = 0, (3.11)

−
〈

(1 − θ)

θ
∇P, φP

〉
+

(
(1 − θ)

θ
∇P,∇φP

)
+ ϕ0 (∇ · v, φP ) = 0, (3.12)

(
1

G
σ̇, φσ

)
+

(
1

µ
σ, φσ

)
− 1

2

(∇v + (∇v)T , φσ

)− ν

1 − 2ν
((∇ · v)I, φσ) = 0, (3.13)

where φX is the test function associated with variable X. In cylindrical coordinates,

for v = [vr, vϑ, vz]
T [34]

∇ · v =
∂vr

∂r
+

vr

r
+

1

r

∂vϑ

∂ϑ
+

∂vz

∂z
(3.14)
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and

∇v =




∂vr

∂r
r ∂

∂r

(
vϑ

r

)
∂vz

∂r

1
r

∂vr

∂ϑ
1
r

∂vϑ

∂ϑ
+ vr

r
1
r

∂vz

∂ϑ

∂vr

∂z
∂vϑ

∂z
∂vz

∂z


 (3.15)

and for a scalar function g,

∇g =
∂g

∂r
r̂ +

1

r

∂g

∂ϑ
ϑ̂ +

∂g

∂z
ẑ. (3.16)

With cylindrical symmetry, the stress tensor, σ, and cell orientation tensor, Ωc,

reduce to

σ ≡




σrr 0 σrz

0 σϑϑ 0

σrz 0 σzz


 (3.17)

and

Ωc ≡




Ω0 0 Ω3

0 Ω1 0

Ω3 0 Ω2


 , (3.18)

where Ωi, i = 0, 1, 2, 3, denotes the non-zero entries of Ωc. Then, (3.9)-(3.13) become

integrals whose integrands are (3.19)-(3.27).

Fθ = φθrθ̇ + φθrθ
∂vr

∂r
+ φθθvr + φθrθ

∂vz

∂z
, (3.19)

Fc = φcrċ + D0
∂φc

∂r
r
∂c

∂r
Ω0+

D0
∂φc

∂z
r
∂c

∂z
Ω2 + D0

(
∂φc

∂r
r
∂c

∂z
+

∂φc

∂z
r
∂c

∂r

)
Ω3−

k0φcrc + φccr
∂vr

∂r
+ φccvr + φcrc

∂vz

∂z
, (3.20)

Fvr =
∂φvr

∂r
rσrrθ +

∂φvr

∂r
rτ0cθΩ0 + φvrτ0cθΩ1+

φvrσϑϑθ +
∂φvr

∂z
rσrzθ +

∂φvr

∂z
rτ0cθΩ3 + φvrr

∂P

∂r
, (3.21)
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Fvz =
∂φvz

∂r
rσrzθ +

∂φvz

∂r
rτ0cθΩ3+

∂φvz

∂z
rτ0cθΩ2 +

∂φvz

∂z
rσzzθ + φvzr

∂P

∂z
, (3.22)

Fp = ϕ0φP r
∂vr

∂r
+ ϕ0φPvr + ϕ0φP r

∂vz

∂z
+(

1 − θ

θ

)
∂φP

∂r
r
∂P

∂r
+

(
1 − θ

θ

)
∂φP

∂r
r
∂P

∂z
, (3.23)

Fσrr = φσrr

1

µ
σrrr + φσrr

1

G
σ̇rrr−(

1 +
ν

1 − 2ν

)
φσrrr

∂vr

∂r
− ν

1 − 2ν
φσrrvr − ν

1 − 2ν
φσrrr

∂vz

∂z
−

2φσrrr
1

G
σrr

∂vr

∂r
− 2φσrrr

1

G
σrz

∂vz

∂r
, (3.24)

Fσϑϑ
= φσϑϑ

r
1

µ
σϑϑ + φσϑϑ

r
1

G
σ̇ϑϑ−

ν

1 − 2ν
φσϑϑ

r
∂vr

∂r
−

(
1 +

ν

1 − 2ν

)
φσϑϑ

vr − ν

1 − 2ν
φσϑϑ

r
∂vz

∂z
−

2φσϑϑ

1

G
σϑϑvr, (3.25)

Fσzz = φσzzr
1

µ
σzz + φσzzr

1

G
σ̇zz−

ν

1 − 2ν
φσzzr

∂vr

∂r
− ν

1 − 2ν
φσzzvr −

(
1 +

ν

1 − 2ν

)
φσzzr

∂vz

∂z
−

2φσzzr
1

G
σzz

∂vz

∂z
− 2φσzzr

1

G
σrz

∂vr

∂z
, (3.26)

Fσrz = φσrz

1

µ
σrzr + φσrz

1

G
σ̇rzr − 1

2
φσrzr

∂vz

∂r
− 1

2
φσrzr

∂vr

∂z
−

φσrzr
1

G
σrr

∂vr

∂z
− φσrzr

1

G
σrz

∂vr

∂r
− φσrzr

1

G
σrz

∂vz

∂z
− φσrzr

1

G
σzz

∂vz

∂r
. (3.27)
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For each FX ,
∫

Ω
FX dΩ must equal 0. The boundary integrals are omitted from

(3.19)-(3.27) since the imposed Neumann boundary conditions are always zero (cf.

§3.2.4).

Although this formulation was successfully applied to several boundary value

problems [21], the associated software lacked the mesh generation and adaptivity

capabilities necessary to handle sharp gradients and irregular configurations. This

difficulty provides the motivation for the current study.

3.2.3 Adaptive Finite Element Software

Initial-boundary value problems for the axisymmetric ABT equations (3.1)-

(3.5) are solved by an extended version of an adaptive finite element software system,

originally written by Aiffa [9], that addresses two-dimensional transient partial dif-

ferential systems of the form (1.2). The software is generic and specific problems are

addressed by supplying procedures to evaluate the n-dimensional functions a, f , and

g; defining the initial and boundary conditions; describing the domain Ω; and gen-

erating an initial mesh. For the ABT system (3.1)-(3.5), u is the nine-dimensional

vector

u = [σrr, σφφ, σzz, σrz, vr, vz, c, θ, P ]T (3.28)

where σrr, σφφ, σzz, and σrz are the axisymmetric components of σ, and vr and vz

are components of v.

A spatially-discrete Galerkin form of (1.2) is solved by a method-of-lines for-

mulation (§3.2.3.3) with a hierarchical finite element basis (§3.2.3.2) of arbitrary

degree. The software has capabilities to

• perform arbitrary combinations of adaptive mesh refinement and coarsening

(h-refinement), order variation (p-refinement), and mesh motion (r-refinement)

(in §3.2.3.5);

• manipulate meshes of triangular elements on complex two-dimensional regions

using an octree spatial decomposition [119] (in §3.2.3.1);

• provide a high-order representation of Ω (in §3.2.3.1);
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• handle combinations of Dirichlet, Neumann, and Robin boundary conditions

for different solution components on stationary and moving boundaries; and

• address mixed finite element formulations.

Herein, only combinations of adaptive h- and r-refinement have been used.

Similar analyses have been performed on the oxidation of ceramic-matrix composites

[4] and ceramic fiber coating by chemical vapor deposition [8]. Aiffa [9] presents

results using adaptive p- and hp-refinement.

3.2.3.1 Mesh Structures

Prior to solution, the domain Ω is discretized by an octree spatial decomposi-

tion [119] and partitioned into triangular elements Ωe, e = 1, 2, . . . , N , by an external

mesh generator. Exact representation of curved regions is possible with elements

having curved sides; thus, Ω = ∪N
e=1Ωe. Polygonal representations of boundaries

are also possible for use with low-order finite element approximation. Even in this

case, adaptive h-refinement is performed on the curved boundary rather than its

polygonal approximation. With an octree decomposition, the mesh will naturally

be finer near curved boundaries.

Maintaining an exact representation of Ω when its boundary evolves in time is

no longer possible. In this case, the moving boundary is approximated by a piecewise

polynomial of degree q. Interpolating a curved boundary to degree q introduces an

O(hq+1/2) error in the H1-norm of the finite element solution [136], where h is the

length of the longest edge in the mesh. Without such an approximation, the error

of the finite element solution with a piecewise polynomial basis of degree p is O(hp)

in the H1-norm [33]. Thus, the choice q = p ensures that solution accuracy is not

diminished by the approximation of the boundary.

The mesh is stored in a data structure called the SCOREC Mesh Database

[27] with data divided into entities that are element vertices, edges, and faces (finite

elements in two dimensions). The representation is hierarchical with faces having

pointers to their bounding edges which, in turn, have pointers to their bounding

vertices. Entities of a given dimension are linked to facilitate traversals. Operators

(functions) exist to find bounding entities, such as the vertices bounding a face,
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and to create and delete elements. Solution and other data is stored with the

mesh entities with a goal of facilitating the development and maintenance of finite

element software, particularly when using p-refinement. Entities may be queried

for the solution or mesh data that they contain. Mesh data may be altered for use

with h and r-refinement. The operators that create and delete elements eliminate

most of the complex programming effort associated with adaptive h-refinement (in

§3.2.3.5). A more modern version of this software, AOMD, is discussed in §4.1.6.

3.2.3.2 Piecewise Polynomial Basis

The finite element basis is a modification of the classical [130] hierarchical

basis on a triangle. Thus, polynomial shape functions of degree p + 1 are obtained

as corrections to shape functions of degree p. Elements of the basis are associated

with vertices (for p ≥ 1), edges (for p ≥ 2), and faces (for p ≥ 3); thus, comple-

menting the structure of the SCOREC mesh database. The new basis [9, 5] differs

from the classical [130] one in that face functions (internal modes) satisfy an or-

thogonality condition in strain energy. When applied to the Laplacian operator,

the new basis reduces the growth of the condition number of the stiffness matrix

from exponential to nearly linear in p [9, 5]. Similar savings were recorded on prob-

lems with more complex stiffness matrices [5] relative to other hierarchical bases

[43]. These hierarchical bases can be constructed to arbitrarily high orders; thus,

facilitating adaptive p-refinement and a posteriori error estimation through adaptive

p-refinement (§3.2.3.4).

Mixed methods, where different components of u have different order approxi-

mations, are permitted. A traditional reason for using a mixed finite element method

is the satisfaction of the Babuška-Brezzi stability condition [38]. For an incompress-

ible medium, this condition requires that the approximation space of the pressure

be a subspace of that used for the velocity. This is often achieved by using a lower-

order basis for the pressure than for the velocity. The pressure space may further

be selected relative to a patch of elements (macro-elements) used for the velocity

or made discontinuous relative to a continuous velocity space [38]. Our software

has no capabilities for macro-elements. While discontinuous spaces are possible, the
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computations of §3.2.4 used a piecewise quadratic polynomial for pressure and a

piecewise cubic for all other variables in u. This choice produced solutions with-

out the spurious oscillations associated with a failure to satisfy the Babuška-Brezzi

condition.

Elemental integrals associated with Galerkin inner products are evaluated by

Gaussian quadrature of order 2p for a basis of degree p [60]. If the element has a

curved edge corresponding to a piecewise polynomial approximation of the bound-

ary to order q (§3.2.3.1), then quadrature is performed to order 2(p + q − 1). This

prescription maintains quadrature errors at a higher order than finite element inter-

polation errors [47, 66, 126, 127].

3.2.3.3 Temporal Solution Techniques

Approximating (1.2) by the finite element-Galerkin technique in space gives

rise to a large system of either ordinary differential equations (ODEs) or, when the

Jacobian of g with respect to ∂tu is singular, a system of differential-algebraic equa-

tions (DAEs), which must be solved in time. Solving this system using ODE/DAE

software is known as the method of lines and it is the approach used by our adap-

tive software. Separating the spatial and temporal discretization has the advantage

that time integration procedures may be changed without affecting the larger finite

element portion of the software.

We use the variable-order, variable-time-step, backward-difference formula

package DASPK [37] to solve the ODE/DAE system. Nonlinear problems are solved

by a damped Newton’s method, and the linear system introduced at each Newton

step is solved by sparse Gaussian elimination with a minimum degree reordering [73].

After each successful time step, solution coefficients are stored with the geometric

entities corresponding to their basis elements.

3.2.3.4 Error Indication

A posteriori error estimates provide a measure of solution accuracy and a

means of guiding the adaptive enrichment process. The hierarchical basis (§3.2.3.2)

supplies an inexpensive (relative to the solution cost) way of estimating spatial

discretization errors as the correction terms of the next polynomial in the sequence.
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Thus, if the finite element approximation has degree p, a spatial error estimate can

be obtained from the hierarchical correction of degree p + 1. The effectiveness of

this strategy depends on several factors including mesh uniformity and structure, the

PDE system, and the computational procedure used to determine the error [128,

135]. The technique performs best on diffusion-dominated problems. Procedures

typically localize the error computation to an element or a patch of elements [135]

to further reduce the cost of obtaining estimates. These local finite element problems

are closed by prescribing fluxes on element or patch boundaries. Performance differs

greatly with flux prescriptions [10, 128]. A strategy of this type is offered within

our software with fluxes at element boundaries prescribed as the average numerical

flux across an edge [9].

Local finite element problems for the spatial error estimate consist of con-

tributions from the element or patch of elements and from the fluxes across the

element or patch boundary. Error estimates have been shown to converge under h-

refinement in exactly the same manner as the true error for linear elliptic [143, 144]

and parabolic [6, 7] problems on uniform rectangular-element meshes. These results

further demonstrate that the elemental contribution dominates the flux contribution

of the error for even-order finite element computations, while the opposite is true for

odd-order finite element solutions. This, and the uncertainty of estimating errors

of nonlinear mixed problems such as (3.1)-(3.5), motivates us to adapt a simpler

alternative. Instead of computing an error estimate, we compute an error indicator

Ei on Ωi as

Ei = E1
i + E2

i + E3
i (3.29)

where

Ej
i =

∣∣∂Ωj
i

∣∣ ∫
∂Ωj

i

∣∣∣∣∂C+

∂n
− ∂C−

∂n

∣∣∣∣ dS, j = 1, 2, 3. (3.30)

Here, ∂Ωj
i is the j th edge of the boundary ∂Ωi of Ωi, n is the unit outward normal

vector to ∂Ωi, Ej
i is the error indicator on edge j,

∣∣∂Ωj
i

∣∣ is the length of ∂Ωj
i , C(t,x)

is the finite element approximation of the concentration c(t,x), and superscripts +

and − denote values on the exterior and interior of Ωi. Thus, the error indicator

on Ωi is the absolute jump in the concentration gradient across the boundary of Ωi
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scaled by the length of the boundary. The concentration gradient was chosen to

control adaptivity because c varies significantly (relative to other components of u)

and high gradients in u are reflected by a high gradient in c.

Theoretical results [6, 7] implying that the spatial error of odd-order finite

element solutions are proportional to flux jumps are only available for rectangular-

element meshes. Nevertheless, computational evidence [82] suggests that they hold

on triangles. With the concentration approximated by a piecewise cubic polynomial,

the error indicator (3.29)-(3.30) might be proportional to the true error; however,

with the complexities of the ABT system, this remains unverified. Since we choose

the concentration, which is approximated by a cubic polynomial, as the variable to

use for spatial error estimation (cf. §3.2.3.2), (3.30) is applicable.

Control of local temporal errors is done by procedures within DASPK. Strate-

gies for controlling global errors by maintaining the local temporal error at a small

fraction of global spatial error have been described for stiff differential systems aris-

ing from the discretization of parabolic problems [92]. If the error indicator (3.29)-

(3.30) were a true error estimate, this strategy might give an appraisal of the global

discretization error; however, once again, the ABT system is too involved to char-

acterize as either being stiff or parabolic.

3.2.3.5 Adaptivity

When choosing adaptive hr-refinement to solve the ABT system (3.1)-(3.5),

our aims were accurate resolutions of moving boundaries by r-refinement and of

sharp gradients by h-refinement. Mesh coarsening is needed in addition to refinement

since high-gradient locations may move with time.

Adaptive r-refinement can concentrate a mesh within high-error regions and

follow these regions as they evolve. This mesh motion is often far less expensive

than h-refinement [3] for a given accuracy. With parallel computation, r-refinement

avoids the need for dynamic load balancing which must be done with h-refinement.

Unfortunately, two- and three-dimensional meshes tend to tangle with r-refinement

and there is no effective way of controlling the discretization error.

R-refinement may be regarded as a dynamic coordinate transform and, as
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such, the software permits mappings from the physical x-plane to a computational

ξ-plane of the form

x = x(t, ξ,u). (3.31)

Typically, only the vertices of the triangular elements are mapped by this transfor-

mation. Element edges remain straight, at least for those elements that are not on

a moving curved boundary or interface. In this analysis, we follow a simpler course

and move mesh vertices according to their material positions, i.e.,

dxj

dt
= v(t,xj), j = 1, 2, . . . , NV , (3.32)

where xj is the coordinate of vertex j and NV is the number of vertices. Curved

element sections on moving boundaries are tracked with greater precision. If, as

described in §3.2.3.1, a curved element edge is approximated by a polynomial of

degree q, then the q + 1 interpolation points describing the segment are moved

according to (3.32). The ODE system (3.32) may either be coupled with the finite

element system for integration by DASPK or, with less precision, solved separately

in an explicit manner. The former course was taken in this application.

The temporal integration is halted after each time step, error indicators are

calculated according to (3.30), and adaptive h-refinement is performed, if necessary.

In particular, edge j of element i is marked for refinement when Ej
i ≥ αRE and

marked for coarsening when Ej
i ≤ αCE, where αR and αC are, prescribed refinement

and coarsening tolerances, respectively, and E is the average of Ej
i over the edges

of the mesh. Normally, error indicators would be checked after four to five time

steps [9]; however, these error indicators are so inexpensive that checking after each

time step incurs a negligible cost and provides additional reliability. Given the

uncertainties of the initial mesh, backtracking is performed to ensure its adequacy.

Thus, the initial time step is repeated until every edge of the mesh satisfies Ej
i ∈

(αR, αC)E.

Elements having edges that are marked for refinement are refined by templates

as shown in Figures 3.2.3.5 and 3.2.3.5. Dashed lines indicates the edges created by

refinement. Marked edges scheduled for bisection are shown as darker lines. The
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choice of the refinement that is performed when three edges are marked in Figure

3.2.3.5 is determined to minimize the difference in the angles of the resulting four

triangles. This decision is based on a desire to avoid elements with small or large

angles for accuracy considerations.

Figure 3.5: Refinement templates for a triangle with one (left)
and two (right) marked edges.

Figure 3.6: Refinement templates for a triangle with three
marked edges.

Coarsening is done by edge collapsing, i.e., one of the vertices bounding an

edge is moved to the other to remove the edge. An edge marked for removal on a

patch of elements is shown dark on the left of Figure 3.2.3.5. This edge is removed

by collapsing the upper vertex to the lower one as shown on the right of Figure

3.2.3.5.

Figure 3.7: An edge (shown dark on the left) is removed by
collapsing its upper vertex to the lower one (right).

The dashed lines indicate the new elements of the patch. Other complications

arise, particularly with simultaneous h- and r-refinement. The major problem is
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ensuring that the angles of elements remain bounded away from zero and π radians

during enrichment. Failure to do so renders the coordinate transform between the

physical and canonical elements singular. Techniques used to address these and

other h-refinement issues are described elsewhere [9].

Finite element solutions must be available on the newly refined or coarsened

elements before the time integration can continue and we obtain these by a local

L2 projection. Consider an element or patch of elements that have been affected by

refinement (Figures 3.2.3.5 and 3.2.3.5) or coarsening (Figure 3.2.3.5) and construct

a finite element basis relative to the new mesh. The finite element solution Unew is

determined on the new element or patch Ωnew by solving the L2 problem

∫
Ωnew

(Vnew)T [Unew −U] dV = 0, ∀Vnew ∈ S(Ωnew), (3.33)

where U is the finite element solution prior to h-refinement and Vnew is a test

function relative to the finite element space Snew on the new mesh. Structures

within the SCOREC mesh database (§3.2.3.1) facilitate the solution of (3.33) since

all solution and shape function data are stored with the appropriate mesh entities.

3.2.4 Simulations

We apply the adaptive finite element software to three initial-boundary value

problems for the ABT system (3.1)-(3.5): an ICTA [22], a prototypical bioartificial

artery (BAA) [93, 133], and a BAA with thicker ends. Collagen parameter values

[21] and cell parameter values for the ICTA [22] and BAA [93, 133] problems were

obtained from the literature.

The types of boundary conditions involved with each problem are:

• A free surface where the pressure, the normal component of the total stress,

and the diffusive cell flux vanish, i.e.,

P = 0, (σ + cΩc) · n = 0, (Ωc · ∇c) · n = 0. (3.34)

• A plane of symmetry or a free-slip surface where the tangential component of

the total stress, the interstitial flow, the diffusive cell flux, and the velocity of
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the network normal to the surface vanish, i.e.,

n·(σ+cΩc)·t = 0, ∇P ·n = 0, (Ωc ·∇c)·n = 0, v ·n = 0, (3.35)

where t is a unit tangent vector. A free-slip surface represents a surface that

is impenetrable but does not adhere to the TE. It is functionally equivalent

to a plane of symmetry.

• A no-slip surface has the impenetrability conditions of the free-slip surface,

but the tangential component of the velocity vanishes instead of the tangential

stress, i.e.,

∇P · n = 0, (Ωc · ∇c) · n = 0, v = 0. (3.36)

In all experiments, the initial solution vector u(0,x), x ∈ Ω, is zero except

c = θ = 1. These conditions correspond to a stress-free state of equilibrium with the

domain filled with a collagen network having a unit concentration and no solution

phase volume.

3.2.4.1 Isometric Cell Traction Assay

The ICTA has been used in various forms [88] to measure the force generated

by cells in a TE. ICTA problems have been solved on a slab [88]; however, we solve

axisymmetric problems on the cylinder {(r, φ, z) | 0 < r < 1, 0 ≤ φ < 2π, 0 < z <

1}. Symmetry conditions (3.35) are imposed on r = 0; z = 0 is a plane of symmetry

(3.35); r = 1 is a free surface (3.34); and z = 1 represents a no-slip surface (3.36).

The parameters are chosen as τ0 = 0.0455, XA = 1.6, XB = 0.21, θ0 = 0.003,

G = µ = 1/2, ϕ0 = 0.0193, D0 = 0, k = 0, ν/(1 − 2ν) = 1/3, and λ = 2.5.

As the cells contract, the force to maintain a constant length increases, and

the circumference at the midplane (z = 0) decreases. The prior analysis of this

problem [22], without adaptivity, had difficulty resolving sharp gradients where the

free and free-slip surfaces meet. We show that the adaptive hr-refinement procedure

will alleviate this.

Concentration and the axial stress contours are shown in Figures 3.8 and 3.9,

respectively, at four times with the computational meshes superimposed. Here, and
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in all similar illustrations, the radial (r) direction is shown horizontal and the axial

(z) direction is vertical. There is a singularity, at the juncture of the no-slip and

free-surface boundaries. This singularity strengthens as time increases. The mesh is

concentrated in this region and graded to resolve the solution adequately. The axial

stress obtained in a prior study [22] had an anomalous oscillatory behavior that

disappeared with (uniform) mesh refinement. Axial stress components obtained by

adaptive hr-refinement (Figure 3.9) have no spurious behavior, presumably because

the singularity is being adequately resolved on the graded mesh.

Time: 0.012000 Time: 29.553011

Time: 47.977840 Time: 60.000000

Figure 3.8: ICTA concentration at four times with adaptive
meshes superimposed.

As an indication of the convergence rate, we generated a sequence of solutions
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Time: 0.012000 Time: 29.553011

Time: 47.977840 Time: 60.000000

Figure 3.9: ICTA axial stress at four times with adaptive
meshes superimposed.

on meshes obtained by uniform refinement of an initial mesh. In Figure 3.10, we

show ‖c(t, ·)‖1 for these solutions at t = 60 as a function of the average mesh

spacing h and the total degrees of freedom (DOF), which is the time integral of

the spatial DOF. This sequence indicates that the concentration is converging at

an approximate rate of h1.2. This is less than the O(h2) rate for smooth problems

because of the singularity at the intersection of the no-slip and free-slip surfaces. The

adaptive computation of Figures 3.8 and 3.9 is indicated by a �· on Figure 3.10. For

comparable accuracy, the solution by adaptive hr-refinement required approximately

16% of the total DOF of that with a uniform mesh. The improvement is largely
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Figure 3.10: ICTA convergence as a function of the total DOF
or h for uniform (solid curve) and adaptive (�·)
mesh refinement.

due to the greater resolution of sharp gradients near the singularity provided by

adaptivity. The excellent performance of the adaptive method further suggests that

the error indicator (3.30) is a good measure of solution accuracy.

3.2.4.2 Bioartificial Artery

A prototypical BAA may be formed by allowing a tubular TE to contract on

a rigid, impermeable, free-slip mandrel [133, 93]. Using the initial geometry of the

cylinder {(r, φ, z) | 2 < r < 3, 0 ≤ φ < 2π, 0 < z < 1}, this axisymmetric study

features free surface conditions (3.34) at z = 1 and r = 3; a plane of symmetry

(3.35) at z = 0; and a free-slip surface (3.35) at r = 2. Concentration contours are

shown at four times in Figure 3.11. These adaptive results compare well with prior

results [22, 23] obtained by standard finite element techniques. Since there are no

sharp gradients, adaptive hr-refinement is needed less than with the ICTA problem.

Mesh refinement is fairly uniform and is redistributed as the medium contracts.
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Time: 0.021554 Time: 26.753099

Time: 38.987320 Time: 84.000000

Figure 3.11: Concentration in a BAA at four times with adap-
tive meshes superimposed.

3.2.4.3 Reinforced Bioartificial Artery

Although we have not identified an appropriate objective function for optimal

BAA design, we know that the initial shape of the BAA is an important (and

controllable) design parameter. As a preliminary study, we analyze a BAA with

reinforced ends and boundary conditions as shown in Figure 3.12. The volume of

the reinforced BAA has been selected to be the same as that of the standard BAA

(§3.2.4.2). Our hope was that this design will lead to a BAA with significantly

higher collagen and cell content near the ends, which could facilitate suturing the

BAA at the implant site. The geometry also provides a demanding test of the finite

element software because of the singularity at the reentrant corner.
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Free-Slip
Surface Surface

Free

Symmetry Plane

Free Surface (3.075,1)

(2,0)

(2.975, 0.75)

Figure 3.12: Geometry and boundary conditions of a rein-
forced BAA.

The parameters are the same as in the standard BAA problem (§3.2.4.2).

Once again, concentration contours are shown at four times in Figure 3.13. As

conjectured, the mesh is refined near the reentrant corner to maintain accuracy in

the presence of a singularity. The mesh does not change significantly after some

initial refinement. This is likely due to the self-similar behavior of the solution near

the singularity.

The three-dimensional object the BAA represents in Figure 3.13 is shown in

Figure 3.14. The representation shows an artery shunt, due to the small length

along the axis relative to its radial length.

3.2.4.4 Discussion

An adaptive finite element software system has been used to solve the ABT

system (3.1)-(3.5). Solutions of ICTA and BAA problems duplicate prior results [22];

however, the adaptive solutions have comparable accuracy with fewer total DOF.

With adaptive hr-refinement, we were able to locate singularities and automatically

refine the mesh in their vicinity. No a priori solution knowledge was necessary.

The software is able to solve problems on arbitrary two-dimensional regions; hence,

it should provide a useful tool for the investigation of optimal design and other

problems involving complex geometry. Future problems are noted in §5.3
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Time: 0.008400 Time: 4.152125

Time: 19.602119 Time: 84.000000

Figure 3.13: Concentration in a reinforced BAA at four times
with adaptive meshes superimposed.

3.3 Design of Microfluidic Devices via Finite Element Sim-

ulation

3.3.1 Introduction

In this section, the flow of fluid through a micro-pump is simulated, by solving

the Navier-Stokes equations in a moving domain using the prototype PDESE from

the previous section. Re-entrant corners create a sharp gradient in the solution vari-

ables, thus requiring adaptive procedures. Since the domain in which the problem

is solved is “thin” and the domain compresses as well as expands in time, elements

deform and sometimes become badly shaped. Procedures are used to correct such

elements.
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Figure 3.14: Three-dimensional representations of the rein-
forced BAA.

3.3.1.1 Microfluidics and Their Applications

Micro-Electo-Mechanical Systems (MEMS) technology has enabled the devel-

opment of microscale chemical processes with broad potential application, including

sensing [61, 140, 142] and chemical analysis (e.g., “polymerase chain reaction (PCR)

on a Chip” [89]). Microchemical processes often rely on multiple distinct subunits

within an overall process and thus require a mechanism to move fluids (liquids or

gases) between the subunits or in some cases (e.g., microscale gas chromatography

[139]) to move fluid through a subunit. Although there are passive mechanisms to

move fluid through a MEMS device, the more common way to do so is by means of

a pump.
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3.3.1.2 Microfluidic Devices

There are a wide range of microfluidic devices (e.g., [44, 50, 124]) with dif-

ferent mechanisms and performance characteristics. Our goal of a generally-usable,

fluid-independent pump requires that we not rely on chemical methods (such as

electro-osmotic pumps) but prefer a purely mechanical pump. In collaboration with

Sandia National Laboratories, we have recently developed a surface-micromachined

peristaltic pump (SMPP, [70]) that operates by creating an electrostatically-driven

peristaltic wave. The SMPP is small (micron-scale), directly on chip (and thus suit-

able for connection to other on-chip units), and easily produced in bulk by Sandia’s

surface micromachining techniques. In this section, we focus on design of the SMPP,

noting that the simulation methods described herein would be broadly applicable

to other pump designs.

3.3.1.3 Design tools

One must choose not only the type of pump to use in a process but also

the operating parameters of the pump. Like traditional chemical process design,

the design of the SMPP (or of any microscopic process) can be reduced to a con-

strained optimization problem: minimize the cost of the device subject to various

constraints such as required flow rate, maximum allowable shear, and maximum

available power. In order to solve the optimization problem, one needs a mathe-

matical model of the pump operation capable of predicting the performance of the

pump as a function of its operating parameters. Further, since optimization in an

inherently iterative procedure, the model must be solved rapidly and accurately to

allow efficient determination of the optimal parameters.

3.3.1.4 Adaptive Methods

Adaptive finite element mesh refinement methods (§3.2.3.5) refine meshes in

high error regions where the solution changes rapidly and maintain a coarse dis-

cretization everywhere else. As such, they are typically much more efficient than

traditional methods, which utilize uniform mesh refinement. With solutions hav-

ing steep gradients, an adaptive mesh refinement method will often yield solutions
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having the same accuracy as traditional methods with far fewer degrees of freedom

(DOF), such as in §3.2.

3.3.1.5 History and Motivation

The history of using FEMs to solve the Navier-Stokes equations is long and is

not covered here as the reader is referred to the text by Zienkiewicz and Taylor [147]

and references within. Previous work on simulating fluid dynamics problems with

moving boundaries use non-adaptive approaches[132]; however, no work on adaptive

moving boundary simulations of MEMS are known.

We investigate the solution of the Navier-Stokes equation for a MEMS appli-

cation in two-dimensions. Due to the geometry of the domain, a sharp gradient is

formed in the y component of the velocity. Adaptivity is shown to provide a marked

increase in efficiency for this problem.

3.3.1.6 Organization

We use a moving-boundary Navier-Stokes model with a sinusoidal wave to ap-

proximate the motion of the moving membrane to describe the motion of the SMPP

(§3.3.2). A brief description of the adaptive finite-element modeling framework used

to solve the flow problem follows in §3.3.3. We set the design variables and calculate

flow and energy versus a pressure rise at the output for a sample design study of the

SMPP (§3.3.5). We present the results of this study and an analysis of the pump

along with a performance appraisal of adaptive methods used for design calculations.

3.3.2 Model

3.3.2.1 Device

The basic design of the SMPP is depicted in Figure 3.15. It consists of three

major components: (1) the fluid inlet and the outlet ports, (2) the pump chamber

whose floor is composed of a series of actuation pads enclosed by a flexible polysilicon

membrane, and (3) the electrical leads to the actuation pads. The actuation pads

are electrically isolated from the pump wall, and each electrical lead is connected to

only one pad. The pump sidewalls support the overhanging membrane which, when

in use, is electrically grounded. This allows an electrostatic force to be generated
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between the membrane and the actuation pad so that the membrane is pulled toward

the pump chamber floor.

Figure 3.15: A three-dimensional drawing of the Surface Micromachined
Peristaltic Pump (SMPP) generated by a geometric extru-
sion of the AutoCAD photolithography masks. A portion
of the polysilicon membrane has been cut away to show the
actuation pads that line the channel floor. The pump works
by generating an electrical potential between each pad and
the grounded membrane that covers the channel. Fluid en-
ters and leaves through the backside of the silicon wafer via
Bosch etched holes.

The pump works by developing a wave in the polysilicon membrane to propel

fluid down the length of the channel from the inlet to outlet port. Manipulating the

dynamics of the voltage potential between each pad and membrane creates the wave

in the solid membrane. Voltage at the first actuation pad will pull the membrane

down toward that segment of the floor. When the voltage at the first pad is turned

off and applied to the second pad, the membrane will be moved toward the second

actuation pad. Repeating this procedure for all of the actuation pads that line the

channel floor establishes a peristaltic wave as shown in Figure 3.16.

3.3.2.2 Mathematical Model

A rigorous model of the SMPP would have to include the electrostatic at-

traction between the actuators and the upper membrane as well as the mechanical
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Figure 3.16: A packaged SMPP driving air with a membrane frequency of
1 Hz. The figure depicts three snapshots of interferometric
patterns, off the surface of the pump membrane, indicating
that the SMPP is generating a traveling wave. At each ac-
tuation pad, a potential of 70 volts is required to pull the
membrane to the channel floor, approximately 3 microns.

coupling between the fluid stress and the shape of the membrane. We present and

solve a simplified model where we assume that the membrane moves in a prescribed

waveform, allowing us to solve the fluid dynamics problem independently of the

membrane mechanics problem. The domain of the model is shown in Figure 3.17.

Figure 3.17: The two-dimensional Navier-Stokes model domain includes
the Bosch inlet and outlet holes out the backside of the wafer.

The height of the channel is 8 microns, the length of the channel is 1175

microns, the height of the inlet and outlet (measured from the top of the silicon

wafer to the bottom of the inlet) is 150 microns, and the width of the inlet and
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outlet are 200 microns. Unlike in Figure 3.17, the inlet and outlet channels are

offset from the outer walls by 30 microns. Notice that there is a significant scaling

difference between the width and height of the channel. This is addressed in §3.3.3.1.

The fluid flow within the pump is governed by the incompressible Navier-Stokes

equations [46]

ρ
dv

dt
+ ρv · ∇v = v∇ ·

[
(∇v) + (∇v)T

]
−∇P

∇ · v = 0

(3.37)

where the variables are velocity v = [vx, vy]
T and pressure P . We did not make the

common simplification

∇ ·
[
(∇v)T

]
= ∇ (∇ · v) = 0 (3.38)

for incompressible fluids in order to preserve the total stress within the divergence

to facilitate incorporation of total stress boundary conditions in the finite element

formulation. In the finite element weak formulation, integration by parts is per-

formed on the divergence of the symmetric gradient of v. For the purpose of this

study, we assumed that the SMPP was pumping water. Therefore, the constants

were set at ρ = 1 and ν = 0.01.

The boundary in Figure 3.17 was divided into four sections: rigid, inlet, outlet,

and membrane. The rigid portions of the boundary are those where the fluid is in

contact with a solid, stationary portion of the SMPP satisfying the no-slip condition

v = 0, (x, y) ∈ Γrigid. (3.39)

The inlet and outlet boundaries represent connections between the SMPP and fluid

reservoirs. For incompressible fluids, pressure is only determined to an arbitrary

constant. We determined it by specifying the total normal stress at the inlet as

[
∇v + (∇v)T

]
yy

− P = 0, (x, y) ∈ Γinlet (3.40)

We further assume that the flow is well developed at the inlet and outlet, so

vx = 0, (x, y) ∈ Γinlet (3.41)



61

At the outlet, we allow the SMPP to work against a pressure rise, and, thus, prescribe

[
∇v + (∇v)T

]
yy

− P = ∆P0

vx = 0


 , (x, y) ∈ Γoutlet (3.42)

where ∆P0 is the pressure difference between the inlet and outlet reservoirs. Since

many microfluidic applications require pumping through narrow channels, the re-

quired pressure head may be significant.

The fluid must move with the membrane and its motion is restricted to the

vertical direction; thus, we have

vx = 0

vy = 4Aπc
λ

sin
(

4π
λ

(x − ct)
)

 , (x, y) ∈ Γmembrane (3.43)

where the constant A is set so that the membrane’s deflection is at most one third

of the channel’s height (Figure 3.17). Since the oscillations must taper at the end

of the membrane, vy is multiplied by a sine squared term if x is less than the taper

length, which is 12.5% of the length of the membrane away from the ends. Similarly,

for the first period, (3.43) is multiplied by a sine cubed term, so that the velocity

is “ramped up” smoothly from zero to the maximum amplitude. In §3.3.4, the

calculated quantities are computed without using the initial ramped solution. The

height of the membrane may be obtained by integrating (3.43) in time, yielding a

sinusoidal form.

3.3.3 Solution Method

3.3.3.1 Rescaling

Since the channel of the domain has a length much longer than the height,

the equations (3.37) is rescaled to a dimensionless form. Letting L be the length

of the channel, H the height of the channel, c the wave speed, λ the wave length,
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Re = cL/ν, a = H/L, and z = λ/L, then with the scalings

x′ =
x

L
, y′ =

y

H
, t′ =

c

λa
t (3.44)

v′
x =

1

c
vx, v′

y =
1

ca
vy, (3.45)

P ′ =
1

Cp

P, (3.46)

where the primed variables are the scaled variables, (3.37) scales to

∂v′
x

∂t′
+ zav′

x

∂v′
x

∂x′ + zav′
y

∂v′
x

∂y′ =

1

Re

[
2
za

ρ

∂2v′
x

∂x′2 +
za

ρ

∂2v′
y

∂x′∂y′ +
z

ρa

∂2v′
x

∂y′2

]
− Cpza

ρc2

∂P ′

∂x′ (3.47)

∂v′
y

∂t′
+ zav′

x

∂v′
y

∂x′ + zav′
y

∂v′
y

∂y′ =

1

Re

[
za

ρ

∂2v′
y

∂x′2 +
z

ρa

∂2v′
x

∂x′∂y′ + 2
z

ρa

∂2v′
y

∂y′2

]
− Cpz

aρc2

∂P ′

∂y′ (3.48)

∂v′
x

∂x′ +
∂v′

y

∂y′ = 0. (3.49)

Cp may be arbitrarily chosen since the pressure only appears as a gradient. We have

chosen Cp = c2/(Re × a2). When using the above scalings, the dimensions of the

channel are 1× 1. In the weak form integration by parts is performed on the terms

with second derivatives. The rest of the terms are untouched in the weak form. For

the rest of this section, the physical variables are used, but all of the computations

were done with the scaled form.

3.3.3.2 Adaptive Finite Element Software

The initial-boundary value problem (3.37)-(3.43) is solved by an adaptive finite

element software system [9, 105] which was described in §3.2.3 with

u = [P, vx, vy]
T (3.50)
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and appropriate substitution of f , g, and a by the incompressible Navier-Stokes

equations. Only combinations of adaptive h- and r-refinement have been used.

Since a sharp gradient in the vy variable is encountered at the upper corners of the

silicon wafer in Figure 3.17, the Vy variable (the finite element approximation of vy)

is used in (3.30) instead of C. Since the domain moves in time due to (3.43), mesh

motion is used.

3.3.3.3 Mesh Reshaping

Mesh motion (cf. §3.2.3.5) may distort elements to the point where very acute

angles are created. This occurs in the thin membrane where elements are compressed

in response to the membrane motion. Such sliver elements are close to singularity

and create numerical difficulties in the limit as angles approach zero. To avoid these

difficulties, the smallest angle of each element is measured at every time step and

the element is reshaped if the angle is smaller than a tolerance. The sliver may

be merged with a neighboring element by collapsing its shortest edge as shown in

Figure 3.18.

Figure 3.18: Collapse of a small edge.

The dark line indicates the edge to be collapsed. After collapsing all elements,

those elements with a side opposite to a large angle are split using the template

shown in Figure 3.19.

Edge swapping [9] is an alternative that was not used, where the edge between

two elements bisects a small angle and a small edge is replaced by an edge which

bisects a large angle and large edge. Thus, the dashed line in Figure 3.20 is replaced

by the bold line in Figure 3.20.
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Figure 3.19: Edge splitting.

Figure 3.20: Edge swapping.

3.3.4 Design

3.3.4.1 Design Variables

There are many variables that can be changed in the design of the SMPP. In

this study, we chose to consider the wave amplitude A and the pressure rise across

the pump, ∆P0, which is a key operating variable set by the pump’s environment.

3.3.4.2 Base Case

The base for the study and the range of variables are given in Table 3.1.

Variable Base Value Other Values
Wave frequency, ω, Hz 1 1000
Wave amplitude A, % of height 33 0-33
Pressure Rise ∆P0 0 0-∆P ∗ (where Q = 0)

Table 3.1: Pump parameters.

We consider ω = 1KHz. Because of the risk of “snap-through,” in which the

membrane gets to close to the actuator pads and is electrostatically pulled into the

pad and shorts the system, only amplitudes of less than one third of the SMPP

chamber height were considered. We explored all pressures in the range from zero

(pump working against no pressure rise) and ∆P ∗, the pressure rise at which the

pump is no longer able to generate any net flow.
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3.3.4.3 Calculated Quantities

In order for simulations to be of use in design, one must be able to derive

quantities of practical significance from the results. One such quantity is the total

flow through the pump. Since the flow is time-dependent over the pump cycle, we

define the time-averaged total flow rate Q as

Q ≡ 1

T

t0+T∫
t0

∫
Γinlet

vy dx dt (3.51)

where T is the period of the pump cycle, and t0 is an arbitrary time chosen after a

periodic solution has been established.

Other important derived quantities are the power requirement and the effi-

ciency of the SMPP. Dimensional analysis of the mechanical energy balance shows

that the dominant energy loss in the fluid is by viscous dissipation,

Eviscous ≡ 1

T

t0+T∫
t0

∫∫
Ω

µ
[
∇v + (∇v)T

]
: ∇v dx dy dt (3.52)

The other significant destination for energy is in the pressurization of the fluid (if

∆P0 > 0). The pressurization power is given by

Epressure ≡ 1

T

t0+T∫
t0

∫
Γoutlet

vy ∆P0 dx dt. (3.53)

The total power required for the SMPP is then

E = Eviscous + Epressure. (3.54)

The efficiency of the pump is a measure of how much of the power supplied to the

pump is converted to fluid pressurization (and thus presumably recoverable) rather

than to viscous dissipation

η =
Epressure

Eviscous + Epressure
. (3.55)
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3.3.5 Results

3.3.5.1 Adaptive versus Non-adaptive Solution

Using the methods of 3.2.3.5, we are able to compute solutions with fewer

DOF than by uniformly refining the mesh. Comparing Figures 3.21 and 3.22, we

see that the adaptive mesh has been refined near the reentrant corner to a greater

degree than the uniform mesh. The vertical scale has been stretched by a factor of

8 for clarity.

Figure 3.21: Non-adaptive mesh.

In Figure 3.23, we plot the final L2-norm of vy for both adaptive and successive

uniform mesh refinements. If one linearly extrapolates the uniform refinement re-

sults, then one may compute a comparable solution using adaptive refinement with

only 0.6% of the number of DOF.

3.3.5.2 Base Case

Figures 3.24 and 3.25 show typical velocity and pressure profiles for ω = 1

KHz. Since the wave is moving from left to right, the fluid is pushed forward by the
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Figure 3.22: Adaptive mesh.

Figure 3.23: Adaptive versus non-adaptive methods.
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upper membrane and also pulled into the pump (i.e. there is a net positive vertical

velocity in the inlet channel). The minimum pressure in the chamber is at the

trailing edge of the wave, as expected. Both forward flow (from behind the pressure

minimum) and backward flow (from ahead of the pressure minimum) are seen, but

the net flow is positive because of the smaller channel height and, therefore, greater

resistance to backward flow.

Figure 3.24: Velocity profile.

3.3.5.3 Calculated Quantities with a Pressure Rise

The results of Figures 3.24 and 3.25 were facilitated by our adaptive FE

method. The reentrant corner where the inlet joins the chamber is known to lead

to an integrable singularity in the velocity gradient, leading to significantly greater

error for the same size mesh. The adaptive code recognizes this and automatically

refines aggressively near the corner, whereas the non-adaptive mesh can only be ad-

justed by a uniform refinement. The effect of adaptivity was evaluated by computing

the L2-norm of the vertical velocity.

With the superior performance of the adaptive methods, we were able to do

multiple runs to simulate SMPP performance under various operating conditions.
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Figure 3.25: Pressure profile.

Figure 3.26 shows a classical “pump curve” as drawn for an SMPP operating ac-

cording to the parameters of Table 3.1.

As the pressure rise opposing the pump is increased, the flow rate through the

pump decreases linearly until the pump can no longer overcome the pressure and

the flow rate drops to zero as shown in Figure 3.27.

The efficiency of the pump is zero when there is no opposing pressure (no

energy is transferred to the fluid, which enters and leaves with the same velocity

and pressure), and it is zero when there is no net flow. For the design specifications

used, the maximum pressure rise that the pump could overcome is approximately

1.6 × 10−12, from the data in Figure 3.27. The efficiency of the pump is extremely

low, consistent with the large viscous losses at small scales. The efficiency versus

the pressure drop is plotted in Figure 3.28.

The total viscous losses in all simulations were on the order of 10−4ergs/s.

The viscous loss versus the pressure drop is plotted in Figure 3.29.
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Figure 3.26: Pump flow versus viscous energy.

Figure 3.27: Pressure drop versus flow rate
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Figure 3.28: Pressure versus efficiency (1 KHz).

3.3.5.4 Calculated Quantities with Amplitude Changes

The final study was the effect of varying amplitude on the performance of

the pump when working without a pressure rise. Both the flow rate and viscous

dissipation increase quadratically with the amplitude, as can be seen in Figures 3.30

and 3.31.

3.3.6 Discussion

It was also shown that using hr-adaptive methods, the solutions may be ob-

tained in a much more efficient manner, using as little as 0.06% DOF as a similar

non-adaptive computation. H-adaptive methods can handle singularities in the

gradient of the solution more efficiently than without. Using simulations, it was

discovered that given the boundary conditions (3.43), the maximum pressure drop

that can be used with this configuration is 1.6× 10−12 and that the maximal pump

efficiency occurs when ∆P0 is approximately 1.0 × 10−12. This shows that the pro-

totype PDESE may be used to study and design a micropump and find parameters
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Figure 3.29: Pressure versus viscous energy dissipation.

for optimal efficiency. While an optimization package has not yet been incorporated

into the prototype PDESE, the results indicate a good starting point for finding the

optimal parameters in laboratory experiments. Similar studies for different config-

urations, such as different forcing functions for the membrane movement, may also

be done without having to resort to expensive laboratory experiments.

3.4 Stage-Structured Infection Transmission and a Spatial

Epidemic: A Model for Lyme Disease

3.4.1 Introduction and the Lyme Disease Life Cycle

In this section, we use the adaptive PDESE prototype software to study the

spread of an epidemic of Lyme disease. The Lyme disease cycle is shown in Fig-

ure 3.32 [45]. Lyme disease in the Northeast U.S. involves interactions between no

fewer than four species [106, 86]. The pathogen is a spirochetal bacterium Borrelia

burgdorferi. The hematophagous vector is the black-legged tick Ixodes scapularis.

Most newly hatched larvae attack white-footed mice Peromyscus leucopus ; a few

larvae attack other hosts [123]. Replete larvae molt and winter as nymphs. At the
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Figure 3.30: Percent amplitude versus average flow.

start of the second year, surviving nymphs “quest” for a second blood meal. Most

successful nymphs again attack mice, but some infectious nymphs bite humans. Af-

ter feeding on mice, nymphs quickly mature as adults. Adult ticks feed preferentially

on white-tailed deer Odocoileus virginianus, and mating occurs on deer.

The spread of the disease is modeled using a nonlinear reaction-diffusion sys-

tem (§3.4.2) which is solved adaptively (§3.4.5). Due to a sharp gradient in the initial

conditions, adaptivity is required for an efficient and accurate solution. The model

is new (and incorporates vector dynamics), so no previous results are available.

3.4.2 A Reaction-Diffusion Model for Lyme Disease

The reaction-diffusion model [40] used to study the propagation of Lyme dis-

ease, unlike other models [63], accounts for vector dynamics, such as vector mortality.

The parameters and variables used in this study are listed in Tables 3.4.2 and 3.4.2

respectively. The parameters are assumed to be independent of spatial location.

Mice reproduce in a density-dependent manner, and incur density-independent
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Figure 3.31: Percent amplitude versus viscous dissipation.

Parameter Definition

rM Maximal individual birth rate in mice
KM Carrying capacity for mice
µM Mortality rate per mouse
DM Diffusion coefficient for mice
DH Diffusion coefficient for deer
r Maximal individual birth rate in ticks
c Crowding coefficient in ticks
µL Mortality rate per questing tick larva
µV Mortality rate per feeding tick larva
µN Mortality rate per tick nymph
µA Mortality rate per adult tick
α Attack rate, juvenile ticks on mice
γ Attack rate, tick nymphs on humans
β Susceptibility to infection in mice (0 < β < 1)
βT Susceptibility to infection in ticks (0 < βT < 1)
σ Rate at which larvae complete first blood meal

Table 3.2: Lyme disease model parameters.

mortality. Since mice are born uninfected, the equation for susceptible-mouse den-

sity M(x, y, t) includes birth, death, acquisition of the spirochete from infectious-
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Figure 3.32: Life cycle of Lyme disease ticks.

Variable Definition

M Density of susceptible mice
m Density of pathogen-infected mice
L Density of questing larvae
V Density of larvae infesting susceptible mice
v Density of larvae infesting pathogen-infected mice
N Density of susceptible questing nymphs
n Density of questing infectious nymphs
A Density of uninfested adult ticks
a Density of pathogen-infected adult ticks

Table 3.3: Lyme disease model variables.

nymph bites, and dispersal:

∂M (x, y, t)

∂t
= rM (M + m)

(
1 − M + m

KM

)
− µMM

− αβMn + DM

(
∂2M

∂x2
+

∂2M

∂y2

)
. (3.56)
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The density of pathogen-infected mice m(x, y, t) increases as susceptible mice

are bitten by infectious nymphs, and decreases through mortality. The equation for

infected mice includes infection, death and dispersal:

∂m (x, y, t)

∂t
= αβMn − µMm + DM

(
∂2m

∂x2
+

∂2m

∂y2

)
. (3.57)

We assume that larval hatching rate depends nonlinearly on adult tick density

[129, 110, 81]. The density of questing larvae declines through mortality and attacks

on mice. Then,

dL

dt
= r (A + a) [1 − c (A + a)] − µLL − αL (M + m) . (3.58)

Larvae must hatch at a positive rate when A + a > 0, so we assume c is small.

Given densities of questing larvae, the density of larvae infesting susceptible

mice, V (x, y, t), changes through successful attack, completion of the first blood

meal, death, and dispersal while they infest mice:

∂V (x, y, t)

∂t
= αML − V (σ + µV ) + DM

(
∂2V

∂x2
+

∂2V

∂y2

)
. (3.59)

Since the duration of a larval meal seldom exceeds a few days [18], σ > µV .

The assumptions concerning the density of larvae infesting pathogen-infected

mice, v(x, y, t), are similar. We substitute the density of infectious mice (m) for

susceptible-mouse density (M) to obtain

∂v (x, y, t)

∂t
= αmL − v (σ + µV ) + DM

(
∂2v

∂x2
+

∂2v

∂y2

)
. (3.60)

The density of susceptible nymphs, N(x, y, t) increases as larvae complete

their first meal without acquiring the spirochete. The larvae may have infested a

susceptible mouse, or attacked an infectious mouse and avoided infection. N(x, y, t)

decreases as they die, bite humans, and attack mice. Combining processes yields

dN

dt
= σ [V + (1 − βT ) v] − N [γ + α (M + m) + µN ] . (3.61)
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Infectious nymphs must have attacked a mouse infected with Borrelia as lar-

vae, and then acquired the pathogen. Their density varies as

dn

dt
= βT σv − n [γ + α (M + m) + µN ] . (3.62)

The term γ n(x,y,t) represents the local risk of Lyme disease to humans. We assume

that nymphs biting humans do not feed long enough to mature as adults.

Given densities of susceptible nymphs, N(x, y, t), the density of uninfected

adult ticks, A(x, y, t), changes through attacks of those nymphs on mice, death of

adults and dispersal

∂A (x, y, t)

∂t
= αN [M + (1 − βT ) m] − µAA + DH

(
∂2A

∂x2
+

∂2A

∂y2

)
. (3.63)

Given densities of infectious nymphs n(x, y, t), the density of pathogen-infected

adult ticks a(x, y, t) increases as infected nymphs attack any mouse, and as suscep-

tible nymphs attack infected mice and acquire Borrelia during their second blood

meal. Adding death and dispersal, we have

∂a (x, y, t)

∂t
= α [(M + m) n + βT mN ] − µAa + DH

(
∂2a

∂x2
+

∂2a

∂y2

)
. (3.64)

3.4.3 Traveling Wave Conjecture

In one-dimension, suppose a population exhibits both growth, self-regulation,

and diffusion. Let the carrying capacity be K. Then if the initial density is zero

everywhere except at one location, the population will increase to K expanding as

a traveling wave [40]. The wave has an asymptotic speed of
√

4ρD, where ρ is the

intrinsic rate of increase and D is the diffusion coefficient [100, 78, 62]. Given the

parameters in Table 3.4.2, one may compute the velocity ξ. In §3.4.5, ξ0 is used,

where

ξ0 =
ξ

2

√
E[T ]

DM

, (3.65)

where

E[T ] ≡ (γ + αQ + µN)−1 + µM
−1. (3.66)



78

3.4.4 Reaction Equilibria

To compute the aspatial equilibria in one dimension, the diffusion terms were

deleted. The positive abundance of ticks and mice in the absence of the spirochete

and proportional infection of both mice and ticks equilibrium was chosen. Then,

the equilibrium densities (the respective variable with a superscript asterisk) are as

follows [40]:

Q ≡ KM

(
1 − µM

rM

)
, (3.67)

A∗ + a∗ =
1

c
− (αQ + µL) (σ + µV ) (γ + αQ + µN) µA

rcσ (αQ)2 , (3.68)

with c < 1,

m∗ = Q
ββT µA (A∗ + a∗) − µMQ

ββT µA (A∗ + a∗)
, (3.69)

with m∗ > 0,

n∗ =
ββT µA (A∗ + a∗) − µMQ

βαQ
, (3.70)

M∗ = Q − m∗ (3.71)

L∗ =
(σ + µV ) (γ + αQ + µN) µA

σ (αQ)2 (A∗ + a∗) , (3.72)

v∗ =
γ + αQ + µN

σαQ

ββT µA (A∗ + a∗) − µM

ββT

, (3.73)

V ∗ =
µM (γ + αQ + µN)

ββT ασ
, (3.74)

N∗ =
µA (1 − βT )

αQ
(A∗ + a∗) +

µM

αβ
, (3.75)

a∗ =
α

µA
(Qn∗ + βT m∗N∗) , (3.76)

A∗ =
α

µA

N∗ (Q − βT m∗) . (3.77)

3.4.5 Results

The parameter values used in the study are listed in Table 3.4.5 with DH =

0.1 = 10DM .
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Parameter Value (run 1) Value (run 2) Value (run 3)

rM 0.04 0.008 0.008
KM 6.0 4.0 4.0
µM 0.02 0.006 0.006
r 0.35 0.015 0.015
c 0.0003 0.0025 0.0025
µL 0.09 0.01 0.01
µV 0.08 0.01 0.01
µN 0.06 0.008 0.008
α 0.02 0.02 0.02
γ 0.005 0.001 0.001
β 0.3 0.35 0.35
βT 0.5 0.45 0.45
σ 0.25 0.2 0.2

Table 3.4: Lyme disease model parameters values.

The initial conditions of the variables are listed in Table 3.4.5 where

g = exp

(
−(x − x0)

2 + (y − y0)
2

ε2

)
(3.78)

with ε = 0.001, and (x0, y0) representing the center of the domain,
(

1
2
, 1

2

)
.

Variable Initial Value

M 3 − g
m g
V 1.669
v 363.4
A 735.7
a 2180
L 80.32
N 29.29
n 29.03

Table 3.5: Lyme disease initial values.

We compared the equilibria of the model, discussed in §3.4.4, with simulation

results. (3.56)-(3.64) were solved using the adaptive software discussed in §3.2.3.

The results are tabulated in Table 3.4.5.
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µA 0.002 0.025 0.045

m∗ 2.81 2.97 2.93
m(s) 2.81 2.97 2.93
n∗ 50.04 350.09 141.76
n(s) 50.04 350.17 141.69
N∗ 56.71 356.76 148.42
N(s) 56.71 356.84 148.36
ξ0 2.31 4.04 3.22
ξ0(s) 1.99 2.68 2.33

Table 3.6: Simulation results are given in rows with “(s)”.

3.4.6 Discussion

The analysis in §3.4.5 using the adaptive PDESE prototype software generally

matches closely with the expected values. The traveling wave conjecture was verified

numerically. H-adaptivity was required due to the sharp initial condition (3.78).

One may now consider simulations with various initial densities of Lyme disease as

well as various parameters to determine how the disease will spread.



CHAPTER 4

APPLICATIONS IN THREE DIMENSIONS

4.1 Trellis

4.1.1 Introduction

In this section, the simulation framework developed by the Scientific Com-

putation Research Center (SCOREC) at Rensselaer Polytechnic Institute, Trellis,

is described. Trellis is an object-oriented hr-adaptive PDE solver, written by J.-

F. Remacle and O. Klaas but with contributions from D. Datta, S. Kocak, K.

Pinchedez, and the author of this thesis, which currently uses Galerkin finite ele-

ment methods using polynomial basis functions in one, two, and three dimensions.

Work is presently underway to expand and parallelize the framework. Trellis is a

major step towards the PDESE ideal described in §1.1. The original Trellis frame-

work described by Beall [29] forms the basis for the current version although most

of the code has been rewritten.

4.1.2 Motivation

There have been many attempts to create an object-oriented finite element

framework [12, 75, 30, 91]. Unfortunately, all of them have serious deficiencies

which make them unsuitable for solving problems in this thesis, such as the three-

dimensional biphasic sections in §4.2. For example, some object-oriented finite ele-

ment frameworks [12, 75] cannot solve time-dependent problems. Kaskade [30] does

not allow for parallelism nor does it interface to different external software pack-

ages, such as DASPK, nor does it allow for interfaces to modelers, such as Parasolid.

A project closer to Trellis in capabilities is Diffpack [91]. Unfortunately, Diffpack

does not support advanced DAE solvers, such as DASPK, and like the other cited

software, does not provide support for moving mesh problems.

The prototype PDESE by Aiffa [9], used in §3.2 and §3.3, does not extend to

three dimensions nor does it do warm restarts using DASPK (§4.1.8). Furthermore,

the original version of SCOREC’s Mesh Database has been replaced by a much

81
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faster successor, AOMD [111]. The lack of a framework design approach [58] (or

the presence of software antipatterns [39]) in the prototype PDESE is known to be

conducive to a lack of code extendibility.

To address the deficiencies of previous codes, a new structure for a simulation

framework is needed. In particular, the structure must be able to accommodate

adaptivity at all levels (mathematical model, discretization, solution techniques,

etc.). The code must be able to handle a large class of general problems, rather

than specific types of problems. The code must also be able to import models rep-

resenting problem domains from a number of geometric modeling systems, such as

Parasolid. Coupling between the geometric modeling system and the framework

is needed to facilitate geometry-based problem specification. This is critical for

p-refinement since curved element approximations must be used for high-order ac-

curacy [54]. Furthermore, the adaptive process cannot accurately refine the mesh

on the boundary without knowing the shape. However, the geometric problem spec-

ification must be independent of the solution code.

Finally, Trellis must have a rich data structure supporting the adaptive process

that is also efficient.

All of the above requirements are addressed by Trellis.

4.1.3 Trellis Overview

4.1.4 Unified Modeling Language Nomenclature

The Unified Modeling Language (UML) [36] is used to describe the structure

of Trellis. A class, analogous to a C++ class, is denoted as shown in Figure 4.1,

where the top section represents the name of the class, the middle section contains

the attributes (variables in C++), and the bottom section contains the operators

(member functions in C++).

The names of attributes and operators may be preceded by a +, #, or −,

depending on whether it is public, protected, or private, respectively. For clar-

ity, particularly when showing relationships, the attributes and operators may be

omitted. The namespace of the classes may be omitted when it is clear from the

context.
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Figure 4.1: UML class diagram.

Dependencies, such as one class using another class in a function argument,

return type, or an attribute that is of a class type, is denoted with an arrow as in

Figure 4.2. Here, mAttachableEntity depends on mEntity, since there is a pointer

attribute to mEntity in mAttachableEntity.

Figure 4.2: UML dependency.

One can also have a dependency if a member operator has a class as an

argument of the operator. A generalization, or “is-a-kind-of”, is a relationship

where the child class may be used anywhere that the parent(s) classes may be

used, but not the reverse. In C++, a generalization refers to base class(es) from

which a class is derived. A generalization is denoted by an arrow with a triangular

head as in Figure 4.3, where SpoolesLinearSystemSolver is a class derived from

LinearSystemSolver.
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Figure 4.3: UML generalization.

An aggregation is a special case of a dependency such that one or more in-

stances of a class is contained in the attribute section of a class. For example,

in Figure 4.4, the class BezierMapping contains a vector of mPoint as a member

variable, thus giving rise to an aggregation.

Figure 4.4: UML aggregation.

In the case of dependencies and aggregation, multiplicity may be denoted at

the ends of the arrow. For example, in the above case of aggregation, BezierMapping

contains 1 or more instances of mPoint. Finally, a collection of objects, typically

classes, is called a package. A package is purely conceptual; however, sources for

separate packages are usually stored in separate subdirectories.
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4.1.5 Package Structure

Trellis has three main packages (and one minor package) and many subpack-

ages:

1. Applications This package contains all major applications that Trellis can

do (or applications using large portions of Trellis).

• DG: This is a discontinuous Galerkin package to solve hyperbolic conser-

vation laws [114].

• BarocasBiphasic: This package contains the analysis code to solve the

ABT equations in three-dimensions, discussed in §4.2.

2. Meshing

• MeshAdapt: The procedures to do refinement, coarsening, and other

mesh modifications.

• MeshTools: This is a collection of routines to operate on a mesh, such

as creating or deleting a region or face, computing measures (such as the

ratio of the longest side over the shortest sides) on mesh entities, such as

edges, faces, and regions, and other miscellaneous tools.

• templateRefine: This package contains the templates by which the

mesh is refined. It is similar to the templates in §3.2.3.5, adding templates

in three-dimensions.

3. Trellis

• AOMD: This package contains the data structure and tools to store a mesh.

It also includes a subpackage to perform quadrature over an edge, face,

or region. This package is described in more detail in §4.1.6.

• Core: The main finite element analysis classes are located in this package,

with routines to handle global matrix assembly; a generic interface to

the Solver package; a parser for files that specify boundary conditions,

initial conditions, and other parameters; time integrators; and an error

estimator and adaptivity routines.
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• Field: Routines pertaining to solution fields, such as the shape func-

tions, a class to manage the DOF, gradient and divergence operators and

the like, operators to form material laws, and output, are located in this

package.

• Solver: This package contains interfaces to various linear algebraic pack-

ages, such as PETSc [17] and SPOOLES [14].

4. Util: This package is minor in that it contains only machine and compiler

specific customizations to the Makefile.

4.1.6 Geometry Based Framework and AOMD

The next generation of analysis tools must be able to support automatic dis-

cretization and adaptivity while remaining flexible regarding available solution tech-

niques. They must be able to solve a wide variety of problems, where both the

equations and domain can be easily described.

For the domain and the parameters to be used on the domain to be readily

described, the problem must be defined in a manner that corresponds to the physical

simulation. Typically, the domain, or model, is created using a computer-aided

design (CAD) program (or modeler), such as Gmsh, Parasolid, Shapes, AutoCAD,

or ACIS, whose output is a model. Thus, the framework must be able to interface

with these modelers to obtain domain information. Access to the geometry is needed

since a refined mesh must correctly approximate the domain [54]. The domain

is usually created in sections, where parameters and/or boundary conditions are

uniquely specified. It is advantageous to have a framework where parameters and

boundary conditions are specified on a particular section, known as a model entity.

A model entity may be a region, face, edge, vertex, etc., as shown in Figure 4.5.

Non-trivial boundary representations are needed since complex boundaries,

such as Figure 4.6, can arise.

Given a model, Trellis assumes a corresponding mesh either exists and is

loaded, or is generated. As part of the goal of providing a PDESE, it is empha-

sized that Trellis can call an automatic mesh generator to create a mesh, given a

model. Then, mesh entities, e.g., regions (elements in a three-dimensional mesh),
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Figure 4.5: Non-manifold boundary representation.

Figure 4.6: An example of a non-manifold model.

faces, edges, and vertices, are associated (or classified) to model entities, as shown

in Figure 4.7.

For example, a face in a three-dimensional mesh may be associated with a

model face if it lies on the surface or in a model region if the face is in the interior.

Thus, for example, operations specified on a model face are actually done on each

mesh entity (regions, faces, edges, vertices) that is associated with that model face.

It is assumed that an associated mesh exists for a given model. Separating the

model input from the mesh input, it is possible to support a wide variety of mesh

and model input formats. It is important, however, that the choice of modeler be

independent of the rest of the analysis. Trellis is a component based software system
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Figure 4.7: Mesh and model entities associations.

to implement such specifications using AOMD, as described below.

A rich and efficient data structure for storing the mesh and model is required

to support the adaptive process. Thus, we turn our attention to Algorithm-Oriented

Mesh Database (AOMD) [111], written by J.-F. Remacle, which is a new version

of the SCOREC Mesh Database [27] discussed in §3.2.3.1. This software is not

a database in the traditional sense, but rather a persistent object-oriented data

structure. Again, like the Mesh Database, AOMD allows one to attach data,

mAttachableData, to mesh entities, mEntity, although AOMD uses an object-

oriented paradigm rather than using void pointers, which are type-unsafe. A skele-

ton UML structure of AOMD, illustrated in Figure 4.8, shows clearly the relationship

between the attachable data types and mesh entities.

Other than the efficient use of C++ templates for speed [25, 134], AOMD is

also memory efficient. The original SCOREC Mesh Database stores pointers from

regions to all their vertices, edges, and faces, and similarly for pointers from faces to

their edges and vertices, etc. Thus, there is a large number of pointers per element.

However, one need not store all of the pointers. Rather, for example, one may

store only the pointers to the (d − 1)-dimensional entities (and optionally (d + 1)-

dimensional entities with an additional pointer from the 0-dimensional entities to
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Figure 4.8: UML skeleton diagram of AOMD. Many AOMD classes were
omitted for clarity.
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the d-dimensional entities of the problem), where d is the dimension of the entity in

question. This concept is shown in Figures 4.9 and 4.10.

Figure 4.9: One level of adjacency pointers.

Figure 4.10: Circular adjacency pointers.

Storing just one level of adjacency pointers is sufficient, since one may loop

over lower-dimensional entities to get the same information. For example, given a

face, if one wishes to know what vertices are associated with the face, one loops

over the list of edges, then for each edge, one can obtain the vertices on the edges.

AOMD allows one to customize the adjacency information that is stored, thus greatly

reducing memory [111].

AOMD not only stores and operates (such as creating and deleting elements)

on meshes, it also has interfaces to various modelers, as noted at the beginning

of this section. The modules for input of the mesh and model are separate from

the rest of AOMD, so the interfaces for querying and manipulating the mesh are

independent of the modeler used to create the domain. At this time, AOMD has

only used meshes as fitting the exact geometry; however, work has progressed on

interfacing AOMD to Parasolid and other modelers so that one may query the model

entity containing a mesh entity, and vice versa.

4.1.7 Trellis Structure

Using AOMD as the data structure by which Trellis stores and interfaces to

the mesh and model, we focus our attention on the structure of the analysis portion

of Trellis. The solution field is coded in the subpackage Field, whose UML structure

is shown in Figure 4.11.
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Figure 4.11: FiniteElementField UML diagram.



92

The FiniteElementField class manages an interpolating solution field. The

classes derived from FunctionSpaceBuilder create the function space from a par-

ticular basis function set derived from the class FunctionSpace as shown in Figure

4.12.

All of the Builder classes are of the design pattern Builder found in [67].

The classes derived from GenericEval evaluate the field or operate on them in

some way. For example, note how FieldMaterialLawEval (which is used to evaluate

FieldMaterialLaw) is derived from GenericEval, but must also have a dependency

on the FiniteElementField class.

The DofManager class, Figure 4.11, is of Singleton type [67] and manages the

DOF in Trellis, keeping track of the number of DOF on each mesh entity. It also

keeps track of the time history of the DOF, so that warm restarts, covered in §4.1.8,

are possible. Notice that the FiniteElementField class depends on instances of

the class Dof.

The connection between the Field package and AOMD is provided by the fact

that the FiniteElementField depends on the class AOMD::MappingBuilder, which

creates instances of classes derived from AOMD::Mapping. (This connection is not

shown in the figures.) Thus, with the mapping defined over mesh entities, the finite

element field is defined over the same entities.

The packages to do the analysis and solution are the Core and Solver modules,

which are shown in Figure 4.13.

The classes derived from Assembler assemble the global matrices and vectors.

The MatrixAssemblerDT class assembles the global matrix pertaining to terms of

the form (∂u/∂t, φu)Ω. This class is needed since the method by which one performs

time integration determines how the time derivative term is approximated in the

global matrix. The class MatrixAssemblerDT provides a backward Euler formula-

tion. The class MatrixAssemblerDTDaspk, covered in §4.1.8, provides an interface to

the DAE solver DASPK [37]. All of the assemblers depend on LinearSystemSolver,

since it provides the top-level interface to various linear algebraic solving packages.

Two package interfaces are shown in Figure 4.13, FullLU and SPOOLES, the latter

described further in §4.1.8. Other linear algebraic packages to which there is an
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Figure 4.12: FunctionSpace UML diagram.

interface are Sparskit [117] and PETSc [17].

The FiniteElementAnalysis class contains the main routines to control the
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solution of the finite element problem over one time step. The user must provide a

routine in the main program that loops through time. Not shown in the diagram are

routines to perform a nonlinear Newton solve. However, the call to this solver may

be overridden, such as is done in the derived class FiniteElementAnalysisDaspk,

to use the nonlinear solver in DASPK instead of Trellis’. However, regardless of the

solver used, the AlgebraicSystem (and, therefore, the Assembler) interface is used

to provide a consistent interface to the linear algebraic packages.

The connection between Core and Field is given by the association that

FiniteElementAnalysis has an aggregate of Field::Fields classes, which con-

tain a [C++ STL] map of class Field::Field, from which FiniteElementField

classes are derived. (Not shown in the Figures.) There is also a connection (not

shown) between Core and AOMD, since the FiniteElementAnalysis class has point-

ers to the mesh(es).

4.1.8 DASPK Incorporation, Mesh Motion, and Warm Restarts

Trellis was originally coded with only the backward Euler method for time

integration. The incorporation of DASPK, which solves not only systems of stiff

ODEs but also system of DAEs, while adaptively adjusting the time step and order

of the method, is a significant upgrade to Trellis’ capabilities. Unlike the back-

ward Euler method where one specifies the time step, DASPK’s input is the error

tolerance, which is a more natural parameter.

Referring to Figure 4.13, FiniteElementAnalysisDaspk, derived from

FiniteElementAnalysis, overrides the member functions updateSolution and

solveOneTimeStep to interface with DASPK. The function updateSolution is

overridden since DASPK provides the approximation of the time derivative of

the solution as well as the solution itself, while the backward Euler method pro-

vides the approximate time derivative using the solution at the current and pre-

vious timestep. The FiniteElementAnalysisDaspk class also provides interfaces

between DASPK and Trellis’ linear algebraic solver and residual evaluation rou-

tines. The class SimpleAlgebraicSystemDaspk (name cut off in the Figure), de-

rived from SimpleAlgebraicSystem, was needed so that MatrixAssemblerDtDaspk
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is used instead of MatrixAssemblerDt. MatrixAssemblerDtDaspk is needed to pass

DASPK’s approximation of the time derivative of the solution rather than using a

finite difference approximation as was done in MatrixAssemblerDt for the backward

Euler method.

To improve the efficiency relative to DASPK, we modified the Solver package’s

LinearSystemSolver interface so that linear algebraic operations may be separated

into two phases. Typically, the direct numerical solution of linear algebraic systems

proceeds by first factoring (often in LU form) the system matrix then performing a

forward-backward substitution to obtain the solution [69]. Recall that for a n×n ma-

trix, the factorization time is O(n3) while the substitution time is O(n2). DASPK’s

nonlinear solver does not need to refactor the [global] linear algebraic system every

time a solution is needed. Rather, DASPK waits until the rate of convergence of the

nonlinear solver drops below a prescribed tolerance before refactoring the algebraic

system. This ability to not have to factor the algebraic system at every iteration of

the nonlinear solver greatly speeds up the computation. We have implemented an

interface which transparently allows packages having the capability to separate out

the factorization and substitution phase, such as SPOOLES (a sparse direct pivot-

ing linear algebraic solver) [14], to take advantage of DASPK’s factoring behavior.

Other packages, such as Sparskit [117] which do not have this capability, will factor

the algebraic system every time. In §4.2, the computations are performed using

DASPK with SPOOLES.

One of the major improvements of Trellis relative to the initial version of Trellis

[29], is its ability to store the solution at multiple times and project the solutions at

all of the stored times from the old mesh onto an enriched mesh. Because of this, it

was possible to implement warm restarts in DASPK. Warm restarts, investigated by

Wang [137] in one- and two-dimensions for parabolic problems, are shown to greatly

increase the solution method efficiency.

The idea of a warm restart is based on DASPK starting with a first-order

ODE integration method and increasing the order as it moves forward in time.

Recalling the backward differentiation formulas (BDF) method [13], higher-order

methods require that the solution be known at previous time steps. Using higher-
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order methods, such as BDF, is advantageous since for a given error tolerance,

larger time steps may be used because the error for an order k BDF formula is

O
(
∆tk

)
. When performing h− (or p−) adaptivity, the number of DOF changes. If

the solutions at all the previous times are not transferred to the new mesh (or the

solution is not projected onto the enriched solution space), then DASPK must start

the next solution step using the first-order method with a much smaller time step

rather than continuing with the current order method. Restarting from a first-order

method is called a cold restart, while projecting the solution history and continuing

with the current order method is called a warm restart. The prototype PDESE code

(§3.2.3) was able to perform only cold restarts. However, in the implementation of

the current version of Trellis, the DOF manager, class DofManager, has the ability

to store the history of the solution vectors and to pass them to the projection

routine during mesh and order enrichment, allows for warm restarts. It will be

shown in §4.2.1 that using warm restarts improves the running time of one example

by approximately a factor of four.

The class FEADaspkMeshMove derived from FiniteElementAnalysisDaspk

adds mesh motion to the capabilities of Trellis. The user specifies which fields

determine the coordinates of the domain. These field coordinates are used to up-

date the mesh each time the solution is evaluated. Thus, the member function

updateSolution is enhanced to call the mesh motion routine. A field is used to

specify the deformation of the domain in time, so that the equations of motion,

which are a part of the global system of equations which, are solved to the same

accuracy in time as the rest of the system of PDEs.

4.1.9 Problem Specification

One of the requirements of a PDESE is the ease of specifying a problem, here

a system of PDEs. This is readily accomplished in Trellis. For example, the forced

heat problem (in weak form),

(
∂T

∂t
, φT

)
+ (∇T,∇φT ) + (sourceTerm, φT ) = 0, (4.1)
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where T is the temperature, may be specified in three lines, in order of the terms

appearing in (4.1):

BilinearForm(M,...,Identity(),ScalarMaterialLaw(1.0),Identity(),

T, T, FIRST_DERIVATIVE,...);

BilinearForm(M,...,Grad(),ScalarMaterialLaw(1.0),Grad(),

T, T, ZERO_DERIVATIVE,...);

LinearForm(M,...,Identity(),sourceTerm,

T, ZERO_DERIVATIVE,...);

where extraneous parameters and namespaces were omitted. M specifies the model

entity number on which the forms are applied, while T represents the temperature

field. The Identity() and Grad() operators act on field T. The specification of

zeroth and first derivatives indicates whether the form is acting on a time derivative

of T. Comparisons between the code and the equations yields a self-evident mapping.

Specifications of nonlinear terms in Trellis, hitherto not attempted, are not presented

in this thesis, but examples of them are in the package BarocasAnalysis (cf. §4.2).

Future work on problem specifications is mentioned in §5.3.

4.1.10 Class Interaction Sequence

A skeleton UML sequence diagram is shown in Figure 4.14. The diagram shows

the interaction of classes (appearing at the top) in time going from top to bottom

with the name of the call at the tail of the arrow. The call to assembleSystem in

updateRHS has been omitted for clarity. The diagram is intended to show that over

one time step, Trellis follows a traditional form of setting up the DOFs, imposing

Dirichlet boundary conditions, numbering the DOF, setting up the algebraic system,

getting the previous time step’s solution, calling an ODE solver (DASPK) which

in turns calls residual and Jacobian (DMATD) functions which assemble the global

systems, updating the solution, and performing adaptivity. The DofManager class

provides a simple interface for looping over the Dof class instantiations. Not shown

are the calls through the matrix and vector assembler classes to class Spooles that

provide a uniform interface to all available linear algebraic solvers.
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4.2 Three-Dimensional Biomechanical Simulations

There is a lack of work on the solution of fully three-dimensional nonlinear

biphasic equations for large deformations. Previously, the anisotropic biphasic equa-

tions of Barocas and Tranquillo were solved adaptively only in two dimensions [105].

We solve the biphasic equations of Barocas and Tranquillo (3.1)-(3.5) in

three dimensions using Trellis. An analysis class derived from FEADaspkMeshMove,

BarocasBiphasic, provides the equation specifications for the ABT equations. No

symmetries are assumed so the computation is performed in Cartesian coordinates.

Two problems are solved, an ICTA problem in a hexahedral domain and a wound

problem, using Trellis. These problems cannot be reduced to a two-dimensional

problem by geometric symmetries.

Currently, the only error indicator coded in Trellis estimates the error on an

element Ωe as

ηe =

∫
Ωe

(σΩe −∇U)2 d|x| (4.2)

where Ωe is an element of the mesh, U is the finite element solution, and σΩe is

the recovered gradient of the solution by a least squares fit of the gradient of the

finite element solution over a nodal patch. This error indicator is known as the

ZZ error estimator [145]. Similarly to §3.2, the finite element approximation of the

concentration, C, is used as the solution variable U . The element size field, h(x), is

computed as the solution to the minimization problem

min

{∫
Ω

1

hd
d|x| + λ

(
Tolerance +

N∆∑
e=1

∫
Ωe

hd ηe
2

hold
d

d|x|
)}

, (4.3)

where d is the dimension of the problem, λ is the Lagrange multiplier, Tolerance is

the desired tolerance, and hold is the size of the length of the longest edge of element

e in the original mesh. Given the size field h, the current mesh is then locally

refined. Solving the minimization problem, it is theorized that this minimizes the

number of elements given the error tolerance and that it equidistributes the error in

the mesh. Due to concerns of an over-aggressive coarsening strategy in Trellis and

that (4.2) is only a primitive error indicator, mesh coarsening was not performed in

these calculations, unlike in §3.2.
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4.2.1 Three-Dimensional ICTA Problem

In this section we solve a similar problem to that of §3.2.4.1, except that

instead of a cylindrical domain, we start with a hexahedral domain. The initial

domain of this problem is shown in Figure 4.15.

Similar to the cylindrical domain, the ends are fixed (no-slip face) while the

rest of the faces are considered free faces. All of the parameters remain the same,

except that we use the identity tensor in place of Ωc.

The concentration is plotted at four representative times in Figures 4.16 to

4.19.
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Figure 4.13: Core and Solver UML diagram.
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Figure 4.14: UML sequence diagram.
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Figure 4.15: Hexahedral three-dimensional ICTA problem domain.

Figure 4.16: t = 0
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Figure 4.17: t = 0.9

Figure 4.18: t = 30.66
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Figure 4.19: t = 60
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As in the two-dimensional case, the mesh is progressively refined near the

model faces that have no-slip boundary conditions.

We now examine the advantage of using warm restarts using the above prob-

lem. Since the frequency at which adaptivity occurs would be different, we set up

the error tolerances for the warm restart run so that on average it would have the

same or higher number of DOF as the cold restart run. The number of DOF versus

t for both the cold restart and warm restart runs is plotted in Figure 4.20.
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Figure 4.20: DOF versus time.

The time step of warm restarting is typically much larger than that of a cold

restart run, because the cold restart run must reduce the time step to a small value

after every mesh enrichment. The time step is plotted versus time in Figure 4.21.

The large time steps translate to a significant speed up as shown in Table 4.1.

Type
∫ 60

0
DOF dt Average # DOF Running Time

cold restart 533575 8893 100 minutes
warm restart 536044 8934 27 minutes

Table 4.1: Warm restart results.

The average number of DOF is the second column divided by 60. As indicated,
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Figure 4.21: Time step versus time.

even with slightly more DOF, warm restarting took only almost one quarter the time

of a run using cold restarts.

4.2.2 Three-Dimensional Wound Problem

We now solve the ABT equations, (3.1)-(3.5), for a new problem, simulating

the healing of a wound [24]. The domain of this problem [24] is shown in Figure

4.22. Again, the same parameters were used with Ωc = I. However, the initial

condition of c and θ was set to be

dist =

(
x − 3

4

)2

+

(
y − 3

4

)2

distmax = 2

(
3

4

)2

=
9

8

c = θ =
1

2
+

1

π
tan−1(5(dist − distmax/3))

(4.4)

This was done to simulate a wound, where the lack of cells in the middle of the

domain represents a gouge in tissue. The arctangent function is used since a step
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function would cause an incorrect DASPK behavior of reducing the time stepsize

to roundoff (an error), due to an error norm which cannot handle non-diffusive

discontinuous traveling wave solutions.

x

y

z

(0,0,0)

(1.5,1.5,0.5)

No−slip Surfaces

Figure 4.22: Wound problem domain.

The concentration is plotted at four representative times in Figures 4.23 to

4.26
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Figure 4.23: t = 0

Figure 4.24: t = 1.86
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Figure 4.25: t = 38.34

Figure 4.26: t = 60
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As before, the mesh is refined in time, but unlike the problem in §4.2.1, the

refinement is more uniform throughout the domain. This is because of the initial

configuration, which results in some amount of gradient throughout much of the

domain.

4.3 Discussion

Extending the object-oriented simulation framework Trellis to efficiently han-

dle systems of DAEs by incorporating DASPK and SPOOLES, the ABT equations

of Barocas and Tranquillo were solved for the first time in three-dimensions. While

no exact comparisons can be made to the results obtained in §3.2, except for the

minor note that the value of the concentration at t = 60 for the results in §4.2 is of

the same order, the characteristics of the solution (having a sharp gradient where

the no-slip boundary conditions meet the free boundary condition) and the pat-

tern of refinement leads one to believe that the equations are being solved correctly.

Both the three-dimensional ICTA problem in the hexahedral domain and the wound

problem exhibit behavior consistent with are expected from the ABT equations.



CHAPTER 5

SUMMARY AND FUTURE WORK

5.1 Summary

In this thesis we have taken several significant steps toward creating a PDESE

for biomechanical problems. First, we have developed a new efficient quadrature

method, the table look-up method that is applicable for all orders, unlike the Gaus-

sian quadrature method. Improvements in the data structure greatly reduced table

size. While the optimal interpolation points are available only up to eighth order

in three-dimensions, non-optimal interpolation points (e.g., uniformly distributed

points) may be generated up to all orders; thus, making this method applicable for

higher order methods. The table look-up method is optimal for planar faced re-

gions, though. Second, we have solved three biological and biomechanical problems,

the ABT equations of Barocas and Tranquillo, the incompressible Navier-Stokes

equations, and the nonlinear reaction-diffusion Lyme disease propagation equations

with h-adaptivity and mesh motion. It was shown in the first two cases that using

adaptivity greatly increases the efficiency of the computations. Third, we have col-

laboratively developed and extended a new object-oriented simulation framework,

Trellis. Trellis now can solve systems of PDEs of mixed type, due to our incorpora-

tion of the DAE solver DASPK. Warm restarts were also implemented and shown

to yield a significant improvement in efficiency. The ICTA problem in a hexahedral

domain and the wound problem, which could not be solved before (since their ge-

ometry gives rise to no dimension-reducing symmetries), are solved using Trellis, in

part due to the author’s inplementation of some new nonlinear problems capabilty.

Due to our work of providing some development and extending Trellis, it is closer to

a complete PDESE. While the focus of this thesis was on biological and biomechan-

ical problems, Trellis, as a PDESE, is capable of solving a large class of problems in

a variety of fields.

Future work to be done is listed by topic in §5.2 through §5.3.

111
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5.2 Table Look-Up

Future work should include attempting the table look-up method on more

complex (nonlinear) problems, such as the Navier-Stokes equations for high p and

many elements or the ABT equations. In this thesis, only Υ(ξ) was interpolated. It

would also be worthwhile to consider interpolating θ(ξ)Υ(ξ), where θ(ξ) is a factor

of Θ(ξ). The choice of θ(ξ) would be problem dependent. Also, the order in which

the table is accessed may be improved by reordering the integration so that it looks

up only one part of the table at a time. This will allow caching to be more effective.

The flexibility of the table look-up method provides for a number of research

opportunities in exploiting problem knowledge to decrease the expense of numerical

integration in the finite element method. For example, one very important potential

generalization of Trellis is incorporation of the generalized finite element methods

(GFEMs) developed by Melenk and Babuška [96], where non-polynomial basis func-

tions are used. While the cited paper gave good results for an artificial problem,

the results should be extended to practical problems. One of the inefficiencies with

current methods, such as GFEMs and meshless methods [32], is with integration

procedures. The table look-up method may provide the key to exploiting these new

methods.

It would be worthwhile to investigate using the table look-up method with non-

polynomial basis functions where traditional methods are often too computationally

expensive. The quadrature rule of Trellis (in AOMD) may be replaced by the table

look-up method and new non-polynomial basis functions (supporting GFEMs) may

be added. One possibility is to try non-polynomial basis functions which have a ra-

tional singularity in the derivative, e.g., of the form 1/rα, at one corner. This type

of basis may be used to capture sharp gradients, such as those found in the ABT

equations, without requring many mesh enrichments near the singularity. Further-

more, the singularity may be captured using far fewer DOF. However, if one used

Gaussian quadrature instead of table look-up, then the method reduces to a poly-

nomial interpolation problem, since Gaussian quadrature methods are interpolatory

[83]. Thus, the two avenues: non-polynomial basis functions and table look-up,

should be coded into Trellis simultaneously so that one may see some benefits.
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5.3 Two- and Three-Dimensional Anisotropic Biphasic Equa-

tions

There are many issues remaining in solving the ABT equations both in two

and three dimensions, as well as extensions to Trellis.

• Ωc was set to the identity matrix in three dimensions, since the routines to

compute the nonlinear deformation tensor were unavailable at the time of this

writing. A three-dimensional analog of Ωc used in §3.2 should be implemented

in Trellis.

• Domains often have very different length scales. It may be worthwhile to use

an anisotropic mesh adaptation similar to the work by Remacle et al. [113].

• A posteriori error estimation procedures should replace the error indicators of

this study. They will enhance reliability. Currently, there is work underway to

incorporate an equilibrated residual error estimator [104] into Trellis. However,

since most users are interested in a specific variable or quantity of interest, it

may be worthwhile incorporating error estimators that are computed on this

quantity of interest. This will not be trivial since a dual problem needs to be

set up and solved [11].

• Adaptive order enrichment, p- and hp-refinement, offer the possibility of ex-

ponential convergence rates and, as such, they should be explored. Optimal

enrichment strategies are needed to decide when and where to alter the mesh

and vary the order. P -adaptivity should be incorporated into Trellis.

• In this study, linear algebra was performed by a sparse direct procedure. Pre-

conditioned Krylov iteration has been effective on the ABT system [22] and

this should be attempted within the adaptive system. Trellis currently has

interfaces to two iterative solver packages, PETSc and Sparskit, so the mech-

anism by which to incorporate preconditioners is present. At this time, there

is no coupling between the algebraic solvers and the equation numbering sys-

tem. This needs to be altered since many preconditioners take advantage of a
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specific structure of the global matrix that cannot be determined through the

AlgebraicSystem interface.

• The reinforced ABT study (§3.2.4.3) was only the initial step in an optimal

design study. A combination of the adaptive solution and optimization soft-

ware, COOPT [118], would be necessary for a more thorough investigation.

The incorporation of COOPT into Trellis should be relatively straightforward,

and should bring Trellis closer to the PDESE ideal.

• The ABT equations are actually twelve equations in three dimensions plus

three equations for mesh motion. Due to the Babuška-Brezzi condition and

the fact that in many parts of the domain the solution is smooth, higher

order methods are used. This implies that the number of DOF increases

rapidly with the number of elements. While the meshes in §4.2 are sufficient

to capture the solution behavior in those instances, it may be necessary to

use a large number of elements for other problems. Thus, it is very likely

that this problem under Trellis needs to be run on parallel computers. Work

is currently underway to parallelize Trellis. AOMD [112], PETSc [17], and

SPOOLES [14] are packages which already incorporate support for parallel

architectures. Even using parallel architectures, runs may take a long time

(greater than one week), so a mechanism for checkpointing and restarting

should be implemented.

• Work should commence on meshes where the element types include hexahedral

elements as well as tetrahedral. Hexahedral elements have many desirable

properties, including the fact that efficient quadrature rules exist for all orders

by using a tensor product of one-dimensional Gauss quadrature rules.

• Work to make Trellis into a real PDESE is in order. Currently, the methods

by which one specifies parameters, boundary conditions, and initial conditions

are not user-friendly. Indeed, much of it is hard-coded. This will be remedied

when the Attributes subpackage of Core is completed, which will allow one

to read in an attribute file at the beginning of a run, specifying parameters

and conditions. Furthermore, the handling of both input and output data
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files is lacking in easy to use tools or support for standardized formats such as

Hierarchical Data Format (HDF) [74]. Finally, the addition of more nonlinear

operators should be incorporated. Correcting these shortcomings in Trellis

as well as implementing the above work would result in a general purpose

PDESE.

5.4 MEMS Pump

Many more experiments are still to be done. More two-dimensional experi-

ments should be done, including changing the membrane forcing function. Also, a

more realistic simulation can be done using Trellis in a three-dimensional setting. A

two-dimensional membrane (unlike the one-dimensional membrane of §3.3) would

allow for a greater variety of membrane functions. Even in two dimensions, more

runs are needed to verify and extend the results of §3.3 to different frequencies.

Since coding the incompressible Navier-Stokes equation is relatively straightforward

in Trellis, it may be advantageous to redo the runs in Trellis. This should take far

less time compared to using the prototype PDESE, due to the efficiencies of AOMD

and the presence of warm restarts. Ultimately, it would be worthwhile using a

PDESE (with efficient methods of solution) to consider the optimization problem of

what type of forcing function would bring about a maximal efficiency over a range

of pressure rises.

5.5 Lyme Disease Propagation

Many opportunities for further simulations exist. For example, the initial

density of infected mice could be more realistic rather than an approximation of

a sharp Gaussian. More realistic terrain (geometry) may be employed to simulate

a particular area in which Lyme disease is to be simulated. Diffusion affected by

terrain should also be investigated.
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APPENDIX A

APPENDIX: Notation

The notation used in this thesis is listed below:

• Vectors are denoted in bold font.

• d denotes the spatial dimension.

• The spatial coordinate [x1, . . . , xd]
T is written as x. In three-dimensions, x1 ≡

x, x2 ≡ y, and x3 ≡ z.

• dx1 dx2 dx3 (or dx1 dx2 in two-dimensions) will be denoted as d|x|.

• t denotes time.

• Ω is the problem domain.

• Ωe is element e of the meshed domain.

• Γ ≡ ∂Ω is the boundary of domain Ω. Specifically, ΓD is the part of the

boundary where Dirichlet boundary conditions, α(x), are applied and ΓN is

the part of the boundary where Neumann boundary conditions, β(x), are

applied, where α(x) and β(x) are user-specified functions. It is assumed that

for scalar systems ΓD ∩ ΓN = ∅.

• The outward normal to Ω for d > 1 is n.

• h is the length of the longest edge in the mesh.

• T is the standard reference triangle or tetrahedron, depending on the dimen-

sion.

• The canonical coordinate in T , [ξ1, . . . , ξd]
T , is written as ξ.

• dξ1 dξ2 dξ3 (or dξ1 dξ2 in two-dimensions) will be denoted as d|ξ|.
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• The space of all functions whose k-th derivatives are all continuous on a domain

Ω is denoted as Ck(Ω). The space of all smooth functions is denoted as C∞(Ω).

• ux ≡ ∂u/∂x, uxy ≡ ∂2u/∂x∂y, etc.

• The gradient of a scalar function is

∇u = [ux1, . . . , uxd
]T . (A.1)

• The gradient of a vector function [34] v = [v1, . . . , vd]
T is

∇v =




∂v1

∂x1
· · · ∂vd

∂x1

...
. . .

...

∂v1

∂xd
· · · ∂vd

∂xd


 . (A.2)

• The divergence of a vector function v = [v1, . . . , vd]
T is

∇ · v =

d∑
i=1

∂vi

∂xi
. (A.3)

• The Laplacian of a scalar function is

∇2u =
d∑

i=1

∂2u

∂x2
i

. (A.4)

• The inner product of two scalar functions, u and v, on Ω is

(u, v)Ω =

∫
Ω

u(x)v(x) dΩ (A.5)

• The inner product of two vector functions, u = [u1, . . . , un]
T and v = [v1, . . . , vn]T ,

on Ω is

(u,v)Ω =

∫
Ω

n∑
i=1

ui(x)vi(x) dΩ (A.6)
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• The inner product of two tensor functions,

u =




u11 · · · u1n

...
. . .

...

un1 · · · unn


 , and v =




v11 · · · v1n

...
. . .

...

vn1 · · · vnn


 , (A.7)

on Ω is

(u,v)Ω =

∫
Ω

n∑
i=1

n∑
j=1

uij(x)vij(x) dΩ (A.8)

• With a vector function u and scalar function v, define

〈u, v〉 ≡
∫

Γ

u · n v dµ, (A.9)

and when u is a tensor function and v is a vector function,

〈u,v〉 ≡
∫

Γ

(u · n) · v dµ, (A.10)

where µ is a measure on Γ.

• When Ω is tessellated into a mesh, similar definitions of the inner product hold

for integrals over mesh element Ωe.

• The L2(Ω)-norm of a scalar function u is

‖u‖0,Ω =
√

(u, u)Ω. (A.11)

Thus, the set of all functions, u, such that ‖u‖0,Ω < ∞ forms the Hilbert space,

L2(Ω).

• The Sobolev norm of a scalar function u is

‖u‖m,Ω =

√ ∑
|α|≤m

‖Dαu‖2
0,Ω, (A.12)
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where

Dαu =
∂|α|u

∂xα1
1 ∂xα2

2 · · ·∂xαd
d

, (A.13)

for α = [α1, . . . , αd]
T , αi ≥ 0 for i = 1, 2, . . . , d, and |α| =

∑d
i=1 αi. The set of

all functions, u, such that ‖u‖m,Ω < ∞ forms the Sobolev space, Hm(Ω).

• The space of functions, v ∈ H1(Ω), restricted to Γ, is denoted as H
1
2 (Ω).

• The sup-norm of a scalar function, u, is defined as

‖u‖∞,Ω = sup
x∈Ω

|u(x)|. (A.14)

Thus, the space of functions, u, such that ‖u‖∞,Ω < ∞ is the Banach space,

L∞(Ω).

• Let

L2
0(Ω) =

{
u | u ∈ L2(Ω) and u|ΓD

= 0
}

. (A.15)

Similarly, for H1
0 (Ω).

• Let

H1
BC(Ω) =

{
u | u ∈ H1(Ω) and u|ΓD

= 0 and
∂u

∂n

∣∣∣∣
ΓN

= β

}
, (A.16)

where β ∈ H
1
2 (Ω) is the user-prescribed Neumann boundary conditions.

• The Ω will be omitted when the domain is obvious from the context.

• The norms are analogous for vector and tensor functions, u.

• From the generalized form of Stokes Theorem [1] with scalar functions u and

v, (
∂u

∂xi
, v

)
Ω

= −
(

u,
∂v

∂xi

)
Ω

+

∫
Γ

u v ni dΓ (A.17)

where ni is the i-th component of the unit vector normal to Ω.


